Mathematical Methods for Scientists and Engineers 1891389246, 9781891389245

Intended for upper-level undergraduate and graduate courses in chemistry, physics, mathematics and engineering, this tex

464 16 37MB

English Pages 1161 [860]

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
0000001-PP1
0000002-PR3
0000003-PR4
0000004-PR5
0000005-PR6
0000006-PR7
0000007-PR8
0000008-PR9
0000009-PR10
0000010-PR11
0000011-PR12
0000012-PR13
0000014-PA1
0000015-PA2
0000016-PA3
0000017-PA4
0000018-PA5
0000019-PA6
0000020-PA7
0000021-PA8
0000022-PA9
0000023-PA10
0000024-PA11
0000025-PA12
0000026-PA13
0000027-PA14
0000028-PA15
0000029-PA16
0000030-PA17
0000031-PA18
0000032-PA19
0000033-PA20
0000034-PA21
0000035-PA22
0000036-PA23
0000037-PA24
0000038-PA25
0000039-PA26
0000040-PA27
0000041-PA28
0000042-PA29
0000043-PA30
0000044-PA31
0000045-PA32
0000046-PA33
0000047-PA34
0000048-PA35
0000049-PA36
0000050-PA37
0000051-PA38
0000052-PA39
0000053-PA40
0000054-PA41
0000055-PA42
0000056-PA43
0000057-PA44
0000058-PA45
0000059-PA46
0000060-PA47
0000061-PA48
0000062-PA49
0000063-PA50
0000064-PA51
0000065-PA52
0000066-PA53
0000067-PA54
0000068-PA55
0000069-PA56
0000070-PA57
0000071-PA58
0000072-PA59
0000073-PA60
0000074-PA61
0000076-PA63
0000077-PA64
0000078-PA65
0000079-PA66
0000080-PA67
0000081-PA68
0000082-PA69
0000083-PA70
0000084-PA71
0000085-PA72
0000086-PA73
0000087-PA74
0000088-PA75
0000089-PA76
0000090-PA77
0000091-PA78
0000092-PA79
0000093-PA80
0000094-PA81
0000095-PA82
0000096-PA83
0000097-PA84
0000098-PA85
0000099-PA86
0000100-PA87
0000101-PA88
0000102-PA89
0000103-PA90
0000104-PA91
0000105-PA92
0000106-PA93
0000107-PA94
0000108-PA95
0000109-PA96
0000110-PA97
0000111-PA98
0000112-PA99
0000113-PA100
0000114-PA101
0000115-PA102
0000116-PA103
0000117-PA104
0000118-PA105
0000119-PA106
0000120-PA107
0000121-PA108
0000122-PA109
0000123-PA110
0000124-PA111
0000125-PA112
0000126-PA113
0000127-PA114
0000128-PA115
0000129-PA116
0000130-PA117
0000131-PA118
0000132-PA119
0000133-PA120
0000134-PA121
0000135-PA122
0000136-PA123
0000137-PA124
0000138-PA125
0000139-PA126
0000140-PA127
0000141-PA128
0000142-PA129
0000143-PA130
0000144-PA131
0000145-PA132
0000146-PA133
0000147-PA134
0000148-PA135
0000149-PA136
0000150-PA137
0000151-PA138
0000152-PA139
0000153-PA140
0000154-PA141
0000155-PA142
0000156-PA143
0000157-PA144
0000158-PA145
0000159-PA146
0000160-PA147
0000161-PA148
0000162-PA149
0000163-PA150
0000164-PA151
0000165-PA152
0000166-PA153
0000167-PA154
0000168-PA155
0000169-PA156
0000170-PA157
0000172-PA159
0000173-PA160
0000174-PA161
0000175-PA162
0000176-PA163
0000177-PA164
0000178-PA165
0000179-PA166
0000180-PA167
0000181-PA168
0000182-PA169
0000183-PA170
0000184-PA171
0000185-PA172
0000186-PA173
0000187-PA174
0000188-PA175
0000189-PA176
0000190-PA177
0000191-PA178
0000192-PA179
0000193-PA180
0000194-PA181
0000195-PA182
0000196-PA183
0000197-PA184
0000198-PA185
0000199-PA186
0000200-PA187
0000201-PA188
0000202-PA189
0000204-PA191
0000205-PA192
0000206-PA193
0000207-PA194
0000208-PA195
0000209-PA196
0000210-PA197
0000211-PA198
0000212-PA199
0000213-PA200
0000214-PA201
0000215-PA202
0000216-PA203
0000217-PA204
0000218-PA205
0000219-PA206
0000220-PA207
0000221-PA208
0000222-PA209
0000223-PA210
0000224-PA211
0000225-PA212
0000226-PA213
0000227-PA214
0000228-PA215
0000229-PA216
0000230-PA217
0000231-PA218
0000232-PA219
0000233-PA220
0000234-PA221
0000235-PA222
0000236-PA223
0000237-PA224
0000238-PA225
0000239-PA226
0000240-PA227
0000241-PA228
0000242-PA229
0000244-PA231
0000245-PA232
0000246-PA233
0000250-PA237
0000251-PA238
0000252-PA239
0000253-PA240
0000254-PA241
0000255-PA242
0000256-PA243
0000257-PA244
0000258-PA245
0000259-PA246
0000260-PA247
0000261-PA248
0000262-PA249
0000263-PA250
0000264-PA251
0000265-PA252
0000266-PA253
0000267-PA254
0000268-PA255
0000269-PA256
0000270-PA257
0000271-PA258
0000272-PA259
0000273-PA260
0000274-PA261
0000275-PA262
0000276-PA263
0000277-PA264
0000278-PA265
0000279-PA266
0000280-PA267
0000281-PA268
0000282-PA269
0000283-PA270
0000284-PA271
0000285-PA272
0000286-PA273
0000287-PA274
0000288-PA275
0000289-PA276
0000290-PA277
0000291-PA278
0000292-PA279
0000294-PA281
0000297-PA284
0000298-PA285
0000299-PA286
0000300-PA287
0000301-PA288
0000302-PA289
0000303-PA290
0000304-PA291
0000305-PA292
0000307-PA294
0000308-PA295
0000309-PA296
0000311-PA298
0000312-PA299
0000314-PA301
0000315-PA302
0000316-PA303
0000317-PA304
0000318-PA305
0000319-PA306
0000320-PA307
0000321-PA308
0000322-PA309
0000323-PA310
0000324-PA311
0000325-PA312
0000326-PA313
0000327-PA314
0000328-PA315
0000329-PA316
0000330-PA317
0000331-PA318
0000332-PA319
0000333-PA320
0000334-PA321
0000335-PA322
0000336-PA323
0000340-PA327
0000341-PA328
0000342-PA329
0000343-PA330
0000344-PA331
0000346-PA333
0000347-PA334
0000348-PA335
0000349-PA336
0000350-PA337
0000351-PA338
0000353-PA340
0000354-PA341
0000355-PA342
0000356-PA343
0000357-PA344
0000358-PA345
0000359-PA346
0000360-PA347
0000362-PA349
0000363-PA350
0000364-PA351
0000365-PA352
0000366-PA353
0000367-PA354
0000368-PA355
0000369-PA356
0000370-PA357
0000371-PA358
0000372-PA359
0000373-PA360
0000374-PA361
0000375-PA362
0000377-PA364
0000378-PA365
0000379-PA366
0000380-PA367
0000381-PA368
0000384-PA371
0000386-PA373
0000387-PA374
0000388-PA375
0000389-PA376
0000390-PA377
0000391-PA378
0000392-PA379
0000393-PA380
0000394-PA381
0000395-PA382
0000396-PA383
0000397-PA384
0000398-PA385
0000399-PA386
0000400-PA387
0000401-PA388
0000402-PA389
0000403-PA390
0000404-PA391
0000405-PA392
0000406-PA393
0000407-PA394
0000408-PA395
0000410-PA397
0000411-PA398
0000412-PA399
0000413-PA400
0000414-PA401
0000415-PA402
0000416-PA403
0000417-PA404
0000418-PA405
0000419-PA406
0000420-PA407
0000421-PA408
0000422-PA409
0000423-PA410
0000424-PA411
0000425-PA412
0000426-PA413
0000427-PA414
0000428-PA415
0000429-PA416
0000430-PA417
0000431-PA418
0000432-PA419
0000433-PA420
0000434-PA421
0000435-PA422
0000436-PA423
0000437-PA424
0000438-PA425
0000439-PA426
0000440-PA427
0000441-PA428
0000442-PA429
0000443-PA430
0000444-PA431
0000445-PA432
0000446-PA433
0000447-PA434
0000448-PA435
0000449-PA436
0000450-PA437
0000451-PA438
0000452-PA439
