188 66 162MB
English Pages xvi+634+xx+547 [925] Year 2021
'+#/ )%# /+"'$$#/#+1') .21',+0
#!,+"201,*"'1',+$,/+'3#/0'15,$)'$,/+' #/(#)#5 /,*'+#/ )%# /+"10 --)'!1',+0 #3'"51#3#+52"' !,+)",-5/'%&16 5#/0,+"2!1',+ /,*'+#/ )%# /+"10 --)'!1',+0 #3'"51#3#+52"' !,+)",-5/'%&16 5#/0,+"2!1',+ /,*2+"*#+1)0,$'$$#/#+1').21',+0 ##+1%)#"4/"$$
/1&2/3'"+'"#/,-5/'%&16 5#/0,+"2!1',+
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Cover Art: Courtesy of Photodisc/Getty Images Copyright © 2021 by Pearson Learning Solutions All rights reserved. Permission in writing must be obtained from the publisher before any part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system. Additional copyright information is included, where applicable, as a footnote at the beginning of each chapter.
Attention bookstores: For permission to return any unsold stock, contact us at [email protected] Pearson Learning Solutions, 501 Boylston Street, Suite 900, Boston, MA 02116 A Pearson Education Company www.pearsoned.com ISBN 10: 0137114036 ISBN 13: 9780137114030 Printed in the USA
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
#&'0*3+328*287 6*+&(*38*83"89)*287 < -&48*6.2*&659&8.327.2.2*&60,*'6& -&48*6 &86.+LQW 5RZ RSHUDWLRQV DUH XQQHFHV VDU\@ 2 3 2 3 2 0 6 10 8 5 5 OHW E D 4 3 5 DQG OHW W EH /HW A D 4 1 1 2 3 1 WKH VHW RI DOO OLQHDU FRPELQDWLRQV RI WKH FROXPQV RI A D ,V E LQ W " E 6KRZ WKDW WKH WKLUG FROXPQ RI A LV LQ W $ PLQLQJ FRPSDQ\ KDV WZR PLQHV 2QH GD\ŖV RSHUDWLRQ DW PLQH SURGXFHV RUH WKDW FRQWDLQV PHWULF WRQV RI FRSSHU DQG NLORJUDPV RI VLOYHU ZKLOH RQH GD\ŖV RSHUDWLRQ DW PLQH SURGXFHV RUH WKDW FRQWDLQV PHWULF WRQV RI FRSSHU DQG 20 30 NLORJUDPV RI VLOYHU /HW Y1 D DQG Y2 D 550 500 7KHQ Y1 DQG Y2 UHSUHVHQW WKH ŗRXWSXW SHU GD\Ř RI PLQH DQG PLQH UHVSHFWLYHO\ D :KDW SK\VLFDO LQWHUSUHWDWLRQ FDQ EH JLYHQ WR WKH YHFWRU 5Y1 " E 6XSSRVH WKH FRPSDQ\ RSHUDWHV PLQH IRU x1 GD\V DQG PLQH IRU x2 GD\V :ULWH D YHFWRU HTXDWLRQ ZKRVH VROXWLRQ JLYHV WKH QXPEHU RI GD\V HDFK PLQH VKRXOG RSHUDWH LQ RUGHU WR SURGXFH WRQV RI FRSSHU DQG NLORJUDPV RI VLOYHU 'R QRW VROYH WKH HTXDWLRQ 7 F 6ROYH WKH HTXDWLRQ LQ E
$ VWHDP SODQW EXUQV WZR W\SHV RI FRDO DQWKUDFLWH $ DQG ELWXPLQRXV % )RU HDFK WRQ RI $ EXUQHG WKH SODQW SURGXFHV PLOOLRQ %WX RI KHDW JUDPV J RI VXOIXU GLR[LGH DQG J RI SDUWLFXODWH PDWWHU VROLGSDUWLFOH SROOXWDQWV )RU HDFK WRQ RI % EXUQHG WKH SODQW SURGXFHV PLOOLRQ %WX J RI VXOIXU GLR[LGH DQG J RI SDUWLFXODWH PDWWHU D +RZ PXFK KHDW GRHV WKH VWHDP SODQW SURGXFH ZKHQ LW EXUQV x1 WRQV RI $ DQG x2 WRQV RI %" E 6XSSRVH WKH RXWSXW RI WKH VWHDP SODQW LV GHVFULEHG E\ D YHFWRU WKDW OLVWV WKH DPRXQWV RI KHDW VXOIXU GLR[LGH DQG SDUWLFXODWH PDWWHU ([SUHVV WKLV RXWSXW DV D OLQHDU FRPELQDWLRQ RI WZR YHFWRUV DVVXPLQJ WKDW WKH SODQW EXUQV x1 WRQV RI $ DQG x2 WRQV RI % 7 F 2YHU D FHUWDLQ WLPH SHULRG WKH VWHDP SODQW SURGXFHG
PLOOLRQ %WX RI KHDW J RI VXOIXU GLR[LGH DQG J RI SDUWLFXODWH PDWWHU 'HWHUPLQH KRZ PDQ\ WRQV RI HDFK W\SH RI FRDO WKH VWHDP SODQW PXVW KDYH EXUQHG ,QFOXGH D YHFWRU HTXDWLRQ DV SDUW RI \RXU VROXWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
/HW Y1 ; : : : ; Yk EH SRLQWV LQ R3 DQG VXSSRVH WKDW IRU j D 1; : : : ; k DQ REMHFW ZLWK PDVV mj LV ORFDWHG DW SRLQW Yj 3K\VLFLVWV FDOO VXFK REMHFWV SRLQW PDVVHV 7KH WRWDO PDVV RI WKH V\VWHP RI SRLQW PDVVHV LV m D m1 C C mk 7KH FHQWHU RI PDVV RU FHQWHU RI JUDYLW\ RI WKH V\VWHP LV
1 Œm1 Y1 C C mk Yk m &RPSXWH WKH FHQWHU RI JUDYLW\ RI WKH V\VWHP FRQVLVWLQJ RI WKH IROORZLQJ SRLQW PDVVHV VHH WKH ıJXUH YD
3RLQW
Y1 Y2 Y3 Y4
0DVV
D .5; 4; 3/ D .4; 3; 2/ D .4; 3; 1/ D .9; 8; 6/
J J J J
D )LQG WKH .x; y/FRRUGLQDWHV RI WKH FHQWHU RI PDVV RI WKH SODWH 7KLV ŗEDODQFH SRLQWŘ RI WKH SODWH FRLQFLGHV ZLWK WKH FHQWHU RI PDVV RI D V\VWHP FRQVLVWLQJ RI WKUHH JUDP SRLQW PDVVHV ORFDWHG DW WKH YHUWLFHV RI WKH SODWH E 'HWHUPLQH KRZ WR GLVWULEXWH DQ DGGLWLRQDO PDVV RI J DW WKH WKUHH YHUWLFHV RI WKH SODWH WR PRYH WKH EDODQFH SRLQW RI WKH SODWH WR .2; 2/ >+LQW /HW w1 w2 DQG w3 GHQRWH WKH PDVVHV DGGHG DW WKH WKUHH YHUWLFHV VR WKDW w1 C w2 C w3 D 6@ &RQVLGHU WKH YHFWRUV Y1 Y2 Y3 DQG E LQ R2 VKRZQ LQ WKH ıJXUH 'RHV WKH HTXDWLRQ x1 Y1 C x2 Y2 C x3 Y3 D E KDYH D VROXWLRQ" ,V WKH VROXWLRQ XQLTXH" 8VH WKH ıJXUH WR H[SODLQ \RXU DQVZHUV v3
b v2
x3
v4
v1
0
v3
x1
x2
8VH WKH YHFWRUV X D .u1 ; : : : ; un / Y D .v1 ; : : : ; vn / DQG Z D .w1 ; : : : ; wn / WR YHULI\ WKH IROORZLQJ DOJHEUDLF SURSHU WLHV RI Rn
v2
/HW Y EH WKH FHQWHU RI PDVV RI D V\VWHP RI SRLQW PDVVHV ORFDWHG DW Y1 ; : : : ; Yk DV LQ ([HUFLVH ,V Y LQ 6SDQ fY1 ; : : : ; Yk g" ([SODLQ $ WKLQ WULDQJXODU SODWH RI XQLIRUP GHQVLW\ DQG WKLFNQHVV KDV YHUWLFHV DW Y1 D .0; 1/ Y2 D .8; 1/ DQG Y3 D .2; 4/ DV LQ WKH ıJXUH EHORZ DQG WKH PDVV RI WKH SODWH LV J
v1
h5 9
D X C .X/ D .X/ C X D 0
x1
6ROXWLRQV WR 3UDFWLFH 3UREOHPV 7DNH DUELWUDU\ YHFWRUV X D .u1 ; : : : ; un / DQG Y D .v1 ; : : : ; vn / LQ Rn DQG FRPSXWH
v2 h5 5
24 3 h
8VH WKH YHFWRU X D .u1 ; : : : ; un / WR YHULI\ WKH IROORZLQJ DOJH EUDLF SURSHUWLHV RI Rn
v2 8
The points
E c.X C Y/ D c X C c Y IRU HDFK VFDODU c
v3
4
Span {v1, v2, v3}
D .X C Y/ C Z D X C .Y C Z/
E c.d X/ D .cd /X IRU DOO VFDODUV c DQG d
x2
v1
v1
v3 h5 1
lie on a line that
intersects the plane when h 5 5.
X C Y D .u1 C v1 ; : : : ; un C vn / D .v1 C u1 ; : : : ; vn C un / DYCX
'HıQLWLRQ RI YHFWRU DGGLWLRQ &RPPXWDWLYLW\ RI DGGLWLRQ LQ R 'HıQLWLRQ RI YHFWRU DGGLWLRQ
7KH YHFWRU \ EHORQJV WR 6SDQ fY1 ; Y2 ; Y3 g LI DQG RQO\ LI WKHUH H[LVW VFDODUV x1 ; x2 ; x3 VXFK WKDW 2 3 2 3 2 3 2 3 1 5 3 4 x1 4 1 5 C x2 4 4 5 C x3 4 1 5 D 4 3 5 2 7 0 h
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 0DWUL[ (TXDWLRQ $[
E
7KLV YHFWRU HTXDWLRQ LV HTXLYDOHQW WR D V\VWHP RI WKUHH OLQHDU HTXDWLRQV LQ WKUHH XQNQRZQV ,I \RX URZ UHGXFH WKH DXJPHQWHG PDWUL[ IRU WKLV V\VWHP \RX ıQG WKDW 2 3 2 3 2 3 1 5 3 4 1 5 3 4 1 5 3 4 4 1 4 1 3 5 4 0 1 2 1 5 4 0 1 2 1 5 2 7 0 h 0 3 6 h 8 0 0 0 h5 7KH V\VWHP LV FRQVLVWHQW LI DQG RQO\ LI WKHUH LV QR SLYRW LQ WKH IRXUWK FROXPQ 7KDW LV h 5 PXVW EH 6R \ LV LQ 6SDQ fY1 ; Y2 ; Y3 g LI DQG RQO\ LI h D 5 5HPHPEHU 7KH SUHVHQFH RI D IUHH YDULDEOH LQ D V\VWHP GRHV QRW JXDUDQWHH WKDW WKH V\VWHP LV FRQVLVWHQW 6LQFH WKH YHFWRUV X DQG Y DUH LQ 6SDQ fZ1 ; Z2 ; Z3 g WKHUH H[LVW VFDODUV c1 c2 c3 DQG d1 d2 d3 VXFK WKDW X D c1 Z1 C c2 Z2 C c3 Z3 1RWLFH
XCY
D D
DQG
Y D d1 Z1 C d2 Z2 C d3 Z3 :
c1 Z1 C c2 Z2 C c3 Z3 C d1 Z1 C d2 Z2 C d3 Z3 .c1 C d1 / Z1 C .c2 C d2 / Z2 C .c3 C d3 / Z3
6LQFH c1 C d1 ; c2 C d2 DQG c3 C d3 DUH DOVR VFDODUV WKH YHFWRU X C Y LV LQ 6SDQ fZ1 ; Z2 ; Z3 g
7KH 0DWUL[ (TXDWLRQ $[
E
$ IXQGDPHQWDO LGHD LQ OLQHDU DOJHEUD LV WR YLHZ D OLQHDU FRPELQDWLRQ RI YHFWRUV DV WKH SURGXFW RI D PDWUL[ DQG D YHFWRU 7KH IROORZLQJ GHıQLWLRQ SHUPLWV XV WR UHSKUDVH VRPH RI WKH FRQFHSWV RI 6HFWLRQ LQ QHZ ZD\V
%&'*/*5*0/
,I A LV DQ m n PDWUL[ ZLWK FROXPQV D1 ; : : : ; Dn DQG LI [ LV LQ Rn WKHQ WKH SURGXFW RI A DQG [ GHQRWHG E\ A[ LV WKH OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A XVLQJ WKH FRUUHVSRQGLQJ HQWULHV LQ [ DV ZHLJKWV WKDW LV 2 3 x1 6 : 7 A[ D D1 D2 Dn 4 :: 5 D x1 D1 C x2 D2 C C xn Dn xn 1RWH WKDW A[ LV GHıQHG RQO\ LI WKH QXPEHU RI FROXPQV RI A HTXDOV WKH QXPEHU RI HQWULHV LQ [
(;$03/(
2 3 4 1 2 1 4 5 1 2 1 D 3 D4 C3 C7 0 5 3 0 5 3 7 4 6 7 3 D C C D 0 15 21 6 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 8 21 13 4 D 44 8 5 C 74 0 5 D 4 32 5 C 4 0 5 D 4 32 5 E 4 8 0 5 7 5 2 5 2 20 14 6
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
(;$03/( )RU Y1 ; Y2 ; Y3 LQ Rm ZULWH WKH OLQHDU FRPELQDWLRQ 3Y1 5Y2 C 7Y3 DV D PDWUL[ WLPHV D YHFWRU 62/87,21 3ODFH Y1 ; Y2 ; Y3 LQWR WKH FROXPQV RI D PDWUL[ A DQG SODFH WKH ZHLJKWV
5 DQG LQWR D YHFWRU [ 7KDW LV
3Y1 5Y2 C 7Y3 D Y1 Y2
2
3 3 Y3 4 5 5 D A[ 7
6HFWLRQ VKRZHG KRZ WR ZULWH D V\VWHP RI OLQHDU HTXDWLRQV DV D YHFWRU HTXDWLRQ LQYROYLQJ D OLQHDU FRPELQDWLRQ RI YHFWRUV )RU H[DPSOH WKH V\VWHP
x1 C 2x2 x3 D 4 5x2 C 3x3 D 1 LV HTXLYDOHQW WR
1 2 1 4 x1 C x2 C x3 D 0 5 3 1
$V LQ ([DPSOH WKH OLQHDU FRPELQDWLRQ RQ WKH OHIW VLGH LV D PDWUL[ WLPHV D YHFWRU VR WKDW EHFRPHV 2 3 x1 1 2 1 4 5 4 x2 D 0 5 3 1 x3 (TXDWLRQ KDV WKH IRUP A[ D E 6XFK DQ HTXDWLRQ LV FDOOHG D PDWUL[ HTXDWLRQ WR GLVWLQJXLVK LW IURP D YHFWRU HTXDWLRQ VXFK DV LV VKRZQ LQ 1RWLFH KRZ WKH PDWUL[ LQ LV MXVW WKH PDWUL[ RI FRHĴFLHQWV RI WKH V\VWHP 6LPLODU FDOFXODWLRQV VKRZ WKDW DQ\ V\VWHP RI OLQHDU HTXDWLRQV RU DQ\ YHFWRU HTXDWLRQ VXFK DV FDQ EH ZULWWHQ DV DQ HTXLYDOHQW PDWUL[ HTXDWLRQ LQ WKH IRUP A[ D E 7KLV VLPSOH REVHUYDWLRQ ZLOO EH XVHG UHSHDWHGO\ WKURXJKRXW WKH WH[W +HUH LV WKH IRUPDO UHVXOW
5)&03&.
,I A LV DQ m n PDWUL[ ZLWK FROXPQV D1 ; : : : ; Dn DQG LI E LV LQ Rm WKH PDWUL[ HTXDWLRQ A[ D E KDV WKH VDPH VROXWLRQ VHW DV WKH YHFWRU HTXDWLRQ
x1 D1 C x2 D2 C C xn Dn D E
ZKLFK LQ WXUQ KDV WKH VDPH VROXWLRQ VHW DV WKH V\VWHP RI OLQHDU HTXDWLRQV ZKRVH DXJPHQWHG PDWUL[ LV D1 D2 Dn E
7KHRUHP SURYLGHV D SRZHUIXO WRRO IRU JDLQLQJ LQVLJKW LQWR SUREOHPV LQ OLQHDU DOJHEUD EHFDXVH D V\VWHP RI OLQHDU HTXDWLRQV PD\ QRZ EH YLHZHG LQ WKUHH GLijHUHQW EXW HTXLYDOHQW ZD\V DV D PDWUL[ HTXDWLRQ DV D YHFWRU HTXDWLRQ RU DV D V\VWHP RI OLQHDU HTXDWLRQV :KHQHYHU \RX FRQVWUXFW D PDWKHPDWLFDO PRGHO RI D SUREOHP LQ UHDO OLIH \RX DUH IUHH WR FKRRVH ZKLFKHYHU YLHZSRLQW LV PRVW QDWXUDO 7KHQ \RX PD\ VZLWFK IURP RQH IRUPXODWLRQ RI D SUREOHP WR DQRWKHU ZKHQHYHU LW LV FRQYHQLHQW ,Q DQ\ FDVH WKH PDWUL[ HTXDWLRQ WKH YHFWRU HTXDWLRQ DQG WKH V\VWHP RI HTXDWLRQV DUH DOO VROYHG LQ WKH VDPH ZD\ŠE\ URZ UHGXFLQJ WKH DXJPHQWHG PDWUL[ 2WKHU PHWKRGV RI VROXWLRQ ZLOO EH GLVFXVVHG ODWHU MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 0DWUL[ (TXDWLRQ $[
E
([LVWHQFH RI 6ROXWLRQV 7KH GHıQLWLRQ RI A[ OHDGV GLUHFWO\ WR WKH IROORZLQJ XVHIXO IDFW 7KH HTXDWLRQ A[ D E KDV D VROXWLRQ LI DQG RQO\ LI E LV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A 6HFWLRQ FRQVLGHUHG WKH H[LVWHQFH TXHVWLRQ ŗ,V E LQ 6SDQ fD1 ; : : : ; Dn g"Ř (TXLYD OHQWO\ ŗ,V A[ D E FRQVLVWHQW"Ř $ KDUGHU H[LVWHQFH SUREOHP LV WR GHWHUPLQH ZKHWKHU WKH HTXDWLRQ A[ D E LV FRQVLVWHQW IRU DOO SRVVLEOH E 2
3 2 3 1 3 4 b1 (;$03/( /HW A D 4 4 2 6 5 DQG E D 4 b2 5 ,V WKH HTXDWLRQ A[ D E 3 2 7 b3 FRQVLVWHQW IRU DOO SRVVLEOH b1 ; b2 ; b3 " 62/87,21 5RZ UHGXFH WKH DXJPHQWHG PDWUL[ IRU A[ D E
2
1 3 4 4 4 2 6 3 2 7
3 2 b1 1 b2 5 4 0 b3 0 2 1 40 0
3 14 7
4 10 5
3 14 0
4 10 0
3 b1 b2 C 4b1 5 b3 C 3b1
3 b1 5 b2 C 4b1 1 b3 C 3b1 2 .b2 C 4b1 /
7KH WKLUG HQWU\ LQ FROXPQ HTXDOV b1 12 b2 C b3 7KH HTXDWLRQ A[ D E LV QRW FRQVLVWHQW IRU HYHU\ E EHFDXVH VRPH FKRLFHV RI E FDQ PDNH b1 12 b2 C b3 QRQ]HUR
x3
7KH UHGXFHG PDWUL[ LQ ([DPSOH SURYLGHV D GHVFULSWLRQ RI DOO E IRU ZKLFK WKH HTXDWLRQ A[ D E LV FRQVLVWHQW 7KH HQWULHV LQ E PXVW VDWLVI\ x2 x1 Span{a1, a2, a3}
'*(63&
7KH FROXPQV RI A D Œ D1 D2 D3 VSDQ D SODQH WKURXJK
5)&03&.
b1 12 b2 C b3 D 0 7KLV LV WKH HTXDWLRQ RI D SODQH WKURXJK WKH RULJLQ LQ R3 7KH SODQH LV WKH VHW RI DOO OLQHDU FRPELQDWLRQV RI WKH WKUHH FROXPQV RI A 6HH )LJXUH 7KH HTXDWLRQ A[ D E LQ ([DPSOH IDLOV WR EH FRQVLVWHQW IRU DOO E EHFDXVH WKH HFKHORQ IRUP RI A KDV D URZ RI ]HURV ,I A KDG D SLYRW LQ DOO WKUHH URZV ZH ZRXOG QRW FDUH DERXW WKH FDOFXODWLRQV LQ WKH DXJPHQWHG FROXPQ EHFDXVH LQ WKLV FDVH DQ HFKHORQ IRUP RI WKH DXJPHQWHG PDWUL[ FRXOG QRW KDYH D URZ VXFK DV Œ 0 0 0 1 ,Q WKH QH[W WKHRUHP WKH VHQWHQFH ŗ7KH FROXPQV RI A VSDQ Rm Ř PHDQV WKDW HYHU\ E LQ Rm LV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A ,Q JHQHUDO D VHW RI YHFWRUV fY1 ; : : : ; Yp g LQ Rm VSDQV RU JHQHUDWHV Rm LI HYHU\ YHFWRU LQ Rm LV D OLQHDU FRPELQDWLRQ RI Y1 ; : : : ; Yp ŠWKDW LV LI 6SDQ fY1 ; : : : ; Yp g D Rm /HW A EH DQ m n PDWUL[ 7KHQ WKH IROORZLQJ VWDWHPHQWV DUH ORJLFDOO\ HTXLYDOHQW 7KDW LV IRU D SDUWLFXODU A HLWKHU WKH\ DUH DOO WUXH VWDWHPHQWV RU WKH\ DUH DOO IDOVH D E F G
)RU HDFK E LQ Rm WKH HTXDWLRQ A[ D E KDV D VROXWLRQ (DFK E LQ Rm LV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A 7KH FROXPQV RI A VSDQ Rm A KDV D SLYRW SRVLWLRQ LQ HYHU\ URZ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
7KHRUHP LV RQH RI WKH PRVW XVHIXO WKHRUHPV LQ WKLV FKDSWHU 6WDWHPHQWV D E DQG F DUH HTXLYDOHQW EHFDXVH RI WKH GHıQLWLRQ RI A[ DQG ZKDW LW PHDQV IRU D VHW RI YHFWRUV WR VSDQ Rm 7KH GLVFXVVLRQ DIWHU ([DPSOH VXJJHVWV ZK\ D DQG G DUH HTXLYDOHQW D SURRI LV JLYHQ DW WKH HQG RI WKH VHFWLRQ 7KH H[HUFLVHV ZLOO SURYLGH H[DPSOHV RI KRZ 7KHRUHP LV XVHG :DUQLQJ 7KHRUHP LV DERXW D FRHĴFLHQW PDWUL[ QRW DQ DXJPHQWHG PDWUL[ ,I DQ DXJPHQWHG PDWUL[ Œ A E KDV D SLYRW SRVLWLRQ LQ HYHU\ URZ WKHQ WKH HTXDWLRQ A[ D E PD\ RU PD\ QRW EH FRQVLVWHQW
&RPSXWDWLRQ RI $[ 7KH FDOFXODWLRQV LQ ([DPSOH ZHUH EDVHG RQ WKH GHıQLWLRQ RI WKH SURGXFW RI D PDWUL[ A DQG D YHFWRU [ 7KH IROORZLQJ VLPSOH H[DPSOH ZLOO OHDG WR D PRUH HĴFLHQW PHWKRG IRU FDOFXODWLQJ WKH HQWULHV LQ A[ ZKHQ ZRUNLQJ SUREOHPV E\ KDQG 2 3 2 3 2 3 4 x1 (;$03/( &RPSXWH A[ ZKHUH A D 4 1 5 3 5 DQG [ D 4 x2 5 6 2 8 x3 62/87,21 )URP WKH GHıQLWLRQ
32 3 2 3 2 3 2 3 2 3 4 x1 2 3 4 4 1 5 3 54 x2 5 D x1 4 1 5 C x2 4 5 5 C x3 4 3 5 6 2 8 6 2 8 x3 2 3 2 3 2 3 2x1 3x2 4x3 D 4 x1 5 C 4 5x2 5 C 4 3x3 5 6x1 2x2 8x3 2 3 2x1 C 3x2 C 4x3 D 4 x1 C 5x2 3x3 5 6x1 2x2 C 8x3 2
7KH ıUVW HQWU\ LQ WKH SURGXFW A[ LV D VXP RI SURGXFWV VRPHWLPHV FDOOHG D GRW SURGXFW XVLQJ WKH ıUVW URZ RI A DQG WKH HQWULHV LQ [ 7KDW LV 2 32 3 2 3 2 3 4 x1 2x1 C 3x2 C 4x3 4 54 x2 5 D 4 5 x3 7KLV PDWUL[ VKRZV KRZ WR FRPSXWH WKH ıUVW HQWU\ LQ A[ GLUHFWO\ ZLWKRXW ZULWLQJ GRZQ DOO WKH FDOFXODWLRQV VKRZQ LQ 6LPLODUO\ WKH VHFRQG HQWU\ LQ A[ FDQ EH FDOFXODWHG DW RQFH E\ PXOWLSO\LQJ WKH HQWULHV LQ WKH VHFRQG URZ RI A E\ WKH FRUUHVSRQGLQJ HQWULHV LQ [ DQG WKHQ VXPPLQJ WKH UHVXOWLQJ SURGXFWV 2 32 3 2 3 x1 4 1 5 3 54 x2 5 D 4 x1 C 5x2 3x3 5 x3 /LNHZLVH WKH WKLUG HQWU\ LQ A[ FDQ EH FDOFXODWHG IURP WKH WKLUG URZ RI A DQG WKH HQWULHV LQ [ 5RZŋ9HFWRU 5XOH IRU &RPSXWLQJ $[ ,I WKH SURGXFW A[ LV GHıQHG WKHQ WKH i WK HQWU\ LQ A[ LV WKH VXP RI WKH SURGXFWV RI FRUUHVSRQGLQJ HQWULHV IURP URZ i RI A DQG IURP WKH YHFWRU [
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 0DWUL[ (TXDWLRQ $[
E
(;$03/(
2 3 4 1 2 1 4 5 1 4 C 2 3 C .1/ 7 3 D 3 D D 0 4 C .5/ 3 C 3 7 0 5 3 6 7 3 2 3 2 3 2 2 3 2 4 C .3/ 7 13 4 8 4 C 0 7 5 D 4 32 5 D4 E 4 8 0 5 7 .5/ 4 C 2 7 5 2 6 2 32 3 2 3 2 3 1 0 0 r 1r C0sC0t r F 4 0 1 0 54 s 5 D 4 0 r C 1 s C 0 t 5 D 4 s 5 0 0 1 t t 0r C0sC1t
%\ GHıQLWLRQ WKH PDWUL[ LQ ([DPSOH F ZLWK ŖV RQ WKH GLDJRQDO DQG ŖV HOVHZKHUH LV FDOOHG DQ LGHQWLW\ PDWUL[ DQG LV GHQRWHG E\ I 7KH FDOFXODWLRQ LQ SDUW F VKRZV WKDW I [ D [ IRU HYHU\ [ LQ R3 7KHUH LV DQ DQDORJRXV n n LGHQWLW\ PDWUL[ VRPHWLPHV ZULWWHQ DV In $V LQ SDUW F In [ D [ IRU HYHU\ [ LQ Rn
3URSHUWLHV RI WKH 0DWUL[ŋ9HFWRU 3URGXFW $[ 7KH IDFWV LQ WKH QH[W WKHRUHP DUH LPSRUWDQW DQG ZLOO EH XVHG WKURXJKRXW WKH WH[W 7KH SURRI UHOLHV RQ WKH GHıQLWLRQ RI A[ DQG WKH DOJHEUDLF SURSHUWLHV RI Rn
5)&03&.
,I A LV DQ m n PDWUL[ X DQG Y DUH YHFWRUV LQ Rn DQG c LV D VFDODU WKHQ D A.X C Y/ D AX C AY E A.c X/ D c.AX/
1300' )RU VLPSOLFLW\ WDNH n D 3 A D Œ D1 D2 D3 DQG X Y LQ R3 7KH SURRI RI WKH JHQHUDO FDVH LV VLPLODU )RU i D 1; 2; 3 OHW ui DQG vi EH WKH i WK HQWULHV LQ X DQG Y UHVSHFWLYHO\ 7R SURYH VWDWHPHQW D FRPSXWH A.X C Y/ DV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A XVLQJ WKH HQWULHV LQ X C Y DV ZHLJKWV 2 3 u1 C v1 A.X C Y/ D Œ D1 D2 D3 4 u2 C v2 5 u3 C v3 # # # D .u1 C v1 /D1 C .u2 C v2 /D2 C .u3 C v3 /D3 " " "
(QWULHV LQ X C Y
&ROXPQV RI A
D .u1 D1 C u2 D2 C u3 D3 / C .v1 D1 C v2 D2 C v3 D3 / D AX C AY 7R SURYH VWDWHPHQW E FRPSXWH A.c X/ DV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A XVLQJ WKH HQWULHV LQ c X DV ZHLJKWV 2 3 cu1 A.c X/ D Œ D1 D2 D3 4 cu2 5 D .cu1 /D1 C .cu2 /D2 C .cu3 /D3 cu3
D c.u1 D1 / C c.u2 D2 / C c.u3 D3 / D c.u1 D1 C u2 D2 C u3 D3 / D c.AX/ MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
1XPHULFDO 1RWH 7R RSWLPL]H D FRPSXWHU DOJRULWKP WR FRPSXWH A[ WKH VHTXHQFH RI FDOFXODWLRQV VKRXOG LQYROYH GDWD VWRUHG LQ FRQWLJXRXV PHPRU\ ORFDWLRQV 7KH PRVW ZLGHO\ XVHG SURIHVVLRQDO DOJRULWKPV IRU PDWUL[ FRPSXWDWLRQV DUH ZULWWHQ LQ )RUWUDQ D ODQJXDJH WKDW VWRUHV D PDWUL[ DV D VHW RI FROXPQV 6XFK DOJRULWKPV FRPSXWH A[ DV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A ,Q FRQWUDVW LI D SURJUDP LV ZULWWHQ LQ WKH SRSXODU ODQJXDJH & ZKLFK VWRUHV PDWULFHV E\ URZV A[ VKRXOG EH FRPSXWHG YLD WKH DOWHUQDWLYH UXOH WKDW XVHV WKH URZV RI A
1300' 0' 5)&03&. $V ZDV SRLQWHG RXW DIWHU 7KHRUHP VWDWHPHQWV D E DQG F DUH ORJLFDOO\ HTXLYDOHQW 6R LW VXĴFHV WR VKRZ IRU DQ DUELWUDU\ PDWUL[ A WKDW D DQG G DUH HLWKHU ERWK WUXH RU ERWK IDOVH 7KLV ZLOO WLH DOO IRXU VWDWHPHQWV WRJHWKHU /HW U EH DQ HFKHORQ IRUP RI A *LYHQ E LQ Rm ZH FDQ URZ UHGXFH WKH DXJPHQWHG PDWUL[ Œ A E WR DQ DXJPHQWHG PDWUL[ Œ U G IRU VRPH G LQ Rm ŒA E ŒU
G
,I VWDWHPHQW G LV WUXH WKHQ HDFK URZ RI U FRQWDLQV D SLYRW SRVLWLRQ DQG WKHUH FDQ EH QR SLYRW LQ WKH DXJPHQWHG FROXPQ 6R A[ D E KDV D VROXWLRQ IRU DQ\ E DQG D LV WUXH ,I G LV IDOVH WKH ODVW URZ RI U LV DOO ]HURV /HW G EH DQ\ YHFWRU ZLWK D LQ LWV ODVW HQWU\ 7KHQ Œ U G UHSUHVHQWV DQ LQFRQVLVWHQW V\VWHP 6LQFH URZ RSHUDWLRQV DUH UHYHUVLEOH Œ U G FDQ EH WUDQVIRUPHG LQWR WKH IRUP Œ A E 7KH QHZ V\VWHP A[ D E LV DOVR LQFRQVLVWHQW DQG D LV IDOVH 3UDFWLFH 3UREOHPV
3 2 3 3 1 5 2 0 7 6 2 7 7 4 9 5 ,W FDQ EH VKRZQ /HW A D 4 3 1 9 5 5 S D 6 4 0 5 DQG E D 4 8 1 7 0 4 WKDW S LV D VROXWLRQ RI A[ D E 8VH WKLV IDFW WR H[KLELW E DV D VSHFLıF OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A 2 5 4 3 /HW A D XD DQG Y D 9HULI\ 7KHRUHP D LQ WKLV FDVH 3 1 1 5 E\ FRPSXWLQJ A.X C Y/ DQG AX C AY 2
3
2
&RQVWUXFW D 3 3 PDWUL[ A DQG YHFWRUV E DQG F LQ R3 VR WKDW A[ D E KDV D VROXWLRQ EXW A[ D F GRHV QRW
([HUFLVHV &RPSXWH WKH SURGXFWV LQ ([HUFLVHV ş XVLQJ D WKH GHıQLWLRQ DV LQ ([DPSOH DQG E WKH URZşYHFWRU UXOH IRU FRPSXWLQJ A[ ,I D SURGXFW LV XQGHıQHG H[SODLQ ZK\ 2 32 3 2 3 4 2 3 2 1 6 54 1 5 4 1 4 6 5 1 0 1 7 1 2
3 6 5 1 4 4 3 5 3 7 6
8 5
3 1
2 3 1 1 4 5 1 2 1
,Q ([HUFLVHV ş XVH WKH GHıQLWLRQ RI A[ WR ZULWH WKH PDWUL[ HTXDWLRQ DV D YHFWRU HTXDWLRQ 2 RU YLFH 3 YHUVD 5 7 5 1 8 4 6 6 1 7 D 8 2 7 3 5 4 3 5 16 2 2
3 2 3 7 3 1 6 7 2 6 7 17 6 2 6 9 7 4 D4 9 6 5 5 12 5 3 2 4
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2
3 2 3 2 3 2 3 4 5 7 6 6 1 7 6 7 6 7 6 7 6 7 C x2 6 3 7 C x3 6 8 7 D 6 8 7 x1 4 4 5 5 4 05 4 05 75 4 1 2 7 4 4 5 3 4 ´1 C ´2 C ´3 C ´4 D 2 5 4 0 13 ,Q ([HUFLVHV DQG ZULWH WKH V\VWHP ıUVW DV D YHFWRU HTXDWLRQ DQG WKHQ DV D PDWUL[ HTXDWLRQ 3x1 C x2 5x3 D 9
8x1 x2 D 4
x2 C 4x3 D 0
5x1 C 4x2 D 1 x1 3x2 D 2
*LYHQ A DQG E LQ ([HUFLVHV DQG ZULWH WKH DXJPHQWHG PDWUL[ IRU WKH OLQHDU V\VWHP WKDW FRUUHVSRQGV WR WKH PDWUL[ HTXDWLRQ A[ D E 7KHQ VROYH WKH V\VWHP DQG ZULWH WKH VROXWLRQ DV D YHFWRU 2 3 2 3 1 2 4 2 1 5 5 E D 4 2 5 A D 4 0 2 4 3 9 2
3
1 2 A D 4 3 1 0 5
2
3
1 0 2 5 E D 4 1 5 3 1
2
7KH 0DWUL[ (TXDWLRQ $[
3 1 3 0 3 6 1 1 1 7 17 AD6 4 0 4 2 8 5 2 0 3 1
E
2
3 1 3 2 2 6 7 1 1 5 7 6 0 BD4 1 2 3 75 2 8 2 1
+RZ PDQ\ URZV RI A FRQWDLQ D SLYRW SRVLWLRQ" 'RHV WKH HTXDWLRQ A[ D E KDYH D VROXWLRQ IRU HDFK E LQ R4 " 'R WKH FROXPQV RI B VSDQ R4 " 'RHV WKH HTXDWLRQ B [ D \ KDYH D VROXWLRQ IRU HDFK \ LQ R4 " &DQ HDFK YHFWRU LQ R4 EH ZULWWHQ DV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI WKH PDWUL[ A DERYH" 'R WKH FROXPQV RI A VSDQ R4 " &DQ HYHU\ YHFWRU LQ R4 EH ZULWWHQ DV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI WKH PDWUL[ B DERYH" 'R WKH FROXPQV RI B VSDQ R3 " 2 3 2 3 2 3 1 0 1 6 7 6 7 6 7 6 0 7 Y2 D 6 1 7 Y3 D 6 0 7 /HW Y1 D 4 5 4 5 4 5 1 0 0 0 1 1 'RHV fY1 ; Y2 ; Y3 g VSDQ R4 " :K\ RU ZK\ QRW" 2 3 2 3 2 3 0 0 4 /HW Y1 D 4 0 5 Y2 D 4 3 5 Y3 D 4 1 5 2 8 5 'RHV fY1 ; Y2 ; Y3 g VSDQ R3 " :K\ RU ZK\ QRW"
2 3 2 3 0 3 5 6 5 ,V X LQ WKH SODQH LQ R3 /HW X D 4 4 5 DQG A D 4 2 4 1 1
,Q ([HUFLVHV ş PDUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU
VSDQQHG E\ WKH FROXPQV RI A" 6HH WKH ıJXUH :K\ RU ZK\ QRW"
7) 7KH HTXDWLRQ A[ D E LV UHIHUUHG WR DV D YHFWRU HTXDWLRQ
u?
7) (YHU\ PDWUL[ HTXDWLRQ A[ D E FRUUHVSRQGV WR D YHFWRU HTXDWLRQ ZLWK WKH VDPH VROXWLRQ VHW
u?
Plane spanned by the columns of A
Where are u?
2
3 2 2 5 /HW X D 4 3 5 DQG A D 4 0 1 2
3 8 7 1 1 5 ,V X LQ WKH VXEVHW 3 0
RI R3 VSDQQHG E\ WKH FROXPQV RI A" :K\ RU ZK\ QRW" 2 1 b1 /HW A D DQG E D 6KRZ WKDW WKH HTXDWLRQ 6 3 b2
A[ D E GRHV QRW KDYH D VROXWLRQ IRU DOO SRVVLEOH E DQG GH VFULEH WKH VHW RI DOO E IRU ZKLFK A[ D E GRHV KDYH D VROXWLRQ 2 3 2 3 1 3 4 b1 2 6 5 E D 4 b2 5 5HSHDW ([HUFLVH A D 4 3 5 1 8 b3 ([HUFLVHV ş UHIHU WR WKH PDWULFHV A DQG B EHORZ 0DNH DSSURSULDWH FDOFXODWLRQV WKDW MXVWLI\ \RXU DQVZHUV DQG PHQWLRQ DQ DSSURSULDWH WKHRUHP
7) ,I WKH HTXDWLRQ A[ D E LV LQFRQVLVWHQW WKHQ E LV QRW LQ WKH VHW VSDQQHG E\ WKH FROXPQV RI A 7) $ YHFWRU E LV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI D PDWUL[ A LI DQG RQO\ LI WKH HTXDWLRQ A[ D E KDV DW OHDVW RQH VROXWLRQ 7) 7KH HTXDWLRQ A[ D E LV FRQVLVWHQW LI WKH DXJPHQWHG PDWUL[ Œ A E KDV D SLYRW SRVLWLRQ LQ HYHU\ URZ 7) ,I A LV DQ m n PDWUL[ ZKRVH FROXPQV GR QRW VSDQ Rm WKHQ WKH HTXDWLRQ A[ D E LV LQFRQVLVWHQW IRU VRPH E LQ Rm 7) 7KH ıUVW HQWU\ LQ WKH SURGXFW A[ LV D VXP RI SURGXFWV 7) $Q\ OLQHDU FRPELQDWLRQ YHFWRUV FDQ DOZD\V EH ZULWWHQ LQ WKH IRUP A[ IRU D VXLWDEOH PDWUL[ A DQG YHFWRU [ 7) ,I WKH FROXPQV RI DQ m n PDWUL[ A VSDQ Rm WKHQ WKH HTXDWLRQ A[ D E LV FRQVLVWHQW IRU HDFK E LQ Rm 7) 7KH VROXWLRQ VHW RI D OLQHDU V\VWHP ZKRVH DXJPHQWHG PDWUL[ LV Œ D1 D2 D3 E LV WKH VDPH DV WKH VROXWLRQ VHW RI A[ D E LI A D Œ D1 D2 D3
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
7) ,I A LV DQ m n PDWUL[ DQG LI WKH HTXDWLRQ A[ D E LV LQFRQVLVWHQW IRU VRPH E LQ Rm WKHQ A FDQQRW KDYH D SLYRW SRVLWLRQ LQ HYHU\ URZ
/HW A EH D 3 2 PDWUL[ ([SODLQ ZK\ WKH HTXDWLRQ A[ D E FDQQRW EH FRQVLVWHQW IRU DOO E LQ R3 *HQHUDOL]H \RXU DUJXPHQW WR WKH FDVH RI DQ DUELWUDU\ A ZLWK PRUH URZV WKDQ FROXPQV
7) ,I WKH DXJPHQWHG PDWUL[ Œ A E KDV D SLYRW SRVLWLRQ LQ HYHU\ URZ WKHQ WKH HTXDWLRQ A[ D E LV LQFRQVLVWHQW 2 32 3 2 3 4 3 1 3 7 5 54 1 5 D 4 3 5 8VH WKLV IDFW 1RWH WKDW 4 5 2 10 6 2 3 2 DQG QR URZ RSHUDWLRQV WR ıQG VFDODUV c1 c2 c3 VXFK WKDW 3 2 3 2 3 2 3 2 7 4 3 1 4 3 5 D c14 5 5 C c24 2 5 C c34 5 5 10 6 2 3 2 3 2 3 2 3 7 3 6 /HW X D 4 2 5 Y D 4 1 5 DQG Z D 4 1 5 5 3 0 ,W FDQ EH VKRZQ WKDW 3X 5Y Z D 8VH WKLV IDFW DQG QR URZ RSHUDWLRQV WR ıQG x1 DQG x2 WKDW VDWLVI\ WKH HTXDWLRQ 3 2 3 2 7 3 6 x 1 42 15 D 4 1 5 x2 5 3 0
&RXOG D VHW RI WKUHH YHFWRUV LQ R4 VSDQ DOO RI R4 " ([SODLQ :KDW DERXW n YHFWRUV LQ Rm ZKHQ n LV OHVV WKDQ m" 6XSSRVH A LV D 4 3 PDWUL[ DQG E LV D YHFWRU LQ R4 ZLWK WKH SURSHUW\ WKDW A[ D E KDV D XQLTXH VROXWLRQ :KDW FDQ \RX VD\ DERXW WKH UHGXFHG HFKHORQ IRUP RI A" -XVWLI\ \RXU DQVZHU 6XSSRVH A LV D 3 3 PDWUL[ DQG E LV D YHFWRU LQ R3 ZLWK WKH SURSHUW\ WKDW A[ D E KDV D XQLTXH VROXWLRQ ([SODLQ ZK\ WKH FROXPQV RI A PXVW VSDQ R3 /HW A EH D 3 4 PDWUL[ OHW \1 DQG \2 EH YHFWRUV LQ R3 DQG OHW Z D \1 C \2 6XSSRVH \1 D A[1 DQG \2 D A[2 IRU VRPH YHFWRUV [1 DQG [2 LQ R4 :KDW IDFW DOORZV \RX WR FRQFOXGH WKDW WKH V\VWHP A[ D Z LV FRQVLVWHQW" 1RWH [1 DQG [2 GHQRWH YHFWRUV QRW VFDODU HQWULHV LQ YHFWRUV /HW A EH D 5 3 PDWUL[ OHW \ EH D YHFWRU LQ R3 DQG OHW ] EH D YHFWRU LQ R5 6XSSRVH A\ D ] :KDW IDFW DOORZV \RX WR FRQFOXGH WKDW WKH V\VWHP A[ D 4] LV FRQVLVWHQW" 7 ,Q ([HUFLVHV ş GHWHUPLQH LI WKH FROXPQV RI VSDQ R4 2 2 3 7 2 5 8 5 7 6 6 8 6 5 3 4 9 7 6 6 7 4 4 4 4 75 6 10 2 9 11 9 2 15 7 2 3 12 7 11 9 5 6 9 7 4 8 7 3 7 6 4 6 3 9 5 11 7 4 6 10 5 12 2 3 13 8 11 6 7 6 7 8 7 5 6 9 7 6 4 11 5 7 7 9 6 3 4 1 8 7
/HW T1 T2 T3 DQG Y UHSUHVHQW YHFWRUV LQ R5 DQG OHW x1 x2 DQG x3 GHQRWH VFDODUV :ULWH WKH IROORZLQJ YHFWRU HTXDWLRQ DV D PDWUL[ HTXDWLRQ ,GHQWLI\ DQ\ V\PEROV \RX FKRRVH WR XVH
x1 T1 C x2 T2 C x3 T3 D Y 5HZULWH WKH QXPHULFDO PDWUL[ HTXDWLRQ EHORZ LQ V\PEROLF IRUP DV D YHFWRU HTXDWLRQ XVLQJ V\PEROV Y1 ; Y2 ; : : : IRU WKH YHFWRUV DQG c1 ; c2 ; : : : IRU VFDODUV 'HıQH ZKDW HDFK V\PERO UHSUHVHQWV XVLQJ WKH GDWD JLYHQ LQ WKH PDWUL[ HTXDWLRQ 2 3 3 6 2 7 7 3 5 4 9 7 6 8 6 47D 7 1 5 8 1 2 4 6 4 1 5 2
WKH PDWUL[ 3 4 9 7 7 57 9 9 5 16 7
&RQVWUXFW D 3 3 PDWUL[ QRW LQ HFKHORQ IRUP ZKRVH FROXPQV VSDQ R3 6KRZ WKDW WKH PDWUL[ \RX FRQVWUXFW KDV WKH GHVLUHG 7 )LQG D FROXPQ RI WKH PDWUL[ LQ ([HUFLVH WKDW FDQ EH GHOHWHG DQG \HW KDYH WKH UHPDLQLQJ PDWUL[ FROXPQV VWLOO VSDQ R4 SURSHUW\ &RQVWUXFW D 3 3 PDWUL[ QRW LQ HFKHORQ IRUP ZKRVH FROXPQV 7 )LQG D FROXPQ RI WKH PDWUL[ LQ ([HUFLVH WKDW FDQ EH GHOHWHG GR QRW VSDQ R3 6KRZ WKDW WKH PDWUL[ \RX FRQVWUXFW KDV WKH DQG \HW KDYH WKH UHPDLQLQJ PDWUL[ FROXPQV VWLOO VSDQ R4 &DQ GHVLUHG SURSHUW\ \RX GHOHWH PRUH WKDQ RQH FROXPQ" 678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU PDVWHULQJ WKH FRQFHSW RI VSDQ
6ROXWLRQV WR 3UDFWLFH 3UREOHPV 7KH PDWUL[ HTXDWLRQ 2 3 3 2 3 3 1 5 2 0 6 7 7 2 7 4 95 4 3 1 9 5 56 4 05 D 4 8 1 7 0 4 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
6ROXWLRQ 6HWV RI /LQHDU 6\VWHPV
LV HTXLYDOHQW WR WKH YHFWRU HTXDWLRQ 2 3 2 3 2 3 2 3 2 3 1 5 2 0 7 34 3 5 24 1 5 C 04 9 5 44 5 5 D 4 9 5; 4 8 1 7 0 ZKLFK H[SUHVVHV E DV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A 4 3 1 XCYD C D 1 5 4 2 5 1 2 C 20 22 A.X C Y/ D D D 3 1 4 7 3C4 2 5 4 2 5 3 AX C AY D C 3 1 1 3 1 5 3 19 22 D C D 11 4 7 5HPDUN 7KHUH DUH LQ IDFW LQıQLWHO\ PDQ\ FRUUHFW VROXWLRQV WR 3UDFWLFH 3UREOHP :KHQ FUHDWLQJ PDWULFHV WR VDWLVI\ VSHFLıHG FULWHULD LW LV RIWHQ XVHIXO WR FUHDWH PDWULFHV WKDW DUH VWUDLJKWIRUZDUG VXFK DV WKRVH DOUHDG\ LQ UHGXFHG HFKHORQ IRUP +HUH LV RQH SRVVLEOH VROXWLRQ /HW 2 3 2 3 2 3 1 0 1 3 3 A D 40 1 15 ; E D 425 ; DQG F D 425 : 0 0 0 0 1 1RWLFH WKH UHGXFHG HFKHORQ IRUP RI WKH DXJPHQWHG PDWUL[ FRUUHVSRQGLQJ WR A[ D E 2 3 LV 1 0 1 3 40 1 1 25 ; 0 0 0 0 ZKLFK FRUUHVSRQGV WR D FRQVLVWHQW V\VWHP DQG KHQFH A[ D E KDV VROXWLRQV 7KH UHGXFHG HFKHORQ IRUP RI WKH DXJPHQWHG PDWUL[ FRUUHVSRQGLQJ WR A[ D F LV 2 3 1 0 1 3 40 1 1 25 ; 0 0 0 1 ZKLFK FRUUHVSRQGV WR DQ LQFRQVLVWHQW V\VWHP DQG KHQFH A[ D F GRHV QRW KDYH DQ\ VROXWLRQV
6ROXWLRQ 6HWV RI /LQHDU 6\VWHPV 6ROXWLRQ VHWV RI OLQHDU V\VWHPV DUH LPSRUWDQW REMHFWV RI VWXG\ LQ OLQHDU DOJHEUD 7KH\ ZLOO DSSHDU ODWHU LQ VHYHUDO GLijHUHQW FRQWH[WV 7KLV VHFWLRQ XVHV YHFWRU QRWDWLRQ WR JLYH H[SOLFLW DQG JHRPHWULF GHVFULSWLRQV RI VXFK VROXWLRQ VHWV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
+RPRJHQHRXV /LQHDU 6\VWHPV $ V\VWHP RI OLQHDU HTXDWLRQV LV VDLG WR EH KRPRJHQHRXV LI LW FDQ EH ZULWWHQ LQ WKH IRUP A[ D ZKHUH A LV DQ m n PDWUL[ DQG LV WKH ]HUR YHFWRU LQ Rm 6XFK D V\VWHP A[ D DOZD\V KDV DW OHDVW RQH VROXWLRQ QDPHO\ [ D WKH ]HUR YHFWRU LQ Rn / 7KLV ]HUR VROXWLRQ LV XVXDOO\ FDOOHG WKH WULYLDO VROXWLRQ )RU D JLYHQ HTXDWLRQ A[ D ; WKH LPSRUWDQW TXHVWLRQ LV ZKHWKHU WKHUH H[LVWV D QRQWULYLDO VROXWLRQ WKDW LV D QRQ]HUR YHFWRU [ WKDW VDWLVıHV A[ D : 7KH ([LVWHQFH DQG 8QLTXHQHVV 7KHRUHP LQ 6HFWLRQ 7KHRUHP OHDGV LPPHGLDWHO\ WR WKH IROORZLQJ IDFW 7KH KRPRJHQHRXV HTXDWLRQ A[ D KDV D QRQWULYLDO VROXWLRQ LI DQG RQO\ LI WKH HTXDWLRQ KDV DW OHDVW RQH IUHH YDULDEOH
(;$03/( 'HWHUPLQH LI WKH IROORZLQJ KRPRJHQHRXV V\VWHP KDV D QRQWULYLDO VROXWLRQ 7KHQ GHVFULEH WKH VROXWLRQ VHW
3x1 C 5x2 4x3 D 0 3x1 2x2 C 4x3 D 0 6x1 C x2 8x3 D 0 62/87,21 /HW A EH WKH PDWUL[ RI FRHĴFLHQWV RI WKH V\VWHP DQG URZ UHGXFH WKH
DXJPHQWHG PDWUL[ Œ A WR HFKHORQ IRUP 2 3 2 3 5 4 0 3 5 4 4 3 2 4 0 5 4 0 3 0 6 1 8 0 0 9 0
3 2 3 0 05 40 0 0
3 0 05 0
5 4 3 0 0 0
6LQFH x3 LV D IUHH YDULDEOH A[ D KDV QRQWULYLDO VROXWLRQV RQH IRU HDFK QRQ]HUR FKRLFH RI x3 7R GHVFULEH WKH VROXWLRQ VHW FRQWLQXH WKH URZ UHGXFWLRQ RI Œ A WR UHGXFHG HFKHORQ IRUP 3 2 x1 43 x3 D 0 1 0 43 0 40 1 0 05 x2 D0 0 0 0 0 0 D0 6ROYH IRU WKH EDVLF YDULDEOHV x1 DQG x2 DQG REWDLQ x1 D 43 x3 x2 D 0 ZLWK x3 IUHH $V D YHFWRU WKH JHQHUDO VROXWLRQ RI A[ D KDV WKH IRUP 2 3 24 3 243 243 x1 x 3 3 3 3 6 7 6 7 6 7 6 7 [ D 4 x2 5 D 4 0 5 D x3 4 0 5 D x3 Y; ZKHUH Y D 4 0 5
x3 Span{v} v
x3
x3
1
1
0
x2 x1 '*(63&
+HUH x3 LV IDFWRUHG RXW RI WKH H[SUHVVLRQ IRU WKH JHQHUDO VROXWLRQ YHFWRU 7KLV VKRZV WKDW HYHU\ VROXWLRQ RI A[ D LQ WKLV FDVH LV D VFDODU PXOWLSOH RI Y 7KH WULYLDO VROXWLRQ LV REWDLQHG E\ FKRRVLQJ x3 D 0: *HRPHWULFDOO\ WKH VROXWLRQ VHW LV D OLQH WKURXJK LQ R3 6HH )LJXUH 1RWLFH WKDW D QRQWULYLDO VROXWLRQ [ FDQ KDYH VRPH ]HUR HQWULHV VR ORQJ DV QRW DOO RI LWV HQWULHV DUH ]HUR
(;$03/( $ VLQJOH OLQHDU HTXDWLRQ FDQ EH WUHDWHG DV D YHU\ VLPSOH V\VWHP RI HTXDWLRQV 'HVFULEH DOO VROXWLRQV RI WKH KRPRJHQHRXV ŗV\VWHPŘ
10x1 3x2 2x3 D 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
6ROXWLRQ 6HWV RI /LQHDU 6\VWHPV
62/87,21 7KHUH LV QR QHHG IRU PDWUL[ QRWDWLRQ 6ROYH IRU WKH EDVLF YDULDEOH x1 LQ
x1
x3 v
WHUPV RI WKH IUHH YDULDEOHV 7KH JHQHUDO VROXWLRQ LV x1 D :3x2 C :2x3 ZLWK x2 DQG x3 IUHH $V D YHFWRU WKH JHQHUDO VROXWLRQ LV 2 3 2 3 2 3 2 3 x1 :3x2 C :2x3 :3x2 :2x3 5 D 4 x2 5 C 4 0 5 x2 [ D 4 x2 5 D 4 x3 x3 x3 0 2 3 2 3 :3 :2 D x2 4 1 5 C x3 4 0 5 ZLWK x2 x3 IUHH 0 1 6
X
u
x2 '*(63&
6
Y
7KLV FDOFXODWLRQ VKRZV WKDW HYHU\ VROXWLRQ RI LV D OLQHDU FRPELQDWLRQ RI WKH YHFWRUV X DQG Y VKRZQ LQ 7KDW LV WKH VROXWLRQ VHW LV 6SDQ fX; Yg 6LQFH QHLWKHU X QRU Y LV D VFDODU PXOWLSOH RI WKH RWKHU WKH VROXWLRQ VHW LV D SODQH WKURXJK WKH RULJLQ 6HH )LJXUH ([DPSOHV DQG DORQJ ZLWK WKH H[HUFLVHV LOOXVWUDWH WKH IDFW WKDW WKH VROXWLRQ VHW RI D KRPRJHQHRXV HTXDWLRQ A[ D FDQ DOZD\V EH H[SUHVVHG H[SOLFLWO\ DV 6SDQ fY1 ; : : : ; Yp g IRU VXLWDEOH YHFWRUV Y1 ; : : : ; Yp ,I WKH RQO\ VROXWLRQ LV WKH ]HUR YHFWRU WKHQ WKH VROXWLRQ VHW LV 6SDQ fg ,I WKH HTXDWLRQ A[ D KDV RQO\ RQH IUHH YDULDEOH WKH VROXWLRQ VHW LV D OLQH WKURXJK WKH RULJLQ DV LQ )LJXUH $ SODQH WKURXJK WKH RULJLQ DV LQ )LJXUH SURYLGHV D JRRG PHQWDO LPDJH IRU WKH VROXWLRQ VHW RI A[ D ZKHQ WKHUH DUH WZR RU PRUH IUHH YDULDEOHV 1RWH KRZHYHU WKDW D VLPLODU ıJXUH FDQ EH XVHG WR YLVXDOL]H 6SDQ fX; Yg HYHQ ZKHQ X DQG Y GR QRW DULVH DV VROXWLRQV RI A[ D : 6HH )LJXUH LQ 6HFWLRQ
3DUDPHWULF 9HFWRU )RUP 7KH RULJLQDO HTXDWLRQ IRU WKH SODQH LQ ([DPSOH LV DQ LPSOLFLW GHVFULSWLRQ RI WKH SODQH 6ROYLQJ WKLV HTXDWLRQ DPRXQWV WR ıQGLQJ DQ H[SOLFLW GHVFULSWLRQ RI WKH SODQH DV WKH VHW VSDQQHG E\ X DQG Y (TXDWLRQ LV FDOOHG D SDUDPHWULF YHFWRU HTXDWLRQ RI WKH SODQH 6RPHWLPHV VXFK DQ HTXDWLRQ LV ZULWWHQ DV [ D sX C t Y
.s; t LQ R/
WR HPSKDVL]H WKDW WKH SDUDPHWHUV YDU\ RYHU DOO UHDO QXPEHUV ,Q ([DPSOH WKH HTXDWLRQ [ D x3 Y ZLWK x3 IUHH RU [ D t Y ZLWK t LQ R LV D SDUDPHWULF YHFWRU HTXDWLRQ RI D OLQH :KHQHYHU D VROXWLRQ VHW LV GHVFULEHG H[SOLFLWO\ ZLWK YHFWRUV DV LQ ([DPSOHV DQG ZH VD\ WKDW WKH VROXWLRQ LV LQ SDUDPHWULF YHFWRU IRUP
6ROXWLRQV RI 1RQKRPRJHQHRXV 6\VWHPV :KHQ D QRQKRPRJHQHRXV OLQHDU V\VWHP KDV PDQ\ VROXWLRQV WKH JHQHUDO VROXWLRQ FDQ EH ZULWWHQ LQ SDUDPHWULF YHFWRU IRUP DV RQH YHFWRU SOXV DQ DUELWUDU\ OLQHDU FRPELQDWLRQ RI YHFWRUV WKDW VDWLVI\ WKH FRUUHVSRQGLQJ KRPRJHQHRXV V\VWHP
(;$03/( 'HVFULEH DOO VROXWLRQV RI A[ D E ZKHUH 2
3 2 3 3 5 4 7 A D 4 3 2 4 5 DQG E D 4 1 5 6 1 8 4
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
62/87,21 +HUH A LV WKH PDWUL[ RI FRHĴFLHQWV IURP ([DPSOH 5RZ RSHUDWLRQV RQ
Œ A E SURGXFH 3 2 3 5 4 7 1 4 3 2 4 1 5 4 0 6 1 8 4 0 2
3 0 43 1 1 0 2 5; 0 0 0
x1
43 x3 D 1 x2 D 2 0 D 0
7KXV x1 D 1 C 43 x3 x2 D 2 DQG x3 LV IUHH $V D YHFWRU WKH JHQHUDO VROXWLRQ RI A[ D E KDV WKH IRUP 2 3 2 3 2 3 24 3 2 3 243 x1 1 C 43 x3 1 x 1 3 3 3 6 7 6 7 6 7 6 7 6 7 6 7 [ D 4 x2 5 D 4 2 5 D 4 2 5 C 4 0 5 D 4 2 5 C x3 4 0 5 0 0 x3 x3 1 x3 6
S
6
Y
7KH HTXDWLRQ [ D S C x3 Y RU ZULWLQJ t DV D JHQHUDO SDUDPHWHU [ D S C tY v1p p
t LQ R
GHVFULEHV WKH VROXWLRQ VHW RI A[ D E LQ SDUDPHWULF YHFWRU IRUP 5HFDOO IURP ([DPSOH WKDW WKH VROXWLRQ VHW RI A[ D KDV WKH SDUDPHWULF YHFWRU HTXDWLRQ [ D tY
v
t LQ R
>ZLWK WKH VDPH Y WKDW DSSHDUV LQ @ 7KXV WKH VROXWLRQV RI A[ D E DUH REWDLQHG E\ DGGLQJ WKH YHFWRU S WR WKH VROXWLRQV RI A[ D 7KH YHFWRU S LWVHOI LV MXVW RQH SDUWLFXODU $GGLQJ S WR Y WUDQVODWHV Y WR Y C S VROXWLRQ RI A[ D E >FRUUHVSRQGLQJ WR t D 0 LQ @ '*(63&
L1p
L
7R GHVFULEH WKH VROXWLRQ VHW RI A[ D E JHRPHWULFDOO\ ZH FDQ WKLQN RI YHFWRU DGGLWLRQ DV D WUDQVODWLRQ *LYHQ Y DQG S LQ R2 RU R3 WKH HijHFW RI DGGLQJ S WR Y LV WR PRYH Y LQ D GLUHFWLRQ SDUDOOHO WR WKH OLQH WKURXJK S DQG :H VD\ WKDW Y LV WUDQVODWHG E\ S WR Y C S 6HH )LJXUH ,I HDFK SRLQW RQ D OLQH L LQ R2 RU R3 LV WUDQVODWHG E\ D YHFWRU S WKH UHVXOW LV D OLQH SDUDOOHO WR L 6HH )LJXUH 6XSSRVH L LV WKH OLQH WKURXJK DQG Y GHVFULEHG E\ HTXDWLRQ $GGLQJ S WR HDFK SRLQW RQ L SURGXFHV WKH WUDQVODWHG OLQH GHVFULEHG E\ HTXDWLRQ 1RWH WKDW S LV RQ WKH OLQH LQ HTXDWLRQ :H FDOO WKH HTXDWLRQ RI WKH OLQH WKURXJK S SDUDOOHO WR Y 7KXV WKH VROXWLRQ VHW RI A[ D E LV D OLQH WKURXJK S SDUDOOHO WR WKH VROXWLRQ VHW RI A[ D )LJXUH LOOXVWUDWHV WKLV FDVH Ax 5 b p 1 tv
'*(63&
p
7UDQVODWHG OLQH v
Ax 5 0
tv
'*(63& 3DUDOOHO VROXWLRQ VHWV RI A[ D E DQG
A[ D
7KH UHODWLRQ EHWZHHQ WKH VROXWLRQ VHWV RI A[ D E DQG A[ D VKRZQ LQ )LJXUH JHQHUDOL]HV WR DQ\ FRQVLVWHQW HTXDWLRQ A[ D E DOWKRXJK WKH VROXWLRQ VHW ZLOO EH ODUJHU WKDQ D OLQH ZKHQ WKHUH DUH VHYHUDO IUHH YDULDEOHV 7KH IROORZLQJ WKHRUHP JLYHV WKH SUHFLVH VWDWHPHQW 6HH ([HUFLVH DW WKH HQG RI WKLV VHFWLRQ IRU D SURRI
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
6ROXWLRQ 6HWV RI /LQHDU 6\VWHPV
5)&03&.
6XSSRVH WKH HTXDWLRQ A[ D E LV FRQVLVWHQW IRU VRPH JLYHQ E DQG OHW S EH D VROXWLRQ 7KHQ WKH VROXWLRQ VHW RI A[ D E LV WKH VHW RI DOO YHFWRUV RI WKH IRUP Z D S C Yh ZKHUH Yh LV DQ\ VROXWLRQ RI WKH KRPRJHQHRXV HTXDWLRQ A[ D
7KHRUHP VD\V WKDW LI A[ D E KDV D VROXWLRQ WKHQ WKH VROXWLRQ VHW LV REWDLQHG E\ WUDQVODWLQJ WKH VROXWLRQ VHW RI A[ D XVLQJ DQ\ SDUWLFXODU VROXWLRQ S RI A[ D E IRU WKH WUDQVODWLRQ )LJXUH LOOXVWUDWHV WKH FDVH LQ ZKLFK WKHUH DUH WZR IUHH YDULDEOHV (YHQ ZKHQ n > 3 RXU PHQWDO LPDJH RI WKH VROXWLRQ VHW RI D FRQVLVWHQW V\VWHP A[ D E ZLWK E ¤ LV HLWKHU D VLQJOH QRQ]HUR SRLQW RU D OLQH RU SODQH QRW SDVVLQJ WKURXJK WKH RULJLQ x3 Ax 5 b Ax 5 0 p
x1
x2
'*(63& 3DUDOOHO VROXWLRQ VHWV RI
A[ D E DQG A[ D
:DUQLQJ 7KHRUHP DQG )LJXUH DSSO\ RQO\ WR DQ HTXDWLRQ A[ D E WKDW KDV DW OHDVW RQH QRQ]HUR VROXWLRQ S :KHQ A[ D E KDV QR VROXWLRQ WKH VROXWLRQ VHW LV HPSW\ 7KH IROORZLQJ DOJRULWKP RXWOLQHV WKH FDOFXODWLRQV VKRZQ LQ ([DPSOHV DQG :5,7,1* $ 62/87,21 6(7 2) $ &216,67(17 6+LQW M LV SDUDOOHO WR WKH YHFWRU T S 6HH WKH ıJXUH EHORZ@ 2 3 6 0 S D TD S D TD 5 1 3 4 x2
6XSSRVH A[ D E KDV D VROXWLRQ ([SODLQ ZK\ WKH VROXWLRQ LV XQLTXH SUHFLVHO\ ZKHQ A[ D KDV RQO\ WKH WULYLDO VROXWLRQ 6XSSRVH A LV WKH 3 3 ]HUR PDWUL[ ZLWK DOO ]HUR HQWULHV 'HVFULEH WKH VROXWLRQ VHW RI WKH HTXDWLRQ A[ D ,I E ¤ FDQ WKH VROXWLRQ VHW RI A[ D E EH D SODQH WKURXJK WKH RULJLQ" ([SODLQ ,Q ([HUFLVHV ş D GRHV WKH HTXDWLRQ A[ D KDYH D QRQWULYLDO VROXWLRQ DQG E GRHV WKH HTXDWLRQ A[ D E KDYH DW OHDVW RQH VROXWLRQ IRU HYHU\ SRVVLEOH E" A LV D 3 3 PDWUL[ ZLWK WKUHH SLYRW SRVLWLRQV A LV D 3 3 PDWUL[ ZLWK WZR SLYRW SRVLWLRQV A LV D 3 2 PDWUL[ ZLWK WZR SLYRW SRVLWLRQV
p
x1 q M
q2p
2p
The line through p and q. ,Q ([HUFLVHV ş PDUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 7) $ KRPRJHQHRXV HTXDWLRQ LV DOZD\V FRQVLVWHQW 7) ,I [ LV D QRQWULYLDO VROXWLRQ RI A[ D WKHQ HYHU\ HQWU\ LQ [ LV QRQ]HUR 7) 7KH HTXDWLRQ A[ D JLYHV DQ H[SOLFLW GHVFULSWLRQ RI LWV VROXWLRQ VHW 7) 7KH HTXDWLRQ [ D x2 X C x3 Y ZLWK x2 DQG x3 IUHH DQG QHLWKHU X QRU Y D PXOWLSOH RI WKH RWKHU GHVFULEHV D SODQH WKURXJK WKH RULJLQ 7) 7KH KRPRJHQHRXV HTXDWLRQ A[ D KDV WKH WULYLDO VR OXWLRQ LI DQG RQO\ LI WKH HTXDWLRQ KDV DW OHDVW RQH IUHH YDULDEOH 7) 7KH HTXDWLRQ A[ D E LV KRPRJHQHRXV LI WKH ]HUR YHFWRU LV D VROXWLRQ 7) 7KH HTXDWLRQ [ D S C t Y GHVFULEHV D OLQH WKURXJK Y SDUDOOHO WR S 7) 7KH HijHFW RI DGGLQJ S WR D YHFWRU LV WR PRYH WKH YHFWRU LQ D GLUHFWLRQ SDUDOOHO WR S 7) 7KH VROXWLRQ VHW RI A[ D E LV WKH VHW RI DOO YHFWRUV RI WKH IRUP Z D S C Yh ZKHUH Yh LV DQ\ VROXWLRQ RI WKH HTXDWLRQ A[ D 7) 7KH VROXWLRQ VHW RI A[ D E LV REWDLQHG E\ WUDQVODWLQJ WKH VROXWLRQ VHW RI A[ D 3URYH WKH VHFRQG SDUW RI 7KHRUHP /HW Z EH DQ\ VROXWLRQ RI A[ D E DQG GHıQH Yh D Z S 6KRZ WKDW Yh LV D VROXWLRQ RI A[ D 7KLV VKRZV WKDW HYHU\ VROXWLRQ RI A[ D E KDV WKH IRUP Z D S C Yh ZLWK S D SDUWLFXODU VROXWLRQ RI A[ D E DQG Yh D VROXWLRQ RI A[ D
A LV D 2 4 PDWUL[ ZLWK WZR SLYRW SRVLWLRQV 2 3 2 6 21 5 ıQG RQH QRQWULYLDO VROXWLRQ RI *LYHQ A D 4 7 3 9
A[ D E\ LQVSHFWLRQ >+LQW 7KLQN RI WKH HTXDWLRQ A[ D ZULWWHQ DV D YHFWRU HTXDWLRQ@ 2 3 4 6 12 5 ıQG RQH QRQWULYLDO VROXWLRQ RI *LYHQ A D 4 8 6 9 A[ D E\ LQVSHFWLRQ 2 3 1 &RQVWUXFW D 3 3 QRQ]HUR PDWUL[ A VXFK WKDW WKH YHFWRU 4 1 5 1 LV D VROXWLRQ RI A[ D &RQVWUXFW 3 D 3 3 QRQ]HUR PDWUL[ A VXFK WKDW WKH YHFWRU 2 1 4 2 5 LV D VROXWLRQ RI A[ D 1 &RQVWUXFW D 2 2 PDWUL[ A VXFK WKDW WKH VROXWLRQ VHW RI WKH HTXDWLRQ A[ D LV WKH OLQH LQ R2 WKURXJK .4; 1/ DQG WKH RULJLQ 7KHQ ıQG D YHFWRU E LQ R2 VXFK WKDW WKH VROXWLRQ VHW RI A[ D E LV QRW D OLQH LQ R2 SDUDOOHO WR WKH VROXWLRQ VHW RI A[ D :K\ GRHV WKLV QRW FRQWUDGLFW 7KHRUHP " 6XSSRVH A LV D 3 3 PDWUL[ DQG \ LV D YHFWRU LQ R3 VXFK WKDW WKH HTXDWLRQ A[ D \ GRHV QRW KDYH D VROXWLRQ 'RHV WKHUH H[LVW D YHFWRU ] LQ R3 VXFK WKDW WKH HTXDWLRQ A[ D ] KDV D XQLTXH VROXWLRQ" 'LVFXVV /HW A EH DQ m n PDWUL[ DQG OHW X EH D YHFWRU LQ Rn WKDW VDWLV ıHV WKH HTXDWLRQ A[ D 6KRZ WKDW IRU DQ\ VFDODU c WKH YHF WRU c X DOVR VDWLVıHV A[ D >7KDW LV VKRZ WKDW A.c X/ D @ /HW A EH DQ m n PDWUL[ DQG OHW X DQG Y EH YHFWRUV LQ Rn ZLWK WKH SURSHUW\ WKDW AX D DQG AY D ([SODLQ ZK\ A.X C Y/ PXVW EH WKH ]HUR YHFWRU 7KHQ H[SODLQ ZK\ A.c X C d Y/ D IRU HDFK SDLU RI VFDODUV c DQG d
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$SSOLFDWLRQV RI /LQHDU 6\VWHPV
6ROXWLRQV WR 3UDFWLFH 3UREOHPV 5RZ UHGXFH WKH DXJPHQWHG PDWUL[ 1 4 5 0 1 4 2 1 8 9 0 9
x1
5 18
0 9
1 0
0 3 4 1 2 1
C 3x3 D 4 x2 2x3 D 1
7KXV x1 D 4 3x3 ; x2 D 1 C 2x3 ZLWK x3 IUHH 7KH JHQHUDO VROXWLRQ LQ SDUDPHW ULF YHFWRU IRUP LV 2 3 2 3 2 3 2 3 x1 4 3x3 4 3 4 x2 5 D 4 1 C 2x3 5 D 4 1 5 C x3 4 2 5 0 1 x3 x3 6
6
Y
S
7KH LQWHUVHFWLRQ RI WKH WZR SODQHV LV WKH OLQH WKURXJK S LQ WKH GLUHFWLRQ RI Y 10 3 2 7 DXJPHQWHG PDWUL[ 7KH LV URZ HTXLYDOHQW WR 1 :3 :2 :7 DQG WKH JHQHUDO VROXWLRQ LV x1 D :7 C :3x2 C :2x3 ZLWK x2 DQG x3 IUHH 7KDW LV 2
3 2 3 2 3 2 3 2 3 x1 :7 C :3x2 C :2x3 :7 :3 :2 5 D 4 0 5 C x2 4 1 5 C x 3 4 0 5 x2 [ D 4 x2 5 D 4 0 0 1 x3 x3
D
S
C
x2 X C
x3 Y
7KH VROXWLRQ VHW RI WKH QRQKRPRJHQHRXV HTXDWLRQ A[ D E LV WKH WUDQVODWHG SODQH S C 6SDQ fX; Yg ZKLFK SDVVHV WKURXJK S DQG LV SDUDOOHO WR WKH VROXWLRQ VHW RI WKH KRPRJHQHRXV HTXDWLRQ LQ ([DPSOH 8VLQJ 7KHRUHP IURP 6HFWLRQ QRWLFH
A.S C Yh / D AS C AYh D E C D E; KHQFH S C Yh LV D VROXWLRQ WR A[ D E
$SSOLFDWLRQV RI /LQHDU 6\VWHPV n WKH FROXPQV DUH OLQHDUO\ GHSHQGHQW x2
,I D VHW FRQWDLQV PRUH YHFWRUV WKDQ WKHUH DUH HQWULHV LQ HDFK YHFWRU WKHQ WKH VHW LV OLQHDUO\ GHSHQGHQW 7KDW LV DQ\ VHW fY1 ; : : : ; Yp g LQ Rn LV OLQHDUO\ GHSHQGHQW LI p > n
1300' /HW A D Œ Y1 Yp 7KHQ A LV n p DQG WKH HTXDWLRQ A[ D FRUUH VSRQGV WR D V\VWHP RI n HTXDWLRQV LQ p XQNQRZQV ,I p > n WKHUH DUH PRUH YDULDEOHV WKDQ HTXDWLRQV VR WKHUH PXVW EH D IUHH YDULDEOH +HQFH A[ D KDV D QRQWULYLDO VROXWLRQ DQG WKH FROXPQV RI A DUH OLQHDUO\ GHSHQGHQW 6HH )LJXUH IRU D PDWUL[ YHUVLRQ RI WKLV WKHRUHP :DUQLQJ 7KHRUHP VD\V QRWKLQJ DERXW WKH FDVH LQ ZKLFK WKH QXPEHU RI YHFWRUV LQ WKH VHW GRHV QRW H[FHHG WKH QXPEHU RI HQWULHV LQ HDFK YHFWRU
(22, 2) (2, 1) x1 (4, 21)
'*(63&
$ OLQHDUO\ GHSHQGHQW VHW LQ R2
5)&03&.
2 4 2 DUH OLQHDUO\ GHSHQGHQW E\ 7KHRUHP 1 1 2 EHFDXVH WKHUH DUH WKUHH YHFWRUV LQ WKH VHW DQG WKHUH DUH RQO\ WZR HQWULHV LQ HDFK YHFWRU 1RWLFH KRZHYHU WKDW QRQH RI WKH YHFWRUV LV D PXOWLSOH RI RQH RI WKH RWKHU YHFWRUV 6HH )LJXUH
(;$03/( 7KH YHFWRUV
,I D VHW S D fY1 ; : : : ; Yp g LQ Rn FRQWDLQV WKH ]HUR YHFWRU WKHQ WKH VHW LV OLQHDUO\ GHSHQGHQW
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
1300' %\ UHQXPEHULQJ WKH YHFWRUV ZH PD\ VXSSRVH Y1 D 7KHQ WKH HTXDWLRQ 1Y1 C 0Y2 C C 0Yp D VKRZV WKDW S LV OLQHDUO\ GHSHQGHQW
(;$03/( 'HWHUPLQH E\ LQVSHFWLRQ LI WKH JLYHQ VHW LV OLQHDUO\ GHSHQGHQW 2 3 2 3 2 3 2 3 1 2 3 4 D 4 7 5 4 0 5 4 1 5 4 1 5 6 9 5 8
2 3 2 3 2 3 2 0 1 E 4 3 5 4 0 5 4 1 5 5 0 8
2
3 2 3 2 3 6 4 7 6 6 7 7 6 7 F 6 4 6 5 4 9 5 10 15
62/87,21
D 7KH VHW FRQWDLQV IRXU YHFWRUV HDFK RI ZKLFK KDV RQO\ WKUHH HQWULHV 6R WKH VHW LV OLQHDUO\ GHSHQGHQW E\ 7KHRUHP E 7KHRUHP GRHV QRW DSSO\ KHUH EHFDXVH WKH QXPEHU RI YHFWRUV GRHV QRW H[FHHG WKH QXPEHU RI HQWULHV LQ HDFK YHFWRU 6LQFH WKH ]HUR YHFWRU LV LQ WKH VHW WKH VHW LV OLQHDUO\ GHSHQGHQW E\ 7KHRUHP F &RPSDUH WKH FRUUHVSRQGLQJ HQWULHV RI WKH WZR YHFWRUV 7KH VHFRQG YHFWRU VHHPV WR EH 3=2 WLPHV WKH ıUVW YHFWRU 7KLV UHODWLRQ KROGV IRU WKH ıUVW WKUHH SDLUV RI HQWULHV EXW IDLOV IRU WKH IRXUWK SDLU 7KXV QHLWKHU RI WKH YHFWRUV LV D PXOWLSOH RI WKH RWKHU DQG KHQFH WKH\ DUH OLQHDUO\ LQGHSHQGHQW ,Q JHQHUDO \RX VKRXOG UHDG D VHFWLRQ WKRURXJKO\ VHYHUDO WLPHV WR DEVRUE DQ LPSRU WDQW FRQFHSW VXFK DV OLQHDU LQGHSHQGHQFH 7KH QRWHV LQ WKH 6WXG\ *XLGH IRU WKLV VHFWLRQ ZLOO KHOS \RX OHDUQ WR IRUP PHQWDO LPDJHV RI NH\ LGHDV LQ OLQHDU DOJHEUD )RU LQVWDQFH WKH IROORZLQJ SURRI LV ZRUWK UHDGLQJ FDUHIXOO\ EHFDXVH LW VKRZV KRZ WKH GHıQLWLRQ RI OLQHDU LQGHSHQGHQFH FDQ EH XVHG
1300' 0' 5)&03&. $IBSBDUFSJ[BUJPO PG -JOFBSMZ %FQFOEFOU 4FUT
,I VRPH Yj LQ S HTXDOV D OLQHDU FRPELQDWLRQ RI WKH RWKHU YHFWRUV WKHQ Yj FDQ EH VXEWUDFWHG IURP ERWK VLGHV RI WKH HTXDWLRQ SURGXFLQJ D OLQHDU GHSHQGHQFH UHODWLRQ ZLWK D QRQ]HUR ZHLJKW .1/ RQ Yj >)RU LQVWDQFH LI Y1 D c2 Y2 C c3 Y3 WKHQ D .1/Y1 C c2 Y2 C c3 Y3 C 0Y4 C C 0Yp @ 7KXV S LV OLQHDUO\ GHSHQGHQW &RQYHUVHO\ VXSSRVH S LV OLQHDUO\ GHSHQGHQW ,I Y1 LV ]HUR WKHQ LW LV D WULYLDO OLQHDU FRPELQDWLRQ RI WKH RWKHU YHFWRUV LQ S 2WKHUZLVH Y1 ¤ DQG WKHUH H[LVW ZHLJKWV c1 ; : : : ; cp QRW DOO ]HUR VXFK WKDW c1 Y1 C c2 Y2 C C cp Yp D /HW j EH WKH ODUJHVW VXEVFULSW IRU ZKLFK cj ¤ 0 ,I j D 1 WKHQ c1 Y1 D ZKLFK LV LPSRVVLEOH EHFDXVH Y1 ¤ 6R j > 1 DQG
c1 Y1 C C cj Yj C 0Yj C1 C C 0Yp D cj Yj D c1 Y1 cj 1 Yj 1
cj 1 c1 Yj D Y1 C C Yj 1 cj cj 3UDFWLFH 3UREOHPV 2 3 2 3 2 3 2 3 3 6 0 3 /HW X D 4 2 5 Y D 4 1 5 Z D 4 5 5 DQG ] D 4 7 5 4 7 2 5 D $UH WKH VHWV fX; Yg; fX; Zg; fX; ]g; fY; Zg; fY; ]g DQG fZ; ]g HDFK OLQHDUO\ LQGH SHQGHQW" :K\ RU ZK\ QRW" MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDU ,QGHSHQGHQFH
E 'RHV WKH DQVZHU WR 3DUW D LPSO\ WKDW fX; Y; Z; ]g LV OLQHDUO\ LQGHSHQGHQW" F 7R GHWHUPLQH LI fX; Y; Z; ]g LV OLQHDUO\ GHSHQGHQW LV LW ZLVH WR FKHFN LI VD\ Z LV D OLQHDU FRPELQDWLRQ RI X Y DQG ]" G ,V fX; Y; Z; ]g OLQHDUO\ GHSHQGHQW" 6XSSRVH WKDW fY1 ; Y2 ; Y3 g LV D OLQHDUO\ GHSHQGHQW VHW RI YHFWRUV LQ Rn DQG Y4 LV D YHFWRU LQ Rn 6KRZ WKDW fY1 ; Y2 ; Y3 ; Y4 g LV DOVR D OLQHDUO\ GHSHQGHQW VHW
([HUFLVHV ,Q ([HUFLVHV ş GHWHUPLQH LI WKH YHFWRUV DUH OLQHDUO\ LQGHSHQGHQW -XVWLI\ HDFK DQVZHU 2 3 2 3 2 3 2 3 2 3 2 3 5 7 2 0 0 3 4 1 5 4 2 5 4 1 5 4 0 5 4 5 5 4 4 5 0 6 6 2 8 1
1 3 3 6
1 2 4 8
,Q ([HUFLVHV ş GHWHUPLQH LI WKH FROXPQV RI WKH OLQHDUO\ LQGHSHQGHQW VHW -XVWLI\ HDFK DQVZHU 2 3 2 0 8 5 4 3 6 3 7 7 6 0 1 4 7 6 6 4 4 1 5 4 5 1 0 1 3 2 5 4 2
1 4 3 5 4 2 7 4 5 7
3
0 15 5
2
PDWUL[ IRUP D
0 47 7 35 6
3 2 3 2 3 3 0 6 4 5 5 4 0 5 4 5 5 1 0 4 2 3 2 3 8 2 4 12 5 4 3 5 4 1
3 2 3 4 6 4 2 5 4 3 5 6 9
4 1 2 8 4 3 5 1 2
3 2 3 2 3 1 2 0 4 4 5 4 5 5 4 0 5 7 3 0
7) 7KH FROXPQV RI D PDWUL[ A DUH OLQHDUO\ LQGHSHQGHQW LI WKH HTXDWLRQ A[ KDV WKH WULYLDO VROXWLRQ 3
1 3 3 2 7 1 25 4 3 3 0 1 4
2
3 2 3 2 3 1 2 2 Y1 D 4 5 5 Y2 D 4 10 5 Y3 D 4 10 5 3 6 h ,Q ([HUFLVHV ş ıQG WKH YDOXHV RI h IRU ZKLFK WKH YHFWRUV DUH OLQHDUO\ GHSHQGHQW -XVWLI\ HDFK DQVZHU 2 3 2 3 2 3 2 3 2 3 2 3 1 3 1 2 6 8 4 1 5 4 5 5 4 5 5 4 4 5 4 7 5 4 h 5 4 7 h 1 3 4 3 2 3 2 3 1 2 3 4 5 5 4 9 5 4 h 5 3 6 9
2
2
,Q ([HUFLVHV ş PDUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU RQ WKH EDVLV RI D FDUHIXO UHDGLQJ RI WKH WH[W
3
,Q ([HUFLVHV DQG D IRU ZKDW YDOXHV RI h LV Y3 LQ 6SDQ fY1 ; Y2 g DQG E IRU ZKDW YDOXHV RI h LV fY1 ; Y2 ; Y3 g OLQHDUO\ GHSHQGHQW" -XVWLI\ HDFK DQVZHU 2 3 2 3 2 3 1 3 2 Y1 D 4 3 5 Y2 D 4 10 5 Y3 D 4 7 5 2 6 h
2
5 2 1 1 1 8 3 7
2
3 2 3 2 3 1 5 1 4 1 5 4 7 5 4 1 5 3 8 h
'HWHUPLQH E\ LQVSHFWLRQ ZKHWKHU WKH YHFWRUV LQ ([HUFLVHV ş DUH OLQHDUO\ LQGHSHQGHQW -XVWLI\ HDFK DQVZHU
7) 7ZR YHFWRUV DUH OLQHDUO\ GHSHQGHQW LI DQG RQO\ LI WKH\ OLH RQ D OLQH WKURXJK WKH RULJLQ 7) ,I S LV D OLQHDUO\ GHSHQGHQW VHW WKHQ HDFK YHFWRU LV D OLQHDU FRPELQDWLRQ RI WKH RWKHU YHFWRUV LQ S 7) ,I D VHW FRQWDLQV IHZHU YHFWRUV WKDQ WKHUH DUH HQWULHV LQ WKH YHFWRUV WKHQ WKH VHW LV OLQHDUO\ LQGHSHQGHQW 7) 7KH FROXPQV RI DQ\ 4 5 PDWUL[ DUH OLQHDUO\ GHSHQGHQW 7) ,I [ DQG \ DUH OLQHDUO\ LQGHSHQGHQW DQG LI ] LV LQ 6SDQ f[; \g WKHQ f[; \; ]g LV OLQHDUO\ GHSHQGHQW 7) ,I [ DQG \ DUH OLQHDUO\ LQGHSHQGHQW DQG LI f[; \; ]g LV OLQHDUO\ GHSHQGHQW WKHQ ] LV LQ 6SDQ f[; \g 7) ,I D VHW LQ Rn LV OLQHDUO\ GHSHQGHQW WKHQ WKH VHW FRQWDLQV PRUH YHFWRUV WKDQ WKHUH DUH HQWULHV LQ HDFK YHFWRU ,Q ([HUFLVHV ş GHVFULEH WKH SRVVLEOH HFKHORQ IRUPV RI WKH PDWUL[ 8VH WKH QRWDWLRQ RI ([DPSOH LQ 6HFWLRQ A LV D 3 3 PDWUL[ ZLWK OLQHDUO\ LQGHSHQGHQW FROXPQV A LV D 2 2 PDWUL[ ZLWK OLQHDUO\ GHSHQGHQW FROXPQV A LV D 4 2 PDWUL[ A D ŒD1 RI D1
D2 DQG D2 LV QRW D PXOWLSOH
A LV D 4 3 PDWUL[ A D ŒD1 D2 D3 VXFK WKDW fD1 ; D2 g LV OLQHDUO\ LQGHSHQGHQW DQG D3 LV QRW LQ 6SDQ fD1 ; D2 g
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
+RZ PDQ\ SLYRW FROXPQV PXVW D 7 5 PDWUL[ KDYH LI LWV FROXPQV DUH OLQHDUO\ LQGHSHQGHQW" :K\"
7)& ,I Y1 DQG Y2 DUH LQ R4 DQG Y2 LV QRW D VFDODU PXOWLSOH RI Y1 WKHQ fY1 ; Y2 g LV OLQHDUO\ LQGHSHQGHQW
+RZ PDQ\ SLYRW FROXPQV PXVW D 5 7 PDWUL[ KDYH LI LWV FROXPQV VSDQ R5 " :K\"
7)& ,I Y1 ; : : : ; Y4 DUH LQ R4 DQG Y3 LV QRW D OLQHDU FRPELQD WLRQ RI Y1 ; Y2 ; Y4 WKHQ fY1 ; Y2 ; Y3 ; Y4 g LV OLQHDUO\ LQGHSHQGHQW
&RQVWUXFW 3 2 PDWULFHV A DQG B VXFK WKDW A[ D KDV RQO\ WKH WULYLDO VROXWLRQ DQG B [ D KDV D QRQWULYLDO VROXWLRQ D )LOO LQ WKH EODQN LQ WKH IROORZLQJ VWDWHPHQW ŗ,I A LV DQ m n PDWUL[ WKHQ WKH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW LI DQG RQO\ LI A KDV SLYRW FROXPQVŘ E ([SODLQ ZK\ WKH VWDWHPHQW LQ D LV WUXH ([HUFLVHV DQG VKRXOG EH VROYHG ZLWKRXW SHUIRUPLQJ URZ RSHUDWLRQV >+LQW :ULWH A[ D DV D YHFWRU HTXDWLRQ@ 2 3 2 3 5 6 5 1 4 7 6 7 REVHUYH WKDW WKH WKLUG FROXPQ *LYHQ A D 4 3 1 4 5 1 0 1 LV WKH VXP RI WKH ıUVW WZR FROXPQV )LQG D QRQWULYLDO VROXWLRQ RI A[ D 2 3 4 1 6 5 3 5 REVHUYH WKDW WKH ıUVW FROXPQ *LYHQ A D 4 7 9 3 3 SOXV WZLFH WKH VHFRQG FROXPQ HTXDOV WKH WKLUG FROXPQ )LQG D QRQWULYLDO VROXWLRQ RI A[ D
7)& ,I Y1 ; : : : ; Y4 DUH LQ R4 DQG fY1 ; Y2 ; Y3 g LV OLQHDUO\ GHSHQGHQW WKHQ fY1 ; Y2 ; Y3 ; Y4 g LV DOVR OLQHDUO\ GHSHQGHQW 7)& ,I Y1 ; : : : ; Y4 DUH OLQHDUO\ LQGHSHQGHQW YHFWRUV LQ R4 WKHQ fY1 ; Y2 ; Y3 g LV DOVR OLQHDUO\ LQGHSHQGHQW >+LQW 7KLQN DERXW x1 Y1 C x2 Y2 C x3 Y3 C 0 Y4 D @ 6XSSRVH A LV DQ m n PDWUL[ ZLWK WKH SURSHUW\ WKDW IRU DOO E LQ Rm WKH HTXDWLRQ A[ D E KDV DW PRVW RQH VROXWLRQ 8VH WKH GHıQLWLRQ RI OLQHDU LQGHSHQGHQFH WR H[SODLQ ZK\ WKH FROXPQV RI A PXVW EH OLQHDUO\ LQGHSHQGHQW 6XSSRVH DQ m n PDWUL[ A KDV n SLYRW FROXPQV ([SODLQ ZK\ IRU HDFK E LQ Rm WKH HTXDWLRQ A[ D E KDV DW PRVW RQH VROXWLRQ >+LQW ([SODLQ ZK\ A[ D E FDQQRW KDYH LQıQLWHO\ PDQ\ VROXWLRQV@ 7 ,Q ([HUFLVHV DQG XVH DV PDQ\ FROXPQV RI A DV SRVVLEOH WR FRQVWUXFW D PDWUL[ B ZLWK WKH SURSHUW\ WKDW WKH HTXDWLRQ B [ D KDV RQO\ WKH WULYLDO VROXWLRQ 6ROYH B [ D WR YHULI\ \RXU ZRUN 2 3 8 3 0 7 2 6 9 4 5 11 7 7 7 A D 6 4 6 2 2 4 45 5 1 7 0 10 2 3 12 10 6 3 7 10 6 4 7 9 57 6 7 6 7 7 5 5 1 9 9 9 A D 6 6 7 4 4 3 1 6 8 95 8 7 5 9 11 8
(DFK VWDWHPHQW LQ ([HUFLVHV ş LV HLWKHU WUXH LQ DOO FDVHV RU IDOVH IRU DW OHDVW RQH H[DPSOH ,I IDOVH FRQVWUXFW D VSHFLıF H[DPSOH WR VKRZ WKDW WKH VWDWHPHQW LV QRW DOZD\V WUXH 6XFK DQ H[DPSOH LV FDOOHG D FRXQWHUH[DPSOH WR WKH VWDWHPHQW ,I D VWDWHPHQW LV WUXH JLYH D MXVWLıFDWLRQ 2QH VSHFLıF H[DPSOH FDQQRW H[SODLQ ZK\ D VWDWHPHQW LV DOZD\V WUXH +LQW 6XSSRVH X DQG Y LQ Rn DUH OLQHDUO\ LQGH SHQGHQW DQG \HW T .X/ DQG T .Y/ DUH OLQHDUO\ GHSHQGHQW 7KHQ c1 T .X/ C c2 T .Y/ D IRU VRPH ZHLJKWV c1 DQG c2 QRW ERWK ]HUR 8VH WKLV HTXDWLRQ@ /HW T W R3 ! R3 EH WKH WUDQVIRUPDWLRQ WKDW UHIJHFWV HDFK YHF WRU [ D .x1 ; x2 ; x3 / WKURXJK WKH SODQH x3 D 0 RQWR T .[/ D .x1 ; x2 ; x3 / 6KRZ WKDW T LV D OLQHDU WUDQVIRUPDWLRQ >6HH ([DPSOH IRU LGHDV@ /HW T W R3 ! R3 EH WKH WUDQVIRUPDWLRQ WKDW SURMHFWV HDFK YHFWRU [ D .x1 ; x2 ; x3 / RQWR WKH SODQH x2 D 0 VR T .[/ D .x1 ; 0; x3 / 6KRZ WKDW T LV D OLQHDU WUDQVIRUPDWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 0DWUL[ RI D /LQHDU 7UDQVIRUPDWLRQ
7 ,Q ([HUFLVHV DQG WKH JLYHQ PDWUL[ GHWHUPLQHV D OLQHDU LQ WKH UDQJH RI WKH WUDQVIRUPDWLRQ [ 7! A[" ,I VR ıQG DQ [ WUDQVIRUPDWLRQ T )LQG DOO [ VXFK WKDW T .[/ D ZKRVH LPDJH XQGHU WKH WUDQVIRUPDWLRQ LV E 2 2 3 3 2 3 4 2 5 5 9 4 9 4 7 6 5 8 7 6 9 6 7 07 67 7 8 7 7 7 /HW E D 6 7 7 DQG OHW A EH WKH PDWUL[ LQ ([HUFLVH ,V E 6 6 4 4 6 5 5 4 4 5 3 7 11 16 9 13 5 5 5 3 8 4 9 7 4 5 2 3 LQ WKH UDQJH RI WKH WUDQVIRUPDWLRQ [ 7! A[" ,I VR ıQG DQ [ 7 ZKRVH LPDJH XQGHU WKH WUDQVIRUPDWLRQ LV E 657 7 /HW E D 6 7 DQG OHW A EH WKH PDWUL[ LQ ([HUFLVH ,V E 495 7 678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU PDVWHULQJ OLQHDU WUDQVIRUPDWLRQV
x2 Au x
v
x1 Av u
The transformation x
Ax
Ax.
6ROXWLRQV WR 3UDFWLFH 3UREOHPV A PXVW KDYH ıYH FROXPQV IRU A[ WR EH GHıQHG A PXVW KDYH WZR URZV IRU WKH FRGRPDLQ RI T WR EH R2 3ORW VRPH UDQGRP SRLQWV YHFWRUV RQ JUDSK SDSHU WR VHH ZKDW KDSSHQV $ SRLQW VXFK DV .4; 1/ PDSV LQWR .4; 1/ 7KH WUDQVIRUPDWLRQ [ 7! A[ UHIJHFWV SRLQWV WKURXJK WKH x D[LV RU x1 D[LV /HW [ D t X IRU VRPH t VXFK WKDW 0 t 1 6LQFH T LV OLQHDU T .t X/ D t T .X/ ZKLFK LV D SRLQW RQ WKH OLQH VHJPHQW EHWZHHQ DQG T .X/
7KH 0DWUL[ RI D /LQHDU 7UDQVIRUPDWLRQ
x2 e 2 5 01
x1 e 1 5 10
:KHQHYHU D OLQHDU WUDQVIRUPDWLRQ T DULVHV JHRPHWULFDOO\ RU LV GHVFULEHG LQ ZRUGV ZH XVXDOO\ ZDQW D ŗIRUPXODŘ IRU T .[/ 7KH GLVFXVVLRQ WKDW IROORZV VKRZV WKDW HYHU\ OLQHDU WUDQVIRUPDWLRQ IURP Rn WR Rm LV DFWXDOO\ D PDWUL[ WUDQVIRUPDWLRQ [ 7! A[ DQG WKDW LPSRUWDQW SURSHUWLHV RI T DUH LQWLPDWHO\ UHODWHG WR IDPLOLDU SURSHUWLHV RI A 7KH NH\ WR ıQGLQJ A LV WR REVHUYH WKDW T LV FRPSOHWHO\ GHWHUPLQHG E\ ZKDW LW GRHV WR WKH FROXPQV RI WKH n n LGHQWLW\ PDWUL[ In 1 0 1 0 (;$03/( 7KH FROXPQV RI I2 D DUH H1 D DQG H2 D 0 1 0 1 6XSSRVH T LV D OLQHDU WUDQVIRUPDWLRQ IURP R2 LQWR R3 VXFK WKDW 2 3 2 3 5 3 T .H1 / D 4 7 5 DQG T .H2 / D 4 8 5 2 0 :LWK QR DGGLWLRQDO LQIRUPDWLRQ ıQG D IRUPXOD IRU WKH LPDJH RI DQ DUELWUDU\ [ LQ R2 62/87,21 :ULWH
[D
x1 x2
D x1
1 0 C x2 D x1 H1 C x2 H2 0 1
6LQFH T LV D OLQHDU WUDQVIRUPDWLRQ
T .[/ D x1 T .H1 / C x2 T .H2 / 2 3 2 3 2 3 5 3 5x1 3x2 D x1 4 7 5 C x2 4 8 5 D 4 7x1 C 8x2 5 2 0 2x1 C 0 MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
7KH VWHS IURP HTXDWLRQ WR HTXDWLRQ H[SODLQV ZK\ NQRZOHGJH RI T .H1 / DQG T .H2 / LV VXĴFLHQW WR GHWHUPLQH T .[/ IRU DQ\ [ 0RUHRYHU VLQFH H[SUHVVHV T .[/ DV D OLQHDU FRPELQDWLRQ RI YHFWRUV ZH FDQ SXW WKHVH YHFWRUV LQWR WKH FROXPQV RI D PDWUL[ A DQG ZULWH DV x1 T .[/ D T .H1 / T .H2 / D A[ x2
5)&03&.
/HW T W Rn ! Rm EH D OLQHDU WUDQVIRUPDWLRQ 7KHQ WKHUH H[LVWV D XQLTXH PDWUL[ A VXFK WKDW T .[/ D A[ IRU DOO [ LQ Rn ,Q IDFW A LV WKH m n PDWUL[ ZKRVH j WK FROXPQ LV WKH YHFWRU T .Hj / ZKHUH Hj LV WKH j WK FROXPQ RI WKH LGHQWLW\ PDWUL[ LQ Rn A D T .H1 / T .Hn /
1300' :ULWH [ D In [ D Œ H1 Hn [ D x1 H1 C C xn Hn DQG XVH WKH OLQHDULW\ RI T WR FRPSXWH T .[/ D T .x1 H1 C C xn Hn / D x1 T .H1 / C C xn T .Hn / 2 3 x1 6 : 7 D T .H1 / T .Hn / 4 :: 5 D A[ xn 7KH XQLTXHQHVV RI A LV WUHDWHG LQ ([HUFLVH 7KH PDWUL[ A LQ LV FDOOHG WKH VWDQGDUG PDWUL[ IRU WKH OLQHDU WUDQVIRUPD WLRQ T :H NQRZ QRZ WKDW HYHU\ OLQHDU WUDQVIRUPDWLRQ IURP Rn WR Rm FDQ EH YLHZHG DV D PDWUL[ WUDQVIRUPDWLRQ DQG YLFH YHUVD 7KH WHUP OLQHDU WUDQVIRUPDWLRQ IRFXVHV RQ D SURSHUW\ RI D PDSSLQJ ZKLOH PDWUL[ WUDQVIRUPDWLRQ GHVFULEHV KRZ VXFK D PDSSLQJ LV LPSOHPHQWHG DV ([DPSOHV DQG LOOXVWUDWH
(;$03/( )LQG WKH VWDQGDUG PDWUL[ A IRU WKH GLODWLRQ WUDQVIRUPDWLRQ T .[/ D 3[ IRU [ LQ R2
62/87,21 :ULWH
3 T .H1 / D 3H1 D DQG 0
0 T .H2 / D 3H2 D 3
? ? 3 0 AD 0 3
(;$03/( /HW T W R2 ! R2 EH WKH WUDQVIRUPDWLRQ WKDW URWDWHV HDFK SRLQW LQ R2 DERXW WKH RULJLQ WKURXJK DQ DQJOH ' ZLWK FRXQWHUFORFNZLVH URWDWLRQ IRU D SRVLWLYH DQJOH :H FRXOG VKRZ JHRPHWULFDOO\ WKDW VXFK D WUDQVIRUPDWLRQ LV OLQHDU 6HH )LJXUH LQ 6HFWLRQ )LQG WKH VWDQGDUG PDWUL[ A RI WKLV WUDQVIRUPDWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 0DWUL[ RI D /LQHDU 7UDQVIRUPDWLRQ
1 0 VLQ ' FRV ' URWDWHV LQWR DQG URWDWHV LQWR 6HH )LJXUH 0 1 VLQ ' FRV ' %\ 7KHRUHP FRV ' VLQ ' AD VLQ ' FRV ' 62/87,21
([DPSOH LQ 6HFWLRQ LV D VSHFLDO FDVH RI WKLV WUDQVIRUPDWLRQ ZLWK ' D =2 x2 (2sin w, cos w)
(0, 1)
w
(cos w, sin w) w (1, 0)
x1
'*(63& $ URWDWLRQ WUDQVIRUPDWLRQ x2
*HRPHWULF /LQHDU 7UDQVIRUPDWLRQV RI R
0 1
1 0
x1
'*(63&
7KH XQLW VTXDUH
([DPSOHV DQG LOOXVWUDWH OLQHDU WUDQVIRUPDWLRQV WKDW DUH GHVFULEHG JHRPHWULFDOO\ 7DEOHV ş LOOXVWUDWH RWKHU FRPPRQ JHRPHWULF OLQHDU WUDQVIRUPDWLRQV RI WKH SODQH %HFDXVH WKH WUDQVIRUPDWLRQV DUH OLQHDU WKH\ DUH GHWHUPLQHG FRPSOHWHO\ E\ ZKDW WKH\ GR WR WKH FROXPQV RI I2 ,QVWHDG RI VKRZLQJ RQO\ WKH LPDJHV RI H1 DQG H2 WKH WDEOHV VKRZ ZKDW D WUDQVIRUPDWLRQ GRHV WR WKH XQLW VTXDUH )LJXUH 2WKHU WUDQVIRUPDWLRQV FDQ EH FRQVWUXFWHG IURP WKRVH OLVWHG LQ 7DEOHV ş E\ DSSO\LQJ RQH WUDQVIRUPDWLRQ DIWHU DQRWKHU )RU LQVWDQFH D KRUL]RQWDO VKHDU FRXOG EH IROORZHG E\ D UHIJHFWLRQ LQ WKH x2 D[LV 6HFWLRQ ZLOO VKRZ WKDW VXFK D FRPSRVLWLRQ RI OLQHDU WUDQVIRUPDWLRQV LV OLQHDU $OVR VHH ([HUFLVH
([LVWHQFH DQG 8QLTXHQHVV 4XHVWLRQV 7KH FRQFHSW RI D OLQHDU WUDQVIRUPDWLRQ SURYLGHV D QHZ ZD\ WR XQGHUVWDQG WKH H[LVWHQFH DQG XQLTXHQHVV TXHVWLRQV DVNHG HDUOLHU 7KH QH[W WZR GHıQLWLRQV JLYH WKH DSSURSULDWH WHUPLQRORJ\ IRU WUDQVIRUPDWLRQV
%&'*/*5*0/
$ PDSSLQJ T W Rn ! Rm LV VDLG WR EH RQWR Rm LI HDFK E LQ Rm LV WKH LPDJH RI DW OHDVW RQH [ LQ Rn (TXLYDOHQWO\ T LV RQWR Rm ZKHQ WKH UDQJH RI T LV DOO RI WKH FRGRPDLQ Rm 7KDW LV T PDSV Rn RQWR Rm LI IRU HDFK E LQ WKH FRGRPDLQ Rm WKHUH H[LVWV DW OHDVW RQH VROXWLRQ RI T .[/ D E ŗ'RHV T PDS Rn RQWR Rm "Ř LV DQ H[LVWHQFH TXHVWLRQ 7KH PDSSLQJ T LV QRW RQWR ZKHQ WKHUH LV VRPH E LQ Rm IRU ZKLFK WKH HTXDWLRQ T .[/ D E KDV QR VROXWLRQ 6HH )LJXUH T
T Range
Domain n
m
T is not onto
Range
Domain n
m
'*(63& ,V WKH UDQJH RI T DOO RI Rm "
m
T is onto m
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
5"#-& 3FáFDUJPOT 7UDQVIRUPDWLRQ
,PDJH RI WKH 8QLW 6TXDUH x2
Reflection through the x1-axis
6WDQGDUG 0DWUL[ 1 0 0 21
1 0 x1
0 21
x2
Reflection through the x2-axis
21 0
0 1
0 1
x1
21 0
x2
Reflection through the line x2 5 x1
0 1
x2 5 x1
1 0
0 1
1 0
x1
x2
Reflection through the line x2 5 2x1
0 21 21 0
21 0
x1
0 21
x2 5 2x1
x2
Reflection through the origin
21 0 0 21
21 0
x1
0 21
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 0DWUL[ RI D /LQHDU 7UDQVIRUPDWLRQ
5"#-& $POUSBDUJPOT BOE &YQBOTJPOT 7UDQVIRUPDWLRQ Horizontal contraction and expansion
,PDJH RI WKH 8QLW 6TXDUH x2
x2
0 1
k 0
0 1
1 0
0 k
0 1
x1
k 0
x1
k 0
0,k,1
k.1
x2
Vertical contraction and expansion
6WDQGDUG 0DWUL[
x2 0 k
0 k x1
1 0
x1
1 0
0,k,1
k.1
5"#-& 4IFBST 7UDQVIRUPDWLRQ
,PDJH RI WKH 8QLW 6TXDUH x2
Horizontal shear
6WDQGDUG 0DWUL[
x2 k 1
k 1
k
x1
1 0 k,0
1 k
0 1
k.0
x2
Vertical shear
k 1
x1
1 0
k
1 0
x2 0 1
0 1
1 k
k x1
x1
1 k
k k,0
k.0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
5"#-& 1SPKFDUJPOT 7UDQVIRUPDWLRQ
,PDJH RI WKH 8QLW 6TXDUH
6WDQGDUG 0DWUL[
x2
Projection onto the x1-axis
0 0
0 0
0 0
0 1
x1
1 0
x2
Projection onto the x2-axis
1 0
0 1
x1
0 0
%&'*/*5*0/
$ PDSSLQJ T W Rn ! Rm LV VDLG WR EH RQHWRRQH LI HDFK E LQ Rm LV WKH LPDJH RI DW PRVW RQH [ LQ Rn (TXLYDOHQWO\ T LV RQHWRRQH LI IRU HDFK E LQ Rm WKH HTXDWLRQ T .[/ D E KDV HLWKHU D XQLTXH VROXWLRQ RU QRQH DW DOO ŗ,V T RQHWRRQH"Ř LV D XQLTXHQHVV TXHVWLRQ 7KH PDSSLQJ T LV QRW RQHWRRQH ZKHQ VRPH E LQ Rm LV WKH LPDJH RI PRUH WKDQ RQH YHFWRU LQ Rn ,I WKHUH LV QR VXFK E WKHQ T LV RQHWRRQH 6HH )LJXUH Domain
T
Range
0
0 n
m
Domain
T
Range
0
0 n
T is not one-to-one
m
T is one-to-one
'*(63& ,V HYHU\ E WKH LPDJH RI DW PRVW RQH YHFWRU"
7KH SURMHFWLRQ WUDQVIRUPDWLRQV VKRZQ LQ 7DEOH DUH QRW RQHWRRQH DQG GR QRW PDS R2 RQWR R2 7KH WUDQVIRUPDWLRQV LQ 7DEOHV DQG DUH RQHWRRQH DQG GR PDS R2 RQWR R2 2WKHU SRVVLELOLWLHV DUH VKRZQ LQ WKH WZR H[DPSOHV EHORZ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 0DWUL[ RI D /LQHDU 7UDQVIRUPDWLRQ
([DPSOH DQG WKH WKHRUHPV WKDW IROORZ VKRZ KRZ WKH IXQFWLRQ SURSHUWLHV RI EHLQJ RQHWRRQH DQG PDSSLQJ RQWR DUH UHODWHG WR LPSRUWDQW FRQFHSWV VWXGLHG HDUOLHU LQ WKLV FKDSWHU
(;$03/( /HW T EH WKH OLQHDU WUDQVIRUPDWLRQ ZKRVH VWDQGDUG PDWUL[ LV 2
1 4 8 A D 4 0 2 1 0 0 0
3 1 35 5
'RHV T PDS R4 RQWR R3 " ,V T D RQHWRRQH PDSSLQJ" 62/87,21 6LQFH A KDSSHQV WR EH LQ HFKHORQ IRUP ZH FDQ VHH DW RQFH WKDW A KDV D SLYRW SRVLWLRQ LQ HDFK URZ %\ 7KHRUHP LQ 6HFWLRQ IRU HDFK E LQ R3 WKH HTXDWLRQ A[ D E LV FRQVLVWHQW ,Q RWKHU ZRUGV WKH OLQHDU WUDQVIRUPDWLRQ T PDSV R4 LWV GRPDLQ RQWR R3 +RZHYHU VLQFH WKH HTXDWLRQ A[ D E KDV D IUHH YDULDEOH EHFDXVH WKHUH DUH IRXU YDULDEOHV DQG RQO\ WKUHH EDVLF YDULDEOHV HDFK E LV WKH LPDJH RI PRUH WKDQ RQH [ 7KDW LV T LV QRW RQHWRRQH
5)&03&.
/HW T W Rn ! Rm EH D OLQHDU WUDQVIRUPDWLRQ 7KHQ T LV RQHWRRQH LI DQG RQO\ LI WKH HTXDWLRQ T .[/ D KDV RQO\ WKH WULYLDO VROXWLRQ 5HPDUN 7R SURYH D WKHRUHP WKDW VD\V ŗVWDWHPHQW P LV WUXH LI DQG RQO\ LI VWDWHPHQW Q LV WUXHŘ RQH PXVW HVWDEOLVK WZR WKLQJV ,I P LV WUXH WKHQ Q LV WUXH DQG ,I Q LV WUXH WKHQ P LV WUXH 7KH VHFRQG UHTXLUHPHQW FDQ DOVR EH HVWDEOLVKHG E\ VKRZLQJ D ,I P LV IDOVH WKHQ Q LV IDOVH 7KLV LV FDOOHG FRQWUDSRVLWLYH UHDVRQLQJ 7KLV SURRI XVHV DQG D WR VKRZ WKDW P DQG Q DUH HLWKHU ERWK WUXH RU ERWK IDOVH
1300' 6LQFH T LV OLQHDU T ./ D ,I T LV RQHWRRQH WKHQ WKH HTXDWLRQ T .[/ D KDV DW PRVW RQH VROXWLRQ DQG KHQFH RQO\ WKH WULYLDO VROXWLRQ ,I T LV QRW RQHWRRQH WKHQ WKHUH LV D E WKDW LV WKH LPDJH RI DW OHDVW WZR GLijHUHQW YHFWRUV LQ Rn ŠVD\ X DQG Y 7KDW LV T .X/ D E DQG T .Y/ D E %XW WKHQ VLQFH T LV OLQHDU T .X Y/ D T .X/ T .Y/ D E E D 7KH YHFWRU X Y LV QRW ]HUR VLQFH X ¤ Y +HQFH WKH HTXDWLRQ T .[/ D KDV PRUH WKDQ RQH VROXWLRQ 6R HLWKHU WKH WZR FRQGLWLRQV LQ WKH WKHRUHP DUH ERWK WUXH RU WKH\ DUH ERWK IDOVH
5)&03&.
/HW T W Rn ! Rm EH D OLQHDU WUDQVIRUPDWLRQ DQG OHW A EH WKH VWDQGDUG PDWUL[ IRU T 7KHQ D T PDSV Rn RQWR Rm LI DQG RQO\ LI WKH FROXPQV RI A VSDQ Rm E T LV RQHWRRQH LI DQG RQO\ LI WKH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW 5HPDUN ŗ,I DQG RQO\ LIŘ VWDWHPHQWV FDQ EH OLQNHG WRJHWKHU )RU H[DPSOH LI ŗP LI DQG RQO\ LI QŘ LV NQRZQ DQG ŗQ LI DQG RQO\ LI RŘ LV NQRZQ WKHQ RQH FDQ FRQFOXGH ŗP LI DQG RQO\ LI RŘ 7KLV VWUDWHJ\ LV XVHG UHSHDWHGO\ LQ WKLV SURRI
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
1300' D %\ 7KHRUHP LQ 6HFWLRQ WKH FROXPQV RI A VSDQ Rm LI DQG RQO\ LI IRU HDFK E LQ Rm WKH HTXDWLRQ A[ D E LV FRQVLVWHQWŠLQ RWKHU ZRUGV LI DQG RQO\ LI IRU HYHU\ E WKH HTXDWLRQ T .[/ D E KDV DW OHDVW RQH VROXWLRQ 7KLV LV WUXH LI DQG RQO\ LI T PDSV Rn RQWR Rm E 7KH HTXDWLRQV T .[/ D DQG A[ D DUH WKH VDPH H[FHSW IRU QRWDWLRQ 6R E\ 7KHRUHP T LV RQHWRRQH LI DQG RQO\ LI A[ D KDV RQO\ WKH WULYLDO VROXWLRQ 7KLV KDSSHQV LI DQG RQO\ LI WKH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW DV ZDV DOUHDG\ QRWHG LQ WKH ER[HG VWDWHPHQW LQ 6HFWLRQ 6WDWHPHQW D LQ 7KHRUHP LV HTXLYDOHQW WR WKH VWDWHPHQW ŗT PDSV Rn RQWR Rm LI DQG RQO\ LI HYHU\ YHFWRU LQ Rm LV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI AŘ 6HH 7KHRUHP LQ 6HFWLRQ ,Q WKH QH[W H[DPSOH DQG LQ VRPH H[HUFLVHV WKDW IROORZ FROXPQ YHFWRUV DUH ZULWWHQ LQ URZV VXFK DV [ D .x1 ; x2 / DQG T .[/ LV ZULWWHQ DV T .x1 ; x2 / LQVWHDG RI WKH PRUH IRUPDO T ..x1 ; x2 // x2
(;$03/( /HW T .x1 ; x2 / D .3x1 C x2 5x1 C 7x2 x1 C 3x2 / 6KRZ WKDW T LV D RQHWRRQH OLQHDU WUDQVIRUPDWLRQ 'RHV T PDS R2 RQWR R3 "
e2
62/87,21 :KHQ [ DQG T .[/ DUH ZULWWHQ DV FROXPQ YHFWRUV \RX FDQ GHWHUPLQH WKH x1
e1
T
x3 T
VWDQGDUG PDWUL[ RI T E\ LQVSHFWLRQ YLVXDOL]LQJ WKH URZşYHFWRU HQWU\ LQ A[ 2 3 2 3 2 3x1 C x2 " " 3 x T .[/ D 4 5x1 C 7x2 5 D 4 " " 5 1 D 4 5 x2 1 x1 C 3x2 " "
FRPSXWDWLRQ RI HDFK 3 1 x 75 1 x2 3
A a2 a1
x1
Span{a1, a2}
The transformation T is not onto 3.
x2
6R T LV LQGHHG D OLQHDU WUDQVIRUPDWLRQ ZLWK LWV VWDQGDUG PDWUL[ A VKRZQ LQ 7KH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW EHFDXVH WKH\ DUH QRW PXOWLSOHV %\ 7KHRUHP E T LV RQHWRRQH 7R GHFLGH LI T LV RQWR R3 H[DPLQH WKH VSDQ RI WKH FROXPQV RI A 6LQFH A LV 3 2 WKH FROXPQV RI A VSDQ R3 LI DQG RQO\ LI A KDV SLYRW SRVLWLRQV E\ 7KHRUHP 7KLV LV LPSRVVLEOH VLQFH A KDV RQO\ FROXPQV 6R WKH FROXPQV RI A GR QRW VSDQ R3 DQG WKH DVVRFLDWHG OLQHDU WUDQVIRUPDWLRQ LV QRW RQWR R3 3UDFWLFH 3UREOHPV /HW T W R2 ! R2 EH WKH WUDQVIRUPDWLRQ WKDW ıUVW SHUIRUPV D KRUL]RQWDO VKHDU WKDW PDSV H2 LQWR H2 :5H1 EXW OHDYHV H1 XQFKDQJHG DQG WKHQ UHIJHFWV WKH UHVXOW WKURXJK WKH x2 D[LV $VVXPLQJ WKDW T LV OLQHDU ıQG LWV VWDQGDUG PDWUL[ >+LQW 'HWHUPLQH WKH ıQDO ORFDWLRQ RI WKH LPDJHV RI H1 DQG H2 @ 6XSSRVH A LV D 7 5 PDWUL[ ZLWK SLYRWV /HW T .[/ D A[ EH D OLQHDU WUDQVIRUPDWLRQ IURP R5 LQWR R7 ,V T D RQHWRRQH OLQHDU WUDQVIRUPDWLRQ" ,V T RQWR R7 "
([HUFLVHV ,Q ([HUFLVHV ş DVVXPH WKDW T LV D OLQHDU WUDQVIRUPDWLRQ )LQG WKH VWDQGDUG PDWUL[ RI T T W R2 ! R4 T .H1 / D .2; 1; 2; 1/ DQG T .H2 / D .5; 2; 0; 0/ ZKHUH H1 D .1; 0/ DQG H2 D .0; 1/
T W R3 ! R2 T .H1 / D .1; 3/ T .H2 / D .4; 2/ DQG T .H3 / D .5; 4/ ZKHUH H1 H2 H3 DUH WKH FROXPQV RI WKH 3 3 LGHQWLW\ PDWUL[ T W R2 ! R2 URWDWHV SRLQWV DERXW WKH RULJLQ WKURXJK 3=2 UDGLDQV LQ WKH FRXQWHUFORFNZLVH GLUHFWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 0DWUL[ RI D /LQHDU 7UDQVIRUPDWLRQ T W R2 ! R2 URWDWHV SRLQWV DERXW WKH RULJLQ WKURXJK =4 UDGLDQV VLQFH WKH QXPEHU LV QHJDWLYH WKH p DFWXDO URWDWLRQ LV p FORFNZLVH >+LQW T .H1 / D .1= 2; 1= 2/@ T W R2 ! R2 LV D YHUWLFDO VKHDU WUDQVIRUPDWLRQ WKDW PDSV H1 LQWR H1 2H2 EXW OHDYHV WKH YHFWRU H2 XQFKDQJHG T W R2 ! R2 LV D KRUL]RQWDO VKHDU WUDQVIRUPDWLRQ WKDW OHDYHV H1 XQFKDQJHG DQG PDSV H2 LQWR H2 C 3H1 T W R ! R ıUVW URWDWHV SRLQWV WKURXJK 3=4 UDGLDQV VLQFH WKH QXPEHU LV QHJDWLYH WKH DFWXDO URWDWLRQ LV FORFNZLVH DQG WKHQ UHIJHFWV pSRLQWVpWKURXJK WKH KRUL]RQWDO x1 D[LV >+LQW T .H1 / D .1= 2; 1= 2/@ 2
2
T W R2 ! R2 ıUVW UHIJHFWV SRLQWV WKURXJK WKH KRUL]RQWDO x1 D[LV DQG WKHQ UHIJHFWV SRLQWV WKURXJK WKH OLQH x2 D x1 T W R2 ! R2 ıUVW SHUIRUPV D KRUL]RQWDO VKHDU WKDW WUDQV IRUPV H2 LQWR H2 3H1 OHDYLQJ H1 XQFKDQJHG DQG WKHQ UH IJHFWV SRLQWV WKURXJK WKH OLQH x2 D x1 T W R2 ! R2 ıUVW UHIJHFWV SRLQWV WKURXJK WKH YHUWLFDO x2 D[LV DQG WKHQ URWDWHV SRLQWV 3=2 UDGLDQV $ OLQHDU WUDQVIRUPDWLRQ T W R2 ! R2 ıUVW UHIJHFWV SRLQWV WKURXJK WKH x1 D[LV DQG WKHQ UHIJHFWV SRLQWV WKURXJK WKH x2 D[LV 6KRZ WKDW T FDQ DOVR EH GHVFULEHG DV D OLQHDU WUDQVIRU PDWLRQ WKDW URWDWHV SRLQWV DERXW WKH RULJLQ :KDW LV WKH DQJOH RI WKDW URWDWLRQ" 6KRZ WKDW WKH WUDQVIRUPDWLRQ LQ ([HUFLVH LV PHUHO\ D URWD WLRQ DERXW WKH RULJLQ :KDW LV WKH DQJOH RI WKH URWDWLRQ" /HW T W R2 ! R2 EH WKH OLQHDU WUDQVIRUPDWLRQ VXFK WKDW T .H1 / DQG T .H2 / DUH WKH YHFWRUV VKRZQ LQ WKH ıJXUH 8VLQJ WKH ıJXUH VNHWFK WKH YHFWRU T .2; 1/ x2
2
‹ 4 ‹ ‹ 2
‹ 4 ‹ ‹
‹ ‹ ‹
32 3 2 3 ‹ x1 2x1 3x3 5 ‹ 54 x2 5 D 4 4x1 ‹ x3 x1 x2 C x3
3 2 3 ‹ x1 3x2 x 1 ‹5 D 4 2x1 C x2 5 x2 ‹ x1
,Q ([HUFLVHV ş VKRZ WKDW T LV D OLQHDU WUDQVIRUPDWLRQ E\ ıQGLQJ D PDWUL[ WKDW LPSOHPHQWV WKH PDSSLQJ 1RWH WKDW x1 ; x2 ; : : : DUH QRW YHFWRUV EXW DUH HQWULHV LQ YHFWRUV T .x1 ; x2 ; x3 ; x4 / D .0; x1 C x2 ; x2 C x3 ; x3 C x4 / T .x1 ; x2 / D .2x2 3x1 ; x1 4x2 ; 0; x2 / T .x1 ; x2 ; x3 / D .x1 5x2 C 4x3 ; x2 6x3 / T .x1 ; x2 ; x3 ; x4 / D 2x1 C 3x3 4x4
.T W R4 ! R/
/HW T W R2 ! R2 EH D OLQHDU WUDQVIRUPDWLRQ VXFK WKDW T .x1 ; x2 / D .x1 C x2 ; 4x1 C 5x2 / )LQG [ VXFK WKDW T .[/ D .3; 8/ /HW T W R2 ! R3 EH D OLQHDU WUDQVIRUPDWLRQ VXFK WKDW T .x1 ; x2 / D .x1 2x2 ; x1 C 3x2 ; 3x1 2x2 / )LQG [ VXFK WKDW T .[/ D .1; 4; 9/ ,Q ([HUFLVHV ş PDUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 7) $ OLQHDU WUDQVIRUPDWLRQ T W Rn ! Rm LV FRPSOHWHO\ GHWHUPLQHG E\ LWV HijHFW RQ WKH FROXPQV RI WKH n n LGHQWLW\ PDWUL[ 7) $ PDSSLQJ T W Rn ! Rm LV RQHWRRQH LI HDFK YHFWRU LQ Rn PDSV RQWR D XQLTXH YHFWRU LQ Rm 7) ,I T W R2 ! R2 URWDWHV YHFWRUV DERXW WKH RULJLQ WKURXJK DQ DQJOH WKHQ T LV D OLQHDU WUDQVIRUPDWLRQ
T(e 2 )
T(e1)
x1
/HW T W R2 ! R2 EH D OLQHDU WUDQVIRUPDWLRQ ZLWK VWDQGDUG PDWUL[ A D ŒD1 D2 ZKHUH D1 DQG D2 DUH LQ WKH VKRZQ 1 ıJXUH 8VLQJ WKH ıJXUH GUDZ WKH LPDJH RI XQGHU WKH 3 WUDQVIRUPDWLRQ T x 2
a2 x1 a1
,Q ([HUFLVHV DQG ıOO LQ WKH PLVVLQJ HQWULHV RI WKH PDWUL[ DVVXPLQJ WKDW WKH HTXDWLRQ KROGV IRU DOO YDOXHV RI WKH YDULDEOHV
7) 7KH FROXPQV RI WKH VWDQGDUG PDWUL[ IRU D OLQHDU WUDQV IRUPDWLRQ IURP Rn WR Rm DUH WKH LPDJHV RI WKH FROXPQV RI WKH n n LGHQWLW\ PDWUL[ 7) :KHQ WZR OLQHDU WUDQVIRUPDWLRQV DUH SHUIRUPHG RQH DIWHU DQRWKHU WKH FRPELQHG HijHFW PD\ QRW DOZD\V EH D OLQHDU WUDQVIRUPDWLRQ 7) 1RW HYHU\ OLQHDU WUDQVIRUPDWLRQ IURP Rn WR Rm LV D PDWUL[ WUDQVIRUPDWLRQ 7) $ PDSSLQJ T W Rn ! Rm LV RQWR Rm LI HYHU\ YHFWRU [ LQ Rn PDSV RQWR VRPH YHFWRU LQ Rm 7) 7KH VWDQGDUG PDWUL[ RI D OLQHDU WUDQVIRUPDWLRQ IURP R2 WR R2 WKDW UHIJHFWV SRLQWV WKURXJK WKHKRUL]RQWDO D[LV WKH a 0 YHUWLFDO D[LV RU WKH RULJLQ KDV WKH IRUP ZKHUH a 0 d DQG d DUH ˙1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
7) $ LV D 3 2 PDWUL[ WKHQ WKH WUDQVIRUPDWLRQ [ 7! A[ FDQQRW EH RQHWRRQH 7) $ LV D 3 2 PDWUL[ WKHQ WKH WUDQVIRUPDWLRQ [ 7! A[ FDQQRW PDS R2 RQWR R3 ,Q ([HUFLVHV ş GHWHUPLQH LI WKH VSHFLıHG OLQHDU WUDQVIRUPD WLRQ LV D RQHWRRQH DQG E RQWR -XVWLI\ HDFK DQVZHU 7KH WUDQVIRUPDWLRQ LQ ([HUFLVH 7KH WUDQVIRUPDWLRQ LQ ([HUFLVH 7KH WUDQVIRUPDWLRQ LQ ([HUFLVH 7KH WUDQVIRUPDWLRQ LQ ([HUFLVH ,Q ([HUFLVHV DQG GHVFULEH WKH SRVVLEOH HFKHORQ IRUPV RI WKH VWDQGDUG PDWUL[ IRU D OLQHDU WUDQVIRUPDWLRQ T 8VH WKH QRWDWLRQ RI ([DPSOH LQ 6HFWLRQ T W R3 ! R4 LV RQHWRRQH T W R4 ! R3 LV RQWR /HW T W Rn ! Rm EH D OLQHDU WUDQVIRUPDWLRQ ZLWK A LWV VWDQGDUG PDWUL[ &RPSOHWH WKH IROORZLQJ VWDWHPHQW WR PDNH LW WUXH ŗT LV RQHWRRQH LI DQG RQO\ LI A KDV SLYRW FROXPQVŘ ([SODLQ ZK\ WKH VWDWHPHQW LV WUXH >+LQW /RRN LQ WKH H[HUFLVHV IRU 6HFWLRQ @ /HW T W Rn ! Rm EH D OLQHDU WUDQVIRUPDWLRQ ZLWK A LWV VWDQGDUG PDWUL[ &RPSOHWH WKH IROORZLQJ VWDWHPHQW WR PDNH LW WUXH ŗT PDSV Rn RQWR Rm LI DQG RQO\ LI A KDV SLYRW FROXPQVŘ )LQG VRPH WKHRUHPV WKDW H[SODLQ ZK\ WKH VWDWHPHQW LV WUXH 9HULI\ WKH XQLTXHQHVV RI A LQ 7KHRUHP /HW T W Rn ! Rm EH D OLQHDU WUDQVIRUPDWLRQ VXFK WKDW T .[/ D B [ IRU VRPH
m n PDWUL[ B 6KRZ WKDW LI A LV WKH VWDQGDUG PDWUL[ IRU T WKHQ A D B >+LQW 6KRZ WKDW A DQG B KDYH WKH VDPH FROXPQV@ :K\ LV WKH TXHVWLRQ ŗ,V WKH OLQHDU WUDQVIRUPDWLRQ T RQWR"Ř DQ H[LVWHQFH TXHVWLRQ" ,I D OLQHDU WUDQVIRUPDWLRQ T W Rn ! Rm PDSV Rn RQWR Rm FDQ \RX JLYH D UHODWLRQ EHWZHHQ m DQG n" ,I T LV RQHWRRQH ZKDW FDQ \RX VD\ DERXW m DQG n" /HW S W Rp ! Rn DQG T W Rn ! Rm EH OLQHDU WUDQVIRUPD WLRQV 6KRZ WKDW WKH PDSSLQJ [ 7! T .S.[// LV D OLQHDU WUDQV IRUPDWLRQ IURP Rp WR Rm >+LQW &RPSXWH T .S.c X C d Y// IRU X; Y LQ Rp DQG VFDODUV c DQG d -XVWLI\ HDFK VWHS RI WKH FRPSXWDWLRQ DQG H[SODLQ ZK\ WKLV FRPSXWDWLRQ JLYHV WKH GHVLUHG FRQFOXVLRQ@ 7 ,Q ([HUFLVHV ş OHW T EH WKH OLQHDU WUDQVIRUPDWLRQ ZKRVH VWDQGDUG PDWUL[ LV JLYHQ ,Q ([HUFLVHV DQG GHFLGH LI T LV D RQHWRRQH PDSSLQJ ,Q ([HUFLVHV DQG GHFLGH LI T PDSV R5 RQWR R5 -XVWLI\ \RXU DQVZHUV 2 3 2 3 5 10 5 7 5 4 9 4 6 8 7 6 3 4 77 6 16 4 7 6 10 7 6 4 4 4 9 5 5 3 12 8 12 75 5 4 8 6 2 5 3 2 2 3 4 7 3 7 5 6 6 8 7 5 12 8 6 7 6 7 6 7 10 8 9 14 7 4 3 5 4 2 6 5 3 5 6 6 7 2 3 9 13 5 6 1 6 7 47 6 14 15 7 6 7 8 9 12 5 9 6 6 7 4 5 6 8 9 85 13 14 15 2 11
678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU PDVWHULQJ H[LVWHQFH DQG XQLTXHQHVV
6ROXWLRQ WR 3UDFWLFH 3UREOHPV )ROORZ ZKDW KDSSHQV WR H1 DQG H2 6HH )LJXUH )LUVW H1 LV XQDijHFWHG E\ WKH VKHDU DQG WKHQ LV UHIJHFWHG LQWR H1 6R T .H1 / D H1 6HFRQG H2 JRHV WR H2 :5H1 E\ WKH VKHDU WUDQVIRUPDWLRQ 6LQFH UHIJHFWLRQ WKURXJK WKH x2 D[LV FKDQJHV H1 LQWR H1 DQG OHDYHV H2 XQFKDQJHG WKH YHFWRU H2 :5H1 JRHV WR H2 C :5H1 6R T .H2 / D H2 C :5H1 x2
x2
x2
2.5 1
0 1
1 0
x1
.5 1
1 0
x1
Shear transformation
21 0
x1
Reflection through the x2-axis
'*(63& 7KH FRPSRVLWLRQ RI WZR WUDQVIRUPDWLRQV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDU 0RGHOV LQ %XVLQHVV 6FLHQFH DQG (QJLQHHULQJ
7KXV WKH VWDQGDUG PDWUL[ RI T LV
T . H1 /
T .H2 / D H1
H2 C :5H1 D
1 0
:5 1
7KH VWDQGDUG PDWUL[ UHSUHVHQWDWLRQ RI T LV WKH PDWUL[ A 6LQFH A KDV FROXPQV DQG SLYRWV WKHUH LV D SLYRW LQ HYHU\ FROXPQ VR WKH FROXPQV DUH OLQHDUO\ LQGHSHQGHQW %\ 7KHRUHP T LV RQHWRRQH 6LQFH A KDV URZV DQG RQO\ SLYRWV WKHUH LV QRW D SLYRW LQ HYHU\ URZ KHQFH WKH FROXPQV RI A GR QRW VSDQ R7 %\ 7KHRUHP DQG T LV QRW RQWR
/LQHDU 0RGHOV LQ %XVLQHVV 6FLHQFH DQG (QJLQHHULQJ 7KH PDWKHPDWLFDO PRGHOV LQ WKLV VHFWLRQ DUH DOO OLQHDU WKDW LV HDFK GHVFULEHV D SUREOHP E\ PHDQV RI D OLQHDU HTXDWLRQ XVXDOO\ LQ YHFWRU RU PDWUL[ IRUP 7KH ıUVW PRGHO FRQFHUQV QXWULWLRQ EXW DFWXDOO\ LV UHSUHVHQWDWLYH RI D JHQHUDO WHFKQLTXH LQ OLQHDU SURJUDPPLQJ SUREOHPV 7KH VHFRQG PRGHO FRPHV IURP HOHFWULFDO HQJLQHHULQJ 7KH WKLUG PRGHO LQWURGXFHV WKH FRQFHSW RI D OLQHDU GLijHUHQFH HTXDWLRQ D SRZHUIXO PDWKHPDWLFDO WRRO IRU VWXG\LQJ G\QDPLF SURFHVVHV LQ D ZLGH YDULHW\ RI ıHOGV VXFK DV HQJLQHHULQJ HFRORJ\ HFRQRPLFV WHOHFRPPXQLFDWLRQV DQG WKH PDQDJHPHQW VFLHQFHV /LQHDU PRGHOV DUH LPSRUWDQW EHFDXVH QDWXUDO SKHQRPHQD DUH RIWHQ OLQHDU RU QHDUO\ OLQHDU ZKHQ WKH YDULDEOHV LQYROYHG DUH KHOG ZLWKLQ UHDVRQDEOH ERXQGV $OVR OLQHDU PRGHOV DUH PRUH HDVLO\ DGDSWHG IRU FRPSXWHU FDOFXODWLRQ WKDQ DUH FRPSOH[ QRQOLQHDU PRGHOV $V \RX UHDG DERXW HDFK PRGHO SD\ DWWHQWLRQ WR KRZ LWV OLQHDULW\ UHIJHFWV VRPH SURSHUW\ RI WKH V\VWHP EHLQJ PRGHOHG
&RQVWUXFWLQJ D 1XWULWLRXV :HLJKW/RVV 'LHW 7KH IRUPXOD IRU WKH &DPEULGJH 'LHW D SRSXODU GLHW LQ WKH V ZDV EDVHG RQ \HDUV RI UHVHDUFK $ WHDP RI VFLHQWLVWV KHDGHG E\ 'U $ODQ + +RZDUG GHYHORSHG WKLV GLHW DW &DPEULGJH 8QLYHUVLW\ DIWHU PRUH WKDQ HLJKW \HDUV RI FOLQLFDO ZRUN ZLWK REHVH SDWLHQWV1 7KH YHU\ ORZFDORULH SRZGHUHG IRUPXOD GLHW FRPELQHV D SUHFLVH EDODQFH RI FDUERK\GUDWH KLJKTXDOLW\ SURWHLQ DQG IDW WRJHWKHU ZLWK YLWDPLQV PLQHUDOV WUDFH HOHPHQWV DQG HOHFWURO\WHV 0LOOLRQV RI SHUVRQV KDYH XVHG WKH GLHW WR DFKLHYH UDSLG DQG VXEVWDQWLDO ZHLJKW ORVV 7R DFKLHYH WKH GHVLUHG DPRXQWV DQG SURSRUWLRQV RI QXWULHQWV 'U +RZDUG KDG WR LQFRUSRUDWH D ODUJH YDULHW\ RI IRRGVWXijV LQ WKH GLHW (DFK IRRGVWXij VXSSOLHG VHYHUDO RI WKH UHTXLUHG LQJUHGLHQWV EXW QRW LQ WKH FRUUHFW SURSRUWLRQV )RU LQVWDQFH QRQIDW PLON ZDV D PDMRU VRXUFH RI SURWHLQ EXW FRQWDLQHG WRR PXFK FDOFLXP 6R VR\ IJRXU ZDV XVHG IRU SDUW RI WKH SURWHLQ EHFDXVH VR\ IJRXU FRQWDLQV OLWWOH FDOFLXP +RZHYHU VR\ IJRXU FRQWDLQV SURSRUWLRQDOO\ WRR PXFK IDW VR ZKH\ ZDV DGGHG VLQFH LW VXSSOLHV OHVV IDW LQ UHODWLRQ WR FDOFLXP 8QIRUWXQDWHO\ ZKH\ FRQWDLQV WRR PXFK FDUERK\GUDWH: : : : 7KH IROORZLQJ H[DPSOH LOOXVWUDWHV WKH SUREOHP RQ D VPDOO VFDOH /LVWHG LQ 7DEOH DUH WKUHH RI WKH LQJUHGLHQWV LQ WKH GLHW WRJHWKHU ZLWK WKH DPRXQWV RI FHUWDLQ QXWULHQWV VXSSOLHG E\ JUDPV J RI HDFK LQJUHGLHQW2
1
7KH ıUVW DQQRXQFHPHQW RI WKLV UDSLG ZHLJKWORVV UHJLPHQ ZDV JLYHQ LQ WKH ,QWHUQDWLRQDO -RXUQDO RI 2EHVLW\ ş
2
,QJUHGLHQWV LQ WKH GLHW DV RI QXWULHQW GDWD IRU LQJUHGLHQWV DGDSWHG IURP 86'$ $JULFXOWXUDO +DQGERRNV 1R DQG
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
5"#-& 5IF $BNCSJEHF %JFU $PRXQWV J 6XSSOLHG SHU J RI ,QJUHGLHQW 1RQIDW PLON
6R\ IJRXU
:KH\
$PRXQWV J 6XSSOLHG E\ &DPEULGJH 'LHW LQ 2QH 'D\
3URWHLQ
&DUERK\GUDWH
1XWULHQW
)DW
(;$03/( ,I SRVVLEOH ıQG VRPH FRPELQDWLRQ RI QRQIDW PLON VR\ IJRXU DQG ZKH\ WR SURYLGH WKH H[DFW DPRXQWV RI SURWHLQ FDUERK\GUDWH DQG IDW VXSSOLHG E\ WKH GLHW LQ RQH GD\ 7DEOH 62/87,21 /HW x1 x2 DQG x3 UHVSHFWLYHO\ GHQRWH WKH QXPEHU RI XQLWV J RI
WKHVH IRRGVWXijV 2QH DSSURDFK WR WKH SUREOHP LV WR GHULYH HTXDWLRQV IRU HDFK QXWULHQW VHSDUDWHO\ )RU LQVWDQFH WKH SURGXFW x1 XQLWV RI SURWHLQ SHU XQLW QRQIDW PLON RI QRQIDW PLON JLYHV WKH DPRXQW RI SURWHLQ VXSSOLHG E\ x1 XQLWV RI QRQIDW PLON 7R WKLV DPRXQW ZH ZRXOG WKHQ DGG VLPLODU SURGXFWV IRU VR\ IJRXU DQG ZKH\ DQG VHW WKH UHVXOWLQJ VXP HTXDO WR WKH DPRXQW RI SURWHLQ ZH QHHG $QDORJRXV FDOFXODWLRQV ZRXOG KDYH WR EH PDGH IRU HDFK QXWULHQW $ PRUH HĴFLHQW PHWKRG DQG RQH WKDW LV FRQFHSWXDOO\ VLPSOHU LV WR FRQVLGHU D ŗQXWULHQW YHFWRUŘ IRU HDFK IRRGVWXij DQG EXLOG MXVW RQH YHFWRU HTXDWLRQ 7KH DPRXQW RI QXWULHQWV VXSSOLHG E\ x1 XQLWV RI QRQIDW PLON LV WKH VFDODU PXOWLSOH
6FDODU 9HFWRU x1 XQLWV RI QXWULHQWV SHU XQLW D x1 D1 QRQIDW PLON RI QRQIDW PLON
ZKHUH D1 LV WKH ıUVW FROXPQ LQ 7DEOH /HW D2 DQG D3 EH WKH FRUUHVSRQGLQJ YHFWRUV IRU VR\ IJRXU DQG ZKH\ UHVSHFWLYHO\ DQG OHW E EH WKH YHFWRU WKDW OLVWV WKH WRWDO QXWULHQWV UHTXLUHG WKH ODVW FROXPQ RI WKH WDEOH 7KHQ x2 D2 DQG x3 D3 JLYH WKH QXWULHQWV VXSSOLHG E\ x2 XQLWV RI VR\ IJRXU DQG x3 XQLWV RI ZKH\ UHVSHFWLYHO\ 6R WKH UHOHYDQW HTXDWLRQ LV
x1 D1 C x2 D2 C x3 D3 D E
5RZ UHGXFWLRQ RI WKH DXJPHQWHG PDWUL[ IRU WKH FRUUHVSRQGLQJ V\VWHP RI HTXDWLRQV VKRZV WKDW 2 3 2 3 36 51 13 33 1 0 0 :277 4 52 34 74 45 5 4 0 1 0 :392 5 0 7 1 3 0 0 1 :233 7R WKUHH VLJQLıFDQW GLJLWV WKH GLHW UHTXLUHV XQLWV RI QRQIDW PLON XQLWV RI VR\ IJRXU DQG XQLWV RI ZKH\ LQ RUGHU WR SURYLGH WKH GHVLUHG DPRXQWV RI SURWHLQ FDUERK\GUDWH DQG IDW ,W LV LPSRUWDQW WKDW WKH YDOXHV RI x1 x2 DQG x3 IRXQG DERYH DUH QRQQHJDWLYH 7KLV LV QHFHVVDU\ IRU WKH VROXWLRQ WR EH SK\VLFDOO\ IHDVLEOH +RZ FRXOG \RX XVH :233 XQLWV RI ZKH\ IRU LQVWDQFH" :LWK D ODUJH QXPEHU RI QXWULHQW UHTXLUHPHQWV LW PD\ EH QHFHVVDU\ WR XVH D ODUJHU QXPEHU RI IRRGVWXijV LQ RUGHU WR SURGXFH D V\VWHP RI HTXDWLRQV ZLWK D
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDU 0RGHOV LQ %XVLQHVV 6FLHQFH DQG (QJLQHHULQJ
ŗQRQQHJDWLYHŘ VROXWLRQ 7KXV PDQ\ PDQ\ GLijHUHQW FRPELQDWLRQV RI IRRGVWXijV PD\ QHHG WR EH H[DPLQHG LQ RUGHU WR ıQG D V\VWHP RI HTXDWLRQV ZLWK VXFK D VROXWLRQ ,Q IDFW WKH PDQXIDFWXUHU RI WKH &DPEULGJH 'LHW ZDV DEOH WR VXSSO\ QXWULHQWV LQ SUHFLVH DPRXQWV XVLQJ RQO\ LQJUHGLHQWV 7KH GLHW FRQVWUXFWLRQ SUREOHP OHDGV WR WKH OLQHDU HTXDWLRQ EHFDXVH WKH DPRXQW RI QXWULHQWV VXSSOLHG E\ HDFK IRRGVWXij FDQ EH ZULWWHQ DV D VFDODU PXOWLSOH RI D YHFWRU DV LQ 7KDW LV WKH QXWULHQWV VXSSOLHG E\ D IRRGVWXij DUH SURSRUWLRQDO WR WKH DPRXQW RI WKH IRRGVWXij DGGHG WR WKH GLHW PL[WXUH $OVR HDFK QXWULHQW LQ WKH PL[WXUH LV WKH VXP RI WKH DPRXQWV IURP WKH YDULRXV IRRGVWXijV 3UREOHPV RI IRUPXODWLQJ VSHFLDOL]HG GLHWV IRU KXPDQV DQG OLYHVWRFN RFFXU IUH TXHQWO\ 8VXDOO\ WKH\ DUH WUHDWHG E\ OLQHDU SURJUDPPLQJ WHFKQLTXHV 2XU PHWKRG RI FRQVWUXFWLQJ YHFWRU HTXDWLRQV RIWHQ VLPSOLıHV WKH WDVN RI IRUPXODWLQJ VXFK SUREOHPV
/LQHDU (TXDWLRQV DQG (OHFWULFDO 1HWZRUNV &XUUHQW IJRZ LQ D VLPSOH HOHFWULFDO QHWZRUN FDQ EH GHVFULEHG E\ D V\VWHP RI OLQHDU HTXDWLRQV $ YROWDJH VRXUFH VXFK DV D EDWWHU\ IRUFHV D FXUUHQW RI HOHFWURQV WR IJRZ WKURXJK WKH QHWZRUN :KHQ WKH FXUUHQW SDVVHV WKURXJK D UHVLVWRU VXFK DV D OLJKWEXOE RU PRWRU VRPH RI WKH YROWDJH LV ŗXVHG XSŘ E\ 2KPŖV ODZ WKLV ŗYROWDJH GURSŘ DFURVV D UHVLVWRU LV JLYHQ E\ V D RI ZKHUH WKH YROWDJH V LV PHDVXUHG LQ YROWV WKH UHVLVWDQFH R LQ RKPV GHQRWHG E\ DQG WKH FXUUHQW IJRZ I LQ DPSHUHV DPSV IRU VKRUW 7KH QHWZRUN LQ )LJXUH FRQWDLQV WKUHH FORVHG ORRSV 7KH FXUUHQWV IJRZLQJ LQ ORRSV DQG DUH GHQRWHG E\ I1 ; I2 DQG I3 UHVSHFWLYHO\ 7KH GHVLJQDWHG GLUHFWLRQV RI VXFK ORRS FXUUHQWV DUH DUELWUDU\ ,I D FXUUHQW WXUQV RXW WR EH QHJDWLYH WKHQ WKH DFWXDO GLUHFWLRQ RI FXUUHQW IJRZ LV RSSRVLWH WR WKDW FKRVHQ LQ WKH ıJXUH ,I WKH FXUUHQW GLUHFWLRQ VKRZQ LV DZD\ IURP WKH SRVLWLYH ORQJHU VLGH RI D EDWWHU\ DURXQG WR WKH QHJDWLYH VKRUWHU VLGH WKH YROWDJH LV SRVLWLYH RWKHUZLVH WKH YROWDJH LV QHJDWLYH &XUUHQW IJRZ LQ D ORRS LV JRYHUQHG E\ WKH IROORZLQJ UXOH .,5&++2))ł6 92/7$*( /$: 7KH DOJHEUDLF VXP RI WKH RI YROWDJH GURSV LQ RQH GLUHFWLRQ DURXQG D ORRS HTXDOV WKH DOJHEUDLF VXP RI WKH YROWDJH VRXUFHV LQ WKH VDPH GLUHFWLRQ DURXQG WKH ORRS
(;$03/( 'HWHUPLQH WKH ORRS FXUUHQWV LQ WKH QHWZRUN LQ )LJXUH 30 volts 4V A
4V
I1
B
3V 1V
C
1V
5 volts 1V
1V
I2
I3
20 volts
D 1V
62/87,21 )RU ORRS WKH FXUUHQW I1 IJRZV WKURXJK WKUHH UHVLVWRUV DQG WKH VXP RI WKH
RI YROWDJH GURSV LV 4I1 C 4I1 C 3I1 D .4 C 4 C 3/I1 D 11I1 &XUUHQW IURP ORRS DOVR IJRZV LQ SDUW RI ORRS WKURXJK WKH VKRUW EUDQFK EHWZHHQ A DQG B 7KH DVVRFLDWHG RI GURS WKHUH LV 3I2 YROWV +RZHYHU WKH FXUUHQW GLUHFWLRQ IRU WKH EUDQFK $% LQ ORRS LV RSSRVLWH WR WKDW FKRVHQ IRU WKH IJRZ LQ ORRS VR WKH DOJHEUDLF VXP RI DOO RI GURSV IRU ORRS LV 11I1 3I2 6LQFH WKH YROWDJH LQ ORRS LV C30 YROWV .LUFKKRijŖV YROWDJH ODZ LPSOLHV WKDW
11I1 3I2 D 30
'*(63&
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
7KH HTXDWLRQ IRU ORRS LV
3I1 C 6I2 I3 D 5 7KH WHUP 3I1 FRPHV IURP WKH IJRZ RI WKH ORRS FXUUHQW WKURXJK WKH EUDQFK $% ZLWK D QHJDWLYH YROWDJH GURS EHFDXVH WKH FXUUHQW IJRZ WKHUH LV RSSRVLWH WR WKH IJRZ LQ ORRS 7KH WHUP 6I2 LV WKH VXP RI DOO UHVLVWDQFHV LQ ORRS PXOWLSOLHG E\ WKH ORRS FXUUHQW 7KH WHUP I3 D 1 I3 FRPHV IURP WKH ORRS FXUUHQW IJRZLQJ WKURXJK WKH RKP UHVLVWRU LQ EUDQFK &' LQ WKH GLUHFWLRQ RSSRVLWH WR WKH IJRZ LQ ORRS 7KH ORRS HTXDWLRQ LV
I2 C 3I3 D 25 1RWH WKDW WKH YROW EDWWHU\ LQ EUDQFK &' LV FRXQWHG DV SDUW RI ERWK ORRS DQG ORRS EXW LW LV 5 YROWV IRU ORRS EHFDXVH RI WKH GLUHFWLRQ FKRVHQ IRU WKH FXUUHQW LQ ORRS 7KH YROW EDWWHU\ LV QHJDWLYH IRU WKH VDPH UHDVRQ 7KH ORRS FXUUHQWV DUH IRXQG E\ VROYLQJ WKH V\VWHP
11I1 3I2 D 30 3I1 C 6I2 I3 D 5 I2 C 3I3 D 25
5RZ RSHUDWLRQV RQ WKH DXJPHQWHG PDWUL[ OHDG WR WKH VROXWLRQ I1 D DPSV I2 D DPS DQG I3 D 8 DPSV 7KH QHJDWLYH YDOXH RI I3 LQGLFDWHV WKDW WKH DFWXDO FXUUHQW LQ ORRS IJRZV LQ WKH GLUHFWLRQ RSSRVLWH WR WKDW VKRZQ LQ )LJXUH ,W LV LQVWUXFWLYH WR ORRN DW V\VWHP DV D YHFWRU HTXDWLRQ 2 3 2 3 2 3 2 3 11 3 0 30 I1 4 3 5 C I2 4 6 5 C I3 4 1 5 D 4 5 5 0 1 3 25 6
U1
6
U2
6
U3
6
Y
7KH ıUVW HQWU\ RI HDFK YHFWRU FRQFHUQV WKH ıUVW ORRS DQG VLPLODUO\ IRU WKH VHFRQG DQG WKLUG HQWULHV 7KH ıUVW UHVLVWRU YHFWRU U1 OLVWV WKH UHVLVWDQFH LQ WKH YDULRXV ORRSV WKURXJK ZKLFK FXUUHQW I1 IJRZV $ UHVLVWDQFH LV ZULWWHQ QHJDWLYHO\ ZKHQ I1 IJRZV DJDLQVW WKH IJRZ GLUHFWLRQ LQ DQRWKHU ORRS ([DPLQH )LJXUH DQG VHH KRZ WR FRPSXWH WKH HQWULHV LQ U1 WKHQ GR WKH VDPH IRU U2 DQG U3 7KH PDWUL[ IRUP RI HTXDWLRQ 2 3 I1 RL D Y; ZKHUH R D Œ U1 U2 U3 DQG L D 4 I2 5 I3 SURYLGHV D PDWUL[ YHUVLRQ RI 2KPŖV ODZ ,I DOO ORRS FXUUHQWV DUH FKRVHQ LQ WKH VDPH GLUHF WLRQ VD\ FRXQWHUFORFNZLVH WKHQ DOO HQWULHV Rij WKH PDLQ GLDJRQDO RI R ZLOO EH QHJDWLYH 7KH PDWUL[ HTXDWLRQ RL D Y PDNHV WKH OLQHDULW\ RI WKLV PRGHO HDV\ WR VHH DW D JODQFH )RU LQVWDQFH LI WKH YROWDJH YHFWRU LV GRXEOHG WKHQ WKH FXUUHQW YHFWRU PXVW GRXEOH $OVR D VXSHUSRVLWLRQ SULQFLSOH KROGV 7KDW LV WKH VROXWLRQ RI HTXDWLRQ LV WKH VXP RI WKH VROXWLRQV RI WKH HTXDWLRQV 2 3 2 3 2 3 30 0 0 RL D 4 0 5; RL D 4 5 5; DQG RL D 4 0 5 0 0 25
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDU 0RGHOV LQ %XVLQHVV 6FLHQFH DQG (QJLQHHULQJ
(DFK HTXDWLRQ KHUH FRUUHVSRQGV WR WKH FLUFXLW ZLWK RQO\ RQH YROWDJH VRXUFH WKH RWKHU VRXUFHV EHLQJ UHSODFHG E\ ZLUHV WKDW FORVH HDFK ORRS 7KH PRGHO IRU FXUUHQW IJRZ LV OLQHDU SUHFLVHO\ EHFDXVH 2KPŖV ODZ DQG .LUFKKRijŖV ODZ DUH OLQHDU 7KH YROWDJH GURS DFURVV D UHVLVWRU LV SURSRUWLRQDO WR WKH FXUUHQW IJRZLQJ WKURXJK LW 2KP DQG WKH VXP RI WKH YROWDJH GURSV LQ D ORRS HTXDOV WKH VXP RI WKH YROWDJH VRXUFHV LQ WKH ORRS .LUFKKRij /RRS FXUUHQWV LQ D QHWZRUN FDQ EH XVHG WR GHWHUPLQH WKH FXUUHQW LQ DQ\ EUDQFK RI WKH QHWZRUN ,I RQO\ RQH ORRS FXUUHQW SDVVHV WKURXJK D EUDQFK VXFK DV IURP B WR D LQ )LJXUH WKH EUDQFK FXUUHQW HTXDOV WKH ORRS FXUUHQW ,I PRUH WKDQ RQH ORRS FXUUHQW SDVVHV WKURXJK D EUDQFK VXFK DV IURP A WR B WKH EUDQFK FXUUHQW LV WKH DOJHEUDLF VXP RI WKH ORRS FXUUHQWV LQ WKH EUDQFK .LUFKKRijŖV FXUUHQW ODZ )RU LQVWDQFH WKH FXUUHQW LQ EUDQFK $% LV I1 I2 D 3 1 D DPSV LQ WKH GLUHFWLRQ RI I1 7KH FXUUHQW LQ EUDQFK &' LV I2 I3 D DPSV
'LIIHUHQFH (TXDWLRQV ,Q PDQ\ ıHOGV VXFK DV HFRORJ\ HFRQRPLFV DQG HQJLQHHULQJ D QHHG DULVHV WR PRGHO PDWKHPDWLFDOO\ D G\QDPLF V\VWHP WKDW FKDQJHV RYHU WLPH 6HYHUDO IHDWXUHV RI WKH V\VWHP DUH HDFK PHDVXUHG DW GLVFUHWH WLPH LQWHUYDOV SURGXFLQJ D VHTXHQFH RI YHFWRUV [0 [1 [2 ; : : : : 7KH HQWULHV LQ [k SURYLGH LQIRUPDWLRQ DERXW WKH VWDWH RI WKH V\VWHP DW WKH WLPH RI WKH k WK PHDVXUHPHQW ,I WKHUH LV D PDWUL[ A VXFK WKDW [1 D A[0 [2 D A[1 DQG LQ JHQHUDO [k C1 D A[k
IRU k D 0; 1; 2; : : :
WKHQ LV FDOOHG D OLQHDU GLijHUHQFH HTXDWLRQ RU UHFXUUHQFH UHODWLRQ *LYHQ VXFK DQ HTXDWLRQ RQH FDQ FRPSXWH [1 [2 DQG VR RQ SURYLGHG [0 LV NQRZQ 6HFWLRQV DQG VHYHUDO VHFWLRQV LQ &KDSWHU ZLOO GHYHORS IRUPXODV IRU [k DQG GHVFULEH ZKDW FDQ KDSSHQ WR [k DV k LQFUHDVHV LQGHıQLWHO\ 7KH GLVFXVVLRQ EHORZ LOOXVWUDWHV KRZ D GLijHUHQFH HTXDWLRQ PLJKW DULVH $ VXEMHFW RI LQWHUHVW WR GHPRJUDSKHUV LV WKH PRYHPHQW RI SRSXODWLRQV RU JURXSV RI SHRSOH IURP RQH UHJLRQ WR DQRWKHU 7KH VLPSOH PRGHO KHUH FRQVLGHUV WKH FKDQJHV LQ WKH SRSXODWLRQ RI D FHUWDLQ FLW\ DQG LWV VXUURXQGLQJ VXEXUEV RYHU D SHULRG RI \HDUV )L[ DQ LQLWLDO \HDUŠVD\ ŠDQG GHQRWH WKH SRSXODWLRQV RI WKH FLW\ DQG VXEXUEV WKDW \HDU E\ r0 DQG s0 UHVSHFWLYHO\ /HW [0 EH WKH SRSXODWLRQ YHFWRU r &LW\ SRSXODWLRQ [0 D 0 6XEXUEDQ SRSXODWLRQ s0 )RU DQG VXEVHTXHQW \HDUV GHQRWH WKH SRSXODWLRQV RI WKH FLW\ DQG VXEXUEV E\ WKH YHFWRUV r1 r2 r [1 D ; [2 D ; [3 D 3 ; : : : s1 s2 s3 2XU JRDO LV WR GHVFULEH PDWKHPDWLFDOO\ KRZ WKHVH YHFWRUV PLJKW EH UHODWHG 6XSSRVH GHPRJUDSKLF VWXGLHV VKRZ WKDW HDFK \HDU DERXW RI WKH FLW\ŖV SRSXODWLRQ PRYHV WR WKH VXEXUEV DQG UHPDLQV LQ WKH FLW\ ZKLOH RI WKH VXEXUEDQ SRSXODWLRQ PRYHV WR WKH FLW\ DQG UHPDLQV LQ WKH VXEXUEV 6HH )LJXUH $IWHU \HDU WKH RULJLQDO r0 SHUVRQV LQ WKH FLW\ DUH QRZ GLVWULEXWHG EHWZHHQ FLW\ DQG VXEXUEV DV :95r0 :95 5HPDLQ LQ FLW\ D r0 0RYH WR VXEXUEV :05 :05r0 7KH s0 SHUVRQV LQ WKH VXEXUEV LQ DUH GLVWULEXWHG \HDU ODWHU DV :03 0RYH WR FLW\ s0 5HPDLQ LQ VXEXUEV :97
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD City
Suburbs .05
.95
.97 .03
'*(63& $QQXDO SHUFHQWDJH PLJUDWLRQ EHWZHHQ FLW\ DQG VXEXUEV
7KH YHFWRUV LQ DQG DFFRXQW IRU DOO RI WKH SRSXODWLRQ LQ 3 7KXV r1 :95 :03 :95 :03 r0 D r0 C s0 D :05 :97 :05 :97 s0 s1 7KDW LV [1 D M [0
ZKHUH M LV WKH PLJUDWLRQ PDWUL[ GHWHUPLQHG E\ WKH IROORZLQJ WDEOH
)URP &LW\ 6XEXUEV
7R
:95 :05
&LW\ 6XEXUEV
:03 :97
(TXDWLRQ GHVFULEHV KRZ WKH SRSXODWLRQ FKDQJHV IURP WR ,I WKH PLJUDWLRQ SHUFHQWDJHV UHPDLQ FRQVWDQW WKHQ WKH FKDQJH IURP WR LV JLYHQ E\ [2 D M [1 DQG VLPLODUO\ IRU WR DQG VXEVHTXHQW \HDUV ,Q JHQHUDO [k C1 D M [k
IRU k D 0; 1; 2; : : :
7KH VHTXHQFH RI YHFWRUV f[0 ; [1 ; [2 ; : : :g GHVFULEHV WKH SRSXODWLRQ RI WKH FLW\VXEXUEDQ UHJLRQ RYHU D SHULRG RI \HDUV
(;$03/( &RPSXWH WKH SRSXODWLRQ RI WKH UHJLRQ MXVW GHVFULEHG IRU WKH \HDUV DQG JLYHQ WKDW WKH SRSXODWLRQ LQ ZDV LQ WKH FLW\ DQG LQ WKH VXEXUEV 600;000 62/87,21 7KH LQLWLDO SRSXODWLRQ LQ LV [0 D )RU 400;000 [1 D
:95 :05
)RU
[2 D M [1 D
:03 :97 :95 :05
600;000 400;000
:03 :97
D
582;000 418;000
582;000 418;000
D
565;440 434;560
3
)RU VLPSOLFLW\ ZH LJQRUH RWKHU LQIJXHQFHV RQ WKH SRSXODWLRQ VXFK DV ELUWKV GHDWKV DQG PLJUDWLRQ LQWR DQG RXW RI WKH FLW\VXEXUEDQ UHJLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDU 0RGHOV LQ %XVLQHVV 6FLHQFH DQG (QJLQHHULQJ
7KH PRGHO IRU SRSXODWLRQ PRYHPHQW LQ LV OLQHDU EHFDXVH WKH FRUUHVSRQGHQFH [k 7! [k C1 LV D OLQHDU WUDQVIRUPDWLRQ 7KH OLQHDULW\ GHSHQGV RQ WZR IDFWV WKH QXPEHU RI SHRSOH ZKR FKRVH WR PRYH IURP RQH DUHD WR DQRWKHU LV SURSRUWLRQDO WR WKH QXPEHU RI SHRSOH LQ WKDW DUHD DV VKRZQ LQ DQG DQG WKH FXPXODWLYH HijHFW RI WKHVH FKRLFHV LV IRXQG E\ DGGLQJ WKH PRYHPHQW RI SHRSOH IURP WKH GLijHUHQW DUHDV 3UDFWLFH 3UREOHP )LQG D PDWUL[ A DQG YHFWRUV [ DQG E VXFK WKDW WKH SUREOHP LQ ([DPSOH DPRXQWV WR VROYLQJ WKH HTXDWLRQ A[ D E
([HUFLVHV 7KH FRQWDLQHU RI D EUHDNIDVW FHUHDO XVXDOO\ OLVWV WKH QXPEHU RI FDORULHV DQG WKH DPRXQWV RI SURWHLQ FDUERK\GUDWH DQG IDW FRQWDLQHG LQ RQH VHUYLQJ RI WKH FHUHDO 7KH DPRXQWV IRU WZR FRPPRQ FHUHDOV DUH JLYHQ EHORZ 6XSSRVH D PL[WXUH RI WKHVH WZR FHUHDOV LV WR EH SUHSDUHG WKDW FRQWDLQV H[DFWO\ FDORULHV J RI SURWHLQ J RI FDUERK\GUDWH DQG J RI IDW D 6HW XS D YHFWRU HTXDWLRQ IRU WKLV SUREOHP ,QFOXGH D VWDWH PHQW RI ZKDW WKH YDULDEOHV LQ \RXU HTXDWLRQ UHSUHVHQW E :ULWH DQ HTXLYDOHQW PDWUL[ HTXDWLRQ DQG WKHQ GHWHUPLQH LI WKH GHVLUHG PL[WXUH RI WKH WZR FHUHDOV FDQ EH SUHSDUHG 1XWULWLRQ ,QIRUPDWLRQ SHU 6HUYLQJ *HQHUDO 0LOOV 4XDNHUŪ 1XWULHQW 1DWXUDO &HUHDO &KHHULRVŪ &DORULHV 3URWHLQ J &DUERK\GUDWH J )DW J 2QH VHUYLQJ RI 3RVW 6KUHGGHG :KHDWŪ VXSSOLHV FDORULHV J RI SURWHLQ J RI ıEHU DQG J RI IDW 2QH VHUYLQJ RI &ULVSL[Ū VXSSOLHV FDORULHV J RI SURWHLQ J RI ıEHU DQG J RI IDW D 6HW XS D PDWUL[ B DQG D YHFWRU X VXFK WKDW B X JLYHV WKH DPRXQWV RI FDORULHV SURWHLQ ıEHU DQG IDW FRQWDLQHG LQ D PL[WXUH RI WKUHH VHUYLQJV RI 6KUHGGHG :KHDW DQG WZR VHUYLQJV RI &ULVSL[ 7 E 6XSSRVH WKDW \RX ZDQW D FHUHDO ZLWK PRUH ıEHU WKDQ
&ULVSL[ EXW IHZHU FDORULHV WKDQ 6KUHGGHG :KHDW ,V LW SRVVLEOH IRU D PL[WXUH RI WKH WZR FHUHDOV WR VXSSO\ FDORULHV J RI SURWHLQ J RI ıEHU DQG J RI IDW" ,I VR ZKDW LV WKH PL[WXUH" $IWHU WDNLQJ D QXWULWLRQ FODVV D ELJ $QQLHŖVŪ 0DF DQG &KHHVH IDQ GHFLGHV WR LPSURYH WKH OHYHOV RI SURWHLQ DQG ıEHU LQ KHU IDYRULWH OXQFK E\ DGGLQJ EURFFROL DQG FDQQHG FKLFNHQ 7KH QXWULWLRQDO LQIRUPDWLRQ IRU WKH IRRGV UHIHUUHG WR LQ WKLV DUH JLYHQ LQ WKH WDEOH
1XWULWLRQ ,QIRUPDWLRQ SHU 6HUYLQJ 1XWULHQW 0DF DQG &KHHVH %URFFROL &KLFNHQ 6KHOOV &DORULHV 3URWHLQ J )LEHU J
7 D ,I VKH ZDQWV WR OLPLW KHU OXQFK WR FDORULHV EXW JHW J
RI SURWHLQ DQG J RI ıEHU ZKDW SURSRUWLRQV RI VHUYLQJV RI 0DF DQG &KHHVH EURFFROL DQG FKLFNHQ VKRXOG VKH XVH" 7 E 6KH IRXQG WKDW WKHUH ZDV WRR PXFK EURFFROL LQ WKH SURSRU
WLRQV IURP SDUW D VR VKH GHFLGHG WR VZLWFK IURP FODVVLFDO 0DF DQG &KHHVH WR $QQLHŖVŪ :KROH :KHDW 6KHOOV DQG :KLWH &KHGGDU :KDW SURSRUWLRQV RI VHUYLQJV RI HDFK IRRG VKRXOG VKH XVH WR PHHW WKH VDPH JRDOV DV LQ SDUW D " 7KH &DPEULGJH 'LHW VXSSOLHV J RI FDOFLXP SHU GD\ LQ DGGLWLRQ WR WKH QXWULHQWV OLVWHG LQ 7DEOH IRU ([DPSOH 7KH DPRXQWV RI FDOFLXP SHU XQLW J VXSSOLHG E\ WKH WKUHH LQJUHGLHQWV LQ WKH &DPEULGJH 'LHW DUH DV IROORZV J IURP QRQIDW PLON J IURP VR\ IJRXU DQG J IURP ZKH\ $QRWKHU LQJUHGLHQW LQ WKH GLHW PL[WXUH LV LVRODWHG VR\ SURWHLQ ZKLFK SURYLGHV WKH IROORZLQJ QXWULHQWV LQ HDFK XQLW J RI SURWHLQ J RI FDUERK\GUDWH J RI IDW DQG J RI FDOFLXP D 6HW XS D PDWUL[ HTXDWLRQ ZKRVH VROXWLRQ GHWHUPLQHV WKH DPRXQWV RI QRQIDW PLON VR\ IJRXU ZKH\ DQG LVRODWHG VR\ SURWHLQ QHFHVVDU\ WR VXSSO\ WKH SUHFLVH DPRXQWV RI SURWHLQ FDUERK\GUDWH IDW DQG FDOFLXP LQ WKH &DP EULGJH 'LHW 6WDWH ZKDW WKH YDULDEOHV LQ WKH HTXDWLRQ UHSUHVHQW 7 E 6ROYH WKH HTXDWLRQ LQ D DQG GLVFXVV \RXU DQVZHU 7 ,Q ([HUFLVHV ş ZULWH D PDWUL[ HTXDWLRQ WKDW GHWHUPLQHV WKH ORRS FXUUHQWV ,I 0$7/$% RU DQRWKHU PDWUL[ SURJUDP LV DYDLODEOH VROYH WKH V\VWHP IRU WKH ORRS FXUUHQWV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
20 V 1V
2V 1V
20 V
I2
2V
40 V
I3
2V
4V
4V
I1
10 V
I4
6V
2V
5HWXUQHG 7R $LUSRUW (DVW :HVW
FDUV DW WKUHH ORFDWLRQV $ FDU UHQWHG DW RQH ORFDWLRQ PD\ EH UHWXUQHG WR DQ\ RI WKH WKUHH ORFDWLRQV 7KH YDULRXV IUDFWLRQV RI FDUV UHWXUQHG WR WKH WKUHH ORFDWLRQV DUH VKRZQ LQ WKH PDWUL[ EHORZ 6XSSRVH WKDW RQ 0RQGD\ WKHUH DUH FDUV DW WKH DLUSRUW RU UHQWHG IURP WKHUH FDUV DW WKH HDVW VLGH RĴFH DQG FDUV DW WKH ZHVW VLGH RĴFH :KDW ZLOO EH WKH DSSUR[LPDWH GLVWULEXWLRQ RI FDUV RQ :HGQHVGD\"
20 V
50 V
WUXFNV LQ 3XOOPDQ 6SRNDQH DQG 6HDWWOH UHVSHFWLYHO\ $ WUXFN UHQWHG DW RQH ORFDWLRQ PD\ EH UHWXUQHG WR DQ\ RI WKH WKUHH ORFDWLRQV 7KH YDULRXV IUDFWLRQV RI WUXFNV UHWXUQHG WR WKH WKUHH ORFDWLRQV HDFK PRQWK DUH VKRZQ LQ WKH PDWUL[ EHORZ :KDW ZLOO EH WKH DSSUR[LPDWH GLVWULEXWLRQ RI WKH WUXFNV DIWHU WKUHH PRQWKV"
7 %XGJHWŪ 5HQW D &DU LQ :LFKLWD .DQVDV KDV D IJHHW RI DERXW
3V
I3
,Q D FHUWDLQ UHJLRQ DERXW RI D FLW\ŖV SRSXODWLRQ PRYHV WR WKH VXUURXQGLQJ VXEXUEV HDFK \HDU DQG DERXW RI WKH VXEXUEDQ SRSXODWLRQ PRYHV LQWR WKH FLW\ ,Q WKHUH ZHUH UHVLGHQWV LQ WKH FLW\ DQG LQ WKH VXEXUEV 6HW XS D GLijHUHQFH HTXDWLRQ WKDW GHVFULEHV WKLV VLWXDWLRQ ZKHUH [0 LV WKH LQLWLDO SRSXODWLRQ LQ 7KHQ HVWLPDWH WKH SRSXODWLRQV LQ WKH FLW\ DQG LQ WKH VXEXUEV WZR \HDUV ODWHU LQ
7UXFNV 5HQWHG )URP 3XOOPDQ 6SRNDQH 6HDWWOH 2 3 :05 :15 :30 4:30 :055 :70 :90 :15 :40
5V
I2
I4
WKH SRSXODWLRQV LQ WKH FLW\ DQG LQ WKH VXEXUEV WZR \HDUV ODWHU LQ ,JQRUH RWKHU IDFWRUV WKDW PLJKW LQIJXHQFH WKH SRSXODWLRQ VL]HV
7 &ROOHJH 0RYLQJ 7UXFN 5HQWDO KDV D IJHHW RI DQG
3V
7V 30 V
10 V
4V 40 V
1V
1V
2V 3V
I4
4V
4V
20 V
10 V
1V 1V
I3
2V
I1
1V
30 V I2
10 V 4V
30 V
4V
I1
5V 3V
3V
1V
40 V
1V I1
3V
I4 4V
1V
2V 3V
I5 3V
1V
1V
5HWXUQHG 7R $LUSRUW (DVW :HVW
3V
I2
I3
2V
2V
30 V
&DUV 5HQWHG )URP $LUSRUW (DVW :HVW 3 2 :10 :05 :97 4:00 :055 :90 :85 :05 :03
20 V
7 /HW M DQG [0 EH DV LQ ([DPSOH
D &RPSXWH WKH SRSXODWLRQ YHFWRUV [k IRU k D 1; : : : ; 20 'LVFXVV ZKDW \RX ıQG E 5HSHDW SDUW D ZLWK DQ LQLWLDO SRSXODWLRQ RI LQ WKH FLW\ DQG LQ WKH VXEXUEV :KDW GR \RX ıQG" 7 6WXG\ KRZ FKDQJHV LQ ERXQGDU\ WHPSHUDWXUHV RQ D VWHHO SODWH
,Q D FHUWDLQ UHJLRQ DERXW RI D FLW\ŖV SRSXODWLRQ PRYHV WR WKH VXUURXQGLQJ VXEXUEV HDFK \HDU DQG DERXW RI WKH VXEXUEDQ SRSXODWLRQ PRYHV LQWR WKH FLW\ ,Q WKHUH ZHUH UHVLGHQWV LQ WKH FLW\ DQG LQ WKH VXEXUEV 6HW XS D GLijHUHQFH HTXDWLRQ WKDW GHVFULEHV WKLV VLWXDWLRQ ZKHUH [0 LV WKH LQLWLDO SRSXODWLRQ LQ 7KHQ HVWLPDWH
DijHFW WKH WHPSHUDWXUHV DW LQWHULRU SRLQWV RQ WKH SODWH D %HJLQ E\ HVWLPDWLQJ WKH WHPSHUDWXUHV T1 T2 T3 T4 DW HDFK RI WKH VHWV RI IRXU SRLQWV RQ WKH VWHHO SODWH VKRZQ LQ WKH ıJXUH ,Q HDFK FDVH WKH YDOXH RI Tk LV DSSUR[LPDWHG E\ WKH DYHUDJH RI WKH WHPSHUDWXUHV DW WKH IRXU FORVHVW SRLQWV 6HH ([HUFLVHV DQG LQ 6HFWLRQ ZKHUH WKH YDOXHV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$IBQUFS 6XSSOHPHQWDU\ ([HUFLVHV LQ GHJUHHV WXUQ RXW WR EH .20; 27:5; 30; 22:5/ +RZ LV WKLV OLVW RI YDOXHV UHODWHG WR \RXU UHVXOWV IRU WKH SRLQWV LQ VHW D DQG VHW E " E :LWKRXW PDNLQJ DQ\ FRPSXWDWLRQV JXHVV WKH LQWHULRU WHP SHUDWXUHV LQ D ZKHQ WKH ERXQGDU\ WHPSHUDWXUHV DUH DOO PXOWLSOLHG E\ &KHFN \RXU JXHVV
08 08
F )LQDOO\ PDNH D JHQHUDO FRQMHFWXUH DERXW WKH FRUUHVSRQ GHQFH IURP WKH OLVW RI HLJKW ERXQGDU\ WHPSHUDWXUHV WR WKH OLVW RI IRXU LQWHULRU WHPSHUDWXUHV
Plate A
Plate B
208
208
08
08
1
2
1
2
4
3
4
3
208
208
108
108
08 08
108 108
(a)
6ROXWLRQ WR 3UDFWLFH 3UREOHP 2 3 36 51 13 A D 4 52 34 74 5; 0 7 1:1
408 408
(b)
2
3 x1 [ D 4 x2 5; x3
2
3 33 E D 4 45 5 3
&+$37(5 352-(&76 &KDSWHU SURMHFWV DUH DYDLODEOH RQOLQH DW CJUMZ*.H5 $ ,QWHUSRODWLQJ 3RO\QRPLDOV 7KLV SURMHFW VKRZV KRZ WR XVH D V\VWHP RI OLQHDU HTXDWLRQV WR ıW D SRO\QRPLDO WKURXJK D VHW RI SRLQWV % 6SOLQHV 7KLV SURMHFW DOVR VKRZV KRZ WR XVH D V\VWHP RI OLQHDU HTXDWLRQV WR ıW D SLHFHZLVH SRO\QRPLDO FXUYH WKURXJK D VHW RI SRLQWV
' 7KH $UW RI /LQHDU 7UDQVIRUPDWLRQV ,Q WKLV SURMHFW LW LV LOOXV WUDWHG KRZ WR JUDSK D SRO\JRQ DQG WKHQ XVH OLQHDU WUDQVIRUPD WLRQV WR FKDQJH LWV VKDSH DQG FUHDWH D GHVLJQ ( /RRS &XUUHQWV 7KH SXUSRVH RI WKLV SURMHFW LV WR SURYLGH PRUH DQG ODUJHU H[DPSOHV RI ORRS FXUUHQWV ) 'LHW 7KH SXUSRVH RI WKLV SURMHFW LV WR SURYLGH H[DPSOHV RI YHFWRU HTXDWLRQV WKDW UHVXOW IURP EDODQFLQJ QXWULHQWV LQ D GLHW
& 1HWZRUN )ORZV 7KH SXUSRVH RI WKLV SURMHFW LV WR VKRZ KRZ V\VWHPV RI OLQHDU HTXDWLRQV PD\ EH XVHG WR PRGHO IJRZ WKURXJK D QHWZRUN
&+$37(5 6833/(0(17$5< (;(5&,6(6 0DUN HDFK VWDWHPHQW 7UXH RU )DOVH 7 ) -XVWLI\ HDFK DQVZHU ,I WUXH FLWH DSSURSULDWH IDFWV RU WKHRUHPV ,I IDOVH H[SODLQ ZK\ RU JLYH D FRXQWHUH[DPSOH WKDW VKRZV ZK\ WKH VWDWHPHQW LV QRW WUXH LQ HYHU\ FDVH 7) (YHU\ PDWUL[ LV URZ HTXLYDOHQW WR D XQLTXH PDWUL[ LQ HFKHORQ IRUP
7) ,I D V\VWHP A[ D E KDV PRUH WKDQ RQH VROXWLRQ WKHQ VR GRHV WKH V\VWHP A[ D 7) ,I A LV DQ m n PDWUL[ DQG WKH HTXDWLRQ A[ D E LV FRQVLVWHQW IRU VRPH E WKHQ WKH FROXPQV RI A VSDQ Rm
7) $Q\ V\VWHP RI n OLQHDU HTXDWLRQV LQ n YDULDEOHV KDV DW PRVW n VROXWLRQV
7) ,I DQ DXJPHQWHG PDWUL[ Œ A E FDQ EH WUDQVIRUPHG E\ HOHPHQWDU\ URZ RSHUDWLRQV LQWR UHGXFHG HFKHORQ IRUP WKHQ WKH HTXDWLRQ A[ D E LV FRQVLVWHQW
7) ,I D V\VWHP RI OLQHDU HTXDWLRQV KDV WZR GLijHUHQW VROX WLRQV LW PXVW KDYH LQıQLWHO\ PDQ\ VROXWLRQV
7) ,I PDWULFHV A DQG B DUH URZ HTXLYDOHQW WKH\ KDYH WKH VDPH UHGXFHG HFKHORQ IRUP
7) ,I D V\VWHP RI OLQHDU HTXDWLRQV KDV QR IUHH YDULDEOHV WKHQ LW KDV D XQLTXH VROXWLRQ 7) ,I DQ DXJPHQWHG PDWUL[ Œ A E LV WUDQVIRUPHG LQWR Œ C G E\ HOHPHQWDU\ URZ RSHUDWLRQV WKHQ WKH HTXDWLRQV A[ D E DQG C [ D G KDYH H[DFWO\ WKH VDPH VROXWLRQ VHWV
7) 7KH HTXDWLRQ A[ D KDV WKH WULYLDO VROXWLRQ LI DQG RQO\ LI WKHUH DUH QR IUHH YDULDEOHV 7) ,I A LV DQ m n PDWUL[ DQG WKH HTXDWLRQ A[ D E LV FRQVLVWHQW IRU HYHU\ E LQ Rm WKHQ A KDV m SLYRW FROXPQV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD
7) ,I DQ m n PDWUL[ A KDV D SLYRW SRVLWLRQ LQ HYHU\ URZ WKHQ WKH HTXDWLRQ A[ D E KDV D XQLTXH VROXWLRQ IRU HDFK E LQ Rm
QR SRLQWV LQ FRPPRQ 7\SLFDO JUDSKV DUH LOOXVWUDWHG LQ WKH ıJXUH
7) ,I DQ n n PDWUL[ A KDV n SLYRW SRVLWLRQV WKHQ WKH UHGXFHG HFKHORQ IRUP RI A LV WKH n n LGHQWLW\ PDWUL[ 7) ,I 3 3 PDWULFHV A DQG B HDFK KDYH WKUHH SLYRW SRVL WLRQV WKHQ A FDQ EH WUDQVIRUPHG LQWR B E\ HOHPHQWDU\ URZ RSHUDWLRQV 7) ,I A LV DQ m n PDWUL[ LI WKH HTXDWLRQ A[ D E KDV DW OHDVW WZR GLijHUHQW VROXWLRQV DQG LI WKH HTXDWLRQ A[ D F LV FRQVLVWHQW WKHQ WKH HTXDWLRQ A[ D F KDV PDQ\ VROXWLRQV
Three planes intersecting in a line (a)
Three planes intersecting in a point (b)
Three planes with no intersection (c)
Three planes with no intersection (c')
7) ,I A DQG B DUH URZ HTXLYDOHQW m n PDWULFHV DQG LI WKH FROXPQV RI A VSDQ Rm WKHQ VR GR WKH FROXPQV RI B 7) ,I QRQH RI WKH YHFWRUV LQ WKH VHW S D fY1 ; Y2 ; Y3 g LQ R3 LV D PXOWLSOH RI RQH RI WKH RWKHU YHFWRUV WKHQ S LV OLQHDUO\ LQGHSHQGHQW 7) ,I fX; Y; Zg LV OLQHDUO\ LQGHSHQGHQW WKHQ X Y DQG Z DUH QRW LQ R2 7) ,Q VRPH FDVHV LW LV SRVVLEOH IRU IRXU YHFWRUV WR VSDQ R5 7) ,I X DQG Y DUH LQ Rm WKHQ X LV LQ 6SDQfX; Yg 7) ,I X Y DQG Z DUH QRQ]HUR YHFWRUV LQ R2 WKHQ Z LV D OLQHDU FRPELQDWLRQ RI X DQG Y 7) ,I Z LV D OLQHDU FRPELQDWLRQ RI X DQG Y LQ Rn WKHQ X LV D OLQHDU FRPELQDWLRQ RI Y DQG Z 7) 6XSSRVH WKDW Y1 Y2 DQG Y3 DUH LQ R Y2 LV QRW D PXOWLSOH RI Y1 DQG Y3 LV QRW D OLQHDU FRPELQDWLRQ RI Y1 DQG Y2 7KHQ fY1 ; Y2 ; Y3 g LV OLQHDUO\ LQGHSHQGHQW 5
6XSSRVH WKH FRHĴFLHQW PDWUL[ RI D OLQHDU V\VWHP RI WKUHH HTXDWLRQV LQ WKUHH YDULDEOHV KDV D SLYRW SRVLWLRQ LQ HDFK FROXPQ ([SODLQ ZK\ WKH V\VWHP KDV D XQLTXH VROXWLRQ 'HWHUPLQH h DQG k VXFK WKDW WKH VROXWLRQ VHW RI WKH V\VWHP L LV HPSW\ LL FRQWDLQV D XQLTXH VROXWLRQ DQG LLL FRQWDLQV LQıQLWHO\ PDQ\ VROXWLRQV x1 C 3x2 D k E 2x1 C hx2 D 1 D
4x1 C hx2 D 8
6x1 C kx2 D 2
&RQVLGHU WKH SUREOHP RI GHWHUPLQLQJ ZKHWKHU WKH IROORZLQJ V\VWHP RI HTXDWLRQV LV FRQVLVWHQW
4x1 2x2 C 7x3 D 5 8x1 3x2 C 10x3 D 3
7) $ OLQHDU WUDQVIRUPDWLRQ LV D IXQFWLRQ
D 'HıQH DSSURSULDWH YHFWRUV DQG UHVWDWH WKH SUREOHP LQ WHUPV RI OLQHDU FRPELQDWLRQV 7KHQ VROYH WKDW SUREOHP
7) ,I A LV D 6 5 PDWUL[ WKH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ FDQQRW PDS R5 RQWR R6
E 'HıQH DQ DSSURSULDWH PDWUL[ DQG UHVWDWH WKH SUREOHP XVLQJ WKH SKUDVH ŗFROXPQV RI AŘ
/HW a DQG b UHSUHVHQW UHDO QXPEHUV 'HVFULEH WKH SRVVLEOH VROXWLRQ VHWV RI WKH OLQHDU HTXDWLRQ ax D b >+LQW 7KH QXPEHU RI VROXWLRQV GHSHQGV XSRQ a DQG b @ 7KH VROXWLRQV .x; y; ´/ RI D VLQJOH OLQHDU HTXDWLRQ
ax C by C c´ D d IRUP D SODQH LQ R3 ZKHQ a b DQG c DUH QRW DOO ]HUR &RQVWUXFW VHWV RI WKUHH OLQHDU HTXDWLRQV ZKRVH JUDSKV D LQWHUVHFW LQ D VLQJOH OLQH E LQWHUVHFW LQ D VLQJOH SRLQW DQG F KDYH
F 'HıQH DQ DSSURSULDWH OLQHDU WUDQVIRUPDWLRQ T XVLQJ WKH PDWUL[ LQ E DQG UHVWDWH WKH SUREOHP LQ WHUPV RI T &RQVLGHU WKH SUREOHP RI GHWHUPLQLQJ ZKHWKHU WKH IROORZLQJ V\VWHP RI HTXDWLRQV LV FRQVLVWHQW IRU DOO b1 b2 b3
2x1 4x2 2x3 D b1 5x1 C x2 C x3 D b2 7x1 5x2 3x3 D b3 D 'HıQH DSSURSULDWH YHFWRUV DQG UHVWDWH WKH SUREOHP LQ WHUPV RI 6SDQ fY1 ; Y2 ; Y3 g 7KHQ VROYH WKDW SUREOHP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$IBQUFS 6XSSOHPHQWDU\ ([HUFLVHV E 'HıQH DQ DSSURSULDWH PDWUL[ DQG UHVWDWH WKH SUREOHP XVLQJ WKH SKUDVH ŗFROXPQV RI AŘ F 'HıQH DQ DSSURSULDWH OLQHDU WUDQVIRUPDWLRQ T XVLQJ WKH PDWUL[ LQ E DQG UHVWDWH WKH SUREOHP LQ WHUPV RI T 'HVFULEH WKH SRVVLEOH HFKHORQ IRUPV RI WKH PDWUL[ A 8VH WKH QRWDWLRQ RI ([DPSOH LQ 6HFWLRQ D A LV D 2 3 PDWUL[ ZKRVH FROXPQV VSDQ R2 E A LV D 3 3 PDWUL[ ZKRVH FROXPQV VSDQ R3 5 DV WKH VXP RI WZR YHFWRUV :ULWH WKH YHFWRU 6 RQH RQ WKH OLQH f.x; y/ W y D 2xg DQG RQH RQ WKH OLQH f.x; y/ W y D x=2g /HW D1 ; D2 DQG E EH WKH YHFWRUV LQ R2 VKRZQ LQ WKH ıJXUH DQG OHW A D ŒD1 D2 'RHV WKH HTXDWLRQ A[ D E KDYH D VROXWLRQ" ,I VR LV WKH VROXWLRQ XQLTXH" ([SODLQ x2 b a1
x1 a2
&RQVWUXFW D 2 3 PDWUL[ A QRW LQ HFKHORQ IRUP VXFK WKDW WKH VROXWLRQ RI A[ D LV D OLQH LQ R3 &RQVWUXFW D 2 3 PDWUL[ A QRW LQ HFKHORQ IRUP VXFK WKDW WKH VROXWLRQ RI A[ D LV D SODQH LQ R3
([SODLQ ZK\ D VHW fY1 ; Y2 ; Y3 ; Y4 g LQ R5 PXVW EH OLQHDUO\ LQGHSHQGHQW ZKHQ fY1 ; Y2 ; Y3 g LV OLQHDUO\ LQGHSHQGHQW DQG Y4 LV QRW LQ 6SDQ fY1 ; Y2 ; Y3 g 6XSSRVH fY1 ; Y2 g LV D OLQHDUO\ LQGHSHQGHQW VHW LQ Rn 6KRZ WKDW fY1 ; Y1 C Y2 g LV DOVR OLQHDUO\ LQGHSHQGHQW 6XSSRVH Y1 ; Y2 ; Y3 DUH GLVWLQFW SRLQWV RQ RQH OLQH LQ R3 7KH OLQH QHHG QRW SDVV WKURXJK WKH RULJLQ 6KRZ WKDW fY1 ; Y2 ; Y3 g LV OLQHDUO\ GHSHQGHQW /HW T W Rn ! Rm EH D OLQHDU WUDQVIRUPDWLRQ DQG VXSSRVH T .X/ D Y 6KRZ WKDW T .X/ D Y /HW T W R3 ! R3 EH WKH OLQHDU WUDQVIRUPDWLRQ WKDW UH IJHFWV HDFK YHFWRU WKURXJK WKH SODQH x2 D 0 7KDW LV T .x1 ; x2 ; x3 / D .x1 ; x2 ; x3 / )LQG WKH VWDQGDUG PDWUL[ RI T /HW A EH D 3 3 PDWUL[ ZLWK WKH SURSHUW\ WKDW WKH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ PDSV R3 RQWR R3 ([SODLQ ZK\ WKH WUDQVIRUPDWLRQ PXVW EH RQHWRRQH $ *LYHQV URWDWLRQ LV D OLQHDU WUDQVIRUPDWLRQ IURP Rn WR Rn XVHG LQ FRPSXWHU SURJUDPV WR FUHDWH D ]HUR HQWU\ LQ D YHFWRU XVXDOO\ D FROXPQ RI D PDWUL[ 7KH VWDQGDUG PDWUL[ RI D *LYHQV URWDWLRQ LQ R2 KDV WKH IRUP a b ; a2 C b 2 D 1 b a 4 5 )LQG a DQG b VXFK WKDW LV URWDWHG LQWR 3 0 x2
:ULWH WKH UHGXFHG HFKHORQ IRUP RI D 3 3 PDWUL[ A VXFK WKDW 2 WKH 3ıUVW 2WZR3 FROXPQV RI A DUH SLYRW FROXPQV DQG 3 0 A4 2 5 D 4 0 5 1 0 1 a ; LV 'HWHUPLQH WKH YDOXHV RI a VXFK WKDW a aC2 OLQHDUO\ LQGHSHQGHQW ,Q D DQG E VXSSRVH WKH YHFWRUV DUH OLQHDUO\ LQGHSHQGHQW :KDW FDQ \RX VD\ DERXW WKH QXPEHUV a; : : : ; f " -XVWLI\ \RXU DQVZHUV >+LQW 8VH D WKHRUHP IRU E @ 2 3 2 3 2 3 2 3 2 3 2 3 a b d a b d 617 6c7 6 e 7 6 7 6 7 6 7 D 4 0 5 4 c 5 4 e 5 E 4 05 415 4f 5 0 0 f 0 0 1 8VH 7KHRUHP LQ 6HFWLRQ WR H[SODLQ ZK\ WKH FROXPQV RI WKH PDWUL[ A DUH OLQHDUO\ LQGHSHQGHQW 2 3 1 0 0 0 6 7 5 0 07 62 AD4 5 3 6 8 0 4 7 9 10
(4, 3)
(5, 0)
x1
$ *LYHQV URWDWLRQ LQ R2 7KH IROORZLQJ HTXDWLRQ GHVFULEHV D *LYHQV URWDWLRQ LQ R3 )LQG a DQG b 2
a 40 b
32 3 2 p 3 0 b 2 2 5 1 0 54 3 5 D 4 3 5 ; 0 a 4 0
a2 C b 2 D 1
$ ODUJH DSDUWPHQW EXLOGLQJ LV WR EH EXLOW XVLQJ PRGXODU FRQVWUXFWLRQ WHFKQLTXHV 7KH DUUDQJHPHQW RI DSDUWPHQWV RQ DQ\ SDUWLFXODU IJRRU LV WR EH FKRVHQ IURP RQH RI WKUHH ED VLF IJRRU SODQV 3ODQ $ KDV DSDUWPHQWV RQ RQH IJRRU LQ FOXGLQJ WKUHHEHGURRP XQLWV WZREHGURRP XQLWV DQG RQHEHGURRP XQLWV (DFK IJRRU RI SODQ % LQFOXGHV WKUHH EHGURRP XQLWV WZREHGURRP XQLWV DQG RQHEHGURRP XQLWV (DFK IJRRU RI SODQ & LQFOXGHV WKUHHEHGURRP XQLWV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 /LQHDU (TXDWLRQV LQ /LQHDU $OJHEUD WZREHGURRP XQLWV DQG RQHEHGURRP XQLWV 6XSSRVH WKH EXLOGLQJ FRQWDLQV D WRWDO RI x1 IJRRUV RI SODQ $ x2 IJRRUV RI SODQ % DQG x3 IJRRUV RI SODQ & 2 3 3 D :KDW LQWHUSUHWDWLRQ FDQ EH JLYHQ WR WKH YHFWRU x1 4 7 5" 8
E :ULWH D IRUPDO OLQHDU FRPELQDWLRQ RI YHFWRUV WKDW H[SUHVVHV WKH WRWDO QXPEHUV RI WKUHH WZR DQG RQH EHGURRP DSDUWPHQWV FRQWDLQHG LQ WKH EXLOGLQJ 7 F ,V LW SRVVLEOH WR GHVLJQ WKH EXLOGLQJ ZLWK H[DFWO\
WKUHHEHGURRP XQLWV WZREHGURRP XQLWV DQG RQH EHGURRP XQLWV" ,I VR LV WKHUH PRUH WKDQ RQH ZD\ WR GR LW" ([SODLQ \RXU DQVZHU
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
0DWUL[ $OJHEUD
*OUSPEVDUPSZ &YBNQMF
&20387(5 02'(/6 ,1 $,5&5$)7 '(6,*1 7R GHVLJQ WKH QH[W JHQHUDWLRQ RI FRPPHUFLDO DQG PLOLWDU\ DLUFUDIW HQJLQHHUV DW %RHLQJŖV 3KDQWRP :RUNV XVH ' PRGHOLQJ DQG FRPSXWDWLRQDO IJXLG G\QDPLFV &)' 7KH\ VWXG\ WKH DLUIJRZ DURXQG D YLUWXDO DLUSODQH WR DQVZHU LPSRUWDQW GHVLJQ TXHVWLRQV EHIRUH SK\VLFDO PRGHOV DUH FUHDWHG 7KLV KDV GUDVWLFDOO\ UHGXFHG GHVLJQ F\FOH WLPHV DQG FRVWŠDQG OLQHDU DOJHEUD SOD\V D FUXFLDO UROH LQ WKH SURFHVV
RULJLQDO ZLUHIUDPH PRGHO %R[HV LQ WKLV JULG OLH HLWKHU FRPSOHWHO\ LQVLGH RU FRPSOHWHO\ RXWVLGH WKH SODQH RU WKH\ LQWHUVHFW WKH VXUIDFH RI WKH SODQH 7KH FRPSXWHU VHOHFWV WKH ER[HV WKDW LQWHUVHFW WKH VXUIDFH DQG VXEGLYLGHV WKHP UHWDLQLQJ RQO\ WKH VPDOOHU ER[HV WKDW VWLOO LQWHUVHFW WKH VXUIDFH 7KH VXEGLYLGLQJ SURFHVV LV UHSHDWHG XQWLO WKH JULG LV H[WUHPHO\ ıQH $ W\SLFDO JULG FDQ LQFOXGH PRUH WKDQ ER[HV
7KH YLUWXDO DLUSODQH EHJLQV DV D PDWKHPDWLFDO ŗZLUH IUDPHŘ PRGHO WKDW H[LVWV RQO\ LQ FRPSXWHU PHPRU\ DQG RQ JUDSKLFV GLVSOD\ WHUPLQDOV 0RGHO RI D %RHLQJ LV VKRZQ 7KLV PDWKHPDWLFDO PRGHO RUJDQL]HV DQG LQIJXHQFHV HDFK VWHS RI WKH GHVLJQ DQG PDQXIDFWXUH RI WKH DLUSODQHŠERWK WKH H[WHULRU DQG LQWHULRU 7KH &)' DQDO\VLV FRQFHUQV WKH H[WHULRU VXUIDFH
7KH SURFHVV IRU ıQGLQJ WKH DLUIJRZ DURXQG WKH SODQH LQYROYHV UHSHDWHGO\ VROYLQJ D V\VWHP RI OLQHDU HTXDWLRQV A[ D E WKDW PD\ LQYROYH XS WR PLOOLRQ HTXDWLRQV DQG YDULDEOHV 7KH YHFWRU E FKDQJHV HDFK WLPH EDVHG RQ GDWD IURP WKH JULG DQG VROXWLRQV RI SUHYLRXV HTXDWLRQV 8VLQJ WKH IDVWHVW FRPSXWHUV DYDLODEOH FRPPHUFLDOO\ D 3KDQWRP :RUNV WHDP FDQ VSHQG IURP D IHZ KRXUV WR VHYHUDO GD\V VHWWLQJ XS DQG VROYLQJ D VLQJOH DLUIJRZ SUREOHP $IWHU WKH WHDP DQDO\]HV WKH VROXWLRQ WKH\ PD\ PDNH VPDOO FKDQJHV WR WKH DLUSODQH VXUIDFH DQG EHJLQ WKH ZKROH SURFHVV DJDLQ 7KRXVDQGV RI &)' UXQV PD\ EH UHTXLUHG
$OWKRXJK WKH ıQLVKHG VNLQ RI D SODQH PD\ VHHP VPRRWK WKH JHRPHWU\ RI WKH VXUIDFH LV FRPSOLFDWHG ,Q DGGLWLRQ WR ZLQJV DQG D IXVHODJH DQ DLUFUDIW KDV QDFHOOHV VWDELOL]HUV VODWV IJDSV DQG DLOHURQV 7KH ZD\ DLU IJRZV DURXQG WKHVH VWUXFWXUHV GHWHUPLQHV KRZ WKH SODQH PRYHV WKURXJK WKH VN\ (TXDWLRQV WKDW GHVFULEH WKH DLUIJRZ DUH FRPSOLFDWHG DQG WKH\ PXVW DFFRXQW IRU HQJLQH LQWDNH HQJLQH H[KDXVW DQG WKH ZDNHV OHIW E\ WKH ZLQJV RI WKH SODQH 7R VWXG\ WKH DLUIJRZ HQJLQHHUV QHHG D KLJKO\ UHıQHG GHVFULSWLRQ RI WKH SODQHŖV VXUIDFH $ FRPSXWHU FUHDWHV D PRGHO RI WKH VXUIDFH E\ ıUVW VXSHULPSRVLQJ D WKUHHGLPHQVLRQDO JULG RI ŗER[HVŘ RQ WKH
7KLV FKDSWHU SUHVHQWV WZR LPSRUWDQW FRQFHSWV WKDW DVVLVW LQ WKH VROXWLRQ RI VXFK PDVVLYH V\VWHPV RI HTXDWLRQV
3DUWLWLRQHG PDWULFHV $ W\SLFDO &)' V\VWHP RI HTXDWLRQV KDV D ŗVSDUVHŘ FRHĴFLHQW PDWUL[ ZLWK PRVWO\ ]HUR HQWULHV *URXSLQJ WKH YDULDEOHV FRUUHFWO\ OHDGV WR D SDUWLWLRQHG PDWUL[ ZLWK PDQ\ ]HUR EORFNV 6HFWLRQ LQWURGXFHV VXFK PDWULFHV DQG GHVFULEHV VRPH RI WKHLU DSSOLFDWLRQV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD
0DWUL[ IDFWRUL]DWLRQV (YHQ ZKHQ ZULWWHQ ZLWK SDUWLWLRQHG PDWULFHV WKH V\VWHP RI HTXDWLRQV LV FRPSOLFDWHG 7R IXUWKHU VLPSOLI\ WKH FRPSXWDWLRQV WKH &)' VRIWZDUH DW %RHLQJ XVHV ZKDW LV FDOOHG DQ /8 IDFWRUL]DWLRQ RI WKH FRHĴFLHQW PDWUL[ 6HFWLRQ GLVFXVVHV /8 DQG RWKHU XVHIXO PDWUL[ IDFWRUL]DWLRQV )XUWKHU GHWDLOV DERXW IDFWRUL]DWLRQV DSSHDU DW VHYHUDO SRLQWV ODWHU LQ WKH WH[W
7R DQDO\]H D VROXWLRQ RI DQ DLUIJRZ V\VWHP HQJLQHHUV ZDQW WR YLVXDOL]H WKH DLUIJRZ RYHU WKH VXUIDFH RI WKH SODQH 7KH\ XVH FRPSXWHU JUDSKLFV DQG OLQHDU DOJHEUD SURYLGHV WKH HQJLQH IRU WKH JUDSKLFV 7KH ZLUHIUDPH PRGHO RI WKH SODQHŖV VXUIDFH LV VWRUHG DV GDWD LQ PDQ\ PDWULFHV 2QFH WKH LPDJH KDV EHHQ UHQGHUHG RQ D FRPSXWHU VFUHHQ HQJLQHHUV FDQ FKDQJH LWV VFDOH ]RRP LQ RU RXW RI VPDOO UHJLRQV DQG URWDWH WKH LPDJH WR VHH SDUWV WKDW PD\ EH KLGGHQ IURP YLHZ
78'HOIW DQG $LU )UDQFH./0 DUH LQYHVWLJDWLQJ D IJ\LQJ 9 DLUFUDIW GHVLJQ EHFDXVH RI LWV SRWHQWLDO IRU VLJQLıFDQWO\ EHWWHU IXHO HFRQRP\
(DFK RI WKHVH RSHUDWLRQV LV DFFRPSOLVKHG E\ DSSURSULDWH PDWUL[ PXOWLSOLFDWLRQV 6HFWLRQ H[SODLQV WKH EDVLF LGHDV
2XU DELOLW\ WR DQDO\]H DQG VROYH HTXDWLRQV ZLOO EH JUHDWO\ HQKDQFHG ZKHQ ZH FDQ SHUIRUP DOJHEUDLF RSHUDWLRQV ZLWK PDWULFHV )XUWKHUPRUH WKH GHıQLWLRQV DQG WKHRUHPV LQ WKLV FKDSWHU SURYLGH VRPH EDVLF WRROV IRU KDQGOLQJ WKH PDQ\ DSSOLFDWLRQV RI OLQHDU DOJHEUD WKDW LQYROYH WZR RU PRUH PDWULFHV )RU n n PDWULFHV WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP LQ 6HFWLRQ WLHV WRJHWKHU PRVW RI WKH FRQFHSWV WUHDWHG HDUOLHU LQ WKH WH[W 6HFWLRQV DQG H[DPLQH SDUWLWLRQHG PDWULFHV DQG PDWUL[ IDFWRUL]DWLRQV ZKLFK DSSHDU LQ PRVW PRGHUQ XVHV RI OLQHDU DOJHEUD 6HFWLRQV DQG GHVFULEH WZR LQWHUHVWLQJ DSSOLFDWLRQV RI PDWUL[ DOJHEUD WR HFRQRPLFV DQG WR FRPSXWHU JUDSKLFV 6HFWLRQV DQG SURYLGH UHDGHUV HQRXJK LQIRUPDWLRQ DERXW VXEVSDFHV WR PRYH GLUHFWO\ LQWR &KDSWHUV DQG ZLWKRXW FRYHULQJ &KDSWHU +LQW 5HYLHZ 7KHRUHP LQ 6HFWLRQ @ 6XSSRVH $ LV n n DQG WKH HTXDWLRQ A[ D KDV RQO\ WKH WULYLDO VROXWLRQ ([SODLQ ZK\ $ KDV Q SLYRW FROXPQV DQG $ LV URZ HTXLYDOHQW WR In : %\ 7KHRUHP WKLV VKRZV WKDW $ PXVW EH LQYHUWLEOH 7KLV H[HUFLVH DQG ([HUFLVH ZLOO EH FLWHG LQ 6HFWLRQ 6XSSRVH $ LV n n DQG WKH HTXDWLRQ A[ D E KDV D VROXWLRQ IRU HDFK E LQ Rn ([SODLQ ZK\ $ PXVW EH LQYHUWLEOH >+LQW ,V $ URZ HTXLYDOHQW WR In "@ a b ([HUFLVHV DQG SURYH 7KHRUHP IRU A D : c d
6KRZ WKDW LI ad bc ¤ 0; WKH IRUPXOD IRU A1 ZRUNV ([HUFLVHV DQG SURYH VSHFLDO FDVHV RI WKH IDFWV DERXW HOHPHQ WDU\ PDWULFHV VWDWHG LQ WKH ER[ IROORZLQJ ([DPSOH +HUH $ LV D 3 3 PDWUL[ DQG I D I3 : $ JHQHUDO SURRI ZRXOG UHTXLUH VOLJKWO\ PRUH QRWDWLRQ D 8VH HTXDWLRQ IURP 6HFWLRQ WR VKRZ WKDW URZi .A/ D URZi .I / A; IRU i D 1; 2; 3: E 6KRZ WKDW LI URZV O DQG RI $ DUH LQWHUFKDQJHG WKHQ WKH UHVXOW PD\ EH ZULWWHQ DV ($ ZKHUH ( LV DQ HOHPHQWDU\ PDWUL[ IRUPHG E\ LQWHUFKDQJLQJ URZV DQG RI , F 6KRZ WKDW LI URZ RI $ LV PXOWLSOLHG E\ WKHQ WKH UHVXOW PD\ EH ZULWWHQ DV ($ ZKHUH ( LV IRUPHG E\ PXOWLSO\LQJ URZ RI , E\ 6KRZ WKDW LI URZ RI $ LV UHSODFHG E\ URZ3 .A/ 4URZ1 .A/; WKH UHVXOW LV ($ ZKHUH ( LV IRUPHG IURP , E\ UHSODFLQJ URZ3 .I / E\ URZ3 .I / 4URZ1 .I /: )LQG WKH LQYHUVHV RI WKH PDWULFHV LQ ([HUFLVHV ş LI WKH\ H[LVW 8VH WKH DOJRULWKP LQWURGXFHG LQ WKLV VHFWLRQ 1 2 5 10 4 7 4 7 2
3 1 0 2 1 45 4 3 2 3 4
2
3 1 2 1 35 4 4 7 2 6 4
8VH WKH DOJRULWKP IURP WKLV VHFWLRQ WR ıQG WKH LQYHUVHV RI 2 3 2 3 1 0 0 0 1 0 0 6 7 1 0 07 61 41 1 0 5 DQG 4 : 1 1 1 05 1 1 1 1 1 1 1 /HW A EH WKH FRUUHVSRQGLQJ n n PDWUL[ DQG OHW B EH LWV LQYHUVH *XHVV WKH IRUP RI B DQG WKHQ SURYH WKDW AB D I DQG BA D I: 5HSHDW WKH VWUDWHJ\ RI ([HUFLVH WR JXHVV WKH LQYHUVH RI 2 3 1 0 0 0 6 7 2 0 07 61 61 7 2 3 0 AD6 7: 3URYH WKDW \RXU JXHVV LV 6 : :7 :: : 4 :: : :5 1 2 3 n FRUUHFW 2 3 2 7 9 5 6 5: )LQG WKH WKLUG FROXPQ RI A1 /HW A D 4 2 1 3 4 ZLWKRXW FRPSXWLQJ WKH RWKHU FROXPQV
2 3 6KRZ WKDW LI ad bc D 0; WKHQ WKH HTXDWLRQ A[ D KDV 25 9 27 PRUH WKDQ RQH VROXWLRQ :K\ GRHV WKLV LPSO\ WKDW $ LV QRW 7 180 537 5: )LQG WKH VHFRQG DQG WKLUG /HW A D 4 546 LQYHUWLEOH" >+LQW )LUVW FRQVLGHU a D b D 0: 7KHQ LI D DQG E 154 50 149 b DUH QRW ERWK ]HUR FRQVLGHU WKH YHFWRU [ D : 1 A ZLWKRXW FRPSXWLQJ WKH ıUVW FROXPQ FROXPQV RI a
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD 2
1 /HW A D 4 1 1
3 2 3 5: &RQVWUXFW D 2 3 PDWUL[ & E\ WULDO DQG 7 /HW 5
HUURU XVLQJ RQO\ O 1 DQG DV HQWULHV VXFK WKDW CA D I : &RPSXWH $& DQG QRWH WKDW AC ¤ I3 : 1 1 1 0 /HW A D : &RQVWUXFW D 4 2 PDWUL[ ' 0 1 1 1 XVLQJ RQO\ DQG DV HQWULHV VXFK WKDW AD D I2 : ,V LW SRVVLEOH WKDW CA D I4 IRU VRPH 4 2 PDWUL[ &" :K\ RU ZK\ QRW" 2 3 :005 :002 :001 :004 :002 5 EH D IJH[LELOLW\ PDWUL[ /HW D D 4 :002 :001 :002 :005
2
:0040 6 :0030 6 DD4 :0010 :0005
:0030 :0050 :0030 :0010
:0010 :0030 :0050 :0030
3 :0005 :0010 7 7 :0030 5 :0040
EH
D
IJH[LELOLW\ PDWUL[ IRU DQ HODVWLF EHDP ZLWK IRXU SRLQWV DW ZKLFK IRUFH LV DSSOLHG 8QLWV DUH FHQWLPHWHUV SHU QHZWRQ RI IRUFH 0HDVXUHPHQWV DW WKH IRXU SRLQWV VKRZ GHIJHFWLRQV RI DQG FP 'HWHUPLQH WKH IRUFHV DW WKH IRXU SRLQWV #1
#2 .08
f1
#3
#4
.12
.16
f2
f3
.12 f4
ZLWK IJH[LELOLW\ PHDVXUHG LQ LQFKHV SHU SRXQG 6XSSRVH WKDW IRUFHV RI DQG OE DUH DSSOLHG DW SRLQWV 'HIJHFWLRQ RI HODVWLF EHDP LQ ([HUFLVHV DQG DQG UHVSHFWLYHO\ LQ )LJXUH RI ([DPSOH )LQG WKH 7 :LWK D DV LQ ([HUFLVH GHWHUPLQH WKH IRUFHV WKDW SURGXFH FRUUHVSRQGLQJ GHIJHFWLRQV D GHIJHFWLRQ RI FP DW WKH VHFRQG SRLQW RQ WKH EHDP ZLWK 7 &RPSXWH WKH VWLijQHVV PDWUL[ D 1 IRU ' LQ ([HUFLVH /LVW ]HUR GHIJHFWLRQV DW WKH RWKHU WKUHH SRLQWV +RZ LV WKH DQVZHU UHODWHG WR WKH HQWULHV LQ D 1 ‹ >+LQW )LUVW DQVZHU WKH TXHVWLRQ WKH IRUFHV QHHGHG WR SURGXFH D GHIJHFWLRQ RI LQ DW SRLQW ZLWK ]HUR GHIJHFWLRQV DW WKH RWKHU SRLQWV ZKHQ WKH GHIJHFWLRQ LV FP DW WKH VHFRQG SRLQW@
6ROXWLRQV WR 3UDFWLFH 3UREOHPV 3 9 D GHW D 3 6 .9/ 2 D 18 C 18 D 36 7KH GHWHUPLQDQW LV QRQ]HUR 2 6 VR WKH PDWUL[ LV LQYHUWLEOH 4 9 E GHW D 4 5 .9/ 0 D 20 ¤ 0 7KH PDWUL[ LV LQYHUWLEOH 0 5 6 9 F GHW D 6 6 .9/.4/ D 36 36 D 0 7KH PDWUL[ LV QRW LQYHUWLEOH 4 6 2 3 1 2 1 1 0 0 Œ A I 4 1 5 6 0 1 0 5 5 4 5 0 0 1 2 3 1 2 1 1 0 0 40 3 5 1 1 05 0 6 10 5 0 1 2 3 1 2 1 1 0 0 40 3 5 1 1 05 0 0 0 7 2 1 6R Œ A I LV URZ HTXLYDOHQW WR D PDWUL[ RI WKH IRUP Œ B D ZKHUH B LV VTXDUH DQG KDV D URZ RI ]HURV )XUWKHU URZ RSHUDWLRQV ZLOO QRW WUDQVIRUP B LQWR I VR ZH VWRS A GRHV QRW KDYH DQ LQYHUVH 6LQFH A LV DQ LQYHUWLEOH PDWUL[ WKHUH H[LVWV D PDWUL[ C VXFK WKDW AC D I D CA 7KH JRDO LV WR ıQG D PDWUL[ D VR WKDW 5A D D I D D 5A 6HW D D 1=5 C $SSO\LQJ 7KHRUHP IURP 6HFWLRQ HVWDEOLVKHV WKDW 5A 1=5 C D AC D I D I DQG C A D CA I D I 7KXV C LV LQGHHG WKH LQYHUVH RI A SURYLQJ WKDW A LV LQYHUWLEOH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&KDUDFWHUL]DWLRQV RI ,QYHUWLEOH 0DWULFHV
&KDUDFWHUL]DWLRQV RI ,QYHUWLEOH 0DWULFHV 7KLV VHFWLRQ SURYLGHV D UHYLHZ RI PRVW RI WKH FRQFHSWV LQWURGXFHG LQ &KDSWHU LQ UHODWLRQ WR V\VWHPV RI n OLQHDU HTXDWLRQV LQ n XQNQRZQV DQG WR VTXDUH PDWULFHV 7KH PDLQ UHVXOW LV 7KHRUHP
5)&03&.
5IF *OWFSUJCMF .BUSJY 5IFPSFN /HW A EH D VTXDUH n n PDWUL[ 7KHQ WKH IROORZLQJ VWDWHPHQWV DUH HTXLYDOHQW 7KDW LV IRU D JLYHQ A WKH VWDWHPHQWV DUH HLWKHU DOO WUXH RU DOO IDOVH D E F G H I J K L M N O
(a) ( j)
( b) (c)
(d)
'*(63&
(k) (g)
(a) (g)
(h)
(i)
(d)
(e)
(f )
(a)
(l)
A LV DQ LQYHUWLEOH PDWUL[ A LV URZ HTXLYDOHQW WR WKH n n LGHQWLW\ PDWUL[ A KDV n SLYRW SRVLWLRQV 7KH HTXDWLRQ A[ D KDV RQO\ WKH WULYLDO VROXWLRQ 7KH FROXPQV RI A IRUP D OLQHDUO\ LQGHSHQGHQW VHW 7KH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ LV RQHWRRQH 7KH HTXDWLRQ A[ D E KDV DW OHDVW RQH VROXWLRQ IRU HDFK E LQ Rn 7KH FROXPQV RI A VSDQ Rn 7KH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ PDSV Rn RQWR Rn 7KHUH LV DQ n n PDWUL[ C VXFK WKDW CA D I 7KHUH LV DQ n n PDWUL[ D VXFK WKDW AD D I AT LV DQ LQYHUWLEOH PDWUL[
)LUVW ZH QHHG VRPH QRWDWLRQ ,I WKH WUXWK RI VWDWHPHQW D DOZD\V LPSOLHV WKDW VWDWH PHQW M LV WUXH ZH VD\ WKDW D LPSOLHV M DQG ZULWH D ) M 7KH SURRI ZLOO HVWDEOLVK WKH ŗFLUFOHŘ RI LPSOLFDWLRQV VKRZQ LQ )LJXUH ,I DQ\ RQH RI WKHVH ıYH VWDWHPHQWV LV WUXH WKHQ VR DUH WKH RWKHUV )LQDOO\ WKH SURRI ZLOO OLQN WKH UHPDLQLQJ VWDWHPHQWV RI WKH WKHRUHP WR WKH VWDWHPHQWV LQ WKLV FLUFOH
1300' ,I VWDWHPHQW D LV WUXH WKHQ A1 ZRUNV IRU C LQ M VR D ) M 1H[W M ) G E\ ([HUFLVH LQ 6HFWLRQ 7XUQ EDFN DQG UHDG WKH H[HUFLVH $OVR G ) F E\ ([HUFLVH LQ 6HFWLRQ ,I A LV VTXDUH DQG KDV n SLYRW SRVLWLRQV WKHQ WKH SLYRWV PXVW OLH RQ WKH PDLQ GLDJRQDO LQ ZKLFK FDVH WKH UHGXFHG HFKHORQ IRUP RI A LV In : 7KXV F ) E $OVR E ) D E\ 7KHRUHP LQ 6HFWLRQ 7KLV FRPSOHWHV WKH FLUFOH LQ )LJXUH 1H[W D ) N EHFDXVH A1 ZRUNV IRU D $OVR N ) J E\ ([HUFLVH LQ 6HFWLRQ DQG J ) D E\ ([HUFLVH LQ 6HFWLRQ 6R N DQG J DUH OLQNHG WR WKH FLUFOH )XUWKHU J K DQG L DUH HTXLYDOHQW IRU DQ\ PDWUL[ E\ 7KHRUHP LQ 6HFWLRQ DQG 7KHRUHP D LQ 6HFWLRQ 7KXV K DQG L DUH OLQNHG WKURXJK J WR WKH FLUFOH 6LQFH G LV OLQNHG WR WKH FLUFOH VR DUH H DQG I EHFDXVH G H DQG I DUH DOO HTXLYDOHQW IRU DQ\ PDWUL[ A 6HH 6HFWLRQ DQG 7KHRUHP E LQ 6HFWLRQ )LQDOO\ D ) O E\ 7KHRUHP F LQ 6HFWLRQ DQG O ) D E\ WKH VDPH WKHRUHP ZLWK A DQG AT LQWHUFKDQJHG 7KLV FRPSOHWHV WKH SURRI
%HFDXVH RI 7KHRUHP LQ 6HFWLRQ VWDWHPHQW J LQ 7KHRUHP FRXOG DOVR EH ZULWWHQ DV ŗ7KH HTXDWLRQ A[ D E KDV D XQLTXH VROXWLRQ IRU HDFK E LQ Rn Ř 7KLV VWDWHPHQW FHUWDLQO\ LPSOLHV E DQG KHQFH LPSOLHV WKDW A LV LQYHUWLEOH MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD
7KH QH[W IDFW IROORZV IURP 7KHRUHP DQG ([HUFLVH LQ 6HFWLRQ /HW A DQG B EH VTXDUH PDWULFHV ,I AB D I WKHQ A DQG B DUH ERWK LQYHUWLEOH ZLWK B D A1 DQG A D B 1 7KH ,QYHUWLEOH 0DWUL[ 7KHRUHP GLYLGHV WKH VHW RI DOO n n PDWULFHV LQWR WZR GLVMRLQW FODVVHV WKH LQYHUWLEOH QRQVLQJXODU PDWULFHV DQG WKH QRQLQYHUWLEOH VLQJXODU PDWULFHV (DFK VWDWHPHQW LQ WKH WKHRUHP GHVFULEHV D SURSHUW\ RI HYHU\ n n LQYHUWLEOH PDWUL[ 7KH QHJDWLRQ RI D VWDWHPHQW LQ WKH WKHRUHP GHVFULEHV D SURSHUW\ RI HYHU\ n n VLQJXODU PDWUL[ )RU LQVWDQFH DQ n n VLQJXODU PDWUL[ LV QRW URZ HTXLYDOHQW WR In GRHV QRW KDYH n SLYRW SRVLWLRQV DQG KDV OLQHDUO\ GHSHQGHQW FROXPQV 1HJDWLRQV RI RWKHU VWDWHPHQWV DUH FRQVLGHUHG LQ WKH H[HUFLVHV
(;$03/( 8VH WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP WR GHFLGH LI A LV LQYHUWLEOH 2
3 1 0 2 A D 4 3 1 2 5 5 1 9
2
3 2 3 1 0 2 1 0 2 A 40 1 45 40 1 45 0 1 1 0 0 3 6R A KDV WKUHH SLYRW SRVLWLRQV DQG KHQFH LV LQYHUWLEOH E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP VWDWHPHQW F 62/87,21
678'< *8,'( RIIHUV DQ H[SDQGHG WDEOH IRU WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP
7KH SRZHU RI WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP OLHV LQ WKH FRQQHFWLRQV LW SURYLGHV DPRQJ VR PDQ\ LPSRUWDQW FRQFHSWV VXFK DV OLQHDU LQGHSHQGHQFH RI FROXPQV RI D PDWUL[ A DQG WKH H[LVWHQFH RI VROXWLRQV WR HTXDWLRQV RI WKH IRUP A[ D E ,W VKRXOG EH HPSKD VL]HG KRZHYHU WKDW WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP DSSOLHV RQO\ WR VTXDUH PDWULFHV )RU H[DPSOH LI WKH FROXPQV RI D 4 3 PDWUL[ DUH OLQHDUO\ LQGHSHQGHQW ZH FDQQRW XVH WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP WR FRQFOXGH DQ\WKLQJ DERXW WKH H[LVWHQFH RU QRQH[LVWHQFH RI VROXWLRQV WR HTXDWLRQV RI WKH IRUP A[ D E
,QYHUWLEOH /LQHDU 7UDQVIRUPDWLRQV 5HFDOO IURP 6HFWLRQ WKDW PDWUL[ PXOWLSOLFDWLRQ FRUUHVSRQGV WR FRPSRVLWLRQ RI OLQHDU WUDQVIRUPDWLRQV :KHQ D PDWUL[ A LV LQYHUWLEOH WKH HTXDWLRQ A1 A[ D [ FDQ EH YLHZHG DV D VWDWHPHQW DERXW OLQHDU WUDQVIRUPDWLRQV 6HH )LJXUH Multiplication by A x
Ax Multiplication by A21
'*(63& A1 WUDQVIRUPV A[ EDFN WR [
$ OLQHDU WUDQVIRUPDWLRQ T W Rn ! Rn LV VDLG WR EH LQYHUWLEOH LI WKHUH H[LVWV D IXQF WLRQ S W Rn ! Rn VXFK WKDW
S.T .[// D [ IRU DOO [ LQ Rn T .S.[// D [ IRU DOO [ LQ Rn
7KH QH[W WKHRUHP VKRZV WKDW LI VXFK DQ S H[LVWV LW LV XQLTXH DQG PXVW EH D OLQHDU WUDQVIRUPDWLRQ :H FDOO S WKH LQYHUVH RI T DQG ZULWH LW DV T 1 MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&KDUDFWHUL]DWLRQV RI ,QYHUWLEOH 0DWULFHV
5)&03&.
/HW T W Rn ! Rn EH D OLQHDU WUDQVIRUPDWLRQ DQG OHW A EH WKH VWDQGDUG PDWUL[ IRU T 7KHQ T LV LQYHUWLEOH LI DQG RQO\ LI A LV DQ LQYHUWLEOH PDWUL[ ,Q WKDW FDVH WKH OLQHDU WUDQVIRUPDWLRQ S JLYHQ E\ S.[/ D A1 [ LV WKH XQLTXH IXQFWLRQ VDWLVI\LQJ HTXDWLRQV .1/ DQG .2/
5HPDUN 6HH WKH FRPPHQW RQ WKH SURRI RI 7KHRUHP
1300' 6XSSRVH WKDW T LV LQYHUWLEOH 7KHQ VKRZV WKDW T LV RQWR Rn IRU LI E LV LQ Rn DQG [ D S.E/ WKHQ T .[/ D T .S.E// D E VR HDFK E LV LQ WKH UDQJH RI T 7KXV A LV LQYHUWLEOH E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP VWDWHPHQW L &RQYHUVHO\ VXSSRVH WKDW A LV LQYHUWLEOH DQG OHW S.[/ D A1 [ 7KHQ S LV D OLQHDU WUDQVIRUPDWLRQ DQG S REYLRXVO\ VDWLVıHV DQG )RU LQVWDQFH S.T .[// D S.A[/ D A1 .A[/ D [ 7KXV T LV LQYHUWLEOH 7KH SURRI WKDW S LV XQLTXH LV RXWOLQHG LQ ([HUFLVH
(;$03/( :KDW FDQ \RX VD\ DERXW D RQHWRRQH OLQHDU WUDQVIRUPDWLRQ T IURP Rn LQWR Rn "
62/87,21 7KH FROXPQV RI WKH VWDQGDUG PDWUL[ A RI T DUH OLQHDUO\ LQGHSHQGHQW E\
7KHRUHP LQ 6HFWLRQ 6R A LV LQYHUWLEOH E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP DQG T PDSV Rn RQWR Rn $OVR T LV LQYHUWLEOH E\ 7KHRUHP
1XPHULFDO 1RWHV ,Q SUDFWLFDO ZRUN \RX PLJKW RFFDVLRQDOO\ HQFRXQWHU D ŗQHDUO\ VLQJXODUŘ RU LOO FRQGLWLRQHG PDWUL[ŠDQ LQYHUWLEOH PDWUL[ WKDW FDQ EHFRPH VLQJXODU LI VRPH RI LWV HQWULHV DUH FKDQJHG HYHU VR VOLJKWO\ ,Q WKLV FDVH URZ UHGXFWLRQ PD\ SURGXFH IHZHU WKDQ n SLYRW SRVLWLRQV DV D UHVXOW RI URXQGRij HUURU $OVR URXQGRij HUURU FDQ VRPHWLPHV PDNH D VLQJXODU PDWUL[ DSSHDU WR EH LQYHUWLEOH 6RPH PDWUL[ SURJUDPV ZLOO FRPSXWH D FRQGLWLRQ QXPEHU IRU D VTXDUH PDWUL[ 7KH ODUJHU WKH FRQGLWLRQ QXPEHU WKH FORVHU WKH PDWUL[ LV WR EHLQJ VLQJXODU 7KH FRQGLWLRQ QXPEHU RI WKH LGHQWLW\ PDWUL[ LV $ VLQJXODU PDWUL[ KDV DQ LQıQLWH FRQGLWLRQ QXPEHU ,Q H[WUHPH FDVHV D PDWUL[ SURJUDP PD\ QRW EH DEOH WR GLVWLQJXLVK EHWZHHQ D VLQJXODU PDWUL[ DQG DQ LOOFRQGLWLRQHG PDWUL[ ([HUFLVHV ş VKRZ WKDW PDWUL[ FRPSXWDWLRQV FDQ SURGXFH VXEVWDQWLDO HUURU ZKHQ D FRQGLWLRQ QXPEHU LV ODUJH
3UDFWLFH 3UREOHPV
2
3 2 3 4 'HWHUPLQH LI A D 4 2 3 4 5 LV LQYHUWLEOH 2 3 4 6XSSRVH WKDW IRU D FHUWDLQ n n PDWUL[ A VWDWHPHQW J RI WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP LV QRW WUXH :KDW FDQ \RX VD\ DERXW HTXDWLRQV RI WKH IRUP A[ D E" 6XSSRVH WKDW A DQG B DUH n n PDWULFHV DQG WKH HTXDWLRQ AB [ D KDV D QRQWULYLDO VROXWLRQ :KDW FDQ \RX VD\ DERXW WKH PDWUL[ AB "
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD
([HUFLVHV 8QOHVV RWKHUZLVH VSHFLıHG DVVXPH WKDW DOO PDWULFHV LQ WKHVH H[ HUFLVHV DUH n n 'HWHUPLQH ZKLFK RI WKH PDWULFHV LQ ([HUFLVHV ş DUH LQYHUWLEOH 8VH DV IHZ FDOFXODWLRQV DV SRVVLEOH -XVWLI\ \RXU DQVZHUV 5 7 4 6 3 6 6 9 2 3 2 3 5 0 0 7 0 4 7 05 0 1 5 4 3 4 3 8 5 1 2 0 9 3 2 3 2 0 3 5 1 5 4 0 25 3 45 4 0 4 1 4 3 6 0 9 7 2
1 6 3 6 4 2 0 2
4 6 6 6 7 4 7 1 2
5 66 6 7 6 7 6 49 8
3 4 5 6 5
3 2 1 1 7 60 3 7 6 40 25 1 0
3 5 6 1
0 8 3 2
0 1 5 2
7 11 10 3 1 2 3 4 2
7 8 10 9 11
3 5 0 0
7 9 2 0
3 4 7 67 5 8 10
3 7 97 7 19 5 1
7) ,I WKH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ PDSV Rn LQWR Rn WKHQ A KDV n SLYRW SRVLWLRQV 7) ,I AT LV QRW LQYHUWLEOH WKHQ A LV QRW LQYHUWLEOH 7) ,I WKHUH LV D E LQ Rn VXFK WKDW WKH HTXDWLRQ A[ D E LV LQFRQVLVWHQW WKHQ WKH WUDQVIRUPDWLRQ [ 7! A[ LV QRW RQH WRRQH $Q m n XSSHU WULDQJXODU PDWUL[ LV RQH ZKRVH HQWULHV EHORZ WKH PDLQ GLDJRQDO DUH ŖV DV LQ ([HUFLVH :KHQ LV D VTXDUH XSSHU WULDQJXODU PDWUL[ LQYHUWLEOH" -XVWLI\ \RXU DQVZHU $Q m n ORZHU WULDQJXODU PDWUL[ LV RQH ZKRVH HQWULHV DERYH WKH PDLQ GLDJRQDO DUH ŖV DV LQ ([HUFLVH :KHQ LV D VTXDUH ORZHU WULDQJXODU PDWUL[ LQYHUWLEOH" -XVWLI\ \RXU DQVZHU &DQ D VTXDUH PDWUL[ ZLWK WZR LGHQWLFDO FROXPQV EH LQYHUWLEOH" :K\ RU ZK\ QRW" ,V LW SRVVLEOH IRU D 5 5 PDWUL[ WR EH LQYHUWLEOH ZKHQ LWV FROXPQV GR QRW VSDQ R5 " :K\ RU ZK\ QRW" ,I $ LV LQYHUWLEOH WKHQ WKH FROXPQV RI A1 DUH OLQHDUO\ LQGHSHQGHQW ([SODLQ ZK\
3 9 7 8 7 97 7 5 5 4
,I & LV 6 6 DQG WKH HTXDWLRQ C [ D Y LV FRQVLVWHQW IRU HYHU\ Y LQ R6 LV LW SRVVLEOH WKDW IRU VRPH Y WKH HTXDWLRQ C [ D Y KDV PRUH WKDQ RQH VROXWLRQ" :K\ RU ZK\ QRW" ,I WKH FROXPQV RI D 7 7 PDWUL[ ' DUH OLQHDUO\ LQGHSHQGHQW ZKDW FDQ \RX VD\ DERXW VROXWLRQV RI D [ D E" :K\"
,Q ([HUFLVHV ş WKH PDWULFHV DUH DOO n n (DFK SDUW RI WKH H[HUFLVHV LV DQ LPSOLFDWLRQ RI WKH IRUP ŗ,I ŕVWDWHPHQW Ŗ WKHQ ŕVWDWHPHQW ŖŘ 0DUN DQ LPSOLFDWLRQ DV 7UXH LI WKH WUXWK RI ŗVWDWHPHQW Ř DOZD\V IROORZV ZKHQHYHU ŗVWDWHPHQW Ř KDSSHQV WR EH WUXH $Q LPSOLFDWLRQ LV )DOVH LI WKHUH LV DQ LQVWDQFH LQ ZKLFK ŗVWDWHPHQW Ř LV IDOVH EXW ŗVWDWHPHQW Ř LV WUXH -XVWLI\ HDFK DQVZHU 7) ,I WKH HTXDWLRQ A[ KDV RQO\ WKH WULYLDO VROXWLRQ WKHQ A LV URZ HTXLYDOHQW WR WKH n n LGHQWLW\ PDWUL[ 7) ,I WKHUH LV DQ n n PDWUL[ D VXFK WKDW AD D I WKHQ WKHUH LV DOVR DQ n n PDWUL[ C VXFK WKDW CA D I 7) ,I WKH FROXPQV RI A VSDQ R WKHQ WKH FROXPQV DUH OLQHDUO\ LQGHSHQGHQW n
,I n n PDWULFHV ( DQG ) KDYH WKH SURSHUW\ WKDW EF D I WKHQ ( DQG ) FRPPXWH ([SODLQ ZK\ ,I WKH HTXDWLRQ G [ D \ KDV PRUH WKDQ RQH VROXWLRQ IRU VRPH \ LQ Rn FDQ WKH FROXPQV RI * VSDQ Rn " :K\ RU ZK\ QRW" ,I WKH HTXDWLRQ H [ D F LV LQFRQVLVWHQW IRU VRPH F LQ Rn ZKDW FDQ \RX VD\ DERXW WKH HTXDWLRQ H [ D " :K\" ,I DQ n n PDWUL[ . FDQQRW EH URZ UHGXFHG WR In ; ZKDW FDQ \RX VD\ DERXW WKH FROXPQV RI ." :K\" ,I / LV n n DQG WKH HTXDWLRQ L[ D KDV WKH WULYLDO VROXWLRQ GR WKH FROXPQV RI / VSDQ Rn " :K\" 9HULI\ WKH ER[HG VWDWHPHQW SUHFHGLQJ ([DPSOH
7) ,I WKH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW WKHQ WKH FROXPQV RI A VSDQ Rn
([SODLQ ZK\ WKH FROXPQV RI A2 VSDQ Rn ZKHQHYHU WKH FROXPQV RI $ DUH OLQHDUO\ LQGHSHQGHQW
7) ,I A LV DQ n n PDWUL[ WKHQ WKH HTXDWLRQ A[ D E KDV DW OHDVW RQH VROXWLRQ IRU HDFK E LQ Rn
6KRZ WKDW LI $% LV LQYHUWLEOH VR LV $ +LQW 7KHUH LV D PDWUL[ : VXFK WKDW ABW D I: :K\"@
7) ,I WKH HTXDWLRQ A[ D E KDV DW OHDVW RQH VROXWLRQ IRU HDFK E LQ Rn WKHQ WKH VROXWLRQ LV XQLTXH IRU HDFK E 7) ,I WKH HTXDWLRQ A[ KDV D QRQWULYLDO VROXWLRQ WKHQ A KDV IHZHU WKDQ n SLYRW SRVLWLRQV
6KRZ WKDW LI $% LV LQYHUWLEOH VR LV % ,I $ LV DQ n n PDWUL[ DQG WKH HTXDWLRQ A[ DE KDV PRUH WKDQ RQH VROXWLRQ IRU VRPH E WKHQ WKH WUDQVIRUPDWLRQ [ 7! $[ LV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&KDUDFWHUL]DWLRQV RI ,QYHUWLEOH 0DWULFHV
QRW RQHWRRQH :KDW HOVH FDQ \RX VD\ DERXW WKLV WUDQVIRUPD 7 6XSSRVH DQ H[SHULPHQW OHDGV WR WKH IROORZLQJ V\VWHP RI HTXDWLRQV WLRQ" -XVWLI\ \RXU DQVZHU ,I $ LV DQ n n PDWUL[ DQG WKH WUDQVIRUPDWLRQ [ 7! A[ LV RQHWRRQH ZKDW HOVH FDQ \RX VD\ DERXW WKLV WUDQVIRUPDWLRQ" -XVWLI\ \RXU DQVZHU 6XSSRVH $ LV DQ n n PDWUL[ ZLWK WKH SURSHUW\ WKDW WKH HTXDWLRQ A[ D E KDV DW OHDVW RQH VROXWLRQ IRU HDFK E LQ Rn :LWKRXW XVLQJ 7KHRUHPV RU H[SODLQ ZK\ HDFK HTXDWLRQ A[ D E KDV LQ IDFW H[DFWO\ RQH VROXWLRQ 6XSSRVH $ LV DQ n n PDWUL[ ZLWK WKH SURSHUW\ WKDW WKH HTXD WLRQ A[ D KDV RQO\ WKH WULYLDO VROXWLRQ :LWKRXW XVLQJ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP H[SODLQ GLUHFWO\ ZK\ WKH HTXDWLRQ A[ D E PXVW KDYH D VROXWLRQ IRU HDFK E LQ Rn ,Q ([HUFLVHV DQG 7 LV D OLQHDU WUDQVIRUPDWLRQ IURP R2 LQWR R2 6KRZ WKDW 7 LV LQYHUWLEOH DQG ıQG D IRUPXOD IRU T 1 : T .x1 ; x2 / D .5x1 C 9x2 ; 4x1 7x2 / T .x1 ; x2 / D .6x1 8x2 ; 5x1 C 7x2 / /HW T W Rn ! Rn EH DQ LQYHUWLEOH OLQHDU WUDQVIRUPDWLRQ ([ SODLQ ZK\ 7 LV ERWK RQHWRRQH DQG RQWR Rn 8VH HTXDWLRQV DQG 7KHQ JLYH D VHFRQG H[SODQDWLRQ XVLQJ RQH RU PRUH WKHRUHPV /HW 7 EH D OLQHDU WUDQVIRUPDWLRQ WKDW PDSV Rn RQWR Rn 6KRZ WKDW T 1 H[LVWV DQG PDSV Rn RQWR Rn ,V T 1 DOVR RQHWR RQH" 6XSSRVH 7 DQG 8 DUH OLQHDU WUDQVIRUPDWLRQV IURP Rn WR Rn VXFK WKDW T .U [/ D [ IRU DOO [ LQ Rn ,V LW WUXH WKDW U.T [/ D [ IRU DOO [ LQ Rn " :K\ RU ZK\ QRW"
4:5x1 C 3:1x2 1:6x1 C 1:1x2
D D
19:249 6:843
.3/
D 6ROYH V\VWHP DQG WKHQ VROYH V\VWHP EHORZ LQ ZKLFK WKH GDWD RQ WKH ULJKW KDYH EHHQ URXQGHG WR WZR GHFLPDO SODFHV ,Q HDFK FDVH ıQG WKH H[DFW VROXWLRQ
4:5x1 C 3:1x2 1:6x1 C 1:1x2
D D
19:25 6:84
.4/
E 7KH HQWULHV LQ GLijHU IURP WKRVH LQ E\ OHVV WKDQ :05 )LQG WKH SHUFHQWDJH HUURU ZKHQ XVLQJ WKH VROXWLRQ RI DV DQ DSSUR[LPDWLRQ IRU WKH VROXWLRQ RI F 8VH \RXU PDWUL[ SURJUDP WR SURGXFH WKH FRQGLWLRQ QXPEHU RI WKH FRHĴFLHQW PDWUL[ LQ ([HUFLVHV ş VKRZ KRZ WR XVH WKH FRQGLWLRQ QXPEHU RI D PDWUL[ $ WR HVWLPDWH WKH DFFXUDF\ RI D FRPSXWHG VROXWLRQ RI A[ D E: ,I WKH HQWULHV RI $ DQG E DUH DFFXUDWH WR DERXW U VLJQLıFDQW GLJLWV DQG LI WKH FRQGLWLRQ QXPEHU RI $ LV DSSUR[LPDWHO\ 10k ZLWK N D SRVLWLYH LQWHJHU WKHQ WKH FRPSXWHG VROXWLRQ RI A[ D E VKRXOG XVXDOO\ EH DFFXUDWH WR DW OHDVW r k VLJQLıFDQW GLJLWV 7 )LQG WKH FRQGLWLRQ QXPEHU RI WKH PDWUL[ A LQ ([HUFLVH
&RQVWUXFW D UDQGRP YHFWRU [ LQ R4 DQG FRPSXWH E D A[ 7KHQ XVH \RXU PDWUL[ SURJUDP WR FRPSXWH WKH VROXWLRQ [1 RI A[ D E 7R KRZ PDQ\ GLJLWV GR [ DQG [1 DJUHH" )LQG RXW WKH QXPEHU RI GLJLWV \RXU PDWUL[ SURJUDP VWRUHV DFFXUDWHO\ DQG UHSRUW KRZ PDQ\ GLJLWV RI DFFXUDF\ DUH ORVW ZKHQ [1 LV XVHG LQ SODFH RI WKH H[DFW VROXWLRQ [
7 5HSHDW ([HUFLVH IRU WKH PDWUL[ LQ ([HUFLVH 6XSSRVH D OLQHDU WUDQVIRUPDWLRQ T W Rn ! Rn KDV WKH SURS HUW\ WKDW T .X/ D T .Y/ IRU VRPH SDLU RI GLVWLQFW YHFWRUV X DQG 7 6ROYH DQ HTXDWLRQ A[ D E IRU D VXLWDEOH E WR ıQG WKH ODVW FROXPQ RI WKH LQYHUVH RI WKH ıIWKRUGHU +LOEHUW PDWUL[ Y LQ Rn &DQ 7 PDS Rn RQWR Rn " :K\ RU ZK\ QRW" 2 3 n n 1 1=2 1=3 1=4 1=5 /HW T W R ! R EH DQ LQYHUWLEOH OLQHDU WUDQVIRUPDWLRQ 6 7 1=3 1=4 1=5 1=6 7 DQG OHW 6 DQG 8 EH IXQFWLRQV IURP Rn LQWR Rn VXFK WKDW 6 1=2 6 1=3 7 n 1=4 1=5 1=6 1=7 A D S .T .[// D [ DQG U .T .[// D [ IRU DOO [ LQ R 6KRZ WKDW 6 7 4 1=4 1=5 1=6 1=7 1=8 5 U.Y/ D S.Y/ IRU DOO Y LQ Rn 7KLV ZLOO VKRZ WKDW 7 KDV D 1=5 1=6 1=7 1=8 1=9 XQLTXH LQYHUVH DV DVVHUWHG LQ 7KHRUHP >+LQW *LYHQ DQ\
Y LQ Rn ZH FDQ ZULWH Y D T .[/ IRU VRPH [ :K\" &RPSXWH S.Y/ DQG U.Y/@
+RZ PDQ\ GLJLWV LQ HDFK HQWU\ RI [ GR \RX H[SHFW WR EH FRUUHFW" ([SODLQ >1RWH 7KH H[DFW VROXWLRQ LV .630; 12600; 56700; 88200; 44100/:@
6XSSRVH 7 DQG 6 VDWLVI\ WKH LQYHUWLELOLW\ HTXDWLRQV DQG ZKHUH 7 LV D OLQHDU WUDQVIRUPDWLRQ 6KRZ GLUHFWO\ WKDW 7 6RPH PDWUL[ SURJUDPV VXFK DV 0$7/$% KDYH D FRPPDQG 6 LV D OLQHDU WUDQVIRUPDWLRQ >+LQW *LYHQ X Y LQ Rn OHW WR FUHDWH +LOEHUW PDWULFHV RI YDULRXV VL]HV ,I SRVVLEOH XVH DQ LQYHUVH FRPPDQG WR FRPSXWH WKH LQYHUVH RI D WZHOIWKRUGHU [ D 6.X/; \ D 6Y 7KHQ T .[/ D X; T .\/ D Y: :K\" $SSO\ RU ODUJHU +LOEHUW PDWUL[ $ &RPSXWH AA1 : 5HSRUW ZKDW \RX 6 WR ERWK VLGHV RI WKH HTXDWLRQ T .[/ C T .\/ D T .[ C \/: ıQG $OVR FRQVLGHU T .c [/ D cT .[/@
678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU UHYLHZLQJ DQG UHĠHFWLQJ RQ ZKDW \RX KDYH OHDUQHG
6ROXWLRQV WR 3UDFWLFH 3UREOHPV 7KH FROXPQV RI A DUH REYLRXVO\ OLQHDUO\ GHSHQGHQW EHFDXVH FROXPQV DQG DUH PXOWLSOHV RI FROXPQ +HQFH A FDQQRW EH LQYHUWLEOH E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD
6ROXWLRQV WR 3UDFWLFH 3UREOHPV &RQWLQXHG ,I VWDWHPHQW J LV QRW WUXH WKHQ WKH HTXDWLRQ A[ D E LV LQFRQVLVWHQW IRU DW OHDVW RQH E LQ Rn $SSO\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP WR WKH PDWUL[ AB LQ SODFH RI A 7KHQ VWDWHPHQW G EHFRPHV AB [ D KDV RQO\ WKH WULYLDO VROXWLRQ 7KLV LV QRW WUXH 6R AB LV QRW LQYHUWLEOH
3DUWLWLRQHG 0DWULFHV $ NH\ IHDWXUH RI RXU ZRUN ZLWK PDWULFHV KDV EHHQ WKH DELOLW\ WR UHJDUG D PDWUL[ A DV D OLVW RI FROXPQ YHFWRUV UDWKHU WKDQ MXVW D UHFWDQJXODU DUUD\ RI QXPEHUV 7KLV SRLQW RI YLHZ KDV EHHQ VR XVHIXO WKDW ZH ZLVK WR FRQVLGHU RWKHU SDUWLWLRQV RI A LQGLFDWHG E\ KRUL]RQWDO DQG YHUWLFDO GLYLGLQJ UXOHV DV LQ ([DPSOH EHORZ 3DUWLWLRQHG PDWULFHV DSSHDU LQ PRVW PRGHUQ DSSOLFDWLRQV RI OLQHDU DOJHEUD EHFDXVH WKH QRWDWLRQ KLJKOLJKWV HVVHQWLDO VWUXFWXUHV LQ PDWUL[ DQDO\VLV DV LQ WKH FKDSWHU LQWURGXFWRU\ H[DPSOH RQ DLUFUDIW GHVLJQ 7KLV VHFWLRQ SURYLGHV DQ RSSRUWXQLW\ WR UHYLHZ PDWUL[ DOJHEUD DQG XVH WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP
(;$03/( 7KH PDWUL[ 2
3 4 5 AD 8
0 2 6
1 4 3
5 0 1
9 3 7
3 2 15 4
FDQ DOVR EH ZULWWHQ DV WKH 2 3 SDUWLWLRQHG RU EORFN PDWUL[ A11 A12 A13 AD A21 A22 A23 ZKRVH HQWULHV DUH WKH EORFNV RU VXEPDWULFHV 3 0 1 5 9 2 A11 D ; A12 D ; A13 D 5 2 4 0 3 1 A21 D 8 6 3 ; A22 D 1 7 ; A23 D 4
(;$03/( :KHQ D PDWUL[ A DSSHDUV LQ D PDWKHPDWLFDO PRGHO RI D SK\VLFDO V\V WHP VXFK DV DQ HOHFWULFDO QHWZRUN D WUDQVSRUWDWLRQ V\VWHP RU D ODUJH FRUSRUDWLRQ LW PD\ EH QDWXUDO WR UHJDUG A DV D SDUWLWLRQHG PDWUL[ )RU LQVWDQFH LI D PLFURFRPSXWHU FLUFXLW ERDUG FRQVLVWV PDLQO\ RI WKUHH 9/6, YHU\ ODUJHVFDOH LQWHJUDWHG PLFURFKLSV WKHQ WKH PDWUL[ IRU WKH FLUFXLW ERDUG PLJKW KDYH WKH JHQHUDO IRUP 2 3 A11 A12 A13 6 7 A D 4 A21 A22 A23 5 A31 A32 A33 7KH VXEPDWULFHV RQ WKH ŗGLDJRQDOŘ RI AŠQDPHO\ A11 A22 DQG A33 ŠFRQFHUQ WKH WKUHH 9/6, FKLSV ZKLOH WKH RWKHU VXEPDWULFHV GHSHQG RQ WKH LQWHUFRQQHFWLRQV DPRQJ WKRVH PLFURFKLSV
$GGLWLRQ DQG 6FDODU 0XOWLSOLFDWLRQ ,I PDWULFHV A DQG B DUH WKH VDPH VL]H DQG DUH SDUWLWLRQHG LQ H[DFWO\ WKH VDPH ZD\ WKHQ LW LV QDWXUDO WR PDNH WKH VDPH SDUWLWLRQ RI WKH RUGLQDU\ PDWUL[ VXP A C B ,Q WKLV MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
3DUWLWLRQHG 0DWULFHV
FDVH HDFK EORFN RI A C B LV WKH PDWUL[ VXP RI WKH FRUUHVSRQGLQJ EORFNV RI A DQG B 0XOWLSOLFDWLRQ RI D SDUWLWLRQHG PDWUL[ E\ D VFDODU LV DOVR FRPSXWHG EORFN E\ EORFN
0XOWLSOLFDWLRQ RI 3DUWLWLRQHG 0DWULFHV 3DUWLWLRQHG PDWULFHV FDQ EH PXOWLSOLHG E\ WKH XVXDO URZşFROXPQ UXOH DV LI WKH EORFN HQWULHV ZHUH VFDODUV SURYLGHG WKDW IRU D SURGXFW AB WKH FROXPQ SDUWLWLRQ RI A PDWFKHV WKH URZ SDUWLWLRQ RI B
(;$03/( /HW 2
2 3 1 4 A D 1 5 2 0 4 2
2
3
0 4 3 1 5 D A11 A12 ; A21 A22 7 1
6 6 2 6 3 BD6 6 4 1 5
3 4 17 7 7 7 D B1 7 B2 35
2
7KH FROXPQV RI A DUH SDUWLWLRQHG LQWR D VHW RI FROXPQV DQG WKHQ D VHW RI FROXPQV 7KH URZV RI B DUH SDUWLWLRQHG LQ WKH VDPH ZD\ŠLQWR D VHW RI URZV DQG WKHQ D VHW RI URZV :H VD\ WKDW WKH SDUWLWLRQV RI A DQG B DUH FRQIRUPDEOH IRU EORFN PXOWLSOLFDWLRQ ,W FDQ EH VKRZQ WKDW WKH RUGLQDU\ SURGXFW AB FDQ EH ZULWWHQ DV 2 3 5 4 A11 A12 B1 A11 B1 C A12 B2 AB D D D 4 6 2 5 A21 A22 B2 A21 B1 C A22 B2 2 1 ,W LV LPSRUWDQW IRU HDFK VPDOOHU SURGXFW LQ WKH H[SUHVVLRQ IRU AB WR EH ZULWWHQ ZLWK WKH VXEPDWUL[ IURP A RQ WKH OHIW VLQFH PDWUL[ PXOWLSOLFDWLRQ LV QRW FRPPXWDWLYH )RU LQVWDQFH 2 3 6 4 2 3 1 4 15 12 5 2 1 D A11 B1 D 1 5 2 2 5 3 7 0 4 1 3 20 8 A12 B2 D D 3 1 5 2 8 7 +HQFH WKH WRS EORFN LQ AB LV
A11 B1 C A12 B2 D
15 12 2 5
C
20 8 8 7
D
5 6
4 2
7KH URZşFROXPQ UXOH IRU PXOWLSOLFDWLRQ RI EORFN PDWULFHV SURYLGHV WKH PRVW JHQHUDO ZD\ WR UHJDUG WKH SURGXFW RI WZR PDWULFHV (DFK RI WKH IROORZLQJ YLHZV RI D SURGXFW KDV DOUHDG\ EHHQ GHVFULEHG XVLQJ VLPSOH SDUWLWLRQV RI PDWULFHV WKH GHıQLWLRQ RI A[ XVLQJ WKH FROXPQV RI A WKH FROXPQ GHıQLWLRQ RI AB WKH URZşFROXPQ UXOH IRU FRPSXWLQJ AB DQG WKH URZV RI AB DV SURGXFWV RI WKH URZV RI A DQG WKH PDWUL[ B $ ıIWK YLHZ RI AB DJDLQ XVLQJ SDUWLWLRQV IROORZV LQ 7KHRUHP 7KH FDOFXODWLRQV LQ WKH QH[W H[DPSOH SUHSDUH WKH ZD\ IRU 7KHRUHP +HUH FROk .A/ LV WKH k WK FROXPQ RI A DQG URZk .B/ LV WKH k WK URZ RI B
(;$03/( /HW A D
3 1 1 4
2 a 2 DQG B D 4 c 5 e
3 b d 5 9HULI\ WKDW f
AB D FRO1 .A/ URZ1 .B/ C FRO2 .A/ URZ2 .B/ C FRO3 .A/ URZ3 .B/
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD
62/87,21 (DFK WHUP LQ WKH SUHFHGLQJ HTXDWLRQ LV DQ RXWHU SURGXFW 6HH ([HUFLVHV
DQG LQ 6HFWLRQ %\ WKH URZşFROXPQ UXOH IRU FRPSXWLQJ D PDWUL[ SURGXFW
3 3a 3b a b D 1 a b 1 c d c d D FRO2 .A/ URZ2 .B/ D 4 4c 4d 2 2e 2f e f D FRO3 .A/ URZ3 .B/ D 5 5e 5f FRO1 .A/ URZ1 .B/ D
7KXV
3 X
FROk .A/ URZk .B/ D
k D1
3a C c C 2e a 4c C 5e
3b C d C 2f b 4d C 5f
7KLV PDWUL[ LV REYLRXVO\ AB 1RWLFH WKDW WKH .1; 1/HQWU\ LQ AB LV WKH VXP RI WKH .1; 1/ HQWULHV LQ WKH WKUHH RXWHU SURGXFWV WKH .1; 2/HQWU\ LQ AB LV WKH VXP RI WKH .1; 2/HQWULHV LQ WKH WKUHH RXWHU SURGXFWV DQG VR RQ
5)&03&.
