Mobile Robotics: Solutions and Challenges, Proceedings of the Twelfth International Conference on Climbing and Walking Robots and the Support Technologies For Mobile Machines, Istanbul, Turkey, 9-11 September 2009 9814291269, 9789814291262

This book provides state-of-the-art scientific and engineering research findings and developments in the area of mobile

205 17 2MB

English Pages 1173 [1199] Year 2009

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Preface......Page 6
Conference organizers......Page 7
Conference committees......Page 8
CONTENTS......Page 12
Section-1: Plenary Presentations
......Page 26
From 1st order embodiment to 2nd order embodiment: Toward
a cognitive walker H. Cruse......Page 28
References......Page 29
Strategy selection and learning in teams of intelligent robots M M Veloso......Page 31
Toyota partner robots - Development and implementation vision Y Ola......Page 32
Section-2: Autonomous Robots......Page 34
1. Introduction......Page 36
2.1. Vehicle Selection......Page 37
2.3. Autonomous Vehicle Control......Page 38
2.4. Concepts Synthesis......Page 39
3.1. Golf Cart to Be Converted......Page 40
3.2. Autonomous Control......Page 41
3.3.2 Spray control......Page 42
References......Page 43
2. Task of automatic backing of the robot......Page 44
3. Problem of the plans coordination......Page 47
4. Experimental researches......Page 49
References......Page 50
1. Introduction......Page 51
2.1. Identifying and tracking of objects......Page 52
3.2. Dynamic Object Handler Group......Page 53
3.2.1. Reflex Retreat......Page 54
3.2.2. Reactive behavior Evade......Page 55
4.1. Tracking of dynamic objects......Page 56
4.2. Avoidance of dynamic objects......Page 57
References......Page 58
1. Introduction......Page 59
2. Predictive Holding Force Models......Page 60
3. Power Control Strategy on an Inclined Plane......Page 62
4. Experimental Platform Design......Page 64
5. Example of an ACS with the Experimental Platform......Page 65
References......Page 66
1. Introduction......Page 67
3.1. Image processing algorithm......Page 68
3.2. Network......Page 69
3.3. Artificiallntelligence......Page 70
3.4. Trajectory......Page 71
3.6. Self-Localization......Page 72
References......Page 73
1. Introduction......Page 75
2.1. Omni directional wheels and robot chassis......Page 76
2.2. Omni directional vision system......Page 77
3. Robot Software......Page 78
3.2. Position controller architecture......Page 79
3.4. Robot self Localization......Page 80
References......Page 82
1. Introduction......Page 83
1.1. Importance of saving energy......Page 84
2.1. System Energy Requirements......Page 85
2.3. Balancing energy profile......Page 86
4. Simulation Results......Page 87
5. Conclusions......Page 89
References......Page 90
2. Steering Kinematics......Page 91
2.1. Vehicle Trajectory Analysis......Page 93
3.1. Steering Dynamics Equations......Page 94
4. Control Strategy and Optimisation......Page 95
5. Simulation Results......Page 96
References......Page 98
1. Introduction......Page 99
2. The Control Architecture......Page 100
3.1. The model of the single inverted pendulum......Page 101
3.2. The Posture Control Problem......Page 102
4. Whole Body Kinematic Control......Page 103
5. Conclusions and Future Works......Page 104
References......Page 105
1. Introduction......Page 107
2.1. Feature Extraction......Page 108
2.2.1. Subset Selection Methods......Page 110
3. Training and Tests......Page 111
4. Results......Page 112
5. Conclusions......Page 113
References......Page 114
1.1. Introduction......Page 115
1.2. Robotic system......Page 116
1.3. Map building......Page 117
1.4. HM/-navigation and mission supervision......Page 118
1.5. Collision detection algorithm with CUDA......Page 119
1.6. Experiments......Page 120
1.7. Conclusions......Page 121
References......Page 122
1. Introduction......Page 123
3. Perception......Page 124
3.1. Color Segmentation......Page 125
4. Localization......Page 126
5. Motion......Page 127
5.1. Collision Detection......Page 128
References......Page 130
1. Introduction......Page 131
2. Literature Review......Page 132
3. Robot kinematics......Page 133
4. Feedback Control......Page 134
5. Simulation Results......Page 135
6. Conclusion......Page 138
7. References......Page 139
1. Introduction......Page 140
2. Design Approach......Page 141
3.3. Processing Unit......Page 142
4. Gait Pattern Generation......Page 143
5. Experimentation and Stability Analysis......Page 145
6. Conclusion......Page 146
