Principal Structures and Methods of Representation Theory 9780821837313

The main topic of this book can be described as the theory of algebraic and topological structures admitting natural rep

265 11 58MB

English Pages [446] Year 2005

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Cover
Title page
Contents
Preface
Introduction
Basic notions
General theory
Associative algebras
Lie algebras
Topological groups
Lie groups
Special topics
Semisimple Lie algebras
Semisimple Lie groups
Banach algebras
Quantum groups
Root systems
Banach spaces
Convex sets
The algebra ?(?)
Bibliography
Index
Back Cover
Recommend Papers

Principal Structures and Methods of Representation Theory
 9780821837313

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Principal Structure s and Method s o f Representation Theor y

This page intentionally left blank

10.1090/mmono/228

Translations o f

MATHEMATICAL MONOGRAPHS Volume 2 2 8

Principal Structure s and Method s o f Representation Theor y D. Zhelobenk o Translated b y Alex Martsinkovsk y

American Mathematica l Societ y !? Providence , Rhod e Islan d °^VDED^*

EDITORIAL COMMITTE E AMS Subcommitte e R o b e r t D . MacPherso n Grigori i A . Marguli s J a m e s D . Stashef f (Chair ) A S L S u b c o m m i t t e e Steffe n L e m p p (Chair ) I M S S u b c o m m i t t e e Mar k I . Freidli n (Chair ) H . I I . >Kejio6eHK O OCHOBHblE CTPYKTYPb l H METOHb l TEOPMM riPEHCTABJIEHM M MIIHMO, MOCKBA , 200 4 This wor k wa s originall y publishe d i n Russia n b y MIIHM O unde r th e titl e "OcHOBHbi e CTpyKTypu TeopH H npe,a;cTaBJieHHM " ©2004 . Th e presen t translatio n wa s create d unde r license fo r th e America n Mathematica l Societ y an d i s publishe d b y permission . Translated fro m th e Russia n b y Ale x Martsinkovsk y 2000 Mathematics Subject Classification. Primar y 20-01 , 20Cxx ; Secondary 1 7B1 0 , 20G05 , 20G42 .

For additiona l informatio n an d update s o n thi s book , visi t www.ams.org/bookpages/mmono-228

Library o f Congres s C a t a l o g i n g - i n - P u b l i c a t i o n D a t a Zhelobenko, D . P. (Dmitri i Petrovich ) [Osnovnye struktur y i metody teori i predstavlenii . English ] Principal structure s an d method s o f representatio n theor y / D . Zhelobenk o ; translate d b y Alex Martsinkovsky . p. cm . — (Translation s o f mathematical monograph s ; v. 228) "Originally publishe d i n Russia n b y MTSNM O unde r th e title 'Osnovny e struktur y i metod y teorii predstavlenii ' c2004"—T.p . verso . Includes bibliographica l reference s an d index . ISBN 0-821 8-3731 - 1 (alk . paper) 1. Representation s o f groups. 2 . Representations o f algebras. I . Title . II . Series . QA176.Z5413 200 4 512 / .22—dc22 200505235 2

C o p y i n g a n d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them, ar e permitted t o mak e fai r us e of the material, suc h a s to cop y a chapte r fo r use in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customary acknowledgmen t o f the source i s given . Republication, systemati c copying , o r multiple reproductio n o f any materia l i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed t o the Acquisitions Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Requests ca n als o b e mad e b y e-mail t o reprint-permission@ams . org . © 200 6 b y the American Mathematica l Society . Al l rights reserved . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o the United State s Government . Printed i n the United State s o f America . @ Th e paper use d i n this boo k i s acid-free an d falls withi n th e guideline s established t o ensur e permanenc e an d durability . Visit th e AMS home pag e a t http://www.ams.org / 10 9 8 7 6 5 4 3 21 1

1 10 09 08 07 0 6

Contents Preface i

x

Part 1 . Introductio n Chapter 1 . Basi c Notion s 3 1. Algebrai c structure s 3 2. Vecto r space s 8 1 3. Element s o f linea r algebr a 4. Functiona l calculu s 2 5. Unitar y space s 2 6. Tenso r product s 3 7. 5-module s 4 Comments t o Chapte r 1 4 Part 2 . Genera l Theor y 4

4 0 6 5 0 6 9

Chapter 2 . Associativ e Algebra s 5 1 8. Algebra s an d module s 5 1 9. Semisimpl e module s 5 8 10. Grou p algebra s 6 4 11. System s o f generator s 7 0 12. Tenso r algebra s 7 5 13. Forma l serie s 8 0 14. Wey l algebra s 8 6 15. Element s o f rin g theor y 9 3 Comments t o Chapte r 2 9 8 Chapter 3 . Li e Algebra s 9 16. Genera l question s 9 17. Solvabl e Li e algebra s 0 18. Bilinea r form s 0 19. Th e algebra. /7(g ) 1 20. Semisimpl e Li e algebra s 2 21. Fre e Li e algebra s 2 1 22. Example s o f Li e algebra s 3 Comments t o Chapte r 3 3