$PMVNOo3PX &YQBOTJPO PG "# ,I A LV m n DQG B LV n p WKHQ
2
3 URZ1 .B/ 6 URZ2 .B/ 7 6 7 AB D Œ FRO1 .A/ FRO2 .A/ FROn .A/ 6 7 : 4 5 ::
URZn .B/
D FRO1 .A/ URZ1 .B/ C C FROn .A/ URZn .B/
1300' )RU HDFK URZ LQGH[ i DQG FROXPQ LQGH[ j WKH .i; j /HQWU\ LQ FROk .A/ URZk .B/ LV WKH SURGXFW RI aik IURP FROk .A/ DQG bkj IURP URZk .B/ +HQFH WKH .i; j /HQWU\ LQ WKH VXP VKRZQ LQ HTXDWLRQ LV ai1 b1j .k D 1/
C
ai 2 b2j
C
.k D 2/
C
ai n bnj .k D n/
7KLV VXP LV DOVR WKH .i; j /HQWU\ LQ AB E\ WKH URZşFROXPQ UXOH
,QYHUVHV RI 3DUWLWLRQHG 0DWULFHV 7KH QH[W H[DPSOH LOOXVWUDWHV FDOFXODWLRQV LQYROYLQJ LQYHUVHV DQG SDUWLWLRQHG PDWULFHV
(;$03/( $ PDWUL[ RI WKH IRUP AD
A11 A12 0 A22
LV VDLG WR EH EORFN XSSHU WULDQJXODU $VVXPH WKDW A11 LV p p A22 LV q q DQG A LV LQYHUWLEOH )LQG D IRUPXOD IRU A1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
3DUWLWLRQHG 0DWULFHV
62/87,21 'HQRWH A1 E\ B DQG SDUWLWLRQ B VR WKDW
A11 A12 0 A22
B11 B12 I 0 D p 0 Iq B21 B22
7KLV PDWUL[ HTXDWLRQ SURYLGHV IRXU HTXDWLRQV WKDW ZLOO OHDG WR WKH XQNQRZQ EORFNV B11 ; : : : ; B22 &RPSXWH WKH SURGXFW RQ WKH OHIW VLGH RI HTXDWLRQ DQG HTXDWH HDFK HQWU\ ZLWK WKH FRUUHVSRQGLQJ EORFN LQ WKH LGHQWLW\ PDWUL[ RQ WKH ULJKW 7KDW LV VHW
A11 B11 C A12 B21 A11 B12 C A12 B22 A22 B21 A22 B22
D Ip D0 D0 D Iq
%\ LWVHOI HTXDWLRQ GRHV QRW VKRZ WKDW A22 LV LQYHUWLEOH +RZHYHU VLQFH A22 LV VTXDUH WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP DQG WRJHWKHU VKRZ WKDW A22 LV LQYHUWLEOH DQG 1 1 B22 D A22 1H[W OHIWPXOWLSO\ ERWK VLGHV RI E\ A22 DQG REWDLQ 1 B21 D A22 0D0
VR WKDW VLPSOLıHV WR
A11 B11 C 0 D Ip
1 6LQFH A11 LV VTXDUH WKLV VKRZV WKDW A11 LV LQYHUWLEOH DQG B11 D A11 )LQDOO\ XVH WKHVH UHVXOWV ZLWK WR ıQG WKDW 1 1 1 A11 B12 D A12 B22 D A12 A22 DQG B12 D A11 A12 A22
7KXV
"
A1 D
A11 A12 0 A22
#1
"
D
1 1 1 A11 A11 A12 A22 1 0 A22
#
$ EORFN GLDJRQDO PDWUL[ LV D SDUWLWLRQHG PDWUL[ ZLWK ]HUR EORFNV Rij WKH PDLQ GLDJRQDO RI EORFNV 6XFK D PDWUL[ LV LQYHUWLEOH LI DQG RQO\ LI HDFK EORFN RQ WKH GLDJRQDO LV LQYHUWLEOH 6HH ([HUFLVHV DQG 1XPHULFDO 1RWHV :KHQ PDWULFHV DUH WRR ODUJH WR ıW LQ D FRPSXWHUŖV KLJKVSHHG PHPRU\ SDUWLWLRQLQJ SHUPLWV WKH FRPSXWHU WR ZRUN ZLWK RQO\ WZR RU WKUHH VXEPDWULFHV DW D WLPH )RU LQVWDQFH RQH OLQHDU SURJUDPPLQJ UHVHDUFK WHDP VLPSOLıHG D SUREOHP E\ SDUWLWLRQLQJ WKH PDWUL[ LQWR URZV DQG FROXPQV 7KH SUREOHPŖV VROXWLRQ WRRN DERXW PLQXWHV RQ D &UD\ VXSHUFRPSXWHU 6RPH KLJKVSHHG FRPSXWHUV SDUWLFXODUO\ WKRVH ZLWK YHFWRU SLSHOLQH DUFKLWHF WXUH SHUIRUP PDWUL[ FDOFXODWLRQV PRUH HĴFLHQWO\ ZKHQ WKH DOJRULWKPV XVH SDUWLWLRQHG PDWULFHV 3URIHVVLRQDO VRIWZDUH IRU KLJKSHUIRUPDQFH QXPHULFDO OLQHDU DOJHEUD VXFK DV /$3$&. PDNHV LQWHQVLYH XVH RI SDUWLWLRQHG PDWUL[ FDOFXODWLRQV
1
7KH VROXWLRQ WLPH GRHVQŖW VRXQG WRR LPSUHVVLYH XQWLO \RX OHDUQ WKDW HDFK RI WKH EORFN FROXPQV FRQWDLQHG DERXW LQGLYLGXDO FROXPQV 7KH RULJLQDO SUREOHP KDG HTXDWLRQV DQG PRUH WKDQ YDULDEOHV 1HDUO\ PLOOLRQ RI WKH PRUH WKDQ ELOOLRQ HQWULHV LQ WKH PDWUL[ ZHUH QRQ]HUR 6HH 5REHUW ( %L[E\ HW DO ŗ9HU\ /DUJH6FDOH /LQHDU 3URJUDPPLQJ $ &DVH 6WXG\ LQ &RPELQLQJ ,QWHULRU 3RLQW DQG 6LPSOH[ 0HWKRGVŘ 2SHUDWLRQV 5HVHDUFK QR ş
2 7KH LPSRUWDQFH RI EORFN PDWUL[ DOJRULWKPV IRU FRPSXWHU FDOFXODWLRQV LV GHVFULEHG LQ 0DWUL[ &RPSXWDWLRQV UG HG E\ *HQH + *ROXE DQG &KDUOHV ) YDQ /RDQ %DOWLPRUH -RKQV +RSNLQV 8QLYHUVLW\ 3UHVV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD
7KH H[HUFLVHV WKDW IROORZ JLYH SUDFWLFH ZLWK PDWUL[ DOJHEUD DQG LOOXVWUDWH W\SLFDO FDOFXODWLRQV IRXQG LQ DSSOLFDWLRQV 3UDFWLFH 3UREOHPV I 0 6KRZ WKDW LV LQYHUWLEOH DQG ıQG LWV LQYHUVH A I &RPSXWH X TX ZKHUH X LV SDUWLWLRQHG DV X1 X2
([HUFLVHV ,Q ([HUFLVHV ş DVVXPH WKDW WKH PDWULFHV DUH SDUWLWLRQHG FRQ IRUPDEO\ IRU EORFN PXOWLSOLFDWLRQ &RPSXWH WKH SURGXFWV VKRZQ LQ ([HUFLVHV ş I 0 A B E 0 A B E I C D 0 F C D
0 I I 0
W Y
X Z
I X
0 I
A B C D
,Q ([HUFLVHV ş ıQG IRUPXODV IRU ; +LQW &RPSXWH WKH SURGXFW RQ WKH OHIW DQG VHW LW HTXDO WR WKH ULJKW VLGH@ A B I 0 0 I D C 0 X Y Z 0
X Y X Y
0 Z
A B
0 C
2 A 0 0 4 0 0 I B
A B 0 I
X 0
D
I 0
0 I
3 Z I 05D 0 I
Y 0
Z I
D
I 0
I 4X Y
32 0 0 A11 I 0 54 A21 0 I A31 2
7) 7KH GHıQLWLRQ RI WKH PDWUL[şYHFWRU SURGXFW $[ LV D VSHFLDO FDVH RI EORFN PXOWLSOLFDWLRQ A11 A12 B1 ; WKHQ WKH SDUWL 7) ,I A D DQG B D A21 A22 B2 WLRQV RI $ DQG % DUH FRQIRUPDEOH IRU EORFN PXOWLSOLFDWLRQ A1 7) ,I A1 ; A2 ; B1 ; DQG B2 DUH n n PDWULFHV A D A2 B2 WKHQ WKH SURGXFW %$ LV GHıQHG EXW $% DQG B D B1 LV QRW B 0 /HW A D ZKHUH % DQG & DUH VTXDUH 6KRZ WKDW $ 0 C LV LQYHUWLEOH LI DQG RQO\ LI ERWK % DQG & DUH LQYHUWLEOH
0 I
6KRZ WKDW WKH EORFN XSSHU WULDQJXODU PDWUL[ $ LQ ([DPSOH LV LQYHUWLEOH LI DQG RQO\ LI ERWK A11 DQG A22 DUH LQYHUWLEOH >+LQW ,I A11 DQG A22 DUH LQYHUWLEOH WKH IRUPXOD IRU A1 JLYHQ LQ ([DPSOH DFWXDOO\ ZRUNV DV WKH LQYHUVH RI $@ 7KLV IDFW DERXW $ LV DQ LPSRUWDQW SDUW RI VHYHUDO FRPSXWHU DOJRULWKPV WKDW HVWLPDWH HLJHQYDOXHV RI PDWULFHV (LJHQYDOXHV DUH GLVFXVVHG LQ &KDSWHU
0 0 0 I
6XSSRVH A11 LV DQ LQYHUWLEOH PDWUL[ )LQG PDWULFHV ; DQG < VXFK WKDW WKH SURGXFW EHORZ KDV WKH IRUP LQGLFDWHG $OVR FRPSXWH B22 >+LQW &RPSXWH WKH SURGXFW RQ WKH OHIW DQG VHW LW HTXDO WR WKH ULJKW VLGH@ 2
7) ,I A D ŒA1 A2 DQG B D ŒB1 B2 ZLWK A1 DQG A2 WKH VDPH VL]HV DV B1 DQG B2 UHVSHFWLYHO\ WKHQ A C B D ŒA1 C B1 A2 C B2 :
3 2 A12 B11 A22 5 D 4 0 A32 0
3 2 I 0 0 I 7KH LQYHUVH RI 4 C I 0 5 LV 4 Z A B I X )LQG ; +LQW 7KH RXWVLGH IDFWRUV RQ WKH ULJKW VLGH RI DUH DOZD\V LQYHUWLEOH 9HULI\ WKLV@ :KHQ $ DQG A11 DUH ERWK LQYHUWLEOH OHDGV WR D IRUPXOD IRU A1 XVLQJ S 1 A1 11 DQG WKH RWKHU HQWULHV LQ $
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
3DUWLWLRQHG 0DWULFHV :KHQ D GHHS VSDFH SUREH LV ODXQFKHG FRUUHFWLRQV PD\ EH QHFHVVDU\ WR SODFH WKH SUREH RQ D SUHFLVHO\ FDOFXODWHG WUDMHFWRU\ 5DGLR WHOHPHWU\ SURYLGHV D VWUHDP RI YHFWRUV [1 ; : : : ; [k ; JLYLQJ LQIRUPDWLRQ DW GLijHUHQW WLPHV DERXW KRZ WKH SUREHŖV SRVLWLRQ FRPSDUHV ZLWK LWV SODQQHG WUDMHFWRU\ /HW Xk EH WKH PDWUL[ >[1 [k @ 7KH PDWUL[ Gk D Xk XkT LV FRPSXWHG DV WKH UDGDU GDWD DUH DQDO\]HG :KHQ [kC1 DUULYHV D QHZ GkC1 PXVW EH FRPSXWHG 6LQFH WKH GDWD YHFWRUV DUULYH DW KLJK VSHHG WKH FRPSXWDWLRQDO EXUGHQ FRXOG EH VHYHUH %XW SDUWLWLRQHG PDWUL[ PXOWLSOLFDWLRQ KHOSV WUHPHQGRXVO\ &RPSXWH WKH FROXPQşURZ H[SDQVLRQV RI Gk DQG Gk C1 ; DQG GHVFULEH ZKDW PXVW EH FRPSXWHG LQ RUGHU WR XSGDWH Gk WR IRUP Gk C1
LQWR WKH ERWWRP HTXDWLRQ 7KH UHVXOW LV DQ HTXDWLRQ RI WKH IRUP W .s/X D \ ZKHUH W s LV D PDWUL[ WKDW GHSHQGV RQ s W .s/ LV FDOOHG WKH WUDQVIHU IXQFWLRQ RI WKH V\VWHP EHFDXVH LW WUDQVIRUPV WKH LQSXW X LQWR WKH RXWSXW \ )LQG W .s/ DQG GHVFULEH KRZ LW LV UHODWHG WR WKH SDUWLWLRQHG V\VWHP PDWUL[ RQ WKH OHIW VLGH RI 6HH ([HUFLVH 6XSSRVH WKH WUDQVIHU IXQFWLRQ W .s/ LQ ([HUFLVH LV LQYHUW LEOH IRU VRPH V ,W FDQ EH VKRZQ WKDW WKH LQYHUVH WUDQVIHU IXQFWLRQ W .s/1 ZKLFK WUDQVIRUPV RXWSXWV LQWR LQSXWV LV WKH 6FKXU FRPSOHPHQW RI A BC sIn IRU WKH PDWUL[ EHORZ )LQG WKLV 6FKXU FRPSOHPHQW 6HH ([HUFLVH A BC sIn B C Im 1 0 D 9HULI\ WKDW A2 D I ZKHQ A D 3 1 E 8VH SDUWLWLRQHG PDWULFHV WR VKRZ WKDW M 2 D I ZKHQ 2 3 1 0 0 0 6 3 1 7 0 07 6 M D4 1 0 1 05 1 0 1 3
7KH SUREH *DOLOHR ZDV ODXQFKHG 2FWREHU DQG DUULYHG QHDU -XSLWHU LQ HDUO\ 'HFHPEHU /HW ; EH DQ m n GDWD PDWUL[ VXFK WKDW X T X LV LQYHUWLEOH DQG OHW M D Im X .X T X /1 X T : $GG D FROXPQ [0 WR WKH GDWD DQG IRUP
W D ŒX
[0
&RPSXWH W T W: 7KH HQWU\ LV X T X 6KRZ WKDW WKH 6FKXU FRPSOHPHQW ([HUFLVH RI X T X FDQ EH ZULWWHQ LQ WKH IRUP [T0 M [0 : ,W FDQ EH VKRZQ WKDW WKH TXDQWLW\ .[T0 M [0 /1 LV WKH HQWU\ LQ .W T W /1 : 7KLV HQ WU\ KDV D XVHIXO VWDWLVWLFDO LQWHUSUHWDWLRQ XQGHU DSSURSULDWH K\SRWKHVHV ,Q WKH VWXG\ RI HQJLQHHULQJ FRQWURO RI SK\VLFDO V\VWHPV D VWDQGDUG VHW RI GLijHUHQWLDO HTXDWLRQV LV WUDQVIRUPHG E\ /DSODFH WUDQVIRUPV LQWR WKH IROORZLQJ V\VWHP RI OLQHDU HTXDWLRQV A sIn B [ D C Im X \ ZKHUH $ LV n n; % LV n m; & LV m n DQG V LV D YDULDEOH 7KH YHFWRU X LQ Rm LV WKH ŗLQSXWŘ WR WKH V\VWHP \ LQ Rm LV WKH ŗRXWSXWŘ DQG [ LQ Rn LV WKH ŗVWDWHŘ YHFWRU $FWXDOO\ WKH YHFWRUV [ X DQG \ DUH IXQFWLRQV RI V EXW ZH VXSSUHVV WKLV IDFW EHFDXVH LW GRHV QRW DijHFW WKH DOJHEUDLF FDOFXODWLRQV LQ ([HUFLVHV DQG $VVXPHA sIn LV LQYHUWLEOH DQG YLHZ DV D V\VWHP RI WZR PDWUL[ HTXDWLRQV 6ROYH WKH WRS HTXDWLRQ IRU [ DQG VXEVWLWXWH
*HQHUDOL]H WKH LGHD RI ([HUFLVH D >QRW E @ E\ FRQ A 0 VWUXFWLQJ D 5 5 PDWUL[ M D VXFK WKDW M 2 D I: C D 0DNH C D QRQ]HUR 2 3 PDWUL[ 6KRZ WKDW \RXU FRQVWUXFWLRQ ZRUNV 8VH SDUWLWLRQHG PDWULFHV WR SURYH E\ LQGXFWLRQ WKDW WKH SURG XFW RI WZR ORZHU WULDQJXODU PDWULFHV LV DOVR ORZHU WULDQJXODU >+LQW $ .k C 1/ .k C 1/ PDWUL[ A1 FDQ EH ZULWWHQ LQ WKH IRUP EHORZ ZKHUH D LV D VFDODU Y LV LQ Rk DQG $ LV D k k ORZHU WULDQJXODU PDWUL[ 6HH WKH 6WXG\ *XLGH IRU KHOS ZLWK LQGXFWLRQ@ a T A1 D Y A 8VH SDUWLWLRQHG PDWULFHV WR SURYH E\ LQGXFWLRQ WKDW IRU n D 2; 3; : : : ; WKH n n PDWUL[ $ VKRZQ EHORZ LV LQYHUWLEOH DQG % LV LWV LQYHUVH 2 3 0 1 0 0 6 7 1 0 07 61 61 7 1 1 0 AD6 7 6 : 7 :: 4 :: 5 : 1 1 1 ::: 1 2 3 1 0 0 0 6 1 7 1 0 07 6 6 0 1 7 1 0 BD6 7 6 : 7 :: :: 4 :: 5 : : 0 ::: 1 1 )RU WKH LQGXFWLRQ VWHS DVVXPH A DQG B DUH .k C 1/ .k C 1/ PDWULFHV DQG SDUWLWLRQ A DQG B LQ D IRUP VLPLODU WR WKDW GLVSOD\HG LQ ([HUFLVH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD
:LWKRXW XVLQJ URZ UHGXFWLRQ ıQG WKH LQYHUVH RI 2 3 1 2 0 0 0 63 5 0 0 07 6 7 0 0 2 0 07 AD6 6 7 40 0 0 7 85 0 0 0 5 6
>1RWH ,W PD\ QRW EH QHFHVVDU\ WR VSHFLI\ WKH ]HUR EORFNV LQ %@ 7 6XSSRVH PHPRU\ RU VL]H UHVWULFWLRQV SUHYHQW \RXU PDWUL[
SURJUDP IURP ZRUNLQJ ZLWK PDWULFHV KDYLQJ PRUH WKDQ URZV DQG FROXPQV DQG VXSSRVH VRPH SURMHFW LQYROYHV 50 50 PDWULFHV $ DQG % 'HVFULEH WKH FRPPDQGV RU RSHU DWLRQV RI \RXU PDWUL[ SURJUDP WKDW DFFRPSOLVK WKH IROORZLQJ WDVNV D &RPSXWH A C B
7 )RU EORFN RSHUDWLRQV LW PD\ EH QHFHVVDU\ WR DFFHVV RU HQWHU
VXEPDWULFHV RI D ODUJH PDWUL[ 'HVFULEH WKH IXQFWLRQV RU FRP PDQGV RI \RXU PDWUL[ SURJUDP WKDW DFFRPSOLVK WKH IROORZLQJ WDVNV 6XSSRVH $ LV D 20 30 PDWUL[ D 'LVSOD\ WKH VXEPDWUL[ RI $ IURP URZV WR DQG FROXPQV WR
E &RPSXWH $% F 6ROYH A[ D E IRU VRPH YHFWRU E LQ R50 DVVXPLQJ WKDW $ FDQ EH SDUWLWLRQHG LQWR D 2 2 EORFN PDWUL[ Aij ZLWK A11 DQ LQYHUWLEOH 20 20 PDWUL[ A22 DQ LQYHUWLEOH 30 30 PDWUL[ DQG A12 D ]HUR PDWUL[ >+LQW 'HVFULEH DSSURSULDWH VPDOOHU V\VWHPV WR VROYH ZLWKRXW XVLQJ DQ\ PDWUL[ LQYHUVHV@
E ,QVHUW D 5 10 PDWUL[ % LQWR $ EHJLQQLQJ DW URZ DQG FROXPQ A 0 F &UHDWH D 50 50 PDWUL[ RI WKH IRUP B D 0 AT
6ROXWLRQV WR 3UDFWLFH 3UREOHPV I 0 W ,I LV LQYHUWLEOH LWV LQYHUVH KDV WKH IRUP A I Y
I 0 A I
W Y
X W D Z AW C Y
X 9HULI\ WKDW Z
X AX C Z
6R W X Y DQG Z PXVW VDWLVI\ W D I X D 0 AW C Y D 0 DQG AX C Z D I ,W IROORZV WKDW Y D A DQG Z D I +HQFH I 0 I 0 I 0 D A I A I 0 I 7KH SURGXFW LQ WKH UHYHUVH RUGHU LV DOVR WKH LGHQWLW\ VR WKH EORFN PDWUL[ LV LQYHUWLEOH I 0 DQG LWV LQYHUVH LV 1 )LQG DQ LQYHUVH IRU I A 6XSSRVH DQ n n PDWUL[ A VDWLVıHV WKH HTXDWLRQ A2 2A C I D 0 6KRZ WKDW A3 D 3A 2I DQG A4 D 4A 3I
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 0DWUL[ $OJHEUD
1 0 0 1 BD 7KHVH DUH 3DXOL VSLQ 0 1 1 0 PDWULFHV XVHG LQ WKH VWXG\ RI HOHFWURQ VSLQ LQ TXDQWXP PHFKDQLFV 6KRZ WKDW A2 D I B 2 D I DQG AB D BA 0DWULFHV VXFK WKDW AB D BA DUH VDLG WR DQWLFRPPXWH 2 3 2 3 1 3 8 3 5 4 11 5 DQG B D 4 1 5 5 &RPSXWH /HW A D 4 2 1 2 5 3 4 A1 B ZLWKRXW FRPSXWLQJ A1 >+LQW A1 B LV WKH VROXWLRQ RI WKH HTXDWLRQ AX D B @
/HW A D
[ 7! A[ PDSV )LQG D PDWUL[ A VXFK WKDW WKH WUDQVIRUPDWLRQ 1 2 1 3 DQG LQWR DQG UHVSHFWLYHO\ >+LQW :ULWH 3 7 1 1 D PDWUL[ HTXDWLRQ LQYROYLQJ A DQG VROYH IRU A@ 5 4 7 3 DQG B D )LQG A 6XSSRVH AB D 2 3 2 1
D P 2 D P
E P T D P
F Q2 D I
7KH WUDQVIRUPDWLRQ [ 7! P [ LV FDOOHG D SURMHFWLRQ DQG [ 7! Q[ LV FDOOHG D +RXVHKROGHU UHIJHFWLRQ 6XFK UHIJHFWLRQV DUH XVHG LQ FRPSXWHU SURJUDPV WR FUHDWH PXOWLSOH ]HURV LQ D YHFWRU XVXDOO\ D FROXPQ RI D PDWUL[ 2 3 2 3 0 1 /HW X D 4 0 5 DQG [ D 4 5 5 'HWHUPLQH P DQG Q DV LQ 1 3 ([HUFLVH DQG FRPSXWH P [ DQG Q[ 7KH ıJXUH VKRZV WKDW Q[ LV WKH UHIJHFWLRQ RI [ WKURXJK WKH x1 x2 SODQH x3 Px
x u
x2 x 2 Px
T
6XSSRVH A LV LQYHUWLEOH ([SODLQ ZK\ A A LV DOVR LQYHUWLEOH 7KHQ VKRZ WKDW A1 D .ATA/1 AT x1
/HW x1 ; : : : ; xn EH ı[HG QXPEHUV 7KH PDWUL[ EHORZ FDOOHG D 9DQGHUPRQGH PDWUL[ RFFXUV LQ DSSOLFDWLRQV VXFK DV VLJQDO SURFHVVLQJ HUURUFRUUHFWLQJ FRGHV DQG SRO\QRPLDO LQWHUSRODWLRQ 2 3 1 x1 x12 x1n1 2 n1 6 7 x2 x2 x2 7 61 V D 6 :: : : : 7 : : : 4: : : : 5 xn2 xnn1 1 xn
/HW A EH DQ n n VLQJXODU PDWUL[ 'HVFULEH KRZ WR FRQVWUXFW DQ n n QRQ]HUR PDWUL[ B VXFK WKDW AB D 0:
*LYHQ \ D .y1 ; : : : ; yn / LQ Rn VXSSRVH F D .c0 ; : : : ; cn1 / LQ Rn VDWLVıHV V F D \ DQG GHıQH WKH SRO\QRPLDO
/HW A EH D 6 4 PDWUL[ DQG B D 4 6 PDWUL[ 6KRZ WKDW WKH 6 6 PDWUL[ AB FDQQRW EH LQYHUWLEOH
p.t/ D c0 C c1 t C c2 t 2 C C cn1 t n1 :
6XSSRVH A LV D 5 3 PDWUL[ DQG WKHUH H[LVWV D 3 5 PDWUL[ C VXFK WKDW CA D I3 6XSSRVH IXUWKHU WKDW IRU VRPH JLYHQ E LQ R5 WKH HTXDWLRQ A[ D E KDV DW OHDVW RQH VROXWLRQ 6KRZ WKDW WKLV VROXWLRQ LV XQLTXH
D 6KRZ WKDW p.x1 / D y1 ; : : : ; p.xn / D yn :H FDOO p.t/ DQ LQWHUSRODWLQJ SRO\QRPLDO IRU WKH SRLQWV .x1 ; y1 /; : : : ; .xn ; yn / EHFDXVH WKH JUDSK RI p.t/ SDVVHV WKURXJK WKH SRLQWV E 6XSSRVH x1 ; : : : ; xn DUH GLVWLQFW QXPEHUV 6KRZ WKDW WKH FROXPQV RI V DUH OLQHDUO\ LQGHSHQGHQW >+LQW +RZ PDQ\ ]HURV FDQ D SRO\QRPLDO RI GHJUHH n 1 KDYH"@ F 3URYH ŗ,I x1 ; : : : ; xn DUH GLVWLQFW QXPEHUV DQG y1 ; : : : ; yn DUH DUELWUDU\ QXPEHUV WKHQ WKHUH LV DQ LQWHUSRODWLQJ SRO\ QRPLDO RI GHJUHH n 1 IRU .x1 ; y1 /; : : : ; .xn ; yn /Ř
Qx
$ +RXVHKROGHU UHIJHFWLRQ WKURXJK WKH SODQH x3 D 0 6XSSRVH C D E3 E2 E1 B ZKHUH E1 E2 DQG E3 DUH HOHPHQ WDU\ PDWULFHV ([SODLQ ZK\ C LV URZ HTXLYDOHQW WR B
7 &HUWDLQ G\QDPLFDO V\VWHPV FDQ EH VWXGLHG E\ H[DPLQLQJ SRZ
HUV RI D PDWUL[ VXFK DV WKRVH EHORZ 'HWHUPLQH ZKDW KDSSHQV WR Ak DQG B k DV k LQFUHDVHV IRU H[DPSOH WU\ k D 2; : : : ; 16/ 7U\ WR LGHQWLI\ ZKDW LV VSHFLDO DERXW A DQG B ,QYHVWLJDWH ODUJH SRZHUV RI RWKHU PDWULFHV RI WKLV W\SH DQG PDNH D FRQMHFWXUH DERXW VXFK PDWULFHV 2 3 2 3 :4 :2 :3 0 :2 :3 A D 4 :3 :6 :3 5; B D 4 :1 :6 :3 5 :3 :2 :4 :9 :2 :4
/HW A D LU ZKHUH L LV DQ LQYHUWLEOH ORZHU WULDQJXODU PDWUL[ DQG U LV XSSHU WULDQJXODU ([SODLQ ZK\ WKH ıUVW FROXPQ RI A LV D PXOWLSOH RI WKH ıUVW FROXPQ RI L +RZ LV WKH VHFRQG 7 /HW An EH WKH n n PDWUL[ ZLWK ŖV RQ WKH PDLQ GLDJRQDO DQG FROXPQ RI A UHODWHG WR WKH FROXPQV RI L" ŖV HOVHZKHUH &RPSXWH A1 n IRU n D 4 DQG DQG PDNH n T T D FRQMHFWXUH DERXW WKH JHQHUDO IRUP RI A1 *LYHQ X LQ R ZLWK X X D 1 OHW P D XX DQ RXWHU SURGXFW n IRU ODUJHU YDOXHV DQG Q D I 2P -XVWLI\ VWDWHPHQWV D E DQG F RI n
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
'HWHUPLQDQWV
*OUSPEVDUPSZ &YBNQMF
:(,*+,1* ',$021'6 +RZ LV WKH YDOXH RI D GLDPRQG GHWHUPLQHG" -HZHOHUV XVH WKH IRXU FV FXW FODULW\ FRORU DQG FDUDWV D FDUDW LV D XQLW RI PDVV HTXDO WR JUDPV :KHQ D MHZHOHU UHFHLYHV D VXSSO\ RI GLDPRQGV LW LV YLWDO WKDW WKH\ EH ZHLJKHG DFFXUDWHO\ DV SDUW RI GHWHUPLQLQJ WKHLU YDOXH 7KH GLijHUHQFH RI KDOI D FDUDW FDQ KDYH D ODUJH LPSDFW RQ D GLDPRQGŖV YDOXH :KHQ ZHLJKLQJ VPDOO REMHFWV VXFK DV GLDPRQGV RU RWKHU JHPVWRQHV RQH VWUDWHJ\ LV WR ZHLJK WKH REMHFWV LQGLYLGXDOO\ EXW WKHUH DUH PRUH DFFXUDWH VWUDWHJLHV WKDW LQYROYH ZHLJKLQJ WKH REMHFWV LQ JURXSV DQG WKHQ GHGXFLQJ WKH LQGLYLGXDO ZHLJKWV IURP WKH UHVXOWV 6XSSRVH WKHUH DUH n VPDOO REMHFWV WR EH ZHLJKHG ODEHOHG s1 s2 ; ; sn 2QH PHWKRG RI GHWHUPLQLQJ WKH ZHLJKW RI HDFK VPDOO REMHFW XVHV D WZRSDQ EDODQFH $ ZHLJKLQJ FRQVLVWV RI SODFLQJ VRPH RI WKH VPDOO REMHFWV LQ WKH OHIW SDQ DQG WKH UHVW LQ WKH ULJKW SDQ 7KH EDODQFH UHFRUGV WKH GLijHUHQFH EHWZHHQ WKH ZHLJKWV LQ WKH SDQV
7KH MHZHOHU RU RWKHU LQGLYLGXDO ZHLJKLQJ VPDOO OLJKW REMHFWV SODQV KHU VWUDWHJ\ LQ DGYDQFH E\ FUHDWLQJ D GHVLJQ PDWUL[ D ZLWK HQWULHV GHWHUPLQHG E\ WKH IROORZLQJ
VFKHPH ,I JHPVWRQH sj LV SODFHG LQ WKH OHIW SDQ GXULQJ WKH i WK ZHLJKLQJ WKHQ dij D 1 DQG LI JHPVWRQH sj LV SODFHG LQ WKH ULJKW SDQ GXULQJ WKH i WK ZHLJKLQJ WKH dij D 1 (DFK URZ RI WKH PDWUL[ D FRUUHVSRQGV WR D SDUWLFXODU ZHLJKLQJ 7KH j WK FROXPQ RI D WHOOV \RX ZKHUH WR SXW sj DW HDFK ZHLJKLQJ 7KXV D LV DQ m n PDWUL[ ZKHUH m FRUUHVSRQGV WR WKH QXPEHU RI ZHLJKLQJV DQG n FRUUHVSRQGV WR WKH QXPEHU RI REMHFWV ,W KDV EHHQ VKRZQ WKDW WKH DFFXUDF\ RI D ZHLJKLQJ GHVLJQ LV KLJKHVW ZKHQ D GHVLJQ PDWUL[ WKDW PD[LPL]HV WKH YDOXH RI WKH GHWHUPLQDQW RI D T D LV FKRVHQ 2
1 61 6 41 1
)RU H[DPSOH FRQVLGHU WKH GHVLJQ PDWUL[ D D 3 1 1 1 1 1 17 7 IRU ZHLJKLQJ WKH JHPV 1 1 15 1 1 1
s1 ; s2 ; s3 ; s4 )RU WKLV GHVLJQ WKH ıUVW ZHLJKLQJ KDV DOO IRXU JHPV LQ WKH ULJKW WUD\ WKH ıUVW URZ RI D FRQVLVWV RI DOO RQHV )RU WKH VHFRQG ZHLJKLQJ JHP s2 LV LQ WKH OHIW WUD\ DQG WKH UHVW RI WKH JHPV DUH LQ WKH ULJKW WUD\ WKH VHFRQG URZ RI D KDV D 1 LQ WKH VHFRQG FROXPQ )RU WKH WKLUG ZHLJKLQJ JHP s3 LV LQ WKH OHIW WUD\ DQG WKH UHVW RI WKH JHPV DUH LQ WKH ULJKW WUD\ WKH WKLUG URZ RI D KDV D 1 LQ WKH WKLUG FROXPQ ,Q WKH ODVW ZHLJKLQJ JHP s4 LV LQ WKH OHIW WUD\ DQG WKH UHPDLQLQJ JHPV DUH LQ WKH ULJKW WUD\ WKH IRXUWK URZ RI D KDV D 1 LQ WKH IRXUWK FROXPQ 7KH GHWHUPLQDQW RI D T D LV +RZHYHU WKLV LV QRW WKH EHVW GHVLJQ IRU XVLQJ IRXU ZHLJKLQJV WR GHWHUPLQH WKH ZHLJKW RI IRXU REMHFWV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 'HWHUPLQDQWV
2
1 6 1 ,I D D 6 4 1 1
1 1 1 1
1 1 1 1
3 1 1 7 7 WKHQ WKH GHWHUPLQDQW 1 5 1
RI D TD D 256 DQG KHQFH WKLV LV D EHWWHU GHVLJQ 1RWLFH WKDW WKH ıUVW ZHLJKLQJ RI WKLV GHVLJQ LV WKH VDPH DV WKH SUHYLRXV RQH EXW WKHQ WKH UHPDLQLQJ ZHLJKLQJV HDFK KDYH WZR REMHFWV LQ HDFK SDQ &DOFXODWLQJ GHWHUPLQDQWV RI PDWULFHV DQG XQGHUVWDQG LQJ WKHLU SURSHUWLHV LV WKH WKHPH RI WKLV FKDSWHU $V \RX OHDUQ PRUH DERXW GHWHUPLQDQWV \RX PD\ DOVR FRPH XS ZLWK VWUDWHJLHV IRU JRRG DQG EDG FKRLFHV IRU D ZHLJKLQJ GHVLJQ $QRWKHU LPSRUWDQW XVH RI WKH GHWHUPLQDQW LV WR FDOFXODWH WKH DUHD RI D SDUDOOHORJUDP RU WKH YROXPH RI
D SDUDOOHOHSLSHG ,Q 6HFWLRQ ZH VDZ WKDW PDWUL[ PXOWLSOLFDWLRQ FDQ EH XVHG WR FKDQJH WKH VKDSH RI D ER[ RU RWKHU REMHFW 7KH GHWHUPLQDQW RI WKH PDWUL[ XVHG GHWHUPLQHV KRZ PXFK WKH DUHD FKDQJHV ZKHQ LW LV PXOWLSOLHG E\ D PDWUL[ MXVW DV D ıVK VWRU\ FDQ WUDQVIRUP WKH VL]H RI WKH ıVK FDXJKW ,QGHHG WKH GHWHUPLQDQW KDV VR PDQ\ XVHV WKDW D VXPPDU\ RI WKH DSSOLFDWLRQV NQRZQ LQ WKH HDUO\ V ıOOHG D IRXUYROXPH WUHDWLVH E\ 7KRPDV 0XLU :LWK FKDQJHV LQ HPSKDVLV DQG WKH JUHDWO\ LQFUHDVHG VL]HV RI WKH PDWULFHV XVHG LQ PRGHP DSSOLFDWLRQV PDQ\ XVHV WKDW ZHUH LPSRUWDQW WKHQ DUH QR ORQJHU FULWLFDO WRGD\ 1HYHUWKHOHVV WKH GHWHUPLQDQW VWLOO SOD\V PDQ\ LPSRUWDQW WKHRUHWLFDO DQG SUDFWLFDO UROHV
%H\RQG LQWURGXFLQJ WKH GHWHUPLQDQW LQ 6HFWLRQ WKLV FKDSWHU SUHVHQWV WZR LPSRUWDQW LGHDV 6HFWLRQ GHULYHV DQ LQYHUWLELOLW\ FULWHULRQ IRU D VTXDUH PDWUL[ WKDW SOD\V D SLYRWDO UROH LQ &KDSWHU 6HFWLRQ VKRZV KRZ WKH GHWHUPLQDQW PHDVXUHV WKH DPRXQW E\ ZKLFK D OLQHDU WUDQVIRUPDWLRQ FKDQJHV WKH DUHD RI D ıJXUH :KHQ DSSOLHG ORFDOO\ WKLV WHFKQLTXH DQVZHUV WKH TXHVWLRQ RI D PDSŖV H[SDQVLRQ UDWH QHDU WKH SROHV 7KLV LGHD SOD\V D FULWLFDO UROH LQ PXOWLYDULDEOH FDOFXOXV LQ WKH IRUP RI WKH -DFRELDQ
,QWURGXFWLRQ WR 'HWHUPLQDQWV 5HFDOO IURP 6HFWLRQ WKDW D 2 2 PDWUL[ LV LQYHUWLEOH LI DQG RQO\ LI LWV GHWHUPLQDQW LV QRQ]HUR 7R H[WHQG WKLV XVHIXO IDFW WR ODUJHU PDWULFHV ZH QHHG D GHıQLWLRQ IRU WKH GHWHUPLQDQW RI DQ n n PDWUL[ :H FDQ GLVFRYHU WKH GHıQLWLRQ IRU WKH 3 3 FDVH E\ ZDWFKLQJ ZKDW KDSSHQV ZKHQ DQ LQYHUWLEOH 3 3 PDWUL[ A LV URZ UHGXFHG &RQVLGHU A D Œaij ZLWK a11 ¤ 0 ,I ZH PXOWLSO\ WKH VHFRQG DQG WKLUG URZV RI A E\ a11 DQG WKHQ VXEWUDFW DSSURSULDWH PXOWLSOHV RI WKH ıUVW URZ IURP WKH RWKHU WZR URZV ZH ıQG WKDW A LV URZ HTXLYDOHQW WR WKH IROORZLQJ WZR PDWULFHV 2
3 2 3 a11 a12 a13 a11 a12 a13 4 a11 a21 a11 a22 a11 a23 5 4 0 a11 a22 a12 a21 a11 a23 a13 a21 5 a11 a31 a11 a32 a11 a33 0 a11 a32 a12 a31 a11 a33 a13 a31
6LQFH A LV LQYHUWLEOH HLWKHU WKH .2; 2/HQWU\ RU WKH .3; 2/HQWU\ RQ WKH ULJKW LQ LV QRQ]HUR /HW XV VXSSRVH WKDW WKH .2; 2/HQWU\ LV QRQ]HUR 2WKHUZLVH ZH FDQ PDNH D URZ LQWHUFKDQJH EHIRUH SURFHHGLQJ 0XOWLSO\ URZ E\ a11 a22 a12 a21 DQG WKHQ WR WKH QHZ URZ DGG .a11 a32 a12 a31 / WLPHV URZ 7KLV ZLOO VKRZ WKDW 2
a11 A4 0 0
a12 a11 a22 a12 a21 0
3 a13 a11 a23 a13 a21 5 a11
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QWURGXFWLRQ WR 'HWHUPLQDQWV
D a11 a22 a33 C a12 a23 a31 C a13 a21 a32 a11 a23 a32 a12 a21 a33 a13 a22 a31
ZKHUH
6LQFH A LV LQYHUWLEOH PXVW EH QRQ]HUR 7KH FRQYHUVH LV WUXH WRR DV ZH ZLOO VHH LQ 6HFWLRQ :H FDOO LQ WKH GHWHUPLQDQW RI WKH 3 3 PDWUL[ A 5HFDOO WKDW WKH GHWHUPLQDQW RI D 2 2 PDWUL[ A D Œaij LV WKH QXPEHU GHW A D a11 a22 a12 a21 )RU D 1 1 PDWUL[ŠVD\ A D Œa11 ŠZH GHıQH GHW A D a11 7R JHQHUDOL]H WKH GHıQL WLRQ RI WKH GHWHUPLQDQW WR ODUJHU PDWULFHV ZHŖOO XVH 2 2 GHWHUPLQDQWV WR UHZULWH WKH 3 3 GHWHUPLQDQW GHVFULEHG DERYH 6LQFH WKH WHUPV LQ FDQ EH JURXSHG DV .a11 a22 a33 a11 a23 a32 / .a12 a21 a33 a12 a23 a31 / C .a13 a21 a32 a13 a22 a31 / a a23 a a23 a a22 D a11 GHW 22 a12 GHW 21 C a13 GHW 21 a32 a33 a31 a33 a31 a32 )RU EUHYLW\ ZULWH
D a11 GHW A11 a12 GHW A12 C a13 GHW A13
ZKHUH A11 A12 DQG A13 DUH REWDLQHG IURP A E\ GHOHWLQJ WKH ıUVW URZ DQG RQH RI WKH WKUHH FROXPQV )RU DQ\ VTXDUH PDWUL[ A OHW Aij GHQRWH WKH VXEPDWUL[ IRUPHG E\ GHOHWLQJ WKH i WK URZ DQG j WK FROXPQ RI A )RU LQVWDQFH LI 2 3 1 2 5 0 6 2 0 4 1 7 7 AD6 43 1 0 75 0 4 2 0 WKHQ A32 LV REWDLQHG E\ FURVVLQJ RXW URZ DQG FROXPQ 2 3 1 2 5 0 6 2 0 4 1 7 6 7 43 1 0 75 0 4 2 0 2
VR WKDW
A32
3 1 5 0 D 4 2 4 1 5 0 2 0
:H FDQ QRZ JLYH D UHFXUVLYH GHıQLWLRQ RI D GHWHUPLQDQW :KHQ n D 3 GHW A LV GHıQHG XVLQJ GHWHUPLQDQWV RI WKH 2 2 VXEPDWULFHV A1j DV LQ DERYH :KHQ n D 4 GHW A XVHV GHWHUPLQDQWV RI WKH 3 3 VXEPDWULFHV A1j ,Q JHQHUDO DQ n n GHWHUPLQDQW LV GHıQHG E\ GHWHUPLQDQWV RI .n 1/ .n 1/ VXEPDWULFHV
%&'*/*5*0/
)RU n 2 WKH GHWHUPLQDQW RI DQ n n PDWUL[ A D Œaij LV WKH VXP RI n WHUPV RI WKH IRUP ˙a1j GHW A1j ZLWK SOXV DQG PLQXV VLJQV DOWHUQDWLQJ ZKHUH WKH HQWULHV a11 ; a12 ; : : : ; a1n DUH IURP WKH ıUVW URZ RI A ,Q V\PEROV GHW A D a11 GHW A11 a12 GHW A12 C C .1/1Cn a1n GHW A1n
D
n X
.1/1Cj a1j GHW A1j
j D1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 'HWHUPLQDQWV
(;$03/( &RPSXWH WKH GHWHUPLQDQW RI 2
3 1 5 0 A D 4 2 4 1 5 0 2 0
62/87,21 &RPSXWH GHW A D a11 GHW A11 a12 GHW A12 C a13 GHW A13
GHW A D 1 GHW
4 1 2 1 2 4 5 GHW C 0 GHW 2 0 0 0 0 2
D 1.0 2/ 5.0 0/ C 0.4 0/ D 2 $QRWKHU FRPPRQ QRWDWLRQ IRU WKH GHWHUPLQDQW RI D PDWUL[ XVHV D SDLU RI YHUWLFDO OLQHV LQ SODFH RI EUDFNHWV 7KXV WKH FDOFXODWLRQ LQ ([DPSOH FDQ EH ZULWWHQ DV ˇ ˇ ˇ ˇ ˇ ˇ ˇ 4 1 ˇ ˇ 2 1 ˇ ˇ2 4ˇ ˇ ˇ ˇ ˇ ˇ ˇ D D 2 GHW A D 1ˇ 5ˇ C 0ˇ 2 0 ˇ 0 0ˇ 0 2 ˇ 7R VWDWH WKH QH[W WKHRUHP LW LV FRQYHQLHQW WR ZULWH WKH GHıQLWLRQ RI GHW A LQ D VOLJKWO\ GLijHUHQW IRUP *LYHQ A D Œaij WKH .i; j /FRIDFWRU RI A LV WKH QXPEHU Cij JLYHQ E\
Cij D .1/i Cj GHW Aij 7KHQ
GHW A D a11 C11 C a12 C12 C C a1n C1n
7KLV IRUPXOD LV FDOOHG D FRIDFWRU H[SDQVLRQ DFURVV WKH ıUVW URZ RI A :H RPLW WKH SURRI RI WKH IROORZLQJ IXQGDPHQWDO WKHRUHP WR DYRLG D OHQJWK\ GLJUHVVLRQ
5)&03&.
7KH GHWHUPLQDQW RI DQ n n PDWUL[ A FDQ EH FRPSXWHG E\ D FRIDFWRU H[SDQVLRQ DFURVV DQ\ URZ RU GRZQ DQ\ FROXPQ 7KH H[SDQVLRQ DFURVV WKH i WK URZ XVLQJ WKH FRIDFWRUV LQ LV GHW A D ai1 Ci1 C ai 2 Ci 2 C C ai n Ci n 7KH FRIDFWRU H[SDQVLRQ GRZQ WKH j WK FROXPQ LV GHW A D a1j C1j C a2j C2j C C anj Cnj
7KH SOXV RU PLQXV VLJQ LQ WKH .i; j /FRIDFWRU GHSHQGV RQ WKH SRVLWLRQ RI aij LQ WKH PDWUL[ UHJDUGOHVV RI WKH VLJQ RI aij LWVHOI 7KH IDFWRU .1/i Cj GHWHUPLQHV WKH IROORZLQJ FKHFNHUERDUG SDWWHUQ RI VLJQV 2 3 C C 6 7 C 6 7 6C 7 C 4 5 :: :: : :
(;$03/( 8VH D FRIDFWRU H[SDQVLRQ DFURVV WKH WKLUG URZ WR FRPSXWH GHW A ZKHUH 2
3 1 5 0 A D 4 2 4 1 5 0 2 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QWURGXFWLRQ WR 'HWHUPLQDQWV
62/87,21 &RPSXWH
GHW A D a31 C31 C a32 C32 C a33 C33
D .1/3C1 a31 GHW A31 C .1/3C2 a32 GHW A32 C .1/3C3 a33 GHW A33 ˇ ˇ ˇ ˇ ˇ ˇ ˇ5 0ˇ ˇ1 0ˇ ˇ1 5ˇ ˇ ˇ ˇ ˇ ˇ ˇ D 0ˇ .2/ˇ C 0ˇ 4 1 ˇ 2 1 ˇ 2 4ˇ D 0 C 2.1/ C 0 D 2 7KHRUHP LV KHOSIXO IRU FRPSXWLQJ WKH GHWHUPLQDQW RI D PDWUL[ WKDW FRQWDLQV PDQ\ ]HURV )RU H[DPSOH LI D URZ LV PRVWO\ ]HURV WKHQ WKH FRIDFWRU H[SDQVLRQ DFURVV WKDW URZ KDV PDQ\ WHUPV WKDW DUH ]HUR DQG WKH FRIDFWRUV LQ WKRVH WHUPV QHHG QRW EH FDOFXODWHG 7KH VDPH DSSURDFK ZRUNV ZLWK D FROXPQ WKDW FRQWDLQV PDQ\ ]HURV
(;$03/( &RPSXWH GHW A ZKHUH 2
3 3 7 8 9 6 6 0 2 5 7 3 7 6 7 7 AD6 60 0 1 5 07 4 0 0 2 4 1 5 0 0 0 2 0 62/87,21 7KH FRIDFWRU H[SDQVLRQ GRZQ WKH ıUVW FROXPQ RI A KDV DOO WHUPV HTXDO WR
]HUR H[FHSW WKH ıUVW 7KXV ˇ ˇ ˇ 2 5 7 3 ˇ ˇ ˇ ˇ0 1 5 0ˇ ˇ C 0 C21 C 0 C31 C 0 C41 C 0 C51 GHW A D 3 ˇˇ ˇ ˇ 0 2 4 1 ˇ ˇ 0 0 2 0 ˇ +HQFHIRUWK ZH ZLOO RPLW WKH ]HUR WHUPV LQ WKH FRIDFWRU H[SDQVLRQ 1H[W H[SDQG WKLV 4 4 GHWHUPLQDQW GRZQ WKH ıUVW FROXPQ WR WDNH DGYDQWDJH RI WKH ]HURV WKHUH :H KDYH ˇ ˇ ˇ1 5 0ˇ ˇ ˇ GHW A D 3.2/ ˇˇ 2 4 1 ˇˇ ˇ 0 2 0 ˇ 7KLV 3 3 GHWHUPLQDQW ZDV FRPSXWHG LQ ([DPSOH DQG IRXQG WR HTXDO 2 +HQFH GHW A D 3.2/.2/ D 12 7KH PDWUL[ LQ ([DPSOH ZDV QHDUO\ WULDQJXODU 7KH PHWKRG LQ WKDW H[DPSOH LV HDVLO\ DGDSWHG WR SURYH WKH IROORZLQJ WKHRUHP
5)&03&.
,I A LV D WULDQJXODU PDWUL[ WKHQ GHW A LV WKH SURGXFW RI WKH HQWULHV RQ WKH PDLQ GLDJRQDO RI A
7KH VWUDWHJ\ LQ ([DPSOH RI ORRNLQJ IRU ]HURV ZRUNV H[WUHPHO\ ZHOO ZKHQ DQ HQWLUH URZ RU FROXPQ FRQVLVWV RI ]HURV ,Q VXFK D FDVH WKH FRIDFWRU H[SDQVLRQ DORQJ VXFK D URZ RU FROXPQ LV D VXP RI ]HURV 6R WKH GHWHUPLQDQW LV ]HUR 8QIRUWXQDWHO\ PRVW FRIDFWRU H[SDQVLRQV DUH QRW VR TXLFNO\ HYDOXDWHG
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 'HWHUPLQDQWV
5HDVRQDEOH $QVZHUV +RZ ELJ FDQ D GHWHUPLQDQW EH" /HW A EH DQ n n PDWUL[ 1RWLFH WKDW WDNLQJ WKH GHWHUPLQDQW RI A FRQVLVWV RI DGGLQJ DQG VXEWUDFWLQJ WHUPV ZLWK n SURGXFWV HDFK ,I p LV WKH SURGXFW RI WKH n ODUJHVW HOHPHQWV LQ DEVROXWH YDOXH WKH VDPH QXPEHU PD\ EH UHSHDWHG LI LW RFFXUV PRUH WKDQ RQFH DV D PDWUL[ HQWU\ WKHQ WKH GHWHUPLQDQW 6 5 PXVW EH EHWZHHQ np DQG np )RU H[DPSOH FRQVLGHU A D DQG B D 7 9 7 6 7KH ODUJHVW QXPEHU LQ DEVROXWH YDOXH RI HDFK PDWUL[ LV DQG WKH 7 9 VHFRQG ODUJHVW QXPEHU LV ,Q WKHVH WZR FDVHV p D 7.9/ D 63 DQG np D 126 7KH GHWHUPLQDQW RI HDFK RI WKHVH PDWULFHV VKRXOG EH D QXPEHU EHWZHHQ 126 DQG 126 1RWLFH WKDW GHW A D 6.9/ 5.7/ D 54 C 35 D 89 GHW B D 7.9/ 6.7/ D 63 42 D 105 LOOXVWUDWLQJ WKDW EHFDXVH WKH SURGXFWV DUH DGGHG DQG VXEWUDFWHG DQ\ QXPEHU LQ WKH UDQJH EHWZHHQ 126 DQG FRXOG WXUQ RXW WR EH WKH GHWHUPLQDQW 7 9 9 9 1H[W FRQVLGHU C D DQG D D ,Q PDWULFHV C DQG D WKH 7 9 9 9 QXPEHU DSSHDUV WZLFH DQG VR VKRXOG EH VHOHFWHG WZLFH ,Q WKLV FDVH p D 9.9/ D 81 DQG np D 162 VR WKH GHWHUPLQDQWV RI C DQG D VKRXOG EH QXPEHUV EHWZHHQ 162 DQG ,QGHHG GHW C D .7/.9/ .7/.9/ D 0 DQG GHW D D .9/.9/ .9/.9/ D 162 1RWLFH WKDW LW LV LPSRUWDQW WR FKRRVH WZLFH DV WKH WZR ODUJHVW QXPEHUV LQ PDWUL[ D LQ RUGHU WR JHW WKH FRUUHFW ERXQGV IRU WKH GHWHUPLQDQW RI D
1XPHULFDO 1RWH %\ WRGD\ŖV VWDQGDUGV D 25 25 PDWUL[ LV VPDOO 1RWH WKDW WKH VXEVFULSWV RQ Cj i DUH WKH UHYHUVH RI .i; j /@ 7KXV 2
A1
C11 6 1 6 C12 D 6 : GHW A 4 ::
C21 C22 : ::
C1n
C2n
3 Cn1 Cn2 7 7 :: 7 :5
Cnn
7KH PDWUL[ RI FRIDFWRUV RQ WKH ULJKW VLGH RI LV FDOOHG WKH DGMXJDWH RU FODVVLFDO DGMRLQW RI A GHQRWHG E\ DGM A 7KH WHUP DGMRLQW DOVR KDV DQRWKHU PHDQLQJ LQ DGYDQFHG WH[WV RQ OLQHDU WUDQVIRUPDWLRQV 7KH QH[W WKHRUHP VLPSO\ UHVWDWHV
5)&03&.
"O *OWFSTF 'PSNVMB /HW A EH DQ LQYHUWLEOH n n PDWUL[ 7KHQ
A1 D
1 DGM A GHW A 2
3 2 1 3 (;$03/( )LQG WKH LQYHUVH RI WKH PDWUL[ A D 4 1 1 1 5 1 4 2 62/87,21 7KH QLQH FRIDFWRUV DUH
C11 C21 C31
ˇ ˇ ˇ ˇ ˇ ˇ ˇ 1 1 ˇ ˇ1 1ˇ ˇ 1 1 ˇ ˇ ˇ ˇ ˇ ˇ ˇD5 D Cˇ D 2; C12 D ˇ D 3; C13 D Cˇ 1 2 ˇ 4 2 ˇ 1 4ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ1 3ˇ ˇ2 3ˇ ˇ2 1ˇ ˇ ˇ ˇ ˇ ˇ ˇ D 7 D ˇ D 14; C22 D Cˇ D 7; C23 D ˇ 1 4ˇ 4 2 ˇ 1 2 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ 1 3ˇ ˇ2 3ˇ ˇ2 1ˇ ˇ ˇ ˇ ˇ ˇ ˇ D 3 D Cˇ D 4; C32 D ˇ D 1; C33 D Cˇ 1 1 ˇ 1 1ˇ 1 1 ˇ
7KH DGMXJDWH PDWUL[ LV WKH WUDQVSRVH RI WKH PDWUL[ RI FRIDFWRUV >)RU LQVWDQFH C12 JRHV LQ WKH .2; 1/ SRVLWLRQ@ 7KXV 2 3 2 14 4 DGM A D 4 3 7 1 5 5 7 3 :H FRXOG FRPSXWH GHW A GLUHFWO\ EXW WKH IROORZLQJ FRPSXWDWLRQ SURYLGHV D FKHFN RQ WKH FDOFXODWLRQV IRU DGM A DQG SURGXFHV GHW A 2 32 3 2 3 2 14 4 2 1 3 14 0 0 0 5 D 14I .DGM A/ A D 4 3 7 1 54 1 1 1 5 D 4 0 14 5 7 3 1 4 2 0 0 14 6LQFH .DGM A/A D 14I 7KHRUHP VKRZV WKDW GHW A D 14 DQG 2 3 2 3 2 14 4 1=7 1 2=7 1 4 3 7 1 5 D 4 3=14 1=2 1=14 5 A1 D 14 5 7 3 5=14 1=2 3=14
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&UDPHU V 5XOH 9ROXPH DQG /LQHDU 7UDQVIRUPDWLRQV
1XPHULFDO 1RWHV 7KHRUHP LV XVHIXO PDLQO\ IRU WKHRUHWLFDO FDOFXODWLRQV 7KH IRUPXOD IRU A1 SHUPLWV RQH WR GHGXFH SURSHUWLHV RI WKH LQYHUVH ZLWKRXW DFWXDOO\ FDOFXODWLQJ LW ([FHSW IRU VSHFLDO FDVHV WKH DOJRULWKP LQ 6HFWLRQ JLYHV D PXFK EHWWHU ZD\ WR FRPSXWH A1 LI WKH LQYHUVH LV UHDOO\ QHHGHG &UDPHUŖV UXOH LV DOVR D WKHRUHWLFDO WRRO ,W FDQ EH XVHG WR VWXG\ KRZ VHQVLWLYH WKH VROXWLRQ RI A[ D E LV WR FKDQJHV LQ DQ HQWU\ LQ E RU LQ A SHUKDSV GXH WR H[SHULPHQWDO HUURU ZKHQ DFTXLULQJ WKH HQWULHV IRU E RU A :KHQ A LV D 3 3 PDWUL[ ZLWK FRPSOH[ HQWULHV &UDPHUŖV UXOH LV VRPHWLPHV VHOHFWHG IRU KDQG FRPSXWDWLRQ EHFDXVH URZ UHGXFWLRQ RI Œ A E ZLWK FRPSOH[ DULWKPHWLF FDQ EH PHVV\ DQG WKH GHWHUPLQDQWV DUH IDLUO\ HDV\ WR FRPSXWH )RU D ODUJHU n n PDWUL[ UHDO RU FRPSOH[ &UDPHUŖV UXOH LV KRSHOHVVO\ LQHĴFLHQW &RPSXWLQJ MXVW RQH GHWHUPLQDQW WDNHV DERXW DV PXFK ZRUN DV VROYLQJ A[ D E E\ URZ UHGXFWLRQ
'HWHUPLQDQWV DV $UHD RU 9ROXPH ,Q WKH QH[W DSSOLFDWLRQ ZH YHULI\ WKH JHRPHWULF LQWHUSUHWDWLRQ RI GHWHUPLQDQWV GHVFULEHG LQ WKH FKDSWHU LQWURGXFWLRQ $OWKRXJK D JHQHUDO GLVFXVVLRQ RI OHQJWK DQG GLVWDQFH LQ Rn ZLOO QRW EH JLYHQ XQWLO &KDSWHU ZH DVVXPH KHUH WKDW WKH XVXDO (XFOLGHDQ FRQFHSWV RI OHQJWK DUHD DQG YROXPH DUH DOUHDG\ XQGHUVWRRG IRU R2 DQG R3
5)&03&.
1300' 7KH WKHRUHP LV REYLRXVO\ WUXH IRU DQ\ 2 2 GLDJRQDO PDWUL[ ˇ ˇ ˇ 0 ˇˇ DUHD RI ˇ GHW a D jad j D ˇ 0 d ˇ UHFWDQJOH
678'< *8,'( SURYLGHV D JHRPHWULF SURRI RI WKH GHWHUPLQDQW DV DUHD y 0 d
a 0
'*(63&
$UHD D jad j
,I A LV D 2 2 PDWUL[ WKH DUHD RI WKH SDUDOOHORJUDP GHWHUPLQHG E\ WKH FROXPQV RI A LV jGHW Aj ,I A LV D 3 3 PDWUL[ WKH YROXPH RI WKH SDUDOOHOHSLSHG GHWHUPLQHG E\ WKH FROXPQV RI A LV jGHW Aj
x
6HH )LJXUH ,W ZLOO VXĴFH WR VKRZ WKDW DQ\ 2 2 PDWUL[ A D Œ D1 D2 FDQ EH WUDQV IRUPHG LQWR D GLDJRQDO PDWUL[ LQ D ZD\ WKDW FKDQJHV QHLWKHU WKH DUHD RI WKH DVVRFLDWHG SDUDOOHORJUDP QRU jGHW Aj )URP 6HFWLRQ ZH NQRZ WKDW WKH DEVROXWH YDOXH RI WKH GHWHUPLQDQW LV XQFKDQJHG ZKHQ WZR FROXPQV DUH LQWHUFKDQJHG RU D PXOWLSOH RI RQH FROXPQ LV DGGHG WR DQRWKHU $QG LW LV HDV\ WR VHH WKDW VXFK RSHUDWLRQV VXĴFH WR WUDQVIRUP A LQWR D GLDJRQDO PDWUL[ &ROXPQ LQWHUFKDQJHV GR QRW FKDQJH WKH SDUDOOHORJUDP DW DOO 6R LW VXĴFHV WR SURYH WKH IROORZLQJ VLPSOH JHRPHWULF REVHUYDWLRQ WKDW DSSOLHV WR YHFWRUV LQ R2 RU R3 /HW D1 DQG D2 EH QRQ]HUR YHFWRUV 7KHQ IRU DQ\ VFDODU c WKH DUHD RI WKH SDUDOOHORJUDP GHWHUPLQHG E\ D1 DQG D2 HTXDOV WKH DUHD RI WKH SDUDOOHORJUDP GHWHUPLQHG E\ D1 DQG D2 C c D1
7R SURYH WKLV VWDWHPHQW ZH PD\ DVVXPH WKDW D2 LV QRW D PXOWLSOH RI D1 IRU RWKHU ZLVH WKH WZR SDUDOOHORJUDPV ZRXOG EH GHJHQHUDWH DQG KDYH ]HUR DUHD ,I L LV WKH OLQH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 'HWHUPLQDQWV
WKURXJK DQG D1 WKHQ D2 C L LV WKH OLQH WKURXJK D2 SDUDOOHO WR L DQG D2 C c D1 LV RQ WKLV OLQH 6HH )LJXUH 7KH SRLQWV D2 DQG D2 C c D1 KDYH WKH VDPH SHUSHQGLFXODU GLVWDQFH WR L +HQFH WKH WZR SDUDOOHORJUDPV LQ )LJXUH KDYH WKH VDPH DUHD VLQFH WKH\ VKDUH WKH EDVH IURP WR D1 7KLV FRPSOHWHV WKH SURRI IRU R2 a2 1 c a1
c a1
a2
0
a2 1 L
L
a1
'*(63& 7ZR SDUDOOHORJUDPV RI HTXDO DUHD
z 0 0 c
x
a 0 0
0 b 0
y
7KH SURRI IRU R3 LV VLPLODU 7KH WKHRUHP LV REYLRXVO\ WUXH IRU D 3 3 GLDJRQDO PDWUL[ 6HH )LJXUH $QG DQ\ 3 3 PDWUL[ A FDQ EH WUDQVIRUPHG LQWR D GLDJRQDO PDWUL[ XVLQJ FROXPQ RSHUDWLRQV WKDW GR QRW FKDQJH jGHW Aj 7KLQN DERXW GRLQJ URZ RSHUDWLRQV RQ AT 6R LW VXĴFHV WR VKRZ WKDW WKHVH RSHUDWLRQV GR QRW DijHFW WKH YROXPH RI WKH SDUDOOHOHSLSHG GHWHUPLQHG E\ WKH FROXPQV RI A $ SDUDOOHOHSLSHG LV VKRZQ LQ )LJXUH DV D VKDGHG ER[ ZLWK WZR VORSLQJ VLGHV ,WV YROXPH LV WKH DUHD RI WKH EDVH LQ WKH SODQH 6SDQ fD1 ; D3 g WLPHV WKH DOWLWXGH RI D2 DERYH 6SDQ fD1 ; D3 g $Q\ YHFWRU D2 C c D1 KDV WKH VDPH DOWLWXGH EHFDXVH D2 C c D1 OLHV LQ WKH SODQH D2 C 6SDQ fD1 ; D3 g ZKLFK LV SDUDOOHO WR 6SDQ fD1 ; D3 g +HQFH WKH YROXPH RI WKH SDUDOOHOHSLSHG LV XQFKDQJHG ZKHQ Œ D1 D2 D3 LV FKDQJHG WR Œ D1 D2 C c D1 D3 7KXV D FROXPQ UHSODFHPHQW RSHUDWLRQ GRHV QRW DijHFW WKH YROXPH RI WKH SDUDOOHOHSLSHG 6LQFH FROXPQ LQWHUFKDQJHV KDYH QR HijHFW RQ WKH YROXPH WKH SURRI LV FRPSOHWH
'*(63&
9ROXPH D jabcj
a2 1 Span{a1, a3}
a2 1 Span{a1, a3}
a3
a3 a2 1 ca1
a2 0
a2 0
a1
a1
Span{a1, a3}
Span{a1, a3}
'*(63& 7ZR SDUDOOHOHSLSHGV RI HTXDO YROXPH
(;$03/( &DOFXODWH WKH DUHD RI WKH SDUDOOHORJUDP GHWHUPLQHG E\ WKH SRLQWV .2; 2/ .0; 3/ .4; 1/ DQG .6; 4/ 6HH )LJXUH D
62/87,21 )LUVW WUDQVODWH WKH SDUDOOHORJUDP WR RQH KDYLQJ WKH RULJLQ DV D YHUWH[ )RU
H[DPSOH VXEWUDFW WKH YHUWH[ .2; 2/ IURP HDFK RI WKH IRXU YHUWLFHV 7KH QHZ SDUDO OHORJUDP KDV WKH VDPH DUHD DQG LWV YHUWLFHV DUH .0; 0/ .2; 5/ .6; 1/ DQG .8; 6/ 6HH )LJXUH E 7KLV SDUDOOHORJUDP LV GHWHUPLQHG E\ WKH FROXPQV RI
AD
2 5
6 1
6LQFH jGHW Aj D j28j WKH DUHD RI WKH SDUDOOHORJUDP LV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&UDPHU V 5XOH 9ROXPH DQG /LQHDU 7UDQVIRUPDWLRQV x2
x2
x1
(a)
x1
(b)
'*(63& 7UDQVODWLQJ D SDUDOOHORJUDP GRHV QRW FKDQJH LWV
DUHD
/LQHDU 7UDQVIRUPDWLRQV 'HWHUPLQDQWV FDQ EH XVHG WR GHVFULEH DQ LPSRUWDQW JHRPHWULF SURSHUW\ RI OLQHDU WUDQV IRUPDWLRQV LQ WKH SODQH DQG LQ R3 ,I T LV D OLQHDU WUDQVIRUPDWLRQ DQG S LV D VHW LQ WKH GRPDLQ RI T OHW T .S/ GHQRWH WKH VHW RI LPDJHV RI SRLQWV LQ S :H DUH LQWHUHVWHG LQ KRZ WKH DUHD RU YROXPH RI T .S/ FRPSDUHV ZLWK WKH DUHD RU YROXPH RI WKH RULJLQDO VHW S )RU FRQYHQLHQFH ZKHQ S LV D UHJLRQ ERXQGHG E\ D SDUDOOHORJUDP ZH DOVR UHIHU WR S DV D SDUDOOHORJUDP
5)&03&.
/HW T W R2 ! R2 EH WKH OLQHDU WUDQVIRUPDWLRQ GHWHUPLQHG E\ D 2 2 PDWUL[ A ,I S LV D SDUDOOHORJUDP LQ R2 WKHQ
fDUHD RI T .S/g D jGHW Aj fDUHD RI S g
,I T LV GHWHUPLQHG E\ D 3 3 PDWUL[ A DQG LI S LV D SDUDOOHOHSLSHG LQ R3 WKHQ
fYROXPH RI T .S/g D jGHW Aj fYROXPH RI S g
1300' &RQVLGHU WKH 2 2 FDVH ZLWK A D Œ D1 D2 $ SDUDOOHORJUDP DW WKH RULJLQ LQ R2 GHWHUPLQHG E\ YHFWRUV E1 DQG E2 KDV WKH IRUP S D fs1 E1 C s2 E2 W 0 s1 1; 0 s2 1g 7KH LPDJH RI S XQGHU T FRQVLVWV RI SRLQWV RI WKH IRUP
T .s1 E1 C s2 E2 / D s1 T .E1 / C s2 T .E2 / D s1 AE1 C s2 AE2 ZKHUH 0 s1 1 0 s2 1 ,W IROORZV WKDW T .S/ LV WKH SDUDOOHORJUDP GHWHUPLQHG E\ WKH FROXPQV RI WKH PDWUL[ Œ AE1 AE2 7KLV PDWUL[ FDQ EH ZULWWHQ DV AB ZKHUH B D Œ E1 E2 %\ 7KHRUHP DQG WKH SURGXFW WKHRUHP IRU GHWHUPLQDQWV
fDUHD RI T .S/g D jGHW ABj D jGHW Aj jGHW Bj D jGHW Aj fDUHD RI Sg
$Q DUELWUDU\ SDUDOOHORJUDP KDV WKH IRUP S C S ZKHUH S LV D YHFWRU DQG S LV D SDUDOOHORJUDP DW WKH RULJLQ DV VHHQ SUHYLRXVO\ ,W LV HDV\ WR VHH WKDW T WUDQVIRUPV S C S
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 'HWHUPLQDQWV
LQWR T .S/ C T .S / 6HH ([HUFLVH 6LQFH WUDQVODWLRQ GRHV QRW DijHFW WKH DUHD RI D VHW
fDUHD RI T .S C S /g D fDUHD RI T .S/ C T .S/g D fDUHD RI T .S/g D j GHW Aj fDUHD RI S g D j GHW Aj fDUHD RI S C S g
7UDQVODWLRQ %\ HTXDWLRQ 7UDQVODWLRQ
7KLV VKRZV WKDW KROGV IRU DOO SDUDOOHORJUDPV LQ R2 7KH SURRI RI IRU WKH 3 3 FDVH LV DQDORJRXV :KHQ ZH DWWHPSW WR JHQHUDOL]H 7KHRUHP WR D UHJLRQ LQ R2 RU R3 WKDW LV QRW ERXQGHG E\ VWUDLJKW OLQHV RU SODQHV ZH PXVW IDFH WKH SUREOHP RI KRZ WR GHıQH DQG FRPSXWH LWV DUHD RU YROXPH 7KLV LV D TXHVWLRQ VWXGLHG LQ FDOFXOXV DQG ZH VKDOO RQO\ RXWOLQH WKH EDVLF LGHD IRU R2 ,I R LV D SODQDU UHJLRQ WKDW KDV D ıQLWH DUHD WKHQ R FDQ EH DSSUR[LPDWHG E\ D JULG RI VPDOO VTXDUHV WKDW OLH LQVLGH R %\ PDNLQJ WKH VTXDUHV VXĴFLHQWO\ VPDOO WKH DUHD RI R PD\ EH DSSUR[LPDWHG DV FORVHO\ DV GHVLUHG E\ WKH VXP RI WKH DUHDV RI WKH VPDOO VTXDUHV 6HH )LJXUH
0
0
'*(63& $SSUR[LPDWLQJ D SODQDU UHJLRQ E\ D XQLRQ RI VTXDUHV
7KH DSSUR[LPDWLRQ LPSURYHV DV WKH JULG EHFRPHV ıQHU
,I T LV D OLQHDU WUDQVIRUPDWLRQ DVVRFLDWHG ZLWK D 2 2 PDWUL[ A WKHQ WKH LPDJH RI D SODQDU UHJLRQ R XQGHU T LV DSSUR[LPDWHG E\ WKH LPDJHV RI WKH VPDOO VTXDUHV LQVLGH R 7KH SURRI RI 7KHRUHP VKRZV WKDW HDFK VXFK LPDJH LV D SDUDOOHORJUDP ZKRVH DUHD LV jGHW Aj WLPHV WKH DUHD RI WKH VTXDUH ,I R0 LV WKH XQLRQ RI WKH VTXDUHV LQVLGH R WKHQ WKH DUHD RI T .R0 / LV jGHW Aj WLPHV WKH DUHD RI R0 6HH )LJXUH $OVR WKH DUHD RI T .R0 / LV FORVH WR WKH DUHD RI T .R/ $Q DUJXPHQW LQYROYLQJ D OLPLWLQJ SURFHVV PD\ EH JLYHQ WR MXVWLI\ WKH IROORZLQJ JHQHUDOL]DWLRQ RI 7KHRUHP
T
0
R9
0
T(R9)
'*(63& $SSUR[LPDWLQJ T .R/ E\ D XQLRQ RI SDUDOOHORJUDPV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&UDPHU V 5XOH 9ROXPH DQG /LQHDU 7UDQVIRUPDWLRQV
7KH FRQFOXVLRQV RI 7KHRUHP KROG ZKHQHYHU S LV D UHJLRQ LQ R2 ZLWK ıQLWH DUHD RU D UHJLRQ LQ R3 ZLWK ıQLWH YROXPH
(;$03/( /HW a DQG b EH SRVLWLYH QXPEHUV )LQG WKH DUHD RI WKH UHJLRQ E ERXQGHG E\ WKH HOOLSVH ZKRVH HTXDWLRQ LV
u2
D
u1
1
,W IROORZV WKDW X LV LQ WKH XQLW GLVN ZLWK u21 C u22 1 LI DQG RQO\ LI [ LV LQ E ZLWK .x1 =a/2 C .x2 =b/2 1 %\ WKH JHQHUDOL]DWLRQ RI 7KHRUHP
T
x2
x12 x22 C D1 a2 b2 62/87,21 :H FODLP WKDW E LV WKH LPDJH RI WKH XQLW GLVN D XQGHU WKH OLQHDU WUDQVIRU a 0 u1 x1 PDWLRQ T GHWHUPLQHG E\ WKH PDWUL[ A D EHFDXVH LI X D [D 0 b u2 x2 DQG [ D AX WKHQ x1 x2 u1 D DQG u2 D a b
b
fDUHD RI HOOLSVHg D fDUHD RI T .D/g D jGHW Aj fDUHD RI Dg
E a
x1
D ab.1/2 D ab 3UDFWLFH 3UREOHP
1 5 /HW S EH WKH SDUDOOHORJUDP GHWHUPLQHG E\ WKH YHFWRUV E1 D DQG E2 D DQG 3 1 1 :1 OHW A D &RPSXWH WKH DUHD RI WKH LPDJH RI S XQGHU WKH PDSSLQJ [ 7! A[ 0 2
([HUFLVHV 8VH &UDPHUŖV UXOH WR FRPSXWH WKH VROXWLRQV RI WKH V\VWHPV LQ ([HUFLVHV ş 5x1 C 7x2 D 3
4x1 C x2 D 6
2x1 C 4x2 D 1
3x1 C 2x2 D 5
3x1 2x2 D
5x1 C 2x2 D
3
4x1 C 6x2 D 5
x1 C x2
3x1
9
3x1 x2 D 4
D3 C 2x3 D 0
x2 2x3 D 2
3x1 C 6sx2 D
4
sx1 2x2 D 1
4sx1 C 4sx2 D 2
,Q ([HUFLVHV ş FRPSXWH WKH DGMXJDWH RI WKH JLYHQ PDWUL[ DQG WKHQ XVH 7KHRUHP WR JLYH WKH LQYHUVH RI WKH PDWUL[ 2 3 2 3 0 2 1 1 1 3 2 15 0 05 4 5 4 2 0 1 1 1 1 1
x1 C 3x2 C x3 D 8 x1 C
2x3 D 4
3x1 C x2
D4
,Q ([HUFLVHV ş GHWHUPLQH WKH YDOXHV RI WKH SDUDPHWHU s IRU ZKLFK WKH V\VWHP KDV D XQLTXH VROXWLRQ DQG GHVFULEH WKH VROXWLRQ 6sx1 C 4x2 D
sx1 C 2sx2 D 1
5
3sx1 C 5x2 D 3
9x1 C 2sx2 D 2
12x1 C 5sx2 D 2
2
3 4 1 2 2
5 4 1 2
5 0 1
3 4 15 1 3 0 0 1 05 3 1
2
1 1 2 4 0 3 0
3 2 15 6
2
3 1 2 4 15 4 0 3 0 0 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 'HWHUPLQDQWV
6KRZ WKDW LI A LV 2 2 WKHQ 7KHRUHP JLYHV WKH VDPH IRUPXOD IRU A1 DV WKDW JLYHQ E\ 7KHRUHP LQ 6HFWLRQ 6XSSRVH WKDW DOO WKH HQWULHV LQ A DUH LQWHJHUV DQG GHW A D 1 ([SODLQ ZK\ DOO WKH HQWULHV LQ A1 DUH LQWHJHUV ,Q ([HUFLVHV ş ıQG WKH DUHD RI WKH SDUDOOHORJUDP ZKRVH YHUWLFHV DUH OLVWHG .0; 0/ .5; 2/ .6; 4/ .11; 6/ .0; 0/ .2; 4/ .6; 5/ .4; 1/ .2; 0/ .0; 3/ .1; 3/ .1; 0/
/HW S EH WKH WHWUDKHGURQ LQ R3 ZLWK YHUWLFHV DW WKH YHFWRUV H1 H2 DQG H3 DQG OHW S 0 EH WKH WHWUDKHGURQ ZLWK YHUWLFHV DW YHFWRUV Y1 Y2 DQG Y3 6HH WKH ıJXUH
.0; 2/ .5; 2/ .3; 1/ .2; 1/ )LQG WKH YROXPH RI WKH SDUDOOHOHSLSHG ZLWK RQH YHUWH[ DW WKH RULJLQ DQG DGMDFHQW YHUWLFHV DW .1; 0; 3/ .1; 2; 4/ DQG .5; 1; 0/ )LQG WKH YROXPH RI WKH SDUDOOHOHSLSHG ZLWK RQH YHUWH[ DW WKH RULJLQ DQG DGMDFHQW YHUWLFHV DW .1; 3; 0/ .2; 0; 2/ DQG .1; 3; 1/ 8VH WKH FRQFHSW RI YROXPH WR H[SODLQ ZK\ WKH GHWHUPLQDQW RI D 3 3 PDWUL[ A LV ]HUR LI DQG RQO\ LI A LV QRW LQYHUWLEOH 'R QRW DSSHDO WR 7KHRUHP LQ 6HFWLRQ >+LQW 7KLQN DERXW WKH FROXPQV RI A@ /HW T W Rm ! Rn EH D OLQHDU WUDQVIRUPDWLRQ DQG OHW S EH D YHFWRU DQG S D VHW LQ Rm 6KRZ WKDW WKH LPDJH RI S C S XQGHU T LV WKH WUDQVODWHG VHW T .S/ C T .S/ LQ Rn /HW S EH WKH SDUDOOHORJUDP GHWHUPLQHG E\ WKH YHFWRUV 2 2 6 3 DQG E2 D DQG OHW A D E1 D 3 5 3 2 &RPSXWH WKH DUHD RI WKH LPDJH RI S XQGHU WKH PDSSLQJ [ 7! A[ 5HSHDW ([HUFLVH ZLWK E1 D 5 2 AD 1 1
/HW T W R3 ! R3 EH GHWHUPLQHG 2 WKH OLQHDU WUDQVIRUPDWLRQ 3 a 0 0 b 0 5 ZKHUH a b DQG c DUH E\ WKH PDWUL[ A D 4 0 0 0 c SRVLWLYH QXPEHUV /HW S EH WKH XQLW EDOO ZKRVH ERXQGLQJ VXUIDFH KDV WKH HTXDWLRQ x12 C x22 C x32 D 1 D 6KRZ WKDW T .S/ LV ERXQGHG E\ WKH HOOLSVRLG ZLWK WKH x2 x2 x2 HTXDWLRQ 12 C 22 C 32 D 1 a b c E 8VH WKH IDFW WKDW WKH YROXPH RI WKH XQLW EDOO LV 4=3 WR GHWHUPLQH WKH YROXPH RI WKH UHJLRQ ERXQGHG E\ WKH HOOLSVRLG LQ SDUW D
4 0 E2 D DQG 7 1
)LQG D IRUPXOD IRU WKH DUHD RI WKH WULDQJOH ZKRVH YHUWLFHV DUH Y1 DQG Y2 LQ R2
x3 e3
x3 v3 S
x2
S9
v2
x2
e2 0
0 v1
e1 x1
x1
D 'HVFULEH D OLQHDU WUDQVIRUPDWLRQ WKDW PDSV S RQWR S 0 E )LQG D IRUPXOD IRU WKH YROXPH RI WKH WHWUDKHGURQ S 0 XVLQJ WKH IDFW WKDW
fYROXPH RI Sg D .1=3/ fDUHD RI EDVHg fKHLJKWg 1 DGM A LV FRPSXWHG GHW A 1 ZKDW VKRXOG AA EH HTXDO WR LQ RUGHU WR FRQıUP WKDW A1 KDV EHHQ IRXQG FRUUHFWO\"
/HW A EH DQ n n PDWUL[ ,I A1 D
,I D SDUDOOHORJUDP ıWV LQVLGH D FLUFOH UDGLXV DQG GHW A D 2 ZKHUH A LV WKH PDWUL[ ZKRVH FROXPQV FRUUHVSRQG WR WKH HGJHV RI WKH SDUDOOHORJUDP GRHV LW VHHP OLNH A DQG LWV GHWHUPLQDQW KDYH EHHQ FDOFXODWHG FRUUHFWO\ WR FRUUHVSRQG WR WKH DUHD RI WKLV SDUDOOHORJUDP" ([SODLQ ZK\ RU ZK\ QRW ,Q ([HUFLVHV ş PDUN HDFK VWDWHPHQW DV 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 7) 7ZR SDUDOOHORJUDPV ZLWK WKH VDPH EDVH DQG KHLJKW KDYH WKH VDPH DUHD
7) $SSO\LQJ D OLQHDU WUDQVIRUPDWLRQ WR D UHJLRQ GRHV QRW FKDQJH LWV DUHD /HW R EH WKH WULDQJOH ZLWK YHUWLFHV DW .x1 ; y1 / .x2 ; y2 / DQG .x3 ; y3 / 6KRZ WKDW 7) ,I A LV DQ LQYHUWLEOH n n PDWUL[ WKHQ A1 D DGM A 2 3 x1 y1 1 1 7) &UDPHUŖV UXOH FDQ RQO\ EH XVHG IRU LQYHUWLEOH PDWULFHV y2 15 fDUHD RI WULDQJOHg D GHW 4 x2 2 x3 y3 1 7 7HVW WKH LQYHUVH IRUPXOD RI 7KHRUHP IRU D UDQGRP 4 4 >+LQW 7UDQVODWH R WR WKH RULJLQ E\ VXEWUDFWLQJ RQH RI WKH PDWUL[ A 8VH \RXU PDWUL[ SURJUDP WR FRPSXWH WKH FRIDF YHUWLFHV DQG XVH ([HUFLVH @ WRUV RI WKH 3 3 VXEPDWULFHV FRQVWUXFW WKH DGMXJDWH DQG
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$IBQUFS 6XSSOHPHQWDU\ ([HUFLVHV VHW B D .DGM A/=.GHW A/ 7KHQ FRPSXWH B LQY.A/ ZKHUH LQY.A/ LV WKH LQYHUVH RI A DV FRPSXWHG E\ WKH PDWUL[ SURJUDP 8VH IJRDWLQJ SRLQW DULWKPHWLF ZLWK WKH PD[LPXP SRVVLEOH QXPEHU RI GHFLPDO SODFHV 5HSRUW \RXU UHVXOWV 7 7HVW &UDPHUŖV UXOH IRU D UDQGRP 4 4 PDWUL[ A DQG D UDQGRP
4 1 YHFWRU E &RPSXWH HDFK HQWU\ LQ WKH VROXWLRQ RI A[ D E DQG FRPSDUH WKHVH HQWULHV ZLWK WKH HQWULHV LQ A1 E :ULWH WKH
FRPPDQG RU NH\VWURNHV IRU \RXU PDWUL[ SURJUDP WKDW XVHV &UDPHUŖV UXOH WR SURGXFH WKH VHFRQG HQWU\ RI [ 7 ,I \RXU YHUVLRQ RI 0$7/$% KDV WKH nPQT FRPPDQG XVH LW
WR FRXQW WKH QXPEHU RI IJRDWLQJ SRLQW RSHUDWLRQV WR FRPSXWH A1 IRU D UDQGRP 30 30 PDWUL[ &RPSDUH WKLV QXPEHU ZLWK WKH QXPEHU RI IJRSV QHHGHG WR IRUP .DGM A/=.GHW A/
6ROXWLRQ WR 3UDFWLFH 3UREOHP ˇ ˇ ˇ 1 5 ˇˇ 7KH DUHD RI S LV ˇˇ GHW D 14; DQG GHW A D 2 %\ 7KHRUHP WKH DUHD RI WKH 3 1 ˇ LPDJH RI S XQGHU WKH PDSSLQJ [ 7! A[ LV
jGHW Aj fDUHD RI S g D 2 14 D 28
&+$37(5 352-(&76 &KDSWHU SURMHFWV DUH DYDLODEOH RQOLQH DW CJUMZ*.H5 $ :HLJKLQJ 'HVLJQ 7KLV SURMHFW GHYHORSV WKH FRQFHSW RI ZHLJKLQJ GHVLJQ DQG WKHLU FRUUHVSRQGLQJ PDWULFHV IRU XVH LQ ZHLJKLQJ D IHZ VPDOO OLJKW REMHFWV
% -DFRELDQV 7KLV VHW RI H[HUFLVHV H[DPLQHV KRZ D SDUWLFXODU GHWHUPLQDQW FDOOHG WKH -DFRELDQ PD\ EH XVHG WR DOORZ XV WR FKDQJH YDULDEOHV LQ GRXEOH DQG WULSOH LQWHJUDOV
&+$37(5 6833/(0(17$5< (;(5&,6(6 ,Q ([HUFLVHV PDUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU $VVXPH WKDW DOO PDWULFHV KHUH DUH VTXDUH
7) $Q\ V\VWHP RI n OLQHDU HTXDWLRQV LQ n YDULDEOHV FDQ EH VROYHG E\ &UDPHUŖV UXOH
7) ,I A LV D 2 2 PDWUL[ ZLWK D ]HUR GHWHUPLQDQW WKHQ RQH FROXPQ RI A LV D PXOWLSOH RI WKH RWKHU
7) ,I X DQG Y DUH LQ R2 DQG GHW Œ X Y D 10 WKHQ WKH DUHD RI WKH WULDQJOH LQ WKH SODQH ZLWK YHUWLFHV DW X DQG Y LV
7) ,I WZR URZV RI D 3 3 PDWUL[ A DUH WKH VDPH WKHQ GHW A D 0 7) ,I A LV D 3 3 PDWUL[ WKHQ GHW 5A D 5 GHW A 7) ,I A DQG B DUH n n PDWULFHV ZLWK GHW A D 2 DQG GHW B D 3 WKHQ GHW.A C B/ D 5 7) ,I A LV n n DQG GHW A D 2 WKHQ GHW A3 D 6 7) ,I B LV SURGXFHG E\ LQWHUFKDQJLQJ WZR URZV RI A WKHQ GHW B D GHW A 7) ,I B LV SURGXFHG E\ PXOWLSO\LQJ URZ RI A E\ WKHQ GHW B D 5 GHW A 7) ,I B LV IRUPHG E\ DGGLQJ WR RQH URZ RI A D OLQHDU FRPELQDWLRQ RI WKH RWKHU URZV WKHQ GHW B D GHW A 7) GHW AT D GHW A 7) GHW.A/ D GHW A 7) GHW ATA 0
7) ,I A3 D 0 WKHQ GHW A D 0 7) ,I A LV LQYHUWLEOH WKHQ GHW A1 D GHW A 8VH URZ RSHUDWLRQV WR VKRZ WKDW WKH GHWHUPLQDQWV LQ ([HUFLVHV ş DUH DOO ]HUR ˇ ˇ ˇ ˇ ˇ 12 ˇ1 13 14 ˇˇ a b C c ˇˇ ˇ ˇ 16 17 ˇˇ b a C c ˇˇ ˇˇ 15 ˇˇ 1 ˇ 18 ˇ1 19 20 ˇ c aCbˇ ˇ ˇ a ˇ ˇˇ a C x ˇaCy
b bCx bCy
ˇ c ˇˇ c C x ˇˇ cCyˇ
&RPSXWH WKH GHWHUPLQDQWV LQ ([HUFLVHV DQG ˇ ˇ ˇ9 1 9 9 9 ˇˇ ˇ ˇ9 0 9 9 2 ˇˇ ˇ 0 0 5 0 ˇˇ ˇˇ 4 ˇ9 0 3 9 0 ˇˇ ˇ ˇ6 0 0 7 0ˇ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 'HWHUPLQDQWV
ˇ ˇ4 ˇ ˇ0 ˇ ˇˇ 6 ˇ0 ˇ ˇ0
8 1 8 8 8
8 0 8 8 2
8 0 8 3 0
ˇ 5 ˇˇ 0 ˇˇ 7 ˇˇ 0 ˇˇ 0ˇ
/HW A B C DQG D EH n n PDWULFHV ZLWK A LQYHUWLEOH D )LQG PDWULFHV X DQG Y WR SURGXFH WKH EORFN /8 IDFWRUL]DWLRQ
6KRZ WKDW WKH HTXDWLRQ RI WKH OLQH LQ R2 WKURXJK GLVWLQFW SRLQWV .x1 ; y1 / DQG .x2 ; y2 / FDQ EH ZULWWHQ DV 2 3 1 x y x1 y1 5 D 0 GHW 4 1 1 x2 y2 )LQG D 3 3 GHWHUPLQDQW HTXDWLRQ VLPLODU WR WKDW LQ ([HU FLVH WKDW GHVFULEHV WKH HTXDWLRQ RI WKH OLQH WKURXJK .x1 ; y1 / ZLWK VORSH m ([HUFLVHV DQG FRQFHUQ GHWHUPLQDQWV RI WKH IROORZLQJ 9DQ GHUPRQGH PDWULFHV 2 3 2 3 2 3 1 t t t 1 a a2 6 7 61 x1 x12 x13 7 6 7 2 6 7 T D 41 b b 5; V .t / D 6 7 x2 x22 x23 5 41 1 c c2 1 x3 x32 x33 8VH URZ RSHUDWLRQV WR VKRZ WKDW GHW T D .b a/.c a/.c b/ /HW f .t/ D GHW V ZLWK x1 x2 DQG x3 DOO GLVWLQFW ([SODLQ ZK\ f .t / LV D FXELF SRO\QRPLDO VKRZ WKDW WKH FRHĴFLHQW RI t 3 LV QRQ]HUR DQG ıQG WKUHH SRLQWV RQ WKH JUDSK RI f
A C
B D
D
I X
0 I
A 0
B Y
DQG WKHQ VKRZ WKDW A B GHW D .GHW A/ GHW.D &$1 B/ C D E 6KRZ WKDW LI AC D &$ WKHQ A B D GHW.AD CB/ GHW C D /HW J EH WKH n n PDWUL[ RI DOO ŖV DQG FRQVLGHU A D .a b/I C bJ WKDW LV 2 3 a b b b 6 7 a b b7 6b 6b 7 b b a AD6 : :7 :: 6 :: 7 ::: : 4: :: :: 5
b
b
b
a
&RQıUP WKDW GHW A D .a b/ Œa C .n 1/b DV IROORZV D 6XEWUDFW URZ IURP URZ URZ IURP URZ DQG VR RQ DQG H[SODLQ ZK\ WKLV GRHV QRW FKDQJH WKH GHWHUPLQDQW RI WKH PDWUL[ n1
E :LWK WKH UHVXOWLQJ PDWUL[ IURP SDUW D DGG FROXPQ WR FROXPQ WKHQ DGG WKLV QHZ FROXPQ WR FROXPQ DQG VR RQ DQG H[SODLQ ZK\ WKLV GRHV QRW FKDQJH WKH GHWHUPLQDQW F )LQG WKH GHWHUPLQDQW RI WKH UHVXOWLQJ PDWUL[ IURP E
)LQG WKH DUHD RI WKH SDUDOOHORJUDP GHWHUPLQHG E\ WKH SRLQWV .1; 4/ .1; 5/ .3; 9/ DQG .5; 8/ +RZ FDQ \RX WHOO WKDW WKH TXDGULODWHUDO GHWHUPLQHG E\ WKH SRLQWV LV DFWXDOO\ D SDUDOOHOR JUDP" 8VH WKH FRQFHSW RI DUHD RI D SDUDOOHORJUDP WR ZULWH D VWDWHPHQW DERXW D 2 2 PDWUL[ A WKDW LV WUXH LI DQG RQO\ LI A LV LQYHUWLEOH
/HW A EH WKH RULJLQDO PDWUL[ JLYHQ LQ ([HUFLVH DQG OHW 2 3 ab b b b 6 0 a b b7 6 7 6 b a b7 B D 6 0: :: :: :: 7 :: 6 : 7 : 4 : 5 : : :
0
2
6KRZ WKDW LI A LV LQYHUWLEOH WKHQ DGM A LV LQYHUWLEOH DQG 1 .DGM A/1 D A GHW A >+LQW *LYHQ PDWULFHV B DQG C ZKDW FDOFXODWLRQV ZRXOG VKRZ WKDW C LV WKH LQYHUVH RI B‹ /HW A B C D DQG I EH n n PDWULFHV 8VH WKH GHıQLWLRQ RU SURSHUWLHV RI D GHWHUPLQDQW WR MXVWLI\ WKH IROORZLQJ IRUPXODV 3DUW F LV XVHIXO LQ DSSOLFDWLRQV RI HLJHQYDOXHV &KDSWHU A 0 I 0 D GHW D GHW A E GHW D GHW D 0 I C D
A F GHW C
0 D
A D .GHW A/.GHW D/ D GHW 0
B D
b
b
b 6b 6 6 C D 6b 6: 4 ::
b a b :: :
b b a :: :
:: :
3 b 7 b7 b7 7 ::: 7 5
b
b
b
a
a
1RWLFH WKDW A B DQG C DUH QHDUO\ WKH VDPH H[FHSW WKDW WKH ıUVW FROXPQ RI A HTXDOV WKH VXP RI WKH ıUVW FROXPQV RI B DQG C $ OLQHDULW\ SURSHUW\ RI WKH GHWHUPLQDQW IXQFWLRQ GLVFXVVHG LQ 6HFWLRQ VD\V WKDW GHW A D GHW B C GHW C 8VH WKLV IDFW WR SURYH WKH IRUPXOD LQ ([HUFLVH E\ LQGXFWLRQ RQ WKH VL]H RI PDWUL[ A 7 $SSO\ WKH UHVXOW RI ([HUFLVH WR ıQG WKH GHWHUPLQDQWV RI WKH
IROORZLQJ PDWULFHV DQG FRQıUP \RXU DQVZHUV XVLQJ D PDWUL[ SURJUDP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$IBQUFS 6XSSOHPHQWDU\ ([HUFLVHV 2
3 68 6 48 8
8 3 8 8
8 8 3 8
2
3 8 87 7 85 3
8 63 6 63 6 43 3
3 8 3 3 3
3 3 8 3 3
3 3 3 8 3
3 3 7 37 37 7 35 8
7 8VH D PDWUL[ SURJUDP WR FRPSXWH WKH GHWHUPLQDQWV RI WKH
IROORZLQJ PDWULFHV 2 3 1 1 1 41 2 25 1 2 3 2
1 61 6 61 6 41 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
2
1 61 6 41 1
3 1 27 7 37 7 45 5
1 2 2 2
1 2 3 3
3 1 27 7 35 4
8VH WKH UHVXOWV WR JXHVV WKH GHWHUPLQDQW RI WKH PDWUL[ M DQG
FRQıUP \RXU JXHVV E\ XVLQJ URZ RSHUDWLRQV WR HYDOXDWH WKDW GHWHUPLQDQW 2 3 1 1 1 1 61 7 27 2 2 6 61 7 2 3 3 M D6 : :: 7 :: 6 :: 7 ::: : 4: :: :5
1
2
3
n
7 8VH WKH PHWKRG RI ([HUFLVH WR JXHVV WKH GHWHUPLQDQW RI
2
1 61 6 61 6: 6: 4:
1 3 3 :: :
1 3 6 :: :
:: :
1 3 6 :: :
1
3
6
3.n 1/
3
7 7 7 7 7 5
-XVWLI\ \RXU FRQMHFWXUH >+LQW 8VH ([HUFLVH F DQG WKH UHVXOW RI ([HUFLVH @
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
9HFWRU 6SDFHV
*OUSPEVDUPSZ &YBNQMF
',6&5(7(7,0( 6,*1$/6 $1' ',*,7$/ 6,*1$/ 352&(66,1* :KDW LV GLJLWDO VLJQDO SURFHVVLQJ" -XVW DVN $OH[D ZKR XVHV VLJQDO SURFHVVLQJ WR UHFRUG \RXU TXHVWLRQ DQG GHOLYHU WKH DQVZHU ,Q %& WKH (J\SWLDQV FUHDWHG WKH ıUVW UHFRUGHG GLVFUHWHWLPH VLJQDO E\ FDUYLQJ LQIRUPDWLRQ DERXW WKH IJRRGLQJ RI WKH 1LOH LQWR D 3DOHUPR 6WRQH 'HVSLWH WKH HDUO\ EHJLQQLQJV RI GLVFUHWHWLPH VLJQDOV LW ZDV QRW XQWLO WKH V WKDW &ODXGH 6KDQQRQ VHW Rij WKH GLJLWDO UHYROXWLRQ ZLWK WKH LGHDV DUWLFXODWHG LQ KLV SDSHU ŗ$ 0DWKHPDWLFDO 7KHRU\ RI &RPPXQLFDWLRQŘ :KHQ D SHUVRQ VSHDNV LQWR D GLJLWDO SURFHVVRU OLNH $OH[D LW FRQYHUWV WKH VRXQGV PDGH E\ WKH YRLFH LQWR D GLVFUHWHWLPH VLJQDOŠEDVLFDOO\ D VHTXHQFH RI QXPEHUV fyk g ZKHUH k UHSUHVHQWV WKH WLPH DW ZKLFK WKH YDOXH yk ZDV UHFRUGHG 7KHQ XVLQJ OLQHDU WLPH LQYDULDQW /7, WUDQVIRU PDWLRQV WKH VLJQDO LV SURFHVVHG WR ıOWHU RXW XQZDQWHG QRLVH VXFK DV WKH VRXQG RI D IDQ UXQQLQJ LQ WKH EDFNJURXQG 7KH SURFHVVHG VLJQDO LV WKHQ FRPSDUHG WR WKH VLJQDOV SURGXFHG E\ UHFRUGLQJV RI WKH LQGLYLGXDO VRXQGV WKDW PDNH XS WKH ODQJXDJH RI WKH VSHDNHU )LJXUH VKRZV D UHFRUGLQJ RI WKH ZRUG ŗ\HVŘ DQG RI WKH ZRUG ŗQRŘ LOOXVWUDWLQJ WKDW WKH VLJQDOV SURGXFHG DUH TXLWH GLVWLQFW 2QFH WKH VRXQGV VSRNHQ LQ WKH TXHVWLRQ DUH LGHQWLıHG PDFKLQH OHDUQLQJ LV XVHG WR PDNH D EHVW JXHVV DW WKH LQWHQGHG TXHVWLRQ IRU D GLJLWDO SURFHVVRU OLNH $OH[D 7KH GLJLWDO SURFHVVRU WKHQ VHDUFKHV WKURXJK GLJLWL]HG GDWD WR ıQG WKH PRVW DSSURSULDWH UHVSRQVH )LQDOO\ WKH VLJQDO LV SURFHVVHG IXUWKHU WR SURGXFH WKH YLUWXDO VRXQGV WKDW UHSOLFDWH D VSRNHQ DQVZHU
'LJLWDO VLJQDO SURFHVVLQJ '63 LV WKH EUDQFK RI HQJLQHHULQJ WKDW LQ WKH VSDQ RI MXVW D IHZ GHFDGHV KDV UHYROXWLRQL]HG LQWHUSHUVRQDO FRPPXQLFDWLRQ DQG WKH HQWHUWDLQPHQW LQGXVWU\ %\ UHZRUNLQJ WKH SULQFLSOHV RI HOHFWURQLFV WHOHFRPPXQLFDWLRQ DQG FRPSXWHU VFLHQFH LQWR D XQLI\LQJ SDUDGLJP '63 LV DW WKH KHDUW RI WKH GLJLWDO UHYROXWLRQ $ VPDUWSKRQH ıWV HDVLO\ LQ WKH SDOP RI \RXU KDQG UHSODFLQJ QXPHURXV RWKHU GHYLFHV VXFK DV FDPHUDV YLGHR UHFRUGHUV &' SOD\HUV GD\ SODQQHUV DQG FDOFXODWRUV DQG WDNLQJ WKH IDQWDV\ FRPSRQHQW RXW RI %RUJHVŖV LPDJLQHG /LEUDU\ RI %DEHO 7KH XVHIXOQHVV RI GLVFUHWHWLPH VLJQDOV DQG '63 JRHV ZHOO EH\RQG V\VWHPV HQJLQHHULQJ 7HFKQLFDO DQDO\VLV LV HPSOR\HG LQ WKH LQYHVWPHQW VHFWRU 7UDGLQJ RSSRUWXQLWLHV DUH LGHQWLıHG E\ DSSO\LQJ '63 WR WKH GLVFUHWHWLPH VLJQDOV FUHDWHG ZKHQ WKH SULFH RU YROXPH WUDGHG RI D VWRFN LV UHFRUGHG RYHU WLPH ,Q ([DPSOH RI 6HFWLRQ SULFH GDWD LV VPRRWKHG XVLQJ D OLQHDU WUDQVIRUPDWLRQ ,Q WKH HQWHUWDLQPHQW LQGXVWU\ DXGLR DQG YLGHR DUH SURGXFHG “Yes”
“No”
'*(63&
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
YLUWXDOO\ DQG V\QWKHVL]HG XVLQJ '63 ,Q ([DPSOH RI 6HFWLRQ ZH VHH KRZ VLJQDO SURFHVVLQJ FDQ EH XVHG WR DGG ULFKQHVV WR YLUWXDO VRXQGV
VHW RI DOO SRVVLEOH VLJQDOV S LV WUHDWHG DV D YHFWRU VSDFH ,Q 6HFWLRQV DQG ZH ORRN DW WKH YHFWRU VSDFH RI GLVFUHWHWLPH VLJQDOV LQ PRUH GHWDLO
'LVFUHWHWLPH VLJQDOV DQG '63 KDYH EHFRPH VLJQLı FDQW WRROV LQ PDQ\ LQGXVWULHV DQG DUHDV RI UHVHDUFK 0DWK HPDWLFDOO\ VSHDNLQJ GLVFUHWHWLPH VLJQDOV FDQ EH YLHZHG DV YHFWRUV WKDW DUH SURFHVVHG XVLQJ OLQHDU WUDQVIRUPDWLRQV 7KH RSHUDWLRQV RI DGGLQJ VFDOLQJ DQG DSSO\LQJ OLQHDU WUDQVIRUPDWLRQV WR VLJQDOV LV FRPSOHWHO\ DQDORJRXV WR WKH VDPH RSHUDWLRQV IRU YHFWRUV LQ Rn )RU WKLV UHDVRQ WKH
7KH IRFXV RI &KDSWHU LV WR H[WHQG WKH WKHRU\ RI YHFWRUV LQ Rn WR LQFOXGH VLJQDOV DQG RWKHU PDWKHPDWLFDO VWUXFWXUHV WKDW EHKDYH OLNH WKH YHFWRUV \RX DUH DOUHDG\ IDPLOLDU ZLWK /DWHU RQ LQ WKH WH[W \RX ZLOO VHH KRZ RWKHU YHFWRU VSDFHV DQG WKHLU FRUUHVSRQGLQJ OLQHDU WUDQVIRUPDWLRQV DULVH LQ HQJLQHHULQJ SK\VLFV ELRORJ\ DQG VWDWLVWLFV
7KH PDWKHPDWLFDO VHHGV SODQWHG LQ &KDSWHUV DQG JHUPLQDWH DQG EHJLQ WR EORVVRP LQ WKLV FKDSWHU 7KH EHDXW\ DQG SRZHU RI OLQHDU DOJHEUD ZLOO EH VHHQ PRUH FOHDUO\ ZKHQ \RX YLHZ Rn DV RQO\ RQH RI D YDULHW\ RI YHFWRU VSDFHV WKDW DULVH QDWXUDOO\ LQ DSSOLHG SUREOHPV %HJLQQLQJ ZLWK EDVLF GHıQLWLRQV LQ 6HFWLRQ WKH JHQHUDO YHFWRU VSDFH IUDPH ZRUN GHYHORSV JUDGXDOO\ WKURXJKRXW WKH FKDSWHU $ JRDO RI 6HFWLRQV DQG LV WR GHPRQVWUDWH KRZ FORVHO\ RWKHU YHFWRU VSDFHV UHVHPEOH Rn 6HFWLRQV DQG DSSO\ WKH WKHRU\ RI WKLV FKDSWHU WR GLVFUHWHWLPH VLJQDOV '63 DQG GLijHUHQFH HTXDWLRQVŠWKH PDWKHPDWLFV XQGHUO\LQJ WKH GLJLWDO UHYROXWLRQ
9HFWRU 6SDFHV DQG 6XEVSDFHV 0XFK RI WKH WKHRU\ LQ &KDSWHUV DQG UHVWHG RQ FHUWDLQ VLPSOH DQG REYLRXV DOJH EUDLF SURSHUWLHV RI Rn OLVWHG LQ 6HFWLRQ ,Q IDFW PDQ\ RWKHU PDWKHPDWLFDO V\VWHPV KDYH WKH VDPH SURSHUWLHV 7KH VSHFLıF SURSHUWLHV RI LQWHUHVW DUH OLVWHG LQ WKH IROORZLQJ GHıQLWLRQ
%&'*/*5*0/
$ YHFWRU VSDFH LV D QRQHPSW\ VHW V RI REMHFWV FDOOHG YHFWRUV RQ ZKLFK DUH GHıQHG WZR RSHUDWLRQV FDOOHG DGGLWLRQ DQG PXOWLSOLFDWLRQ E\ VFDODUV UHDO QXPEHUV VXEMHFW WR WKH WHQ D[LRPV RU UXOHV OLVWHG EHORZ 7KH D[LRPV PXVW KROG IRU DOO YHFWRUV X Y DQG Z LQ V DQG IRU DOO VFDODUV c DQG d
7KH VXP RI X DQG Y GHQRWHG E\ X C Y LV LQ V X C Y D Y C X .X C Y/ C Z D X C .Y C Z/ 7KHUH LV D ]HUR YHFWRU LQ V VXFK WKDW X C D X )RU HDFK X LQ V WKHUH LV D YHFWRU X LQ V VXFK WKDW X C .X/ D
1 7HFKQLFDOO\ V LV D UHDO YHFWRU VSDFH $OO RI WKH WKHRU\ LQ WKLV FKDSWHU DOVR KROGV IRU D FRPSOH[ YHFWRU VSDFH LQ ZKLFK WKH VFDODUV DQG PDWUL[ HQWULHV DUH FRPSOH[ QXPEHUV :H ZLOO ORRN DW WKLV EULHIJ\ LQ &KDSWHU 8QWLO WKHQ DOO VFDODUV DQG PDWUL[ HQWULHV DUH DVVXPHG WR EH UHDO
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
9HFWRU 6SDFHV DQG 6XEVSDFHV
7KH VFDODU PXOWLSOH RI X E\ c GHQRWHG E\ c X LV LQ V c.X C Y/ D c X C c Y .c C d /X D c X C d X c.d X/ D .cd /X 1X D X
8VLQJ RQO\ WKHVH D[LRPV RQH FDQ VKRZ WKDW WKH ]HUR YHFWRU LQ $[LRP LV XQLTXH DQG WKH YHFWRU X FDOOHG WKH QHJDWLYH RI X LQ $[LRP LV XQLTXH IRU HDFK X LQ V 6HH ([HUFLVHV DQG 3URRIV RI WKH IROORZLQJ VLPSOH IDFWV DUH DOVR RXWOLQHG LQ WKH H[HUFLVHV )RU HDFK X LQ V DQG VFDODU c
0X D c D X D .1/X
(;$03/( 7KH VSDFHV Rn ZKHUH n 1 DUH WKH SUHPLHU H[DPSOHV RI YHFWRU
VSDFHV 7KH JHRPHWULF LQWXLWLRQ GHYHORSHG IRU R3 ZLOO KHOS \RX XQGHUVWDQG DQG YLVXDOL]H PDQ\ FRQFHSWV WKURXJKRXW WKH FKDSWHU
(;$03/( /HW V EH WKH VHW RI DOO DUURZV GLUHFWHG OLQH VHJPHQWV LQ WKUHH v
'*(63&
3v
2v
GLPHQVLRQDO VSDFH ZLWK WZR DUURZV UHJDUGHG DV HTXDO LI WKH\ KDYH WKH VDPH OHQJWK DQG SRLQW LQ WKH VDPH GLUHFWLRQ 'HıQH DGGLWLRQ E\ WKH SDUDOOHORJUDP UXOH IURP 6HFWLRQ DQG IRU HDFK Y LQ V GHıQH c Y WR EH WKH DUURZ ZKRVH OHQJWK LV jcj WLPHV WKH OHQJWK RI Y SRLQWLQJ LQ WKH VDPH GLUHFWLRQ DV Y LI c 0 DQG RWKHUZLVH SRLQWLQJ LQ WKH RSSRVLWH GLUHFWLRQ 6HH )LJXUH 6KRZ WKDW V LV D YHFWRU VSDFH 7KLV VSDFH LV D FRPPRQ PRGHO LQ SK\VLFDO SUREOHPV IRU YDULRXV IRUFHV 62/87,21 7KH GHıQLWLRQ RI V LV JHRPHWULF XVLQJ FRQFHSWV RI OHQJWK DQG GLUHFWLRQ
1R xy´FRRUGLQDWH V\VWHP LV LQYROYHG $Q DUURZ RI ]HUR OHQJWK LV D VLQJOH SRLQW DQG UHSUHVHQWV WKH ]HUR YHFWRU 7KH QHJDWLYH RI Y LV .1/Y 6R $[LRPV DQG DUH HYLGHQW 7KH UHVW DUH YHULıHG E\ JHRPHWU\ )RU LQVWDQFH VHH )LJXUHV DQG v1u
v w
u
v
u
u
v1w u1v
u1v
u1v1w
'*(63& X C Y D Y C X
'*(63& .X C Y/ C Z D X C .Y C Z/
(;$03/( /HW S EH WKH VSDFH RI DOO GRXEO\ LQıQLWH VHTXHQFHV RI QXPEHUV XVXDOO\ ZULWWHQ LQ D URZ UDWKHU WKDQ D FROXPQ
fyk g D .: : : ; y2 ; y1 ; y0 ; y1 ; y2 ; : : :/
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
,I f´k g LV DQRWKHU HOHPHQW RI S WKHQ WKH VXP fyk g C f´k g LV WKH VHTXHQFH fyk C ´k g IRUPHG E\ DGGLQJ FRUUHVSRQGLQJ WHUPV RI fyk g DQG f´k g 7KH VFDODU PXOWLSOH c fyk g LV WKH VHTXHQFH fcyk g 7KH YHFWRU VSDFH D[LRPV DUH YHULıHG LQ WKH VDPH ZD\ DV IRU Rn (OHPHQWV RI S DULVH LQ HQJLQHHULQJ IRU H[DPSOH ZKHQHYHU D VLJQDO LV PHDVXUHG RU VDPSOHG DW GLVFUHWH WLPHV $ VLJQDO PLJKW EH HOHFWULFDO PHFKDQLFDO RSWLFDO ELRORJLFDO DXGLR DQG VR RQ 7KH GLJLWDO VLJQDO SURFHVVRUV PHQWLRQHG LQ WKH FKDSWHU LQWURGXFWLRQ XVH GLVFUHWH RU GLJLWDO VLJQDOV )RU FRQYHQLHQFH ZH ZLOO FDOO S WKH VSDFH RI GLVFUHWHWLPH VLJQDOV $ VLJQDO PD\ EH YLVXDOL]HG E\ D JUDSK DV LQ )LJXUH
25
0
5
10
'*(63& $ GLVFUHWHWLPH VLJQDO
(;$03/( )RU n 0 WKH VHW Pn RI SRO\QRPLDOV RI GHJUHH DW PRVW n FRQVLVWV RI DOO SRO\QRPLDOV RI WKH IRUP S.t / D a0 C a1 t C a2 t 2 C C an t n
ZKHUH WKH FRHĴFLHQWV a0 ; : : : ; an DQG WKH YDULDEOH t DUH UHDO QXPEHUV 7KH GHJUHH RI S LV WKH KLJKHVW SRZHU RI t LQ ZKRVH FRHĴFLHQW LV QRW ]HUR ,I S.t/ D a0 ¤ 0 WKH GHJUHH RI S LV ]HUR ,I DOO WKH FRHĴFLHQWV DUH ]HUR S LV FDOOHG WKH ]HUR SRO\QRPLDO 7KH ]HUR SRO\QRPLDO LV LQFOXGHG LQ Pn HYHQ WKRXJK LWV GHJUHH IRU WHFKQLFDO UHDVRQV LV QRW GHıQHG ,I S LV JLYHQ E\ DQG LI T.t / D b0 C b1 t C C bn t n WKHQ WKH VXP S C T LV GHıQHG E\
.S C T/.t/ D S.t / C T.t/ D .a0 C b0 / C .a1 C b1 /t C C .an C bn /t n 7KH VFDODU PXOWLSOH c S LV WKH SRO\QRPLDO GHıQHG E\
.c S/.t/ D c S.t / D ca0 C .ca1 /t C C .can /t n 7KHVH GHıQLWLRQV VDWLVI\ $[LRPV DQG EHFDXVH S C T DQG c S DUH SRO\QRPLDOV RI GHJUHH OHVV WKDQ RU HTXDO WR n $[LRPV DQG ş IROORZ IURP SURSHUWLHV RI WKH UHDO QXPEHUV &OHDUO\ WKH ]HUR SRO\QRPLDO DFWV DV WKH ]HUR YHFWRU LQ $[LRP )LQDOO\ .1/S DFWV DV WKH QHJDWLYH RI S VR $[LRP LV VDWLVıHG 7KXV Pn LV D YHFWRU VSDFH 7KH YHFWRU VSDFHV Pn IRU YDULRXV n DUH XVHG IRU LQVWDQFH LQ VWDWLVWLFDO WUHQG DQDO\VLV RI GDWD GLVFXVVHG LQ 6HFWLRQ
(;$03/( /HW V EH WKH VHW RI DOO UHDOYDOXHG IXQFWLRQV GHıQHG RQ D VHW D 7\SL FDOO\ D LV WKH VHW RI UHDO QXPEHUV RU VRPH LQWHUYDO RQ WKH UHDO OLQH )XQFWLRQV DUH DGGHG LQ WKH XVXDO ZD\ I C J LV WKH IXQFWLRQ ZKRVH YDOXH DW t LQ WKH GRPDLQ D LV I.t / C J.t / /LNHZLVH IRU D VFDODU c DQG DQ I LQ V WKH VFDODU PXOWLSOH c I LV WKH IXQFWLRQ ZKRVH YDOXH DW t LV c I.t/ )RU LQVWDQFH LI D D R I.t / D 1 C VLQ 2t DQG J.t/ D 2 C :5t WKHQ
.I C J/.t/ D 3 C VLQ 2t C :5t
DQG
.2J/.t / D 4 C t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
9HFWRU 6SDFHV DQG 6XEVSDFHV f1g f
7ZR IXQFWLRQV LQ V DUH HTXDO LI DQG RQO\ LI WKHLU YDOXHV DUH HTXDO IRU HYHU\ t LQ D +HQFH WKH ]HUR YHFWRU LQ V LV WKH IXQFWLRQ WKDW LV LGHQWLFDOO\ ]HUR I.t / D 0 IRU DOO t DQG WKH QHJDWLYH RI I LV .1/I $[LRPV DQG DUH REYLRXVO\ WUXH DQG WKH RWKHU D[LRPV IROORZ IURP SURSHUWLHV RI WKH UHDO QXPEHUV VR V LV D YHFWRU VSDFH
g
0
'*(63&
7KH VXP RI WZR YHFWRUV IXQFWLRQV
,W LV LPSRUWDQW WR WKLQN RI HDFK IXQFWLRQ LQ WKH YHFWRU VSDFH V RI ([DPSOH DV D VLQJOH REMHFW DV MXVW RQH ŗSRLQWŘ RU YHFWRU LQ WKH YHFWRU VSDFH 7KH VXP RI WZR YHFWRUV I DQG J IXQFWLRQV LQ V RU HOHPHQWV RI DQ\ YHFWRU VSDFH FDQ EH YLVXDOL]HG DV LQ )LJXUH EHFDXVH WKLV FDQ KHOS \RX FDUU\ RYHU WR D JHQHUDO YHFWRU VSDFH WKH JHRPHWULF LQWXLWLRQ \RX KDYH GHYHORSHG ZKLOH ZRUNLQJ ZLWK WKH YHFWRU VSDFH Rn 6HH WKH 6WXG\ *XLGH IRU KHOS DV \RX OHDUQ WR DGRSW WKLV PRUH JHQHUDO SRLQW RI YLHZ
6XEVSDFHV ,Q PDQ\ SUREOHPV D YHFWRU VSDFH FRQVLVWV RI DQ DSSURSULDWH VXEVHW RI YHFWRUV IURP VRPH ODUJHU YHFWRU VSDFH ,Q WKLV FDVH RQO\ WKUHH RI WKH WHQ YHFWRU VSDFH D[LRPV QHHG WR EH FKHFNHG WKH UHVW DUH DXWRPDWLFDOO\ VDWLVıHG
%&'*/*5*0/
$ VXEVSDFH RI D YHFWRU VSDFH V LV D VXEVHW H RI V WKDW KDV WKUHH SURSHUWLHV D 7KH ]HUR YHFWRU RI V LV LQ H E H LV FORVHG XQGHU YHFWRU DGGLWLRQ 7KDW LV IRU HDFK X DQG Y LQ H WKH VXP X C Y LV LQ H F H LV FORVHG XQGHU PXOWLSOLFDWLRQ E\ VFDODUV 7KDW LV IRU HDFK X LQ H DQG HDFK VFDODU c WKH YHFWRU c X LV LQ H
H 0 V
'*(63&
$ VXEVSDFH RI V
3URSHUWLHV D E DQG F JXDUDQWHH WKDW D VXEVSDFH H RI V LV LWVHOI D YHFWRU VSDFH XQGHU WKH YHFWRU VSDFH RSHUDWLRQV DOUHDG\ GHıQHG LQ V 7R YHULI\ WKLV QRWH WKDW SURSHUWLHV D E DQG F DUH $[LRPV DQG $[LRPV DQG ş DUH DXWRPDWLFDOO\ WUXH LQ H EHFDXVH WKH\ DSSO\ WR DOO HOHPHQWV RI V LQFOXGLQJ WKRVH LQ H $[LRP LV DOVR WUXH LQ H EHFDXVH LI X LV LQ H WKHQ .1/X LV LQ H E\ SURSHUW\ F DQG ZH NQRZ IURP HTXDWLRQ HDUOLHU LQ WKLV VHFWLRQ WKDW .1/X LV WKH YHFWRU X LQ $[LRP 6R HYHU\ VXEVSDFH LV D YHFWRU VSDFH &RQYHUVHO\ HYHU\ YHFWRU VSDFH LV D VXEVSDFH RI LWVHOI DQG SRVVLEO\ RI RWKHU ODUJHU VSDFHV 7KH WHUP VXEVSDFH LV XVHG ZKHQ DW OHDVW WZR YHFWRU VSDFHV DUH LQ PLQG ZLWK RQH LQVLGH WKH RWKHU DQG WKH SKUDVH VXEVSDFH RI V LGHQWLıHV V DV WKH ODUJHU VSDFH 6HH )LJXUH
(;$03/( 7KH VHW FRQVLVWLQJ RI RQO\ WKH ]HUR YHFWRU LQ D YHFWRU VSDFH V LV D VXEVSDFH RI V FDOOHG WKH ]HUR VXEVSDFH DQG ZULWWHQ DV fg
(;$03/( /HW P EH WKH VHW RI DOO SRO\QRPLDOV ZLWK UHDO FRHĴFLHQWV ZLWK RSHUD
WLRQV LQ P GHıQHG DV IRU IXQFWLRQV 7KHQ P LV D VXEVSDFH RI WKH VSDFH RI DOO UHDOYDOXHG IXQFWLRQV GHıQHG RQ R $OVR IRU HDFK n 0 Pn LV D VXEVSDFH RI P EHFDXVH Pn LV D VXEVHW RI P WKDW FRQWDLQV WKH ]HUR SRO\QRPLDO WKH VXP RI WZR SRO\QRPLDOV LQ Pn LV DOVR LQ Pn DQG D VFDODU PXOWLSOH RI D SRO\QRPLDO LQ Pn LV DOVR LQ Pn 2
6RPH WH[WV UHSODFH SURSHUW\ D LQ WKLV GHıQLWLRQ E\ WKH DVVXPSWLRQ WKDW H LV QRQHPSW\ 7KHQ D FRXOG EH GHGXFHG IURP F DQG WKH IDFW WKDW 0X D %XW WKH EHVW ZD\ WR WHVW IRU D VXEVSDFH LV WR ORRN ıUVW IRU WKH ]HUR YHFWRU ,I LV LQ H WKHQ SURSHUWLHV E DQG F PXVW EH FKHFNHG ,I LV QRW LQ H WKHQ H FDQQRW EH D VXEVSDFH DQG WKH RWKHU SURSHUWLHV QHHG QRW EH FKHFNHG
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
(;$03/( 7KH VHW RI ıQLWHO\ VXSSRUWHG VLJQDOV Sf FRQVLVWV RI WKH VLJQDOV
fyk g ZKHUH RQO\ ıQLWHO\ PDQ\ RI WKH yk DUH QRQ]HUR 6LQFH WKH ]HUR VLJQDO D .: : : ; 0; 0; 0; : : :/ KDV QR QRQ]HUR HQWULHV LW LV FOHDUO\ DQ HOHPHQW RI Sf ,I WZR VLJQDOV ZLWK ıQLWHO\ PDQ\ QRQ]HURV DUH DGGHG WKH UHVXOWLQJ VLJQDO ZLOO KDYH ıQLWHO\ PDQ\ QRQ]HURV 6LPLODUO\ LI D VLJQDO ZLWK ıQLWHO\ PDQ\ QRQ]HURV LV VFDOHG WKH UHVXOW ZLOO VWLOO KDYH ıQLWHO\ PDQ\ QRQ]HURV 7KXV Sf LV D VXEVSDFH RI S WKH GLVFUHWHWLPH VLJQDOV 6HH )LJXUH c1d c d
bc c t
t
'*(63&
(;$03/( 7KH YHFWRU VSDFH R2 LV QRW D VXEVSDFH RI R3 EHFDXVH R2 LV QRW HYHQ D
x3
VXEVHW RI R3 7KH YHFWRUV LQ R3 DOO KDYH WKUHH HQWULHV ZKHUHDV WKH YHFWRUV LQ R2 KDYH RQO\ WZR 7KH VHW 9 82 3 = < s H D 4 t 5 W s DQG t DUH UHDO : ; 0
H
x2
x1 '*(63&
7KH x1 x2 SODQH DV D VXEVSDFH RI R3
LV D VXEVHW RI R3 WKDW ŗORRNVŘ DQG ŗDFWVŘ OLNH R2 DOWKRXJK LW LV ORJLFDOO\ GLVWLQFW IURP R2 6HH )LJXUH 6KRZ WKDW H LV D VXEVSDFH RI R3 62/87,21 7KH ]HUR YHFWRU LV LQ H DQG H LV FORVHG XQGHU YHFWRU DGGLWLRQ DQG VFDODU PXOWLSOLFDWLRQ EHFDXVH WKHVH RSHUDWLRQV RQ YHFWRUV LQ H DOZD\V SURGXFH YHFWRUV ZKRVH WKLUG HQWULHV DUH ]HUR DQG VR EHORQJ WR H / 7KXV H LV D VXEVSDFH RI R3
(;$03/( $ SODQH LQ R3 QRW WKURXJK WKH RULJLQ LV QRW D VXEVSDFH RI R3 EHFDXVH
x2
WKH SODQH GRHV QRW FRQWDLQ WKH ]HUR YHFWRU RI R3 6LPLODUO\ D OLQH LQ R2 QRW WKURXJK WKH RULJLQ VXFK DV LQ )LJXUH LV QRW D VXEVSDFH RI R2
$ 6XEVSDFH 6SDQQHG E\ D 6HW
H x1
'*(63&
$ OLQH WKDW LV QRW D YHFWRU VSDFH
7KH QH[W H[DPSOH LOOXVWUDWHV RQH RI WKH PRVW FRPPRQ ZD\V RI GHVFULELQJ D VXEVSDFH $V LQ &KDSWHU WKH WHUP OLQHDU FRPELQDWLRQ UHIHUV WR DQ\ VXP RI VFDODU PXOWLSOHV RI YHFWRUV DQG 6SDQ fY1 ; : : : ; Yp g GHQRWHV WKH VHW RI DOO YHFWRUV WKDW FDQ EH ZULWWHQ DV OLQHDU FRPELQDWLRQV RI Y1 ; : : : ; Yp
(;$03/( *LYHQ Y1 DQG Y2 LQ D YHFWRU VSDFH V OHW H D 6SDQ fY1 ; Y2 g 6KRZ WKDW H LV D VXEVSDFH RI V 62/87,21 7KH ]HUR YHFWRU LV LQ H VLQFH D 0Y1 C 0Y2 7R VKRZ WKDW H LV FORVHG
XQGHU YHFWRU DGGLWLRQ WDNH WZR DUELWUDU\ YHFWRUV LQ H VD\ X D s1 Y1 C s2 Y2
DQG
Z D t1 Y1 C t2 Y2
%\ $[LRPV DQG IRU WKH YHFWRU VSDFH V X C Z D .s1 Y1 C s2 Y2 / C .t1 Y1 C t2 Y2 / D .s1 C t1 /Y1 C .s2 C t2 /Y2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
9HFWRU 6SDFHV DQG 6XEVSDFHV
6R X C Z LV LQ H )XUWKHUPRUH LI c LV DQ\ VFDODU WKHQ E\ $[LRPV DQG x3
v1
0
c X D c.s1 Y1 C s2 Y2 / D .cs1 /Y1 C .cs2 /Y2 ZKLFK VKRZV WKDW c X LV LQ H DQG H LV FORVHG XQGHU VFDODU PXOWLSOLFDWLRQ 7KXV H LV D VXEVSDFH RI V
v2
x2 x1
'*(63&
$Q H[DPSOH RI D VXEVSDFH
5)&03&.
,Q 6HFWLRQ \RX ZLOO VHH WKDW HYHU\ QRQ]HUR VXEVSDFH RI R3 RWKHU WKDQ R3 LWVHOI LV HLWKHU 6SDQ fY1 Y2 g IRU VRPH OLQHDUO\ LQGHSHQGHQW Y1 DQG Y2 RU 6SDQ fYg IRU Y ¤ ,Q WKH ıUVW FDVH WKH VXEVSDFH LV D SODQH WKURXJK WKH RULJLQ LQ WKH VHFRQG FDVH LW LV D OLQH WKURXJK WKH RULJLQ 6HH )LJXUH ,W LV KHOSIXO WR NHHS WKHVH JHRPHWULF SLFWXUHV LQ PLQG HYHQ IRU DQ DEVWUDFW YHFWRU VSDFH 7KH DUJXPHQW LQ ([DPSOH FDQ HDVLO\ EH JHQHUDOL]HG WR SURYH WKH IROORZLQJ WKHRUHP ,I Y1 ; : : : ; Yp DUH LQ D YHFWRU VSDFH V WKHQ 6SDQ fY1 ; : : : ; Yp g LV D VXEVSDFH RI V
:H FDOO 6SDQ fY1 ; : : : ; Yp g WKH VXEVSDFH VSDQQHG RU JHQHUDWHG E\ fY1 ; : : : ; Yp g *LYHQ DQ\ VXEVSDFH H RI V D VSDQQLQJ RU JHQHUDWLQJ VHW IRU H LV D VHW fY1 ; : : : ; Yp g LQ H VXFK WKDW H D 6SDQ fY1 ; : : : ; Yp g 7KH QH[W H[DPSOH VKRZV KRZ WR XVH 7KHRUHP
(;$03/( /HW H EH WKH VHW RI DOO YHFWRUV RI WKH IRUP .a 3b; b a; a; b/ ZKHUH a DQG b DUH DUELWUDU\ VFDODUV 7KDW LV OHW H D f.a 3b; b a; a; b/ W a DQG b LQ Rg 6KRZ WKDW H LV D VXEVSDFH RI R4 62/87,21 :ULWH WKH YHFWRUV LQ H DV FROXPQ YHFWRUV 7KHQ DQ DUELWUDU\ YHFWRU LQ H
KDV WKH IRUP 2
3 2 3 2 3 a 3b 1 3 6 ba 7 6 7 6 7 6 7 D a6 1 7 C b 6 1 7 4 a 5 4 15 4 05 b 0 1 6
6
Y1
Y2
7KLV FDOFXODWLRQ VKRZV WKDW H D 6SDQ fY1 ; Y2 g ZKHUH Y1 DQG Y2 DUH WKH YHFWRUV LQGLFDWHG DERYH 7KXV H LV D VXEVSDFH RI R4 E\ 7KHRUHP ([DPSOH LOOXVWUDWHV D XVHIXO WHFKQLTXH RI H[SUHVVLQJ D VXEVSDFH H DV WKH VHW RI OLQHDU FRPELQDWLRQV RI VRPH VPDOO FROOHFWLRQ RI YHFWRUV ,I H D 6SDQ fY1 ; : : : ; Yp g ZH FDQ WKLQN RI WKH YHFWRUV Y1 ; : : : ; Yp LQ WKH VSDQQLQJ VHW DV ŗKDQGOHVŘ WKDW DOORZ XV WR KROG RQ WR WKH VXEVSDFH H &DOFXODWLRQV ZLWK WKH LQıQLWHO\ PDQ\ YHFWRUV LQ H DUH RIWHQ UHGXFHG WR RSHUDWLRQV ZLWK WKH ıQLWH QXPEHU RI YHFWRUV LQ WKH VSDQQLQJ VHW
(;$03/( )RU ZKDW YDOXHV RI h ZLOO \ EH LQ WKH VXEVSDFH RI R3 VSDQQHG E\ Y1 ; Y2 ; Y3 LI
2
3 1 Y1 D 4 1 5; 2
2
3 5 Y2 D 4 4 5; 7
2
3 3 Y3 D 4 1 5; 0
2
3 4 DQG \ D 4 3 5 h
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
62/87,21 7KLV TXHVWLRQ LV 3UDFWLFH 3UREOHP LQ 6HFWLRQ ZULWWHQ KHUH ZLWK
WKH WHUP VXEVSDFH UDWKHU WKDQ 6SDQ fY1 ; Y2 ; Y3 g 7KH VROXWLRQ WKHUH VKRZV WKDW \ LV LQ 6SDQ fY1 ; Y2 ; Y3 g LI DQG RQO\ LI h D 5 7KDW VROXWLRQ LV ZRUWK UHYLHZLQJ QRZ DORQJ ZLWK ([HUFLVHV ş DQG ş LQ 6HFWLRQ
$OWKRXJK PDQ\ YHFWRU VSDFHV LQ WKLV FKDSWHU ZLOO EH VXEVSDFHV RI Rn LW LV LPSRUWDQW WR NHHS LQ PLQG WKDW WKH DEVWUDFW WKHRU\ DSSOLHV WR RWKHU YHFWRU VSDFHV DV ZHOO 9HFWRU VSDFHV RI IXQFWLRQV DULVH LQ PDQ\ DSSOLFDWLRQV DQG WKH\ ZLOO UHFHLYH PRUH DWWHQWLRQ ODWHU 3UDFWLFH 3UREOHPV 6KRZ WKDW WKH VHW H RI DOO SRLQWV LQ R2 RI WKH IRUP .3s; 2 C 5s/ LV QRW D YHFWRU VSDFH E\ VKRZLQJ WKDW LW LV QRW FORVHG XQGHU VFDODU PXOWLSOLFDWLRQ )LQG D VSHFLıF YHFWRU X LQ H DQG D VFDODU c VXFK WKDW c X LV QRW LQ H /HW W D 6SDQ fY1 ; : : : ; Yp g ZKHUH Y1 ; : : : ; Yp DUH LQ D YHFWRU VSDFH V 6KRZ WKDW Yk LV LQ W IRU 1 k p >+LQW )LUVW ZULWH DQ HTXDWLRQ WKDW VKRZV WKDW Y1 LV LQ W 7KHQ DGMXVW \RXU QRWDWLRQ IRU WKH JHQHUDO FDVH@ $Q n n PDWUL[ A LV VDLG WR EH V\PPHWULF LI AT D A /HW S EH WKH VHW RI DOO 3 3 V\PPHWULF PDWULFHV 6KRZ WKDW S LV D VXEVSDFH RI M33 WKH YHFWRU VSDFH RI 3 3 PDWULFHV
([HUFLVHV /HW V EH WKH ıUVW TXDGUDQW LQ WKH xy SODQH WKDW LV OHW x V D W x 0; y 0 y D ,I X DQG Y DUH LQ V LV X C Y LQ V " :K\" E )LQG D VSHFLıF YHFWRU X LQ V DQG D VSHFLıF VFDODU c VXFK WKDW c X LV QRW LQ V 7KLV LV HQRXJK WR VKRZ WKDW V LV QRW D YHFWRU VSDFH /HW W EH WKH XQLRQ RI WKH LQ WKH xy ıUVWDQG WKLUG TXDGUDQWV x SODQH 7KDW LV OHW W D W xy 0 y D ,I X LV LQ W DQG c LV DQ\ VFDODU LV c X LQ W " :K\" E
$OO SRO\QRPLDOV RI GHJUHH DW PRVW ZLWK LQWHJHUV DV FRHĴ FLHQWV $OO SRO\QRPLDOV LQ Pn VXFK WKDW S.0/ D 0
)LQG VSHFLıF YHFWRUV X DQG Y LQ W VXFK WKDW X C Y LV QRW LQ W 7KLV LV HQRXJK WR VKRZ WKDW W LV QRW D YHFWRU VSDFH
/HW H EH WKH VHW RI SRLQWV LQVLGH LQ DQG RQ WKH XQLW FLUFOH x 2 2 WKH [\SODQH 7KDW LV OHW H D W x C y 1 )LQG y D VSHFLıF H[DPSOHŠWZR YHFWRUV RU D YHFWRU DQG D VFDODUŠWR VKRZ WKDW H LV QRW D VXEVSDFH RI R2 &RQVWUXFW D JHRPHWULF ıJXUH WKDW LOOXVWUDWHV ZK\ D OLQH LQ R2 QRW WKURXJK WKH RULJLQ LV QRW FORVHG XQGHU YHFWRU DGGLWLRQ
,Q ([HUFLVHV ş GHWHUPLQH LI WKH JLYHQ VHW LV D VXEVSDFH RI Pn IRU DQ DSSURSULDWH YDOXH RI n -XVWLI\ \RXU DQVZHUV $OO SRO\QRPLDOV RI WKH IRUP S.t/ D at 2 ZKHUH a LV LQ R $OO SRO\QRPLDOV RI WKH IRUP S.t/ D a C t 2 ZKHUH a LV LQ R
2
3 s /HW H EH WKH VHW RI DOO YHFWRUV RI WKH IRUP 4 3s 5 )LQG D 2s YHFWRU Y LQ R3 VXFK WKDW H D 6SDQ fYg :K\ GRHV WKLV VKRZ WKDW H LV D VXEVSDFH RI R3 " 2 3 2t /HW H EH WKH VHW RI DOO YHFWRUV RI WKH IRUP 4 0 5 6KRZ WKDW t H LV D VXEVSDFH RI R3 8VH WKH PHWKRG RI ([HUFLVH 2 3 5b C 2c 5 b /HW W EH WKH VHW RI DOO YHFWRUV RI WKH IRUP 4 c ZKHUH b DQG c DUH DUELWUDU\ )LQG YHFWRUV X DQG Y VXFK WKDW W D 6SDQ fX; Yg :K\ GRHV WKLV VKRZ WKDW W LV D VXEVSDFH RI R3 " 2 3 s C 3t 6 7 6 s t 7 6KRZ /HW W EH WKH VHW RI DOO YHFWRUV RI WKH IRUP 4 2s t 5 4t WKDW W LV D VXEVSDFH RI R4 8VH WKH PHWKRG RI ([HUFLVH 2 3 2 3 2 3 2 3 1 2 4 3 /HW Y1 D 4 0 5 Y2 D 4 1 5 Y3 D 4 2 5 DQG Z D 4 1 5 1 3 6 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
9HFWRU 6SDFHV DQG 6XEVSDFHV D ,V Z LQ fY1 ; Y2 ; Y3 g" +RZ PDQ\ YHFWRUV DUH LQ fY1 ; Y2 ; Y3 g" E +RZ PDQ\ YHFWRUV DUH LQ 6SDQ fY1 ; Y2 ; Y3 g" F ,V Z LQ WKH VXEVSDFH VSDQQHG E\ fY1 ; Y2 ; Y3 g" :K\" 2 3 8 /HW Y1 ; Y2 ; Y3 EH DV LQ ([HUFLVH DQG OHW Z D 4 4 5 ,V Z LQ 7 WKH VXEVSDFH VSDQQHG E\ fY1 ; Y2 ; Y3 g" :K\" ,Q ([HUFLVHV ş OHW W EH WKH VHW RI DOO YHFWRUV RI WKH IRUP VKRZQ ZKHUH a b DQG c UHSUHVHQW DUELWUDU\ UHDO QXPEHUV ,Q HDFK FDVH HLWKHU ıQG D VHW S RI YHFWRUV WKDW VSDQV W RU JLYH DQ H[DPSOH WR VKRZ WKDW W LV QRW D YHFWRU VSDFH 2 3 2 3 3a C b a C 1 4 4 5 4 a 6b 5 a 5b 2b C a 2 3 2 3 ab 4a C 3b 6bc 7 6 7 0 7 7 6 6 4ca5 4aCbCc5 b c 2a ,I D PDVV m LV SODFHG DW WKH HQG RI D VSULQJ DQG LI WKH PDVV LV SXOOHG GRZQZDUG DQG UHOHDVHG WKH PDVVşVSULQJ V\VWHP ZLOO EHJLQ WR RVFLOODWH 7KH GLVSODFHPHQW y RI WKH PDVV IURP LWV UHVWLQJ SRVLWLRQ LV JLYHQ E\ D IXQFWLRQ RI WKH IRUP
y.t/ D c1 FRV !t C c2 VLQ !t
ZKHUH ! LV D FRQVWDQW WKDW GHSHQGV RQ WKH VSULQJ DQG WKH PDVV 6HH WKH ıJXUH EHORZ 6KRZ WKDW WKH VHW RI DOO IXQFWLRQV GHVFULEHG LQ ZLWK ! ı[HG DQG c1 c2 DUELWUDU\ LV D YHFWRU VSDFH
y
7KH VHW RI DOO FRQWLQXRXV UHDOYDOXHG IXQFWLRQV GHıQHG RQ D FORVHG LQWHUYDO Œa; b LQ R LV GHQRWHG E\ C Œa; b 7KLV VHW LV D VXEVSDFH RI WKH YHFWRU VSDFH RI DOO UHDOYDOXHG IXQFWLRQV GHıQHG RQ Œa; b D :KDW IDFWV DERXW FRQWLQXRXV IXQFWLRQV VKRXOG EH SURYHG LQ RUGHU WR GHPRQVWUDWH WKDW C Œa; b LV LQGHHG D VXEVSDFH DV FODLPHG" 7KHVH IDFWV DUH XVXDOO\ GLVFXVVHG LQ D FDOFX OXV FODVV E 6KRZ WKDW fI LQ C Œa; b W I .a/ D I .b/g LV D VXEVSDFH RI C Œa; b )RU ı[HG SRVLWLYH LQWHJHUV m DQG n WKH VHW Mmn RI DOO m n PDWULFHV LV D YHFWRU VSDFH XQGHU WKH XVXDO RSHUDWLRQV RI DGGLWLRQ RI PDWULFHV DQG PXOWLSOLFDWLRQ E\ UHDO VFDODUV
'HWHUPLQH LI WKH VHW H RI DOO PDWULFHV RI WKH IRUP
a 0
b d
LV D VXEVSDFH RI M22 /HW F EH D ı[HG 3 2 PDWUL[ DQG OHW H EH WKH VHW RI DOO PDWULFHV A LQ M24 ZLWK WKH SURSHUW\ WKDW FA D 0 WKH ]HUR PDWUL[ LQ M34 / 'HWHUPLQH LI H LV D VXEVSDFH RI M24 ,Q ([HUFLVHV ş PDUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 7) ,I I LV D IXQFWLRQ LQ WKH YHFWRU VSDFH V RI DOO UHDOYDOXHG IXQFWLRQV RQ R DQG LI I.t/ D 0 IRU VRPH t WKHQ I LV WKH ]HUR YHFWRU LQ V 7) $ YHFWRU LV DQ\ HOHPHQW RI D YHFWRU VSDFH 7) $Q DUURZ LQ WKUHHGLPHQVLRQDO VSDFH FDQ EH FRQVLGHUHG WR EH D YHFWRU 7) ,I X LV D YHFWRU LQ D YHFWRU VSDFH V WKHQ .1/ X LV WKH VDPH DV WKH QHJDWLYH RI X 7) $ VXEVHW H RI D YHFWRU VSDFH V LV D VXEVSDFH RI V LI WKH ]HUR YHFWRU LV LQ H 7) $ YHFWRU VSDFH LV DOVR D VXEVSDFH 7) $ VXEVSDFH LV DOVR D YHFWRU VSDFH 7) R2 LV D VXEVSDFH RI R3 7) 7KH SRO\QRPLDOV RI GHJUHH WZR RU OHVV DUH D VXEVSDFH RI WKH SRO\QRPLDOV RI GHJUHH WKUHH RU OHVV 7) $ VXEVHW H RI D YHFWRU VSDFH V LV D VXEVSDFH RI V LI WKH IROORZLQJ FRQGLWLRQV DUH VDWLVıHG L WKH ]HUR YHFWRU RI V LV LQ H LL X; Y DQG X C Y DUH LQ H DQG LLL c LV D VFDODU DQG c X LV LQ H ([HUFLVHV ş VKRZ KRZ WKH D[LRPV IRU D YHFWRU VSDFH V FDQ EH XVHG WR SURYH WKH HOHPHQWDU\ SURSHUWLHV GHVFULEHG DIWHU WKH GHıQLWLRQ RI D YHFWRU VSDFH )LOO LQ WKH EODQNV ZLWK WKH DSSURSULDWH D[LRP QXPEHUV %HFDXVH RI $[LRP $[LRPV DQG LPSO\ UHVSHFWLYHO\ WKDW C X D X DQG X C X D IRU DOO X &RPSOHWH WKH IROORZLQJ SURRI WKDW WKH ]HUR YHFWRU LV XQLTXH 6XSSRVH WKDW Z LQ V KDV WKH SURSHUW\ WKDW X C Z D Z C X D X IRU DOO X LQ V ,Q SDUWLFXODU C Z D %XW C Z D Z E\ $[LRP +HQFH Z D C Z D &RPSOHWH WKH IROORZLQJ SURRI WKDW X LV WKH XQLTXH YHF WRU LQ V VXFK WKDW X C .X/ D 6XSSRVH WKDW Z VDWLVıHV X C Z D $GGLQJ X WR ERWK VLGHV ZH KDYH
.X/ C ŒX C Z D .X/ C Œ.X/ C X C Z D .X/ C
E\ $[LRP
D
C Z D .X/ C
E\ $[LRP
E
E\ $[LRP
F
Z D X
)LOO LQ WKH PLVVLQJ D[LRP QXPEHUV LQ WKH IROORZLQJ SURRI WKDW 0X D IRU HYHU\ X LQ V
0X D .0 C 0/X D 0X C 0X
E\ $[LRP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
D
$)"15&3 9HFWRU 6SDFHV $GG WKH QHJDWLYH RI 0X WR ERWK VLGHV
FDQ EH ZULWWHQ DV WKH VXP RI WZR YHFWRUV RQH LQ H DQG WKH RWKHU LQ K WKDW LV
0X C .0X/ D Œ0X C 0X C .0X/ 0X C .0X/ D 0X C Œ0X C .0X/
E\ $[LRP
E
H C K D fZ Z
X Y IRU VRPH X LQ H
D 0X C
E\ $[LRP
F
DQG VRPH Y LQ Kg
D 0X
E\ $[LRP
G
D 6KRZ WKDW H C K LV D VXEVSDFH RI V
)LOO LQ WKH PLVVLQJ D[LRP QXPEHUV LQ WKH IROORZLQJ SURRI WKDW c D IRU HYHU\ VFDODU c
c D c. C /
E\ $[LRP
D
D c C c
E\ $[LRP
E
E 6KRZ WKDW H LV D VXEVSDFH RI H C K DQG K LV D VXEVSDFH RI H C K 6XSSRVH X1 ; : : : ; Xp DQG Y1 ; : : : ; Yq DUH YHFWRUV LQ D YHFWRU VSDFH V DQG OHW
H D 6SDQ fX1 ; : : : ; Xp g DQG K D 6SDQ fY1 ; : : : ; Yq g
$GG WKH QHJDWLYH RI c WR ERWK VLGHV
c C .c / D Œc C c C .c /
6KRZ WKDW H C K D 6SDQ fX1 ; : : : ; Xp ; Y1 ; : : : ; Yq g
c C .c / D c C Œc C .c /
E\ $[LRP
F
D c C
E\ $[LRP
G
D c
E\ $[LRP
H
3URYH WKDW .1/X D X >+LQW 6KRZ WKDW X C .1/X D 8VH VRPH D[LRPV DQG WKH UHVXOWV RI ([HUFLVHV DQG @
7 6KRZ WKDW Z LV LQ WKH VXEVSDFH RI R4 VSDQQHG E\ Y1 ; Y2 ; Y3
ZKHUH 2
3 2 3 2 3 2 3 9 8 4 7 6 4 7 6 7 6 37 6 7 7 6 4 7 6 7 6 67 ZD6 4 4 5; Y1 D 4 3 5; Y2 D 4 2 5; Y3 D 4 5 5 7 9 8 18
6XSSRVH c X D IRU VRPH QRQ]HUR VFDODU c 6KRZ WKDW X D 0HQWLRQ WKH D[LRPV RU SURSHUWLHV \RX XVH 7 'HWHUPLQH LI \ LV LQ WKH VXEVSDFH RI R4 VSDQQHG E\ WKH FROXPQV RI A ZKHUH /HW X DQG Y EH YHFWRUV LQ D YHFWRU VSDFH V DQG OHW H EH DQ\ 2 3 2 3 4 3 5 9 VXEVSDFH RI V WKDW FRQWDLQV ERWK X DQG Y ([SODLQ ZK\ H 6 7 6 7 7 6 7 DOVR FRQWDLQV 6SDQ fX; Yg 7KLV VKRZV WKDW 6SDQ fX; Yg LV WKH 6 8 7; A D 6 8 \D4 5 4 5 6 5 8 3 VPDOOHVW VXEVSDFH RI V WKDW FRQWDLQV ERWK X DQG Y 5 2 2 9 /HW H DQG K EH VXEVSDFHV RI D YHFWRU VSDFH V 7KH LQWHUVHF WLRQ RI H DQG K ZULWWHQ DV H \ K LV WKH VHW RI Y LQ V WKDW 7 7KH YHFWRU VSDFH H D 6SDQ f1; FRV2 t; FRV4 t; FRV6 t g FRQ EHORQJ WR ERWK H DQG K 6KRZ WKDW H \ K LV D VXEVSDFH RI WDLQV DW OHDVW WZR LQWHUHVWLQJ IXQFWLRQV WKDW ZLOO EH XVHG LQ V 6HH WKH ıJXUH *LYH DQ H[DPSOH LQ R2 WR VKRZ WKDW WKH D ODWHU H[HUFLVH XQLRQ RI WZR VXEVSDFHV LV QRW LQ JHQHUDO D VXEVSDFH I.t/ D 1 8 FRV2 t C 8 FRV4 t
H>K H
0
J.t/ D 1 C 18 FRV2 t 48 FRV4 t C 32 FRV6 t 6WXG\ WKH JUDSK RI I IRU 0 t 2 DQG JXHVV D VLPSOH IRUPXOD IRU I.t/ 9HULI\ \RXU FRQMHFWXUH E\ JUDSKLQJ WKH GLijHUHQFH EHWZHHQ 1 C I.t/ DQG \RXU IRUPXOD IRU I.t/ +RSH IXOO\ \RX ZLOO VHH WKH FRQVWDQW IXQFWLRQ 5HSHDW IRU J 7 5HSHDW ([HUFLVH IRU WKH IXQFWLRQV
V
I.t/ D 3 VLQ t 4 VLQ3 t
K
J.t/ D 1 8 VLQ2 t C 8 VLQ4 t
*LYHQ VXEVSDFHV H DQG K RI D YHFWRU VSDFH V WKH VXP RI H DQG K ZULWWHQ DV H C K LV WKH VHW RI DOO YHFWRUV LQ V WKDW
K.t/ D 5 VLQ t 20 VLQ3 t C 16 VLQ5 t LQ WKH YHFWRU VSDFH 6SDQ f1; VLQ t; VLQ2 t; : : : ; VLQ5 tg
6ROXWLRQV WR 3UDFWLFH 3UREOHPV
3 7DNH DQ\ X LQ H ŠVD\ X D ŠDQG WDNH DQ\ c ¤ 1ŠVD\ c D 2 7KHQ 7 6 cX D ,I WKLV LV LQ H WKHQ WKHUH LV VRPH s VXFK WKDW 14
3s 6 D 2 C 5s 14 MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
1XOO 6SDFHV &ROXPQ 6SDFHV 5RZ 6SDFHV DQG /LQHDU7UDQVIRUPDWLRQV
7KDW LV s D 2 DQG s D 12=5 ZKLFK LV LPSRVVLEOH 6R 2X LV QRW LQ H DQG H LV QRW D YHFWRU VSDFH Y1 D 1Y1 C 0Y2 C C 0Yp 7KLV H[SUHVVHV Y1 DV D OLQHDU FRPELQDWLRQ RI Y1 ; : : : ; Yp VR Y1 LV LQ W ,Q JHQHUDO Yk LV LQ W EHFDXVH Yk D 0Y1 C C 0Yk 1 C 1Yk C 0Yk C1 C C 0Yp 7KH VXEVHW S LV D VXEVSDFH RI M33 VLQFH LW VDWLVıHV DOO WKUHH RI WKH UHTXLUHPHQWV OLVWHG LQ WKH GHıQLWLRQ RI D VXEVSDFH D 2EVHUYH WKDW WKH LQ M33 LV WKH 3 3 ]HUR PDWUL[ DQG VLQFH T D WKH PDWUL[ LV V\PPHWULF DQG KHQFH LV LQ S E /HW A DQG B LQ S 1RWLFH WKDW A DQG B DUH 3 3 V\PPHWULF PDWULFHV VR AT D A DQG B T D B %\ WKH SURSHUWLHV RI WUDQVSRVHV RI PDWULFHV .A C B/T D AT C B T D A C B 7KXV A C B LV V\PPHWULF DQG KHQFH A C B LV LQ S F /HW A EH LQ S DQG OHW c EH D VFDODU 6LQFH A LV V\PPHWULF E\ WKH SURSHUWLHV RI V\PPHWULF PDWULFHV .cA/T D c.AT / D cA 7KXV cA LV DOVR D V\PPHWULF PDWUL[ DQG KHQFH cA LV LQ S
1XOO 6SDFHV &ROXPQ 6SDFHV 5RZ 6SDFHV DQG /LQHDU
7UDQVIRUPDWLRQV ,Q DSSOLFDWLRQV RI OLQHDU DOJHEUD VXEVSDFHV RI Rn XVXDOO\ DULVH LQ RQH RI WZR ZD\V DV WKH VHW RI DOO VROXWLRQV WR D V\VWHP RI KRPRJHQHRXV OLQHDU HTXDWLRQV RU DV WKH VHW RI DOO OLQHDU FRPELQDWLRQV RI FHUWDLQ VSHFLıHG YHFWRUV ,Q WKLV VHFWLRQ ZH FRPSDUH DQG FRQWUDVW WKHVH WZR GHVFULSWLRQV RI VXEVSDFHV DOORZLQJ XV WR SUDFWLFH XVLQJ WKH FRQFHSW RI D VXEVSDFH $FWXDOO\ DV \RX ZLOO VRRQ GLVFRYHU ZH KDYH EHHQ ZRUNLQJ ZLWK VXEVSDFHV HYHU VLQFH 6HFWLRQ 7KH PDLQ QHZ IHDWXUH KHUH LV WKH WHUPLQRORJ\ 7KH VHFWLRQ FRQFOXGHV ZLWK D GLVFXVVLRQ RI WKH NHUQHO DQG UDQJH RI D OLQHDU WUDQVIRUPDWLRQ
7KH 1XOO 6SDFH RI D 0DWUL[ &RQVLGHU WKH IROORZLQJ V\VWHP RI KRPRJHQHRXV HTXDWLRQV
x1 3x2 2x3 D 0 5x1 C 9x2 C x3 D 0 ,Q PDWUL[ IRUP WKLV V\VWHP LV ZULWWHQ DV A[ D ZKHUH 1 3 2 AD 5 9 1
5HFDOO WKDW WKH VHW RI DOO [ WKDW VDWLVI\ LV FDOOHG WKH VROXWLRQ VHW RI WKH V\VWHP 2IWHQ LW LV FRQYHQLHQW WR UHODWH WKLV VHW GLUHFWO\ WR WKH PDWUL[ A DQG WKH HTXDWLRQ A[ D :H FDOO WKH VHW RI [ WKDW VDWLVI\ A[ D WKH QXOO VSDFH RI WKH PDWUL[ A
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
%&'*/*5*0/
7KH QXOO VSDFH RI DQ m n PDWUL[ A ZULWWHQ DV 1XO A LV WKH VHW RI DOO VROXWLRQV RI WKH KRPRJHQHRXV HTXDWLRQ A[ D ,Q VHW QRWDWLRQ 1XO A D f[ W [ LV LQ Rn DQG A[ D g $ PRUH G\QDPLF GHVFULSWLRQ RI 1XO A LV WKH VHW RI DOO [ LQ Rn WKDW DUH PDSSHG LQWR WKH ]HUR YHFWRU RI Rm YLD WKH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ 6HH )LJXUH
lA 0
Nu
0
n
Rm
R
'*(63&
2
3 5 (;$03/( /HW A EH WKH PDWUL[ LQ DQG OHW X D 4 3 5 'HWHUPLQH LI X EHORQJV 2 WR WKH QXOO VSDFH RI A 62/87,21 7R WHVW LI X VDWLVıHV AX D VLPSO\ FRPSXWH
AX D
2
3 5 1 3 2 4 5 9C4 0 35 D D 25 C 27 2 5 9 1 0 2
7KXV X LV LQ 1XO A 7KH WHUP VSDFH LQ QXOO VSDFH LV DSSURSULDWH EHFDXVH WKH QXOO VSDFH RI D PDWUL[ LV D YHFWRU VSDFH DV VKRZQ LQ WKH QH[W WKHRUHP
5)&03&.
7KH QXOO VSDFH RI DQ m n PDWUL[ A LV D VXEVSDFH RI Rn (TXLYDOHQWO\ WKH VHW RI DOO VROXWLRQV WR D V\VWHP A[ D RI m KRPRJHQHRXV OLQHDU HTXDWLRQV LQ n XQNQRZQV LV D VXEVSDFH RI Rn
1300' &HUWDLQO\ 1XO A LV D VXEVHW RI Rn EHFDXVH A KDV n FROXPQV :H PXVW VKRZ WKDW 1XO A VDWLVıHV WKH WKUHH SURSHUWLHV RI D VXEVSDFH 2I FRXUVH LV LQ 1XO A 1H[W OHW X DQG Y UHSUHVHQW DQ\ WZR YHFWRUV LQ 1XO A 7KHQ AX D DQG AY D 7R VKRZ WKDW X C Y LV LQ 1XO A ZH PXVW VKRZ WKDW A.X C Y/ D 8VLQJ D SURSHUW\ RI PDWUL[ PXOWLSOLFDWLRQ FRPSXWH
A.X C Y/ D AX C AY D C D 7KXV X C Y LV LQ 1XO A DQG 1XO A LV FORVHG XQGHU YHFWRU DGGLWLRQ )LQDOO\ LI c LV DQ\ VFDODU WKHQ A.c X/ D c.AX/ D c./ D ZKLFK VKRZV WKDW c X LV LQ 1XO A 7KXV 1XO A LV D VXEVSDFH RI Rn
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
1XOO 6SDFHV &ROXPQ 6SDFHV 5RZ 6SDFHV DQG /LQHDU7UDQVIRUPDWLRQV
(;$03/( /HW H EH WKH VHW RI DOO YHFWRUV LQ R4 ZKRVH FRRUGLQDWHV a b c d
VDWLVI\ WKH HTXDWLRQV a 2b C 5c D d DQG c a D b 6KRZ WKDW H LV D VXEVSDFH RI R4 62/87,21 5HDUUDQJH WKH HTXDWLRQV WKDW GHVFULEH WKH HOHPHQWV RI H DQG QRWH WKDW H
LV WKH VHW RI DOO VROXWLRQV RI WKH IROORZLQJ V\VWHP RI KRPRJHQHRXV OLQHDU HTXDWLRQV
a 2b C 5c d D 0 a b C c D0 %\ 7KHRUHP H LV D VXEVSDFH RI R4 ,W LV LPSRUWDQW WKDW WKH OLQHDU HTXDWLRQV GHıQLQJ WKH VHW H DUH KRPRJHQHRXV 2WKHUZLVH WKH VHW RI VROXWLRQV ZLOO GHıQLWHO\ QRW EH D VXEVSDFH EHFDXVH WKH ]HUR YHFWRU LV QRW D VROXWLRQ RI D QRQKRPRJHQHRXV V\VWHP $OVR LQ VRPH FDVHV WKH VHW RI VROXWLRQV FRXOG EH HPSW\
$Q ([SOLFLW 'HVFULSWLRQ RI 1XO $ 7KHUH LV QR REYLRXV UHODWLRQ EHWZHHQ YHFWRUV LQ 1XO A DQG WKH HQWULHV LQ A :H VD\ WKDW 1XO A LV GHıQHG LPSOLFLWO\ EHFDXVH LW LV GHıQHG E\ D FRQGLWLRQ WKDW PXVW EH FKHFNHG 1R H[SOLFLW OLVW RU GHVFULSWLRQ RI WKH HOHPHQWV LQ 1XO A LV JLYHQ +RZHYHU VROYLQJ WKH HTXDWLRQ A[ D DPRXQWV WR SURGXFLQJ DQ H[SOLFLW GHVFULSWLRQ RI 1XO A 7KH QH[W H[DPSOH UHYLHZV WKH SURFHGXUH IURP 6HFWLRQ
(;$03/( )LQG D VSDQQLQJ VHW IRU WKH QXOO VSDFH RI WKH PDWUL[ 2
3 1 7 3 1 5 8 4
3 6 1 A D 4 1 2 2 2 4 5
62/87,21 7KH ıUVW VWHS LV WR ıQG WKH JHQHUDO VROXWLRQ RI A[ D LQ WHUPV RI IUHH
YDULDEOHV 5RZ UHGXFH WKH DXJPHQWHG PDWUL[ Œ A WR UHGXFHG HFKHORQ IRUP LQ RUGHU WR ZULWH WKH EDVLF YDULDEOHV LQ WHUPV RI WKH IUHH YDULDEOHV 2 3 x4 C 3x5 D 0 x1 2x2 1 2 0 1 3 0 4 0 0 1 2 2 0 5; x3 C 2x4 2x5 D 0 0 0 0 0 0 0 0D0 7KH JHQHUDO VROXWLRQ LV x1 D 2x2 C x4 3x5 x3 D 2x4 C 2x5 ZLWK x2 x4 DQG x5 IUHH 1H[W GHFRPSRVH WKH YHFWRU JLYLQJ WKH JHQHUDO VROXWLRQ LQWR D OLQHDU FRPELQDWLRQ RI YHFWRUV ZKHUH WKH ZHLJKWV DUH WKH IUHH YDULDEOHV 7KDW LV 2 3 2 3 2 3 2 3 2 3 x1 2x2 C x4 3x5 2 1 3 6 x2 7 6 7 617 6 07 6 07 x2 6 7 6 7 6 7 6 7 6 7 6 x3 7 D 6 2x4 C 2x5 7 D x2 6 0 7 C x4 6 2 7 C x5 6 2 7 6 7 6 7 6 7 6 7 6 7 4 x4 5 4 5 405 4 15 4 05 x4 0 0 1 x5 x5
D x2 X C x4 Y C x5 Z
" X
" Y
" Z
(YHU\ OLQHDU FRPELQDWLRQ RI X Y DQG Z LV DQ HOHPHQW RI 1XO A DQG YLFH YHUVD 7KXV fX; Y; Zg LV D VSDQQLQJ VHW IRU 1XO A
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
7ZR SRLQWV VKRXOG EH PDGH DERXW WKH VROXWLRQ RI ([DPSOH WKDW DSSO\ WR DOO SUREOHPV RI WKLV W\SH ZKHUH 1XO A FRQWDLQV QRQ]HUR YHFWRUV :H ZLOO XVH WKHVH IDFWV ODWHU 7KH VSDQQLQJ VHW SURGXFHG E\ WKH PHWKRG LQ ([DPSOH LV DXWRPDWLFDOO\ OLQHDUO\ LQGHSHQGHQW EHFDXVH WKH IUHH YDULDEOHV DUH WKH ZHLJKWV RQ WKH VSDQQLQJ YHFWRUV )RU LQVWDQFH ORRN DW WKH QG WK DQG WK HQWULHV LQ WKH VROXWLRQ YHFWRU LQ DQG QRWH WKDW x2 X C x4 Y C x5 Z FDQ EH RQO\ LI WKH ZHLJKWV x2 ; x4 DQG x5 DUH DOO ]HUR :KHQ 1XO A FRQWDLQV QRQ]HUR YHFWRUV WKH QXPEHU RI YHFWRUV LQ WKH VSDQQLQJ VHW IRU 1XO A HTXDOV WKH QXPEHU RI IUHH YDULDEOHV LQ WKH HTXDWLRQ A[ D
7KH &ROXPQ 6SDFH RI D 0DWUL[ $QRWKHU LPSRUWDQW VXEVSDFH DVVRFLDWHG ZLWK D PDWUL[ LV LWV FROXPQ VSDFH 8QOLNH WKH QXOO VSDFH WKH FROXPQ VSDFH LV GHıQHG H[SOLFLWO\ YLD OLQHDU FRPELQDWLRQV
%&'*/*5*0/
7KH FROXPQ VSDFH RI DQ m n PDWUL[ A ZULWWHQ DV &RO A LV WKH VHW RI DOO OLQHDU FRPELQDWLRQV RI WKH FROXPQV RI A ,I A D Œ D1 Dn WKHQ &RO A D 6SDQ fD1 ; : : : ; Dn g 6LQFH 6SDQ fD1 ; : : : ; Dn g LV D VXEVSDFH E\ 7KHRUHP WKH QH[W WKHRUHP IROORZV IURP WKH GHıQLWLRQ RI &RO A DQG WKH IDFW WKDW WKH FROXPQV RI A DUH LQ Rm
5)&03&.
7KH FROXPQ VSDFH RI DQ m n PDWUL[ A LV D VXEVSDFH RI Rm
1RWH WKDW D W\SLFDO YHFWRU LQ &RO A FDQ EH ZULWWHQ DV A[ IRU VRPH [ EHFDXVH WKH QRWDWLRQ A[ VWDQGV IRU D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A 7KDW LV &RO A D fE W E D A[ IRU VRPH [ LQ Rn g 7KH QRWDWLRQ A[ IRU YHFWRUV LQ &RO A DOVR VKRZV WKDW &RO A LV WKH UDQJH RI WKH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ :H ZLOO UHWXUQ WR WKLV SRLQW RI YLHZ DW WKH HQG RI WKH VHFWLRQ
(;$03/( )LQG D PDWUL[ A VXFK WKDW W D &RO A
82 9 3 < 6a b = W D 4 a C b 5 W a b LQ R : ; 7a
x3
62/87,21 )LUVW ZULWH W DV D VHW RI OLQHDU FRPELQDWLRQV
0
x2 x1 W
8 2 9 82 3 2 3 3 2 39 6 1 6 1 = < < = W D a4 1 5 C b 4 1 5 W a b LQ R D 6SDQ 4 1 5; 4 1 5 : : ; ; 7 0 7 0 2 3 6 1 6HFRQG XVH WKH YHFWRUV LQ WKH VSDQQLQJ VHW DV WKH FROXPQV RI A /HW A D 4 1 1 5 7 0 7KHQ W D &RO A DV GHVLUHG
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
1XOO 6SDFHV &ROXPQ 6SDFHV 5RZ 6SDFHV DQG /LQHDU7UDQVIRUPDWLRQV
5HFDOO IURP 7KHRUHP LQ 6HFWLRQ WKDW WKH FROXPQV RI A VSDQ Rm LI DQG RQO\ LI WKH HTXDWLRQ A[ D E KDV D VROXWLRQ IRU HDFK E :H FDQ UHVWDWH WKLV IDFW DV IROORZV 7KH FROXPQ VSDFH RI DQ m n PDWUL[ A LV DOO RI Rm LI DQG RQO\ LI WKH HTXDWLRQ A[ D E KDV D VROXWLRQ IRU HDFK E LQ Rm
7KH 5RZ 6SDFH ,I A LV DQ m n PDWUL[ HDFK URZ RI A KDV n HQWULHV DQG WKXV FDQ EH LGHQWLıHG ZLWK D YHFWRU LQ Rn 7KH VHW RI DOO OLQHDU FRPELQDWLRQV RI WKH URZ YHFWRUV LV FDOOHG WKH URZ VSDFH RI A DQG LV GHQRWHG E\ 5RZ A (DFK URZ KDV n HQWULHV VR 5RZ A LV D VXEVSDFH RI Rn 6LQFH WKH URZV RI A DUH LGHQWLıHG ZLWK WKH FROXPQV RI AT ZH FRXOG DOVR ZULWH &RO AT LQ SODFH RI 5RZ A
(;$03/( /HW 2
3 8 0 17 2 5 U1 D .2; 5; 8; 0; 17/ 6 1 3 5 1 5 7 U2 D .1; 3; 5; 1; 5/ 6 7 AD4 DQG 3 11 19 7 1 5 U3 D .3; 11; 19; 7; 1/ 1 7 13 5 3 U4 D .1; 7; 13; 5; 3/
7KH URZ VSDFH RI A LV WKH VXEVSDFH RI R5 VSDQQHG E\ fU1 ; U2 ; U3 ; U4 g 7KDW LV 5RZ A D 6SDQ fU1 ; U2 ; U3 ; U4 g ,W LV QDWXUDO WR ZULWH URZ YHFWRUV KRUL]RQWDOO\ KRZHYHU WKH\ PD\ DOVR EH ZULWWHQ DV FROXPQ YHFWRUV LI WKDW LV PRUH FRQYHQLHQW
7KH &RQWUDVW %HWZHHQ 1XO $ DQG &RO $ ,W LV QDWXUDO WR ZRQGHU KRZ WKH QXOO VSDFH DQG FROXPQ VSDFH RI D PDWUL[ DUH UHODWHG ,Q IDFW WKH WZR VSDFHV DUH TXLWH GLVVLPLODU DV ([DPSOHV ş ZLOO VKRZ 1HYHUWKHOHVV D VXUSULVLQJ FRQQHFWLRQ EHWZHHQ WKH QXOO VSDFH DQG FROXPQ VSDFH ZLOO HPHUJH LQ 6HFWLRQ DIWHU PRUH WKHRU\ LV DYDLODEOH
(;$03/( /HW
2
2 4 2 A D 4 2 5 7 3 7 8
3 1 35 6
D ,I WKH FROXPQ VSDFH RI A LV D VXEVSDFH RI Rk ZKDW LV k " E ,I WKH QXOO VSDFH RI A LV D VXEVSDFH RI Rk ZKDW LV k " 62/87,21
D 7KH FROXPQV RI A HDFK KDYH WKUHH HQWULHV VR &RO A LV D VXEVSDFH RI Rk ZKHUH k D 3 E $ YHFWRU [ VXFK WKDW A[ LV GHıQHG PXVW KDYH IRXU HQWULHV VR 1XO A LV D VXEVSDFH RI Rk ZKHUH k D 4 :KHQ D PDWUL[ LV QRW VTXDUH DV LQ ([DPSOH WKH YHFWRUV LQ 1XO A DQG &RO A OLYH LQ HQWLUHO\ GLijHUHQW ŗXQLYHUVHVŘ )RU H[DPSOH QR OLQHDU FRPELQDWLRQ RI YHFWRUV LQ R3 FDQ SURGXFH D YHFWRU LQ R4 :KHQ A LV VTXDUH 1XO A DQG &RO A GR KDYH WKH ]HUR YHFWRU LQ FRPPRQ DQG LQ VSHFLDO FDVHV LW LV SRVVLEOH WKDW VRPH QRQ]HUR YHFWRUV EHORQJ WR ERWK 1XO A DQG &RO A
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
(;$03/( :LWK A DV LQ ([DPSOH ıQG D QRQ]HUR YHFWRU LQ &RO A DQG D QRQ]HUR YHFWRU LQ 1XO A
2
3 2 62/87,21 ,W LV HDV\ WR ıQG D YHFWRU LQ &RO A $Q\ FROXPQ RI A ZLOO GR VD\ 4 2 5 3 7R ıQG D QRQ]HUR YHFWRU LQ 1XO A URZ UHGXFH WKH DXJPHQWHG PDWUL[ Œ A DQG REWDLQ 2
1 ŒA 40 0
0 9 1 5 0 0
0 0 1
3 0 05 0
7KXV LI [ VDWLVıHV A[ D WKHQ x1 D 9x3 x2 D 5x3 x4 D 0 DQG x3 LV IUHH $V VLJQLQJ D QRQ]HUR YDOXH WR x3 ŠVD\ x3 D 1ŠZH REWDLQ D YHFWRU LQ 1XO A QDPHO\ [ D .9; 5; 1; 0/ 2
3 2 3 3 3 6 2 7 7 4 5 (;$03/( :LWK A DV LQ ([DPSOH OHW X D 6 4 1 5 DQG Y D 1 3 0 D 'HWHUPLQH LI X LV LQ 1XO A &RXOG X EH LQ &RO A" E 'HWHUPLQH LI Y LV LQ &RO A &RXOG Y EH LQ 1XO A" 62/87,21
D $Q H[SOLFLW GHVFULSWLRQ RI 1XO A LV QRW QHHGHG KHUH 6LPSO\ FRPSXWH WKH SURGXFW AX 2 3 2 3 2 3 2 3 3 2 4 2 1 6 0 0 7 2 7 D 4 3 5 ¤ 4 0 5 AX D 4 2 5 7 3 56 4 1 5 3 7 8 6 3 0 0 2EYLRXVO\ X LV QRW D VROXWLRQ RI A[ D VR X LV QRW LQ 1XO A $OVR ZLWK IRXU HQWULHV X FRXOG QRW SRVVLEO\ EH LQ &RO A VLQFH &RO A LV D VXEVSDFH RI R3 E 5HGXFH Œ A Y WR DQ HFKHORQ IRUP 2 3 2 3 2 4 2 1 3 2 4 2 1 3 Œ A Y D 4 2 5 7 3 1 5 4 0 1 5 4 2 5 3 7 8 6 3 0 0 0 17 1 $W WKLV SRLQW LW LV FOHDU WKDW WKH HTXDWLRQ A[ D Y LV FRQVLVWHQW VR Y LV LQ &RO A :LWK RQO\ WKUHH HQWULHV Y FRXOG QRW SRVVLEO\ EH LQ 1XO A VLQFH 1XO A LV D VXEVSDFH RI R4 7KH WDEOH RQ SDJH VXPPDUL]HV ZKDW ZH KDYH OHDUQHG DERXW 1XO A DQG &RO A ,WHP LV D UHVWDWHPHQW RI 7KHRUHPV DQG D LQ 6HFWLRQ
.HUQHO DQG 5DQJH RI D /LQHDU 7UDQVIRUPDWLRQ 6XEVSDFHV RI YHFWRU VSDFHV RWKHU WKDQ Rn DUH RIWHQ GHVFULEHG LQ WHUPV RI D OLQHDU WUDQVIRUPDWLRQ LQVWHDG RI D PDWUL[ 7R PDNH WKLV SUHFLVH ZH JHQHUDOL]H WKH GHıQLWLRQ JLYHQ LQ 6HFWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
1XOO 6SDFHV &ROXPQ 6SDFHV 5RZ 6SDFHV DQG /LQHDU7UDQVIRUPDWLRQV
$POUSBTU #FUXFFO /VM " BOE $PM " GPS BO N O .BUSJY " 1XO $
&RO $
1XO A LV D VXEVSDFH RI R
&RO A LV D VXEVSDFH RI Rm
1XO A LV LPSOLFLWO\ GHıQHG WKDW LV \RX DUH JLYHQ RQO\ D FRQGLWLRQ .A[ D / WKDW YHF WRUV LQ 1XO A PXVW VDWLVI\
&RO A LV H[SOLFLWO\ GHıQHG WKDW LV \RX DUH WROG KRZ WR EXLOG YHFWRUV LQ &RO A
,W WDNHV WLPH WR ıQG YHFWRUV LQ 1XO A 5RZ RSHUDWLRQV RQ Œ A DUH UHTXLUHG
,W LV HDV\ WR ıQG YHFWRUV LQ &RO A 7KH FROXPQV RI A DUH GLVSOD\HG RWKHUV DUH IRUPHG IURP WKHP
7KHUH LV QR REYLRXV UHODWLRQ EHWZHHQ 1XO A DQG WKH HQWULHV LQ A
7KHUH LV DQ REYLRXV UHODWLRQ EHWZHHQ &RO A DQG WKH HQWULHV LQ A VLQFH HDFK FROXPQ RI A LV LQ &RO A
$ W\SLFDO YHFWRU Y LQ 1XO A KDV WKH SURSHUW\ WKDW AY D
$ W\SLFDO YHFWRU Y LQ &RO A KDV WKH SURSHUW\ WKDW WKH HTXDWLRQ A[ D Y LV FRQVLVWHQW
*LYHQ D VSHFLıF YHFWRU Y LW LV HDV\ WR WHOO LI Y LV LQ 1XO A -XVW FRPSXWH AY
*LYHQ D VSHFLıF YHFWRU Y LW PD\ WDNH WLPH WR WHOO LI Y LV LQ &RO A 5RZ RSHUDWLRQV RQ Œ A Y DUH UHTXLUHG
1XO A D fg LI DQG RQO\ LI WKH HTXDWLRQ A[ D KDV RQO\ WKH WULYLDO VROXWLRQ
&RO A D Rm LI DQG RQO\ LI WKH HTXDWLRQ A[ D E KDV D VROXWLRQ IRU HYHU\ E LQ Rm
1XO A D fg LI DQG RQO\ LI WKH OLQHDU WUDQV IRUPDWLRQ [ 7! A[ LV RQHWRRQH
&RO A D Rm LI DQG RQO\ LI WKH OLQHDU WUDQV IRUPDWLRQ [ 7! A[ PDSV Rn RQWR Rm
n
%&'*/*5*0/
$ OLQHDU WUDQVIRUPDWLRQ T IURP D YHFWRU VSDFH V LQWR D YHFWRU VSDFH W LV D UXOH WKDW DVVLJQV WR HDFK YHFWRU [ LQ V D XQLTXH YHFWRU T .[/ LQ W VXFK WKDW L T .X C Y/ D T .X/ C T .Y/ LL T .c X/ D cT .X/
IRU DOO X Y LQ V DQG IRU DOO X LQ V DQG DOO VFDODUV c
7KH NHUQHO RU QXOO VSDFH RI VXFK D T LV WKH VHW RI DOO X LQ V VXFK WKDW T .X/ D WKH ]HUR YHFWRU LQ W / 7KH UDQJH RI T LV WKH VHW RI DOO YHFWRUV LQ W RI WKH IRUP T .[/ IRU VRPH [ LQ V ,I T KDSSHQV WR DULVH DV D PDWUL[ WUDQVIRUPDWLRQŠVD\ T .[/ D A[ IRU VRPH PDWUL[ AŠWKHQ WKH NHUQHO DQG WKH UDQJH RI T DUH MXVW WKH QXOO VSDFH DQG WKH FROXPQ VSDFH RI A DV GHıQHG HDUOLHU ,W LV QRW GLĴFXOW WR VKRZ WKDW WKH NHUQHO RI T LV D VXEVSDFH RI V 7KH SURRI LV HVVHQWLDOO\ WKH VDPH DV WKH RQH IRU 7KHRUHP $OVR WKH UDQJH RI T LV D VXEVSDFH RI W 6HH )LJXUH DQG ([HUFLVH in
a om
D
Ra
ng
T
e
el
rn Ke 0
0
W V
Kernel is a subspace of V
Range is a subspace of W
'*(63& 6XEVSDFHV DVVRFLDWHG ZLWK
D OLQHDU WUDQVIRUPDWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
,Q DSSOLFDWLRQV D VXEVSDFH XVXDOO\ DULVHV DV HLWKHU WKH NHUQHO RU WKH UDQJH RI DQ DSSURSULDWH OLQHDU WUDQVIRUPDWLRQ )RU LQVWDQFH WKH VHW RI DOO VROXWLRQV RI D KRPRJHQHRXV OLQHDU GLijHUHQWLDO HTXDWLRQ WXUQV RXW WR EH WKH NHUQHO RI D OLQHDU WUDQVIRUPDWLRQ 7\SLFDOO\ VXFK D OLQHDU WUDQVIRUPDWLRQ LV GHVFULEHG LQ WHUPV RI RQH RU PRUH GHULYDWLYHV RI D IXQFWLRQ 7R H[SODLQ WKLV LQ DQ\ GHWDLO ZRXOG WDNH XV WRR IDU DıHOG DW WKLV SRLQW 6R ZH FRQVLGHU RQO\ WZR H[DPSOHV 7KH ıUVW H[SODLQV ZK\ WKH RSHUDWLRQ RI GLijHUHQWLDWLRQ LV D OLQHDU WUDQVIRUPDWLRQ
(;$03/( $BMDVMVT SFRVJSFE /HW V EH WKH YHFWRU VSDFH RI DOO UHDOYDOXHG IXQF WLRQV f GHıQHG RQ DQ LQWHUYDO Œa; b ZLWK WKH SURSHUW\ WKDW WKH\ DUH GLijHUHQWLDEOH DQG WKHLU GHULYDWLYHV DUH FRQWLQXRXV IXQFWLRQV RQ Œa; b /HW W EH WKH YHFWRU VSDFH C Œa; b RI DOO FRQWLQXRXV IXQFWLRQV RQ Œa; b DQG OHW D W V ! W EH WKH WUDQVIRUPDWLRQ WKDW FKDQJHV f LQ V LQWR LWV GHULYDWLYH f 0 ,Q FDOFXOXV WZR VLPSOH GLijHUHQWLDWLRQ UXOHV DUH D.f C g/ D D.f / C D.g/ DQG D.cf / D cD.f / 7KDW LV D LV D OLQHDU WUDQVIRUPDWLRQ ,W FDQ EH VKRZQ WKDW WKH NHUQHO RI D LV WKH VHW RI FRQVWDQW IXQFWLRQV RQ Œa; b DQG WKH UDQJH RI D LV WKH VHW W RI DOO FRQWLQXRXV IXQFWLRQV RQ Œa; b
(;$03/( $BMDVMVT SFRVJSFE 7KH GLijHUHQWLDO HTXDWLRQ y 00 C ! 2 y D 0
ZKHUH ! LV D FRQVWDQW LV XVHG WR GHVFULEH D YDULHW\ RI SK\VLFDO V\VWHPV VXFK DV WKH YLEUDWLRQ RI D ZHLJKWHG VSULQJ WKH PRYHPHQW RI D SHQGXOXP DQG WKH YROWDJH LQ DQ LQGXFWDQFHFDSDFLWDQFH HOHFWULFDO FLUFXLW 7KH VHW RI VROXWLRQV RI LV SUHFLVHO\ WKH NHUQHO RI WKH OLQHDU WUDQVIRUPDWLRQ WKDW PDSV D IXQFWLRQ y D f .t / LQWR WKH IXQFWLRQ f 00 .t/ C ! 2 f .t/ )LQGLQJ DQ H[SOLFLW GHVFULSWLRQ RI WKLV YHFWRU VSDFH LV D SUREOHP LQ GLijHUHQWLDO HTXDWLRQV 7KH VROXWLRQ VHW WXUQV RXW WR EH WKH VSDFH GHVFULEHG LQ ([HUFLVH LQ 6HFWLRQ $ FRPPRQ WHFKQLTXH XVHG LQ WKH VWRFN PDUNHW LV WHFKQLFDO DQDO\VLV 6WDWLVWLFDO WUHQGV JDWKHUHG IURP VWRFNWUDGLQJ DFWLYLW\ VXFK DV SULFH PRYHPHQW DQG YROXPH DUH DQDO\]HG 7HFKQLFDO DQDO\VWV IRFXV RQ SDWWHUQV RI VWRFNSULFH PRYHPHQWV WUDGLQJ VLJQDOV DQG YDULRXV RWKHU DQDO\WLFDO FKDUWLQJ WRROV WR HYDOXDWH D VHFXULW\ŖV VWUHQJWK RU ZHDNQHVV $ PRYLQJ DYHUDJH LV D FRPPRQO\ XVHG LQGLFDWRU LQ WHFKQLFDO DQDO\VLV ,W VPRRWKV RXW SULFH DFWLRQ E\ ıOWHULQJ RXW WKH HijHFWV IURP UDQGRP SULFH IJXFWXDWLRQV ,Q WKH ıQDO H[DPSOH IRU WKLV VHFWLRQ ZH H[DPLQH WKH OLQHDU WUDQVIRUPDWLRQ WKDW FUHDWHV WKH WZRGD\ PRYLQJ DYHUDJH IURP D ŗVLJQDOŘ RI GDLO\ SULFHV :H ZLOO ORRN DW PRYLQJ DYHUDJH WUDQVIRUPDWLRQV WKDW DYHUDJH RYHU D ORQJHU SHULRG RI WLPH LQ 6HFWLRQ
(;$03/( /HW fpk g LQ S UHSUHVHQW WKH SULFH RI D VWRFN WKDW KDV EHHQ UHFRUGHG
GDLO\ RYHU DQ H[WHQGHG SHULRG RI WLPH 1RWH WKDW ZH FDQ DVVXPH WKDW pk D 0 IRU k RXWVLGH WKH WLPH SHULRG XQGHU VWXG\7R FUHDWH D WZRGD\ PRYLQJ DYHUDJH WKH PDSSLQJ M2 W S ! pk C pk 1 LV DSSOLHG WR WKH GDWD 6KRZ WKDW M2 LV D OLQHDU S GHıQHG E\ M2 .fpk g/ D 2 WUDQVIRUPDWLRQ DQG ıQG LWV NHUQHO 62/87,21 7R VHH WKDW M2 LV D OLQHDU WUDQVIRUPDWLRQ REVHUYH WKDW IRU WZR VLJQDOV fpk g
DQG fqk g LQ S DQG DQ\ VFDODU c
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
1XOO 6SDFHV &ROXPQ 6SDFHV 5RZ 6SDFHV DQG /LQHDU7UDQVIRUPDWLRQV
pk C qk C pk 1 C qk 1 2 pk C pk 1 qk C qk 1 D C 2 2 D M2 .fpk g/ C M2 .fqk g/
M2 .fpk g C fqk g/ D M2 .fpk C qk g/ D
DQG
M2 .cfpk g/ D M2 .fcpk g/ D
cpk C cpk 1 2
pk C pk 1 Dc 2
D cM2 .fpk g/
WKXV M2 LV D OLQHDU WUDQVIRUPDWLRQ 7R ıQG WKH NHUQHO RI M2 QRWLFH WKDW fpk g LV LQ WKH NHUQHO LI DQG RQO\ LI pk C pk 1 D 0 IRU DOO k DQG KHQFH pk D pk 1 6LQFH WKLV UHODWLRQVKLS LV WUXH IRU 2 DOO LQWHJHUV k LW FDQ EH DSSOLHG UHFXUVLYHO\ UHVXOWLQJ LQ pk D pk 1 D .1/2 pk 2 D .1/3 pk 3 : : : :RUNLQJ RXW IURP k D 0 DQ\ VLJQDO LQ WKH NHUQHO FDQ EH ZULWWHQ DV pk D p0 .1/k D PXOWLSOH RI WKH DOWHUQDWLQJ VLJQDO GHVFULEHG E\ f.1/k g 6LQFH WKH NHUQHO RI WKH WZRGD\ PRYLQJ DYHUDJH IXQFWLRQ FRQVLVWV RI DOO PXOWLSOHV RI WKH DOWHUQDWLQJ VHTXHQFH LW VPRRWKV RXW GDLO\ IJXFWXDWLRQV ZLWKRXW OHYHOLQJ RXW RYHUDOO WUHQGV 6HH )LJXUH Original signal Moving average
k
'*(63&
3UDFWLFH 3UREOHPV 82 3 9 < a = /HW W D 4 b 5 W a 3b c D 0 6KRZ LQ WZR GLijHUHQW ZD\V WKDW W LV D : ; c 3 VXEVSDFH RI R 8VH WZR WKHRUHPV 2 3 2 3 2 3 7 3 5 2 7 /HW A D 4 4 1 5 5 Y D 4 1 5 DQG Z D 4 6 5 6XSSRVH \RX NQRZ WKDW 5 2 4 1 3 WKH HTXDWLRQV A[ D Y DQG A[ D Z DUH ERWK FRQVLVWHQW :KDW FDQ \RX VD\ DERXW WKH HTXDWLRQ A[ D Y C Z" /HW A EH DQ n n PDWUL[ ,I &RO A D 1XO A VKRZ WKDW 1XO A2 D Rn
([HUFLVHV 2
3 1 'HWHUPLQH LI Z D 4 3 5 LV LQ 1XO A ZKHUH 4 2 3 3 5 3 05 : A D 4 6 2 8 4 1
2
3 5 'HWHUPLQH LI Z D 4 3 5 LV LQ 1XO A ZKHUH 2 2 3 5 21 19 25 : A D 4 13 23 8 14 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
,Q ([HUFLVHV ş ıQG DQ H[SOLFLW GHVFULSWLRQ RI 1XO A E\ OLVWLQJ YHFWRUV WKDW VSDQ WKH QXOO VSDFH 1 3 5 0 A D 0 1 4 2 1 6 4 0 A D 0 0 2 0 2 3 1 2 0 4 0 0 1 9 0 5 A D 4 0 0 0 0 0 1 2 3 1 5 4 3 1 1 05 A D 4 0 1 2 0 0 0 0 0
A D 1
3
9
0
5
:LWK A DV LQ ([HUFLVH ıQG D QRQ]HUR YHFWRU LQ 1XO A D QRQ]HUR YHFWRU LQ &RO A DQG D QRQ]HUR YHFWRU LQ 5RZ A :LWK A DV LQ ([HUFLVH ıQG D QRQ]HUR YHFWRU LQ 1XO A D QRQ]HUR YHFWRU LQ &RO A DQG D QRQ]HUR YHFWRU LQ 5RZ A 6 12 2 /HW A D DQG Z D 'HWHUPLQH LI Z LV LQ 3 6 1 &RO A ,V Z LQ 1XO A" 2 3 2 3 8 2 9 2 4 8 5 DQG Z D 4 1 5 'HWHUPLQH LI /HW A D 4 6 4 0 4 2 Z LV LQ &RO A ,V Z LQ 1XO A"
,Q ([HUFLVHV ş HLWKHU XVH DQ DSSURSULDWH WKHRUHP WR VKRZ WKDW WKH JLYHQ VHW W LV D YHFWRU VSDFH RU ıQG D VSHFLıF H[DPSOH WR WKH FRQWUDU\ 9 82 3 9 82 3 = < r = < a 4 s 5 W 5r 1 D s C 2t 4 b 5 W a C b C c D 2 ; : ; : c t 9 82 3 9 82 3 a > ˆ > ˆ a > ˆ > ˆ =
ˆ > ˆ > ˆ ˆ ; : ; : d d 82 9 82 9 3 3 b 2d ˆ > ˆ b 5d > ˆ > ˆ >
ˆ > ˆ > : ; : ; d d 9 82 9 82 3 3 = < a C 2b = < c 6d 4 d 5 W c; d UHDO 4 a 2b 5 W a; b UHDO ; : ; : c 3a 6b
,Q ([HUFLVHV ş A GHQRWHV DQ m n PDWUL[ 0DUN HDFK VWDWH PHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU
,Q ([HUFLVHV DQG ıQG A VXFK WKDW WKH JLYHQ VHW LV &RO A 9 82 3 2s C 3t ˆ > ˆ > =
ˆ ˆ > : ; 3r s t 9 82 3 bc > ˆ > ˆ =
ˆ > ˆ ; : d
7) 7KH UDQJH RI D OLQHDU WUDQVIRUPDWLRQ LV D YHFWRU VSDFH
)RU WKH PDWULFHV LQ ([HUFLVHV ş D ıQG k VXFK WKDW 1XO A LV D VXEVSDFH RI Rk DQG E ıQG k VXFK WKDW &RO A LV D VXEVSDFH RI Rk 2 3 2 3 2 6 7 2 0 6 7 6 7 37 0 5 7 6 1 6 2 A D 4 A D 4 4 12 5 0 5 75 3 9 5 7 2 4 5 2 6 0 A D 1 1 0 1 0
7) 7KH QXOO VSDFH RI A LV WKH VROXWLRQ VHW RI WKH HTXDWLRQ A[ D 7) $ QXOO VSDFH LV D YHFWRU VSDFH 7) 7KH QXOO VSDFH RI DQ m n PDWUL[ LV LQ Rm 7) 7KH FROXPQ VSDFH RI DQ m n PDWUL[ LV LQ Rm 7) 7KH FROXPQ VSDFH RI A LV WKH UDQJH RI WKH PDSSLQJ [ 7! A[ 7) &RO A LV WKH VHW RI DOO VROXWLRQV RI A[ D E 7) ,I WKH HTXDWLRQ A[ D E LV FRQVLVWHQW WKHQ &RO A
Rm
7) 1XO A LV WKH NHUQHO RI WKH PDSSLQJ [ 7! A[ 7) 7KH NHUQHO RI D OLQHDU WUDQVIRUPDWLRQ LV D YHFWRU VSDFH
7) &RO A LV WKH VHW RI DOO YHFWRUV WKDW FDQ EH ZULWWHQ DV A[ IRU VRPH [ 7) 7KH VHW RI DOO VROXWLRQV RI D KRPRJHQHRXV OLQHDU GLijHU HQWLDO HTXDWLRQ LV WKH NHUQHO RI D OLQHDU WUDQVIRUPDWLRQ 7) 7KH URZ VSDFH RI A LV WKH VDPH DV WKH FROXPQ VSDFH RI AT 7) 7KH QXOO VSDFH RI A LV WKH VDPH DV WKH URZ VSDFH RI AT ,W FDQ EH VKRZQ WKDW D VROXWLRQ RI WKH V\VWHP EHORZ LV x1 D 3 x2 D 2 DQG x3 D 1 8VH WKLV IDFW DQG WKH WKHRU\ IURP WKLV VHFWLRQ WR H[SODLQ ZK\ DQRWKHU VROXWLRQ LV x1 D 30 x2 D 20 DQG x3 D 10 2EVHUYH KRZ WKH VROXWLRQV DUH UHODWHG EXW PDNH QR RWKHU FDOFXODWLRQV
x1 3x2 3x3 D 0 2x1 C 4x2 C 2x3 D 0 x1 C 5x2 C 7x3 D 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
1XOO 6SDFHV &ROXPQ 6SDFHV 5RZ 6SDFHV DQG /LQHDU7UDQVIRUPDWLRQV
&RQVLGHU WKH IROORZLQJ WZR V\VWHPV RI HTXDWLRQV
5x1 C x2 3x3 D 0
5x1 C x2 3x3 D 0
9x1 C 2x2 C 5x3 D 1
9x1 C 2x2 C 5x3 D 5
4x1 C x2 6x3 D 9
4x1 C x2 6x3 D 45
,W FDQ EH VKRZQ WKDW WKH ıUVW V\VWHP KDV D VROXWLRQ 8VH WKLV IDFW DQG WKH WKHRU\ IURP WKLV VHFWLRQ WR H[SODLQ ZK\ WKH VHFRQG V\VWHP PXVW DOVR KDYH D VROXWLRQ 0DNH QR URZ RSHUDWLRQV 3URYH 7KHRUHP DV IROORZV *LYHQ DQ m n PDWUL[ A DQ HOHPHQW LQ &RO A KDV WKH IRUP A[ IRU VRPH [ LQ Rn /HW A[ DQG AZ UHSUHVHQW DQ\ WZR YHFWRUV LQ &RO A D ([SODLQ ZK\ WKH ]HUR YHFWRU LV LQ &RO A E 6KRZ WKDW WKH YHFWRU A[ C AZ LV LQ &RO A F *LYHQ D VFDODU c VKRZ WKDW c.A[/ LV LQ &RO A
&DOFXOXV UHTXLUHG 'HıQH T W C Œ0; 1 ! C Œ0; 1 DV IROORZV )RU I LQ C Œ0; 1 OHW T .I/ EH WKH DQWLGHULYDWLYH ) RI I VXFK WKDW ).0/ D 0 6KRZ WKDW T LV D OLQHDU WUDQVIRUPDWLRQ DQG GHVFULEH WKH NHUQHO RI T 6HH WKH QRWDWLRQ LQ ([HUFLVH RI 6HFWLRQ /HW V DQG W EH YHFWRU VSDFHV DQG OHW T W V ! W EH D OLQHDU WUDQVIRUPDWLRQ *LYHQ D VXEVSDFH U RI V OHW T .U / GHQRWH WKH VHW RI DOO LPDJHV RI WKH IRUP T .[/ ZKHUH [ LV LQ U 6KRZ WKDW T .U / LV D VXEVSDFH RI W *LYHQ T W V ! W DV LQ ([HUFLVH DQG JLYHQ D VXEVSDFH Z RI W OHW U EH WKH VHW RI DOO [ LQ V VXFK WKDW T .[/ LV LQ Z 6KRZ WKDW U LV D VXEVSDFH RI V 7 'HWHUPLQH ZKHWKHU Z LV LQ WKH FROXPQ VSDFH RI A WKH QXOO
VSDFH RI A RU ERWK ZKHUH 2 3 2 3 1 7 6 4 1 6 17 6 5 1 0 2 7 7 6 7 ZD6 4 1 5; A D 4 9 11 7 3 5 7 1 3 19 9
/HW T W V ! W EH D OLQHDU WUDQVIRUPDWLRQ IURP D YHFWRU VSDFH V LQWR D YHFWRU VSDFH W 3URYH WKDW WKH UDQJH RI T LV D VXEVSDFH RI W >+LQW 7\SLFDO HOHPHQWV RI WKH UDQJH KDYH 7 'HWHUPLQH ZKHWKHU Z LV LQ WKH FROXPQ VSDFH RI A WKH QXOO WKH IRUP T .[/ DQG T .Z/ IRU VRPH [ Z LQ V @ VSDFH RI A RU ERWK ZKHUH 2 3 2 3 S.0/ 2 0 1 8 5 2 'HıQH T W P2 ! R E\ T .S/ D )RU LQVWDQFH LI S.1/ 627 6 2 1 2 7 7 6 5 7 ZD6 4 1 5; A D 4 10 8 3 6 3 5 2 S.t/ D 3 C 5t C 7t WKHQ T .S/ D 15 0 3 2 1 0 D 6KRZ WKDW T LV D OLQHDU WUDQVIRUPDWLRQ >+LQW )RU DUELWUDU\ 7 /HW D1 ; : : : ; D5 GHQRWH WKH FROXPQV RI WKH PDWUL[ A ZKHUH SRO\QRPLDOV S T LQ P2 FRPSXWH T .S C T/ DQG T .c S/@ 2 3 5 1 2 2 0 E )LQG D SRO\QRPLDO S LQ P2 WKDW VSDQV WKH NHUQHO RI T DQG 63 7 3 2 1 12 7 GHVFULEH WKH UDQJH RI T AD6 ; B D Œ D1 D2 D4 48 4 4 5 12 5 2 1 1 0 2 'HıQH D OLQHDU WUDQVIRUPDWLRQ T W P2 ! R2 E\ D ([SODLQ ZK\ D DQG D 3 5 DUH LQ WKH FROXPQ VSDFH RI B S.0/ T .S / D )LQG SRO\QRPLDOV S1 DQG S2 LQ P2 WKDW S.0/ E )LQG D VHW RI YHFWRUV WKDW VSDQV 1XO A VSDQ WKH NHUQHO RI T DQG GHVFULEH WKH UDQJH RI T
F /HW T W R5 ! R4 EH GHıQHG E\ T .[/ D A[ ([SODLQ ZK\ T LV QHLWKHU RQHWRRQH QRU RQWR
/HW M22 EH WKH YHFWRU VSDFH RI DOO 2 2 PDWULFHV 7 /HW H D 6SDQ fY ; Y g DQG K D 6SDQ fY ; Y g ZKHUH 1 2 3 4 DQG GHıQH T W M22 ! M22 E\ T .A/ D A C AT ZKHUH 2 3 2 3 2 3 2 3 5 1 2 0 a b AD Y1 D 4 3 5; Y2 D 4 3 5; Y3 D 4 1 5; Y4 D 4 12 5: c d 8 4 5 28 D 6KRZ WKDW T LV D OLQHDU WUDQVIRUPDWLRQ 3 T 7KHQ H DQG K DUH VXEVSDFHV RI R ,Q IDFW H DQG K E /HW B EH DQ\ HOHPHQW RI M22 VXFK WKDW B D B )LQG DUH SODQHV LQ R3 WKURXJK WKH RULJLQ DQG WKH\ LQWHUVHFW DQ A LQ M22 VXFK WKDW T .A/ D B LQ D OLQH WKURXJK )LQG D QRQ]HUR YHFWRU Z WKDW JHQ F 6KRZ WKDW WKH UDQJH RI T LV WKH VHW RI B LQ M22 ZLWK WKH HUDWHV WKDW OLQH >+LQW Z FDQ EH ZULWWHQ DV c1 Y1 C c2 Y2 T SURSHUW\ WKDW B D B DQG DOVR DV c3 Y3 C c4 Y4 7R EXLOG Z VROYH WKH HTXDWLRQ G 'HVFULEH WKH NHUQHO RI T c1 Y1 C c2 Y2 D c3 Y3 C c4 Y4 IRU WKH XQNQRZQ cj ŖV@
678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU PDVWHULQJ YHFWRU VSDFHV VXEVSDFHV DQG FROXPQ URZ DQG QXOO VSDFHV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
6ROXWLRQV WR 3UDFWLFH 3UREOHPV )LUVW PHWKRG W LV D VXEVSDFH RI R3 E\ 7KHRUHP EHFDXVH W LV WKH VHW RI DOO VROXWLRQV WR D V\VWHP RI KRPRJHQHRXV OLQHDU HTXDWLRQV ZKHUH WKH V\VWHP KDV RQO\ RQH HTXDWLRQ (TXLYDOHQWO\ W LV WKH QXOO VSDFH RI WKH 1 3 PDWUL[ A D Œ 1 3 1 6HFRQG PHWKRG 6ROYH WKH HTXDWLRQ a 3b c D 0 IRU WKH OHDGLQJ YDULDEOH a LQ 2 3 3b C c WHUPV RI WKH IUHH YDULDEOHV b DQG c $Q\ VROXWLRQ KDV WKH IRUP 4 b 5 ZKHUH b c DQG c DUH DUELWUDU\ DQG 2 3 2 3 2 3 3b C c 3 1 4 b 5 D b4 1 5 C c4 0 5 c 0 1 " Y1
" Y2
7KLV FDOFXODWLRQ VKRZV WKDW W D 6SDQ fY1 ; Y2 g 7KXV W LV D VXEVSDFH RI R3 E\ 7KHRUHP :H FRXOG DOVR VROYH WKH HTXDWLRQ a 3b c D 0 IRU b RU c DQG JHW DOWHUQDWLYH GHVFULSWLRQV RI W DV D VHW RI OLQHDU FRPELQDWLRQV RI WZR YHFWRUV %RWK Y DQG Z DUH LQ &RO A 6LQFH &RO A LV D YHFWRU VSDFH Y C Z PXVW EH LQ &RO A 7KDW LV WKH HTXDWLRQ A[ D Y C Z LV FRQVLVWHQW /HW [ EH DQ\ YHFWRU LQ Rn 1RWLFH A[ LV LQ &RO A VLQFH LW LV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI A 6LQFH &RO A D 1XO A WKH YHFWRU A[ LV DOVR LQ 1XO A +HQFH A2 [ D A.A[/ D HVWDEOLVKLQJ WKDW HYHU\ YHFWRU [ IURP Rn LV LQ 1XO A2
/LQHDUO\ ,QGHSHQGHQW 6HWV %DVHV ,Q WKLV VHFWLRQ ZH LGHQWLI\ DQG VWXG\ WKH VXEVHWV WKDW VSDQ D YHFWRU VSDFH V RU D VXEVSDFH H DV ŗHĴFLHQWO\Ř DV SRVVLEOH 7KH NH\ LGHD LV WKDW RI OLQHDU LQGHSHQGHQFH GHıQHG DV LQ Rn $Q LQGH[HG VHW RI YHFWRUV fY1 ; : : : ; Yp g LQ V LV VDLG WR EH OLQHDUO\ LQGHSHQGHQW LI WKH YHFWRU HTXDWLRQ c1 Y1 C c2 Y2 C C cp Yp D KDV RQO\ WKH WULYLDO VROXWLRQ c1 D 0; : : : ; cp D 01 7KH VHW fY1 ; : : : ; Yp g LV VDLG WR EH OLQHDUO\ GHSHQGHQW LI KDV D QRQWULYLDO VROXWLRQ WKDW LV LI WKHUH DUH VRPH ZHLJKWV c1 ; : : : ; cp QRW DOO ]HUR VXFK WKDW KROGV ,Q VXFK D FDVH LV FDOOHG D OLQHDU GHSHQGHQFH UHODWLRQ DPRQJ Y1 ; : : : ; Yp -XVW DV LQ Rn D VHW FRQWDLQLQJ D VLQJOH YHFWRU Y LV OLQHDUO\ LQGHSHQGHQW LI DQG RQO\ LI Y ¤ $OVR D VHW RI WZR YHFWRUV LV OLQHDUO\ GHSHQGHQW LI DQG RQO\ LI RQH RI WKH YHFWRUV LV D PXOWLSOH RI WKH RWKHU $QG DQ\ VHW FRQWDLQLQJ WKH ]HUR YHFWRU LV OLQHDUO\ GHSHQGHQW 7KH IROORZLQJ WKHRUHP KDV WKH VDPH SURRI DV 7KHRUHP LQ 6HFWLRQ
1
,W LV FRQYHQLHQW WR XVH c1 ; : : : ; cp LQ IRU WKH VFDODUV LQVWHDG RI x1 ; : : : ; xp DV ZH GLG SUHYLRXVO\
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDUO\ ,QGHSHQGHQW 6HWV %DVHV
5)&03&.
$Q LQGH[HG VHW fY1 ; : : : ; Yp g RI WZR RU PRUH YHFWRUV ZLWK Y1 ¤ LV OLQHDUO\ GHSHQGHQW LI DQG RQO\ LI VRPH Yj ZLWK j > 1/ LV D OLQHDU FRPELQDWLRQ RI WKH SUHFHGLQJ YHFWRUV Y1 ; : : : ; Yj 1
7KH PDLQ GLijHUHQFH EHWZHHQ OLQHDU GHSHQGHQFH LQ Rn DQG LQ D JHQHUDO YHFWRU VSDFH LV WKDW ZKHQ WKH YHFWRUV DUH QRW nWXSOHV WKH KRPRJHQHRXV HTXDWLRQ XVXDOO\ FDQQRW EH ZULWWHQ DV D V\VWHP RI n OLQHDU HTXDWLRQV 7KDW LV WKH YHFWRUV FDQQRW EH PDGH LQWR WKH FROXPQV RI D PDWUL[ A LQ RUGHU WR VWXG\ WKH HTXDWLRQ A[ D :H PXVW UHO\ LQVWHDG RQ WKH GHıQLWLRQ RI OLQHDU GHSHQGHQFH DQG RQ 7KHRUHP
(;$03/( /HW S1 .t / D 1 S2 .t / D t DQG S3 .t / D 4 t 7KHQ fS1 ; S2 ; S3 g LV OLQHDUO\ GHSHQGHQW LQ P EHFDXVH S3 D 4S1 S2 (;$03/( 7KH VHW fVLQ t; FRV tg LV OLQHDUO\ LQGHSHQGHQW LQ C Œ0; 1 WKH VSDFH RI DOO FRQWLQXRXV IXQFWLRQV RQ 0 t 1 EHFDXVH VLQ t DQG FRV t DUH QRW PXOWLSOHV RI RQH DQRWKHU DV YHFWRUV LQ C Œ0; 1 7KDW LV WKHUH LV QR VFDODU c VXFK WKDW FRV t D c VLQ t IRU DOO t LQ Œ0; 1 /RRN DW WKH JUDSKV RI VLQ t DQG FRV t +RZHYHU fVLQ t FRV t; VLQ 2tg LV OLQHDUO\ GHSHQGHQW EHFDXVH RI WKH LGHQWLW\ VLQ 2t D 2 VLQ t FRV t IRU DOO t
%&'*/*5*0/
/HW H EH D VXEVSDFH RI D YHFWRU VSDFH V $ VHW RI YHFWRUV B LQ V LV D EDVLV IRU H LI L B LV D OLQHDUO\ LQGHSHQGHQW VHW DQG LL WKH VXEVSDFH VSDQQHG E\ B FRLQFLGHV ZLWK H WKDW LV
H D 6SDQ B
7KH GHıQLWLRQ RI D EDVLV DSSOLHV WR WKH FDVH ZKHQ H D V EHFDXVH DQ\ YHFWRU VSDFH LV D VXEVSDFH RI LWVHOI 7KXV D EDVLV RI V LV D OLQHDUO\ LQGHSHQGHQW VHW WKDW VSDQV V 2EVHUYH WKDW ZKHQ H ¤ V FRQGLWLRQ LL LQFOXGHV WKH UHTXLUHPHQW WKDW HDFK RI WKH YHFWRUV E LQ B PXVW EHORQJ WR H EHFDXVH 6SDQ B FRQWDLQV HYHU\ HOHPHQW LQ B DV VKRZQ LQ 6HFWLRQ x3
(;$03/( /HW A EH DQ LQYHUWLEOH n n PDWUL[ŠVD\ A D Œ D1 Dn 7KHQ
WKH FROXPQV RI A IRUP D EDVLV IRU Rn EHFDXVH WKH\ DUH OLQHDUO\ LQGHSHQGHQW DQG WKH\ VSDQ Rn E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP e3
(;$03/( /HW H1 ; : : : ; Hn EH WKH FROXPQV RI WKH n n LGHQWLW\ PDWUL[ In 7KDW LV e2 e1 x1
'*(63&
7KH VWDQGDUG EDVLV IRU R3
x2
2 3 1 607 6 7 H1 D 6 : 7; 4 :: 5
0
2 3 0 617 6 7 H2 D 6 : 7; 4 :: 5
:::;
0
2 3 0 6 :: 7 6 7 Hn D 6 : 7 405 1
7KH VHW fH1 ; : : : ; Hn g LV FDOOHG WKH VWDQGDUG EDVLV IRU Rn )LJXUH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
2
3 2 3 2 3 3 4 2 (;$03/( /HW Y1 D 4 0 5 Y2 D 4 1 5 DQG Y3 D 4 1 5 'HWHUPLQH LI 6 7 5 fY1 ; Y2 ; Y3 g LV D EDVLV IRU R3 62/87,21 6LQFH WKHUH DUH H[DFWO\ WKUHH YHFWRUV KHUH LQ R3 ZH FDQ XVH DQ\ RI VHYHUDO
y
PHWKRGV WR GHWHUPLQH LI WKH PDWUL[ A D Œ Y1 Y2 Y3 LV LQYHUWLEOH )RU LQVWDQFH WZR URZ UHSODFHPHQWV UHYHDO WKDW A KDV WKUHH SLYRW SRVLWLRQV 7KXV A LV LQYHUWLEOH $V LQ ([DPSOH WKH FROXPQV RI A IRUP D EDVLV IRU R3
y 5 t2 y5t
(;$03/( /HW S D f1; t; t 2 ; : : : ; t n g 9HULI\ WKDW S LV D EDVLV IRU Pn 7KLV EDVLV LV FDOOHG WKH VWDQGDUG EDVLV IRU Pn
62/87,21 &HUWDLQO\ S VSDQV Pn 7R VKRZ WKDW S LV OLQHDUO\ LQGHSHQGHQW VXSSRVH WKDW
c0 ; : : : ; cn VDWLVI\
y51 t
'*(63&
7KH VWDQGDUG EDVLV IRU P2
c0 1 C c1 t C c2 t 2 C C cn t n D .t /
7KLV HTXDOLW\ PHDQV WKDW WKH SRO\QRPLDO RQ WKH OHIW KDV WKH VDPH YDOXHV DV WKH ]HUR SRO\QRPLDO RQ WKH ULJKW $ IXQGDPHQWDO WKHRUHP LQ DOJHEUD VD\V WKDW WKH RQO\ SRO\QRPLDO LQ Pn ZLWK PRUH WKDQ n ]HURV LV WKH ]HUR SRO\QRPLDO 7KDW LV HTXDWLRQ KROGV IRU DOO t RQO\ LI c0 D D cn D 0 7KLV SURYHV WKDW S LV OLQHDUO\ LQGHSHQGHQW DQG KHQFH LV D EDVLV IRU Pn 6HH )LJXUH 3UREOHPV LQYROYLQJ OLQHDU LQGHSHQGHQFH DQG VSDQQLQJ LQ Pn DUH KDQGOHG EHVW E\ D WHFKQLTXH WR EH GLVFXVVHG LQ 6HFWLRQ
7KH 6SDQQLQJ 6HW 7KHRUHP $V ZH ZLOO VHH D EDVLV LV DQ ŗHĴFLHQWŘ VSDQQLQJ VHW WKDW FRQWDLQV QR XQQHFHVVDU\ YHFWRUV ,Q IDFW D EDVLV FDQ EH FRQVWUXFWHG IURP D VSDQQLQJ VHW E\ GLVFDUGLQJ XQQHHGHG YHFWRUV
(;$03/( /HW 2
3 0 Y1 D 4 2 5; 1
v3
H
2 3 2 Y2 D 4 2 5; 0
2
3 6 Y3 D 4 16 5; 5
DQG
H D 6SDQ fY1 ; Y2 ; Y3 g:
1RWH WKDW Y3 D 5Y1 C 3Y2 DQG VKRZ WKDW 6SDQ fY1 ; Y2 ; Y3 g D 6SDQ fY1 ; Y2 g 7KHQ ıQG D EDVLV IRU WKH VXEVSDFH H 62/87,21 (YHU\ YHFWRU LQ 6SDQ fY1 ; Y2 g EHORQJV WR H EHFDXVH
c1 Y1 C c2 Y2 D c1 Y1 C c2 Y2 C 0Y3 v1
v2
1RZ OHW [ EH DQ\ YHFWRU LQ H ŠVD\ [ D c1 Y1 C c2 Y2 C c3 Y3 6LQFH Y3 D 5Y1 C 3Y2 ZH PD\ VXEVWLWXWH [ D c1 Y1 C c2 Y2 C c3 .5Y1 C 3Y2 / D .c1 C 5c3 /Y1 C .c2 C 3c3 /Y2 7KXV [ LV LQ 6SDQ fY1 ; Y2 g VR HYHU\ YHFWRU LQ H DOUHDG\ EHORQJV WR 6SDQ fY1 ; Y2 g :H FRQFOXGH WKDW H DQG 6SDQ fY1 ; Y2 g DUH DFWXDOO\ WKH VDPH VHW RI YHFWRUV ,W IROORZV WKDW fY1 ; Y2 g LV D EDVLV RI H VLQFH fY1 ; Y2 g LV REYLRXVO\ OLQHDUO\ LQGHSHQGHQW 7KH QH[W WKHRUHP JHQHUDOL]HV ([DPSOH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDUO\ ,QGHSHQGHQW 6HWV %DVHV
5)&03&.
5IF 4QBOOJOH 4FU 5IFPSFN /HW S D fY1 ; : : : ; Yp g EH D VHW LQ D YHFWRU VSDFH V DQG OHW H D 6SDQ fY1 ; : : : ; Yp g D ,I RQH RI WKH YHFWRUV LQ S ŠVD\ Yk ŠLV D OLQHDU FRPELQDWLRQ RI WKH UHPDLQLQJ YHFWRUV LQ S WKHQ WKH VHW IRUPHG IURP S E\ UHPRYLQJ Yk VWLOO VSDQV H E ,I H ¤ fg VRPH VXEVHW RI S LV D EDVLV IRU H
1300' D %\ UHDUUDQJLQJ WKH OLVW RI YHFWRUV LQ S LI QHFHVVDU\ ZH PD\ VXSSRVH WKDW Yp LV D OLQHDU FRPELQDWLRQ RI Y1 ; : : : ; Yp1 ŠVD\ Yp D a1 Y1 C C ap1 Yp1
*LYHQ DQ\ [ LQ H ZH PD\ ZULWH [ D c1 Y1 C C cp1 Yp1 C cp Yp
IRU VXLWDEOH VFDODUV c1 ; : : : ; cp 6XEVWLWXWLQJ WKH H[SUHVVLRQ IRU Yp IURP LQWR LW LV HDV\ WR VHH WKDW [ LV D OLQHDU FRPELQDWLRQ RI Y1 ; : : : ; Yp1 7KXV fY1 ; : : : ; Yp1 g VSDQV H EHFDXVH [ ZDV DQ DUELWUDU\ HOHPHQW RI H E ,I WKH RULJLQDO VSDQQLQJ VHW S LV OLQHDUO\ LQGHSHQGHQW WKHQ LW LV DOUHDG\ D EDVLV IRU H 2WKHUZLVH RQH RI WKH YHFWRUV LQ S GHSHQGV RQ WKH RWKHUV DQG FDQ EH GHOHWHG E\ SDUW D 6R ORQJ DV WKHUH DUH WZR RU PRUH YHFWRUV LQ WKH VSDQQLQJ VHW ZH FDQ UHSHDW WKLV SURFHVV XQWLO WKH VSDQQLQJ VHW LV OLQHDUO\ LQGHSHQGHQW DQG KHQFH LV D EDVLV IRU H ,I WKH VSDQQLQJ VHW LV HYHQWXDOO\ UHGXFHG WR RQH YHFWRU WKDW YHFWRU ZLOO EH QRQ]HUR DQG KHQFH OLQHDUO\ LQGHSHQGHQW EHFDXVH H ¤ fg
%DVHV IRU 1XO $ &RO $ DQG 5RZ $ :H DOUHDG\ NQRZ KRZ WR ıQG YHFWRUV WKDW VSDQ WKH QXOO VSDFH RI D PDWUL[ A 7KH GLVFXVVLRQ LQ 6HFWLRQ SRLQWHG RXW WKDW RXU PHWKRG DOZD\V SURGXFHV D OLQHDUO\ LQGHSHQGHQW VHW ZKHQ 1XO A FRQWDLQV QRQ]HUR YHFWRUV 6R LQ WKLV FDVH WKDW PHWKRG SURGXFHV D EDVLV IRU 1XO A 7KH QH[W WZR H[DPSOHV GHVFULEH D VLPSOH DOJRULWKP IRU ıQGLQJ D EDVLV IRU WKH FROXPQ VSDFH
(;$03/( )LQG D EDVLV IRU &RO B ZKHUH
2
B D E1
E2
1 60 E5 D 6 40 0
4 0 0 0
0 2 1 1 0 0 0 0
3 0 07 7 15 0
62/87,21 (DFK QRQSLYRW FROXPQ RI B LV D OLQHDU FRPELQDWLRQ RI WKH SLYRW FROXPQV ,Q IDFW E2 D 4E1 DQG E4 D 2E1 E3 %\ WKH 6SDQQLQJ 6HW 7KHRUHP ZH PD\ GLVFDUG E2 DQG E4 DQG fE1 ; E3 ; E5 g ZLOO VWLOO VSDQ &RO B /HW 82 3 2 3 2 39 1 0 0 > ˆ ˆ
= 07 617 607 6 S D fE1 ; E3 ; E5 g D 4 5; 4 5; 4 5 0 1 > ˆ 0 ˆ > : ; 0 0 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
6LQFH E1 ¤ 0 DQG QR YHFWRU LQ S LV D OLQHDU FRPELQDWLRQ RI WKH YHFWRUV WKDW SUHFHGH LW S LV OLQHDUO\ LQGHSHQGHQW 7KHRUHP 7KXV S LV D EDVLV IRU &RO B :KDW DERXW D PDWUL[ A WKDW LV QRW LQ UHGXFHG HFKHORQ IRUP" 5HFDOO WKDW DQ\ OLQHDU GHSHQGHQFH UHODWLRQVKLS DPRQJ WKH FROXPQV RI A FDQ EH H[SUHVVHG LQ WKH IRUP A[ D ZKHUH [ LV D FROXPQ RI ZHLJKWV ,I VRPH FROXPQV DUH QRW LQYROYHG LQ D SDUWLFXODU GHSHQGHQFH UHODWLRQ WKHQ WKHLU ZHLJKWV DUH ]HUR :KHQ A LV URZ UHGXFHG WR D PDWUL[ B WKH FROXPQV RI B DUH RIWHQ WRWDOO\ GLijHUHQW IURP WKH FROXPQV RI A +RZHYHU WKH HTXDWLRQV A[ D DQG B [ D KDYH H[DFWO\ WKH VDPH VHW RI VROXWLRQV ,I A D Œ D1 Dn DQG B D Œ E1 En WKHQ WKH YHFWRU HTXDWLRQV
x1 D1 C C xn Dn D DQG x1 E1 C C xn En D DOVR KDYH WKH VDPH VHW RI VROXWLRQV 7KDW LV WKH FROXPQV RI A KDYH H[DFWO\ WKH VDPH OLQHDU GHSHQGHQFH UHODWLRQVKLSV DV WKH FROXPQV RI B
(;$03/( ,W FDQ EH VKRZQ WKDW WKH PDWUL[ 2
A D D1
D2
1 4 6 3 12 D5 D 6 42 8 5 20
0 1 1 2
3 2 1 5 57 7 3 25 8 8
LV URZ HTXLYDOHQW WR WKH PDWUL[ B LQ ([DPSOH )LQG D EDVLV IRU &RO A 62/87,21 ,Q ([DPSOH ZH VDZ WKDW
E2 D 4E1
DQG
E4 D 2E1 E3
D2 D 4D1
DQG
D4 D 2D1 D3
VR ZH FDQ H[SHFW WKDW &KHFN WKDW WKLV LV LQGHHG WKH FDVH 7KXV ZH PD\ GLVFDUG D2 DQG D4 ZKHQ VHOHFWLQJ D PLQLPDO VSDQQLQJ VHW IRU &RO A ,Q IDFW fD1 ; D3 ; D5 g PXVW EH OLQHDUO\ LQGHSHQGHQW EHFDXVH DQ\ OLQHDU GHSHQGHQFH UHODWLRQVKLS DPRQJ D1 D3 D5 ZRXOG LPSO\ D OLQHDU GHSHQGHQFH UHODWLRQVKLS DPRQJ E1 E3 E5 %XW ZH NQRZ WKDW fE1 ; E3 ; E5 g LV D OLQHDUO\ LQGHSHQGHQW VHW 7KXV fD1 ; D3 ; D5 g LV D EDVLV IRU &RO A 7KH FROXPQV ZH KDYH XVHG IRU WKLV EDVLV DUH WKH SLYRW FROXPQV RI A ([DPSOHV DQG LOOXVWUDWH WKH IROORZLQJ XVHIXO IDFW
5)&03&.
7KH SLYRW FROXPQV RI D PDWUL[ A IRUP D EDVLV IRU &RO A
1300' 7KH JHQHUDO SURRI XVHV WKH DUJXPHQWV GLVFXVVHG DERYH /HW B EH WKH UHGXFHG HFKHORQ IRUP RI A 7KH VHW RI SLYRW FROXPQV RI B LV OLQHDUO\ LQGHSHQGHQW IRU QR YHFWRU LQ WKH VHW LV D OLQHDU FRPELQDWLRQ RI WKH YHFWRUV WKDW SUHFHGH LW 6LQFH A LV URZ HTXLYDOHQW WR B WKH SLYRW FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW DV ZHOO EHFDXVH DQ\ OLQHDU GHSHQGHQFH UHODWLRQ DPRQJ WKH FROXPQV RI A FRUUHVSRQGV WR D OLQHDU GHSHQGHQFH UHODWLRQ DPRQJ WKH FROXPQV RI B )RU WKLV VDPH UHDVRQ HYHU\ QRQSLYRW FROXPQ RI A LV D OLQHDU FRPELQDWLRQ RI WKH SLYRW FROXPQV RI A 7KXV WKH QRQSLYRW FROXPQV RI A PD\ EH GLVFDUGHG IURP WKH VSDQQLQJ VHW IRU &RO A E\ WKH 6SDQQLQJ 6HW 7KHRUHP 7KLV OHDYHV WKH SLYRW FROXPQV RI A DV D EDVLV IRU &RO A
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDUO\ ,QGHSHQGHQW 6HWV %DVHV
:DUQLQJ 7KH SLYRW FROXPQV RI D PDWUL[ A DUH HYLGHQW ZKHQ A KDV EHHQ UHGXFHG RQO\ WR HFKHORQ IRUP %XW EH FDUHIXO WR XVH WKH SLYRW FROXPQV RI A LWVHOI IRU WKH EDVLV RI &RO A 5RZ RSHUDWLRQV FDQ FKDQJH WKH FROXPQ VSDFH RI D PDWUL[ 7KH FROXPQV RI DQ HFKHORQ IRUP B RI A DUH RIWHQ QRW LQ WKH FROXPQ VSDFH RI A )RU LQVWDQFH WKH FROXPQV RI PDWUL[ B LQ ([DPSOH DOO KDYH ]HURV LQ WKHLU ODVW HQWULHV VR WKH\ FDQQRW VSDQ WKH FROXPQ VSDFH RI PDWUL[ A LQ ([DPSOH ,Q FRQWUDVW WKH IROORZLQJ WKHRUHP HVWDEOLVKHV WKDW URZ UHGXFWLRQ GRHV QRW FKDQJH WKH URZ VSDFH RI D PDWUL[
5)&03&.