References......Page 147
Section-3: Benchmarking and Standardisation......Page 148
1. Introduction......Page 150
2. An epistemology for robotics?......Page 152
3. Epistemological models of biology......Page 153
4. Requisites for a robotics experiment......Page 155
References......Page 156
Service robot ethics S. Dogramadzi, G. S. Virk, M. O. Tokhi and C. Harper......Page 158
1.2. Background......Page 159
2. Ethical issues in personal care robots......Page 161
3. Personal companionship robots......Page 162
5. Conclusions......Page 163
References......Page 164
1. Introduction......Page 165
2. Activities in ISO TC 184/SC 2......Page 166
3. Activities in IEC SC 59F......Page 168
4. Activities in OMG Robotics DTF......Page 169
5. Other regional and national activities......Page 170
References......Page 171
1. Introduction......Page 172
2. WG7: Robots in personal care......Page 175
3. Non-medical personal care robot safety......Page 176
4. Medical care robots......Page 178
6. References......Page 179
1. Introduction......Page 180
2. Why Standards in Robotics?......Page 181
3. ISO Standardization Activities for Robots and Robotic Devices......Page 183
4. Progress and Challenges in Defining Vocabulary Terms......Page 184
5. The Definition of "Robot"......Page 185
6. Work in Progress and Future Directions......Page 186
References......Page 187
Section-4: Biologically-inspired Systems and Solutions......Page 188
1. Introduction......Page 190
2.2. Mass and Force Distribution......Page 191
2.4. Locomotion Pattern......Page 192
3.1. Technical Specifications......Page 193
3.3. Control......Page 194
4. Results......Page 195
References......Page 196
1. Introduction......Page 198
2.1. Forces and stiffness of a leg......Page 199
2.2. Convex polygon of forces......Page 200
3.2. Muscular System and Skeletal System......Page 201
4.2. Passive control of landing and bouncing......Page 202
5. Conclusion......Page 204
References......Page 205
1. Introduction......Page 206
2.1. Motion Pattern......Page 207
2.2. Motion Implementation......Page 210
References......Page 213
1. Introduction......Page 214
2. Emergent Controller design......Page 215
3. Simulation......Page 216
4. Discussion and Future Work......Page 217
Appendix. Shannon Entropy and Mutual Information......Page 218
References......Page 219
1. Introduction......Page 222
2. DIGbot......Page 224
3. Distributed Inward Gripping (DIG)......Page 225
4. Results......Page 226
5. Summary......Page 228
References......Page 229
1. Introduction......Page 230
2.2. Quadrupeds......Page 231
2.4. HexaQuaBip polymorphic morphology......Page 232
3. Bio-inspired reconfigurable limb proportions for HQB......Page 233
3.2 . Bipeds......Page 234
3.4. Synthesis......Page 236
4. Conclusion and perspectives......Page 238
References......Page 239
1. Introduction......Page 240
2. Simulation of a quadruped for agile locomotion......Page 241
3. Biomimetic Leg Controller......Page 242
4. Actuator power requirements......Page 244
4.1. Actuator torque requirements......Page 245
5. Biomimetic leg design......Page 246
References......Page 247
Section-5: Biomedical and Personal Robotic Assistance......Page 248
1. Introduction......Page 250
3. Straight-Fibre Artificial Muscle......Page 251
4. Peristaltic Crawling Robot......Page 252
5. Experimental Results and Discussion......Page 254
6. Conclusion......Page 256
References......Page 257
1. Introduction......Page 258
2. Methodology......Page 259
3. Clinical need......Page 260
4. Efficacy......Page 263
References......Page 265
1. Introduction......Page 267
2. System Model......Page 269
3. Fault Detection Observer......Page 270
4. Results and Discussion......Page 271
References......Page 274
A real-time EMG driven virtual prosthesis hand A. E. Ozdemir, G. Kayhan, H. UsIa, S. C. Gharaani, M. O. Takhi and I. Eminoglu......Page 275
1. Introduction......Page 276
3. Signal processing and Algorithm Description......Page 277
3.3. Filtering and smoothing......Page 278
4. Experimental Results......Page 279
5. Conclusions......Page 280
References......Page 281
1. Introduction......Page 283
2. Wheelchair Model and Parameters......Page 284
3. Height Extension Controller......Page 285
4. Results and Discussion......Page 286
5. Conclusion......Page 288
References......Page 289
Section-6: Flexible Mechanisms and Manoeuvring Systems......Page 292
1. Introduction......Page 294
2.1. Experimental machine and condition......Page 295
2.2. Experiment Results......Page 296