0000453-PA440
0000454-PA441
0000455-PA442
0000456-PA443
0000457-PA444
0000458-PA445
0000459-PA446
0000460-PA447
0000461-PA448
0000462-PA449
0000463-PA450
0000464-PA451
0000465-PA452
0000466-PA453
0000468-PA455
0000469-PA456
0000470-PA457
0000471-PA458
0000472-PA459
0000473-PA460
0000474-PA461
0000475-PA462
0000476-PA463
0000477-PA464
0000478-PA465
0000479-PA466
0000480-PA467
0000481-PA468
0000482-PA469
0000483-PA470
0000484-PA471
0000485-PA472
0000486-PA473
0000487-PA474
0000488-PA475
0000489-PA476
0000490-PA477
0000491-PA478
0000492-PA479
0000494-PA481
0000495-PA482
0000496-PA483
0000497-PA484
0000498-PA485
0000499-PA486
0000500-PA487
0000501-PA488
0000502-PA489
0000503-PA490
0000504-PA491
0000505-PA492
0000506-PA493
0000507-PA494
0000508-PA495
0000509-PA496
0000510-PA497
0000511-PA498
0000512-PA499
0000513-PA500
0000514-PA501
0000515-PA502
0000516-PA503
0000517-PA504
0000518-PA505
0000519-PA506
0000520-PA507
0000521-PA508
0000522-PA509
0000523-PA510
0000524-PA511
0000525-PA512
0000526-PA513
0000528-PA515
0000529-PA516
0000530-PA517
0000531-PA518
0000532-PA519
0000533-PA520
0000534-PA521
0000535-PA522
0000536-PA523
0000537-PA524
0000538-PA525
0000539-PA526
0000540-PA527
0000541-PA528
0000542-PA529
0000543-PA530
0000544-PA531
0000545-PA532
0000546-PA533
0000547-PA534
0000548-PA535
0000549-PA536
0000550-PA537
0000551-PA538
0000552-PA539
0000553-PA540
0000554-PA541
0000555-PA542
0000556-PA543
0000557-PA544
0000558-PA545
0000559-PA546
0000560-PA547
0000561-PA548
0000562-PA549
0000563-PA550
0000564-PA551
0000565-PA552
0000566-PA553
0000567-PA554
0000568-PA555
0000569-PA556
0000570-PA557
0000571-PA558
0000572-PA559
0000573-PA560
0000574-PA561
0000576-PA563
0000577-PA564
0000578-PA565
0000579-PA566
0000580-PA567
0000581-PA568
0000582-PA569
0000583-PA570
0000584-PA571
0000585-PA572
0000586-PA573
0000588-PA575
0000589-PA576
0000590-PA577
0000591-PA578
0000592-PA580
0000593-PA581
0000594-PA582
0000595-PA583
0000596-PA584
0000597-PA585
0000598-PA589
0000599-PA591
0000600-PA592
0000601-PA593
0000602-PA594
0000603-PA595
0000604-PA596
0000605-PA597
0000606-PA599
0000607-PA600
0000608-PA601
0000609-PA603
0000610-PA604
0000611-PA606
0000612-PA609
0000613-PA610
0000614-PA612
0000615-PA613
0000616-PA614
0000617-PA615
0000618-PA616
0000619-PA617
0000620-PA618
0000621-PA619
0000622-PA621
0000624-PA625
0000625-PA626
0000626-PA627
0000627-PA628
0000628-PA629
0000629-PA634
0000630-PA638
0000631-PA641
0000632-PA643
0000633-PA645
0000634-PA647
0000635-PA651
0000636-PA652
0000637-PA653
0000638-PA654
0000639-PA656
0000640-PA657
0000641-PA658
0000642-PA659
0000643-PA660
0000644-PA662
0000645-PA664
0000646-PA665
0000647-PA668
0000648-PA669
0000649-PA670
0000650-PA671
0000651-PA672
0000652-PA673
0000653-PA676
0000654-PA677
0000655-PA678
0000656-PA680
0000657-PA683
0000658-PA686
0000659-PA687
0000660-PA689
0000661-PA691
0000662-PA692
0000663-PA695
0000664-PA698
0000665-PA703
0000666-PA705
0000667-PA706
0000668-PA707
0000669-PA711
0000670-PA712
0000671-PA713
0000672-PA714
0000673-PA715
0000674-PA716
0000675-PA720
0000676-PA721
0000677-PA723
0000678-PA725
0000679-PA728
0000680-PA730
0000681-PA734
0000682-PA735
0000683-PA736
0000684-PA737
0000685-PA739
0000686-PA744
0000688-PA747
0000689-PA748
0000690-PA749
0000691-PA750
0000692-PA751
0000693-PA752
0000694-PA753
0000695-PA754
0000696-PA756
0000697-PA757
0000698-PA758
0000699-PA760
0000700-PA761
0000701-PA763
0000702-PA764
0000703-PA767
0000704-PA770
0000705-PA772
0000706-PA776
0000707-PA777
0000708-PA778
0000709-PA783
0000712-PA786
0000713-PA787
0000714-PA788
0000715-PA789
0000716-PA790
0000717-PA800
0000718-PA802
0000719-PA803
0000720-PA806
0000721-PA807
0000722-PA809
0000723-PA810
0000724-PA812
0000726-PA815
0000727-PA816
0000728-PA817
0000729-PA818
0000730-PA822
0000731-PA823
0000732-PA826
0000733-PA827
0000734-PA828
0000735-PA833
0000736-PA835
0000737-PA836
0000738-PA837
0000739-PA839
0000740-PA840
0000741-PA841
0000742-PA842
0000743-PA848
0000744-PA850
0000745-PA851
0000746-PA852
0000747-PA853
0000748-PA854
0000749-PA857
0000750-PA860
0000751-PA861
0000752-PA865
0000753-PA869
0000754-PA870
0000755-PA871
0000756-PA872
0000757-PA873
0000758-PA874
0000759-PA875
0000760-PA878
0000761-PA884
0000762-PA889
0000763-PA895
0000764-PA896
0000765-PA898
0000766-PA900
0000767-PA901
0000768-PA902
0000769-PA903
0000770-PA906
0000771-PA907
0000772-PA909
0000773-PA910
0000774-PA912
0000775-PA914
0000776-PA915
0000777-PA916
0000778-PA919
0000779-PA921
0000780-PA922
0000781-PA923
0000782-PA924
0000783-PA925
0000784-PA929
0000785-PA933
0000786-PA934
0000787-PA935
0000788-PA936
0000789-PA939
0000790-PA944
0000791-PA947
0000792-PA948
0000793-PA949
0000794-PA950
0000795-PA952
0000796-PA954
0000797-PA955
0000798-PA957
0000799-PA958
0000800-PA960
0000801-PA964
0000802-PA967
0000804-PA969
0000805-PA974
0000806-PA975
0000807-PA976
0000808-PA977
0000809-PA978
0000810-PA981
0000811-PA982
0000812-PA983
0000813-PA984
0000814-PA985
0000815-PA986
0000816-PA987
0000817-PA988
0000818-PA994
0000819-PA996
0000820-PA1000
0000821-PA1001
0000822-PA1003
0000823-PA1004
0000824-PA1005
0000825-PA1011
0000826-PA1012
0000827-PA1014
0000828-PA1016
0000829-PA1017
0000831-PA1024
0000832-PA1025
0000833-PA1026
0000834-PA1027
0000835-PA1030
0000836-PA1031
0000837-PA1032
0000838-PA1034
0000839-PA1036
0000840-PA1038
0000841-PA1042
0000842-PA1043
0000843-PA1044
0000844-PA1046
0000845-PA1049
0000846-PA1050
0000847-PA1052
0000848-PA1053
0000849-PA1054
0000850-PA1055
0000851-PA1057
0000852-PA1059
0000853-PA1060
0000854-PA1065
0000855-PA1066
0000856-PA1068
0000857-PA1069
0000858-PA1070
0000859-PA1073
0000861-PA1075
0000862-PA1076
0000863-PA1077
0000864-PA1078
0000865-PA1084
0000866-PA1085
0000867-PA1088
0000868-PA1097
0000869-PA1098
0000870-PA1099
0000871-PA1100
0000872-PA1101
0000873-PA1104
0000874-PA1105
0000875-PA1106
0000876-PA1108
0000877-PA1109
0000878-PA1111
0000879-PA1112
0000880-PA1113
0000881-PA1114
0000882-PA1116
0000883-PA1117
0000884-PA1119
0000885-PA1120
0000886-PA1123
0000887-PA1124
0000888-PA1125
0000889-PA1126
0000890-PA1130
0000891-PA1131
0000892-PA1133
0000893-PA1136
0000894-PA1137
0000895-PA1138
0000896-PA1139
0000897-PA1140
0000898-PA1168
Recommend Papers

