Mark Beck Quantum Mechanics Solution

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Quantum Mechanics: Theory and Experiment Solutions Manual

Mark Beck Whitman College

© 2012 This material is protected by copyright and cannot be reproduced without permission.

Chapter 1 Mathematical Preliminaries 1.1

(Sec. 1.1) Data A (xi): x 

10, 13, 14, 14, 6, 8, 7, 9, 12, 14, 13, 11, 10, 7, 7

1 15  xi  10.33 15 i 1

x2 

 x 2

1 15 2  xi  114.60 15 i 1

 x2  x

1.2

(Sec. 1.1)

1.3

(Sec. 1.1)

2

 7.8

1  4  3  2 5    5.5      7.5      9.5     11.5     13.5     15   15   15   15   15   10.30

1.4

(Sec. 1.1) Using

 x 2

2

 x2  x :

1

2

Chapter 1 2 1  2 4  2 3  2 2  2 5   2   5.5      7.5      9.5     11.5     13.5     15   15   15   15   15   113.5

  2 Using

 2  

 x 2

   

2



2

 113.5  10.3  7.4

x  x 

2

2

:

2 1  2 4  2 3    5.5  10.3     5.5  10.3     5.5  10.3    15   15   15  2 2  2 5    5.5  10.3     5.5  10.3    15   15   7.4

Both of these values agree, to within our precision; however, they do not agree with the value from Problem 1.1. This is because in this problem we used an estimate of the probability distribution, which is necessarily imprecise. The direct calculation of the variance from the data is more accurate. 1.5

(Sec. 1.1) Data B (xi,yi):(3,4), (5,8), (4,4), (8,5), (3,5), (4,5), (5,8), (8,5), (8,4), (3,4), (3,8), (4,8) 4 1 3 1 2 1 3 1  , P ( x  4)   , P ( x  5)   , P ( x  8)   12 3 12 4 12 6 12 4 4 1 4 1 4 1 P ( y  3)  0 , P( y  4)   , P( y  5)   , P ( y  8)   12 3 12 3 12 3 P ( x  3) 

1.6*

(Sec. 1.1) P ( x  5, y  8) 

2 1  12 6

P ( x  5 | y  8) 

2 1  4 2

 1  1  1 P ( x  5 | y  8) P ( y  8)        P ( x  5, y  8)  2  3  6

Chapter 1 1.7

(Sec. 1.1) 10

10



1

p( x)dx  c 

10

 5  3x 

10

2

4

dx x 10

1  3x  5   c tan 1   6  2  x 10 1  c  tan 1 12.5   tan 1  17.5   6  c  0.50  1 Therefore, c=2. 10

x 



xp( x)dx

10 10

2

10

x

 5  3x 

2

4

dx x 10

1 5 2  5  3x   log  5  3x   4   tan 1     9 9  2  x 10 1 5 1 5  log  629  tan 1  12.5   log 1229  tan 1 17.5  9 9 9 9  1.60 10

x

2





x 2 p ( x)dx

10 10

2

10

x2

 5  3x 

2

4

dx

10 2 7  5  3 x   10 2  log  5  3x   4   x  tan 1      9 27 9  2   27

x 10

x 10

10 20 7 10 20 7 log  629   tan 1  12.5   log 1229   tan 1 17.5  27 9 9 27 9 9  6.53 

x 

x2  x

2

 6.53  1.60   1.99 2

3

4

Chapter 1

1.8

(Sec. 1.1) ce x x  0 , p ( x)   0 x 0   where  is a positive, real constant. Compute x and x for this distribution. 





p ( x)dx  c  e x dx



0



c x e 

 0

x 

x 0

c 

1

Therefore, c   

x 



xp( x)dx

 

   xe x dx 0

x  1 x  e  

x 

x 0

1  

x

2





x 2 p( x)dx

 

   x 2 e x dx 0

x  x  2   2 x  e 2 

x 

x 

x 0

2 2 x2  x

2

2



2 1 1    2   

Chapter 1 1.9

5

(Sec. 1.1) This is a Gaussian, or normal, distribution. A standard integral table, or statistics textbook, will tell you that the mean of this distribution is  , and the standard deviation is  / 2 .

