299 10 24MB
English Pages 369 Year 2003
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
http://dx.doi.org/10.1090/stml/021
Problems in Mathematical Analysis HI Integration
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
This page intentionally left blank
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
STUDENT MATHEMATICAL LIBRARY Volume 21
Problems in Mathematical Analysis III Integration W. J. Kaczor M.T. Nowak
#AMS
AMERICAN MATHEMATICA L SOCIET Y
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Editorial Boar d David Bressoud , Chai r Danie
l L . GorofT Car
l Pomeranc e
2000 Mathematics Subject Classification. Primar y 00A07 , 26A42 ; Secondary 26A45 , 26A46 , 26D1 5 , 28A1 2 . For additiona l informatio n an d updates o n this book , visi t www.ams.org/bookpages/stml-21 Library o f Congres s Cataloging-in-Publicatio n D a t a Kaczor, W . J . (Wieslaw a J.) , 1 949 [Zadania z analizy matematycznej . English ] Problems i n mathematica l analysis . I . Rea l numbers , sequence s an d serie s / W. J . Kaczor , M . T. Nowak . p. cm . — (Studen t mathematica l library , ISS N 1 520-91 2 1 ; v. 4) Includes bibliographica l references . ISBN 0-821 8-2050- 8 (softcove r ; alk. paper ) 1. Mathematica l analysis . I . Nowak , M . T . (Mari a T.) , 1 951 - II . Title . III. Series . QA300K32513 200 0 515'.076— dc2199-08703
9
Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t libraries actin g fo r them , ar e permitte d t o mak e fai r us e of th e material , suc h a s to copy a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passages fro m thi s publicatio n i n reviews, provide d th e customary acknowledgmen t of the sourc e i s given. Republication, systemati c copying , o r multiple reproductio n o f any materia l i n this publication i s permitted onl y unde r licens e fro m th e American Mathematica l Society . Requests fo r suc h permissio n shoul d b e addresse d t o th e Acquisition s Department , American Mathematica l Society , 20 1 Charles Street , Providence , Rhod e Islan d 02904 2294, USA . Requests ca n also be made b y e-mail t o [email protected] . © 200 3 b y the American Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o the United State s Government . Printed i n the United State s o f America . @ Th e paper use d i n this boo k i s acid-free an d fall s withi n th e guideline s established t o ensure permanenc e an d durability . Visit th e AMS home pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 2 1 0
8 07 06 05 04 0 3
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Contents
Preface vi
i
Part 1 . Problem s Chapter 1 . Th e Riemann-Stieltje s Integra l 3 §1.1. Propertie s o f th e Riemann-Stieltje s Integra l 3 §1.2. Function s1 o f Bounde d Variatio n
0
§1.3. Furthe r Propertie s o f th e Riemann-Stieltje s Integra 1l
5
§1.4. Prope r Integral s 2 1 §1.5. Imprope r Integral s 2
8
§1.6. Integra l Inequalitie s 4
2
§1.7. Jorda n Measur e 5
2
Chapter 2 . Th e Lebesgu e Integra l 5
9
§2.1. Lebesgu e Measur e o n th e Rea l Lin e 5
9
§2.2. Lebesgu e Measurabl e Function s 6
6
§2.3. Lebesgu e Integratio n 7 1 §2.4. Absolut e Continuity , Differentiatio n an d Integratio n 7
9
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Contents
VI
§2.5. Fourie r Serie s 8
4
Part 2 . Solution s Chapter 1 . Th e Riemann-Stieltje s Integra l 9
7
§1.1. Propertie s o f th e Riemann-Stieltje s Integra l 9
7
§1.2. Function s 1 o1 f Bounde d Variatio n
4
§1.3. Furthe r Propertie s o f the Riemann-Stieltje s Integra1l 2
6
§1.4. Prope r Integral s 4
3
1 §1.5. Imprope r Integral s 6
4
§1.6. Integra l Inequalitie s 20
7
§1.7. Jorda n Measur e 22
8
Chapter 2 . Th e Lebesgu e Integra l 24
7
§2.1. Lebesgu e Measur e o n th e Rea l Lin e 24
7
§2.2. Lebesgu e Measurabl e Function s 26
8
§2.3. Lebesgu e Integratio n 28 1 §2.4. Absolut e Continuity , Differentiatio n an d Integratio n 29
6
§2.5. Fourie r Serie s 3
6
Bibliography - Book s 35 1 Index 35
5
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Preface
This i s a seque l t o ou r book s Problems in Mathematical Analysis I, II (Volume s 4 an d 1 2 i n th e Studen t Mathematica l Librar y series) . The boo k deal s with th e Riemann-Stieltje s integra l an d th e Lebesgu e integral fo r rea l function s o f one rea l variable . Th e boo k i s organize d in a wa y simila r t o tha t o f the firs t tw o volumes , tha t is , i t i s divide d into tw o parts : problem s an d thei r solutions . Eac h sectio n start s with a numbe r o f problem s tha t ar e moderat e i n difficulty , bu t som e of th e problem s ar e actuall y theorems . Thu s i t i s no t a typica l prob lem book , bu t rathe r a supplemen t t o undergraduat e an d graduat e textbooks i n mathematica l analysis . W e hop e tha t thi s boo k wil l b e of interes t t o undergraduat e students , graduat e students , instructor s and researche s i n mathematical analysi s an d it s applications. W e also hope tha t i t wil l b e suitabl e fo r independen t study . The first chapte r of the book is devoted to Riemann an d Riemann Stieltjes integrals . I n Sectio n 1 . 1 w e conside r th e Riemann-Stieltje s integral wit h respec t t o monotoni c functions , an d i n Sectio n 1 . 3 w e turn t o integratio n wit h respec t t o function s o f bounde d variation . In Sectio n 1 . 6 w e collec t famou s an d no t s o famou s integra l inequal ities. Amon g others , on e ca n fin d OpiaP s inequalit y an d Steffensen' s inequality. W e clos e th e chapte r wit h th e sectio n entitle d "Jorda n measure". Th e Jorda n measure , als o calle d conten t b y som e authors ,
vn
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Vlll
Preface
is no t a measur e i n th e usua l sens e becaus e i t i s no t coun t ably addi tive. However , i t i s closely connecte d wit h th e Rieman n integral , an d we hope that thi s section will give the student a deeper understandin g of the idea s underlyin g th e calculus . Chapter 2 deals with the Lebesgu e measur e an d integration . Sec tion 2. 3 present s man y problem s connecte d wit h convergenc e theo rems tha t permi t th e interchang e o f limi t an d integral ; LP spaces o n finite interval s ar e als o considere d here . I n th e nex t section , absolut e continuity an d the relation between differentiation an d integration ar e discussed. W e present a proo f o f th e theore m o f Banac h an d Zareck i which state s tha t a function / i s absolutely continuou s o n a finite in terval [a , b] i f and onl y i f it i s continuous an d o f bounded variatio n o n [a, b], an d map s set s o f measur e zer o int o set s o f measur e zero . Fur ther, th e concep t o f approximate continuit y i s introduced. I t i s worth noting her e that ther e i s a certain analog y betwee n tw o relationships : the relationshi p betwee n Rieman n integrabilit y an d continuity , o n the on e hand , an d th e relationshi p betwee n approximat e continuit y and Lebesgu e integrability , o n th e othe r hand . Namely , a bounde d function o n [a , b] i s Rieman n integrabl e i f an d onl y i f i t i s almost ev erywhere continuous ; an d similarly , a bounde d functio n o n [a , b] is measurable, an d s o Lebesgu e integrable , i f an d onl y i f i t i s almos t everywhere approximatel y continuous . Th e las t sectio n i s devoted t o the Fourie r series . Give n th e existenc e o f extensiv e literatur e o n th e subject, e.g. , th e book s b y A . Zygmun d "Trigonometri c Series" , b y N. K . Bar i " A Treatis e o n Trigonometri c Series" , an d b y R . E . Ed wards "Fourie r Series" , w e foun d i t difficul t t o decid e wha t materia l to includ e i n a boo k whic h i s primaril y addresse d t o undergraduat e students. Consequently , w e hav e mainl y concentrate d o n Fourie r co efficients o f function s fro m variou s classe s an d o n basi c theorem s fo r convergence o f Fourie r series . All the notatio n an d definition s use d i n this volume ar e standard . One ca n find the m i n the textbook s [27 ] and [28] , which als o provid e the reade r wit h th e sufficien t theoretica l background . However , t o avoid ambiguit y an d t o mak e the boo k self-containe d w e start almos t every sectio n wit h a n introductor y paragrap h containin g basi c defi nitions an d theorem s use d i n th e section . Ou r referenc e convention s
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Preface
IX
are bes t explaine d b y th e followin g examples : 1 .2.1 3 or I , 1 .2.1 3 o r II, 1 .2.1 3 , whic h denot e th e numbe r o f th e proble m i n thi s volume , in Volum e I o r i n Volum e II , respectively . W e als o us e notatio n an d terminology give n i n th e first tw o volumes . Many problem s hav e bee n borrowe d freel y fro m proble m section s of journals lik e the America n Mathematica l Monthl y an d Mathemat ics Today (Russian) , an d fro m variou s textbooks an d proble m books ; of thos e onl y book s ar e liste d i n th e bibliography . W e woul d lik e t o add tha t man y problem s i n Sectio n 1 . 5 com e fro m th e boo k o f Ficht enholz [1 0 ] an d Sectio n 1 . 7 i s influence d b y th e boo k o f Rogosinsk i [26]. Regrettably , i t wa s beyon d ou r scop e t o trac e al l th e origina l sources, an d w e offer ou r sincer e apologies if we have overlooked som e contributions. Finally, w e woul d lik e t o than k severa l peopl e fro m th e Depart ment o f Mathematics o f Maria Curie-Sklodowsk a Universit y t o who m we are indebted . Specia l mentio n shoul d b e mad e o f Tadeusz Kuczu mow an d Witol d Rzymowsk i fo r suggestion s o f severa l problem s an d solutions, an d o f Stanisla w Pru s fo r hi s counselin g an d Te X support . Words o f gratitud e g o t o Richar d J . Libera , Universit y o f Delaware , for hi s generou s hel p wit h Englis h an d th e presentatio n o f th e ma terial. W e ar e ver y gratefu l t o Jadwig a Zygmun t fro m th e Catholi c University o f Lublin , wh o ha s draw n al l th e figure s an d helpe d u s with incorporatin g the m int o th e text . W e than k ou r student s wh o helped u s i n th e lon g an d tediou s proces s o f proofreading . Specia l thanks g o t o Pawe l Sobolewsk i an d Przemysla w Widelski , wh o hav e read th e manuscrip t wit h muc h car e and thought , an d provide d man y useful suggestions . Withou t thei r assistanc e som e errors , no t onl y ty pographical, coul d have passed unnoticed . However , we do accept ful l responsibility fo r an y mistake s o r blunder s tha t remain . W e woul d like t o tak e thi s opportunit y t o than k th e staf f a t th e AM S fo r thei r long-lasting cooperation , patienc e an d encouragement . W. J . Kaczor , M . T . Nowa k
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
This page intentionally left blank
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Part 1
Problems
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
This page intentionally left blank
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
http://dx.doi.org/10.1090/stml/021/01
Chapter 1
The Riemann-Stieltje s Integral
1.1. Propertie s o f th e Riemann-Stieltje s Integra l We star t wit h som e basi c notations , definition s an d theorems . B y a partition P o f a close d interva l [a , b] we mea n a finite se t o f point s xo, xi,..., xn suc h tha t a = XQ < x\ < .. . < x n-\ < The numbe r n(P) = maxjx ^ — xi-\ : raes/i of P.
x n = b.
i = 1 , 2 , . .. ,n} i s calle d th e
For a functio n a monotonicall y increasin g o n [a , b] w e writ e A ^ = a(xi) - a(xi-i). If / i s a real function bounde d o n [a , 6], we define th e uppe r an d lowe r Darboux sum s o f / wit h respec t t o a an d relativ e t o P , respectively , by nn
U(P,f,a) =
Y,MiAa t, L(P,f,a)
=
^m^Aa, ,
where Mi = su
p /(#)
, ^
i = in
f /(#)
• 3
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
4
Problems. 1 : Th e Riemann-Stieltje s Integra l
We als o pu t pb rb
/ fda = mfU(P if,a), /
fda = supL(P , f,a),
J aJ
a
where th e infimu m an d th e supremu m ar e taken ove r al l partition s P of [a, 6], and call them, respectively, the upper an d the lower Riemann Stieltjes integral . I f th e uppe r an d th e lowe r Riemann-Stieltje s inte grals are equal, we denote the common valu e by / fda an d cal l it th e Riemann-Stieltjes integra l o f / wit h respec t t o a ove r [a , b]. I n thi s case w e sa y tha t / i s integrabl e wit h respec t t o a , i n th e Rieman n sense, an d w e writ e / G 1Z(a). I n th e specia l cas e o f a(x) = x w e get th e Rieman n integral . I n thi s cas e th e uppe r (lower ) Darbou x sum correspondin g t o a partitio n P , an d th e uppe r (lower ) Rieman n integral ar e denoted , respectively , b y U(P,f) ( L ( P , / ) ) , an d f (fafdx) .
afdx
The Rieman n integra l o f / ove r [a , b] i s denoted b y j a fdx.
Moreover, correspondin g t o ever y partitio n P o f [a , b] w e choos e points t i , t 2 , . . . , t n suc h tha t Xi-\ < t{ < Xi, i = 1 ,2 , . . . , n , an d consider th e su m n
5(P,/,a) = 53/(ti)Aai. 2 =1
We say tha t lim S(PJ,a)
=
A
if, fo r ever y e > 0 , ther e i s S > 0 suc h tha t /i(P ) < S implie s tha t |5(P, /, a) — A\ < e fo r al l admissibl e choices o f U. I n th e cas e whe n a(x) — x w e se t
5(P,/) = £/(*i)(x i -x < _ 1 ). i=l
Throughout thi s section , / i s always assume d t o b e bounde d an d a monotonicall y increasin g o n [a , b]. I n th e solution s w e will often us e the followin g theorem s (see , e.g. , Rudi n [28]) . Theorem 1 . / G 71(a) on [a , b] if and only if for every e > 0 there exists a partition P such that
U(PJ,a)-L(PJ,a) 0 an d (x ifx G [ - o , o ] n Q , [0 i f x G [ - a , a ] \ Q . Find th e uppe r an d lowe r Rieman n integral s o f / ove r [—a , a]. 1.1.5. Sho w tha t th e so-calle d Rieman n functio n 0i f{x) = {l/q i
f x i s irrational o r x = 0 , f x = p/q, p G Z , g r G N , an d p, g are co-prime ,
is Riemann integrabl e o n ever y interva l [a , b]. 1.1.6. Le t / : [0,1] - + R b e define d b y settin g
[0 otherwise . Show tha t J Q f(x)dx = 0. 1.1.7. Sho w tha t / : [0,1] - > R define d b y
\x ~ ix] otherwis
e
is Riemann integrabl e o n [0,1 ] .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
6
Problems. 1 : Th e Riemann-Stieltje s Integra l
1.1.8. Defin e JO if * G [-1,0], / /(x) = < an d a(x \ l i f x G ( 0 , l ] , \l Show tha t / G 7£(a ) althoug h li m S(P,
O if * G [-1,0), )= < iixe [0, 1 ] . / , a) doe s no t exist .
1.1.9. Sho w tha t i f / an d a hav e a commo n poin t o f discontinuity i n fa, 61 , then li m S(P, f.a) doe s no t exist . LJ
'M
(P)-o v
)
1.1.10. Prov e tha t i f li m S(P,
/ , a) exists , the n / G 1 1 (a) o n [a , 6]
/x(P)-0
and lim 5(P ; , /, a) = / / d a .
M(P)-O V
J
a
Show als o tha t fo r ever y / continuou s o n [a , 6], th e abov e equalit y holds. 1.1.11. Sho w tha t i f / i s bounded an d a i s continuous o n [a , 6], the n / G 1 Z(a) i f an d onl y i f li m S(P, / , a) exists . MP)-o 1.1.12. Le t (c i f a < x < x*, a(x) = < [d i f x * < x < 6 , where c < d an d c < a(x*) < d. Sho w tha t i f / i s bounde d o n [a , 6] and suc h tha t a t leas t on e o f th e function s / o r a i s continuous fro m the lef t a t x * an d th e othe r i s continuou s fro m th e righ t a t x*, the n / G 1 1 (a) an d C
f(x)da(x) =
f(x*)(d-c).
Ja
1.1.13. Suppos e that / i s continuous o n [a , 6] and a i s a step function that i s constant o n th e subinterval s (a , ci), (ci, C2),..., (c m , 6), wher e a < c\ < C2 < • - • < c m < 6. Sho w tha t b ™>
/ f(x)da(x) =
/(o)(a(a+ ) - a(a)) + £ /(c
fc )(a(c+)
- a(c fe"))
fc=i
+ /(6)(a(6)-a(fe")) .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.1. Propertie s o f the Riemann-Stieltjes Integra l 7 1.1.14. Usin g Rieman n integral s o f suitabl y chose n functions , find the followin g limits : (a) li m ( + + •• • + — ), v; n-o o \n + 1 n + 2 3nJ ini n2 3 + -" + ( b ) Jn-^oo „y n ( ^ r3 T+-l^3 +n ^3 -+ T2 ^ n
(c) h m ^-
j,
k
3
- f n3 / '
> 0,
(d) li m - ij/( n + l)( n + 2)---( n + n), n—>oo 77 , / 77
, 77
, 77
,
(e) li m si n +i2 i 2 n sin H2 + 2 2 n h + ol/n 0. /
1.1.17. Fo r k > 0, calculat e fc fc l i m / l + 3 + -- - + ( 2 n - l )
n—>oo \ 7 7 /
fc
^
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Problems. 1 : Th e Riemann-Stieltje s Integra l
8
1.1.18. Suppos e tha t / i s twic e differentiabl e o n [0,1 ] an d / " i s bounded an d Rieman n integrable . Sho w tha t
^y(£mdx-±±f
2i-i\\ _ r ( i ) - r ( o ^ 2n 2
)
4
1.1.19. Fo r n G N , defin e
1 1
J
_
and 2
2
2n + 1 2
n+3 4
n- 1
Show tha t lim [7 n = li m V n — I n 2. n—>oo n—
->oo
Moreover, usin g th e result s state d i n 1 .1 .1 6 and 1 .1 .1 8 , sho w tha t lim n(In 2 — U n) — - an n-^oo 4
d li
n—>o
m n 2 (ln2 — V n) — —. o 3
2
1.1.20. Sho w tha t i f / i s Rieman n integrabl e ove r [a , 6], the n / ca n be change d a t a finit e numbe r o f point s withou t affectin g eithe r th e integrability o f / o r th e valu e o f it s integral . 1.1.21. Sho w tha t i f / i s monotoni c an d a i s continuou s o n [a , 6], then / G 71(a). 1.1.22. Prov e tha t i f / G 71 (a) an d a i s neither continuou s fro m th e left no r fro m th e righ t a t a point i n [a , 6], then / i s continuous a t thi s point. 1.1.23. Le t / b e Rieman n integrabl e an d a continuou s o n [a , b]. I f a i s differentiabl e o n [a , b] except fo r finitel y man y point s an d a' i s Riemann integrable , the n / G IZ(a) an d pb pb
/ f(x)da(x) =
Jo..
/ f(x)a'(x)dx. Ja
1.1.24. Le t / b e Rieman n integrabl e an d a b e continuou s o n [a , b] except fo r finitel y man y points . I f a i s differentiabl e o n [a , b] except
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.1. P r o p e r t i e s o f t h e Riemann-Stieltje s Integra l 9 for finitely man y point s an d a' i s Riemann integrable , the n / G 7Z(a) and pb pb
/ f(x)da{x)= f{x)a'{x)dx J a
+
f{a){a{a
+
)-a{a))
J a m
+ £ f(c
k)(a(4)
-
a(c~)) + f(b)(a(b) - a(b~)),
k=l
where c^ , k = 1 , 2 , . . ., m, ar e point s o f discontinuit y o f a i n (a , b). 1.1.25. Calculat e j_ 2x2da{x), wher
e
x+ 2 i
f -2 a , an d pu t V ( / ; a , o o ) = li m V(f;a,b). b—>oo
Show tha t i f V(f; a , 00) < 00 , the n th e finite limi t li m f(x) exists . x—*oo
Does th e opposit e implicatio n hold ? 1.2.15. Fo r / define d o n [a , b] an d a partitio n P — {xo,x'i,.. . , x n } of [a , 6], w e for m th e su m
vup)=x;i/(si)-/(zi-i)iProve tha t i f / i s continuou s o n [a , 6], the n lim V ( / , P ) = V(/:a,6) , that is , fo r an y s > 0 there exist s 6 > 0 such tha t //(P ) < < 5 implie s V(f;a.b)~V(f,P) m > 0 , x G [a , 6]. Sho w t h a t ther e ar e tw o monotonicall y increasin g functions g an d / i suc h t h a t
/?,(x)
1.2.19. Comput e th e positiv e an d negativ e variatio n function s o f (a) f(x)=^-\x\, a : G [ - l . l ] (b) f(x)
=
cosa: , x
(c) / ( ! • ) = J - M . . r
,
€ [0.2TT] ,
e [0.3] .