9 9 5 9 5 0 5 0 7

1 Chapter 4 . Topologica l Group s 3 23. Topologica l group s 3 1 24. Topologica l vecto r space s 4

9 9 5

CONTENTS

25. Topologica l module s 26. Invarian t measure s 27. Grou p algebra s 28. Compac t group s 29. Solvabl e group s 30. Algebrai c group s Comments t o Chapte r 4

152 157 164 170 175 181 185

lapter 5 . Li e Group s 31. Manifold s 32. Li e group s 33. Forma l group s 34. Loca l Li e group s 35. Connecte d Li e group s 36. Representation s o f Li e group s 37. Example s an d exercise s Comments t o Chapte r 5

187 187 192 198 203 209 214 219 224

Part 3 . Specia l Topic s

225

Chapter 6 . Semisimpl e Li e Algebra s 38. Carta n subalgebra s 39. Classificatio n 40. Verm a module s 41. Finite-dimensiona l g-module s 42. Th e algebr a Z(g) 43. Th e algebr a F ext (g) Comments t o Chapte r 6

227 227 233 238 244 250 256 262

Chapter 7 . Semisimpl e Li e Group s 44. Reductiv e Li e group s 45. Compac t Li e group s 46. Maxima l tor i 47. Semisimpl e Li e group s 48. Th e algebr a A(G) 49. Th e classica l group s 50. Reductio n problem s Comments t o Chapte r 7

263 263 268 272 277 283 289 294 300

Chapter 8 . Banac h Algebra s 51. Banac h algebra s 52. Th e commutativ e cas e 53. Spectra l theor y 54. C*-algebra s 55. Representation s o f C*-algebra s 56. Vo n Neuman n algebra s 57. Th e algebr a C*(G) 58. Abelia n group s Comments t o Chapte r 8

301 301 307 312 317 323 329 335 340 346

CONTENTS

vii

Chapter 9 . Quantu m Group s 59. Hop f algebra s 60. Wey l algebra s 61. Th e algebr a U q($) 62. Th e categor y 0\ nt 63. Th e algebr a A q($) 64. Gaussia n algebra s 65. Projectiv e limit s Comments t o Chapte r 9

347 347 353 359 365 370 377 383 388

Appendix A . Roo t System s Comments t o Appendi x A

391 402

Appendix B . Banac h Space s

403

Appendix C . Conve x Set s

407

Appendix D . Th e Algebr a B(H)

413

Bibliography

421

Index

425

This page intentionally left blank

Preface The titl e o f thi s boo k admit s tw o interpretations , wit h emphasi s o n eithe r th e "principal structures " o r the "representatio n theory" . Th e latter i s more preferable , as i t i s difficul t t o identif y wha t th e basi c structure s o f moder n mathematic s are . Nevertheless, i n a sense , th e tw o interpretation s agree . Indeed, representatio n theor y deal s wit h fundamenta l aspect s o f mathemat ics, beginnin g wit h algebrai c structure s lik e semigroups , groups , rings , associativ e algebras, Li e algebras , etc . Eventuall y topolog y enter s th e pla y b y wa y o f algebro topological an d algebro-analytica l structure s lik e topological groups , manifolds , Li e groups, etc . Formall y speaking , th e subjec t o f representation theor y i s the stud y o f homomorphisms (representations ) o f abstract structure s int o linea r structure s con sisting, a s a rule , o f linea r operator s o n vecto r spaces . Bu t i n fac t representatio n theory i s tie d u p wit h structur e theory . Ver y earl y th e student s o f mathematic s learn tha t "rin g theor y i s inseparabl y linke d wit h modul e theory" . A n importan t feature o f this settin g i s that th e abov e structure s ar e eithe r linea r o f hav e suitabl e linearizations (linea r hull s o f semigroups , tangen t Li e algebra s o f Li e groups , etc.) . Here we come to th e questio n o f the rol e representation theor y play s i n moder n mathematics. Originall y (i n the beginnin g o f the 20t h century ) tha t rol e was rathe r modest an d wa s confine d t o th e representatio n theor y o f finite group s and , eventu ally, finite-dimensional (associative ) algebras . W e shoul d mentio n th e connection s of that theor y wit h problems of symmetry i n algebra and geometry, includin g Galoi s theory (th e symmetrie s o f algebrai c equations) , an d wit h problem s o f crystallog raphy. Eventuall y th e subjec t o f representatio n theor y significantl y expande d i n response t o genera l question s fro m analysis , geometry , an d physics . Fundamenta l discoveries i n theoretica l physics , suc h a s the theor y o f relativity an d quantu m me chanics, playe d a significan t rol e i n tha t process . Fo r example , i t turne d ou t tha t logical foundation s o f quantu m mechanic s ca n b e adequatel y expresse d i n term s o f automorphisms o f certai n algebra s (th e algebra s o f observables) . Th e proces s o f describing observable s reduce s t o representatio n theor y o f certai n Li e group s an d algebras. Amon g classica l result s o f tha t perio d w e specificall y mentio n th e work s of E . Car t an an d H . Wey l o n th e genera l aspect s o f th e theor y o f Li e group s an d on harmoni c analysi s o n compac t groups . The underlyin g ide a o f harmoni c analysi s o n group s i s base d o n th e connec tion betwee n a grou p G an d th e "dua l object " G consisting , roughl y speaking , o f irreducible representation s o f G. Usuall y G ca n b e recovered , u p t o isomorphism , from it s dual object G. A remarkabl e featur e o f harmonic analysi s is that numerica l functions o n G ca n b e recovere d fro m thei r (operator ) "Fourie r images" , wher e th e role of elementary harmonic s i s played b y irreducible representation s o f G. A mean ingful definitio n o f Fourie r image s o n locall y compac t group s i s possible becaus e o f the fundamenta l result s o f A. Haar , J . vo n Neumann , an d A . Weil on th e existenc e ix