3.1. Modeling......Page 297
3.2. Validation......Page 298
3.3. Stability of fixed point......Page 299
References......Page 301
1. Introduction......Page 302
2. Experimental Setup......Page 304
3. PD-Type Fuzzy Control Scheme......Page 305
4. Implementation and Results......Page 306
References......Page 308
1. Introduction......Page 310
2. Experimental Set-up......Page 312
3. Parametric Modelling of the TRMS......Page 313
4. Results and discussion......Page 314
References......Page 317
1. Introduction......Page 318
2. Experimental Set-up......Page 319
3. Real Coded Genetic Algorithm......Page 320
3.2. Mutation......Page 321
4. Results and discussion......Page 322
5. Conclusion......Page 324
References......Page 325
2. The Flexible Manipulator System......Page 326
3. Mathematical Modelling for Vertical Plane motion......Page 327
4. Finite difference discretisation......Page 329
5. Simulation results......Page 332
References......Page 333
2. The Flexible Manipulator System......Page 334
3. Particle Swarm and Genetic Optimisation......Page 336
5. Results and Discussion......Page 337
References......Page 341
1. Introduction......Page 342
2.2. Formulation of locomotion with repeated impulse forces......Page 344
3. Main Result......Page 345
References......Page 349
Section-7: Gripping, Inspection and Non-destructive Testing......Page 350
1. Introduction......Page 352
2. Robotic Gripper Synthesis......Page 354
2.1. Sliding Mode Controller Synthesis......Page 355
3. Simulation and Results......Page 357
4. Discussion......Page 358
References......Page 359
1. Introduction......Page 360
2. Some aspects of kinematic robot grippers stability......Page 361
3. The kinetostatic stability of robot grippers......Page 364
4. Conclusion......Page 366
References......Page 367
1. Introduction......Page 368
2. Plane transition......Page 369
3.2. Design of magnetic caterpillars......Page 370
4.1. Design of the robot......Page 371
4.2. Preventing peel off......Page 372
6. Conclusion......Page 373
8. Bibliography......Page 374
2. Robot design......Page 376
3. Robot dynamics......Page 378
4. Simulation of dynamic......Page 379
6. Conclusion......Page 381
References......Page 382
1. Introduction......Page 383
1.1. Data communications in underwater robots......Page 384
2. General description of the 12C network sensor of the underwater platform PoseiBot......Page 385
3. Communication system for PoseiBot......Page 386
3.1. Video transmission......Page 388
4. Remote control of the platform. Experimental results.......Page 389
References......Page 390
1. Introduction......Page 392
2. Background......Page 394
3.2. Overall Design of the PVCleaner Robot Vl.O......Page 395
3.3. Drive System......Page 397
3.4. Cleaning Head......Page 399
4. Prototype and Initial Experiments......Page 400
5. Conclusions......Page 401
References......Page 402
Section-8: Humanitarian Rescue Robotics......Page 404
1. Introduction......Page 406
2. A Framework of Selective Visual Attention......Page 407
3.1. Search Performance in Synthetic Images......Page 408
3.2. Search Performance in Natural Scenes......Page 410
4. Conclusion and Future Work......Page 412
References......Page 413
1.1. The problem......Page 414
2.1. Main concept......Page 415
2.3. Main patterns......Page 416
2.4. Partial patterns......Page 417
2.6. Preprocessing......Page 418
2.7. Graphical User Interface......Page 419
3.1. Test environment......Page 420
References......Page 421
1. The Crisis Management Information System (CMIS) [1,2]......Page 422
3. The Robots [4]......Page 423
4.1. Framework: COROBA, MAILMAN [5]......Page 424
4.2. Vision-based Simultaneous Localization and Mapping [6]......Page 426
4.3. Behaviour based navigation [9]......Page 427
4.4. Victim Detection......Page 428
4.5. Traversability Analysis......Page 429
5. Conclusions......Page 430
References......Page 431
1. Introduction......Page 432
2. Mechanism of Tracked Vehicle......Page 433
3.1. Semi-circle Tracing (SeT) Maneuver......Page 434
3.1.2. FMT......Page 435
3.l.3. Comparisons......Page 436
3.2.2. FMT......Page 437
3.2.3. Comparisons......Page 438
References......Page 439
1. Introduction......Page 440
2. RELATED WORK......Page 441
3.2. Second stage: stair climbing......Page 442
4. RESULTS AND DISCUSSION......Page 444
5. CONCLUSIONS AND FUTURE WORK......Page 446
References......Page 447
1. Introduction......Page 448
2. Measurement of the Angle of Arrival using Interaural Time Difference......Page 449
3. Spiral Ear Model......Page 452