1.2.20. Assum e t h a t / i s o f bounde d variatio n o n [a , b]. Prove t h a t i f / i s continuou s fro m th e righ t (left ) a t TQ , the n Vf i s als o continuou s from th e righ t (left ) a t TQ. 1 . 2 . 2 1 . Sho w t h a t th e se t o f point s o f discontinuit y o f a functio n / o f bounde d variatio n o n [a J)] i s a t mos t countable . Moreover , i f
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
14
P r o b l e m s . 1 : T h e Riemann-Stieltje s Integra l
{xn} i s the sequenc e o f points o f discontinuity o f / , the n th e functio n g(x) = f(x) — s(x), wher e s(a) = 0 an d s(x) = f(a+) - f(a) + £ (/(*+
) - f(x~)) + f(x) - / ( * " )
Xn/ also satisfies th e Lipschitz conditio n with the same Lipschitz constant . 1.2.24. Prov e tha t i f / i s o f bounde d variatio n o n [a , b] and enjoy s the intermediat e valu e property , the n / i s continuous. Conclud e tha t if / ' i s o f bounde d variatio n o n [a , 6], the n f i s continuous . 1.2.25. Prov e tha t i f / i s continuously differentiat e o n [a , 6], the n X
«/(*)= [
\f'(t)\dt.
Ja
1.2.26. Sho w tha t i f / i s continuous an d a monotonicall y increasin g on [a , 6], the n th e functio n F(x) = / f(t)da(t),
[a , b],
xe
./a
is o f bounde d variatio n o n [a , 6]. 1.2.27. I f / O ) = li m f n(x) fo r x G [a, b], the n n—->oo
V(f;a,b)< li
m V(/„;a,b) . n—• oo oo o
1.2.28. Suppos e tha t th e serie s ^T
a
o
n a n d Yl b n ar e absolutel y con -
n=l n=
l
vergent, an d le t {x n} b e a sequenc e o f distinc t point s i n (0,1 ) . Prov e that th e functio n / define d b y
/(0)=0, f(x)=
Yl
a
- + J2
b
^ fo
r
*e(0,l ]
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.3. Furthe r Propertie s .. .
15
is continuou s a t ever y x ^ x n , n G N , an d f(xn) -
f(x~) =
a n , f(x+)
Prove als o tha t
- f(x n) =
b n.
oo
V(f;0,l) = Y,(K\ + K\). n=l
1.3. Furthe r Propertie s o f th e Riemann-Stieltje s Integral In this section w e consider Riemann-Stieltje s integral s wit h respec t t o functions o f bounded variation . I f a i s a function o f bounded variatio n on [a , 6], and i f a = p — q7 where p and q are monotonicall y increasing , then rb pb
rb
/ f(x)da(x) =
/ f{x)dp{x) - / f(x)dq(x),
Ja Ja
Ja
provided tha t / G Ti(p) an d / G l^{q) (se e th e definitio n i n Sectio n 1.1). Thi s definitio n doe s no t depen d o n a decompositio n o f a int o a difference o f tw o increasin g functions . T h e o r e m 1 . If functions f and a are of bounded variation on [a , b] and one of them is continuous, then f(b)a(b) - f(a)a(a) -
j f(x)da(x) =
f a(x)df(x).
The abov e formul a i s calle d th e partial integration formula. T h e o r e m 2 . Suppose f and Lp are continuous on [a , b] and ip is strictly increasing on [a , b]. If ip is the inverse function of (p, then / f(x)dx
=
/ f{rl>{y))dil>(y).
Ja J
(f(a)
The formula i n Theorem 2 is called the change of variable formula. T h e o r e m 3 . Suppose that either f is continuous and a is of bounded variation on [a,b], or f and a are of bounded variation on [a , b] and a is continuous. Then
I
b|
f(x)da(x)\
0, ^ c
n
< oc , an d defin e
n=\ oo Q ;r
C
( )= ^
np{x-Xn),
where th e functio n p is given b y 0i fx
< 0,
1i f x
> 0.
Prove tha t i f / i s continuou s o n [0,1 ] , the n DC
fda = ] P c
nf(xn
n=l
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.3. Furthe r Propertie s .. .
17
1.3.5. Suppos e tha t a i s a continuou s functio n o f bounde d variatio n on [a , b] suc h tha t fo r ever y / continuou s o n [a , 6], rb
/
0.
f(x)da(x) =
J a
Show tha t a i s constan t o n [a , 6]. 1.3.6. Le t a b e monotonicall y increasin g o n [0,7r ] an d suc h tha t / sin
xda(x) = a(7r ) — a(0) .
Show tha t Ja(0) i
f XG[0,TT/2)
I CK(TT ) i f x
,
£ (7r/2,7r] .
1.3.7. Fin d a functio n a monotonicall y increasin g o n [0,1 ] an d suc h that
[f{x)Mx) = m±m for ever y / continuou s o n [0,1 ] . 1.3.8. Fin d a functio n / continuou s o n [a , b] an d suc h tha t rb
f(x)da(x) =
a(b) — a (a)
for ever y a monotonicall y increasin g o n [a , b]. 1.3.9. Assum e tha t a i s of bounde d variatio n o n [a , b] an d th e func tions / n , n = 1 ,2,... , ar e Riemann-Stieltje s integrabl e wit h respec t to a ove r [a , b]. Prove tha t i f {f n} converge s uniforml y o n [a , b] t o / , then / i s Riemann-Stieltje s integrabl e an d rb
rb
I f(x)da(x) =
li m / f
n(x)da(x).
1.3.10. Calculat e
f1 nx{\ - x
lim / o
l n
) dx.
n-o c 7Q
1.3.11. Fo r a o f bounde d variatio n o n [0,1 ] , find lim / x
n
da(x).
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
P r o b l e m s . 1 : T h e Riemann-Stieltje s Integra l
18
1.3.12. Suppos e tha t {a n} i s a sequenc e o f function s whos e tota l variations ar e uniforml y bounde d o n [a , 6], that is , there i s a positiv e M suc h that V(a n; a , b) < M fo r al l n. Prov e that i f {a n} i s pointwise convergent t o a o n [a , 6], the n fo r ever y / continuou s o n [a , 6], lim / f(x)da n(x) = / f(x)da(x). ^°° J a J a 1.3.13. Suppos e tha t {a n} i s a sequenc e o f function s whos e tota l variations ar e uniformly bounde d o n [a , 6], and tha t {a n} i s pointwise convergent t o a o n [a , 6]. Suppos e als o tha t {fn} i s a sequenc e o f continuous function s uniforml y convergen t o n [a,b] t o / . Prov e tha t n
rb
lim / f
rb
n(x)dan(x) =
«/ a J
/ f(x)da(x). a
1.3.14. Prov e th e followin g Helly selection theorem. Le t {a n} b e a sequence o f function s define d o n [a,b] such tha t |a n (a)| < M an d V(an; a,b) < M fo r n G N . Then {a n} contain s a subsequenc e {a nk} convergent t o a functio n a o f bounde d variatio n o n [a , 6], an d fo r every continuou s functio n / , rb
rb
lim / f(x)da nk(x) = / /(x)da(x) . k -^°°Ja J a 1.3.15. Prov e th e followin g theorem of Helly whic h generalize s th e result i n 1 .3.1 2 . Le t / b e continuou s an d a o f bounde d variatio n on [a , b]. I f th e sequenc e {a n} o f function s o f uniforml y bounde d variation converge s t o a o n a se t A dens e i n [a , b] and suc h tha t a, b G A, the n rb
lim / f(x)da
rb
n(x)
=
/ f(x)da(x).
n—»oo
1.3.16. Prov e th e second mean value theorem. Suppos e / i s mono tonic an d a i s continuou s an d o f bounde d variatio n o n [a , b]. Then there i s a poin t c G [a, 6] such tha t /»6
/»c
rb
/ /(ar)da(a: ) = / ( a ) / da(x) + f(b) / da(x) J a
Ja
Jc
= /(a)(a(c ) - a(a) ) + /(6)(a(6 ) - a{c)). 1.3.17. Prov e th e followin g Bonnet forms of the second mean value theorem .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.3. Furthe r Propertie s .. .
19
(a) I f / i s a positiv e increasin g functio n o n [a , b] an d a i s a con tinuous functio n o f bounde d variatio n o n [a , 6], the n ther e i s a poin t c G [a , b] suc h tha t b rb
f(b) / da(x) = f(b)(a(b) - a(c)) .
f(x)da(x) =
(b) I f / i s a positiv e decreasin g functio n o n [a , b] an d a i s a con tinuous functio n o f bounde d variatio n o n [a , b], the n ther e i s a poin t c £ [a , 6] suc h tha t /(a ) / da(x) = f(a)(a(c) -
f{x)da{x) =
a(a)).
1.3.18. Fo r 0 < a < 6, find
inn r^^dx. 1.3.19. Fo r x > 0 , prov e tha t (a) i f F(x ) = / * + 1 sin(* 2)dt, the n |F(a;) | < 1 /x , (b) i f F ( » = / * + 1 sin(e*)cfe , the n |F(x) | < 2/(e x ). 1.3.20. Sho w tha t i f th e function s / , OL\,OL2 bounded variatio n o n [a , 6], the n b rb
a re
continuou s an d o f
pb
/ f(x)a 1 (x)da2{x)+ f(x)a
f(x)d(a1(x)a2{x)) =
JaJ
1 2{x)da
(x).
a
1.3.21. Sho w tha t i f / i s continuou s an d o f bounde d variatio n o n [a, 6], the n fo r a positiv e intege r n , rb r
b
f(x)d({f(x))n) =
nf (f(x))
n
df(x)
Ja
U
((/W)
n+ 1
n1 +
- ( / ( « ) ) n 1+ ) -
1.3.22. Suppos e tha t / i s continuou s o n [0,1 ] . Fin d th e followin g limits: (a) li m \n [ n x n f(x)dx) . n—>oo \ "
(b) li m (nfie-
u
"
J nx
f(x)dx),
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
20
Problems. 1 : Th e Riemann-Stieltje s Integra l (c) Jo x
lim
J0 x
n
f{x)dx
n x2
e dx
2n
(d) li m (jnj* f(x)sm
(27rx)dxY
(e) JQ1 f(x)sin 2n(27rx)dx lim n ~*°° Jo e x2sm2n(27rx)dx ' 1.3.23. Prov e th e followin g monotone convergence theorem for the Riemann integral. I f {/ n} i s a decreasin g sequenc e o f Rieman n in tegrable function s o n [a , b] which converge s o n [a , b] to a Rieman n integrable functio n / , the n nb rb
lim / f n(x)dx = / f(x)dx. n -*°° J a J a 1.3.24. Prov e th e followin g monoton e convergenc e theore m fo r th e lower Rieman n integral . I f {f n} i s a decreasin g sequenc e o f bounde d functions o n [a , 6], and i f li m f n{x) = 0 for x E [a , 6], the n 71—•OO
rb
lim / f n(x)dx =
0.
Ja
1.3.25. Prov e th e followin g Arzela theorem. I f {/ n } i s a sequenc e o f Riemann integrabl e function s o n [a , b] whic h converge s o n [a , b] t o a Riemann integrabl e functio n / , an d i f there i s a constant M > 0 such that \f n(x)\< M fo r al l x G [a, b] an d al l n G N, the n b rb rno
no
lim / f n(x)dx = / f{x)dx. n oc -" Ja J a 1.3.26. Prov e th e followin g Fatou lemma for Riemann integrals. I f {/n} i s a sequenc e o f nonnegativ e Rieman n integrabl e function s o n [a, 6] whic h converge s o n [a , b] to a Rieman n integrabl e functio n / , then br rru
I f(x)dx < J a n-*oo
b pO
li m / J
f
n(x)dx.
a
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.4. Prope r Integral s
21
1.4. Prope r Integral s 1.4.1. Fo r n G N , calculate (a;,) /
f4 \
x
-1 | n
(c) /
\lnx\dx , (d
(e) /
tan
(g) /
n
: : —\dx, (b ) / Jo \x — 2\ + \x — 3 | ,y
Jo
:
j0 sin
2n
n
)/
£cb, (f
)/
n
sm 0 J t
xdx, /
cos o
17
xdx,
_ 9_dx, + cos 2 x
;
dx,
Jo sin " x' +' co " "s ~x
sm x x-h cosn x-ax.
1.4.2. Fo r n E N, use the integral J Q ( l — x 2) dx 1 fn\ 1
fn\ 1
1 VOy 3
/ n\ ,
r1
v
\lj 5\2J
y
t o calculat e /
n
2 n + l V^
1.4.3. Suppos e tha t a functio n / ha s an indefinite integra l (o r antiderivative) o n an interva l I ; tha t is , there i s a differentiable functio n F suc h tha t F'{x) — f(x) fo r x G I. Sho w tha t i f a one-sided limi t of / a t xo G I exist s an d is equal t o a, the n f(xo) — a. 1.4.4. Le t / b e defined b y „ N (sin
± i f x^O,
[c i
f x = 0,
where c G [—1,1]. For which value s o f c does ther e exis t a n antideriv ative o f / ? 1.4.5. Le t xn — 1/y/n fo r n G N. Construct a function / continuou s on (0,1 ] and suc h tha t / > 0 on [x2k,X2k-i], / < 0 on [x2k+i,X2k] and F(x 2k-i) - F{x 2k) = F{x 2k+i) ~ F{x 2k) = 1 /fc , wher e F i s an antiderivative of/. Exten d the function / t o [0,1 ] by setting /(0) = 0. Prove tha t / ha s an antiderivative o n [0,1 ] , bu t | / | doe s not. 1.4.6. Suppos e / i s continuous o n [0,1 ] , Sho w tha t r
\ xf(smx)dx Jo 2
7T r
= — / f(sinx)dx. J0
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
22
Problems. 1 : Th e Riemann-Stieltje s Integra l
Using thi s equality , comput e •
I
2r ?
xsm x o sin x + cos 2n x dx, n 2n
G N. 1.4.7. Assum e tha t / i s continuou s o n [—a, a], a > 0. Sho w tha t (a) a ra
/
i
f(x)dx = 2 f(x)dx,
f / i s even ,
-a JO
(b)
pa
/
f(x)dx = 0 , i f / i s odd . 1.4.8. Le t / : R— » R b e continuou s an d periodi c wit h perio d T > 0 . Prove tha t fo r ever y rea l a, —i
J
/ f(x)dx
= / f(x)dx.
Ja
JO
1.4.9. Le t / : R— > R b e continuou s an d periodi c wit h perio d T > 0 . Prove tha t fo r ever y a < 6, lim / f(nx)dx =
-—/
f(x)dx.
1.4.10. Suppos e tha t / G C ( [ - l, 1 ]) . Find th e followin g limits : (a) li m ±Cf(sinx)dx, (b) li m ^ /
n
/(|sinx|)dx,
(c) li m L xf(s'm(27rnx))dx. u
n—>oo
1.4.11. Fo r / G C([a,6]), find th e followin g limits : (a) li m f f(x) cos(nx)dx, li
m f /(# ) sin(nx)dx ,
(b) li m f f(x) si n (nx)dx. n—>oo a
1.4.12. Suppos e / G C([0,oo)) an d se t an = I f(n + x)d x fo Jo
rn
= 0,1 ,
Suppose als o tha t li m a n = a. Fin d th e limi t li m J
Q
f(nx)dx.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
23
1.4. Prope r Integral s
1.4.13. Fo r a functio n / positiv e an d continuou s o n [0,1 ] , comput e
f f(x)+f(l-x)
-dx.
1.4.14. Sho w that, i f / Jo i s continuous an d eve n on [—a , a], a > 0 , the n / " . $ ? * - ! >*• 1.4.15. Sho w tha t i f / i s nonnegative an d continuou s o n [a, b] and
f f{x)dx = 0, Ja
then / i s identicall y zer o o n [a , b]. 1.4.16. Sho w tha t i f / i s continuou s o n [a , b] and fo r eac h a,/3 , a < a< (3 0 , if / * + T f(t)dt = J QT f(t)dt fo r ever y x G R , the n / i s periodic wit h perio d T > 0 .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
24
P r o b l e m s . 1 : T h e R i e m a n n - S t ieltjes Integra l
1.4.20. Comput e
(a) ta
(„./-_**) ,
(b) li m ( n'3 f 2n xdx
\
(c) li m / I n ( x H )n dx, r2n xdx n-*coJ1 n-^oo \3TT J^ arctan(nx) 1.4.21. Fin d th e followin g limits : (a) li m / e-
Rsint
dt,
(b) li m / \/xsinxdx, (c) li m / dx. n >00 - Jo v l+ ^ 1.4.22. Fo r a functio n / continuou s o n [0,1 ] , find n
lim / f(x
)dx.
n-^ooJQ
1.4.23. Sho w that , i f / i s Riemann integrabl e o n [a , &], then ther e i s 0 G [a, b] suc h tha t
/ f(t)dt = [ f(t)dt.
Ja
JO
1.4.24. Le t / b e continuou s o n [a , 6] and le t / f(x)dx = 0.
Ja
Show tha t ther e i s 0 G (a, 6) suc h tha t
f f(x)dx = f(9).
Ja
1.4.25. Le t / G C([a,6]), a > 0 , an d le t / /(x)d z = 0 .
Ja
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
25
1.4. P r o p e r Integral s Show tha t ther e i s 0 G (a, b) such tha t
f f{x)dx = 6f{6). Ja
1.4.26. Suppos e / , g G C([a, &]). Sho w tha t ther e i s 0 G (a, b) suc h that g(0) f f(x)dx =
/(0 ) / ^(x)dx .
1.4.27. Suppos e / , # E C([a, 6]). Sho w tha t ther e i s 0 G (a, 6) suc h that (/(0) / f(x)dx Ja
= f(0) [ g(x)dx. JO
1.4.28. Suppos e / an d g are positive an d continuous o n [a , b]. Show that ther e i s 0 G (a, b) such tha t =1. 1.4.29. Le t / b e positiv e an d continuou s o n [0,1 ] . Prov e tha t fo r every n G N there i s 0{n) such tha t e n Ir1 r ()r 1 — / f(x)dx = / f(x)dx + / f(x)dx. n
JO
JO
Jl-O(n)
Find th e limit lir a (n0(n)). n—>oo
1.4.30. Le t / G C^QO, 1]). Show tha t ther e i s a 0 G (0,1) such tha t
f(x)dx = f{Q)+ l-f'{0).
/* 2 Jo 1.4.31. Le t / G C ([0,1]). Sho w tha t ther e i s a 0 G (0,1) such tha t
jf 1 /(x)dx = /(0) + i// (0) + ^/ ,/(fl). 1.4.32. Suppos e / G C^IO, 1]) an d /'(()) ^ 0 . For x G (0,1], le t 0(x) be suc h tha t
r f(t)dt=f(6(x))x. Jo Find th e limi t
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
26
Problems. 1 : Th e Riemann-Stieltje s Integra l
1.4.33. Suppos e / i s continuous, nonnegativ e an d strictl y increasin g on [a , b]. Fo r p > 0, le t 0(p) denot e th e uniqu e numbe r suc h tha t
(f(o(p)r = ~ j\f{x)Ydx. b a
~ J
a
Find li m 0(p). p—>oo
1.4.34. Suppos e / i s continuous o n [a , b] an d suc h tha t
f x nf(x)dx = 0 Ja
for n = 0 , 1 , . . . . Prov e tha t / i s identicall y zer o o n [a , b\. 1.4.35. Suppos e / i s continuou s o n [a , b] an d suc h tha t / x nf(x)dx = 0 Ja for n = 0 , 1 , . . . , N. Prov e tha t / ha s a t leas t N -\- 1 zeros i n [a , b]. 1.4.36. Suppos e tha t / e C([-a,a]),a >
0. Sho w tha t
(a) i f I x 2nf(x)dx = J —a
0 fo r n = 0 , l , . . . ,
then / i s odd o n [—a , a], (b) i f 1 I x 2n+ f(x)dx = 0 fo r n = 0 , 1 , . . . , J —a then / i s even o n [—a , a]. 1.4.37. Fo r / continuou s o n R , fin d
i- [ (f(x + h)-f(x))dx.
h^O h J a
1.4.38. Fo r / continuou s o n R an d a < 6, defin e
g(x)= ( f(x + t)dt. Ja
Find th e derivativ e o f g. 1.4.39. Fin d th e followin g limits :
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
27
1.4. Prope r Integral s 1 (a) li m - = / I n ( 1 + 4 = ) dt, x->oo , / x Ji /I \ T
Z" 1
Vi
X
C O S
^7
(b) h m x / — f2?r-dt,
, ,T c li
m^
n si n \fidt ^ _ ,
{ I [ x Pit) \ (d) li m I —a / I n d t 1 , wher e a > 1 , an d P an d Q ar e x-^oo y ^ J 0 Q\t) J polynomials positiv e o n R + . 1.4.40. Fin d th e followin g limits : (a) li m f -— / dt)
(b)
^Gr
,
(i+sint)i +t
(c) li m (\ fV
^
dtV
(r 2 \ 1 /(*2) l (d) li m \ e dt) x ^°° \Jo ) 1.4.41. Sho w tha t i f / i s continuous o n [0,1 ] , the n lim (f \f(x)\*dx)
=
ma x \f(x)\.