x PREFAC

E

(and uniqueness ) o f invarian t measure s o n suc h groups . I n tha t sense , th e classi cal Fourie r analysi s (Fourie r serie s an d integrals ) i s subsume d int o a n impressiv e development progra m o f harmoni c analysi s o n topologica l groups . Logical foundation s o f Fourie r analysi s ca n b e significantl y clarifie d withi n th e framework o f "abstrac t harmoni c analysis" , wher e th e grou p G i s replace d b y a C*-algebra. Fundamenta l result s i n tha t directio n ar e du e t o I . M . Gelfan d an d M. A. Naimark (i n the 1 940s) . Beginnin g wit h th e 1 950s , the theor y o f C*-algebra s develops ver y rapidl y and , t o a larg e extent , characterize s th e functiona l analysi s of th e 20t h century . I t i s importan t t o observ e tha t tha t theor y ha s fundamenta l applications t o operato r algebras , Hop f algebras , dynamica l systems , statistica l mechanics, quantu m field theory , etc . Modern representatio n theor y deal s with a wide variety o f associative algebras , including structur e algebra s o f manifolds an d Li e groups, universa l envelopin g alge bras o f Lie algebras, grou p (convolution ) algebras , Hop f algebras , quantu m groups , etc. Notic e tha t th e theor y o f Lie groups, bor n withi n th e contex t o f differential ge ometry, i s now included i n the framework o f functional analysi s by way of bialgebras and forma l group s associate d wit h Li e groups . One ma y als o expan d th e definitio n o f representatio n theor y t o include , i f de sired, suc h neighborin g discipline s a s abstrac t theor y o f differentia l equations , the ory o f sheaves o n homogenou s spaces , microanalysis , quantu m field theory , etc . There i s a know n thesi s accordin g t o whic h "mathematic s i s representatio n theory". Th e correspondin g antithesi s ca n b e state d a s "mathematic s doe s no t reduce to representation theory" . I t i s worthwhile to note the nature of the question . Whatever i s true , i t appear s tha t th e scop e o f representatio n theor y i s alread y comparable wit h tha t o f th e entir e mathematics . It ma y b e tha t th e desir e t o systematiz e mathematic s i n th e spiri t o f represen tation theor y mad e N . Bourbak i writ e th e multi-volum e se t "Element s o f mathe matics" . Despit e certai n shortcoming s o f tha t titani c wor k (excessiv e formalism , unfinished parts ) on e finds origina l treatment o f several fundamenta l issues , includ ing general aspect s o f algebra, topology , th e theor y o f integration, th e theor y o f Lie groups an d Li e algebras , etc . At present , ther e i s a large numbe r o f monographs dealin g wit h variou s aspect s of representation theory , includin g Li e groups an d Li e algebras ([4] , [1 0] , [1 4] , [31], [35], [61 ]) . Banac h algebra s ([6] , [8] , [1 3] , [22] , [49] , [58]) , algebrai c group s ([3] , [29], [64] , [73]) , infinite-dimensiona l group s ([53]) , genera l representatio n theor y ([40]). Th e author' s monograp h [75 ] ca n b e use d a s a n easil y accessibl e sourc e of informatio n o n representation s o f Li e groups , especiall y suitabl e fo r physicists . However, ther e i s still n o monograp h whic h woul d pu t togethe r al l of those aspect s of representatio n theory . To fill th e gap , thi s boo k wa s conceive d a s a compilatio n o f canonica l text s on representatio n theory . I t provide s a systemati c descriptio n o f a wid e spectru m of algebro-topologica l structures . O n on e hand , th e concep t o f suc h a boo k i s appealing becaus e i t allow s u s t o compar e idea s an d method s fro m differen t part s of representatio n theory . O n th e othe r hand , i t i s als o risk y jus t becaus e o f th e sheer volum e o f th e materia l t o b e covered . Nevertheless , th e autho r think s tha t a partia l resolutio n o f this dilemm a i s possible becaus e th e offere d text s hav e bee n carefully worke d upo n an d refined .