Mathematical Methods for Scientists and Engineers
 1891389246, 9781891389245

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

MATHEMATICAL METHODS for Scientists and Engineers

Donald A. McQuarrie UNIVERSITY OF CALIFORNIA, DAVIS

University Science Books Sausalito, California

University Science Books www.uscibook.s.com

Orde.r Informal.ion: Phone(703)661-1572 Fa.x (703) 661- 150 I Fin:t Printing l1lu.,trator: Mt,rvin Hanson

De,igner: Rohen lshi fl.fanuscript Editor: Jo/111 Murrh.ek Compositor: Windfall Software. 11.1i11g Z:JtX Printer & Binder: £d1rards BrothaJ, Inc. Product.ion Mnnager. Christine• Taylor This book is printed on acid-free paper. Cop) right fl 2003 by University Science Book..; Reproduction or lmnsl::u..ion or any part of this work beyond that pcrmincd by Sect.ion I 07 or 108 of 1hc 1976 United Stutes Copyright Acl without 1.he penni"i(ln of 1he copyright owner is unlawful. Requests for permission or funher infonna1ion ,hould be add.re~scd to Lhe Pennisi.ions Department. Universi1y Science Books. ISBN I -891 389-24-6 ( c lolh cover J. Nonh A mL'Tican Edi I ion ISBN 1-R9 I )89-29- 7 (soft CO\lcr). avai lnble oulsidc of North America only

Library of Congress Ca1aloging-in-Publication Data McQuarric. Donald A. (Donnld All~n) Mmhematical methods for scientists and engineers/ by Donald A. McQuarric. p. cm. Includes bibliographical references and index. ISBN 1-891389-24-6 (cloth). ISBN 1-891389-29-7 (pbk .).

I. Ma1hema1ks. I. TILie. QAJ7.3 .M36 2003 510---dc21

2003043448

Printed in the United S1n1es

or America

10 9 8 7 6 5

3 2

4

I

Contents

Preface

xi

CH PTER

1

Functions of a Single Variable I l E1mctiaos J ') I irniis 9

1.3

(HAPTFR

Continuity 15

1.4

Differentiation 19

1.5 16

Differenti als 2 7

Meao Yahre Ibi--wems 31

1.7

lnlegration 3 7

1.8

Improper Integrals 47

1.9

niform Converg n Re erences 6 I

2 2.1

of Integrals 55

Infinite Series 63 lnfinile Sequence

64

Co nvergen e and Di verg nee of Infinite Series 66

Tests f

, c 70 6 83

101

2.9

Reieceoces

CHAPTER

3

Functions Defined As Integrals 1J 5

3 1 Ibe Gamma Eirocriao 11 5 32

The Bera

Euoc1io □

I 22 al I 3

.7

144 rnoulli Polynomial

149 V

Cuntenl'i

VI

9

4.1

4.2 4.3 4.4

Eul

ompl x Number. 16

4 .6

Powers of Complex Numbers 184

Tri 4.5 The logarithm

s 176 81

Refeceoces I AA fHAPJFK

5 Vectors 5 J 5

J

J 91

Yecracs io Iwo Diroeosioos 19 1 Yecroc Ftioctioos io Iwo Oiroeosioos J92

Vecrocs io Ibcee Diroeosioos 205

·

io Three Diroeosiaos 2J 2 in Space 2.. 1

CHAPTER

6 Functions of Several Variables 6I

fuoc1iaos 232

6.2

Limits and Continuity 239

23 ,

63

Partial Derivatives 244

6.4

Chain Rul e for Partial Differentjation 253 Diffcccorials ,wd 1hr Ialal Diffcrcotial ' 6D

6 5

6 6 The Diceciiaoa l DeciYalive and tbe Gradient 267 6.7

Taylor's Formula in Several Variables 273

68

Maxima aod Minima 229

6.9 The Method oi Lagrange Multipliers 285 6.1 0 Multiple Integrals 291 References 299

Cl:li'e:IEK

z Zl 7.2

7.3

~ctor Calculus 30 1 Vec1or Eield ]OJ Line lnt grals 11 Surface Integrals 322 33 1

7.4

Z5 Referenc s 347

rni'mH

8 Curvilinear Coordinates 8J

349

Plaoe Palac Caacdioates 349 355

8 2

8.3 8.4 85 8.6

(t,cvilioeac Coocdloaies 328 Som r Coordinale Syst

87

References 395

C p r 1ht

Contents

CHAPTER

VII

9

Linear Algebra and Vector Spaces 397

9 I

Derecroioaors 392

9.2

Ga u ia n Elimination 409

9-3

Matrices 418

9.4

Rank of a Malrix 430

9.5 9.6

Vector Spaces 436

9.7

Complex Inner Prucllict Spa(,es 449

Inner Product Spaces 444 References 453

CHAPTER

10

Matrices and Eigenvalue Problems 455

10.1 Orthogonal and Unitary Transformations 455 10.2 Eigenvalues and Eigenvectors 462

10.3 Some Applied Eigenvalue Problems 47 I 10.4 Change of Ba is 481 10.5 DiagonalizaIion of Matrices 491 10.6 Quadratic Forms 499 References 51 J

CHAPTUl

11

Ordinary Differential Equations 515

11.1 Differential Equations of First Order and First Degree 516 11.2 linear first-Order Differential Equations 524 11.3 Homogeneous Linear Differential Equations with Constant Coefficicnls 530 11.4 Nonhomogen ou Lin e•. r Differential EquaIions wi1h Const.·rnt Coefficienls .541 11 ..5 Some Other Types of Higher-Order Differential Equations 556 11.6 Systems o( Linear Differential Equations 563 11.7 Two Jnvaluable Resources for Solutions 10 Differential Equations '170

Ref renc.es 5 7 2

CHAPTER

12

Series Solutions of Differential Equations 575

J 2 J Ibe Power Series Metbad 526 12.2 Ordinary Point nd Singular Points of Differential Equation 58 I 12.3 Series Solutions ear an Ordinary Point: Legend re's Equation 588 I 2.4 Solution N ar R gu lar Singular Point 593 12.5

Referen

CHAPTER

1J I3 J 13 2 13.3 13 4

623

ualitative Methods for Nonlinear Differential E

Ibe Phase Plane 626 Critical Paints io tbe Phase Plane 634 Stability of Critical Points 642 Naolioeac Qscillarars 65 I