1.4.42. Suppos e tha t a real-value d functio n f(x,y) i s continuou s o n a rectangl e R = [a , b] x [c , d]. Sho w tha t i{y) = / f(x,y)dx Ja is continuou s o n [c , d]. 1.4.43. Suppos e tha t a real-valued functio n f(x,y) define d o n a rectangle R = [a , b] x [c , d] is Rieman n integrabl e ove r [a , b] for eac h 2/ G [c , d], an d th e partia l derivativ e -g- is continuou s o n R . Prov e that dy
/ f(x,y)dx= /
—(x,y)dx.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
28
P r o b l e m s . 1 : T h e Riemann-Stieltje s Integra l
1.4.44. Le t / b e positiv e an d continuou s o n [0,1 ] . Fin d i/p
lim ( / (f(x)) pdx ' p-
1.4.45. Le t / b e positiv e an d continuou s o n [0,1 ] . Fin d ^ I/P lim j\f{x)fdx p—» —oo
1.4.46. Prov e tha t fo r ever y positiv e intege r N th e equatio n /t
t
e t 1+
Jo l0
' { v. +
2
2N
t + +
^. - (2Ny.]dt =
N
has a solutio n i n th e interva l (TV , 27V). 1.4.47. Le t P b e a polynomia l o f degre e n suc h tha t
f /o
Prove tha t
xkP(x)dx =
0 fo
r fe =
l,2...,n .
Jo
2
f (P(x)) 2dx =
( n + l ) 2 ^ / P(x)d ix a
1.4.48. Sho w tha t i f / i s continuous o n R = [a , b] x [c , d], the n /I
/ f{x,y)dx\dy= /
I
/ f{x,y)dy\dx.
1.4.49. Prov e tha t fo r 0 < a < b, 1
xb - x a , , 1 +6 ax = I n IQ 1 I nx +a
I
1.5. Imprope r Integral s Assume tha t / i s define d o n [a , oo) an d i s Rieman n integrabl e ove r any finite interva l [a , b]. Then w e defin e /•OO
fO
I f(x)dx = li m / f(x)dx, J ab ->°° J a provided tha t thi s limi t exist s an d i s finite. I n thi s cas e w e sa y tha t the imprope r integra l o n th e lef t converges ; otherwise , w e say tha t i t
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
29
diverges. Th e imprope r integra l J_ f(x)dx
i s define d analogously .
The integra l J_^ f(x)dx i s defined b y + o o pa
r~\-oo
)dx
/
f(x)dx = f(x)dx+ f(x -oo J— oo Ja provided tha t bot h imprope r integral s o n th e righ t converge . Th e definition doe s no t depen d o n th e choic e o f a. For / define d o n [a , b) and Rieman n integrabl e ove r eac h close d subinterval o f [a , 6), the imprope r integra l J f(x)dx i s define d a s rb ro—r/ pb—r] ro
/ f(x)dx = li m / f(x)dx, J a ^o+ J a provided th e limi t i s finite. I f / i s define d o n (a , b] and Rieman n integrable ove r eac h close d subinterva l o f (a , 6], the imprope r integra l f f(x)dx i s defined i n a simila r way . 1.5.1. Fo r n G N and positiv e a, calculat e dx r-l*
pZTV
Jo sin c) /
4[
(b) [
:x + cos 4 x '
x n{l-x)adx, a > - l Jo Jo
, (d
e) Jop - ^ - ^ V
(f) f
x
s)
/
(T
)/
\n(sinx)dx, Jo n
(-\nx)
Jo
dx,
x n ln a xdx,
dx 7i x
dx y/x2 — 1
2
In a:
k) /
ln( l + cosa:)dx ,
(1)
rda:,
f'"K)r
+x
2 *
1.5.2. Fo r 0 < a < 1 , defin e
/a 0*0
rai
r ii
— —a — X Vx\
00+ x - » l
-
lim
/ ( * ) + / ( S ) + " + /( aJT1 )
n—»oo fl
exists a s a finite limit , the n th e imprope r integra l J 0 f(x)dx exists . 1.5.5. Sho w b y exampl e tha t i n th e precedin g proble m th e assump tion tha t on e o f th e one-side d limit s i s finite canno t b e omitted . 1.5.6. Usin g th e resul t i n 1 .5.3 , find (a) li m
n—>-oo fl
,\r
, . 7T
.
2TT
.
( n -1
u (b) li nm \ si n — s i n - - . . . sin 2n 2n 2n
\ fc=i \
)T T
fc=i /
1.5.7. Suppos e tha t th e functio n / : (0,1 ]— > R i s monoton e an d fo r some a G M the imprope r integra l j 0 x af(x)dx exists . Sho w tha t lim x a+1 f(x) = 0 . x-+0+
1.5.8. Verif y whethe r th e followin g imprope r integral s converg e o r diverge:
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
(a)
31
L ^ ' (b
)
L IT^ '
1
(c) /
r r (-lnx)°dx , a e l , (d Jo Jo o1
l
)/
dx — - — ^ , o,ieR \ mx j
x
,
xdx + x 2 sin 2 x
1.5.9. Suppos e tha t / an d g ar e positiv e o n [a , oo) an d J a°° g{x)dx diverges. Sho w tha t a t leas t on e o f th e integral s / f(x)g(x)dx, Ja Ja
/
dx
-Tr^ f{
X
)
diverges. 1.5.10. Prov e th e followin g Cauchy theorem. I n orde r tha t th e im proper integra l J a°° f(x)dx converge , a necessary an d sufficien t condi tion i s that, give n e > 0, ther e i s a^ > a suc h tha t fo r a2 > a\ > ao, a
r 22 I />a
/(z)da; < £. J a\
1.5.11. Sho w tha t th e imprope r integra l J f(x)dx converge s i f an d only if for every increasing sequence {a n }, an > a , divergin g to infinit y the serie s ^ /*a
(1) }
n
\ J/ / f(x)dx, n = 1
wher
ea
0
= a,
^an_i
converges. Moreover , i n th e cas e o f convergence ,
/ f(x)dx
=
j ; / /(*)£*!;
.
Show als o tha t i f / i s nonnegative, a sufficien t conditio n fo r th e con vergence o f th e imprope r integra l i s tha t ther e i s a n increasin g se quence {a n }, a n > a, divergin g t o infinit y fo r whic h th e serie s (1 ) converges. 1.5.12. Fo r positiv e a, stud y th e convergenc e o f th e integra l
I
o1
dx + x a sin 2 x
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
32
Problems. 1 : Th e Riemann-Stieltje s Integra l
1.5.13. Suppos e / i s positive o n [0 , oo) an d f Q f(x)dx exists . Mus t f(x) ten d t o zer o a s x — » oo ? 1.5.14. Suppos e / i s positive, differentiable o n [a , oo), and \f'(x)\ < 2 for x > a. Doe s th e convergenc e o f J°° f(x)dx impl y tha t f(x) tend s to zer o a s x — > oo ? 1.5.15. Prov e tha t i f / i s uniforml y continuou s o n [a , oo) an d th e improper integra l f °° f(x)dx converges , the n li m f(x) = 0 . 1.5.16. Assum e tha t / : [0 , oo)— * [0,oo) i s monoton e decreasing . Prove tha t i f
then li m xf(x) =
f(x)dx
oo
hold; tha t is , th e conditio n li m xf(x) —
0 doe s no t impl y th e con -
x—>oo
vergence o f J 0 f(x)dx. 1.5.17. Assum e tha t / : [1 , oo)— > (e , oo) i s monotone increasin g an d f°° dx
h fix) f °° dx (a) Prov e tha t als o / —•— —— = oo. :ln/(x) (b) Giv e an example of a function / satisfyin g th e abov e assump dx r x l n / ( x ) l x ) )converges . tion fo r whic h / _ ^ £f ^ ^ n n( l_n£f/ („w
1.5.18. Le t / b e a continuou s functio n o n [0 , oo) suc h tha t lim (fix)-]- f f(t)dt] ^°° \ Jo / exists a s a finite limit . Prov e tha t li m f(x) = 0 . x
x—>-oo
1.5.19. Le t / b e a nonnegativ e an d continuou s functio n o n [0 , oo) and Jo Jo
Prove tha t
f(x)dx
0 such tha t f(t)dt
0 ) wit h / 0°° g(x)dx < oo. The n /»oo p\
/ f(x)g(x)dx Jo Jo
R b e a nonnegativ e decreasin g functio n an d let g : [a , b] —> R b e a nonnegativ e an d Rieman n integrabl e functio n such tha t
/
J aJ
g
2{t)dt
a
and rb nb
/ gi (t)dt= / J aJ
g
2(t)dt,
a
Show tha t i f / i s increasing o n [a , 6], the n nb
/»6
/ f(t)
9l(t)dt
f f(t)g 2(t)dt. J aJ
a
1.6.43. Us e the Steffense n inequalit y t o prov e tha t i f / i s contin uously differentiat e o n [a , b] and m < f'(x) < M (m < M) fo r x G [a, b], then +
(M - m)A 2 /(& ) - / ( a ) ( (6-a) 2 " 6a~ (b
M - m)(f r - a - A) - a) 2
2
where A
/(&)-/(a)-m(6-a) M -m
1.6.44. Prov e tha t i f / i s continuousl y differen t iable o n [a , b] and m < f'(x) < M (m < M) fo r x e [a , 6], the n / f{x)dx (b-a)\
0.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.7. J o r d a n M e a s u r e
55
1.7.19. Sho w t h a t a bounde d se t A i s Jorda n measurabl e i f an d onl y if ther e exis t tw o sequence s { B n } an d { C n } o f J o r d a n measurabl e sets suc h t h a t B n C A C C n an d li m | B n | = li m | C n | = | A | . n—>oo n—>o
o
1.7.20. Sho w t h a t th e se t A=|(x,|/)Gl
2
: 0 < x < l ,0
< y
0 , consist s o f thre e con gruent leaves , tangen t t o eac h othe r a t th e origin . Fin d th e are a o f one o f th e leaves . 1.7.25. Fin d th e are a o f th e limago n r = a + bcosO, wher e positiv e numbers a an d b ar e given , distinguishin g th e case s i n whic h a > b, a = 6 , an d a < b. 1.7.26. Fin d th e are a o f th e loo p o f th e curv e x 5 + y 5 = 5ax where a > 0 i s given .
2 2
y,
1.7.27. Fin d th e are a o f th e regio n t h a t lie s withi n t h e limago n r = 1 + 2 cos 6 an d outsid e th e circl e r = 2 .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
56
Problems. 1 : Th e Riemann-Stieltje s Integra l
1.7.28. Suppos e / i s nonnegativ e an d continuou s o n [a , b]. A plan e region A / = {(x,y) £ M 2 : a < b, 0 < y < f(x)} i s revolve d abou t the x-axis , generatin g a solid o f revolution V wit h volum e |V| . Prov e that |V| = 7 T / f\x)dx. Ja 1.7.29. Suppos e / i s nonnegative an d continuou s o n [a , b] and 0 < a. Prove tha t th e volum e o f th e soli d V generate d b y th e plan e regio n Af = {(x,y) G M 2 : a < 6, 0 ( 2k + i) 71 "] a b o u t t h
e
x-axis. 1.7.32. Sho w tha t th e lengt h L o f the ellips e
©Mir-
satisfies 7r(a + b) < L < 7r^2{a 2 + b 2).
1.7.33. Sho w tha t th e lengt h o f th e ellips e
is given b y
where e = ~
b
i s th e eccentricit y o f th e ellipse .
1.7.34. Deriv e th e followin g formul a fo r th e lengt h o f a curv e i n th e polar coordinate s (r , 6). I f / i s continuousl y differen t iable o n [a,/?] , then th e lengt h L o f th e curv e r = /(0) , a < 9 < (3, i s give n b y
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
57
1.7. J o r d a n M e a s u r e 1.7.35. Fin d th e lengt h o f th e curv e wit h pola r equatio n Q
(a) r = a s i n 3 - , 0 o
< 6 < 3TT.
( b ) r =~i l —E> ~ f < ^ < f K; 1 + co s 0 2 - 2 1.7.36. Fin d th e lengt h o f the curv e wit h pola r equatio n
0 = \(r + iy l 0 there i s a n open se t G suc h that A C G an d ra(G) < ra*(A) +£ . Sho w als o tha t there i s a Q$ se t A 2 suc h tha t A C A 2 an d ra(A 2) = m*(A) . 2.1.12. Prov e that fo r A C R the following statements are equivalent : (i) A i s measurable . (ii) Give n e > 0 , ther e i s a n ope n se t G D A suc h tha t m*(G\A) 0, ther e i s a close d se t F C A suc h tha t m*(A\F) 0 there i s a finite unio n W o f open interval s suc h tha t ?7i* (W A A ) < £ , wher e W A A i s th e symmetri c differenc e fo r W and A , tha t is , W A A = ( W \ A ) U (A \ W) . 2.1.14. Fo r A C R , defin e th e Lebesgue inner measure m*(A ) o f A by settin g ra*(A) = sup{ra(B ) : B e S0t , B c A } , where 9J t denotes th e a-algebr a o f al l measurabl e subset s o f R. Prove : (a) I f A i s measurable , the n m * (A) = ra*(A). (b) I f A i s a subse t o f a bounde d close d interva l I , the n m*(A) = |I | - r a * ( I \ A) . (c) I f ra* (A) = m*(A ) < oo , the n A i s measurable . (d) Fo r an y set s A an d C , m*(A U C) + ??7 * (A H C) > ra*(A) + 7n*(C) . (e) I f A n , n = 1 ,2,... , ar e pairwis e disjoint , the n 777* ( | J A \n = l I
n
J > ^m^An). n
=l
(f) I f M i s o f measur e zero , the n m* (A U M) — m*(A).
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
62
Problems. 2 : Th e Lebesgu e Integra l
2.1.15. Prov e tha t A C I, wher e I i s a bounde d an d close d interval , is measurabl e i f an d onl y i f |I| = m * ( A ) + m * ( I \ A ) . 2.1.16. Le t A an d B b e given sets of finite outer measure . Sho w tha t m * ( A u B ) = m*(A ) 4-m*(B) i f and onl y i f there ar e measurable set s Ai an d B i suc h A C A i , B C B i an d ra(Ai n Bi ) = 0 . 2.1.17. Le t A an d B b e given sets of finite outer measure . Sho w tha t if ra*(AUB) = r a * ( A ) + m*(B) , t h e n r a * ( A u B ) = ra*(A) + m*(B) . 2.1.18. Prov e tha t i f {A n } i s a n increasin g sequenc e o f measurabl e sets, the n m I Iv J/ A n -- l // \n=
J = li m m ( A n ) . n,
—»oo
2.1.19. Prov e tha t i f {A n } i s a decreasin g sequenc e o f measurabl e sets an d ra(Afc) i s finite fo r a t leas t on e fc, then m I P i A n J = li m m ( A n ) . \' ' / \n=l J
n—>o
o
Show als o tha t th e assumptio n tha t ra(Afc) < o o fo r som e k canno t be omitted . 2.1.20. Fo r a sequence {A n } o f sets in R, we define th e limi t superio r and th e limi t inferio r o f {A n } b y settin g oo
lim A
n
oo
oo
= p | I ) A n an d li
mA
n ~^°° , -, 7 n-^oc 1 k=ln=fc K= n=k
n
oo
= ( J p | A n.
,
1
,
(a) Sho w tha t i f A n , n G N, ar e measurable , the n m I li m A \n—+oo J
n
1 < li m m(A n ). n—
>-oo
(b) Sho w that if , moreover , m(A n U one n , the n
An + i U . . .) < o o for a t leas t
m l li m A n 1 > li m m ( A n ) . \n—>oo /
n—>-o
o
2.1.^1. W e say that a sequence {A n } of sets in R converges if li m A n—>oo = li m A n , an d w e denot e th e commo n valu e b y li m A *-n* ^
n
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
63
2.1. Lebesgu e Measur e o n th e Rea l Lin e (a) Sho w tha t a monotoni c sequenc e o f set s converges .
(b) Sho w that , i f a sequenc e {A n } o f measurabl e sets , A n C B , where ra*(B) < oo , converges , the n m ( li m A n ) = li m ra(A \n—>oo /
n—->o
n).
o
2.1.22. Sho w tha t th e Lebesgu e measur e o f th e se t A define d i n 1.7.12 i s equal t o 1 — a. 2.1.23. Le t A b e th e se t o f points i n [0,1 ] suc h tha t x i s in A i f an d only if the decimal expansio n o f x doe s not requir e th e us e of the digi t 7. Sho w tha t A ha s Lebesgu e measur e zero . 2.1.24. Le t B c M b e th e se t o f al l number s whos e decima l expan sions d o no t requir e th e us e o f th e digi t 7 afte r th e decima l point . Show tha t B ha s Lebesgu e measur e zero . 2.1.25. Le t A b e th e se t o f point s i n [0,1 ] whic h admi t o f binar y expansions with zeroes in all even positions. Sho w that A i s a nowhere dense se t o f Lebesgu e measur e zero . 2.1.26. Fin d th e Lebesgu e measur e o f the se t o f points i n [0,1 ] whic h admit decima l expansion s containin g al l th e digit s 1 , 2 , . . ., 9 . 2.1.27. Wha t i s th e Lebesgu e measur e o f th e se t o f point s i n [0,1 ] which admi t decima l expansion s 0.di^2^ 3 . • • suc h tha t n o sequenc e d^k+i^3/c+2^3/c+3 consist s o f thre e consecutiv e 2's ? 2.1.28. Le t A b e th e unio n o f interval s centere d a t point s o f th e Cantor se t an d eac h o f lengt h 0.1 . Fin d th e Lebesgu e measur e o f A . 2.1.29. Sho w tha t i f A i s a bounde d measurabl e se t o f measur e ra(A) = p > 0 , the n fo r eac h q G (0,p ) ther e i s a measurabl e se t B C A o f measur e q. 2.1.30. Sho w that i f 0 < ra(A) < oo , then for each positive q < ra(A) there i s a measurabl e se t B C A o f measur e q. 2.1.31. Sho w that i f 0 < ra(A) < oo , then for each positive q < ra(A) there i s a perfec t se t B C A o f measur e q. 2.1.32. Sho w tha t an y se t A o f positiv e Lebesgu e measur e ha s th e cardinality o f th e continuum .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
64
Problems. 2 : Th e Lebesgu e Integra l
2.1.33. Sho w tha t an y nonempt y an d close d se t A C R o f Lebesgu e measure zer o i s nowher e dense . 2.1.34. Suppos e tha t A C i i s a nowher e dens e se t o f Lebesgu e measure zero . Mus t it s closur e b e o f Lebesgu e measur e zero? 2.1.35. Sho w tha t i f A C [a , b] an d ra(A) > 0 , the n ther e ar e x an d y in A suc h tha t \x — y\ i s a n irrationa l number . 2.1.36. Doe s ther e exis t a countable collectio n o f nowhere dens e an d perfect subset s o f [0,1 ] whos e unio n i s of Lebesgu e measur e 1 ? 2.1.37. Doe s ther e exis t a nowher e dens e an d perfec t subse t o f [0,1 ] of Lebesgu e measur e 1 ? 2.1.38. Giv e a n exampl e o f a measurable se t A C R wit h th e follow ing property : Fo r eac h interva l (a,/3) , ra(An(a,/?)) >
0 an d ra((R \
A ) n (a,/?) ) > 0 .