PREFACE x

i

The content s o f th e boo k spli t int o thre e parts . Par t I (Introduction ) contain s general fact s fo r beginners , includin g linea r algebr a an d functiona l analysis . Th e survey-type section s o n topology , theor y o f integration , etc . (se e [23] , [24] , [26] , [31]) a s wel l a s Appendice s A , B , C , an d D ar e writte n i n th e sam e spirit . I n the mai n Par t I I (Genera l theory ) w e conside r associativ e algebras , Li e algebras , topological groups , an d Li e groups . W e als o mentio n som e aspect s o f rin g theor y and th e theor y o f algebrai c groups . W e provid e a detaile d accoun t o f classica l results i n thos e branche s o f mathematics , includin g invarian t integratio n an d Lie' s theory o f connection s betwee n Li e group s an d Li e algebras . I n Par t II I (Specia l topics) w e conside r semisimpl e Li e algebr a an d Li e groups , Banac h algebras , an d quantum groups . The boo k bring s th e reade r clos e t o th e moder n aspect s o f "noncommutativ e analysis", includin g harmoni c analysi s o n locall y compac t groups . Th e autho r regards th e content s o f thi s boo k a s a prerequisit e fo r thos e wh o wan t t o seriousl y study representatio n theory . The styl e o f th e boo k allow s th e autho r t o choos e th e dept h o f th e expositio n to hi s taste. Fo r example , w e prove th e theore m o n th e conjugac y o f Car t an subal gebras (i n comple x Li e algebras) bu t omi t a simila r resul t fo r Bore l subalgebra s (i n semisimple Li e algebras) . Ye t th e autho r hope s tha t th e reade r wil l se e a detaile d enough panorami c descriptio n o f representatio n theory . The divers e natur e o f the compile d materia l unavoidabl y lead s to discrepancie s in traditions , whic h sometime s caus e certai n redundanc y i n th e definition s an d notation. Fo r example , th e notatio n E n d X i n th e categor y o f vecto r space s i s sometimes replace d b y L(X) wher e dim X < oo . The exercises included i n the book, a s a rule, ar e designed a s tests for beginners . Sometimes (i n moderation ) th e result s o f th e exercise s ar e use d t o shorte n certai n proofs. Onl y th e exercise s marke d wit h a n asteris k ca n b e viewe d a s mor e o r les s serious problems . While workin g o n th e boo k th e autho r fel t himsel f a chronicler . Indeed , th e book cover s a centur y i n th e developmen t o f mathematics , a perio d whic h i s prob ably no t ye t full y appreciated . The content s o f th e boo k are , t o a larg e extent , base d o n tw o electiv e course s the author gav e at th e Independent Universit y o f Moscow in 1 996-1 998 . Th e lectur e notes o f one o f those course s wer e publishe d i n 200 1 ([78]) . Th e wor k o n thi s boo k was partiall y supporte d b y th e RFF I Gran t 01 -01 -0049 0 an d NW O 047-008-009 . The autho r i s grateful t o V. R. Nigmatulli n fo r hi s help during the proofreadin g of th e text .

D. Zhelobenk o

This page intentionally left blank

Part 1

Introduction

This page intentionally left blank

10.1090/mmono/228/01

CHAPTER 1

Basic Notion s In this chapter w e collect basi c facts abou t algebrai c structures, includin g linea r operators o n vecto r spaces . Followin g th e classica l tradition , w e reserv e th e ter m linear algebra for th e context o f finite-dimensional vecto r spaces . Not e however tha t methods o f linea r algebr a ar e als o use d i n th e stud y o f infinite-dimensiona l vecto r spaces. A s a n example , w e mentio n Sectio n 5 , where , fo r referenc e purposes , w e discuss linea r operator s o n Hilber t spaces . 1. Algebrai c structure s 1.1. Semigroup s an d groups . A semigroup i s a n abstrac t se t S togethe r with a given binar y operatio n S x S —> 5 , (x,y) — i > xy, calle d multiplication, whic h satisfies th e associativity axiom (1.1) x(yz)

= (xy)z

for al l x,y,z G S. Th e elemen t (1 .1 ) i s denoted xyz. Similarl y (usin g inductio n o n n) on e define s associative words (or monomials) x\ • • - x n. I n particular , fo r eac h x G S th e associative power x n i s defined . The semigrou p S i s sai d t o b e commutative i f xy — yx fo r al l x,y G 5, an d S is calle d a semigroup with identity i f ther e i s a n elemen t e G S (a n identity ) suc h that (1.2) ex

= xe = x

for eac h x G S. Th e identit y e is uniquely determine d b y axio m (1 .2) . Indeed , i f e' is anothe r identity , the n e — ee f = e'. An elemen t x G S i s said t o b e invertible i f there i s a n elemen t y £ S suc h tha t xy — yx — e. I f w e als o hav e xy' = y'x = e fo r som e y' ', then th e equalit y y = ye = y{xy) = (yx)y f = ey f = y' implies th e uniquenes s o f y. Suc h a n elemen t i s denote d x~ l an d i s calle d th e inverse o f x. Not e tha t {xy)'1 =y~ 11 x~ for al l invertibl e x,y G S. A semigrou p G i s calle d a group i f G i s a semigrou p wit h identit y i n whic h every elemen t i s invertible . A commutativ e grou p i s als o calle d a n abelian group. Sometimes multiplicatio n i n a n abelia n grou p i s written additively : (x , y)— i > x 4 - y. In tha t cas e th e identit y elemen t i s referre d t o a s th e zero (o r neutral) elemen t OGG. Examples.1 . Fo r eac h se t M le t EndA f b e th e se t o f al l endomorphisms (i.e., transformation s a: M -* M) o f M. I t i s clea r tha t E n d M i s a semigrou p 3