1.10

(Sec. 1.2) N

bi   M ij a j j 1

b1   5 1   0  6    4  3  17 b2   31  1 6    0  3  9 b3   0 1   0  6    2  3  6

 5 0 4   1  17        3 1 06   9  0 0 2 3  6      

1.11

(Sec. 1.2) N

M ij   A ik Bkj k 1

M11   5  0    0  8    4  3  12 M12   5  2    0  0    4  0   10 M13   5  7    0 1   4  0   35 M 21   3 0   1 8    0  3  8 M 22   3 2   1 0    0  0   6

M 23   3 7   11   0  0   22 M 31   0  0    0  8    2  3  6 M 32   0  2    0  0    2  0   0 M 33   0  7    0 1   2  0   0

 5 0 4   0 2 7   12 10 35        3 1 0   8 0 1    8 6 22  0 0 23 0 0  6 0 0      

6

Chapter 1

1.12* (Sec. 1.2)  5 0   2 1  10 5  a)      3 7   0 0   6 3  2 1   5 0  13 7  b)      0 03 7  0 0 Are they the same? Clearly not. These matrices do not commute. 1.13

(Sec. 1.2) 4 2   4  8    2 1  30 1 8

1.14

(Sec. 1.2) 5 0 4 1 0 3 0 3 1 0 4 3 1 0 5 0 2 2 2 2 0 2 0 2   5  2   0   4  2  2

1.15

(Sec. 1.2) a) 1  1 2  1     1 1 1   1  2   2  1      2  0 Eigenvalues are  a  0,  b  2 For  a  0 : 1   xa  1  0     0  1 1  0   xb 

xa  xb  0 xb   xa

Chapter 1 A normalized eigenvector is thus 1 1   . 2  1 For  b  2 : 1   xa  1  2     0  1 1  2   xb 

 xa  xb  0

xb  xa A normalized eigenvector is thus 1 1   . 2 1 b) To show that they’re orthogonal, compute the inner product: 1 1 1 1 1 1    1  1  0 . 2 2 1 2 So, they’re orthogonal. 1.16* (Sec. 1.2) a) 0 i  2 1  0 0 i Eigenvalues are  a  1,  b  1 For  a  1 :  0  1 i   xa      0 0  1  xb   i

ixa  xb  0 xb  ixa

7

8

Chapter 1 A normalized eigenvector is thus 1 1   . 2 i For  b  1 :  0  1 i   xa      0 0  1  xb   i

ixa  xb  0 xb  ixa A normalized eigenvector is thus 1 1  . 2  i  b) To show that they’re orthogonal, compute the inner product: 1 1 1 1 1 i     1  1  0 . 2 2  i  2 So, they’re orthogonal.

Chapter 2 Classical Description of Polarization 2.1

(Sec. 2.3) The magnitude of field reduced by εu , where u is the polarizer axis (a unit vector that makes an angle of  w.r.t. horizontal). Intensity (power per unit area) is proportional to the square of 2 the field, and is thus reduced by ε u . 1  ux  iuy  ux cos   uy sin  2 1  cos   i sin  2 1 i e  2 1  2 1 2 ε L u  2 The amplitude of the electric field is reduced by a factor of 1/ 2 , and the intensity is reduced by 1/2. This result is independent of the angle  . εL u 

2.2 (Sec. 2.4) (a) Remember that the matrices are written right-to-left. 1  1 i  i 0  1 1 1  1  1 i   i i          2  i 1  0 1  2 1 1 2  i 1  1 1 1  0 2i     22 0  0 i    1 0 (b) 0 i 1 0       1 00 1 Vertically polarized light comes out.

9

10

Chapter 2

2.3* (Sec. 2.4) 1/ 2 1/ 2  J  45o    1/ 2 1/ 2  1/ 2   1/ 2 2  1/ 2     1/ 4 1/ 2 1/ 2    2        1 0 eigenvalues are  a  1 ,  b  0 .

For  a  1  1/ 2 1/ 2     0         1/ 2 1/ 2     0  1/ 2       0   normalized eigenvector: x a 

1  1   2  1

For  b  0 1/ 2 1/ 2      0        1/ 2 1/ 2      0  1/ 2       0    normalized eigenvector: xb 

1 1   2  1

(b) 1  1 o   ; this is a beam polarized at +45 , which is transmitted 100% (  a  1 ) 1 2  through the polarizer. 1 1 o  b  0 , xb    ; this is a beam polarized at -45 , which is completely blocked (  b  0 ) by 2  1 the polarizer. a  1 , xa 

These make sense.

