Table of contents : Cover Half Title Title Page Copyright Page Contents Preface About the Author SECTION I: Non-Relativistic Theory 1. Quantum Mechanics Basic Concepts 1.1. Inadequacies of Classical Mechanics 1.2. Wave Function 1.3. Wave Function Statistical Interpretation 1.4. Uncertainty of Two Types of Measurements 1.5. Superposition Principle Generalized Formulation 1.6. Operators of Physical Quantities 1.6.1. Expectation Value (Observable) and Operator of a Physical Quantity 1.6.2. Properties of Operators 1.7. Linear Self-Adjoint (Hermitian) Operators 1.7.1. Translation Operator 1.8. Eigenfunction and Eigenvalue 1.8.1. Conclusion 1.9. Properties of Eigenfunctions of Hermitian Operators 1.10. Theorem on the Commutation of Operators and Their Physical Application 1.11. Heisenberg Uncertainty Relations for Arbitrary Observables 1.12. Limiting Transition from Quantum Mechanics to Classical Mechanics 2. Schrödinger Equation 2.1. Stationary States 2.1.1. Particle in an Infinite Deep Potential Well 2.1.2. A Particle in an Infinitely High Potential Well 2.1.3. Coordinate Representation Delta Potential 2.2. Time-Dependent Operators 2.2.1. Classical Equation of Motion 2.2.2. Quantum-Mechanical Poisson Bracket and Quantum Correspondence Principle 2.2.3. Quantum Mechanical Equation of Motion 2.2.4. Postulates of Quantum Mechanics 2.2.5. Velocity and Acceleration of a Charged Particle in an Electromagnetic Field 2.2.6. Probability Density and Probability Current Density 2.2.7. Current Density of a Charged Particle in an Electromagnetic Field 2.2.8. Change with Time of a Wave Packet 3. Momentum Operator 3.1. Translation Operator 3.2. Momentum Operator 3.3. Heisenberg Uncertainty Relation 3.4. Momentum Representation 3.4.1. Momentum Representation of Particle in Triangular Potential Well 3.4.2. Momentum Representation of Particle in Delta Potential Well 3.4.3. Momentum Representation of an Operator in Matrix Form 3.5. Particle Hamiltonian in a Potential Field 3.5.1. Hamilton Function Operator and Ehrenfest Theorem 3.6. Angular Momentum Operator 3.6.1. Infinitesimal Rotation Operator 3.6.2. Angular Momentum Operator 3.6.3. Commutation Relations of Angular Momentum Operators 3.6.4. Eigenvalue and Eigenfunction of z-Component Angular Momentum Operator 3.7. Square of Angular Momentum Operator 3.7.1. Square of Angular Momentum Operator Commutation Relations 3.7.2. Square of Angular Momentum Operator Eigenvalue in The Dirac Representation 3.8. Square of Angular Momentum Operator Eigenstates 3.8.1. Legendre Polynomials 3.8.1.1. Asymptotic Legendre Polynomials 3.8.2. Angular Momentum Eigenstates 3.8.3. Dirac Representation Eigenstates 3.8.4. Matrix Representation and Finite Rotations Eigenstates 4. Total Angular Momentum 4.1. Infinitesimal Symmetry Transformation Generator 4.2. Total Angular Momentum Justification 4.3. Addition of Two Angular Momenta 4.3.1. Clebsch-Gordan Coefficients 4.3.1.1. Other Representation of Clebsch-Gordan Coefficients 4.3.1.2. Clebsch-Gordan Coefficients Recursion Relations 4.3.2. Triangular Rule 4.4. Spherical Spinors 4.4.1. Spinor Rotation 4.4.2. Spin Density 4.5. Spin of a System of Two Particles 4.6. Rotation Operator 4.6.1. Finite Rotation Operator About Some Angle Along Some Axis 4.6.2. Finite Rotation Operator for Spinor One-Half 4.6.3. Finite Rotation Operator for Spinor One-Half General Case 4.6.4. Rotation Operator Matrix 4.6.4.1. Spherical Harmonics Connection 4.7. Irreducible Tensor Operators 4.7.1. Wigner-Eckart Theorem 5. One-Dimensional Motion General Principles 5.1. One-Dimensional Motion General Principles 5.2. Potential Well 5.3. Particle in a One-Dimensional Finite Square Well Potential 5.4. Potential Barrier 5.5. Particle in a Square Potential Barrier 6. Schrödinger Equation 6.1. Linear Harmonic Equation 6.2. Harmonic Oscillator