Spectral Analysis on Standard Locally Homogeneous Spaces (Lecture Notes in Mathematics Book 2367) 9789819619597, 9789819619573

A groundbreaking theory has emerged for spectral analysis of pseudo-Riemannian locally symmetric spaces, extending beyon

105 67 3MB

English Pages [120] Year 2025

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Foreword
Preface
Contents
Chapter 1 Introduction
1.1 Standard quotients
1.2 Spherical homogeneous spaces
1.3 Density of analytic eigenfunctions
1.4 Self-adjointness and spectral decomposition for the Laplacian
1.5 Square-integrable joint eigenfunctions
1.6 Group manifolds
1.7 The example of AdS3
1.8 Organization of the book
Convention
Chapter 2 Method of proof
2.1 Overview
2.2 Vector-bundle valued eigenfunctions in the Riemannian setting
2.3 Transferring Riemannian eigenfunctions
2.4 Describing the discrete spectrum
Part I Generalities
Chapter 3 Reminders: spectral analysis on spherical homogeneous spaces
3.1 An elementary example
3.2 Spherical manifolds
3.3 Invariant differential operators on ๐‘ฟ
3.4 Pseudo-Riemannian structure on ๐‘ฟ
3.5 Joint eigenfunctions for D๐‘ฎ (๐‘ฟ) on quotient manifolds ๐‘ฟ๐šช
3.6 Discrete series representations for ๐‘ฟ
3.7 Regular representations on real spherical homogeneous spaces
3.8 Smooth and distribution vectors of unitary representations of ๐‘ฎ
3.9 (๐–Œ, ๐‘ฒ)-modules of admissible representations of real reductive Lie groups
Chapter 4 Discrete spectrum of type I and II
4.1 Definition of type I and type II
4.2 Definition of type I and type II using Z(๐”คC) instead of DG (X)
Chapter 5 Differential operators coming from L and from the fiber F
5.1 L-invariant differential operators on X
5.2 Relations between Laplacians
5.3 The maps pฯ„,ฮ“
5.4 Conditions (Tf), (A), (B) on higher-rank operators
5.5 Conditions (eA) and (eB), and their relation to conditions (Tf), (A), (B)
5.6 Proof of Lemma 5.19 and Propositions 5.10โ€“5.11
5.7 Explicit transfer maps
Part II Proof of the theorems of Chapter 1
Chapter 6 Essential self-adjointness of the Laplacian
6.1 Proof of Theorems 1.8 and 1.12.(2)
6.2 A decomposition of L2(Xฮ“) using discrete series for the fiber F
6.3 Proof of Proposition 6.1
Chapter 7 Transfer of Riemannian eigenfunctions and spectral decomposition
7.1 The transfer maps ฮฝ and ฮป in the presence of a discrete group ฮ“
7.2 Proof of Theorems 2.3โ€“2.4 (Transfer of Riemannian eigenfunctions) and Corollary 2.5
7.3 Proof of Theorem 1.9 (Spectral decomposition)
Chapter 8 Consequences of conditions (A) and (B) on representations of G and L
8.1 A consequence of condition (A) in a real spherical setting
8.2 A consequence of condition (B)
8.3 Examples where condition (A) or (B) fails
8.4 Existence problem of discrete series representations
Chapter 9 The maps iฯ„,ฮ“ and pฯ„,ฮ“ preserve type I and type II
9.1 Type I and type II for Hermitian bundles
9.2 The maps iฯ„,ฮ“ and pฯ„,ฮ“ preserve type I and type II
9.3 Proof of Theorem 9.2
Chapter 10 Infinite discrete spectrum of type II
Part III Representation-theoretic description of the discrete spectrum
Chapter 11 A conjectural picture
11.1 Z(๐”คC)-infinitesimal support for sets of admissible representations
11.2 A conjecture: L2-eigenfunctions and unitary representations
11.3 Real spectrum
11.4 The case of compact H
11.5 The case of group manifolds
11.6 The example of X = AdS3: proof of Proposition 1.13
Chapter 12 The discrete spectrum in terms of group representations
12.1 Representations Vฯ€ and Wฯ€
12.2 Intertwining operators associated with eigenfunctions on Xฮ“
12.3 A preliminary result on Harish-Chandra discrete series representations
12.4 Proof of Theorems 11.9 and 11.10
12.5 Proof of Theorem 2.7 and Proposition 11.11
References
Symbols and index
Recommend Papers

Spectral Analysis on Standard Locally Homogeneous Spaces (Lecture Notes in Mathematics Book 2367)
 9789819619597, 9789819619573

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Lecture Notes in Mathematics 2367 FJ-LMI Subseries

Fanny Kassel Toshiyuki Kobayashi

Spectral Analysis on Standard Locally Homogeneous Spaces

Lecture Notes in Mathematics

FJ-LMI Subseries Volume 2367

Series Editors Michael Pevzner, French-Japanese Laboratory of Mathematics and Its Interactions, CNRS and, The University of Tokyo, Tokyo, Japan Mathematical Laboratory, University of Reims Champagne-Ardenne, Reims, France Hideko Sekiguchi, Department of Mathematics, The University of Tokyo, Tokyo, Japan

FJ-LMI stands for French-Japanese Laboratory of Mathematics and its Interactions. It was founded in October 2023. The CNRS and the University of Tokyo started up, in the framework of their strategic partnership (International Research Center), a new International Research Laboratory in Mathematics and its applications. This joint research unit aims to strengthen existing collaborative networks in both Pure and Applied Mathematics and develop new ones. The FJ-LMI subseries of the Lecture Notes in Mathematics publishes high quality original articles or survey papers on topics of current interest. They are based on lectures delivered at the University of Tokyo in special periods organized by the FJ-LMI.

Fanny Kassel ยท Toshiyuki Kobayashi

Spectral Analysis on Standard Locally Homogeneous Spaces

Fanny Kassel Laboratoire Alexander Grothendieck CNRS & Institut des Hautes ร‰tudes Scientifiques Bures-sur-Yvette, France

Toshiyuki Kobayashi Graduate School of Mathematical Sciences The University of Tokyo Tokyo, Japan French-Japanese Laboratory of Mathematics and Its Interactions Tokyo, Japan

ISSN 0075-8434 ISSN 1617-9692 (electronic) Lecture Notes in Mathematics FJ-LMI Subseries ISBN 978-981-96-1959-7 ISBN 978-981-96-1957-3 (eBook) https://doi.org/10.1007/978-981-96-1957-3 Mathematics Subject Classification: 22E40, 11F72, 53C35, 22E46, 58J50 ยฉ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore If disposing of this product, please recycle the paper.

Foreword

This book marks the inaugural volume in a new Subseries of the Lecture Notes in Mathematics, dedicated to the scienti๏ฌc publications and contributions of the Frenchโ€“Japanese Laboratory of Mathematics and its Interactions. Established through the joint e๏ฌ€orts of the CNRS and The University of Tokyo, this international laboratory serves as a vital bridge, fostering and advancing collaborative research in both Pure and Applied Mathematics, thereby strengthening the bonds between France and Japan. Tokyo, December 2024

Michael Pevzner Hideko Sekiguchi

v

Preface

Over the years, extensive and thorough research has been conducted on spectral analysis on Riemannian locally symmetric spaces, particularly in relation to automorphic representations. On the other hand, less attention has been given to spectral analysis on pseudo-Riemannian locally symmetric spaces, such as complete anti-de Sitter manifolds. This book initiates a comprehensive study of spectral analysis on pseudoRiemannian locally symmetric (or more generally locally homogeneous) spaces. We address some of the new analytical, geometric, and representation-theoretic challenges that arise in this setting, extending beyond the traditional Riemannian context. A key idea for passing from the conventional Riemannian setting to the general pseudo-Riemannian setting is to incorporate the branching theory of infinitedimensional representations. More precisely, we consider an important class of pseudo-Riemannian locally homogeneous spaces, obtained by quotienting a reductive homogeneous space by a discrete subgroup of a reductive group of isometries acting properly and spherically. We establish an explicit correspondence, called the โ€œtransfer mapโ€, between spectrum on the pseudo-Riemannian locally homogeneous space and spectrum on certain vector bundles over Riemannian locally symmetric spaces. This is achieved through discretely decomposable branching laws for the restriction of admissible representations to the reductive subgroup. The proof is based on structural theorems from [KK19] regarding three rings of invariant differential operators on spherical homogeneous spaces with overgroups. We are grateful to The University of Tokyo for its support through the GCOE program, and to the Institut des Hautes ร‰tudes Scientifiques (Bures-sur-Yvette), Universitรฉ Lille 1, Mathematical Sciences Research Institute (Berkeley), and Max Planck Institut fรผr Mathematik (Bonn) for giving us opportunities to work together in very good conditions. This project received funding from the European Research Council (ERC) under the European Unionโ€™s Horizon 2020 research and innovation programme (ERC starting grant DiGGeS, grant agreement No 715982). FK was partially supported by the Agence Nationale de la Recherche through the grants DiscGroup (ANR-11BS01-013), DynGeo (ANR-16-CE40-0025-01), and the Labex CEMPI (ANR-11vii

viii

Preface

LABX-0007-01). TK was partially supported by the JSPS under the Grant-in-Aid for Scienti๏ฌc Research (A) (18H03669, JP23H00084). We thank the anonymous referees for valuable comments and suggestions. The results of this book were announced in [KK20]. Bures-sur-Yvette and Tokyo, June 2024

Fanny Kassel Toshiyuki Kobayashi

Contents

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Standard quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Spherical homogeneous spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Density of analytic eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Self-adjointness and spectral decomposition . . . . . . . . . . . . . . . . . . . . 6 1.5 Square-integrable joint eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Group manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.7 The example of AdS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.8 Organization of the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2

Method of proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Vector-bundle valued eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Transferring Riemannian eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . 2.4 Describing the discrete spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 11 12 14 16

Part I Generalities 3

Reminders: spectral analysis on spherical homogeneous spaces . . . . . . 3.1 An elementary example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Spherical manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Invariant di๏ฌ€erential operators on ๐‘‹ . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Pseudo-Riemannian structure on ๐‘‹ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Joint eigenfunctions for D๐บ (๐‘‹) on quotient manifolds ๐‘‹ฮ“ . . . . . . . . . 3.6 Discrete series representations for ๐‘‹ . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Regular representations on real spherical homogeneous spaces . . . . . 3.8 Smooth and distribution vectors of unitary representations . . . . . . . . 3.9 (๐”ค, ๐พ)-modules of admissible representations . . . . . . . . . . . . . . . . . . .

21 21 22 23 24 25 26 27 28 29

ix

x

Contents

4

Discrete spectrum of type I and II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 De๏ฌnition of type I and type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 De๏ฌnition of type I and type II using ๐‘ (๐”คC ) instead of D๐บ (๐‘‹) . . . . . 34

5

Di๏ฌ€erential operators coming from ๐‘ณ and from the ๏ฌber ๐‘ญ . . . . . . . . . 5.1 ๐ฟ-invariant di๏ฌ€erential operators on ๐‘‹ . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Relations between Laplacians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 The maps p ๐œ,ฮ“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Conditions (Tf), (A), (B) on higher-rank operators . . . . . . . . . . . . . . . e and (B) e ...................................... 5.5 Conditions (A) 5.6 Proof of Lemma 5.19 and Propositions 5.10โ€“5.11 . . . . . . . . . . . . . . . . 5.7 Explicit transfer maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37 38 40 42 43 45 47 49

Part II Proof of the theorems of Chapter 1 6

Essential self-adjointness of the Laplacian . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Proof of Theorems 1.8 and 1.12.(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 A decomposition of ๐ฟ 2 (๐‘‹ฮ“ ) using discrete series for ๐น . . . . . . . . . . . 6.3 Proof of Proposition 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

55 56 56 61

7

Transfer of Riemannian eigenfunctions and spectral decomposition . . 7.1 The transfer maps ๐‚ and ๐€ in the presence of a discrete group ฮ“ . . . . 7.2 Proof of Theorems 2.3โ€“2.4 (Transfer of Riemannian eigenfunctions) and Corollary 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Proof of Theorem 1.9 (Spectral decomposition) . . . . . . . . . . . . . . . . .

63 64

8

Consequences of conditions (A) and (B) on representations of ๐‘ฎ and ๐‘ณ 8.1 A consequence of condition (A) in a real spherical setting . . . . . . . . . 8.2 A consequence of condition (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 Examples where condition (A) or (B) fails . . . . . . . . . . . . . . . . . . . . . . 8.4 Existence problem of discrete series representations . . . . . . . . . . . . . .

69 70 71 73 75

9

The maps i๐‰,๐šช and p๐‰,๐šช preserve type I and type II . . . . . . . . . . . . . . . . . 9.1 Type I and type II for Hermitian bundles . . . . . . . . . . . . . . . . . . . . . . . 9.2 The maps i ๐œ,ฮ“ and p ๐œ,ฮ“ preserve type I and type II . . . . . . . . . . . . . . 9.3 Proof of Theorem 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

77 78 79 80

64 66

10 In๏ฌnite discrete spectrum of type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Part III Representation-theoretic description of the discrete spectrum 11 A conjectural picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 ๐‘ (๐”คC )-in๏ฌnitesimal support for sets of admissible representations . . 11.2 A conjecture: ๐ฟ 2 -eigenfunctions and unitary representations . . . . . . . 11.3 Real spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.4 The case of compact ๐ป . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89 90 91 93 94

Contents

xi

11.5 The case of group manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.6 The example of ๐‘‹ = AdS3 : proof of Proposition 1.13 . . . . . . . . . . . . . 96 12 The discrete spectrum in terms of group representations . . . . . . . . . . . 99 12.1 Representations ๐‘‰ ๐œ‹ and ๐‘Š ๐œ‹ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 12.2 Intertwining operators associated with eigenfunctions on ๐‘‹ฮ“ . . . . . . 102 12.3 A preliminary result on Harish-Chandra discrete series . . . . . . . . . . . 104 12.4 Proof of Theorems 11.9 and 11.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 12.5 Proof of Theorem 2.7 and Proposition 11.11 . . . . . . . . . . . . . . . . . . . . 110 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Symbols and index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 1

Introduction

Abstract In this introduction, we provide an overview of the main results proven in this book, along with some fundamental concepts. Let ๐‘‹ = ๐บ/๐ป be a reductive homogeneous space with noncompact ๐ป, endowed with a ๐บ-invariant pseudo-Riemannian structure. Our focus in this book is on spectral analysis on pseudo-Riemannian locally homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐บ/๐ป in the setting, called standard, that ฮ“ is a torsion-free discrete subgroup of a reductive subgroup ๐ฟ of ๐บ acting properly and spherically on ๐‘‹. We provide a complete list of such triples of Lie groups (๐บ, ๐ป, ๐ฟ) infinitesimally. Examples of such ๐บ/๐ป include anti-de Sitter spaces SO(2๐‘›, 2) / SO(2๐‘›, 1) , indefinite Kรคhler manifolds SO(2๐‘›, 2) / U(๐‘›, 1) , and the non-symmetric reductive homogeneous space SO(4, 3) /๐บ 2(2) . Compared to the traditional Riemannian context where ๐ป is compact, we encounter new challenges: ๐ฟ 2 (๐‘‹ฮ“ ) is no longer a subspace of ๐ฟ 2 (ฮ“\๐บ), on which the group ๐บ acts as a unitary representation. Moreover, it is unclear whether the pseudo-Riemannian Laplacian is essentially self-adjoint, in the absence of a general theory. We formulate our main results regarding the spectral decomposition of compactly supported smooth functions into joint eigenfunctions, the abundance of real analytic joint eigenfunctions, and the existence of an infinite ๐ฟ 2 spectrum under certain additional conditions. Let ๐ป โŠ‚ ๐บ be two linear reductive Lie groups. Classically, the space ๐‘‹ = ๐บ/๐ป admits a ๐บ-invariant pseudo-Riemannian structure (Lemma 3.4); for semisimple ๐บ, such a structure is induced for instance by the Killing form of the Lie algebra ๐”ค. If ฮ“ is a discrete subgroup of ๐บ acting properly discontinuously and freely on ๐‘‹ (or โ€œdiscontinuous group for ๐‘‹โ€), then the quotient space ๐‘‹ฮ“ := ฮ“\๐‘‹ = ฮ“\๐บ/๐ป is a manifold, and the covering map ๐‘ ฮ“ : ๐บ/๐ป = ๐‘‹ โˆ’โ†’ ๐‘‹ฮ“ = ฮ“\๐บ/๐ป.

(1.1)

transports the pseudo-Riemannian structure of ๐‘‹ to ๐‘‹ฮ“ . The Laplacian of ๐‘‹ฮ“ is the second-order differential operator ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_1

1

2

1 Introduction

โ–ก๐‘‹ฮ“ = div grad,

(1.2)

where the gradient and divergence are de๏ฌned with respect to the pseudo-Riemannian structure and the induced volume form on ๐‘‹ฮ“ . When the pseudo-Riemannian structure is positive de๏ฌnite, this is the usual Laplacian on a Riemannian manifold, for which we also write ฮ”๐‘‹ฮ“ instead of โ–ก๐‘‹ฮ“ . When the pseudo-Riemannian structure is not de๏ฌnite, the Laplacian โ–ก๐‘‹ฮ“ is not an elliptic di๏ฌ€erential operator. We are interested in the spectral analysis of โ–ก๐‘‹ฮ“ in that setting. More generally, we consider โ€œintrinsicโ€ di๏ฌ€erential operators of higher order on ๐‘‹ฮ“ , de๏ฌned as follows. Let D๐บ (๐‘‹) be the C-algebra of ๐บ-invariant di๏ฌ€erential operators on ๐‘‹. Any operator ๐ท โˆˆ D๐บ (๐‘‹) induces a di๏ฌ€erential operator ๐ท ฮ“ on ๐‘‹ฮ“ such that ๐ท โ—ฆ ๐‘ โˆ—ฮ“ = ๐‘ โˆ—ฮ“ โ—ฆ ๐ท ฮ“ , (1.3) where ๐‘ โˆ—ฮ“ : ๐ถ โˆž (๐‘‹ฮ“ ) โ†’ ๐ถ โˆž (๐‘‹) is the pull-back by ๐‘ ฮ“ . In particular, the Laplacian โ–ก๐‘‹ is ๐บ-invariant and (โ–ก๐‘‹ ) ฮ“ = โ–ก๐‘‹ฮ“ . For F = A (resp. ๐ถ โˆž , resp. ๐ฟ 2 , resp. D โ€ฒ ), let F (๐‘‹ฮ“ ) be the space of real analytic (resp. smooth, resp. square-integrable, resp. distribution) functions on ๐‘‹ฮ“ . For any C-algebra homomorphism ๐œ† : D๐บ (๐‘‹) โˆ’โ†’ C, we denote by F (๐‘‹ฮ“ ; M๐œ† ) the space of (weak) solutions ๐‘“ โˆˆ F (๐‘‹ฮ“ ) to the system ๐ท ฮ“ ๐‘“ = ๐œ†(๐ท) ๐‘“

for all ๐ท โˆˆ D๐บ (๐‘‹)

(M๐œ† ).

For F = A (resp. ๐ถ โˆž , resp. D โ€ฒ ), the space F (๐‘‹ฮ“ ; M๐œ† ) identi๏ฌes with the set of analytic (resp. smooth, resp. distribution) ฮ“-periodic joint eigenfunctions for D๐บ (๐‘‹) on ๐‘‹ with respect to ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C); for F = ๐ฟ 2 , there is an additional requirement that the eigenfunctions be square-integrable on the quotient ๐‘‹ฮ“ with respect to the natural measure induced by the pseudo-Riemannian structure. By de๏ฌnition, the discrete spectrum Spec๐‘‘ (๐‘‹ฮ“ ) of ๐‘‹ฮ“ is the set of homomorphisms ๐œ† such that ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) โ‰  {0} (โ€œjoint ๐ฟ 2 -eigenvalues for D๐บ (๐‘‹)โ€). Any element of ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) is in particular an ๐ฟ 2 -eigenfunction (as a weak solution in ๐ฟ 2 ) of the Laplacian โ–ก๐‘‹ฮ“ for the eigenvalue ๐œ†(โ–ก๐‘‹ ), yielding discrete spectrum (or point spectrum) of โ–ก๐‘‹ฮ“ . Very little is known about F (๐‘‹ฮ“ ; M๐œ† ) when ๐ป is noncompact and ฮ“ in๏ฌnite. For instance, the following questions are open in general. Questions 1.1. (a) Is Spec๐‘‘ (๐‘‹ฮ“ ) nonempty, e.g. when ๐‘‹ฮ“ is compact? (b) Does ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) contain smooth eigenfunctions as a dense subspace? (c) Does the Laplacian โ–ก๐‘‹ฮ“ de๏ฌned on ๐ถ๐‘โˆž (๐‘‹ฮ“ ) extend to a self-adjoint operator on ๐ฟ 2 ( ๐‘‹ฮ“ ) ? These questions have been studied extensively in the following two cases: (i) ๐ป = ๐พ is a maximal compact subgroup of ๐บ (i.e. ๐‘‹ฮ“ is a Riemannian locally symmetric space);

1 Introduction

3

(ii) (๐บ, ๐ป) is a reductive symmetric pair and ฮ“ = {๐‘’} is trivial (i.e. ๐‘‹ฮ“ = ๐‘‹ is a reductive symmetric space). In case (i), the discrete spectrum Spec๐‘‘ (๐‘‹ฮ“ ) is in๏ฌnite when ฮ“ is an arithmetic subgroup of ๐บ [BG83], whereas Spec๐‘‘ (๐‘‹) = Spec(๐บ/๐พ) is empty, namely, Spec๐‘‘ (๐‘‹ฮ“ ) is empty when ฮ“ = {๐‘’}; Questions 1.1.(b)โ€“(c) always have a๏ฌƒrmative answers by the general theory of the Laplacian on Riemannian manifolds (without any arithmeticity assumption on ฮ“): see [KKK86, Th. 3.4.4] (elliptic regularity theorem) for (b) and [Gaf54, Wol72, Str83] for (c). In case (ii), the discrete spectrum Spec๐‘‘ (๐‘‹) is nonempty if and only if the rank condition rank ๐บ/๐ป = rank ๐พ/๐ป โˆฉ ๐พ

(1.4)

is satis๏ฌed, in which case Spec๐‘‘ (๐‘‹) is in fact in๏ฌnite [Fle80, MO84]; Questions 1.1.(b)โ€“(c) also have a๏ฌƒrmative answers by the general theory of unitary representations and symmetric spaces: see [Gรฅr47] for (b) and [Ban87] for (c). However, the questions remain wide open when ๐ป is noncompact and ฮ“ in๏ฌnite. In previous work [KK11, KK16] we constructed nonzero generalized Poincarรฉ series and obtained ๐ฟ 2 -eigenfunctions on ๐‘‹ฮ“ corresponding to discrete spectrum (which we call of type I) under the assumption that ๐‘‹ satis๏ฌes the rank condition (1.4) and the action of ฮ“ on ๐‘‹ satis๏ฌes a strong properness condition called sharpness (see [KK16, Def. 4.2]); this provided a partial answer to Question 1.1.(a). In this book, we study joint eigenfunctions for D๐บ (๐‘‹) using a di๏ฌ€erent approach. We assume that ฮ“ is contained in a reductive subgroup ๐ฟ of ๐บ acting properly on ๐‘‹ (i.e. ๐‘‹ฮ“ is standard, see Section 1.1) and that ๐‘‹C is ๐ฟ C -spherical (see Section 1.2), which ensures that the larger C-algebra D ๐ฟ (๐‘‹) โŠƒ D๐บ (๐‘‹) of ๐ฟ-invariant di๏ฌ€erential operators on ๐‘‹ is commutative. Using [KK19], we introduce a pair of transfer maps ๐‚ and ๐€ (see (2.4)), which are inverse to each other, and such that ๐€ sends spectrum from the classical Riemannian setting of ฮ“\๐ฟ/(๐ฟ โˆฉ ๐พ) to the pseudo-Riemannian setting of ฮ“\๐บ/๐ป = ๐‘‹ฮ“ . From a representation-theoretic point of view, these transfer maps re๏ฌ‚ect the restriction of irreducible ๐บ-modules to the subgroup ๐ฟ (branching laws). Using this, we obtain a description of the whole discrete spectrum of ๐‘‹ฮ“ (Theorem 2.7), and ๏ฌnd new in๏ฌnite spectrum (which we call of type II) when ๐‘‹ฮ“ is compact or of an arithmetic nature (Theorem 1.10). Moreover, via the transfer map ๐€, we prove that any compactly supported smooth function on ๐‘‹ฮ“ can be developed into joint eigenfunctions of D๐บ (๐‘‹) (Theorem 1.9). The assumptions on ๐‘‹ฮ“ here are di๏ฌ€erent from [KK11, KK16]: we do not assume the rank condition (1.4) to be necessarily satis๏ฌed, but restrict ourselves to the case that ๐‘‹ฮ“ is standard and ๐‘‹C is ๐ฟ C -spherical. In this setting we give a๏ฌƒrmative answers to Questions 1.1.(a)โ€“ (c). The main tool of the proof is analysis on spherical homogeneous spaces with overgroups, as developed in [KK19]. Before we state our main results in a more precise way, let us introduce some de๏ฌnitions.

4

1 Introduction

1.1 Standard quotients When the reductive homogeneous space ๐‘‹ = ๐บ/๐ป is non-Riemannian, not all discrete subgroups of ๐บ act properly discontinuously on ๐‘‹. For instance, a lattice of ๐บ cannot act properly discontinuously if ๐ป is noncompact, by the Howeโ€“Moore ergodicity theorem. An important class of examples is constructed as follows: a quotient ๐‘‹ฮ“ = ฮ“\๐‘‹ of ๐‘‹ by a discrete subgroup ฮ“ of ๐บ is called standard if ฮ“ is contained in some reductive subgroup ๐ฟ of ๐บ acting properly on ๐‘‹. Then the action of ฮ“ on ๐‘‹ is automatically properly discontinuous, and this action is free whenever ฮ“ is torsionfree; the quotient ๐‘‹ฮ“ is compact if and only if ฮ“ is a uniform lattice in ๐ฟ and ๐ฟ acts cocompactly on ๐‘‹. Example 1.2 Let ๐‘‹ = AdS2๐‘›+1 = SO(2๐‘›, 2)/SO(2๐‘›, 1) be the (2๐‘› + 1)-dimensional anti-de Sitter space. It is a reductive symmetric space with a ๐บ-invariant Lorentzian structure of constant negative sectional curvature, making it a Lorentzian analogue of the real hyperbolic space H2๐‘›+1 . The group ๐ฟ = U(๐‘›, 1) acts properly and transitively on ๐‘‹, and any torsion-free discrete subgroup ฮ“ โŠ‚ ๐ฟ yields a standard quotient manifold ๐‘‹ฮ“ . Example 1.3 Let ๐‘‹ = ( โ€ต ๐บ ร— โ€ต ๐บ)/Diag( โ€ต ๐บ) be a group manifold, where โ€ต ๐บ is a noncompact reductive Lie group and Diag( โ€ต ๐บ) denotes the diagonal of โ€ต ๐บ ร—โ€ต ๐บ. Let โ€ต ๐พ be a maximal compact subgroup of โ€ต ๐บ. The group ๐ฟ = โ€ต ๐บ ร—โ€ต ๐พ acts properly and transitively on ๐‘‹, and any torsion-free discrete subgroup ฮ“ โŠ‚ ๐ฟ yields a standard quotient manifold ๐‘‹ฮ“ . Almost all known examples of compact quotients of reductive homogeneous spaces are standard, and conjecturally [KY05, Conj. 3.3.10] any reductive homogeneous space admitting compact quotients admits standard ones. We refer to [KK16, ยง 4] for more details. Remark 1.4 For simplicity, in the statements of the theorems below, we shall assume the discontinuous ฮ“ to be torsion-free. However, the theorems still hold, with the same proof, under the weaker assumption that ฮ“ acts freely on ๐‘‹; indeed, the only thing we need is that the quotient ๐‘‹ฮ“ = ฮ“\๐‘‹ be a smooth manifold with covering map ๐‘‹ โ†’ ฮ“\๐‘‹. One could also extend the theorems to the framework of orbifolds (or ๐‘‰-manifolds in the sense of Satake), allowing the discontinuous group ฮ“ to not act freely on ๐‘‹.

1.2 Spherical homogeneous spaces Recall that a connected complex manifold endowed with a holomorphic action of a complex reductive Lie group ๐บ C is called ๐บ C -spherical if it admits an open orbit of a Borel subgroup of ๐บ C (De๏ฌnition 3.1). For instance, any complex reductive symmetric space is spherical [Wol74].

1.3 Density of analytic eigenfunctions

5

One expects solutions to (M๐œ† ) on ๐‘‹ฮ“ = ฮ“\๐บ/๐ป for varying joint eigenvalues ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C) to be abundant enough to expand arbitrary functions on ๐‘‹ฮ“ only if the algebra D๐บ (๐‘‹) is commutative, or equivalently only if the complexi๏ฌcation ๐‘‹C = ๐บ C /๐ปC is ๐บ C -spherical. In this case, ๐ถ โˆž (๐‘‹; M๐œ† ) is a representation of ๐บ of ๏ฌnite length for any ๐œ† by [KO13], and we expect to relate spectral analysis on ๐‘‹ฮ“ to representation theory of ๐บ on ๐ถ โˆž ( ๐‘‹ ) . In this book, we shall consider spectral analysis on standard quotients ๐‘‹ฮ“ with ฮ“ โŠ‚ ๐ฟ in the following setting. Main setting 1.5. We consider a reductive homogeneous space ๐‘‹ = ๐บ/๐ป with ๐บ noncompact and simple, a reductive subgroup ๐ฟ of ๐บ acting properly on ๐‘‹, such that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C -spherical, and a torsion-free discrete subgroup ฮ“ of ๐ฟ. We assume ๐บ, ๐ป, and ๐ฟ to be connected. Here we call a homogeneous space ๐‘‹ = ๐บ/๐ป reductive if ๐บ is a real reductive Lie group and ๐ป a closed subgroup which is reductive in ๐บ. A typical example of a reductive homogeneous space is a reductive symmetric space, namely ๐บ is a real reductive Lie group and ๐ป an open subgroup of the group of ๏ฌxed points of ๐บ under some involutive automorphism ๐œŽ. In the setting 1.5, the complexi๏ฌcation ๐‘‹C is automatically ๐บ C -spherical, and the action of ๐ฟ on ๐‘‹ is transitive, by [KO13, Lem. 4.2] and [Kob94, Lem. 5.1]. Remark 1.6 All the theorems in this book remain true if we relax the assumption of the real reductive Lie groups ๐บ, ๐ป, ๐ฟ being connected into ๐บ, ๐ป, ๐ฟ being contained in connected complexi๏ฌcations ๐บ C , ๐ปC , ๐ฟ C . Indeed, we can use [KK19, Th. 5.1 & Prop. 5.5] and replace everywhere the maximal compact subgroup ๐ฟ ๐พ of ๐ฟ by its identity component. Table 1.1 below provides a full list of triples (๐บ, ๐ป, ๐ฟ) of the setting 1.5, up to connected components and coverings. It is obtained from Oniลกฤikโ€™s list [Oni69] of triples (๐บ, ๐ป, ๐ฟ) with compact simple ๐บ such that ๐ป ๐ฟ = ๐บ and from the classi๏ฌcation [Krรค79, Bri87, Mik87] of spherical homogeneous spaces. Note that the pair (๐”ค, ๐”ฅ) of Lie algebras is a reductive symmetric pair in all cases except (ix). The complexi๏ฌcation ๐บ C is simple in all cases except (vii). In all cases the action of ๐ฟ on ๐‘‹ = ๐บ/๐ป is cocompact, and so there exist ๏ฌnite-volume (resp. compact) quotients ๐‘‹ฮ“ = ฮ“\ ๐‘‹: one can just take ฮ“ to be a torsion-free lattice (resp. uniform lattice) in ๐ฟ.

1.3 Density of analytic eigenfunctions In our setting where ๐ป is noncompact, the natural pseudo-Riemannian structure on ๐‘‹ฮ“ is not positive de๏ฌnitive, and the Laplacian โ–ก๐‘‹ฮ“ is not an elliptic di๏ฌ€erential operator. Thus weak ๐ฟ 2 -solutions (or distribution solutions) to M๐œ† are not necessarily smooth functions: see Section 3.1 for an elementary example. Nevertheless, in the setting 1.5, we give an a๏ฌƒrmative answer to Question 1.1.(b) as follows.

6

1 Introduction

(i) (i)โ€ฒ (ii) (iii) (iv) (v) (v)โ€ฒ (vi) (vii) (viii) (ix)

๐บ SO ( 2๐‘›, 2 ) SO ( 2๐‘›, 2 ) SO ( 2๐‘›, 2 ) SU ( 2๐‘›, 2 ) SU ( 2๐‘›, 2 ) SO ( 4๐‘›, 4 ) SO ( 4๐‘›, 4 ) SO ( 8, 8 ) SO ( 8, C ) SO ( 4, 4 ) SO ( 4, 3 )

๐ป SO ( 2๐‘›, 1 ) SO ( 2๐‘›, 1 ) U ( ๐‘›, 1 ) U ( 2๐‘›, 1 ) Sp ( ๐‘›, 1 ) SO ( 4๐‘›, 3 ) SO ( 4๐‘›, 3 ) SO ( 8, 7 ) SO ( 7, C ) Spin ( 4, 3 ) ๐บ2 ( 2 )

๐ฟ U ( ๐‘›, 1 ) SU ( ๐‘›, 1 ) SO ( 2๐‘›, 1 ) Sp ( ๐‘›, 1 ) U ( 2๐‘›, 1 ) Sp ( 1 ) ยท Sp ( ๐‘›, 1 ) U ( 1 ) ยท Sp ( ๐‘›, 1 ) Spin ( 8, 1 ) Spin ( 7, 1 ) SO ( 4, 1 ) ร— SO ( 3 ) SO ( 4, 1 ) ร— SO ( 2 )

rank ๐‘‹ 1 1 โŒˆ ๐‘›/2 โŒ‰ 1 n 1 1 1 2 1 1

Table 1.1 Complete list of triples (๐บ, ๐ป, ๐ฟ) in the setting 1.5, up to a covering of ๐บ and up to connected components. Here ๐‘› โ‰ฅ 1 is any positive integer. In case (i)โ€ฒ we assume ๐‘› โ‰ฅ 2.

Theorem 1.7 (Density of analytic eigenfunctions) In the setting 1.5, for any ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C), the space (A โˆฉ ๐ฟ 2 )(๐‘‹ฮ“ ; M๐œ† ) is dense in the Hilbert space ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† ) , and A ( ๐‘‹ฮ“ ; M๐œ† ) is dense in D โ€ฒ ( ๐‘‹ฮ“ ; M๐œ† ) . Theorem 1.7 applies to the homogeneous spaces ๐‘‹ = ๐บ/๐ป of Table 1.1. We prove it in Section 7.2 by constructing a dense analytic subspace of eigenfunctions via a transfer map ๐‚, see Theorem 2.3 below.

1.4 Self-adjointness and spectral decomposition for the Laplacian Let (๐‘€, ๐‘”) be a pseudo-Riemannian manifold. The Laplacian โ–ก ๐‘€ , de๏ฌned on the space ๐ถ๐‘โˆž (๐‘€) of compactly supported smooth functions on ๐‘€, is a symmetric operator, namely (โ–ก ๐‘€ ๐‘“1 , ๐‘“2 ) ๐ฟ 2 ( ๐‘€ ) = ( ๐‘“1 , โ–ก ๐‘€ ๐‘“2 ) ๐ฟ 2 ( ๐‘€ ) for all ๐‘“1 , ๐‘“2 โˆˆ ๐ถ๐‘โˆž (๐‘€). In this book we consider the existence and uniqueness of a self-adjoint extension of the Laplacian โ–ก ๐‘€ on ๐ฟ 2 ( ๐‘€ ) . More precisely, recall that the closure of (โ–ก ๐‘€ , ๐ถ๐‘โˆž (๐‘€)) in the graph norm is de๏ฌned on the set S of ๐‘“ โˆˆ ๐ฟ 2 (๐‘€) for which there exists a sequence ๐‘“ ๐‘— โˆˆ ๐ถ๐‘โˆž (๐‘€) such that โˆฅ ๐‘“ ๐‘— โˆ’ ๐‘“ โˆฅ ๐ฟ 2 ( ๐‘€ ) โ†’ 0 and โ–ก ๐‘€ ๐‘“ ๐‘— โˆˆ ๐ถ๐‘โˆž (๐‘€) converges to an element of ๐ฟ 2 (๐‘€), which we can identify with the distribution โ–ก ๐‘€ ๐‘“ . The adjoint โ–กโˆ—๐‘€ of the symmetric operator (โ–ก ๐‘€ , S) is de๏ฌned on the set S โˆ— of ๐‘“ โˆˆ ๐ฟ 2 (๐‘€) such that the distribution โ–ก ๐‘€ ๐‘“ belongs to ๐ฟ 2 (๐‘€). Clearly, S โŠ‚ S โˆ— . The Laplacian โ–ก ๐‘€ is called essentially self-adjoint on ๐ฟ 2 (๐‘€) if S = S โˆ— , or equivalently if there exists a unique self-adjoint extension of (โ–ก ๐‘€ , ๐ถ๐‘โˆž (๐‘€)). When (๐‘€, ๐‘”) is Riemannian and complete, the Laplacian โ–ก ๐‘€ is always essentially self-adjoint, see [Str83] and references therein. On the other hand, to the best of our knowledge there is no general theory ensuring the essential self-adjointness of the Laplacian โ–ก ๐‘€ in the pseudo-Riemannian setting, even when ๐‘€ is compact.

1.5 Square-integrable joint eigenfunctions

7

Here we prove that S = S โˆ— for ๐‘€ = ๐‘‹ฮ“ for any standard ๐‘‹ฮ“ with ฮ“ โŠ‚ ๐ฟ for ๐‘‹ = ๐บ /๐ป and ๐ฟ as in Table 1.1. Theorem 1.8 (Self-adjoint extension) In the setting 1.5, the pseudo-Riemannian Laplacian โ–ก๐‘‹ฮ“ is essentially self-adjoint on ๐ฟ 2 ( ๐‘‹ฮ“ ) . In particular, in this setting the Hilbert space ๐ฟ 2 (๐‘‹ฮ“ ) admits a spectral decomposition with real spectrum for the Laplacian โ–ก๐‘‹ฮ“ . Note that we do not assume ๐‘‹ฮ“ to have ๏ฌnite volume. Theorem 1.8 will be proved in Chapter 6. By combining the existence of a transfer map ๐€ (Proposition 5.10) with the representation theory of the subgroup ๐ฟ on ๐ฟ 2 (ฮ“\๐ฟ), we obtain a spectral decomposition on ๐‘‹ฮ“ = ฮ“\๐บ /๐ป by joint eigenfunctions of D๐บ ( ๐‘‹ ) . Theorem 1.9 (Spectral decomposition) In the setting 1.5, there exist a measure d๐œ‡ on HomC-alg ( D๐บ ( ๐‘‹ ) , C) and a measurable family of maps F๐œ† : ๐ถ๐‘โˆž (๐‘‹ฮ“ ) โˆ’โ†’ ๐ถ โˆž (๐‘‹ฮ“ ; M๐œ† ), for ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C), such that any ๐‘“ โˆˆ ๐ถ๐‘โˆž (๐‘‹ฮ“ ) may be expanded into joint eigenfunctions on ๐‘‹ฮ“ as โˆซ ๐‘“ = F๐œ† ๐‘“ d๐œ‡(๐œ†), (1.5) HomC-alg (D๐บ (๐‘‹) ,C)

with a Parsevalโ€“Plancherel type formula โˆซ โˆฅ ๐‘“ โˆฅ 2๐ฟ 2 (๐‘‹ ) = ฮ“

HomC-alg (D๐บ (๐‘‹) ,C)

โˆฅF๐œ† ๐‘“ โˆฅ 2๐ฟ 2 (๐‘‹

ฮ“)

d๐œ‡(๐œ†).

Moreover, (1.5) is a discrete sum if ๐‘‹ฮ“ is compact. Theorem 1.9 will be proved in Section 7.3.

1.5 Square-integrable joint eigenfunctions We now focus on the discrete spectrum of the Laplacian or more generally of the โ€œintrinsicโ€ di๏ฌ€erential operators ๐ท ฮ“ on ๐‘‹ฮ“ coming from D๐บ (๐‘‹), as given by (1.3). In Chapter 4, for joint ๐ฟ 2 -eigenfunctions on ๐‘‹ฮ“ , we introduce a Hilbert space decomposition ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) = ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )I โŠ• ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )II according to the analysis on the homogeneous space ๐‘‹ = ๐บ/๐ป: namely, ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )I is associated with discrete series representations for the homogeneous space ๐‘‹ = ๐บ/๐ป, and ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )II is its orthogonal complement in ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ). For ๐‘– โˆˆ {I, II}, we set

8

1 Introduction

Spec๐‘‘ (๐‘‹ฮ“ )๐‘– := {๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ) : ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )๐‘– โ‰  {0}}, so that Spec๐‘‘ (๐‘‹ฮ“ ) = Spec๐‘‘ (๐‘‹ฮ“ )I โˆช Spec๐‘‘ (๐‘‹ฮ“ )II . Discrete spectrum of type I may exist only if the rank condition (1.4) is satis๏ฌed. In this case, in [KK16] we constructed eigenfunctions of type I for su๏ฌƒciently regular ๐œ† when ฮ“ is sharp โ€” a strong form of proper discontinuity [KK16, Def. 4.2]. In the classical setting where ๐ป = ๐พ, namely ๐‘‹ฮ“ is a Riemannian locally symmetric space ฮ“\๐บ/๐พ, the discrete spectrum on ๐‘‹ฮ“ is always of type II. In our pseudo-Riemannian setting it is not clear if there always exist ๐ฟ 2 -eigenfunctions of type II on ๐‘‹ฮ“ . We shall prove the following in Chapter 10. Theorem 1.10 In the setting 1.5, the set Spec๐‘‘ (๐‘‹ฮ“ )II (hence Spec๐‘‘ (๐‘‹ฮ“ )) is in๏ฌnite whenever ฮ“ is cocompact or arithmetic in ๐ฟ. Theorem 1.10 applies to the triples (๐บ, ๐ป, ๐ฟ) of Table 1.1. It gives an a๏ฌƒrmative answer to Question 1.1.(a), and guarantees that the Laplacian ฮ”๐‘‹ฮ“ has in๏ฌnitely many ๐ฟ 2 -eigenvalues in this setting. We note that Spec๐‘‘ (๐‘‹ฮ“ )I is empty (i.e. Spec๐‘‘ (๐‘‹ฮ“ ) = Spec๐‘‘ (๐‘‹ฮ“ )II ) for all ฮ“ in case (ii) with ๐‘› odd and in case (vii) of Table 1.1: see Remark 4.6.(3). Remark 1.11 S. Mehdi and M. Olbrich have announced that they can prove analogous results to Theorems 1.8 and 1.10 for the Laplacian for most triples (๐บ, ๐ป, ๐ฟ) in Table 1.1, by computing linear relations among the Casimir elements of ๐”ค, ๐”ฉ โˆฉ ๐”จ, and ๐”ฉ in the enveloping algebra ๐‘ˆ (๐”คC ), similarly to Proposition 5.3. As far as we understand, their method does not apply to higher-order di๏ฌ€erential operators on ๐‘‹ฮ“ . See their announcement [MO21], which appeared on the arXiv after we completed this work.

1.6 Group manifolds In this book we also consider reductive symmetric spaces of the form ๐‘‹ = ๐บ/๐ป = ( โ€ต ๐บ ร— โ€ต ๐บ)/Diag( โ€ต ๐บ) as in Example 1.3. For ๐ฟ = โ€ต ๐บ ร— โ€ต ๐พ where โ€ต ๐พ is a maximal compact subgroup of โ€ต ๐บ, the complexification ๐‘‹C is not always ๐ฟ C -spherical (see Example 3.2.(3)), but we are still able to extend our techniques to prove the following analogue of Theorems 1.7, 1.8, and 1.10 for standard quotients ๐‘‹ฮ“ with ฮ“ โŠ‚ ๐ฟ. Theorem 1.12 Let โ€ต ๐บ be a noncompact reductive Lie group, โ€ต ๐พ a maximal compact subgroup of โ€ต ๐บ, and ฮ“ a torsion-free discrete subgroup of ๐ฟ = โ€ต ๐บ ร— โ€ต ๐พ. Then 1. for any ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ), the Hilbert space ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) contains real analytic eigenfunctions as a dense subset, 2. the closure of the pseudo-Riemannian Laplacian โ–ก๐‘‹ฮ“ on ๐ถ๐‘ (๐‘‹ฮ“ ) is a self-adjoint operator on ๐ฟ 2 ( ๐‘‹ฮ“ ) ,

1.7 The example of AdS3

9

3. Spec๐‘‘ (๐‘‹ฮ“ )II (hence Spec๐‘‘ (๐‘‹ฮ“ )) is in๏ฌnite whenever โ€ต ฮ“ is cocompact or arithmetic in โ€ต ๐บ. Beyond the classical case where ฮ“ is of the form โ€ต ฮ“ ร— {๐‘’} and ๐ฟ 2 (๐‘‹ฮ“ ) = we may obtain torsion-free discrete subgroups ฮ“ of ๐ฟ = โ€ต ๐บ ร— โ€ต ๐พ by considering a torsion-free discrete subgroup โ€ต ฮ“ of โ€ต ๐บ and taking the graph of a homomorphism ๐œŒ : โ€ต ฮ“ โ†’ โ€ต ๐บ with bounded image. Nontrivial such homomorphisms exist in many situations, for instance when โ€ต ฮ“ is a free group, or when โ€ต ๐บ = SO(๐‘›, 1) or SU(๐‘›, 1) and โ€ต ฮ“ is a uniform lattice of โ€ต ๐บ with ๐ป 1 ( โ€ต ฮ“; R) โ‰  {0} (such lattices exist by [Mil76, Kaz77]). See Section 7.2 (resp. 6.1, resp. 10) for the proof of statement (1) (resp. (2), resp. (3)) of Theorem 1.12. ๐ฟ 2 ( โ€ต ฮ“\โ€ต ๐บ),

1.7 The example of AdS3 As one of the simplest examples, let ๐‘‹ be the 3-dimensional anti-de Sitter space AdS3 = ๐บ/๐ป = SO(2, 2)/SO(2, 1) โ‰ƒ (SL(2, R) ร— SL(2, R))/Diag(SL(2, R)), which lies at the intersection of Examples 1.2 and 1.3. Then rank ๐‘‹ = 1, and so the C-algebra D๐บ (๐‘‹) of ๐บ-invariant di๏ฌ€erential operators on ๐‘‹ is generated by a single element, namely the Laplacian โ–ก๐‘‹ . Since ๐‘‹ is Lorentzian, the di๏ฌ€erential operator โ–ก๐‘‹ is hyperbolic. For any discrete subgroup ฮ“ of SO(2, 2) acting properly discontinuously and freely on ๐‘‹, we may identify Spec๐‘‘ (๐‘‹ฮ“ ) with the discrete spectrum of the Laplacian โ–ก๐‘‹ฮ“ . With this identi๏ฌcation, the following holds, independently of the fact that ๐‘‹ฮ“ is compact or not. Proposition 1.13 Let ฮ“ be a discrete subgroup of SO(2, 2) acting properly discontinuously and freely on ๐‘‹ = AdS3 . Then 1. Spec๐‘‘ (๐‘‹ฮ“ )I โŠ‚ Spec๐‘‘ (๐‘‹) = {๐‘˜ (๐‘˜ + 2)/4 : ๐‘˜ โˆˆ N} โŠ‚ [0, +โˆž), 2. 0 โˆˆ Spec๐‘‘ ( ๐‘‹ฮ“ )II if and only if vol ( ๐‘‹ฮ“ ) < +โˆž, 3. in the standard case where ฮ“ โŠ‚ ๐ฟ := U ( 1, 1) , โ€ข Spec๐‘‘ (๐‘‹ฮ“ )I is in๏ฌnite, and contains {๐‘˜ (๐‘˜ + 2)/4 : ๐‘˜ โˆˆ N, ๐‘˜ โ‰ฅ ๐‘˜ 0 } for some ๐‘˜ 0 โˆˆ N if โˆ’1 โˆ‰ ฮ“, โ€ข Spec๐‘‘ ( ๐‘‹ฮ“ )II โŠ‚ (โˆ’โˆž, 0] , โ€ข Spec๐‘‘ ( ๐‘‹ฮ“ )II is in๏ฌnite whenever ฮ“ is cocompact or arithmetic in ๐ฟ. Proposition 1.13 will be proved in Section 11.6. It shows that Spec๐‘‘ (๐‘‹ฮ“ )I โˆฉ Spec๐‘‘ (๐‘‹ฮ“ )II = โˆ… for all standard quotients ๐‘‹ฮ“ of in๏ฌnite volume when ๐‘‹ is the group manifold ( โ€ต ๐บ ร— โ€ต ๐บ )/Diag ( โ€ต ๐บ ) with โ€ต ๐บ = SL ( 2, R) .

10

1 Introduction

1.8 Organization of the book In Chapter 2 we explain the main method of proof for the results of Chapter 1, and state refinements of Theorems 1.7 and 1.10, to be proved later in the book. Part I concerns generalities on invariant differential operators and their discrete spectrum on quotient manifolds ๐‘‹ฮ“ = ฮ“\๐‘‹ where ๐‘‹ = ๐บ/๐ป is a spherical homogeneous space. We start, in Chapter 3, by recalling some basic facts on ๐บ-invariant differential operators on ๐‘‹, on joint eigenfunctions for D๐บ (๐‘‹) on ๐‘‹ or ๐‘‹ฮ“ , and on discrete series representations for ๐‘‹. Then, in Chapter 4, we introduce the notions of discrete spectrum of type I and type II. In Chapter 5, we consider a reductive subgroup ๐ฟ of ๐บ acting properly and spherically on ๐‘‹, and we discuss relations among the three subalgebras D๐บ (๐‘‹), d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )), and dโ„“(๐‘ (๐”ฉ C )) of D ๐ฟ (๐‘‹); e (B), e and (Tf), for the we introduce several conditions, which we call (A), (B), (A), existence of a pair of transfer maps ๐‚ and ๐€ between eigenvalues on the Riemannian space ๐‘Œฮ“ and on the pseudo-Riemannian space ๐‘‹ฮ“ , and we prove in particular that conditions (A), (B), and (Tf) are satisfied in the setting 1.5 (Proposition 5.10) and in the group manifold case (Proposition 5.11). Part II, which is the core of the book, provides proofs of the theorems of Chapter 1. We start, in Chapter 6, by establishing the essential self-adjointness of the pseudo-Riemannian Laplacian โ–ก๐‘‹ฮ“ (Theorems 1.8 and 1.12.(2)); the proof, based on the important relation (5.3), already illustrates the underlying idea of the transfer maps. In Chapter 7, using the transfer map ๐€, we complete the proofs of Theorems 1.7 and 1.12.(1) (density of analytic eigenfunctions) and Theorem 1.9 (spectral decomposition). Chapter 8 is devoted to representation theory: we analyze the ๐บmodule structure together with the ๐ฟ-module structure (branching problem) on the space of distributions on ๐‘‹ = ๐บ/๐ป under conditions (A) and (B) (Theorem 8.3). In Chapter 9, by using these results, we prove that the transfer maps preserve spectrum of type I and type II (Theorem 9.2). Thus we complete the proof of Theorems 1.10 and 1.12.(3) (existence of an infinite discrete spectrum of type II) in Chapter 10. Finally, Part III is devoted to the proof of Theorem 2.7, which describes the discrete spectrum of type I and type II of ๐‘‹ฮ“ in terms of the representation theory of the reductive subgroup ๐ฟ via the transfer map ๐€. For this, we provide a general conjectural picture about ๐ฟ 2 -spectrum on ๐‘‹ฮ“ = ฮ“\๐บ/๐ป and irreducible unitary representations of ๐บ in Chapter 11, which we prove in two special cases in Chapter 12. These special cases, combined with the results in Chapter 9, complete the proof of Theorem 2.7: see Section 12.5.

Convention In the whole book, we assume that the respective Lie algebras ๐”ค, ๐”ฅ, ๐”ฉ of the real reductive Lie groups ๐บ, ๐ป, ๐ฟ are de๏ฌned algebraically over R.