13.5 Population Dynamic

Reference._ 665

657

viii

Conr nts

CHAPTER

14 Orthogonal Polynomials and Sturm-Liouville Problems

667

14. 1 Leg ndr Polynomials 668

t 4.2 Orthogona l Polynomial

678 t 4 .3 Sturm-Liouville Theory 687 14.4 Eigen(unction Expansions 696 14 .5 Green's Functions 702 Re(erenc s 710

CHAPTER

15 15 . I

Fourier Series 713 ouri r S ri

as Eigenfu nction E pan ions 714

15.2 Sine and Cosine Series 724 15. I Equation

71 9

References 744

CHAPTER

16

Partial Differential Equations 747

16.1 Some Examples of Partial D ifferenliil I Equations 7 48 16.2 Laplace's EquaIion 755

16.3 The One--Dirnensional Wave Equation 768

16.4 The Two-Dimension I Wave Equation 779 16.5 Th H eat Equation 786 16. 6 The SchrBdinger Equation 796 A. A Particle in a Box 796

B. A Rigid Rotator 798 C. The Electron in a Hydrogen Atom 803 16.7 Th Cla

ifiration of Parti. I Diff r ntial Equation

807

References 8 J 2 CHAPTER

17

Integral Transforms 81 5

17 .1 The Lap lac Transform 816 17 .2 The Inversion o( Laplace Transforms 824 ·17.3 Laplac Tr, n forms and Ordinary Diff r nti al Equatio n 83 2 Lapla e Tra nsforms and Partial Diif ren ti al Equation 839 Fouri r Tran form 84 5 17.6 Fourier Transforms and Partial D ifferential Equations 856 17.7 Th Inv r ion Fom1ula for Lapl e Tran f rm 865 References 867

CHAPTER

18

Functions of a Com lex Variable: Theor

18.1 18.2

: The Cauchy-Ri emann Equat ion ration : Cauchy's Theorem 862 18.4 Cauchy's Integral Formula 894 18. 90 1 ern 911

869 875

18.3

References 9 J 9

Id

Cont ~nts

CHAPTER

IX

19

Functions of a Complex Variable: Applications

92 '1

922 Summat ion of S ric 938 L ation of Zero · 94 5 oniormal Mapping 954 onformal Mapping and Boundary Value Problems 970 Conformal Mapping and Flu id Flow 977

References 903 CHAPJEB

20 Calculus of Variations

9A'l

~0. 1 20.2

995 20 3 Yaciatiaoal Pcoblems witb Caostcainrs JQQJ 20.4 Variational Formulation of Eigenvalue Problems 1006 20.5 Multidimen ional Variational Problems 1015 Referenc CHAPTER

1021

21

Probability Theory and Stochastic Processes I 1 Discrete Random Variables J024

2 1.2 Continuous Random Vari able

1023

1037

71 3 Cbacac1ecistic f11nctians 1044 ?J 4 105 2 21.5 S10 ha tic Pro

e

· 'amples I 063

A. Poi sson Process I 063 B. Th Shor Effect 1067

Refcceoces CHt\PIER

JQZ3

22 Mathematical Statistics

I QZS

22 J Estirnatiao of PiJciJooelecs JQ7') 2.

Thre K y DL!ribution. U

A Ibe Nocmal Dislcibutioo

d in tatisri _al li I

I 085

mas

B. Chi-Squar Oislribution 1087

C. Student I-Distribution I 089 22.3 Confidence Interval!- 1091 A. Co11fiden ,e Intervals for the Mean o( a Nom1JI Dis1rrbution Whose Variance is Known 1093 B. C nfid •n t ~ I ntervil Is for lhe M an of a Normal Di stribution wilh U nkno wn V.:1ri,1nce l 095

Yaciaoce of a No

Answers to Selected Problems 11 3 llluslralion Credits 1154 lodex 1155

· ihu1 ioo JQ9Z

Biographies and Historical Notes

Isaac Newton aod GauCcied I ieboitz xiv Brook Taylor and Colin Maclaurin 62 I eaobacd E11lec I J 4

William Hamilton J 58 T

George Stoke and George

re n 300

Carl Jacobi 348 Ca rl Friedrich Gauss 3%

Arthur Cayley and James Joseph Sylvester 454 Jacob Bernoulli S14 The Weierstrass Function 573

Adrien-Marie Legendre and Wilhelm Bessel 574 Henri Poincare 624

Charles-Franc;ois Sturm and Joseph Liouville 666 Transfin il Num

711

Jo

Why

o Women Mathematicians? 8 13

Pi rr - imon lapla

814

Augustin Louis Ca u hy and Bernhard Riem;inn 868 Harry Nyqui st and Nikolai Joukowski 920 lohann Bernoulli 984

Simeon

De□ i"'

Pnj 0.

= /_ = f(a-)

(6)

A good example of a function tha1 has different right-hand and lcfl-hand limits is the Heavi.side step function (Figure 1.22). defined by

H(x)= {

In !his case, Ii m H ( -E) t!:-,0

~

X

< 0

X>O

(7)

= 0 and t-•O Ii m H (E) = l. As you might have guessed

already. a function will have different righl-hand and left-hand limits at a point where it is discontinuous. The ncxl Example illustrates different right-hand anJ left-hand limit~ and infinite limits. If lf(x)I > N. where N is a positive number. however large, as € ~ 0. 1hen we say I.hat 1/(x)I --+ oo as€--+ 0.

1.2

13

Li111i1~

Example 5: Investigate the behavior of j(x)

= (x + 2)/(x -

'I -r I) near I.he point x

= I.

It is clear that lim ((x) does nor exist. But let ·s look at the .r-1· two one-sided limi1:;.

SOLUTION:

. x +2 I1m - ,-r-x I

= 1.1m

I-

E

+ 2 = -oo

----

,--0l-t:-1

Figure 1.23

. x +2 \' I +( + 2 I1m - - = 1m - - - - = oo I i~(\ 1 + E - I

Figure 1.23 :-hows j(.r).

You should be aware thal a number or the commercially available computer programs. such as Mathematica. Maple. Mat.lab. and MathCad. can evaluate limit'-. For example. the one-line command in Mathematica

r2 -9 ) / x,

X➔ 0

]

gives 6. These programs not only carry out numerical calculations bur can per-

fonn algebraic manipulation~ as well. Consequently. they are often referred to as Computer Algebr.i Syiaems (CAS). We shall refer to them collectively as CAS. To encourage you 10 learn how to use one of Lhese CAS. Problems 15 through 20 ask you 10 use any one of them to evaluate some limits.

1.2

Problems

t. Show 1ha1 a -

,5 < x < a

+ 8 can be wriucn as Ix - o I < 8.

. sin x 2 . Use FiIgure I. 24 to prove mat 11m - .i..

.r--0

:=:

I.

X

C

T

sin x

Figure 1.24 Geometry :is$ociated with lhc proof thul

lim (sin x)/x

,-o

= I.

=

The function f(x) (x + 2)/(x - I) plotted agai11s1 x near che point x = I. The a~~ rnptotc of /(x) i~ indicated by the -.,crtical da._,hcd Ii nc.

.r- I+ X -

Limit [ ( ( 3+x

X

unit circle

14

.h a pll!r I / func tioM~ or a ingle V,ai"iabl •

1- c.o ( ' - 0 us x ...... 0. Notice that this ratio is of the limiting form

3. Use the result of Problem 2 10 show 1ha1

X

0/0.

4. Find 1he following limits: (a)

. sin 3x 11 m - .r-•O

(c)

. sm· x lim ,

. lan lr 11 m - -

(d)

x-

.,

.t-0 X 1/-

. .,

.r-•fl

sin x

lim

(b)

X

Jx

x-•O

S. Find the following limits: (a)

( c)

sin 2x - - as x - O sin x x2 - 9 - - as x X

-3

+J

I + cos ;rx - - - - as x -,.

(b)

,r.r

tan 2 I - cos x

( d)

6. Find the limit of 1J (x + h) - f(x) 1/ II ash (a)

J (x)

(c)

J (x)

as x -

..