,I WZR PDWULFHV A DQG B DUH URZ HTXLYDOHQW WKHQ WKHLU URZ VSDFHV DUH WKH VDPH ,I B LV LQ HFKHORQ IRUP WKH QRQ]HUR URZV RI B IRUP D EDVLV IRU WKH URZ VSDFH RI A DV ZHOO DV IRU WKDW RI B
1300' ,I B LV REWDLQHG IURP A E\ URZ RSHUDWLRQV WKH URZV RI B DUH OLQHDU FRP ELQDWLRQV RI WKH URZV RI A ,W IROORZV WKDW DQ\ OLQHDU FRPELQDWLRQ RI WKH URZV RI B LV DXWRPDWLFDOO\ D OLQHDU FRPELQDWLRQ RI WKH URZV RI A 7KXV WKH URZ VSDFH RI B LV FRQWDLQHG LQ WKH URZ VSDFH RI A 6LQFH URZ RSHUDWLRQV DUH UHYHUVLEOH WKH VDPH DUJXPHQW VKRZV WKDW WKH URZ VSDFH RI A LV D VXEVHW RI WKH URZ VSDFH RI B 6R WKH WZR URZ VSDFHV DUH WKH VDPH ,I B LV LQ HFKHORQ IRUP LWV QRQ]HUR URZV DUH OLQHDUO\ LQGHSHQGHQW EHFDXVH QR QRQ]HUR URZ LV D OLQHDU FRPELQDWLRQ RI WKH QRQ]HUR URZV EHORZ LW $SSO\ 7KHRUHP WR WKH QRQ]HUR URZV RI B LQ UHYHUVH RUGHU ZLWK WKH ıUVW URZ ODVW 7KXV WKH QRQ]HUR URZV RI B IRUP D EDVLV RI WKH FRPPRQ URZ VSDFH RI B DQG A
(;$03/( )LQG D EDVLV IRU WKH URZ VSDFH RI WKH PDWUL[ A IURP ([DPSOH 62/87,21 7R ıQG D EDVLV IRU WKH URZ VSDFH UHFDOO WKDW PDWUL[ A IURP ([DPSOH LV
URZ HTXLYDOHQW WR PDWUL[ B 2 1 4 6 3 12 AD6 4 2 8 5 20
IURP ([DPSOH 3 2 0 2 1 1 6 0 1 5 5 7 7 BD6 4 0 1 3 2 5 2 8 8 0
4 0 0 0
3 0 2 0 1 1 0 7 7 0 0 1 5 0 0 0
%\ 7KHRUHP WKH ıUVW WKUHH URZV RI B IRUP D EDVLV IRU WKH URZ VSDFH RI A DV ZHOO DV IRU WKH URZ VSDFH RI B 7KXV %DVLV IRU 5RZ A W f.1; 4; 0; 2; 0/; .0; 0; 1; 1; 0/; .0; 0; 0; 0; 1/g 2EVHUYH WKDW XQOLNH WKH EDVLV IRU &RO A WKH EDVHV IRU 5RZ A DQG 1XO A KDYH QR VLPSOH FRQQHFWLRQ ZLWK WKH HQWULHV LQ A LWVHOI
7ZR 9LHZV RI D %DVLV :KHQ WKH 6SDQQLQJ 6HW 7KHRUHP LV XVHG WKH GHOHWLRQ RI YHFWRUV IURP D VSDQQLQJ VHW PXVW VWRS ZKHQ WKH VHW EHFRPHV OLQHDUO\ LQGHSHQGHQW ,I DQ DGGLWLRQDO YHFWRU LV GHOHWHG 2 ,W LV SRVVLEOH WR ıQG D EDVLV IRU WKH URZ VSDFH 5RZ A WKDW XVHV URZV RI A )LUVW IRUP AT DQG WKHQ URZ UHGXFH XQWLO WKH SLYRW FROXPQV RI AT DUH IRXQG 7KHVH SLYRW FROXPQV RI AT DUH URZV RI A DQG WKH\ IRUP D EDVLV IRU WKH URZ VSDFH RI A
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
LW ZLOO QRW EH D OLQHDU FRPELQDWLRQ RI WKH UHPDLQLQJ YHFWRUV DQG KHQFH WKH VPDOOHU VHW ZLOO QR ORQJHU VSDQ V 7KXV D EDVLV LV D VSDQQLQJ VHW WKDW LV DV VPDOO DV SRVVLEOH $ EDVLV LV DOVR D OLQHDUO\ LQGHSHQGHQW VHW WKDW LV DV ODUJH DV SRVVLEOH ,I S LV D EDVLV IRU V DQG LI S LV HQODUJHG E\ RQH YHFWRUŠVD\ ZŠIURP V WKHQ WKH QHZ VHW FDQQRW EH OLQHDUO\ LQGHSHQGHQW EHFDXVH S VSDQV V DQG Z LV WKHUHIRUH D OLQHDU FRPELQDWLRQ RI WKH HOHPHQWV LQ S
(;$03/( 7KH IROORZLQJ WKUHH VHWV LQ R3 VKRZ KRZ D OLQHDUO\ LQGHSHQGHQW VHW FDQ EH HQODUJHG WR D EDVLV DQG KRZ IXUWKHU HQODUJHPHQW GHVWUR\V WKH OLQHDU LQGHSHQGHQFH RI WKH VHW $OVR D VSDQQLQJ VHW FDQ EH VKUXQN WR D EDVLV EXW IXUWKHU VKULQNLQJ GHVWUR\V WKH VSDQQLQJ SURSHUW\ 8 2 3 2 39 82 3 2 3 2 39 82 3 2 3 2 3 2 39 2 = < 1 2 4 = < 1 2 4 7 = < 1 4 0 5; 4 3 5 4 0 5; 4 3 5; 4 5 5 4 0 5; 4 3 5; 4 5 5; 4 8 5 : ; : ; : ; 0 0 0 0 6 0 0 6 9 /LQHDUO\ LQGHSHQGHQW EXW GRHV QRW VSDQ R3
$ EDVLV IRU R3
6SDQV R3 EXW LV OLQHDUO\ GHSHQGHQW
3UDFWLFH 3UREOHPV 2 3 2 3 1 2 /HW Y1 D 4 2 5 DQG Y2 D 4 7 5 'HWHUPLQH LI fY1 ; Y2 g LV D EDVLV IRU R3 ,V 3 9 fY1 ; Y2 g D EDVLV IRU R2 " 2 3 2 3 2 3 2 3 1 6 2 4 /HW Y1 D 4 3 5 Y2 D 4 2 5 Y3 D 4 2 5 DQG Y4 D 4 8 5 )LQG D EDVLV IRU 4 1 9 3 WKH VXEVSDFH W VSDQQHG E\ fY1 ; Y2 ; Y3 ; Y4 g 82 3 9 2 3 2 3 1 0 < s = /HW Y1 D 4 0 5 Y2 D 4 1 5 DQG H D 4 s 5 W s LQ R 7KHQ HYHU\ YHFWRU LQ H : ; 0 0 0 LV D OLQHDU FRPELQDWLRQ RI Y1 DQG Y2 EHFDXVH 2 3 2 3 2 3 s 1 0 4 s 5 D s4 0 5 C s4 1 5 0 0 0
678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU PDVWHULQJ WKH FRQFHSW RI EDVLV
,V fY1 ; Y2 g D EDVLV IRU H " /HW V DQG W EH YHFWRU VSDFHV OHW T W V ! W DQG U W V ! W EH OLQHDU WUDQVIRU PDWLRQV DQG OHW fY1 ; ő; Yp g EH D EDVLV IRU V ,I T .Yj / D U.Yj / IRU HYHU\ YDOXH RI j EHWZHHQ DQG p VKRZ WKDW T .[/ D U.[/ IRU HYHU\ YHFWRU [ LQ V
([HUFLVHV 'HWHUPLQH ZKLFK VHWV LQ ([HUFLVHV ş DUH EDVHV IRU R3 2I WKH VHWV WKDW DUH QRW EDVHV GHWHUPLQH ZKLFK RQHV DUH OLQHDUO\ LQGHSHQGHQW DQG ZKLFK RQHV VSDQ R3 -XVWLI\ \RXU DQVZHUV 2 3 2 3 2 3 1 1 1 4 0 5 4 1 5 4 1 5 0 0 1
2 3 2 3 2 3 1 0 0 4 0 5 4 0 5 4 1 5 1 0 0
2
3 2 3 2 3 1 3 3 4 0 5 4 2 5 4 5 5 2 4 1
2
3 2 3 2 3 2 1 7 4 2 5 4 3 5 4 5 5 1 2 4
2
3 2 3 2 3 2 3 2 3 2 3 1 2 0 0 1 4 4 3 5 4 9 5 4 0 5 4 3 5 4 2 5 4 5 5 0 0 0 5 3 6
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/LQHDUO\ ,QGHSHQGHQW 6HWV %DVHV 2
3 2 3 2 6 4 3 5 4 1 5 0 5
2
3 2 3 2 3 2 3 1 0 3 0 4 4 5 4 3 5 4 5 5 4 2 5 3 1 4 2
)LQG EDVHV IRU WKH QXOO VSDFHV RI WKH PDWULFHV JLYHQ LQ ([HUFLVHV DQG 5HIHU WR WKH UHPDUNV WKDW IROORZ ([DPSOH LQ 6HFWLRQ 2 3 2 3 1 0 3 2 1 0 5 1 4 1 5 1 6 2 2 5 45 4 0 4 2 3 2 1 2 0 2 8 1 9 )LQG D EDVLV IRU WKH VHW RI YHFWRUV LQ R3 LQ WKH SODQH x C 2y C ´ D 0 >+LQW 7KLQN RI WKH HTXDWLRQ DV D ŗV\VWHPŘ RI KRPRJHQHRXV HTXDWLRQV@ )LQG D EDVLV IRU WKH VHW RI YHFWRUV LQ R2 RQ WKH OLQH y D 5x ,Q ([HUFLVHV DQG DVVXPH WKDW A LV URZ HTXLYDOHQW WR B )LQG EDVHV IRU 1XO A &RO A DQG 5RZ A 2 3 2 3 2 4 2 4 1 0 6 5 1 5 B D 4 0 2 5 3 5 A D 4 2 6 3 3 8 2 3 0 0 0 0 2
1 62 6 A D 4 1 3 2 1 60 6 BD4 0 0
2 4 2 6
5 5 0 5
2 0 0 0
0 5 0 0
11 15 4 19 4 7 0 0
3 3 27 7 55 2 3 5 7 87 9 5 0
,Q ([HUFLVHV ş ıQG D EDVLV IRU WKH VSDFH VSDQQHG E\ WKH JLYHQ YHFWRUV Y1 ; : : : ; Y5 2 3 2 3 2 3 2 3 2 3 1 0 3 1 2 6 0 7 6 1 7 6 4 7 6 3 7 6 1 7 6 7 6 7 6 7 6 7 6 7 4 5 4 5 4 5 4 5 4 5 3 2 1 8 6 2 3 6 7 9 2 3 2 3 2 3 2 3 2 3 1 2 6 5 0 6 0 7 6 1 7 6 1 7 6 3 7 6 3 7 7 6 7 6 7 6 7 6 7 6 4 0 5 4 1 5 4 2 5 4 3 5 4 1 5 1 1 1 4 1 2
3 2 3 2 3 2 3 2 3 8 4 1 6 1 6 9 7 6 5 7 6 4 7 6 8 7 6 4 7 6 7 6 7 6 7 6 7 6 7 7 6 3 7 6 1 7 6 9 7 6 4 7 6 11 7 6 7 6 7 6 7 6 7 6 7 4 6 5 4 4 5 4 6 5 4 7 5 4 8 5 4 7 10 7 0 2
3 2 3 2 3 2 3 2 3 8 8 8 1 9 6 7 7 6 7 7 6 7 7 6 4 7 6 3 7 6 7 6 7 6 7 6 7 6 7 7 6 6 7 6 9 7 6 4 7 6 9 7 6 4 7 6 7 6 7 6 7 6 7 6 7 4 5 5 4 5 5 4 5 5 4 6 5 4 1 5 7 7 7 7 0
2
3 2 3 2 3 4 1 7 /HW Y1 D 4 3 5 Y2 D 4 9 5 Y3 D 4 11 5 DQG H D 7 2 6 6SDQ fY1 ; Y2 ; Y3 g ,W FDQ EH YHULıHG WKDW 4Y1 C 5Y2 3Y3 D 8VH WKLV LQIRUPDWLRQ WR ıQG D EDVLV IRU H 7KHUH LV PRUH WKDQ RQH DQVZHU 2 3 2 3 2 3 7 4 1 6 47 6 7 7 6 5 7 6 7 6 7 6 7 ,W FDQ EH YHU /HW Y1 D 4 5 Y2 D 4 5 Y3 D 4 5 9 2 3 5 5 4 LıHG WKDW Y1 3Y2 C 5Y3 D 8VH WKLV LQIRUPDWLRQ WR ıQG D EDVLV IRU H D 6SDQ fY1 ; Y2 ; Y3 g ,Q ([HUFLVHV ş PDUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 7) $ VLQJOH YHFWRU E\ LWVHOI LV OLQHDUO\ GHSHQGHQW 7) $ OLQHDUO\ LQGHSHQGHQW VHW LQ D VXEVSDFH H LV D EDVLV IRU H 7) ,I H D 6SDQ fE1 ; : : : ; Ep g WKHQ fE1 ; : : : ; Ep g LV D EDVLV IRU H 7) ,I D ıQLWH VHW S RI QRQ]HUR YHFWRUV VSDQV D YHFWRU VSDFH V WKHQ VRPH VXEVHW RI S LV D EDVLV IRU V 7) 7KH FROXPQV RI DQ LQYHUWLEOH n n PDWUL[ IRUP D EDVLV IRU Rn 7) $ EDVLV LV D OLQHDUO\ LQGHSHQGHQW VHW WKDW LV DV ODUJH DV SRVVLEOH 7) $ EDVLV LV D VSDQQLQJ VHW WKDW LV DV ODUJH DV SRVVLEOH 7) 7KH VWDQGDUG PHWKRG IRU SURGXFLQJ D VSDQQLQJ VHW IRU 1XO A GHVFULEHG LQ 6HFWLRQ VRPHWLPHV IDLOV WR SURGXFH D EDVLV IRU 1XO A 7) ,Q VRPH FDVHV WKH OLQHDU GHSHQGHQFH UHODWLRQV DPRQJ WKH FROXPQV RI D PDWUL[ FDQ EH DijHFWHG E\ FHUWDLQ HOHPHQWDU\ URZ RSHUDWLRQV RQ WKH PDWUL[ 7) ,I B LV DQ HFKHORQ IRUP RI D PDWUL[ A WKHQ WKH SLYRW FROXPQV RI B IRUP D EDVLV IRU &RO A 7) 5RZ RSHUDWLRQV SUHVHUYH WKH OLQHDU GHSHQGHQFH UHOD WLRQV DPRQJ WKH URZV RI A 7) ,I A DQG B DUH URZ HTXLYDOHQW WKHQ WKHLU URZ VSDFHV DUH WKH VDPH 6XSSRVH R4 D 6SDQ fY1 ; : : : ; Y4 g ([SODLQ ZK\ fY1 ; : : : ; Y4 g LV D EDVLV IRU R4 /HW B D fY1 ; : : : ; Yn g EH D OLQHDUO\ LQGHSHQGHQW VHW LQ Rn ([SODLQ ZK\ B PXVW EH D EDVLV IRU Rn
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
2 3 2 3 2 3 1 0 0 /HW Y1 D 4 0 5 Y2 D 4 1 5 Y3 D 4 1 5 DQG OHW H EH WKH 1 1 0 VHW RI YHFWRUV LQ R3 ZKRVH VHFRQG DQG WKLUG HQWULHV DUH HTXDO 7KHQ HYHU\ YHFWRU LQ H KDV D XQLTXH H[SDQVLRQ DV D OLQHDU FRPELQDWLRQ RI Y1 ; Y2 ; Y3 EHFDXVH 2 3 2 3 2 3 2 3 s 1 0 0 4 t 5 D s 4 0 5 C .t s/4 1 5 C s 4 1 5 t 1 1 0 IRU DQ\ s DQG t ,V fY1 ; Y2 ; Y3 g D EDVLV IRU H " :K\ RU ZK\ QRW" ,Q WKH YHFWRU VSDFH RI DOO UHDOYDOXHG IXQFWLRQV ıQG D EDVLV IRU WKH VXEVSDFH VSDQQHG E\ fVLQ t; VLQ 2t; VLQ t FRV tg /HW V EH WKH YHFWRU VSDFH RI IXQFWLRQV WKDW GHVFULEH WKH YLEUDWLRQ RI D PDVVşVSULQJ V\VWHP 5HIHU WR ([HUFLVH LQ 6HFWLRQ )LQG D EDVLV IRU V
6KRZ WKDW LI fY1 ; : : : ; Yp g LV OLQHDUO\ GHSHQGHQW LQ V WKHQ WKH VHW RI LPDJHV fT .Y1 /; : : : ; T .Yp /g LV OLQHDUO\ GHSHQGHQW LQ W 7KLV IDFW VKRZV WKDW LI D OLQHDU WUDQVIRUPDWLRQ PDSV D VHW fY1 ; : : : ; Yp g RQWR D OLQHDUO\ LQGHSHQGHQW VHW fT .Y1 /; : : : ; T .Yp /g WKHQ WKH RULJLQDO VHW LV OLQHDUO\ LQGHSHQ GHQW WRR EHFDXVH LW FDQQRW EH OLQHDUO\ GHSHQGHQW 6XSSRVH WKDW T LV D RQHWRRQH WUDQVIRUPDWLRQ VR WKDW DQ HTXDWLRQ T .X/ D T .Y/ DOZD\V LPSOLHV X D Y 6KRZ WKDW LI WKH VHW RI LPDJHV fT .Y1 /; : : : ; T .Yp /g LV OLQHDUO\ GHSHQGHQW WKHQ fY1 ; : : : ; Yp g LV OLQHDUO\ GHSHQGHQW 7KLV IDFW VKRZV WKDW D RQH WRRQH OLQHDU WUDQVIRUPDWLRQ PDSV D OLQHDUO\ LQGHSHQGHQW VHW RQWR D OLQHDUO\ LQGHSHQGHQW VHW EHFDXVH LQ WKLV FDVH WKH VHW RI LPDJHV FDQQRW EH OLQHDUO\ GHSHQGHQW &RQVLGHU WKH SRO\QRPLDOV S1 .t/ D 1 C t 2 DQG S2 .t/ D 1 t 2 ,V fS1 ; S2 g D OLQHDUO\ LQGHSHQGHQW VHW LQ P3 " :K\ RU ZK\ QRW" &RQVLGHU WKH SRO\QRPLDOV S1 .t/ D 1 C t S2 .t/ D 1 t DQG S3 .t/ D 2 IRU DOO t %\ LQVSHFWLRQ ZULWH D OLQHDU GHSHQ GHQFH UHODWLRQ DPRQJ S1 S2 DQG S3 7KHQ ıQG D EDVLV IRU 6SDQ fS1 ; S2 ; S3 g
5/& FLUFXLW 7KH FLUFXLW LQ WKH ıJXUH FRQVLVWV RI D UHVLVWRU R RKPV DQ LQGXFWRU L KHQU\V D FDSDFLWRU C IDUDGV DQG DQ LQLWLDO YROWDJH VRXUFH /HW b D R=.2L/ DQG VXS SRVH p R L DQG C KDYH EHHQ VHOHFWHG VR WKDW b DOVR HTXDOV 1= LC 7KLV LV GRQH IRU LQVWDQFH ZKHQ WKH FLUFXLW LV XVHG LQ D YROWPHWHU /HW v.t / EH WKH YROWDJH LQ YROWV DW WLPH t PHDVXUHG DFURVV WKH FDSDFLWRU ,W FDQ EH VKRZQ WKDW v LV LQ WKH QXOO VSDFH H RI WKH OLQHDU WUDQVIRUPDWLRQ WKDW PDSV v.t/ LQWR Lv 00 .t/ C Rv 0 .t / C .1=C /v.t / DQG H FRQVLVWV RI 7 DOO IXQFWLRQV RI WKH IRUP v.t/ D e bt .c1 C c2 t/ )LQG D EDVLV IRU H R Voltage source
C L
([HUFLVHV DQG VKRZ WKDW HYHU\ EDVLV IRU Rn PXVW FRQWDLQ H[DFWO\ n YHFWRUV /HW S D fY1 ; : : : ; Yk g EH D VHW RI k YHFWRUV LQ Rn ZLWK k < n 8VH D WKHRUHP IURP 6HFWLRQ WR H[SODLQ ZK\ S FDQQRW EH D EDVLV IRU Rn /HW S D fY1 ; : : : ; Yk g EH D VHW RI k YHFWRUV LQ Rn ZLWK k > n 8VH D WKHRUHP IURP &KDSWHU WR H[SODLQ ZK\ S FDQQRW EH D EDVLV IRU Rn ([HUFLVHV DQG UHYHDO DQ LPSRUWDQW FRQQHFWLRQ EHWZHHQ OLQHDU LQGHSHQGHQFH DQG OLQHDU WUDQVIRUPDWLRQV DQG SURYLGH SUDF WLFH XVLQJ WKH GHıQLWLRQ RI OLQHDU GHSHQGHQFH /HW V DQG W EH YHFWRU VSDFHV OHW T W V ! W EH D OLQHDU WUDQVIRUPDWLRQ DQG OHW fY1 ; : : : ; Yp g EH D VXEVHW RI V
/HW V EH D YHFWRU VSDFH WKDW FRQWDLQV D OLQHDUO\ LQGHSHQ GHQW VHW fX1 ; X2 ; X3 ; X4 g 'HVFULEH KRZ WR FRQVWUXFW D VHW RI YHFWRUV fY1 ; Y2 ; Y3 ; Y4 g LQ V VXFK WKDW fY1 ; Y3 g LV D EDVLV IRU 6SDQ fY1 ; Y2 ; Y3 ; Y4 g /HW H D 6SDQ fX1 ; X2 ; X3 g DQG K D 6SDQ fY1 ; Y2 ; Y3 g ZKHUH 2 3 2 3 2 3 1 0 3 6 7 6 7 6 7 6 2 7; X2 D 6 2 7; X3 D 6 4 7; X1 D 4 4 1 5 4 15 05 1 4 1 2
3 2 6 2 7 7 Y1 D 6 4 1 5; 3
2
3 2 6 7 6 3 7; Y2 D 4 5 2 6
2
3 1 6 47 7 Y3 D 6 4 65 2
)LQG EDVHV IRU H K DQG H C K 6HH ([HUFLVHV DQG LQ 6HFWLRQ 7 6KRZ WKDW ft; VLQ t; FRV 2t; VLQ t FRV tg LV D OLQHDUO\ LQGHSHQGHQW
VHW RI IXQFWLRQV GHıQHG RQ R 6WDUW E\ DVVXPLQJ WKDW
c1 t C c2 VLQ t C c3 FRV 2t C c4 VLQ t FRV t D 0
(TXDWLRQ PXVW KROG IRU DOO UHDO t VR FKRRVH VHYHUDO VSHFLıF YDOXHV RI t VD\ t D 0; :1; :2/ XQWLO \RX JHW D V\VWHP RI HQRXJK HTXDWLRQV WR GHWHUPLQH WKDW DOO WKH cj PXVW EH ]HUR 7 6KRZ WKDW f1; FRV t; FRV2 t; : : : ; FRV6 t g LV D OLQHDUO\ LQGHSHQ
GHQW VHW RI IXQFWLRQV GHıQHG RQ R 8VH WKH PHWKRG RI ([HUFLVH 7KLV UHVXOW ZLOO EH QHHGHG LQ ([HUFLVH LQ 6HFWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&RRUGLQDWH 6\VWHPV
6ROXWLRQV WR 3UDFWLFH 3UREOHPV /HW A D Œ Y1 Y2 5RZ RSHUDWLRQV VKRZ WKDW 2 3 2 1 2 1 75 40 A D 4 2 3 9 0
3 2 35 0
1RW HYHU\ URZ RI A FRQWDLQV D SLYRW SRVLWLRQ 6R WKH FROXPQV RI A GR QRW VSDQ R3 E\ 7KHRUHP LQ 6HFWLRQ +HQFH fY1 ; Y2 g LV QRW D EDVLV IRU R3 6LQFH Y1 DQG Y2 DUH QRW LQ R2 WKH\ FDQQRW SRVVLEO\ EH D EDVLV IRU R2 +RZHYHU VLQFH Y1 DQG Y2 DUH REYLRXVO\ OLQHDUO\ LQGHSHQGHQW WKH\ DUH D EDVLV IRU D VXEVSDFH RI R3 QDPHO\ 6SDQ fY1 ; Y2 g 6HW XS D PDWUL[ A ZKRVH FROXPQ VSDFH LV WKH VSDFH VSDQQHG E\ fY1 ; Y2 ; Y3 ; Y4 g DQG WKHQ URZ UHGXFH A WR ıQG LWV SLYRW FROXPQV 2 3 2 3 2 3 1 6 2 4 1 6 2 4 1 6 2 4 A D 4 3 2 2 8 5 4 0 20 4 20 5 4 0 5 1 5 5 4 1 3 9 0 25 5 25 0 0 0 0 7KH ıUVW WZR FROXPQV RI A DUH WKH SLYRW FROXPQV DQG KHQFH IRUP D EDVLV RI &RO A D W +HQFH fY1 ; Y2 g LV D EDVLV IRU W 1RWH WKDW WKH UHGXFHG HFKHORQ IRUP RI A LV QRW QHHGHG LQ RUGHU WR ORFDWH WKH SLYRW FROXPQV 1HLWKHU Y1 QRU Y2 LV LQ H VR fY1 ; Y2 g FDQQRW EH D EDVLV IRU H ,Q IDFW fY1 ; Y2 g LV D EDVLV IRU WKH SODQH RI DOO YHFWRUV RI WKH IRUP .c1 ; c2 ; 0/ EXW H LV RQO\ D OLQH 6LQFH fY1 ; : : : ; Yp g LV D EDVLV IRU V IRU DQ\ YHFWRU [ LQ V WKHUH H[LVW VFDODUV c1 ; : : : ; cp VXFK WKDW [ D c1 Y1 C C cp Yp 7KHQ VLQFH T DQG U DUH OLQHDU WUDQV IRUPDWLRQV
T .[/ D T .c1 Y1 C C cp Yp / D c1 T .Y1 / C C cp T .Yp / D c1 U.Y1 / C C cp U.Yp / D U.c1 Y1 C C cp Yp / D U.[/
&RRUGLQDWH 6\VWHPV $Q LPSRUWDQW UHDVRQ IRU VSHFLI\LQJ D EDVLV B IRU D YHFWRU VSDFH V LV WR LPSRVH D ŗFRRUGLQDWH V\VWHPŘ RQ V 7KLV VHFWLRQ ZLOO VKRZ WKDW LI B FRQWDLQV n YHFWRUV WKHQ WKH FRRUGLQDWH V\VWHP ZLOO PDNH V DFW OLNH Rn ,I V LV DOUHDG\ Rn LWVHOI WKHQ B ZLOO GHWHUPLQH D FRRUGLQDWH V\VWHP WKDW JLYHV D QHZ ŗYLHZŘ RI V 7KH H[LVWHQFH RI FRRUGLQDWH V\VWHPV UHVWV RQ WKH IROORZLQJ IXQGDPHQWDO UHVXOW
5)&03&.
5IF 6OJRVF 3FQSFTFOUBUJPO 5IFPSFN /HW B D fE1 ; : : : ; En g EH D EDVLV IRU D YHFWRU VSDFH V 7KHQ IRU HDFK [ LQ V WKHUH H[LVWV D XQLTXH VHW RI VFDODUV c1 ; : : : ; cn VXFK WKDW [ D c1 E1 C C cn En
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
1300' 6LQFH B VSDQV V WKHUH H[LVW VFDODUV VXFK WKDW KROGV 6XSSRVH [ DOVR KDV WKH UHSUHVHQWDWLRQ [ D d1 E1 C C dn En IRU VFDODUV d1 ; : : : ; dn 7KHQ VXEWUDFWLQJ ZH KDYH D [ [ D .c1 d1 /E1 C C .cn dn /En
6LQFH B LV OLQHDUO\ LQGHSHQGHQW WKH ZHLJKWV LQ PXVW DOO EH ]HUR 7KDW LV cj D dj IRU 1 j n
%&'*/*5*0/
6XSSRVH B D fE1 ; : : : ; En g LV D EDVLV IRU D YHFWRU VSDFH V DQG [ LV LQ V 7KH FRRUGLQDWHV RI [ UHODWLYH WR WKH EDVLV B RU WKH BFRRUGLQDWHV RI [ DUH WKH ZHLJKWV c1 ; : : : ; cn VXFK WKDW [ D c1 E1 C C cn En ,I c1 ; : : : ; cn DUH WKH BFRRUGLQDWHV RI [ WKHQ WKH YHFWRU LQ Rn 2 3 c1 6 :: 7 [ BD4 : 5 cn LV WKH FRRUGLQDWH YHFWRU RI [ UHODWLYH WR B/ RU WKH BFRRUGLQDWH YHFWRU RI [ 7KH PDSSLQJ [ 7! [ B LV WKH FRRUGLQDWH PDSSLQJ GHWHUPLQHG E\ B/1
(;$03/( &RQVLGHU D EDVLV B D fE1 ; E2 g IRU R2 ZKHUH E1 D
1 DQG 0
1 2 2 6XSSRVH DQ [ LQ R KDV WKH FRRUGLQDWH YHFWRU Œ [ B D )LQG [ E2 D 2 3
62/87,21 7KH B FRRUGLQDWHV RI [ WHOO KRZ WR EXLOG [ IURP WKH YHFWRUV LQ B 7KDW LV
1 1 1 [ D .2/E1 C 3E2 D .2/ C3 D 0 2 6
(;$03/( 7KH HQWULHV LQ WKH YHFWRU [ D
1 DUH WKH FRRUGLQDWHV RI [ UHODWLYH WR 6
WKH VWDQGDUG EDVLV E D fH1 ; H2 g VLQFH 1 1 0 D1 C6 D 1H1 C 6H2 6 0 1 ,I E D fH1 ; H2 g WKHQ Œ [ E D [
$ *UDSKLFDO ,QWHUSUHWDWLRQ RI &RRUGLQDWHV $ FRRUGLQDWH V\VWHP RQ D VHW FRQVLVWV RI D RQHWRRQH PDSSLQJ RI WKH SRLQWV LQ WKH VHW LQWR Rn )RU H[DPSOH RUGLQDU\ JUDSK SDSHU SURYLGHV D FRRUGLQDWH V\VWHP IRU WKH SODQH 1 7KH FRQFHSW RI D FRRUGLQDWH PDSSLQJ DVVXPHV WKDW WKH EDVLV B LV DQ LQGH[HG VHW ZKRVH YHFWRUV DUH OLVWHG LQ VRPH ı[HG SUHDVVLJQHG RUGHU 7KLV SURSHUW\ PDNHV WKH GHıQLWLRQ RI Œ [ B XQDPELJXRXV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&RRUGLQDWH 6\VWHPV
ZKHQ RQH VHOHFWV SHUSHQGLFXODU D[HV DQG D XQLW RI PHDVXUHPHQW RQ HDFK D[LV )LJXUH VKRZV WKH VWDQGDUG EDVLV fH1 ; H2 g WKH YHFWRUV E1 .D H1 / DQG E2 IURP ([DPSOH DQG WKH 1 YHFWRU [ D 7KH FRRUGLQDWHV DQG JLYH WKH ORFDWLRQ RI [ UHODWLYH WR WKH VWDQGDUG 6 EDVLV XQLW LQ WKH H1 GLUHFWLRQ DQG XQLWV LQ WKH H2 GLUHFWLRQ )LJXUH VKRZV WKH YHFWRUV E1 E2 DQG [ IURP )LJXUH *HRPHWULFDOO\ WKH WKUHH YHFWRUV OLH RQ D YHUWLFDO OLQH LQ ERWK ıJXUHV +RZHYHU WKH VWDQGDUG FRRUGLQDWH JULG ZDV HUDVHG DQG UHSODFHG E\ D JULG HVSHFLDOO\ DGDSWHG WR WKH EDVLV B LQ ([DPSOH 7KH 2 FRRUGLQDWH YHFWRU Œ [ B D JLYHV WKH ORFDWLRQ RI [ RQ WKLV QHZ FRRUGLQDWH V\VWHP 3 2 XQLWV LQ WKH E1 GLUHFWLRQ DQG XQLWV LQ WKH E2 GLUHFWLRQ
x
x
e2 0
b2
b2
b1 5 e1
0
b1
'*(63& B JUDSK SDSHU
'*(63& 6WDQGDUG JUDSK
SDSHU
(;$03/( ,Q FU\VWDOORJUDSK\ WKH GHVFULSWLRQ RI D FU\VWDO ODWWLFH LV DLGHG E\
FKRRVLQJ D EDVLV fX; Y; Zg IRU R3 WKDW FRUUHVSRQGV WR WKUHH DGMDFHQW HGJHV RI RQH ŗXQLW FHOOŘ RI WKH FU\VWDO $Q HQWLUH ODWWLFH LV FRQVWUXFWHG E\ VWDFNLQJ WRJHWKHU PDQ\ FRSLHV RI RQH FHOO 7KHUH DUH IRXUWHHQ EDVLF W\SHV RI XQLW FHOOV WKUHH DUH GLVSOD\HG LQ )LJXUH 2 w w
w
0
0 v
u (a) Simple monoclinic
0 v u
u (b) Body-centered cubic
v (c) Face-centered orthorhombic
'*(63& ([DPSOHV RI XQLW FHOOV
7KH FRRUGLQDWHV RI DWRPV ZLWKLQ WKH FU\VWDO DUH JLYHQ UHODWLYH WR WKH EDVLV IRU WKH ODWWLFH )RU LQVWDQFH 2 3 1=2 4 1=2 5 1 LGHQWLıHV WKH WRS IDFHFHQWHUHG DWRP LQ WKH FHOO LQ )LJXUH F 2
$GDSWHG IURP 7KH 6FLHQFH DQG (QJLQHHULQJ RI 0DWHULDOV WK (G E\ 'RQDOG 5 $VNHODQG %RVWRQ 3ULQGOH :HEHU 6FKPLGW ũ S
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
&RRUGLQDWHV LQ RQ :KHQ D EDVLV B IRU Rn LV ı[HG WKH B FRRUGLQDWH YHFWRU RI D VSHFLıHG [ LV HDVLO\ IRXQG DV LQ WKH QH[W H[DPSOH 2 1 4 (;$03/( /HW E1 D E2 D [D DQG B D fE1 ; E2 g )LQG WKH 1 1 5 FRRUGLQDWH YHFWRU Œ [ B RI [ UHODWLYH WR B 62/87,21 7KH B FRRUGLQDWHV c1 c2 RI [ VDWLVI\
2 1 4 c1 C c2 D 1 1 5 E1
x
RU
2 1 1 1 E1
b2
b1
'*(63&
7KH BFRRUGLQDWH YHFWRU RI [ LV .3; 2/
E2
c1 c2
[
4 D 5
E2
[
7KLV HTXDWLRQ FDQ EH VROYHG E\ URZ RSHUDWLRQV RQ DQ DXJPHQWHG PDWUL[ RU E\ PXOWLSO\LQJ WKH YHFWRU [ E\ WKH LQYHUVH RI WKH PDWUL[ ,Q DQ\ FDVH WKH VROXWLRQ LV c1 D 3 c2 D 2 7KXV [ D 3E1 C 2E2 DQG c 3 Œ [ B D 1 D 2 c2 6HH )LJXUH 7KH PDWUL[ LQ FKDQJHV WKH B FRRUGLQDWHV RI D YHFWRU [ LQWR WKH VWDQGDUG FRRUGLQDWHV IRU [ $Q DQDORJRXV FKDQJH RI FRRUGLQDWHV FDQ EH FDUULHG RXW LQ Rn IRU D EDVLV B D fE1 ; : : : ; En g /HW
PB D Œ E1 E2 En 7KHQ WKH YHFWRU HTXDWLRQ [ D c1 E1 C c2 E2 C C cn En LV HTXLYDOHQW WR [ D PB Œ [ B
:H FDOO PB WKH FKDQJHRIFRRUGLQDWHV PDWUL[ IURP B WR WKH VWDQGDUG EDVLV LQ Rn /HIWPXOWLSOLFDWLRQ E\ PB WUDQVIRUPV WKH FRRUGLQDWH YHFWRU Œ [ B LQWR [ 7KH FKDQJHRI FRRUGLQDWHV HTXDWLRQ LV LPSRUWDQW DQG ZLOO EH QHHGHG DW VHYHUDO SRLQWV LQ &KDSWHUV DQG 6LQFH WKH FROXPQV RI PB IRUP D EDVLV IRU Rn PB LV LQYHUWLEOH E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP /HIWPXOWLSOLFDWLRQ E\ PB1 FRQYHUWV [ LQWR LWV BFRRUGLQDWH YHFWRU
PB1 [ D Œ [ B 7KH FRUUHVSRQGHQFH [ 7! Œ [ B SURGXFHG KHUH E\ PB1 LV WKH FRRUGLQDWH PDSSLQJ PHQWLRQHG HDUOLHU 6LQFH PB1 LV DQ LQYHUWLEOH PDWUL[ WKH FRRUGLQDWH PDSSLQJ LV D RQH WRRQH OLQHDU WUDQVIRUPDWLRQ IURP Rn RQWR Rn E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP 6HH DOVR 7KHRUHP LQ 6HFWLRQ 7KLV SURSHUW\ RI WKH FRRUGLQDWH PDSSLQJ LV DOVR WUXH LQ D JHQHUDO YHFWRU VSDFH WKDW KDV D EDVLV DV ZH VKDOO VHH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&RRUGLQDWH 6\VWHPV
7KH &RRUGLQDWH 0DSSLQJ &KRRVLQJ D EDVLV B D fE1 ; : : : ; En g IRU D YHFWRU VSDFH V LQWURGXFHV D FRRUGLQDWH V\VWHP LQ V 7KH FRRUGLQDWH PDSSLQJ [ 7! Œ [ B FRQQHFWV WKH SRVVLEO\ XQIDPLOLDU VSDFH V WR WKH IDPLOLDU VSDFH Rn 6HH )LJXUH 3RLQWV LQ V FDQ QRZ EH LGHQWLıHG E\ WKHLU QHZ ŗQDPHVŘ [] [x]
x
Rn
V
'*(63& 7KH FRRUGLQDWH PDSSLQJ IURP V
RQWR Rn
/HW B D fE1 ; : : : ; En g EH D EDVLV IRU D YHFWRU VSDFH V 7KHQ WKH FRRUGLQDWH PDSSLQJ [ 7! Œ [ B LV D RQHWRRQH OLQHDU WUDQVIRUPDWLRQ IURP V RQWR Rn
5)&03&.
1300' 7DNH WZR W\SLFDO YHFWRUV LQ V VD\ X D c1 E1 C C cn En Z D d1 E1 C C dn En 7KHQ XVLQJ YHFWRU RSHUDWLRQV X C Z D .c1 C d1 /E1 C C .cn C dn /En ,W IROORZV WKDW
2
3 2 3 2 3 c1 C d 1 c1 d1 6 7 6 7 6 : : : 7 Œ X C Z B D 4 5 D 4 :: 5 C 4 :: 5 D Œ X B C Œ Z B ::
cn C dn
cn
dn
6R WKH FRRUGLQDWH PDSSLQJ SUHVHUYHV DGGLWLRQ ,I r LV DQ\ VFDODU WKHQ
r X D r.c1 E1 C C cn En / D .rc1 /E1 C C .rcn /En 6R
2
3 2 3 rc1 c1 6 :: 7 6 :: 7 Œ r X B D 4 : 5 D r 4 : 5 D rŒ X B
rcn
cn
7KXV WKH FRRUGLQDWH PDSSLQJ DOVR SUHVHUYHV VFDODU PXOWLSOLFDWLRQ DQG KHQFH LV D OLQHDU WUDQVIRUPDWLRQ 6HH ([HUFLVHV DQG IRU YHULıFDWLRQ WKDW WKH FRRUGLQDWH PDSSLQJ LV RQHWRRQH DQG PDSV V RQWR Rn 7KH OLQHDULW\ RI WKH FRRUGLQDWH PDSSLQJ H[WHQGV WR OLQHDU FRPELQDWLRQV MXVW DV LQ 6HFWLRQ ,I X1 ; : : : ; Xp DUH LQ V DQG LI c1 ; : : : ; cp DUH VFDODUV WKHQ
Œ c1 X1 C C cp Xp B D c1 Œ X1 B C C cp Œ Xp B
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV DERXW LVRPRUSKLF YHFWRU VSDFHV
,Q ZRUGV VD\V WKDW WKH B FRRUGLQDWH YHFWRU RI D OLQHDU FRPELQDWLRQ RI X1 ; : : : ; Xp LV WKH VDPH OLQHDU FRPELQDWLRQ RI WKHLU FRRUGLQDWH YHFWRUV 7KH FRRUGLQDWH PDSSLQJ LQ 7KHRUHP LV DQ LPSRUWDQW H[DPSOH RI DQ LVRPRUSKLVP IURP V RQWR Rn ,Q JHQHUDO D RQHWRRQH OLQHDU WUDQVIRUPDWLRQ IURP D YHFWRU VSDFH V RQWR D YHFWRU VSDFH W LV FDOOHG DQ LVRPRUSKLVP IURP V RQWR W LVR IURP WKH *UHHN IRU ŗWKH VDPHŘ DQG PRUSK IURP WKH *UHHN IRU ŗIRUPŘ RU ŗVWUXFWXUHŘ 7KH QRWDWLRQ DQG WHUPLQRORJ\ IRU V DQG W PD\ GLijHU EXW WKH WZR VSDFHV DUH LQGLVWLQJXLVKDEOH DV YHFWRU VSDFHV (YHU\ YHFWRU VSDFH FDOFXODWLRQ LQ V LV DFFXUDWHO\ UHSURGXFHG LQ W DQG YLFH YHUVD ,Q SDUWLFXODU DQ\ UHDO YHFWRU VSDFH ZLWK D EDVLV RI n YHFWRUV LV LQGLVWLQJXLVKDEOH IURP Rn 6HH ([HUFLVHV DQG
(;$03/( /HW B EH WKH VWDQGDUG EDVLV RI WKH VSDFH P3 RI SRO\QRPLDOV WKDW LV OHW B D f1; t; t 2 ; t 3 g $ W\SLFDO HOHPHQW S RI P3 KDV WKH IRUP
S.t/ D a0 C a1 t C a2 t 2 C a3 t 3 6LQFH S LV DOUHDG\ GLVSOD\HG DV D OLQHDU FRPELQDWLRQ RI WKH VWDQGDUG EDVLV YHFWRUV ZH FRQFOXGH WKDW 2 3 a0 6 a1 7 7 Œ S B D 6 4 a2 5 a3 7KXV WKH FRRUGLQDWH PDSSLQJ S 7! Œ S B LV DQ LVRPRUSKLVP IURP P3 RQWR R4 $OO YHFWRU VSDFH RSHUDWLRQV LQ P3 FRUUHVSRQG WR RSHUDWLRQV LQ R4 ,I ZH WKLQN RI P3 DQG R4 DV GLVSOD\V RQ WZR FRPSXWHU VFUHHQV WKDW DUH FRQQHFWHG YLD WKH FRRUGLQDWH PDSSLQJ WKHQ HYHU\ YHFWRU VSDFH RSHUDWLRQ LQ P3 RQ RQH VFUHHQ LV H[DFWO\ GXSOLFDWHG E\ D FRUUHVSRQGLQJ YHFWRU RSHUDWLRQ LQ R4 RQ WKH RWKHU VFUHHQ 7KH YHFWRUV RQ WKH P3 VFUHHQ ORRN GLijHUHQW IURP WKRVH RQ WKH R4 VFUHHQ EXW WKH\ ŗDFWŘ DV YHFWRUV LQ H[DFWO\ WKH VDPH ZD\ 6HH )LJXUH
a0 1 a1 t 1 a 2 t 2 1 a 3 t 3
a0 a1 a2 a3
'*(63& 7KH VSDFH P3 LV LVRPRUSKLF WR R4
(;$03/( 8VH FRRUGLQDWH YHFWRUV WR YHULI\ WKDW WKH SRO\QRPLDOV 1 C 2t 2 4 C t C 5t 2 DQG 3 C 2t DUH OLQHDUO\ GHSHQGHQW LQ P2
62/87,21 7KH FRRUGLQDWH PDSSLQJ IURP ([DPSOH SURGXFHV WKH FRRUGLQDWH YHFWRUV
.1; 0; 2/ .4; 1; 5/ DQG .3; 2; 0/ UHVSHFWLYHO\ :ULWLQJ WKHVH YHFWRUV DV WKH FROXPQV RI D
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&RRUGLQDWH 6\VWHPV
PDWUL[ A ZH FDQ GHWHUPLQH WKHLU LQGHSHQGHQFH E\ URZ UHGXFLQJ WKH DXJPHQWHG PDWUL[ IRU A[ D 2 3 2 3 1 4 3 0 1 4 3 0 40 1 2 05 40 1 2 05 2 5 0 0 0 0 0 0 7KH FROXPQV RI A DUH OLQHDUO\ GHSHQGHQW VR WKH FRUUHVSRQGLQJ SRO\QRPLDOV DUH OLQHDUO\ GHSHQGHQW ,Q IDFW LW LV HDV\ WR FKHFN WKDW FROXPQ RI A LV WLPHV FROXPQ PLQXV WLPHV FROXPQ 7KH FRUUHVSRQGLQJ UHODWLRQ IRU WKH SRO\QRPLDOV LV
3 C 2t D 2.4 C t C 5t 2 / 5.1 C 2t 2 / 7KH ıQDO H[DPSOH FRQFHUQV D SODQH LQ R3 WKDW LV LVRPRUSKLF WR R2
(;$03/( /HW
2 3 3 Y1 D 4 6 5; 2
2
3 1 Y2 D 4 0 5; 1
2
3 3 [ D 4 12 5; 7
DQG B D fY1 ; Y2 g 7KHQ B LV D EDVLV IRU H D 6SDQ fY1 ; Y2 g 'HWHUPLQH LI [ LV LQ H DQG LI LW LV ıQG WKH FRRUGLQDWH YHFWRU RI [ UHODWLYH WR B 62/87,21 ,I [ LV LQ H WKHQ WKH IROORZLQJ YHFWRU HTXDWLRQ LV FRQVLVWHQW
2 3 2 3 2 3 3 1 3 c1 4 6 5 C c2 4 0 5 D 4 12 5 2 1 7 7KH VFDODUV c1 DQG c2 LI WKH\ H[LVW DUH WKH BFRRUGLQDWHV RI [ 8VLQJ URZ RSHUDWLRQV ZH REWDLQ 2 3 2 3 3 1 3 1 0 2 4 6 0 12 5 4 0 1 3 5 2 1 7 0 0 0 2 7KXV c1 D 2 c2 D 3 DQG Œ [ B D 7KH FRRUGLQDWH V\VWHP RQ H GHWHUPLQHG E\ B 3 LV VKRZQ LQ )LJXUH x3
3v2 2v2 x 5 2v1 1 3v2
v2
0 v1 2v1
x2
x1 '*(63& $ FRRUGLQDWH V\VWHP RQ D SODQH H LQ R3
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
,I D GLijHUHQW EDVLV IRU H ZHUH FKRVHQ ZRXOG WKH DVVRFLDWHG FRRUGLQDWH V\VWHP DOVR PDNH H LVRPRUSKLF WR R2 " 6XUHO\ WKLV PXVW EH WUXH :H VKDOO SURYH LW LQ WKH QH[W VHFWLRQ 3UDFWLFH 3UREOHPV 2 3 2 3 2 3 2 3 1 3 3 8 /HW E1 D 4 0 5 E2 D 4 4 5 E3 D 4 6 5 DQG [ D 4 2 5 0 0 3 3 3 D 6KRZ WKDW WKH VHW B D fE1 ; E2 ; E3 g LV D EDVLV RI R E )LQG WKH FKDQJHRIFRRUGLQDWHV PDWUL[ IURP B WR WKH VWDQGDUG EDVLV F :ULWH WKH HTXDWLRQ WKDW UHODWHV [ LQ R3 WR Œ [ B G )LQG Œ [ B IRU WKH [ JLYHQ DERYH 7KH VHW B D f1 C t; 1 C t 2 ; t C t 2 g LV D EDVLV IRU P2 )LQG WKH FRRUGLQDWH YHFWRU RI S.t/ D 6 C 3t t 2 UHODWLYH WR B
([HUFLVHV ,Q ([HUFLVHV ş ıQG WKH YHFWRU [ GHWHUPLQHG E\ WKH JLYHQ FRRU GLQDWH YHFWRU Œ [ B DQG WKH JLYHQ EDVLV B 3 4 5 B D ; Œ [ B D 5 6 3 4 6 8 ; Œ [ B D 5 7 5 82 3 2 3 2 39 2 3 5 4 = 3 < 1 B D 4 4 5 ; 4 2 5 ; 4 7 5 Œ [ B D 4 0 5 ; : 3 2 0 1 82 3 2 3 2 39 2 3 3 4 = 4 < 1 B D 4 2 5 ; 4 5 5 ; 4 7 5 Œ [ B D 4 8 5 ; : 0 2 3 7 B D
1 5 4 E2 D [D 2 6 0
2
3
2
3
2
3
2
,Q ([HUFLVHV DQG XVH DQ LQYHUVH PDWUL[ WR ıQG Œ [ B IRU WKH JLYHQ [ DQG B 3 4 2 ; ;[D B D 5 6 6 4 6 2 B D ; ;[D 5 7 0 7KH VHW B D f1 C t 2 ; t C t 2 ; 1 C 2t C t 2 g LV D EDVLV IRU P2 )LQG WKH FRRUGLQDWH YHFWRU RI S.t/ D 1 C 4t C 7t 2 UHODWLYH WR B
,Q ([HUFLVHV ş ıQG WKH FRRUGLQDWH YHFWRU Œ [ B RI [ UHODWLYH WR WKH JLYHQ EDVLV B D fE1 ; : : : ; En g 1 2 2 E2 D [D E1 D 3 5 1 E1 D
82 3 2 3 2 39 2 8 = < 3 B D 4 1 5 4 0 5 4 2 5 ; : 4 7 5
3
1 3 2 8 E1 D 4 1 5 E2 D 4 4 5 E3 D 4 2 5 [ D 4 9 5 3 9 4 6 2 3 2 3 2 3 2 3 1 2 1 3 E1 D 4 0 5 E2 D 4 1 5 E3 D 4 1 5 [ D 4 5 5 3 8 2 4 ,Q ([HUFLVHV DQG ıQG WKH FKDQJHRIFRRUGLQDWHV PDWUL[ IURP B WR WKH VWDQGDUG EDVLV LQ Rn 2 1 B D 9 8
7KH VHW B D f1 t 2 ; t t 2 ; 2 2t C t 2 g LV D EDVLV IRU P2 )LQG WKH FRRUGLQDWH YHFWRU RI S.t/ D 3 C t 6t 2 UHODWLYH WR B ,Q ([HUFLVHV ş PDUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 8QOHVV VWDWHG RWKHUZLVH B LV D EDVLV IRU D YHFWRU VSDFH V 7) ,I [ LV LQ V DQG LI B FRQWDLQV n YHFWRUV WKHQ WKH B FRRUGLQDWH YHFWRU RI [ LV LQ Rn 7) ,I B LV WKH VWDQGDUG EDVLV IRU Rn WKHQ WKH BFRRUGLQDWH YHFWRU RI DQ [ LQ Rn LV [ LWVHOI 7) ,I PB LV WKH FKDQJHRIFRRUGLQDWHV PDWUL[ WKHQ Œ[B D PB [ IRU [ LQ V 7) 7KH FRUUHVSRQGHQFH Œ [ B 7! [ LV FDOOHG WKH FRRUGLQDWH PDSSLQJ 7) 7KH YHFWRU VSDFHV P3 DQG R3 DUH LVRPRUSKLF 7) ,Q VRPH FDVHV D SODQH LQ R3 FDQ EH LVRPRUSKLF WR R2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&RRUGLQDWH 6\VWHPV
1 2 3 Y2 D Y3 D VSDQ R2 3 8 7 EXW GR QRW IRUP D EDVLV )LQG WZR GLijHUHQW ZD\V WR H[SUHVV 1 DV D OLQHDU FRPELQDWLRQ RI Y1 Y2 Y3 1
7KH YHFWRUV Y1 D
/HW B D fE1 ; : : : ; En g EH D EDVLV IRU D YHFWRU VSDFH V ([SODLQ ZK\ WKH BFRRUGLQDWH YHFWRUV RI E1 ; : : : ; En DUH WKH FROXPQV H1 ; : : : ; Hn RI WKH n n LGHQWLW\ PDWUL[ /HW S EH D ıQLWH VHW LQ D YHFWRU VSDFH V ZLWK WKH SURS HUW\ WKDW HYHU\ [ LQ V KDV D XQLTXH UHSUHVHQWDWLRQ DV D OLQHDU FRPELQDWLRQ RI HOHPHQWV RI S 6KRZ WKDW S LV D EDVLV RI V 6XSSRVH fY1 ; : : : ; Y4 g LV D OLQHDUO\ GHSHQGHQW VSDQQLQJ VHW IRU D YHFWRU VSDFH V 6KRZ WKDW HDFK Z LQ V FDQ EH H[SUHVVHG LQ PRUH WKDQ RQH ZD\ DV D OLQHDU FRPELQDWLRQ RI Y1 ; : : : ; Y4 >+LQW /HW Z D k1 Y1 C C k4 Y4 EH DQ DUELWUDU\ YHFWRU LQ V 8VH WKH OLQHDU GHSHQGHQFH RI fY1 ; : : : ; Y4 g WR SURGXFH DQRWKHU UHSUHVHQWDWLRQ RI Z DV D OLQHDU FRPELQDWLRQ RI Y1 ; : : : ; Y4 @ 1 2 ; 6LQFH WKH FRRUGLQDWH PDSSLQJ /HW B D 4 9 GHWHUPLQHG E\ B LV D OLQHDU WUDQVIRUPDWLRQ IURP R2 LQWR R2 WKLV PDSSLQJ PXVW EH LPSOHPHQWHG E\ VRPH 2 2 PDWUL[ A )LQG LW >+LQW 0XOWLSOLFDWLRQ E\ A VKRXOG WUDQVIRUP D YHFWRU 7 [ LQWR LWV FRRUGLQDWH YHFWRU Œ [ B @
f1 C 2t 3 ; 2 C t 3t 2 ; t C 2t 2 t 3 g f1 2t 2 t 3 ; t C 2t 3 ; 1 C t 2t 2 g f.1 t/2 ; t 2t 2 C t 3 ; .1 t/3 g f.2 t/3 ; .3 t/2 ; 1 C 6t 5t 2 C t 3 g 8VH FRRUGLQDWH YHFWRUV WR WHVW ZKHWKHU WKH IROORZLQJ VHWV RI SRO\QRPLDOV VSDQ P2 -XVWLI\ \RXU FRQFOXVLRQV D f1 3t C 5t 2 ; 3 C 5t 7t 2 ; 4 C 5t 6t 2 ; 1 t 2 g E f5t C t 2 ; 1 8t 2t 2 ; 3 C 4t C 2t 2 ; 2 3t g /HW S1 .t/ D 1 C t 2 S2 .t/ D t 3t 2 S3 .t/ D 1 C t 3t 2 D 8VH FRRUGLQDWH YHFWRUV WR VKRZ WKDW WKHVH SRO\QRPLDOV IRUP D EDVLV IRU P2 E &RQVLGHU WKH EDVLV2B D 3 fS1 ; S2 ; S3 g IRU P2 )LQG T LQ P2 1 JLYHQ WKDW ŒTB D 4 1 5 2 ,Q ([HUFLVHV DQG GHWHUPLQH ZKHWKHU WKH VHWV RI SRO\QRPLDOV IRUP D EDVLV IRU P3 -XVWLI\ \RXU FRQFOXVLRQV 3 C 7t; 5 C t 2t 3 ; t 2t 2 ; 1 C 16t 6t 2 C 2t 3
/HW B D fE1 ; : : : ; En g EH D EDVLV IRU Rn 3URGXFH D GHVFULSWLRQ 7 5 3t C 4t 2 C 2t 3 ; 9 C t C 8t 2 6t 3 ; 6 2t C 5t 2 ; t 3 RI DQ n n PDWUL[ A WKDW LPSOHPHQWV WKH FRRUGLQDWH PDSSLQJ [ 7! Œ [ B 6HH ([HUFLVH 7 /HW H D 6SDQ fY1 ; Y2 g DQG B D fY1 ; Y2 g 6KRZ WKDW [ LV LQ H DQG ıQG WKH BFRRUGLQDWH YHFWRU RI [ IRU ([HUFLVHV ş FRQFHUQ D YHFWRU VSDFH V D EDVLV B D 2 3 2 3 2 3 11 14 19 fE1 ; : : : ; En g DQG WKH FRRUGLQDWH PDSSLQJ [ 7! Œ [ B 6 5 7 6 7 6 7 7 6 8 7 6 13 7 Y1 D 6 6KRZ WKDW WKH FRRUGLQDWH PDSSLQJ LV RQHWRRQH >+LQW 6XS 4 10 5; Y2 D 4 13 5; [ D 4 18 5 SRVH Œ X B D Œ Z B IRU VRPH X DQG Z LQ V DQG VKRZ WKDW 7 10 15 X D Z@ 6KRZ WKDW WKH FRRUGLQDWH PDSSLQJ LV RQWR Rn 7KDW LV JLYHQ 7 /HW H D 6SDQ fY1 ; Y2 ; Y3 g DQG B D fY1 ; Y2 ; Y3 g 6KRZ WKDW B LV D EDVLV IRU H DQG [ LV LQ H DQG ıQG WKH BFRRUGLQDWH YHFWRU DQ\ \ LQ Rn ZLWK HQWULHV y1 ; : : : ; yn SURGXFH X LQ V VXFK WKDW RI [ IRU Œ X B D \ 2 3 2 3 2 3 2 3 6 8 9 4 6KRZ WKDW D VXEVHW fX1 ; : : : ; Xp g LQ V LV OLQHDUO\ LQGHSHQGHQW LI 6 47 6 7 6 57 6 7 7 6 3 7 6 7 6 77 Y1 D 6 DQG RQO\ LI WKH VHW RI FRRUGLQDWH YHFWRUV fŒ X1 B ; : : : ; Œ Xp B g 4 9 5; Y2 D 4 7 5; Y3 D 4 8 5; [ D 4 8 5 LV OLQHDUO\ LQGHSHQGHQW LQ Rn >+LQW 6LQFH WKH FRRUGLQDWH 4 3 3 3 PDSSLQJ LV RQHWRRQH WKH IROORZLQJ HTXDWLRQV KDYH WKH VDPH VROXWLRQV c1 ; : : : ; cp @ ([HUFLVHV DQG FRQFHUQ WKH FU\VWDO ODWWLFH IRU WLWDQLXP ZKLFK KDV WKH KH[DJRQDO VWUXFWXUH RQ WKH WKH DFFRPSDQ\ c1 X1 C C cp Xp D 7KH ]HUR YHFWRU LQ V 2 VKRZQ 3 2 3 OHIW 2 LQ 3 2:6 0 0 n Œ c1 X1 C C cp Xp B D Œ B 7KH ]HUR YHFWRU LQ R LQJ ıJXUH 7KH YHFWRUV 4 1:5 5 4 3 5 4 0 5 LQ R3 IRUP D 0 0 4:8 *LYHQ YHFWRUV X1 ; : : : ; Xp DQG Z LQ V VKRZ WKDW Z LV D OLQHDU EDVLV IRU WKH XQLW FHOO VKRZQ RQ WKH ULJKW 7KH QXPEHUV KHUH DUH FRPELQDWLRQ RI X1 ; : : : ; Xp LI DQG RQO\ LI Œ Z B LV D OLQHDU jQJVWURP XQLWV j D 108 FP ,Q DOOR\V RI WLWDQLXP VRPH FRPELQDWLRQ RI WKH FRRUGLQDWH YHFWRUV Œ X1 B ; : : : ; Œ Xp B DGGLWLRQDO DWRPV PD\ EH LQ WKH XQLW FHOO DW WKH RFWDKHGUDO DQG WHWUDKHGUDO VLWHV VR QDPHG EHFDXVH RI WKH JHRPHWULF REMHFWV ,Q ([HUFLVHV ş XVH FRRUGLQDWH YHFWRUV WR WHVW WKH OLQHDU LQGH IRUPHG E\ DWRPV DW WKHVH ORFDWLRQV SHQGHQFH RI WKH VHWV RI SRO\QRPLDOV ([SODLQ \RXU ZRUN
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV 2
w
0
v
3 1=2 2QH RI WKH RFWDKHGUDO VLWHV LV 4 1=4 5 UHODWLYH WR WKH ODWWLFH 1=6 EDVLV 'HWHUPLQH WKH FRRUGLQDWHV RI WKLV VLWH UHODWLYH WR WKH VWDQGDUG EDVLV RI R3 2 3 1=2 2QH RI WKH WHWUDKHGUDO VLWHV LV 4 1=2 5 'HWHUPLQH WKH FRRU 1=3 GLQDWHV RI WKLV VLWH UHODWLYH WR WKH VWDQGDUG EDVLV RI R3
u
7KH KH[DJRQDO FORVHSDFNHG ODWWLFH DQG LWV XQLW FHOO
6ROXWLRQV WR 3UDFWLFH 3UREOHPV D ,W LV HYLGHQW WKDW WKH PDWUL[ PB D Œ E1 E2 E3 LV URZHTXLYDOHQW WR WKH LGHQWLW\ PDWUL[ %\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP PB LV LQYHUWLEOH DQG LWV FROXPQV IRUP D EDVLV IRU R3 2 3 1 3 3 E )URP SDUW D WKH FKDQJHRIFRRUGLQDWHV PDWUL[ LV PB D 4 0 4 6 5 0 0 3 F [ D PB Œ [ B G 7R VROYH WKH HTXDWLRQ LQ F LW LV SUREDEO\ HDVLHU WR PDWUL[ WKDQ WR FRPSXWH PB1 2 3 2 1 3 3 8 1 0 4 0 4 6 2 5 4 0 1 0 0 3 3 0 0 PB
+HQFH
[
I
URZ UHGXFH DQ DXJPHQWHG 3 0 5 0 25 1 1 Œ [ B
2
3 5 Œ [ B D 4 2 5 1
7KH FRRUGLQDWHV RI S.t / D 6 C 3t t 2 ZLWK UHVSHFW WR B VDWLVI\
c1 .1 C t/ C c2 .1 C t 2 / C c3 .t C t 2 / D 6 C 3t t 2 (TXDWLQJ FRHĴFLHQWV RI OLNH SRZHUV RI t ZH KDYH
c1 C c2 D 6 c1 C c3 D 3 c2 C c3 D 1
2
3 5 6ROYLQJ ZH ıQG WKDW c1 D 5 c2 D 1 c3 D 2 DQG Œ S B D 4 1 5 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 'LPHQVLRQ RI D 9HFWRU 6SDFH
7KH 'LPHQVLRQ RI D 9HFWRU 6SDFH 7KHRUHP LQ 6HFWLRQ LPSOLHV WKDW D YHFWRU VSDFH V ZLWK D EDVLV B FRQWDLQLQJ n YHFWRUV LV LVRPRUSKLF WR Rn 7KLV VHFWLRQ VKRZV WKDW WKLV QXPEHU n LV DQ LQWULQVLF SURSHUW\ FDOOHG WKH GLPHQVLRQ RI WKH VSDFH V WKDW GRHV QRW GHSHQG RQ WKH SDUWLFXODU FKRLFH RI EDVLV 7KH GLVFXVVLRQ RI GLPHQVLRQ ZLOO JLYH DGGLWLRQDO LQVLJKW LQWR SURSHUWLHV RI EDVHV 7KH ıUVW WKHRUHP JHQHUDOL]HV D ZHOONQRZQ UHVXOW DERXW WKH YHFWRU VSDFH Rn
,I D YHFWRU VSDFH V KDV D EDVLV B D fE1 ; : : : ; En g WKHQ DQ\ VHW LQ V FRQWDLQLQJ PRUH WKDQ n YHFWRUV PXVW EH OLQHDUO\ GHSHQGHQW
5)&03&.
1300' /HW fX1 ; : : : ; Xp g EH D VHW LQ V ZLWK PRUH WKDQ n YHFWRUV 7KH FRRUGLQDWH YHFWRUV Œ X1 B ; : : : ; Œ Xp B IRUP D OLQHDUO\ GHSHQGHQW VHW LQ Rn EHFDXVH WKHUH DUH PRUH YHFWRUV p WKDQ HQWULHV n LQ HDFK YHFWRU 6R WKHUH H[LVW VFDODUV c1 ; : : : ; cp QRW DOO ]HUR VXFK WKDW 2 3 0 6 7 c1 Œ X1 B C C cp Œ Xp B D 4 ::: 5 7KH ]HUR YHFWRU LQ Rn 0 6LQFH WKH FRRUGLQDWH PDSSLQJ LV D OLQHDU WUDQVIRUPDWLRQ 2 3 0 6 :: 7 c1 X1 C C cp Xp B D 4 : 5
0 7KH ]HUR YHFWRU RQ WKH ULJKW GLVSOD\V WKH n ZHLJKWV QHHGHG WR EXLOG WKH YHFWRU c1 X1 C C cp Xp IURP WKH EDVLV YHFWRUV LQ B 7KDW LV c1 X1 C C cp Xp D 0E1 C C 0En D 6LQFH WKH ci DUH QRW DOO ]HUR fX1 ; : : : ; Xp g LV OLQHDUO\ GHSHQGHQW1 7KHRUHP LPSOLHV WKDW LI D YHFWRU VSDFH V KDV D EDVLV B D fE1 ; : : : ; En g WKHQ HDFK OLQHDUO\ LQGHSHQGHQW VHW LQ V KDV QR PRUH WKDQ n YHFWRUV
5)&03&.
,I D YHFWRU VSDFH V KDV D EDVLV RI n YHFWRUV WKHQ HYHU\ EDVLV RI V PXVW FRQVLVW RI H[DFWO\ n YHFWRUV
1300' /HW B1 EH D EDVLV RI n YHFWRUV DQG B2 EH DQ\ RWKHU EDVLV RI V 6LQFH B1 LV D EDVLV DQG B2 LV OLQHDUO\ LQGHSHQGHQW B2 KDV QR PRUH WKDQ n YHFWRUV E\ 7KHRUHP $OVR VLQFH B2 LV D EDVLV DQG B1 LV OLQHDUO\ LQGHSHQGHQW B2 KDV DW OHDVW n YHFWRUV 7KXV B2 FRQVLVWV RI H[DFWO\ n YHFWRUV 1
7KHRUHP DOVR DSSOLHV WR LQıQLWH VHWV LQ V $Q LQıQLWH VHW LV VDLG WR EH OLQHDUO\ GHSHQGHQW LI VRPH ıQLWH VXEVHW LV OLQHDUO\ GHSHQGHQW RWKHUZLVH WKH VHW LV OLQHDUO\ LQGHSHQGHQW ,I S LV DQ LQıQLWH VHW LQ V WDNH DQ\ VXEVHW fX1 ; : : : ; Xp g RI S ZLWK p > n 7KH SURRI DERYH VKRZV WKDW WKLV VXEVHW LV OLQHDUO\ GHSHQGHQW DQG KHQFH VR LV S
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
,I D QRQ]HUR YHFWRU VSDFH V LV VSDQQHG E\ D ıQLWH VHW S WKHQ D VXEVHW RI S LV D EDVLV IRU V E\ WKH 6SDQQLQJ 6HW 7KHRUHP ,Q WKLV FDVH 7KHRUHP HQVXUHV WKDW WKH IROORZLQJ GHıQLWLRQ PDNHV VHQVH
%&'*/*5*0/
,I D YHFWRU VSDFH V LV VSDQQHG E\ D ıQLWH VHW WKHQ V LV VDLG WR EH ıQLWHGLPHQVLRQDO DQG WKH GLPHQVLRQ RI V ZULWWHQ DV GLP V LV WKH QXPEHU RI YHFWRUV LQ D EDVLV IRU V 7KH GLPHQVLRQ RI WKH ]HUR YHFWRU VSDFH fg LV GHıQHG WR EH ]HUR ,I V LV QRW VSDQQHG E\ D ıQLWH VHW WKHQ V LV VDLG WR EH LQıQLWHGLPHQVLRQDO
(;$03/( 7KH VWDQGDUG EDVLV IRU Rn FRQWDLQV n YHFWRUV VR GLP Rn D n 7KH VWDQGDUG SRO\QRPLDO EDVLV f1; t; t 2 g VKRZV WKDW GLP P2 D 3 ,Q JHQHUDO GLP Pn D n C 1 7KH VSDFH P RI DOO SRO\QRPLDOV LV LQıQLWHGLPHQVLRQDO
x3
2 3 2 3 3 1 (;$03/( /HW H D 6SDQ fY1 ; Y2 g ZKHUH Y1 D 4 6 5 DQG Y2 D 4 0 5 7KHQ H 2 1 LV WKH SODQH VWXGLHG LQ ([DPSOH LQ 6HFWLRQ $ EDVLV IRU H LV fY1 ; Y2 g VLQFH Y1 DQG Y2 DUH QRW PXOWLSOHV DQG KHQFH DUH OLQHDUO\ LQGHSHQGHQW 7KXV GLP H D 2
3v2 2v2 v2 0
v1 2v1
x1
x2
(;$03/( )LQG WKH GLPHQVLRQ RI WKH VXEVSDFH 82 9 3 a 3b C 6c ˆ > ˆ >
ˆ > : ; 5d 62/87,21 ,W LV HDV\ WR VHH WKDW H LV WKH VHW RI DOO OLQHDU FRPELQDWLRQV RI WKH YHFWRUV
2 3 1 657 7 Y1 D 6 4 0 5; 0
2
3 3 6 07 7 Y2 D 6 4 1 5; 0
2
3 6 6 07 7 Y3 D 6 4 2 5; 0
2
3 0 6 47 7 Y4 D 6 4 1 5 5
&OHDUO\ Y1 ¤ Y2 LV QRW D PXOWLSOH RI Y1 EXW Y3 LV D PXOWLSOH RI Y2 %\ WKH 6SDQQLQJ 6HW 7KHRUHP ZH PD\ GLVFDUG Y3 DQG VWLOO KDYH D VHW WKDW VSDQV H )LQDOO\ Y4 LV QRW D OLQHDU FRPELQDWLRQ RI Y1 DQG Y2 6R fY1 ; Y2 ; Y4 g LV OLQHDUO\ LQGHSHQGHQW E\ 7KHRUHP LQ 6HFWLRQ DQG KHQFH LV D EDVLV IRU H 7KXV GLP H D 3
(;$03/( 7KH VXEVSDFHV RI R3 FDQ EH FODVVLıHG E\ GLPHQVLRQ 6HH )LJXUH GLPHQVLRQDO VXEVSDFHV 2QO\ WKH ]HUR VXEVSDFH GLPHQVLRQDO VXEVSDFHV $Q\ VXEVSDFH VSDQQHG E\ D VLQJOH QRQ]HUR YHFWRU 6XFK VXEVSDFHV DUH OLQHV WKURXJK WKH RULJLQ GLPHQVLRQDO VXEVSDFHV $Q\ VXEVSDFH VSDQQHG E\ WZR OLQHDUO\ LQGHSHQGHQW YHFWRUV 6XFK VXEVSDFHV DUH SODQHV WKURXJK WKH RULJLQ GLPHQVLRQDO VXEVSDFHV 2QO\ R3 LWVHOI $Q\ WKUHH OLQHDUO\ LQGHSHQGHQW YHFWRUV LQ R3 VSDQ DOO RI R3 E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 'LPHQVLRQ RI D 9HFWRU 6SDFH x3
x3
x3 3-dim
1-dim
0-dim
x2
x1
x1 (a)
2-dim
2-dim
x2
x2 x1
(b)
(c)
'*(63& 6DPSOH VXEVSDFHV RI R 3
6XEVSDFHV RI D )LQLWH'LPHQVLRQDO 6SDFH 7KH QH[W WKHRUHP LV D QDWXUDO FRXQWHUSDUW WR WKH 6SDQQLQJ 6HW 7KHRUHP
5)&03&.
/HW H EH D VXEVSDFH RI D ıQLWHGLPHQVLRQDO YHFWRU VSDFH V $Q\ OLQHDUO\ LQGH SHQGHQW VHW LQ H FDQ EH H[SDQGHG LI QHFHVVDU\ WR D EDVLV IRU H $OVR H LV ıQLWHGLPHQVLRQDO DQG GLP H GLP V
1300' ,I H D fg WKHQ FHUWDLQO\ GLP H D 0 GLP V 2WKHUZLVH OHW S D fX1 ; : : : ; Xk g EH DQ\ OLQHDUO\ LQGHSHQGHQW VHW LQ H ,I S VSDQV H WKHQ S LV D EDVLV IRU H 2WKHUZLVH WKHUH LV VRPH Xk C1 LQ H WKDW LV QRW LQ 6SDQ S %XW WKHQ fX1 ; : : : ; Xk ; Xk C1 g ZLOO EH OLQHDUO\ LQGHSHQGHQW EHFDXVH QR YHFWRU LQ WKH VHW FDQ EH D OLQHDU FRPELQDWLRQ RI YHFWRUV WKDW SUHFHGH LW E\ 7KHRUHP 6R ORQJ DV WKH QHZ VHW GRHV QRW VSDQ H ZH FDQ FRQWLQXH WKLV SURFHVV RI H[SDQGLQJ S WR D ODUJHU OLQHDUO\ LQGHSHQGHQW VHW LQ H %XW WKH QXPEHU RI YHFWRUV LQ D OLQHDUO\ LQGHSHQGHQW H[SDQVLRQ RI S FDQ QHYHU H[FHHG WKH GLPHQVLRQ RI V E\ 7KHRUHP 6R HYHQWXDOO\ WKH H[SDQVLRQ RI S ZLOO VSDQ H DQG KHQFH ZLOO EH D EDVLV IRU H DQG GLP H GLP V :KHQ WKH GLPHQVLRQ RI D YHFWRU VSDFH RU VXEVSDFH LV NQRZQ WKH VHDUFK IRU D EDVLV LV VLPSOLıHG E\ WKH QH[W WKHRUHP ,W VD\V WKDW LI D VHW KDV WKH ULJKW QXPEHU RI HOHPHQWV WKHQ RQH KDV RQO\ WR VKRZ HLWKHU WKDW WKH VHW LV OLQHDUO\ LQGHSHQGHQW RU WKDW LW VSDQV WKH VSDFH 7KH WKHRUHP LV RI FULWLFDO LPSRUWDQFH LQ QXPHURXV DSSOLHG SUREOHPV LQYROYLQJ GLijHUHQWLDO HTXDWLRQV RU GLijHUHQFH HTXDWLRQV IRU H[DPSOH ZKHUH OLQHDU LQGHSHQGHQFH LV PXFK HDVLHU WR YHULI\ WKDQ VSDQQLQJ
5)&03&.
5IF #BTJT 5IFPSFN /HW V EH D p GLPHQVLRQDO YHFWRU VSDFH p 1 $Q\ OLQHDUO\ LQGHSHQGHQW VHW RI H[DFWO\ p HOHPHQWV LQ V LV DXWRPDWLFDOO\ D EDVLV IRU V $Q\ VHW RI H[DFWO\ p HOHPHQWV WKDW VSDQV V LV DXWRPDWLFDOO\ D EDVLV IRU V
1300' %\ 7KHRUHP D OLQHDUO\ LQGHSHQGHQW VHW S RI p HOHPHQWV FDQ EH H[WHQGHG WR D EDVLV IRU V %XW WKDW EDVLV PXVW FRQWDLQ H[DFWO\ p HOHPHQWV VLQFH GLP V D p 6R S PXVW DOUHDG\ EH D EDVLV IRU V 1RZ VXSSRVH WKDW S KDV p HOHPHQWV DQG VSDQV V 6LQFH V LV QRQ]HUR WKH 6SDQQLQJ 6HW 7KHRUHP LPSOLHV WKDW D VXEVHW S 0 RI S LV D EDVLV RI V 6LQFH GLP V D p S 0 PXVW FRQWDLQ p YHFWRUV +HQFH S D S 0 MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
7KH 'LPHQVLRQV RI 1XO $ &RO $ DQG 5RZ $ 6LQFH WKH GLPHQVLRQV RI WKH QXOO VSDFH DQG FROXPQ VSDFH RI DQ m n PDWUL[ DUH UHIHUUHG WR IUHTXHQWO\ WKH\ KDYH VSHFLıF QDPHV
%&'*/*5*0/
7KH UDQN RI DQ m n PDWUL[ A LV WKH GLPHQVLRQ RI WKH FROXPQ VSDFH DQG WKH QXOOLW\ RI A LV WKH GLPHQVLRQ RI WKH QXOO VSDFH
7KH SLYRW FROXPQV RI D PDWUL[ A IRUP D EDVLV IRU &RO A VR WKH UDQN RI A LV MXVW WKH QXPEHU RI SLYRW FROXPQV 6LQFH D EDVLV IRU 5RZ A FDQ EH IRXQG E\ WDNLQJ WKH SLYRW URZV IURP WKH URZ UHGXFHG HFKHORQ IRUP RI A WKH GLPHQVLRQ RI 5RZ A LV DOVR HTXDO WR WKH UDQN RI A 7KH QXOOLW\ RI A PLJKW VHHP WR UHTXLUH PRUH ZRUN VLQFH ıQGLQJ D EDVLV IRU 1XO A XVXDOO\ WDNHV PRUH WLPH WKDQ ıQGLQJ D EDVLV IRU &RO A 7KHUH LV D VKRUWFXW /HW A EH DQ m n PDWUL[ DQG VXSSRVH WKH HTXDWLRQ A[ D KDV k IUHH YDULDEOHV )URP 6HFWLRQ ZH NQRZ WKDW WKH VWDQGDUG PHWKRG RI ıQGLQJ D VSDQQLQJ VHW IRU 1XO A ZLOO SURGXFH H[DFWO\ k OLQHDUO\ LQGHSHQGHQW YHFWRUVŠVD\ X1 ; : : : ; Xk ş RQH IRU HDFK IUHH YDULDEOH 6R X1 ; : : : ; Xk LV D EDVLV IRU 1XO A DQG WKH QXPEHU RI IUHH YDULDEOHV GHWHUPLQHV WKH VL]H RI WKH EDVLV 7R VXPPDUL]H WKHVH IDFWV IRU IXWXUH UHIHUHQFH 7KH UDQN RI DQ m n PDWUL[ A LV WKH QXPEHU RI SLYRW FROXPQV DQG WKH QXOOLW\ RI A LV WKH QXPEHU RI IUHH YDULDEOHV 6LQFH WKH GLPHQVLRQ RI WKH URZ VSDFH LV WKH QXPEHU RI SLYRW URZV LW LV DOVR HTXDO WR WKH UDQN RI A
3XWWLQJ WKHVH REVHUYDWLRQV WRJHWKHU UHVXOWV LQ WKH UDQN WKHRUHP
5)&03&.
5IF 3BOL 5IFPSFN 7KH GLPHQVLRQV RI WKH FROXPQ VSDFH DQG WKH QXOO VSDFH RI DQ m n PDWUL[ A VDWLVI\ WKH HTXDWLRQ UDQN A C QXOOLW\ A D QXPEHU RI FROXPQV LQ A
1300' %\ 7KHRUHP LQ 6HFWLRQ UDQN A LV WKH QXPEHU RI SLYRW FROXPQV LQ A 7KH QXOOLW\ RI A HTXDOV WKH QXPEHU RI IUHH YDULDEOHV LQ WKH HTXDWLRQ A[ D ([SUHVVHG DQRWKHU ZD\ WKH QXOOLW\ RI A LV WKH QXPEHU RI FROXPQV RI A WKDW DUH QRW SLYRW FROXPQV ,W LV WKH QXPEHU RI WKHVH FROXPQV QRW WKH FROXPQV WKHPVHOYHV WKDW LV UHODWHG WR 1XO A 2EYLRXVO\
QXPEHU RI SLYRW FROXPQV
C
QXPEHU RI QRQSLYRW FROXPQV
D
QXPEHU RI FROXPQV
7KLV SURYHV WKH WKHRUHP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 'LPHQVLRQ RI D 9HFWRU 6SDFH
(;$03/( )LQG WKH QXOOLW\ DQG UDQN RI 2
3 3 6 1 1 7 2 3 1 5 A D 4 1 2 5 8 4 2 4
62/87,21 5RZ UHGXFH WKH DXJPHQWHG PDWUL[ ŒA WR HFKHORQ IRUP
2
3 1 2 2 3 1 0 0 1 2 2 0 5 BD4 0 0 0 0 0 0 0
7KHUH DUH WKUHH IUHH YDULDEOHV x2 ; x4 DQG x5 +HQFH WKH QXOOLW\ RI A LV $OVR WKH UDQN RI A LV EHFDXVH A KDV WZR SLYRW FROXPQV 7KH LGHDV EHKLQG 7KHRUHP DUH YLVLEOH LQ WKH FDOFXODWLRQV LQ ([DPSOH 7KH WZR SLYRW SRVLWLRQV LQ B DQ HFKHORQ IRUP RI A GHWHUPLQH WKH EDVLF YDULDEOHV DQG LGHQWLI\ WKH EDVLV YHFWRUV IRU &RO A DQG WKRVH IRU 5RZ A
(;$03/( D ,I A LV D 7 9 PDWUL[ ZLWK QXOOLW\ ZKDW LV WKH UDQN RI A" E &RXOG D 6 9 PDWUL[ KDYH QXOOLW\ " 62/87,21
D 6LQFH A KDV FROXPQV .UDQN A/ C 2 D 9 DQG KHQFH UDQN A D 7 E 1R ,I D 6 9 PDWUL[ FDOO LW B KDG D WZRGLPHQVLRQDO QXOO VSDFH LW ZRXOG KDYH WR KDYH UDQN E\ WKH 5DQN 7KHRUHP %XW WKH FROXPQV RI B DUH YHFWRUV LQ R6 DQG VR WKH GLPHQVLRQ RI &RO B FDQQRW H[FHHG WKDW LV UDQN B FDQQRW H[FHHG 7KH QH[W H[DPSOH SURYLGHV D QLFH ZD\ WR YLVXDOL]H WKH VXEVSDFHV ZH KDYH EHHQ VWXG\LQJ ,Q &KDSWHU ZH ZLOO OHDUQ WKDW 5RZ A DQG 1XO A KDYH RQO\ WKH ]HUR YHFWRU LQ FRPPRQ DQG DUH DFWXDOO\ SHUSHQGLFXODU WR HDFK RWKHU 7KH VDPH IDFW DSSOLHV WR 5RZ AT .D &ROA/ DQG 1XO AT 6R )LJXUH ZKLFK DFFRPSDQLHV ([DPSOH FUHDWHV D JRRG PHQWDO LPDJH IRU WKH JHQHUDO FDVH 2 3 3 0 1 (;$03/( /HW A D 4 3 0 1 5 ,W LV UHDGLO\ FKHFNHG WKDW 1XO A LV WKH 4 0 5 x2 D[LV 5RZ A LV WKH x1 x3 SODQH &RO A LV WKH SODQH ZKRVH HTXDWLRQ LV x1 x2 D 0 DQG 1XO AT LV WKH VHW RI DOO PXOWLSOHV RI .1; 1; 0/ )LJXUH VKRZV 1XO A DQG 5RZ A LQ WKH GRPDLQ RI WKH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ WKH UDQJH RI WKLV PDSSLQJ &RO A LV VKRZQ LQ D VHSDUDWH FRS\ RI R3 DORQJ ZLWK 1XO AT x3
x3 A
0
Row
x2
lA
lA
x2
A
0
T
Nu
x1
Nu
Co
lA
3
x1
3
'*(63& 6XEVSDFHV GHWHUPLQHG E\ D
PDWUL[ $
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 9HFWRU 6SDFHV
$SSOLFDWLRQV WR 6\VWHPV RI (TXDWLRQV 7KH 5DQN 7KHRUHP LV D SRZHUIXO WRRO IRU SURFHVVLQJ LQIRUPDWLRQ DERXW V\VWHPV RI OLQHDU HTXDWLRQV 7KH QH[W H[DPSOH VLPXODWHV WKH ZD\ D UHDOOLIH SUREOHP XVLQJ OLQHDU HTXDWLRQV PLJKW EH VWDWHG ZLWKRXW H[SOLFLW PHQWLRQ RI OLQHDU DOJHEUD WHUPV VXFK DV PDWUL[ VXEVSDFH DQG GLPHQVLRQ
(;$03/( $ VFLHQWLVW KDV IRXQG WZR VROXWLRQV WR D KRPRJHQHRXV V\VWHP RI HTXDWLRQV LQ YDULDEOHV 7KH WZR VROXWLRQV DUH QRW PXOWLSOHV DQG DOO RWKHU VROXWLRQV FDQ EH FRQVWUXFWHG E\ DGGLQJ WRJHWKHU DSSURSULDWH PXOWLSOHV RI WKHVH WZR VROXWLRQV &DQ WKH VFLHQWLVW EH FHUWDLQ WKDW DQ DVVRFLDWHG QRQKRPRJHQHRXV V\VWHP ZLWK WKH VDPH FRHĴFLHQWV KDV D VROXWLRQ" 62/87,21 +LQW )LQG RXW KRZ A I DQG AT I DUH UHODWHG@
LQLWLDO [0 DQG WKLV YHFWRU GLG QRW KDSSHQ WR EH DQ HLJHQYHFWRU RI A >+LQW +RZ PLJKW \RX UHODWH [0 WR HLJHQYHFWRUV RI A"@ /HW X DQG Y EH WKH YHFWRUV VKRZQ LQ WKH ıJXUH DQG VXSSRVH X DQG Y DUH HLJHQYHFWRUV RI D 2 2 PDWUL[ A WKDW FRUUHVSRQG WR HLJHQYDOXHV DQG UHVSHFWLYHO\ /HW T W R2 ! R2 EH WKH OLQHDU WUDQVIRUPDWLRQ JLYHQ E\ T .[/ D A[ IRU HDFK [ LQ R2 DQG OHW Z D X C Y 0DNH D FRS\ RI WKH ıJXUH DQG RQ WKH VDPH FRRUGLQDWH V\VWHP FDUHIXOO\ SORW WKH YHFWRUV T .X/ T .Y/ DQG T .Z/ x2
8VH ([HUFLVH WR FRPSOHWH WKH SURRI RI 7KHRUHP IRU WKH FDVH ZKHQ A LV ORZHU WULDQJXODU
v
&RQVLGHU DQ n n PDWUL[ A ZLWK WKH SURSHUW\ WKDW WKH URZ VXPV DOO HTXDO WKH VDPH QXPEHU s 6KRZ WKDW s LV DQ HLJHQ YDOXH RI A >+LQW )LQG DQ HLJHQYHFWRU@ &RQVLGHU DQ n n PDWUL[ A ZLWK WKH SURSHUW\ WKDW WKH FROXPQ VXPV DOO HTXDO WKH VDPH QXPEHU s 6KRZ WKDW s LV DQ HLJHQ YDOXH RI A >+LQW 8VH ([HUFLVHV DQG @ ,Q ([HUFLVHV DQG OHW A EH WKH PDWUL[ RI WKH OLQHDU WUDQVIRU PDWLRQ T :LWKRXW ZULWLQJ A ıQG DQ HLJHQYDOXH RI A DQG GHVFULEH WKH HLJHQVSDFH T LV WKH WUDQVIRUPDWLRQ RQ R2 WKDW UHIJHFWV SRLQWV DFURVV VRPH OLQH WKURXJK WKH RULJLQ T LV WKH WUDQVIRUPDWLRQ RQ R3 WKDW URWDWHV SRLQWV DERXW VRPH OLQH WKURXJK WKH RULJLQ /HW X DQG Y EH HLJHQYHFWRUV RI D PDWUL[ A ZLWK FRUUHVSRQGLQJ HLJHQYDOXHV DQG DQG OHW c1 DQG c2 EH VFDODUV 'HıQH [k D c1 k X C c2 k Y
.k D 0; 1; 2; : : :/
D :KDW LV [kC1 E\ GHıQLWLRQ" E &RPSXWH A[k IURP WKH IRUPXOD IRU [k DQG VKRZ WKDW A[k D [kC1 7KLV FDOFXODWLRQ ZLOO SURYH WKDW WKH VH TXHQFH f[k g GHıQHG DERYH VDWLVıHV WKH GLijHUHQFH HTXD WLRQ [kC1 D A[k .k D 0; 1; 2; : : :/ 'HVFULEH KRZ \RX PLJKW WU\ WR EXLOG D VROXWLRQ RI D GLijHUHQFH HTXDWLRQ [kC1 D A[k .k D 0; 1; 2; : : :/ LI \RX ZHUH JLYHQ WKH
u
x1
5HSHDW ([HUFLVH DVVXPLQJ X DQG Y DUH HLJHQYHFWRUV RI A WKDW FRUUHVSRQG WR HLJHQYDOXHV 1 DQG UHVSHFWLYHO\ 7 ,Q ([HUFLVHV ş XVH D PDWUL[ SURJUDP WR ıQG WKH HLJHQYDO XHV RI WKH PDWUL[ 7KHQ XVH WKH PHWKRG RI ([DPSOH ZLWK D URZ UHGXFWLRQ URXWLQH WR SURGXFH D EDVLV IRU HDFK HLJHQVSDFH 2 3 8 10 5 17 25 4 2 9 18 4 2 3 9 4 2 4 6 32 28 44 7 6 56 7 4 14 14 6 14 5 21 45 42 33 3 2 4 9 7 8 2 7 6 0 7 14 7 6 7 9 7 5 10 5 5 10 6 7 6 4 2 3 7 0 45 3 13 7 10 11 2 3 4 4 20 8 1 6 27 6 14 12 46 18 7 6 4 18 8 17 6 6 7 4 11 7 37 17 25 18 12 60 24 5
6ROXWLRQV WR 3UDFWLFH 3UREOHPV 7KH QXPEHU LV DQ HLJHQYDOXH RI A LI DQG RQO\ LI WKH HTXDWLRQ .A 5I /[ D KDV D QRQWULYLDO VROXWLRQ )RUP 2 3 2 3 2 3 6 3 1 5 0 0 1 3 1 A 5I D 4 3 0 5 5 4 0 5 0 5 D 4 3 5 5 5 2 2 6 0 0 5 2 2 1 DQG URZ UHGXFH WKH DXJPHQWHG PDWUL[ 3 2 2 1 3 1 0 1 3 1 4 3 5 5 0 5 4 0 4 2 2 2 1 0 0 8 1
3 2 0 1 3 1 05 40 4 2 0 0 0 5
3 0 05 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
6ROXWLRQV WR 3UDFWLFH 3UREOHPV &RQWLQXHG $W WKLV SRLQW LW LV FOHDU WKDW WKH KRPRJHQHRXV V\VWHP KDV QR IUHH YDULDEOHV 7KXV A 5I LV DQ LQYHUWLEOH PDWUL[ ZKLFK PHDQV WKDW LV QRW DQ HLJHQYDOXH RI A ,I [ LV DQ HLJHQYHFWRU RI A FRUUHVSRQGLQJ WR WKHQ A[ D [ DQG VR
A2 [ D A. [/ D A[ D 2 [ $JDLQ A3 [ D A.A2 [/ D A. 2 [/ D 2 A[ D 3 [ 7KH JHQHUDO SDWWHUQ Ak [ D k [ LV SURYHG E\ LQGXFWLRQ +LQW P 1 AP D B IRU VRPH LQYHUW 7 A D 4 1 3 45 19 3 LEOH P ([SODLQ ZK\ B LV LQYHUWLEOH 7KHQ ıQG DQ LQYHUWLEOH 2 3 2 3 2 3 Q VXFK WKDW Q1 A1 Q D B 1 :@ E2 D 4 1 5; E3 D 4 1 5 ,I A LV VLPLODU WR B WKHQ A2 LV VLPLODU WR B 2 3 0 ,I B LV VLPLODU WR A DQG C LV VLPLODU WR A WKHQ B LV VLPLODU 7 /HW T EH WKH WUDQVIRUPDWLRQ ZKRVH VWDQGDUG PDWUL[ LV JLYHQ WR C EHORZ )LQG D EDVLV IRU R4 ZLWK WKH SURSHUW\ WKDW ŒT B LV GLDJRQDO ,I A LV GLDJRQDOL]DEOH DQG B LV VLPLODU WR A WKHQ B LV DOVR GLDJRQDOL]DEOH 2 3 15 66 44 33 1 6 0 7 ,I B D P AP DQG [ LV DQ HLJHQYHFWRU RI A FRUUHVSRQGLQJ 13 21 15 7 AD6 4 1 WR DQ HLJHQYDOXH WKHQ P 1 [ LV DQ HLJHQYHFWRU RI B FRUUH 15 21 12 5 VSRQGLQJ DOVR WR 2 18 22 8 7) 6LPLODU PDWULFHV KDYH WKH VDPH HLJHQYHFWRUV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
6ROXWLRQV WR 3UDFWLFH 3UREOHPV /HW S.t/ D a0 C a1 t C a2 t 2 DQG FRPSXWH 2 32 3 2 3 3 4 0 a0 3a0 C 4a1 5 5a1 a2 Œ T .S/ B D Œ T B Œ S B D 4 0 5 1 54 a1 5 D 4 1 2 7 a2 a0 2a1 C 7a2 6R T .S/ D .3a0 C 4a1 / C .5a1 a2 /t C .a0 2a1 C 7a2 /t 2 D A D .I /1 AI VR A LV VLPLODU WR A E %\ K\SRWKHVLV WKHUH H[LVW LQYHUWLEOH PDWULFHV P DQG Q ZLWK WKH SURSHUW\ WKDW B D P 1 $3 DQG C D Q1 BQ 6XEVWLWXWH WKH IRUPXOD IRU B LQWR WKH IRUPXOD IRU C DQG XVH D IDFW DERXW WKH LQYHUVH RI D SURGXFW
C D Q1 BQ D Q1 .P 1 $3/Q D .34/1 A.34/ 7KLV HTXDWLRQ KDV WKH SURSHU IRUP WR VKRZ WKDW A LV VLPLODU WR C
&RPSOH[ (LJHQYDOXHV 6LQFH WKH FKDUDFWHULVWLF HTXDWLRQ RI DQ n n PDWUL[ LQYROYHV D SRO\QRPLDO RI GHJUHH n WKH HTXDWLRQ DOZD\V KDV H[DFWO\ n URRWV FRXQWLQJ PXOWLSOLFLWLHV SURYLGHG WKDW SRVVLEO\ FRPSOH[ URRWV DUH LQFOXGHG 7KLV VHFWLRQ VKRZV WKDW LI WKH FKDUDFWHULVWLF HTXDWLRQ RI D UHDO PDWUL[ A KDV VRPH FRPSOH[ URRWV WKHQ WKHVH URRWV SURYLGH FULWLFDO LQIRUPDWLRQ DERXW A 7KH NH\ LV WR OHW A DFW RQ WKH VSDFH C n RI nWXSOHV RI FRPSOH[ QXPEHUV1 2XU LQWHUHVW LQ C n GRHV QRW DULVH IURP D GHVLUH WR ŗJHQHUDOL]HŘ WKH UHVXOWV RI WKH HDUOLHU FKDSWHUV DOWKRXJK WKDW ZRXOG LQ IDFW RSHQ XS VLJQLıFDQW QHZ DSSOLFDWLRQV RI OLQHDU DOJHEUD2 5DWKHU WKLV VWXG\ RI FRPSOH[ HLJHQYDOXHV LV HVVHQWLDO LQ RUGHU WR XQFRYHU ŗKLGGHQŘ LQIRUPDWLRQ DERXW FHUWDLQ PDWULFHV ZLWK UHDO HQWULHV WKDW DULVH LQ D YDULHW\ RI UHDOOLIH SUREOHPV 6XFK SUREOHPV LQFOXGH PDQ\ UHDO G\QDPLFDO V\VWHPV WKDW LQYROYH SHULRGLF PRWLRQ YLEUDWLRQ RU VRPH W\SH RI URWDWLRQ LQ VSDFH 7KH PDWUL[ HLJHQYDOXHşHLJHQYHFWRU WKHRU\ DOUHDG\ GHYHORSHG IRU Rn DSSOLHV HTXDOO\ ZHOO WR C n 6R D FRPSOH[ VFDODU VDWLVıHV GHW.A I / D 0 LI DQG RQO\ LI WKHUH LV D QRQ]HUR YHFWRU [ LQ C n VXFK WKDW A[ D [ :H FDOO D FRPSOH[ HLJHQYDOXH DQG [ D FRPSOH[ HLJHQYHFWRU FRUUHVSRQGLQJ WR
0 1 WKHQ WKH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ RQ R2 1 0 URWDWHV WKH SODQH FRXQWHUFORFNZLVH WKURXJK D TXDUWHUWXUQ 7KH DFWLRQ RI A LV SHULRGLF VLQFH DIWHU IRXU TXDUWHUWXUQV D YHFWRU LV EDFN ZKHUH LW VWDUWHG 2EYLRXVO\ QR QRQ]HUR YHFWRU LV PDSSHG LQWR D PXOWLSOH RI LWVHOI VR A KDV QR HLJHQYHFWRUV LQ R2 DQG KHQFH QR UHDO HLJHQYDOXHV ,Q IDFW WKH FKDUDFWHULVWLF HTXDWLRQ RI A LV
(;$03/( ,I A D
2 C 1 D 0 1
5HIHU WR $SSHQGL[ % IRU D EULHI GLVFXVVLRQ RI FRPSOH[ QXPEHUV 0DWUL[ DOJHEUD DQG FRQFHSWV DERXW UHDO YHFWRU VSDFHV FDUU\ RYHU WR WKH FDVH ZLWK FRPSOH[ HQWULHV DQG VFDODUV ,Q SDUWLFXODU A.c [ C d \/ D cA[ C dA\ IRU A DQ m n PDWUL[ ZLWK FRPSOH[ HQWULHV [ \ LQ C n DQG c d LQ C 2
$ VHFRQG FRXUVH LQ OLQHDU DOJHEUD RIWHQ GLVFXVVHV VXFK WRSLFV 7KH\ DUH RI SDUWLFXODU LPSRUWDQFH LQ HOHFWULFDO HQJLQHHULQJ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&RPSOH[ (LJHQYDOXHV
7KH RQO\ URRWV DUH FRPSOH[ D i DQG D i +RZHYHU LI ZH SHUPLW A WR DFW RQ C 2 WKHQ 0 1 1 i 1 D Di 1 0 i 1 i 0 1 1 i 1 D D i 1 0 i 1 i 1 1 7KXV i DQG i DUH HLJHQYDOXHV ZLWK DQG DV FRUUHVSRQGLQJ HLJHQYHFWRUV i i $ PHWKRG IRU ıQGLQJ FRPSOH[ HLJHQYHFWRUV LV GLVFXVVHG LQ ([DPSOH 7KH PDLQ IRFXV RI WKLV VHFWLRQ ZLOO EH RQ WKH PDWUL[ LQ WKH QH[W H[DPSOH
(;$03/( /HW A D
:5 :75
:6 )LQG WKH HLJHQYDOXHV RI A DQG ıQG D EDVLV IRU 1:1
HDFK HLJHQVSDFH 62/87,21 7KH FKDUDFWHULVWLF HTXDWLRQ RI A LV
:5 0 D GHW :75
:6 1:1
D .:5 /.1:1 / .:6/.:75/
D 2 1:6 C 1 p )URP WKH TXDGUDWLF IRUPXOD D 12 Œ1:6 ˙ .1:6/2 4 D :8 ˙ :6i )RU WKH HLJHQ YDOXH D :8 :6i FRQVWUXFW :5 :6 :8 :6i 0 A .:8 :6i /I D :75 1:1 0 :8 :6i :6 :3 C :6i D :75 :3 C :6i 5RZ UHGXFWLRQ RI WKH XVXDO DXJPHQWHG PDWUL[ LV TXLWH XQSOHDVDQW E\ KDQG EHFDXVH RI WKH FRPSOH[ DULWKPHWLF +RZHYHU KHUH LV D QLFH REVHUYDWLRQ WKDW UHDOO\ VLPSOLıHV PDWWHUV 6LQFH :8 :6i LV DQ HLJHQYDOXH WKH V\VWHP
:6x2 D 0 .:3 C :6i /x1 :75x1 C .:3 C :6i /x2 D 0
KDV D QRQWULYLDO VROXWLRQ ZLWK x1 DQG x2 SRVVLEO\ FRPSOH[ QXPEHUV 7KHUHIRUH ERWK HTXDWLRQV LQ GHWHUPLQH WKH VDPH UHODWLRQVKLS EHWZHHQ x1 DQG x2 DQG HLWKHU HTXDWLRQ FDQ EH XVHG WR H[SUHVV RQH YDULDEOH LQ WHUPV RI WKH RWKHU3 7KH VHFRQG HTXDWLRQ LQ OHDGV WR
:75x1 D .:3 :6i /x2 x1 D .:4 :8i /x2 &KRRVH x2 D 5 WR HOLPLQDWH WKH GHFLPDOV DQG REWDLQ x1 D 2 4i $ EDVLV IRU WKH HLJHQVSDFH FRUUHVSRQGLQJ WR D :8 :6i LV 2 4i Y1 D 5 3
$QRWKHU ZD\ WR VHH WKLV LV WR UHDOL]H WKDW WKH PDWUL[ LQ HTXDWLRQ LV QRW LQYHUWLEOH VR LWV URZV DUH OLQHDUO\ GHSHQGHQW DV YHFWRUV LQ C 2 / DQG KHQFH RQH URZ LV D FRPSOH[ PXOWLSOH RI WKH RWKHU
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
$QDORJRXV FDOFXODWLRQV IRU D :8 C :6i SURGXFH WKH HLJHQYHFWRU 2 C 4i Y2 D 5 $V D FKHFN RQ WKH ZRUN FRPSXWH :5 :6 2 C 4i 4 C 2i AY2 D D D .:8 C :6i /Y2 :75 1:1 5 4 C 3i 6XUSULVLQJO\ WKH PDWUL[ A LQ ([DPSOH GHWHUPLQHV D WUDQVIRUPDWLRQ [ 7! A[ WKDW LV HVVHQWLDOO\ D URWDWLRQ 7KLV IDFW EHFRPHV HYLGHQW ZKHQ DSSURSULDWH SRLQWV DUH SORWWHG DV LOOXVWUDWHG LQ )LJXUH
(;$03/( 2QH ZD\ WR VHH KRZ PXOWLSOLFDWLRQ E\ WKH PDWUL[ A LQ ([DPSOH DijHFWV SRLQWV LV WR SORW DQ DUELWUDU\ LQLWLDO SRLQWŠVD\ [0 D .2; 0/ŠDQG WKHQ WR SORW VXFFHVVLYH LPDJHV RI WKLV SRLQW XQGHU UHSHDWHG PXOWLSOLFDWLRQV E\ A 7KDW LV SORW :6 2 :5 1:0 D [1 D A[0 D :75 1:1 0 1:5 :5 :6 1:0 :4 [2 D A[1 D D :75 1:1 1:5 2:4 [3 D A[2 ; : : : )LJXUH VKRZV [0 ; : : : ; [8 DV ODUJHU GRWV 7KH VPDOOHU GRWV DUH WKH ORFDWLRQV RI [9 ; : : : ; [100 7KH VHTXHQFH OLHV DORQJ DQ HOOLSWLFDO RUELW
x2 x2
x3
x1
x4
x0 x5
x1
x6 x7
x8
'*(63& ,WHUDWHV RI D SRLQW [0
XQGHU WKH DFWLRQ RI D PDWUL[ ZLWK D FRPSOH[ HLJHQYDOXH
2I FRXUVH )LJXUH GRHV QRW H[SODLQ ZK\ WKH URWDWLRQ RFFXUV 7KH VHFUHW WR WKH URWDWLRQ LV KLGGHQ LQ WKH UHDO DQG LPDJLQDU\ SDUWV RI D FRPSOH[ HLJHQYHFWRU
5HDO DQG ,PDJLQDU\ 3DUWV RI 9HFWRUV 7KH FRPSOH[ FRQMXJDWH RI D FRPSOH[ YHFWRU [ LQ C n LV WKH YHFWRU [ LQ C n ZKRVH HQWULHV DUH WKH FRPSOH[ FRQMXJDWHV RI WKH HQWULHV LQ [ 7KH UHDO DQG LPDJLQDU\ SDUWV RI D
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&RPSOH[ (LJHQYDOXHV
FRPSOH[ YHFWRU [ DUH WKH YHFWRUV 5H [ DQG ,P [ LQ Rn IRUPHG IURP WKH UHDO DQG LPDJLQDU\ SDUWV RI WKH HQWULHV RI [ 7KXV [
5H [ L,P [
2
3 2 3 2 3 3i 3 1 (;$03/( ,I [ D 4 i 5 D 4 0 5 C i 4 1 5 WKHQ 2 C 5i 2 5 2 3 2 3 2 3 2 3 2 3 3 1 3 1 3Ci 5H [ D 4 0 5; ,P [ D 4 1 5; DQG [ D 4 0 5 i 4 1 5 D 4 i 5 2 5 2 5 2 5i ,I B LV DQ m n PDWUL[ ZLWK SRVVLEO\ FRPSOH[ HQWULHV WKHQ B GHQRWHV WKH PDWUL[ ZKRVH HQWULHV DUH WKH FRPSOH[ FRQMXJDWHV RI WKH HQWULHV LQ B /HW r EH D FRPSOH[ QXPEHU DQG [ DQ\ YHFWRU 3URSHUWLHV RI FRQMXJDWHV IRU FRPSOH[ QXPEHUV FDUU\ RYHU WR FRPSOH[ PDWUL[ DOJHEUD
r [ D r [;
B [ D B [;
BC D B C ;
DQG
rB D r B
(LJHQYDOXHV DQG (LJHQYHFWRUV RI D 5HDO 0DWUL[ 7KDW $FWV RQ C Q /HW A EH DQ n n PDWUL[ ZKRVH HQWULHV DUH UHDO 7KHQ A[ D A[ D A[ ,I LV DQ HLJHQYDOXH RI A DQG [ LV D FRUUHVSRQGLQJ HLJHQYHFWRU LQ C n WKHQ
A[ D A[ D [ D [ +HQFH LV DOVR DQ HLJHQYDOXH RI A ZLWK [ D FRUUHVSRQGLQJ HLJHQYHFWRU 7KLV VKRZV WKDW ZKHQ A LV UHDO LWV FRPSOH[ HLJHQYDOXHV RFFXU LQ FRQMXJDWH SDLUV +HUH DQG HOVHZKHUH ZH XVH WKH WHUP FRPSOH[ HLJHQYDOXH WR UHIHU WR DQ HLJHQYDOXH D a C bi ZLWK b ¤ 0
(;$03/( 7KH HLJHQYDOXHV RI WKH UHDO PDWUL[ LQ ([DPSOH DUH FRPSOH[ FRQMX
JDWHV QDPHO\ :8 :6i DQG :8 C :6i 7KH FRUUHVSRQGLQJ HLJHQYHFWRUV IRXQG LQ ([DPSOH DUH DOVR FRQMXJDWHV 2 4i 2 C 4i Y1 D DQG Y2 D D Y1 5 5
7KH QH[W H[DPSOH SURYLGHV WKH EDVLF ŗEXLOGLQJ EORFNŘ IRU DOO UHDO 2 2 PDWULFHV ZLWK FRPSOH[ HLJHQYDOXHV
a b ZKHUH a DQG b DUH UHDO DQG QRW ERWK ]HUR WKHQ WKH b a HLJHQYDOXHV RI C DUH p D a ˙ bi 6HH WKH 3UDFWLFH 3UREOHP DW WKH HQG RI WKLV VHFWLRQ $OVR LI r D j j D a2 C b 2 WKHQ a=r b=r r 0 FRV ' VLQ ' C Dr D b=r a=r 0 r VLQ ' FRV '
(;$03/( ,I C D
Im z (a, b) r
b w a
'*(63&
Re z
ZKHUH ' LV WKH DQJOH EHWZHHQ WKH SRVLWLYH x D[LV DQG WKH UD\ IURP .0; 0/ WKURXJK .a; b/ 6HH )LJXUH DQG $SSHQGL[ % 7KH DQJOH ' LV FDOOHG WKH DUJXPHQW RI D a C bi 7KXV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
WKH WUDQVIRUPDWLRQ [ 7! C [ PD\ EH YLHZHG DV WKH FRPSRVLWLRQ RI D URWDWLRQ WKURXJK WKH DQJOH ' DQG D VFDOLQJ E\ j j VHH )LJXUH x2 Scaling Cx
x Rotation w x1
'*(63& $ URWDWLRQ IROORZHG E\ D
VFDOLQJ
)LQDOO\ ZH DUH UHDG\ WR XQFRYHU WKH URWDWLRQ WKDW LV KLGGHQ ZLWKLQ D UHDO PDWUL[ KDYLQJ D FRPSOH[ HLJHQYDOXH
:5 :6 2 4i D :8 :6i DQG Y1 D DV LQ :75 1:1 5 ([DPSOH $OVR OHW P EH WKH 2 2 UHDO PDWUL[ GHVFULEHG LQ 7KHRUHP 2 4 ,P Y1 D P D 5H Y1 5 0
(;$03/( /HW A D
DQG OHW
C D P 1 $3 D
1 0 4 :5 20 5 2 :75
:6 1:1
2 4 5 0
D
:8 :6 :6 :8
%\ ([DPSOH C LV D SXUH URWDWLRQ EHFDXVH j j2 D .:8/2 C .:6/2 D 1 )URP C D P 1 $3 ZH REWDLQ :8 :6 A D P CP 1 D P P 1 :6 :8 +HUH LV WKH URWDWLRQ ŗLQVLGHŘ A 7KH PDWUL[ P SURYLGHV D FKDQJH RI YDULDEOH VD\ [ D P X 7KH DFWLRQ RI A DPRXQWV WR D FKDQJH RI YDULDEOH IURP [ WR X IROORZHG E\ D URWDWLRQ DQG WKHQ D UHWXUQ WR WKH RULJLQDO YDULDEOH 6HH )LJXUH 7KH URWDWLRQ SURGXFHV DQ HOOLSVH DV LQ )LJXUH LQVWHDG RI D FLUFOH EHFDXVH WKH FRRUGLQDWH V\VWHP GHWHUPLQHG E\ WKH FROXPQV RI P LV QRW UHFWDQJXODU DQG GRHV QRW KDYH HTXDO XQLW OHQJWKV RQ WKH WZR D[HV x
A
Change of 21 P variable u
Ax P
C Rotation
Change to original variable
Cu
'*(63& 5RWDWLRQ GXH WR D FRPSOH[ HLJHQYDOXH
7KH QH[W WKHRUHP VKRZV WKDW WKH FDOFXODWLRQV LQ ([DPSOH FDQ EH FDUULHG RXW IRU DQ\ 2 2 UHDO PDWUL[ A KDYLQJ D FRPSOH[ HLJHQYDOXH 7KH SURRI XVHV WKH IDFW WKDW LI WKH HQWULHV LQ A DUH UHDO WKHQ A.5H [/ D 5H.A[/ DQG A.,P [/ D ,P.A[/ DQG LI [ LV DQ HLJHQYHFWRU IRU D FRPSOH[ HLJHQYDOXH WKHQ 5H [ DQG ,P [ DUH OLQHDUO\ LQGHSHQGHQW LQ R2 6HH ([HUFLVHV DQG 7KH GHWDLOV DUH RPLWWHG
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&RPSOH[ (LJHQYDOXHV
5)&03&. x3
7KH SKHQRPHQRQ GLVSOD\HG LQ ([DPSOH SHUVLVWV LQ KLJKHU GLPHQVLRQV )RU LQ VWDQFH LI A LV D 3 3 PDWUL[ ZLWK D FRPSOH[ HLJHQYDOXH WKHQ WKHUH LV D SODQH LQ R3 RQ ZKLFK A DFWV DV D URWDWLRQ SRVVLEO\ FRPELQHG ZLWK VFDOLQJ (YHU\ YHFWRU LQ WKDW SODQH LV URWDWHG LQWR DQRWKHU SRLQW RQ WKH VDPH SODQH :H VD\ WKDW WKH SODQH LV LQYDULDQW XQGHU A
x10 x1
x0
w0
w10
w1
x2
w2
x1 '*(63&
,WHUDWHV RI WZR SRLQWV XQGHU WKH DFWLRQ RI D 3 3 PDWUL[ ZLWK D FRPSOH[ HLJHQYDOXH
/HW A EH D UHDO 2 2 PDWUL[ ZLWK D FRPSOH[ HLJHQYDOXH D a bi b ¤ 0 DQG DQ DVVRFLDWHG HLJHQYHFWRU Y LQ C 2 7KHQ a b 1 A D 3&P ; ZKHUH P D Œ 5H Y ,P Y DQG C D b a
2
x2
3 :8 :6 0 0 5 KDV HLJHQYDOXHV :8 ˙ :6i DQG (;$03/( 7KH PDWUL[ A D 4 :6 :8 0 0 1:07 $Q\ YHFWRU Z0 LQ WKH x1 x2 SODQH ZLWK WKLUG FRRUGLQDWH LV URWDWHG E\ A LQWR DQRWKHU SRLQW LQ WKH SODQH $Q\ YHFWRU [0 QRW LQ WKH SODQH KDV LWV x3 FRRUGLQDWH PXOWLSOLHG E\ 7KH LWHUDWHV RI WKH SRLQWV Z0 D .2; 0; 0/ DQG [0 D .2; 0; 1/ XQGHU PXOWLSOLFDWLRQ E\ A DUH VKRZQ LQ )LJXUH
u3 u2
u1
'*(63&
(;$03/( 0DQ\ URERWV ZRUN E\ URWDWLQJ DW YDULRXV MRLQWV MXVW DV PDWULFHV ZLWK FRPSOH[ HLJHQYDOXHV URWDWH SRLQWV LQ VSDFH )LJXUH LOOXVWUDWHV D URERW DUP PDGH XVLQJ OLQHDU WUDQVIRUPDWLRQV HDFK ZLWK D SDLU RI FRPSOH[ HLJHQYDOXHV ,Q 3URMHFW & DW WKH HQG RI WKH FKDSWHU \RX ZLOO EH DVNHG WR ıQG YLGHRV RI URERWV RQ WKH ZHE WKDW XVH URWDWLRQV DV D NH\ HOHPHQW RI WKHLU IXQFWLRQLQJ 3UDFWLFH 3UREOHP 6KRZ WKDW LI a DQG b DUH UHDO WKHQ WKH HLJHQYDOXHV RI A D 1 1 FRUUHVSRQGLQJ HLJHQYHFWRUV DQG i i
a b b a
DUH a ˙ bi ZLWK
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
([HUFLVHV /HW HDFK PDWUL[ LQ ([HUFLVHV ş DFW RQ C 2 )LQG WKH HLJHQYDOXHV DQG D EDVLV IRU HDFK HLJHQVSDFH LQ C 2 1 2 1 1 1 3 5 5 1 5 3 1 2 3 2 5 0 1 4 3 8 4 3 4
7) 7KH PDWUL[ A FDQ KDYH RQH UHDO DQG RQH FRPSOH[ HLJHQYDOXH
,Q ([HUFLVHV ş XVH ([DPSOH WR OLVW WKH HLJHQYDOXHV RI A ,Q HDFK FDVH WKH WUDQVIRUPDWLRQ [ 7! A[ LV WKH FRPSRVLWLRQ RI D URWDWLRQ DQG D VFDOLQJ *LYH WKH DQJOH ' RI WKH URWDWLRQ ZKHUH < ' DQG JLYH WKH VFDOH IDFWRU r p p 3 p 1 3 p3 1 3 3 3 p 3=2 3 3 p1=2 3 3 1=2 3=2
&KDSWHU ZLOO IRFXV RQ PDWULFHV A ZLWK WKH SURSHUW\ WKDW AT D A ([HUFLVHV DQG VKRZ WKDW HYHU\ HLJHQYDOXH RI VXFK D PDWUL[ LV QHFHVVDULO\ UHDO
:1 :1
:1 :1
0 4
4 0
,Q ([HUFLVHV ş ıQG DQ LQYHUWLEOH PDWUL[ P DQG D PDWUL[ a b C RI WKH IRUP VXFK WKDW WKH JLYHQ PDWUL[ KDV WKH b a IRUP A D P CP 1 )RU ([HUFLVHV ş XVH LQIRUPDWLRQ IURP ([HUFLVHV ş 1 2 1 1 1 3 5 5 1 5 3 1 2 3 2 5 1 :8 1 1 4 2:2 :4 :6 1:52 :7 1:64 2:4 :56 :4 1:92 2:2 ,Q ([DPSOH VROYH WKH ıUVW HTXDWLRQ LQ IRU x2 LQ WHUPV RI 2 x1 DQG IURP WKDW SURGXFH WKH HLJHQYHFWRU \ D 1 C 2i IRU WKH PDWUL[ A 6KRZ WKDW WKLV \ LV D FRPSOH[ PXOWLSOH RI WKH YHFWRU Y1 XVHG LQ ([DPSOH /HW A EH D FRPSOH[ RU UHDO n n PDWUL[ DQG OHW [ LQ C n EH DQ HLJHQYHFWRU FRUUHVSRQGLQJ WR DQ HLJHQYDOXH LQ C 6KRZ WKDW IRU HDFK QRQ]HUR FRPSOH[ VFDODU WKH YHFWRU [ LV DQ HLJHQYHFWRU RI A ,Q ([HUFLVHV ş A LV D 2 2 PDWUL[ ZLWK UHDO HQWULHV DQG [ LV D YHFWRU LQ R2 0DUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU
7) 7KH SRLQWV A[; A2 [; A3 [; : : : DOZD\V OLH RQ WKH VDPH FLUFOH 7) 7KH PDWUL[ A DOZD\V KDV WZR HLJHQYDOXHV EXW VRPH WLPHV WKH\ KDYH DOJHEUDLF PXOWLSOLFLW\ RU DUH FRPSOH[ QXPEHUV 7) ,I WKH PDWUL[ A KDV WZR FRPSOH[ HLJHQYDOXHV WKHQ LW DOVR KDV WZR OLQHDUO\ LQGHSHQGHQW UHDO HLJHQYHFWRUV
/HW A EH DQ n n UHDO PDWUL[ ZLWK WKH SURSHUW\ WKDW AT D A OHW [ EH DQ\ YHFWRU LQ C n DQG OHW q D [TA[ 7KH HTXDOLWLHV EHORZ VKRZ WKDW q LV D UHDO QXPEHU E\ YHULI\LQJ WKDW q D q *LYH D UHDVRQ IRU HDFK VWHS
q D [TA[ D [TA[ D [TA[ D .[TA[/T D [TAT [ D q D E F G H /HW A EH DQ n n UHDO PDWUL[ ZLWK WKH SURSHUW\ WKDW AT D A 6KRZ WKDW LI A[ D [ IRU VRPH QRQ]HUR YHFWRU [ LQ C n WKHQ LQ IDFW LV UHDO DQG WKH UHDO SDUW RI [ LV DQ HLJHQYHFWRU RI A >+LQW &RPSXWH [TA[ DQG XVH ([HUFLVH $OVR H[DPLQH WKH UHDO DQG LPDJLQDU\ SDUWV RI A[@ /HW A EH D UHDO n n PDWUL[ DQG OHW [ EH D YHFWRU LQ C n 6KRZ WKDW 5H.A[/ D A.5H [/ DQG ,P.A[/ D A.,P [/ /HW A EH D UHDO 2 2 PDWUL[ ZLWK D FRPSOH[ HLJHQYDOXH D a bi b ¤ 0 DQG DQ DVVRFLDWHG HLJHQYHFWRU Y LQ C 2 D 6KRZ WKDW A.5H Y/ D a 5H Y C b ,P Y DQG A.,P Y/ D b 5H Y C a ,P Y >+LQW :ULWH Y D 5H Y C i ,P Y DQG FRPSXWH AY@ E 9HULI\ WKDW LI P DQG C DUH JLYHQ DV LQ 7KHRUHP WKHQ AP D P C 7 ,Q ([HUFLVHV DQG ıQG D IDFWRUL]DWLRQ RI WKH JLYHQ PDWUL[ A LQ WKH IRUP A D P CP 1 ZKHUH C LV D EORFNGLDJRQDO PDWUL[ ZLWK 2 2 EORFNV RI WKH IRUP VKRZQ LQ ([DPSOH )RU HDFK FRQMXJDWH SDLU RI HLJHQYDOXHV XVH WKH UHDO DQG LPDJLQDU\ SDUWV RI RQH HLJHQYHFWRU LQ C 4 WR FUHDWH WZR FROXPQV RI P 2 3 :7 1:1 2:0 1:7 6 2:0 4:0 8:6 7:4 7 7 6 4 0 :5 1:0 1:0 5 1:0 2:8 6:0 5:3 2 3 1:4 2:0 2:0 2:0 6 7 6 1:3 :8 :1 :6 7 4 5 :3 1:9 1:6 1:4 2:0 3:3 2:3 2:6
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
'LVFUHWH '\QDPLFDO 6\VWHPV
6ROXWLRQ WR 3UDFWLFH 3UREOHP 5HPHPEHU WKDW LW LV HDV\ WR WHVW ZKHWKHU D YHFWRU LV DQ HLJHQYHFWRU 7KHUH LV QR QHHG WR H[DPLQH WKH FKDUDFWHULVWLF HTXDWLRQ &RPSXWH a b 1 a C bi 1 A[ D D D .a C bi / b a i i b ai
1 i
LV DQ HLJHQYHFWRU FRUUHVSRQGLQJ WR D a C bi )URP WKH GLVFXVVLRQ LQ 1 WKLV VHFWLRQ PXVW EH DQ HLJHQYHFWRU FRUUHVSRQGLQJ WR D a bi i
7KXV
'LVFUHWH '\QDPLFDO 6\VWHPV (LJHQYDOXHV DQG HLJHQYHFWRUV SURYLGH WKH NH\ WR XQGHUVWDQGLQJ WKH ORQJWHUP EHKDYLRU RU HYROXWLRQ RI D G\QDPLFDO V\VWHP GHVFULEHG E\ D GLijHUHQFH HTXDWLRQ [k C1 D A[k 6XFK DQ HTXDWLRQ ZDV XVHG WR PRGHO SRSXODWLRQ PRYHPHQW LQ 6HFWLRQ DQG ZLOO EH XVHG LQ YDULRXV 0DUNRY FKDLQV LQ 6HFWLRQ DQG WKH VSRWWHG RZO SRSXODWLRQ LQ WKH LQWURGXFWRU\ H[DPSOH IRU WKLV FKDSWHU 7KH YHFWRUV [k JLYH LQIRUPDWLRQ DERXW WKH V\VWHP DV WLPH GHQRWHG E\ k SDVVHV ZKHUH k LV D QRQQHJDWLYH LQWHJHU ,Q WKH VSRWWHG RZO H[DPSOH IRU LQVWDQFH [k OLVWHG WKH QXPEHUV RI RZOV LQ WKUHH DJH FODVVHV DW WLPH k 7KH DSSOLFDWLRQV LQ WKLV VHFWLRQ IRFXV RQ HFRORJLFDO SUREOHPV EHFDXVH WKH\ DUH HDVLHU WR VWDWH DQG H[SODLQ WKDQ VD\ SUREOHPV LQ SK\VLFV RU HQJLQHHULQJ +RZHYHU G\QDPLFDO V\VWHPV DULVH LQ PDQ\ VFLHQWLıF ıHOGV )RU LQVWDQFH VWDQGDUG XQGHUJUDGXDWH FRXUVHV LQ FRQWURO V\VWHPV GLVFXVV VHYHUDO DVSHFWV RI G\QDPLFDO V\VWHPV 7KH PRGHUQ VWDWH VSDFH GHVLJQ PHWKRG LQ VXFK FRXUVHV UHOLHV KHDYLO\ RQ PDWUL[ DOJHEUD1 7KH VWHDG\VWDWH UHVSRQVH RI D FRQWURO V\VWHP LV WKH HQJLQHHULQJ HTXLYDOHQW RI ZKDW ZH FDOO KHUH WKH ŗORQJ WHUP EHKDYLRUŘ RI WKH G\QDPLFDO V\VWHP [k C1 D A[k 8QWLO ([DPSOH ZH DVVXPH WKDW A LV GLDJRQDOL]DEOH ZLWK n OLQHDUO\ LQGHSHQ GHQW HLJHQYHFWRUV Y1 ; : : : ; Yn DQG FRUUHVSRQGLQJ HLJHQYDOXHV 1 ; : : : ; n )RU FRQYH QLHQFH DVVXPH WKH HLJHQYHFWRUV DUH DUUDQJHG VR WKDW j 1 j j 2 j j n j 6LQFH fY1 ; : : : ; Yn g LV D EDVLV IRU Rn DQ\ LQLWLDO YHFWRU [0 FDQ EH ZULWWHQ XQLTXHO\ DV [0 D c1 Y1 C C cn Yn
7KLV HLJHQYHFWRU GHFRPSRVLWLRQ RI [0 GHWHUPLQHV ZKDW KDSSHQV WR WKH VHTXHQFH f[k g 7KH QH[W FDOFXODWLRQ JHQHUDOL]HV WKH VLPSOH FDVH H[DPLQHG LQ ([DPSOH RI 6HFWLRQ 6LQFH WKH Yi DUH HLJHQYHFWRUV [1 D A[0 D c1 AY1 C C cn AYn D c1 1 Y1 C C cn n Yn DQG
[2 D A[1 D c1 1 AY1 C C cn n AYn
D c1 . 1 /2 Y1 C C cn . n /2 Yn 1
6HH * ) )UDQNOLQ - ' 3RZHOO DQG $ (PDPL1DHLPL )HHGEDFN &RQWURO RI '\QDPLF 6\VWHPV WK HG 8SSHU 6DGGOH 5LYHU 1- 3UHQWLFH+DOO 7KLV XQGHUJUDGXDWH WH[W KDV D QLFH LQWURGXFWLRQ WR G\QDPLF PRGHOV &KDSWHU 6WDWHVSDFH GHVLJQ LV FRYHUHG LQ &KDSWHUV DQG
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
,Q JHQHUDO [k D c1 . 1 /k Y1 C C cn . n /k Yn
.k D 0; 1; 2; : : :/
7KH H[DPSOHV WKDW IROORZ LOOXVWUDWH ZKDW FDQ KDSSHQ LQ DV k ! 1
$ 3UHGDWRUŋ3UH\ 6\VWHP 'HHS LQ WKH UHGZRRG IRUHVWV RI &DOLIRUQLD GXVN\IRRWHG ZRRG UDWV SURYLGH XS WR RI WKH GLHW IRU WKH VSRWWHG RZO WKH PDLQ SUHGDWRU RI WKH ZRRG UDW ([DPSOH XVHV D OLQHDU G\QDPLFDO V\VWHP WR PRGHO WKH SK\VLFDO V\VWHP RI WKH RZOV DQG WKH UDWV $GPLWWHGO\ WKH PRGHO LV XQUHDOLVWLF LQ VHYHUDO UHVSHFWV EXW LW FDQ SURYLGH D VWDUWLQJ SRLQW IRU WKH VWXG\ RI PRUH FRPSOLFDWHG QRQOLQHDU PRGHOV XVHG E\ HQYLURQPHQWDO VFLHQWLVWV Ok (;$03/( 'HQRWH WKH RZO DQG ZRRG UDW SRSXODWLRQV DW WLPH k E\ [k D Rk ZKHUH k LV WKH WLPH LQ PRQWKV Ok LV WKH QXPEHU RI RZOV LQ WKH UHJLRQ VWXGLHG DQG Rk LV WKH QXPEHU RI UDWV PHDVXUHG LQ WKRXVDQGV 6XSSRVH
Ok C1 D .:5/Ok C .:4/Rk Rk C1 D p Ok C .1:1/Rk
ZKHUH p LV D SRVLWLYH SDUDPHWHU WR EH VSHFLıHG 7KH .:5/Ok LQ WKH ıUVW HTXDWLRQ VD\V WKDW ZLWK QR ZRRG UDWV IRU IRRG RQO\ KDOI RI WKH RZOV ZLOO VXUYLYH HDFK PRQWK ZKLOH WKH .1:1/Rk LQ WKH VHFRQG HTXDWLRQ VD\V WKDW ZLWK QR RZOV DV SUHGDWRUV WKH UDW SRSXODWLRQ ZLOO JURZ E\ SHU PRQWK ,I UDWV DUH SOHQWLIXO WKH .:4/Rk ZLOO WHQG WR PDNH WKH RZO SRSXODWLRQ ULVH ZKLOH WKH QHJDWLYH WHUP p Ok PHDVXUHV WKH GHDWKV RI UDWV GXH WR SUHGDWLRQ E\ RZOV ,Q IDFW 1000p LV WKH DYHUDJH QXPEHU RI UDWV HDWHQ E\ RQH RZO LQ RQH PRQWK 'HWHUPLQH WKH HYROXWLRQ RI WKLV V\VWHP ZKHQ WKH SUHGDWLRQ SDUDPHWHU p LV 62/87,21 :KHQ p D :104 WKH HLJHQYDOXHV RI WKH FRHĴFLHQW PDWUL[ A D
:5 :4 IRU WKH HTXDWLRQV LQ WXUQ RXW WR EH 1 D 1:02 DQG 2 D :58 &RUUH p 1:1 VSRQGLQJ HLJHQYHFWRUV DUH 10 5 Y1 D ; Y2 D 13 1 $Q LQLWLDO [0 FDQ EH ZULWWHQ DV [0 D c1 Y1 C c2 Y2 7KHQ IRU k 0 [k D c1 .1:02/k Y1 C c2 .:58/k Y2 k 10 k 5 D c1 .1:02/ C c2 .:58/ 13 1
$V k ! 1 .:58/k UDSLGO\ DSSURDFKHV ]HUR $VVXPH c1 > 0 7KHQ IRU DOO VXĴFLHQWO\ ODUJH k [k LV DSSUR[LPDWHO\ WKH VDPH DV c1 .1:02/k Y1 DQG ZH ZULWH 10 [k c1 .1:02/k 13 7KH DSSUR[LPDWLRQ LQ LPSURYHV DV k LQFUHDVHV DQG VR IRU ODUJH k k C1 10 k 10 [k C1 c1 .1:02/ D .1:02/c1 .1:02/
1:02[k 13 13
7KH DSSUR[LPDWLRQ LQ VD\V WKDW HYHQWXDOO\ ERWK HQWULHV RI [k WKH QXPEHUV RI RZOV DQG UDWV JURZ E\ D IDFWRU RI DOPRVW HDFK PRQWK D PRQWKO\ JURZWK UDWH %\ [k LV DSSUR[LPDWHO\ D PXOWLSOH RI .10; 13/ VR WKH HQWULHV LQ [k DUH QHDUO\ LQ WKH VDPH UDWLR DV WR 7KDW LV IRU HYHU\ RZOV WKHUH DUH DERXW WKRXVDQG UDWV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
'LVFUHWH '\QDPLFDO 6\VWHPV
([DPSOH LOOXVWUDWHV WZR JHQHUDO IDFWV DERXW D G\QDPLFDO V\VWHP [k C1 D A[k LQ ZKLFK A LV n n LWV HLJHQYDOXHV VDWLVI\ j 1 j 1 DQG 1 > j j j IRU j D 2; : : : ; n DQG Y1 LV DQ HLJHQYHFWRU FRUUHVSRQGLQJ WR 1 ,I [0 LV JLYHQ E\ HTXDWLRQ ZLWK c1 ¤ 0 WKHQ IRU DOO VXĴFLHQWO\ ODUJH k [k C1 1 [k DQG
[k c1 . 1 /k Y1
7KH DSSUR[LPDWLRQV LQ DQG FDQ EH PDGH DV FORVH DV GHVLUHG E\ WDNLQJ k VXĴFLHQWO\ ODUJH %\ WKH [k HYHQWXDOO\ JURZ DOPRVW E\ D IDFWRU RI 1 HDFK WLPH VR 1 GHWHUPLQHV WKH HYHQWXDO JURZWK UDWH RI WKH V\VWHP $OVR E\ WKH UDWLR RI DQ\ WZR HQWULHV LQ [k IRU ODUJH k LV QHDUO\ WKH VDPH DV WKH UDWLR RI WKH FRUUHVSRQGLQJ HQWULHV LQ Y1 7KH FDVH LQ ZKLFK 1 D 1 LV LOOXVWUDWHG LQ ([DPSOH LQ 6HFWLRQ
*UDSKLFDO 'HVFULSWLRQ RI 6ROXWLRQV :KHQ A LV 2 2 DOJHEUDLF FDOFXODWLRQV FDQ EH VXSSOHPHQWHG E\ D JHRPHWULF GHVFULSWLRQ RI D V\VWHPŖV HYROXWLRQ :H FDQ YLHZ WKH HTXDWLRQ [k C1 D A[k DV D GHVFULSWLRQ RI ZKDW KDSSHQV WR DQ LQLWLDO SRLQW [0 LQ R2 DV LW LV WUDQVIRUPHG UHSHDWHGO\ E\ WKH PDSSLQJ [ 7! A[ 7KH JUDSK RI [0 ; [1 ; : : : LV FDOOHG D WUDMHFWRU\ RI WKH G\QDPLFDO V\VWHP
(;$03/( 3ORW VHYHUDO WUDMHFWRULHV RI WKH G\QDPLFDO V\VWHP [k C1 D A[k ZKHQ
AD
:80 0
0 :64
1 62/87,21 7KH HLJHQYDOXHV RI A DUH DQG ZLWK HLJHQYHFWRUV Y1 D DQG 0 0 Y2 D ,I [0 D c1 Y1 C c2 Y2 WKHQ 1 k 1 k 0 [k D c1 .:8/ C c2 .:64/ 0 1 2I FRXUVH [k WHQGV WR EHFDXVH .:8/k DQG .:64/k ERWK DSSURDFK DV k ! 1 %XW WKH ZD\ [k JRHV WRZDUG LV LQWHUHVWLQJ )LJXUH VKRZV WKH ıUVW IHZ WHUPV RI VHYHUDO WUDMHFWRULHV x2 x0
x0
x1
x0
3
x1 x2
x2
x1 x2
3
'*(63& 7KH RULJLQ DV DQ DWWUDFWRU
x1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
WKDW EHJLQ DW SRLQWV RQ WKH ERXQGDU\ RI WKH ER[ ZLWK FRUQHUV DW .˙3; ˙3/ 7KH SRLQWV RQ HDFK WUDMHFWRU\ DUH FRQQHFWHG E\ D WKLQ FXUYH WR PDNH WKH WUDMHFWRU\ HDVLHU WR VHH ,Q ([DPSOH WKH RULJLQ LV FDOOHG DQ DWWUDFWRU RI WKH G\QDPLFDO V\VWHP EHFDXVH DOO WUDMHFWRULHV WHQG WRZDUG 7KLV RFFXUV ZKHQHYHU ERWK HLJHQYDOXHV DUH OHVV WKDQ LQ PDJQLWXGH 7KH GLUHFWLRQ RI JUHDWHVW DWWUDFWLRQ LV DORQJ WKH OLQH WKURXJK DQG WKH HLJHQYHFWRU Y2 IRU WKH HLJHQYDOXH RI VPDOOHU PDJQLWXGH ,Q WKH QH[W H[DPSOH ERWK HLJHQYDOXHV RI A DUH ODUJHU WKDQ LQ PDJQLWXGH DQG LV FDOOHG D UHSHOOHU RI WKH G\QDPLFDO V\VWHP $OO VROXWLRQV RI [k C1 D A[k H[FHSW WKH FRQVWDQW ]HUR VROXWLRQ DUH XQERXQGHG DQG WHQG DZD\ IURP WKH RULJLQ2
(;$03/( 3ORW VHYHUDO W\SLFDO VROXWLRQV RI WKH HTXDWLRQ [k C1 D A[k ZKHUH
AD
1:44 0
0 1:2
62/87,21 7KH HLJHQYDOXHV RI A DUH DQG ,I [0 D
[k D c1 .1:44/k
1 0 C c2 .1:2/k 0 1
c1 WKHQ c2
%RWK WHUPV JURZ LQ VL]H EXW WKH ıUVW WHUP JURZV IDVWHU 6R WKH GLUHFWLRQ RI JUHDWHVW UHSXOVLRQ LV WKH OLQH WKURXJK DQG WKH HLJHQYHFWRU IRU WKH HLJHQYDOXH RI ODUJHU PDJQLWXGH )LJXUH VKRZV VHYHUDO WUDMHFWRULHV WKDW EHJLQ DW SRLQWV TXLWH FORVH WR
'*(63& 7KH RULJLQ DV D UHSHOOHU
,Q WKH QH[W H[DPSOH LV FDOOHG D VDGGOH SRLQW EHFDXVH WKH RULJLQ DWWUDFWV VROXWLRQV IURP VRPH GLUHFWLRQV DQG UHSHOV WKHP LQ RWKHU GLUHFWLRQV 7KLV RFFXUV ZKHQHYHU RQH HLJHQYDOXH LV JUHDWHU WKDQ LQ PDJQLWXGH DQG WKH RWKHU LV OHVV WKDQ LQ PDJQLWXGH 7KH GLUHFWLRQ RI JUHDWHVW DWWUDFWLRQ LV GHWHUPLQHG E\ DQ HLJHQYHFWRU IRU WKH HLJHQYDOXH RI VPDOOHU PDJQLWXGH 7KH GLUHFWLRQ RI JUHDWHVW UHSXOVLRQ LV GHWHUPLQHG E\ DQ HLJHQYHFWRU IRU WKH HLJHQYDOXH RI JUHDWHU PDJQLWXGH 2
7KH RULJLQ LV WKH RQO\ SRVVLEOH DWWUDFWRU RU UHSHOOHU LQ D OLQHDU G\QDPLFDO V\VWHP EXW WKHUH FDQ EH PXOWLSOH DWWUDFWRUV DQG UHSHOOHUV LQ D PRUH JHQHUDO G\QDPLFDO V\VWHP IRU ZKLFK WKH PDSSLQJ [k 7! [kC1 LV QRW OLQHDU ,Q VXFK D V\VWHP DWWUDFWRUV DQG UHSHOOHUV DUH GHıQHG LQ WHUPV RI WKH HLJHQYDOXHV RI D VSHFLDO PDWUL[ ZLWK YDULDEOH HQWULHV FDOOHG WKH -DFRELDQ PDWUL[ RI WKH V\VWHP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
'LVFUHWH '\QDPLFDO 6\VWHPV
(;$03/( 3ORW VHYHUDO W\SLFDO VROXWLRQV RI WKH HTXDWLRQ \k C1 D D \k ZKHUH
DD
2:0 0
0 0:5
:H ZULWH D DQG \ KHUH LQVWHDG RI A DQG [ EHFDXVH WKLV H[DPSOH ZLOO EH XVHG ODWHU 6KRZ WKDW D VROXWLRQ f\k g LV XQERXQGHG LI LWV LQLWLDO SRLQW LV QRW RQ WKH x2 D[LV c1 62/87,21 7KH HLJHQYDOXHV RI D DUH DQG ,I \0 D WKHQ c2 k 1 k 0 \k D c1 2 C c2 .:5/ 0 1 ,I \0 LV RQ WKH x2 D[LV WKHQ c1 D 0 DQG \k ! DV k ! 1 %XW LI \0 LV QRW RQ WKH x2 D[LV WKHQ WKH ıUVW WHUP LQ WKH VXP IRU \k EHFRPHV DUELWUDULO\ ODUJH DQG VR f\k g LV XQERXQGHG )LJXUH VKRZV WHQ WUDMHFWRULHV WKDW EHJLQ QHDU RU RQ WKH x2 D[LV x2 x0
x1 x2
x3 x1
x3
x2 x1 x0
'*(63& 7KH RULJLQ DV D VDGGOH SRLQW
&KDQJH RI 9DULDEOH 7KH SUHFHGLQJ WKUHH H[DPSOHV LQYROYHG GLDJRQDO PDWULFHV 7R KDQGOH WKH QRQGLDJRQDO FDVH ZH UHWXUQ IRU D PRPHQW WR WKH n n FDVH LQ ZKLFK HLJHQYHFWRUV RI A IRUP D EDVLV fY1 ; : : : ; Yn g IRU Rn /HW P D Œ Y1 Yn DQG OHW D EH WKH GLDJRQDO PDWUL[ ZLWK WKH FRUUHVSRQGLQJ HLJHQYDOXHV RQ WKH GLDJRQDO *LYHQ D VHTXHQFH f[k g VDWLVI\LQJ [k C1 D A[k GHıQH D QHZ VHTXHQFH f\k g E\ \k D P 1 [k ;
RU HTXLYDOHQWO\;
[k D P \k
6XEVWLWXWLQJ WKHVH UHODWLRQV LQWR WKH HTXDWLRQ [k C1 D A[k DQG XVLQJ WKH IDFW WKDW A D 3'31 ZH ıQG WKDW
P \k C1 D $3\k D .3'31 /P \k D 3'\k /HIWPXOWLSO\LQJ ERWK VLGHV E\ P 1 ZH REWDLQ \k C1 D D \k
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
,I ZH ZULWH \k DV \.k/ DQG GHQRWH WKH HQWULHV LQ \.k/ E\ y1 .k/; : : : ; yn .k/ WKHQ 2 3 2 32 3 y1 .k C 1/ 1 0 0 y1 .k/ 6 7 6 7 : 76 6 y2 .k C 1/ 7 6 0 6 7 :: 7 2 6 7D6 7 6 y2 .k/ 7 :: 6 7 6 :: 7 6 :: 7 :: 4 5 4 : : : 0 54 : 5 yn .k C 1/ yn .k/ 0 0 n 7KH FKDQJH RI YDULDEOH IURP [k WR \k KDV GHFRXSOHG WKH V\VWHP RI GLijHUHQFH HTXDWLRQV 7KH HYROXWLRQ RI y1 .k/ IRU H[DPSOH LV XQDijHFWHG E\ ZKDW KDSSHQV WR y2 .k/; : : : ; yn .k/ EHFDXVH y1 .k C 1/ D 1 y1 .k/ IRU HDFK k 7KH HTXDWLRQ [k D P \k VD\V WKDW \k LV WKH FRRUGLQDWH YHFWRU RI [k ZLWK UHVSHFW WR WKH HLJHQYHFWRU EDVLV fY1 ; : : : ; Yn g :H FDQ GHFRXSOH WKH V\VWHP [k C1 D A[k E\ PDNLQJ FDOFXODWLRQV LQ WKH QHZ HLJHQYHFWRU FRRUGLQDWH V\VWHP :KHQ n D 2 WKLV DPRXQWV WR XVLQJ JUDSK SDSHU ZLWK D[HV LQ WKH GLUHFWLRQV RI WKH WZR HLJHQYHFWRUV
(;$03/( 6KRZ WKDW WKH RULJLQ LV D VDGGOH SRLQW IRU VROXWLRQV RI [k C1 D A[k
ZKHUH
AD
1:25 :75
:75 1:25
)LQG WKH GLUHFWLRQV RI JUHDWHVW DWWUDFWLRQ DQG JUHDWHVW UHSXOVLRQ 62/87,21 8VLQJ VWDQGDUG WHFKQLTXHV ZH ıQG WKDW A KDV HLJHQYDOXHV DQG ZLWK
1 1 DQG Y2 D UHVSHFWLYHO\ 6LQFH j2j > 1 DQG 1 1 j:5j < 1 WKH RULJLQ LV D VDGGOH SRLQW RI WKH G\QDPLFDO V\VWHP ,I [0 D c1 Y1 C c2 Y2 WKHQ FRUUHVSRQGLQJ HLJHQYHFWRUV Y1 D
[k D c1 2k Y1 C c2 .:5/k Y2
7KLV HTXDWLRQ ORRNV MXVW OLNH HTXDWLRQ LQ ([DPSOH ZLWK Y1 DQG Y2 LQ SODFH RI WKH VWDQGDUG EDVLV 2Q JUDSK SDSHU GUDZ D[HV WKURXJK DQG WKH HLJHQYHFWRUV Y1 DQG Y2 6HH )LJXUH 0RYHPHQW DORQJ WKHVH D[HV FRUUHVSRQGV WR PRYHPHQW DORQJ WKH VWDQGDUG D[HV LQ )LJXUH ,Q )LJXUH WKH GLUHFWLRQ RI JUHDWHVW UHSXOVLRQ LV WKH OLQH WKURXJK DQG WKH y
x0
x3 x2
x1
v2 x0
x1 x x2 x3 v1
'*(63& 7KH RULJLQ DV D VDGGOH SRLQW
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
'LVFUHWH '\QDPLFDO 6\VWHPV
HLJHQYHFWRU Y1 ZKRVH HLJHQYDOXH LV JUHDWHU WKDQ LQ PDJQLWXGH ,I [0 LV RQ WKLV OLQH WKH c2 LQ LV ]HUR DQG [k PRYHV TXLFNO\ DZD\ IURP 7KH GLUHFWLRQ RI JUHDWHVW DWWUDFWLRQ LV GHWHUPLQHG E\ WKH HLJHQYHFWRU Y2 ZKRVH HLJHQYDOXH LV OHVV WKDQ LQ PDJQLWXGH $ QXPEHU RI WUDMHFWRULHV DUH VKRZQ LQ )LJXUH :KHQ WKLV JUDSK LV YLHZHG LQ WHUPV RI WKH HLJHQYHFWRU D[HV WKH SLFWXUH ŗORRNVŘ HVVHQWLDOO\ WKH VDPH DV WKH SLFWXUH LQ )LJXUH
&RPSOH[ (LJHQYDOXHV :KHQ D UHDO 2 2 PDWUL[ A KDV FRPSOH[ HLJHQYDOXHV A LV QRW GLDJRQDOL]DEOH ZKHQ DFWLQJ RQ R2 / EXW WKH G\QDPLFDO V\VWHP [k C1 D A[k LV HDV\ WR GHVFULEH ([DPSOH RI 6HFWLRQ LOOXVWUDWHG WKH FDVH LQ ZKLFK WKH HLJHQYDOXHV KDYH DEVROXWH YDOXH 7KH LWHUDWHV RI D SRLQW [0 VSLUDO DURXQG WKH RULJLQ DORQJ DQ HOOLSWLFDO WUDMHFWRU\ ,I A KDV WZR FRPSOH[ HLJHQYDOXHV ZKRVH DEVROXWH YDOXH LV JUHDWHU WKDQ WKHQ LV D UHSHOOHU DQG LWHUDWHV RI [0 ZLOO VSLUDO RXWZDUG DURXQG WKH RULJLQ ,I WKH DEVROXWH YDOXHV RI WKH FRPSOH[ HLJHQYDOXHV DUH OHVV WKDQ WKHQ WKH RULJLQ LV DQ DWWUDFWRU DQG WKH LWHUDWHV RI [0 VSLUDO LQZDUG WRZDUG WKH RULJLQ DV LQ WKH IROORZLQJ H[DPSOH
(;$03/( ,W FDQ EH YHULıHG WKDW WKH PDWUL[
:8 :5 AD :1 1:0 1 2i KDV HLJHQYDOXHV :9 ˙ :2i ZLWK HLJHQYHFWRUV )LJXUH VKRZV WKUHH WUDMHFWRULHV 1 0 3 0 RI WKH V\VWHP [k C1 D A[k ZLWK LQLWLDO YHFWRUV DQG 2:5 0 2:5 x2
x0
x1
x3 x3
x2
x1
x2
x2 x1
x3
x0
x1
x0
'*(63& 5RWDWLRQ DVVRFLDWHG ZLWK FRPSOH[
HLJHQYDOXHV
6XUYLYDO RI WKH 6SRWWHG 2ZOV 5HFDOO IURP WKLV FKDSWHUŖV LQWURGXFWRU\ H[DPSOH WKDW WKH VSRWWHG RZO SRSXODWLRQ LQ WKH :LOORZ &UHHN DUHD RI &DOLIRUQLD ZDV PRGHOHG E\ D G\QDPLFDO V\VWHP [k C1 D A[k LQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 (LJHQYDOXHV DQG (LJHQYHFWRUV
ZKLFK WKH HQWULHV LQ [k D .jk ; sk ; ak / OLVWHG WKH QXPEHUV RI IHPDOHV DW WLPH k LQ WKH MXYHQLOH VXEDGXOW DQG DGXOW OLIH VWDJHV UHVSHFWLYHO\ DQG A LV WKH VWDJHPDWUL[ 2 3 0 0 :33 0 05 A D 4 :18 0 :71 :94 0$7/$% VKRZV WKDW WKH HLJHQYDOXHV RI A DUH DSSUR[LPDWHO\ 1 D :98 2 D :02 C :21i DQG 3 D :02 :21i 2EVHUYH WKDW DOO WKUHH HLJHQYDOXHV DUH OHVV WKDQ LQ PDJQLWXGH EHFDXVH j 2 j2 D j 3 j2 D .:02/2 C .:21/2 D :0445 )RU WKH PRPHQW OHW A DFW RQ WKH FRPSOH[ YHFWRU VSDFH C 3 7KHQ EHFDXVH A KDV WKUHH GLVWLQFW HLJHQYDOXHV WKH WKUHH FRUUHVSRQGLQJ HLJHQYHFWRUV DUH OLQHDUO\ LQGHSHQGHQW DQG IRUP D EDVLV IRU C 3 'HQRWH WKH HLJHQYHFWRUV E\ Y1 Y2 DQG Y3 7KHQ WKH JHQHUDO VROXWLRQ RI [k C1 D A[k XVLQJ YHFWRUV LQ C 3 KDV WKH IRUP [k D c1 . 1 /k Y1 C c2 . 2 /k Y2 C c3 . 3 /k Y3
,I [0 LV D UHDO LQLWLDO YHFWRU WKHQ [1 D A[0 LV UHDO EHFDXVH A LV UHDO 6LPLODUO\ WKH HTXDWLRQ [k C1 D A[k VKRZV WKDW HDFK [k RQ WKH OHIW VLGH RI LV UHDO HYHQ WKRXJK LW LV H[SUHVVHG DV D VXP RI FRPSOH[ YHFWRUV +RZHYHU HDFK WHUP RQ WKH ULJKW VLGH RI LV DSSURDFKLQJ WKH ]HUR YHFWRU EHFDXVH WKH HLJHQYDOXHV DUH DOO OHVV WKDQ LQ PDJQLWXGH 7KHUHIRUH WKH UHDO VHTXHQFH [k DSSURDFKHV WKH ]HUR YHFWRU WRR 6DGO\ WKLV PRGHO SUHGLFWV WKDW WKH VSRWWHG RZOV ZLOO HYHQWXDOO\ DOO SHULVK ,V WKHUH KRSH IRU WKH VSRWWHG RZO" 5HFDOO IURP WKH LQWURGXFWRU\ H[DPSOH WKDW WKH HQWU\ LQ WKH PDWUL[ A LQ FRPHV IURP WKH IDFW WKDW DOWKRXJK RI WKH MXYHQLOH RZOV OLYH ORQJ HQRXJK WR OHDYH WKH QHVW DQG VHDUFK IRU QHZ KRPH WHUULWRULHV RQO\ RI WKDW JURXS VXUYLYH WKH VHDUFK DQG ıQG QHZ KRPH UDQJHV 6HDUFK VXUYLYDO LV VWURQJO\ LQIJXHQFHG E\ WKH QXPEHU RI FOHDUFXW DUHDV LQ WKH IRUHVW ZKLFK PDNH WKH VHDUFK PRUH GLĴFXOW DQG GDQJHURXV 6RPH RZO SRSXODWLRQV OLYH LQ DUHDV ZLWK IHZ RU QR FOHDUFXW DUHDV ,W PD\ EH WKDW D ODUJHU SHUFHQWDJH RI WKH MXYHQLOH RZOV WKHUH VXUYLYH DQG ıQG QHZ KRPH UDQJHV 2I FRXUVH WKH SUREOHP RI WKH VSRWWHG RZO LV PRUH FRPSOH[ WKDQ ZH KDYH GHVFULEHG EXW WKH ıQDO H[DPSOH SURYLGHV D KDSS\ HQGLQJ WR WKH VWRU\
(;$03/( 6XSSRVH WKH VHDUFK VXUYLYDO UDWH RI WKH MXYHQLOH RZOV LV VR WKH .2; 1/HQWU\ LQ WKH VWDJHPDWUL[ A LQ LV LQVWHDG RI :KDW GRHV WKH VWDJHPDWUL[ PRGHO SUHGLFW DERXW WKLV VSRWWHG RZO SRSXODWLRQ" 62/87,21 1RZ WKH HLJHQYDOXHV RI A WXUQ RXW WR EH DSSUR[LPDWHO\ 1 D 1:01 2 D :03 C :26i DQG 3 D :03 :26i $Q HLJHQYHFWRU IRU 1 LV DSSUR[LPDWHO\ Y1 D .10; 3; 31/ /HW Y2 DQG Y3 EH FRPSOH[ HLJHQYHFWRUV IRU 2 DQG 3 ,Q WKLV FDVH HTXDWLRQ EHFRPHV
[k D c1 .1:01/k Y1 C c2 .:03 C :26i /k Y2 C c3 .:03 :26i /k Y3 $V k ! 1 WKH VHFRQG WZR YHFWRUV WHQG WR ]HUR 6R [k EHFRPHV PRUH DQG PRUH OLNH WKH UHDO YHFWRU c1 .1:01/k Y1 7KH DSSUR[LPDWLRQV LQ HTXDWLRQV DQG IROORZLQJ ([DPSOH DSSO\ KHUH $OVR LW FDQ EH VKRZQ WKDW WKH FRQVWDQW c1 LQ WKH LQLWLDO )XUWKHU 5HDGLQJ )UDQNOLQ * ) - ' 3RZHOO DQG 0 / :RUNPDQ 'LJLWDO &RQWURO RI '\QDPLF 6\VWHPV UG HG 5HDGLQJ 0$ $GGLVRQ:HVOH\ 6DQGHIXU -DPHV 7 'LVFUHWH '\QDPLFDO 6\VWHPVŠ7KHRU\ DQG $SSOLFDWLRQV 2[IRUG 2[IRUG 8QLYHUVLW\ 3UHVV 7XFKLQVN\ 3KLOLS 0DQDJHPHQW RI D %XijDOR +HUG 80$3 0RGXOH /H[LQJWRQ 0$ &20$3
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
'LVFUHWH '\QDPLFDO 6\VWHPV
GHFRPSRVLWLRQ RI [0 LV SRVLWLYH ZKHQ WKH HQWULHV LQ [0 DUH QRQQHJDWLYH 7KXV WKH RZO SRSXODWLRQ ZLOO JURZ VORZO\ ZLWK D ORQJWHUP JURZWK UDWH RI 7KH HLJHQYHFWRU Y1 GHVFULEHV WKH HYHQWXDO GLVWULEXWLRQ RI WKH RZOV E\ OLIH VWDJHV IRU HYHU\ DGXOWV WKHUH ZLOO EH DERXW MXYHQLOHV DQG VXEDGXOWV 3UDFWLFH 3UREOHPV 7KH PDWUL[ A EHORZ KDV HLJHQYDOXHV 23 DQG 13 ZLWK FRUUHVSRQGLQJ HLJHQYHFWRUV Y1 Y2 DQG Y3 2 3 2 3 2 3 2 3 7 2 0 2 2 1 14 2 6 2 5; Y1 D 4 2 5; Y2 D 4 1 5; Y3 D 4 2 5 AD 9 0 2 5 1 2 2 2
3 1 )LQG WKH JHQHUDO VROXWLRQ RI WKH HTXDWLRQ [k C1 D A[k LI [0 D 4 11 5 2 :KDW KDSSHQV WR WKH VHTXHQFH f[k g LQ 3UDFWLFH 3UREOHP DV k ! 1"
([HUFLVHV /HW A EH D 2 2 PDWUL[ ZLWK HLJHQYDOXHV DQG 1=3 DQG 1 1 FRUUHVSRQGLQJ HLJHQYHFWRUV Y1 D DQG Y2 D /HW 1 1 f[k g EH DVROXWLRQ RI WKH GLijHUHQFH HTXDWLRQ [kC1 D A[k 9 [0 D 1 D &RPSXWH [1 D A[0 >+LQW 3 IRUPXOD PD\ EH XVHG WR GHıQH WKH DQJOH EHWZHHQ WZR YHFWRUV LQ Rn ,Q VWDWLVWLFV IRU LQVWDQFH WKH YDOXH RI FRV # GHıQHG E\ IRU VXLWDEOH YHFWRUV X DQG Y LV ZKDW VWDWLVWLFLDQV FDOO D FRUUHODWLRQ FRHĴFLHQW 3UDFWLFH 3UREOHPV
DE DE 2 3 /HW D D DQG E D &RPSXWH DQG D 1 1 DD DD 2 3 2 3 4=3 5 /HW F D 4 1 5 DQG G D 4 6 5 2=3 1 D )LQG D XQLW YHFWRU X LQ WKH GLUHFWLRQ RI F E 6KRZ WKDW G LV RUWKRJRQDO WR F F 8VH WKH UHVXOWV RI D DQG E WR H[SODLQ ZK\ G PXVW EH RUWKRJRQDO WR WKH XQLW YHFWRU X /HW W EH D VXEVSDFH RI 5n ([HUFLVH HVWDEOLVKHV WKDW W ? LV DOVR D VXEVSDFH RI 5n 3URYH WKDW GLP W C GLP W ? D n
([HUFLVHV &RPSXWH WKH TXDQWLWLHV LQ ([HUFLVHV ş XVLQJ WKH YHFWRUV 2 3 2 3 3 6 1 2 XD YD Z D 4 1 5 [ D 4 2 5 2 3 5 3 X X Y X DQG
1 Z ZZ
XY YY
YX XX
Z Z [ Z DQG
Y
kZk
1 X XX
[Z [[
[Z ZZ
[
k[k
3 7=4 4 1=2 5 1
8=3 1
)LQG WKH GLVWDQFH EHWZHHQ [ D
10 3
DQG \ D
1 5
2
3 2 3 0 4 )LQG WKH GLVWDQFH EHWZHHQ X D 4 5 5 DQG ] D 4 1 5 2 4 'HWHUPLQH ZKLFK SDLUV RI YHFWRUV LQ ([HUFLVHV ş DUH RUWKRJRQDO 2 3 2 3 12 2 8 2 ED X D 4 3 5 Y D 4 3 5 D D 5 3 5 3 2
,Q ([HUFLVHV ş ıQG D XQLW YHFWRU LQ WKH GLUHFWLRQ RI WKH JLYHQ YHFWRU 2 3 3 30 4 6 5 40 3 2
3 2 3 3 4 6 27 6 7 7 6 17 X D 6 4 5 5 Y D 4 2 5 0 6
2
3 2 3 3 1 6 7 6 7 6 7 7 ] D 6 8 7 \ D 4 4 15 5 45 0 7
,Q ([HUFLVHV ş DOO YHFWRUV DUH LQ Rn 0DUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 7) Y Y D kYk2 7) X Y Y X D 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QQHU 3URGXFW /HQJWK DQG 2UWKRJRQDOLW\ 7) ,I WKH GLVWDQFH IURP X WR Y HTXDOV WKH GLVWDQFH IURP X WR Y WKHQ X DQG Y DUH RUWKRJRQDO 7) ,I kXk2 C kYk2 D kX C Yk2 WKHQ X DQG Y DUH RUWKRJRQDO 7) ,I YHFWRUV Y1 ; : : : ; Yp VSDQ D VXEVSDFH W DQG LI [ LV RUWKRJRQDO WR HDFK Yj IRU j D 1; : : : ; p WKHQ [ LV LQ W ? 7) ,I [ LV RUWKRJRQDO WR HYHU\ YHFWRU LQ D VXEVSDFH W WKHQ [ LV LQ W ? 7) )RU DQ\ VFDODU c; kc Yk D ckYk 7) )RU DQ\ VFDODU c; X .c Y/ D c.X Y/ 7) )RU D VTXDUH PDWUL[ A YHFWRUV LQ &RO A DUH RUWKRJRQDO WR YHFWRUV LQ 1XO A 7) )RU DQ m n PDWUL[ A YHFWRUV LQ WKH QXOO VSDFH RI A DUH RUWKRJRQDO WR YHFWRUV LQ WKH URZ VSDFH RI A 8VH WKH WUDQVSRVH GHıQLWLRQ RI WKH LQQHU SURGXFW WR YHULI\ SDUWV E DQG F RI 7KHRUHP 0HQWLRQ WKH DSSURSULDWH IDFWV IURP &KDSWHU /HW X D .u1 ; u2 ; u3 / ([SODLQ ZK\ X X 0 :KHQ LV X X D 0" 2 3 2 3 2 7 /HW X D 4 5 5 DQG Y D 4 4 5 &RPSXWH DQG FRPSDUH 1 6 X Y kXk2 kYk2 DQG kX C Yk2 'R QRW XVH WKH 3\WKDJRUHDQ 7KHRUHP 9HULI\ WKH SDUDOOHORJUDP ODZ IRU YHFWRUV X DQG Y LQ Rn
/HW W D 6SDQ fY1 ; : : : ; Yp g 6KRZ WKDW LI [ LV RUWKRJRQDO WR HDFK Yj IRU 1 j p WKHQ [ LV RUWKRJRQDO WR HYHU\ YHFWRU LQ W /HW W EH D VXEVSDFH RI Rn DQG OHW W ? EH WKH VHW RI DOO YHFWRUV RUWKRJRQDO WR W 6KRZ WKDW W ? LV D VXEVSDFH RI Rn XVLQJ WKH IROORZLQJ VWHSV D 7DNH ] LQ W ? DQG OHW X UHSUHVHQW DQ\ HOHPHQW RI W 7KHQ ] X D 0 7DNH DQ\ VFDODU c DQG VKRZ WKDW c ] LV RUWKRJRQDO WR X 6LQFH X ZDV DQ DUELWUDU\ HOHPHQW RI W WKLV ZLOO VKRZ WKDW c ] LV LQ W ? E 7DNH ]1 DQG ]2 LQ W ? DQG OHW X EH DQ\ HOHPHQW RI W 6KRZ WKDW ]1 C ]2 LV RUWKRJRQDO WR X :KDW FDQ \RX FRQFOXGH DERXW ]1 C ]2 " :K\" F )LQLVK WKH SURRI WKDW W ? LV D VXEVSDFH RI Rn 6KRZ WKDW LI [ LV LQ ERWK W DQG W ? WKHQ [ D 7 &RQVWUXFW D SDLU X Y RI UDQGRP YHFWRUV LQ R4 DQG OHW
2
3 :5 :5 :5 :5 6 :5 :5 :5 :5 7 7 AD6 4 :5 :5 :5 :5 5 :5 :5 :5 :5 D 'HQRWH WKH FROXPQV RI A E\ D1 ; : : : ; D4 &RPSXWH WKH OHQJWK RI HDFK FROXPQ DQG FRPSXWH D1 D2 D1 D3 ; D1 D4 ; D2 D3 ; D2 D4 DQG D3 D4 E &RPSXWH DQG FRPSDUH WKH OHQJWKV RI X AX Y DQG AY F 8VH HTXDWLRQ LQ WKLV VHFWLRQ WR FRPSXWH WKH FRVLQH RI WKH DQJOH EHWZHHQ X DQG Y &RPSDUH WKLV ZLWK WKH FRVLQH RI WKH DQJOH EHWZHHQ AX DQG AY
kX C Yk2 C kX Yk2 D 2kXk2 C 2kYk2 G 5HSHDW SDUWV E DQG F IRU WZR RWKHU SDLUV RI UDQGRP a x /HW Y D 'HVFULEH WKH VHW H RI YHFWRUV WKDW DUH YHFWRUV :KDW GR \RX FRQMHFWXUH DERXW WKH HijHFW RI A RQ b y YHFWRUV" RUWKRJRQDO WR Y >+LQW &RQVLGHU Y D DQG Y ¤ @ 2 3 7 *HQHUDWH UDQGRP YHFWRUV [ \ DQG Y LQ R4 ZLWK LQWHJHU HQWULHV 5 3 4 5 6 DQG Y ¤ DQG FRPSXWH WKH TXDQWLWLHV /HW X D DQG OHW W EH WKH VHW RI DOO [ LQ R VXFK WKDW 7
[ Y \ Y .[ C \/ Y .10[/ Y X [ D 0 :KDW WKHRUHP LQ &KDSWHU FDQ EH XVHG WR VKRZ WKDW Y; Y; Y; Y 3 YY YY YY YY W LV D VXEVSDFH RI R " 'HVFULEH W LQ JHRPHWULF ODQJXDJH 6XSSRVH D YHFWRU \ LV RUWKRJRQDO WR YHFWRUV X DQG Y 6KRZ WKDW \ LV RUWKRJRQDO WR WKH YHFWRU X C Y
5HSHDW WKH FRPSXWDWLRQV ZLWK QHZ UDQGRP YHFWRUV [ DQG \ :KDW GR \RX FRQMHFWXUH DERXW WKH PDSSLQJ [ 7! T .[/ D
[Y 6XSSRVH \ LV RUWKRJRQDO WR X DQG Y 6KRZ WKDW \ LV RUWKRJRQDO Y IRU Y ¤ " 9HULI\ \RXU FRQMHFWXUH DOJHEUDLFDOO\ YY WR HYHU\ Z LQ 6SDQ fX; Yg >+LQW $Q DUELWUDU\ Z LQ 6SDQ fX; Yg 2 3 KDV WKH IRUP Z D c1 X C c2 Y 6KRZ WKDW \ LV RUWKRJRQDO WR 6 3 27 33 13 VXFK D YHFWRU Z@ 6 7 25 28 14 7 6 6 5 7 &RQVWUXFW D 7 /HW A D 6 8 6 34 38 18 6 7 w 4 12 10 50 41 23 5 u 14 21 49 29 33 0 PDWUL[ N ZKRVH FROXPQV IRUP D EDVLV IRU 1XO A DQG FRQ VWUXFW D PDWUL[ R ZKRVH URZV IRUP D EDVLV IRU 5RZ A VHH y v 6HFWLRQ IRU GHWDLOV 3HUIRUP D PDWUL[ FRPSXWDWLRQ ZLWK } v u, Span{ N DQG R WKDW LOOXVWUDWHV D IDFW IURP 7KHRUHP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
6ROXWLRQV WR 3UDFWLFH 3UREOHPV
DE 7 14=5 DD DD 7=5 DD 5 2 3 4 D 6FDOH F PXOWLSO\LQJ E\ WR JHW \ D 4 3 5 &RPSXWH k\k2 D 29 2 p DQG k\k D 29 7KH YHFWRU LQ WKH GLUHFWLRQ RI ERWK F DQG \ LV p XQLW 2 3 4=p29 1 XD \ D 4 3=p29 5 k\k 2= 29 E G LV RUWKRJRQDO WR F EHFDXVH 2 3 2 3 5 4=3 20 2 G F D 4 6 5 4 1 5 D 6 D0 3 3 1 2=3
DE 7 D DQG D E D 7 D D D 5 +HQFH DD 5
F G LV RUWKRJRQDO WR X EHFDXVH X KDV WKH IRUP k F IRU VRPH k DQG G X D G .k F/ D k.G F/ D k.0/ D 0 ,I W ¤ fg OHW fE1 ; : : : ; Ep g EH D EDVLV IRU W ZKHUH 1 p n /HW A EH WKH p n PDWUL[ KDYLQJ URZV ET1 ; : : : ; ETp ,W IROORZV WKDW W LV WKH URZ VSDFH RI A 7KHRUHP LPSOLHV WKDW W ? D 5RZ A/? D 1XO A DQG KHQFH GLP W ? D GLP 1XO A 7KXV GLP W C GLP W ? D GLP 5RZ AC GLP 1XO A D UDQN A C GLP 1XO A D n E\ WKH 5DQN 7KHRUHP ,I W D fg WKHQ W ? D Rn DQG WKH UHVXOW IROORZV
2UWKRJRQDO 6HWV $ VHW RI YHFWRUV fX1 ; : : : ; Xp g LQ Rn LV VDLG WR EH DQ RUWKRJRQDO VHW LI HDFK SDLU RI GLVWLQFW YHFWRUV IURP WKH VHW LV RUWKRJRQDO WKDW LV LI Xi Xj D 0 ZKHQHYHU i ¤ j
(;$03/( 6KRZ WKDW fX1 ; X2 ; X3 g LV DQ RUWKRJRQDO VHW ZKHUH
x3
2 3 3 X1 D 4 1 5; 1
u3
2
3 1 X2 D 4 2 5; 1
2
3 1=2 X3 D 4 2 5 7=2
62/87,21 &RQVLGHU WKH WKUHH SRVVLEOH SDLUV RI GLVWLQFW YHFWRUV QDPHO\ fX1 ; X2 g u2 u1
x2
x1
fX1 ; X3 g DQG fX2 ; X3 g
X1 X2 D 3.1/ C 1.2/ C 1.1/ D 0 X1 X3 D 3 12 C 1.2/ C 1 72 D 0 X2 X3 D 1 12 C 2.2/ C 1 72 D 0 (DFK SDLU RI GLVWLQFW YHFWRUV LV RUWKRJRQDO DQG VR fX1 ; X2 ; X3 g LV DQ RUWKRJRQDO VHW 6HH )LJXUH WKH WKUHH OLQH VHJPHQWV DUH PXWXDOO\ SHUSHQGLFXODU
'*(63&
5)&03&.
,I S D fX1 ; : : : ; Xp g LV DQ RUWKRJRQDO VHW RI QRQ]HUR YHFWRUV LQ Rn WKHQ S LV OLQHDUO\ LQGHSHQGHQW DQG KHQFH LV D EDVLV IRU WKH VXEVSDFH VSDQQHG E\ S
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 6HWV
1300' ,I D c1 X1 C C cp Xp IRU VRPH VFDODUV c1 ; : : : ; cp WKHQ 0 D X1 D .c1 X1 C c2 X2 C C cp Xp / X1 D .c1 X1 / X1 C .c2 X2 / X1 C C .cp Xp / X1 D c1 .X1 X1 / C c2 .X2 X1 / C C cp .Xp X1 / D c1 .X1 X1 / EHFDXVH X1 LV RUWKRJRQDO WR X2 ; : : : ; Xp 6LQFH X1 LV QRQ]HUR X1 X1 LV QRW ]HUR DQG VR c1 D 0 6LPLODUO\ c2 ; : : : ; cp PXVW EH ]HUR 7KXV S LV OLQHDUO\ LQGHSHQGHQW
%&'*/*5*0/
$Q RUWKRJRQDO EDVLV IRU D VXEVSDFH W RI Rn LV D EDVLV IRU W WKDW LV DOVR DQ RUWKRJRQDO VHW 7KH QH[W WKHRUHP VXJJHVWV ZK\ DQ RUWKRJRQDO EDVLV LV PXFK QLFHU WKDQ RWKHU EDVHV 7KH ZHLJKWV LQ D OLQHDU FRPELQDWLRQ FDQ EH FRPSXWHG HDVLO\
5)&03&.
/HW fX1 ; : : : ; Xp g EH DQ RUWKRJRQDO EDVLV IRU D VXEVSDFH W RI Rn )RU HDFK \ LQ W WKH ZHLJKWV LQ WKH OLQHDU FRPELQDWLRQ \ D c1 X1 C C cp Xp DUH JLYHQ E\
cj D
\ Xj Xj Xj
.j D 1; : : : ; p/
1300' $V LQ WKH SUHFHGLQJ SURRI WKH RUWKRJRQDOLW\ RI fX1 ; : : : ; Xp g VKRZV WKDW \ X1 D .c1 X1 C c2 X2 C C cp Xp / X1 D c1 .X1 X1 / 6LQFH X1 X1 LV QRW ]HUR WKH HTXDWLRQ DERYH FDQ EH VROYHG IRU c1 7R ıQG cj IRU j D 2; : : : ; p FRPSXWH \ Xj DQG VROYH IRU cj
(;$03/( 7KH VHW2 S D3fX1 ; X2 ; X3 g LQ ([DPSOH LV DQ RUWKRJRQDO EDVLV IRU R3 6 ([SUHVV WKH YHFWRU \ D 4 1 5 DV D OLQHDU FRPELQDWLRQ RI WKH YHFWRUV LQ S 8 62/87,21 &RPSXWH
\ X1 D 11; X1 X1 D 11;
\ X2 D 12; X2 X2 D 6;
\ X3 D 33 X3 X3 D 33=2
%\ 7KHRUHP \D
\ X1 \ X2 \ X3 X1 C X2 C X3 X1 X1 X2 X2 X3 X3
11 12 33 X1 C X2 C X3 11 6 33=2 D X1 2X2 2X3 D
1RWLFH KRZ HDV\ LW LV WR FRPSXWH WKH ZHLJKWV QHHGHG WR EXLOG \ IURP DQ RUWKRJRQDO EDVLV ,I WKH EDVLV ZHUH QRW RUWKRJRQDO LW ZRXOG EH QHFHVVDU\ WR VROYH D V\VWHP RI OLQHDU HTXDWLRQV LQ RUGHU WR ıQG WKH ZHLJKWV DV LQ &KDSWHU :H WXUQ QH[W WR D FRQVWUXFWLRQ WKDW ZLOO EHFRPH D NH\ VWHS LQ PDQ\ FDOFXODWLRQV LQYROYLQJ RUWKRJRQDOLW\ DQG LW ZLOO OHDG WR D JHRPHWULF LQWHUSUHWDWLRQ RI 7KHRUHP MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
$Q 2UWKRJRQDO 3URMHFWLRQ
z 5 y 2 yˆ y
*LYHQ D QRQ]HUR YHFWRU X LQ Rn FRQVLGHU WKH SUREOHP RI GHFRPSRVLQJ D YHFWRU \ LQ Rn LQWR WKH VXP RI WZR YHFWRUV RQH D PXOWLSOH RI X DQG WKH RWKHU RUWKRJRQDO WR X :H ZLVK WR ZULWH \ D \O C ]
yˆ 5 projW y
ZKHUH \O D ˛ X IRU VRPH VFDODU ˛ DQG ] LV VRPH YHFWRU RUWKRJRQDO WR X 6HH )LJXUH *LYHQ DQ\ VFDODU ˛ OHW ] D \ ˛ X VR WKDW LV VDWLVıHG 7KHQ \ \O LV RUWKRJRQDO WR X LI DQG RQO\ LI
0 W
'*(63&
)LQGLQJ ˛ WR PDNH \ \O RUWKRJRQDO WR X
0 D .\ ˛ X/ X D \ X .˛ X/ X D \ X ˛.X X/ \X \X DQG \O D X XX XX 7KH YHFWRU \O LV FDOOHG WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR X DQG WKH YHFWRU ] LV FDOOHG WKH FRPSRQHQW RI \ RUWKRJRQDO WR X ,I c LV DQ\ QRQ]HUR VFDODU DQG LI X LV UHSODFHG E\ c X LQ WKH GHıQLWLRQ RI \O WKHQ WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR c X LV H[DFWO\ WKH VDPH DV WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR X ([HUFLVH +HQFH WKLV SURMHFWLRQ LV GHWHUPLQHG E\ WKH VXEVSDFH L VSDQQHG E\ X WKH OLQH WKURXJK X DQG 6RPHWLPHV \O LV GHQRWHG E\ SURML \ DQG LV FDOOHG WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR L 7KDW LV 7KDW LV LV VDWLVıHG ZLWK ] RUWKRJRQDO WR X LI DQG RQO\ LI ˛ D
\O D SURML \ D
\X X XX
7 4 (;$03/( /HW \ D DQG X D )LQG WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR 6 2 X 7KHQ ZULWH \ DV WKH VXP RI WZR RUWKRJRQDO YHFWRUV RQH LQ 6SDQ fXg DQG RQH RUWKRJRQDO WR X 62/87,21 &RPSXWH
7 4 \X D D 40 6 2 4 4 XX D D 20 2 2 7KH RUWKRJRQDO SURMHFWLRQ RI \ RQWR X LV \X 40 4 8 \O D XD XD2 D 2 4 XX 20 DQG WKH FRPSRQHQW RI \ RUWKRJRQDO WR X LV 7 8 1 \ \O D D 6 4 2 7KH VXP RI WKHVH WZR YHFWRUV LV \ 7KDW LV 7 8 1 D C 6 4 2 " \
" \O
" .\ \O /
7KLV GHFRPSRVLWLRQ RI \ LV LOOXVWUDWHG LQ )LJXUH 1RWH ,I WKH FDOFXODWLRQV DERYH DUH FRUUHFW WKHQ fO\; \ \O g ZLOO EH DQ RUWKRJRQDO VHW $V D FKHFN FRPSXWH 8 1 \O .\ \O / D D 8 C 8 D 0 4 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 6HWV x2
y
6
L 5 Span{u} yˆ
3 y 2 yˆ
u
1
8
x1
'*(63& 7KH RUWKRJRQDO SURMHFWLRQ RI \ RQWR D
OLQH L WKURXJK WKH RULJLQ
6LQFH WKH OLQH VHJPHQW LQ )LJXUH EHWZHHQ \ DQG \O LV SHUSHQGLFXODU WR L E\ FRQ VWUXFWLRQ RI \O WKH SRLQW LGHQWLıHG ZLWK \O LV WKH FORVHVW SRLQW RI L WR \ 7KLV FDQ EH SURYHG IURP JHRPHWU\ :H ZLOO DVVXPH WKLV IRU R2 QRZ DQG SURYH LW IRU Rn LQ 6HFWLRQ
(;$03/( )LQG WKH GLVWDQFH LQ )LJXUH IURP \ WR L 62/87,21 7KH GLVWDQFH IURP \ WR L LV WKH OHQJWK RI WKH SHUSHQGLFXODU OLQH VHJPHQW
IURP \ WR WKH RUWKRJRQDO SURMHFWLRQ \O 7KLV OHQJWK HTXDOV WKH OHQJWK RI \ \O 7KXV WKH GLVWDQFH LV p p k\ \O k D .1/2 C 22 D 5
$ *HRPHWULF ,QWHUSUHWDWLRQ RI 7KHRUHP 7KH IRUPXOD IRU WKH RUWKRJRQDO SURMHFWLRQ \O LQ KDV WKH VDPH DSSHDUDQFH DV HDFK RI WKH WHUPV LQ 7KHRUHP 7KXV 7KHRUHP GHFRPSRVHV D YHFWRU \ LQWR D VXP RI RUWKRJRQDO SURMHFWLRQV RQWR RQHGLPHQVLRQDO VXEVSDFHV ,W LV HDV\ WR YLVXDOL]H WKH FDVH LQ ZKLFK W D R2 D 6SDQ fX1 ; X2 g ZLWK X1 DQG X2 RUWKRJRQDO $Q\ \ LQ R2 FDQ EH ZULWWHQ LQ WKH IRUP \ X1 \ X2 \D X1 C X2 X1 X1 X2 X2 7KH ıUVW WHUP LQ LV WKH SURMHFWLRQ RI \ RQWR WKH VXEVSDFH VSDQQHG E\ X1 WKH OLQH WKURXJK X1 DQG WKH RULJLQ DQG WKH VHFRQG WHUP LV WKH SURMHFWLRQ RI \ RQWR WKH VXEVSDFH VSDQQHG E\ X2 7KXV H[SUHVVHV \ DV WKH VXP RI LWV SURMHFWLRQV RQWR WKH RUWKRJRQDO D[HV GHWHUPLQHG E\ X1 DQG X2 6HH )LJXUH u2 yˆ 2 5 projection of y onto u2
y
0 yˆ 1 5 projection of y onto u1 u1
'*(63& $ YHFWRU GHFRPSRVHG LQWR WKH
VXP RI WZR SURMHFWLRQV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
7KHRUHP GHFRPSRVHV HDFK \ LQ 6SDQ fX1 ; : : : ; Xp g LQWR WKH VXP RI p SURMHFWLRQV RQWR RQHGLPHQVLRQDO VXEVSDFHV WKDW DUH PXWXDOO\ RUWKRJRQDO
'HFRPSRVLQJ D )RUFH LQWR &RPSRQHQW )RUFHV 7KH GHFRPSRVLWLRQ LQ )LJXUH FDQ RFFXU LQ SK\VLFV ZKHQ VRPH VRUW RI IRUFH LV DSSOLHG WR DQ REMHFW &KRRVLQJ DQ DSSURSULDWH FRRUGLQDWH V\VWHP DOORZV WKH IRUFH WR EH UHSUHVHQWHG E\ D YHFWRU \ LQ R2 RU R3 2IWHQ WKH SUREOHP LQYROYHV VRPH SDUWLFXODU GLUHFWLRQ RI LQWHUHVW ZKLFK LV UHSUHVHQWHG E\ DQRWKHU YHFWRU X )RU LQVWDQFH LI WKH REMHFW LV PRYLQJ LQ D VWUDLJKW OLQH ZKHQ WKH IRUFH LV DSSOLHG WKH YHFWRU X PLJKW SRLQW LQ WKH GLUHFWLRQ RI PRYHPHQW DV LQ )LJXUH $ NH\ VWHS LQ WKH SUREOHP LV WR GHFRPSRVH WKH IRUFH LQWR D FRPSRQHQW LQ WKH GLUHFWLRQ RI X DQG D FRPSRQHQW RUWKRJRQDO WR X 7KH FDOFXODWLRQV ZRXOG EH DQDORJRXV WR WKRVH SUHYLRXVO\ PDGH LQ ([DPSOH y
u
'*(63&
2UWKRQRUPDO 6HWV $ VHW fX1 ; : : : ; Xp g LV DQ RUWKRQRUPDO VHW LI LW LV DQ RUWKRJRQDO VHW RI XQLW YHFWRUV ,I W LV WKH VXEVSDFH VSDQQHG E\ VXFK D VHW WKHQ fX1 ; : : : ; Xp g LV DQ RUWKRQRUPDO EDVLV IRU W VLQFH WKH VHW LV DXWRPDWLFDOO\ OLQHDUO\ LQGHSHQGHQW E\ 7KHRUHP 7KH VLPSOHVW H[DPSOH RI DQ RUWKRQRUPDO VHW LV WKH VWDQGDUG EDVLV fH1 ; : : : ; Hn g IRU Rn $Q\ QRQHPSW\ VXEVHW RI fH1 ; : : : ; Hn g LV RUWKRQRUPDO WRR +HUH LV D PRUH FRPSOLFDWHG H[DPSOH
(;$03/( 6KRZ WKDW fY1 ; Y2 ; Y3 g LV DQ RUWKRQRUPDO EDVLV RI R3 ZKHUH 2
p 3 3=p11 6 7 Y1 D 4 1= 11 5; p 1= 11
2
p 3 1=p66 6 7 Y3 D 4 4= 66 5 p 7= 66
p p p Y1 Y2 D 3= 66 C 2= 66 C 1= 66 D 0 p p p Y1 Y3 D 3= 726 4= 726 C 7= 726 D 0 p p p Y2 Y3 D 1= 396 8= 396 C 7= 396 D 0
v3
7KXV fY1 ; Y2 ; Y3 g LV DQ RUWKRJRQDO VHW $OVR
v2 v1
x2
'*(63&
p 3 1=p6 6 7 Y2 D 4 2= 6 5; p 1= 6
62/87,21 &RPSXWH
x3
x1
2
Y1 Y1 D 9=11 C 1=11 C 1=11 D 1 Y2 Y2 D 1=6 C 4=6 C 1=6 D 1 Y3 Y3 D 1=66 C 16=66 C 49=66 D 1 ZKLFK VKRZV WKDW Y1 Y2 DQG Y3 DUH XQLW YHFWRUV 7KXV fY1 ; Y2 ; Y3 g LV DQ RUWKRQRUPDO VHW 6LQFH WKH VHW LV OLQHDUO\ LQGHSHQGHQW LWV WKUHH YHFWRUV IRUP D EDVLV IRU R3 6HH )LJXUH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 6HWV
:KHQ WKH YHFWRUV LQ DQ RUWKRJRQDO VHW RI QRQ]HUR YHFWRUV DUH QRUPDOL]HG WR KDYH XQLW OHQJWK WKH QHZ YHFWRUV ZLOO VWLOO EH RUWKRJRQDO DQG KHQFH WKH QHZ VHW ZLOO EH DQ RUWKRQRUPDO VHW 6HH ([HUFLVH ,W LV HDV\ WR FKHFN WKDW WKH YHFWRUV LQ )LJXUH ([DPSOH DUH VLPSO\ WKH XQLW YHFWRUV LQ WKH GLUHFWLRQV RI WKH YHFWRUV LQ )LJXUH ([DPSOH 0DWULFHV ZKRVH FROXPQV IRUP DQ RUWKRQRUPDO VHW DUH LPSRUWDQW LQ DSSOLFDWLRQV DQG LQ FRPSXWHU DOJRULWKPV IRU PDWUL[ FRPSXWDWLRQV 7KHLU PDLQ SURSHUWLHV DUH JLYHQ LQ 7KHRUHPV DQG
5)&03&.
$Q m n PDWUL[ U KDV RUWKRQRUPDO FROXPQV LI DQG RQO\ LI U T U D I
1300' 7R VLPSOLI\ QRWDWLRQ ZH VXSSRVH WKDW U KDV RQO\ WKUHH FROXPQV HDFK D YHFWRU LQ Rm 7KH SURRI RI WKH JHQHUDO FDVH LV HVVHQWLDOO\ WKH VDPH /HW U D Œ X1 X2 X3 DQG FRPSXWH 2 T3 2 T 3 X1 X1 X1 XT1 X2 XT1 X3 6 6 7 7 U TU D 4 XT2 5 X1 X2 X3 D 4 XT2 X1 XT2 X2 XT2 X3 5 XT3
XT3 X1 XT3 X2 XT3 X3
7KH HQWULHV LQ WKH PDWUL[ DW WKH ULJKW DUH LQQHU SURGXFWV XVLQJ WUDQVSRVH QRWDWLRQ 7KH FROXPQV RI U DUH RUWKRJRQDO LI DQG RQO\ LI XT1 X2 D XT2 X1 D 0;
XT1 X3 D XT3 X1 D 0;
XT2 X3 D XT3 X2 D 0
7KH FROXPQV RI U DOO KDYH XQLW OHQJWK LI DQG RQO\ LI X1T X1 D 1;
XT2 X2 D 1;
XT3 X3 D 1
7KH WKHRUHP IROORZV LPPHGLDWHO\ IURP ş
5)&03&.
/HW U EH DQ m n PDWUL[ ZLWK RUWKRQRUPDO FROXPQV DQG OHW [ DQG \ EH LQ Rn 7KHQ D kU [k D k[k E .U [/.U \/ D [ \ F .U [/ .U \/ D 0 LI DQG RQO\ LI [ \ D 0 3URSHUWLHV D DQG F VD\ WKDW WKH OLQHDU PDSSLQJ [ 7! U [ SUHVHUYHV OHQJWKV DQG RU WKRJRQDOLW\ 7KHVH SURSHUWLHV DUH FUXFLDO IRU PDQ\ FRPSXWHU DOJRULWKPV 6HH ([HUFLVH IRU WKH SURRI RI 7KHRUHP 2
3 p p 1=p2 2=3 2 6 7 (;$03/( /HW U D 4 1= 2 2=3 5 DQG [ D 1RWLFH WKDW U KDV RU 3 0 1=3 WKRQRUPDO FROXPQV DQG 2 p 3 p p 1= 2 2=3 p 1 0 1= 2 1= 2 0 4 U TU D 1= 2 2=3 5 D 0 1 2=3 2=3 1=3 0 1=3 9HULI\ WKDW kU [k D k[k MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
62/87,21
p 3 2 3 1=p2 2=3 p 3 2 U [ D 4 1= 2 2=3 5 D 4 1 5 3 1 0 1=3 p p kU [k D 9 C 1 C 1 D 11 p p k[k D 2 C 9 D 11 2
7KHRUHPV DQG DUH SDUWLFXODUO\ XVHIXO ZKHQ DSSOLHG WR VTXDUH PDWULFHV $Q RUWKRJRQDO PDWUL[ LV D VTXDUH LQYHUWLEOH PDWUL[ U VXFK WKDW U 1 D U T %\ 7KHR UHP VXFK D PDWUL[ KDV RUWKRQRUPDO FROXPQV1 ,W LV HDV\ WR VHH WKDW DQ\ VTXDUH PDWUL[ ZLWK RUWKRQRUPDO FROXPQV LV DQ RUWKRJRQDO PDWUL[ 6XUSULVLQJO\ VXFK D PDWUL[ PXVW KDYH RUWKRQRUPDO URZV WRR 6HH ([HUFLVHV DQG 2UWKRJRQDO PDWULFHV ZLOO DSSHDU IUHTXHQWO\ LQ &KDSWHU
(;$03/( 7KH PDWUL[
2
p p p 3 3=p11 1=p6 1=p66 6 7 U D 4 1= 11 2= 6 4= 66 5 p p p 1= 6 7= 66 1= 11
LV DQ RUWKRJRQDO PDWUL[ EHFDXVH LW LV VTXDUH DQG EHFDXVH LWV FROXPQV DUH RUWKRQRUPDO E\ ([DPSOH 9HULI\ WKDW WKH URZV DUH RUWKRQRUPDO WRR 3UDFWLFH 3UREOHPV p p 1=p5 2=p5 /HW X1 D DQG X2 D 6KRZ WKDW fX1 ; X2 g LV DQ RUWKRQRUPDO 2= 5 1= 5 EDVLV IRU R2 /HW \ DQG L EH DV LQ ([DPSOH DQG )LJXUH &RPSXWH WKH RUWKRJRQDO SURMHFWLRQ \O 2 RI \ RQWR L XVLQJ X D LQVWHDG RI WKH X LQ ([DPSOH 1 p 3 2 /HW U DQG [ EH DV LQ ([DPSOH DQG OHW \ D 9HULI\ WKDW U [ U \ D [ \ 6 /HW U EH DQ n n PDWUL[ ZLWK RUWKRQRUPDO FROXPQV 6KRZ WKDW GHW U D Ƅ1
([HUFLVHV ,Q ([HUFLVHV ş GHWHUPLQH ZKLFK VHWV RI YHFWRUV DUH RUWKRJRQDO 2 3 2 3 2 3 2 3 2 3 2 3 1 5 3 1 0 5 4 4 5 4 2 5 4 4 5 4 2 5 4 1 5 4 2 5 3 1 7 1 2 1 2
3 2 3 2 3 2 6 3 4 7 5 4 3 5 4 1 5 1 9 1
2
3 2 3 2 3 2 0 4 4 5 5 4 0 5 4 2 5 3 0 6
2
3 2 3 2 3 3 1 3 6 2 7 6 3 7 6 8 7 6 7 6 7 6 7 4 1 5 4 3 5 4 7 5 3 4 0
2
3 2 3 2 3 5 4 3 6 7 6 7 6 7 6 4 7 6 1 7 6 3 7 4 5 4 5 4 5 0 3 5 3 8 1
,Q ([HUFLVHV ş VKRZ WKDW fX1 ; X2 g RU fX1 ; X2 ; X3 g LV DQ RUWKRJ RQDO EDVLV IRU R2 RU R3 UHVSHFWLYHO\ 7KHQ H[SUHVV [ DV D OLQHDU FRPELQDWLRQ RI WKH XŖV 2 6 9 X1 D X2 D DQG [ D 3 4 7
1
$ EHWWHU QDPH PLJKW EH RUWKRQRUPDO PDWUL[ DQG WKLV WHUP LV IRXQG LQ VRPH VWDWLVWLFV WH[WV +RZHYHU RUWKRJRQDO PDWUL[ LV WKH VWDQGDUG WHUP LQ OLQHDU DOJHEUD
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 6HWV 3 2 4 X2 D DQG [ D 1 6 3 2 3 2 3 2 3 2 3 1 1 2 8 X1 D 4 0 5 X2 D 4 4 5 X3 D 4 1 5 DQG [ D 4 4 5 1 1 2 3 2 3 2 3 2 3 2 3 3 2 1 5 X1 D 4 3 5 X2 D 4 2 5 X3 D 4 1 5 DQG [ D 4 3 5 0 1 4 1 1 &RPSXWH WKH RUWKRJRQDO SURMHFWLRQ RI RQWR WKH OLQH 7 4 DQG WKH RULJLQ WKURXJK 2 1 &RPSXWH WKH RUWKRJRQDO SURMHFWLRQ RI RQWR WKH OLQH 1 1 DQG WKH RULJLQ WKURXJK 2 2 4 /HW \ D DQG X D :ULWH \ DV WKH VXP RI WZR 3 7 RUWKRJRQDO YHFWRUV RQH LQ 6SDQ fXg DQG RQH RUWKRJRQDO WR X 2 6 /HW \ D DQG X D :ULWH \ DV WKH VXP RI D YHFWRU 6 1 LQ 6SDQ fXg DQG D YHFWRU RUWKRJRQDO WR X 3 8 /HW \ D DQG X D &RPSXWH WKH GLVWDQFH IURP \ WR 1 6 WKH OLQH WKURXJK X DQG WKH RULJLQ 3 1 /HW \ D DQG X D &RPSXWH WKH GLVWDQFH IURP \ 9 2 WR WKH OLQH WKURXJK X DQG WKH RULJLQ
X1 D
7) 1RW HYHU\ RUWKRJRQDO VHW LQ Rn LV OLQHDUO\ LQGHSHQGHQW
7) ,I \ LV D OLQHDU FRPELQDWLRQ RI QRQ]HUR YHFWRUV IURP DQ RUWKRJRQDO VHW WKHQ WKH ZHLJKWV LQ WKH OLQHDU FRPELQDWLRQ FDQ EH FRPSXWHG ZLWKRXW URZ RSHUDWLRQV RQ D PDWUL[
,Q ([HUFLVHV ş GHWHUPLQH ZKLFK VHWV RI YHFWRUV DUH RUWKRQRU PDO ,I D VHW LV RQO\ RUWKRJRQDO QRUPDOL]H WKH YHFWRUV WR SURGXFH DQ RUWKRQRUPDO VHW 2 3 2 3 2 3 2 3 1=3 1=2 0 0 4 1=3 5 4 0 5 4 0 5 4 1 5 1=3 1=2 1 0 2 3 2 3 2=3 1=3 :6 :8 4 1=3 5 4 2=3 5 :8 :6 2=3 0 p 3 2 3 2 p 3 2 0p 1=p10 3=p10 4 3=p20 5 4 1=p20 5 4 1=p2 5 1= 2 3= 20 1= 20 p 3 2 2 p 3 2 3 1=p18 1= 2 2=3 0p 5 4 1=3 5 4 4=p18 5 4 2=3 1= 2 1= 18 ,Q ([HUFLVHV ş DOO YHFWRUV DUH LQ R 0DUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU n
7) 1RW HYHU\ OLQHDUO\ LQGHSHQGHQW VHW LQ Rn LV DQ RUWKRJ RQDO VHW
7) ,I D VHW S D fX1 ; : : : ; Xp g KDV WKH SURSHUW\ WKDW Xi Xj D 0 ZKHQHYHU i ¤ j WKHQ S LV DQ RUWKRQRUPDO VHW 7) ,I WKH YHFWRUV LQ DQ RUWKRJRQDO VHW RI QRQ]HUR YHFWRUV DUH QRUPDOL]HG WKHQ VRPH RI WKH QHZ YHFWRUV PD\ QRW EH RUWKRJRQDO 7) ,I WKH FROXPQV RI DQ m n PDWUL[ A DUH RUWKRQRUPDO WKHQ WKH OLQHDU PDSSLQJ [ 7! A[ SUHVHUYHV OHQJWKV 7) $ PDWUL[ ZLWK RUWKRQRUPDO FROXPQV LV DQ RUWKRJRQDO PDWUL[ 7) 7KH RUWKRJRQDO SURMHFWLRQ RI \ RQWR Y LV WKH VDPH DV WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR c Y ZKHQHYHU c ¤ 0 7) ,I L LV D OLQH WKURXJK DQG LI \O LV WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR L WKHQ kO\k JLYHV WKH GLVWDQFH IURP \ WR L 7) $Q RUWKRJRQDO PDWUL[ LV LQYHUWLEOH 3URYH 7KHRUHP >+LQW )RU D FRPSXWH kU [k2 RU SURYH E ıUVW@ 6XSSRVH W LV D VXEVSDFH RI Rn VSDQQHG E\ n QRQ]HUR RUWKRJRQDO YHFWRUV ([SODLQ ZK\ W D Rn /HW U EH D VTXDUH PDWUL[ ZLWK RUWKRQRUPDO FROXPQV ([SODLQ ZK\ U LV LQYHUWLEOH 0HQWLRQ WKH WKHRUHPV \RX XVH /HW U EH DQ n n RUWKRJRQDO PDWUL[ 6KRZ WKDW WKH URZV RI U IRUP DQ RUWKRQRUPDO EDVLV RI Rn /HW U DQG V EH n n RUWKRJRQDO PDWULFHV ([SODLQ ZK\ UV LV DQ RUWKRJRQDO PDWUL[ >7KDW LV H[SODLQ ZK\ UV LV LQYHUWLEOH DQG LWV LQYHUVH LV .UV /T @ /HW U EH DQ RUWKRJRQDO PDWUL[ DQG FRQVWUXFW V E\ LQWHU FKDQJLQJ VRPH RI WKH FROXPQV RI U ([SODLQ ZK\ V LV DQ RUWKRJRQDO PDWUL[ 6KRZ WKDW WKH RUWKRJRQDO SURMHFWLRQ RI D YHFWRU \ RQWR D OLQH L WKURXJK WKH RULJLQ LQ R2 GRHV QRW GHSHQG RQ WKH FKRLFH RI WKH QRQ]HUR X LQ L XVHG LQ WKH IRUPXOD IRU \O 7R GR WKLV VXSSRVH \ DQG X DUH JLYHQ DQG \O KDV EHHQ FRPSXWHG E\ IRUPXOD LQ WKLV VHFWLRQ 5HSODFH X LQ WKDW IRUPXOD E\ c X ZKHUH c LV DQ XQVSHFLıHG QRQ]HUR VFDODU 6KRZ WKDW WKH QHZ IRUPXOD JLYHV WKH VDPH \O /HW fY1 ; Y2 g EH DQ RUWKRJRQDO VHW RI QRQ]HUR YHFWRUV DQG OHW c1 c2 EH DQ\ QRQ]HUR VFDODUV 6KRZ WKDW fc1 Y1 ; c2 Y2 g LV DOVR DQ RUWKRJRQDO VHW 6LQFH RUWKRJRQDOLW\ RI D VHW LV GHıQHG LQ WHUPV RI SDLUV RI YHFWRUV WKLV VKRZV WKDW LI WKH YHFWRUV LQ DQ RUWKRJRQDO VHW DUH QRUPDOL]HG WKH QHZ VHW ZLOO VWLOO EH RUWKRJRQDO
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
*LYHQ X ¤ LQ Rn OHW L D 6SDQ fXg 6KRZ WKDW WKH PDSSLQJ 7 6KRZ WKDW WKH FROXPQV RI WKH PDWUL[ A DUH RUWKRJRQDO E\ [ 7! SURML [ LV D OLQHDU WUDQVIRUPDWLRQ PDNLQJ DQ DSSURSULDWH PDWUL[ FDOFXODWLRQ 6WDWH WKH FDOFXOD WLRQ \RX XVH *LYHQ X ¤ LQ Rn OHW L D 6SDQ fXg )RU \ LQ Rn WKH 2 3 6 3 6 1 UHIJHFWLRQ RI \ LQ L LV WKH SRLQW UHIJL \ GHıQHG E\ 6 7 2 1 6 7 6 1 6 3 7 6 3 2 6 7 UHIJL \ D 2 SURML \ \ 6 6 3 6 1 7 7 AD6 6 2 1 2 37 6 7 6HH WKH ıJXUH ZKLFK VKRZV WKDW UHIJL \ LV WKH VXP RI 6 3 6 3 27 6 7 \O D SURML \ DQG \O \ 6KRZ WKDW WKH PDSSLQJ \ 7! UHIJL \ 4 2 1 2 3 5 LV D OLQHDU WUDQVIRUPDWLRQ 1 2 1 6 x 2
y
L 5 Span{u} yˆ y 2 yˆ
u
x1
7KH UHIJHFWLRQ RI \ LQ D OLQH WKURXJK WKH RULJLQ
HDFK FROXPQ RI WKH PDWUL[ A LQ ([HUFLVH D &RPSXWH U T U DQG U U T +RZ GR WKH\ GLijHU" E *HQHUDWH D UDQGRP YHFWRU \ LQ R8 DQG FRPSXWH S D U U T \ DQG ] D \ S ([SODLQ ZK\ S LV LQ &RO A 9HULI\ WKDW ] LV RUWKRJRQDO WR S
ref l L y
yˆ 2 y
7 ,Q SDUWV D şG OHW U EH WKH PDWUL[ IRUPHG E\ QRUPDOL]LQJ
F 9HULI\ WKDW ] LV RUWKRJRQDO WR HDFK FROXPQ RI U G 1RWLFH WKDW \ D S C ] ZLWK S LQ &RO A ([SODLQ ZK\ ] LV LQ .&RO A/? 7KH VLJQLıFDQFH RI WKLV GHFRPSRVLWLRQ RI \ ZLOO EH H[SODLQHG LQ WKH QH[W VHFWLRQ
6ROXWLRQV WR 3UDFWLFH 3UREOHPV 7KH YHFWRUV DUH RUWKRJRQDO EHFDXVH X1 X2 D 2=5 C 2=5 D 0 7KH\ DUH XQLW YHFWRUV EHFDXVH
p p kX1 k2 D .1= 5/2 C .2= 5/2 D 1=5 C 4=5 D 1 p p kX2 k2 D .2= 5/2 C .1= 5/2 D 4=5 C 1=5 D 1 ,Q SDUWLFXODU WKH VHW fX1 ; X2 g LV OLQHDUO\ LQGHSHQGHQW DQG KHQFH LV D EDVLV IRU R2 VLQFH WKHUH DUH WZR YHFWRUVLQ WKH VHW 7 2 :KHQ \ D DQG X D 6 1 \X 20 2 2 8 \O D XD D4 D 1 4 XX 5 1 7KLV LV WKH VDPH \O IRXQG LQ ([DPSOH 7KH RUWKRJRQDO SURMHFWLRQ GRHV QRW GHSHQG RQ WKH X FKRVHQ RQ WKH OLQH 6HH ([HUFLVH 2 p 3 2 3 1=p2 2=3 p 1 3 2 U \ D 4 1= 2 2=3 5 D 4 7 5 6 2 0 1=3 2 3 p 3 2 $OVR IURP ([DPSOH [ D DQG U [ D 4 1 5 +HQFH 3 1
U [ U \ D 3 C 7 C 2 D 12;
DQG
[ \ D 6 C 18 D 12
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 3URMHFWLRQV
678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU PDVWHULQJ WKH FRQFHSWV DURXQG DQ RUWKRJRQDO EDVLV
6LQFH U LV DQ n n PDWUL[ ZLWK RUWKRQRUPDO FROXPQV E\ 7KHRUHP U T U D I 7DNLQJ WKH GHWHUPLQDQW RI WKH OHIW VLGH RI WKLV HTXDWLRQ DQG DSSO\LQJ 7KHRUHPV DQG IURP 6HFWLRQ UHVXOWV LQ GHW U T U D .GHW U T /.GHW U / D .GHW U /.GHW U / D .GHW U /2 5HFDOO GHW I D 1 3XWWLQJ WKH WZR VLGHV RI WKH HTXDWLRQ EDFN WRJHWKHU UHVXOWV LQ GHW U 2 D 1 DQG KHQFH GHW U D Ƅ1
2UWKRJRQDO 3URMHFWLRQV 7KH RUWKRJRQDO SURMHFWLRQ RI D SRLQW LQ R2 RQWR D OLQH WKURXJK WKH RULJLQ KDV DQ LPSRUWDQW DQDORJXH LQ Rn *LYHQ D YHFWRU \ DQG D VXEVSDFH W LQ Rn WKHUH LV D YHFWRU \O LQ W VXFK WKDW \O LV WKH XQLTXH YHFWRU LQ W IRU ZKLFK \ \O LV RUWKRJRQDO WR W DQG \O LV WKH XQLTXH YHFWRU LQ W FORVHVW WR \ 6HH )LJXUH 7KHVH WZR SURSHUWLHV RI \O SURYLGH WKH NH\ WR ıQGLQJ OHDVWVTXDUHV VROXWLRQV RI OLQHDU V\VWHPV 7R SUHSDUH IRU WKH ıUVW WKHRUHP REVHUYH WKDW ZKHQHYHU D YHFWRU \ LV ZULWWHQ DV D OLQHDU FRPELQDWLRQ RI YHFWRUV X1 ; : : : ; Xn LQ Rn WKH WHUPV LQ WKH VXP IRU \ FDQ EH JURXSHG LQWR WZR SDUWV VR WKDW \ FDQ EH ZULWWHQ DV
y
0 W
'*(63&
yˆ 5 projW y
\ D ]1 C ]2 ZKHUH ]1 LV D OLQHDU FRPELQDWLRQ RI VRPH RI WKH Xi DQG ]2 LV D OLQHDU FRPELQDWLRQ RI WKH UHVW RI WKH Xi 7KLV LGHD LV SDUWLFXODUO\ XVHIXO ZKHQ fX1 ; : : : ; Xn g LV DQ RUWKRJRQDO EDVLV 5HFDOO IURP 6HFWLRQ WKDW W ? GHQRWHV WKH VHW RI DOO YHFWRUV RUWKRJRQDO WR D VXEVSDFH W
(;$03/( /HW fX1 ; : : : ; X5 g EH DQ RUWKRJRQDO EDVLV IRU R5 DQG OHW \ D c1 X1 C C c5 X5 &RQVLGHU WKH VXEVSDFH W D 6SDQ fX1 ; X2 g DQG ZULWH \ DV WKH VXP RI D YHFWRU ]1 LQ W DQG D YHFWRU ]2 LQ W ? 62/87,21 :ULWH
\ D c1 X1 C c2 X2 C c3 X3 C c4 X4 C c5 X5 „ ƒ‚ … „ ƒ‚ … ]1 ]2 ZKHUH
]1 D c1 X1 C c2 X2
LV LQ 6SDQ fX1 ; X2 g
DQG
]2 D c3 X3 C c4 X4 C c5 X5
LV LQ 6SDQ fX3 ; X4 ; X5 g:
?
7R VKRZ WKDW ]2 LV LQ W LW VXĴFHV WR VKRZ WKDW ]2 LV RUWKRJRQDO WR WKH YHFWRUV LQ WKH EDVLV fX1 ; X2 g IRU W 6HH 6HFWLRQ 8VLQJ SURSHUWLHV RI WKH LQQHU SURGXFW FRPSXWH ]2 X1 D .c3 X3 C c4 X4 C c5 X5 / X1 D c3 X3 X1 C c4 X4 X1 C c5 X5 X1 D0 EHFDXVH X1 LV RUWKRJRQDO WR X3 X4 DQG X5 $ VLPLODU FDOFXODWLRQ VKRZV WKDW ]2 X2 D 0 7KXV ]2 LV LQ W ? 7KH QH[W WKHRUHP VKRZV WKDW WKH GHFRPSRVLWLRQ \ D ]1 C ]2 LQ ([DPSOH FDQ EH FRPSXWHG ZLWKRXW KDYLQJ DQ RUWKRJRQDO EDVLV IRU Rn ,W LV HQRXJK WR KDYH DQ RUWKRJRQDO EDVLV RQO\ IRU W
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
5)&03&.
5IF 0SUIPHPOBM %FDPNQPTJUJPO 5IFPSFN /HW W EH D VXEVSDFH RI Rn 7KHQ HDFK \ LQ Rn FDQ EH ZULWWHQ XQLTXHO\ LQ WKH IRUP \ D \O C ]
ZKHUH \O LV LQ W DQG ] LV LQ W ? ,Q IDFW LI fX1 ; : : : ; Xp g LV DQ\ RUWKRJRQDO EDVLV RI W WKHQ \ Xp \ X1 \O D X1 C C Xp X1 X1 Xp Xp DQG ] D \ \O
7KH YHFWRU \O LQ LV FDOOHG WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR W DQG RIWHQ LV ZULWWHQ DV SURMW \ 6HH )LJXUH :KHQ W LV D RQHGLPHQVLRQDO VXEVSDFH WKH IRUPXOD IRU \O PDWFKHV WKH IRUPXOD JLYHQ LQ 6HFWLRQ z 5 y 2 yˆ y
0 W
yˆ 5 projW y
'*(63& 7KH RUWKRJRQDO SURMHFWLRQ
RI \ RQWR W
1300' /HW fX1 ; : : : ; Xp g EH DQ\ RUWKRJRQDO EDVLV IRU W DQG GHıQH \O E\ 1 7KHQ \O LV LQ W EHFDXVH \O LV D OLQHDU FRPELQDWLRQ RI WKH EDVLV X1 ; : : : ; Xp /HW ] D \ \O 6LQFH X1 LV RUWKRJRQDO WR X2 ; : : : ; Xp LW IROORZV IURP WKDW
\ X1 X1 X1 0 0 ] X1 D .\ \O / X1 D \ X1 X1 X1 D \ X1 \ X1 D 0 7KXV ] LV RUWKRJRQDO WR X1 6LPLODUO\ ] LV RUWKRJRQDO WR HDFK Xj LQ WKH EDVLV IRU W +HQFH ] LV RUWKRJRQDO WR HYHU\ YHFWRU LQ W 7KDW LV ] LV LQ W ? 7R VKRZ WKDW WKH GHFRPSRVLWLRQ LQ LV XQLTXH VXSSRVH \ FDQ DOVR EH ZULWWHQ DV \ D \O 1 C ]1 ZLWK \O 1 LQ W DQG ]1 LQ W ? 7KHQ \O C ] D \O 1 C ]1 VLQFH ERWK VLGHV HTXDO \/ DQG VR \O \O 1 D ]1 ] 7KLV HTXDOLW\ VKRZV WKDW WKH YHFWRU Y D \O \O 1 LV LQ W DQG LQ W ? EHFDXVH ]1 DQG ] DUH ERWK LQ W ? DQG W ? LV D VXEVSDFH +HQFH Y Y D 0 ZKLFK VKRZV WKDW Y D 7KLV SURYHV WKDW \O D \O 1 DQG DOVR ]1 D ] 7KH XQLTXHQHVV RI WKH GHFRPSRVLWLRQ VKRZV WKDW WKH RUWKRJRQDO SURMHFWLRQ \O GHSHQGV RQO\ RQ W DQG QRW RQ WKH SDUWLFXODU EDVLV XVHG LQ 1 :H PD\ DVVXPH WKDW W LV QRW WKH ]HUR VXEVSDFH IRU RWKHUZLVH W ? D Rn DQG LV VLPSO\ \ D C \ 7KH QH[W VHFWLRQ ZLOO VKRZ WKDW DQ\ QRQ]HUR VXEVSDFH RI Rn KDV DQ RUWKRJRQDO EDVLV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 3URMHFWLRQV
2
3 2 3 2 3 2 2 1 (;$03/( /HW X1 D 4 5 5 X2 D 4 1 5 DQG \ D 4 2 5 2EVHUYH WKDW fX1 ; X2 g 1 1 3 LV DQ RUWKRJRQDO EDVLV IRU W D 6SDQ fX1 ; X2 g :ULWH \ DV WKH VXP RI D YHFWRU LQ W DQG D YHFWRU RUWKRJRQDO WR W 62/87,21 7KH RUWKRJRQDO SURMHFWLRQ RI \ RQWR W LV
\ X1 \ X2 X1 C X2 X1 X1 X2 X2 2 3 2 3 2 3 2 3 2 3 2 2 2 2 2=5 94 3 9 15 4 55C 4 15 D 4 2 5 55C 4 15 D D 30 1 6 30 30 1 1 1 1=5
\O D
2 3 2 3 2 3 1 2=5 7=5 \ \O D 4 2 5 4 2 5 D 4 0 5 1=5 3 14=5
$OVR
7KHRUHP HQVXUHV WKDW \ \O LV LQ W ? 7R FKHFN WKH FDOFXODWLRQV KRZHYHU LW LV D JRRG LGHD WR YHULI\ WKDW \ \O LV RUWKRJRQDO WR ERWK X1 DQG X2 DQG KHQFH WR DOO RI W 7KH GHVLUHG GHFRPSRVLWLRQ RI \ LV 2 3 2 3 2 3 1 2=5 7=5 \ D 425 D 4 2 5C4 0 5 3 1=5 14=5
$ *HRPHWULF ,QWHUSUHWDWLRQ RI WKH 2UWKRJRQDO 3URMHFWLRQ :KHQ W LV D RQHGLPHQVLRQDO VXEVSDFH WKH IRUPXOD IRU SURMW \ FRQWDLQV MXVW RQH WHUP 7KXV ZKHQ GLP W > 1 HDFK WHUP LQ LV LWVHOI DQ RUWKRJRQDO SURMHFWLRQ RI \ RQWR D RQHGLPHQVLRQDO VXEVSDFH VSDQQHG E\ RQH RI WKH XŖV LQ WKH EDVLV IRU W )LJXUH LOOXVWUDWHV WKLV ZKHQ W LV D VXEVSDFH RI R3 VSDQQHG E\ X1 DQG X2 +HUH \O 1 DQG \O 2 GHQRWH WKH SURMHFWLRQV RI \ RQWR WKH OLQHV VSDQQHG E\ X1 DQG X2 UHVSHFWLYHO\ 7KH RUWKRJRQDO SURMHFWLRQ \O RI \ RQWR W LV WKH VXP RI WKH SURMHFWLRQV RI \ RQWR RQHGLPHQVLRQDO VXE VSDFHV WKDW DUH RUWKRJRQDO WR HDFK RWKHU 7KH YHFWRU \O LQ )LJXUH FRUUHVSRQGV WR WKH YHFWRU \ LQ )LJXUH RI 6HFWLRQ EHFDXVH QRZ LW LV \O WKDW LV LQ W x3
x2 u2 yˆ 2
0
yˆ 1
y . u1 y.u –––––2 ˆ ˆ yˆ 5 ––––– u1 . u1 u1 1 u2 . u2 u2 5 y1 1 y2
u1
x1
'*(63& 7KH RUWKRJRQDO SURMHFWLRQ RI \ LV WKH
VXP RI LWV SURMHFWLRQV RQWR RQHGLPHQVLRQDO VXEVSDFHV WKDW DUH PXWXDOO\ RUWKRJRQDO
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
3URSHUWLHV RI 2UWKRJRQDO 3URMHFWLRQV ,I fX1 ; : : : ; Xp g LV DQ RUWKRJRQDO EDVLV IRU W DQG LI \ KDSSHQV WR EH LQ W WKHQ WKH IRUPXOD IRU SURMW \ LV H[DFWO\ WKH VDPH DV WKH UHSUHVHQWDWLRQ RI \ JLYHQ LQ 7KHRUHP LQ 6HFWLRQ ,Q WKLV FDVH SURMW \ D \ ,I \ LV LQ W D 6SDQ fX1 ; : : : ; Xp g WKHQ SURMW \ D \ 7KLV IDFW DOVR IROORZV IURP WKH QH[W WKHRUHP
5)&03&.
5IF #FTU "QQSPYJNBUJPO 5IFPSFN /HW W EH D VXEVSDFH RI Rn OHW \ EH DQ\ YHFWRU LQ Rn DQG OHW \O EH WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR W 7KHQ \O LV WKH FORVHVW SRLQW LQ W WR \ LQ WKH VHQVH WKDW
k\ \O k < k\ Yk
IRU DOO Y LQ W GLVWLQFW IURP \O
7KH YHFWRU \O LQ 7KHRUHP LV FDOOHG WKH EHVW DSSUR[LPDWLRQ WR \ E\ HOHPHQWV RI W /DWHU VHFWLRQV LQ WKH WH[W ZLOO H[DPLQH SUREOHPV ZKHUH D JLYHQ \ PXVW EH UHSODFHG RU DSSUR[LPDWHG E\ D YHFWRU Y LQ VRPH ı[HG VXEVSDFH W 7KH GLVWDQFH IURP \ WR Y JLYHQ E\ k\ Yk FDQ EH UHJDUGHG DV WKH ŗHUURUŘ RI XVLQJ Y LQ SODFH RI \ 7KHRUHP VD\V WKDW WKLV HUURU LV PLQLPL]HG ZKHQ Y D \O ,QHTXDOLW\ OHDGV WR D QHZ SURRI WKDW \O GRHV QRW GHSHQG RQ WKH SDUWLFXODU RUWKRJR QDO EDVLV XVHG WR FRPSXWH LW ,I D GLijHUHQW RUWKRJRQDO EDVLV IRU W ZDV XVHG WR FRQVWUXFW DQ RUWKRJRQDO SURMHFWLRQ RI \ WKHQ WKLV SURMHFWLRQ ZRXOG DOVR EH WKH FORVHVW SRLQW LQ W WR \ QDPHO\ \O
1300' 7DNH Y LQ W GLVWLQFW IURP \O 6HH )LJXUH 7KHQ \O Y LV LQ W %\ WKH 2UWKRJR QDO 'HFRPSRVLWLRQ 7KHRUHP \ \O LV RUWKRJRQDO WR W ,Q SDUWLFXODU \ \O LV RUWKRJRQDO WR \O Y ZKLFK LV LQ W 6LQFH \ Y D .\ \O / C .O\ Y/ WKH 3\WKDJRUHDQ 7KHRUHP JLYHV
k\ Yk2 D k\ \O k2 C kO\ Yk2 6HH WKH ULJKW WULDQJOH RXWOLQHG LQ WHDO LQ )LJXUH 7KH OHQJWK RI HDFK VLGH LV ODEHOHG 1RZ kO\ Yk2 > 0 EHFDXVH \O Y ¤ DQG VR LQHTXDOLW\ IROORZV LPPHGLDWHO\ y
0 W
|| y 2 yˆ || yˆ
|| y 2 v||
|| yˆ 2 v || v
'*(63& 7KH RUWKRJRQDO SURMHFWLRQ
RI \ RQWR W LV WKH FORVHVW SRLQW LQ W WR \
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 3URMHFWLRQV
2
3 2 3 2 3 2 2 1 (;$03/( ,I X1 D 4 5 5 X2 D 4 1 5 \ D 4 2 5 DQG W D 6SDQ fX1 ; X2 g 1 1 3 DV LQ ([DPSOH WKHQ WKH FORVHVW SRLQW LQ W WR \ LV 2 3 2=5 \ X1 \ X2 \O D X1 C X2 D 4 2 5 X1 X1 X2 X2 1=5
(;$03/( 7KH GLVWDQFH IURP D SRLQW \ LQ Rn WR D VXEVSDFH W LV GHıQHG DV WKH GLVWDQFH IURP \ WR WKH QHDUHVW SRLQW LQ W )LQG WKH GLVWDQFH IURP \ WR W D 6SDQ fX1 ; X2 g ZKHUH 2 3 2 3 2 3 1 5 1 \ D 4 5 5; X1 D 4 2 5; X2 D 4 2 5 10 1 1 62/87,21 %\ WKH %HVW $SSUR[LPDWLRQ 7KHRUHP WKH GLVWDQFH IURP \ WR W LV k\ \O k
ZKHUH \O D SURMW \ 6LQFH fX1 ; X2 g LV DQ RUWKRJRQDO EDVLV IRU W 2 3 2 3 2 3 5 1 1 15 21 14 7 2 5 4 2 5 D 4 8 5 \O D X1 C X2 D 30 6 2 2 1 1 4 2 3 2 3 2 3 1 1 0 \ \O D 4 5 5 4 8 5 D 4 3 5 10 4 6
k\ \O k2 D 32 C 62 D 45 p p 7KH GLVWDQFH IURP \ WR W LV 45 D 3 5 7KH ıQDO WKHRUHP LQ WKLV VHFWLRQ VKRZV KRZ IRUPXOD IRU SURMW \ LV VLPSOLıHG ZKHQ WKH EDVLV IRU W LV DQ RUWKRQRUPDO VHW
5)&03&.
,I fX1 ; : : : ; Xp g LV DQ RUWKRQRUPDO EDVLV IRU D VXEVSDFH W RI Rn WKHQ SURMW \ D .\ X1 /X1 C .\ X2 /X2 C C .\ Xp /Xp
,I U D Œ X1 X2 Xp WKHQ SURMW \ D U U T\
IRU DOO \ LQ Rn
1300' )RUPXOD IROORZV LPPHGLDWHO\ IURP LQ 7KHRUHP $OVR VKRZV WKDW SURMW \ LV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI U XVLQJ WKH ZHLJKWV \ X1 \ X2 ; : : : ; \ Xp 7KH ZHLJKWV FDQ EH ZULWWHQ DV X1T \; X2T \; : : : ; XTp \ VKRZLQJ WKDW WKH\ DUH WKH HQWULHV LQ U T\ DQG MXVWLI\LQJ 6XSSRVH U LV DQ n p PDWUL[ ZLWK RUWKRQRUPDO FROXPQV DQG OHW W EH WKH FROXPQ VSDFH RI U 7KHQ
U TU [ D Ip [ D [ IRU DOO [ LQ Rp
7KHRUHP
U U \ D SURMW \
7KHRUHP
T
IRU DOO \ LQ R
n
,I U LV DQ n n VTXDUH PDWUL[ ZLWK RUWKRQRUPDO FROXPQV WKHQ U LV DQ RUWKRJRQDO PDWUL[ WKH FROXPQ VSDFH W LV DOO RI Rn DQG U U T\ D I \ D \ IRU DOO \ LQ Rn
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
$OWKRXJK IRUPXOD LV LPSRUWDQW IRU WKHRUHWLFDO SXUSRVHV LQ SUDFWLFH LW XVXDOO\ LQYROYHV FDOFXODWLRQV ZLWK VTXDUH URRWV RI QXPEHUV LQ WKH HQWULHV RI WKH Xi / )RUPXOD LV UHFRPPHQGHG IRU KDQG FDOFXODWLRQV ([DPSOH RI 6HFWLRQ LOOXVWUDWHV KRZ PDWUL[ PXOWLSOLFDWLRQ DQG WUDQVSRVLWLRQ DUH XVHG WR GHWHFW D VSHFLıHG SDWWHUQ LOOXVWUDWHG XVLQJ EOXH DQG ZKLWH VTXDUHV 1RZ WKDW ZH KDYH PRUH H[SHULHQFH ZRUNLQJ ZLWK EDVHV IRU W DQG W ? ZH DUH UHDG\ WR GLVFXVV KRZ WR VHW XS WKH PDWUL[ M LQ )LJXUH /HW Z EH WKH YHFWRU JHQHUDWHG IURP D SDWWHUQ RI EOXH DQG ZKLWH VTXDUHV E\ WXUQLQJ HDFK EOXH VTXDUH LQWR D DQG HDFK ZKLWH VTXDUH LQWR D 0 DQG WKHQ OLQLQJ XS HDFK FROXPQ EHORZ WKH FROXPQ EHIRUH LW 6HH )LJXUH
0 0 1 0
1
0
0
1
0
1
1
1
1 w5
1 1 0 0 1
'*(63& &UHDWLQJ D YHFWRU IURP FRORUHG VTXDUHV
/HW W D VSDQ fZg &KRRVH D EDVLV fY1 ; Y2 ; : : : ; Yn1 g IRU W ? &UHDWH WKH PDWUL[ 2 3 Y1 T 6 Y2 T 7 6 7 BD6 7 1RWLFH B X D LI DQG RQO\ LI X LV RUWKRJRQDO WR D VHW RI EDVLV YHFWRUV :: 4 5 : Yn1 T IRU W ? ZKLFK KDSSHQV LI DQG RQO\ LI X LV LQ W 6HW M D B T B 7KHQ XT M X D XT B T B X D .B X/T B X %\ 7KHRUHP .B X/T B X D 0 LI DQG RQO\ LI B X D 0 DQG KHQFH XT M X D 0 LI DQG RQO\ LI X 2 W %XW WKHUH DUH RQO\ WZR YHFWRUV LQ W FRQVLVWLQJ RI ]HURV DQG RQHV 1Z D Z DQG 0Z D 7KXV ZH FDQ FRQFOXGH WKDW LI XT M X D 0 EXW XT X ¤ 0 WKHQ X D Z 6HH )LJXUH
(;$03/( )LQG D PDWUL[ M WKDW FDQ EH XVHG LQ )LJXUH WR LGHQWLI\ WKH SHUS V\PERO 62/87,21 )LUVW FKDQJH WKH V\PERO LQWR D YHFWRU 6HW Z D Œ0 0 1 1 1 1 0 0 1T
1H[W VHW W D VSDQ fZg DQG ıQG D EDVLV IRU W ? VROYLQJ [T Z D 0 FUHDWHV WKH KRPRJH QHRXV V\VWHP RI HTXDWLRQV
x3 C x4 C x5 C x6 C x9 D 0 7UHDWLQJ x3 DV WKH EDVLF YDULDEOH DQG WKH UHPDLQLQJ YDULDEOHV DV IUHH YDULDEOHV ZH JHW D EDVLV IRU W ? 7UDQVSRVLQJ HDFK YHFWRU LQ WKH EDVLV DQG LQVHUWLQJ LW DV D URZ RI B ZH JHW
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 3URMHFWLRQV 1 0 1 1 w5 1 1 1 0 1
w T Mw 5 2 and w T w 5 7
This pattern is not the perpendicular symbol since w T Mw Þ 0. 0 0 1 1 w5 1 1 0 0 1
w T Mw 5 0 and w T w 5 5
This pattern is the perpendicular symbol since w T Mw 5 0, but w T w Þ 0. '*(63& +RZ $, GHWHFWV WKH SHUS V\PERO
2
1 60 6 60 6 60 BD6 60 6 60 6 40 0
0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
3
2
1 0 60 6 07 7 60 7 6 07 60 7 6 07 T 60 DQG M D B B D 7 6 07 60 6 7 07 60 6 5 0 40 1 0
0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 07 7 4 1 1 1 0 0 1 7 7 1 1 0 0 0 0 0 7 7 1 0 1 0 0 0 0 7 7 1 0 0 1 0 0 0 7 7 0 0 0 0 1 0 07 7 0 0 0 0 0 1 05 1 0 0 0 0 0 1
1RWLFH ZT M Z D 0 EXW ZT Z ¤ 0
3UDFWLFH 3UREOHPV 2 3 2 3 2 3 7 1 9 /HW X1 D 4 1 5 X2 D 4 1 5 \ D 4 1 5 DQG W D 6SDQ fX1 ; X2 g 8VH WKH IDFW 4 2 6 WKDW X1 DQG X2 DUH RUWKRJRQDO WR FRPSXWH SURMW \ /HW W EH D VXEVSDFH RI Rn /HW [ DQG \ EH YHFWRUV LQ Rn DQG OHW ] D [ C \ ,I X LV WKH SURMHFWLRQ RI [ RQWR W DQG Y LV WKH SURMHFWLRQ RI \ RQWR W VKRZ WKDW X C Y LV WKH SURMHFWLRQ RI ] RQWR W
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
([HUFLVHV ,Q ([HUFLVHV DQG \RX PD\ DVVXPH WKDW fX1 ; : : : ; X4 g LV DQ RUWKRJRQDO EDVLV IRU R4 2 3 2 3 2 3 2 3 0 3 1 5 6 17 6 7 6 7 6 3 7 7 657 6 07 6 7 X1 D 6 4 4 5 X2 D 4 1 5 X3 D 4 1 5 X4 D 4 1 5 1 1 4 1 2 3 10 6 7 6 8 7 :ULWH [ DV WKH VXP RI WZR YHFWRUV RQH LQ [D4 25 0 6SDQ fX1 ; X2 ; X3 g DQG WKH RWKHU LQ 6SDQ fX4 g 2 3 2 3 2 3 2 3 1 2 1 1 627 6 17 6 7 6 17 7 6 7 6 17 6 7 X1 D 6 4 1 5 X2 D 4 1 5 X3 D 4 2 5 X4 D 4 1 5 1 1 1 2 2 3 4 6 57 6 7 :ULWH Y DV WKH VXP RI WZR YHFWRUV RQH LQ YD4 2 5 2 6SDQ fX1 g DQG WKH RWKHU LQ 6SDQ fX2 ; X3 ; X4 g ,Q ([HUFLVHV ş YHULI\ WKDW fX1 ; X2 g LV DQ RUWKRJRQDO VHW DQG WKHQ ıQG WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR 6SDQ fX1 ; X2 g 2 3 2 3 2 3 1 1 1 \ D 4 4 5 X1 D 4 1 5 X2 D 4 1 5 3 0 0 2
3 2 3 2 3 4 3 4 \ D 4 3 5 X1 D 4 4 5 X2 D 4 3 5 2 0 0 2
3
2
3
2
3
1 3 1 \ D 4 2 5 X1 D 4 1 5 X2 D 4 1 5 6 2 2 2 3 2 3 2 3 4 4 0 \ D 4 4 5 X1 D 4 1 5 X2 D 4 1 5 1 1 1 ,Q ([HUFLVHV ş OHW W EH WKH VXEVSDFH VSDQQHG E\ WKH XŖV DQG ZULWH \ DV WKH VXP RI D YHFWRU LQ W DQG D YHFWRU RUWKRJRQDO WR W 2 3 2 3 2 3 1 1 5 \ D 4 3 5 X1 D 4 3 5 X2 D 4 1 5 5 2 4 2
3 2 3 2 3 1 1 1 \ D 4 4 5 X1 D 4 1 5 X2 D 4 3 5 3 1 2 2
3 2 3 2 3 2 3 4 1 1 1 6 7 6 7 6 7 6 7 6 3 7 X1 D 6 1 7 X2 D 6 3 7 X3 D 6 0 7 \ D 4 405 4 15 4 15 35 1 1 2 1
2 3 2 3 2 3 2 3 3 1 1 0 6 7 6 7 6 7 6 7 6 4 7 X1 D 6 1 7 X2 D 6 0 7 X3 D 6 1 7 \ D 4 4 05 415 4 15 55 4 1 1 1 ,Q ([HUFLVHV DQG ıQG WKH FORVHVW SRLQW WR \ LQ WKH VXEVSDFH W VSDQQHG E\ Y1 DQG Y2 2 3 2 3 2 3 3 3 1 6 7 6 7 6 7 6 1 7 Y1 D 6 1 7 Y2 D 6 1 7 \ D 4 5 4 5 4 5 1 15 1 1 1 2 3 2 3 2 3 3 1 4 6 7 6 7 6 7 6 1 7 Y1 D 6 2 7 Y2 D 6 1 7 \ D 4 4 1 5 4 05 15 13 2 3 ,Q ([HUFLVHV DQG ıQG WKH EHVW DSSUR[LPDWLRQ WR ] E\ YHFWRUV RI WKH IRUP c1 Y1 C c2 Y2 2 3 2 3 2 3 3 2 1 6 7 7 6 1 7 6 7 7 6 7 6 17 ] D 6 4 2 5 Y1 D 4 3 5 Y2 D 4 0 5 3 1 1 2 3 2 3 2 3 2 2 5 6 47 6 07 6 7 7 6 7 6 2 7 ] D 6 4 0 5 Y1 D 4 1 5 Y2 D 4 4 5 1 3 2 2 3 2 3 2 3 5 3 3 /HW \ D 4 9 5 X1 D 4 5 5 X2 D 4 2 5 )LQG WKH GLV 5 1 1 WDQFH IURP \ WR WKH SODQH LQ R3 VSDQQHG E\ X1 DQG X2 /HW \ Y1 DQG Y2 EH DV LQ ([HUFLVH )LQG WKH GLVWDQFH IURP \ WR WKH VXEVSDFH RI R4 VSDQQHG E\ Y1 DQG Y2 2 3 2 3 2 3 4 2=3 2=3 /HW \ D 4 8 5 X1 D 4 1=3 5 X2 D 4 2=3 5 DQG 1 2=3 1=3 W D 6SDQ fX1 ; X2 g D /HW U D Œ X1 X2 &RPSXWH U T U DQG U U T E &RPSXWH SURMW \ DQG .U U T /\ p 7 1=p10 X1 D DQG W D 6SDQ fX1 g /HW \ D 9 3= 10 D /HW U EH WKH 2 1 PDWUL[ ZKRVH RQO\ FROXPQ LV X1 &RPSXWH U T U DQG U U T E &RPSXWH SURMW \ DQG .U U T /\ 2 3 2 3 2 3 1 5 0 /HW X1 D 4 1 5 X2 D 4 1 5 DQG X3 D 4 0 5 1RWH WKDW 2 2 1 X1 DQG X2 DUH RUWKRJRQDO EXW WKDW X3 LV QRW RUWKRJRQDO WR X1 RU X2 ,W FDQ EH VKRZQ WKDW X3 LV QRW LQ WKH VXEVSDFH W VSDQQHG
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
2UWKRJRQDO 3URMHFWLRQV E\ X1 DQG X2 8VH WKLV IDFW WR FRQVWUXFW D QRQ]HUR YHFWRU Y LQ R3 WKDW LV RUWKRJRQDO WR X1 DQG X2 2 3 0 /HW X1 DQG X2 EH DV LQ ([HUFLVH DQG OHW X4 D 4 1 5 ,W FDQ 0 EH VKRZQ WKDW X4 LV QRW LQ WKH VXEVSDFH W VSDQQHG E\ X1 DQG X2 8VH WKLV IDFW WR FRQVWUXFW D QRQ]HUR YHFWRU Y LQ R3 WKDW LV RUWKRJRQDO WR X1 DQG X2 ,Q ([HUFLVHV ş DOO YHFWRUV DQG VXEVSDFHV DUH LQ Rn 0DUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 7) ,I ] LV RUWKRJRQDO WR X1 DQG WR X2 DQG LI W D 6SDQ fX1 ; X2 g WKHQ ] PXVW EH LQ W ? 7) )RU HDFK \ DQG HDFK VXEVSDFH W WKH YHFWRU \ SURMW \ LV RUWKRJRQDO WR W 7) 7KH RUWKRJRQDO SURMHFWLRQ \O RI \ RQWR D VXEVSDFH W FDQ VRPHWLPHV GHSHQG RQ WKH RUWKRJRQDO EDVLV IRU W XVHG WR FRPSXWH \O
VSDFH RI U 7) ,I DQ n p PDWUL[ U KDV RUWKRQRUPDO FROXPQV WKHQ U U T [ D [ IRU DOO [ LQ Rn /HW A EH DQ m n PDWUL[ 3URYH WKDW HYHU\ YHFWRU [ LQ Rn FDQ EH ZULWWHQ LQ WKH IRUP [ D S C X ZKHUH S LV LQ 5RZ A DQG X LV LQ 1XO A $OVR VKRZ WKDW LI WKH HTXDWLRQ A[ D E LV FRQVLVWHQW WKHQ WKHUH LV D XQLTXH S LQ 5RZ A VXFK WKDW AS D E /HW W EH D VXEVSDFH RI Rn ZLWK DQ RUWKRJRQDO EDVLV fZ1 ; : : : ; Zp g DQG OHW fY1 ; : : : ; Yq g EH DQ RUWKRJRQDO EDVLV IRU W ? D ([SODLQ ZK\ fZ1 ; : : : ; Zp ; Y1 ; : : : ; Yq g LV DQ RUWKRJRQDO VHW E ([SODLQ ZK\ WKH VHW LQ SDUW D VSDQV Rn F 6KRZ WKDW GLP W C GLP W ? D n
7) ,I \ LV LQ D VXEVSDFH W WKHQ WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR W LV \ LWVHOI
,Q ([HUFLVHV ş ıUVW FKDQJH WKH JLYHQ SDWWHUQ LQWR D YHFWRU Z RI ]HURV DQG RQHV DQG WKHQ XVH WKH PHWKRG LOOXVWUDWHG LQ ([DPSOH WR ıQG D PDWUL[ M VR WKDW ZT M Z D 0 EXW XT M X ¤ 0 IRU DOO RWKHU QRQ]HUR YHFWRUV X RI ]HURV DQG RQHV
7) 7KH EHVW DSSUR[LPDWLRQ WR \ E\ HOHPHQWV RI D VXEVSDFH W LV JLYHQ E\ WKH YHFWRU \ SURMW \
7) ,I W LV D VXEVSDFH RI Rn DQG LI Y LV LQ ERWK W DQG W ? WKHQ Y PXVW EH WKH ]HUR YHFWRU 7) ,Q WKH 2UWKRJRQDO 'HFRPSRVLWLRQ 7KHRUHP HDFK WHUP LQ IRUPXOD IRU \O LV LWVHOI DQ RUWKRJRQDO SURMHFWLRQ RI \ RQWR D VXEVSDFH RI W 7 /HW U EH WKH 8 4 PDWUL[ LQ ([HUFLVH LQ 6HFWLRQ )LQG WKH FORVHVW SRLQW WR \ D .1; 1; 1; 1; 1; 1; 1; 1/ LQ &RO U :ULWH 7) ,I \ D ]1 C ]2 ZKHUH ]1 LV LQ D VXEVSDFH W DQG ]2 LV LQ WKH NH\VWURNHV RU FRPPDQGV \RX XVH WR VROYH WKLV SUREOHP W ? WKHQ ]1 PXVW EH WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR W 7) ,I WKH FROXPQV RI DQ n p PDWUL[ U DUH RUWKRQRUPDO 7 /HW U EH WKH PDWUL[ LQ ([HUFLVH )LQG WKH GLVWDQFH IURP WKHQ U U T \ LV WKH RUWKRJRQDO SURMHFWLRQ RI \ RQWR WKH FROXPQ E D .1; 1; 1; 1; 1; 1; 1; 1/ WR &RO U
6ROXWLRQ WR 3UDFWLFH 3UREOHPV &RPSXWH SURMW \ D
\ X1 \ X2 88 2 X1 C X2 D X1 C X2 X1 X1 X2 X2 66 6 2
3 7 4 D 4 15 3 4
2
3 2 3 1 9 14 15 D 4 15 D \ 3 2 6
,Q WKLV FDVH \ KDSSHQV WR EH D OLQHDU FRPELQDWLRQ RI X1 DQG X2 VR \ LV LQ W 7KH FORVHVW SRLQW LQ W WR \ LV \ LWVHOI 8VLQJ 7KHRUHP OHW U EH D PDWUL[ ZKRVH FROXPQV FRQVLVW RI DQ RUWKRQRUPDO EDVLV IRU W 7KHQ SURMW ] D U U T ] D U U T [ C \ D U U T [ C U U T \ D SURMW [ C SURMW \ D X C Y
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
7KH *UDP 6FKPLGW 3URFHVV 7KH *UDPş6FKPLGW SURFHVV LV D VLPSOH DOJRULWKP IRU SURGXFLQJ DQ RUWKRJRQDO RU RUWKRQRUPDO EDVLV IRU DQ\ QRQ]HUR VXEVSDFH RI Rn 7KH ıUVW WZR H[DPSOHV RI WKH SURFHVV DUH DLPHG DW KDQG FDOFXODWLRQ 2 3 2 3 3 1 (;$03/( /HW W D 6SDQ f[1 ; [2 g ZKHUH [1 D 4 6 5 DQG [2 D 4 2 5 &RQVWUXFW 0 2 DQ RUWKRJRQDO EDVLV fY1 ; Y2 g IRU W
x3
v2
W x2
0 p
x1
v1 5 x1
x2
'*(63&
&RQVWUXFWLRQ RI DQ RUWKRJRQDO EDVLV fY1 ; Y2 g
62/87,21 7KH VXEVSDFH W LV VKRZQ LQ )LJXUH DORQJ ZLWK [1 [2 DQG WKH SURMHFWLRQ S RI [2 RQWR [1 7KH FRPSRQHQW RI [2 RUWKRJRQDO WR [1 LV [2 S ZKLFK LV LQ W EHFDXVH LW LV IRUPHG IURP [2 DQG D PXOWLSOH RI [1 /HW Y1 D [1 DQG 2 3 2 3 2 3 1 3 0 [2 [1 15 Y2 D [2 S D [2 [1 D 4 2 5 4 6 5 D 4 0 5 [1 [1 45 0 2 2
7KHQ fY1 ; Y2 g LV DQ RUWKRJRQDO VHW RI QRQ]HUR YHFWRUV LQ W 6LQFH GLP W D 2 WKH VHW fY1 ; Y2 g LV D EDVLV IRU W 7KH QH[W H[DPSOH IXOO\ LOOXVWUDWHV WKH *UDPş6FKPLGW SURFHVV 6WXG\ LW FDUHIXOO\ 2 3 2 3 2 3 1 0 0 617 617 607 7 6 7 6 7 (;$03/( /HW [1 D 6 4 1 5 [2 D 4 1 5 DQG [3 D 4 1 5 7KHQ f[1 ; [2 ; [3 g LV 1 1 1 FOHDUO\ OLQHDUO\ LQGHSHQGHQW DQG WKXV LV D EDVLV IRU D VXEVSDFH W RI R4 &RQVWUXFW DQ RUWKRJRQDO EDVLV IRU W 62/87,21
6WHS /HW Y1 D [1 DQG W1 D 6SDQ f[1 g D 6SDQ fY1 g 6WHS /HW Y2 EH WKH YHFWRU SURGXFHG E\ VXEWUDFWLQJ IURP [2 LWV SURMHFWLRQ RQWR WKH VXEVSDFH W1 7KDW LV OHW Y2 D [2 SURMW1 [2 [2 Y1 D [2 Y1 6LQFH Y1 D [1 Y Y 2 3 1 12 3 2 3 0 1 3=4 6 1 7 3 6 1 7 6 1=4 7 7 6 7 6 7 D6 4 1 5 4 4 1 5 D 4 1=4 5 1 1 1=4 $V LQ ([DPSOH Y2 LV WKH FRPSRQHQW RI [2 RUWKRJRQDO WR [1 DQG fY1 ; Y2 g LV DQ RUWKRJRQDO EDVLV IRU WKH VXEVSDFH W2 VSDQQHG E\ [1 DQG [2 6WHS 0 RSWLRQDO ,I DSSURSULDWH VFDOH Y2 WR VLPSOLI\ ODWHU FRPSXWDWLRQV 6LQFH Y2 KDV IUDFWLRQDO HQWULHV LW LV FRQYHQLHQW WR VFDOH LW E\ D IDFWRU RI DQG UHSODFH fY1 ; Y2 g E\ WKH RUWKRJRQDO EDVLV 2 3 2 3 1 3 617 6 17 0 7 6 7 Y1 D 6 4 1 5; Y2 D 4 1 5 1 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH *UDP±6FKPLGW 3URFHVV
6WHS /HW Y3 EH WKH YHFWRU SURGXFHG E\ VXEWUDFWLQJ IURP [3 LWV SURMHFWLRQ RQWR WKH VXEVSDFH W2 8VH WKH RUWKRJRQDO EDVLV fY1 ; Y02 g WR FRPSXWH WKLV SURMHFWLRQ RQWR W2 3URMHFWLRQ RI [3 RQWR Y1
3URMHFWLRQ RI [3 RQWR Y20
?
SURMW2 [3 D
?
[3 Y1 Y1 C Y1 Y1
[3 Y02 0 Y Y02 Y02 2
2 3 2 3 2 3 1 3 0 6 7 6 7 26 1 7 7 C 2 6 1 7 D 6 2=3 7 D 6 4 4 1 5 12 4 1 5 4 2=3 5 1 1 2=3
7KHQ Y3 LV WKH FRPSRQHQW RI [3 RUWKRJRQDO WR W2 QDPHO\ 2 3 2 3 2 3 0 0 0 6 0 7 6 2=3 7 6 2=3 7 7 6 7 6 7 Y3 D [3 SURMW2 [3 D 6 4 1 5 4 2=3 5 D 4 1=3 5 1 2=3 1=3 6HH )LJXUH IRU D GLDJUDP RI WKLV FRQVWUXFWLRQ 2EVHUYH WKDW Y3 LV LQ W EHFDXVH [3 DQG SURMW2 [3 DUH ERWK LQ W 7KXV fY1 ; Y02 ; Y3 g LV DQ RUWKRJRQDO VHW RI QRQ]HUR YHFWRUV DQG KHQFH D OLQHDUO\ LQGHSHQGHQW VHW LQ W 1RWH WKDW W LV WKUHHGLPHQVLRQDO VLQFH LW ZDV GHıQHG E\ D EDVLV RI WKUHH YHFWRUV +HQFH E\ WKH %DVLV 7KHRUHP LQ 6HFWLRQ fY1 ; Y02 ; Y3 g LV DQ RUWKRJRQDO EDVLV IRU W v3 x3 v92
0 v1
projW2x3
W2 5 Span{v1, v92}
'*(63& 7KH FRQVWUXFWLRQ RI
Y3 IURP [3 DQG W2
7KH SURRI RI WKH QH[W WKHRUHP VKRZV WKDW WKLV VWUDWHJ\ UHDOO\ ZRUNV 6FDOLQJ RI YHFWRUV LV QRW PHQWLRQHG EHFDXVH WKDW LV XVHG RQO\ WR VLPSOLI\ KDQG FDOFXODWLRQV
5)&03&.
5IF (SBNo4DINJEU 1SPDFTT *LYHQ D EDVLV f[1 ; : : : ; [p g IRU D QRQ]HUR VXEVSDFH W RI Rn GHıQH Y1 D [1
[2 Y1 Y1 Y1 Y1 [3 Y1 [3 Y2 Y3 D [3 Y1 Y2 Y1 Y1 Y2 Y2 :: : [p Y1 [p Y2 [p Yp1 Yp D [p Y1 Y2 Yp1 Y1 Y1 Y2 Y2 Yp1 Yp1 Y2 D [2
7KHQ fY1 ; : : : ; Yp g LV DQ RUWKRJRQDO EDVLV IRU W ,Q DGGLWLRQ 6SDQ fY1 ; : : : ; Yk g D 6SDQ f[1 ; : : : ; [k g
IRU 1 k p
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
1300' )RU 1 k p OHW Wk D 6SDQ f[1 ; : : : ; [k g 6HW Y1 D [1 VR WKDW 6SDQ fY1 g D 6SDQ f[1 g 6XSSRVH IRU VRPH k < p ZH KDYH FRQVWUXFWHG Y1 ; : : : ; Yk VR WKDW fY1 ; : : : ; Yk g LV DQ RUWKRJRQDO EDVLV IRU Wk 'HıQH Yk C1 D [k C1 SURMWk [k C1
%\ WKH 2UWKRJRQDO 'HFRPSRVLWLRQ 7KHRUHP Yk C1 LV RUWKRJRQDO WR Wk 1RWH WKDW SURMWk [k C1 LV LQ Wk DQG KHQFH DOVR LQ Wk C1 6LQFH [k C1 LV LQ Wk C1 VR LV Yk C1 EHFDXVH Wk C1 LV D VXEVSDFH DQG LV FORVHG XQGHU VXEWUDFWLRQ )XUWKHUPRUH Yk C1 ¤ EHFDXVH [k C1 LV QRW LQ Wk D 6SDQ f[1 ; : : : ; [k g +HQFH fY1 ; : : : ; Yk C1 g LV DQ RUWKRJRQDO VHW RI QRQ]HUR YHFWRUV LQ WKH .k C 1/GLPHQVLRQDO VSDFH Wk C1 %\ WKH %DVLV 7KHRUHP LQ 6HF WLRQ WKLV VHW LV DQ RUWKRJRQDO EDVLV IRU Wk C1 +HQFH Wk C1 D 6SDQ fY1 ; : : : ; Yk C1 g :KHQ k C 1 D p WKH SURFHVV VWRSV 7KHRUHP VKRZV WKDW DQ\ QRQ]HUR VXEVSDFH W RI Rn KDV DQ RUWKRJRQDO EDVLV EH FDXVH DQ RUGLQDU\ EDVLV f[1 ; : : : ; [p g LV DOZD\V DYDLODEOH E\ 7KHRUHP LQ 6HFWLRQ DQG WKH *UDPş6FKPLGW SURFHVV GHSHQGV RQO\ RQ WKH H[LVWHQFH RI RUWKRJRQDO SURMHFWLRQV RQWR VXEVSDFHV RI W WKDW DOUHDG\ KDYH RUWKRJRQDO EDVHV
2UWKRQRUPDO %DVHV $Q RUWKRQRUPDO EDVLV LV FRQVWUXFWHG HDVLO\ IURP DQ RUWKRJRQDO EDVLV fY1 ; : : : ; Yp g VLPSO\ QRUPDOL]H LH ŗVFDOHŘ DOO WKH Yk :KHQ ZRUNLQJ SUREOHPV E\ KDQG WKLV LV HDVLHU WKDQ QRUPDOL]LQJ HDFK Yk DV VRRQ DV LW LV IRXQG EHFDXVH LW DYRLGV XQQHFHVVDU\ ZULWLQJ RI VTXDUH URRWV
(;$03/( ([DPSOH FRQVWUXFWHG WKH RUWKRJRQDO EDVLV 2 3 3 4 Y1 D 6 5; 0
2 3 0 4 Y2 D 0 5 2
$Q RUWKRQRUPDO EDVLV LV 2 3 2 p 3 3 1=p5 1 1 X1 D Y1 D p 4 6 5 D 4 2= 5 5 kY1 k 45 0 0 2 3 0 1 X2 D Y2 D 4 0 5 kY2 k 1
45 )DFWRUL]DWLRQ RI 0DWULFHV ,I DQ m n PDWUL[ A KDV OLQHDUO\ LQGHSHQGHQW FROXPQV [1 ; : : : ; [n WKHQ DSSO\LQJ WKH *UDPş6FKPLGW SURFHVV ZLWK QRUPDOL]DWLRQV WR [1 ; : : : ; [n DPRXQWV WR IDFWRULQJ A DV GHVFULEHG LQ WKH QH[W WKHRUHP 7KLV IDFWRUL]DWLRQ LV ZLGHO\ XVHG LQ FRPSXWHU DOJRULWKPV IRU YDULRXV FRPSXWDWLRQV VXFK DV VROYLQJ HTXDWLRQV GLVFXVVHG LQ 6HFWLRQ DQG ıQGLQJ HLJHQYDOXHV PHQWLRQHG LQ WKH H[HUFLVHV IRU 6HFWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
5)&03&.