Chapter 2

Method of proof

Abstract In this book, we adopt a new approach to spectral analysis on standard pseudo-Riemannian locally homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐บ/๐ป, beyond the conventional Riemannian setting where ๐ป is compact. This chapter presents an overview of our methodology. Additionally, we give some refinements to the results outlined in Chapter 1. The remainder of the book primarily focuses on proving these results. Suppose a reductive subgroup ๐ฟ of ๐บ acts properly on ๐‘‹ = ๐บ/๐ป, and ฮ“ is a torsion-free discrete subgroup of ๐ฟ. Our strategy for spectral analysis on the standard quotient ๐‘‹ฮ“ involves employing ฮ“-periodic joint eigenfunctions for differential operators derived from two different sources: (1) harmonic analysis on the ๐บ-space ๐‘‹; (2) harmonic analysis on the ๐ฟ-space ๐‘‹. In general, these two sources (1) and (2) are not closely linked, primarily because the branching laws for infinite-dimensional representations for the restriction ๐บ โ†“ ๐ฟ are not well-behaved, due to the presence of continuous spectrum or infinite multiplicities. However, if ๐ฟ acts properly and spherically, the branching laws become discretely decomposable, and multiplicities are uniformly bounded. In this case the two sources (1) and (2) are closely linked through transfer maps, as we describe in this chapter. In this chapter we explain our approach for proving the results of Chapter 1. We give refinements of Theorems 1.7 and 1.10, namely Theorems 2.3 and 2.7.

2.1 Overview In most of the book (speci๏ฌcally, in Chapters 5 to 10), we work in the following general setting. General setting 2.1. We consider a reductive homogeneous space ๐‘‹ = ๐บ/๐ป with ๐ป noncompact, and a reductive subgroup ๐ฟ of ๐บ acting properly and transitively ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_2

11

12

2 Method of proof

on ๐‘‹; then ๐ฟ ๐ป := ๐ฟ โˆฉ ๐ป is compact. We also consider a maximal compact subgroup ๐พ of ๐บ such that ๐ฟ ๐พ := ๐ฟ โˆฉ ๐พ is a maximal compact subgroup of ๐ฟ containing ๐ฟ ๐ป ; then ๐‘‹ ๏ฌbers over the Riemannian symmetric space ๐‘Œ := ๐ฟ/๐ฟ ๐พ of ๐ฟ, with compact ๏ฌber ๐น := ๐ฟ ๐พ / ๐ฟ ๐ป : ๐น

๐‘ž : ๐‘‹ = ๐บ/๐ป โ‰ƒ ๐ฟ/๐ฟ ๐ป โˆ’โ†’ ๐ฟ/๐ฟ ๐พ = ๐‘Œ .

(2.1)

For simplicity we assume ๐บ, ๐ป, ๐ฟ to be connected (see Remark 1.6). The main setting 1.5 of our theorems corresponds to the case that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C -spherical and ๐บ simple, and the group manifold setting of Theorem 1.12 to the case (๐บ, ๐ป, ๐ฟ) = ( โ€ต ๐บ ร— โ€ต ๐บ, Diag( โ€ต ๐บ), โ€ต ๐บ ร— โ€ต ๐พ) where โ€ต ๐บ is a noncompact reductive Lie group and โ€ต ๐พ a maximal compact subgroup as in Example 1.3. As in Chapter 1, we consider standard pseudo-Riemannian locally homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐‘‹ with ฮ“ โŠ‚ ๐ฟ, and our goal is to analyze joint eigenfunctions on ๐‘‹ฮ“ for the di๏ฌ€erential operators ๐ท ฮ“ with ๐ท โˆˆ D๐บ (๐‘‹). The groups involved here are summarized in the following diagram. ๐ป

ฮ“

โŠ‚

๐ฟ

โŠ‚

โŠƒ

โŠ‚

๐บ โŠƒ

๐ฟ๐พ

โŠƒ

๐ฟ๐ป

For this goal we consider, not only the algebra D๐บ (๐‘‹), but also the larger Calgebra D ๐ฟ (๐‘‹) of ๐ฟ-invariant di๏ฌ€erential operators on ๐‘‹. Let ๐‘ (๐”ฉ C ) be the center of the enveloping algebra ๐‘ˆ (๐”ฉ C ) and dโ„“ : ๐‘ (๐”ฉ C ) โ†’ D ๐ฟ (๐‘‹) the natural C-algebra homomorphism (see (3.1)). Assuming that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C -spherical and ๐บ simple, in [KK19] we proved the existence of transfer maps ๐‚ and ๐€ which relate the subalgebra D๐บ (๐‘‹) and the image dโ„“(๐‘ (๐”ฉ C )) inside D ๐ฟ (๐‘‹), and thus relate the representations of the group ๐บ and the subgroup ๐ฟ generated by eigenfunctions of D๐บ (๐‘‹) and dโ„“(๐‘ (๐”ฉ C )) respectively. In the current book, these maps enable us to construct joint eigenfunctions on pseudo-Riemannian locally symmetric spaces ๐‘‹ฮ“ with ฮ“ โŠ‚ ๐ฟ using (vector-bundle-valued) eigenfunctions on the corresponding Riemannian locally symmetric space ๐‘Œฮ“ = ฮ“\๐ฟ/๐ฟ ๐พ . We now explain this in more detail.

2.2 Vector-bundle valued eigenfunctions in the Riemannian setting In the whole book, we denote by Disc(๐ฟ ๐พ /๐ฟ ๐ป ) the set of equivalence classes of (๏ฌnite-dimensional) irreducible representations (๐œ, ๐‘‰๐œ ) of the compact group ๐ฟ ๐พ with nonzero ๐ฟ ๐ป -๏ฌxed vectors. For any (๐œ, ๐‘‰๐œ ) โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), the contragredient representation ๐‘‰๐œโˆจ has a nonzero subspace (๐‘‰๐œโˆจ ) ๐ฟ๐ป of ๐ฟ ๐ป -๏ฌxed vectors. For F = A , ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ , let

2.2 Vector-bundle valued eigenfunctions

13

F (๐‘Œฮ“ , V๐œ ) be the space of analytic, smooth, square-integrable, or distribution sections of the Hermitian vector bundle V๐œ := ฮ“\๐ฟ ร— ๐ฟ๐พ ๐‘‰๐œ

(2.2)

over ๐‘Œฮ“ . There is a natural homomorphism i ๐œ,ฮ“ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ) โ†ฉโˆ’โ†’ F (๐‘‹ฮ“ )

(2.3)

sending ๐‘ฃ ๐œ โŠ— ๐œ‘ to โŸจ๐œ‘, ๐‘ฃ ๐œ โŸฉ, where we see ๐œ‘ as an ๐ฟ ๐พ -invariant element of F (ฮ“\๐ฟ) โŠ—๐‘‰๐œ under the diagonal action, and โŸจ๐œ‘, ๐‘ฃ ๐œ โŸฉ as an ๐ฟ ๐ป -invariant element of F (ฮ“\๐ฟ). The map i ๐œ,ฮ“ is injective and continuous (see Remark 4.3 for the topology on the space of distributions). Under the assumption that ๐‘‹C is ๐ฟ C -spherical, the space (๐‘‰๐œโˆจ ) ๐ฟ๐ป โ‰ƒ C is one-dimensional (see [KK19, Lem. 4.2.(4) & Fact 3.1.(iv)]), ร‰ and so i ๐œ,ฮ“ becomes a map from F (๐‘Œฮ“ , V๐œ ) to F (๐‘‹ฮ“ ); the algebraic direct sum ๐œ F (๐‘Œฮ“ , V๐œ ) is dense in F ( ๐‘‹ฮ“ ) via the i ๐œ,ฮ“ (see Lemma 6.3). When ฮ“ = {๐‘’} is trivial, we use the same notation V๐œ for the vector bundle over ๐‘Œ associated to the representation (๐œ, ๐‘‰๐œ ) as in (2.2), and simply write i ๐œ for i ๐œ,ฮ“ . Then ๐‘ โˆ—ฮ“ โ—ฆ i ๐œ,ฮ“ = i ๐œ โ—ฆ ๐‘ โ€ฒฮ“โˆ— (see Observation 9.5), where ๐‘ โˆ—ฮ“ : F (๐‘‹ฮ“ ) โ†’ D โ€ฒ (๐‘‹) and ๐‘ โ€ฒฮ“โˆ— : F (๐‘Œฮ“ , V๐œ ) โ†’ D โ€ฒ (๐‘Œ , V๐œ ) denote the maps induced by the natural projections ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ and ๐‘ โ€ฒฮ“ : ๐‘Œ โ†’ ๐‘Œฮ“ , respectively. The enveloping algebra ๐‘ˆ (๐”ฉ C ) acts on the left on F (๐‘Œ , V๐œ ) as matrix-valued di๏ฌ€erential operators. In particular, this gives a C-algebra homomorphism dโ„“ ๐œ from ๐‘ (๐”ฉ C ) to the C-algebra D ๐ฟ (๐‘Œ , V๐œ ) of ๐ฟ-invariant di๏ฌ€erential operators on F (๐‘Œ , V๐œ ). In turn (by commutativity with the action of ฮ“), for any ๐‘ง โˆˆ ๐‘ (๐”ฉ C ) the operator dโ„“ ๐œ(๐‘ง) induces a matrix-valued di๏ฌ€erential operator dโ„“ ๐œ(๐‘ง) ฮ“ acting on F (๐‘Œฮ“ , V๐œ ). For any C-algebra homomorphism ๐œˆ : ๐‘ (๐”ฉ C ) โ†’ C, let F (๐‘Œฮ“ , V๐œ ; N๐œˆ ) be the space of solutions ๐œ‘ โˆˆ F (๐‘Œฮ“ , V๐œ ) to the system dโ„“ ๐œ(๐‘ง) ฮ“ ๐œ‘ = ๐œˆ(๐‘ง)๐œ‘

for all ๐‘ง โˆˆ ๐‘ (๐”ฉ C )

(N๐œˆ ).

This space F (๐‘Œฮ“ , V๐œ ; N๐œˆ ) is nonzero only if ๐œˆ vanishes on Ker(dโ„“ ๐œ ), in which case we can see ๐œˆ as an element of HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C). The space F (๐‘Œฮ“ , V๐œ ; N๐œˆ ) is a subspace of A (๐‘Œฮ“ , V๐œ ; N๐œˆ ) by the elliptic regularity theorem, since the system (N๐œˆ ) contains an elliptic di๏ฌ€erential equation when ๐‘Œฮ“ is Riemannian. Example 2.2 When ๐œ is the trivial one-dimensional representation of ๐ฟ ๐พ , the space F (๐‘Œ , V๐œ ) identi๏ฌes with F (๐‘Œ ), the C-algebra D ๐ฟ (๐‘Œ , V๐œ ) with ๐ท ๐ฟ (๐‘Œ ), and the map ๐‘‘โ„“ ๐œ with the natural C-algebra homomorphism dโ„“ : ๐‘ (๐”ฉ C ) โ†’ D ๐ฟ (๐‘Œ ), see (3.1); likewise, F (๐‘Œฮ“ , V๐œ ; N๐œˆ ) identi๏ฌes with F (๐‘Œฮ“ , N๐œˆ ), and the map i ๐œ,ฮ“ of (2.3) is the pull-back of the projection map ๐‘ž ฮ“ : ๐‘‹ฮ“ โ†’ ๐‘Œฮ“ .

14

2 Method of proof

2.3 Transferring Riemannian eigenfunctions We wish to understand joint eigenfunctions of the algebra D๐บ (๐‘‹) on F (๐‘‹ฮ“ ). When ๐‘‹C is ๐ฟ C -spherical, D๐บ (๐‘‹) leaves the subspace i ๐œ,ฮ“ (F (๐‘Œฮ“ , V๐œ )) โŠ‚ F (๐‘‹ฮ“ ) invariant for every ๐œ (see [KK19, Th. 4.9]). On the other hand, we have seen that the center ๐‘ (๐”ฉ C ) naturally acts on F (๐‘Œฮ“ , V๐œ ). Although there is no direct map between the two algebras D๐บ (๐‘‹) and ๐‘ (๐”ฉ C ), the respective eigenvalues of D๐บ (๐‘‹) and ๐‘ (๐”ฉ C ) are still related as follows. Assuming that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C -spherical and ๐บ simple, in [KK19] we constructed โ€œtransfer mapsโ€ in a compact setting. Via holomorphic continuation of invariant di๏ฌ€erential operators, we obtain for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ) analogous maps  ๐‚(ยท, ๐œ) : HomC-alg (D๐บ (๐‘‹), C) โˆ’โ†’ HomC-alg (๐‘ (๐”ฉ C ), C), (2.4) ๐€(ยท, ๐œ) : HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C) โˆ’โ†’ HomC-alg (D๐บ (๐‘‹), C), referred to also as transfer maps, which are described explicitly in each case. These maps have the following properties: โ€ข ๐‚ ( ๐€ ( ๐œˆ, ๐œ )) = ๐œˆ for all ๐œˆ โˆˆ HomC-alg ( ๐‘ ( ๐”ฉ C )/Ker ( dโ„“ ๐œ ) , C) ; โ€ข ๐€ ( ๐‚ (๐œ†, ๐œ )) = ๐œ† for all ๐œ† โˆˆ Spec ( ๐‘‹ ) ๐œ , where Spec(๐‘‹) ๐œ denotes the set of ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C) such that D โ€ฒ (๐‘‹; M๐œ† ) โˆฉ i ๐œ (D โ€ฒ (๐‘Œ , V๐œ )) โ‰  {0}. We note that ๐‚(๐œ†, ๐œ) vanishes on Ker(dโ„“ ๐œ ) if ๐œ† โˆˆ Spec(๐‘‹) ๐œ , see [KK19, Prop. 4.8], and thus the composition ๐€(๐‚(๐œ†, ๐œ)) is well de๏ฌned for ๐œ† โˆˆ Spec ( ๐‘‹ ) ๐œ . We shall brie๏ฌ‚y review the existence of the maps ๐‚(ยท, ๐œ) and ๐€(ยท, ๐œ) in Chapter 5, by introducing conditions (A) and (B) on ๐บ- and ๐ฟ-submodules of ๐ถ โˆž (๐‘‹), and e and (B) e on invariant di๏ฌ€erential operators on ๐‘‹. Using ๐‚(ยท, ๐œ), we conditions (A) now construct a dense subspace of F (๐‘‹ฮ“ ; M๐œ† ) consisting of real analytic functions, in terms of the Riemannian data A (๐‘Œฮ“ , V๐œ ; N๐œˆ ) ; this re๏ฌnes Theorem 1.7. Theorem 2.3 (Transfer of Riemannian eigenfunctions) In the general setting 2.1, suppose that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C -spherical and ๐บ simple, and let ฮ“ be a torsion-free discrete subgroup of ๐ฟ; in other words, we are in the main setting 1.5. For any ๐œ† โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) and any ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) , we have  i ๐œ,ฮ“ ๐ถ โˆž (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) ) โŠ‚ ๐ถ โˆž (๐‘‹ฮ“ ; M๐œ† ). Moreover, the algebraic direct sum รŠ

i ๐œ,ฮ“ A (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )



๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

is dense in F (๐‘‹ฮ“ ; M๐œ† ) for F = A, ๐ถ โˆž , or D โ€ฒ in each topology, and รŠ  i ๐œ,ฮ“ (A โˆฉ ๐ฟ 2 )(๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) ) ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

2.3 Transferring Riemannian eigenfunctions

15

is dense in the Hilbert space ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ). Theorem 2.3 applies to the triples (๐บ, ๐ป, ๐ฟ) of Table 1.1. An analogous result does not hold anymore if we remove the assumption that ๐‘‹C is ๐ฟ C -spherical: see Example 8.7.(1) for trivial ฮ“. We also obtain the following re๏ฌnement of Theorem 1.12.(1). Theorem 2.4 (Transfer of Riemannian eigenfunctions in the group manifold case) In the setting of Theorem 1.12, the same conclusion as Theorem 2.3 holds with  (๐บ, ๐ป, ๐ฟ, ๐ฟ ๐พ , ๐ฟ ๐ป ) := โ€ต ๐บ ร— โ€ต ๐บ, Diag( โ€ต ๐บ), โ€ต ๐บ ร— โ€ต ๐พ, โ€ต ๐พ ร— โ€ต ๐พ, Diag( โ€ต ๐พ) . Theorems 2.3 and 2.4 assert that the space ๐ถ โˆž (๐‘Œฮ“ , V๐œ ; N๐œˆ ) of joint eigenfunctions for the center ๐‘ (๐”ฉ C ) is transferred by i ๐œ,ฮ“ into a space of joint eigenfunctions for D๐บ (๐‘‹). They imply that, in their respective settings, Spec๐‘‘ (๐‘‹ฮ“ ) is in๏ฌnite if ๐‘‹ฮ“ is compact, giving an a๏ฌƒrmative answer to Question 1.1.(a). These theorems will be proved in Section 6.2 in the special case where rank ๐บ/๐ป = 1, and in Section 7.2 in general. Here is a consequence of Theorem 2.3 (see Section 7.2). Corollary 2.5 In the main setting 1.5, the spaces ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ), for varying ๐œ† โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) , are orthogonal to each other. The algebras D๐บ (๐‘‹) and ๐‘ (๐”ฉ C ) are described by the Harish-Chandra isomorphism (see Section 3.3), the set Disc(๐ฟ ๐พ /๐ฟ ๐ป ) is described by (a variant of) the Cartanโ€“ Helgason theorem (see [War72, Th. 3.3.1.1]), and the maps ๐‚(ยท, ๐œ) are described explicitly in [KK19, ยง 6โ€“7] in each case of Table 1.1. Here is one example; we refer to [KK19] for others. Example 2.6 ([KK19, ยง 6.2]) Let ๐‘‹ = ๐บ/๐ป = SO(4๐‘š, 2)0 /U(2๐‘š, 1) where ๐‘š โ‰ฅ 1. The space ๐‘‹ is a complex manifold of dimension 2๐‘š 2 +๐‘š, endowed with an inde๏ฌnite Kรคhler structure of signature (2๐‘š, 2๐‘š 2 โˆ’ ๐‘š) on which ๐บ acts holomorphically by isometries. The C-algebra D๐บ (๐‘‹) is generated by ๐‘š algebraically independent di๏ฌ€erential operators ๐‘ƒ ๐‘˜ of order 2๐‘˜, for 1 โ‰ค ๐‘˜ โ‰ค ๐‘š, and HomC-alg (D๐บ (๐‘‹), C) is parametrized by the Harish-Chandra isomorphism HomC-alg (D๐บ (๐‘‹), C) โ‰ƒ C๐‘š /๐‘Š (๐ต๐ถ๐‘š ), where ๐‘Š (๐ต๐ถ๐‘š ) := ๐”–๐‘š โ‹‰ (Z/2Z) ๐‘š is the Weyl group for the root system of type ๐ต๐ถ๐‘š . Let ๐ฟ := SO ( 4๐‘š, 1)0 . By the Harish-Chandra isomorphism again, we have HomC-alg (๐‘ (๐”ฉ C ), C) โ‰ƒ C2๐‘š /๐‘Š (๐ต2๐‘š ), where ๐‘Š (๐ต2๐‘š ) := ๐”–2๐‘š โ‹‰ (Z/2Z) 2๐‘š . The group ๐ฟ acts properly and transitively on ๐‘‹, and we have a di๏ฌ€eomorphism ๐‘‹ โ‰ƒ ๐ฟ/๐ฟ ๐ป where ๐ฟ ๐ป = U(2๐‘š). By taking ๐ฟ ๐พ = SO(4๐‘š), the ๏ฌber ๐น = ๐ฟ ๐พ /๐ฟ ๐ป is the compact symmetric space SO(4๐‘š)/U(2๐‘š). The Cartanโ€“Helgason theorem gives a parametrization of Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) by

16

2 Method of proof



๐œ‡ = ( ๐‘—1 , ๐‘— 1 , . . . , ๐‘— ๐‘š , ๐‘— ๐‘š ) โˆˆ Z2๐‘š : ๐‘— 1 โ‰ฅ ยท ยท ยท โ‰ฅ ๐‘— ๐‘š โ‰ฅ 0 ,

where the vector ๐œ‡ corresponds to the irreducible ๏ฌnite-dimensional representation ( ๐œ, ๐‘‰๐œ ) โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) of ๐ฟ ๐พ = SO ( 4๐‘š ) with highest weight ๐œ‡. The transfer map ๐‚(ยท, ๐œ) : HomC-alg (D๐บ (๐‘‹), C) โˆ’โ†’ HomC-alg (๐‘ (๐”ฉ C ), C) of (2.4), as constructed in [KK19, ยง 1.3], sends ๐œ† = (๐œ† 1 , . . . , ๐œ† ๐‘š ) mod ๐‘Š (๐ต๐ถ๐‘š ) to 1 (๐œ†1 , 2 ๐‘— 1 + 4๐‘š โˆ’ 3, ๐œ† 2 , 2 ๐‘—2 + 4๐‘š โˆ’ 7, . . . , ๐œ† ๐‘š , 2 ๐‘— ๐‘š + 1) mod ๐‘Š (๐ต2๐‘š ). 2

2.4 Describing the discrete spectrum In the main setting 1.5, we now give a description of the discrete spectrum (of type I and II) for ๐ฟ 2 (๐‘‹ฮ“ ) = ๐ฟ 2 (ฮ“\๐บ/๐ป) by means of the data for the regular representation of the subgroup ๐ฟ of ๐บ on ๐ฟ 2 (ฮ“\๐ฟ), via the transfer map ๐€ of (2.4). For this we use the following notation from representation theory. For a real reductive Lie group ๐ฟ, let b ๐ฟ be the unitary dual of ๐ฟ, namely the set of equivalence classes of irreducible unitary representations of ๐ฟ. Given a closed unimodular subgroup ๐‘€ of ๐ฟ, we denote by Disc(๐ฟ/๐‘€) the set of ๐œ— โˆˆ b ๐ฟ such that Hom ๐ฟ (๐œ—, ๐ฟ 2 (๐ฟ/๐‘€)) is nonzero. When ๐‘€ = {๐‘’} is trivial, we simply write Disc(๐ฟ) for Disc(๐ฟ/๐‘€). The set Disc(๐ฟ) coincides with b ๐ฟ when ๐ฟ is compact, whereas it is the set of Harish-Chandraโ€™s discrete series representations when ๐ฟ is noncompact. Let ๐ฟ ๐พ be a maximal compact subgroup of ๐ฟ. For ๐œ โˆˆ ๐ฟc๐พ , we set  b ๐ฟ ( ๐œ ) := ๐œ— โˆˆ b ๐ฟ : Hom ๐ฟ๐พ ( ๐œ, ๐œ— | ๐ฟ๐พ ) โ‰  {0} and

Disc(๐ฟ)(๐œ) := Disc(๐ฟ) โˆฉ b ๐ฟ (๐œ).

When ๐ฟ is noncompact, b ๐ฟ (๐œ) contains continuously many elements for any ๐œ โˆˆ ๐ฟc๐พ , whereas Disc(๐ฟ) (๐œ) is either empty (e.g. if ๐œ is the trivial one-dimensional representation of ๐ฟ ๐พ ) or ๏ฌnite-dimensional by the Blattner formula [HS75]. If ๐œ— โˆˆ b ๐ฟ(๐œ), then the in๏ฌnitesimal character ๐œ’ ๐œ— โˆˆ HomC-alg (๐‘ (๐”ฉ C ), C) of ๐œ— (see Section 11.1) vanishes on Ker(dโ„“ ๐œ ), since ๐œ— is realized in D โ€ฒ (๐‘Œ , V๐œ ) and since the action of ๐‘ (๐”ฉ C ) factors through dโ„“ ๐œ : ๐‘ (๐”ฉ C ) โ†’ D ๐ฟ (๐‘Œ , V๐œ ). We regard ๐œ’ ๐œ— as an element of HomC-alg ( ๐‘ ( ๐”ฉ C )/Ker ( dโ„“ ๐œ ) , C) . Theorem 2.7 In the general setting 2.1, suppose that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C -spherical and ๐บ simple, and let ฮ“ be a torsion-free discrete subgroup of ๐ฟ; in other words, we are in the main setting 1.5. Then

2.4 Describing the discrete spectrum

Spec๐‘‘ (๐‘‹ฮ“ )=

ร˜

๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

Spec๐‘‘ (๐‘‹ฮ“ )I=

ร˜

๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

Spec๐‘‘ (๐‘‹ฮ“ )II=

ร˜



๐€( ๐œ’ ๐œ— , ๐œ) : ๐œ— โˆˆ Disc(ฮ“\๐ฟ) โˆฉ b ๐ฟ (๐œ) ,



๐€( ๐œ’ ๐œ— , ๐œ) : ๐œ— โˆˆ Disc(ฮ“\๐ฟ) โˆฉ Disc(๐ฟ) (๐œ) ,



๐€( ๐œ’ ๐œ— , ๐œ) : ๐œ— โˆˆ Disc(ฮ“\๐ฟ) โˆฉ b ๐ฟ (๐œ) โˆ–Disc(๐ฟ)(๐œ) .

17

๐œ โˆˆ Disc ( ๐ฟ๐พ / ๐ฟ ๐ป )

Theorem 2.7 will be proved in Section 12.5. The point is to give a description of the full discrete spectrum of ๐‘‹ฮ“ , both of type I and type II. The approach here for discrete spectrum of type I is very di๏ฌ€erent from our earlier approach from [KK16]. Namely, in [KK16], using work of Flensted-Jensen [Fle80] and Matsukiโ€“ Oshima [MO84], we constructed (via generalized Poincarรฉ series) an in๏ฌnite subset of Spec๐‘‘ (๐‘‹ฮ“ )I under the rank assumption (1.4) whenever the action of ฮ“ on ๐‘‹ is sharp in the sense of [KK16, Def. 4.2], which includes the case of standard ๐‘‹ฮ“ . We showed that in many cases this in๏ฌnite subset of Spec๐‘‘ (๐‘‹ฮ“ )I is invariant under any small deformation of ฮ“ inside ๐บ. In Theorem 2.7 we do not assume the rank condition (1.4) to be satis๏ฌed.

Part I

Generalities

In this Part I, we introduce some basic notions that are used in stating the main results, and set up some machinery for the proofs. In Chapter 3, we start by brie๏ฌ‚y summarizing some basic facts on (real) spherical manifolds, on the algebra D๐บ (๐‘‹) of ๐บ-invariant di๏ฌ€erential operators on ๐‘‹, and on irreducible representations which are realized in the space D โ€ฒ (๐‘‹) of distributions on ๐‘‹. Any joint eigenfunction ๐‘“ of D๐บ (๐‘‹) on a quotient manifold ๐‘‹ฮ“ generates a ๐บsubmodule ๐‘ˆ ๐‘“ of D โ€ฒ (๐‘‹), which is of ๏ฌnite length when ๐‘‹ is real spherical. We wish to relate the spectrum for D๐บ (๐‘‹) on ๐‘‹ฮ“ with the representation theory of ๐บ. In Chapter 4, we introduce a de๏ฌnition of ๐ฟ 2 -eigenfunction of type I and type II; averaging ๐ฟ 2 -eigenfunctions on ๐‘‹ by the discrete group ฮ“ yields discrete spectrum of type I [KK16] (under some sharpness assumption, see [KK16, Def. 4.2]), whereas discrete spectrum in the classical setting where ๐‘‹ is Riemannian is of type II. Chapter 5 is devoted to the existence of transfer maps ๐‚ and ๐€. Our strategy for spectral analysis of D๐บ (๐‘‹) on standard locally homogeneous spaces ๐‘‹ฮ“ is to use the representation theory of the subgroup ๐ฟ of ๐บ, which contains ฮ“. In general, spectral information coming from irreducible ๐ฟ-modules is described by the action of the center ๐‘ (๐”ฉ C ) of the enveloping algebra ๐‘ˆ (๐”ฉ C ), which is different from that of D๐บ (๐‘‹). In Chapter 5, we study how spectral information for D๐บ (๐‘‹) and for ๐‘ (๐”ฉ C ) are related. For this, we use the ๐ฟ-equivariant ๏ฌber bundle structure ๐น โ†’ ๐‘‹ โ†’ ๐‘Œ of (2.1). We formulate the โ€œabundanceโ€ of di๏ฌ€erential operators coming from ๐‘ (๐”ฉ C ) e (resp. (B)) e in terms of complexi๏ฌed (resp. D๐บ (๐‘‹)) inside D ๐ฟ (๐‘‹) as condition (A) Lie algebras, and also as condition (A) (resp. (B)) in terms of representation theory of the real Lie groups ๐บ and ๐ฟ. We prove the existence of transfer maps relating the two algebras D๐บ (๐‘‹) and ๐‘ (๐”ฉ C ) (condition (Tf)) when ๐‘‹C is ๐ฟ C -spherical and ๐บ simple (Proposition 5.10) by reducing to the compact case established in [KK19].

Chapter 3

Reminders: spectral analysis on spherical homogeneous spaces

Abstract The double coset space ฮ“\๐บ/๐ป does not admit a nontrivial group action in general. To relate spectral analysis for intrinsic differential operators on ฮ“\๐บ/๐ป with representation theory, we regard functions on the locally homogeneous space ฮ“\๐บ/๐ป as ฮ“-periodic functions on the homogeneous space ๐บ/๐ป or as ๐ป-invariant functions on ฮ“\๐บ. Our approach to spectral analysis on standard pseudo-Riemannian locally homogeneous spaces ฮ“\๐บ/๐ป involves comparing two homogeneous spaces: one being the homogeneous space ๐บ/๐ป, and the other a nonsymmetric space possessing a favorable property, namely, a real form of a spherical space. In this chapter, we provide an overview of key results concerning real spherical spaces and real forms of spherical spaces beyond symmetric spaces, laying the groundwork for their application in this book. Notably, in the former spaces, the multiplicities of all irreducible representations are finite, while in the latter, these multiplicities are uniformly bounded, and the ring of differential operators is commutative. These properties will form the foundational structure for the later chaptersโ€™ proof of spectral analysis on the locally homogeneous spaces ฮ“\๐บ/๐ป. We now set up some terminology and notation, and recall basic facts on (real) spherical manifolds, on ๐บ-invariant differential operators on ๐‘‹, on joint eigenfunctions for D๐บ (๐‘‹) on quotient manifolds ๐‘‹ฮ“ , on discrete series representations for ๐‘‹, and on generalized matrix coefficients for distribution vectors of unitary representations.

3.1 An elementary example Eigenfunctions of the Laplacian on a pseudo-Riemannian manifold are not always smooth, making Theorem 1.7 nontrivial. We illustrate this phenomenon with an ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_3

21

22

3 Reminders: spectral analysis on spherical homogeneous spaces

elementary example where an analogue of the elliptic regularity theorem does not hold for the Laplacian in a pseudo-Riemannian setting. Let ๐‘€ be the torus R2 /Z2 equipped with the pseudo-Riemannian metric ๐‘‘๐‘ 2 = 2 ๐‘‘๐‘ฅ โˆ’ ๐‘‘๐‘ฆ 2 . The Laplacian โ–ก ๐‘€ = ๐œ•๐‘ฅ๐œ• 2 โˆ’ ๐œ•๐‘ฆ๐œ• 2 is a di๏ฌ€erential operator which is hyperbolic, not elliptic, and so the elliptic regularity theorem does not apply. In fact, there exists a distribution eigenfunction of โ–ก ๐‘€ which is not ๐ถ โˆž . Indeed, recall the Paleyโ€“Wiener theorem, which characterizes functions (or distributions) ๐‘“ on the torus ๐‘‹ฮ“ โ‰ƒ S1 ร— S1 in terms of the Fourier series ร• ๐‘“ (๐‘ฅ, ๐‘ฆ) = ๐‘Ž ๐‘› ๐‘’ 2๐‘– ๐œ‹ (๐‘š๐‘ฅ+๐‘›๐‘ฆ) ๐‘›โˆˆZ

as follows: โ€ข โ€ข โ€ข

๐‘“ โˆˆ D โ€ฒ ( ๐‘€ ) โ‡” sup๐‘š,๐‘› โˆˆ Z | ๐‘Ž ๐‘š,๐‘› |( 1 + ๐‘š 2 + ๐‘›2 ) โˆ’ ๐‘ < +โˆž for some ๐‘ > 0, ร ๐‘“ โˆˆ ๐ฟ 2 ( ๐‘€ ) โ‡” ๐‘š,๐‘› โˆˆ Z | ๐‘Ž ๐‘š,๐‘› | 2 < +โˆž, ๐‘“ โˆˆ ๐ถ โˆž ( ๐‘€ ) โ‡” sup๐‘š,๐‘› โˆˆ Z | ๐‘Ž ๐‘š,๐‘› |( 1 + ๐‘š 2 + ๐‘›2 ) ๐‘ < +โˆž for all ๐‘ > 0.

If we take ๐‘Ž ๐‘š,๐‘› = ๐›ฟ ๐‘š,๐‘› (Kronecker symbol), then ๐‘“ โˆˆ D โ€ฒ (๐‘€) and โ–ก ๐‘€ ๐‘“ = 0 in the distribution sense, but ๐‘“ โˆ‰ ๐ถ โˆž (๐‘€). If we take ๐‘Ž ๐‘š,๐‘› = ๐›ฟ ๐‘š,๐‘› /(|๐‘›| + 1), then ๐‘“ โˆˆ ๐ฟ 2 (๐‘€) and โ–ก ๐‘€ ๐‘“ = 0 in the distribution sense, but ๐‘“ โˆ‰ ๐ถ โˆž (๐‘€). This shows that weak solutions are not necessarily smooth solutions.

3.2 Spherical manifolds We shall use the following terminology. De๏ฌnition 3.1 โ€ข A connected real manifold ๐‘‹ endowed with an action of a real reductive Lie group ๐บ is ๐บ-real spherical if it admits an open orbit of a minimal parabolic subgroup ๐‘ƒ of ๐บ. โ€ข A connected complex manifold ๐‘‹C endowed with a holomorphic action of a complex reductive Lie group ๐บ C is ๐บ C -spherical if it admits an open orbit of a Borel subgroup ๐ตC of ๐บ C . We now ๏ฌx a real reductive Lie group ๐บ and a complexi๏ฌcation ๐บ C of ๐บ. Example 3.2 1. Any complex reductive symmetric space ๐บ C /๐ปC is ๐บ C -spherical [Wol74]. 2. If ๐‘‹ = ๐บ/๐ป is a homogeneous space whose complexi๏ฌcation ๐‘‹C = ๐บ C /๐ปC is ๐บ C -spherical, then ๐‘‹ is ๐บ-real spherical (see [KO13, Lem. 4.2]). In particular, any complex reductive symmetric space ๐บ C /๐ปC is ๐บ-real spherical. 3. Any homogeneous space ๐บ/๐ป where ๐บ is a compact reductive Lie group is ๐บ-real spherical. 4. Let โ€ต ๐บ be a noncompact reductive Lie group and โ€ต ๐พ a maximal compact subgroup of โ€ต ๐บ. Then ๐‘‹ = ( โ€ต ๐บ ร— โ€ต ๐พ)/Diag( โ€ต ๐พ) is always ( โ€ต ๐บ ร— โ€ต ๐พ)-real spherical by the Iwasawa decomposition; its complexi๏ฌcation ๐‘‹C is ( โ€ต ๐บ C ร—โ€ต ๐พC ) -spherical if and

3.3 Invariant di๏ฌ€erential operators on ๐‘‹

23

only if each noncompact simple factor of โ€ต ๐บ is locally isomorphic to SO(๐‘›, 1) or SU ( ๐‘›, 1) , by Cooper [Coo75] and Krรคmer [Krรค76].

3.3 Invariant di๏ฌ€erential operators on ๐‘ฟ Let ๐‘‹ = ๐บ/๐ป be a reductive homogeneous space. In this paragraph, we recall some classical results on the structure of the C-algebra D๐บ (๐‘‹) of ๐บ-invariant di๏ฌ€erential operators on ๐‘‹. We refer the reader to [Hel00, Ch. II] for proofs and more details. Let ๐‘ˆ (๐”คC ) be the enveloping algebra of the complexi๏ฌed Lie algebra ๐”คC := ๐”ค โŠ—R C and ๐‘ˆ (๐”คC ) ๐ป the subalgebra of Ad๐บ (๐ป)-invariant elements; the latter contains in particular the center ๐‘ (๐”คC ) of ๐‘ˆ (๐”คC ). Recall that ๐‘ˆ (๐”คC ) acts on ๐ถ โˆž (๐บ) by di๏ฌ€erentiation on the left, with   ๐œ• ๐œ• (๐‘Œ1 ยท ยท ยท ๐‘Œ๐‘š ) ยท ๐‘“ (๐‘”) = ยทยทยท ๐‘“ exp(โˆ’๐‘ก ๐‘š๐‘Œ๐‘š ) ยท ยท ยท exp(โˆ’๐‘ก1๐‘Œ1 )๐‘” ๐œ•๐‘ก 1 ๐‘ก1 =0 ๐œ•๐‘ก ๐‘š ๐‘ก๐‘š =0 for all ๐‘Œ1 , . . . , ๐‘Œ๐‘š โˆˆ ๐”ค, all ๐‘“ โˆˆ ๐ถ โˆž (๐บ), and all ๐‘” โˆˆ ๐บ. It also acts on ๐ถ โˆž (๐บ) by di๏ฌ€erentiation on the right, with   ๐œ• ๐œ• (๐‘Œ1 ยท ยท ยท ๐‘Œ๐‘š ) ยท ๐‘“ (๐‘”) = ยทยทยท ๐‘“ ๐‘” exp(๐‘ก1๐‘Œ1 ) ยท ยท ยท exp(๐‘ก ๐‘š๐‘Œ๐‘š ) ๐œ•๐‘ก 1 ๐‘ก1 =0 ๐œ•๐‘ก ๐‘š ๐‘ก๐‘š =0 for all ๐‘Œ1 , . . . , ๐‘Œ๐‘š โˆˆ ๐”ค, all ๐‘“ โˆˆ ๐ถ โˆž (๐บ), and all ๐‘” โˆˆ ๐บ. By identifying the set of smooth functions on ๐‘‹ with the set of right-๐ป-invariant smooth functions on ๐บ, we obtain a C-algebra homomorphism dโ„“ โŠ— d๐‘Ÿ : ๐‘ˆ (๐”คC ) โŠ— ๐‘ˆ (๐”คC ) ๐ป โˆ’โ†’ D(๐‘‹),

(3.1)

where D(๐‘‹) is the full C-algebra of differential operators on ๐‘‹. We have dโ„“(๐‘ (๐”คC )) = d๐‘Ÿ (๐‘ (๐”คC )). The homomorphism d๐‘Ÿ has image D๐บ (๐‘‹) and kernel ๐‘ˆ (๐”คC )๐”ฅC โˆฉ๐‘ˆ (๐”คC ) ๐ป , hence induces a C-algebra isomorphism โˆผ

๐‘ˆ (๐”คC ) ๐ป /๐‘ˆ (๐”คC )๐”ฅC โˆฉ ๐‘ˆ (๐”คC ) ๐ป โˆ’โ†’ D๐บ (๐‘‹)

(3.2)

[Hel00, Ch. II, Th. 4.6]. Fact 3.3. Let ๐‘‹ = ๐บ/๐ป be a reductive homogeneous space. The following conditions are equivalent: (i) the complexi๏ฌcation ๐‘‹C is ๐บ C -spherical, (ii) the C-algebra D๐บ ( ๐‘‹ ) is commutative, (iii) there exists ๐ถ > 0 such that dim Hom๐”ค,๐พ (๐œ‹ ๐พ , ๐ถ โˆž (๐‘‹)) โ‰ค ๐ถ for all irreducible ( ๐”ค, ๐พ ) -modules ๐œ‹ ๐พ , where Hom๐”ค,๐พ (๐œ‹ ๐พ , ๐ถ โˆž (๐‘‹)) is the set of (๐”ค, ๐พ)-homomorphisms from ๐œ‹ ๐พ to ๐ถ โˆž (๐‘‹). For (i) โ‡” (ii), see [Vin01] for instance; for (i) โ‡” (iii), see [KO13].

24

3 Reminders: spectral analysis on spherical homogeneous spaces

If ๐‘‹C is ๐บ C -spherical, then by work of Knop [Kno94] the C-algebra D๐บ (๐‘‹) is ๏ฌnitely generated as a ๐‘ ( ๐”คC ) -module and there is a C-algebra isomorphism โˆผ

ฮจ : D๐บ (๐‘‹) โˆ’โ†’ ๐‘†(๐”งC ) ๐‘Š ,

(3.3)

where ๐‘†(๐”งC ) ๐‘Š is the C-algebra of ๐‘Š-invariant elements in the symmetric algebra ๐‘†(๐”งC ) for some subspace ๐”งC of a Cartan subalgebra of ๐”คC and some ๏ฌnite re๏ฌ‚ection group ๐‘Š acting on ๐”งC . The integer ๐‘Ÿ := dimC ๐”งC is called the rank of ๐บ/๐ป. As a particular case, suppose that ๐‘‹ is a reductive symmetric space, de๏ฌned by an involutive automorphism ๐œŽ of ๐บ. Let ๐”ค = ๐”ฅ + ๐”ฎ be the decomposition of ๐”ค into eigenspaces of d๐œŽ, with respective eigenvalues +1 and โˆ’1. Then in (3.3) we can take ๐”ง to be a maximal semisimple abelian subspace of ๐”ฎ, and ๐‘Š to be the Weyl group of the restricted root system ฮฃ(๐”คC , ๐”งC ) of ๐”งC in ๐”คC . In particular, D๐บ (๐‘‹) is a polynomial algebra in ๐‘Ÿ generators. The isomorphism (3.3) is known as the Harish-Chandra isomorphism.

3.4 Pseudo-Riemannian structure on ๐‘ฟ We recall the following classical fact on reductive homogeneous spaces ๐‘‹ = ๐บ/๐ป, for which we give a proof for the readerโ€™s convenience. Lemma 3.4 Let ๐‘‹ = ๐บ/๐ป be a reductive homogeneous space. There exists a ๐บinvariant pseudo-Riemannian structure ๐‘” ๐‘‹ on ๐‘‹. Proof. For a real vector space ๐‘‰, we denote by Symm(๐‘‰) the set of symmetric bilinear forms on ๐‘‰, and by Symm(๐‘‰)reg the set of nondegenerate ones. If a group ๐ป acts linearly on ๐‘‰, then it also acts linearly on Symm(๐‘‰), leaving Symm(๐‘‰)reg invariant. We take ๐‘‰ to be ๐”ค/๐”ฅ, on which ๐ป acts via the adjoint representation. ๐ป and the set of ๐บ-invariant Then there is a natural bijection between Symm(๐”ค/๐”ฅ)reg pseudo-Riemannian structures on ๐‘‹, by the ๐บ-translation of an ๐ป-invariant nondegenerate symmetric bilinear form on ๐”ค/๐”ฅ โ‰ƒ ๐‘‡๐‘’๐ป ๐‘‹. Thus it is su๏ฌƒcient to see that ๐ป is nonempty when ๐บ and ๐ป are reductive. Symm ( ๐”ค/๐”ฅ)reg By a theorem of Mostow [Mos55] and Karpelevich [Kar53], there exists a Cartan involution ๐œƒ of ๐บ that leaves ๐ป stable. Let ๐ต be a ๐บ-invariant, nondegenerate, symmetric bilinear form on ๐”ค which is positive de๏ฌnite on ๐”ญ := ๐”ค โˆ’d๐œƒ , negative de๏ฌnite on ๐”จ := ๐”คd๐œƒ , and for which ๐”ญ and ๐”จ are orthogonal. If ๐บ is semisimple, we can take ๐ต to be the Killing form of ๐”ค. The restriction of ๐ต to ๐”ฅ is nondegenerate because ๐”ฅ = (๐”ฅ โˆฉ ๐”จ) + (๐”ฅ โˆฉ ๐”ญ), and so ๐ต induces an ๐ป-invariant, nondegenerate, ๐ป . โŠ” โŠ“ symmetric bilinear form on ๐”ค/๐”ฅ, i.e. an element of Symm ( ๐”ค/๐”ฅ)reg

3.5 Joint eigenfunctions for D๐บ (๐‘‹) on quotient manifolds ๐‘‹ฮ“

25

The pseudo-Riemannian structure ๐‘” ๐‘‹ in Lemma 3.4 determines the Laplacian โ–ก๐‘‹ . Let ๐”ฎ be the orthogonal complement of ๐”ฅ in ๐”ค with respect to ๐ต. Then ๐”ฎ = (๐”ฎ โˆฉ ๐”จ) + ( ๐”ฎ โˆฉ ๐”ญ) , and the pseudo-Riemannian structure has signature ( dim ( ๐”ฎ โˆฉ ๐”ญ) , dim ( ๐”ฎ โˆฉ ๐”จ )) . Examples 3.5. 1. If ๐‘‹ = ๐บ/๐ป is a reductive symmetric space, then โ–ก๐‘‹ โˆˆ dโ„“(๐‘ (๐”ค)) = d๐‘Ÿ (๐‘ (๐”ค)). If moreover ๐‘‹ is irreducible, then the ๐บ-invariant pseudoRiemannian structure on ๐‘‹ is unique up to scale, and induced by the Killing form of ๐”ค. 2. For (๐บ, ๐ป) = (SO(4, 4)0 , Spin(4, 3)) or (SO(4, 3)0 , ๐บ 2(2) ), the homogeneous space ๐‘‹ = ๐บ/๐ป is not a symmetric space. However, the ๐บ-invariant pseudoRiemannian structure on ๐‘‹ is still unique up to scale, and induced by the Killing form of ๐”ค, because the representation of ๐ป on ๐”ค/๐”ฅ is irreducible. 3. If ๐‘‹ = ๐บ/๐ป is not a symmetric space, then the ๐บ-invariant pseudo-Riemannian structure on ๐‘‹ may not be unique (even if ๐บ is simple) and โ–ก๐‘‹ may not be contained in d๐‘Ÿ (๐‘ (๐”ค)). For instance, let ๐บ be SL(3, R) and let ๐ป be the subgroup ๐ป โ‰ƒ (Rโˆ— ) 3 , giving rise of ๐บ consisting of diagonal matrices. Then Symm(๐”ค/๐”ฅ)reg to a 3-parameter family of ๐บ-invariant pseudo-Riemannian structures on ๐‘‹. On the other hand, there are only 2 parameters worth of di๏ฌ€erential operators of order โ‰ค 2 in d๐‘Ÿ ( ๐‘ ( ๐”ค)) .

3.5 Joint eigenfunctions for D๐‘ฎ (๐‘ฟ) on quotient manifolds ๐‘ฟ๐šช Let ฮ“ be a discrete subgroup of ๐บ acting properly discontinuously and freely on the reductive homogeneous space ๐‘‹ = ๐บ/๐ป. Then ๐‘‹ฮ“ = ฮ“\๐‘‹ is a manifold with a covering ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ , and any ๐ท โˆˆ D๐บ (๐‘‹) induces a di๏ฌ€erential operator ๐ท ฮ“ on ๐‘‹ฮ“ satisfying (1.3). Let F = ๐ฟ 2 (resp. ๐ถ โˆž , resp. D โ€ฒ ). For any C-algebra homomorphism ๐œ† : D๐บ (๐‘‹) โ†’ C, we denote by F (๐‘‹ฮ“ ; M๐œ† ) the set of square-integrable (resp. smooth, resp. distribution) weak solutions on ๐‘‹ฮ“ to the system ๐ท ฮ“ ๐‘“ = ๐œ†(๐ท) ๐‘“

for all ๐ท โˆˆ D๐บ (๐‘‹)

(M๐œ† ).

If ๐‘‹C is ๐บ C -spherical, then D๐บ (๐‘‹) is commutative (Fact 3.3) and we may use the spaces F (๐‘‹ฮ“ ; M๐œ† ) of joint eigenfunctions of D๐บ (๐‘‹) to expand functions on ๐‘‹ฮ“ . โˆผ Through the isomorphism ฮจ : D๐บ (๐‘‹) โ†’ ๐‘†(๐”งC ) ๐‘Š of (3.3), we shall identify the space HomC-alg (D๐บ (๐‘‹), C) of C-algebra homomorphisms from D๐บ (๐‘‹) to C with ๐”งโˆ—C /๐‘Š. We set  Spec๐‘‘ (๐‘‹ฮ“ ) = ๐œ† โˆˆ ๐”งโˆ—C /๐‘Š : ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) โ‰  {0} .

Suppose that ๐‘‹ is a reductive symmetric space, de๏ฌned by an involutive automorphism ๐œŽ. Let ๐œƒ be a Cartan involution of ๐บ commuting with ๐œŽ, and let ๐ต be a ๐บ-invariant, nondegenerate, symmetric bilinear form on ๐”ค which is positive de๏ฌnite on ๐”ญ := ๐”ค โˆ’d๐œƒ , negative de๏ฌnite on ๐”จ := ๐”คd๐œƒ , and for which ๐”ญ and ๐”จ are orthogonal. If ๐บ is semisimple, we can take ๐ต to be the Killing form of ๐”ค. The restriction of ๐ต to ๐”ฅ

26

3 Reminders: spectral analysis on spherical homogeneous spaces

is nondegenerate because ๐”ฅ = (๐”ฅ โˆฉ ๐”จ) + (๐”ฅ โˆฉ ๐”ญ), and so ๐ต induces an ๐ป-invariant, nondegenerate, symmetric bilinear form on ๐”ค/๐”ฅ โ‰ƒ ๐‘‡๐‘’๐ป ๐‘‹, which we extend to a ๐บ-invariant pseudo-Riemannian structure on ๐‘‹. In turn, this determines a Laplacian โ–ก๐‘‹ as in (1.2). The symmetric bilinear form ๐ต also induces the Casimir element ๐ถ๐บ โˆˆ ๐‘ ( ๐”คC ) for symmetric ๐‘‹, and its image is the Laplacian โ–ก๐‘‹ . We now assume that ๐”ง is ๐œƒ-stable. Then ๐ต induces a nondegenerate ๐‘Š-invariant bilinear form โŸจยท, ยทโŸฉ on ๐”งโˆ— , which we extend to a complex bilinear form โŸจยท, ยทโŸฉ on ๐”งโˆ—C . Let ฮฃ+ (๐”คC , ๐”งC ) be a positive system and let ๐œŒ โˆˆ ๐”งโˆ—C be half the sum of the elements of ฮฃ+ (๐”คC , ๐”งC ), counted with root multiplicities. The following remark is a consequence of the description of the Harish-Chandra isomorphism ฮจ in Section 3.3. Remark 3.6 If ๐‘‹ is a reductive symmetric space, then for any ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ) the Laplacian โ–ก๐‘‹ฮ“ acts on ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† ) as the scalar ๐‘ก ๐œ† := โŸจ๐œ†, ๐œ†โŸฉ โˆ’ โŸจ ๐œŒ, ๐œŒ โŸฉ โˆˆ C: ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) โŠ‚ Ker(โ–ก๐‘‹ฮ“ โˆ’ ๐‘ก ๐œ† ), where the kernel Ker(โ–ก๐‘‹ฮ“ โˆ’ ๐‘ก ๐œ† ) is understood as weak solutions in ๐ฟ 2 . Remark 3.7 When rank ๐บ/๐ป > 1, it may happen that some complex number ๐‘ก is equal to ๐‘ก๐œ† for more than one ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ): by [KK], this is the case for in๏ฌnitely many ๐‘ก โˆˆ C if rank ๐บ/๐ป = rank ๐พ/๐ป โˆฉ ๐พ > 1 and if ฮ“ is sharp in the sense of [KK16, Def. 4.2] (for instance if ๐‘‹ฮ“ is standard in the sense of Section 1.1, as in the setting of the present book).