4. Conclusion......Page 458
References......Page 460
Section-9: Innovative Design of CLAW AR......Page 462
1. Introduction......Page 464
2. The Locomotion Mechanism of a Snail......Page 465
3.2. Locomotion Using Slider Cranks......Page 466
4.1. Experiment on Smooth Surface......Page 468
4.2. Experiment on Various Walls......Page 469
References......Page 471
2. Existing climbing and pole-climbing robots......Page 472
3. Climbing based on rolling self-locking......Page 474
4. Designing the Pobot V2 climbing-robot......Page 476
5. Experimental results......Page 478
References......Page 479
Inspection of high voltage power lines - A new approach M. Buhringer, J. Berchtold, M. Buchel, C. Dold, M. Biltikofer, M. Feuerstein, W. Fischer, C. Bermes and R. Siegwart......Page 480
1. Introduction......Page 481
2. Basic mechanical concept......Page 482
3.2. Chassis......Page 483
3.3. Propulsion unit and torque transmission......Page 484
3.4. Control of motors and camera......Page 485
5. Conclusion and Outlook......Page 486
References......Page 487
1. Introduction......Page 488
2. State ofthe art in climbing robots at extremely small size «lSmm)......Page 490
3. Basic concept......Page 491
4.1. Traction units......Page 492
4.2. Folding mechanism......Page 493
5. Test results......Page 494
References......Page 495
1. Introduction......Page 496
2.2. Ankle design......Page 497
2.3. Belt-pulley transmission without tensor......Page 499
3.1. Decision subsystem......Page 500
3.2. Information subsystem......Page 501
Acknowledgement......Page 502
References......Page 503
1. Introduction......Page 504
2. Tensegrity structure......Page 505
3.2. Body deformation with tensegrity structure robots......Page 506
3.4. Description of gait......Page 507
3.5. Transition of gravitational potential energy......Page 508
4. Experiment......Page 509
5. Summary......Page 510
References......Page 511
1. Introduction......Page 512
2. Leg Mechanism and Walking Motion......Page 513
4. Forward Kinematics of the 3-RPS Parallel Mechanism......Page 515
5. Mechanical Design and ON/OFF Control......Page 518
References......Page 519
1. Introduction......Page 520
1.2. Paper Objective......Page 521
2.2. Fault Tree Construction......Page 522
3. A Case Study: A planar robot......Page 523
3.1. Fault Tree Model of the planar robot......Page 524
References......Page 526
1. Introduction......Page 528
2. Kamanbare Platform......Page 529
3. PAR Measurement......Page 530
4. PAR Measurement Platform......Page 531
5. Conclusion......Page 534
References......Page 535
Section-10: Locomotion......Page 536
1. Introduction on the Gait Control......Page 538
2.1. Robot Description......Page 539
2 .2. Multiphysic Model......Page 540
3. Gait Generation......Page 541
3.2. Enhanced Gait......Page 543
4. Simulation Results......Page 544
5. Conclusions......Page 545
References......Page 546
1. Introduction......Page 547
2. Orientation and ZMP State Space Modelling......Page 548
3. Extended Kalman Filtering......Page 550
3.2. ZMP Estimation......Page 551
4.1. Bias and Covariance Process Estimation......Page 552
4.2. Trace Covariance Approximation......Page 553
4.3. Quasi-static Regime Estimator......Page 554
4.4. HAEKF Algorithm......Page 555
5. Results for Simulated and Experimental Data......Page 556
References......Page 558
1. Introduction......Page 560
2. Walking Patterns......Page 561
3. Criteria......Page 562
4. Simulation Model and Prototype ADONIS......Page 563
5. Comparison of the simulation results......Page 564
6. Conclusion and future works......Page 566
References......Page 567
1. Introduction......Page 568
2. Inverse kinematics as a linear programming problem......Page 569
3. ALDURO......Page 570
4.2. Singularity......Page 571
4.3. Repeatability......Page 573
5. Conclusion......Page 574
References......Page 575
2. Mechanical construction of biped robot "ROTTO"......Page 576
3. Actuators of biped robot "ROTTO"......Page 578
4. Sensors of biped robot "ROTTO"......Page 579
References......Page 583
1. Introduction......Page 584
2. Biped robot "ROTTO"......Page 585
3. Hardware control system......Page 586
4. Actuator control system......Page 587
References......Page 591
1. Introduction......Page 592
3. The kinematics of the system......Page 593
4. Dynamic Equations of System......Page 594
7. Pronking Gait Control......Page 595
8. Fuzzy-PD Type Control Algorithm......Page 597
10. Conclusion......Page 598
References......Page 599
1. Introduction......Page 600