Eigenstates and Eigenvalues 6.2.1. Hermite Polynomial and Harmonic Oscillator Eigenfunction 6.2.1.1. Hermite Polynomials 6.2.1.2. Hermite Polynomials Integral Representation 6.2.1.3. Harmonic Oscillator Eigenfunction and Normalization Condition 6.2.1.4. Hermite Polynomials Orthogonality Condition 6.3. Motion in a Central Field 6.3.1. Radial Schrödinger Equation 6.3.2. Radial Wave Function Qualitative Investigation 6.3.3. Continuous Spectra Radial Wave Functions 6.3.3.1. Jost Function 6.3.4. Delta Potential Radial Solution 6.4. Motion in a Coulombic Field 6.4.1. Hydrogen Atom (Spherical Coordinates) 6.4.2. Eigenvalue and Eigenfunction 6.4.2.1. Hydrogen Atom’s Wave Function 6.4.2.2. Laguerre Polynomials Integral Representation 6.4.2.3. Eigenvalue and Degeneracy 6.4.3. Hydrogen Atom (Parabolic Coordinates) 6.4.3.1. Energy Levels 6.4.3.2. Wave Functions 6.4.4. Spherical Oscillator (Spherical Coordinates) 6.4.5. Particle in an Infinite Deep Spherical Symmetric Potential Well 6.4.6. Kepler Problem in Two Dimensions 7. Representation Theory 7.1. Matrix Wave Functions and Operator Representation 7.2. Properties of Matrices 7.3. Rule on Matrix Operations 7.4. Action of an Operator on a Wave Function 7.5. Mean Value of an Operator 7.6. Eigenstate and Eigenvalue Problem 7.7. Unitary Transformation in State Vector Space 7.7.1. Unitary Matrix 7.7.2. Matrix Element of a Transformation Operator 7.7.3. Invariance of the Trace of a Matrix Under Unitary Transformations 7.8. Schrödinger and Heisenberg Representations 7.9. Interaction Representation 7.10. Energy Representation 7.10.1. Evolution Operator 7.10.2. Oscillator in the Energy Representation 7.10.2.1. Matrix Element of the Oscillator Coordinate 7.10.2.2. Hamiltonian Operator Eigenvalue 7.10.2.3. Harmonic Oscillator Ground-State Eigenfunction 7.10.2.4. Quantization of Operators 8. Quantum Mechanics Approximate Methods 8.1. Variational Principle 8.1.1. Ritz Method 8.2. Case of the Hydrogen Atom 8.3. Perturbation Theory 8.3.1. Stationary Perturbation Theory – Non-Degenerate Level Case 8.4. Perturbation Theory – Case of a Degenerate Level 8.4.1. The Stark Effect 8.4.1.1. Hydrogen Atom 8.4.2. Stark Effect (Spherical Coordinates) 8.4.3. Stark Effect (Parabolic Coordinates) 8.5. Time-Dependent Perturbation Theory 8.5.1. Transition Probability 8.5.2. Adiabatic Approximation 8.6. Time-Independent Perturbation 8.7. Time and Energy Uncertainty Relation 8.8. Density of Final State 8.8.1. Transition Rate 8.9. Transition Probability-Continuous Spectrum 8.9.1. Harmonic Perturbation 8.10. Transition in a Continuous Spectrum Due to a Constant Perturbation 9. Many-Particle System 9.1. System of Indistinguishable Particles 9.2. Interacting System of Particles 9.3. System of Two Electrons 9.3.1. Exchange Interaction 9.3.2. Two Electrons in an Infinite Square Potential Well – Heisenberg Exchange Interaction 10. Approximate Method for the Helium Atom 10.1. The State of the Helium Atom 10.2. Self-Consistent Field Method 11. Approximate Method for the Hydrogen Molecule 11.1. Vibrational and Rotational Levels of Diatomic Molecules 12. Scattering Theory 12.1. Scattering Cross Section and Elastic Scattering Amplitude 12.1.1. Relation Between the Laboratory and Center-of-Mass Systems 12.2. Method of Partial Waves 12.3. S-Scattering of Slow Particles 12.4. Resonance Scattering 12.5. The Unitary Scattering Conditions 12.5.1. Optical Theorems 12.6. Time-Reversal Symmetry 12.6.1. Inversion Operator and Reciprocity Theorem 12.7. Schrödinger Equation Green’s Function 12.8. Born Approximation 12.8.1. Scattering of Fast Charged Particles on Atoms 12.8.1.1. Scattering Amplitude in Momentum Representation 12.8.2. Perturbation Theory Method Approach for Born Approximation 12.8.2.1. Phase Shift 12.8.2.2. Spherical Potential Well 12.8.2.3. Coulomb Interaction and