Chapter 2

11

2.4 (Sec. 2.4) In other words, we need to prove that J  / 2 ε R  cε L , where c is a complex number with c  1 .  cos 2 sin 2  1  1  J  / 2 ε R       sin 2  cos 2  2  i  1  cos 2  i sin 2     2  sin 2  i cos 2  1   1     cos 2  i sin 2  sin 2  i cos 2  2    cos 2  i sin 2 

cos 2  i sin 2  e  i 2  sin 2  i cos 2  sin 2  i cos 2   cos 2  i sin 2     cos 2  i sin 2  cos 2  i sin 2   cos 2  i sin 2  sin 2 cos 2  i sin 2 2  i cos 2 2  cos 2 sin 2  cos 2 2  sin 2 2 i J  / 2 ε R  e  i 2 

1  1   2 i

 cε L

2.5

(Sec. 2.4)

J  /4 45o

1 1   2 1  i  2 1  i      1 1  i  1 1  i     2 2   /4   /4 i i  e 1 e    2  e i/4 ei/4  ei/2  ei/4  1    2  e i/2 1  ei/4  1 i     2  i 1   ei/4 J  /4  45

12

Chapter 2

Thus, they are the same to within an overall phase factor. 2.6* (Sec. 2.4)  e i 0   1   e i   i   1  i  J ε H          e    e εH . 0  0 10  0  A horizontally polarized beam acquires a phase shift.  e i 0   0   0  J εV          εV  0 11 1 A vertically polarized beam is unaffected.

2.7 (Sec. 2.4) (a)  cos 22 J  / 2 2 J H J  / 2 1    sin 22  cos 22   sin 22

sin 22   1 0   cos 21 sin 21      cos 22   0 0   sin 21  cos 21  sin 22   cos 21 sin 21     cos 22   0 0 

 cos 22 cos 21 cos 22 sin 21     sin 22 cos 21 sin 22 sin 21  (b)  cos 2  cos  sin   J    sin 2    cos  sin  The answer to part (a) is equal to this if 1  2   / 2 .

2.8 (Sec. 2.4) (a)  cos 22 J  / 2 2 JV J  / 2 1    sin 22  cos 22   sin 22

sin 22   0 0   cos 21 sin 21      cos 22   0 1   sin 21  cos 21  sin 22   0 0     cos 22   sin 21  cos 21 

 sin 22 sin 21    cos 22 sin 21

 sin 22 cos 21   cos 22 cos 21 

Chapter 2

13

(b) The Jones matrix for a linear polarizer whose transmission axis makes an angle of  from the vertical is the same as the Jones matrix for a linear polarizer whose transmission axis makes an angle of    / 2 from the horizontal.  cos 2     / 2  cos     / 2  sin     / 2   J  / 2    sin 2     / 2   cos     / 2  sin     / 2    sin 2   sin  cos     cos 2     sin  cos  The answer to part (a) is equal to this if 1  2   / 2 . 2.9* (Sec. 2.4) Sandwich the PAHV between the two half-wave plates. There is more than one possible solution for the angles of the two wave plates. One possible solution is to set 1  2  22.5o . In this case the vertical axis of the PAHV will be equivalent to a linear polarizer oriented at





  2 22.5o  45o from the vertical, which is the same as a polarizer at   45o from the

horizontal. The horizontal axis of the PAHV will be equivalent to a linear polarizer oriented at





  2 22.5o  45o from the horizontal. This combination thus analyzes a beam into its 45o and 45o polarization components, so it is effectively a PA45. 2.10 (Sec. 2.4) (a) J  J  / 4  45 J H J  / 4  45 1 1 i   1 0  1  1 i       2  i 1  0 0  2  i 1  1 1 i   1 i      2  i 1  0 0  1 1 i     2 i 1 



14

Chapter 2

(b) ε  Jε R 1 1 i  1  1       2  i 1  2  i  1 1 0    2 2 0 0 So the beam is completely blocked.

(c) ε  Jε L 1 1 i  1 1      2 i 1  2 i 1 1 2    2 2  2i  1  1    εL 2 i So the beam is transmitted unattenuated with left-circular polarization – it is completely unaffected. 

2.11 (Sec. 2.4) (a) J  J  / 4  45 JV J  / 4  45 1 1 i   0   2  i 1  0 1 1 i   0    2  i 1   i 

1 1 i    2  i 1

0  1  1 i     1  2  i 1  0  1

Chapter 2

15

(b) ε  Jε R 1 1 i 1  1       2  i 1 2  i  1 1  2     2 2  2i  

1 1   2  i 

 εR So the beam is transmitted unattenuated with right-circular polarization – it is completely unaffected.