2.1. Steady-state Heur'istics......Page 601
3. Control Laws......Page 603
3.1. Steady-State Control Laws......Page 604
4. Results......Page 605
5. Conclusion......Page 606
References......Page 607
1. Introduction......Page 608
2. Dynamic Models......Page 609
3.1. Simplified Walking......Page 610
3.3. Biped Motion Connection......Page 612
4. Experiments......Page 613
References......Page 615
1. Introduction......Page 616
2. LAURON - a six-legged walking robot......Page 617
3. Creating an environment model with a ToF-camera......Page 619
4. Foot point planning for a six-legged robot......Page 621
5. Conclusion and Outlook......Page 622
References......Page 623
1. Introduction......Page 624
2.1. State Space......Page 625
2.3. Reward Method......Page 626
3. Application in NAO Robots......Page 627
3.1. Self-adaptive Walking......Page 628
3.2. Energy-efficient Walking......Page 629
4. Conclusion and Future Work......Page 630
References......Page 631
1. Introduction......Page 632
2.1. Estimation of External Forces......Page 633
2.2. Waist Trajectory Computation......Page 634
2.3. Foot-Landing Point Variation Computation......Page 635
2.5. Foot Trajectory Computation......Page 636
3. Experimental Tests and Consideration......Page 637
4. Conclusions and Future Work......Page 638
References......Page 639
1. INTRODUCTION......Page 640
2.1. Overview......Page 641
3.1. Compensatory waist trajectory for an impulse moment......Page 642
3.3. Sequential walking pattern generation......Page 643
3.4. FFT-based online walking pattern generation......Page 644
4.2. Comparison of the compensatory trajectories......Page 645
REFERENCES......Page 646
1. Introduction......Page 648
2. Walknet: A bioinspired control scheme for six-legged walking......Page 649
3. Generation of a coordinated stance phase......Page 650
4. Results of the experiments on the robot......Page 651
5. Discussion......Page 654
References......Page 655
1. Introduction......Page 656
2. Lateral Plane Model and its movement......Page 657
3. Analysis Using Poincare map......Page 658
4.1. In case of point support......Page 660
4.2. In case of feet (line segment) support......Page 661
5. Conclusion......Page 662
References......Page 663
1. Introduction......Page 664
3. Results......Page 665
Acknowledgments......Page 668
References......Page 669
1. Introduction......Page 670
2. Methods......Page 671
3. Results......Page 673
References......Page 677
1. Introduction......Page 678
2. Methods and Techniques......Page 680
3. Control......Page 681
4. Experiments and Results......Page 682
References......Page 684
1. Introduction......Page 686
2. Biped model......Page 687
3. Control Architecture......Page 688
4. Results......Page 690
References......Page 693
1. Introduction......Page 694
2.1. Gravitationally Decoupled Actuation (GDA)......Page 695
2.2. Energy Storage and Recirculation......Page 696
3. Real Time Control- optimising the foot force distribution......Page 698
4. Conclusions......Page 699
References......Page 700
1. Introduction......Page 702
2.1. Outline of Landing Pattern Modification Control......Page 703
3.1. Attitude Control for Long Span Deviation......Page 704
3.3. Problems in Attitude Control......Page 705
4. Walking Experiments and Consideration......Page 706
4.1. Indoor walking experiments......Page 707
4.2. Outdoor walking experiments......Page 708
6. References......Page 709
1. Introduction......Page 710
2. System architecture......Page 711
2.2. Agent based GG design......Page 712
3.1. Robot assembly......Page 713
3.2. From gaits to the robot......Page 714
4. Conclusion......Page 715
References......Page 716
1. Introduction......Page 718
2. The SLIP Model and Dynamics......Page 719
3. An Approximate Stance Map for SLIP with Damping......Page 720
4. Times for Critical Events: Bottom and Liftoff......Page 721
5.1. Predictive Performance......Page 723
5.2. Tracking Performance under Gait Control......Page 724
References......Page 725
1. Introduction......Page 726
2. Quasi-passive walking robot P ASIBOT......Page 727
3. Leg Kinematical model......Page 729
4. Gait analysis......Page 732
References......Page 734
1. Introduction......Page 735
2. Kinematic Model of the Quadruped Walking Robot......Page 736
2.1. Forward Kinematics without Constraints......Page 737
2.2. Inverse Kinematics......Page 739
References......Page 740
1. Introduction......Page 742
3. Open-loop stable motions for pogo-legged bipeds......Page 744
4. Dynamical equations of motion of Heile......Page 745