3.6 Discrete series representations for ๐‘ฟ Let ๐ฟ 2 (๐‘‹) be the space of square-integrable functions on ๐‘‹ with respect to the natural ๐บ-invariant measure. Recall that an irreducible unitary representation ๐œ‹ of ๐บ is called a discrete series representation for the reductive homogeneous space ๐‘‹ = ๐บ/๐ป if there exists a nonzero continuous ๐บ-intertwining operator from ๐œ‹ to the regular representation of ๐บ on ๐ฟ 2 (๐‘‹) or, equivalently, if ๐œ‹ can be realized as a closed ๐บ-invariant subspace of ๐ฟ 2 (๐‘‹). In the case that ๐‘‹ is a group manifold, i.e. ๐‘‹ = ( โ€ต ๐บ ร— โ€ต ๐บ)/Diag( โ€ต ๐บ) for some reductive group โ€ต ๐บ, the discrete series representations for ๐‘‹ were classi๏ฌed by Harish-Chandra; in general, discrete series representations for ๐‘‹ = ๐บ/๐ป are di๏ฌ€erent from Harish-Chandraโ€™s discrete series representations for ๐บ since ๐ฟ 2 ( ๐‘‹ ) โ‰  ๐ฟ 2 ( ๐บ ) ๐ป for noncompact ๐ป. Suppose that ๐‘‹ is a reductive symmetric space. For ๐œ† โˆˆ Spec๐‘‘ (๐‘‹), the space ๐ฟ 2 (๐‘‹; M๐œ† ) of Section 3.5 is preserved by the left regular representation of ๐บ and splits into a ๏ฌnite direct sum of discrete series representations for ๐‘‹. If the natural homomorphism ๐‘ (๐”คC ) โ†’ D๐บ (๐‘‹) is surjective (e.g. if ๐บ is classical or ๐‘‹ is a group manifold), then any discrete series representation for ๐‘‹ is contained in ๐ฟ 2 (๐‘‹; M๐œ† ) for some ๐œ† โˆˆ Spec๐‘‘ (๐‘‹), by Schurโ€™s lemma. In general, Flensted-Jensen [Fle80] and Matsukiโ€“Oshima [MO84] proved that there exist discrete series representations for ๐‘‹, or equivalently Spec๐‘‘ ( ๐‘‹ ) is nonempty, if and only if the rank condition

3.7 Regular representations on real spherical homogeneous spaces

27

(1.4) is satis๏ฌed. For ๐‘‹ = ( โ€ต ๐บ ร— โ€ต ๐บ)/Diag( โ€ต ๐บ), this condition is equivalent to Harish-Chandraโ€™s rank condition rank โ€ต ๐บ = rank โ€ต ๐พ where โ€ต ๐พ is a maximal compact subgroup of โ€ต ๐บ. In the case that ๐‘‹ = ๐บ/๐ป is a compact reductive homogeneous space, not necessarily symmetric, any irreducible representation of ๐บ occurring in ๐ถ โˆž (๐‘‹) is automatically a discrete series representation for ๐‘‹ = ๐บ/๐ป, and the constant ๐ถ in Fact 3.3 is equal to one. Thus Fact 3.3 is re๏ฌned as follows. Fact 3.8. Let ๐‘‹ = ๐บ/๐ป be a compact reductive homogeneous space. Then the following conditions are equivalent: (i) the complexi๏ฌcation ๐‘‹C = ๐บ C /๐ปC is ๐บ C -spherical, (ii) the C-algebra D๐บ ( ๐‘‹ ) is commutative, (iii) the discrete series representations for ๐‘‹ = ๐บ/๐ป have uniformly bounded multiplicities, (iv) ๐‘‹ = ๐บ/๐ป is multiplicity-free (i.e. all discrete series representations for ๐‘‹ = ๐บ /๐ป occur exactly once). For (iii) โ‡” (iv), see [Krรค76]. Note that the multiplicity-freeness in (iv) does not hold in general for noncompact reductive groups ๐บ.

3.7 Regular representations on real spherical homogeneous spaces Real spherical homogeneous spaces are a class of spaces extending real forms of spherical complex homogeneous spaces (see Example 3.2.(1)). Recall that, for a complex reductive Lie algebra ๐”คC , a ๐”คC -module ๐‘‰ is called ๐‘ (๐”คC )-๏ฌnite if the annihilator Ann ๐‘ (๐”คC ) (๐‘‰) of ๐‘‰ in ๐‘ (๐”คC ) has ๏ฌnite codimension in ๐‘ (๐”คC ). A (๐”คC , ๐พ)module is called ๐‘ (๐”คC )-๏ฌnite if the underlying ๐”คC -module is ๐‘ (๐”คC )-๏ฌnite. We shall use the following general lemma. Lemma 3.9 Let ๐บ be a real linear reductive Lie group, ๐ป a closed subgroup, and V๐œ := ๐บ ร— ๐ป ๐‘‰๐œ โ†’ ๐‘‹ the ๐บ-equivariant bundle over ๐‘‹ = ๐บ/๐ป associated with a ๏ฌnite-dimensional representation ( ๐œ, ๐‘‰๐œ ) of ๐ป. 1. Any ๐‘ ( ๐”คC ) -๏ฌnite ( ๐”ค, ๐พ ) -module in D โ€ฒ ( ๐‘‹, V๐œ ) is contained in A ( ๐‘‹, V๐œ ) . 2. If ๐‘‹ is ๐บ-real spherical, then any ๐‘ (๐”คC )-๏ฌnite (๐”ค, ๐พ)-module in D โ€ฒ (๐‘‹, V๐œ ) is of ๏ฌnite length. Proof. 1. This is well known: since dโ„“(๐ถ๐บ ) โˆ’ 2d๐‘Ÿ (๐ถ๐พ ) is an elliptic operator, any generalized eigenfunction of dโ„“(๐ถ๐บ ) โˆ’ 2d๐‘Ÿ (๐ถ๐พ ) is real analytic by the elliptic regularity theorem (see [KKK86, Th. 3.4.4] for instance). 2. This was proved in [KO13, Th. 2.2] under the slightly stronger assumption that ๐‘ (๐”คC ) acts as scalars. Since the successive sequence of (hyperfunction-valued) boundary maps ๐›ฝ๐‘–๐œ‡ for (๐‘–, ๐œ‡) in a poset in the proof (see [KO13, p. 931]) is well de๏ฌned for hyperfunctions (in particular smooth functions, distributions, etc.)

28

3 Reminders: spectral analysis on spherical homogeneous spaces

that are annihilated by an ideal of ๏ฌnite codimension in ๐‘ (๐”คC ) [Osh88], the โŠ“ โŠ” proof goes similarly.

3.8 Smooth and distribution vectors of unitary representations of ๐‘ฎ In the proof of Theorem 2.7 (Chapter 12), we shall need a generalized concept of matrix coe๏ฌƒcient associated to distribution vectors of unitary representations of Lie groups, which we now summarize brie๏ฌ‚y. See [He14] and [Wal88, Vol. I, Ch. I]. Let ๐œ‹ be a continuous representation of a Lie group ๐บ on a Hilbert space H with inner product (ยท, ยท) H and norm โˆฅ ยท โˆฅ H . The space H โˆž := {๐‘ฃ โˆˆ H : the map ๐บ โˆ‹ ๐‘” โ†ฆโ†’ ๐œ‹(๐‘”)๐‘ฃ โˆˆ H is ๐ถ โˆž } of smooth vectors of H carries a Frรฉchet topology given by the seminorms |๐‘ฃ| ๐‘ข := โˆฅd๐œ‹(๐‘ข)๐‘ฃโˆฅ H for ๐‘ข โˆˆ ๐‘ˆ (๐”คC ). The space H โˆ’โˆž of distribution vectors of (๐œ‹, H ) is de๏ฌned to be the space of continuous, sesquilinear forms on H โˆž ; it is isomorphic to the complex conjugate of the complex linear functional of H โˆž . We write ๐œ‹ โˆ’โˆž for the natural representation of ๐บ on H โˆ’โˆž . Suppose (๐œ‹, H ) is a unitary representation. It can be seen as a subrepresentation of ( ๐œ‹ โˆ’โˆž , H โˆ’โˆž ) by sending ๐‘ฃ โˆˆ H to ( ๐‘ฃ, ยท) H โˆˆ H โˆ’โˆž . The triple H โˆž โŠ‚ H โŠ‚ H โˆ’โˆž

(3.4)

is called the Gelfand triple associated with the unitary representation (๐œ‹, H ). We write (ยท, ยท) for the pairing of H โˆ’โˆž and H โˆž ; it coincides with the inner product (ยท, ยท) H in restriction to H ร— H โˆž . For ๐‘ข โˆˆ H โˆ’โˆž and ๐‘ฃ โˆˆ H โˆž the matrix coe๏ฌƒcient associated with ๐‘ข and ๐‘ฃ is the smooth function on ๐บ de๏ฌned by ๐‘” โ†ฆโˆ’โ†’ (๐œ‹ โˆ’โˆž (๐‘” โˆ’1 )๐‘ข, ๐‘ฃ) = (๐‘ข, ๐œ‹(๐‘”)๐‘ฃ).

(3.5)

We now extend the notion of matrix coe๏ฌƒcient to H โˆ’โˆž . For this, we observe that for ๐œ‘ โˆˆ ๐ถ๐‘โˆž ( ๐บ ) and ๐น โˆˆ H โˆ’โˆž the Gรฅrding vector โˆซ โˆ’โˆž ๐œ‹ (๐œ‘)๐น := ๐œ‘(๐‘”) ๐œ‹ โˆ’โˆž (๐‘”)๐น d๐‘” ๐บ

is a smooth vector of (๐œ‹, H ). We also observe that if ๐น โˆˆ H โˆž , then the smooth function ๐‘” โ†ฆโ†’ ( ๐œ‹ โˆ’โˆž ( ๐‘” โˆ’1 ) ๐‘ข, ๐น ) may be regarded as a distribution on ๐บ by โˆซ ๐œ‘ โ†ฆโˆ’โ†’ ๐œ‘(๐‘”) (๐œ‹ โˆ’โˆž (๐‘” โˆ’1 )๐‘ข, ๐น) d๐‘” ๐บ    โˆซ โˆซ โˆ’โˆž โˆ’โˆž โˆ’1 ๐œ‘(๐‘”) ๐œ‹ (๐‘”)๐น d๐‘” โˆˆ C ๐œ‘(๐‘”) ๐œ‹ (๐‘” )๐‘ข d๐‘”, ๐น = ๐‘ข, = ๐บ

๐บ

3.9 (๐”ค, ๐พ )-modules of admissible representations

29

for ๐œ‘ โˆˆ ๐ถ๐‘โˆž (๐บ). We now de๏ฌne a sesquilinear map ๐‘‡ : H โˆ’โˆž ร— H โˆ’โˆž โˆ’โ†’ D โ€ฒ (๐บ)

(3.6)

such that for any ๐‘ข, ๐น โˆˆ H โˆ’โˆž , the distribution ๐‘‡ (๐‘ข, ๐น) โˆˆ D โ€ฒ (๐บ) is given by โˆซ   โˆซ  โˆ’โˆž โˆ’1 โˆ’โˆž ๐œ‘ โ†ฆโˆ’โ†’ ๐œ‘(๐‘”) ๐œ‹ (๐‘” )๐‘ข d๐‘”, ๐น = ๐‘ข, ๐œ‘(๐‘”) ๐œ‹ (๐‘”)๐น d๐‘” โˆˆ C ๐บ

๐บ

for ๐œ‘ โˆˆ ๐ถ๐‘โˆž (๐บ). Then ๐‘‡ (๐œ‹ โˆ’โˆž (๐‘”1 )๐‘ข, ๐œ‹ โˆ’โˆž (๐‘”2 )๐น) = ๐‘‡ (๐‘ข, ๐น) (๐‘”1โˆ’1 ยท ๐‘”2 )

(3.7)

for all ๐‘”1 , ๐‘”2 โˆˆ ๐บ. If ๐น โˆˆ H โˆž , then the distribution ๐‘‡ (๐‘ข, ๐น) identi๏ฌes with a smooth function via the Haar measure, equal to the matrix coe๏ฌƒcient (3.5) associated with ๐‘ข and ๐น. A distribution vector ๐‘ข โˆˆ H โˆ’โˆž is called cyclic if any ๐‘ฃ โˆˆ H โˆž satisfying (๐œ‹ โˆ’โˆž (๐‘” โˆ’1 )๐‘ข, ๐‘ฃ) = 0 for all ๐‘” โˆˆ ๐บ is zero. If ๐‘ข โˆˆ H โˆ’โˆž is cyclic, then any ๐น โˆˆ H โˆ’โˆž satisfying ๐‘‡ (๐œ‹ โˆ’โˆž (๐‘” โˆ’1 )๐‘ข, ๐น) = 0 in D โ€ฒ (๐บ) is zero, because if ๐œ‹(๐œ‘)๐น = 0 for all ๐œ‘ โˆˆ ๐ถ๐‘โˆž ( ๐บ ) then ๐น = 0.

3.9 (๐–Œ, ๐‘ฒ)-modules of admissible representations of real reductive Lie groups We now suppose that ๐บ is a real linear reductive Lie group with maximal compact subgroup ๐พ. A continuous representation ๐œ‹ of ๐บ on a complete, locally convex topological vector space H is called admissible if dim Hom๐พ (๐œ, H ) < +โˆž for all b Then the space ๐œ โˆˆ ๐พ.  H๐พ := ๐‘ฃ โˆˆ H : dimC C-span{๐œ‹(๐‘˜)๐‘ฃ : ๐‘˜ โˆˆ ๐พ } < +โˆž of ๐พ-๏ฌnite vectors is a dense subspace of H , and there is a natural (๐”ค, ๐พ)-module structure on H๐พ , called the underlying (๐”ค, ๐พ)-module of H . The following theorem of Harish-Chandra [Har53] creates a bridge between continuous representations and algebraic representations without any speci๏ฌc topology. Fact 3.10. Let (๐œ‹, H ) be a continuous admissible representation of ๐บ of ๏ฌnite length. Then there is a lattice isomorphism between the closed invariant subspaces ๐‘‰ of H and the (๐”ค, ๐พ)-invariant subspaces ๐‘‰๐พ of H๐พ , given by ๐‘‰ โ‡ ๐‘‰๐พ = ๐‘‰ โˆฉ H๐พ and ๐‘‰๐พ โ‡ ๐‘‰ = ๐‘‰๐พ .

Chapter 4

Discrete spectrum of type I and II

Abstract In this chapter, we consider joint ๐ฟ 2 -eigenfunctions on pseudo-Riemannian locally homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐บ/๐ป. In previous work, we constructed nonzero generalized Poincarรฉ series by averaging Flensted-Jensenโ€™s functions over ฮ“-orbits on ๐‘‹, and derived ๐ฟ2 -eigenfunctions on ๐‘‹ฮ“ under certain conditions. These conditions include the requirement that ๐‘‹ be a symmetric space satisfying the Flensted-Jensenโ€“Matsukiโ€“Oshima rank condition, and that the action of ฮ“ on ๐‘‹ satisfy a strong properness condition called sharpness. However, there also exists discrete spectrum that cannot be obtained through this method. In this chapter, we introduce a definition of discrete spectrum (and joint eigenfunctions) categorized into type I and type II. The joint eigenfunctions obtained using the aforementioned generalized Poincarรฉ series belong to type I. Joint eigenfunctions of type II are characterized by the property that they are orthogonal to those of type I. In this chapter we consider joint ๐ฟ 2 -eigenfunctions on quotient manifolds ๐‘‹ฮ“ , where ๐‘‹ = ๐บ/๐ป is a reductive homogeneous space and ฮ“ a discrete subgroup of ๐บ acting properly discontinuously and freely on ๐‘‹. We assume the complexification ๐‘‹C is ๐บ C -spherical (e.g. ๐‘‹ is a reductive symmetric space). Part of the discrete spectrum on the pseudo-Riemannian locally symmetric space ๐‘‹ฮ“ is built from discrete series representations for ๐‘‹ = ๐บ/๐ป (โ€œstable spectrumโ€ in [KK11, KK16], which neither varies nor disappears under small deformations of the discontinuous group ฮ“). However, there may also exist another type of discrete spectrum, of a somewhat different nature. Example 4.1 Let ๐‘‹ = (SL(2, R) ร— SL(2, R))/Diag(SL(2, R)), which is isomorphic to the 3-dimensional anti-de Sitter space AdS3 = SO(2, 2)/SO(2, 1) of Example 1.2. By [KK16, Th. 9.9], there is a constant ๐‘… ๐‘‹ > 0 such that for any uniform lattice โ€ต ฮ“ of SL(2, R) with โˆ’๐ผ โˆ‰ โ€ต ฮ“ (resp. with โˆ’๐ผ โˆˆ โ€ต ฮ“), if we set ฮ“ = โ€ต ฮ“ ร— {๐‘’}, then the discrete spectrum of the Laplacian โ–ก๐‘‹ฮ“ on the Lorentzian 3-manifold ๐‘‹ฮ“ contains the in๏ฌnite set n1 o  n1 o ๐‘˜ (๐‘˜ + 2) : ๐‘˜ โˆˆ N, ๐‘˜ โ‰ฅ ๐‘… ๐‘‹ resp. ๐‘˜ (๐‘˜ + 2) : ๐‘˜ โˆˆ 2N, ๐‘˜ โ‰ฅ ๐‘… ๐‘‹ 4 4 ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_4

31

32

4 Discrete spectrum of type I and II

coming from discrete series representations for ๐‘‹ = ๐บ/๐ป. (See Section 11.6 for normalization.) However, we note that ๐ฟ 2 ( โ€ต ฮ“\H2 ) embeds into ๐ฟ 2 (๐‘‹ฮ“ ) = ๐ฟ 2 ( โ€ต ฮ“\SL(2, R)) and the restriction to ๐ฟ 2 ( โ€ต ฮ“\H2 ) of the Laplacian โ–ก๐‘‹ฮ“ corresponds to โˆ’2 times the usual Laplacian ฮ” โ€ต ฮ“\H2 on the hyperbolic surface โ€ต ฮ“\H2 (see [Lan85, Ch. X]). Therefore โ–ก๐‘‹ฮ“ is essentially self-adjoint and also admits in๏ฌnitely many negative eigenvalues coming from eigenvalues of ฮ” โ€ต ฮ“\H2 . These eigenvalues vary under small deformations of โ€ต ฮ“ inside SL ( 2, R) (see [Wol94, Th. 5.14]). Motivated by this observation, we now introduce a de๏ฌnition of discrete spectrum (and joint ๐ฟ 2 -eigenfunctions) of type I and type II on ๐‘‹ฮ“ . Remark 4.2 In Section 9.2, for standard ฮ“ โŠ‚ ๐ฟ, we shall introduce a similar notion of type I and type II for Hermitian vector bundles V๐œ over the Riemannian locally symmetric space ๐‘Œฮ“ = ฮ“\๐ฟ/๐ฟ ๐พ , by using Harish-Chandraโ€™s discrete series representations for ๐ฟ. We shall prove that the maps i ๐œ,ฮ“ of Section 1.3 preserve type I and type II when ๐‘‹C is ๐ฟ C -spherical (Theorem 9.2).

4.1 De๏ฌnition of type I and type II We introduce Hilbert space decompositions ๐ฟ 2 (๐‘‹ฮ“ ) = ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ) โŠ• ๐ฟ 2๐‘Ž๐‘ (๐‘‹ฮ“ ) =

๐ฟ 2๐‘‘ ( ๐‘‹ฮ“ )I

โŠ•

 ๐ฟ 2๐‘‘ ( ๐‘‹ฮ“ )II

(4.1) โŠ•

๐ฟ 2๐‘Ž๐‘ ( ๐‘‹ฮ“ ) ,

de๏ฌned as follows. Recall (Corollary 2.5) that in the main setting 1.5 of the theorems of Chapters 1 and 2, the subspaces ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ), for varying ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ), are orthogonal to each other inside ๐ฟ 2 ( ๐‘‹ฮ“ ) . We set ร•โŠ• ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ) := ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ), ๐œ† โˆˆ Spec๐‘‘ ( ๐‘‹ฮ“ )

ร where โŠ• denotes the Hilbert completion of the algebraic direct sum, and let ๐ฟ 2๐‘Ž๐‘ ( ๐‘‹ฮ“ ) be the orthogonal complement of ๐ฟ 2๐‘‘ ( ๐‘‹ฮ“ ) in ๐ฟ 2 ( ๐‘‹ฮ“ ) . Next we introduce, for any ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ), two subspaces ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )I and 2 ๐ฟ (๐‘‹ฮ“ ; M๐œ† )II of ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ). For this we ๏ฌrst specify the topology that we consider on the space D โ€ฒ ( ๐‘‹ ) of distributions on ๐‘‹. Remark 4.3 Let ๐ถ๐‘โˆž (๐‘‹) be the space of compactly supported, smooth functions on ๐‘‹, with the locally convex inductive limit topology. Recall that a subset ๐ต of a topological vector space is said to be (von Neumann) bounded if for every neighborhood ๐‘ˆ of the origin, there exists a scalar ๐‘  > 0 such that ๐ต โŠ‚ ๐‘ ๐‘ˆ. We endow D โ€ฒ (๐‘‹) with the topology of uniform convergence on all bounded subsets ๐ต of ๐ถ๐‘โˆž ( ๐‘‹ ) , i.e. the topology de๏ฌned by the family of seminorms

4.1 De๏ฌnition of type I and type II

33

 | ยท | ๐ต := ๐‘ข โ†ฆโˆ’โ†’ sup{โŸจ๐‘ข, ๐œ‘โŸฉ : ๐œ‘ โˆˆ ๐ต} . With this topology, D โ€ฒ (๐‘‹) is a complete, locally convex (though not metrizable) topological space and the map ๐‘ โˆ—ฮ“ : ๐ฟ 2 (๐‘‹ฮ“ ) โ†’ D โ€ฒ (๐‘‹) induced by the projection ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ is continuous. Notation 4.4. For any ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ), we let ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )I be the preimage, under ๐‘ โˆ—ฮ“ , of the closure in D โ€ฒ (๐‘‹) of ๐ฟ 2 (๐‘‹; M๐œ† ), and ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )II be the orthogonal complement of ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† )I in ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† ) . This orthogonal complement is well de๏ฌned by the following elementary observation. Lemma 4.5 For any ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ), 1. ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† ) is a closed subspace of the Hilbert space ๐ฟ 2 ( ๐‘‹ฮ“ ) , 2. ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† )I is a closed subspace of ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† ) . Proof. All elements in D๐บ (๐‘‹) are closed operators, which implies (1). The map ๐‘ โˆ—ฮ“ : ๐ฟ 2 (๐‘‹ฮ“ ) โ†ฉโ†’ D โ€ฒ (๐‘‹) is continuous, and so ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) is a closed subspace of ๐ฟ 2 (๐‘‹; M๐œ† ). Since ๐ฟ 2 (๐‘‹; M๐œ† ) is contained in D โ€ฒ (๐‘‹; M๐œ† ), so is its closure ๐ฟ 2 ( ๐‘‹; M๐œ† ) , hence ( ๐‘ โˆ—ฮ“ ) โˆ’1 ( ๐ฟ 2 ( ๐‘‹; M๐œ† )) โŠ‚ ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† ) , which implies (2). โŠ” โŠ“ Thus for any ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ) we have the Hilbert space decomposition ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) = ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )I โŠ• ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )II . For ๐‘– = I, II, we then set ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )๐‘– := where set

รโŠ•

ร•โŠ•

๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )๐‘– ,

(4.2)

๐œ†โˆˆSpec๐‘‘ (๐‘‹ฮ“ )

denotes again the Hilbert completion of the algebraic direct sum. We also Spec๐‘‘ (๐‘‹ฮ“ )I := {๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ) : ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )I โ‰  {0}}, Spec๐‘‘ ( ๐‘‹ฮ“ )II := {๐œ† โˆˆ Spec๐‘‘ ( ๐‘‹ฮ“ ) : ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† )II โ‰  {0}} .

Then Spec๐‘‘ (๐‘‹ฮ“ ) = Spec๐‘‘ (๐‘‹ฮ“ )I โˆช Spec๐‘‘ (๐‘‹ฮ“ )II . This union is not disjoint a priori. By construction, Spec๐‘‘ (๐‘‹ฮ“ )I โŠ‚ Spec๐‘‘ (๐‘‹). For instance, for ๐‘‹ = ๐บ/๐ป = (SL(2, R) ร—SL(2, R))/Diag(SL(2, R)), the discrete spectrum Spec๐‘‘ (๐‘‹ฮ“ ) identi๏ฌes with the discrete spectrum of the Laplacian โ–ก๐‘‹ฮ“ ; the positive (resp. negative) spectrum described in Example 4.1 is of type I (resp. type II); we refer to Section 11.6 for more details on this example. Remarks 4.6. (1) Take ฮ“ = {๐‘’}. If the complexi๏ฌcation ๐‘‹C is ๐บ C -spherical, then ๐ฟ 2๐‘‘ (๐‘‹)II = {0}. In fact, ๐ฟ 2 (๐‘‹; M๐œ† ) is a unitary representation of ๏ฌnite length by [KO13], hence it splits into a direct sum of irreducible unitary representations of ๐บ.

34

4 Discrete spectrum of type I and II

If ๐‘‹ is a reductive symmetric space, an explicit decomposition of ๐ฟ 2๐‘Ž๐‘ (๐‘‹) is given in [Del98] as a direct integral of irreducible unitary representations of ๐บ with continuous parameter. (2) In [KK16], building on [Fle80], we constructed discrete spectrum of type I for ๐‘‹ฮ“ when ๐‘‹ = ๐บ/๐ป is a reductive symmetric space satisfying the rank condition rank ๐บ/๐ป = rank ๐พ/๐พ โˆฉ ๐ป and the action of ฮ“ on ๐‘‹ is sharp (a strong form of proper discontinuity, satis๏ฌed in many examples, see [KK16, Def. 4.2]). (3) If ๐‘‹ = ๐บ/๐ป is a reductive symmetric space that does not satisfy the rank condition above (e.g. if ๐‘‹ = ๐บ/๐ป = ๐บ/๐พ is a Riemannian symmetric space), then ๐บ/๐ป does not admit discrete series [MO84], and so ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )I = {0} and Spec๐‘‘ ( ๐‘‹ฮ“ ) = Spec๐‘‘ ( ๐‘‹ฮ“ )II . Lemma 4.7 If ๐‘‹ is a reductive symmetric space and ฮ“ a discrete subgroup of ๐บ acting properly discontinuously and freely on ๐‘‹, then all the eigenvalues of the Laplacian โ–ก๐‘‹ฮ“ corresponding to Spec๐‘‘ (๐‘‹ฮ“ )I are positive, except possibly for a ๏ฌnite number. Proof. Let ๐”งโˆ—R be the R-span of ฮฃ(๐”คC , ๐”งC ): it is a real subspace of ๐”งโˆ—C , invariant under the Weyl group ๐‘Š. By the classi๏ฌcation of discrete series representations for ๐‘‹ by Matsukiโ€“Oshima [MO84], we have Spec๐‘‘ (๐‘‹) โŠ‚ ๐”งโˆ—R /๐‘Š, and Spec๐‘‘ (๐‘‹) is discrete in ๐”งโˆ—R /๐‘Š. We then use the inclusion Spec๐‘‘ (๐‘‹ฮ“ )I โŠ‚ Spec๐‘‘ (๐‘‹) and the fact that the Laplacian โ–ก๐‘‹ฮ“ acts by the scalar โŸจ๐œ†, ๐œ†โŸฉ โˆ’ โŸจ๐œŒ, ๐œŒโŸฉ on ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) for ๐œ† โˆˆ ๐”งโˆ—C /๐‘Š (Remark 3.6). โŠ” โŠ“

4.2 De๏ฌnition of type I and type II using ๐’(๐–ŒC ) instead of D๐‘ฎ (๐‘ฟ) In Chapter 11, instead of using systems (M๐œ† ) for the C-algebra D๐บ (๐‘‹), we shall consider systems (N๐œˆ ) for the center ๐‘ (๐”คC ) of the enveloping algebra ๐‘ˆ (๐”คC ), as follows. Let F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ . For any ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C), let F (๐‘‹ฮ“ ; N๐œˆ ) be the space of (weak) solutions ๐œ‘ โˆˆ F ( ๐‘‹ฮ“ ) to the system dโ„“(๐‘ง) ฮ“ ๐œ‘ = ๐œˆ(๐‘ง)๐œ‘

for all ๐‘ง โˆˆ ๐‘ (๐”คC ).

(N๐œˆ )

Via the C-algebra homomorphism dโ„“ : ๐‘ (๐”คC ) โ†’ D๐บ (๐‘‹), we have a natural inclusion F (๐‘‹ฮ“ ; M๐œ† ) โ†ฉโˆ’โ†’ F (๐‘‹ฮ“ ; N๐œ†โ—ฆdโ„“ ) which is bijective as soon as dโ„“ is surjective. In the general setting 2.1, for ฮ“ โŠ‚ ๐ฟ, we sometimes also use a similar map dโ„“ : ๐‘ (๐”ฉ C ) โ†’ D ๐ฟ (๐‘‹). We note that dโ„“ : ๐‘ (๐”คC ) โ†’ D๐บ (๐‘‹) is always surjective when ๐‘‹C is ๐ฟ C -spherical and ๐บ simple, whereas dโ„“ : ๐‘ ( ๐”ฉ C ) โ†’ D ๐ฟ ( ๐‘‹ ) is not surjective in most cases. Similarly to Notation 4.4, we divide joint eigenfunctions on ๐‘‹ฮ“ into two types: type I coming from discrete series representations for ๐บ/๐ป, and type II de๏ฌned by taking an orthogonal complement.

4.2 De๏ฌnition of type I and type II using ๐‘ ( ๐”คC ) instead of D๐บ ( ๐‘‹ )

35

Notation 4.8. For any ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C), we let ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ )I be the preimage, under ๐‘ โˆ—ฮ“ , of the closure of ๐ฟ 2 (๐‘‹; N๐œˆ ) in D โ€ฒ (๐‘‹), and ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ )II be the orthogonal complement of ๐ฟ 2 ( ๐‘‹ฮ“ ; N๐œˆ )I in ๐ฟ 2 ( ๐‘‹ฮ“ ; N๐œˆ ) . For ๐‘– = I or II, we set  Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ )๐‘– := ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C) : ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ )๐‘– โ‰  {0} . We also set  Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) := ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C) : ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ ) โ‰  {0} = Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ )I โˆช Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ )II ,

and  Spec ๐‘ (๐”คC ) (๐‘‹ฮ“ ) := ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C) : D โ€ฒ (๐‘‹ฮ“ ; N๐œˆ ) โ‰  {0} . Note that here we consider more general eigenfunctions which are not necessarily square-integrable. Eigenfunctions are not automatically smooth, which is why we use a formulation with the space D โ€ฒ of distributions. In Chapter 11 we shall give constraints on Spec ๐‘ (๐”คC ) (๐‘‹ฮ“ ) (Proposition 11.4) and conjectural constraints on Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) and Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ )๐‘– for ๐‘– = I, II (Conjecture 11.3).

Chapter 5

Di๏ฌ€erential operators coming from ๐‘ณ and from the ๏ฌber ๐‘ญ

Abstract For a ๐บ-manifold ๐‘‹ with a proper and transitive action by a reductive subgroup ๐ฟ, there exists a natural ๐ฟ-equivariant fiber bundle structure of ๐‘‹ over the Riemannian symmetric space associated with ๐ฟ, with a compact fiber ๐น. This chapter explores three key topics: (1) harmonic analysis on ๐‘‹ through the representation theory of the group ๐บ; (2) harmonic analysis on ๐‘‹ through the representation theory of the subgroup ๐ฟ; (3) restricting representations of ๐บ to the subgroup ๐ฟ. Furthermore, there are three natural rings of differential operators on ๐‘‹: (a) ๐บ-invariant ones; (b) those derived from the center of the enveloping algebra of ๐”ฉ, the Lie algebra of the subgroup ๐ฟ; (c) those induced from the fiber ๐น. The rings (a) and (b) underlie (1) and (2), respectively. If ๐ฟ additionally acts spherically on ๐‘‹, the elements in these three rings (a), (b), and (c) are commutative, and (c) becomes an underlying structure of (3). Building on this, we introduce transfer maps to establish a connection between (1) and (2) via the well-understood harmonic analysis on the compact fiber. The results presented in this chapter play a key role in proving our main results. Our strategy for spectral analysis on a standard locally homogeneous space ๐‘‹ฮ“ = ฮ“\๐บ/๐ป, where ฮ“ is contained in a reductive subgroup ๐ฟ of ๐บ as in the general setting 2.1, is to use the representation theory of ๐ฟ, and for this it is desirable to have a control on: โ€ข the ๐บ-modules generated by irreducible ๐ฟ-modules in ๐ถ โˆž ( ๐‘‹ ) ; โ€ข the ๐ฟ-module structure of irreducible ๐บ-modules in ๐ถ โˆž ( ๐‘‹ ) . In this chapter, we introduce two conditions (A) and (B) to formulate these two types of control (De๏ฌnition 5.9). They use the ๐ฟ-equivariant ๏ฌber bundle structure ๐‘‹ = ๐บ /๐ป โ‰ƒ ๐ฟ / ๐ฟ ๐ป โ†’ ๐ฟ / ๐ฟ ๐พ = ๐‘Œ of (2.1). In order to verify conditions (A) and (B), as well as the existence of transfer maps ๐‚ and ๐€ as in (2.4) (condition (Tf), see De๏ฌnition 5.7 below), we consider ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_5

37

5 Di๏ฌ€erential operators coming from ๐ฟ and from the ๏ฌber ๐น

38

e and (B) e involving subalgebras dโ„“(๐‘ (๐”ฉ C )), D๐บ (๐‘‹), and two additional conditions (A) d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )) of the algebra D ๐ฟ (๐‘‹) of ๐ฟ-invariant di๏ฌ€erential operators on ๐‘‹, as in e and (B) e indicate that the contribution of the ๏ฌber [KK19, ยง 1.4]. These conditions (A) e implies (A), ๐น = ๐ฟ ๐พ /๐ฟ ๐ป to D ๐ฟ (๐‘‹) is โ€œlargeโ€. We observe (Lemma 5.19) that (A) e e e together that (B) implies (B) whenever ๐‘‹C is ๐บ C -spherical, and that (A) and (B) imply (Tf) (existence of transfer maps). Whereas conditions (A), (B), and (Tf) are de๏ฌned using real forms, conditions e and (B) e are formulated simply in terms of complex Lie algebras; in particular, it (A) is su๏ฌƒcient to check them on one real form in order for them to hold on any other real form. This allows us to use [KK19, Cor. 1.12], which concerns compact real forms, to prove that condition (Tf) is satis๏ฌed in the setting 1.5 (Proposition 5.10). We shall discuss applications of conditions (A) and (B) to the relation between spectral theory for the pseudo-Riemannian space ๐‘‹ and the Riemannian symmetric space ๐‘Œ in Chapter 8, and their quotients ๐‘‹ฮ“ and ๐‘Œฮ“ in Chapter 9. Conditions (A), (B), and (Tf) will play a crucial role in the proof of our main theorems.

5.1 ๐‘ณ-invariant di๏ฌ€erential operators on ๐‘ฟ We work in the general setting 2.1. As in (3.1), the di๏ฌ€erentiations of the left and right regular representations of ๐ฟ on ๐ถ โˆž ( ๐ฟ ) induce a C-algebra homomorphism dโ„“ โŠ— d๐‘Ÿ : ๐‘ˆ (๐”ฉ C ) โŠ— ๐‘ˆ (๐”ฉ C ) ๐ฟ๐ป โˆ’โ†’ D(๐‘‹),

(5.1)

where ๐‘ˆ (๐”ฉ C ) ๐ฟ๐ป is the subalgebra of ๐ฟ ๐ป -invariant elements in the enveloping algebra ๐‘ˆ (๐”ฉ C ), and D(๐‘‹) the full C-algebra of di๏ฌ€erential operators on ๐‘‹. In particular, dโ„“ is de๏ฌned on the center ๐‘ (๐”ฉ C ) of the enveloping algebra ๐‘ˆ (๐”ฉ C ), and dโ„“(๐‘ (๐”ฉ C )) = d๐‘Ÿ ( ๐‘ ( ๐”ฉ C )) . The Casimir element of ๐”ฉ gives rise to the Laplacian ฮ”๐‘Œ on the Riemannian symmetric space ๐‘Œ . More precisely, choose any Ad(๐ฟ)-invariant bilinear form on ๐”ฉ; this de๏ฌnes a Riemannian structure on ๐‘Œ and the Casimir element ๐ถ ๐ฟ โˆˆ ๐‘ (๐”ฉ C ). Then the following diagram commutes, where ๐‘ž โˆ— is the pull-back by the ๐ฟ-equivariant projection ๐‘ž : ๐‘‹ โ†’ ๐‘Œ . ๐ถ โˆž (๐‘‹) O

dโ„“ (๐ถ๐ฟ )

๐‘žโˆ—

๐ถ โˆž (๐‘Œ )

/ ๐ถ โˆž (๐‘‹) O ๐‘žโˆ—

ฮ”๐‘Œ

/ ๐ถ โˆž (๐‘Œ )

More generally, any element ๐‘ง โˆˆ ๐‘ (๐”ฉ C ) gives rise (similarly to (5.1)) to an ๐ฟ-invariant di๏ฌ€erential operator dโ„“๐‘Œ ( ๐‘ง) on ๐‘Œ such that dโ„“ ( ๐‘ง) โ—ฆ ๐‘ž โˆ— = ๐‘ž โˆ— โ—ฆ dโ„“๐‘Œ ( ๐‘ง) .

5.1 ๐ฟ-invariant di๏ฌ€erential operators on ๐‘‹

39

Since we have assumed ๐ฟ to be connected, so is ๐ฟ ๐พ ; therefore the adjoint action of ๐ฟ ๐พ on the center ๐‘ (๐”ฉ C โˆฉ ๐”จ C ) is trivial, and d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )) is well de๏ฌned. Geometrically, the algebra d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ๐”จ C )) corresponds to the algebra D ๐ฟ๐พ (๐น) of ๐ฟ ๐พ invariant di๏ฌ€erential operators on the compact ๏ฌber ๐น = ๐ฟ ๐พ /๐ฟ ๐ป . More precisely, similarly to (5.1), we can de๏ฌne a map d๐‘Ÿ ๐น : ๐‘ˆ (๐”ฉ C โˆฉ ๐”จ C ) ๐ฟ๐ป โˆ’โ†’ D ๐ฟ๐พ (๐น). There is a natural injective homomorphism ๐œ„ : D ๐ฟ๐พ (๐น) โ†ฉโ†’ D ๐ฟ (๐‘‹) such that the following diagram commutes (see [KK19, ยง 2.3]).



๐‘ˆ (๐”ฉ C ) ๐ฟ๐ป

โŠ‚

๐‘ (๐”ฉ C โˆฉ ๐”จ C ) d๐‘Ÿ๐น

D ๐ฟ๐พ ( ๐น )



๐œ„



d๐‘Ÿ

/ D๐ฟ ( ๐‘‹ )

When ๐‘‹C is ๐ฟ C -spherical and ๐บ simple, the map d๐‘Ÿ ๐น is actually surjective (see [KK19, Lem. 2.6]), and so d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )) = ๐œ„(D ๐ฟ๐พ (๐น)).

(5.2)

Remark 5.1 If ๐‘‹C is ๐ฟ C -spherical, then D ๐ฟ (๐‘‹) is commutative (Fact 3.3). In particular, โ€ข the three subalgebras D๐บ (๐‘‹), dโ„“(๐‘ (๐”ฉ C )), and d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )) = ๐œ„(D ๐ฟ๐พ(๐น)) commute; โ€ข D๐บ (๐‘‹) and D ๐ฟ๐พ (๐น) are commutative, and so ๐‘‹C is ๐บ C -spherical and ๐นC = ( ๐ฟ C โˆฉ ๐พC )/( ๐ฟ C โˆฉ ๐ปC ) is ( ๐ฟ C โˆฉ ๐พC ) -spherical (Fact 3.3). In fact, the following implications hold (see Example 3.2). ๐นC โ‰ƒ (๐ฟ C โˆฉ๐พC )/(๐ฟ C โˆฉ๐ปC ) (๐ฟ C โˆฉ ๐พC )-spherical

ks

+3

๐‘‹C โ‰ƒ ๐ฟ C /๐ฟ C โˆฉ ๐ปC ๐ฟ C -spherical 

๐‘‹ โ‰ƒ ๐ฟ/๐ฟ ๐ป ๐ฟ-real spherical

๐‘‹ = ๐บ/๐ป symmetric space

+3 ๐‘‹C = ๐บ C /๐ปC ๐บ C -spherical

+3

 ๐‘‹ = ๐บ/๐ป ๐บ-real spherical

Remark 5.2 Using Lemma 3.9.(2), one can prove that if ๐‘‹ is ๐ฟ-real spherical, then dim D โ€ฒ (๐‘‹ฮ“ ; N๐œˆ ) < +โˆž for any ๐œˆ โˆˆ HomC-alg (๐‘ (๐”ฉ C ), C) and any torsion-free cocompact discrete subgroup ฮ“ of ๐ฟ.

40

5 Di๏ฌ€erential operators coming from ๐ฟ and from the ๏ฌber ๐น

5.2 Relations between Laplacians Recall that the Laplacian โ–ก๐‘‹ is de๏ฌned by the ๐บ-invariant pseudo-Riemannian structure of Lemma 3.4 on ๐‘‹ = ๐บ/๐ป, and โ–ก๐‘‹ โˆˆ D๐บ (๐‘‹). In most cases the Laplacian โ–ก๐‘‹ and the Casimir operator ๐ถ ๐ฟ for the subalgebra ๐”ฉ are linearly independent, but the following proposition shows that the โ€œerror termโ€ (after appropriate normalization) comes from the action of d๐‘Ÿ ( ๐‘ ( ๐”ฉ C โˆฉ ๐”จ C )) on the ๏ฌber ๐น. Proposition 5.3 In the general setting 2.1, choose any Ad(๐ฟ)-invariant, nondegenerate, symmetric bilinear form on ๐”ฉ and let ๐ถ ๐ฟ โˆˆ ๐‘ (๐”ฉ) be the corresponding Casimir element. If ๐‘‹C = ๐บ C /๐ปC is ๐บ C -spherical and ๐บ simple, then there exists a nonzero ๐‘Ž โˆˆ R such that โ–ก๐‘‹ โˆˆ ๐‘Ž dโ„“(๐ถ ๐ฟ ) + d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )). (5.3) Even if ๐บ is simple, ๐ฟ need not be (see Table 1.1), and so the invariant bilinear form on ๐”ฉ may not be unique. For any choice of such form, Proposition 5.3 holds for the corresponding Casimir element ๐ถ ๐ฟ . For simple ๐บ C , Proposition 5.3 is a consequence of [KK19, Cor. 1.7]; in each case of Table 1.1, the nonzero scalar ๐‘Ž โˆˆ R is the one computed explicitly in [KK19, ยง 6โ€“7] for the corresponding compact real forms. Example 5.4 Let ๐บ = SO(2๐‘›, 2)0 . If (๐ป, ๐ฟ) is either (SO(2๐‘›, 1)0 , U(๐‘›, 1)) (so that ๐‘‹ = ๐บ/๐ป is the anti-de Sitter space AdS2๐‘›+1 of Example 1.2) or (U(๐‘›, 1), SO(2๐‘›, 1)0 ), then dโ„“ (๐ถ๐บ ) = 2dโ„“ (๐ถ ๐ฟ ) โˆ’ d๐‘Ÿ (๐ถ ๐ฟ๐พ ) . Proof of Proposition 5.3 when ๐บ C is simple. Recall from Lemma 3.4 and Example 3.5.(1)โ€“(2) that a ๐บ-invariant pseudo-Riemannian structure ๐‘” ๐‘‹ on ๐‘‹ = ๐บ/๐ป is unique up to scale, and induced by the Killing form of ๐”ค. Let ๐ถ๐บ โˆˆ ๐‘ (๐”ค) be the corresponding Casimir element. Then โ–ก๐‘‹ = dโ„“(๐ถ๐บ ). Let ๐ถ๐บ,C โˆˆ ๐‘ (๐”คC ) be the Casimir element of the complex simple Lie algebra ๐”คC , and ๐ถ ๐ฟ,C โˆˆ ๐‘ (๐”ฉ C ) the Casimir element of ๐”ฉ C associated to the complex extension of the bilinear form on ๐”ฉ de๏ฌning ๐ถ ๐ฟ . Then dโ„“(๐ถ๐บ,C ) and dโ„“(๐ถ ๐ฟ,C ) are holomorphic di๏ฌ€erential operators on the complex manifold ๐‘‹C = ๐บ C /๐ปC , whose restrictions to the totally real submanifold ๐‘‹ = ๐บ/๐ป are dโ„“(๐ถ๐บ ) and dโ„“(๐ถ ๐ฟ ), respectively: see [KK19, Lem. 5.4]. By [KK19, Cor. 1.7], there is a nonzero ๐‘Ž โˆˆ R such that dโ„“(๐ถ๐บ,C ) โˆˆ ๐‘Ž dโ„“(๐ถ ๐ฟ,C ) + d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )). We obtain (5.3) by restricting to ๐‘‹ = ๐บ/๐ป.

โŠ” โŠ“

By the classi๏ฌcation of Table 1.1, the remaining case is (๐บ, ๐ป, ๐ฟ) = (SO(8, C), SO(7, C), Spin(7, 1)) up to covering. In this case, where ๐บ C is not simple because ๐บ itself has a complex structure, there exist two linearly independent ๐บ-invariant second-order di๏ฌ€erential operators on ๐‘‹ = ๐บ/๐ป, and not all of their linear combinations are contained in the vector space C dโ„“(๐ถ ๐ฟ ) + d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )) (see Remark 5.16). However, we now check that the Laplacian โ–ก๐‘‹ with respect to the ๐บ-invariant pseudo-Riemannian structure on ๐‘‹ (which is unique up to scale) belongs to this vector space. We start with the following general lemma.

5.2 Relations between Laplacians

41

Lemma 5.5 Let ๐”ค be the Lie algebra of a complex semisimple Lie group ๐บ, and ๐”ค โŠ—R C โ‰ƒ ๐”คholo โŠ• ๐”คanti the decomposition corresponding to the sum (๐‘‡๐‘’ ๐บ)C โ‰ƒ ๐‘‡๐‘’1,0 ๐บ โŠ• ๐‘‡๐‘’0,1 ๐บ

(5.4)

of the holomorphic and anti-holomorphic tangent spaces at the origin. We denote by ๐ถ๐บ,R the Casimir element of ๐”ค (regarded as a real Lie algebra), and by ๐ถ holo and ๐ถ anti those of ๐”คholo and ๐”คanti (regarded as complex Lie algebras), respectively. Then ๐ถ๐บ,R = ๐ถ holo + ๐ถ anti in ๐‘ ( ๐”ค โŠ—R C) . Proof. Let ๐ต : ๐”ค ร— ๐”ค โ†’ C be the Killing form of ๐”ค as a complex Lie algebra, and ๐ตR : ๐”ค ร— ๐”ค โ†’ R the Killing form of ๐”ค as a real Lie algebra (forgetting the complex structure). Then ๐ตR (๐‘‹, ๐‘Œ ) = 2 Re ๐ต(๐‘‹, ๐‘Œ ) for all ๐‘‹, ๐‘Œ โˆˆ ๐”ค. Let ๐ฝ be the complex structure of ๐บ, and ๐”จ the Lie algebra of a maximal compact subgroup of ๐บ. The Cartan decomposition ๐”ค = ๐”จ + ๐ฝ๐”จ holds. The Killing form ๐ต takes real values on ๐”จ ร— ๐”จ, where it is in fact negative de๏ฌnite. We choose a basis {๐‘‹1 , . . . , ๐‘‹๐‘› } of ๐”จ over R such that ๐ต(๐‘‹ ๐‘˜ , ๐‘‹โ„“ ) = โˆ’๐›ฟ ๐‘˜,โ„“ for 1 โ‰ค ๐‘˜, โ„“ โ‰ค ๐‘›. Then { ๐‘‹1 , . . . , ๐‘‹๐‘› , ๐ฝ ๐‘‹1 , . . . , ๐ฝ ๐‘‹๐‘› } is a basis of ๐”ค over R, and ๐ตR (๐‘‹ ๐‘˜ , ๐‘‹โ„“ ) = โˆ’๐ตR (๐ฝ ๐‘‹ ๐‘˜ , ๐ฝ ๐‘‹โ„“ ) = โˆ’2๐›ฟ ๐‘˜,โ„“ and ๐ต(๐‘‹ ๐‘˜ , ๐ฝ ๐‘‹โ„“ ) = 0 for all 1 โ‰ค ๐‘˜, โ„“ โ‰ค ๐‘›. The Casimir elements ๐ถ๐บ and ๐ถ๐บ,R with respect to the two Killing forms ๐ต and ๐ตR are given by ๐ถ๐บ = โˆ’

๐‘› ร• ๐‘˜=1

 1ร• (๐ฝ ๐‘‹ ๐‘˜ ) 2 โˆ’ ๐‘‹ ๐‘˜2 . 2 ๐‘˜=1 ๐‘›

๐‘‹ ๐‘˜2 ,

๐ถ๐บ,R =

We note that ๐ถ๐บ does not change if we replace ๐ฝ by โˆ’๐ฝ. On the other hand, corresponding to the decomposition (5.4) of the complexi๏ฌed tangent space, we have a decomposition of the complexi๏ฌcation of ๐”ค into two complex Lie algebras: ๐”ค โŠ—R C โ‰ƒ ๐”คholo โŠ• ๐”คanti โˆš โˆš   1 1 ๐‘‹ + โˆ’1๐ฝ ๐‘‹ , ๐‘‹ โˆ’ โˆ’1๐ฝ ๐‘‹ + ๐‘‹ โ†ฆโ†’ 2 2

(5.5)

anti where ๐”คholo and ๐ฝ for the โˆš ๐”ค areโˆšthe eigenspace of the original complex structure eigenvalues โˆ’1 and โˆ’ โˆ’1, respectively. The Casimir elements ๐ถ holo and ๐ถ anti of the complex Lie algebras ๐”คholo and ๐”คanti are given by

โˆš 2 1ร• ๐‘‹ ๐‘˜ โˆ’ โˆ’1๐ฝ ๐‘‹ ๐‘˜ , 4 ๐‘˜=1

Therefore ๐ถ๐บ,R = ๐ถ holo + ๐ถ anti in ๐‘ (๐”ค โŠ—R C).

โˆš 2 1ร• ๐‘‹ ๐‘˜ + โˆ’1๐ฝ ๐‘‹ ๐‘˜ . 4 ๐‘˜=1 ๐‘›

๐‘›

๐ถ holo = โˆ’

๐ถ anti = โˆ’

โŠ” โŠ“

5 Di๏ฌ€erential operators coming from ๐ฟ and from the ๏ฌber ๐น

42

Proof of Proposition 5.3 for (๐บ, ๐ป, ๐ฟ) = (SO(8, C), SO(7, C), Spin(7, 1)). The complexi๏ฌcation of the triple ( ๐บ, ๐ป, ๐ฟ ) is given by  (๐บ C , ๐ปC , ๐ฟ C ) = SO(8, C) ร— SO(8, C), SO(7, C) ร— SO(7, C), Spin(8, C) , and its compact real form by  (๐บ๐‘ˆ , ๐ป๐‘ˆ , ๐ฟ๐‘ˆ ) = SO(8) ร— SO(8), SO(7) ร— SO(7), Spin(8) . For ๐‘– = 1, 2, let ๐ถ๐บ(๐‘–)๐‘ˆ be the Casimir element of the ๐‘–-th factor of ๐บ๐‘ˆ . The Casimir

element of ๐บ๐‘ˆ is given by ๐ถ๐บ๐‘ˆ = ๐ถ๐บ(1)๐‘ˆ + ๐ถ๐บ(2)๐‘ˆ . By [KK19, Prop. 7.4.(1)], we have dโ„“(๐ถ๐บ๐‘ˆ ) = 6dโ„“(๐ถ ๐ฟ๐‘ˆ ) โˆ’ 4d๐‘Ÿ (๐ถ ๐ฟโˆฉ๐พ ). Let ๐ถ๐บ,R , ๐ถ holo , and ๐ถ anti be as in Lemma 5.5, and de๏ฌne ๐ถ ๐ฟ,R similarly for ๐ฟ. Then dโ„“(๐ถ๐บ๐‘ˆ ) and dโ„“(๐ถ๐บ,R ) extend to the same holomorphic di๏ฌ€erential operator on ๐‘‹C , and similarly for dโ„“(๐ถ ๐ฟ๐‘ˆ ) and dโ„“(๐ถ ๐ฟ,R ). Thus dโ„“(๐ถ holo + ๐ถ anti ) is equal to 6dโ„“(๐ถ ๐ฟ ) โˆ’ 4d๐‘Ÿ (๐ถ ๐ฟโˆฉ๐พ ), and the Laplacian โ–ก๐‘‹ = โŠ” โŠ“ dโ„“ (๐ถ๐บ,R ) satis๏ฌes (5.3) with ๐‘Ž = 6 by Lemma 5.5.

Remark 5.6 Let ๐‘‹ := ( โ€ต ๐บ ร—โ€ต ๐บ)/Diag( โ€ต ๐บ) and ๐ฟ := โ€ต ๐บ ร—โ€ต ๐พ, where โ€ต ๐บ is a noncompact reductive Lie group and โ€ต ๐พ a maximal compact subgroup as in Example 1.3. For ๐‘– = 1, 2, let ๐ถ ๐ฟ(๐‘–) be the Casimir element of the ๐‘–-th factor of ๐ฟ. Then ๐ถ ๐ฟ = ๐ถ ๐ฟ(1) +๐ถ ๐ฟ(2) . We have โ–ก๐‘‹ = dโ„“(๐ถ ๐ฟ(1) ) and dโ„“(๐ถ ๐ฟ(2) ) = d๐‘Ÿ (๐ถ ๐ฟ(2) ) โˆˆ d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )), hence (5.3) holds with ๐‘Ž = 1, even though ๐‘‹C is not necessarily ๐ฟ C -spherical (see Example 3.2.(4)).

