Table of contents : Cover Half Title Title Page Copyright Page Dedication Contents Preface List of Figures List of Tables Acknowledgments Symbols List of Acronyms 1. Introduction 1.1. Background 1.1.1. Nonlinear Stochastic Time-Varying Systems 1.1.2. Network-Enhanced Complexities 1.1.3. Filter Design, Fault Estimation and Reliable Control 1.2. Outline 2. Event-Triggered Multi-objective Filtering and Control 2.1. Event-Triggered H∞ Filtering with Fading Channels 2.1.1. Problem Formulation 2.1.2. Design of Filter Gain 2.2. Event-Triggered Variance-Constrained H∞ Control 2.2.1. Problem Formulation 2.2.2. Finite-Horizon Controller Design 2.3. Illustrative Examples 2.3.1. Example 1 2.3.2. Example 2 2.4. Summary 3. Finite-Horizon Reliable Control Subject to Output Quantization 3.1. Problem Formulation 3.2. Reliable Controller Design 3.3. An Illustrative Example 3.4. Summary 4. Finite-Horizon Estimation of Randomly Occurring Faults 4.1. On H∞ Estimation of ROFs with Fading Channels 4.1.1. Problem Formulation 4.1.2. Main Results 4.2. Recursive Estimation of ROFs: the Finite-Horizon Case 4.2.1. Problem Formulation 4.2.2. Main Results 4.3. Illustrative Examples 4.3.1. Example 1 4.3.2. Example 2 4.4. Summary 5. Set-Membership Filtering under Weighted Try-Once-Discard Protocol 5.1. Problem Formulation 5.2. Main Results 5.2.1. Filter Design Subject to the P(k)-Dependent Constraint 5.2.2. Minimizing the Ellipsoids with Inequality Constraints 5.3. An Illustrative Example 5.4. Summary 6. Distributed Estimation over Sensor Network 6.1. Finite-Horizon Distributed State Estimation with RSTs and RCs 6.1.1. Problem Formulation 6.1.2. Main Results 6.2. Non-Fragile Distributed Fault Estimation: the Finite-Horizon Case 6.2.1. Problem Formulation 6.2.2. Main Results 6.3. Distributed Filtering with RSTs under the RR Protocol 6.3.1. Problem Formulation 6.3.2. Main Results 6.4. Illustrative Examples 6.4.1. Example 1 6.4.2. Example 2 6.4.3. Example 3 6.5. Summary 7. State Estimation for Complex Networks 7.1. State Estimation with Randomly Varying Topologies 7.1.1. Problem Formulation 7.1.2. Analysis of H∞ and Covariance Performances 7.1.3. Design of Finite-Horizon State Estimators 7.2. Partial-Nodes-Based State Estimation under Random Access Protocol 7.2.1. Problem Formulation 7.2.2. Main Results 7.3. Illustrative Examples 7.3.1. Example 1 7.3.2. Example 2 7.4. Summary 8. Event-Triggered Recursive Filtering for Complex Networks with Random Coupling Strengths 8.1. Problem Formulation 8.2. Main Results 8.3. Illustrative Examples 8.3.1. Example 1 8.3.2. Example 2 8.4. Summary 9. Conclusions and Future Work 9.1. Conclusions 9.2. Future Work Bibliography Index