Microalgal Biotechnology: Potential and Production 3110225018, 9783110225013

With the high interest in renewable resources, the field of algal biotechnology has undergone a huge leap in importance

278 86 81KB

English Pages xx+266 [287] Year 2012

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Microalgal Biotechnology: Potential and Production......Page 4
Preface......Page 6
Contents......Page 8
List of contributing authors......Page 16
1.1 All life eminates from the sun! All life originates from the sea!......Page 22
1.2.1 Microalgae produce 5 times more biomass per hectare than terrestrial crops......Page 24
1.3.1 Microalgae can use CO2 and sunlight......Page 25
1.3.3 Microalgae can be produced nearly everywhere......Page 26
1.3.4 Microalgae do not need pesticides and only little fertilizers......Page 27
1.3.5 Closed photobioreactors as tools of choice......Page 28
The biological potential of microalgae......Page 30
2.1 Introduction......Page 32
2.2.1 Algal diversity......Page 37
2.2.2 Algal evolution......Page 38
2.3 Cyanobacteria: The prokaryotic algae......Page 40
2.4.1 Viridiplantae: The green algae distributed over two phyla......Page 43
2.4.2 Rhodophyta: Red algae......Page 46
2.5 Chromalveolate algae: The photosynthetic Stramenopiles (heterokont algae)......Page 47
2.5.1 Diatoms (Bacillariophyta; photosynthetic Stramenopiles)......Page 48
2.5.2 Eustigmatophyceae and Xanthophyceae (photosynthetic Stramenopiles)......Page 50
2.5.3.2 Synurophyceae and Chrysophyceae......Page 51
2.6 Chromalveolate algae: coccolithophorids and haptophyte algae......Page 52
2.7 Chromalveolate algae: Dinoflagellates (Dinophyta)......Page 53
Acknowledgements......Page 54
References......Page 55
3.1 Introduction......Page 60
3.2.1 Photosynthetic efficiency......Page 61
3.2.2 Growth efficiency (photon to biomass efficiency)......Page 62
3.3.1 Absorption......Page 66
3.3.2 Regulation and efficiency of photochemistry......Page 67
3.3.3 Regulation of electron flow......Page 68
3.3.4 Regulation of carbon allocation......Page 69
3.4 Conclusions for microalgal biotechnology......Page 71
References......Page 72
4.1.1 Importance of algae symbiotic relationships......Page 76
4.1.2 Modes of algae symbiosis with eukaryotes......Page 77
4.2.1 Algae symbiosis with Cnidaria......Page 79
4.2.1.2 Flux of primary metabolites in host and symbiont......Page 81
4.2.1.4 Symbiont-derived secondary metabolites......Page 82
4.2.2 Algae symbiosis with Porifera......Page 83
4.2.2.1 Morphology of sponge–algae associations......Page 84
4.2.2.3 Flux of primary metabolites in host and symbiont......Page 85
4.2.2.5 Effects of environmental stress on symbiosis......Page 86
4.2.3.1 Morphology of mollusc–algae associations......Page 87
4.2.3.2 Symbiont uptake and maintenance......Page 88
4.3.1 Lichens: Ecological pioneers......Page 89
4.3.3 Lichen taxonomy and evolution......Page 90
4.3.4 Lichen morphology......Page 91
4.3.5 Symbiotic interactions......Page 92
4.3.6 Lichen growth and propagation......Page 93
4.3.7 Symbiotic benefits for algal photobionts......Page 94
4.3.8 Biotechnological aspects of lichen/mycobiont cultivation......Page 97
4.3.9 Potential of bioactive lichen-derived metabolites......Page 98
References......Page 100
5.2.1.1 Glass beads and silicon whiskers......Page 108
5.2.1.4 Agrobacterium tumefaciens-mediated transformation......Page 109
5.2.2 Promoters......Page 110
5.2.5 Improvement of expression rates and secretion of proteins......Page 112
5.2.6 Selection markers......Page 114
5.2.7 Reporter genes......Page 115
5.3.1 Proteins expressed in Chlamydomonas reinhardtii......Page 117
5.4.1 Methods for genetic engineering......Page 119
5.4.2 Products from genetically modified microalgae......Page 120
References......Page 121
6.1 Background and inception of the company......Page 128
6.2 Development and optimization of proprietary technologies......Page 129
References......Page 130