2.1.39. Assum e tha t a measurabl e se t A C R ha s th e propert y tha t for eac h 8 > 0, m ( A f l ( 4, 5)) > 0 and 0 £ A . Prov e that ther e exist s a perfec t se t B C A suc h tha t ra(B H (—6, 5)) > 0 for ever y S > 0 . 2.1.40. A measurable se t A C R i s said t o hav e density d at x if th e limit m(An\x-h,x + h\) hm — —— — /i—o+ 2h
exists an d i s equal t o d. I f d — 1, then x i s called a point of density of A, an d i f d — 0 , the n x i s called a point of dispersion of A. Fin d th e points o f density an d point s o f dispersion o f A = (—1 , 0)U(0,1)U{2}. 2.1.41. Give n a £ (0,1 ) , construc t a se t A whos e densit y a t XQ £ R is equa l t o a. 2.1.42. Le t A b e a measurabl e se t suc h tha t 0 £ A i s a poin t o f density o f A . Prov e tha t ther e i s a perfec t se t B C A suc h tha t 0 is a poin t o f densit y o f B . 2.1.43. I f x an d y ar e i n [0,1 ) , we define th e su m x + y(mod 1 ) to b e x - f y, i f x + y < 1 , an d t o b e x + y — 1 , i f x + y > 1 . Fo r A C [0,1 ) and a £ [0,1 ) , w e defin e th e translat e modul o 1 of A t o b e th e se t A - f a(mo d 1 ) = {x - f a (mod 1 ) : x £ A} . Show tha t ?n* (A) = m*( A + a(mo d 1 )) .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
2.1. Lebesgu e Measur e o n th e Rea l Lin e
65
2.1.44. Sho w tha t i f A C [0,1 ) an d a G [0,1 ) , the n th e se t A + a (mod 1 ) i s measurabl e i f an d onl y i f A i s measurabl e an d ra(A + a(mo d 1 ) ) = m(A) . 2.1.45. W e sa y tha t x,y G [0,1 ) ar e equivalent , an d writ e x ~ y , i f and onl y i f x — y i s a rational . Thi s equivalenc e relatio n partition s [0,1) int o a n uncountabl e famil y o f disjoin t equivalenc e classes . B y the axiom of choice there is a set V whic h contains exactly one element from eac h equivalence class . W e call any such a set a Vitali set. Prov e that a Vital i se t i s nonmeasurable . 2.1.46. Sho w that i f A i s a measurable subse t o f a Vitali se t V , the n ra(A) = 0 . 2.1.47. Show , b y example , tha t th e convers e o f th e resul t state d in 2.1 .1 7 i s no t true ; tha t is , ther e exis t set s A an d B suc h tha t ra*(A U B) = ra*(A) + ra*(B) bu t ra*(A U B) < ra*(A) + ra*(B). 2.1.48. Sho w tha t an y se t o f positiv e oute r measur e contain s a non measurable subset . 2.1.49. Giv e a n exampl e o f a sequence {A n } o f pairwise disjoin t set s such tha t
(
oo \
o
c
(J A n c} is measurabl e fo r ever y c G C. 2.2.5. Sho w tha t a real-value d functio n / define d o n a measurabl e set A i s measurabl e i f an d onl y i f / - 1 ( G ) i s measurabl e fo r ever y open G C R . 2.2.6. Sho w tha t i f a real-value d functio n / define d o n R i s measur able, the n / _ 1 ( B ) i s measurabl e fo r ever y Bore l se t B C R . 2.2.7. Prov e tha t continuou s real-value d function s define d o n mea surable set s ar e measurable . 2.2.8. Suppos e extended-value d function s / an d g ar e define d o n a measurable se t A . Prov e tha t i f / i s a measurable functio n an d f — g a.e., the n g is measurable . 2.2.9. Prov e tha t ever y Rieman n integrabl e functio n define d o n [a , b] is measurabl e o n [a , b]. 2.2.10. Sho w tha t eac h functio n o f bounde d variatio n o n [a , b] is measurable. 2.2.11. Defin e th e Cantor function ip : [0,1 ]— > [0,1] a s follows : I f oo
x i s a n elemen t o f th e Canto r se t C an d x — Yl &t with a n = 0 o r 71=1
an = 2 , the n w e pu t
(
oo \
o
o 1
Z^ 3 n J Z-J
n=l /
n=
2
l
2
n
that is , i f a n i s th e nt h ternar y digi t fo r x , the n th e nt h binar y digi t for 0, there i s a measurable se t B C A suc h tha t ra(A\B) < e and / restricte d t o B i s bounded . 2.2.22. Prov e th e followin g Egorov theorem. Le t A C R b e a mea surable se t o f finit e measure . I f {f n} i s a sequenc e o f measurabl e functions whic h converge s t o a real-value d functio n / almos t every where o n A , then , give n e > 0, ther e exist s a measurabl e subse t B o f A suc h that ra(A\B) < e and th e sequenc e {f n} converge s uniforml y to / o n B .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
70
Problems. 2 : Th e Lebesgu e Integra l
2.2.23. Sho w by example that th e assumption m(A) < o o is essential in th e Egoro v theorem . 2.2.24. Suppos e tha t A i s measurabl e an d {f n} i s a sequenc e o f measurable function s whic h converge s t o / almos t everywher e o n A . Prove that ther e is a set B C A suc h that B = I J ^ i B* , ra(A\B) = 0 and th e sequenc e {f n} converge s uniforml y t o / o n ever y B^ . 2.2.25. Le t {V n } b e th e sequenc e o f set s define d i n th e solutio n t o 2.1.45 an d le t {f n} b e th e sequenc e o f function s o n [0,1 ) define d b y fn = X\J°l Vi- Sho w tha t f n— » 0 o n [0,1 ) , bu t th e assertio n o f th e Egorov theore m doe s not hold , that is , there i s e > 0 such that o n any measurable subse t B o f [0,1 ) wit h m([0,1 ) \ B ) < e th e convergenc e is no t uniform . 2.2.26. Construc t a sequenc e {f n} o f measurabl e function s o n [0,1 ] such tha t th e sequenc e converge s everywher e o n [0,1 ] bu t fo r ever y set B C [0,1 ] o f measur e 1 , th e sequenc e fail s t o converg e uniforml y onB. 2.2.27. Prov e th e followin g Lusin theorem: I n orde r tha t a real valued functio n / define d o n a measurabl e se t A b e measurable , a necessary an d sufficien t conditio n i s tha t fo r ever y e > 0 ther e i s a closed se t F C A suc h tha t ra(A \ F ) < e an d / restricte d t o F i s continuous. 2.2.28. Usin g the result i n 2.1.38, construct a function / , measurabl e on M , such tha t fo r an y se t E o f measur e zero , / i s not continuou s a t any poin t i n M \ E . 2.2.29. Le t / : [0, a]—> R b e a measurable function . Sho w that ther e exists a monoton e decreasin g functio n g o n [0 , a] such tha t fo r an y real y, m({x E [0,a ] : f(x) > y}) = m{{x e [0 , a] : g{x) > y}). 2.2.30. Le t {f n} b e a sequenc e o f real-value d function s measurabl e on A . W e sa y tha t {f n} converges in measure t o a measurabl e func tion / i f fo r ever y e > 0 , li m m({x e A : \f n(x) — f(x)\ > e}) — 0 . n—*oo
Show tha t i f a sequenc e {f n} converge s i n measur e t o / an d {f converges i n measur e t o g, the n / = g a.e . o n A .
n}
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
2.3. Lebesgu e Integratio n
71
2 . 2 . 3 1 . Prov e th e followin g theorem of Lebesgue. I f 771 (A ) < 0 0 an d {fn} converge s t o / a.e . o n A , the n {f n} converge s i n measur e t o / . 2 . 2 . 3 2 . Sho w b y exampl e t h a t th e assumptio n ra(A) < in th e Lebesgu e theore m state d above .
0 0 i s essentia l
2 . 2 . 3 3 . Giv e a n exampl e o f a sequenc e o f measurabl e function s o n th e interval [0,1 ] t h a t converge s i n measur e o n [0,1 ] bu t i s no t convergen t at an y poin t o f t h a t interval . 2 . 2 . 3 4 . Le t {f n} b e th e marchin g sequenc e define d i n th e solutio n to th e previou s problem . Fin d a subsequenc e o f i t t h a t converge s t o the zer o functio n a.e . o n [0,1 ] . 2 . 2 . 3 5 . Prov e th e followin g Riesz theorem. Ever y sequenc e {/ n } con vergent i n measur e t o / o n A contain s a subsequenc e convergin g t o / a.e . o n A . 2 . 2 . 3 6 . Le t {f n} t> e a sequenc e o f monotonicall y increasin g function s on (a , b). Sho w t h a t i f th e sequenc e converge s i n measur e t o / , the n lim f n(x) — f\x) a t eac h poin t x o f continuit y o f / . n^oo
2 . 2 . 3 7 . Prov e th e followin g Frechet theorem. I f / i s a real-value d measurable functio n o n A , the n ther e i s a n T a se t H suc h t h a t ra(A \ H ) = 0 an d / restricte d t o H i s i n th e firs t Bair e clas s (tha t is, / i s a pointwis e limi t o f a sequenc e o f continuou s function s o n H ) . 2 . 2 . 3 8 . Prov e th e followin g Vitali theorem. I f / i s a real-value d mea surable functio n o n A , the n ther e i s a functio n g i n th e secon d Bair e class (tha t is , g i s a pointwis e limi t o f a sequenc e o f function s i n th e first Bair e clas s o n A ) suc h / = g a.e .
2.3. Lebesgu e Integratio n n
T h e Lebesgu e integra l o f a simpl e functio n r}) = 0 fo r som e rea l numbe r r . I n this cas e w e define th e essential supremum o f / b y H/lloo = inf{ r : m({x € A : \f(x)\ > r}) = 0} . Then th e se t E = {x e A : |/(a;) | > ||/||oo } i s o f measur e zer o an d |/0r)| < H/llo o outsid e E . Thu s | / ( x ) | < | | / | U a.e . We wil l ofte n us e th e followin g theorems : Theorem 1 (Lebesgue' s Monoton e Convergenc e Theorem) . Suppose {f n} is an increasing sequence of nonnegative measurable functions on A . If f(x) = li m f n{x), x E A, then lim / f ndm = / fdm. ^°° J A J A Theorem 2 (Fatou' s Theorem) . Suppose {f n} is nonnegative and measurable functions on A. Then n
/ Ui n fndm < li m / f J A n—>o o n—*oo
a sequence of
ndm.
JA
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
73
2.3. Lebesgu e Integratio n
Theorem 3 (Lebesgue' s Dominate d Convergenc e Theorem) . Suppose {f n} is a sequence of measurable functions on A and f(x) = lim f n(x), x G A. If there exists a function g integrable on A and n—>oo
g{x), n = 1 , 2 , . . ., x G A, then
such that \f n(x)\
0 ther e i s S > 0 suc h tha t fo r ever y measurable subse t B o f A , J B \f n\dm < e fo r n = 1 ,2,.. . when ever m (B) < # . Show tha t i f {/ n } i s a convergen t sequenc e o f equi integrable function s o n a set A o f finite measure , the n lim / fndm — / li m f ndm. ~ °° J A J An ^°° 2.3.21. Prov e th e following versio n o f Lebesgue's dominate d conver gence theorem . Suppos e {f n} i s a sequenc e o f measurable function s converging i n measur e o n A t o / . I f ther e exist s a functio n g in tegrable o n A an d suc h tha t |/ n (a:)| < g(x), n = 1 ,2,... , x G A, then n >
lim / fndm — \ fdm. ™-*°° J A J
A
2.3.22. Sho w tha t th e theore m state d i n 2.3.2 0 remain s tru e whe n convergence i s replaced b y convergence i n measure . 2.3.23. Suppos e th e sequence {f n} converge s i n measur e t o / o n a set A o f finite measure , an d \f n(x)\ < C fo r x G A, n = 1 ,2,... . Show tha t i f g is continuous o n [—C , C], the n I™ / g{f n)dm= / g(f)dm. -*°° J A J A 2.3.24. Suppos e tha t {f n} i s a sequence of functions define d o n a set A o f finite measur e tha t converge s i n measure o n A t o /. Sho w tha t n
lim / s'm(f n)dm = / sin(/)d r ^°° J A J A
n
2.3.25. Suppos e / G Lp[a, b], 1 < p < oo . Show that , give n e > 0, there is (i) a simple functio n{x)\ : x e [o,6] } > 1 / 2 for al l step function s ip.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
77
2.3. Lebesgu e Integratio n
2 . 3 . 2 7 . Suppos e / G L p[a,b],1 < p < oo . Sho w t h a t , give n £ > 0 , there i s a continuou s functio n g suc h t h a t L u\f — g\ pdm < e. 2 . 3 . 2 8 . Show , b y example , t h a t th e resul t i n th e previou s proble m i s false i f p = oo . 2 . 3 . 2 9 . Suppos e t h a t g satisfie s a Lipschit z conditio n o n R . Prov e t h a t i f {/ n } i s a sequenc e o f measurabl e function s o n [a , b] t h at con verges i n measur e t o / an d ther e i s a Lebesgu e integrabl e functio n G such t h a t \f n(x)\ < G(x), the n
lim / g{f
n)dm
= / g{f)dm.
J[a,b] ^^JlaM[a,6] J\aM
2 . 3 . 3 0 . Suppos e t h a t 1 < p < oo , an d t h a t / i s measurabl e o n A and suc h t h a t \f\ p i s integrabl e o n A . Prov e t h a t , give n e > 0 , ther e is a continuou s functio n g vanishin g outsid e a finite interva l an d suc h that / \f-g\Pdm > g a.e. Sho w t h a t f ngn— > / ^ i n L p [a,6]. 2 . 3 . 3 3 . Sho w t h a t i f / i s a n essentiall y bounde d functio n o n [a . 6], then
lim If \J7dm
) =!i/lk
-
(Compare wit h 1 .4.41 . )
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
78
Problems. 2 : Th e Lebesgu e Integra l
2.3.34. Prov e th e Jensen inequality for Lebesgue integrals (se e als o 1.6.29). Suppos e tha t / i s Lebesgue integrable o n [a , b]. If if is convex on R , the n (f - / fdm \b-aJ[aM J
/
< b
a5}, then 2
2
m(As)>m(A)(l-5) j. 2.4. Absolut e Continuity , Differentiatio n an d Integration A real-valued functio n / define d o n [a , b] i s said t o b e absolutely continuous o n [a , b] if , give n e > 0, ther e i s 5 > 0 such tha t n
J2\f(xk)-f(x'k)\oo x—
»oo
2.4.20. Le t / G Lp[a, 6] , 1 < p < oo , an d pu t f(x) = 0 for x £ [a , b}. For h > 0 , w e defin e fh b y settin g px+h
A M - S £»'«>*• Show tha t fh i s continuous an d \\fh\\p < II/li p (compar e wit h 1 .6.34) . 2.4.21. Prov e tha t i n th e notatio n an d unde r th e assumption s o f 2.4.20 limL||/ft-/|| p = 0 . h—>0
2.4.22. Suppos e tha t / G L l[a,b] an d tha t x G (a , b) i s suc h tha t f{x) ^ ±oo . The n x i s calle d a Lebesgue point for fit f>x+h
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
2.4. A b s o l u t e C o n t i n u i t y , D i f f e r e n t i a t i o n . . .
83
Show t h a t i f x i s a Lebesgu e poin t fo r / , the n th e functio n F(x) = J f(t)dt i s differentiabl e a t x an d F'(x) — f(x). 2 . 4 . 2 3 . Sho w t h a t eac h poin t o f continuit y o f / £ L l[a, b] is a Lebes gue poin t fo r / . 2 . 4 . 2 4 . Prov e t h a t almos t ever y poin t o f [a , b] is a Lebesgu e poin t fo r
2 . 4 . 2 5 . Sho w t h a t almos t al l point s o f a measurabl e se t A ar e point s of densit y o f A . (Se e 2.1 .4 0 fo r th e definitio n o f a poin t o f density. ) 2 . 4 . 2 6 . A se t A C R i s sai d t o hav e outer density d at x i f t h e limi t ra*(An \x
lim — h-+o+ 2h
- h,x + h\)
exists an d i s equa l t o d. I f d = 1 , the n x i s calle d a point of outer density of A, an d i f d = 0 , the n x i s calle d a point of outer dispersion of A. Prov e th e followin g generalizatio n o f th e resul t i n th e previou s problem. I f A i s an y se t (measurabl e o r not) , the n almos t al l point s i n A ar e point s o f it s oute r density . A necessar y an d sufficien t conditio n t h a t A b e measurabl e i s t h a t almos t al l point s i n A c ar e point s o f outer dispersio n o f A . 2 . 4 . 2 7 . Assum e t h a t a real-value d functio n / (measurabl e o r not ) i s defined o n [a , b]. W e sa y t h a t XQ £ [a , b] i s a point of approximate continuity of f i f fo r eac h e > 0 , l i m m*([x h-^o 2h
0
- fe,s
0
+ h] H {x G [a , 6] : \f(x) -
f(x 0)\ >
g»=
Q
Prove t h a t a real-value d functio n / i s measurabl e o n [a , b] if an d onl y if almos t al l point s o f [a , b] are point s o f approximat e continuit y o f / . 2 . 4 . 2 8 . Sho w t h a t a Lebesgu e integrabl e functio n o n [a , b] is approx imately continuou s a t eac h o f it s Lebesgu e points . Sho w b y exampl e t h a t th e convers e i s no t true . 2 . 4 . 2 9 . Sho w t h a t i f / i s measurabl e an d bounde d o n [a , 6], the n x G (a , b) i s a Lebesgu e poin t fo r / i f an d onl y i f x i s a poin t o f approximate continuit y o f / .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
84
Problems. 2 : Th e Lebesgu e Integra l
2.4.30. A n alternate definitio n o f approximate continuit y i s that / i s approximately continuou s a t xo provided ther e i s a measurable se t A such tha t xo is a point o f density fo r A an d such tha t th e restrictio n of / t o A i s continuous a t x$. Sho w tha t thi s definitio n i s equivalent to th e one given i n 2.4.27. 2.4.31. Giv e a n example o f a bounded functio n / : [0,1]—> R whic h is not Rieman n integrabl e bu t i s a derivativ e o f some functio n F on [0,1]2.4.32. Suppos e / i s integrable o n [a , b] an d for t £ R defin e G(t) = m({x e [a,b] : f(x) < t}). Prov e tha t pb rOG
/ f(x)dx = / td(G(t)), J — oo
Ja
where oo /*
/
0 /»o
o
td{G{t)) = I td(G(t))
+ / td(G(t))
— oo JO
-oo J
pO nB
= li m / td{G(t))+ li m / td(G(t)). 2.5. Fourie r Serie s For / G L1[—7r,7r], the Fourier coefficients o f / a r e give n by an — — f(x)
cosnxdx, b
^ 7-7 T
n
= — / / ( # ) sinnxdir. ^ 7-7 T
The serie s 1° ° -ao + / J ( a n cos nx-f - 6n sin nx) 2
n=
l
is the Fourier series of f, an d we write ^
oo
/(#) ~ -a o + Y ^ ( a n c o s n x + 6 n sinnx). 2' n=l
We denot e b y s n{x) th e nt h partia l su m of th e Fourie r serie s o f / ; n
that is , sn{x) — \a§ + Yl (dk cos kx + bk sin fcr). fc=i
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
2.5. Fourie r Serie s
85
2.5.1. Sho w tha t i f p n = y a ^ + b*^, the n oo
oo
2_"(o>n
c o sn x
+ b n sinnx) = \ J p n sin(n:r + a n ) ,
n=l n=
l
with som e a n. 2.5.2. Sho w tha t i f a n an d 6 n ar e th e Fourie r coefficient s o f / £ L1[—7r, 7r], the n lim a n = li m b n = 0 . n—»oo n—>o
o
2.5.3. Suppos e tha t / i s a 27r-periodic function tha t satisfie s th e Lip schitz conditio n o f orde r a ( 0 < a < 1 ) ; tha t is , f(x + h) — f(x) = 0(\h\a) a s / i— > 0 uniforml y wit h respec t t o x. Sho w tha t i f a n an d bn ar e th e Fourie r coefficient s o f / , the n an = 0(n- a) an
d6
= 0(n _ Q ! ).
n
2.5.4. Sho w tha t i f / i s of bounde d variatio n o n [—7r,7r] , the n a n — 0 ( n _ 1 ) an
db
n
= 0{n~
l
).
2.5.5. Sho w tha t i f / i s a 27r-periodi c functio n tha t i s absolutel y continuous o n [—7r,7r] , the n an = o(n _ 1 ) an d b
n
— o{n~ l).
2.5.6. Sho w tha t i f / i s a 27r-periodi c functio n an d / G Cfc (R), the n an = o(n~ k) an
db
n
— o(n~ k).
2.5.7. Sho w that fo r / G Ll[—TT, 7r], the nth partia l sum of the Fourie r n
series o f / , tha t is , s n(x) = \a$ -f - ^ (a ^ coskx + 6 ^ sin/ex), i s give n fc=i
by 7r t/_7r 2 s m ^ ( t - x
)
2.5.8. Asum e tha t / i s a periodic functio n o n R wit h perio d 27T , and that / i s integrable o n [—7r , TT]. Sho w that i f s n denote s the nth partia l sum o f th e Fourie r serie s o f / , the n
Snix) = - [^ (/(* + t) + f(x - t)) TT J0 2
Sin n+
(
p^.
sin %t
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
86
Problems. 2 : Th e Lebesgu e Integra l
2.5.9. Prov e the Dini-Lipschitz test for convergence of Fourier series. Suppose / i s a periodic function o n R with period 2TT that i s integrable on [—7r,7r] . I f / satisfie s th e conditio n \f(xo + t) — /(#o) | < L\t\ a fo r \t\ < 8 with som e positive L , 8 and 0 < a < 1 , then th e Fourie r serie s of / a t XQ converges t o f(xo). 2.5.10. Prov e th e Dirichlet-Jordan test for convergence of Fourier series. Assum e tha t / i s a 27r-periodi c functio n integrabl e o n [—7r,7r] and tha t / i s of bounded variatio n o n [xo — 8, XQ - f 8] . Show tha t th e Fourier serie s o f / a t XQ converges t o |(/(#o~ ) + /(#o~)) 2.5.11. Sho w b y exampl e tha t th e Dirichlet-Jorda n tes t doe s no t include th e Dini-Lipschit z tes t an d tha t th e Dini-Lipschit z tes t doe s not includ e th e Dirichlet-Jorda n test . 2.5.12. Sho w tha t oo
7r — x v-
^ si n nx 71=1
and deduc e tha t 7r ^- ^ sin(2 n — l)x 4_ ^ 2 n -1 '
0 < X < 7T ,
71 = 1
IT
1
4
= 1
1
- 3
2 ^5
1 +
5 - 7
+
7 1 11
- ' 3
2.5.13. Fo r x G (0, 27r), find th e sum s o f th e followin g series : OO
E
OO
cosnx Y
n=l n =
2
n ^
^ sinn x n
3
l
2.5.14. Sho w tha t i n 2.5. 4 bi g O' s canno t b e replace d b y littl e o's . 2.5.15. Le t / b e a 27r-periodic function suc h that f(x) = E ^- fo r x G [0, 27r), and le t s n(x) denot e th e nt h partia l su m o f it s Fourie r serie s (see 2.5.12). Sho w that i f x n i s the smalles t positiv e numbe r a t whic h sn(x) attain s it s loca l maximum , the n li m s n(xn) = L ^^dx.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
2.5. Fourie r S e r i e s
87
2 . 5 . 1 6 . Sho w t h a t fo r a ^ 0 , e2an e—
~~ n
_ 1 / 1 — i / i„ \2a
a
2
V^/ / ^
n aT T ,
^
12
Z
a7T 7
e**=
a c ao scos n nxx — — nn si n nx
,0
< X < 27T ,
+ n xaCOSnX a2
T
_ \ ( 1 _ (1 _ )nea7r^__ ^( 7T ^ a2 + n 2 n=l
_ ^ n2 '
) < X < 7T .