4

1. BASI C N O T I O N S

with respec t t o th e compositio n o f endomorphism s (1.3) (ab)x

= a(bx)

where a,b E EndM, x G M. I n thi s example , th e identit y transformatio n ex = x (x G M) i s the identity . 2. Th e subse t A u t M c E n d M , consistin g o f automorphisms (i.e. , invertibl e endomorphisms) o f M , i s a grou p (calle d th e automorphism group o f M). The associativit y axio m (1 .1 ) ca n b e viewe d a s a n abstractio n o f th e corre sponding propert y o f E n d M . Examples o f abelian group s include: Z (th e set of integers), Z p (th e cyclic grou p of integer s modul o p) , Q (th e se t o f rationa l numbers) . A s example s o f abelia n semigroups w e mention Z + (th e se t o f nonnegativ e integers ) an d N = Z + \ {0 } (th e natural numbers) . 1.2. Ring s an d fields . A se t R wit h tw o associativ e binar y operations , addition (x , y) \-+ x + y an d multiplication (x, y)— i > xy, i s called a ring i f R i s a grou p with respec t t o additio n an d th e distributivity condition s hold : (1.4) x(y

+ z) — xy + xz, (x

+ y)z = xz + yz

for al l x,y,z G R. I n particular , R ha s a zer o elemen t 0 such tha t 0 • x = x • 0 = 0 for eac h x G R. The rin g R i s sai d t o b e commutative (respectively , a ring with identity) i f R is commutativ e (respectively , ha s a n identity ) wit h respec t t o multiplication . A ring wit h identit y i s calle d a skew field i f ever y nonzer o elemen t i s invertible . A commutative ske w fiel d i s calle d a field. A subse t G\ C G (respectively , R\ C R) i s calle d a subgroup o f th e grou p G (respectively, a subring o f R) i f G\ i s close d unde r th e grou p operation s (x,y) — i » xy~1 (respectively , i f R\ i s close d unde r th e rin g operations) . I n tha t cas e G (respectively, R) i s calle d a n extension o f G\ (respectively , o f R\). The identit y elemen t o f th e rin g R i s usuall y denote d 1 . W e shal l als o assum e that a rin g wit h identit y i s nontrivial , i.e. , 0 ^ 1 . Examples. 1 . I f R i s a rin g wit h identity , the n R contain s th e subrin g R\ o f multiples o f th e identity , i.e. , 0 , ±n, wher e n = 1 + • • • + 1 (n summands) . 2. An y commutativ e rin g R give s ris e t o a n extensio n R[x], consistin g o f al l polynomials i n x. Here , b y a polynomia l w e understan d a n elemen t o f th e for m f{x) = a 0 + a\x H h

a nxn,

with coefficient s ai G R (i — 0 , 1, . . ., n) . A mor e detaile d analysi s o f thi s notio n will b e give n i n 4.1. We als o recal l th e standar d notatio n R , C , H I (respectively) fo r th e field o f rea l numbers, th e field o f comple x numbers , an d th e ske w field o f rea l quaternions . 1.3. Vecto r spaces . Give n a field F , a se t X wit h operation s o f additio n X x X — > X, (x , y) H ^ x -f - y an d multiplicatio n F x X — > X, (A , x) i- » Ax, i s calle d a vector space over F i f X i s a n abelia n grou p wit h respec t t o additio n an d (1.5) \{x

+ y) = \x + Ay, ( A + ji)x = \x + fix

for al l A , \i G F an d x , y G X. I n particular , 0 • x = 0 fo r eac h x G X, wher e 0 i n the left-han d (right-hand ) sid e i s th e zer o elemen t o f F {X). Th e element s x G X are calle d vectors, an d th e element s A G F scalars. W e shal l cal l th e operation s o f addition an d multiplicatio n th e vector operations o n X.

1. A L G E B R A I C S T R U C T U R E S

5

We shal l als o us e th e symbo l 0 t o denot e a trivia l (zero ) vecto r spac e consistin g of a singl e elemen t 0 . E x a m p l e s . 1 . Th e Cartesia n powe r F n o f an y field F ha s a n obviou s structur e of a vecto r spac e ove r F. Indeed , an y x G Fn ca n b e writte n a s a n ordere d n-tupl e X = [X\ , .