References......Page 749
1. Introduction......Page 750
2. Walking Phases......Page 751
3.2. Comparison of The Two Common Sequences......Page 753
References......Page 757
1. Introduction......Page 758
2. Biped Locomotion......Page 760
4. Results......Page 763
5. Conclusions......Page 764
References......Page 765
1. Introduction......Page 766
2. Galloping Dynamic Model......Page 767
3. Experiments......Page 768
4. Discussion......Page 769
5. Conclusions......Page 771
7. Acknowledgments......Page 772
References......Page 773
1. Introduction......Page 774
2.2. Possible Range of Walking Speed......Page 775
2.3.1. Assumption on Leg Phases......Page 776
2.3.2. Starting point to be sought......Page 777
2.3.3. Theorem to reduce computation......Page 778
3.3. Computation in Five Legged Walking......Page 779
References......Page 781
1. Motivation and State of the Art......Page 782
2. Climbing Robot CROMSCI......Page 783
3. Propulsion System......Page 784
3.1. Traction Control System (TCS)......Page 785
3.2. Shear Force Controlling (SF C)......Page 786
4. Experimental R esults......Page 787
References......Page 789
1. Introduction and existing hybrid mobile robots......Page 790
2. Climbing process of Open WHEEL i3R......Page 791
3. Front-rear non-symmetry......Page 793
4. Dimensional analysis of several design parameters......Page 794
5. Towards a full scale experiment......Page 796
References......Page 797
1. Introduction......Page 798
2.1. Kinematics of Passive Linkages......Page 800
2.2. Adaptation to Our Prototype......Page 801
4. Conclusion......Page 804
References......Page 805
1. Introduction......Page 806
2. Robot Postures before and after Short Time Elapses......Page 807
3.1. Cost of sliding caused by a wheel twist......Page 810
3.2. Cost of sliding caused by a wheel translation......Page 811
4. Minimization of the Energy Cost......Page 812
6. Experimental Results Influenced by Environmental Conditions......Page 813
6.2. Specific motion for changing traveling direction......Page 814
References......Page 815
1. Introduction......Page 816
2. Robot kinematics......Page 817
3. Optimal traction distribution......Page 818
4. Simulation results......Page 821
5. Conclusion......Page 822
References......Page 823
Section-11: Manufacturing, Construction, Co-operative and Tele-operated robots......Page 824
1.2. The Key Innovation......Page 826
1.4. Modes ojOperation......Page 827
1.6. Problems Experiment During First System Trial and How were Solved......Page 828
3. System Architecture......Page 829
5. NDTRobot......Page 830
6. Welding Arm Robot......Page 831
8. The Tug Robot......Page 832
9.2. TheNDT Weld Melt and Cold Data......Page 833
Acknowledgement......Page 834
References......Page 835
1. Introduction......Page 836
2. Robotic System Requirements......Page 837
3. The Robotic Cutting Tool Overview......Page 838
4. Control System......Page 840
5. Prototypes and Future Developments......Page 841
7. Acknowledgement......Page 842
References......Page 843
1. Introduction......Page 844
2. Problem Description......Page 845
3.1. lD-1DJ... formation equations of motion......Page 846
3.2. Stability analysis around an equilibrium configuration......Page 848
4. Trajectory Generation through two obstacles......Page 849
5. Conclusion......Page 850
References......Page 851
1. Introduction......Page 852
2. System and problem description......Page 853
3. Regulation Equation and Stabilization......Page 854
4.1. Tools from Algebraic Graph Theory......Page 855
4.3. Stability Analysis......Page 856
6. Conclusion......Page 858
References......Page 859
1. Introduction......Page 860
2. Planning Trajectory and Haptic control of the parallel robot......Page 861
3. Haptic control of the manipulator......Page 864
References......Page 867
1. Introduction......Page 868
2.1. Mission Planning......Page 869
2.2.1. Maneuver Control......Page 871
2.3. Motion Execution......Page 872
2.4. Base Control......Page 873
3. Results......Page 874
Bibliography......Page 875
Section-12: Modelling and Simulation of CLAW AR......Page 876
1. INTRODUCTION......Page 878
2. THE FIVE-LINK BIPED MODEL......Page 879
2.2 The Swing To Support Leg Phase......Page 880
3. WALKING TRAJECTORY......Page 882
4. PERIODIC SYSTEM......Page 884
REFERENCES......Page 885
1. Introduction......Page 886
2. Gait learning......Page 888
3. Robot model identification......Page 890
References......Page 893
1. Introduction......Page 894
2. Description of the hopping robot......Page 895
3. Vibroisolation system......Page 898