Find th e sum s o f th e abov e serie s whe n x = 0 2 . 5 . 1 7 . Fo r 0 < x < 2TT and a ^ O , find t h e sum s o f t h e followin g series: n si n n a a co s n x a2 + n 2 ' a2 + n 2
E
E
71=1
n=l
2 . 5 . 1 8 . Sho w t h a t O
^,
OO
\~^ / -,\n
C0SnX
n=l
Using thi s equality , sho w t h a t
SA = ?an d E n=l n =
Mn+1 ^
2 12'
l
2 . 5 . 1 9 . Suppos e / G L 1 [—7r, 7r] and a n , 6 n ar e th e Fourie r coefficient s of / . Sho w t h a t (a) i f / ( x + 7r ) = f{x) fo r x G [-7r , 0] , the n a 2 n - i = b
2n-i
=
0,
(b) i f f(x + 7r ) = —/(# ) fo r x G [—7r , 0], the n a 2 n = &2 n = 0 . 2 . 5 . 2 0 . Sho w t h a t fo r 0 < x < TT , cosx
8 v~ ^ n s i n 2 n x 2 7T ^ 4 n -l n=l
24 and s i n x = —z 4 Jinx = > 7T7
v^- ^^ cc oo ss 2z nn xx —z . T ni L=-l ' 4 n 2 - 1
2 . 5 . 2 1 . Sho w t h a t In 2 sin x
~E
cosnx
for X ^ 2 / C T
T (fceZ)
,
n=l
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Problems. 2 : Th e Lebesgu e Integra l and In 2 c o s | U ^ ( - l )
n + 1
^ ^ fo
r x^(2k
+
G Z) .
l)7r (k
n=l
2.5.22. Suppos e a 27r-periodi c functio n / i s i n L l[—7r,7r] and a are th e Fourie r coefficient s o f / . Sho w tha t fo r x G [0, 27r], [x (£/±\ *
" \-^ v
a
n,bn
^ a n s i n n x + ^ n (l - cosnx )
=
x (^-2 °r § »
•
2.5.23. Prov e tha t unde r th e assumption s o f th e previou s problem , oo
the serie s ^2 n converges . Us e thi s resul t t o sho w tha t ^
l^ f*
s
not a Fourie r serie s o f an y integrabl e function . 2.5.24. Prov e tha t i f / G L2[-7r,7r], the n -. o
n
r
oi
(This inequalit y i s known a s Bessel's inequality.) 2.5.25. Us e th e result s give n i n 2.5.2 2 an d 2.5.2 4 t o prov e tha t i f / G L2[—7r,7r], then fo r an y measurabl e se t A C [—7r,7r] , lim / (f(x)-s n(x))dx = 0, -^°°JA where s n denote s th e nt h partia l su m o f th e Fourie r serie s o f / . n
2.5.26. Sho w tha t i f f,g G L2[-7r,7r], the n lim / g(x)(f(x)-s
n(x))dx
=
0,
where s n denote s th e nt h partia l su m o f th e Fourie r serie s o f / . 2.5.27. Sho w tha t i f f,g G L 2[-7r,7r] an d 1
o
o
f(x) ~ ~a o + y ^ ( a n c o s n x - f b 2
n=
Io
nsinnx),
l o
g(x) ~ - a 0 + Y ^ ( an co s nx + f3 n sin nx), n=l
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
2.5. Fourie r Serie s
89
then - / f(x)g(x)dx 2.5.28. Sho w tha t i f / e cients, the n °°1 b
=
-a 0a0 + y^(a nan +
L 2 [0,2TT]
/*
& n/?n)-
an d a n, 6 n ar e it s Fourie r coeffi -
27r
2.5.29. Sho w tha t i f / , g G L 1 [—7r,7r] hav e th e sam e Fourie r series , then f = g a.e . o n [—7r,7r] . 2.5.30. Us e Parseval' s formul a (a) t o su m th e serie s l ^1
E ^ 4 ' 2-
^j ( a2 + n 2 ) 2 ' ^ lv
n=l n=
y
z
>n n=
2
(a lv
+ n 2)2'
7
(b) t o comput e 7T /»7
/
T
cos6 xcb an
d/
-IT J
cos
8
xdx.
—TV
2.5.31. Sho w tha t i f / G L2[—7r,7r] an d a nybn ar e th e Fourie r coeffi cients o f / , the n th e serie s Yl \ an\+\ n\
conver
ges
71=1
2.5.32. Sho w tha t i f a 27r-periodi c functio n / i s continuousl y differ ent iable o n R , the n max \f(x) - s n(x)\ = o(n~
1 /2
).
2.5.33. Prov e th e followin g Bernstein theorem. I f / i s 27r-periodi c and satisfie s th e conditio n \f(x + h) — f(x)\ < L\h\ a wit h som e L > 0 OO
and a > 1 /2 , the n th e serie s J2 V an + ^n converges . n=l
2.5.34. Sho w tha t i f / i s 27r-periodi c an d satisfie s th e Lipschit z con dition I / O + h) - f(x)\ < L\h\ a wit h som e L > 0 an d 0 < a < 1 , OO
then th e serie s J2 (\ an\^ + \b n\^) converge s fo r (3 > n=l
2a+l'
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Problems. 2 : Th e Lebesgu e Integra l
90
2.5.35. Suppos e tha t / i s 27r-periodi c an d satisfie s th e conditio n \f(x + h) — f(x)\ < L\h\ a wit h som e positiv e L an d a. Sho w tha t if / i s o f bounde d variatio n o n [0 , 27r], the n th e serie s J ^ y ! a \ + b\ n=l
converges. 2.5.36. Giv e a n exampl e o f a continuou s an d 27r-periodi c functio n whose Fourie r serie s fail s t o converg e o n R . 2.5.37. Sho w tha t i f a 27r-periodi c functio n / i s bounded o n R , the n |s n (x)| = 0 ( l n n ) . 2.5.38. Le t L n b e th e Lebesgue constants give n b y
Ln
~^L
sin (n + \) x\
dx. n
G N.
Show tha t L n = £ In n + 0(1 ) . 2.5.39. Sho w tha t i f a 27r-periodi c functio n / i s continuou s o n R , then |s n (x)| = o(lnn) . 2.5.40. Assum e tha t / i s 27r-periodi c o n R an d / G Ll[—7r,7r]. Us e the formul a give n i n 2.5. 8 t o sho w tha t i f s0(x) + si(x ) H hs n _i(x) n (which i s called th e nth Cesaro mean of the Fourier series for f), the n crn(x) =
1 f n sin 27rn Jo sin
2 z
-nt |t
2.5.41. Sho w tha t i f / i s 27r-periodi c an d m < f(x) < M fo r al l x , then m < o~ n(x) < M fo r al l x G R an d n G N. Sho w als o tha t i f for som e n an d x w e hav e cr n(x) = M (cr n(x) = m) , the n /(x ) = M (resp. /(x ) — m ) a.e . 2.5.42. Sho w tha t i f / i s 27r-periodic , m < f(x) < M fo r al l x an d n\an\ < A, n\b
n\
< B, n
= l,2,... ,
then fo r al l value s o f n an d x , m - A - B < s n(x) oo
uous, the n li m s n(x) — f(x) uniforml y o n R . n—>oo
2.5.53. Prov e th e followin g Wiener theorem. A 27r-periodi c functio n of bounde d variatio n o n [0, 2n] i s continuou s i f an d onl y i f -. n
lim -YkJa
2 k
+
b
2
k=0.
k=l
Conclude tha t a 27r-periodi c functio n o f bounde d variatio n o n [0 , 2ir] for whic h a n = o(n~ 1 ) i s continuous . 2.5.54. Prov e tha t i f th e Fourie r serie s o f / G L1[—7r,7r] i s lacunary , that is , CO
f(x) ~ ^ ( a n f c cosn kx + b nk smn
kx),
k=i
where ! ^±±1 - > q > 1 for k = 1 , 2 , . . ., the n li m s Hfc
k—
nk
(x) — f(x) almos t
>oo
everywhere.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
2.5. Fourie r Serie s
93
2.5.55. Assum e tha t / i s 27r-periodi c o n R an d / G Lp[—7r,7r], 1 < p < oo. Prov e that th e sequenc e o f Cesaro means of the Fourie r serie s for / converge s i n th e LP norm t o / , tha t is , lim | | < r n - / | | p = li m ( f \a
n(x)
- f(x)fdxY =
0.
2.5.56. Suppos e tha t {b n} i s a monotonicall y decreasin g sequenc e oo
converging t o zero . Prov e tha t ^ b
nsmnx
i s uniforml y convergen t
n=l
on [0 , 2TT] i f an d onl y i f li m nb n = 0 . n—->oo
2.5.57. Suppos e tha t {6 n } i s a monotonicall y decreasin g sequenc e oo
converging t o zero . Prov e tha t ] P b n sinnx i s the Fourie r serie s o f a 71=1
continuous functio n i f an d onl y i f li m nb n = 0 . n—>oo
2.5.58. Suppos e tha t {b n} i s a monotonicall y decreasin g sequenc e oo
converging t o zero . Prov e tha t ^ b
n
sin nx i s the Fourie r serie s o f a
n=l
bounded functio n i f an d onl y i f nb n — 0(1). 2.5.59. Le t {a n} b e a monotonically decreasin g sequenc e convergin g to zer o an d suc h tha t a n + i < a " + ^ + 2 for n G N . Prov e tha t —+ > a 2
n=
n
co s nx
l
is th e Fourie r serie s o f a functio n nonnegativ e an d integrabl e o n [—7r,7r]. Deduc e tha t th e serie s cos E. Icosnx n
n=2
is th e Fourie r serie s o f suc h a function . (Compar e wit h th e resul t i n 2.5.23.)
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
This page intentionally left blank
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Part 2
Solutions
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
This page intentionally left blank
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
http://dx.doi.org/10.1090/stml/021/03
Chapter 1
The Riemann-Stieltje s Integral
1.1. Propertie s o f th e Riemann-Stieltje s Integra l 1.1.1. Le t £ > 0 be given . B y Theore m 1 , t o sho w tha t / e TZ(a) i t suffices t o fin d a partitio n P suc h tha t
U{P,f,a)-L(P,f,a) 0 such tha t \a(x) — a(c)\ < e/2 i f | x — c | < 5. If w e tak e a partitio n P whose mes h i s les s tha n S an d suc h tha t #;_ i < c < xi fo r som e i , then U(P, / , a) - L(P , /, a) = a(xi) - a(xi_i ) < e. The sam e reasonin g ca n b e applie d t o th e case s c — a an d c = b. Clearly, J a fda = su p L(P, f, a) = 0 . 1.1.2. Le t a = x 0 < • • • < x n — b be a partitio n o f [a , 6], an d le t z G { 1, 2 , . . ., n} b e suc h tha t a^_ i < c < Xi. The n U(PJ,a)= su
p f(x)
= Mt
xE:[Xi-i,Xi]
and L(P,f,a)= in
f /(x
) = m* .
97
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
98
Since / i s continuous o n [a, 6], taking partition s whos e mes h tend s to zero, w e see that sap L{P,f, a) = / ( c ).
iniU(P,f,a) =
1.1.3. Sinc e the sets Q and M\Q are dense in M, we see that L(P , /) = 0 fo r any partition P o f [a , b]. Consequently , fdx = 0.
/ Ja
On th e other han d
nn
U(P,f) =
x
x
x
Y^ i( i ~
-{b 2 - a 2 ) ,
^2 X1 -^XiXi-i >
i-i) =
i=l 2= 1 i=l
because 2xiXi-i < (xf + x 2_x). I t i s worth notin g her e tha t fdx=l-{b2-a2)
/ Ja
Indeed, takin g the sequence of partitions P n wit h x^ — a + (b — a)i/n, i = 0 , 1, . .. ,n , we see that li m U(P n,f) = hb 2 - a 2). 1.1.4. Choos e a partition P o f [—a , a] suc h tha t —a = xo < • • • < Xj-i = 0 < Xj < - - - < xn — a. Then, a s in the previous problem , w e get n_1
U(P, f) = Y^
2
a
x
x
k+ii k+i ~
x k) > —
fc=j-i
and j 2
L P
( J) =
2
~ a ^ xk{xk+i -x
k)
0. The n there are at most 2k^ subinterval s [a^-i , Xi] containin g at least on e of the rational s mentione d above . O n the other subinterval s f we hav e Mj — rrij < 1/N. Consequently ,
U(P,f)-L(PJ) 0, we take N > 2(b — a)/e. The n fo r any partition o f mesh S < £/(4/CJV) w e get, in view o f the above,
U(PJ)-L(P,f) 0 be given . Ther e i s a positiv e intege r n o such tha t 1/n < e/2 fo r n > UQ. Choos e a partition P determine d b y 0 = xo < x\ —
X2 < • • • < Xk = 1
0 be given . Ther e i s a positiv e intege r n o such tha t 1/n < e/2 fo r n > no - Choos e a partition P determine d b y 1 1 0 = x 0 < xi = — < x 2 < • • • < x n> = — n0 + 1 ° n 0 < X n' + ! < • • • < X
nt
=
—
1
such tha t xi — Xi-\ < e/(4no), i > 2. Then -, n
o
U(P, f) - L(P, f) - — — + T(Ml - m 2)(x, - Xi -!) 710 + 1
7^2
no—2 n
fc+i
+ ^2 ILJ
i Mi ~ mi)ixi ~
x
i-l)
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
100
So, w e hav e prove d tha t / i s Riemann integrabl e o n [0,1 ] . 1.1.8. Sinc e fo r ever y partitio n P suc h tha t Xk = 0 fo r som e k w e 6
have U(P, / , a) = L(P , /, a) = 0 , w e se e tha t / fda = 0 . No w t o se e a
that li m 5(P , /) doe s not exist , conside r partition s wit h /x(P )— » 0 Ax(P)^0
and suc h tha t fo r som e fc, x^-i < 0 < #& . I f w e selec t t ^ = 0 an d £'fc G (0, arfc], then w e get £(P , /) = 0 and 5(P , /) = 1 , respectively . 1.1.9. Suppos e tha t c , a < c < 6, is a commo n poin t o f discontinuit y of / an d a. The n ther e i s £ > 0 suc h tha t fo r an y 6 > 0 ther e exis t x' an d x" suc h tha t |x ' — c\ < 5, \x" — c\ < 6, and (1) \f(x')
- f(c)\ > s, \a(x")-a(c)\>s.
Assume, contrar y t o ou r claim , tha t li
m 5(P , /) exists . I t the n
follows tha t ther e i s 5' > 0 such tha t /i(P ) < 5' implie s tha t 2
(2) \S(PJ,a)-S'(PJ,a)\l + £ ; x/P Our tas k i s no w t o sho w tha t i f a > /? , the n V ( / ; 0,1) < +oo . Le t P = { x o , x i , . . . ,x n} b e a partitio n o f [0,1 ] . Tak e n s o larg e tha t n-i/f3 < X l j a n ( j ^d |- 0 t n e p a r tition P point s 1 1 1 1 1 nV/3' ( n _ i/2)V/3 ' ( n _ i ) i / / 3 ' ' ' " ' 2 V£ ' ( 2 - 1 /2) 1 //? * Note als o tha t / i s monotoni c o n eac h interva l [ i - 1 ^ , (i — l / 2 )- 1/ ^ ] , % = 2 , 3 , . . ., n , an d [( i + l ^ ) " 1 / ^ - 1 ^ ] , z = 1 , 2 , . .. ,n - 1 . Thu s ~
nn
o
o 1
£i/(*«)-/te-i)i a suc h that y ( / ; a , a) - V ( / ; a, x') = V ( / ; z', *) < e whenever x > x' > M. Thu s
|/(x')-/(a;)| 0. a
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.2. Function s o f Bounde d Variatio n
123
1.2.23. Indeed , suppos e tha t \f(x')-f(x")\ < [a, b]. If x r = XQ < x\ < - • • < x n = x" , the n
L\x f -x"\ fo r x',x " G
nn
^ |/(a; 0 - f(xi- x)\ < £L{ X l -
Xi
-{) = £(*" - x').
Taking th e supremu m ove r al l partition s o f [x^x" ] yield s vf(x") -
v f(x') = V(f; x' , x") < L(x" - x') .
1.2.24. B y Theore m 1 , / = p — q, wher e p an d q ar e monoton e o n [a, b]. So, th e one-side d limit s o f / exis t a t ever y poin t o f [a , b] (see, e.g., II , 1 .1 .35) . Suppose , contrar y t o ou r claim , tha t x 0 i s a poin t o f discontinuity o f / . I f f(x^) — /(XQ) = d > 0 , the n b y th e definitio n of one-side d limit s ther e i s 5 > 0 such tha t f(x) < f(xn) + - fo
rx
G (x0 - 6, x0)
f(x)>f(x$)-- fo
rx
G (x0 ,x 0 + £) .
and
Then, i f y G [/(x 0~) + d/3,/(x+ ) - d/3 ] \ {/(*) } C [/(m) , f(x 2)} \ {f(xo)} w ^ h X i G (x o — 5,x 0 ) an d X 2 G (XO,X Q + 6), ther e i s n o x G (xi,X2) suc h tha t /(x ) = y, a contradiction . I f / ( x j ) = /(x^) ^ /(xo), analogou s reasonin g ca n b e applied . Since th e derivativ e / ' enjoy s th e intermediat e valu e propert y (see, e.g. , II , 2.2.31 ) , th e othe r statemen t follow s immediately . 1.2.25. Fo r x G [a, 6], let P = { x o , x i , . . . , x n } b e a partition o f [a,x] . Since /' i s continuous on [a , 6], the results in 1.2.1 5 and in 1.1.26 imply that n x
M ) = i™ n y i i/(xfc) - /(zfc-i)i
iim y
(t)dt
= ^ mnEi//^)i(^-^-i)= f V (*)|dt.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : The Riemann-Stieltjes Integra l
124
1.2.26. Clearly , ther e i s M > 0 such tha t |/(x) | < M fo r x € [a , b}. Moreover, fo r a = XQ < x\ < • • • < xn = 6, using the firs t mea n valu e theorem (see , e.g. , 1 .1 .26) , w e get
J2\F(Xi) - F(x^)\
da
2=1
i
da
=E i rw ^ - r w w £
f' f(t)da(t)
2=1
= X)l/te)(«( a:oo
pose tha t li m V ( / n ; a , b) = £ < -foo . Then , give n e > 0 , there i s a 71—>00
subsequence {n/ J suc h that V(f nk; a, 6) < Z+£ . Thus for any partitio n a = xo < x\ < • • • < x n = 6, n 2=1
Letting / c tend t o infinity, w e get n
£ | / ( * i ) - / ( * i - i ) | < i + e, and th e desired inequalit y follows . oo
1.2.28. Sinc e the serie s ^2 a n
an
oo
d ^ C bn are absolutel y convergent ,
n=l n=
l
given e > 0, there i s no such tha t y ^ |a n | < e an d ^
|6
n|
< e.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.2. Function s o f Bounde d Variatio n
125
If x / Xk, k — 1,2,..., the n ther e exist s a 8 > 0 suc h tha t ther e i s no x n wit h n < no i n (x — J, x + 8). Consequently , fo r x — 8 < y < x,
\m-f(x)\< Y, K I + £ K\ < 1 . Summin g up ,
a(x)
a(0) i
fx
= 0,
a(0) + | i
f X G ( 01, )
a(0) + l i
fz
,
= l.
1.3.8. Conside r th e functio n a(x) =
a(a) i f x
G [a,it),
a(6) i f x
G (w, &],
with a(a) < a(b). The n f{x)da{x) =
f(u)(a(b) -
a(a)) ,
which combine d wit h ou r assumptio n give s f(u) = 1 fo r u G (a , 6). Since / i s continuou s o n [a , 6], we see tha t / ( a ) = /(& ) = 1 . 1.3.9. Sinc e a = p — g, where p, g are monotonicall y increasing , i t i s enough t o sho w tha t / G H(p) i f f n £ ^GP) > n = 1 , 2 , . . ., an d / f(x)dp(x) =
li m / f
n(x)dp(x).
The unifor m convergenc e o f {/ n} mean s tha t sup \f n{x) - f(x)\ = d n >0
x£[a,b] n
. -^°°
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.3. Furthe r Propertie s .. .
131
Thus, give n e > 0, ther e i s no suc h tha t dn(p(b) - p{a)) < - fo o
rn
> n 0.
By Theore m 1 in Sectio n 1 .1 , ther e i s a partitio n P suc h tha t U(PJno,p)-L(P,fno,p) no, rb
/ /
rb
n
I
/>6
( x ) ^ ( x ) - / /(x)dp(a: ) < / \f
n{x)-
f(x)\dp(x)
fb £ < / d ndp(x) < - . 1.3.10. Observ e that fo r x G [0,1] we have li m nx(l — x2)n = 0 , bu t n—>oo
the convergenc e i s not unifor m o n [0,1 ] an d th e resul t i n th e previou s problem canno t b e applied . W e hav e f1 n 1 lim / nx(l — x 2)ndx = li m — =
n ^ o o j 0 n-^o
o 2( n + 1 ) 2
- .