.. , X

n),

where Xi G F (i = 1 , . . . , n ) an d th e vecto r operation s o n X n ar e define d compo nentwise (coordinatewise) . T h e latte r mean s t h a t th e vecto r x + y (respectively , Xx) ha s coordinate s xi + yi (respectively , Xxi), wher e i = 1 , . . . , n. 2. Fo r an y se t M , th e se t F(M) o f al l F- valued function s / : M — » F i s als o a vector spac e ove r F i f th e vecto r operation s ar e define d pointwise . 1.4. Linea r o p e r a t o r s . Le t X an d Y b e vecto r space s ove r a field F. A m a p a: X — > Y i s sai d t o b e linear i f (1.6) a(A

x + iiy) = Xax + \iay

for al l A,/ i G F an d x,y e X. I n particular , a(0 ) = 0 (wher e th e sam e symbo l 0 denotes th e zer o element s i n X an d Y). Linear map s a : X — » Y ar e als o calle d linear operators (fro m X t o Y ) o r homomorphisms (fro m X t o Y ) . T h e latte r ter m emphasize s th e fac t t h a t operator s (1 .6 ) respect th e vecto r operation s i n X an d Y . The se t o f al l homomorphism s a: X — » Y i s denote d Hor n (X , Y ). I t i s clea r t h a t Hor n (X , Y ) i s a vecto r spac e ove r F wit h respec t t o th e operation s (1.7) (Xa

+[ib)x =

Xax + fibx,

where A,^ x G F an d a,b • X ar e called endomorphisms o f X , an d thei r totalit y i s denote d E n d X = Hor n (X , X ) . We remar k t h a t th e symbo l E n d X i s onl y use d fo r th e se t o f linear map s (1 .6) . Sometimes (t o avoi d possibl e confusion ) instea d o f E n d X on e use s th e symbo l L(X). There i s a n importan t generalizatio n o f th e notio n o f linea r m a p . Namely , give n any collectio n o f vecto r space s Xi (i = 0 , 1 , . . . , n ) , a m a p a : X\ x • • • x X n —* X Q is sai d t o b e multilinear (o r n-linear ) i f i t i s linea r i n eac h argumen t Xi G X % [i — 1, .. . , n). I f n = 2 , 3 on e use s th e term s (respectively ) bilinea r an d trilinear . 1.5. A l g e b r a s . A vecto r spac e A ove r a field F i s calle d a n algebra (ove r F) if i t carrie s a n F-bilinea r operation , calle d multiplication, A x A —> • A: (x , y)— i > xy. The bilinearit y conditio n i s expresse d b y th e distributivit y condition s (1 .6 ) an d (1.7) wher e w e assum e t h a t a , b,x,y G A. The algebr a A i s sai d t o b e associative (respectively , commutative) i f th e mul tiplication o n A i s associativ e (respectively , commutative) . T h e algebr a A i s sai d to b e unital (o r an algebra with identity) i f i t ha s a multiplicativ e identity , whic h is usuall y denote d 1 . A subse t X\ C X (respectively , A\ C A) i s calle d a subspace o f X (respectively , a subalgebra o f A) i f X i (respectively , A{) i s close d wit h respec t t o th e vecto r oper ations i n X (respectively , algebrai c operation s o n A). I n t h a t cas e X (respectively , A) i s calle d a n extension o f X i (respectively , o f A\). If A i s a unita l algebra , the n th e m a p F —> A, A — i > A • 1 i s a n embeddin g o f F as a subalgebr a o f A. Thu s w e ca n writ e A G A instea d o f A • 1 G A.

6

1. BASI C N O T I O N S

Examples. 1 . Fo r each vector spac e X ove r F th e se t L(X ) = E n d X (se e 1 .4 ) is a n associativ e algebr a ove r F. 2. Th e algebr a L(n ) = Ma t (n,F ) consistin g o f n x n-matrice s wit h entrie s i n F i s a n associativ e algebr a ove r F. 3. Th e subalgebra D(n) C L(n ) o f all diagonal matrices in L(n) i s commutative. 1.6. Algebrai c structures . A n algebraic structure i s a se t S togethe r wit h a collectio n o f n-ary relation s (i n the Cartesia n power s S n) an d a system o f axiom s for thos e relations . Usuall y thos e relation s ar e writte n a s functions , i.e. , map s Sn— > 5m . A s example s o f suc h map s w e mentio n th e operation s o f additio n an d multiplication considere d above . In tha t sense , al l example s considere d s o fa r (semigroups , groups , rings , etc. ) are specia l case s of algebrai c structures . Tw o suc h structure s Si an d 5 2 ar e sai d t o be o f th e same kind i f they ar e define d b y th e sam e relation s an d axioms . The convenienc e o f using th e sam e terminology fo r variou s algebrai c structure s leads u s to th e concep t o f a morphism o f algebraic structures . Namely , a morphis m from a structur e Si t o a structur e 5 2 o f th e sam e kin d i s an y ma p (p: Si— » 52 respecting thes e structure s (thi s mean s tha t ip maps th e structura l relation s i n Si to th e correspondin g relation s i n 52) . For example , a morphis m (o r homomorphism ) betwee n semigroup s Si an d 5 2 is an y ma p

: Si — » 52 preservin g th e operatio n o f multiplication , i.e. , (1.8) (p(xy)

= _1 (^>(A)) « A fo r al l object s A o f if i an d ^(^~ 1 (B)) « B for al l object s B o f if2) - A covarian t functo r : ifi— » if 2 i s calle d a n embedding of if i i n if 2 i f $ give s ris e t o a n isomorphis m betwee n if i an d som e subcategor y of i f 2.

