347 95 436KB
English Pages [8]
CONSEIL INTERNATIONAL DES MACHINES A COMBUSTION
INTERNATIONAL COUNCIL ON COMBUSTION ENGINES
PAPER NO.: 43 Performance and Combustion Analysis of High-speed Diesel Engine in Fast Ferry under Normal Service Condition Motohiro Takai, National Maritime Research Institute, Japan [email protected] Shigeji Tsukahara, National Maritime Research Institute, Japan
Abstract: The high-speed, high-power and lightweight marine diesel engine is the predominant prime mover used for high-speed ferries. Short passage and fast turn round, which is the typical operation of high-speed ferries, requires frequent starting, rapid acceleration and hot shutdown of the main engine. It is considered that such a operation in high-speed ferries is very sever conditions for high-speed diesel engines and generates frequently alternating thermal or mechanical loads on engine components, which cause various damages, for example, cracks of the material around the combustion chamber, abnormal wear of the main bearing of the crankshaft, etc. Therefore, the full-scale measurements were carried out to collect data on the performace and the load characteristics of the high-speed diesel engine in service. The vessel which measurements were performed on is 40m length catamarans high-speed passenger ferry and is powered by four Niigata high-speed diesel engines 16V16FX, rated at 2023kW/1950rpm, driving two Niigata J850R waterjets via gearboxes. Measurements were carried out under the normal ship’s service and all data were recorded continuously from the start of engine to departure, cruising, entering harbor, and the stop of engine .The measurement data are driving shaft torque of waterjet, shaft speed, engine speed, in-cylinder pressure, exhaust gas temperature, ship motions (rolling and pitching), etc. In order to analyze the engine performance and to calculate the heat release rate using in-cylinder pressure, it is necessary to record the data with high sampling rate. The onboard data acquisition system was developed, which consist of the high-speed sampling
c
CIMAC Congress 2004, Kyoto
device and a large amount of data storage device with fast recording speed and which is controlled by the notebook-sized personal computer. In this paper, the following contents are described. 1. Time history and fluctuation of engine speed and the shaft output of the waterjet from the starting engine until entering port is shown, and the power absorption to shaft speed characteristic of a water jet during maneuvering in harbor and at cruising condition is described. 2. The variations of various parameters such as the engine speed, the waterjet shaft output, the maximum cylinder pressure, the ship motions (rolling and pitching) are compared in rough sea state condition and in moderate sea state condition. The power spectral analyses of shaft output and ship motions are adopted in various sea state condition. 3. Using in-cylinder pressure data in various engine operations, such as motoring, starting, idling, accelerating, cursing and decelerating, analyses of the start of combustion and .the rate of pressure rise due to combustion are performed. The induced gas vibration in the volume of connecting passage of pressure transducer is also analyzed. 4. As it is difficult to record an engine cycle reference signal in service condition, the method, which is able to obtain the angle of TDC (piston top dead center) accurately from the cylinder pressure curve analysis, is presented. According to the calculation results of the heat release rate and the average gas temperature in various engine operations, the combustion analysis of the high-speed diesel engine is discussed.
#
∀ ∀ % #
%∋
∋
& ∀
! ∀ # ∃ %
& %∋ &
%∋ %
∋ ∋
%
% ∀
# %
%
%
∀
∀
(
∀ ∀
# ( %
)
∗ ∀
% ∀ #
% ! %
%
∋
% %
∋
∋ ∀
∀
∋
∋
# %
. / = , − 8
%∋ #
+,
−−
+, .+,,+/
∀
%
%
01 % )
∀ ∋ 2123 &∃ ∋ 6 # ∀ ∋
451
∀
∀ ∗
%
∀ ∀ 7 %
7 #
% %
% ,
%
©, ©, & %∋ ∃ ( ©, =
∀ (
∀ & ∋ ∀ , % & )9 35 &%
( . > ? 2123 &∃© 451 % >5%%© ≅5%% >. 2© Α≅51 0151 &∃©≅3 %
∀
8
% ), & & ∗# 31 %
∗ %
: : 8+:, +8+ :; , 2 8 6 ∋
∀
:
% %
%
2
#
%
%
#
∀
% ! %
)
%
∋
)% #
∗ ∀
%
∗
# ∋
2 %
− %
%
!