1.3.11. A s i n th e foregoin g problem , w e canno t appl y th e resul t i n 1.3.9 becaus e {x n} doe s no t converg e uniforml y o n [0,1 ] . Let a = p — q, wher e p an d q ar e monotonicall y increasin g o n [0,1]. Fo r e e (0,1 ) , w e hav e 0 < / x ndp(x) < e n(p{e)-p(0)) > Jo n
0 ^°°
and /x
Jl-s
n
dp(x) J x
n
dp(x)
> ( 1-— ) \P(1 )-P1 Consequently, lettin g n — » o o give s p{l)-p{\-)< li
m/ x n-+oo JO
n
dp(x) < li m / x
n
n
dp(x) < p(l)-p(l-e).
~*°° Jo
Since e € (0,1 ) ca n b e arbitraril y small , n
lim / x
dp(x)=p(l)-p(l-).
The sam e reasonin g ca n b e applie d t o q. Thu s lim / x
n
da(x) =
a(l)-a(l-).
n->ocJQ
1.3.12. B y assumption , fo r an y partitio n a = x$ < x\ < • • • < # m = 6, we hav e ^2 \ an(Xk) ~ OJ n(Zfc-l)| < M. k=l
Letting n — > oo , we see tha t m
^|a(xib)-a(xife-.i)| < M , fc=i
which mean s tha t a i s o f bounde d variatio n o n [a , 6]. Moreover , w e have f f(x)da n(x) -
[ f(x)da(x)\
0 , ther e i s S > 0 suc h tha t i f the mes h o f the partitio n i s less than 6, then \f(x) — f(xk)\ < e/(3M) for x G [xk-i,xk]. Consequently , b y Theore m 3 , x) ~ f(x
/
and
m
k))da(x)
( / ( •
o
n(x),
o
which show s tha t th e sequenc e {p n} decrease s t o zer o o n [a , 6]. B y the monoton e convergenc e theore m fo r th e lowe r Rieman n integra l stated i n th e las t problem , rb rb
0 < li m / f
n(x)dx
rb
(/(x ) - / n ( i ) ) + d x + / /
/ /(x)cfe < li m / Ja
f
n (x)dx
j
v)dx, n(x)
a
where th e las t equalit y follow s fro m I , 2.4.1 9 .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.4. Prope r Integral s
143
1.4. P r o p e r I n t e g r a l s 1.4.1. (a ) W e hav e / i ^7—r—^dz = / - ^ -d x + / - ^ -d x J0 \x-2\ + \x- 3 | J o2 x- 5 A -2 x + 5
+J\ x-i)dx + 12 J3
££z± t ^
^— 5
93 = 2 + - l n 3 - -In5 . 44 (b) Usin g th e substitutio n t = 7r/ 2 — x, w e se e tha t / sin n xdx = / cos Jo Jo Now w e sho w b y inductio n tha t (i) / %
n
xdx.
. 2 n 7 l - 3v . . . ( 2 n -Jl )T T (v 2 ny - l ) ! !T T snT xdx = i 2-4...(2rc) 2 (2n)! !2 Jo
and 2 - 4 . . . ( 2 n ) (2n)! ! Psin s i n 2 "2 n+1+1 ;xd x l 3 . . . ( 2 n + l ) ( 2 n + l ) ! ! ' Jo It i s eas y t o chec k tha t bot h formula s ar e tru e fo r n — 1. Fo r n > 1 , integration b y part s give s (2) /
In = sin ./o i
n
xdx = — / s i n o
n1 _
xdcosx
= / cosxdsin n1_ x = ( n — 1 ) / cos Jo Jo = ( n - l)/ n-2 - ( n - l)/ n.
2
x s i nn _ 2 d x
Hence n— 1 = ^n-2 n
(3) I
-
So, if ^2n
_ ( 2 n - l ) ! !T T (2n)!! 2 '
we ge t fro m (3 ) tha t 2n+2
_ 2 n + l ( 2 n - l ) ! ! 7 r _ ( 2 n + l ) ! !T T " " 2 n + 2 ' (2n) H ' 2 ~ ~ (2n + 2)! ! ' 2 "
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
144
This complete s th e proof o f (1 ) . Formul a (2 ) ca n b e prove d analo gously. (c) W e hav e / |lnx|d x = — / Inxd x + / Inxdx . ee
Integrating b y parts , w e get re
2
/ |lnx|d x = 2 - - . J± e e
(d) Substitutin g t = ir — x give s / =
/^ xsin
/ 7 1r
-
0
=
x7
77
Z*
dx=
+; — cosrz ~x y
(7r — x ) s i n x 7
dx
x / 1~ r ~ ;+—c o2s— 0
fn 7rsin x / ^ xsin x x da; / 7 ^ 2~^ ~ / 7 7 7~ Jo1 + cos ^ x j + cos ^ x 01
So, 1 _
f^
7TSin
2
X 7T
i = - / ^—a x= — . 2 J 01 + cos 2 x 4 (e) W e hav e hn = / tan
2n
xd x =1 / (
Jo Jo
V
cos x
2n_2
) tan2 n ~ 2 xdx
J
= / tan xd(tanx ) - I 2n-2 = ~ Jo 2 n- 1 Consequently, on e ca n sho w b y inductio n tha t 1l hn = (-ir(~-(i-Ul---^(-ir3 5 4V 2nv
hn-2-
l
(f) W e hav e sinx -dx = / ^ -rz. -dx ( r/ 0 sin x + co s x" 7 Jo0 si s i n (n ( |f - x ) + co s (J - x ) CO S X — Sin X , 7 T 1 , \/ 2 ox = — i — In—— /o 2cos x8 2 2 (g) Observ e tha t sin"x /"" 2 cos"x n n -ax = / ——r n: ax n sin x -f cos x J sin x + cos x . 0 0
I
4
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.4. Prope r Integral s
145
It the n follow s tha t 7T
1.4.2. Usin g th e substitution x = cost an d 1 .4. 1 (b) , we get f\l-x2)ndx = Jo J On th e other hand ,
r'\m 2n+xtdt= J o (2n+l)!
2n)!
'„. !
n\* - i
1 t
kr '
2A ; + 1
(-1)
1.4.3. Assume , fo r example , tha t f(x^) = a. W e have f(xo) = F(x 0)= h
m.
x-+x0
x — Xo
On th e other hand , usin g l'Hospital' s rule , w e get ,. F(x) hm = X—+XQ X
~ F(x Q) F'(X) h m= XQ
X
1 -+X+
h m j{x) = a. ^,x+
x
2
1.4.4. Defin e F(x) = x cos \ - 2 f* t cos \dt fo r x ^ 0 and F(0) = 0 . Then F'(x) — f(x) fo r x e R. Thu s F i s an antiderivative o f / i n the case whe n c = 0. If c ^ 0 , then a n antiderivativ e G of f woul d equa l F(x) + c\ fo r x > 0 an d F(x ) + C 2 for x < 0 , wit h som e constant s C\ and C2 - Moreover, sinc e G mus t b e continuou s a t zero , c\ = c 2 . Consequently, G'(0 ) = 0 . Thi s prove s tha t a n antiderivativ e o f / exists i f and only i f c = 0 . 1.4.5. W e will sho w tha t ^sin^ri [0 i
f x G [a^fc+i^fc-i] , fz = 0
has th e desired properties . Indeed , sinc e / i s continuous o n (0,1 ] , 7T [
i ^ - i ) " F{x 2k) =
X2k
1 ~l
7
--/ —
T
sin — dx
X2k
(2fc-l)7T -
2k J22/CT , T
.
sin tdt = - . ^
Similarly, ^(>2fc+l) - ^ ( ^ 2 / c ) = T -
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
146 Now w e pu t
\oi
fx
= 0.
Calculation show s tha t F(x) = J " ^ ( C 0 S ^ + \0 i
1
)i
f x
[ x2fc+i^2fc-i], fi = 0. e
Then F'(x) — f(x) fo r x G (0,1]. Moreover , fo r x G [a^fc+i^fc-i] ?
- — i — < - ^ b^(f(b-2e))». Since
' (f(*)) pdx-> I' (f(b-s)y>dx, Jb-e
we see tha t b ir ,. , ,i ' * f(,-))Pdx>1— I (f(b-c))"d.r b - a J a ' b-a J h c(f(b-s))" >(/(&-2r))". b-a Hence 0(p) must , satisf y 0(p) > b — 2c, fo r p > po. whic h mean s I hat lim 0{p) = b. P—>OC
1.4.34. Clearly , rb
P(x)f(x)dx =
0
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
158
for ever y polynomia l P. B y th e approximatio n theore m o f Weier strass (see , e.g. , II , 3.1 .33) , ther e i s a sequenc e o f polynomial s {P n} uniformly convergen t o n [a , b] t o / . Thu s b y th e resul t i n 1 .3.9 , ob pb
/ f 2(x)dx = J an
li m / P - > °° J a
n(x)f(x)dx
=
0,
which give s f(x) = 0 in [a , b\. 1.4.35. B y assumption , b
0
P{x)f(x)dx =
for an y polynomia l P o f degre e les s tha n o r equa l t o TV . Suppose , contrary t o ou r claim , tha t a < x\ < X2 < • • • < x m < 6 , m < iV, ar e all zero s o f / . No w choos e thos e point s xi x,..., Xi r wher e / change s its sign . Withou t los s o f generalit y w e ca n assum e tha t f{x) > 0 i n [a,x^], f(x) < 0 in [x^,Xi 2 ], an d s o on. Pu t r
P(x) = l[(x
lk-x).
k=l
Then P(x)f(x) > 0 in [a , b] an d P(x)f(x) > (a,xi), ( x i , x 2 ) , . . . , (x m ,6). Therefor e
0 in each o f the interval s
rb
P(x)f(x)dx > 0, / although P i s a polynomia l o f degre e les s tha n o r equa l t o iV , a contradiction. 1.4.36. Suppos e tha t / G C{[~a,a\). (a) Not e firs t that , b y assumption , [* {f(x) + f(-x))x 2ndx= r J—a
f{x)x
2n
dx+ r
J —a
/(-x)(-a;)
2n
J—a
dx
2n
dx = 0.
= 2 f f(x)x J —a
Moreover, f (fix)
J—a
+ f(-x))x 2n+1 dx =
f f(x)x J—a
J
1 2n+
dx
i
f{-x){-x)2n+1dx =
0.
J —I
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
159
1.4. Prope r Integral s Thus, w e se e tha t + f(-x))xndx =
/ (f{x)
0 fo r n = 0 , 1 , 2 , . . . ,
J— a
and th e desired resul t follow s fro m 1 .4.34 . (b) Th e proo f run s a s in (a) . 1.4.37. B y the first mean valu e theore m w e get rb r f^O
b+h r fO-\-n
/ (f(x + h)- f(x))dx =
b rO
- / f(x)dix ix
/ f{x)dx
J aJ
a-\-h Ja ra rb+h
= / f(x)dx+
/
f(x)dx
Ja+h Jb
= -hf(a + 6h) + hf(b + 6'h), where # , 6' G [0,1]. It then follow s fro m th e continuity o f / tha t Urn \ [ (/( * + h) - f(x))dx =
f(b) - / ( a ) .
1.4.38. W e hav e pb+x g(x) = / f(u)du. J a+x
Thus g'(x) = f(b + x)-f(a +
x).
1.4.39. Usin g l'Hospital' s rule , w e obtai n
h
^=11^i)=1
X—*00 yJX V
X—>0 2y/x
0 —i-
=
(b) il^dt lim —— \ =
li m cos a; = 1.
(c)
J ? si n y/idt 2xsin lim — = x^Q+ X
3
x2
li m3x—
x^0+
2
3
(d) X
lim (— [ x^oo \x
a
J
0
In ^\dt) =
Q(t)
J
li m x-^o
In P{x)-]nQ(x)
= 0.
o
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
160
1.4.40. Usin g l'Hospital' s rule , w e ge t (a)
,. f i r
i
x
,\
hm - — / at — hm= x^oo^lnxJo V I + t 5 / ^ ^ V l + a; 5
1 .
(b) = lim( l + sinx) 1 / x = e ,
lim [ - / ( 1 + smt)idt J because _. ln( l + sinx ) 1 hm = x->o x x-+o
cos x h m= 1 + sin x
1 .
(c) lim (\ ( x-^o+ \x 2 J
X 0
t^dt] = li m ^ = \. J x^o+ 2 2
(d) x x2 1f 2 e lim —2 In / e l dt — li m x — x-^oo x 7 0 a?-+o o 2.x J0 e * d t
2xex2 ^-oo 2 / 0 V d £ + 2xe x2
= l i m —-r~— 2-0 7
= li
m~
e x2 + 2x 2 e x2 ~
x-^oo 2e x
So li m ( ^
- f 2x 2 e x "
= 1
.
l/(x 2 )
1.4.41. I f A = \f(x 0)\ =
max{|/(x) | : x G [0,1], the n fo r p > 0,
[ imr)'" < (£*>)'" - A. On the othe r hand , th e continuit y o f / implie s that, give n e > 0, ther e is a n interva l [a,/3] C [0,1 ] suc h tha t \f(x)\ > A - e/2 fo r x G [a,/?]. Consequently,
' |/(*)lp) " > I [ l/(*)l P] > = (,4-£/2)(/?-a)
1 /p
( £V - e/2)" ) >,4-£
for sufficientl y larg e p.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.4. Prope r Integral s
161
1.4.42. Le t yo G [c,d\ an d e > 0 b e chose n arbitrarily . Sinc e / is uniformly continuou s o n R , ther e i s 5 > 0 such tha t l/(zi>2/l) ~ f(x2,V2)\
0 such tha t fo r x G [a, b] an d |/i | < (5, ^(x,y +
h)-/ y(x,y)\
0.
fc=0
If w e se t 2
F ( x ) = c t i + t t+ +t
+
2iV
r " ( ^ ^ "" (^j*'
then, b y th e abov e inequality , r2N /
.
,2
J.2N
F(2N)= /JO e - ' [ 1l + l !+2 i!r + -+ (2iV) v
7
^ !) d t
On th e othe r hand ,
Fm=i
fN (
t
t
2
t
2N
N
\ f
.-( 1 + _ + _ + ... + _) t f < > |; lli(=w .
Since F is continuous, th e desired resul t follow s fro m th e intermediat e value property . 1.4.47. Pu t P(x) = anxn + an _ i x n _ 1H h
a0.
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
163
1.4. P r o p e r I n t e g r a l s By assumption , (P(x))2dx = /o 7
a 0 P{x)dz o
On th e othe r hand , r-l
a0
(i) a
:1
+ /c
" fc +
+ ^4 + •
1 "
ifc + 1
fc = 0 , l ,
fc + r
n+ k
^n ^n— 1
n +A ; + 1 n Observe no w tha t
a0
+ -^-4 +
/ x f c P(x)dx= ^ 7o n +/c + l and, b y assumption ,
0 fo r k
— 1, . . ., n.
Q(k) (k + l)...{n +
k + l)
,
where Q i s a polynomia l o f degre e a t mos t n. Sinc e Q{k) = 0 fo r fc=l,2,...,n, ther
e i s a constan t C suc h t h a t Q(k) = C(k-l)(k-2)...(k-n).
P u t t i n g k = 0 i n (1 ) w e se e t h a t
Jo n
v
+1 1 n
;
rc + 1
Now, multiplyin g (1 ) b y A ; -f - 1 an d nex t settin gA : = —1 , w e obtai n a 0 = ( - l ) n ( n + l ) C . So , a 0 = ( n + l ) 2 / P(x)dx,
Jo
which implie s th e desire d equality . 1.4.48. I f I(y) = J a }'{x,y)dx, the n b y 1 .4.42 , I(y) i s continuou s o n [c, d]. Thu s th e integra l o n th e left-han d sid e o f th e equalit y t o b e proved exists . Moreover , i f g(z) = I(y)dy
an
d h(z)
= I
f(x,y)dy\dx,
then g'(z) = I(z) fo r z G [c , d], an d b y 1 .4.42 , th e functio n F(x,z) = /
f(x,y)dy
is continuou s wit h respec t t o x . I t i s clea r t h a t ^(x,z) = f(x,z) i s continuous o n R . Henc e b y 1 .4.43 , /i'(2 ) = I(z). S o /i'(2: ) = g'(z) =
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : The Riemann-Stieltje s Integra l
164
I(z) fo r z G [c, d], and therefor e h(z) = g(z) + C. Sinc e h(c) — g(c) = 0, w e see tha t C = 0, whic h end s th e proof . b_ a
b
_a
0 and li m x , x =
1.4.49. Sinc e li m x , x =
b — a, the proper
integral exists . B y 1.4.48, /X
'^dx =
f x ydy\ dx=
f (
f ( f x ydx) dy
1.5. Imprope r Integral s 1.5.1. (a ) We hav e 1 /•27T -j /•27T
/
_/ »/ 7 r /
-T~ 4
Jo si
> 7 r 44 1 /
7 ~ ^=
8
n x -f- cos4 x J
/
4
rn/4 ^
_o
-
^
/ 2
Jo cos = s
T
n xx + + cos cos44 xx n
o si o si
/ 4
r
i
J0 cos
(2x) + |sin 2 (2x
( 2
0
dx_
(2x) V I + | tan 2 (2x)7 .
/.TT/ 4
Jo l
dx
1
+ ^tan 2 (2x) J- -t- 2 ^
= 2TIV 2
(b) Observ e firs t tha t r-n/2 PTT/2
/ ln(sina;)da Jo J Thus 1 />7r/ / InfsinxW Jo
/.TT/
: = / ln(cos(7r/ oJ
2
2 — x))dx = I \n{cosx)dx. o
/ 'r / 2sin2 1 x x= - / I n dx * Jo 2
i r /2
i r7T si n a; = - / I n —dx 4 J0 2
= — I (ln(sinx ) — ln2)dx. 2 7o Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
165
Consequently, r 7r/2
I hi{smx)dx Jo 2
— — — In 2.
(c) W e prov e b y inductio n tha t 1 n]
oV
(
a + l)( a + 2)---( a + n + l )
For n = 0 and a > — 1 we hav e 1 f1 Jo a-\-l
0 a
! +1
Assuming th e equalit y t o hol d fo r n , w e integrat e b y part s an d get
xn+1(l-x)adx =
f
xn+1
(~^~X^1 ) dx
,x Oi + 1 Jo
n
(l-x)a+ldx
(n+1)! (a + l)( a + 2 ) . . . (a + n + l ) ( a + n + 2) ' (d) Integratin g b y part s give s i:
In= (-lnx) o
n
dx =
n (-lnx)
1 n
~ dx =
nl
n_i.
Since I\ — 1, we se e tha t 7 n = n! . (e) Th e substitutio n £ = 1 — x/n give s n
1 - (l-x/n) n , ^ ^-ct x Jo
Z* 1 l - tn , e = / dt 1 -t = [\l + t + t 2 + --- + t Jo 1 1 1 23 n
n1
- )dt
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
166
Solutions. 1
: T h e R i e m a n n - S t i e l t j e s Integra l
(f) Integratin g b y part s n times , w e ge t 1
nn n x ln xdx =
1
f
/
n
lnn~lxdx
x
o
= ••
•=
(g) I f n = 1 , the n f™ f Xf^2\n — x — t an t give s ^oo
7
/,
(1 -
)
TT/2. I f n > 1 , the n th e substitutio n
/.TT/ 2
,-
9
/
2
J0 ( 1 + x ) - 7
/.TT/ 2
2
cos
" £ c o s "2 tdt = / c o s
o7
2n 2
- tdt
o
_ l - 3 . . . ( 2 n - 3 ) ix ~ 2-4...(2n-2 )'
^'
where th e las t equalit y follow s fro m 1 .4.1 (b) . (h) Th e substitutio n t = x — \ / x2 — 1 yield s
i;
dx f 2
1
2
X \JX
17
At
o ( l + ^ 2):
rdt = 1 .
(i) Observ e firs t t h a t oo
0
x
l n x Z" 1 l n x f r 52 +^ aax2- 7 - -- r—a o- « j^ = / -T 0X
00 ln x h / i— -dxa ^ ^ Z+
and t h a t b o t h integral s o n th e righ t sid e o f th e equalit y converge . Furthermore, a f°° l n x , f \nx / -7> z Tjdx = / -1 1 z3
J0 x
+a J
0x
l
f°° ln x7 -d£ + / — 2-dx
+ a2
7a
x -f a 2
7 r^x + / , r^.To ^ o ( - T T ) dt 0 x2+a2 Ja (a2/£)2 + a 2 V ^2 a
a f 21 na-ln t. dx + — — dt 2 2 2 0x + a J o^ + a a 2 In a 7rln a
In
x,
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. I m p r o p e r I n t e g r a l s
167
(j) W e hav e I n a: f°°°° lnx _ 1 f°° m a + m^ J0 (xi + a^dX-^J0 ~(T^W r
hit + t 2)'
7rlna
1
4a 3 a
3
-dt
Int ;dt, 7o ( 1 + t 2)2 '
where th e las t equalit y follow s fro m (g) . Substitutin g t — t a nx give s at = co
s im(tanx)aa :
o ( 1 + *2)2^ X
p l + cos2 x m(tanx)a x Jo 2 1p = - I cos2xln(tanx)(ix , 2 Jo x = 0 (se e t h e solutio n t o (b)) . Finally , inte =/
because J 0 l n ( t a n x ) d gration b y part s give s
2
sin2 x
1
• dx 2 ta n x cos (k) Usin g th e substitutio n t = T T — x , w e se e t h a t / cos2xln(tanx)(i Jo Jo
/= /
x= 0 — /
l n ( l + cosx)(i x = / Jo Jo
== 2
x2
. *
l n ( l — cost)dt
So, b y th e symmetr y o f s i n x an d b y (b) , 21 = / l n ( l - cos Jo Jo
2
x)dx = 2 / l n ( s i n x )
d
rn/2
/ ln(sinx) ln-+ln
n ^ \x fc=l
n
n-
J\
7
\
-
>I
n^ n
)
fc=l
n - + In
Hence b y 1 .5. 3 an d 1 .5.1 (d) , lim a n—\ (lnx)
n
-*°° Jo
2
\Jo
dx — I / Inxdx ) = 2 — 1 = 1 .