5.3 The maps p๐‰,๐šช We continue with the general setting 2.1. Let ฮ“ be a torsion-free discrete subgroup ๐น

of ๐ฟ. The ๐ฟ-equivariant ๏ฌbration ๐‘ž : ๐‘‹ = ๐บ/๐ป โ‰ƒ ๐ฟ/๐ฟ ๐ป โˆ’โ†’ ๐ฟ/๐ฟ ๐พ = ๐‘Œ of (2.1) induces a ๏ฌbration ๐น (5.6) ๐‘ž ฮ“ : ๐‘‹ฮ“ โˆ’โ†’ ๐‘Œฮ“ with compact ๏ฌber ๐น โ‰ƒ ๐ฟ ๐พ /๐ฟ ๐ป . Let F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ . For any (๐œ, ๐‘‰๐œ ) โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), we now introduce a projection map p ๐œ,ฮ“ : F (๐‘‹ฮ“ ) โ†’ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ), where (๐‘‰๐œโˆจ ) ๐ฟ๐ป denotes the space of ๐ฟ ๐ป -๏ฌxed vectors in the contragredient representation of (๐œ, ๐‘‰๐œ ), as in Section 2.2. For ๐‘ฃ โˆˆ ๐‘‰๐œ , the map ๐‘˜ โ†ฆโ†’ ๐œ(๐‘˜)๐‘ฃ from ๐ฟ ๐พ to ๐‘‰๐œ is right-๐ฟ ๐ป -invariant. Let d๐‘˜ be the Haar probability measure on the compact group ๐ฟ ๐พ . Consider the map F (๐‘‹ฮ“ ) โŠ— ๐‘‰๐œ โˆ’โ†’ ๐‘“

โŠ— ๐‘ฃ โ†ฆโˆ’โ†’

โˆซ ๐ฟ๐พ

F (๐‘Œฮ“ , V๐œ ) ๐‘“ (ยท๐‘˜) ๐œ(๐‘˜)๐‘ฃ d๐‘˜,

5.4 Conditions (Tf), (A), (B) on higher-rank operators

43

where ๐‘“ โˆˆ F (๐‘‹ฮ“ ) is seen as a right-๐ฟ ๐ป -invariant element of F (ฮ“\๐ฟ). We ๏ฌx an ๐ฟ ๐พ -invariant inner product on ๐‘‰๐œ , and write (๐‘‰๐œ ) โ€ฒ for the orthogonal complement of (๐‘‰๐œ ) ๐ฟ๐ป in ๐‘‰๐œ , which is the direct sum of irreducible representations of ๐ฟ ๐ป apart from the trivial representation. Let dโ„Ž be the Haar probability measure on the โˆซ compact group ๐ฟ ๐ป . By the Schur orthogonality relations, the integral ๐ฟ ๐œ(โ„Ž)๐‘ฃ dโ„Ž ๐ป โˆซ vanishes for all ๐‘ฃ โˆˆ (๐‘‰๐œ ) โ€ฒ . By the Fubini theorem, the integral ๐ฟ ๐‘“ (ยท๐‘˜) ๐œ(๐‘˜)๐‘ฃ d๐‘˜ = ๐พ โˆซ โˆซ ๐‘“ (ยท๐‘˜) ( ๐ฟ ๐œ(๐‘˜ โ„Ž)๐‘ฃ dโ„Ž) d๐‘˜ vanishes if ๐‘ฃ belongs to (๐‘‰๐œ ) โ€ฒ . Hence the integral ๐ฟ๐พ ๐ป induces a homomorphism p ๐œ,ฮ“ : F (๐‘‹ฮ“ ) โˆ’โ†’ ((๐‘‰๐œ ) ๐ฟ๐ป ) โˆจ โŠ— F (๐‘Œฮ“ , V๐œ ) โ‰ƒ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ).

(5.7)

The map p ๐œ,ฮ“ is surjective and continuous for F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ in each topology. If i ๐œ,ฮ“ : ((๐‘‰๐œ ) ๐ฟ๐ป ) โˆจ โŠ— F (๐‘Œฮ“ , V๐œ ) โ†’ F (๐‘‹ฮ“ ) is as in (2.3), then p ๐œ,ฮ“ โ—ฆi ๐œ,ฮ“ = id on F (๐‘Œฮ“ , V๐œ ) by the Schur orthogonality relation for the compact group ๐ฟ ๐พ . When ฮ“ = {๐‘’} is trivial we shall simply write p ๐œ for p ๐œ,ฮ“ . Then p ๐œ โ—ฆ ๐‘ โˆ—ฮ“ = ๐‘ โ€ฒฮ“โˆ— โ—ฆ p ๐œ,ฮ“ (see Observation 9.5), where ๐‘ โˆ—ฮ“ : F (๐‘‹ฮ“ ) โ†’ D โ€ฒ (๐‘‹) and ๐‘ โ€ฒฮ“โˆ— : F (๐‘Œฮ“ , V๐œ ) โ†’ D โ€ฒ (๐‘Œ , V๐œ ) denote the maps induced by the natural projections ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ and ๐‘ โ€ฒฮ“ : ๐‘Œ โ†’ ๐‘Œฮ“ , respectively. We refer to Remark 6.4 for a more general construction.

5.4 Conditions (Tf), (A), (B) on higher-rank operators In order to establish the theorems of Chapters 1 and 2, we shall use the following conditions (Tf), (A), (B), which we prove are satis๏ฌed in the setting of these theorems. For ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), recall the algebra homomorphism dโ„“ ๐œ : ๐‘ (๐”ฉ C ) โˆ’โ†’ D ๐ฟ (๐‘Œ , V๐œ ) from Section 2.2, where D ๐ฟ (๐‘Œ , V๐œ ) is the C-algebra of ๐ฟ-invariant matrix-valued di๏ฌ€erential operators acting on F (๐‘Œ , V๐œ ); this map generalizes the natural map dโ„“ : ๐‘ (๐”ฉ C ) โ†’ D ๐ฟ (๐‘Œ ) of (3.1), see Example 2.2. We note that F (๐‘Œ , V๐œ ; N๐œˆ ) โ‰  {0} only if ๐œˆ โˆˆ HomC-alg ( ๐‘ ( ๐”ฉ C ) , C) vanishes on Ker ( dโ„“ ๐œ ) . De๏ฌnition 5.7 In the general setting 2.1, we say that the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) satis๏ฌes condition (Tf) if for every ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) there exist maps ๐‚(ยท, ๐œ) : HomC-alg (D๐บ (๐‘‹), C) โˆ’โ†’ HomC-alg (๐‘ (๐”ฉ C ), C) and

๐€(ยท, ๐œ) : HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C) โˆ’โ†’ HomC-alg (D๐บ (๐‘‹), C)

with the following properties for F = ๐ถ โˆž and D โ€ฒ : 1. for any ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C),

44

5 Di๏ฌ€erential operators coming from ๐ฟ and from the ๏ฌber ๐น

p ๐œ F (๐‘‹; M๐œ† )



โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œ , V๐œ ; N๐‚ (๐œ†, ๐œ ) ) ;

2. for any ๐œˆ โˆˆ HomC-alg ( ๐‘ ( ๐”ฉ C )/Ker ( dโ„“ ๐œ ) , C) ,  i ๐œ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œ , V๐œ ; N๐œˆ ) โŠ‚ F (๐‘‹; M ๐€ (๐œˆ, ๐œ ) ). We shall call ๐‚ and ๐€ transfer maps. Remark 5.8 If the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) satis๏ฌes condition (Tf), then the transfer maps ๐‚ and ๐€ are inverse to each other, in the sense that 1. for any ๐œ and ๐œ† such that p ๐œ (๐ถ โˆž ( ๐‘‹; M๐œ† )) โ‰  {0} we have  ๐€ ๐‚(๐œ†, ๐œ), ๐œ = ๐œ†, 2. for any ๐œ and ๐œˆ such that ๐ถ โˆž (๐‘Œ , V๐œ ; N๐œˆ ) โ‰  {0} we have  ๐‚ ๐€(๐œˆ, ๐œ), ๐œ = ๐œˆ. We also introduce two other conditions, (A) and (B), which relate representations of the real reductive Lie group ๐บ and of its reductive subgroup ๐ฟ. We denote by ๐”ค and ๐”ฉ the respective Lie algebras of ๐บ and ๐ฟ. As above, a ๐”คC -module ๐‘‰ is called ๐‘ (๐”คC )-๏ฌnite if the annihilator Ann ๐‘ (๐”คC ) (๐‘‰) of ๐‘‰ in ๐‘ (๐”คC ) has ๏ฌnite codimension in ๐‘ (๐”คC ); equivalently, the action of ๐‘ (๐”คC ) on ๐‘‰ factors through the action of a ๏ฌnite-dimensional C-algebra. De๏ฌnition 5.9 In the general setting 2.1, we say that the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) satis๏ฌes โ€ข condition (A) if i ๐œ (๐œ—) is ๐‘ (๐”คC )-๏ฌnite for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and any ๐‘ (๐”ฉ C )๏ฌnite ๐”ฉ-module ๐œ— โŠ‚ ๐ถ โˆž (๐‘Œ , V๐œ ) , โ€ข condition (B) if p ๐œ (๐‘‰) is ๐‘ (๐”ฉ C )-๏ฌnite for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and any ๐‘ (๐”คC )๏ฌnite ๐”ค-module ๐‘‰ โŠ‚ ๐ถ โˆž ( ๐‘‹ ) . The following two propositions are used as a stepping stone to the proof of the theorems of Chapters 1 and 2, which are stated either in the main setting 1.5 of these theorems or in the group manifold case. Proposition 5.10 In the general setting 2.1, suppose that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C spherical and ๐บ simple. Then conditions (Tf), (A), (B) are satis๏ฌed for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) . Proposition 5.11 Let โ€ต ๐บ be a noncompact reductive Lie group and โ€ต ๐พ a maximal compact subgroup of โ€ต ๐บ. Let (๐บ, ๐ป, ๐ฟ) = ( โ€ต ๐บ ร— โ€ต ๐บ, Diag( โ€ต ๐บ), โ€ต ๐บ ร— โ€ต ๐พ) and ๐พ = ๐ฟ ๐พ = โ€ต ๐พ ร—โ€ต ๐พ, as in Example 1.3. Then conditions (Tf), (A), (B) are satis๏ฌed for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) .

e and (B) e 5.5 Conditions (A)

45

Propositions 5.10 and 5.11 state in particular the existence of transfer maps ๐‚ and ๐€. We now explain why they are true, based on [KK19]; a formal proof will be given in Section 5.6. Remark 5.12 In Proposition 5.10, we cannot remove the ๐ฟ C -sphericity assumption: see Section 8.3.

e and (B), e and their relation to conditions (Tf), 5.5 Conditions (A) (A), (B) Under some mild assumptions (which are satis๏ฌed in all but one case of Table 1.1), e and (B) e that only conditions (Tf), (A), (B) are consequences of two conditions (A) depend on complexi๏ฌcations of ๐‘‹ and ๐‘Œ and of the Lie algebras, as we now explain. We ๏ฌrst observe that the C-algebra D๐บ ( ๐‘‹ ) depends only on the pair of complexi๏ฌed Lie algebras (๐”คC , ๐”ฅC ), and is also isomorphic to the C-algebra D๐บC (๐‘‹C ) of ๐บ C invariant holomorphic di๏ฌ€erential operators on the complex manifold ๐‘‹C = ๐บ C /๐ปC , where ๐บ C is any connected complex Lie group with Lie algebra ๐”คC , and ๐ปC a connected subgroup with Lie algebra ๐”ฅC . This consideration allows us to use results for other real forms, e.g. compact real forms as in [KK19]. e and (B), e in the general setting In [KK19, ยง 1.4] we introduced two conditions, (A) of reductive Lie algebras ๐”คC โŠƒ ๐”ฅC , ๐”ฉ C , ๐”ฏC over C such that ๐”คC = ๐”ฅC + ๐”ฉ C

and

๐”ฉ C โˆฉ ๐”ฅ C โŠ‚ ๐”ฏC โŠ‚ ๐”ฉ C .

(5.8)

(The notation (๐”คC , ๐”ฅC , ๐”ฉ C , ๐”ฏC ) here corresponds to the notation (e ๐”คC , e ๐”ฅC , ๐”คC , ๐”จ C ) in [KK19, ยง 1.4].) Let ๐บ C โŠƒ ๐ปC , ๐ฟ C be connected complex reductive Lie groups with Lie algebras ๐”คC , ๐”ฅC , ๐”ฉ C , respectively. We may regard D๐บC (๐‘‹C ), d๐‘Ÿ (๐‘ (๐”ฏC )), and dโ„“(๐‘ (๐”ฉ C )) as subalgebras of D ๐ฟC (๐‘‹C ). We note that the elements of D๐บC (๐‘‹C ) and dโ„“(๐‘ (๐”ฉ C )) naturally commute because ๐ฟ C โŠ‚ ๐บ C , and similarly for the right action d๐‘Ÿ ( ๐‘ ( ๐”ฏC )) and the left action dโ„“ ( ๐‘ ( ๐”ฉ C )) . De๏ฌnition 5.13 ([KK19, ยง 1.4]) The quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฏC ) satis๏ฌes e if D๐บC ( ๐‘‹C ) โŠ‚ โŸจdโ„“ ( ๐‘ ( ๐”ฉ C )) , d๐‘Ÿ ( ๐‘ ( ๐”ฏC ))โŸฉ , โ€ข condition ( ๐ด) e โ€ข condition (๐ต) if dโ„“(๐‘ (๐”ฉ C )) โŠ‚ โŸจD๐บC (๐‘‹C ), d๐‘Ÿ (๐‘ (๐”ฏC ))โŸฉ, where โŸจยทโŸฉ denotes the C-algebra generated by two subalgebras. Going back to the general setting 2.1, we now take ๐บ C to be the complexi๏ฌcation of a real reductive Lie group ๐บ, and ๐”ฏC = ๐”ฉ C โˆฉ ๐”จ C where ๐พ is a maximal compact subgroup of ๐บ such that ๐ฟ ๐พ := ๐ฟโˆฉ๐พ is a maximal compact subgroup of ๐ฟ containing ๐ฟ ๐ป := ๐ฟ โˆฉ ๐ป. In this case, the subalgebra D ๐ฟ๐พ (๐น) of invariant di๏ฌ€erential operators coming from the compact ๏ฌber ๐น = ๐ฟ ๐พ /๐ฟ ๐ป is equal to d๐‘Ÿ (๐‘ (๐”ฏC )) (see Section 5.1), e and (B) e mean that this subalgebra is su๏ฌƒciently large in D ๐ฟ (๐‘‹) and conditions (A) so that the two other subalgebras D๐บ (๐‘‹) and dโ„“(๐‘ (๐”ฉ C )) are comparable modulo D ๐ฟ๐พ ( ๐น ) .

46

5 Di๏ฌ€erential operators coming from ๐ฟ and from the ๏ฌber ๐น

Example 5.14 Suppose ๐‘‹C = ๐บ C /๐ปC is ๐บ C -spherical. If rank ๐บ/๐ป = 1, then D๐บ (๐‘‹) is generated by the Laplacian โ–ก๐‘‹ (see Sections 3.3โ€“3.4). In particular, e holds for the quadruple in this case the relation (5.3) implies that condition (A) ( ๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) . In the case that rank ๐บ/๐ป > 1, the C-algebra D๐บ (๐‘‹) is not generated only by the e The following is a direct Laplacian โ–ก๐‘‹ , and so (5.3) does not imply condition (A). consequence of [KK19, Cor. 1.12 & Rem. 1.13]. Fact 5.15 ([KK19]). In the general setting 2.1, assume that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C spherical. e holds for the 1. If the complexi๏ฌed Lie algebra ๐”คC is simple, then condition (A) quadruple ( ๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) . 2. If the real Lie algebra ๐”ค is simple (in particular, if the complexi๏ฌcation ๐”คC is e holds for the quadruple ( ๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) . simple), then condition (B) Proof of Fact 5.15. Without loss of generality, after possibly replacing ๐ป by some conjugate in ๐บ, we may and do assume that ๐ป โˆฉ ๐พ is a maximal compact subgroup of ๐ป. If ๐บ๐‘ˆ is a maximal compact subgroup of ๐บ C , then ๐พ := ๐บ โˆฉ ๐บ๐‘ˆ , ๐ป๐‘ˆ := ๐ปC โˆฉ ๐บ๐‘ˆ , and ๐ฟ๐‘ˆ := ๐ฟ C โˆฉ ๐บ๐‘ˆ are also maximal compact subgroups of ๐บ, ๐ปC , and ๐ฟ C , respectively, and ๐ฟ๐‘ˆ โˆฉ ๐ป๐‘ˆ = ๐ฟ ๐ป = ๐ฟ โˆฉ ๐ป. Since ๐‘‹C is ๐ฟ C -spherical, ๐ฟ acts transitively on ๐บ/๐ป and ๐ฟ๐‘ˆ acts transitively on ๐บ๐‘ˆ /๐ป๐‘ˆ by [Kob94, Lem. 5.1]. Moreover, ๐”ฉ๐‘ˆ โˆฉ ๐”จ is a maximal proper Lie subalgebra of ๐”ฉ๐‘ˆ containing ๐”ฅ๐‘ˆ โˆฉ ๐”ฉ๐‘ˆ because ๐”ฉ โˆฉ ๐”จ is a maximal proper Lie subalgebra of ๐”ฉ containing ๐”ฉ โˆฉ ๐”ฅ. Thus we can apply [KK19, Cor. 1.12 & Rem. 1.13] for compact Lie groups. (The notation ( ๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) here corresponds to the notation (e โŠ” ๐”คC , ๐”คC , e ๐”ฅC , ๐”จ C ) in [KK19].) โŠ“ Remark 5.16 In Fact 5.15.(1)โ€“(2), we cannot relax the condition of ๐ฟ C -sphericity of ๐‘‹C to ๐บ C -sphericity: see Examples 8.7 and 8.8. e and (B) e still hold in the group manifold case, even though the Conditions (A) complexi๏ฌcation ๐บ C is not simple, and even though ๐บ C /๐ปC is not necessarily ๐ฟ C spherical (see Example 3.2.(4)). e and (B) e hold for the Lemma 5.17 In the setting of Proposition 5.11, conditions (A) quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ). Proof. This follows immediately from the fact that D๐บC (๐‘‹C ) = dโ„“(๐‘ ( โ€ต ๐”คC )) = d๐‘Ÿ (๐‘ ( โ€ต ๐”คC )), dโ„“(๐‘ (๐”ฉ C )) = โŸจdโ„“(๐‘ ( โ€ต ๐”คC ))โŸฉ, d๐‘Ÿ (๐‘ ( โ€ต ๐”จ C )), dโ„“(๐‘ (๐”ฉ C โˆฉ ๐”จ C )) = dโ„“(๐‘ ( โ€ต ๐”จ C )).

โŠ” โŠ“

e When (๐”คC , ๐”ฅC , ๐”ฉ C ) = (๐”ฐ๐”ฌ(8, C) โŠ—R C, ๐”ฐ๐”ฌ(7, C) โŠ—R C, ๐”ฐ๐”ญ๐”ฆ๐”ซ(8, C)), condition (A) does not hold for the quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ), see [KK19, Prop. 7.5]. Instead, we consider the following weaker condition, where ๐‘… is the C-subalgebra of D ๐ฟC (๐‘‹C ) generated by dโ„“(๐‘ (๐”ฉ C )) and d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )):

5.6 Proof of Lemma 5.19 and Propositions 5.10โ€“5.11

47

e โ€ฒ ): D ๐ฟC (๐‘‹C ) is ๏ฌnitely generated as an ๐‘…-module. Condition (A Then the following holds. eโ€ฒ ) holds for the quadruple Fact 5.18 (see [KK19, Prop. 7.5]). Condition (A (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) when (๐”คC , ๐”ฅC , ๐”ฉ C ) = (๐”ฐ๐”ฌ(8, C) โŠ—R C, ๐”ฐ๐”ฌ(7, C) โŠ—R C, ๐”ฐ๐”ญ๐”ฆ๐”ซ(8, C)). Propositions 5.10 and 5.11 are a consequence of Facts 5.15 and 5.18 and Lemma 5.17, together with the following lemma. Lemma 5.19 In the general setting 2.1, e or ( ๐ด eโ€ฒ ) for the quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) implies condition (A) 1. condition ( ๐ด) for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) ; e for the quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) implies condition (B) for 2. condition (๐ต) the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) whenever ๐‘‹C is ๐บ C -spherical; e and (๐ต) e together for the quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) imply 3. conditions (A) condition (Tf) for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) ; 4. condition (Tf) holds for the quadruple  (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) = SO(8, C), Spin(7, 1), SO(7, C), Spin(7) . In view of Lemma 5.19.(3), the relation (5.3) between Laplacians, which partially e (see Example 5.14), is part of the underlying structure of the implies condition (A) existence of transfer maps. e (B), (B) e in the folWe summarize the relations among conditions (Tf), (A), (A), lowing table. The double arrows โ‡’ or โ‡ indicate that the conditions in the complex setting (symbolically written as ๐‘‹C ) imply those in the real setting (symbolically written as ๐‘‹) when ๐‘‹C is ๐บ C -spherical. ๐‘‹

๐‘‹C

๐‘‹ Lem. 5.19.(1)

(Tf) Def. 5.7

Lem. 5.19.(3)

โ‡====

e (A) ====โ‡’ (A) Lem. 5.19.(2) e (B) ====โ‡’ (B) Def. 5.13 Def. 5.9

Applications to ๐ถ โˆž (๐‘‹) ๐ฟ โ†‘ ๐บ (Prop. 8.1) ๐บ โ†“ ๐ฟ (Th. 8.3)

Remark 5.20 It is natural to expect that representations ๐œ‹ of ๐บ occurring in ๐ถ โˆž (๐‘‹) and representations ๐œ— of ๐ฟ occurring in ๐ถ โˆž (๐‘Œ , V๐œ ) should be closely related via i ๐œ e and (B). e In and p ๐œ . Lemma 5.19.(3) shows that this is the case under conditions (A) the future paper [KK], we shall use Lemma 5.19.(3) to ๏ฌnd the branching laws for the restriction to ๐ฟ of in๏ฌnite-dimensional representations of ๐บ realized in D โ€ฒ ( ๐‘‹ ) .

5.6 Proof of Lemma 5.19 and Propositions 5.10โ€“5.11 We now complete these proofs by discussing how the structure of D ๐ฟ (๐‘‹) in terms of e the three subalgebras D๐บ (๐‘‹), dโ„“(๐‘ (๐”ฉ C )), d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )) (given by conditions (A) e and (B)) controls representation-theoretic properties of the groups ๐บ and ๐ฟ (given by conditions (A) and (B)).

48

5 Di๏ฌ€erential operators coming from ๐ฟ and from the ๏ฌber ๐น

e or (A e โ€ฒ ) holds for the quadruple Proof of Lemma 5.19.(1). Suppose that condition (A) (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ). Let ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and let ๐œ— be a ๐‘ (๐”ฉ C )-๏ฌnite ๐”ฉ-submodule of ๐ถ โˆž (๐‘Œ , V๐œ ). By Schurโ€™s lemma, ๐‘ (๐”ฉ C โˆฉ ๐”จ C ) acts on the irreducible representation ๐œ of ๐”ฉ C โˆฉ ๐”จ C as scalars, hence also on i ๐œ (๐œ—) via d๐‘Ÿ. Therefore, the annihilator of i ๐œ (๐œ—) has ๏ฌnite codimension in the C-algebra ๐‘… generated by dโ„“(๐‘ (๐”ฉ C )) and e holds, then the C-algebra ๐‘… contains D๐บ (๐‘‹), and d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )). If condition (A) so the annihilator of i ๐œ (๐œ—) has ๏ฌnite codimension in the subalgebra dโ„“(๐‘ (๐”คC )) โŠ‚ e โ€ฒ ) holds, then we can write D ๐ฟ (๐‘‹) = ร ๐‘˜ ๐‘…๐‘ข ๐‘— for some D๐บ (๐‘‹). If condition (A ๐‘—=1 ๐‘ข 1 , . . . , ๐‘ข ๐‘˜ โˆˆ D ๐ฟ ( ๐‘‹ ) , and so we can in๏ฌ‚ate i ๐œ ( ๐œ—) to i ๐œ (๐œ—) โˆผ := D ๐ฟC (๐‘‹C ) i ๐œ (๐œ—) =

๐‘˜ ร•

๐‘ข ๐‘— i ๐œ (๐œ—),

๐‘—=1

which is an ๐”ฉ-module as well as a D ๐ฟC (๐‘‹C )-module. Since the annihilator of i ๐œ (๐œ—) โˆผ has ๏ฌnite codimension in ๐‘…, so does it as a D ๐ฟC (๐‘‹C )-module. Therefore the annihilator of i ๐œ (๐œ—) โˆผ has ๏ฌnite codimension in the subalgebra dโ„“(๐‘ (๐”คC )). Thus condition (A) โŠ” โŠ“ holds for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) . e holds for the quadruple Proof of Lemma 5.19.(2). Suppose that condition (B) (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ). Let ๐‘‰ be a ๐‘ (๐”คC )-๏ฌnite ๐”ค-submodule of ๐ถ โˆž (๐‘‹) and let ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ). If ๐‘‹C is ๐บ C -spherical, then D๐บ (๐‘‹) is ๏ฌnitely generated as a dโ„“(๐‘ (๐”คC ))-module (see Section 3.3). Take ร๐ท 1 , . . . , ๐ท ๐‘˜ โˆˆ D๐บ (๐‘‹) such that ร D๐บ (๐‘‹) = ๐‘˜๐‘—=1 dโ„“(๐‘ (๐”คC )) ยท ๐ท ๐‘— and let ๐‘‰หœ := ๐‘˜๐‘—=1 ๐ท ๐‘— ยท ๐‘‰ โŠ‚ ๐ถ โˆž (๐‘‹). Then ๐‘‰หœ is a ๐‘ (๐”คC )-๏ฌnite D๐บ (๐‘‹)-module; therefore, it is D๐บ (๐‘‹)-๏ฌnite. Since ๐‘ (๐”ฉ C โˆฉ ๐”จ C ) acts หœ of the C-algebra generated on p ๐œ (๐ถ โˆž (๐‘‹)) via d๐‘Ÿ as scalars, the action on p ๐œ (๐‘‰) by D๐บ (๐‘‹) and d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )) factors through the action of a ๏ฌnite-dimensional e Thus condition (B) algebra, and so does the action of ๐‘ (๐”ฉ C ) due to condition (B). โŠ” โŠ“ holds for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) . The proof of Lemma 5.19.(3) is based on the following observation. Remark 5.21 In the general setting 2.1, let ๐ท be an element of dโ„“(๐‘ (๐”ฉ C )) or d๐‘Ÿ (๐‘ (๐”ฉ C โˆฉ ๐”จ C )). For any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), the di๏ฌ€erential operator ๐ท on ๐‘‹ induces an End ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— V๐œ )-valued di๏ฌ€erential operator ๐ท ๐œ acting on the sections of the vector bundle (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— V๐œ over ๐‘Œ such that ๐ท (i ๐œ (๐œ‘)) = i ๐œ (๐ท ๐œ ๐œ‘)

(5.9)

for any ๐œ‘ โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œ , V๐œ ), where F = A, ๐ถ โˆž , or D โ€ฒ : see De๏ฌnitionProposition 6.6. The operator ๐ท ๐œ is ๐ฟ-invariant. See Example 6.7 for the case ๐ท โˆˆ dโ„“ ( ๐‘ ( ๐”ฉ C )) and Example 6.8 for the case ๐ท โˆˆ d๐‘Ÿ ( ๐‘ ( ๐”ฉ C โˆฉ ๐”จ C )) . Proof of Lemma 5.19.(3). Fix ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and let F = A, ๐ถ โˆž , or D โ€ฒ . e holds for the quadruple Let ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C). If condition (B) ร (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ), then for any ๐‘ง โˆˆ ๐‘ (๐”ฉ C ), we can write dโ„“(๐‘ง) = ๐‘— d๐‘Ÿ (๐‘„ ๐‘— )๐‘ƒ ๐‘— in D ๐ฟ ( ๐‘‹ ) , for some ๐‘ƒ ๐‘— โˆˆ D๐บ ( ๐‘‹ ) and ๐‘„ ๐‘— โˆˆ ๐‘ ( ๐”ฉ C โˆฉ ๐”จ C ) , 1 โ‰ค ๐‘— โ‰ค ๐‘š. By Schurโ€™s

5.7 Explicit transfer maps

49

lemma, each ๐‘„ ๐‘— acts on p ๐œ (F (๐‘‹)) via d๐‘Ÿ as a scalar ๐‘ ๐‘— โˆˆ C (depending on ๐œ). For any ๐น โˆˆ F ( ๐‘‹; M๐œ† ) , we then have ร•  dโ„“ ๐œ (๐‘ง) p ๐œ (๐น)) = ๐‘ ๐‘— ๐œ†(๐‘ƒ ๐‘— ) p ๐œ (๐น). ๐‘—

This proves the existence of a map ๐‚(ยท, ๐œ) as in condition (Tf) for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) . Conversely, let ๐œˆ โˆˆ HomC-alg (๐‘ (๐”ฉ C ), C). Any ๐‘ง โˆˆ ๐‘ (๐”ฉ C ) acts as the scalar ๐œˆ(๐‘ง) on F (๐‘Œ , V๐œ ; N๐œˆ ) via the operator dโ„“ ๐œ , hence also on i ๐œ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œ , V๐œ ; N๐œˆ )) by (5.9). On the other hand, any ๐‘ง โ€ฒ โˆˆ ๐‘ (๐”ฉ C โˆฉ ๐”จ C ) acts as a scalar on i ๐œ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— e holds for the F (๐‘Œ , V๐œ ; N๐œˆ )) via d๐‘Ÿ by Remark 5.21. Thus, if condition (A) quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ), then any element of D๐บ (๐‘‹) acts as a scalar on i ๐œ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œ , V๐œ ; N๐œˆ )). By construction, the scalar depends only on ๐œˆ modulo Ker(dโ„“ ๐œ ), proving the existence of a map ๐€(ยท, ๐œ) as in condition (Tf) for the โŠ” โŠ“ quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) . Proof of Lemma 5.19.(4). The compact real form of the complexi๏ฌcation of the triple ( ๐บ, ๐ฟ, ๐ป ) is given by  (๐บ๐‘ˆ , ๐ฟ๐‘ˆ , ๐ป๐‘ˆ ) = SO(8) ร— SO(8), Spin(8), SO(7) ร— SO(7) , and there is a unique maximal connected proper subgroup of ๐ฟ๐‘ˆ containing ๐ฟ ๐ป = ๐ฟ๐‘ˆ โˆฉ ๐ป๐‘ˆ , namely ๐ฟ ๐พ โ‰ƒ Spin(7). This means that the ๐ฟ๐‘ˆ -equivariant ๏ฌber bundle ๐บ๐‘ˆ /๐ป๐‘ˆ โ†’ ๐ฟ๐‘ˆ /๐ฟ ๐ป and the ๐ฟ-equivariant ๏ฌber bundle ๐บ/๐ป โ†’ ๐ฟ/๐ฟ ๐ป have the same ๏ฌber ๐น = ๐ฟ ๐พ /๐ฟ ๐ป . Then Lemma 5.19.(4) follows from [KK19, Prop. 4.8 & โŠ” โŠ“ Th. 4.9] in the compact case via holomorphic continuation. e or (A e โ€ฒ ) and (B) e Proof of Proposition 5.10. By Facts 5.15 and 5.18, conditions (A) hold for the quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) when ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C -spherical and ๐บ simple. Therefore condition (A) (resp. (B), resp. (Tf)) holds for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) by Lemma 5.19.(1) (resp. (2), resp. (3)โ€“(4)). โŠ” โŠ“ e and (B) e hold for the Proof of Proposition 5.11. By Lemma 5.17, conditions (A) quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) in the group manifold setting of Proposition 5.11. Moreover, ๐‘‹C = ๐บ C /๐ปC is ๐บ C -spherical for (๐บ C , ๐ปC ) = ( โ€ต ๐บ C ร— โ€ต ๐บ C , Diag( โ€ต ๐บ C )). Therefore condition (A), (B), and (Tf) hold for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) by โŠ” โŠ“ Lemma 5.19.

5.7 Explicit transfer maps When ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C -spherical and ๐บ simple, the maps ๐‚ and ๐€ of condition (Tf) can be given explicitly. Let ๐”ฑC be a Cartan subalgebra of ๐”ฉ C , and ๐‘Š (๐”ฉ C ) the Weyl group of the root system ฮ” ( ๐”ฉ C , ๐”ฑC ) . Let ๐”งC โŠ‚ ๐”คC and ๐‘Š = ๐‘Š ( ๐”คC , ๐”งC ) be

5 Di๏ฌ€erential operators coming from ๐ฟ and from the ๏ฌber ๐น

50

as in Section 3.3. The notation (๐บ, ๐ป, ๐ฟ, ๐”งC , ๐‘Š, ๐”ฑC , ๐‘Š (๐”ฉ C )) here corresponds to the e ๐ป, e ๐บ, e e ๐”งC , ๐‘Š (๐”คC )) in [KK19, Th. 4.9]. notation ( ๐บ, ๐”ž C , ๐‘Š, Proposition 5.22 In the general setting 2.1, suppose that ๐‘‹C = ๐บ C /๐ปC is ๐ฟ C spherical and ๐บ simple. For any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), there is an a๏ฌƒne map ๐‘† ๐œ : ๐”งโˆ—C โ†’ ๐”ฑโˆ—C such that the diagram ๐”งโˆ—C

๐‘†๐œ

/ ๐”ฑโˆ— C





๐”งโˆ—C /๐‘Š

๐”ฑโˆ—C /๐‘Š (๐”ฉ C ) O

โˆผ

โˆผ

O

ฮจโˆ—

ฮฆโˆ—

๐‚ (ยท, ๐œ ) HomC-alg ( D๐บ ( ๐‘‹ ) , C) _ _ _/ HomC-alg ( ๐‘ ( ๐”ฉ C ) , C)

induces a map ๐‚(ยท, ๐œ) : HomC-alg (D๐บ (๐‘‹), C) โˆ’โ†’ HomC-alg (๐‘ (๐”ฉ C ), C). Moreover, there is a unique map ๐€(ยท, ๐œ) : HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C) โˆ’โ†’ HomC-alg (D๐บ (๐‘‹), C) such that ๐‚(๐€(๐œˆ, ๐œ)) = ๐œˆ for all ๐œˆ โˆˆ HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C). In [KK19, Th. 4.9 & Prop. 4.13] we proved the proposition when ๐บ is compact, with an explicit expression of the a๏ฌƒne map ๐‘† ๐œ in terms of the highest weight of ๐œ. We now brie๏ฌ‚y explain how to reduce to this case. Proof of Proposition 5.22. Without loss of generality, we may and do assume that the subgroups ๐ป and ๐ฟ are preserved by a Cartan involution ๐œƒ of ๐บ. Let ๐บ C โŠƒ ๐ปC , ๐ฟ C be connected complex Lie groups containing ๐บ โŠƒ ๐ป, ๐ฟ as real forms. We can ๏ฌnd a compact real form ๐บ๐‘ˆ of ๐บ C such that ๐ป๐‘ˆ := ๐บ๐‘ˆ โˆฉ ๐ปC and ๐ฟ๐‘ˆ := ๐บ๐‘ˆ โˆฉ ๐ฟ C are maximal compact subgroups of ๐ปC and ๐ฟ C , respectively. We set ๐‘‹C := ๐บ C /๐ปC and ๐‘ŒC := ๐ฟ C /(๐ฟ C โˆฉ ๐พC ), as well as ๐‘‹๐‘ˆ := ๐บ๐‘ˆ /๐ป๐‘ˆ and ๐‘Œ๐‘ˆ := ๐ฟ๐‘ˆ /๐ฟ ๐พ . Since ๐ฟ๐‘ˆ acts transitively on ๐‘‹๐‘ˆ and ๐ฟ๐‘ˆ โˆฉ ๐ป๐‘ˆ = ๐ฟ ๐ป , we have an ๐ฟ๐‘ˆ -equivariant ๏ฌbration ๐ฟ ๐พ /๐ฟ ๐ป โ†’ ๐‘‹๐‘ˆ โ†’ ๐‘Œ๐‘ˆ , which may be thought of as a compact real form of the ๐ฟ C -equivariant ๏ฌbration (๐ฟ C โˆฉ ๐พC )/(๐ฟ C โˆฉ ๐ปC ) โ†’ ๐‘‹C โ†’ ๐‘ŒC which is the complexi๏ฌcation of the ๐ฟ-equivariant ๏ฌbration ๐ฟ ๐พ /๐ฟ ๐ป โ†’ ๐‘‹ โ†’ ๐‘Œ . We note that the ๏ฌber ๐ฟ ๐พ /๐ฟ ๐ป is common to these two real ๏ฌbrations. Via the holomorphic extension of invariant di๏ฌ€erential operators, we have natural C-algebra isomorphisms D๐บ (๐‘‹) โ‰ƒ D๐บC (๐‘‹C ) โ‰ƒ D๐บ๐‘ˆ (๐‘‹๐‘ˆ ) and D ๐ฟ (๐‘Œ , V๐œ ) โ‰ƒ D ๐ฟC (๐‘ŒC , V๐œC ) โ‰ƒ D ๐ฟ๐‘ˆ (๐‘Œ๐‘ˆ , V๐œ,๐‘ˆ ) for all ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) , where V๐œ,๐‘ˆ := ๐ฟ๐‘ˆ ร— ๐ฟ๐พ ๐œ is an ๐ฟ๐‘ˆ -equivariant vector bundle

5.7 Explicit transfer maps

51

over ๐‘Œ๐‘ˆ associated to ๐œ, and V๐œC := ๐ฟ C ร— ๐ฟC โˆฉ๐พC ๐œ C is an ๐ฟ C -equivariant holomorphic vector bundle over ๐‘ŒC associated to a holomorphic extension ๐œ C of ๐œ by the Weyl unitary trick as in [KK19, Lem. 5.4]. Thus the proposition for ๐บ follows from the โŠ” โŠ“ proposition for ๐บ๐‘ˆ , which is established in [KK19, Th. 4.9]. In this setting, explicit formulas for ๐‚(๐œ†, ๐œ) in each case of Table 1.1 are given in [KK19, ยง 6โ€“7]: see for instance Example 2.6 for the case ๐บ/๐ป = SO ( 4๐‘›, 2)0 /U ( 2๐‘›, 1) .

Part II

Proof of the theorems of Chapter 1

In this Part II, we provide proofs of the theorems of Chapter 1 and Section 2.3. We start, in Chapter 6, by establishing the essential self-adjointness of the pseudoRiemannian Laplacian โ–ก๐‘‹ฮ“ (Theorems 1.8 and 1.12.(2)). For this we reduce to the Riemannian case using the relation (5.3) between the pseudo-Riemannian Laplacian โ–ก๐‘‹ and the Casimir element ๐ถ ๐ฟ ; this relation is part of the underlying structure of the existence of transfer maps, as mentioned just after Lemma 5.19. In Chapter 7, using the transfer maps ๐‚ and ๐€ of Chapter 5, we complete the proofs of Theorems 2.3 and 2.4, hence of Theorems 1.7 and 1.12.(1), as well as the proof of Theorem 1.9. In Chapter 8 we derive two consequences of conditions (A) and (B) of Section 5.4; in particular, we prove (Theorem 8.3) that any in๏ฌnite-dimensional representation of ๐บ realized in D โ€ฒ (๐‘‹) decomposes discretely as a representation of the subgroup ๐ฟ under condition (B). In Chapter 9 we show (Theorem 9.2) that the discrete spectrum of type I and type II from Chapter 4 is compatible for the pseudo-Riemannian locally homogeneous space ๐‘‹ฮ“ and for the vector bundle V๐œ over the Riemannian locally symmetric space ๐‘Œฮ“ , as a counterpart of discrete decomposability results (Theorem 8.3) for the restriction of representations of ๐บ to its subgroup ๐ฟ, which contains the discrete group ฮ“. In Chapter 10 we complete the proof of Theorem 1.10, which states the existence of an in๏ฌnite discrete spectrum of type II when ฮ“ is cocompact or arithmetic in ๐ฟ: this is deduced from Theorem 9.2 and from the classical Riemannian case (Fact 10.1).

Chapter 6

Essential self-adjointness of the Laplacian

Abstract In the classical Riemannian context, the Laplacian is an elliptic differential operator, ensuring that all eigenfunctions are real analytic. Furthermore, if the manifold is complete, the Laplacian is essentially self-adjoint, enabling the unique expansion of ๐ฟ 2 functions into a direct integral of real analytic eigenfunctions of the Laplacian. In contrast, on pseudo-Riemannian manifolds where the Laplacian does not behave as an elliptic differential operator, eigenfunctions are not necessarily real analytic. Moreover, in the absence of a general theory, it is unclear whether the Laplacian is essentially self-adjoint, and consequently, the question whether there exists a spectral decomposition theory of the Laplacian remains open in general. In this chapter, we establish that the pseudo-Riemannian Laplacian is essentially self-adjoint for any standard locally homogeneous space ๐‘‹ฮ“ = ฮ“\๐บ/๐ป defined by a proper spherical action. The main strategy in the proof is to use a decomposition theorem for the Laplacian introduced in the preceding chapter. This theorem allows for a more detailed decomposition of eigenfunctions of the Laplacian in relation to another commuting elliptic differential operator. In this chapter we address Questions 1.1 by establishing the following. Proposition 6.1 In the general setting 2.1, consider a ๐บ-invariant pseudo-Riemannian structure on ๐‘‹ (see Lemma 3.4) and let โ–ก๐‘‹ be the corresponding Laplacian. Choose any Ad(๐ฟ)-invariant, nondegenerate, symmetric bilinear form on ๐”ฉ and let ๐ถ ๐ฟ โˆˆ ๐‘ (๐”ฉ) be the corresponding Casimir element. If (5.3) holds for some nonzero ๐‘Ž โˆˆ R, then for any torsion-free discrete subgroup ฮ“ of ๐ฟ, 1. the closure of the pseudo-Riemannian Laplacian โ–ก๐‘‹ฮ“ defined on ๐ถ๐‘โˆž (๐‘‹ฮ“ ) in the graph norm gives a self-adjoint operator on ๐ฟ 2 (๐‘‹ฮ“ ), 2. for any ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ), the space ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) contains real analytic functions as a dense subset,

ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_6

55

56

6 Essential self-adjointness of the Laplacian

3. the pseudo-Riemannian Laplacian โ–ก๐‘‹ฮ“ on ๐‘‹ฮ“ has in๏ฌnitely many ๐ฟ 2 -eigenvalues as soon as the Riemannian Laplacian ฮ”๐‘Œฮ“ on ๐‘Œฮ“ has (e.g. if ฮ“ is a uniform or arithmetic lattice in ๐ฟ), and โ–ก๐‘‹ฮ“ has absolutely continuous spectrum as soon as ฮ”๐‘Œฮ“ has. As mentioned above, the idea is to use the relation (5.3) to derive Proposition 6.1 from the corresponding results for the Riemannian Laplacian on ๐‘Œฮ“ .

6.1 Proof of Theorems 1.8 and 1.12.(2) Postponing the proof of Proposition 6.1 till Section 6.3, we now prove the selfadjointness of the pseudo-Riemannian Laplacian โ–ก๐‘‹ฮ“ in the setting 1.5 (Theorem 1.8) and in the group manifold case (Theorem 1.12.(2)). Proof of Theorem 1.8 assuming Proposition 6.1. In the setting 1.5, the group ๐ฟ acts transitively on ๐‘‹, and by Proposition 5.3 there exists a nonzero ๐‘Ž โˆˆ R such that (5.3) holds. Thus the Laplacian โ–ก๐‘‹ฮ“ is essentially self-adjoint by Proposition 6.1.(1). โŠ“ โŠ” Proof of Theorem 1.12.(2) assuming Proposition 6.1. By Remark 5.6, there exists a nonzero ๐‘Ž โˆˆ R such that (5.3) holds, and so โ–ก๐‘‹ฮ“ is essentially self-adjoint by Proposition 6.1.(1). โŠ” โŠ“ Remark 6.2 If rank ๐‘‹ = 1 (as in examples (i), (i)โ€ฒ , (iii), (v), (v)โ€ฒ , (vi), (vii), (ix) of Table 1.1), then the C-algebra D๐บ (๐‘‹) is generated by the Laplacian โ–ก๐‘‹ , and so for any discrete subgroup ฮ“ of ๐บ acting properly discontinuously and freely on ๐‘‹, we may identify Spec๐‘‘ (๐‘‹ฮ“ ) with the discrete spectrum of the Laplacian โ–ก๐‘‹ฮ“ . In this case, based on the relation (5.3) (which holds for some nonzero ๐‘Ž by Proposition 5.3), one can use the same approach as in the proof of Proposition 6.1.(2)โ€“(3) to obtain the abundance of real analytic joint eigenfunctions (Theorem 2.3) and the existence of an in๏ฌnite discrete spectrum of type II under certain assumptions (Theorem 1.10). To prove these results in the general case, allowing for rank ๐‘‹ > 1, we shall use conditions (Tf) and (B) of Section 5.4: see Sections 7.2 and 10.

6.2 A decomposition of ๐‘ณ 2 (๐‘ฟ๐šช ) using discrete series for the ๏ฌber ๐‘ญ In preparation for the proof of Proposition 6.1, we introduce a useful decomposition of ๐ฟ 2 ( ๐‘‹ฮ“ ) . We work again in the general setting 2.1. Recall from (5.6) that the ๐ฟ-equivariant ๏ฌbration ๐‘ž : ๐‘‹ = ๐บ/๐ป โ‰ƒ ๐ฟ/๐ฟ ๐ป โ†’ ๐ฟ/๐ฟ ๐พ = ๐‘Œ induces a ๏ฌbration of the quotient ๐‘‹ฮ“ over the Riemannian locally symmetric space ๐‘Œฮ“ = ฮ“\๐ฟ/๐ฟ ๐พ with compact ๏ฌber ๐น = ๐ฟ ๐พ /๐ฟ ๐ป .

6.2 A decomposition of ๐ฟ 2 (๐‘‹ฮ“ ) using discrete series for ๐น

57

By the Frobenius reciprocity theorem, for any irreducible representation (๐œ, ๐‘‰๐œ ) of the compact group ๐ฟ ๐พ , the space (๐‘‰๐œ ) ๐ฟ๐ป of ๐ฟ ๐ป -๏ฌxed vectors in ๐‘‰๐ป is nonzero if and only if ๐œ belongs to Disc(๐ฟ ๐พ /๐ฟ ๐ป ); in this case we consider the (๏ฌnite-dimensional) unitary representation (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐‘‰๐œ of ๐ฟ ๐พ (a multiple of ๐‘‰๐œ ). There is a unitary equivalence of ๐ฟ ๐พ -modules (isotypic decomposition of the regular representation of ๐ฟ ๐พ ): ร•โŠ• (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐‘‰๐œ (6.1) ๐ฟ 2 (๐ฟ ๐พ /๐ฟ ๐ป ) โ‰ƒ ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

(Hilbert direct sum). We shall use this decomposition to compare spectral analysis on the pseudo-Riemannian locally homogeneous space ๐‘‹ฮ“ and on the Riemannian locally symmetric space ๐‘Œฮ“ . For F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ , and for ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), we denote by F (๐‘Œฮ“ , V๐œ ) the space of analytic, smooth, square-integrable, or distribution sections of the Hermitian vector bundle V๐œ := ฮ“\๐ฟ ร—๐ฟ๐พ ๐‘‰๐œ โˆ’โ†’ ๐‘Œฮ“ , respectively. Recall the continuous linear maps  i ๐œ,ฮ“ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ) โ†ฉโˆ’โ†’ F (๐‘‹ฮ“ ), p ๐œ,ฮ“ : F (๐‘‹ฮ“ ) โˆ’โ†  (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ) from (2.3) and (5.7), respectively, for F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ . For F = ๐ฟ 2 , the maps i ๐œ,ฮ“ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) โ†’ ๐ฟ 2 (๐‘‹ฮ“ ) are isometric embeddings, whose images are orthogonal to each other for varying ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), and they induce a unitary operator ร•โŠ• โˆผ iฮ“ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) โˆ’โ†’ ๐ฟ 2 (๐‘‹ฮ“ ). (6.2) ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

We endow ฮ“\๐ฟ with an ๐ฟ-invariant Radon measure such that the pull-back of the submersion ฮ“\๐ฟ โ†’ ๐‘‹ฮ“ โ‰ƒ ฮ“\๐ฟ/๐ฟ ๐ป induces an isometry of Hilbert spaces โˆผ

๐ฟ 2 (๐‘‹ฮ“ ) โˆ’โ†’ ๐ฟ 2 (ฮ“\๐ฟ) ๐ฟ๐ป .

(6.3)

For ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), the map i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ : ๐ฟ 2 (๐‘‹ฮ“ ) โ†’ ๐ฟ 2 (๐‘‹ฮ“ ) is the orthogonal projection onto i ๐œ,ฮ“ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ )). If ๐œ’๐œ : ๐ฟ ๐พ โ†’ Cโˆ— denotes the character of ๐œ, then i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ is induced by the integral operator ๐ฟ 2 (ฮ“\๐ฟ) โˆ’โ†’ ๐‘“

โ†ฆโˆ’โ†’ (dim ๐œ)

โˆซ

๐ฟ 2 (ฮ“\๐ฟ)

๐ฟ๐พ

(6.4)

๐œ’๐œ (๐‘˜) ๐‘“ (ยท ๐‘˜) d๐‘˜,

which leaves the subspace ๐ฟ 2 (ฮ“\๐ฟ) ๐ฟ๐ป โ‰ƒ ๐ฟ 2 (๐‘‹ฮ“ ) invariant. By construction, p ๐œ,ฮ“ is the adjoint of i ๐œ,ฮ“ : for any ๐‘“ โˆˆ ๐ฟ 2 ( ๐‘‹ฮ“ ) and ๐œ‘ โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) , (p ๐œ,ฮ“ ( ๐‘“ ), ๐œ‘) ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) = ( ๐‘“ , i ๐œ,ฮ“ (๐œ‘)) ๐ฟ 2 (๐‘‹ฮ“ ) .