7KH *UDP±6FKPLGW 3URFHVV
5IF 23 'BDUPSJ[BUJPO ,I A LV DQ m n PDWUL[ ZLWK OLQHDUO\ LQGHSHQGHQW FROXPQV WKHQ A FDQ EH IDFWRUHG DV A D 45 ZKHUH Q LV DQ m n PDWUL[ ZKRVH FROXPQV IRUP DQ RUWKRQRUPDO EDVLV IRU &RO A DQG R LV DQ n n XSSHU WULDQJXODU LQYHUWLEOH PDWUL[ ZLWK SRVLWLYH HQWULHV RQ LWV GLDJRQDO
1300' 7KH FROXPQV RI A IRUP D EDVLV f[1 ; : : : ; [n g IRU &RO A &RQVWUXFW DQ RUWKRQRU PDO EDVLV fX1 ; : : : ; Xn g IRU W D &RO A ZLWK SURSHUW\ LQ 7KHRUHP 7KLV EDVLV PD\ EH FRQVWUXFWHG E\ WKH *UDPş6FKPLGW SURFHVV RU VRPH RWKHU PHDQV /HW Q D Œ X1 X2 Xn )RU k D 1; : : : ; n; [k LV LQ 6SDQ f[1 ; : : : ; [k g D 6SDQ fX1 ; : : : ; Xk g 6R WKHUH DUH FRQ VWDQWV r1k ; : : : ; rkk VXFK WKDW [k D r1k X1 C C rkk Xk C 0 Xk C1 C C 0 Xn :H PD\ DVVXPH WKDW rkk 0 ,I rkk < 0 PXOWLSO\ ERWK rkk DQG Xk E\ 1 7KLV VKRZV WKDW [k LV D OLQHDU FRPELQDWLRQ RI WKH FROXPQV RI Q XVLQJ DV ZHLJKWV WKH HQWULHV LQ WKH YHFWRU 2 3 r1k 6 :: 7 6 : 7 6 7 6 7 Uk D 6 rkk 7 6 0 7 6 : 7 4 :: 5 0 7KDW LV [k D QUk IRU k D 1; : : : ; n /HW R D Œ U1 Un 7KHQ
A D Œ [1 [n D Œ QU1 QUn D 45 7KH IDFW WKDW R LV LQYHUWLEOH IROORZV HDVLO\ IURP WKH IDFW WKDW WKH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW ([HUFLVH 6LQFH R LV FOHDUO\ XSSHU WULDQJXODU LWV QRQQHJDWLYH GLDJRQDO HQWULHV PXVW EH SRVLWLYH 2
1 61 (;$03/( )LQG D 45 IDFWRUL]DWLRQ RI A D 6 41 1
0 1 1 1
3 0 07 7 15 1
62/87,21 7KH FROXPQV RI A DUH WKH YHFWRUV [1 [2 DQG [3 LQ ([DPSOH $Q
RUWKRJRQDO EDVLV IRU &RO A D 6SDQ f[1 ; [2 ; [3 g ZDV IRXQG LQ WKDW H[DPSOH 2 3 2 3 2 3 1 3 0 617 6 7 6 7 7; Y0 D 6 1 7; Y3 D 6 2=3 7 Y1 D 6 2 415 4 15 4 1=3 5 1 1 1=3
7R VLPSOLI\ WKH DULWKPHWLF WKDW IROORZV VFDOH Y3 E\ OHWWLQJ Y03 D 3Y3 7KHQ QRUPDOL]H WKH WKUHH YHFWRUV WR REWDLQ X1 X2 DQG X3 DQG XVH WKHVH YHFWRUV DV WKH FROXPQV RI Q 2 3 p 1=2 3=p12 0p 6 7 1=p12 2=p6 7 6 1=2 QD6 7 1=p6 5 1=p12 4 1=2 1= 6 1=2 1= 12
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
%\ FRQVWUXFWLRQ WKH ıUVW k FROXPQV RI Q DUH DQ RUWKRQRUPDO EDVLV RI 6SDQ f[1 ; : : : ; [k g )URP WKH SURRI RI 7KHRUHP A D 45 IRU VRPH R 7R ıQG R REVHUYH WKDW QTQ D I EHFDXVH WKH FROXPQV RI Q DUH RUWKRQRUPDO +HQFH
QTA D QT .45/ D IR D R DQG
2
1=2 1=2 1=2 p p p R D 4 3= 12 1= p12 1=p12 1= 6 0 2= 6 2 3 2 3=2 1 p p D 4 0 3= 12 2=p12 5 0 0 2= 6
2 3 1 1=2 p 61 1=p12 56 41 1= 6 1
0 1 1 1
3 0 07 7 15 1
1XPHULFDO 1RWHV :KHQ WKH *UDPş6FKPLGW SURFHVV LV UXQ RQ D FRPSXWHU URXQGRij HUURU FDQ EXLOG XS DV WKH YHFWRUV Xk DUH FDOFXODWHG RQH E\ RQH )RU j DQG k ODUJH EXW XQHTXDO WKH LQQHU SURGXFWV XTj Xk PD\ QRW EH VXĴFLHQWO\ FORVH WR ]HUR 7KLV ORVV RI RUWKRJRQDOLW\ FDQ EH UHGXFHG VXEVWDQWLDOO\ E\ UHDUUDQJLQJ WKH RUGHU RI WKH FDOFXODWLRQV +RZHYHU D GLijHUHQW FRPSXWHUEDVHG 45 IDFWRUL]DWLRQ LV XVXDOO\ SUHIHUUHG WR WKLV PRGLıHG *UDPş6FKPLGW PHWKRG EHFDXVH LW \LHOGV D PRUH DFFXUDWH RUWKRQRUPDO EDVLV HYHQ WKRXJK WKH IDFWRUL]DWLRQ UHTXLUHV DERXW WZLFH DV PXFK DULWKPHWLF 7R SURGXFH D 45 IDFWRUL]DWLRQ RI D PDWUL[ A D FRPSXWHU SURJUDP XVXDOO\ OHIWPXOWLSOLHV A E\ D VHTXHQFH RI RUWKRJRQDO PDWULFHV XQWLO A LV WUDQVIRUPHG LQWR DQ XSSHU WULDQJXODU PDWUL[ 7KLV FRQVWUXFWLRQ LV DQDORJRXV WR WKH OHIW PXOWLSOLFDWLRQ E\ HOHPHQWDU\ PDWULFHV WKDW SURGXFHV DQ /8 IDFWRUL]DWLRQ RI A
3UDFWLFH 3UREOHPV
2 3 2 3 1 1=3 /HW W D 6SDQ f[1 ; [2 g ZKHUH [1 D 4 1 5 DQG [2 D 4 1=3 5 &RQVWUXFW DQ RU 1 2=3 WKRQRUPDO EDVLV IRU W 6XSSRVH A D QR ZKHUH Q LV DQ m n PDWUL[ ZLWK RUWKRJRQDO FROXPQV DQG R LV DQ n n PDWUL[ 6KRZ WKDW LI WKH FROXPQV RI A DUH OLQHDUO\ GHSHQGHQW WKHQ R FDQQRW EH LQYHUWLEOH
([HUFLVHV ,Q ([HUFLVHV ş WKH JLYHQ VHW LV D EDVLV IRU D VXEVSDFH W 8VH WKH *UDPş6FKPLGW SURFHVV WR SURGXFH DQ RUWKRJRQDO EDVLV IRU W 2
3 2 3 3 8 4 0 5 4 5 5 1 6
2 3 2 3 0 5 4 4 5 4 6 5 2 7
1
2
3 2 3 2 4 4 5 5 4 1 5 1 2 2 3 2 3 1 7 6 4 7 6 7 7 6 7 6 7 4 0 5 4 4 5 1 1
2
3 2 3 3 3 4 4 5 4 14 5 5 7 2 3 2 3 3 5 6 7 6 7 6 1 7 6 9 7 4 2 5 4 9 5 1 3
6HH )XQGDPHQWDOV RI 0DWUL[ &RPSXWDWLRQV E\ 'DYLG 6 :DWNLQV 1HZ +LQW 6WXG\ WKH HTXDWLRQ R[ D DQG XVH WKH IDFW WKDW A D QR@ 6XSSRVH A D QR ZKHUH R LV DQ LQYHUWLEOH PDWUL[ 6KRZ WKDW A DQG Q KDYH WKH VDPH FROXPQ VSDFH >+LQW *LYHQ \ LQ &RO A VKRZ WKDW \ D Q[ IRU VRPH [ $OVR JLYHQ \ LQ &RO Q VKRZ WKDW \ D A[ IRU VRPH [@ *LYHQ A D QR DV LQ 7KHRUHP GHVFULEH KRZ WR ıQG DQ RUWKRJRQDO m m VTXDUH PDWUL[ Q1 DQG DQ LQYHUWLEOH n n XSSHU WULDQJXODU PDWUL[ R VXFK WKDW R A D Q1 0 7KH 0$7/$% qr FRPPDQG VXSSOLHV WKLV ŗIXOOŘ 45 IDFWRU L]DWLRQ ZKHQ UDQN A D n
,Q ([HUFLVHV DQG WKH FROXPQV RI Q ZHUH REWDLQHG E\ DSSO\LQJ WKH *UDPş6FKPLGW SURFHVV WR WKH FROXPQV RI A )LQG DQ /HW X1 ; : : : ; Xp EH DQ RUWKRJRQDO EDVLV IRU D VXEVSDFH W RI XSSHU WULDQJXODU PDWUL[ R VXFK WKDW A D QR &KHFN \RXU ZRUN Rn DQG OHW T W Rn ! Rn EH GHıQHG E\ T .[/ D SURMW [ 2 3 2 3 6KRZ WKDW T LV D OLQHDU WUDQVIRUPDWLRQ 5 9 5=6 1=6 6 1 7 6 1=6 7 7 5=6 6 7 Q D 6 7 6XSSRVH A D QR LV D 45 IDFWRUL]DWLRQ RI DQ m n PD A D 4 4 3=6 3 5 5 1=6 5 WUL[ A ZLWK OLQHDUO\ LQGHSHQGHQW FROXPQV 3DUWLWLRQ A DV 1 5 1=6 3=6 ŒA1 A2 ZKHUH A1 KDV p FROXPQV 6KRZ KRZ WR REWDLQ D 2 3 2 3 45 IDFWRUL]DWLRQ RI A1 DQG H[SODLQ ZK\ \RXU IDFWRUL]DWLRQ 2 3 2=7 5=7 KDV WKH DSSURSULDWH SURSHUWLHV 6 5 7 6 7 77 5=7 2=7 7 6 A D 4 QD6 5 4 5 2 2 2=7 4=7 7 8VH WKH *UDPş6FKPLGW SURFHVV DV LQ ([DPSOH WR SURGXFH 4 6 4=7 2=7 DQ RUWKRJRQDO EDVLV IRU WKH FROXPQ VSDFH RI 2 3 )LQG D 45 IDFWRUL]DWLRQ RI WKH PDWUL[ LQ ([HUFLVH 10 13 7 11 6 1 5 37 6 2 7 )LQG D 45 IDFWRUL]DWLRQ RI WKH PDWUL[ LQ ([HUFLVH 7 6 3 13 3 AD6 6 7 4 16 16 2 ,Q ([HUFLVHV ş DOO YHFWRUV DQG VXEVSDFHV DUH LQ Rn 0DUN HDFK 55 VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 2 1 5 7 7) ,I fY1 ; Y2 ; Y3 g LV DQ RUWKRJRQDO EDVLV IRU W WKHQ 7 8VH WKH PHWKRG LQ WKLV VHFWLRQ WR SURGXFH D 45 IDFWRUL]DWLRQ PXOWLSO\LQJ Y3 E\ D VFDODU c JLYHV D QHZ RUWKRJRQDO EDVLV RI WKH PDWUL[ LQ ([HUFLVH fY1 ; Y2 ; c Y3 g 7 )RU D PDWUL[ SURJUDP WKH *UDPş6FKPLGW SURFHVV ZRUNV 7) ,I W D 6SDQ f[1 ; [2 ; [3 g ZLWK f[1 ; [2 ; [3 g OLQHDUO\ LQ EHWWHU ZLWK RUWKRQRUPDO YHFWRUV 6WDUWLQJ ZLWK [1 ; : : : ; [p DV GHSHQGHQW DQG LI fY1 ; Y2 ; Y3 g LV DQ RUWKRJRQDO VHW LQ W WKHQ LQ 7KHRUHP OHW A D Œ [1 [p 6XSSRVH Q LV DQ fY1 ; Y2 ; Y3 g LV D EDVLV IRU W n k PDWUL[ ZKRVH FROXPQV IRUP DQ RUWKRQRUPDO EDVLV IRU WKH VXEVSDFH Wk VSDQQHG E\ WKH ıUVW k FROXPQV RI A 7KHQ 7) 7KH *UDPş6FKPLGW SURFHVV SURGXFHV IURP D OLQHDUO\ IRU [ LQ Rn QQT [ LV WKH RUWKRJRQDO SURMHFWLRQ RI [ RQWR Wk LQGHSHQGHQW VHW f[1 ; : : : ; [p g DQ RUWKRJRQDO VHW fY1 ; : : : ; Yp g 7KHRUHP LQ 6HFWLRQ ,I [kC1 LV WKH QH[W FROXPQ RI A ZLWK WKH SURSHUW\ WKDW IRU HDFK k WKH YHFWRUV Y1 ; : : : ; Yk VSDQ WKHQ HTXDWLRQ LQ WKH SURRI RI 7KHRUHP EHFRPHV WKH VDPH VXEVSDFH DV WKDW VSDQQHG E\ [ ; : : : ; [ 1
k
7) ,I [ LV QRW LQ D VXEVSDFH W WKHQ [ SURMW [ LV QRW ]HUR 7) ,I A D QR ZKHUH Q KDV RUWKRQRUPDO FROXPQV WKHQ R D QT A 7) ,Q D 45 IDFWRUL]DWLRQ VD\ A D QR ZKHQ A KDV OLQHDUO\ LQGHSHQGHQW FROXPQV WKH FROXPQV RI Q IRUP DQ
YkC1 D [kC1 Q.QT [kC1 / 7KH SDUHQWKHVHV DERYH UHGXFH WKH QXPEHU RI DULWKPHWLF RSHUDWLRQV /HW XkC1 D YkC1 =kYkC1 k 7KH QHZ Q IRU WKH QH[W VWHS LV Œ Q XkC1 8VH WKLV SURFHGXUH WR FRPSXWH WKH 45 IDFWRUL]DWLRQ RI WKH PDWUL[ LQ ([HUFLVH :ULWH WKH NH\VWURNHV RU FRPPDQGV \RX XVH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
6ROXWLRQ WR 3UDFWLFH 3UREOHPV 2 3 1 [2 Y1 Y1 D [2 0Y1 D [2 6R f[1 ; [2 g LV DO /HW Y1 D [1 D 4 1 5 DQG Y2 D [2 Y1 Y1 1 UHDG\ RUWKRJRQDO $OO WKDW LV QHHGHG LV WR QRUPDOL]H WKH YHFWRUV /HW 2 3 2 p 3 1=p3 1 1 1 X1 D Y1 D p 4 1 5 D 4 1=p3 5 kY1 k 3 1 1= 3 ,QVWHDG RI QRUPDOL]LQJ Y2 GLUHFWO\ QRUPDOL]H Y02 D 3Y2 LQVWHDG
p 3 2 3 2 1=p6 1 1 0 1 4 1 5 D 4 1= 6 5 X2 D 0 Y2 D p p kY2 k 12 C 12 C .2/2 2 2= 6 7KHQ fX1 ; X2 g LV DQ RUWKRQRUPDO EDVLV IRU W 6LQFH WKH FROXPQV RI A DUH OLQHDUO\ GHSHQGHQW WKHUH LV D QRQWULYLDO YHFWRU [ VXFK WKDW A[ D %XW WKHQ QR[ D $SSO\LQJ 7KHRUHP IURP 6HFWLRQ UHVXOWV LQ kR[k D kQR[k D kk D 0 %XW kR[k D 0 LPSOLHV R[ D E\ 7KHRUHP IURP 6HFWLRQ 7KXV WKHUH LV D QRQWULYLDO YHFWRU [ VXFK WKDW R[ D DQG KHQFH E\ WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP R FDQQRW EH LQYHUWLEOH
/HDVW6TXDUHV 3UREOHPV ,QFRQVLVWHQW V\VWHPV DULVH RIWHQ LQ DSSOLFDWLRQV :KHQ D VROXWLRQ LV GHPDQGHG DQG QRQH H[LVWV WKH EHVW RQH FDQ GR LV WR ıQG DQ [ WKDW PDNHV A[ DV FORVH DV SRVVLEOH WR E 7KLQN RI A[ DV DQ DSSUR[LPDWLRQ WR E 7KH VPDOOHU WKH GLVWDQFH EHWZHHQ E DQG A[ JLYHQ E\ kE A[k WKH EHWWHU WKH DSSUR[LPDWLRQ 7KH JHQHUDO OHDVWVTXDUHV SUREOHP LV WR ıQG DQ [ WKDW PDNHV kE A[k DV VPDOO DV SRVVLEOH 7KH DGMHFWLYH ŗOHDVWVTXDUHVŘ DULVHV IURP WKH IDFW WKDW kE A[k LV WKH VTXDUH URRW RI D VXP RI VTXDUHV
%&'*/*5*0/
,I A LV m n DQG E LV LQ Rm D OHDVWVTXDUHV VROXWLRQ RI A[ D E LV DQ [O LQ Rn VXFK WKDW kE AO[k kE A[k IRU DOO [ LQ Rn 7KH PRVW LPSRUWDQW DVSHFW RI WKH OHDVWVTXDUHV SUREOHP LV WKDW QR PDWWHU ZKDW [ ZH VHOHFW WKH YHFWRU A[ ZLOO QHFHVVDULO\ EH LQ WKH FROXPQ VSDFH &RO A 6R ZH VHHN DQ [ WKDW PDNHV A[ WKH FORVHVW SRLQW LQ &RO A WR E 6HH )LJXUH 2I FRXUVH LI E KDSSHQV WR EH LQ &RO A WKHQ E LV A[ IRU VRPH [ DQG VXFK DQ [ LV D ŗOHDVWVTXDUHV VROXWLRQŘ
6ROXWLRQ RI WKH *HQHUDO /HDVW6TXDUHV 3UREOHP *LYHQ A DQG E DV DERYH DSSO\ WKH %HVW $SSUR[LPDWLRQ 7KHRUHP LQ 6HFWLRQ WR WKH VXEVSDFH &RO A /HW EO D SURM&RO A E
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/HDVW6TXDUHV 3UREOHPV
b
0 Axˆ Ax1
Col A
Ax2
'*(63& 7KH YHFWRU E LV FORVHU WR
AO[ WKDQ WR A[ IRU RWKHU [
%HFDXVH EO LV LQ WKH FROXPQ VSDFH RI A WKH HTXDWLRQ A[ D EO LV FRQVLVWHQW DQG WKHUH LV DQ [O LQ Rn VXFK WKDW AO[ D EO 6LQFH EO LV WKH FORVHVW SRLQW LQ &RO A WR E D YHFWRU [O LV D OHDVWVTXDUHV VROXWLRQ RI A[ D E LI DQG RQO\ LI [O VDWLVıHV 6XFK DQ [O LQ Rn LV D OLVW RI ZHLJKWV WKDW ZLOO EXLOG EO RXW RI WKH FROXPQV RI A 6HH )LJXUH >7KHUH DUH PDQ\ VROXWLRQV RI LI WKH HTXDWLRQ KDV IUHH YDULDEOHV@ b 2 Aˆx b Col A 0 n
xˆ
ˆ 5 Axˆ b A
subspace of
m
'*(63& 7KH OHDVWVTXDUHV VROXWLRQ [O LV LQ Rn
O %\ WKH 2UWKRJRQDO 'HFRPSRVLWLRQ 7KHRUHP LQ 6HF 6XSSRVH [O VDWLVıHV AO[ D E WLRQ WKH SURMHFWLRQ EO KDV WKH SURSHUW\ WKDW E EO LV RUWKRJRQDO WR &RO A VR E AO[ LV RUWKRJRQDO WR HDFK FROXPQ RI A ,I Dj LV DQ\ FROXPQ RI A WKHQ Dj .E AO[/ D 0 DQG DjT .E AO[/ D 0 6LQFH HDFK DTj LV D URZ RI AT AT .E AO[/ D
7KLV HTXDWLRQ DOVR IROORZV IURP 7KHRUHP LQ 6HFWLRQ 7KXV
AT E ATAO[ D ATAO[ D AT E 7KHVH FDOFXODWLRQV VKRZ WKDW HDFK OHDVWVTXDUHV VROXWLRQ RI A[ D E VDWLVıHV WKH HTXDWLRQ
ATA[ D AT E
7KH PDWUL[ HTXDWLRQ UHSUHVHQWV D V\VWHP RI HTXDWLRQV FDOOHG WKH QRUPDO HTXDWLRQV IRU A[ D E $ VROXWLRQ RI LV RIWHQ GHQRWHG E\ [O
5)&03&.
7KH VHW RI OHDVWVTXDUHV VROXWLRQV RI A[ D E FRLQFLGHV ZLWK WKH QRQHPSW\ VHW RI VROXWLRQV RI WKH QRUPDO HTXDWLRQV ATA[ D AT E
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
1300' $V VKRZQ WKH VHW RI OHDVWVTXDUHV VROXWLRQV LV QRQHPSW\ DQG HDFK OHDVWVTXDUHV VROXWLRQ [O VDWLVıHV WKH QRUPDO HTXDWLRQV &RQYHUVHO\ VXSSRVH [O VDWLVıHV ATAO[ D AT E 7KHQ [O VDWLVıHV ZKLFK VKRZV WKDW E AO[ LV RUWKRJRQDO WR WKH URZV RI AT DQG KHQFH LV RUWKRJRQDO WR WKH FROXPQV RI A 6LQFH WKH FROXPQV RI A VSDQ &RO A WKH YHFWRU E AO[ LV RUWKRJRQDO WR DOO RI &RO A +HQFH WKH HTXDWLRQ E D AO[ C .E AO[/ LV D GHFRPSRVLWLRQ RI E LQWR WKH VXP RI D YHFWRU LQ &RO A DQG D YHFWRU RUWKRJRQDO WR &RO A %\ WKH XQLTXHQHVV RI WKH RUWKRJRQDO GHFRPSRVLWLRQ AO[ PXVW EH WKH RUWKRJRQDO O DQG [O LV D OHDVWVTXDUHV VROXWLRQ SURMHFWLRQ RI E RQWR &RO A 7KDW LV AO[ D E
(;$03/( )LQG D OHDVWVTXDUHV VROXWLRQ RI WKH LQFRQVLVWHQW V\VWHP A[ D E IRU 2
4 A D 40 1
3 0 2 5; 1
2
3 2 E D 4 05 11
62/87,21 7R XVH QRUPDO HTXDWLRQV FRPSXWH
AAD T
A ED T
4 0
0 2
4 0
0 2
3 2 4 0 1 4 17 5 0 2 D 1 1 1 1 2 3 2 1 4 5 19 0 D 1 11 11
1 5
7KHQ WKH HTXDWLRQ ATA[ D AT E EHFRPHV 17 1 x1 19 D 1 5 x2 11 5RZ RSHUDWLRQV FDQ EH XVHG WR VROYH WKLV V\VWHP EXW VLQFH ATA LV LQYHUWLEOH DQG 2 2 LW LV SUREDEO\ IDVWHU WR FRPSXWH 1 5 1 .ATA/1 D 84 1 17 DQG WKHQ WR VROYH ATA[ D AT E DV [O D .ATA/1 AT E 1 1 5 1 19 84 1 D D D 2 84 1 17 11 84 168 ,Q PDQ\ FDOFXODWLRQV ATA LV LQYHUWLEOH EXW WKLV LV QRW DOZD\V WKH FDVH 7KH QH[W H[DPSOH LQYROYHV D PDWUL[ RI WKH VRUW WKDW DSSHDUV LQ ZKDW DUH FDOOHG DQDO\VLV RI YDULDQFH SUREOHPV LQ VWDWLVWLFV
(;$03/( )LQG D OHDVWVTXDUHV VROXWLRQ RI A[ D E IRU 2
1 61 6 61 AD6 61 6 41 1
1 1 0 0 0 0
0 0 1 1 0 0
3 0 07 7 07 7; 07 7 15 1
2
3 3 6 1 7 6 7 6 07 6 7 ED6 7 6 27 4 55 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/HDVW6TXDUHV 3UREOHPV
62/87,21 &RPSXWH
2
1 61 T AAD6 40 0 2
1 61 A ED6 40 0 T
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
2 3 1 0 0 3 1 2 1 0 07 1 6 6 61 7 61 7 62 0 1 0 07 76 7D6 42 0 1 07 0 56 61 7 4 5 1 0 0 1 1 2 1 0 0 1 2 3 3 3 2 3 7 1 6 4 6 1 7 6 7 6 7 07 76 0 7 D 6 4 7 6 7 5 4 0 6 27 25 4 5 5 1 6 1
7KH DXJPHQWHG PDWUL[ IRU ATA[ D AT E LV 2 3 2 6 2 2 2 4 1 6 2 2 0 0 4 7 6 0 6 7 6 42 0 2 0 25 40 2 0 0 2 6 0
0 1 0 0
2 2 0 0
3 2 07 7 05 2
2 0 2 0
3 0 1 3 0 1 5 7 7 1 1 2 5 0 0 0
7KH JHQHUDO VROXWLRQ LV x1 D 3 x4 x2 D 5 C x4 x3 D 2 C x4 DQG x4 LV IUHH 6R WKH JHQHUDO OHDVWVTXDUHV VROXWLRQ RI A[ D E KDV WKH IRUP 2 3 2 3 3 1 6 5 7 6 17 7 6 7 [O D 6 4 2 5 C x4 4 1 5 0 1 7KH QH[W WKHRUHP JLYHV XVHIXO FULWHULD IRU GHWHUPLQLQJ ZKHQ WKHUH LV RQO\ RQH OHDVW VTXDUHV VROXWLRQ RI A[ D E 2I FRXUVH WKH RUWKRJRQDO SURMHFWLRQ EO LV DOZD\V XQLTXH
5)&03&.
/HW A EH DQ m n PDWUL[ 7KH IROORZLQJ VWDWHPHQWV DUH ORJLFDOO\ HTXLYDOHQW D 7KH HTXDWLRQ A[ D E KDV D XQLTXH OHDVWVTXDUHV VROXWLRQ IRU HDFK E LQ Rm E 7KH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW F 7KH PDWUL[ ATA LV LQYHUWLEOH :KHQ WKHVH VWDWHPHQWV DUH WUXH WKH OHDVWVTXDUHV VROXWLRQ [O LV JLYHQ E\ [O D .ATA/1 AT E
7KH PDLQ HOHPHQWV RI D SURRI RI 7KHRUHP DUH RXWOLQHG LQ ([HUFLVHV ş ZKLFK DOVR UHYLHZ FRQFHSWV IURP &KDSWHU )RUPXOD IRU [O LV XVHIXO PDLQO\ IRU WKHRUHWLFDO SXUSRVHV DQG IRU KDQG FDOFXODWLRQV ZKHQ ATA LV D 2 2 LQYHUWLEOH PDWUL[ :KHQ D OHDVWVTXDUHV VROXWLRQ [O LV XVHG WR SURGXFH AO[ DV DQ DSSUR[LPDWLRQ WR E WKH GLVWDQFH IURP E WR AO[ LV FDOOHG WKH OHDVWVTXDUHV HUURU RI WKLV DSSUR[LPDWLRQ
(;$03/( *LYHQ A DQG E DV LQ ([DPSOH GHWHUPLQH WKH OHDVWVTXDUHV HUURU LQ WKH OHDVWVTXDUHV VROXWLRQ RI A[ D E
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
b (2, 0, 11)
x3
62/87,21 )URP ([DPSOH
2
3 2 2 4 E D 4 0 5 DQG AO[ D 4 0 11 1
!84
+HQFH 0
(4, 0, 1) Col A
x1 '*(63&
(0, 2, 1)
Axˆ
x2
3 2 3 0 4 1 25 D 445 2 1 3
2
3 2 3 2 3 2 4 2 E AO[ D 4 0 5 4 4 5 D 4 4 5 11 3 8
DQG
p p kE AO[k D .2/2 C .4/2 C 82 D 84 p 2 7KH OHDVWVTXDUHV p HUURU LV 84 )RU DQ\ [ LQ R WKH GLVWDQFH EHWZHHQ E DQG WKH YHFWRU A[ LV DW OHDVW 84 6HH )LJXUH 1RWH WKDW WKH OHDVWVTXDUHV VROXWLRQ [O LWVHOI GRHV QRW DSSHDU LQ WKH ıJXUH
$OWHUQDWLYH &DOFXODWLRQV RI /HDVW6TXDUHV 6ROXWLRQV 7KH QH[W H[DPSOH VKRZV KRZ WR ıQG D OHDVWVTXDUHV VROXWLRQ RI A[ D E ZKHQ WKH FROXPQV RI A DUH RUWKRJRQDO 6XFK PDWULFHV RIWHQ DSSHDU LQ OLQHDU UHJUHVVLRQ SUREOHPV GLVFXVVHG LQ WKH QH[W VHFWLRQ
(;$03/( )LQG D OHDVWVTXDUHV VROXWLRQ RI A[ D E IRU 2
3 1 6 6 1 2 7 7 AD6 4 1 1 5; 1 7
2
3 1 6 27 7 ED6 4 15 6
62/87,21 %HFDXVH WKH FROXPQV D1 DQG D2 RI A DUH RUWKRJRQDO WKH RUWKRJRQDO
SURMHFWLRQ RI E RQWR &RO A LV JLYHQ E\ E D1 E D2 8 45 EO D D1 C D2 D D1 C D2 D1 D1 D2 D2 4 90 2 3 2 3 2 3 2 3 1 6 2 7 6 1 7 6 1 7 7 6 7 6 7 D6 4 2 5 C 4 1=2 5 D 4 5=2 5 2 7=2 11=2
O %XW WKLV LV WULYLDO VLQFH ZH DOUHDG\ 1RZ WKDW EO LV NQRZQ ZH FDQ VROYH AO[ D E O ,W LV FOHDU IURP WKDW NQRZ ZKDW ZHLJKWV WR SODFH RQ WKH FROXPQV RI A WR SURGXFH E 8=4 2 [O D D 45=90 1=2 ,Q VRPH FDVHV WKH QRUPDO HTXDWLRQV IRU D OHDVWVTXDUHV SUREOHP FDQ EH LOO FRQGLWLRQHG WKDW LV VPDOO HUURUV LQ WKH FDOFXODWLRQV RI WKH HQWULHV RI ATA FDQ VRPHWLPHV FDXVH UHODWLYHO\ ODUJH HUURUV LQ WKH VROXWLRQ [O ,I WKH FROXPQV RI A DUH OLQHDUO\ LQGH SHQGHQW WKH OHDVWVTXDUHV VROXWLRQ FDQ RIWHQ EH FRPSXWHG PRUH UHOLDEO\ WKURXJK D 45 IDFWRUL]DWLRQ RI A GHVFULEHG LQ 6HFWLRQ 1 1
7KH 45 PHWKRG LV FRPSDUHG ZLWK WKH VWDQGDUG QRUPDO HTXDWLRQ PHWKRG LQ * *ROXE DQG & 9DQ /RDQ 0DWUL[ &RPSXWDWLRQV UG HG %DOWLPRUH -RKQV +RSNLQV 3UHVV SS ş
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/HDVW6TXDUHV 3UREOHPV
5)&03&.
*LYHQ DQ m n PDWUL[ A ZLWK OLQHDUO\ LQGHSHQGHQW FROXPQV OHW A D 45 EH D 45 IDFWRUL]DWLRQ RI A DV LQ 7KHRUHP 7KHQ IRU HDFK E LQ Rm WKH HTXDWLRQ A[ D E KDV D XQLTXH OHDVWVTXDUHV VROXWLRQ JLYHQ E\ [O D R1 QT E
1300' /HW [O D R1 QT E 7KHQ AO[ D 45[O D 45R1 QT E D QQT E %\ 7KHRUHP WKH FROXPQV RI Q IRUP DQ RUWKRQRUPDO EDVLV IRU &RO A +HQFH E\ O ZKLFK 7KHRUHP QQT E LV WKH RUWKRJRQDO SURMHFWLRQ EO RI E RQWR &RO A 7KHQ AO[ D E VKRZV WKDW [O LV D OHDVWVTXDUHV VROXWLRQ RI A[ D E 7KH XQLTXHQHVV RI [O IROORZV IURP 7KHRUHP 1XPHULFDO 1RWHV 6LQFH R LQ 7KHRUHP LV XSSHU WULDQJXODU [O VKRXOG EH FDOFXODWHG DV WKH H[DFW VROXWLRQ RI WKH HTXDWLRQ R[ D QT E ,W LV PXFK IDVWHU WR VROYH E\ EDFNVXEVWLWXWLRQ RU URZ RSHUDWLRQV WKDQ WR FRPSXWH R1 DQG XVH
(;$03/( )LQG WKH OHDVWVTXDUHV VROXWLRQ RI A[ D E IRU 2
1 61 AD6 41 1
3 1 1 3
3 5 07 7; 25 3
2
3 3 6 57 7 ED6 4 75 3
62/87,21 7KH 45 IDFWRUL]DWLRQ RI A FDQ EH REWDLQHG DV LQ 6HFWLRQ
2
3 1=2 1=2 1=2 2 6 1=2 1=2 1=2 7 2 74 A D 45 D 6 4 1=2 1=2 1=2 5 0 0 1=2 1=2 1=2
7KHQ
4 2 0
3 5 35 2
3 2 3 3 1=2 1=2 1=2 1=2 6 6 7 5 7 4 5 QT E D 4 1=2 1=2 1=2 1=2 56 4 7 5 D 6 1=2 1=2 1=2 1=2 4 3 2
2
3
7KH OHDVWVTXDUHV VROXWLRQ [O VDWLVıHV R[ D QT E WKDW LV 2 32 3 2 3 2 4 5 x1 6 4 0 2 3 54 x2 5 D 4 6 5 0 0 2 4 x3 2 3 10 4 5 6 O 7KLV HTXDWLRQ LV VROYHG HDVLO\ DQG \LHOGV [ D 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
3UDFWLFH 3UREOHPV 2 3 2 3 1 3 3 5 /HW A D 4 1 5 1 5 DQG E D 4 3 5 )LQG D OHDVWVTXDUHV VROXWLRQ RI A[ D E 1 7 2 5 DQG FRPSXWH WKH DVVRFLDWHG OHDVWVTXDUHV HUURU :KDW FDQ \RX VD\ DERXW WKH OHDVWVTXDUHV VROXWLRQ RI A[ D E ZKHQ E LV RUWKRJRQDO WR WKH FROXPQV RI A"
([HUFLVHV ,Q ([HUFLVHV ş ıQG D OHDVWVTXDUHV VROXWLRQ RI A[ D E E\ D FRQVWUXFWLQJ WKH QRUPDO HTXDWLRQV IRU [O DQG E VROYLQJ IRU [O 2 3 2 3 1 2 4 A D 4 2 3 5 E D 4 1 5 1 3 2 2
3
2
3
2
1 5 0 5 E D 4 8 5 3 1
2 A D 4 2 2 2
3 2 3 1 2 3 6 1 7 6 17 27 7 A D 6 ED6 4 0 4 4 5 35 2 5 2 2
3
2 3 1 3 5 A D 4 1 1 5 E D 4 1 5 1 1 0 ,Q ([HUFLVHV DQG GHVFULEH DOO OHDVWVTXDUHV VROXWLRQV RI WKH HTXDWLRQ A[ D E 2 3 2 3 1 1 0 1 61 7 637 1 0 6 7 E D 6 7 A D 4 485 1 0 15 1 0 1 2 2
1 61 6 61 A D 6 61 6 41 1
1 1 1 0 0 0
3 2 3 0 7 627 07 7 6 7 6 7 07 7 E D 6 3 7 667 17 7 6 7 455 15 1 4
&RPSXWH WKH OHDVWVTXDUHV HUURU DVVRFLDWHG ZLWK WKH OHDVW VTXDUHV VROXWLRQ IRXQG LQ ([HUFLVH &RPSXWH WKH OHDVWVTXDUHV HUURU DVVRFLDWHG ZLWK WKH OHDVW VTXDUHV VROXWLRQ IRXQG LQ ([HUFLVH ,Q ([HUFLVHV ş ıQG D WKH RUWKRJRQDO SURMHFWLRQ RI E RQWR &RO A DQG E D OHDVWVTXDUHV VROXWLRQ RI A[ D E 2 3 2 3 1 5 4 1 5 E D 4 2 5 A D 4 3 2 4 3
3 2 3 1 2 3 4 5 E D 4 1 5 A D 4 1 1 2 5 2 3 2 3 4 0 1 9 6 1 5 7 607 17 6 6 AD4 ED4 7 6 1 05 05 1 1 5 0 2 3 2 3 1 1 0 2 6 1 657 0 1 7 6 7 6 7 ED4 5 AD4 0 1 15 6 6 1 1 1 2 3 2 3 3 4 11 5 1 5 E D 4 9 5 X D /HW A D 4 2 DQG Y D 1 3 4 5 5 &RPSXWH AX DQG AY DQG FRPSDUH WKHP ZLWK E 2 &RXOG X SRVVLEO\ EH D OHDVWVTXDUHV VROXWLRQ RI A[ D E" $QVZHU WKLV ZLWKRXW FRPSXWLQJ D OHDVWVTXDUHV VROXWLRQ 2 3 2 3 2 1 5 4 /HW A D 4 3 4 5 E D 4 4 5 X D DQG Y D 5 3 2 4 6 &RPSXWH AX DQG AY DQG FRPSDUH WKHP ZLWK E ,V 5 LW SRVVLEOH WKDW DW OHDVW RQH RI X RU Y FRXOG EH D OHDVWVTXDUHV VROXWLRQ RI A[ D E" $QVZHU WKLV ZLWKRXW FRPSXWLQJ D OHDVW VTXDUHV VROXWLRQ
,Q ([HUFLVHV DQG XVH WKH IDFWRUL]DWLRQ A D QR WR ıQG WKH OHDVWVTXDUHV VROXWLRQ RI A[ D E 2 3 2 3 2 3 2 3 2=3 1=3 7 3 5 4 5 D 4 2=3 2=3 5 E D 435 A D 4 2 0 1 1 1 1 1=3 2=3 2 3 2 3 2 3 1 1 1=2 1=2 1 61 7 6 1=2 6 7 47 1=2 7 3 6 7 2 6 67 A D 6 ;E D 4 4 1 1 5 D 4 1=2 1=2 5 0 5 5 5 1 4 1=2 1=2 7 ,Q ([HUFLVHV ş A LV DQ m n PDWUL[ DQG E LV LQ Rm 0DUN HDFK VWDWHPHQW 7UXH RU )DOVH 7) -XVWLI\ HDFK DQVZHU 7) 7KH JHQHUDO OHDVWVTXDUHV SUREOHP LV WR ıQG DQ [ WKDW PDNHV A[ DV FORVH DV SRVVLEOH WR E
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
/HDVW6TXDUHV 3UREOHPV
7) ,I E LV LQ WKH FROXPQ VSDFH RI A WKHQ HYHU\ VROXWLRQ RI A[ D E LV D OHDVWVTXDUHV VROXWLRQ
)LQG D IRUPXOD IRU WKH OHDVWVTXDUHV VROXWLRQ RI A[ D E ZKHQ WKH FROXPQV RI A DUH RUWKRQRUPDO
7) $ OHDVWVTXDUHV VROXWLRQ RI A[ D E LV D YHFWRU [O WKDW O ZKHUH EO LV WKH RUWKRJRQDO SURMHFWLRQ RI E VDWLVıHV AO[ D E RQWR &RO A
'HVFULEH DOO OHDVWVTXDUHV VROXWLRQV RI WKH V\VWHP
7) $ OHDVWVTXDUHV VROXWLRQ RI A[ D E LV D YHFWRU [O VXFK WKDW kE A[k kE AO[k IRU DOO [ LQ Rn 7) $Q\ VROXWLRQ RI AT A[ D AT E LV D OHDVWVTXDUHV VROX WLRQ RI A[ D E 7) ,I WKH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW WKHQ WKH HTXDWLRQ A[ D E KDV H[DFWO\ RQH OHDVWVTXDUHV VROXWLRQ 7) 7KH OHDVWVTXDUHV VROXWLRQ RI A[ D E LV WKH SRLQW LQ WKH FROXPQ VSDFH RI A FORVHVW WR E 7) $ OHDVWVTXDUHV VROXWLRQ RI A[ D E LV D OLVW RI ZHLJKWV WKDW ZKHQ DSSOLHG WR WKH FROXPQV RI A SURGXFHV WKH RUWKRJ RQDO SURMHFWLRQ RI E RQWR &RO A 7) 7KH QRUPDO HTXDWLRQV DOZD\V SURYLGH D UHOLDEOH PHWKRG IRU FRPSXWLQJ OHDVWVTXDUHV VROXWLRQV 7) ,I A KDV D 45 IDFWRUL]DWLRQ VD\ A D QR WKHQ WKH EHVW ZD\ WR ıQG WKH OHDVWVTXDUHV VROXWLRQ RI A[ D E LV WR FRPSXWH [O D R1 QT E /HW A EH DQ m n PDWUL[ 8VH WKH VWHSV EHORZ WR VKRZ WKDW D YHFWRU [ LQ Rn VDWLVıHV A[ D LI DQG RQO\ LI ATA[ D 7KLV ZLOO VKRZ WKDW 1XO A D 1XO ATA D 6KRZ WKDW LI A[ D WKHQ ATA[ D E 6XSSRVH ATA[ D ([SODLQ ZK\ [TATA[ D DQG XVH WKLV WR VKRZ WKDW A[ D /HW A EH DQ m n PDWUL[ VXFK WKDW A A LV LQYHUWLEOH 6KRZ WKDW WKH FROXPQV RI A DUH OLQHDUO\ LQGHSHQGHQW >&DUHIXO &DUHIXO A QHHG QRW EH VTXDUH@ D 8VH ([HUFLVH WR VKRZ WKDW ATA LV DQ LQYHUWLEOH PDWUL[ E ([SODLQ ZK\ A PXVW KDYH DW OHDVW DV PDQ\ URZV DV FROXPQV F 'HWHUPLQH WKH UDQN RI A 8VH ([HUFLVH WR VKRZ WKDW UDQN ATA D UDQN A >+LQW +RZ PDQ\ FROXPQV GRHV ATA KDYH" +RZ LV WKLV FRQQHFWHG ZLWK WKH UDQN RI ATA"@ 6XSSRVH A LV m n ZLWK OLQHDUO\ LQGHSHQGHQW FROXPQV DQG E LV LQ Rm 8VH WKH QRUPDO HTXDWLRQV WR SURGXFH D IRUPXOD O WKH SURMHFWLRQ RI E RQWR &RO A >+LQW )LQG [O ıUVW 7KH IRU E IRUPXOD GRHV QRW UHTXLUH DQ RUWKRJRQDO EDVLV IRU &RO A@
xCy D2 xCy D4 7 ([DPSOH LQ 6HFWLRQ GLVSOD\HG D ORZSDVV OLQHDU ıO
WHU WKDW FKDQJHG D VLJQDO fyk g LQWR fykC1 g DQG FKDQJHG D KLJKHUIUHTXHQF\ VLJQDO fwk g LQWR WKH ]HUR VLJQDO ZKHUH yk D FRV.k=4/ DQG wk D FRV.3k=4/ 7KH IROORZLQJ FDO FXODWLRQV ZLOO GHVLJQ D ıOWHU ZLWK DSSUR[LPDWHO\ WKRVH SURS HUWLHV 7KH ıOWHU HTXDWLRQ LV
a0 ykC2 C a1 ykC1 C a2 yk D ´k
IRU DOO k
.8/
%HFDXVH WKH VLJQDOV DUH SHULRGLF ZLWK SHULRG LW VXĴFHV WR VWXG\ HTXDWLRQ IRU k D 0; : : : ; 7 7KH DFWLRQ RQ WKH WZR VLJQDOV GHVFULEHG DERYH WUDQVODWHV LQWR WZR VHWV RI HLJKW HTXDWLRQV VKRZQ EHORZ 2
ykC2 ykC1
kD0 kD1 6 :7 6 6 1 ::: 6 6 :7 6 6 0 6 6 :7 6 4 1 :7 kD7
0 :7 1 :7 0 :7 1
wkC2 wkC1 2 kD0 kD1 6 :7 0 6 6 1 ::: :7 6 6 :7 1 6 6 0 :7 6 6 :7 0 6 4 1 :7 :7 1 kD7
ykC1 2 3 7 6 07 :7 7 6 7 2 3 6 :7 7 07 7 a0 6 7 6 7 :7 7 74 a1 5 D 6 1 7 7 6 7 1 7 6 :7 7 a2 6 07 :7 7 7 6 7 4 :7 5 05 :7 1 yk
3
wk 3 2 3 0 7 607 :7 7 6 7 2 3 607 07 7 a0 6 7 6 7 :7 7 74 a1 5 D 6 0 7 607 1 7 7 a2 6 7 7 607 :7 7 6 7 5 4 05 0 0 :7
:ULWH DQ HTXDWLRQ A[ D E ZKHUH A LV D 16 3 PDWUL[ IRUPHG IURP WKH WZR FRHĴFLHQW PDWULFHV DERYH DQG ZKHUH E LQ R16 LV IRUPHG IURP WKH WZR ULJKW VLGHV RI WKH HTXDWLRQV )LQG a0 a1 DQG a2 JLYHQ E\ WKH OHDVWVTXDUHV VROXWLRQ RI A[ D Ep7KH LQ WKH GDWD DERYH ZDV XVHG DV DQ DSSUR[LPDWLRQ IRU 2=2 WR LOOXVWUDWH KRZ D W\SLFDO FRPSXWDWLRQ LQ DQ DSSOLHG SUREOHP PLJKW SURFHHG ,I ZHUH XVHG LQVWHDG WKH UHVXOWLQJ ıOWHU FRHĴFLHQWV ZRXOG DJUHH p p WR DW OHDVW VHYHQ GHFLPDO SODFHV ZLWK 2=4; 1=2 DQG 2=4 WKH YDOXHV SURGXFHG E\ H[DFW DULWKPHWLF FDOFXODWLRQV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
6ROXWLRQV WR 3UDFWLFH 3UREOHPV )LUVW FRPSXWH 2
1 ATA D 4 3 3 2 1 AT E D 4 3 3
1 5 1 1 5 1
32 3 2 1 1 3 3 3 7 54 1 5 1 5 D 4 9 2 1 7 2 0 32 3 2 3 1 5 3 7 54 3 5 D 4 65 5 2 5 28
9 83 28
3 0 28 5 14
1H[W URZ UHGXFH WKH DXJPHQWHG PDWUL[ IRU WKH QRUPDO HTXDWLRQV ATA[ D AT E 2 3 2 3 2 3 3 9 0 3 1 3 0 1 1 0 3=2 2 4 9 83 28 65 5 4 0 56 28 56 5 4 0 1 1=2 1 5 0 0 0 0 0 28 14 28 0 28 14 28 7KH JHQHUDO OHDVWVTXDUHV VROXWLRQ LV x1 D 2 C 32 x3 x2 D 1 12 x3 ZLWK x3 IUHH )RU RQH VSHFLıF VROXWLRQ WDNH x3 D 0 IRU H[DPSOH DQG JHW 2 3 2 [O D 4 1 5 0 7R ıQG WKH OHDVWVTXDUHV HUURU FRPSXWH 2 32 3 2 3 1 3 3 2 5 EO D AO[ D 4 1 5 1 54 1 5 D 4 3 5 0 5 1 7 2 ,W WXUQV RXW WKDW EO D E VR kE EO k D 0 7KH OHDVWVTXDUHV HUURU LV ]HUR EHFDXVH E KDSSHQV WR EH LQ &RO A ,I E LV RUWKRJRQDO WR WKH FROXPQV RI A WKHQ WKH SURMHFWLRQ RI E RQWR WKH FROXPQ VSDFH RI A LV ,Q WKLV FDVH D OHDVWVTXDUHV VROXWLRQ [O RI A[ D E VDWLVıHV AO[ D
0DFKLQH /HDUQLQJ DQG /LQHDU 0RGHOV 0DFKLQH /HDUQLQJ 0DFKLQH OHDUQLQJ XVHV OLQHDU PRGHOV LQ VLWXDWLRQV ZKHUH WKH PDFKLQH LV EHLQJ WUDLQHG WR SUHGLFW WKH RXWFRPH GHSHQGHQW YDULDEOHV EDVHG RQ WKH YDOXHV RI WKH LQSXWV LQGHSHQGHQW YDULDEOHV 7KH PDFKLQH LV JLYHQ D VHW RI WUDLQLQJ GDWD ZKHUH WKH YDOXHV RI WKH LQGHSHQGHQW DQG GHSHQGHQW YDULDEOHV DUH NQRZQ 7KH PDFKLQH WKHQ OHDUQV WKH UHODWLRQVKLS EHWZHHQ WKH LQGHSHQGHQW YDULDEOHV DQG WKH GHSHQGHQW YDULDEOHV 2QH W\SH RI OHDUQLQJ LV WR ıW D FXUYH VXFK DV D OHDVWVTXDUHV OLQH RU SDUDEROD WR WKH GDWD 2QFH WKH PDFKLQH KDV OHDUQHG WKH SDWWHUQ IURP WKH WUDLQLQJ GDWD LW FDQ WKHQ HVWLPDWH WKH YDOXH RI WKH RXWSXW EDVHG RQ D JLYHQ YDOXH IRU WKH LQSXW
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
0DFKLQH /HDUQLQJ DQG /LQHDU 0RGHOV
/HDVW6TXDUHV /LQHV $ FRPPRQ WDVN LQ VFLHQFH DQG HQJLQHHULQJ LV WR DQDO\]H DQG XQGHUVWDQG UHODWLRQVKLSV DPRQJ VHYHUDO TXDQWLWLHV WKDW YDU\ 7KLV VHFWLRQ GHVFULEHV D YDULHW\ RI VLWXDWLRQV LQ ZKLFK GDWD DUH XVHG WR EXLOG RU YHULI\ D IRUPXOD WKDW SUHGLFWV WKH YDOXH RI RQH YDULDEOH DV D IXQFWLRQ RI RWKHU YDULDEOHV ,Q HDFK FDVH WKH SUREOHP ZLOO DPRXQW WR VROYLQJ D OHDVW VTXDUHV SUREOHP )RU HDV\ DSSOLFDWLRQ RI WKH GLVFXVVLRQ WR UHDO SUREOHPV WKDW \RX PD\ HQFRXQWHU ODWHU LQ \RXU FDUHHU ZH FKRRVH QRWDWLRQ WKDW LV FRPPRQO\ XVHG LQ WKH VWDWLVWLFDO DQDO\VLV RI VFLHQWLıF DQG HQJLQHHULQJ GDWD ,QVWHDG RI A[ D E ZH ZULWH X ˇ D \ DQG UHIHU WR X DV WKH GHVLJQ PDWUL[ ˇ DV WKH SDUDPHWHU YHFWRU DQG \ DV WKH REVHUYDWLRQ YHFWRU 7KH VLPSOHVW UHODWLRQ EHWZHHQ WZR YDULDEOHV x DQG y LV WKH OLQHDU HTXDWLRQ y D ˇ0 C ˇ1 x 1 ([SHULPHQWDO GDWD RIWHQ SURGXFH SRLQWV .x1 ; y1 /; : : : ; .xn ; yn / WKDW ZKHQ JUDSKHG VHHP WR OLH FORVH WR D OLQH :H ZDQW WR GHWHUPLQH WKH SDUDPHWHUV ˇ0 DQG ˇ1 WKDW PDNH WKH OLQH DV ŗFORVHŘ WR WKH SRLQWV DV SRVVLEOH 6XSSRVH ˇ0 DQG ˇ1 DUH ı[HG DQG FRQVLGHU WKH OLQH y D ˇ0 C ˇ1 x LQ )LJXUH &RUUHVSRQGLQJ WR HDFK GDWD SRLQW .xj ; yj / WKHUH LV D SRLQW .xj ; ˇ0 C ˇ1 xj / RQ WKH OLQH ZLWK WKH VDPH x FRRUGLQDWH :H FDOO yj WKH REVHUYHG YDOXH RI y DQG ˇ0 C ˇ1 xj WKH SUHGLFWHG y YDOXH GHWHUPLQHG E\ WKH OLQH 7KH GLijHUHQFH EHWZHHQ DQ REVHUYHG y YDOXH DQG D SUHGLFWHG y YDOXH LV FDOOHG D UHVLGXDO y
Data point
(xj , yj ) (xj , b0 1 b1xj )
Point on line
Residual
Residual y 5 b0 1 b1x
x1
xn
xj
x
'*(63& )LWWLQJ D OLQH WR H[SHULPHQWDO GDWD
7KHUH DUH VHYHUDO ZD\V WR PHDVXUH KRZ ŗFORVHŘ WKH OLQH LV WR WKH GDWD 7KH XVXDO FKRLFH SULPDULO\ EHFDXVH WKH PDWKHPDWLFDO FDOFXODWLRQV DUH VLPSOH LV WR DGG WKH VTXDUHV RI WKH UHVLGXDOV 7KH OHDVWVTXDUHV OLQH LV WKH OLQH y D ˇ0 C ˇ1 x WKDW PLQLPL]HV WKH VXP RI WKH VTXDUHV RI WKH UHVLGXDOV 7KLV OLQH LV DOVR FDOOHG D OLQH RI UHJUHVVLRQ RI \ RQ [ EHFDXVH DQ\ HUURUV LQ WKH GDWD DUH DVVXPHG WR EH RQO\ LQ WKH y FRRUGLQDWHV 7KH FRHĴFLHQWV ˇ0 ˇ1 RI WKH OLQH DUH FDOOHG OLQHDU UHJUHVVLRQ FRHĴFLHQWV2 ,I WKH GDWD SRLQWV ZHUH RQ WKH OLQH WKH SDUDPHWHUV ˇ0 DQG ˇ1 ZRXOG VDWLVI\ WKH HTXDWLRQV
1
3UHGLFWHG y YDOXH
2EVHUYHG y YDOXH
ˇ0 C ˇ1 x1
y1
ˇ0 C ˇ1 x2 : ::
y2 : ::
ˇ0 C ˇ1 xn
yn
7KLV QRWDWLRQ LV FRPPRQO\ XVHG IRU OHDVWVTXDUHV OLQHV LQVWHDG RI y D mx C b
2
,I WKH PHDVXUHPHQW HUURUV DUH LQ x LQVWHDG RI y VLPSO\ LQWHUFKDQJH WKH FRRUGLQDWHV RI WKH GDWD .xj ; yj / EHIRUH SORWWLQJ WKH SRLQWV DQG FRPSXWLQJ WKH UHJUHVVLRQ OLQH ,I ERWK FRRUGLQDWHV DUH VXEMHFW WR SRVVLEOH HUURU WKHQ \RX PLJKW FKRRVH WKH OLQH WKDW PLQLPL]HV WKH VXP RI WKH VTXDUHV RI WKH RUWKRJRQDO SHUSHQGLFXODU GLVWDQFHV IURP WKH SRLQWV WR WKH OLQH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
:H FDQ ZULWH WKLV V\VWHP DV
X ˇ D \;
2
1 61 6 ZKHUH X D 6 :: 4: 1
3 x1 x2 7 7 :: 7 ; : 5 xn
2
ˇD
ˇ0 ; ˇ1
3 y1 6 y2 7 6 7 \ D 6 :: 7 4 : 5 yn
2I FRXUVH LI WKH GDWD SRLQWV GRQŖW OLH RQ D OLQH WKHQ WKHUH DUH QR SDUDPHWHUV ˇ0 ˇ1 IRU ZKLFK WKH SUHGLFWHG y YDOXHV LQ X ˇ HTXDO WKH REVHUYHG y YDOXHV LQ \ DQG X ˇ D \ KDV QR VROXWLRQ 7KLV LV D OHDVWVTXDUHV SUREOHP A[ D E ZLWK GLijHUHQW QRWDWLRQ 7KH VTXDUH RI WKH GLVWDQFH EHWZHHQ WKH YHFWRUV X ˇ DQG \ LV SUHFLVHO\ WKH VXP RI WKH VTXDUHV RI WKH UHVLGXDOV 7KH ˇ WKDW PLQLPL]HV WKLV VXP DOVR PLQLPL]HV WKH GLVWDQFH EHWZHHQ X ˇ DQG \ &RPSXWLQJ WKH OHDVWVTXDUHV VROXWLRQ RI X ˇ D \ LV HTXLYDOHQW WR ıQGLQJ WKH ˇ WKDW GHWHUPLQHV WKH OHDVWVTXDUHV OLQH LQ )LJXUH
(;$03/( )LQG WKH HTXDWLRQ y D ˇ0 C ˇ1 x RI WKH OHDVWVTXDUHV OLQH WKDW EHVW ıWV WKH GDWD SRLQWV .2; 1/ .5; 2/ .7; 3/ DQG .8; 3/ 62/87,21 8VH WKH x FRRUGLQDWHV RI WKH GDWD WR EXLOG WKH GHVLJQ PDWUL[ X LQ DQG WKH y FRRUGLQDWHV WR EXLOG WKH REVHUYDWLRQ YHFWRU \ 2 3 2 3 1 2 1 61 57 627 7 6 7 X D6 4 1 7 5; \ D 4 3 5 1 8 3
)RU WKH OHDVWVTXDUHV VROXWLRQ RI X ˇ D \ REWDLQ WKH QRUPDO HTXDWLRQV ZLWK WKH QHZ QRWDWLRQ X TX ˇ D X T\ 7KDW LV FRPSXWH
X TX D
X T\ D
7KH QRUPDO HTXDWLRQV DUH
+HQFH ˇ0 4 D 22 ˇ1
22 142
1 2
1 5
1 7
1 2
1 5
1 7
1
4 22
9 57
2 3 1 2 7 1 6 4 61 57 D 8 41 75 22 1 8 2 3 1 7 1 6 9 627 D 8 435 57 3
22 142
D
ˇ0 ˇ1
D
9 57
22 142
1 142 22 1 24 9 2=7 D D 4 57 5=14 84 22 84 30
7KXV WKH OHDVWVTXDUHV OLQH KDV WKH HTXDWLRQ
yD
2 5 C x 7 14
6HH )LJXUH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
0DFKLQH /HDUQLQJ DQG /LQHDU 0RGHOV
y 4 Data points Least-squares line
3 2 1 1
2 3
'*(63& 7KH OHDVWVTXDUHV OLQH y D
4 5 2 7
C
6 7
8 9
x
5 x 14
(;$03/( ,I D PDFKLQH OHDUQV WKH GDWD IURP ([DPSOH E\ FUHDWLQJ D OHDVWVTXDUHV OLQH ZKDW RXWFRPH ZLOO LW SUHGLFW IRU WKH LQSXWV DQG " 62/87,21 7KH PDFKLQH ZRXOG SHUIRUP WKH VDPH FDOFXODWLRQV DV LQ ([DPSOH WR
DUULYH DW WKH OHDVWVTXDUHV OLQH
2 5 C x 7 14 DV D UHDVRQDEOH SDWWHUQ WR XVH WR SUHGLFW WKH RXWFRPHV yD
2 5 C .4/ D 7 14 2 5 )RU WKH YDOXH x D 6 WKH PDFKLQH ZLOO SUHGLFW DQ RXWSXW RI y D C .6/ D 7 14 6HH )LJXUH )RU WKH YDOXH x D 4 WKH PDFKLQH ZLOO SUHGLFW DQ RXWSXW RI y D
12 7 17 7
y 4 Learning data points 3 Learned line 2 Predicted point 1
Output 17
Input 6
1
2
7
3
4
5
6
7
8
9
x
Machine Learned Output '*(63& 0DFKLQHOHDUQHG RXWSXW
$ FRPPRQ SUDFWLFH EHIRUH FRPSXWLQJ D OHDVWVTXDUHV OLQH LV WR FRPSXWH WKH DYHUDJH x RI WKH RULJLQDO x YDOXHV DQG IRUP D QHZ YDULDEOH x D x x 7KH QHZ x GDWD DUH VDLG WR EH LQ PHDQGHYLDWLRQ IRUP ,Q WKLV FDVH WKH WZR FROXPQV RI WKH GHVLJQ PDWUL[ ZLOO EH RUWKRJRQDO 6ROXWLRQ RI WKH QRUPDO HTXDWLRQV LV VLPSOLıHG MXVW DV LQ ([DPSOH LQ 6HFWLRQ 6HH ([HUFLVHV DQG
7KH *HQHUDO /LQHDU 0RGHO ,Q VRPH DSSOLFDWLRQV LW LV QHFHVVDU\ WR ıW GDWD SRLQWV ZLWK VRPHWKLQJ RWKHU WKDQ D VWUDLJKW OLQH ,Q WKH H[DPSOHV WKDW IROORZ WKH PDWUL[ HTXDWLRQ LV VWLOO X ˇ D \ EXW WKH VSHFLıF IRUP RI X FKDQJHV IURP RQH SUREOHP WR WKH QH[W 6WDWLVWLFLDQV XVXDOO\ LQWURGXFH D UHVLGXDO YHFWRU GHıQHG E\ D \ X ˇ DQG ZULWH \ D Xˇ C $Q\ HTXDWLRQ RI WKLV IRUP LV UHIHUUHG WR DV D OLQHDU PRGHO 2QFH X DQG \ DUH GHWHUPLQHG WKH JRDO LV WR PLQLPL]H WKH OHQJWK RI ZKLFK DPRXQWV WR ıQGLQJ D OHDVWVTXDUHV VROXWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
RI X ˇ D \ ,Q HDFK FDVH WKH OHDVWVTXDUHV VROXWLRQ ˇO LV D VROXWLRQ RI WKH QRUPDO HTXDWLRQV
X TX ˇ D X T\
/HDVW6TXDUHV )LWWLQJ RI 2WKHU &XUYHV :KHQ GDWD SRLQWV .x1 ; y1 /; : : : ; .xn ; yn / RQ D VFDWWHU SORW GR QRW OLH FORVH WR DQ\ OLQH LW PD\ EH DSSURSULDWH WR SRVWXODWH VRPH RWKHU IXQFWLRQDO UHODWLRQVKLS EHWZHHQ x DQG y 7KH QH[W WZR H[DPSOHV VKRZ KRZ WR ıW GDWD E\ FXUYHV WKDW KDYH WKH JHQHUDO IRUP
y D ˇ0 f0 .x/ C ˇ1 f1 .x/ C C ˇk fk .x/
ZKHUH f0 ; : : : ; fk DUH NQRZQ IXQFWLRQV DQG ˇ0 ; : : : ; ˇk DUH SDUDPHWHUV WKDW PXVW EH GHWHUPLQHG $V ZH ZLOO VHH HTXDWLRQ GHVFULEHV D OLQHDU PRGHO EHFDXVH LW LV OLQHDU LQ WKH XQNQRZQ SDUDPHWHUV )RU D SDUWLFXODU YDOXH RI x JLYHV D SUHGLFWHG RU ŗıWWHGŘ YDOXH RI y 7KH GLijHUHQFH EHWZHHQ WKH REVHUYHG YDOXH DQG WKH SUHGLFWHG YDOXH LV WKH UHVLGXDO 7KH SDUDPHWHUV ˇ0 ; : : : ; ˇk PXVW EH GHWHUPLQHG VR DV WR PLQLPL]H WKH VXP RI WKH VTXDUHV RI WKH UHVLGXDOV
Average cost per unit
y
Units produced
x
'*(63&
$YHUDJH FRVW FXUYH
(;$03/( 6XSSRVH GDWD SRLQWV .x1 ; y1 /; : : : ; .xn ; yn / DSSHDU WR OLH DORQJ VRPH VRUW RI SDUDEROD LQVWHDG RI D VWUDLJKW OLQH )RU LQVWDQFH LI WKH x FRRUGLQDWH GHQRWHV WKH SURGXFWLRQ OHYHO IRU D FRPSDQ\ DQG y GHQRWHV WKH DYHUDJH FRVW SHU XQLW RI RSHUDWLQJ DW D OHYHO RI x XQLWV SHU GD\ WKHQ D W\SLFDO DYHUDJH FRVW FXUYH ORRNV OLNH D SDUDEROD WKDW RSHQV XSZDUG )LJXUH ,Q HFRORJ\ D SDUDEROLF FXUYH WKDW RSHQV GRZQZDUG LV XVHG WR PRGHO WKH QHW SULPDU\ SURGXFWLRQ RI QXWULHQWV LQ D SODQW DV D IXQFWLRQ RI WKH VXUIDFH DUHD RI WKH IROLDJH )LJXUH 6XSSRVH ZH ZLVK WR DSSUR[LPDWH WKH GDWD E\ DQ HTXDWLRQ RI WKH IRUP y D ˇ0 C ˇ1 x C ˇ2 x 2
y
Net primary production
'HVFULEH WKH OLQHDU PRGHO WKDW SURGXFHV D ŗOHDVWVTXDUHV ıWŘ RI WKH GDWD E\ HTXDWLRQ 62/87,21 (TXDWLRQ GHVFULEHV WKH LGHDO UHODWLRQVKLS 6XSSRVH WKH DFWXDO YDOXHV RI
WKH SDUDPHWHUV DUH ˇ0 ˇ1 ˇ2 7KHQ WKH FRRUGLQDWHV RI WKH ıUVW GDWD SRLQW .x1 ; y1 / VDWLVI\ DQ HTXDWLRQ RI WKH IRUP Surface area of foliage
'*(63&
3URGXFWLRQ RI QXWULHQWV
x
y1 D ˇ0 C ˇ1 x1 C ˇ2 x12 C 1 ZKHUH 1 LV WKH UHVLGXDO HUURU EHWZHHQ WKH REVHUYHG YDOXH y1 DQG WKH SUHGLFWHG y YDOXH ˇ0 C ˇ1 x1 C ˇ2 x12 (DFK GDWD SRLQW GHWHUPLQHV D VLPLODU HTXDWLRQ
y1 D ˇ0 C ˇ1 x1 C ˇ2 x12 C 1 y2 D ˇ0 C ˇ1 x2 C ˇ2 x22 C 2 :: : : :: yn D ˇ0 C ˇ1 xn C ˇ2 xn2 C n
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
0DFKLQH /HDUQLQJ DQG /LQHDU 0RGHOV
,W LV D VLPSOH PDWWHU WR ZULWH WKLV V\VWHP RI HTXDWLRQV LQ WKH IRUP \ D X ˇ C 7R ıQG X LQVSHFW WKH ıUVW IHZ URZV RI WKH V\VWHP DQG ORRN IRU WKH SDWWHUQ 3 21 y1 6 y2 7 6 1 6 7 6 6 :: 7 D 6 6 4 : 5 4 ::: yn 1 \ D 2
x1 x2 :: : xn X
3 2 3 x12 2 3
1 6 7 2 7 ˇ0 x2 76 7 6 2 7 6 7 : 7 74 ˇ1 5 C 6 :: 7 4 : 5 :: 5 ˇ2 2
n xn ˇ C
(;$03/( ,I GDWD SRLQWV WHQG WR IROORZ D SDWWHUQ VXFK DV LQ )LJXUH WKHQ DQ
y
DSSURSULDWH PRGHO PLJKW EH DQ HTXDWLRQ RI WKH IRUP
y D ˇ0 C ˇ1 x C ˇ2 x 2 C ˇ3 x 3 6XFK GDWD IRU LQVWDQFH FRXOG FRPH IURP D FRPSDQ\ŖV WRWDO FRVWV DV D IXQFWLRQ RI WKH OHYHO RI SURGXFWLRQ 'HVFULEH WKH OLQHDU PRGHO WKDW JLYHV D OHDVWVTXDUHV ıW RI WKLV W\SH WR GDWD .x1 ; y1 /; : : : ; .xn ; yn / x
'*(63&
'DWD SRLQWV DORQJ D FXELF FXUYH
62/87,21 %\ DQ DQDO\VLV VLPLODU WR WKDW LQ ([DPSOH ZH REWDLQ 2EVHUYDWLRQ YHFWRU
2
3 2 y1 1 6 7 6 6 y2 7 61 7 6 \D6 6 :: 7 ; X D 6 :: 4 : 5 4:
yn
1
'HVLJQ PDWUL[
x1 x2 :: : xn
x12 x22 : :: xn2
3DUDPHWHU YHFWRU
5HVLGXDO YHFWRU
3 2 3 2 3 x13
1 ˇ0 6 7 6 7 37 x2 7 6 ˇ1 7 6 2 7 6 7 6 7 :: 7 7 ; ˇ D 6 ˇ 7; D 6 :: 7 4 25 4 : 5 : 5 3 ˇ 3
n xn
0XOWLSOH 5HJUHVVLRQ 6XSSRVH DQ H[SHULPHQW LQYROYHV WZR LQGHSHQGHQW YDULDEOHVŠVD\ u DQG v ŠDQG RQH GHSHQGHQW YDULDEOH y $ VLPSOH HTXDWLRQ IRU SUHGLFWLQJ y IURP u DQG v KDV WKH IRUP
y D ˇ0 C ˇ1 u C ˇ2 v
$ PRUH JHQHUDO SUHGLFWLRQ HTXDWLRQ PLJKW KDYH WKH IRUP
y D ˇ0 C ˇ1 u C ˇ2 v C ˇ3 u2 C ˇ4 uv C ˇ5 v 2
7KLV HTXDWLRQ LV XVHG LQ JHRORJ\ IRU LQVWDQFH WR PRGHO HURVLRQ VXUIDFHV JODFLDO FLUTXHV VRLO S+ DQG RWKHU TXDQWLWLHV ,Q VXFK FDVHV WKH OHDVWVTXDUHV ıW LV FDOOHG D WUHQG VXUIDFH (TXDWLRQV DQG ERWK OHDG WR D OLQHDU PRGHO EHFDXVH WKH\ DUH OLQHDU LQ WKH XQNQRZQ SDUDPHWHUV HYHQ WKRXJK u DQG v DUH PXOWLSOLHG ,Q JHQHUDO D OLQHDU PRGHO ZLOO DULVH ZKHQHYHU y LV WR EH SUHGLFWHG E\ DQ HTXDWLRQ RI WKH IRUP
y D ˇ0 f0 .u; v/ C ˇ1 f1 .u; v/ C C ˇk fk .u; v/ ZLWK f0 ; : : : ; fk DQ\ VRUW RI NQRZQ IXQFWLRQV DQG ˇ0 ; : : : ; ˇk XQNQRZQ ZHLJKWV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
(;$03/( ,Q JHRJUDSK\ ORFDO PRGHOV RI WHUUDLQ DUH FRQVWUXFWHG IURP GDWD .u1 ; v1 ; y1 /; : : : ; .un ; vn ; yn / ZKHUH uj vj DQG yj DUH ODWLWXGH ORQJLWXGH DQG DOWLWXGH UHVSHFWLYHO\ 'HVFULEH WKH OLQHDU PRGHO EDVHG RQ WKDW JLYHV D OHDVWVTXDUHV ıW WR VXFK GDWD 7KH VROXWLRQ LV FDOOHG WKH OHDVWVTXDUHV SODQH 6HH )LJXUH
'*(63& $ OHDVWVTXDUHV SODQH
62/87,21 :H H[SHFW WKH GDWD WR VDWLVI\ WKH IROORZLQJ HTXDWLRQV
y1 D ˇ0 C ˇ1 u1 C ˇ2 v1 C 1 y2 D ˇ0 C ˇ1 u2 C ˇ2 v2 C 2 :: : : :: yn D ˇ0 C ˇ1 un C ˇ2 vn C n 7KLV V\VWHP KDV WKH PDWUL[ IRUP \ D X ˇ C ZKHUH 2EVHUYDWLRQ YHFWRU
2
3 2 y1 1 6 y2 7 61 6 7 6 \ D 6 : 7; X D 6 : 4 :: 5 4 :: 1 yn
678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU XQGHUVWDQGLQJ WKH JHRPHWU\ RI D OLQHDU PRGHO
'HVLJQ PDWUL[
u1 u2 :: : un
3DUDPHWHU YHFWRU
5HVLGXDO YHFWRU
3 2 3 v1
1 2 3 ˇ0 6 2 7 v2 7 7 6 7 ; ˇ D 4 ˇ1 5; D 6 : 7 ::: 7 5 4 :: 5 ˇ2
n vn
([DPSOH VKRZV WKDW WKH OLQHDU PRGHO IRU PXOWLSOH UHJUHVVLRQ KDV WKH VDPH DEVWUDFW IRUP DV WKH PRGHO IRU WKH VLPSOH UHJUHVVLRQ LQ WKH HDUOLHU H[DPSOHV /LQHDU DOJHEUD JLYHV XV WKH SRZHU WR XQGHUVWDQG WKH JHQHUDO SULQFLSOH EHKLQG DOO WKH OLQHDU PRGHOV 2QFH X LV GHıQHG SURSHUO\ WKH QRUPDO HTXDWLRQV IRU ˇ KDYH WKH VDPH PDWUL[ IRUP QR PDWWHU KRZ PDQ\ YDULDEOHV DUH LQYROYHG 7KXV IRU DQ\ OLQHDU PRGHO ZKHUH X TX LV LQYHUWLEOH WKH OHDVWVTXDUHV ˇO LV JLYHQ E\ .X TX /1 X T\
3UDFWLFH 3UREOHP :KHQ WKH PRQWKO\ VDOHV RI D SURGXFW DUH VXEMHFW WR VHDVRQDO IJXFWXDWLRQV D FXUYH WKDW DSSUR[LPDWHV WKH VDOHV GDWD PLJKW KDYH WKH IRUP
y D ˇ0 C ˇ1 x C ˇ2 VLQ .2x=12/ ZKHUH x LV WKH WLPH LQ PRQWKV 7KH WHUP ˇ0 C ˇ1 x JLYHV WKH EDVLF VDOHV WUHQG DQG WKH VLQH WHUP UHIJHFWV WKH VHDVRQDO FKDQJHV LQ VDOHV *LYH WKH GHVLJQ PDWUL[ DQG WKH SDUDPHWHU YHFWRU IRU WKH OLQHDU PRGHO WKDW OHDGV WR D OHDVWVTXDUHV ıW RI WKH HTXDWLRQ DERYH $VVXPH WKH GDWD DUH .x1 ; y1 /; : : : ; .xn ; yn /
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
0DFKLQH /HDUQLQJ DQG /LQHDU 0RGHOV
([HUFLVHV ,Q ([HUFLVHV ş ıQG WKH HTXDWLRQ y D ˇ0 C ˇ1 x RI WKH OHDVW VTXDUHV OLQH WKDW EHVW ıWV WKH JLYHQ GDWD SRLQWV .0; 1/ .1; 1/ .2; 2/ .3; 2/ .1; 0/ .2; 1/ .4; 2/ .5; 3/ .1; 0/ .0; 1/ .1; 2/ .2; 4/ .2; 3/ .3; 2/ .5; 1/ .6; 0/ ,I D PDFKLQH OHDUQV WKH OHDVWVTXDUHV OLQH WKDW EHVW ıWV WKH GDWD LQ ([HUFLVH ZKDW ZLOO WKH PDFKLQH SLFN IRU WKH YDOXH RI y ZKHQ x D 4" ,I D PDFKLQH OHDUQV WKH OHDVWVTXDUHV OLQH WKDW EHVW ıWV WKH GDWD LQ ([HUFLVH ZKDW ZLOO WKH PDFKLQH SLFN IRU WKH YDOXH RI y ZKHQ x D 3" ,I D PDFKLQH OHDUQV WKH OHDVWVTXDUHV OLQH WKDW EHVW ıWV WKH GDWD LQ ([HUFLVH ZKDW ZLOO WKH PDFKLQH SLFN IRU WKH YDOXH RI y ZKHQ x D 3" +RZ FORVHO\ GRHV WKLV PDWFK WKH GDWD SRLQW DW x D 3 IHG LQWR WKH PDFKLQH" ,I D PDFKLQH OHDUQV WKH OHDVWVTXDUHV OLQH WKDW EHVW ıWV WKH GDWD LQ ([HUFLVH ZKDW ZLOO WKH PDFKLQH SLFN IRU WKH YDOXH RI y ZKHQ x D 2" +RZ FORVHO\ GRHV WKLV PDWFK WKH GDWD SRLQW DW x D 2 IHG LQWR WKH PDFKLQH" ,I \RX HQWHU WKH GDWD IURP ([HUFLVH LQWR D PDFKLQH DQG LW UHWXUQV D y YDOXH RI ZKHQ x D 2:5 VKRXOG \RX WUXVW WKH PDFKLQH" -XVWLI\ \RXU DQVZHU ,I \RX HQWHU WKH GDWD IURP ([HUFLVH LQWR D PDFKLQH DQG LW UHWXUQV D y YDOXH RI 4 ZKHQ x D 2:5 VKRXOG \RX WUXVW WKH PDFKLQH" -XVWLI\ \RXU DQVZHU /HW X EH WKH GHVLJQ PDWUL[ XVHG WR ıQG WKH OHDVWVTXDUHV OLQH WR ıW GDWD .x1 ; y1 /; : : : ; .xn ; yn / 8VH D WKHRUHP LQ 6HFWLRQ WR VKRZ WKDW WKH QRUPDO HTXDWLRQV KDYH D XQLTXH VROXWLRQ LI DQG RQO\ LI WKH GDWD LQFOXGH DW OHDVW WZR GDWD SRLQWV ZLWK GLijHUHQW x FRRUGLQDWHV /HW X EH WKH GHVLJQ PDWUL[ LQ ([DPSOH FRUUHVSRQGLQJ WR D OHDVWVTXDUHV ıW RI D SDUDEROD WR GDWD .x1 ; y1 /; : : : ; .xn ; yn / 6XSSRVH x1 x2 DQG x3 DUH GLVWLQFW ([SODLQ ZK\ WKHUH LV RQO\ RQH SDUDEROD WKDW ıWV WKH GDWD EHVW LQ D OHDVWVTXDUHV VHQVH 6HH ([HUFLVH
F ,I D PDFKLQH OHDUQHG WKH FXUYH \RX IRXQG LQ E ZKDW RXWSXW ZRXOG LW SURYLGH IRU DQ LQSXW RI x D 6" $ VLPSOH FXUYH WKDW RIWHQ PDNHV D JRRG PRGHO IRU WKH YDULDEOH FRVWV RI D FRPSDQ\ DV D IXQFWLRQ RI WKH VDOHV OHYHO x KDV WKH IRUP y D ˇ1 x C ˇ2 x 2 C ˇ3 x 3 7KHUH LV QR FRQVWDQW WHUP EHFDXVH ı[HG FRVWV DUH QRW LQFOXGHG D *LYH WKH GHVLJQ PDWUL[ DQG WKH SDUDPHWHU YHFWRU IRU WKH OLQHDU PRGHO WKDW OHDGV WR D OHDVWVTXDUHV ıW RI WKH HTXDWLRQ DERYH ZLWK GDWD .x1 ; y1 /; : : : ; .xn ; yn / 7 E )LQG WKH OHDVWVTXDUHV FXUYH RI WKH IRUP DERYH WR ıW
WKH GDWD .4; 1:58/ .6; 2:08/ .8; 2:5/ .10; 2:8/ .12; 3:1/ .14; 3:4/ .16; 3:8/ DQG .18; 4:32/ ZLWK YDOXHV LQ WKRX VDQGV ,I SRVVLEOH SURGXFH D JUDSK WKDW VKRZV WKH GDWD SRLQWV DQG WKH JUDSK RI WKH FXELF DSSUR[LPDWLRQ F ,I D PDFKLQH OHDUQHG WKH FXUYH \RX IRXQG LQ E ZKDW RXWSXW ZRXOG LW SURYLGH IRU DQ LQSXW RI x D 9" $ FHUWDLQ H[SHULPHQW SURGXFHV WKH GDWD .1; 7:9/ .2; 5:4/ DQG .3; :9/ 'HVFULEH WKH PRGHO WKDW SURGXFHV D OHDVWVTXDUHV ıW RI WKHVH SRLQWV E\ D IXQFWLRQ RI WKH IRUP
y D A FRV x C B VLQ x 6XSSRVH UDGLRDFWLYH VXEVWDQFHV $ DQG % KDYH GHFD\ FRQVWDQWV RI DQG UHVSHFWLYHO\ ,I D PL[WXUH RI WKHVH WZR VXE VWDQFHV DW WLPH t D 0 FRQWDLQV M$ JUDPV RI $ DQG M% JUDPV RI % WKHQ D PRGHO IRU WKH WRWDO DPRXQW y RI WKH PL[WXUH SUHVHQW DW WLPH t LV
y D M$ e :02t C M% e :07t
.6/
6XSSRVH WKH LQLWLDO DPRXQWV M$ DQG M% DUH XQNQRZQ EXW D VFLHQWLVW LV DEOH WR PHDVXUH WKH WRWDO DPRXQWV SUHVHQW DW VHYHUDO WLPHV DQG UHFRUGV WKH IROORZLQJ SRLQWV .ti ; yi / .10; 21:34/ .11; 20:68/ .12; 20:05/ .14; 18:87/ DQG .15; 18:30/ D 'HVFULEH D OLQHDU PRGHO WKDW FDQ EH XVHG WR HVWLPDWH M$ DQG M% 7 E )LQG WKH OHDVWVTXDUHV FXUYH EDVHG RQ
$ FHUWDLQ H[SHULPHQW SURGXFHV WKH GDWD .1; 1:8/ .2; 2:7/ .3; 3:4/ .4; 3:8/ .5; 3:9/ 'HVFULEH WKH PRGHO WKDW SURGXFHV D OHDVWVTXDUHV ıW RI WKHVH SRLQWV E\ D IXQFWLRQ RI WKH IRUP
y D ˇ1 x C ˇ2 x 2 6XFK D IXQFWLRQ PLJKW DULVH IRU H[DPSOH DV WKH UHYHQXH IURP WKH VDOH RI x XQLWV RI D SURGXFW ZKHQ WKH DPRXQW RijHUHG IRU VDOH DijHFWV WKH SULFH WR EH VHW IRU WKH SURGXFW D *LYH WKH GHVLJQ PDWUL[ WKH REVHUYDWLRQ YHFWRU DQG WKH XQNQRZQ SDUDPHWHU YHFWRU 7 E )LQG WKH DVVRFLDWHG OHDVWVTXDUHV FXUYH IRU WKH GDWD
+DOOH\ŖV &RPHW ODVW DSSHDUHG LQ DQG ZLOO UHDSSHDU LQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
7 $FFRUGLQJ WR .HSOHUŖV ıUVW ODZ D FRPHW VKRXOG KDYH DQ HOOLS
WLF SDUDEROLF RU K\SHUEROLF RUELW ZLWK JUDYLWDWLRQDO DWWUDF WLRQV IURP WKH SODQHWV LJQRUHG ,Q VXLWDEOH SRODU FRRUGLQDWHV WKH SRVLWLRQ .r; #/ RI D FRPHW VDWLVıHV DQ HTXDWLRQ RI WKH IRUP
r D ˇ C e.r FRV #/ ZKHUH ˇ LV D FRQVWDQW DQG e LV WKH HFFHQWULFLW\ RI WKH RUELW ZLWK 0 e < 1 IRU DQ HOOLSVH e D 1 IRU D SDUDEROD DQG e > 1 IRU D K\SHUEROD 6XSSRVH REVHUYDWLRQV RI D QHZO\ GLVFRYHUHG FRPHW SURYLGH WKH GDWD EHORZ 'HWHUPLQH WKH W\SH RI RUELW DQG SUHGLFW ZKHUH WKH FRPHW ZLOO EH ZKHQ # D 4:6 UDGLDQV
#
r
7 $ KHDOWK\ FKLOGŖV V\VWROLF EORRG SUHVVXUH p LQ PLOOLPHWHUV RI
PHUFXU\ DQG ZHLJKW w LQ SRXQGV DUH DSSUR[LPDWHO\ UHODWHG E\ WKH HTXDWLRQ
ˇ0 C ˇ1 OQ w D p 8VH WKH IROORZLQJ H[SHULPHQWDO GDWD WR HVWLPDWH WKH V\VWROLF EORRG SUHVVXUH RI D KHDOWK\ FKLOG ZHLJKLQJ SRXQGV
w
OQ w
p
7 7R PHDVXUH WKH WDNHRij SHUIRUPDQFH RI DQ DLUSODQH WKH KRUL
]RQWDO SRVLWLRQ RI WKH SODQH ZDV PHDVXUHG HYHU\ VHFRQG IURP t D 0 WR t D 12 7KH SRVLWLRQV LQ IHHW ZHUH DQG D )LQG WKH OHDVWVTXDUHV FXELF FXUYH y D ˇ0 C ˇ1 t C ˇ2 t 2 C ˇ3 t 3 IRU WKHVH GDWD
7KH QRUPDO HTXDWLRQV IRU D OHDVWVTXDUHV OLQH y D ˇO0 C ˇO1 x PD\ EH ZULWWHQ LQ WKH IRUP P P nˇO0 C ˇO1 x D y .7/ P P P ˇO0 x C ˇO1 x 2 D xy 'HULYH WKH QRUPDO HTXDWLRQV IURP WKH PDWUL[ IRUP JLYHQ LQ WKLV VHFWLRQ 8VH D PDWUL[ LQYHUVH WR VROYH WKH V\VWHP RI HTXDWLRQV LQ DQG WKHUHE\ REWDLQ IRUPXODV IRU ˇO0 DQG ˇO1 WKDW DSSHDU LQ PDQ\ VWDWLVWLFV WH[WV D 5HZULWH WKH GDWD LQ ([DPSOH ZLWK QHZ x FRRUGLQDWHV LQ PHDQ GHYLDWLRQ IRUP /HW X EH WKH DVVRFLDWHG GHVLJQ PDWUL[ :K\ DUH WKH FROXPQV RI X RUWKRJRQDO" E :ULWH WKH QRUPDO HTXDWLRQV IRU WKH GDWD LQ SDUW D DQG VROYH WKHP WR ıQG WKH OHDVWVTXDUHV OLQH y D ˇ0 C ˇ1 x ZKHUH x D x 5:5 6XSSRVH WKH x FRRUGLQDWHV RI WKH GDWD P.x1 ; y1 /; : : : ; .xn ; yn / DUH LQ PHDQ GHYLDWLRQ IRUP VR WKDW xi D 0 6KRZ WKDW LI X LV WKH GHVLJQ PDWUL[ IRU WKH OHDVWVTXDUHV OLQH LQ WKLV FDVH WKHQ X TX LV D GLDJRQDO PDWUL[ ([HUFLVHV DQG LQYROYH D GHVLJQ PDWUL[ X ZLWK WZR RU PRUH FROXPQV DQG D OHDVWVTXDUHV VROXWLRQ ˇO RI \ D Xˇ &RQVLGHU WKH IROORZLQJ QXPEHUV
O 2 ŠWKH VXP RI WKH VTXDUHV RI WKH ŗUHJUHVVLRQ WHUPŘ L kX ˇk 'HQRWH WKLV QXPEHU E\ 665 O 2 ŠWKH VXP RI WKH VTXDUHV IRU WKH HUURU WHUP 'H LL k\ X ˇk QRWH WKLV QXPEHU E\ 66(
E ,I D PDFKLQH OHDUQHG WKH FXUYH JLYHQ LQ SDUW D ZKDW ZRXOG LW HVWLPDWH WKH YHORFLW\ RI WKH SODQH WR EH ZKHQ t D 4:5 VHFRQGV"
k\k2 ŠWKH ŗWRWDOŘ VXP RI WKH VTXDUHV RI WKH y YDOXHV 'HQRWH LLL WKLV QXPEHU E\ 667
1 1 .x1 C C xn / DQG y D .y1 C C yn / n n 6KRZ WKDW WKH OHDVWVTXDUHV OLQH IRU WKH GDWD .x1 ; y1 /; : : : ; .xn ; yn / PXVW SDVV WKURXJK .x; y/ 7KDW LV VKRZ WKDW x DQG y VDWLVI\ WKH OLQHDU HTXDWLRQ y D ˇO0 C ˇO1 x >+LQW 'HULYH WKLV HTXDWLRQ IURP WKH YHFWRU HTXDWLRQ \ D X ˇO C 'HQRWH WKH ıUVW FROXPQ RI X E\ 8VH WKH IDFW WKDW WKH UHVLGXDO YHFWRU LV RUWKRJRQDO WR WKH FROXPQ VSDFH RI X DQG KHQFH LV RUWKRJRQDO WR @
(YHU\ VWDWLVWLFV WH[W WKDW GLVFXVVHV UHJUHVVLRQ DQG WKH OLQHDU PRGHO \ D Xˇ C LQWURGXFHV WKHVH QXPEHUV WKRXJK WHUPLQRORJ\ DQG QRWDWLRQ YDU\ VRPHZKDW 7R VLPSOLI\ PDWWHUV DVVXPH WKDW WKH PHDQ RI WKH y YDOXHV LV ]HUR ,Q WKLV FDVH 667 LV SURSRUWLRQDO WR ZKDW LV FDOOHG WKH YDULDQFH RI WKH VHW RI y YDOXHV
/HW x D
3
*LYHQ GDWD IRU D OHDVWVTXDUHV SUREOHP .x1 ; y1 /; : : : ; .xn ; yn / WKH IROORZLQJ DEEUHYLDWLRQV DUH KHOSIXO P Pn P 2 Pn x D iD1 xi ; x D iD1 xi2 ; P Pn P P y D iD1 yi ; xy D niD1 xi yi
7KH EDVLF LGHD RI OHDVWVTXDUHV ıWWLQJ RI GDWD LV GXH WR . ) *DXVV DQG LQGHSHQGHQWO\ WR $ /HJHQGUH ZKRVH LQLWLDO ULVH WR IDPH RFFXUUHG LQ ZKHQ KH XVHG WKH PHWKRG WR GHWHUPLQH WKH SDWK RI WKH DVWHURLG &HUHV )RUW\ GD\V DIWHU WKH DVWHURLG ZDV GLVFRYHUHG LW GLVDSSHDUHG EHKLQG WKH VXQ *DXVV SUHGLFWHG LW ZRXOG DSSHDU WHQ PRQWKV ODWHU DQG JDYH LWV ORFDWLRQ 7KH DFFXUDF\ RI WKH SUHGLFWLRQ DVWRQLVKHG WKH (XURSHDQ VFLHQWLıF FRPPXQLW\
-XVWLI\ WKH HTXDWLRQ 667 D 665 C 66( >+LQW 8VH D WKHRUHP DQG H[SODLQ ZK\ WKH K\SRWKHVHV RI WKH WKHR UHP DUH VDWLVıHG@ 7KLV HTXDWLRQ LV H[WUHPHO\ LPSRUWDQW LQ VWDWLVWLFV ERWK LQ UHJUHVVLRQ WKHRU\ DQG LQ WKH DQDO\VLV RI YDULDQFH
O 2 ˇO T X T\ >+LQW 5HZULWH WKH OHIW VLGH 6KRZ WKDW kX ˇk DQG XVH WKH IDFW WKDW ˇO VDWLVıHV WKH QRUPDO HTXDWLRQV@ 7KLV IRUPXOD IRU 665 LV XVHG LQ VWDWLVWLFV )URP WKLV DQG IURP ([HUFLVH REWDLQ WKH VWDQGDUG IRUPXOD IRU 66( T 66( D \T \ ˇO X T \
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QQHU 3URGXFW 6SDFHV
6ROXWLRQ WR 3UDFWLFH 3UREOHP
y
&RQVWUXFW X DQG ˇ VR WKDW WKH k WK URZ RI Xˇ LV WKH SUHGLFWHG y YDOXH WKDW FRUUHVSRQGV WR WKH GDWD SRLQW .xk ; yk / QDPHO\
ˇ0 C ˇ1 xk C ˇ2 VLQ.2xk =12/ x
6DOHV WUHQG ZLWK VHDVRQDO IJXFWXDWLRQV
,W VKRXOG EH FOHDU WKDW
2
1 6 :: X D4:
x1 :: :
3 VLQ.2x1 =12/ 7 ::: 5;
1
xn
VLQ.2xn =12/
2
3 ˇ0 ˇ D 4 ˇ1 5 ˇ2
,QQHU 3URGXFW 6SDFHV 1RWLRQV RI OHQJWK GLVWDQFH DQG RUWKRJRQDOLW\ DUH RIWHQ LPSRUWDQW LQ DSSOLFDWLRQV LQYROYLQJ D YHFWRU VSDFH )RU Rn WKHVH FRQFHSWV ZHUH EDVHG RQ WKH SURSHUWLHV RI WKH LQQHU SURGXFW OLVWHG LQ 7KHRUHP RI 6HFWLRQ )RU RWKHU VSDFHV ZH QHHG DQDORJXHV RI WKH LQQHU SURGXFW ZLWK WKH VDPH SURSHUWLHV 7KH FRQFOXVLRQV RI 7KHRUHP QRZ EHFRPH D[LRPV LQ WKH IROORZLQJ GHıQLWLRQ
%&'*/*5*0/
$Q LQQHU SURGXFW RQ D YHFWRU VSDFH V LV D IXQFWLRQ WKDW WR HDFK SDLU RI YHFWRUV X DQG Y LQ V DVVRFLDWHV D UHDO QXPEHU hX; Yi DQG VDWLVıHV WKH IROORZLQJ D[LRPV IRU DOO X Y DQG Z LQ V DQG DOO VFDODUV c
hX; Yi D hY; Xi hX C Y; Zi D hX; Zi C hY; Zi hc X; Yi D chX; Yi hX; Xi 0 DQG hX; Xi D 0 LI DQG RQO\ LI X D
$ YHFWRU VSDFH ZLWK DQ LQQHU SURGXFW LV FDOOHG DQ LQQHU SURGXFW VSDFH 7KH YHFWRU VSDFH Rn ZLWK WKH VWDQGDUG LQQHU SURGXFW LV DQ LQQHU SURGXFW VSDFH DQG QHDUO\ HYHU\WKLQJ GLVFXVVHG LQ WKLV FKDSWHU IRU Rn FDUULHV RYHU WR LQQHU SURGXFW VSDFHV 7KH H[DPSOHV LQ WKLV VHFWLRQ DQG WKH QH[W OD\ WKH IRXQGDWLRQ IRU D YDULHW\ RI DSSOLFDWLRQV WUHDWHG LQ FRXUVHV LQ HQJLQHHULQJ SK\VLFV PDWKHPDWLFV DQG VWDWLVWLFV
(;$03/( )L[ DQ\ WZR SRVLWLYH QXPEHUVŠVD\ DQG ŠDQG IRU YHFWRUV X D .u1 ; u2 / DQG Y D .v1 ; v2 / LQ R2 VHW
hX; Yi D 4u1 v1 C 5u2 v2
6KRZ WKDW HTXDWLRQ GHıQHV DQ LQQHU SURGXFW 62/87,21 &HUWDLQO\ $[LRP LV VDWLVıHG EHFDXVH hX; Yi D 4u1 v1 C 5u2 v2 D 4v1 u1 C 5v2 u2 D hY; Xi ,I Z D .w1 ; w2 / WKHQ
hX C Y; Zi D 4.u1 C v1 /w1 C 5.u2 C v2 /w2 D 4u1 w1 C 5u2 w2 C 4v1 w1 C 5v2 w2 D hX; Zi C hY; Zi
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
7KLV YHULıHV $[LRP )RU $[LRP FRPSXWH
hc X; Yi D 4.cu1 /v1 C 5.cu2 /v2 D c.4u1 v1 C 5u2 v2 / D chX; Yi )RU $[LRP QRWH WKDW hX; Xi D 4u21 C 5u22 0 DQG 4u21 C 5u22 D 0 RQO\ LI u1 D u2 D 0 WKDW LV LI X D $OVR h; i D 0 6R GHıQHV DQ LQQHU SURGXFW RQ R2 ,QQHU SURGXFWV VLPLODU WR FDQ EH GHıQHG RQ Rn 7KH\ DULVH QDWXUDOO\ LQ FRQQHFWLRQ ZLWK ŗZHLJKWHG OHDVWVTXDUHVŘ SUREOHPV LQ ZKLFK ZHLJKWV DUH DVVLJQHG WR WKH YDULRXV HQWULHV LQ WKH VXP IRU WKH LQQHU SURGXFW LQ VXFK D ZD\ WKDW PRUH LPSRUWDQFH LV JLYHQ WR WKH PRUH UHOLDEOH PHDVXUHPHQWV )URP QRZ RQ ZKHQ DQ LQQHU SURGXFW VSDFH LQYROYHV SRO\QRPLDOV RU RWKHU IXQFWLRQV ZH ZLOO ZULWH WKH IXQFWLRQV LQ WKH IDPLOLDU ZD\ UDWKHU WKDQ XVH WKH EROGIDFH W\SH IRU YHFWRUV 1HYHUWKHOHVV LW LV LPSRUWDQW WR UHPHPEHU WKDW HDFK IXQFWLRQ LV D YHFWRU ZKHQ LW LV WUHDWHG DV DQ HOHPHQW RI D YHFWRU VSDFH
(;$03/( /HW t0 ; : : : ; tn EH GLVWLQFW UHDO QXPEHUV )RU p DQG q LQ Pn GHıQH hp; qi D p.t0 /q.t0 / C p.t1 /q.t1 / C C p.tn /q.tn /
,QQHU SURGXFW $[LRPV ş DUH UHDGLO\ FKHFNHG )RU $[LRP QRWH WKDW
hp; pi D Œp.t0 /2 C Œp.t1 /2 C C Œp.tn /2 0 $OVR h; i D 0 7KH EROGIDFH ]HUR KHUH GHQRWHV WKH ]HUR SRO\QRPLDO WKH ]HUR YHFWRU LQ Pn ,I hp; pi D 0 WKHQ p PXVW YDQLVK DW n C 1 SRLQWV t0 ; : : : ; tn 7KLV LV SRVVLEOH RQO\ LI p LV WKH ]HUR SRO\QRPLDO EHFDXVH WKH GHJUHH RI p LV OHVV WKDQ n C 1 7KXV GHıQHV DQ LQQHU SURGXFW RQ Pn
(;$03/( /HW V EH P2 ZLWK WKH LQQHU SURGXFW IURP ([DPSOH ZKHUH t0 D 0 t1 D 12 DQG t2 D 1 /HW p.t/ D 12t 2 DQG q.t / D 2t 1 &RPSXWH hp; qi DQG hq; qi 62/87,21
hp; qi D p.0/q.0/ C p 12 q 12 C p.1/q.1/ D .0/.1/ C .3/.0/ C .12/.1/ D 12 hq; qi D Œq.0/2 C Œq 12 2 C Œq.1/2
D .1/2 C .0/2 C .1/2 D 2
/HQJWKV 'LVWDQFHV DQG 2UWKRJRQDOLW\ /HW V EH DQ LQQHU SURGXFW VSDFH ZLWK WKH LQQHU SURGXFW GHQRWHG E\ hX; Yi -XVW DV LQ Rn ZH GHıQH WKH OHQJWK RU QRUP RI D YHFWRU Y WR EH WKH VFDODU p kYk D hY; Yi (TXLYDOHQWO\ kYk2 D hY; Yi 7KLV GHıQLWLRQ PDNHV VHQVH EHFDXVH hY; Yi 0 EXW WKH GHıQLWLRQ GRHV QRW VD\ WKDW hY; Yi LV D ŗVXP RI VTXDUHVŘ EHFDXVH Y QHHG QRW EH DQ HOHPHQW RI Rn $ XQLW YHFWRU LV RQH ZKRVH OHQJWK LV 7KH GLVWDQFH EHWZHHQ X DQG Y LV kX Yk 9HFWRUV X DQG Y DUH RUWKRJRQDO LI hX; Yi D 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QQHU 3URGXFW 6SDFHV
(;$03/( /HW P2 KDYH WKH LQQHU SURGXFW RI ([DPSOH &RPSXWH WKH OHQJWKV RI WKH YHFWRUV p.t/ D 12t 2 DQG q.t / D 2t 1 62/87,21
2 kpk2 D hp; pi D Œp.0/2 C p 12 C Œp.1/2
D 0 C Œ32 C Œ122 D 153 p kpk D 153 p )URP ([DPSOH hq; qi D 2 +HQFH kqk D 2
7KH *UDPŋ6FKPLGW 3URFHVV 7KH H[LVWHQFH RI RUWKRJRQDO EDVHV IRU ıQLWHGLPHQVLRQDO VXEVSDFHV RI DQ LQQHU SURGXFW VSDFH FDQ EH HVWDEOLVKHG E\ WKH *UDPş6FKPLGW SURFHVV MXVW DV LQ Rn &HUWDLQ RUWKRJRQDO EDVHV WKDW DULVH IUHTXHQWO\ LQ DSSOLFDWLRQV FDQ EH FRQVWUXFWHG E\ WKLV SURFHVV 7KH RUWKRJRQDO SURMHFWLRQ RI D YHFWRU RQWR D VXEVSDFH W ZLWK DQ RUWKRJRQDO EDVLV FDQ EH FRQVWUXFWHG DV XVXDO 7KH SURMHFWLRQ GRHV QRW GHSHQG RQ WKH FKRLFH RI RUWKRJRQDO EDVLV DQG LW KDV WKH SURSHUWLHV GHVFULEHG LQ WKH 2UWKRJRQDO 'HFRPSRVLWLRQ 7KHRUHP DQG WKH %HVW $SSUR[LPDWLRQ 7KHRUHP
(;$03/( /HW V EH P4 ZLWK WKH LQQHU SURGXFW LQ ([DPSOH LQYROYLQJ HYDOXDWLRQ RI SRO\QRPLDOV DW 2 1 DQG DQG YLHZ P2 DV D VXEVSDFH RI V 3URGXFH DQ RUWKRJRQDO EDVLV IRU P2 E\ DSSO\LQJ WKH *UDPş6FKPLGW SURFHVV WR WKH SRO\QRPLDOV t DQG t 2
62/87,21 7KH LQQHU SURGXFW GHSHQGV RQO\ RQ WKH YDOXHV RI D SRO\QRPLDO DW
2; : : : ; 2 VR ZH OLVW WKH YDOXHV RI HDFK SRO\QRPLDO DV D YHFWRU LQ R5 XQGHUQHDWK WKH QDPH RI WKH SRO\QRPLDO1 3RO\QRPLDO
2 3 1 617 6 7 7 9HFWRU RI YDOXHV 6 6 1 7; 415 1
2
t
t2
3
2 3 2 4 6 1 7 6 1 7 6 7 6 7 6 0 7; 6 0 7 6 7 6 7 4 15 415 2 4
7KH LQQHU SURGXFW RI WZR SRO\QRPLDOV LQ V HTXDOV WKH VWDQGDUG LQQHU SURGXFW RI WKHLU FRUUHVSRQGLQJ YHFWRUV LQ R5 2EVHUYH WKDW t LV RUWKRJRQDO WR WKH FRQVWDQW IXQFWLRQ 6R WDNH p0 .t/ D 1 DQG p1 .t/ D t )RU p2 XVH WKH YHFWRUV LQ R5 WR FRPSXWH WKH SURMHFWLRQ RI t 2 RQWR 6SDQ fp0 ; p1 g
ht 2 ; p0 i D ht 2 ; 1i D 4 C 1 C 0 C 1 C 4 D 10 hp0 ; p0 i D 5 ht 2 ; p1 i D ht 2 ; t i D 8 C .1/ C 0 C 1 C 8 D 0 7KH RUWKRJRQDO SURMHFWLRQ RI t 2 RQWR 6SDQ f1; t g LV
10 p 5 0
C 0p1 7KXV
p2 .t / D t 2 2p0 .t/ D t 2 2 1 (DFK SRO\QRPLDO LQ P4 LV XQLTXHO\ GHWHUPLQHG E\ LWV YDOXH DW WKH ıYH QXPEHUV 2; : : : ; 2 ,Q IDFW WKH FRUUHVSRQGHQFH EHWZHHQ p DQG LWV YHFWRU RI YDOXHV LV DQ LVRPRUSKLVP WKDW LV D RQHWRRQH PDSSLQJ RQWR R5 WKDW SUHVHUYHV OLQHDU FRPELQDWLRQV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 2UWKRJRQDOLW\ DQG /HDVW 6TXDUHV
$Q RUWKRJRQDO EDVLV IRU WKH VXEVSDFH P2 RI V LV 3RO\QRPLDO
p0
2 3 1 617 6 7 7 9HFWRU RI YDOXHV 6 6 1 7; 415 1
p1
2
3 2 6 1 7 6 7 6 0 7; 6 7 4 15 2
2
p2
3 2 6 1 7 6 7 6 2 7 6 7 4 1 5 2
%HVW $SSUR[LPDWLRQ LQ ,QQHU 3URGXFW 6SDFHV $ FRPPRQ SUREOHP LQ DSSOLHG PDWKHPDWLFV LQYROYHV D YHFWRU VSDFH V ZKRVH HOHPHQWV DUH IXQFWLRQV 7KH SUREOHP LV WR DSSUR[LPDWH D IXQFWLRQ f LQ V E\ D IXQFWLRQ g IURP D VSHFLıHG VXEVSDFH W RI V 7KH ŗFORVHQHVVŘ RI WKH DSSUR[LPDWLRQ RI f GHSHQGV RQ WKH ZD\ kf gk LV GHıQHG :H ZLOO FRQVLGHU RQO\ WKH FDVH LQ ZKLFK WKH GLVWDQFH EHWZHHQ f DQG g LV GHWHUPLQHG E\ DQ LQQHU SURGXFW ,Q WKLV FDVH WKH EHVW DSSUR[LPDWLRQ WR f E\ IXQFWLRQV LQ W LV WKH RUWKRJRQDO SURMHFWLRQ RI f RQWR WKH VXEVSDFH W
(;$03/( /HW V EH P4 ZLWK WKH LQQHU SURGXFW LQ ([DPSOH DQG OHW p0 p1 DQG p2 EH WKH RUWKRJRQDO EDVLV IRXQG LQ ([DPSOH IRU WKH VXEVSDFH P2 )LQG WKH EHVW DSSUR[LPDWLRQ WR p.t/ D 5 12 t 4 E\ SRO\QRPLDOV LQ P2
62/87,21 7KH YDOXHV RI p0 ; p1 DQG p2 DW WKH QXPEHUV 2 1 DQG DUH OLVWHG
LQ R5 YHFWRUV LQ DERYH 7KH FRUUHVSRQGLQJ YDOXHV IRU p DUH 3 DQG 3 &RPSXWH
hp; p0 i D 8; hp0 ; p0 i D 5;
hp; p1 i D 0;
hp; p2 i D 31 hp2 ; p2 i D 14
7KHQ WKH EHVW DSSUR[LPDWLRQ LQ V WR p E\ SRO\QRPLDOV LQ P2 LV
pO D SURMP2 p D
hp; p1 i hp; p2 i hp; p0 i p0 C p1 C p2 hp0 ; p0 i hp1 ; p1 i hp2 ; p2 i
D 85 p0 C
31 p 14 2
D
8 5
31 2 .t 14
2/:
7KLV SRO\QRPLDO LV WKH FORVHVW WR p RI DOO SRO\QRPLDOV LQ P2 ZKHQ WKH GLVWDQFH EHWZHHQ SRO\QRPLDOV LV PHDVXUHG RQO\ DW 2 1 DQG 6HH )LJXUH y
2 t 2 ˆ p(t) p(t)
'*(63&
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QQHU 3URGXFW 6SDFHV
7KH SRO\QRPLDOV p0 p1 DQG p2 LQ ([DPSOHV DQG EHORQJ WR D FODVV RI SRO\QRPLDOV WKDW DUH UHIHUUHG WR LQ VWDWLVWLFV DV RUWKRJRQDO SRO\QRPLDOV2 7KH RUWKRJRQDOLW\ UHIHUV WR WKH W\SH RI LQQHU SURGXFW GHVFULEHG LQ ([DPSOH v ||v||
7ZR ,QHTXDOLWLHV
||v 2 projW v||
0 W
||projWv||
projW v
*LYHQ D YHFWRU Y LQ DQ LQQHU SURGXFW VSDFH V DQG JLYHQ D ıQLWHGLPHQVLRQDO VXEVSDFH W ZH PD\ DSSO\ WKH 3\WKDJRUHDQ 7KHRUHP WR WKH RUWKRJRQDO GHFRPSRVLWLRQ RI Y ZLWK UHVSHFW WR W DQG REWDLQ
kYk2 D k SURMW Yk2 C kY SURMW Yk2
'*(63&
7KH K\SRWHQXVH LV WKH ORQJHVW VLGH
6HH )LJXUH ,Q SDUWLFXODU WKLV VKRZV WKDW WKH QRUP RI WKH SURMHFWLRQ RI Y RQWR W GRHV QRW H[FHHG WKH QRUP RI Y LWVHOI 7KLV VLPSOH REVHUYDWLRQ OHDGV WR WKH IROORZLQJ LPSRUWDQW LQHTXDOLW\
5)&03&.
u1v
v ||u 1 v||
||v|| 0
||u||
5IF $BVDIZo4DIXBS[ *OFRVBMJUZ )RU DOO X Y LQ V jhX; Yij kXk kYk
1300' ,I X D WKHQ ERWK VLGHV RI DUH ]HUR DQG KHQFH WKH LQHTXDOLW\ LV WUXH LQ WKLV FDVH 6HH 3UDFWLFH 3UREOHP ,I X ¤ OHW W EH WKH VXEVSDFH VSDQQHG E\ X 5HFDOO WKDW kc Xk D jcj kXk IRU DQ\ VFDODU c 7KXV hY; Xi jhY; Xij jhY; Xij jhX; Yij k SURMW Yk D X D kXk D kXk D hX; Xi jhX; Xij kXk2 kXk 6LQFH k SURMW Yk kYk ZH KDYH
u
'*(63&
7KH OHQJWKV RI WKH VLGHV RI D WULDQJOH
jhX; Yij kYk ZKLFK JLYHV kXk
7KH &DXFK\ş6FKZDU] LQHTXDOLW\ LV XVHIXO LQ PDQ\ EUDQFKHV RI PDWKHPDWLFV $ IHZ VLPSOH DSSOLFDWLRQV DUH SUHVHQWHG LQ WKH H[HUFLVHV 2XU PDLQ QHHG IRU WKLV LQHTXDOLW\ KHUH LV WR SURYH DQRWKHU IXQGDPHQWDO LQHTXDOLW\ LQYROYLQJ QRUPV RI YHFWRUV 6HH )LJXUH
5)&03&.
5IF 5SJBOHMF *OFRVBMJUZ )RU DOO X; Y LQ V
1300'
kX C Yk kXk C kYk
kX C Yk2 D hX C Y; X C Yi D hX; Xi C 2hX; Yi C hY; Yi kXk2 C 2jhX; Yij C kYk2 kXk2 C 2kXk kYk C kYk2 &DXFK\ş6FKZDU] D .kXk C kYk/2
7KH WULDQJOH LQHTXDOLW\ IROORZV LPPHGLDWHO\ E\ WDNLQJ VTXDUH URRWV RI ERWK VLGHV 2
6HH 6WDWLVWLFV DQG ([SHULPHQWDO 'HVLJQ LQ (QJLQHHULQJ DQG WKH 3K\VLFDO 6FLHQFHV QG HG E\ 1RUPDQ / -RKQVRQ DQG )UHG & /HRQH 1HZ +LQW )LQG DQ [ VXFK WKDW D [TA[@ /HW A EH DQ n n V\PPHWULF PDWUL[ OHW M DQG m GHQRWH WKH PD[LPXP DQG PLQLPXP YDOXHV RI WKH TXDGUDWLF IRUP [TA[ ZKHUH [T [ D 1; DQG GHQRWH FRUUHVSRQGLQJ XQLW HLJHQYHFWRUV E\ X1 DQG Xn 7KH IROORZLQJ FDOFXODWLRQV VKRZ WKDW JLYHQ DQ\ QXPEHU t EHWZHHQ M DQG m WKHUH LV D XQLW YHFWRU [ VXFK WKDW C ˛M IRU VRPH t D [TA[ 9HULI\ WKDW t D .1 ˛/mp p QXPEHU ˛ EHWZHHQ DQG 7KHQ OHW [ D 1 ˛ Xn C ˛ X1 DQG VKRZ WKDW [T [ D 1 DQG [TA[ D t
/HW Q.[/ D 2x12 x22 C 4x1 x2 C 4x2 x3 )LQG D XQLW YHFWRU ,Q ([HUFLVHV ş IROORZ WKH LQVWUXFWLRQV JLYHQ IRU ([HUFLVHV [ LQ R3 DW ZKLFK Q.[/ LV PD[LPL]HG VXEMHFW WR [T [ D 1 ş >+LQW 7KH HLJHQYDOXHV RI WKH PDWUL[ RI WKH TXDGUDWLF IRUP 7 3x1 x2 C 5x1 x3 C 7x1 x4 C 7x2 x3 C 5x2 x4 C 3x3 x4 Q DUH 1 DQG 4@ 7 4x12 6x1 x2 10x1 x3 10x1 x4 6x2 x3 6x2 x4 2x3 x4 /HW Q.[/ D 7x12 C x22 C 7x32 8x1 x2 4x1 x3 8x2 x3 3 )LQG D XQLW YHFWRU [ LQ R DW ZKLFK Q.[/ LV PD[LPL]HG 7 6x12 10x22 13x32 13x42 4x1 x2 4x1 x3 4x1 x4 C6x3 x4 VXEMHFW WR [T [ D 1 >+LQW 7KH HLJHQYDOXHV RI WKH PDWUL[ RI 7 x1 x2 C 3x1 x3 C 30x1 x4 C 30x2 x3 C 3x2 x4 C x3 x4 WKH TXDGUDWLF IRUP Q DUH DQG 3@
6ROXWLRQV WR 3UDFWLFH 3UREOHPV
z
1 7KH PDWUL[ RI WKH TXDGUDWLF IRUP LV A D ,W LV HDV\ WR ıQG WKH HLJHQYDOXHV 3 " p # " p # 1=p2 1=p2 DQG DQG FRUUHVSRQGLQJ XQLW HLJHQYHFWRUV DQG 6R WKH 1= 2 1= 2 " p p # 1=p2 1=p2 GHVLUHG FKDQJH RI YDULDEOH LV [ D P \ ZKHUH P D $ FRPPRQ 1= 2 1= 2
4
1 1
x1 7KH PD[LPXP YDOXH RI Q.[/ VXEMHFW WR [T [ D 1 LV
x2
3 1
HUURU KHUH LV WR IRUJHW WR QRUPDOL]H WKH HLJHQYHFWRUV 7KH QHZ TXDGUDWLF IRUP LV \TD \ D 4y12 C 2y22 7KH PD[LPXP RI Q.[/ IRU D XQLW YHFWRU [ LV DQG WKH PD[LPXP LV DWWDLQHG DW p 1=p2 1 WKH XQLW HLJHQYHFWRU >$ FRPPRQ LQFRUUHFW DQVZHU LV 7KLV YHFWRU 0 1= 2 PD[LPL]HV WKH TXDGUDWLF IRUP \TD \ LQVWHDG RI Q.[/@
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 6LQJXODU 9DOXH 'HFRPSRVLWLRQ
7KH 6LQJXODU 9DOXH 'HFRPSRVLWLRQ 7KH GLDJRQDOL]DWLRQ WKHRUHPV LQ 6HFWLRQV DQG SOD\ D SDUW LQ PDQ\ LQWHUHVWLQJ DS SOLFDWLRQV 8QIRUWXQDWHO\ DV ZH NQRZ QRW DOO PDWULFHV FDQ EH IDFWRUHG DV A D PDP 1 ZLWK D GLDJRQDO +RZHYHU D IDFWRUL]DWLRQ A D QDP 1 LV SRVVLEOH IRU DQ\ m n PDWUL[ A $ VSHFLDO IDFWRUL]DWLRQ RI WKLV W\SH FDOOHG WKH VLQJXODU YDOXH GHFRPSRVLWLRQ LV RQH RI WKH PRVW XVHIXO PDWUL[ IDFWRUL]DWLRQV LQ DSSOLHG OLQHDU DOJHEUD 7KH VLQJXODU YDOXH GHFRPSRVLWLRQ LV EDVHG RQ WKH IROORZLQJ SURSHUW\ RI WKH RUGLQDU\ GLDJRQDOL]DWLRQ WKDW FDQ EH LPLWDWHG IRU UHFWDQJXODU PDWULFHV 7KH DEVROXWH YDOXHV RI WKH HLJHQYDOXHV RI D V\PPHWULF PDWUL[ A PHDVXUH WKH DPRXQWV WKDW A VWUHWFKHV RU VKULQNV FHUWDLQ YHFWRUV WKH HLJHQYHFWRUV ,I A[ D [ DQG k[k D 1 WKHQ
kA[k D k [k D j j k[k D j j
,I 1 LV WKH HLJHQYDOXH ZLWK WKH JUHDWHVW PDJQLWXGH WKHQ D FRUUHVSRQGLQJ XQLW HLJHQYHFWRU Y1 LGHQWLıHV D GLUHFWLRQ LQ ZKLFK WKH VWUHWFKLQJ HijHFW RI A LV JUHDWHVW 7KDW LV WKH OHQJWK RI A[ LV PD[LPL]HG ZKHQ [ D Y1 DQG kAY1 k D j 1 j E\ 7KLV GHVFULSWLRQ RI Y1 DQG j 1 j KDV DQ DQDORJXH IRU UHFWDQJXODU PDWULFHV WKDW ZLOO OHDG WR WKH VLQJXODU YDOXH GHFRPSRVLWLRQ
4 11 14 WKHQ WKH OLQHDU WUDQVIRUPDWLRQ [ 7! A[ PDSV 8 7 2 WKH XQLW VSKHUH f[ W k[k D 1g LQ R3 RQWR DQ HOOLSVH LQ R2 VKRZQ LQ )LJXUH )LQG D XQLW YHFWRU [ DW ZKLFK WKH OHQJWK kA[k LV PD[LPL]HG DQG FRPSXWH WKLV PD[LPXP OHQJWK
(;$03/( ,I A D
x3 Multiplication by A
x2
(18, 6)
x2
x1
x1 (3, 29)
'*(63& $ WUDQVIRUPDWLRQ IURP R3 WR R2
62/87,21 7KH TXDQWLW\ kA[k2 LV PD[LPL]HG DW WKH VDPH [ WKDW PD[LPL]HV kA[k DQG
kA[k2 LV HDVLHU WR VWXG\ 2EVHUYH WKDW
kA[k2 D .A[/T .A[/ D [TATA[ D [T.ATA/[ $OVR ATA LV D V\PPHWULF PDWUL[ VLQFH .ATA/T D ATAT T D ATA 6R WKH SUREOHP QRZ LV WR PD[LPL]H WKH TXDGUDWLF IRUP [T.ATA/[ VXEMHFW WR WKH FRQVWUDLQW k[k D 1 %\ 7KH RUHP LQ 6HFWLRQ WKH PD[LPXP YDOXH LV WKH JUHDWHVW HLJHQYDOXH 1 RI ATA $OVR WKH PD[LPXP YDOXH LV DWWDLQHG DW D XQLW HLJHQYHFWRU RI ATA FRUUHVSRQGLQJ WR 1 )RU WKH PDWUL[ A LQ WKLV H[DPSOH 2 3 2 3 4 8 80 100 40 4 11 14 ATA D 4 11 7 5 D 4 100 170 140 5 8 7 2 14 2 40 140 200
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 6\PPHWULF 0DWULFHV DQG 4XDGUDWLF )RUPV
7KH HLJHQYDOXHV RI ATA DUH 1 D 360 2 D 90 DQG 3 D 0 &RUUHVSRQGLQJ XQLW HLJHQ YHFWRUV DUH UHVSHFWLYHO\ 2 3 2 3 2 3 1=3 2=3 2=3 Y1 D 4 2=3 5; Y2 D 4 1=3 5; Y3 D 4 2=3 5 2=3 2=3 1=3 7KH PD[LPXP YDOXH RI kA[k2 LV DWWDLQHG ZKHQ [ LV WKH XQLW YHFWRU Y1 7KH YHFWRU AY1 LV D SRLQW RQ WKH HOOLSVH LQ )LJXUH IDUWKHVW IURP WKH RULJLQ QDPHO\ 2 3 1=3 4 11 14 4 18 5 2=3 D A Y1 D 8 7 2 6 2=3 )RU k[k D 1 WKH PD[LPXP YDOXH RI kA[k LV kAY1 k D
p
p 360 D 6 10
([DPSOH VXJJHVWV WKDW WKH HijHFW RI A RQ WKH XQLW VSKHUH LQ R3 LV UHODWHG WR WKH TXDGUDWLF IRUP [T .ATA/[ ,Q IDFW WKH HQWLUH JHRPHWULF EHKDYLRU RI WKH WUDQVIRUPDWLRQ [ 7! A[ LV FDSWXUHG E\ WKLV TXDGUDWLF IRUP DV ZH VKDOO VHH
7KH 6LQJXODU 9DOXHV RI DQ P Q 0DWUL[ /HW A EH DQ m n PDWUL[ 7KHQ ATA LV V\PPHWULF DQG FDQ EH RUWKRJRQDOO\ GLDJRQDOL]HG /HW fY1 ; : : : ; Yn g EH DQ RUWKRQRUPDO EDVLV IRU Rn FRQVLVWLQJ RI HLJHQYHFWRUV RI ATA DQG OHW 1 ; : : : ; n EH WKH DVVRFLDWHG HLJHQYDOXHV RI ATA 7KHQ IRU 1 i n
kAYi k2 D .AYi /TAYi D YTi ATAYi D YTi . i Yi / D i
6LQFH Yi LV DQ HLJHQYHFWRU RI ATA
6LQFH Yi LV D XQLW YHFWRU
6R WKH HLJHQYDOXHV RI ATA DUH DOO QRQQHJDWLYH %\ UHQXPEHULQJ LI QHFHVVDU\ ZH PD\ DVVXPH WKDW WKH HLJHQYDOXHV DUH DUUDQJHG VR WKDW
1 2 n 0 T 7KH VLQJXODU YDOXHV RI A DUH WKH VTXDUH URRWV RI WKH HLJHQYDOXHV RI p A A GHQRWHG E\ 1 ; : : : ; n DQG WKH\ DUH DUUDQJHG LQ GHFUHDVLQJ RUGHU 7KDW LV i D i IRU 1 i n %\ HTXDWLRQ WKH VLQJXODU YDOXHV RI $ DUH WKH OHQJWKV RI WKH YHFWRUV AY1 ; : : : ; AYn
(;$03/( /HW A EH WKH PDWUL[ LQ ([DPSOH 6LQFH WKH HLJHQYDOXHV RI ATA DUH DQG WKH VLQJXODU YDOXHV RI A DUH p p p p 1 D 360 D 6 10; 2 D 90 D 3 10;
3 D 0
)URP ([DPSOH WKH ıUVW VLQJXODU YDOXH RI A LV WKH PD[LPXP RI kA[k RYHU DOO XQLW YHFWRUV DQG WKH PD[LPXP LV DWWDLQHG DW WKH XQLW HLJHQYHFWRU Y1 7KHRUHP LQ 6HFWLRQ VKRZV WKDW WKH VHFRQG VLQJXODU YDOXH RI A LV WKH PD[LPXP RI kA[k RYHU DOO XQLW YHFWRUV WKDW DUH RUWKRJRQDO WR Y1 DQG WKLV PD[LPXP LV DWWDLQHG DW WKH VHFRQG XQLW HLJHQYHFWRU Y2 ([HUFLVH )RU WKH Y2 LQ ([DPSOH 2 3 2=3 4 11 14 4 3 5 1=3 D AY2 D 8 7 2 9 2=3
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 6LQJXODU 9DOXH 'HFRPSRVLWLRQ
7KLV SRLQW LV RQ WKH PLQRU D[LV RI WKH HOOLSVH LQ )LJXUH MXVW DV AY1 LV RQ WKH PDMRU D[LV 6HH )LJXUH 7KH ıUVW WZR VLQJXODU YDOXHV RI A DUH WKH OHQJWKV RI WKH PDMRU DQG PLQRU VHPLD[HV RI WKH HOOLSVH
x2
Av1 x1
7KH IDFW WKDW AY1 DQG AY2 DUH RUWKRJRQDO LQ )LJXUH LV QR DFFLGHQW DV WKH QH[W WKHRUHP VKRZV
Av2
'*(63&
6XSSRVH fY1 ; : : : ; Yn g LV DQ RUWKRQRUPDO EDVLV RI Rn FRQVLVWLQJ RI HLJHQYHFWRUV RI ATA DUUDQJHG VR WKDW WKH FRUUHVSRQGLQJ HLJHQYDOXHV RI ATA VDWLVI\ 1 n DQG VXSSRVH A KDV r QRQ]HUR VLQJXODU YDOXHV 7KHQ fAY1 ; : : : ; AYr g LV DQ RUWKRJ RQDO EDVLV IRU &RO A DQG UDQN A D r
5)&03&.
1300' %HFDXVH Yi DQG j Yj DUH RUWKRJRQDO IRU i ¤ j .AYi /T .AYj / D YiT ATAYj D YTi . j Yj / D 0 7KXV fAY1 ; : : : ; AYn g LV DQ RUWKRJRQDO VHW )XUWKHUPRUH VLQFH WKH OHQJWKV RI WKH YHF WRUV AY1 ; : : : ; AYn DUH WKH VLQJXODU YDOXHV RI A DQG VLQFH WKHUH DUH r QRQ]HUR VLQJXODU YDOXHV AYi ¤ LI DQG RQO\ LI 1 i r 6R AY1 ; : : : ; AYr DUH OLQHDUO\ LQGHSHQGHQW YHFWRUV DQG WKH\ DUH LQ &RO A )LQDOO\ IRU DQ\ \ LQ &RO AŠVD\ \ D A[ŠZH FDQ ZULWH [ D c1 Y1 C C cn Yn DQG \ D A[ D c1 AY1 C C cr AYr C cr C1 AYr C1 C C cn AYn D c1 AY1 C C cr AYr C 0 C C 0 7KXV \ LV LQ 6SDQ fAY1 ; : : : ; AYr g ZKLFK VKRZV WKDW fAY1 ; : : : ; AYr g LV DQ RUWKRJRQDO EDVLV IRU &RO A +HQFH UDQN A D GLP &RO A D r
1XPHULFDO 1RWHV ,Q VRPH FDVHV WKH UDQN RI A PD\ EH YHU\ VHQVLWLYH WR VPDOO FKDQJHV LQ WKH HQWULHV RI A 7KH REYLRXV PHWKRG RI FRXQWLQJ WKH QXPEHU RI SLYRW FROXPQV LQ A GRHV QRW ZRUN ZHOO LI A LV URZ UHGXFHG E\ D FRPSXWHU 5RXQGRij HUURU RIWHQ FUHDWHV DQ HFKHORQ IRUP ZLWK IXOO UDQN ,Q SUDFWLFH WKH PRVW UHOLDEOH ZD\ WR HVWLPDWH WKH UDQN RI D ODUJH PDWUL[ A LV WR FRXQW WKH QXPEHU RI QRQ]HUR VLQJXODU YDOXHV ,Q WKLV FDVH H[WUHPHO\ VPDOO QRQ]HUR VLQJXODU YDOXHV DUH DVVXPHG WR EH ]HUR IRU DOO SUDFWLFDO SXUSRVHV DQG WKH HijHFWLYH UDQN RI WKH PDWUL[ LV WKH QXPEHU REWDLQHG E\ FRXQWLQJ WKH UHPDLQLQJ QRQ]HUR VLQJXODU YDOXHV
1
,Q JHQHUDO UDQN HVWLPDWLRQ LV QRW D VLPSOH SUREOHP )RU D GLVFXVVLRQ RI WKH VXEWOH LVVXHV LQYROYHG VHH 3KLOLS ( *LOO :DOWHU 0XUUD\ DQG 0DUJDUHW + :ULJKW 1XPHULFDO /LQHDU $OJHEUD DQG 2SWLPL]DWLRQ YRO 5HGZRRG &LW\ &$ $GGLVRQ:HVOH\ 6HF
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 6\PPHWULF 0DWULFHV DQG 4XDGUDWLF )RUPV
7KH 6LQJXODU 9DOXH 'HFRPSRVLWLRQ 7KH GHFRPSRVLWLRQ RI A LQYROYHV DQ m n ŗGLDJRQDOŘ PDWUL[ † RI WKH IRUP
†D
D 0
0 0
m r URZV
6 n r FROXPQV
ZKHUH D LV DQ r r GLDJRQDO PDWUL[ IRU VRPH r QRW H[FHHGLQJ WKH VPDOOHU RI m DQG n ,I r HTXDOV m RU n RU ERWK VRPH RU DOO RI WKH ]HUR PDWULFHV GR QRW DSSHDU
5)&03&.
5IF 4JOHVMBS 7BMVF %FDPNQPTJUJPO /HW A EH DQ m n PDWUL[ ZLWK UDQN r 7KHQ WKHUH H[LVWV DQ m n PDWUL[ † DV LQ IRU ZKLFK WKH GLDJRQDO HQWULHV LQ D DUH WKH ıUVW r VLQJXODU YDOXHV RI A 1 2 r > 0 DQG WKHUH H[LVW DQ m m RUWKRJRQDO PDWUL[ U DQG DQ n n RUWKRJRQDO PDWUL[ V VXFK WKDW
A D U †V T
$Q\ IDFWRUL]DWLRQ A D U †V T ZLWK U DQG V RUWKRJRQDO † DV LQ DQG SRVLWLYH GLDJRQDO HQWULHV LQ D LV FDOOHG D VLQJXODU YDOXH GHFRPSRVLWLRQ RU 69' RI A 7KH PDWULFHV U DQG V DUH QRW XQLTXHO\ GHWHUPLQHG E\ A EXW WKH GLDJRQDO HQWULHV RI † DUH QHFHVVDULO\ WKH VLQJXODU YDOXHV RI A 6HH ([HUFLVH 7KH FROXPQV RI U LQ VXFK D GHFRPSRVLWLRQ DUH FDOOHG OHIW VLQJXODU YHFWRUV RI A DQG WKH FROXPQV RI V DUH FDOOHG ULJKW VLQJXODU YHFWRUV RI A
1300' /HW i DQG Yi EH DV LQ 7KHRUHP VR WKDW fAY1 ; : : : ; AYr g LV DQ RUWKRJRQDO EDVLV IRU &RO A 1RUPDOL]H HDFK AYi WR REWDLQ DQ RUWKRQRUPDO EDVLV fX1 ; : : : ; Xr g ZKHUH Xi D
1 1 AYi D AYi kAYi k i
DQG
AYi D i Xi
.1 i r/
1RZ H[WHQG fX1 ; : : : ; Xr g WR DQ RUWKRQRUPDO EDVLV fX1 ; : : : ; Xm g RI Rm DQG OHW
U D Œ X1 X2 Xm DQG V D Œ Y1 Y2 Yn %\ FRQVWUXFWLRQ U DQG V DUH RUWKRJRQDO PDWULFHV $OVR IURP
AV D Œ AY1 AYr
D Œ 1 X1 r Xr
/HW D EH WKH GLDJRQDO PDWUL[ ZLWK GLDJRQDO HQWULHV 1 ; : : : ; r DQG OHW † EH DV LQ DERYH 7KHQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 6LQJXODU 9DOXH 'HFRPSRVLWLRQ
2
U † D Œ X1 X2
1
6 6 6 Xm 6 6 4 0
0 2 ::
: r
0 D Œ 1 X1 r Xr D AV
3
07 7 7 7 7 5 0
6LQFH V LV DQ RUWKRJRQDO PDWUL[ U †V T D AV V T D A 7KH QH[W WZR H[DPSOHV IRFXV DWWHQWLRQ RQ WKH LQWHUQDO VWUXFWXUH RI D VLQJXODU YDOXH GHFRPSRVLWLRQ $Q HĴFLHQW DQG QXPHULFDOO\ VWDEOH DOJRULWKP IRU WKLV GHFRPSRVLWLRQ ZRXOG XVH D GLijHUHQW DSSURDFK 6HH WKH 1XPHULFDO 1RWH DW WKH HQG RI WKH VHFWLRQ
(;$03/( 8VH WKH DQG WR FRQVWUXFW D VLQJXODU YDOXH UHVXOWV RI ([DPSOHV GHFRPSRVLWLRQ RI A D
4 8
11 7
14 2
62/87,21 $ FRQVWUXFWLRQ FDQ EH GLYLGHG LQWR WKUHH VWHSV 678'< *8,'( RIIHUV DGGLWLRQDO UHVRXUFHV IRU OHDUQLQJ WR FRPSXWH DQ 69'
6WHS )LQG DQ RUWKRJRQDO GLDJRQDOL]DWLRQ RI A TA 7KDW LV ıQG WKH HLJHQYDOXHV RI ATA DQG D FRUUHVSRQGLQJ RUWKRQRUPDO VHW RI HLJHQYHFWRUV ,I A KDG RQO\ WZR FROXPQV WKH FDOFXODWLRQV FRXOG EH GRQH E\ KDQG /DUJHU PDWULFHV XVXDOO\ UHTXLUH D PDWUL[ SURJUDP +RZHYHU IRU WKH PDWUL[ A KHUH WKH HLJHQGDWD IRU ATA DUH SURYLGHG LQ ([DPSOH 6WHS 6HW XS 9 DQG † $UUDQJH WKH HLJHQYDOXHV RI ATA LQ GHFUHDVLQJ RUGHU ,Q ([DPSOH WKH HLJHQYDOXHV DUH DOUHDG\ OLVWHG LQ GHFUHDVLQJ RUGHU DQG 7KH FRUUHVSRQG LQJ XQLW HLJHQYHFWRUV Y1 Y2 DQG Y3 DUH WKH ULJKW VLQJXODU YHFWRUV RI A 8VLQJ ([DPSOH FRQVWUXFW 2 3 1=3 2=3 2=3 V D Œ Y1 Y2 Y3 D 4 2=3 1=3 2=3 5 2=3 2=3 1=3 7KH VTXDUH URRWV RI WKH HLJHQYDOXHV DUH WKH VLQJXODU YDOXHV p p 1 D 6 10; 2 D 3 10; 3 D 0 7KH QRQ]HUR VLQJXODU YDOXHV DUH WKH GLDJRQDO HQWULHV RI D 7KH PDWUL[ † LV WKH VDPH VL]H DV A ZLWK D LQ LWV XSSHU OHIW FRUQHU DQG ZLWK ŖV HOVHZKHUH " p # " p # 6 10 0 6 10 0 0 p p DD ; † D ŒD 0 D 0 3 10 0 3 10 0 6WHS &RQVWUXFW 8 :KHQ A KDV UDQN r WKH ıUVW r FROXPQV RI U DUH WKH QRUPDOL]HG YHFWRUV REWDLQHG IURP AY1 ; : : : ; AYr ,Q WKLV H[DPSOH A KDV WZR QRQ]HUR VLQJXODU YDO XHV VR UDQN A D 2 5HFDOO IURP HTXDWLRQ DQG WKH SDUDJUDSK EHIRUH ([DPSOH WKDW kAY1 k D 1 DQG kAY2 k D 2 7KXV " p # 1 1 18 3=p10 X1 D AY1 D p D 6 1= 10 1 6 10 " p # 1 1 3 1=p10 X2 D AY2 D p D 3= 10 2 3 10 9
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 6\PPHWULF 0DWULFHV DQG 4XDGUDWLF )RUPV
1RWH WKDW fX1 ; X2 g LV DOUHDG\ D EDVLV IRU R2 7KXV QR DGGLWLRQDO YHFWRUV DUH QHHGHG IRU U DQG U D Œ X1 X2 7KH VLQJXODU YDOXH GHFRPSRVLWLRQ RI A LV 3 " p # 2 1=3 p # " p 2=3 2=3 3=p10 1=p10 6 10 0 0 4 2=3 1=3 p 2=3 5 A D 1= 10 3= 10 0 3 10 0 2=3 2=3 1=3 " U
" †
" VT
2
3 1 1 (;$03/( )LQG D VLQJXODU YDOXH GHFRPSRVLWLRQ RI A D 4 2 2 5 2 2 9 9 62/87,21 )LUVW FRPSXWH ATA D 7KH HLJHQYDOXHV RI ATA DUH DQG 9 9 ZLWK FRUUHVSRQGLQJ XQLW HLJHQYHFWRUV " " p # p # 1=p2 1=p2 ; Y2 D Y1 D 1= 2 1= 2 7KHVH XQLW YHFWRUV IRUP WKH FROXPQV RI V "
V D Œ Y1 Y2 D
x2
1
x1
v1
x3 Av1 u3
u1 v1
1 u2
x1 '*(63&
x2
p 1=p2 1= 2
p # 1=p2 1= 2
p p 7KH VLQJXODU YDOXHV DUH 1 D 18 D 3 2 DQG 2 D 0 6LQFH WKHUH LV RQO\ RQH QRQ]HUR p VLQJXODU YDOXH WKH ŗPDWUL[Ř D PD\ EH ZULWWHQ DV D VLQJOH QXPEHU 7KDW LV D D 3 2 7KH PDWUL[ † LV WKH VDPH VL]H DV A ZLWK D LQ LWV XSSHU OHIW FRUQHU 2 3 2 p 3 D 0 3 2 0 † D 4 0 05 D 4 0 05 0 0 0 0 7R FRQVWUXFW U ıUVW FRQVWUXFW AY1 DQG AY2 p 3 2 2 3 2=p2 0 AY1 D 4 4= 2 5; AY2 D 4 0 5 p 0 4= 2 p $V D FKHFN RQ WKH FDOFXODWLRQV YHULI\ WKDW kAY1 k D 1 D 3 2 2I FRXUVH AY2 D EHFDXVH kAY2 k D 2 D 0 7KH RQO\ FROXPQ IRXQG IRU U VR IDU LV 2 3 1=3 1 X1 D p AY1 D 4 2=3 5 3 2 2=3 7KH RWKHU FROXPQV RI U DUH IRXQG E\ H[WHQGLQJ WKH VHW fX1 g WR DQ RUWKRQRUPDO EDVLV IRU R3 ,Q WKLV FDVH ZH QHHG WZR RUWKRJRQDO XQLW YHFWRUV X2 DQG X3 WKDW DUH RUWKRJRQDO WR X1 6HH )LJXUH (DFK YHFWRU PXVW VDWLVI\ X1T [ D 0 ZKLFK LV HTXLYDOHQW WR WKH HTXDWLRQ x1 2x2 C 2x3 D 0 $ EDVLV IRU WKH VROXWLRQ VHW RI WKLV HTXDWLRQ LV 2 3 2 3 2 2 Z1 D 4 1 5; Z2 D 4 0 5 0 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 6LQJXODU 9DOXH 'HFRPSRVLWLRQ
&KHFN WKDW Z1 DQG Z2 DUH HDFK RUWKRJRQDO WR X1 $SSO\ WKH *UDPş6FKPLGW SURFHVV ZLWK QRUPDOL]DWLRQV WR fZ1 ; Z2 g DQG REWDLQ
p 3 2=p5 X2 D 4 1= 5 5 ; 0 2
p 3 2=p45 X3 D 4 4= 45 5 p 5= 45 2
)LQDOO\ VHW U D Œ X1 X2 X3 WDNH † DQG V T IURP DERYH DQG ZULWH 2
3 2 1 1 1=3 A D 4 2 2 5 D 4 2=3 2 2 2=3
p 2=p5 1= 5 0
p 32 p 2=p45 3 2 4=p45 54 0 0 5= 45
3" p # p 0 1= 2 1= p2 p 05 1= 2 1= 2 0
$SSOLFDWLRQV RI WKH 6LQJXODU 9DOXH 'HFRPSRVLWLRQ 7KH 69' LV RIWHQ XVHG WR HVWLPDWH WKH UDQN RI D PDWUL[ DV QRWHG DERYH 6HYHUDO RWKHU QX PHULFDO DSSOLFDWLRQV DUH GHVFULEHG EULHIJ\ EHORZ DQG DQ DSSOLFDWLRQ WR LPDJH SURFHVVLQJ LV SUHVHQWHG LQ 6HFWLRQ
(;$03/( 5IF $POEJUJPO /VNCFS 0RVW QXPHULFDO FDOFXODWLRQV LQYROYLQJ DQ
HTXDWLRQ A[ D E DUH DV UHOLDEOH DV SRVVLEOH ZKHQ WKH 69' RI A LV XVHG 7KH WZR RUWKRJRQDO PDWULFHV U DQG V GR QRW DijHFW OHQJWKV RI YHFWRUV RU DQJOHV EHWZHHQ YHFWRUV 7KHRUHP LQ 6HFWLRQ $Q\ SRVVLEOH LQVWDELOLWLHV LQ QXPHULFDO FDOFXODWLRQV DUH LGHQWLıHG LQ † ,I WKH VLQJXODU YDOXHV RI A DUH H[WUHPHO\ ODUJH RU VPDOO URXQGRij HUURUV DUH DOPRVW LQHYLWDEOH EXW DQ HUURU DQDO\VLV LV DLGHG E\ NQRZLQJ WKH HQWULHV LQ † DQG V ,I A LV DQ LQYHUWLEOH n n PDWUL[ WKHQ WKH UDWLR 1 =n RI WKH ODUJHVW DQG VPDOOHVW VLQJXODU YDOXHV JLYHV WKH FRQGLWLRQ QXPEHU RI A ([HUFLVHV ş LQ 6HFWLRQ VKRZHG KRZ WKH FRQGLWLRQ QXPEHU DijHFWV WKH VHQVLWLYLW\ RI D VROXWLRQ RI A[ D E WR FKDQJHV RU HUURUV LQ WKH HQWULHV RI A $FWXDOO\ D ŗFRQGLWLRQ QXPEHUŘ RI A FDQ EH FRPSXWHG LQ VHYHUDO ZD\V EXW WKH GHıQLWLRQ JLYHQ KHUH LV ZLGHO\ XVHG IRU VWXG\LQJ A[ D E
(;$03/( #BTFT GPS 'VOEBNFOUBM 4VCTQBDFT *LYHQ DQ 69' IRU DQ m n PDWUL[ A OHW X1 ; : : : ; Xm EH WKH OHIW VLQJXODU YHFWRUV Y1 ; : : : ; Yn WKH ULJKW VLQJXODU YHFWRUV DQG 1 ; : : : ; n WKH VLQJXODU YDOXHV DQG OHW r EH WKH UDQN RI A %\ 7KHRUHP
fX1 ; : : : ; Xr g
LV DQ RUWKRQRUPDO EDVLV IRU &RO A 5HFDOO IURP 7KHRUHP LQ 6HFWLRQ WKDW .&RO A/? D 1XO AT +HQFH
fXr C1 ; : : : ; Xm g
LV DQ RUWKRQRUPDO EDVLV IRU 1XO AT 6LQFH kAYi k D i IRU 1 i n DQG i LV LI DQG RQO\ LI i > r WKH YHFWRUV Yr C1 ; : : : ; Yn VSDQ D VXEVSDFH RI 1XO A RI GLPHQVLRQ n r %\ WKH 5DQN 7KHRUHP GLP 1XO A D n UDQN A ,W IROORZV WKDW
fYr C1 ; : : : ; Yn g LV DQ RUWKRQRUPDO EDVLV IRU 1XO A E\ WKH %DVLV 7KHRUHP LQ 6HFWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 6\PPHWULF 0DWULFHV DQG 4XDGUDWLF )RUPV
)URP DQG WKH RUWKRJRQDO FRPSOHPHQW RI 1XO AT LV &RO A ,QWHUFKDQJLQJ A DQG AT QRWH WKDW .1XO A/? D &RO AT D 5RZ A +HQFH IURP
N
ul A
x2
fY1 ; : : : ; Yr g
v1 w Ro A
x3 Av1 u3
u1
LV DQ RUWKRQRUPDO EDVLV IRU 5RZ A )LJXUH VXPPDUL]HV ş EXW VKRZV WKH RUWKRJRQDO EDVLV f1 X1 ; : : : ; r Xr g IRU &RO A LQVWHDG RI WKH QRUPDOL]HG EDVLV WR UHPLQG \RX WKDW AYi D i Xi IRU 1 i r ([SOLFLW RUWKRQRUPDO EDVHV IRU WKH IRXU IXQGDPHQWDO VXEVSDFHV GHWHUPLQHG E\ A DUH XVHIXO LQ VRPH FDOFXODWLRQV SDUWLFXODUO\ LQ FRQVWUDLQHG RSWLPL]DWLRQ SUREOHPV
Col A'
Multiplication by A v1
x2
v2
.. .
...
lA
Co
u2
x1
Row A
0
s1u1 s2u2
sr u r
vr
0 ur 1 1
vr 1 1
...
...
7KH IXQGDPHQWDO VXEVSDFHV LQ ([DPSOH
Col A 5 Row AT
...
x1
Nul A
vn 2 1 vn
um
Nul AT
'*(63& 7KH IRXU IXQGDPHQWDO VXEVSDFHV DQG WKH
DFWLRQ RI A
7KH IRXU IXQGDPHQWDO VXEVSDFHV DQG WKH FRQFHSW RI VLQJXODU YDOXHV SURYLGH WKH ıQDO VWDWHPHQWV RI WKH ,QYHUWLEOH 0DWUL[ 7KHRUHP 5HFDOO WKDW VWDWHPHQWV DERXW AT KDYH EHHQ RPLWWHG IURP WKH WKHRUHP WR DYRLG QHDUO\ GRXEOLQJ WKH QXPEHU RI VWDWHPHQWV 7KH RWKHU VWDWHPHQWV ZHUH JLYHQ LQ 6HFWLRQV DQG
5)&03&.
5IF *OWFSUJCMF .BUSJY 5IFPSFN DPODMVEFE
/HW A EH DQ n n PDWUL[ 7KHQ WKH IROORZLQJ VWDWHPHQWV DUH HDFK HTXLYDOHQW WR WKH VWDWHPHQW WKDW A LV DQ LQYHUWLEOH PDWUL[ V W X Y
.&RO A/? D fg .1XO A/? D Rn 5RZ A D Rn A KDV n QRQ]HUR VLQJXODU YDOXHV
(;$03/( 3FEVDFE 47% BOE UIF 1TFVEPJOWFSTF PG " :KHQ † FRQWDLQV URZV RU FROXPQV RI ]HURV D PRUH FRPSDFW GHFRPSRVLWLRQ RI A LV SRVVLEOH 8VLQJ WKH QRWDWLRQ HVWDEOLVKHG DERYH OHW r D UDQN A DQG SDUWLWLRQ U DQG V LQWR VXEPDWULFHV ZKRVH ıUVW EORFNV FRQWDLQ r FROXPQV
U D Œ Ur
Umr ; ZKHUH Ur D Œ X1 Xr
V D Œ Vr
Vnr ;
ZKHUH Vr D Œ Y1 Yr
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
7KH 6LQJXODU 9DOXH 'HFRPSRVLWLRQ
7KHQ Ur LV m r DQG Vr LV n r 7R VLPSOLI\ QRWDWLRQ ZH FRQVLGHU Umr RU Vnr HYHQ WKRXJK RQH RI WKHP PD\ KDYH QR FROXPQV 7KHQ SDUWLWLRQHG PDWUL[ PXOWLSOLFDWLRQ VKRZV WKDW " #" # D 0 VrT A D Œ Ur Umr D Ur DVrT 0 0 VnTr 7KLV IDFWRUL]DWLRQ RI A LV FDOOHG D UHGXFHG VLQJXODU YDOXH GHFRPSRVLWLRQ RI A 6LQFH WKH GLDJRQDO HQWULHV LQ D DUH QRQ]HUR D LV LQYHUWLEOH 7KH IROORZLQJ PDWUL[ LV FDOOHG WKH SVHXGRLQYHUVH DOVR WKH 0RRUHş3HQURVH LQYHUVH RI A
AC D Vr D 1 UrT
6XSSOHPHQWDU\ ([HUFLVHV ş DW WKH HQG RI WKH FKDSWHU H[SORUH VRPH RI WKH SURSHUWLHV RI WKH UHGXFHG VLQJXODU YDOXH GHFRPSRVLWLRQ DQG WKH SVHXGRLQYHUVH
(;$03/( -FBTU4RVBSFT 4PMVUJPO *LYHQ WKH HTXDWLRQ A[ D E XVH WKH SVHX GRLQYHUVH RI A LQ WR GHıQH [O D AC E D Vr D 1 UrT E 7KHQ IURP WKH 69' LQ
AO[ D .Ur DVrT /.Vr D 1 UrT E/ D Ur ''1 UrT E
%HFDXVH VrT Vr D Ir
D Ur UrT E ,W IROORZV IURP WKDW Ur UrT E LV WKH RUWKRJRQDO SURMHFWLRQ EO RI E RQWR &RO A 6HH 7KHRUHP LQ 6HFWLRQ 7KXV [O LV D OHDVWVTXDUHV VROXWLRQ RI A[ D E ,Q IDFW WKLV [O KDV WKH VPDOOHVW OHQJWK DPRQJ DOO OHDVWVTXDUHV VROXWLRQV RI A[ D E 6HH 6XSSOHPHQWDU\ ([HUFLVH 1XPHULFDO 1RWHV ([DPSOHV ş DQG WKH H[HUFLVHV LOOXVWUDWH WKH FRQFHSW RI VLQJXODU YDOXHV DQG VXJJHVW KRZ WR SHUIRUP FDOFXODWLRQV E\ KDQG ,Q SUDFWLFH WKH FRPSXWDWLRQ RI ATA VKRXOG EH DYRLGHG VLQFH DQ\ HUURUV LQ WKH HQWULHV RI A DUH VTXDUHG LQ WKH HQWULHV RI ATA 7KHUH H[LVW IDVW LWHUDWLYH PHWKRGV WKDW SURGXFH WKH VLQJXODU YDOXHV DQG VLQJXODU YHFWRUV RI A DFFXUDWHO\ WR PDQ\ GHFLPDO SODFHV
3UDFWLFH 3UREOHPV *LYHQ D VLQJXODU YDOXH GHFRPSRVLWLRQ A D U †V T ıQG DQ 69' RI AT +RZ DUH WKH VLQJXODU YDOXHV RI A DQG AT UHODWHG" )RU DQ\ n n PDWUL[ A XVH WKH 69' WR VKRZ WKDW WKHUH LV DQ n n RUWKRJRQDO PDWUL[ Q VXFK WKDW ATA D QT .ATA/Q 5HPDUN 3UDFWLFH 3UREOHP HVWDEOLVKHV WKDW IRU DQ\ n n PDWUL[ A WKH PDWULFHV AAT DQG ATA DUH RUWKRJRQDOO\ VLPLODU
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 6\PPHWULF 0DWULFHV DQG 4XDGUDWLF )RUPV
([HUFLVHV )LQG WKH VLQJXODU YDOXHV RI WKH PDWULFHV LQ ([HUFLVHV ş 1 0 3 0 0 3 0 0
2 0
3 2
3 8
0 3
)LQG DQ 69' RI HDFK PDWUL[ LQ ([HUFLVHV ş >+LQW ,Q ([HU 2 3 1=3 2=3 2=3 2=3 5 ,Q ([HU FLVH RQH FKRLFH IRU U LV 4 2=3 1=3 2=3 2=3 1=3 2 p 3 1=p6 6 7 FLVH RQH FROXPQ RI U FDQ EH 4 2= 6 5 p 1= 6 2 0 3 0 0 0 0 2
2 1 2 2
2
3 3 05 1
3 4 0 1
4 0
2
7 4 5 0
2
3 3 1 4 6 2 5 6 2
6 4
1 4 0 1
3 2
32 :86 :11 :50 12:48 A D 4 :31 :68 :67 5 4 0 0 :41 :73 :55 2 3 :66 :03 :35 :66 6 :13 :90 :39 :13 7 7 6 4 :65 :08 :16 :73 5 :34 :42 :84 :08
0 6:34 0
0 0 0
3 0 05 0
,Q ([HUFLVHV ş A LV DQ m n PDWUL[ ZLWK D VLQJXODU YDOXH GHFRPSRVLWLRQ A D U †V T ZKHUH U LV DQ m m RUWKRJRQDO PDWUL[ † LV DQ m n ŗGLDJRQDOŘ PDWUL[ ZLWK r SRVLWLYH HQWULHV DQG QR QHJDWLYH HQWULHV DQG V LV DQ n n RUWKRJRQDO PDWUL[ -XVWLI\ HDFK DQVZHU 6KRZ WKDW LI A LV VTXDUH WKHQ j GHW Aj LV WKH SURGXFW RI WKH VLQJXODU YDOXHV RI A 6XSSRVH A LV VTXDUH DQG LQYHUWLEOH )LQG D VLQJXODU YDOXH GHFRPSRVLWLRQ RI A1 6KRZ WKDW WKH FROXPQV RI V DUH HLJHQYHFWRUV RI ATA WKH FROXPQV RI U DUH HLJHQYHFWRUV RI AAT DQG WKH GLDJRQDO HQWULHV RI † DUH WKH VLQJXODU YDOXHV RI A >+LQW 8VH WKH 69' WR FRPSXWH ATA DQG AAT @
3 1 55 0
2
)LQG WKH 69' RI A D
2
6KRZ WKDW LI P LV DQ RUWKRJRQDO m m PDWUL[ WKHQ PA KDV WKH VDPH VLQJXODU YDOXHV DV A
3 1 15 1
2 2 >+LQW :RUN ZLWK AT @ 3 2
-XVWLI\ WKH VWDWHPHQW LQ ([DPSOH WKDW WKH VHFRQG VLQJXODU YDOXH RI D PDWUL[ A LV WKH PD[LPXP RI kA[k DV [ YDULHV RYHU DOO XQLW YHFWRUV RUWKRJRQDO WR Y1 ZLWK Y1 D ULJKW VLQJXODU YHFWRU FRUUHVSRQGLQJ WR WKH ıUVW VLQJXODU YDOXH RI A >+LQW 8VH 7KHRUHP LQ 6HFWLRQ @
,Q ([HUFLVH ıQG D XQLW YHFWRU [ DW ZKLFK A[ KDV PD[LPXP OHQJWK
6KRZ WKDW LI A LV DQ n n SRVLWLYH GHıQLWH PDWUL[ WKHQ DQ RUWKRJRQDO GLDJRQDOL]DWLRQ A D 3'3T LV D VLQJXODU YDOXH GHFRPSRVLWLRQ RI A
6XSSRVH WKH IDFWRUL]DWLRQ EHORZ LV DQ 69' RI D PDWUL[ A ZLWK WKH HQWULHV LQ U DQG V URXQGHG WR WZR GHFLPDO SODFHV
/HW U D Œ X1 Xm DQG V D Œ Y1 Xi DQG Yi DUH DV LQ 7KHRUHP 6KRZ WKDW
2
:40 A D 4 :37 :84 2 :30 4 :76 :58
32
:78 :47 7:10 :33 :87 5 4 0 :52 :16 0 3 :51 :81 :64 :12 5 :58 :58
0 3:10 0
3
0 05 0
D :KDW LV WKH UDQN RI A" E 8VH WKLV GHFRPSRVLWLRQ RI A ZLWK QR FDOFXODWLRQV WR ZULWH D EDVLV IRU &RO A DQG D EDVLV IRU 1XO A >+LQW )LUVW ZULWH WKH FROXPQV RI V @ 5HSHDW ([HUFLVH IRU WKH IROORZLQJ 69' RI D 3 4 PDWUL[ A
Yn ZKHUH WKH
A D 1 X1 Y1T C 2 X2 YT2 C C r Xr YrT : 8VLQJ WKH QRWDWLRQ RI ([HUFLVH VKRZ WKDW AT Xj D j Yj IRU 1 j r D UDQN A /HW T W Rn ! Rm EH D OLQHDU WUDQVIRUPDWLRQ 'HVFULEH KRZ WR ıQG D EDVLV B IRU Rn DQG D EDVLV C IRU Rm VXFK WKDW WKH PDWUL[ IRU T UHODWLYH WR B DQG C LV DQ m n ŗGLDJRQDOŘ PDWUL[ &RPSXWH DQ 69' RI HDFK PDWUL[ LQ ([HUFLVHV DQG 5HSRUW WKH ıQDO PDWUL[ HQWULHV DFFXUDWH WR WZR GHFLPDO SODFHV 8VH WKH PHWKRG RI ([DPSOHV DQG 2 3 18 13 4 4 6 2 19 4 12 7 7 A D 6 4 14 11 12 85 2 21 4 8
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$SSOLFDWLRQV WR ,PDJH 3URFHVVLQJ DQG 6WDWLVWLFV 2
3 5 4 6 8 4 6 2 47 7 5 6 7 7 A D 6 4 0 1 8 2 25 1 2 4 4 8
7 &RPSXWH WKH VLQJXODU YDOXHV RI WKH 4 4 PDWUL[ LQ ([HUFLVH
LQ 6HFWLRQ DQG FRPSXWH WKH FRQGLWLRQ QXPEHU 1 =4 7 &RPSXWH WKH VLQJXODU YDOXHV RI WKH 5 5 PDWUL[ LQ ([HUFLVH
LQ 6HFWLRQ DQG FRPSXWH WKH FRQGLWLRQ QXPEHU 1 =5
6ROXWLRQV WR 3UDFWLFH 3UREOHPV ,I A D U †V T ZKHUH † LV m n WKHQ AT D .V T /T †T U T D V †T U T 7KLV LV DQ 69' RI AT EHFDXVH V DQG U DUH RUWKRJRQDO PDWULFHV DQG †T LV DQ n m ŗGLDJRQDOŘ PDWUL[ 6LQFH † DQG †T KDYH WKH VDPH QRQ]HUR GLDJRQDO HQWULHV A DQG AT KDYH WKH VDPH QRQ]HUR VLQJXODU YDOXHV >1RWH ,I A LV 2 n WKHQ AAT LV RQO\ 2 2 DQG LWV HLJHQYDOXHV PD\ EH HDVLHU WR FRPSXWH E\ KDQG WKDQ WKH HLJHQYDOXHV RI ATA@ 8VH WKH 69' WR ZULWH A D U †V T ZKHUH U DQG V DUH n n RUWKRJRQDO PDWULFHV DQG † LV DQ n n GLDJRQDO PDWUL[ 1RWLFH WKDW U T U D I D V T V DQG †T D † VLQFH U DQG V DUH RUWKRJRQDO PDWULFHV DQG † LV D GLDJRQDO PDWUL[ 6XEVWLWXWLQJ WKH 69' IRU A LQWR AAT DQG ATA UHVXOWV LQ
AAT D U †V T .U †V T /T D U †V T V †T U T D U ††T U T D U †2 U T ; DQG
ATA D .U †V T /T U †V T D V †T U T U †V T D V †T †V T D V †2 V T : /HW Q D V U T 7KHQ
QT .AT A/Q D .V U T /T .V †2 V T /.V U T / D U V T V †2 V T V U T D U †2 U T D AAT :
$SSOLFDWLRQV WR ,PDJH 3URFHVVLQJ DQG 6WDWLVWLFV 7KH VDWHOOLWH SKRWRJUDSKV LQ WKLV FKDSWHUŖV LQWURGXFWLRQ SURYLGH DQ H[DPSOH RI PXOWLGL PHQVLRQDO RU PXOWLYDULDWH GDWDŠLQIRUPDWLRQ RUJDQL]HG VR WKDW HDFK GDWXP LQ WKH GDWD VHW LV LGHQWLıHG ZLWK D SRLQW YHFWRU LQ Rn 7KH PDLQ JRDO RI WKLV VHFWLRQ LV WR H[SODLQ D WHFKQLTXH FDOOHG SULQFLSDO FRPSRQHQW DQDO\VLV XVHG WR DQDO\]H VXFK PXOWLYDULDWH GDWD 7KH FDOFXODWLRQV ZLOO LOOXVWUDWH WKH XVH RI RUWKRJRQDO GLDJRQDOL]DWLRQ DQG WKH VLQJXODU YDOXH GHFRPSRVLWLRQ 3ULQFLSDO FRPSRQHQW DQDO\VLV FDQ EH DSSOLHG WR DQ\ GDWD WKDW FRQVLVW RI OLVWV RI PHDVXUHPHQWV PDGH RQ D FROOHFWLRQ RI REMHFWV RU LQGLYLGXDOV )RU LQVWDQFH FRQVLGHU D FKHPLFDO SURFHVV WKDW SURGXFHV D SODVWLF PDWHULDO 7R PRQLWRU WKH SURFHVV VDPSOHV DUH WDNHQ RI WKH PDWHULDO SURGXFHG DQG HDFK VDPSOH LV VXEMHFWHG WR D EDWWHU\ RI HLJKW WHVWV VXFK DV PHOWLQJ SRLQW GHQVLW\ GXFWLOLW\ WHQVLOH VWUHQJWK DQG VR RQ 7KH ODERUDWRU\ UHSRUW IRU HDFK VDPSOH LV D YHFWRU LQ R8 DQG WKH VHW RI VXFK YHFWRUV IRUPV DQ 8 300 PDWUL[ FDOOHG WKH PDWUL[ RI REVHUYDWLRQV /RRVHO\ VSHDNLQJ ZH FDQ VD\ WKDW WKH SURFHVV FRQWURO GDWD DUH HLJKWGLPHQVLRQDO 7KH QH[W WZR H[DPSOHV GHVFULEH GDWD WKDW FDQ EH YLVXDOL]HG JUDSKLFDOO\
(;$03/( $Q H[DPSOH RI WZRGLPHQVLRQDO GDWD LV JLYHQ E\ D VHW RI ZHLJKWV DQG
KHLJKWV RI N FROOHJH VWXGHQWV /HW ;j GHQRWH WKH REVHUYDWLRQ YHFWRU LQ R2 WKDW OLVWV WKH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 6\PPHWULF 0DWULFHV DQG 4XDGUDWLF )RUPV
ZHLJKW DQG KHLJKW RI WKH j WK VWXGHQW ,I w GHQRWHV ZHLJKW DQG h KHLJKW WKHQ WKH PDWUL[ RI REVHUYDWLRQV KDV WKH IRUP w1 w2 wN h1 h2 hN 6 ;1
6 ;2
6 ;N
7KH VHW RI REVHUYDWLRQ YHFWRUV FDQ EH YLVXDOL]HG DV D WZRGLPHQVLRQDO VFDWWHU SORW 6HH )LJXUH
h
w
'*(63& $ VFDWWHU SORW RI REVHUYDWLRQ
YHFWRUV ;1 ; : : : ; ;N x3
(;$03/( 7KH ıUVW WKUHH SKRWRJUDSKV RI 5DLOURDG 9DOOH\ 1HYDGD VKRZQ LQ WKH
x1
x2 '*(63&
$ VFDWWHU SORW RI VSHFWUDO GDWD IRU D VDWHOOLWH LPDJH
FKDSWHU LQWURGXFWLRQ FDQ EH YLHZHG DV RQH LPDJH RI WKH UHJLRQ ZLWK WKUHH VSHFWUDO FRPSRQHQWV EHFDXVH VLPXOWDQHRXV PHDVXUHPHQWV RI WKH UHJLRQ ZHUH PDGH DW WKUHH VHSDUDWH ZDYHOHQJWKV (DFK SKRWRJUDSK JLYHV GLijHUHQW LQIRUPDWLRQ DERXW WKH VDPH SK\VLFDO UHJLRQ )RU LQVWDQFH WKH ıUVW SL[HO LQ WKH XSSHUOHIW FRUQHU RI HDFK SKRWRJUDSK FRUUHVSRQGV WR WKH VDPH SODFH RQ WKH JURXQG DERXW PHWHUV E\ PHWHUV 7R HDFK SL[HO WKHUH FRUUHVSRQGV DQ REVHUYDWLRQ YHFWRU LQ R3 WKDW OLVWV WKH VLJQDO LQWHQVLWLHV IRU WKDW SL[HO LQ WKH WKUHH VSHFWUDO EDQGV 7\SLFDOO\ WKH LPDJH LV 2000 2000 SL[HOV VR WKHUH DUH PLOOLRQ SL[HOV LQ WKH LPDJH 7KH GDWD IRU WKH LPDJH IRUP D PDWUL[ ZLWK URZV DQG PLOOLRQ FROXPQV ZLWK FROXPQV DUUDQJHG LQ DQ\ FRQYHQLHQW RUGHU ,Q WKLV FDVH WKH ŗPXOWLGLPHQVLRQDOŘ FKDUDFWHU RI WKH GDWD UHIHUV WR WKH WKUHH VSHFWUDO GLPHQVLRQV UDWKHU WKDQ WKH WZR VSDWLDO GLPHQVLRQV WKDW QDWXUDOO\ EHORQJ WR DQ\ SKRWRJUDSK 7KH GDWD FDQ EH YLVXDOL]HG DV D FOXVWHU RI PLOOLRQ SRLQWV LQ R3 SHUKDSV DV LQ )LJXUH
0HDQ DQG &RYDULDQFH 7R SUHSDUH IRU SULQFLSDO FRPSRQHQW DQDO\VLV OHW Œ ;1 ;N EH D p N PDWUL[ RI REVHUYDWLRQV VXFK DV GHVFULEHG DERYH 7KH VDPSOH PHDQ 0 RI WKH REVHUYDWLRQ YHFWRUV ;1 ; : : : ; ;N LV JLYHQ E\ 1 0 D .;1 C C ;N / N )RU WKH GDWD LQ )LJXUH WKH VDPSOH PHDQ LV WKH SRLQW LQ WKH ŗFHQWHUŘ RI WKH VFDWWHU SORW )RU k D 1; : : : ; N OHW O k D ;k 0 ; 7KH FROXPQV RI WKH p N PDWUL[
O2 ; ON O1 ; B D Œ;
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$SSOLFDWLRQV WR ,PDJH 3URFHVVLQJ DQG 6WDWLVWLFV
KDYH D ]HUR VDPSOH PHDQ DQG B LV VDLG WR EH LQ PHDQGHYLDWLRQ IRUP :KHQ WKH VDPSOH PHDQ LV VXEWUDFWHG IURP WKH GDWD LQ )LJXUH WKH UHVXOWLQJ VFDWWHU SORW KDV WKH IRUP LQ )LJXUH 7KH VDPSOH FRYDULDQFH PDWUL[ LV WKH p p PDWUL[ S GHıQHG E\
hˆ
w ˆ
SD '*(63&
:HLJKWşKHLJKW GDWD LQ PHDQGHYLDWLRQ IRUP
1 BB T N 1
6LQFH DQ\ PDWUL[ RI WKH IRUP BB T LV SRVLWLYH VHPLGHıQLWH VR LV S 6HH ([HUFLVH LQ 6HFWLRQ ZLWK B DQG B T LQWHUFKDQJHG
(;$03/( 7KUHH PHDVXUHPHQWV DUH PDGH RQ HDFK RI IRXU LQGLYLGXDOV LQ D UDQGRP VDPSOH IURP D SRSXODWLRQ 7KH REVHUYDWLRQ YHFWRUV DUH 2 3 2 3 2 3 1 4 7 ;1 D 4 2 5; ;2 D 4 2 5; ;3 D 4 8 5; 1 13 1
2 3 8 ;4 D 4 4 5 5
&RPSXWH WKH VDPSOH PHDQ DQG WKH FRYDULDQFH PDWUL[ 62/87,21 7KH VDPSOH PHDQ LV
02 3 2 3 2 3 2 31 2 3 2 3 1 4 7 8 20 5 1 1 0 D @4 2 5 C 4 2 5 C 4 8 5 C 4 4 5A D 4 16 5 D 4 4 5 4 4 20 1 13 1 5 5 6XEWUDFW WKH VDPSOH PHDQ IURP ;1 ; : : : ; ;4 WR REWDLQ 2 3 2 3 2 3 4 1 2 O 1 D 4 2 5; ; O 2 D 4 2 5; ; O 3 D 4 4 5; ; 4 8 4 2
DQG
4 1 2 B D 4 2 2 4 4 8 4
2 3 3 O4 D 405 ; 0
3 3 05 0
7KH VDPSOH FRYDULDQFH PDWUL[ LV 2 3 3 4 2 4 4 1 2 3 6 1 1 2 8 7 7 S D 4 2 2 4 0 56 4 2 4 4 5 3 4 8 4 0 3 0 0 2 3 2 3 30 18 0 10 6 0 14 18 24 24 5 D 4 6 8 8 5 D 3 0 24 96 0 8 32 2
7R GLVFXVV WKH HQWULHV LQ S D Œsij OHW ; UHSUHVHQW D YHFWRU WKDW YDULHV RYHU WKH VHW RI REVHUYDWLRQ YHFWRUV DQG GHQRWH WKH FRRUGLQDWHV RI ; E\ x1 ; : : : ; xp 7KHQ x1 IRU H[DPSOH LV D VFDODU WKDW YDULHV RYHU WKH VHW RI ıUVW FRRUGLQDWHV RI ;1 ; : : : ; ;N )RU j D 1; : : : ; p WKH GLDJRQDO HQWU\ sjj LQ S LV FDOOHG WKH YDULDQFH RI xj 7KH YDULDQFH RI xj PHDVXUHV WKH VSUHDG RI WKH YDOXHV RI xj 6HH ([HUFLVH ,Q ([DPSOH WKH YDULDQFH RI x1 LV DQG WKH YDULDQFH RI x3 LV 7KH IDFW WKDW LV PRUH WKDQ LQGLFDWHV WKDW WKH VHW RI WKLUG HQWULHV LQ WKH UHVSRQVH YHFWRUV FRQWDLQV D ZLGHU VSUHDG RI YDOXHV WKDQ WKH VHW RI ıUVW HQWULHV
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$)"15&3 6\PPHWULF 0DWULFHV DQG 4XDGUDWLF )RUPV
7KH WRWDO YDULDQFH RI WKH GDWD LV WKH VXP RI WKH YDULDQFHV RQ WKH GLDJRQDO RI S ,Q JHQHUDO WKH VXP RI WKH GLDJRQDO HQWULHV RI D VTXDUH PDWUL[ S LV FDOOHG WKH WUDFH RI WKH PDWUL[ ZULWWHQ WU.S/ 7KXV
fWRWDO YDULDQFHg D WU.S / 7KH HQWU\ sij LQ S IRU i ¤ j LV FDOOHG WKH FRYDULDQFH RI xi DQG xj 2EVHUYH WKDW LQ ([DPSOH WKH FRYDULDQFH EHWZHHQ x1 DQG x3 LV EHFDXVH WKH .1; 3/HQWU\ LQ S LV 6WDWLVWLFLDQV VD\ WKDW x1 DQG x3 DUH XQFRUUHODWHG $QDO\VLV RI WKH PXOWLYDULDWH GDWD LQ ;1 ; : : : ; ;N LV JUHDWO\ VLPSOLıHG ZKHQ PRVW RU DOO RI WKH YDULDEOHV x1 ; : : : ; xp DUH XQFRU UHODWHG WKDW LV ZKHQ WKH FRYDULDQFH PDWUL[ RI ;1 ; : : : ; ;N LV GLDJRQDO RU QHDUO\ GLDJRQDO
3ULQFLSDO &RPSRQHQW $QDO\VLV )RU VLPSOLFLW\ DVVXPH WKDW WKH PDWUL[ Œ ;1 ;N LV DOUHDG\ LQ PHDQGHYLDWLRQ IRUP 7KH JRDO RI SULQFLSDO FRPSRQHQW DQDO\VLV LV WR ıQG DQ RUWKRJRQDO p p PDWUL[ P D Œ X1 Xp WKDW GHWHUPLQHV D FKDQJH RI YDULDEOH ; D P +LQW &RQVLGHU O ZKHUH EO LV WKH RUWKRJRQDO SURMHFWLRQ WKH HTXDWLRQ A[ D E RI E RQWR &RO A@
7 ,Q ([HUFLVHV DQG FRQVWUXFW WKH SVHXGRLQYHUVH RI A %HJLQ E\ XVLQJ D PDWUL[ SURJUDP WR SURGXFH WKH 69' RI A RU LI WKDW LV QRW DYDLODEOH EHJLQ ZLWK DQ RUWKRJRQDO GLDJRQDOL]DWLRQ RI ATA 8VH WKH SVHXGRLQYHUVH WR VROYH A[ D E IRU E D .6; 1; 4; 6/ DQG OHW [O EH WKH VROXWLRQ 0DNH D FDOFXODWLRQ WR YHULI\ WKDW [O LV LQ 5RZ A )LQG D QRQ]HUR YHFWRU X LQ 1XO A DQG YHULI\ WKDW kO[k < kO[ C Xk ZKLFK PXVW EH WUXH E\ ([HUFLVH F 2 3 3 3 6 6 1 6 1 1 1 7 1 2 7 7 A D 6 4 0 0 1 1 1 5 ([HUFLVHV ş FRQFHUQ DQ m n PDWUL[ A ZLWK D UHGXFHG VLQ 0 0 1 1 1 JXODU YDOXH GHFRPSRVLWLRQ A D Ur DVrT DQG WKH SVHXGRLQYHUVH AC D Vr D 1 UrT 2 3 4 0 1 2 0 9HULI\ WKH SURSHUWLHV RI AC 6 5 7 0 3 5 07 7 A D 6 4 2 D )RU HDFK \ LQ Rm AAC \ LV WKH RUWKRJRQDO SURMHFWLRQ RI 0 1 2 05 \ RQWR &RO A 6 0 3 6 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$SSHQGL[ $ 8QLTXHQHVV RI WKH 5HGXFHG (FKHORQ )RUP
5)&03&.
6OJRVFOFTT PG UIF 3FEVDFE &DIFMPO 'PSN (DFK m n PDWUL[ A LV URZ HTXLYDOHQW WR D XQLTXH UHGXFHG HFKHORQ PDWUL[ U
1300' 7KH SURRI XVHV WKH LGHD IURP 6HFWLRQ WKDW WKH FROXPQV RI URZHTXLYDOHQW PDWULFHV KDYH H[DFWO\ WKH VDPH OLQHDU GHSHQGHQFH UHODWLRQV 7KH URZ UHGXFWLRQ DOJRULWKP VKRZV WKDW WKHUH H[LVWV DW OHDVW RQH VXFK PDWUL[ U 6XSSRVH WKDW A LV URZ HTXLYDOHQW WR PDWULFHV U DQG V LQ UHGXFHG HFKHORQ IRUP 7KH OHIWPRVW QRQ]HUR HQWU\ LQ D URZ RI U LV D ŗOHDGLQJ OŘ &DOO WKH ORFDWLRQ RI VXFK D OHDGLQJ D SLYRW SRVLWLRQ DQG FDOO WKH FROXPQ WKDW FRQWDLQV LW D SLYRW FROXPQ 7KLV GHıQLWLRQ XVHV RQO\ WKH HFKHORQ QDWXUH RI U DQG V DQG GRHV QRW DVVXPH WKH XQLTXHQHVV RI WKH UHGXFHG HFKHORQ IRUP 7KH SLYRW FROXPQV RI U DQG V DUH SUHFLVHO\ WKH QRQ]HUR FROXPQV WKDW DUH QRW OLQHDUO\ GHSHQGHQW RQ WKH FROXPQV WR WKHLU OHIW 7KLV FRQGLWLRQ LV VDWLVıHG DXWRPDWLFDOO\ E\ D ıUVW FROXPQ LI LW LV QRQ]HUR 6LQFH U DQG V DUH URZ HTXLYDOHQW ERWK EHLQJ URZ HTXLYDOHQW WR A WKHLU FROXPQV KDYH WKH VDPH OLQHDU GHSHQGHQFH UHODWLRQV +HQFH WKH SLYRW FROXPQV RI U DQG V DSSHDU LQ WKH VDPH ORFDWLRQV ,I WKHUH DUH r VXFK FROXPQV WKHQ VLQFH U DQG V DUH LQ UHGXFHG HFKHORQ IRUP WKHLU SLYRW FROXPQV DUH WKH ıUVW r FROXPQV RI WKH m m LGHQWLW\ PDWUL[ 7KXV FRUUHVSRQGLQJ SLYRW FROXPQV RI U DQG V DUH HTXDO )LQDOO\ FRQVLGHU DQ\ QRQSLYRW FROXPQ RI U VD\ FROXPQ j 7KLV FROXPQ LV HLWKHU ]HUR RU D OLQHDU FRPELQDWLRQ RI WKH SLYRW FROXPQV WR LWV OHIW EHFDXVH WKRVH SLYRW FROXPQV DUH D EDVLV IRU WKH VSDFH VSDQQHG E\ WKH FROXPQV WR WKH OHIW RI FROXPQ j (LWKHU FDVH FDQ EH H[SUHVVHG E\ ZULWLQJ U [ D IRU VRPH [ ZKRVH j WK HQWU\ LV 7KHQ V [ D WRR ZKLFK VD\V WKDW FROXPQ j RI V LV HLWKHU ]HUR RU WKH VDPH OLQHDU FRPELQDWLRQ RI WKH SLYRW FROXPQV RI V WR LWV OHIW 6LQFH FRUUHVSRQGLQJ SLYRW FROXPQV RI U DQG V DUH HTXDO FROXPQV j RI U DQG V DUH DOVR HTXDO 7KLV KROGV IRU DOO QRQSLYRW FROXPQV VR V D U ZKLFK SURYHV WKDW U LV XQLTXH
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$SSHQGL[ % &RPSOH[ 1XPEHUV
$ FRPSOH[ QXPEHU LV D QXPEHU ZULWWHQ LQ WKH IRUP
´ D a C bi ZKHUH a DQG b DUH UHDO QXPEHUV DQG i LV D IRUPDO V\PERO VDWLVI\LQJ WKH UHODWLRQ i 2 D 1 7KH QXPEHU a LV WKH UHDO SDUW RI ´ GHQRWHG E\ 5H ´ DQG b LV WKH LPDJLQDU\ SDUW RI ´ GHQRWHG E\ ,P ´ 7ZR FRPSOH[ QXPEHUV DUH FRQVLGHUHG HTXDO LI DQG RQO\ LI WKHLU UHDO DQG LPDJLQDU\ SDUWV DUH HTXDO )RU H[DPSOH LI ´ D 5 C .2/i WKHQ 5H ´ D 5 DQG ,P ´ D 2 )RU VLPSOLFLW\ ZH ZULWH ´ D 5 2i $ UHDO QXPEHU a LV FRQVLGHUHG DV D VSHFLDO W\SH RI FRPSOH[ QXPEHU E\ LGHQWLI\LQJ a ZLWK a C 0i )XUWKHUPRUH DULWKPHWLF RSHUDWLRQV RQ UHDO QXPEHUV FDQ EH H[WHQGHG WR WKH VHW RI FRPSOH[ QXPEHUV 7KH FRPSOH[ QXPEHU V\VWHP GHQRWHG E\ C LV WKH VHW RI DOO FRPSOH[ QXPEHUV WRJHWKHU ZLWK WKH IROORZLQJ RSHUDWLRQV RI DGGLWLRQ DQG PXOWLSOLFDWLRQ
.a C bi / C .c C d i / D .a C c/ C .b C d /i
.a C bi /.c C d i / D .ac bd / C .ad C bc/i
7KHVH UXOHV UHGXFH WR RUGLQDU\ DGGLWLRQ DQG PXOWLSOLFDWLRQ RI UHDO QXPEHUV ZKHQ b DQG d DUH ]HUR LQ DQG ,W LV UHDGLO\ FKHFNHG WKDW WKH XVXDO ODZV RI DULWKPHWLF IRU R DOVR KROG IRU C )RU WKLV UHDVRQ PXOWLSOLFDWLRQ LV XVXDOO\ FRPSXWHG E\ DOJHEUDLF H[SDQVLRQ DV LQ WKH IROORZLQJ H[DPSOH
(;$03/(
.5 2i /.3 C 4i / D 15 C 20i 6i 8i 2 D 15 C 14i 8.1/ D 23 C 14i
7KDW LV PXOWLSO\ HDFK WHUP RI 5 2i E\ HDFK WHUP RI 3 C 4i XVH i 2 D 1 DQG ZULWH WKH UHVXOW LQ WKH IRUP a C bi 6XEWUDFWLRQ RI FRPSOH[ QXPEHUV ´1 DQG ´2 LV GHıQHG E\
´1 ´2 D ´1 C .1/´2 ,Q SDUWLFXODU ZH ZULWH ´ LQ SODFH RI .1/´
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
"11&/%*9 # &RPSOH[ 1XPEHUV
7KH FRQMXJDWH RI ´ D a C bi LV WKH FRPSOH[ QXPEHU ´ UHDG DV ŗ´ EDUŘ GHıQHG E\
´ D a bi 2EWDLQ ´ IURP ´ E\ UHYHUVLQJ WKH VLJQ RI WKH LPDJLQDU\ SDUW
(;$03/( 7KH FRQMXJDWH RI 3 C 4i LV 3 4i ZULWH 3 C 4i D 3 4i 2EVHUYH WKDW LI ´ D a C bi WKHQ
´´ D .a C bi /.a bi / D a2 abi C bai b 2 i 2 D a2 C b 2
6LQFH ´´ LV UHDO DQG QRQQHJDWLYH LW KDV D VTXDUH URRW 7KH DEVROXWH YDOXH RU PRGXOXV RI ´ LV WKH UHDO QXPEHU j´j GHıQHG E\
j´j D
p
´´ D
p
a2 C b 2
p ,I ´ LV D UHDO QXPEHU WKHQ ´ D a C 0i DQG j´j D a2 ZKLFK HTXDOV WKH RUGLQDU\ DEVROXWH YDOXH RI a 6RPH XVHIXO SURSHUWLHV RI FRQMXJDWHV DQG DEVROXWH YDOXH DUH OLVWHG EHORZ w DQG ´ GHQRWH FRPSOH[ QXPEHUV
´ D ´ LI DQG RQO\ LI ´ LV D UHDO QXPEHU w C ´ D w C ´ w´ D w ´ LQ SDUWLFXODU r´ D r´ LI r LV D UHDO QXPEHU ´´ D j´j2 0 jw´j D jwjj´j jw C ´j jwj C j´j
,I ´ ¤ 0 WKHQ j´j > 0 DQG ´ KDV D PXOWLSOLFDWLYH LQYHUVH GHQRWHG E\ 1=´ RU ´1 DQG JLYHQ E\ 1 ´ D ´1 D ´ j´j2 2I FRXUVH D TXRWLHQW w=´ VLPSO\ PHDQV w .1=´/
(;$03/( /HW w D 3 C 4i DQG ´ D 5 2i &RPSXWH ´´ j´j DQG w=´ 62/87,21 )URP HTXDWLRQ
´´ D 52 C .2/2 D 25 C 4 D 29 p p )RU WKH DEVROXWH YDOXH j´j D ´´ D 29 7R FRPSXWH w=´ ıUVW PXOWLSO\ ERWK WKH QXPHUDWRU DQG WKH GHQRPLQDWRU E\ ´ WKH FRQMXJDWH RI WKH GHQRPLQDWRU %HFDXVH RI WKLV HOLPLQDWHV WKH i LQ WKH GHQRPLQDWRU w 3 C 4i D ´ 5 2i D
3 C 4i 5 C 2i 5 2i 5 C 2i
D
15 C 6i C 20i 8 52 C .2/2
7 C 26i 29 7 26 D C i 29Custom 29 Edition for University of California Berkeley. MATH 54 Linear Algebra and Differential Equations, Second Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition. D
"11&/%*9 # &RPSOH[ 1XPEHUV
*HRPHWULF ,QWHUSUHWDWLRQ (DFK FRPSOH[ QXPEHU ´ D a C bi FRUUHVSRQGV WR D SRLQW .a; b/ LQ WKH SODQH R2 DV LQ )LJXUH 7KH KRUL]RQWDO D[LV LV FDOOHG WKH UHDO D[LV EHFDXVH WKH SRLQWV a; 0 RQ LW FRUUHVSRQG WR WKH UHDO QXPEHUV 7KH YHUWLFDO D[LV LV WKH LPDJLQDU\ D[LV EHFDXVH WKH SRLQWV .0; b/ RQ LW FRUUHVSRQG WR WKH SXUH LPDJLQDU\ QXPEHUV RI WKH IRUP 0 C bi RU VLPSO\ bi 7KH FRQMXJDWH RI ´ LV WKH PLUURU LPDJH RI ´ LQ WKH UHDO D[LV 7KH DEVROXWH YDOXH RI ´ LV WKH GLVWDQFH IURP .a; b/ WR WKH RULJLQ Imaginary axis z 5 a 1 bi
b
Real axis
a
z 5 a 2 bi
'*(63& 7KH FRPSOH[ FRQMXJDWH LV D PLUURU LPDJH
$GGLWLRQ RI FRPSOH[ QXPEHUV ´ D a C bi DQG w D c C d i FRUUHVSRQGV WR YHFWRU DGGLWLRQ RI .a; b/ DQG .c; d / LQ R2 DV LQ )LJXUH Im z w1z w
z Re z
'*(63& $GGLWLRQ RI FRPSOH[ QXPEHUV
7R JLYH D JUDSKLFDO UHSUHVHQWDWLRQ RI FRPSOH[ PXOWLSOLFDWLRQ ZH XVH SRODU FRRUGL QDWHV LQ R2 *LYHQ D QRQ]HUR FRPSOH[ QXPEHU ´ D a C bi OHW ' EH WKH DQJOH EHWZHHQ WKH SRVLWLYH UHDO D[LV DQG WKH SRLQW .a; b/ DV LQ )LJXUH ZKHUH < ' 7KH DQJOH ' LV FDOOHG WKH DUJXPHQW RI ´ ZH ZULWH ' D DUJ ´ )URP WULJRQRPHWU\
a D j´j FRV ';
b D j´j VLQ '
Im z z |z|
|z | sin w
w | z| cos w
Re z
'*(63& 3RODU FRRUGLQDWHV RI ´
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
"11&/%*9 # &RPSOH[ 1XPEHUV
DQG VR
´ D a C bi D j´j.FRV ' C i VLQ '/
,I w LV DQRWKHU QRQ]HUR FRPSOH[ QXPEHU VD\
w D jwj .FRV # C i VLQ #/ WKHQ XVLQJ VWDQGDUG WULJRQRPHWULF LGHQWLWLHV IRU WKH VLQH DQG FRVLQH RI WKH VXP RI WZR DQJOHV RQH FDQ YHULI\ WKDW
w´ D jwj j´j ŒFRV.# C '/ C i VLQ.# C '/
6HH )LJXUH $ VLPLODU IRUPXOD PD\ EH ZULWWHQ IRU TXRWLHQWV LQ SRODU IRUP 7KH IRUPXODV IRU SURGXFWV DQG TXRWLHQWV FDQ EH VWDWHG LQ ZRUGV DV IROORZV Im z wz 1w
w
z |z|
w Re z
'*(63& 0XOWLSOLFDWLRQ ZLWK SRODU
FRRUGLQDWHV
7KH SURGXFW RI WZR QRQ]HUR FRPSOH[ QXPEHUV LV JLYHQ LQ SRODU IRUP E\ WKH SURGXFW RI WKHLU DEVROXWH YDOXHV DQG WKH VXP RI WKHLU DUJXPHQWV 7KH TXRWLHQW RI WZR QRQ]HUR FRPSOH[ QXPEHUV LV JLYHQ E\ WKH TXRWLHQW RI WKHLU DEVROXWH YDOXHV DQG WKH GLijHUHQFH RI WKHLU DUJXPHQWV
Im z iz
w1p 2 z531i
ip 2
0XOWLSOLFDWLRQ E\ i
w
Re z
(;$03/( D ,I w KDV DEVROXWH YDOXH WKHQ w D FRV # C i VLQ # ZKHUH # LV WKH DUJXPHQW RI w 0XOWLSOLFDWLRQ RI DQ\ QRQ]HUR QXPEHU ´ E\ w VLPSO\ URWDWHV ´ WKURXJK WKH DQJOH # E 7KH DUJXPHQW RI i LWVHOI LV =2 UDGLDQV VR PXOWLSOLFDWLRQ RI ´ E\ i URWDWHV ´ WKURXJK DQ DQJOH RI =2 UDGLDQV )RU H[DPSOH 3 C i LV URWDWHG LQWR .3 C i /i D 1 C 3i
3RZHUV RI D &RPSOH[ 1XPEHU )RUPXOD DSSOLHV ZKHQ ´ D w D r.FRV ' C i VLQ '/ ,Q WKLV FDVH
´2 D r 2 .FRV 2' C i VLQ 2'/ DQG
´3 D ´ ´2 D r.FRV ' C i VLQ '/ r 2 .FRV 2' C i VLQ 2'/ D r 3 .FRV 3' C i VLQ 3'/
,Q JHQHUDO IRU DQ\ SRVLWLYH LQWHJHU k
´k D r k .FRV k' C i VLQ k'/ 7KLV IDFW LV NQRZQ DV 'H 0RLYUHŖV 7KHRUHP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
"11&/%*9 # &RPSOH[ 1XPEHUV
&RPSOH[ 1XPEHUV DQG R2 $OWKRXJK WKH HOHPHQWV RI R2 DQG C DUH LQ RQHWRRQH FRUUHVSRQGHQFH DQG WKH RSHUDWLRQV RI DGGLWLRQ DUH HVVHQWLDOO\ WKH VDPH WKHUH LV D ORJLFDO GLVWLQFWLRQ EHWZHHQ R2 DQG C ,Q R2 ZH FDQ RQO\ PXOWLSO\ D YHFWRU E\ D UHDO VFDODU ZKHUHDV LQ C ZH FDQ PXOWLSO\ DQ\ WZR FRPSOH[ QXPEHUV WR REWDLQ D WKLUG FRPSOH[ QXPEHU 7KH GRW SURGXFW LQ R2 GRHVQŖW FRXQW EHFDXVH LW SURGXFHV D VFDODU QRW DQ HOHPHQW RI R2 :/ :H XVH VFDODU QRWDWLRQ IRU HOHPHQWV LQ C WR HPSKDVL]H WKLV GLVWLQFWLRQ x2
Im z 2 1 4i
(2, 4) 21 1 2i
(21, 2)
4 1 0i
(4, 0) x1 (23, 21)
Re z 23 2 i
(3, 22)
7KH UHDO SODQH R2
3 2 2i
7KH FRPSOH[ SODQH C
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
&UHGLWV $PWFS 'LJL3XE0RPHQW*HWW\ ,PDJHV $IBQUFS +XOWRQ $UFKLYH.H\VWRQH6WULQJHU*HWW\ ,PDJHV 2OLYLHU /H 4XHLQHF6KXWWHUVWRFN $%XW\ULQ 6KXWWHUVWRFN 6DVLQ7LSFKDL6KXWWHUVWRFN 6KXWWHUVWRFN .XUKDQ6KXWWHUVWRFN ,QJUHGLHQWV LQ WKH GLHW DV RI QXWULHQW GDWD IRU LQJUHGLHQWV DGDSWHG IURP 86'$ $JULFXOWXUDO +DQGERRNV 1R DQG -RVHI +DQXV6KXWWHUVWRFN *DU\ %ODNHOH\6KXWWHUVWRFN $IBQUFS /$1%26KXWWHUVWRFN 6WRFNWUHN ,PDJHV ,QF$ODP\ 6WRFN 3KRWR 5DGX %HUFDQ6KXWWHUVWRFN 1$6$ )RWRNRVWLF6KXWWHUVWRFN 5DLQHU 3OHQGO6KXWWHUVWRFN 'HVLJQSLFV5) 'RWVKRFN6KXWWHUVWRFN :DVVLO\ : /HRQWLHI ŗ7KH 6WUXFWXUH RI WKH 86 (FRQRP\Ř 6FLHQWLıF $PHULFDQ $SULO SS ş $OH[DQGHU 5DWKV6KXWWHUVWRFN $IBQUFS $NNDUDGHW %DQJFKXQ6KXWWHUVWRFN =KHQJ]DLVKXUX6KXWWHUVWRFN $IBQUFS ,QWHUQHWHDEOH6KXWWHUVWRFN ,IRQJ6KXWWHUVWRFN $IBQUFS 'LJLWDOPHGLDIZVJRY $UFKDQD EKDUWLD6KXWWHUVWRFN 1RDK 6WU\FNHU6KXWWHUVWRFN $IBQUFS &RXUWHV\ RI /HVWHU 0F'RQDOG 9DOHULR 3DUGL5) -HVV $OIRUG3KRWRGLVF *HWW\ ,PDJHV $IBQUFS /DQGVDW 'DWD86 *HRORJLFDO 6XUYH\ /HIW /DQGVDW 'DWD86 *HRORJLFDO 6XUYH\ 0LGGOH /DQGVDW 'DWD86 *HRORJLFDO 6XUYH\ 5LJKW /DQGVDW 'DWD86 *HRORJLFDO 6XUYH\ /HIW /DQGVDW 'DWD86 *HRORJLFDO 6XUYH\ 0LGGOH /DQGVDW 'DWD86 *HRORJLFDO 6XUYH\ 5LJKW /DQGVDW 'DWD86 *HRORJLFDO 6XUYH\ 2QL[[LQR*HWW\ ,PDJHV 'PLWU\ .DOLQRYVN\6KXWWHUVWRFN 9LNLZLQ6KXWWHUVWRFN $IBQUFS &DQDOL,QGH[+HULWDJH ,PDJH 3DUWQHUVKLS /WG$ODP\ 6WRFN 3KRWR &LW\ RI $WKHQV LQ %& WKH *UHHN SKLORVRSKHU 3ODWR $IBQUFS &68 $UFKLYHV(YHUHWW &ROOHFWLRQ ,QF$ODP\ 6WRFN 3KRWR $IBQUFS RQOLQH & 'SD SLFWXUH DOOLDQFH$ODP\ 6WRFN 3KRWR
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
$QVZHUV WR 2GG1XPEHUHG ([HUFLVHV
$IBQUFS
6ZDS URZ DQG URZ VZDS URZ DQG URZ
6HFWLRQ ɲɲ SDJH ɲɱ
5HSODFH URZ E\ URZ C 4 URZ UHSODFH URZ E\ URZ C URZ
7KH VROXWLRQ LV .x1 ; x2 / D .8; 3/ RU VLPSO\ .8; 3/ .4=7; 9=7/ 5HSODFH URZ E\ LWV VXP ZLWK WLPHV URZ DQG WKHQ UHSODFH URZ E\ LWV VXP ZLWK 5 WLPHV URZ 7KH VROXWLRQ VHW LV HPSW\
6HFWLRQ ɲɳ SDJH ɳɴ
.5; 3; 1/
19 3.19/ .5/ 2.5/
C C C
8 3.8/ 7.8/ 2.3/ .3/
C C
C C C
4.1/ 3.1/ 5.1/
3.1/ 9.1/ 5.1/
D D D D D D
4 2 6 8 7 2
&RQVLVWHQW
5HGXFHG HFKHORQ IRUP D DQG F (FKHORQ IRUP E DQG G 2
4 0 0 2 4 4 6
7KH WKUHH OLQHV KDYH RQH SRLQW LQ FRPPRQ h ¤ 2
D 30 D 60 D 70 D 40
.19; 8; 1/
1R VROXWLRQV
T4 4T1 T2 T1 C 4T2 T3 T2 C 4T3 T4 T1 T3 C 4T4
$OO h
ş 0DUN D VWDWHPHQW 7UXH RQO\ LI WKH VWDWHPHQW LV DOZD\V WUXH *LYLQJ \RX WKH DQVZHUV KHUH ZRXOG GHIHDW WKH SXUSRVH RI WKH WUXHIDOVH TXHVWLRQV ZKLFK LV WR KHOS \RX OHDUQ WR UHDG WKH WH[W FDUHIXOO\ 7KH 6WXG\ *XLGH ZLOO WHOO \RX ZKHUH WR ORRN IRU WKH DQVZHUV EXW \RX VKRXOG QRW FRQVXOW LW XQWLO \RX KDYH PDGH DQ KRQHVW DWWHPSW WR ıQG WKH DQVZHUV \RXUVHOI k C 2g C h D 0
1 3 f 7KH URZ UHGXFWLRQ RI WR c d g 1 3 f VKRZV WKDW d 3c PXVW EH 0 d 3c g cf QRQ]HUR VLQFH f DQG g DUH DUELWUDU\ 2WKHUZLVH IRU VRPH FKRLFHV RI f DQG g WKH VHFRQG URZ FRXOG FRUUHVSRQG WR DQ HTXDWLRQ RI WKH IRUP 0 D b ZKHUH b LV QRQ]HUR 7KXV d ¤ 3c
0
3 1 2 2 3 5 3LYRW FROV DQG 0 0 3 3 4 6 7 5 8 9
0 0 2 7
0
0 0 0
8 1 ERWK SRSXODWLRQV ZLOO JURZ DW SHU \HDU $Q HLJHQYHFWRU IRU LV .6; 13/ VR HYHQWXDOO\ WKHUH ZLOO EH DSSUR[LPDWHO\ VSRWWHG RZOV WR HYHU\ WKRXVDQG IJ\LQJ VTXLUUHOV D 7KH RULJLQ LV D VDGGOH SRLQW EHFDXVH A KDV RQH HLJHQYDOXH ODUJHU WKDQ DQG RQH VPDOOHU WKDQ LQ DEVROXWH YDOXH E 7KH GLUHFWLRQ RI JUHDWHVW DWWUDFWLRQ LV JLYHQ E\ WKH HLJHQYHFWRU FRUUHVSRQGLQJ WR WKH HLJHQYDOXH 1=3 QDPHO\ Y2 $OO YHFWRUV WKDW DUH PXOWLSOHV RI Y2 DUH DWWUDFWHG WR WKH RULJLQ 7KH GLUHFWLRQ RI JUHDWHVW UHSXOVLRQ LV JLYHQ E\ WKH HLJHQYHFWRU Y1 $OO PXOWLSOHV RI Y1 DUH UHSHOOHG F 6HH WKH 6WXG\ *XLGH 6DGGOH SRLQW HLJHQYDOXHV GLUHFWLRQ RI JUHDWHVW UHSXOVLRQ WKH OLQH WKURXJK .0; 0/ DQG .1; 1/ GLUHFWLRQ RI JUHDWHVW DWWUDFWLRQ WKH OLQH WKURXJK .0; 0/ DQG .1; 4/ $WWUDFWRU HLJHQYDOXHV JUHDWHVW DWWUDFWLRQ OLQH WKURXJK .0; 0/ DQG .5; 4/ 5HSHOORU HLJHQYDOXHV JUHDWHVW UHSXOVLRQ OLQH WKURXJK .0; 0/ DQG .3; 4/ 2 3 2 3 2 1 [k D Y1 C :1.:5/k 4 3 5 C :3.:2/k 4 0 5 ! Y1 DV 1 1 k!1 0 1:6 D A D :3 :8 E 7KH SRSXODWLRQ LV JURZLQJ EHFDXVH WKH ODUJHVW HLJHQYDOXH RI A LV ZKLFK LV ODUJHU WKDQ LQ PDJQLWXGH 7KH HYHQWXDO JURZWK UDWH LV ZKLFK LV SHU \HDU 7KH HLJHQYHFWRU .4; 3/ IRU 1 D 1:2 VKRZV WKDW WKHUH ZLOO EH MXYHQLOHV IRU HYHU\ DGXOWV
"
F 7KH MXYHQLOHşDGXOW UDWLR VHHPV WR VWDELOL]H DIWHU DERXW RU \HDUV 7KH 6WXG\ *XLGH GHVFULEHV KRZ WR FRQVWUXFW D PDWUL[ SURJUDP WR JHQHUDWH D GDWD PDWUL[ ZKRVH FROXPQV OLVW WKH QXPEHUV RI MXYHQLOHV DQG DGXOWV HDFK \HDU *UDSKLQJ WKH GDWD LV DOVR GLVFXVVHG
6HFWLRQ ɶɸ SDJH ɴɳɹ [.t/ D
5 3 4t 3 1 2t e e 1 1 2 2
5 3 t 9 1 t e C e 7KH RULJLQ LV D VDGGOH SRLQW 1 1 2 2 7KH GLUHFWLRQ RI JUHDWHVW DWWUDFWLRQ LV WKH OLQH WKURXJK .1; 1/ DQG WKH RULJLQ 7KH GLUHFWLRQ RI JUHDWHVW UHSXOVLRQ LV WKH OLQH WKURXJK .3; 1/ DQG WKH RULJLQ
1 1 4t 7 1 6t e C e 7KH RULJLQ LV D UHSHOORU 7KH 2 3 2 1 GLUHFWLRQ RI JUHDWHVW UHSXOVLRQ LV WKH OLQH WKURXJK .1; 1/ DQG WKH RULJLQ
1 1 4 0 6HW P D DQG D D 7KHQ 3 1 0 6 1 A D PDP 6XEVWLWXWLQJ [ D P \ LQWR [0 D A[ ZH KDYH
d .P \/ D A.P \/ dt P \0 D PDP 1 .P \/ D PD \ /HIWPXOWLSO\LQJ E\ P 1 JLYHV 0 y1 .t/ 4 \0 D D \; RU D y20 .t/ 0
0 6
y1 .t/ y2 .t/
FRPSOH[ VROXWLRQ 1 i .2Ci/t 1 C i .2i/t c1 e C c2 e 1 1 UHDO VROXWLRQ FRV t C VLQ t 2t VLQ t FRV t 2t c1 e C c2 e FRV t VLQ t 7KH WUDMHFWRULHV VSLUDO LQ WRZDUG WKH RULJLQ FRPSOH[ c1
3 C 3i 3it 3 3i 3it e C c2 e 2 2
UHDO 3 FRV 3t 3 VLQ 3t 3 VLQ 3t C 3 FRV 3t c1 C c2 2 FRV 3t 2 VLQ 3t 7KH WUDMHFWRULHV DUH HOOLSVHV DERXW WKH RULJLQ
1 C i .1C3i/t 1 i .13i/t e C c2 e FRPSOH[ c1 2 2 FRV 3t VLQ 3t t VLQ 3t C FRV 3t t UHDO c1 e C c2 e 2 FRV 3t 2 VLQ 3t 7KH WUDMHFWRULHV VSLUDO RXW DZD\ IURP WKH RULJLQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
"
"OTXFST UP 0EE/VNCFSFE &YFSDJTFT 2
3 2 3 2 3 1 6 4 [.t/ D c1 4 0 5e 2t C c2 4 1 5e t C c3 4 1 5e t 1 5 4 7KH RULJLQ LV D VDGGOH SRLQW $ VROXWLRQ ZLWK c3 D 0 LV DWWUDFWHG WR WKH RULJLQ $ VROXWLRQ ZLWK c1 D c2 D 0 LV UHSHOOHG FRPSOH[ 2 3 2 3 3 23 34i c1 4 1 5e t C c2 4 9 C 14i 5e .5C2i/t C 1 3 2 3 23 C 34i c3 4 9 14i 5e .52i/t 3 2 3 2 3 3 23 FRV 2t C 34 VLQ 2t UHDO c1 4 1 5e t C c2 4 9 FRV 2t 14 VLQ 2t 5e 5t C 1 3 FRV 2t 2 3 23 VLQ 2t 34 FRV 2t c3 4 9 VLQ 2t C 14 FRV 2t 5e 5t 3 VLQ 2t 7KH RULJLQ LV D UHSHOORU 7KH WUDMHFWRULHV VSLUDO RXWZDUG DZD\ IURP WKH RULJLQ 2 3=4 A D 1 1 5 1 :5t 1 3 2:5t Y1 .t/ D e e 2 Y2 .t/ 2 2 2 1 8 A D 5 5 iL .t/ 20 VLQ 6t D e 3t 15 FRV 6t 5 VLQ 6t YC .t/
6HFWLRQ ɶɹ SDJH ɴɴɶ
1 4:9978 (LJHQYHFWRU [4 D RU A[4 D :3326 1:6652 4:9978 :5188 :4594 (LJHQYHFWRU [4 D RU A[4 D 1 :9075 :9075 :7999 4:0015 [D A[ D HVWLPDWHG 1 5:0020 D 5:0020 :75 1 :9932 1 :9998 [k W ; ; ; ; 1 :9565 1 :9990 1
k W 11:5; 12:78; 12:96; 12:9948; 12:9990
5 D 8:4233 6 D 8:4246 DFWXDO YDOXH DFFXUDWH WR SODFHV k W 5:8000; 5:9655; 5:9942; 5:9990 .k D 1; 2; 3; 4/I R.[k /W 5:9655; 5:9990; 5:99997; 5:9999993 a b @ ş HYDOXDWLRQ OHQJWK ş RYHUYLHZ ş SURSHUWLHV 5n ş ,QQHU SURGXFW VSDFH ş EHVW DSSUR[LPDWLRQ LQ ş &DXFK\ş6FKZDU] LQHTXDOLW\ LQ GHıQLWLRQ )RXULHU VHULHV ş *UDPş6FKPLGW SURFHVV ş OHQJWKV LQ RUWKRJRQDOLW\ LQ WUHQG DQDO\VLV ş
WULDQJOH LQHTXDOLW\ LQ ZHLJKWHG OHDVWVTXDUHV ş ,QSXW VHTXHQFH ,QVSHFWLRQ OLQHDUO\ GHSHQGHQW YHFWRUV ş ,QWHUFKDQJH PDWUL[ ,QWHULRU SRLQW Q ,QWHUPHGLDWH GHPDQG /HRQWLHI LQSXWşRXWSXW PRGHO ,QWHUQDWLRQDO &HOHVWLDO 5HIHUHQFH 6\VWHP Q ,QWHUSRODWHG FRORU ,QWHUSRODWHG SRO\QRPLDO ş ,QYDULDQW SODQH ,QYHUVH PDWUL[ ş DOJRULWKP IRU ıQGLQJ A1 ş FKDUDFWHUL]DWLRQ ş &UDPHUŖV UXOH ş HOHPHQWDU\ PDWUL[ ş IJH[LELOLW\ PDWUL[ LQYHUWLEOH PDWUL[ OLQHDU WUDQVIRUPDWLRQV LQYHUWLEOH ş 0RRUHş3HQURVH LQYHUVH SDUWLWLRQHG PDWUL[ ş SURGXFW RI LQYHUWLEOH PDWULFHV URZ UHGXFWLRQ ş VTXDUH PDWUL[ VWLijQHVV PDWUL[ ,QYHUVH SRZHU PHWKRG LQWHUDFWLYH HVWLPDWHV IRU HLJHQYDOXHV ,QYHUWLEOH 0DWUL[ 7KHRUHP ş ,VRPRUSKLF YHFWRU VSDFH ,VRPRUSKLVP Q ,WHUDWLYH PHWKRGV HLJHQVSDFH ş HLJHQYDOXHV ş LQYHUVH SRZHU PHWKRG ş -DFRELŖV PHWKRG SRZHU PHWKRG 45 DOJRULWKP ş
+ -DFRELDQ PDWUL[ Q -DFRELŖV PHWKRG -RUGDQ :LOKHP Q -RUGDQ IRUP -XQFWLRQ QHWZRUN
, k IDFH ş k SRO\WRSH k S\UDPLG .HUQHO ş .LUFKKRijŖV ODZV
/DGGHU QHWZRUN ş /DJXHUUH SRO\QRPLDO /DPEHUVRQ 5 ş /DQGVDW VDWHOOLWH /$3$&. /DSODFH WUDQVIRUP
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QGH[
/HDGLQJ HQWU\ /HDGLQJ YDULDEOH Q /HDVWVTXDUHV HUURU ş /HDVWVTXDUHV VROXWLRQ ş ş DOWHUQDWLYH FDOFXODWLRQV DSSOLFDWLRQV FXUYH ıWWLQJ JHQHUDO OLQHDU PRGHO OHDVWVTXDUHV OLQHV PXOWLSOH UHJUHVVLRQ ş JHQHUDO VROXWLRQ 45 IDFWRUL]DWLRQ VLQJXODU YDOXH GHFRPSRVLWLRQ ZHLJKWHG OHDVWVTXDUHV ş /HIW GLVWULEXWLYH ODZ PDWUL[ PXOWLSOLFDWLRQ /HIWPXOWLSOLFDWLRQ ş /HIW VLQJXODU YHFWRU /HQJWK YHFWRU /HRQWLHI :DVVLO\ ş ş ş /HRQWLHI LQSXWşRXWSXW PRGHO FROXPQ VXP FRQVXPSWLRQ PDWUL[ ş ıQDO GHPDQG YHFWRU I C 1 HFRQRPLF LPSRUWDQFH RI HQWULHV IRUPXOD IRU LQWHUPHGLDWH GHPDQG ş SURGXFWLRQ YHFWRU XQLW FRQVXPSWLRQ YHFWRU /HYHO VHW /LQH VHJPHQW /LQHDU DOJHEUDLF IRXQGDWLRQDO PDWHULDO /LQHDU FRPELQDWLRQV DSSOLFDWLRQV $[ YHFWRUV LQ 5n /LQHDU GHSHQGHQFH FKDUDFWHUL]DWLRQ RI OLQHDUO\ GHSHQGHQW VHWV UHODWLRQ ş ş YHFWRU VHWV RQH RU WZR YHFWRUV RYHUYLHZ WKHRUHPV WZR RU PRUH YHFWRUV /LQHDU GLijHUHQFH HTXDWLRQ ş GLVFUHWHWLPH VLJQDOV ş HLJHQYHFWRUV KRPRJHQHRXV HTXDWLRQV QRQKRPRJHQHRXV HTXDWLRQV UHGXFWLRQ WR V\VWHPV RI ıUVWRUGHU HTXDWLRQV VROXWLRQ VHWV /LQHDU HTXDWLRQ ş
/LQHDU ıOWHU /LQHDU IXQFWLRQDO /LQHDU LQGHSHQGHQFH HLJHQYHFWRU VHWV PDWUL[ FROXPQV VSDFH 6 RI VLJQDOV VSDQQLQJ VHW WKHRUHP ş VWDQGDUG EDVLV YHFWRU VHWV RQH RU WZR YHFWRUV RYHUYLHZ WZR RU PRUH YHFWRUV /LQHDU PRGHO DSSOLFDWLRQV GLijHUHQFH HTXDWLRQV ş HOHFWULFDO QHWZRUNV ZHLJKW ORVV GLHW JHQHUDO OLQHDU PRGHO /LQHDU SURJUDPPLQJ VHH DOVR %HUOLQ $LUOLIW EDVLF VROXWLRQ F\FOLQJ IHDVLEOH VHW DQG VROXWLRQ IHDVLEOH VROXWLRQ ş JHRPHWULF PHWKRG ş LQIHDVLEOH SUREOHP LQLWLDO VLPSOH[ WDEOHDX REMHFWLYH IXQFWLRQ VLPSOH[ ş VODFN YDULDEOH XQERXQGHG SUREOHP /LQHDU UHJUHVVLRQ FRHĴFLHQW /LQHDU V\VWHP 6HH 6\VWHP RI OLQHDU HTXDWLRQV /LQHDU WLPH LQYDULDQW/7, )LOWHU 7UDQVIRUPDWLRQV ş /LQHDU WUDQVIRUPDWLRQ FRQWUDFWLRQV DQG H[SDQVLRQV GHWHUPLQDQWV HLJHQYHFWRUV DQG OLQHDU WUDQVIRUPDWLRQ IURP V LQWR V PDWUL[ RI OLQHDU WUDQVIRUPDWLRQ VLPLODULW\ RI PDWUL[ UHSUHVHQWDWLRQV H[LVWHQFH DQG XQLTXHQHVV TXHVWLRQV JHRPHWULF OLQHDU WUDQVIRUPDWLRQ RI 52 LQYHUWLEOH RQHWRRQH OLQHDU WUDQVIRUPDWLRQ ş SURMHFWLRQV UDQJH 6HH 5DQJH UHIJHFWLRQV VKHDU WUDQVIRUPDWLRQV ş ş 6HH DOVR 0DWUL[ RI D OLQHDU WUDQVIRUPDWLRQ /LQHDU WUHQG /RRS FXUUHQW ş /RZSDVV ıOWHU /RZHU WULDQJXODU PDWUL[ /8 IDFWRUL]DWLRQ DOJRULWKP HOHFWULFDO HQJLQHHULQJ
*
RYHUYLHZ SHUPXWHG /8 IDFWRUL]DWLRQ
. 0DFKLQH OHDUQLQJ ş ş 0DFURPHGLD )UHHKDQG 0DLQ GLDJRQDO 0DSOH Q 0DSSLQJ 6HH 7UDQVIRUPDWLRQ 0DUJLQDO SURSHQVLW\ WR FRQVXPH 0DUN ,, FRPSXWHU 0DUNRY FKDLQ DSSOLFDWLRQV WR ş EDVHEDOO VWDWLVWLFV &ş& FRPPXQLFDWLRQ FODVVHV &ş& GDQJOLQJ PRGHV & GLVWDQW IXWXUH SUHGLFWLRQ ş HOHFWLRQ RXWFRPHV ş H[DPSOHV &ş& IXQGDPHQWDO PDWUL[ &ş& RYHUYLHZ &ş& SHULRGLFLW\ &ş& SRSXODWLRQ PRGHOLQJ ş VLJQDO WUDQVPLVVLRQ &ş& VWHDG\VWDWH YHFWRU &ş& VWHDG\VWDWH YHFWRUV ş VWHSV RU WUDQVLWLRQV & WUDQVLW WLPHV &ş& WUDQVLWLRQDO PDWUL[ & WUDQVLWLRQDO SUREDELOLW\ & 0DVVşVSULQJ V\VWHP 0DWKHPDWLFD 0$7/$% Q 0DWUL[ DOJHEUD ş DXJPHQWHG PDWUL[ ş FRHĴFLHQW PDWUL[ GHWHUPLQDQW 6HH 'HWHUPLQDQW GLDJRQDOL]DWLRQ 6HH 'LDJRQDOL]DWLRQ PDWUL[ HFKHORQ IRUP ş HTXDO PDWULFHV LQYHUVH 6HH ,QYHUVH PDWUL[ OLQHDU LQGHSHQGHQFH RI PDWUL[ FROXPQV P [ nPDWUL[ PXOWLSOLFDWLRQ ş ş QRWDWLRQ SDUWLWLRQHG 6HH 3DUWLWLRQHG PDWUL[ SLYRW FROXPQ SLYRW SRVLWLRQ ş SRZHU UDQN 6HH 5DQN PDWUL[ UHGXFHG HFKHORQ IRUP ş ş URZ HTXLYDOHQW PDWULFHV ş URZ HTXLYDOHQW Q $ URZ RSHUDWLRQV ş URZ UHGXFWLRQ ş VL]H VROYLQJ ş V\PPHWULF 6HH 6\PPHWULF PDWUL[ WUDQVIRUPDWLRQV ş WUDQVSRVH ş
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
*
,QGH[
0DWUL[ HTXDWLRQ $[ D E FRPSXWDWLRQ RI A[ H[LVWHQFH RI VROXWLRQV ş SURSHUWLHV RI A[ ş 0DWUL[ IDFWRUL]DWLRQ /8 IDFWRUL]DWLRQ DOJRULWKP ş RYHUYLHZ ş SHUPXWHG /8 IDFWRUL]DWLRQ 0DWUL[ JDPHV H[DPSOH ş H[SHFWHG SD\Rij OLQHDU SURJUDPPLQJ ş QXPEHU SD\Rij PDWUL[ ş SUREDELOLW\ YHFWRU VL]H UHGXFWLRQ ş VODFN YDULDEOH VWUDWHJ\ SXUH WKHRUHP ş WZRSHUVRQ ]HURVXP JDPHV YDOXH 0DWUL[ RI D OLQHDU WUDQVIRUPDWLRQ ş 0DWUL[ PXOWLSOLFDWLRQ FRPSRVLWLRQ RI OLQHDU WUDQVIRUPDWLRQ FRUUHVSRQGHQFH HOHPHQWDU\ PDWUL[ ş SDUWLWLRQHG PDWUL[ ş SURSHUWLHV ş URZşFROXPQ UXOH ş ZDUQLQJV 0DWUL[ RI REVHUYDWLRQV ş 0DWUL[ SURJUDP Q 0DWUL[ RI WKH TXDGUDWLF IRUP 0D[LPXP RI TXDGUDWLF IRUP ş 0HDQ VTXDUH HUURU 0HDQGHYLDWLRQ IRUP 0LFURFKLS 0LJUDWLRQ PDWUL[ 0LQLPDO UHDOL]DWLRQ HOHFWULFDO HQJLQHHULQJ 0LQLPDO UHSUHVHQWDWLRQ RI D SRO\WRSH ş 0RGXOXV FRPSOH[ QXPEHU $ 0RHELXV $ ) 0ROHFXODU PRGHOLQJ ş 0RRUHş3HQURVH LQYHUVH 0RYLQJ DYHUDJH 0XLU 7KRPDV 0XOWLFKDQQHO LPDJH 0XOWLSOH UHJUHVVLRQ ş 0XOWLSOLFLW\ RI HLJHQYDOXH 0XOWLVSHFWUDO LPDJH 0XOWLYDULDWH GDWD ş 0\/DE 0DWK
/ 1DWXUDO FXELF VSOLQHV 1HJDWLYH GHıQLWH TXDGUDWLF IRUP ş
1HJDWLYH VHPLGHıQLWH TXDGUDWLF IRUP 1HWZRUN 6HH (OHFWULFDO QHWZRUNV 1HWZRUN IJRZ OLQHDU V\VWHP DSSOLFDWLRQV ş 1RGH QHWZRUN 1RQKRPRJHQHRXV OLQHDU V\VWHPV OLQHDU GLijHUHQFH HTXDWLRQV VROXWLRQ ş 1RQOLQHDU G\QDPLFDO V\VWHP Q 1RQSLYRW FROXPQ $ 1RQVLQJXODU PDWUL[ 1RQWULYLDO VROXWLRQ 1RQ]HUR HQWU\ 1RQ]HUR OLQHDU IXQFWLRQDO 1RQ]HUR URZ 1RQ]HUR YHFWRU 1RQ]HUR YHFWRU 1RQ]HUR YROXPH 1RUP YHFWRU ş 1RUPDO HTXDWLRQ 1RUPDOL]LQJ YHFWRUV 1XOO VSDFH PDWUL[ EDVLV ş FROXPQ VSDFH FRQWUDVW ş GLPHQVLRQ H[SOLFLW GHVFULSWLRQ ş RYHUYLHZ ş VXEVSDFHV ş 1XOOLW\ 1XWULWLRQ PRGHO
0 2EVHUYDWLRQ YHFWRU ş ş ş 2FWDKHGURQ 2KP ş ş 2KPVŖ ODZ ş 2LO H[SORUDWLRQ 2QHWRRQH OLQHDU WUDQVIRUPDWLRQ ş 2SHQ EDOO 2SHQ VHW 2SHQ*/ 2SWLPDO VWUDWHJLHV 2SWLPL]DWLRQ ş GXDOLW\ ş OLQHDU SURJUDPPLQJ ş PDWUL[ JDPHV ş 2SWLPL]DWLRQ FRQVWUDLQHG 6HH &RQVWUDLQHG RSWLPL]DWLRQ SUREOHP 2UELW 2UGHU SRO\QRPLDO 2UGHUHG nWXSOHV 2UGHUHG SDLUV 2UWKRJRQDO EDVLV 2UWKRJRQDO FRPSOHPHQW ş 2UWKRJRQDO 'HFRPSRVLWLRQ 7KHRUHP 2UWKRJRQDO GLDJRQDOL]DWLRQ ş
2UWKRJRQDO PDWUL[ 2UWKRJRQDO SURMHFWLRQ %HVW $SSUR[LPDWLRQ 7KHRUHP ş )RXULHU VHULHV JHRPHWULF LQWHUSUHWDWLRQ RYHUYLHZ SURSHUWLHV 5n 2UWKRJRQDO VHW 2UWKRJRQDO YHFWRU ş 2UWKRJRQDOLW\ DSSOLFDWLRQ RI 2UWKRQRUPDO EDVLV ş 2UWKRQRUPDO FROXPQ ş 2UWKRQRUPDO URZ 2UWKRQRUPDO VHW ş 2YHU GHWHUPLQHG V\VWHP
1 3n VWDQGDUG EDVLV ş YHFWRU VSDFH 32 33 3DJH5DQN &ş& 3DUDEROD ş 3DUDOOHO IJDWV 3DUDOOHO K\SHUSODQHV 3DUDOOHORJUDP DUHD ODZ UXOH IRU DGGLWLRQ 3DUDPHWHU YHFWRU ş 3DUDPHWULF FRQWLQXLW\ ş GHVFULSWLRQV RI VROXWLRQ VHWV HTXDWLRQV OLQH SODQH YHFWRU IRUP 3DUDPHWULF GHVFULSWLRQV VROXWLRQ VHWV 3DUDPHWULF YHFWRU HTXDWLRQ ş 3DUWLDO SLYRWLQJ 3DUWLWLRQHG PDWUL[ ş DGGLWLRQ FROXPQşURZ H[SDQVLRQ LQYHUVH ş PXOWLSOLFDWLRQ ş VFDODU PXOWLSOLFDWLRQ ş 3D\Rij PDWUL[ ş 3HULRGLFLW\ DSHULRGLF & GHıQLWLRQ & H[DPSOH &ş& WKHRUHP &ş& 3HUPXWHG ORZHU WULDQJXODU PDWUL[ 3HUPXWHG /8 IDFWRUL]DWLRQ 3HUVSHFWLYH SURMHFWLRQ ş
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QGH[
3LYRW FROXPQ SDUWLDO SLYRWLQJ SRVLWLRQ ş 3L[HO 3ODQH JHRPHWULF GHVFULSWLRQ LPSOLFLW HTXDWLRQ 3ODWRQLF VROLGV ş 3RLQW PDVV 3RODU FRRUGLQDWHV $ 3RODU GHFRPSRVLWLRQ 3RO\JRQ ş 3RO\KHGURQ 3RO\QRPLDOV EOHQGLQJ Q FKDUDFWHULVWLF ş GHJUHH +HUPLWH LQWHUSRODWLQJ /DJXHUUH SRO\QRPLDO /HJHQGUH SRO\QRPLDO RUWKRJRQDO VHW WULJRQRPHWULF ]HUR 3RO\WRSHV ş 3RSXODWLRQ OLQHDU PRGHOLQJ ş 0DUNRY FKDLQ PRGHOLQJ ş ş 3RVLWLYH GHıQLWH PDWUL[ ş 3RVLWLYH GHıQLWH TXDGUDWLF IRUP 3RVLWLYH VHPLGHıQLWH PDWUL[ 3RVLWLYH VHPLGHıQLWH TXDGUDWLF IRUP 3RVW6FULSW IRQWV 3RZHU PDWUL[ 3RZHUV RI D FRPSOH[ QXPEHU 3RZHU PHWKRG LQWHUDFWLYH HVWLPDWHV IRU HLJHQYDOXHV ş 3UHGDWRUşSUH\ PRGHO ş 3UHGLFWHG y YDOXH 3ULFH HTXLOLEULXP ş 3ULQFLSDO D[HV JHRPHWULF YLHZ ş TXDGUDWLF IRUP 3ULQFLSDO FRPSRQHQW DQDO\VLV FRYDULDQFH PDWUL[ ıUVW SULQFLSDO FRPSRQHQW LPDJH SURFHVVLQJ ş ş PHDQGHYLDWLRQ IRUP PXOWLYDULDWH GDWD GLPHQVLRQ UHGXFWLRQ ş VDPSOH PHDQ ş VHFRQG SULQFLSDO FRPSRQHQW WRWDO YDULDQFH YDULDEOH FKDUDFWHUL]DWLRQ 3ULQFLSDO $[HV 7KHRUHP 3ULQFLSOH RI 0DWKHPDWLF ,QGXFWLRQ 3UREDELOLW\ YHFWRU 0DUNRY &KDLQV 3URFHVV FRQWURO GDWD
3URGXFWLRQ YHFWRU /HRQWLHI LQSXWşRXWSXW PRGHO 3URıOH 3URMHFWLRQ PDWUL[ WUDQVIRUPDWLRQ 6HH DOVR 2UWKRJRQDO SURMHFWLRQ 3URSHU VXEVHW Q 3URRI ZULWLQJ 3URSHUWLHV RI 'HWHUPLQDQWV 7KHRUHP ş 3VHXGRLQYHUVH ş 3XEOLF ZRUN VFKHGXOHV ş IHDVLEOH VHW LQGLijHUHQFH FXUYH ş XWLOLW\ 3XUH LPDJLQDU\ QXPEHUV 3\WKDJRUHDQ 7KHRUHP
2
*
UDQN ş VSDQ WUDQVIRUPDWLRQ RI 5n WR 5m ş ş YHFWRUV LQ LQQHU SURGXFW ş OHQJWK ş OLQHDU FRPELQDWLRQV ş RUWKRJRQDO YHFWRUV ş RYHUYLHZ 52 DQJOHV LQ ş FRPSOH[ QXPEHUV $ JHRPHWULF OLQHDU WUDQVIRUPDWLRQ SRODU FRRUGLQDWHV LQ $ YHFWRUV LQ JHRPHWULF GHVFULSWLRQV RYHUYLHZ ş SDUDOOHORJUDP UXOH IRU DGGLWLRQ 53
45 DOJRULWKP ş 45 IDFWRUL]DWLRQ &KROHVN\ IDFWRUL]DWLRQ ş *UDPş6FKPLGW SURFHVV ş ş OHDVWVTXDUHV VROXWLRQ ş 45 )DFWRUL]DWLRQ 7KHRUHP 4XDGUDWLF %Ü]LHU FXUYH ş ş 4XDGUDWLF IRUP ş ş FKDQJH RI YDULDEOH LQ FODVVLıFDWLRQ FRQVWUDLQHG RSWLPL]DWLRQ ş HLJHQYDOXHV PDWUL[ RI SULQFLSDO D[HV ş ş 4XDGUDWLF )RUPV DQG (LJHQYDOXH 7KHRUHP
3 5n DOJHEUDLF SURSHUWLHV FKDQJH RI EDVLV ş GLPHQVLRQ RI D IJDW GLVWDQFH LQ HLJHQYHFWRU EDVLV LQQHU SURGXFW OLQHDU IXQFWLRQDO OLQHDU WUDQVIRUPDWLRQV RQ RUWKRJRQDO SURMHFWLRQ ş TXDGUDWLF IRUP 6HH 4XDGUDWLF IRUP VXEVSDFH EDVLV ş FROXPQ VSDFH ş FRRUGLQDWH V\VWHPV ş GLPHQVLRQ ş OLQHV QXOO VSDFH ş SURSHUWLHV
DQJOHV LQ VSKHUH WUDQVIRUPDWLRQ RQWR HOOLSVH LQ 52 VXEVSDFH FODVVLıFDWLRQ VSDQQHG E\ D VHW YHFWRUV LQ 54 SRO\WRSH YLVXDOL]DWLRQ VXEVSDFH ş 540 5DQGRP ZDONV 0DUNRY &KDLQV &ş& 5DQJH PDWUL[ WUDQVIRUPDWLRQ ş NHUQHO DQG UDQJH RI OLQHDU WUDQVIRUPDWLRQ 5DQN PDWUL[ DOJRULWKPV HVWLPDWLRQ Q ,QYHUWLEOH 0DWUL[ 7KHRUHP 6HH ,QYHUWLEOH 0DWUL[ 7KHRUHP RYHUYLHZ ş URZ VSDFH ş 5DQN RI WUDQVIRUPDWLRQ 5DQN 7KHRUHP ş ş DSSOLFDWLRQ WR V\VWHPV RI HTXDWLRQV 5D\WUDFLQJ 5D\WULDQJOH LQWHUVHFWLRQ Q 5D\OHLJK TXRWLHQW 5HDO D[LV $ 5HDO SDUW FRPSOH[ QXPEHU $ FRPSOH[ YHFWRU ş 5HDO YHFWRU VSDFH Q 5HDVRQDEOH $QVZHUV 5HFWDQJXODU FRRUGLQDWH V\VWHP 5HFXUUHQFH UHODWLRQ 6HH /LQHDU GLijHUHQFH HTXDWLRQ 5HFXUUHQW VWDWHV &ş& 5HFXUVLYH GHVFULSWLRQ
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
*
,QGH[
5HGXFHG HFKHORQ PDWUL[ $ 5HGXFHG /8 IDFWRUL]DWLRQ 5HGXFHG URZ HFKHORQ IRUP 5HIJHFWLQJ ERXQGDULHV UDQGRP ZDON & 5HIJHFWLRQV OLQHDU WUDQVIRUPDWLRQV ş 5HIJH[LYH SURSHUWLHV & 5HJUHVVLRQ FRHĴFLHQW OLQH PXOWLSOH ş RUWKRJRQDO 5HJXODU SRO\KHGURQ 5HJXODU VROLG 5HJXODU VWRFKDVWLF PDWUL[ 5HODWLYH HUURU 5HQGHULQJ FRPSXWHU JUDSKLFV 5HSHOOHU G\QDPLFDO V\VWHP 5HVLGXDO YHFWRU 5HVLVWDQFH ş 5HYHUVLEOH URZ RSHUDWLRQV 5*% FRRUGLQDWHV 5LHPDQQ VXP 5LJKW GLVWULEXWLYH ODZ PDWUL[ PXOWLSOLFDWLRQ 5LJKW PXOWLSOLFDWLRQ 5LJKW VLQJXODU YHFWRU ş 5/& FLUFXLW 5RWDWLRQ WUDQVIRUPDWLRQ 5RXQGRij HUURU 5RZ HTXLYDOHQW PDWULFHV $ 5RZ RSHUDWLRQV PDWULFHV ş 5RZ UHGXFHG PDWUL[ 5RZ UHGXFWLRQ DOJRULWKP ş PDWUL[ ş ş 5RZ UHSODFHPHQW PDWUL[ 5RZ YHFWRU 5RZşFROXPQ UXOH PDWUL[ PXOWLSOLFDWLRQ ş ş 5RZşYHFWRU UXOH FRPSXWDWLRQ RI A[
4 6DGGOH SRLQW 6DPSOH FRYDULDQFH PDWUL[ 6DPSOH PHDQ ş 6DPXHOVRQ 3 $ Q 6FDODU 6FDODU PXOWLSOH 6FDOH PDWUL[ 6FDWWHU SORW 6FHQH YDULDQFH ş 6FKXU FRPSOHPHQW ş 6FKXU IDFWRUL]DWLRQ 6HFRQG SULQFLSDO FRPSRQHQW 6HULHV FLUFXLW 6HW DĴQH ERXQGHG FORVHG ş FRPSDFW ş
FRQYH[ ş OHYHO RSHQ YHFWRU 6HH 9HFWRU VHW 6KHDU WUDQVIRUPDWLRQ ş 6KXQW FLUFXLW 6LJQDO VSDFH RI ş ş 6LPLODU PDWULFHV 6LPLODULW\ WUDQVIRUPDWLRQ 6LPSOH UDQGRP ZDON & GLUHFWHG JUDSK & RQ JUDSK & 6LPSOH[ Q ş 6LPSOH[ PHWKRG Q ş DOJRULWKP ş H[DPSOH ş IHDVLEOH VROXWLRQ ş OLQHDU SURJUDPPLQJ ş PLQLPL]DWLRQ SUREOHPV ş VODFN YDULDEOH 6LQJXODU PDWUL[ ş 6LQJXODU YDOXH GHFRPSRVLWLRQ 69' DSSOLFDWLRQV EDVHV IRU IXQGDPHQWDO VXEVSDFHV FRQGLWLRQ QXPEHU OHDVWVTXDUHV VROXWLRQ UHGXFHG GHFRPSRVLWLRQ DQG SVHXGRLQYHUVH LQWHUQDO VWUXFWXUH ş 53 VSKHUH WUDQVIRUPDWLRQ RQWR HOOLSVH LQ 5 ş VLQJXODU YDOXHV RI D PDWUL[ ş 6LQJXODU 9DOXH 'HFRPSRVLWLRQ 7KHRUHP 6LQN G\QDPLFDO V\VWHP 6L]H PDWUL[ 6ROLGV 3ODWRQLF 6ROXWLRQ ş 6ROXWLRQ VHW ş ş 6RXUFH G\QDPLFDO V\VWHP 6SDFH 6HH ,QQHU SURGXFW 9HFWRU VSDFH 6SDQ ş DĴQH OLQHDU LQGHSHQGHQFH RUWKRJRQDO SURMHFWLRQ VXEVSDFH VXEVSDFH VSDQQHG E\ D VHW 6SDQ^X Y` JHRPHWULF GHVFULSWLRQ OLQHDU GHSHQGHQFH VROXWLRQ VHW 6SDQ^Y` JHRPHWULF GHVFULSWLRQ 6SDQQLQJ VHW 6SDQQLQJ 6HW 7KHRUHP ş 6SDUVH PDWUL[ 6SDWLDO GLPHQVLRQ 6SHFWUDO GHFRPSRVLWLRQ 6SHFWUDO IDFWRUL]DWLRQ 6SHFWUDO 7KHRUHP 6SLUDO SRLQW G\QDPLFDO V\VWHP
6SOLQH %VSOLQH ş QDWXUDO FXELF 6SRWWHG RZO 6WDJHPDWUL[ PRGHO 6WDQGDUG EDVLV 6WDQGDUG PDWUL[ 6WDQGDUG PDWUL[ RI D OLQHDU WUDQVIRUPDWLRQ 6WDQGDUG SRVLWLRQ 6WDWHV FODVVLıFDWLRQ &ş& H[DPSOH &ş& 6WDWHVSDFH GHVLJQ 6WHDG\VWDWH UHVSRQVH 6WHDG\VWDWH YHFWRU ş *RRJOH 0DWUL[ &ş& LQWHUSUHWDWLRQV &ş& 0DUNRY &KDLQV &ş& 3DJH5DQN &ş& UHJXODU PDWULFHV &ş& WKHRUHP & 6WLijQHVV PDWUL[ 6WRFKDVWLF PDWUL[ ş & 6WULFWO\ GRPLQDQW HLJHQYDOXH 6WULFWO\ VHSDUDWH K\SHUSODQH ş 6XEPDWUL[ 6XEVHW SURSHU Q 6XEVSDFH ıQLWHGLPHQVLRQDO VSDFH ş SURSHUWLHV ş 53 FODVVLıFDWLRQ VSDQQHG E\ D VHW 5n YHFWRUV EDVLV ş FROXPQ VSDFH ş FRRUGLQDWH V\VWHPV ş GLPHQVLRQ ş OLQHV QXOO VSDFH ş SURSHUWLHV UDQN ş VSDQ VSDQQHG E\ D VHW ş 6XP PDWULFHV YHFWRUV 6XP RI VTXDUHV IRU HUURU 6XSHUSRVLWLRQ SULQFLSOH 6XSSRUWHG K\SHUSODQH 6XUIDFH QRUPDO 6XUIDFHV 6HH %Ü]LHU VXUIDFHV 69' 6HH 6LQJXODU YDOXH GHFRPSRVLWLRQ 6\PEROLF GHWHUPLQDQW 6\PPHWULF PDWUL[ GLDJRQDOL]DWLRQ 6SHFWUDO 7KHRUHP VSHFWUDO GHFRPSRVLWLRQ ş 6\PPHWULF SURSHUWLHV & 6\VWHP PDWUL[
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QGH[
6\VWHP RI OLQHDU HTXDWLRQV DSSOLFDWLRQV HFRQRPLFV ş FKHPLFDO HTXDWLRQ EDODQFLQJ ş QHWZRUN IJRZ ş EDFNVXEVWLWXWLRQ ş FRQVLVWHQW V\VWHP ş HTXLYDOHQW OLQHDU V\VWHPV H[LVWHQFH DQG XQLTXHQHVV TXHVWLRQV ş LQFRQVLVWHQW V\VWHP PDWUL[ QRWDWLRQ RYHUYLHZ ş VROXWLRQ KRPRJHQHRXV OLQHDU V\VWHPV QRQKRPRJHQHRXV OLQHDU V\VWHPV ş QRQWULYLDO VROXWLRQ RYHUYLHZ ş SDUDPHWULF GHVFULSWLRQV RI VROXWLRQ VHWV SDUDPHWULF YHFWRU IRUP URZ UHGXFHG PDWUL[ ş WULYLDO VROXWLRQ
5 7DQJHQW YHFWRU ş ş 7HWUDKHGURQ 7KUHHPRPHQW HTXDWLRQ 7LPDHXV 7RWDO YDULDQFH ş 7UDFH 7UDMHFWRU\ G\QDPLFDO V\VWHP 7UDQVIHU IXQFWLRQ 7UDQVIHU PDWUL[ ş 7UDQVIRUPDWLRQ PDWULFHV ş RYHUYLHZ 5n WR 5m ş VKHDU WUDQVIRUPDWLRQ ş ş 6HH DOVR /LQHDU WUDQVIRUPDWLRQ 7UDQVODWLRQ YHFWRU DGGLWLRQ 7UDQVLHQW VWDWHV &ş& FRPPXQLFDWLRQ FODVVHV &ş& IXQGDPHQWDO PDWUL[ &ş& 7UDQVLWLYH SURSHUWLHV & 7UDQVSRVH ş FRQMXJDWH Q LQYHUVH PDWUL[ FRIDFWRUV SURGXFW 7UHQG DQDO\VLV 7UHQG FRHĴFLHQWV 7UHQG IXQFWLRQ ş
7UHQG VXUIDFH 7ULDQJOH EDU\FHQWULF FRRUGLQDWHV ş 7ULDQJOH LQHTXDOLW\ 7ULDQJXODU GHWHUPLQDQW 7ULDQJXODU IRUP 7ULDQJXODU PDWUL[ ş ş ş GHWHUPLQDQWV HLJHQYDOXHV ORZHU 6HH /RZHU WULDQJXODU PDWUL[ XSSHU 8SSHU WULDQJXODU PDWUL[ 7ULGLDJRQDO PDWUL[ 7ULJRQRPHWULF SRO\QRPLDO 7ULYLDO VROXWLRQ ş ş ş ş 7UXH7\SH IRQW 7ZRSHUVRQ ]HURVXP JDPHV
6 8QELDVHG UDQGRP ZDON & 8QFRUUHODWHG YDULDEOH 8QGHUGHWHUPLQHG V\VWHP ş 8QLIRUP %VSOLQH 8QLTXH 5HSUHVHQWDWLRQ 7KHRUHP 8QLTXHQHVV H[LVWHQFH DQG XQLTXHQHVV WKHRUHP OLQHDU WUDQVIRUPDWLRQ PDWUL[ WUDQVIRUPDWLRQ UHGXFHG HFKHORQ PDWUL[ $ V\VWHP RI OLQHDU HTXDWLRQV ş 8QLW FHOO ş 8QLW FRQVXPSWLRQ YHFWRU /HRQWLHI LQSXWşRXWSXW PRGHO 8QLW ORZHU WULDQJXODU PDWUL[ 8QLW YHFWRU ş 8QVWDEOH HTXLOLEULXP 8SSHU WULDQJXODU PDWUL[ ş ş 8WLOLW\ IXQFWLRQ ş
*
9HFWRU JHRPHWULF GHVFULSWLRQV RI VSDQ^Y`DQG VSDQ^X Y` ş LQQHU SURGXFW 6HH ,QQHU SURGXFW OHQJWK OLQHDU FRPELQDWLRQV LQ DSSOLFDWLRQV PDWUL[şYHFWRU SURGXFW 6HH 0DWUL[ HTXDWLRQ 5n OLQHDU FRPELQDWLRQV ş YHFWRUV LQ 52 JHRPHWULF GHVFULSWLRQV SDUDOOHORJUDP UXOH IRU DGGLWLRQ YHFWRUV LQ 53 YHFWRUV LQ VSDFH ş VXEVSDFH 6HH 6XEVSDFH VXEWUDFWLRQ VXP 9HFWRU HTXDWLRQ 9HFWRU VSDFH FKDQJH RI EDVLV FRPSOH[ Q Q GLPHQVLRQ RI YHFWRU VSDFH ş K\SHUSODQHV RYHUYLHZ ş UHDO Q Q 6HH DOVR *HRPHWU\ RI YHFWRU VSDFH ,QQHU SURGXFW 9HUWH[ IDFH RI D SRO\KHGURQ 9HU\ODUJH VFDOH LQWHJUDWHG PLFURFKLS 9LUWXDO UHDOLW\ 9ROW 9ROXPH GHWHUPLQDQWV DV ş HOOLSVRLG WHWUDKHGURQ
8 :HLJKWHG OHDVWVTXDUHV ş :HLJKWV ş ş :LUHIUDPH DSSUR[LPDWLRQ
7
;
9DQGHUPRQGH PDWUL[ 9DULDEOH OHDGLQJ XQFRUUHODWHG 6HH DOVR &KDQJH RI YDULDEOH 9DULDQFH ş ş VDPSOH VFHQH ş WRWDO ş 9DULDWLRQGLPLQLVKLQJ SURSHUW\ %Ü]LHU FXUYHV ş
=HUR IXQFWLRQDO =HUR PDWUL[ ş =HUR VXEVSDFH ş =HUR YHFWRU ş ş ş ş ş ş ş ş
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
5HIHUHQFHVWR$SSOLFDWLRQV WEB
LQGLFDWHVPDWHULDORQWKH:HEVLWH
%LRORJ\DQG(FRORJ\ (VWLPDWLQJV\VWROLFEORRGSUHVVXUH ² /DERUDWRU\DQLPDOWULDOV 0ROHFXODUPRGHOLQJ ² 1HWSULPDU\SURGXFWLRQRIQXWULHQWV ² 1XWULWLRQSUREOHPV WEB ² 3UHGDWRUSUH\V\VWHP ² 6SRWWHGRZOVDQGVWDJHPDWUL[PRGHOV WEB ² ² %XVLQHVVDQG(FRQRPLFV $FFHOHUDWRUPXOWLSOLHUPRGHO $YHUDJHFRVWFXUYH ² &DUUHQWDOÁHHW &RVWYHFWRUV (TXLOLEULXPSULFHV WEB ² ([FKDQJHWDEOH ² )HDVLEOHVHW *URVVGRPHVWLFSURGXFW ,QGLIIHUHQFHFXUYHV ² ,QWHUPHGLDWHGHPDQG ,QYHVWPHQW /HRQWLHIH[FKDQJHPRGHO WEB ² /HRQWLHILQSXW²RXWSXWPRGHO WEB ² /LQHDUSURJUDPPLQJ WEB WEB ² /RDQDPRUWL]DWLRQVFKHGXOH 0DQXIDFWXULQJRSHUDWLRQV ² 0DUJLQDOSURSHQVLW\WRFRQVXPH 0DUNRYFKDLQV WEB ² 0D[LPL]LQJXWLOLW\VXEMHFWWRDEXGJHWFRQVWUDLQW ² 3RSXODWLRQPRYHPHQW ² 3ULFHHTXDWLRQ 7RWDOFRVWFXUYH 9DOXHDGGHGYHFWRU 9DULDEOHFRVWPRGHO &RPSXWHUVDQG&RPSXWHU6FLHQFH %p]LHUFXUYHVDQGVXUIDFHV ² &$' &RORUPRQLWRUV &RPSXWHUJUDSKLFV WEB ² ² &UD\VXSHUFRPSXWHU 'DWDVWRUDJH (UURUGHWHFWLQJDQGHUURUFRUUHFWLQJFRGHV *DPHWKHRU\ +LJKHQGFRPSXWHUJUDSKLFVERDUGV +RPRJHQHRXVFRRUGLQDWHV ² 3DUDOOHOSURFHVVLQJ 3HUVSHFWLYHSURMHFWLRQV WEB ² 9HFWRUSLSHOLQHDUFKLWHFWXUH 9LUWXDOUHDOLW\ 9/6, PLFURFKLSV :LUHIUDPHPRGHOV
&RQWURO7KHRU\ &RQWUROODEOHV\VWHP WEB &RQWUROV\VWHPVHQJLQHHULQJ WEB ² 'HFRXSOHGV\VWHP 'HHSVSDFHSUREH 6WDWHVSDFHPRGHO WEB 6WHDG\VWDWHUHVSRQVH 7UDQVIHUIXQFWLRQPDWUL[ ² (OHFWULFDO(QJLQHHULQJ %UDQFKDQGORRSFXUUHQWV WEB ² &LUFXLWGHVLJQ WEB ² &XUUHQWÁRZLQQHWZRUNV WEB ² ² 'LVFUHWHWLPHVLJQDOV ² ² ,QGXFWDQFHFDSDFLWDQFHFLUFXLW .LUFKKRII·VODZV WEB ² /DGGHUQHWZRUN ² /DSODFHWUDQVIRUPV /LQHDUÀOWHUV ² /RZSDVVÀOWHU WEB 0LQLPDOUHDOL]DWLRQ 2KP·VODZ WEB ² 5& FLUFXLW ² 5/& FLUFXLW ² 6HULHVDQGVKXQWFLUFXLWV 7UDQVIHUPDWUL[ ² ² (QJLQHHULQJ $LUFUDIWSHUIRUPDQFH %RHLQJ%OHQGHG:LQJ%RG\ WEB &DQWLOHYHUHGEHDP &)' DQGDLUFUDIWGHVLJQ WEB ² 'HÁHFWLRQRIDQHODVWLFEHDP 'HIRUPDWLRQRIDPDWHULDO (TXLOLEULXPWHPSHUDWXUHV WEB )HHGEDFNFRQWUROV )OH[LELOLW\DQGVWLIIQHVVPDWULFHV +HDWFRQGXFWLRQ ,PDJHSURFHVVLQJ WEB ² ² /8 IDFWRUL]DWLRQDQGDLUÁRZ WEB 0RYLQJDYHUDJHÀOWHU 6SDFHVKXWWOHFRQWURO WEB ² 6XSHUSRVLWLRQSULQFLSOH 6XUYH\LQJ WEB ² 0DWKHPDWLFV $UHDDQGYROXPH WEB ² ² $WWUDFWRUVUHSHOOHUVLQDG\QDPLFDOV\VWHP ² %HVVHO·VLQHTXDOLW\ %HVWDSSUR[LPDWLRQLQIXQFWLRQVSDFHV ² &DXFK\6FKZDU]LQHTXDOLW\ ² &RQLFVHFWLRQVDQGTXDGUDWLFVXUIDFHV WEB ² 'LIIHUHQWLDOHTXDWLRQV ² ² )RXULHUVHULHV ² +HUPLWHSRO\QRPLDOV +\SHUFXEH ²
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
,QWHUSRODWLQJSRO\QRPLDOV WEB ,VRPRUSKLVP ² -DFRELDQPDWUL[ /DJXHUUHSRO\QRPLDOV /DSODFHWUDQVIRUPV /HJHQGUHSRO\QRPLDOV /LQHDUWUDQVIRUPDWLRQVLQFDOFXOXV 6LPSOH[ ² 6SOLQHV WEB ² ² 7ULDQJOHLQHTXDOLW\ 7ULJRQRPHWULFSRO\QRPLDOV
9HFWRUSLSHOLQHDUFKLWHFWXUH
WEB
²
1XPHULFDO/LQHDU$OJHEUD %DQGPDWUL[ %ORFNGLDJRQDOPDWUL[ &KROHVN\IDFWRUL]DWLRQ WEB &RPSDQLRQPDWUL[ &RQGLWLRQQXPEHU (IIHFWLYHUDQN WEB )ORDWLQJSRLQWDULWKPHWLF )XQGDPHQWDOVXEVSDFHV ² *LYHQVURWDWLRQ WEB *UDPPDWUL[ *UDP²6FKPLGWSURFHVV WEB +LOEHUWPDWUL[ +RXVHKROGHUUHÁHFWLRQ ,OOFRQGLWLRQHGPDWUL[SUREOHP ,QYHUVHSRZHUPHWKRG ² ,WHUDWLYHPHWKRGV ² -DFREL·VPHWKRGIRUHLJHQYDOXHV /$3$&. /DUJHVFDOHSUREOHPV WEB ² /8 IDFWRUL]DWLRQ ² ² 2SHUDWLRQFRXQWV WEB WEB 2XWHUSURGXFWV 3DUDOOHOSURFHVVLQJ 3DUWLDOSLYRWLQJ WEB 3RODUGHFRPSRVLWLRQ 3RZHUPHWKRG ² 3RZHUVRIDPDWUL[ WEB 3VHXGRLQYHUVH 45 DOJRULWKP 45 IDFWRUL]DWLRQ ² WEB WEB ² 5DQNUHYHDOLQJIDFWRUL]DWLRQ 5DQNWKHRUHP WEB 5D\OHLJKTXRWLHQW ² 5HODWLYHHUURU 6FKXUFRPSOHPHQW 6FKXUIDFWRUL]DWLRQ 6LQJXODUYDOXHGHFRPSRVLWLRQ ² 6SDUVHPDWUL[ 6SHFWUDOGHFRPSRVLWLRQ ² 6SHFWUDOIDFWRUL]DWLRQ 7ULGLDJRQDOPDWUL[ 9DQGHUPRQGHPDWUL[
3K\VLFDO6FLHQFHV &DQWLOHYHUHGEHDP &HQWHURIJUDYLW\ &KHPLFDOUHDFWLRQV &U\VWDOODWWLFH 'HFRPSRVLQJDIRUFH 'LJLWDOO\UHFRUGHGVRXQG *DXVVLDQHOLPLQDWLRQ +RRNH·VODZ ,QWHUSRODWLQJSRO\QRPLDO WEB .HSOHU·VÀUVWODZ /DQGVDWLPDJH WEB ² /LQHDUPRGHOVLQJHRORJ\DQGJHRJUDSK\ ² 0DVVHVWLPDWHVIRUUDGLRDFWLYHVXEVWDQFHV 0DVVVSULQJV\VWHP 0RGHOIRUJODFLDOFLUTXHV 0RGHOIRUVRLOS+ 3DXOLVSLQPDWULFHV 3HULRGLFPRWLRQ 4XDGUDWLFIRUPVLQSK\VLFV ² 5DGDUGDWD 6HLVPLFGDWD 6SDFHSUREH 6WHDG\VWDWHKHDWÁRZ 6XSHUSRVLWLRQSULQFLSOH 7KUHHPRPHQWHTXDWLRQ 7UDIÀFÁRZ ² 7UHQGVXUIDFH :HDWKHU :LQGWXQQHOH[SHULPHQW 6WDWLVWLFV $QDO\VLVRIYDULDQFH &RYDULDQFH ² )XOOUDQN /HDVWVTXDUHVHUURU /HDVWVTXDUHVOLQH WEB WEB ² /LQHDUPRGHOLQVWDWLVWLFV ² 0DUNRYFKDLQV WEB ² 0HDQGHYLDWLRQIRUPIRUGDWD 0RRUH3HQURVHLQYHUVH 0XOWLFKDQQHOLPDJHSURFHVVLQJ WEB ² ² 0XOWLSOHUHJUHVVLRQ ² 2UWKRJRQDOSRO\QRPLDOV 2UWKRJRQDOUHJUHVVLRQ ² 3RZHUVRIDPDWUL[ WEB 3ULQFLSDOFRPSRQHQWDQDO\VLV WEB ² ² 4XDGUDWLFIRUPVLQVWDWLVWLFV 5HDGMXVWLQJWKH1RUWK$PHULFDQ'DWXP WEB ² 5HJUHVVLRQFRHIÀFLHQWV 6XPVRIVTXDUHVLQUHJUHVVLRQ ² 7UHQGDQDO\VLV ² 9DULDQFH ² :HLJKWHGOHDVWVTXDUHV ²
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Preface Our Goal Fundamentals of Differential Equations is designed to serve the needs of a one-semester course in basic theory as well as applications of differential equations. The flexibility of the text provides the instructor substantial latitude in designing a syllabus to match the emphasis of the course. Sample syllabi are provided in this preface that illustrate the inherent flexibility of this text to balance theory, methodology, applications, and numerical methods, as well as the incorporation of commercially available computer software for this course.
