Table of contents : PREFACE......Page 4 Contents ......Page 8 CHAPTER 1 Types of Fields......Page 22 1.1 Scalar Fields ......Page 25 1.2 Vector Fields ......Page 29 1.3 Curvilinear Coordinates......Page 42 1.4 The Differential Operator V......Page 52 1.5 Vector and Tensor Formalism......Page 65 1.6 Dyadics and Other Vector Operators ......Page 75 1.7 The Lorentz Transformation, Four^ectors, Spinors......Page 114 Problems ......Page 128 Table of Useful Vector and Dyadic Equations......Page 135 Table of Properties of Curvilinear Coordinates ......Page 136 Bibliography ......Page 138 CHAPTER 2 Equations Governing Fields ......Page 140 2.1 The Flexible String......Page 141 2.2 Waves in an Elastic Medium ......Page 163 2.3 Motion of Fluids ......Page 172 2.4 Diffusion and Other Percolative Fluid Motion ......Page 192 2.5 The Electromagnetic Field ......Page 221 2.6 Quantum Mechanics ......Page 243 Problems ......Page 288 Standard Forms for Some of the Partial Differential Equations of Theoretical Physics ......Page 292 Bibliography ......Page 294 CHAPTER 3 Fields and the Variational Principle ......Page 296 3.1 The Variational Integral and the Euler Equations......Page 297 3.2 Hamilton s Principle and Classical Dynamics......Page 301 3.3 Scalar Fields ......Page 322 3.4 Vector Fields ......Page 339 Problems ......Page 358 Tabulation of Variational Method ......Page 362 Bibliography ......Page 368 CHAPTER 4 Functions of a Complex Variable ......Page 369 4.1 Complex Numbers and Variables ......Page 370 4.2 Analytic Functions ......Page 377 4.3 Derivatives of Analytic Functions, Taylor and Laurent Series......Page 395 4.4 Multivalued Functions ......Page 419 4.5 Calculus of Residues; Gamma and Flliptic Functions......Page 429 4.6 Asymptotic Series: Method of Steepest Descent ......Page 455 4.7 Conformal Mapping ......Page 464 4.8 Fourier Integrals ......Page 474 Problems ......Page 492 Tabulation of Properties of Functions of Complex Variable ......Page 501 Tables of Special Functions of General Use ......Page 507 Bibliography ......Page 511 CHAPTER 5 Ordinary Differential Equations ......Page 513 5.1 Separable Coordinates ......Page 515 5.2 General Properties, Series Solutions ......Page 544 5.3 Integral Representations ......Page 598 Problems ......Page 667 Table of Separable Coordinates in Three Dimensions......Page 676 Second-order Differential Equations and Their Solutions......Page 688 Bibliography ......Page 695 6.1 Types of Equations and of Boundary Conditions ......Page 697 6.2 Difference Equations and Boundary Conditions ......Page 713 6.3 Eigenfunctions and Their Use ......Page 730 Problems ......Page 799 Table of Useful Eigenfunctions and Their Properries......Page 802 Eigenfunctions by the Factorization Method ......Page 809 Bibliography ......Page 811 CHAPTER 7 Green's Functions......Page 812 7.1 Source Points and Boundary Points ......Page 814 7.2 Green s Functions for Steady Waves ......Page 824 7.3 Green s Functioh for the Scalar Wave Equation ......Page 855 7.4 Green s Function for Diffusion ......Page 878 7.5 Green's Function in Abstract Vector Form ......Page 890 Problems ......Page 907 Table of Green's Functions ......Page 911 Bibliography ......Page 915 8.1 Integral Equations of Physics, Their Classification ......Page 917 8.2 General Properties of Integral Equations ......Page 928 8.3 Solution of Fredholm Equations of the First Kind......Page 946 8.4 Solution of Integral Equations of the Second Kind ......Page 970 8.5 Fourier Transforms and Integral Equations ......Page 981 Tables of Integral Equations and Their Solutions......Page 1013 Bibliography ......Page 1017 Index......Page 1020