)
1.5.7. W e firs t observ e tha t th e Cauch y theore m (see , II , 1 .1 .37 ) implies th e followin g criterio n fo r convergenc e o f imprope r integrals : For g : (a , b]—> R , th e imprope r integra l J bg{x)dx converge s i f an d only if, give n e > 0 , there is S > 0 such tha t
a C 29(x)dx < e whenever
a < a\ < a + 5 and a < a2 < a + S. Consequently, b y assumption , 2x rrZX
lim / t x^0+ J
a
f{t)dt = 0.
x
Clearly, w e ca n assum e tha t ther e i s a positiv e XQ such tha t / i s either positiv e o r negativ e o n (0,xo) . I f / i s positiv e o n (0 , #o) an d decreasing, the n \f(2x){2x)ax i
/
fa
< 0.
Likewise, i f / i s positive o n (0 , XQ) an d increasing , the n
l
„ ,/ x ,I
f(x)xax i fa > 0, )/(x)(2x)ax i f a < 0 .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
170
It follow s fro m th e abov e inequalitie s tha t li m / ( x ) x a + 1 = 0 . Anal ogous reasonin g ca n b e applie d i n th e cas e whe n / i s negativ e o n (0,x 0 ). 1.5.8. (a ) W e hav e f°° dx , /— =
x->o
J 2 Xn\X
., , h m m i n x — m m 2 = +oo . o
(b) Sinc e 2 sin 1 x 1 + ir 2 ~ 1
+ x 2'
the integra l converges . (c) Th e substitutio n —h\x = t give s pi poo
pi a
/ (~hix) Jo Jo Since
dx= /
poo
a
t Jo
e~ldt= /
t
a
Ji
e-tdt+ /
t
a
e'ldt.
tae~l lim —3^ - = 0 ,
the las t integra l converge s fo r al l rea l a. Moreover , sinc e tae~t lim = a t-o+ t
1 ,
the integra l J Q t ae~tdt converge s i f an d onl y i f th e integra l J 0 t adt converges, tha t is , i f an d onl y i f a > — 1. (d) A s i n (c) , J0 x
dx {-lnx)b
t-be-(l-a)tdt
a
0
It i s eas y t o chec k tha t i f a > 1 , the n th e las t integra l diverge s t o infinity fo r an y b. Sinc e fo r a < 1 pOO pOO
h l / t- be-^-a^dt = (1 - a ) 6 "1 / r e- dt, Jo Jo it follow s fro m th e solutio n t o (c ) tha t ou r integra l converge s i f an d only i f a < 1 and b < 1 .
(e) Th e divergenc e o f th e integra l follow s fro m th e inequalit y /z Jo1
o — dx > / Tydx. + x 2 su r x J o1 +r
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
171
1.5.9. Sinc e f(t) + l / ( / ( t ) ) > 2 , we see tha t
J* f(t)g(t)dt + jT ^j|dt > 2 £ 0(*)d* . Letting x — > oo , we get th e desire d result . 1.5.10. Th e assertio n follow s immediatel y fro m th e definitio n o f a n improper integra l an d th e Cauch y theore m give n i n II , 1 .1 .37 . 1.5.11. Suppos e tha t th e integra l J a°° f(x)dx converge s an d {a n }, an > a, i s a n increasin g sequenc e divergin g t o infinity . The n n
poo pa
/ f(x)dx
pa
n
= li m / f(x)dx =^ / n=l ^
k
= li m V ^ / f(x)dx
f(x)dx. a
n-i
On th e othe r hand , i f the las t serie s converge s fo r ever y increasin g se quence {a n} divergin g t o infinity , the n th e limi t li m f f(t)dt exist s and i s equa l t o th e su m o f thi s series . If / i s nonnegative , the n th e functio n F(x) = J f(t)dt i s mono tonically increasing. Moreover , i f there is an increasing sequence {an }, an > a , divergin g t o infinit y fo r whic h th e serie s (1 ) converges , the n F i s bounded abov e b y the su m o f this series. So , the limi t li m F(x) x—>oo
exists. 1.5.12. B y the resul t i n the previou s problem , th e integra l converge s if an d onl y i f J^inTr l
+ x a s i n 2 x ~ ^Jo l
+ ( x + n7r) a sin 2 x < °°
'
Now observ e tha t o1
dx f < + ( ( n + l)7r) a sin 2 x Jo
n
dx
1
~ Jn 1
+ (x + n?r) a sin 2 dx -f (n7r) a sin2 x
Moreover, w e hav e
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
172
Substituting y = tanx , w e se e tha t ^ 2 dx
dy 2
2
5
+ {b 2 + l)y2 2>/6
+ b sm x~ J 01
J/o0 l
TT"
It the n follow s tha t th e integra l converge s fo r a > 2 and diverge s fo r 0 < a< 2 . 1.5.13. No . Tak e f(x) = e~ x + g{x), x e [0 , oo), wher e
9{x)
0
if x
6 [0,7/4] ,
1
if s
= 2,3,... ,
if x
e [n — n~ 2,ri\, n
2
n {x - n) + 1 2
—n (x - n) + 1
if x G [ n , n - f n "
0
otherwise.
2
], n
= 2,3,... , = 2,3,... ,
1.5.14. Yes , i t does . Indeed , i f i t i s no t tru e tha t li m f(x) = x—>oo
0,
then ther e exis t e > 0 an d a sequenc e {x n } divergin g t o infinity , xn+i—xn > 2e, and such that f(x n) > e. B y the mean value theorem , f(x) = f(x n) + f'(£ n)(x ~
x n),
Xn < £ n < X < X n + e/4 .
Consequently, £
f(x)>e-2-
2'
and
f(x)dx > J2 / /(*)
&
* > E / f^
dx
^
o
8
-foo ,
a contradiction . 1.5.15. Assume , contrar y t o ou r claim , tha t li m f(x) = 0 doe s no t x—>oo
hold. The n ther e exist a positive number e and a n increasing sequenc e {xn} divergin g t o infinit y suc h tha t eithe r f(x n) > £ fo r al l n o r f(xn) < — £ for all n . Suppose , fo r example , tha t f{x n) > £ for al l n. By th e unifor m continuit y o f / , ther e i s 5 > 0 such tha t i f \t — s\ < e/2, an d therefor e rxn+5
(1) /
f{x)dx
> eS.
J xn — 5
On th e othe r hand , sinc e the imprope r integra l J a°° f(x)dx converges , by th e Cauch y theore m (se e 1 .5.1 0) , ther e i s a o > a suc h tha t fo r a2 > a i > ao , < eS,
f(x)dx\ i
I
CL-L
which contradict s (1 ) . Additionally, w e observ e tha t i f / i s continuou s o n [a , oo) an d lim f(x) — 0 , then / i s uniformly continuou s o n [a , oo) (see , e.g. , II , x—»oo
1.5.7(b)). It i s als o wort h notin g her e tha t th e resul t i n 1 .5.1 4 is containe d as a specia l cas e i n thi s problem . 1.5.16. Le t {x n} b e a n increasin g sequenc e divergin g t o infinity . Then, give n e > 0, ther e i s no suc h tha t /•OO
/ f(x)dx Jxno
no, pX-n POO
(xn - x
no)f(xn)
a contradiction .
(b) Le t en
an = e e , n = 0,1 ,2 , We defin e / b y settin g f(x) = a n fo r a n _i < x < a n , n = 1 , 2, Then, b y 1 .5.1 1 , oo
dx \-^ e
a n- a
~ ar, /(-) n 1 =
Je
n _i
.
because li m ^-^- — 0 . O n th e othe r hand , n—>-oo
(y, Tan dx "
dx ^__
f°° dx
xe e e " KS*J p '
E
- p'»
e—
*•
e
1 *-! O
O
-,
^1
Y
n=l n=
l
1.5.18. Se t F{x) = J* f(t)dt. The n F'(x) = / ( x ) , an d b y assump tion, lim (F'{x) + F(x)) = Z , ! G R .
X—>00
It follow s fro m II , 2.2.3 2 tha t li m F(x) = / , an d therefore , x—+oo
lim /(x ) = li m F\x) = :r—>oo x—>o
0.
o
1.5.19. Pu t F(x) — J Q f(t)dt. Then , b y assumption , F i s increasing , and integratio n b y part s give s
ir i
r i
- / xf(x)dx
=
r
- / xdF{x)
)dx.
= F{n) - - F(x
We kno w tha t li m F(n) = L f(x)dx
oo n
u
m+
n—>o
-+
o
F(n-l) < 1
T
0 such that |/(s ) — f{t)\ < 1 i f \t — s\ < 5. Now suppose , contrar y t o ou r claim, tha t / i s no t bounded . The n ther e i s a sequenc e {a n} suc h that a n + i > a n + S and \f(a n)\ > n. B y assumption ,
/ f(t)dt\
> / f(t)dt\
f(t)dt
- /
f(t)dt -M. Moreover, w e hav e \f(t) — f(a n)\ < quently,
1 for t G [a n — 5/2 yan]. Conse -
f(t)dt >(\f(an)\-l)S->(n-l)Sand
f{t)dt >{n-l)~(
M,
Ja
a contradiction . 1.5.21. Integratio n b y part s give s
(1) f
f(t)f"(t)dt = /(*)/' (x) - /(a)/'(a ) - f (/'(*)) t/a J
S
dt.
a
By th e inequalit y (/(x)) 2 + tf"{x)) 2 > 2\f(x)f"{x)\ an d b y assump tion, th e integra l J a°° f(i)f"{t)dt converges . Clearly , f*(f'(t)) 2dt ei ther converge s o r diverge s t o infinit y a s x — » oo . In th e latte r case , b y (1), li m f(x)f f(x) = +oo , an d sinc e /2(*)-/2(a)
r Ht)f(t)dt, Ja
we se e tha t li m f 2(x) = 2
x—>oo
J^°(f(x)) dx. S
+oo , whic h contradict s th e convergenc e o f
o the convergenc e o f f^°(f'(t)) 2dt i
s proved .
1.5.22. I t follow s fro m th e Cauch y theore m (se e 1 .5.1 0 ) tha t th e improper integra l J^° f(x)g(x)dx converge s if and onl y if, give n e > 0 , there i s CLQ > a suc h tha t fo r ci2 > a\ > ao,
f
f(x)g(x)dx
0 such tha t \g(x)\ < C fo r al l x G [a, oo). By (1 ) , the imprope r integra l J a f{x)dx exists, s o th e Cauch y theore m implie s tha t ther e is ao > a such tha t / f(x)dx
an
ao. Thu s G2
/ f{x)g(x)dx
)dx + l^2)|
< l5(ai ) 1,
and th e functio n x — i > l/(x a) monotonicall y tend s t o zer o a s x — • oo, the convergenc e o f J x § ^^dx follow s fro m th e Dirichle t test . (b) I f th e imprope r integra l f™ * sl"x*dx converged , the n J^° ^^dx would als o converg e (becaus e sin 2 x < | sinx|). Thi s woul d giv e (i)
If 1
cos 2x
-dx < 00 .
2/1"
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
177
As i n (a) , on e ca n sho w tha t J^° CQ ^2xdx converges . Thi s combine d with (1 ) woul d impl y th e convergenc e o f J^° ^ , a contradiction . (c) Th e substitutio n x = yfi give s OO rC
sint dt. 2y/t
/
s'm(x2)dx = j Thus, b y (a) , th e integra l converges .
(d) On e ca n appl y th e Dirichle t tes t wit h g(x) = l/(x a) an d f(x) = esin x gm 2 X, becaus e
/
2esinx(sinx-l)
e s i n x sin(2x)dx
1 . (e) Pu t lnax g(x) = an
d f(x)
= si n a:.
Then g\x) =
In"" 1 x
(a - l n x ) < 0
for sufficientl y larg e x. Thu s g i s monotonicall y decreasin g t o zero , and th e Dirichle t tes t fo r convergenc e ca n b e applied . 1.5.25. I f J a a + T f(x)dx = 0 , the n als o J^ kT f(x)dx = 0 fo r k G N. For 6 > a put fc = [ ^ ] . Then , b y th e resul t i n 1 .4.8 , pb pb
/ f(x)dx\ = Ja \Ja+kT
—kT
pb
\ f(x)dx\ la+kT
=
\ f(x)d.
\Ja
nb-kT rb-kT pa+T
< / \f(x)\dx< JaJ
/
\f(x)\dx
= C.
a
Now the firs t statemen t i s an immediat e consequenc e o f the Dirichle t test. To prov e th e secon d statement , se t f* f(x)dx consider th e integra l
=
I ^ 0 an d
/(*) - ^ ) g{x)dx. Ja
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
178
It follow s fro m wha t w e hav e alread y prove d tha t thi s integra l con verges. Consequently , J^° f(x)g(x)dx converge s i f an d onl y i f th e integral J g(x)dx converges . 1.5.26. (a ) Sinc e r27T
sm(smx)ecosxdx cos:E
= / sin(sinx)e
^+ / sin(sinx)e
JO
cosj:
(ix = 0 ,
JTT
the give n integra l converges , (b) W e hav e / sin(sinx)e JO
sm;r
(ix = / sin(sinx)e
sm:r
Jo /o
sm:r;
Gfo + / sin(sinx)e
JO
(ix
JTT
(esinx - e~ s'mx) sm(smx)dx >
0.
Thus th e integra l diverges . x
1.5.27. Observ e first tha t li m ^ x-+o+
x
— exist
+
smx
s a s a finite limi t fo r al l
positive a. S o w e ca n confin e ourselve s t o studyin g th e convergenc e of oo sinx : ax. a x + sm x We hav e 2 sin x si n x sin x a a a a x + sin x x x (x + sinx ) We kno w (se e 1 .5.24(a) ) tha t fo r a > 0 th e integra l J 2°° § ^-dx con verges. So , i t i s enoug h t o stud y th e integra l
s:
sin2 x J2 x a(xa + sinx ) dx. poo
Since '' x
2 sm 2 x sin x a a a a (x + 1 ) " " x (x + sinx) ~ x a(xa -
1 ) '
we see that integra l (1 ) converge s fo r a > 1 /2 . Applyin g th e resul t i n 1.5.25, we find that th e integra l J* 2°° w ^ + D^ diverge s f° r a — V^So, i t follow s fro m (2 ) tha t th e integra l (1 ) als o diverge s i f a < 1 /2 . For a > 1 / 2 th e integra l converges .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
179
1.5.28. Sinc e ,oo 1
f(x)dx= /
0/0))-cb , J aX
the assertio n follow s fro m th e Abe l tes t fo r convergenc e o f imprope r integrals (se e 1 .5.22) . 1.5.29. Assume , fo r example , tha t / i s decreasin g o n [0 , oo). Then , since f n°° f(x)dx exists , w e se e tha t li m f(x) = 0 . Hence , b y 1 .5.1 1 , />oo °
/ f(x)dx
° «(
= Y, /
n+l)/i
°
°
f(*)dx
h^2f(nh) J® n =
So,
=
h^2f(nh)-hf(0).
l n=0 0 0
POO
0 < / i V / ( n / i ) - / f(x)dx 1 , the n li m e
x
xa x
— 0, s o i t suffice s t o sho w th e conver -
gence of ^~ldx _.
r
X
/ ex with som e XQ > 0 . Sinc e li m e x /2x1a
— 0, ther e i s x$ suc h tha t
re—•oo
xa-ie-x/2
XQ . Henc e /•oo
/>co
x a l
/ e~
x - dx
1 , the n Cn+1 n
-
cn a
'
i + I'i > i ,
+ n V n
y
a
because ( l + ±) > 1 + g (see , e.g., II , 2.3.7(a)). Thu s i n this case the sequence {c n} eithe r converge s o r diverge s t o infinity . I f 0 < a < 1 , then ( l + £) a < 1 + % (see , e.g. , II , 2.3.7(b)) , an d consequently , the sequenc e {c n} i s monotonicall y decreasing . T o en d th e proo f i t is enoug h t o appl y th e resul t give n i n II , 3.3.2 1 (whic h ca n als o b e extended t o th e cas e whe n A = -hoc) .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. I m p r o p e r Integral s
181
1.5.32. W e hav e r}. a _ 1 n.!
r ( a ) = lin->oo m a (a + 1 ) . . . (a + n — 1 ) n.a—1 n.
lim ™ a ( a + l)(f + l ) . . . ( ^I + l ) a fc= = h m n1 -e
71-1
lim
a e
a/f
(lnn-(1 +i+-+^r))IF T e "
n-+oo a
,-* • \1
c
+?
1.5.33. B y 1 .5.24(a ) we know that th e integra l f 0°° ^^dx converges Therefore
.
n7r/2 / 2 r ° sin1 x, sin x , v r sinn x 7 B f /a x = li m / ax = li m / ax. n n Jo x ^°°Jo x ^°°Jo x Hence / 2 f°° sin x , , . r sin(2 n + l) x , / ax = li m / ax . n Jo ^ ->°°Jo x We wil l sho w tha t r / 2 s i n ( 2 n + l ) xT T 1/ — ^ -dx = - , n = l,2,... ,
and (2) li
mf f n ^°° \Jo
/2 x
M ^ + D x ^_ Jo
r/ » sin(2n +l), \ sin xy
=
Q
To sho w (1 ) , recal l tha t fo r x E (0, 27r), 1 sin(±(2 n + l)s ) - 4 - cos x + co s 2x + • • • + co s nx = ^——. 22 sm | Hence sin(2n + l) x ^ ^ —— = 1 + 2cos2 x + 2cos4x H + sinx
. 2cos2nx , x
x
e (0,7r) .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
182 This give s
r 7r/ 2
sin(2n - f l)x . n ax — x2 //o sin To prove (2) , observeJOtha t b y 1 .4.1 1 (a) , ^/2M2n+ sin(2 )xn + l)x , f 1
n
ton r Q x
**-TQ s
j Jo
^ ° ° V Jo x
f ' smx — x . .
= h m / sm(2 n-+oo j0 xsin
n/2
x
_
sin(2 n + l)x dx mx .
n + l)xdx = 0 .
1.5.34. I t follow s fro m th e inequalit y l_
x
2 < e - 21
ao pO rb
b' rrD
f{x,y)da x ix\ < e
/ f{x,y)dx- / J a
J a
for al l y G A. Takin g y — > yo , w e ge t b y (1 ) 6 r/»0
/.&' no
/ (p(x)dx — / (p(x)da Ja
0 be chose n arbitrarily . The n there exist s ao > a such tha t fo r a b > ao,
and
r
f(x,y)dx
f
0, there i s 770 > 0 such tha t for 0 < 77 , rjf < 77 0 pb—r) no — rjrb—r}'
no
f(x,y)dx- / / f{x,y)dx-
jf(x,y)dx
«/ a t
|< £
/a
for al l I / G A. Takin g 2 /—» yo, we get by (1 ) t>—77 pb—r}'
(p(x)dx — \ (p(x)dx
0 be chosen arbitrarily . The n ther e exist s 77 0 > 0 such that fo r an 0 oo
^ = = // (p(x)dx = 0 .