8

1. BASI C N O T I O N S

We shal l occasionall y us e th e categorica l vocabular y t o shorte n som e state ments. Sometime s (i n Par t III ) suc h shortening s wil l b e substantial . Example. Fo r eac h morphis m a: M — » N i n SE T w e ca n defin e th e dua l morphism a * : F(N) - • F(M) (se e 1 .3 ) b y (1.12) (a*f)(x)

= f(ax),

where / G F(N) an d x G M. I t i s eas y t o chec k tha t (ab)* = 6*a * fo r composi tions (1 .1 1 ) . Thus th e ma p M — i > F(M) give s ris e t o a contravarian t functo r fro m SE T t o the categor y o f algebra s ove r F.

2. Vecto r space s 2.1. Notation . Le t X b e a vecto r spac e ove r a field F. W e shal l conside r systems o f elements e = (e^)^ / o f X (wher e / i s an arbitrar y se t o f indices). Finit e sums

(2.1) x

= J2 X^

where A ^ G F (wit h onl y finitely man y A ; ^ 0 ) ar e calle d linear combinations o f th e ei (i e I). Th e se t Fe o f al l suc h linea r combination s i s calle d th e linear hull (or span) o f e . Clearly, Fe i s a subspac e o f X. I f X\ — Fe, the n w e shal l sa y tha t X\ is spanned b y e . A syste m e i s sai d t o b e linearly independent (respectively , spanning) i f x = 0 in (2.1 ) implie s tha t A ; = 0 fo r eac h i G I (respectively , i f F e = X). Linea r inde pendence i s equivalent t o th e uniquenes s o f decomposition (2.1 ) . I n tha t cas e (2.1 ) is written a s yz.z) x

— y x^e^, i

where th e Xi (i G I) ar e uniquel y determine d b y x. Her e w e se t Xi — Si(x). Th e coefficients xi (i G I) ar e calle d th e coordinates o f x (wit h respec t t o e) . Each linearl y independen t spannin g syste m e i n X i s calle d a basis of X. An y vector x G X i s the n uniquel y represente d i n th e for m (2.2) , wit h coordinate s %i ~ &i \%) •

Examples. 1 . Th e coordinat e spac e F n (se e 1 .3 ) ha s a basi s consistin g o f th e elements e ^ = ( 0 , . . . , 0,1 , 0 , . . ., 0 ) wit h 1 a t it h place . I n thi s cas e th e notatio n x — ( x i , . . ., x n) identifie s th e coordinate s X{ — £i(x) o f x G Fn wit h respec t t o th e basis (ei), wher e i — 1, . . ., n. 2. Le t F[M] C F(M) b e th e subse t o f al l finite function s f:M->F, i.e. , th e functions whic h ar e no t zer o onl y a t a finite numbe r o f point s o f M. Clearl y F[M] is a vecto r subspac e o f F(M) wit h "delta-functions " S a (a G M) a s a basis , wher e da(x) = 0 when x ^ a an d S a(a) = 1 . Henceforth w e shal l identif y a G M wit h th e delta-functio n 5 a G F[M\. A s a result, M embed s (a s a basis ) i n F[M\. Th e spac e F[M] i s called th e formal linear hull (ove r F) o f M.

2. V E C T O R SPACE S

9

2.2. Bases . Accordin g t o the well-known theore m o f Hamel (see , for example , [1]), every vector space X over a field F has a basis. Th e proo f o f thi s theore m i s based o n th e Zor n lemma , whic h implie s th e existenc e o f a maxima l (wit h respec t to inclusion ) linearl y independen t syste m i n X. A s a n eas y exercise , th e reade r should chec k tha t eac h suc h syste m i s a basi s o f X. A substantia l refinemen t o f Hamel' s theore m i s that any two bases of X are of the same cardinality. W e shal l sketc h a proo f o f thi s statement . If X admit s a finite basis , the n th e proo f i s an eas y exercise . Assum e no w tha t X ha s base s A an d B wit h infinit e cardina l number s a = card A an d (3 — card B. Note that A i s a disjoint unio n of subsets A n ( n G N) , where A n consist s of element s a G A whic h ca n b e represente d a s a linea r combination , wit h nonzer o coefficients , of exactl y n element s b G B. I t i s eas y t o chec k tha t car d .An < nf3 n. Therefor e oo

(2.3) a

< ]Tn/T. 71=1

It i s well known (see , fo r example , [65] ) tha t (3 2 — (3 fo r eac h infinit e cardina l f3, so that j3 n — (3 fo r eac h n G N. Moreover , th e right-han d sid e o f (2.3 ) coincide s wit h j3 and therefor e a < (3. Similarly, (3 < a an d therefor e a — j3. Thus ever y vector spac e X give s rise to a unique cardina l numbe r dimX , calle d the dimension o f X, an d define d a s th e cardinalit y o f a n arbitrar y basi s o f X. Th e space X i s said to he finite-dimensional (respectively , infinite-dimensional) i f dim X is finite (respectively , infinite) . Examples. 1 . d i m F n = n. 2. Ther e ar e vecto r space s o f arbitrar y dimension . Fo r example , dimF[M ] = cardM. Exercise. Chec k (similarl y to the proof of Hamel's theorem) tha t ever y linearl y independent syste m i n a vecto r spac e X i s containe d i n som e basi s o f X. Fo r example, eac h nonzer o vecto r i s part o f a basi s o f X. 2.3. Proposition . Let a G Hor n (X, Y) (znVECT F ). Then (a) For each basis e^ (i G /) of X, the operator a is uniquely determined by its values aci. (/?) For each collection f % G Y (i G I), there is an operator a G Horn (X, Y) such that aei — fi for all i G /. PROOF. Fo r the first assertion , i t suffices t o notice that, i n the notation o f (2.2), (2.4) ax