(6.5)

58

6 Essential self-adjointness of the Laplacian

In general, the following holds. Lemma 6.3 In the general setting 2.1, let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. Let F = A , ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ . 1. For any ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) , we have p ๐œ,ฮ“ โ—ฆ i ๐œ,ฮ“ = id on F (๐‘Œฮ“ , V๐œ ) . 2. The maps i ๐œ,ฮ“ induce an injective linear map รŠ รŠ iฮ“ := i ๐œ,ฮ“ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ) โ†ฉโˆ’โ†’ F (๐‘‹ฮ“ ), ๐œ

๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

which is continuous with dense image. More precisely, for any increasing exhaustive sequence (๐ท ๐‘— ) ๐‘— โˆˆN of ๏ฌnite subsets of Disc(๐ฟ ๐พ /๐ฟ ๐ป ), the ๏ฌnite sums ร (i ๐œ โˆˆ๐ท ๐‘— ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )( ๐‘“ ) converge to ๐‘“ in F (๐‘‹ฮ“ ) with respect to each topology for F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ as ๐‘— โ†’ +โˆž. We shall simply write the convergence in Lemma 6.3.(2) as ร• (i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )( ๐‘“ ) in F (๐‘‹ฮ“ ). ๐‘“ =

(6.6)

๐œ โˆˆDisc( ๐ฟ๐พ /๐ฟ ๐ป )

Proof of Lemma 6.3. (1) This follows from the Schur orthogonality relation for the compact group ๐ฟ ๐พ . (2) We start by reviewing the Peterโ€“Weyl theorem for the compact Lie group ๐ฟ ๐พ . For any ๐œ โˆˆ ๐ฟc๐พ , we de๏ฌne two continuous linear maps  ๐‘’ i ๐œ : ๐‘‰๐œโˆจ โŠ— ๐‘‰๐œ โ†ฉโˆ’โ†’ F ( ๐ฟ ๐พ ) , p๐‘’๐œ : F (๐ฟ ๐พ ) โˆ’โ†  ๐‘‰๐œโˆจ โŠ— ๐‘‰๐œ as follows: i๐‘’๐œ is the map sending any ๐‘ฃโ€ฒ โŠ— ๐‘ฃ โˆˆ ๐‘‰๐œโˆจ โŠ— ๐‘‰๐œ to the matrix coe๏ฌƒcient   ๐‘˜ โ†ฆโˆ’โ†’ โŸจ๐‘ฃโ€ฒ , ๐œ(๐‘˜ โˆ’1 )๐‘ฃโŸฉ โˆˆ F (๐ฟ ๐พ ), and p๐‘’๐œ is the map sending any ๐œ“ โˆˆ F (๐ฟ ๐พ ) to   โˆซ ๐‘ฃ โ†ฆโˆ’โ†’ (dim ๐œ) ๐œ“(๐‘˜ โˆ’1 ) ๐œ(๐‘˜)๐‘ฃ d๐‘˜ โˆˆ End(๐‘‰๐œ ) โ‰ƒ ๐‘‰๐œโˆจ โŠ— ๐‘‰๐œ . ๐ฟ๐พ

Then i๐‘’๐œ takes values in A (๐ฟ ๐พ ). The composition p๐‘’๐œ โ—ฆ i๐‘’๐œ is the identity on ๐‘‰๐œโˆจ โŠ— ๐‘‰๐œ . For any ๐œ“ โˆˆ F (๐ฟ ๐พ ) and any increasing exhaustive sequence (( ๐ฟc๐พ ) ๐‘— ) ๐‘— โˆˆN of ๏ฌnite ร ๐‘’ ๐‘’ subsets of ๐ฟc๐พ , the ๏ฌnite sum ๐œ โˆˆ ( d ๐ฟ๐พ ) ๐‘— (i ๐œ โ—ฆ p ๐œ )(๐œ“) converges to ๐œ“ in F (๐ฟ ๐พ ) with

respect to each topology for F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ as ๐‘— โ†’ +โˆž, see e.g. [Kob98b, (2.3.1)โ€“(2.3.4)]; this convergence can be written as ร• (6.7) (i๐‘’๐œ โ—ฆ p๐‘’๐œ )(๐œ“) = ๐œ“ in F (๐ฟ ๐พ ). ๐œ โˆˆd ๐ฟ๐พ

6.2 A decomposition of ๐ฟ 2 (๐‘‹ฮ“ ) using discrete series for ๐น

59

Now consider the closed subgroup ๐ฟ ๐ป of ๐ฟ ๐พ . By taking the projection to the space of right-๐ฟ ๐ป -invariant vectors via the integration over the compact subgroup ๐ฟ ๐ป , we see that the algebraic direct sum รŠ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐‘‰๐œ ๐œ โˆˆ Disc ( ๐ฟ๐พ / ๐ฟ ๐ป )

is contained in A (๐ฟ ๐พ /๐ฟ ๐ป ) โ‰ƒ A (๐ฟ ๐พ ) ๐ฟ๐ป and dense in F (๐ฟ ๐พ /๐ฟ ๐ป ) โ‰ƒ F (๐ฟ ๐พ ) ๐ฟ๐ป . Explicitly, for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), the above maps i๐‘’๐œ and p๐‘’๐œ induce continuous linear maps  0 i ๐œ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐‘‰๐œ โ†ฉโˆ’โ†’ F (๐ฟ ๐พ /๐ฟ ๐ป ), p0๐œ : F (๐ฟ ๐พ /๐ฟ ๐ป ) โˆ’โ†  (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐‘‰๐œ . Then i0๐œ takes values in A (๐ฟ ๐พ /๐ฟ ๐ป ). The composition p0๐œ โ—ฆ i0๐œ is the identity on (๐‘‰๐œโˆจ ) ๐ฟร๐ป โŠ— ๐‘‰๐œ , and any ๐œ“ โˆˆ F (๐ฟ ๐พ /๐ฟ ๐ป ) can be approximated by ๏ฌnite sums of the form ๐œ ( i0๐œ โ—ฆ p0๐œ ) ( ๐œ“ ) for F = A , ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ . The maps  id โŠ— i0๐œ : F (ฮ“\๐ฟ) โŠ— (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐‘‰๐œ โˆ’โ†’ F ฮ“\๐ฟ) โŠ— F (๐ฟ ๐พ /๐ฟ ๐ป ), id โŠ— p0๐œ : F ฮ“\ ๐ฟ ) โŠ— F ( ๐ฟ ๐พ / ๐ฟ ๐ป ) โˆ’โ†’ F ( ฮ“\ ๐ฟ ) โŠ— (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐‘‰๐œ induce continuous linear maps   id โŠ— i0๐œ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (ฮ“\๐ฟ, ๐‘‰๐œ ) โˆ’โ†’ F ฮ“\๐ฟ, F (๐ฟ ๐พ /๐ฟ ๐ป ) , id โŠ— p0๐œ : F ฮ“\ ๐ฟ, F ( ๐ฟ ๐พ / ๐ฟ ๐ป ) โˆ’โ†’ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F ( ฮ“\ ๐ฟ, ๐‘‰๐œ ) , for which we use the same notation. For a direct product of two real analytic manifolds ๐‘€ and ๐‘ with Radon measures, there is a natural isomorphism F (๐‘€, F (๐‘)) โ‰ƒ F (๐‘€ ร— ๐‘), where D โ€ฒ (๐‘€, D โ€ฒ (๐‘)) is de๏ฌned to be the dual space of ๐ถ๐‘โˆž (๐‘€, ๐ถ๐‘โˆž (๐‘)). In particular, if the compact Lie group ๐ฟ ๐พ acts on ๐‘€ and ๐‘, and if one of the actions is free, then we obtain a natural isomorphism F (๐‘€, F (๐‘)) ๐ฟ๐พ โ‰ƒ F (๐‘€ ร— ๐ฟ๐พ ๐‘). Applying this observation to ๐‘€ = ฮ“\๐ฟ and ๐‘ = ๐ฟ ๐พ /๐ฟ ๐ป , we see that the following diagram commutes in restriction to the i ๐œ arrows or to the p ๐œ arrows: F (๐‘‹ฮ“ ) โ‰ƒ F ฮ“\๐ฟ, F (๐ฟ ๐พ /๐ฟ ๐ป ) O i ๐œ,ฮ“

?



 ๐ฟ๐พ

p ๐œ,ฮ“

(๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ) โ‰ƒ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F ฮ“\ ๐ฟ, ๐‘‰๐œ

โŠ‚

F ฮ“\๐ฟ, F (๐ฟ ๐พ /๐ฟ ๐ป ) O idโŠ—i0๐œ

 ๐ฟ๐พ





idโŠ—p0๐œ

โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F ฮ“\ ๐ฟ, ๐‘‰๐œ



Since any ๐œ“ โˆˆ F (๐ฟ ๐พ /๐ฟ ๐ป ) can be approximated by ๏ฌnite sums of the form ร 0 0 ๐œ (i ๐œ โ—ฆ p ๐œ ) (๐œ“), we obtain that any ๐‘“ โˆˆ F (๐‘‹ฮ“ ) can be approximated by ๏ฌnite

6 Essential self-adjointness of the Laplacian

60

sums of the form image in F ( ๐‘‹ฮ“ ) .

ร

๐œ (i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )( ๐‘“ ). In particular, the map iฮ“

=

ร‰ ๐œ

i ๐œ,ฮ“ has dense โŠ” โŠ“

Remark 6.4 The pairs of maps (i ๐œ,ฮ“ , p ๐œ,ฮ“ ) and (i0๐œ , p0๐œ ) from the proof of Lemma 6.3 are part of a more general construction. Namely, let ๐‘„ be a manifold endowed with a free action of a compact group ๐ฟ ๐พ . For any closed subgroup ๐ฟ ๐ป of ๐ฟ ๐พ , we have a ๏ฌbration ๐‘„/๐ฟ ๐ป โ†’ ๐‘„/๐ฟ ๐พ with compact ๏ฌber ๐ฟ ๐พ /๐ฟ ๐ป , and for any ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) and F = A , ๐ถ โˆž , or D โ€ฒ we obtain natural continuous linear maps 

โˆจ ๐ฟ ๐ป โŠ— F (๐‘„/๐ฟ , V ) โˆ’โ†’ F (๐‘„/๐ฟ ), i๐‘„ ๐พ ๐œ ๐ป ๐œ : (๐‘‰๐œ ) ๐‘„ p ๐œ : F (๐‘„/๐ฟ ๐ป ) โˆ’โ†’ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘„/๐ฟ ๐พ , V๐œ ),

๐‘„ 0 0 with i๐‘„ ๐œ injective and p ๐œ surjective. The maps (i ๐œ,ฮ“ , p ๐œ,ฮ“ ) and (i ๐œ , p ๐œ ) correspond to ๐‘„ = ฮ“\ ๐ฟ and ๐‘„ = ๐ฟ ๐พ , respectively.

Recall that by Schurโ€™s lemma, the center ๐‘ (๐”ฉ C โˆฉ ๐”จ C ) acts on the representation space of any irreducible representation ๐œ of ๐ฟ ๐พ as scalars, yielding a C-algebra homomorphism ฮจ๐œ : ๐‘ ( ๐”ฉ C โˆฉ ๐”จ C ) โ†’ C. Lemma 6.5 In the general setting 2.1, let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. Let F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ . For any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), the image of i ๐œ,ฮ“ is characterized by a system of di๏ฌ€erential equations as follows:  Image (i ๐œ,ฮ“ ) = ๐‘“ โˆˆ F (๐‘‹ฮ“ ) : d๐‘Ÿ (๐‘ง) ๐‘“ = ฮจ๐œ โˆจ (๐‘ง) ๐‘“ for all ๐‘ง โˆˆ ๐‘ (๐”ฉ C โˆฉ ๐”จ C ) . Proof. Let ๐‘ง โˆˆ ๐‘ (๐”ฉ C โˆฉ ๐”จ C ). Then d๐‘Ÿ (๐‘ง) acts on the subspace (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐‘‰๐œ of A (๐ฟ ๐พ /๐ฟ ๐ป ), see (6.1), by the scalar ฮจ๐œ โˆจ (๐‘ง), hence the inclusion โŠ‚ holds. To prove the reverse inclusion, we observe that ๐ฟ ๐พ is connected. Therefore ๐œ โˆˆ ๐ฟc๐พ is uniquely determined by its infinitesimal character ฮจ๐œ . Then the inclusion โŠƒ follows from Lemma 6.3.(2). โŠ” โŠ“ We now consider the following condition for a di๏ฌ€erential operator ๐ท on ๐‘‹: ๐ท โ—ฆ d๐‘Ÿ (๐‘ง) = d๐‘Ÿ (๐‘ง) โ—ฆ ๐ท

for all ๐‘ง โˆˆ ๐‘ (๐”ฉ C โˆฉ ๐”จ C ).

(6.8)

De๏ฌnition-Proposition 6.6 (Operators ๐ท ๐œ and ๐ท ฮ“๐œ ). In the general setting 2.1, let ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) . 1. Any di๏ฌ€erential operator ๐ท on ๐‘‹ satisfying (6.8) induces a matrix-valued differential operator ๐ท ๐œ acting on (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ถ โˆž (๐‘Œ , V๐œ ) such that ๐ท (i ๐œ (๐œ‘)) = i ๐œ ( ๐ท ๐œ ๐œ‘) for all ๐œ‘ โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ถ โˆž (๐‘Œ , V๐œ ) , as in (5.9). 2. If ๐ท is ๐ฟ-invariant, then ๐ท ๐œ induces a di๏ฌ€erential operator ๐ท ฮ“๐œ acting on (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ถ โˆž (๐‘Œฮ“ , V๐œ ) for any torsion-free subgroup ฮ“ of ๐ฟ. 3. If ๐‘‹C is ๐ฟ C -spherical, then any ๐ท โˆˆ D ๐ฟ (๐‘‹) satis๏ฌes (6.8) and we obtain a C-algebra homomorphism D ๐ฟ (๐‘‹) โˆ’โ†’ D(๐‘Œฮ“ , V๐œ ). ๐ท โ†ฆโˆ’โ†’ ๐ท ฮ“๐œ

6.3 Proof of Proposition 6.1

61

Proof. (1) By (6.8), the di๏ฌ€erential operator ๐ท preserves the image of i ๐œ , which is described in Lemma 6.5. Therefore ๐ท induces an endomorphism ๐ท ๐œ of (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ถ โˆž (๐‘Œ , V๐œ ), because i ๐œ is injective. Since ๐ท ๐œ does not increase the support, it is a di๏ฌ€erential operator. (2) Clear as in (1.3). (3) If ๐‘‹C is ๐ฟ C -spherical, then the C-algebra D ๐ฟ (๐‘‹) is commutative (Fact 3.3), hence (6.8) holds for any ๐ท โˆˆ D ๐ฟ (๐‘‹). Moreover, in that setting (๐‘‰๐œโˆจ ) ๐ฟ๐ป is onedimensional (see Section 2.2), hence (3) follows from (2). โŠ” โŠ“ Example 6.7 If ๐ท = dโ„“(๐‘ง) for ๐‘ง โˆˆ ๐‘ (๐”ฉ C ), then ๐ท ๐œ is a di๏ฌ€erential operator of the form ๐ท ๐œ = id โŠ— dโ„“ ๐œ (๐‘ง) where dโ„“ ๐œ : ๐‘ (๐”ฉ C ) โ†’ D ๐ฟ (๐‘Œ , V๐œ ) is a homomorphism as in Section 2.2. Example 6.8 If ๐ท = d๐‘Ÿ (๐‘ง) for ๐‘ง โˆˆ ๐‘ (๐”ฉ C โˆฉ ๐”จ C ), then the di๏ฌ€erential operator ๐ท ฮ“๐œ acts on i ๐œ,ฮ“ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ )) as the scalar ฮจ๐œ โˆจ (๐‘ง), which is independent of ฮ“. Indeed, by Schurโ€™s lemma, ๐ท acts on ๐‘‰๐œ (seen as a subspace of A (๐ฟ ๐พ /๐ฟ ๐ป ) by (6.1)) as the scalar ฮจ๐œ โˆจ ( ๐‘ง) , and ๐ท ฮ“๐œ acts on i ๐œ,ฮ“ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ )) by the same scalar.

6.3 Proof of Proposition 6.1 Suppose that (5.3) holds for some nonzero ๐‘Ž โˆˆ R, i.e. there exists ๐‘ง โˆˆ ๐‘ (๐”ฉ C โˆฉ ๐”จ C ) such that โ–ก๐‘‹ = ๐‘Ž dโ„“ (๐ถ ๐ฟ ) + d๐‘Ÿ ( ๐‘ง) . Let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. For any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), the image dโ„“(๐ถ ๐ฟ ) of the Casimir element ๐ถ ๐ฟ โˆˆ ๐‘ (๐”ฉ C ) induces an elliptic di๏ฌ€erential operator dโ„“(๐ถ ๐ฟ ) ฮ“๐œ on ๐ถ โˆž (๐‘Œฮ“ , V๐œ ), and also on (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ถ โˆž (๐‘Œฮ“ , V๐œ ) (see Section 6.2). When ๐œ is the trivial one-dimensional representation of ๐ฟ ๐พ , the space ๐ถ โˆž (๐‘Œฮ“ , V๐œ ) identi๏ฌes with ๐ถ โˆž (๐‘Œฮ“ ) (Example 2.2) and dโ„“(๐ถ ๐ฟ ) ฮ“๐œ is the usual Laplacian ฮ”๐‘Œฮ“ on the Riemannian locally symmetric space ๐‘Œฮ“ . We endow the principal bundle ๐ฟ โ†’ ๐‘Œ = ๐ฟ/๐ฟ ๐พ with the canonical connection, which induces a connection on the principal ๐ฟ ๐ป -bundle ฮ“\๐ฟ โ†’ ๐‘Œฮ“ . Then the curvature tensor ฮฉ ๐œ on the associated bundle V๐œ โ†’ ๐‘Œฮ“ is an End (V๐œ )-valued 2-form on ๐‘Œฮ“ given by  ฮฉ ๐œ dโ„“(๐‘” โˆ’1 )๐‘ข, dโ„“(๐‘” โˆ’1 )๐‘ฃ = d๐œ([๐‘ข, ๐‘ฃ]) for ๐‘ข, ๐‘ฃ โˆˆ ๐”ฉ โˆฉ ๐”ญ, where ๐”ฉ = ๐”ฉ โˆฉ ๐”จ + ๐”ฉ โˆฉ ๐”ญ is the Cartan decomposition of the Lie algebra ๐”ฉ, and dโ„“(๐‘” โˆ’1 ) identi๏ฌes the tangent space ๐‘‡ฮ“๐‘”๐ฟ๐พ ๐‘Œฮ“ with ๐”ฉ โˆฉ ๐”ญ for every ๐‘” โˆˆ ๐ฟ. In particular, the operator norm of the curvature tensor ฮฉ ๐œ is bounded on ๐‘Œฮ“ . Then a similar argument to [Gaf54, Wol72] applied to Cli๏ฌ€ord bundles implies that dโ„“(๐ถ ๐ฟ ) ฮ“๐œ on ๐ถ๐‘โˆž (๐‘Œฮ“ , V๐œ ) extends uniquely to a self-adjoint operator on ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) (see [Ric86]). On the other hand, the element ๐‘ง โˆˆ ๐‘ (๐”ฉ C โˆฉ ๐”จ C ) acts on (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) via d๐‘Ÿ as the scalar ฮจ๐œ โˆจ ( ๐‘ง) (see Example 6.8), and so by (5.3) we may write โ–ก๐‘‹ฮ“ โ—ฆ i ๐œ,ฮ“ = ๐‘Ž dโ„“(๐ถ ๐ฟ ) ฮ“๐œ + ๐‘(๐œ)

(6.9)

62

6 Essential self-adjointness of the Laplacian

on (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ), where ๐‘(๐œ) := ฮจ๐œ โˆจ (๐‘ง). Since โ–ก๐‘‹ฮ“ and dโ„“(๐ถ ๐ฟ ) ฮ“๐œ are symmetric operators on ๐ฟ 2 (๐‘‹ฮ“ ) and (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— 2 ๐ฟ (๐‘Œฮ“ , V๐œ ) respectively, and since ๐‘Ž โˆˆ R, the function ๐‘ : Disc(๐ฟ ๐พ /๐ฟ ๐ป ) โ†’ C in (6.9) actually takes values in R. Therefore the Laplacian โ–ก๐‘‹ฮ“ has a self-adjoint extension on ๐ฟ 2 (๐‘‹ฮ“ ),รwith domain equal to the image, under the unitary operator i of (6.2), of the set of ๐œ โˆˆ Disc ( ๐ฟ๐พ / ๐ฟ๐ป ) ๐œ‘ ๐œ with ร•

โˆฅ๐œ‘ ๐œ โˆฅ 2 < +โˆž and

๐œ

ร•

๐‘Ž dโ„“(๐ถ ๐ฟ ) ๐œ ๐œ‘ ๐œ + ๐‘(๐œ)๐œ‘ ๐œ 2 < +โˆž. ฮ“ ๐œ

This proves Proposition 6.1.(1). For any ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ ), let ๐‘ก๐œ† โˆˆ C be the corresponding eigenvalue of โ–ก๐‘‹ฮ“ . (See Remark 3.6 for an explicit formula for ๐œ† โ†ฆโ†’ ๐‘ก ๐œ† when ๐‘‹ = ๐บ/๐ป is a reductive symmetric space.) By (5.9), the Laplacian โ–ก๐‘‹ฮ“ commutes with the projection operator p ๐œ : ๐ฟ 2 (๐‘‹ฮ“ ) โ†’ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ). Therefore, by (6.9) we have the following direct sum decomposition of the ๐ฟ 2 -eigenspace Ker ( โ–ก๐‘‹ฮ“ โˆ’ ๐‘ก๐œ† ) as a Hilbert space: ร•โŠ•  Ker(โ–ก๐‘‹ฮ“ โˆ’ ๐‘ก๐œ† ) โ‰ƒ i ๐œ,ฮ“ ๐‘Ž Ker dโ„“(๐ถ ๐ฟ ) ฮ“๐œ โˆ’ ๐‘ก๐œ† + ๐‘(๐œ) . ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

The right-hand side contains the algebraic sum รŠ  i ๐œ,ฮ“ Ker ๐‘Ž dโ„“(๐ถ ๐ฟ ) ฮ“๐œ โˆ’ ๐‘ก ๐œ† + ๐‘(๐œ) ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

as a dense subspace. Since ๐‘Ž โ‰  0, the di๏ฌ€erential operator ๐‘Ž dโ„“(๐ถ ๐ฟ ) ฮ“๐œ โˆ’ ๐‘ก ๐œ† + ๐‘(๐œ) is nonzero and elliptic. By the elliptic regularity theorem, this subspace consists of analytic functions. Therefore, ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) contains real analytic eigenfunctions as a dense subset for any ๐œ† โˆˆ Spec๐‘‘ ( ๐‘‹ฮ“ ) , proving Proposition 6.1.(2). Finally, (6.9) implies that i ๐œ,ฮ“ (๐œ‘ ๐œ ) is an eigenfunction of โ–ก๐‘‹ฮ“ for any eigenfunction ๐œ‘ ๐œ of dโ„“(๐ถ ๐ฟ ) ฮ“๐œ . In particular, taking ๐œ to be the trivial one-dimensional representation of ๐ฟ ๐พ , for which dโ„“(๐ถ ๐ฟ ) ฮ“๐œ is the usual Laplacian ฮ”๐‘Œฮ“ on the Riemannian locally symmetric space ๐‘Œฮ“ , we ๏ฌnd that โ–ก๐‘‹ฮ“ has an in๏ฌnite discrete spectrum (resp. has continuous spectrum) as soon as ฮ”๐‘Œฮ“ does, proving Proposition 6.1.(3).

Chapter 7

Transfer of Riemannian eigenfunctions and spectral decomposition

Abstract In this chapter, we complete the proof of two main results outlined in Chapter 1: spectral decomposition on standard pseudo-Riemannian locally homogeneous spaces and density of analytic eigenfunctions. To be precise, let us assume the existence of a reductive subgroup ๐ฟ acting properly and spherically on a reductive homogeneous space ๐‘‹ = ๐บ/๐ป. For any standard quotient ๐‘‹ฮ“ = ฮ“\๐บ/๐ป defined by a torsion-free discrete subgroup ฮ“ of ๐ฟ, we establish: (1) Spectral decomposition and a Plancherel-type formula (Theorem 1.9): Any compactly supported function can be expanded into joint eigenfunctions of the ring of โ€œintrinsic differential operatorsโ€ on ๐‘‹ฮ“ . (2) Density of analytic eigenfunctions (Theorem 1.7): The space of joint ๐ฟ 2 eigenfunctions contains a dense subspace of real analytic ones. Although our assumption permits the existence of a compact quotient ๐‘‹ฮ“ , these theorems hold true regardless of compactness. The proof relies on the transfer map introduced in Chapter 5, which is based on the natural fiber bundle structure of ๐‘‹ฮ“ over the locally Riemannian symmetric space ๐‘Œฮ“ associated with ๐ฟ, with a compact fiber ๐น. The sphericity assumption of ๐ฟ is crucial in establishing a connection between spectral analysis on the pseudo-Riemannian space ๐‘‹ฮ“ and on the Riemannian space ๐‘Œฮ“ . In this chapter, using Propositions 5.10 and 5.11, we complete the proof of Theorems 2.3 and 2.4, which describe joint eigenfunctions on the pseudo-Riemannian locally symmetric space ๐‘‹ฮ“ by means of the regular representation of the subgroup ๐ฟ on ๐ถ โˆž (ฮ“\๐ฟ). In particular, this establishes Theorems 1.7 and 1.12.(1). We then prove Theorem 1.9 concerning the spectral decomposition of ๐ฟ 2 -eigenfunctions on ๐‘‹ฮ“ with respect to the systems of di๏ฌ€erential equations for D๐บ ( ๐‘‹ ) .

ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_7

63

64

7 Transfer of Riemannian eigenfunctions and spectral decomposition

7.1 The transfer maps ๐‚ and ๐€ in the presence of a discrete group ๐šช We work again in the general setting 2.1. Recall from (5.6) that for any torsionfree discrete subgroup ฮ“ of ๐ฟ, the quotient ๐‘‹ฮ“ ๏ฌbers over the Riemannian locally symmetric space ๐‘Œฮ“ = ฮ“\๐ฟ/๐ฟ ๐พ with compact ๏ฌber ๐น = ๐ฟ ๐พ /๐ฟ ๐ป . Since any ๐ฟinvariant di๏ฌ€erential operator on ๐‘‹ induces a di๏ฌ€erential operator on ๐‘‹ฮ“ via the covering map ๐‘‹ โ†’ ๐‘‹ฮ“ , and since condition (Tf) (De๏ฌnition 5.7) is formulated in terms of two algebras of ๐ฟ-invariant di๏ฌ€erential operators on ๐‘‹ (namely dโ„“(๐‘ (๐”ฉ C )) and D๐บ ( ๐‘‹ ) ), the following holds by de๏ฌnition of the transfer maps. Remark 7.1 In the general setting 2.1, suppose condition (Tf) is satis๏ฌed for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ), with transfer maps ๐‚ and ๐€. Let F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ , and let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. Then 1. for any (๐œ†, ๐œ ) โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) ร— Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) ,  p ๐œ,ฮ“ F (๐‘‹ฮ“ ; M๐œ† ) โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) ) ; 2. for any (๐œˆ, ๐œ) โˆˆ HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C) ร— Disc(๐ฟ ๐พ /๐ฟ ๐ป ) with D โ€ฒ (๐‘Œ , V๐œ ; N๐œˆ ) โ‰  {0},  i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ; N๐œˆ ) โŠ‚ F (๐‘‹ฮ“ ; M ๐€ (๐œˆ, ๐œ ) ). In particular, the maps ๐‚ and ๐€ given by condition (Tf) can be used to transfer discrete spectrum from the Riemannian locally symmetric space ๐‘Œฮ“ to the pseudoRiemannian space ๐‘‹ฮ“ . Indeed, taking ๐œ to be the trivial one-dimensional representation, there is a natural isomorphism of Hilbert spaces ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) โ‰ƒ ๐ฟ 2 (๐‘Œฮ“ ) (Example 2.2), and we obtain an embedding Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ ) โ†ฉโˆ’โ†’ Spec๐‘‘ (๐‘‹ฮ“ ) by Remarks 7.1.(2) and 5.8.(2), where Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ ) is de๏ฌned as in Notation 4.8 with ๐”ค replaced by ๐”ฉ. We shall see (Theorem 9.2.(3)) that if condition (B) holds (Definition 5.9), then the image of this embedding is actually contained in Spec๐‘‘ (๐‘‹ฮ“ )II , which implies Theorem 1.10 (see Chapter 10).

7.2 Proof of Theorems 2.3โ€“2.4 (Transfer of Riemannian eigenfunctions) and Corollary 2.5 Theorems 2.3 and 2.4 are re๏ฌnements of Theorems 1.7 and 1.12.(1). They are consequences of Propositions 5.10 and 5.11, of Lemma 6.3, of Remark 7.1, and of the following regularity property for vector-bundle-valued eigenfunctions on the Riemannian locally symmetric space ๐‘Œฮ“ .

7.2 Proof of Theorems 2.3โ€“2.4 (Transfer of Riemannian eigenfunctions) and Corollary 2.5

65

Lemma 7.2 Let ๐‘Œ = ๐ฟ/๐ฟ ๐พ be a Riemannian symmetric space, where ๐ฟ is a real reductive Lie group and ๐ฟ ๐พ a maximal compact subgroup. Let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. For any ๐œˆ โˆˆ HomC-alg ( ๐‘ ( ๐”ฉ C ) , C) and ๐œ โˆˆ ๐ฟc๐พ , ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ) โŠ‚ D โ€ฒ (๐‘Œฮ“ , V๐œ ; N๐œˆ ) = ๐ถ โˆž (๐‘Œฮ“ , V๐œ ; N๐œˆ ) = A (๐‘Œฮ“ , V๐œ ; N๐œˆ ). Proof. Let ๐”ฉ = ๐”ฉ โˆฉ ๐”จ + ๐”ฉ โˆฉ ๐”ญ be a Cartan decomposition corresponding to the maximal compact subgroup ๐ฟ ๐พ of ๐ฟ. As in the proof of Lemma 3.4, we choose an Ad(๐ฟ)invariant nondegenerate symmetric bilinear form ๐ต on ๐”ฉ which is positive de๏ฌnite on ๐”ฉ โˆฉ ๐”ญ and negative de๏ฌnite on ๐”ฉ โˆฉ ๐”จ, and for which ๐”ฉ โˆฉ ๐”ญ and ๐”ฉ โˆฉ ๐”จ are orthogonal. Let ๐ถ ๐ฟ โˆˆ ๐‘ (๐”ฉ) be the Casimir element de๏ฌned by ๐ต. Let F = ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ . Then dโ„“(๐ถ ๐ฟ ) ฮ“๐œ is a (matrix-valued) elliptic di๏ฌ€erential operator acting on F (๐‘Œฮ“ , V๐œ ), and therefore F (๐‘Œฮ“ , V๐œ ; N๐œˆ ) is contained in A (๐‘Œฮ“ , V๐œ ), by the elliptic regularity โŠ” โŠ“ theorem. Proof of Theorems 2.3 and 2.4. Condition (Tf) for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) is satis๏ฌed in the setting 1.5 by Proposition 5.10, and in the group manifold case by Proposition 5.11. Thus there is a transfer map ๐‚ : HomC-alg (D๐บ (๐‘‹), C) ร— Disc(๐ฟ ๐พ /๐ฟ ๐ป ) โˆ’โ†’ HomC-alg (๐‘ (๐”ฉ C ), C), and by Remark 7.1.(1), for any torsion-free discrete subgroup ฮ“ of ๐ฟ and any (๐œ†, ๐œ ) โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) ร— Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) , p ๐œ,ฮ“ (F (๐‘‹ฮ“ ; M๐œ† )) โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) ). Fix ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C) and let ๐‘“ โˆˆ F (๐‘‹ฮ“ ; M๐œ† ), where F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ . By Lemma 6.3, we can approximate ๐‘“ , in each topology depending on F , by ร a sequence of ๏ฌnite sums of the form ๐œ i ๐œ,ฮ“ ( ๐œ‘ ๐œ ) where ๐œ‘ ๐œ = p ๐œ,ฮ“ ( ๐‘“ ) โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— F (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) ). By Lemma 7.2, we have ๐œ‘ ๐œ โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— (F โˆฉ A)(๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) ) for all ๐œ. Since โŠ” โŠ“ i ๐œ,ฮ“ ( ๐œ‘ ๐œ ) โˆˆ (F โˆฉ A)( ๐‘‹ฮ“ ; M๐œ† ) by Remark 7.1.(2), we obtain Theorem 2.3. Proof of Corollary 2.5. Given ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), let Supp ๐‘ (๐”ฉC ) ( b ๐ฟ (๐œ)) โŠ‚ HomC-alg (๐‘ (๐”ฉ C ), C) be the set of ๐‘ (๐”ฉ C )-in๏ฌnitesimal characters of elements of b ๐ฟ(๐œ) ๐ฟ (๐œ)), are (see (11.1)). The spaces ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐œˆ ), for varying ๐œˆ โˆˆ Supp ๐‘ (๐”ฉC ) ( b orthogonal to each other. The maps i ๐œ,ฮ“ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) โ†’ ๐ฟ 2 (๐‘‹ฮ“ ), for ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), combine into a unitary operator iฮ“ as in (6.2). In particular, the spaces i ๐œ,ฮ“ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )), for varying ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and ๐œˆ โˆˆ Supp ๐‘ (๐”ฉC ) ( b ๐ฟ (๐œ)), are orthogonal to each other. We conclude using Theorem 2.3, which states that for any ๐œ† โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) the algebraic direct sum

66

ร‰

7 Transfer of Riemannian eigenfunctions and spectral decomposition

โˆจ ๐ฟ๐ป ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป ) i ๐œ,ฮ“ ((๐‘‰๐œ ) 2 ๐ฟ ( ๐‘‹ฮ“ ; M ๐œ† ) .

โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )) is dense in the Hilbert space โŠ” โŠ“

Remark 7.3 The proofs show that Theorem 2.3 and Corollary 2.5 hold without assuming that ๐‘‹C is ๐ฟ C -spherical: it is su๏ฌƒcient to assume, in the general setting 2.1, that condition (Tf) is satis๏ฌed for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ), with transfer maps ๐‚ and ๐€.

7.3 Proof of Theorem 1.9 (Spectral decomposition) Proposition 5.10 and Remark 7.1 imply that in the setting 1.5, any spectral information on the vector bundles V๐œ over the Riemannian locally symmetric space ๐‘Œฮ“ transfers to spectral information on the pseudo-Riemannian locally symmetric space ๐‘‹ฮ“ , and vice versa, leading to Theorem 1.9 on the spectral decomposition of smooth functions on ๐‘‹ฮ“ by joint eigenfunctions of D๐บ ( ๐‘‹ ) . Proof of Theorem 1.9. Since the reductive Lie group ๐ฟ is of type I in the sense of von Neumann algebras [Har53], the Mautner theorem [Mau50] states that the right regular representation of ๐ฟ on ๐ฟ 2 (ฮ“\๐ฟ) decomposes uniquely into a direct integral of irreducible unitary representations: โˆซ ๐ฟ 2 (ฮ“\๐ฟ) โ‰ƒ H ๐œ— d๐‘š(๐œ—), (7.1) b ๐ฟ

where d๐‘š is a Borel measure on the unitary dual b ๐ฟ of ๐ฟ with respect to the Fell topology and H ๐œ— is a (possibly in๏ฌnite) multiple of the irreducible unitary representation ๐œ— depending measurably on ๐œ— โˆˆ b ๐ฟ. We note that the Frรฉchet space H ๐œ—โˆž โˆž of smooth vectors is realized in ๐ถ (ฮ“\๐ฟ) by a Sobolev-type theorem. There is a measurable family of continuous maps T๐œ— : ๐ฟ 2 (ฮ“\๐ฟ) โˆž โˆ’โ†’ H ๐œ—โˆž โŠ‚ ๐ถ โˆž (ฮ“\๐ฟ), for ๐œ— โˆˆ b ๐ฟ, such that for any ๐‘“ โˆˆ ๐ฟ 2 (ฮ“\๐ฟ) โˆž we can write ๐‘“ = โˆซ 2 โˆฅ ๐‘“ โˆฅ ๐ฟ 2 (ฮ“\๐ฟ) = โˆฅT๐œ— ๐‘“ โˆฅ 2๐ฟ 2 (ฮ“\๐ฟ) d๐‘š(๐œ—).

โˆซ

b T๐œ— ๐ฟ

๐‘“ d๐‘š(๐œ—) with

b ๐ฟ

Let ( b ๐ฟ) ๐ฟ๐ป be the subset of b ๐ฟ consisting of (equivalence classes of) irreducible unitary representations of ๐ฟ with nonzero ๐ฟ ๐ป -๏ฌxed vectors, where ๐ฟ ๐ป = ๐ฟ โˆฉ ๐ป. Via the identi๏ฌcation ๐ฟ 2 (๐‘‹ฮ“ ) โ‰ƒ ๐ฟ 2 (ฮ“\๐ฟ) ๐ฟ๐ป of (6.3), we can view any ๐‘“ โˆˆ ๐ถ๐‘โˆž (๐‘‹ฮ“ ) as an ๐ฟ ๐ป -๏ฌxed element of ๐ฟ 2 ( ฮ“\ ๐ฟ ) โˆž and write โˆซ ๐‘“ = T๐œ— ๐‘“ d๐‘š(๐œ—), (7.2) b) ๐ฟ (๐ฟ ๐ป

7.3 Proof of Theorem 1.9 (Spectral decomposition)

67

โˆซ 2 where โˆฅ ๐‘“ โˆฅ 2๐ฟ 2 (๐‘‹ ) = ( ๐ฟ) b ๐ฟ โˆฅT๐œ— ๐‘“ โˆฅ ๐ฟ 2 (๐‘‹ฮ“ ) d๐‘š( ๐œ—). ฮ“ ๐ป Let ๐พ be a maximal compact subgroup of ๐บ such that ๐ฟ ๐พ := ๐ฟ โˆฉ ๐พ is a maximal compact subgroup of ๐ฟ containing ๐ฟ ๐ป . Using (7.2), Lemma 6.3 and (6.6), we obtain, for any ๐‘“ โˆˆ ๐ถ๐‘โˆž ( ๐‘‹ฮ“ ) , the decomposition ร• ๐‘“ = (i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )( ๐‘“ ) ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

=

ร• ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

=

ร•

๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

!

โˆซ (i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ ) โˆซ b ๐ฟ ( ๐ฟ) ๐ป

b ๐ฟ ( ๐ฟ) ๐ป

T๐œ— ๐‘“ d๐‘š(๐œ—)

(i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ ) (T๐œ— ๐‘“ ) d๐‘š(๐œ—).

(7.3)

By Proposition 5.10, condition (Tf) holds for the quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ), with transfer maps ๐‚ and ๐€. Consider the map ฮ› : (b ๐ฟ) ๐ฟ๐ป ร— Disc(๐ฟ ๐พ /๐ฟ ๐ป ) โˆ’โ†’ HomC-alg (D๐บ (๐‘‹), C) given by ฮ›(๐œ—, ๐œ ) = ๐€ ( ๐œ’ ๐œ— , ๐œ ) , where ๐œ’ ๐œ— is the in๏ฌnitesimal character of ๐œ—, which we see as an element of HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“), C). Since there are at most ๏ฌnitely many elements ๐œ— of ( b ๐ฟ) ๐ฟ๐ป with the same in๏ฌnitesimal character, ฮ›โˆ’1 (๐œ†) is at most countable for every ๐œ†. By Remark 7.1, for any ๐‘“ โˆˆ ๐ถ๐‘โˆž (๐‘‹ฮ“ ) and any (๐œ, ๐œ—) โˆˆ (b ๐ฟ ) ๐ฟ๐ป ร— Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) we have ( i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )(T๐œ— ๐‘“ ) โˆˆ ๐ถ โˆž ( ๐‘‹ฮ“ ; Mฮ›( ๐œ—, ๐œ ) ) . We set ร• F๐œ† ๐‘“ := (i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )(T๐œ— ๐‘“ ) โˆˆ ๐ถ โˆž (๐‘‹ฮ“ ; Mฮ›( ๐œ—, ๐œ ) ). (7.4) ( ๐œ—, ๐œ ) โˆˆฮ› โˆ’1 (๐œ†)

We define a measure d๐œ‡ on HomC-alg (D๐บ (๐‘‹), C) as the push-forward by ฮ› of the direct product of the measures on Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and ( b ๐ฟ) ๐ฟ๐ป . Then (7.3) yields that any ๐‘“ โˆˆ ๐ถ๐‘โˆž (๐‘‹ฮ“ ) is expanded into joint eigenfunctions of D๐บ (๐‘‹) as โˆซ ร• ๐‘“ = (i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ ) (T๐œ— ๐‘“ ) d๐œ‡(๐œ†) HomC-alg (D๐บ (๐‘‹) ,C)

โˆซ =

HomC-alg ( D๐บ ( ๐‘‹ ) ,C )

( ๐œ—, ๐œ ) โˆˆฮ› โˆ’1 (๐œ†)

F๐œ† ๐‘“ d๐œ‡(๐œ†).

Using the de๏ฌnition (7.4) of F๐œ† ๐‘“ and the fact that the images of the maps i ๐œ are orthogonal to each other for varying ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) (see Section 6.2), we have

68

7 Transfer of Riemannian eigenfunctions and spectral decomposition

โˆซ HomC-alg (D๐บ (๐‘‹),C)

โˆซ =

HomC-alg (D๐บ (๐‘‹),C)

โˆซ =

โˆฅF๐œ† ๐‘“ โˆฅ 2๐ฟ 2 (๐‘‹

d๐œ‡(๐œ†)





2

(i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )(T๐œ— ๐‘“ )

2

ฮ“)

ร• ( ๐œ—, ๐œ ) โˆˆฮ› โˆ’1 (๐œ†)

ร•

HomC-alg (D๐บ (๐‘‹),C)

which is equal to โˆซ โˆซ =

b ๐ฟ ( ๐ฟ) ๐ป ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป ) b ๐ฟ ( ๐ฟ) ๐ป

๐ฟ (๐‘‹ฮ“ )



(i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )(T๐œ— ๐‘“ ) 2 2

๐ฟ (๐‘‹ฮ“ )

( ๐œ—, ๐œ ) โˆˆฮ› โˆ’1 (๐œ†)

ร•

โˆฅT๐œ— ๐‘“ โˆฅ 2๐ฟ 2 (๐‘‹

ฮ“)

d๐œ‡(๐œ†)



(i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ )(T๐œ— ๐‘“ ) 2 2

๐ฟ (๐‘‹ฮ“ )

d๐œ‡(๐œ†),

d๐‘š(๐œ—)

d๐‘š(๐œ—)

by the de๏ฌnition of the measure d๐œ‡ and by (6.2). Thus (7.2) implies โˆซ โˆฅF๐œ† ๐‘“ โˆฅ 2๐ฟ 2 (๐‘‹ ) d๐œ‡(๐œ†). โˆฅ ๐‘“ โˆฅ 2๐ฟ 2 (๐‘‹ ) = ฮ“

HomC-alg (D๐บ (๐‘‹),C)

ฮ“

If ๐‘‹ฮ“ is compact, then the integral (7.1) is a Hilbert direct sum by a result of Gelfandโ€“Piatetski-Schapiro (see e.g. [War72, Ch. IV, ยง 3.1]), and accordingly the inversion formula in (7.2) is a discrete sum. Therefore the measure d๐œ‡ is supported โŠ” โŠ“ on a countable subset of HomC-alg ( D๐บ ( ๐‘‹ ) , C) .

Chapter 8

Consequences of conditions (A) and (B) on representations of ๐‘ฎ and ๐‘ณ

Abstract This chapter is devoted to the theory of infinite-dimensional representations. For a ๐บ-manifold ๐‘‹ with a proper and transitive action by a reductive subgroup ๐ฟ, there is a natural ๐ฟ-equivariant fiber bundle structure for ๐‘‹ over the Riemannian symmetric space ๐‘Œ associated with ๐ฟ, with a compact fiber ๐น. Consequently, the ๐บ-modules on the space of sections on ๐บ and the ๐ฟ-modules on the spaces of sections for ๐ฟ-equivariant vector bundles over ๐‘Œ are interconnected. This connection is defined by pull-back and push-forward operations involving integration along the compact fiber. However, the relationship between the following two aspects is not tightly linked in general from a spectral analysis perspective: (1) harmonic analysis on ๐‘‹ through the representation theory of the group ๐บ; (2) harmonic analysis on ๐‘‹ through the representation theory of the subgroup ๐ฟ. We establish a sufficient condition for the ๐บ-module generated by any irreducible ๐ฟ-submodules in D โ€ฒ (๐‘‹) to be finitely generated. Furthermore we establish a sufficient condition for the restriction of any irreducible ๐บ-modules in D โ€ฒ (๐‘‹) to be discretely decomposable when restricted to the subgroup ๐ฟ. The existence problem of discrete series representations for some nonsymmetric spaces is also addressed as an application. In this chapter we analyze in๏ฌnite-dimensional representations realized on function spaces on a reductive homogeneous space ๐‘‹ = ๐บ/๐ป on which a proper subgroup ๐ฟ of ๐บ acts spherically. The results do not involve any discrete group ฮ“. Under conditions (A) and (B) of Section 5.4, we establish some relations between in๏ฌnitedimensional representations of ๐บ and of ๐ฟ (Proposition 8.1 and Theorem 8.3). We shall use these results in Chapter 9 to prove Theorem 9.2, a key tool from which we shall derive Theorems 1.10 and 1.12.(3) in Chapter 10, and Theorem 2.7 in Chapter 12.

ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_8

69

70

8 Consequences of conditions (A) and (B) on representations of ๐บ and ๐ฟ

8.1 A consequence of condition (A) in a real spherical setting Condition (A) (see De๏ฌnition 5.9) controls the smallest ๐บ-module containing a given irreducible module of the subgroup ๐ฟ. In this chapter we show that (HarishChandraโ€™s) discrete series representations of the subgroup ๐ฟ generate a ๐บ-module of ๏ฌnite length, which is actually a direct sum of discrete series representations for ๐บ /๐ป. We work again in the general setting 2.1. Let ๐œ โˆˆ ๐ฟc๐พ . Since ๐ฟ ๐พ is compact, any irreducible unitary representation ๐œ— of ๐ฟ that occurs in the regular representation on ๐ฟ 2 (๐‘Œ , V๐œ ) is a Harish-Chandra discrete series representation. By Frobenius reciprocity, [๐œ—| ๐ฟ๐พ : ๐œ] โ‰  0, and there are at most ๏ฌnitely many discrete series representations ๐œ— of ๐ฟ with [๐œ—| ๐ฟ๐พ : ๐œ] โ‰  0 by the classi๏ฌcation of Harish-Chandraโ€™s discrete series representations in terms of minimal ๐พ-type (the Blattner parameter). We denote by ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ) the sum of irreducible unitary representations of ๐ฟ occurring in ๐ฟ 2 (๐‘Œ , V๐œ ) . Then we have a unitary isomorphism รŠ ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ) โ‰ƒ [๐œ— : ๐œ] ๐œ— (๏ฌnite sum). ๐œ— โˆˆ Disc ( ๐ฟ )

Note that ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ) = {0} if ๐œ is the trivial one-dimensional representation. Proposition 8.1 In the general setting 2.1, suppose that ๐‘‹ = ๐บ/๐ป is ๐บ-real spherical and that condition (A) holds for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ). For any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), there exist at most ๏ฌnitely many discrete series representations ๐œ‹ ๐‘— for ๐บ /๐ป such that ร‰   โˆจ ๐ฟ๐ป (๐‘‰๐œ ) โŠ— ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ) โŠ‚ p ๐œ ๐‘— ๐œ‹๐‘— , ร‰ i ๐œ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ )) โŠ‚ ๐‘— ๐œ‹๐‘—. (By a little abuse of notation, we also write ๐œ‹ ๐‘— for the vector space on which it is realized.) Proof. Let ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ). We write ๐œ— for the unitary representation of ๐ฟ on the Hilbert space (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ). Since ๐‘Œ = ๐ฟ/๐ฟ ๐พ is a Riemannian symmetric space, ๐œ— is the direct sum of at most ๏ฌnitely many (possibly zero) irreducible unitary representations of ๐ฟ. The underlying (๐”ฉ, ๐ฟ ๐พ )-module ๐œ—๐ฟ๐พ is ๐‘ (๐”ฉ C )-๏ฌnite by Schurโ€™s lemma, and so i ๐œ (๐œ—๐ฟ๐พ ) is ๐‘ (๐”คC )-๏ฌnite by condition (A). Since the actions of ๐บ and ๐‘ (๐”คC ) commute, the ๐บ-span of i ๐œ (๐œ—๐ฟ๐พ ) in (๐ฟ 2 โˆฉ ๐ถ โˆž ) (๐‘‹) is ๐‘ (๐”คC )-๏ฌnite. Let ๐‘‰ be the closure in ๐ฟ 2 (๐‘‹) of this ๐บ-span. The group ๐บ acts as a unitary representation on the Hilbert space ๐‘‰. Since ๐‘‰ is still ๐‘ (๐”คC )-๏ฌnite in the distribution sense, so is the underlying (๐”ค, ๐พ)-module ๐‘‰๐พ in the usual sense. Since ๐‘‹ is ๐บ-real spherical, ๐‘‰๐พ is of ๏ฌnite length as a (๐”ค, ๐พ)-module by Lemma 3.9.(2). Therefore, ๐‘‰ is a direct sum of at most ๏ฌnitely many irreducible unitary representations ๐œ‹ ๐‘— of ๐บ, which are discrete series representations the completion in ๐ฟ 2 (๐‘‹), we ร‰ for ๐บ/๐ป by de๏ฌnition. Takingร‰ obtain i ๐œ (๐œ—) โŠ‚ ๐‘— ๐œ‹ ๐‘— . Then we also have ๐œ— โŠ‚ p ๐œ ( ๐‘— ๐œ‹ ๐‘— ) because p ๐œ โ—ฆ i ๐œ is the โˆจ ๐ฟ 2 ๐ป โŠ” โŠ“ identity on (๐‘‰๐œ ) โŠ— ๐ฟ (๐‘Œ , V๐œ ) .