New to This Edition • This text now features a MyMathLab course with approximately 750 algorithmic online homework exercises, tutorial videos, and the complete eText. Please see the “Technology and Supplements” section below for more details. • In the Laplace Transforms chapter (7), the treatments of discontinuous and periodic functions are now divided into two sections that are more appropriate for 50 minute lectures: Section 7.6 “Transforms of Discontinuous Functions” (page 383) and Section 7.7 “Transforms of Periodic and Power Functions” (page 392). • New examples have been added dealing with variation of parameters, Laplace transforms, the Gamma function, and eigenvectors (among others). • New problems added to exercise sets deal with such topics as axon gating variables and oscillations of a helium-filled balloon on a cord. Additionally, novel problems accompany the new projects, focusing on economic models, disease control, synchronization, signal propagation, and phase plane analyses of neural responses. We have also added a set of Review Problems for Chapter 1 (page 29). • Several pedagogical changes were made including amplification of the distinction between phase plane solutions and actual trajectories in Chapter 5 and incorporation of matrix and Jacobian formulations for autonomous systems. • A new appendix lists commercial software and freeware for direction fields, phase portraits, and numerical methods for solving differential equations. (Appendix G, page A-17.) • “The 2014–2015 Ebola Epidemic” is a new Project in Chapter 5 that describes a system of differential equations for modelling for the spread of the disease in West Africa. The model incorporates such features as contact tracing, number of contacts, likelihood of infection, and efficacy of isolation. See Project F, page 314. • A new project in Chapter 1 called “Applications to Economics” deals with models for an agrarian economy as well as the growth of capital. See Project C, page 35. xiii
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
xiv
Preface
• A new project in Chapter 4 called “Gravity Train” invites to reader to utilize differential equations in the design of an underground tunnel from Moscow to St. Petersburg, Russia, using gravity for propulsion. See Project H, page 240. • Phase-locked loops constitute the theme of a new project in Chapter 5 that utilizes differential equations to analyze a technique for measuring or matching high frequency radio oscillations. See Project G, page 317. • A new Project in Chapter 10 broadens the analysis of the wave and heat equations to explore the telegrapher’s and cable equations. See Project E, page 637.
Prerequisites While some universities make linear algebra a prerequisite for differential equations, many schools (especially engineering) only require calculus. With this in mind, we have designed the text so that only Chapter 6 (Theory of Higher-Order Linear Differential Equations) and Chapter 9 (Matrix Methods for Linear Systems) require more than high school level linear algebra. Moreover, Chapter 9 contains review sections on matrices and vectors as well as specific references for the deeper results used from the theory of linear algebra. We have also written Chapter 5 so as to give an introduction to systems of differential equations—including methods of solving, phase plane analysis, applications, numerical procedures, and Poincaré maps—that does not require a background in linear algebra.
Sample Syllabi As a rough guide in designing a one-semester syllabus related to this text, we provide three samples that can be used for a 15-week course that meets three hours per week. The first emphasizes applications and computations including phase plane analysis; the second is designed for courses that place more emphasis on theory; and the third stresses methodology and partial differential equations. Chapters 1, 2, and 4 provide the core for any first course. The rest of the chapters are, for the most part, independent of each other. For students with a background in linear algebra, the instructor may prefer to replace Chapter 7 (Laplace Transforms) or Chapter 8 (Series Solutions of Differential Equations) with sections from Chapter 9 (Matrix Methods for Linear Systems).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Preface
Week
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Methods, Computations, and Applications
Theory and Methods (linear algebra prerequisite)
Methods and Partial Differential Equations
Sections
Sections
Sections
1.1, 1.2, 1.3 1.4, 2.2 2.3, 2.4, 3.2 3.4, 3.5, 3.6 3.7, 4.1 4.2, 4.3, 4.4 4.5, 4.6, 4.7 4.8, 4.9 4.10, 5.1, 5.2 5.3, 5.4, 5.5 5.6, 5.7, 7.2 7.3, 7.4, 7.5 7.6, 7.7, 7.8 8.1, 8.2, 8.3 8.4, 8.6
1.1, 1.2, 1.3 1.4, 2.2, 2.3 2.4, 3.2, 4.1 4.2, 4.3, 4.4 4.5, 4.6 4.7, 5.2, 5.3 5.4, 6.1 6.2, 6.3, 7.2 7.3, 7.4, 7.5 7.6, 7.7, 7.8 8.2, 8.3 8.4, 8.6, 9.1 9.2, 9.3 9.4, 9.5, 9.6 9.7, 9.8
1.1, 1.2, 1.3 1.4, 2.2 2.3, 2.4 3.2, 3.4 4.2, 4.3 4.4, 4.5, 4.6 4.7, 5.1, 5.2 7.1, 7.2, 7.3 7.4, 7.5 7.6, 7.7 7.8, 8.2 8.3, 8.5, 8.6 10.2, 10.3 10.4, 10.5 10.6, 10.7
xv
Retained Features Flexible Organization
Most of the material is modular in nature to allow for various course configurations and emphasis (theory, applications and techniques, and concepts).
Optional Use of Computer Software
The availability of computer packages such as Mathcad®, Mathematica®, MATLAB®, and Maple™ provides an opportunity for the student to conduct numerical experiments and tackle realistic applications that give additional insights into the subject. Consequently, we have inserted several exercises and projects throughout the text that are designed for the student to employ available software in phase plane analysis, eigenvalue computations, and the numerical solutions of various equations.
Review of Integration
In response to the perception that many of today’s students’ skills in integration have gotten rusty by the time they enter a differential equations course, we have included an appendix offering a quick review of the basic methods for integrating functions analytically.
Choice of Applications
Because of syllabus constraints, some courses will have little or no time for sections (such as those in Chapters 3 and 5) that exclusively deal with applications. Therefore, we have made the sections in these chapters independent of each other. To afford the instructor even greater flexibility, we have built in a variety of applications in the exercises for the theoretical sections. In addition, we have included many projects that deal with such applications.
Projects
At the end of each chapter are projects relating to the material covered in the chapter. Several of them have been contributed by distinguished researchers. A project might involve a more challenging application, delve deeper into the theory, or introduce more advanced topics in differential equations. Although these projects can be tackled by an individual student, classroom testing has shown that working in groups lends a valuable added dimension to the learning experience. Indeed, it simulates the interactions that take place in the professional arena.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
xvi
Preface
Technical Writing Exercises
Communication skills are, of course, an essential aspect of professional activities. Yet few texts provide opportunities for the reader to develop these skills. Thus, we have added at the end of most chapters a set of clearly marked technical writing exercises that invite students to make documented responses to questions dealing with the concepts in the chapter. In so doing, students are encouraged to make comparisons between various methods and to present examples that support their analysis.
Historical Footnotes
Throughout the text historical footnotes are set off by colored daggers (†). These footnotes typically provide the name of the person who developed the technique, the date, and the context of the original research.
Motivating Problem
Most chapters begin with a discussion of a problem from physics or engineering that motivates the topic presented and illustrates the methodology.
Chapter Summary and Review Problems
All of the main chapters contain a set of review problems along with a synopsis of the major concepts presented.
Computer Graphics
Most of the figures in the text were generated via computer. Computer graphics not only ensure greater accuracy in the illustrations, they demonstrate the use of numerical experimentation in studying the behavior of solutions.
Proofs
While more pragmatic students may balk at proofs, most instructors regard these justifications as an essential ingredient in a textbook on differential equations. As with any text at this level, certain details in the proofs must be omitted. When this occurs, we flag the instance and refer readers either to a problem in the exercises or to another text. For convenience, the end of a proof is marked by the symbol ◆.
Linear Theory
We have developed the theory of linear differential equations in a gradual manner. In Chapter 4 (Linear Second-Order Equations) we first present the basic theory for linear second-order equations with constant coefficients and discuss various techniques for solving these equations. Section 4.7 surveys the extension of these ideas to variable-coefficient second-order equations. A more general and detailed discussion of linear differential equations is given in Chapter 6 (Theory of Higher-Order Linear Differential Equations). For a beginning course emphasizing methods of solution, the presentation in Chapter 4 may be sufficient and Chapter 6 can be skipped.
Numerical Algorithms
Several numerical methods for approximating solutions to differential equations are presented along with program outlines that are easily implemented on a computer. These methods are introduced early in the text so that teachers and/or students can use them for numerical experimentation and for tackling complicated applications. Where appropriate we direct the student to software packages or web-based applets for implementation of these algorithms.
Exercises
An abundance of exercises is graduated in difficulty from straightforward, routine problems to more challenging ones. Deeper theoretical questions, along with applications, usually occur toward the end of the exercise sets. Throughout the text we have included problems and projects that require the use of a calculator or computer. These exercises are denoted by the symbol .
Laplace Transforms
We provide a detailed chapter on Laplace transforms (Chapter 7), since this is a recurring topic for engineers. Our treatment emphasizes discontinuous forcing terms and includes a section on the Dirac delta function.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Preface
xvii
Power Series
Power series solutions is a topic that occasionally causes student anxiety. Possibly, this is due to inadequate preparation in calculus where the more subtle subject of convergent series is (frequently) covered at a rapid pace. Our solution has been to provide a graceful initiation into the theory of power series solutions with an exposition of Taylor polynomial approximants to solutions, deferring the sophisticated issues of convergence to later sections. Unlike many texts, ours provides an extensive section on the method of Frobenius (Section 8.6) as well as a section on finding a second linearly independent solution. While we have given considerable space to power series solutions, we have also taken great care to accommodate the instructor who only wishes to give a basic introduction to the topic. An introduction to solving differential equations using power series and the method of Frobenius can be accomplished by covering the materials in Sections 8.1, 8.2, 8.3, and 8.6.
Partial Differential Equations
An introduction to this subject is provided in Chapter 10, which covers the method of separation of variables, Fourier series, the heat equation, the wave equation, and Laplace’s equation. Examples in two and three dimensions are included.
Phase Plane
Chapter 5 describes how qualitative information for two-dimensional systems can be gleaned about the solutions to intractable autonomous equations by observing their direction fields and critical points on the phase plane. With the assistance of suitable software, this approach provides a refreshing, almost recreational alternative to the traditional analytic methodology as we discuss applications in nonlinear mechanics, ecosystems, and epidemiology.
Vibrations
Motivation for Chapter 4 on linear differential equations is provided in an introductory section describing the mass–spring oscillator. We exploit the reader’s familiarity with common vibratory motions to anticipate the exposition of the theoretical and analytical aspects of linear equations. Not only does this model provide an anchor for the discourse on constant-coefficient equations, but a liberal interpretation of its features enables us to predict the qualitative behavior of variable-coefficient and nonlinear equations as well.
Review of Algebraic Equations and Matrices
The chapter on matrix methods for linear systems (Chapter 9) begins with two (optional) introductory sections reviewing the theory of linear algebraic systems and matrix algebra.
Technology and Supplements MyMathLab® Online Course (access code required) Built around Pearson’s best-selling content, MyMathLab is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. MyMathLab can be successfully implemented in any classroom environment—lab-based, hybrid, fully online, or traditional. MyMathLab’s online homework offers students immediate feedback and tutorial assistance that motivates them to do more, which means they retain more knowledge and improve their test scores. Used by more than 37 million students worldwide, MyMathLab delivers consistent, measurable gains in student learning outcomes, retention, and subsequent course success. Visit www.mymathlab.com/results to learn more.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
xviii
Preface
Learning and Teaching Tools
• Exercises with immediate feedback—Nearly 750 assignable exercises are based on the textbook exercises and regenerate algorithmically to give students unlimited opportunity for practice and mastery. MyMathLab provides helpful feedback when students enter incorrect answers and includes optional learning aids including Help Me Solve This, View an Example, videos, and an eText.
• Learning Catalyticstm is a student response tool that uses students’ smartphones, tablets, or laptops to engage them in more interactive tasks and thinking. Learning Catalytics fosters student engagement and peer-to-peer learning with real-time analytics.
• Instructional videos are available as learning aids within exercises and for self-study within the Multimedia Library. The Guide to Video-Based Assignments makes it easy to assign videos for homework by showing which MyMathLab exercises correspond to each video. • The complete eText is available to students through their MyMathLab courses for the lifetime of the edition, giving students unlimited access to the eText within any course using that edition of the textbook.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Preface
xix
• Accessibility and achievement go hand in hand. MyMathLab is compatible with the JAWS screen reader, and enables multiple-choice and free-response problem types to be read and interacted with via keyboard controls and math notation input. MyMathLab also works with screen enlargers, including ZoomText, MAGic, and SuperNova. And, all MyMathLab videos have closed-captioning. More information is available at mymathlab.com/accessibility. • A comprehensive gradebook with enhanced reporting functionality allows you to efficiently manage your course. The Reporting Dashboard provides insight to view, analyze, and report learning outcomes. Student performance data is presented at the class, section, and program levels in an accessible, visual manner so you’ll have the information you need to keep your students on track.
Item Analysis tracks class-wide understanding of particular exercises so you can refine your class lectures or adjust the course/department syllabus. Just-in-time teaching has never been easier! MyMathLab comes from an experienced partner with educational expertise and an eye on the future. Whether you are just getting started with MyMathLab, or have a question along the way, we’re here to help you learn about our technologies and how to incorporate them into your course. To learn more about how MyMathLab helps students succeed, visit mymathlab.com or contact your Pearson rep. MathXL® is the homework and assessment engine that runs MyMathLab. (MyMathLab is MathXL plus a learning management system.) MathXL access codes are also an option. Student’s Solutions Manual
ISBN-10: 0321977211 | ISBN-13: 9780321977212 Contains complete worked-out solutions to odd-numbered exercises, providing students with an excellent study tool. Available in print and for download within MyMathLab.
Instructor’s Solutions Manual (downloadable)
ISBN-10: 0134659244 | ISBN-13: 9780134659244 Contains answers to all even-numbered exercises, detailed solutions to the even-numbered problems in several of the main chapters, and additional projects. Available for download in the Pearson Instructor Resource Center www.pearsonhighered.com/irc as well as within MyMathLab.
MATLAB, Maple, and Mathematica Manuals (downloadable)
By Thomas W. Polaski (Winthrop University), Bruno Welfert (Arizona State University), and Maurino Bautista (Rochester Institute of Technology), respectively. These manuals contain a collection of instructor tips, worksheets, and projects to aid instructors in integrating computer algebra systems into their courses. Complete manuals are available for instructor download within MyMathLab. Student worksheets and projects available for download within MyMathLab.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
xx
Preface
Acknowledgments The staging of this text involved considerable behind-the-scenes activity. We thank, first of all, Philip Crooke, Glenn Webb (Vanderbilt University), and Joanna Wares (University of Richmond) who have continued to provide novel biomathematical projects, as well as Greg Huffman (Vanderbilt University) for his project on economics. We also want to thank Frank Glaser (California State Polytechnic University, Pomona) for many of the historical footnotes. We are indebted to Herbert E. Rauch (Lockheed Research Laboratory) for help with Section 3.3 on heating and cooling of buildings, Project B in Chapter 3 on aquaculture, and other application problems. Our appreciation goes to Richard H. Elderkin (Pomona College), Jerrold Marsden (California Institute of Technology), T. G. Proctor (Clemson University), and Philip W. Schaefer (University of Tennessee), who read and reread the manuscript for the original text, making numerous suggestions that greatly improved our work. Thanks also to the following reviewers of this and previous editions: *Miklos Bona, University of Florida Amin Boumenir, University of West Georgia Mark Brittenham, University of Nebraska *Jennifer Bryan, Oklahoma Christian University Weiming Cao, University of Texas at San Antonio Richard Carmichael, Wake Forest University *Kwai-lee Chui, University of Florida Karen Clark, The College of New Jersey *Shaozhong Deng, University of North Carolina Charlotte Patrick Dowling, Miami University *Chris Fuller, Cumberland University Sanford Geraci, Northern Virginia David S. Gilliam, Texas Tech University at Lubbock Scott Gordon, State University of West Georgia *Irvin Hentzel, Iowa State University *Mimi Rasky, Southwestern College Richard Rubin, Florida International University John Sylvester, University of Washington at Seattle Steven Taliaferro, Texas A&M University at College Station Michael M. Tom, Louisiana State University Shu-Yi Tu, University of Michigan, Flint Klaus Volpert, Villanova University *Glenn F. Webb, Vanderbilt University E. B. Saff, A. D. Snider
*Denotes reviewers of the current edition
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
CHAPTER
4
Linear Second-Order Equations
4.1 Introduction: The Mass–Spring Oscillator A damped mass–spring oscillator consists of a mass m attached to a spring fixed at one end, as shown in Figure 4.1. Devise a differential equation that governs the motion of this oscillator, taking into account the forces acting on it due to the spring elasticity, damping friction, and possible external influences.
m
k
b Equilibrium point
y
Figure 4.1 Damped mass–spring oscillator
Newton’s second law—force equals mass times acceleration 1F = ma2—is without a doubt the most commonly encountered differential equation in practice. It is an ordinary differential equation of the second order since acceleration is the second derivative of position 1y2 with respect to time 1 a = d 2y>dt 2 2 . When the second law is applied to a mass–spring oscillator, the resulting motions are common experiences of everyday life, and we can exploit our familiarity with these vibrations to obtain a qualitative description of the solutions of more general second-order equations. We begin by referring to Figure 4.1, which depicts the mass–spring oscillator. When the spring is unstretched and the inertial mass m is still, the system is at equilibrium; we measure the coordinate y of the mass by its displacement from the equilibrium position. When the mass m is displaced from equilibrium, the spring is stretched or compressed and it exerts a force that resists the displacement. For most springs this force is directly proportional to the displacement y and is thus given by (1)
Fspring = -ky ,
where the positive constant k is known as the stiffness and the negative sign reflects the opposing nature of the force. Hooke’s law, as equation (1) is commonly known, is only valid for sufficiently small displacements; if the spring is compressed so strongly that the coils press against each other, the opposing force obviously becomes much stronger. 152
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.1
y
153
Introduction: The Mass–Spring Oscillator
y
y
t
(a)
t
(b)
t
(c)
Figure 4.2 (a) Sinusoidal oscillation, (b) stiffer spring, and (c) heavier mass
Practically all mechanical systems also experience friction, and for vibrational motion this force is usually modeled accurately by a term proportional to velocity: (2)
Ffriction = -b
dy = -by′ , dt
where b 1 Ú 02 is the damping coefficient and the negative sign has the same significance as in equation (1). The other forces on the oscillator are usually regarded as external to the system. Although they may be gravitational, electrical, or magnetic, commonly the most important external forces are transmitted to the mass by shaking the supports holding the system. For the moment we lump all the external forces into a single, known function Fext 1t2. Newton’s law then provides the differential equation for the mass–spring oscillator: my″ = -ky - by′ + Fext 1t2
or (3)
my″ + by′ + ky = Fext 1t2 .
What do mass–spring motions look like? From our everyday experience with weak auto suspensions, musical gongs, and bowls of jelly, we expect that when there is no friction 1b = 02 or external force, the (idealized) motions would be perpetual vibrations like the ones depicted in Figure 4.2. These vibrations resemble sinusoidal functions, with their amplitude depending on the initial displacement and velocity. The frequency of the oscillations increases for stiffer springs but decreases for heavier masses. In Section 4.3 we will show how to find these solutions. Example 1 demonstrates a quick calculation that confirms our intuitive predictions. Example 1 Solution
Verify that if b = 0 and Fext 1t2 = 0, equation (3) has a solution of the form y1t2 = cos vt and that the angular frequency v increases with k and decreases with m. Under the conditions stated, equation (3) simplifies to (4)
my″ + ky = 0 .
The second derivative of y1t2 is -v2 cos vt, and if we insert it into (4), we find my″ + ky = -mv2 cos vt + k cos vt , which is indeed zero if v = 2k>m. This v increases with k and decreases with m, as predicted. ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
154
Chapter 4
Linear Second-Order Equations
y
y
t
t
(a)
(b)
Figure 4.3 (a) Low damping and (b) high damping
When damping is present, the oscillations die out, and the motions resemble Figure 4.3. In Figure 4.3(a) the graph displays a damped oscillation; damping has slowed the frequency, and the amplitude appears to diminish exponentially with time. In Figure 4.3(b) the damping is so dominant that it has prevented the system from oscillating at all. Devices that are supposed to vibrate, like tuning forks or crystal oscillators, behave like Figure 4.3(a), and the damping effect is usually regarded as an undesirable loss mechanism. Good automotive suspension systems, on the other hand, behave like Figure 4.3(b); they exploit damping to suppress the oscillations. The procedures for solving (unforced) mass–spring systems with damping are also described in Section 4.3, but as Examples 2 and 3 below show, the calculations are more complex. Example 2 has a relatively low damping coefficient 1b = 62 and illustrates the solutions for the “underdamped” case in Figure 4.3(a). In Example 3 the damping is more severe 1b = 102, and the solution is “overdamped” as in Figure 4.3(b). Example 2 Solution
Verify that the exponentially damped sinusoid given by y1t2 = e-3t cos 4t is a solution to equation (3) if Fext = 0, m = 1, k = 25, and b = 6. The derivatives of y are y′1t2 = -3e-3t cos 4t - 4e-3t sin 4t , y″1t2 = 9e-3t cos 4t + 12e-3t sin 4t + 12e-3t sin 4t - 16e-3t cos 4t = -7e-3t cos 4t + 24e-3t sin 4t , and insertion into (3) gives
my″ + by′ + ky = 112y″ + 6y′ + 25y = -7e-3t cos 4t + 24e-3t sin 4t + 61 -3e-3t cos 4t - 4e-3t sin t2 + 25e-3t cos 4t = 0. ◆
Example 3 Solution
Verify that the simple exponential function y1t2 = e-5t is a solution to equation (3) if Fext = 0, m = 1, k = 25, and b = 10. The derivatives of y are y′1t2 = -5e-5t, y″1t2 = 25e-5t and insertion into (3) produces
my″ + by′ + ky = 112y″ + 10y′ + 25y = 25e-5t + 101 -5e-5t 2 + 25e-5t = 0 . ◆
Now if a mass–spring system is driven by an external force that is sinusoidal at the angular frequency v, our experiences indicate that although the initial response of the system may be
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.1
Introduction: The Mass–Spring Oscillator
Fext
155
y
t
(a)
t
(b)
Figure 4.4 (a) Driving force and (b) response
somewhat erratic, eventually it will respond in “sync” with the driver and oscillate at the same frequency, as illustrated in Figure 4.4. Common examples of systems vibrating in synchronization with their drivers are sound system speakers, cyclists bicycling over railroad tracks, electronic amplifier circuits, and ocean tides (driven by the periodic pull of the moon). However, there is more to the story than is revealed above. Systems can be enormously sensitive to the particular frequency v at which they are driven. Thus, accurately tuned musical notes can shatter fine crystal, wind-induced vibrations at the right (wrong?) frequency can bring down a bridge, and a dripping faucet can cause inordinate headaches. These “resonance” responses (for which the responses have maximum amplitudes) may be quite destructive, and structural engineers have to be very careful to ensure that their products will not resonate with any of the vibrations likely to occur in the operating environment. Radio engineers, on the other hand, do want their receivers to resonate selectively to the desired broadcasting channel. The calculation of these forced solutions is the subject of Sections 4.4 and 4.5. The next example illustrates some of the features of synchronous response and resonance. Example 4 Solution
Find the synchronous response of the mass–spring oscillator with m = 1, b = 1, k = 25 to the force sin Ωt. We seek solutions of the differential equation (5)
y″ + y′ + 25y = sin Ωt
that are sinusoids in sync with sin Ωt; so let’s try the form y1t2 = A cos Ωt + B sin Ωt. Since y′ = - ΩA sin Ωt + ΩB cos Ωt , y″ = - Ω 2A cos Ωt - Ω 2B sin Ωt , we can simply insert these forms into equation (5), collect terms, and match coefficients to obtain a solution: sin Ωt = y″ + y′ + 25y = - Ω 2A cos Ωt - Ω 2B sin Ωt + 3 - ΩA sin Ωt + ΩB cos Ωt4 +253A cos Ωt + B sin Ωt4 = 3 - Ω 2B - ΩA + 25B4 sin Ωt + 3 - Ω 2A + ΩB + 25A4 cos Ωt , so
- ΩA + 1 - Ω 2 + 252B = 1 1 - Ω 2 + 252A + ΩB = 0 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
156
Chapter 4
Linear Second-Order Equations
0.15 B
0.1 0.05
5
0
10
15
20
V
–0.05 –0.1 A
–0.15 –0.2
Figure 4.5 Vibration amplitudes around resonance
We find A =
-Ω , 2 Ω + 1Ω 2 - 252 2
B =
- Ω 2 + 25 . Ω 2 + 1Ω 2 - 252 2
Figure 4.5 displays A and B as functions of the driving frequency Ω. A resonance clearly occurs around Ω ≈ 5. ◆ In most of this chapter, we are going to restrict our attention to differential equations of the form (6)
ay″ + by′ + cy = f1t2 ,
where y1t2 [or y1x2, or x1t2, etc.] is the unknown function that we seek; a, b, and c are constants; and f1t2 [or f1x2] is a known function. The proper nomenclature for (6) is the linear, second-order ordinary differential equation with constant coefficients. In Sections 4.7 and 4.8, we will generalize our focus to equations with nonconstant coefficients, as well as to nonlinear equations. However, (6) is an excellent starting point because we are able to obtain explicit solutions and observe, in concrete form, the theoretical properties that are predicted for more general equations. For motivation of the mathematical procedures and theory for solving (6), we will consistently compare it with the mass–spring paradigm: 3inertia4 * y″ + 3damping4 * y′ + 3stiffness4 * y = Fext .
4.1
EXERCISES
1. Verify that for b = 0 and Fext 1t2 = 0, equation (3) has a solution of the form y1t2 = cos vt, where v = 2k>m . 2. If Fext 1t2 = 0, equation (3) becomes my″ + by′ + ky = 0 . For this equation, verify the following:
(a) If y1t2 is a solution, so is cy1t2, for any constant c. (b) If y1 1t2 and y2 1t2 are solutions, so is their sum y1 1t2 + y2 1t2. 3. Show that if Fext 1t2 = 0, m = 1, k = 9, and b = 6, then equation (3) has the “critically damped” solutions y1 1t2 = e-3t and y2 1t2 = te-3t. What is the limit of these solutions as t S ∞ ?
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.2
Homogeneous Linear Equations: The General Solution
4. Verify that y = sin 3t + 2 cos 3t is a solution to the initial value problem 2y″ + 18y = 0 ;
y102 = 2 ,
157
(a) To investigate this, find the synchronous solution A cos Ωt + B sin Ωt to the generic forced oscillator equation
y′102 = 3 .
(7)
Find the maximum of ƒy1t2ƒ for - ∞ 6 t 6 ∞ . 5. Verify that the exponentially damped sinusoid y1t2 = e-3t sin 1 23 t2 is a solution to equation (3) if Fext 1t2 = 0, m = 1, b = 6, and k = 12. What is the limit of this solution as t S ∞ ? 6. An external force F1t2 = 2 cos 2t is applied to a mass– spring system with m = 1, b = 0, and k = 4, which is initially at rest; i.e., y102 = 0, y′102 = 0. Verify that y1t2 = 12 t sin 2t gives the motion of this spring. What will eventually (as t increases) happen to the spring?
my″ + by′ + ky = cos Ωt .
(b) Sketch graphs of the coefficients A and B, as functions of Ω, for m = 1, b = 0.1, and k = 25. (c) Now set b = 0 in your formulas for A and B and resketch the graphs in part (b), with m = 1, and k = 25. What happens at Ω = 5? Notice that the amplitudes of the synchronous solutions grow without bound as Ω approaches 5. (d) Show directly, by substituting the form A cos Ωt + B sin Ωt into equation (7), that when b = 0 there are no synchronous solutions if Ω = 2k>m. (e) Verify that 12mΩ2 -1t sin Ωt solves equation (7) when b = 0 and Ω = 2k>m. Notice that this nonsynchronous solution grows in time, without bound.
In Problems 7–9, find a synchronous solution of the form A cos Ωt + B sin Ωt to the given forced oscillator equation using the method of Example 4 to solve for A and B. 7. y″ + 2y′ + 4y = 5 sin 3t, Ω = 3 8. y″ + 2y′ + 5y = -50 sin 5t, Ω = 5 9. y″ + 2y′ + 4y = 6 cos 2t + 8 sin 2t, Ω = 2
Clearly one cannot neglect damping in analyzing an oscillator forced at resonance, because otherwise the solutions, as shown in part (e), are nonphysical. This behavior will be studied later in this chapter.
10. Undamped oscillators that are driven at resonance have unusual (and nonphysical) solutions.
4.2 Homogeneous Linear Equations: The General Solution We begin our study of the linear second-order constant-coefficient differential equation (1)
ay″ + by′ + cy = f1t2
1a ≠ 02
with the special case where the function f1t2 is zero: (2)
ay″ + by′ + cy = 0 .
This case arises when we consider mass–spring oscillators vibrating freely—that is, without external forces applied. Equation (2) is called the homogeneous form of equation (1); f1t2 is the “nonhomogeneity” in (1). (This nomenclature is not related to the way we used the term for first-order equations in Section 2.6.) A look at equation (2) tells us that a solution of (2) must have the property that its second derivative is expressible as a linear combination of its first and zeroth derivatives.† This suggests that we try to find a solution of the form y = ert, since derivatives of ert are just constants times ert. If we substitute y = ert into (2), we obtain ar 2 ert + brert + cert = 0 , ert 1ar 2 + br + c2 = 0 .
†
The zeroth derivative of a function is the function itself.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
158
Chapter 4
Linear Second-Order Equations
Because ert is never zero, we can divide by it to obtain (3)
ar 2 + br + c = 0 .
Consequently, y = ert is a solution to (2) if and only if r satisfies equation (3). Equation (3) is called the auxiliary equation (also known as the characteristic equation) associated with the homogeneous equation (2). Now the auxiliary equation is just a quadratic, and its roots are r1 =
-b + 2b2 - 4ac 2a
and
r2 =
-b - 2b2 - 4ac . 2a
When the discriminant, b2 - 4ac, is positive, the roots r1 and r2 are real and distinct. If b2 - 4ac = 0, the roots are real and equal. And when b2 - 4ac 6 0, the roots are complex conjugate numbers. We consider the first two cases in this section; the complex case is deferred to Section 4.3. Example 1
Find a pair of solutions to (4)
Solution
y″ + 5y′ - 6y = 0 .
The auxiliary equation associated with (4) is
r 2 + 5r - 6 = 1r - 121r + 62 = 0 ,
which has the roots r1 = 1, r2 = -6. Thus, et and e-6t are solutions. ◆ Notice that the identically zero function, y1t2 K 0, is always a solution to (2). Furthermore, when we have a pair of solutions y1 1t2 and y2 1t2 to this equation, as in Example 1, we can construct an infinite number of other solutions by forming linear combinations: (5)
y1t2 = c1 y1 1t2 + c2 y2 1t2
for any choice of the constants c1 and c2. The fact that (5) is a solution to (2) can be seen by direct substitution and rearrangement: ay″ + by′ + cy = = = =
a1c1y1 + c2y2 2″ + b1c1y1 + c2y2 2′ + c1c1y1 + c2y2 2 a1c1y1> + c2y2> 2 + b1c1y1= + c2y2= 2 + c1c1y1 + c2y2 2 c1 1ay1> + by1= + cy1 2 + c2 1ay2> + by2= + cy2 2 0+0.
The two “degrees of freedom” c1 and c2 in the combination (5) suggest that solutions to the differential equation (2) can be found meeting additional conditions, such as the initial conditions for the first-order equations in Chapter 1. But the presence of c1 and c2 leads one to anticipate that two such conditions, rather than just one, can be imposed. This is consistent with the mass–spring interpretation of equation (2), since predicting the motion of a mechanical system requires knowledge not only of the forces but also of the initial position y102 and velocity y′102 of the mass. A typical initial value problem for these second-order equations is given in the following example.
Example 2
Solve the initial value problem (6)
y″ + 2y′ - y = 0 ;
y102 = 0 ,
y′102 = -1 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.2
Solution
Homogeneous Linear Equations: The General Solution
159
We will first find a pair of solutions as in the previous example. Then we will adjust the constants c1 and c2 in (5) to obtain a solution that matches the initial conditions on y102 and y′102. The auxiliary equation is r 2 + 2r - 1 = 0 . Using the quadratic formula, we find that the roots of this equation are r1 = -1 + 22
and
r2 = -1 - 22 .
Consequently, the given differential equation has solutions of the form (7)
y1t2 = c1e1-1 + 222t + c2e1-1 - 222t .
To find the specific solution that satisfies the initial conditions given in (6), we first differentiate y as given in (7), then plug y and y′ into the initial conditions of (6). This gives y102 = c1e0 + c2e0 ,
y′102 = 1 -1 + 222c1e0 + 1 -1 - 222c2e0 , or 0 = c1 + c2 ,
-1 = 1 -1 + 222c1 + 1 -1 - 222c2 . Solving this system yields c1 = - 22>4 and c2 = 22>4. Thus, y1t2 = -
22 1-1 + 222t 22 1-1 - 222t e + e 4 4
is the desired solution. ◆ To gain more insight into the significance of the two-parameter solution form (5), we need to look at some of the properties of the second-order equation (2). First of all, there is an existence-and-uniqueness theorem for solutions to (2); it is somewhat like the corresponding Theorem 1 in Section 1.2 for first-order equations but updated to reflect the fact that two initial conditions are appropriate for second-order equations. As motivation for the theorem, suppose the differential equation (2) were really easy, with b = 0 and c = 0. Then y″ = 0 would merely say that the graph of y1t2 is simply a straight line, so it is uniquely determined by specifying a point on the line, (8)
y1t0 2 = Y0 ,
and the slope of the line, (9)
y′1t0 2 = Y1 .
Theorem 1 states that conditions (8) and (9) suffice to determine the solution uniquely for the more general equation (2).
Existence and Uniqueness: Homogeneous Case Theorem 1. For any real numbers a 1 ≠02, b, c, t0, Y0, and Y1, there exists a unique solution to the initial value problem (10) ay″ + by′ + cy = 0 ;
y1t0 2 = Y0 ,
The solution is valid for all t in 1 - ∞, + ∞ 2.
y′1t0 2 = Y1 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
160
Chapter 4
Linear Second-Order Equations
Note in particular that if a solution y1t2 and its derivative vanish simultaneously at a point t0 1i.e., Y0 = Y1 = 02, then y1t2 must be the identically zero solution. In this section and the next, we will construct explicit solutions to (10), so the question of existence of a solution is not really an issue. It is extremely valuable to know, however, that the solution is unique. The proof of uniqueness is rather different from anything else in this chapter, so we defer it to Chapter 13.† Now we want to use this theorem to show that, given two solutions y1 1t2 and y2 1t2 to equation (2), we can always find values of c1 and c2 so that c1y1 1t2 + c2y2 1t2 meets specified initial conditions in (10) and therefore is the (unique) solution to the initial value problem. But we need to be a little more precise; if, for example, y2 1t2 is simply the identically zero solution, then c1y1 1t2 + c2y2 1t2 = c1y1 1t2 actually has only one constant and cannot be expected to satisfy two conditions. Furthermore, if y2 1t2 is simply a constant multiple of y1 1t2—say, y2 1t2 = ky1 1t2—then again c1y1 1t2 + c2y2 1t2 = 1c1 + kc2 2y1 1t2 = Cy1 1t2 actually has only one constant. The condition we need is linear independence.
Linear Independence of Two Functions Definition 1. A pair of functions y1 1t2 and y2 1t2 is said to be linearly independent on the interval I if and only if neither of them is a constant multiple of the other on all of I.†† We say that y1 and y2 are linearly dependent on I if one of them is a constant multiple of the other on all of I.
Representation of Solutions to Initial Value Problem Theorem 2. If y1 1t2 and y2 1t2 are any two solutions to the differential equation (2) that are linearly independent on 1 - ∞, ∞ 2, then unique constants c1 and c2 can always be found so that c1y1 1t2 + c2y2 1t2 satisfies the initial value problem (10) on 1 - ∞, ∞ 2.
The proof of Theorem 2 will be easy once we establish the following technical lemma.
A Condition for Linear Dependence of Solutions Lemma 1. For any real numbers a 1 ≠02, b, and c, if y1 1t2 and y2 1t2 are any two solutions to the differential equation (2) on 1 - ∞, ∞ 2 and if the equality (11)
y1 1t2y2= 1t2 - y1= 1t2y2 1t2 = 0
holds at any point t, then y1 and y2 are linearly dependent on 1 - ∞, ∞ 2. (The expression on the left-hand side of (11) is called the Wronskian of y1 and y2 at the point t; see Problem 34 on page 164.)
†
All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed. †† This definition will be generalized to three or more functions in Problem 35 and Chapter 6.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.2
Homogeneous Linear Equations: The General Solution
161
Proof of Lemma 1. Case 1. If y1 1t2 ≠ 0, then let k equal y2 1t2 >y1 1t2 and consider the solution to (2) given by y1t2 = ky1 1t2. It satisfies the same “initial conditions” at t = t as does y2 1t2: y1t2 =
y2 1t2 y1 1t2
y1 1t2 = y2 1t2 ;
y′1t2 =
y2 1t2
y1 1t2
y1= 1t2 = y2= 1t2 ,
where the last equality follows from (11). By uniqueness, y2 1t2 must be the same function as ky1 1t2 on I. Case 2. If y1 1t2 = 0 but y1= 1t2 ≠ 0, then (11) implies y2 1t2 = 0. Let k = y2= 1t2 >y1= 1t2. Then the solution to (2) given by y1t2 = ky1 1t2 (again) satisfies the same “initial conditions” at t = t as does y2 1t2: y1t2 =
y2= 1t2 y 1t2 = 0 = y2 1t2 ; y1= 1t2 1
y′1t2 =
y2= 1t2
y1= 1t2
y1= 1t2 = y2= 1t2 .
By uniqueness, then, y2 1t2 = ky1 1t2 on I. Case 3. If y1 1t2 = y1= 1t2 = 0, then y1 1t2 is a solution to the differential equation (2) satisfying the initial conditions y1 1t2 = y1= 1t2 = 0; but y1t2 K 0 is the unique solution to this initial value problem. Thus, y1 1t2 K 0 3and is a constant multiple of y2 1t24. ◆ Proof of Theorem 2. We already know that y1t2 = c1y1 1t2 + c2y2 1t2 is a solution to (2); we must show that c1 and c2 can be chosen so that y1t0 2 = c1y1 1t0 2 + c2y2 1t0 2 = Y0
and
y′1t0 2 = c1y1= 1t0 2 + c2y2= 1t0 2 = Y1 .
But simple algebra shows these equations have the solution† c1 =
Y0y2= 1t0 2 - Y1y2 1t0 2 y1 1t0 2y2= 1t0 2 - y1= 1t0 2y2 1t0 2
and c2 =
Y1y1 1t0 2 - Y0y1= 1t0 2 y1 1t0 2y2= 1t0 2 - y1= 1t0 2y2 1t0 2
as long as the denominator is nonzero, and the technical lemma assures us that this condition is met. ◆ Now we can honestly say that if y1 and y2 are linearly independent solutions to (2) on 1 - ∞, + ∞ 2, then (5) is a general solution, since any solution yg 1t2 of (2) can be expressed in this form; simply pick c1 and c2 so that c1y1 + c2y2 matches the value and the derivative of yg at any point. By uniqueness, c1y1 + c2y2 and yg have to be the same function. See Figure 4.6 on page 162. How do we find a general solution for the differential equation (2)? We already know the answer if the roots of the auxiliary equation (3) are real and distinct because clearly y1 1t2 = er1t is not a constant multiple of y2 1t2 = er2t if r1 ≠ r2.
Distinct Real Roots
If the auxiliary equation (3) has distinct real roots r1 and r2, then both y1 1t2 = er1t and y2 1t2 = er2t are solutions to (2) and y1t2 = c1er1t + c2er2t is a general solution.
To solve for c1, for example, multiply the first equation by y2= 1t0 2 and the second by y2 1t0 2 and subtract.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
162
Chapter 4
Linear Second-Order Equations
y
(Can’t both be solutions)
y(t0)
Slope y9(t0) t
t0 Figure 4.6 y1t0 2, y′1t0 2 determine a unique solution.
When the roots of the auxiliary equation are equal, we only get one nontrivial solution, y1 = ert. To satisfy two initial conditions, y1t0 2 and y′1t0 2, then we will need a second, linearly independent solution. The following rule is the key to finding a second solution.
Repeated Root
If the auxiliary equation (3) has a repeated root r, then both y1 1t2 = ert and y2 1t2 = tert are solutions to (2), and y1t2 = c1ert + c2tert is a general solution.
We illustrate this result before giving its proof. Example 3
Find a solution to the initial value problem (12)
Solution
y″ + 4y′ + 4y = 0 ;
y102 = 1 ,
y′102 = 3 .
The auxiliary equation for (12) is
r 2 + 4r + 4 = 1r + 22 2 = 0 .
Because r = -2 is a double root, the rule says that (12) has solutions y1 = e-2t and y2 = te-2t. Let’s confirm that y2 1t2 is a solution: y2 1t2 = te-2t , y′2 1t2 = e-2t - 2te-2t , y″2 1t2 = -2e-2t - 2e-2t + 4te-2t = -4e-2t + 4te-2t , y″2 + 4y′2 + 4y2 = -4e-2t + 4te-2t + 41e-2t - 2te-2t 2 + 4te-2t = 0 .
Further observe that e-2t and te-2t are linearly independent since neither is a constant multiple of the other on 1 - ∞, ∞ 2. Finally, we insert the general solution y1t2 = c1e-2t + c2te-2t into the initial conditions, y102 = c1e0 + c2 102e0 = 1 , y′102 = -2c1e0 + c2e0 - 2c2 102e0 = 3 ,
and solve to find c1 = 1, c2 = 5. Thus y = e-2t + 5te-2t is the desired solution. ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.2
Homogeneous Linear Equations: The General Solution
163
Why is it that y2 1t2 = tert is a solution to the differential equation (2) when r is a double root (and not otherwise)? In later chapters we will see a theoretical justification of this rule in very general circumstances; for present purposes, though, simply note what happens if we substitute y2 into the differential equation (2): y2 1t2 = tert ,
y2= 1t2 = ert + rtert ,
y″2 1t2 = rert + rert + r 2tert = 2rert + r 2tert ,
ay2> + by2= + cy2 = 32ar + b4ert + 3ar 2 + br + c4tert . Now if r is a root of the auxiliary equation (3), the expression in the second brackets is zero. However, if r is a double root, the expression in the first brackets is zero also: (13)
r =
-b { 102 -b { 2b2 - 4ac = ; 2a 2a
hence, 2ar + b = 0 for a double root. In such a case, then, y2 is a solution. The method we have described for solving homogeneous linear second-order equations with constant coefficients applies to any order (even first-order) homogeneous linear equations with constant coefficients. We give a detailed treatment of such higher-order equations in Chapter 6. For now, we will be content to illustrate the method by means of an example. We remark briefly that a homogeneous linear nth-order equation has a general solution of the form y1t2 = c1y1 1t2 + c2y2 1t2 + g + cnyn 1t2 ,
where the individual solutions yi 1t2 are “linearly independent.” By this we mean that no yi is expressible as a linear combination of the others; see Problem 35 on page 164.
Example 4
Find a general solution to (14)
Solution
y‴ + 3y″ - y′ - 3y = 0 .
If we try to find solutions of the form y = ert, then, as with second-order equations, we are led to finding roots of the auxiliary equation (15)
r 3 + 3r 2 - r - 3 = 0 .
We observe that r = 1 is a root of the above equation, and dividing the polynomial on the lefthand side of (15) by r - 1 leads to the factorization 1r - 121r 2 + 4r + 32 = 1r - 121r + 121r + 32 = 0 .
Hence, the roots of the auxiliary equation are 1, -1, and -3, and so three solutions of (14) are et, e-t, and e-3t. The linear independence of these three exponential functions is proved in Problem 36. A general solution to (14) is then (16)
y1t2 = c1et + c2e-t + c3e-3t . ◆
So far we have seen only exponential solutions to the linear second-order constant coefficient equation. You may wonder where the vibratory solutions that govern mass–spring oscillators are. In the next section, it will be seen that they arise when the solutions to the auxiliary equation are complex.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
164
Chapter 4
4.2
Linear Second-Order Equations
EXERCISES
In Problems 1–12, find a general solution to the given differential equation. 1. 2y″ + 7y′ - 4y = 0 2. y″ + 6y′ + 9y = 0 3. y″ + 5y′ + 6y = 0 4. y″ - y′ - 2y = 0 5. y″ + 8y′ + 16y = 0 6. y″ - 5y′ + 6y = 0 7. 6y″ + y′ - 2y = 0 8. z″ + z′ - z = 0 9. 4y″ - 4y′ + y = 0 10. y″ - y′ - 11y = 0 11. 4w″ + 20w′ + 25w = 0 12. 3y″ + 11y′ - 7y = 0 In Problems 13–20, solve the given initial value problem. 13. y″ + 2y′ - 8y = 0 ; y102 = 3 , y′102 = - 12 14. y″ + y′ = 0 ; y102 = 2 , y′102 = 1 15. y″ - 4y′ + 3y = 0 ; y102 = 1 , y′102 = 1>3 16. y″ - 4y′ - 5y = 0 ; y1 - 12 = 3 , y′1 - 12 = 9 17. y″ - 6y′ + 9y = 0 ; y102 = 2 , y′102 = 25>3 18. z″ - 2z′ - 2z = 0 ; z102 = 0 , z′102 = 3 19. y″ + 2y′ + y = 0 ; y102 = 1 , y′102 = -3 20. y″ - 4y′ + 4y = 0 ; y112 = 1 , y′112 = 1 21. First-Order Constant-Coefficient Equations. (a) Substituting y = ert, find the auxiliary equation for the first-order linear equation ay′ + by = 0 , where a and b are constants with a ≠ 0. (b) Use the result of part (a) to find the general solution. In Problems 22–25, use the method described in Problem 21 to find a general solution to the given equation. 22. 3y′ - 7y = 0 23. 5y′ + 4y = 0 24. 3z′ + 11z = 0 25. 6w′ - 13w = 0 26. Boundary Value Problems. When the values of a solution to a differential equation are specified at two different points, these conditions are called boundary conditions. (In contrast, initial conditions specify the values of a function and its derivative at the same point.) The purpose of this exercise is to show that for boundary value problems there is no existence–uniqueness theorem that is analogous to Theorem 1. Given that every solution to (17)
y″ + y = 0
is of the form y1t2 = c1 cos t + c2 sin t , where c1 and c2 are arbitrary constants, show that (a) There is a unique solution to (17) that satisfies the boundary conditions y102 = 2 and y1p>22 = 0.
(b) There is no solution to (17) that satisfies y102 = 2 and y1p2 = 0. (c) There are infinitely many solutions to (17) that satisfy y102 = 2 and y1p2 = -2. In Problems 27–32, use Definition 1 to determine whether the functions y1 and y2 are linearly dependent on the interval 10, 12. 27. y1 1t2 = cos t sin t , y2 1t2 = sin 2t 28. y1 1t2 = e3t , y2 1t2 = e-4t 29. y1 1t2 = te2t , y2 1t2 = e2t 30. y1 1t2 = t 2 cos 1ln t2 , y2 1t2 = t 2 sin 1ln t2 31. y1 1t2 = tan2 t - sec2 t , y2 1t2 K 3 32. y1 1t2 K 0 , y2 1t2 = et 33. Explain why two functions are linearly dependent on an interval I if and only if there exist constants c1 and c2, not both zero, such that c1y1 1t2 + c2y2 1t2 = 0
for all t in I .
34. Wronskian. For any two differentiable functions y1 and y2, the function (18)
W3y1, y2 41t2 = y1 1t2y′2 1t2 - y′1 1t2y2 1t2
is called the Wronskian† of y1 and y2. This function plays a crucial role in the proof of Theorem 2. (a) Show that W3y1, y2 4 can be conveniently expressed as the 2 * 2 determinant W3y1, y2 41t2 = `
y1 1t2 y1= 1t2
y2 1t2 ` . y2= 1t2
(b) Let y1 1t2, y2 1t2 be a pair of solutions to the homogeneous equation ay″ + by′ + cy = 0 (with a ≠ 0) on an open interval I. Prove that y1 1t2 and y2 1t2 are linearly independent on I if and only if their Wronskian is never zero on I. [Hint: This is just a reformulation of Lemma 1.] (c) Show that if y1 1t2 and y2 1t2 are any two differentiable functions that are linearly dependent on I, then their Wronskian is identically zero on I. 35. Linear Dependence of Three Functions. Three functions y1 1t2, y2 1t2, and y3 1t2 are said to be linearly dependent on an interval I if, on I, at least one of these functions is a linear combination of the remaining two [e.g., if y1 1t2 = c1y2 1t2 + c2y3 1t2]. Equivalently (compare Problem 33), y1, y2, and y3 are linearly dependent on I if there exist constants C1, C2, and C3, not all zero, such that C1y1 1t2 + C2y2 1t2 + C3y3 1t2 = 0
for all t in I.
Otherwise, we say that these functions are linearly independent on I.
†
Historical Footnote: The Wronskian was named after the Polish mathematician H. Wronski (1778–1863).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.3
For each of the following, determine whether the given three functions are linearly dependent or linearly independent on 1 - ∞ , ∞ 2:
(a) y1 1t2 = 1 , y2 1t2 = t , y3 1t2 = t 2 . (b) y1 1t2 = - 3 , y2 1t2 = 5 sin2 t , y3 1t2 = cos2 t . (c) y1 1t2 = et , y2 1t2 = tet , y3 1t2 = t 2et . (d) y1 1t2 = et , y2 1t2 = e-t , y3 1t2 = cosh t . 36. Using the definition in Problem 35, prove that if r1, r2, and r3 are distinct real numbers, then the functions er1t, er2t, and er3t are linearly independent on 1 - ∞ , ∞ 2. [Hint: Assume to the contrary that, say, er1t = c1er2t + c2er3t for all t. Divide by er2t to get e1r1 - r22t = c1 + c2e1r3 - r22t and then differentiate to deduce that e1r1 - r22t and e1r3 - r22t are linearly dependent, which is a contradiction. (Why?)] In Problems 37–41, find three linearly independent solutions (see Problem 35) of the given third-order differential equation and write a general solution as an arbitrary linear combination of these. 37. y‴ + y″ - 6y′ + 4y = 0 38. y‴ - 6y″ - y′ + 6y = 0 39. z‴ + 2z″ - 4z′ - 8z = 0 40. y‴ - 7y″ + 7y′ + 15y = 0 41. y‴ + 3y″ - 4y′ - 12y = 0 42. (True or False): If f1, f2, f3 are three functions defined on 1 - ∞ , ∞ 2 that are pairwise linearly independent on 1 - ∞ , ∞ 2, then f1, f2, f3 form a linearly independent set on 1 - ∞ , ∞ 2. Justify your answer. 43. Solve the initial value problem: y‴ - y′ = 0 ;
y102 = 2 ,
y′102 = 3 ,
Auxiliary Equations with Complex Roots
165
44. Solve the initial value problem: y‴ - 2y″ - y′ + 2y = 0 ; y102 = 2 , y′102 = 3 , y″102 = 5 . 45. By using Newton’s method or some other numerical procedure to approximate the roots of the auxiliary equation, find general solutions to the following equations: (a) 3y‴ + 18y″ + 13y′ - 19y = 0 . (b) yiv - 5y″ + 5y = 0 . (c) yv - 3yiv - 5y‴ + 15y″ + 4y′ - 12y = 0 . 46. One way to define hyperbolic functions is by means of differential equations. Consider the equation y″ - y = 0. The hyperbolic cosine, cosh t, is defined as the solution of this equation subject to the initial values: y 102 = 1 and y′102 = 0. The hyperbolic sine, sinh t, is defined as the solution of this equation subject to the initial values: y102 = 0 and y′102 = 1. (a) Solve these initial value problems to derive explicit formulas for cosh t and sinh t. Also show that d d cosh t = sinh t and sinh t = cosh t. dt dt (b) Prove that a general solution of the equation y″ - y = 0 is given by y = c1 cosh t + c2 sinh t. (c) Suppose a, b, and c are given constants for which ar 2 + br + c = 0 has two distinct real roots. If the two roots are expressed in the form a - b and a + b, show that a general solution of the equation ay″ + by′ + cy = 0 is y = c1eat cosh1bt2 + c2eat sinh1bt2. (d) Use the result of part (c) to solve the initial value problem: y″ + y′ - 6y = 0, y102 = 2, y′102 = - 17>2.
y″102 = - 1 .
4.3 Auxiliary Equations with Complex Roots The simple harmonic equation y″ + y = 0, so called because of its relation to the fundamental vibration of a musical tone, has as solutions y1 1t2 = cos t and y2 1t2 = sin t. Notice, however, that the auxiliary equation associated with the harmonic equation is r 2 + 1 = 0, which has imaginary roots r = {i, where i denotes 2 -1.† In the previous section, we expressed the solutions to a linear second-order equation with constant coefficients in terms of exponential functions. It would appear, then, that one might be able to attribute a meaning to the forms eit and e-it and that these “functions” should be related to cos t and sin t. This matchup is accomplished by Euler’s formula, which is discussed in this section. When b2 - 4ac 6 0, the roots of the auxiliary equation (1)
ar 2 + br + c = 0
Electrical engineers frequently use the symbol j to denote 2 - 1.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
166
Chapter 4
Linear Second-Order Equations
associated with the homogeneous equation (2)
ay″ + by′ + cy = 0
are the complex conjugate numbers r1 = a + ib and r2 = a - ib
1i = 2 -12 ,
where a, b are the real numbers (3)
a = -
b 2a
and b =
24ac - b2 . 2a
As in the previous section, we would like to assert that the functions er1t and er2t are solutions to the equation (2). This is in fact the case, but before we can proceed, we need to address some fundamental questions. For example, if r1 = a + ib is a complex number, what do we mean by the expression e1a+ib2t? If we assume that the law of exponents applies to complex numbers, then (4)
e1a+ib2t = eat+ibt = eateibt .
We now need only clarify the meaning of eibt. For this purpose, let’s assume that the Maclaurin series for ez is the same for complex numbers z as it is for real numbers. Observing that i 2 = -1, then for u real we have eiu = 1 + 1iu2 + = 1 + iu = a1 -
1iu2 n 1iu2 2 + g+ + g 2! n!
u 2 iu 3 u 4 iu 5 + + + g 2! 3! 4! 5!
u2 u4 u3 u5 + + g b + ia u + + gb . 2! 4! 3! 5!
Now recall the Maclaurin series for cos u and sin u: cos u = 1 -
u2 u4 + + g, 2! 4!
u3 u5 + + g. 3! 5! Recognizing these expansions in the proposed series for eiu, we make the identification sin u = u -
(5)
eiU = cos U + i sin U ,
which is known as Euler’s formula.† When Euler’s formula (with u = bt) is used in equation (4), we find (6)
e1a+ib2t = eat 1cos bt + i sin bt2 ,
which expresses the complex function e1a+ib2t in terms of familiar real functions. Having made sense out of e1a+ib2t, we can now show (see Problem 30 on page 172) that (7)
d 1a+ib2t e = 1a + ib2e1a + ib2t , dt
†
Historical Footnote: This formula first appeared in Leonhard Euler’s monumental two-volume Introductio in Analysin Infinitorum (1748).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.3
Auxiliary Equations with Complex Roots
167
and, with the choices of a and b as given in (3), the complex function e1a+ib2t is indeed a solution to equation (2), as is e1a - ib2t, and a general solution is given by (8)
y1t2 = c1e1a + ib2t + c2e1a - ib2t
= c1eat 1cos bt + i sin bt2 + c2eat 1cos bt - i sin bt2 .
Example 1 shows that in general the constants c1 and c2 that go into (8), for a specific initial value problem, are complex. Example 1
Use the general solution (8) to solve the initial value problem y″ + 2y′ + 2y = 0 ;
Solution
y102 = 0,
y′102 = 2 .
The auxiliary equation is r 2 + 2r + 2 = 0, which has roots -224 - 8 = -1 { i . 2 Hence, with a = -1, b = 1, a general solution is given by r =
y1t2 = c1e-t 1 cos t + i sin t2 + c2e-t 1 cos t - i sin t2 .
For initial conditions we have
y102 = c1e0 1 cos 0 + i sin 02 + c2e0 1 cos 0 - i sin 02 = c1 + c2 = 0 ,
y′102 = -c1e0 1 cos 0 + i sin 02 + c1e0 1 - sin 0 + i cos 02 -c2e0 1 cos 0 - i sin 02 + c2e0 1 - sin 0 - i cos 02 = 1 -1 + i2c1 + 1 -1 - i2c2 = 2.
As a result, c1 = -i, c2 = i, and y1t2 = -ie-t 1 cos t + i sin t2 + ie-t 1 cos t - i sin t2, or simply 2e-t sin t. ◆ The final form of the answer to Example 1 suggests that we should seek an alternative pair of solutions to the differential equation (2) that don’t require complex arithmetic, and we now turn to that task. In general, if z1t2 is a complex-valued function of the real variable t, we can write z1t2 = u1t2 + iv1t2, where u1t2 and v1t2 are real-valued functions. The derivatives of z1t2 are then given by dz du dv = +i , dt dt dt
d 2z d 2u d 2v = 2 +i 2 . 2 dt dt dt
With the following lemma, we show that the complex-valued solution e1a+ib2t gives rise to two linearly independent real-valued solutions.
Real Solutions Derived from Complex Solutions Lemma 2. Let z1t2 = u1t2 + iv1t2 be a solution to equation (2), where a, b, and c are real numbers. Then, the real part u1t2 and the imaginary part v1t2 are real-valued solutions of (2).†
†
It will be clear from the proof that this property holds for any linear homogeneous differential equation having realvalued coefficients.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
168
Chapter 4
Linear Second-Order Equations
Proof. By assumption, az″ + bz′ + cz = 0, and hence a1u″ + iv″2 + b1u′ + iv′2 + c1u + iv2 = 0 , 1au″ + bu′ + cu2 + i1av″ + bv′ + cv2 = 0 . But a complex number is zero if and only if its real and imaginary parts are both zero. Thus, we must have au″ + bu′ + cu = 0
and
av″ + bv′ + cv = 0 ,
which means that both u1t2and v1t2 are real-valued solutions of (2). ◆ When we apply Lemma 2 to the solution e1a+ib2t = eat cos bt + ieat sin bt , we obtain the following.
Complex Conjugate Roots If the auxiliary equation has complex conjugate roots a { ib, then two linearly independent solutions to (2) are eat cos bt
and
eat sin bt ,
and a general solution is (9)
y1t2 = c1eAt cos Bt + c2eAt sin Bt ,
where c1 and c2 are arbitrary constants.
In the preceding discussion, we glossed over some important details concerning complex numbers and complex-valued functions. In particular, further analysis is required to justify the use of the law of exponents, Euler’s formula, and even the fact that the derivative of ert is rert when r is a complex constant.† If you feel uneasy about our conclusions, we encourage you to substitute the expression in (9) into equation (2) to verify that it is, indeed, a solution. You may also be wondering what would have happened if we had worked with the function e1a-ib2t instead of e1a+ib2t. We leave it as an exercise to verify that e1a-ib2t gives rise to the same general solution (9). Indeed, the sum of these two complex solutions, divided by two, gives the first real-valued solution, while their difference, divided by 2i, gives the second. Example 2
Find a general solution to (10)
Solution
y″ + 2y′ + 4y = 0 .
The auxiliary equation is r 2 + 2r + 4 = 0 , which has roots r =
-2 { 2 -12 -2 { 24 - 16 = = -1 { i23 . 2 2
†
For a detailed treatment of these topics see, for example, Fundamentals of Complex Analysis, 3rd ed., by E. B. Saff and A. D. Snider (Prentice Hall, Upper Saddle River, New Jersey, 2003).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.3
Auxiliary Equations with Complex Roots
169
Hence, with a = -1, b = 23, a general solution for (10) is y1t2 = c1e-t cos1 23 t2 + c2e-t sin1 23 t2 . ◆ When the auxiliary equation has complex conjugate roots, the (real) solutions oscillate between positive and negative values. This type of behavior is observed in vibrating springs. Example 3
In Section 4.1 we discussed the mechanics of the mass–spring oscillator (Figure 4.1, page 152), and we saw how Newton’s second law implies that the position y1t2 of the mass m is governed by the second-order differential equation (11)
my″1t2 + by′1t2 + ky1t2 = 0 ,
where the terms are physically identified as
3inertia4y″ + 3damping4y′ + 3stiffness4y = 0 .
Determine the equation of motion for a spring system when m = 36 kg, b = 12 kg/sec (which is equivalent to 12 N-sec/m), k = 37 kg/sec2, y102 = 0.7 m, and y′102 = 0.1 m/sec. After how many seconds will the mass first cross the equilibrium point? Solution
The equation of motion is given by y1t2, the solution of the initial value problem for the specified values of m, b, k, y102, and y′102. That is, we seek the solution to (12)
36y″ + 12y′ + 37y = 0 ;
y102 = 0.7 , y′102 = 0.1 .
The auxiliary equation for (12) is 36r 2 + 12r + 37 = 0 , which has roots r =
-12 { 2144 - 413621372 72
=
-12 { 1221 - 37 1 = - {i. 72 6
Hence, with a = -1>6, b = 1, the displacement y1t2 can be expressed in the form (13)
y1t2 = c1e-t>6 cos t + c2e-t>6 sin t .
We can find c1 and c2 by substituting y1t2 and y′1t2 into the initial conditions given in (12). Differentiating (13), we get a formula for y′1t2: y′1t2 = a -
c1 c2 + c2 b e-t>6cos t + a -c1 - b e-t>6sin t . 6 6
Substituting into the initial conditions now results in the system c1 = 0.7 , -
c1 + c2 = 0.1 . 6
Upon solving, we find c1 = 0.7 and c2 = 1.3>6. With these values, the equation of motion becomes y1t2 = 0.7e-t>6 cos t +
1.3 -t>6 e sin t . 6
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
170
Chapter 4
Linear Second-Order Equations
To determine the times when the mass will cross the equilibrium point, we set y1t2 = 0 and solve for t: -t>6 -t>6 0 = y1t2 = 0.7e-t>6 cos t + 1.3 sin t = 1cos t210.7e-t>6 + 1.3 tan t2 . 6e 6e
But y1t2 is not zero for cos t = 0, so only the zeros of the second factor are pertinent; that is, tan t = - 4.2 1.3 . A quick glance at the graph of tan t reveals that the first positive t for which this is true lies between p>2 and p. Since the arctangent function takes only values between -p>2 and p>2, the appropriate adjustment is 4.2 2 + p ≈ 1.87 seconds . ◆ t = arctan 1 -1.3
From Example 3 we see that any second-order constant-coefficient differential equation ay″ + by′ + cy = 0 can be interpreted as describing a mass–spring system with mass a, damping coefficient b, spring stiffness c, and displacement y, if these constants make sense physically; that is, if a is positive and b and c are nonnegative. From the discussion in Section 4.1, then, we expect on physical grounds to see damped oscillatory solutions in such a case. This is consistent with the display in equation (9). With a = m and c = k, the exponential decay rate a equals -b> 12m2, and the angular frequency b equals 24mk - b2 > 12m2, by equation (3). It is a little surprising, then, that the solutions to the equation y″ + 4y′ + 4y = 0 do not oscillate; the general solution was shown in Example 3 of Section 4.2 (page 162) to be c1e-2t + c2te-2t. The physical significance of this is simply that when the damping coefficient b is too high, the resulting friction prevents the mass from oscillating. Rather than overshoot the spring’s equilibrium point, it merely settles in lazily. This could happen if a light mass on a weak spring were submerged in a viscous fluid. From the above formula for the oscillation frequency b, we can see that the oscillations will not occur for b 7 24mk. This overdamping phenomenon is discussed in more detail in Section 4.9. It is extremely enlightening to contemplate the predictions of the mass–spring analogy when the coefficients b and c in the equation ay″ + by′ + cy = 0 are negative. Example 4
Interpret the equation (14)
36y″ - 12y′ + 37y = 0
in terms of the mass–spring system. Solution
Equation (14) is a minor alteration of equation (12) in Example 3; the auxiliary equation 36r 2 - 12r + 37 has roots r = 1 + 2 16 { i. Thus, its general solution becomes (15)
y1t2 = c1e+t>6 cos t + c2e+t>6 sin t .
Comparing equation (14) with the mass–spring model (16)
3inertia4y″ + 3damping4y′ + 3stiffness4y = 0 ,
we have to envision a negative damping coefficient b = -12, giving rise to a friction force Ffriction = -by′ that imparts energy to the system instead of draining it. The increase in energy over time must then reveal itself in oscillations of ever-greater amplitude–precisely in accordance with formula (15), for which a typical graph is drawn in Figure 4.7. ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.3
Auxiliary Equations with Complex Roots
171
y
et/6
t 2et/6
Figure 4.7 Solution graph for Example 4
Example 5
Interpret the equation (17)
y″ + 5y′ - 6y = 0
in terms of the mass–spring system. Solution
Comparing the given equation with (16), we have to envision a spring with a negative stiffness k = -6. What does this mean? As the mass is moved away from the spring’s equilibrium point, the spring repels the mass farther with a force Fspring = -ky that intensifies as the displacement increases. Clearly the spring must “exile” the mass to (plus or minus) infinity, and we expect all solutions y1t2 to approach {∞ as t increases (except for the equilibrium solution y1t2 K 0). In fact, in Example 1 of Section 4.2, we showed the general solution to equation (17) to be (18)
c1et + c2e-6t .
Indeed, if we examine the solutions y1t2 that start with a unit displacement y102 = 1 and velocity y′102 = v0, we find (19)
y1t2 =
6 + v0 t 1 - v0 -6t e + e , 7 7
and the plots in Figure 4.8 on page 172 confirm our prediction that all (nonequilibrium) solutions diverge—except for the one with v0 = -6. What is the physical significance of this isolated bounded solution? Evidently, if the mass is given an initial inwardly directed velocity of -6, it has barely enough energy to overcome the effect of the spring banishing it to + ∞ but not enough energy to cross the equilibrium point (and get pushed to - ∞ ). So it asymptotically approaches the (extremely delicate) equilibrium position y = 0. ◆ In Section 4.8, we will see that taking further liberties with the mass–spring interpretation enables us to predict qualitative features of more complicated equations. Throughout this section we have assumed that the coefficients a, b, and c in the differential equation were real numbers. If we now allow them to be complex constants, then the roots
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
172
Chapter 4
Linear Second-Order Equations
y
y0 5 0
y0 5 6
1
y0 5 26
t
y0 5 218
y0 5 212
Figure 4.8 Solution graphs for Example 5
r1, r2 of the auxiliary equation (1) are, in general, also complex but not necessarily conjugates of each other. When r1 ≠ r2, a general solution to equation (2) still has the form y1t2 = c1er1t + c2er2t , but c1 and c2 are now arbitrary complex-valued constants, and we have to resort to the clumsy calculations of Example 1. We also remark that a complex differential equation can be regarded as a system of two real differential equations since we can always work separately with its real and imaginary parts. Systems are discussed in Chapters 5 and 9.
4.3
EXERCISES
In Problems 1–8, the auxiliary equation for the given differential equation has complex roots. Find a general solution. 1. y″ + 9y = 0 2. y″ + y = 0 3. z″ - 6z′ + 10z = 0 4. y″ - 10y′ + 26y = 0 5. w″ + 4w′ + 6w = 0 6. y″ - 4y′ + 7y = 0 7. 4y″ + 4y′ + 6y = 0 8. 4y″ - 4y′ + 26y = 0 In Problems 9–20, find a general solution. 9. y″ - 8y′ + 7y = 0 10. y″ + 4y′ + 8y = 0 11. z″ + 10z′ + 25z = 0 12. u″ + 7u = 0 13. y″ - 2y′ + 26y = 0 14. y″ + 2y′ + 5y = 0 15. y″ - 3y′ - 11y = 0 16. y″ + 10y′ + 41y = 0 17. y″ - y′ + 7y = 0 18. 2y″ + 13y′ - 7y = 0 19. y‴ + y″ + 3y′ - 5y = 0 20. y‴ - y″ + 2y = 0 In Problems 21–27, solve the given initial value problem. 21. y″ + 2y′ + 2y = 0 ; y102 = 2 , y′102 = 1 22. y″ + 2y′ + 17y = 0 ; y102 = 1 , y′102 = - 1 23. w″ - 4w′ + 2w = 0 ; w102 = 0 , w′102 = 1
24. 25. 26. 27.
y″ + 9y = 0 ; y102 = 1 , y′102 = 1 y″ - 2y′ + 2y = 0 ; y1p2 = ep , y′1p2 = 0 y″ - 2y′ + y = 0 ; y102 = 1 , y′102 = - 2 y‴ - 4y″ + 7y′ - 6y = 0 ; y102 = 1 , y′102 = 0, y″102 = 0
28. To see the effect of changing the parameter b in the initial value problem y″ + by′ + 4y = 0 ; y102 = 1 , y′102 = 0 , solve the problem for b = 5, 4, and 2 and sketch the solutions. 29. Find a general solution to the following higher-order equations. (a) y‴ - y″ + y′ + 3y = 0 (b) y‴ + 2y″ + 5y′ - 26y = 0 (c) yiv + 13y″ + 36y = 0 30. Using the representation for e1a+ib2t in (6), verify the differentiation formula (7).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.3
31. Using the mass–spring analogy, predict the behavior as t S + ∞ of the solution to the given initial value problem. Then confirm your prediction by actually solving the problem. (a) y″ + 16y = 0 ; y102 = 2 , y′102 = 0 (b) y″ + 100y′ + y = 0 ; y102 = 1 , y′102 = 0 (c) y″ - 6y′ + 8y = 0 ; y102 = 1 , y′102 = 0 (d) y″ + 2y′ - 3y = 0 ; y102 = - 2 , y′102 = 0 (e) y″ - y′ - 6y = 0 ; y102 = 1 , y′102 = 1 32. Vibrating Spring without Damping. A vibrating spring without damping can be modeled by the initial value problem (11) in Example 3 by taking b = 0. (a) If m = 10 kg, k = 250 kg/sec2, y102 = 0.3 m, and y′102 = -0.1 m/sec, find the equation of motion for this undamped vibrating spring. (b) After how many seconds will the mass in part (a) first cross the equilibrium point? (c) When the equation of motion is of the form displayed in (9), the motion is said to be oscillatory with frequency b>2p. Find the frequency of oscillation for the spring system of part (a). 33. Vibrating Spring with Damping. Using the model for a vibrating spring with damping discussed in Example 3: (a) Find the equation of motion for the vibrating spring with damping if m = 10 kg, b = 60 kg/sec, k = 250 kg/sec2, y102 = 0.3 m, and y′102 = -0.1 m/sec. (b) After how many seconds will the mass in part (a) first cross the equilibrium point? (c) Find the frequency of oscillation for the spring system of part (a). [Hint: See the definition of frequency given in Problem 32(c).] (d) Compare the results of Problems 32 and 33 and determine what effect the damping has on the frequency of oscillation. What other effects does it have on the solution? 34. RLC Series Circuit. In the study of an electrical circuit consisting of a resistor, capacitor, inductor, and an electromotive force (see Figure 4.9), we are led to an initial value problem of the form (20)
L
q dI + RI + = E1t2 ; dt C
q102 = q0 , I102 = I0 , where L is the inductance in henrys, R is the resistance in ohms, C is the capacitance in farads, E1t2 is the electromotive force in volts, q1t2 is the charge in coulombs on the capacitor at time t, and I = dq>dt is the current in amperes. Find the current at time t if the charge on the capacitor is initially zero, the initial current is zero, L = 10 H, R = 20 Ω, C = 162602 -1 F, and E1t2 = 100 V. [Hint: Differentiate both sides of the
Auxiliary Equations with Complex Roots
173
differential equation in (20) to obtain a homogeneous linear second-order equation for I1t2. Then use (20) to determine dI>dt at t = 0.] R
E(t)
q(t)
C
I(t) L Figure 4.9 RLC series circuit
35. Swinging Door. The motion of a swinging door with an adjustment screw that controls the amount of friction on the hinges is governed by the initial value problem Iu″ + bu′ + ku = 0 ; u102 = u0 , u′102 = v0 , where u is the angle that the door is open, I is the moment of inertia of the door about its hinges, b 7 0 is a damping constant that varies with the amount of friction on the door, k 7 0 is the spring constant associated with the swinging door, u0 is the initial angle that the door is opened, and y0 is the initial angular velocity imparted to the door (see Figure 4.10). If I and k are fixed, determine for which values of b the door will not continually swing back and forth when closing.
Figure 4.10 Top view of swinging door
36. Although the real general solution form (9) is convenient, it is also possible to use the form (21)
d1e1a+ib2t + d2e1a-ib2t
to solve initial value problems, as illustrated in Example 1. The coefficients d1 and d2 are complex constants. (a) Use the form (21) to solve Problem 21. Verify that your form is equivalent to the one derived using (9). (b) Show that, in general, d1 and d2 in (21) must be complex conjugates in order that the solution be real. 37. The auxiliary equations for the following differential equations have repeated complex roots. Adapt the “repeated root” procedure of Section 4.2 to find their general solutions: (a) yiv + 2y″ + y = 0 . (b) yiv + 4y‴ + 12y″ + 16y′ + 16y = 0 . [Hint: The auxiliary equation is 1r 2 + 2r + 42 2 = 0.]
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
174
Chapter 4
Linear Second-Order Equations
38. Prove the sum of angles formula for the sine function by following these steps. Fix x. (a) Let f1t2 J sin1x + t2. Show that f ″1t2 + f1t2 = 0, f102 = sin x, and f′102 = cos x. (b) Use the auxiliary equation technique to solve the initial value problem y″ + y = 0, y102 = sin x, and y′102 = cos x.
(c) By uniqueness, the solution in part (b) is the same as f1t2 from part (a). Write this equality; this should be the standard sum of angles formula for sin 1x + t2.
4.4 Nonhomogeneous Equations:
the Method of Undetermined Coefficients In this section we employ “judicious guessing” to derive a simple procedure for finding a solution to a nonhomogeneous linear equation with constant coefficients (1)
ay″ + by′ + cy = f1t2,
when the nonhomogeneity f1t2 is a single term of a special type. Our experience in Section 4.3 indicates that (1) will have an infinite number of solutions. For the moment we are content to find one particular solution. To motivate the procedure, let’s first look at a few instructive examples. Example 1
Find a particular solution to (2)
Solution
y″ + 3y′ + 2y = 3t .
We need to find a function y1t2 such that the combination y″ + 3y′ + 2y is a linear function of t—namely, 3t. Now what kind of function y “ends up” as a linear function after having its zeroth, first, and second derivatives combined? One immediate answer is: another linear function. So we might try y1 1t2 = At and attempt to match up y1> + 3y1= + 2y1 with 3t. Perhaps you can see that this won’t work: y1 = At, y1= = A and y1> = 0 gives us y1> + 3y1= + 2y1 = 3A + 2At , and for this to equal 3t, we require both that A = 0 and A = 3>2. We’ll have better luck if we append a constant term to the trial function: y2 1t2 = At + B. Then y2= = A, y2> = 0, and y2> + 3y2= + 2y2 = 3A + 21At + B2 = 2At + 13A + 2B2 ,
which successfully matches up with 3t if 2A = 3 and 3A + 2B = 0. Solving this system gives A = 3>2 and B = -9>4. Thus, the function y2 1t2 =
3 9 t2 4 is a solution to (2). ◆ Example 1 suggests the following method for finding a particular solution to the equation ay″ + by′ + cy = Ct m, m = 0, 1, 2, c; namely, we guess a solution of the form
yp 1t2 = Amt m + g + A1t + A0 ,
with undetermined coefficients Aj, and match the corresponding powers of t in ay″ + by′ + cy with Ct m.† This procedure involves solving m + 1 linear equations in the m + 1 unknowns In this case the coefficient of t k in ay″ + by′ + cy will be zero for k ≠ m and C for k = m.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.4
Nonhomogeneous Equations: the Method of Undetermined Coefficients
175
A0, A1, c, Am, and hopefully they have a solution. The technique is called the method of undetermined coefficients. Note that, as Example 1 demonstrates, we must retain all the powers t m, t m - 1, c, t 1, t 0 in the trial solution even though they are not present in the nonhomogeneity f1t2. Example 2
Find a particular solution to (3)
Solution
y″ + 3y′ + 2y = 10e3t .
We guess yp 1t2 = Ae3t because then yp= and yp> will retain the same exponential form: yp> + 3yp= + 2yp = 9Ae3t + 313Ae3t 2 + 21Ae3t 2 = 20Ae3t .
Setting 20Ae3t = 10e3t and solving for A gives A = 1>2; hence, yp 1t2 =
e3t 2
is a solution to (3). ◆ Example 3
Find a particular solution to (4)
Solution
y″ + 3y′ + 2y = sin t .
Our initial action might be to guess y1 1t2 = A sin t, but this will fail because the derivatives introduce cosine terms: y1> + 3y1= + 2y1 = -A sin t + 3A cos t + 2A sin t = A sin t + 3A cos t , and matching this with sin t would require that A equal both 1 and 0. So we include the cosine term in the trial solution: yp 1t2 = A sin t + B cos t , yp= 1t2 = A cos t - B sin t , yp> 1t2 = -A sin t - B cos t ,
and (4) becomes
yp> 1t2 + 3yp= 1t2 + 2yp 1t2 = -A sin t - B cos t + 3A cos t - 3B sin t + 2A sin t + 2B cos t = 1A - 3B2 sin t + 1B + 3A2 cos t = sin t .
The equations A - 3B = 1, B + 3A = 0 have the solution A = 0.1, B = -0.3. Thus, the function yp 1t2 = 0.1 sin t - 0.3 cos t
is a particular solution to (4). ◆ More generally, for an equation of the form (5)
ay″ + by′ + cy = C sin bt 1or C cos bt2 ,
the method of undetermined coefficients suggests that we guess (6)
yp 1t2 = A cos bt + B sin bt
and solve (5) for the unknowns A and B.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
176
Chapter 4
Linear Second-Order Equations
If we compare equation (5) with the mass–spring system equation (7)
3inertia4 * y″ + 3damping4 * y′ + 3stiffness4 * y = Fext ,
we can interpret (5) as describing a damped oscillator, shaken with a sinusoidal force. According to our discussion in Section 4.1, then, we would expect the mass ultimately to respond by moving in synchronization with the forcing sinusoid. In other words, the form (6) is suggested by physical, as well as mathematical, experience. A complete description of forced oscillators will be given in Section 4.10. Example 4
Find a particular solution to (8)
Solution
y″ + 4y = 5t 2et .
Our experience with Example 1 suggests that we take a trial solution of the form yp 1t2 = 1At 2 + Bt + C2et, to match the nonhomogeneity in (8). We find yp = 1At 2 + Bt + C2et ,
yp= = 12At + B2et + 1At 2 + Bt + C2et ,
yp> = 2Aet + 212At + B2et + 1At 2 + Bt + C2et ,
yp> + 4yp = et 12A + 2B + C + 4C2 + tet 14A + B + 4B2 + t 2et 1A + 4A2 = 5t 2et . Matching like terms yields A = 1, B = -4>5, and C = -2>25. A solution is given by yp 1t2 = a t 2 -
4t 2 - b et . ◆ 5 25
As our examples illustrate, when the nonhomogeneous term f1t2 is an exponential, a sine, a cosine function, or a nonnegative integer power of t times any of these, the function f1t2 itself suggests the form of a particular solution. However, certain situations thwart the straightforward application of the method of undetermined coefficients. Consider, for example, the equation (9)
y″ + y′ = 5 .
Example 1 suggests that we guess y1 1t2 = A, a zero-degree polynomial. But substitution into (9) proves futile: 1A2 ″ + 1A2′ = 0 ≠ 5 .
The problem arises because any constant function, such as y1 1t2 = A, is a solution to the corresponding homogeneous equation y″ + y′ = 0, and the undetermined coefficient A gets lost upon substitution into the equation. We would encounter the same situation if we tried to find a solution to (10)
y″ - 6y′ + 9y = e3t
of the form y1 = Ae3t, because e3t solves the associated homogeneous equation and
3 Ae3t 4 ″ - 6 3 Ae3t 4 ′ + 9 3 Ae3t 4
= 0 ≠ e3t .
The “trick” for refining the method of undetermined coefficients in these situations smacks of the same logic as in Section 4.2, when a method was prescribed for finding second solutions to homogeneous equations with double roots. Basically, we append an extra factor of t to the trial
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.4
Nonhomogeneous Equations: the Method of Undetermined Coefficients
177
solution suggested by the basic procedure. In other words, to solve (9) we try yp 1t2 = At instead of A: (9′)
yp = At, yp= = A, yp> = 0, yp> + yp= = 0 + A = 5 , A = 5, yp 1t2 = 5t .
Similarly, to solve (10) we try yp = Ate3t instead of Ae3t. The trick won’t work this time, because the characteristic equation of (10) has a double root and, consequently, Ate3t also solves the homogeneous equation:
3 Ate3t 4 ″ - 6 3 Ate3t 4 ′ + 9 3 Ate3t 4
= 0 ≠ e3t.
But if we append another factor of t, yp = At 2e3t, we succeed in finding a particular solution:† yp = At 2e3t, yp= = 2Ate3t + 3At 2e3t, yp> = 2Ae3t + 12Ate3t + 9At 2e3t ,
yp> - 6yp= + 9yp = 12Ae3t + 12Ate3t + 9At 2e3t 2 - 612Ate3t + 3At 2e3t 2 + 91At 2e3t 2 = 2Ae3t = e3t ,
so A = 1>2 and yp 1t2 = t 2e3t >2. To see why this strategy resolves the problem and to generalize it, recall the form of the original differential equation (1), ay″ + by′ + cy = f1t2. Its associated auxiliary equation is (11)
ar 2 + br + c = 0 ,
and if r is a double root, then (12)
2ar + b = 0
holds also [equation (13), Section 4.2, page 163]. Now suppose the nonhomogeneity f1t2 has the form Ct mert, and we seek to match this f1t2 by substituting yp 1t2 = 1Ant n + An - 1t n - 1 + g + A1t + A0 2ert into (1), with the power n to be determined. For simplicity we merely list the leading terms in yp, yp= , and yp>: yp = Ant nert + An - 1t n - 1ert + An - 2t n - 2ert + (lower-order terms)
y′p = Anrt nert + Annt n - 1ert + An - 1rt n - 1ert + An - 1 1n - 12t n - 2ert + An - 2rt n - 2ert + 1l.o.t.2 ,
y″p = Anr 2t nert + 2Annrt n - 1ert + Ann1n - 12t n - 2ert
+ An - 1r 2t n - 1ert + 2An - 1r1n - 12t n - 2ert + An - 2r 2t n - 2ert + 1l.o.t2 .
Then the left-hand member of (1) becomes (13)
ayp> + byp= + cyp = An 1ar 2 + br + c2t nert + 3Ann12ar + b2 + An - 1 1ar 2 + br + c24t n - 1ert
+ 3Ann1n - 12a + An - 1 1n - 1212ar + b2 + An - 2 1ar 2 + br + c24t n - 2ert + 1l.o.t.2 ,
Indeed, the solution t 2 to the equation y″ = 2, computed by simple integration, can also be derived by appending two factors of t to the solution y K 1 of the associated homogeneous equation.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
178
Chapter 4
Linear Second-Order Equations
and we observe the following: Case 1. If r is not a root of the auxiliary equation, the leading term in (13) is An 1ar 2 + br + c2t nert, and to match f1t2 = Ct mert we must take n = m: yp 1t2 = 1Amt m + g + A1t + A0 2ert . Case 2. If r is a simple root of the auxiliary equation, (11) holds and the leading term in (13) is Ann12ar + b2t n - 1ert, and to match f1t2 = Ct mert we must take n = m + 1: yp 1t2 = 1Am + 1t m + 1 + Amt m + g + A1t + A0 2ert . However, now the final term A0ert can be dropped, since it solves the associated homogeneous equation, so we can factor out t and for simplicity renumber the coefficients to write yp 1t2 = t1Amt m + g + A1t + A0 2ert . Case 3. If r is a double root of the auxiliary equation, (11) and (12) hold and the leading term in (13) is Ann1n - 12at n - 2ert, and to match f1t2 = Ct mert we must take n = m + 2: yp 1t2 = 1Am + 2t m + 2 + Am + 1t m + 1 + g + A2t 2 + A1t + A0 2ert, but again we drop the solutions to the associated homogeneous equation and renumber to write yp 1t2 = t 2 1Amt m + g + A1t + A0 2ert . We summarize with the following rule.
Method of Undetermined Coefficients To find a particular solution to the differential equation ay″ + by′ + cy = Ct mert, where m is a nonnegative integer, use the form (14)
yp 1t2 = t s 1Amt m + g + A1t + A0 2ert,
with (i) s = 0 if r is not a root of the associated auxiliary equation; (ii) s = 1 if r is a simple root of the associated auxiliary equation; and (iii) s = 2 if r is a double root of the associated auxiliary equation. To find a particular solution to the differential equation Ct meatcos bt ay″ + by′ + cy = c or Ct meatsin bt for b ≠ 0, use the form (15)
yp 1t2 = t s 1Amt m + g + A1t + A0 2eat cos bt + t s 1Bmt m + g + B1t + B0 2eat sin bt ,
with (iv) s = 0 if a + ib is not a root of the associated auxiliary equation; and (v) s = 1 if a + ib is a root of the associated auxiliary equation.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.4
Nonhomogeneous Equations: the Method of Undetermined Coefficients
179
[The (cos, sin) formulation (15) is easily derived from the exponential formulation (14) by putting r = a + ib and employing Euler’s formula, as in Section 4.3.] Remark 1. The nonhomogeneity Ct m corresponds to the case when r = 0. Remark 2. The rigorous justification of the method of undetermined coefficients [including the analysis of the terms we dropped in (13)] will be presented in a more general context in Chapter 6. Example 5
Find the form for a particular solution to (16)
y″ + 2y′ - 3y = f1t2 ,
where f1t2 equals (a) 7 cos 3t Solution
(b) 2tet sin t
(c) t 2 cos pt
(d) 5e-3t
(e) 3tet
(f) t 2et
The auxiliary equation for the homogeneous equation corresponding to (16), r 2 + 2r - 3 = 0, has roots r1 = 1 and r2 = -3. Notice that the functions in (a), (b), and (c) are associated with complex roots (because of the trigonometric factors). These are clearly different from r1 and r2, so the solution forms correspond to (15) with s = 0: (a) yp 1t2 = A cos 3t + B sin 3t
(b) yp 1t2 = 1A1t + A0 2et cos t + 1B1t + B0 2et sin t
(c) yp 1t2 = 1A2t 2 + A1t + A0 2 cos pt + 1B2t 2 + B1t + B0 2 sin pt
For the nonhomogeneity in (d) we appeal to (ii) and take yp 1t2 = Ate-3t since -3 is a simple root of the auxiliary equation. Similarly, for (e) we take yp 1t2 = t1A1t + A0 2et and for (f) we take yp 1t2 = t1A2t 2 + A1t + A0 2e t. ◆ Example 6
Find the form of a particular solution to y″ - 2y′ + y = f1t2, for the same set of nonhomogeneities f1t2 as in Example 5.
Solution
Now the auxiliary equation for the corresponding homogeneous equation is r 2 - 2r + 1 = 1r - 12 2 = 0, with the double root r = 1. This root is not linked with any of the nonhomogeneities (a) through (d), so the same trial forms should be used for (a), (b), and (c) as in the previous example, and y1t2 = Ae-3t will work for (d). Since r = 1 is a double root, we have s = 2 in (14) and the trial forms for (e) and (f) have to be changed to (e) yp 1t2 = t 2 1A1t + A0 2et
(f) yp 1t2 = t 2 1A2t 2 + A1t + A0 2et
respectively, in accordance with (iii). ◆ Example 7
Find the form of a particular solution to y″ - 2y′ + 2y = 5tet cos t .
Solution
Now the auxiliary equation for the corresponding homogeneous equation is r 2 - 2r + 2 = 0, and it has complex roots r1 = 1 + i, r2 = 1 - i. Since the nonhomogeneity involves eat cos bt with a = b = 1; that is, a + ib = 1 + i = r1, the solution takes the form yp 1t2 = t1A1t + A0 2et cos t + t1B1t + B0 2et sin t . ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
180
Chapter 4
Linear Second-Order Equations
The nonhomogeneity tan t in an equation like y″ + y′ + y = tan t is not one of the forms for which the method of undetermined coefficients can be used; the derivatives of the “trial solution” y1t2 = A tan t, for example, get complicated, and it is not clear what additional terms need to be added to obtain a true solution. In Section 4.6 we discuss a different procedure that can handle such nonhomogeneous terms. Keep in mind that the method of undetermined coefficients applies only to nonhomogeneities that are polynomials, exponentials, sines or cosines, or products of these functions. The superposition principle in Section 4.5 shows how the method can be extended to the sums of such nonhomogeneities. Also, it provides the key to assembling a general solution to (1) that can accommodate initial value problems, which we have avoided so far in our examples.
4.4
EXERCISES
In Problems 1– 8, decide whether or not the method of undetermined coefficients can be applied to find a particular solution of the given equation. 1. y″ + 2y′ - y = t -1et 2. 5y″ - 3y′ + 2y = t 3 cos 4t 3. 2y″1x2 - 6y′1x2 + y1x2 = 1 sin x2 >e4x 4. x″ + 5x′ - 3x = 3t 5. y″1u2 + 3y′1u2 - y1u2 = sec u 6. 2v″1x2 - 3v1x2 = 4x sin2 x + 4x cos2 x 7. 8z′1x2 - 2z1x2 = 3x100e4x cos 25x 8. ty″ - y′ + 2y = sin 3t In Problems 9–26, find a particular solution to the differential equation. 9. y″ + 3y = -9 10. y″ + 2y′ - y = 10 12. 2x′ + x = 3t 2 11. y″1x2 + y1x2 = 2x 13. y″ - y′ + 9y = 3 sin 3t 14. 2z″ + z = 9e2t 2 dy dy 15. - 5 + 6y = xex 16. u″1t2 - u1t2 = t sin t 2 dx dx 17. y″ + 4y = 8 sin 2t 18. y″ - 2y′ + y = 8et -3t 19. 4y″ + 11y′ - 3y = - 2te 20. y″ + 4y = 16t sin 2t 21. x″1t2 - 4x′1t2 + 4x1t2 = te2t
22. 23. 24. 25. 26.
x″1t2 - 2x′1t2 + x1t2 = 24t 2et y″1u2 - 7y′1u2 = u 2 y″1x2 + y1x2 = 4x cos x y″ + 2y′ + 4y = 111e2t cos 3t y″ + 2y′ + 2y = 4te-t cos t
In Problems 27–32, determine the form of a particular solution for the differential equation. (Do not evaluate coefficients.) 27. y″ + 9y = 4t 3 sin 3t 28. y″ - 6y′ + 9y = 5t 6e3t 29. y″ + 3y′ - 7y = t 4et 30. y″ - 2y′ + y = 7et cos t 31. y″ + 2y′ + 2y = 8t 3e-t sin t 32. y″ - y′ - 12y = 2t 6e-3t In Problems 33–36, use the method of undetermined coefficients to find a particular solution to the given higher-order equation. 33. y‴ - y″ + y = sin t 34. 2y‴ + 3y″ + y′ - 4y = e-t 35. y‴ + y″ - 2y = tet 36. y 142 - 3y″ - 8y = sin t
4.5 The Superposition Principle and
Undetermined Coefficients Revisited The next theorem describes the superposition principle, a very simple observation which nonetheless endows the solution set for our equations with a powerful structure. It extends the applicability of the method of undetermined coefficients and enables us to solve initial value problems for nonhomogeneous differential equations.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.5
The Superposition Principle and Undetermined Coefficients Revisited
181
Superposition Principle Theorem 3.
If y1 is a solution to the differential equation
ay″ + by′ + cy = f1 1t2 ,
and y2 is a solution to
ay″ + by′ + cy = f2 1t2 ,
then for any constants k1 and k2, the function k1y1 + k2y2 is a solution to the differential equation ay″ + by′ + cy = k1 f1 1t2 + k2 f2 1t2 .
Proof. This is straightforward; by substituting and rearranging we find a1k1y1 + k2y2 2″ + b1k1y1 + k2y2 2′ + c1k1y1 + k2y2 2 = k1 1ay1> + by1= + cy1 2 + k2 1ay2> + by2= + cy2 2 = k1 f1 1t2 + k2 f2 1t2 . ◆
Example 1
Solution
Find a particular solution to (1)
y″ + 3y′ + 2y = 3t + 10e3t
(2)
y″ + 3y′ + 2y = -9t + 20e3t .
and
In Example 1, Section 4.4, we found that y1 1t2 = 3t>2 - 9>4 was a solution to y″ + 3y′+ 2y = 3t, and in Example 2 we found that y2 1t2 = e3t >2 solved y″ + 3y′ + 2y = 10e3t. By superposition, then, y1 + y2 = 3t>2 - 9/4 + e3t >2 solves equation (1). The right-hand member of (2) equals minus three times 13t2 plus two times 110e3t 2. Therefore, this same combination of y1 and y2 will solve (2): y1t2 = -3y1 + 2y2 = -313t>2 - 9>42 + 21e3t >22 = -9t>2 + 27>4 + e3t . ◆ If we take a particular solution yp to a nonhomogeneous equation like (3)
ay″ + by′ + cy = f1t2
and add it to a general solution c1y1 + c2y2 of the homogeneous equation associated with (3), (4)
ay″ + by′ + cy = 0 ,
the sum (5)
y1t2 = yp 1t2 + c1y1 1t2 + c2y2 1t2
is again, according to the superposition principle, a solution to (3):
a1yp + c1y1 + c2y2 2″ + b1yp + c1y1 + c2y2 2′ + c1yp + c1y1 + c2y2 2 = f1t2 + 0 + 0 = f1t2 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
182
Chapter 4
Linear Second-Order Equations
Since (5) contains two parameters, one would suspect that c1 and c2 can be chosen to make it satisfy arbitrary initial conditions. It is easy to verify that this is indeed the case.
Existence and Uniqueness: Nonhomogeneous Case Theorem 4. For any real numbers a1 ≠02, b, c, t0, Y0, and Y1, suppose yp 1t2 is a particular solution to (3) in an interval I containing t0 and that y1 1t2 and y2 1t2 are linearly independent solutions to the associated homogeneous equation (4) in I. Then there exists a unique solution in I to the initial value problem ay″ + by′ + cy = f1t2,
(6)
y1t0 2 = Y0, y′1t0 2 = Y1 ,
and it is given by (5), for the appropriate choice of the constants c1, c2.
Proof. We have already seen that the superposition principle implies that (5) solves the differential equation. To satisfy the initial conditions in (6) we need to choose the constants so that (7)
b
yp 1t0 2 + c1y1 1t0 2 + c2y2 1t0 2 = Y0 , yp= 1t0 2 + c1y1= 1t0 2 + c2y2= 1t0 2 = Y1 .
But as in the proof of Theorem 2 in Section 4.2, simple algebra shows that the choice c1 = c2 =
3 Y0 - yp 1t0 2 4 y2= 1t0 2 - 3 Y1 - yp= 1t0 2 4 y2 1t0 2 y1 1t0 2y2= 1t0 2 - y1= 1t0 2y2 1t0 2
3 Y1 - yp= 1t0 2 4 y1 1t0 2 - 3 Y0 - yp 1t0 2 4 y1= 1t0 2
and
y1 1t0 2y2= 1t0 2 - y1= 1t0 2y2 1t0 2
solves (7) unless the denominator is zero; Lemma 1, Section 4.2, assures us that it is not. Why is the solution unique? If yI 1t2 were another solution to (6), then the difference yII 1t2 := yp 1t2 + c1y1 1t2 + c2y2 1t2 - yI 1t2 would satisfy (8)
b
ayII> + byII= + cyII = f1t2 - f1t2 = 0 , yII 1t0 2 = Y0 - Y0 = 0 , yII= 1t0 2 = Y1 - Y1 = 0 .
But the initial value problem (8) admits the identically zero solution, and Theorem 1 in Section 4.2 applies since the differential equation in (8) is homogeneous. Consequently, (8) has only the identically zero solution. Thus, yII K 0 and yI = yp + c1y1 + c2y2. ◆ These deliberations entitle us to say that y = yp + c1y1 + c2y2 is a general solution to the nonhomogeneous equation (3), since any solution yg 1t2 can be expressed in this form. (Proof: As in Section 4.2, we simply pick c1 and c2 so that yp + c1y1 + c2y2 matches the value and the derivative of yg at any single point; by uniqueness, yp + c1y1 + c2y2 and yg have to be the same function.)
Example 2
Given that yp 1t2 = t 2 is a particular solution to y″ - y = 2 - t 2 , find a general solution and a solution satisfying y102 = 1, y′102 = 0.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.5
Solution
The Superposition Principle and Undetermined Coefficients Revisited
183
The corresponding homogeneous equation, y″ - y = 0 , has the associated auxiliary equation r 2 - 1 = 0. Because r = {1 are the roots of this equation, a general solution to the homogeneous equation is c1et + c2e-t. Combining this with the particular solution yp 1t2 = t 2 of the nonhomogeneous equation, we find that a general solution is y1t2 = t 2 + c1et + c2e-t . To meet the initial conditions, set y102 = 02 + c1e0 + c2e-0 = 1 , y′102 = 2 * 0 + c1e0 - c2e-0 = 0 , which yields c1 = c2 = 12 . The answer is 1 y1t2 = t 2 + 1et + e-t 2 = t 2 + cosh t . ◆ 2
Example 3
A mass–spring system is driven by a sinusoidal external force 15 sin t + 5 cos t2. The mass equals 1, the spring constant equals 2, and the damping coefficient equals 2 (in appropriate units), so the deliberations of Section 4.1 imply that the motion is governed by the differential equation (9)
y″ + 2y′ + 2y = 5 sin t + 5 cos t .
If the mass is initially located at y102 = 1, with a velocity y′102 = 2, find its equation of motion. Solution
The associated homogeneous equation y″ + 2y′ + 2y = 0 was studied in Example 1, Section 4.3; the roots of the auxiliary equation were found to be -1 { i, leading to a general solution c1e-t cos t + c2e-t sin t. The method of undetermined coefficients dictates that we try to find a particular solution of the form A sin t + B cos t for the first nonhomogeneity 5 sin t: (10)
yp = A sin t + B cos t ,
yp= = A cos t - B sin t ,
yp> = -A sin t - B cos t ;
yp> + 2yp= + 2yp = 1 -A - 2B + 2A2 sin t + 1 -B + 2A + 2B2 cos t = 5 sin t .
Matching coefficients requires A = 1, B = -2 and so yp = sin t - 2 cos t. The second nonhomogeneity 5 cos t calls for the identical form for yp and leads to 1 -A - 2B + 2A2 sin t + 1 -B + 2A + 2B2 cos t = 5 cos t, or A = 2, B = 1. Hence yp = 2 sin t + cos t. By the superposition principle, a general solution to (9) is given by the sum y = c1e-t cos t + c2e-t sin t + sin t - 2 cos t + 2 sin t + cos t = c1e-t cos t + c2e-t sin t + 3 sin t - cos t . The initial conditions are y102 = 1 = c1e-0 cos 0 + c2e-0 sin 0 + 3 sin 0 - cos 0 = c1 - 1 , y′102 = 2 = c1 3 -e-t cos t - e-t sin t 4 t = 0 + c2 3 -e-t sin t + e-t cos t 4 t = 0 + 3 cos 0 + sin 0 = -c1 + c2 + 3 , requiring c1 = 2, c2 = 1, and thus (11)
y1t2 = 2e-t cos t + e-t sin t + 3 sin t - cos t . ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
184
Chapter 4
Linear Second-Order Equations
The solution (11) exemplifies the features of forced, damped oscillations that we anticipated in Section 4.1. There is a sinusoidal component 13 sin t - cos t2 that is synchronous with the driving force 15 sin t + 5 cos t2, and a component 12e-t cos t + e-t sin t2 that dies out. When the system is “pumped” sinusoidally, the response is a synchronous sinusoidal oscillation, after an initial transient that depends on the initial conditions; the synchronous response is the particular solution supplied by the method of undetermined coefficients, and the transient is the solution to the associated homogeneous equation. This interpretation will be discussed in detail in Sections 4.9 and 4.10. You may have observed that, since the two undetermined-coefficient forms in the last example were identical and were destined to be added together, we could have used the form (10) to match both nonhomogeneities at the same time, deriving the condition yp> + 2yp= + 2yp = 1 -A - 2B + 2A2 sin t + 1 -B + 2A + 2B2 cos t = 5 sin t + 5 cos t ,
with solution yp = 3 sin t - cos t. The next example illustrates this “streamlined” procedure. Example 4
Find a particular solution to (12)
Solution
y″ - y = 8tet + 2et .
A general solution to the associated homogeneous equation is easily seen to be c1et + c2e-t. Thus, a particular solution for matching the nonhomogeneity 8tet has the form t1A1t + A0 2et, whereas matching 2et requires the form A0tet. Therefore, we can match both with the first form: yp = t 1 A1t + A0 2 et =
yp= = yp> = = Thus
1 A1t2 + A0t 2 et , 1 A1t2 + A0t 2 et + 1 2A1t + A0 2 et = 3 A1t2 + 1 2A1 + A0 2 t + A0 4 et , 3 2A1t + 1 2A1 + A0 2 4 et + 3 A1t2 + 1 2A1 + A0 2 t + A0 4 et 3 A1t2 + 1 4A1 + A0 2 t + 1 2A1 + 2A0 2 4 et .
y″p - yp = 3 4A1t + 1 2A1 + 2A0 2 4 et = 8tet + 2et ,
which yields A1 = 2, A0 = -1, and so yp = 12t 2 - t2et. ◆ We generalize this procedure by modifying the method of undetermined coefficients as follows.
Method of Undetermined Coefficients (Revisited) To find a particular solution to the differential equation ay″ + by′ + cy = Pm 1t2ert,
where Pm 1t2 is a polynomial of degree m, use the form (13)
yp 1t2 = t s 1Amt m + g + A1t + A0 2ert ;
if r is not a root of the associated auxiliary equation, take s = 0; if r is a simple root of the associated auxiliary equation, take s = 1; and if r is a double root of the associated auxiliary equation, take s = 2.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.5
The Superposition Principle and Undetermined Coefficients Revisited
185
To find a particular solution to the differential equation
ay″ + by′ + cy = Pm 1t2eat cos bt + Qn 1t2eat sin bt ,
b≠0,
where Pm 1t2 is a polynomial of degree m and Qn 1t2 is a polynomial of degree n, use the form yp 1t2 = t s 1Akt k + g + A1t + A0 2eat cos bt + t s 1Bkt k + g + B1t + B0 2eat sin bt ,
(14)
where k is the larger of m and n. If a + ib is not a root of the associated auxiliary equation, take s = 0; if a + ib is a root of the associated auxiliary equation, take s = 1.
Example 5
Write down the form of a particular solution to the equation y″ + 2y′ + 2y = 5e-t sin t + 5t 3e-t cos t .
Solution
The roots of the associated homogeneous equation y″ + 2y′ + 2y = 0 were identified in Example 3 as -1 { i. Application of (14) dictates the form yp 1t2 = t1A3t 3 + A2t 2 + A1t + A0 2e-t cos t + t1B3t 3 + B2t 2 + B1t + B0 2e-t sin t . ◆
The method of undetermined coefficients applies to higher-order linear differential equations with constant coefficients. Details will be provided in Chapter 6, but the following example should be clear. Example 6
Write down the form of a particular solution to the equation y‴ + 2y″ + y′ = 5e-t sin t + 3 + 7te-t .
Solution
The auxiliary equation for the associated homogeneous is r 3 + 2r 2 + r = r1r + 12 2 = 0, with a double root r = -1 and a single root r = 0. Term by term, the nonhomogeneities call for the forms A0 e-t cos t + B0 e-t sin t 1for 5e-t sin t2 , t A0 1for 32 , 2 t 1A1t + A0 2e-t 1for 7te-t 2 .
(If -1 were a triple root, we would need t 3 1A1t + A0 2e-t for 7te-t.) Of course, we have to rename the coefficients, so the general form is yp 1t2 = Ae-t cos t + Be-t sin t + tC + t 2 1Dt + E2e-t . ◆
4.5
EXERCISES
1. Given that y1 1t2 = cos t is a solution to
y″ - y′ + y = sin t
and y2 1t2 = e2t >3 is a solution to
y″ - y′ + y = e2t,
use the superposition principle to find solutions to the following differential equations: (a) y″ - y′ + y = 5 sin t . (b) y″ - y′ + y = sin t - 3e2t . (c) y″ - y′ + y = 4 sin t + 18e2t .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
186
Chapter 4
Linear Second-Order Equations
2. Given that y1 1t2 = 11>42 sin 2t is a solution to y″ + 2y′ + 4y = cos 2t and that y2 1t2 = t>4 - 1>8 is a solution to y″ + 2y′ + 4y = t, use the superposition principle to find solutions to the following: (a) y″ + 2y′ + 4y = t + cos 2t . (b) y″ + 2y′ + 4y = 2t - 3 cos 2t . (c) y″ + 2y′ + 4y = 11t - 12 cos 2t . In Problems 3–8, a nonhomogeneous equation and a particular solution are given. Find a general solution for the equation. 3. y″ - y = t , yp 1t2 = - t 4. y″ + y′ = 1 , yp 1t2 = t 5. u″ - u′ - 2u = 1 - 2t , up 1t2 = t - 1 6. y″ + 5y′ + 6y = 6x2 + 10x + 2 + 12ex, yp 1x2 = ex + x2 7. y″ = 2y + 2 tan3 x , yp 1x2 = tan x 8. y″ = 2y′ - y + 2ex , yp 1x2 = x2ex In Problems 9–16 decide whether the method of undetermined coefficients together with superposition can be applied to find a particular solution of the given equation. Do not solve the equation. 9. 3y″ + 2y′ + 8y = t 2 + 4t - t 2et sin t 10. y″ - y′ + y = 1et + t2 2 11. y″ - 6y′ - 4y = 4 sin 3t - e3tt 2 + 1>t 12. y″ + y′ + ty = et + 7 13. y″ - 2y′ + 3y = cosh t + sin3 t 14. 2y″ + 3y′ - 4y = 2t + sin2 t + 3 15. y″ + ety′ + y = 7 + 3t 16. 2y″ - y′ + 6y = t 2e-t sin t - 8t cos 3t + 10t In Problems 17–22, find a general solution to the differential equation. 17. y″ - 2y′ - 3y = 3t 2 - 5 18. y″ - y = - 11t + 1 19. y″1x2 - 3y′1x2 + 2y1x2 = ex sin x 20. y″1u2 + 4y1u2 = sin u - cos u 21. y″1u2 + 2y′1u2 + 2y1u2 = e-u cos u 22. y″1x2 + 6y′1x2 + 10y1x2 = 10x4 + 24x3 + 2x2 - 12x + 18 In Problems 23–30, find the solution to the initial value problem. 23. y′ - y = 1 , y102 = 0 24. y″ = 6t ; y102 = 3 , y′102 = -1 25. z″1x2 + z1x2 = 2e-x ; z102 = 0 , z′102 = 0 26. y″ + 9y = 27 ; y102 = 4 , y′102 = 6 27. y″1x2 - y′1x2 - 2y1x2 = cos x - sin 2x ; y102 = - 7>20 , y′102 = 1>5 28. y″ + y′ - 12y = et + e2t - 1 ; y102 = 1 , y′102 = 3
29. y″1u2 - y1u2 = sin u - e2u ; y102 = 1 , y′102 = - 1 30. y″ + 2y′ + y = t 2 + 1 - et ; y102 = 0 ,
y′102 = 2
In Problems 31–36, determine the form of a particular solution for the differential equation. Do not solve. 31. y″ + y = sin t + t cos t + 10t 32. y″ - y = e2t + te2t + t 2e2t 33. x″ - x′ - 2x = et cos t - t 2 + cos3 t 34. y″ + 5y′ + 6y = sin t - cos 2t 35. y″ - 4y′ + 5y = e5t + t sin 3t - cos 3t 36. y″ - 4y′ + 4y = t 2e2t - e2t In Problems 37– 40, find a particular solution to the given higher-order equation. 37. y‴ - 2y″ - y′ + 2y = 2t 2 + 4t - 9 38. y 142 - 5y″ + 4y = 10 cos t - 20 sin t 39. y‴ + y″ - 2y = tet + 1 40. y 142 - 3y‴ + 3y″ - y′ = 6t - 20 41. Discontinuous Forcing Term. In certain physical models, the nonhomogeneous term, or forcing term, g1t2 in the equation ay″ + by′ + cy = g1t2 may not be continuous but may have a jump discontinuity. If this occurs, we can still obtain a reasonable solution using the following procedure. Consider the initial value problem y″ + 2y′ + 5y = g1t2 ;
y102 = 0 ,
y′102 = 0,
where g1t2 = b
10 if 0 … t … 3p>2 . 0 if t 7 3p>2
(a) Find a solution to the initial value problem for 0 … t … 3p>2. (b) Find a general solution for t 7 3p>2. (c) Now choose the constants in the general solution from part (b) so that the solution from part (a) and the solution from part (b) agree, together with their first derivatives, at t = 3p>2. This gives us a continuously differentiable function that satisfies the differential equation except at t = 3p>2. 42. Forced Vibrations. As discussed in Section 4.1, a vibrating spring with damping that is under external force can be modeled by (15)
my″ + by′ + ky = g1t2 ,
where m 7 0 is the mass of the spring system, b 7 0 is the damping constant, k 7 0 is the spring constant, g1t2 is the force on the system at time t, and y1t2 is the displacement from the equilibrium of the spring system at time t. Assume b2 6 4mk.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.6
(a) Determine the form of the equation of motion for the spring system when g1t2 = sin bt by finding a general solution to equation (15). (b) Discuss the long-term behavior of this system. [Hint: Consider what happens to the general solution obtained in part (a) as t S + ∞ .] 43. A mass–spring system is driven by a sinusoidal external force g1t2 = 5 sin t. The mass equals 1, the spring constant equals 3, and the damping coefficient equals 4. If the mass is initially located at y102 = 1>2 and at rest, i.e., y′102 = 0, find its equation of motion. 44. A mass–spring system is driven by the external force g1t2 = 2 sin 3t + 10 cos 3t. The mass equals 1, the spring constant equals 5, and the damping coefficient equals 2. If the mass is initially located at y102 = - 1, with initial velocity y′102 = 5, find its equation of motion. y(t)
m
Speed
k
x 5 2L/2 x 5 L/2 Figure 4.11 Speed bump
45. Speed Bumps. Often bumps like the one depicted in Figure 4.11 are built into roads to discourage speeding. The figure suggests that a crude model of the vertical motion y1t2 of a car encountering the speed bump with the speed V is given by
my″ + ky = b
187
(The absence of a damping term indicates that the car’s shock absorbers are not functioning.) (a) Taking m = k = 1, L = p, and F0 = 1 in appropriate units, solve this initial value problem. Thereby show that the formula for the oscillatory motion after the car has traversed the speed bump is y1t2 = A sin t, where the constant A depends on the speed V.
(b) Plot the amplitude 0 A 0 of the solution y1t2 found in part (a) versus the car’s speed V. From the graph, estimate the speed that produces the most violent shaking of the vehicle. 46. Show that the boundary value problem y″ + l2y = sin t ;
y102 = 0 ,
y1p2 = 1 ,
has a solution if and only if l ≠ { 1, {2, {3, c. 47. Find the solution(s) to y″ + 9y = 27 cos 6t
V
cos(px/L)
y1t2 = 0
Variation of Parameters
for t … -L> 12V2 ,
F0 cos 1pVt>L2 for 0 t 0 6 L> 12V2 r for t Ú L> 12V2. 0
(if it exists) satisfying the boundary conditions (a) y102 = - 1 , y1p>62 = 3 . (b) y102 = -1 , y1p>32 = 5 . (c) y102 = -1 , y1p>32 = -1 . 48. All that is known concerning a mysterious second-order constant-coefficient differential equation y″ + py′ + qy = g1t2 is that t 2 + 1 + et cos t, t 2 + 1 + et sin t, and t 2 + 1 + et cos t + et sin t are solutions. (a) Determine two linearly independent solutions to the corresponding homogeneous equation. (b) Find a suitable choice of p, q, and g1t2 that enables these solutions.
4.6 Variation of Parameters We have seen that the method of undetermined coefficients is a simple procedure for determining a particular solution when the equation has constant coefficients and the nonhomogeneous term is of a special type. Here we present a more general method, called variation of parameters,† for finding a particular solution. Consider the nonhomogeneous linear second-order equation (1)
ay″ + by′ + cy = ƒ1t2
and let {y1 1t2, y2 1t2} be two linearly independent solutions for the corresponding homogeneous equation ay″ + by′ + cy = 0 . †
Historical Footnote: The method of variation of parameters was invented by Joseph Lagrange in 1774.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
188
Chapter 4
Linear Second-Order Equations
Then we know that a general solution to this homogeneous equation is given by (2)
yh 1t2 = c1y1 1t2 + c2y2 1t2 ,
where c1 and c2 are constants. To find a particular solution to the nonhomogeneous equation, the strategy of variation of parameters is to replace the constants in (2) by functions of t. That is, we seek a solution of (1) of the form† (3)
yp 1t2 = V1 1t2y1 1t2 + V2 1t2y2 1t2 .
Because we have introduced two unknown functions, v1 1t2 and v2 1t2, it is reasonable to expect that we can impose two equations (requirements) on these functions. Naturally, one of these equations should come from (1). Let’s therefore plug yp 1t2 given by (3) into (1). To accomplish this, we must first compute yp= 1t2 and yp> 1t2. From (3) we obtain yp= = 1v1= y1 + v2= y2 2 + 1v1y1= + v2y2= 2 .
To simplify the computation and to avoid second-order derivatives for the unknowns v1, v2 in the expression for yp>, we impose the requirement (4)
v1= y1 + v2= y2 = 0 .
Thus, the formula for yp= becomes (5)
yp= = v1y1= + v2y2= ,
and so (6)
yp> = v1= y1= + v1y″1 + v2= y2= + v2y2> .
Now, substituting yp, yp= , and yp>, as given in (3), (5), and (6), into (1), we find (7)
f = ayp> + byp= + cyp
= a1v1= y1= + v1y1> + v2= y2= + v2y2> 2 + b1v1y1= + v2y2= 2 + c1v1y1 + v2y2 2 = a1v1= y1= + v2= y2= 2 + v1 1ay1> + by1= + cy1 2 + v2 1ay2> + by2= + cy2 2
= a1v1= y1= + v2= y2= 2 + 0 + 0
since y1 and y2 are solutions to the homogeneous equation. Thus, (7) reduces to (8)
y1= y1= + y2= y2= =
f . a
To summarize, if we can find v1 and v2 that satisfy both (4) and (8), that is, y1V′1 + y2V′2 = 0 , f y′1V′1 + y′2V′2 = , a then yp given by (3) will be a particular solution to (1). To determine v1 and v2, we first solve the linear system (9) for v1= and v2= . Algebraic manipulation or Cramer’s rule (see Appendix D) immediately gives (9)
v1= 1t2 =
a3
-f 1t2y2 1t2
y1 1t2y2= 1t2
-
y1= 1t2y2 1t2
4
and
v2= 1t2 =
a3
f 1t2y1 1t2
y1 1t2y2= 1t2
- y1= 1t2y2 1t2 4
,
†
In Exercises 2.3, Problem 36, we developed this approach for first-order linear equations. Because of the similarity of equations (2) and (3), this technique is sometimes known as “variation of constants.”
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.6
Variation of Parameters
189
where the bracketed expression in the denominator (the Wronskian) is never zero because of Lemma 1, Section 4.2. Upon integrating these equations, we finally obtain (10)
v1 1t2 =
L a3
-f 1t2y2 1t2
y1 1t2y2= 1t2
-
y1= 1t2y2 1t2
4
dt
and
v2 1t2 =
L a3
f 1t2y1 1t2
y1 1t2y2= 1t2
- y1= 1t2y2 1t2 4
dt .
Let’s review this procedure.
Method of Variation of Parameters To determine a particular solution to ay″ + by′ + cy = f : (a) Find two linearly independent solutions {y1 1t2, y2 1t2} to the corresponding homogeneous equation and take yp 1t2 = v1 1t2y1 1t2 + v2 1t2y2 1t2 .
(b) Determine v1 1t2 and v2 1t2 by solving the system in (9) for v1= 1t2 and v2= 1t2 and integrating. (c) Substitute v1 1t2 and v2 1t2 into the expression for yp 1t2 to obtain a particular solution. Of course, in step (b) one could use the formulas in (10), but v1 1t2 and v2 1t2 are so easy to derive that you are advised not to memorize them. Example 1
Find a general solution on 1 -p>2, p>22 to (11)
Solution
d 2y dt 2
+ y = tan t .
Observe that two independent solutions to the homogeneous equation y″ + y = 0 are cos t and sin t. We now set (12)
yp 1t2 = v1 1t2 cos t + v2 1t2 sin t
and, referring to (9), solve the system
1 cos t2v1= 1t2 + 1 sin t2v2= 1t2 = 0 , 1 - sin t2v1= 1t2 + 1 cos t2v2= 1t2 = tan t ,
for v1= 1t2 and v2= 1t2. This gives
v1= 1t2 = - tan t sin t , v2= 1t2 = tan t cos t = sin t .
Integrating, we obtain (13)
v1 1t2 = = -
L
tan t sin t dt = -
sin2 t dt L cos t
1 - cos2 t dt = 1 cos t - sec t2 dt L cos t L
= sin t - ln 0 sec t + tan t 0 + C1 , (14)
v2 1t2 =
L
sin t dt = - cos t + C2 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
190
Chapter 4
Linear Second-Order Equations
We need only one particular solution, so we take both C1 and C2 to be zero for simplicity. Then, substituting v1 1t2 and v2 1t2 in (12), we obtain yp 1t2 = 1sin t - ln 0 sec t + tan t 0 2 cos t - cos t sin t ,
which simplifies to
yp 1t2 = - 1cos t2 ln 0 sec t + tan t 0 .
We may drop the absolute value symbols because sec t + tan t = 11 + sin t2 > cos t 7 0 for -p>2 6 t 6 p>2. Recall that a general solution to a nonhomogeneous equation is given by the sum of a general solution to the homogeneous equation and a particular solution. Consequently, a general solution to equation (11) on the interval 1 -p>2, p>22 is (15)
y1t2 = c1 cos t + c2 sin t - 1 cos t2 ln1sec t + tan t2 . ◆
Note that in the above example the constants C1 and C2 appearing in (13) and (14) were chosen to be zero. If we had retained these arbitrary constants, the ultimate effect would be just to add C1 cos t + C2 sin t to (15), which is clearly redundant. Example 2
Find a particular solution on 1 -p>2, p>22 to (16)
Solution
d 2y dt 2
+ y = tan t + 3t - 1 .
With f 1t2 = tan t + 3t - 1, the variation of parameters procedure will lead to a solution. But it is simpler in this case to consider separately the equations (17)
(18)
d 2y dt 2 d 2y dt 2
+ y = tan t , + y = 3t - 1
and then use the superposition principle (Theorem 3, page 181). In Example 1 we found that yq 1t2 = - 1cos t2 ln1sec t + tan t2
is a particular solution for equation (17). For equation (18) the method of undetermined coefficients can be applied. On seeking a solution to (18) of the form yr 1t2 = At + B, we quickly obtain yr 1t2 = 3t - 1 .
Finally, we apply the superposition principle to get
yp 1t2 = yq 1t2 + yr 1t2 = - 1cos t2 ln1sec t + tan t2 + 3t - 1
as a particular solution for equation (16). ◆ Note that we could not have solved Example 1 by the method of undetermined coefficients; the nonhomogeneity tan t is unsuitable. Another important advantage of the method of variation of parameters is its applicability to linear equations whose coefficients a, b, c are functions of t. Indeed, on reviewing the derivation of the system (9) and the formulas (10), one
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.6
Variation of Parameters
191
can check that we did not make any use of the constant coefficient property; i.e., the method works provided we know a pair of linearly independent solutions to the corresponding homogeneous equation. We illustrate the method in the next example. Example 3
Find a particular solution of the variable coefficient linear equation (19)
t 2y″ - 4ty′ + 6y = 4t 3 , t 7 0 ,
given that y1 1t2 = t 2 and y2 1t2 = t 3 are solutions to the corresponding homogeneous equation.
Solution
The functions t2 and t3 are linearly independent solutions to the corresponding homogeneous equation on 10, ∞ 2 (verify this !) and so (19) has a particular solution of the form yp 1t2 = v1 1t2t 2 + v2 1t2t 3 .
To determine the unknown functions v1 and v2, we solve the system (9) with f 1t2 = 4t 3 and a = a1t2 = t 2 : t 2v1= 1t2 + t 3v2= 1t2 = 0
2tv1= 1t2 + 3t 2v2= 1t2 = f>a = 4t .
The solutions are readily found to be v1= 1t2 = -4 and v2= 1t2 = 4>t, which gives v1 1t2 = -4t and v2 1t2 = 4 ln t. Consequently, yp 1t2 = 1 -4t2t 2 + 14 ln t2t 3 = 4t 3 1 -1 + ln t2
is a solution to (19). ◆ Variable coefficient linear equations will be discussed in more detail in the next section.
4.6
EXERCISES
In Problems 1–8, find a general solution to the differential equation using the method of variation of parameters. 1. y″ + 4y = tan 2t 2. y″ + y = sec t 3. y″ - 2y′ + y = t -1et 4. y″ + 2y′ + y = e-t 5. y″1u2 + 16y1u2 = sec 4u 6. y″ + 9y = sec2 13t2 7. y″ + 4y′ + 4y = e-2t ln t 8. y″ + 4y = csc2 12t2 In Problems 9 and 10, find a particular solution first by undetermined coefficients, and then by variation of parameters. Which method was quicker? 9. y″ - y = 2t + 4 10. 2x″1t2 - 2x′1t2 - 4x1t2 = 2e2t In Problems 11–18, find a general solution to the differential equation. 11. y″ + y = tan t + e3t - 1 12. y″ + y = tan2 t 13. v″ + 4v = sec4 12t2
14. y″1u2 + y1u2 = sec3 u 15. y″ + y = 3 sec t - t 2 + 1 16. y″ + 5y′ + 6y = 18t 2 1 1 17. y″ + 2y = tan 2t - et 2 2 18. y″ - 6y′ + 9y = t -3e3t 19. Express the solution to the initial value problem 1 y″ - y = , y112 = 0 , y′112 = - 2 , t using definite integrals. Using numerical integration (Appendix C) to approximate the integrals, find an approximation for y122 to two decimal places. 20. Use the method of variation of parameters to show that t
f1s2 sin 1t - s2 ds L0 is a general solution to the differential equation y1t2 = c1 cos t + c2 sin t +
y″ + y = f1t2 ,
where f1t2 is a continuous function on 1 - ∞ , ∞ 2. [Hint: Use the trigonometric identity sin 1t - s2 = sin t cos s - sin s cos t .]
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
192
Chapter 4
Linear Second-Order Equations
3
21. Suppose y satisfies the equation y″ + 10y′ + 25y = et subject to y102 = 1 and y′102 = - 5. Estimate y10.22 to within {0.0001 by numerically approximating the integrals in the variation of parameters formula.
In Problems 22 through 25, use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t 7 0. 22. t 2y″ - 4ty′ + 6y = t 3 + 1 ; y1 = t 2 , y2 = t 3
23. ty″ - 1t + 12y′ + y = t 2 ; y1 = et , y2 = t + 1 24. ty″ + 11 - 2t2y′ + 1t - 12y = tet ; y1 = et , y2 = et ln t 25. ty″ + 15t - 12y′ - 5y = t 2e-5t ; y1 = 5t - 1 , y2 = e-5t
4.7 Variable-Coefficient Equations The techniques of Sections 4.2 and 4.3 have explicitly demonstrated that solutions to a linear homogeneous constant-coefficient differential equation, (1)
ay″ + by′ + cy = 0 ,
(2)
ay″ + by′ + cy = f 1t2 ,
are defined and satisfy the equation over the whole interval 1 - ∞, + ∞ 2. After all, such solutions are combinations of exponentials, sinusoids, and polynomials. The variation of parameters formula of Section 4.6 extended this to nonhomogeneous constant-coefficient problems,
yielding solutions valid over all intervals where f1t2 is continuous (ensuring that the integrals in (10) of Section 4.6 containing f1t2 exist and are differentiable). We could hardly hope for more; indeed, it is debatable what meaning the differential equation (2) would have at a point where f1t2 is undefined, or discontinuous. Therefore, when we move to the realm of equations with variable coefficients of the form (3)
a2 1t2y″ + a1 1t2y′ + a0 1t2y = f1t2 ,
the most we can expect is that there are solutions that are valid over intervals where all four “governing” functions—a2 1t2, a1 1t2, a0 1t2, and f1t2—are continuous. Fortunately, this expectation is fulfilled except for an important technical requirement—namely, that the coefficient function a2 1t2 must be nonzero over the interval.† Typically, one divides by the nonzero coefficient a2 1t2 and expresses the theorem for the equation in standard form [see (4), below] as follows.
Existence and Uniqueness of Solutions Theorem 5. If p1t2, q1t2, and g(t) are continuous on an interval 1a, b2 that contains the point t0, then for any choice of the initial values Y0 and Y1, there exists a unique solution y1t2 on the same interval (a, b) to the initial value problem (4)
y″1t2 + p1t2y′1t2 + q1t2y1t2 = g1t2 ; y1t0 2 = Y0 , y′1t0 2 = Y1 .
† Indeed, the whole nature of the equation—reduction from second-order to first-order—changes at points where a2 1t2 is zero.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.7
Example 1
193
Determine the largest interval for which Theorem 5 ensures the existence and uniqueness of a solution to the initial value problem 1t - 32
(5) Solution
Variable-Coefficient Equations
d 2y dt 2
+
dy + 2t y = ln t ; y112 = 3 , y′112 = -5 . dt
The data p1t2, q1t2, and g1t2 in the standard form of the equation, y″ + py′ + qy =
d 2y dt
2
+
dy 1 2t ln t + y = = g, 1t - 32 dt 1t - 32 1t - 32
are simultaneously continuous in the intervals 0 6 t 6 3 and 3 6 t 6 ∞ . The former contains the point t0 = 1, where the initial conditions are specified, so Theorem 5 guarantees (5) has a unique solution in 0 6 t 6 3. ◆ Theorem 5, embracing existence and uniqueness for the variable-coefficient case, is difficult to prove because we can’t construct explicit solutions in the general case. So the proof is deferred to Chapter 13.† However, it is instructive to examine a special case that we can solve explicitly.
Cauchy–Euler, or Equidimensional, Equations Definition 2. A linear second-order equation that can be expressed in the form (6)
at 2y″1t2 + bty′1t2 + cy = f1t2 ,
where a, b, and c are constants, is called a Cauchy–Euler, or equidimensional, equation.
For example, the differential equation 3t 2y″ + 11ty′ - 3y = sin t is a Cauchy–Euler equation, whereas 2y″ - 3ty′ + 11y = 3t - 1 is not because the coefficient of y″ is 2, which is not a constant times t 2. The nomenclature equidimensional comes about because if y has the dimensions of, say, meters and t has dimensions of time, then each term t 2y″, ty′, and y has the same dimensions (meters). The coefficient of y″1t2 in (6) is at 2, and it is zero at t = 0; equivalently, the standard form y″ +
f1t2 b c y′ + 2 y = at at at 2
has discontinuous coefficients at t = 0. Therefore, we can expect the solutions to be valid only for t 7 0 or t 6 0. Discontinuities in ƒ, of course, will impose further restrictions.
†
All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
194
Chapter 4
Linear Second-Order Equations
To solve a homogeneous Cauchy–Euler equation, for t 7 0, we exploit the equidimensional feature by looking for solutions of the form y = t r , because then t 2y″, ty′, and y each have the form (constant) * tr: y = t r , ty′ = trt r - 1 = rt r , t 2y″ = t 2r1r - 12t r - 2 = r1r - 12t r , and substitution into the homogeneous form of (6) (that is, with g = 0) yields a simple quadratic equation for r: ar1r - 12t r + brt r + ct r = [ar 2 + 1b - a2r + c]t r = 0 , or
(7)
ar 2 + 1b - a2r + c = 0 ,
which we call the associated characteristic equation. Example 2
Find two linearly independent solutions to the equation 3t 2y″ + 11ty′ - 3y = 0 , t 7 0 .
Solution
Inserting y = t r yields, according to (7),
3r 2 + 111 - 32r - 3 = 3r 2 + 8r - 3 = 0 ,
whose roots r = 1>3 and r = -3 produce the independent solutions y1 1t2 = t 1>3 , y2 1t2 = t - 3
1for t 7 02 . ◆
Clearly, the substitution y = t r into a homogeneous equidimensional equation has the same simplifying effect as the insertion of y = ert into the homogeneous constant-coefficient equation in Section 4.2. That means we will have to deal with the same encumbrances: 1. What to do when the roots of (7) are complex 2. What to do when the roots of (7) are equal If r is complex, r = a + ib, we can interpret t a + ib by using the identity t = eln t and invoking Euler’s formula [equation (5), Section 4.3]: t a + ib = t at ib = t aeib ln t = t a 3cos1b ln t2 + i sin1b ln t24 .
Then we simplify as in Section 4.3 by taking the real and imaginary parts to form independent solutions: (8)
y1 = t a cos1b ln t2 , y2 = t a sin1b ln t2 .
If r is a double root of the characteristic equation (7), then independent solutions of the Cauchy–Euler equation on 10, ∞ 2 are given by (9)
y1 = t r , y2 = t r ln t .
This can be verified by direct substitution into the differential equation. Alternatively, the second, linearly independent, solution can be obtained by reduction of order, a procedure to be discussed shortly in Theorem 8. Furthermore, Problem 23 demonstrates that the substitution t = ex changes the homogeneous Cauchy–Euler equation into a homogeneous constant-coefficient equation, and the formats (8) and (9) then follow from our earlier deliberations. We remark that if a homogeneous Cauchy–Euler equation is to be solved for t 6 0, then one simply introduces the change of variable t = -t, where t 7 0. The reader should verify via the chain rule that the identical characteristic equation (7) arises when tr = 1 -t2 r is substituted in the equation. Thus the solutions take the same form as (8), (9), but with t replaced
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.7
Variable-Coefficient Equations
195
by -t; for example, if r is a double root of (7), we get 1 -t2 r and 1 -t2 r ln 1 -t2 as two linearly independent solutions on 1 - ∞, 02. Example 3
Find a pair of linearly independent solutions to the following Cauchy–Euler equations for t 7 0. (a) t 2y″ + 5ty′ + 5y = 0
Solution
(b) t 2y″ + ty′ = 0
For part (a), the characteristic equation becomes r 2 + 4r + 5 = 0 , with the roots r = -2 { i , and (8) produces the real solutions t -2 cos1ln t2 and t -2 sin1ln t2. For part (b), the characteristic equation becomes simply r 2 = 0 with the double root r = 0, and (9) yields the solutions t 0 = 1 and ln t. ◆ In Chapter 8 we will see how one can obtain power series expansions for solutions to variable-coefficient equations when the coefficients are analytic functions. But, as we said, there is no procedure for explicitly solving the general case. Nonetheless, thanks to the existence/ uniqueness result of Theorem 5, most of the other theorems and concepts of the preceding sections are easily extended to the variable-coefficient case, with the proviso that they apply only over intervals in which the governing functions p1t2, q1t2, g1t2 are continuous. Thus we have the following analog of Lemma 1, page 160.
A Condition for Linear Dependence of Solutions Lemma 3. equation (10)
If y1 1t2 and y2 1t2 are any two solutions to the homogeneous differential
y″1t2 + p1t2y′1t2 + q1t2y1t2 = 0
on an interval I where the functions p1t2 and q1t2 are continuous and if the Wronskian† W3y1, y2 4 1t2 J y1 1t2y2= 1t2 - y1= 1t2y2 1t2 = `
y1 1t2 y1= 1t2
y2 1t2 ` y2= 1t2
is zero at any point t of I, then y1 and y2 are linearly dependent on I.
As in the constant-coefficient case, the Wronskian of two solutions is either identically zero or never zero on I, with the latter implying linear independence on I. Precisely as in the proof for the constant-coefficient case, it can be verified that any linear combination c1y1 + c2y2 of solutions y1 and y2 to (10) is also a solution. In fact, these are the only solutions to (10) as stated in the following result.
Representation of Solutions to Initial Value Problems Theorem 6. If y1 1t2 and y2 1t2 are any two solutions to the homogeneous differential equation (10) that are linearly independent on an interval I, then every solution to (10) on I is expressible as a linear combination of y1 and y2. Moreover, the initial value problem consisting of equation (10) and the initial conditions y1t0 2 = Y0, y′1t0 2 = Y1 has a unique solution on I for any point t0 in I and any constants Y0, Y1.
†
The determinant representation of the Wronskian was introduced in Problem 34, Section 4.2.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
196
Chapter 4
Linear Second-Order Equations
As in the constant-coefficient case, the linear combination yh = c1y1 + c2y2 is called a general solution to (10) on I if y1, y2 are linearly independent solutions on I. For the nonhomogeneous equation (11)
y″1t2 + p1t2y′1t2 + q1t2y1t2 = g1t2 ,
a general solution on I is given by y = yp + yh, where yh = c1y1 + c2y2 is a general solution to the corresponding homogeneous equation (10) on I and yp is a particular solution to (11) on I. In other words, the solution to the initial value problem stated in Theorem 5 must be of this form for a suitable choice of the constants c1, c2. This follows, just as before, from a straightforward extension of the superposition principle for variable-coefficient equations described in Problem 30. As illustrated at the end of the Section 4.6, if linearly independent solutions to the homogeneous equation (10) are known, then yp can be determined for (11) by the variation of parameters method.
Variation of Parameters Theorem 7. If y1 and y2 are two linearly independent solutions to the homogeneous equation (10) on an interval I where p1t2, q1t2, and g1t2 are continuous, then a particular solution to (11) is given by yp = v1y1 + v2y2, where v1 and v2 are determined up to a constant by the pair of equations y1V′1 + y2V′2 = 0 , y1′V1′ + y2′V2′ = g , which have the solution (12)
v1 1t2 =
-g1t2 y2 1t2 g1t2y1 1t2 dt , v2 1t2 = dt . L W3y1, y2 4 1t2 L W3y1, y2 4 1t2
Note the formulation (12) presumes that the differential equation has been put into standard form [that is, divided by a2 1t2].
The proofs of the constant-coefficient versions of these theorems in Sections 4.2 and 4.5 did not make use of the constant-coefficient property, so one can prove them in the general case by literally copying those proofs but interpreting the coefficients as variables. Unfortunately, however, there is no construction analogous to the method of undetermined coefficients for the variable-coefficient case. What does all this mean? The only stumbling block for our completely solving nonhomogeneous initial value problems for equations with variable coefficients, y″ + p1t2y′ + q1t2y = g1t2 ; y1t0 2 = Y0 , y′1t0 2 = Y1 ,
is the lack of an explicit procedure for constructing independent solutions to the associated homogeneous equation (10). If we had y1 and y2 as described in the variation of parameters formula, we could implement (12) to find yp, formulate the general solution of (11) as yp + c1y1 + c2y2, and (with the assurance that the Wronskian is nonzero) fit the constants to the initial conditions. But with the exception of the Cauchy–Euler equation and the ponderous power series machinery of Chapter 8, we are stymied at the outset; there is no general procedure for finding y1 and y2.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.7
Variable-Coefficient Equations
197
Ironically, we only need one nontrivial solution to the associated homogeneous equation, thanks to a procedure known as reduction of order that constructs a second, linearly independent solution y2 from a known one y1. So one might well feel that the following theorem rubs salt into the wound.
Reduction of Order Theorem 8. If y1 1t2 is a solution, not identically zero, to the homogeneous differential equation (10) in an interval I (see page 195), then (13)
y2 1t2 = y1 1t2
e- 1p1t2dt dt 2 L y1 1t2
is a second, linearly independent solution.
This remarkable formula can be confirmed directly, but the following derivation shows how the procedure got its name. Proof of Theorem 8. Our strategy is similar to that used in the derivation of the variation of parameters formula, Section 4.6. Bearing in mind that cy1 is a solution of (10) for any constant c, we replace c by a function v1t2 and propose the trial solution y2 1t2 = v1t2y1 1t2, spawning the formulas y2= = vy1= + v=y1 , y2> = vy1> + 2v=y1= + v>y1 . Substituting these expressions into the differential equation (10) yields 1vy1> + 2v′y1= + v″y1 2 + p1vy1= + v′y1 2 + qvy1 = 0 ,
or, on regrouping, (14)
1 y1> + py1= + qy1 2v + y1v″ + 12y1= + py1 2v′ = 0 .
The group in front of the undifferentiated v1t2 is simply a copy of the left-hand member of the original differential equation (10), so it is zero.† Thus (14) reduces to (15)
y1v″ + 12y1= + py1 2v′ = 0 ,
which is actually a first-order equation in the variable w K v′: (16)
y1w′ + 12y1= + py1 2w = 0 .
Indeed, (16) is separable and can be solved immediately using the procedure of Section 2.2. Problem 48 on page 201 requests the reader to carry out the details of this procedure to complete the derivation of (13). ◆ Example 4
Given that y1 1t2 = t is a solution to (17)
y″ -
1 1 y′ + 2 y = 0 , t t
use the reduction of order procedure to determine a second linearly independent solution for t 7 0. This is hardly a surprise; if v were constant, vy would be a solution with v′ = v″ = 0 in (14).
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
198
Chapter 4
Solution
Linear Second-Order Equations
Rather than implementing the formula (13), let’s apply the strategy used to derive it. We set y2 1t2 = v1t2y1 1t2 = v1t2t and substitute y2= = v′t + v, y2> = v″t + 2v′ into (17) to find (18)
1 1 v″t + 2v′ - 1v′t + v2 + 2 vt = v″t + 12v′ - v′2 = v″t + v′ = 0 . t t
As promised, (18) is a separable first-order equation in v′, simplifying to 1v′2′> 1v′2 = -1>t with a solution v′ = 1>t, or v = ln t (taking integration constants to be zero). Therefore, a second solution to (17) is y2 = vt = t ln t. Of course (17) is a Cauchy–Euler equation for which (7) has equal roots: ar 2 + 1b - a2r + c = r 2 - 2r + 1 = 1r - 12 2 = 0 , and y2 is precisely the form for the independent solution predicted by (9). ◆ Example 5
The following equation arises in the mathematical modeling of reverse osmosis.† (19)
1sin t2y″ - 21cos t2y′ - 1sin t2y = 0 , 0 6 t 6 p .
Find a general solution. Solution
As we indicated above, the tricky part is to find a single nontrivial solution. Inspection of (19) suggests that y = sin t or y = cos t, combined with a little luck with trigonometric identities, might be solutions. In fact, trial and error shows that the cosine function works: y1 = cos t , y1= = -sin t , y1> = -cos t ,
1sin t2y1> - 21cos t2y1= - 1sin t2y1 = 1sin t2 1 - cos t2 - 21cos t2 1 - sin t2 - 1sin t2 1cos t2 = 0 .
Unfortunately, the sine function fails (try it). So we use reduction of order to construct a second, independent solution. Setting y2 1t2 = v1t2y1 1t2 = v1t2cos t and computing y2= = v′cos t - v sin t, y2> = v″cos t - 2v′sin t - v cos t, we substitute into (19) to derive 1sin t23v″cos t - 2v′sin t - v cos t4 - 21cos t23v′cos t - v sin t4 - 1sin t23v cos t4 = v″1sin t21cos t2 - 2v′1sin2 t + cos2 t2 = 0, which is equivalent to the separated first-order equation 1v′2 ′ sec2 t 2 = = 2 . 1v′2 1sin t21cos t2 tan t Taking integration constants to be zero yields ln v′ = 2 ln1 tan t2 or v′ = tan2 t, and v = tan t - t. Therefore, a second solution to (19) is y2 = 1 tan t - t2 cos t = sin t - t cos t. We conclude that a general solution is c1 cos t + c2 1sin t - t cos t2. ◆ In this section we have seen that the theory for variable-coefficient equations differs only slightly from the constant-coefficient case (in that solution domains are restricted to intervals), but explicit solutions can be hard to come by. In the next section, we will supplement our exposition by describing some nonrigorous procedures that sometimes can be used to predict qualitative features of the solutions.
†
Reverse osmosis is a process used to fortify the alcoholic content of wine, among other applications.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.7
4.7
22. 1t + 12 2y″1t2 + 101t + 12y′1t2 + 14y1t2 = 0 , t 7 -1 23. To justify the solution formulas (8) and (9), perform the following analysis. (a) Show that if the substitution t = ex is made in the function y1t2 and x is regarded as the new independent variable in Y1x2 J y1ex 2, the chain rule implies the following relationships: dy d 2y dY d 2Y dY = , t2 2 = . dt dx dt dx 2 dx (b) Using part (a), show that if the substitution t = e x is made in the Cauchy–Euler differential equation (6), the result is a constant-coefficient equation for Y1x2 = y1e x 2, namely, t
In Problems 5 through 8, determine whether Theorem 5 applies. If it does, then discuss what conclusions can be drawn. If it does not, explain why. 5. t 2z″ + tz′ + z = cos t ; z102 = 1 , z′102 = 0 6. y″ + yy′ = t 2 - 1 ; y102 = 1 , y′102 = -1 7. y″ + ty′ - t 2y = 0 ; y102 = 0 , y112 = 0 8. 11 - t2y″ + ty′ - 2y = sin t ; y102 = 1 , y′102 = 1
12.
d 2y dt 2
+ 2t
dy - 6y = 0 dt
d 2z dz + 5t + 4z = 0 dt dt 2
d 2w 6 dw 4 + w = 0 + t dt t 2 dt 2
24.
13. 9t 2y″1t2 + 15ty′1t2 + y1t2 = 0 14. t 2y″1t2 - 3ty′1t2 + 4y1t2 = 0 In Problems 15 through 18, find a general solution for t 6 0. 1 5 15. y″1t2 - y′1t2 + 2 y 1t2 = 0 t t 16. t 2y″1t2 - 3ty′1t2 + 6y1t2 = 0 17. t 2y″1t2 + 9ty′1t2 + 17y1t2 = 0 18. t 2y″1t2 + 3ty′1t2 + 5y1t2 = 0 In Problems 19 and 20, solve the given initial value problem for the Cauchy–Euler equation. 19. t 2y″1t2 - 4ty′1t2 + 4y1t2 = 0 ; y112 = - 2 , y′112 = -11
25.
26.
20. t y″1t2 + 7ty′1t2 + 5y1t2 = 0 ; y112 = - 1 , y′112 = 13 2
In Problems 21 and 22, devise a modification of the method for Cauchy–Euler equations to find a general solution to the given equation. 21. 1t - 22 2y″1t2 - 71t - 22y′1t2 + 7y1t2 = 0 , t 7 2
dY d 2Y + 1b - a2 + cY = ƒ1e x 2 . 2 dx dx (c) Observe that the auxiliary equation (recall Section 4.2) for the homogeneous form of (20) is the same as (7) in this section. If the roots of the former are complex, linearly independent solutions of (20) have the form eax cos bx and eax sin bx; if they are equal, linearly independent solutions of (20) have the form erx and xerx. Express x in terms of t to derive the corresponding solution forms (8) and (9). Solve the following Cauchy–Euler equations by using the substitution described in Problem 23 to change them to constant coefficient equations, finding their general solutions by the methods of the preceding sections, and restoring the original independent variable t. (a) t 2y″ + ty′ - 9y = 0 (b) t 2y″ + 3ty′ + 10y = 0 (c) t 2y″ + 3ty′ + y = t + t -1 (d) t 2y″ + ty′ + 9y = -tan13 ln t2 Let y1 and y2 be two functions defined on 1 - ∞ , ∞ 2. (a) True or False: If y1 and y2 are linearly dependent on the interval 3a, b4, then y1 and y2 are linearly dependent on the smaller interval 3c, d4 ⊂ 3a, b4. (b) True or False: If y1 and y2 are linearly dependent on the interval 3a, b4, then y1 and y2 are linearly dependent on the larger interval 3C, D4 ⊃ 3a, b4. Let y1 1t2 = t 3 and y2 1t2 = 0 t 3 0 . Are y1 and y2 linearly independent on the following intervals? (a) 30, ∞ 2 (b) 1 - ∞ , 04 (c) 1 - ∞ , ∞ 2 (d) Compute the Wronskian W3y1, y2 41t2 on the interval 1 - ∞ , ∞ 2. Consider the linear equation (20)
In Problems 9 through 14, find a general solution to the given Cauchy–Euler equation for t 7 0. 9. t 2y″1t2 + 7ty′1t2 - 7y1t2 = 0
11. t 2
199
EXERCISES
In Problems 1 through 4, use Theorem 5 to discuss the existence and uniqueness of a solution to the differential equation that satisfies the initial conditions y112 = Y0 , y′112 = Y1, where Y0 and Y1 are real constants. 1. 11 + t 2 2y″ + ty′ - y = tan t 2. t1t - 32y″ + 2ty′ - y = t 2 3. t 2y″ + y = cos t y′ 4. ety″ + y = ln t t-3
10. t 2
Variable-Coefficient Equations
27.
(21)
a
t 2y″ - 3ty′ + 3y = 0 , for - ∞ 6 t 6 ∞ .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
200
Chapter 4
Linear Second-Order Equations
(a) Verify that y1 1t2 J t and y2 1t2 J t 3 are two solutions to (21) on 1 - ∞ , ∞ 2. Furthermore, show that y1 1t0 2y2= 1t0 2 - y1= 1t0 2y2 1t0 2 ≠ 0 for t0 = 1. (b) Prove that y1 1t2 and y2 1t2 are linearly independent on 1 - ∞ , ∞ 2. (c) Verify that the function y3 1t2 J 0 t 0 3 is also a solution to (21) on 1 - ∞ , ∞ 2. (d) Prove that there is no choice of constants c1, c2 such that y3 1t2 = c1y1 1t2 + c2y2 1t2 for all t in 1 - ∞ , ∞ 2. [Hint: Argue that the contrary assumption leads to a contradiction.] (e) From parts (c) and (d), we see that there is at least one solution to (21) on 1 - ∞ , ∞ 2 that is not expressible as a linear combination of the solutions y1 1t2, y2 1t2. Does this provide a counterexample to the theory in this section? Explain. 28. Let y1 1t2 = t 2 and y2 1t2 = 2t 0 t 0 . Are y1 and y2 linearly independent on the interval: (a) 30, ∞ 2? (b) 1 - ∞ , 04? (c) 1 - ∞ , ∞ 2? (d) Compute the Wronskian W3y1, y2 41t2 on the interval 1 - ∞ , ∞ 2. 29. Prove that if y1 and y2 are linearly independent solutions of y″ + py′ + qy = 0 on 1a, b2, then they cannot both be zero at the same point t0 in 1a, b2. 30. Superposition Principle. Let y1 be a solution to y″1t2 + p1t2y′1t2 + q1t2y1t2 = g1 1t2
on the interval I and let y2 be a solution to
y″1t2 + p1t2y′1t2 + q1t2y1t2 = g2 1t2
on the same interval. Show that for any constants k1 and k2, the function k1y1 + k2y2 is a solution on I to
y″1t2 + p1t2y′1t2 + q1t2y1t2 = k1g1 1t2 + k2g2 1t2 .
31. Determine whether the following functions can be Wronskians on -1 6 t 6 1 for a pair of solutions to some equation y″ + py′ + qy = 0 (with p and q continuous). (a) w1t2 = 6e4t (b) w1t2 = t 3 -1 (c) w1t2 = 1t + 12 (d) w1t2 K 0 32. By completing the following steps, prove that the Wronskian of any two solutions y1, y2 to the equation y″ + py′ + qy = 0 on 1a, b2 is given by Abel’s formula† W3y1, y2 41t2 = C exp 5− t0 and t in 1a, b2 ,
t
Lt 0
p1T2 dT 6 ,
where the constant C depends on y1 and y2. (a) Show that the Wronskian W satisfies the equation W′ + pW = 0. (b) Solve the separable equation in part (a). (c) How does Abel’s formula clarify the fact that the Wronskian is either identically zero or never zero on 1a, b2?
33. Use Abel’s formula (Problem 32) to determine (up to a constant multiple) the Wronskian of two solutions on 10, ∞ 2 to ty″ + 1t - 12y′ + 3y = 0 .
34. All that is known concerning a mysterious differential equation y″ + p1t2y′ + q1t2y = g1t2 is that the functions t, t 2, and t 3 are solutions. (a) Determine two linearly independent solutions to the corresponding homogeneous differential equation. (b) Find the solution to the original equation satisfying the initial conditions y122 = 2, y′122 = 5. (c) What is p1t2? [Hint: Use Abel’s formula for the Wronskian, Problem 32.] 35. Given that 1 + t, 1 + 2t, and 1 + 3t 2 are solutions to the differential equation y″ + p1t2y′ + q1t2y = g1t2, find the solution to this equation that satisfies y112 = 2, y′112 = 0. 36. Verify that the given functions y1 and y2 are linearly independent solutions of the following differential equation and find the solution that satisfies the given initial conditions. ty″ - 1t + 22y′ + 2y = 0 ; y1 1t2 = et , y2 1t2 = t 2 + 2t + 2 ; y′112 = 1 y112 = 0 , In Problems 37 through 39, find general solutions to the nonhomogeneous Cauchy–Euler equations using variation of parameters. 37. t 2z″ + tz′ + 9z = - tan13 ln t2 38. t 2y″ + 3ty′ + y = t -1 3 ≤ 39. t 2z″ - tz′ + z = t ¢1 + ln t 40. The Bessel equation of order one-half 1 t 2y″ + ty′ + at 2 − by = 0 , t + 0 4 has two linearly independent solutions, y1 1t2 = t -1>2 cos t, y2 1t2 = t -1>2 sin t . Find a general solution to the nonhomogeneous equation 1 t 2y″ + ty′ + ¢t 2 - ≤ y = t 5>2 , t 7 0 . 4 In Problems 41 through 44, a differential equation and a nontrivial solution f are given. Find a second linearly independent solution using reduction of order. 41. t 2y″ - 2ty′ - 4y = 0 , t 7 0 ; f1t2 = t -1 42. t 2y″ + 6ty′ + 6y = 0 , t 7 0 ; f1t2 = t -2 43. tx″ - 1t + 12x′ + x = 0 , t 7 0 ; f 1t2 = et 44. ty″ + 11 - 2t2y′ + 1t - 12y = 0 , t 7 0 ; f1t2 = et
†
Historical Footnote: Niels Abel derived this identity in 1827.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.8
Qualitative Considerations for Variable-Coefficient and Nonlinear Equations
45. Find a particular solution to the nonhomogeneous equation ty″ - 1t + 12y′ + y = t e , 2 2t
given that f1t2 = e is a solution to the corresponding homogeneous equation. 46. Find a particular solution to the nonhomogeneous equation t
11 - t2y″ + ty′ - y = 11 - t2 2 , given that f1t2 = t is a solution to the corresponding homogeneous equation. 47. In quantum mechanics, the study of the Schrödinger equation for the case of a harmonic oscillator leads to a consideration of Hermite’s equation, y″ − 2ty′ + Ly = 0 , where l is a parameter. Use the reduction of order formula to obtain an integral representation of a second linearly independent solution to Hermite’s equation for the given value of l and corresponding solution f 1t2. (a) l = 4 , f 1t2 = 1 - 2t 2 (b) l = 6 , f 1t2 = 3t - 2t 3 48. Complete the proof of Theorem 8 by solving equation (16). 49. The reduction of order procedure can be used more generally to reduce a homogeneous linear nth-order equation to a homogeneous linear 1n - 12th-order equation. For the equation ty″′ - ty″ + y′ - y = 0,
which has f 1t2 = et as a solution, use the substitution y 1t2 = v 1t2 f 1t2 to reduce this third-order equation to a homogeneous linear second-order equation in the variable w = v′.
201
50. The equation ty″′ + 11 - t2y″ + ty′ - y = 0
has f 1t2 = t as a solution. Use the substitution y 1t2 = v 1t2 f 1t2 to reduce this third-order equation to a homogeneous linear second-order equation in the variable w = v′. 51. Isolated Zeros. Let f1t2 be a solution to y″ + py′ + qy = 0 on (a, b), where p, q are continuous on (a, b). By completing the following steps, prove that if f is not identically zero, then its zeros in (a, b) are isolated, i.e., if f1t 0 2 = 0, then there exists a d 7 0 such that f1t2 ≠ 0 for 0 6 0 t - t0 0 6 d. (a) Suppose f1t 0 2 = 0 and assume to the contrary that for each n = 1, 2, c, the function f has a zero at tn, where 0 6 0 t0 - tn 0 6 1>n. Show that this implies f′1t0 2 = 0. [Hint: Consider the difference quotient for f at t0.] (b) With the assumptions of part (a), we have f1t0 2 = f′1t0 2 = 0. Conclude from this that f must be identically zero, which is a contradiction. Hence, there is some integer n0 such that f1t2 is not zero for 0 6 0 t - t0 0 6 1>n0. 52. The reduction of order formula (13) can also be derived from Abels’ identity (Problem 32). Let f 1t2 be a nontrivial solution to (10) and y1t2 a second linearly independent solution. Show that W3f, y4 y ′ ¢ ≤ = f f2 and then use Abel’s identity for the Wronskian W3 f, y4 to obtain the reduction of order formula.
4.8 Qualitative Considerations for Variable-Coefficient and Nonlinear Equations
There are no techniques for obtaining explicit, closed-form solutions to second-order linear differential equations with variable coefficients (with certain exceptions) or for nonlinear equations. In general, we will have to settle for numerical solutions or power series expansions. So it would be helpful to be able to derive, with simple calculations, some nonrigorous, qualitative conclusions about the behavior of the solutions before we launch the heavy computational machinery. In this section we first display a few examples that illustrate the profound differences that can occur when the equations have variable coefficients or are nonlinear. Then we show how the mass–spring analogy, discussed in Section 4.1, can be exploited to predict some of the attributes of solutions of these more complicated equations. To begin our discussion we display a linear constant-coefficient, a linear variable-coefficient, and two nonlinear equations.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
202
Chapter 4
Linear Second-Order Equations
(a) The equation 3y″ + 2y′ + 4y = 0
(1)
is linear, homogeneous with constant coefficients. We know everything about such equations; the solutions are, at worst, polynomials times exponentials times sinusoids in t, and unique solutions can be found to match any prescribed data y1a2, y′1a2 at any instant t = a. It has the superposition property: If y1 1t2 and y2 1t2 are solutions, so is y1t2 = c1y1 1t2 + c2y2 1t2. (b) The equation
11 − t 2 2y″ − 2ty′ + 2y = 0
(2)
also has the superposition property (Problem 30, Exercises 4.7). It is a linear variable-coefficient equation and is a special case of Legendre’s equation 11 - t 2 2y″ - 2ty′ + ly = 0, which arises in the analysis of wave and diffusion phenomena in spherical coordinates. (c) The equations (3)
y″ - 6y2 = 0 ,
(4)
y″ - 24y1>3 = 0
do not share the superposition property because of the square and the cube root of y terms (e.g., the quadratic term y2 does not reduce to y21 + y22). They are nonlinear†equations.
The Legendre equation (2) has one simple solution, y1 1t2 = t, as can easily be verified by mental calculation. A second, linearly independent, solution for -1 6 t 6 1 can be derived by the reduction of order procedure of Section 4.7. Traditionally, the second solution is taken to be (5)
y2 1t2 =
t 1+t lna b -1. 2 1-t
Notice in particular the behavior near t = {1; none of the solutions of our constant-coefficient equations ever diverged at a finite point! We would have anticipated troublesome behavior for (2) at t = {1 if we had rewritten it in standard form as (6)
y″ -
2t 2 y′ + y = 0, 2 1-t 1 - t2
since Theorem 5, page 192, only promises existence and uniqueness between these points. As we have noted, there are no general solution procedures for solving nonlinear equations. However, the following lemma is very useful in some situations such as equations (3), (4). It has an extremely significant physical interpretation, which we will explore in Project D of Chapter 5; for now we will merely tantalize the reader by giving it a suggestive name.
†
Although the quadratic y2 renders equation (3) nonlinear, the occurrence of t 2 in (2) does not spoil its linearity (in y).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.8
Qualitative Considerations for Variable-Coefficient and Nonlinear Equations
203
The Energy Integral Lemma Lemma 4. (7)
Let y1t2 be a solution to the differential equation
y″ = f1y2 ,
where f1y2 is a continuous function that does not depend on y′ or the independent variable t. Let F1y2 be an indefinite integral of f1y2, that is, f1y2 =
d F1y2 . dy
Then the quantity (8)
E1t2 J
1 y′1t2 2 - F 1 y1t2 2 2
is constant; i.e., (9)
d E1t2 = 0 . dt
Proof. This is immediate; we insert (8), differentiate, and apply the differential equation (7): d 1 d E1t2 = c y′1t2 2 - F 1 y1t2 2 d dt dt 2 dF 1 = 2y′y″ y′ 2 dy = y′3y″ - f1y24 = 0. ◆ As a result, an equation of the form (7) can be reduced to (10)
1 1y′2 2 - F1y2 = K , 2
for some constant K, which is equivalent to the separable first-order equation dy = { 223F1y2 + K4 dt having the implicit two-parameter solution (Section 2.2) (11)
t = {
dy L 223F1y2 + K4
+c.
We will use formula (11) to illustrate some startling features of nonlinear equations.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
204
Chapter 4
Example 1
Solution
Linear Second-Order Equations
Apply the energy integral lemma to explore the solutions of the nonlinear equation y″ = 6y2, given in (3). Since 6y2 =
d 12y3 2, the solution form (11) becomes dy
t = {
dy L 223y3 + K4
+c.
For simplicity we take the plus sign and focus attention on solutions with K = 0. Then we find t = 1 12 y -3>2 dy = -y -1>2 + c, or (12)
y1t2 = 1c - t2 -2 ,
for any value of the constant c. Clearly, this equation is an enigma; solutions can blow up at t = 1, t = 2, t = p, or anywhere—and there is no clue in equation (3) as to why this should happen! Moreover, we have found an infinite family of pairwise linearly independent solutions (rather than the expected two). Yet we still cannot assemble, out of these, a solution matching (say) y102 = 1, y′102 = 3; all our solutions (12) have y′102 = 2y102 3>2, and the absence of a superposition principle voids the use of linear combinations c1y1 1t2 + c2y2 1t2. ◆ Example 2
Solution
Apply the energy integral lemma to explore the solutions of the nonlinear equation y″ = 24y1>3, given in (4). Since 24y1>3 = t = {
d 118y4>3 2, formula (11) gives dy dy L 22318y4>3 + K4
+c.
Again we take the plus sign and focus attention on solutions with K = 0. Then we find t = y1>3 >2 + c. In particular, y1 1t2 = 8t 3 is a solution, and it satisfies the initial conditions y102 = 0, y′102 = 0. But note that y2 1t2 K 0 is also a solution to (4), and it satisfies the same initial conditions! Hence, the uniqueness feature, guaranteed for linear equations by Theorem 5 on page 192 of Section 4.7, can fail in the nonlinear case. ◆ So these examples have demonstrated violations of the existence and uniqueness properties (as well as “finiteness”) that we have come to expect from the constant-coefficient case. It should not be surprising, then, that the solution techniques for variable-coefficient and nonlinear second-order equations are more complicated—when, indeed, they exist. Recall, however, that in Section 4.3 we saw that our familiarity with the mass–spring oscillator equation (13)
Fext = 3inertia4y″ + 3damping4y′ + 3stiffness4y = my″ + by′ + ky
was helpful in picturing the qualitative features of the solutions of other constant-coefficient equations. (See Figure 4.1, page 152.) By pushing these analogies further, we can also anticipate some of the features of the solutions in the variable-coefficient and nonlinear cases. One of the simplest linear second-order differential equations with variable coefficients is (14)
y″ + ty = 0 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.8
Qualitative Considerations for Variable-Coefficient and Nonlinear Equations
205
y
t
Figure 4.12 Solution to equation (14)
Example 3 Solution
Using the mass–spring analogy, predict the nature of the solutions to equation (14) for t 7 0. Comparing (13) with (14), we see that the latter equation describes a mass–spring oscillator where the spring stiffness “k” varies in time—in fact, it stiffens as time passes [“k” = t in equation (14)]. Physically, then, we would expect to see oscillations whose frequency increases with time, while the amplitude of the oscillations diminishes (because the spring gets harder to stretch). The numerically computed solution in Figure 4.12 displays precisely this behavior. ◆ Remark Schemes for numerically computing solutions to second-order equations will be discussed in Section 5.3. If such schemes are available, then why is there a need for the qualitative analysis discussed in this section? The answer is that numerical methods provide only approximations to solutions of initial value problems, and their accuracy is sometimes difficult to predict (especially for nonlinear equations). For example, numerical methods are often ineffective near points of discontinuity or over the long time intervals needed to study the asymptotic behavior. And this is precisely when qualitative arguments can lend insight into the reasonableness of the computed solution. It is easy to verify (Problem 1) that if y1t2 is a solution of the Airy equation (15)
y″ - ty = 0 ,
then y1 -t2 solves y″ + ty = 0, so “Airy functions” exhibit the behavior shown in Figure 4.12 for negative time. For positive t the Airy equation has a negative stiffness “k” = -t, with magnitude increasing in time. As we observed in Example 5 of Section 4.3, negative stiffness tends to reinforce, rather than oppose, displacements, and the solutions y1t2 grow rapidly with (positive) time. The solution known as the Airy function of the second kind Bi1t2, depicted in Figure 4.13, behaves exactly as expected.
Bi(t)
Ai(t) t
Figure 4.13 Airy functions
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
206
Chapter 4
Linear Second-Order Equations
In Section 4.3 we also pointed out that mass–spring systems with negative spring stiffness can have isolated bounded solutions if the initial displacement y102 and velocity y′102 are precisely selected to counteract the repulsive spring force. The Airy function of the first kind Ai1t2, also depicted in Figure 4.13, is such a solution for the “Airy spring”; the initial inwardly directed velocity is just adequate to overcome the outward push of the stiffening spring, and the mass approaches a delicate equilibrium state y1t2 K 0. Now let’s look at Bessel’s equation. It arises in the analysis of wave or diffusion phenomena in cylindrical coordinates. The Bessel equation of order n is written (16)
y″ +
1 n2 y′ + a 1 − 2 b y = 0 . t t
Clearly, there are irregularities at t = 0, analogous to those at t = {1 for the Legendre equation (2); we will explore these in depth in Chapter 8.
Example 4 Solution
Apply the mass–spring analogy to predict qualitative features of solutions to Bessel’s equation for t 7 0. Comparing (16) with the paradigm (13), we observe that • the inertia “m” = 1 is fixed at unity; • there is positive damping 1“b” = 1>t2, although it weakens with time; and • the stiffness 1“k” = 1 - n2 >t 2 2 is positive when t 7 n and tends to 1 as t S + ∞. Solutions, then, should be expected to oscillate with amplitudes that diminish slowly (due to the damping), and the frequency of the oscillations should settle at a constant value (given, according to the procedures of Section 4.3, by 2k>m = 1 radian per unit time). The graphs of the Bessel functions Jn 1t2 and Yn 1t2 of the first and second kind of order n = 12 exemplify these qualitative predictions; see Figure 4.14. The effect of the singularities in the coefficients at t = 0 is manifested in the graph of Y1>2 1t2. ◆ Although most Bessel functions have to be computed by power series methods, if the order n is a half-integer, then Jn 1t2 and Yn 1t2 have closed-form expressions. In fact, J1>2 1t2 = 22> 1pt2 sin t and Y1>2 1t2 = - 22> 1pt2 cos t. You can verify directly that these functions solve equation (16).
J1/2(t) t
Y1/2(t)
Figure 4.14 Bessel functions
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.8
207
Qualitative Considerations for Variable-Coefficient and Nonlinear Equations
I2(t)
K2(t)
t Figure 4.15 Modified Bessel functions
Example 5
Give a qualitative analysis of the modified Bessel equation of order n: (17)
y″ +
n2 1 y′ − a 1 − 2 b y = 0 . t t
Solution
This equation also exhibits unit mass and positive, diminishing, damping. However, the stiffness now converges to negative 1. Accordingly, we expect typical solutions to diverge as t S + ∞. The modified Bessel function of the first kind, In 1t2 of order n = 2 in Figure 4.15 follows this prediction, whereas the modified Bessel function of the second kind, Kn 1t2 of order n = 2 in Figure 4.15, exhibits the same sort of balance of initial position and velocity as we saw for the Airy function Ai1t2. Again, the effect of the singularity at t = 0 is evident. ◆
Example 6
Use the mass–spring model to predict qualitative features of the solutions to the nonlinear Duffing equation (18)
Solution
y″ + y + y3 = y″ + 11 + y2 2y = 0 .
Although equation (18) is nonlinear, it can be matched with the paradigm (13) if we envision unit mass, no damping, and a (positive) stiffness “k” = 1 + y2, which increases as the displacement y gets larger. (This increasing-stiffness effect is built into some popular mattresses for therapeutic reasons.)† Such a spring grows stiffer as the mass moves farther away, but it restores to its original value when the mass returns. Thus, high-amplitude excursions should oscillate faster than low-amplitude ones, and the sinusoidal shapes in the graphs of y1t2 should be “pinched in” somewhat at their peaks. These qualitative predictions are demonstrated by the numerically computed solutions plotted in Figure 4.16. ◆ y
t
Figure 4.16 Solution graphs for the Duffing equation †
Graphic depictions of oscillations on a therapeutic mattress are best left to one's imagination, the editors say.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
208
Chapter 4
Linear Second-Order Equations
y O ,
m
u
t
mg sin u mg
Figure 4.17 Solutions to the van der Pol equation
Figure 4.18 A pendulum
The fascinating van der Pol equation (19)
y″ − 11 - y2 2y′ + y = 0
originated in the study of the electrical oscillations observed in vacuum tubes. Example 7 Solution
Predict the behavior of the solutions to equation (19) using the mass–spring model. By comparison to the paradigm (13), we observe unit mass and stiffness, positive damping 3“b” = - 11 - y2 24 when 0 y1t2 0 7 1, and negative damping when 0 y1t2 0 6 1. Friction thus dampens large-amplitude motions but energizes small oscillations. The result, then, is that all (nonzero) solutions tend to a limit cycle whose friction penalty incurred while 0 y1t2 0 7 1 is balanced by the negative-friction boost received while 0 y1t2 0 6 1. The computer-generated Figure 4.17 illustrates the convergence to the limit cycle for some solutions to the van der Pol equation†. ◆ Finally, we consider the motion of the pendulum depicted in Figure 4.18. This motion is measured by the angle u1t2 that the pendulum makes with the vertical line through O at time t. As the diagram shows, the component of gravity, which exerts a torque on the pendulum and thus accelerates the angular velocity du>dt, is given by -mg sin u. Consequently, the rotational analog of Newton’s second law, torque equals rate of change of angular momentum, dictates (see Problem 7) (20)
m/2u″ = -/mg sin u ,
or (21) Example 8 Solution
g mU″ + m sin U = 0 . O
Give a qualitative analysis of the motion of the pendulum. If we rewrite (21) as mu″ +
mg sin u u = 0 / u
†
The vdP equation also provides a model for the world's most accurate pendulum clock, a detail of which appears on the cover.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.8
Qualitative Considerations for Variable-Coefficient and Nonlinear Equations
209
(mg, ) sin mg/,
22p
2p
2p
p
Figure 4.19 Pendulum “stiffness”
and compare with the paradigm (13), we see fixed mass m, no damping, and a stiffness given by “k” =
mg sin u . / u
This stiffness is plotted in Figure 4.19, where we see that small-amplitude motions are driven by a nearly constant spring stiffness of value mg>/, and the considerations of Section 4.3 dictate the familiar formula v =
g k = Am A/
for the angular frequency of the nearly sinusoidal oscillations. See Figure 4.20, which compares a computer-generated solution to equation (21) to the solution of the constant-stiffness equation with the same initial conditions.† For larger motions, however, the diminishing stiffness distorts the sinusoidal nature of the graph of u1t2, and lowers the frequency. This is evident in Figure 4.21 on page 210.
True stiffness p rad 6
t
Constant stiffness Figure 4.20 Small-amplitude pendulum motion
†
The latter is identified as the linearized equation in Project D on page 236.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
210
Chapter 4
Linear Second-Order Equations
3p rad 8
t
Figure 4.21 Large-amplitude pendulum motion
Finally, if the motion is so energetic that u reaches the value p, the stiffness changes sign and abets the displacement; the pendulum passes the apex and gains speed as it falls, and this spinning motion repeats continuously. See Figure 4.22. ◆
p
2p
3p
4p
5p
6p
t
Figure 4.22 Very-large-amplitude pendulum motion
The computation of the solutions of the Legendre, Bessel, and Airy equations and the analysis of the nonlinear equations of Duffing, van der Pol, and the pendulum have challenged many of the great mathematicians of the past. It is gratifying, then, to note that so many of their salient features are susceptible to the qualitative reasoning we have used herein.
4.8
EXERCISES
1. Show that if y1t2 satisfies y″ - ty = 0, then y1 -t2 satisfies y″ + ty = 0. 2. Using the paradigm (13), what are the inertia, damping, and stiffness for the equation y″ - 6y2 = 0? If y 7 0, what is the sign of the “stiffness constant”? Does your answer help explain the runaway behavior of the solutions y1t2 = 1> 1c - t2 2? 3. Try to predict the qualitative features of the solution to y″ - 6y2 = 0 that satisfies the initial conditions y102 = -1, y′102 = - 1. Compare with the computergenerated Figure 4.23. [Hint: Consider the sign of the spring stiffness.]
y
t
21
Figure 4.23 Solution for Problem 3
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.8
Qualitative Considerations for Variable-Coefficient and Nonlinear Equations
4. Show that the three solutions 1> 11 - t2 2, 1> 12 - t2 2, and 1> 13 - t2 2 to y″ - 6y2 = 0 are linearly independent on 1 - 1, 12. (See Problem 35, Exercises 4.2, page 164.) 5. (a) Use the energy integral lemma to derive the family of solutions y1t2 = 1> 1t - c2 to the equation y″ = 2y3. (b) For c ≠ 0 show that these solutions are pairwise linearly independent for different values of c in an appropriate interval around t = 0. (c) Show that none of these solutions satisfies the initial conditions y102 = 1, y′102 = 2. 6. Use the energy integral lemma to show that motions of the free undamped mass–spring oscillator my″ + ky = 0 obey
211
10. Use the result of Problem 8 to prove that if the pendulum in Figure 4.18 on page 208 is released from rest at the angle a, 0 6 a 6 p, then 0 u1t2 0 … a for all t. [Hint: The initial conditions are u102 = a, u′102 = 0; argue that the constant in Problem 8 equals - 1g>/2cos a.] y
t
m1y′2 2 + ky2 = constant . 7. Pendulum Equation. To derive the pendulum equation (21), complete the following steps. (a) The angular momentum of the pendulum mass m measured about the support O in Figure 4.18 on page 208 is given by the product of the “lever arm” length / and the component of the vector momentum mv perpendicular to the lever arm. Show that this gives angular momentum = m/2
Figure 4.24 Solution to the Rayleigh equation y
du . dt
(b) The torque produced by gravity equals the product of the lever arm length / and the component of gravitational (vector) force mg perpendicular to the lever arm. Show that this gives
t
torque = - /mg sin u .
Figure 4.25 Solution to the Rayleigh equation
(c) Now use Newton’s law of rotational motion to deduce the pendulum equation (20). 8. Use the energy integral lemma to show that pendulum motions obey 1u′2 2
11. Use the mass–spring analogy to explain the qualitative nature of the solutions to the Rayleigh equation y″ − 31 − 1y′2 2 4y′ + y = 0
(22)
g cos u = constant . 2 / 9. Use the result of Problem 8 to find the value of u′102, the initial velocity, that must be imparted to a pendulum at rest to make it approach (but not cross over) the apex of its motion. Take / = g for simplicity.
depicted in Figures 4.24 and 4.25. 12. Use reduction of order to derive the solution y2 1t2 in equation (5) for Legendre’s equation. 13. Figure 4.26 contains graphs of solutions to the Duffing, Airy, and van der Pol equations. Try to match the solution to the equation.
-
y
y
y
t
t
t (a)
(b)
(c)
Figure 4.26 Solution graphs for Problem 13
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
212
Chapter 4
Linear Second-Order Equations
14. Verify that the formulas for the Bessel functions J1>2 1t2, Y1>2 1t2 do indeed solve equation (16). 15. Use the mass–spring oscillator analogy to decide whether all solutions to each of the following differential equations are bounded as t S + ∞ . (a) y″ + t 2y = 0 (b) y″ - t 2y = 0 (c) y″ + y5 = 0
(d) y″ + y6 = 0
(e) y″ + 14 + 2 cos t2y = 0 (Mathieu’s equation)
17. Armageddon. Earth revolves around the sun in an approximately circular orbit with radius r = a, completing a revolution in the time T = 2p1a3 >GM2 1>2, which is one Earth year; here M is the mass of the sun and G is the universal gravitational constant. The gravitational force of the sun on Earth is given by GMm>r 2, where m is the mass of Earth. Therefore, if Earth “stood still,” losing its orbital velocity, it would fall on a straight line into the sun in accordance with Newton’s second law:
(f) y″ + ty′ + y = 0 (g) y″ - ty′ - y = 0 16. Use the energy integral lemma to show that every solution to the Duffing equation (18) is bounded; that is, 0 y1t2 0 … M for some M. [Hint: First argue that y2 >2 + y4 >4 … K for some K.]
m
d 2r GMm = - 2 . 2 dt r
If this calamity occurred, what fraction of the normal year T would it take for Earth to splash into the sun (i.e., achieve r = 0)? [Hint: Use the energy integral lemma and the initial conditions r102 = a, r′102 = 0.]
4.9 A Closer Look at Free Mechanical Vibrations In this section we return to the mass–spring system depicted in Figure 4.1 (page 152) and analyze its motion in more detail. The governing equation is (1)
Fext = 3inertia4
d 2y dt
2
+ 3damping4
dy + 3stiffness4y dt
= my″ + by′ + ky .
Let’s focus on the simple case in which b = 0 and Fext = 0, the so-called undamped, free case. Then equation (1) reduces to (2)
m
d 2y dt 2
+ ky = 0
and, when divided by m, becomes (3)
d 2y dt 2
+ V2y = 0 ,
where v = 2k>m. The auxiliary equation associated with (3) is r 2 + v2 = 0, which has complex conjugate roots {vi. Hence, a general solution to (3) is (4)
y1t2 = C1 cos Vt + C2 sin Vt .
We can express y1t2 in the more convenient form (5)
y1t2 = A sin1Vt + F2 ,
with A Ú 0, by letting C1 = A sin f and C2 = A cos f. That is, A sin1vt + f2 = A cos vt sin f + A sin vt cos f = C1 cos vt + C2 sin vt .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.9
A Closer Look at Free Mechanical Vibrations
213
y
A
2f/v
Period 2p/v
Period 2p/v t 2p f –– v 2 –– v
Figure 4.27 Simple harmonic motion of undamped, free vibrations
Solving for A and f in terms of C1 and C2, we find (6)
A = 2C 21 + C 22
and
tan F =
C1 , C2
where the quadrant in which f lies is determined by the signs of C1 and C2. This is because sin f has the same sign as C1 1sin f = C1 >A2 and cos f has the same sign as C2 1cos f = C2 >A2. For example, if C1 7 0 and C2 6 0, then f is in Quadrant II. (Note, in particular, that f is not simply the arctangent of C1 >C2, which would lie in Quadrant IV.) It is evident from (5) that, as we predicted in Section 4.1, the motion of a mass in an undamped, free system is simply a sine wave, or what is called simple harmonic motion. (See Figure 4.27.) The constant A is the amplitude of the motion and f is the phase angle. The motion is periodic with period 2p>v and natural frequency v>2p, where v = 2k>m. The period is measured in units of time, and the natural frequency has the dimensions of periods (or cycles) per unit time. The constant v is the angular frequency for the sine function in (5) and has dimensions of radians per unit time. To summarize: angular frequency = v = 2k>m 1rad/sec2 , natural frequency = v>2p 1cycles/sec2 , period = 2p>v 1sec2 .
Observe that the amplitude and phase angle depend on the constants C1 and C2, which, in turn, are determined by the initial position and initial velocity of the mass. However, the period and frequency depend only on k and m and not on the initial conditions. Example 1
A 1>8-kg mass is attached to a spring with stiffness k = 16 N/m, as depicted in Figure 4.1. The mass is displaced 1>2 m to the right of the equilibrium point and given an outward velocity (to the right) of 22 m/sec. Neglecting any damping or external forces that may be present, determine the equation of motion of the mass along with its amplitude, period, and natural frequency. How long after release does the mass pass through the equilibrium position?
Solution
Because we have a case of undamped, free vibration, the equation governing the motion is (3). Thus, we find the angular frequency to be v =
k 16 = = 822 rad /sec . Am A 1>8
Substituting this value for v into (4) gives (7)
y1t2 = C1 cos1822 t2 + C2 sin1822 t2 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
214
Chapter 4
Linear Second-Order Equations
Now we use the initial conditions, y102 = 1>2 m and y′102 = 22 m/sec, to solve for C1 and C2 in (7). That is, 1>2 = y102 = C1 , 22 = y′102 = 822C2 , and so C1 = 1>2 and C2 = 1>8. Hence, the equation of motion of the mass is (8)
y1t2 =
1 1 cos1822 t2 + sin1822 t2 . 2 8
To express y1t2 in the alternative form (5), we set A = 2C 21 + C 22 = 211>22 2 + 11>82 2 = tan f =
217 , 8
1>2 C1 = 4. = C2 1>8
Since both C1 and C2 are positive, f is in Quadrant I, so f = arctan 4 ≈ 1.326. Hence, (9)
y1t2 =
217 sin1822 t + f2 . 8
Thus, the amplitude A is 217>8 m, and the phase angle f is approximately 1.326 rad. The period is P = 2p>v = 2p> 18222 = 22p>8 sec, and the natural frequency is 1>P = 8> 1 22p2 cycles per sec. Finally, to determine when the mass will pass through the equilibrium position, y = 0, we must solve the trigonometric equation (10)
y1t2 =
217 sin1822 t + f2 = 0 8
for t. Equation (10) will be satisfied whenever (11)
822 t + f = np
t =
np - f
≈
np - 1.326
, 822 822 n an integer. Putting n = 1 in (11) determines the first time t when the mass crosses its equilibrium position: t =
p-f 822
or
≈ 0.16 sec . ◆
In most applications of vibrational analysis, of course, there is some type of frictional or damping force affecting the vibrations. This force may be due to a component in the system, such as a shock absorber in a car, or to the medium that surrounds the system, such as air or some liquid. So we turn to a study of the effects of damping on free vibrations, and equation (2) generalizes to (12)
m
d 2y dt
2
+b
dy + ky = 0 . dt
The auxiliary equation associated with (12) is (13)
mr 2 + br + k = 0 ,
and its roots are
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.9
(14)
A Closer Look at Free Mechanical Vibrations
215
1 b -b { 2b2 - 4mk 2b2 - 4mk . = { 2m 2m 2m
As we found in Sections 4.2 and 4.3, the form of the solution to (12) depends on the nature of these roots and, in particular, on the discriminant b2 - 4mk.
Underdamped or Oscillatory Motion (b2 * 4mk) When b2 6 4mk, the discriminant b2 - 4mk is negative, and there are two complex conjugate roots to the auxiliary equation (13). These roots are a { ib, where b 1 (15) a J , b J 24mk - b2 . 2m 2m Hence, a general solution to (12) is (16)
y1t2 = eat 1C1 cos bt + C2 sin bt2 .
As we did with simple harmonic motion, we can express y1t2 in the alternate form (17)
y1t2 = Aeat sin1bt + f2 ,
where A = 2C 21 + C 22 and tan f = C1 >C2. It is now evident that y1t2 is the product of an exponential damping factor, Aeat = Ae-1b>2m2t , and a sine factor, sin1bt + f2, which accounts for the oscillatory motion. Because the sine factor varies between –1 and 1 with period 2p>b, the solution y1t2 varies between -Aeat and Aeat with quasiperiod P = 2p>b = 4mp> 24mk - b2 and quasifrequency 1>P. Moreover, since b and m are positive, a = -b>2m is negative, and thus the exponential factor tends to zero as t S + ∞. A graph of a typical solution y1t2 is given in Figure 4.28. The system is called underdamped because there is not enough damping present (b is too small) to prevent the system from oscillating. It is easily seen that as b S 0 the damping factor approaches the constant A and the quasifrequency approaches the natural frequency of the corresponding undamped harmonic motion. Figure 4.28 demonstrates that the values of t where the graph of y1t2 touches the exponential curves {Aeat are close to (but not exactly) the same values of t at which y1t2 attains its relative maximum and minimum values (see Problem 13 on page 221). y
A
Aeat Aeatsin(bt 1 f)
t
2A
2Aeat
Quasiperiod 5 2p/b
Figure 4.28 Damped oscillatory motion
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
216
Chapter 4
Linear Second-Order Equations
y
y
y
no local max or min
one local max
one local min
t
t
(a)
t
(b)
(c)
Figure 4.29 Overdamped vibrations
Overdamped Motion (b2 + 4mk) When b2 7 4mk, the discriminant b2 - 4mk is positive, and there are two distinct real roots to the auxiliary equation (13): (18)
r1 = -
1 1 b b 2b2 - 4mk , r2 = 2b2 - 4mk . + 2m 2m 2m 2m
Hence, a general solution to (12) in this case is (19)
y1t2 = C1er1t + C2er2t .
Obviously, r2 is negative. And since b2 7 b2 - 4mk (that is, b 7 2b2 - 4mk ), it follows that r1 is also negative. Therefore, as t S + ∞, both of the exponentials in (19) decay and y1t2 S 0. Moreover, since y′1t2 = C1r1er1t + C2r2er2t = er1t 1C1r1 + C2r2e1r2-r12t 2 ,
we see that the derivative is either identically zero (when C1 = C2 = 0) or vanishes for at most one value of t (when the factor in parentheses is zero). If the trivial solution y1t2 K 0 is ignored, it follows that y1t2 has at most one local maximum or minimum for t 7 0. Therefore, y1t2 does not oscillate. This leaves, qualitatively, only three possibilities for the motion of y1t2, depending on the initial conditions. These are illustrated in Figure 4.29. This case where b2 7 4mk is called overdamped motion.
Critically Damped Motion (b2 = 4mk) When b2 = 4mk, the discriminant b2 - 4mk is zero, and the auxiliary equation has the repeated root -b>2m. Hence, a general solution to (12) is now (20)
y1t2 = 1C1 + C2t2e-1b>2m2t .
To understand the motion described by y1t2 in (20), we first consider the behavior of y1t2 as t S + ∞. By L’Hôpital’s rule, (21)
lim lim y1t2 = S
t S +∞
t
+∞
C1 + C2t e
1b>2m2t
= S lim t
C2
+∞ 1b>2m2e1b>2m2t
= 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.9
A Closer Look at Free Mechanical Vibrations
217
(recall that b>2m 7 0). Hence, y1t2 dies off to zero as t S + ∞. Next, since y′1t2 = a C2 -
b b C1 C tb e-1b>2m2t , 2m 2m 2
we see again that a nontrivial solution can have at most one local maximum or minimum for t 7 0, so motion is nonoscillatory. If b were any smaller, oscillation would occur. Thus, the special case where b2 = 4mk is called critically damped motion. Qualitatively, critically damped motions are similar to overdamped motions (see Figure 4.29 again). Example 2
Assume that the motion of a mass–spring system with damping is governed by (22)
d 2y dt
2
+b
dy + 25y = 0 ; y102 = 1 , y′102 = 0 . dt
Find the equation of motion and sketch its graph for the three cases where b = 6, 10, and 12. Solution
The auxiliary equation for (22) is (23)
r 2 + br + 25 = 0 ,
whose roots are (24)
r = -
b 1 { 2b2 - 100 . 2 2
Case 1. When b = 6, the roots (24) are -3 { 4i. This is thus a case of underdamping, and the equation of motion has the form (25)
y1t2 = C1e-3t cos 4t + C2e-3t sin 4t .
Setting y102 = 1 and y′102 = 0 gives the system C1 = 1 ,
-3C1 + 4C2 = 0 ,
whose solution is C1 = 1, C2 = 3>4. To express y1t2 as the product of a damping factor and a sine factor [recall equation (17)], we set A = 2C 12 + C 22 =
C1 5 4 , tan f = = , 4 C2 3
where f is a Quadrant I angle, since C1 and C2 are both positive. Then (26)
y1t2 =
5 -3t e sin14t + f2 , 4
where f = arctan14>32 ≈ 0.9273. The underdamped spring motion is shown in Figure 4.30(a) on page 218. Case 2. When b = 10, there is only one (repeated) root to the auxiliary equation (23), namely, r = -5. This is a case of critical damping, and the equation of motion has the form (27)
y1t2 = 1C1 + C2t2e-5t .
Setting y102 = 1 and y′102 = 0 now gives C1 = 1 , C2 - 5C1 = 0 , and so C1 = 1, C2 = 5. Thus, (28)
y1t2 = 11 + 5t2e-5t .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
218
Chapter 4
Linear Second-Order Equations
y
y 5 23t 4e 11 + 6 11 e(26 1 22
11 )t
1
11 2 6 11 e(26 2 22
11 )t
5 23t sin(4t 1 0.9273) 4e
t
(1 1 5t)e25t
t
b 5 10 b 5 12
b56 2 5 e23t 4
(a)
(b) Figure 4.30 Solutions for various values of b
The graph of y1t2 given in (28) is represented by the lower curve in Figure 4.30(b). Notice that y1t2 is zero only for t = -1>5 and hence does not cross the t-axis for t 7 0. Case 3. When b = 12, the roots to the auxiliary equation are -6 { 211. This is a case of overdamping, and the equation of motion has the form (29)
y1t2 = C1e1-6+2112t + C2e1-6 - 2112t .
Setting y102 = 1 and y′102 = 0 gives C1 + C2 = 1 ,
1 -6 + 2112C1 + 1 -6 - 2112C2 = 0 ,
from which we find C1 = 111 + 62112 >22 and C2 = 111 - 62112 >22. Hence, (30)
y1t2 = =
11 + 6211 1-6+2112t 11 - 6211 1-6 - 2112t e + e 22 22 e1-6+2112t e 11 + 6211 + 111 - 62112e-2211t f . 22
The graph of this overdamped motion is represented by the upper curve in Figure 4.30(b). ◆ It is interesting to observe in Example 2 that when the system is underdamped 1b = 62, the solution goes to zero like e-3t; when the system is critically damped 1b = 102, the solution tends to zero roughly like e-5t; and when the system is overdamped 1b = 122, the solution goes to zero like e1-6+2112t ≈ e-2.68t. This means that if the system is underdamped, it not only oscillates but also dies off slower than if it were critically damped. Moreover, if the system is overdamped, it again dies off more slowly than if it were critically damped (in agreement with our physical intuition that the damping forces hinder the return to equilibrium).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.9
A Closer Look at Free Mechanical Vibrations
219
y 1m 2 k 5 4 N/m
1 kg 4 b 5 1 N-sec/m
t
Equilibrium
2.5 maximum displacement is y(0.096) < 20.55 m
(a)
(b)
Figure 4.31 Mass–spring system and graph of motion for Example 3
Example 3
A 1>4-kg mass is attached to a spring with a stiffness 4 N/m as shown in Figure 4.31(a). The damping constant b for the system is 1 N-sec/m. If the mass is displaced 1>2 m to the left and given an initial velocity of 1 m/sec to the left, find the equation of motion. What is the maximum displacement that the mass will attain?
Solution
Substituting the values for m, b, and k into equation (12) and enforcing the initial conditions, we obtain the initial value problem (31)
1 d 2y dy 1 + + 4y = 0 ; y102 = - , y′102 = -1 . 2 4 dt dt 2
The negative signs for the initial conditions reflect the facts that the initial displacement and push are to the left. It can readily be verified that the solution to (31) is (32)
1 1 -2t y1t2 = - e-2t cos 1 223 t 2 e sin 1 223 t 2 , 2 23
or (33)
y1t2 =
7 -2t e sin 1 223 t + f 2 , A 12
where tan f = 23>2 and f lies in Quadrant III because C1 = -1>2 and C2 = -1> 23 are both negative. [See Figure 4.31(b) for a sketch of y1t2.] To determine the maximum displacement from equilibrium, we must determine the maximum value of 0 y1t2 0 on the graph in Figure 4.31(b). Because y1t2 dies off exponentially, this will occur at the first critical point of y1t2. Computing y′1t2 from (32), setting it equal to zero, and solving gives y′1t2 = e-2t e 5 23
5 23
sin 1 223 t 2 - cos 1 223 t 2 f = 0 ,
sin1223 t2 = cos1223 t2 ,
tan1223 t2 =
23 . 5
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
220
Chapter 4
Linear Second-Order Equations
Thus, the first positive root is t =
1 223
arctan
23 ≈ 0.096 . 5
Substituting this value for t back into equation (32) or (33) gives y10.0962 ≈ -0.55. Hence, the maximum displacement, which occurs to the left of equilibrium, is approximately 0.55 m. ◆
4.9
EXERCISES
All problems refer to the mass–spring configuration depicted in Figure 4.1, page 152. 1. A 2-kg mass is attached to a spring with stiffness k = 50 N/m. The mass is displaced 1>4 m to the left of the equilibrium point and given a velocity of 1 m/sec to the left. Neglecting damping, find the equation of motion of the mass along with the amplitude, period, and frequency. How long after release does the mass pass through the equilibrium position? 2. A 3-kg mass is attached to a spring with stiffness k = 48 N/m. The mass is displaced 1>2 m to the left of the equilibrium point and given a velocity of 2 m/sec to the right. The damping force is negligible. Find the equation of motion of the mass along with the amplitude, period, and frequency. How long after release does the mass pass through the equilibrium position? 3. The motion of a mass–spring system with damping is governed by y″1t2 + by′1t2 + 16y1t2 = 0 ; y102 = 1 ,
6. The motion of a mass–spring system with damping is governed by
y″1t2 + 4y′1t2 + ky1t2 = 0 ; y102 = 1 , y′102 = 0 .
7.
8.
9.
y′102 = 0 .
Find the equation of motion and sketch its graph for b = 0, 6, 8, and 10. 4. The motion of a mass–spring system with damping is governed by
10.
y″1t2 + by′1t2 + 64y1t2 = 0 ; y102 = 1 ,
y′102 = 0 .
Find the equation of motion and sketch its graph for b = 0, 10, 16, and 20. 5. The motion of a mass–spring system with damping is governed by y″1t2 + 10y′1t2 + ky1t2 = 0 ; y102 = 1 ,
y′102 = 0 .
Find the equation of motion and sketch its graph for k = 20, 25, and 30.
11.
12.
Find the equation of motion and sketch its graph for k = 2, 4, and 6. A 1>8-kg mass is attached to a spring with stiffness 16 N/m. The damping constant for the system is 2 N-sec/m. If the mass is moved 3>4 m to the left of equilibrium and given an initial leftward velocity of 2 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. A 20-kg mass is attached to a spring with stiffness 200 N/m. The damping constant for the system is 140 N-sec/m. If the mass is pulled 25 cm to the right of equilibrium and given an initial leftward velocity of 1 m/sec, when will it first return to its equilibrium position? A 2-kg mass is attached to a spring with stiffness 40 N/m. The damping constant for the system is 815 N-sec/m. If the mass is pulled 10 cm to the right of equilibrium and given an initial rightward velocity of 2 m/sec, what is the maximum displacement from equilibrium that it will attain? A 1>4-kg mass is attached to a spring with stiffness 8 N/m. The damping constant for the system is 1>4 N-sec/m. If the mass is moved 1 m to the left of equilibrium and released, what is the maximum displacement to the right that it will attain? A 1-kg mass is attached to a spring with stiffness 100 N/m. The damping constant for the system is 0.2 N-sec/m. If the mass is pushed rightward from the equilibrium position with a velocity of 1 m/sec, when will it attain its maximum displacement to the right? A 1>4-kg mass is attached to a spring with stiffness 8 N/m. The damping constant for the system is 2 N-sec/m. If the mass is pushed 50 cm to the left of equilibrium and given a leftward velocity of 2 m/sec, when will the mass attain its maximum displacement to the left?
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.10
13. Show that for the underdamped system of Example 3, the times when the solution curve y1t2 in (33) touches the exponential curves { 27>12e-2t are not the same values of t for which the function y1t2 attains its relative extrema. 14. For an underdamped system, verify that as b S 0 the damping factor approaches the constant A and the quasifrequency approaches the natural frequency 2k>m> 12p2. 15. How can one deduce the value of the damping constant b by observing the motion of an underdamped system? Assume that the mass m is known. 16. A mass attached to a spring oscillates with a period of 3 sec. After 2 kg are added, the period becomes 4 sec. Assuming that we can neglect any damping or external forces, determine how much mass was originally attached to the spring.
A Closer Look at Forced Mechanical Vibrations
221
17. Consider the equation for free mechanical vibration, my″ + by′ + ky = 0, and assume the motion is critically damped. Let y102 = y0, y′102 = v0 and assume y0 ≠ 0. (a) Prove that the mass will pass through its equilibrium at exactly one positive time if and only if - 2my0 7 0. 2mv0 + by0 (b) Use computer software to illustrate part (a) for a specific choice of m, b, k, y0, and v0. Be sure to include an appropriate graph in your illustration. 18. Consider the equation for free mechanical vibration, my″ + by′ + ky = 0, and assume the motion is overdamped. Suppose y102 7 0 and y′102 7 0. Prove that the mass will never pass through its equilibrium at any positive time.
4.10 A Closer Look at Forced Mechanical Vibrations We now consider the vibrations of a mass–spring system when an external force is applied. Of particular interest is the response of the system to a sinusoidal forcing term. As a paradigm, let’s investigate the effect of a cosine forcing function on the system governed by the differential equation (1)
m
d 2y dt
2
+b
dy + ky = F0 cos Gt , dt
where F0 and g are nonnegative constants and 0 6 b2 6 4mk (so the system is underdamped). A solution to (1) has the form y = yh + yp, where yp is a particular solution and yh is a general solution to the corresponding homogeneous equation. We found in equation (17) of Section 4.9 that (2)
yh 1t2 = Ae-1b>2m2t sina
24mk - b2 t + fb , 2m
where A and f are constants. To determine yp, we can use the method of undetermined coefficients (Section 4.4). From the form of the nonhomogeneous term, we know that (3)
yp 1t2 = A1 cos gt + A2 sin gt ,
where A1 and A2 are constants to be determined. Substituting this expression into equation (1) and simplifying gives (4)
3 1 k - mg2 2 A1 + bgA2 4 cos gt + 3 1 k - mg2 2 A2 - bgA1 4 sin gt
= F0 cos gt .
Setting the corresponding coefficients on both sides equal, we have 1k - mg 2 2A1 + bgA2 = F0 , -bgA1 + 1k - mg 2 2A2 = 0 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
222
Chapter 4
Linear Second-Order Equations
Solving, we obtain (5)
F0 1k - mg 2 2
A1 =
1k - mg 2 + b g 2 2
2 2
, A2 =
F0bg
1k - mg 2 2 2 + b2g 2
.
Hence, a particular solution to (1) is (6)
yp 1t2 =
F0
1k - mg 2 2 2 + b2g 2
3 1 k - mg2 2 cos gt + bg sin gt 4 .
The expression in brackets can also be written as 21k - mg 2 2 2 + b 2g 2 sin1gt + u2 ,
so we can express yp in the alternative form (7)
yp 1t2 =
F0
21k - mg 2 2 2 + b 2g 2
sin1gt + u2 ,
where tan u = A1 >A2 = 1k - mg 2 2 > 1bg2 and the quadrant in which u lies is determined by the signs of A1 and A2. Combining equations (2) and (7), we have the following representation of a general solution to (1) in the case 0 6 b2 6 4mk: (8)
y1t2 = Ae-1b>2m2t sina
F0 24mk - b 2 t + fb + sin1gt + u2 . 2m 21k - mg 2 2 2 + b 2g 2
The solution (8) is the sum of two terms. The first term, yh, represents damped oscillation and depends only on the parameters of the system and the initial conditions. Because of the damping factor Ae-1b>2m2t, this term tends to zero as t S + ∞. Consequently, it is referred to as the transient part of the solution. The second term, yp, in (8) is the offspring of the external forcing function f1t2 = F0 cos gt. Like the forcing function, yp is a sinusoid with angular frequency g. It is the synchronous solution that we anticipated in Section 4.1. However, yp is out of phase with f1t2 (by the angle u - p>2), and its magnitude is different by the factor (9)
1
21k - mg 2 2 2 + b2g 2
.
As the transient term dies off, the motion of the mass–spring system becomes essentially that of the second term yp (see Figure 4.32, page 223). Hence, this term is called the steady-state solution. The factor appearing in (9) is referred to as the frequency gain, or gain factor, since it represents the ratio of the magnitude of the sinusoidal response to that of the input force. Note that this factor depends on the frequency g and has units of length/force.
Example 1
Solution
A 10-kg mass is attached to a spring with stiffness k = 49 N/m. At time t = 0, an external force f1t2 = 20 cos 4t N is applied to the system. The damping constant for the system is 3 N-sec/m. Determine the steady-state solution for the system. Substituting the given parameters into equation (1), we obtain (10)
10
d 2y dt
2
+3
dy + 49y = 20 cos 4t , dt
where y1t2 is the displacement (from equilibrium) of the mass at time t.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.10
223
A Closer Look at Forced Mechanical Vibrations
y
0.2
y(t)
0.15
0.1
0.05
yp(t) t 2
4
6
8
10
Figure 4.32 Convergence of y1t2 to the steady-state solution yp 1t2 when m = 4, b = 6, k = 3, F0 = 2, g = 4
To find the steady-state response, we must produce a particular solution to (10) that is a sinusoid. We can do this using the method of undetermined coefficients, guessing a solution of the form A1 cos 4t + A2 sin 4t. But this is precisely how we derived equation (7). Thus, we substitute directly into (7) and find (11)
yp 1t2 =
20
2149 - 1602 2 + 1921162
sin14t + u2 ≈ 10.182 sin14t + u2 ,
where tan u = 149 - 1602 >12 ≈ -9.25. Since the numerator, 149 - 1602, is negative and the denominator, 12, is positive, u is a Quadrant IV angle. Thus, u ≈ arctan1 -9.252 ≈ -1.46 , and the steady-state solution is given (approximately) by (12)
yp 1t2 = 10.182 sin14t - 1.462 . ◆
The above example illustrates an important point made earlier: The steady-state response (12) to the sinusoidal forcing function 20 cos 4t is a sinusoid of the same frequency but different amplitude. The gain factor [see (9)] in this case is 10.182 >20 = 0.009 m/N. In general, the amplitude of the steady-state solution to equation (1) depends on the angular frequency g of the forcing function and is given by A1g2 = F0M1g2, where (13)
M1g2 J
1
21k - mg 2 2 2 + b2g 2
is the frequency gain [see (9)]. This formula is valid even when b2 Ú 4mk. For a given system (m, b, and k fixed), it is often of interest to know how this system reacts to sinusoidal inputs of various frequencies (g is a variable). For this purpose the graph of the gain M1g2, called the frequency response curve, or resonance curve, for the system, is enlightening.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
224
Chapter 4
Linear Second-Order Equations
To sketch the frequency response curve, we first observe that for g = 0 we find M102 = 1>k. Of course, g = 0 implies the force F0 cos gt is static; there is no motion in the steady state, so this value of M102 is appropriate. Also note that as g S ∞ the gain M1g2 S 0; the inertia of the system limits the extent to which it can respond to extremely rapid vibrations. As a further aid in describing the graph, we compute from (13) k b2 bd m 2m2 M′1g2 = . 3 1k - mg2 2 2 + b2g2 4 3>2 2m2g c g 2 - a
(14)
It follows from (14) that M′1g2 = 0 if and only if (15)
g = 0 or g = gr J
k b2 . B m 2m2
Now when the system is overdamped or critically damped, so b2 Ú 4mk 7 2mk, the term inside the radical in (15) is negative, and hence M′1g2 = 0 only when g = 0. In this case, as g increases from 0 to infinity, M1g2 decreases from M102 = 1>k to a limiting value of zero. When b2 6 2mk (which implies the system is underdamped), then gr is real and positive, and it is easy to verify that M1g2 has a maximum at gr . Substituting gr into (13) gives (16)
M1gr 2 =
(17)
M1g2 =
1>b
. k b2 B m 4m2 The value gr >2p is called the resonance frequency for the system. When the system is stimulated by an external force at this frequency, it is said to be at resonance. To illustrate the effect of the damping constant b on the resonance curve, we consider a system in which m = k = 1. In this case the frequency response curves are given by 1
211 - g 2 2 2 + b2g 2
,
and, for b 6 22, the resonance frequency is gr >2p = 11>2p2 21 - b2 >2. Figure 4.33 displays the graphs of these frequency response curves for b = 1>4, 1>2, 1, 3>2, and 2. Observe that as b S 0 the maximum magnitude of the frequency gain increases and the resonance frequency gr >2p for the damped system approaches 2k>m>2p = 1>2p, the natural frequency for the undamped system. To understand what is occurring, consider the undamped system 1b = 02 with forcing term F0 cos gt. This system is governed by (18)
m
d 2y dt 2
+ ky = F0 cos gt .
A general solution to (18) is the sum of a particular solution and a general solution to the homogeneous equation. In Section 4.9 we showed that the latter describes simple harmonic motion: (19)
yh 1t2 = A sin1vt + f2 ,
v J 2k>m .
The formula for the particular solution given in (7) is valid for b = 0, provided g ≠ v = 2k>m. However, when b = 0 and g = v, then the form we used with undetermined coefficients
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.10
A Closer Look at Forced Mechanical Vibrations
225
M(g) 4
1
b 5 4– 3
1
b 5 2–
2
b51 3
b 5 –2
1
b52
g
0
1
2
Figure 4.33 Frequency response curves for various values of b
to derive (7) does not work because cos vt and sin vt are solutions to the corresponding homogeneous equation. The correct form is (20)
yp 1t2 = A1t cos vt + A2t sin vt ,
which leads to the solution (21)
yp 1t2 =
F0 t sin Vt . 2mV
[The verification of (21) is straightforward.] Hence, in the undamped resonant case (when g = v), a general solution to (18) is (22)
y1t2 = A sin1vt + f2 +
F0 t sin vt . 2mv
Returning to the question of resonance, observe that the particular solution in (21) oscillates between { 1F0t2 > 12mv2. Hence, as t S + ∞ the maximum magnitude of (21) approaches ∞ (see Figure 4.34 on page 226). It is obvious from the above discussion that if the damping constant b is very small, the system is subject to large oscillations when the forcing function has a frequency near the resonance frequency for the system. It is these large vibrations at resonance that concern engineers. Indeed, resonance vibrations have been known to cause airplane wings to snap, bridges to collapse,† and (less catastrophically) wine glasses to shatter. †
An interesting discussion of one such disaster, involving the Tacoma Narrows bridge in Washington State, can be found in Differential Equations and Their Applications, 4th ed., by M. Braun (Springer-Verlag, New York, 1993). See also the articles, “Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis,” by A. C. Lazer and P. J. McKenna, SIAM Review, Vol. 32 (1990): 537–578; or “Still Twisting,” by Henry Petroski, American Scientist, Vol. 19 (1991): 398–401.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
226
Chapter 4
Linear Second-Order Equations
yp F0 –––– t 2m v
t
F0 2 –––– t 2m v Figure 4.34 Undamped oscillation of the particular solution in (21)
When the mass–spring system is hung vertically as in Figure 4.35, the force of gravity must be taken into account. This is accomplished very easily. With y measured downward from the unstretched spring position, the governing equation is my″ + by′ + ky = mg , and if the right-hand side is recognized as a sinusoidal forcing term with frequency zero 1mg cos 0t2, then the synchronous steady-state response is a constant, which is easily seen to be yp 1t2 = mg>k. Now if we redefine y1t2 to be measured from this (true) equilibrium level, as indicated in Figure 4.35(c), ynew 1t2 J y1t2 - mg>k ,
then the governing equation
my″ + by′ + ky = mg + Fext 1t2
simplifies; we find > = mynew + bynew + kynew = m1y - mg>k2″ + b1y - mg>k2′ + k1y - mg>k2 = my″ + by′ + ky - mg = mg + Fext 1t2 - mg ,
L
y
(a)
L
L
yp 5 mg/k
mg/k m
ynew
(b)
m (c)
Figure 4.35 Spring (a) in natural position, (b) in equilibrium, and (c) in motion
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 4.10
or (23)
A Closer Look at Forced Mechanical Vibrations
227
> = mynew + bynew + kynew = Fext 1t2 .
Thus, the gravitational force can be ignored if y1t2 is measured from the equilibrium position. Adopting this convention, we drop the “new” subscript hereafter. Example 2 Solution
Suppose the mass–spring system in Example 1 is hung vertically. Find the steady-state solution. This is trivial; the steady-state solution is identical to what we derived before, yp 1t2 =
20
2149 - 1602 2 + 1921162
sin14t + u2
[equation (11)], but now yp is measured from the equilibrium position, which is mg>k ≈ 10 * 9.8>49 = 2 m below the unstretched spring position. ◆ Example 3
A 64-lb weight is attached to a vertical spring, causing it to stretch 3 in. upon coming to rest at equilibrium. The damping constant for the system is 3 lb-sec/ft. An external force F1t2 = 3 cos 12t lb is applied to the weight. Find the steady-state solution for the system.
Solution
If a weight of 64 lb stretches a spring by 3 in. (0.25 ft), then the spring stiffness must be 64>0.25 = 256 lb/ft. Thus, if we measured the displacement from the (true) equilibrium level, equation (23) becomes (24)
my″ + by′ + ky = 3 cos 12t ,
with b = 3 and k = 256. But recall that the unit of mass in the U.S. Customary System is the slug, which equals the weight divided by the gravitational acceleration constant g ≈ 32 ft/sec2 (Table 3.2, page 110). Therefore, m in equation (24) is 64>32 = 2 slugs, and we have 2y″ + 3y′ + 256y = 3 cos 12t . The steady-state solution is given by equation (6) with F0 = 3 and g = 12: yp 1t2 = =
4.10
3 3 1256 - 2 # 122 2 cos 12t + 3 # 12 sin 12t 4 1256 - 2 # 122 2 2 + 32 # 122 3 1 -8 cos 12t + 9 sin 12t2 . ◆ 580
EXERCISES
In the following problems, take g = 32 ft/sec2 for the U.S. Customary System and g = 9.8 m/sec2 for the MKS system. 1. Sketch the frequency response curve (13) for the system in which m = 4, k = 1, b = 2. 2. Sketch the frequency response curve (13) for the system in which m = 2, k = 3, b = 3.
3. Determine the equation of motion for an undamped system at resonance governed by d 2y
+ 9y = 2 cos 3t ; dt 2 y102 = 1 , y′102 = 0 . Sketch the solution.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
228
Chapter 4
Linear Second-Order Equations
4. Determine the equation of motion for an undamped system at resonance governed by d 2y 2
11.
+ y = 5 cos t ;
dt y102 = 0 ,
y′102 = 1 .
Sketch the solution. 5. An undamped system is governed by d 2y
+ ky = F0 cos gt ; dt 2 y102 = y′102 = 0 ,
m
12.
where g ≠ v J 2k>m. (a) Find the equation of motion of the system. (b) Use trigonometric identities to show that the solution can be written in the form y1t2 =
6. 7.
8.
9.
10.
2F0
m1v - g 2 2
2
sina
v+g v-g tb sina tb . 2 2
(c) When g is near v, then v - g is small, while v + g is relatively large compared with v - g. Hence, y1t2 can be viewed as the product of a slowly varying sine function, sin31v - g2t>24, and a rapidly varying sine function, sin31v + g2t>24. The net effect is a sine function y1t2 with frequency 1v - g2 >4p, which serves as the time-varying amplitude of a sine function with frequency 1v + g2 >4p. This vibration phenomenon is referred to as beats and is used in tuning stringed instruments. This same phenomenon in electronics is called amplitude modulation. To illustrate this phenomenon, sketch the curve y1t2 for F0 = 32, m = 2, v = 9, and g = 7. Derive the formula for yp 1t2 given in (21). Shock absorbers in automobiles and aircraft can be described as forced overdamped mass–spring systems. Derive an expression analogous to equation (8) for the general solution to the differential equation (1) when b2 7 4mk. The response of an overdamped system to a constant force is governed by equation (1) with m = 2, b = 8, k = 6, F0 = 18, and g = 0. If the system starts from rest 3y102 = y′102 = 04, compute and sketch the displacement y1t2. What is the limiting value of y1t2 as t S + ∞ ? Interpret this physically. An 8-kg mass is attached to a spring hanging from the ceiling, thereby causing the spring to stretch 1.96 m upon coming to rest at equilibrium. At time t = 0, an external force F1t2 = cos 2t N is applied to the system. The damping constant for the system is 3 N-sec/m. Determine the steady-state solution for the system. Show that the period of the simple harmonic motion of a mass hanging from a spring is 2p2l>g, where l denotes
13.
14.
15.
16.
the amount (beyond its natural length) that the spring is stretched when the mass is at equilibrium. A mass weighing 8 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At t = 0, an external force F1t2 = 2 cos 2t lb is applied to the system. If the spring constant is 10 lb/ft and the damping constant is 1 lb@sec/ft, find the equation of motion of the mass. What is the resonance frequency for the system? A 2-kg mass is attached to a spring hanging from the ceiling, thereby causing the spring to stretch 20 cm upon coming to rest at equilibrium. At time t = 0, the mass is displaced 5 cm below the equilibrium position and released. At this same instant, an external force F1t2 = 0.3 cos t N is applied to the system. If the damping constant for the system is 5 N@sec/m, determine the equation of motion for the mass. What is the resonance frequency for the system? A mass weighing 32 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time t = 0, an external force F1t2 = 3 cos 4t lb is applied to the system. If the spring constant is 5 lb/ft and the damping constant is 2 lb-sec/ft, find the steadystate solution for the system. An 8-kg mass is attached to a spring hanging from the ceiling and allowed to come to rest. Assume that the spring constant is 40 N/m and the damping constant is 3 N-sec/m. At time t = 0, an external force of 2 sin 12t + p>42 N is applied to the system. Determine the amplitude and frequency of the steady-state solution. An 8-kg mass is attached to a spring hanging from the ceiling and allowed to come to rest. Assume that the spring constant is 40 N/m and the damping constant is 3 N-sec/m. At time t = 0, an external force of 2 sin 2t cos 2t N is applied to the system. Determine the amplitude and frequency of the steady-state solution. A helium-filled balloon on a cord, hanging y km above a level surface, is subjected to three forces: (i) the (constant) buoyant force B exerted by the external air pressure; (ii) the weight of the balloon mg, where m is the mass of the balloon; (iii) the weight of the part of the cord that has been lifted off the surface, dgy, where d is the linear density (kg /m) of the cord. (We assume that the cord is longer than the elevation of the balloon.) Express Newton’s second law for the balloon and show that it is exactly analogous to the governing equation for a mass vertically hung from a spring (page 226). Find the equation of motion. What is the frequency of the balloon’s oscillations?
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Chapter 4 Summary
229
Chapter 4 Summary In this chapter we discussed the theory of second-order linear differential equations and presented explicit solution methods for equations with constant coefficients. Much of the methodology can also be applied to the more general case of variable coefficients. We also studied the mathematical description of vibrating mechanical systems, and we saw how the mass–spring analogy could be used to predict qualitative features of solutions to some variable-coefficient and nonlinear equations. The important features and solution techniques for the constant-coefficient case are listed below.
Homogeneous Linear Equations (Constant Coefficients) ay″ + by′ + cy = 0,
a13 02, b, c constants.
Linearly Independent Solutions: y1, y2. Two solutions y1 and y2 to the homogeneous equation on the interval I are said to be linearly independent on I if neither function is a constant times the other on I. This will be true provided their Wronskian, W3y1, y2 4 1t2 J y1 1t2y2= 1t2 - y1= 1t2y2 1t2 ,
is different from zero for some (and hence all) t in I. General Solution to Homogeneous Equation: c1y1 + c2y2. If y1 and y2 are linearly independent solutions to the homogeneous equation, then a general solution is y1t2 = c1y1 1t2 + c2y2 1t2 ,
where c1 and c2 are arbitrary constants. Form of General Solution. The form of a general solution for a homogeneous equation with constant coefficients depends on the roots r1 =
-b + 2b2 - 4ac , 2a
r2 =
-b - 2b2 - 4ac 2a
of the auxiliary equation ar 2 + br + c = 0 ,
a≠0.
(a) When b2 - 4ac 7 0, the auxiliary equation has two distinct real roots r1 and r2 and a general solution is y1t2 = c1er1t + c2er2t . (b) When b2 - 4ac = 0, the auxiliary equation has a repeated real root r = r1 = r2 and a general solution is y1t2 = c1ert + c2tert . (c) When b2 - 4ac 6 0, the auxiliary equation has complex conjugate roots r = a { ib and a general solution is y1t2 = c1eat cos bt + c2eat sin bt .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
230
Chapter 4
Linear Second-Order Equations
Nonhomogeneous Linear Equations (Constant Coefficients) ay″ + by′ + cy = f1t2 General Solution to Nonhomogeneous Equation: yp + c1y1 + c2y2. If yp is any particular solution to the nonhomogeneous equation and y1 and y2 are linearly independent solutions to the corresponding homogeneous equation, then a general solution is y1t2 = yp 1t2 + c1y1 1t2 + c2y2 1t2 , where c1 and c2 are arbitrary constants. Two methods for finding a particular solution yp are those of undetermined coefficients and variation of parameters. cos Bt f . If the right-hand side f1t2 of a Undetermined Coefficients: f1t2 = pn 1t2eAt e sin Bt nonhomogeneous equation with constant coefficients is a polynomial pn 1t2, an exponential of the form eat, a trigonometric function of the form cos bt or sin bt, or any product of these special types of functions, then a particular solution of an appropriate form can be found. The form of the particular solution involves unknown coefficients and depends on whether a + ib is a root of the corresponding auxiliary equation. See the summary box on page 184. The unknown coefficients are found by substituting the form into the differential equation and equating coefficients of like terms.
Variation of Parameters: y1t2 = V1 1t2y1 1t2 + V2 1t2y2 1t2. If y1 and y2 are two linearly independent solutions to the corresponding homogeneous equation, then a particular solution to the nonhomogeneous equation is y1t2 = v1 1t2y1 1t2 + v2 1t2y2 1t2 ,
where
v1=
and v2= are determined by the equations v1= y1 + v2= y2 = 0 v1= y1= + v2= y2= = f 1t2 >a .
Superposition Principle.
If y1 and y2 are solutions to the equations
ay″ + by′ + cy = f1 and ay″ + by′ + cy = f2 , respectively, then k1y1 + k2y2 is a solution to the equation ay″ + by′ + cy = k1 f1 + k2 f2 . The superposition principle facilitates finding a particular solution when the nonhomogeneous term is the sum of nonhomogeneities for which particular solutions can be determined.
Cauchy–Euler (Equidimensional) Equations at 2y″ + bty′ + cy = f1t2 Substituting y = t r yields the associated characteristic equation ar 2 + 1b - a2r + c = 0
for the corresponding homogeneous Cauchy–Euler equation. A general solution to the homogeneous equation for t 7 0 is given by (i) c1t r1 + c2 t r2, if r1 and r2 are distinct real roots; (ii) c1t r + c2 t r ln t, if r is a repeated root; (iii) c1t a cos1b ln t2 + c2 t a sin1b ln t2, if a + ib is a complex root.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Review Problems for Chapter 4
231
A general solution to the nonhomogeneous equation is y = yp + yh, where yp is a particular solution and yh is a general solution to the corresponding homogeneous equation. The method of variation of parameters (but not the method of undetermined coefficients) can be used to find a particular solution.
REVIEW PROBLEMS FOR CHAPTER 4 In Problems 1–28, find a general solution to the given differential equation. 1. y″ + 8y′ - 9y = 0 2. 49y″ + 14y′ + y = 0 3. 4y″ - 4y′ + 10y = 0 4. 9y″ - 30y′ + 25y = 0 5. 6y″ - 11y′ + 3y = 0 6. y″ + 8y′ - 14y = 0 7. 36y″ + 24y′ + 5y = 0 8. 25y″ + 20y′ + 4y = 0 9. 16z″ - 56z′ + 49z = 0 10. u″ + 11u = 0 2 11. t x″1t2 + 5x1t2 = 0 , t70 12. 2y‴ - 3y″ - 12y′ + 20y = 0 13. y″ + 16y = tet 14. v″ - 4v′ + 7v = 0 15. 3y‴ + 10y″ + 9y′ + 2y = 0 16. y‴ + 3y″ + 5y′ + 3y = 0 17. y‴ + 10y′ - 11y = 0 18. y 142 = 120t 19. 4y‴ + 8y″ - 11y′ + 3y = 0 20. 2y″ - y = t sin t 21. y″ - 3y′ + 7y = 7t 2 - et 22. y″ - 8y′ - 33y = 546 sin t 23. y″1u2 + 16y1u2 = tan 4u 24. 10y″ + y′ - 3y = t - et>2 25. 4y″ - 12y′ + 9y = e5t + e3t 26. y″ + 6y′ + 15y = e2t + 75 27. x2y″ + 2xy′ - 2y = 6x -2 + 3x , x70 28. y″ = 5x -1y′ - 13x -2y , x70 In Problems 29–36, find the solution to the given initial value problem. 29. y″ + 4y′ + 7y = 0 ; y′102 = -2 y102 = 1 , 30. y″1u2 + 2y′1u2 + y1u2 = 2 cos u ; y′102 = 0 y102 = 3 , 31. y″ - 2y′ + 10y = 6 cos 3t - sin 3t ; y′102 = -8 y102 = 2 ,
32. 4y″ - 4y′ + 5y = 0 ; y102 = 1 , y′102 = - 11>2 33. y‴ - 12y″ + 27y′ + 40y = 0 ; y102 = -3 , y′102 = - 6 , y″102 = - 12 34. y″ + 5y′ - 14y = 0 ; y102 = 5 , y′102 = 1 35. y″1u2 + y1u2 = sec u ; y102 = 1 , y′102 = 2 36. 9y″ + 12y′ + 4y = 0 ; y102 = -3 , y′102 = 3 37. Use the mass–spring oscillator analogy to decide whether all solutions to each of the following differential equations are bounded as t S + ∞ . (a) y″ + t 4y = 0 (b) y″ - t 4y = 0 (c) y″ + y7 = 0 (d) y″ + y8 = 0 (e) y″ + 13 + sin t2y = 0 (f) y″ + t 2y′ + y = 0 (g) y″ - t 2y′ - y = 0 38. A 3-kg mass is attached to a spring with stiffness k = 75 N/m, as in Figure 4.1, page 152. The mass is displaced 1>4 m to the left and given a velocity of 1 m/sec to the right. The damping force is negligible. Find the equation of motion of the mass along with the amplitude, period, and frequency. How long after release does the mass pass through the equilibrium position? 39. A 32-lb weight is attached to a vertical spring, causing it to stretch 6 in. upon coming to rest at equilibrium. The damping constant for the system is 2 lb-sec/ft. An external force F1t2 = 4 cos 8t lb is applied to the weight. Find the steady-state solution for the system. What is its resonant frequency?
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
232
Chapter 4
Linear Second-Order Equations
TECHNICAL WRITING EXERCISES FOR CHAPTER 4 1. Compare the two methods—undetermined coefficients and variation of parameters—for determining a particular solution to a nonhomogeneous equation. What are the advantages and disadvantages of each? 2. Consider the differential equation d 2y dx2
+ 2b
dy +y = 0, dx
where b is a constant. Describe how the behavior of solutions to this equation changes as b varies. 3. Consider the differential equation d 2y dx2
where c is a constant. Describe how the behavior of solutions to this equation changes as c varies. 4. For students with a background in linear algebra: Compare the theory for linear second-order equations with that for systems of n linear equations in n unknowns whose coefficient matrix has rank n − 2. Use the terminology from linear algebra; for example, subspace, basis, dimension, linear transformation, and kernel. Discuss both homogeneous and nonhomogeneous equations.
+ cy = 0 ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 4 A Nonlinear Equations Solvable by First-Order Techniques Certain nonlinear second-order equations—namely, those with dependent or independent variables missing—can be solved by reducing them to a pair of first-order equations. This is accomplished by making the substitution w = dy>dx, where x is the independent variable. (a) To solve an equation of the form y″ = F1x, y′2 in which the dependent variable y is missing, setting w = y′ (so that w′ = y″) yields the pair of equations w′ = F1x, w2 , y′ = w .
Because w′ = F1x, w2 is a first-order equation, we have available the techniques of Chapter 2 to solve it for w1x2. Once w1x2 is determined, we integrate it to obtain y1x2. Using this method, solve 2xy″ - y′ +
1 = 0, y′
x70.
(b) To solve an equation of the form y″ = F1y, y′2 in which the independent variable x is missing, setting w = dy>dx yields, via the chain rule, d 2y dx
2
=
dw dw dy dw = = w . dx dy dx dy
Thus, y″ = F1y, y′2 is equivalent to the pair of equations dw = F1y, w2 , dy dy = w. dx
(1)
w
(2)
In equation (1) notice that y plays the role of the independent variable; hence, solving it yields w1y2. Then substituting w1y2 into (2), we obtain a separable equation that determines y1x2. Using this method, solve the following equations: (i)
2y
d 2y dx
2
= 1+ a
dy 2 b . dx
(ii)
d 2y dx
2
+y
dy = 0. dx
(c) Suspended Cable. In the study of a cable suspended between two fixed points (see Figure 4.36 on page 234), one encounters the initial value problem d 2y dx
2
=
dy 2 1 1+ a b ; aB dx
y102 = a ,
y′102 = 0 ,
where a 1 ≠ 02 is a constant. Solve this initial value problem for y. The resulting curve is called a catenary.
233
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
234
Chapter 4
Linear Second-Order Equations
y
a x Figure 4.36 Suspended cable
B Apollo Reentry Courtesy of Alar Toomre, Massachusetts Institute of Technology
Each time the Apollo astronauts returned from the moon circa 1970, they took great care to reenter Earth’s atmosphere along a path that was only a small angle a from the horizontal. (See Figure 4.37.) This was necessary in order to avoid intolerably large “g” forces during their reentry. To appreciate their grounds for concern, consider the idealized problem 2 d 2s s >H ds Ke = a , b dt dt 2
where K and H are constants and distance s is measured downrange from some reference point on the trajectory, as shown in the figure. This approximate equation pretends that the only force on the capsule during reentry is air drag. For a bluff body such as the Apollo, drag is proportional to the square of the speed and to the local atmospheric density, which falls off exponentially with height. Intuitively, one might expect that the deceleration predicted by this model would depend heavily on the constant K (which takes into account the vehicle’s mass, area, etc.); but, remarkably, for capsules entering the atmosphere (at “s = - ∞ ”) with a common speed V0, the maximum deceleration turns out to be independent of K. (a) Verify this last assertion by demonstrating that this maximum deceleration is just V 20 > 12eH2. [Hint: The independent variable t does not appear in the differential equation, so it is helpful to make the substitution v = ds>dt; see Project A, part (b).] (b) Also verify that any such spacecraft at the instant when it is decelerating most fiercely will be traveling exactly with speed V0 > 1e, having by then lost almost 40% of its original velocity. (c) Using the plausible data V0 = 11 km/sec and H = 10/1sin a2 km, estimate how small a had to be chosen so as to inconvenience the returning travelers with no more than 10 g’s. s=
o
Di
sta
nce
s
a
Figure 4.37 Reentry path
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 4
235
C Simple Pendulum In Section 4.8, we discussed the simple pendulum consisting of a mass m suspended by a rod of length ℓ having negligible mass and derived the nonlinear initial value problem (3)
g d 2U + sin U = 0 ; U102 = A , U′102 = 0 , 2 O dt
where g is the acceleration due to gravity and u1t2 is the angle the rod makes with the vertical at time t (see Figure 4.18, page 208). Here it is assumed that the mass is released with zero velocity at an initial angle a, 0 6 a 6 p. We would like to determine the equation of motion for the pendulum and its period of oscillation. (a) Use equation (3) and the energy integral lemma discussed in Section 4.8 to show that a
2g du 2 b = 1cos u - cos a2 dt /
and hence dt = -
/ A 2g
du
3 cos u - cos a
.
(b) Use the trigonometric identity cos x = 1 - 2 sin2 1x>22 to express dt by dt = -
1 / 2Ag
du
2 3 sin 1a>22 - sin 1u>22 2
.
(c) Make the change of variables sin 1u>22 = sin 1a>22 sin f and show that the elapsed time, T, for the pendulum to fall from the angle u = a (corresponding to f = p>2) to the angle u = b (corresponding to f = Φ), when a Ú b Ú 0, is given by T =
L0
Φ df 1 / du / = , 2 2 B g Lp/2 21 - k 2 sin2f La 2 B g 2 sin 1a>22 - sin 1u>22 b
T
(4)
dt = -
where k J sin 1a>22.
(d) The period P of the pendulum is defined to be the time required for it to swing from one extreme to the other and back—that is, from a to - a and back to a. Show that the period is given by (5)
P = 4
/ Bg L 0
p>2
df 21 - k 2 sin 2f
.
The integral in (5) is called an elliptic integral of the first kind and is denoted by F1k, p>22. As you might expect, the period of the simple pendulum depends on the length / of the rod and the initial displacement a. In fact, a check of an elliptic integral table will show that the period nearly doubles as the initial displacement increases from p>8 to 15p>16 (for fixed /). What happens as a approaches p? (e) From equation (5) show that
(6)
- T + P>4 =
Φ df / F1k, Φ2, where F1k, Φ2 J . Bg Lf = 0 21 - k 2 sin2f
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
236
Chapter 4
Linear Second-Order Equations
For fixed k, F1k, Φ2 has an “inverse,” denoted by sn1k, u2, that satisfies u = F1k, Φ2 if and only if sn1k, u2 = sin Φ. The function sn1k, u2 is called a Jacobi elliptic function and has many properties that resemble those of the sine function. Using the Jacobi elliptic function sn1k, u2, express the equation of motion for the pendulum in the form
(7)
b = 2 arcsin e k sn c k,
g 1 -T + P>42 d f, 0 … T … P>4 . A/
(f) Take / = 1 m, g = 9.8 m/sec, a = p>4 radians. Use Runge–Kutta algorithms or tabulated values of the Jacobi elliptic function to determine the period of the pendulum.
D Linearization of Nonlinear Problems A useful approach to analyzing a nonlinear equation is to study its linearized equation, which is obtained by replacing the nonlinear terms by linear approximations. For example, the nonlinear equation
(8)
d 2u + sin u = 0 , dt 2
which governs the motion of a simple pendulum, has
(9)
d 2u +u = 0 dt 2
as a linearization for small u. (The nonlinear term sin u has been replaced by the linear approximation u.) A general solution to equation (8) involves Jacobi elliptic functions (see Project C), which are rather complicated, so let’s try to approximate the solutions. For this purpose we consider two methods: Taylor series and linearization. (a) Derive the first six terms of the Taylor series about t = 0 of the solution to equation (8) with initial conditions u102 = p>12, u′102 = 0. (The Taylor series method is discussed in Project D of Chapter 1 and Section 8.1.) (b) Solve equation (9) subject to the same initial conditions u102 = p>12, u′102 = 0. (c) On the same coordinate axes, graph the two approximations found in parts (a) and (b). (d) Discuss the advantages and disadvantages of the Taylor series method and the linearization method. (e) Give a linearization for the initial value problem. x″1t2 + 0.131 - x2 1t24x′1t2 + x1t2 = 0
x102 = 0.4 , x′102 = 0 ,
for x small. Solve this linearized problem to obtain an approximation for the nonlinear problem.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 4
237
E Convolution Method The convolution of two functions g and f is the function g * f defined by 1g * f21t2 J
t
L0
g1t - V2f1V2 dV .
The aim of this project is to show how convolutions can be used to obtain a particular solution to a nonhomogeneous equation of the form (10)
ay″ + by′ + cy = f1t2 , where a, b, and c are constants, a ≠ 0. (a) Use Leibniz’s rule, t
t
d 0h h1t, v2 dv = 1t, v2 dv + h1t, t2 , dt La La 0t to show the following: 1y * f2′1t2 = 1y′ * f21t2 + y102f1t2 1 y * f2″1t2 = 1y″* f21t2 + y′102f1t2 + y102f′1t2 , assuming y and f are sufficiently differentiable. (b) Let ys 1t2 be the solution to the homogeneous equation ay″ + by′ + cy = 0 that satisfies ys 102 = 0, ys= 102 = 1>a. Show that ys * f is the particular solution to equation (10) satisfying y102 = y′102 = 0. (c) Let yk 1t2 be the solution to the homogeneous equation ay″ + by′ + cy = 0 that satisfies y102 = Y0, y′102 = Y1, and let ys be as defined in part (b). Show that 1ys * f21t2 + yk 1t2
is the unique solution to the initial value problem (11)
ay″ + by′ + cy = f1t2 ; y102 = Y0 , y′102 = Y1 .
(d) Use the result of part (c) to determine the solution to each of the following initial value problems. Carry out all integrations and express your answers in terms of elementary functions. (i) y″ + y = tan t ; y102 = 0 , y′102 = - 1 (ii) 2y″ + y′ - y = e-t sin t ; y102 = 1 , y′102 = 1 (iii) y″ - 2y′ + y = 1t et ; y102 = 2 , y′102 = 0
F Undetermined Coefficients Using Complex Arithmetic The technique of undetermined coefficients described in Section 4.5 can be streamlined with the aid of complex arithmetic and the properties of the complex exponential function. The essential formulas are d 1a+ib2 t e = 1a + ib2e1a+ib2 t , e1a+ib2 t = eat 1cos bt + i sin bt2 , dt Re e1a+ib2 t = eat cos bt ,
Im e1a+ib2 t = eat sin bt .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
238
Chapter 4
Linear Second-Order Equations
(a) From the preceding formulas derive the equations (12)
Re31a + ib2e1a+ib2t 4 = eat 1a cos bt - b sin bt2 ,
(13)
Im31a + ib2e1a+ib2t 4 = eat 1b cos bt + a sin bt2 . Now consider a second-order equation of the form L3y4 J ay″ + by′ + cy = g ,
(14)
where a, b, and c are real numbers and g is of the special form g1t2 = eAt 31ant n + P + a1t + a0 2 cos Bt + 1bnt n + P + b1t + b0 2 sin Bt4 ,
(15)
with the aj’s, bj’s, a, and b real numbers. Such a function can always be expressed as the real or imaginary part of a function involving the complex exponential. For example, using equation (12), one can quickly check that g1t2 = Re3G1t24 ,
(16) where (17)
G1t2 = e1A − iB2t 31an + ibn 2t n + P + 1a1 + ib1 2t + 1a0 + ib0 24 .
Now suppose for the moment that we can find a complex-valued solution Y to the equation (18)
L3Y4 = aY″ + bY′ + cY = G .
Then, since a, b, and c are real numbers, we get a real-valued solution y to (14) by simply taking the real part of Y; that is, y = Re Y solves (14). (Recall that in Lemma 2, page 167, we proved this fact for homogeneous equations.) Thus, we need focus only on finding a solution to (18). The method of undetermined coefficients implies that any differential equation of the form (19)
L3Y4 = e1a { ib2t 31an + ibn 2t n + g + 1a1 + ib1 2t + 1a0 + ib0 24
has a solution of the form (20)
Yp 1t2 = t se1a { ib2t 3Ant n + g + A1t + A0 4 ,
where An, . . ., A0 are complex constants and s is the multiplicity of a + ib as a root of the auxiliary equation for the corresponding homogeneous equation L3Y4 = 0. We can solve for the unknown constants Aj by substituting (20) into (19) and equating coefficients of like terms. With these facts in mind, we can (for the small price of using complex arithmetic) dispense with the methods of Section 4.5 and avoid the unpleasant task of computing derivatives of a function like e3t 12 + 3t + t 2 2sin12t2, which involves both exponential and trigonometric factors. Carry out this procedure to determine particular solutions to the following equations: (b) y″ - y′ - 2y = cos t - sin 2t . (c) y″ + y = e-t 1cos 2t - 3 sin 2t2 . (d) y″ - 2y′ + 10y = tet sin 3t . The use of complex arithmetic not only streamlines the computations but also proves very useful in analyzing the response of a linear system to a sinusoidal input. Electrical engineers make good use of this in their study of RLC circuits by introducing the concept of impedance.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 4
239
G Asymptotic Behavior of Solutions In the application of linear systems theory to mechanical problems, we have encountered the equation (21)
y″ + py′ + qy = f1t2 ,
where p and q are positive constants with p2 6 4q and f1t2 is a forcing function for the system. In many cases it is important for the design engineer to know that a bounded forcing function gives rise only to bounded solutions. More specifically, how does the behavior of f1t2 for large values of t affect the asymptotic behavior of the solution? To answer this question, do the following: (a) Show that the homogeneous equation associated with equation (21) has two linearly independent solutions given by eat cos bt , eat sin bt , where a = - p>2 6 0 and b = 12 24q - p2 .
(b) Let f1t2 be a continuous function defined on the interval 30, ∞ 2. Use the variation of parameters formula to show that any solution to (21) on 30, ∞ 2 can be expressed in the form (22) y1t2 = c1eat cos bt + c2eat sin bt t
1 at e cos bt f1v2e-av sin bv dv b L0 t 1 at + e sin bt f1v2e-av cos bv dv . b L0 -
(c) Assuming that f is bounded on 30, ∞ 2 (that is, there exists a constant K such that 0 f1v 2 0 … K for all v Ú 0), use the triangle inequality and other properties of the absolute value to show that y1t2 given in (22) satisfies 2K 0 y1t2 0 … 1 0 c1 0 + 0 c2 0 2eat + 11 - eat 2 0a0b for all t 7 0.
(d) In a similar fashion, show that if f1 1t2 and f2 1t2 are two bounded continuous functions on 30, ∞ 2 such that 0 f1 1t2 - f2 1t2 0 … e for all t 7 t0, and if f1 is a solution to (21) with f = f1 and f2 is a solution to (21) with f = f2, then 2e 0 f1 1t2 - f2 1t2 0 … Meat + 11 - ea1t-t02 2 0a0b for all t 7 t0, where M is a constant that depends on f1 and f2 but not on t.
(e) Now assume f1t2 S F0 as t S + ∞ , where F0 is a constant. Use the result of part (d) to prove that any solution f to (21) must satisfy f1t2 S F0 >q as t S + ∞ . [Hint: Choose f1 = f, f2 K F0, f1 = f, f2 K F0 >q.]
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
240
Chapter 4
Linear Second-Order Equations
H GRAVITY TRAIN† Legend has it that Robert Hooke proposed to Isaac Newton that a straight tunnel be drilled from Moscow to St. Petersburg to accommodate a “gravity train” serving the two cities. Upon departure gravity would accelerate the train toward the center of the tunnel, then decelerate it as it continued toward the terminal. It is amusing to investigate the mechanics of such a conveyance, under idealized conditions. As depicted in Figure 4.38, x denotes the distance of the train from the center of the tunnel, R denotes its distance from the center of the earth, and mg denotes the pull of gravity. (a) Show that Newton’s law yields the differential equation
(23)
mx″ = - mgx>R
if friction is neglected. (b) Assume that the tunnel lies so close to the surface of the earth that it is reasonable to regard g and R as constants—in which case (23) is analogous to the undamped mass– spring equation (2) on page 212 of Section 4.9, with mg/R as the effective “spring constant” k. Take g = 9.8 km/s2 and R = 6400 km. The overland (surface) distance from Moscow to St. Petersburg is about 650 km. Find the equation of motion for the train departing at rest from Moscow at time t = 0. (c) How long will it take the train to get to St. Petersburg? (d) The American mathematician/entertainer Tom Lehrer composed a humorous song‡ about Nicolai Ivanovich Lobachevsky, in which a plagiarized dissertation travels from Dnepropetrovsk to Petropavlovsk (16,000 km) to Iliysk (8,500 km) to Novorossiysk (17,000 km) to Alexandrovsk (15,000 km) to Akmolinsk (1,000 km) to Tomsk (1,300 km) to Omsk (900 km) to Pinsk (21,000 km) to Minsk (3,000 km) to Moscow (5,000 km). If gravity trains were to connect all these cities, what would be unusual about their timetables? y
x(t)
Санкт-Петербург
Москва m∙g LR x
Figure 4.38 Force diagram of gravity train
†
Suggested by Valery Ochkov, National Research University Moscow; and Katarina Pisacic, Sveucilisni Centar Varazdin. ‡
As we go to press the song is archived at https://en.wikipedia.org/wiki/Lobachevsky_%28song%29, and Lehrer's performance can be viewed at https://www.youtube.com/watch?v=UQHaGhC7C2E.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
CHAPTER
Introduction to Systems and Phase Plane Analysis
5
5.1 Interconnected Fluid Tanks Two large tanks, each holding 24 liters of a brine solution, are interconnected by pipes as shown in Figure 5.1. Fresh water flows into tank A at a rate of 6 L/min, and fluid is drained out of tank B at the same rate; also 8 L/min of fluid are pumped from tank A to tank B, and 2 L/min from tank B to tank A. The liquids inside each tank are kept well stirred so that each mixture is homogeneous. If, initially, the brine solution in tank A contains x0 kg of salt and that in tank B initially contains y0 kg of salt, determine the mass of salt in each tank at time t + 0.†
6 L/min
A
B
8 L/min
x(t)
y(t)
24 L
24 L
x (0) 5 x0 kg
y (0) 5 y0 kg
6 L/min
2 L/min Figure 5.1 Interconnected fluid tanks
Note that the volume of liquid in each tank remains constant at 24 L because of the balance between the inflow and outflow volume rates. Hence, we have two unknown functions of t: the mass of salt x1t2 in tank A and the mass of salt y1t2 in tank B. By focusing attention on one tank at a time, we can derive two equations relating these unknowns. Since the system is being flushed with freshwater, we expect that the salt content of each tank will diminish to zero as t S + ∞. To formulate the equations for this system, we equate the rate of change of salt in each tank with the net rate at which salt is transferred to that tank. The salt concentration in tank A is x1t2 >24 kg/L, so the upper interconnecting pipe carries salt out of tank A at a rate of 8x>24 kg/min; similarly, the lower interconnecting pipe brings salt into tank A at the rate 2y>24 kg/min (the concentration of salt in tank B is y>24 kg/L). The freshwater inlet, of course, transfers no salt (it simply maintains the volume in tank A at 24 L). From our premise, dx = input rate − output rate , dt †
For this application we simplify the analysis by assuming the lengths and volumes of the pipes are sufficiently small that we can ignore the diffusive and advective dynamics taking place therein.