0

X"'

= sin x



(b)

J(..--,

= 1/x

(d)

f (x)

= cos x

0 for I.he following tu net.ions:

7. Find the limits of 1he following functions a ' x-,. (a)

Jx+a - Jx + b

. of 8 . F .md lh e 1·mllt

(b) ( Jx+I

-/x+2 - .fi. a.-. x

---+

- Jx)j x + ~

0•

X

9. Dctem1ine the one- ided limits of j(x) .

I

10 . Evaluate lim

.r-o+ I

=

11. Given 1hat 11 11

= x/ lxl .

+ e12

1/ .

+ u,,. 1 has a limi1. find its value.

12. Suppose 1ha1 j(x ) _:;; g(x) ;S li(x) for all values of x in some dektl·d neighbohoud of a. If lim /(xJ r~u lim h(x) = L, prove Lha1 lim g(x) = L. Some author,; call 1his resull lhe sq1u-1'::_1· law. x--u

=

a

13. Prove Lhar lim j(x)g(x) = [ lim f(x>] [ lim g(x>] . .r---a

14. The function y

.r-•a

x-•LJ

= 1/( I -

x)2 is unbounded as x

-> I. Calculnre the value of t5 such 1/1a1 _r > I0 6 if Ix - 11 < 8,

The nO.

discontinuous al x

(x

+ l)(x -

.

= (x 2 -

1)/(.,· - I) is

= I because J (I) is not deli ncd. but using the fac1 thal x 2 - I =

I). we sec !hat lim f(x) x-. J .

=

= x-• lim (x + l) = 2. so tJ1at condition 2 holds. I

In this case we say that x I is a removable discontinuity. A more fom1al definition of con1inui1y is that J (x) is continuous al x = o if ii is possible to find a 8. which may depend upon both E and a, such that lf(x) - f(o)] < E. however small. if Ix - al < 8. Using this 8-€ definition. ii is easy 10 .,;how using Equal.ion 2.2 Lha1 if f(x) and g(.r) are conlinuous au= a. so are f(x) + g(x). f (.x)g(x). and f(x)/g(x) pro\'idcd g(a) t= 0.

f

ln1ui1ively, a discontinui1y is a jump in the graph of the function. For example. the Heaviside step func1ion (Figure 1.22) has a jump di.';con1inuiry al .r 0. and 1he func1ion defined by

=

-I

- I ::: x ::: I

bul

x f= 0

figure 1.25

x=O is discontinuous al x

X

=

The di1>C.ontlnuou~ f"unc1ion f (x ) x 2 + I for - I ::. ., ::.. I hut .r -#; 0 ::ind f U:) 0 for ,1 .-:- 0 plotted ag.ain.,t .r.

= 0 (Figure 1.25).

Another type of discontinuity is displayed by the runction 1/(1 - x) 2 al x (Figure 1.26). We say that 1/( I - .r) 2 has an infinite discontinuity at .x I.

=

=

=I •J

Just as we have right-hand and lef1-hand limi1s, we have continuity from Lhe right and conunui1y from the lefL For example. we say that J(x) is continuous from 1he right at a if lim, J(x) = f(a), or more simply. if /(a+)= j(a). A ,r-,.a, function is continuous at x = a if it is continuous both from the righl and from 1he

left at x

= a. X

We say 1ha1 a function is continuous in an interval if i1 is continuous at all poin1s in the imerval. If the interval is 0 be as smaJI as you wish. TI1en. we need lo find a 8 = ~ (€. r ) such that

Solving rnis inequaJity for,5 gives 8 0. then J. ir f (c) = 0. 1hen 11

/(.t) has a local minimum at 110

x

=c =c

condusion 0 andi one at x = -2 with j"'(-2) = -18 < 0. Thus. there is a local mirumum at .r = J [wi,Lh f( \)1= - I 2J and a local maximum al x -2 [with /(-2) 151. Although we find a local maximum at x = -2, it is not an ohsolllfe max.imum because j(:r:) = 40 al its endpoint x == 3 (see Figure 1.39). The message here is Lhat if /(x) i.s defined over

=

figure 1.36 The funclfon /(x) 1 (x - 1} + 2(.r - I)

=

=

I plo11cd

ngui1r.,1.r.

X

I

=

(a)

=

y

=

a closed interval. then you mus1 cxc1mi11c the bchavior of /(.r;) no1 only at i1s cri1ica\

poin1s. but al its end points as well. X

(b) y

J

f

X

-I

(c)

Figure 1.37

The functions (al, j(.r) = .r..1. (b) g(.rl = .r1. and (c:) /i(x) -x 4 plotted ogninst x.

=

I

X X

Figure 1.38 The funcrion / •.x) - • 21 defined on lhc cl~d inten·al 1-1. I I plotted ::ig.;iins-t x.

Figure 1 .39 TI1c func1ion / (x) 2 • ' - 12.r - 5 defined on the clo d interval [-3. ) I

=

ploue.d ag::iin

1 .1· .

IA

25

Difil'rl'nli.ilion

Example 6:

Find the local exrrema and 1he inflection poin1s of /(x) = x.!(I -

x).!

over

the entire .r axi.s. SOLUTION:

The cquatiOt\

/'(x) = 2x( I - x) 2 - 2l" 2 (1 -

shows that 1here arc critical poinr.s at .r dcriva.1.ivc is J"(x)

.T)

= 2r(l -

x)( I - 2.r)

=0

= 0. x = 1/2. and x = I. The second

= l2x 2 -

12.x

+2

f

The fact that f''(O) > 0 and j"'(I) > 0 and 1ha1 J"(l/2) < U tells us that the critical points x = 0 1md x = I are local minima and that x = 1/2 is a local maximum. The inflection points are given by /" (x) = 0. or at x = (3 ± ./3)/6 (f,igurc 1.40).

-0.5 Note from Figure 1.40 Lhat j(x) = x 2( I - x) 2 is symmelric about the vertical line at .x = 1/2. To see that this i~ so analytically, lei~ x - 1/2, ~o 1ha1 the function 2 2 now reads j(t.) ( , which is an even func1ion in(.

=

= (f ~) ! - ~)

1.4

0.5

Figure 1.40 TI1e function f(:q "" a~;iin,;1

x" t I

x.

Problems

l. Differentiate (b)

sin x

(c)

r

x 2 lan 2x

2. Differentiate

(b)

Jx'- - 3x +

I;

(c)

rr'

3. Differentiate (b)

ln(scc x

+ tan xj;

(cl

x"in .r

4. The t.angen1 line to a curve ul some point (a. b) has the slope 111 = (dy/d.r>x=-u of the 1inc perpendicular lo rhc curve at (fl. b) i.s equal IO - I/ m.

5. Docs f (x)

= J'(aJ. Show that rhe slope

= lxl have a derivative at x = O'?

= x 3 is difforcn1iable in the dosed interval ( 0, I J. The grJph corresponding to 2.r 2 - 2ry + .\ 2 = 4 is an ellipse whmc major axis makes an angle wirh respect

6. Prove that J(x)

7.

to the x arxJs. Plot the func:tir1n. Show thai thi: slopes oft.he Lang,ml lines 10 this curve at 1..he two points where it cros,.cs 1hc x axis arc I.he -.amc. In other wordllfabo/(J and is the basis for a par.1bolic lc11-.; incoming light is focused .it the point F, rhe focu~ of the par:1hola . Thl' equation of 1hc parabola i, \-~ =-l p.r. where p i, the disrancc OF in Figure 1.41.

=

Figure 1.41 lllu$\rntion nf 1hc re Acct ion property of ;.i p;ir;1hol.1. (St'l' Pr.ihll'm 1-1.)