References......Page 901
1. Introduction......Page 902
2. Biped walking model......Page 903
3. Control strategy......Page 904
5. Discussion......Page 906
References......Page 907
1. INTRODUCTION......Page 908
2. MODEL......Page 909
3. Results......Page 910
References......Page 915
1. Introduction......Page 916
2. Alicia VTX robot structure......Page 917
3. Experimental Test bed......Page 918
4. Preliminary data......Page 919
5. System identification......Page 921
5.1. Model selection......Page 922
References......Page 923
Section-13: Perception, Sensing and Actuation......Page 924
1. Introduction......Page 926
2. Silhouette extraction......Page 927
3. Torso r egion location using anthropometric tables......Page 929
4. Torso medium axis and shoulders extraction......Page 930
5. Experimental results......Page 932
References......Page 933
1. Introduction......Page 934
2. Humanoid Head Design......Page 935
3. Omnidirectional Vision System......Page 938
4. Omnidirectional Stereo Vision System......Page 939
Acknowledgments......Page 941
References......Page 942
An insole shear force monitoring system for optimum alignment in lower limb amputees K. S. Tee. A. A. Dehghani-Sanij. D. Moser and M S. Zahedi......Page 944
2. Aim......Page 945
3. Methodology......Page 946
4. Static Characterization of FSR......Page 947
5. Static Stress Test......Page 948
6. Prototype......Page 949
7. Conclusion......Page 950
Reference......Page 951
1. Introduction......Page 952
2. System Overview......Page 953
3. Segmentation of Candidate Regions via 3D Range Data......Page 954
5. Experimental Results and Conclusions......Page 956
References......Page 957
2. Resonance Nonlinear Dual Actuator......Page 959
3. Comparative Study......Page 963
4. Conclusions......Page 964
References......Page 965
2. Requirements......Page 967
3. Mechanical Structure......Page 968
4. Electronical Structure......Page 970
5. Self Evaluation and Safety Mechanisms......Page 971
7. Results......Page 972
8. Acknowledgements......Page 973
References......Page 974
1. Introduction......Page 975
2. Pneumatic artificial muscle......Page 977
4. Ferromagnetic Shape Memory Alloys......Page 978
5. Series Elastic Actuators......Page 979
7. Conclusions......Page 981
References......Page 982
1. Introduction......Page 983
2. Underwater climbing robot......Page 984
3. Working process......Page 987
4. Experiments......Page 988
References......Page 989
Section-14: Planetary Exploration, Navigation and Robotic Education......Page 990
1. Introduction......Page 992
2. Motivation......Page 993
3. Percolator Guided Exploration Method......Page 994
4. Simulation Examples and Discussion......Page 997
5. Conclusion......Page 998
References......Page 999
1. Introduction......Page 1000
3.1. Multiresolution Hough Transform......Page 1001
4.1. Setup......Page 1003
4.2. Results......Page 1005
5. Conclusions......Page 1006
References......Page 1007
1. Introduction......Page 1008
2. Hardware: mechanical structure, actuators and sensors......Page 1009
3. Software architecture and firmware......Page 1011
4. Pyro controller and autonomous tasks......Page 1012
5. Tests and conclusions......Page 1014
References......Page 1015
1. Introduction......Page 1016
2. Course Description......Page 1017
2.1. Term Project......Page 1018
3. Student Evaluation......Page 1019
References......Page 1021
1. Introduction......Page 1022
4. Stand Alone Virtual Environment and Limitation......Page 1023
5.1. Mallah Weh server......Page 1024
6.1. Graphical User Interface/Application Pages......Page 1025
6.2. Client Access and Security......Page 1027
7. Conclusion......Page 1028
References......Page 1029
Section-15: Planning and Control......Page 1030
1. Introduction......Page 1032
2. Shuffle Turn by Controlling Load Distribution......Page 1033
3. System Configuration......Page 1034
4. Motion Generation of Shuffle Turn......Page 1035
References......Page 1036
1. Introduction......Page 1040
2.1. The Control Problem Statement......Page 1041
2.2.1. case 1......Page 1042
2.2.2. case 2......Page 1044
3. The Controller Design......Page 1045
4. Simulation Example......Page 1046
References......Page 1047
1. Introduction......Page 1048
2.1. Omnidirectional mobile platform modelling......Page 1049
3. Kinematic Control......Page 1051
4. Virtual impedance control strategy......Page 1052
6. Conclusion......Page 1054
References......Page 1055
1. Introduction......Page 1056
2. Kinematic model......Page 1057