Since th e resul t i n 1 .5.4 0 ca n b e applie d t o th e integra l J 2°° e xV dx, the proo f i s complete . 1.5.55. Pu t fn(t)
{{l-^Y^-1 i I0i
f 0oo
theorem (see , e.g., II , 3.1 .1 6) , {f n} converge s to / uniforml y o n [0 , a]. Since | 0 °° f(t)dt = T(x) < o o (se e 1 .5.30) , give n e > 0 , •>o o
/•o o
/ fn(t)dt
< / f{t)dt
JaJ
< e
a
for sufficientl y larg e a. Therefor e th e resul t i n 1 .5.4 0 can b e applied . 1.5.56. W e firs t sho w tha t 1 W
2
smnx dx = n o sinx We kno w (se e (1 ) i n th e solutio n o f 1 .5.33 ) tha t (i)
I
1x12
sin(2 n + l)x , T T dx = —. sinx 2
Moreover, sinc e n-1
^sm(2k +
1 — co s 2nx 2sinx
l)x
k=0
sin nx
X ^ 0 , ±7T , ±27T, . . . ,
equality (i ) follows . Substitutin g y — nx i n (i ) give s ^ / 2 /sin V2
2
2//^
dyy = —. 2
sin(2//n)
2/
Now defin e for x
1
/nW = { ( ^ ) ( ; E & ) ^ 2
0 fo
= 0,
(Xa^mr/2 rx
> nir/2.
for x
= 0,
,
We hav e 1
lim / n ( z ) v
( ^ j fo
r x>0
,
and th e convergenc e i s unifor m o n eac h interva l [0,a] . Recal l (see , e.g., II , 2.5.28(a) ) tha t fo r 0 < x < TT/2 , smx 2 > - . X IX
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
195
So, „ , N , ' s m x\ 7r fn{x) < [ —^j —
2
,£
>0 ,
and since J 0°° ( ^ ^ ) dx < oo, the uniform convergenc e of J0°° f follows fro m 1 .5.35 . Hence , b y 1 .5.40 , - = li m / f I n-+ooJ
Q
n(x)dx
=
J
/ li Q
mf
n(x)dx
n(x)dx
n^oo
1.5.57. W e hav e 00 f°° x a-x , f 1 x a~l , f x*" 1 , T T / dx = / a x+ / a x= ii+i 2Jo1 +^ J o H x J 11 +x
For 0 < x < 1 , a —1 °
°
and th e serie s converge s uniforml y o n [77, 1 — 77'] , wher e 0 < 7 7 < \ — T)' < 1 . Moreover ,
0 < sn(x) = Vc-i)*^*-1 = ^ d - ( - * ) ") < ^-^ Since J Q x a~1 dx = satisfied an d
1 /a , w e se e tha t th e assumption s o f 1 .5.5 3 ar e
n=0 u
n=
0
Furthermore, th e substitutio n x = 1 /y give s r1
7|
-a r
io H y 7
l 0
7l
(l-a)-l
i+ y ~
i-
a
where th e las t equalit y follow s fro m th e above . Henc e / -, Jo1
dx= +s a
- + > (-l) Mr + v aa -f / c a f- f \ + ^
— fc/
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
196
which i s th e firs t equalit y t o b e proved . T o prov e th e othe r on e w e start wit h th e identit y (see , e.g. , I , 3.8.37 )
=*n( i -
smx
n=l
Thus i f x j^ kn, k G Z, the n oo
= l ^ In In I sin £ I = I n \x\ -fn Y
Note tha t th e derive d serie s 2
^x
— n 27r2
converges uniforml y o n eac h compac t interva l disjoin t fro m th e se t {kn : k G Z}. Henc e w e ge t cosx 1 ^ 2 x COt X = = - + > —z — z -z smx x ^ x — n 7T n=l
1 + niT J
—' \ x — nil+x
x*
n=l
It the n follow s tha t tanx = — cot(x — TT/2)
£
^ \x
1
- (2n - 1 )TT/ 2 x+
+ (2 n - l)?r/ 2
Finally, usin g th e identit y 1 1 / x x\ —= - co t - + ta n - , smx 2 V 2 2 / we obtai n 1 1 sinx x
^
/
1
i
\
+ y; ( -i)M—i_ + _ i _ ), n=l x
7
which implie s th e desire d equality .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
197
1.5.58. W e hav e 6 ] l>oo xa-l _ -^ xb-l
Jo 1
-dx z fl x a~l -x h~l , f°° x a~x - x h~l , = I dx - f / dx Jo l x J 1 -x x -
(!/x)a-l _ ( l / x ) ^ 1
rl x a-l _ xb-l rl
~ Jo l x f1 x a~x -x~ a , = / dx
Jo l
+
dx
7 o (l-(l/x))x* f 1 x b~l -x~ b , — / — dx
~x Jo
l
~x
= Ji-/ 2. As i n th e solutio n o f th e precedin g problem , w e ge t 1
W 1 hr = ~ + > — a ^-^
\a + n a
—n
= 7 r cot 7ra.
n—l
1.5.59. (a ) Th e functio n ln(l - x) n=l
can b e continuousl y extende d t o [0,1 ) an d th e powe r serie s converge s uniformly o n each interval [0 , 6], 0 < b < 1 . Moreover, i f S n(x) denote s the nt h partia l su m o f th e series , the n \Sn(x)\ = S n(x) 1 I
/ tan Jo J
a
rl
x d x = / y a(l-y2)-%-^dy= o^ 1„ 1 fa
2V
2 2
a 1
'2
2
t%~* Jo \7
(1 - £ ) ~ ^ dt
T
/ 2cos(7ra/2)
'
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
203
1.5. Imprope r Integral s where th e las t equalit y follow s fro m 1 .5.64 . (b) Sinc e
r dx
- co s x V2Jo
Jo y/3
dx
r
i
H
+ sin 2 (x/2)
the substitutio n y — sin(x/2 ) yield s
f,
dx
= v~2 f «L= = ^ f ,-3/ 4(1 _ t)-^dt \J\-y A 4
Jo V 3 - co s x Jo
J0
-—5(1/4,1/2)-—
r(3/4
)
.
Now usin g th e identit y F(a)F(l — a) = -^—, 0 < a < 1 , we se e tha t T(l/2) = v^ F an d T(3/4 ) = y/2n/(T(l/A)), whic h give s th e desire d equality. (c) A s i n (a) , w e ge t / sin"" Jo 2
1
xdx=- t*' Jo
1 2
- ^ - ty
= l -B(a/2M2) =
2
xl2
dt
a 2
- B(a/2,a/2) 1
where th e las t equalit y follow s fro m th e duplicatio n formula . 1.5.70. Ther e ar e man y proof s o f thi s formula . Her e w e presen t a proof du e t o W . Felle r [Amer . Math . Monthly , 74(1 967) , 1 223-1 225] . Put (1) A
n
= I n n\-(n + 1 /2 ) I n n + n.
Our ai m i s to sho w tha t lim A
n
= In V2TT.
n—*oo
Let &k
1
rk
rk
r
r
-Ink— lnxdx= 1 1/2 Jk-
/2
hi(k/x)dx,
1 2 Jk- 1 /2 Jk- /2 1 rk+l/2
bk = / lnxdx—-lnk Jk 2
1 rk+ /2
= J
\n(x/k)dx. k
Then
«fc — 6jf e = 1 + lnfc + Tfe — - j I n (fe — -J — ( f c + 2 ) ^ ( f c + 2 Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
204
Solutions. 1 : Th e Riemann-Stieltje s Integra l
Consequently, (2) ] T ( a , e - ^ ) = n + lnn ! + - m - - (n + - j I n (n + - j = B n. oo
Now w e show tha t th e serie s ] T (ak — b k) converges . Sinc e k=l 1 , , / r l / 2-
2
(3)
ak = I n— dt an d bk = / I n (1 + t/k) dt, — 1 Jo V& Jo we se e tha t ak > bk > ak+i > 0 . Moreover , li m ak = li m bk — 0. fc—>oo fc—+00
Thus th e serie s ai - fei + a 2 - b 2 H +
a n - b n + .. .
converges b y th e Leibni z test . Thi s mean s tha t li m B n exist s an d i s n—>oo
oo
a
equal t o th e su m o f the serie s Y2 ( k — bk)- I t follow s fro m (3 ) tha t fe=i
ak-bk =
1/2 2 - / f I ( n ( t1 - — \I dt.
Thus 1 oo . /
2o o,
1
2
\
5>-«~jL EH "*)* because th e serie s o n th e right-han d sid e converge s uniforml y o n [0,1/2]. So , "1/2 a oo
oo « ! /
! > - «=
/ oo ^
f2
2\
) dt
-/ ^ ( i - p
/• 1 / 2 , sinTr t 7 -- / I n dt, Jo Kt where th e las t equalit y follow s from , e.g. , I , 3.8.37 . Usin g th e resul t in 1 .5.1 (b) , w e ge t f1/2^ sinnt 1 l n
-J0 m - ^ * = - ( m . - i ) . By (1 ) an d (2) , l i m ( A n - B n ) = li m ( n+ i ) In ( 1 + -* - j + ]• In 2 = ^ ( 1 + l n 2 ) . n—>oo n—»o
o\ Z
/V
Zn
I I
Z
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.5. Imprope r Integral s
205
Finally, w e arrive a t lim A n = li m B n + - ( 1 + I n 2) = I n y/2n. 1.5.71. W e first not e tha t T i s infinitely differentiabl e o n (0 , oo). In deed, th e imprope r integra l f Q x a~1 \i±xe~xdx converge s uniforml y on eac h interva l [c , d], 0 < c < d, becaus e eac h o f the integral s /x
a1
~ \nxe~xdx an
d/
x
1 a
~ \nxe~xdx
converges uniforml y o n [c,d]. So , applyin g 1 .5.44 , w e see tha t />oo
1 a
~ \nxe~xdx.
r'(a)= / x Jo The formul a T(n\a)= /
a x 1 - ]nnxe-xdx Jo /o .5.655 , can b e obtaine d inductively \. Now ,, bbyy 11 .5.6 r(o)r(6) T(b)b r( T(b)-B{a,b) = r(b) r(o + b) T(a + b)
o + 6)-r(a )
r ( 6 + l ) T(a + & ) - ! » T(a + b) Letting b —» 0 + w e ge t T'(a) T(a) 6^0
lim ( r ( 6 ) - S ( a , 6 ) ) . +
Since (se e th e solutio n o f 1 .5.65 )
f
X
.6-1
B(a,b) — I — (l +——rdx, x) we obtai n
(i) m
= , im r
X
6-i1 fe-
^
^
Moreover, th e imprope r integral s
iy'{'"-(n^h r^'( e--(iT^)
dx
converge uniformly o n [0 , bo]. Thu s the result i n 1 .5.4 3 can be applied , and w e ca n switc h th e limi t an d th e integra l i n (1 ) . Thi s complete s the proof .
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
206
Solutions. 1 : Th e Riemann-Stieltje s Integra l
1.5.72. (a ) W e firs t sho w tha t th e functio n = ScTjx + 1 ,2) ' T{x + l)
V
is monotonicall y increasin g fo r x > 1 . T o this end , observ e tha t (ln [X))
*
+
2x
+ 1 )-
r(x+±) T(x
By th e precedin g problem ,
rr(x (x ++1) i) r'(r ' x(x++|)\)f r°°_J__i yr+ r(x + i) r( x + i) ~y 0 (i + t)*+i'
t -1
/ o ( 1 + 0-+ 1 v T + 7 + 1 JO
< ~ /
2j0 ( 1 "
7^
r-7T *
l + t)*+ i
2a; '
;
which shows that (lnF(x)) > 0 . Consequently , F increase s on (1 , oo). So li m F(x) = li m F(n) . T o find thi s limit , w e wil l us e th e dupli cc—>oo n—->o
o
cation formul a an d th e Stirlin g formul a give n i n 1 .5.6 8 an d 1 .5.70 , respectively. Henc e lim F(n) = li m ^ ( n + 1 /2 ) = ^ ^ oo r ( n + l ) n - . o o r ( n ) r ( n + l ) 2 mf(2n-1 ) ! 2 1 n i ^ o ( n _ i)! n !2 ^-
^
1 2n
-
,. Q ^ ( 2 n - l ) 2 - -1 / 2 e - ( 2 n -1 ) = h m Pn—7^ ; r = 1 , n-oo M v / 2 n ( 2 n - 2 ) 2 r i 1- e - ( 2 n - 2 ) where {f3 n} i s a sequenc e convergin g t o 1 . (b) Not e firs t tha t i f a = 1 , then b y 1 .5.65 ,
x"B(a,x)=xB(l,x) =
X 1
^™ 1 =
1 [x 4- 1) for al l x > 0 . So , i n thi s case , th e limi t t o b e foun d i s 1 . W e wil l show tha t th e functio n F a(x) — xaB(a,x),x > 0 , i s monotonicall y
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
207
1.6. Integra l Inequalitie s
increasing i f a > 1 , an d monotonicall y decreasin g i f 0 < a < 1 . W e have linear;J - ^ +
r (
^^
+
a )
00 1 1 /
_ a Z*
\
dt
+ t)x ~ {i + ty+*j J'
~x~j0 \(i If a > 1 , then r°° / I
I
\
dt _ r°° I +1 — ( i +1) 1 -^ dt 1 /•°° , a < a / T ^ x— rrdt = - ,
where th e las t inequalit y follow s fro m th e inequalit y ( 1 + t) 1 a > 1 -j - ( 1 - a)t (se e II, 2.3.7(a)) . Thi s show s tha t (\nF a{x))' > 0 , whic h means tha t F a i s increasing . Similarly , i f 0 < a < 1 , the n th e in equality ( 1 4- * )1_ 0 < 1 + ( 1 - a)t (se e II , 2.3.7(b) ) implie s tha t F a is decreasing . Consequently , t o find th e desire d limi t i t i s enoug h t o calculate li m F a(n). W e ge t n—>oo a
lim n B(a,n)= h
m -^oo r ( a + n )
naI»(n-l)! ^oo (a + n - l)( a + n - 2 ) . . . (a + l)aT(a) na~ln\ , N — hm — — -— - = r(a) , n-oo ( a + n - l)( a + rc - 2 ) . . . (a + l) a where th e las t equalit y follow s fro m 1 .5.31 .
1.6. Integra l Inequalitie s 1.6.1. I t i s clear tha t
i [la
U{X)g{V)
~ !{V)9{X))2dX) dV ~ ^
Hence 2 f f\x)dx f J aJ
g a\
2
(x)dx - 2 ( I f(x)g(x)dx) >
0,
J aJ
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
208
Solutions. 1 : Th e Riemann-Stieltje s Integra l
which give s the desire d inequality . Now , i f / an d g are continuou s o n [a, b] an d th e equalit y holds , the n / (f(x)g(y)
-
f(y)g(x))
2
dx = 0
Ja
for ever y y G [a, b]. Consequently, f(x)g(y) — f(y)g{x) = 0 fo r ever y x G [a, b] an d y G [a, 6]. So if there i s a yo G [a, 6] such tha t g(yo) ^ 0 , then f(x) — ( \g(x). I f g i s identicall y zer o o n [a , 6], the n w e ca n take A i = 0 and A 2 = 1 . 1.6.2. I t i s a n immediat e consequenc e o f the Schwar z inequality . 1.6.3. B y th e Schwar z inequality , 9
(b Moreover, sinc e
(f(x)-m)(f(x)-M) „ ^ - ^ ;;
r
V
0
J f (x)dx-(J f(x) Jo V o
On th e othe :rr hand hand , D(f, f) = (M i - F)(F -
mi
)-
[ (M i - f(x))(f(x) Jo
mi)dx ,
which implie s tha t D(f,f) -
feAj0 ~
IT
.
The infimu m i s equa l t o 4/-7 T and i s attaine d fo r f(x) = ^aXx
2
)'
1.6.7. Th e inequalit y follow s fro m
(M-f(x))(f(x)-m)dx>0. 1.6.8. Se t
F(t)=^f(x)dx)j -j\f(*)Y
dx, i e [ 0 , l ]
.
Then F\t) =
f(t)(2J*f(x)dx-(f(t))
2
y
and, i f G(t) = 2f*f(x)dx-(f(t)) 2, the n G'{t) = 2f(t)(l-f'(t)) > 0. Consequently, G(t) > G(0 ) = 0 , whic h give s F'(t) > 0 . So , F(t ) > 0 and, i n particular , F(l) > 0. Moreover, i f F ( l ) = 0 , the n F(t) = 0 fo r t e [0,1 ] , an d therefor e F'(t) = f(t)G(t) = 0 . This , in turn, implie s G'{t) = 2f{t)(l-f(t)) = Oand 1 - / ' ( * ) = 0 forte (0,1 ) . 1.6.9. I t follow s fro m th e solutio n o f 1 .2.2 2 that th e functio n 1 g{x) = f(t)dt x— a is monotonicall y increasin g o n (a , 6]. Thu s g(x) < g(b). A s i n th e solution o f 1 .2.22 , one ca n sho w tha t th e functio n rb
o-x J
x
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.6. Integra l Inequalitie s
211
is monotonicall y increasin g o n [a , 6), and therefor e h(a) < h(x). 1.6.10. Assum e first tha t bot h th e function s ar e monoton e i n th e same sense . W e hav e
f n\f(x)g(x)
-
f(x)g(y))dx) dy
pb pb
= (b-a) /
pb
f(x)g(x)dx -
/ f{x)dx /
Ja Ja
g(x)dx
Ja
and
J (j
aU(y)g{y)-f{y)g(x))dx\dy pb pb
pb
= (b-a) f(x)g(x)dx-
f(x)dx
JaJ
g(x)dx.
aJ
a
Therefore pb pb
(b-a) /
pb
f{x)g(x)dx -
/ f(x)dx /
Ja Ja
= \f a ( /
g(x)dx
Ja 6
( / W - f{y)){g{x) - g{y))dx\ dy > 0,
because, b y assumption , (f(x) — f(y))(g(x) —
g{y)) > 0 for al l x an d
1.6.11. Th e proo f i s analogou s t o tha t o f 1 .6.1 0 . 1.6.12. B y th e Chebyshe v inequalit y (se e 1 .6.1 0) , pa -
/ f(a Jo a
i pa
pa
— x)g(x)dx < - f(a J0 7
— x)dx I g{x)dx o
= - / f(x)dx «7o Jo
/
g(x)dx
< / f(x)g(x)dx. Jo 1.6.13. I t i s enoug h t o appl y th e generalize d Chebyshe v inequalit y (see 1 .6.1 1 ) wit h p(x) = q 2{x), f(x) — x an d g{x) = l/(q(x)).
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
Solutions. 1 : Th e Riemann-Stieltje s Integra l
212
1.6.14. B y th e convexit y o f / , w e get / f(x)dx =
(b — a) / ( (
Ja
l — x)a + xb)dx
JO
jr^'-^m
1.6.15. Le t f(x) = ^ , x > 0 . Sinc e f"{x) = (21 n x - 3)/x 3 , w e se e that / i s strictly conve x on (e 3 / 2 , oo) and strictl y concav e o n (0 , e3//2 ). Hence i f y > x > e 3 / 2 , w e hav e 1 Tlnt
AV
2 ;
y - x j
x
^ In
t
2
y- In 2 x In 2(2/-x) L
G '
which gives A L < G A. Analogou s reasonin g ca n b e use d t o sho w tha t AL>GA i f 0 < x < y < e 3 / 2 . 1.6.16. Le t c G [a , 6] b e suc h tha t f(c) = ma x / ( # ) . Then , b y x£[a,b]
assumption, nb
rC
rb
/ f(x)dx — \ f(x)dx + / f(x)dx Ja
Ja
Jc
= (c — a) / f((l — x)a + xc)dx Jo + (b-c) f((l-x)c Jo
+
xb)dx
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.6. Integra l Inequalitie s
213
a) f
>{c-a) ((l-x)f(a)+xf(c))dx Jo + (b-c)J «l-x)f(c)
+
Jo
xf(b))dx
>l(b-a)f(c). 1.6.17. Integratin g b y parts yield s fag(x)f'(x)dx+ f Jo /O Jo
g'(x)f(x)dx ^0
= g(x)f(x)\ aQ- [
a g'(x)f(x)dx+ f Jo Jo
g'(x)f(x)dx
= f(a)g(a) + f g'(x)f(x)dx Ja
> f(a)g(a) + f g'{x)f{a)dx =
f(a)g(b).
Ja
The case o f equality follow s immediatel y fro m th e above . 1.6.18. Substitutin g u = f~ l(t) an fX Pf(x)
d integrating b y parts give s
pX
/ f(t)dt+ / f-\t)dt=
Jo Jo
Jo
rX
/
f(t)dt+ / uf'(u)du
Jo = xf(x).
1.6.19. Assum e firs t tha t f(a) yr\y) -(y-
{y) = &/ _1 (y) = ba.
l
b)r
1.6.20. Applyin g th e Youn g inequalit y wit h f(x) = ln( l + x), we get pa pb
/ ln( l + x)dx + / (e Jo Jo which give s th e desire d inequality .
x
- l)dx > ab,
1.6.21. I f there is xo such that g~ l{x$) > f(xo), the n by assumption , xog^ixo)^ /
/
f{x)dx+ Jo Jo
g(x)dx
r^o
< / g~ Jo Jo =x
1 0g"
pg~ l
(x0)
{x)dx + / g(x)dx
(x0),
where th e las t equalit y follow s fro m 1 .6.1 8 . A contradiction . 1.6.22. I t follow s fro m th e Schwar z inequalit y tha t i f / G A, the n (2 + 36) 2 = (f f(x){x
+ b)dxj
ma x —i2 , — = 12. bem 3b + 3 6 + 1
The equalit y i s attaine d a t f(x) = 6x
Copyright 2003 American Mathematical Society. Duplication prohibited. Please report unauth Thank You!
1.6. Integra l Inequalitie s
215
1.6.23. Le t / G A. The n b y th e Schwar z inequality , (1) (J
( 1 - x)f'(x)dx)
- 1,
XX
which implie s tha t f{x)>l —
x. Likewise .
f(x) - /(2 ) /(x x-2 x-
)- 1 2
r(^2) < i,
which give s f(x) > x — 1 . Consequently , /(x ) > | x — 1 | . Thu s / f{x)dx> 7o Jo
[
\x-l\dx =
1.
Since / i s continuous, th e equalit y hold s i f and onl y i f f(x) = \x — 1 | , x G [0,2] . Bu t thi s functio n i s no t differen t iable a t x — 1 . S o th e answer t o ou r questio n i s no. 1.6.25. B y th e mea n valu e theorem , f(x) = f'(0 1 )(x-a) an
d f(x)
= f'(9
2)(x-b).
If M = ma x |/'(:r ) |, the n xG[a,6]
|/0r)| < M ( a ; - a ) an
d \f(x)\ ° > t h en I baty f^ dz = J a + f{ z)dz < J a f(x)dx. I f y < 0 , analogou s reasonin g ca n b e ap plied. Assum e now that / i s an arbitrary continuou s function , an d se t I rX-\-h A 0*0 2h Jx-h 1 /(01 ^ - I t follow s fro m wha t w e hav e prove d tha t 7 Jrab fh{x)dx < J a \f(x)\dx. Moreover , w e hav e -i px+h
- 1 px+h
\h(x)\ = r r / f(t)dt\