241
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
242
Chapter 5
Introduction to Systems and Phase Plane Analysis
so the rate of change of the mass of salt in tank A is 8 1 1 dx 2 = yx = y- x. dt 24 24 12 3 The rate of change of salt in tank B is determined by the same interconnecting pipes and by the drain pipe, carrying away 6y>24 kg/min: dy 2 6 1 1 8 = xyy = x- y. dt 24 24 24 3 3 The interconnected tanks are thus governed by a system of differential equations:
(1)
1 1 x′ = - x + y, 3 12 1 1 y′ = x - y . 3 3
Although both unknowns x1t2 and y1t2 appear in each of equations (1) (they are “coupled”), the structure is so transparent that we can obtain an equation for y alone by solving the second equation for x, (2)
x = 3y′ + y ,
and substituting (2) in the first equation to eliminate x: 1 1 13y′ + y2′ = - 13y′ + y2 + y, 3 12 1 1 3y″ + y′ = -y′ - y + y, 3 12 or 3y″ + 2y′ +
1 y = 0. 4
This last equation, which is linear with constant coefficients, is readily solved by the methods of Section 4.2. Since the auxiliary equation 3r 2 + 2r +
1 = 0 4
has roots -1>2, -1>6, a general solution is given by (3)
y1t2 = c1e-t>2 + c2e-t>6 .
Having determined y, we use equation (2) to deduce a formula for x: (4)
x1t2 = 3a -
c1 -t>2 c2 -t>6 1 1 e - e b + c1e-t>2 + c2e-t>6 = - c1e-t>2 + c2e-t>6 . 2 6 2 2
Formulas (3) and (4) contain two undetermined parameters, c1 and c2, which can be adjusted to meet the specified initial conditions: 1 1 x102 = - c1 + c2 = x0 , 2 2
y102 = c1 + c2 = y0 ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.2
Differential Operators and the Elimination Method* for Systems
243
or
y0 - 2x0 y0 + 2x0 , c2 = . 2 2 Thus, the mass of salt in tanks A and B at time t are, respectively, c1 =
x1t2 = - a (5)
y1t2 = a
y0 - 2x0 -t>2 y0 + 2x0 -t>6 be + a be , 4 4
y0 - 2x0 -t>2 y0 + 2x0 -t>6 be + a be . 2 2
The ad hoc elimination procedure that we used to solve this example will be generalized and formalized in the next section, to find solutions of all linear systems with constant coefficients. Furthermore, in later sections we will show how to extend our numerical algorithms for first-order equations to general systems and will consider applications to coupled oscillators and electrical systems. It is interesting to note from (5) that all solutions of the interconnected-tanks problem tend to the constant solution x1t2 K 0, y1t2 K 0 as t S + ∞ . (This is of course consistent with our physical expectations.) This constant solution will be identified as a stable equilibrium solution in Section 5.4, in which we introduce phase plane analysis. It turns out that, for a general class of systems, equilibria can be identified and classified so as to give qualitative information about the other solutions even when we cannot solve the system explicitly.
5.2 Differential Operators and
the Elimination Method* for Systems dy d = y was devised to suggest that the derivative of a function y is the dt dt d result of operating on the function y with the differentiation operator . Indeed, second deriva2 dt dy d d tives are formed by iterating the operation: y″(t) = 2 = y. Commonly, the symbol D dt dt dt d is used instead of , and the second-order differential equation dt y″ + 4y′ + 3y = 0 The notation y′(t) =
is represented† by
D2y + 4Dy + 3y = 1D2 + 4D + 323y4 = 0 .
So, we have implicitly adopted the convention that the operator “product,” D times D, is interpreted as the composition of D with itself when it operates on functions: D2y means D1D3y4 2; i.e., the second derivative. Similarly, the product 1D + 321D + 12 operates on a function via 1D + 321D + 123y4 = 1D + 32 3 1D + 123y4 4 = 1D + 323y′ + y4 = D3y′ + y4 + 33y′ + y4 = 1y″ + y′2 + 13y′ + 3y2 = y″ + 4y′ + 3y = 1D2 + 4D + 323y4 .
*An alternative procedure to the methodology of this section will be described in Chapter 9. Although it involves the machinery of matrix analysis, it is preferable for large systems. † Some authors utilize the identity operator I, defined by I3y4 = y, and write more formally D2 + 4D + 3I instead of D2 + 4D + 3.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
244
Chapter 5
Introduction to Systems and Phase Plane Analysis
Thus, 1D + 321D + 12 is the same operator as D2 + 4D + 3; when they are applied to twice-differentiable functions, the results are identical. Example 1 Solution
Show that the operator 1D + 121D + 32 is also the same as D2 + 4D + 3. For any twice-differentiable function y1t2, we have
1D + 121D + 323y4 = 1D + 12 3 1D + 323y4 4 = 1D + 123y′ + 3y4 = D3y′ + 3y4 + 13y′ + 3y4 = 1y″ + 3y′2 + 1y′ + 3y2 = y″ + 4y′ + 3y = 1D2 + 4D + 323y4 .
Hence, 1D + 121D + 32 = D2 + 4D + 3. ◆
Since 1D + 121D + 32 = 1D + 321D + 12 = D2 + 4D + 3, it is tempting to generalize and propose that one can treat expressions like aD2 + bD + c as if they were ordinary polynomials in D. This is true, as long as we restrict the coefficients a, b, c to be constants. The following example, which has variable coefficients, is instructive. Example 2 Solution
Show that 1D + 3t2D is not the same as D1D + 3t2. With y1t2 as before,
1D + 3t2D3y4 = 1D + 3t23y′4 = y″ + 3ty′ ;
D1D + 3t23y4 = D3y′ + 3ty4 = y″ + 3y + 3ty′ . They are not the same! ◆ Because the coefficient 3t is not a constant, it “interrupts” the interaction of the differentiation operator D with the function y1t2. As long as we only deal with expressions like aD2 + bD + c with constant coefficients a, b, and c, the “algebra” of differential operators follows the same rules as the algebra of polynomials. (See Problem 39 for elaboration on this point.) This means that the familiar elimination method, used for solving algebraic systems like 3x - 2y + z = 4 , x+y-z = 0, 2x - y + 3z = 6 , can be adapted to solve any system of linear differential equations with constant coefficients. In fact, we used this approach in solving the system that arose in the interconnected tanks problem of Section 5.1. Our goal in this section is to formalize this elimination method so that we can tackle more general linear constant coefficient systems. We first demonstrate how the method applies to a linear system of two first-order differential equations of the form a1x′1t2 + a2x1t2 + a3y′1t2 + a4y1t2 = f1 1t2 , a5x′1t2 + a6x1t2 + a7y′1t2 + a8y1t2 = f2 1t2 ,
where a1, a2, . . . , a8 are constants and x1t2, y1t2 is the function pair to be determined. In operator notation this becomes 1a1D + a2 23x4 + 1a3D + a4 23y4 = f1 , 1a5D + a6 23x4 + 1a7D + a8 23y4 = f2 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.2
Example 3
245
Solve the system (1)
Solution
Differential Operators and the Elimination Method* for Systems
x′1t2 = 3x1t2 - 4y1t2 + 1 , y′1t2 = 4x1t2 - 7y1t2 + 10t .
The alert reader may observe that since y′ is absent from the first equation, we could use the latter to express y in terms of x and x′ and substitute into the second equation to derive an “uncoupled” equation containing only x and its derivatives. However, this simple trick will not work on more general systems (Problem 18 is an example). To utilize the elimination method, we first write the system using the operator notation: (2)
1D - 323x4 + 4y = 1 , -4x + 1D + 723y4 = 10t .
Imitating the elimination procedure for algebraic systems, we can eliminate x from this system by adding 4 times the first equation to 1D - 32 applied to the second equation. This gives
1 16 + 1D - 321D + 72 2 3y4
= 4 # 1 + 1D - 32310t4 = 4 + 10 - 30t ,
which simplifies to (3)
1D2 + 4D - 523y4 = 14 - 30t .
Now equation (3) is just a second-order linear equation in y with constant coefficients that has the general solution (4)
y1t2 = C1e-5t + C2et + 6t + 2 ,
which can be found using undetermined coefficients. To find x1t2, we have two options. Method 1. We return to system (2) and eliminate y. This is accomplished by “multiplying” the first equation in (2) by 1D + 72 and the second equation by -4 and then adding to obtain 1D2 + 4D - 523x4 = 7 - 40t .
This equation can likewise be solved using undetermined coefficients to yield (5)
x1t2 = K1e-5t + K2et + 8t + 5 ,
where we have taken K1 and K2 to be the arbitrary constants, which are not necessarily the same as C1 and C2 used in formula (4). It is reasonable to expect that system (1) will involve only two arbitrary constants, since it consists of two first-order equations. Thus, the four constants C1, C2, K1, and K2 are not independent. To determine the relationships, we substitute the expressions for x1t2 and y1t2 given in (4) and (5) into one of the equations in (1)—say, the first one. This yields -5K1e-5t + K2et + 8 = 3K1e-5t + 3K2et + 24t + 15 - 4C1e-5t - 4C2et - 24t - 8 + 1 , which simplifies to
14C1 - 8K1 2e-5t + 14C2 - 2K2 2et = 0 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
246
Chapter 5
Introduction to Systems and Phase Plane Analysis
Because et and e-5t are linearly independent functions on any interval, this last equation holds for all t only if 4C1 - 8K1 = 0
and
4C2 - 2K2 = 0 .
Therefore, K1 = C1 >2 and K2 = 2C2. A solution to system (1) is then given by the pair 1 (6) x1t2 = C1e-5t + 2C2et + 8t + 5 , y1t2 = C1e-5t + C2et + 6t + 2 . 2 As you might expect, this pair is a general solution to (1) in the sense that any solution to (1) can be expressed in this fashion. Method 2. A simpler method for determining x1t2 once y1t2 is known is to use the system to obtain an equation for x1t2 in terms of y1t2 and y′1t2. In this example we can directly solve the second equation in (1) for x1t2: x1t2 =
1 7 5 y′1t2 + y1t2 - t . 4 4 2
Substituting y1t2 as given in (4) yields 5 1 7 3 -5C1e-5t + C2et + 64 + 3C1e-5t + C2et + 6t + 24 - t 4 4 2 1 = C1e-5t + 2C2et + 8t + 5 , 2
x1t2 =
which agrees with (6). ◆ The above procedure works, more generally, for any linear system of two equations and two unknowns with constant coefficients regardless of the order of the equations. For example, if we let L 1, L 2, L 3, and L 4 denote linear differential operators with constant coefficients (i.e., polynomials in D), then the method can be applied to the linear system L 1 3x4 + L 2 3y4 = f1 , L 3 3x4 + L 4 3y4 = f2 .
Because the system has constant coefficients, the operators commute (e.g., L 2L 4 = L 4L 2) and we can eliminate variables in the usual algebraic fashion. Eliminating the variable y gives (7)
1L 1L 4 - L 2L 3 23x4 = g1 ,
where g1 J L 4[f1] - L 2[f2]. Similarly, eliminating the variable x yields (8)
1L 1L 4 - L 2L 3 23y4 = g2 ,
where g2 J L 1[ f2] - L 3[ f1]. Now if L 1L 4 - L 2L 3 is a differential operator of order n, then a general solution for (7) contains n arbitrary constants, and a general solution for (8) also contains n arbitrary constants. Thus, a total of 2n constants arise. However, as we saw in Example 3, there are only n of these that are independent for the system; the remaining constants can be expressed in terms of these.† The pair of general solutions to (7) and (8) written in terms of the n independent constants is called a general solution for the system.
†
For a proof of this fact, see Ordinary Differential Equations, by M. Tenenbaum and H. Pollard (Dover, New York, 1985), Chapter 7.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.2
Differential Operators and the Elimination Method* for Systems
247
If it turns out that L 1L 4 - L 2L 3 is the zero operator, the system is said to be degenerate. As with the anomalous problem of solving for the points of intersection of two parallel or coincident lines, a degenerate system may have no solutions, or if it does possess solutions, they may involve any number of arbitrary constants (see Problems 23 and 24).
Elimination Procedure for 2 : 2 Systems To find a general solution for the system L 1 3x4 + L 2 3y4 = f1 , L 3 3x4 + L 4 3y4 = f2 ,
where L 1, L 2, L 3, and L 4 are polynomials in D = d>dt: (a) Make sure that the system is written in operator form. (b) Eliminate one of the variables, say, y, and solve the resulting equation for x1t2. If the system is degenerate, stop! A separate analysis is required to determine whether or not there are solutions. (c) (Shortcut) If possible, use the system to derive an equation that involves y1t2 but not its derivatives. [Otherwise, go to step (d).] Substitute the found expression for x1t2 into this equation to get a formula for y1t2. The expressions for x1t2, y1t2 give the desired general solution. ◆ (d) Eliminate x from the system and solve for y1t2. [Solving for y1t2 gives more constants—in fact, twice as many as needed.] (e) Remove the extra constants by substituting the expressions for x1t2 and y1t2 into one or both of the equations in the system. Write the expressions for x1t2 and y1t2 in terms of the remaining constants. ◆
Example 4
Find a general solution for (9)
Solution
x″1t2 + y′1t2 - x1t2 + y1t2 = -1 , x′1t2 + y′1t2 - x1t2 = t2 .
We begin by expressing the system in operator notation: (10)
1D2 - 123x4 + 1D + 123y4 = -1 , 1D - 123x4 + D3y4 = t 2 .
Here L 1 J D2 - 1, L 2 J D + 1, L 3 J D - 1, and L 4 J D. Eliminating y gives [see (7)]:
1 1D2 - 12D - 1D + 121D - 12 2 3x4
= D[-1] - 1D + 123t 2 4 ,
which reduces to (11)
1D2 - 121D - 123x4 = -2t - t 2 , or 1D - 12 2 1D + 123x4 = -2t - t 2 .
Since 1D - 12 2 1D + 12 is third order, we should expect three arbitrary constants in a general solution to system (9). Although the methods of Chapter 4 focused on solving second-order equations, we have seen several examples of how they extend in a natural way to higher-order
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
248
Chapter 5
Introduction to Systems and Phase Plane Analysis
equations.† Applying this strategy to the third-order equation (11), we observe that the corresponding homogeneous equation has the auxiliary equation 1r - 12 2 1r + 12 = 0 with roots r = 1, 1, -1. Hence, a general solution for the homogeneous equation is xh 1t2 = C1et + C2tet + C3e-t .
To find a particular solution to (11), we use the method of undetermined coefficients with xp 1t2 = At 2 + Bt + C. Substituting into (11) and solving for A, B, and C yields (after a little algebra) xp 1t2 = -t 2 - 4t - 6 .
Thus, a general solution to equation (11) is (12)
x1t2 = xh 1t2 + xp 1t2 = C1et + C2tet + C3e-t - t 2 - 4t - 6 .
To find y1t2, we take the shortcut described in step (c) of the elimination procedure box. Subtracting the second equation in (10) from the first, we find 1D2 - D23x4 + y = -1 - t 2 ,
so that
y = 1D - D2 23x4 - 1 - t 2 .
Inserting the expression for x1t2, given in (12), we obtain
y1t2 = C1et + C2 1tet + et 2 - C3e-t - 2t - 4 - 3C1et + C2 1tet + 2et 2 + C3e-t - 24 - 1 - t 2 ,
(13)
or
y1t2 = -C2et - 2C3e-t - t 2 - 2t - 3 .
The formulas for x1t2 in (12) and y1t2 in (13) give the desired general solution to (9). ◆ The elimination method also applies to linear systems with three or more equations and unknowns; however, the process becomes more cumbersome as the number of equations and unknowns increases. The matrix methods presented in Chapter 9 are better suited for handling larger systems. Here we illustrate the elimination technique for a 3 * 3 system. Example 5
Find a general solution to (14)
Solution
x′1t2 = x1t2 + 2y1t2 - z1t2 , y′1t2 = x1t2 + z1t2 , z′1t2 = 4x1t2 - 4y1t2 + 5z1t2 .
We begin by expressing the system in operator notation: (15)
1D - 123x4 - 2y + z = 0 , -x + D3y4 - z = 0 , -4x + 4y + 1D - 523z4 = 0 .
Eliminating z from the first two equations (by adding them) and then from the last two equations yields (after some algebra, which we omit) (16)
1D - 223x4 + 1D - 223y4 = 0 , - 1D - 123x4 + 1D - 121D - 423y4 = 0 .
†
More detailed treatment of higher-order equations is given in Chapter 6.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.2
Differential Operators and the Elimination Method* for Systems
249
On eliminating x from this 2 * 2 system, we eventually obtain 1D - 121D - 221D - 323y4 = 0 ,
which has the general solution (17)
y1t2 = C1et + C2e2t + C3e3t .
Taking the shortcut approach, we add the two equations in (16) to get an expression for x in terms of y and its derivatives, which simplifies to x = 1D2 - 4D + 223y4 = y″ - 4y′ + 2y .
When we substitute the expression (17) for y1t2 into this equation, we find (18)
x1t2 = -C1et - 2C2e2t - C3e3t . Finally, using the second equation in (14) to solve for z1t2, we get z1t2 = y′1t2 - x1t2 ,
and substituting in for y1t2 and x1t2 yields (19)
z1t2 = 2C1et + 4C2e2t + 4C3e3t .
The expressions for x1t2 in (18), y1t2 in (17), and z1t2 in (19) give a general solution with C1, C2, and C3 as arbitrary constants. ◆
5.2
EXERCISES
1. Let A = D - 1, B = D + 2, C = D2 + D - 2, where D = d>dt. For y = t 3 - 8, compute (a) A3y4 (b) B3A3y44 (c) B3y4 (d) A3B3y44 (e) C3y4 2. Show that the operator 1D - 121D + 22 is the same as the operator D2 + D - 2. In Problems 3–18, use the elimination method to find a general solution for the given linear system, where differentiation is with respect to t. 3. x′ + 2y = 0 , 4. x′ = x - y , x′ - y′ = 0 y′ = y - 4x 5. x′ + y′ - x = 5 , x′ + y′ + y = 1
6. x′ = 3x - 2y + sin t , y′ = 4x - y - cos t
7. 1D + 123u4 - 1D + 123y4 = et , 1D - 123u4 + 12D + 123y4 = 5
8. 1D - 323x4 + 1D - 123y4 = t , 1D + 123x4 + 1D + 423y4 = 1 9. x′ + y′ + 2x = 0 , x′ + y′ - x - y = sin t
10. 2x′ + y′ - x - y = e-t , x′ + y′ + 2x + y = et
11. 1D2 - 123u4 + 5y = et , 12. D2 3u4 + D3y4 = 2 , 2u + 1D2 + 223y4 = 0 4u + D3y4 = 6
dx = x - 4y , dt dy = x+y dt dw = 5w + 2z + 5t , 15. dt dz = 3w + 4z + 17t dt
13.
dx + y = t2 , dt dy -x + = 1 dt dy dx 16. +x+ = e4t , dt dt d 2y 2x + 2 = 0 dt
14.
17. x″ + 5x - 4y = 0 , -x + y″ + 2y = 0 18. x″ + y″ - x′ = 2t , x″ + y′ - x + y = -1 In Problems 19–21, solve the given initial value problem. dx 19. = 4x + y ; x102 = 1 , dt dy = - 2x + y ; y102 = 0 dt 20.
dx = 2x + y - e2t ; x102 = 1 , dt dy = x + 2y ; y102 = - 1 dt
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
250
21.
Chapter 5
Introduction to Systems and Phase Plane Analysis
d 2x = y ; x102 = 3 , dt 2 2 dy = x ; y102 = 1 , dt 2
x′102 = 1 , y′102 = - 1
22. Verify that the solution to the initial value problem x′ = 5x - 3y - 2 ; x102 = 2 , y′ = 4x - 3y - 1 ; y102 = 0
satisfies 0 x1t2 0 + 0 y1t2 0 S + ∞ as t S + ∞ . In Problems 23 and 24, show that the given linear system is degenerate. In attempting to solve the system, determine whether it has no solutions or infinitely many solutions. 23. 1D - 123x4 + 1D - 123y4 = - 3e-2t , 1D + 223x4 + 1D + 223y4 = 3et
24. D3x4 + 1D + 123y4 = et , D2 3x4 + 1D2 + D23y4 = 0
In Problems 25–28, use the elimination method to find a general solution for the given system of three equations in the three unknown functions x1t2, y1t2, z1t2. 25. x′ = x + 2y - z , y′ = x + z , z′ = 4x - 4y + 5z
26. x′ = 3x + y - z , y′ = x + 2y - z , z′ = 3x + 3y - z
27. x′ = 4x - 4z , y′ = 4y - 2z , z′ = - 2x - 4y + 4z
28. x′ = x + 2y + z , y′ = 6x - y , z′ = -x - 2y - z
In Problems 29 and 30, determine the range of values (if any) of the parameter l that will ensure all solutions x1t2, y1t2 of the given system remain bounded as t S + ∞ . dx dx 29. = lx - y , = - x + ly , 30. dt dt dy dy = 3x + y = x-y dt dt
tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure 5.2). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The (diluted) solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt, determine the mass of salt in each tank at time t Ú 0. 32. In Problem 31, 3 L/min of liquid flowed from tank A into tank B and 1 L/min from B into A. Determine the mass of salt in each tank at time t Ú 0 if, instead, 5 L/min flows from A into B and 3 L/min flows from B into A, with all other data the same. 33. In Problem 31, assume that no solution flows out of the system from tank B, only 1 L/min flows from A into B, and only 4 L/min of brine flows into the system at tank A, other data being the same. Determine the mass of salt in each tank at time t Ú 0. 34. Feedback System with Pooling Delay. Many physical and biological systems involve time delays. A pure time delay has its output the same as its input but shifted in time. A more common type of delay is pooling delay. An example of such a feedback system is shown in Figure 5.3 on page 251. Here the level of fluid in tank B determines the rate at which fluid enters tank A. Suppose this rate is given by R1 1t2 = a3V - V2 1t24, where a and V are positive constants and V2 1t2 is the volume of fluid in tank B at time t. (a) If the outflow rate R3 from tank B is constant and the flow rate R2 from tank A into B is R2 1t2 = KV1 1t2, where K is a positive constant and V1 1t2 is the volume of fluid in tank A at time t, then show that this feedback system is governed by the system dV1 = a 1 V - V2 1t2 2 - KV1 1t2 , dt dV2 = KV1 1t2 - R3 . dt
31. Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from
6 L/min 0.2 kg/L
4 L/min
A
3 L/min
B
x(t)
y(t)
100 L
100 L
x (0) 5 0 kg
y (0) 5 20 kg
2 L/min
1 L/min Figure 5.2 Mixing problem for interconnected tanks
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.2
251
Differential Operators and the Elimination Method* for Systems
A
B
R1 Tank A Pump
4 hr
x(t)
2 hr
y(t)
5 hr
V1 (t) Power R2
Tank B
Figure 5.5 Two-zone building with one zone heated
V2 (t)
R3
Figure 5.3 Feedback system with pooling delay
(b) Find a general solution for the system in part (a) when a = 5 (min) -1, V = 20 L, K = 2 (min) -1, and R3 = 10 L/min. (c) Using the general solution obtained in part (b), what can be said about the volume of fluid in each of the tanks as t S + ∞ ? 35. A house, for cooling purposes, consists of two zones: the attic area zone A and the living area zone B (see Figure 5.4). The living area is cooled by a 2-ton air conditioning unit that removes 24,000 Btu/hr. The heat capacity of zone B is 1>2°F per thousand Btu. The time constant for heat transfer between zone A and the outside is 2 hr, between zone B and the outside is 4 hr, and between the two zones is 4 hr. If the outside temperature stays at 100°F, how warm does it eventually get in the attic zone A? (Heating and cooling of buildings was treated in Section 3.3 on page 102.) 36. A building consists of two zones A and B (see Figure 5.5). Only zone A is heated by a furnace, which generates 80,000 Btu/hr. The heat capacity of zone A is 1>4°F per thousand Btu. The time constant for heat transfer between
zone A and the outside is 4 hr, between the unheated zone B and the outside is 5 hr, and between the two zones is 2 hr. If the outside temperature stays at 0°F, how cold does it eventually get in the unheated zone B? 37. In Problem 36, if a small furnace that generates 1000 Btu/hr is placed in zone B, determine the coldest it would eventually get in zone B if zone B has a heat capacity of 2°F per thousand Btu. 38. Arms Race. A simplified mathematical model for an arms race between two countries whose expenditures for defense are expressed by the variables x1t2 and y1t2 is given by the linear system dx = 2y - x + a ; x102 = 1 , dt dy = 4x - 3y + b ; y102 = 4 , dt where a and b are constants that measure the trust (or distrust) each country has for the other. Determine whether there is going to be disarmament (x and y approach 0 as t increases), a stabilized arms race (x and y approach a constant as t S + ∞ ), or a runaway arms race (x and y approach + ∞ as t S + ∞ ). 39. Let A, B, and C represent three linear differential operators with constant coefficients; for example, A J a2D2 + a1D + a0 , B J b2D2 + b1D + b0 , C J c2D2 + c1D + c0 , where the a’s, b’s, and c’s are constants. Verify the following properties:†
2 hr
(a) Commutative laws:
A
A+B = B+A, AB = BA .
4 hr
4 hr B
24,000 Btu/hr
Figure 5.4 Air-conditioned house with attic
(b) Associative laws:
1A + B2 + C = A + 1B + C2 , 1AB2C = A1BC2 .
(c) Distributive law: A1B + C2 = AB + AC .
We say that two operators A and B are equal if A3y4 = B3y4 for all functions y with the necessary derivatives.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
252
Chapter 5
Introduction to Systems and Phase Plane Analysis
5.3 Solving Systems and Higher-Order Equations Numerically
Although we studied a half-dozen analytic methods for obtaining solutions to first-order ordinary differential equations in Chapter 2, the techniques for higher-order equations, or systems of equations, are much more limited. Chapter 4 focused on solving the linear constant-coefficient second-order equation. The elimination method of the previous section is also restricted to constant-coefficient systems. And, indeed, higher-order linear constantcoefficient equations and systems can be solved analytically by extensions of these methods, as we will see in Chapters 6, 7, and 9. However, if the equations—even a single second-order linear equation—have variable coefficients, the solution process is much less satisfactory. As will be seen in Chapter 8, the solutions are expressed as infinite series, and their computation can be very laborious (with the notable exception of the Cauchy–Euler, or equidimensional, equation). And we know virtually nothing about how to obtain exact solutions to nonlinear second-order equations. Fortunately, all the cases that arise (constant or variable coefficients, nonlinear, higherorder equations or systems) can be addressed by a single formulation that lends itself to a multitude of numerical approaches. In this section we’ll see how to express differential equations as a system in normal form and then show how the basic Euler method for computer solution can be easily “vectorized” to apply to such systems. Although subsequent chapters will return to analytic solution methods, the vectorized version of the Euler technique or the more efficient Runge–Kutta technique will hereafter be available as fallback methods for numerical exploration of intractable problems.
Normal Form
A system of m differential equations in the m unknown functions x1 1t2, x2 1t2, . . . , xm 1t2 expressed as (1)
x1= 1t2 = f1 1t, x1, x2, . . . , xm 2 , x2= 1t2 = f2 1t, x1, x2, . . . , xm 2 , O = xm 1t2 = fm 1t, x1, x2, . . . , xm 2
is said to be in normal form. Notice that (1) consists of m first-order equations that collectively look like a vectorized version of the single generic first-order equation (2)
x′ = f1t, x2 ,
and that the system expressed in equation (1) of Section 5.1 takes this form, as do equations (1) and (14) in Section 5.2. An initial value problem for (1) entails finding a solution to this system that satisfies the initial conditions x1 1t0 2 = a1, x2 1t0 2 = a2, . . . , xm 1t0 2 = am
for prescribed values t0, a1, a2, . . . , am. The importance of the normal form is underscored by the fact that most professional codes for initial value problems presume that the system is written in this form. Furthermore, for a linear system in normal form, the powerful machinery of linear algebra can be readily applied. [Indeed, in Chapter 9 we will show how the solutions x1t2 = ceat of the simple equation x′ = ax can be generalized to constant-coefficient systems in normal form.]
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.3
Solving Systems and Higher-Order Equations Numerically
253
For these reasons it is gratifying to note that a (single) higher-order equation can always be converted to an equivalent system of first-order equations. To convert an mth-order differential equation (3)
y 1m2 1t2 = f 1 t, y, y′, c, y 1m-12 2
into a first-order system, we introduce, as additional unknowns, the sequence of derivatives of y: x1 1t2 J y1t2, x2 1t2 J y′1t2, . . . , xm 1t2 J y 1m-12 1t2 .
With this scheme, we obtain m - 1 first-order equations quite trivially:
(4)
x′1 1t2 = y′1t2 = x2 1t2 , x′2 1t2 = y″1t2 = x3 1t2 , O x′m − 1 1t2 = y 1m − 12 1t2 = xm 1t2 .
The mth and final equation then constitutes a restatement of the original equation (3) in terms of the new unknowns: (5)
x′m 1t2 = y 1m2 1t2 = f1t, x1, x2, . . . , xm 2 .
If equation (3) has initial conditions y1t0 2 = a1, y′1t0 2 = a2, . . . , y1m-12 1t0 2 = am, then the system (4)–(5) has initial conditions x1 1t0 2 = a1, x2 1t0 2 = a2, . . . , xm 1t0 2 = am. Example 1
Convert the initial value problem (6)
y″1t2 + 3ty′1t2 + y1t2 2 = sin t ; y102 = 1 , y′102 = 5
into an initial value problem for a system in normal form. Solution
We first express the differential equation in (6) as y″1t2 = - 3ty′1t2 - y1t2 2 + sin t .
Setting x1 1t2 J y1t2 and x2 1t2 J y′1t2, we obtain x1= 1t2 = x2 1t2 , x2= 1t2 = -3tx2 1t2 - x1 1t2 2 + sin t .
The initial conditions transform to x1 102 = 1, x2 102 = 5 . ◆
Euler’s Method for Systems in Normal Form Recall from Section 1.4 that Euler’s method for solving a single first-order equation (2) is based on estimating the solution x at time 1t0 + h2 using the approximation (7)
x1t0 + h2 ≈ x1t0 2 + hx′1t0 2 = x1t0 2 + h f 1 t0, x1t0 2 2 ,
and that as a consequence the algorithm can be summarized by the recursive formulas (8)
tn + 1 = tn + h ,
(9)
xn + 1 = xn + h f1tn, xn 2,
n = 0, 1, 2, . . .
[compare equations (2) and (3), Section 1.4]. Now we can apply the approximation (7) to each of the equations in the system (1): (10)
xk 1t0 + h2 ≈ xk 1t0 2 + hxk= 1t0 2 = xk 1t0 2 + h fk 1 t0, x1 1t0 2, x2 1t0 2, . . . , xm 1t0 2 2 ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
254
Chapter 5
Introduction to Systems and Phase Plane Analysis
and for k = 1, 2, . . . m, we are led to the recursive formulas (11)
(12)
tn + 1 = tn + h ,
x1;n + 1 = x1;n + h f1 1tn, x1;n, x2;n, . . . , xm;n 2 , x2;n + 1 = x2;n + h f2 1tn, x1;n, x2;n, . . . , xm;n 2 , O xm;n + 1 = xm;n + h fm 1tn, x1;n, x2;n, . . . , xm;n 2
1n = 0, 1, 2, c2 .
Here we are burdened with the ungainly notation xp;n for the approximation to the value of the pth-function xp at time t = t0 + nh; i.e., xp;n ≈ xp 1t0 + nh2. However, if we treat the unknowns and right-hand members of (1) as components of vectors x1t2 J 3x1 1t2, x2 1t2, . . . , xm 1t24 , f1t, x2 J 3f1 1t, x1, x2, . . . , xm 2, f2 1t, x1, x2, . . . , xm 2, . . . , fm 1t, x1, x2, . . . , xm 2 4 , then (12) can be expressed in the much neater form (13)
Example 2
xn + 1 = xn + h f1tn, xn 2 .
Use the vectorized Euler method with step size h = 0.1 to find an approximation for the solution to the initial value problem (14)
y″1t2 + 4y′1t2 + 3y1t2 = 0; y102 = 1.5 , y′102 = -2.5 ,
on the interval 30, 14. Solution
For the given step size, the method will yield approximations for y10.12, y10.22, . . . , y11.02. To apply the vectorized Euler method to (14), we first convert it to normal form. Setting x1 = y and x2 = y′, we obtain the system (15)
x1= = x2; x2= = -4x2 - 3x1;
x1 102 = 1.5 , x2 102 = -2.5 .
Comparing (15) with (1) we see that f1 1t, x1, x2 2 = x2 and f2 1t, x1, x2 2 = -4x2 - 3x1. With the starting values of t0 = 0, x1;0 = 1.5, and x2;0 = -2.5, we compute
c
c
x1 10.12 ≈ x1;1 = x1;0 + hx2;0 = 1.5 + 0.11 -2.52 = 1.25 , x2 10.1) ≈ x2;1 = x2;0 + h1 -4x2;0 - 3x1;0 2 = -2.5 + 0.13 -41 -2.52 - 3 # 1.54 = -1.95 ; x1 10.22 ≈ x1;2 = x1;1 + hx2;1 = 1.25 + 0.11 -1.952 = 1.055 , x2 10.2) ≈ x2;2 = x2;1 + h1 -4x2;1 - 3x1;1 2 = -1.95 + 0.13 -41 -1.952 - 3 # 1.254 = -1.545 .
Continuing the algorithm we compute the remaining values. These are listed in Table 5.1 on page 255, along with the exact values calculated via the methods of Chapter 4. Note that the x2;n column gives approximations to y′1t2, since x2 1t2 K y′1t2. ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.3
TABLE 5.1
Solving Systems and Higher-Order Equations Numerically
255
Approximations of the Solution to (14) in Example 2
t = n10.12
x1;n
y Exact
x2;n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5 1.25 1.055 0.9005 0.77615 0.674525 0.5902655 0.51947405 0.459291215 0.407597293 0.362802203
1.5 1.275246528 1.093136571 0.944103051 0.820917152 0.71809574 0.63146108 0.557813518 0.494687941 0.440172416 0.392772975
- 2.5 - 1.95 - 1.545 - 1.2435 - 1.01625 - 0.842595 - 0.7079145 - 0.60182835 - 0.516939225 - 0.4479509 - 0.391049727
y′ Exact
- 2.5 - 2.016064749 - 1.641948207 - 1.35067271 - 1.122111364 - 0.9412259 - 0.796759968 - 0.680269946 - 0.585405894 - 0.507377929 - 0.442560044
Euler’s method is modestly accurate for this problem with a step size of h = 0.1. The next example demonstrates the effects of using a sequence of smaller values of h to improve the accuracy.
Example 3
For the initial value problem of Example 2, use Euler’s method to estimate y112 for successively halved step sizes h = 0.1, 0.05, 0.025, 0.0125, 0.00625.
Solution
Using the same scheme as in Example 2, we find the following approximations, denoted by y11;h2 (obtained with step size h): 0.1 0.05 0.025 0.0125 0.00625 y1 1;h 2 0.36280 0.37787 0.38535 0.38907 0.39092 h
[Recall that the exact value, rounded to 5 decimal places, is y112 = 0.39277.] ◆ The Runge–Kutta scheme described in Section 3.7 is easy to vectorize also; details are given on the following page. As would be expected, its performance is considerably more accurate, yielding five-decimal agreement with the exact solution for a step size of 0.05: h
0.1 0.05 0.025 0.0125 0.00625 0.39278 0.39277 0.39277 0.39277 0.39277 y1 1;h 2 As in Section 3.7, both algorithms can be coded so as to repeat the calculation of y112 with a sequence of smaller step sizes until two consecutive estimates agree to within some prespecified tolerance e. Here one should interpret “two estimates agree to within e” to mean that each component of the successive vector approximants [i.e., approximants to y112 and y′112] should agree to within e.
An Application to Population Dynamics A mathematical model for the population dynamics of competing species, one a predator with population x2 1t2 and the other its prey with population x1 1t2, was developed independently in
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
256
Chapter 5
Introduction to Systems and Phase Plane Analysis
the early 1900s by A. J. Lotka and V. Volterra. It assumes that there is plenty of food available for the prey to eat, so the birthrate of the prey should follow the Malthusian or exponential law (see Section 3.2); that is, the birthrate of the prey is Ax1, where A is a positive constant. The death rate of the prey depends on the number of interactions between the predators and the prey. This is modeled by the expression Bx1x2, where B is a positive constant. Therefore, the rate of change in the population of the prey per unit time is dx1 >dt = Ax1 - Bx1x2. Assuming that the predators depend entirely on the prey for their food, it is argued that the birthrate of the predators depends on the number of interactions with the prey; that is, the birthrate of predators is Dx1x2, where D is a positive constant. The death rate of the predators is assumed to be Cx2 because without food the population would die off at a rate proportional to the population present. Hence, the rate of change in the population of predators per unit time is dx2 >dt = -Cx2 + Dx1x2. Combining these two equations, we obtain the Volterra–Lotka system for the population dynamics of two competing species: (16)
x′1 = Ax1 − Bx1x2 , x′2 = −Cx2 + Dx1x2 .
Such systems are in general not explicitly solvable. In the following example, we obtain an approximate solution for such a system by utilizing the vectorized form of the Runge–Kutta algorithm. For the system of two equations x1= = f1 1t, x1, x2 2 , x2= = f2 1t, x1, x2 2 , with initial conditions x1 1t0 2 = x1;0, x2 1t0 2 = x2;0, the vectorized form of the Runge–Kutta recursive equations (cf. (14), page 254) becomes tn + 1 J tn + h (17)
1n = 0, 1, 2, . . .2 ,
e x1;n + 1 J x1;n + 16 1k1,1 + 2k1,2 + 2k1,3 + k1,4 2 , x2;n + 1 J x2;n + 16 1k2,1 + 2k2,2 + 2k2,3 + k2,4 2 ,
where h is the step size and, for i = 1 and 2, ki,1 J h fi 1tn, x1;n, x2;n 2 ,
(18)
f
ki,2 J h fi 1 tn + h2, x1;n + 12k1,1, x2;n + 12k2,1 2 ,
ki,3 J h fi 1 tn + h2, x1;n + 12k1,2, x2;n + 12k2,2 2 , ki,4 J h fi 1tn + h, x1;n + k1,3, x2;n + k2,3 2 .
It is important to note that both k1,1 and k2,1 must be computed before either k1,2 or k2,2. Similarly, both k1,2 and k2,2 are needed to compute k1,3 and k2,3, etc. In Appendix F, program outlines are given for applying the method to graph approximate solutions over a specified interval 3t0, t1 4 or to obtain approximations of the solutions at a specified point to within a desired tolerance.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.3
Example 4
Solving Systems and Higher-Order Equations Numerically
257
Use the classical fourth-order Runge–Kutta algorithm for systems to approximate the solution of the initial value problem (19)
x1= = 2x1 - 2x1x2 ; x2= = x1x2 - x2 ;
x1 102 = 1 , x2 102 = 3
at t = 1. Starting with h = 1, continue halving the step size until two successive approximations of x1 112 and of x2 112 differ by at most 0.0001.
Solution
Here f1 1t, x1, x2 2 = 2x1 - 2x1x2 and f2 1t, x1, x2 2 = x1x2 - x2. With the inputs t0 = 0, x1;0 = 1, x2;0 = 3, we proceed with the algorithm to compute x1 11; 12 and x2 11; 12, the approximations to x1 112, x2 112 using h = 1. We find from the formulas in (18) that k1,1 = h12x1;0 - 2x1;0 x2;0 2 = 2112 - 2112132 = -4 , k2,1 = h1x1;0 x2;0 - x2;0 2 = 112132 - 3 = 0 ,
k1,2 = h 3 2 1 x1;0 + 12k1,1 2 - 2 1 x1;0 + 12k1,1 2 1 x2;0 + 12k2,1 2 4 = 2 3 1 + 12 1 -42 4 - 2 3 1 + 12 1 -42 4 3 3 + 12 102 4 = -2 + 2132 = 4 ,
k2,2 = h 3 1 x1;0 + 12k1,1 2 1 x2;0 + 12k2,1 2 - 1 x2;0 + 12k2,1 2 4 =
3 1 + 12 1 -42 4 3 3 + 12 102 4
= 1 -12132 - 3 = -6 ,
- 3 3 + 12 102 4
and similarly we compute k1,3 = h 3 2 1 x1;0 + 12k1,2 2 - 2 1 x1;0 + 12k1,2 2 1 x2;0 + 12k2,2 2 4 = 6 ,
k2,3 = h 3 1 x1;0 + 12k1,2 2 1 x2;0 + 12k2,2 2 - 1 x2;0 + 12k2,2 2 4 = 0 ,
k1,4 = h321x1;0 + k1,3 2 - 21x1;0 + k1,3 21x2;0 + k2,3 24 = -28 ,
k2,4 = h3 1x1;0 + k1,3 21x2;0 + k2,3 2 - 1x2;0 + k2,3 24 = -18 . Inserting these values into formula (17), we get 1 x1;1 = x1;0 + 1k1,1 + 2k1,2 + 2k1,3 + k1,4 2 6 1 = 1 + 1 -4 + 8 + 12 - 282 = -1 , 6 1 x2;1 = x2;0 + 1k2,1 + 2k2,2 + 2k2,3 + k2,4 2 , 6 1 = 3 + 10 - 12 + 0 + 182 = 4 , 6
as the respective approximations to x1 112 and x2 112.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
258
Chapter 5
Introduction to Systems and Phase Plane Analysis
Repeating the algorithm with h = 1>2 1N = 22 we obtain the approximations x1 11; 2-1 2 and x2 11; 2-1 2 for x1 112 and x2 112. In Table 5.2, we list the approximations x1 11; 2-m 2 and x2 11; 2-m 2 for x1 112 and x2 112 using step size h = 2-m for m = 0, 1, 2, 3, and 4. We stopped at m = 4, since both
0 x1 11; 2-3 2 - x1 11; 2-4 2 0 = 0.00006 6 0.0001 and
0 x2 11; 2-3 2 - x2 11; 2-4 2 0 = 0.00001 6 0.0001 . Hence, x1 112 ≈ 0.07735 and x2 112 ≈ 1.46445, with tolerance 0.0001. ◆
TABLE 5.2
Approximations of the Solution to System (19) in Example 4
m
h
x1 11; h2
x2 11; h2
0 1 2 3 4
1.0 0.5 0.25 0.125 0.0625
- 1.0 0.14662 0.07885 0.07741 0.07735
4.0 1.47356 1.46469 1.46446 1.46445
To get a better feel for the solution to system (19), we have graphed in Figure 5.6 an approximation of the solution for 0 … t … 12, using linear interpolation to connect the vectorized Runge– Kutta approximants for the points t = 0, 0.125, 0.25, . . . , 12.0 (i.e., with h = 0.125). From the graph it appears that the components x1 and x2 are periodic in the variable t. Phase plane analysis is used in Section 5.5 to show that, indeed, Volterra–Lotka equations have periodic solutions.
x1
4 3 x2
2 1
t 0
1
2
3
4
5
6
7
8
9
10 11 12
Figure 5.6 Graphs of the components of an approximate solution to the Volterra–Lotka system (17)
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.3
5.3
Solving Systems and Higher-Order Equations Numerically
259
EXERCISES
In Problems 1–7, convert the given initial value problem into an initial value problem for a system in normal form. 1. y″1t2 + ty′1t2 - 3y1t2 = t 2 ; y102 = 3 ,
y′102 = -6
y102 = 1 ,
y′102 = 0
2. y″1t2 = cos1t - y2 + y2 1t2 ; 3. y 142 1t2 - y 132 1t2 + 7y1t2 = cos t ; y102 = y′102 = 1 ,
y 132 102 = 2
y″102 = 0 ,
4. y 162 1t2 = 3y′1t24 3 - sin 1 y1t2 2 + e2t ; y102 = y′102 = g = y 152 102 = 0
5. x″ + y - x′ = 2t ; y″ - x + y = -1 ; [Hint: Set x1 = x , 6. 3x″ + 5x - 2y = 0 ; 4y″ + 2y - 6x = 0 ; 7. x‴ - y = t ;
x132 = 5 ,
x′132 = 2 ,
y132 = 1 ,
y′132 = - 1
x2 = x′ ,
x3 = y ,
x4 = y′.]
x102 = - 1 ,
x′102 = 0 ,
y102 = 1 ,
y′102 = 2
x102 = x′102 = x″102 = 4 ,
2x″ + 5y″ - 2y = 1 ;
y102 = y′102 = 1
8. Sturm–Liouville Form. A second-order equation is said to be in Sturm–Liouville form if it is expressed as 3p1t2y′1t24′ + q1t2y1t2 = 0 . Show that the substitutions x1 = y, x2 = py′ result in the normal form
12. t 2y″ + y = t + 2 ; y112 = 1 , y′112 = - 1 on 31, 24 13. y″ = t 2 - y2 ; y102 = 0 , y′102 = 1 on 30, 14 (Can you guess the solution?) In Problems 14–24, you will need a computer and a programmed version of the vectorized classical fourth-order Runge–Kutta algorithm. (At the instructor’s discretion, other algorithms may be used.)† 14. Using the vectorized Runge–Kutta algorithm with h = 0.5, approximate the solution to the initial value problem 3t 2y″ - 5ty′ + 5y = 0 ; 2 3 at t = 8. Compare this approximation to the actual solution y1t2 = t 5>3 - t. 15. Using the vectorized Runge–Kutta algorithm, approximate the solution to the initial value problem y112 = 0 ,
y″ = t 2 + y2 ;
y′112 =
y102 = 1 ,
at t = 1. Starting with h = 1, continue halving the step size until two successive approximations 3of both y112 and y′1124 differ by at most 0.01. 16. Using the vectorized Runge–Kutta algorithm for systems with h = 0.125, approximate the solution to the initial value problem
x1= = x2 >p ,
x′ = 2x - y ;
x102 = 0 ,
x2= = - qx1 .
y′ = 3x + 6y ;
y102 = - 2
If y102 = a and y′102 = b are the initial values for the Sturm–Liouville problem, what are x1 102 and x2 102? 9. In Section 3.6, we discussed the improved Euler’s method for approximating the solution to a first-order equation. Extend this method to normal systems and give the recursive formulas for solving the initial value problem. In Problems 10–13, use the vectorized Euler method with h = 0.25 to find an approximation for the solution to the given initial value problem on the specified interval. 10. y″ + ty′ + y = 0 ; y′102 = 0 on 30, 14 y102 = 1 , 11. 11 + t 2 2y″ + y′ - y = 0 ; y102 = 1 , y′102 = -1 on 30, 14
y′102 = 0
at t = 1. Compare this approximation to the actual solution
x1t2 = e5t - e3t ,
y1t2 = e3t - 3e5t .
17. Using the vectorized Runge–Kutta algorithm, approximate the solution to the initial value problem du = 3u - 4y ; u102 = 1 , dx dy = 2u - 3y ; y102 = 1 dx at x = 1. Starting with h = 1, continue halving the step size until two successive approximations of u112 and y112 differ by at most 0.001.
†
Appendix G describes various websites and commercial software that sketch direction fields and automate most of the differential equation algorithms discussed in this book.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
260
Chapter 5
Introduction to Systems and Phase Plane Analysis
18. Combat Model. A simplified mathematical model for conventional versus guerrilla combat is given by the system x1= = - 10.12x1x2 ; x2=
= -x1 ;
x1 102 = 10 , x2 102 = 15 ,
where x1 and x2 are the strengths of guerrilla and conventional troops, respectively, and 0.1 and 1 are the combat effectiveness coefficients. Who will win the conflict: the conventional troops or the guerrillas? [Hint: Use the vectorized Runge–Kutta algorithm for systems with h = 0.1 to approximate the solutions.] 19. Predator–Prey Model. The Volterra–Lotka predator– prey model predicts some rather interesting behavior that is evident in certain biological systems. For example, suppose you fix the initial population of prey but increase the initial population of predators. Then the population cycle for the prey becomes more severe in the sense that there is a long period of time with a reduced population of prey followed by a short period when the population of prey is very large. To demonstrate this behavior, use the vectorized Runge– Kutta algorithm for systems with h = 0.5 to approximate the populations of prey x and of predators y over the period 30, 54 that satisfy the Volterra–Lotka system x′ = x13 - y2 , y′ = y1x - 32 under each of the following initial conditions: (a) x102 = 2 , y102 = 4 . (b) x102 = 2 , y102 = 5 . (c) x102 = 2 , y102 = 7 . 20. In Project C of Chapter 4, it was shown that the simple pendulum equation u″1t2 + sin u1t2 = 0 has periodic solutions when the initial displacement and velocity are small. Show that the period of the solution may depend on the initial conditions by using the vectorized Runge–Kutta algorithm with h = 0.02 to approximate the solutions to the simple pendulum problem on 30, 44 for the initial conditions: (a) u102 = 0.1 , u′102 = 0 . (b) u102 = 0.5 , u′102 = 0 . (c) u102 = 1.0 , u′102 = 0 . [Hint: Approximate the length of time it takes to reach -u102.] 21. Fluid Ejection. In the design of a sewage treatment plant, the following equation arises:†
where H is the level of the fluid in an ejection chamber and t is the time in seconds. Use the vectorized Runge–Kutta algorithm with h = 0.5 to approximate H1t2 over the interval 30, 54. 22. Oscillations and Nonlinear Equations. For the initial value problem x″ + 10.1211 - x2 2x′ + x = 0 ; x102 = x0 ,
x′102 = 0 ,
use the vectorized Runge–Kutta algorithm with h = 0.02 to illustrate that as t increases from 0 to 20, the solution x exhibits damped oscillations when x0 = 1, whereas x exhibits expanding oscillations when x0 = 2.1. 23. Nonlinear Spring. The Duffing equation y″ + y + ry3 = 0 , where r is a constant, is a model for the vibrations of a mass attached to a nonlinear spring. For this model, does the period of vibration vary as the parameter r is varied? Does the period vary as the initial conditions are varied? [Hint: Use the vectorized Runge–Kutta algorithm with h = 0.1 to approximate the solutions for r = 1 and 2, with initial conditions y102 = a, y′102 = 0 for a = 1, 2, and 3.] 24. Pendulum with Varying Length. A pendulum is formed by a mass m attached to the end of a wire that is attached to the ceiling. Assume that the length l1t2 of the wire varies with time in some predetermined fashion. If u1t2 is the angle in radians between the pendulum and the vertical, then the motion of the pendulum is governed for small angles by the initial value problem l 2 1t2u″1t2 + 2l1t2l′1t2u′1t2 + gl1t2sin 1u1t22 = 0 ;
u102 = u0 ,
u′102 = u1 ,
where g is the acceleration due to gravity. Assume that l1t2 = l0 + l1 cos1vt - f2 , where l1 is much smaller than l0. (This might be a model for a person on a swing, where the pumping action changes the distance from the center of mass of the swing to the point where the swing is attached.) To simplify the computations, take g = 1. Using the Runge– Kutta algorithm with h = 0.1, study the motion of the pendulum when u0 = 0.05, u1 = 0, l0 = 1, l1 = 0.1, v = 1, and f = 0.02. In particular, does the pendulum ever attain an angle greater in absolute value than the initial angle u0?
60 - H = 177.72H″ + 119.4221H′2 2 ; H102 = H′102 = 0 , †
See Numerical Solution of Differential Equations, by William Milne (Dover, New York, 1970), p. 82.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.3
Solving Systems and Higher-Order Equations Numerically
In Problems 25–30, use a software package or the SUBROUTINE in Appendix F. 25. Using the Runge–Kutta algorithm for systems with h = 0.05, approximate the solution to the initial value problem y‴ + y″ + y2 = t ; y102 = 1 ,
y′102 = 0 ,
y″102 = 1
Suppose these species have the same growth rates, and the maximum population that the habitat can support is the same for each species. (We assume it to be one unit.) Also suppose the competitive advantage that S1 has over S2 is the same as that of S2 over S3 and S3 over S1. This situation is modeled by the system p1= = p1 11 - p1 - ap2 - bp3 2 ,
p2= = p2 11 - bp1 - p2 - ap3 2 , p3= = p3 11 - ap1 - bp2 - p3 2 ,
at t = 1. 26. Use the Runge–Kutta algorithm for systems with h = 0.1 to approximate the solution to the initial value problem x′ = yz ;
x102 = 0 ,
y′ = - xz ;
y102 = 1 ,
z′ = -xy>2 ;
z102 = 1 ,
27. Generalized Blasius Equation. H. Blasius, in his study of laminar flow of a fluid, encountered an equation of the form y‴ + yy″ = 1y′2 2 - 1 . Use the Runge–Kutta algorithm for systems with h = 0.1 to approximate the solution that satisfies the initial conditions y102 = 0, y′102 = 0, and y″102 = 1.32824. Sketch this solution on the interval 30, 24. 28. Lunar Orbit. The motion of a moon moving in a planar orbit about a planet is governed by the equations d 2y dt
2
= -G
where a and b are positive constants. To demonstrate the population dynamics of this system when a = b = 0.5, use the Runge–Kutta algorithm for systems with h = 0.1 to approximate the populations pi over the time interval 30, 104 under each of the following initial conditions:
(a) p1 102 = 1.0 , p2 102 = 0.1 , p3 102 = 0.1 . (b) p1 102 = 0.1 , p2 102 = 1.0 , p3 102 = 0.1 . (c) p1 102 = 0.1 , p2 102 = 0.1 , p3 102 = 1.0 .
at t = 1.
d 2x mx = -G 3 , 2 dt r
261
my r3
,
where r J 1x2 + y2 2 1>2, G is the gravitational constant, and m is the mass of the planet. Assume Gm = 1. When x102 = 1, x′102 = y102 = 0, and y′102 = 1, the motion is a circular orbit of radius 1 and period 2p. (a) Setting x1 = x, x2 = x′, x3 = y, x4 = y′, express the governing equations as a first-order system in normal form. (b) Using h = 2p>100 ≈ 0.0628318, compute one orbit of this moon (i.e., do N = 100 steps.). Do your approximations agree with the fact that the orbit is a circle of radius 1?
On the basis of the results of parts (a)–(c), decide what you think will happen to these populations as t S + ∞ . 30. Spring Pendulum. Let a mass be attached to one end of a spring with spring constant k and the other end attached to the ceiling. Let l0 be the natural length of the spring and let l1t2 be its length at time t. If u1t2 is the angle between the pendulum and the vertical, then the motion of the spring pendulum is governed by the system k 1l - l0 2 = 0 , m l 2 1t2u″1t2 + 2l1t2l′1t2u′1t2 + gl1t2 sin u1t2 = 0 . l″1t2 - l1t2u′1t2 - g cos u1t2 +
Assume g = 1, k = m = 1, and l0 = 4. When the system is at rest, l = l0 + mg>k = 5. (a) Describe the motion of the pendulum when l102 = 5.5, l′102 = 0, u102 = 0, and u′102 = 0. (b) When the pendulum is both stretched and given an angular displacement, the motion of the pendulum is more complicated. Using the Runge–Kutta algorithm for systems with h = 0.1 to approximate the solution, sketch the graphs of the length l and the angular displacement u on the interval 30, 104 if l102 = 5.5, l′102 = 0, u102 = 0.5, and u′102 = 0.
29. Competing Species. Let pi 1t2 denote, respectively, the populations of three competing species Si, i = 1, 2, 3.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
262
Chapter 5
Introduction to Systems and Phase Plane Analysis
5.4 Introduction to the Phase Plane In this section, we study systems of two first-order equations of the form
(1)
dx = f1x, y2 , dt dy = g1x, y2 . dt
Note that the independent variable t does not appear in the right-hand terms f1x, y2 and g1x, y2; such systems are called autonomous. For example, the system that modeled the interconnected tanks problem in Section 5.1, 1 1 x′ = - x + y, 3 12 1 1 y′ = x - y , 3 3 is autonomous. So is the Volterra–Lotka system, x′ = Ax - Bxy , y′ = -Cy + Dxy , (with A, B, C, D constants), which was discussed in Example 4 of Section 5.3 as a model for population dynamics. For future reference, we note that the solutions to autonomous systems have a “timeshift immunity,” in the sense that if the pair x1t2, y1t2 solves (1), so does the time-shifted pair x1t + c2, y1t + c2 for any constant c. Specifically, if we let X1t2 J x1t + c2 and Y1t2 J y1t + c2, then by the chain rule dX dx 1t2 = 1t + c2 = f 1 x1t + c2, y1t + c2 2 = f 1 X1t2, Y1t2 2 , dt dt dy dY 1t2 = 1t + c2 = g 1 x1t + c2, y1t + c2 2 = g 1 X1t2, Y1t2 2 , dt dt
proving that X1t2, Y1t2 is also a solution to (1). Since a solution to the autonomous system is a pair of functions x1t2, y1t2 that satisfies (1) for all t in some interval I, it can be visualized as a pair of graphs, as shown in Figure 5.7. For purposes of comparing one of the solution pair with its mate, we can compress these two graphs into one by charting the path in the plane traced out by the ordered pair 1 x1t2, y1t2 2 as t increases.
Trajectories and the Phase Plane Definition 1. If x1t2, y1t2 is a solution pair to (1) for t in the interval I, then a plot in the xy-plane of the parametrized curve x = x1t2, y = y1t2 for t in I, together with arrows indicating its direction with increasing t, is said to be a trajectory of the system (1). In such a context we call the xy-plane the phase plane and refer to a representative set of trajectories in this plane as a phase portrait of the system.
A trajectory provides a visualization of the motion of a particle in the plane that starts at some point 1x0, y0 2 and follows a path as time increases that is determined by the solution to the autonomous system with initial conditions x102 = x0, y102 = y0. The trajectory for the
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.4
x(t)
263
Introduction to the Phase Plane
y(t)
t1
t2
t
t3
t1
t2
t3
t
Figure 5.7 Solution pair for system (1)
solution pair of Figure 5.7 is shown in Figure 5.8. Note, however, that the trajectory contains less information than the individual graphs for x1t2 and y1t2, because the t-dependence has been suppressed. (We can’t tell if the particle’s speed is fast or slow.) In principle we can construct, point by point, the trajectory from the solution graphs, but we cannot reconstruct the solution graphs from the phase plane trajectory alone (because we would not know what value of t to assign to each point). Nonetheless, trajectories provide valuable information about the qualitative behavior of solutions to the autonomous system. Can we find trajectories without knowing a solution pair to the system? Yes; the key is to observe that since t does not appear explicitly on the right-hand side of system (1), if we divide the two equations and invoke the chain rule dy>dt dy , = dx dx>dt we get the “related phase plane differential equation” (without t) g1x, y2 dy (2) . = dx f1x, y2 We mastered equations like (2) in Chapter 2; their solution curves provide highways along which the trajectories travel. What is missing from these highways is the orientation of a trajectory, which can be gleaned from the autonomous system (1) by determining the sign of f or g at a point and recalling that 1dx>dt, dy>dt2 = 1f, g2 is the velocity of the moving particle. Furthermore, as illustrated in Example 1 below, a single curve arising from the related phase plane differential equation might well accommodate several different trajectories. As we shall see in the examples to follow as well as in Figure 5.12, trajectories are typically of the following types: (i) a single point, indicating a stationary particle; (ii) a non-closed arc, without self-intersections; or (iii) a closed curve (cycle), indicating periodic motion. Moreover, thanks to the Existence-Uniqueness Theorem for first-order equations in Chapter 1 (page 11), as long as the functions f and g in (1) are continuously differentiable in the plane, the trajectories of a phase portrait will not intersect each other (unless they coincide). y
Ax(t 2), y(t 2)B
Ax(t 3), y(t 3)B
Ax(t 1), y(t 1)B
x
Figure 5.8 Phase plane trajectory of the solution pair for system (1)
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
264
Chapter 5
Introduction to Systems and Phase Plane Analysis
Except for the very special case of linear systems with constant coefficients that was discussed in Section 5.2, finding all solutions to the system (1) is generally an impossible task. But it is relatively easy to find constant solutions; if f1x0, y0 2 = 0 and g1x0, y0 2 = 0, then the constant functions x1t2 K x0, y1t2 K y0 solve (1). For such solutions the following terminology is used.
Critical Points and Equilibrium Solutions Definition 2. A point 1x0, y0 2 where f1x0, y0 2 = 0 and g1x0, y0 2 = 0 is called a critical point, or equilibrium point, of the system dx>dt = f1x, y2, dy>dt = g1x, y2, and the corresponding constant solution x1t2 K x0, y1t2 K y0 is called an equilibrium solution. Notice that trajectories of equilibrium solutions consist of just single points (the equili-brium points). But what can be said about the other trajectories? Can we predict any of their features from closer examination of the equilibrium points? To explore this we focus on the related phase plane differential equation (2) and exploit its direction field (recall Section 1.3, page 15). However, we’ll augment the direction field plot by attaching arrowheads to the line segments, indicating the direction of the “flow” of solutions as t increases. This is easy: When dx>dt is positive, x1t2 increases so the trajectory flows to the right. Therefore, according to (1), all direction field segments drawn in a region where f1x, y2 is positive should point to the right [and, of course, they point to the left if f1x, y2 is negative]. If f1x, y2 is zero, we can use g1x, y2 to decide if the flow is upward [y1t2 increases] or downward 3y1t2 decreases]. [What if both f1x, y2 and g1x, y2 are zero?] In the examples that follow, one can use computers or calculators for generating these direction fields. Example 1
Sketch the direction field in the phase plane for the system
(3)
dx = -x , dt dy = -2y dt
and identify its critical point. Solution
Here f1x, y2 = -x and g1x, y2 = -2y are both zero when x = y = 0, so 10, 02 is the critical point. The direction field for the related phase plane differential equation 2y dy -2y = (4) = -x x dx is given in Figure 5.9 on page 265. Since dx>dt = -x in (3), trajectories in the right half-plane (where x 7 02 flow to the left, and vice versa. From the figure we can see that all solutions “flow into” the critical point 10, 02. Such a critical point is called asymptotically stable.† ◆ Remark. For this simple example, we can actually solve the system (3) explicitly; indeed, (3) constitutes an uncoupled pair of linear equations whose solutions are x1t2 = c1e-t and y1t2 = c2e-2t. By elimination of t, we obtain the equation y = c2e-2t = c2[x1t2 >c1]2 = cx2. So the trajectories lie along the parabolas y = cx2. [Alternatively, we could have solved (4) by separating variables and obtained these same parabolas as the “highways” on which the trajectories travel.] Notice that each such parabola is made up of three trajectories: an incoming trajectory approaching the origin in the right half-plane; its mirror-image trajectory approaching †
See Section 12.3 for a rigorous exposition of stability and critical points. All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.4
265
Introduction to the Phase Plane
y y
x x
Figure 5.9 Direction field for Example 1
Figure 5.10 Trajectories for Example 1
the origin in the left half-plane; and the origin itself, an equilibrium point. Sample trajectories are indicated in Figure 5.10. Example 2
Sketch the direction field in the phase plane for the system
(5)
dx = x, dt dy = 2y dt
and describe the behavior of solutions near the critical point 10, 02. Solution
This example is almost identical to the previous one; in fact, one could say we have merely “reversed time” in (3). The direction field segments for (6)
dy 2y = x dx
are the same as those of (4), but the direction arrows are reversed. Now all solutions flow away from the critical point 10, 02; the equilibrium is unstable. ◆ Example 3
For the system (7) below, find the critical points, sketch the direction field in the phase plane, and predict the asymptotic nature (i.e., behavior as t S + ∞ ) of the solution starting at x = 2, y = 0 when t = 0.
(7)
Solution
dx = 5x - 3y - 2 , dt dy = 4x - 3y - 1 . dt
The only critical point is the solution of the simultaneous equations f1x, y2 = g1x, y2 = 0: (8)
5x0 - 3y0 - 2 = 0 , 4x0 - 3y0 - 1 = 0 ,
from which we find x0 = y0 = 1. The direction field for the related phase plane differential equation
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
266
Chapter 5
Introduction to Systems and Phase Plane Analysis
y
y y = 2x 2 1
x(t)
3
y(t) 2 1 22
21
1
2
x 3
21 22
Figure 5.11 Direction field, trajectories, and a typical solution pair for a trajectory (Example 3)
(9)
dy 4x - 3y - 1 = dx 5x - 3y - 2
is shown in Figure 5.11, along with some trajectories and a typical solution pair.† Note that solutions flow to the right for 5x - 3y - 2 7 0, i.e., for all points below the line 5x - 3y - 2 = 0, and that they slow down near the critical point. The solution curve to (9) passing through 12, 02 in Figure 5.11 apparently is a “highway” extending to infinity. Does this imply the corresponding system solution x1t2, y1t2 also approaches infinity in the sense that 0 x1t2 0 + 0 y1t2 0 S + ∞ as t S + ∞, or could its trajectory “stall” at some point along the highway, or possibly even “backtrack?” It cannot backtrack, because the direction arrows along the trajectory point, unambiguously, to the right. And if 1 x1t2, y1t2 2 stalls at some point 1x1, y1 2, then intuitively we would conclude that 1x1, y1 2 was an equilibrium point (since the “speeds” dx>dt and dy>dt would approach zero there). But we have already found the only critical point. So we conclude, with a high degree of confidence,‡ that the system solution does indeed go to infinity. The critical point 11, 12 is unstable because, although many solutions get arbitrarily close to 11, 12, most of them eventually flow away. Solutions that lie on the line y = 2x - 1, however, do converge to 11, 12. Such an equilibrium is an example of a saddle point. ◆ In the preceding example, we informally argued that if a trajectory “stalls”—that is, if it has an endpoint—then this endpoint would have to be a critical point. This is more carefully stated in the following theorem, whose proof is outlined in Problem 30.
Endpoints Are Critical Points Theorem 1. Let the pair x1t2, y1t2 be a solution on [0, + ∞ 2 to the autonomous system dx>dt = f1x, y2, dy>dt = g1x, y2, where f and g are continuous in the plane. If the limits lim x1t2 x* J S t
+∞
and
lim y1t2 y* J S t
+∞
exist and are finite, then the point 1x*, y*2 is a critical point for the system. †
Solutions to equation (9) can be obtained analytically using the methods of Section 2.6. These informal arguments are made more rigorous in Chapter 12. All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th edition. ‡
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.4
y
y
y
x
Node (asymptotically stable)
x
Spiral (unstable)
x
Center (stable)
x
Saddle (unstable)
y
y
267
Introduction to the Phase Plane
y
x
Spiral (asymptotically stable)
x
Node (unstable)
Figure 5.12 Examples of different trajectory behaviors near critical point at origin
Some typical trajectory configurations near critical points are displayed and classified in Figure 5.12. These phase plane portraits were generated by software packages having trajectorysketching options†. A more complete discussion of the nature of various types of equilibrium solutions and their stability is deferred to Chapter 12.‡ For the moment, however, notice that unstable critical points are distinguished by “runaway” trajectories emanating from arbitrarily nearby points, while stable equilibria “trap” all neighboring trajectories. The asymptotically stable critical points attract their neighboring trajectories as t S + ∞. Historically, the phase plane was introduced to facilitate the analysis of mechanical systems governed by Newton’s second law, force equals mass times acceleration. An autonomous mechanical system arises when this force is independent of time and can be modeled by a second-order equation of the form (10)
y″ = ƒ1y, y′2 .
As we have seen in Section 5.3, this equation can be converted to a normal first-order system by introducing the velocity y = dy>dt and writing dy = y, dt (11) dy = ƒ1y, y2 . dt
†
Appendix G describes various websites and commercial software that sketch direction fields and automate most of the differential equation algorithms discussed in this book. ‡ All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
268
Chapter 5
Introduction to Systems and Phase Plane Analysis
Thus, we can analyze the behavior of an autonomous mechanical system by studying its phase portrait in the yy-plane. Notice that with y as the vertical axis, trajectories 1y1t2, y1t22 flow to the right in the upper half-plane (where y 7 0), and to the left in the lower half-plane. Example 4
Sketch the direction field in the phase plane for the first-order system corresponding to the unforced, undamped mass–spring oscillator described in Section 4.1 (Figure 4.1, page 152). Sketch several trajectories and interpret them physically.
Solution
The equation derived in Section 4.1 for this oscillator is my″ + ky = 0 or, equivalently, y″ = -ky>m. Hence, the system (11) takes the form y′ = y , ky y′ = - . m The critical point is at the origin y = y = 0. The direction field in Figure 5.13 indicates that the trajectories appear to be either closed curves (ellipses?) or spirals that encircle the critical point. We saw in Section 4.9 that the undamped oscillator motions are periodic; they cycle repeatedly through the same sets of points, with the same velocities. Their trajectories in the phase plane, then, must be closed curves.† Let’s confirm this mathematically by solving the related phase plane differential equation
(12)
(13)
ky dy = . my dy
Equation (13) is separable, and we find y dy = -
ky dy m
or
da
y2 y2 k b = - da b , m 2 2 y
y
Figure 5.13 Direction field for Example 4 †
By the same reasoning, underdamped oscillations would correspond to spiral trajectories asymptotically approaching the origin as t S + ∞.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.4
Introduction to the Phase Plane
269
y
y
Figure 5.14 Trajectories for Example 4
so its solutions are the ellipses y2 >2 + ky2 >2m = C as shown in Figure 5.14. The trajectories of (12) are confined to these ellipses, and hence neither come arbitrarily close to nor wander arbitrarily far from the equilibrium solution. The critical point is thus identified as a center in Figure 5.12 on page 267. Furthermore, the system solutions must continually circulate around the ellipses, since there are no critical points to stop them. This confirms that all solutions are periodic. ◆ Remark. More generally, we argue that if a solution to an autonomous system like (1) passes through a point in the phase plane twice and if it is sufficiently well behaved to satisfy a uniqueness theorem, then the second “tour” satisfies the same initial conditions as the first tour and so must replicate it. In other words, closed trajectories containing no critical points correspond to periodic solutions. Through these examples we have seen how, by studying the phase plane, one can often anticipate some of the features (boundedness, periodicity, etc.) of solutions of autonomous systems without solving them explicitly. Much of this information can be predicted simply from the critical points and the direction field (oriented by arrowheads), which are obtainable through standard software packages. The final example ties together several of these ideas. Example 5
Find the critical points and solve the related phase plane equation for
(14)
dx = -y1y - 22 , dt dy = 1x - 221y - 22 . dt
What is the asymptotic behavior of the solutions starting from 13, 02, 15, 02, and 12, 32? Solution
To find the critical points, we solve the system -y1y - 22 = 0,
1x - 221y - 22 = 0 .
One family of solutions to this system is given by y = 2 with x arbitrary; that is, the line y = 2. If y ≠ 2, then the system simplifies to -y = 0, and x - 2 = 0, which has the solution x = 2, y = 0. Hence, the critical point set consists of the isolated point 12, 02 and the horizontal line y = 2. The corresponding equilibrium solutions are x1t2 K 2, y1t2 K 0, and the family x1t2 K c, y1t2 K 2, where c is an arbitrary constant.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
270
Chapter 5
Introduction to Systems and Phase Plane Analysis
y
(2, 3) (2 2 5 , 2)
y52
0
1
2
3
4
5
6
x
Figure 5.15 Phase portrait for Example 5
The related phase plane differential equation for the system (14) is (15)
1x - 221y - 22 dy x-2 = . = y dx -y1y - 22
Solving this equation by separating variables, y dy = - 1x - 22 dx
or
y2 + 1x - 22 2 = C ,
demonstrates that the trajectories lie on concentric circles centered at 12, 02. See Figure 5.15. Next we analyze the flow along each trajectory. From the equation dx>dt = -y1y - 22, we see that x is decreasing when y 7 2. This means the flow is from right to left along the arc of a circle that lies above the line y = 2. For 0 6 y 6 2, we have dx>dt 7 0, so in this region the flow is from left to right. Furthermore, for y 6 0, we have dx>dt 6 0, and again the flow is from right to left. We now observe in Figure 5.15 that there are four types of trajectories associated with system (14): (a) those that begin above the line y = 2 and follow the arc of a circle counterclockwise back to that line; (b) those that begin below the line y = 2 and follow the arc of a circle clockwise back to that line; (c) those that continually move clockwise around a circle centered at 12, 02 with radius less than 2 (i.e., they do not intersect the line y = 2); and finally, (d) the critical points 12, 02 and y = 2, x arbitrary. The solution starting at 13, 02 lies on a circle with no critical points; therefore, it is a periodic solution, and the critical point 12, 02 is a center. But the circle containing the solutions starting at 15, 02 and at 12, 32 has critical points at 12 - 25, 22 and 12 + 25, 22. The direction arrows indicate that both solutions approach 12 - 25, 22 asymptotically (as t S + ∞ 2. They lie on the same solution curve for the related phase plane differential equation (a circle), but they are quite different trajectories. ◆ Note that for the system (14) the critical points on the line y = 2 are not isolated, so they do not fit into any of the categories depicted in Figure 5.12 on page 267. Observe also that all solutions of this system are bounded, since they are confined to circles.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.4
5.4
Introduction to the Phase Plane
271
EXERCISES
In Problems 1 and 2, verify that the pair x1t2, y1t2 is a solution to the given system. Sketch the trajectory of the given solution in the phase plane. dy dx 1. = 3y3 , = y; dt dt y1t2 = et x1t2 = e3t , dy dx 2. = 1, = 3x2 ; dt dt x1t2 = t + 1 , y1t2 = t 3 + 3t 2 + 3t In Problems 3–6, find the critical point set for the given system. dx dx 4. 3. = x-y, = y-1, dt dt dy dy = x2 + y2 - 1 = x+y+5 dt dt dx dx = x2 - 2xy , = y2 - 3y + 2 , 6. 5. dt dt dy dy = 3xy - y2 = 1x - 121y - 22 dt dt In Problems 7–9, solve the related phase plane differential equation (2), page 263, for the given system. dx dx = y-1, = x2 - 2y -3 , 7. 8. dt dt dy dy = ex+y = 3x2 - 2xy dt dt dx 9. = 2y - x , dt dy = ex + y dt 10. Find all the critical points of the system dx = x2 - 1 , dt dy = xy , dt and the solution curves for the related phase plane differential equation. Thereby prove that there are two trajectories that lie on semicircles. What are the endpoints of the semicircles? In Problems 11–14, solve the related phase plane differential equation for the given system. Then sketch by hand several representative trajectories (with their flow arrows). dx dx 11. = 2y , = - 8y , 12. dt dt dy dy = 2x = 18x dt dt
13.
dx = 1y - x21y - 12 , dt dy = 1x - y21x - 12 dt
14.
3 dx = , y dt dy 2 = x dt
In Problems 15–18, find all critical points for the given system. Then use a software package to sketch the direction field in the phase plane and from this describe the stability of the critical points (i.e., compare with Figure 5.12). dx dx = 2x + y + 3 , = - 5x + 2y , 15. 16. dt dt dy dy = - 3x - 2y - 4 = x - 4y dt dt dx dx = 2x + 13y , = x17 - x - 2y2 , 17. 18. dt dt dy dy = - x - 2y = y15 - x - y2 dt dt In Problems 19–24, convert the given second-order equation into a first-order system by setting y = y′. Then find all the critical points in the yy-plane. Finally, sketch (by hand or software) the direction fields, and describe the stability of the critical points (i.e., compare with Figure 5.12). d 2y d 2y 19. -y = 0 +y = 0 20. 2 dt dt 2 21.
d 2y dt 2
+ y + y5 = 0
22.
d 2y dt 2
+ y3 = 0
23. y″1t2 + y1t2 - y1t2 4 = 0 24. y″1t2 + y1t2 - y1t2 3 = 0 25. Using software, sketch the direction field in the phase plane for the system dx>dt = y , dy>dt = - x + x3 . From the sketch, conjecture whether the solution passing through each given point is periodic:
(a) 10.25, 0.252 (b) 12, 22 (c) 11, 02 26. Using software, sketch the direction field in the phase plane for the system dx>dt = y , dy>dt = - x - x3 . From the sketch, conjecture whether all solutions of this system are bounded. Solve the related phase plane differential equation and confirm your conjecture.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
272
Chapter 5
Introduction to Systems and Phase Plane Analysis
27. Using software, sketch the direction field in the phase plane for the system dx>dt = -2x + y , dy>dt = -5x - 4y . From the sketch, predict the asymptotic limit (as t S + ∞ ) of the solution starting at 11, 12. 28. Figure 5.16 displays some trajectories for the system dx>dt = y , dy>dt = -x + x2 .
(d) Argue similarly that the supposition that f1x*, y*2 6 0 also leads to a contradiction; hence, f1x*, y*2 must be zero. (e) In the same manner, argue that g1x*, y*2 must be zero. Therefore, f1x*, y*2 = g1x*, y*2 = 0 , and 1x*, y*2 is a critical point. 31. Phase plane analysis provides a quick derivation of the energy integral lemma of Section 4.8 (page 201). By completing the following steps, prove that solutions of equations of the special form y″ = f1y2 satisfy 1 1y′2 2 - F1y2 = constant , 2
y
1
x
where F1y2 is an antiderivative of f1y2. (a) Set y = y′ and write y″ = f1y2 as an equivalent first-order system. (b) Show that the solutions to the yy-phase plane equation for the system in part (a) satisfy y2 >2 = F1y2 + K. Replacing y by y′ then completes the proof. 32. Use the result of Problem 31 to prove that all solutions to the equation
y″ + y3 = 0
Figure 5.16 Phase plane for Problem 28
What types of critical points (compare Figure 5.12 on page 267) occur at 10, 02 and 11, 02? 29. Find the critical points and solve the related phase plane differential equation for the system dx = 1x - 121y - 12 dt dy = y1y - 12 . dt Describe (without using computer software) the asymptotic behavior of trajectories (as t S ∞ ) that start at (a) 13, 22, (b) 12, 1>22, (c) 1 -2, 1>22, (d) 13, - 22. 30. A proof of Theorem 1, page 266, is outlined below. The goal is to show that f1x*, y*2 = g1x*, y*2 = 0. Justify each step. (a) From the given hypotheses, deduce that limt S +∞ x′1t2 = f1x*, y*2 and limt S +∞ y′1t2 = g1x*, y*2. (b) Suppose f1x*, y*2 7 0. Then, by continuity, x′1t2 7 f1x*, y*2 >2 for all large t (say, for t Ú T). Deduce from this that x1t2 7 tf1x*, y*2 >2 + C for t 7 T, where C is some constant. (c) Conclude from part (b) that limt S +∞ x1t2 = + ∞ , contradicting the fact that this limit is the finite number x*. Thus, f1x*, y*2 cannot be positive.
remain bounded. [Hint: Argue that y4 >4 is bounded above by the constant appearing in Problem 31.] 33. A Problem of Current Interest. The motion of an iron bar attracted by the magnetic field produced by a parallel current wire and restrained by springs (see Figure 5.17) is governed by the equation 1 d 2x = -x + , for l-x dt 2
-x0 6 x 6 l ,
wire
l
x0 x
Figure 5.17 Bar restrained by springs and attracted by a parallel current
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.4
Introduction to the Phase Plane
where the constants x0 and l are, respectively, the distances from the bar to the wall and to the wire when the bar is at equilibrium (rest) with the current off. (a) Setting y = dx>dt, convert the second-order equation to an equivalent first-order system. (b) Solve the related phase plane differential equation for the system in part (a) and thereby show that its solutions are given by
273
y50 y k m
y = { 2C - x2 - 2 ln1l - x2 , where C is a constant. (c) Show that if l 6 2 there are no critical points in the xy-phase plane, whereas if l 7 2 there are two critical points. For the latter case, determine these critical points. (d) Physically, the case l 6 2 corresponds to a current so high that the magnetic attraction completely overpowers the spring. To gain insight into this, use software to plot the phase plane diagrams for the system when l = 1 and when l = 3. (e) From your phase plane diagrams in part (d), describe the possible motions of the bar when l = 1 and when l = 3, under various initial conditions. 34. Falling Object. The motion of an object moving vertically through the air is governed by the equation d 2y 2
= -g -
dt where y is the upward vertical displacement and V is a constant called the terminal speed. Take g = 32 ft/sec2 and V = 50 ft/sec. Sketch trajectories in the yy-phase plane for - 100 … y … 100, -100 … y … 100, starting from y = 0 and y = - 75, -50, -25, 0, 25, 50, and 75 ft/sec. Interpret the trajectories physically; why is V called the terminal speed? 35. Sticky Friction. An alternative for the damping friction model F = -by′ discussed in Section 4.1 is the “sticky friction” model. For a mass sliding on a surface as depicted in Figure 5.18, the contact friction is more complicated than simply - by′. We observe, for example, that even if the mass is displaced slightly off the equilibrium location y = 0, it may nonetheless remain stationary due to the fact that the spring force - ky is insufficient to break the static friction’s grip. If the maximum force that the friction can exert is denoted by m, then a feasible model is given by
Ffriction = d m sign1y2 , - m sign1y′2 ,
Figure 5.18 Mass–spring system with friction
(16)
d 2y
= -ky + Ffriction . dt 2 Thus, if the mass is at rest, friction balances the spring force if 0 y 0 6 m>k but simply opposes it with intensity m if 0 y 0 Ú m>k. If the mass is moving, friction opposes the velocity with the same intensity m. (a) Taking m = m = k = 1, convert (16) into the firstorder system m
y′ = y ,
if 0 y 0 6 1 and y = 0 , y′ = d -y + sign1y2 , if 0 y 0 Ú 1 and y = 0 , -y - sign1y2 , if y ≠ 0 . (b) Form the phase plane equation for (17) when y ≠ 0 and solve it to derive the solutions 0,
(17)
g dy dy ` ` , V 2 dt dt
ky ,
Friction
if 0 ky 0 6 m and y′ = 0 , if 0 ky 0 Ú m and y′ = 0 , if y′ ≠ 0 .
(The function sign (s) is + 1 when s 7 0, - 1 when s 6 0, and 0 when s = 0.) The motion is governed by the equation
y2 + 1y { 12 2 = c ,
where the plus sign prevails for y 7 0 and the minus sign for y 6 0. (c) Identify the trajectories in the phase plane as two families of concentric semicircles. What is the center of the semicircles in the upper half-plane? The lower half-plane? (d) What are the critical points for (17)? (e) Sketch the trajectory in the phase plane of the mass released from rest at y = 7.5. At what value for y does the mass come to rest? 36. Rigid Body Nutation. Euler’s equations describe the motion of the principal-axis components of the angular velocity of a freely rotating rigid body (such as a space station), as seen by an observer rotating with the body (the astronauts, for example). This motion is called nutation. If the angular velocity components are denoted by x, y, and z, then an example of Euler’s equations is the three-dimensional autonomous system dx>dt = yz , dy>dt = -2xz , dz>dt = xy .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
274
Chapter 5
Introduction to Systems and Phase Plane Analysis
The trajectory of a solution x1t2, y1t2, z1t2 to these equations is the curve generated by the points 1 x1t2, y1t2, z1t2 2 in xyz-phase space as t varies over an interval I. (a) Show that each trajectory of this system lies on the surface of a (possibly degenerate) sphere centered at the origin 10, 0, 02. [Hint: Compute d 2 2 2 dt 1x + y + z 2.] What does this say about the magnitude of the angular velocity vector? (b) Find all the critical points of the system, i.e., all points 1x0, y0, z0 2 such that x1t2 K x0, y1t2 K y0, z1t2 K z0 is a solution. For such solutions, the angular velocity vector remains constant in the body system. (c) Show that the trajectories of the system lie along the intersection of a sphere and an elliptic cylinder of the form y2 + 2x2 = C, for some constant C. [Hint: Consider the expression for dy>dx implied by Euler’s equations.] (d) Using the results of parts (b) and (c), argue that the trajectories of this system are closed curves. What does this say about the corresponding solutions?
(e) Figure 5.19 displays some typical trajectories for this system. Discuss the stability of the three critical points indicated on the positive axes.
Figure 5.19 Trajectories for Euler’s system
5.5 Applications to Biomathematics:
Epidemic and Tumor Growth Models In this section we are going to survey some issues in biological systems that have been successfully modeled by differential equations. We begin by reviewing the population models described in Sections 3.2 and 5.3. In the Malthusian model, the rate of growth of a population p1t2 is proportional to the size of the existing population: (1)
dp = kp 1k 7 02 . dt
Cells that reproduce by splitting, such as amoebae and bacteria, are obvious biological examples of this type of growth. Equation (1) implies that a Malthusian population grows exponentially; there is no mechanism for constraining the growth. In Section 3.2 we saw that certain populations exhibit Malthusian growth over limited periods of time (as does compound interest).† Inserting a negative growth rate, (2)
dp = -kp , dt
results in solutions that decay exponentially. Their average lifetime is 1>k, and their half-life is 1ln 22 >k (Problems 6 and 8). In animals, certain organs such as the kidney serve to cleanse
†
Gordon E. Moore (1929–) has observed that the number of transistors on new integrated circuits produced by the electronics industry doubles every 24 months. “Moore’s law” is commonly cited by industrialists.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.5
Applications to Biomathematics: Epidemic and Tumor Growth Models
275
the bloodstream of unwanted components (creatinine clearance, renal clearance), and their concentrations diminish exponentially. As a general rule, the body tends to dissipate ingested drugs in such a manner. (Of course, the most familiar physical instance of Malthusian disintegration is radioactive decay.) Note that if there are both growth and extinction processes, dp>dt = k + p - k- p and the equation in (1) still holds with k = k + - k- . When there are two-party interactions occurring in the population that decrease the growth rate, such as competition for resources or violent crime, the logistic model might be applicable; it assumes that the extinction rate is proportional to the number of possible pairs in the population, p1p - 12 >2: (3)
dp p ( p - 1) = k1p - k2 dt 2
or, equivalently,
dp = -Ap ( p - p1) .† dt
Rodent, bird, and plant populations exhibit logistic growth rates due to social structure, territoriality, and competition for light and space, respectively. The logistic function p1t2 =
p0p1
p0 + 1p1 - p0 2e-Ap1t
,
p0 J p102
was shown in Section 3.2 to be the solution of (3), and typical graphs of p1t2 were displayed there. In Section 5.3 we observed that the Volterra–Lotka model for two different populations, a predator x2 1t2 and a prey x1 1t2, postulates a Malthusian growth rate for the prey and an extinction rate governed by x1x2, the number of possible pairings of one from each population, (4)
dx1 = Ax1 - Bx1x2 , dt
while predators follow a Malthusian extinction rate and pairwise growth rate (5)
dx2 = -Cx2 + Dx1x2 . dt
Volterra–Lotka dynamics have been observed in blood vessel growth (predator = new capillary tips; prey = chemoattractant), fish populations, and several animal–plant interactions. Systems like (4)–(5) were studied in Section 5.3 with the aid of the Runge–Kutta algorithm. Now, armed with the insights of Section 5.4, we can further explore this model theoretically. First, we perform a “reality check” by proving that the populations x1 1t2, x2 1t2 in the Volterra–Lotka model never change sign. Separating (4) leads to d ln x1 1 dx1 = = A - Bx2 , x1 dt dt while integrating from 0 to t results in (6)
x1 1t2 = x1 102e 10{A - Bx2(t)} dt , t
and the exponential factor is always positive. Thus x1 1t2 [and similarly x2 1t2] retains its initial sign (negative populations never arise).
†
One might propose that the growth rate in animal populations is due to two–party interactions as well. (Wink, wink.) However, in monogamous societies, the number of pairs participating in procreation is proportional to p>2, leading to (1). A growth rate determined by all possible pairings p1p - 12 >2 would indicate a highly hedonistic social order.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
276
Chapter 5
Example 1 Solution
Introduction to Systems and Phase Plane Analysis
Find and interpret the critical points for the Volterra–Lotka model (4)–(5). The system dx1 A = Ax1 - Bx1x2 = -Bx1 a x2 - b = 0 , dt B (7) dx2 C = -Cx2 + Dx1x2 = Dx2 a x1 - b = 0 dt D has the trivial solution x1 1t2 K x2 1t2 K 0, with an obvious interpretation in terms of populations. If all four coefficients A, B, C, and D are positive, there is also the more interesting solution A C , x1 1t2 K . B D At these population levels, the growth and extinction rates for each species cancel. The direction field diagram in Figure 5.20 for the phase plane equation dx2 -Cx2 + Dx1x2 x2 -C + Dx1 (9) = = x1 A - Bx2 dx1 Ax1 - Bx1x2 (8)
x2 1t2 K
suggests that this equilibrium is a center (compare Figure 5.12 on page 267) with closed (periodic) neighboring trajectories, in accordance with the simulations in Section 5.3. However it is conceivable that some spiral trajectories might snake through the field pattern and approach the critical point asymptotically. A rather tricky argument in Problem 4 demonstrates that this is not the case. ◆ The SIR Epidemic Model. The SIR† model for an epidemic addresses the spread of diseases that are only contracted by contact with an infected individual; its victims, once recovered, are immune to further infection and are themselves noninfectious. So the members of a population of size N fall into three classes: S1t2 = the number of susceptible individuals—that is, those who have not been infected; s J S/N is the fraction of susceptibles. I1t2 = the number of individuals who are currently infected, comprising a fraction i J I/N of the population. R1t2 = the number of individuals who have recovered from infection, comprising the fraction r J R/N. x1
x2 (A/B, C/D) Figure 5.20 Typical direction field diagram for the Volterra–Lotka system †
Introduced by W. O. Kermack and A. G. McKendrick in “A Contribution to the Mathematical Theory of Epidemics,” Proc. Royal Soc. London, Vol. A115 (1927): 700–721.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.5
Applications to Biomathematics: Epidemic and Tumor Growth Models
277
The classic SIR epidemic model assumes that on the average, an infectious individual encounters a people per unit time (usually per week). Thus, a total of aI people per week are contacted by infectees, but only a fraction s = S/N of them are susceptible. So the susceptible population diminishes at a rate (10)
dS = -saI or (dividing by N) dt
(11)
ds = -asi . dt
The parameter a is crucial in disease control. Crowded conditions, or high a, make it difficult to combat the spread of infection. Ideally, we would quarantine the infectees (low a) to fight the epidemic. The infected population is (obviously) increased whenever a susceptible individual is infected. Additionally, infectees recover in a Malthusian-disintegrative manner over an average time of, say, 1>k weeks [recall (1)], so the infected population changes at a rate (12)
k dI = saI - kI = aa s - b I or a dt
(13)
di k = aa s - b i . a dt
And, of course, the population of recovered individuals increases whenever an infectee is healed: (14)
dR dr = kI or = ki . dt dt With the SIR model, the total population count remains unchanged: d(S + I + R) = -saI + saI - kI + kI = 0 . dt
Thus, any fatalities are tallied in the “recovered/noninfectious” population R. Interestingly, equations (11) and (13) do not contain R or r, so they are suitable for phase plane analysis. In fact they constitute a Volterra–Lotka system with A = 0, B = D = a, and C = k. Because the coefficient A is zero, the critical point structure is different from that discussed in Example 1. Specifically, if -asi in (11) is zero, then only -ki remains on the right in (13), so I1t2 = i1t2 K 0 is necessary and sufficient for a critical point, with S unrestricted. (Physically, this means the populations remain stable only if there are no carriers of the infection.) Our earlier argument has shown that if s1t2 and i1t2 are initially positive, they remain so. As a result we conclude from (11) immediately that s1t2 decreases monotonically; as such, it has a limiting value s1 ∞ 2 as t S ∞. Does i1t2 have a limiting value also? If so, 5s1 ∞ 2, i1 ∞ 26 would be a critical point by Theorem 1 of Section 5.4, page 266, and thus i1 ∞ 2 = 0. To analyze i1t2 consider the phase plane equation for (11) and (13): (15)
di k asi - ki = = -1 + , as ds -asi
which has solutions (16)
i = -s +
k ln s + K . a
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
278
Chapter 5
Introduction to Systems and Phase Plane Analysis
200 180 160
Deaths due to flu
140 120 100 80 60 40 20 0
1
2
3
4
5
6
7
8
9
10
11
12
13
Week Figure 5.21 Mortality data for Hong Kong flu, New York City
From (16) we see that s1 ∞ 2 cannot be zero; otherwise the right-hand side would eventually be negative, contradicting i1t2 7 0. Therefore, (16) demonstrates that i1t2 does have a limiting value i1 ∞ 2 = -s1 ∞ 2 + 1k>a2 ln s1 ∞ 2 + K. As noted, i1 ∞ 2 must then be zero. From (13) we further conclude that if s102 exceeds the “threshold value” k>a, the infected fraction i1t2 will initially increase 1di>dt 7 0 at t = 02 before eventually dying out. The peak value of i1t2 occurs when di>dt = 0 = a3s - 1k>a24i, i.e., when s1t2 passes through the value k>a. In the jargon of epidemiology, this phenomenon defines an “epidemic.” You will be directed in Problem 10 to show that if s102 … k>a, the infected population diminishes monotonically, and no epidemic develops. Example 2 †
According to data issued by the Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia, the Hong Kong flu epidemic during the winter of 1968–1969 was responsible for 1035 deaths in New York City (population 7,900,000), according to the time chart in Figure 5.21. Analyze this data with the SIR model.
Solution
Of course, we need to make some assumptions about the parameters. First of all, only a small percentage of people who contract Hong Kong flu perish, so let’s assume that the chart reflects a scaled version of the infected population fraction i1t2. It is known that the recovery period for this flu is around 5 days, or 5>7 week, so we try k = 7>5 = 1.4. And since the infectees spend much of their convalescence in bed, the average contact rate a is probably less than 1 person per day or 7 per week. The CDC estimated that the initial infected population I102 was about 10, so the initial data for (11), (13), and (14) are s102 =
7,900,000 - 10 10 ≈ 0.9999987, i102 = ≈ 1.2658 * 10-6, r102 = 0 . 7,900,000 7,900,000
†
We borrow liberally from “The SIR Model for Spread of Disease” by Duke University’s David Smith and Lang Moore, Journal of Online Mathematics and Its Applications, The MAA Mathematical Sciences Digital Library, http://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=479&bodyId=612, copyright 2000, CCP and the authors, published December, 2001. The article contains much interesting information about this epidemic.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.5
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
R
I t
0 10
15
20
S
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
S
5
279
Applications to Biomathematics: Epidemic and Tumor Growth Models
25
30
S
1.0
R 0.8
R
0.6 0.4 I
0.2 0
I
t
0 5
10
(a)
15
20
25
t
–0.2
30
(b)
0
5
10
15
20
25
30
(c)
Figure 5.22 SIR simulations (a) k = 1.4, a = 2.0; (b) k = 1.4, a = 3.5; (c) k = 1.4, a = 6.0
Numerical simulations of this system are displayed in Figure 5.22.† The contact rate a = 3.5 per week generates an infection fraction curve that closely matches the mortality data’s characteristics: time of peak and duration of epidemic. ◆ A Tumor Growth Model.‡ The observed growth of certain tumors can be explained by a model that is mathematically similar to the epidemic model. The total number of cells N in the tumor subdivides into a population P that proliferates by splitting (Malthusian growth) and a population Q that remains quiescent. However, the proliferating cells also can make a transition to the quiescent state, and this occurrence is modeled as a Malthusian-like decay with a “rate” r1N2 that increases with the overall size of the tumor: (17)
dP = cP − r1N2P , dt
(18)
dQ = r1N2P . dt
Thus the total population N increases only when the proliferating cells split, as can be seen by adding the equations (17) and (18): (19)
d(P + Q) dN = = cP . dt dt We take (17) and (19) as the system for our analysis. The phase plane equation
(20)
cP - r1N2P r1N2 dP = = 1c dN cP
can be integrated, leading to a formula for P in terms of N (21)
P = N-
1 r1N2 dN + K . cL
†
Appendix G describes various websites and commercial software that sketch direction fields and automate most of the differential equation algorithms discussed in this book. ‡
The authors wish to thank Dr. Glenn Webb of Vanderbilt University for this application. See M. Gyllenberg and G. F. Webb, “Quiescence as an Explanation of Gompertz Tumor Growth,” Growth, Development, and Aging, Vol. 53 (1989): 25–55.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
280
Chapter 5
Introduction to Systems and Phase Plane Analysis
Suppose the initial conditions are P102 = 1, Q102 = 0, and N102 = 1 (a single proliferating cell). Then we can eliminate the nuisance constant K by taking the indefinite integral in (21) to run from 1 to N and evaluating at t = 0: 1
1 = 1-
1 r(N) dN + K 1 K = 0 . c L1
Insertion of (21) with K = 0 into (19) produces a differential equation for N alone: N
(22) Example 3
dN = cN r1u2 du . dt L1
The Gompertz law (23)
N1t2 = ec11 - e
-bt
2/b
has been observed experimentally for the growth of some tumors. Show that a transition rate r1N2 of the form b11 + ln N2 predicts Gompertzian growth. Solution
If the indicated integral of the rate r(N) is carried out, (22) becomes (24)
dN = cN - b1N - 12 - b1N ln N - N + 12 = 1c - b ln N2 N . dt
Dividing by N we obtain a linear differential equation for the function ln N d ln N = -b ln N + c dt whose solution, for the initial condition N102 = 1, is found by the methods of Section 2.3 to be c ln N1t2 = 11 - e-bt 2 , b confirming (23). ◆ Problem 9 invites the reader to show that if the growth rate is modeled as r1N2 = s12N - 12, then the solution of (22) describes logistic growth. Typical curves for the Gompertz and logistic models are displayed in Figure 5.23. See also Figure 3.4 on page 98. Other applications of differential equations to biomathematics appear in the discussions of artificial respiration (Project B, page 81) in Chapter 2, HIV infection (Project A, page 141) and aquaculture (Project B, page 144) in Chapter 3, and spread of staph infections (Project B) and the Ebola epidemic (Project F, page 314) in this chapter. N
N
t
t (b)
(a) Figure 5.23 (a) Gompertz and (b) logistic curves
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.5
5.5
281
Applications to Biomathematics: Epidemic and Tumor Growth Models
EXERCISES
1. Logistic Model. tic equation
In Section 3.2 we discussed the logis-
dp = Ap1p - Ap2 , dt
p102 = p0 ,
and its use in modeling population growth. A more general model might involve the equation (25)
dp = Ap1p - Apr , dt
is secreted on a 24-h cycle, then the rate of change of the level of the hormone in the blood may be represented by the initial value problem
p102 = p0 ,
where r 7 1. To see the effect of changing the parameter r in (25), take p1 = 3, A = 1, and p0 = 1. Then use a numerical scheme such as Runge–Kutta with h = 0.25 to approximate the solution to (25) on the interval 0 … t … 5 for r = 1.5, 2, and 3. What is the limiting population in each case? For r 7 1, determine a general formula for the limiting population. 2. Radioisotopes and Cancer Detection. A radioisotope commonly used in the detection of breast cancer is technetium-99m. This radionuclide is attached to a chemical that upon injection into a patient accumulates at cancer sites. The isotope’s radiation is then detected and the site located, using gamma cameras or other tomographic devices. Technetium-99m decays radioactively in accordance with the equation dy>dt = - ky, with k = 0.1155>h. The short half-life of technetium-99m has the advantage that its radioactivity does not endanger the patient. A disadvantage is that the isotope must be manufactured in a cyclotron. Since hospitals are not equipped with cyclotrons, doses of technetium-99m have to be ordered in advance from medical suppliers. Suppose a dosage of 5 millicuries (mCi) of technetium-99m is to be administered to a patient. Estimate the delivery time from production at the manufacturer to arrival at the hospital treatment room to be 24 hours and calculate the amount of the radionuclide that the hospital must order, to be able to administer the proper dosage. 3. Secretion of Hormones. The secretion of hormones into the blood is often a periodic activity. If a hormone
dx pt = a - b cos - kx , x102 = x0 , dt 12 where x1t2 is the amount of the hormone in the blood at time t, a is the average secretion rate, b is the amount of daily variation in the secretion, and k is a positive constant reflecting the rate at which the body removes the hormone from the blood. If a = b = 1, k = 2, and x0 = 10, solve for x1t2. 4. Prove that the critical point (8) of the Volterra–Lotka system is a center; that is, the neighboring trajectories are periodic. [Hint: Observe that (9) is separable and show that its solutions can be expressed as [xA2 e-Bx2] # [xC1 e-Dx1] = K .4
(26)
Prove that the maximum of the function xpe-qx is 1p>qe2 p, occurring at the unique value x = p>q (see Figure 5.24), so the critical values (8) maximize the factors on the left in (26). Argue that if K takes the corresponding maximum value 1A>Be2 A 1C>De2 C, the critical point (8) is the (unique) solution of (26), and it cannot be an endpoint of any trajectory for (26) with a lower value of K.†
1
e
xe2x
x 1 Figure 5.24 Graph of xe-x
5. Suppose for a certain disease described by the SIR model it is determined that a = 0.003 and b = 0.5. (a) In the SI-phase plane, sketch the trajectory corresponding to the initial condition that one person is infected and 700 persons are susceptible.
†
In fact, the periodic fluctuations predicted by the Volterra–Lotka model were observed in fish populations by Lotka’s son-in-law, Humberto D’Ancona.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
282
Chapter 5
Introduction to Systems and Phase Plane Analysis
9. Show that with the transition rate formula r1N2 = s12N - 12, equation (22) takes the form of the equation for the logistic model (Section 3.2, equation (14)). Solve (22) for this case. 10. Prove that the infected population I1t2 in the SIR model does not increase if S102 is less than or equal to k>a. 11. An epidemic reported by the British Communicable Disease Surveillance Center in the British Medical Journal (March 4, 1978, p. 587) took place in a boarding school with 763 residents.† The statistics for the infected population are shown in the graph in Figure 5.25. Assuming that the average duration of the infection is 2 days, use a numerical differential equation solver (see Appendix G) to try to reproduce the data. Take S102 = 762, I102 = 1, R102 = 0 as initial conditions. Experiment with reasonable estimates for the average number of contacts per day by the infected students, who were confined to bed after the infection was detected. What value of this parameter seems to fit the curve best?
(b) From your graph in part (a), estimate the peak number of infected persons. Compare this with the theoretical prediction S = k>a ≈ 167 persons when the epidemic is at its peak. 6. Show that the half-life of solutions to (2)—that is, the time required for the solution to decay to one-half of its value—equals 1ln 22 >k. 7. Complete the solution of the tumor growth model for Example 3 on page 280 by finding P1t2 and Q1t2. 8. If p1t2 is a Malthusian population that diminishes according to (2), then p1t2 2 - p1t1 2 is the number of individuals in the population whose lifetime lies between t1 and t2. Argue that the average lifetime of the population is given by the formula ∞
L0
t ` dt ` dt dp1t2
p102 and show that this equals 1>k.
300
Infected Students
250
200
150
100
50
0
1
2
3
4
5
6
7 Day
8
9
10
11
12
13
14
15
Figure 5.25 Flu data for Problem 11
†
See also the discussion of this epidemic in Mathematical Biology I, An Introduction, by J. D. Murray (SpringerVerlag, New York, 2002), 325–326.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.6
283
Coupled Mass–Spring Systems
5.6 Coupled Mass–Spring Systems In this section we extend the mass–spring model of Chapter 4 to include situations in which coupled springs connect two masses, both of which are free to move. The resulting motions can be very intriguing. For simplicity we’ll neglect the effects of friction, gravity, and external forces. Let’s analyze the following experiment. Example 1
On a smooth horizontal surface, a mass m1 = 2 kg is attached to a fixed wall by a spring with spring constant k1 = 4 N/m. Another mass m2 = 1 kg is attached to the first object by a spring with spring constant k2 = 2 N/m. The objects are aligned horizontally so that the springs are their natural lengths (Figure 5.26). If both objects are displaced 3 m to the right of their equilibrium positions (Figure 5.27) and then released, what are the equations of motion for the two objects?
k1 5 4
k1 5 4
k2 5 2 2 kg
x>0
y>0
x 50
y 50
Figure 5.26 Coupled system at equilibrium
Solution
k 2 52
1 kg
2 kg
1 kg
x 53
y 53
x 50
y 50
Figure 5.27 Coupled system at initial displacement
From our assumptions, the only forces we need to consider are those due to the springs themselves. Recall that Hooke’s law asserts that the force acting on an object due to a spring has magnitude proportional to the displacement of the spring from its natural length and has direction opposite to its displacement. That is, if the spring is either stretched or compressed, then it tries to return to its natural length. Because each mass is free to move, we apply Newton’s second law to each object. Let x1t2 denote the displacement (to the right) of the 2-kg mass from its equilibrium position and similarly, let y1t2 denote the corresponding displacement for the 1-kg mass. The 2-kg mass has a force F1 acting on its left side due to one spring and a force F2 acting on its right side due to the second spring. Referring to Figure 5.27 and applying Hooke’s law, we see that F1 = -k1x ,
F2 = +k2 1y - x2 ,
since 1y - x2 is the net displacement of the second spring from its natural length. There is only one force acting on the 1-kg mass: the force due to the second spring, which is F3 = -k2 1y - x2 .
Applying Newton’s second law to these objects, we obtain the system d 2x = F1 + F2 = -k1x + k2 1y - x2 , dt 2 d 2y m2 2 = F3 = -k2 1y - x2 , dt
m1 (1) or
d 2x + 1k1 + k2 2x − k2y = 0 , dt 2 d 2y m2 2 + k2y − k2x = 0 . dt m1
(2)
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
284
Chapter 5
Introduction to Systems and Phase Plane Analysis
In this problem, we know that m1 = 2, m2 = 1, k1 = 4, and k2 = 2. Substituting these values into system (2) yields (3) (4)
d 2x + 6x - 2y = 0 , dt 2 d 2y + 2y - 2x = 0 . dt 2
2
We’ll use the elimination method of Section 5.2 to solve (3)–(4). With D J d>dt we rewrite the system as (5) (6)
12D2 + 623x4 - 2y = 0 ,
-2x + 1D2 + 223y4 = 0 .
Adding 1D2 + 22 applied to equation (5) to 2 times equation (6) eliminates y: 3 1D2 + 2212D2 + 62 - 44 3x4 = 0 ,
which simplifies to (7)
2
d 4x d 2x + 10 + 8x = 0 . dt 4 dt 2
Notice that equation (7) is linear with constant coefficients. To solve it let’s proceed as we did with linear second-order equations and try to find solutions of the form x = ert. Substituting ert in equation (7) gives 21r 4 + 5r 2 + 42ert = 0 . Thus, we get a solution to (7) when r satisfies the auxiliary equation r 4 + 5r 2 + 4 = 0 .
From the factorization r 4 + 5r 2 + 4 = 1r 2 + 121r 2 + 42, we see that the roots of the auxiliary equation are complex numbers i, -i, 2i, -2i. Using Euler’s formula, it follows that z1 1t2 = eit = cos t + i sin t
and
z2 1t2 = e2it = cos 2t + i sin 2t
are complex-valued solutions to equation (7). To obtain real-valued solutions, we take the real and imaginary parts of z1 1t2 and z2 1t2. Thus, four real-valued solutions are x1 1t2 = cos t ,
x2 1t2 = sin t ,
x3 1t2 = cos 2t ,
x4 1t2 = sin 2t ,
and a general solution is (8)
x1t2 = a1 cos t + a2 sin t + a3 cos 2t + a4 sin 2t ,
where a1, a2, a3, and a4 are arbitrary constants.† To obtain a formula for y1t2, we use equation (3) to express y in terms of x: d 2x + 3x dt 2 = -a1 cos t - a2 sin t - 4a3 cos 2t - 4a4 sin 2t
y1t2 =
+ 3a1 cos t + 3a2 sin t + 3a3 cos 2t + 3a4 sin 2t ,
†
A more detailed discussion of general solutions is given in Chapter 6.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.6
Coupled Mass–Spring Systems
285
and so y1t2 = 2a1 cos t + 2a2 sin t − a3 cos 2t − a4 sin 2t .
(9)
To determine the constants a1, a2, a3, and a4, let’s return to the original problem. We were told that the objects were originally displaced 3 m to the right and then released. Hence, dx 102 = 0 ; dt
x102 = 3 ,
(10)
y102 = 3 ,
dy 102 = 0 . dt
On differentiating equations (8) and (9), we find dx = -a1 sin t + a2 cos t - 2a3 sin 2t + 2a4 cos 2t , dt dy = -2a1 sin t + 2a2 cos t + 2a3 sin 2t - 2a4 cos 2t . dt Now, if we put t = 0 in the formulas for x, dx>dt, y, and dy>dt, the initial conditions (10) give the four equations dx 102 = a2 + 2a4 = 0 , dt dy 102 = 2a2 - 2a4 = 0 . dt
x102 = a1 + a3 = 3 , y102 = 2a1 - a3 = 3 ,
From this system, we find a1 = 2, a2 = 0, a3 = 1, and a4 = 0. Hence, the equations of motion for the two objects are x1t2 = 2 cos t + cos 2t , y1t2 = 4 cos t - cos 2t , which are depicted in Figure 5.28. ◆
24
22
2
4
x
24
22
2
5
5
10
10
15
15
4
y
20
20 t
t
Figure 5.28 Graphs of the motion of the two masses in the coupled mass–spring system
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
286
Chapter 5
Introduction to Systems and Phase Plane Analysis
The general solution pair (8), (9) that we have obtained is a combination of sinusoids oscillating at two different angular frequencies: 1 rad/sec and 2 rad/sec. These frequencies extend the notion of the natural frequency of the single (free, undamped) mass–spring oscillator (page 212, Section 4.9) and are called the natural (or normal) angular frequencies† of the system. A complex system consisting of more masses and springs would have many normal frequencies. Notice that if the initial conditions were altered so that the constants a3 and a4 in (8) and (9) were zero, the motion would be a pure sinusoid oscillating at the single frequency 1 rad/sec. Similarly, if a1 and a2 were zero, only the 2 rad/sec oscillation would be “excited.” Such solutions, wherein the entire motion is described by a single sinusoid, are called the normal modes of the system.‡ The normal modes in the following example are particularly easy to visualize because we will take all the masses and all the spring constants to be equal. Example 2
Three identical springs with spring constant k and two identical masses m are attached in a straight line with the ends of the outside springs fixed (see Figure 5.29). Determine and interpret the normal modes of the system.
Solution
We define the displacements from equilibrium, x and y, as in Example 1 on page 283. The equations expressing Newton’s second law for the masses are quite analogous to (1), except for the effect of the third spring on the second mass: (11)
mx″ = -kx + k1y - x2 ,
(12)
my″ = -k1y - x2 - ky ,
or
1mD2 + 2k23x4 - ky = 0 ,
-kx + 1mD2 + 2k23y4 = 0 .
Eliminating y in the usual manner results in (13)
3 1mD2 + 2k2 2 - k 2 4 3x4
= 0.
This has the auxiliary equation
1mr 2 + 2k2 2 - k 2 = 1mr 2 + k21mr 2 + 3k2 = 0 ,
with roots { i2k>m, { i23k>m. Setting v J 2k>m, we get the following general solution to (13): (14)
x1t2 = C1 cos vt + C2 sin vt + C3 cos 1 23vt 2 + C4 sin 1 23vt 2 .
k
k
m
x.0 x50
k
m
y.0 y50
Figure 5.29 Coupled mass–spring system with fixed ends
†
The study of the natural frequencies of oscillations of complex systems is known in engineering as modal analysis. The normal modes are more naturally characterized in terms of eigenvalues (see Section 9.5).
‡
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.6
y
x
1
x
1
y
21
1
5
5
5
5
10
10
10
10
15
15
15
15
20
20
20
20
t
t
287
Coupled Mass–Spring Systems
t
t
(a)
(b) Figure 5.30 Normal modes for Example 2
To obtain y1t2, we solve for y1t2 in (11) and substitute x1t2 as given in (14). Upon simplifying, we get (15)
y1t2 = C1 cos vt + C2 sin vt - C3 cos 1 23vt 2 - C4 sin 1 23vt 2 .
From the formulas (14) and (15), we see that the normal angular frequencies are v and 23 v. Indeed, if C3 = C4 = 0, we have a solution where y1t2 K x1t2, oscillating at the angular frequency v = 2k>m rad/sec (equivalent to a frequency 2k>m>2p periods/sec). Now if x1t2 K y1t2 in Figure 5.29, the two masses are moving as if they were a single rigid body of mass 2m, forced by a “double spring” with a spring constant given by 2k. And indeed, according to equation (4) of Section 4.9 (page 212), we would expect such a system to oscillate at the angular frequency 22k>2m = 2k>m (!). This motion is depicted in Figure 5.30(a). Similarly, if C1 = C2 = 0, we find the second normal mode where y1t2 = -x1t2, so that in Figure 5.29 there are two mirror-image systems, each with mass m and a “spring and a half” with spring constant k + 2k = 3k. (The half-spring will be twice as stiff.) Section 4.9’s equation (4) then predicts an angular oscillation frequency for each system of 23k>m = 23 v, which again is consistent with (14) and (15). This motion is shown in Figure 5.30(b). ◆
5.6
EXERCISES
1. Two springs and two masses are attached in a straight line on a horizontal frictionless surface as illustrated in Figure 5.31. The system is set in motion by holding the mass m2 at its equilibrium position and pulling the mass m1 to the left of its equilibrium position a distance 1 m and then releasing both masses. Express Newton’s law for the system and determine the equations of motion for the two masses if m1 = 1 kg, m2 = 2 kg, k1 = 4 N/m, and k2 = 10>3 N/m.
m1 x.0 x50
k1
k2
m2
y.0 y50
Figure 5.31 Coupled mass–spring system with one end free
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
288
Chapter 5
Introduction to Systems and Phase Plane Analysis
2. Determine the equations of motion for the two masses described in Problem 1 if m1 = 1 kg, m2 = 1 kg, k1 = 3 N/m, and k2 = 2 N/m. 3. Four springs with the same spring constant and three equal masses are attached in a straight line on a horizontal frictionless surface as illustrated in Figure 5.32. Determine the normal frequencies for the system and describe the three normal modes of vibration. k
k
m x. 0 x 50
k
m
k
m
y.0
z.0
y 50
z50
Figure 5.32 Coupled mass–spring system with three degrees of freedom
4. Two springs, two masses, and a dashpot are attached in a straight line on a horizontal frictionless surface as shown in Figure 5.33. The dashpot provides a damping force on mass m2, given by F = - by′. Derive the system of differential equations for the displacements x and y.
is applied to the second object of mass 1 kg. The displacement functions x1t2 and y1t2 now satisfy the system (16)
2x″1t2 + 6x1t2 − 2y1t2 = 0 ,
(17)
y″1t2 + 2y1t2 − 2x1t2 = 37 cos 3t .
(a) Show that x1t2 satisfies the equation (18)
x 142 1t2 + 5x″1t2 + 4x1t2 = 37 cos 3t .
(b) Find a general solution x1t2 to equation (18). [Hint: Use undetermined coefficients with xp = A cos 3t + B sin 3t.] (c) Substitute x1t2 back into (16) to obtain a formula for y1t2. (d) If both masses are displaced 2 m to the right of their equilibrium positions and then released, find the displacement functions x1t2 and y1t2. 7. Suppose the displacement functions x1t2 and y1t2 for a coupled mass–spring system (similar to the one discussed in Problem 6) satisfy the initial value problem x″1t2 + 5x1t2 − 2y1t2 = 0 , y″1t2 + 2y1t2 − 2x1t2 = 3 sin 2t ; x102 = x′102 = 0 ,
k1
m1
k2
b
m2
x 50
y 50
Figure 5.33 Coupled mass–spring system with one end damped
5. Two springs, two masses, and a dashpot are attached in a straight line on a horizontal frictionless surface as shown in Figure 5.34. The system is set in motion by holding the mass m2 at its equilibrium position and pushing the mass m1 to the left of its equilibrium position a distance 2 m and then releasing both masses. Determine the equations of motion for the two masses if m1 = m2 = 1 kg, k1 = k2 = 1 N/m, and b = 1 N-sec/m. [Hint: The dashpot damps both m1 and m2 with a force whose magnitude equals b 0 y′ - x′ 0 .] k1
m1 x.0 x 50
b
m2
y′102 = 0 .
Solve for x1t2 and y1t2. 8. A double pendulum swinging in a vertical plane under the influence of gravity (see Figure 5.35) satisfies the system
y.0
x.0
y102 = 1 ,
1m1 + m2 2l 12u 1> + m2l1l2u 2> + 1m1 + m2 2l1gu1 = 0 , m2l 22u 2> + m2l1l2u 1> + m2l2gu2 = 0 ,
l1
m1 l2
k2
y.0
m2
y 50
Figure 5.34 Coupled mass–spring system with damping between the masses
6. Referring to the coupled mass–spring system discussed in Example 1, suppose an external force E1t2 = 37 cos 3t
Figure 5.35 Double pendulum
when u1 and u2 are small angles. Solve the system when m1 = 3 kg, m2 = 2 kg, l1 = l2 = 5 m, u1 102 = p>6, u2 102 = u 1= 102 = u 2= 102 = 0.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.7
9. The motion of a pair of identical pendulums coupled by a spring is modeled by the system mg mx1> = x - k1x1 - x2 2 , l 1 mg mx2> = x + k1x1 - x2 2 l 2 for small displacements (see Figure 5.36). Determine the two normal frequencies for the system. 10. Suppose the coupled mass–spring system of Problem 1 (Figure 5.31) is hung vertically from a support (with mass m2 above m1), as in Section 4.10, page 226. (a) Argue that at equilibrium, the lower spring is stretched a distance l1 from its natural length L1, given by l1 = m1g>k1. (b) Argue that at equilibrium, the upper spring is stretched a distance l2 = 1m1 + m2 2g>k2. (c) Show that if x1 and x2 are redefined to be displacements from the equilibrium positions of the masses m1 and m2, then the equations of motion are identical with those derived in Problem 1.
Electrical Systems
l
289
l
m x1
k
m x2
Figure 5.36 Coupled pendulums
5.7 Electrical Systems The equations governing the voltage–current relations for the resistor, inductor, and capacitor were given in Section 3.5, together with Kirchhoff’s laws that constrain how these quantities behave when the elements are electrically connected into a circuit. Now that we have the tools for solving linear equations of higher-order systems, we are in a position to analyze more complex electrical circuits. Example 1
The series RLC circuit in Figure 5.37 on page 290 has a voltage source given by E1t2 = sin 100t volts (V), a resistor of 0.02 ohms 1Ω 2, an inductor of 0.001 henrys (H), and a capacitor of 2 farads (F). (These values are selected for numerical convenience; typical capacitance values are much smaller.) If the initial current and the initial charge on the capacitor are both zero, determine the current in the circuit for t 7 0.
Solution
Using the notation of Section 3.5, we have L = 0.001 H, R = 0.02 Ω, C = 2 F, and E1t2 = sin 100t. According to Kirchhoff’s current law, the same current I passes through each circuit element. The current through the capacitor equals the instantaneous rate of change of its charge q: (1)
I = dq>dt .
From the physics equations in Section 3.5, we observe that the voltage drops across the capacitor (EC), the resistor (ER), and the inductor (EL) are expressed as (2)
EC =
q , C
ER = RI ,
EL = L
dI . dt
Therefore, Kirchhoff’s voltage law, which implies EL + ER + EC = E, can be expressed as (3)
L
1 dI + RI + q = E1t2 . dt C
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
290
Chapter 5
Introduction to Systems and Phase Plane Analysis
Resistance R
Voltage source
E
Inductance L
Capacitance C Figure 5.37 Schematic representation of an RLC series circuit
In most applications we will be interested in determining the current I1t2. If we differentiate (3) with respect to t and substitute I for dq>dt, we obtain dE d 2I dI 1 +R + I= . 2 dt C dt dt After substitution of the given values this becomes
(4)
L
10.0012
dI d 2I + 10.022 + 10.52I = 100 cos 100t , 2 dt dt
or, equivalently, (5)
d 2I dI + 20 + 500I = 100,000 cos 100t . 2 dt dt The homogeneous equation associated with (5) has the auxiliary equation r 2 + 20r + 500 = 1r + 102 2 + 1202 2 = 0 ,
whose roots are -10 { 20i. Hence, the solution to the homogeneous equation is (6)
Ih 1t2 = C1e-10t cos 20t + C2e-10t sin 20t .
To find a particular solution for (5), we can use the method of undetermined coefficients. Setting Ip 1t2 = A cos 100t + B sin 100t
and carrying out the procedure in Section 4.5, we ultimately find, to three decimals, A = -10.080 ,
B = 2.122 .
Hence, a particular solution to (5) is given by (7)
Ip 1t2 = -10.080 cos 100t + 2.122 sin 100t .
Since I = Ih + Ip, we find from (6) and (7) that (8)
I1t2 = e-10t 1C1 cos 20t + C2 sin 20t2 - 10.080 cos 100t + 2.122 sin 100t .
To determine the constants C1 and C2, we need the values I102 and I′102. We were given I102 = q102 = 0. To find I′102, we substitute the values for L, R, and C into equation (3) and equate the two sides at t = 0. This gives 10.0012I′102 + 10.022I102 + 10.52q102 = sin 0 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.7
Electrical Systems
291
Because I102 = q102 = 0, we find I′102 = 0. Finally, using I1t2 in (8) and the initial conditions I102 = I′102 = 0, we obtain the system I102 = C1 - 10.080 = 0 , I′102 = -10C1 + 20C2 + 212.2 = 0 . Solving this system yields C1 = 10.080 and C2 = -5.570. Hence, the current in the RLC series circuit is (9)
I1t2 = e-10t 110.080 cos 20t - 5.570 sin 20t2 - 10.080 cos 100t + 2.122 sin 100t . ◆
Observe that, as was the case with forced mechanical vibrations, the current in (9) is made up of two components. The first, Ih, is a transient current that tends to zero as t S + ∞. The second, Ip 1t2 = -10.080 cos 100t + 2.122 sin 100t ,
is a sinusoidal steady-state current that remains. It is straightforward to verify that the steady-state solution Ip 1t2 that arises from the more general voltage source E1t2 = E0 sin gt is (10)
Ip 1t2 =
E0 sin1gt + u2
2R + 3gL - 1> 1gC24 2 2
,
where tan u = 11>C - Lg 2 2 > 1gR2 (compare Section 4.10, page 221). Example 2
At time t = 0, the charge on the capacitor in the electrical network shown in Figure 5.38 is 2 coulombs (C), while the current through the capacitor is zero. Determine the charge on the capacitor and the currents in the various branches of the network at any time t 7 0.
Solution
To determine the charge and currents in the electrical network, we begin by observing that the network consists of three closed circuits: loop 1 through the battery, resistor, and inductor; loop 2 through the battery, resistor, and capacitor; and loop 3 containing the capacitor and inductor. Taking advantage of Kirchhoff’s current law, we denote the current passing through the battery and the resistor by I1, the current through the inductor by I2, and the current through the capacitor by I3. For consistency of notation, we denote the charge on the capacitor by q3. Hence, I3 = dq3 >dt.
20 ohms (V)
I3
A I2
I1
5 volts (V)
I1
1q3 1 160
1 henry (H)
loop 1
farads (F)
2q3 loop 3 I1
B
loop 2
I3
Figure 5.38 Schematic of an electrical network
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
292
Chapter 5
Introduction to Systems and Phase Plane Analysis
As discussed at the beginning of this section, the voltage drop at a resistor is RI, at an inductor LdI>dt, and at a capacitor q>C. So, applying Kirchhoff’s voltage law to the electrical network in Figure 5.38, we find for loop 1, dI2 dt
(11)
+
20I1
(inductor)
=
(resistor)
5; (battery)
for loop 2, (12)
20I1 (resistor)
+
160q3 (capacitor)
=
5; (battery)
and for loop 3, (13)
−
dI2 dt
+
(inductor)
160q3 = 0 . (capacitor)
[The minus sign in (13) arises from taking a clockwise path around loop 3 so that the current passing through the inductor is –I2.] Notice that these three equations are not independent: We can obtain equation (13) by subtracting (11) from (12). Hence, we have only two equations from which to determine the three unknowns I1, I2, and q3. If we now apply Kirchhoff’s current law to the two junction points in the network, we find at point A that I1 - I2 - I3 = 0 and at point B that I2 + I3 - I1 = 0. In both cases, we get (14)
I1 - I2 -
dq3 = 0, dt
since I3 = dq3 >dt. Assembling equations (11), (12), and (14) into a system, we have (with D = d>dt) (15) (16) (17)
DI2 + 20I1 = 5 , 20I1 + 160q3 = 5 , -I2 + I1 - Dq3 = 0 .
We solve these by the elimination method of Section 5.2. Using equation (16) to eliminate I1 from the others, we are left with (18) (19)
DI2 - 160q3 = 0 , 20I2 + 120D + 1602q3 = 5 .
Elimination of I2 then leads to (20)
20D2q3 + 160Dq3 + 3200q3 = 0 .
To obtain the initial conditions for the second-order equation (20), recall that at time t = 0, the charge on the capacitor is 2 coulombs and the current is zero. Hence, (21)
q3 102 = 2 ,
dq3 102 = 0 . dt
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.7
Electrical Systems
293
We can now solve the initial value problem (20)–(21) using the techniques of Chapter 4. Ultimately, we find q3 1t2 = 2e-4t cos 12t +
2 -4t e sin 12t , 3 dq3 80 I3 1t2 = 1t2 = - e-4t sin 12t . dt 3
Next, to determine I2, we substitute these expressions into (19) and obtain I2 1t2 =
1 dq3 1t2 - 8q3 1t2 4 dt 1 64 -4t = - 16e-4t cos 12t + e sin 12t . 4 3
Finally, from I1 = I2 + I3, we get I1 1t2 =
1 16 -4t - 16e-4t cos 12t e sin 12t . ◆ 4 3
Note that the differential equations that describe mechanical vibrations and RLC series circuits are essentially the same. And, in fact, there is a natural identification of the parameters m, b, and k for a mass–spring system with the parameters L, R, and C that describe circuits. This is illustrated in Table 5.3. Moreover, the terms transient, steady-state, overdamped, critically damped, underdamped, and resonant frequency described in Sections 4.9 and 4.10 apply to electrical circuits as well. This analogy between a mechanical system and an electrical circuit extends to large-scale systems and circuits. An interesting consequence of this is the use of analog simulation and, in particular, analog computers to analyze mechanical systems. Large-scale mechanical systems are modeled by building a corresponding electrical system and then measuring the charges q1t2 and currents I1t2. Although such analog simulations are important, both large-scale mechanical and electrical systems are currently modeled using digital computer simulation. This involves the numerical solution of the initial value problem governing the system. Still, the analogy between mechanical and electrical systems means that basically the same computer software can be used to analyze both systems.
TABLE 5.3
Analogy Between Mechanical and Electrical Systems
Mechanical Mass–Spring System with Damping
mx″ + bx′ + kx = f1t2 Displacement Velocity Mass Damping constant Spring constant External force
x x′ m b k f1t2
Electrical RLC Series Circuit
Lq″ + Rq′ + 11>C2q = E1t2 Charge q Current q′ = I Inductance L R Resistance (Capacitance) -1 1>C Voltage source E1t2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
294
Chapter 5
5.7
Introduction to Systems and Phase Plane Analysis
EXERCISES
1. An RLC series circuit has a voltage source given by E1t2 = 20 V, a resistor of 100 Ω, an inductor of 4 H, and a capacitor of 0.01 F. If the initial current is zero and the initial charge on the capacitor is 4 C, determine the current in the circuit for t 7 0. 2. An RLC series circuit has a voltage source given by E1t2 = 40 cos 2t V, a resistor of 2 Ω, an inductor of 1>4 H, and a capacitor of 1>13 F. If the initial current is zero and the initial charge on the capacitor is 3.5 C, determine the charge on the capacitor for t 7 0. 3. An RLC series circuit has a voltage source given by E1t2 = 10 cos 20t V, a resistor of 120 Ω, an inductor of 4 H, and a capacitor of 122002 -1 F. Find the steady-state current (solution) for this circuit. What is the resonance frequency of the circuit? 4. An LC series circuit has a voltage source given by E1t2 = 30 sin 50t V, an inductor of 2 H, and a capacitor of 0.02 F (but no resistor). What is the current in this circuit for t 7 0 if at t = 0, I102 = q102 = 0? 5. An RLC series circuit has a voltage source of the form E1t2 = E0 cos gt V, a resistor of 10 Ω, an inductor of 4 H, and a capacitor of 0.01 F. Sketch the frequency response curve for this circuit. 6. Show that when the voltage source in (4) is of the form E1t2 = E0 sin gt, then the steady-state solution Ip is as given in equation (10). 7. A mass–spring system with damping consists of a 7-kg mass, a spring with spring constant 3 N/m, a frictional component with damping constant 2 N-sec/m, and an external force given by f1t2 = 10 cos 10t N. Using a 10-Ω resistor, construct an RLC series circuit that is the analog of this mechanical system in the sense that the two systems are governed by the same differential equation. 8. A mass–spring system with damping consists of a 16-lb weight, a spring with spring constant 64 lb/ft, a frictional component with damping constant 10 lb-sec/ft, and an external force given by f1t2 = 20 cos 8t lb. Using an inductor of 0.01 H, construct an RLC series circuit that is the analog of this mechanical system. 9. Because of Euler’s formula, eiu = cos u + i sin u, it is often convenient to treat the voltage sources E0 cos gt and E0 sin gt simultaneously, using E1t2 = E0eigt. In this case, equation (3) becomes 2
(22)
L
dq dt
2
+R
dq 1 + q = E0eiGt , dt C
where q is now complex (recall I = q′, I′ = q″).
(a) Use the method of undetermined coefficients to show that the steady-state solution to (22) is E0 eigt . qp 1t2 = 1>C - g 2L + igR The technique is discussed in detail in Project F of Chapter 4, page 237. (b) Now show that the steady-state current is E0 Ip 1t2 = eigt . R + i3gL - 1> 1gC24 (c) Use the relation a + ib = 2a2 + b2eiu, where tan u = b>a, to show that Ip can be expressed in the form E0 Ip 1t2 = ei1gt + u2 , 2 2R + 3gL - 1> 1gC24 2 where tan u = 11>C - Lg 2 2 > 1gR2. (d) The imaginary part of eigt is sin gt, so the imaginary part of the solution to (22) must be the solution to equation (3) for E1t2 = E0 sin gt. Verify that this is also the case for the current by showing that the imaginary part of Ip in part (c) is the same as that given in equation (10).
In Problems 10–13, find a system of differential equations and initial conditions for the currents in the networks given in the schematic diagrams (Figures 5.39–5.42 on pages 294–295). Assume that all initial currents are zero. Solve for the currents in each branch of the network. 10. 10 H 30 H
10 V
20 V
40 W I3
I1
I2
Figure 5.39 RL network for Problem 10 10 V
11.
10 V
5V
1 F 30
20 H I1
I2
I3
Figure 5.40 RLC network for Problem 11
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.8
Dynamical Systems, Poincaré Maps, and Chaos
10 V
12.
10 V
13.
0.02 H
0.025 H I2
I1
0.5 F
1V
0.5 H I1
I3
Figure 5.41 RL network for Problem 12
295
cos 3t V I2
I3
Figure 5.42 RLC network for Problem 13
5.8 Dynamical Systems, Poincaré Maps, and Chaos In this section we take an excursion through an area of mathematics that has received a lot of attention both for the interesting mathematical phenomena being observed and for its application to fields such as meteorology, heat conduction, fluid mechanics, lasers, chemical reactions, and nonlinear circuits, among others. The area is that of nonlinear dynamical systems.† A dynamical system is any system that allows one to determine (at least theoretically) the future states of the system given its present or past state. For example, the recursive formula (difference equation) xn+1 = 11.052xn ,
n = 0, 1, 2, c
is a dynamical system, since we can determine the next state, xn+1, given the previous state, xn. If we know x0, then we can compute any future state 3indeed, xn+1 = x0 11.052 n+1 4. Another example of a dynamical system is provided by the differential equation dx = -2x , dt
where the solution x1t2 specifies the state of the system at “time” t. If we know x1t0 2 = x0, then we can determine the state of the system at any future time t 7 t0 by solving the initial value problem dx = -2x , dt
x1t0 2 = x0 .
Indeed, a simple calculation yields x1t2 = x0e-21t-t02 for t Ú t0. For a dynamical system defined by a differential equation, it is often helpful to work with a related dynamical system defined by a difference equation. For example, when we cannot express the solution to a differential equation using elementary functions, we can use a numerical technique such as the improved Euler’s method or Runge–Kutta to approximate the solution to an initial value problem. This numerical scheme defines a new (but related) dynamical system that is often easier to study. In Section 5.4, we used phase plane diagrams to study autonomous systems in the plane. Many important features of the system can be detected just by looking at these diagrams. For example, a closed trajectory corresponds to a periodic solution. The trajectories for nonautonomous systems in †
For a more detailed study of dynamical systems, see An Introduction to Chaotic Dynamical Systems, by R. L. Devaney (Westview Press, 2003) and Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, by J. Guckenheimer and P. J. Holmes (Springer-Verlag, New York, 1983).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
296
Chapter 5
Introduction to Systems and Phase Plane Analysis
the phase plane are much more complicated to decipher. One technique that is helpful in this regard is the so-called Poincaré map. As we will see, these maps replace the study of a nonautonomous system with the study of a dynamical system defined by the location in the xy-plane 1y = dx>dt2 of the solution at regularly spaced moments in time such as t = 2pn, where n = 0, 1, 2, . . . . The advantage in using the Poincaré map will become clear when the method is applied to a nonlinear problem for which no explicit solution is known. In such a case, the trajectories are computed using a numerical scheme such as Runge–Kutta. Several software packages have options that will construct Poincaré maps for a given system. To illustrate the Poincaré map, consider the equation (1)
x″1t2 + v2x1t2 = F cos t ,
where F and v are positive constants. We studied similar equations in Section 4.10 and found that a general solution for v ≠ 1 is given by (2)
x1t2 = A sin1vt + f2 +
F cos t , v2 - 1
where the amplitude A and the phase angle f are arbitrary constants. Since y = x′, y1t2 = vA cos1vt + f2 -
F sin t . v -1 2
Because the forcing function F cos t is 2p-periodic, it is natural to seek 2p-periodic solutions to (1). For this purpose, we define the Poincaré map as (3)
xn J x12pn2 = A sin12pvn + f2 + F> 1v2 - 12 , yn J y12pn2 = vA cos12pvn + f2 ,
for n = 0, 1, 2, . . . . In Figure 5.43 on page 297, we plotted the first 100 values of 1xn, yn 2 in the xy-plane for different choices of v. For simplicity, we have taken A = F = 1 and f = 0. These graphs are called Poincaré sections. We will interpret them shortly. Now let’s play the following game. We agree to ignore the fact that we already know the formula for x1t2 for all t Ú 0. We want to see what information about the solution we can glean just from the Poincaré section and the form of the differential equation. Notice that the first two Poincaré sections in Figure 5.43, corresponding to v = 2 and 3, consist of a single point. This tells us that, starting with t = 0, every increment 2p of t returns us to the same point in the phase plane. This in turn implies that equation (1) has a 2p-periodic solution, which can be proved as follows: For v = 2, let x1t2 be the solution to (1) with 1 x102, y102 2 = 11>3, 22 and let X1t2 J x1t + 2p2. Since the Poincaré section is just the point 11>3, 22, we have X102 = x12p2 = 1>3 and X′102 = x′12p2 = 2. Thus, x1t2 and X1t2 have the same initial values at t = 0. Further, because cos t is 2p-periodic, we also have X″1t2 + v2X1t2 = x″1t + 2p2 + v2x1t + 2p2 = cos1t + 2p2 = cos t . Consequently, x1t2 and X1t2 satisfy the same initial value problem. By the uniqueness theorems of Sections 4.2 and 4.5, these functions must agree on the interval [0, ∞ 2. Hence, x1t2 = X1t2 = x1t + 2p2 for all t Ú 0; that is, x1t2 is 2p-periodic. (The same reasoning works for v = 3.) With a similar argument, it follows from the Poincaré section for v = 1>2 that there is a solution of period 4p that alternates between the two points displayed in Figure 5.43(c) as t is incremented by 2p. For the case v = 1>3, we deduce that there is a solution of period 6p rotating among three points, and for v = 1>4, there is an 8p-periodic solution rotating among four points. We call these last three solutions subharmonics. The case v = 12 is different. So far, in Figure 5.43(f), none of the points has repeated. Did we stop too soon? Will the points ever repeat? Here, the fact that 12 is irrational plays
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.8
n 5 0, 1, 2, . . . ( –1– , 2)
2
n 5 0, 1, 2, ...
3
297
Dynamical Systems, Poincaré Maps, and Chaos
2
3
2
1
x
21
1
n50 22
1
2
21 21
x
21
1
x
1
1 21
1
2
=2
=3
=
(a)
(b)
(c)
1 –– 2
2 n 50
2
2
1
1
5 1
n50 22 2
21
2
n50 x
1
1
3 22
3 x
1
21
21
1 21 4
2 21 =
21 1 –– 3
=
(d)
x
1
1 1 –– 4
(e)
= Î2 (f)
Figure 5.43 Poincaré sections for equation (1) for various values of v
a crucial role. It turns out that every integer n yields a distinct point in the Poincaré section (see Problem 8). However, there is a pattern developing. The points all appear to lie on a simple curve, possibly an ellipse. To see that this is indeed the case, notice that when v = 22, A = F = 1, and f = 0, we have xn = sin 1 222 pn 2 + 1 ,
yn = 22 cos 1 222 pn 2 ,
n = 0, 1, 2, . . . .
It is then an easy computation to show that each 1xn, yn 2 lies on the ellipse 1x - 12 2 +
y2 = 1. 2
In our investigation of equation (1), we concentrated on 2p-periodic solutions because the forcing term Fcos t has period 2p. [We observed subharmonics when v = 1>2, 1>3, and 1>4—that is, solutions with periods 212p2, 312p2, and 412p2.] When a damping term is introduced into the differential equation, the Poincaré map displays a different behavior. Recall
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
298
Chapter 5
Introduction to Systems and Phase Plane Analysis
that the solution will now be the sum of a transient and a steady-state term. For example, let’s analyze the equation (4)
x″1t2 + bx′1t2 + v2x1t2 = F cos t ,
where b, F, and v are positive constants. When b2 6 4v2, the solution to (4) can be expressed as (5)
x1t2 = Ae-1b>22t sin a
F 24v2 - b2 t + fb + sin1t + u2 , 2 2 21v - 12 2 + b2
where tan u = 1v2 - 12 >b and A and f are arbitrary constants [compare equations (7) and (8) in Section 4.10]. The first term on the right-hand side of (5) is the transient and the second term, the steady-state solution. Let’s construct the Poincaré map using t = 2pn, n = 0, 1, 2, . . . . We will take b = 0.22, v = A = F = 1, and f = 0 to simplify the computations. Because tan u = 1v2 - 12 >b = 0, we will take u = 0 as well. Then we have x12pn2 = xn = e-0.22pnsin 1 20.9879 2pn 2 ,
x′12pn2 = yn = -0.11e-0.22pnsin 1 20.9879 2pn 2
+ 20.9879 e-0.22pncos 1 20.9879 2pn 2 +
1 . 10.222
The Poincaré section for n = 0, 1, 2, . . . , 10 is shown in Figure 5.44 (black points). After just a few iterations, we observe that xn ≈ 0 and yn ≈ 1> 10.222 ≈ 4.545; that is, the points of the Poincaré section are approaching a single point in the xy-plane (colored point). Thus, we might expect that there is a 2p-periodic solution corresponding to a particular choice of A and f. [In this example, where we can explicitly represent the solution, we see that indeed a 2p-periodic solution arises when we take A = 0 in (5).] There is an important difference between the Poincaré sections for equation (1) and those for equation (4). In Figure 5.43, the location of all of the points in (a)–(e) depends on the initial value selected (here A = 1 and f = 0). (See Problem 10.) However, in Figure 5.44, the first few points (black points) depend on the initial conditions, while the limit point (colored point) does not (see Problem 6). The latter behavior is typical for equations that have a “damping”
5.4
5.2
20.015
20.01
x
20.005 4.8
4.6 Figure 5.44 Poincaré section for equation (4) with F = 1, b = 0.22, and v = 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.8
Dynamical Systems, Poincaré Maps, and Chaos
7
7
6
6
5
5
4
4
3
22
299
3
21
1
(a) x0 = 2,
0
=4
2
x
22
21
1
(b) x0 = 2,
0
2
x
=6
Figure 5.45 Poincaré section for equation (6) with initial values x0, y0
term (i.e., b 7 0); namely, the Poincaré section has a limit set† that is essentially independent of the initial conditions. For equations with damping, the limit set may be more complicated than just a point. For example, the Poincaré map for the equation (6)
x″1t2 + 10.222x′1t2 + x1t2 = cos t + cos 1 22t 2
has a limit set consisting of an ellipse (see Problem 11). This is illustrated in Figure 5.45 for the initial values x0 = 2, y0 = 4 and x0 = 2, y0 = 6. So far we have seen limit sets for the Poincaré map that were either a single point or an ellipse—independent of the initial values. These particular limit sets are attractors. In general, an attractor is a set A with the property that there exists an open set‡ B containing A such that whenever the Poincaré map enters B, its points remain in B and the limit set of the Poincaré map is a subset of A. Further, we assume A has the invariance property: Whenever the Poincaré map starts at a point in A, it remains in A. In the previous examples, the attractors of the dynamical system (Poincaré map) were easy to describe. In recent years, however, many investigators, working on a variety of applications, have encountered dynamical systems that do not behave orderly—their attractor sets are very complicated (not just isolated points or familiar geometric objects such as ellipses). The behavior of such systems is called chaotic, and the corresponding limit sets are referred to as strange attractors.
The limit set for a map 1xn, yn 2, n = 1, 2, 3, . . . , is the set of points 1p, q2 such that limk S ∞ 1xnk, ynk 2 = 1p, q2, where n1 6 n2 6 n3 6 cis some subsequence of the positive integers. ‡ A set B ⊂ R2 is an open set if for each point p ∈ B there is an open disk V containing p such that V ⊂ B. †
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
300
Chapter 5
Introduction to Systems and Phase Plane Analysis
1
1
21
1
x
21 (b) F = 0.28
(a) F = 0.2
1
1
x
21
x
1
1
x
21
1
21
21
(c) F = 0.29
(d) F = 0.37
Figure 5.46 Poincaré sections for the Duffing equation (7) with b = 0.3 and g = 1.2
To illustrate chaotic behavior and what is meant by a strange attractor, we discuss two nonlinear differential equations and a simple difference equation. First, let’s consider the forced Duffing equation (7)
x″1t2 + bx′1t2 − x1t2 + x3 1t2 = F sin Gt .
We cannot express the solution to (7) in any explicit form, so we must obtain the Poincaré map by numerically approximating the solution to (7) for fixed initial values and then plot the approximations for x12pn>g2 and y12pn>g2 = x′12pn>g2. (Because the forcing term F sin gt has period 2p>g, we seek 2p>g-periodic solutions and subharmonics.) In Figure 5.46, we display the limit sets (attractors) when b = 0.3 and g = 1.2 in the cases (a) F = 0.2, (b) F = 0.28, (c) F = 0.29, and (d) F = 0.37. Notice that as the constant F increases, the Poincaré map changes character. When F = 0.2, the Poincaré section tells us that there is a 2p>g-periodic solution. For F = 0.28, there is a subharmonic of period 4p>g, and for F = 0.29 and 0.37, there are subharmonics with periods 8p>g and 10p>g, respectively. Things are dramatically different when F = 0.5: The solution is neither 2p>g-periodic nor subharmonic. The Poincaré section for F = 0.5 is illustrated in Figure 5.47 on page 301. This section was generated by numerically approximating the solution to (7) when g = 1.2, b = 0.3, and F = 0.5, for fixed initial values.† Not all of the approximations x12pn>g2 and y12pn>g2 that were calculated are graphed; because of the presence of a transient solution, the first few points were omitted. It turns out that the plotted set is essentially independent of the initial values and has the property that once a point is in the set, all subsequent points lie in the set. †
Historical Footnote: When researchers first encountered these strange-looking Poincaré sections, they would check their computations using different computers and different numerical schemes [see Hénon and Heiles, “The Applicability of the Third Integral of Motion: Some Numerical Experiments,” Astronomical Journal, Vol. 69 (1964): 75]. For special types of dynamical systems, such as the Hénon map, it can be shown that there exists a true trajectory that shadows the numerical trajectory [see M. Hammel, J. A. Yorke, and C. Grebogi, “Numerical Orbits of Chaotic Processes Represent True Orbits,” Bulletin American Mathematical Society, Vol. 19 (1988): 466–469].
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.8
301
Dynamical Systems, Poincaré Maps, and Chaos
1 x
21
1 21
Figure 5.47 Poincaré section for the Duffing equation (7) with b = 0.3, g = 1.2, and F = 0.5
Because of the complicated shape of the set, it is indeed a strange attractor. While the shape of the strange attractor does not depend on the initial values, the picture does change if we consider different sections; for example, t = 12pn + p>22 >g, n = 0, 1, 2, . . . yields a different configuration. Another example of a strange attractor occurs when we consider the forced pendulum equation (8)
x″1t2 + bx′1t2 + sin 1 x1t2 2 = F cos t ,
where the x1t2 term in (4) has been replaced by sin 1 x1t2 2 . Here x1t2 is the angle between the pendulum and the vertical rest position, b is related to damping, and F represents the strength of the forcing function (see Figure 5.48). For F = 2.7 and b = 0.22, we have graphed in Figure 5.49 approximately 90,000 points in the Poincaré map. Since we cannot express the solution to (8) in any explicit form, the Poincaré map was obtained by numerically approximating the solution to (8) for fixed initial values and plotting the approximations for x12pn2 and y12pn2 = x′12pn2. The Poincaré maps for the forced Duffing equation and for the forced pendulum equation not only illustrate the idea of a strange attractor; they also exhibit another peculiar behavior called chaos. Chaos occurs when small changes in the initial conditions lead to major changes in the behavior of the solution. Henri Poincaré described the situation as follows: It may happen that small differences in the initial conditions will produce very large ones in the final phenomena. A small error in the former produces an enormous error in the latter. Prediction becomes impossible . . . .
F cos t
4 3 2 1 x(t)
0 2bx9(t)
Figure 5.48 Forced damped pendulum
21 23
22
21
x 0
1
2
3
Figure 5.49 Poincaré section for the forced pendulum equation (8) with b = 0.22 and F = 2.7
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
302
Chapter 5
Introduction to Systems and Phase Plane Analysis
In a physical experiment, we can never exactly (with infinite accuracy) reproduce the same initial conditions. Consequently, if the behavior is chaotic, even a slight difference in the initial conditions may lead to quite different values for the corresponding Poincaré map when n is large. Such behavior does not occur for solutions to either equation (4) or equation (1) (see Problems 6 and 7). However, two solutions to the Duffing equation (7) with F = 0.5 that correspond to two different but close initial values have Poincaré maps that do not remain close together. Although they both are attracted to the same set, their locations with respect to this set may be relatively far apart. The phenomenon of chaos can also be illustrated by the following simple map. Let x0 lie in 30, 12 and define xn+1 = 2xn (mod 1) ,
(9)
where by (mod 1) we mean the decimal part of the number if it is greater than or equal to 1; that is xn + 1 = e
When x0 = 1>3, we find x1 = x2 = x3 = x4 =
2# 2# 2# 2#
for 0 … xn 6 1>2 , for 1>2 … xn 6 1 .
2xn , 2xn - 1 ,
11>32 12>32 11>32 12>32
1mod 12 = 1mod 12 = 1mod 12 = 1mod 12 =
2>3 , 4>3 1mod 12 = 1>3 , 2>3 , 1>3 , etc.
Written as a sequence, we get 51>3, 2>3, 1>3, 2>3, . . .6, where the overbar denotes the repeated pattern. What happens when we pick a starting value x0 near 1>3? Does the sequence cluster about 1>3 and 2>3 as does the mapping when x0 = 1>3? For example, when x0 = 0.3, we get the sequence 50.3, 0.6, 0.2, 0.4, 0.8, 0.6, 0.2, 0.4, 0.8, . . .6 .
In Figure 5.50, we have plotted the values of xn for x0 = 0.3, 0.33, and 0.333. We have not plotted the first few terms, but only those that repeat. (This omission of the first few terms parallels the situation depicted in Figure 5.47 on page 301, where transient solutions arise.) It is clear from Figure 5.50 that while the values for x0 are getting closer to 1>3, the corresponding maps are spreading out over the whole interval 30, 14 and not clustering near 1>3 and 2>3. This behavior is chaotic, since the Poincaré maps for initial values near 1>3 behave quite differently from the map for x0 = 1>3. If we had selected x0 to be irrational (which we can’t do with a calculator), the sequence would not repeat and would be dense in 30, 14. x0 5 0.3 0
1 3
x0 5 0.33 2 3
1
1 3
0
(a)
2 3
1
(b)
x0 5 0.333 0
1 3
2 3
1
(c) Figure 5.50 Plots of the map xn + 1 = 2xn (mod 1) for x0 = 0.3, 0.33, and 0.333
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 5.8
Dynamical Systems, Poincaré Maps, and Chaos
303
Systems that exhibit chaotic behavior arise in many applications. The challenge to engineers is to design systems that avoid this chaos and, instead, enjoy the property of stability. The topic of stable systems is discussed at length in Chapter 12.†
5.8
EXERCISES
A software package that supports the construction of Poincaré maps is required for the problems in this section. 1. Compute and graph the points of the Poincaré map with t = 2pn, n = 0, 1, . . . , 20 for equation (1), taking A = F = 1, f = 0, and v = 3>2. Repeat, taking v = 3>5. Do you think the equation has a 2p-periodic solution for either choice of v? A subharmonic solution? 2. Compute and graph the points of the Poincaré map with t = 2pn, n = 0, 1, . . . , 20 for equation (1), taking A = F = 1, f = 0, and v = 1> 13. Describe the limit set for this system. 3. Compute and graph the points of the Poincaré map with t = 2pn, n = 0, 1, . . . , 20 for equation (4), taking A = F = 1, f = 0, v = 1, and b = - 0.1. What is happening to these points as n S ∞ ? 4. Compute and graph the Poincaré map with t = 2pn, n = 0, 1, . . . , 20 for equation (4), taking A = F = 1, f = 0, v = 1, and b = 0.1. Describe the attractor for this system. 5. Compute and graph the Poincaré map with t = 2pn, n = 0, 1, . . . , 20 for equation (4), taking A = F = 1, f = 0, v = 1>3, and b = 0.22. Describe the attractor for this system. 6. Show that for b 7 0, the Poincaré map for equation (4) is not chaotic by showing that as t gets large xn = x12pn2 ≈
F
sin12pn + u2 ,
21v - 12 2 + b2
yn = x′12pn2 ≈
2
F 21v - 12 + b 2
2
2
cos12pn + u2
independent of the initial values x0 = x102 and y0 = x′102. 7. Show that the Poincaré map for equation (1) is not chaotic by showing that if 1x0, y0 2 and 1x0*, y*0 2 are two initial values that define the Poincaré maps {1xn, yn 2} and 51xn*, y*n 26, respectively, using the recursive formulas in (3), then one can make the distance between
1xn, yn 2 and 1x*n, y*n 2 small by making the distance between 1x0, y0 2 and 1x0*, y*0 2 small. [Hint: Let 1A, f2 and 1A*, f*2 be the polar coordinates of two points in the plane. From the law of cosines, it follows that the distance d between them is given by d 2 = 1A - A*2 2 + 2AA*31 - cos1f - f*24.] 8. Consider the Poincaré maps defined in (3) with v = 12, A = F = 1, and f = 0. If this map were ever to repeat, then for two distinct positive integers n and m, sin 1 212pn 2 = sin 1 212pm 2 . Using basic properties of the sine function, show that this would imply that 12 is rational. It follows from this contradiction that the points of the Poincaré map do not repeat. 9. The doubling modulo 1 map defined by equation (9) exhibits some fascinating behavior. Compute the sequence obtained when (a) x0 = k>7 for k = 1, 2, . . . , 6 . (b) x0 = k>15 for k = 1, 2, . . . , 14 . (c) x0 = k>2j, where j is a positive integer and k = 1, 2, . . . , 2j - 1 . Numbers of the form k>2j are called dyadic numbers and are dense in 30, 14. That is, there is a dyadic number arbitrarily close to any real number (rational or irrational). 10. To show that the limit set of the Poincaré map given in (3) depends on the initial values, do the following: (a) Show that when v = 2 or 3, the Poincaré map consists of the single point 1x, y2 = aA sin f +
F , vA cos f b . v2 - 1 (b) Show that when v = 1>2, the Poincaré map alternates between the two points a
F { A sin f , { vA cos f b . v -1 (c) Use the results of parts (a) and (b) to show that when v = 2, 3, or 1>2, the Poincaré map (3) depends on the initial values 1x0, y0 2. 2
†
All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
304
Chapter 5
Introduction to Systems and Phase Plane Analysis
11. To show that the limit set for the Poincaré map xn J x12pn2, yn J x′12pn2, where x1t2 is a solution to equation (6), is an ellipse and that this ellipse is the same for any initial values x0, y0, do the following: (a) Argue that since the initial values affect only the transient solution to (6), the limit set for the Poincaré map is independent of the initial values. (b) Now show that for n large,
side of table
pin
long ruler
xn ≈ a sin1212pn + c2 ,
tie tack (pivot)
yn ≈ c + 12a cos1212pn + c2 ,
where a = 1 1 + 210.222 2 2 -1>2, c = 10.222 -1, and c = arctan 5 - 3 10.222 12 4 -1 6 . (c) Use the result of part (b) to conclude that the ellipse x2 +
12.
13. 14. 15.
1y - c2
short ruler (a) double pendulum
2
= a2 2 contains the limit set of the Poincaré map. Using a numerical scheme such as Runge–Kutta or a software package, calculate the Poincaré map for equation (7) when b = 0.3, g = 1.2, and F = 0.2. (Notice that the closer you start to the limiting point, the sooner the transient part will die out.) Compare your map with Figure 5.46(a) on page 300. Redo for F = 0.28. Redo Problem 12 with F = 0.31. What kind of behavior does the solution exhibit? Redo Problem 12 with F = 0.65. What kind of behavior does the solution exhibit? Chaos Machine. Chaos can be illustrated using a long ruler, a short ruler, a pin, and a tie tack (pivot). Construct the double pendulum as shown in Figure 5.51(a). The pendulum is set in motion by releasing it from a position such as the one shown in Figure 5.51(b). Repeatedly
(b) release position Figure 5.51 Double pendulum as a chaos machine
set the pendulum in motion, each time trying to release it from the same position. Record the number of times the short ruler flips over and the direction in which it was moving. If the pendulum was released in exactly the same position each time, then the motion would be the same. However, from your experiments you will observe that even beginning close to the same position leads to very different motions. This double pendulum exhibits chaotic behavior.
Chapter 5 Summary Systems of differential equations arise in the study of biological systems, coupled mass–spring oscillators, electrical circuits, ecological models, and many other areas. Linear systems with constant coefficients can be solved explicitly using a variant of the Gauss elimination process. For this purpose we begin by writing the system with operator notation, using D J d>dt, D2 J d 2 >dt 2, and so on. A system of two equations in two unknown functions then takes the form L 1 3x4 + L 2 3y4 = f1 ,
L 3 3x4 + L 4 3y4 = f2 ,
where L1, L2, L3, and L4 are polynomial expressions in D. Applying L4 to the first equation, L2 to the second, and subtracting, we get a single (typically higher-order) equation in x1t2, namely, 1L 4L 1 - L 2L 3 23x4 = L 4 3 f1 4 - L 2 3 f2 4 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Chapter 5 Summary
305
We then solve this constant coefficient equation for x1t2. Similarly, we can eliminate x from the system to obtain a single equation for y1t2, which we can also solve. This procedure introduces some extraneous constants, but by substituting the expressions for x and y back into one of the original equations, we can determine the relationships among these constants. A preliminary step for the application of numerical algorithms for solving systems or single equations of higher order is to rewrite them as an equivalent system of first-order equations in normal form:
(1)
x1= 1t2 = f1 1t, x1, x2, . . . , xm 2 , x2= 1t2 = f2 1t, x1, x2, . . . , xm 2 , f
xm= 1t2 = fm 1t, x1, x2, . . . , xm 2 . For example, by setting y = y′, we can rewrite the second-order equation y″ = ƒ1t, y, y′2 as the normal system y′ = y , y′ = ƒ1t, y, y2 . The normal system (1) has the outward appearance of a vectorized version of a single firstorder equation, and as such it suggests how to generalize numerical algorithms such as those of Euler and Runge–Kutta. A technique for studying the qualitative behavior of solutions to the autonomous system (2)
dx = ƒ1x, y2 , dt
dy = g1x, y2 dt
is phase plane analysis. We begin by finding the critical points of (2)—namely, points 1x0, y0 2 where ƒ1x0, y0 2 = 0
and
g1x0, y0 2 = 0 .
The corresponding constant solution pairs x1t2 K x0, y1t2 K y0 are called equilibrium solutions to (2). We then sketch the direction field for the related phase plane differential equation (3)
g1x, y2 dy = dx ƒ1x, y2
with appropriate direction arrows (oriented by the sign of dx>dt or dy>dt). From this we can usually conjecture qualitative features of the solutions and of the critical points, such as stability and asymptotic behavior. Software is typically used to visualize the solution curves to (3), which provide the highways along which the trajectories of the system (2) travel. Nonautonomous systems can be studied by considering a Poincaré map for the system. A Poincaré map can be used to detect periodic and subharmonic solutions and to study systems whose solutions exhibit chaotic behavior.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
306
Chapter 5
Introduction to Systems and Phase Plane Analysis
REVIEW PROBLEMS FOR CHAPTER 5 In Problems 1–4, find a general solution x1t2, y1t2 for the given system. 1. x′ + y″ + y = 0 , 2. x′ = x + 2y , x″ + y′ = 0 y′ = - 4x - 3y 3. 2x′ - y′ = y + 3x + et , 3y′ - 4x′ = y - 15x + e-t 4. x″ + x - y″ = 2e-t , x″ - x + y″ = 0 In Problems 5 and 6, solve the given initial value problem. 5. x′ = z - y ; x102 = 0 , y′ = z ; y102 = 0 , z′ = z - x ; z102 = 2 6. x′ = y + z ; y′ = x + z ; z′ = x + y ;
x102 = 2 , y102 = 2 , z102 = - 1
7. For the interconnected tanks problem of Section 5.1, page 241, suppose that instead of pure water being fed into tank A, a brine solution with concentration 0.2 kg/L is used; all other data remain the same. Determine the mass of salt in each tank at time t if the initial masses are x0 = 0.1 kg and y0 = 0.3 kg. In Problems 8–11, write the given higher-order equation or system in an equivalent normal form (compare Section 5.3). 8. 2y″ - ty′ + 8y = sin t 9. 3y‴ + 2y′ - ety = 5 10. x″ - x + y = 0 , x′ - y + y″ = 0 11. x‴ + y′ + y″ = t , x″ - x′ + y‴ = 0 In Problems 12 and 13, solve the related phase plane equation for the given system. Then sketch by hand several representative trajectories (with their flow arrows) and describe the
stability of the critical points (i.e., compare with Figure 5.12, page 267). 12. x′ = y - 2 , 13. x′ = 4 - 4y , y′ = 2 - x y′ = -4x 14. Find all the critical points and determine the phase plane solution curves for the system dx = sin x cos y , dt dy = cos x sin y . dt In Problems 15 and 16, sketch some typical trajectories for the given system, and by comparing with Figure 5.12, page 267, identify the type of critical point at the origin. 15. x′ = -2x - y , y′ = 3x - y
16. x′ = -x + 2y , y′ = x + y
17. In the electrical circuit of Figure 5.52, take R1 = R2 = 1 Ω, C = 1 F, and L = 1 H. Derive three equations for the unknown currents I1, I2, and I3 by writing Kirchhoff’s voltage law for loops 1 and 2, and Kirchhoff’s current law for the top juncture. Find the general solution. I1
I3
I2
L
R2
C loop 1
loop 2
R1
Figure 5.52 Electrical circuit for Problem 17
18. In the coupled mass–spring system depicted in Figure 5.26, page 283, take each mass to be 1 kg and let k1 = 8 N/m, while k 2 = 3 N/m. What are the natural angular frequencies of the system? What is the general solution?
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 5 A Designing a Landing System for Interplanetary Travel Courtesy of Alfred Clark, Jr., Professor Emeritus, University of Rochester, Rochester, NY
You are a second-year Starfleet Academy Cadet aboard the U.S.S. Enterprise on a continuing study of the star system Glia. The object of study on the present expedition is the large airless planet Glia-4. A class 1 sensor probe of mass m is to be sent to the planet’s surface to collect data. The probe has a modifiable landing system so that it can be used on planets of different gravity. The system consists of a linear spring (force = - kx, where x is displacement), a nonlinear # spring (force = - ax3), and a shock-damper (force = - bx),† all in parallel. Figure 5.53 shows a schematic of the system. During the landing process, the probe’s thrusters are used to create a constant rate of descent. The velocity at impact varies; the symbol VL is used to denote the largest velocity likely to happen in practice. At the instant of impact, (1) the thrust is turned off, and (2) the suspension springs are at their unstretched natural length. (a) Let the displacement x be measured from the unstretched length of the springs and be taken negative downward (i.e., compression gives a negative x). Show that the equation governing the oscillations after impact is $ # mx + bx + kx + ax3 = - mg . (b) The probe has a mass m = 1220 kg. The linear spring is permanently installed and has a stiffness k = 35,600 N/m. The gravity on the surface of Glia-4 is g = 17.5 m/sec2. The nonlinear spring is removable; an appropriate spring must be chosen for each mission. These nonlinear springs are made of coralidium, a rare and difficult-to-fabricate alloy. Therefore, the Enterprise stocks only four different strengths: a = 150,000, 300,000, 450,000, and 600,000 N/m3. Determine which springs give a compression as close as
Probe body
VL
m k
Probe body a
b
k Landing pod
V50
m
surface of Glia- 4
b
a
Landing pod
(a)
(b)
Figure 5.53 Schematic of the probe landing system. (a) The system at the instant of impact. The springs are not stretched or compressed, the thrusters have been turned off, and the velocity is VL downward. (b) The probe has reached a state of rest on the surface, and the springs are compressed enough to support the weight. Between states (a) and (b), the probe oscillates relative to the landing pod. # The symbol x denotes dx>dt.
†
307
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
308
Chapter 5
Introduction to Systems and Phase Plane Analysis
possible to 0.3 m without exceeding 0.3 m, when the ship is resting on the surface of Glia-4. (The limit of 0.3 m is imposed by unloading clearance requirements.) (c) The other adjustable component on the landing system is the linear shock-damper, which may be adjusted in increments of ∆b = 500 N-sec/m, from a low value of 1000 N-sec/m to a high value of 10,000 N-sec/m. It is desirable to make b as small as possible because a large b produces large forces at impact. However, if b is too small, there is some danger that the probe will rebound after impact. To minimize the chance of this, find the smallest value of b such that the springs are always in compression during the oscillations after impact. Use a minimum impact velocity VL = 5 m/sec downward. To find this value of b, you will need to use a software package to integrate the differential equation.
B Spread of Staph Infections in Hospitals—Part I Courtesy of Joanna Wares, University of Richmond, and Glenn Webb, Vanderbilt University
Methicillin-resistant Staphylococcus aureus (MRSA), commonly referred to as staph, is a bacterium that causes serious infections in humans and is resistant to treatment with the widely used antibiotic methicillin. MRSA has traditionally been a problem inside hospitals, where elderly patients or patients with compromised immune systems could more easily contract the bacteria and develop bloodstream infections. MRSA is implicated in a large percentage of hospital fatalities, causing more deaths per year than AIDS. Recently, a genetically different strain of MRSA has been found in the community at large. The new strain (CA-MRSA) is able to infect healthy and young people, which the traditional strain (HA-MRSA) rarely does. As CA-MRSA appears in the community, it is inevitably being spread into hospitals. Some studies suggest that CA-MRSA will overtake HA-MRSA in the hospital, which would increase the severity of the problem and likely cause more deaths per year. To predict whether or not CA-MRSA will overtake HA-MRSA, a compartmental model has been developed by mathematicians in collaboration with medical professionals (see references [1], [2] on page 310). This model classifies all patients in the hospital into three groups: • H1t2 = patients colonized with the traditional hospital strain, HA-MRSA. • C1t2 = patients colonized with the community strain, CA-MRSA. • S1t2 = susceptible patients, those not colonized with either strain. The parameters of the model are • bC = the rate (per day) at which CA-MRSA is transmitted between patients. • bH = the rate (per day) at which HA-MRSA is transmitted between patients. • dC = the rate (per day) at which patients who are colonized with CA-MRSA exit the hospital by death or discharge. • dH = the rate (per day) at which patients who are colonized with HA-MRSA exit the hospital by death or discharge. • dS = the rate (per day) at which susceptible patients exit the hospital by death or discharge. • aC = the rate (per day) at which patients who are colonized with CA-MRSA successfully undergo decolonization measures. • aH = the rate (per day) at which patients who are colonized with HA-MRSA successfully undergo decolonization measures. • N = the total number of patients in the hospital. • Λ = the rate (per day) at which patients enter the hospital.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 5
dS
L
S(t)
aC
aH
bC dC
309
bH
C(t)
dH
H(t)
Figure 5.54 A diagram of how patients transit between the compartments
Patients move between compartments as they become colonized or decolonized (see Figure 5.54). This type of model is typically known as a SIS (susceptible-infected-susceptible) model, in which patients who become colonized can become susceptible again and colonized again (there is no immunity). The transition between states is described by the following system of differential equations: bHS1t2H1t2 dS = Λ " dt N entrance rate (1++)++1*
-
acquire HA-MRSA
+
a H1t2
H (+)+* HA-MRSA decolonized
+
bCS1t2C1t2 N (1++)++1* acquire CA-MRSA a C1t2
-
C (+)+* CA-MRSA decolonized
d(1)1* SS1t2 exit hospital
bHS1t2H1t2 dH = - aHH1t2 - dHH1t2 (+)+* (+)+* dt N (++)++* decolonized exit hospital from S
bCS1t2C1t2 dC = - aCC1t2 - dCC1t2. (+)+* (+)+* dt N (++)++* decolonized from S
exit hospital
If we assume that the hospital is always full, we can conserve the system by letting Λ = dSS1t2 + dHH1t2 + dCC1t2. In this case S1t2 + C1t2 + H1t2 = N for all t (assuming you start with a population of size N). (a) Show that this assumption simplifies the above system of equations to dH = 1bH >N21N - C - H2H - 1dH + aH 2H , dt (1) dC = 1bC >N21N - C - H2C - 1dC + aC 2C . dt S is then determined by the equation S1t2 = N - H1t2 - C1t2. Parameter values obtained from the Beth Israel Deaconess Medical Center are given in Table 5.4 on page 310. Plug these values into the model and then complete the following problems. (b) Find the three equilibria (critical points) of the system (1). (c) Using a computer, sketch the direction field for the system (1). (d) Which trajectory configuration exists near each critical point (node, spiral, saddle, or center)? What do they represent in terms of how many patients are susceptible, colonized with HA-MRSA, and colonized with CA-MRSA over time? (e) Examining the direction field, do you think CA-MRSA will overtake HA-MRSA in the hospital? Further discussion of this model appears in Project E of Chapter 12.† †
All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
310
Chapter 5
Introduction to Systems and Phase Plane Analysis
TABLE 5.4
Parameter Values for the Transmission Dynamics of Community-Acquired and Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Colonization (CA-MRSA and HA-MRSA)
Parameter
Symbol
Baseline Value
Total number of patients
N
400
Length of stay Susceptible Colonized CA-MRSA Colonized HA-MRSA
1>dS 1>dC 1>dH
5 days 7 days 5 days
bC bH
0.45 per day 0.4 per day
aC aH
0.1 per day 0.1 per day
Transmission rate per susceptible patient to Colonized CA-MRSA per colonized CA-MRSA Colonized HA-MRSA per colonized HA-MRSA Decolonization rate per colonized patient per day per length of stay CA-MRSA HA-MRSA References
1. D’Agata, E. M. C., Webb, G. F., Pressley, J. 2010. “Rapid emergence of co-colonization with communityacquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains in the hospital setting”. Mathematical Modelling of Natural Phenomena 5(3): 76–93. 2. Pressley, J., D’Agata, E. M. C., Webb, G. F. 2010. “The effect of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains on competitive exclusion”. Journal of Theoretical Biology 265(3): 645–656.
C Things That Bob Courtesy of Richard Bernatz, Department of Mathematics, Luther College
The motion of various-shaped objects that bob in a pool of water can be modeled by a secondorder differential equation derived from Newton’s second law of motion, F = ma. The forces acting on the object include the force due to gravity, a frictional force due to the motion of the object in the water, and a buoyant force based on Archimedes’ principle: An object that is completely or partially submerged in a fluid is acted on by an upward (buoyant) force equal to the weight of the water it displaces. (a) The first step is to write down the governing differential equation. The dependent variable is the depth z of the object’s lowest point in the water. Take z to be negative downward so that z = - 1 means 1 ft of the object has submerged. Let V1z2 be the submerged volume of the object, m be the mass of the object, r be the density of water (in pounds per cubic foot), g be the acceleration due to gravity, and gw be the coefficient of friction for water. Assuming that the frictional force is proportional to the vertical velocity of the object, write down the governing second-order ODE. (b) For the time being, neglect the effect of friction and assume the object is a cube measuring L feet on a side. Write down the governing differential equation for this case. Next, designate z = l (a negative number) to be the depth of submersion such that the buoyant force is equal and opposite the gravitational force. Introduce a new variable, z, that gives
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 5
(c)
(d)
(e)
(f)
311
the displacement of the object from its equilibrium position l (that is, z = z + l). You can now write the ODE in a more familiar form. [Hint: Recall the mass–spring system and the equilibrium case.] Now you should recognize the type of solution for this problem. What is the natural frequency? In this task you consider the effect of friction. The bobbing object is a cube, 1 ft on a side, that weighs 32 lb. Let gw = 3 lb-sec/ft, r = 62.57 lb/ft3, and suppose the object is initially placed on the surface of the water. Solve the governing ODE by hand to find the general solution. Next, find the particular solution for the case in which the cube is initially placed on the surface of the water and is given no initial velocity. Provide a plot of the position of the object as a function of time t. In this step of the project, you develop a numerical solution to the same problem presented in part (c). The numerical solution will be useful (indeed necessary) for subsequent parts of the project. This case provides a trial to verify that your numerical solution is correct. Go back to the initial ODE you developed in part (a). Using parameter values given in part (c), solve the initial value problem for the cube starting on the surface with no initial velocity. To solve this problem numerically, you will have to write the secondorder ODE as a system of two first-order ODEs, one for vertical position z and one for vertical velocity w. Plot your results for vertical position as a function of time t for the first 3 or 4 sec and compare with the analytical solution you found in part (c). Are they in close agreement? What might you have to do in order to compare these solutions? Provide a plot of both your analytical and numerical solutions on the same graph. Suppose a sphere of radius R is allowed to bob in the water. Derive the governing second-order equation for the sphere using Archimedes’ principle and allowing for friction due to its motion in the water. Suppose a sphere weighs 32 lb, has a radius of 1>2 ft, and gw = 3.0 lb-sec/ft. Determine the limiting value of the position of the sphere without solving the ODE. Next, solve numerically the governing ODE for the velocity and position of the sphere as a function of time for a sphere placed on the surface of the water. You will need to write the governing second-order ODE as a system of two ODEs, one for velocity and one for position. What is the limiting position of the sphere for your solution? Does it agree with the equilibrium solution you found above? How does it compare with the equilibrium position of the cube? If it is different, explain why. Suppose the sphere in part (d) is a volleyball. Calculate the position of the sphere as a function of time t for the first 3 sec if the ball is submerged so that its lowest point is 5 ft under water. Will the ball leave the water? How high will it go? Next, calculate the ball’s trajectory for initial depths lower than 5 ft and higher than 5 ft. Provide plots of velocity and position for each case and comment on what you see. Specifically, comment on the relationship between the initial depth of the ball and the maximum height the ball eventually attains. You might consider taking a volleyball into a swimming pool to gather real data in order to verify and improve on your model. If you do so, report the data you found and explain how you used it for verification and improvement of your model.
D Hamiltonian Systems The problems in this project explore the Hamiltonian† formulation of the laws of motion of a system and its phase plane implications. This formulation replaces Newton’s second law F = ma = my″ and is based on three mathematical manipulations: †
Historical Footnote: Sir William Rowan Hamilton (1805–1865) was an Irish mathematical physicist. Besides his work in mechanics, he invented quaternions and discovered the anticommutative law for vector products.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
312
Chapter 5
Introduction to Systems and Phase Plane Analysis
(i) It is presumed that the force F1t, y, y′2 depends only on y and has an antiderivative - V1y2, that is, F = F1y2 = - dV1y2 >dy. (ii) The velocity variable y′ is replaced throughout by the momentum p = my′ (so y′ = p>m). (iii) The Hamiltonian of the system is defined as p2 + V1y2 . H = H1y, p2 = 2m (a) Express Newton’s law F = my″ as an equivalent first-order system in the manner prescribed in Section 5.3. (b) Show that this system is equivalent to Hamilton’s equations (2) (3)
dy 0H = dt 0p dp 0H = dt 0y
a=
p b, m
a= -
dV b. dy
(c) Using Hamilton’s equations and the chain rule, show that the Hamiltonian remains constant along the solution curves: d H1y, p2 = 0 . dt In the formula for the Hamiltonian function H1y, p2, the first term, p2 > 12m2 = m1y′2 2 >2, is the kinetic energy of the mass. By analogy, then, the second term V1y2 is known as the potential energy of the mass, and the Hamiltonian is the total energy. The total (mechanical)† energy is constant—hence “conserved”—when the forces F1y2 do not depend on time t or velocity y′; such forces are called conservative. The energy integral lemma of Section 4.8 (page 203) is simply an alternate statement of the conservation of energy. Hamilton’s formulation for mechanical systems and the conservation of energy principle imply that the phase plane trajectories of conservative systems lie on the curves where the Hamiltonian H1y, p2 is constant, and plotting these curves may be considerably easier than solving for the trajectories directly (which, in turn, is easier than solving the original system!). (d) For the mass–spring oscillator of Section 4.1, the spring force is given by F = - ky (where k is the spring constant). Find the Hamiltonian, express Hamilton’s equations, and show that the phase plane trajectories H1y, p2 = constant for this system are the ellipses given by p2 > 12m2 + ky2 >2 = constant. See Figure 5.14, page 269. The damping force - by′ considered in Section 4.1 is not conservative, of course. Physically speaking, we know that damping drains the energy from a system until it grinds to a halt at an equilibrium point. In the phase plane, we can qualitatively describe the trajectory as continuously migrating to successively lower constant-energy orbits; stable centers become asymptotically stable spiral points when damping is taken into consideration. (e) The second Hamiltonian equation (3), which effectively states p′ = my″ = F, has to be changed to 0H 0H bp - by′ = m 0y 0y when damping is present. Show that the Hamiltonian decreases along trajectories in this case (for b 7 0): p′ = -
p 2 d H1y, p2 = - ba b = - b1y′2 2 . m dt †
Physics states that when all forms of energy, such as heat and radiation, are taken into account, energy is conserved even when the forces are not conservative.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 5
313
(f) The force on a mass–spring system suspended vertically in a gravitational field was shown in Section 4.10 (page 226) to be F = - ky + mg. Derive the Hamiltonian and sketch the phase plane trajectories. Sketch the trajectories when damping is present. (g) As indicated in Section 4.8 (page 207), the Duffing spring force is modeled by F = - y - y3. Derive the Hamiltonian and sketch the phase plane trajectories. Sketch the trajectories when damping is present. (h) For the pendulum system studied in Section 4.8, Example 8, the force is given by (cf. Figure 4.18, page 208) F = - /mg sin u = -
0 0 1 -/mg cos u2 = - V1u2 0u 0u
(where / is the length of the pendulum). For angular variables, the Hamiltonian formulation dictates expressing the angular velocity variable u′ in terms of the angular momentum p = m/2u′; the kinetic energy, mass * velocity2 >2, is expressed as m1/u′2 2 >2 = p2 > 12m/2 2. Derive the Hamiltonian for the pendulum and sketch the phase plane trajectories. Sketch the trajectories when damping is present. (i) The Coulomb force field is a force that varies as the reciprocal square of the distance from the origin: F = k>y2. The force is attractive if k 6 0 and repulsive if k 7 0. Sketch the phase plane trajectories for this motion. Sketch the trajectories when damping is present. (j) For an attractive Coulomb force field, what is the escape velocity for a particle situated at a position y? That is, what is the minimal (outward-directed) velocity required for the trajectory to reach y = ∞ ?
E Cleaning Up the Great Lakes A simple mathematical model that can be used to determine the time it would take to clean up the Great Lakes can be developed using a multiple compartmental analysis approach.† In particular, we can view each lake as a tank that contains a liquid in which is dissolved a particular pollutant (DDT, phosphorus, mercury). Schematically, we view the lakes as consisting of five tanks connected as indicated in Figure 5.55. 15 Superior 2900 mi3
15
15
99
Michiga
n 1180 3 mi
38
38
850 mi3 Huron 14 17
i3
93 m
io 3 ntar
O
85
68 116
mi3
Erie Figure 5.55 Compartmental model of the Great Lakes with flow rates (mi3/yr) and volumes (mi3) †
For a detailed discussion of this model, see An Introduction to Mathematical Modeling by Edward A. Bender (Dover Publications, New York, 2000), Chapter 8.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
314
Chapter 5
Introduction to Systems and Phase Plane Analysis
For our model, we make the following assumptions: 1. The volume of each lake remains constant. 2. The flow rates are constant throughout the year. 3. When a liquid enters the lake, perfect mixing occurs and the pollutants are uniformly distributed. 4. Pollutants are dissolved in the water and enter or leave by inflow or outflow of solution. Before using this model to obtain estimates on the cleanup times for the lakes, we consider some simpler models: (a) Use the outflow rates given in Figure 5.55 to determine the time it would take to “drain” each lake. This gives a lower bound on how long it would take to remove all the pollutants. (b) A better estimate is obtained by assuming that each lake is a separate tank with only clean water flowing in. Use this approach to determine how long it would take the pollution level in each lake to be reduced to 50% of its original level. How long would it take to reduce the pollution to 5% of its original level? (c) Finally, to take into account the fact that pollution from one lake flows into the next lake in the chain, use the entire multiple compartment model given in Figure 5.55 to determine when the pollution level in each lake has been reduced to 50% of its original level, assuming pollution has ceased (that is, inflows not from a lake are clean water). Assume that all the lakes initially have the same pollution concentration p. How long would it take for the pollution to be reduced to 5% of its original level?
F The 2014-2015 Ebola Epidemic Courtesy of Glenn Webb, Vanderbilt University
We develop a model for the 2014–2015 Ebola epidemic in West Africa, which began in the spring of 2014 and spread though the countries of Sierra Leone, Liberia, and Guinea. Initially there was great concern that the epidemic might develop with great severity, and even spread globally.† Instead, by early 2015 the epidemic had subsided in these West African countries, and in January 2016, the World Health Organization (WHO) declared that the epidemic was contained in all three countries. The reasons that Ebola subsided are complex, but a key role was increased identification and isolation of infected cases, and contact tracing of these cases to identify additional cases. Our model incorporates the principal features of contact tracing, namely, the number of contacts per identified infectious case, the likelihood that a traced contact is infectious, and the efficiency of the isolation of contact-traced individuals. The model consists of a system of ordinary differential equations for the compartments of the epidemic population, and is based on an earlier version of the model.‡ The model incorporates the unique features of the Ebola outbreaks in this region. These features include the rates of transmission to susceptibles from both infectious cases and improperly handled deceased cases, the rates of reporting cases, and the rates of recovery and mortality of unreported cases.
†
H. Nishiura and G. Chowell, “Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014.” Eurosurveil., Vol. 19 no. 36 (Sept. 11, 2014). ‡
C. Browne, X. Huo, P. Magal. M. Seydi, O. Seydi, G. Webb, “A model of the 2014 Ebola epidemic in West Africa with contact tracing,” PLOS Currents Outbreaks, published online, January 30, 2015.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 5
315
Reported Cases 16000 14000 12000 10000 8000 6000 4000 2000
Phase 1
12/27/2015
11/27/2015
10/27/2015
9/27/2015
8/27/2015
7/27/2015
6/27/2015
5/27/2015
4/27/2015
3/27/2015
2/27/2015
1/27/2015
12/27/2014
11/27/2014
10/27/2014
9/27/2014
8/27/2014
7/27/2014
6/27/2014
5/27/2014
0
Phase 2
October 16, 2014 Figure 5.56 WHO Ebola Situation Data: reported cases. (Center for Disease Control and Prevention, Previous Case Counts: http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/cumulative-cases-graphs.html)
The model extends the SIR paradigm of Section 5.5, by refining the population classes into susceptibles S1t2 (those who have not been affected), exposed E1t2 (incubating cases), I1t2 (infectious cases), and contaminated deceased C1t2 (improperly handled corpses of cases). The successful containment of the epidemic was due to measures isolating infected individuals and contaminated corpses, implemented around October 16, 2014. The WHO data in Figure 5.56 traces the chronology of the number of reported cases R1t2; the inflection point clearly highlights the initiation of isolation and contact tracing measures. Figure 5.57 on page 316 schematically depicts the transitions between the classifications, as quantified by the subsequent system of differential equations: TABLE 5.5
Ebola Model Parameters in Sierra Leone
Parameter
Description
N = 6 * 106 b = 0.321 e = 0.002 k = 0 (1st phase) k = 8 (2nd phase) a = 0.08 (1st phase) a = 0.145 (2nd phase) p = 0.5
Population of Sierra Leone (assumed to be constant) Transmission rate exclusive of improper handling of deceased cases Transmission rate due to improper handling of deceased cases Average number of contacts traced per reported and hospitalized infectious case Rate of reporting and hospitalization of infectious cases not resulting from contact tracing Probability a contact-traced infected individual is isolated without causing a new case Probability a contact-traced individual is infected Rate of recovery of unreported infectious cases Rate of mortality of unreported infectious cases Average incubation period (denominator) Average number of days before proper handling of deceased unreported cases (denominator)
v g V s c c
= = = = = =
0.1 0.0333 0.125 1>9 1>5 (1st phase) 1>2 (2nd phase)
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
316
Chapter 5
Introduction to Systems and Phase Plane Analysis
E
S Susceptible
b
Exposed
e
C
I s
n
Infectious
kpva
a
Contaminated
c
g Unreported Recovered or Deceased
Hospitalized
Figure 5.57 Schematic of Ebola transitions
dS1t2 = dt
-bS1t2
I1t2
-eS1t2
C1t2
N N c c susceptible- susceptibleinfected contaminated interaction interaction T T I1t2 C1t2 dE1t2 = bS1t2 + eS1t2 -sE1t2 dt N N c incubation T dI1t2 sE1t2 = dt
-vI1t2
c mortality, unreported infected T
dC1t2 = dt dR1t2 = dt
- 1a + g + akpv2I1t2 proper c handling of hospitalization, recovery, unreported or isolation by corpses T contact tracing -cC1t2
vI1t2 aI1t2
+cC1t2
By trial and error and numerical experimentation, the following parameter values were found to give a good fit, to the WHO data, of the solution of this system. The initial values were taken to be S102 = N, E102 = 20, I102 = 20, C102 = 10. Note the change in the values of k, a, and c on the 142nd day, reflecting the initiation of contact tracing. (a) Use a software package to solve the system for the time interval indicated in Figure 5.56 on page 315. Plot the number of reported cases R1t2. Note the high quality of the fit of the simulations to the WHO data. (b) Plot the number of persons affected by the epidemic, 6 * 106 - S1t2. You should see that about 42% of all cases were unreported on October 16, 2014, but this fell to 10% by January, 2016.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 5
317
G Phase-Locked Loops Today’s high-speed communications technology requires circuitry that will measure or match incoming radio-frequency oscillations in the gigahertz range. Mathematically, that means one must determine the frequency v in a sinusoidal signal A sin1vt + a2 when v is in the neighborhood of 2p * 109 rad>s. In theory this can be accomplished by taking three measurements of the sinusoid within a quarter-period. However, obtaining three accurate measurements of a signal in an interval of 10 -10 seconds is impractical. The phase-locked loop accomplishes the task in hardware, using a voltage-controlled oscillator (VCO) to synthesize another sinusoid B cos u1t2 whose phase, u1t2, matches that of the incoming signal 1vt + a2. The frequency du1t2 >dt of the VCO output is linearly related to the voltage applied to the VCO (say, du1t2 >dt = E + Fv1t22, and it matches v once synchronization is achieved. Thus one can determine the incoming frequency by reading off the VCO voltage. A diagram of the phase-locked loop circuit is given in Figure 5.58. In brief: the mixer comAB sin3vt + a - u1t24 bines the signals A sin 1vt + a2 and B cos u1t2 to create a control signal 2 whose phase equals the difference between the phase of the incoming signal and the phase of the VCO output.† This control signal provides a measure of the lack of synchronization; it is zero when u1t2 = vt + a1{ 2pn2. Thus to help u1t2 catch up to vt + a, the circuit adjusts the VCO voltage v1t2 so as to increase the output frequency, du1t2 >dt, in proportion to a weighted combination of the control signal and its derivative: d1E + Fv2 d 2u d du1t2 = 2 = dt dt dt dt AB d AB = K1 sin3vt + a - u1t24 + K2 e sin3vt + a - u1t24 f . 2 dt 2 We are going to employ the phase plane to analyze how the phase-locked loop approaches synchronicity when it is controlled by equation (4).
(4)
(a) Convert (4) into an autonomous equation by introducing the error e1t2 J vt + a - u1t2 and deriving (5)
d 2u AB de AB d 2e = = - K1 sin e - K2 1cos e2 . 2 2 2 2 dt dt dt (b) Put equation (5) into normal form (two first-order differential equations in x1 J e1t2 and x2 = de>dt) and find all the critical points. v
Input A sin (vt1a)
Mixer
Control signal (AB/2) sin [vt1a2u(t)]
Voltage generator
(t)
VCO
B cos u(t)
(K1.K2.∫.S)
Figure 5.58 Phase-locked loop †
A classic trigonometric identity shows that multiplication of the incoming and VCO signals yields the control signal plus a high-frequency oscillation, which is easily filtered out.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
318
Chapter 5
Introduction to Systems and Phase Plane Analysis
AB = 4, (c) Use software to sketch the direction field in this system’s phase plane, with K1 2 AB = 1. (The duplicitous nomenclature is unintended: phase plane does not refer K2 2 to the phase of the sinusoid.) Trace a few trajectories to get a feel for how the phaselocked loop performs. Which critical points are stable, and which are unstable? Are all the stable critical points suitable for synchronization? (d) Apply the mass–spring analogy (Section 4.8) to equation (5). The mass m is one, the de AB AB sin e instead of - ke, and the damping force is - K2 1cos e2 spring force is - K1 2 2 dt de instead of - b . If e is small, the mass–spring parameters and the phase-locked loop dt parameters are approximately the same (recall Project D, Chapter 4). Sketch the direction field for the (normal form of the) damped mass–spring system d 2e de = - b - ke 2 dt dt with b = 1, k = 4, and compare with that of the phase-locked loop. Explain why the number of equilibria is different, and why the nature of the phase-locked loop’s “forces” renders certain of its equilibria to be unstable.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
CHAPTER
Matrix Methods for Linear Systems
9
9.1 Introduction In this chapter we return to the analysis of systems of differential equations. When the equations in the system are linear, matrix algebra provides a compact notation for expressing the system. In fact, the notation itself suggests new and elegant ways of characterizing the solution properties, as well as novel, efficient techniques for explicitly obtaining solutions. In Chapter 5 we analyzed physical situations wherein two fluid tanks containing brine solutions were interconnected and pumped so as ultimately to deplete the salt content in each tank. By accounting for the various influxes and outfluxes of brine, a system of differential equations for the salt contents 1x1t2 and y1t22 of each tank was derived; a typical model is dx>dt = −4x + 2y , dy>dt = 4x − 4y .
(1)
Express this system in matrix notation as a single equation.
The right-hand side of the first member of (1) possesses a mathematical structure that is familiar from vector calculus; namely, it is the dot product† of two vectors: (2)
-4x + 2y = 3 -4 24 # 3x y4 .
Similarly, the second right-hand side in (1) is the dot product 4x - 4y = 34
-44 # 3x y4 .
The frequent occurrence in mathematics of arrays of dot products, such as evidenced in the system (1), led to the development of matrix algebra, a mathematical discipline whose basic operation—the matrix product—is the arrangement of a set of dot products according to the following plan: c
-4 4
2 x 3 -4 24 # 3x y4 -4x + 2y d. dc d = c d = c 4x - 4y -4 y 34 -44 # 3x y4
In general, the product of a matrix—i.e., an m by n rectangular array of numbers—and a column vector is defined to be the collection of dot products of the rows of the matrix with the
†
Recall that the dot product of two vectors u and v equals the length of u times the length of v times the cosine of the angle between u and v. However, it is more conveniently computed from the components of u and v by the “inner product” indicated in equation (2).
496
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.1
Introduction
497
vector, arranged as a column vector: 3row # 14 # v row # 1 3row # 24 # v row # 2 T , D T DvT = D f f 3row # m4 # v row # m where the vector v has n components; the dot product of two n-dimensional vectors is computed in the obvious way: 3a1 a2 gan 4 # 3x1 x2 g xn 4 = a1x1 + a2x2 + g + anxn .
Using the notation for the matrix product, we can write the system (1) for the interconnected tanks as c
-4 x′ d = c 4 y′
2 x dc d . -4 y
The following example demonstrates a four-dimensional implementation of this notation. Note that the coefficients in the linear system need not be constants. Example 1
Express the system x1= = 2x1 + t 2x2 + 14t + et 2x4 ,
(3)
x2= = 1sin t2x2 + 1cos t2x3 , x3= = x1 + x2 + x3 + x4 , x4= = 0
as a matrix equation. Solution
We express the right-hand side of the first member of (3) as the dot product 2x1 + t 2x2 + 14t + et 2x4 = 32 t 2 0
14t + et 24 # 3x1 x2 x3 x4 4 .
The other dot products are similarly identified, and the matrix form is given by 2 t2 x1= 0 = x2 0 sin t cos t D =T = D x3 1 1 1 = x4 0 0 0
14t + et 2 0 T 1 0
x1 x D 2T . ◆ x3 x4
In general, if a system of differential equations is expressed as x1= = a11 1t2x1 + a12 1t2x2 + g + a1n 1t2xn x2= = a21 1t2x1 + a22 1t2x2 + g + a2n 1t2xn f
xn= = an1 1t2x1 + an2 1t2x2 + g + ann 1t2xn ,
it is said to be a linear homogeneous system in normal form.† The matrix formulation of such
†
The normal form was defined for general systems in Section 5.3, page 256.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
498
Chapter 9
Matrix Methods for Linear Systems
a system is then x′ = Ax , where A is the coefficient matrix a11 1t2 a21 1t2 A = A1t2 = D f an1 1t2
a12 1t2 a22 1t2 f an2 1t2
g g g
a1n 1t2 a2n 1t2 T f ann 1t2
and x is the solution vector x1 x x = D 2T . f xn Note that we have used x′ to denote the vector of derivatives x1 ′ x1= x x2= x′ = D 2 T = D T . f f xn xn= Example 2
Express the differential equation for the undamped, unforced mass–spring oscillator (recall Section 4.1, page 152) (4)
my″ + ky = 0
as an equivalent system of first-order equations in normal form, expressed in matrix notation. Solution
We have to express the second derivative, y″, as a first derivative in order to formulate (4) as a first-order system. This is easy; the acceleration y″ is the derivative of the velocity y = y′, so (4) becomes (5)
my′ + ky = 0 .
The first-order system is then assembled by identifying y with y′, and appending it to (5): y′ = y my′ = -ky . To put this system in normal form and express it as a matrix equation, we need to divide the second equation by the mass m: y ′ 0 c d = c y -k>m
1 y dc d . ◆ 0 y
In general, the customary way to write an nth-order linear homogeneous differential equation an 1t2y 1n2 + an - 1 1t2y 1n - 12 + g + a1 1t2y′ + a0 1t2y = 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.1
Introduction
499
as an equivalent system in normal form is to define the first 1n - 12 derivatives of y (including y, the zeroth derivative, itself) to be new unknowns: x1 1t2 = y1t2 , x2 1t2 = y′1t2 , f
xn 1t2 = y 1n - 12 1t2 .
Then the system consists of the identification of xj 1t2 as the derivative of xj - 1 1t2, together with the original differential equation expressed in these variables (and divided by an 1t2): x1= x2= f
= x2 , = x3 ,
xn= - 1 = xn , a0 1t2 a1 1t2 an - 1 1t2 xn= = x1 x2 - g x . an 1t2 an 1t2 an 1t2 n For systems of two or more higher-order differential equations, the same procedure is applied to each unknown function in turn; an example will make this clear. Example 3
The coupled mass–spring oscillator depicted in Figure 5.26 on page 283 was shown to be governed by the system 2
(6)
d 2x + 6x - 2y = 0 , dt 2
d 2y dt 2
+ 2y - 2x = 0 .
Write (6) in matrix notation. Solution
We introduce notation for the lower-order derivatives: (7)
x1 = x ,
x2 = x′ ,
x3 = y ,
x4 = y′ .
In these variables, the system (6) states (8)
2x2= + 6x1 - 2x3 = 0 ,
x4= + 2x3 - 2x1 = 0 .
The normal form is then x1= x2= x3= x4=
= = = =
x2 , -3x1 + x3 , x4 , 2x1 - 2x3
or in matrix notation x1 ′ 0 1 x2 -3 0 D T = D x3 0 0 x4 2 0
0 1 0 -2
0 x1 0 x2 T D T. ◆ 1 x3 0 x4
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
500
9.1
Chapter 9
Matrix Methods for Linear Systems
EXERCISES
In Problems 1–6, express the given system of differential equations in matrix notation. 1. x′ = 7x + 2y , y′ = 3x - 2y 2. x′ = y , y′ = - x 3. x′ = x + y + z , y′ = 2z - x , z′ = 4y 4. x1= = x1 - x2 + x3 - x4 , x2= = x1 + x4 , x3= = 1px1 - x3 , x4= = 0 5. x′ = 1sin t2x + ety , y′ = 1cos t2x + 1a + bt 3 2y 6. x1= = 1cos 2t2x1 , x2= = 1sin 2t2x2 , x3= = x1 - x2
In Problems 7–10, express the given higher-order differential equation as a matrix system in normal form. 7. The damped mass–spring oscillator equation my″ + by′ + ky = 0 8. Legendre’s equation 11 - t 2 2y″ - 2ty′ + 2y = 0 9. The Airy equation y″ - ty = 0 1 n2 10. Bessel’s equation y″ + y′ + a1 - 2 by = 0 t t In Problems 11–13, express the given system of higherorder differential equations as a matrix system in normal form. 11. x″ + 3x + 2y = 0 , y″ - 2x = 0 12. x″ + 3x′ - y′ + 2y = 0 , y″ + x′ + 3y′ + y = 0 13. x″ - 3x′ + t 2y - 1cos t2x = 0 , y‴ + y″ - tx′ + y′ + etx = 0
9.2 Review 1: Linear Algebraic Equations Here and in the next section we review some basic facts concerning linear algebraic systems and matrix algebra that will be useful in solving linear systems of differential equations in normal form. Readers competent in these areas may proceed to Section 9.4. A set of equations of the form a11x1 + a12x2 + g + a1nxn = b1 , a21x1 + a22x2 + g + a2nxn = b2 , f an1x1 + an2x2 + g + annxn = bn (where the aij’s and bi’s are given constants) is called a linear system of n algebraic equations in the n unknowns x1, x2, c, xn. The procedure for solving the system using elimination methods is well known. Herein we describe a particularly convenient implementation of the method called the Gauss–Jordan elimination algorithm.† The basic idea of this formulation is to use the first equation to eliminate x1 in all the other equations; then use the second equation to eliminate x2 in all the others; and so on. If all goes well, the resulting system will be “uncoupled,” and the values of the unknowns x1, x2, c, xn will be apparent. A short example will make this clear. †
The Gauss–Jordan algorithm is neither the fastest nor the most accurate computer algorithm for solving a linear system of algebraic equations, but for solutions executed by hand it has many pedagogical advantages. Usually it is much faster than Cramer’s rule, described in Appendix D.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.2
Example 1
Review 1: Linear Algebraic Equations
501
Solve the system 2x1 + 6x2 + 8x3 = 16 , 4x1 + 15x2 + 19x3 = 38 , 2x1 + 3x3 = 6 .
Solution
By subtracting 2 times the first equation from the second, we eliminate x1 from the latter. Similarly, x1 is eliminated from the third equation by subtracting 1 times the first equation from it: 2x1 + 6x2 + 8x3 = 16 , 3x2 + 3x3 = 6 , -6x2 - 5x3 = -10 . Next we subtract multiples of the second equation from the first and third to eliminate x2 in them; the appropriate multiples are 2 and -2, respectively: 2x1
+ 2x3 = 4 , 3x2 + 3x3 = 6 , x3 = 2 .
Finally, we eliminate x3 from the first two equations by subtracting multiples (2 and 3, respectively) of the third equation: 2x1
= 0, 3x2 = 0 , x3 = 2 .
The system is now uncoupled; i.e., we can solve each equation separately: x1 = 0 , x2 = 0 , x3 = 2 . ◆ Two complications can disrupt the straightforward execution of the Gauss–Jordan algorithm. The first occurs when the impending variable to be eliminated (say, xj ) does not occur in the jth equation. The solution is usually obvious; we employ one of the subsequent equations to eliminate xj. Example 2 illustrates this maneuver. Example 2
Solve the system x1 -x1 -2x1 x1
Solution
+ 2x2 + 4x3 + x4 - 2x2 - 2x3 - 4x2 - 8x3 + 2x4 + 4x2 + 2x3
= = = =
0, 1, 4, -3 .
The first unknown x1 is eliminated from the last three equations by subtracting multiples of the first equation: x1 + 2x2 + 4x3 + x4 2x3 + x4 4x4 2x2 - 2x3 - x4
= = = =
0, 1, 4, -3 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
502
Chapter 9
Matrix Methods for Linear Systems
Now, we cannot use the second equation to eliminate the second unknown because x2 is not present. The next equation that does contain x2 is the fourth, so we switch the second and fourth equation: x1 + 2x2 + 4x3 + x4 = 0 , 2x2 - 2x3 - x4 = -3 , 4x4 = 4 , 2x3 + x4 = 1 , and proceed to eliminate x2: + 6x3 + 2x4 = 3 ,
x1
2x2 - 2x3 - x4 = -3 , 4x4 = 4 , 2x3 + x4 = 1 . To eliminate x3, we have to switch again, x1
+ 6x3 + 2x4 = 2x2 - 2x3 - x4 = 2x3 + x4 = 4x4 =
3, -3 , 1, 4,
and eliminate, in turn, x3 and x4. This gives x1 2x2
- x4 = = 2x3 + x4 = 4x4 =
0, -2 , 1, 4,
and
x1 2x2
= = 2x3 = 4x4 =
1, -2 , 0, 4.
The solution to the uncoupled equations is x1 = 1 , x2 = -1 , x3 = 0 , x4 = 1 . ◆ The other complication that can disrupt the Gauss–Jordan algorithm is much more profound. What if, when we are “scheduled” to eliminate the unknown xj, it is absent from all of the subsequent equations? The first thing to do is to move on to the elimination of the next unknown xj + 1, as demonstrated in Example 3.
Example 3
Apply the Gauss–Jordan algorithm to the system (1)
Solution
2x1 + 4x2 + x3 = 8 , 2x1 + 4x2 = 6, - 4x1 - 8x2 + x3 = - 10 .
Elimination of x1 proceeds as usual: 2x1 + 4x2 + x3 = 8 , - x3 = -2 , 3x3 = 6 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.2
Review 1: Linear Algebraic Equations
503
Now since x2 is absent from the second and third equations, we use the second equation to eliminate x3 : 2x1 + 4x2 (2)
= 6, - x3 = -2 , 0 = 0.
How do we interpret the system (2)? The final equation contains no information, of course, and we ignore it.† The second equation implies that x3 = 2. The first equation implies that x1 = 3 - 2x2, but there is no equation for x2. Evidently, x2 is a “free” variable, and we can assign any value to it—as long as we take x1 to be 3 - 2x2. Thus (1) has an infinite number of solutions, and a convenient way of characterizing them is x1 = 3 - 2s , x2 = s , x3 = 2 ;
-∞ 6 s 6 ∞ .
We remark that an equivalent solution can be obtained by treating x1 as the free variable, say x1 = s, and taking x2 = 13 - s2 >2, x3 = 2. ◆ The final example is contrived to demonstrate all the features that we have encountered. Example 4
Find all solutions to the system x1 - x2 2x1 - 2x2 3x1 - 3x2 4x1 - 4x2
Solution
+ 2x3 + 4x3 + 6x3 + 8x3
+ 2x4 + 3x4 + 9x4 + 8x4
= = = =
0, 1, -3 , 0.
We use the first equation to eliminate x1: x1 - x2 + 2x3 + 2x4 = 0 , - x4 = 1 , 3x4 = -3 , 0 = 0. Now, both x2 and x3 are absent from all subsequent equations, so we use the second equation to eliminate x4. x1 - x2 + 2x3
= -x4 = 0 = 0 =
2, 1, 0, 0.
There are no constraints on either x2 or x3; thus we take them to be free variables and characterize the solutions by x1 = 2 + s - 2t , x2 = s , x3 = t , x4 = -1,
- ∞ 6 s, t 6 ∞ . ◆
In closing, we note that if the execution of the Gauss–Jordan algorithm results in a display of the form 0 = 1 (or 0 = k, where k ≠ 0), the original system has no solutions; it is inconsistent. This is explored in Problem 12. The occurrence of the identity 0 = 0 in the Gauss–Jordan algorithm implies that one of the original equations was redundant. In this case you may observe that the final equation in (1) can be derived by subtracting 3 times the second equation from the first.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
504
Chapter 9
9.2
Matrix Methods for Linear Systems
EXERCISES
In Problems 1–11, find all solutions to the system using the Gauss–Jordan elimination algorithm. 1. x1 + 2x2 + 2x3 = 6 , 2x1 + x2 + x3 = 6 , x1 + x2 + 3x3 = 6 2.
x1 + x2 + x3 + x1 + 2x1 + 2x2 - x3 + x1 + 2x2 - x3 +
x4 x4 x4 x4
3.
x1 + x2 - x3 = 0 , - x1 - x2 + x3 = 0 , x1 + x2 - x3 = 0
4.
x3 + x1 + x2 + x3 + 2x1 - x2 + x3 + 2x1 - x2 + x3 +
x4 x4 2x4 x4
= = = =
1, 0, 0, 0
= = = =
0, 1, 0, 0
8.
x1 + 2x2 + x3 = - 3 , 2x1 + 4x2 - x3 = 0 , x1 + 3x2 - 2x3 = 3
9.
11.
+ x3 = -1 , 2x1 -3x1 + x2 + 4x3 = 1 , - x1 + x2 + 5x3 = 0
13. Use the Gauss–Jordan elimination algorithm to show that the following system of equations has a unique solution for r = 2, but an infinite number of solutions for r = 1.
6. - 2x1 + 2x2 - x3 = 0 , x1 - 3x2 + x3 = 0 , 4x1 - 4x2 + 2x3 = 0 -x1 + 3x2 = 0 , - 3x1 + 9x2 = 0
x1 + x2 + x3 = i , 2x1 + 3x2 - ix3 = 0 , x1 + 2x2 + x3 = i
12. Use the Gauss–Jordan elimination algorithm to show that the following systems of equations are inconsistent. That is, demonstrate that the existence of a solution would imply a mathematical contradiction. (a) 2x1 - x2 = 2 , -6x1 + 3x2 = 4 (b) 2x1 + x3 = -1 , -3x1 + x2 + 4x3 = 1 , - x1 + x2 + 5x3 = 1
5. - x1 + 2x2 = 0 , 2x1 + 3x2 = 0
7.
10.
2x1 - 3x2 = rx1 , x1 - 2x2 = rx2 14. Use the Gauss–Jordan elimination algorithm to show that the following system of equations has a unique solution for r = -1, but an infinite number of solutions for r = 2. x1 + 2x2 - x3 = rx1 , x1
11 - i2x1 + 2x2 = 0 , - x1 - 11 + i2x2 = 0
+ x3 = rx2 ,
4x1 - 4x2 + 5x3 = rx3
9.3 Review 2: Matrices and Vectors A matrix is a rectangular array of numbers arranged in rows and columns. An m * n matrix— that is, a matrix with m rows and n columns—is usually denoted by a11 a A J D 21 f am1
a12 a22 f am2
a13 a23 f am3
g g g g
a1n a2n T, f amn
where the element in the ith row and jth column is aij. The notation 3aij 4 is also used to designate A. The matrices we will work with usually consist of real numbers, but in certain instances we allow complex-number entries.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.3
Review 2: Matrices and Vectors
505
Some matrices of special interest are square matrices, which have the same number of rows and columns; diagonal matrices, which are square matrices with only zero entries off the main diagonal (that is, aij = 0 if i ≠ j); and (column) vectors, which are n * 1 matrices. For example, if 3 A = £2 0
4 6 1
-1 5§ , 4
3 0 0 B = £0 0 0§ , 0 0 7
4 x = £2§ , 1
then A is a square matrix, B is a diagonal matrix, and x is a vector. An m * n matrix whose entries are all zero is called a zero matrix and is denoted by 0. For consistency, we denote matrices by boldfaced capitals, such as A, B, C, I, X, and Y, and reserve boldfaced lowercase letters, such as c, x, y, and z, for vectors.
Algebra of Matrices Matrix Addition and Scalar Multiplication. The operations of matrix addition and scalar multiplication are very straightforward. Addition is performed by adding corresponding elements: c
1 1 1 2 3 4 1 2 3 d = c d . d +c 1 1 1 5 6 7 4 5 6
Formally, the sum of two m * n matrices is given by A + B = 3aij 4 + 3bij 4 = 3aij + bij 4 .
(The sole novelty here is that addition is not defined for two matrices whose dimensions m, n differ.) To multiply a matrix by a scalar (number), we simply multiply each element in the matrix by the number: 3c
3 6 9 1 2 3 d . d = c 12 15 18 4 5 6
In other words, rA = r3aij 4 = 3raij 4. The notation -A stands for 1 -12A. Properties of Matrix Addition and Scalar Multiplication. Matrix addition and scalar multiplication are nothing more than mere bookkeeping, and the usual algebraic properties hold. If A, B, and C are m * n matrices and r, s are scalars, then A + 1B + C2 = 1A + B2 + C , A+0 = A, r1A + B2 = rA + rB , r1sA2 = 1rs2A = s1rA2 .
A+B = B+A, A + 1 -A2 = 0 , 1r + s2A = rA + sA ,
Matrix Multiplication. The matrix product is what makes matrix algebra interesting and useful. We indicated in Section 9.1 that the product of a matrix A and a column vector x is the column vector composed of dot products of the rows of A with x: 1 1 2 3 1#1+2#0+3#2 7 c d £0§ = c # d = c d. # # 4 5 6 16 4 1+5 0+6 2 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
506
Chapter 9
Matrix Methods for Linear Systems
More generally, the product of two matrices A and B is formed by taking the array of dot products of the rows of the first “factor” A with the columns of the second factor B; the dot product of the ith row of A with the jth column of B is written as the ijth entry of the product AB: c
1 3
0 -1
1 1 d £ -1 2 4
x 1+0+4 2+0+1 x+0+z d y§ = c 3 + 1 + 8 6 + 1 + 2 3x - y + 2z z
2 −1 1
= c
5 3 x+z d. 12 9 3x - y + 2z
Note that AB is only defined when the number of columns of A matches the number of rows of B. A useful formula for the product of an m * n matrix A and an n * p matrix B is AB J 3cij 4 ,
n
where
cij J a aikbkj . k=1
The dot product of the ith row of A and the jth column of B is seen in the “sum of products” expression for cij. Since AB is computed in terms of the rows of the first factor and the columns of the second factor, it should not be surprising that, in general, AB does not equal BA (matrix multiplication does not commute): c
2 1 1 2 0 1 d , dc d = c 4 3 3 4 1 0
but
c
3 4 0 1 1 2 d . dc d = c 1 2 1 0 3 4
In fact, the dimensions of A and B may render one or the other of these products undefined: c
2 1 2 0 dc d = c d ; 4 3 4 1
0 1 2 c dc d not defined . 1 3 4
By the same token, one might not expect (AB)C to equal A(BC), since in (AB)C we take dot products with the columns of B, whereas in A(BC) we employ the rows of B. So it is a pleasant surprise that this complication does not arise, and the “parenthesis grouping” rules are the customary ones:
Properties of Matrix Multiplication 1AB2C = A1BC2 1A + B2C = AC + BC A1B + C2 = AB + AC 1rA)B = r1AB2 = A1rB2
(Associativity) (Distributivity) (Distributivity) (Associativity)
To summarize, the algebra of matrices proceeds much like the standard algebra of numbers, except that we should never presume that we can switch the order of matrix factors. (If you think 1A + B2 2 = A2 + B2 + 2AB, what error have you made?) Matrices as Linear Operators. Let A be an m * n matrix and let x and y be n * 1 vectors. Then Ax is an m * 1 vector, and so we can think of multiplication by A as defining an operator that maps n * 1 vectors into m * 1 vectors. A consequence of the distributivity and associativity properties is that multiplication by A defines a linear operator, since A(x + y) = Ax + Ay and A(rx) = rAx. Moreover, if A is an m * n matrix and B is an n * p matrix, then the m * p matrix AB defines a linear operator that is the composition of the linear operator defined by B
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.3
Review 2: Matrices and Vectors
507
with the linear operator defined by A. That is, (AB)x = A(Bx), where x is a p * 1 vector. Examples of linear operations are (i) stretching or contracting the components of a vector by constant factors; (ii) rotating a vector through some angle about a fixed axis; (iii) reflecting a vector in a plane mirror. The Matrix Formulation of Linear Algebraic Systems. Matrix algebra was developed to provide a convenient tool for expressing and analyzing linear algebraic systems. Note that the set of equations x1 + 2x2 + x3 = 1 , x1 + 3x2 + 2x3 = -1 , x1 + x3 = 0 can be written using the matrix product
(1)
1 2 1 x1 1 £ 1 3 2 § £ x2 § = £ -1 § . 0 1 0 1 x3
In general, we express the linear system a11x1 + a12x2 + g + a1nxn = b1 , a21x1 + a22x2 + g + a2nxn = b2 , f an1x1 + an2x2 + g + annxn = bn in matrix notation as Ax = b, where A is the coefficient matrix, x is the vector of unknowns, and b is the vector of constants occurring on the right-hand side: a11 a A = D 21 f an1
g g
a12 a22 f an2
g
a1n a2n T, f ann
x1 x x = D 2T , f xn
b1 b b = D 2T . f bn
If b = 0, the system Ax = b is said to be homogeneous (analogous to the nomenclature of Section 4.2). Matrix Transpose. The matrix obtained from A by interchanging its rows and columns is called the transpose of A and is denoted by AT. For example, if A = c
1 2 -1 2
1 A = £2 6 T
6 d , then -1
-1 2§ . -1
In general, we have 3aij 4 T = 3bij 4, where bij = aji. Properties of the transpose are explored in Problem 7.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
508
Chapter 9
Matrix Methods for Linear Systems
Matrix Identity. There is a “multiplicative identity” in matrix algebra, namely, a square diagonal matrix I with ones down the main diagonal. Multiplying I on the right or left by any other matrix (with compatible dimensions) reproduces the latter matrix: 1 2 1 1 2 1 1 0 0 1 0 0 1 2 1 £0 1 0§ £1 3 2§ = £1 3 2§ = £1 3 2§ £0 1 0§ . 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 (The notation In is used if it is convenient to specify the dimensions, n * n, of the identity matrix.) Matrix Inverse. Some square matrices A can be paired with other (square) matrices B having the property that BA = I:
(2)
E
3 2
-1
1 2
0
- 32
1
1 2
1 2 1 1 0 0 - 12 U £ 1 3 2 § = £ 0 1 0 § . 1 0 1 0 0 1 1 2
When this happens, it can be shown that (i) B is the unique matrix satisfying BA = I, and (ii) B also satisfies AB = I. In such a case, we say that B is the inverse of A and write B = A -1. Not every matrix possesses an inverse; the zero matrix 0, for example, can never satisfy the equation 0B = I. A matrix that has no inverse is said to be singular. If we know an inverse for the coefficient matrix A in a system of linear equations Ax = b, the solution can be calculated directly by computing A -1b, as the following derivation shows: Ax = b implies A -1Ax = A -1b implies x = A -1b . Using (2), for example, we can solve equation (1) quite efficiently: x1 x £ 2§ = E x3
3 2
-1
1 2
0
- 32
1
1 2
1 - 12 U £ -1 § = E 0 1 2
5 2 1U . 2
- 52
On the other hand, the coefficient matrix for any inconsistent system has no inverse. For example, the coefficient matrices 2 c -6
-1 d 3
and
2 £ -3 -1
0 1 1
1 4§ 5
for the inconsistent systems of Problem 12, Exercises 9.2 (page 504), are necessarily singular. When A-1 is known, solving Ax = b by multiplying b by A-1 is certainly easier than applying the Gauss–Jordan algorithm of the previous section†. So it appears advantageous to be able to find matrix inverses. Some inverses can be obtained directly from the interpretation of the matrix as a linear operator. For example, the inverse of a matrix that rotates a vector is †
(When the effort to compute the inverse is accounted for, Gauss–Jordan emerges as the winner.)
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.3
Review 2: Matrices and Vectors
509
the matrix that rotates it in the opposite direction. A matrix that performs a mirror reflection is its own inverse (what do you get if you reflect twice?). But in general one must employ an algorithm to compute a matrix inverse. The underlying strategy for this algorithm is based on the observation that if X denotes the inverse of A, then X must satisfy the equation AX = I; finding X amounts to solving n linear systems of equations for the columns 5x1, x2, . . . , xn 6 of X: 1 0 0 Ax1 = F V , f 0 0
0 1 0 Ax2 = F V , f 0 0
0 0 0 g , Axn = F V . f 0 1
The implementation of this operation is neatly executed by the following variation of the Gauss–Jordan algorithm. Finding the Inverse of a Matrix. By a row operation, we mean any one of the following: (a) Interchanging two rows of the matrix (b) Multiplying a row of the matrix by a nonzero scalar (c) Adding a scalar multiple of one row of the matrix to another row. If the n * n matrix A has an inverse, then A -1 can be determined by performing row operations on the n * 2n matrix 3A?I4 obtained by writing A and I side by side. In particular, we perform row operations on the matrix 3A?I4 until the first n rows and columns form the identity matrix; that is, the new matrix is 3I?B4. Then A-1 = B. We remark that if this procedure fails to produce a matrix of the form 3I?B4, then A has no inverse.
Example 1
Solution
1 2 1 Find the inverse of A = £ 1 3 2 § . 1 0 1 We first form the matrix 3A?I4 and row-reduce the matrix to 3I?A-1 4. Computing, we find the following: 1 2 1 ? 1 0 0 £1 3 2 ? 0 1 0§ . 1 0 1 ? 0 0 1
The matrix 3A?I4 Subtract the first row from the second and third to obtain
1 £0 0
1 ? 1 ? 0 ?
1 2 1 ? £0 1 1 ? 0 0 2 ?
Add 2 times the second row to the third row to obtain Subtract 2 times the second row from the first to obtain
2 1 -2
1 £0 0
0 1 0
-1 ? 1 ? 2 ?
1 -1 -1
0 1 0
0 0§ . 1
1 0 0 -1 1 0 § . -3 2 1 3 -1 -3
-2 1 2
0 0§ . 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
510
Chapter 9
Matrix Methods for Linear Systems
Multiply the third row by 1>2 to obtain
1
0
-1
?
3
-2
≥0
1
1
?
-1
1
0¥ .
?
- 32
1
1 2
1 0 0 ?
3 2
−1
1 2
0
− 12 ¥ .
− 32
1
1 2
0 Add the third row to the first and then subtract the third row from the second to obtain
0
1
≥0 1 0 ? 0 0 1 ?
0
1 2
The matrix shown in color is A-1. [Compare equation (2).] ◆ It is convenient to have an expression for the inverse of a generic 2 * 2 matrix. The following formula is easily verified by mental arithmetic: (3)
c
a c
d b -1 1 c d = d ad - bc -c
-b d if ad - bc ≠ 0 . a
The denominator in (3), whose nonvanishing is the crucial condition for the existence of the inverse, is known as the determinant. Determinants. The determinant of a 2 * 2 matrix A, denoted det A or A , is defined by det A = `
a11 a21
a12 ` = a11a22 - a12a21. a22
The determinants of higher-order square matrices can be defined recursively in terms of lower-order determinants, using the concept of the minor; the minor of a particular entry is the determinant of the submatrix formed when that entry’s row and column are deleted. Then the determinant of an n * n matrix equals the alternating-sign sum of the products of the entries of the first row with their minors. For a 3 * 3 matrix A this looks like a11 a12 a13 a22 a23 a21 a23 a21 a22 det A J † a21 a22 a23 † = a11 ` a a a + ` ` ` ` 12 13 a31 a33 a31 a32 ` . 32 a33 a31 a32 a33 For example, 1 †0 2
2 3 1
1 3 5† = 1 ` 1 -1
0 5 ` -2 ` 2 -1
0 3 5 ` ` +1 ` 2 1 -1
= 11 -3 - 52 - 210 - 102 + 110 - 62 = 6 . For a 4 * 4 matrix, we have 4 -2 ∞ 3 5
3 1 0 2
2 2 3 1
-6 1 1 ∞ = 4†0 5 2 -1
2 3 1
-2 + 2† 3 5
-2 1 5† - 3† 3 5 -1 1 0 2
2 3 1
1 5† -1
1 -2 5 † - 1 -62 † 3 5 -1
1 0 2
2 3† . 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.3
Review 2: Matrices and Vectors
511
As we have shown, the first minor is 6; and the others are computed the same way, resulting in 4 -2 ∞ 3 5
3 1 0 2
2 2 3 1
-6 1 ∞ = 4162 - 31602 + 21542 - 1 -621362 = 168 . 5 -1
Although higher-order determinants can be calculated similarly, a more practical way to evaluate them involves the row-reduction of the matrix to upper triangular form. Here we will deal mainly with low-order determinants, and direct the reader to a linear algebra text for further discussion.† Determinants have a geometric interpretation: det A is the volume (in n-dimensional space) of the parallelepiped whose edges are given by the column vectors of A. But their chief value lies in the role they play in the following theorem, which summarizes many of the results from linear algebra that we shall need, and in Cramer’s rule, described in Appendix D.
Matrices and Systems of Equations Theorem 1. Let A be an n * n matrix. The following statements are equivalent: (a) A is singular (does not have an inverse). (b) The determinant of A is zero. (c) Ax = 0 has nontrivial solutions (x ≠ 0). (d) The columns (rows) of A form a linearly dependent set. In part (d), the statement that the n columns of A are linearly dependent means that there exist scalars c1, c, cn, not all zero, such that c1a1 + c2a2 + g + cnan = 0 , where aj is the vector forming the jth column of A. If A is a singular square matrix (so det A = 0), then Ax = 0 has infinitely many solutions. Indeed, Theorem 1 asserts that there is a vector x0 ≠ 0 such that Ax0 = 0, and we can get infinitely many other solutions by multiplying x0 by any scalar, i.e., taking x = cx0. Furthermore, Ax = b either has no solutions or it has infinitely many of them of the form x = xp + xh , where xp is a particular solution to Ax = b and xh is any of the infinity of solutions to Ax = 0 (see Problem 15). The resemblance of this situation to that of solving nonhomogeneous linear differential equations should be quite apparent. To illustrate, in Example 3 of Section 9.2 (page 502) we saw that the system 2 £ 2 -4
4 4 -8
1 x1 8 0 § £ x2 § = £ 6 § 1 x3 -10
has solutions x1 = 3 - 2s ,
x2 = s ,
x3 = 2 ;
-∞ 6 s 6 ∞ .
†
Your authors’ personal favorite is Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and Arthur David Snider (John Wiley & Sons, Hoboken, New Jersey, 2016).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
512
Chapter 9
Matrix Methods for Linear Systems
Writing these in matrix notation, we can identify the vectors xp and xh mentioned above: x = £
3 -2 3 - 2s s § = £ 0 § + s £ 1 § = xp + xh . 2 2 0
Note further that the determinant of A is indeed zero, det A = 2 `
2 2 0 4 0 ` + 1` ` - 4` -4 -4 1 -8 1
4 ` = 2#4-4#2+1#0 = 0, -8
and that the linear dependence of the columns of A is exhibited by the identity 0 1 4 2 -2£ 2 § + 1£ 4 § + 0£ 0 § = £ 0 § . 0 1 -8 -4 If A is a nonsingular square matrix (i.e., A has an inverse and det A ≠ 02, then the homogeneous system Ax = 0 has x = 0 as its only solution. More generally, when det A ≠ 0, the system Ax = b has a unique solution (namely, x = A-1b2.
Calculus of Matrices
If we allow the entries aij 1t2 in a matrix A1t2 to be functions of the variable t, then A1t2 is a matrix function of t. Similarly, if the entries xi 1t2 of a vector x1t2 are functions of t, then x1t2 is a vector function of t. These matrix and vector functions have a calculus much like that of real-valued functions. A matrix A1t2 is said to be continuous at t0 if each entry aij 1t2 is continuous at t0. Moreover, A1t2 is differentiable at t0 if each entry aij 1t2 is differentiable at t0, and we write dA 1t 2 = A′1t0 2 J 3aij= 1t0 24 . dt 0
(4)
Similarly, we define b
(5)
Example 2
La
A1t2 dt J c
Let A1t2 = c
b
La
aij 1t2 dt d .
t 2 + 1 cos t d . et 1 1
Find: Solution
L0
A1t2dt .
Using formulas (4) and (5), we compute (a) A′1t2 = c
Example 3
(b)
(a) A′1t2 .
2t et
Show that x1t2 = c A = c
0 v
-sin t d. 0
1
(b)
4
A1t2dt = c 3 e-1 L0
sin 1 d. ◆ 1
cos vt d is a solution of the matrix differential equation x′ = Ax, where sin vt -v d . 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.3
Solution
Review 2: Matrices and Vectors
513
We simply verify that x′1t2 and Ax1t2 are the same vector function: x′1t2 = c
-v sin vt d ; v cos vt
Ax = c
0 v
-v sin vt -v cos vt d . ◆ d = c dc v cos vt 0 sin vt
The basic properties of differentiation are valid for matrix functions.
Differentiation Formulas for Matrix Functions d dA 1CA2 = C (C a constant matrix) . dt dt d dA d B 1A + B2 = + . dt dt dt d d B dA 1AB2 = A + B. dt dt dt
In the last formula, the order in which the matrices are written is very important because, as we have emphasized, matrix multiplication does not always commute.
9.3
EXERCISES
2 1 -1 d and B J c 3 5 2 Find: (a) A + B . (b) 3A - B .
1. Let A J c
2. Let A J c
2 0 5 d 2 1 1 Find: (a) A + B .
3. Let A J c
2 4 d 1 1 Find: (a) AB .
2 1 4. Let A J £ 0 4 § -1 3 Find: (a) AB .
B J c
1 0 (b) 7A - 4B . and
0 d . -3 -1 3
2 d . -2
-1 3 d . 5 2 (b) A2 = AA . (c) B2 = BB .
and
and
B J c
B J c
1 0
1 3
-1 d . 1
(b) BA .
1 -2 1 0 5. Let A J c d , B J c d , and 2 -3 1 1 -1 1 C J c d . 2 1 Find: (a) AB . (b) AC . (c) A1B + C2 . 6. Let A J C J c
1 1 Find: (a)
1 2 0 3 c d , B J c d , 1 1 1 2 -4 d . 1 AB . (b) 1AB2C .
and
(c) 1A + B2C .
7. (a) Show that if u and v are each n * 1 column vectors, then the matrix product uTv is the same as the dot product u # v. (b) Let v be a 3 * 1 column vector with vT = 32 3 54. Show that, for A as given in Example 1 (page 509), 1Av2 T = vTAT. (c) Does 1Av2 T = vTAT hold for every m * n matrix A and n * 1 vector v? (d) Does 1AB2 T = BTAT hold for every pair of matrices A, B such that both matrix products are defined? Justify your answer. 2 -1 1 2 8. Let A J c d and B J c d . -3 4 3 2 Verify that AB ≠ BA. In Problems 9–14, use the method of Example 1 to compute the inverse of the given matrix, if it exists. For Problems 9 and 10, confirm your answer by comparison with formula (3). 9. c
2 1 d -1 4
10. c
1 1 1 11. £ 1 2 1 § 2 3 2 -2 13. £ 2 3
-1 1 1
4 1 d 5 9
1 1 1 12. £ 1 2 3 § 0 1 1 1 0§ -1
1 14. £ 1 1
1 -1 1
1 2§ 4
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
514
Chapter 9
Matrix Methods for Linear Systems
15. Prove that if xp satisfies Axp = b, then every solution to the nonhomogeneous system Ax = b is of the form x = xp + xh, where xh is a solution to the corresponding homogeneous system Ax = 0. 2 -1 1 16. Let A = £ -1 2 1§ . 1 1 2 (a) Show that A is singular. 3 (b) Show that Ax = £ 1 § has no solutions. 3 3 (c) Show that Ax = £ 0 § has infinitely many solutions. 3
In Problems 17–20, find the matrix function X-1 1t2 whose value at t is the inverse of the given matrix X1t2. et e4t 17. X1t2 = c t d e 4e4t 18. X1t2 = c
sin 2t 2 cos 2t
et 19. X1t2 = £ et et
cos 2t d -2 sin 2t
1 25. † -1 4
4 -1 5
0 2† -2
1 24. † 0 -1 3 2† 2
In Problems 33 and 34, find dX>dt for the given matrix functions. e5t 3e2t d 33. X1t2 = c -2e5t -e2t cos 2t e-2t sin 2t 34. X1t2 = £ -sin 2t 2 cos 2t 3e-2t § 3 sin 2t cos 2t e-2t
1 26. † 3 1
27. A = c
0 3 2 4 0 6
2 -1 † 1 4 -3 † 2
1 1 3 3 d 28. A = c d -2 4 2 4 0 0 0 29. A = £ 0 1 0 § 1 0 1 30. Illustrate the equivalence of the assertions (a)–(d) in Theorem 1 (page 511) for the matrix
-2 4 2
0 x1t2 = £ et § -3et
In Problems 37 and 38, verify that the given matrix function satisfies the given matrix differential equation. e3t e2t 1 -1 37. X′ = c X1t2 = c 2t d dX , -e -2e3t 2 4 1 38. X′ = £ 0 0
2 2§ 4
0 3 -2
et X1t2 = £ 0 0
In Problems 27–29, determine the values of r for which det1A - rI2 = 0.
4 A = £ -2 2
e-t sin 3t 0 § 32. x1t2 = £ -e-t sin 3t
e3t 31. x1t2 = £ 2e3t § -e3t
0 0 0 36. x′ = £ 0 1 0 § x , 1 0 1
In Problems 21–26, evaluate the given determinant. 12 8 4 3 ` ` 22. ` 21. ` 3 2 -1 2 0 1 5
In Problems 31 and 32, find dx>dt for the given vector functions.
In Problems 35 and 36, verify that the given vector function satisfies the given system. e3t 1 1 35. x′ = c x1t2 = c 3t d dx , 2e -2 4
e-t e2t - e-t 2e2t § e-t 4e2t
e3t 1 t 20. X1t2 = £ 3e3t 0 1 § 9e3t 0 0
1 23. † 3 1
(a) Show that the row-reduction procedure applied to 3A?I4 fails to produce the inverse of A. (b) Calculate det A. (c) Determine a nontrivial solution x to Ax = 0. (d) Find scalars c1, c2, and c3, not all zero, so that c1a1 + c2a2 + c3a3 = 0, where a1, a2, and a3 are the columns of A.
0 -2 § X , 3 0 0 et e5t § et -e5t
In Problems 39 and 40, the matrices A1t2 and B1t2 are given. Find 1
(a)
L
A1t2dt .
(b)
L0
39. A1t2 = c
t et d , 1 et
40. A1t2 = c
1 e-2t d , 3 e-2t
B1t2dt .
(c)
B1t2 = c
cos t sin t
B1t2 = c
as follows.
d 3A1t2B1t24 . dt - sin t d cos t
e-t e-t d -e-t 3e-t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.4
41. An n * n matrix A is called symmetric if AT = A; that is, if aij = aji, for all i, j = 1, … , n. Show that if A is an n * n matrix, then A + AT is a symmetric matrix. 42. Let A be an m * n matrix. Show that ATA is a symmetric n * n matrix and AAT is a symmetric m * m matrix (see Problem 41). 43. The inner product of two vectors is a generalization of the dot product, for vectors with complex entries. It is defined by 1x, y2 J a xiyi ,
515
x = col 1x1, x2, . . . , xn 2, y = col 1y1, y2, . . . , yn 2 are complex vectors and the overbar denotes complex conjugation. (a) Show that 1x, y2 = xTy, where y = col 1y1, y2, c, yn 2 . (b) Prove that for any n * 1 vectors x, y, z and any complex number l, we have 1x, y) = 1y, x2 , 1x, y + z2 = 1x, y2 + 1x, z2 , 1lx, y2 = l1x, y) , 1x, ly2 = l1x, y2 .
n
i=1
Linear Systems in Normal Form
where
9.4 Linear Systems in Normal Form In keeping with the introduction presented in Section 9.1, we say that a system of n linear differential equations is in normal form if it is expressed as (1)
x′1t2 = A1t2x1t2 + f1t2 ,
(2)
y 1n2 1t2 + pn - 1 1t2y 1n-12 1t2 + g + p0 1t2y1t2 = g1t2
where x1t2 = col 1 x1 1t2, c, xn 1t2 2 , f1t2 = col 1 f1 1t2, c, fn 1t2 2 , and A1t2 = 3aij 1t24 is an n * n matrix. As with a scalar linear differential equation, a system is called homogeneous when f1t2 K 0; otherwise, it is called nonhomogeneous. When the elements of A are all constants, the system is said to have constant coefficients. Recall that an nth-order linear differential equation
can be rewritten as a first-order system in normal form using the substitution x1 1t2 J y1t2, x2 1t2 J y′1t2, c, xn 1t2 J y 1n-12 1t2; indeed, equation (2) is equivalent to x′1t2 = A1t2x1t2 + f1t2, where x1t2 = col 1 x1 1t2, c, xn 1t22, f1t 2 J col 1 0, c, 0, g1t2 2 , and 0 0 A1t2 J E f 0 -p0 1t2
1 0 f 0 -p1 1t2
0 1 f 0 -p2 1t2
g
g g
0 0 f 0
-pn - 2 1t2
0 0 f 1
U.
-pn - 1 1t2
The theory for systems in normal form parallels very closely the theory of linear differential equations presented in Chapters 4 and 6. In many cases the proofs for scalar linear differential equations carry over to normal systems with appropriate modifications. Conversely, results for normal systems apply to scalar linear equations since, as we showed, any scalar linear equation can be expressed as a normal system. This is the case with the existence and uniqueness theorems for linear differential equations. The initial value problem for the normal system (1) is the problem of finding a differentiable vector function x1t2 that satisfies the system on an interval I and also satisfies the initial condition x1t0 2 = x0, where t0 is a given point of I and x0 = col1x1,0, c, xn,0 2 is a given vector.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
516
Chapter 9
Matrix Methods for Linear Systems
Existence and Uniqueness Theorem 2. If A1t2 and f1t2 are continuous on an open interval I that contains the point t0, then for any choice of the initial vector x0, there exists a unique solution x1t2 on the whole interval I to the initial value problem x′1t2 = A1t2x1t2 + f1t2 ,
x1t0 2 = x0 .
We give a proof of this result in Chapter 13† and obtain as corollaries the existence and uniqueness theorems for second-order equations (Theorem 4, Section 4.5, page 182) and higher-order linear equations (Theorem 1, Section 6.1, page 319). If we rewrite system (1) as x′ - Ax = f and define the operator L3x4 J x′ - Ax, then we can express system (1) in the operator form L3x4 = f. Here the operator L maps vector functions into vector functions. Moreover, L is a linear operator in the sense that for any scalars a, b and differentiable vector functions x, y, we have L3ax + by4 = aL3x4 + bL3y4 . The proof of this linearity follows from the properties of matrix multiplication (see Problem 27). As a consequence of the linearity of L, if x1, c, xn are solutions to the homogeneous system x′ = Ax, or L3x4 = 0 in operator notation, then any linear combination of these vectors, c1x1 + g + cnxn, is also a solution. Moreover, we will see that if the solutions x1, c, xn are linearly independent, then every solution to L3x4 = 0 can be expressed as c1x1 + g + cnxn for an appropriate choice of the constants c1, c, cn.
Linear Dependence of Vector Functions Definition 1. The m vector functions x1, c, xm are said to be linearly dependent on an interval I if there exist constants c1, c, cm, not all zero, such that c1x1 1t2 + g + cmxm 1t2 = 0
(3)
for all t in I. If the vectors are not linearly dependent, they are said to be linearly independent on I.
Example 1 Solution
Example 2
Show that the vector functions x1 1t2 = col1et, 0, et 2, x2 1t2 = col13et, 0, 3et 2, and x3 1t2 = col1t, 1, 02 are linearly dependent on 1 - ∞, ∞ 2.
Notice that x2 is just 3 times x1 and therefore 3x1 1t2 - x2 1t2 + 0 # x3 1t2 = 0 for all t. Hence, x1, x2, and x3 are linearly dependent on 1 - ∞, ∞ 2. ◆ Show that t x1 1t2 = c t d
,
x2 1t2 = c
are linearly independent on 1 - ∞, ∞ 2.
t d t
†
All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.4
Solution
Example 3 Solution
Linear Systems in Normal Form
517
Note that at every instant t0, the column vector x1 1t0 2 is a multiple of x2 1t0 2; indeed, x1 1t0 2 = x2 1t0 2 for t0 Ú 0, and x1 1t0 2 = -x2 1t0 2 for t0 … 0. Nonetheless, the vector functions are not dependent, because the c’s in condition (3) are not allowed to change with t; for t 6 0, the equation c1x1 1t2 + c2x2 1t2 = 0 implies c1 - c2 = 0, but for t 7 0 it implies c1 + c2 = 0. Thus c1 = c2 = 0 and the functions are independent. ◆ Show that the vector functions x1 1t2 = col1e2t, 0, e2t 2, x2 1t2 = col1e2t, e2t, -e2t 2, and x3 1t2 = col1et, 2et, et 2 are linearly independent on 1 - ∞, ∞ 2. To prove independence, we assume c1, c2, and c3 are constants for which c1x1 1t2 + c2x2 1t2 + c3x3 1t2 = 0
holds at every t in 1 - ∞, ∞ 2 and show that this forces c1 = c2 = c3 = 0. In particular, when t = 0 we obtain 1 1 1 c1 £ 0 § + c2 £ 1 § + c3 £ 2 § = 0 , 1 -1 1 which is equivalent to the system of linear equations (4)
c1 + c2 + c3 = 0 , c2 + 2c3 = 0 , c1 - c2 + c3 = 0 .
Either by solving (4) or by checking that the determinant of its coefficients is nonzero (recall Theorem 1 on page 511), we can verify that (4) has only the trivial solution c1 = c2 = c3 = 0. Therefore the vector functions x1, x2, and x3 are linearly independent on 1 - ∞, ∞ 2 (in fact, on any interval containing t = 0). ◆ As Example 3 illustrates, if x1 1t2, x2 1t2, c, xn 1t2 are n vector functions, each having n components, we can establish their linear independence on an interval I if we can find one point t0 in I where the determinant det3x1 1t0 2 cxn 1t0 24
is not zero. Because of the analogy with scalar equations, we call this determinant the Wronskian.
Wronskian Definition 2. The Wronskian of n vector functions x1 1t2 = col1x1,1, c, xn,1 2, c, xn 1t2 = col1x1,n, c, xn,n 2 is defined to be the function x1,1 1t2 x2,1 1t2 W3x1, c, xn 4 1t2 J ∞ f xn,1 1t2
x1,2 1t2 x2,2 1t2 f xn,2 1t2
g g g
x1,n 1t2 x2,n 1t2 ∞ . f xn,n 1t2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
518
Chapter 9
Matrix Methods for Linear Systems
We see that n vector functions are linearly independent on an interval if their Wronskian is nonzero at any point in the interval. But now we show that if these functions happen to be independent solutions to a homogeneous system x′ = Ax, where A is an n * n matrix of continuous functions, then the Wronskian is never zero on I. For suppose to the contrary that W1t0 2 = 0. Then by Theorem 1 the vanishing of the determinant implies that the column vectors x1 1t0 2, x2 1t0 2, c, xn 1t0 2 are linearly dependent. Thus there exist scalars c1, c, cn not all zero, such that at t0 c1x1 1t0 2 + g + cnxn 1t0 2 = 0 .
However, c1x1 1t2 + g + cnxn 1t2 and the vector function z1t2 K 0 are both solutions to x′ = Ax on I, and they agree at the point t0. So these solutions must be identical on I according to the existence-uniqueness theorem (Theorem 2, page 516). That is, c1x1 1t2 + g + cnxn 1t2 = 0
for all t in I. But this contradicts the given information that x1, c, xn are linearly independent on I. We have shown that W1t0 2 ≠ 0, and since t0 is an arbitrary point, it follows that W1t2 ≠ 0 for all t ∈ I. The preceding argument has two important implications that parallel the scalar case. First, the Wronskian of solutions to x′ = Ax is either identically zero or never zero on I (see also Problem 33). Second, a set of n solutions x1, c, xn to x′ = Ax on I is linearly independent on I if and only if their Wronskian is never zero on I. With these facts in hand, we can imitate the proof given for the scalar case in Section 6.1 (Theorem 2, page 322) to obtain the following representation theorem for the solutions to x′ = Ax.
Representation of Solutions (Homogeneous Case) Theorem 3. (5)
Let x1, c, xn be n linearly independent solutions to the homogeneous system
x′1t2 = A1t2x1t2
on the interval I, where A1t2 is an n * n matrix function continuous on I. Then every solution to (5) on I can be expressed in the form (6)
x1t2 = c1x1 1t2 + g + cnxn 1t2 ,
where c1, c, cn are constants. A set of solutions 5x1, c, xn 6 that are linearly independent on I or, equivalently, whose Wronskian does not vanish on I, is called a fundamental solution set for (5) on I. The linear combination in (6), written with arbitrary constants, is referred to as a general solution to (5). If we take the vectors in a fundamental solution set and let them form the columns of a matrix X1t2, that is, x1,1 1t2 x 1t2 X1t2 = 3x1 1t2 x2 1t2 cxn 1t24 = D 2,1 f xn,1 1t2
x1,2 1t2 x2,2 1t2 f xn,2 1t2
g g g
x1,n 1t2 x2,n 1t2 T, f
xn,n 1t2
then the matrix X1t2 is called a fundamental matrix for (5). We can use it to express the general solution (6) as x1t2 = X1t2c ,
where c = col1c1, c, cn 2 is an arbitrary constant vector. Since det X = W3x1, c, xn 4 is never zero on I, it follows from Theorem 1 on page 511 that X1t2 is invertible for every t in I.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.4
Example 4
Linear Systems in Normal Form
519
Verify that the set -e-t 0 e2t 2t S = • £ e § , £ 0 § , £ e-t § ¶ e2t e-t -e-t is a fundamental solution set for the system (7)
0 1 1 x′1t2 = £ 1 0 1 § x1t2 1 1 0
on the interval 1 - ∞, ∞ 2 and find a fundamental matrix for (7). Also determine a general solution for (7). Solution
Substituting the first vector in the set S into the right-hand side of (7) gives e2t 0 1 1 2e2t 2t Ax = £ 1 0 1 § £ e § = £ 2e2t § = x′1t2 . 1 1 0 e2t 2e2t Hence this vector satisfies system (7) for all t. Similar computations verify that the remaining vectors in S are also solutions to (7) on 1 - ∞, ∞ 2. For us to show that S is a fundamental solution set, it is enough to observe that the Wronskian e2t W1t2 = † e2t e2t
-e-t 0 e-t
0 0 e-t † = e2t ` -t e -e-t
2t e-t -t e e + ` ` -e-t e2t
e-t ` = -3 -e-t
is never zero. A fundamental matrix X1t2 for (7) is just the matrix we used to compute the Wronskian; that is, (8)
e2t X1t2 J £ e2t e2t
-e-t 0 e-t
0 e-t § . -e-t
A general solution to (7) can now be expressed as e2t -e-t 0 2t x1t2 = X1t2c = c1 £ e § + c2 £ 0 § + c3 £ e-t § . ◆ e2t e-t -e-t It is easy to check that the fundamental matrix in (8) satisfies the equation 0 1 1 X′1t2 = £ 1 0 1 § X1t2 ; 1 1 0 indeed, this is equivalent to showing that x′ = Ax for each column x in S. In general, a fundamental matrix for a system x′ = Ax satisfies the corresponding matrix differential equation X′ = AX. Another consequence of the linearity of the operator L defined by L3x4 J x′ - Ax is the superposition principle for linear systems. It states that if x1 and x2 are solutions, respectively, to the nonhomogeneous systems L3x4 = g1 and L3x4 = g2 ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
520
Chapter 9
Matrix Methods for Linear Systems
then c1x1 + c2x2 is a solution to L3x4 = c1g1 + c2g2 . Using the superposition principle and the representation theorem for homogeneous systems, we can prove the following theorem.
Representation of Solutions (Nonhomogeneous Case) Theorem 4.
If xp is a particular solution to the nonhomogeneous system
(9)
x′1t2 = A1t2x1t2 + f1t2
(10)
x1t2 = xp 1t2 + c1x1 1t2 + g + cnxn 1t2 ,
on the interval I and 5x1, c, xn 6 is a fundamental solution set on I for the corresponding homogeneous system x1t2 = A1t2x1t2, then every solution to (9) on I can be expressed in the form where c1, c, cn are constants.
The proof of this theorem is almost identical to the proofs of Theorem 4 in Section 4.5 (page 182) and Theorem 4 in Section 6.1 (page 325). We leave the proof as an exercise. The linear combination of xp, x1, c, xn in (10) written with arbitrary constants c1, c, cn is called a general solution of (9). This general solution can also be expressed as x = xp + Xc, where X is a fundamental matrix for the homogeneous system and c is an arbitrary constant vector. We now summarize the results of this section as they apply to the problem of finding a general solution to a system of n linear first-order differential equations in normal form.