3. Trajectory Generation......Page 1059
4. Simulation Results......Page 1061
References......Page 1063
1. Introduction......Page 1064
3. Forces and Force Moments Acting on the Wheel......Page 1065
4. Slip A voidance......Page 1066
5.1. Slip damping......Page 1067
6. Example......Page 1069
References......Page 1071
1. Introduction......Page 1072
2. Extension of the MMC principle to dynamic equations......Page 1074
3. Results......Page 1077
4. Conclusion......Page 1078
References......Page 1079
1. Introduction......Page 1080
2. Theoretical Preliminaries......Page 1081
3. Learning Control......Page 1082
4.1. Two-Link Manipulator......Page 1083
4.2. Robot with two independently driven wheels......Page 1084
5.1. Wheeled Robot......Page 1085
6. Conclusion......Page 1086
References......Page 1087
1. Introduction......Page 1088
3. 2DOF Mobile Robot configuration......Page 1090
4. Kinematics and Control Method......Page 1091
5. Simulation, Results and Discussion......Page 1093
References......Page 1094
1. Introduction......Page 1096
2. The Fast Marching Method......Page 1097
3.1. 3D Triangular Mesh......Page 1098
4.1.1. Spherical variance......Page 1099
4.l.2. Saturated Gradient......Page 1100
5. Algorithm Simulations......Page 1101
5.1. Environment Reconstruction with the Laser (LRF) Data......Page 1103
6. Conclusions......Page 1104
References......Page 1105
1. Introduction......Page 1106
2.2. Contact Description with the Environment......Page 1107
2.3. Control Law......Page 1108
3.1.1. Frame Control......Page 1109
3.1.2. Hierarchy......Page 1110
3.3. Chaining Up Tasks......Page 1111
4. Application to the virtual iCub......Page 1112
5. Conclusion......Page 1114
References......Page 1115
1. Introduction......Page 1116
2. Problem formulation......Page 1117
3.1. Mapping......Page 1118
3.2. Genetic algorithm optimizer......Page 1119
4. Results......Page 1121
References......Page 1123
1. Introduction......Page 1124
2. Vision System Algorithm......Page 1125
3.1. Color Segmentation using Mahalanobis Distance......Page 1126
3.2. Color Space Selection......Page 1127
4. FPGA Architecture and Real-Time Implementation of the Robot Recognition......Page 1129
4.1. Video Processing Pipeline and Mahalanobis Mask Implementation......Page 1130
5. Obstacles Detection......Page 1131
6. Results......Page 1132
7. Conclusions......Page 1133
References......Page 1134
Section-16: Rehabilitation and Function Restoration......Page 1136
1. Introduction......Page 1138
2.1. Simulation of normal human gait......Page 1139
2.2. Simulation of amputee human gait with a prosthetic leg......Page 1141
4. Discussion......Page 1143
References......Page 1145
1. Introduction......Page 1146
2. Method......Page 1147
3. Results......Page 1149
References......Page 1151
1. Introduction......Page 1153
2.2. Measurement and Estimation......Page 1155
2.3. Visual Nastran Leg Model......Page 1156
2.5. Particle Swam Optimization......Page 1157
2.6. Development of leg model......Page 1158
3. Results......Page 1159
References......Page 1160
1. Introduction......Page 1162
2.1. Humanoid Model......Page 1163
2.3 .l. Finite State Control......Page 1164
2.3 .2. Fuzzy Control......Page 1165
3. Results......Page 1166
References......Page 1167
1. Introduction......Page 1170
2. Material and Metbods......Page 1171
2.1.2 Swinging leg test using electrical stimulation......Page 1172
2.2 Identification and estimation approach......Page 1173
3. Results and Discussion......Page 1175
References......Page 1176
1. Introduction......Page 1178
2.1. Indoor Rowing Exercise Model......Page 1179
3.1. Design of Fuzzy Logic Control......Page 1181
4. Simulation Results......Page 1182
References......Page 1185
New BCI system for trajectories detennination in manipulation tasks T G. Egea, J. L. M Lozano, C. N. Otero, M T H. Ezquerro and J. Lopez-Coronado......Page 1186
1.1. Parallel Work in Bel......Page 1187
2.1 Collecting & processing BCI signals......Page 1188
2.2 Robotic anthropomorphic arm.......Page 1189
2.1. Any arm without hand......Page 1190
3. Advanced control architecture of the anthropomorphic arm......Page 1191
4. Conclusion......Page 1192
5. References......Page 1193
Author index......Page 1194

Mobile Robotics: Solutions and Challenges, Proceedings of the Twelfth International Conference on Climbing and Walking Robots and the Support Technologies For Mobile Machines, Istanbul, Turkey, 9-11 September 2009  
 9814291269, 9789814291262

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Recommend Papers