%
%
∀
%
%
∋
#
∋ #
8
%
∀
% %
緱緫
#
+
% #
% ! %
∋
翮芷綋臏莩芎艆芷臹舃荃糫苆荃舃荑荑莆荃舃絓耑耦膄絙
% ∀ ∋
% ∀
∀
−
% ):
∗#
∀ ∀
51 &ΒΧ#
%
縠 緫 緫
緹
緫
緱
緱縕
#
∋ %
% ∀∋
2 #
!
緹
% ∀ ∀
∋
縑
縕
縠
% +
D Ε≅1
%
緱緫
縕
% 緫
%
緫
3#
緫綌緫縕
緫綌緱
∀
緫綌緱縕
緫綌緹
聱艆芮舃絓荑舃臏絙
3 縈緫緫緫
8
縈緫緫緫
% 翮芮苆舃芎芎舃荃糫聠舴膄舡荕糫耤莆荕苆莆荕糫絓艏肦絙
% 翮芮苆舃芎芎舃荃糫聠舴膄舡荕糫耤莆荕苆莆荕糫絓艏肦絙
縈 聱艆芮舃絓荑舃臏絙
翮芷綋臏莩芎艆芷臹舃荃糫苆荃舃荑荑莆荃舃絓耑耦膄絙
∋ 31 % 21 ∋
緫綌緫縕
縑
緫
%
%∋ ∀ #
緹綌縕
%
%
∃
繢
0
∀
縕
緹緫緫緫 聠荕膄荃膴芾膄荃臹糫荑舴膄舡荕
:
耦芾荃荕糫荑舴膄舡荕 緱緫緫緫
緹緫緫緫 , −
∋
51 Φ 緱緫緫緫
緫 緫
緫
緱緫緫
緹緫緫
縈緫緫
縑緫緫
縕緫緫 緫
緱緫緫
緹緫緫
縈緫緫
縑緫緫
縕緫緫
縠緫緫
聱艆芮舃絓荑舃臏絙 聱艆芮舃糫絓荑舃臏絙 緹緫緫緫
緹緫緫緫
# + #0 +
翎芷舲艆芷舃糫聠苆舃舃臹糫絓荃苆芮絙
翎芷舲艆芷舃糫聠苆舃舃臹糫絓荃苆芮絙
耔芾綌緱糫翎芷舲艆芷舃絓聠荕膄荃膴芾膄荃臹絙 耔芾綌縑糫翎芷舲艆芷舃絓耦芾荃荕絙 緱縕緫緫
緱緫緫緫
∃
), )−
∋ ∗
∗
緱縕緫緫
∃
(
緱緫緫緫
(
縕緫緫
縕緫緫
緫
緱緫緫
緹緫緫
縈緫緫
聱艆芮舃絓荑舃臏絙
0
縑緫緫
縕緫緫
緫
緱緫緫
緹緫緫
縈緫緫
縑緫緫
聱艆芮舃糫絓荑舃臏絙
%
∋
%
縕緫緫
縠緫緫
/ :
∗ %
Β: : + , , + Γ + Γ Β: = 8: + .+ Γ
&
Ε
∋
% !
#
% Ε
%
∀
% #
# ∀ %
∀ ∀
∀
%
% % & ∀
# ∋
11 ∀
% ∋
#
翮芮苆舃芎芎舃荃糫荑舴膄舡荕糫芾莆荕苆莆荕糫絓艏肦絙
%
%
喫 : 砧 +
%
−%
6
−
緱緫緫緫
(
211
#
緫 緱緫緫緫
5
∋ ∀
# ∀ %
∋ ∀ ∀ ∋
% ∋
( % ∀# Β ∀
∋
∀
(
緱綌縕緫
∋
%
緹緫緫緫
∋ ∀ ∋ %
# 聠荕膄芷臹膄荃臹糫臹舃莍艆膄荕艆芾芷糫芾舡糫苆艆荕臏舴艆芷舲糫膄芷臹 荃芾芎芎艆芷舲糫 臹舃舲綌絙
∀
緱縕緫緫
翎芷舲艆芷舃糫荑苆舃舃臹糫絓荃苆芮絙
51 Φ ∀# : ∀ (
∀
%
0 % # ∋ %
緹緫緫緫
縕緫緫
5
% 3111
Χ ∋ % % ∋ ∀
∀ %
% 6% % %∋
縈緫緫緫
∀
%
∋
#
∋
0
∀
%
%
%
#
% 6
&
# ∀
! %
∀ !