15. No1ice 1.hat J'(a) is defined by Equation I. Normally we evalua1e j'(a) by linding j'(x) ancl then le11ing x =a.bur 1his procedure is 1101 qui1e rhe same as u.sin£ Equaiion I. Consider 1he funclion J(x}

={x

2 sin( 1/x)

0

.\" ¥- () X

=0

The dcrviarive of J(x) al x == 0 is. by defi11itio11.

j'(O>

=

lim f(O + ~x > - f(O)

r- o

6.r

Show lhat /'tO) = 0 in thi ~ ca:,,.e. Now detcmli1ne J'(.~·) and th,m let .r -,. 0 and ~how lhat rhe limit of J' 0. How about Jim x In x? This limit oci:urs fairly often in the l

>0 I

physical chemistry of electrolyte solutions. :-.-uch as aqueous sotu1ions of sodium chloride. In Lhis case. we have the indelemtinale form -0 - oo, so let's look at . I,m , - .o

In x 1/x

-

. = ,· -11m -0

1/.r - 1/x ..,

--

. O = - ., 1,11111 x = o-, 1

Figure 1.46 shows the behavior of x In x as x -,. 0. X

Example 3: Detennine lim xe- · Figure 1.46 T11c beh:iviorof the fun 1ion .f ( r) !JS.I'_..

0.

=x In x

so Lu TI o N: 11,i cxpres:;ion is of the indc1e.m1ina1 · frwm oo • 0. ll becomes an / ,. ._ form by writim! it a~ r l,im .:... e·t

I = ., lim - =0 -'"".\.. e-r

The result of Example 3 i!i- a special ea~ of the limit of x"e-x as x - oo. where 11 is any integer. We can ea.-:ily find this generc1I limit using mathematical induction. We know from Example 3 thatx" e-· Oa-.x -> whenn = I. When using ml.lthematical induction, we assume thal if a slatement is true for some value of 11 L then it must be I rue for n + \ also. So . 11111

.r--:x,

r"

! I

--

e·\

=

• (11 + 1).x" lim - - - -

,r-.'X'

e-r

yll

= (11 + 1) ,-x lim :_ = 0 e·'

(7)

1. 6

35

,\\,',Ill V,l lu, · I heor ffi$

=

=

=

But we know that lim xne-.t 0 as x---.. oo for 11 I. so it must he 1rue for 11 2, 11 = 3. and ~u on. This result. which ts wor1h remembering. says 1ha1 e- .f __,, 0 fa.,ler than any power of x as x - oo. Ano1her limi1 wonh remembering is lnx . I 1m - = 0 I

(8)

,rU

•"-

for any et > 0. This limit says 1ha1 In-~ - oo more slowly than :my positive power of x. no ma11er how small (Problem 7): or cquivalcnt.ly. that xc, In x - 0 a."- .x - 0 for any a > 0 (Problem 8).

Other indetenninatc forms such as o0 • cx:/1• and 1-x can often be handled by tak.ing the logarithm and manipulating the result into the standard indeterminate fonns 0/0 or 00/ 00. For exumple. consider ,!!_~~ x,(. Let y = .\..i·. and then look al lirn In y t'

0

=

lim x In x O

X

Example 4: Dc1cnnine lim

,1 - .....

= 0: and so

- •0

.I

1J •

= I.

:Jr. where p > 0.

=

We'll let y

SOLUTION:

lim y =Lor final l y lim x 1· .I

11

2

p . lake logarithms. and I real

II

as a continuous

variable. . hm ln y I/

'\..

=

. I hm - In p I,

• '\.., JI

=U

So lim r = lim ::fp = 1. Figure 1.47 shows ::/2 plouc-d against n. ,,i •:\.. ,, x,, Problem 12 has you show th.:11 ;j,i - I as 11 - oc.

n figure 1.47 The fun tinn /(x) The line.

11.

3!-)°m,ptote

= ,f j_ plo11ed agains1

i~ shown ~

Whal if you apply I' H6pital's rule and you still get an indctcnninate fonn? Simply apply ii succc--.sivcly Ulillil you no lomgcr obtnin an indetenninatc form. for example.

+ 12x \8x-- + 30x -

2 \'.' - 9x~

.

lim .r-1

2x 3 -

,

5 14

.

= tm,

.i:-1

6x 2 - I 8.x + 12 --,- -- -6x - - 36x + 30

12x - 18

=lim - - - - = .1 I 12.r - 36 4 (See Problem 11. however.)

1.6 Problems I. Use Equaiion 4 to calculme sin{;r /4) to four~place aC(;uracy. Hi111: Realize thal I sin x I _ I and that I cos x I ~ I. 2. Use Equation

4

to calculate the value of e to five-place accuracy. Hi,,,: Use (he fact that e ::c 3.

a

da~hcd

36

Chapter 1 / Fune-lion of a ingl£> \ l;iri .:ibl ·

= x 3 + px + q has one real roo1 if p > 0.

3. Argue that j(x)

4. Use l"Hopital"s rule (a)

lim

ex

I

-

·

lim

x-1

I - cos x X

.r

10

I

lim

(d)

.l

+ cos 2x

rr ~ I - sin 2r

dctem,inc 1hc following limits:

. e' - I 1lffi - .r-•0

6.

-

.

.1-,0

hm

x

S. Use l'Hupital's rule

(c)

(b)

X

.r-,,0

{a)

dctennine 1hc following limits:

l.im - .c-0

(c)

10

sin 2 x

. I - cos X ., I1m

(b)

x-•0

X

~

(d)

I- x

x

.r-

lim ( J :r: 2 + 2..r - .r)

Use l'H6piial's rule 10 de1em1inc lhc following limits: (8)

lim (c.sc x - col x)

(b)

.1~0

(c)

.

l1m

ln sin x ---

(d)

.r-.o+ In tan .t

·1rn I - c~s2 .r 1 .

Jim ln ( I + .r) .r-0

.

7. Show tha1 for every a> 0. I1m

lnx

-

x-oo x«

x-

x-•O

X

= 0.

8. Show that for every a > 0, xa In x -. 0 a.-. x



0.

1

9. Determine lim x /.r_ .i:-oo

. . J i + x:? lo . Dctcnnine 11m - - - . ,t - I. 1hcn we have . I - 1 ) = - -I ( 0 - 1 1 = Illm - I- ( - I - p hi' 1 1- p , l- p

b-")()

lf p < I, then

Um -

1

-(1, 1-p

b-x I - p

-

I) = oo

1.8

lmprop r lnt

If p

49

r.i l

= I. then

J f 1

So we see 1ha1

00

l

f

oo dx . - = lim xf'

,,_

dx

h

-

I

. = lim In J, = h-oo

X

dx convell:!e if p > I and diverge if p :£ I. This result xP

~

is worth rcmcmhering.

Example 2:

1

00

Examine 1he convergence of

c-udx as a func1ion of s.

SOLUTION:

.

= l hm

e- .ra - e-sb

(s > 0) .1·

but equals oo if s= (I or ifs < 0. Thus the integral converges ifs> 0 and ~

diverge~ ifs

0.

Nole that Equal.ion 3 does not say that

!

oc,

'- /(x)dx

For example. consider / = consider lhe two integrals

= c~~ oo

f'

udu

J

-~--

. ·~ I+ u 2 ·

We choose : = 0 in Equation 3. and

. I1m

and Let

11 ;::::

-x in r.hc fln;t integral

10

. 1'

f

so 11c I .mtcgra 1

'

ltm

'X)

-:x.

b-•!lO.

£" n

-11du -I + ,,2

obtain

1

-

(not 1rue)

-c j(.r)dx

xdx " o I + x2

. ., = hrn -I In(!+ a-) 2

=-

11- • -

I ' I h . . -udu -=,, d.1verges. N 1 ow et s ook at t e integral IIom Oto oo. l + u-

l

lim b .

b ud11

--,

,1 I + u·

.

I

= llm 1,

::,;:; 2

ln(I

,

+ h-) = oo

U,.,p!t•r 1 / Fu11ctions of a Single V,1ri.ihl._.