8.2 A consequence of condition (B)

71

8.2 A consequence of condition (B) Condition (B) (see Definition 5.9) controls the restriction of representations of ๐บ to a subgroup ๐ฟ of ๐บ. We now formulate this property in terms of the notion of discrete decomposability. Recall that any unitary representation of a Lie group can be decomposed into irreducible unitary representations by means of a direct integral of Hilbert spaces, and this decomposition is unique up to equivalence if the group is reductive. However, in contrast to the case of compact groups, the decomposition may involve continuous spectrum. For instance, the Plancherel formula for a real reductive Lie group ๐บ (i.e. the irreducible decomposition of the regular representation of ๐บ on ๐ฟ 2 (๐บ)) always contains continuous spectrum if ๐บ is noncompact. Discrete decomposability is a โ€œcompact-like propertyโ€ for unitary representations: we recall the following terminology for unitary representations and its algebraic analogue for (๐”ค, ๐พ)-modules. Definition 8.2 Let ๐บ be a real reductive Lie group. A unitary representation of ๐บ is discretely decomposable if it is isomorphic to a Hilbert direct sum of irreducible unitary representations of ๐บ. A (๐”ค, ๐พ)-module ๐‘‰ is discretely decomposable if there exists an increasing filร tration {๐‘‰๐‘› } ๐‘›โˆˆN such that ๐‘‰ = ๐‘›โˆˆN ๐‘‰๐‘› and each ๐‘‰๐‘› is a (๐”ค, ๐พ)-module of finite length. Here we consider the question of whether or not a representation ๐œ‹ of ๐บ is discretely decomposable when restricted to a reductive subgroup ๐ฟ. When ๐‘‰ is the underlying (๐”ค, ๐พ)-module ๐œ‹ ๐พ of a unitary representation ๐œ‹ of ๐บ of finite length, the fact that ๐‘‰ is discretely decomposable as an (๐”ฉ, ๐ฟ ๐พ )-module is equivalent to the fact that it is isomorphic to an algebraic direct sum of irreducible (๐”ฉ, ๐ฟ ๐พ )-modules (see [Kob98c, Lem. 1.3]). In this case the restriction of the unitary representation is discretely decomposable, i.e. ๐œ‹ decomposes into a Hilbert direct sum of irreducible unitary representations of the subgroup ๐ฟ [Kob00, Th. 2.7]. The definition of discrete decomposability for an (๐”ฉ, ๐ฟ ๐พ )-module ๐‘‰ makes sense even when ๐‘‰ is not unitarizable. In the following theorem, we do not assume ๐‘‰ to come from a unitary representation of ๐บ. Theorem 8.3 In the general setting 2.1, suppose that condition (B) holds for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ). Then 1. any irreducible (๐”ค, ๐พ)-module ๐œ‹ ๐พ occurring as a subquotient of the space D โ€ฒ (๐‘‹) of distributions on ๐‘‹ is discretely decomposable as an (๐”ฉ, ๐ฟ ๐พ )-module; 2. for any irreducible unitary representation ๐œ‹ of ๐บ realized in D โ€ฒ (๐‘‹), the restriction ๐œ‹| ๐ฟ decomposes discretely into a Hilbert direct sum of irreducible unitary representations of ๐ฟ. Further, if ๐œ‹ is a discrete series representation for ๐บ/๐ป, then any irreducible summand of the restriction ๐œ‹| ๐ฟ is a Harish-Chandra discrete series representation of the subgroup ๐ฟ; in particular, ๐œ‹ ๐ฟ๐พ = {0} if ๐ฟ is noncompact;

72

8 Consequences of conditions (A) and (B) on representations of ๐บ and ๐ฟ

3. if ๐‘‹ is ๐ฟ-real spherical (resp. if ๐‘‹C is ๐ฟ C -spherical), then the multiplicities in the branching law of the (๐”ค, ๐พ)-module ๐œ‹ ๐พ when restricted to (๐”ฉ, ๐ฟ ๐พ ) are ๏ฌnite (resp. uniformly bounded) in (1) and (2). Remark 8.4 Theorem 8.3.(2) applies, not only to discrete series representations for ๐‘‹, but also to irreducible unitary representations ๐œ‹ of ๐บ that contribute to the continuous spectrum in the Plancherel formula of ๐ฟ 2 (๐‘‹). Branching problems without the assumption that ๐ฟ acts properly on ๐‘‹ were discussed in [Kob17]. Remark 8.5 The main goal of [Kob98b] was to ๏ฌnd a su๏ฌƒcient condition for an irreducible unitary representation ๐œ‹ of ๐บ to be discretely decomposable when restricted to a subgroup ๐ฟ, in terms of representation-theoretic invariants of ๐œ‹ (e.g. asymptotic ๐พ-support that was introduced by Kashiwaraโ€“Vergne [KV79]). Theorem 8.3 treats a special case, but provides another su๏ฌƒcient condition without using such invariants. We note that all the concrete examples of explicit branching laws in [Kob93, Kob94] arise from the setup of Theorem 8.3. Proof of Theorem 8.3. Let ๐œ‹ ๐พ be an irreducible (๐”ค, ๐พ)-module realized in D โ€ฒ (๐‘‹). By Lemma 3.9.(1), it is actually realized in ๐ถ โˆž (๐‘‹). Any element of ๐‘ (๐”คC ) acts on ๐œ‹ ๐พ as a scalar, hence p ๐œ (๐œ‹ ๐พ ) is ๐‘ (๐”ฉ C )-๏ฌnite for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), by condition (B). Since ๐‘Œ is ๐ฟ-real spherical, this implies that p ๐œ (๐œ‹ ๐พ ) is of ๏ฌnite length as an ( ๐”ฉ, ๐ฟ ๐พ ) -module for any ๐œ, by Lemma 3.9.(2). (1) The irreducible (๐”ค, ๐พ)-module ๐œ‹ ๐พ contains at least one nonzero (๐”ฉ, ๐ฟ ๐พ )module of ๏ฌnite length, namely i ๐œ โ—ฆp ๐œ (๐œ‹ ๐พ ) for any ๐œ with p ๐œ (๐œ‹ ๐พ ) โ‰  {0}. Therefore, the irreducible (๐”ค, ๐พ)-module ๐œ‹ ๐พ is discretely decomposable as an (๐”ฉ, ๐ฟ ๐พ )-module by [Kob98c, Lem. 1.5]. (2) Let ๐œ‹ be an irreducible unitary representation of ๐บ realized in D โ€ฒ (๐‘‹). The underlying (๐”ค, ๐พ)-module ๐œ‹ ๐พ is discretely decomposable as an (๐”ฉ, ๐ฟ ๐พ )-module by (1); therefore the ๏ฌrst statement follows. For the second statement, suppose that ๐œ‹ is a discrete series representation for ๐บ/๐ป. Then the underlying (๐”ค, ๐พ)-module ๐œ‹ ๐พ is dense in ๐œ‹, and so is p ๐œ (๐œ‹ ๐พ ) in the Hilbert space p ๐œ (๐œ‹). Therefore the unitary representation p ๐œ (๐œ‹) is a ๏ฌnite sum of (Harish-Chandra) discrete series representations of ๐ฟ for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), because p ๐œ (๐œ‹ ๐พ ) is of ๏ฌnite length as an (๐”ฉ, ๐ฟ ๐พ )-module. (The fact that any irreducible summand of p ๐œ (๐œ‹) is a Harish-Chandra discrete series representations of ๐ฟ is also deduced from the general result [Kob98a, Th. 8.6].) The inclusion ร•โŠ• ๐œ‹โŠ‚ i ๐œ โ—ฆ p ๐œ (๐œ‹) ๐œ โˆˆ Disc ( ๐ฟ๐พ / ๐ฟ ๐ป )

then implies that ๐œ‹ decomposes discretely into a Hilbert direct sum of discrete series representations of ๐ฟ. If ๐ฟ is noncompact, then there is no discrete series representation for the Riemannian symmetric space ๐ฟ/๐ฟ ๐พ , and therefore p ๐œ (๐œ‹) ๐ฟ๐พ = {0} for all ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) . Thus ๐œ‹ ๐ฟ๐พ = {0}. (3) If ๐‘‹ is ๐ฟ-real spherical, then dim Hom๐”ฉ,๐ฟ๐พ (๐œ—๐ฟ๐พ , ๐ถ โˆž (๐‘‹)) < +โˆž

8.3 Examples where condition (A) or (B) fails

73

for any irreducible (๐”ฉ, ๐ฟ ๐พ )-module ๐œ—๐ฟ๐พ by Lemma 3.9.(2); in particular, dim Hom๐”ฉ,๐ฟ๐พ (๐œ—๐ฟ๐พ , ๐œ‹ ๐พ ) < +โˆž in (1). If ๐‘‹C is ๐ฟ C -spherical, then Fact 3.3 implies the existence of a constant ๐ถ > 0 such that dim Hom๐”ฉ,๐ฟ๐พ (๐œ—๐ฟ๐พ , ๐ถ โˆž (๐‘‹)) โ‰ค ๐ถ for any irreducible (๐”ฉ, ๐ฟ ๐พ )-module ๐œ—๐ฟ๐พ ; in particular, dim Hom๐”ฉ,๐ฟ๐พ (๐œ—๐ฟ๐พ , ๐œ‹ ๐พ ) โ‰ค ๐ถ in (1). To control the multiplicities of the branching law in (2), we use the inequality dim Hom ๐ฟ (๐œ—, ๐œ‹| ๐ฟ ) โ‰ค dim Hom๐”ฉ,๐ฟ๐พ (๐œ—๐ฟ๐พ , ๐œ‹ ๐พ ). (In our setting where restrictions are discretely decomposable, the dimensions actuโŠ” โŠ“ ally coincide [Kob00, Th. 2.7].) Remark 8.6 In the general setting 2.1, suppose that condition (B) holds for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ). If we drop the assumption that ๐‘‹ is ๐ฟ-real spherical, then the conclusion of Theorem 8.3.(3) does not necessarily hold. For example, if  (๐บ, ๐ป, ๐ฟ) = โ€ต ๐บ ร— โ€ต ๐บ, Diag( โ€ต ๐บ), โ€ต ๐บ ร— {๐‘’} where โ€ต ๐บ is a noncompact semisimple Lie group, then the multiplicities in the branching law are in๏ฌnite in Theorem 8.3.(1)โ€“(2) for any in๏ฌnite-dimensional irreducible ( ๐”ค, ๐พ ) -module ๐œ‹ ๐พ .

8.3 Examples where condition (A) or (B) fails In the general setting 2.1, the maps i ๐œ = i ๐œ, {๐‘’} and p ๐œ = p ๐œ, {๐‘’} of (2.3) and (5.7) are well de๏ฌned, and conditions (A) and (B) make sense for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ). However, as mentioned in Remarks 5.12 and 5.16, if ๐‘‹C is not ๐ฟ C -spherical, then neither (A) nor (B) holds in general. Indeed, let โ€ต ๐บ be a real linear reductive group. The tensor product representation โˆž ๐œ‹1 โŠ— ๐œ‹2โˆž is never ๐‘ ( โ€ต ๐”คC )-๏ฌnite when ๐œ‹1 and ๐œ‹2 are in๏ฌnite-dimensional irreducible unitary representations of โ€ต ๐บ, as is derived from [KO15, Th. 6.1]. We use this fact to give an example where condition (A) or (B) fails when ๐œ is the trivial one-dimensional representation of ๐ฟ ๐พ . Example 8.7 Let ๐‘‹ = โ€ต ๐บ ร— โ€ต ๐บ and ๐บ = โ€ต ๐บ ร— โ€ต ๐บ ร— โ€ต ๐บ. We now view ๐‘‹ as a ๐บhomogeneous space ๐บ/๐ป in two di๏ฌ€erent ways, and in each case we ๏ฌnd a closed subgroup ๐ฟ of ๐บ such that ๐‘‹C is not ๐ฟ C -spherical and condition (A) or (B) fails for the quadruple ( ๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) , where ๐ฟ ๐พ is a maximal closed subgroup of ๐ฟ. (1) The group ๐บ acts transitively on ๐‘‹ by

74

8 Consequences of conditions (A) and (B) on representations of ๐บ and ๐ฟ

(๐‘”1 , ๐‘”2 , ๐‘”3 ) ยท (๐‘ฅ, ๐‘ฆ) := (๐‘”1 ๐‘ฅ๐‘”3โˆ’1 , ๐‘”2 ๐‘ฆ๐‘”3โˆ’1 ). The stabilizer of ๐‘’ is the diagonal ๐ป of โ€ต ๐บ ร— โ€ต ๐บ ร— โ€ต ๐บ, and so ๐‘‹ โ‰ƒ ๐บ/๐ป. Note that ๐‘‹C := ๐บ C /๐ปC is ๐บ C -spherical for โ€ต ๐บ = SL(2, R) or SL(2, C). Let ๐ฟ := โ€ต ๐บ ร— โ€ต ๐บ ร— {๐‘’}. Then ๐ฟ acts transitively and freely (in particular, properly) on ๐‘‹. The group ๐ฟ ๐ป := ๐ฟ โˆฉ ๐ป is trivial. Let โ€ต ๐พ be a maximal compact subgroup of โ€ต ๐บ, so that ๐ฟ ๐พ := โ€ต ๐พ ร— โ€ต ๐พ ร— {๐‘’} is a maximal compact subgroup of ๐ฟ. For ๐‘— = 1, 2, take any โ€ต ๐พ-type ๐œ ๐‘— of ๐œ‹ ๐‘— , and let ๐œ := ๐œ1โˆจ โŠ  ๐œ2โˆจ โˆˆ ๐ฟc๐พ โ‰ƒ Disc(๐ฟ ๐พ /๐ฟ ๐ป ). The matrix coe๏ฌƒcients of the outer tensor product representation ๐œ— := ๐œ‹1โˆž โŠ  ๐œ‹2โˆž of ๐ฟ give a realization of ๐œ— in ๐ถ โˆž (๐‘Œ , V๐œ ) (where ๐‘Œ := ๐ฟ/๐ฟ ๐พ ) on which the center ๐‘ (๐”ฉ C ) acts as scalars; in other words, ๐œ— โŠ‚ ๐ถ โˆž (๐‘Œ , V๐œ ; N๐œˆ ) for some ๐œˆ โˆˆ HomC-alg (๐‘ (๐”ฉ C ), C). On the other hand, i ๐œ (๐œ—) is not (1 โŠ— 1 โŠ— ๐‘ ( โ€ต ๐”คC ))-๏ฌnite, because the third factor โ€ต ๐บ of ๐บ acts diagonally on ๐‘‹ from the right, hence i ๐œ (๐œ—) is neither D๐บ (๐‘‹)-๏ฌnite nor ๐‘ (๐”คC )-๏ฌnite. In particular, condition (A) fails. We also note that the fact that i ๐œ (๐œ—) is not D๐บ (๐‘‹)-๏ฌnite implies that i ๐œ (๐ถ โˆž (๐‘Œ , V๐œ ; N๐œˆ )) is not contained in ๐ถ โˆž (๐‘‹, M๐œ† ) for any ๐œ† โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) . (2) The group ๐บ acts transitively on ๐‘‹ (๐‘”1 , ๐‘”2 , ๐‘”3 ) ยท (๐‘ฅ, ๐‘ฆ) := (๐‘”1 ๐‘ฅ, ๐‘”2 ๐‘ฆ๐‘”3โˆ’1 ). The stabilizer of ๐‘’ is ๐ป := {๐‘’}ร—Diag( โ€ต ๐บ), and so ๐‘‹ โ‰ƒ ๐บ/๐ป. Let ๐ฟ := Diag( โ€ต ๐บ) ร—โ€ต ๐บ. Then ๐ฟ acts transitively and freely (in particular, properly) on ๐‘‹. Let โ€ต ๐พ be a maximal compact subgroup of โ€ต ๐บ, so that ๐ฟ ๐พ := Diag( โ€ต ๐พ)ร—โ€ต ๐พ is a maximal compact subgroup of ๐ฟ. The space ๐‘‰ โŠ‚ ๐ถ โˆž ( โ€ต ๐บ ร— โ€ต ๐บ) of matrix coe๏ฌƒcients of ๐œ‹1โˆž โŠ  ๐œ‹2โˆž as above is a subrepresentation of the regular representation ๐ถ โˆž ( โ€ต ๐บ ร— โ€ต ๐บ) for the action of ( โ€ต ๐บ ร—โ€ต ๐บ) ร— ( โ€ต ๐บ ร—โ€ต ๐บ) by left and right multiplication, and restricts to a representation of ๐บ. Then ๐‘‰ is ๐‘ (๐”คC )-๏ฌnite. However, p ๐œ (๐‘‰) is not ๐‘ (๐”ฉ C )-๏ฌnite because the ๏ฌrst factor โ€ต ๐บ of ๐ฟ acts diagonally on ๐œ‹1โˆž โŠ  ๐œ‹2โˆž . Thus condition (B) fails. In Example 8.7.(2), condition (B) fails but ๐‘‹C is not ๐บ C -spherical. Here is another example showing that condition (B) may fail even when ๐‘‹ = ๐บ/๐ป is a reductive symmetric space. Example 8.8 Let

๏ฃฑ ๏ฃด ๏ฃฒ ๏ฃด ๐บ = SO(2๐‘›, 2)0 ร— SO(2๐‘›, 2)0 , ๐ป = Diag(SO(2๐‘›, 2)0 ), ๏ฃด ๏ฃด ๐ฟ = SO(2๐‘›, 1)0 ร— U(๐‘›, 1). ๏ฃณ Let ๐พ be a maximal compact subgroup of ๐บ such that ๐ฟ ๐พ := ๐ฟ โˆฉ ๐พ is a maximal compact subgroup of ๐ฟ. The group ๐ฟ acts transitively and properly on ๐‘‹ = ๐บ/๐ป, and ๐‘‹C is ๐บ C -spherical but not ๐ฟ C -spherical. For any holomorphic discrete series representation ๐œ‹1 of SO(2๐‘›, 2)0 , the outer tensor product ๐œ‹1 โŠ  ๐œ‹1โˆจ is a discrete series representation for ๐บ/๐ป. It is not discretely decomposable when we restrict it to ๐ฟ, in fact the ๏ฌrst factor ๐œ‹1 | SO(2๐‘›,1)0 involves continuous spectrum [Kob98a, ร“ร˜96]. Therefore, by Theorem 8.3.(2), condition (B) does not hold for the quadruple e does not hold for the (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ). In particular, by Lemma 5.19.(2), condition (B) quadruple ( ๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) . Moreover, the conclusion of Lemma 5.19.(3) does

8.4 Existence problem of discrete series representations

75

not hold because at least one of the summands in the ๐ฟ-decomposition ร•โŠ• ๐œ‹1 โŠ  ๐œ‹1โˆจ โ‰ƒ p ๐œ (๐œ‹1 โŠ  ๐œ‹1โˆจ ) ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

contains continuous spectrum for ๐ฟ-irreducible decomposition, and thus ๐‘ (๐”ฉ C ) cannot act on it as scalar multiplication.

8.4 Existence problem of discrete series representations Proposition 8.1 and Theorem 8.3 have the following consequence, which is not needed in the proof but might be interesting in its own right. Recall that the condition Disc ( ๐บ /๐ป ) = โˆ… is equivalent to the rank condition (1.4) not being satis๏ฌed. Corollary 8.9 In the general setting 2.1, assume that ๐‘‹C = ๐บ C /๐ปC is ๐บ C -spherical. 1. If condition (A) holds for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) (in particular, if condie holds for the quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C )) and if Disc(๐บ/๐ป) = โˆ…, tion (A) then Disc ( ๐ฟ / ๐ฟ ๐ป ) = โˆ…. 2. If condition (B) holds for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ) (in particular, if condie holds for the quadruple (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C )) and if Disc(๐ฟ/๐ฟ ๐ป ) = โˆ…, tion (B) then Disc ( ๐บ /๐ป ) = โˆ…. Discrete series representations for ๐ฟ/๐ฟ ๐ป form a subset of Harish-Chandraโ€™s discrete series representations for ๐ฟ because ๐ฟ ๐ป is compact. However, this subset may be strict: Disc ( ๐ฟ / ๐ฟ ๐ป ) = โˆ… does not necessarily imply Disc ( ๐ฟ /{ ๐‘’ }) = โˆ…. Example 8.10 We have Disc(SO(2๐‘›, 1)/U(๐‘›)) = โˆ… if and only if ๐‘› is odd, but Disc ( SO ( 2๐‘›, 1)/{ ๐‘’ }) โ‰  โˆ… for all ๐‘› โˆˆ N+ . Proof of Corollary 8.9. Suppose condition (A) holds. For any ๐œ— โˆˆ Disc(๐ฟ/๐ฟ ๐ป ), Proposition ร‰ 8.1 implies the existence of ๏ฌnitely many ๐œ‹ ๐‘— โˆˆ Disc(๐บ/๐ป) such that i ๐œ (๐œ—) โŠ‚ ๐‘— ๐œ‹ ๐‘— . Thus Disc(๐ฟ/๐ฟ ๐ป ) โ‰  โˆ… implies Disc(๐บ/๐ป) โ‰  โˆ…. Suppose condition (B) holds. By Theorem 8.3.(2)โ€“(3), any ๐œ‹ โˆˆ Disc(๐บ/๐ป) splits into a direct sum of Harish-Chandra discrete series representations ๐œ— ๐‘— of ๐ฟ. Since ๐œ‹ is realized on a closed subspace of ๐ฟ 2 (๐บ/๐ป) โ‰ƒ ๐ฟ 2 (๐ฟ/๐ฟ ๐ป ), such ๐œ— ๐‘— are realized on closed subspaces of ๐ฟ 2 (๐ฟ/๐ฟ ๐ป ), i.e. belong to Disc(๐ฟ/๐ฟ ๐ป ). Thus Disc(๐บ/๐ป) โ‰  โˆ… implies Disc ( ๐ฟ / ๐ฟ ๐ป ) โ‰  โˆ…. โŠ” โŠ“

Chapter 9

The maps i๐‰,๐šช and p๐‰,๐šช preserve type I and type II

Abstract In Chapter 4, we introduced a decomposition of joint ๐ฟ 2 -eigenfunctions of intrinsic di๏ฌ€erential operators on pseudo-Riemannian locally homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐บ/๐ป into type I and type II: type I eigenfunctions arise from distribution vectors of discrete series representations for ๐‘‹ = ๐บ/๐ป, while type II eigenfunctions are de๏ฌned by taking an orthogonal complement in ๐ฟ 2 (๐‘‹ฮ“ ). One di๏ฌƒculty with type II arises from the fact that its de๏ฌnition relies on the ๐ฟ 2 -inner product for ๐‘‹ฮ“ , which di๏ฌ€ers from those for ฮ“\๐บ or ๐บ/๐ป because neither ฮ“ nor ๐ป is compact, and thus the unitary representation theory of ๐บ cannot be applied directly. To overcome this di๏ฌƒculty, we consider a similar and easier concept for ๐ฟequivariant Hermitian vector bundles V over the Riemannian locally symmetric space ๐‘Œฮ“ = ฮ“\๐‘Œ associated with the subgroup ๐ฟ, by using Harish-Chandraโ€™s discrete series representations for ๐ฟ. We demonstrate that the โ€œtransfer mapsโ€ preserve discrete spectrum of type I and of type II between ๐ฟ 2 (๐‘‹ฮ“ ) and ๐ฟ 2 (๐‘Œฮ“ , V) under the assumption that the reductive subgroup ๐ฟ acts properly and spherically on ๐‘‹. The results of this chapter are crucial in proving the existence of in๏ฌnite discrete spectrum of type II in Chapter 10. In Section 4.1 we decomposed joint ๐ฟ 2 -eigenfunctions of D๐บ (๐‘‹) on pseudoRiemannian locally homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐บ/๐ป into type I and type II: those of type I arise from distribution vectors of discrete series representations for ๐‘‹ = ๐บ/๐ป, and those of type II are de๏ฌned by taking an orthogonal complement in ๐ฟ 2 (๐‘‹ฮ“ ). In this chapter we introduce an analogous notion for Hermitian vector bundles V๐œ over the Riemannian locally symmetric space ๐‘Œฮ“ = ฮ“\๐ฟ/๐ฟ ๐พ , by using Harish-Chandraโ€™s discrete series representations for ๐ฟ. We prove (Theorem 9.2) that the transfer maps ๐‚ and ๐€ preserve discrete spectrum of type I and of type II between ๐ฟ 2 (๐‘‹ฮ“ ) and ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) if conditions (Tf), (A), (B) of Section 5.4 are satis๏ฌed and ๐‘‹ is ๐บ-real spherical. This is the case in the main setting 1.5 by Proposition 5.10, and in the group manifold case by Proposition 5.11. The results of this chapter play a key role in the proof of Theorem 2.7 (see Section 12.5).

ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_9

77

78

9 The maps i ๐œ,ฮ“ and p ๐œ,ฮ“ preserve type I and type II

9.1 Type I and type II for Hermitian bundles Let ๐‘Œ = ๐ฟ/๐ฟ ๐พ be a Riemannian symmetric space, where ๐ฟ is a real reductive Lie group and ๐ฟ ๐พ a maximal compact subgroup of ๐ฟ. Let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. As in Section 2.2, for (๐œ, ๐‘‰๐œ ) โˆˆ ๐ฟc๐พ and F = A, ๐ถ โˆž , ๐ฟ 2 , or D โ€ฒ , we denote by F (๐‘Œฮ“ , V๐œ ) the space of analytic, smooth, square-integrable, or distribution sections of the Hermitian vector bundle V๐œ := ฮ“\๐ฟ ร—๐ฟ๐พ ๐‘‰๐œ over ๐‘Œฮ“ . We may regard ๐ฟ 2 (๐‘Œ , V๐œ ) as a subspace of D โ€ฒ (๐‘Œ , V๐œ ), where D โ€ฒ (๐‘Œ , V๐œ ) is endowed with the topology coming from Remark 4.3. Consider the injective linear map ๐‘ โ€ฒฮ“ โˆ— : ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) โˆ’โ†’ D โ€ฒ (๐‘Œ , V๐œ ) induced by the natural projection ๐‘ โ€ฒฮ“ : ๐‘Œ โ†’ ๐‘Œฮ“ . For any C-algebra homomorphism ๐œˆ : ๐‘ (๐”ฉ C ) โ†’ C, we de๏ฌne ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ) to be the Hilbert subspace of ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) consisting of ๐ฟ 2 -solutions to the system of di๏ฌ€erential equations (N๐œˆ ) in the weak sense, and ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )I to be the preimage, under ๐‘ โ€ฒฮ“ โˆ— , of the closure of ๐ฟ 2 (๐‘Œ , V๐œ ; N๐œˆ ) in D โ€ฒ (๐‘Œ , V๐œ ). As in Lemma 4.5, the subspace ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )I is closed in the Hilbert space ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ); we de๏ฌne ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )II to be its orthogonal complement in ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ), so that we have the Hilbert space decomposition ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ) = ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )I โŠ• ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )II . Given ๐œ, there are at most finitely many ๐œˆ such that ๐ฟ 2 (๐‘Œ , V๐œ ; N๐œˆ ) โ‰  {0}, by the Blattner formula for discrete series representations [HS75], hence there are at most finitely many ๐œˆ such that ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )I โ‰  {0}. On the other hand, there may exist countably many ๐œˆ such that ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )II is nonzero. We set ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ) := ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I โŠ• ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )II , where ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I := ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )II :=

รŠ

๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )I

(๏ฌnite sum),

๐œˆ

ร•โŠ•

๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )II (Hilbert completion).

๐œˆ

Notation 9.1. For any ๐œ โˆˆ ๐ฟc๐พ and any ๐‘– = I, II, we set  Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ )๐‘– := ๐œˆ โˆˆ HomC-alg ( ๐‘ ( ๐”ฉ C ) , C) : ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )๐‘– โ‰  {0} and  Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ ) := ๐œˆ โˆˆ HomC-alg (๐‘ (๐”ฉ C ), C) : ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ) โ‰  {0} = Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ )I โˆช Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ )II .

9.2 The maps i ๐œ,ฮ“ and p ๐œ,ฮ“ preserve type I and type II

79

9.2 The maps i๐‰,๐šช and p๐‰,๐šช preserve type I and type II We now go back to the general setting 2.1 of the book. For a torsion-free discrete subgroup ฮ“ of ๐ฟ, recall the notation ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )๐‘– and ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )๐‘– as well as Spec๐‘‘ (๐‘‹ฮ“ )๐‘– from Section 4.1, and conditions (Tf), (A), (B) from Section 5.4. For (๐œ, ๐‘‰๐œ ) โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and ๐œˆ โˆˆ HomC-alg (๐‘ (๐”ฉ C ), C), recall the notation ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ )๐‘– and ๐ฟ 2 (๐‘Œฮ“ , V๐œ )๐‘– as well as Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ ) from Section 9.1. The following theorem shows that for ๐‘– = I or II, the pseudo-Riemannian spectrum Spec๐‘‘ (๐‘‹ฮ“ )๐‘– is obtained from the Riemannian spectrum Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ ) via the transfer maps ๐‚ and ๐€ of condition (Tf). Theorem 9.2 In the general setting 2.1, suppose that condition (Tf) is satis๏ฌed for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ), with transfer maps ๐‚ and ๐€. Let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. 1. If condition (A) holds and ๐‘‹ is ๐บ-real spherical, then for any (๐œˆ, ๐œ) โˆˆ HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C) ร— Disc(๐ฟ ๐พ /๐ฟ ๐ป ),  i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐œˆ )I โŠ‚ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M ๐€ (๐œˆ, ๐œ ) )I ; in particular, for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ),  i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I โŠ‚ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )I . 2. If condition (B) holds, then for any (๐œ†, ๐œ ) โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C)ร—Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) ,  p ๐œ,ฮ“ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M๐œ† )I โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )I ; in particular, for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ),  p ๐œ,ฮ“ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )I โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I . 3. If condition (B) holds, then for any (๐œˆ, ๐œ) โˆˆ HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C) ร— Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) ,  i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐œˆ )II โŠ‚ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M ๐€ (๐œˆ, ๐œ ) )II ; in particular, for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ),  i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )II โŠ‚ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )II . 4. If condition (A) holds and ๐‘‹ is ๐บ-real spherical, then for any (๐œ†, ๐œ) โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) ร— Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) ,

80

9 The maps i ๐œ,ฮ“ and p ๐œ,ฮ“ preserve type I and type II

 p ๐œ,ฮ“ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M๐œ† )II โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )II ; in particular, for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ),  p ๐œ,ฮ“ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )II โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )II . 5. If conditions (A) and (B) both hold and ๐‘‹ is ๐บ-real spherical, then for any ๐œ† โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) , ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M๐œ† )I โ‰ƒ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M๐œ† )II

ร•โŠ•

๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป ) ร•โŠ•

โ‰ƒ

๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

 i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )I ,  i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )II ,

where โ‰ƒ denotes unitary equivalence between Hilbert spaces. Theorem 9.2 will be proved in Section 9.3. The following is a direct consequence of Theorem 9.2.(5). Corollary 9.3 In the general setting 2.1, suppose that ๐‘‹ is ๐บ-real spherical and that conditions (Tf), (A), (B) hold. Let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. Then for ๐‘– = I or II, we have ร˜  Spec๐‘‘ (๐‘‹ฮ“ )๐‘– = ๐€(๐œˆ, ๐œ) : ๐œˆ โˆˆ Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ )๐‘– ๐œ โˆˆ Disc ( ๐ฟ๐พ / ๐ฟ ๐ป )

hence Spec๐‘‘ (๐‘‹ฮ“ ) =

ร˜ ๐œ โˆˆDisc(๐ฟ๐พ / ๐ฟ ๐ป )



๐€(๐œˆ, ๐œ) : ๐œˆ โˆˆ Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ ) .

Remark 9.4 There exist elements ๐œ โˆˆ ๐ฟc๐พ such that ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I = {0} for any ฮ“: indeed, by the Blattner formula for discrete series representations [HS75], there are some โ€œsmallโ€ representations ๐œ of ๐ฟ ๐พ for which ๐ฟ 2 (๐‘Œ , V๐œ ) = ๐ฟ 2 (๐ฟ/๐ฟ ๐พ , V๐œ ) has no discrete series representation (for instance the one-dimensional trivial representation ๐œ). On the other hand, there exist elements ๐œ โˆˆ ๐ฟc๐พ such that ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I โ‰  {0} as soon as rank ๐ฟ = rank ๐ฟ ๐พ , because in that case ๐ฟ 2๐‘‘ ((ฮ“ ร— {๐‘’})\(๐ฟ ร— ๐ฟ)/Diag(๐ฟ))I โ‰  {0} by [KK16]. In the setting of Theorem 9.2, we have a re๏ฌnement of this statement: there exists ๐œ โˆˆ Disc ( ๐ฟ ๐พ / ๐ฟ ๐ป ) such that ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I โ‰  {0}.

9.3 Proof of Theorem 9.2 For any torsion-free discrete subgroup ฮ“ of ๐ฟ, we denote by

9.3 Proof of Theorem 9.2

81

๐‘ โˆ—ฮ“ : ๐ฟ 2 (๐‘‹ฮ“ ) โˆ’โ†’ D โ€ฒ (๐‘‹) the linear map induced by the natural projection ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ . We shall use the following observation. Observation 9.5. In the general setting 2.1, for any ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ), the maps i ๐œ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œ , V๐œ ) โ†’ ๐ฟ 2 (๐‘‹) and p ๐œ : ๐ฟ 2 (๐‘‹) โ†’ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œ , V๐œ ) extend to continuous maps i ๐œ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— D โ€ฒ (๐‘Œ , V๐œ ) โ†’ D โ€ฒ (๐‘‹) and p ๐œ : D โ€ฒ (๐‘‹) โ†’ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— D โ€ฒ (๐‘Œ , V๐œ ) (for the topology given by Remark 4.3), and for any torsion-free discrete subgroup ฮ“ of ๐ฟ the following diagram commutes.

(๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œ , V๐œ )

/ ๐ฟ 2 (๐‘‹)



i๐œ

/ D โ€ฒ (๐‘‹) O

/ (๐‘‰ โˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œ , V๐œ ) ๐œ

p๐œ

/ (๐‘‰ โˆจ ) ๐ฟ๐ป โŠ— D โ€ฒ (๐‘Œ , V๐œ ) ๐œ O

โŠ‚

(๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— D โ€ฒ (๐‘Œ , V๐œ ) O ?

p๐œ

โŠ‚

i๐œ

โŠ‚



๐‘ฮ“โ€ฒโˆ—

(๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ )



i ๐œ,ฮ“

?

๐‘ฮ“โˆ—

/ ๐ฟ 2 (๐‘‹ฮ“ )

p ๐œ,ฮ“

?

๐‘ฮ“โ€ฒโˆ—

/ (๐‘‰ โˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) ๐œ

Proof of Theorem 9.2.(1). By Remark 7.1.(2), it is su๏ฌƒcient to check that i ๐œ,ฮ“ ((๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I ) โŠ‚ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )I for all ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ). Let ๐œ‘ โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I . By de๏ฌnition of ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐œˆ )I , the element ๐‘ โ€ฒฮ“ โˆ— (๐œ‘) โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— D โ€ฒ (๐‘Œ , V๐œ ) can be written as a limit of elements ๐œ‘หœ ๐‘— โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ; N๐œˆ ) . By Observation 9.5,    ๐‘ โˆ—ฮ“ i ๐œ,ฮ“ (๐œ‘) = i ๐œ ๐‘ โ€ฒฮ“โˆ— (๐œ‘) = i ๐œ lim ๐œ‘หœ ๐‘— = lim i ๐œ ( ๐œ‘หœ ๐‘— ). ๐‘—

๐‘—

If condition (A) holds and ๐‘‹ is ๐บ-real spherical, then by Proposition 8.1 each i ๐œ ( ๐œ‘หœ ๐‘— ) is contained in a ๏ฌnite direct sum of discrete series representations for ๐บ/๐ป. โŠ” โŠ“ Therefore, i ๐œ,ฮ“ ( ๐œ‘) โˆˆ ๐ฟ 2๐‘‘ ( ๐‘‹ฮ“ )I . Proof of Theorem 9.2.(2). By Remark 7.1.(1), it is su๏ฌƒcient to prove that p ๐œ,ฮ“ (๐ฟ 2๐‘‘ (๐‘‹ฮ“ )I ) โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I for all ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ). Consider ๐œ‹ โˆˆ Disc(๐บ/๐ป), with representation space ๐‘‰ ๐œ‹ โŠ‚ ๐ฟ 2 (๐‘‹). If condition (B) holds, then by Theorem 8.3.(2) the restriction ๐œ‹| ๐ฟ is discretely decomposable and we have a unitary equivalence of ๐ฟ-modules

82

9 The maps i ๐œ,ฮ“ and p ๐œ,ฮ“ preserve type I and type II

๐œ‹| ๐ฟ โ‰ƒ

ร•โŠ•

๐‘› ๐œ— (๐œ‹) ๐œ—,

b ๐œ—โˆˆ๐ฟ

where ๐œ— is a Harish-Chandra discrete series representation of ๐ฟ. Note that the multiplicities ๐‘› ๐œ— (๐œ‹) are possibly in๏ฌnite. Let ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ). Since p ๐œ : ๐ฟ 2 (๐‘‹) โ†’ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œ , V๐œ ) is an ๐ฟ-homomorphism, p ๐œ (๐‘› ๐œ— (๐œ‹) ๐œ—) is a multiple of discrete series representation for (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œ , V๐œ ), which must vanish for all but ๏ฌnitely many ๐œ—, because there are at most ๏ฌnitely many discrete series representations for ๐ฟ 2 (๐‘Œ , V๐œ ). Thus p ๐œ (๐‘‰ ๐œ‹ ) is a ๏ฌnite sum of Harish-Chandra discrete series representations: รŠ p ๐œ (๐‘‰ ๐œ‹ ) โ‰ƒ ๐‘›โ€ฒ๐œ— (๐œ‹) ๐œ— โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ), b ๐œ—โˆˆ๐ฟ

where ๐‘›โ€ฒ๐œ— (๐œ‹) โ‰ค ๐‘› ๐œ— (๐œ‹). In particular, p ๐œ (๐‘‰ ๐œ‹ ) โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ), where ยท denotes the closure in D โ€ฒ (๐‘‹) and in (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— D โ€ฒ (๐‘Œ , V๐œ ), respectively. Suppose ๐‘“ โˆˆ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M๐œ† )I . By de๏ฌnition, there exist at most ๏ฌnitely many ๐œ‹1 , . . . , ๐œ‹ ๐‘˜ โˆˆ Disc ( ๐บ /๐ป ) such that ๐‘ โˆ—ฮ“ ( ๐‘“ ) โˆˆ

๐‘˜ รŠ

๐‘‰๐œ‹ ๐‘—

(โŠ‚ D โ€ฒ (๐‘‹)),

๐‘—=1

where ๐‘ โˆ—ฮ“ : ๐ฟ 2 (๐‘‹ฮ“ ) โ†’ D โ€ฒ (๐‘‹) is the pull-back of the projection ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ . By Observation 9.5, ๐‘ โ€ฒฮ“โˆ— (p ๐œ,ฮ“ ๐‘“ ) = p ๐œ ( ๐‘ โˆ—ฮ“ ๐‘“ ) โŠ‚

๐‘˜ ร• ๐‘—=1

p ๐œ (๐‘‰ ๐œ‹ ๐‘— ) โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œ , V๐œ ).

This shows that p ๐œ,ฮ“ (๐ฟ 2๐‘‘ (๐‘‹ฮ“ )I ) โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I .

โŠ” โŠ“

Proof of Theorem 9.2.(3). Let (๐œˆ, ๐œ) โˆˆ HomC-alg (๐‘ (๐”ฉ C )/Ker(dโ„“ ๐œ ), C) ร— โˆจ ๐ฟ 2 ๐ป Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and ๐œ‘ โˆˆ (๐‘‰๐œ ) โŠ— ๐ฟ ๐‘‘ (๐‘Œฮ“ , V๐œ ; N๐œˆ )II . By Remark 7.1.(2), we have i ๐œ,ฮ“ (๐œ‘) โˆˆ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M ๐€ (๐œˆ, ๐œ ) ). If condition (B) holds, then by Theorem 9.2.(2) we have p ๐œ,ฮ“ ( ๐‘“ ) โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I for all ๐‘“ โˆˆ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ ; M ๐€ (๐œˆ, ๐œ ) )I . Moreover, by Remarks 7.1.(1) and 5.8 we have p ๐œ,ฮ“ ( ๐‘“ ) โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ). Therefore, (p ๐œ,ฮ“ ( ๐‘“ ), ๐œ‘) ๐ฟ 2 (๐‘‹ฮ“ ) = 0 by de๏ฌnition of ๐ฟ 2๐‘‘ (๐‘Œฮ“ , V๐œ )I . By duality (see (6.5)), we obtain ( ๐‘“ , i ๐œ,ฮ“ (๐œ‘)) ๐ฟ 2 (๐‘‹ฮ“ ) = 0. Since ๐‘“ is arbitrary, this shows that โŠ” โŠ“ i ๐œ,ฮ“ ( ๐œ‘) โˆˆ ๐ฟ 2๐‘‘ ( ๐‘‹ฮ“ ; M ๐€ (๐œˆ, ๐œ ) )II . Proof of Theorem 9.2.(4). Let (๐œ†, ๐œ) โˆˆ HomC-alg (D๐บ (๐‘‹), C) ร— Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and ๐‘“ โˆˆ ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† )II . By Remark 7.1.(1), we have

9.3 Proof of Theorem 9.2

83

p ๐œ,ฮ“ ( ๐‘“ ) โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) ). If condition (A) holds and ๐‘‹ is ๐บ-real spherical, then by Theorem 9.2.(1) and Remarks 7.1.(2) and 5.8 we have i ๐œ,ฮ“ (๐œ‘) โˆˆ ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )I for all ๐œ‘ โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )I . Therefore, ( ๐‘“ , i ๐œ,ฮ“ (๐œ‘)) ๐ฟ 2 (๐‘‹ฮ“ ) by de๏ฌnition of ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )I . By duality (see (6.5)), we obtain (p ๐œ,ฮ“ ( ๐‘“ ), ๐œ‘) ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) = 0. Since ๐œ‘ is arbitrary, this shows that p ๐œ,ฮ“ ( ๐‘“ ) โˆˆ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )II . โŠ” โŠ“ Proof of Theorem 9.2.(5). Suppose ๐‘‹ is ๐บ-real spherical and conditions (A) and (B) both hold, and let ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C). Applying (6.2) to the closed subspace ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† ) of the Hilbert space ๐ฟ 2 ( ๐‘‹ฮ“ ) , we have an isomorphism of Hilbert spaces ร•โŠ•  ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) โ‰ƒ i ๐œ,ฮ“ โ—ฆ p ๐œ,ฮ“ ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) . ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

For ๐‘– = I or II, it follows from Theorem 9.2.(2) or (4) that  p ๐œ,ฮ“ ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )๐‘– โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )๐‘– for all ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ). Therefore, ร•โŠ•  ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† )๐‘– โŠ‚ i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐‚ (๐œ†, ๐œ ) )๐‘– . ๐œ โˆˆDisc(๐ฟ๐พ /๐ฟ ๐ป )

Conversely, in view of Remark 5.8, it follows from Theorem 9.2.(1) or (3) that i ๐œ,ฮ“ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐‚ ( ๐œ†, ๐œ ) )๐‘– โŠ‚ ๐ฟ 2 ( ๐‘‹ฮ“ ; M๐œ† )๐‘– . The result follows. โŠ” โŠ“

Chapter 10

In๏ฌnite discrete spectrum of type II

Abstract Due to the lack of a comprehensive theory in pseudo-Riemannian geometry, it is unclear whether there exists an infinite ๐ฟ 2 spectrum for the Laplacian on compact pseudo-Riemannian manifolds in general. In this chapter, we establish the existence of an infinite ๐ฟ 2 spectrum for intrinsic differential operators on each compact standard locally homogeneous space ๐‘‹ฮ“ = ฮ“\๐บ/๐ป that is defined by a proper spherical action of a reductive subgroup ๐ฟ and a cocompact discrete subgroup ฮ“ of ๐ฟ. Furthermore, we extend the results to the case where ฮ“ is an arithmetic subgroup of ๐ฟ. This includes the situation where ๐‘‹ฮ“ is noncompact but of finite volume. We actually prove the existence of an infinite spectrum of type II, as introduced in Chapter 4. Our proof relies on the transfer maps of Chapter 7, which connect spectrum in pseudo-Riemannian locally homogeneous spaces and in vector bundles over Riemannian locally symmetric spaces. We have established Theorems 1.8 and 1.12.(2) in Chapter 6, and Theorems 1.9 and 2.3 in Chapter 7. We now prove Theorem 1.10 and Theorem 1.12.(3) by using Theorem 9.2 and the following classical fact in the Riemannian case (see Notation 4.8 with ๐”ค replaced by ๐”ฉ). Fact 10.1. Let ๐‘Œ = ๐ฟ/๐ฟ ๐พ be a Riemannian symmetric space, where ๐ฟ is a real reductive Lie group and ๐ฟ ๐พ a maximal compact subgroup. If ฮ“ is a torsion-free uniform lattice or a torsion-free arithmetic subgroup of ๐ฟ, then Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ ) is in๏ฌnite. We give a proof of Fact 10.1 for the sake of completeness. Proof. The usual Laplacian ฮ”๐‘Œฮ“ on the Riemannian manifold ๐‘Œฮ“ has an in๏ฌnite discrete spectrum, and for any eigenvalue ๐‘  of ฮ”๐‘Œฮ“ the corresponding eigenspace ๐‘Š๐‘  := Ker(ฮ”๐‘Œฮ“ โˆ’ ๐‘ ) โŠ‚ ๐ฟ 2 (๐‘Œฮ“ ) is ๏ฌnite-dimensional: this holds in the compact case (i.e. when ฮ“ is a uniform lattice in ๐ฟ) by general results on compact Riemannian manifolds, and in the arithmetic case by work of Borelโ€“Garland [BG83]. The center ๐‘ ( ๐”ฉ C ) of the enveloping algebra ๐‘ˆ ( ๐”ฉ C ) , acting on ๐ฟ 2 (๐‘Œฮ“ ) via dโ„“, preserves ๐‘Š๐‘  and ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_10

85

86

10 In๏ฌnite discrete spectrum of type II

thus de๏ฌnes a ๏ฌnite-dimensional commutative subalgebra of End(๐‘Š๐‘  ), which is generated by normal operators. Therefore, the action of ๐‘ (๐”ฉ C ) on ๐‘Š๐‘  can be jointly diagonalized and ๐‘Š๐‘  is the direct sum of joint eigenspaces of ๐‘ (๐”ฉ C ). Thus the fact that the discrete spectrum of ฮ”๐‘Œฮ“ is in๏ฌnite implies that Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ ) is in๏ฌnite. โŠ“ โŠ” Proposition 10.2 In the general setting 2.1, if conditions (Tf) and (B) hold, then Spec๐‘‘ (๐‘‹ฮ“ )II is in๏ฌnite for any torsion-free discrete subgroup ฮ“ of ๐ฟ for which Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ ) is in๏ฌnite. Proof. Let ฮ“ be a torsion-free discrete subgroup of ๐ฟ. Recall from Example 2.2 that when ๐œ is the trivial one-dimensional representation of ๐ฟ ๐พ , the map i ๐œ,ฮ“ of (2.3) is the pull-back ๐‘ž โˆ—ฮ“ of the projection map ๐‘ž ฮ“ : ๐‘‹ฮ“ โ†’ ๐‘Œฮ“ . Applying Remark 7.1.(2) with this trivial ๐œ, we see that if condition (Tf) holds, then for any ๐œˆ โˆˆ Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ ) there exists ๐œ† โˆˆ HomC-alg ( D๐บ ( ๐‘‹ ) , C) (depending on ๐œˆ) such that ๐‘ž โˆ—ฮ“ ๐ฟ 2 (๐‘Œฮ“ ; N๐œˆ ) โŠ‚ ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ). Recall that the whole discrete spectrum of the Riemannian locally symmetric space ๐‘Œฮ“ is of type II (Remark 4.6.(3)). If moreover condition (B) holds, then Theorem 9.2.(3) implies ๐‘ž โˆ—ฮ“ ๐ฟ 2 (๐‘Œฮ“ ; N๐œˆ ) โŠ‚ ๐‘ž โˆ—ฮ“ ๐ฟ 2๐‘‘ (๐‘Œฮ“ )II โŠ‚ ๐ฟ 2๐‘‘ (๐‘‹ฮ“ )II . Thus ๐œ† โˆˆ Spec๐‘‘ (๐‘‹ฮ“ )II . On the other hand, Remarks 7.1.(1) and 5.8.(2) imply that ๐œ† determines ๐œˆ. Therefore, if Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ ) is in๏ฌnite, then so is Spec๐‘‘ ( ๐‘‹ฮ“ )II . โŠ” โŠ“ Proof of Theorem 1.10 and Theorem 1.12.(3). By Propositions 5.10 and 5.11, conditions (Tf) and (B) are satis๏ฌed in the setting of Theorems 1.10 and 1.12. Proposition 10.2 then implies that Spec๐‘‘ (๐‘‹ฮ“ )II is in๏ฌnite whenever Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ ) is; this is the case whenever ฮ“ is cocompact or arithmetic in ๐ฟ by Fact 10.1. โŠ” โŠ“

Part III

Representation-theoretic description of the discrete spectrum

In this Part III, we give a proof of Theorem 2.7, which describes the discrete spectrum of type I and type II of standard pseudo-Riemannian locally homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐บ/๐ป with ฮ“ โŠ‚ ๐ฟ โŠ‚ ๐บ in terms of the representation theory of the reductive group ๐ฟ via the transfer map ๐€. For this we use the machinery developed in Part II, in particular Theorem 9.2. Before that, in Chapter 11 we ๏ฌnd an upper estimate (Proposition 11.4) for the set Spec ๐‘ (๐”คC ) (๐‘‹ฮ“ ) of joint eigenvalues of di๏ฌ€erential operators on ๐‘‹ฮ“ coming from the center ๐‘ (๐”คC ). We also give conjectural re๏ฌnements of this (Conjectures 11.2 and 11.3) as statements relating ๐ฟ 2 -eigenvalues and unitary representations. Evidence for these conjectures is provided in Section 11.6 in the special case of standard 3-dimensional anti-de Sitter manifolds ๐‘‹ฮ“ , for which we show that the discrete spectrum of type I (resp. type II) of the Laplacian โ–ก๐‘‹ฮ“ is nonpositive (resp. nonnegative). Theorem 2.7 is proved in Chapter 12, based on a partial solution (Theorem 11.9) to Conjecture 11.3.

Chapter 11

A conjectural picture

Abstract In this chapter, we formulate a general conjecture regarding the discrete spectrum on standard pseudo-Riemannian locally homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐บ/๐ป from the perspective of the unitary representation theory of the real reductive Lie group ๐บ. In contrast to the classical Riemannian context, the natural projection ฮ“\๐บ โ†’ ๐‘‹ฮ“ has a noncompact fiber ๐ป. This implies that the Hilbert space ๐ฟ 2 (๐‘‹ฮ“ ) cannot be realized in the Hilbert space ๐ฟ 2 (ฮ“\๐บ), on which the group ๐บ acts as a unitary representation by right translations. Nevertheless, we anticipate that the discrete spectrum for intrinsic differential operators on the standard quotients ๐‘‹ฮ“ is connected to ๐ป-distinguished irreducible unitary representations of ๐บ. We formulate a conjecture for both type I and type II spectrum in this regard. We support the conjecture with some evidence, including the example of standard 3-dimensional anti-de Sitter manifolds, using transfer maps. We begin in this chapter with some preliminary set-up and a general conjectural picture (expressed as Conjectures 11.2 and 11.3) which we shall prove in some special cases. More precisely, let ๐‘‹ = ๐บ/๐ป be a reductive homogeneous space and ฮ“ a discrete subgroup of ๐บ acting properly discontinuously and freely on ๐‘‹ (not necessarily standard in the sense of Section 1.1). Any eigenfunction ๐‘“ on ๐‘‹ฮ“ = ฮ“\๐บ/๐ป generates a representation ๐‘ˆ ๐‘“ of ๐บ in D โ€ฒ (๐‘‹). If ๐‘‹ is ๐บ-real spherical, then by Lemma 3.9, this representation is of ๏ฌnite length, and so it would be natural to study eigenfunctions ๐‘“ on ๐‘‹ฮ“ by the representation theory of ๐บ. However, even a basic question such as the unitarizability of ๐‘ˆ ๐‘“ for ๐ฟ 2 -eigenfunctions ๐‘“ on ๐‘‹ฮ“ is not clear. This is the object of Conjectures 11.2 and 11.3 below. Conjecture 11.3 is true in the case when ๐ป is compact (Theorem 11.9) or ๐‘‹ = ๐บ/๐ป is a group manifold (Proposition 11.11), as we shall prove in Sections 12.4 and 12.5, respectively. In Section 11.6 we examine in detail the case of the 3-dimensional anti-de Sitter space, by using the classi๏ฌcation of the unitary dual of SL(2, R), and we provide a proof Proposition 1.13. ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_11

89

90

11 A conjectural picture

11.1 ๐’(๐–ŒC )-in๏ฌnitesimal support for sets of admissible representations We start by introducing some general notation. b๐‘Ž๐‘‘ the set of in๏ฌnitesiLet ๐บ be a real linear reductive Lie group. We denote by ๐บ mal equivalence classes of irreducible admissible representations of ๐บ. Here we say that two admissible representations ๐œ‹, ๐œ‹ โ€ฒ are in๏ฌnitesimally equivalent if the underโ€ฒ are isomorphic. Recall that every (๐”ค, ๐พ)-module ๐‘‰ of lying (๐”ค, ๐พ)-modules ๐œ‹ ๐พ , ๐œ‹ ๐พ ๏ฌnite length always admits a globalization, i.e. a continuous representation ๐œ‹ of ๐บ on a complete, locally convex topological vector space such that ๐œ‹ ๐พ โ‰ƒ ๐‘‰. Moreover, b๐‘Ž๐‘‘ is naturally identi๏ฌed with ๐‘‰ is irreducible if and only if ๐œ‹ is (Fact 3.10). Thus ๐บ the set of equivalence classes of irreducible ( ๐”ค, ๐พ ) -modules. We note that a globalization of a (๐”ค, ๐พ)-module is not unique. However, if an admissible representation ๐œ‹ of ๐บ of ๏ฌnite length is realized on a Banach space, then the smooth representation ๐œ‹ โˆž on the space of all smooth vectors (see Section 3.9) is determined only by the underlying (๐”ค, ๐พ)-module. Such ๐œ‹ โˆž is characterized by a property of moderate growth of matrix coe๏ฌƒcients. By the Casselmanโ€“Wallach globalization theory [Wal88, II, Chap. 2], there is a natural equivalence between the category of (๐”ค, ๐พ)-modules ๐œ‹ ๐พ of ๏ฌnite length and the category of admissible (smooth) representations ๐œ‹ โˆž of ๐บ of ๏ฌnite length that are of moderate growth. b be the unitary dual of ๐บ, i.e. the set of unitary equivalence classes of Let ๐บ irreducible unitary representations of ๐บ. By a theorem of Harish-Chandra, there is a b and the set of irreducible unitarizable (๐”ค, ๐พ)-modules (see e.g. bijection between ๐บ b as a subset of ๐บ b๐‘Ž๐‘‘ . More directly, [Wal88, I, Th. 3.4.(2)]). Thus we may regard ๐บ โˆž b b the correspondence ๐œ‹ โ†ฆโ†’ ๐œ‹ yields an injection ๐บ โ†ฉโ†’ ๐บ ๐‘Ž๐‘‘ . Recall that Schurโ€™s lemma holds for irreducible admissible smooth representations: the center ๐‘ (๐”คC ) acts as scalars on the representation space ๐œ‹ โˆž for any b๐‘Ž๐‘‘ , yielding a C-algebra homomorphism ๐œ’ ๐œ‹ : ๐‘ (๐”คC ) โ†’ C called the ๐‘ (๐”คC )๐œ‹โˆˆ๐บ b๐‘Ž๐‘‘ , we denote by in๏ฌnitesimal character of ๐œ‹. For any subset ๐‘† of ๐บ Supp(๐‘†) โ‰ก Supp ๐‘ (๐”คC ) (๐‘†) โŠ‚ HomC-alg (๐‘ (๐”คC ), C)

(11.1)

the set of ๐‘ (๐”คC )-in๏ฌnitesimal characters ๐œ’ ๐œ‹ of elements ๐œ‹ โˆˆ ๐‘†. By the Langlands b๐‘Ž๐‘‘ , the ๏ฌber of the projection ๐บ b๐‘Ž๐‘‘ โ†’ Supp( ๐บ b๐‘Ž๐‘‘ ) classi๏ฌcation [KZ82, Lan89] of ๐บ is ๏ฌnite. For any closed subgroup ๐ป of ๐บ, we set   b๐‘Ž๐‘‘ ) ๐ป := ๐œ‹ โˆˆ ๐บ b๐‘Ž๐‘‘ : Hom๐บ ๐œ‹ โˆž , D โ€ฒ (๐บ/๐ป) โ‰  {0} (๐บ   b๐‘Ž๐‘‘ : Hom๐บ ๐œ‹ โˆž , ๐ถ โˆž (๐บ/๐ป) โ‰  {0} = ๐œ‹โˆˆ๐บ  b๐‘Ž๐‘‘ : (๐œ‹ โˆ’โˆž ) ๐ป โ‰  {0} , = ๐œ‹โˆˆ๐บ where (๐œ‹ โˆ’โˆž ) ๐ป is the set of ๐ป-invariant elements in the space of distribution vectors b ๐ป := ๐บ b โˆฉ (๐บ b๐‘Ž๐‘‘ ) ๐ป . If ๐ป is unimodular, then ๐บ/๐ป of ๐œ‹ (see Section 3.8), and ( ๐บ) carries a ๐บ-invariant Radon measure and ๐บ acts on ๐ฟ 2 (๐บ/๐ป) as a unitary repre-

11.2 A conjecture: ๐ฟ 2 -eigenfunctions and unitary representations

91

b such that sentation. As in Section 2.4, we denote by Disc(๐บ/๐ป) the set of ๐œ‹ โˆˆ ๐บ 2 Hom๐บ (๐œ‹, ๐ฟ (๐บ/๐ป)) โ‰  {0}. Clearly, b ๐ป โŠ‚ (๐บ b๐‘Ž๐‘‘ ) ๐ป . Disc(๐บ/๐ป) โŠ‚ ( ๐บ)

(11.2)

Since the action of ๐‘ ( ๐”คC ) on ๐ถ โˆž ( ๐บ /๐ป ) factors through the homomorphism b๐‘Ž๐‘‘ ) ๐ป ): dโ„“ : ๐‘ (๐”คC ) โ†’ D๐บ (๐‘‹) of (3.1), we have the following constraint on Supp(( ๐บ  b๐‘Ž๐‘‘ ) ๐ป โŠ‚ HomC-alg ( ๐‘ ( ๐”คC )/Ker ( dโ„“ ) , C) . (11.3) Supp ( ๐บ b ๐ป coincides with the set of ๐œ‹ โˆˆ ๐บ b such Remark 11.1 If ๐ป is compact, then ( ๐บ) b๐ป = that ๐œ‹ ๐ป โ‰  {0}, by the Frobenius reciprocity. Furthermore, Disc(๐บ/๐ป) = ( ๐บ) b๐‘Ž๐‘‘ ) ๐ป if ๐บ is compact. On the other hand, for noncompact ๐บ, the inclusions in (๐บ (11.2) are strict in general. For instance, if ๐บ/๐ป is a reductive symmetric space, b ๐ป contains then the set Disc(๐บ/๐ป) is countable (possibly empty), whereas ( ๐บ) continuously many elements [Osh79].