— y^

jXja(el).

i

For th e secon d assertion , on e quickl y check s tha t th e sam e formul a define s a a s a linear map . • As a consequence , w e have th e rul e (2.5) H o m ( X , Y ) ^ y

a

,

where a = dimX . 2.4. Corollary . The equality dim X = d i m F for X and Y in VECT^ ? is equivalent to X « Y.

10

1. BASI C N O T I O N S

Indeed, i f d i m X = di m Y, the n th e formul a ae % — fi, wher e a an d fa ar e base s (respectively) i n X an d Y , define s th e desire d isomorphis m X « Y . E x a m p l e s . 1 . Eac h n-dimensiona l vecto r spac e X (n G Z + ) i s isomorphi c t o Fn. 2. Eac h vecto r spac e X ove r a field F i s isomorphi c t o F [ M ] , wher e d i m X = cardM. 2.5. M a t r i c e s . Le t e = (cj) jej an d / = {fi)iei b e base s i n vecto r space s X and (respectively ) Y . Expressin g ae 3 (j G J) i n term s o f th e element s o f / , w e hav e (2.6) ae

3

= ^Pa^/i * i

with a tJ G F. T h e collectio n a/ 5e = ( a ^ ) , wher e i G / an d j G J, i s calle d th e matrix o f a (i n t h e base s / an d e) . T h e element s a ^ wit h fixed i (respectively , j) ar e calle d th e rows (respectively , columns) o f th e matri x a/ }€>. Accordin g t o (2.6) , th e column s aej o f a j 5 e satisf y th e followin g finiteness condition : ( $ ) Fo r eac/ i j E J only finitely many numbers a^ are different from zero. Conversely, i t follow s fro m 2. 3 (/3 ) t h a t eac h matri x a ^ e satisfyin g conditio n (e (i n othe r words, w e shal l identif y th e operato r a G Hor n (X , Y) wit h it s matri x (2.6)) . A s an exercise , th e reade r shoul d chec k t h a t th e compositio n o f operator s a — be (whenever i t i s defined ) correspond s t o th e standar d matri x multiplicatio n (2.7) a,ij

= }^b

ikckj.

k

In particular , th e algebr a E n d X i s isomorphi c t o th e matri x algebr a M a t ( n , F ) , where n = d i m X , consistin g o f al l squar e matrice s o f orde r n satisfyin g condi tion () . Normally, w e shal l us e th e symbo l Ma t (n , F) whe n n < oo . I n t h a t cas e Mat (n , F) consist s o f al l n x n matrice s ove r F. 2.6. D u a l s p a c e s . A vecto r spac e X * consistin g o f al l F- valued linea r func tions (als o calle d functionals ) o n X i s calle d th e (algebraically ) dual space o f X (X* = H o m ( X , F ) ) . As i n (2.5) , th e value s

(2.8) f(x)

= Y,fi x*>

where Xi — £i(x) ar e th e coordinate s o f x i n th e basi s e (se e 2.1 ) , o f eac h functiona l / G X* ar e uniquel y determine d b y th e coefficient s f t G F. I n t h a t sense , (2.8 ) ca n be writte n a s (2.9) X * ^ F where a = d i m X .

a

,

2. V E C T O R SPACE S

11

Let e — (ei)iei b e a linearl y independen t se t i n X. W e wan t t o sho w that , in X* , ther e exist s a dual system Si (i G I) give n b y (2.10) £i(e

j)

= 5 ij,

where 6ij i s Kronecker' s delt a (5 i3 — 0 whe n i ^ j , and Su = 1 ) . Indeed , e ca n be extende d t o a basi s o f X (se e 2.2) . No w defin e Si(x) = Xi a s th e coordinate s o f x G X i n tha t basi s (se e 2.1 ) . In particular , fo r eac h nonzer o x G X ther e i s a n / G X * suc h tha t f(x) ^ 0 . The dua l system s allo w us to find explici t expression s fo r matri x element s (2.6 ) of a. Namely , (2.11) dij

= ipi(aej),

where ipi (i G I) i s the syste m dua l t o th e basi s fi (i G I) o f Y. Examples. 1 . Th e vecto r spac e F n ca n b e identifie d wit h it s dua l vi a (2.8) , where i = 1 , . . . , n. 2. Th e spac e dua l t o F[M] ca n b e identifie d wit h F(M) usin g th e formul a

9(f) = £/(*)