50 Thus, h01h con1ribulions

10 /

diverge. (f we had u.sed

)~":-x.

i

ll

lldll

-a I

Ihen we would nave obt;:iincd a value of zero

+ 11 2 I~

In( I

+ t/) -1 Jn( I + a 2 ) I for the

in1cgral. ll is useful to have snme 1ools 10 detem1ine e,L N(e. x)

(4)

where N is a number tha1 depends upon f and x with x 1 :::: x.::: x~. Equ:nion 4 is the fom1aJ way ot' expressing that F (x) converges for each x in I x 1• x'.! 1- Let ·s suppose. now. 1hat Equation 4 is sillisflcd for a number N(€.) that depends only upon f and not upon x. In other words. suppose that

where N ( ~) is i11depe11de111 of x. In lh is case. we ~ay that F (x) converge~ uni form ly

in

I x 1• x:d- For example. lhe integral

c.:onvcrgcs uniformly to 1/x for x ~ I because

-1 -

X 1

l" O

-n

e · dr

I

,,-.d, ::S"' -h = -t=

X

and e-" will be 0. (See !he previous Example .)

ft~

Before we leave this section (and this chaplcr) we should mcmion some corresponding results for integrals with fini1c limits . I.

If f

J,;'

(x . 1) is ronrin11011s i11 the rc·cta11:~lc a :::: r :::: Ii,

f (x,

i., ('{))/lill/10/IS )or x , .'.:: X

I )di

lim x-•.10

l

b

=

/(x. l)d1

"

!J,

Xz. This thenrem o/1,rn·s

_:'::

F(x)dx

=

JI.\"'" \\"ril

ltm f (x. l)dr

1·r. [J" .Hr. ] r)dt

_rl

-~I

=

o .1-•.ro

2. Under tht· co11di1io11.1· of the previou.l· 1l1t·orem.

1-"

x 1 _:s .t _:s x 1. rhe11 F(x)

dx

11·e

=

U

/rave

fb [ frr· J ~IJ

3. If f (:r.,) and of (.x. 1 )/8:r are co11ti1111011s

i11

(x.

t)dx

]

dr

•XJ

the rl'ctanglt' a

~ t ~

b . .r 1 :5 x

~

x 2 , then

F

, (X)=

[1, Af(:x. l)d t -

• r.

You can easily

1cs1

--

i)x

Lhcse three theorems with F(x)

= .f01 t'-.x,dt

(Problem 10).

1. 9 Problems I. Show 1hat

10...• t·-x dt is unifom,ly l'Onvergeni for .r ~ u

2. Sho"' that

fooc ,,,,. r1dt is unifom1ly cOn\'ergenr for x ~ tJ. > 0 where II a positi\ C integer.

1

>

0.

1

3. We showed 1hat

ix,

ti.-.ridr

= 1/x

is unifonnly convergent for t ;~et> 0 in Problem I. Show 1ha1

Cl

1 0

11

I t'

.!." Id

4. Prove 1ha1

t = -11!- . xn I

fox

,,-.ri cost dt converges unifom1ly (and absolutely) for" :::

x _ b. where O < a < b.

60

C'h,1p1i·r I /

5. Example 2 ~hows

cos O'.\"

1

7. There is

standard Irick 10 evaluate

,X,

.i

- ,-

., .. -1- I

00

9. Does





fooc c-

1

cos etx d:r. Differentiate with respect 10 et. integrate by parts.



1 O

la''° e-a., cos x dx is a continuous dx

---

1 + x:?

of,, Si ng ll' \i,'lri,1hh·

1s uniformly convergem for all real values of Ci..

and notice Lhe result. The answer is (rr 1 -J2) e

8. Show 1hu1

io ns

is uniformly convcrgenl for x ~ a > 0 . Show that

6. Show 1ha1

o

un

=

. hm

1

00

o

u ·O

2 4

1

funclion of a for a > 0.

co-; ax dx ., ----,-. I + .x-

lO. Verif)• the last 1hree theorems ut the end of the section wi1h

ll. Show lhal Jt(sin x)/x dx

F(:r)

=[

. ()

1

e- r,d, and O::: x:::: I.

= rr /2 by wri1ing

10

x , -·i,jn-dx = 1"'.3 sin x (ioc

O

X

t!-.i, dr

) dx

0

and then inten.:hanging orders of inIcgraIion. 12. Show Lhur for:.:, c - ,u (sin x )/x d:r

= co1- 1o by writing

,:.; . .· 1 ,,

-a· r sin .\' d - - ,\'.=

0

1oc

e - n.r

0

X

and inierchanging orders of integr'Jlion .

. . ,, , , 1

13. Eva\ua1e the integral in the previous problem by differentiating with respect to a. 14. Show that /(a. I,)=-=

l.'

-,r. ·- t,· / r· ,1x

7r 1/2

= -' -e- 2" 1' by differemiaring with

2a o :r = b/oJ.. and lh~n integrating with respect to b.

15. Given 1ha1

f..._,,, "cos xu du

Jn

= --1- .,, show 1ha1 I+x-

1= o

ue-u sin x,, du

2

= (I

rcspccl to b. then k:Hing

\'

., .

+ x 2)-

61 References CALCULUS TEXTS: Frank Ayre~. Jr.. and Etlioll Mcndelwn. 1999. Calrnl11s. 4th ed .. Schaum ·s Outline Series. McGr.1w-Hill R. Couranl. 1970. Dif{ercminl and ln1t·Rral Calculus. 2nd ed .. Inicrs.cience, John Wiley C. H. Edwards, Jr., and David E. Pc-nncy. 1998. Calcul11.t and A11aly1ir Gt·nemtry. 5th ed .. Prcn1 ice-Ha.I I Witold Kosmala. l 999. Advanced Calculu.~: A Friemlly Approach. Prentice-Hall Jerrold Marsden and Alan Weinstein. 1985. Calc11/JL1· I, II. and Ill. Springer.Ycrlag Richard Si Ivcnnan. I 989, /:".1.11•111iu/ Colrnlux. Dover Public::uions Murray Spiegel. 1963. Adwm1·1•d Calm/us. Schaum ·s Outline Serie.~. McGraw-Hill Dlivid Widder, 1989. Ad1·a11ced Calc-11/11,1·. 2nd ed .. Dover Publica1ions

MATHEMATICAL TABLES: CRC Standard Matht·nwtical Tal>lcs and Fon1111lai..', JOlh ed., edited by Daniel Zwillingcr. CRC Press (19%) Tables af lnte~mls, Series. n11d Producis. 41.h ed .. I.S. Gradsh1cyn nnd I.M. Ryi.hik, Academic Prcs!i ( 1980)

COMPUTER MATHEMATICAL PACKAGES: !'vlATHEMATICA. Wolfram Re.search. Inc .. Champaign IL. www.wolfram.com MATLAB. The Ma1h\Vorks. Inc., Nnlick MA. www.malhworh.com MAPLE. Wa1erloo Maple. Inc. Waierloo ON. www.\\>alerloomaple.cum MATHCAD. MathSoft. Inc .. Cambridge MA. www.nw1hcad.com

SOME GENERAt MATHEMATICAL WEBSITES: www-history.rncs.sl-and.ac.uk (The www- is correcl.) www. mat h. un,cdu/rnath/math-wch www. mat h. u J) s,, for all 11, 11011im:reasi11g if Sn-I~ s,, for all,, and 111mwro11ically deuensillg ir s11 + 1 < s,, for all 11. Clearly. every bounded monotonic sequence is convcrgcnl. Alrhough every convergent sequence is bounded. 1he converse is not true: there are bounded sequences [for example.

I (-1)" \ J 1hat arc not

convergent. You should realize that the convergence or divergence of a sequence is not affec1ed by adding or deleting a finile number of terms of the sequence. Convergence depends upon the large II behavior of the sequence. or on the far "tail" of the sequence. The criterion given in Equation I explicitly shows that convergence depends only upon the behavior of {s11 I for n > 11 0 •

Example 2: Dc1em1inc whether the sequence large"· De1cm1ine i1s limit as 11

{ '",,"

-

lnx . Let f(x) =-.Now f (x)

SOL Ul ION:

X 11

• 11 the sequence { -ln,-, } decreases tor its limit is zero as 11 - oc·,

2.1

] is incrc:1sing or dccrc:i-,ing for

~

1-lnx = --,x-

< 0 for x?: e. so

3. Usini; . l'H.opI1a . 1· s ru Ie. we see I.hat

Problems 2

J. Show 1ha1 lim 3',

611

11 2 +1

11- 00

r-

2. Show 1..hat lim ~ 11

- ·~

3. Shmv th:it lim

n-•oc

/I + I l/ n

4. Show rh a.1 lim cos ,r-- ......

+ 2 = 3.