11.2 A conjecture: ๐‘ณ 2 -eigenfunctions and unitary representations We now assume that ๐ป is a reductive subgroup of the real reductive Lie group ๐บ. We consider a discrete subgroup ฮ“ of ๐บ acting properly discontinuously and freely on ๐‘‹ = ๐บ/๐ป (not necessarily standard in the sense of Section 1.1). We assume ๐ป to be noncompact and ฮ“ to be in๏ฌnite. Then ๐ฟ 2 (๐‘‹ฮ“ ) is not a subspace of ๐ฟ 2 (๐‘‹) or ๐ฟ 2 (ฮ“\๐บ) on which ๐บ acts unitarily. Nevertheless, when ๐‘‹ is ๐บ-real spherical, we expect ๐ฟ 2 -eigenfunctions on ๐‘‹ฮ“ to be related to irreducible unitary representations of ๐บ, as follows. For ๐‘“ โˆˆ D โ€ฒ (๐‘‹ฮ“ ), we denote by ๐‘ˆ ๐‘“ the minimal ๐บ-invariant closed subspace of D โ€ฒ (๐‘‹) containing ๐‘ โˆ—ฮ“ ๐‘“ , where ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ is the natural projection. We know from Lemma 3.9 that if ๐‘“ โˆˆ D โ€ฒ (๐‘‹ฮ“ ; M๐œ† ) for some ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C), then ๐‘ˆ ๐‘“ is of ๏ฌnite length as a ๐บ-module. Conjecture 11.2 Let ๐‘‹ = ๐บ/๐ป be a reductive homogeneous space which is ๐บ-real spherical, and ฮ“ a discrete subgroup of ๐บ acting properly discontinuously and freely on ๐‘‹. For any ๐œ† โˆˆ HomC-alg (D๐บ (๐‘‹), C) and any nonzero ๐‘“ โˆˆ ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ), the representation ๐‘ˆ ๐‘“ of ๐บ contains an irreducible unitary representation as a subrepresentation. Conjecture 11.2 concerns the unitarity of representations. We now reformulate it in terms of spectrum, by using the ๐‘ (๐”คC )-in๏ฌnitesimal character instead of the Calgebra D๐บ (๐‘‹) of invariant di๏ฌ€erential operators. The conjectural statement (11.4) below asserts that any joint ๐ฟ 2 -eigenvalue of dโ„“(๐‘ (๐”คC )) should occur as the ๐‘ (๐”คC )in๏ฌnitesimal character of some irreducible unitary representation of ๐บ. We also re๏ฌne it by considering the type (I or II) of the spectrum. Recall Notation 4.8 for Spec๐‘‘๐‘ (๐”คC ) ( ๐‘‹ฮ“ )๐‘– .

92

11 A conjectural picture

Conjecture 11.3 Let ๐‘‹ = ๐บ/๐ป be a reductive homogeneous space which is ๐บ-real spherical. For any discrete subgroup ฮ“ of ๐บ acting properly discontinuously and freely on ๐‘‹, b (11.4) Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) โŠ‚ Supp( ๐บ). More precisely, b ๐ป ), (0) Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) โŠ‚ Supp(( ๐บ) ๐‘ (๐”คC ) (๐‘‹ฮ“ )I โŠ‚ Supp(Disc(๐บ/๐ป)), (1) Spec๐‘‘ ๐‘ (๐”คC ) b ๐ป โˆ– Disc(๐บ/๐ป)). (๐‘‹ฮ“ )II โŠ‚ Supp(( ๐บ) (2) Spec๐‘‘ Note that (1) is clear from the definitions, so the point of the conjecture is (0) and (2). Statement (0) is nontrivial because ๐‘ โˆ— (๐ฟ 2 (๐‘‹ฮ“ )) โŠ„ ๐ฟ 2 (ฮ“\๐บ), and statement (2) is nontrivial because ๐‘ โˆ—ฮ“ (๐ฟ 2 (๐‘‹ฮ“ )) โŠ„ ๐ฟ 2 (๐‘‹). Here ๐‘ : ฮ“\๐บ โ†’ ๐‘‹ฮ“ and ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ are the natural projections. In the sequel, we provide evidence for Conjecture 11.3.(0): โ€ข a weaker assertion holds by dropping unitarity (Proposition 11.4); โ€ข it is true if Conjecture 11.2 is (Proposition 11.5); โ€ข it is compatible with the essential self-adjointness of the Laplacian (Question 1.1.(c)), see Conjecture 11.6 below; โ€ข it holds if ๐ป is compact (Theorem 11.9) or if ๐บ/๐ป is a group manifold (Proposition 11.11). Proposition 11.4 Let ๐‘‹ = ๐บ/๐ป be a reductive homogeneous space which is ๐บ-real spherical. For any discrete subgroup ฮ“ of ๐บ acting properly discontinuously and freely on ๐‘‹,  b๐‘Ž๐‘‘ ) ๐ป . Spec ๐‘ (๐”คC ) (๐‘‹ฮ“ ) โŠ‚ Supp ( ๐บ In particular,  b๐‘Ž๐‘‘ ) ๐ป . Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) โŠ‚ Supp ( ๐บ Proof. Suppose ๐œˆ โˆˆ Spec ๐‘ (๐”คC ) (๐‘‹ฮ“ ). This means there exists a nonzero ๐‘“ โˆˆ D โ€ฒ (๐‘‹ฮ“ ; N๐œˆ ). Recall the natural projection ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ . Since the pull-back ๐‘ โˆ—ฮ“ : D โ€ฒ (๐‘‹ฮ“ ) โ†’ D โ€ฒ (๐‘‹) preserves weak solutions to (N๐œˆ ), we have ๐‘ โˆ—ฮ“ ๐‘“ โˆˆ D โ€ฒ (๐‘‹; N๐œˆ ). Let ๐‘ˆ ๐‘“ be the minimal ๐บ-invariant closed subspace of D โ€ฒ (๐‘‹; N๐œˆ ) containing ๐‘ โˆ—ฮ“ ๐‘“ . As a ๐บ-module, ๐‘ˆ ๐‘“ is of finite length by Lemma 3.9. In particular, there exists an b๐‘Ž๐‘‘ ) ๐ป , we irreducible submodule ๐œ‹ ๐‘“ of ๐‘ˆ ๐‘“ that is realized in D โ€ฒ (๐‘‹). Since ๐œ‹ ๐‘“ โˆˆ ( ๐บ b๐‘Ž๐‘‘ ) ๐ป ). conclude ๐œˆ โˆˆ Supp(( ๐บ โŠ” โŠ“ Proposition 11.4 shows that the set Spec ๐‘ (๐”คC ) (๐‘‹ฮ“ ), which is originally defined as a subset of the algebraic variety HomC-alg (๐‘ (๐”คC ), C) of dimension equal to rank ๐”คC , b๐‘Ž๐‘‘ ) ๐ป ) of dimension rank ๐‘‹ โ‰ค rank ๐”คC is in fact contained in the subvariety Supp(( ๐บ if ๐‘‹C = ๐บ C /๐ปC is ๐บ C -spherical. We refer to Table 1.1 for examples with rank ๐‘‹ < rank ๐”คC . The proof of Proposition 11.4 also shows the following. Proposition 11.5 If ๐‘‹C is ๐บ C -spherical, then Conjecture 11.2 implies Conjecture 11.3.(0).

11.3 Real spectrum

93

Proof. Suppose ๐œˆ โˆˆ Spec ๐‘ (๐”คC ) (๐‘‹ฮ“ ). For a nonzero ๐‘“ โˆˆ ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ ), we consider the ๐บ-module ๐‘ˆ ๐‘“ โŠ‚ D โ€ฒ (๐‘‹; N๐œˆ ) as in the proof of Proposition 11.4. By de๏ฌnition, ๐‘ (๐”คC ) acts on ๐‘ˆ ๐‘“ as scalars via dโ„“. Since ๐‘‹C is ๐บ C -spherical, D๐บ (๐‘‹) is ๏ฌnitely generated as a dโ„“(๐‘ (๐”คC ))-module (see Section 3.3) and we can enlarge ๐‘ˆ ๐‘“ to a D๐บ (๐‘‹)-module ๐‘ˆหœ ๐‘“ as in the proof of Lemma 5.19.(2); then ๐‘ˆหœ ๐‘“ is also a ๐บ-module. We note that ๐‘ˆ ๐‘“ = ๐‘ˆหœ ๐‘“ if dโ„“ : ๐‘ (๐”คC ) โ†’ D๐บ (๐‘‹) is surjective. Since the action of D๐บ (๐‘‹) on ๐‘ˆหœ ๐‘“ factors through the action of a ๏ฌnite-dimensional commutative algebra, there is a joint eigenfunction โ„Ž โˆˆ ๐‘ˆหœ ๐‘“ for the action of D๐บ (๐‘‹). If Conjecture 11.2 is true, then the ๐บ-module ๐‘ˆหœ ๐‘“ contains an irreducible subrepresentation ๐œ‹ โ„Ž of ๐บ which is b ๐ป . Since ๐‘ (๐”คC ) acts on the enlarged space ๐‘ˆหœ ๐‘“ by unitary. By construction, ๐œ‹ โ„Ž โˆˆ ( ๐บ) b) ๐ป ) . โŠ” โŠ“ the same scalar ๐œˆ, we conclude that ๐œˆ โˆˆ Supp (( ๐บ

11.3 Real spectrum The spectrum of any self-adjoint operator is real. Therefore, an a๏ฌƒrmative answer to Question 1.1.(c) on the self-adjoint extension of (โ–ก๐‘‹ฮ“ , ๐ถ๐‘โˆž (๐‘‹ฮ“ )) would imply the following. Conjecture 11.6 For any reductive symmetric space ๐‘‹ = ๐บ/๐ป and any discrete subgroup ฮ“ of ๐บ acting properly discontinuously and freely on ๐‘‹, we have Spec๐‘‘ ( โ–ก๐‘‹ฮ“ ) โŠ‚ R. Proposition 11.7 If rank ๐‘‹ = 1, then Conjecture 11.3.(0) (hence Conjecture 11.2) implies Conjecture 11.6. Proof. Let ๐‘‹ = ๐บ/๐ป be a reductive symmetric space and ฮ“ a discrete subgroup of ๐บ acting properly discontinuously and freely on ๐‘‹. The Casimir operator ๐ถ๐บ โˆˆ ๐‘ (๐”คC ) acts as a real scalar on any irreducible unitary representation on ๐บ in the space of smooth vectors (see Parthasarathy [Par80]), hence also in the space of distribution vectors. On the other hand, ๐ถ๐บ acts as the Laplacian โ–ก๐‘‹ on ๐‘‹ = ๐บ/๐ป. If rank ๐‘‹ = 1, then the C-algebra D๐บ (๐‘‹) is generated by dโ„“(๐ถ๐บ ), and so the inclusion b ๐ป ) implies Spec๐‘‘ (โ–ก๐‘‹ฮ“ ) โŠ‚ R. โŠ” โŠ“ Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) โŠ‚ Supp(( ๐บ) Remark 11.8 As in Section 1.4, let (โ–ก๐‘‹ฮ“ , S) be the closure of (โ–ก๐‘‹ฮ“ , ๐ถ๐‘โˆž (๐‘‹ฮ“ )), and (โ–กโˆ—๐‘‹ฮ“ , S โˆ— ) the adjoint of (โ–ก๐‘‹ฮ“ , S), so that ๐ถ๐‘โˆž (๐‘‹ฮ“ ) โŠ‚ S โŠ‚ S โˆ— โŠ‚ ๐ฟ 2 (๐‘‹ฮ“ ). Since (โ–ก๐‘‹ฮ“ , ๐ถ๐‘โˆž (๐‘‹ฮ“ )) is a symmetric operator, if โ–ก๐‘‹ฮ“ ๐‘“ = ๐œ† ๐‘“ for some nonzero ๐‘“ โˆˆ S, then ๐œ† โˆˆ R: indeed, writing ๐‘“ = lim ๐‘— ๐‘“ ๐‘— and โ–ก๐‘‹ฮ“ = lim ๐‘— โ–ก๐‘‹ฮ“ where ๐‘“ ๐‘— โˆˆ ๐ถ๐‘โˆž (๐‘‹ฮ“ ), we have ๐œ†( ๐‘“ , ๐‘“ ) = (โ–ก๐‘‹ฮ“ ๐‘“ , ๐‘“ ) = lim (โ–ก๐‘‹ฮ“ ๐‘“ , ๐‘“ ๐‘— ) = lim ( ๐‘“ , โ–ก๐‘‹ฮ“ ๐‘“ ๐‘— ) = ( ๐‘“ , โ–ก๐‘‹ฮ“ ๐‘“ ) = ๐œ†( ๐‘“ , ๐‘“ ). ๐‘—

๐‘—

However, our de๏ฌnition of Spec๐‘‘ (โ–ก๐‘‹ฮ“ ) (see the beginning of Chapter 1) uses the larger space S โˆ— , and the above argument does not imply Spec๐‘‘ ( โ–ก๐‘‹ฮ“ ) โŠ‚ R.

94

11 A conjectural picture

In Chapter 6 we proved (Theorems 1.8 and 1.12.(2)) that the pseudo-Riemannian Laplacian โ–ก๐‘‹ฮ“ extends uniquely to a self-adjoint operator on ๐ฟ 2 (๐‘‹ฮ“ ) in the main setting 1.5 and in the group manifold case, and so Conjecture 11.6 holds in these settings.

11.4 The case of compact ๐‘ฏ Conjecture 11.3 is true for compact ๐ป, as given by the following theorem, which will be proved in Section 12.4. Theorem 11.9 Let ๐บ be a real reductive Lie group and ๐ป a compact subgroup of ๐บ such that ๐‘‹ = ๐บ/๐ป is ๐บ-real spherical. For any torsion-free discrete subgroup ฮ“ of ๐บ,  b๐ป , Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) = Supp Disc(ฮ“\๐บ) โˆฉ ( ๐บ)

 Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ )I = Supp Disc(ฮ“\๐บ) โˆฉ Disc(๐บ/๐ป) ,

 b) ๐ป โˆ– Disc ( ๐บ /๐ป )) . Spec๐‘‘๐‘ (๐”คC ) ( ๐‘‹ฮ“ )II = Supp Disc ( ฮ“\๐บ ) โˆฉ (( ๐บ Let us now state a variant of Theorem 11.9, involving a maximal compact subgroup ๐พ of ๐บ instead of ๐ป. The Riemannian symmetric space ๐บ/๐พ is clearly ๐บ-real spherical. We use the notation of Section 9.1 with ๐‘Œ = ๐บ/๐พ instead of ๐ฟ/๐ฟ ๐พ . In parb we de๏ฌne a Hermitian vector bundle V๐œ := ฮ“\๐บ ร—๐พ ๐‘‰๐œ over ticular, for (๐œ, ๐‘‰๐œ ) โˆˆ ๐พ, ๐‘Œฮ“ = ฮ“\๐บ/๐พ and de๏ฌne Spec๐‘‘๐‘ (๐”คC ) (๐‘Œฮ“ , V๐œ )๐‘– for ๐‘– = I or II and Spec๐‘‘๐‘ (๐”คC ) (๐‘Œฮ“ , V๐œ ) similarly to Notation 9.1 for ๐‘Œฮ“ = ฮ“\๐บ/๐พ. We also de๏ฌne the following two subsets b of ๐บ: b( ๐œ ) is the set of ๐œ— โˆˆ ๐บ b such that [ ๐œ— | ๐พ : ๐œ ] โ‰  0, โ€ข ๐บ b(๐œ) that are Harish-Chandra discrete series โ€ข Disc(๐บ/๐พ; ๐œ) is the set of ๐œ— โˆˆ ๐บ representations for ๐บ. With this notation, we shall prove the following in Section 12.4. Theorem 11.10 Let ๐บ be a real reductive Lie group and ๐พ a maximal compact b subgroup of ๐บ. For any torsion-free discrete subgroup ฮ“ of ๐บ and any (๐œ, ๐‘‰๐œ ) โˆˆ ๐พ, setting ๐‘Œฮ“ := ฮ“\๐บ/๐พ, we have  b(๐œ) , Spec๐‘‘๐‘ (๐”คC ) (๐‘Œฮ“ , V๐œ ) = Supp ๐‘ (๐”คC ) Disc(ฮ“\๐บ) โˆฉ ๐บ

 Spec๐‘‘๐‘ (๐”คC ) (๐‘Œฮ“ , V๐œ )I = Supp ๐‘ (๐”คC ) Disc(ฮ“\๐บ) โˆฉ Disc(๐บ/๐พ; ๐œ) ,

 b( ๐œ ) โˆ– Disc ( ๐บ /๐พ; ๐œ )) . Spec๐‘‘๐‘ (๐”คC ) (๐‘Œฮ“ , V๐œ )II = Supp ๐‘ (๐”คC ) Disc ( ฮ“\๐บ ) โˆฉ ( ๐บ

Theorem 11.10 actually implies Theorem 11.9. Indeed, let ๐ป be a compact subgroup of ๐บ such that ๐‘‹ = ๐บ /๐ป is ๐บ-real spherical. Consider a maximal compact

11.5 The case of group manifolds

95

subgroup ๐พ of ๐บ containing ๐ป. Then the ๏ฌbration ๐พ/๐ป โ†’ ๐‘‹ฮ“ โ†’ ๐‘Œฮ“ induces a decomposition ร•โŠ• ๐ฟ 2 (๐‘‹ฮ“ ) = (๐‘‰๐œโˆจ ) ๐ป โŠ— ๐ฟ 2 (๐‘Œฮ“ , V๐œ ) ๐œ โˆˆDisc(๐พ/๐ป )

(see (6.2) with (๐บ, ๐พ, ๐ป) instead of (๐ฟ, ๐ฟ ๐พ , ๐ฟ ๐ป )) and bijections ร˜ Spec๐‘‘๐‘ (๐”คC ) (๐‘Œฮ“ , V๐œ )๐‘– Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ )๐‘– = ๐œ โˆˆDisc(๐พ/๐ป )

for ๐‘– = I or II and Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) =

ร˜ ๐œ โˆˆDisc(๐พ / ๐ป )

Spec๐‘‘๐‘ (๐”คC ) (๐‘Œฮ“ , V๐œ ).

Since b๐ป= ( ๐บ)

ร˜

b(๐œ) ๐บ

and

Disc(๐บ/๐ป) =

ร˜

Disc(๐บ/๐พ; ๐œ),

๐œ โˆˆDisc(๐พ/๐ป )

๐œ โˆˆDisc(๐พ/๐ป )

we see that Theorem 11.10 implies Theorem 11.9.

11.5 The case of group manifolds Conjecture 11.3 is also true in the case that ๐‘‹ = ๐บ/๐ป is a group manifold ( โ€ต ๐บ ร— โ€ต ๐บ)/Diag( โ€ต ๐บ) and ฮ“ โŠ‚ โ€ต ๐บ ร— โ€ต ๐พ as in Example 1.3. In this case the C-algebra homomorphism dโ„“ : ๐‘ ( โ€ต ๐”คC ) โ†’ D๐บ (๐‘‹) of (3.1) is bijective, and so the statement is as follows. Proposition 11.11 Let ๐‘‹ = ๐บ/๐ป be a group manifold ( โ€ต ๐บร—โ€ต ๐บ)/Diag( โ€ต ๐บ), where โ€ต ๐บ is a real linear reductive Lie group contained in a connected complexi๏ฌcation โ€ต ๐บ C . We identify the C-algebra D๐บ ( ๐‘‹ ) with ๐‘ ( โ€ต ๐”คC ) via dโ„“. 1. For any discrete subgroup ฮ“ of ๐บ = โ€ต ๐บ ร— โ€ต ๐บ acting properly discontinuously and freely on ๐‘‹, Spec๐‘‘ (๐‘‹ฮ“ )I โŠ‚ Supp(Disc( โ€ต ๐บ)). 2. Moreover, in the standard case where ฮ“ โŠ‚ ๐ฟ := โ€ต ๐บ ร— โ€ต ๐พ, Spec๐‘‘ (๐‘‹ฮ“ ) โŠ‚ Supp( โ€ตc ๐บ), ๐บ โˆ– Disc( โ€ต ๐บ)). Spec๐‘‘ (๐‘‹ฮ“ )II โŠ‚ Supp( โ€ตc Statement (1) is immediate from the de๏ฌnition. Statement (2) will be proved in Section 12.5, by reducing to Theorem 11.10 and using Theorem 9.2. Remark 11.12 In contrast to the case โ€ต ๐บ = SL(2, R) (see Proposition 1.13), in general Spec๐‘‘ ( ๐‘‹ฮ“ )I and Spec๐‘‘ ( ๐‘‹ฮ“ )II may have nonempty intersection for ๐‘‹ =

96

11 A conjectural picture

( โ€ต ๐บ ร— โ€ต ๐บ)/Diag( โ€ต ๐บ). The proof of Proposition 1.13 (see Section 11.6 just below) uses the fact that for โ€ต ๐บ = SL(2, R), irreducible unitary representations having the same in๏ฌnitesimal character as the trivial one-dimensional representation are HarishChandraโ€™s discrete series representations; this does not hold for more general real reductive groups. In fact, the unitarization of Zuckermanโ€™s derived functor modules ๐ด๐”ฎ (0) for ๐œƒ-stable parabolic subalgebra ๐”ฎ (โŠ‚ ๐”คC ) are such examples if the normalizer of ๐”ฎ in ๐บ is noncompact [Vog84].

11.6 The example of ๐‘ฟ = AdS3 : proof of Proposition 1.13 Let ๐‘‹ be the 3-dimensional anti-de Sitter space AdS3 = ๐บ/๐ป = SO(2, 2)/SO(2, 1) โ‰ƒ (SL(2, R) ร— SL(2, R))/Diag(SL(2, R)). Then rank ๐‘‹ = 1, and so the C-algebra D๐บ (๐‘‹) of ๐บ-invariant di๏ฌ€erential operators on ๐‘‹ is generated by the Laplacian โ–ก๐‘‹ . Thus, for any discrete subgroup ฮ“ of SO(2, 2) acting properly discontinuously and freely on ๐‘‹, we may identify Spec๐‘‘ (๐‘‹ฮ“ ) with the discrete spectrum of the Laplacian โ–ก๐‘‹ฮ“ . We already know from Theorem 1.10 (proved in Chapter 10) that Spec๐‘‘ (๐‘‹ฮ“ )II is in๏ฌnite whenever ฮ“ is cocompact or arithmetic in ๐ฟ. We now prove the other statements of Proposition 1.13 using Proposition 11.11. For this, recall that the irreducible unitary representations of โ€ต ๐บ := SL(2, R) are classi๏ฌed up to unitary equivalence in the following list: 1 trivial one-dimensional representation, ๐œ‹๐‘–๐œˆ, ๐›ฟ unitary principal series representations (๐œˆ โ‰ฅ 0 for ๐›ฟ = +, or ๐œˆ > 0 for ๐›ฟ = โˆ’), ๐œ‹๐œ† complementary series representations (0 < ๐œ† < 1), ๐œ›๐‘›+ holomorphic discrete series representations (๐‘› โˆˆ N+ ), ๐œ›๐‘›โˆ’ antiholomorphic discrete series representations (๐‘› โˆˆ N+ ), ๐œ›0+ limit of holomorphic discrete series representations, ๐œ›0โˆ’ limit of antiholomorphic discrete series representations. We use the following parametrization: the smooth representations 1, ๐œ‹๐‘–๐œˆ, ๐›ฟ , ๐œ‹๐œ† , ๐œ›๐‘›ยฑ , and ๐œ›0ยฑ are subrepresentations of the unnormalized principal series representations ๐ถ โˆž ( โ€ต ๐บ/โ€ต ๐‘ƒ, L ๐‘ , ๐œ€ ) of โ€ต ๐บ = SL(2, R) with (๐‘ , ๐œ€) = (0, +), (1 + ๐‘–๐œˆ, ๐›ฟ), (๐œ†, +), (๐‘› + 1, (โˆ’1) ๐‘›+1 ), and (1, โˆ’1), respectively. Here L ๐‘ , ๐œ€ is a โ€ต ๐บ-equivariant line bundle over the real flag manifold โ€ต ๐บ/โ€ต ๐‘ƒ associated to a one-dimensional representation of  the parabolic subgroup โ€ต ๐‘ƒ := ๐‘Ž0 ๐‘Ž๐‘โˆ’1 : ๐‘Ž โˆˆ Rโˆ— , ๐‘ โˆˆ R given by 

  ๐‘  ๐‘Ž ๐‘ |๐‘Ž| for ๐œ€ = +, โ†ฆ โ†’ โˆ’ |๐‘Ž| ๐‘  sgn(๐‘Ž) for ๐œ€ = โˆ’. 0 ๐‘Ž โˆ’1

We normalize the Harish-Chandra isomorphism

11.6 The example of ๐‘‹ = AdS3 : proof of Proposition 1.13

HomC-alg (๐‘ ( โ€ต ๐”คC ), C) โ‰ƒ C/(Z/2Z),

97

๐œ’๐œ† โ†โ†’ ๐œ†

so that the infinitesimal character of the trivial one-dimensional representation 1 is equal to ๐œ’๐œ† for ๐œ† = 1 โˆˆ C/(Z/2Z). Then the infinitesimal character of ๐ถ โˆž ( โ€ต ๐บ/โ€ต ๐‘ƒ, L ๐‘ , ๐œ€ ) is ๐‘  โˆ’ 1 โˆˆ C/(Z/2Z), and therefore the infinitesimal characters of ๐œ‹๐‘–๐œˆ, ๐›ฟ , ๐œ‹๐œ† , and ๐œ›๐‘›ยฑ are given by ๐‘–๐œˆ, ๐œ† โˆ’ 1, and ๐‘›, respectively. As subsets of C/(Z/2Z), we have  Supp Disc( โ€ต ๐บ) = {๐‘› : ๐‘› โˆˆ N+ },  Supp โ€ตc ๐บ โˆ– Disc ( โ€ต ๐บ ) = {๐‘–๐œˆ : ๐œˆ โ‰ฅ 0} โˆช { ๐œ‡ : 0 โ‰ค ๐œ‡ โ‰ค 1} . Therefore, by Proposition 11.11, Spec๐‘‘ (๐‘‹ฮ“ )I โŠ‚ {๐‘› : ๐‘› โˆˆ N+ } for any discrete subgroup ฮ“ of ๐บ = SO(2, 2) acting properly discontinuously and freely on ๐‘‹, and Spec๐‘‘ (๐‘‹ฮ“ )II โŠ‚ {๐‘–๐œˆ : ๐œˆ โ‰ฅ 0} โˆช {๐œ‡ : 0 โ‰ค ๐œ‡ โ‰ค 1} whenever ฮ“ โŠ‚ ๐ฟ := U(1, 1). Let ๐ต ๐พ be the Killing form on ๐”ฐ๐”ฉ(2, R). We use 2๐ต ๐พ to normalize the Lorentzian metric on ๐‘‹ โ‰ƒ SL(2, R), the Casimir element ๐ถ โˆˆ ๐‘ (๐”ฐ๐”ฉ(2, C)), and the Laplaceโ€“ Beltrami operator โ–ก๐‘‹ . Then the norm of the root vector is equal to one, and ๐œ’๐œ† (๐ถ) = 1 2 4 ( ๐œ† โˆ’ 1) . Therefore, via the bijection โˆผ

HomC-alg (๐‘ ( โ€ต ๐”คC ), C)(โ‰ƒ C/(Z/2Z)) โˆ’โ†’ ๐œ’๐œ†

C 1 โ†ฆ โ†’ ๐œ’๐œ† (๐ถ) = (๐œ†2 โˆ’ 1), โˆ’ 4

we have Spec๐‘‘ (๐‘‹ฮ“ )I โŠ‚

n1

o n1 o (๐‘›2 โˆ’ 1) : ๐‘› โˆˆ N+ = ๐‘˜ (๐‘˜ + 2) : ๐‘˜ โˆˆ N 4 4

for any discrete subgroup ฮ“ of ๐บ = SO(2, 2) acting properly discontinuously and freely on ๐‘‹, and Spec๐‘‘ (๐‘‹ฮ“ )II โŠ‚ (โˆ’โˆž, 0] whenever ฮ“ โŠ‚ ๐ฟ = U(1, 1). By [KK16, Th. 3.8 & 9.9], the set Spec๐‘‘ (๐‘‹ฮ“ )I is in๏ฌnite as soon as ฮ“ is sharp (a strong form of proper discontinuity, see [KK16, Def. 4.2]); this includes the case that ๐‘‹ฮ“ is standard; more precisely, there exists ๐‘˜ 0 โˆˆ N such that n1 o Spec๐‘‘ (๐‘‹ฮ“ )I โŠƒ ๐‘˜ (๐‘˜ + 2) : ๐‘˜ โˆˆ N, ๐‘˜ โ‰ฅ ๐‘˜ 0 4 if โˆ’1 โˆ‰ ฮ“, and the same holds with N replaced by 2N if โˆ’1 โˆˆ ฮ“.

98

11 A conjectural picture

Finally, 0 is contained in Spec๐‘‘ (๐‘‹ฮ“ )II if and only if the trivial one-dimensional representation 1 contributes to the ๐ฟ 2 -spectrum, which happens if and only if the constant function on ๐‘‹ฮ“ is square-integrable (see Proposition 12.11 below for details), namely, vol ( ๐‘‹ฮ“ ) < +โˆž. This completes the proof of Proposition 1.13. Remark 11.13 We may compare the example of ๐‘‹ = AdS3 with the classical Riemannian example of ๐‘‹ = ๐บ/๐ป = SL(2, R)/SO(2). In the latter case, Spec๐‘‘ (๐‘‹ฮ“ )I = โˆ… and Spec๐‘‘ (๐‘‹ฮ“ )II โŠ‚ (โˆ’โˆž, 0] for any discrete subgroup ฮ“ of ๐บ (see Remark 1.4), and Selbergโ€™s 14 Conjecture asserts that Spec๐‘‘ (๐‘‹ฮ“ )II โŠ‚ (โˆ’โˆž, โˆ’1/4] if ฮ“ is a congruence subgroup, namely, complementary series representations ๐œ‹๐œ† do not contribute to the discrete spectrum.

Chapter 12

The discrete spectrum in terms of group representations

Abstract This last chapter is devoted to the proof of the description of the discrete spectrum of type I and type II of standard pseudo-Riemannian homogeneous spaces ๐‘‹ฮ“ = ฮ“\๐บ/๐ป in terms of the representation theory of the reductive subgroup ๐ฟ acting properly and spherically on the homogeneous space ๐‘‹ = ๐บ/๐ป. The description is given by the transfer maps of Chapter 7. These maps can be calculated explicitly, and connect spectrum in pseudo-Riemannian locally homogeneous spaces and in vector bundles over Riemannian locally symmetric spaces. The proof of the description of the discrete spectrum in ๐‘‹ฮ“ is derived from a proof of an analogous statement to the conjecture in Chapter 11, which holds for vector bundles over Riemannian locally symmetric spaces. The goal of this chapter is to prove Theorem 2.7, in the main setting 1.5. For this we provide a proof of Theorems 11.9 and 11.10, which describe the discrete spectrum of type I and II in terms of representations of ๐บ into spaces of functions (or of sections of vector bundles) on the two ๐บ-spaces ฮ“\๐บ and ๐‘‹ = ๐บ/๐ป. Recall that conditions (Tf), (A), (B) hold in the setting 1.5 (Proposition 5.10); therefore Theorem 2.7 follows from Corollary 9.3 and from Theorem 11.10 with (๐บ, ๐ป, ๐พ) replaced by (๐ฟ, ๐ฟ ๐ป , ๐ฟ ๐พ ). Recall from Section 4.1 that the definition of discrete spectrum of type I builds on the ๐ฟ 2 -analysis of ๐‘‹, whereas the definition of type II relies on the ๐ฟ 2 -inner product on ๐‘‹ฮ“ , which is not related in general to that of ๐‘‹. A key idea in the proof of Theorem 11.9 is to introduce a ๐บ-intertwining operator ๐‘‡ ๐‘“ โ‰ก ๐‘‡ (ยท, ๐‘ โˆ— ๐‘“ ) from a ๐บ-submodule of D โ€ฒ (ฮ“\๐บ) into a ๐บ-submodule of D โ€ฒ (๐‘‹) for every tempered (Definition 12.2) joint eigenfunction ๐‘“ โˆˆ D โ€ฒ (๐‘‹ฮ“ ; N๐œˆ ) (see Lemma 12.3), and to study carefully the dependence of the intertwining operator ๐‘‡ ๐‘“ on the properties of ๐‘“ such as being an eigenfunction of type I or type II (see Proposition 12.11). Here ๐‘ : ฮ“\๐บ โ†’ ๐‘‹ฮ“ is the natural projection, as given by the following diagram.

ยฉ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3_12

99

100

12 The discrete spectrum in terms of group representations

sss ๐‘ฮ“ sss sss s y ss ฮ“\๐บ

๐บ M MMM MMM ๐‘ MMM MMM &

JJ JJ ๐‘ JJ JJ JJ %

q ๐‘ฮ“ qqq q q q q x qq

(12.1)

๐‘‹ = ๐บ/๐ป

๐‘‹ฮ“ = ฮ“\๐บ /๐ป

12.1 Representations ๐‘ฝ๐… and ๐‘พ๐… Let ๐บ be a real reductive Lie group. The di๏ฌ€erential of the inversion ๐‘” โ†ฆโ†’ ๐‘” โˆ’1 of ๐บ gives rise to an antiautomorphism ๐œ‚ of the enveloping algebra ๐‘ˆ (๐”คC ), de๏ฌned by ๐‘Œ1 ยท ยท ยท ๐‘Œ๐‘š โ†ฆโ†’ (โˆ’๐‘Œ๐‘š ) ยท ยท ยท (โˆ’๐‘Œ1 ) for all ๐‘Œ1 , . . . , ๐‘Œ๐‘š โˆˆ ๐”คC . This antiautomorphism induces an involutive automorphism of the commutative subalgebra ๐‘ (๐”คC ). Note that d๐‘Ÿ (๐‘ง) = dโ„“ โ—ฆ ๐œ‚(๐‘ง) (12.2) on D โ€ฒ (๐บ) for all ๐‘ง โˆˆ ๐‘ (๐”คC ), where dโ„“, d๐‘Ÿ : ๐‘ˆ (๐”คC ) โ†’ D(๐บ) are the C-algebra homomorphisms given by the di๏ฌ€erentiation from the left or the right, respectively (see (3.1) with ๐ป = { ๐‘’ }). Let ฮ“ be an arbitrary torsion-free discrete subgroup of ๐บ, and let ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C). As in Section 4.2, we de๏ฌne the system (N๐œˆ ) of di๏ฌ€erential equations on ฮ“\๐บ by dโ„“(๐‘ง) ฮ“ ๐œ‘ = ๐œˆ(๐‘ง)๐œ‘ for all ๐‘ง โˆˆ ๐‘ (๐”คC ). For F = A, ๐ถ โˆž , ๐ฟ 2 or D โ€ฒ , consider the regular representation of ๐บ on F (ฮ“\๐บ), given by ๐‘” ยท ๐‘“ = ๐‘“ (ยท ๐‘”) for all ๐‘” โˆˆ ๐บ and ๐‘“ โˆˆ F (ฮ“\๐บ). By (12.2), any ๐‘ง โˆˆ ๐‘ (๐”คC ) acts on F (ฮ“\๐บ; N๐œˆ ) by ๐œˆ โ—ฆ ๐œ‚ ( ๐‘ง ) . Twisting by ๐œ‚, we de๏ฌne the set b๐œˆ := {๐œ‹ โˆˆ ๐บ b : ๐œ’ ๐œ‹ = ๐œˆ โ—ฆ ๐œ‚}, ๐บ

(12.3)

which is ๏ฌnite. Similarly to Lemma 4.5, the subspace ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) is closed in the Hilbert space ๐ฟ 2 (ฮ“\๐บ). Moreover, the system (N๐œˆ ) on ฮ“\๐บ is right-๐บ-invariant. Thus we obtain a unitary representation of ๐บ on ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ). This unitary representation is a ๏ฌnite direct sum of isotypic unitary representations of ๐บ: รŠ ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โ‰ƒ ๐‘‰๐œ‹ . (12.4) b๐œˆ ๐œ‹ โˆˆ๐บ

The representation ๐‘‰ ๐œ‹ is unitarily equivalent to Hom๐บ (๐œ‹, ๐ฟ 2 (ฮ“\๐บ)) โŠ— ๐œ‹, and the multiplicity of ๐œ‹ in ๐‘‰ ๐œ‹ is dimC Hom๐บ (๐œ‹, ๐ฟ 2 (ฮ“\๐บ)), which may be 0 or +โˆž (since we do not impose any assumption on ฮ“ such as vol ( ฮ“\๐บ ) < +โˆž).

12.1 Representations ๐‘‰๐œ‹ and ๐‘Š๐œ‹

101

According to the decomposition (12.4), we have a ๏ฌnite direct sum decomposition ร‰  2 โˆž ๐ฟ (ฮ“\๐บ; N๐œˆ ) โˆž โ‰ƒ b๐œˆ ๐‘‰ ๐œ‹ , ๐œ‹ โˆˆ๐บ ร‰ (12.5) โˆ’โˆž ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž โ‰ƒ b๐œˆ ๐‘‰ ๐œ‹ . ๐œ‹ โˆˆ๐บ By a Sobolev-type theorem, ๐ฟ 2 (ฮ“\๐บ) โˆž โŠ‚ ๐ถ โˆž (ฮ“\๐บ); in particular, ๐‘‰ ๐œ‹โˆž โŠ‚ ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆž โŠ‚ ๐ถ โˆž (ฮ“\๐บ). Therefore, the sesquilinear continuous map ๐ถ โˆž (ฮ“\๐บ) โ†’ C sending ๐‘“ to ๐‘“ (ฮ“๐‘’) b๐œˆ , which will be denoted induces elements of ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž and of ๐‘‰ ๐œ‹โˆ’โˆž for ๐œ‹ โˆˆ ๐บ by ๐›ฟ and ๐›ฟ ๐œ‹ , respectively. Then ร• ๐›ฟ= ๐›ฟ๐œ‹ b๐œˆ ๐œ‹ โˆˆ๐บ

according to the decomposition (12.5). Clearly ๐›ฟ โˆˆ ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž is a cyclic vector. Let ๐ป be a reductive subgroup of ๐บ such that ๐‘‹ = ๐บ/๐ป is ๐บ-real spherical. Similarly to ๐‘‰ ๐œ‹ for ฮ“\๐บ, we now introduce a ๐บ-module ๐‘Š ๐œ‹ for ๐‘‹ = ๐บ/๐ป. A di๏ฌ€erence is that we consider the space D โ€ฒ (๐‘‹) of distributions on ๐‘‹ rather than b๐œˆ , let ๐ฟ 2 ( ๐‘‹ ) . For any ๐œˆ โˆˆ Spec ๐‘ (๐”คC ) ( ๐‘‹ฮ“ ) and any ๐œ‹ โˆˆ ๐บ ๐‘Š ๐œ‹ โ‰ก ๐‘Š ๐œ‹ (๐ป) =

ร•

๐ด(๐œ‹ ๐พ ) โŠ‚ D โ€ฒ (๐‘‹),

(12.6)

๐ด

where ๐ด ranges through Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐‘‹)) and ยท denotes the closure in D โ€ฒ (๐‘‹). For any ๐ด, the image ๐ด(๐œ‹ ๐พ ) is contained in D (๐‘‹; N๐œˆโ—ฆ๐œ‚ ) which is a ๐บ-module of ๏ฌnite length, hence ๐‘Š ๐œ‹ is a ๐บ-submodule of D โ€ฒ (๐‘‹). Moreover, ๐‘ ๐œ‹ := dim Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐‘‹)) < +โˆž, and the underlying (๐”ค, ๐พ)-module (๐‘Š ๐œ‹ ) ๐พ is isomorphic to a direct sum of ๐‘ ๐œ‹ copies of ๐œ‹ ๐พ . We note that D โ€ฒ (๐‘‹; N๐œˆโ—ฆ๐œ‚ ) is not always completely reducible, and the quotient (D โ€ฒ (๐‘‹; N๐œˆโ—ฆ๐œ‚ )/๐‘Š ๐œ‹ ) ๐พ may contain an irreducible submodule whichร‰ is isomorphic to ๐œ‹ ๐พ . We have ๐‘Š ๐œ‹ โ‰  {0} if and only if b ๐ป . Moreover, ๐‘Š ๐œ‹ โˆฉ ๐œ‹ โˆˆ ( ๐บ) b๐œˆ โˆ–{ ๐œ‹ } ๐‘Š ๐œ‹ โ€ฒ = {0}. ๐œ‹โ€ฒ โˆˆ๐บ Here is a brief summary concerning the two representations ๐‘‰ ๐œ‹ and ๐‘Š ๐œ‹ . Lemma 12.1 Suppose ๐‘‹ = ๐บ/๐ป is ๐บ-real spherical. 1. The group ๐บ acts on ๐‘‰ ๐œ‹ as a unitary representation, and ๐‘‰ ๐œ‹ is the maximal ๐บ-invariant closed subspace of ๐ฟ 2 ( ฮ“\๐บ ) which is isotypic to ๐œ‹. 2. The group ๐บ acts on ๐‘Š ๐œ‹ as a continuous representation of ๏ฌnite length, and ๐‘Š ๐œ‹ is the maximal ๐บ-invariant closed subspace of D โ€ฒ (๐‘‹) whose underlying ( ๐”ค, ๐พ ) -module is a multiple of ๐œ‹ ๐พ . Proof. Statement (1) is clear. By Lemma 3.9, the regular representation of ๐บ on the complete, locally convex topological space D โ€ฒ (๐‘‹; N๐œˆโ—ฆ๐œ‚ ) = {๐น โˆˆ D โ€ฒ (๐‘‹) : dโ„“(๐‘ง)๐น = ๐œˆ โ—ฆ ๐œ‚(๐‘ง)๐น for all ๐‘ง โˆˆ ๐‘ (๐”คC )}

102

12 The discrete spectrum in terms of group representations

is of ๏ฌnite length (but not necessarily completely reducible). Thus statement (2) โŠ“ โŠ” follows from Fact 3.10. We shall relate ๐‘‰ ๐œ‹ and ๐‘Š ๐œ‹ in Proposition 12.11.

12.2 Intertwining operators associated with eigenfunctions on ๐‘ฟ๐šช Recall the projections ๐‘ : ฮ“\๐บ โ†’ ๐‘‹ฮ“ and ๐‘ ฮ“ : ๐‘‹ โ†’ ๐‘‹ฮ“ from (12.1). Given ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C) and a joint eigenfunction ๐‘“ โˆˆ ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ ), we can consider two ๐บ-modules: the ๐บ-submodule generated by ๐‘ โˆ— ๐‘“ โˆˆ D โ€ฒ (ฮ“\๐บ; N๐œˆ ) in the right regular representation on D โ€ฒ (ฮ“\๐บ), and the ๐บ-submodule generated by ๐‘ โˆ—ฮ“ ๐‘“ โˆˆ D โ€ฒ (๐‘‹; N๐œˆ ) in the left regular representation on D โ€ฒ (๐‘‹). We do not expect these two ๐บ-modules to be isomorphic to each other. Instead, in Lemma 12.3 below we construct a ๐บintertwining operator ๐‘‡ (ยท, ๐‘ โˆ— ๐‘“ ) : ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž โˆ’โ†’ D โ€ฒ (๐‘‹; N๐œˆโ—ฆ๐œ‚ ) for each tempered eigenfunction ๐‘“ โˆˆ D โ€ฒ (๐‘‹ฮ“ ; N๐œˆ ). This intertwining operator ๐‘‡ (ยท, ๐‘ โˆ— ๐‘“ ) depends on the eigenfunction ๐‘“ , and we shall formulate this dependence in terms of representation theory in Lemma 12.3.(3), which will play a crucial role in proving Theorem 11.9 in Section 12.4. Here we use the following terminology. Definition 12.2 Let ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C). An eigenfunction ๐‘“ โˆˆ D โ€ฒ (๐‘‹ฮ“ ; N๐œˆ ) is called tempered if ๐‘ โˆ— ๐‘“ โˆˆ D โ€ฒ (ฮ“\๐บ; N๐œˆ ) belongs to ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž . (Recall that ๐บ acts on H := ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) as a unitary representation; H โˆž โŠ‚ H โŠ‚ H โˆ’โˆž is the Gelfand triple (3.4) associated with H .) If ๐ป is compact, then any ๐ฟ 2 -eigenfunction ๐‘“ is tempered because ๐‘ โˆ— ๐‘“ โˆˆ 2 ๐ฟ (ฮ“\๐บ; N๐œˆ ) โŠ‚ ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž . Lemma 12.3 Suppose ๐‘‹ = ๐บ/๐ป is ๐บ-real spherical. Taking matrix coefficients for distribution vectors of the unitary representations of ๐บ on ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) induces a sesquilinear map ๐‘‡ : ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž ร— ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž

๐ป

โˆ’โ†’ D โ€ฒ (๐‘‹; N๐œˆโ—ฆ๐œ‚ )

with the following properties. Let ๐‘“ โˆˆ D โ€ฒ (๐‘‹ฮ“ ; N๐œˆ ) be any tempered eigenfunction, namely ๐‘ โˆ— ๐‘“ โˆˆ D โ€ฒ (ฮ“\๐บ) belongs to (๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž ) ๐ป . Then 1. the map ๐‘‡ ๐‘“ := ๐‘‡ (ยท, ๐‘ โˆ— ๐‘“ ) : ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž โ†’ D โ€ฒ (๐‘‹; N๐œˆโ—ฆ๐œ‚ ) is a continuous ๐บ-homomorphism; 2. ๐‘‡ (๐›ฟ, ๐‘ โˆ— ๐‘“ ) = ๐‘ โˆ—ฮ“ร๐‘“ , where ๐‘ โˆ—ฮ“ ๐‘“ is the complex conjugate of ๐‘ โˆ—ฮ“ ๐‘“ ; 3. writing ๐‘ โˆ— ๐‘“ = ๐œ‹ โˆˆ ๐บb๐œˆ ๐น ๐œ‹ according to the decomposition (12.5), we have, for b๐œˆ , all ๐œ‹ โˆˆ ๐บ

12.2 Intertwining operators associated with eigenfunctions on ๐‘‹ฮ“

๐‘‡ (๐›ฟ, ๐น ๐œ‹ ) = ๐‘‡ (๐›ฟ ๐œ‹ , ๐‘ โˆ— ๐‘“ ) = ๐‘‡ (๐›ฟ ๐œ‹ , ๐น ๐œ‹ ),  ๐‘‡ ๐ฟ (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž , ๐น ๐œ‹ = ๐‘‡ (๐‘‰ ๐œ‹โˆ’โˆž , ๐‘ โˆ— ๐‘“ ) โŠ‚ ๐‘Š ๐œ‹ . 2

103

(12.7) (12.8)

Proof. (1) Let ๐œ› be a unitary representation of ๐บ on the Hilbert space H = ๐ฟ 2 ( ฮ“\๐บ; N๐œˆ ) , and consider the continuous map ๐‘‡ : H โˆ’โˆž ร— H โˆ’โˆž โˆ’โ†’ D โ€ฒ (๐บ) of (3.6) sending (๐‘ข, ๐น) โˆˆ H โˆ’โˆž ร— H โˆ’โˆž to the corresponding matrix coe๏ฌƒcient for distribution vectors. If ๐œ›(โ„Ž)๐น = ๐น for all โ„Ž โˆˆ ๐ป, then ๐‘‡ (๐‘ข, ๐น) is invariant under the right action of ๐ป by (3.7), and therefore ๐‘‡ induces a map H โˆ’โˆž ร— (H โˆ’โˆž ) ๐ป โˆ’โ†’ D โ€ฒ (๐‘‹), which we still denote by ๐‘‡. By (3.7) again, ๐‘‡ (ยท, ๐น) is a continuous ๐บ-homomorphism from H โˆ’โˆž to D โ€ฒ (๐‘‹). We conclude by taking ๐น := ๐‘ โˆ— ๐‘“ and using the fact that the center ๐‘ ( ๐”คC ) acts on H โˆ’โˆž by the scalar ๐œˆ โ—ฆ ๐œ‚. (2) By the de๏ฌnition (3.6) of ๐‘‡ and the de๏ฌnition of ๐›ฟ, the element ๐‘‡ ๐‘“ (๐›ฟ) โˆˆ D โ€ฒ (๐บ) sends a test function ๐œ‘ โˆˆ ๐ถ๐‘โˆž ( ๐บ ) to โˆซ โˆซ โˆ— ๐œ‘(๐‘”) ๐‘ ๐‘“ (ฮ“๐‘”) d๐‘” = ๐œ‘(๐‘”) ๐‘ โˆ—ฮ“ ๐‘ โˆ— ๐‘“ (๐‘”) d๐‘”. ๐บ

โˆซ

๐บ

We de๏ฌne ๐œ‘ ๐ป โˆˆ ๐ถ๐‘โˆž (๐‘‹) by ๐œ‘ ๐ป (๐‘”๐ป) := ๐ป ๐œ‘(๐‘”โ„Ž) dโ„Ž. Then ๐‘ โˆ—ฮ“ ๐‘“ โˆˆ D โ€ฒ (๐‘‹), regarded as an ๐ป-invariant distribution on ๐บ, sends ๐œ‘ to โˆซ โˆซ ๐ป โˆ— ๐œ‘(๐‘”) ๐‘ โˆ— ๐‘ โˆ—ฮ“ ๐‘“ (๐‘”) d๐‘”. ๐œ‘ (๐‘ฅ) ๐‘ ฮ“ ๐‘“ (๐‘ฅ) d๐‘ฅ = ๐บ

๐‘‹

We conclude using the equality ๐‘ โˆ—ฮ“ โ—ฆ ๐‘ โˆ— = (3) Let us ๏ฌrst check that ๐‘‡ (๐‘‰ ๐œ‹โˆ’โˆž , ๐‘ โˆ— ๐‘“ )

๐‘ โˆ— โ—ฆ ๐‘ โˆ—ฮ“ from Diagram (12.1). โŠ‚ ๐‘Š ๐œ‹ . By (1),

๐‘‡ ๐‘“ : ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž โˆ’โ†’ D โ€ฒ (๐‘‹; N๐œˆโ—ฆ๐œ‚ ) is a ๐บ-intertwining operator and ๐‘‰ ๐œ‹ is a unitary representation of ๐บ which is a multiple of the single irreducible unitary representation ๐œ‹ (in particular, it is discretely decomposable). Since D โ€ฒ (๐‘‹; N๐œˆโ—ฆ๐œ‚ ) is of finite length by Lemma 3.9, the image ๐‘‡ ๐‘“ (๐‘‰ ๐œ‹โˆ’โˆž ) is a direct sum of finitely many copies of the (๐”ค, ๐พ)-module ๐œ‹ ๐พ by Lemma 12.4 below. By definition (12.6) of ๐‘Š ๐œ‹ , we conclude ๐‘‡ ๐‘“ (๐‘‰ ๐œ‹โˆ’โˆž ) โŠ‚ ๐‘Š ๐œ‹ . The equalities in (12.7) and (12.8) follow from the fact that ๐‘‡ (๐‘ข, ๐‘ฃ) = 0 for all ๐‘ข โˆˆ ๐‘‰ ๐œ‹โˆ’โˆž and ๐‘ฃ โˆˆ ๐‘‰ ๐œ‹โˆ’โˆž with ๐œ‹ ; ๐œ‹ โ€ฒ . โŠ” โŠ“ โ€ฒ In general, the space of distribution vectors of a unitary representation ๐œ‹ could be huge. However, it behaves in a reasonable way if ๐œ‹ is discretely decomposable (De๏ฌnition 8.2), as follows. Lemma 12.4 Let ๐‘ˆ be a discretely decomposable unitary representation of a real reductive Lie group ๐บ and ๐‘‰ a continuous representation of ๐บ of ๏ฌnite length on

104

12 The discrete spectrum in terms of group representations

a complete, locally convex vector space. Suppose ๐‘‡ : ๐‘ˆ โˆ’โˆž โ†’ ๐‘‰ is a continuous ๐บ-homomorphism and let ๐‘Š be the closure of ๐‘‡ (๐‘ˆ โˆ’โˆž ) in ๐‘‰. Then the underlying (๐”ค, ๐พ)-module ๐‘Š๐พ is completely reducible and unitarizable. More precisely, if ๐‘ˆ โ‰ƒ รโŠ• ๐‘š ๐œ‹ ๐œ‹ (Hilbert direct sum) where ๐‘š ๐œ‹ โˆˆ N โˆช {โˆž}, then ๐‘Š๐พ is isomorphic to b ๐œ‹ โˆˆ๐บ ร‰ a finite direct sum b ๐‘› ๐œ‹ ๐œ‹ where ๐‘› ๐œ‹ โ‰ค ๐‘š ๐œ‹ for all ๐œ‹. ๐œ‹ โˆˆ๐บ Proof. We first consider the case where the unitary representation ๐‘ˆ has finite length. Since the underlying (๐”ค, ๐พ)-module ๐‘ˆ๐พ is a direct sum of finitely many irreducible, unitarizable (๐”ค, ๐พ)-modules, so is ๐‘‡ (๐‘ˆ๐พ ). Since ๐‘ˆ๐พ is dense in ๐‘ˆ โˆ’โˆž , so is ๐‘‡ (๐‘ˆ๐พ ) in ๐‘Š. Thus the two (๐”ค, ๐พ)-modules ๐‘‡ (๐‘ˆ๐พ ) and ๐‘Š๐พ coincide by Fact 3.10. In particular, ๐‘Š๐พ is completely reducible and unitarizable. Suppose now that ๐‘ˆ is a general discretely decomposable unitary representation of ๐บ. Letร(๐‘ˆ ๐‘ ) ๐‘ be an increasing sequence of closed ๐บ-invariant subspaces such that ๐‘ˆ = ๐‘ ๐‘ˆ ๐‘ and that the unitary representation ๐‘ˆ ๐‘ is of finite length for any ๐‘. We regard (๐‘ˆ ๐‘ ) โˆ’โˆž as a subspace of ๐‘ˆ โˆ’โˆž by using the orthogonal decomposition ๐‘ˆ = ๐‘ˆ ๐‘ โŠ• (๐‘ˆ ๐‘ ) โŠฅ . โˆ’โˆž ) โŠ‚ ๐‘Š โ€ฒ for If ๐‘Š โ€ฒ is a closed ๐บ-invariant proper subspace of ๐‘Š such that ๐‘‡ (๐‘ˆ ๐‘ all ๐‘, then ร˜ โˆ’โˆž ) โŠ‚ ๐‘Š โ€ฒ , ๐‘‡ (๐‘ˆ โˆ’โˆž ) โŠ‚ ๐‘‡ (๐‘ˆ ๐‘ ๐‘

and so ๐‘Š โ€ฒ

โˆ’โˆž ) = ๐‘Š for some ๐‘. Then = ๐‘Š. This shows that ๐‘‡ (๐‘ˆ ๐‘ =๐‘Š the conclusion of the lemma follows from the case of finite length. โŠ” โŠ“

since ๐‘‡ (๐‘ˆ โˆ’โˆž )

12.3 A preliminary result on Harish-Chandra discrete series representations In order to prove Theorems 11.9 and 11.10, we will need the following. Proposition 12.5 Suppose ๐‘‹ = ๐บ/๐ป is ๐บ-real spherical, with ๐ป compact. Let (๐œ‹, H ) be a Harish-Chandra discrete series representation of ๐บ. If ๐œ“ โˆˆ Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐‘‹)), then ๐œ“(H๐พ ) โŠ‚ ๐ฟ 2 (๐‘‹). Remark 12.6 This is not true anymore if we drop one of the assumptions on ๐ป, as follows. 1) ๐ป is noncompact. For instance, let ๐‘‹ = ๐บ/๐ป be the reductive symmetric space SO(๐‘› + 1, 1)/SO(๐‘›, 1) with ๐‘› โ‰ฅ 3. Then there exists (๐œ‹, H ) โˆˆ Disc(๐บ/๐ป) such that Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐‘‹)) contains two linearly independent elements ๐œ“1 , ๐œ“2 with ๐œ“1 (H๐พ ) โŠ‚ ๐ฟ 2 (๐‘‹) and ๐œ“2 (H๐พ ) โˆฉ ๐ฟ 2 (๐‘‹) = {0} (see [MO84, Osh79]). 2) ๐ป is compact but ๐บ/๐ป is not ๐บ-real spherical. For instance, take ๐ป = {๐‘’}, any (๐œ‹, H ) โˆˆ Disc(๐บ), and any ๐‘ค โˆˆ H โˆ’โˆž โˆ– H . Define a (๐”ค, ๐พ)-homomorphism ๐œ“ : H๐พ โ†’ ๐ถ โˆž (๐บ) by ๐‘ฃ โ†ฆโ†’ (๐‘ค, ๐œ‹(๐‘”) โˆ’1 ๐‘ฃ), with the notation of Section 3.9. Then ๐œ“(H๐พ ) โˆฉ ๐ฟ 2 (๐บ) = {0}. Proposition 12.5 relies on the following lemma.