Rutherford’s Formula 12.8.2.4. Lippman Schwinger Equation, 1D Delta Potential 12.9. Elastic and Inelastic Collisions 12.9.1. Fast and Slow Particle Total Cross Section 12.10. Wentzel-Kramer-Brillouin (WKB) Method 12.10.1. Motion in a Central Symmetric Field 12.11. Scattering of Indistinguishable Particles 13. Polaron Theory 13.1. Lee-Low-Pines (LLP) Technique 13.1.1. Lee-Low-Pines (LLP) Bulk Polaron 13.1.2. Lee-Low-Pines (LLP) Surface and Slow Moving Polaron 13.1.3. Lee-Low-Pines (LLP) Surface and Fast Moving Polaron 13.2. Polaron in a Quantum Wire 13.3. Polaronic Exciton and Haken Exciton SECTION II: Relativistic Theory 14. Case of an Electron 14.1. Spin Operators 14.1.1. Spin and Spin Operator Commutation Relations 14.1.2. Pauli Matrices 14.1.3. Derivation of Pauli Matrices 14.2. Spinors 14.2.1. Lorentz Transformation and Spinor Transformation 14.2.2. Arbitrary Spinor Transformation 15. Klein-Gordon Equation 15.1. Probability and Charge Densities 15.2. Motion in an Electromagnetic Field 15.3. Spinless Charge Particle in a Coulombic Field 15.4. Non-Relativistic Limiting Equation 16. Dirac Equation 17. Probability and Current Densities 18. Electron Spin in the Dirac Theory 19. Free Electron State with Defined Momentum-Positronium Motion 19.1. Stationary Dirac Equation 19.1.1. Dirac Hypothesis-Hole Theory 20. Dirac Equation 20.1. Electron Motion in an External Electromagnetic Field 20.1.1. Quasi-Relativistic Approximation-Pauli Equation 20.1.2. Second-Order Relativistic Correction 20.1.2.1. Spin-Orbital Interaction 20.1.2.2. Fine Structure Levels 20.1.2.3. Fine Structure Effect 20.2. Bound Electronic States in a Coulombic Field 21. Motion in a Magnetic Field 21.1. Landau Levels 21.2. Spin Precession in a Magnetic Field 21.3. Theory of the Zeeman Effect 21.3.1. Russell-Saunders Coupling 21.3.2. Weak Field Limiting Case – Zeeman Effect 21.3.3. Strong Field for Exceedingly Small Spin-Orbit Interaction – Paschen-Back Effect 21.3.4. Landau Case 21.4. Atomic Paramagnetism and Diamagnetism SECTION III: Appendix: Special Functions 22. Gamma Functions 22.1. First Kind Euler Integral-Beta Function 22.2. Gamma Function (Second Kind Euler Integral) 22.3. Gamma Function Analytic Continuation 22.4. Hankel Integral Representations 22.5. Reflection or Complementary Formula 23. Confluent Hypergeometric Functions 23.1. Classical Gauss Confluent Hypergeometric Function 23.2. Euler Integral Representation: Mellin–Barnes Integral Representation 23.3. Confluent Hypergeometric Function – Kummer Function 24. Cylindrical Functions 24.1. Cylindrical Function of the First Kind 24.2. Neumann Function 24.3. Hankel Functions 24.4. Modified Bessel Function 24.5. Modified Bessel Function with Imaginary Argument 24.6. Bessel Function of the First Kind Integral Formula 24.7. Neumann Function Integral Formula 24.8. Hankel Function Integral Formula 24.9. Airy Function 25. Orthogonal Polynomials 25.1. Orthogonal Polynomials General Properties 25.2. Transforming Confluent Hypergeometric Function into a Polynomial 25.3. Jacobi Polynomials 25.4. Jacobi Polynomial Generating Function 25.5. Gegenbauer Polynomials 25.6. Gegenbauer Polynomial Generating Function 25.7. First Kind Tschebycheff Polynomial 25.8. Generating Function of the First Kind Tschebycheff Polynomial 25.9. Tschebycheff Polynomial of the Second Kind 25.10. Generating Function of the Second Kind Tschebycheff Polynomial 25.11. Legendre Polynomials 25.12. Legendre Polynomial Generating Function 25.13. Legendre Polynomials Integral Representation 25.14. Associated Legendre Polynomials 25.15. Associated Legendre Polynomials Integral Representation 25.16. Spherical Functions 25.17. Laguerre Polynomials 25.18. Associated Laguerre Polynomial Generating Function 25.19. Hermite Polynomials 25.20. Hermite Polynomial Generating Function References Index