= 0.

= I. 11

11

= 0.

5. Show tJiat lim ~ ·= 1) for " > 0. ,,

•: ,C

6. Show that ,, lim ....

~

0, = I.

7. Show rhal 11 !/5" is increasing for n

2"

8. Show that ofx?

11!

-

0 as

11 _,, ;X:> .

5.

r" Can you show that this result gcncrjlii.e1- to :...__ _. 0 as 11 11!

--.

for any value

9. A simple method for showing whether a sequence is increasing or decreasing is 10 u~e a continuou~ function /(x} such that _((11)-.,,. ~,, for 11 = I, 2, . . . and show that either J'(x) > 0 for x ~ I (an increa.-;ing sequence)

66

Chapter 2 / ln1i ni:-, Serie.

or that J'(x) < 0 for x decreasing: (a)

~

I (a decreasing sequence). Determine if the following sequences arc increasing or

4n - I } { 611 + 2

(d)

(c)

r

+ -A) . Show 1ha11f.

. defined by the recur-ion . tormula . l 0. Suppo~e that s11 1s x,,+ 1 = -I ( -~n 2 I=

11+1} ,,

In - -

~

.

Jun s,. " ~

=I e

i~t·. then.

Al/2_

+ F,,- 1defines the Fibonacci sequence. where each tern, is 1he sum of the two preceding 1cm,_,;_ The sequence is I. I. 2, 3. 5, 8. 13. 21. .... The lim F, 1 docs nor cxis1 in 1his case. bur 11-c:,.:, F nssumc that lim ~ does exist. Show thal this limil is equal to ~(I + J5°). " o::: F,. ~

11. The n:..--cursion formula Fn+ 1 == F11

12. Which of the following sequences converge? 11 co. h 11 (..,) " (a) . ,, = -..(b) s,, = -"s1nh 11 11 nl

13. Determine lim __:__ 11-00 11"

14. Use the €-6 nol.ilion 10 prove lhal { ~} convcr_\.!~S to 0. 15. If lim s,. n •

I,

= a and lim n

111

. = b, 1hcn prove th..11 Jim s,,r,, n ·•".

. s,, lim -

= ob and 11

•".

1,,

= -b (I

.

prov11Jcd thol

111

,=-

0

and

,=- 0.

2.2

Convergence and Divergence of Infinite Series

An infinite series is an exprt's~ion of the form oc

L "" =

"1

+ u~ + "J + ...

11,ec]

The pnnial sums of this series are

S3

= " 1 + II 2 + 11 J

and the 111h parrial sum is

If 1hc sequence of partial sums converges. then the series is said to converge. or 10 be convergent. Otherwise. 1he series diverges, or is divcrgenr. If Jim S,, 1/~'X:,

=S

then S is called the .,um of the infinite series.

67 The smndard example of an infinite series is 1he geomelfic series. whose 111h panial sum is

,,

Sn

= L rJ- l = I + r + r 2 + ... + r'i - I j= I

Note that 11 11 + 1 = 11,1 r. h turns out that ii is possible (and easy) to obtain a closed form expression for S,1 • Muhiply S,, by rand subLract the result from S11 10 get

S11

r S11

-

=I-

rn

or I - r" S,,=-1-r

(I)

2

It's ca~y to see here that

lim S,,

It•'\...

= 11 -

lrl

r

=-

IX.-

Jl ~

.t

0

Nore that we start the summation with a.n "

lxl
Cfics. The ndvnmage of t.hc intt'grnl tes1 is that it is usually easier to evalluare-an integral Hurn it is to sum .i. se-rie-s into a closed form.

Integral l'esi·: Let L ''n be n pm:i1in:' .\eries 1,111d /1'1 j(x) he LJ omrimw11,\, positi1·c. decreasing fimctirm :mch that J (11) = 11, 1 for 11 = L 2, .... Thr11.

L,, li 11 t'tJlll 'er,1u·.~ if and rml_1· if {.-x, f Cr )dx cmw1'1g1·s. 2

3 4 (b)

5

6

• I

II

Figure 2.4 A geometric aid 110 the proof of the in 1eg_r.il

ll1e proof of 1hc integral lest is illustrated in Figures 2.4a and 2.4b. \\l'c .:;ec in Figure 2.4a 1h:11 the area under the curve from I 10 N i.'- less than the total- ar~a of 1he rccianglcs. which is 11 1 + 11 2

IC',I.

Ii If

L

11 11

+ · · · + 11 N· Thus. we have

N

J(x)dx
dx

M

We'll usually t::.ikc M ;;::

I. however. ~

Let· s consider 1he series

L ~. The function f

(x)

11-

= I/x'!. equals I/ ~ when 11

11=.I

x is an integer. Punhcnnon:, j(.r) is c:onlinuous and mono1onically decreasing.

Now

f

I p ~ l

(5)

X

I/

converges diverges

L ,,., a.11d L P,, be Jwo positive saie.-. with L 11 11 com·,~r:i,:1 s {f L Un conve~e.~. anJ L u,. rn

73 (Sec Problem 14 for an outline of 1hc proof.) 00

Docs 1he series C

L~ n=I

II"

L

I

I

I

converge? Well. - 1 - - < and we know that 3 ,r ;;;; I 11· + 3 11· + J n 1 - converges (p series wi1h p - 3). and so converges. What if 1 -:i--

~

L - +3

n=I

II"

the series started with then = 0 1crm? We wouldn·t be able 10 apply 1hc above inequaltty for 1he " = 0 term. Docs this make any difference? All we have to do ·,s to wn1e · then= 0. tem1 cxplic11\y - . and then consider . . I ~ I the scncs - ..1.. L ---. 3 11= I l!J + 3 The point is 1ha1 we can apply 1he comparison tcs1 srnrting with any term because the convergence of an infini1c series is dctennined by 1hc lnrgc-11 tail of 1he series. so the first lini1e number of lerms has no effect on the convergence or divergence of an infinite series.

Example 2: E.xamine lhe convergence of 00

I

I

I

11!

21

3!

S=E-=1 +-+ - + ··· n=I

SOLUTION:

~

I

= 11(11 -

1)(11 - 2) ...

3. 2 ::: 211 -

1

for

So

But

and so S

= L ~,, . converges. We'll see in Section 7 that 5 = e -

I.

m= I

Ano1hcr useful test for 1hc converge.nee of a posi1ivc scric..-. is the

L 11,, and L v,, art· hvo pMilive serit·s .rnch tlwr Lu,, and L v,, «:itlu:r boll, com·er~r. or horh di;:agt·. ,r I = 0 011d L v com·erRt•,·. rhe11 L u" couverges. If I = oo mrd L dirages. 1he11 L diverges. Limit Comparison Test: If

lim ~

14-,. .:x,.

I'

= / 11·i1J, 0 < I


I and r

= I are similar.

I""+' I= u,,

r < I. Choose,

~ 111,, 1,.1.- and appeal 10 lhe geomet.ric

82

ri es

12. Detennine whe1her I.he followin g series are absolutely convcrg~.nl. condi1ion:.illy convergent. or diver ent: 0

~

(a)

( - I )11

I

L - -. . ,r2 + I I II

(b)

L(-l)"+i _ _

(dl

(c)

~

,1 - I

,1.,,, I

-x,

11c-el



= L (-1 )"+

13. lnvcs1jg:i1c 1hc convergence of the scric1- S

~.

+

I

2-4·6···(2n)

=

15. There is another test for convergence culled the Root Tt•sr: Let r

r