1#1 #
% ∀ #
%
耦艆荕臏舴艆芷舲 耼芾芎芎艆芷舲 緱綌緫緫
緫綌縕緫
緫綌緫緫 緫
Β: : > ∗
+ , , Γ ,Β − 8
∀
+ Γ )
! #
%
% %
0% ∋
∋ ∀
# 51
51
% # % 6% %
∋
% ∋
%
6
3#5
>#5 ∀ > ∋
%
縕緫
∗
緱緫緫
緱縕緫
緹緫緫
):
聱艆芮舃 芮艆芷莆荕舃
∗
縑緫緫
%
%
+
% 6% % # ∃
聠荕膄芷臹膄荃臹糫臹舃莍艆膄荕艆芾芷糫芾舡糫荕芾荃苾莆舃 舡芎莆臏荕莆膄荕艆芾芷糫 芮
/ :
)
聠荕膄荃膴芾膄荃臹糫荑舴膄舡荕 耦芾荃荕糫荑舴膄舡荕 縈緫緫
緹緫緫
緱緫緫
緫 緫
%
%
縕緫
緱緫緫
緱縕緫
緹緫緫
% 聱艆芮舃糫絓芮艆芷莆荕舃絙
!
%
∋
%
#
Β ∀
! )
%
> !
,
%
)
∗
&
+ + 8 : 8+:, +
≅
8 Η/
+ − +,,
+
% ∀
∋ )
#
∗# Β ∀
∀ %% %
∋
&
∋ ∀ ∋
%∋
∀ D
)2∗
) ∗ ∀
∀ ∗
):
% ∋
∋
#3 #0 0#Ε5Π1#21 #
緱綌縕
)2∗
%
絓臹耦緌臹荕絙緌
%
緫綌緹
%
+
D Ε≅1
緫綌緱縕
糫絙
刷 6ϑ
縈芷 綋緱
Κ ∗
羑絙糫糫絓荃膄臹 芮
:. )
:
翟荃舃苾莆舃芷臏莩糫臹艆荑荕荃艆膴莆荕艆芾芷
#25 1#3>Ε)%
∋ ∀ 4 Ν8:? Ι %
%
6ϑ ΙΛΜ 6ϑ Ν %
∋ #
%
D ϑ Ι
∋
Ν8:? ∋
% .Ι
% !
!
# ∀ Ο 1#3 1#0 1#5 >. > ?∗# % % %
#
% %∋
5
4 ∀ +!# )2∗ % #01
% ∋ ∀
Ν8:? #
%
∀
% %
& ∋
%
& %
% 6% % &
Ν8:? ∗
% %
− ∋
): Β ∀
#
∋ %
& # 6 ϑ
Ν8:?
%
∋
+!# )2∗ %
%
% Χ
∀
∀ %
Ο#
%
&
Ι #0
. Ι Ι #35 緱綌緫
Ι #3 緫綌縕
Ι #2
緫綌緫
緫綌緱 綋繮緫
綋繇縕
綋縠緫
綋縑縕
綋縈緫
綋緱縕
緫
羑荃膄芷艏糫膄芷舲芎舃糫 臹舃舲 罓聱羿羑絙
緫綌緫縕
≅
ϑ
∀
緫 綋緱緫
綋繇綌縕
綋縕
綋緹綌縕
緫
緹綌縕
縕
繇綌縕
緱緫
肞膄荃艆膄荕艆芾芷糫芾舡糫苆 芮膄莘絓紝絙 綋緱縑綌緫
Ι1#3 +
D Ε≅1
緫綌緱縕
羑荃膄芷艏糫膄芷舲芎舃糫絓臹舃舲綌罓聱羿羑絙
翟荃舃苾莆舃芷臏莩糫臹荑荕艆荃膴莆荕艆芾芷
緫綌緹
%
緫綌緱
緫綌緫縕
綋緱縑綌縕
Ι1#3>Ε 綋緱縕綌緫
Ι1#0 Ι1#5 綋緱縕綌縕
>. > ?