Approach to Solving Normal Systems 1. To determine a general solution to the n * n homogeneous system x′ = Ax:
(a) Find a fundamental solution set 5x1, c, xn 6 that consists of n linearly independent solutions to the homogeneous system. (b) Form the linear combination x = Xc = c1x1 + g + cnxn ,
where c = col1c1, c, cn 2 is any constant vector and X = 3x1 cxn 4 is the fundamental matrix, to obtain a general solution. 2. To determine a general solution to the nonhomogeneous system x′ = Ax + f: (a) Find a particular solution xp to the nonhomogeneous system. (b) Form the sum of the particular solution and the general solution Xc = c1x1 + g + cnxn to the corresponding homogeneous system in part 1, x = xp + Xc = xp + c1x1 + g + cnxn , to obtain a general solution to the given system.
We devote the rest of this chapter to methods for finding fundamental solution sets for homogeneous systems and particular solutions for nonhomogeneous systems.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.4
9.4
2. r′1t2 = 2r1t2 + sin t , u′1t2 = r1t2 - u1t2 + 1 dx = t 2x - y - z + t , dt dy = etz + 5 , dt dz = tx - y + 3z - et dt
4.
dx = x+y+z, dt dy = 2x - y + 3z , dt dz = x + 5z dt
In Problems 5–8, rewrite the given scalar equation as a firstorder system in normal form. Express the system in the matrix form x′ = Ax + f. 5. y″1t2 - 3y′1t2 - 10y1t2 = sin t d 4w 6. x″1t2 + x1t2 = t 2 7. + w = t2 dt 4 8.
d 3y dt 3
521
EXERCISES
In Problems 1–4, write the given system in the matrix form x′ = Ax + f. 1. x′1t2 = 3x1t2 - y1t2 + t 2 , y′1t2 = - x1t2 + 2y1t2 + et
3.
Linear Systems in Normal Form
-
dy + y = cos t dt
In Problems 9–12, write the given system as a set of scalar equations. 2 5 0 9. x′ = c d d x + e-2t c -3 -2 4 t 2 1 10. x′ = c d x + et c d 1 -1 3 1 0 1 0 1 11. x′ = £ - 1 2 5 § x + et £ 0 § + t £ 1 § 0 0 0 5 1
4 c d 1
1 -3 15. et c d , et c d 5 - 15
14. c
te d , e-t
sin t d , 16. c cos t
1 1 0 17. e2t £ 0 § , e2t £ 1 § , e3t £ 1 § 5 -1 0 sin t sin t cos t 18. c d ,c d ,c d cos t sin t cos t
t2 £0§ t2
20. Let cos t sin t cos t x1 = £ 0 § , x2 = £ cos t § , x3 = £ sin t § . 0 cos t cos t (a) Compute the Wronskian. (b) Are these vector functions linearly independent on ( - ∞ , ∞ )? (c) Is there a first-order homogeneous linear system for which these functions are solutions? In Problems 21–24, the given vector functions are solutions to a system x′1t2 = Ax1t2. Determine whether they form a fundamental solution set. If they do, find a fundamental matrix for the system and give a general solution. 1 -2 x2 = e2t c d d , 21. x1 = e2t c -2 4 3 22. x1 = e-t c d , 2
x2 = e4t c
e-t 23. x1 = £ 2e-t § , e-t
et x2 = £ 0 § , et
et 24. x1 = £ et § , et
et x1 = c t d e
1 d -1
sin t x2 = £ cos t § , - sin t
e3t x3 = £ -e3t § 2e3t - cos t x3 = £ sin t § cos t
and
x2 = c
e-t d 3e-t
are solutions to the homogeneous system x′ = Ax = c
In Problems 13–19, determine whether the given vector functions are linearly dependent 1LD2 or linearly independent 1LI2 on the interval 1 - ∞ , ∞ 2. t 13. c d , 3
t £0§ , t
25. Verify that the vector functions
0 1 0 1 3 12. x′ = £ 0 0 1 § x + t £ - 1 § + £ 1 § -1 1 2 2 0
-t
1 19. £ 0 § , 1
c
-t
e d e-t sin 2t c d cos 2t
2 3
on 1 - ∞ , ∞ 2, and that xp =
-1 d x, -2
3 tet 1 et t 0 c td - c td + c d - c d 2 te 4 3e 2t 1
is a particular solution to the nonhomogeneous system x′ = Ax + f1t2, where f1t2 = col1et, t2. Find a general solution to x′ = Ax + f1t2. 26. Verify that the vector functions e3t x1 = £ 0 § , e3t
- e3t -e-3t 3t x2 = £ e § , x3 = £ -e-3t § 0 e-3t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
522
Chapter 9
Matrix Methods for Linear Systems
are solutions to the homogeneous system 1 -2 2 x′ = Ax = £ - 2 1 2§ x 2 2 1 on 1 - ∞ , ∞ 2, and that 5t + 1 xp = £ 2t § 4t + 2 is a particular solution to x′ = Ax + f1t2, where f1t2 = col1 - 9t, 0, -18t2. Find a general solution to x′ = Ax + f1t2. 27. Prove that the operator defined by L3x4 J x′ - Ax, where A is an n * n matrix function and x is an n * 1 differentiable vector function, is a linear operator. 28. Let X1t2 be a fundamental matrix for the system x′ = Ax. Show that x1t2 = X1t2X-1 1t0 2x0 is the solution to the initial value problem x′ = Ax, x1t0 2 = x0. In Problems 29–30, verify that X1t2 is a fundamental matrix for the given system and compute X-1 1t2. Use the result of Problem 28 to find the solution to the given initial value problem. -1 0 6 0 29. x′ = £ 1 0 1 § x , x102 = £ 0 § ; 1 1 1 0 6e-t - 3e-2t 2e3t X1t2 = £ - e-t e-2t e3t § -t - 5e e-2t e3t 2 3 3 30. x′ = c d x, x102 = c d ; 3 2 -1 e-t e5t X1t2 = c -t 5t d -e e 31. Show that t2 t t ` ` K 0 2t 2 t on 1 - ∞ , ∞ 2, but that the two vector functions c
t2 d , 2t
c
tt d 2t
are linearly independent on 1 - ∞ , ∞ 2. 32. Abel’s Formula. If x1, c, xn are any n solutions to the n * n system x′1t2 = A1t2x1t2, then Abel’s formula gives a representation for the Wronskian W1t2 J W3x1, c, xn 41t2. Namely, W1t2 = W1t0 2expa
t
Lt0
5a11 1s2 + P + ann 1s26 ds b,
where a11 1s2, c, ann 1s2 are the main diagonal elements of A1s2. Prove this formula in the special case when n = 3. [Hint: Follow the outline in Problem 30 of Exercises 6.1, page 327.]
33. Using Abel’s formula (Problem 32), confirm that the Wronskian of n solutions to x′ = Ax on the interval I is either identically zero on I or never zero on I. 34. Prove that a fundamental solution set for the homogeneous system x′1t2 = A1t2x1t2 always exists on an interval I, provided A1t2 is continuous on I. 3Hint: Use the existence and uniqueness theorem (Theorem 2) and make judicious choices for x0.4 35. Prove Theorem 3 on the representation of solutions of the homogeneous system. 36. Prove Theorem 4 on the representation of solutions of the nonhomogeneous system. 37. To illustrate the connection between a higher-order equation and the equivalent first-order system, consider the equation y‴1t2 − 6y″1t2 + 11y′1t2 − 6y1t2 = 0 .
(11)
(a) Show that {et, e2t, e3t} is a fundamental solution set for (11). (b) Using the definition in Section 6.1, compute the Wronskian of {et, e2t, e3t}. (c) Setting x1 = y, x2 = y′, x3 = y″, show that equation (11) is equivalent to the first-order system x′ = Ax ,
(12) where
0 1 0 A J £0 0 1§ . 6 -11 6 (d) The substitution used in part (c) suggests that e2t e3t et t 2t S J • £ e § , £ 2e § , £ 3e3t § ¶ et 4e2t 9e3t is a fundamental solution set for system (12). Verify that this is the case. (e) Compute the Wronskian of S. How does it compare with the Wronskian computed in part (b)? 38. Define x1 1t2, x2 1t2, and x3 1t2, for - ∞ 6 t 6 ∞ , by sin t sin t 0 x1 1t2 = £ sin t § , x2 1t2 = £ 0 § , x3 1t2 = £ sin t § . sin t 0 sin t (a) Show that for the three scalar functions in each individual row there are nontrivial linear combinations that sum to zero for all t. (b) Show that, nonetheless, the three vector functions are linearly independent. (No single nontrivial combination works for each row, for all t.) (c) Calculate the Wronskian W3x1, x2, x3 41t2. (d) Is there a linear third-order homogeneous differential equation system having x1 1t2, x2 1t2, and x3 1t2 as solutions?
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.5
Homogeneous Linear Systems with Constant Coefficients
523
9.5 Homogeneous Linear Systems with Constant Coefficients
In this section we discuss a procedure for obtaining a general solution for the homogeneous system (1)
x′1t2 = Ax1t2 ,
where A is a (real) constant n * n matrix. The general solution we seek will be defined for all t because the elements of A are just constant functions, which are continuous on 1 - ∞, ∞ 2 (recall Theorem 2, page 516). In Section 9.4 we showed that a general solution to (1) can be constructed from a fundamental solution set consisting of n linearly independent solutions to (1). Thus our goal is to find n such vector solutions. In Chapter 4 we were successful in solving homogeneous linear equations with constant coefficients by guessing that the equation had a solution of the form ert. Because any scalar linear equation can be expressed as a system, it is reasonable to expect system (1) to have solutions of the form x1t2 = ertu , where r is a constant and u is a constant vector, both of which must be determined. Substituting ertu for x1t2 in (1) gives rertu = Aertu = ertAu . Canceling the factor ert and rearranging terms, we find that (2)
1A - rI2u = 0 ,
where rI denotes the diagonal matrix with r’s along its main diagonal. The preceding calculation shows that x1t2 = ertu is a solution to (1) if and only if r and u satisfy equation (2). Since the trivial case, u = 0, is of no help in finding linearly independent solutions to (1), we require that u ≠ 0. Such vectors are given a special name, as follows.
Eigenvalues and Eigenvectors Definition 3. Let A = 3aij 4 be an n * n constant matrix. The eigenvalues of A are those (real or complex) numbers r for which 1A - rI2u = 0 has at least one nontrivial (real or complex) solution u. The corresponding nontrivial solutions u are called the eigenvectors of A associated with r.
As stated in Theorem 1 of Section 9.3, a linear homogeneous system of n algebraic equations in n unknowns has a nontrivial solution if and only if the determinant of its coefficients is zero. Hence, a necessary and sufficient condition for (2) to have a nontrivial solution is that (3)
0 A − rI 0 = 0 .
Expanding the determinant of A - rI in terms of its cofactors, we find that it is an nth-degree polynomial in r; that is, (4)
0 A − rI 0 = p1r2 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
524
Chapter 9
Matrix Methods for Linear Systems
Therefore, finding the eigenvalues of a matrix A is equivalent to finding the zeros of the polynomial p1r2. Equation (3) is called the characteristic equation of A, and p1r2 in (4) is the characteristic polynomial of A. The characteristic equation plays a role for systems similar to the role played by the auxiliary equation for scalar equations. Many commercially available software packages can be used to compute the eigenvalues and eigenvectors for a given matrix. Three such packages are MATLAB®, available from The MathWorks, Inc.; MATHEMATICA®, available from Wolfram Research; and MAPLESOFT®, available from Waterloo Maple Inc. Although you are encouraged to make use of such packages, the examples and most exercises in this text can be easily carried out without them. Those exercises for which a computer package is desirable are flagged with the icon . Example 1
Find the eigenvalues and eigenvectors of the matrix A J c
Solution
2 1
-3 d . -2
The characteristic equation for A is
0 A - rI 0 = `
2-r 1
-3 ` = 12 - r21 -2 - r2 + 3 = r 2 - 1 = 0 . -2 - r
Hence the eigenvalues of A are r1 = 1, r2 = -1. To find the eigenvectors corresponding to r1 = 1, we must solve 1A - r1I2u = 0. Substituting for A and r1 gives (5)
c
1 1
0 -3 u1 d c d = c d . -3 u2 0
Notice that this matrix equation is equivalent to the single scalar equation u1 - 3u2 = 0. Therefore, the solutions to (5) are obtained by assigning an arbitrary value for u2 (say, u2 = s) and setting u1 = 3u2 = 3s. Consequently, the eigenvectors associated with r1 = 1 can be expressed as (6)
3 u1 = s c d . 1 For r2 = -1, the equation 1A - r2I2u = 0 becomes c
3 1
-3 u1 0 dc d = c d . -1 u2 0
Solving, we obtain u1 = s and u2 = s, with s arbitrary. Therefore, the eigenvectors associated with the eigenvalue r2 = -1 are (7)
1 u2 = s c d . ◆ 1
We remark that in the above example the collection (6) of all eigenvectors associated with r1 = 1 forms a one-dimensional subspace when the zero vector is adjoined. The same is true for r2 = -1. These subspaces are called eigenspaces.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.5
Example 2
525
Find the eigenvalues and eigenvectors of the matrix 1 A J £1 4
Solution
Homogeneous Linear Systems with Constant Coefficients
2 0 -4
-1 1§ . 5
The characteristic equation for A is 1-r 0 A - rI 0 = † 1 4
-1 2 -r 1 † = 0, -4 5 - r
which simplifies to 1r - 121r - 221r - 32 = 0. Hence, the eigenvalues of A are r1 = 1, r2 = 2, and r3 = 3. To find the eigenvectors corresponding to r1 = 1, we set r = 1 in 1A - rI2u = 0. This gives (8)
0 £1 4
2 -1 -4
u1 -1 0 1 § £ u2 § = £ 0 § . 4 0 u3
Using elementary row operations (Gaussian elimination), we see that (8) is equivalent to the two equations u1 - u2 + u3 = 0 , 2u2 - u3 = 0 . Thus, we can obtain the solutions to (8) by assigning an arbitrary value to u2 (say, u2 = s), solving 2u2 - u3 = 0 for u3 to get u3 = 2s, and then solving u1 - u2 + u3 = 0 for u1 to get u1 = -s. Hence, the eigenvectors associated with r1 = 1 are (9)
-1 u1 = s £ 1 § . 2 For r2 = 2, we solve -1 £ 1 4
2 -2 -4
-1 u1 0 1 § £ u2 § = £ 0 § 3 u3 0
in a similar fashion to obtain the eigenvectors (10)
-2 u2 = s £ 1 § . 4 Finally, for r3 = 3, we solve -2 £ 1 4
2 -3 -4
-1 u1 0 1 § £ u2 § = £ 0 § 2 u3 0
and get the eigenvectors (11)
-1 u3 = s £ 1 § . ◆ 4
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
526
Chapter 9
Matrix Methods for Linear Systems
Let’s return to the problem of finding a general solution to a homogeneous system of differential equations. We have already shown that ertu is a solution to (1) if r is an eigenvalue and u a corresponding eigenvector. The question is: Can we obtain n linearly independent solutions to the homogeneous system by finding all the eigenvalues and eigenvectors of A? The answer is yes, if A has n linearly independent eigenvectors.
n Linearly Independent Eigenvectors Theorem 5. Suppose the n * n constant matrix A has n linearly independent eigenvectors u1, u2, c, un. Let ri be the eigenvalue† corresponding to ui. Then (12)
{er1tu1, er2tu2, c, erntun}
(13)
x1t2 = c1er1tu1 + c2er2tu2 + g + cnerntun ,
is a fundamental solution set (and X1t2 = 3er1tu1 er2tu2 g erntun 4 is a fundamental matrix) on 1 - ∞, ∞ 2 for the homogeneous system x′ = Ax. Consequently, a general solution of x′ = Ax is where c1, c, cn are arbitrary constants. Proof. As we have seen, the vector functions listed in (12) are solutions to the homogeneous system. Moreover, their Wronskian is W1t2 = det3er1tu1, c, erntun 4 = e1r1 + g + rn2t det3u1, c, un 4 .
Since the eigenvectors are assumed to be linearly independent, it follows from Theorem 1 in Section 9.3 that det3u1, c, un 4 is not zero. Hence the Wronskian W1t2 is never zero. This shows that (12) is a fundamental solution set, and consequently a general solution is given by (13). ◆
An application of Theorem 5 is given in the next example. Example 3
Find a general solution of (14)
Solution
x′1t2 = Ax1t2 , where A = c
2 1
-3 d. -2
In Example 1 we showed that the matrix A has eigenvalues r1 = 1 and r2 = -1. Taking, say, s = 1 in equations (6) and (7), we get the corresponding eigenvectors 3 u1 = c d 1
and
1 u2 = c d . 1
Because u1 and u2 are linearly independent, it follows from Theorem 5 that a general solution to (14) is (15)
3 1 x1t2 = c1et c d + c2e-t c d . ◆ 1 1
The eigenvalues r1, c, rn may be real or complex and need not be distinct. In this section the cases we discuss have real eigenvalues. We consider complex eigenvalues in Section 9.6.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.5
Homogeneous Linear Systems with Constant Coefficients
527
x2 2
1.5
x(0) =
1
u2
1 2
(u1 + u2)
u1
0.5
0
1
2
3
4
5
x1
Figure 9.1 Trajectories of solutions for Example 3
If we sum the vectors on the right-hand side of equation (15) and then write out the expressions for the components of x1t2 = col 1 x1 1t2, x2 1t2 2 , we get x1 1t2 = 3c1et + c2e-t , x2 1t2 = c1et + c2e-t .
This is the familiar form of a general solution for a system, as discussed in Section 5.2. Example 3 nicely illustrates the geometric role played by the eigenvectors u1 and u2. If the initial vector x102 is a scalar multiple of u1 1i.e., x102 = c1u1 2, then the vector solution to the system, x1t2 = c1etu1, will always have the same or opposite direction as u1. That is, it will lie along the straight line determined by u1 (see Figure 9.1). Furthermore, the trajectory of this solution, as t increases, will tend to infinity, since the corresponding eigenvalue r1 = 1 is positive (observe the et term). A similar assertion holds if the initial vector is a scalar multiple of u2, except that since r2 = -1 is negative, the trajectory x1t2 = c2e-tu2 will approach the origin as t increases (because of e-t). For an initial vector that involves both u1 and u2, such as x102 = 12 1u1 + u2 2, the resulting trajectory is a blend of the above motions, with the contribution due to the larger eigenvalue r1 = 1 dominating as t increases; see Figure 9.1. The straight-line trajectories in the x1x2-plane (the phase plane), then, point along the directions of the eigenvectors of the matrix A. (See Section 5.4, Figure 5.11, page 266, for example.) A useful property of eigenvectors that concerns their linear independence is stated in the next theorem.
Linear Independence of Eigenvectors Theorem 6. If r1, c, rm are distinct eigenvalues for the matrix A and ui is an eigenvector associated with ri, then u1, c, um are linearly independent. Proof. Let’s first treat the case m = 2. Suppose, to the contrary, that u1 and u2 are linearly dependent so that (16)
u1 = cu2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
528
Chapter 9
Matrix Methods for Linear Systems
for some constant c. Multiplying both sides of (16) by A and using the fact that u1 and u2 are eigenvectors with corresponding eigenvalues r1 and r2, we obtain (17)
r1u1 = cr2u2 .
Next we multiply (16) by r2 and then subtract from (17) to get 1r1 - r2 2u1 = 0 .
Since u1 is not the zero vector, we must have r1 = r2. But this violates the assumption that the eigenvalues are distinct! Hence u1 and u2 are linearly independent. The cases m 7 2 follow by induction. The details of the proof are left as Problem 48. ◆ Combining Theorems 5 and 6, we get the following corollary.
n Distinct Eigenvalues Corollary 1. If the n * n constant matrix A has n distinct eigenvalues r1, c, rn and ui is an eigenvector associated with ri, then {er1tu1, c, erntun} is a fundamental solution set for the homogeneous system x′ = Ax.
Example 4
Solve the initial value problem (18)
Solution
1 x′1t2 = £ 1 4
-1 1 § x1t2 , 5
2 0 -4
-1 x102 = £ 0 § . 0
In Example 2 we showed that the 3 * 3 coefficient matrix A has the three distinct eigenvalues r1 = 1, r2 = 2, and r3 = 3. If we set s = 1 in equations (9), (10), and (11), we obtain the corresponding eigenvectors -1 u1 = £ 1 § , 2
-2 u2 = £ 1 § , 4
-1 u3 = £ 1 § , 4
whose linear independence is guaranteed by Theorem 6. Hence, a general solution to (18) is (19)
-1 -2 -1 2t 3t x1t2 = c1e £ 1 § + c2e £ 1 § + c3e £ 1 § 2 4 4 t
-et = £ et 2et
-2e2t e2t 4e2t
-e3t c1 e3t § £ c2 § . 4e3t c3
To satisfy the initial condition in (18), we solve -1 x102 = £ 1 2
-2 1 4
-1 c1 -1 1 § £ c2 § = £ 0 § 4 c3 0
and find that c1 = 0, c2 = 1, and c3 = -1. Inserting these values into (19) gives the desired solution. ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.5
Homogeneous Linear Systems with Constant Coefficients
529
There is a special class of n * n matrices that always have n linearly independent eigenvectors. These are the real symmetric matrices.
Real Symmetric Matrices Definition 4. A real symmetric matrix A is a matrix with real entries that satisfies AT = A.
Taking the transpose of a matrix interchanges its rows and columns. Doing this is equivalent to “flipping” the matrix about its main diagonal. Consequently, AT = A if and only if A is symmetric about its main diagonal. If A is an n * n real symmetric matrix, it is known† that all its eigenvalues are real and that there always exist n linearly independent eigenvectors. In such a case, Theorem 5 applies and a general solution to x′ = Ax is given by (13). Example 5
Find a general solution of (20)
Solution
1 x′1t2 = Ax1t2 , where A = £ -2 2
-2 1 2
2 2§ . 1
A is symmetric, so we are assured that A has three linearly independent eigenvectors. To find them, we first compute the characteristic equation for A: 1-r 0 A - rI 0 = † -2 2
-2 1-r 2
2 2 † = - 1r - 32 2 1r + 32 = 0 . 1-r
Thus the eigenvalues of A are r1 = r2 = 3 and r3 = -3. Notice that the eigenvalue r = 3 has multiplicity 2 when considered as a root of the characteristic equation. Therefore, we must find two linearly independent eigenvectors associated with r = 3. Substituting r = 3 in 1A - rI2u = 0 gives -2 £ -2 2
-2 -2 2
2 u1 0 2 § £ u2 § = £ 0 § . -2 u3 0
This system is equivalent to the single equation -u1 - u2 + u3 = 0, so we can obtain its solutions by assigning an arbitrary value to u2, say u2 = y, and an arbitrary value to u3, say u3 = s. Solving for u1, we find u1 = u3 - u2 = s - y. Therefore, the eigenvectors associated with r1 = r2 = 3 can be expressed as -1 1 s-y u = £ y § = s £ 0 § + y£ 1 § . 0 s 1
†
See Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and Arthur David Snider (John Wiley & Sons, Hoboken, New Jersey, 2016).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
530
Chapter 9
Matrix Methods for Linear Systems
By first taking s = 1, y = 0 and then taking s = 0, y = 1, we get the two linearly independent eigenvectors -1 u2 = £ 1 § . 0
1 u1 = £ 0 § , 1
(21)
For r3 = -3, we solve 4 1A + 3I2u = £ -2 2
-2 4 2
2 u1 0 2 § £ u2 § = £ 0 § 4 u3 0
to obtain the eigenvectors col1 -s, -s, s2. Taking s = 1 gives -1 u3 = £ -1 § . 1 Since the eigenvectors u1, u2, and u3 are linearly independent, a general solution to (20) is 1 -1 -1 x1t2 = c1e3t £ 0 § + c2e3t £ 1 § + c3e-3t £ -1 § . ◆ 1 0 1 If a matrix A is not symmetric, it is possible for A to have a repeated eigenvalue but not to have two linearly independent corresponding eigenvectors. In particular, the matrix (22)
A = c
1 4
-1 d -3
has the repeated eigenvalue r1 = r2 = -1, but Problem 35 shows that all the eigenvectors associated with r = -1 are of the form u = s col11, 22. Consequently, no two eigenvectors are linearly independent. A procedure for finding a general solution in such a case is illustrated in Problems 35–40, but the underlying theory is deferred to Section 9.8, where we discuss the matrix exponential. A final note. If an n * n matrix A has n linearly independent eigenvectors ui with eigenvalues ri, a little inspection reveals that property (2) is expressed columnwise by the equation f (23) ≥
A
¥ ≥
u1
f u2
f
f
g g f g
f un f
f ¥ = ≥
u1
f u2
f
f
g g f g
f un
¥ ≥
f
r1 0
0 r2
0
0
g g f g
0 0
¥
rn
or AU = UD, where U is the matrix whose column vectors are eigenvectors and D is a diagonal matrix whose diagonal entries are the eigenvalues. Since U’s columns are independent, U is invertible and we can write (24)
A = UDU -1 or D = U-1AU ,
and we say that A is diagonalizable. [In this context equation (24) expresses a similarity transformation.] Because the argument that leads from (2) to (23) to (24) can be reversed, we have a new characterization: An n * n matrix has n linearly independent eigenvectors if, and only if, it is diagonalizable.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.5
9.5
Homogeneous Linear Systems with Constant Coefficients
EXERCISES
In Problems 1–8, find the eigenvalues and eigenvectors of the given matrix. -4 2 6 -3 1. c d 2. c d 2 -1 2 1 3. c
1 2
531
-1 d 4
4. c
1 1
5 d -3
1 0 0 5. £ 0 0 2 § 0 2 0
0 1 1 6. £ 1 0 1 § 1 1 0
1 0 0 7. £ 2 3 1 § 0 2 4
-3 8. £ 0 4
1 -3 -8
In Problems 19–24, find a fundamental matrix for the system x′1t2 = Ax1t2 for the given matrix A. -1 1 5 4 19. A = c d 20. A = c d 8 1 -1 0
0 1§ 2
In Problems 9 and 10, some of the eigenvalues of the given matrix are complex. Find all the eigenvalues and eigenvectors. 0 -1 1 2 -1 9. c d 1 0 10. £ 0 1 1§ 0 -1 1 In Problems 11–16, find a general solution of the system x′1t2 = Ax1t2 for the given matrix A. 11. A = £
-1
3 4
-5
3
1 3 12. A = c d 12 1
§
1 2 2 13. A = £ 2 0 3 § 2 3 0
-1 14. A = £ 1 0
1 2 3 15. A = £ 0 1 0 § 2 1 2
-7 0 6 16. A = £ 0 5 0 § 6 0 2
1 2 3
0 1§ -1
17. Consider the system x′1t2 = Ax1t2, t Ú 0, with A = C
1
23
23
-1
S.
(a) Show that the matrix A has eigenvalues r1 = 2 and r2 = - 2 with corresponding eigenvectors u1 = col1 13, 12 and u2 = col11, - 132. (b) Sketch the trajectory of the solution having initial vector x102 = -u1. (c) Sketch the trajectory of the solution having initial vector x102 = u2. (d) Sketch the trajectory of the solution having initial vector x102 = u2 - u1. 18. Consider the system x′1t2 = Ax1t2, t Ú 0, with A = c
-2 1
1 d . -2
(a) Show that the matrix A has eigenvalues r1 = - 1 and r2 = -3 with corresponding eigenvectors u1 = col11, 12 and u2 = col11, - 12. (b) Sketch the trajectory of the solution having initial vector x102 = u1. (c) Sketch the trajectory of the solution having initial vector x102 = - u2. (d) Sketch the trajectory of the solution having initial vector x102 = u1 - u2.
0 1 21. A = £ 0 0 8 - 14
0 1§ 7
2 0 23. A = D 0 0
1 -1 0 0
1 0 3 0
-1 1 T 1 7
4 0 24. A = D 0 0
-1 0 0 0
0 0 2 1
0 0 T -3 -2
3 22. A = £ 1 3
1 -1 3 -1 § 3 -1
25. Using matrix algebra techniques, find a general solution of the system x′ = x + 2y - z , y′ = x + z , z′ = 4x - 4y + 5z . 26. Using matrix algebra techniques, find a general solution of the system x′ = 3x - 4y , y′ = 4x - 7y . In Problems 27–30, use a linear algebra software package such as MATLAB®, MAPLESOFT®, or MATHEMATICA® to compute the required eigenvalues and eigenvectors and then give a fundamental matrix for the system x′1t2 = Ax1t2 for the given matrix A. 0 1.1 0 2 1 1 27. A = £ 0 0 1.3 § 28. A = £ -1 1 0 § 0.9 1.1 - 6.9 3 3 3 0 0 29. A = D 0 2
1 0 0 -6
0 1 0 3
0 0 T 1 3
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
532
Chapter 9
0 1 30. A = D 0 0
1 -1 0 0
Matrix Methods for Linear Systems
0 0 0 -2
(c) To obtain a second linearly independent solution to x′ = Ax, try x2 1t2 = te2tu1 + e2tu2. 3Hint: Show that u1 and u2 must satisfy
0 0 T 1 4
In Problems 31–34, solve the given initial value problem. 1 3 3 31. x′1t2 = c d x1t2 , x102 = c d 3 1 1 32. x′1t2 = c
6 2
-3 d x1t2 , 1
1 33. x′1t2 = £ -2 2
-2 1 -2
x102 = c
2 - 2 § x1t2 , 1
0 1 1 34. x′1t2 = £ 1 0 1 § x1t2 , 1 1 0
- 10 d -6
-2 x102 = £ - 3 § 2
-1 x102 = £ 4 § 0
35. (a) Show that the matrix 1 -1 d 4 -3 has the repeated eigenvalue r = -1 and that all the eigenvectors are of the form u = s col11, 22. (b) Use the result of part (a) to obtain a nontrivial solution x1 1t2 to the system x′ = Ax. (c) To obtain a second linearly independent solution to x′ = Ax, try x2 1t2 = te-tu1 + e-tu2. 3Hint: Substitute x2 into the system x′ = Ax and derive the relations A = c
1A + I2u1 = 0 ,
1A + I2u2 = u1 .
Since u1 must be an eigenvector, set u1 = col11, 22 and solve for u2.4
(d) What is 1A + I2 2 u2? (In Section 9.8, u2 will be identified as a generalized eigenvector.) 36. Use the method discussed in Problem 35 to find a general solution to the system x′1t2 = c
5 3
1A - 2I2u2 = u1.4
1A - 2I2u1 = 0 ,
-3 d x1t2 . -1
37. (a) Show that the matrix 2 1 6 A = £0 2 5§ 0 0 2 has the repeated eigenvalue r = 2 with multiplicity 3 and that all the eigenvectors of A are of the form u = s col11, 0, 02. (b) Use the result of part (a) to obtain a solution to the system x′ = Ax of the form x1 1t2 = e2tu1.
(d) To obtain a third linearly independent solution to x′ = Ax, try t 2 2t e u1 + te2tu2 + e2tu3 . 2 3Hint: Show that u1, u2, and u3 must satisfy x3 1t2 =
1A - 2I2u2 = u1 ,
1A - 2I2u1 = 0 ,
1A - 2I2u3 = u2.4
(e) Show that 1A - 2I2 2 u2 = 1A - 2I2 3 u3 = 0. 38. Use the method discussed in Problem 37 to find a general solution to the system 3 -2 x′1t2 = £ 2 -1 -4 4 39. (a) Show that the matrix 2 A = £ 1 -2
1 2 -2
1 1 § x1t2. 1
1 1§ -1
has the repeated eigenvalue r = 1 of multiplicity 3 and that all the eigenvectors of A are of the form u = s col1 -1, 1, 02 + y col1 -1, 0, 12. (b) Use the result of part (a) to obtain two linearly independent solutions to the system x′ = Ax of the form x1 1t2 = etu1 and x2 1t2 = etu2. (c) To obtain a third linearly independent solution to x′ = Ax, try x3 1t2 = tetu3 + etu4. 3Hint: Show that u3 and u4 must satisfy 1A - I2u3 = 0 ,
1A - I2u4 = u3 .
Choose u3, an eigenvector of A, so that you can solve for u4.4 (d) What is 1A - I2 2 u4? 40. Use the method discussed in Problem 39 to find a general solution to the system 1 x′1t2 = £ 0 0
3 7 9
-2 -4 § x1t2 . -5
41. Use the substitution x1 = y, x2 = y′ to convert the linear equation ay″ + by′ + cy = 0, where a, b, and c are constants, into a normal system. Show that the characteristic equation for this system is the same as the auxiliary equation for the original equation.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.5
Homogeneous Linear Systems with Constant Coefficients
42. (a) Show that the Cauchy–Euler equation at 2y″ + bty′ + cy = 0 can be written as a Cauchy–Euler system (25)
t x′ = Ax
with a constant coefficient matrix A, by setting x1 = y>t and x2 = y′. (b) Show that for t 7 0 any system of the form (25) with A an n * n constant matrix has nontrivial solutions of the form x1t2 = t ru if and only if r is an eigenvalue of A and u is a corresponding eigenvector. In Problems 43 and 44, use the result of Problem 42 to find a general solution of the given system. 1 3 43. tx′1t2 = c d x1t2 , t 7 0 -1 5 -4 2 44. tx′1t2 = c d x1t2 , t 7 0 2 -1 45. Mixing Between Interconnected Tanks. Two tanks, each holding 50 L of liquid, are interconnected by pipes with liquid flowing from tank A into tank B at a rate of 4 L/min and from tank B into tank A at 1 L/min (see Figure 9.2). The liquid inside each tank is kept well stirred. Pure water flows into tank A at a rate of 3 L/min, and the solution flows out of tank B at 3 L/min. If, initially, tank A contains 2.5 kg of salt and tank B contains no salt (only water), determine the mass of salt in each tank at time t Ú 0. Graph on the same axes the two quantities x1 1t2 and x2 1t2, where x1 1t2 is the mass of salt in tank A and x2 1t2 is the mass in tank B. 3 L/min Pure water
A
4 L/min
B
x1(t)
x 2 (t)
50 L
50 L
x1(0) = 2.5 kg
x 2 (0) = 0 kg
3 L/min
1 L/min Figure 9.2 Mixing problem for interconnected tanks
46. Mixing with a Common Drain. Two tanks, each holding 1 L of liquid, are connected by a pipe through which liquid flows from tank A into tank B at a rate of 3 - a L/min 10 6 a 6 32. The liquid inside each tank is kept well stirred. Pure water flows into tank A at a rate of 3 L/min. Solution flows out of tank A at a L/min and out of tank B at 3 - a L/min. If, initially, tank B contains no salt (only water) and tank A contains 0.1 kg of salt, determine the mass of salt in each tank at time t Ú 0. How does the mass of salt in tank A depend on the choice of a? What is the maximum mass of salt in tank B? (See Figure 9.3.)
3 L/min Pure water
A
533
B L/min
x1(t)
x 2 (t)
1L
1L
x1(0) = 0.1 kg
x 2 (0) = 0 kg
L/min
) L/min
3 L/min Figure 9.3 Mixing problem for a common drain, 0 6 a 6 3
47. To find a general solution to the system 1 3 -1 x′ = Ax = £ 3 0 1§ x , -1 1 2 proceed as follows: (a) Use a numerical root-finding procedure to approximate the eigenvalues. (b) If r is an eigenvalue, then let u = col 1u1, u2, u3 2 be an eigenvector associated with r. To solve for u, assume u1 = 1. (If not u1, then either u2 or u3 may be chosen to be 1. Why?) Now solve the system 1 0 1A - rI2 £ u2 § = £ 0 § u3 0 for u2 and u3. Use this procedure to find approximations for three linearly independent eigenvectors for A. (c) Use these approximations to give a general solution to the system. 48. To complete the proof of Theorem 6, page 527, assume the induction hypothesis that u1, . . . , uk, 2 … k, are linearly independent. (a) Show that if c1u1 + g + ckuk + ck + 1uk + 1 = 0 , then
c1 1r1 - rk + 1 2u1 + g + ck 1rk - rk + 1 2uk = 0 . (b) Use the result of part (a) and the induction hypothesis to conclude that u1, c, uk + 1 are linearly independent. The theorem follows by induction. 49. Stability. A homogeneous system x′ = Ax with constant coefficients is stable if it has a fundamental matrix whose entries all remain bounded as t S + ∞ . (It will follow from Theorem 9 in Section 9.8 that if one fundamental matrix of the system has this property, then all fundamental matrices for the system do.) Otherwise, the system is unstable. A stable system is asymptotically stable if all solutions approach the zero solution as t S + ∞ . Stability is discussed in more detail in Chapter 12.†
†
All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
534
Chapter 9
Matrix Methods for Linear Systems
(a) Show that if A has all distinct real eigenvalues, then x′1t2 = Ax1t2 is stable if and only if all eigenvalues are nonpositive. (b) Show that if A has all distinct real eigenvalues, then x′1t2 = Ax1t2 is asymptotically stable if and only if all eigenvalues are negative. (c) Argue that in parts (a) and (b), we can replace “has distinct real eigenvalues” by “is symmetric” and the statements are still true. 50. In an ice tray, the water level in any particular ice cube cell will change at a rate proportional to the difference between that cell’s water level and the level in the adjacent cells.
(a) Argue that a reasonable differentiable equation model for the water levels x, y, and z in the simplified three-cell tray depicted in Figure 9.4 is given by x′ = y - x , y′ = x + z - 2y ,
z′ = y - z .
(b) Use eigenvectors to solve this system for the initial conditions x102 = 3, y102 = z102 = 0.
x
y
z
Figure 9.4 Ice tray
9.6 Complex Eigenvalues In the previous section, we showed that the homogeneous system (1)
x′1t2 = Ax1t2 ,
where A is a constant n * n matrix, has a solution of the form x1t2 = ertu if and only if r is an eigenvalue of A and u is a corresponding eigenvector. In this section we show how to obtain two real vector solutions to system (1) when A is real and has a pair† of complex conjugate eigenvalues a + ib and a - ib. Suppose r1 = a + ib1a and b real numbers) is an eigenvalue of A with corresponding eigenvector z = a + ib, where a and b are real constant vectors. We first observe that the complex conjugate of z, namely z J a - ib, is an eigenvector associated with the eigenvalue r2 = a - ib. To see this, note that taking the complex conjugate of 1A - r1I2z = 0 yields 1A - r1I2z = 0 because the conjugate of the product is the product of the conjugates and A and I have real entries 1A = A, I = I2. Since r2 = r1, we see that z is an eigenvector associated with r2. Therefore, two linearly independent complex vector solutions to (1) are (2) (3)
w1 1t2 = er1t z = e1a + ib2t 1a + ib2 , w2 1t2 = er2t z = e1a-ib2t 1a - ib2 .
As in Section 4.3, where we handled complex roots to the auxiliary equation, let’s use one of these complex solutions and Euler’s formula to obtain two real vector solutions. With the aid of Euler’s formula, we rewrite w1 1t2 as w1 1t2 = eat 1cos bt + i sin bt21a + ib2 = eat 5 1cos bt a - sin bt b2 + i1sin bt a + cos bt b26 .
We have thereby expressed w1 1t2 in the form w1 1t2 = x1 1t2 + ix2 1t2, where x1 1t2 and x2 1t2 are the two real vector functions (4) (5)
x1 1t2 J eat cos bt a - eat sin bt b , x2 1t2 J eat sin bt a + eat cos bt b .
†
Recall that the complex roots of a polynomial equation with real coefficients must occur in complex conjugate pairs.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.6
Complex Eigenvalues
535
Since w1 1t2 is a solution to 112, then w1= 1t2 = Aw1 1t2 ,
x1= + ix2= = Ax1 + iAx2 . Equating the real and imaginary parts yields x1= 1t2 = Ax1 1t2
x2= 1t2 = Ax2 1t2 .
and
Hence, x1 1t2 and x2 1t2 are real vector solutions to (1) associated with the complex conjugate eigenvalues a { ib. Because a and b are not both the zero vector, it can be shown that x1 1t2 and x2 1t2 are linearly independent vector functions on 1 - ∞, ∞ 2 (see Problem 15). Let’s summarize our findings.
Complex Eigenvalues If the real matrix A has complex conjugate eigenvalues a { ib with corresponding eigenvectors a { ib, then two linearly independent real vector solutions to x′1t2 = Ax1t2 are
Example 1
(6)
eat cos bt a - eat sin bt b ,
(7)
eat sin bt a + eat cos bt b .
Find a general solution of (8)
Solution
x′1t2 = c
-1 -1
2 d x1t2 . -3
The characteristic equation for A is
0 A - rI 0 = `
-1 - r -1
2 ` = r 2 + 4r + 5 = 0 . -3 - r
Hence, A has eigenvalues r = -2 { i. To find a general solution, we need only find an eigenvector associated with the eigenvalue r = -2 + i. Substituting r = -2 + i into 1A - rI2z = 0 gives c
1-i -1
2 z 0 d c 1d = c d . -1 - i z2 0
The solutions can be expressed as z1 = 2s and z2 = 1 -1 + i2s, with s arbitrary. Hence, the eigenvectors associated with r = -2 + i are z = s col12, -1 + i2. Taking s = 1 gives the eigenvector z = c
0 2 2 d = c d +ic d . 1 -1 -1 + i
We have found that a = -2, b = 1, and z = a + ib with a = col12, -12, and b = col10, 12, so a general solution to (8) is x1t2 = c1 e e-2t cos t c
2 0 d - e-2t sin t c d f -1 1
= + c2 e e-2t sin t c (9)
x1t2 = c1 c
2 0 d + e-2t cos t c d f -1 1
2e-2t cos t 2e-2t sin t d + c2 c -2t d. ◆ -2t e 1cos t - sin t2 -e 1cos t + sin t2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
536
Chapter 9
Matrix Methods for Linear Systems
k1
k2
k3
m1
m2
x1 > 0
x2 > 0
x1 = 0
x2 = 0
Figure 9.5 Coupled mass–spring system with fixed ends
Complex eigenvalues occur in modeling coupled mass–spring systems. For example, the motion of the mass–spring system illustrated in Figure 9.5 is governed by the second-order system (10)
m1x1> = -k1x1 + k2 1x2 - x1 2 ,
m2x2> = -k2 1x2 - x1 2 - k3x2 ,
where x1 and x2 represent the displacements of the masses m1 and m2 to the right of their equilibrium positions and k1, k2, k3 are the spring constants of the three springs (see the discussion in Section 5.6). If we introduce the new variables y1 J x1, y2 J x1= , y3 J x2, y4 J x2= , then we can rewrite the system in the normal form
(11)
0 - 1k1 + k2 2 >m1 y′1t2 = Ay1t2 = D 0 k2 >m2
1 0 0 0
0 k2 >m1 0 - 1k2 + k3 2 >m2
0 0 T y1t2 . 1 0
For such a system, it turns out that A has only imaginary eigenvalues and they occur in complex conjugate pairs: {ib1, {ib2. Hence, any solution will consist of sums of sine and cosine functions. The frequencies of these functions f1 J
b1 2p
and
f2 J
b2 2p
are called the normal or natural frequencies of the system (b1 and b2 are the angular frequencies of the system). In some engineering applications, the only information that is required about a particular device is a knowledge of its normal frequencies; one must ensure that they are far from the frequencies that occur naturally in the device’s operating environment (so that no resonances will be excited). Example 2 Solution
Determine the normal frequencies for the coupled mass–spring system governed by system (11) when m1 = m2 = 1 kg, k1 = 1 N/m, k2 = 2 N/m, and k3 = 3 N/m. To find the eigenvalues of A, we must solve the characteristic equation -r -3 0 A - rI 0 = ∞ 0 2
1 -r 0 0
0 2 -r -5
0 0 ∞ = r 4 + 8r 2 + 11 = 0 . 1 -r
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.6
537
Complex Eigenvalues
From the quadratic formula we find r 2 = -4 { 15, so the four eigenvalues of A are {i24 - 15 and {i24 + 15. Hence, the two normal frequencies for this system are 24 - 15 ≈ 0.211 2p
9.6
and
24 + 15 ≈ 0.397 cycles per second. ◆ 2p
EXERCISES
In Problems 1– 4, find a general solution of the system x′1t2 = Ax1t2 for the given matrix A. 2 -4 -2 -5 1. A = c d 2. A = c d 2 -2 1 2 1 3. A = £ 0 0 5 4. A = £ - 1 3
-1 1§ 1
2 1 -1 -5 4 -5
-5 2§ -3
In Problems 5–9, find a fundamental matrix for the system x′1t2 = Ax1t2 for the given matrix A. -1 - 2 -2 -2 5. A = c d 6. A = c d 8 -1 4 2 0 7. A = £ 0 0
0 0 1
1 -1 § 0
0 1 8. A = D 0 0
1 0 0 0
0 0 0 - 13
0 0 T 1 4
0 0 0 -1
0 0 T 1 0
0 -1 9. A = D 0 0
1 0 0 0
In Problems 10–12, use a linear algebra software package to compute the required eigenvalues and eigenvectors for the given matrix A and then give a fundamental matrix for the system x′1t2 = Ax1t2. 0 0 10. A = D 0 13
1 0 0 -4
0 1 0 - 12
0 0 T 1 4
0 0 11. A = D 0 -2
1 0 0 2
0 1 0 -3
0 0 T 1 2
1 0 12. A = E 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 -29
0 0 0U 1 -4
In Problems 13 and 14, find the solution to the given system that satisfies the given initial condition. -3 -1 13. x′1t2 = c d x1t2 , 2 -1 -1 1 (a) x102 = c d (b) x1p2 = c d 0 -1 2 (c) x1 - 2p2 = c d 1
0 (d) x1p>22 = c d 1
0 -1 2 0 § x1t2 , 0 1 -2 0 (a) x102 = £ 2 § (b) x1 -p2 = £ 1 § -1 1
1 14. x′1t2 = £ 0 1
15. Show that x1 1t2 and x2 1t2 given by equations (4) and (5) are linearly independent on 1 - ∞ , ∞ 2, provided b ≠ 0 and a and b are not both the zero vector. 16. Show that x1 1t2 and x2 1t2 given by equations (4) and (5) can be obtained as linear combinations of w1 1t2 and w2 1t2 given by equations (2) and (3). [Hint: Show that x1 1t2 =
w1 1t2 + w2 1t2 2
,
x2 1t2 =
w1 1t2 - w2 1t2 2i
.d
In Problems 17 and 18, use the results of Problem 42 in Exercises 9.5 to find a general solution to the given Cauchy– Euler system for t 7 0. -1 -1 0 17. tx′1t2 = £ 2 -1 1 § x1t2 0 1 -1 18. tx′1t2 = c
-1 9
-1 d x1t2 -1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
538
Chapter 9
Matrix Methods for Linear Systems
19. For the coupled mass–spring system governed by system (10), assume m1 = m2 = 1 kg, k1 = k2 = 2 N/m, and k3 = 3 N/m. Determine the normal frequencies for this coupled mass–spring system. 20. For the coupled mass–spring system governed by system (10), assume m1 = m2 = 1 kg, k1 = k2 = k3 = 1 N/m, and assume initially that x1 102 = 0 m, x1= 102 = 0 m/sec, x2 102 = 2 m, and x2= 102 = 0 m/sec. Using matrix algebra techniques, solve this initial value problem. 21. RLC Network. The currents in the RLC network given by the schematic diagram in Figure 9.6 are governed by the following equations: 4I 2= 1t2 + 52q1 1t2 = 10 ,
13I3 1t2 + 52q1 1t2 = 10 , I1 1t2 = I2 1t2 + I3 1t2 , 1 —– 52
I1 10 volts
farads
I1 I2
I3 13 ohms
4 henries
I1 Figure 9.6 RLC network for Problem 21
I1
50 henries I2 80 ohms
160 volts
I3 1 800
farads
I1 Figure 9.7 RLC network for Problem 22
where q3 1t2 is the charge on the capacitor, I3 1t2 = q3′ 1t2, and initially q3 102 = 0.5 coulombs and I3 102 = 0 amps. Solve for the currents I1, I2, and I3. 3Hint: Differentiate the first two equations, use the third equation to eliminate I3, and form a normal system with x1 = I1, x2 = I 1′ , and x3 = I2.4 23. Stability. In Problem 49 of Exercises 9.5, (page 542), we discussed the notion of stability and asymptotic stability for a linear system of the form x′1t2 = Ax1t2. Assume that A has all distinct eigenvalues (real or complex). (a) Show that the system is stable if and only if all the eigenvalues of A have nonpositive real part. (b) Show that the system is asymptotically stable if and only if all the eigenvalues of A have negative real part. 24. (a) For Example 1, page 535, verify that
where q1 1t2 is the charge on the capacitor, I1 1t2 = q1= 1t2, and initially q1 102 = 0 coulombs and I1 102 = 0 amps. Solve for the currents I1, I2, and I3. 3Hint: Differentiate the first two equations, eliminate I1, and form a normal system with x1 = I2, x2 = I 2= , and x3 = I3.4 22. RLC Network. The currents in the RLC network given by the schematic diagram in Figure 9.7 are governed by the following equations:
-e-2t cos t + e-2t sin t d e-2t cos t -e-2t sin t - e-2t cos t d + c2 c e-2t sin t is another general solution to equation (8). (b) How can the general solution of part (a) be directly obtained from the general solution derived in (9) on page 535? x1t2 = c1 c
50I 1= 1t2 + 80I2 1t2 = 160 ,
50I 1= 1t2 + 800q3 1t2 = 160 , I1 1t2 = I2 1t2 + I3 1t2 ,
9.7 Nonhomogeneous Linear Systems The techniques discussed in Chapters 4 and 6 for finding a particular solution to the nonhomogeneous equation y″ + p1x2y′ + q1x2y = g1x2 have natural extensions to nonhomogeneous linear systems.
Undetermined Coefficients The method of undetermined coefficients can be used to find a particular solution to the nonhomogeneous linear system x′1t2 = Ax1t2 + f1t2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.7
Nonhomogeneous Linear Systems
539
when A is an n * n constant matrix and the entries of f1t2 are polynomials, exponential functions, sines and cosines, or finite sums and products of these functions. We can use the procedure box in Section 4.5 (page 184) and reproduced at the back of the book as a guide in choosing the form of a particular solution xp 1t2. Some exceptions are discussed in the exercises (see Problems 25–28). Example 1
Find a general solution of (1)
Solution
x′1t2 = Ax1t2 + tg ,
where
1 A = £ -2 2
-2 1 2
2 2§ 1
and
g = £
-9 0§ . -18
In Example 5 in Section 9.5, page 529, we found that a general solution to the corresponding homogeneous system x′ = Ax is (2)
1 -1 -1 3t -3t xh 1t2 = c1e £ 0 § + c2e £ 1 § + c3e £ -1 § . 1 0 1 3t
Since the entries in f1t2 J tg are just linear functions of t, we are inclined to seek a particular solution of the form a1 b1 xp 1t2 = ta + b = t £ a2 § + £ b2 § , a3 b3
where the constant vectors a and b are to be determined. Substituting this expression for xp 1t2 into system (1) yields a = A1ta + b2 + tg , which can be written as
t1Aa + g2 + 1Ab - a2 = 0 .
Setting the “coefficients” of this vector polynomial equal to zero yields the two systems (3)
Aa = -g ,
(4)
Ab = a .
By Gaussian elimination or by using a linear algebra software package, we can solve (3) for a and we find a = col15, 2, 42. Next we substitute for a in (4) and solve for b to obtain b = col11, 0, 22. Hence a particular solution for (1) is (5)
5 1 5t + 1 xp 1t2 = ta + b = t £ 2 § + £ 0 § = £ 2t § . 4 2 4t + 2
A general solution for (1) is x1t2 = xh 1t2 + xp 1t2, where xh 1t2 is given in (2) and xp 1t2 in (5). ◆ In the preceding example, the nonhomogeneous term f1t2 was a vector polynomial. If, instead, f1t2 has the form f1t2 = col11, t, sin t2 , then, using the superposition principle, we would seek a particular solution of the form xp 1t2 = ta + b + 1sin t2c + 1cos t2d .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
540
Chapter 9
Matrix Methods for Linear Systems
Similarly, if
f1t2 = col1t, et, t 2 2 ,
we would take
xp 1t2 = t 2a + tb + c + etd .
Of course, we must modify our guess, should one of the terms be a solution to the corresponding homogeneous system. If this is the case, the annihilator method [equations (15) and (16) of Section 6.3, page 337] would appear to suggest that for a nonhomogeneity f1t2 of the form ertt mg, where r is an eigenvalue of A, m is a nonnegative integer, and g is a constant vector, a particular solution of x′ = Ax + f can be found in the form xp 1t2 = ert 5t m + sam + s + t m + s - 1am + s - 1 + g + ta1 + a0 6 ,
for a suitable choice of s. We omit the details.
Variation of Parameters In Section 4.6 we discussed the method of variation of parameters for a general constantcoefficient second-order linear equation. Simply put, the idea is that if a general solution to the homogeneous equation has the form xh 1t2 = c1x1 1t2 + c2x2 1t2, where x1 1t2 and x2 1t2 are linearly independent solutions to the homogeneous equation, then a particular solution to the nonhomogeneous equation would have the form xp 1t2 = y1 1t2x1 1t2 + y2 1t2x2 1t2, where y1 1t2 and y2 1t2 are certain functions of t. A similar idea can be used for systems. Let X1t2 be a fundamental matrix for the homogeneous system (6)
x′1t2 = A1t2x1t2 ,
where now the entries of A may be any continuous functions of t. Because a general solution to (6) is given by X1t2c, where c is a constant n * 1 vector, we seek a particular solution to the nonhomogeneous system (7)
x′1t2 = A1t2x1t2 + f1t2
of the form (8)
xp 1t2 = X1t2Y1t2 ,
where Y1t2 = col 1 y1 1t2, c, yn 1t2 2 is a vector function of t to be determined. To derive a formula for Y1t2, we first differentiate (8) using the matrix version of the product rule to obtain xp= 1t2 = X1t2Y′1t2 + X′1t2Y1t2 .
Substituting the expressions for xp 1t2 and xp= 1t2 into (7) yields (9)
X1t2Y′1t2 + X′1t2Y1t2 = A1t2X1t2Y1t2 + f1t2 .
Since X1t2 satisfies the matrix equation X′1t2 = A1t2X1t2, equation (9) becomes XY′ + AXY = AXY + f , XY′ = f .
Multiplying both sides of the last equation by X-1 1t2 [which exists since the columns of X1t2 are linearly independent] gives Y′1t2 = X-1 1t2 f1t2 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.7
Nonhomogeneous Linear Systems
541
Integrating, we obtain Y1t2 =
L
X-1 1t2 f1t2dt .
Hence, a particular solution to (7) is (10)
xp 1t2 = X1t2Y1t2 = X1t2
L
X−1 1t2 f1t2dt .
Combining (10) with the solution X1t2c to the homogeneous system yields the following general solution to (7): (11)
x1t2 = X1t2c + X1t2
L
X−1 1t2 f1t2dt .
The elegance of the derivation of the variation of parameters formula (10) for systems becomes evident when one compares it with the more lengthy derivations for the scalar case in Sections 4.6 and 6.4. Given an initial value problem of the form (12)
x1t0 2 = x0 ,
x′1t2 = A1t2x1t2 + f1t2 ,
we can use the initial condition x1t0 2 = x0 to solve for c in (11). Expressing x1t2 using a definite integral, we have t
x1t2 = X1t2c + X1t2
Lt0
X-1 1s2 f1s2ds .
From the initial condition x1t0 2 = x0, we find x0 = x1t0 2 = X1t0 2c + X1t0 2
t0
Lt0
X-1 1s2 f1s2ds = X1t0 2c .
Solving for c, we have c = X-1 1t0 2x0. Thus, the solution to (12) is given by the formula (13)
x1t2 = X1t2X−1 1t0 2x0 + X1t2
t
Lt0
X −1 1s2 f1s2 ds .
To apply the variation of parameters formulas, we first must determine a fundamental matrix X1t2 for the homogeneous system. In the case when the coefficient matrix A is constant, we have discussed methods for finding X1t2. However, if the entries of A depend on t, the determination of X1t2 may be extremely difficult (entailing, perhaps, a matrix power series!).
Example 2
Find the solution to the initial value problem (14)
x′1t2 = c
2 1
-3 e2t d x1t2 + c d , -2 1
x102 = c
-1 d. 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
542
Chapter 9
Solution
Matrix Methods for Linear Systems
In Example 3 in Section 9.5, we found two linearly independent solutions to the corresponding homogeneous system; namely, 3et e-t x1 1t2 = c t d and x2 1t2 = c -t d . e e Hence a fundamental matrix for the homogeneous system is 3et e-t X1t2 = c t -t d . e e Although the solution to (14) can be found via the method of undetermined coefficients, we shall find it directly from formula (13). For this purpose, we need X-1 1t2. By formula (3) of Section 9.3 (page 510): X 1t2 = C -1
-2
1 e-t
- 12 e-t
- 12 et
- 32 et
S.
Substituting into formula (13), we obtain the solution x1t2 = c
1
3et e-t + c t -t d e e
#
= £
= £
9.7
- 32 et + 12 e-t - 12 et + 12 e-t - 32 et + 12 e-t - 12 et + 12 e-t
3 2
t
0
= £
- 12
3et e-t 2 d£ et e-t - 1 2 £
§c
1 e-s 2 1 - 2 es
§ +c
t
-1 d 0 - 12 e-s 3 es 2 -t
3e e d et e-t
t
#
£
0
§ +c
§c
e2s d ds 1
1 es - 1 e-s 2 2 § ds 1 3s - 2 e + 32 es
1 t 1 -t 3et e-t 2 e + 2 e - 1 d £ § et e-t 3 et - 1 e3t - 4 3 2 6
- 92 et - 56 e-t + 43 e2t + 3 - 32 et - 56 e-t + 13 e2t + 2
§ . ◆
EXERCISES
In Problems 1–6, use the method of undetermined coefficients to find a general solution to the system x′1t2 = Ax1t2 + f1t2, where A and f1t2 are given. 6 1 - 11 1. A = c d , f1t2 = c d 4 3 -5 2. A = c
1 1 d , 4 1
f1t2 = c
-t - 1 d - 4t - 2
1 3. A = £ -2 2 4. A = c
-2 1 2
2 2 d , 2 2
2 2§ , 1 f1t2 = c
2et f1t2 = £ 4et § -2et - 4 cos t d - sin t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.7
0 5. A = £ - 1 0 6. A = c
-1 0 0 0§ , 0 1
e2t f1t2 = £ sin t § t
t f1t2 = e-2t c d 3
1 1 d , 0 2
In Problems 7–10, use the method of undetermined coefficients to determine only the form of a particular solution for the system x′1t2 = Ax1t2 + f1t2, where A and f1t2 are given. 0 1 sin 3t 7. A = c d , f1t2 = c d 2 0 t 8. A = c
-1 0 d , 2 2
0 9. A = £ -1 0 10. A = c
2 1
f1t2 = c
-1 0 0 1§ , 0 1 -1 d , 5
t2 d t+1
e2t f1t2 = £ sin t § t
f1t2 = c
te-t d 3e-t
In Problems 11–16, use the variation of parameters formula (11) to find a general solution of the system x′1t2 = Ax1t2 + f1t2, where A and f1t2 are given. 1 f1t2 = c d 0
11. A = c
0 1 d , -1 0
12. A = c
1 2 d , 3 2
13. A = c
8 4
-4 d , -2
f1t2 = c
0 1
-1 d , 0
t2 f1t2 = c d 1
14. A = c 15. A = c
-4 2
16. A = c
0 1 d , -1 0
f1t2 = c
1 d -1
t -2 >2 d t -2
f1t2 = c
2 d , -1
f1t2 = c
-1
t d 4 + 2t -1
8 sin t d 0
In Problems 17–20, use the variation of parameters formulas (11) and possibly a linear algebra software package to find a general solution of the system x′1t2 = Ax1t2 + f1t2, where A and f1t2 are given. 3et f1t2 = £ - et § - et
0 1 1 17. A = £ 1 0 1 § , 1 1 0 1 18. A = £ 0 0 0 -1 19. A = D 0 0
-1 0 -1 1 0 0 0
1 1§ , 2 0 0 0 1
0 0 T, 1 0
0 f1t2 = £ et § et t 0 f1t2 = D -t T e t
543
Nonhomogeneous Linear Systems
0 0 20. A = D 0 8
1 0 0 -4
0 1 0 -2
0 0 T, 1 -1
et 0 f1t2 = D T 1 0
In Problems 21 and 22, find the solution to the given system that satisfies the given initial condition. 0 2 et 21. x′1t2 = c d x1t2 + c t d , -1 3 -e 5 0 (a) x102 = c d (b) x112 = c d 4 1 1 (c) x152 = c d 0 22. x′1t2 = c
(d) x1 -12 = c
-4 d 5
2 4t d x1t2 + c d , -2 - 4t - 2 4 1 (a) x102 = c d (b) x122 = c d -5 1 0 4
23. Using matrix algebra techniques and the method of undetermined coefficients, find a general solution for x″1t2 + y′1t2 - x1t2 + y1t2 = - 1 , x′1t2 + y′1t2 - x1t2 = t 2 . Compare your solution with the solution in Example 4 in Section 5.2, page 247. 24. Using matrix algebra techniques and the method of undetermined coefficients, solve the initial value problem x′1t2 - 2y1t2 = 4t ,
x102 = 4 ;
y′1t2 + 2y1t2 - 4x1t2 = -4t - 2 ,
y102 = -5 .
Compare your solution with the solution in Example 1 in Section 7.10, page 412. 25. To find a general solution to the system et 0 1 d x1t2 + f1t2 , where f1t2 = c d , 0 −2 3 proceed as follows: (a) Find a fundamental solution set for the corresponding homogeneous system. (b) The obvious choice for a particular solution would be a vector function of the form xp 1t2 = eta; however, the homogeneous system has a solution of this form. The next choice would be xp 1t2 = teta. Show that this choice does not work. (c) For systems, multiplying by t is not always sufficient. The proper guess is
x′1t2 = c
xp 1t2 = teta + etb .
Use this guess to find a particular solution of the given system. (d) Use the results of parts (a) and (c) to find a general solution of the given system.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
544
Chapter 9
Matrix Methods for Linear Systems
26. For the system of Problem 25, we found that a proper guess for a particular solution is xp 1t2 = teta + etb. In some cases a or b may be zero. (a) Find a particular solution for the system of Problem 25 if f1t2 = col13et, 6et 2. (b) Find a particular solution for the system of Problem 25 if f1t2 = col1et, et 2. 27. Find a general solution of the system 0 1 1 -1 x′1t2 = £ 1 0 1 § x1t2 + £ - 1 - e-t § . 1 1 0 - 2e-t
33. RL Network. The currents in the RL network given by the schematic diagram in Figure 9.8 are governed by the following equations: 2I 1= 1t2 + 90I2 1t2 = 9 ,
I 3= 1t2 + 30I4 1t2 - 90I2 1t2 = 0 ,
60I5 1t2 - 30I4 1t2 = 0 , I1 1t2 = I2 1t2 + I3 1t2 ,
I3 1t2 = I4 1t2 + I5 1t2 .
3Hint: Try xp 1t2 = e-ta + te-tb + c.4 28. Find a particular solution for the system 1 x′1t2 = c -1
-1 -3 d x1t2 + c d . 1 1
3Hint: Try xp 1t2 = ta + b.4
In Problems 29 and 30, find a general solution to the given Cauchy–Euler system for t 7 0. (See Problem 42 in Exercises 9.5, page 533.) Remember to express the system in the form x′1t2 = A1t2x1t2 + f1t2 before using the variation of parameters formula. 2 -1 t -1 29. tx′1t2 = c d x1t2 + c d 3 -2 1 4 -3 t 30. tx′1t2 = c d x1t2 + c d 8 -6 2t 31. Use the variation of parameters formula (10) to derive a formula for a particular solution yp to the scalar equation y″ + p1t2y′ + q1t2y = g1t2 in terms of two linearly independent solutions y1 1t2, y2 1t2 of the corresponding homogeneous equation. Show that your answer agrees with the formulas derived in Section 4.6. [Hint: First write the scalar equation in system form.] 32. Conventional Combat Model. A simplistic model of a pair of conventional forces in combat yields the following system: x′ = c
-a -c
-b p d x+ c d , -d q
where x = col1x1, x2 2. The variables x1 1t2 and x2 1t2 represent the strengths of opposing forces at time t. The terms - ax1 and -dx2 represent the operational loss rates, and the terms -bx2 and -cx1 represent the combat loss rates for the troops x1 and x2, respectively. The constants p and q represent the respective rates of reinforcement. Let a = 1, b = 4, c = 3, d = 2, and p = q = 5. By solving the appropriate initial value problem, determine which forces will win if (a) x1 102 = 20 , x2 102 = 20 . (b) x1 102 = 21 , x2 102 = 20 . (c) x1 102 = 20 , x2 102 = 21 .
2 henries
I1
I3
1 henry
I2 9 volts
90 ohms
I3
I4
I5
30 ohms
60 ohms
I2 I1
I3
Figure 9.8 RL network for Problem 33
Assume the currents are initially zero. Solve for the five currents I1, . . . , I5. 3Hint: Eliminate all unknowns except I2 and I5, and form a normal system with x1 = I2 and x2 = I5.4 34. Mixing Problem. Two tanks A and B, each holding 50 L of liquid, are interconnected by pipes. The liquid flows from tank A into tank B at a rate of 4 L/min and from B into A at a rate of 1 L/min (see Figure 9.9). The liquid inside each tank is kept well stirred. A brine solution that has a concentration of 0.2 kg/L of salt flows into tank A at a rate of 4 L/min. A brine solution that has a concentration of 0.1 kg/L of salt flows into tank B at a rate of 1 L/min. The solutions flow out of the system from both tanks—from tank A at 1 L/min and from tank B at 4 L/min. If, initially, tank A contains pure water and tank B contains 0.5 kg of salt, determine the mass of salt in each tank at time t Ú 0. After several minutes have elapsed, which tank has the higher concentration of salt? What is its limiting concentration? 4 L/min 0.2 kg/L
1 L/min
A
4 L/min
B
x1(t)
x 2(t)
50 L
50 L
x1(0) = 0 kg
x2(0) = 0.5 kg
1 L/min 0.1 kg/L
4 L/min
1 L/min Figure 9.9 Mixing problem for interconnected tanks
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.8
The Matrix Exponential Function
545
9.8 The Matrix Exponential Function In this chapter we have developed various ways to extend techniques for scalar differential equations to systems. In this section we take a substantial step further by showing that with the right notation, the formulas for solving normal systems with constant coefficients are identical to the formulas for solving first-order equations with constant coefficients. For example, we know that a general solution to the equation x′1t2 = ax1t2, where a is a constant, is x1t2 = ceat. Analogously, we show that a general solution to the normal system (1)
x′1t2 = Ax1t2 ,
where A is a constant n * n matrix, is x1t2 = eAtc. Our first task is to define the matrix exponential eAt. If A is a constant n * n matrix, we define eAt by taking the series expansion for eat and replacing a by A; that is, (2)
eAt J I + At + A2
t2 tn + P + An + P. 2! n!
(Note that we also replace 1 by I.) By the right-hand side of (2), we mean the n * n matrix whose elements are power series with coefficients given by the corresponding entries in the matrices I, A, A2 >2!, . . . . If A is a diagonal matrix, then the computation of eAt is straightforward. For example, if A = c
-1 0 d , 0 2
then A2 = AA = c
1 0 d , 0 4
A3 = c
-1 0 d , 0 8
c , An = c
1 -12 n 0
0 d, 2n
and so ∞
At
e
∞
n a 1 -12
tn n=0 = D = aA n! n=0 n
tn n!
0 ∞ nt a 2 n! n=0 n
0
T = c
e-t 0 d . 0 e2t
More generally, if A is an n * n diagonal matrix with r1, r2, c, rn down its main diagonal, then eAt is the diagonal matrix with er1t, er2t, c, ernt down its main diagonal (see Problem 26). If A is not a diagonal matrix, the computation of eAt is more involved. We deal with this important problem later in this section. It can be shown that the series (2) converges for all t and has many of the same properties† as the scalar exponential eat. †
For proofs of these and other properties of the matrix exponential function, see Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and Arthur David Snider (John Wiley & Sons, Hoboken, New Jersey, 2016), Chapter 7. See also the amusing articles, “Nineteen Dubious Ways to Compute the Exponential of a Matrix,” by Cleve Moler and Charles van Loan, SIAM Review, Vol. 20, No. 4 (Oct. 1978), and “Nineteen . . . Matrix, Twenty-Five Years Later,” ibid., Vol. 45, No. 1 (Jan. 2003).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
546
Chapter 9
Matrix Methods for Linear Systems
Properties of the Matrix Exponential Function Theorem 7. Let A and B be n * n constant matrices and r, s, and t be real (or complex) numbers. Then, (a) eA0 = e0 = I . (b) (c) (d) (e)
eA1t+s2 = eAteAs . 1eAt 2 -1 = e-At . e1A+B2t = eAteBt, provided that AB = BA . erIt = ertI .
Property (c) has profound implications. First, it asserts that for any matrix A, the matrix eAt has an inverse for all t. Moreover, this inverse is obtained by simply replacing t by -t. (Note that (c) follows from (a) and (b) with s = -t.) In applying property (d) (the law of exponents), one must exercise care because of the stipulation that the matrices A and B commute (see Problem 25). Another important property of the matrix exponential arises from the fact that we can differentiate the series in (2) term by term. This gives d At d t2 tn 1e 2 = a I + At + A2 + g + An + g b dt dt 2 n! = A + A2t + A3
t2 tn - 1 + g + g + An 2 1n - 12!
= A c I + At + A2
t2 tn - 1 + gd . + g + An - 1 2 1n - 12!
Hence, d At 1e 2 = AeAt , dt and so eAt is a solution to the matrix differential equation X′ = AX. Since eAt is invertible [property (c)], it follows that the columns of eAt are linearly independent solutions to system (1). Combining these facts we have the following.
eAt Is a Fundamental Matrix Theorem 8. If A is an n * n constant matrix, then the columns of the matrix exponential eAt form a fundamental solution set for the system x′1t2 = Ax1t2. Therefore, eAt is a fundamental matrix for the system, and a general solution is x1t2 = eAtc. If a fundamental matrix X1t2 for the system x′ = Ax has somehow been determined, it is easy to compute eAt, as the next theorem describes.
Relationship Between Fundamental Matrices Theorem 9. Let X1t2 and Y1t2 be two fundamental matrices for the same system x′ = Ax. Then there exists a constant matrix C such that Y1t2 = X1t2C for all t. In particular, (3)
eAt = X1t2X102 -1 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.8
The Matrix Exponential Function
547
Proof. Since X1t2 is a fundamental matrix, every column of Y1t2 can be expressed as X1t2c for a suitable constant vector c, so column-by-column we have £
Y1t2
§ = £
f § £ c1 f
X1t2
f c2 f
g g g
f cn § = X1t2C . f
If we choose Y1t2 = eAt = X1t2C, then (3) follows by setting t = 0. ◆ If the n * n matrix A has n linearly independent eigenvectors ui, then Theorem 5 of Section 9.5 (page 526) provides us with X(t) and (3) gives us (4)
eAt = 3er1tu1 er2tu2 g erntun 4 3u1 u2 g un 4 -1 .
Are there any other ways that we can compute eAt? As we observed, if A is a diagonal matrix, then we simply exponentiate the diagonal elements of At to obtain eAt. Also, if A is a nilpotent matrix, that is, Ak = 0 for some positive integer k, then the series for eAt has only a finite number of terms—it “truncates”—since Ak = Ak + 1 = g = 0. In such cases, eAt reduces to eAt = I + At + g + Ak - 1
tk - 1 t k-1 + 0 + 0 + g = I + At + g + Ak - 1 . 1k - 12! 1k - 12!
Thus eAt can be calculated in finite terms if A is diagonal or nilpotent. Can we take this any further? Yes; a consequence of the Cayley–Hamilton theorem† is that when the characteristic polynomial for A has the form p1r2 = 1r1 - r2 n, then 1r1I - A2 n = 0 = 1 -12 n 1A - r1I2 n. So if A has only one (multiple) eigenvalue r1, then A - r1I is nilpotent, and we exploit that by writing A = r1I + A - r1I: eAt = er1Ite1A - r1I2t = er1t c I + 1A - r1I2t + g + 1A - r1I2 n - 1
Example 1
Find the fundamental matrix eAt for the system x′ = Ax ,
Solution
tn - 1 d . 1n - 12!
where
2 A = £ 1 -2
1 2 -2
1 1§ . -1
We begin by computing the characteristic polynomial for A: 2-r p1r2 = 0 A - rI 0 = † 1 -2
1 2-r -2
1 1 † = -r 3 + 3r 2 - 3r + 1 = - 1r - 12 3 . -1 - r
Thus, r = 1 is an eigenvalue of A with multiplicity 3. By the Cayley–Hamilton theorem, 1A - I2 3 = 0, and so (5)
eAt = ete1A-I2t = et e I + 1A - I2t + 1A - I2 2
t2 f. 2
The Cayley–Hamilton theorem states that a matrix satisfies its own characteristic equation, that is, p1A2 = 0. For a discussion of this theorem, see Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and Arthur David Snider (John Wiley & Sons, Hoboken, New Jersey, 2016), Section 6.3. †
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
548
Chapter 9
Matrix Methods for Linear Systems
Computing, we find 1 A-I = £ 1 -2
1 1 -2
1 1§ -2
and
0 0 0 1A - I2 = £ 0 0 0 § . 0 0 0 2
Substituting into (5) yields eAt
(6)
1 0 0 1 t t = e £ 0 1 0 § + te £ 1 0 0 1 -2
1 1 -2
et + tet 1 tet tet 1 § = £ tet et + tet tet § . ◆ t t t -2 -2te -2te e - 2tet
We are not through with nilpotency yet. What if we have a nonzero vector u, an exponent m, and a scalar r satisfying 1A - r I2 m u = 0, so that A - r I is “nilpotent when restricted to u”? Such vectors are given a (predictable) name.
Generalized Eigenvectors Definition 5. Let A be a square matrix. A nonzero vector u satisfying (7)
1A - rI2 m u = 0
for some scalar r and some positive integer m is called a generalized eigenvector associated with r. [Note that r must be an eigenvalue of A, since the final nonzero vector in the list u, 1A - rI2u, 1A - rI2 2 u, c, 1A - rI2 m - 1 u is a “regular” eigenvector.]
A valuable feature of generalized eigenvectors u is that we can compute eAtu in finite terms without knowing eAt, because eAt u = erIte1A - rI2t u (8)
= ert c Iu + t1A - rI2u + g + = ert c u + t1A - rI2u + g +
tm - 1 tm 1A - rI2 m - 1 u + 1A - rI2 m u + g d 1m - 12! m!
tm - 1 1A - rI2 m - 1 u + 1m - 12!
0
+ gd .
Moreover, eAtu is a solution to the system x′ = Ax (recall Theorem 8). Hence if we can find n generalized eigenvectors ui for the n * n matrix A that are linearly independent, the corresponding solutions xi 1t2 = eAtui will form a fundamental solution set and can be assembled into a fundamental matrix X1t2. (Since the xi’s are solutions that reduce to the linearly independent ui’s at t = 0, they are always linearly independent.) Finally, we get the matrix exponential by applying (3) from Theorem 9: (9)
eAt = X1t2X102 -1 = 3eAtu1 eAtu2 g eAtun 4 3u1 u2 g un 4 -1 ,
computed in a finite number of steps. Of course, any (regular) eigenvector is a generalized eigenvector (corresponding to m = 1), and if A has a full set of n linearly independent eigenvectors, then (9) is simply the representation (4). But what if A is defective, that is, possesses fewer than n linearly
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.8
The Matrix Exponential Function
549
independent eigenvectors? Luckily, the primary decomposition theorem in advanced linear algebra* guarantees that when the characteristic polynomial of A is (10)
p1r2 = 1r1 - r2 m1 1r2 - r2 m2 g 1rk - r2 mk ,
where the ri ’s are the distinct eigenvalues of A and mi is the multiplicity of the eigenvalue ri, then for each i there exist mi linearly independent generalized eigenvectors satisfying (11)
1A - riI2 mi u = 0 .
Furthermore, the conglomeration of these n = m1 + m2 + g + mk generalized eigenvectors is linearly independent.† We’re home! The following scheme will always yield a fundamental solution set, for any square matrix A.
Solving x ′ = Ax To obtain a fundamental solution set for x′ = Ax for any constant square matrix A:
(a) Compute the characteristic polynomial p1r2 = 0 A - rI 0 . (b) Find the zeros of p1r2 and express it as p1r2 = 1r1 - r2 m1 1r2 - r2 m2 g 1rk - r2 mk, where r1, r2, c, rk are the distinct zeros (i.e., eigenvalues) and m1, m2, c, mk are their multiplicities. (c) For each eigenvalue ri find mi linearly independent generalized eigenvectors by applying the Gauss–Jordan algorithm to the system 1A - riI2 mi u = 0. (d) Form n = m1 + m2 + g + mk linearly independent solutions to x′ = Ax by computing x1t2 J eAtu = ert c u + t1A - rI2u +
t2 1A - rI2 2 u + g d 2!
for each generalized eigenvector u found in part (c) and corresponding eigenvalue r. If r has multiplicity m, this series terminates after m or fewer terms. We can then, if desired, assemble the fundamental matrix X1t2 from the n solutions and obtain the matrix exponential eAt using (9).‡
Example 2
Find the fundamental matrix eAt for the system (12)
Solution
x′ = Ax ,
where
1 0 0 A = £1 3 0§ . 0 1 1
We begin by finding the characteristic polynomial for A: 1-r
p1r2 = 0 A - rI 0 = † 1 0
0 3-r 1
0 0 † = - 1r - 12 2 1r - 32 . 1-r
*
See Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and Arthur David Snider (John Wiley & Sons, Hoboken, New Jersey, 2016), Section 7.3. † Some of the generalized eigenvectors satisfy (11) with a lower exponent, but that will not affect the calculation. ‡ With defective matrices this algorithm may prove ineffective for computer implementation; rounding effects inevitably foil the machine’s ability to detect multiple eigenvalues.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
550
Chapter 9
Matrix Methods for Linear Systems
Hence, the eigenvalues of A are r = 1 with multiplicity 2 and r = 3 with multiplicity 1. Since r = 1 has multiplicity 2, we must determine two linearly independent associated generalized eigenvectors satisfying 1A - I2 2 u = 0. From 0 0 0 u1 0 1A - I2 u = £ 2 4 0 § £ u2 § = £ 0 § , 1 2 0 u3 0 2
we find u2 = s, u1 = -2u2 = -2s, and u3 = y, where s and y are arbitrary. Taking s = 0 and y = 1, we obtain the generalized eigenvector u1 = col10, 0, 12. The corresponding solution to (12) is
(13)
0 0 0 0 0 0 t x1 1t2 = e 5u1 + t1A - l2u1 6 = e £ 0 § + te £ 1 2 0 § £ 0 § = £ 0 § et 1 0 1 0 1 t
t
(u1 is, in fact, a regular eigenvector). Next we take s = 1 and y = 0 to derive the second linearly independent generalized eigenvector u2 = col1 -2, 1, 02 and (linearly independent) solution (14)
x2 1t2 = eAtu2 = et 5u2 + t1A - I2u2 6 -2 0 0 0 -2 t = e £ 1 § + te £ 1 2 0 § £ 1 § 0 0 0 1 0 t
-2et -2 0 t = e £ 1 § + te £ 0 § = £ et § .† 0 1 tet t
For the eigenvalue r = 3, we solve 1A - 3I2u = 0, that is, -2 £ 1 0
0 0 1
0 u1 0 0 § £ u2 § = £ 0 § , -2 u3 0
to obtain the eigenvector u3 = col10, 2, 12. Hence, a third linearly independent solution to (12) is
(15)
0 0 x3 1t2 = e3tu3 = e3t £ 2 § = £ 2e3t § . 1 e3t
The matrix X1t2 whose columns are the vectors x1 1t2, x2 1t2, and x3 1t2, 0 X1t2 = £ 0 et
-2et 0 et 2e3t § , tet e3t
Note that x2 1t2 has been expressed in the format discussed in Problem 35 of Exercises 9.5, page 532.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 9.8
The Matrix Exponential Function
551
is a fundamental matrix for (12). Setting t = 0 and then computing X-1 102, we find 0 X102 = £ 0 1
-2 1 0
0 2§ 1
and
- 14
- 12
X-1 102 = E - 12
0
0U .
1 4
1 2
0
1
It now follows from formula (3) that
eAt
0 = X1t2X-1 102 = £ 0 et
= E
-2e et tet
t
- 14
0 2e3t § E - 12 e3t 1 4
- 12
1
0
0U
1 2
0
et
0
0
- 12 et + 12 e3t
e3t
0U . ◆
- 14 et - 12 tet + 14 e3t
- 12 et + 12 e3t
et
Use of the fundamental matrix eAt simplifies many computations. For example, the properties eAte-As = eA1t-s2 and 1eAt0 2 -1 = e-At0 enable us to rewrite the variation of parameters formula (13) in Section 9.7 (page 541) in a simpler form. Namely, the solution to the initial value problem x′ = Ax + f1t2, x1t0 2 = x0 is given by x1t2 = eA1t-t02x0 +
t
eA1t-s2f1s2ds , Lt0 which is a system version of the formula for the solution to the scalar initial value problem x′ = ax + f1t2, x1t0 2 = x0. In closing, we remark that the software packages for eigenvalue computation listed in Section 9.5 (page 524) also contain subroutines for computing the matrix exponential. (16)
9.8
EXERCISES
In Problems 1–6, (a) show that the given matrix A satisfies 1A - rI2 k = 0 for some number r and some positive integer k and (b) use this fact to determine the matrix eAt. [Hint: Compute the characteristic polynomial and use the Cayley–Hamilton theorem.] 3 -2 1 -1 1. A = c d 2. A = c d 0 3 1 3 2 3. A = £ - 3 9
1 -1 3
-1 1§ -4
2 4. A = £ 0 0
1 2 0
3 -1 § 2
-2 5. A = £ 4 1
0 -2 0
0 0§ -2
0 6. A = £ 0 -1
1 0 -3
0 1§ -3
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
552
Chapter 9
Matrix Methods for Linear Systems
In Problems 7–10, determine eAt by first finding a fundamental matrix X1t2 for x′ = Ax and then using formula (3). 0 1 1 1 7. A = c d 8. A = c d -1 0 4 1 0 9. A = £ 0 1
1 0 -1
0 1§ 1
0 2 2 10. A = £ 2 0 2 § 2 2 0
In Problems 13–16 determine eAt, using a linear software package to find the eigenvectors. 0 1 0 0 0 0 0 1 0 0 13. A = E 1 - 3 3 0 0U 0 0 0 0 1 0 0 0 -1 0 0 0 -1 0 0
0 1 -2 0 0
0 0 0 0 -1
0 0 0U 1 0
0 0 15. A = E -1 0 0
1 0 -3 0 0
0 1 -3 0 0
0 0 0 0 -4
0 0 0U 1 -4
-1 0 16. A = E 0 0 0
0 0 -1 0 0
0 1 -2 0 0
0 0 0 0 -4
0 0 0U 1 -4
1 1 19. A = D 0 0
1 0 -5 0 1 0 0
1 2 2 1
0 -2 0
0 0 § x1t2 , -2
1 x′1t2 = £ 2 0
1 1 -1
1 -1 § x1t2 , 1
1 x102 = £ 1 § . -1
-1 x102 = £ 0 § . 3
23. Use the results of Problem 3 and the variation of parameters formula (16) to find the solution to the initial value problem 2 1 x′1t2 = £ -3 -1 9 3 0 x102 = £ 3 § . 0
-1 0 1 § x1t2 + £ t § , -4 0
24. Use your answer to Problem 9 and the variation of parameters formula (16) to find the solution to the initial value problem 0 x′1t2 = £ 0 1
1 0 -1
0 0 1 § x1t2 + £ 0 § , 1 t
1 x102 = £ -1 § . 0 25. Let A = c
In Problems 17–20, use the generalized eigenvectors of A to find a general solution to the system x′1t2 = Ax1t2, where A is given. 0 17. A = £ 0 -2
-2 x′1t2 = £ 4 1
22. Use your answer to Problem 12 to find the solution to the initial value problem
In Problems 11 and 12, determine eAt by using generalized eigenvectors to find a fundamental matrix and then using formula (3). 5 -4 0 1 1 1 11. A = £ 1 0 2§ 12. A = £ 2 1 -1 § 0 2 5 0 -1 1
1 0 14. A = E 0 0 0
21. Use the results of Problem 5 to find the solution to the initial value problem
0 1§ -4
0 0 1 18. A = £ 0 1 2 § 0 0 1
2 1 T 0 1
-1 20. A = £ - 1 -4
-8 -3 - 16
1 2§ 7
1 2 d -1 3
and
B = c
2 1 d . 0 1
(a) Show that AB ≠ BA. (b) Show that property (d) in Theorem 7 does not hold for these matrices. That is, show that e1A + B2t ≠ eAteBt. 26. Let A be a diagonal n * n matrix with entries r1, c, rn down its main diagonal. To compute eAt, proceed as follows: (a) Show that Ak is the diagonal matrix with entries r k1, c, r kn down its main diagonal. (b) Use the result of part (a) and the defining equation (2) to show that eAt is the diagonal matrix with entries er1t, c, ernt down its main diagonal. 27. In Problems 35–40 of Exercises 9.5, page 532, some ad hoc formulas were invoked to find general solutions to the system x′ = Ax when A had repeated eigenvalues.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Chapter 9 Summary
Using the generalized eigenvector procedure outlined on page 548, justify the ad hoc formulas proposed in (a) Problem 35, Exercises 9.5. (b) Problem 37, Exercises 9.5. (c) Problem 39, Exercises 9.5. 28. Let 5 2 -4 A = £0 3 0§ 4 -5 - 5
553
29. For the matrix A in Problem 28, solve the initial value problem 2 x′1t2 = Ax1t2 + sin12t2 £ 0 § , 4 0 x102 = £ 1 § . -1
(a) Find a general solution to x′ = Ax. (b) Determine which initial conditions x102 = x0 yield a solution x1t2 = col 1 x1 1t2, x2 1t2, x3 1t2 2 that remains bounded for all t Ú 0; that is, satisfies
0 0 x1t2 0 0 J 2x12 1t2 + x22 1t2 + x23 1t2 … M
for some constant M and all t Ú 0.
Chapter 9 Summary In this chapter we discussed the theory of linear systems in normal form and presented methods for solving such systems. The theory and methods are natural extensions of the development for second-order and higher-order linear equations. The important properties and techniques are as follows.
Homogeneous Normal Systems x′1t2 = A1t2x1t2 The n * n matrix function A1t2 is assumed to be continuous on an interval I. Fundamental Solution Set: 5x1, c, xn 6. A set of n vector solutions x1 1t2, c, xn 1t2 of the homogeneous system on the interval I form a fundamental solution set provided they are linearly independent on I or, equivalently, their Wronskian x1,1 1t2 x2,1 1t2 W3x1, c, xn 4 1t2 J det3x1, c, xn 4 = ∞ f xn,1 1t2
x1,2 1t2 x2,2 1t2 f xn,2 1t2
g g g
x1,n 1t2 x2,n 1t2 ∞ f xn,n 1t2
is never zero on I. Fundamental Matrix: X1t2. An n * n matrix function X1t2 whose column vectors form a fundamental solution set for the homogeneous system is called a fundamental matrix. The determinant of X1t2 is the Wronskian of the fundamental solution set. Since the Wronskian is never zero on the interval I, then X-1 1t2 exists for t in I.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
554
Chapter 9
Matrix Methods for Linear Systems
General Solution to Homogeneous System: Xc = c1x1 + g + cnxn. If X1t2 is a fundamental matrix whose column vectors are x1, . . . , xn, then a general solution to the homogeneous system is x1t2 = X1t2c = c1x1 1t2 + c2x2 1t2 + g + cnxn 1t2 ,
where c = col1c1, c, cn 2 is an arbitrary constant vector.
Homogeneous Systems with Constant Coefficients. The form of a general solution for a homogeneous system with constant coefficients depends on the eigenvalues and eigenvectors of the n * n constant matrix A. An eigenvalue of A is a number r such that the system Au = ru has a nontrivial solution u, called an eigenvector of A associated with the eigenvalue r. Finding the eigenvalues of A is equivalent to finding the roots of the characteristic equation
0 A - rI 0 = 0 .
The corresponding eigenvectors are found by solving the system 1A - rI2u = 0. If the matrix A has n linearly independent eigenvectors u1, . . . , un and ri is the eigenvalue corresponding to the eigenvector ui, then 5er1tu1, er2tu2, c, erntun 6
is a fundamental solution set for the homogeneous system. A class of matrices that always has n linearly independent eigenvectors is the set of symmetric matrices—that is, matrices that satisfy A = AT. If A has complex conjugate eigenvalues a { ib and associated eigenvectors z = a { ib, where a and b are real vectors, then two linearly independent real vector solutions to the homogeneous system are eat cos bt a - eat sin bt b ,
eat sin bt a + eat cos bt b .
When A has a repeated eigenvalue r of multiplicity m, then it is possible that A does not have n linearly independent eigenvectors. However, associated with r are m linearly independent generalized eigenvectors that can be used to generate m linearly independent solutions to the homogeneous system (see page 548 under “Generalized Eigenvectors”).
Nonhomogeneous Normal Systems x′1t2 = A1t2x1t2 + f1t2 The n * n matrix function A1t2 and the vector function f1t2 are assumed continuous on an interval I. General Solution to Nonhomogeneous System: xp + Xc. If xp 1t2 is any particular solution for the nonhomogeneous system and X1t2 is a fundamental matrix for the associated homogeneous system, then a general solution for the nonhomogeneous system is x1t2 = xp 1t2 + X1t2c = xp 1t2 + c1 x1 1t2 + g + cn xn 1t2 ,
where x1 1t2, c, xn 1t2 are the column vectors of X1t2 and c = col1c1, c, cn 2 is an arbitrary constant vector. Undetermined Coefficients. If the nonhomogeneous term f1t2 is a vector whose components are polynomials, exponential or sinusoidal functions, and A is a constant matrix, then one can use an extension of the method of undetermined coefficients to decide the form of a particular solution to the nonhomogeneous system.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Review Problems for Chapter 9
555
Variation of Parameters: X1t2Y1t2. Let X1t2 be a fundamental matrix for the homogeneous system. A particular solution to the nonhomogeneous system is given by the variation of parameters formula xp 1t2 = X1t2Y1t2 = X1t2
L
X-1 1t2f1t2 dt .
Matrix Exponential Function If A is a constant n * n matrix, then the matrix exponential function eAt J I + At + A2
t2 tn + g + An + g 2! n!
is a fundamental matrix for the homogeneous system x′1t2 = Ax1t2. The matrix exponential has some of the same properties as the scalar exponential eat. In particular, e0 = I ,
eA1t + s2 = eAteAs ,
1eAt 2 -1 = e-At .
If 1A - rI2 k = 0 for some r and k, then the series for eAt has only a finite number of terms: eAt = ert e I + 1A - rI2t + g + 1A - rI2 k - 1
tk - 1 f. 1k - 12!
The matrix exponential function eAt can also be computed from any fundamental matrix X1t2 via the formula eAt = X1t2X-1 102 .
Generalized Eigenvectors If an eigenvalue ri of a constant n * n matrix A has multiplicity mi there exist mi linearly independent generalized eigenvectors u satisfying 1A - riI2 mi u = 0. Each such u determines a solution to the system x′ = Ax of the form x1t2 = eri t c I + 1A - ri I2t + g + 1A - riI2 mi - 1
t mi - 1 du 1mi - 12!
and the totality of all such solutions is linearly independent on 1 - ∞, ∞ 2 and forms a fundamental solution set for the system.
REVIEW PROBLEMS FOR CHAPTER 9 In Problems 1–4, find a general solution for the system x′1t2 = Ax1t2, where A is given. 6 -3 3 2 1. A = c d 2. A = c d 2 1 -5 1 1 2 3. A = D 0 0
2 1 0 0
0 0 1 2
0 0 T 2 1
In Problems 5 and 6, find a fundamental matrix for the system x′1t2 = Ax1t2, where A is given. 5. A = c
1 2
-1 d 4
1 1 0 4. A = £ 0 1 0 § 0 0 2
5 6. A = £ 0 0
0 -4 3
0 3§ 4
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
556
Chapter 9
Matrix Methods for Linear Systems
In Problems 7–10, find a general solution for the system x′1t2 = Ax1t2 + f1t2, where A and f1t2 are given. 5 1 1 7. A = c f1t2 = c d d , 6 4 1 8. A = c
-4 2
2 9. A = £ -3 9 2 10. A = £ 0 0
f1t2 = c
2 d , -1
-1 1§ , -4
1 -1 3 -2 3 -1
-3 2§ , 2
e4t d 3e4t
t f1t2 = £ 0 § 1 e-t f1t2 = £ 2 § 1
In Problems 11 and 12, solve the given initial value problem. 0 1 1 11. x′1t2 = c d x1t2 , x102 = c d -2 3 -1 12. x′1t2 = c
2 1 te2t d x1t2 + c 2t d , e -4 2
2 x102 = c d 2
In Problems 13 and 14, find a general solution for the Cauchy– Euler system tx′1t2 = Ax1t2, where A is given. 0 3 1 13. A = £ 1 2 1 § 1 3 0
1 14. A = £ 2 -1
2 1 1
-1 1§ 0
17. For each of the following, determine if the statement made is True or False. (a) Every n * n matrix of real numbers has n linearly independent eigenvectors. (b) If X1t2 is a fundamental matrix for x′ = Ax, where 1 3 2 3 d , then the product X1t2 c d is also A = c 8 4 4 6 a fundamental matrix for this system. 0 0 0 (c) The vector functions £ 1 § , £ t § , £ 1 § are linearly et tet 2et dependent on 1 - ∞ , ∞ 2. (d) If A is an n * n matrix of real numbers and x*1t2 satisfies the initial value problem x′ = Ax, x152 = 0, then x*1t2 = 0 for all t. (e) If A is a 3 * 3 matrix of real numbers whose eigenvalues are 2, 2, and 1, then A has two linearly independent generalized eigenvectors that correspond to the eigenvalue 2. (f) The Wronskian W[x1 , x2, . . . , xn]1t2 of n linearly independent n * 1 vector functions xi on an open interval I is never zero on I. (g) If a 3 * 3 matrix of real numbers has eigenvalues 2 + 3i, 2 - 3i, and 5, then the matrix has three linearly independent eigenvectors.
In Problems 15 and 16, find the fundamental matrix eAt for the system x′1t2 = Ax1t2, where A is given. 4 2 3 0 1 4 15. A = £ 2 1 2 § 16. A = £ 0 0 2 § -1 2 0 0 0 0
TECHNICAL WRITING EXERCISES FOR CHAPTER 9 1. Explain how the theory of homogeneous linear differential equations (as described in Section 6.1) follows from the theory of linear systems in normal form (as described in Section 9.4). 2. Discuss the similarities and differences between the method for finding solutions to a linear constant-coefficient differential equation (see Chapters 4 and 6) and the method for finding solutions to a linear system in normal form that has constant coefficients (see Sections 9.5 and 9.6). 3. Explain how the variation of parameters formulas for linear second-order equations derived in Section 4.6 follow
from the formulas derived in Section 9.7 for linear systems in normal form. 4. Explain how you would define the matrix functions sin At and cos At, where A is a constant n * n matrix. How are these functions related to the matrix exponential and how are they connected to the solutions of the system x″ + A2 x = 0? Your discussion should include the cases when A is c
0 0 0 1 0 0 d ,c d ,c d , 0 0 0 0 1 0
and
c
1 1
-1 d . -1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 9 A Uncoupling Normal Systems The easiest normal systems to solve are systems of the form (1)
x′1t2 = Dx1t2 ,
where D is an n * n diagonal matrix. Such a system actually consists of n uncoupled equations (2)
xi′ 1t2 = diixi 1t2 ,
i = 1, c, n ,
whose solution is xi 1t2 = ciediit , where the ci’s are arbitrary constants. This raises the following question: When can we uncouple a normal system? To answer this question, we need the following result from linear algebra. An n * n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors p1, c, pn. Moreover, if P is the matrix whose columns are p1, c, pn, then (3)
P -1AP = D ,
where D is the diagonal matrix whose entry dii is the eigenvalue associated with the vector pi. (a) Use the above result to show that the system (4)
x′1t2 = Ax1t2 ,
where A is an n * n diagonalizable matrix, is equivalent to an uncoupled system (5)
y′1t2 = Dy1t2 ,
where y = P -1x and D = P -1AP. (b) Solve system (5). (c) Use the results of parts (a) and (b) to show that a general solution to (4) is given by x1t2 = c1ed11t p1 + c2ed22t p2 + g + cnednnt pn . (d) Use the procedure discussed in parts (a)–(c) to obtain a general solution for the system 5 x′1t2 = £ 1 -1
-4 0 2
4 1 § x1t2 . 1
Specify P, D, P -1, and y.
557
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
558
Chapter 9
Matrix Methods for Linear Systems
B Matrix Laplace Transform Method The Laplace transform method for solving systems of linear differential equations with constant coefficients was discussed in Chapter 7. To apply the procedure for equations given in matrix form, we first extend the definition of the Laplace operator ℒ to a column vector of functions x = col1x1 1t2, c, xn 1t22 by taking the transform of each component: ℒ5x6 1s2 J col 1 ℒ5x1 6 1s2, c, ℒ5xn 6 1s2 2 .
With this notation, the vector analogue of the important property relating the Laplace transform of the derivative of a function (see Theorem 4, Chapter 7, page 362) becomes (6)
ℒ5x′6 1s2 = sℒ5x6 1s2 - x102 . Now suppose we are given the initial value problem
(7)
x′ = Ax + f1t2 ,
x102 = x0 ,
where A is a constant n * n matrix. Let xn 1s2 denote the Laplace transform of x1t2 and fn 1s2 denote the transform of f1t2. Then, taking the transform of the system and using the relation (6), we get ℒ5x′6 = ℒ5Ax + f6 , sxn - x0 = Axn + fn .
Next we collect the xn terms and solve for xn by premultiplying by 1sI - A2 -1: 1sI - A2xn = fn + x0 ,
xn = 1sI - A2 -1 1 fn + x0 2 .
Finally, we obtain the solution x1t2 by taking the inverse Laplace transform: (8)
x = ℒ -1 5xn 6 = ℒ -1 5 1sI - A2 -1 1 fn + x0 26 .
In applying the matrix Laplace transform method, it is straightforward (but possibly tedious) to compute 1sI - A2 -1, but the computation of the inverse transform may require some of the special techniques (such as partial fractions) discussed in Chapter 7. (a) In the above procedure, we used the property that ℒ5Ax6 = Aℒ5x6 for any constant n * n matrix A. Show that this property follows from the linearity of the transform in the scalar case. (b) Use the matrix Laplace transform method to solve the following initial value problems: -1 0 2 d. x102 = c d x1t2 , (i) x′1t2 = c 3 -1 3 3 -2 sin t 0 d, (ii) x′1t2 = c d x1t2 + c x102 = c d . - cos t 4 -1 0 (c) By comparing the Laplace transform solution formula (8) with the matrix exponential solution formula given in Section 9.8 [relation (16), page 551] for the homogeneous case f1t2 K 0 and t0 = 0, derive the Laplace transform formula for the matrix exponential (9)
eAt = ℒ -1 5 1sI - A2 -1 6 1t2 .
(d) What is eAt for the coefficient matrices in part (b) above? (e) Use (9) to rework Problems 1, 2, 7, and 8 in Exercises 9.8, page 551.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 9
559
C Undamped Second-Order Systems We have seen that the coupled mass–spring system depicted in Figure 9.5, page 536, is governed by equations (10) of Section 9.6, which we reproduce here: m1x1> = - k1x1 + k2 1x2 - x1 2 ,
m2x2> = - k2 1x2 - x1 2 - k3x2 . This system was rewritten in normal form as equation (11) in Section 9.6; however, there is some advantage in expressing it as a second-order system in the form c
- k2 m1 0 x1 ″ x1 k1 + k2 dc d = -c dc d . 0 m2 x2 - k2 k2 + k3 x2
This structure, (10)
Mx″ = - Kx ,
with a diagonal mass matrix M and a symmetric stiffness matrix K, is typical for most undamped vibrating systems. Our experience with other mass–spring systems (Section 5.6) suggests that we seek solutions to (10) of the form (11)
x = 1cos vt2 v
or
x = 1sin vt2 v ,
where v is a constant vector and v is a positive constant. (a) Show that the system (10) has a nontrivial solution of the form (11) if and only if v and v satisfy the “generalized eigenvalue problem” Kv = v2 Mv. (b) By employing the inverse of the mass matrix, one can rewrite (10) as x″ = - M -1Kx = : Bx . Show that - v2 must be an eigenvalue of B if (11) is a nontrivial solution. (c) If B is an n * n constant matrix, then x″ = Bx can be written as a system of 2n firstorder equations in normal form. Thus, a general solution can be formed from 2n linearly independent solutions. Use the observation in part (b) to find a general solution to the following second-order systems: (i) x″ = c
0 -4
1 d x. -5
(ii) x″ = c
-2 2
2 d x. -5
-5 (iii) x″ = £ - 1 1
4 0 -2
-4 -1 § x . -1
2 (iv) x″ = £ - 1 -1
-1 2 0
-1 0§ x . 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
CHAPTER
10
Partial Differential Equations
10.1 Introduction: A Model for Heat Flow Develop a model for the flow of heat through a thin, insulated wire whose ends are kept at a constant temperature of 0°C and whose initial temperature distribution is to be specified. Suppose the wire is placed along the x-axis with x = 0 at the left end of the wire and x = L at the right end (see Figure 10.1). If we let u denote the temperature of the wire, then u depends on the time t and on the position x within the wire. (We will assume the wire is thin and hence u is constant throughout a cross section of the wire corresponding to a fixed value of x.) Because the wire is insulated, we assume no heat enters or leaves through the sides of the wire. To develop a model for heat flow through the thin wire, let’s consider the small volume element V of wire between the two cross-sectional planes A and B that are perpendicular to the x-axis, with plane A located at x and plane B located at x + ∆x (see Figure 10.1). The temperature on plane A at time t is u1x, t2 and on plane B is u1x + ∆x, t2. We will need the following principles of physics that describe heat flow.† 1. Heat Conduction: The rate of heat flow (the amount of heat per unit time flowing through a unit of cross-sectional area at A) is proportional to 0u>0x, the temperature gradient at A (Fick’s law). The proportionality constant k is called the thermal conductivity of the material. In general, the thermal conductivity can vary from point to point: k = k1x2. 2. Direction of Heat Flow: The direction of heat flow is always from points of higher temperature to points of lower temperature.
V
0
A
B
x
x 1 Dx
x
L
Figure 10.1 Heat flow through a thin piece of wire
†
For a discussion of heat transfer, see University Physics with Modern Physics™, 13th ed., by H. D. Young and R. A. Freedman (Addison-Wesley, Reading, Mass., 2011).
560
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.1
Introduction: A Model for Heat Flow
561
3. Specific Heat Capacity: The amount of heat necessary to raise the temperature of an object of mass m by an amount ∆u is cm ∆u, where the constant c is the specific heat capacity of the material. The specific heat capacity, like the thermal conductivity, can vary with position: c = c1x2. If we let H represent the amount of heat flowing from left to right through the surface A during an interval of time ∆t, then the formula for heat conduction becomes H1x2 = -k1x2 a ∆t
0u 1x, t2 , 0x
where a is the cross-sectional area of the wire. The negative sign follows from the second principle—if 0u>0x is positive, then heat flows from right to left (hotter to colder). Similarly, the amount of heat flowing from left to right across plane B during an interval of time ∆t is H1x + ∆x2 = -k1x + ∆x2 a ∆t
0u 1x + ∆x, t2 . 0x
The net change in the heat ∆E in volume V is the amount entering at end A minus the amount leaving at end B, plus any heat generated by sources (such as electric currents, chemical reactions, heaters, etc.). The latter is modeled by a term Q1x, t2∆x a ∆t, where Q is the energy rate (power) density. Therefore, (1)
∆E = H1x2 - H1x + ∆x2 + Q1x, t2∆x a ∆t = a ∆t c k1x + ∆x2
0u 0u 1x + ∆x, t2 - k1x2 1x, t2 d + Q1x, t2∆x a ∆t . 0x 0x
Now by the third principle, the net change is given by ∆E = cm ∆u, where ∆u is the change in temperature and c is the specific heat capacity. If we assume that the change in temperature in the volume V is essentially equal to the change in temperature at x—that is, ∆u = u1x, t + ∆t2 - u1x, t2, and that the mass of the volume V of wire is a r ∆x, where r = r1x2 is the density of the wire, then (2)
∆E = c1x2ar1x2 ∆x 3u1x, t + ∆t2 - u1x, t24 .
Equating the two expressions for ∆E given in equations (1) and (2) yields a ∆t c k1x + ∆x2
0u 0u 1x + ∆x, t2 - k1x2 1x, t2 d + Q1x, t2 ∆x a ∆t 0x 0x
= c1x2a r1x2 ∆x 3u1x, t + ∆t2 - u1x, t24 .
Now dividing both sides by a ∆x ∆t and then taking the limits as ∆x and ∆t approach zero, we obtain (3)
0 0u 0u c k1x2 1x, t2 d + Q1x, t2 = c1x2r1x2 1x, t2 . 0x 0x 0t
If the physical parameters k, c, and r are uniform along the length of the wire, then (3) reduces to the one-dimensional heat flow equation (4)
0u 02u 1x, t2 = b 2 1x, t2 + P1x, t2 , 0t 0x
where the positive constant b J k> 1cr2 is the diffusivity of the material and P1x, t2 J Q1x, t2 > 1cr2.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
562
Chapter 10
Partial Differential Equations
Equation (4) governs the flow of heat in the wire. We have two other constraints in our original problem. First, we are keeping the ends of the wire at 0°C. Thus, we require that (5)
u10, t2 = u1L, t2 = 0
for all t. These are called boundary conditions. Second, we must be given the initial temperature distribution f1x2. That is, we require (6)
u1x, 02 = f1x2 ,
06x6L.
Equation (6) is referred to as the initial condition on u. Combining equations (4), (5), and (6), we have the following mathematical model for the heat flow in a uniform wire without internal sources 1P = 02 whose ends are kept at the constant temperature 0°C: (7) (8) (9)
eu e2u 1x, t2 = B 2 1x, t2 , et ex u10, t2 = u1L, t2 = 0 , u1x, 02 = f1x2 ,
06x6L,
t70,
t70, 06x6L.
This model is an example of an initial-boundary value problem. Intuitively we expect that equations (7)–(9) completely and unambiguously specify the temperature in the wire. Once we have found a function u1x, t2 that meets all three of these conditions, we can be assured that u is the temperature. (Theorem 7 in Section 10.5, page 602, will bear this out.) In higher dimensions, the heat flow equation (or just heat equation) is adjusted to account for the additional heat flow contribution along the other axes by the simple modification 0u = b ∆u + P1x, y, z, t2 , 0t where ∆u, known as the Laplacian in this context,† is defined in two and three dimensions, respectively, as 02u 02u 02u 02u 02u ∆u J 2 + 2 and ∆u J 2 + 2 + 2 . 0x 0y 0x 0y 0z When the temperature reaches a steady state—that is, when u does not depend on time, and there are no sources—then 0u>0t = 0 and the temperature satisfies Laplace’s equation ∆u = 0 . One classical technique for solving the initial-boundary value problem for the heat equation (7)–(9) is the method of separation of variables, which effectively allows us to replace the partial differential equation by ordinary differential equations. This technique is discussed in the next section. In using separation of variables, one is often required to express a given function as a trigonometric series. Such series are called Fourier series; their properties are discussed in Sections 10.3 and 10.4. We devote the remaining three sections to the three basic partial differential equations that arise most commonly in applications: the heat equation, the wave equation, and Laplace’s equation. Many computer-based algorithms for solving partial differential equations have been developed. These are based on finite differences, finite elements, variational principles, and projection methods that include the method of moments and its wavelet-based implementations. Like the Runge–Kutta or Euler methods for ordinary differential equations, such techniques are more universally applicable than the analytic procedures of separation of variables, but their accuracy is often difficult to assess. Indeed, it is customary practice to gauge any newly proposed numerical procedure by comparing its predictions with those of separation of variables. † Regrettably, it is the same notation as we just used for u1x, t + ∆t2 - u1x, t2. Some authors prefer the symbol ∇ 2 for the Laplacian.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.2
Method of Separation of Variables
563
10.2 Method of Separation of Variables The method of separation of variables is a classical technique that is effective in solving several types of partial differential equations. The idea is roughly the following. We think of a solution, say u1x, t2, to a partial differential equation as being a linear combination of simple component functions un 1x, t2, n = 0, 1, 2, c, which also satisfy the equation and certain boundary conditions. (This is a reasonable assumption provided the partial differential equation and the boundary conditions are linear.) To determine a component solution, un 1x, t2, we assume it can be written with its variables separated; that is, as un 1x, t2 = Xn 1x2Tn 1t2 .
Substituting this form for a solution into the partial differential equation and using the boundary conditions leads, in many circumstances, to two ordinary differential equations for the unknown functions Xn 1x2 and Tn 1t2. In this way we have reduced the problem of solving a partial differential equation to the more familiar problem of solving a differential equation that involves only one variable. In this section we will illustrate this technique for the heat equation and the wave equation. In the previous section we derived the following initial-boundary value problem as a mathematical model for the sourceless heat flow in a uniform wire whose ends are kept at the constant temperature zero: (1)
eu e2u 1x, t2 = B 2 1x, t2 , et ex
(2)
u10, t2 = u1L, t2 = 0 ,
t70,
(3)
u1x, 02 = f1x2 ,
06x6L.
06x6L,
t70,
To solve this problem by the method of separation of variables, we begin by addressing equation (1). We propose that it has solutions of the form u1x, t2 = X1x2T1t2 , where X is a function of x alone and T is a function of t alone. To determine X and T, we first compute the partial derivatives of u to obtain 0u = X1x2T ′1t2 0t
and
02u = X″1x2T1t2 . 0x2
Substituting these expressions into (1) gives X1x2T ′1t2 = bX″1x2T1t2 , and separating variables yields (4)
T ′1t2 bT1t2
=
X″1x2 X1x2
.
We now observe that the functions on the left-hand side of (4) depend only on t, while those on the right-hand side depend only on x. If we fix t and vary x, the ratio on the right cannot change; it must be constant. Most authors define this constant with a minus sign, so we adhere to the convention: X″1x2 = -l X1x2
and
T ′1t2 = -l , bT1t2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
564
Chapter 10
Partial Differential Equations
or (5)
X″1x2 = −LX1x2
and
T ′1t2 = −LBT1t2 .
Consequently, for separable solutions, we have reduced the problem of solving the partial differential equation (1) to solving the two ordinary differential equations in (5). Next we consider the boundary conditions in (2). Since u1x, t2 = X1x2T1t2, these conditions are X102T1t2 = 0
and
X1L2T1t2 = 0 ,
t70.
Hence, either T1t2 = 0 for all t 7 0, which implies that u1x, t2 K 0, or (6)
X102 = X1L2 = 0 .
Ignoring the trivial solution u1x, t2 K 0, we combine the boundary conditions in (6) with the differential equation for X in (5) and obtain the boundary value problem (7)
X″1x2 + lX1x2 = 0 ,
X102 = X1L2 = 0 ,
where l can be any constant. Notice that the function X1x2 K 0 is a solution of (7) for every l. Depending on the choice of l, this may be the only solution to the boundary value problem (7). Thus, if we seek a nontrivial solution u1x, t2 = X1x2T1t2 to (1)–(2), we must first determine those values of l for which the boundary value problem (7) has nontrivial solutions. These solutions are called the eigenfunctions of the problem; the eigenvalues are the special values of l. If we write the first equation in (7) as -D2 3X4 = lX and compare with the matrix eigenvector equation Au = r u (Section 9.5, page 523), the designation of l as an eigenvalue (of -D2) becomes clear. To solve the (constant-coefficient) equation in (7), we try X1x2 = erx, derive the auxiliary equation r 2 + l = 0, and consider three cases. Case 1. l 6 0. In this case, the roots of the auxiliary equation are { 1-l, so a general solution to the differential equation in (7) is X1x2 = C1e1-l x + C2e-1-l x . To determine C1 and C2, we appeal to the boundary conditions: X102 = C1 + C2 = 0 , X1L2 = C1e1-l L + C2e-1-l L = 0 . From the first equation, we see that C2 = -C1. The second equation can then be written as C1 1e1-l L - e-1-l L 2 = 0 or C1 1e21-l L - 12 = 0. Since -l 7 0, it follows that 1e21-l L - 12 7 0. Therefore C1, and hence C2, is zero. Consequently, there is no nontrivial solution to (7) for l 6 0. Case 2. l = 0. Here r = 0 is a repeated root to the auxiliary equation, and a general solution to the differential equation is X1x2 = C1 + C2 x . The boundary conditions in (7) yield C1 = 0 and C1 + C2 L = 0, which imply that C1 = C2 = 0. Thus, for l = 0, there is no nontrivial solution to (7). Case 3. l 7 0. In this case the roots of the auxiliary equation are {i1l. Thus a general solution to X″ + l X = 0 is (8)
X1x2 = C1 cos 1l x + C2 sin 1l x .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.2
Method of Separation of Variables
565
This time the boundary conditions X102 = X1L2 = 0 give the system C1 = 0 , C1 cos 1l L + C2 sin 1l L = 0 . Because C1 = 0, the system reduces to solving C2 sin 1lL = 0. Hence, either sin 1lL = 0 or C2 = 0. Now sin 1lL = 0 only when 1lL = np, where n is an integer. Therefore, (7) has a nontrivial solution 1C2 ≠ 02 when 1lL = np or l = 1np>L2 2, n = 1, 2, 3, c (we exclude n = 0, since it makes l = 0). Furthermore, the nontrivial solutions (eigenfunctions) Xn corresponding to the eigenvalue l = 1np>L2 2 are given by [cf. (8)] npx b, L where the an’s are arbitrary nonzero constants. The eigenvalues and eigenfunctions for this example have many features that are common to all of the separation of variables solutions that we will study. Take note of these features of Figure 10.2. (9)
Eigenvalue
Xn 1x2 = an sina
Eigenfunction
2
L
4
2
L
2
L
2
L
2
L
2
L
2
16 L
x
(i) The eigenfunctions are solutions to a second-order ordinary differential equation (7) containing a parameter l called the eigenvalue. (ii) Each eigenfunction satisfies a homogeneous boundary condition at each end (7).
9 L
x
SEPARATION OF VARIABLES: EIGENFUNCTION PROPERTIES
2
x
x
(iii) The only values of l that admit nontrivial solutions, i.e., the eigenvalues, form an infinite set accumulating at ∞ . (iv) The eigenfunctions oscillate faster as l increases; the first contains no interior zeros, and each subsequent eigenfunction contains one more zero than its predecessor. (v) If any two distinct eigenfunctions are multiplied together, the resulting function is zero on the average; specifically, sin
l
1m - n2px 1m + n2px mpx npx 1 sin = c cos - cos d L L 2 L L
and both cosines integrate to 0 over 30, L4.
Figure 10.2 Eigenfunctions
Having determined that l = 1np>L2 2 for any positive integer n, let’s consider the second equation in (5): T ′1t2 + b a
np 2 b T1t2 = 0 . L
For each n = 1, 2, 3, c, a general solution to this linear first-order equation is Tn 1t2 = bn e-b1np>L2 t . 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
566
Chapter 10
Partial Differential Equations
(Note that the time factor has none of the eigenfunction properties.) Combining this with equation (9) we obtain, for each n = 1, 2, 3, c, the functions (10)
un 1x, t2 J Xn 1x2Tn 1t2 = an sin1npx>L2 bn e-b1np>L2 t 2
= cn e-b1np>L2 t sin1npx>L2 , 2
where cn is also an arbitrary constant. It is easy to see that each un 1x, t2 is a solution to (1)–(2). A simple computation also shows that if un and um are solutions to (1)–(2), then so is any linear combination aun + bum. (This is a consequence of the facts that the operator L J 0>0t - b02 >0x2 is a linear operator and the boundary conditions in (2) are linear homogeneous.) This enables us to solve the following example. Example 1
Find the solution to the heat flow problem
(12)
0u 02u = 7 2, 0t 0x u10, t2 = u1p, t2 = 0 ,
t70,
(13)
u1x, 02 = 3 sin 2x - 6 sin 5x ,
06x6p.
(11)
Solution
06x6p,
t70,
Comparing equation (11) with (1), we see that b = 7 and L = p. Hence, we need only find a combination of terms like (10) that satisfies the initial condition (13): u1x, 02 = a cn e0 sin nx = 3 sin 2x - 6 sin 5x. For these data the task is simple; c2 = 3 and c5 = -6. The solution to the heat flow problem (11)–(13) is u1x, t2 = c2e-b12p>L2 t sin12px>L2 + c5e-b15p>L2 t sin15px>L2 2
2
= 3e-28t sin 2x - 6e-175t sin 5x . ◆ What would we do if the initial condition (13) had been an arbitrary function, rather than a simple combination of a few of the eigenfunctions we found? Possibly the most beautiful property of the eigenfunctions—one that we did not list on page 565—is completeness; virtually any function f likely to arise in applications can be expressed as a convergent series of eigenfunctions! For the sines we have been working with, the Fourier sine series looks like (14)
∞ npx f1x2 = a cn sin a b L n=1
for 0 6 x 6 L .
This enables the complete solution to the generic problem given by (1)–(3): (15)
H npx 2 u1x, t2 = a cn e-B1np/L2 t sin a b, L n=1
provided this expansion and its first two derivatives converge. The convergence of the sine series (among others), as well as the procedure for finding the coefficients cn, will be discussed in the next two sections (and generalized in Chapter 11). For now, let us turn to the mathematical description of a vibrating string, another situation in which the separation of variables approach applies. This concerns the transverse vibrations of a string stretched between two points, such as a guitar string or piano wire. The goal is to find a function u1x, t2 that gives the displacement (deflection) of the string at any point
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.2
Method of Separation of Variables
567
u(x, t)
L
0
x
Figure 10.3 Displacement of string at time t
x 10 … x … L2 and any time t Ú 0 (see Figure 10.3). In developing the mathematical model, we assume that the string is perfectly flexible and has constant linear density, the tension on the string is constant, gravity is negligible, and no other forces are acting on the string. Under these conditions and the additional assumption that the displacements u1x, t2 are small in comparison to the length of the string, it turns out that the motion of the string is governed by the following initial-boundary value problem.†
(17)
e2u e2u = A2 2 , 2 et ex u10, t2 = u1L, t2 = 0 ,
(18)
u1x, 02 = f1x2 ,
0"x"L,
(19)
eu 1x, 02 = g1x2 , et
0"x"L.
(16)
0*x*L,
t+0,
t#0,
Equation (16) essentially states Newton’s third law, F = ma, for the string. The second (time) derivative on the left is the acceleration, and the second (spatial) derivative on the right arises because the restoring force is produced by the string’s curvature. The constant a2 is strictly positive and equals the ratio of the tension to the (linear) density of the string. The physical significance of a, which has units of velocity, will be revealed in Section 10.6. The boundary conditions in (17) reflect the fact that the string is held fixed at the two endpoints x = 0 and x = L. Equations (18) and (19), respectively, specify the initial displacement of the string and the initial velocity of each point on the string. Recall that these are the typical initial data for all mechanical systems. For the initial and boundary conditions to be consistent, we assume f102 = f1L2 = 0 and g102 = g1L2 = 0. Let’s apply the method of separation of variables to the initial-boundary value problem for the vibrating string (16)–(19). Thus, we begin by assuming equation (16) has a solution of the form u1x, t2 = X1x2T1t2 , where X is a function of x alone and T is a function of t alone. Differentiating u, we obtain 02u = X1x2T ″1t2 , 0 t2
02u = X″1x2T1t2 . 0 x2
Substituting these expressions into (16), we have X1x2T″1t2 = a2X″1x2T1t2 , †
For a derivation of this mathematical model, see Partial Differential Equations: Sources and Solutions, by Arthur D. Snider (Dover Publications, N.Y., 2006).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
568
Chapter 10
Partial Differential Equations
and separating variables gives T ″1t2
=
2
a T1t2
X″1x2 X1x2
.
Just as before, these ratios must equal some constant -l: (20)
X″1x2 X1x2
= -L
T ″1t2
and
A2T1t2
= -L .
Furthermore, with u1x, t2 = X1x2T1t2, the boundary conditions in (17) give X102T1t2 = 0 ,
X1L2T1t2 = 0 ,
tÚ0.
In order for these equations to hold for all t Ú 0, either T1t2 K 0, which implies that u1x, t2 K 0, or X102 = X1L2 = 0 . Ignoring the trivial solution, we combine these boundary conditions with the differential equation for X in (20) and obtain the boundary value problem (21)
X″1x2 + lX1x2 = 0 ,
X102 = X1L2 = 0 ,
where l can be any constant. This is the same boundary value problem that we encountered earlier while solving the heat equation. There we found that the suitable values for l are l = a
np 2 b , L
n = 1, 2, 3, c,
with corresponding eigenfunctions (nontrivial solutions) (22)
Xn 1x2 = cn sina
npx b, L
where the cn’s are arbitrary nonzero constants. Recall Figure 10.2, page 565. Having determined that l = 1np>L2 2 for some positive integer n, let’s consider the second equation in (20) for such l: T ″1t2 +
a2n2p2 T1t2 = 0 . L2
For each n = 1, 2, 3, c, a general solution is Tn 1t2 = cn,1 cos
npa npa t + cn,2 sin t. L L
Combining this with equation (22), we obtain, for each n = 1, 2, 3, c, the function un 1x, t2 = Xn 1x2Tn 1t2 = a cn sin
npx npa npa b acn,1 cos t + cn,2 sin tb , L L L
or, reassembling the constants, (23)
un 1x, t2 = a an cos
npa npa npx t + bn sin tb sin . L L L
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.2
Method of Separation of Variables
569
Using the fact that linear combinations of solutions to (16)–(17) are again solutions, we consider a superposition of the functions in (23): (24)
H nPA nPA nPx t + bn sin t d sin . u1x, t2 = a c an cos L L L n=1
For a solution of the form (24), substitution into the initial conditions (18)–(19) gives (25)
∞ npx u1x, 02 = a an sin = f1x2 , L n=1
(26)
∞ npa 0u npx 1x, 02 = a bn sin = g1x2 , 0t L L n=1
0…x…L, 0…x…L.
We have now reduced the vibrating string problem (16)–(19) to the problem of determining the Fourier sine series expansions for f1x2 and g1x2: (27)
∞ npx f1x2 = a an sin , L n=1
∞ npx g1x2 = a Bn sin , L n=1
where Bn = 1npa>L2bn. If we choose the an’s and bn’s so that the equations in (25) and (26) hold, then the expansion for u1x, t2 in (24) is a formal solution to the vibrating string problem (16)–(19). If this expansion is finite, or converges to a function with continuous second partial derivatives, then the formal solution is an actual (genuine) solution. Example 2
Find the solution to the vibrating string problem (28)
06x6p,
(29)
u10, t2 = u1p, t2 = 0 ,
(30)
u1x, 02 = sin 3x - 4 sin 10 x ,
(31) Solution
02u 02u = 4 2, 2 0t 0x
t70,
tÚ0, 0…x…p,
0u 1x, 02 = 2 sin 4x + sin 6x , 0t
0…x…p.
Comparing equation (28) with equation (16), we see that a = 2 and L = p. Hence, we need only determine the values of the coefficients an and bn in formula (24). The an’s are chosen so that equation (25) holds; that is, ∞
u1x, 02 = sin 3x - 4 sin 10 x = a an sin nx . n=1
Equating coefficients of like terms, we see that a3 = 1 ,
a10 = -4 ,
and the remaining an’s are zero. Similarly, referring to equation (26), we must choose the bn’s so that ∞ 0u 1x, 02 = 2 sin 4x + sin 6x = a n2bn sin nx . 0t n=1
Comparing coefficients, we find 2 = 142122b4
or
1 = 162122b6
or
1 , 4 1 b6 = , 12 b4 =
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
570
Chapter 10
Partial Differential Equations
and the remaining bn’s are zero. Hence, from formula (24), the solution to the vibrating string problem (28)–(31) is (32)
u1x, t2 = cos 6t sin 3x +
1 1 sin 8t sin 4x + sin 12 t sin 6x - 4 cos 20t sin 10 x . ◆ 4 12
In later sections the method of separation of variables is used to study a wide variety of problems for the heat, wave, and Laplace’s equations. However, to use the method effectively, one must be able to compute trigonometric series (or, more generally, eigenfunction expansions) such as the Fourier sine series that we encountered here. These expansions are discussed in the next two sections.
10.2
EXERCISES
In Problems 1– 8, determine all the solutions, if any, to the given boundary value problem by first finding a general solution to the differential equation. 1. y″ - y = 0 ; 06x61, y102 = 0 , y112 = - 4 2. y″ - 6y′ + 5y = 0 ; 06x62, y102 = 1 , y122 = 1 3. y″ + 4y = 0 ; 06x6p, y102 = 0 , y′1p2 = 0 4. y″ + 9y = 0 ; 06x6p, y102 = 0 , y′1p2 = -6 5. y″ - y = 1 - 2x ; 06x61, y102 = 0 , y112 = 1 + e 6. y″ + y = 0 ; 0 6 x 6 2p , y102 = 0 , y12p2 = 1 7. y″ + y = 0 ; 0 6 x 6 2p , y102 = 1 , y12p2 = 1 8. y″ - 2y′ + y = 0 ; -1 6 x 6 1 , y1 - 12 = 0 , y112 = 2 In Problems 9–14, find the values of l (eigenvalues) for which the given problem has a nontrivial solution. Also determine the corresponding nontrivial solutions (eigenfunctions). 9. y″ + ly = 0 ; 06x6p, y102 = 0 , y′1p2 = 0 10. y″ + ly = 0 ; 06x6p, y′102 = 0 , y1p2 = 0 11. y″ + ly = 0 ; 0 6 x 6 2p , y102 = y12p2 , y′102 = y′12p2 12. y″ + ly = 0 ; 0 6 x 6 p>2 , y′102 = 0 , y′1p>22 = 0 13. y″ + ly = 0 ; 06x6p, y102 - y′102 = 0 , y1p2 = 0 14. y″ - 2y′ + ly = 0 ; 06x6p, y102 = 0 , y1p2 = 0
In Problems 15–18, solve the heat flow problem (1)–(3) with b = 3, L = p, and the given function f1x2. 15. f1x2 = sin x - 6 sin 4x 16. f1x2 = sin 3x + 5 sin 7x - 2 sin 13 x 17. f1x2 = sin x - 7 sin 3x + sin 5x 18. f1x2 = sin 4x + 3 sin 6x - sin 10 x In Problems 19–22, solve the vibrating string problem (16)– (19) with a = 3, L = p, and the given initial functions f1x2 and g1x2. 19. f1x2 = 3 sin 2x + 12 sin 13 x , g1x2 K 0 20. f1x2 K 0 , g1x2 = -2 sin 3x + 9 sin 7x - sin 10 x 21. f1x2 = 6 sin 2x + 2 sin 6x , g1x2 = 11 sin 9x - 14 sin 15 x 22. f1x2 = sin x - sin 2x + sin 3x , g1x2 = 6 sin 3x - 7 sin 5x 23. Find the formal solution to the heat flow problem (1)–(3) with b = 2 and L = 1 if ∞ 1 f1x2 = a 2 sin npx . n=1 n
24. Find the formal solution to the vibrating string problem (16)–(19) with a = 4, L = p, and ∞ 1 f1x2 = a 2 sin nx , n=1 n ∞
1 - 12 n + 1
n=1
n
g1x2 = a
sin nx .
25. By considering the behavior of the solutions of the equation T′1t2 = - lbT1t2 ,
t70,
give an argument that is based on physical grounds to rule out the case where l 6 0 in equation (5). 26. Verify that un 1x, t2 given in equation (10) satisfies equation (1) and the boundary conditions in (2) by substituting un 1x, t2 directly into the equations involved.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.3
In Problems 27–30, a partial differential equation (PDE) is given along with the form of a solution having separated variables. Show that such a solution must satisfy the indicated set of ordinary differential equations. 02u 1 0u 1 02u 27. + = 0 + 0 r 2 r 0r r 2 0 u 2 with u1r, u2 = R1r2ϴ1u2 yields r 2R″1r2 + rR′1r2 - lR1r2 = 0 , ϴ″1u2 + lϴ1u2 = 0 , where l is a constant. 02u 0u 02u 28. 2 + + u = a2 2 0t 0t 0x with u1x, t2 = X1x2T1t2 yields X″1x2 + lX1x2 = 0 ,
T″1t2 + T′1t2 + 11 + la 2T1t2 = 0 , where l is a constant. 0u 02u 02u 29. = be 2 + 2 f 0t 0x 0y with u1x, y, t2 = X1x2Y1y2T1t2 yields 2
T′1t2 + blT1t2 = 0 , X″1x2 + mX1x2 = 0 ,
Y″1y2 + 1l - m2Y1y2 = 0 , where l, m are constants. 02u 1 0u 1 02u 02u + + + = 0 30. 0 r 2 r 0r r 2 0 u 2 0z2 with u1r, u, z2 = R1r2ϴ1u2Z1z2 yields ϴ″1u2 + mϴ1u2 = 0 , Z″1z2 + lZ1z2 = 0 ,
Fourier Series
571
31. For the PDE in Problem 27, assume that the following boundary conditions are imposed: u1r, 02 = u1r, p2 = 0 , u1r, u2 remains bounded as r S 0+ . Show that a nontrivial solution of the form u1r, u2 = R1r2ϴ1u2 must satisfy the boundary conditions ϴ102 = ϴ1p2 = 0 , R1r2 remains bounded as r S 0+ . 32. For the PDE in Problem 29, assume that the following boundary conditions are imposed: u10, y, t2 = u1a, y, t2 = 0 ; 0 … y … b , t Ú 0 , 0u 0u 1x, 0, t2 = 1x, b, t2 = 0 ; 0 … x … a , t Ú 0 . 0y 0y Show that a nontrivial solution of the form u1x, y, t2 = X1x2Y1y2T1t2 must satisfy the boundary conditions X102 = X1a2 = 0 , Y′102 = Y′1b2 = 0 . 33. When the temperature in a wire reaches a steady state, that is, when u depends only on x, then u1x2 satisfies Laplace’s equation 02u>0x2 = 0. (a) Find the steady-state solution when the ends of the wire are kept at a constant temperature of 50°C, that is, when u102 = u1L2 = 50. (b) Find the steady-state solution when one end of the wire is kept at 10°C, while the other is kept at 40°C, that is, when u102 = 10 and u1L2 = 40.
r 2R″1r2 + rR′1r2 - 1r 2l + m2R1r2 = 0 , where m, l are constants.
10.3 Fourier Series While analyzing heat flow and vibrating strings in the previous section, we encountered the problem of expressing a function in a trigonometric series [compare equations (12) and (25) in Section 10.2]. In the next two sections, we discuss the theory of Fourier series, which deals with trigonometric series expansions. First, however, we review some function properties that are particularly relevant to this study: piecewise continuity, periodicity, and even and odd symmetry. In Section 7.2 we defined a piecewise continuous function on 3a, b4 as a function f that is continuous at every point in 3a, b4, except possibly for a finite number of points at which f has a jump discontinuity. Such functions are necessarily integrable over any finite interval on which they are piecewise continuous.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
572
Chapter 10
Partial Differential Equations
Recall also that a function is periodic of period T if f1x + T2 = f1x2 for all x in the domain of f. The smallest positive value of T is called the fundamental period. The trigonometric functions sin x and cos x are examples of periodic functions with fundamental period 2p and tan x is periodic with fundamental period p. A constant function is a periodic function with arbitrary period T. Two symmetry properties of functions will be useful in the study of Fourier series. A function f that satisfies f1 -x2 = f1x2 for all x in the domain of f has a graph that is symmetric with respect to the y-axis [see Figure 10.4(a)]. We say that such a function is even. A function f that satisfies f1 -x2 = -f1x2 for all x in the domain of f has a graph that is symmetric with respect to the origin [see Figure 10.4(b)]. It is said to be an odd function. The functions 1, x2, x4, . . . are examples of even functions, while the functions x, x3, x5, . . . are odd. The trigonometric functions sin x and tan x are odd functions and cos x is an even function. Example 1
Determine whether the given function is even, odd, or neither. (a) f1x2 = 21 + x2
Solution
(c) h1x2 = ex
(b) g1x2 = x1>3 - sin x
(a) Since f1 -x2 = 21 + 1 -x2 2 = 21 + x2 = f1x2, then f1x2 is an even function. (b) Because g1 -x2 = 1 -x2 1>3 - sin 1 -x2 = -x1>3 + sin x = -1x1>3 - sin x2 = -g1x2, it follows that g1x2 is an odd function. (c) Here h1 -x2 = e-x. Since e-x = ex only when x = 0 and e-x is never equal to -ex, then h1x2 is neither an even nor an odd function. ◆ Knowing that a function is even or odd can be useful in evaluating definite integrals. The following result, illustrated in Figure 10.4, is a straightforward consequence of the definition of the definite integral.
Properties of Symmetric Functions Theorem 1.
If f is an even piecewise continuous function on 3 -a, a4, then
a
a
f1x2 dx = 2
(1)
f1x2 dx . L-a L0 If f is an odd piecewise continuous function on 3 -a, a4, then a
(2)
L-a
f1x2 dx = 0 .
y
y f(x)
f(x) A
-a
A
A
a
-a
x
a
x
-A
(a) Figure 10.4 (a) Even function
(b) a 1-a
f = A+A =
a 2 10
a
f (b) Odd function 1-a f = A - A = 0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.3
573
Fourier Series
The next example deals with certain integrals that are crucial in Fourier series. Example 2
Evaluate the following integrals when m and n are nonnegative integers: L
(a)
L-L
sin
L
(c) Solution
L-L
L
mpx npx cos dx . L L
cos
(b)
L-L
sin
mpx npx sin dx . L L
mpx npx cos dx . L L
The even and odd functions occurring in the integrands are sketched in Figure 10.5. The given integrals are easily evaluated by invoking the trigonometric formula for products of sines and cosines: 1m - n2px 1 1m + n2px mpx npx 1 cos = sin + sin , L L 2 L 2 L 1m - n2px 1 1m + n2px mpx npx 1 sin sin = cos - cos , L L 2 L 2 L 1m - n2px 1 1m + n2px mpx npx 1 cos cos = cos + cos . L L 2 L 2 L sin
1
1 -L
L
x
cos 0 x L
sin 0 x L
-L
L
-1
-1
1
1 x
cos 1 x L
sin 1 x L
x
-1
-1
1
1 x
cos 2 x L
sin 2 x L
-1
x
x -1
1
1 x
cos 3 x L
sin 3 x L
-1
x -1
Figure 10.5 The sinusoids
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
574
Chapter 10
Partial Differential Equations
Thus if m ≠ n, each of the integrals calls for the (signed) area under an oscillating sinusoid over a whole number of periods, and is therefore zero. In fact, the only way to avoid these “oscillators” is to take m = n; whence cos3 1m - n2px>L4 = cos 0 = 1 and subtends an area of 2L, while sin3 1m - n2px>L4 = sin 0 = 0 subtending zero area (again). But note that if m and n are both zero, then cos3 1m + n2px>L4 = cos 0 also subtends area 2L. Restoring the factors of 1>2, we summarize with L
(3)
L-L
sin
mpx npx cos dx = 0 , L L
sin
0, mpx npx sin dx = e L, L L
L
(4)
L-L
0, mpx npx cos cos dx = • L , L L L-L 2L , L
(5)
m≠n, m = n, m≠n, m = n≠0, ◆ m = n = 0.
Equations (3)–(5) express an orthogonality condition† satisfied by the set of trigonometric functions 51 = cos 0x, cos x, sin x, cos 2x, sin 2x, c6, where L = p. We will say more about this later in this section. It is easy to verify that if each of the functions f1, c, fn is periodic of period T, then so is any linear combination c1 f1 1x2 + g + cn fn 1x2 .
For example, the sum 7 + 3 cos px - 8 sin px + 4 cos 2px - 6 sin 2px has period 2, since each term has period 2. Furthermore, if the infinite series ∞ a0 npx npx + a a an cos + bn sin b 2 n=1 L L
consisting of 2L-periodic functions converges for all x, then the function to which it converges will be periodic of period 2L. Just as we can associate a Taylor series with a function that has derivatives of all orders at a fixed point, we can identify a particular trigonometric series with a piecewise continuous function. To illustrate this, let’s assume that f1x2 has the series expansion‡ (6)
f1x2 =
∞ a0 npx npx + a e an cos + bn sin f, 2 n=1 L L
where the an’s and bn’s are constants. (Necessarily, f has period 2L.) To determine the coefficients a0, a1, b1, a2, b2, . . . , we proceed as follows. Let’s integrate f1x2 from -L to L, assuming that we can integrate term by term: L
L-L
L
f1x2 dx =
L L ∞ ∞ a0 npx npx dx + a an cos dx + a bn sin dx . 2 L L n=1 n=1 L-L L-L L-L
†
This nomenclature is suggested by the fact that the formulas for the Riemann sums approximating the integrals (3)–(5) look like dot products (Section 9.1, page 496) of higher-dimensional vectors. In most calculus texts, it is shown that the dot product of orthogonal vectors in two dimensions is zero. The choice of constant a0 >2 instead of just a0 will be motivated shortly.
‡
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.3
Fourier Series
575
The (signed) area under the “oscillators” is zero. Hence, L
L-L
L
f1x2 dx =
a0 dx = a0 L , L-L 2
and so L
a0 =
1 f1x2 dx . L L-L
(Notice that a0 >2 is the average value of f over one period 2L.) Next, to find the coefficient am when m Ú 1, we multiply (6) by cos1mpx>L2 and integrate: L
(7)
L-L
f1x2 cos
L L ∞ a0 mpx mpx npx mpx dx = dx + a an cos dx cos cos L 2 L-L L L L n=1 L-L
L
∞
+ a bn n=1
L-L
sin
npx mpx cos dx . L L
The orthogonality conditions (3)–(5) render the integrals on the right-hand side quite immediately. We have already observed that L
L-L
cos
mpx dx = 0 , L
mÚ1,
and, by formulas (3) and (5), we have L
L-L
sin
npx mpx cos dx = 0 , L L
L
L-L
cos
npx mpx 0, cos dx = e L, L L
n≠m, n = m.
Hence, in (7) we see that only one term on the right-hand side survives the integration: L
L-L
f1x2 cos
mpx dx = amL . L
Thus, we have a formula for the coefficient am: L
am =
1 mpx f1x2 cos dx . L L-L L
Similarly, multiplying (6) by sin1mpx>L2 and integrating yields L
L-L
f1x2 sin
mpx dx = bmL L
so that the formula for bm is L
bm =
1 mpx f1x2 sin dx . L L-L L
Motivated by the above computations, we now make the following definition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
576
Chapter 10
Partial Differential Equations
Fourier Series Definition 1. Let f be a piecewise continuous function on the interval 3 -L, L4. The Fourier series† of f is the trigonometric series (8)
f1x2 ∼
∞ a0 npx npx + a e an cos + bn sin f, 2 n=1 L L
where the an’s and bn’s are given by the formulas‡ L
(9)
an =
1 npx f1x2 cos dx , L L-L L
(10)
bn =
1 npx f1x2 sin dx , L L-L L
n = 0, 1, 2, c,
L
n = 1, 2, 3, c.
Formulas (9) and (10) are called the Euler-Fourier formulas. We use the symbol ∼ in (8) to remind us that this series is associated with f1x2 but may not converge to f1x2. We will return to the question of convergence later in this section. Let’s first consider a few examples of Fourier series. Example 3
Compute the Fourier series for f1x2 = e
Solution
-p 6 x 6 0 , 06x6p.
0, x,
Here L = p. Using formulas (9) and (10), we have p
p
p
a0 =
1 x2 1 2 = p, f1x2 dx = x dx = p L-p p L0 2p 0 2
an =
1 1 f1x2 cos nx dx = x cos nx dx p L-p p L0
p
p
pn
pn
1 3cos u + u sin u4 2 pn2 0
=
1 pn2 L0
=
1 1 1cos np - 12 = 3 1 -12 n - 14 , pn2 pn2
u cos u du =
p
bn = = =
n = 1, 2, 3, c ,
p
1 1 f1x2 sin nx dx = x sin nx dx p L-p p L0 1 pn2 L0
pn
pn
u sin u du =
1 -12 n + 1 -cos np = , n n
1 3sin u - u cos u4 2 pn2 0 n = 1, 2, 3, c .
†
Historical Footnote: Joseph B. J. Fourier (1768–1830) developed his series for solving heat flow problems. Lagrange expressed doubts about the validity of the representation, but Dirichlet devised conditions that ensured its convergence. Note that the notational choice of a0 >2 in equation (6) made it unnecessary to insert an extra formula for a0 in (9). Notice that f1x2 need not be defined for every x in 3 - L, L4; we need only that the integrals in (9) and (10) exist.
‡
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.3
Fourier Series
577
4 f(x)
3 4 terms
9 terms 2 1
-8
-6
-4
-2
0 -1
x 4
2
6
8
Figure 10.6 Partial sums of Fourier series in Example 3
Therefore, f1x2 ∼
(11)
=
∞ 1 -12 n + 1 p 1 + a e 2 3 1 -12 n - 14cos nx + sin nx f n 4 n = 1 pn
1 p 2 1 - e cos x + cos 3x + cos 5x + g f 4 p 9 25 + e sin x -
1 1 sin 2x + sin 3x + g f . 2 3
Some partial sums of this series are displayed in Figure 10.6. ◆ Example 4
Compute the Fourier series for f1x2 = e
Solution
-1 , 1,
-p 6 x 6 0 , 06x6p.
Again, L = p. Notice that f is an odd function. Since the product of an odd function and an even function is odd (see Problem 7), f1x2cos nx is also an odd function. Thus, p
1 f1x2cos nx dx = 0 , n = 0, 1, 2, c . p L-p Furthermore, f1x2 sin nx is the product of two odd functions and therefore is even, so an =
p
bn = =
p 2 -cos nx 2 2 1 1 -12 n c d = c d , p p n n n 0
0, = • 4 , pn Thus, (12)
p
1 2 f1x2sin nx dx = sin nx dx p L-p p L0
f1x2 ∼
n = 1, 2, 3, c ,
n even , n odd .
4 2 ∞ 31 - 1 -12 n 4 1 1 sin nx = c sin x + sin 3x + sin 5x + g d . a pn=1 p n 3 5
Some partial sums of (12) are sketched in Figure 10.7 on page 578. ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
578
Chapter 10
Partial Differential Equations
2
2 terms
9 terms f(x)
1
-8
-6
-4
x
0
-2
2
4
6
8
-2 Figure 10.7 Partial sums of Fourier series in Example 4
In Example 4 the odd function f has a Fourier series consisting only of sine functions. It is easy to see that, in general, if f is any odd function, then its Fourier series consists only of sine terms. Example 5 Solution
Compute the Fourier series for f1x2 = 0 x 0 , -1 6 x 6 1. Here L = 1. Since f is an even function, f1x2sin1npx2 is an odd function. Therefore, 1
f1x2 sin1npx2 dx = 0 , n = 1, 2, 3, c . L-1 Since f1x2 cos1npx2 is an even function, we have bn =
1
a0 =
L-1
1
f1x2 dx = 2
L0
x dx = x2 2
L-1
= 1, 0
1
an =
1
1
f1x2 cos1npx2 dx = 2 pn
L0
x cos1npx2 dx pn
=
2 p2n2 L0
=
2 3 1 -12 n - 14 , p2n2
u cos u du =
2 2 3cos u + u sin u4 2 = 2 2 1cos np - 12 2 2 pn pn 0 n = 1, 2, 3, c .
Therefore, (13)
f1x2 ∼ =
∞ 1 2 + a 2 2 3 1 -12 n - 14cos1npx2 2 n=1 p n
1 1 1 4 e cos1px2 + cos13px2 + cos15px2 + g f . 2 p2 9 25
Partial sums for (13) are displayed in Figure 10.8. ◆ 9 terms
2 terms
-2
1
-1
0
x 1
2
Figure 10.8 Partial sums of Fourier series in Example 5
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.3
Fourier Series
579
Notice that the even function f of Example 5 has a Fourier series consisting only of cosine functions and the constant function 1 = cos10px2. In general, if f is an even function, then its Fourier series consists only of cosine functions [including cos10px2].
Orthogonal Expansions
Fourier series are examples of orthogonal expansions.† A set of functions 5fn 1x26n∞= 1 is said to be an orthogonal system or just orthogonal with respect to the nonnegative weight function w1x2 on the interval 3a, b4 if b
(14)
La
fm 1x2 fn 1x2w1x2 dx = 0 ,
whenever
m≠n.
As we have seen, the set of trigonometric functions (15)
51, cos x, sin x, cos 2x, sin 2x, c6
(16)
‘f‘ J c
is orthogonal on 3 -p, p4 with respect to the weight function w1x2 K 1. If we define the norm of f as b
La
f 2 1x2 w1x2 dx d
1>2
,
then we say that a set of functions 5fn 1x26n∞= 1 1or 5fn 1x26 nN= 1 2 is an orthonormal system with respect to w1x2 if (14) holds and also ‘ fn ‘ = 1 for each n. Equivalently, we say the set is an orthonormal system if b
(17)
fm 1x2 fn 1x2w1x2 dx = e
0, 1,
m≠n, m = n.
La We can always obtain an orthonormal system from an orthogonal system just by dividing each function by its norm. In particular, since p
L-p
p
cos2nx dx =
L-p
sin2nx dx = p ,
n = 1, 2, 3, c
and p
L-p
1 dx = 2p ,
then the orthogonal system (15) gives rise on 3 -p, p4 to the orthonormal system 5 12p2 -1>2, p -1>2 cos x, p -1>2 sin x, p -1>2 cos 2x, p -1>2 sin 2x, c6 .
If 5fn 1x26n∞= 1 is an orthogonal system with respect to w1x2 on 3a, b4, we might ask if we can expand a function f1x2 in terms of these functions; that is, can we express f in the form (18)
f1x2 = c1 f1 1x2 + c2 f2 1x2 + c3 f3 1x2 + g
for a suitable choice of constants c1, c2, c? Such an expansion is called an orthogonal expansion, or a generalized Fourier series.
†
Orthogonality is also discussed in Section 8.8 on page 474.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
580
Chapter 10
Partial Differential Equations
To determine the constants in (18), we can proceed as we did in deriving Euler’s formulas for the coefficients of a Fourier series, this time using the orthogonality of the system. Presuming the representation (18) is valid, we multiply by fm 1x2w1x2 and integrate to obtain b
(19)
La
f1x2 fm 1x2 w1x2 dx = c1
b
La
f1 1x2 fm 1x2 w1x2 dx + c2 b
∞
= a cn n=1
La
b
La
f2 1x2 fm 1x2 w1x2 dx + g
fn 1x2 fm 1x2 w1x2 dx .
(Here we have also assumed that we can integrate term by term.) Because the system is orthogonal with respect to w1x2, every integral on the right-hand side of (19) is zero except when n = m. Solving for cm gives b
(20)
cm =
La
b
f1x2 fm 1x2 w1x2 dx b
La
2 fm 1x2 w1x2 dx
=
Lc
f1x2 fm 1x2 w1x2 dx ‘ fm ‘ 2
,
n = 1, 2, 3, c.
The derivation of the formula for cm was only formal, since the question of the con∞ vergence of the expansion in (18) was not answered. If the series g n = 1 cn fn 1x2 converges uniformly to f1x2 on 3a, b4, then each step can be justified, and indeed, the coefficients are given by formula (20). The notion of uniform convergence is discussed in the next subsection and in Section 13.2.†
Convergence of Fourier Series Let’s turn to the question of the convergence of a Fourier series. For Example 5 it is possible to use a comparison or limit comparison test to show that the series is ∞ absolutely dominated by a p-series of the form g n = 1 1>n2, which converges. However, this is much harder to do in Example 4, since the terms go to zero like 1>n. Matters can be even worse, since there exist Fourier series that diverge.‡ We state two theorems that deal with the convergence of a Fourier series and two dealing with the properties of termwise differentiation and integration. For proofs of these results, see Partial Differential Equations of Mathematical Physics, 2nd ed., by Tyn Myint-U (Elsevier North Holland, Inc., New York, 1983), Chapter 5; Advanced Calculus with Applications, by N. J. DeLillo (Macmillan, New York, 1982), Chapter 9; or an advanced text on the theory of Fourier series. Before proceeding, we need a notation for the left- and right-hand limits of a function. Let f1x + 2J lim+ f1x + h2 hS0
and
f1x - 2 J lim+ f1x - h2 . hS0
We now present the fundamental pointwise convergence theorem for Fourier series. While reading it, keep in mind Figures 10.6-10.8 . †
All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed. ∞ sin nx ‡ In fact, there are trigonometric series that converge but are not Fourier series; an example is a . ln 1n + 12 n=1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.3
Fourier Series
581
Pointwise Convergence of Fourier Series Theorem 2. 1 -L, L2
If f and f ′ are piecewise continuous on 3 -L, L4, then for any x in
∞ a0 npx npx 1 + a e an cos + bn sin f = 3f1x + 2 + f1x - 24 , 2 n=1 L L 2
(21)
where the an’s and bn’s are given by the Euler-Fourier formulas (9) and (10). For 1 x = {L, the series converges to 3f1 -L+ 2 + f1L- 24 .† 2 In other words, when f and f′ are piecewise continuous on 3 -L, L4, the Fourier series converges to f1x2 whenever f is continuous at x and converges to the average of the left- and right-hand limits at points where f is discontinuous. Observe that the left-hand side of (21) is periodic of period 2L. This means that if we extend f1x2 from the interval 1 -L, L2 to the entire real line using 2L-periodicity, then equation (21) holds for all x for the 2L-periodic extension of f1x2. Example 6
To which function does the Fourier series for f1x2 = e
-1 , 1,
-p 6 x 6 0 , 06x6p,
converge? Solution
In Example 4 we found that the Fourier series for f1x2 is given by (12), and in Figure 10.7, we sketched the graphs of two of its partial sums. Now f1x2 and f ′1x2 are piecewise continuous in 3 -p, p4. Moreover, f is continuous except at x = 0. Thus, by Theorem 2, the Fourier series of f in (12) converges to the 2p-periodic function g1x2, where g1x2 = f1x2 = -1 for -p 6 x 6 0, g1x2 = f1x2 = 1 for 0 6 x 6 p, g102 = 3f10+ 2 + f10- 24 >2 = 0, and at {p we have g1 {p2 = 3f1 -p + 2 + f1p - 24 >2 = 1 -1 + 12 >2 = 0. The graph of g1x2 is given in Figure 10.9. ◆ y
1
-
x 0
2 -1
Figure 10.9 The limit function of the Fourier series for f1x2 = e
-1 , 1,
-p 6 x 6 0 , 06x6p
†
From formula (21), we see that it doesn’t matter how we define f1x2 at its points of discontinuity, since only the left-and right-hand limits are involved. The derivative f ′1x2, of course, is undefined at such points.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
582
Chapter 10
Partial Differential Equations
When f is a 2L-periodic function that is continuous on 1 - ∞, ∞ 2 and has a piecewise continuous derivative, its Fourier series not only converges at each point—it converges uniformly on 1 - ∞, ∞ 2. This means that for any prescribed tolerance e 7 0, the graph of the partial sum sN 1x2 J
N a0 npx npx + a e an cos + bn sin f 2 n=1 L L
will, for all N sufficiently large, lie in an e-corridor about the graph of f on 1 - ∞, ∞ 2 (see Figure 10.10). The property of uniform convergence of Fourier series is particularly helpful when one needs to verify that a formal solution to a partial differential equation is an actual (genuine) solution.
f (x) + sN (x)
f (x)
f (x) – x Figure 10.10 An e-corridor about f
Uniform Convergence of Fourier Series Theorem 3. Let f be a continuous function on 1 - ∞, ∞ 2 and periodic of period 2L. If f ′ is piecewise continuous on 3 -L, L4, then the Fourier series for f converges uniformly to f on 3 -L, L4 and hence on any interval. That is, for each e 7 0, there exists an integer N0 (that depends on e) such that ` f1x2 - c
N a0 npx npx + a e an cos + bn sin fd ` 6e, 2 n=1 L L
for all N Ú N0, and all x ∈ 1 - ∞, ∞ 2.
In Example 5 we obtained the Fourier series expansion given in (13) for f1x2 = 0 x 0 , -1 6 x 6 1. Since g1x2, the periodic extension of f1x2 (see Figure 10.11 on page 583) is continuous on 1 - ∞, ∞ 2 and f ′1x2 = e
-1 ,
-1 6 x 6 0 ,
1,
06x61,
is piecewise continuous on 3 -1, 14, the Fourier series expansion (13) converges uniformly to 0 x 0 on 3 -1, 14. Compare Figure 10.8 on page 578. The term-by-term differentiation of a Fourier series is not always permissible. For example, the Fourier series for f1x2 = x, -p 6 x 6 p (see Problem 9), is ∞
(22)
f1x2 ∼ 2 a 1 -12 n + 1 n=1
sin nx , n
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.3
Fourier Series
583
which converges for all x, whereas its derived series ∞
2 a 1 -12 n+1 cos nx n=1
diverges for every x. The following theorem gives sufficient conditions for using termwise differentiation. g(x)
1
-4
-2
0
2
4
x
Figure 10.11 Periodic extension of f1x2 = 0 x 0 , - 1 6 x 6 1
Differentiation of Fourier Series Theorem 4. Let f1x2 be continuous on 1 - ∞, ∞ 2 and 2L-periodic. Let f ′1x2 and f ″1x2 be piecewise continuous on 3 -L, L4. Then, the Fourier series of f ′1x2 can be obtained from the Fourier series for f 1x2 by termwise differentiation. In particular, if f 1x2 =
∞ a0 npx npx + a e an cos + bn sin f, 2 n=1 L L
then ∞ pn npx npx f ′1x2 ∼ a e -an sin + bn cos f. L L n=1 L
Notice that Theorem 4 does not apply to the example function f1x2 and its Fourier series expansion shown in (22), since the 2p-periodic extension of this f1x2 fails to be continuous on 1 - ∞, ∞ 2. Termwise integration of a Fourier series is permissible under much weaker conditions.
Integration of Fourier Series Theorem 5. f1x2 ∼
Let f1x2 be piecewise continuous on 3 -L, L4 with Fourier series ∞ a0 npx npx + a e an cos + bn sin f. 2 n=1 L L
Then, for any x in 3 -L, L4, x
x
x ∞ a0 npt npt f1t2 dt = dt + a e an cos + bn sin f dt . 2 L L n = 1 L-L L-L L-L
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
584
Chapter 10
Partial Differential Equations
A final note on the convergence issue: The question as to under what conditions the Fourier series converges has led to a tremendous amount of beautiful mathematics. As a practical matter, however, time and economics will often dictate that you can afford to compute only a few terms of an eigenfunction series for your particular partial differential equation. Convergence fades into the background, and you need to know how to “do the best with what you’ve got.” So it is extremely gratifying to know that even if you’re going to use only part of an eigenfunction expansion, the Fourier coefficients (9)–(10) are still the best choice; Problem 37 demonstrates that every partial sum of a Fourier series outperforms any comparable superposition of the trigometric functions, in terms of mean-square approximation.
10.3
EXERCISES
In Problems 1– 6, determine whether the given function is even, odd, or neither. 1. f1x2 = x3 + sin 2x 2. f1x2 = sin2x 2 -1>2 4. f1x2 = sin1x + 12 3. f1x2 = 11 - x 2 5. f1x2 = e-x cos 3x 6. f1x2 = x1>5 cos x2 7. Prove the following properties: (a) If f and g are even functions, then so is the product fg. (b) If f and g are odd functions, then fg is an even function. (c) If f is an even function and g is an odd function, then fg is an odd function. 8. Verify formula (5). 3Hint: Use the identity 2 cos A cos B = cos1A + B2 + cos1A - B2.4 In Problems 9–16, compute the Fourier series for the given function f on the specified interval. Use a computer or graphing calculator to plot a few partial sums of the Fourier series. 9. f1x2 = x , - p 6 x 6 p 10. f1x2 = 0 x 0 ,
-p 6 x 6 p
11. f1x2 = e
1,
-2 6 x 6 0 ,
x,
06x62
12. f1x2 = e
0,
06x6p
x ,
13. f1x2 = x2 , 14. f1x2 = e
-p 6 x 6 0 ,
2
-1 6 x 6 1 06x6p,
x, x+p,
15. f1x2 = e , x
-p 6 x 6 0
-p 6 x 6 p
0, -1 , 16. f1x2 = μ 1, 0,
- p 6 x 6 -p>2 , - p>2 6 x 6 0 , 0 6 x 6 p>2 , p>2 6 x 6 p
In Problems 17–24, determine the function to which the Fourier series for f1x2, given in the indicated problem, converges. 17. Problem 9 18. Problem 10 19. Problem 11 20. Problem 12 21. Problem 13 22. Problem 14 23. Problem 15 24. Problem 16 25. Find the functions represented by the series obtained by the termwise integration of the given series from -p to x. ∞
(a) 2 a
n=1
(b)
1 -12 n+1 n
sin nx ∼ x ,
-p 6 x 6 p
4 ∞ sin12n + 12x ∼ f1x2 , p na 12n + 12 =0 f1x2 = e
-1 ,
-p 6 x 6 0 ,
1, 06x6p 26. Show that the set of functions p p 3p 3p e cos x, sin x, cos x, sin x, c , 2 2 2 2 12n - 12p 12n - 12p x, sin x, c f cos 2 2 is an orthonormal system on 3 - 1, 14 with respect to the weight function w1x2 K 1. 27. Find the orthogonal expansion (generalized Fourier series) for 0, -1 6 x 6 0 , f1x2 = e 1, 06x61, in terms of the orthonormal system of Problem 26. 28. (a) Show that the function f1x2 = x2 has the Fourier series, on -p 6 x 6 p, ∞ 1 - 12 n p2 f1x2 ∼ +4 a cos nx . 3 n2 n=1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.3
Fourier Series
585
(b) Use the result of part (a) and Theorem 2 to show that ∞ 1 -12 n+1 p2 = . a 2 12 n n=1
particular, show that the inner product of two functions defined by
(c) Use the result of part (a) and Theorem 2 to show that
(23)
∞
8f, g9 J
2
1 p a n2 = 6 . n=1 29. In Section 8.8, it was shown that the Legendre polynomials Pn 1x2 are orthogonal on the interval 3 -1, 14 with respect to the weight function w1x2 K 1. Using the fact that the first three Legendre polynomials are P0 1x2 K 1 , P1 1x2 = x , P2 1x2 = 13>22x2 - 11>22 ,
find the first three coefficients in the expansion
f1x2 = c0P0 1x2 + c1P1 1x2 + c2P2 1x2 + g,
where f1x2 is the function -1 , -1 6 x 6 0 , f1x2 J e 1, 06x61. 30. As in Problem 29, find the first three coefficients in the expansion f1x2 = c0P0 1x2 + c1P1 1x2 + c2P2 1x2 + g,
when f1x2 = 0 x 0 , - 1 6 x 6 1. 31. The Hermite polynomials Hn 1x2 are orthogonal on the interval 1 - ∞ , ∞ 2 with respect to the weight function 2 W1x2 = e-x . Verify this fact for the first three Hermite polynomials: H0 1x2 K 1 , H1 1x2 = 2x ,
H2 1x2 = 4x2 - 2 .
32. The Chebyshev (Tchebichef) polynomials Tn 1x2 are orthogonal on the interval 3 - 1, 14 with respect to the weight function w1x2 = 11 - x2 2 -1>2. Verify this fact for the first three Chebyshev polynomials: T0 1x2 K 1 , T1 1x2 = x ,
T2 1x2 = 2x2 - 1 .
33. Let 5fn 1x26 be an orthogonal set of functions on the interval 3a, b4 with respect to the weight function w1x2. Show that they satisfy the Pythagorean property ‘ fm + fn ‘ 2 = ‘ fm ‘ 2 + ‘ fn ‘ 2 if m ≠ n. 34. Norm. The norm of a function ‘ f ‘ is like the length of a vector in Rn. In particular, show that the norm defined in (16) satisfies the following properties associated with length 1assume f and g are continuous and w1x2 7 0 on 3a, b42: (a) ‘ f ‘ Ú 0, and ‘ f ‘ = 0 if and only if f K 0.
(b) ‘cf ‘ = 0 c 0 ‘ f ‘, where c is any real number. (c) ‘ f + g‘ … ‘ f ‘ + ‘g‘ . 35. Inner Product. The integral in the orthogonality condition (14) is like the dot product of two vectors in Rn. In
b
La
f1x2g1x2w1x2 dx ,
where w1x2 is a positive weight function, satisfies the following properties associated with the dot product 1assume f, g, and h are continuous on 3a, b42: (a) 8f + g, h9 = 8f, h9 + 8g, h9 . (b) 8cf, h9 = c8f, h9 , where c is any real number. (c) 8f, g9 = 8g, f9 . 36. Complex Form of the Fourier Series. (a) Using the Euler formula eiu = cos u + i sin u, i = 1- 1, prove that einx + e-inx 2
cos nx =
and
sin nx =
einx - e-inx . 2i
(b) Show that the Fourier series f1x2 ∼
∞ a0 + a 5an cos nx + bn sin nx6 2 n=1 ∞
= c0 + a 5cneinx + c-ne-inx 6 , n=1
where c0 =
a0 an - ibn an + ibn , cn = , c-n = . 2 2 2
(c) Finally, use the results of part (b) to show that ∞
f1x2 ∼ a cneinx , n = -∞
-p 6 x 6 p ,
where p
cn =
1 f1x2 e-inx dx . 2p L-p
37. Least-Squares Approximation Property. The Nth partial sum of the Fourier series f1x2 ∼
∞ a0 + a 5an cos nx + bn sin nx6 2 n=1
gives the best mean-square approximation of f by a trigonometric polynomial. To prove this, let FN 1x2 denote an arbitrary trigonometric polynomial of degree N: FN 1x2 =
N a0 + a {an cos nx + bn sin nx} , 2 n=1
and define p
E J
L-p
3f1x2 - FN 1x24 2 dx ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
586
Chapter 10
Partial Differential Equations
which is the total square error. Expanding the integrand, we get p
E =
L-p
p
+
p
f 2 1x2 dx - 2
L-p
F 2N 1x2
L-p
f1x2FN 1x2 dx
E - E* = p e
dx .
L-p
F 2N 1x2 dx = p a
a20 2
+ a21 + g + a2N
+ b21 + g + b2N b
L-p
f1x2FN 1x2 dx = p a
a0a0 + a1a1 + g + aNaN 2 + b1b1 + g + bN bN b .
(b) Let E* be the error when we approximate f by the Nth partial sum of its Fourier series, that is, when we choose an = an and bn = bn. Show that p
E* =
L-p
f 2 1x2dx - p a
2
Hence, the Nth partial sum of the Fourier series gives the least total square error, since E Ú E*. 38. Bessel’s Inequality. Use the fact that E*, defined in part (b) of Problem 37, is nonnegative to prove Bessel’s inequality
a02 + a21 + g + a2N 2
p ∞ a20 1 + a 5a2n + b2n 6 … f 2 1x2 dx . p L-p 2 n=1
(If f is piecewise continuous on 3 -p, p4, then we have equality in (24). This result is called Parseval’s identity.) 39. Gibbs Phenomenon.† Josiah Willard Gibbs, who was awarded the first American doctorate in engineering (Yale, 1863), observed that near points of discontinuity of f, the partial sums of the Fourier series for f may overshoot by approximately 9% of the jump, regardless of the number of terms. This is illustrated in Figure 10.12 for the function
+ b21 + g + b2N b .
f1x2 = e
Overshoot
-1 ,
-p 6 x 6 0 ,
1,
06x6p,
Overshoot 1
-3
-2
+ 1a1 - a1 2 2
+ g + 1bN - bN 2 2 f .
(24)
and p
1a0 - a0 2 2
+ g + 1aN - aN 2 2 + 1b1 - b1 2 2
(a) Use the orthogonality of the functions 51, cos x, sin x, cos 2x, c6 to show that p
(c) Using the results of parts (a) and (b), show that E - E* Ú 0, that is, E Ú E*, by proving that
-1
1
0
1
2
3
x
-3
-2
-1
-1
0
1
2
3
x
-1
(a) Graph of f11(x)
(b) Graph of f51(x)
Figure 10.12 Gibbs phenomenon for partial sums of Fourier series
†
Historical Footnote: Actually, H. Wilbraham discovered this phenomenon some 50 years earlier than Gibbs did. It is more appropriately called the Gibbs–Wilbraham phenomenon.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.4
Fourier Cosine and Sine Series
each interval as the place to evaluate the integrand, then p sin1p>2n2 p sin x dx ≈ + g x n p>2n L0
whose Fourier series has the partial sums 1 4 f2n-1 1x2 = c sin x + sin 3x p 3 sin 12n - 12x d . + g+ 12n - 12
+
To verify this for f1x2, proceed as follows: (a) Show that
=
= p1sin x2f 2n-1 1x2 = 4 sin x 3cos x + cos 3x
= + g + cos12n - 12x4 = 2 sin 2nx .
sin312n - 12p>2n4 p n 12n - 12p>2n
p p f2n-1 a b . 2 2n
(d) Use the result of part (c) to show that the overshoot satisfies p
lim f2n-1 a S
p sin x 2 dx . b = n ∞ p L0 x 2n (e) Using the result of part (d) and a numerical integration algorithm (such as Simpson’s rule, Appendix C) for the sine integral function
(b) Infer from part (a) and the figure that the maximum occurs at x = p> 12n2 and has the value f2n-1 a
587
p p 1 3p 4 b = c sin + sin p 2n 2n 3 2n 12n - 12p 1 sin d . + g+ 2n - 1 2n
z
sin x dx , L0 x show that limn S ∞ f2n-1 1p> 12n22 ≈ 1.18. Thus, the approximations overshoot the true value of f10+ 2 = 1 by 0.18, or 9% of the jump from f10- 2 to f10+ 2. Si1z2 J
(c) Show that if one approximates p
sin x dx x L0
using the partition xk J 12k - 121p>2n2, k = 1, 2, . . . , n, ∆xk = p>n and choosing the midpoint of
10.4 Fourier Cosine and Sine Series A typical problem encountered in using separation of variables to solve a partial differential equation is the problem of representing a function defined on some finite interval by a trigonometric series consisting of only sine functions or only cosine functions. For example, in Section 10.2, equation (25), page 569, we needed to express the initial values u1x, 02 = f1x2, 0 6 x 6 L, of the solution to the initial-boundary value problem associated with the problem of a vibrating string as a trigonometric series of the form (1)
∞ npx f1x2 = a an sina b. L n=1
Recalling that the Fourier series for an odd function defined on 3 -L, L4 consists entirely of sine terms, we might try to achieve (1) by artificially extending the function f1x2, 0 6 x 6 L, to the interval 1 -L, L2 in such a way that the extended function is odd. This is accomplished by defining the function fo 1x2 J e
f1x2 , -f1 -x2 ,
06x6L, -L 6 x 6 0 ,
and extending fo 1x2 to all x using 2L-periodicity.† Since fo 1x2 is an odd function, it has a Fourier series consisting entirely of sine terms. Moreover, fo 1x2 is an extension of f1x2, Strictly speaking, we have extended fo 1x2 to all x other than the integer multiples of L. Continuity considerations often suggest appropriate values for the extended functions at some of these points, as well. Figure 10.13 on page 589 illustrates this.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
588
Chapter 10
Partial Differential Equations
since fo 1x2 = f1x2 on 10, L2. This extension is called the odd 2L-periodic extension of f1x2. The resulting Fourier series expansion is called a half-range expansion for f1x2, since it represents the function f1x2 on 10, L2, which is half of the interval 1 -L, L2 where it represents fo 1x2. In a similar fashion, we can define the even 2L-periodic extension of f1x2 as the function fe 1x2 J e
06x6L,
f1x2 , f1 -x2 ,
-L 6 x 6 0 ,
x, ∼ f 1x2 = e x+p,
06x6p,
with fe 1x + 2L2 = fe 1x2. To illustrate the various extensions, let’s consider the function f1x2 = x, 0 6 x 6 p. ∼ If we extend f1x2 to the interval 1 -p, p2 using p-periodicity, then the extension f is given by -p 6 x 6 0 ,
∼ ∼ ∼ with f 1x + 2p2 = f 1x2. In Problem 14 of Exercises 10.3, the Fourier series for f 1x2 was found to be ∞ 1 p ∼ f 1x2 ∼ - a sin 2nx , 2 n=1 n
which consists of both odd functions (the sine terms) and even functions (the constant ∼ term), since the p-periodic extension f 1x2 is neither an even nor an odd function. The odd 2p-periodic extension of f1x2 is just fo 1x2 = x, -p 6 x 6 p, which has the Fourier series expansion ∞
(2)
fo 1x2 ∼ 2 a
n=1
1 -12 n+1 sin nx n
(see Problem 9 in Exercises 10.3). Because fo 1x2 = f1x2 on the interval 10, p2, the expansion in (2) is a half-range expansion for f1x2. The even 2p-periodic extension of f1x2 is the function fe 1x2 = 0 x 0 , -p 6 x 6 p, which has the Fourier series expansion (3)
fe 1x2 =
p 4 ∞ 1 cos 12n + 12x a 2 p n = 0 12n + 12 2
(see Problem 10 in Exercises 10.3). ∼ The preceding three extensions, the p-periodic function f 1x2, the odd 2p-periodic function fo 1x2, and the even 2p-periodic function fe 1x2, are natural extensions of f1x2. There are many other ways of extending f1x2. For example, the function g1x2 = e
x,
06x6p,
0,
-p 6 x 6 0 ,
g1x + 2p2 = g1x2 ,
which we studied in Example 3 of Section 10.3, is also an extension of f1x2. However, its Fourier series contains both sine and cosine terms and hence is not as useful as previous extensions. The graphs of these extensions of f1x2 are given in Figure 10.13 on page 589.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.4
~ f (x)
-3
-2
fo(x)
x
-
2
3
-3
-2
-2
x
-
fe(x)
-3
589
Fourier Cosine and Sine Series
2
3
g (x)
x
-
2
3
-3
-2
-
x 2
3
Figure 10.13 Extensions of f1x2 = x, 0 6 x 6 p
The Fourier series expansions for fo 1x2 and fe 1x2 given in (2) and (3) represent f1x2 on the interval 10, p2 1 actually, they equal f1x2 on 10, p2 2 . This motivates the following definitions.
Fourier Cosine and Sine Series Definition 2. Let f1x2 be piecewise continuous on the interval 30, L4. The Fourier cosine series of f1x2 on 30, L4 is (4)
∞ a0 npx + a an cos , 2 n=1 L
where L
2 npx f1x2 cos dx , n = 0, 1, c . L L0 L The Fourier sine series of f1x2 on 30, L4 is (5)
an =
(6)
∞ npx a bn sin L , n=1
where L
(7)
bn =
2 npx f1x2 sin dx , L L0 L
n = 1, 2, c .
The trigonometric series in (4) is just the Fourier series for fe 1x2, the even 2L-periodic extension of f1x2, and that in (6) is the Fourier series for fo 1x2, the odd 2L-periodic extension of f1x2. These are called half-range expansions for f1x2.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
590
Chapter 10
Example 1
Partial Differential Equations
Compute the Fourier sine series for f1x2 = e
Solution
0 … x … p>2 ,
x,
p>2 … x … p .
p-x,
Using formula (7) with L = p, we find p
2 2 bn = f1x2 sin nx dx = p L0 p L0 2 = pn2 L0
pn>2
p>2
p
2 x sin nx dx + 1p - x2 sin nx dx p Lp>2
p
pn
2 u sin u du + 2 sin nx dx u sin u du 2 pn Lp>2 Lpn>2 pn>2
2 = 3sin u - u cos u4 ` pn2 0
-
2 np c cos pn - cos d n 2
pn
-
=
2 3sin u - u cos u4 2 pn2 pn>2
0, 4 np 41 -12 1n-12>2 • sin = 2 , pn2 pn2
n even , n odd .
So on letting n = 2k + 1, we find the Fourier sine series for f1x2 to be (8)
1 -12 k 4 ∞ 4 1 1 sin12k + 12x = e sin x - sin 3x + sin 5x + g f . ◆ a 2 p k = 0 12k + 12 p 9 25
Since, in Example 1, the function f1x2 is continuous and f ′1x2 is piecewise continuous on 10, p2, it follows from Theorem 2 on pointwise convergence of Fourier series that f1x2 =
4 1 1 1 e sin x - sin 3x + sin 5x sin 7x + g f p 9 25 49
for all x in 30, p4 . Let’s return to the problem of heat flow in one dimension.
Example 2
Find the solution to the heat flow problem 0u 02u = 2 2, 0t 0x
(9)
Solution
06x6p,
(10)
u10, t2 = u1p, t2 = 0 ,
(11)
u1x, 02 = e
x, p-x,
t70,
t70,
0 6 x … p>2 , p>2 … x 6 p .
Comparing equation (9) with equation (1) in Section 10.2 (page 563), we see that b = 2 and L = p. Hence, we need only represent u1x, 02 = f1x2 in a Fourier sine series of the form ∞
a cn sin nx .
n=1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.4
Fourier Cosine and Sine Series
591
In Example 1 we obtained this expansion and showed that cn =
n even ,
0, 4 np 41 -12 1n-12>2 sin = • , 2 pn2 pn2
n odd .
Hence, from equation (15) on page 566, the solution to the heat flow problem (9)–(11) is ∞
u1x, t2 = a cne-2n t sin nx 2
n=1
=
1 -12 k -212k + 122t 4 ∞ e sin12k + 12x 2 p ka = 0 12k + 12
=
4 1 -50t 1 e e-2t sin x - e-18t sin 3x + e sin 5x + g f . p 9 25
A sketch of a partial sum for u1x, t2 is displayed in Figure 10.14. ◆ u
p x
t
Figure 10.14 Partial sum for u1x, t2 in Example 2
10.4
EXERCISES
In Problems 1–4, determine (a) the p-periodic extension ∼ f , (b) the odd 2p-periodic extension fo, and (c) the even 2p-periodic extension fe for the given function f and sketch their graphs. 1. f1x2 = x2 , 0 6 x 6 p 2. f1x2 = sin 2x , 3. f1x2 = e
06x6p
0 , 0 6 x 6 p>2 , 1 , p>2 6 x 6 p
4. f1x2 = p - x ,
06x6p
In Problems 5–10, compute the Fourier sine series for the given function. 5. f1x2 = - 1 , 0 6 x 6 1 6. f1x2 = cos x , 0 6 x 6 p
7. f1x2 = x2 , 0 6 x 6 p 8. f1x2 = p - x , 0 6 x 6 p 9. f1x2 = x - x2 , 0 6 x 6 1 10. f1x2 = ex , 0 6 x 6 1 In Problems 11–16, compute the Fourier cosine series for the given function. 11. f1x2 = p - x , 0 6 x 6 p 12. f1x2 = 1 + x , 0 6 x 6 p 13. f1x2 = ex , 0 6 x 6 1 14. f1x2 = e-x , 0 6 x 6 1 15. f1x2 = sin x , 0 6 x 6 p 16. f1x2 = x - x2 , 0 6 x 6 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
592
Chapter 10
Partial Differential Equations
In Problems 17–19, for the given f1x2, find the solution to the heat flow problem. 02u 0u 06x6p, t70, = 5 2, 0t 0x u10, t2 = u1p, t2 = 0 , t70, u1x, 02 = f1x2 ,
17. f1x2 = 1 - cos 2x 18. f1x2 = x1p - x2 19. f1x2 = e
-x , x-p,
0 6 x … p>2 , p>2 … x 6 p
06x6p,
10.5 The Heat Equation In Section 10.1 we developed a model for heat flow in an insulated uniform wire whose ends are kept at the constant temperature 0°C. In particular, we found that the temperature u1x, t2 in the wire is governed by the initial-boundary value problem (1) (2) (3)
0u 02u = b 2, 06x6L, 0t 0x u10, t2 = u1L, t2 = 0 , t70, u1x, 02 = f1x2 , 06x6L
t70,
[see equations (7)–(9) in Section 10.1, page 562]. Here equation (2) specifies that the temperature at the ends of the wire is zero, whereas equation (3) specifies the initial temperature distribution. In Section 10.2 we also derived a formal solution to (1) –(3) using separation of variables. There we found the solution to (1)–(3) to have the form (4)
∞ npx 2 u1x, t2 = a cne-b1np>L2 t sin , L n=1
where the cn’s are the coefficients in the Fourier sine series for f1x2: (5)
∞ npx f1x2 = a cn sin . L n=1
In other words, solving (1)–(3) reduces to computing the Fourier sine series for the initial value function f1x2. In this section we discuss heat flow problems where the ends of the wire are insulated or kept at a constant, but nonzero, temperature. (The latter involves nonhomogeneous boundary conditions.) We will also discuss the problem in which a heat source is adding heat to the wire. (This results in a nonhomogeneous partial differential equation.) The problem of heat flow in a rectangular plate is also discussed and leads to the topic of double Fourier series. We conclude this section with a discussion of the existence and uniqueness of solutions to the heat flow problem. In the model of heat flow in a uniform wire, let’s replace the assumption that the ends of the wire are kept at a constant temperature zero and instead assume that the ends of the wire are insulated—that is, no heat flows out (or in) at the ends of the wire. It follows from the principle of heat conduction (see Section 10.1) that the temperature gradient must be zero at these endpoints, that is, 0u 0u 10, t2 = 1L, t2 = 0 , 0x 0x
t70.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.5
The Heat Equation
593
In the next example we obtain the formal solution to the heat flow problem with these boundary conditions. Example 1
Find a formal solution to the heat flow problem governed by the initial-boundary value problem (6) (7) (8)
Solution
02u 0u = b 2, 06x6L, 0t 0x 0u 0u 10, t2 = 1L, t2 = 0 , t 7 0 , 0x 0x u1x, 02 = f1x2 , 0 6 x 6 L .
t70,
Using the method of separation of variables, we first assume that u1x, t2 = X1x2T1t2 . Substituting into equation (6) and separating variables, as was done in Section 10.2 [compare equation (5) on page 564], we get the two equations (9)
X″1x2 + lX1x2 = 0 ,
(10)
T′1t2 + blT1t2 = 0 ,
where l is some constant. The boundary conditions in (7) become X′102T1t2 = 0
and
X′1L2T1t2 = 0 .
For these equations to hold for all t 7 0, either T1t2 K 0, which implies that u1x, t2 K 0, or (11)
X′102 = X′1L2 = 0 .
Combining the boundary conditions in (11) with equation (9) gives the boundary value problem (12)
X″1x2 + lX1x2 = 0 ;
X′102 = X′1L2 = 0 ,
where l can be any constant. To solve for the nontrivial solutions to (12), we propose X1x2 = e rx and form the auxiliary equation r 2 + l = 0. When l 6 0, arguments similar to those used in Section 10.2 show that there are no nontrivial solutions to (12). When l = 0, the auxiliary equation has the repeated root 0 and a general solution to the differential equation is X1x2 = A + Bx . The boundary conditions in (12) reduce to B = 0 with A arbitrary. Thus, for l = 0, the nontrivial solutions to (12) are of the form X1x2 = c0 , where c0 = A is an arbitrary nonzero constant. When l 7 0, the auxiliary equation has the roots r = {i1l. Thus, a general solution to the differential equation in (12) is X1x2 = C1 cos 1l x + C2 sin 1l x . The boundary conditions in (12) lead to the system 1lC2 = 0 , - 1lC1 sin 1l L + 1lC2 cos 1l L = 0 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
594
Chapter 10
Partial Differential Equations
Hence, C2 = 0 and the system reduces to solving C1 sin 1lL = 0. Since sin1lL = 0 only when 1lL = np, where n is an integer, we obtain a nontrivial solution only when 1l = np>L or l = 1np>L2 2, n = 1, 2, 3, c . Furthermore, the nontrivial solutions (eigenfunctions) Xn corresponding to the eigenvalue l = 1np>L2 2 are given by npx Xn 1x2 = cn cos (13) , L where the cn’s are arbitrary nonzero constants. In fact, formula (13) also holds for n = 0, since l = 0 has the eigenfunctions X0 1x2 = c0. Note that these eigenvalues and eigenfunctions (see Figure 10.15) have the same properties as those on page 565 (which we now recognize as the components of the sine series): homogeneous boundary conditions, eigenvalues clustering at infinity, increasingly oscillatory, orthogonal. Having determined that l = 1np>L2 2, n = 0, 1, 2, c, let’s consider equation (10) for such l: T′1t2 + b1np>L2 2T1t2 = 0 .
Eigenvalue
For n = 0, 1, 2, c, the general solution is
Eigenfunction
Tn 1t2 = bn e-b1np>L2 t , 2
L
0
L
2
L
x x
2
2
4 L
un 1x, t2 = Xn 1x2Tn 1t2 = c cn cos
x
L
2
where the bn’s are arbitrary constants. Combining this with equation (13), we obtain the functions
un 1x, t2 = an e-b1np>L2 t cos 2
L
2
9 L
x
2
L
2
x
L
2
l
npx , L
where an = bncn is, again, an arbitrary constant. If we take an infinite series of these functions, we obtain (14)
16
npx 2 d 3bn e-b1np>L2 t 4 , L
u1x, t2 =
∞ a0 npx 2 + a an e-b1np>L2 t cos , 2 n=1 L
which will be a solution to (6)–(7) provided the series has the proper convergence behavior. Notice that in (14) we have altered the constant term and written it as a0 >2, thus producing the standard form for cosine expansions.
Figure 10.15 Cosine eigenfunctions
Assuming a solution to (6)–(7) is given by the series in (14) and substituting into the initial condition (8), we get (15)
u1x, 02 =
∞ a0 npx + a an cos = f1x2 , 0 6 x 6 L . 2 n=1 L
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.5
The Heat Equation
595
This means that if we choose the an’s as the coefficients in the Fourier cosine series for f, L
2 npx f1x2 cos dx , n = 0, 1, 2, c , L L0 L then u1x, t2 given in (14) will be a formal solution to the heat flow problem (6)–(8). Again, if this expansion converges to a continuous function with continuous second partial derivatives, then the formal solution is an actual solution. ◆ an =
Note that the individual terms in the series (4) and (14) are genuine solutions to the heat equation and the associated boundary conditions (but not the initial condition, of course). 2 These solutions are called the modes of the system. Observe that the time factor e-b1np>L2 t decays faster for the more oscillatory (higher n) modes. This makes sense physically; a temperature pattern of many alternating hot and cold strips arranged closely together will equilibrate faster than a more uniform pattern. See Figure 10.16. A good way of expressing how separation of variables “works” is as follows: The initial temperature profile f1x2 is decomposed into modes through Fourier analysis—equations (5) or (15). Then each mode is matched with a time decay factor—equations (4) or (14)—and it evolves in time accordingly. When the ends of the wire are kept at 0°C or when the ends are insulated, the boundary conditions are said to be homogeneous. But when the ends of the wire are kept at constant temperatures different from zero, that is, (16)
u10, t2 = U1
and
t70,
u1L, t2 = U2 ,
then the boundary conditions are called nonhomogeneous. u
u
x t t
x (a) n = 0
(b) n = 1 u
u
x x t (c) n = 2
t (d) n = 3
Figure 10.16 Modes for equation (14)
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
596
Chapter 10
Partial Differential Equations
From our experience with vibration problems in Section 4.9 we expect that the solution to the heat flow problem with nonhomogeneous boundary conditions will consist of a steadystate solution y1x2 that satisfies the nonhomogeneous boundary conditions in (16) plus a transient solution w1x, t2. That is, u1x, t2 = Y1x2 + w1x, t2 , where w1x, t2 and its partial derivatives tend to zero as t S ∞. The function w1x, t2 will then satisfy homogeneous boundary conditions, as illustrated in the next example.
Example 2
Find a formal solution to the heat flow problem governed by the initial-boundary value problem
(18)
0u 02u = b 2, 06x6L, 0t 0x u10, t2 = U1 , u1L, t2 = U2 ,
(19)
u1x, 02 = f1x2 , 0 6 x 6 L .
(17)
Solution
t70, t70,
Let’s assume that the solution u1x, t2 consists of a steady-state solution y1x2 and a transient solution w1x, t2—that is, (20)
u1x, t2 = y1x2 + w1x, t2 .
Substituting for u1x, t2 in equations (17)–(19) leads to
(22)
0u 0w 02w = = by″1x2 + b 2 , 0 6 x 6 L , t70, 0t 0t 0x y102 + w10, t2 = U1 , y1L2 + w1L, t2 = U2 , t70,
(23)
y1x2 + w1x, 02 = f1x2 , 0 6 x 6 L .
(21)
If we allow t S ∞ in (21)–(22), assuming that w1x, t2 is a transient solution, we obtain the steady-state boundary value problem y″1x2 = 0 , y102 = U1 ,
06x6L, y1L2 = U2 .
Solving for y, we obtain y1x2 = Ax + B, and choosing A and B so that the boundary conditions are satisfied yields (24)
y1x2 = U1 +
1U2 - U1 2x L
as the steady-state solution. With this choice for y1x2, the initial-boundary value problem (21)–(23) reduces to the following initial-boundary value problem for w1x, t2:
(26)
0w 02w = b 2 , 06x6L, t70, 0t 0x t70, w10, t2 = w1L, t2 = 0 ,
(27)
w1x, 02 = f1x2 - U1 -
(25)
1U2 - U1 2x , L
06x6L.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.5
The Heat Equation
597
Recall that a formal solution to (25)–(27) is given by equation (4). Hence, ∞ npx 2 , w1x, t2 = a cn e-b1np>L2 t sin L n=1
where the cn’s are the coefficients of the Fourier sine series expansion f1x2 - U1 -
∞ 1U2 - U1 2x npx = a cn sin . L L n=1
Therefore, the formal solution to (17)–(19) is (28)
u1x, t2 = U1 +
1U2 - U1 2x L
∞ npx 2 + a cn e-b1np>L2 t sin , L n=1
with cn =
L 1U2 - U1 2x npx 2 c f1x2 - U1 d sin dx . ◆ L L0 L L
In the next example, we consider the heat flow problem when a heat source is present but is independent of time. (Recall the derivation in Section 10.1.)
Example 3
Find a formal solution to the heat flow problem governed by the initial-boundary value problem (29)
Solution
0u 02u = b 2 + P1x2 , 0t 0x
(30)
u10, t2 = U1 ,
(31)
u1x, 02 = f1x2 ,
06x6L,
u1L, t2 = U2 ,
t70,
t70,
06x6L.
We begin by assuming that the solution consists of a steady-state solution y1x2 and a transient solution w1x, t2, namely, u1x, t2 = y1x2 + w1x, t2 , where w1x, t2 and its partial derivatives tend to zero as t S ∞. Substituting for u1x, t2 in (29)–(31) yields (32)
0u 0w 02w = = by″1x2 + b 2 + P1x2 , 0t 0t 0x
(33)
y102 + w10, t2 = U1 ,
(34)
y1x2 + w1x, 02 = f1x2 ,
06x6L,
y1L2 + w1L, t2 = U2 ,
t70,
t70,
06x6L.
Letting t S ∞ in (32)–(33), we obtain the steady-state boundary value problem y″1x2 = -
1 P1x2 , b
y102 = U1 ,
06x6L,
y1L2 = U2 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
598
Chapter 10
Partial Differential Equations
The solution to this boundary value problem can be obtained by two integrations using the boundary conditions to determine the constants of integration. The reader can verify that the solution is given by the formula (35)
y1x2 = c U2 - U1 +
L
L0
a
z
x
z
1 x 1 P1s2 ds b dz d + U1 a P1s2 ds b dz . L L0 b L0 L0 b
With this choice for y1x2, we find that the initial-boundary value problem (32)–(34) reduces to the following initial-boundary value problem for w1x, t2: (36)
0w 02w = b 2 , 0t 0x
06x6L,
t70,
(37)
w10, t2 = w1L, t2 = 0 ,
t70,
(38)
w1x, 02 = f1x2 - y1x2 ,
06x6L,
where y1x2 is given by formula (35). As before, the solution to this initial-boundary value problem is (39)
∞ npx 2 w1x, t2 = a cn e-b1np>L2 t sin , L n=1
where the cn’s are determined from the Fourier sine series expansion of f1x2 - y1x2: (40)
∞ npx f1x2 - y1x2 = a cn sin . L n=1
Thus the formal solution to (29)–(31) is given by u1x, t2 = y1x2 + w1x, t2 , where y1x2 is given in (35) and w1x, t2 is prescribed by (39)–(40). ◆ The method of separation of variables is also applicable to problems in higher dimensions. For example, consider the problem of heat flow in a rectangular plate with sides x = 0, x = L, y = 0, and y = W. If the two sides y = 0, y = W are kept at a constant temperature of 0°C and the two sides x = 0, x = L are perfectly insulated, then heat flow is governed by the initial-boundary value problem in the following example (see Figure 10.17). y
W
08
=0
=0
08
L
x
Figure 10.17 Plate with insulated sides
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.5
Example 4
Solution
The Heat Equation
599
Find a formal solution u1x, y, t2 to the initial-boundary value problem (41)
0u 02u 02u = be 2 + 2f , 0t 0x 0y
(42)
0u 0u 10, y, t2 = 1L, y, t2 = 0 , 0x 0x
(43)
u1x, 0, t2 = u1x, W, t2 = 0 ,
(44)
u1x, y, 02 = f1x, y2 ,
06x6L,
06y6W,
06y6W, 06x6L,
06x6L,
t70,
t70, t70,
06y6W.
If we assume a solution of the form u1x, y, t2 = V1x, y2T1t2, then equation (41) separates into the two equations (45)
T′1t2 + blT1t2 = 0 ,
(46)
02V 02V 1x, y2 + 2 1x, y2 + lV1x, y2 = 0 , 2 0x 0y
where l can be any constant. To solve equation (46), we again use separation of variables. Here we assume V1x, y2 = X1x2Y1y2. This allows us to separate equation (46) into the two equations (47) (48)
X″1x2 + mX1x2 = 0 ,
Y ″1y2 + 1l - m2Y1y2 = 0 ,
where μ can be any constant (see Problem 29 in Exercises 10.2 on page 571). To solve for X1x2, we observe that the boundary conditions in (42), in terms of the separated variables, become X′102Y1y2T1t2 = X′1L2Y1y2T1t2 = 0 ;
06y6W,
t70.
Hence, in order to get a nontrivial solution, we must have (49)
X′102 = X′1L2 = 0 .
The boundary value problem for X given in equations (47) and (49) was solved in Example 1 [compare equations (12) and (13)]. Here m = 1mp>L2 2, m = 0, 1, 2, . . . , and mpx Xm 1x2 = cm cos , L where the cm’s are arbitrary. (We forgo the “c0 >2” convention here.) To solve for Y1y2, we first observe that the boundary conditions in (43) become (50)
Y102 = Y1W2 = 0 .
Next, substituting m = 1mp>L2 2 into equation (48) yields Y ″1y2 + 1 l - 1mp>L2 2 2 Y1y2 = 0 ,
which we can rewrite as (51)
Y ″1y2 + EY1y2 = 0 ,
where E = l - 1mp>L2 2. The boundary value problem for Y consisting of (50)–(51) has also been solved before. In Section 10.2 [compare equations (7) and (9), pages 564 and 565] we showed that E = 1np>W2 2, n = 1, 2, 3, c , and the nontrivial solutions are given by npy Yn 1y2 = an sin , W
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
600
Chapter 10
Partial Differential Equations
where the an’s are arbitrary. Since l = E + 1mp>L2 2, we have l = 1np>W2 2 + 1mp>L2 2 ;
m = 0, 1, 2, . . . ,
n = 1, 2, 3, c .
Substituting l into equation (45), we can solve for T1t2 and obtain Tmn 1t2 = bmn e-1m >L +n >W 2bp t . 2
2
2
2
2
Substituting in for Xm, Yn, and Tmn, we get umn 1x, y, t2 = a cm cos
npy mpx 2 2 2 2 2 b aan sin b 1bmn e-1m >L +n >W 2bp t 2 , L W npy mpx 2 2 2 2 2 umn 1x, y, t2 = amn e-1m >L +n >W 2bp t cos sin , L W where amn J anbmncm 1m = 0, 1, 2, c, n = 1, 2, 3, c2 are arbitrary constants. If we now take a doubly infinite series of such functions, then we obtain the formal series ∞ ∞ npy mpx 2 2 2 2 2 u1x, y, t2 = a a amn e-1m >L +n >W 2bp t cos sin . L W m=0 n=1
(52)
We are now ready to apply the initial conditions (44). Setting t = 0, we obtain (53)
∞ ∞ npy mpx u1x, y, 02 = f1x, y2 = a a amn cos sin . L W m=0 n=1
This is a double Fourier series.† The formulas for the coefficients amn are obtained by exploiting the orthogonality conditions twice. Presuming (53) is valid and permits term-by-term integration, we multiply each side by cos1ppx>L2 sin1qpy>W2 and integrate over x and y: L
W
f1x, y2 cos
L0 L0
∞
qpy ppx sin dy dx L W L
∞
= a a amn m=0 n=1
L0 L0
W
cos
qpy npy ppx mpx sin cos sin dy dx . L W L W
According to the orthogonality conditions, each integral on the right is zero, except when m = p and n = q; thus, L
W
L0 L0
f1x, y2 cos
qpy ppx sin dy dx L W LW
apq , 4 qpy ppx 2 cos dx sin dy = μ L W LW L0 L0 apq , 2 L
= apq
W
p≠0,
2
p = 0.
Hence, L
(54)
a0q =
W
qpy 2 f1x, y2sin dy dx , LW L0 L0 W
q = 1, 2, 3, c ,
†
For a discussion of double Fourier series, see Partial Differential Equations of Mathematical Physics, 2nd ed. by Tyn Myint-U (Elsevier North Holland, New York, 1983), Sec. 5.14.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.5
The Heat Equation
601
and for p Ú 1, q Ú 1, L
(55)
apq =
W
qpy ppx 4 f1x, y2 cos sin dy dx . LW L0 L0 L W
Finally, the solution to the initial-boundary value problem (41)–(44) is given by equation (52), where the coefficients are prescribed by equations (54) and (55). ◆ We derived formulas (54) and (55) under the assumption that the double series (53) truly converged (uniformly). How can we justify the assumption that a double Fourier series converges? A rough argument goes as follows. If we fix y in f1x, y2, then f1x, y2 presumably has ∞ a convergent cosine series in x: f1x, y2 = a m = 0 dm cos 1mpx>L2. But the coefficients dm depend on the value of the y that we fixed: dm = dm 1y2. So presumably each function dm 1y2 ∞ has a convergent sine series in y: dm 1y2 = a n = 1 amn sin 1npy/W2. Assembling all this, we ∞ ∞ get f1x, y2 = a m = 0 a n = 1 amn cos 1mpx>L2 sin 1npy>W2.
Existence and Uniqueness of Solutions In the examples that we have studied in this section and in Section 10.2, we were able to obtain formal solutions in the sense that we could express the solution in terms of a series expansion consisting of exponentials, sines, and cosines. To prove that these series converge to actual solutions requires results on the convergence of Fourier series and results from real analysis on uniform convergence. We will not go into these details here, but refer the reader to Section 6.5 of the text by Tyn Myint-U (see footnote on page 600) for a proof of the existence of a solution to the heat flow problem discussed in Sections 10.1 and 10.2. (A proof of uniqueness is also given there.) As might be expected, by using Fourier series and the method of separation of variables one can also obtain “solutions” when the initial data are discontinuous, since the formal solutions require only the existence of a convergent Fourier series. This allows one to study idealized problems in which the initial conditions do not agree with the boundary conditions or the initial conditions involve a jump discontinuity. For example, we may assume that initially one half of the wire is at one temperature, whereas the other half is at a different temperature, that is, f1x2 = e
U1 , U2 ,
0 6 x 6 L>2 , L>2 6 x 6 L .
The formal solution that we obtain will make sense for 0 6 x 6 L, t 7 0, but near the points of discontinuity x = 0, L>2, and L, we have to expect behavior like that exhibited in Figure 10.7 of Section 10.3, page 578. The question of the uniqueness of the solution to the heat flow problem can be answered in various ways. One is tempted to argue that the method of separation of variables yields formulas for the solutions and therefore a unique solution. However, this does not exclude the possibility of solutions existing that cannot be obtained by the method of separation of variables. From physical considerations, we know that the peak temperature along a wire does not increase spontaneously if there are no heat sources to drive it up. Indeed, if hot objects could draw heat from colder objects without external intervention, we would have violations of the second law of thermodynamics. Thus no point on an unheated wire will ever reach a
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
602
Chapter 10
Partial Differential Equations
higher temperature than the initial peak temperature. Such statements are called maximum principles and can be proved mathematically for the heat equation and Laplace’s equation. One such result is the following.†
Maximum Principle for the Heat Equation Theorem 6. equation (56)
Let u1x, t2 be a continuously differentiable function that satisfies the heat
0u 02u = b 2, 0t 0x
06x6L,
t70,
and the boundary conditions (57)
u10, t2 = u1L, t2 = 0 ,
tÚ0.
Then u1x, t2 attains its maximum value at t = 0, for some x in 30, L4—that is, max u1x, t2 = max u1x, 02 .
tÚ0 0…x…L
0…x…L
We can use the maximum principle to show that the heat flow problem has a unique solution.
Uniqueness of Solution Theorem 7. (58) (59) (60)
The initial-boundary value problem
0u 02u = b 2, 06x6L, t70, 0t 0x u10, t2 = u1L, t2 = 0 , tÚ0, u1x, 02 = f1x2 , 06x6L,
has at most one continuously differentiable solution.
Proof. Assume u1x, t2 and y1x, t2 are continuously differentiable functions that satisfy the initial-boundary value problem (58)–(60). Let w = u - y. Now w is a continuously differentiable solution to the boundary value problem (56)–(57). By the maximum principle, w must attain its maximum at t = 0, and since w1x, 02 = u1x, 02 - y1x, 02 = f1x2 - f1x2 = 0 , we have w1x, t2 … 0. Hence, u1x, t2 … y1x, t2 for all 0 … x … L, t Ú 0. A similar argun = y - u yields y1x, t2 … u1x, t2. Therefore we have u1x, t2 = y1x, t2 for ment using w all 0 … x … L, t Ú 0. Thus, there is at most one continuously differentiable solution to the problem (58)–(60). ◆
†
For a discussion of maximum principles and their applications, see Maximum Principles in Differential Equations, by M. H. Protter and H. F. Weinberger (Springer-Verlag, New York, 1984).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.5
10.5
02u 0u = 2, 06x6p, t70, 2. 0t 0x u10, t2 = u1p, t2 = 0 , t 7 0 , u1x, 02 = x2 , 0 6 x 6 p
4.
02u 0u = 3 2, 06x6p, t70, 0t 0x 0u 0u 10, t2 = 1p, t2 = 0 , t 7 0 , 0x 0x u1x, 02 = x , 0 6 x 6 p 02u 0u = 2 2, 06x61, t70, 0t 0x 0u 0u 10, t2 = 11, t2 = 0 , t 7 0 , 0x 0x u1x, 02 = x11 - x2 , 0 6 x 6 1
02u 0u = 2, 06x6p, t70, 5. 0t 0x 0u 0u 10, t2 = 1p, t2 = 0 , t 7 0 , 0x 0x x u1x, 02 = e , 0 6 x 6 p 6.
7.
8.
9.
603
EXERCISES
In Problems 1–10, find a formal solution to the given initialboundary value problem. 02u 0u 1. = 5 2, 06x61, t70, 0t 0x u10, t2 = u11, t2 = 0 , t 7 0 , u1x, 02 = 11 - x2x2 , 0 6 x 6 1
3.
The Heat Equation
02u 0u = 7 2, 06x6p, t70, 0t 0x 0u 0u 10, t2 = 1p, t2 = 0 , t 7 0 , 0x 0x u1x, 02 = 1 - sin x , 0 6 x 6 p 02u 0u = 2 2, 06x6p, t70, 0t 0x u10, t2 = 5 , u1p, t2 = 10 , t 7 0 , u1x, 02 = sin 3x - sin 5x , 0 6 x 6 p 02u 0u = 2, 06x6p, t70, 0t 0x u10, t2 = 0 , u1p, t2 = 3p , t 7 0 , u1x, 02 = 0 , 0 6 x 6 p 02u 0u = 2 + e-x , 0 6 x 6 p , t 7 0 , 0t 0x u10, t2 = u1p, t2 = 0 , t 7 0 , u1x, 02 = sin 2x , 0 6 x 6 p
10.
0u 02u = 3 2 +x, 06x6p, t70, 0t 0x t70, u10, t2 = u1p, t2 = 0 , u1x, 02 = sin x , 0 6 x 6 p
11. Find a formal solution to the initial-boundary value problem 0u 02u = 4 2, 06x6p, t70, 0t 0x 0u 10, t2 = 0 , u1p, t2 = 0 , t 7 0 , 0x u1x, 02 = f1x2 , 0 6 x 6 p . 12. Find a formal solution to the initial-boundary value problem 0u 02u = 2, 06x6p, t70, 0t 0x 0u u10, t2 = 0 , u1p, t2 + 1p, t2 = 0 , t 7 0 , 0x u1x, 02 = f1x2 , 0 6 x 6 p . 13. Find a formal solution to the initial-boundary value problem 0u 02u = 2 2 + 4x , 0 6 x 6 p , t 7 0 , 0t 0x u10, t2 = u1p, t2 = 0 , t 7 0 , u1x, 02 = sin x , 0 6 x 6 p . 14. Find a formal solution to the initial-boundary value problem 0u 02u = 3 2 +5, 06x6p, t70, 0t 0x u10, t2 = u1p, t2 = 1 , t 7 0 , u1x, 02 = 1 , 0 6 x 6 p . In Problems 15–18, find a formal solution to the initialboundary value problem. 02u 02u 0u = 2 + 2, 06x6p, 06y6p, t70, 0t 0x 0y 0u 0u 10, y, t2 = 1p, y, t2 = 0 , 0 6 y 6 p , t 7 0 , 0x 0x u1x, 0, t2 = u1x, p, t2 = 0 , 0 6 x 6 p , t 7 0 , u1x, y, 02 = f1x, y2 , 0 6 x 6 p , 0 6 y 6 p , for the given function f1x, y2. 15. f1x, y2 = cos 6x sin 4y - 3 cos x sin 11y
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
604
Chapter 10
Partial Differential Equations
16. f1x, y2 = cos x sin y + 4 cos 2x sin y - 3 cos 3x sin 4y 17. f1x, y2 = y 18. f1x, y2 = x sin y
L 7 0 is a consumption rate with units sec -1. Assume the boundary conditions are
19. Chemical Diffusion. Chemical diffusion through a thin layer is governed by the equation
and the initial concentration is given by
C10, t2 = C1a, t2 = 0 ,
C1x, 02 = f1x2 ,
02C 0C = k 2 - LC , 0t 0x
t70,
06x6a.
Use the method of separation of variables to solve formally for the concentration C1x, t2. What happens to the concentration as t S + ∞ ?
where C1x, t2 is the concentration in moles/cm3, the diffusivity k is a positive constant with units cm2/sec, and
10.6 The Wave Equation In Section 10.2 we presented a model for the motion of a vibrating string. If u1x, t2 represents the displacement (deflection) of the string and the ends of the string are held fixed, then the motion of the string is governed by the initial-boundary value problem (1) (2) (3) (4)
02u 0 t2 u10, t2 u1x, 02 0u 1x, 02 0t
02u , 06x6L, 0x2 = u1L, t2 = 0 , t70, = f1x2 , 06x6L, = a2
= g1x2 ,
t70,
06x6L.
Equation (1) is called the wave equation. The constant a2 appearing in (1) is strictly positive and depends on the linear density and tension of the string. The boundary conditions in (2) reflect the fact that the string is held fixed at the two endpoints x = 0 and x = L. Equations (3) and (4) specify, respectively, the initial displacement and the initial velocity of each point on the string. For the initial and boundary conditions to be consistent, we assume f102 = f1L2 = 0 and g102 = g1L2 = 0. Using the method of separation of variables, we found in Section 10.2 that a formal solution to (1)–(4) is given by [compare equations (24)–(26) on page 569] (5)
∞ npa npa npx u1x, t2 = a c an cos t + bn sin t d sin , L L L n=1
where the an’s and bn’s are determined from the Fourier sine series (6) (7)
∞ npx f1x2 = a an sin , L n=1 ∞ npa npx b sin . g1x2 = a bn a L L n=1
See Figure 10.18 on page 605 for a sketch of partial sums for (5).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.6
The Wave Equation
605
u
u=
x
0 t
Figure 10.18 Partial sums for equation (5) with f1x2 = e
x, p - x,
0 6 x … p>2, and g1x2 = 0 p>2 … x 6 p,
Each term (or mode) in expansion (5) can be viewed as a standing wave (a wave that vibrates in place without lateral motion along the string). For example, the first term, a a1 cos
pa pa px t + b1 sin tb sin , L L L
consists of a sinusoidal shape function sin1px>L2 multiplied by a time-varying amplitude. The second term is also a sinusoid sin12px>L2 with a time-varying amplitude. In the latter case, there is a node in the middle at x = L>2 that never moves. For the nth term, we have a sinusoid sin1npx>L2 with a time-varying amplitude and 1n - 12 nodes. This is illustrated in Figure 10.19. Thus, separation of variables decomposes the initial data into sinusoids or modes [equations (6)–(7)], assigns each mode a frequency at which to vibrate [equation (5)], and represents the solution as the superposition of infinitely many standing waves. Modes with more nodes vibrate at higher frequencies. By choosing the initial configuration of the string to have the same shape as one of the individual terms in the solution, we can activate only that mode. Node
L
0
n=1
Nodes
L
0
n=2
L
0
n=3
Figure 10.19 Standing waves. Time-varying amplitudes are shown by dashed curves
The different modes of vibration of a guitar string are distinguishable to the human ear by the frequency of the sound they generate; different frequencies are discerned as different “pitches.” The fundamental is the frequency of the lowest mode, and integer multiples of the fundamental frequency are called “harmonics.” A cello and a trombone sound different even if they are playing the same fundamental, say F#, because of the difference in the intensities of the harmonics they generate.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
606
Chapter 10
Partial Differential Equations
Many engineering devices operate better in some modes than in others. For example, certain modes propagate down a waveguide or an optical fiber with less attenuation than the others. In such cases, engineers design the systems to suppress the undesirable modes, either by shaping the initial excitation or by introducing devices (like resistor cards in a waveguide) which damp out certain modes preferentially. The fundamental mode on a guitar string can be suppressed by holding the finger lightly in contact with the midpoint, thereby creating a stationary point or node there. According to equation (5), the pitch of the note then doubles, thus producing an “octave.” This style of fingering, called “playing harmonics,” is used frequently in musical performance. An important characteristic of an engineering device is the set of angular frequencies supported by its eigenmodes—its “eigenfrequencies.” According to equation (5), the eigenfrequencies of the vibrating string are the harmonics vn = npa>L, n = 1, 2, 3, . . . . These blend together pleasantly to the human ear, and we enjoy melodies played on string instruments. The eigenfrequencies of a drum are not harmonics (see Problem 21). Therefore, drums are used for rhythm, not for melody. As we have seen in the preceding section, the method of separation of variables can be used to solve problems with nonhomogeneous boundary conditions and nonhomogeneous equations where the forcing term is time independent. In the next example, we will consider a problem with a time-dependent forcing term h1x, t2. Example 1
For given functions f, g, and h, find a formal solution to the initial-boundary value problem (8)
2 02u 20 u a = + h1x, t2 , 0t 2 0x2
(9)
u10, t2 = u1L, t2 = 0 , t 7 0 ,
(10)
06x6L,
t70,
u1x, 02 = f 1x2 , 0 6 x 6 L ,
0u 1x, 02 = g1x2 , 0 6 x 6 L . 0t The boundary conditions in (9) certainly require that the solution be zero for x = 0 and x = L. Motivated by the fact that the solution to the corresponding homogeneous system (1) – (4) consists of a superposition of standing waves, let’s try to find a solution to (8) – (11) of the form (11)
Solution
(12)
∞ npx u1x, t2 = a un 1t2 sin , L n=1
where the un 1t2’s are functions of t to be determined. For each fixed t, we can compute a Fourier sine series for h1x, t2. If we assume that the series is convergent to h1x, t2, then (13)
∞ npx h1x, t2 = a hn 1t2 sin , L n=1
where the coefficient hn 1t2 is given by [recall equation (7) on page 589] hn 1t2 =
L
2 npx h1x, t2 sin dx , n = 1, 2, . . . . L L0 L If the series in (13) has the proper convergence properties, then we can substitute (12) and (13) into equation (8) and obtain ∞
∞ npa 2 npx npx > c u + a d 1t2 b u 1t2 sin = hn 1t2 sin . n n a a L L L n=1 n=1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.6
The Wave Equation
607
Equating the coefficients in each series (why?), we have un> 1t2 + a
npa 2 b un 1t2 = hn 1t2 . L
This is a nonhomogeneous, constant-coefficient equation that can be solved using variation of parameters. You should verify that un 1t2 = an cos
t
npa npa L npa t + bn sin t+ h 1s2 sin c 1t - s2 d ds npa L0 n L L L
[compare Problem 20 of Exercises 4.6]. Hence, with this choice of un 1t2, the series in (12) is a formal solution to the partial differential equation (8). Since† un 102 = an
and
un= 102 = bn a
npa b, L
substituting (12) into the initial conditions (10)–(11) yields (14)
∞ npx u1x, 02 = f 1x2 = a an sin , L n=1
(15)
∞ 0u npa npx 1x, 02 = g1x2 = a bn a b sin . 0t L L n=1
Thus, if we choose the an’s and bn’s so that equations (14) and (15) are satisfied, a formal solution to (8)–(11) is given by (16)
∞ npa npa u1x, t2 = a e an cos t + bn sin t L L n=1 t
+
L npa npx h 1s2sin c 1t - s2 d ds fsin . ◆ npa L0 n L L
The method of separation of variables can also be used to solve initial-boundary value problems for the wave equation in higher dimensions. For example, a vibrating rectangular membrane of length L and width W (see Figure 10.20 on page 608) is governed by the following initial-boundary value problem for u1x, y, t2: (17)
02 u 02u 02u = a2 a 2 + 2 b , 0 6 x 6 L , 2 0t 0x 0y
06y6W,
(18)
u10, y, t2 = u1L, y, t2 = 0 ,
06y6W,
t70,
(19)
u1x, 0, t2 = u1x, W, t2 = 0 ,
06x6L,
t70,
(20) (21)
u1x, y, 02 = f 1x, y2 , 0u 1x, y, 02 = g1x, y2 , 0t
To compute un= 102, we use the fact that
†
06x6L,
06y6W,
06x6L,
06y6W.
t
t70,
t
d 0G G1s, t2 ds = G1t, t2 + 1s, t2 ds. dt L0 L0 0t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
608
Chapter 10
Partial Differential Equations
y
u=0
W
(
=
u=0
+
(
u=0
L
u=0
0
x
Figure 10.20 Vibrating membrane
Using an argument similar to the one given for the problem of heat flow in a rectangular plate (Example 4 in Section 10.5), we find that the initial-boundary value problem (17)–(21) has a formal solution (22)
∞ ∞ m2 n2 u1x, y, t2 = a a • amn cos ° + apt¢ B L2 W 2 m=1 n=1
+ bmn sin °
m2 n2 mpx npy + apt¢ ¶ sin sin , 2 2 BL L W W
where the constants amn and bmn are determined from the double Fourier series ∞ ∞ npy mpx f1x, y2 = a a amn sin sin , L W m=1 n=1 ∞ ∞ npy m2 n2 mpx g1x, y2 = a a ap + bmn sin sin . 2 2 BL L W W m=1 n=1
In particular, L
(23)
amn =
(24)
bmn =
W
npy 4 mpx f1x, y2 sin sin dy dx , LW L0 L0 L W L
4
W
g1x, y2 sin
npy mpx sin dy dx . L W
m n L0 L0 + 2 2 BL W We leave the derivation of this solution as an exercise (see Problem 19). We mentioned earlier that the solution to the vibrating string problem (1)–(4) consisted of a superposition of standing waves. There are also “traveling waves” associated with the wave equation. Traveling waves arise naturally out of d’Alembert’s solution to the wave equation for an “infinite” string. To obtain d’Alembert’s solution to the wave equation 2
LWpa
2
2 02 u 20 u = a , 0 t2 0x2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.6
The Wave Equation
609
we use the change of variables c = x + at ,
h = x - at .
If u has continuous second partial derivatives, then 0u>0x = 0u>0c + 0u>0h and 0u>0t = a10u>0c - 0u>0h2, from which we obtain 02u 02u 02u 02u = + 2 + , 0c0h 0h2 0x2 0c2 02u 02u 02u 02u + 2f . = a2 e 2 - 2 2 0c0h 0h 0t 0c Substituting these expressions into the wave equation and simplifying yields 02u = 0. 0c 0h We can solve this equation directly by first integrating with respect to c to obtain 0u = b1h2 , 0h where b1h2 is an arbitrary function of h, and then integrating with respect to h to find u1c, h2 = A1c2 + B1h2 , where A1c2 and B1h2 = 1 b1h2 dh are arbitrary functions. Substituting the original variables x and t gives d’Alembert’s solution (25)
u1x, t2 = A1x + At2 + B1x − At2 .
It is easy to check by direct substitution that u1x, t2, defined by formula (25), is indeed a solution to the wave equation, provided A and B are twice-differentiable functions. Example 2
Using d’Alembert’s formula (25), find a solution to the initial value problem (26) (27) (28)
Solution
2 02 u 20 u a = 0 t2 0x2 u1x, 02 = f1x2 0u 1x, 02 = g1x2 0t
-∞ 6 x 6 ∞ ,
t70,
-∞ 6 x 6 ∞ , -∞ 6 x 6 ∞ .
A solution to (26) is given by formula (25), so we need only choose the functions A and B so that the initial conditions (27)–(28) are satisfied. For this we need (29)
u1x, 02 = A1x2 + B1x2 = f1x2 ,
(30)
0u 1x, 02 = aA′1x2 - aB′1x2 = g1x2 . 0t
Integrating equation (30) from x0 to x 1x0 arbitrary2 and dividing by a gives x
(31)
A1x2 - B1x2 =
1 g1s2 ds + C , a Lx0
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
610
Chapter 10
Partial Differential Equations
where C is also arbitrary. Solving the system (29) and (31), we obtain x
A1x2 =
1 1 C f1x2 + g1s2 ds + , 2 2a Lx0 2
B1x2 =
1 1 C f1x2 g1s2 ds - . 2 2a Lx0 2
x
Using these functions in formula (25) gives x+at
u1x, t2 =
1 1 3f1x + at2 + f1x - at24 + c 2 2a Lx0
x-at
g1s2ds -
Lx0
g1s2ds d ,
which simplifies to x+at
(32)
Example 3
Solution
u1x, t2 =
1 1 3f1x + at2 + f1x - at24 + g1s2 ds . ◆ 2 2a Lx-at
Find the solution to the initial value problem (33)
02 u 02 u = 4 , 0 t2 0 x2
(34)
u1x, 02 = sin x ,
(35)
0u 1x, 02 = 1 , 0t
-∞ 6 x 6 ∞ ,
t70,
-∞ 6 x 6 ∞ , -∞ 6 x 6 ∞ .
This is just a special case of the preceding example where a = 2, f1x2 = sin x, and g1x2 = 1. Substituting into (32), we obtain the solution x+2t
(36)
1 1 3sin1x + 2t2 + sin1x - 2t24 + ds 2 4 Lx-2t = sin x cos 2t + t . ◆
u1x, t2 =
We now use d’Alembert’s formula to show that the solution to the “infinite” string problem consists of traveling waves. Let h1x2 be a function defined on 1 - ∞, ∞ 2. The function h1x + a2, where a 7 0, is a translation of the function h1x2 in the sense that its “shape” is the same as h1x2, but its position has been shifted to the left by an amount a. This is illustrated in Figure 10.21 for a function h1x2 whose graph consists of a triangular “bump.” If we let t Ú 0 be a parameter (say, time), then the functions h1x + at2 represent a family of functions with the same shape but shifted farther and farther to the left as t S ∞ (Figure 10.22 on page 611). We say that h1x + at2 is a traveling wave moving to the left with speed a. In a similar fashion, h1x - at2 is a traveling wave moving to the right with speed a.
h(x + a) x0 - a
h(x)
x1 - a
x0
x1
x
Figure 10.21 Graphs of h1x2 and h1x + a2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.6
The Wave Equation
611
h(x)
x 0 Figure 10.22 Traveling wave
If we refer to formula (25), we find that the solution to 02u>0t 2 = a202u>0x2 consists of traveling waves A1x + at2 moving to the left with speed a and B1x - at2 moving to the right at the same speed. In the special case when the initial velocity g1x2 K 0, we have 1 u1x, t2 = 3f1x + at2 + f1x - at24 . 2 Hence, u1x, t2 is the sum of the traveling waves 1 1 f1x + at2 and f1x - at2 . 2 2 These waves are initially superimposed, since 1 1 u1x, 02 = f1x2 + f1x2 = f1x2 . 2 2 As t increases, the two waves move away from each other with speed 2a. This is illustrated in Figure 10.23 for a triangular wave.
0 t=0
0 t=
0 1 t=
0 t=
1
2
Figure 10.23 Decomposition of initial displacement into traveling waves
Example 4 Solution
Express the standing wave cos a
pa px tb sin a b as a superposition of traveling waves. L L
By a familiar trigonometric identity, 1 pa px 1 p p cos a tb sina b = sin 1x - at2 + sin 1x + at2 L L 2 L 2 L = h1x - at2 + h1x + at2 , where 1 px sin . 2 L This standing wave results from adding a wave traveling to the right to the same waveform traveling to the left. ◆ h1x2 =
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
612
Chapter 10
Partial Differential Equations
Existence and Uniqueness of Solutions In Example 1 the method of separation of variables was used to derive a formal solution to the given initial-boundary value problem. To show that these series converge to an actual solution requires results from real analysis, just as was the case for the formal solutions to the heat equation in Section 10.5. In Examples 2 and 3, we can establish the validity of d’Alembert’s solution by direct substitution into the initial value problem, assuming sufficient differentiability of the initial functions. We leave it as an exercise for you to show that if f has a continuous second derivative and g has a continuous first derivative, then d’Alembert’s solution is a true solution (see Problem 12). The question of the uniqueness of the solution to the initial-boundary value problem (1)–(4) can be answered using an energy argument.
Uniqueness of the Solution to the Vibrating String Problem Theorem 8. (37) (38) (39) (40)
The initial-boundary value problem
2 02 u 20 u a = , 06x6L, t70, 0 t2 0 x2 u10, t2 = u1L, t2 = 0 , t70, u1x, 02 = f1x2 , 06x6L, 0u 1x, 02 = g1x2 , 06x6L, 0t
has at most one twice continuously differentiable solution.
Proof. Assume both u1x, t2 and y1x, t2 are twice continuously differentiable solutions to (37)–(40) and let w1x, t2 J u1x, t2 - y1x, t2. It is easy to check that w1x, t2 satisfies the initial-boundary value problem (37)–(40) with zero initial data; that is, for 0 … x … L, (41)
w1x, 02 = 0
and
0w 1x, 02 = 0 . 0t
We now show that w1x, t2 K 0 for 0 … x … L, t Ú 0. If w1x, t2 is the displacement of the vibrating string at location x for time t, then with the appropriate units, the total energy E1t2 of the vibrating string at time t equals the integral L
(42)
E1t2 J
1 0w 2 0w 2 c a2 a b + a b d dx . 2 L0 0x 0t
(The first term in the integrand relates to the stretching of the string at location x and represents the potential energy. The second term is the square of the velocity of the vibrating string at x and represents the kinetic energy.) We now consider the derivative of E1t2: L
d 1 0w 2 0w 2 dE = e c a2 a b + a b d dx f . dt dt 2 L0 0x 0t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.6
The Wave Equation
613
Since w has continuous second partial derivatives (because u and y do), we can interchange the order of integration and differentiation. This gives L
(43)
0w 02w 0w 02w dE + = c a2 d dx . dt 0x 0t 0x 0t 0t 2 L0
Again the continuity of the second partials of w guarantees that the mixed partials are equal; that is, 02w 02w = . 0t 0x 0x 0t Combining this fact with integration by parts, we obtain L
(44)
L
a2
L0
0w 02w 0w 02w dx = a2 dx 0x 0t 0x 0x 0x 0t L0 0w 0w 0w 0w = a2 1L, t2 1L, t2 - a2 10, t2 10, t2 0x 0t 0x 0t L 2 0 w 0w = a2 2 dx . 0x 0t L0
The boundary conditions w10, t2 = w1L, t2 = 0, t Ú 0, imply that 10w>0t210, t2 = 10w>0t21L, t2 = 0, t Ú 0. This reduces equation (44) to L
L0
L
a2
0w 02w 0w 02w dx = a2 dx . 0x 0t 0x 0t 0x2 L0
Substituting this in for the first integrand in (43), we find L
dE 0w 02w 02w = c 2 - a2 2 d dx . dt 0x L0 0t 0t Since w satisfies equation (37), the integrand is zero for all x. Thus, dE>dt = 0, and so E1t2 K C, where C is a constant. This means that the total energy is conserved within the vibrating string. The first boundary condition in (41) states that w1x, 02 = 0 for 0 … x … L. Hence, 10w>0x21x, 02 = 0 for 0 6 x 6 L. Combining this with the second boundary condition in (41), we find that when t = 0, the integrand in (42) is zero for 0 6 x 6 L. Therefore, E102 = 0. Since E1t2 K C, we must have C = 0. Hence, L
(45)
E1t2 =
1 0w 2 0w 2 c a2 a b + a b d dx K 0 . 2 L0 0x 0t
That is, the total energy of this system is zero. Because the integrand in (45) is nonnegative and continuous and the integral is zero, the integrand must be zero for 0 … x … L. Moreover, the integrand is the sum of two squares and so each term must be zero. Hence, 0w 1x, t2 = 0 0x
and
0w 1x, t2 = 0 0t
for all 0 … x … L, t Ú 0. Thus w1x, t2 = K, where K is a constant. Physically, this says that
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
614
Chapter 10
Partial Differential Equations
there is no motion in the string. Finally, since w is constant and w is zero when t = 0, then w1x, t2 K 0. Consequently, u1x, t2 = y1x, t2 and the initial-boundary value problem has at most one solution. ◆
10.6
EXERCISES
In Problems 1 – 4, find a formal solution to the vibrating string problem governed by the given initial-boundary value problem. 02u 02u 1. = , 06x61, t70, 0t 2 0x2 u10, t2 = u11, t2 = 0 , t 7 0 ,
6. A vibrating string is governed by the initial-boundary value problem (1)–(4). The initial conditions are given by f1x2 K 0 and g1x2 = e
u1x, 02 = x11 - x2 , 0 6 x 6 1 , 0u 1x, 02 = sin 7px , 0 6 x 6 1 0t 2.
02u 02u = 4 2, 06x6p, t70, 2 0t 0x u10, t2 = u1p, t2 = 0 , t 7 0 , u1x, 02 = x 1p - x2 , 0 6 x 6 p , 0u 1x, 02 = 0 , 0 6 x 6 p 0t
8.
2
5. The Plucked String. A vibrating string is governed by the initial-boundary value problem (1)–(4). If the string is lifted to a height h0 at x = a and released, then the initial conditions are
and g1x2 K 0. Find a formal solution.
t70,
0u 1x, 02 = 0 , 0 6 x 6 p 0t
06x6p, u1x, 02 = sin 4x + 7 sin 5x , x , 0 6 x 6 p>2 , 0u 1x, 02 = e 0t p - x , p>2 6 x 6 p
h0 1L - x2 > 1L - a2 ,
02u 02u = 2 + x sin t , 0 6 x 6 p , 2 0t 0x u10, t2 = u1p, t2 = 0 , t 7 0 , u1x, 02 = 0 , 0 6 x 6 p ,
02u 02u = 9 2, 06x6p, t70, 4. 2 0t 0x u10, t2 = u1p, t2 = 0 , t 7 0 ,
f1x2 = e
a6x6L,
In Problems 7 and 8, find a formal solution to the vibrating string problem governed by the given nonhomogeneous initial-boundary value problem. 02u 02u 7. = 2 + tx , 0 6 x 6 p , t70, 2 0t 0x u10, t2 = u1p, t2 = 0 , t 7 0 , u1x, 02 = sin x , 0 6 x 6 p , 0u 1x, 02 = 5 sin 2x - 3 sin 5x , 0 6 x 6 p 0t
02u 02u = , 06x6p, t70, 16 0t 2 0x2 u10, t2 = u1p, t2 = 0 , t 7 0 ,
h0x>a ,
y0 1L - x2 > 1L - a2
where y0 is a constant. Find a formal solution.
06x6p, u1x, 02 = sin2x , 0u 1x, 02 = 1 - cos x , 0 6 x 6 p 0t 3.
06x…a,
y0 x>a ,
06x…a, a6x6L,
9. If one end of a string is held fixed while the other is free, then the motion of the string is governed by the initialboundary value problem 02u 02u = a2 2 , 2 0t 0x
06x6L,
u10, t2 = 0 and u1x, 02 = f1x2 , 0u 1x, 02 = g1x2 , 0t
t70,
0u 1L, t2 = 0, 0x 06x6L,
t70,
06x6L.
Derive a formula for a formal solution.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.6
10. Derive a formula for the solution to the following initialboundary value problem involving nonhomogeneous boundary conditions 02u 02u = a2 2 , 2 0t 0x u10, t2 = U1 ,
06x6L,
u1x, 02 = f1x2 , 0u 1x, 02 = g1x2 , 0t
(46) ut + Aux + Buxxx = 0 , where u1x, t2 is the displacement of the water from its equilibrium depth at location x and at time t, and a and b are positive constants. (a) Show that equation (46) has a solution of the form
t70,
06x6L, 06x6L,
(47)
where U1 and U2 are constants. 11. The Telegraph Problem.† Use the method of separation of variables to derive a formal solution to the telegraph problem
0u 1x, 02 = 0 , 0t
(48)
06x6L.
12. Verify d’Alembert’s solution (32) to the initial value problem (26)–(28) when f1x2 has a continuous second derivative and g1x2 has a continuous first derivative by substituting it directly into the equations.
dV dV d 3V + ak + bk 3 3 = 0 . dz dz dz
V1x, t2 = A sin 3lkx - 1alk - bl3k 3 2t + B4 ,
In Problems 13–18, find the solution to the initial value problem. 02u 02u = a2 2 , -∞ 6 x 6 ∞ , t70, 2 0t 0x u1x, 02 = f1x2 , -∞ 6 x 6 ∞ , 0u 1x, 02 = g1x2 , -∞ 6 x 6 ∞ , 0t
19. Derive the formal solution given in equations (22)–(24) to the vibrating membrane problem governed by the initial-boundary value problem (17)–(21).
-w
These solutions, defined by (47), are called uniform waves. (b) Physically, we are interested only in solutions V1z2 that are bounded and nonconstant on the infinite interval 1 - ∞ , ∞ 2. Show that such solutions exist only if ak - w 7 0. (c) Let l2 = 1ak - w2 > 1bk 3 2. Show that the solutions from part (b) can be expressed in the form
06x6L,
for the given functions f1x2 and g1x2. 13. f1x2 K 0 , g1x2 = cos x 14. f1x2 = x2 , g1x2 K 0 15. f1x2 = x , g1x2 = x 16. f1x2 = sin 3x , g1x2 K 1 2 17. f1x2 = e-x , g1x2 = sin x 18. f1x2 = cos 2x , g1x2 = 1 - x
u1x, t2 = V1z2 , z = kx - w1k2t ,
where k is a fixed constant and w1k2 is a function of k, provided V satisfies
02u 02u 0 u + + u = a2 2 , 0 6 x 6 L , t 7 0 , 2 0t 0t 0x u10, t2 = u1L, t2 = 0 , t70, u1x, 02 = f1x2 ,
615
20. Long Water Waves. The motion of long water waves in a channel of constant depth is governed by the linearized Korteweg and de Vries (KdV) equation
t70,
u1L, t2 = U2 ,
The Wave Equation
where A and B are arbitrary constants. [Hint: Solve for w in terms of l and k and use (47).] (d) Since both l and k can be chosen arbitrarily and they always appear together as the product lk, we can set l = 1 without loss of generality. Hence, we have V1x, t2 = A sin 3kx - 1ak - bk 3 2t + B4 as a uniform wave solution to (46). The defining relation w1k2 = ak - bk 3 is called the dispersion relation, the ratio w1k2 >k = a - bk 2 is called the phase velocity, and the derivative dw>dk = a - 3bk 2 is called the group velocity. When the group velocity is not constant, the waves are called dispersive. Show that the standard wave equation utt = a2uxx has only nondispersive waves. 21. Vibrating Drum. A vibrating circular membrane of unit radius whose edges are held fixed in a plane and
†
For a discussion of the telegraph problem, see Project E at the end of this chapter.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
616
Chapter 10
Partial Differential Equations
Show that there is a family of solutions of the form
whose displacement u1r, t2 depends only on the radial distance r from the center and on the time t is governed by the initial-boundary value problem.
un 1r, t2 = 3an cos1knat2 + bn sin1knat24J0 1knr2 , where J0 is the Bessel function of the first kind of order zero (see page 478) and 0 6 k1 6 k2 6 g 6 kn 6 g are the positive zeros of J0. See Figure 10.24.
2 1 0u 02u 2 0 u = a a + b, 0t 2 0r 2 r 0r 06r61, t70,
u11, t2 = 0 , u1r, t2
t70,
remains finite as r S 0+ .
(a)
(b)
(c)
Figure 10.24 Mode shapes for vibrating drum. (a) J0 12.405r2, (b) J0 15.520r2, (c) J0 18.654r2
10.7 Laplace’s Equation In Section 10.1 we showed how Laplace’s equation, ∆u =
02u 02u + = 0, 0x2 0y2
arises in the study of steady-state or time-independent solutions to the heat equation. Because these solutions do not depend on time, initial conditions are irrelevant and only boundary conditions are specified. Other applications include the static displacement u1x, y2 of a stretched membrane fastened in space along the boundary of a region (here u must satisfy Laplace’s equation inside the region); the electrostatic and gravitational potentials in certain force fields (here u must satisfy Laplace’s equation in any region that is free of electrical charges or mass); and, in fluid mechanics for an idealized fluid, the stream function u1x, y2 whose level curves (stream lines), u1x, y2 = constant, represent the path of particles in the fluid (again u satisfies Laplace’s equation in the flow region). There are two basic types of boundary conditions that are usually associated with Laplace’s equation: Dirichlet boundary conditions, where the solution u1x, y2 to Laplace’s equation in a domain D is required to satisfy u1x, y2 = f1x, y2
on 0D ,
with f1x, y2 a specified function defined on the boundary 0D of D; and Neumann boundary conditions, where the directional derivative 0u>0n along the outward normal to the boundary is required to satisfy 0u 1x, y2 = g1x, y2 0n
on 0D ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.7
Laplace’s Equation
617
with g1x, y2 a specified function defined on 0D.† We say that the boundary conditions are mixed if the solution is required to satisfy u1x, y2 = f1x, y2 on part of the boundary and 10u>0n21x, y2 = g1x, y2 on the remaining portion of the boundary. In this section we use the method of separation of variables to find solutions to Laplace’s equation with various boundary conditions for rectangular, circular, and cylindrical domains. We also discuss the existence and uniqueness of such solutions. Example 1
Find a solution to the following mixed boundary value problem for a rectangle (see Figure 10.25):
(3)
02u 02u + = 0, 06x6a, 06y6b, 0x2 0y2 0u 0u 10, y2 = 1a, y2 = 0 , 0…y…b, 0x 0x u1x, b2 = 0 , 0…x…a,
(4)
u1x, 02 = f1x2 ,
(1) (2)
0…x…a. y b
u(x, b) = 0
−u (a, y) = 0 −x
−u (0, y) = 0 −x
0
u(x, 0) = f (x)
a
x
Figure 10.25 Mixed boundary value problem
Solution
Separating variables, we first let u1x, y2 = X1x2Y1y2. Substituting into equation (1), we have X″1x2Y1y2 + X1x2Y ″1y2 = 0 , which separates into X″1x2 Y ″1y2 = = -l , X1x2 Y1y2 where l is some constant. This leads to the two ordinary differential equations (5)
X″1x2 + lX1x2 = 0 ,
(6)
Y ″1y2 - lY1y2 = 0 . From the boundary condition (2), we observe that
(7)
X′102 = X′1a2 = 0 .
†
These generalize the boundary conditions (5) in Section 10.1 and (42) in Section 10.5.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
618
Chapter 10
Partial Differential Equations
We have encountered the eigenvalue problem in (5) and (7) previously (see Example 1 in Section 10.5). The eigenvalues are l = ln = 1np>a2 2, n = 0, 1, 2, c, with corresponding solutions (8)
Xn 1x2 = an cos a
npx b, a
where the an’s are arbitrary constants. Setting l = ln = 1np>a2 2 in equation (6) and solving for Y gives† (9)
Y0 1y2 = A0 + B0y , Yn 1y2 = An cosh a
npy npy b + Bn sinh a b, a a
n = 1, 2, . . .
Now the boundary condition u1x, b2 = 0 in (3) will be satisfied if Y1b2 = 0. Setting y = b in (9), we see that we want A0 = -bB0 and An = -Bn tanh a Yn 1y2 = Cn sinh c
npb b, a
or equivalently,
np 1y - b2 d , a
n = 1, 2, c
(see Problem 18). Thus we find that there are solutions to (1)–(3) of the form u0 1x, y2 = X0 1x2Y0 1y2 = a0B0 1y - b2 = E0 1y - b2 ,
un 1x, y2 = Xn 1x2Yn 1y2 = an cos a = En cos a
npx np 1y - b2 d b Cn sinh c a a
npx np 1y - b2 d , b sinh c a a
n = 1, 2, c ,
where the En’s are constants. In fact, by the superposition principle, (10)
∞ npx np u1x, y2 = E0 1y - b2 + a En cos a 1y - b2 d b sinh c a a n=1
is a formal solution to (1)–(3). Applying the remaining nonhomogeneous boundary condition in (4), we have ∞ npb npx u1x, 02 = f1x2 = -E0b + a En sinh a b cos a b. a a n=1
This is a Fourier cosine series for f1x2 and hence the coefficients are given by the formulas a
1 f1x2 dx , 1 -ba2 L0 a 2 npx b dx , En = f1x2 cos a a npb L0 b a sinh a a E0 =
(11)
n = 1, 2, c .
Thus a formal solution is given by (10) with the constants En given by (11). See Figure 10.26 on page 619 for a sketch of partial sums for (10). ◆ We usually express Yn 1y2 = an enpy>a + bn e-npy>a. However, computation is simplified in this case by using the hyperbolic functions cosh z = 1ez + e-z 2 >2 and sinh z = 1ez - e-z 2 >2 .
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.7
Laplace’s Equation
619
u
x
y
Figure 10.26 Partial sums for Example 1 with f1x2 = e
x,
0 6 x … p>2,
p - x,
p>2 … x 6 p
In Example 1 the boundary conditions were homogeneous on three sides of the rectangle and nonhomogeneous on the fourth side, 5 1x, y2: y = 0, 0 … x … a6. It is important to note that the method used in Example 1 can also be used to solve problems for which the boundary conditions are nonhomogeneous on all sides. This is accomplished by solving four separate boundary value problems in which three sides have homogeneous boundary conditions and only one side is nonhomogeneous. The solution is then obtained by summing these four solutions (see Problem 5). For problems involving circular domains, it is usually more convenient to use polar coordinates. In rectangular coordinates the Laplacian has the form ∆u =
02u 02u + . 0x2 0y2
In polar coordinates 1r, u2, we let x = r cos u ,
y = r sin u
so that r = 2x2 + y2 ,
tan u = y>x .
With patience and a little care in applying the chain rule, one can show that the Laplacian in polar coordinates is (12)
𝚫u =
e2u 1 eu 1 e2u + + 2 2 r er er r eU2
(see Problem 6). In the next example we obtain a solution to the Dirichlet problem in a disk of radius a. Example 2
A circular metal disk of radius a has its top and bottom insulated. The edge 1r = a2 of the disk is kept at a specified temperature that depends on its location (varies with u). The steadystate temperature inside the disk satisfies Laplace’s equation. Determine the temperature distribution u1r, u2 inside the disk by finding the solution to the following Dirichlet boundary value problem, depicted in Figure 10.27 on page 620: (13) (14)
02u 1 0u 1 02u + + = 0, 0…r6a, 0r 2 r 0r r 2 0u 2 u1a, u2 = f1u2 , -p … u … p .
-p … u … p ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
620
Chapter 10
Partial Differential Equations
u(a, ) = f ( ) (r, ) r a
Figure 10.27 Steady-state temperature distribution in a disk
Solution
To use the method of separation of variables, we first set u1r, u2 = R1r2ϴ1u2 , where 0 … r 6 a and -p … u … p. Substituting into (13) and separating variables give r 2R″1r2 + rR′1r2 R1r2
= -
ϴ″1u2 = l, ϴ1u2
where l is any constant. This leads to the two ordinary differential equations (15)
r 2R″1r2 + rR′1r2 - lR1r2 = 0 ,
(16)
ϴ″1u2 + lϴ1u2 = 0 .
For u1r, u2 to be continuous in the disk 0 … r 6 a, we need ϴ1u2 to be 2p-periodic; in particular, we require (17)
ϴ1 -p2 = ϴ1p2
and
ϴ′1 -p2 = ϴ′1p2 .
Therefore, we seek nontrivial solutions to the eigenvalue problem (16)–(17). When l 6 0, the general solution to (16) is the sum of two exponentials. Hence we have only trivial 2p-periodic solutions. When l = 0, we find ϴ1u2 = Au + B to be the solution to (16). This linear function is periodic only when A = 0, that is, ϴ0 1u2 = B is the only 2p-periodic solution corresponding to l = 0. When l 7 0, the general solution to (16) is ϴ1u2 = A cos 1l u + B sin 1l u . Here we get a nontrivial 2p-periodic solution only when 1l = n, n = 1, 2, c. [You can check this using (17).] Hence, we obtain the nontrivial 2p-periodic solutions (18)
ϴn 1u2 = An cos nu + Bn sin nu
corresponding to 1l = n, n = 1, 2, c. Notice that the eigenfunctions are the terms of the Fourier series discussed in Section 10.3 (recall Figure 10.5, page 573).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.7
Laplace’s Equation
621
Now for l = n2, n = 0, 1, 2, c, equation (15) is the Cauchy–Euler equation (19)
r 2R″1r2 + rR′1r2 - n2R1r2 = 0
(see Section 4.7, page 192). When n = 0, the general solution is R0 1r2 = C + D ln r . Since ln r S - ∞ as r S 0+ , this solution is unbounded near r = 0 when D ≠ 0. Therefore, we must choose D = 0 if u1r, u2 is to be continuous at r = 0. We now have R0 1r2 = C and so u0 1r, u2 = R0 1r2ϴ1u2 = CB, which for convenience we write in the form (20)
u0 1r, u2 =
A0 , 2
where A0 is an arbitrary constant. When l = n2, n = 1, 2, c, you should verify that equation (19) has the general solution Rn 1r2 = Cnr n + Dnr -n . Since r -n S ∞ as r S 0+ , we must set Dn = 0 in order for u1r, u2 to be bounded at r = 0. Thus, Rn 1r2 = Cnr n . Now for each n = 1, 2, . . . , we have the solutions (21)
un 1r, u2 = Rn 1r2ϴn 1u2 = Cnr n 1An cos nu + Bn sin nu2 ,
and by forming an infinite series from the solutions in (20) and (21), we get the following formal solution to (13): u1r, u2 =
∞ A0 + a Cnr n 1An cos nu + Bn sin nu2 . 2 n=1
It is more convenient to write this series in the equivalent form (22)
u1r, u2 =
∞ a0 r n + a a b 1an cos nu + bn sin nu2 , 2 n=1 a
where the an’s and bn’s are constants. These constants can be determined from the boundary condition; indeed, with r = a in (22), condition (14) becomes f1u2 =
∞ a0 + a 1an cos nu + bn sin nu2 . 2 n=1
Hence, we recognize that an, bn are Fourier coefficients for f1u2. Thus, p
(23)
an =
1 f1u2cos nu du , p L-p
(24)
bn =
1 f1u2sin nu du , p L-p
n = 0, 1, c ,
p
n = 1, 2, c .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
622
Chapter 10
Partial Differential Equations
To summarize, if an and bn are defined by formulas (23) and (24), then u1r, u2 given in (22) is a formal solution to the Dirichlet problem (13)–(14). ◆ The procedure in Example 2 can also be used to study the Neumann problem in a disk: (25)
∆u = 0 ,
(26)
0u 1a, u2 = f1u2 , 0r
-p … u … p ,
0…r6a,
-p … u … p .
For this problem there is no unique solution, since if u is a solution, then the function u plus a constant is also a solution. Moreover, f must satisfy the consistency condition p
f1u2 du = 0 . L-p If we interpret the solution u1r, u2 of equation (25) as the steady-state temperature distribution inside a circular disk that does not contain either a heat source or heat sink, then equation (26) specifies the flow of heat across the boundary of the disk. Here the consistency condition (27) is simply the requirement that the net flow of heat across the boundary is zero. (If we keep pumping heat in, the temperature won’t reach equilibrium!) We leave the solution of the Neumann problem and the derivation of the consistency condition for the exercises. The technique used in Example 2 also applies to annular domains, 5 1r, u2: 0 6 a 6 r 6 b6, and to exterior domains, 5 1r, u2: a 6 r6. We also leave these applications as exercises. Laplace’s equation in cylindrical coordinates arises in the study of steady-state temperature distributions in a solid cylinder and in determining the electric potential inside a cylinder. In cylindrical coordinates,
(27)
x = r cos u ,
y = r sin u ,
z = z,
Laplace’s equation becomes (28)
𝚫u =
e2u 1 eu 1 e2u e2u + + 2 2 + 2 =0. 2 r er er r eU ez
The Dirichlet problem for the cylinder 5 1r, u, z2: 0 … r … a, 0 … z … b6 has the boundary conditions 0…z…b,
(29)
u1a, u, z2 = f1u, z2 ,
-p … u … p ,
(30)
u1r, u, 02 = g1r, u2 ,
0…r…a,
-p … u … p ,
(31)
u1r, u, b2 = h1r, u2 ,
0…r…a,
-p … u … p .
To solve the Dirichlet boundary value problem (28)–(31), we first solve the three boundary value problems corresponding to: (i) g K 0 and h K 0; (ii) f K 0 and h K 0; and (iii) f K 0 and g K 0. Then by the superposition principle, the solution to (28)–(31) will be the sum of these three solutions. This is the same method that was discussed in dealing with Dirichlet problems on rectangular domains. (See the remarks following Example 1.) In the next example we solve the Dirichlet problem when g K 0 and h K 0. Example 3
The base 1z = 02 and the top 1z = b2 of a charge-free cylinder are grounded and therefore are at zero potential. The potential on the lateral surface 1r = a2 of the cylinder is given by u1a, u, z2 = f1u, z2 where f1u, 02 = f1u, b2 = 0. Inside the cylinder, the potential u1r, u, z2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.7
Laplace’s Equation
623
satisfies Laplace’s equation. Determine the potential u inside the cylinder by finding a solution to the Dirichlet boundary value problem (32) (33) (34) Solution
02u 1 0u 1 02u 02u + + + = 0, 0…r6a, -p … u … p , 0r 2 r 0r r 2 0u 2 0z2 u1a, u, z2 = f1u, z2 , -p … u … p , 0…z…b, u1r, u, 02 = u1r, u, b2 = 0 , 0…r6a, -p … u … p .