Technical Means for Algae Production......Page 132
7.1 Introduction......Page 134
7.2.1 General configuration......Page 135
7.2.2 Flow in a raceway......Page 136
7.2.3 Power consumption for mixing......Page 139
7.2.4 Paddlewheel design......Page 141
7.2.6 Evaporation from raceways......Page 142
7.2.7 Temperature variations......Page 143
7.2.8 Culture pH and carbon dioxide demand......Page 145
7.2.9 Oxygen removal......Page 146
7.2.11 Irradiance variation with depth......Page 147
7.2.12 Local and average values of specific growth rate......Page 149
7.2.13 Raceway capital cost......Page 150
7.3 Algal crude oil as replacement petroleum......Page 151
7.4 Algae biomass production......Page 152
7.4.1 Productivity of biomass and oil......Page 153
7.4.2 Limits to algal biomass productivity......Page 155
7.4.2.1 Photosynthetic efficiency......Page 156
7.4.2.2 Why are microalgae more efficient than terrestrial plants?......Page 157
7.5 Economics of algal crude oil......Page 158
7.5.1 Residual biomass......Page 160
7.6 Concluding remarks......Page 162
7.7 Nomenclature......Page 163
References......Page 165
8.2 Cellana technology and demonstration facility......Page 168
8.3 Biorefinery approach......Page 169
References......Page 171
9.2 Major factors governing the production of microalgae......Page 172
9.3.1 Open raceways......Page 174
9.3.1.1 Technical issues......Page 176
9.3.1.2 Scale-up......Page 178
9.4.1 Flat-panel photobioreactors......Page 180
9.4.1.1 Technical issues......Page 182
9.4.1.3 Drawbacks......Page 187
9.4.2 Tubular photobioreactors......Page 188
9.4.2.1 Technical issues......Page 189
9.4.2.2 Scale-up......Page 195
9.5 Summary of major characteristics of large-scale algal cultures systems......Page 198
References......Page 199
10.2.1 Main physical variables......Page 202
10.3.1 Overview of the modeling approach......Page 205
10.3.2 Mass balances......Page 207
10.3.3.1 Simple stoichiometric equations......Page 208
10.3.3.2 Structured stoichiometric equations......Page 209
10.3.4 Kinetic modeling of photosynthetic growth......Page 210
10.3.5 Energetics of photobioreactors......Page 213
10.3.6 Radiative transfer modeling......Page 215
10.3.6.1 Radiative transfer equation......Page 216
10.3.6.2 Optical and radiative properties for micro-organisms......Page 222
10.4.1.1 Illuminated fraction γ......Page 224
10.4.1.2 Achieving maximal productivities with appropriate definition of light-attenuation conditions......Page 225
10.4.1.3 Prediction of biomass concentration and productivity......Page 227
10.4.1.4 Engineering formula for assessment of maximum kinetic performance in PBRs......Page 231
10.4.2.1 Prediction of PBR productivity as a function of radiation conditions......Page 232
10.4.3 Modeling light/dark cycle effects......Page 235
10.6 Nomenclature......Page 238
References......Page 241
11.2 Technical design features......Page 246
11.2.2 Geometric parameters......Page 247
11.2.3 Hydrodynamic parameters......Page 249
11.3 Measured performance criteria......Page 251
11.4 Mode and stability of operation......Page 252
11.5 Conclusion......Page 255
References......Page 256
12.2 Subitec GmbH and the flat-panel-airlift system......Page 258
12.3 From laboratory to pilot scale......Page 260
References......Page 263
13.2 ProviAPT technology and features......Page 264
References......Page 266
14.2 Production process......Page 268
14.2.2 Concentrating the biomass......Page 269
14.2.3 Washing the biomass......Page 270
14.3 Energy consumption......Page 271
14.4 Survey of process relevant data......Page 272
References......Page 273
15.2.1 Evodos technology......Page 274
15.2.2 Key design parameters......Page 275
15.3 Operational characteristics......Page 277
References......Page 279
Index......Page 280

Microalgal Biotechnology: Potential and Production
 3110225018,  9783110225013

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Recommend Papers