12.3 A preliminary result on Harish-Chandra discrete series

105

b let V๐œ be the ๐บ-equivariant Hermitian vector bundle Lemma 12.7 For (๐œ, ๐‘‰๐œ ) โˆˆ ๐พ, ๐บ ร—๐พ ๐‘‰๐œ over the Riemannian symmetric space ๐บ/๐พ. Let (๐œ‹, H ) be a (HarishChandra) discrete series representation of ๐บ, with underlying (๐”ค, ๐พ)-module ( ๐œ‹ ๐พ , H๐พ ) . Then ๐œ“ (H๐พ ) โŠ‚ ๐ฟ 2 ( ๐บ /๐พ, V๐œ ) for all ๐œ“ โˆˆ Hom๐”ค,๐พ ( ๐œ‹ ๐พ , D โ€ฒ ( ๐บ /๐พ, V๐œ )) . Proof of Lemma 12.7. By the elliptic regularity theorem, the image of the (๐”ค, ๐พ)homomorphism ๐œ“ : ๐œ‹ ๐พ โ†’ D โ€ฒ (๐บ/๐พ, V๐œ ) is contained in ๐ถ โˆž (๐บ/๐พ, V๐œ ). Let H โˆž be the Frรฉchet space of smooth vectors of the unitary representation (๐œ‹, H ), as in Section 3.8. By the Casselmanโ€“Wallach globalization theorem [Wal88, II, Ch. 2], the (๐”ค, ๐พ)-homomorphism ๐œ“ extends to a continuous ๐บ-homomorphism H โˆž โ†’ ๐ถ โˆž (๐บ/๐พ, V๐œ ), still denoted by ๐œ“. We identify ๐ถ โˆž (๐บ/๐พ, V๐œ ) with the space ๐ถ โˆž (๐บ, ๐‘‰๐œ ) ๐พ of smooth maps ๐‘“ : ๐บ โ†’ ๐‘‰๐œ satisfying ๐‘“ (๐‘”๐‘˜) = ๐œ(๐‘˜) โˆ’1 ๐‘“ (๐‘”) for all ๐‘” โˆˆ ๐บ and all ๐‘˜ โˆˆ ๐พ. Thus we can de๏ฌne a linear map ฮฆ : H โˆž โˆ’โ†’ ๐‘‰๐œ by ๐‘ข โ†ฆโ†’ ๐œ“(๐‘ข) (๐‘’); it is a ๐พ-homomorphism because ๐œ“ is a ๐บ-homomorphism. Taking the adjoint of ฮฆ, we have a ๐พ-homomorphism ๐ด : ๐‘‰๐œ โ†’ H โˆ’โˆž such that (ฮฆ(๐‘ข), ๐‘ฃ)๐‘‰๐œ = (๐‘ข, ๐ด(๐‘ฃ)) H for all ๐‘ข โˆˆ H โˆž and ๐‘ฃ โˆˆ ๐‘‰๐œ , where (ยท, ยท)๐‘‰๐œ and (ยท, ยท) H are the respective inner products of the Hilbert spaces ๐‘‰๐œ and H . We note that the image of ๐ด is contained in (H โˆ’โˆž ) ๐พ = H๐พ because ๐ด is a ๐พ-homomorphism. Then for any ๐‘” โˆˆ ๐บ, ๐‘ข โˆˆ H , and ๐‘ฃ โˆˆ ๐‘‰๐œ , we have (๐œ“(๐‘ข)(๐‘”), ๐‘ฃ)๐‘‰๐œ = (ฮฆ(๐œ‹(๐‘” โˆ’1 )๐‘ข), ๐‘ฃ) H = (๐œ‹(๐‘”) โˆ’1 ๐‘ข, ๐ด(๐‘ฃ)) H . The right-hand side is the matrix coe๏ฌƒcient associated with ๐‘ข, ๐ด(๐‘ฃ) โˆˆ H , and so it is square-integrable on ๐บ. Since ๐‘ฃ is arbitrary, we conclude that ๐œ“(๐‘ข) โˆˆ ๐ฟ 2 (๐บ/๐พ, V๐œ ) โŠ” โŠ“ for all ๐‘ข โˆˆ H โˆž . Proof of Proposition 12.5. Since ๐ป is compact, we can take a maximal compact subgroup ๐พ of ๐บ containing ๐ป. For (๐œ, ๐‘‰๐œ ) โˆˆ Disc(๐พ/๐ป), we set โ„“๐œ := dimC ((๐‘‰๐œโˆจ ) ๐ป ) โ‰ฅ 1 and let i ๐œ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— D โ€ฒ (๐บ/๐พ, V๐œ ) โ†ฉโ†’ D โ€ฒ (๐บ/๐ป) and p ๐œ : D โ€ฒ (๐บ/๐ป) โ†  (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— D โ€ฒ (๐บ/๐พ, V๐œ ) be the natural ๐บ-homomorphisms associated with the ๐บ-equivariant ๏ฌber bundle ๐บ/๐ป โ†’ ๐บ/๐พ with compact ๏ฌber ๐พ/๐ป as in (2.3) and (5.7) with ฮ“ = {๐‘’}. We note that p ๐œ โ—ฆ i ๐œ = id for all ๐œ and ร ๐œ i ๐œ โ—ฆ p ๐œ = id. Then ร• โ„“๐œ dimC Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐บ/๐พ, V๐œ )) = dimC Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐บ/๐ป)). ๐œ โˆˆ Disc ( ๐พ / ๐ป )

Since ๐บ/๐ป is ๐บ-real spherical, the right-hand side is ๏ฌnite-dimensional by b is ๏ฌLemma 3.9. Since โ„“๐œ โ‰  0 for ๐œ โˆˆ Disc(๐พ/๐ป), the following subset of ๐พ nite: b๐ป (๐œ‹) := {๐œ โˆˆ Disc(๐พ/๐ป) : Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐บ/๐พ, V๐œ )) โ‰  {0}}. ๐พ

106

12 The discrete spectrum in terms of group representations

Thus any ๐œ“ โˆˆ Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐บ/๐ป)) is decomposed into a ๏ฌnite sum รŠ ๐œ“= i ๐œ โ—ฆ p ๐œ โ—ฆ ๐œ“. b๐ป ( ๐œ‹ ) ๐œ โˆˆ๐พ

Since p ๐œ โ—ฆ ๐œ“(H๐พ ) โŠ‚ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐บ/๐พ, V๐œ ) by Lemma 12.7 and since i ๐œ : (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐บ/๐พ, V๐œ ) โ†’ ๐ฟ 2 (๐บ/๐ป) is an isometric embedding for any ๐œ (see (6.2) with ฮ“ = { ๐‘’ } and with ( ๐ฟ, ๐ฟ ๐ป ) replaced by ( ๐บ, ๐ป ) ), we have รŠ  ๐œ“(H๐พ ) โŠ‚ i ๐œ (๐‘‰๐œโˆจ ) ๐ฟ๐ป โŠ— ๐ฟ 2 (๐บ/๐พ, V๐œ ) โŠ‚ ๐ฟ 2 (๐บ/๐ป). โŠ“ โŠ” b๐ป ( ๐œ‹ ) ๐œ โˆˆ๐พ

12.4 Proof of Theorems 11.9 and 11.10 In this section we complete the proof of Theorems 11.9 and 11.10, where ๐ป is assumed to be compact. Before entering the details of the argument, let us brie๏ฌ‚y clarify the point. By de๏ฌnition, eigenfunctions of type I on ๐‘‹ฮ“ = ฮ“\๐บ/๐ป are given by discrete series representations for ๐‘‹ = ๐บ/๐ป, whereas eigenfunctions of type II are orthogonal to them in the Hilbert space ๐ฟ 2 (๐‘‹ฮ“ ). However, this orthogonality in ๐ฟ 2 (๐‘‹ฮ“ ) is not a priori re๏ฌ‚ected in ๐ฟ 2 (๐‘‹) because the image of ๐‘ โˆ—ฮ“ : ๐ฟ 2 (๐‘‹ฮ“ ) โ†’ D โ€ฒ (๐‘‹) is not contained in ๐ฟ 2 ( ๐‘‹ ) , and in particular ๐‘ โˆ—ฮ“ is not an isometry. On the other hand, ๐‘ โˆ— : ๐ฟ 2 (๐‘‹ฮ“ ) โ†’ ๐ฟ 2 (ฮ“\๐บ) is an isometry since ๐ป is compact, and the orthogonality of type I and type II in ๐ฟ 2 (๐‘‹ฮ“ ) is preserved in ๐ฟ 2 (ฮ“\๐บ). We carry out the proof of Theorems 11.9 and 11.10 by connecting the two maximal b (see (12.4) isotypic ๐บ-submodules ๐‘‰ ๐œ‹ โŠ‚ ๐ฟ 2 (ฮ“\๐บ) and ๐‘Š ๐œ‹ โŠ‚ D โ€ฒ (๐‘‹) for each ๐œ‹ โˆˆ ๐บ and (12.6)) through intertwining operators ๐‘‡ ๐‘“ which are de๏ฌned in Lemma 12.3 for each joint eigenfunction ๐‘“ โˆˆ D โ€ฒ ( ๐‘‹ฮ“ ; N๐œˆ ) . We start by proving the ๏ฌrst equality in Theorem 11.9. Lemma 12.8 Assume ๐ป is compact. For any ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C), รŠ ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ ) โ‰ƒ Hom๐บ (๐œ‹, ๐ฟ 2 (ฮ“\๐บ)) โŠ— ๐œ‹ ๐ป .

(12.9)

b๐œˆ ๐œ‹ โˆˆ๐บ

In particular,

 b๐ป . Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) = Supp Disc(ฮ“\๐บ) โˆฉ ( ๐บ)

Proof. Since ๐ป is compact, we may identify ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ ) with the subspace ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) ๐ป of ๐ป-๏ฌxed vectors in the regular representation ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ). Taking ๐ป-๏ฌxed vectors in the isomorphism of unitary representations (12.4), we obtain (12.9). โŠ” โŠ“

12.4 Proof of Theorems 11.9 and 11.10

107

b we denote by ๐œ‹ ๐พ the underlying (๐”ค, ๐พ)-module on the space ๐‘‰๐พ For (๐œ‹, ๐‘‰) โˆˆ ๐บ, of ๐พ-finite ร vectors in ๐‘‰. Suppose ๐‘‹ = ๐บ/๐ป is ๐บ-real spherical. We denote by ๐‘ˆ ๐œ‹ the closure of ๐ด ๐ด(๐‘‰) in D โ€ฒ (๐‘‹), where ๐ด ranges through Hom๐บ (๐œ‹, ๐ฟ 2 (๐‘‹)), which is a submodule of ๐‘Š ๐œ‹ โ‰ก ๐‘Š ๐œ‹ (๐ป) (see (12.6)). Lemma 12.9 1. ๐‘ˆ ๐œ‹ โ‰  {0} if and only if ๐œ‹ โˆˆ Disc(๐บ/๐ป). 2. ๐‘ˆ ๐œ‹ โŠ‚ ๐‘Š ๐œ‹ . 3. If ๐ป is compact, then ๐‘ˆ ๐œ‹ = ๐‘Š ๐œ‹ . Proof. (1) and (2) are clear. (3) is a consequence of Proposition 12.5.

โŠ” โŠ“

Suppose now that ๐ป is compact. The pull-back of the projection ๐‘ : ฮ“\๐บ โ†’ ๐‘‹ฮ“ = ฮ“\๐บ/๐ป gives an isometric embedding of Hilbert spaces: ๐‘ โˆ— : ๐ฟ 2 (๐‘‹ฮ“ )



โˆช ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ )

/ ๐ฟ 2 (ฮ“\๐บ) โˆช



/ ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ).

In particular, we may regard ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ ) as a subspace of (๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž ) ๐ป , and apply Lemma 12.3 to ๐น = ๐‘ โˆ— ๐‘“ for all ๐ฟ 2 -eigenfunctions ๐‘“ โˆˆ ๐ฟ 2 ( ๐‘‹ฮ“ ; N๐œˆ ) . b๐œˆ is the set of irreducible For ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C), recall from (12.3) that ๐บ unitary representations of ๐บ with in๏ฌnitesimal character ๐œˆ โ—ฆ ๐œ‚. We now de๏ฌne the b๐œˆ of (12.3): following disjoint subsets of the set ๐บ b๐œˆ โˆฉ Disc(๐บ/๐ป), I(๐œˆ) := ๐บ b๐œˆ โˆฉ (( ๐บ) b ๐ป โˆ– Disc(๐บ/๐ป)). II(๐œˆ) := ๐บ b ๐ป ) and Supp(Disc(๐บ/๐ป)) are both invariant under ๐œ‚. We note that Supp(( ๐บ) Lemma 12.10 Let ๐บ be a real reductive Lie group and ๐ป a closed unimodular subgroup of ๐บ. b leaves Disc(๐บ/๐ป) and ( ๐บ) b๐ป 1. The involution ๐œ‹ โ†ฆโ†’ ๐œ‹ โˆจ of the unitary dual ๐บ invariant. 2. The involution ๐œˆ โ†ฆโ†’ ๐œˆ โ—ฆ ๐œ‚ of HomC-alg (๐‘ (๐”คC ), C) leaves Supp(Disc(๐บ/๐ป)) and b) ๐ป ) invariant. Supp (( ๐บ Here ๐œ‹ โˆจ denotes the contragredient unitary representation of ๐œ‹. Proof. For a unitary representation (๐œ‹, H ), we form the conjugate representation (๐œ‹, H ) by giving H the conjugate complex structure. Then ๐œ‹ is unitarily equivalent to the contragredient representation ๐œ‹ โˆจ . Thus statement (1) is clear from the counterpart in ( ๐œ‹, H ) .

108

12 The discrete spectrum in terms of group representations

If ๐œ‹ has ๐‘ (๐”คC )-in๏ฌnitesimal character ๐œ’ ๐œ‹ , then the contragredient representation b if and only if ๐œ‹ โˆจ โˆˆ ๐บ, b the ๐œ‹ โˆจ has ๐‘ (๐”คC )-in๏ฌnitesimal character ๐œ’ ๐œ‹ โ—ฆ ๐œ‚. Since ๐œ‹ โˆˆ ๐บ b set Supp( ๐บ) is preserved by the involution ๐œˆ โ†ฆโ†’ ๐œˆ โ—ฆ ๐œ‚. Thus statement (2) follows from statement (1). โŠ” โŠ“ Recall from Lemma 12.1 that ๐‘‰ ๐œ‹ โ‰ก ๐‘‰ ๐œ‹ (ฮ“) is a maximal ๐บ-invariant closed b and that ๐‘Š ๐œ‹ โ‰ก ๐‘Š ๐œ‹ (๐ป) is a subspace of ๐ฟ 2 (ฮ“\๐บ) which is isotropic to ๐œ‹ โˆˆ ๐บ, โ€ฒ maximal ๐บ-invariant closed subspace of D (๐‘‹) whose underlying (๐”ค, ๐พ)-module is a multiple of ๐œ‹ ๐พ . The following proposition shows that we can determine whether or not ๐‘“ โˆˆ ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ ) is of type I or of type II by means of the ๐บ-submodule generated by ๐‘ โˆ— ๐‘“ in D โ€ฒ (ฮ“\๐บ), or equivalently by means of the ๐บ-submodule generated by ๐‘ โˆ—ฮ“ ๐‘“ in D โ€ฒ (๐บ/๐ป). This proposition is a key to the second and third equalities in Theorem 11.9. Proposition 12.11 Suppose ๐บ/๐ป is ๐บ-real spherical, with ๐ป compact. Let ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C) and ๐‘– = I or II. Then the following three conditions on ๐‘“ โˆˆ ๐ฟ 2 ( ๐‘‹ฮ“ ; N๐œˆ ) are equivalent: (i) ๐‘“ โˆˆ ๐ฟ 2 (๐‘‹ ร‰ฮ“ ; N๐œˆ )๐‘– ; ๐‘Š๐œ‹; (ii) ๐‘ โˆ—ฮ“ ๐‘“ โˆˆ ร‰ ๐œ‹ โˆˆ๐‘– (๐œˆ) โˆ— (iii) ๐‘ ๐‘“ โˆˆ ๐œ‹ โˆˆ๐‘– ( ๐œˆ ) ๐‘‰๐œ‹ . Proof of Proposition 12.11. We ๏ฌrst prove ร the equivalence (ii) โ‡” (iii)รfor ๐‘– = I and II. Consider the decomposition ๐‘“ = ๐œ‹ ๐‘“ ๐œ‹ such that ๐‘ โˆ— ๐‘“ = ๐œ‹ ๐‘ โˆ— ๐‘“ ๐œ‹ โˆˆ ๐ฟ 2 (ฮ“\๐บ) is the decomposition of (12.5), with ๐‘ โˆ— ๐‘“ ๐œ‹ โˆˆ ๐‘‰ ๐œ‹ for all ๐œ‹. Then condition (iii) is equivalent to ๐‘ โˆ— ๐‘“ ๐œ‹ = 0 for all ๐œ‹ โˆ‰ ๐‘–(๐œˆ). On the other hand, by ร Lemma 12.3.(2), we have ๐‘ โˆ—ฮ“ ๐‘“ ๐œ‹ = ๐‘‡ (๐›ฟ, ๐‘ โˆ— ๐‘“ ๐œ‹ ) โˆˆ ๐‘Š ๐œ‹ . Since ๐‘ โˆ—ฮ“ ๐‘“ = ๐œ‹ ๐‘ โˆ—ฮ“ ๐‘“ ๐œ‹ , condition (ii) is equivalent to ๐‘ โˆ—ฮ“ ๐‘“ ๐œ‹ = 0 for all ๐œ‹ โˆ‰ ๐‘–(๐œˆ), i.e. to ๐‘ โˆ—ฮ“ ๐‘“ ๐œ‹ = 0 for all ๐œ‹ โˆ‰ ๐‘–(๐œˆ). Since both ๐‘ โˆ— and ๐‘ โˆ—ฮ“ are injective, the equivalence (ii) โ‡” (iii) is proved. For ๐‘– = I, the equivalence (i) โ‡” (ii) follows from Lemma 12.12. Finally, we prove the equivalence (i) โ‡” (iii) for ๐‘– = II. Condition (i) is equivalent to ๐‘“ being orthogonal to ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ )I in ๐ฟ 2 (๐‘‹ฮ“ ); since ๐‘ โˆ— ร‰ : ๐ฟ 2 (๐‘‹ฮ“ ) โ†ฉโ†’ ๐ฟ 2 (ฮ“\๐บ) is โˆ— 2 an isometry, this is equivalent to ๐‘ ๐‘“ being orthogonal to ๐œ‹ โˆˆI(๐œˆ) ๐‘‰ ๐œ‹ in ๐ฟ (ฮ“\๐บ), โŠ” โŠ“ which is equivalent to (iii). Lemma 12.12 Suppose ๐‘‹ = ๐บ/๐ป is ๐บ-real spherical, with ๐ป compact. Then รŠ ๐‘ˆ๐œ‹ ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ )I = ( ๐‘ โˆ—ฮ“ ) โˆ’1 ๐œ‹ โˆˆI(๐œˆโ—ฆ๐œ‚)

=

( ๐‘ โˆ—ฮ“ ) โˆ’1

รŠ

๐‘Š๐œ‹ .

๐œ‹ โˆˆ I ( ๐œˆ โ—ฆ ๐œ‚ )โˆฉDisc ( ฮ“\๐บ )

Proof of Lemma 12.12. The ๏ฌrst equality holds by de๏ฌnition of type I. To check the second equality, we recall that ๐‘ˆ ๐œ‹ = ๐‘Š ๐œ‹ if ๐œ‹ โˆˆ Disc(๐บ/๐ป) (Lemma 12.9.(3)), and so รŠ ๐‘Š๐œ‹ . (12.10) ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ )I = ( ๐‘ โˆ—ฮ“ ) โˆ’1 ๐œ‹ โˆˆ I ( ๐œˆโ—ฆ ๐œ‚ )

12.4 Proof of Theorems 11.9 and 11.10

109

By Lemma 12.3, the map ๐‘‡ (ยท, ๐‘ โˆ— ๐‘“ ) : ๐‘‰ ๐œ‹โˆ’โˆž โ†’ ๐‘Š ๐œ‹ is a continuous ๐บ-homomorphism b๐œˆ . By Lemma 12.4, the (๐”ค, ๐พ)-module (๐‘Š ๐œ‹ ) ๐พ is a multiple of ๐œ‹ ๐พ . By for ๐œ‹ โˆˆ ๐บ Lemma 12.3 again, ร• ร• รŠ ๐‘‡ (๐›ฟ, ( ๐‘ โˆ— ๐‘“ ) ๐œ‹ ) = ๐‘‡ (๐›ฟ ๐œ‹ , ๐‘ โˆ— ๐‘“ ) โˆˆ ๐‘Š๐œ‹ . ๐‘ โˆ—ฮ“ ๐‘“ = b๐œˆ ๐œ‹ โˆˆ๐บ

b๐œˆ ๐œ‹ โˆˆ๐บ

b๐œˆ ๐œ‹ โˆˆ๐บ

Thus we only need to consider ๐œ‹ satisfying ( ๐‘ โˆ— ๐‘“ ) ๐œ‹ โ‰  0 in the right-hand side of (12.10). In particular, ๐œ‹ belongs to Disc ( ฮ“\๐บ ) . This completes the proof. โŠ“ โŠ” Proof of Theorem 11.9. By Lemma 12.10 and the equivalence (i) โ‡” (iii) in Proposition 12.11, we have ! รŠ 2 โˆ— โˆ’1 ๐ฟ (๐‘‹ฮ“ ; N๐œˆ )๐‘– = ( ๐‘ ) ๐‘‰๐œ‹ ๐œ‹ โˆˆ๐‘– (๐œˆ)

for ๐‘– = I or II. Since ๐‘‰ ๐œ‹ โŠ‚ ๐ฟ 2 (ฮ“\๐บ), we have ๐ฟ 2 (๐‘‹ฮ“ ; N๐œˆ )๐‘– โ‰  {0} if and only if ๐‘– ( ๐œˆ ) โˆฉ Disc ( ฮ“\๐บ ) โ‰  โˆ…. โŠ“ โŠ” Proof of Theorem 11.10. The argument works similarly to that of Theorem 11.9. More precisely, consider the two projections ฮ“\๐บ

๐‘Œ = ๐บ/๐พ

JJ JJ ๐‘ž JJ JJ JJ %

r ๐‘žฮ“ rrr r r r x rr r

๐‘Œฮ“ = ฮ“\๐บ /๐พ b and ๐œ‹ โˆˆ Disc(ฮ“\๐บ). Recall ๐‘‰ ๐œ‹ โ‰ก ๐‘‰ ๐œ‹, ๐œ (ฮ“) โŠ‚ ๐ฟ 2 (ฮ“\๐บ) from (12.4) and Fix ๐œ โˆˆ ๐พ de๏ฌne ๐‘Š ๐œ‹ โ‰ก ๐‘Š ๐œ‹, ๐œ โŠ‚ ๐‘‰๐œโˆจ โŠ— D โ€ฒ (๐บ/๐พ, V๐œ ; N๐œˆ ) by ร• ๐‘Š ๐œ‹ := ๐ด(๐œ‹ ๐พ ), ๐ด

where ๐ด ranges through ๐‘‰๐œโˆจ โŠ— Hom๐”ค,๐พ (๐œ‹ ๐พ , D โ€ฒ (๐บ/๐พ, V๐œ ; N๐œˆ )). Then, analogously to Proposition 12.11, the following holds. b and ๐œˆ โˆˆ HomC-alg (๐‘ (๐”คC ), C), and ๐‘– = I Proposition 12.13 Suppose (๐œ, ๐‘‰๐œ ) โˆˆ ๐พ, or II. Then the following three conditions on ๐‘“ โˆˆ ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ) are equivalent: (๐‘Œฮ“ , V๐œ ; N๐œˆ )๐‘– ; (i) ๐‘“ โˆˆ ๐ฟ 2 ร‰ ๐‘Š๐œ‹; (ii) ๐‘ž โˆ—ฮ“ ๐‘“ โˆˆ ร‰ ๐œ‹ โˆˆ๐‘– ( ๐œˆ ) โˆ— (iii) ๐‘ž ๐‘“ โˆˆ ๐œ‹ โˆˆ๐‘– ( ๐œˆ ) ๐‘‰๐œ‹ . For the proof of Proposition 12.13, we use a sesquilinear map

110

12 The discrete spectrum in terms of group representations

๐‘‡ : ๐ฟ 2 (ฮ“\๐บ; N๐œˆ ) โˆ’โˆž ร— D โ€ฒ (๐‘Œฮ“ , V๐œ ; N๐œˆ ) โˆ’โ†’ D โ€ฒ (๐‘Œฮ“ , V๐œ ; N๐œˆโ—ฆ๐œ‚ ) de๏ฌned similarly to Lemma 12.3. The proof is parallel to that of Lemma 12.3 and Proposition 12.11, so we omit the details. โŠ” โŠ“

12.5 Proof of Theorem 2.7 and Proposition 11.11 We are now ready to give a proof of Theorem 2.7 describing Spec๐‘‘ (๐‘‹ฮ“ )๐‘– by the data of the Riemannian locally symmetric space ๐‘Œฮ“ = ฮ“\ ๐ฟ / ๐ฟ ๐พ . Proof of Theorem 2.7. By Proposition 5.10, conditions (Tf), (A), (B) hold for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ). Moreover, since ๐‘‹C is ๐ฟ C -spherical (in particular, ๐บ C spherical), ๐‘‹ is ๐บ-real spherical. Therefore, we can apply Corollary 9.3 and obtain Theorem 2.7 via the transfer map ๐€ from the corresponding results for the (vectorbundle-valued) Riemannian results given in Theorem 11.10, with (๐บ, ๐ป, ๐พ) replaced โŠ” โŠ“ by ( ๐ฟ, ๐ฟ ๐ป , ๐ฟ ๐พ ) . Proof of Proposition 11.11. Statement (1) is immediate from the de๏ฌnition of discrete spectrum of type I. To check (2), we set ๐ฟ ๐พ := โ€ต ๐พ ร— โ€ต ๐พ, which is a maximal compact subgroup of ๐ฟ = โ€ต ๐บ ร—โ€ต ๐พ, and ๐ฟ ๐ป := Diag ( โ€ต ๐พ ) . By the Peterโ€“Weyl theorem,  Disc(๐ฟ ๐พ /๐ฟ ๐ป ) = ( โ€ต ๐œ) โˆจ โŠ  โ€ต ๐œ : โ€ต ๐œ โˆˆ โ€ตc ๐พ . Using the notation of Section 11.4, for ๐œ = ( โ€ต ๐œ ) โˆจ โŠ  โ€ต ๐œ โˆˆ Disc ( ๐ฟ ๐พ /๐ฟ ๐ป ) we have  b ๐บ such that Homโ€ต ๐พ (( โ€ต ๐œ) โˆจ , โ€ต ๐œ—| โ€ต ๐พ ) โ‰  {0} , ๐ฟ (๐œ) = โ€ต ๐œ— โŠ  โ€ต ๐œ : โ€ต ๐œ— โˆˆ โ€ตc and Disc ( ๐ฟ / ๐ฟ ๐พ ; ๐œ ) is the set of โ€ต ๐œ— โŠ  โ€ต ๐œ โˆˆ b ๐ฟ ( ๐œ ) such that โ€ต ๐œ— is a Harish-Chandra discrete series representation of โ€ต ๐บ. By Proposition 5.11, conditions (Tf), (A), (B) hold for the quadruple (๐บ, ๐ฟ, ๐ป, ๐ฟ ๐พ ). The transfer map ๐€ of condition (Tf) is given by ๐€(๐œ—, ๐œ) = ๐œ’โ€ต ๐œ— for ๐œ = ( โ€ต ๐œ) โˆจ โŠ  โ€ต ๐œ โˆˆ Disc(๐ฟ ๐พ /๐ฟ ๐ป ) and ๐œ— = โ€ต ๐œ— โŠ  โ€ต ๐œ โˆˆ b ๐ฟ (๐œ), via the isomorphism โˆผ dโ„“ : ๐‘ ( โ€ต ๐”คC ) โˆ’โ†’ D๐บ (๐‘‹). We can apply Theorem 9.2 and obtain statement (2) of Proposition 11.11 via the transfer map ๐€ from the corresponding results for the (vector-bundle-valued) Riemannian results given in Theorem 11.10, with (๐บ, ๐ป, ๐พ) โŠ” โŠ“ replaced by ( ๐ฟ, ๐ฟ ๐ป , ๐ฟ ๐พ ) .

References

[Ban87]

E. P. van den Ban, Invariant di๏ฌ€erential operators on a semisimple symmetric space and ๏ฌnite multiplicities in a Plancherel formula, Ark. Mat. 25 (1987), p. 175โ€“187. [BG83] A. Borel, H. Garland, Laplacian and the discrete spectrum of an arithmetic group, Amer. J. Math. 105 (1983), p. 309โ€“335. [Bri87] M. Brion, Classi๏ฌcation des espaces homogรจnes sphรฉriques, Compositio Math. 63 (1987), p. 189โ€“208. [Coo75] A. Cooper, The classifying ring of Groups whose classifying ring is commutative, PhD thesis, Massachusetts Institute of Technology, 1975. [Del98] P. Delorme, Formule de Plancherel pour les espaces symรฉtriques rรฉductifs, Ann. of Math. 147 (1998), p. 417โ€“452. [Fle80] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math. 111 (1980), p. 253โ€“311. [Gaf54] M. P. Ga๏ฌ€ney, A special Stokesโ€™s theorem for complete Riemannian manifolds, Ann. of Math. 60 (1954), p. 140โ€“145. [Gรฅr47] L. Gรฅrding, Note on continuous representations of Lie groups, Proc. Natl. Acad. Sci. USA 33 (1947), p. 331โ€“332. [Har53] Harish-Chandra, Representations of a semisimple Lie group on a Banach space I, Trans. Amer. Math. Soc. 75 (1953), p. 185โ€“243. [He14] H. He, Generalized matrix coe๏ฌƒcients for in๏ฌnite dimensional unitary representations, J. Ramanujan Math. Soc. 29 (2014), p. 253โ€“272. [HS75] H. Hecht, W. Schmid, A proof of Blattnerโ€™s conjecture, Invent. Math. 31 (1975), p. 129โ€“ 154. [Hel00] S. Helgason, Groups and geometric analysis. Integral geometry, invariant di๏ฌ€erential operators, and spherical functions, Mathematical Surveys and Monographs 83, American Mathematical Society, Providence, RI, 2000. [Kar53] F. I. Karpelevich, Surfaces of transitivity of semisimple groups of motions of a symmetric space, Soviet Math. Dokl. 93 (1953), p. 401โ€“404. [KV79] M. Kashiwara, M. Vergne, ๐พ-types and singular spectrum, in Noncommutative harmonic analysis (Proc. Third Colloq., Marseille-Luminy, 1978), p. 177โ€“200, Lecture Notes in Mathematics 728, Springer, Berlin, 1979. [KKK86] M. Kashiwara, T. Kawai, T. Kimura, Foundations of algebraic analysis, translated from the Japanese by T. Kato, Princeton Mathematical Series 37, Princeton University Press, Princeton, NJ, 1986. [KK11] F. Kassel, T. Kobayashi, Stable spectrum for pseudo-Riemannian locally symmetric spaces, C. R. Acad. Sci. Paris 349 (2011), p. 29โ€“33. [KK16] F. Kassel, T. Kobayashi, Poincarรฉ series for non-Riemannian locally symmetric spaces, Adv. Math. 287 (2016), p. 123โ€“236.

ยฉ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3

111

112 [KK19]

References

F. Kassel, T. Kobayashi, Invariant differential operators on spherical homogeneous spaces with overgroups, J. Lie Theory 29 (2019), p. 663โ€“754. [KK20] F. Kassel, T. Kobayashi, Spectral analysis on pseudo-Riemannian locally symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 96 (2020), p. 69โ€“74. [KK] F. Kassel, T. Kobayashi, Infinite multiplicity for Poincarรฉ series on certain standard locally homogeneous spaces, in preparation. [Kaz77] D. Kazhdan, Some applications of the Weil representation, J. Anal. Math. 32 (1977), p. 235โ€“248. [KZ82] A. W. Knapp, G. J. Zuckerman, Classification of irreducible tempered representations of semisimple groups I, II, Ann. of Math. 116 (1982), p. 389โ€“455, 457โ€“501. [Kno94] F. Knop, A Harish-Chandra homomorphism for reductive group actions, Ann. of Math. 140 (1994), p. 253โ€“288. [Kob93] T. Kobayashi, The restriction of ๐ด๐‘ž (๐œ†) to reductive subgroups, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), p. 262โ€“267. [Kob94] T. Kobayashi, Discrete decomposability of the restriction of ๐ด๐‘ž (๐œ†) with respect to reductive subgroups and its applications, Invent. Math. 117 (1994), p. 181โ€“205. [Kob98a] T. Kobayashi, Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups, J. Funct. Anal. 152 (1998), p. 100โ€“135. [Kob98b] T. Kobayashi, Discrete decomposability of the restriction of ๐ด๐‘ž (๐œ†) with respect to reductive subgroups. II. Micro-local analysis and asymptotic K-support, Ann. of Math. 147 (1998), p. 709โ€“729. [Kob98c] T. Kobayashi, Discrete decomposability of the restriction of ๐ด๐‘ž (๐œ†) with respect to reductive subgroups. III. Restriction of Harish-Chandra modules and associated varieties, Invent. Math. 131 (1998), p. 229โ€“256. [Kob00] T. Kobayashi, Discretely decomposable restrictions of unitary representations of reductive Lie groups โ€” examples and conjectures, in Analysis on homogeneous spaces and representation theory of Lie groups, p. 98โ€“126, Advanced Study in Pure Mathematics, vol. 26, 2000. [Kob09] T. Kobayashi, Hidden symmetries and spectrum of the Laplacian on an indefinite Riemannian manifold, in Spectral analysis in geometry and number theory, p. 73โ€“87, Contemp. Math. 484, American Mathematical Society, Providence, RI, 2009. [Kob16] T. Kobayashi, Intrinsic sound of anti-de Sitter manifolds, in Lie theory and its applications in physics, p. 83โ€“99, Springer Proceedings in Mathematics & Statistics, vol. 191, Springer, 2016. [Kob17] T. Kobayashi, Global analysis by hidden symmetry, in Representation theory, number theory, and invariant theory: In honor of Roger Howe on the occasion of his 70th birthday, p. 361โ€“399, Progress in Mathematics, vol. 323, Birkhรคuser/Springer, Cham, 2017. [KO13] T. Kobayashi, T. Oshima, Finite multiplicity theorems for induction and restriction, Adv. Math. 248 (2013), p. 921โ€“944. [KO15] T. Kobayashi, Y. Oshima, Classification of symmetric pairs with discretely decomposable restrictions of (๐”ค, ๐พ )-modules, J. Reine Angew. Math. 703 (2015), p. 201โ€“223. [KY05] T. Kobayashi, T. Yoshino, Compact Cliffordโ€“Klein forms of symmetric spaces โ€” revisited, Pure Appl. Math. Q. 1 (2005), p. 591โ€“653. [Krรค76] M. Krรคmer, Multiplicity free subgroups of compact connected Lie groups, Arch. Math. 27 (1976), p. 28โ€“36. [Krรค79] M. Krรคmer, Sphรคrische Untergruppen in kompakten zusammenhรคngenden Liegruppen, Compositio Math. 38 (1979), p. 129โ€“153. [Lan85] S. Lang, SL2 (R), Reprint of the 1975 edition, Graduate Texts in Mathematics, vol. 105, Springer-Verlag, New York, 1985. [Lan89] R. P. Langlands, On the classification of irreducible representations of real algebraic groups, in Representation theory and harmonic analysis on semisimple Lie groups, p. 101โ€“170, Mathematical Surveys and Monographs, vol. 31, American Mathematical Society, Providence, RI, 1989.

References [MO84]

[Mau50] [MO21] [Mik87] [Mil76] [Mos55] [ร“ร˜96]

[Oni69] [Osh79] [Osh88]

[Par80] [Ric86] [Str83] [Vin01] [Vog84] [Wal88] [War72] [Wol72] [Wol74] [Wol94]

113 T. Matsuki, T. Oshima, A description of discrete series for semisimple symmetric spaces, in Group representations and systems of di๏ฌ€erential equations (Tokyo, 1982), p. 331โ€“ 390, Adv. Stud. Pure Math. 4, North-Holland, Amsterdam, 1984. F. I. Mautner, Unitary representations of locally compact groups II, Ann. of Math. 52 (1950), p. 528โ€“556. S. Mehdi, M. Olbrich, Spectrum of semisimple locally symmetric spaces and admissibility of spherical representations, arXiv:2104.04740. I. V. Mikityuk, Integrability of invariant Hamiltonian systems with homogeneous con๏ฌguration spaces, Math. USSR-Sb. 57 (1987), p. 527โ€“546. J. J. Millson, On the ๏ฌrst Betti number of a constant negatively curved manifolds, Ann. of Math. 104 (1976), p. 235โ€“247. G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc. 14 (1955), p. 31โ€“54. G. ร“lafsson, B. ร˜rsted, Generalizations of the Bargmann transform, in Lie theory and its applications in physics (Clausthal, 1995), p. 3โ€“14, World Scienti๏ฌc Publishing, River Edge, NJ, 1996. A. L. Oniลกฤik, Decompositions of reductive Lie groups, Mat. Sb. (N. S.) 80 (122) (1969), p. 553โ€“599. T. Oshima, Poisson transformations on a๏ฌƒne symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), p. 323โ€“327. T. Oshima, Asymptotic behavior of spherical functions on semisimple symmetric spaces, in Representations of Lie groups (Kyoto, Hiroshima, 1986), p. 561โ€“601, Adv. Stud. Pure Math. 14, Academic Press, Boston, MA, 1988. R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. Sect. A Math. Sci. 89 (1980), p. 1โ€“24. F. Ricci, ๐ฟ 2 vector bundle valued forms and the Laplaceโ€“Beltrami operator, Rend. Sem. Mat. Univ. Padova 76 (1986), p. 119โ€“135. R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal. 52 (1983), p. 48โ€“79. E. B. Vinberg, Commutative homogeneous spaces and co-isotropic symplectic actions, Russian Math. Surveys 56 (2001), p. 1โ€“60. D. A. Vogan, Jr, Unitarizability of certain series of representations, Ann. of Math. 120 (1984), p. 141โ€“187. N. R. Wallach, Real reductive groups I & II, Pure and Applied Mathematics, vol. 132, Academic Press Inc., Boston, MA, 1988. G. Warner, Harmonic analysis on semi-simple Lie groups I, Grundlehren der mathematischen Wissenschaften, vol. 188, Springer-Verlag, New York, Heidelberg, 1972. J. A. Wolf, Essential self-adjointness for the Dirac operator and its square, Indiana Univ. Math. J. 22 (1972/73), p. 611โ€“640. J. A. Wolf, Finiteness of orbit structure for real flag manifolds, Geom. Dedicata 3 (1974), p. 377โ€“384. S. A. Wolpert, Disappearance of cusp forms in special families, Ann. of Math. 139 (1994), p. 239โ€“291.

Symbols and index

ฮ”๐‘Œฮ“ , Riemannian Laplacian, 56, 61 โ–ก๐‘‹ฮ“ , (pseudo-Riemannian) Laplacian, 2, 93 ๐œ’๐œ— , in๏ฌnitesimal character, 16, 67, 90, 108 ๐œ‚, antiautomorphism of ๐‘ˆ (๐”คC ), 100 ๐€, transfer map, 3, 110 ๐€ (ยท, ๐œ ), 14, 43, 50, 64, 110 ๐‚, transfer map, 3, 65 ๐‚ (ยท, ๐œ ), 14, 16, 43, 50, 64 ๐œ‹๐พ , underlying (๐”ค, ๐พ )-module, 70, 90, 101 ( ๐œ‹ โˆ’โˆž , H โˆ’โˆž ), distribution vectors, 28, 102, 104 ( ๐œ‹ โˆž , H โˆž ), smooth representations, 28, 66, 90 [ ๐œ— : ๐œ ], multiplicity, 70 (A), condition on (๐บ, ๐ฟ, ๐ป, ๐ฟ๐พ ), 44, 47, 70, 73, 79 e condition on (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฏC ), 45, 46, 47 ( ๐ด), e โ€ฒ ), condition on (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฉ C โˆฉ ๐”จ C ) , 47, 47 (A (B), condition on (๐บ, ๐ฟ, ๐ป, ๐ฟ๐พ ), 44, 47, 71, 73, 79 e condition on (๐”คC , ๐”ฉ C , ๐”ฅC , ๐”ฏC ), 45, 46, 47 ( ๐ต), (Tf), condition on (๐บ, ๐ฟ, ๐ป, ๐ฟ๐พ ), 43, 47, 64, 66, 79 A, analytic functions, 2 AdS3 , 9, 96 D๐บ (๐‘‹), 2, 16, 20 Disc(๐บ/๐ป ), 75, 91, 94 Disc(๐บ/๐พ; ๐œ ), 94 Disc( ๐ฟ), Harish-Chandraโ€™s discrete series representations, 16, 95 Disc( ๐ฟ) ( ๐œ ), 16 Disc( ๐ฟ/๐‘€ ), 16 Disc( ๐ฟ๐พ /๐ฟ ๐ป ), 12, 50, 64 D ๐ฟ (๐‘Œ , V๐œ ), 13, 61 D โ€ฒ , distributions, 2, 6, 22, 25, 29, 32, 35, 59, 71, 101, 102 F๐œ† , 7, 67 F ( ๐‘‹ฮ“ ; M๐œ† ) , 2

F (๐‘Œฮ“ , V๐œ ), 13, 78 b unitary dual, 90 ๐บ, b๐‘Ž๐‘‘ , 90 ๐บ b๐‘Ž๐‘‘ ) ๐ป , 90 (๐บ b ๐ป , 90 ( ๐บ) b ( ๐œ ), 94 ๐บ i ๐œ , 13, 70 i ๐œ,ฮ“ , 13, 58, 64, 79 b unitary dual, 16 ๐ฟ, b ( ๐œ ), 16 ๐ฟ ๐ฟ๐‘‘2 (๐‘Œฮ“ , V๐œ ), 78 ๐ฟ๐‘‘2 (๐‘Œฮ“ , V๐œ ) I , 78 ๐ฟ๐‘‘2 (๐‘Œฮ“ , V๐œ ) II , 78 ๐ฟ๐‘‘2 (๐‘‹ฮ“ ) I , 33 ๐ฟ๐‘‘2 (๐‘‹ฮ“ ) II , 33 ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) I , 7, 33 ๐ฟ 2 (๐‘‹ฮ“ ; M๐œ† ) II , 7, 33 ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ), 78 ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ) I , 78, 109 ๐ฟ 2 (๐‘Œฮ“ , V๐œ ; N๐œˆ ) II , 78, 109 (M๐œ† ), 2 (N๐œˆ ), 13, 34, 78 p ๐œ , 43, 70, 81 p ๐œ,ฮ“ , 43, 58, 64, 79, 81 ๐‘žฮ“ : ๐‘‹ฮ“ โ†’ ๐‘Œฮ“ , 13, 42 ๐‘ž : ๐‘‹ โ†’ ๐‘Œ , 12 Spec๐‘‘ (๐‘‹ฮ“ ), 2, 17, 25, 80 Spec๐‘‘ (๐‘‹ฮ“ ) I , 8, 17, 33, 34, 80 Spec๐‘‘ (๐‘‹ฮ“ ) II , 8, 17, 33, 80 Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ), 35, 94, 95, 106

Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) I , 35, 94, 95

Spec๐‘‘๐‘ (๐”คC ) (๐‘‹ฮ“ ) II , 35, 94, 95

Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ ), 79, 80, 94

Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ )I , 78, 80, 94

ยฉ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025 F. Kassel and T. Kobayashi, Spectral Analysis on Standard Locally Homogeneous Spaces, FJ-LMI Subseries 2367, https://doi.org/10.1007/978-981-96-1957-3

115

116 Spec๐‘‘๐‘ (๐”ฉC ) (๐‘Œฮ“ , V๐œ ) II , 78, 80, 94 Spec ๐‘ (๐”คC ) (๐‘‹ฮ“ ), 35 Supp, 90, 92 T๐œ— , 66 ๐‘ˆ (๐”คC ), enveloping algebra, 12, 23 V๐œ , Hermitian vector bundle, 13 ๐‘ (๐”คC ), center of ๐‘ˆ (๐”คC ), 12, 14, 34, 38, 60, 85, 90, 102

Index arithmetic subgroup, 3, 8, 9, 86

Symbols and index Harish-Chandraโ€™s discrete series representations, 16, 26, 72, 104 intrinsic di๏ฌ€erential operator, 2 Laplacian, 1, 7, 22, 31, 40, 55 moderate growth, 90 Parsevalโ€“Plancherel type formula, 7, 66 real spherical, 22, 27, 39, 70, 79, 80, 94, 101, 104, 108 reductive symmetric space, 5, 93

Blattner formula, 16, 70, 78, 80 discrete series representations (for ๐บ/๐ป), 7, 10, 26, 31, 56, 71 discrete spectrum, 2, 7, 16, 32, 77 discretely decomposable, 71, 81, 103 essentially self-adjoint, 6, 7, 55, 56, 61, 92 group manifold, 4, 56, 73, 95

Selbergโ€™s 41 Conjecture, 98 spherical, 3, 4, 22, 27, 39, 50, 60, 92 standard quotient, 3, 4, 17 tempered eigenfunction, 99, 102 transfer maps, 3, 14, 37, 64, 79 type I (spectrum), 8, 17, 33, 77, 89 type II (spectrum), 8, 17, 33, 77, 89