Table of contents : Principles of Nanophotonics......Page 3 Contents......Page 5 Preface......Page 8 Authors......Page 10 1.1 Modern Optical Science and Technology and the Diffraction Limit......Page 13 1.2 Breaking Through the Diffraction Limit......Page 16 1.3 Nanophotonics and Its True Nature......Page 22 1.4 Some Remarks......Page 27 References......Page 28 2.1 Optical Near-Fields and Effective Interactions as a Base for Nanophotonics......Page 31 2.1.1 Relevant Nanometric Subsystem and Irrelevant Macroscopic Subsystem......Page 33 2.1.2 P Space and Q Space......Page 34 2.1.3 Effective Interaction Exerted in the Nanometric Subsystem......Page 36 2.2.1 Energy States of a Semiconductor QD......Page 41 One-Particle States......Page 42 Electron-Hole Pair States in a QD......Page 47 2.2.2 Dipole-Forbidden Transition......Page 49 2.2.3 Coupled States Originating in Two Energy Levels......Page 54 2.2.4 Basic Ideas of Nanophotonic Devices......Page 58 Density Operator and Density Matrix......Page 62 Time Evolution Operator and Liouville Equation......Page 64 Interaction Representation......Page 67 Quantum Master Equation for an Open System......Page 69 Dynamics of a Two-QD System......Page 78 Dynamics of a Three-QD System......Page 81 Nanophotonic Logic Gates: AND- and XOR-Operations......Page 86 2.3.1 Field Gradient and Force......Page 90 2.3.2 Near-Field Nanofabrication and Phonon’s Role......Page 92 Photodissociation of Molecules—Experimental......Page 93 EPP Model......Page 95 2.3.3 Lattice Vibration in Pseudo One-Dimensional System......Page 97 Vibration Modes: Localized vs Delocalized......Page 100 2.3.4 Optically Excited Probe System and Phonons......Page 101 Model Hamiltonian......Page 102 Davydov Transformation......Page 104 Quasiparticle and Coherent State......Page 106 Contribution from the Diagonal Part......Page 108 Contribution from the off-Diagonal Part......Page 112 References......Page 115 3.1 Excitation Energy Transfer......Page 120 3.2 Device Operation......Page 127 3.2.1 Nanophotonic and gate......Page 128 3.2.2 Nanophotonic NOT gate......Page 132 3.3 Interconnection with Photonic Devices......Page 136 3.4 Room-Temperature Operation......Page 140 3.4.1 using iii-V Compound Semiconductor QDs......Page 141 3.4.2 using a ZnO Nanorod with Quantum Wells......Page 143 References......Page 146 4.1 Adiabatic Nanofabrication......Page 150 4.2.1 Nonadiabatic Near-Field Optical CVD......Page 156 4.2.2 Nonadiabatic Near-Field Photolithography......Page 162 4.3 Self-Assembling Method Via Optical Near-Field Interactions......Page 165 4.3.1 Regulating the Size and Position of Nanoparticles using Size-Dependent Resonance......Page 166 4.3.2 Size-, Position-, and Separation-Controlled Alignment of Nanoparticles......Page 170 References......Page 173 5.1 Introduction......Page 176 5.2.1 Optical Excitation Transfer Via Optical Near-Field Interactions and Its Functional Features......Page 178 5.2.2.1 Memory-Based Architecture......Page 180 5.2.2.2 Global Summation Using Near-Field Interactions......Page 181 5.2.3.1 Interconnections for Nanophotonics......Page 183 5.2.3.2 Broadcast Interconnects......Page 184 5.2.4 Signal Transfer and Environment: Tamper Resistance......Page 188 5.3.1 Physical Hierarchy in Nanophotonics and Functional Hierarchy......Page 191 5.3.2 Hierarchical Memory Retrieval......Page 193 5.3.3.1 Analysis of Hierarchy Based on Angular Spectrum......Page 196 5.3.3.2 Synthesis of Hierarchy Based on Angular Spectrum......Page 199 5.3.4.1 Localized Energy Dissipation......Page 201 5.3.4.2 Engineering Shape of Metal Nanostructures for Hierarchy......Page 202 5.4 Summary and Discussion......Page 204 References......Page 205 Appendix A: Projection Operator......Page 209 Appendix B: Effective Operator and Effective Interaction......Page 211 Appendix C: Elementary Excitation Mode and Electronic Polarization......Page 215 Appendix D: Minimal Coupling and Multipolar Hamiltonians......Page 220 Appendix E: Transformation from Photon Base to Polariton Base......Page 227