06z6b,
Using the method of separation of variables, we first assume that u1r, u, z2 = R1r2ϴ1u2Z1z2 . Substituting into equation (32) and separating out the Z’s, we find R″1r2 + 11>r2R′1r2 R1r2
+
Z″1z2 1 ϴ″1u2 = = l, 2 ϴ1u2 Z1z2 r
where l can be any constant. Separating further the R’s and ϴ ’s gives r 2R″1r2 + rR′1r2 R1r2
- r 2l = -
ϴ″1u2 = m, ϴ1u2
where m can also be any constant. We now have the three ordinary differential equations: (35) (36) (37)
r 2R″1r2 + rR′1r2 - 1r 2l + m2R1r2 = 0 , ϴ″1u2 + mϴ1u2 = 0 , Z″1z2 + lZ1z2 = 0 .
For u to be continuous in the cylinder, ϴ1u2 must be 2p-periodic. Thus, let’s begin with the eigenvalue problem ϴ″1u2 + mϴ1u2 = 0 , ϴ1 -p2 = ϴ1p2
and
-p 6 u 6 p , ϴ′1 -p2 = ϴ′1p2 .
In Example 2 we showed that this problem has nontrivial solutions for m = n2, n = 0, 1, 2, c, that are given by the Fourier series components (38)
ϴn 1u2 = An cos nu + Bn sin nu ,
where the An’s and Bn’s are arbitrary constants. The boundary conditions in (34) imply that Z102 = Z1b2 = 0. Therefore, Z must satisfy the eigenvalue problem Z″1z2 + lZ1z2 = 0 ,
06z6b,
Z102 = Z1b2 = 0 .
We have seen this eigenvalue problem several times before. Nontrivial solutions exist for l = 1mp>b2 2, m = 1, 2, 3, . . . and are given by the sine series components (39)
Zm 1z2 = Cm sin a
mpz b, b
where the Cm’s are arbitrary constants. Substituting for m and l in equation (35) gives r 2R″1r2 + rR′1r2 - a r 2 a
mp 2 b + n2 b R1r2 = 0 , b
0…r6a.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
624
Chapter 10
Partial Differential Equations
You should verify that the change of variables s = 1mpr>b2 transforms this equation into the modified Bessel’s equation of order n (page 483)† (40)
s2R″1s2 + sR′1s2 - 1s2 + n2 2R1s2 = 0 ,
0…s6
mpa . b
The modified Bessel’s equation of order n has two linearly independent solutions—the modified Bessel function of the first kind: ∞ 1s>22 2k+n , In 1s2 = a k = 0 k! Γ1k + n + 12
which remains bounded near zero, and the modified Bessel function of the second kind: Kn 1s2 = lim S y
n
p I-y 1s2 - Iy 1s2 , 2 sin yp
which becomes unbounded as s S 0. (Recall that Γ is the gamma function discussed in Section 7.6.) A general solution to (40) has the form CKn + DIn, where C and D are constants. Since u must remain bounded near s = 0, we must take C = 0. Thus, the desired solutions to (40) have the form (41)
Rmn 1r2 = Dmn In a
mpr b; b
n = 0, 1, c ,
m = 1, 2, c ,
where the Dmn’s are arbitrary constants. If we multiply the functions in (38), (39), and (41) and then sum over m and n, we obtain the following series solution to (32) and (34): (42)
∞ mpr mpz u1r, u, z2 = a am0 I0 a b sin a b b b m=1 ∞ ∞ mpr mpz + a a 1amn cos nu + bmn sin nu2 In a b sin a b, b b n=1 m=1
where the amn’s and bmn’s are arbitrary constants. The constants in (42) can be obtained by imposing the boundary condition (33). Setting r = a and rearranging terms, we have (43)
∞ mpa mpz f1u, z2 = a am0 I0 a b sin a b b b m=1 ∞ ∞ mpa mpz + a c a amn In a b sin a b d cos n u b b n=1 m=1 ∞ ∞ mpa mpz + a c a bmn In a b sin a b d sin nu . b b n=1 m=1
†
The modified Bessel’s equation of order n arises in many applications and has been studied extensively. We refer the reader to the text Special Functions by E. D. Rainville (Chelsea Publishing, New York, 1972), for details about its solution.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.7
Laplace’s Equation
625
Treating this double Fourier series like the one in Section 10.5 (page 600), we find p
b
(44)
am0 =
(45)
amn = 2
(46)
bmn = 2
L0 L-p b
f1u, z2 sin a p
L0 L-p b
p
L0 L-p
mpz mpa b du dz n pbI0 a b, b b
f1u, z2 sin a
mpz mpa b cos nu du dz n pbIn a b, b b
f1u, z2 sin a
mpz mpa b sin nu du dz n pbIn a b , nÚ1. b b
nÚ1,
Consequently, a formal solution to (32)–(34) is given by equation (42) with the constants amn and bmn determined by equations (44)–(46). ◆
Existence and Uniqueness of Solutions The existence of solutions to the boundary value problems for Laplace’s equation can be established by studying the convergence of the formal solutions that we obtained using the method of separation of variables. To answer the question of the uniqueness of the solution to a Dirichlet boundary value problem for Laplace’s equation, recall that Laplace’s equation arises in the search for steady-state solutions to the heat equation. Just as there are maximum principles for the heat equation, there are also maximum principles for Laplace’s equation. We state one such result here.†
Maximum Principle for Laplace’s Equation Theorem 9. Let u1x, y2 be a solution to Laplace’s equation in a bounded domain D with u1x, y2 continuous in D, the closure of D. 1 D = D ∪ 0D, where 0D denotes the boundary of D.) Then u1x, y2 attains its maximum value on 0D.
The uniqueness of the solution to the Dirichlet boundary value problem follows from the maximum principle. We state this result in the next theorem but leave its proof as an exercise (see Problem 19).
Uniqueness of Solution Theorem 10. Let D be a bounded domain. If there is a continuous solution to the Dirichlet boundary value problem ∆u1x, y2 = 0 in D , u1x, y2 = f1x, y2 on 0D , then the solution is unique.
†
A proof can be found in Section 8.2 of the text, Partial Differential Equations of Mathematical Physics, 2nd ed., by Tyn Myint-U (Elsevier North Holland, New York, 1983).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
626
Chapter 10
Partial Differential Equations
Solutions to Laplace’s equation in two variables are called harmonic functions. These functions arise naturally in the study of analytic functions of a single complex variable. Moreover, complex analysis provides many useful results about harmonic functions. For a discussion of this interaction, we refer the reader to an introductory text on complex analysis such as Fundamentals of Complex Analysis, 3rd ed., by E. B. Saff and A. D. Snider (Prentice Hall, Englewood Cliffs, N.J., 2003).
10.7
EXERCISES
In Problems 1–5, find a formal solution to the given boundary value problem. 02u 02u 1. + = 0, 06x6p, 06y61, 0x2 0y2 0u 0u 10, y2 = 1p, y2 = 0 , 0 … y … 1 , 0x 0x u1x, 02 = 4 cos 6x + cos 7x , 0 … x … p , u1x, 12 = 0 , 2.
0…x…p
0u 0u + = 0, 06x6p, 06y6p, 0x2 0y2 0u 0u 10, y2 = 1p, y2 = 0 , 0…y…p, 0x 0x u1x, 02 = cos x - 2 cos 4x , 0 … x … p , 2
2
u1x, p2 = 0 , 0 … x … p 3.
4.
5.
02u 02u + = 0, 06x6p, 06y6p, 0x2 0y2 u10, y2 = u1p, y2 = 0 , 0 … y … p , u1x, 02 = f1x2 , 0 … x … p , u1x, p2 = 0 , 0…x…p 02u 02u + = 0, 06x6p, 06y6p, 0x2 0y2 u10, y2 = u1p, y2 = 0 , 0 … y … p , u1x, 02 = sin x + sin 4x , 0 … x … p , u1x, p2 = 0 , 0 … x … p 02u 02u + = 0, 06x6p, 06y61, 0x2 0y2 0u 0u 10, y2 = 1p, y2 = 0 , 0 … y … 1 , 0x 0x u1x, 02 = cos x - cos 3x , 0 … x … p , u1x, 12 = cos 2x ,
In Problems 7 and 8, find a solution to the Dirichlet boundary value problem for a disk: 02u 1 0u 1 02u + = 0, 0…r62, + 0r 2 r 0r r 2 0u 2 -p … u … p u12, u2 = f1u2 ,
-p … u … p ,
for the given function f1u2. -p … u … p 7. f1u2 = 0 u 0 , 8. f1u2 = cos2 u , -p … u … p 9. Find a solution to the Neumann boundary value problem for a disk: 02u 1 0u 1 02u + = 0, 0…r6a, + -p … u … p , 0r 2 r 0r r 2 0u 2 0u 1a, u2 = f1u2 , -p … u … p . 0r 10. A solution to the Neumann problem (25)–(26) must also satisfy the consistency condition in (27). To show this, use Green’s second formula L LD
1Y∆u - u∆Y2 dx dy =
LeD
aY
eu eY -u b ds , en en
where 0>0n is the outward normal derivative and ds is the differential of arc length. 3Hint: Take y K 1 and observe that 0u>0n = 0u>0r.4 11. Find a solution to the following Dirichlet problem for an annulus: 02u 1 0u 1 02u + = 0, + 0r 2 r 0r r 2 0u 2 u11, u2 = sin 4u - cos u , u12, u2 = sin u ,
16r62,
-p … u … p ,
-p … u … p ,
-p … u … p .
0…x…p
6. Derive the polar coordinate form of the Laplacian given in equation (12).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Section 10.7
12. Find a solution to the following Dirichlet problem for an annulus: 02u 1 0u 1 02u + = 0, 16r63, + 0r 2 r 0r r 2 0u 2 u11, u2 = 0 , -p … u … p ,
-p … u … p ,
u13, u2 = cos 3u + sin 5u , - p … u … p . 13. Find a solution to the following Dirichlet problem for an exterior domain: 02u 1 0u 1 02u + + = 0, 16r, 0r 2 r 0r r 2 0u 2 -p … u … p , u11, u2 = f1u2 u1r, u2 remains bounded as r S ∞ .
-p … u … p ,
02u 1 0u 1 02u + = 0, 16r, -p … u … p , + 0r 2 r 0r r 2 0u 2 0u 11, u2 = f1u2 , -p … u … p , 0r u1r, u2 remains bounded as r S ∞ . 15. Find a solution to the following Dirichlet problem for a half disk: 02u 1 0u 1 02u + = 0, 06r61, + 0r 2 r 0r r 2 0u 2 0…r…1, u1r, 02 = 0 ,
06u6p,
0…r…1,
u1r, p2 = 0 , u11, u2 = sin 3u ,
0…u…p,
u10, u2 bounded. 16. Find a solution to the following Dirichlet problem for a half annulus: 02u 1 0u 1 02u + = 0, + p 6 r 6 2p , 0r 2 r 0r r 2 0u 2 p … r … 2p , u1r, 02 = sin r , u1r, p2 = 0 ,
06u6p,
p … r … 2p ,
0…u…p. u1p, u2 = u12p, u2 = 0 , 17. Find a solution to the mixed boundary value problem 02u 1 0u 1 02u + + = 0, 16r63, 0r 2 r 0r r 2 0u 2 -p … u … p , u11, u2 = f1u2 , 0u 13, u2 = g1u2 , -p … u … p . 0r 18. Show that - Bn tanha
-p … u … p ,
627
where Cn = Bn > cosha
npb b. a
19. Prove Theorem 10 on the uniqueness of the solution to the Dirichlet problem. 20. Stability. Use the maximum principle to prove the following theorem on the continuous dependence of the solution on the boundary conditions: Theorem. Let f1 and f2 be continuous functions on 0D, where D is a bounded domain. For i = 1 and 2, let ui be the solution to the Dirichlet problem ∆u = 0 ,
14. Find a solution to the following Neumann problem for an exterior domain:
Laplace’s Equation
u = fi ,
in D , on 0D .
If the boundary values satisfy
0 f1 1x, y2 - f2 1x, y2 0 … e
for all 1x, y2 on 0D ,
where P 7 0 is some constant, then
0 u1 1x, y2 - u2 1x, y2 0 … e
for all 1x, y2 in D .
21. For the Dirichlet problem described in Example 3, let a = b = p and assume the potential on the lateral side 1r = p2 of the cylinder is f1u, z2 = sin z. Use equations (44)–(46) to compute the solution given by equation (42). 22. Invariance of Laplace’s Equation. A complex-valued function f1z2 of the complex variable z = x + iy can be written in the form f1z2 = u1x, y2 + iy1x, y2, where u and y are real-valued functions. If f1z2 is analytic in a planar region D, then its real and imaginary parts satisfy the Cauchy–Riemann equations in D; that is, in D 0u 0y = , 0x 0y
0u 0y = - . 0y 0x
Let f be analytic and one-to-one in D and assume its inverse f -1 is analytic in D′, where D′ is the image of D under f. Then 0y 0x = , 0u 0y
0y 0x = 0y 0u
are just the Cauchy–Riemann equations for f -1. Show that if f1x, y2 satisfies Laplace’s equation for 1x, y2 in D, then c1u, y2 J f 1 x1u, y2, y1u, y2 2 satisfies Laplace’s equation for 1u, y2 in D′.
npy npy npb b cosha b + Bn sinha b a a a
= Cn sinhc
np 1y - b2 d , a
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
628
Chapter 10
Partial Differential Equations
23. Fluid Flow Around a Corner. The stream lines that describe the fluid flow around a corner (see Figure 10.28) are given by f1x, y2 = k, where k is a constant and f, the stream function, satisfies the boundary value problem 02f
+
02f
= 0, x70, 0x 0y2 f1x, 02 = 0 , 0…x, 2
y70,
0…y.
f10, y2 = 0 ,
(u, ) = constant
=0
u
y Figure 10.29 Flow above a flat surface (x, y) = constant =0
x =0 Figure 10.28 Flow around a corner
(a) Using the results of Problem 22, show that this problem can be reduced to finding the flow above a flat plate (see Figure 10.29). That is, show that the problem reduces to finding the solution to 02c
+
02c
= 0, 0u2 0y2 c1u, 02 = 0 ,
y70,
where c and f are related as follows: c1u, y2 = f 1 x1u, y2, y1u, y2 2 with the mapping between 1u, y2 and 1x, y2 given by the analytic function f1z2 = z2. (b) Verify that a nonconstant solution to the problem in part (a) is given by c1u, y2 = y. (c) Using the result of part (b), find a stream function f1x, y2 for the original problem. 24. Unbounded Domain. Using separation of variables, find a solution of Laplace’s equation in the infinite rectangle 0 6 x 6 p, 0 6 y 6 ∞ that is zero on the sides x = 0 and x = p, approaches zero as y S ∞ , and equals f1x2 for y = 0.
-∞ 6 u 6 ∞ ,
-∞ 6 u 6 ∞ ,
Chapter 10 Summary Separation of Variables. A classical technique that is effective in solving boundary value problems for partial differential equations is the method of separation of variables. Briefly, the idea is to assume first that there exists a solution that can be written with the variables separated: e.g., u1x, t2 = X1x2T1t2. Substituting u = XT into the partial differential equation and then imposing the boundary conditions leads to the problem of finding the eigenvalues and eigenfunctions for a boundary value problem for an ordinary differential equation. Solving for the eigenvalues and eigenfunctions, one eventually obtains solutions un 1x, t2 = Xn 1x2Tn 1t2, n = 1, 2, 3, . . . that solve the partial differential equation and the homogeneous boundary conditions. Taking infinite linear combinations of the un 1x, t2 yields complete solutions of the form ∞
u1x, t2 = a cnun 1x, t2 . n=1
The coefficients cn are then obtained using the initial conditions or nonhomogeneous conditions.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Chapter 10 Summary
629
Fourier Series. Let f1x2 be a piecewise continuous function on the interval 3 -L, L4. The Fourier series of f is the trigonometric series f1x2 ∼
∞ a0 npx npx + a e an cos a b + bn sin a bf , 2 n=1 L L
where the an’s and bn’s are given by Euler’s formulas: L
an =
1 npx f1x2 cos a b dx , L L-L L
bn =
1 npx f1x2 sin a b dx , L L-L L
n = 0, 1, 2, . . . ,
L
n = 1, 2, 3, c .
Let f be piecewise continuous on the interval 30, L4. The Fourier cosine series of f1x2 on 30, L4 is f1x2 ∼
∞ a0 npx + a an cos a b, 2 n=1 L
where L
an =
2 npx f1x2 cos a b dx . L L0 L
The Fourier sine series of f1x2 on 30, L4 is ∞ npx f1x2 ∼ a bn sin a b, L n=1
where L
bn =
2 npx f1x2 sin a b dx . L L0 L
Fourier series and the method of separation of variables are used to solve boundary value problems and initial-boundary value problems for the three classical equations: Heat equation
0u 02u = b 2. 0t 0x
Wave equation
2 02u 20 u a = . 0t 2 0x2
Laplace’s equation
02u 02u + = 0. 0x2 0y2
For the heat equation, there is a unique solution u1x, t2 when the boundary values at the ends of a conducting wire are specified along with the initial temperature distribution. The wave equation yields the displacement u1x, t2 of a vibrating string when the ends are held fixed and the initial displacement and initial velocity at each point of the string are given. In such a case, separation of variables yields a solution that is the sum of standing waves. For an infinite string with specified initial displacement and velocity, d’Alembert’s solution yields traveling waves. Laplace’s equation arises in the study of steady-state solutions to the heat and wave equations.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
630
Chapter 10
Partial Differential Equations
TECHNICAL WRITING EXERCISES FOR CHAPTER 10 1. The method of separation of variables is an important technique in solving initial-boundary value problems and boundary value problems for linear partial differential equations. Explain where the linearity of the differential equation plays a crucial role in the method of separation of variables. 2. In applying the method of separation of variables, we have encountered a variety of special functions, such as sines, cosines, Bessel functions, and modified Bessel functions. Describe three or four examples of partial differential equations that involve other special functions, such as Legendre polynomials, Hermite polynomials, and Laguerre polynomials. (Some exploring in the library may be needed; start with the table on page 483.) 3. A constant-coefficient second-order partial differential equation of the form a
can be classified using the discriminant D J b2 - 4ac. In particular, the equation is called hyperbolic
if
D 7 0,
elliptic
if
D 6 0.
and
Verify that the wave equation is hyperbolic and Laplace’s equation is elliptic. It can be shown that such hyperbolic (elliptic) equations can be transformed by a linear change of variables into the wave (Laplace’s) equation. Based on your knowledge of the latter equations, describe which types of problems (initial value, boundary value, etc.) are appropriate for hyperbolic equations and elliptic equations.
02u 02u 02u +b +c 2 = 0 2 0x 0y 0x 0y
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 10 A Steady-State Temperature Distribution in a Circular Cylinder When the temperature u inside a circular cylinder reaches a steady state, it satisfies Laplace’s equation ∆u = 0. If the temperature on the lateral surface 1r = a2 is kept at zero, the temperature on the top 1z = b2 is kept at zero, and the temperature on the bottom 1z = 02 is given by u1r, u, 02 = f1r, u2, then the steady-state temperature satisfies the boundary value problem 02u 1 0u 1 02u 02u + + + = 0, 0…r6a, -p … u … p , 0r 2 r 0r r 2 0u 2 0z2 -p … u … p , 0…z…b, u1a, u, z2 = 0 , u1r, u, b2 = 0 ,
0…r6a,
u1r, u, 02 = f1r, u2 ,
06z6b,
-p … u … p ,
0…r6a,
-p … u … p ,
where f1a, u2 = 0 for - p … u … p (see Figure 10.30). To find a solution to this boundary value problem, proceed as follows: (a) Let u1r, u, z2 = R1r2ϴ1u2Z1z2. Show that R, ϴ, and Z must satisfy the three ordinary differential equations r 2R″ + rR′ - 1r 2l + m2R = 0 , ϴ″ + mϴ = 0 , Z″ + lZ = 0 . (b) Show that ϴ1u2 has the form ϴ1u2 = A cos nu + B sin nu for m = n2, n = 0, 1, 2, c. (c) Show that Z1z2 has the form Z1z2 = C sinh 3b1b - z24 for l = - b2, where b 7 0. z u(r, , b) = 0
u(a, , z) = 0 u50
u(r, , 0) = f (r, ) Figure 10.30 Dirichlet problem for cylinder
631
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
632
Chapter 10
Partial Differential Equations
(d) Show that R1r2 has the form, for each n, Rn 1r2 = DJn 1br2 , where Jn is the Bessel function of the first kind. (e) Show that the boundary conditions require R1a2 = 0, and so Jn 1ba2 = 0 .
Hence, for each n, if 0 6 an1 6 an2 6 g 6 anm 6 g are the zeros of Jn, then bnm = anm >a .
Moreover, Rn 1r2 = DJn 1anmr>a2 . Some typical eigenfunctions are displayed in Figure 10.31. (f) Use the preceding results to show that u1r, u, z2 has the form ∞ ∞ anm 1b - z2 anmr b 1anm cos nu + bnm sin nu2sinha b, u1r, u, z2 = a a Jn a a a n=0 m=1
where anm and bnm are constants.
Eigenvalue
Eigenfunction J0(2.405r /a) a
r
J0(5.520r /a) a
r
J0(8.654r /a)
a
r
J0(11.792r /a) a
r
Figure 10.31 Bessel eigenfunctions. See also Figure 10.24, page 616.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 10
633
(g) Use the final boundary condition and a double orthogonal expansion involving Bessel functions and trigonometric functions to derive the formulas a
a0m =
2p
a0mr 1 b r dr du , f1r, u2 J0 a 2 2 a pa sinh1a0mb>a23J1 1a0m 24 L0 L0
for m = 1, 2, 3, c, and for n, m = 1, 2, 3, c, a
2p
a
2p
anm =
anmr 2 b cos1nu2 r dr du , f1r, u2 Jn a 2 2 a pa sinh1anmb>a23Jn+1 1anm 24 L0 L0
bnm =
anmr 2 b sin1nu2 r dr du . f1r, u2 Jn a 2 2 a pa sinh1anmb>a23Jn+1 1anm 24 L0 L0
(The orthogonality relations for Bessel function expansions are described by equations (21), (22) in Section 11.7, page 689.)*
B Laplace Transform Solution of the Wave Equation Laplace transforms can be used to solve certain partial differential equations. To illustrate this technique, consider the initial-boundary value problem (1) (2) (3) (4) (5)
02u 02u = a2 2 , 06x6 ∞, 2 0t 0x t70, u10, t2 = h1t2 , u1x, 02 = 0 , 0u 1x, 02 = 0 , 0t lim u1x, t2 = 0 ,
xS ∞
t70,
06x6 ∞, 06x6 ∞, tÚ0.
This problem arises in studying a semi-infinite string that is initially horizontal and at rest and where one end is being moved vertically. Let u1x, t2 be the solution to (1)–(5). For each x, let U1x, s2 J ℒ5u1x, t2 6 1x, s2 =
∞
L0
e-stu1x, t2 dt .
(a) Using the fact that ℒe
02u 02 f = ℒ5u6 , 0x2 0x2
show that U1x, s2 satisfies the equation 02U , 06x6 ∞. 0x2 (b) Show that the general solution to (6) is (6)
s2U1x, s2 = a2
U1x, s2 = A1s2e-sx>a + B1s2esx>a , where A1s2 and B1s2 are arbitrary functions of s. †
All references to Chapters 11–13 refer to the expanded text, Fundamentals of Differential Equations and Boundary Value Problems, 7th ed.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
634
Chapter 10
Partial Differential Equations
(c) Since u1x, t2 S 0 as x S ∞ for all 0 … t 6 ∞ , we have U1x, s2 S 0 as x S ∞ . Use this fact to show that the B1s2 in part (b) must be zero. (d) Using equation (2), show that A1s2 = H1s2 = ℒ5h61s2 , where A1s2 is given in part (b). (e) Use the results of parts (b), (c), and (d) to obtain a formal solution to (1)–(5).
C Green’s Function Let Ω be a region in the xy-plane having a smooth boundary 0Ω. Associated with Ω is a Green’s function G1x, y; j, h2 defined for pairs of distinct points 1x, y2, 1j, h2 in Ω. The function G1x, y; j, h2 has the following property. Let ∆u J 02u>0x2 + 02u>0y2 denote the Laplacian operator on Ω; let h1x, y2 be a given continuous function on Ω; and let f1x, y2 be a given continuous function on 0Ω. Then, a continuous solution to the Dirichlet boundary value problem
∆u1x, y2 = h1x, y2 ,
in Ω ,
u1x, y2 = f1x, y2 ,
on 0Ω ,
is given by (7)
u1x, y2 =
G1x, y; j, h2 h1j, h2 dj dh LL Ω
+
L0Ω
f1j, h2
0G 1x, y; j, h2 ds1j, h2 , 0n
where n is the outward normal to the boundary 0Ω of Ω and the second integral is the line integral, with respect to arc length, around the boundary of Ω with the interior of Ω on the left as the boundary is traversed. In (7) we assume that 0Ω is sufficiently smooth so that the integrands and integrals exist. When Ω is the upper half-plane, the Green’s function is† G1x, y; j, h2 =
1x - j2 2 + 1y - h2 2 1 ln c d . 4p 1x - j2 2 + 1y + h2 2
(a) Using (7), show that a solution to (8)
∆u1x, y2 = h1x, y2 ,
(9)
u1x, 02 = f1x2 ,
-∞ 6 x 6 ∞ ,
06y,
-∞ 6 x 6 ∞ ,
is given by u1x, y2 =
∞ f1j2 y dj p L-∞ 1x - j2 2 + y2 ∞ ∞ 1x - j2 2 + 1y - h2 2 1 ln c d h1j, h2 dj dh . + 4p L0 L-∞ 1x - j2 2 + 1y + h2 2
†
Techniques for determining Green’s functions can be found in texts on partial differential equations such as Partial Differential Equations of Mathematical Physics, 2nd ed., by Tyn Myint-U (Elsevier North Holland, New York, 1983), Chapter 10.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 10
635
(b) Use the result of part (a) to determine a solution to (8)–(9) when h K 0 and f K 1. (c) When Ω is the interior of the unit circle x2 + y2 = 1, the Green’s function, in polar coordinates 1r, u2 and 1r, f2, is given by G1r, u; r, f2 =
1 ln 3r 2 + r2 - 2rr cos1f - u24 4p 1 1 ln3r 2 + r-2 - 2rr-1 cos1f - u24 ln r . 4p 4p
Using (7), show that the solution to 02u 1 0u 1 02u + = 0, 0…r61, + 0r 2 r 0r r 2 0u 2 0 … u … 2p , u11, u2 = f1u2 ,
0 … u … 2p ,
is given by u1r, u2 =
1 2p L0
2p
1 - r2 f1f2 df . 1 + r 2 - 2r cos1f - u2
This is known as Poisson’s integral formula. (d) Use Poisson’s integral formula to derive the following mean value property for solutions to Laplace’s equation.
Mean Value Property Theorem 11. If u1x, y2 satisfies ∆u = 0 in a bounded domain Ω in R2 and 1x0, y0 2 lies in Ω, then, (10)
u1x0, y0 2 =
1 2p L0
2p
u1x0 + r cos u, y0 + r sin u2 du
for all r 7 0 for which the disk B1x0, y0; r2 = 5 1x, y2: 1x - x0 2 2 + 1y - y0 2 2 … r 2 6 lies entirely in Ω.
[Hint: Use a change of variables that maps the disk B1x0, y0; r2 to the unit disk B10, 0; 12.4
D Numerical Method for ∆u = f on α Rectangle
Let R denote the open rectangle R = 5 1x, y2: a 6 x 6 b, c 6 y 6 d6 and 0R be its boundary. Here we describe a numerical technique for solving the generalized Dirichlet problem (11)
02u 02u + = f1x, y2 , 0x2 0y2 u1x, y2 = g1x, y2 ,
for 1x, y2 in R , for 1x, y2 on 0R .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
636
Chapter 10
Partial Differential Equations
y yn = d k
R y0 = c 0
x0 = a
x1
xm - 1 x m = b
h
x
Figure 10.32 Rectangular grid
The method is similar to the finite-difference technique discussed in Chapter 4. We begin by selecting positive integers m and n and step sizes h and k so that b - a = hm and d - c = kn. The interval 3a, b4 is now partitioned into m equal subintervals and 3c, d4 into n equal subintervals. The partition points are
xi = a + ih , yj = c + jk ,
0…i…m, 0…j…n
(see Figure 10.32). The (dashed) lines x = xi and y = yj are called grid lines and their intersections 1xi, yj 2 are the mesh points of the partition. Our goal is to obtain approximations to the solution u1x, y2 of problem (11) at each interior mesh point, i.e., at 1xi, yj 2 where 1 … i … m - 1, 1 … j … n - 1. 3Of course, from (11), we are given the values of u1x, y2 at the boundary mesh points, e.g., u1x0, yj 2 = g1x0, yj 2, 0 … j … n.4 The next step is to approximate the partial derivatives 02u>0x2 and 02u>0y2 using the centered-difference approximations (12)
02u 1 1xi, yj 2 ≈ 2 3u1xi+1, yj 2 - 2u1xi, yj 2 + u1xi-1, yj 24 2 0x h
1for 1 … i … m - 12 ,
1 02u 1xi, yj 2 ≈ 2 3u1xi, yj+1 2 - 2u1xi, yj 2 + u1xi, yj-1 24 2 0y k
1for 1 … i … n - 12 .
and (13)
These approximations are based on the generic formula y″1x2 = 3y1x + h2 - 2y1x2 + y1x - h24 >h2 + 3terms involving h2, h3, c4 , which follows from the Taylor series expansion for y1x2. (a) Show that substituting the approximations (12) and (13) into the Dirichlet problem (11) yields the following system: (14)
h 2 h 2 2c a b + 1 d ui, j - 1ui+1, j + ui - 1, j 2 - a b 1ui, j+1 + ui, j-1 2 = - h2f1xi, yj 2 k k for i = 1, 2, . . . , m - 1, and j = 1, 2, c, n - 1; u0, j = g1a, yj 2 ,
um, j = g1b, yj 2 ,
ui,0 = g1xi, c2 ,
ui,n = g1xi, d2 ,
j = 0, 1, c, n , i = 1, 2, c, m - 1 ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 10
637
(xi , yj + 1)
(xi - 1 , yj )
(xi , yj)
(xi + 1 , yj )
(xi , yj -1) Figure 10.33 Approximate solution ui,j at 1xi, yj 2 is obtained from values at the ends of the cross
where ui,j approximates u1xi, yj 2. Notice that each equation in (14) involves approximations to the solution that appear in a cross centered at a mesh point (see Figure 10.33). (b) Show that the system in part (a) is a linear system of 1m - 121n - 12 unknowns in 1m - 121n - 12 equations. (c) For Laplace’s equation where f1x, y2 K 0, show that when h = k, equation (14) yields ui, j =
1 1u + ui+1, j + ui, j-1 + ui, j+1 2 . 4 i-1, j
Compare this averaging formula with the mean value property of Theorem 11 (Project C). (d) For the square plate R = 5 1x, y2: 0 … x … 0.4, 0 … y … 0.46 , the boundary is maintained at the following temperatures: u10, y2 = 0 ,
u10.4, y2 = 10y ,
0 … y … 0.4 .
u1x, 02 = 0 ,
u1x, 0.42 = 10x ,
0 … x … 0.4 .
Using the system in part (a) with f1x, y2 K 0, m = n = 4, and h = k = 0.1, find approximations to the steady-state temperatures at the mesh points of the plate. [Hint: It is helpful to label these grid points with a single index, say p1, p2, . . . , pq, choosing the ordering in a book-reading sequence.]
E The Telegrapher’s Equation and the Cable Equation Electrical engineers often employ transmission lines to guide electromagnetic waves from a source to a device. The transmission line may take any of several forms, such as depicted in Figure 10.34(a) on page 638. They have common characteristics: uniformity in one direction (z) and uniform capacitance, inductance, longitudinal resistance, and transversal resistance per unit length in the z direction (if they are operated at low frequency). Thus any short length dz of the line can be modeled as an RLC circuit as depicted in Figure 10.34(b). In the figure, the circuit parameters are interpreted per unit length; thus the incremental inductance is L dz, the incremental capacitance is C dz, the (very low) incremental longitudinal
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
638
Chapter 10
Partial Differential Equations
Wire pair
Coax
Microstrip
Coplanar
(a) R dz
L dz G dz
I(z, t)
R dz
L dz
+ V(z, t) -
C dz
R dz
I(z+dz, t) C dz
G dz
z
L dz
+ V(z+dz, t) -
G dz
C dz z
z+dz dz (b)
Figure 10.34 Transmission lines (a) common forms (b) circuit model
resistance is R dz, and the (very low) incremental transversal conductance (reciprocal of resistance) is G dz. (a) Apply the circuit analysis of Section 5.7 to the length dz of the transmission line to derive the equations (15)
V1z + dz, t2 = V1z, t2 - 1R dz2I1z, t2 - 1L dz2
0I1z, t2
(16)
I1z + dz, t2 = I1z, t2 - 1G dz2V1z, t2 - 1C dz2
0V1z, t2
0t 0t
, ,
(b) Divide these equations by dz and take limits to obtain the system (17)
0V1z, t2 0z 0I1z, t2 0z
= - RI1z, t2 - L
0I1z, t2
= - GV1z, t2 - C
, 0t 0V1z, t2 0t
.
(c) Eliminate I1z, t2 from the system (17) to derive (18)
02V1z, t2 0z
2
= LC
02V1z, t2 0t
2
+ 3RC + LG4
0V1z, t2 0t
+ RGV1z, t2 .
[Hint: Differentiate the first equation with respect to z and the second with respect to t, and observe the equality of the mixed partials of I1z, t2.] Equation (18) is known as the telegrapher’s equation for the transmission line; (17) is also known as the system of telegrapher’s equations. (d) Make the substitution V1z, t2 = T1t2v1z, t2 in the telegrapher’s equation. For what choices of T1t2 is the term proportional to 0v>0t eliminated? For what choices of T1t2 is the term proportional to v eliminated? (e) Show that the telegrapher’s equation for a lossless line, where the longitudinal resistance R and the transversal conductance G of the line are zero, reduces to the wave equation of Section 10.6. What is the speed of the voltage waves on a lossless line?
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Projects for Chapter 10
639
(f ) Naturally engineers are interested in oscillatory waves on transmission lines, and thanks to Euler’s formula (Section 4.3, page 166), solutions to the system (17) can be constructed from the real and imaginary parts of solutions of the form V1z, t2 = V1z2eivt and I1z, t2 = I1z2eivt. (Elaboration of this procedure is given in Project B, Chapter 7, page 418.) Derive a first-order matrix system of the form (19)
c
V1z2 ′ V1z2 d = Ac d I1z2 I1z2
for such solutions, where A is a constant matrix. (g) For the lossless case 1R = G = 02, construct the matrix exponential eA t for the matrix in (19) by direct calculation of the series expansion in equation (2) of Section 9.8 (page 545). Express a general solution to the oscillatory transmission line system (19) for the lossless line. Ranvier node
Axon
Neuron Figure 10.35 Axon model
(h) In the neurons of an invertebrate’s central nervous system, electric signals are propagated between Ranvier nodes along axons, which are fibers containing an axoplasm liquid and insulated by a myelin sheaf; see Figure 10.35. Their electrical properties are quite similar to those of the coaxial cable in Figure 10.34 on page 638. However, the inductance is negligible. Therefore the voltages in a myelinated axon propagate in accordance with the cable equation, which is the transmission line equation (18) with L omitted: (20)
02V1z, t2 0z
2
= RC
0V1z, t2
+ RGV1z, t2 .
0t
(i) Use the strategy of part (d) to find T1t2 such that the substitution V1z, t2 = T1t2v1z, t2 results in an analog to the heat equation (Section 10.5) (21)
02v1z, t2 0z
2
= RC
0v1z, t2 0t
.
(Therefore propagation along an axon proceeds not like a wavefront, but rather like a warm front.)
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendices
APPENDIX
A
Review of Integration Techniques In solving differential equations, we cannot overemphasize the importance of integration techniques. Indeed, we sometimes refer to the problem of solving a differential equation by asking, “How can we integrate this equation?” This section is devoted to reviewing three of the standard techniques that will be useful for integrating many of the functions encountered in this text. Of course, one can always search in a table of integrals (a brief table appears on the inside back cover of this text), but familiarity with tricks of integration is a worthwhile investment of time for several reasons: (i) we may not find the particular integral we need in the table; (ii) using one of the techniques may be quicker; and (iii) we might be curious to know how the various integrals in the table were obtained. So what techniques can we use for the following integrals? (a) (d)
L
x 22x + 1 dx
7x2 + 10x - 1 dx 2 L x + 3x - x - 3 3
(b) (e)
x2 L 29 - x2
dx
(c)
L
x ln x dx
2
L
ex dx
For (a) we can use algebraic substitution, while (b) can be handled with trigonometric substitution. For (c) we have available integration by parts, and the integral in (d) will yield to partial fractions. But try as we may, no trick is sufficient to give (e) in a finite number of terms. By this we mean that if we have available the elementary functions (rational functions, trigonometric functions, inverse trigonometric functions, exponential functions, and logarithmic functions) and permit use of the standard operations—addition, subtraction, multiplication, division, taking roots, and composite functions—a finite number of times, we cannot find a for2 mula for the antiderivative of ex . A similar conundrum arises with integration of 21 + cos 2x. So we can add a fourth reason for honing our skills with integration techniques: They will help us to recognize those integrals that can be expressed in a finite number of terms. In this context, we are speaking of integration in closed form—analytically—as opposed to numerical integration. Thus integration is the inverse of differentiation; it requires finding an antiderivative. As a warmup, then, we begin this appendix by jogging your recollection of rules for derivatives. We hope you will find our approach a little different and refreshing.
Differentiation Of course you remember that the derivative of a constant equals zero, and the derivative of a sum equals the sum of the derivatives. So let’s jump in with the basic power rule. d p Derivative of a power function x = pxp - 1. dx A-1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-2
Appendices
This holds for any constant exponent p, be it integer, fraction, or negative. Examples:
d 100 x = 100x99, dx
Derivative of the exponential
d 7>2 7 x = x5>2, dx 2
d 1>3 1 x = x -2>3, dx 3
d -e x = -ex -e - 1 dx
d x e = ex. dx
This is the essential feature of the exponential function. d d Derivative of trig functions sin x = cos x, cos x = -sin x. dx dx Remember which one gets the minus sign. d d d Derivative of a product 1fg2 = f g + g f . dx dx dx d 2 2 Example: 1x sin x2 = x cos x + 1sin x212x2 dx d d d g = 1fg2 - g f, we begin to see how to build an dx dx dx d d antiderivative (fg) for f g, by compensating with - g f . This is the essence of integration dx dx by parts.) d d g f-f g d f dx dx Derivative of a quotient a b = . 2 dx g g (Bonus: If we rewrite this rule as f
(If you forget this, you can just apply the product rule to f g-1) Examples:
1cos x21cos x2 - 1sin x21 -sin x2 d d sin x cos2x + sin2x = tan x = = dx dx cos x cos2x cos2x 1 = = sec2x = 1 + tan2x cos2x
(Bonus: if you reverse the roles, so tan x = y and x = arctan y, and invert, you get a new rule: d 1 arctan y = .) dy 1 + y2 1cos x2102 - 11 -sin x2 sin x d d 1 = = = 1sec x21tan x2 sec x = 2 dx dx cos x cos x cos2x
Chain rule
Examples:
df1u2 du d du d f1u2 = c f1u2 d c d . aThink .b dx du dx du dx d 1 d 17x2 + x - 22 - 1>4 = c - 17x2 + x - 22 - 5>4 d c 17x2 + x - 22 d dx 4 dx 1 14x + 1 = . 2 4 17x + x - 22 5>4 d x2 d 2 2 e = 3e1x 2 4 c 1x2 2 d = 2xe x . dx dx
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix A
Review of Integration Techniques
A-3
Now we begin our review of integration with the method of substitution (also called change of variable), which is derived from the chain rule.
Method of Substitution d f1g1x22 = f ′1g1x22g′1x2 we obtain dx
From the formula
L
f ′ 1 g1x2 2 g′1x2dx = f 1 g1x2 2 + C .
Thus if we can recognize an integrand as being of the form f ′1g1x22g′1x2, then integration is immediate via the substitution u = g1x2. Here are some simple illustrations: •
L
sin3 2x cos 2x dx
Since d1sin 2x2 = 2 cos 2x dx, the substitution u = sin 2x reduces the integration to that of u3 >2 du. •
4
L
x3e5x dx
Observe that x3 is essentially (except for a constant factor) the derivative of 5x4, so we set u = 5x4 and integrate eu >20 du. •
•
6 ln 1x + 52
dx x+5 Recognizing that 1> 1x + 52 is the derivative of ln 1x + 52, we put u = ln 1x + 52 and integrate 6u du. L
L
tan3 x sec x dx
Here it is convenient to use the identity tan2 x = sec2 x - 1 and write the integrand as 1sec2 x - 12sec x tan x. Recalling that 1sec x2′ = sec x tan x, the substitution u = sec x reduces the problem to integrating 1u2 - 12 du. When a portion of the integrand involves some fractional power of an expression, an algebraic substitution can sometimes simplify the integration process. The technique is amply illu-strated in the following example.
Example 1
Find (1)
Solution
I1 J
L
x22x + 1 dx .
The difficulty here arises from the square root factor, so let’s try to rid ourselves of this problem term by making the substitution u = 22x + 1. Here are the details: (2)
u2 = 2x + 1,
x =
u2 - 1 , 2
dx = u du .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-4
Appendices
If we use these expressions in (1), we find that in terms of the new variable u, (3)
L
1 u2 - 1 b 1u2 1u du2 = 1u4 - u2 2 du 2 2 L L 1 u5 u3 = a - b +C 2 5 3 u3 = 13u2 - 52 + C . 30 a
x22x + 1 dx =
Returning to the original variable x, via u = 22x + 1, we deduce that I1 =
12x + 12 3>2 30
3312x + 12 - 54 + C =
12x + 12 3>2 15
13x - 12 + C . ◆
We remark that the substitution u = 22x + 1 is not the only substitution that will allow us to compute the integral in (1). Another substitution that works just as well is u = 2x + 1. In a similar manner we can compute the integrals x3
L 11 + x2 2 3>2
dx
ex
and
1>3
+1
dx
L x2>3
by making the substitution u = 1 + x2 in the first and u = x1>3 + 1 in the second. The integration of certain algebraic expressions can sometimes be simplified by utilizing trigonometric substitutions. The effectiveness of these substitutions in handling quadratic expressions under a radical derives from the familiar identities 1 - sin2 u = cos2 u , 1 + tan2 u = sec2 u, sec2 u - 1 = tan2 u . Accordingly, if the integrand involves: (I)
2a2 - x2,
set x = a sin u,
(II)
2a + x ,
set x = a tan u,
(III)
2x - a ,
set x = a sec u.
2
2
2 2
These substitutions are easy to remember if we associate with each of the cases a right triangle whose sides are a, x, and a suitable radical.† The labeling of the triangle depends on the particular case at hand. For example, in (II) it is clear that the hypotenuse must be 2a2 + x2, while in (I) the hypotenuse must be a, and in (III) the hypotenuse is x. Example 2 Solution
Find the indefinite integral I2 J
x2 dx L 29 - x2
.
This integral is of type (I) with a = 3. We first construct a triangle as shown in Figure A.1. x = 3 sin u, 3 u
x
√9 2 x 2 = 3 cos u, dx = 3 cos u du.
√9 2 x 2 Figure A.1 Triangle for Example 2 The radical sign may not be visible. For example, if the integrand is 1> 1a2 + x2 2 5, this comes under case (II), because 1> 1a2 + x2 2 5 = 1> 1 2a2 + x2 2 10.
†
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix A
Review of Integration Techniques
A-5
From this triangle we see immediately that I2 =
x2 dx L 29 - x2
13 sin u2 2 3 cos u du = 9 sin2 u du . 3 cos u L L
=
To integrate sin2 u we use the trigonometric identity sin2 u =
1 - cos 2u 2
and obtain I2 = =
9 9 9 11 - cos 2u2du = u - sin 2u + C 2L 2 4 9 9 u - sin u cos u + C . 2 2
Returning to the original variable x, we can derive the expressions for u, sin u, and cos u directly from the triangle in Figure A.1. We find that x u = arcsin , 3
sin u =
x , 3
cos u =
29 - x2 . 3
Hence I2 =
9 9 x 9 x 29 - x2 x 1 arcsin + C = arcsin - x29 - x2 + C . ◆ 2 3 23 3 2 3 2
Integration by Parts The method of integration by parts is of both practical and theoretical importance. It is based on the product rule for differentiation which we now write in the format d dy du 1uy2 = u +y = uy′ + yu′ . dx dx dx Integrating both sides of this equation and transposing, we obtain (4)
L
uy′dx = uy -
L
yu′dx .
Since dy = y′dx and du = u′dx, equation (4) can be put in the more compact form (5)
L
u dY = uY -
L
Y du .
Equation (5) is the basic equation for integration by parts. The idea is that the integrand on the left side may be very complicated, but if we select the part for u and the part for dy quite carefully, the integral on the right side may be much easier. (Some experimentation may be necessary to find the right selection.)
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-6
Appendices
Example 3 Solution
Find the indefinite integral I3 J
L
x ln x dx.
There are two natural ways of selecting u and dy so that the product is x ln x dx: First possibility: Second possibility:
let u = x, let u = ln x,
dy = ln x dx. dy = x dx.
With the first selection we cannot easily find y, the integral of ln x, so we come to a dead end. In the second case we can find y. We arrange the work as follows. Let u = ln x, dy = x dx . Then du =
1 x2 dx, y = . x 2
Making these substitutions in (5), we have for the left side x ln x dx . 1ln x21x dx2 = u dy = L L L and for the right side (6)
uy -
L
y du =
x2 x2 x2 1 1 dx = ln x ln x x dx . x 2 2 2L L2
Therefore, by (5), (7)
I3 =
L
x ln x dx =
x2 1 ln x - x2 + C . ◆ 2 4
Note that we used y = x2 >2 rather than y = x2 >2 + C. It is clear that equation (5) is correct for every value of C, and in most cases it is simpler to set C = 0. The arbitrary constant that we need can be added in the last step, as we have done in going from equation (6) to (7). It is sometimes necessary to apply integration by parts more than once in order to evaluate a particular integral, such as I4 J
x2ex dx . L In the first application, we set u = x2, dy = ex dx to deduce that (8)
I4 = x2ex - 2
xex dx
L and to evaluate the last integral in (8) we perform a second application of integration by parts with u = x, dy = ex dx. There are some integrals that may appear at first not to be split into two parts, but we need to keep in mind that “1” can be considered as a factor of any expression. For example, to compute the integrals I5 J
arctan13x2 dx and I6 J ln x dx . L L an effective splitting for evaluating I5 is u = arctan13x2, dy = 1 dx, while for I6 an appropriate choice is u = ln x, dy = 1 dx. The reader should verify that integration by parts then reduces these integrals to routine problems.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix A
Review of Integration Techniques
A-7
Partial Fractions
Any rational function, that is, any function of the form R1x2 = P1x2 >Q1x2, where P1x2 and Q1x2 are polynomials, can be integrated in finite terms. The first step in the process is to compare the degree of P1x2 with that of Q1x2. If deg P Ú deg Q, then division gives P1x2 p1x2 (9) = s1x2 + , Q1x2 Q1x2 where s1x2 and p1x2 are polynomials and deg p 6 deg Q. Since the integration of the polynomial s1x2 is a trivial matter, we need only focus on the integration of the remainder term p1x2 >Q1x2. The idea of the method of partial fractions is to express p1x2 >Q1x2 as the sum of simpler fractions that are easy to integrate. For example, knowing that (10)
R1x2 =
7x2 + 10x - 1 x + 3x2 - x - 3 3
can be written as 1 4 2 + + x-1 x+1 x+3 leads immediately to the evaluation R1x2 dx = 2 ln 0 x - 1 0 + ln 0 x + 1 0 + 4 ln 0 x + 3 0 + C . L The key to finding such a simple fraction representation is to first factor the denominator polynomial Q1x2. Indeed, in (10) the denominator is just the product 1x - 121x + 121x + 32. In general, we recall that any polynomial Q1x2 with real coefficients can be factored into a product of linear and irreducible quadratic factors with real coefficients. There are four cases that may arise in the factorization: (i) nonrepeated linear factors; (ii) repeated linear factors; (iii) nonrepeated quadratic factors; and (iv) repeated quadratic factors. In the case when a nonrepeated linear factor 1x - a2 occurs in the factorization of Q1x2, we associate the partial fraction A> 1x - a2, where A is a constant to be determined. If a linear factor 1x - a2 is repeated m times in the factorization of Q1x2, we associate the sum of m fractions m Ak a 1x - a2 k ,
k=1
where the m constants Ak are to be determined. In the case of a nonrepeated quadratic factor ax2 + bx + c (where b2 - 4ac 6 0) we associate the single fraction Ax + B , ax2 + bx + c where we now have two constants in the numerator to be determined, while if this quadratic factor is repeated m times, then we associate the sum Akx + Bk a 1ax2 + bx + c2 k , m
k=1
which involves the determination of 2m constants Ak and Bk. We illustrate the approach in the following example. Further discussion of partial fractions appears in Section 7.4, page 370.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-8
Appendices
Example 4 Solution
Find the indefinite integral I7 =
3x3 + 3x2 + 3x + 2 dx. x3 1x + 12 L
Since the factor x is repeated three times in the denominator, while 1x + 12 is a nonrepeated factor, our partial fraction decomposition must be (11)
A B C D 3x3 + 3x2 + 3x + 2 = + + + , x + 1 x x2 x3 x3 1x + 12
where A, B, C, and D are unknowns to be determined. Multiplying both sides of (11) by x3 1x + 12, we have (12)
3x3 + 3x2 + 3x + 2 = Ax3 + Bx2 1x + 12 + Cx1x + 12 + D1x + 12 . In order for (12) to be true for all x, the corresponding coefficients must be the same: A+B B+C C+D D
The coefficients of x3 yield The coefficients of x2 yield The coefficients of x1 yield The coefficients of x0 yield
= = = =
3. 3. 3. 2.
Solving this system of four linear equations in four unknowns gives A = 1, B = 2, C = 1, and D = 2. Hence I7 =
2 1 1 2 1 1 + + 2 + 3 b dx = ln 0 1x + 12x2 0 - - 2 + C . ◆ x x x 1 + x x x L a
We remark that the coefficients A and D in the representation (11) can be determined directly. Indeed, if we set x = 0 in (12), we obtain 2 = D, and if we set x = -1 in (12), we obtain -3 + 3 - 3 + 2 = A1 -12 or A = 1. But B and C cannot be obtained so readily. If we are fortunate to have a denominator with only nonrepeated linear factors, then this simple substitution method will work to quickly determine all the unknown coefficients. In dealing with the integration of rational functions that have a quadratic factor in the denominator, the familiar formula 1 dx = arctan x + C 1 + x2 L plays a central role. For example, by completing the square and making a simple change of variables, we find 3 3 dx = dx = 3 arctan1x + 22 + C . 2 2 + 5 22 x + 4x 1x + +1 L L
A
EXERCISES
In Problems 1–26, find the indicated indefinite integral. 1. 3.
L
x3 11 + x2 2 3/2 dx 5
4 6t
L
4t e dt
2. 4.
L
x cos 12x2 dx 3 3x
L
x e dx
5. 7.
L
cos 2 1pu2 du
t+1 dt 2 Lt + 4
6. 8.
x1>3 L x1>3 + 1 L
dx
10 sec2 15x2 dx
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix A
9. 11. 12. 14. 16. 18. 20. 22.
1 L 21 - 2x2
dx
10.
1 dx 2 L 2x + 4x + 4
4 dx 1x 121x 221x - 32 L L
sec12x2 tan 12x2 dx
2x + 41 dx L x + 5x - 14 2
x3 + 4x + 1 dx 2 L x + 3x + 4x + 2 3
x2 dx Lx - 1 2
L L
sec13u + 12 du 36x5exp12x3 2 dx
13.
24. 26.
29x2 - 1 dx x L
29.
19.
31.
21. 23.
L
y sinh y dy 1
L 1x + 42 3>2 2
L
dx
t ln 1t + 32 dt
sin 2x dx
25.
A-9
sin t dt 2 L 1 + cos t
e3y dy 6y L1 + e
In Problems 27–34, use an appropriate trigonometric identity to help find the indicated integral.
x3 + 2x2 + 8 dx 2 2 L x 1x + 42 1 17. dx L x ln x
15.
L
Review of Integration Techniques
27.
33.
L L L L
sin 2/5x cos3x dx
28.
cos 13x2 cos 17x2 dx
30.
tan4u sec6u du
32.
sin2 13x2 cos2 13x2 dx
34.
L L L L
tan3x2sec x dx cot3u du cos1>3x sin 3 x dx cot2x csc4 x dx
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix B
APPENDIX
B
Newton’s Method
A-9
Newton’s Method To solve an equation g1x2 = 0, we must find the point or points where the graph of y = g1x2 meets the x-axis. One procedure for approximating a solution is Newton’s method. x be a root of g1x2 = 0 and let x1 be To motivate Newton’s method geometrically, we let ∼ our guess at the value of ∼ x . If g1x1 2 = 0, we are done. If g1x1 2 ≠ 0, then we are off by some amount that we call dy (see Figure B.1). Then dy = g′1x1 2 , dx and so (1)
dx =
dy . g′1x1 2 y = g(x)
( x1, g(x1)) dy = g(x1) ~ x
x2
dx
x1
x
Figure B.1 Tangent line approximation of root
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-10 Appendices
Now dx = x1 - x2 or x2 = x1 - dx, where x2 is at the point where the tangent line through 1 x1, g1x1 2 2 intersects the x-axis (Figure B.1). Using equation (1) and the fact that dy = g1x1 2, we obtain x2 = x1 -
g1x1 2 dy = x1 , g′1x1 2 g′1x1 2
x. which we use as the next approximation to the root ∼ Repeating this process with x2 in place of x1, we obtain the next approximation x3 to the root ∼ x . In general, we find the next approximation xn + 1 by the formula (2)
xn + 1 = xn −
g1xn 2 , g′1xn 2
n = 1, 2, . . . .
The process is illustrated in Figure B.2. x , then the sequence of iterations If the initial guess x1 is sufficiently close to a root ∼ 5xn 6∞n = 1 usually converges to the root ∼ x . However, if we make a bad guess for x1, then the x. process may lead away from ∼ y = g(x)
~ x x4 x3
x2
x1
x
Figure B.2 Sequence of iterations converging to root
Example 1
Find a root to four decimal places of the equation (3)
Solution
x3 + 2x - 4 = 0 .
Setting g1x2 = x3 + 2x - 4, we find that g′1x2 = 3x2 + 2 is positive for all x. Hence, g is increasing and has at most one zero. Furthermore, since g112 = -1 and g122 = 8, this zero must lie between 1 and 2. Thus, we begin the procedure with the initial guess x1 = 1.5. For g1x2 = x3 + 2x - 4, equation (2) becomes (4)
xn + 1 = xn -
xn3 + 2xn - 4 3x2n + 2
,
n = 1, 2, . . . .
With x1 = 1.5, equation (4) gives x2 = 1.5 -
11.52 3 + 211.52 - 4 311.52 + 2 2
= 1.5 -
2.375 ≈ 1.22857 . 8.75
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix B
Newton’s Method
A-11
Using x2 to compute x3 and so on, we find x3 = 1.18085 , x4 = 1.17951 , x5 = 1.17951 , where we have rounded off the computations to five decimal places. Since x4 and x5 agree to four decimal places and we are uncertain of the fifth decimal place because of roundoff, we surmise that the root ∼ x of (3) agrees with 1.1795 to four decimal places. Indeed, g11.17952 = -0.00005 . . .
and
g11.17962 = 0.00056 . . . ,
x = 1.1795 . . . . ◆ so 1.1795 6 ∼ x 6 1.1796. Consequently, ∼ Observe that Newton’s method transforms the problem of finding a root to the equation g1x2 = 0 into the problem of finding a fixed point for the function h1x2 = x - g1x2 >g′1x2; that is, finding a number x such that x = h1x2. [See equation (2).] Several theorems give conditions that guarantee that the sequence of iterations 5xn 6∞n = 1 defined by (2) will converge to a zero of g1x2. We mention one such result.
Convergence of Newton’s Method Theorem 1. Suppose a zero ∼ x of g1x2 lies in the interval 1a, b2 and that in this interval g′1x2 7 0
and
g″1x2 7 0 .
If we select x1 so that ∼ x 6 x1 6 b, then the sequence of iterations defined by (2) will decrease to ∼ x.
We do not give a proof of this theorem, but refer the reader to an introductory numerical analysis text such as Numerical Analysis, 10th ed., by R. Burden, J. Faires, and A. Burden (Cengage Learning, 2016).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix C
APPENDIX
C
Simpson’s Rule
A-11
Simpson’s Rule A useful procedure for approximating the value of a definite integral is Simpson’s rule. Let the interval [a, b] be divided into 2n equal parts and let x0, x1, . . . , x2n be the points of the partition, that is, xk J a + kh ,
k = 0, 1, . . . , 2n ,
where h J 1b - a2 > 12n2. If yk J f1xk 2 ,
k = 0, 1, . . . , 2n ,
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-12 Appendices
then the Simpson’s rule approximation IS for the value of the definite integral b
f1x2 dx
La is given by (1)
h 3y + 4y1 + 2y2 + 4y3 + P + 2y2n − 2 + 4y2n − 1 + y2n 4 3 0 h n = a 1y2k - 2 + 4y2k - 1 + y2k 2 . 3 k=1
IS =
If b
E J
La
f1x2 dx - IS
is the error that results from using Simpson’s rule to approximate the value of the definite integral, then (2)
0E0 …
1b - a2 4 h M, 180
where M J max 0 f 142 1x2 0 for all x in 3a, b4.
Example 1
Use Simpson’s rule with n = 4 to approximate the value of the definite integral 1
(3) Solution
1 dx . 2 L0 1 + x
Here h = 1>8, xk = k>8, k = 0, 1, . . . , 8, and yk = 11 + x2k 2 -1 =
1 k2 1+ 64
=
64 . 64 + k 2
By Simpson’s rule (1), we find IS =
1 18 2 3
c1 + 4 a
64 64 64 b + 2a b + 4a b 64 + 1 64 + 4 64 + 9
+ 2a
64 64 64 b + 4a b + 2a b 64 + 16 64 + 25 64 + 36
+ 4a
64 64 b +a b d = 0.7854 . 64 + 49 64 + 64
Hence, the value of the definite integral in (3) is approximately IS = 0.7854. ◆ For a more detailed discussion of Simpson’s rule, we refer the reader to a numerical analysis book such as Numerical Analysis, 10th ed., by R. Burden, J. Faires, and A. Burden (Cengage Learning, 2016).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix D
APPENDIX
D
Cramer’s Rule
A-13
Cramer’s Rule When a system of n linear equations in n unknowns has a unique solution, determinants can be used to obtain a formula for the unknowns. This procedure is called Cramer’s rule. When n is small, these formulas provide a simple procedure for solving the system. Suppose that for a system of n linear equations in n unknowns, a11x1 + a12x2 + g + a1nxn = b1 , a21x1 + a22x2 + g + a2nxn = b2 , (1) f f f f an1x1 + an2x2 + g + annxn = bn , the coefficient matrix a11 a12 g a1n a a g a2n (2) A J D 21 22 T f f f an1 an2 g ann has a nonzero determinant. Then Cramer’s rule gives the solutions det Ai , i = 1, 2, . . . , n , (3) xi = det A where Ai is the matrix obtained from A by replacing the ith column of A by the column vector b1 b D 2T f bn consisting of the constants on the right-hand side of system (1).
Example 1
Use Cramer’s rule to solve the system x1 + 2x2 - x3 = 0 , 2x1 + x2 + x3 = 9 , x1 - x2 - 2x3 = 1 .
Solution
We first compute the determinant of the coefficient matrix: 1 det £ 2 1
2 1 -1
-1 1 § = 12 . -2
Using formula (3), we find 0 1 det £ 9 12 1 1 1 x2 = det £ 2 12 1
2 1 -1 0 9 1
1 1 det £ 2 12 1
2 1 -1
x1 =
-1 48 1§ = = 4, 12 -2 -1 -12 1§ = = -1 , 12 -2
0 24 9§ = = 2. ◆ 12 1 MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition. x3 =
A-14 Appendices
For a more detailed discussion of Cramer’s rule, we refer the reader to Fundamentals of Matrix Analysis with Applications, by Edward Barry Saff and Arthur David Snider (John Wiley & Sons, Hoboken, New Jersey, 2016).
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-14 Appendices
APPENDIX
E
Method of Least Squares The method of least squares is a procedure for fitting a straight line to a set of measured data. Consider the scatter diagram in Figure E.1, consisting of an x, y-plot of some data points 5 1xi, yi 2: i = 1, 2, . . . , N6. It is desired to construct the straight line y = a + bx that best fits the data points, in the sense that the sum of the squares of the vertical deviations from the points to the line is minimized. y
3
P4
2
P5
P3
1
P1
P2 x
0
1 2 3 4 5 Figure E.1 Scatter diagram and least-squares linear fit
If the y-axis intercept a and the slope b of the line are known, then the y-value on the line corresponding to the measured x-value xi is given by a + bxi. The corresponding measured y-value, yi, thus deviates from the line by 3yi - 1a + bxi 24, and the total sum of squares of deviations is S J a 3yi - 1a + bxi 24 2 . N
i=1
The interesting feature of the function S is that the symbols xi and yi are constants, while a and b are the (unknown) variables. The values of a and b that minimize S will force its partial derivatives to be zero: 0 =
N 0S = a 23yi - 1a + bxi 2 4 1 -12 , 0a i=1
0 =
N 0S = a 23yi - 1a + bxi 2 4 1 -xi 2 . 0b i=1
Displaying these conditions in a form that emphasizes the roles of a and b, we rewrite them after a little algebra as N
N
aN + b a xi = a yi , i=1
i=1
N
N
N
i=1
i=1
i=1
a a xi + b a x2i = a xiyi
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix E
Method of Least Squares
A-15
and obtain the formulas for the optimal values of intercept and slope: a a x2i b a a yi b - a a xi b a a xiyi b a =
N
N
N
N
i=1
i=1 N
i=1 N
i=1
- a a xi b
N a x2i i=1
2
,
i=1
N a xiyi - a a xi b a a yi b N
b =
N
i=1
i=1
N
N a x2i i=1 Example 1 Solution
N
i=1 2
- a a xi b N
.
i=1
Find the least-squares linear fit to the data points P1 11, 12, P2 12, 12, P3 13, 22, P4 14, 2.52, and P5 15, 3.12, which are plotted in Figure E.1. Arranging the data as in Table E.1 yields a = b =
5519.62 - 15134.52 51552 - 1152
2
5134.52 - 1519.62 51552 - 1152 2
= =
10.5 = 0.21 , 50 28.5 = 0.57 . 50
TABLE E.1
i
xi
yi
xiyi
x2i
1 2 3 4 5
1 2 3 4 5
1 1 2 2.5 3.1
1 2 6 10 15.5
1 4 9 16 25
Sums
15
9.6
34.5
55
Thus, y = 0.21 + 0.57x is the equation for the best-fitting line, which is graphed in Figure E.1. ◆
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-16 Appendices
APPENDIX
F
Runge–Kutta Procedure for n Equations Below are program outlines for the classical fourth-order Runge–Kutta algorithm for systems discussed in Section 5.3. The first of these, called the “subroutine,” provides approximations to the solution functions of a system of n first-order ordinary differential equations over an interval. The second outline on page A-17 utilizes the method of halving the step size in order to obtain approximations (to within a prescribed tolerance) to the solution functions at a single given point.
Classical Fourth-Order Runge–Kutta Subroutine (n Equations) Purpose
To approximate the solution to the initial value problem xi= = fi 1t, x1, . . . , xn 2 ; i = 1, 2, . . . , n xi 1t0 2 = ai , for t0 … t … c.
input
n, t0, a1, . . . , an, c, N (number of steps), prntr ( = 1 to print table).
Step 1
Set step size h = 1c - t0 2 >N ,
Step 2 Step 3
t = t0 ,
x1 = a1 , . . . ,
xn = an .
For j = 1 to N do Steps 3–5. Set ki,1 = hfi 1t, x1, . . . , xn 2 , i = 1, . . . , n ; h 1 1 ki,2 = hfi a t + , x1 + k1, 1, . . . , xn + kn,1 b , 2 2 2 i = 1, . . . , n ; h 1 1 ki,3 = hfi a t + , x1 + k1, 2, . . . , xn + kn,2 b , 2 2 2 i = 1, . . . , n ; ki,4 = hfi 1t + h, x1 + k1,3, . . . , xn + kn,3 2 , i = 1, . . . , n .
Step 4
Set t = t+h; xi = xi +
Step 5
1 1k + 2ki,2 + 2ki,3 + ki,4 2 , i = 1, . . . , n . 6 i,1
If prntr = 1, print t, x1, x2, . . . , xn.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix G
Software for Analyzing Differential Equations
A-17
Classical Fourth-Order Runge–Kutta Algorithm with Tolerance (n Equations) Purpose
To approximate the solution to the initial value problem
input
at t = c, with tolerance e. n, t0, a1, . . . , an, c e (tolerance) M (maximum number of iterations)
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Step 11 output
xi= = fi 1t, x1, . . . , xn 2 ; xi 1t0 2 = ai , i = 1, 2, . . . , n
Set zi = ai, i = 1, 2, . . . , n; set prntr = 0. For m = 0 to M do Steps 3–7 (or, to save time, start with m 7 0). Set N = 2m. Call FOURTH-ORDER RUNGE–KUTTA SUBROUTINE (n EQUATIONS). Print h, x1, x2, . . . , xn. If 0 zi - xi 0 6 e for i = 1, . . . , n, go to Step 10. Set zi = xi , i = 1, . . . , n . Print “xi 1c2 is approximately”; xi 1for i = 1, . . . , n2; “but may not be within the tolerance”; e. Go to Step 11. Print “xi 1c2 is approximately”; xi 1for i = 1, . . . , n2; “with tolerance”; e. STOP. Approximations of the solution to the initial value problem at t = c using 2m steps.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Appendix G
APPENDIX
G
Software for Analyzing Differential Equations
A-17
Software for Analyzing Differential Equations In this section we shall list some commercial software and some freeware that we have found to be useful in the various aspects of analyzing systems of differential equations numerically: direction field plotting, Euler and Runge–Kutta codes for solutions, and phase plane experimentation. These items are available at the time of printing this edition, but the accessibility of freeware, in particular, is notoriously tenuous. Each of the web sites mentioned was successfully accessed on July 6, 2016. Some commercial products that are helpful: MATLAB® (Mathworks, 1 Apple Hill Drive, Natick, MA 01760-2098 USA) (http://www.mathworks.com/products/matlab/): “The MATLAB ODE Suite” at http://www.mathworks.com/videos/solving-odes-in-matlab-9-the-matlab-ode-suite117653.html?s_tid=srchtitle “Choose an ODE Solver” at http://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html “Vector Fields” at http://www.mathworks.com/help/matlab/vector-fields.html .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A-18 Appendices
MATHEMATICA® (Wolfram Research, 100 Trade Center Dr, Champaign, IL 61820 USA) (https://www.wolfram.com/mathematica/): “How to Solve a Differential Equation” at https://reference.wolfram.com/language/howto/SolveADifferentialEquation.html “How to Plot a Direction Field” at https://reference.wolfram.com/language/howto/PlotAVectorField.html . MAPLE® (Maplesoft, 615 Kumpf Drive, Waterloo, ON N2V 1K8 CAN) (http://www.maplesoft.com/). “dsolve” at https://www.maplesoft.com/support/help/maple/view.aspx?path=dsolve “dfieldplot” at https://www.maplesoft.com/support/help/maple/view.aspx?path=DEtools%2Fdfieldplot . PTC Mathcad® (Parametric Technology Corporation, 140 Kendrick Street, Needham, MA 02494 USA) (http://www.ptc.com/engineering-math-software/mathcad). “Differential Equations worksheet” in PTC Mathcad Worksheet Library - Applied Math. Some freeware sources that are helpful: Casio Computer Co. Ltd® (6-2, Hon-machi 1-chome, Shibuya-ku, Tokyo 151-8543, Japan) (http://world.casio.com/) “Euler’s Method Calculator” at http://keisan.casio.com/exec/system/1392171850 “Runge–Kutta method (2nd-order) Calculator” at http://keisan.casio.com/exec/system/1392171606 “Runge–Kutta method (4th-order) Calculator” at http://keisan.casio.com/exec/system/1222997077 The codes dfield and pplane are graciously provided by our differential equations colleague John C. Polking of the Department of Mathematics at Rice University. He holds a copyright and they are not in the public domain; however, they are being made available free for use in educational institutions. “dfield and pplane: The Java Versions” (Polking, J. C. and Castellanos, J.) at http://math.rice.edu/~dfield/dfpp.html The Dynamic Web Tools site provides codes dedicated to the FitzHugh-Nagumo equation: “FitzHugh-Nagumo System of Differential Equations” (Martin, M.) at http://math.jccc.edu:8180/webMathematica/JSP/mmartin/fitznag.jsp The MIT Interactive Mathematics Site provides the following dedicated codes: “Vector Fields” (Miller, H., MIT Mathlets) at http://mathlets.org/mathlets/vector-fields/ “Linear Phase Portraits: Matrix Entry” (Miller, H., MIT Mathlets) at http://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems 5. (a)
CHAPTER 1 Exercises 1.1, page 5 1. ODE, 2nd-order, ind. var. t, dep. var. x, linear 3. ODE, 1st-order, ind. var. x, dep. var. y, nonlinear 5. ODE, 1st-order, ind. var. x, dep. var. y, nonlinear 7. ODE, 1st-order, ind. var. t, dep. var. p, nonlinear 9. ODE, 2nd-order, ind. var. x, dep. var. y, linear 11. PDE, 2nd-order, ind. var. t, r, dep. var. N 13. dp>dt = kp, where k is the proportionality constant 15. dT>dt = k1M - T2, where k is the proportionality constant 17. Kevin wins by 623 - 426 ≈ 0.594 sec.
p
1 t
0
1
Figure B.4 Direction field for Problem 5(a)
(b) limt S ∞ p1t2 = 3>2 (d) No
Exercises 1.2, page 13 5. No 7. Yes 9. No 11. Yes 3. Yes 13. Yes 19. The left-hand side is always Ú 4. 21. (a) 1>3, -3 (b) 1 { 26 23. Yes 25. Yes 27. No 29. (b) Yes 31. (a) No (c) y = 2x and y = - 2x
7. (a)
(c) limt S ∞ p1t2 = 3>2
p
2 1
Exercises 1.3, page 21 1. (b) y
(c)
y
t
0
1
Figure B.5 Direction field for Problem 7(a) 1 0
1
x
1 0 1
x
(b) 2
(c) 2
(d) 0
(e) No
9. (d) It increases and asymptotically approaches the line y = x - 1. (f ) and (g) Figure B.1 Solution to Problem 1(b)
Figure B.2 Solution to Problem 1(c)
(d) The solutions in parts (b) and (c) both become infinite and have the line y = 2x as an asymptote as x S ∞ . As x S - ∞ , the solution in part (b) becomes infinite and has y = - 2x as an asymptote, but the solution in part (c) does not even exist for x negative. 3. All solutions have limiting value 8 as t S + ∞ .
y
f (x)
0
x
y
y5x–1 Figure B.6 Direction field and sketch of f1x2 for Problems 9 1f2, 1g2
8
1 0 1
t
Figure B.3 Solutions to Problem 3 satisfying y102 = 5, y102 = 8, and y102 = 15
B-1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-2
Answers to Odd-Numbered Problems
11.
13.
y
y
(0, 4) y 5 f (x)
y 5 f(x) x
x Figure B.8 Solution to Problem 13 Figure B.7 Solution to Problem 11
15.
c50 c52
c 5 –1 y
11. x112 stabilizes at 1.56 { 0.01 for h below 2-10; 3tan112 = 1.5574 c.4 x1t0 2 = 1 for some t0 in 10.78, 0.802; 3arctan 112 = 0.785 c4. 15. (a) T1302 = 311.7 (b) T1602 = 298.2 Review Problems, page 29 1. ind. var. t, dep. var. x, nonlinear 3. ind. var. y, dep. var. x, linear 5. ind. var. t, dep. var. v, linear 7. True 9. False 11. True 13. True 1 n 15. yn = a1 - b , y112 = e-1 ≈ 0.3679 n 17. (a) 500 (b) No (c) 500
CHAPTER 2 1 0
x
1
Figure B.9 Solution to Problem 15
17. It approaches 3. Exercises 1.4, page 28 1. (rounded to three decimal places) xn 0.1 0.2 0.3 0.4 yn
0.5
4.000 3.998 3.992 3.985
3. (rounded to three decimal places) xn 0.1 0.2 0.3 0.4 yn
0.5
1.100 1.220 1.362 1.528 1.721
5. (rounded to three decimal places) xn 1.1 1.2 1.3 1.4 yn
3.975
0.100
0.209
0.325
Exercises 2.2, page 46 1. No 3. Yes 5. Yes 4 7. y = { 2 ln1x4 2 + C 9. e2x 12x - 12 + 4e-t 1t + 12 = C 21 - Cx -8>3 11. y = { 2 y - x3 = C 13. 21 + y2
15. y = { 2C exp 3exp1 - x2 24 - 1 p 17. y = tana -ln cos x + b 3 19. y = 1sin x + 12 2 - 1 21. y2 >2 + ln y = sin u - u cos u + 1>2 - p 23. y = arctan1t 2 + 12 3 25. y = 4ex >3 - 1 x
27. (a) y1x2 =
0.564
h
yN
1
p
3.142
2
p/2
1.571
4
p/4
1.207
8
p/8
1.148
9.
xn 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
x 2
L0
1>3
et dtb
x
21 + sin t dt + p>4b L0 (d) y10.52 ≈ 1.381 (d) 0f>0y is not continuous at 10, 02 . (a) x2 + y -2 = C 1 1 1 ; ; (b) 2 2 21 - x 24 - x 21>4 - x2 1 1 (c) -1 6 x 6 1 ; -2 6 x 6 2 ; - 6 x 6 2 2 1 (d) 0 x 0 6 is domain . a 28.1 kg (a) 82.2 min (b) 31.8 min (c) Never attains desired temperature (c) y1x2 = tana
7. (rounded to three decimal places) N
L0
(b) y1x2 = a1 + 3
1.5
0.444
2
et dt
yn - 0.9 - 0.81654 - 0.74572 - 0.68480 - 0.63176 - 0.58511 - 0.54371 - 0.50669 - 0.47335 - 0.44314
29. 31.
33. 35.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
37. (a) $1105.17 (c) $4427.59 39. A wins.
(b) 27.73 years
Exercises 2.3, page 54 3. Both 5. Neither 1. Linear 7. y = 11>22e3x + Cex 9. r = sin u + C cos u 11. y = - t - 2 + Cet 13. x = y3 + Cy -2 15. y = 1 + C1x2 + 12 -1>2 17. y = xex - x t3 1 t3 17 19. x = ln t + 6 36 2t 36t 3 21. y = x2cos x - p2cos x 23. y1t2 = 138>32e-5t - 18>32e-20t 25. (b) y132 ≈ 0.183 27. (b) 0.9960 (c) 0.9486 , 0.9729 29. x = e4y >2 + Ce2y 31. (a) y = x - 1 + Ce-x (b) y = x - 1 + 2e-x (c) y = x>3 - 1>9 + Ce-3x x - 1 + 2e-x , if 0 … x … 2 (d) y = e x>3 - 1>9 + 14e6 >9 + 2e4 2e-3x , if 2 6 x (e) y 2 1 x 1 2 3 4 5 Figure B.10 Solution to Problem 31(e)
33. (a) y = x is only solution in a neighborhood of x = 0. (b) y = -3x + Cx2 satisfies y102 = 0 for any C. 35. (a) 0.0281 kg>L (b) 0.0598 kg>L 2 cos1pt>122 1p>122sin1pt>122 1 37. x1t2 = 2 2 4 + 1p>122 4 + 1p>122 2 2 19 +a + be-2t 2 4 + 1p>122 2 39. 71.8°F at noon; 26.9°F at 5 p.m. Exercises 2.4, page 64 1. Linear with y as dep. var. 3. Separable 5. Separable, also linear with x as dep. var. 7. Exact 9. y = 1C - 3x2 > 1x2 - 12 3 11. ex sin y - x3 + 2y = C t 1t - 12e + C 13. y = 1 + et 15. r = 1C - eu 2sec u 17. Not exact 19. x2 - y2 + arctan1xy2 = C
B-3
21. ln x + x2y2 - sin y = p2 23. y = -2> 1tet + 22 25. sin x - x cos x = ln y + 1>y + p - 1 (equation is separable, not exact) 27. (a) -ln 0 y 0 + f1x2 (b) cos x sin y - y2 >2 + f1x2, where f is a function of x only 29. (c) y = x2 > 1C - x2 (d) Yes, y K 0 33. (a) x = cy2 ; x K 0 ; y K 0 (b) x2 + 4y2 = c (c) 2y2ln y - y2 + 2x2 = c (d) 2x2 + y2 = c Exercises 2.5, page 69 1. Integrating factor depending on x alone 3. Exact 5. Linear with x as dep. var., has integrating factor depending on x alone 7. m = y -4 ; x2 y -3 - y -1 = C and y K 0 9. m = x -2 ; y = x4 >3 - x ln 0 x 0 + Cx and x K 0 11. m = y -2 ; x2y -1 + x = C and y K 0 13. m = xy ; x2y3 - 2x3y2 = C 15. (a) m1z2 = exp 3 1 H1z2 dz 4 ; z = xy (b) ln1x3y2 + 2xy = 2 0N/0x - 0M/0y depends only on x2y . 17. (a) 2 x M - 2xyN (b) exp1x2y2[x2 + 2xy] = C 19. (b) m = ey ; x = y - 1 + Ce-y Exercises 2.6, page 76 1. Homogeneous and Bernoulli 3. Bernoulli 5. Homogeneous and Bernoulli 7. y′ = G1ax + by2 9. y = - x> 1ln 0 x 0 + C2 and y K 0 11. y = x> 1ln 0 x 0 + C2 and y K 0, x K 0 13. 15. 17. 19. 21. 23. 25. 27. 29. 31. 33. 35. 37. 39. 41. 45. 47.
21 + x2 >t 2 = ln 0 t 0 + C 1x2 - 4y2 2 3x2 = C y = 1x + C2 2 >4 - x and y = -x y = x + 16 + 4Ce2x 2 > 11 + Ce2x 2 and y = x + 4 y = 2> 1Cx - x3 2 and y K 0 y = 5x2 > 1x5 + C2 and y K 0 x -2 = 2t 2ln 0 t 0 + Ct 2 and x K 0 r = u 2 > 1C - u2 and r K 0 y-3 2 arctana b - ln 31x + 22 2 + 1y - 32 2 4 = C. x+2 12x + 2y - 32 3 = C12x + y - 22 2 x2 + t 2 - Ct = 0 and t K 0 y = - 3> 1x4 + Cx2 and y K 0 y = 1u>421ln 0 u 0 + C2 2 and u K 0 sin1x + y2 + cos1x + y2 = Cex - y 1x - y + 22 2 = Ce2x + 1 1y - 4x2 2 1y + x2 3 = C (a) v′ + [2 Pu + Q]v = -P (b) y = x + 5x> 1C - x5 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-4
Answers to Odd-Numbered Problems
Review Problems, page 79 1. ex + ye-y = C 3. x2y - x3 + y -2 = C 5. y + x sin1xy2 = C 7. t = Cexp11> 17y7 22
9. 1x2 + 4y2 2 3x2 = C 11. tan1t - x2 + t = C 13. y = - 1x2 >22cos12x2 + 1x>42sin12x2 + Cx
15. y = 2x + 3 - 1x + C2 2 >4 17. 19. 21. 23. 25.
y = 2> 11 + Ce2u 2 and y K 0 y2 = x2 + Cx3 and x K 0 xy - x2 - x + y2 >2 - 4y = C y2 + 2xy - x2 = C x2y -2 - 2xy -1 - 4xy -2 = C and y K 0
27. 31y - 42 2 - 31x - 32 2 4 ` 3 231x - 32 + 1y - 42 4
, 3 231x - 32 - 1y - 42 4 `
29. x4y3 - 3x3y2 + x4y2 = C
1>23
= C
31. y = - x3 >2 + 7x>2
-t
35. y = - 2x22x2 - 1 33. x = - t - 2 + 3e 2 37. ln31y - 22 + 21x - 12 2 4 y-2 d = ln 2 + 22 arctan c 221x - 12
39. y = 2119x4 - 12 >2 t er 41. y1t2 = e-t dr + 3e-1t - 22, y132 ≈ 1.1883 c 2 L2 1 + r
CHAPTER 3 Exercises 3.2, page 100 1. 5 - 4.5e-2t>25 kg; 5.07 min 3. 10.421100 - t2 - 13.9 * 10-7 21100 - t2 4 L; 19.96 min 5. 0.0097%; 73.24 h 7. 20 min later; 1>e times as salty 9. 110,868 13. 5970; 6000 15. 6572; 6693 17. (a) 1 dp Logistic Year p dt (Least Squares) 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890
0.0351 0.0363 0.0331 0.0335 0.0326 0.0359 0.0356 0.0267 0.0260 0.0255 0.0210
3.29 4.51 6.16 8.41 11.45 15.53 20.97 28.14 37.45 49.31 64.07
Year
1 dp p dt
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
0.0210 0.0150 0.0162 0.0073 0.0145 0.0185 0.0134 0.0114 0.0098 0.0132 0.0097
Logistic (Least Squares) 81.89 102.65 125.87 150.64 175.80 200.10 222.47 242.16 258.81 272.44 283.28 291.73
(b) p1 = 316.920, A = 0.00010050 (c) p0 = 3.28780 (using all data, including 2010) (d) See table in part (a). 19. 11>22ln1152 ≈ 1.354 yr; 14 million tons per yr 21. 1 hr; 2 h 23. 11.7% 25. 31,606 yr 27. e-2t kg of Hh, 2e-t - 2e-2t kg of It, and 1 - 2e-t + e-2t kg of Bu Exercises 3.3, page 107 1. 20.7 min 3. 22.6 min 5. 9:08 a.m. 7. 28.3°C; 32.5°C; 1:16 p.m. 9. 16.3°C; 19.1°C; 31.7°C; 28.9°C 11. 39.5 min 13. 148.6°F 15. T - M = C1T + M2exp32 arctan1T>M2 - 4M 3kt4; for T near M, M 4 - T 4 ≈ 4M 3 1M - T2, and so dT>dt ≈ k1 1M - T2, where k1 = 4M 3k Exercises 3.4, page 115 1. 10.9812t + 10.09812e-10t - 0.0981 m; 1019 sec 3. 18.6 sec 5. 4.91t + 22.55 - 22.55e-2t m; 97.3 sec 7. 241 sec 9. 95.65t + 956.5e-t>10 - 956.5 m; 13.2 sec 11. 13. 17. 19. 21. 25.
eby 0 by - mg 0 mg = ey0b 0 by0 - mg 0 mge-b x>m 2.69 sec; 101.19 m 15. 1v0 - T>k2e-kt>I + T>k 300 sec 2636e-t>20 + 131.8t - 2636 m; 1.768 sec 5e-2t >2 + 6t - 5>2; 6 m/sec 23. Sailboat B (e) 11.18 km/sec (f ) 2.38 km/sec 2
Exercises 3.5, page 121 1. I = 51.44e-100t + cos 120t + 1.2 sin 120t6 >2.44; EL = 1 -7.2e-100t - 6 sin 120t + 7.2 cos 120t2 >2.44 3. - 1ln .42 * 10-10 ≈ 9.2 * 10-11 sec dI d LI 2 5. VI = IRI = I 2R; VI = L I = ; dt dt 2 2 dCEC d CE C VI = EC = dt dt 2 7. - 110 ln .12 >3 ≈ 7.68 sec
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
Exercises 3.6, page 129 h “e” 3. 7. 1 3 0.1 2.72055 0.01 2.71830 0.001 2.71828 0.0001 2.71828 9.
11. 13. 15. 17.
xn
yn
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.61784 1.23864 1.73653 1.98111 1.99705 1.88461 1.72447 1.56184 1.41732 1.29779
xn 1.1 1.2 1.3 1.4 1.5
yn 0.10450 0.21668 0.33382 0.45300 0.57135
-3 9 - 27 81 - 243
5. Order 2, f112 ≈ 1.3725; order 4, f112 ≈ 1.3679 7. -11.7679 9. 1.36789 11. x = 1.41 13. x = 0.50 yn 15. xn 0.5 1.0 1.5 2.0 2.5 3.0
0.21462 0.13890 - 0.02668 - 0.81879 - 1.69491 - 2.99510
19. y132 ≈ 0.24193 with h = 0.0625 21. z112 ≈ 2.87083 with h = 0.03125
CHAPTER 4
f112 ≈ x11; 2-3 2 = 1.25494 f112 ≈ y11; 2-3 2 = 0.71698 x = 1.27 xn yn 1h = 0.22 yn 1h = 0.12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
B-5
-1 1 -1 1 -1 1 -1 1 -1 1
Exercises 4.1, page 156 3. Both approach zero. 5. 0 7. y1t2 = - 130>612 cos 3t - 125>612 sin 3t 9. y1t2 = -2 cos 2t + 13>22 sin 2t yn 1h = 0.0252 0.06250 0.00391 0.00024 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
We conclude that step size can dramatically affect convergence. Tn 19. Time
K = 0.2 K = 0.4
K = 0.6
Midnight 4 a.m. 8 a.m. Noon 4 p.m. 8 p.m. Midnight
65.0000 69.1639 71.4836 72.9089 72.0714 69.8095 68.3852
65.0000 68.1300 73.6678 76.9783 74.7853 69.2831 65.9740
65.0000 68.5644 72.6669 75.1605 73.5977 69.5425 67.0500
Exercises 3.7, page 139 1. yn+1 = yn + h cos1xn + yn 2 h2 - sin1xn + yn 231 + cos1xn + yn 24 2 h2 3. yn+1 = yn + h1xn - yn 2 + 11 - xn + yn 2 2 h3 h4 - 11 - xn + yn 2 + 11 - xn + yn 2 6 24
Exercises 4.2, page 164 1. c1et>2 + c2e-4t 3. c1e-3t + c2e-2t 5. c1e-4t + c2te-4t 7. c1et> 2 + c2e-2t> 3 9. c1et> 2 + c2tet> 2 11. c1e-5t> 2 + c2te-5t> 2 4 1 13. 3e-4t 15. et - e3t 3 3 7t 17. a + 2be3t. 19. e-t - 2te-t 3 21. (a) ar + b = 0 (b) ce-bt>a -4t>5 13t>6 23. ce 25. ce 27. Lin. dep. 29. Lin. indep. 31. Lin. dep. 33. If c1 ≠ 0, then y1 = -(c2/c1)y2 . 35. (a) Lin. indep. (b) Lin. dep. (c) Lin. indep. (d) Lin. dep. 37. 39. 41. 43. 45.
c1et + c2e1-1 - 252t + c3e1-1 + 252t c1e-2t + c2te-2t + c3e2t c1e-3t + c2e-2t + c3e2t 3 + et - 2e-t (a) c1er1t + c2er2t + c3er3t (where r1 = -4.832, r2 = -1.869, and r3 = 0.701) (b) c1er1t + c2e-r1t + c3er2t + c4e-r2t (where r1 = 1.176, r2 = 1.902) (c) c1e-t + c2et + c3e-2t + c4e2t + c5e3t
Exercises 4.3, page 172 1. c1 cos 3t + c2 sin 3t 3. c1e3t cos t + c2e3t sin t 5. c1e-2t cos 22 t + c2e-2t sin 22 t 7. c1e-t> 2 cos 1 25t>22 + c2e-t> 2 sin 1 25t>22 9. c1et + c2e7t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-6
Answers to Odd-Numbered Problems
11. c1e-5t + c2te-5t 13. c1et cos 5t + c2et sin 5t 15. 17. 19. 21. 23.
c1e13 + 2532t>2 + c2e13 - 2532t>2. c1et>2 cos 1323t>22 + c2et>2 sin 1323t>22 c1et + c2e-t cos 2t + c3e-t sin 2t 2e-t cos t + 3e-t sin t 1 22>423e12 + 222t - e12 - 222t 4
25. et sin t - et cos t 27. e2t - 22 et sin 22t 29. (a) c1e-t + c2et cos 22t + c3et sin 22t (b) c1e2t + c2e-2t cos 3t + c3e-2t sin 3t (c) c1 cos 2t + c2 sin 2t + c3 cos 3t + c4 sin 3t 31. (a) Oscillatory (b) Tends to zero (c) Tends to - ∞ (d) Tends to - ∞ (e) Tends to + ∞ 33. (a) y1t2 = 0.3e-3t cos 4t + 0.2e-3t sin 4t (b) 3p + arctan1 - 1.524 >4 (c) 2>p (d) Decreases the frequency of oscillation, introduces the factor e-3t, causing the solution to decay to zero 35. b Ú 22Ik 37. (a) c1 cos t + c2 sin t + c3t cos t + c4t sin t (b) 1c1 + c2t2e-t cos 1 23t2 + 1c3 + c4t2e-t sin 1 23t2 Exercises 4.4, page 180 1. No 3. Yes 5. No 7. Yes 9. yp K -3 11. yp 1x2 = 31ln 22 2 + 14 -12x 13. cos 3t 15. xex >2 + 3ex >4 17. - 2t cos 2t t 8 19. ¢ + ≤te-3t 21. t 3e2t >6 13 169 1 1 2 2 23. - u 3 u u 21 49 343 25. e2t 1cos 3t + 6 sin 3t2 27. 1A3t 4 + A2t 3 + A1t 2 + A0t2 cos 3t + 1B3t 4 + B2t 3 + B1t 2 + B0t2 sin 3t t 29. e 1A4t 4 + A3t 3 + A2t 2 + A1t + A0 2 31. 1A3t 4 + A2t 3 + A1t 2 + A0t2e-t cos t + 1B3t 4 + B2t 3 + B1t 2 + B0t2e-t sin t 33. 11>52 cos t + 12>52 sin t 1 4 35. ¢ t 2 - t≤ et 10 25 Exercises 4.5, page 185 1. (a) 5 cos t (b) cos t - e2t (c) 4 cos t + 6e2t t -t 3. y = - t + c1e + c2e 5. u = t - 1 + c1e2t + c2e-t 7. y = tan x + c1e22x + c2e-22x 9. Yes 11. No 13. Yes 15. No 4t 1 17. y(t) = -t 2 + + + c1e3t + c2e-t. 3 9
19. 21. 23. 25. 27. 29. 31. 33. 35. 37. 39. 41.
43. 45.
47.
1 cos x - sin x2ex >2 + c1ex + c2e2x 11>22u e-usin u + 1c1 cos u + c2 sin u2e-u et - 1 e-x - cos x + sin x - 13>102 cos x - 11>102 sin x - 11>202 cos 2x + 13>202 sin 2x y = - 11>22 sin u - 11>32e2u + 13>42eu + 17>122e-u yp = 1A1t + A0 2t cos t + 1B1t + B0 2t sin t + C # 10t xp 1t2 = 1A cos t + B sin t2et + C2t 2 + C1t + C0 + D1 cos 3t + D2 sin 3t + E1 cos t + E2 sin t yp = 1A1t + A0 2 cos 3t + 1B1t + B0 2 sin 3t + Ce5t yp = t 2 + 3t - 1 yp = 1t>10 - 4>252tet - 1>2 (a) y1 = - 12 cos 2t + sin 2t2e-t + 2 for 0 … t … 3p>2 (b) y2 = yh = 1c1cos 2t + c2sin 2t2e-t for t 7 3p>2 (c) c1 = -21e3p>2 + 12 , c2 = - 1e3p>2 + 12 y = - cos t + 11>22 sin t - 11>22e-3t + 2e-t 2V cos 1p>2V2 sin t for V ≠ 1; (a) y1t2 = V2 - 1 p y1t2 = sin t for V = 1 2 (b) V ≈ 0.73 (a) 2 sin 3t - cos 6t (b) No solution (c) c sin 3t - cos 6t , where c is any constant y y y z y
= = = = =
Exercises 4.6, page 191 1. c1 cos 2t + c2 sin 2t - 11>421 cos 2t2 ln sec 2t + tan 2t 3. c1et + c2tet + tet ln t 5. c1 cos 4u + c2 sin 4u + 1u>42 sin 4u + 11>1621cos 4u2 ln cos 4u
7. 12 ln t - 32t 2e-2t >4 + c1e-2t + c2te-2t 9. yp = -2t - 4 11. y = - 1cos t2 ln sec t + tan t + 11>102e3t -1 + c1 cos t + c2 sin t 13. c1 cos 2t + c2 sin 2t + 11>242sec2 2t - 1>8 + 11>821sin 2t2ln ƒ sec 2t + tan 2t ƒ 15. c1 cos t + c2 sin t - t 2 + 3 + 3t sin t + 31cos t2ln ƒ cos t ƒ 17. c1 cos 2t + c2 sin 2t - et >5 - 11>221 cos 2t2ln ƒ sec 2t + tan 2t ƒ et e-u eu e-t du du 2 L1 u 2 L1 u 3y122 ≈ -1.934 21. 0.3785 23. c1et + c2 1t + 12 - t 2 25. c1(5t - 1) + c2e-5t - t 2e-5t >10 t
t
19. y = e1 - t - et - 1 +
Exercises 4.7, page 199 1. Unique solution on 1 - p>2, p>22 3. Unique solution on 10, ∞ 2 5. Does not apply; t = 0 is a point of discontinuity
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
7. 9. 11. 13.
Does not apply; not an initial value problem c1t + c2t -7 c1t -2 + c2t -2 ln t c1t -1>3 + c2t -1> 3ln t
19. 21. 23. 25. 27.
t - 3t 4 c1 1t - 22 + c2 1t - 22 7 (c) t acos1b ln 0 t 0 2, t a sin 1b ln 0 t 0 2; t r, t r ln 0 t 0 (a) True (b) False (e) No, because the coefficient of y″ vanishes at t = 0 and the equation cannot be written in standard form. Otherwise their Wronskian would be zero at t0, contradicting linear independence. (a) Yes (b) No (c) Yes (d) Yes Cte-t 1 + 2t - t 2 c1 cos 13 ln t2 + c2 sin 13 ln t2 + (1/9) cos13 ln t2ln 0 sec13 ln t2 + tan13 ln t2 0
15. c1 t cos 3 2 ln 1 - t2 4 + c2t sin 3 2 ln 1 - t2 4 17. t -4 5 c1 cos 3 ln 1 - t2 4 + c2 sin 3 ln 1 - t2 4 6
29. 31. 33. 35. 37.
39. c 1t + c2t ln t + 11>22 t 1ln t2 2 + 3t1ln t23ln 0 ln t 0 4 41. t 4 43. t + 1 45. 1t - 12e2t >2 47. (a) 11 - 2t 2 2
2
L
(b) 13t - 2t 2 3
11 - 2t 2 2 -2 et dt 13t - 2t 3 2 -2 et dt 2
L 49. tw″ + 2tw′ + 1t + 12w = 0 f1tn 2 - f1t0 2 0-0 51. (a) f′1t0 2 = lim = lim = 0 nS ∞ n S ∞ tn - t0 tn - t0 Exercises 4.8, page 210 1. Let Y1t2 = y1 -t2. Then Y′1t2 = - y′1 - t2, Y″1t2 = y″1 -t2. But y″1s2 - sy1s2 = 0, so y″1 - t2 + ty1 -t2 = 0 or Y″1t2 + tY1t2 = 0. 3. The spring stiffness is 1 - 6y2, so it opposes negative displacements 1y 6 02 and reinforces positive displacements 1y 7 02. Initially y 6 0 and y′ 6 0, so the (positive) stiffness reverses the negative velocity and restores y to 0. Thereafter, y 7 0 and the negative stiffness drives y to + ∞ . d 4 5. (a) y″ = 2y3 = 1y >22. Thus, by setting K = 0 and dy choosing the ( - ) sign in equation (11), we get dy 1 t = + c = + c, or y = 1> 1t - c2 . y L 22y4 >2 (b) Linear dependence would imply 1> 1t - c1 2 y1 1t2 t - c2 = = K constant y2 1t2 1> 1t - c2 2 t - c1 in a neighborhood of 0, which is false if c1 ≠ c2. (c) If y1t2 = 1> 1t - c2, then y102 = - 1>c, y′102 = - 1>c2 = - y102 2, which is false for the given data.
B-7
7. (a) The velocity, which is always perpendicular to the lever arm, is / du>dt. Thus, (lever arm) times (perpendicular momentum) = / m/ du>dt = m/2du>dt. (b) The component of the gravitational force perpendicular to lever arm is mg sin u, and is directed toward decreasing u. Thus, torque = -/mg sin u. d (c) Torque = (angular momentum) or dt -/mg sin u = 1m/2u′2′ = m/2u″ . 9. 2 or - 2 11. The sign of the damping coefficient 1y′2 2 - 1 indicates that low velocities are boosted by negative damping but that high velocities are slowed. Hence, one expects a limit cycle. 13. (a) Airy (b) Duffing (c) van der Pol 15. (a) Yes (t 2 = positive stiffness) (b) No ( -t 2 = negative stiffness) (c) Yes (y4 = positive stiffness) (d) No (y5 = negative stiffness for y 6 0) (e) Yes (4 + 2 cos t = positive stiffness) (f) Yes (positive stiffness and damping) (g) No (negative stiffness and damping) 17. 1>422 Exercises 4.9, page 220 1. y1t2 = - 11>42 cos 5t - 11>52 sin 5t amplitude = 241>20; period = 2p>5; frequency = 5>2p; 3p - arctan 15>424 >5 sec 3. b = 0: y1t2 = cos 4t y
b50
1
p
t
2p
21 Figure B.11 b = 0
b = 6: y1t2 = e-3t cos 27t + 13> 272e-3t sin 27t
= 14> 272e - 3t sin 1 27t + f2 , where
f = arctan27>3 ≈ 0.723 y
b56
1
4 e –3t Ë7
–1
4 e –3t Ë7
t
Figure B.12 b = 6
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-8
Answers to Odd-Numbered Problems
b = 8: y1t2 = 11 + 4t2e - 4t y
7. y1t2 = 1 - 3>42e - 8t cos 8t - e-8t sin 8t = 15>42e-8t sin 18t + f2, where f = p + arctan13>42 ≈ 3.785 ; damp. factor = 15>42e-8t ; quasiperiod = p>4; quasifreq. = 4>p 9. 0.242 m
b58
1 t
11. 110> 299992 arctan1 299992 ≈ 0.156 sec 13. Relative extrema at t = 3p>3 + np - arctan 1 23>224 > 12232
1 4
Figure B.13 b = 8
b = 10: y1t2 = 14>32e-2t - 11>32e-8t y
for n = 0, 1, 2, c; but touches curves { 27>12e-2t at t = 3p>2 + mp - arctan1 23>224 > 12232 for m = 0, 1, 2, c. 15. First measure half the quasiperiod P as the time between two successive zero crossings. Then compute the ratio y1t + P2 >y1t2 = e-1b>2m2P.
b 5 10
1 t 1 6
ln 4
Exercises 4.10, page 227
1. M1g2 = 1> 211 - 4g 2 2 2 + 4g 2
Figure B.14 b = 10
M
5. k = 20: y1t2 = 311 + 252 >24e1-5 + 252t + 311 - 252 >24e1-5 - 252t y
1
k 5 20 g
1
1
k = 25: y1t2 = 11 + 5t2e-5t
y p 1 3
k 5 25
Figure B.16 k = 25
k = 30: y1t2 = e-5t cos 25t + 25e-5t sin 25t f = arctan11> 252 ≈ 0.421
1
Ë6e –5t
–1
–Ë6e –5t
–Ë6 Figure B.17 k = 30
4p 3
t 2p
Figure B.19
t 1 5
= 26e-5t sin 1 25t + f2 ,
5p 3
p 2p 3
1
k 5 30
4
3. y1t2 = cos 3t + 11>32t sin 3t
Figure B.15 k = 20
Ë6
3
Figure B.18
t
y
2
where
5. (a) y1t2 = - 3F0 > 1k - mg 2 24 cos 1 2k>m t2 + 3F0 > 1k - mg 2 24 cos gt = 1F0 > 3m1v2 - g 2 2421cos gt - cos vt2 (c) y1t2 = sin 8t sin t 1
–1
sin t p
2p
t
–sin t Figure B.20
7. y1t2 = c1er1t + c2er2t +
F0 sin 1gt + u2
21k - mg 2 2 2 + b2g 2
,
where r1, r2 = - 1b>2m2 { 11>2m2 2b2 - 4mk and tan u = 1k - mg 2 2 > 1bg2 as in equation (7) 9. yp 1t2 = 10.082 cos 2t + 10.062 sin 2t = 10.12 sin 12t + u2 , where u = arctan14>32 ≈ 0.927
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
11. y1t2 = - 118>852e-2t cos 6t - 122>2552e-2t sin 6t + 12> 2852 sin12t + u2 , where u = arctan19>22 ≈ 1.352 ; res. freq. = 222>p cycles>sec 13. yp 1t2 = 13>185218 sin 4t - 11 cos 4t2 15. Amp =
B
a-
11 2 3 2 b + ab ≈ 0.011m2 , 986 1972
freq. = 2/p Review Problems, page 231 1. c1e-9t + c2et 3. c1et>2 cos13t>22 + c2et>2 sin13t>22 5. c1e3t>2 + c2et>3 7. c1e-t>3 cos1t>62 + c2e-t>3 sin1t>62 9. c1e7t>4 + c2te7t>4 11. t 1>2 5 c1 cos 3 1 219>22ln t 4 + c2 sin 3 1 219>22ln t 4 6 13. c1 cos 4t + c2 sin 4t + 11>172tet - 12>2892et 15. c1e-2t + c2e-t + c3e-t>3 17. c1et + c2e-t>2 cos1 243t>22 + c3e-t>2 sin1 243t>22 19. c1e-3t + c2et>2 + c3tet>2 21. c1e3t>2 cos1 219t>22 + c2e3t>2 sin1 219t>22 - et >5 + t 2 + 6t>7 + 4>49 23. c1 cos 4u + c2 sin 4u - 11>1621 cos 4u2ln ƒ sec 4u + tan 4u ƒ c1e3t>2 + c2te3t>2 + e3t >9 + e5t >49 c1x + c2x -2 - 2x -2 ln x + x ln x e-2t cos1 23t2 2et cos 3t - 17>32etsin 3t - sin 3t - e-t - 3e5t + e8t cos u + 2 sin u + u sin u + 1cos u2ln ƒ cos u ƒ (a), (c), (e), and (f) have all solutions bounded as tS +∞ 39. yp 1t2 = 11>42 sin 8t ; 262>2p
25. 27. 29. 31. 33. 35. 37.
CHAPTER 5 Exercises 5.2, page 249 1. (a) - t 3 + 3t 2 + 8 (b) - 2t 3 + 3t 2 + 6t + 16 (c) 2t 3 + 3t 2 - 16 (d) - 2t 3 + 3t 2 + 6t + 16 (e) - 2t 3 + 3t 2 + 6t + 16 3. x = c1 + c2e-2t ; y = c2e-2t 5. x K - 5 ; y K 1 7. u = c1 - 11>22c2e-t + 11>22et + 15>32t ; y = c1 + c2e-t + 15>32t 9. x = c1et + 11>42cos t - 11>42sin t ; y = -3c1et - 13>42cos t - 11>42sin t 11. u = c1 cos 2t + c2 sin 2t + c3e23t + c4e-23t - 13>102et ; y = c1 cos 2t + c2 sin 2t - 12>52c3e23t - 12>52c4e-23t + 11>52et
B-9
13. x = 2c2et cos 2t - 2c1et sin 2t ; y = c1et cos 2t + c2et sin 2t 15. w = - 12>32c1e2t + c2e7t + t + 1 ; z = c1e2t + c2e7t - 5t - 2 17. x = c1 cos t + c2 sin t - 4c3 cos 1 26 t 2 - 4c4 sin 1 26 t 2 ; y = c1 cos t + c2 sin t + c3 cos 1 26 t 2 + c4 sin 1 26 t 2 19. x = 2e3t - e2t ; y = -2e3t + 2e2t 21. x = et + e-t + cos t + sin t ; y = et + e-t - cos t - sin t 23. Infinitely many solutions satisfying x + y = et + e-2t 25. x1t2 = - c1et - 2c2e2t - c3e3t , y1t2 = c1et + c2e2t + c3e3t , z1t2 = 2c1et + 4c2e2t + 4c3e3t 27. x1t2 = c1e8t + c2e4t + c3 , 1 y1t2 = 1c1e8t - c2e4t + c3 2 , 2 z1t2 = -c1e8t + c3 29. -3 … l … - 1 20 20 31. x1t2 = - a10 + ber1t - a10 ber2t 27 27 + 20 kg , 30 r1t 30 r2t y1t2 = e e + 20 kg, where 27 27 - 5 - 27 r1 = ≈ - 0.0765 , 100 - 5 + 27 ≈ - 0.0235 r2 = 100 20 - 1025 1 -3 + 252 t>100 33. x = c de 25 20 + 1025 1 -3 - 252 t>100 - c de + 20 ; 25 10 10 y = -a be1 -3 + 252 t>100 + a be1 -3 - 252 t>100 + 20 25 25 35. 90.4°F 37. 460>11 ≈ 41.8°F Exercises 5.3, page 259 1. x1= = x2 , x2= = 3x1 - tx2 + t 2 ; x1 102 = 3 , x2 102 = - 6 3. x1= = x2 , x2= = x3 , x3= = x4 , x4= = x4 - 7x1 + cos t ; x1 102 = x2 102 = 1 , x3 102 = 0 , x4 102 = 2 5. x1= = x2 , x2= = x2 - x3 + 2t , x3= = x4 , x4= = x1 - x3 - 1 ; x1 132 = 5 , x2 132 = 2 , x3 132 = 1 , x4 132 = - 1 7. x1= = x2 , x2= = x3 , x3= = x4 + t , x4= = x5 , x5= = 12x4 - 2x3 + 12>5 ; x1 102 = x2 102 = x3 102 = 4 , x4 102 = x5 102 = 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-10 Answers to Odd-Numbered Problems
5. 10, 02 3. 1 1> 22, 1> 22 2 , 1 -1> 22, -1> 22 2 7. ex + ye-y = c 9. ex + xy - y2 = c 11. y2 - x2 = c 13. 1x - 12 2 + 1y - 12 2 = c
9. tn + 1 = tn + h, n = 0, 1, 2, c; h xi, n + 1 = xi,n + 3fi 1tn, x1,n, c, xm,n 2 + 2 fi 1tn + h, x1,n + hf1 1tn, x1,n, c, xm,n 2, c, xm,n + hfm 1tn, x1,n, c, xm,n 24 i = 1, 2, c, m ti 11. i 13. i ti y1ti 2 y1ti 2 1 2 3 4
0.250 0.500 0.750 1.000
0.750000 0.625000 0.573529 0.563603
1 2 3 4
0.250 0.500 0.750 1.000
15. y112 ≈ x1 11, 2-2 2 = 1.69, y′112 ≈ 1.82 17. u11; 2-2 2 = y11; 2-2 2 = 0.36789 19. Part (a) Part (b) i
ti
1 2 3 4 5 6 7 8 9 10 21.
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 i 1 2 3 4 5 6 7 8 9 10
23. 25. 27. 29.
x1ti 2
y1ti 2
x1ti 2
1.95247 2.25065 1.48118 3.34588 1.83601 2.66294 4.53662 3.36527 5.19629 2.47788 4.32906 3.10706 1.96093 2.71900 1.92574 2.86412 1.96166 2.34143 4.28449 2.77457 3.90106 3.00965 4.11886 3.83241 2.18643 3.14344 2.32171 2.63187 2.25824 2.21926 ti x1 1ti 2 ≈ H1ti 2 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
y
y
y5x x
0.25000 0.50000 0.75000 1.00000
x –1 –2 –3
4
Figure B.23
Figure B.22
15. 1 - 2, 12 is a saddle point (unstable). Part (c)
y1ti 2
x1ti 2
y1ti 2
2.42311 1.45358 2.40348 4.64923 3.32426 2.05910 2.18977 3.89043 3.79362 2.49307
0.91390 1.63657 4.49334 5.96115 1.51830 0.95601 2.06006 5.62642 5.10594 1.74187
2.79704 1.13415 1.07811 5.47788 5.93110 2.18079 0.98131 1.38072 5.10462 5.02491
0.09573 0.37389 0.81045 1.37361 2.03111 2.75497 3.52322 4.31970 5.13307 5.95554
y 3
2
1
24
23
22
x
21
21 Figure B.24
17. 10, 02 is a center (stable). y
x
Yes, yes y112 ≈ x1 11; 2-3 2 = 1.25958 y10.12 ≈ 0.00647, c, y12.02 ≈ 1.60009 (a) P1 1102 ≈ 0.567, P2 1102 ≈ 0.463, P3 1102 ≈ 0.463 (b) P1 1102 ≈ 0.463, P2 1102 ≈ 0.567, P3 1102 ≈ 0.463 (c) P1 1102 ≈ 0.463, P2 1102 ≈ 0.463, P3 1102 ≈ 0.567 All populations approach 0.5.
Figure B.25
19. 10, 02 is a saddle point (unstable). y
Exercises 5.4, page 271 1. x = y3 , y 7 0 y
y
x Figure B.21
Figure B.26
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-11
Answers to Odd-Numbered Problems
21. 10, 02 is a center (stable).
27.
1 x1t2, y1t2 2 approaches 10, 02.
y
y 2
1
y
22 Figure B.27
22
y
Figure B.30
3
29. Critical points are 11, 02 and 1x, 12 with x arbitrary. Phase plane solutions are x = 1, and y = C1x - 12. Solution starting at 13, 22 goes to infinity. The others converge to 11, 02. 31. (a) y′ = y , y′ = f1y2
2 1 y
21
2
1 21
f1y2 dy implies y dy = f1y2 dy + constant, or = y dy L L y2 >2 = F1y2 + K 33. (a) x′ = y, y′ = - x + 1> 1l - x2 -x + 1> 1l - x2 dy implies (b) = y dx 1 y dy = bdx + constant, or a -x + l -x L L 2 2 y >2 = -x >2 - ln 1l - x2 + constant. The solution equation follows with the choice C>2 for the constant. (c) At a critical point y = 0 and -x + 1> 1l - x2 = 0. (b)
22 23 Figure B.28
25. (a) Periodic (b) Not periodic (c) Critical point (periodic) 3
2
1 21
23. 10, 02 is a center (stable); 11, 02 is a saddle point (unstable).
22
x
21
y
2
l { 2l2 - 4 , and 2
Solutions for the latter are x = are real only for l Ú 2.
1
y
(d) 3 x
21
1
2
3
2
1
21 Figure B.29 21
x
20.5
0.5
1
21 Figure B.31 l = 1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-12 Answers to Odd-Numbered Problems
(e) See Figures B.31 and B.32. When l = 3, one critical point is a center and the other is a saddle. For l = 1, the bar is attracted to the magnet. For l = 3, the bar may oscillate periodically, or (rarely) come to rest at the saddle critical point.
Exercises 5.5, page 281 1. Runge–Kutta approximations tn
y 1
0.5 x 2
1
3
20.5
21 Figure B.32 l = 3
35. (c) For upper half-plane, center is at y = 0, y = - 1; for lower half-plane, center is at y = 0, y = 1. (d) All points on the segment y = 0, - 1 … y … 1 (e) y = -0.5; see Figure B.33.
pn 1r = 1.52
pn 1r = 22
0.25 1.59600 1.54249 0.5 2.37945 2.07410 0.75 3.30824 2.47727 1.0 4.30243 2.72769 1.25 5.27054 2.86458 1.5 6.13869 2.93427 1.75 6.86600 2.96848 2.0 7.44350 2.98498 2.25 7.88372 2.99286 2.5 8.20933 2.99661 2.75 8.44497 2.99839 3.0 8.61286 2.99924 3.25 8.73117 2.99964 3.5 8.81392 2.99983 3.75 8.87147 2.99992 4.0 8.91136 2.99996 4.25 8.93893 2.99998 4.5 8.95796 2.99999 4.75 8.97107 3.00000 5.0 8.98010 3.00000 Limiting population is 31/1r - 12. 3. x1t2 =
y
pn 1r = 32 1.43911 1.64557 1.70801 1.72545 1.73024 1.73156 1.73192 1.73201 1.73204 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205 1.73205
1 2 cos1pt/122 1p/122sin1pt/122 2 4 + 1p/122 2 4 + 1p/122 2 2 19 + a + be-2t 2 4 + (p/12)2 I
5. (a) 300 21.5
20.5
3.5 7.5
21 0 1 25.5
150 y 167
700
S
Figure B.34
Figure B.33
(b) 295 persons c[1 - exp1 -bt2] 7. P1t2 = expe - bt f , b c[1 - exp1 -bt2] Q1t2 = expe - bt f[exp1bt2 - 1] b N0 1c + s2 9. N1t2 = , N0 J N102 N0s + 1c + s - N0s2e-1c + s2t 11. Roughly, 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-13
Answers to Odd-Numbered Problems
Exercises 5.6, page 287 1. m1x″ = k1 1y - x2 , m2y″ = - k1 1y - x2 - k2y ; x102 = -1 , x′102 = 0 , y102 = 0 , y′102 = 0 x1t2 = - 18>172cos t - 19>172cos 1 220>3 t 2 , y1t2 = - 16>172cos t + 16>172cos 1 220>3 t 2 3. mx″ = - kx + k1y - x2 , my″ = - k1y - x2 + k1z - y2 , mz″ = - k1z - y2 - kz ;
The normal frequency 11>2p2 3 1 2 + 22 2 1k>m2 has
the mode x1t2 = z1t2 = - 1 1> 22 2 y1t2; the normal
frequency 11>2p2 3 1 2 - 22 2 1k>m2 has the mode x1t2 = z1t2 =
1 1> 22 2 y1t2; and the normal frequency
11>2p2 22k>m has the mode x1t2 = - z1t2, y1t2 K 0 . 5. x1t2 = -e-t - te-t - cos t ; y1t2 = e-t + te-t - cos t 7. x1t2 = 12>52cos t + 14>52sin t - 12>52cos 26t +
1 26>5 2 sin 26t - sin 2t ;
-
1 26>10 2 sin 26t - 11>22sin 2t
y1t2 = 14>52cos t + 18>52sin t + 11>52cos 26t 9. 11>2p2 2g>l ;
11>2p2 21g>l2 + 12k>m2
Exercises 5.7, page 294 1. I1t2 = 1 19> 221 2 3 e1 -25 - 52212 t>2 - e1 -25 + 52212 t>2 4 3. Ip 1t2 = 14>512cos 20t - 11>512sin 20t ; resonance frequency is 5>p. 5. M1g2 = 1> 21100 - 4g 2 2 2 + 100g 2 M 0.02 0.01 Ë175/8 Figure B.35
7. L = 35 H, R = 10 Ω, C = 1>15 F, and E1t2 = 50 cos 10t V 11. I1 = 13>52e-3t>2 - 18>52e-2t>3 + 1 , I2 = 11>52e-3t>2 - 16>52e-2t>3 + 1 , I3 = 12>52e-3t>2 - 12>52e-2t>3 13. 11>22I 1= + 2q3 = cos 3t 1where I3 = q3= 2 , 11>22I 1= + I2 = 0, I1 = I2 + I3 : I1 102 = I2 102 = I3 102 = 0 ;
I1 = - 136>612e-t cos 23t - 1 4223>61 2 e-t sin23t + 136>612cos 3t + 130>612sin 3t , I2 = 145>612e-t cos 23t - 1 3923>61 2 e-t sin23t - 145>612cos 3t + 154>612sin 3t , I3 = - 181>612e-t cos 23t - 1 323>61 2 e-t sin23t + 181>612cos 3t - 124>612sin 3t
Exercises 5.8, page 303 1. For v = 3>2: The Poincaré map alternates between the points 10.8, 1.52 and 10.8, -1.52. There is a subharmonic solution of period 4p. For v = 3>5: The Poincaré map cycles through the points 1 -1.5625, 0.62, 1 - 2.1503, - 0.48542, 1 -0.6114, 0.18542, 1 -2.5136, 0.18542, and 1 - 0.9747, -0.4854). There is a subharmonic solution of period 10p. 3. The points become unbounded. 5. The attractor is the point 1 - 1.0601, 0.26242. 9. (a) 5 1>7, 2>7, 4>7, 1>7, c 6 , 5 3>7, 6>7, 5>7, 3>7, c 6 (b) 5 1>15, 2>15, 4>15, 8>15, 1>15, c 6 , 5 1>5, 2>5, 4>5, 3>5, 1>5, c 6 , 5 1>3, 2>3, 1>3, c 6 , 5 7>15, 14>15, 13>15, 11>15, 7>15, c 6 (c) xn = 0 for n Ú j 13. y 2
0
–2 – 2.2
0
x 2.2
Figure B.36
Review Problems, page 306 1. x1t2 = - 1c1 >32t 3 - 1c2 >22t 2 - 1c3 + 2c1 2t + c4 , y1t2 = c1t 2 + c2t + c3 3. x1t2 = c1 cos 3t + c2 sin 3t + et >10 , y1t2 = 13>221c1 + c2 2cos 3t - 13>221c1 - c2 2sin 3t - 111>202et - 11>42e-t 5. x1t2 = 2 sin t, y1t2 = et - cos t + sin t , z1t2 = et + cos t + sin t 7. x1t2 = - 113.9>42e-t>6 - 14.9>42e-t>2 + 4.8 , y1t2 = - 113.9>22e-t>6 + 14.9>22e-t>2 + 4.8 9. x1= = x2 , x2= = x3 , x3= = 11>3215 + etx1 - 2x2 2 11. x1= = x2 , x2= = x3 , x3= = t - x5 - x6 , x4= = x5 , x5= = x6 , x6= = x2 - x3 13. x2 - 1y - 12 2 = c ; critical point 10, 12 is saddle (unstable). 15. Asymptotically stable spiral point 17. I1 + I2 + I3 = 0 , q>C = R2I2 , R2I2 = R1I3 + L dI3 >dt , where q is the charge on the capacitor 1I1 = dq>dt2; I3 = e-t 1A cos t + B sin t2 , I2 = e-t 1B cos t - A sin t2 , I1 = e-t 31A - B2sin t - 1A + B2cos t4 .
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-14 Answers to Odd-Numbered Problems
CHAPTER 6 Exercises 6.1, page 326 1. 1 - ∞ , 02 3. 13p>2, 5p>22 5. 10, ∞ 2 7. Lin. indep. 9. Lin. dep. 11. Lin. indep. 13. Lin. indep. 15. c1e3x + c2e-x + c3e-4x 17. c1x + c2x2 + c3x3 19. (a) c1ex + c2e-x cos 2x + c3e-x sin 2x + x2 (b) - ex + e-x sin 2x + x2 21. (a) c1x + c2x ln x + c3x1ln x2 2 + ln x (b) 3x - x ln x + x1ln x2 2 + ln x 23. (a) 2 sin x - x (b) 4x - 6 sin x 29. (b) Let f1 1x2 = 0 x - 1 0 and f2 1x2 = x - 1 33. e2x, 1sin x - 2 cos x2 >5 , - 12 sin x + cos x2 >5 35. xy‴ - y″ + xy′ - y = 0 Exercises 6.2, page 332 1. c1 + c2e2x + c3e-4x 3. c1e-x + c2e-2x>3 + c3ex>2 5. c1e-x + c2e-x cos 5x + c3e-x sin 5x 7. c1e-x + c2e1 3 + 2652 x>4 + c3e1 3 - 2652 x>4 9. c1e3x + c2xe3x + c3x2e3x 11. c1e-x + c2xe-x + c3x2e-x + c4x3e-x 13. c1 cos 22x + c2x cos 22x + c3 sin 22x + c4x sin 22x 15. c1ex + c2xex + c3e-3x + 1c4 + c5x2e-x cos 2x + 1c6 + c7x2e-x sin 2x -4x 17. c1e + c2e3x + 1c3 + c4x + c5x2 2e-2x + 1c6 + c7x2e-2x cos x + 1c8 + c9x2e-2x sin x + c10 + c11x + c12x2 + c13x3 + c14x4 19. ex - 2e-2x - 3e2x 21. e2x - 22ex sin 22x 23. x1t2 = c1 + c2t + c3et, y1t2 = c1 - c2 + c2t 27. c1e1.120x + c2e0.296x + c3e-0.520x + c4e-2.896x 29. c1e-0.5x cos10.866 x2 + c2 e-0.5x sin10.866 x2 + c3e-0.5x cos11.323 x2 + c4e-0.5x sin11.323 x2 31. (a) 5 x, x -1, x2 6 (b) 5 x, x2, x -1, x -2 6 (c) 5 x, x2 cos13 ln x2, x2 sin13 ln x2 6 33. (b) x1t2 = c1 cos t + c2 sin t + c3 cos 26 t + c4 sin 26 t (c) y1t2 = 2c1 cos t + 2c2 sin t - 1c3 >22 cos 26 t - 1c4 >22sin 26 t (d) x1t2 = 13>52cos t + 12>52cos 26 t , y1t2 = 16>52cos t - 11>52cos 26 t 35. c1 cosh rx + c2 sinh rx + c3 cos rx + c4 sin rx, where r 4 = k> 1EI2 Exercises 6.3, page 337 1. c1xex + c2 + c3x + c4x2 3. c1x2e-2x 5. c1ex + c2e3x + c3e-2x - 11>62xex + 11>62x2 + 15>182x + 37>108
7. 9. 11. 13. 15. 17. 19. 21. 23. 25. 27. 29. 31. 33. 39.
c1ex + c2e-2x + c3xe-2x - 11>62x2e-2x c1ex + c2xex + c3x2ex + 11>62x3ex D5 D+7 1D - 221D - 12 31D + 12 2 + 44 3 1D + 22 2 31D + 52 2 + 94 2 c3 cos 2x + c4 sin 2x + c5 c3xe3x + c4x2 + c5x + c6 c3 + c4x + c5 cos 2x + c6 sin 2x c3xe-x cos x + c4xe-x sin x + c5x2 + c6x + c7 c2x + c3x2 + c6x2ex -2e3x + e-2x + x2 - 1 x2e-2x - x2 + 3 x1t2 = - 11>632e3t + c1 + c2t - c3e22t - c4e-22t , y1t2 = 18>632e3t + c1 + c2t + c3e22t + c4e-22t
Exercises 6.4, page 341 1. 11>62x2e2x 3. e2x >16 5. ln1sec x2 - 1sin x2ln1sec x + tan x2 7. c1x + c2x2 + c3x3 - 11>242x -1 9. - 11>22ex
L
e-xg1x2 dx + 11>62e-x
+ 11>32e2x
L
exg1x2 dx
e-2xg1x2 dx L 11. c1x + c2x -1 + c3x3 - x sin x - 3 cos x + 3x -1 sin x Review Problems, page 343 1. (a) 10, ∞ 2 (b) 1 - 4, -12 , 1 -1, 12 , 11, ∞ 2 5. (a) e-5x 1c1 + c2x2 + e2x 1c3 + c4x + c5x2 2 + 1cos x21c6 + c7x2 + 1sin x21c8 + c9x2 (b) c1 + c2x + c3x2 + c4x3 + ex 1c5 + c6x2 + 1e-x cos 23 x21c7 + c8x2 + 1e-x sin 23 x21c9 + c10x2 7. (a) D3 (b) D2 1D - 32 (c) 3D2 + 44 2 2 3 (d) 31D + 22 + 94 (e) D3 1D + 12 2 1D2 + 421D2 + 92 9. c1x + c2x5 + c3x -1 - 11>212x -2
CHAPTER 7 Exercises 7.2, page 360 1 1 1. 2 , s 7 0 , s76 3. s-6 s s , s70 5. 2 s +4 s-2 , s72 7. 1s - 22 2 + 9 2s + 1 e-ps + 1 , all s 9. e-2s a 2 b , s 7 0 11. 2 s s +1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
13. 15. 17. 19. 21. 23. 25. 27. 29.
2 8 2 6 - 3+ 2- , s70 s s+3 s s 6 1 s-4 + , s74 4 2 s 1s - 12 1s - 42 2 + 1 6 1 6 , s73 - 4+ 2 s 1 1s - 32 + 36 s 24 s-1 , s75 5 1s - 12 2 + 7 1s - 52 Continuous (hence piecewise continuous) Piecewise continuous Continuous (hence piecewise continuous) Neither All but functions (c), (e), and (h)
Exercises 7.3, page 365 2 2 1. 3 + s 1s - 12 2 + 4 1 1 s+1 + 3. 1s + 12 2 + 9 s - 6 s 1 s 4 - + 5. 1s + 12 3 s2 s2 + 16 24 24 12 4 1 7. 5 - 4 + 3 - 2 + s s s s s 41s + 12 s 11. 2 9. 31s + 12 2 + 44 2 s - b2 1 s 3s s 13. 15. + 2s 21s2 + 42 41s2 + 12 41s2 + 92 s s 17. 2 2 21s + 92 21s + 492 m-n n+m + 19. 2 2 2 23s + 1n + m2 4 23s + 1m - n2 2 4 s-a 21. 1s - a2 2 + b2 2s3 - 6sb2 s2 - b2 (b) 2 25. (a) 2 2 2 1s + b 2 1s + b2 2 3 1 29. 2 33. e-s >s2 s + 6s + 10 35. e-1p>22s > 1s2 + 12 Exercises 7.4, page 374 1. ett 3 3. e-tcos 3t 5. 11>22e-2tsin 2t -2t -2t 7. 2e cos 3t + 4e sin 3t 9. 13>22etcos 2t - 3etsin 2t 6 1 4 2 1 11. 13. s+5 s+2 s-1 1s + 12 2 s 1s - 12 + 2 3 + 15. s + 1 1s - 12 2 + 4 5 11 4 + 17. 6s 101s - 22 151s + 32 1 4 1 s+1 19. d c 17 s - 3 1s + 12 2 + 1 1s + 12 2 + 1
21. 23. 25. 27. 29. 31. 33. 35. 39.
41. 43.
B-15
11>32 + et + 114>32e6t -e-3t + 2te-3t + 6e-t 8e2t - e-tcos 2t + 3e-tsin 2t - 15>32e-t + 15>122e2t + 15>42e-2t 3e-2t + 7etcos t + 11etsin t F1 1s2 = F2 1s2 = F3 1s2 = 1>s2 , ℒ-1 5 1>s2 6 1t2 = f3 1t2 = t e5t >t - e-2t >t 21cos t - cos 3t2 >t A C B + , where + s s-1 s+2 2s + 1 -1 A = = , ` 1s - 121s + 22 s = 0 2 2s + 1 B = = 1, ` s1s + 22 s = 1 2s + 1 -1 C = = ` s1s - 12 s = -2 2 2e-t - 4e3t + 5e2t 21s - 12 + 2132 4 + s+2 1s - 12 2 + 22
Exercises 7.5, page 382 1. 2etcos 2t + etsin 2t 3. -e-3t + 3te-3t 5. t 2 + cos t - sin t 7. cos t - 4e5t + 8e2t 9. 31t - 12et-1 - e-61t - 12 11. 2 - t + e2 - t + 2et - 2 13. 17>52sin t + 111>52cos t + 13>52e2t - p - e-1t - p>22 - s2 + s - 1 15. 2 1s + 121s - 121s - 22 s3 + 5s2 - 6s + 1 s5 + s4 + 6 19. 17. 4 2 s 1s + s - 12 s1s - 121s2 + 5s - 12 3 2 s + s + 2s -s3 + 1 + 3se-2s - e-2s 21. 2 23. 1s + 121s - 12 2 s2 1s2 + 42 t 2 -t 27. 1t - 42e 25. 2e - cos t - sin t 29. 13a - b2et >2 + 1b - a2e3t >2 31. 5>2 + 1a - 5>22e-tcos t + 1a + b - 5>22e-tsin t 35. t 2 >2 37. cos t + t sin t + c1sin t - t cos t2, 1c arbitrary2 39. e1t2 = -a cos 1 2k>I t 2
41. e1t2 = 1 -2aI>24Ik - m2 2 e-mt>12I2sin 124Ik - m2 t>12I22
Exercises 7.6, page 390 1. 2e-s >s3 3. e-2s 14s2 + 4s + 22 >s3 5. 12e-s - e-2s + 2e-3s 2 >s 7. 31e-s - e-2s 21s + 124 >s2 9. 1e-s - 2e-2s + e-3s 2 >s2 11. et - 2u1t - 22 13. e-21t - 22u1t - 22 - 3e-21t - 42u1t - 42 15. e-21t - 32 3cos1t - 32 - 2 sin1t - 324u1t - 32 17. 17e6 - 2t - 6e3 - t 2u1t - 32 19. 10 - 10u1t - 3p231 + e-1t - 3p2 1cos t + sin t24 + 10u1t - 4p231 - e-1t - 4p2 1cos t + sin t24
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-16 Answers to Odd-Numbered Problems 21. sin t + 31 - cos1t - 324u1t - 32 2 1 t
0 1 2 3 4 5 6
–1
Figure B.37
23. t + 34 - t + sin1t - 22 - 2 cos1t - 224u1t - 22 y 6 4
19. (a) 2p>s
2
(b) 1052p> 116s9>2 2 27. (a) and (b), but not (c)
t 2
4
6
8 10
Figure B.38
25. e-tcos t + 2e-tsin t + 11>2231 - e2p-t 1cos t + sin t24u1t - 2p2 - 11>2231 - e4p-t 1cos t + sin t24u1t - 4p2 -t 27. e + e-2t + 11>223e-3t - 2e-21t + 12 + e-1t + 42 4u1t - 22 29. cos 2t + 11>3231 - u1t - 2p24sin t + 11>6238 + u1t - 2p24sin 2t -2t 31. 2e - 2e-3t + 31>36 + 11>621t - 12 - 11>42e-21t - 12 + 12>92e-31t - 12 4u1t - 12 - 319>36 + 11>621t - 52 - 17>42e-21t - 52 + 111>92e-31t - 52 4u1t - 52 33. 0.04 - 0.02 e-3t>125 + 0.02 u1t - 10231 - e-31t - 102>125 4 35. The resulting differential equation has polynomial coefficients, so the Laplace transform method will result in a differential equation for the transform.
f(t) 2 t 1
2
3
4
5
6
1 1 - e-s-1 e-s - e-2s c + d s s+1 1 - e-2s f(t) 1 t 2
L0
t
et - y 1t - y2g1y2dy
g1y2e2y-2tsin1t - y2dy + e-2tcos t + 3e-2tsin t L0 5. 1 - cos t 7. 2e5t - 2e-2t 9. 1t>22sin t 11. 12>32e-2t + 11>32et 13. s-2 1s - 32 -1 15. t>4 + 13>82sin 2t 19. 3 17. cos t 3.
21. e-t>2cos 1 23 t>2 2 - 1 1> 23 2 e-t>2sin 1 23 t>2 2 23. H1s2 = 1s2 + 92 -1 ; h1t2 = 11>32sin 3t ; yk 1t2 = 2 cos 3t - sin 3t ;
3 sin 31t - y2 4 g1y2dy + 2 cos 3t - sin 3t L0 2 25. H1s2 = 1s - s - 62 -1 ; h1t2 = 1e3t - e-2t 2 >5 ; yk 1t2 = 2e3t - e-2t ; y1t2 = 11>32
t
y1t2 = 11>52
t
y1t2 = 11>22
t
3
4
Figure B.40
5
L0
t
L0 + e-2tsin 6t 31. t 2 >2
Figure B.39
1
t
1. 2tet - et +
29. 11>302
1 0
Exercises 7.8, page 404
3e31t - y2 - e-21t - y2 4g1y2dy + 2e3t - e-2t L0 27. H1s2 = 1s2 - 2s + 52 -1 ; h1t2 = 11>22etsin 2t ; yk 1t2 = etsin 2t ;
Exercises 7.7, page 396 1 - 2se-2s - e-2s 1. s2 11 - e-2s 2
3.
1 - e-as 1 7. 2 -as s11 + e 2 as 11 + e-as 2 t-n -t e e 13. 11 + e - en + 1 2 6 2 e-2t 1 + e + e2 - e2n + 2 + c d , 3 e+1 for n 6 t 6 n + 1 ∞ 1 1 15. a n = s-1 n = 1s ∞ 1 -12 n + 1 1 1 17. a = lna1 + 2 b 2n 2 s n = 1 2ns 5.
y
e1t - y2 3 sin 21t - y2 4 g1y2dy + etsin 2t
e-21t - y2 3 sin 61t - y2 4 e1y2dy - e-2tcos 6t
Exercises 7.9, page 410 1. -1 3. - 1 5. e-2 7. e-s - e-3s -s 9. e 11. 0 13. - 1sin t2u1t - p2 15. et + e-3t + 11>421et - 1 - e3 - 3t 2u1t - 12 - 11>421et - 2 - e6 - 3t 2u1t - 22 t-2 17. 21e - e-1t - 22 2u1t - 22 + 2et - t 2 - 2 19. e-t - e-5t + 1e>421e1 - t - e5 - 5t 2u1t - 12
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
21. sin t + 1sin t2u1t - 2p2 ; see Fig. B.41.
Review Problems, page 415 3 1 1 2 1. + e-2s c - 2 d 3. s s s 1s + 92 3 s2 - 36 1 6 2 5 7. 2 5. - 4+ 3- 2 s-2 s s s + 25 1s + 362 2 1 4 8 9. 2e-4s c 3 + 2 + d 11. 17>22t 2e-3t s s s 13. 2et + 2e-2tcos 3t + e-2tsin 3t 15. e-2t + e-t - 2te-t 17. 32et - 2 + 2e4 - 2t 4u1t - 22 19. e2t - e5t 21. - 13>22 + t + t 2 >2 + 13>22e-tcos t - 11>22e-tsin t 23. 1 2> 27 2 e-3t>2sin 1 27 t>2 2
y 3
2 p
1 –1
3p t 4p
2p
–2
–3 Figure B.41
23. sin t + 1sin t2u1t - p2 + 1sin t2u1t - 2p2 y 3 1 –1
2 p
3p 2p
–2
t 4p
–3 Figure B.42
25. 27. 29. 31.
25. 11>22e-2tsin 2t 27. 11>22etsin 2t 29. The mass remains stopped at x1t2 K 0 , t 7 p>2 L 35. 33lx2 - x3 + 1x - l2 3u1x - l24 6EI Exercises 7.10, page 413 1. x = et ; y = et 3. z = et ; w K 0 t 5. x = 17>42e + 17>42e-t - 13>22cos t ; y = 17>42et - 17>42e-t + 11>22sin t 7. x = - 1150>172e5t>2cos 1 215 t>2 2 - 1 334215>85 2 e
sin 1 215 t>2 2 - 13>172e
5t>2
y = 146>172e5t>2cos 1 215 t>2 2
9. 11.
13.
15. 17. 19. 21.
23.
B-17
+ 5 11>42 - 3 3> 1 427 2 4 e-31t - 12>2sin 3 27 1t - 12 >2 4 - 11>42e-31t - 12>2cos 3 27 1t - 12 >2 4 6 u1t - 12 c3t + te-2t + e-2t - 14 19>102e-3t + 11>102cos t - 13>102sin t 1s2 - 5s + 62 -1 ; e3t - e2t x = 1 - 1et + e-t 2 >2 - 31 - 1et - 2 + e-1t - 22 2 >24u1t - 22 , t y = 1e - e-t 2 >2 - 11>223et - 2 - e-1t - 22 4u1t - 22
CHAPTER 8 -3t
;
- 1 146215>85 2 e5t>2sin 1 215 t>2 2 + 122>172e-3t x = 4e-2t - e-t - cos t ; y = 5e-2t - e-t x = 1et - e-t 2 >2 - 11>223et - 2 - e - 1t - 22 4u1t - 22 ; y = 1 - 1et + e-t 2 >2 - 31 - 1et - 2 + e-1t - 22 2 >24u1t - 22 x = e-t - 11>223e-1t - p2 + cos t - sin t4u1t - p2 ; y = e-t + 31 - 11>22e-1t - p2 + 11>22cos t + 11>22sin t4u1t - p2 x = t2 ; y = t - 1 x = 1t - 22et - 2 ; y = et - 2 x = -7e-t + et ; y = 2e-t ; z = - 13e-t + et x = 0.011 - e-t>2 + e-t>6 2 + 30.48 - 0.36e-1t - 52>6 - 0.12e-1t - 52>2 4 u1t - 52 ; y = 0.021e-t>2 + e-t>6 2 + 30.48 - 0.72e-1t - 52>6 + 0.24e-1t - 52>2 4 u1t - 52 2I1 + 10.12I 3= + 10.22I 1= = 6 , 10.12I 3= - I2 = 0 , I1 = I2 + I3 ; I1 102 = I2 102 = I3 102 = 0 ; I1 = - e-20t - 2e-5t + 3 , I2 = - 2e-20t + 2e-5t , I3 = e-20t - 4e-5t + 3
Exercises 8.1, page 425 1. 1 + x + x2 + g 3. x + x2 + 11>22x3 + g 5. 1 - 11>62t 3 + 11>1802t 6 + g 7. 11>62u 3 - 11>1202u 5 + 11>50402u 7 + g 1 1 9. (a) p3 1x2 = 1x - 12 - 1x - 12 2 + 1x - 12 3 2 3 (b) 0 e3 11.52 0 = 0 f 142 1j211.5 - 12 4 >4! 0 … 610.52 4 >4! (c) 0 ln11.52 - p3 11.52 0 = 0.011202… (d) y p3(x)
2
x 22 24
1
2
ln x Figure B.43
13. t + 11>22t - 11>62t 3 + g 2
15. 1 - x2 >6
Exercises 8.2, page 433 1. 3 - 1, 32 3. 1 -4, 02 5. 31, 34 ∞ 1 9. a c + 2-n - 1 d xn n=0 n + 1 11. x + x2 + 11>32x3 + g
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-18 Answers to Odd-Numbered Problems 13. 1 - 2x + 15>22x2 + g 15. (c) 1 - 11>22x + 11>42x2 - 11>242x3 + g ∞
∞
17. a 1 -12 nnxn - 1
19. a ak 2kx2k - 1 n=1 k=1 ∞ 1 - 12 n 21. ln1x + 12 = a xn + 1 n=0 n + 1 ∞
23. a 1k + 12ak + 1x k=0 ∞ k=1
29. a
∞
+ a1 ax + a
25. 27. 29. 31. 35.
1 - 12 n + 1 1x - p2 2n
n=0
∞
k=1
k ∞
25. a ak - 1xk
12n2!
31. 1 + a 2xn n=1
33. 61x - 12 + 31x - 12 + 1x - 12 2
∞
35. (a) a 1 -12 n 1x - 12 n n=0
3 ∞
(b) a
n=1
1 - 12 n - 1 n
1x - 12 n
Exercises 8.3, page 443 1. - 1 5. - 1, 2 3. { 22 7. x = np , n an integer 9. u … 0 and u = np , n = 1, 2, 3, … 11. y = a0 11 - 2x + 13>22x2 - x3 >3 + g 2 13. a0 11 + x4 >12 + g 2 + a1 1x + x5 >20 + g 2 15. a0 11 - x2 >2 - x3 >6 + g 2 + a1 1x + x2 >2 - x3 >6 + g 2 17. a0 11 - x2 >2 + g 2 + a1 1x - x3 >6 + g 2 ∞ 1 2 19. a0 a x2n = a0e x n! n=0 21. a0 11 - 2x2 + x4 >32 ∞ 1 - 321 - 12 g 12k - 52 + a1 c x + a x2k + 1 d 12k + 12! k=1
∞
29. (a) a0 c 1 + a 1 - 12 k
23. a3k + 2 = 0 , k = 0, 1, … ∞ 31 # 4 # 7 g 13k - 224 2 a0 a1 + a x3k b 13k2!
32 # 5 # 8 g 13k - 124 2
x3k + 1 b 13k + 12! 2 + x2 - 15>122x + 111>722x6 + g x + 11>62x3 - 11>122x4 + 17>1202x5 + g 1 - 2x + x2 - 11>62x3 1 + 2x - 13>42x2 - 15>62x3 10 - 25t 2 + 1250>32t 3 - 1775>42t 4 + g k=1 4
Exercises 8.4, page 449 1. 2 3. 23 5. p>2 7. a0 31 - 1x - 12 2 + 11>221x - 12 4 - 11>621x - 12 6 + g 4 9. a0 31 + 1x - 12 2 + g 4 + a1 31x - 12 + 11>321x - 12 3 + g 4 11. a0 31 - 11>821x - 22 2 + 11>3221x - 22 3 + g 4 + a1 31x - 22 + 11>821x - 22 2 - 17>9621x - 22 3 + g 4 2 4 13. 1 - 11>22t + 11>62t - 131>7202t 6 + g 15. 1 + x + 11>242x4 + 11>602x5 + g 17. 1 - 11>621x - p2 3 + 11>12021x - p2 5 + 11>18021x - p2 6 + g 19. -1 + x + x2 + 11>22x3 + g 21. a0 31 + 11>22x2 + 11>82x4 + 11>482x6 + g 4 + 311>22x2 + 11>122x4 + 111>7202x6 + g 4 23. a0 31 - 11>22x2 + g 4 + a1 3x - 11>32x3 + g 4 + 311>22x2 + 11>32x3 + g 4 25. a0 31 - 11>22x2 + g 4 + a1 3x + g 4 + 311>22x2 - 11>62x3 + g 4 27. a0 31 - 11>22x2 - 11>62x3 + g 4 + a1 3x + 11>22x2 + g 4 + 311>62x3 + g 4
n1n - 221n - 42 g 1n - 2k + 221n + 121n + 32 g 1n + 2k - 12
x2k d 12k2! ∞ 1n - 121n - 32 g 1n - 2k + 121n + 221n + 42 g 1n + 2k2 2k + 1 + a1 c x + a 1 - 12 k x d 12k + 12! k=1 2 (c) P0 1x2 = 1 , P1 1x2 = x , P2 1x2 = 11>2213x - 12 31. (a) 1 - 11>22t 2 + 1h>62t 3 + 311 - h2 2 >244t 4 + g (b) Yes k=1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
Exercises 8.5, page 453 1. c1x -2 + c2x -3 3. c1x cos14 ln x2 + c2x sin14 ln x2 5. c1x3cos12 ln x2 + c2x3sin12 ln x2 7. c1x + c2x -1cos13 ln x2 + c3x -1sin13 ln x2 9. c1x + c2x -1>2cos 3 1 219 >2 2 ln x 4 11. 13. 15. 17.
+ c3x -1>2sin 3 1 219 >2 2 ln x 4 c1 1x - 32 -2 + c2 1x - 32 1>2 c1x + c2x2 + 14>152x -1>2 2t 4 + t -3 131>172x + 13>172x -2cos15 ln x2 - 176>852x -2sin15 ln x2
Exercises 8.6, page 464 1. {1 are regular. 3. {i are regular. 5. 1 is regular, - 1 is irregular. 7. 2 is regular, - 1 is irregular. 9. - 4 is regular and 2 is irregular. 11. r 2 - 3r - 10 = 0 ; r1 = 5 , r2 = - 2 13. r 2 - 5r>9 - 4>3 = 0 ; r1 = 1 5 + 2457 2 >18 ,
r2 = 1 5 - 2457 2 >18 r 2 - 1 = 0 ; r1 = 1 , r2 = - 1 r 2 + r - 12 = 0 ; r1 = 3 , r2 = - 4 a0 3x2>3 - 11>22x5>3 + 15>282x8>3 - 11>212x11>3 + g4 a0 31 - 11>42x2 + 11>642x4 - 11>23042x6 + g 4 a0 3x - 11>32x2 + 11>122x3 - 11>602x4 + g 4 ∞ 1 - 12 nx n + 13>22 25. a0 a n - 1 2 1n + 22!
15. 17. 19. 21. 23.
n=0 ∞
x2n + 2 27. a0 a 2n n = 0 2 1n + 12! n! 29. a0 x2 ∞ xn 31. a0 a = a0ex ; yes, a0 6 0 n = 0 n! ∞ 2n - 2 13n + 42x n + 11>32 33. a0 c x1>3 + a d ; yes, a0 6 0 3nn! n=1
35. a0 3x5>6 - 11>112x11>6 + 11>3742x17>6 - 11>25,8062x23>6 + g 4 4>3 37. a0 3x + 11>172x7>3 + 11>7822x10>3 + 11>68,0342x13>3 + g 4 ∞
39. The expansion a n!xn diverges for x ≠ 0. n=0
41. The transformed equation is z d 2y>dz2 + 3 dy>dz - y = 0. Also zp1z2 = 3 and z2q1z2 = - z are analytic at z = 0; hence, z = 0 is a regular singular point. y1 1x2 = a0 31 + 11>32x -1 + 11>242x -2 + 11>3602x -3 + g 4 -3 -1 45. a0 3x - 11>22x - 11>82x - 11>1442x3 + g 4 + a3 31 + 11>102x2 + 11>2802x4 + 11>15,1202x6 + g 4
B-19
Exercises 8.7, page 473 1. c1y1 1x2 + c2y2 1x2, where y1 1x2 = x2>3 - 11>22x5>3 + 15>282x8>3 + g and y2 1x2 = x1>3 - 11>22x4>3 + 11>52x7>3 + g 3. c1y1 1x2 + c2y2 1x2 , where y1 1x2 = 1 - 11>42x2 + 11>642x4 + g and y2 1x2 = y1 1x2 ln x + 11>42x2 - 13>1282x4 + 111>13,8242x6 + g 5. c1 3x - 11>32x2 + 11>122x3 + g 4 + c2 3x -1 - 14 7. c1y1 1x2 + c2y2 1x2 , where y1 1x2 = x3>2 - 11>62x5>2 + 11>482x7>2 + g and y2 1x2 = x -1>2 - 11>22x1>2 9. c1w1 + c2w2 , where w1 1x2 = x2 + 11>82x4 + 11>1922x6 + g and w2 1x2 = w1 1x2ln x + 2 - 13>322x4 - 17>11522x6 + g 11. c1y1 1x2 + c2y2 1x2 , where y1 1x2 = x2 and y2 1x2 = x2 ln x - 1 + 2x - 11>32x3 + 11>242x4 + g 13. c1y1 1x2 + c2y2 1x2 , where y1 1x2 = 1 + x + 11>22x2 + g and y2 1x2 = y1 1x2ln x - 3x + 13>42x2 + 111>362x3 + g4 15. c1y1 1x2 + c2y2 1x2 , where y1 1x2 = x1>3 + 17>62x4>3 + 15>92x7>3 + g and y2 1x2 = 1 + 2x + 16>52x2 + g ; all solutions are bounded near the origin. 17. c1y1 1x2 + c2y2 1x2 + c3y3 1x2 , where y1 1x2 = x5>6 - 11>112x11>6 + 11>3742x17>6 + g , y2 1x2 = 1 - x + 11>142x2 + g , and y3 1x2 = y2 1x2ln x + 7x - 1117>1962x2 + 14997>2981162x3 + g 19. c1y1 1x2 + c2y2 1x2 + c3y3 1x2 , where y1 1x2 = x4>3 + 11>172x7>3 + 11>7822x10>3 + g , y2 1x2 = 1 - 11>32x - 11>302x2 + g , and y3 1x2 = x -1>2 - 11>52x1>2 - 11>102x3>2 + g 21. (b) c1y1 1t2 + c2y2 1t2 , where y1 1t2 = 1 - 11>621at2 2 + 11>12021at2 4 + g , and y2 1t2 = t -1 31 - 11>221at2 2 + 11>2421at2 4 + g4 (c) c1y1 1x2 + c2y2 1x2 , where y1 1x2 = 1 - 11>621a>x2 2 + 11>12021a>x2 4 + g, and y2 1x2 = x31 - 11>221a>x2 2 + 11>2421a>x2 4 + g4 23. c1y1 1x2 + c2y2 1x2 , where y1 1x2 = 1 + 2x + 2x2 and y2 1x2 = - 11>62x -1 - 11>242x -2 - 11>1202x -3 + g 25. For n = 0, c1 + c2 3ln x + x + 11>42x2 + 11>182x3 + g 4 ; and for n = 1, c1 11 - x2 + c2 311 - x2 ln x + 3x - 11>42x2 - 11>362x3 + g 4 Exercises 8.8, page 485 1 3 5 3 1. c1F a1, 2; ; xb + c2x1>2F a , ; ; xb 2 2 2 2 1 3 3 3 3. c1F a1, 1; ; xb + c2x1>2F a , ; ; xb 2 2 2 2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-20 Answers to Odd-Numbered Problems
∞ 1 xn = - x -1 ln11 - x2 5. F11, 1; 2; x2 = a n = 0 1n + 12 ∞ 1 3 7. F a , 1; ; x2 b = a 11>22n x 2n > 13>22n 2 2 n=0 ∞
= a x2n > 12n + 12 n=0
9. 13. 17. 19. 21. 27. 29. 37. 39.
41.
1 1+x = x -1 lna b 2 1-x -1 -1 11 - x2 , 11 - x2 ln x c1J1>2 1x2 + c2J-1>2 1x2 15. c1J1 1x2 + c2Y1 1x2 c1J2>3 1x2 + c2J-2>3 1x2 J1 1x2 ln x - x -1 + 13>642x3 - 17>23042x5 + g x3>2J3>2 1x2 ∞ 1 - 12 n + 1 1 1 J0 1x2 ln x + a 2n c 1 + + g + d x2n 2 n 2 n = 1 2 1n!2 1 , x , 13x2 - 12 >2 , 15x3 - 3x2 >2 , 135x4 - 30x2 + 32 >8 1 , 2x , 4x2 - 2 , 8x3 - 12x 1 , 1 - x , 12 - 4x + x2 2 >2 , 16 - 18x + 9x2 - x3 2 >6 (b) z = c1 cos x + c2 sin x , so for x large, y1x2 ≈ c1x -1>2 cos x + c2x -1>2 sin x
Review Problems, page 489 1. (a) 1 - x + 13>22x2 - 15>32x3 + g (b) -1 + x - 11>62x3 + 11>62x4 + g 3. (a) a0 31 + x2 + g 4 + a1 3x + 11>32x3 + g 4 (b) a0 31 + 11>22x2 - 11>62x3 + g 4 + a1 3x - 11>22x2 + 11>22x3 + g 4 5. a0 31 + 11>221x - 22 2 - 11>2421x - 22 4 + g 4 + a1 1x - 22 7. (a) a0 3x3 + x4 + 11>42x5 + 11>362x6 + g 4 (b) a0 3x - 11>42x2 + 11>202x3 - 11>1202x4 + g 4 9. (a) c1y1 1x2 + c2y2 1x2 , where y1 1x2 = x + x2 + 11>22x3 + g = xex and y2 1x2 = y1 1x2ln x - x2 - 13>42x3 - 111>362x4 + g (b) c1y1 1x2 + c2y2 1x2 , where y1 1x2 = 1 + 2x + x2 + g and y2 1x2 = y1 1x2ln x - 34x + 3x2 + 122>272x3 + g 4 (c) c1y1 1x2 + c2y2 1x2 , where y1 1x2 = 1 - 11>62x + 11>962x2 + g and y2 1x2 = y1 1x2ln x - 8x -2 - 4x -1 + 129>362 + g (d) c1y1 1x2 + c2y2 1x2 , where y1 1x2 = x2 - 11>42x3 + 11>402x4 + g and y2 1x2 = x -1 + 11>22 + 11>42x + g
CHAPTER 9 Exercises 9.1, page 500 x ′ 7 2 x 1. c d = c d c d y 3 -2 y x ′ 1 1 1 x 3. £ y § = £ -1 0 2 § £ y § z 0 4 0 z
x ′ sin t 5. c d = c cos t y
et x d c d a + bt 3 y
y ′ 0 7. c d = c y -k>m 9. c
0 x1 ′ d = c t x2 ′ x1
1 y d c d -b>m y
1 x1 d c d ; x1 = y , x2 = y′ 0 x2
0 1 0 0 x1 - 3 0 -2 0 x2 x T D 2T ; 11. D T = D 0 0 0 1 x3 x3 2 0 0 0 x4 x4 x1 = x , x2 = x′ , x3 = y , x4 = y′ 0 1 0 0 0 x1 x1 ′ x2 0 0 x2 cos t 3 -t 2 0 0 1 0 U E x3 U ; 13. E x3 U = E 0 x4 0 0 0 0 1 x4 t x5 -e t x5 0 -1 -1 x1 = x , x2 = x′ , x3 = y , x4 = y′ , x5 = y″ Exercises 9.2, page 504 1. x1 = 2 , x2 = 1 , x3 = 1 3. x1 = -s + t , x2 = s , x3 = t 5. x1 = 0 , x2 = 0 7. x1 = 3s , x2 = s 1 - ∞ 6 s 6 ∞ 2 9. x1 = 2s , x2 = 1 -1 + i2s , with s any complex number 11. x1 = - 1s + 12 >2 , x2 = - 111s + 12 >2 , x3 = s 1- ∞ 6 s 6 ∞2 13. For r = 2, unique solution is x1 = x2 = 0. For r = 1, solutions are x1 = 3s, x2 = s, - ∞ 6 s 6 ∞ . Exercises 9.3, page 513 1 1 7 1. (a) c d (b) c 5 2 7 3. (a) c
18 14 d 4 5 -1 -2 5. (a) c d - 1 -3 7. (c) Yes 1 13. £ - 2 1
(d) Yes 0 1 1
1 -2 § 0
3 d 18
(b) c
8 12 16 3 d (c) c d 3 5 5 19 -5 -1 -6 -3 (b) c d (c) c d - 8 -1 -9 -4 4>9 - 1>9 9. c d 11. Doesn’t exist 1>9 2>9 17. c
14>32e-t - 11>32e-4t
- 11>32e-t d 11>32e-4t
e-t 11>22e-t - 11>22e-t t 19. £ 11>32e - 11>22et 11>62et § -2t - 11>32e 0 11>32e-2t 21. 11 23. -12 25. 25 27. 2, 3 3e3t 5e5t 6e2t 29. 0, 1, 1 31. £ 6e3t § 33. c d 5t -10e -2e2t -3e3t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-21
Answers to Odd-Numbered Problems
11>22t 2 + c1 et + c2 d t + c3 et + c4 - 1 + cos 1 sin 1 d (b) c 1 - cos 1 sin 1
39. (a) c
(c) J
11 + et 2 cos t + 1et - t2 sin t 1et - 12 sin t + et cos t
1et - t2 cos t - 1et + 12 sin t R 1et - 12 cos t - et sin t
Exercises 9.4, page 521 x′1t2 3 - 1 x1t2 t2 1. c d = c dc d + c td y′1t2 -1 2 y1t2 e dx/dt t2 3. £ dy/dt § = £ 0 t dz/dt
-1 0 -1
-1 x t t e § £y§ + £ 5 § 3 z -et
0 1 x1 1t2 0 x1= 1t2 d; d = c d + c dc 10 3 x2 1t2 sin t x2= 1t2 x1 = y, x2 = y′
5. c
7.
9. 11.
13. 21. 23.
25.
0 1 0 0 0 x1 1t2 x1= 1t2 x2= 1t2 x2 1t2 0 0 1 0 0 T = D T + ≥ ¥; T D D = 0 0 0 1 0 x3 1t2 x3 1t2 = x4 1t2 x4 1t2 -1 0 0 0 t2 x1 = w, x2 = w′, x3 = w″, x4 = w‴ x1= 1t2 = 5x1 1t2 + 2e-2t ; x2= 1t2 = - 2x1 1t2 + 4x2 1t2 - 3e-2t x1= 1t2 = x1 1t2 + x3 1t2 + et ; x2= 1t2 = - x1 1t2 + 2x2 1t2 + 5x3 1t2 + t ; x3= 1t2 = 5x2 1t2 + x3 1t2 19. LI LI 15. LD 17. LI Not a fundamental solution set e-t et e3t -t Yes; £ 2e 0 - e3t § ; -t e et 2e3t -t e et e3t -t c1 £ 2e § + c2 £ 0 § + c3 £ - e3t § e-t et 2e3t 1 et t et e-t 0 3 tet c t d - c t d + c d - c d + c1 c t d + c2 c -t d 2 te 4 3e 2t e 3e 1
5. Eigenvalues are r1 = 1, r2 = 2, and r3 = -2 with 1 0 associated eigenvectors u1 = s £ 0 § , u2 = s £ 1 § , 0 0 1 and u3 = s £ - 1 § . 1 7. Eigenvalues are r1 = 1, r2 = 2, and r3 = 5 with 2 0 associated eigenvectors u1 = s £ - 3 § , u2 = s £ - 1 § , 2 1 0 and u3 = s £ 1 § . 2 9. Eigenvalues are r1 = i and r2 = -i, with associated i -i eigenvectors u1 = s c d , and u2 = s c d , 1 1 11. c1e3t/2 c
3 1 d + c2et/2 c d 10 2
-2 0 1 13. c1e-t £ 1 § + c2e-3t £ - 1 § + c3e-5t £ 1 § 1 1 1 3 1 1 15. c1e-t £ 0 § + c2et £ - 6 § + c3e4t £ 0 § -2 4 1 (c) 17. (b) x2
1. Eigenvalues are r1 = 0 and r2 = - 5 with associated s 2s eigenvectors u1 = c d and u2 = c d . 2s -s
x1
x1 (–Ë3, –1)
(1, –Ë3)
Figure B.43
(d)
Figure B.44
x2
- 11>42et 0 11>42et 14>52e2t - 12>52e2t § ; 29. X-1 1t2 = £ - 11>52e2t -3t -3t 11>52e 19>202e 13>202e-3t -t -2t - 13/22e + 13/52e - 11/102e3t x1t2 = £ 11/42e-t - 11/52e-2t - 11/202e3t § 15/42e-t - 11/52e-2t - 11/202e3t 6t 37. (b) 2e (e) 2e6t ; same Exercises 9.5, page 531
x2
x1 (1 – Ë3, –Ë3 – 1)
Figure B.45
e3t 19. c 3t 4e
e-3t d -2e-3t
e2t 0 23. ≥ 0 0
e-t - 3e-t 0 0
e3t 0 e3t 0
et 21. £ et et 7t -e e7t ¥ 2e7t 8e7t
e2t 2e2t 4e2t
e4t 4e4t § 16e4t
3. Eigenvalues are r1 = 2 and r2 = 3 with associated 1 1 eigenvectors u1 = s c d and u2 = s c d. -and 1 - 2 Equations, Second Custom Edition for University of California Berkeley. MATH 54 Linear Algebra Differential
Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-22 Answers to Odd-Numbered Problems
25. x = - c1et - 2c2e2t - c3e3t , y = c1et + c2e2t + c3e3t , z = 2c1et + 4c2e2t + 4c3e3t e-0.3473t 27. £ - 0.3157e-0.3473t 0.0844e-0.3473t
29.
0.0251e3.4142t 0.0858e3.4142t D 0.2929e3.4142t e3.4142t
2e4t + e-2t 31. c 4t d 2e - e-2t 35. (b) x1 1t2 = (c) x2 1t2 = 37. (b) x1 1t2 = (c) x2 1t2 =
(d) x3 1t2 =
e0.5237t 0.4761e0.5237t 0.1918e0.5237t
- 0.2361e-1.6180t 0.3820e-1.6180t - 0.6180e-1.6180t e-1.6180t
0.0286e-7.0764t - 0.1837e-7.0764t § e-7.0764t
e0.6180t 0.6180e0.6180t 0.3820e0.6180t 0.2361e0.6180t
e0.5858t 0.5858e0.5858t T 0.3431e0.5858t 0.2010e0.5858t
- 3e-t + e5t 33. £ - 2e-t - e5t § e-t + e5t 1 e-t c d 2 1 1 te-t c d + e-t c d 2 1 1 e2t £ 0 § 0 1 0 te2t £ 0 § + e2t £ 1 § 0 0
1 0 0 t 2 2t e £ 0 § + te2t £ 1 § + e2t £ - 6/5 § 2 0 0 1/5
-1 -1 39. (b) x1 1t2 = et £ 1 § ; x2 1t2 = et £ 0 § 0 1 1 1 (c) x3 1t2 = tet £ 1 § + et £ 0 § (d) 0 -2 0 3t 2 t4 43. c1 c 2 d + c2 c 4 d t t 45. x1 1t2 = 12.5>221e-3t>25 + e-t>25 2 , x2 1t2 = 12.521e-t>25 - e-3t>25 2 47. (a) r1 = 2.39091 , r2 = -2.94338 , r3 = 3.55247 1 1 (b) u1 = £ - 2.64178 § ; u2 = £ - 1.16825 § ; - 9.31625 0.43862 1 u3 = £ 0.81004 § -0.12236 (c) c1er1tu1 + c2er2tu2 + c3er3tu3, where the ri’s and the ui’s are given in parts (a) and (b).
Exercises 9.6, page 537 2 cos 2t 2 sin 2t 1. c1 c d + c2 c d cos 2t + sin 2t sin 2t - cos 2t 1 -1 -2 -1 -2 3. c1et cos t£ 1 § - c1et sin t£ 0 § + c2et sin t£ 1 § + c2et cos t£ 0 § + c3et £ 0 § 0 0 1 0 1 Note: Equivalent answer is obtained if col 1 - 1, 1, 02 and col 1 -2, 0, 12 are replaced by col 1 - 5, 1, 22 and col 10, - 2, 12, respectively. sin t 1 cos t e-t cos 4t e-t sin 4t 5. c -t d 7. £ 0 - cos t -sin t § -t 2e sin 4t - 2e cos 4t 0 - sin t cos t cos t -sin t 9. ≥ 0 0
sin t cos t 0 0
0 0 cos t - sin t
0 0 ¥ sin t cos t
et sin t - et cos t 2et sin t 11. D t 2e sin t + 2et cos t 4et cos t
- e-21t - p2 cos t e-2t 1sin t - cos t2 d (b) c -21t - p2 d -2t e 1cos t - sin t2 - 2e sin t e-21t + 2p2 12 cos t - 3 sin t2 ep - 2t cos t (c) c -21t + 2p2 d (d) c p - 2t d e 1cos t + 5 sin t2 e 1sin t - cos t2
- et sin t - et cos t - 2et cos t t 2e sin t - 2et cos t 4et sin t
-cos t sin t cos t -sin t
- sin t -cos t T sin t cos t
13. (a) c
t -1 t -1 cos1ln t2 t -1 sin1ln t2 -1 17. c1 £ 0 § + c2 £ t sin1ln t2 § + c3 £ -t -1 cos1ln t2 § -2t -1 - t -1 cos1ln t2 - t -1 sin1ln t2 19.
39 - 217 222p
≈ 0.249 ;
39 + 217 222p
≈ 0.408
21. I1 = 15>62e-2t sin 3t , I2 = - 110>132e-2t cos 3t + 125>782e-2t sin 3t , I3 = 110>132e-2t cos 3t + 120>392e-2t sin 3t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
11. c1 c
(b) c (c) c
23.
25.
27.
1 2 t -1 >2 13. c1 c d + c2e6t c d - c -1 d 2 1 t 1 -2 ln 0 t 0 + 18>52t - 8>25 15. c1 c d + c2e-5t c d +c d 2 1 2 ln 0 t 0 + 116>52t + 4>25 1 -1 -1 1 -t -t t 17. c1e £ 1 § + c2e £ 0 § + c3e £ 1 § + e £ - 1 § 1 -1 1 0
29.
2t
c1 cos t + c2 sin t + 1 - c sin t + c2 cos t - t 19. D t1 T c3e + c4e-t - 11>42e-t - t + 11>22te-t c3et - c4e-t - 11>42e-t - 1 - 11>22te-t
33. I1 = I2 + 3I5, I3 = 3I5, I4 = 2I5, where I2 = 1 1> 1 202817 2 2 3 1 13 - 2817 2 e- 1 31 + 2817 2 5t>2 - 1 13 + 2817 2 e1 -31 + 2817 2 5t>2 4 + 1>10 ,
Exercises 9.8, page 551
5. (a) r = - 2 ; k = 2
2 sin t 2 cos t -2 sin t
- 4 + 29e5t - 20te5t - 5 + 5e5t 2 - 2e5t + 10te5t
11 - t + t 2/22et 1t 2/22et 13. E 1t + t 2/22et 0 0
1 3> 1 402817 2 2 3 1 31 - 2817 2 e- 131 + 2817 25t>2 - 1 31 + 2817 2 e1 -31 + 2817 2 5t>2 4 + 3>20
- 2t d 1 1 + 3t - 13/22t 2 t -t + 11/22t 2 -t - 3t § (b) e £ 1 t 3t 1 - 3t + 13/22t 2 9t - 19/22t 2 1 0 0 cos t sin t d (b) e-2t £ 4t 1 0 § 7. c - sin t cos t t 0 1
(b) e3t c
3. (a) r = -1 ; k = 3
1 £ 11. 25
1 -20 + 2e-5 2et + 1 -3e-5 - e-10 2e2t + 14t + 32et d 1 -10 + e-5 2et + 1 -3e-5 - e-10 2e2t + 12t + 32et
- 18et + 1 + 14e2t + 2 - 3e2t + 1 + 14t + 72et d -9et + 1 + 14e2t + 2 - 3e2t + 1 + 12t + 52et x = 1c1 + c2t2et + c3e-t - t 2 - 4t - 6 ; y = -c2et - 2c3e-t - t 2 - 2t - 3 et 2 0 e2t (a) e c t d , c 2t d f (c) tet c d + et c d e 2e 2 1 1 1 2 0 (d) c1et c d + c2e2t c d + tet c d + et c d 1 2 2 1 1 -1 -1 c1e2t £ 1 § + c2e-t £ 0 § + c3e-t £ 1 § 1 1 0 1 1 0 + te-t £ 0 § + e-t £ 0 § + £ 0 § -1 0 1 1 1 c1tc d + c2t -1 c d 3 1 - 13>42t -1 - 11>22t -1 ln t + 1 +c d - 13>42t -1 - 13>22t -1 ln t + 2
I5 =
et + cos t - sin t 1 t 9. £ e - sin t - cos t 2 t e - cos t + sin t
- 2et - 1 + 2e21t - 12 - 3e2t - 1 + 14t - 12et d -et - 1 + 2e21t - 12 - 3e2t - 1 + 12t + 12et
(d) c
sin t cos t 0 d + c2 c d +c d cos t -sin t -1
1. (a) r = 3 ; k = 2
4tet + 5et d 2tet + 4et
21. (a) c
Exercises 9.7, page 542 1 1 2 1. c1e7t c d + c2e2t c d +c d 1 -4 -1 1 1 -1 1 3. c1e-3t £ 1 § + c2e3t £ 0 § + c3e3t £ 1 § + et £ 0 § -1 1 -1 0 0 0 2 1 0 2t e sin t cos t 5. t£ 0 § + £ 0 § + £ - 1 § + £0§ + £ -1 § 3 2 2 -1 -1 0 0 0 1 -1 0 + c1e - t £ 1 § + c2et £ 1 § + c3et £ 0 § 0 1 0 7. xp = ta + b + sin 3t c + cos 3t d 9. x1t2 = ta + b + e2tc + 1 sin t2 d + 1 cos t2 e
B-23
1 0
et - cos t - sin t et + sin t - cos t § et + cos t + sin t
20 - 20e5t 25 - 10 + 10e5t
1t - t 2 2et 11 - t + t 2 2et 1 - 3t - t 2 2et 0 0
- 8 + 8e5t - 40te5t - 10 + 10e5t § 4 + 21e5t + 20te5t
1t 2/22et 1t + t 2/22et 11 + 2t + t 2/22et 0 0
0 0 0 cos t -sin t
0 0 0 U sin t cos t
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-24 Answers to Odd-Numbered Problems 11 + t + t 2/22e-t 1 - t 2/22e-t 15. E 1 - t + t 2/22e-t 0 0
1t + t 2 2e-t 11 + t - t 2 2e-t 1 - 3t + t 2 2e-t 0 0
1t 2/22e-t 1t - t 2/22e-t 11 - 2t + t 2/22e-t 0 0
1 -t 1 17. c1e-t £ -1 § + c2e-t £ - 1 + t § + c3e-2t £ - 2 § 1 4 2-t e-2t 21. £ 4te + e-2t § . te-2t - e-2t -2t
0 0 0 11 + 2t2e-2t -4te-2t
0 0 0 U -2t te 11 - 2t2e-2t
3 0 1 2t 6 1 t t + t2 19. c1e2t D T + c2et D T + c3et D T + c4et D T 1 0 0 0 1 0 0 1
3t 2 - et 1t 2 - 2t + 22 At 1 + et 1t - 12 23. e £ 3 § + e £ § , where eAt is the matrix in the answer to Problem 3. t 2 9t 6 - 3e 1t - 2t + 22 -t
14>132e-3t + 6te3t + 12>132 13 sin 2t - 2 cos 2t2 e3t § 29. x1t2 = £ -3t 3t 18>132e + 13t - 12e + 14>132 13 sin 2t - 2cos 2t2
.
Review Problems, page 555 1 3 1. c1e3t c d + c2e4t c d 1 2
1 0 1 0 1 0 1 0 3. c1e-t D T + c2e-t D T + c3e3t D T + c4e3t D T 0 1 0 1 0 -1 0 1
5. c
e2t -e2t
e3t d -2e3t
1 t -t + 11/22t 2 2+t t § + £ 7 - 3t § 9. c1e-t £ 0 § + c2e-t £ 1 § + c3e-t £ 3 3t 1 - 3t + 13/22t 2 10 -1 1 + c2t -1 £ 0 § + c3t 4 £ 1 § 1 1 - et + 12/32e5t + 11/32e-t - 11/22et + 12/32e5t - 11/62e-t 11/32e5t + 12/32e-t 11/32e5t - 11/32e-t § t -t e -e 11/22et + 11/22e-t (d) true (e) true (f ) false (g) true
1 1 - 1/3 d + c2e3t c d + c d 7. c1e-t c -2 2 -14/3 -3 13. c1t -1 £ 1 § 0 11/22et + 12/32e5t - 11/62e-t 11/32e5t - 11/32e-t 15. £ - 11/22et + 11/22e-t 17. (a) false (b) false (c) false
11. c
3et - 2e2t d 3et - 4e2t
CHAPTER 10 Exercises 10.2, page 570 1. y = 34> 1e - e-1 241e-x - ex 2 3. y K 0 5. y = ex + 2x - 1 7. y = cos x + c sin x; c arbitrary 9. ln = 12n - 12 2 >4 and yn = cn sin312n - 12x>24, where n = 1, 2, 3, … and the cn’s are arbitrary. 11. ln = n2, n = 0, 1, 2, …; y0 = a0 and yn = an cos nx + bn sin nx, n = 1, 2, 3, …, where a0, an, and bn are arbitrary. 13. The eigenvalues are the roots of tan1 2ln p2 + 2ln = 0, where ln 7 0. For n large, ln ≈ 12n - 12 2 >4, n is a positive integer. The eigenfunctions are yn = cn 3sin1 2ln x2 + 2ln cos1 2ln x24 , where the cn’s are arbitrary.
15. 17. 19. 21.
u1x, t2 u1x, t2 u1x, t2 u1x, t2
= = = =
e-3t sin x - 6e-48t sin 4x e-3t sin x - 7e-27t sin 3x + e-75t sin 5x 3 cos 6t sin 2x + 12 cos 39t sin 13x 6 cos 6t sin 2x + 2 cos 18t sin 6x + 111>272 sin 27t sin 9x - 114>452 sin 45t sin 15x ∞
23. u1x, t2 = a n-2e-2p n t sin npx 2 2
n=1
25. If K 7 0, then T1t2 becomes unbounded as t S ∞ , and so the temperature u1x, t2 = X1x2T1t2 becomes unbounded at each position x. Since the temperature must remain bounded for all time, K w 0. 33. (a) u1x2 K 50 (b) u1x2 = 30x>L + 10
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
Exercises 10.3, page 584 1. Odd 3. Even 5. Neither ∞ 21 - 12 n + 1 9. f1x2 ∼ a sin nx n n=1 ∞ npx 2 11. f1x2 ∼ 1 + a c 2 2 1 - 1 + 1 -12 n 2 cos 2 n=1 p n 1 npx + 1 1 - 12 n + 1 - 1 2 sin d pn 2 ∞ 41 -12 n 1 13. f1x2 ∼ + a cos npx 3 n2p2 n=1
∞ 1 - 12 n 15. f1x2 ∼ 31sinh p2 >p4 a1 + 2 a c cos nx 2 n=1 1 + n 1 - 12 n + 1n + sin nx d b 1 + n2 17. The 2p-periodic function g1x2, where x 1 -p 6 x 6 p2 , g1x2 = e 0 1x = {p2 19. The 4-periodic function g1x2, where
1 x g1x2 = e 1>2 3>2
1 -2 6 x 6 02 , 10 6 x 6 22 , 1x = 02 , 1x = {22
21. The 2-periodic function g1x2, where g1x2 = x2 1 - 1 … x … 12 23. The 2p-periodic function g1x2, where g1x2 = e
ex 1ep + e-p 2 >2
1 - p 6 x 6 p2 , 1x = {p2
(b) F1x2 = 0 x 0 - p 12n - 12px 2 c 1 - 12 n + 1 cos a b 27. f1x2 ∼ a 12n 2 12p n=1 12n - 12px bd + sin a 2 29. c0 = 0 ; c1 = 3>2 ; c2 = 0 25. (a) F1x2 = 1x2 - p2 2 >2 ∞
Exercises 10.4, page 591 ∼ 1. (a) The p-periodic function f 1x2, where ∼ 2 f 1x2 = x 10 6 x 6 p2 (b) The 2p-periodic function fo 1x2, where x2 10 6 x 6 p2 , fo 1x2 = e 2 1 - p 6 x 6 02 -x (c) The 2p-periodic function fe 1x2, where x2 10 6 x 6 p2 , fe 1x2 = e 2 1 - p 6 x 6 02 x ∼ 3. (a) The p-periodic function f 1x2, where 0 10 6 x 6 p>22 , ∼ f 1x2 = e 1 1p>2 6 x 6 p2
B-25
(b) The 2p-periodic function fo 1x2, where -1 fo 1x2 = e
0 0 1
1 -p 6 x 6 - p>22 , 1 -p>2 6 x 6 02 , 10 6 x 6 p>22 ,
1p>2 6 x 6 p2
(c) The 2p-periodic function fe 1x2, where 1 0 fe 1x2 = e 0 1
1 - p 6 x 6 - p>22 , 1 - p>2 6 x 6 02 , 10 6 x 6 p>22 , 1p>2 6 x 6 p2
4 ∞ 1 sin12k - 12px p ka 2k -1 =1 ∞ 2p1 -12 n + 1 4 7. f1x2 ∼ a c + 3 1 1 -12 n - 1 2 d sin nx n pn
5. f1x2 ∼ -
n=1 ∞
8 9. f1x2 ∼ a sin12k + 12px 12k + 12 3p3 k=0 p 4 ∞ 1 11. f1x2 ∼ + cos12k - 12x 2 2 p ka = 1 12k - 12 ∞ 1 - 12 ne - 1 13. f1x2 ∼ e - 1 + 2 a cos npx 2 2 n=1 1 + p n 1 1 2 2 ∞ 15. f1x2 ∼ + a b cos 2kx p p ka 2k + 1 2k -1 =1 17. u1x, t2 = 2 ∞ 2 1 1 2 c d e-512k - 12 t sin12k - 12x p ka 2k 2k + 2k 1 1 3 =1 k+1 4 ∞ 1 -12 2 19. u1x, t2 = e-512k + 12 t sin12k + 12x p a 12k + 12 2 k=0
Exercises 10.5, page 603 ∞ 81 -12 n + 1 - 4 2 2 1. u1x, t2 = a e-5p n t sin npx p3n3 n=1
∞ 4 p 2 e-312k + 12 t cos12k + 12x 2 2 ka = 0 p12k + 12 ∞ 2ep 1 -12 n - 2 21ep - 12 2 e-n t cos nx + a 5. u1x, t2 = p p11 + n2 2 n=1
3. u1x, t2 =
30 -2t 5 5 xe sin x + e-8t sin 2x p p p 10 -18t + a1 - be sin 3x p 5 -32t 6 + e sin 4x - a1 + be-50t sin 5x p 2p ∞ 10 2 + a 321 -12 n - 14e-2n t sin nx pn n=6
7. u1x, t2 = 5 +
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
B-26 Answers to Odd-Numbered Problems
∞ e-p - 1 2 x - e-x + 1 + a cne-n t sin nx , p n=1
9. u1x, t2 =
∞ npx 11. u1x, t2 = a an Tn 1t2 sin , where L n=1 L
where 2e
cn = g
-p
2n -2 31 - 12 n + 1e-p + 14 1 - 12 n + pn p11 + n2 2 +
2 31 - 12 n - 14 pn
1n ≠ 22 ,
e-p - 1 4 11 - e-p 2 + 1 + p 5p ∞
1n = 22
11. u1x, t2 = a ane-41n + 1>22 t cos1n + 1>22x, where 2
n=0 ∞
f1x2 = a an cos1n + 1>22x n=0
13. u1x, t2 =
p2 1 x - x3 - 3e-2t sin x 3 3 ∞ 41 -12 n 2 + a e-2n t sin nx 3 n
∞
n=2
15. u1x, y, t2 = e-52t cos 6x sin 4y - 3e-122t cos x sin 11y ∞ 1 - 12 n + 1 2 17. u1x, y, t2 = 2 a e-n t sin ny n n=1
∞ npx 2 2 2 19. C1x, t2 = a cne-3L + kn p >a 4t sina b , where a n=1 a 2 npx cn = f1x2 sina b dx a L0 a Concentration goes to zero as t S + ∞ .
Exercises 10.6, page 614 1 1. u1x, t2 = sin 7pt sin 7px 7p ∞ 8 + a cos12k + 12pt sin12k + 12px 3 k = 0 1 12k + 12p 2 ∞ 4 3. u1x, t2 = a 3 321 -12 n + 1 - 14cos 2nt sin nx n=1 n 2
2h0L
∞
1 npa npx npat 5. u1x, t2 = 2 sin sin cos a 2 L L L p a1L - a2 n = 1 n 5 3 sin 2t sin 2x - sin 5t sin 5x 2 5 ∞ 1 - 12 n + 1 sin nt +2 a ct d sin nx n n3 n=1 ∞ 12n + 12pat 9. u1x, t2 = a c an cos 2L n=0 12n + 12pat 12n + 12px + bn sin d sin , where 2L 2L ∞ 12n + 12px f1x2 = a an sin and 2L
7. u1x, t2 = cos t sin x +
n=0 ∞
12n + 12pa
n=0
2L
g1x2 = a bn
sin
2 npx f1x2 sin dx , and L L0 L 1 Tn 1t2 = e-t>2 acos bnt + sin bntb , where 2bn 1 bn = 23L2 + 4a2p2n2 2L 1 13. u1x, t2 = 3sin1x + at2 - sin1x - at24 2a 1 = sin at cos x a 15. u1x, t2 = x + tx 1 2 2 17. u1x, t2 = c e-1x + at2 + e-1x - at2 2 cos1x - at2 - cos1x + at2 + d a an =
12n + 12px 2L
21. u1r, t2 = a 3an cos1knat2 + bn sin1knat24J0 1knr2 , n=1
where 1
1 f1r2J0 1knr2r dr , and cn L0 1 1 g1r2J0 1knr2r dr , with bn = akncn L0 an =
1
cn =
L0
J 20 1knr2r dr
Exercises 10.7, page 626 4 cos 6x sinh361y - 124 1. u1x, y2 = sinh1 -62 cos 7x sinh371y - 124 + sinh1 -72 ∞
3. u1x, y2 = a An sin nx sinh1ny - np2, where n=1
An =
p
2 f1x2 sin nx dx p sinh1 -np2 L0
cos 3x sinh13y - 32 sinh1 -12 sinh1 -32 cos 2x sinh 2y + sinh122 ∞ p r 2k + 1 7. u1r, u2 = - a cos12k + 12u 2 k = 0 12k + 12 2p22k-1 ∞ a0 r n 9. u1r, u2 = + a a b 1an cos nu + bn sin nu2, where 2 n=1 a a0 is arbitrary, and for n = 1, 2, 3, c p a an = f1u2 cos nu du , pn L-p p a bn = f1u2 sin nu du np L-p 5. u1x, y2 =
cos x sinh1y - 12
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Answers to Odd-Numbered Problems
4 2 2 1 11. u1r, u2 = a r - r -1 bcos u + a r - r -1 bsin u 3 3 3 3 1 4 256 -4 + ar + r bsin 4u 255 255 ∞ a0 13. u1r, u2 = + a r -n 1an cos nu + bn sin nu2, 2 n=1 where p 1 an = f1u2 cos nu du 1n = 0, 1, 2, c2 , p L-p and p 1 bn = f1u2 sin nu du 1n = 1, 2, 3, c2 p L-p 15. u1r, u2 = r 3 sin 3u
∞
17. u1r, u2 = a0 + b0 ln r + a 31anr n + bnr -n 2cos nu n=1
+ 1cnr n + dnr -n 2sin nu4 ,
where p
p
1 3 f1u2 du , g1u2 du , b0 = 2p L-p 2p L-p and for n = 1, 2, 3, c p 1 an + bn = f1u2 cos nu du , p L-p p 1 n3n - 1an - n3-n - 1 bn = g1u2 cos nu du , p L-p and p 1 cn + dn = f1u2 sin nu du , p L-p p 1 n3n - 1cn - n3-n - 1 dn = g1u2 sin nu du p L-p 21. u1r, u, z2 = 3I0 1r2 >I0 1p24sin z 23. (c) f1x, y2 = 2xy a0 =
B-27
APPENDIX A Exercises A, page A-1 1. 1x2 + 12 5/2 15x2 - 22 >35 + C
3.
2 6t5 e +C 15
1 1 u+ sin12pu2 + C 2 4p 1 1 7. ln1t 2 + 42 + arctan1t>22 + C 2 2 9. 1 1> 22 2 arcsin 22 x + C 5.
11. 2 ln 0 x - 1 0 - 4 ln 0 x - 2 0 + 2 ln 0 x - 3 0 + C 1 13. 29x2 - 1 - arccos a b + C 3x 1 2 15. ln1x2 + 42 - + C 17. ln 0 ln x 0 + C x 2 x 19. y cosh y - sinh y + C 21. +C 42x2 + 4 1 t 2 3t 23. 1t 2 - 92 ln1t + 32 - + + C 2 4 2 25. -arctan1cos t2 + C 5 5 27. sin7/ 5 x sin17/ 5 x + C 7 17 sin110x2 sin14x2 + +C 29. 20 8 1 2 1 31. tan9 u + tan7 u + tan5 u + C 9 7 5 1 1 33. x sin112x2 + C 8 96
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Index
Note: n indicates footnote. Abel, Niels, 200 Abel’s identity formula, 200, 324, 327, 522 Absolute stability, 148 Accuracy, 124, 128, 137 Addition, matrix, 505 Aging springs in mass-spring systems, 450, 495 Agrarian economy model, 35 Air conditioning, 107 Air resistance models, 110–111 Aircraft guidance in crosswind, model for, 146–147 Airy equation explanation of, 205 initial value problem for, 493 mass-spring analogy using, 205–206 Airy functions, 205 Algebra, of matrices, 496, 505–512 Algebraic equations, linear, 500–503 Algorithms alphabetization, 491–492 classical fourth-order Runge-Kutta, 134–138, 255–258, A-16–A-17 Euler’s, 121–129 Gauss-Jordan elimination, 500–503, 509 Quicksort, 491–492 with tolerance, 128, 136 Alligator problem, 101 Allometric equation, 144 Alphabetization algorithms, 491–492 Amplitude modulation, 228 Analog simulation, 293 Analytic coefficients, equations with, 445–449 Analytic functions, 432–433 Angular frequency, 213, 286, 536 Angular momentum, 211 Annihilator method examples using, 335–336 explanation of, 334 method of undetermined coefficients for, 337 undetermined coefficients and, 334–337, 346 Apollo reentry problem, 234 Approximation methods centered-difference, 99, 636 Euler’s, 23–27
least-squares property, 585 Newton’s, A-9–A-11 Simpson’s rule, A-11–A-12 Taylor polynomials, 36–37, 421–425 Aquaculture model, 144 Archimedes principle, 310 Armageddon problem, 212 Arms race problem, 251 Asymptotic behavior of linear equation solutions, 88–89, 239 Asymptotically stable critical points, 264 explanation of, 264 homogeneous linear systems, 533 linear systems, 411 Atmospheric pressure, 48 Attractors, 299, 301 Automatic pilot error, 381–382 Autonomous equations, 19, 33 Autonomous systems critical points of, 264–270 endpoints, 266 equilibrium solutions, 264–266 explanation of, 262 Auxiliary equations complex roots of, 165–172, 330 distinct real roots of, 161, 328–329 explanation of, 158, 328 homogeneous equations and,158 repeated roots of, 162, 330–331 roots of, 158, 161–172, 328–331 Axons, 639 Barometric equation, 48 Beam problems deflection under axial force, 341 vibrating, 333, 347 Bernoulli, James, 73n Bernoulli, John, 5n, 41n, 73n, 328n Bernoulli equations, 55, 73–74 Bessel, Frederic Wilhelm, 478n Bessel functions aging springs in spring-mass systems and, 495 explanation of, 477–480 of the first kind, 478 modified, 624 of the second kind, 478
second-order, 207 spherical, 485 Bessel’s equation of order explanation of, 206, 477–480 mass-spring analogy using, 206–207 modified, 207, 624 one-half order, 200 reduction to, 487 Bessel’s inequality, 586 Bifurcation, 34 Biomathematics Ebola epidemic model, 314–316 growth rate models, 274–276 MRSA (staph) infection model, 308–310 SIR epidemic model, 276–279 tumor growth model, 279–280 virus (HIV) infection models, 141 Blasius equation, 261 Block diagrams, 92 Bobbing object model, 310–311 Bode plots, 419 Boundary conditions circular domains, 619–622 Dirichlet, 616, 622 explanation of, 164, 562 homogeneous, 595 Laplace’s equation associations, 616–622 mixed, 617–619 nonhomogeneous, 596 Neumann, 616, 622 Boundary value problems (see also Dirichlet boundary value problem; Initial–boundary value problems)164, 619–625 Bounded solutions, 206 Boxcar function, 384n Brachistochrone problem, 5n Buckling columns, 474–475 towers, 493–494 Building temperature, 102–103, 131 Building time constant, 104, 107 Buoyancy, 311 Cable equation, 639 Calculus of matrices, 512–513 Cancer detection dosage, 281 Capacitance, 119
I-1
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
I-2
Index
Capital, growth of, 36 Carbon dating problem, 101 Casoratian, 348 Catenary curve, 233 Cauchy, Augustin, 329n Cauchy-Euler equations higher-order, 333 homogeneous, 194 linear second-order equations and, 193–195, 450–453 series expansions using, 450–453 singular equation points and, 454–459 Cauchy-Euler system, 533 Cauchy product, 429 Cayley-Hamilton theorem, 547 Center (critical point), 267, 269 Centered-difference approximations, 99, 636 Chain rule, A-2 Chaos, model for, 150–151 Chaos machine problem, 304 Chaotic systems, 299–303 forced Duffing equation, 300–301 forced pendulum equation, 301 Poincaré maps for, 301–302 strange attractors, 299, 301 Characteristic equations, 158, 194, 451, 524 Characteristic polynomials, 524 Chebyshev polynomials, 482, 487 Chemical diffusion problem, 604 Chemical reactions, numerical model for, 140 Circular cylinder, steady-state temperature distribution in, 631–633 Circular domain, Laplace’s equation for, 619–622 Clairaut equations, 85 Clairaut, Alexis, 66n, 85n Classical fourth-order Runge-Kutta method algorithm with tolerance, 136, A-17 mathematical models using, 134–138, 257–258 procedures for n equations, A-16–A-17 subroutine, 135, A-16 Classical mechanics. See Newtonian mechanics Classical orthogonal polynomials, 482 Clinical medicine, equations for, 80–83 Coefficient matrix, 498, 507 Coefficients analytic, 445–449 constant, 156, 194, 328–331 damping, 153, 170 discontinuous, 55 of equations, 4 of kinetic friction, 116 linear, 74–76 undetermined, 174–185, 237–238, 334–337, 346, 538–540 variable, 192–198 Coffee problems, 107, 108 Columns, buckling, 474–475 Combat models, 260, 544
Comparison test for improper integrals, 359–360 Compartmental analysis explanation of, 92 mixing problems, 92–95, 533 population models and, 95–100 Competing species, Runge-Kutta subroutine and, 261 Complex exponential function, 237–238 Complex residue computation, 376 Complex roots of auxiliary equations, 165–172, 330 complex conjugate roots, 168 of polynomial equations, 534n real solutions derived from, 167–168 Compound interest, 3, 48 Computer algebra system, 345–346 Concave function, 35 Confluent hypergeometric equation, 485 Conservative energy system, 312 Consistency condition, 622 Constant coefficients auxilliary equations and, 328–331 differential operators with, 156, 244–246 explanation of, 156, 328, 515 higher-order differential equations, 319, 327–331 homogeneous equations with, 157–163, 327–331 homogeneous linear systems with, 523–530 linear systems with, 515 qualitative considerations for, 201–210 Contact heat transfer, 28–29 Contact tracing, 314–316 Contour integral, 388n Control signal, 317 Control theory, 380–382 Convergence Euler’s method and, 124–126 of Fourier series, 580–584 method of order p, 124–125, 132–133 of Newton’s method, A-11 pointwise, 581 power series and, 426–430 radius of, 427–428, 445–445 Taylor method, 132–134 uniform, 582 Convolution explanation of, 237, 398 impulse response function for, 402–403 integro-differential equations, 401 Laplace transforms and, 397–403 properties of, 398 theorem, 398 transfer function for, 401–402 Cooling air conditioning, 107 of buildings, 102–107 Newton’s law of, 29, 47, 102
Coulomb force field, 313 Coupled equations, 77 Coupled mass-spring systems (see also Mass spring systems) 283–287 Cramer’s rule, 500n, A-13–A-14 Critical load, 494 Critical points asymptotically stable, 264 autonomous systems, 264–270 endpoints as, 266 examples of, 267 explanation of, 264 phase plane analysis and, 264–270 stability of, 264–266 Critically damped motion, 216–217 Crosswinds model, 146–147 Current (magnetic field) problem, 272–273 Curve of pursuit model, 145–146 Cylindrical domain, Laplace’s equation for, 622–625 d’ Alembert, Jean le Rond, 3n d’ Alembert’s solution, 609–611 Damped oscillations, 154 Damping Hamilton’s equations and, 312 mass-spring oscillators and, 152–156 vibrating spring with, 173 vibrating spring without, 173 vibration desire or supression, 154 Damping coefficient, 153, 170 Damping factor, 215 Decay constant, 102, 225 Defective matrix, 548 Deflection of beams, 341 Degenerate system, 247 Demand function, 147 Dependent variables, 4 Derivatives, Laplace transforms of, 362–365 Desired accuracy, 128 Determinants, 510–511 Diagonal matrices, 505 Diagonalizable matrices, 530 Difference equations, 149, 347–349 Differential equations (see also Equations; specific types of equations) autonomous, 19, 33, 262 construction of, 327 direction fields for, 15–20 Euler’s approximation method for, 23–27 exact, 57–63 examples of, 3 existance and uniqueness solutions of, 11–13, 17–19 first-order. See First-order equations higher-order linear. See Higher-order differential equations initial value problem, 10–13 integral equations, 32 linear. See Linear second-order equations
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Index
nonlinear, 4, 201–210, 233–234, 236 order of, 4, 6 ordinary, 4, 6 overview of, 1–5 partial (see also Partial differential equations) 3, 4 second-order. See Linear second-order equations separable, 41–45 series solutions of. See Series solutions software for analyzing, A-17–A-18 solutions of, 2, 6–13 special functions for, 483–484 variables in, 4 Differential operators, 243–249, 320–321 Differentiation chain rule, A-2 derivatives for, A-2 of Fourier series, 582–583 integration using, A-1–A-3 Diffusivity, 561 Dirac delta function impulses and, 405–410 Laplace transform and, 406–410 properties of, 405 Direction fields autonomous equations, 19, 33 differential equations, 15–20 existance-uniqueness solution from, 17–19 explanation of, 15–20 method of isoclines and, 19–20 phase lines for, 33–34 system stability and, 264–266 Dirichlet, Peter Gustav Lejeune, 576n Dirichlet boundary conditions, 616, 622 Dirichlet boundary value problems circular domain, 619–622 cylindrical domain, 622–625 existance-uniqueness solution and, 625 numerical method for solution of, 635–637 Discontinuous coefficients, 55 Discontinuous forcing term, 55, 186 Discontinuous functions jump discontinuity and, 357, 571 Laplace transforms and, 387, 383–389 rectangular window function, 384–386 translation and, 386–389 unit step function, 384 Dispersion relation, 615 Distinct real roots, 161, 328–329 Distribution, 405 Doetsch, G., 351n Dot products, 496–497 Double Fourier series, 600 Drag force, 114–115 Drag race problem, 5 Duffing equation, 207, 260, 300–301, 425 Duhamel, J.M.C., 418 Duhamel’s formula, 417–418
Dynamical systems attractors, 299, 301 chaotic systems, 299–303 explanation of, 295–296 Poincaré maps, 296–299, 301–302 Ebola epidemic model, 314–316 Economics agrarian economy, 35 compound interest, 3, 48 demand and supply functions, 147 growth of capital, 36 marginal benefit, 35 market equilibrium, 147–148 Eigenfunctions, 564–565 Eigenspaces, 524 Eigenvalues complex, 534–537 distinct, 528 explanation of, 523, 535, 564 homogeneous linear systems and, 523–525 of a matrix, 524–525 normal modes as, 286n real-valued, 529–530 Eigenvectors explanation of, 523 generalized, 548–549 homogeneous linear systems and, 523–525 linear independence of, 526–528 of a matrix, 524–525 Electrical circuits analogy between mechanical and, 293 differential equations for, 3 explanation of, 118–119 first-order differential equations for, 118–121 Kirchhoff’s laws for, 118–119 phase-locked loop, 317–318 units and symbols for, 119 Electrical systems, 289–293, 317–318 Electromagnetic wave transmission (see also Transmission lines) 637–638 Elimination method, 243–249 Elliptical integral of first kind, 235 Emden’s equation, 444 Endpoints, 266 Energy argument, 612–614 Energy integral lemma, 203–205, 234, 272 Epidemic models boarding school problem, 282 SIR model, 276–280 Equations (see also Differential equations; specific types of equations) adjustments, 147 with analytic coefficients, 445–449 auxiliary, 158, 328–331 characteristic, 158, 194 coupled, 77 exact, 57–63 of form dy/dx = G(ax + by), 72–73 homogeneous, 70–72
I-3
indicial, 451, 456–457 integral, 32 linear, 48–54 linear algebraic, 412–413 with linear coefficients, 74–76 matrices and systems of, 511–512 separable, 41–45 Equidimensional equations. See Cauchy-Euler equations Equilibrium direction fields for, 264–266 explanation of, 33–34 economic market, 147–148 mass-spring systems, 226–227 saddle point, 266 stable, 243, 264 system stability and, 264–266 unstable, 265–266 Equilibrium points (see also Critical points) 264 Equilibrium solutions, 264 Equipotential lines, 23 Escape velocity, 117 Euler, Leonhard, 60n, 66n, 166n, 328n, 394n Euler-Fourier Formula, 576 Euler’s formula, 166 Euler’s methods approximation, 23–27 convergence and, 124–126 improved, 121–129 initial value problems, 23–27 in normal form, 253–255 recursive formulas for, 24–25 step size, 23 system solutions using, 253–255 Exact differential equations explanation of, 57–59 method for solving, 62–63 test for, 59–61 Existence and uniqueness of solutions direction fields for, 17–19 energy argument for, 612–614 explanation of, 11–13, 319 first-order equations, 2, 53, 56 Fourier series, 601–602 heat flow model, 601–602 homogeneous equations, 159–160 initial value problems, 11–13, 46, 53 Laplace’s equation and, 625–626 limitations of, 13 linear differential equations, 53, 56, 159– 160, 182, 192–193, 319 second-order equations, 159–160, 182, 192–193 linear systems and, 516 nonhomogeneous equations, 182 theorem of, 11 variable-coefficient equations, 192–193 wave equation and, 612–614
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
I-4
Index
Explicit solutions, 6–7 Exponential, derivative of, A-2 Exponential law, 96 Exponential of a matrix, 545–551 Exponential order a, 359, 379 Exponential shift property, 345–346 Exponents of a regular singular point, 456 Factorial function, 475 Factors damping, 215 integrating, 66–69 inverse Laplace transforms and, 370–374 nonrepeated, 370–371 quadratic, 373–374 repeated linear, 372–373 Falling bodies differential equations for, 1–2, 38–40 drag force and, 114–115 limiting or terminal velocity of, 40 motion of, 38–40, 273 velocity of, 40, 115, 131 Feedback system problem, 250–251 Fibonacci rule, 349 Fibonacci sequence, 349 First-order equations Bernoulli equations, 73–74 compartmental analysis and, 92–100 electrical circuits, 118–121 Euler’s method and, 121–129 exact equations, 57–63 general solution to, 39, 50 heating and cooling of buildings and, 102–107 higher-order numerical methods and, 132–138 homogeneous equations, 70–72 initial value problems, 39, 52–53, 86 with linear coefficients, 74–76 linear equations, 48–54, 88–89 mathematical modeling and, 90–92 motion of falling body and, 38–40 multiple solutions of, 86 Newtonian mechanics and, 109–115 Runge-Kutta method and, 133–138 separable equations, 41–45 special integrating factors for, 66–69 substitutions and transformations and, 70–76 Taylor method and, 132–134 Fluid ejection, 260 Fluid flow around a corner, 628 nonisothermal numerical model, 140 Torricelli’s law of, 83–84 velocity potentials, 70 Fluid tanks, interconnected, 241–243, 533, 544 Forced Duffing equation, 300–301 Forced mechanical vibrations, 221–227
Forced pendulum equation, 301 Forced vibration problem, 186–187 Forcing function, 418 Forcing terms, 55, 186 Formal solutions, 569, 595 Fourier, Joseph B.J., 576n Fourier cosine series, 587–591 Fourier series complex forms of, 585 computation of, 576–579 convergence of, 580–584 differentiation of, 582–583 double, 600 Euler formulas for, 576 explanation of, 576 functions in, 571–572 generalized, 579 insulated wire heat flow model, 560–562, 592–602 integrals crucial in, 573–574 integration of, 583 orthogonal expansions and, 579–580 orthogonality condition, 574–575 Fourier sine series, 566, 587–591 Free fall differential equations for, 1–2 examples of, 38–40 problem in, 48 Free mechanical vibrations (see also Vibrations) 212–220 Frequency angular, 213, 286, 536 complex eigenvalues for, 536–537 fundamental, 605 natural, 213, 286, 536 resonance, 224 Frequency gain, 222 Frequency response curve, 223–225 Frequency response modeling, 418–420 Friction coefficient of kinetic, 116 explanation of, 116 static, 117 sticky, 273 Frobenius, George, 455n Frobenius’s method explanation of, 454–463 incidial equations and, 456–457 linearly independent solutions and, 465–466 singular equation points and, 454–459 Frobenius’s theorem, 460 Functions analytic, 432–433 Bessel, 477–480 complex exponential, 237–238 demand, 147 differential equation solutions, 2 Dirac delta, 405–410 discontinuous, 357, 383–389, 581
even, 572 gamma, 394–395 forcing (input), 418 Fourier series, 571–572 generalized, 406 harmonic, 626 homogeneous, 77 impulse response, 402–403, 410 jump discontinuity, 357 Laplace transforms and, 355–360, 383–389, 392–395, 405–410 linear dependence of, 160, 164, 323–324 linear independence of, 160, 165, 323–324 matrix, 513 matrix exponential, 545–551 odd, 572 periodic, 392–393 piecewise continuous (see also Piecewise continuity) 357, 359, 571–572 power, 392, 393–394 special, 474–484 spherically symmetric, 492–493 steady-state (output) solution, 418 supply, 147 symmetric, 572 transfer, 366, 401–402, 410 twice-differentiable, 244 utility, 86–87 vector, 516–517 Fundamental frequency, 605–606 Fundamental matrices, 518, 546–548 Fundamental period, 392, 572 Fundamental solution sets, 324, 326, 518 Gain factor, 222 Galileo, 5n, 392n Gamma function, 394–395 Gas law, 48 Gating variables, 57 Gauss, Carl Friedrich, 476n Gauss elimination process, 304–305 Gauss-Jordan elimination algorithm, 500–503, 509 Gaussian hypergeometric equation, 476 Gegenbauer polynomials, 482 General solutions explanation of, 39, 50, 161–163, 322 first-order differential equations, 39, 50 higher-order differential equations, 322, 325 to homogeneous equations, 157–163, 322 to linear differential equations, 50, 161–163, 322 to linear systems in normal form, 518 matrix systems and, 518 to nonhomogeneous equations, 182, 196, 325 power series for, 439–443 for systems, 246 to variable-coefficient equations, 196
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Index
Generalized Blasius equation, 261 Generalized eigenvectors, 548–549 Generalized Fourier series, 579 Generalized function, 406 Generating function, 482, 486 Geometric series, 428 Gibbs, Josiah Willard, 586 Gibbs phenomenon, 586–587 Gibbs-Wilbraham phenomenon, 586n Global truncation error, 131 Golden ratio, 349 Gompertz law, 280 Grand Prix race problem, 48 Gravitational force, 1, 38, 211 Gravity train problem, 240 Great Lakes clean up model, 313–314 Green’s function, 634–635 Grid lines, 636 Group velocity, 615 Growth of capital, 36 Growth rate models logistics model, 97–100, 275 Malthusian model, 96–97, 274–275 population, 95–96 tumors, 274–276 Volterra-Lotka system, 275–276 Guitar strings, 606 Half life, 282 Half-range expansions, 588, 589 Half-rectified sine wave, 396 Hamilton, Sir William Rowan, 311n Hamilton’s equations, 312 Hamiltonian systems, 311–313 Harmonic equation, 165 Harmonic functions, 626 Harmonic motion, 213 Harmonic series, 428 Harmonics, 605 Heat capacity, specific, 561 Heat conduction, 560, 561 Heat equation, 561–562, 590–591, 601–602 Heat exchange, 28–29 Heat flow model direction of, 560 existence and uniqueness of solutions, 601–602 heat equation for, 561–562 initial-boundary values for, 596–601 insulated wire, 560–562, 592–602 maximum principles for, 601–602 physical principles of, 560–561 separation of variables for, 562, 592–595 Heating and cooling of buildings, 102–107 Heaviside, Oliver, 351n, 375n, 383 Heaviside’s Expansion formula, 375–376 Henon map, 300n Hermite polynomials, 482, 487 Hermites equation, 201
Higher-order differential equations annihilator method, 334–337, 346 basic theory of, 319–325 constant coefficients with homogeneous, 327–331 conversion to normal form, 252–253, 515–520 difference equations, 149, 347–349 exponential shift property, 345–346 homogeneous, 322–324, 327–331 nonhomogeneous, 319, 325, 334–337 numerical methods for, 252–258 undetermined coefficients and, 334–337, 346 variation of parameters method and, 338–340 Wronskian of, 321–324 HIV infection models, 141–143 Hoare, C.A.R., 491 Hodgkin-Huxley theory of the neuron, 57 Homogeneous boundary conditions, 595 Homogeneous equations auxiliary equations and, 158, 162, 328–331 characteristic equation, 158 with constant coefficients, 157–163, 327–331 existance and uniqueness solution of, 159–160 explanation of, 70–72, 157–158, 319 fundamental solutions of, 324 general solutions to, 157–163, 322 higher-order differential equation solutions, 322 homogenous functions in, 77 linear dependence/independence, 322–324 substitutions and transformations and, 70–72 Wronskian functions in, 322–324 Homogeneous linear systems complex eigenvalues for, 534–537 with constant coefficients, 523–530 eigenvalues and eigenvectors for, 523–525 explanation of, 507, 515 fundamental solutions to, 518–520 general solutions to, 518–520 linear dependence/independence, 518 normal form, 515, 518–520 representation of solutions, 518–520 superposition principle and, 519 Homogeneous of order n, 77 Hong Kong flu epidemic model, 278–279 Hooke’s law, 152 Hormone secretion problem, 57, 281 Hyperbolic sine and cosine, 165 Hypergeometric equation confluent, 485 explanation of, 475–477 Identity matrix, 508 Impedance, 238 Implicit function theorem, 8, 15 Implicit numerical method, 125 Implicit solutions, 8–9 Improper integrals, 353, 359
I-5
Improved Euler’s method explanation of, 121–129 predictor-corrector method, 125–126 subroutine, 127 with tolerance, 128 Impulse response function, 402–403, 410 Impulses change in momentum as, 406 Dirac delta function and, 405–410 Inconsistent system, 508 Independent variables, 4 Indicial admittance, 417 Indicial equations, 451, 456–457 Inductance, 118 Inertial reference frame, 109 Initial-boundary value problems example of, 562 heat flow and, 562, 596–601 separation of variables and, 567–569, 607 wave equation for, 606–610 Initial conditions, 10, 158–160, 515, 562 Initial value problems convolution theorem to solve, 399–400 Euler’s approximation method for, 23–27 example of, 39, 52–53, 158–159 existance and uniqueness solution of, 11–13, 46, 53, 159 explanation of, 10–13 impulse response function to solve, 403 interval of definition, 47 Laplace transforms and, 366, 376–382 linear dependence and, 160 normal form of linear systems, 515–516 multiple solutions of, 86 Picard’s method for, 32–33 Taylor polynomial and, 423–424 variable-coefficient equations solution, 195 Inner products, 515, 585 Integral curves, 77 Integral equations comparison test for improper, 359–360 Fourier series, 573–574 Laplace transforms, 355–353, 359 Picard’s method, 32 Integrating factors explanation of, 66–68 finding, 68–69 linear differential equation solution using, 49–50 special, 66–69 Integration techniques differential equations and, 2 differentiation, A-1–A-3 explanation of, A-1 Fourier series, 583 integration by parts, A-5–A-6 method of substitution, A-3–A-5 partial fractions, A-7–A-8 power series differentiation and, 429–430 separable equations, 42
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
I-6
Index
Integro-differential equations, 401 Interconnected fluid tanks, 241–243, 533, 544 Interplanetary travel systems, 307–308 Interval of definition problem, 47 Invariance of Laplace’s equation, 627 Inverse, matrix, 508–510 Inverse Laplace transforms contour integral for, 388n explanation of, 366–367 linearity of, 368–370 nonrepeating linear factors and, 370–371 quadratic factors and, 373–374 repeated linear factors and, 372–373 translation property, 386 Inverse mapping, 366 Irregular singular points, 455 Isoclines, method of, 19–20 Isolated zeros problem, 201 Jacobi elliptic function, 236 Jacobi polynomials, 482 Jump discontinuity, 357, 571 Kinetic energy, 312 Kinetic friction, 116 Kirchhoff, Gustav Robert, 118n Kirchhoff’s laws current law, 118 differential equations using, 3, 118–119 voltage law, 118 Korteweg-de Vries (KdV) equation, 615 Kutta, W., 133n Lagrange, Joseph, 187n, 576n Laguerre polynomials, 474, 482, 487 Laguerre’s differential equation, 474, 487 Landing system design, 307–308 Laplace, Pierre, 351n Laplace transforms convolution and, 397–403 definition of, 351, 353–360 of derivatives, 362–365 discontinuous functions and, 357, 383–389 elementary functions, 356 existence of, 357–360 exponential order a, 359, 379 gamma function and, 394–395 impulses and Dirac delta function and, 405–410 initial value problems and, 366, 376–382 integral equations, 353–355, 359 inverse, 366–374 linear systems solved with, 412–413 linearity property, 355–356 matrix method, 558 method of, 376 mixing problem and, 350–352 piecewise continuity and, 357, 359, 379 periodic functions and, 392–393 power functions and, 392, 393–394
properties of, 361–365 translation property, 361–362 wave equation solution from, 633–634 Laplace’s equation boundary conditions associated with, 616–622 circular domain, 619–622 cylindrical domain, 622–625 Dirichlet boundary conditions, 616, 622 Dirichlet boundary value problems, 619–625 existence and uniqueness of solutions and, 625–626 explanation of, 616–617 heat equation and, 562 invariance of, 627 mean value property, 635 modified Bessel functions for, 624 Neumann boundary conditions, 616, 622 Poisson’s integral formula for, 635 rectangular domain, 617–619 separation of variables using, 617–625 Laplacian, 562 Least-squares approximation property, 585 Least-squares linear fit, 99 Least-squares method, A-14–A-15 Legendre, Adrien Marie, 480n Legendre polynomials, 481–482, 486 Legendre’s equation explanation of, 202, 450, 480 special functions and, 480–483 variable-coefficient equation solution using, 202 Lehrer, Tom, 240 Leibniz, Gottfried, 41n, 73n Leibniz’s rule, 364, 417 Length variable representation, 3 Leonardo da Pisa, 349 Level curves, 57 Lifetime, average, 282 Limit set, 299n Limiting (terminal) velocity, 40, 112 Linear algebraic equations, 412–413, 500–503 Linear coefficients, 74–76 Linear dependence of functions, 160, 195, 323–324 of homogeneous equations, 322–324 of three functions, 164–165 of vector functions, 516–517 of Wronskian, 324 Linear differential equations (see also Higher-order differential equations) asymptotic behavior of solutions to, 88–89 basic theory of, 319–325 definition of, 4 existence and uniqueness of solution, 53, 159–160, 182, 192–193, 319 first-order, 48–54, 88–89 method for solving, 50–53 ordinary points, 436–439
power series solutions to, 435–443 second-order, see Linear second-order equations singular points, 436 standard form, 49, 319 Linear differential operators, 244–246, 320–321 Linear factors, 370–373 Linear independence of eigenvectors, 526–528 explanation of, 160 of functions, 160, 194, 323–324 of homogeneous equations, 322–324 fundamental solution sets and, 324, 518 second linearly independent solutions, 465–473 of vector functions, 516–517 Linear operator explanation of, 506 higher-order linear differential equations, 320 inverse Laplace transform as, 368 Laplace transform as, 355 matrices as, 506–507 Linear second-order equations asymptotic behavior of solutions, 239 auxiliary equations for, 158, 161–162, 165–172 Cauchy-Euler, 193–195, 450–453 with complex roots, 165–172 with constant coefficients, 156, 157–163, 201–210 convolution method for, 237 existance and uniqueness of solution, 159–160, 182, 192–193 forced mechanical vibrations and, 221–227 free mechanical vibrations and, 212–220 homogeneous, 157–163 mass-spring oscillator and, 152–156, 169–172, 205–220 nonhomogeneous, 174–191 nonlinear equations and, 201–210, 233–234, 236 power series method and, 435–443 qualitative considerations for variable coefficient and nonlinear, 201–210 reduction of order, 194, 197–198, 327 superposition principle for, 180–185, 200 undetermined coefficients method for, 174–185, 237–238 variable-coefficient, 192–210 variation of parameters and, 187–191, 196 vibrations and, 154, 186–187, 212–220 Wronskian of, 160, 164, 195 Linear systems Cauchy-Euler, 533 elimination method for, 243–249 frequency response modeling of, 418–420 homogeneous, 518–520, 523–530 Laplace transforms for solution of, 412–413
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Index
matrix formulation of, 507 matrix methods for (see also Matrix methods), 496–499 nonhomogeneous, 520, 538–542 in normal form, 515–520 stability of, 411, 533, 538 Linearized equation, 615 Lobachevsky, Nicolai Ivanovich, 240 Local truncation error, 125, 131 Logistic function, 98, 275 Logistic model biomathematics applications, 275 Malthusian vs., 97, 275 phase line for, 34 for population growth, 18–19, 97–100, 275, 281 Long water waves, 615 Lossless line, 638 Lunar orbit equations, 261 Lungs, mechanical ventilation model for, 81–83 Lymphocytes, 141 Maclaurin series, 433n Magnetic field problems, 23, 77, 272–273 Malthus, Thomas R., 96n Malthusian law, 96 Malthusian model of population growth, 96–97 Marginal benefit, 35 Market equilibrium, 147–148 Mass matrix, 559 Mass-spring systems Airy equation, 205–206 auxiliary equations with complex roots, 169–172 Bessel’s equation, 206–207 coupled, 283–287 Duffing equation, 207 equilibrium of, 226–227 examples with, 169–172, 268–269, 283–287 explanation of, 152–156 forced mechanical vibrations and, 221–227 free mechanical vibrations and, 212–220 harmonic motion of, 213 matrix methods and, 498–499 nonlinear equations for, 205–210 periodic motion of, 213 spring stiffness and, 152, 205, 207–210 vibrations of, 212–227 Mathematical models compartmental analysis, 92–100 development of, 91 electrical circuits, 118–121 heating and cooling of buildings and, 102–107 higher-order numerical methods, 132–138 historical background of, 90 idealization of, 90
improved Euler’s method and, 121–129 insulated wire heat flow, 560–562, 592–602 mechanical ventilation, 81–83 Newtonian mechanics and, 109–115 numerical methods, 121–129, 132–138 oil spill, 80–81 parameters, 92n population dynamics and, 255–258 risk aversion, 86–87 Runge-Kutta method, 133–138, 257–258 Taylor method, 132–134 tests of, 91–92 utility functions, risk aversion using, 86–87 Mathieu’s equation, 212 Matrices algebra of, 496, 505–512 calculus of, 512–513 coefficient, 498 defective, 548 diagonal, 505 explanation of, 504–505 functions, 513, 545–551 fundamental, 518, 546–548 inverse of, 508–510 nilpotent, 547–548 normal form, 497–498 product of, 496–499 symmetric, 529–530 square, 505 transpose, 507 zero, 505 Matrix exponential function fundamental matrices and, 546–548 generalized eigenvector and, 548–549 nilpotent matrices and, 547–548 properties of, 545–546 solving x′ = Ax using, 549–551 Matrix methods complex eigenvalues and, 534–537 constant coefficients and, 523–530 homogeneous linear systems and, 518–520, 523–530 introduction to, 496–499 Laplace transform method, 558 linear algebraic equations and, 500–503 linear systems in normal form and, 515–520 matrices and vectors and, 504–513 matrix exponential function and, 545–551 nonhomogeneous linear systems and, 520, 538–542 uncoupling normal systems, 557 undamped second-order systems, 559 Maximum principles, 601–602 Mean value property, 635 Mechanical ventilation, model for, 81–83 Mechanical vibrations forced, 221–227 free, 212–220
I-7
Mechanics explanation of, 109 Newtonian, 109–115 procedure for models, 110 units for, 110 Mesh points, 636 Method of Frobenius, 455–465 Method of isoclines, 19–20 Method of least squares, A-14–A-15 Method of order p, 124–125, 132–133 Method of substitution, A-3–A-5 Midpoint method, 133–134 Minor of a matrix, 510 Mixing problems common drains and, 533 compartmental analysis for, 92–95 first-order equations and, 47, 56 interconnected tanks of, 241–243, 533, 544 Laplace transforms and, 350–352 Modal analysis, 286n Models. See Mathematical models Modes of a system, 595 Modified Bessel equation, 207, 624 Modified Bessel functions, 624 Moore, Gordon E., 274n Moore’s law, 274n Motion critically damped, 216–217 of falling bodies, 1–2, 38–40, 273 force of gravity and, 1, 38 harmonic, 213 nutation, 273–274 of objects that bob, 310–311 overdamped, 170, 216 pendulum analysis, 208–210 periodic, 213 underdamped (oscillating), 215 vibration of mass-spring system, 212–220 MRSA (staph) infection model, 308–310 Multiplication, matrix, 505–506 Multistep methods, 149 Natural frequency, 213, 286 Neumann boundary conditions, 616, 622 Neumann function, 478 Neuron synapses firing, 57 Newton’s law of cooling, 29, 47, 102 Newton’s law of motion, 109 Newton’s method approximating solutions using, A-9–A-11 convergence of, A-11 Newton’s second law explanation of, 1, 38, 267 mass-spring systems and, 152, 169, 283, 286 Newtonian mechanics inertial reference frame for, 109 model examples, 110–115 procedure for models, 110 terminal (limiting) velocity and, 112 units for, 110
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
I-8
Index
Nilpotent matrix, 547–548 Nodes, 33, 267, 639 Nonhomogeneous boundary conditions, 596 Nonhomogeneous equations annihilator method for, 334–337 existence and uniqueness of solutions, 182 explanation of, 157, 174, 319 general solution, 196, 325 higher-order differential equation solutions, 325, 334–337 method of undetermined coefficients for, 184–185, 337 power series and, 449 superposition and, 180–185 undetermined coefficients and, 174–185, 237–238, 334–337 variation of parameters and, 187–191, 196, 338–340 Nonhomogeneous linear systems explanation of, 515 general solution to, 520 representation of solutions for, 520 undetermined coefficients and, 538–540 variation of parameters and, 540–542 Nonlinear equations Duffing equation, 207 energy integral lemma for, 203–205 explanation of, 4 linearization of, 236 mass-spring oscillator analogy, 205–208 nonlinear solutions using, 233–234 numerical solutions, 201–202 oscillations and, 260 pendulum motion analysis, 208–210 qualitative considerations for, 201–210 solvable by first-order techniques, 233–234 van der Pol equation, 208 Nonlinear spring model, 260 Norm of Fourier series, 579, 585 Normal form Euler’s method in, 253–255 explanation of, 252–253, 497 higher-order equations in, 252–255 linear systems in, 515–520 matrix algebra and, 497–498 system solutions in, 252–255 Normal frequencies, angular, 286, 536 Normal modes, 286 Normal systems, 520, 557 Numerical methods Airy’s equation, 205–206 Bessel’s equation, 206–207 convergence and, 124–126 Dirichlet problem general solution using, 635–637 Euler’s method, 23–27, 121–129, 253–255 for higher-order equations and systems, 252–258 higher-order, 132–138 implicit method, 125
improved Euler’s method, 121–129 Legendre’s equation, 202 mathematical models using, 121–129, 132–138 multistep, 149 predictor-corrector method, 125–126 relative error, 128 Runge-Kutta method, 133–138, 255–258, A-16–A-17 stability of, 125, 148–149 system analysis using, 252–258 Taylor method, 132–134 truncation error, 125, 131 Nutation, 273–274 Oil spill model, 80–81 One-dimensional heat flow equation, 561 One-parameter family of solutions, 8 Operators differential, 243–249, 251, 320–321 integral, 353 linear, 320, 355, 368, 506–507 Ordinary differential equations, 4, 6 Ordinary points, 436–439 Orthogonal expansions, 579–580 Orthogonal system, 579 Orthogonal trajectories, 23, 65 Orthogonality classical polynomials, 482 Fourier series and, 574–575 Legendre polynomials and, 481 Orthonormal system, 579 Oscillation explanation of, 215 nonlinear equations and, 260 Oscillators (see also Mass-spring systems) 152–156, 169–172, 212–220, 285–289 Overdamped motion, 170, 216 Parachutist example, 113–114 Parameters (see also Variation of parameters) 92n Parseval’s identity, 586 Partial differential equations eigenfunctions for, 564–565 electromagnetic wave transmission, 637–638 explanation of, 3, 4 Fourier cosine and sine series and, 587–591 Fourier series and, 571–584 Green’s function for, 634–635 heat equation and, 592–602 heat flow model for, 560–562 Laplace transform solution for, 633–634 Laplace’s equation and, 616–626 numerical method for Dirichlet problem, 635–637 separation of variables method and, 563–570 steady-state temperature distribution using, 631–633
transmission line models, 637–639 wave equation and, 603–614, 633–634 Partial fractions method, 370, A-7–A-8 Parts, integration by, A-5–A-6 Pendulums angular momentum, 211 chaotic behavior of, 301 motion analysis, 208–210, 211, 235–236, 260, 261, 288–289 nonlinear equations for, 208–210 spring, 261 torque, 211 with varying length, 260 Period doubling, model for, 150–151 Periodic functions, 392–393 Periodic motion, 213, 268–269 Periodic solutions, 269 Phase angle, 419 Phase line, 33–34 Phase-locked loops, 317–318 Phase plane analysis, 262–270 Phase plane equation, 262 Phase portrait, 262, 270 Phase velocity, 615 Picard-Lindelöf existence theorem, 32n Picard’s method, 32–33 Piecewise continuity explanation of, 357, 571 Laplace transform and, 357, 359, 379 symmetric functions and, 572 Plucked string problem, 614 Poincaré maps, 296–299, 301–302 Poincaré sections, 296 Pointwise convergence, 581 Poisson’s integral formula, 635 Polynomials characteristic, 524 Chebyshev, 482, 487 classical orthogonal, 482 Gegenbauer, 482 Hermite, 482, 487 Jacobi, 482 Laguerre, 482, 487 Legendre, 481–482, 486 spherical, 481 Taylor, 421–425 ultraspherical, 482 Pooling delay, 250–251 Population models dynamics model, 255–258 growth rate, 95–100, 274–276 integro-differential equations, 401 logistics model, 97–100, 275 Malthusian model, 96–97, 274–275 tumor growth, 274–276 Potential energy, 312 Power functions derivative of, A-2 explanation of, 392 transforms of, 393–394
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Index
Power series analytic coefficients for, 446–449 analytic functions and, 432–433 convergence and, 726–730 differentiation and integration of, 429–430 explanation of, 426–430 index of summation, 430–431 linear differential equations and, 435–443 vanishing on an interval, 428–429 Predator-prey models, 255–258, 260, 275 Predictor-corrector method, 125–126 Product, derivative of, A-2 Pythagorean property, 585 Quadratic factors, 373–374 Quasifrequency, 215 Quasiperiod, 215 Quicksort algorithm, 491–492 Quotient, derivative of, A-2 Radiation, Sefan’s law of, 29 Radioactive decay models, 2, 38, 52, 54, 102, 274–275 Radioisotope dosage, 281 Radius of convergence analytic coefficients and, 445–446 explanation of, 427 minimum value for, 446 ratio test for, 427–428 Ranvier nodes, 639 Rate of change, 2, 241–243 Ratio test, 427–428, 434 Rayleigh equation, 211 RC circuit, 118–121 Rectangular domain, Laplace’s equation for, 617–619 Rectangular window function, 384–386 Recurrence relation, 438, 482 Reduction of order, 194, 197–198, 327 Regular singular points, 455 Relative error, 128 Removable singularities, 436n Repeated roots, 162, 330–331 Residue computation, 375 Resistance, 118 Resonance curve, 223–225 Resonance frequencies, 224 Reverse osmosis model, 198 Riccati, Jacopo, 77n Riccati equation, 77 Rigid body nutation, 273–274 Risk aversion model, 86–87 RL circuit, 118–121, 544 RLC circuit, 289–291, 538, 638 Rocket flight, 117 Rodrigues’s formula, 482, 486 Roots auxiliary equations, 158, 161–162, 165–172, 328–331 complex, 165–172, 330
complex conjugate, 168, 534n distinct real, 161, 328–329 double, 162–163 real solution derived from complex, 167–168 repeated, 162, 330–331 Row operation, 509–510 Runge, C., 133n Runge-Kutta method classical fourth-order algorithms, 134–138, 255–258, A-16–A-17 competing species, subroutine for, 261 midpoint method, 133–134 procedures for n equations, A-16–A-17 for systems, 255–258 Saddle point, 266–267 Sawtooth wave, 396 Scalar multiplication, 505 Scatter diagrams, 99 Schrödinger’s equation, 492–493 Second linearly independent soutions, 465–473 Second-order linear equations. See Linear second-order equations Secretion of hormones problem, 57 Selfadjoint form, 481 Separable equations explanation of, 41 justification of method, 45 method of solving, 42–45 Separation of variables eigenfunction properties, 565 explanation of, 38–39, 562 heat flow model and, 562, 592–595 Laplace’s equation and, 617–625 method of, 563–570 partial differential equations and, 562, 563–570 initial-boundary problem solution using, 567–569, 607 wave equation and, 604–605, 607 Series solutions Airy’s equations, 493 alphabetization algorithms, 491–492 analytical functions and, 432–433 Bessel functions for, 495 buckling of a tower, 493–494 Cauchy-Euler equations and, 450–453 equations with analytic coefficients and, 445–449 linear differential equations and, 435–443 method of Frobenius and, 454–463 power series, 426–433, 435–443 second linearly independent, 465–473 Shrödinger’s equations for, 492–493 special functions and, 474–484 spherically symmetric, 492 spring-mass system with aging spring, 495 Taylor polynomial approximation and, 421–425
I-9
Similarity transformation, 530 Simple harmonic equation, 165 Simple harmonic motion, 213 Simpson’s rule, A-11–A-12 Singular points Cauchy-Euler equations and, 454–459 explanation of, 436 exponents of, 456 first-order, 55–56 irregular, 455 regular, 455 Singular solutions, 85 Sink, 33 Sinusoidal response, 221 Sinusoidal signal inputs, 317, 419–420 SIR epidemic model, 276–279 Snowplow problems, 84–85 Software for analyzing differential equations, A-17–A-18 Solar collector design, 87–88 Solar water heater problem, 108 Solution sets, fundamental, 324, 518 Solutions asymptotic behavior of, 88–89, 239 Clairaut equations and, 85 constant multiples of, 55 differential equations, 6–13, 88–89 equilibrium, 264 explicit, 6–7 formal, 569, 595 fundamental sets, 324, 326 general. See General solutions homogeneous equations, 322–323 implicit, 8–9 initial value problem, 10–13, 86, 158–159, 195, 516 linear combinations of, 157–158 linear dependence of, 160, 195, 324 linear independence of, 160, 194, 324 not expressed using elementary functions, 46 real derived from complex, 167–168 series. See Series solutions singular, 85 spherically symmetric, 492–493 steady-state, 222, 418–419, 596 transient, 222, 596 unique. See Existence and uniqueness of solutions Wronskian of, 321–324 Special functions Bessel’s equation, 477–480 for differential equations, 483–484 explanation of, 474–475 hypergeometric equation, 475–477 Legendre’s equation, 480–483 Special integrating factors, 66–69 Specific heat capacity, 561 Speed bump problem, 187 Spherical Bessel functions, 485
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
I-10
Index
Spherical polynomials, 481 Spherically symmetric solutions, 492–493 Spiral (trajectory) point, 267 Spring stiffness, 152, 205, 207–210 Springs (see also Mass-spring systems) aging, 450, 495 Bessel functions and, 495 nonlinear, 260 pendulum motion analysis, 261 soft vs. hard, 425 vibrating, 173 Square matrix, 505, 545–551 Square pulse, 384 Square wave, 396 Stability absolute, 148 asymptotic, 264, 411, 533 homogeneous linear systems, 533, 538 linear systems, 411 market equilibrium and, 147–148 numerical methods, 125, 148–149 trapezoid scheme, 125 Stable equilibrium, 243 Stable systems, 264, 267, 411, 533 Standard form, linear differential equations in, 49, 319 Standing wave, 603–604 Staph (MRSA) infection model, 308–310 Static friction, 117 Steady-state current, 291 Steady-state response, 223 Steady-state solutions circuit analysis, 291 explanation of, 222, 418 frequency response modeling, 418–419 heat flow model, 596 to sinusoidal inputs, 419 vibrations, 222–223 Steady-state temperature distribution in circular cylinder, 631–633 Stefan’s law of radiation, 29, 108 Step size, 23, 122 Sticky friction, 273 Stiffness matrix, 559 Stopping procedure subroutine, 128 Strange attractors, 299, 301 Struck string problem, 614 Sturm-Liouville equations, 259 Subharmonics, 296 Substitutions Bernoulli equations, 73–74 equations of form dy/dx = G(ax + by), 72–73 equations with linear coefficients, 74–76 homogeneous equations, 70–72 method of, A-3–A-5 procedure for, 70 transformations and, 70–76 trigonometric, A-4–A-5 Summation index, 430–431
Superposition principle explanation of, 181, 519 linear systems, 519 undetermined coefficients and, 180–185 variable coefficients and, 200 Supply function, 147 Suspended cable, 233–234 Swinging door problem, 173 Symmetric functions, 572 Symmetric matrices, 515, 529–530 System analysis biomathematics applications, 274–280 bobbing motion model, 310–311 chaotic systems, 299–303 coupled mass-spring systems, 283–287 differential operators for, 243–249 dynamical systems, 295–303 Ebola epidemic model, 314–316 electrical systems, 289–293 elimination method for, 243–249 general solution for, 246 Great Lakes clean up model, 313–314 Hamiltonian systems, 311–313 interconnected fluid tanks, 241–243 landing system design and, 307–308 Laplace transforms for, 412–413 linear systems, 243–249, 412–413 numerical methods for, 252–258 phase-locked loop circuits, 317–318 phase plane analysis and, 262–270 Poincaré maps, 296–299, 301–302 population dynamics model, 255–258 staph (MRSA) infection model, 308–310 undamped second-order, 559 System parameters, 420 Taylor method of order p, 132–134 Taylor polynomial approximation explanation of, 36–37, 421–422 series solutions and, 421–425 Taylor series (see also Power series) 36–37, 422, 433 Tchebichef (Chebyshev) polynomials, 482, 487 Technetium-99m decay rate, 281 Telegraph problem, 615 Telegrapher’s equations, 638 Temperature distribution in a circular cylinder, 631–633 Temperature of buildings, 102–103, 131 Terminal velocity, 40, 112, 273 Thermal radiation, 29 Threshold value, 278 Time constant, 104–107 Time paths, market equilibrium and, 147–148 Time-shifted pair, 262 Time variable representation, 3, 10 Tolerance classical fourth-order Runge-Kutta algorithm with, 136, A-17 improved Euler’s method with, 128
Torque, 211 Torricelli’s law of fluid flow, 83–84 Total differential, 58 Towers, buckling of, 493–494 Trajectories behaviors of, 267 explanation of, 262 orthogonal, 23, 65 phase plane equations, 262–270 phase portraits of, 262, 270 Transfer function convolution and, 401–402 Duhamel’s formula and, 417–418 impulses and, 410 Laplace tranforms and, 366, 401–402, 410 Transformations. See Substitutions Transient current, 291 Transient solution heat flow model, 596 Poincaré maps and, 300 vibrations, 222 Translation discontinuous functions and, 386–389 inverse Laplace transform as, 386 Laplace transform as, 361–362, 386 Transmission lines cable equation, 639 numerical model for, 140 partial differential equations for, 637–639 telegrapher’s equations, 638 Transpose a matrix, 507 Transverse vibrations of a beam, 347 Trapezoid scheme, 125 Travelling waves, 610–611 Triangular wave, 396 Trig functions, derivative of, A-2 Trigonometric substitutions, A-4–A-5 Truncation error, 125, 131 Tumor growth model, 279–280 Tunnel, 240 U.S. census data problem, 101 Ultraspherical polynomials, 482 Uncoupling normal systems, 557 Undamped, free vibrations, 212–215 Undamped second-order systems, 559 Underdamped motion, 215 Undetermined coefficients method annihilator method and, 334–337, 346 complex arithmetic for, 237–238 explanation of, 174–180, 183–185, 337 nonhomogeneous linear equations and, 334–337 nonhomogeneous linear systems and, 174–185, 538–540 superposition principle and, 180–185 Uniform convergence, 582 Uniform waves, 615 Unique solutions (see also Existence and uniqueness of solutions), 2, 11–13, 602
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
Index
Unit step function, 384 Unit triangular pulse, 391 Unstable systems, 533 Utility functions, risk aversion model using, 86–87 van der Pol equation, 208, 426 Variable-coefficient equations Cauchy-Euler equations, 193–195 energy integral lemma for, 203–205 existance and uniqueness of solutions, 192–193 of higher order, 319 initial value solution using, 195 Legendre’s equation, 202 qualitative considerations for, 201–210 reduction of order, 197–198 of second order, 192–198, 201–210 variation of parameters, 196 Variable resistor, 444 Variable spring constant, 445 Variables differential equations using, 4 model development, 91 separation of, 38–39 (see also Separation of variables) Variation of parameters explanation of, 56, 187–191, 196 higher-order equations and, 338–340 nonhomogeneous linear equations, 187–191 nonhomogeneous linear systems and, 540–542
variable-coefficient equations, 196 Vector functions, 516–518 Vectors, 322, 505 Velocity escape, 117 group, 615 limiting or terminal, 40, 112, 273 phase, 615 Ventilation, 81 Verhulst, P.F., 98n Vibrating beam problem, 333 Vibrating drums, 615–616 Vibrating membrane, 607–608 Vibrating spring problems, 173 Vibrating strings, 3, 612–614 Vibrations critically damped motion, 216–217 desire or supression of, 154 forced, 186–187, 221–227 free, 212–220 frequency and, 213 mass-spring system and, 212–220 overdamped motion, 216 transverse, 333, 347 undamped motion, 212–215 underdamped motion, 215 Virus (HIV) infection models, 141 Volterra, V., 401 Volterra-Lotka system, 255–258, 260, 262, 275–276
I-11
Wave equation d’Alembert’s solution for, 609–611 existance and uniqueness of solutions, 612–614 explanation of, 603 Fourier series and, 603–614, 633–634 fundamental frequency and, 605–606 initial-boundary value problems, 606–610 Laplace transform solution of, 633–634 separation of variables and, 604–605, 607 standing waves, 603–604 travelling waves, 610–611 vibrating string problem and, 612–614 Weber function, 478 Window functions, 384–386 Wire, heat flow in insulated, 560–562, 592–602 Wronskian definition of, 160, 164, 195, 321, 517 fundamental sets, linear dependence and, 324, 517–518 linear combination functions and, 321–323 linear second-order equations and, 164, 195 variable-coefficient equations, 195 vector functions and, 322, 517–518 Young’s modulus, 333, 347 Zero matrix, 505 Zeros, isolated, 201 Zeroth derivatives, 157n
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A BRIEF TABLE OF INTEGRALS*
1 1 f1u2 + g1u22du = 1 f1u2du + 1 g1u2du.
1 cf1u2du = c 1 f1u2du.
un+1 n 1 u du = n + 1 ,
1 u dv = uv - 1 v du.
u u 1 ue du = 1u - 12e .
u u 1 e du = e .
au u 1 a du = ln a ,
du 1 u = ln 0 u 0 .
n ≠ - 1.
n u n u n-1 u 1 u e du = u e - n 1 u e du.
du 1 u ln u = ln 0 ln u 0 .
1 ln u du = u ln u - u.
a 7 0, a ≠ 1.
ln u 1 n n+1 a b, 1 u ln u du = u n + 1 1n + 12 2
du 1 u 1 a2 + u2 = a arctan a .
n ≠ - 1.
u-a du 1 1 u2 - a2 = 2a ln ` u + a ` .
a+u du 1 1 a2 - u2 = 2a ln ` a - u ` .
a + bu 1 du 1 1a + bu21a + bu2 = ab - ab ln ` a + bu ` 1 a u du a 1 1a + bu21a + bu2 = ab - ab c b ln 0 a + bu 0 - b ln 0 a + bu 0 d .
1
1
du 2u + a 2
2
= ln @ u + 2u2 + a2 @ .
u = arcsin , a 2a - u du 2
2
1 sin u du = -cos u.
1
a2 Ú u2.
du 2u2 - a2
1
= ln @ u + 2u2 - a2 @ ,
du u2u - a 2
1 cos u du = sin u.
1 cot u du = ln 0 sin u 0 . 1 csc u du = -ln 0 csc u + cot u 0 = ln 0 csc u - cot u 0 . 2 1 sec u du = tan u. 2 1 1 1 sin u du = 2 u - 4 sin 2u. n 1 sin u du = -
2 1 csc u du = -cot u. 2 1 1 1 cos u du = 2 u + 4 sin 2u.
2
=
1 a arccos , a u
u2 Ú a2.
u 7 a 7 0.
1 tan u du = - ln 0 cos u 0 . 1 sec u du = ln 0 sec u + tan u 0 .
1 sec u tan u du = sec u. 2 1 tan u du = tan u - u.
sinn - 1u cos u n - 1 + sinn - 2u du. n n 1
n 1 cos u du =
cosn - 1u sin u n - 1 + cosn - 2u du. n n 1
*Note: An arbitrary constant is to be added to each indefinite integral.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A BRIEF TABLE OF INTEGRALS* (continued)
1 u sin u du = sin u - u cos u.
n n n-1 1 u sin u du = -u cos u + n 1 u cos u du.
1 u cos u du = cos u + u sin u.
n n n-1 1 u cos u du = u sin u - n 1 u sin u du.
au 1 e sin nu du =
eau 1a sin nu - n cos nu2 a2 + n2
au 1 e cos nu du =
.
sin1a + b2u sin1a - b2u 1 sin au sin bu du = - 21a + b2 + 21a - b2 ,
1 cos au cos bu du =
sin1a + b2u sin1a - b2u + , 21a + b2 21a - b2
L0
.
a2 ≠ b2. a2 ≠ b2.
1 sinh u du = cosh u. Γ1t2 =
a2 + n2
a2 ≠ b2.
cos1a + b2u cos1a - b2u 1 sin au cos bu du = - 21a + b2 - 21a - b2 ,
∞
eau 1a cos nu + n sin nu2
1 cosh u du = sinh u.
e-uut - 1du, t 7 0;
Γ 1 12 2 = 2p; and Γ1n + 12 = n!, if n is a positive integer.
SOME POWER SERIES EXPANSIONS f1x2 = f1a2 + f ′1a21x - a2 +
f ″1a2 2!
1x - a2 2 + g +
f 1n2 1a2 1x - a2 n + g 1Taylor series2 n!
∞ 1 -12 nx 2n + 1 sin x = a n = 0 12n + 12!
∞ xn ex = a n = 0 n! ∞
11 - x2 -1 = a x n n=0
∞
n=0
x3 1#3 5 1#3#5 7 + x + x +g 2#3 2#4#5 2#4#6#7
∞ 1 -12 kx 2k J0 1x2 = a 2 2k k = 0 1k!2 2
∞ xn ln11 - x2 = - a n=1 n
11 - x2 -2 = a 1n + 12x n
2 x5 + 17 x7 + 62 x9 + tan x = x + 13 x3 + 15 g 315 2835
arcsin x = x +
1 -12 nx2n n = 0 12n2! ∞
cos x = a
∞ 1 -12 kx2k + 1 J1 1x2 = a 2k + 1 k = 0 k!1k + 12!2
∞ x2n + 1 arctan x = a 1 -12 n 2n + 1 n=0
∞ 1 -12 kx2k + n Jn 1x2 = a 2k + n k = 0 k!Γ1n + k + 122
*Note: An arbitrary constant is to be added to each indefinite integral.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
LINEAR FIRST-ORDER EQUATIONS
The solution to y′ + P1x2y = Q1x2 taking the value y1x0 2 at x = x0 is y1x2 = e- Lx0 P1j2dj c x
x
Lx0
e Lx0 P1z2dz Q1j2dj + y1x0 2 d . j
METHOD OF UNDETERMINED COEFFICIENTS To find a particular solution to the constant-coefficient differential equation ay″ + by′ + cy = Pm 1t2ert ,
where Pm 1t2 is a polynomial of degree m, use the form yp 1t2 = t s 1Amt m + g + A1t + A0 2ert ;
if r is not a root of the associated auxiliary equation, take s = 0; if r is a simple root of the associated auxiliary equation, take s = 1; and if r is a double root of the associated auxiliary equation, take s = 2. To find a particular solution to the differential equation ay″ + by′ + cy = Pm 1t2eat cos bt + Qn 1t2eat sin bt , b ≠ 0 ,
where Pm 1t2 is a polynomial of degree m and Qn 1t2 is a polynomial of degree n, use the form yp 1t2 = t s 1Akt k + g + A1t + A0 2eat cos bt
+ t s 1Bkt k + g + B1t + B0 2eat sin bt ,
where k is the larger of m and n. If a + ib is not a root of the associated auxiliary equation, take s = 0; if a + ib is a root of the associated auxiliary equation, take s = 1.
VARIATION OF PARAMETERS FORMULA If y1 and y2 are two linearly independent solutions to ay″ + by ′ + cy = 0, then a particular solution to ay″ + by ′ + cy = f is y = y1y1 + y2y2, where y1 1t2 =
-f1t2y2 1t2 dt, L aW3y1, y2 4 1t2
y2 1t2 =
f1t2y1 1t2 dt, L aW3y1, y2 4 1t2
and W3y1, y2 4 1t2 = y1 1t2y2= 1t2 - y1= 1t2y2 1t2.
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
A TABLE OF LAPLACE TRANSFORMS
f 1t2
F1s2 = ℒ5 f 6 1s2
f 1t2 1
2p
2t
2s
F1s - a2
21. 2t
2p 2s3/2
sF1s2 - f102
22. t n - 11>22,
1. f1at2
s 1 Fa b a a
20.
2. eat f1t2 3. f ′1t2 4. f 1n2 1t2
snF1s2 - sn - 1f102 - sn - 2f ′102
5. t n f1t2 6.
1 f1t2 t
1 -12 nF 1n2 1s2
25. cos bt
F1s2 s
n = 1, 2, c
r7 -1
24. sin bt
∞
t
23. t r,
- g - sf 1n - 22 102 - f 1n - 12 102
1s F1u2du
7. 10 f1y2dy
F1s2 = ℒ5 f 6 1s2
26. eat sin bt 27. eat cos bt
1 # 3 # 5 g 12n - 12 2p
2ns n + 11/22 Γ1r + 12 sr+1 b 2 s + b2 s s2 + b2 b 1s - a2 2 + b2 s-a 1s - a2 2 + b2
8. 1 f * g21t2
F1s2 G1s2
28. sinh bt
9. f1t + T2 = f1t2
-st 10 e f1t2dt 1 - e-sT
29. cosh bt
10. f1t - a2 u1t - a2, a Ú 0
e-asF1s2
30. sin bt - bt cos bt
2b3 1s + b2 2 2
11. g1t2 u1t - a2, a Ú 0
e-as ℒ5g1t + a261s2
31. t sin bt
2bs 1s + b2 2 2
12. u1t - a2, a Ú 0
e-as s
32. sin bt + bt cos bt
2bs2 1s + b2 2 2
13. q a,b 1t2,
06a6b
e-sa - e-sb s
33. t cos bt
s2 - b2 1s2 + b2 2 2
14. d1t - a2,
aÚ0
e-as
34. sin bt cosh bt - cos bt sinh bt
1 s-a
35. sin bt sinh bt
T
15. eat 16. t n, n = 1, 2, c 17. eatt n, n = 1, 2, c
n! sn+1 n! 1s - a2 n + 1
1a - b2
18. eat - ebt
1s - a21s - b2
19. aeat - bebt
1s - a21s - b2
b s - b2 s s2 - b2 2
2
2
2
4b3 s + 4b4 2b2s s4 + 4b4 4
36. sinh bt - sin bt
2b3 s4 - b4
37. cosh bt - cos bt
2b2s s - b4
38. Jv 1bt2, v 7 - 1
1a - b2s
4
1 2s2 + b2 - s 2 v bv 2s2 + b2
MATH 54 Linear Algebra and Differential Equations, Second Custom Edition for University of California Berkeley. Copyright © 2021 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.