D
Ι1#3>Ε
緫 綋緱縠綌緫
綋緱緫
綋繇綌縕
綋縕
綋緹綌縕
緫
緹綌縕
縕
繇綌縕
緱緫 緱綌緹縕
緱綌縈緫
緱綌縈縕
緱綌縑緫
肞膄荃艆膄荕艆芾芷糫芾舡糫苆 芮膄莘絓紝絙 耦芾芎莩荕荃芾苆艆臏糫艆芷臹舃莘糫芷
Ε %
.
4
% 6
%
& &
∀
% 6% %
ϑ
∋
#30 ): ∗
∋
Ν8:? Ι
%
Ν8:?
ϑ #
%
%
% % %
∋
∋
緹緫
#
1
6 % ϑ %
% # % (
&
∋
ϑ
% 6% % Ν8:? & #
& %
耦荃舃荑荑莆荃舃糫糫糫糫糫糫糫糫糫糫糫絓耑耦膄絙 絓臹耦緌臹荕絙緌緹緫緫糫糫絓耑耦膄緌荑絙
% 0#Ε4
%
ϑ ∋
) Ε≅1 %∗
緱縕
緱緫
8
ϑ 縕
緫 緫
緫綌緫緱
緫綌緫緹
緫綌緫縈
緫綌緫縑
聱艆芮舃糫絓荑舃臏絙
+/+:,+ : :/Η, , , Γ + Η/ + − +,, +
緹緫
)≅21 %∗
% &
∋ ∋
%
:
&
Χ %∋ ∋
; ϑ
Χ
∋
∀
Ν8:?# %
&
∀
!
緱縕
耦荃舃荑荑莆荃舃糫糫糫糫糫糫絓耑耦膄絙 糫絓臹耦緌臹荕絙緌縕緫糫絓耑耦膄緌荑絙
Β+: 8+:,
緱緫
8
ϑ
縕
D 緫
;
=
Θ Θ−
.
+
.
Θ−
;
+
緫
緫綌緫緱
∀
緫綌緫縈
緫綌緫縑
緫綌緫縕
緫綌緫縠
聱艆芮舃糫絓荑舃臏絙
1
8 %
ϑ
; ϑ ∋
%
緫綌緫緹
)3∗
&
Ν8:?
∋ 7
∀D
;
=:
緫綌緱縕
) −
∀∗
)0∗
%∋ ∃
% 7
%
D
翬舃膄荕糫荕荃膄芷荑舡舃荃糫荃膄荕舃絓艏翯緌荑絙
∀
% 緫綌緱緫
緫綌緫縕
緫綌緫緫 綋緱緫緫
= 3#2>= −1#2
1#≅ −1#55
綋縕緫
緫
縕緫
緱緫緫
)5∗ 6
∀ D
=
%
+
. 2
.
) −
! Ι2#2≅ 6
%∗
%
2Ι1 & D
)>∗ & D
%∋ 2Ι1#11320#
Ι2#2≅
Β2
緹 緱 緫 綋縕緫
∀
縕緫
緱緫緫
Β
2
%
緫
羑荃膄芷艏糫膄芷舲芎舃絓臹舃舲綌罓聱羿羑絙
Θ
2
∀
% 縈
綋緱緫緫
% 2
翬舃膄荕糫荕荃膄芷荑舡舃荃 臏芾舃舡舡艆臏艆舃芷荕絓艏翯緌芮 緹 荑糫翺絙
縑
% +!#)0∗ &
+!#)5∗
#
% ∋
% 6%
% ∋
%
& %∋
% Α: :
#
& ∋
∀
%
# >5 # )
∀ ≅21
& % +!# )0∗ Ε≅1
% ≅21
+!# )5∗ %
%∗ ∋ # :
# ):
0
∋ ∗ ∋
): &
∗ ∋
%#
3
#
%∋ 2
3
&
#
%
∀ % +!# )3∗ %
#
∋ ∀
∋ ∀
& %
) ∋
):
∗ ∋
%∋
∀ # : Ε≅1 %∗ ∋ Ε
1
):
∀
# ∗
%
#
% 6% % % 211 9
& ∋
# %∋
% ∋
411
緱縕 翮芷綋臏莩芎艆芷臹舃荃 苆荃舃荑荑莆荃舃絓耑耦膄絙
翮芷綋臏莩芎艆芷臹舃荃 苆荃舃荑荑莆荃舃絓耑耦膄絙
縕
緱緫
縕
緹綌縕
緫 緫
緹緫
縑緫
縠緫
繢緫 耼膄荕艆芾糫芾舡糫荑苆舃臏舡艆臏 舴舃膄荕荑
緫
緱綌縑 緱綌縈 緱綌緹 綋緹緫
緫
緹緫
縑緫
縠緫
緹緫緫緫 緱縕緫緫 緱緫緫緫 縕緫緫
翬舃膄荕糫荃舃芎舃膄荑舃糫荃膄荕舃絓艏翯緌臹舃舲綌絙
綋縑緫
綋緹緫
緫
緹緫
縑緫
縠緫
綋縑緫
綋緹緫
緫
緹緫
縑緫
縠緫
綋縑緫
綋緹緫
緫
緹緫
縑緫
縠緫
繢緫
綋縑緫
綋緹緫
緫
緹緫
縑緫
縠緫
繢緫
緱綌縈
緱綌緹
緱縕緫緫
緱緫緫緫
縕緫緫
繢緫 緫綌緹緫
緫綌繢
% +
D Ε≅1
%
緫綌縠 緫綌縑 緫綌緹 緫綌緫 綋縑緫
綋緹緫
緫
緹緫
縑緫
縠緫
繢緫
緫綌緱縕
+
2
D ≅21
%
緫綌緱緫 緫綌緫縕 緫綌緫緫 綋緫綌緫縕 綋縑緫
綋緹緫
緫
緹緫
縑緫
羑荃膄芷艏糫膄芷舲芎舃絓臹舃舲綌罓聱羿羑絙
羑荃膄芷艏糫膄芷舲芎舃絓臹舃舲綌罓聱羿羑絙
%
繢緫
緱綌縑
繢緫 聱舃芮苆舃荃膄荕莆荃舃絓翺絙
綋縑緫 聱舃芮苆舃荃膄荕莆荃舃絓翺絙
綋緹緫
翬舃膄荕糫荃舃芎舃膄荑舃糫荃膄荕舃絓艏翯緌臹舃舲綌絙
耼膄荕艆芾糫芾舡糫荑苆舃臏艆舡艆臏 舴舃膄荕荑
綋縑緫
3
縠緫
繢緫
9
%
# % % ∋ ∋
%
Θ :
! % #
% %
Ε11 9 , ∋
#
%
% %
% ∀
% %
∀ ∀
! %
∀ &
#
% 6 ∀
% 6% % ∀
%
#
: 9
∃/+ Γ+8+
∀
/ ,
,
&
,
Χ & / %
&
/ # %
# %
%
∀ ∀
∀
#
∀ %∋ #
∋ %
+ + + Ρ ΣΓ#∃
Τ:
:
∋
+!
Β
) ∗
%∋
∀ ∋ ∋ ∀
%
>Ε143
#
)2∗
∀
∀ ∋ ∀ #
∋
( ∋ ∀
∀ %
)3∗ = %
∀
#/
# % ∀ %
#
8+
/:
+
6 8− % . ; : =
% %3 &Α
%2 ∋
%
% %
9
& ϑ
? % +%∋ , 8 %%
8# # ∃
∀
Χ & ∋
: % Τ ,:+ − Τ+
%∋ 2 ,:+
Τ 444#
∀
%∋
Τ ,:+ −
%
∋
)0∗
+
4>Ε#
Ρ2Σ #− % / Υ , %∋ − + 4Ε1≅53 44Ε# Ρ3ΣΒ#ς
% %
Ν Λ
+,
Ρ0ΣΑ: : 4Ε #
%
%
∋
2
+
Α