(c) ε  Jε L 1  1 i  1 1      2  i 1 2  i  1 1 0    2 2 0 0 So the beam is completely blocked.

2.12* (Sec. 2.4) Sandwich the PAHV between the two quarter-wave plates. Set the first quarter-wave plate so that its fast axis makes an angle of 45o from the horizontal, and the second quarter-wave plate so that its fast axis makes an angle of 45o from the horizontal. The horizontal output of the PAHV will pass the left-circular component unaffected, while the vertical output will pass the rightcircular component unaffected. 2.13 (Sec. 2.5) An arbitrary input unit polarization vector is a 2 2 ε i    , where a  b  1 b    0 e i   a   e i b  ε  Jε i        1 0 b   a 

16

Chapter 2 2 2 2 2 2 ε  ei  b  a  b  a  1

2.14 (Sec. 2.5) Using the Jones matrix of Eq. (2.42), the Jones matrix for the -45o output port is 1  1 1  0 ei  1  1 ei  J     .  2  1 1   1 0  2  1 ei 

If the input beam is polarized at +45o the polarization vector of the output beam is ε  Jε 45 1  1 ei  1  1      2  1  e i  2  1  

1  1  ei    2 2  1  e i 

1 1 1 1  ei     2 2  1 1   1  ei  ε 45 . 2 

The intensity of this beam is 2

1 I  I in  1  ei  2 I  in  1  ei  1  e  i  4 I  in  2  ei  e  i  4 I  in 1  cos   . 2

The total output intensity is this, plus the intensity found in Eq. (2.45). I tot 

I in I 1  cos    in 1  cos    Iin . 2 2

Energy is conserved.

Chapter 2

17

2.15*(Sec. 2.5)

The two PHHV’s essentially just split the beams apart and recombine them, so we can effectively ignore them (as long as we do include the relative phase shift).  cos 23 J   sin 23

sin 23   ei   cos 23   0

0   0 1   cos 21 sin 21     1   1 0   sin 21  cos 21 

 cos 23   sin 23

sin 23   ei   cos 23   0

0   sin 21  cos 21    1   cos 21 sin 21 

 cos 23   sin 23

sin 23   ei sin 21 ei cos 21     cos 23   cos 21 sin 21 

 ei cos 2 sin 2  sin 2 cos 2 ei cos 2 cos 2  sin 2 sin 2  3 1 3 1 3 1 3 1  i  ei sin 2 sin 2  cos 2 cos 2  3 3 1 e sin 23 cos 21  cos 23 sin 21  

The matrix needs to be real. Can be achieved for   0 or    .  sin  21  23   cos  21  23   J   if   0   cos  21  23   sin  21  23    sin  23  21  cos  23  21   J   if      cos  23  21  sin  23  21   1 0  So, for   0 , want  3  1  45 to give J     0 1 almost: but vertical is phase shifted. 1 0 So, for    , want  3  1  45 to give J   1 0 1 This is it:    , 3  1  45 .

Complement 2.A Coherence and Interference 2.A.1* Eq. (2.A.4) says r1  r2  r

2

t1  t2  t

2

r  t 1 .

Eqs. (2.A.5) and (2.A.6) tell us: E1  rEi E 2  tEi From Eqs. (2.A.2) and (2.A.3) we get





 t 2 e i r 2  t 2 e  i



E r  tE1  rE 2ei  Ei tr  rtei



E d  rE1  tE 2ei = Ei r 2  t 2ei



This means I d  Ed  Ei

2 2



r

2



 I i r 4  t 4  2r 2t 2 cos  I r  Er

2

 Ei

2



tr  rte tr  rte   I  r t  r t  2r t cos   i

2 2

2 2

i

2 2

i

The total intensity is then I tot  I d  I r

  I r  I r

 

 I i r 4  t 4  2r 2t 2 cos   I i 2r 2t 2  2r 2t 2 cos  4

 t 4  2 r 2t 2

2

 t2

i i



2



 ,

 Ii

and energy is conserved (the energy output does not depend on the phase of the interferometer).

19

20

Complement 2.A

2.A.2 Assume r1  r2  r ,

2

t1  t2  t , and

2

r  t 1

Eqs. (2.A.5) and (2.A.6) then tell us: E1  rEi E 2  tEi From Eqs. (2.A.2) and (2.A.3) we get





 t 2 e i r 2  t 2 e  i



E r  tE1  rE 2ei  Ei tr  rtei



E d  rE1  tE 2ei = Ei r 2  t 2ei



This means I d  Ed  Ei

2 2



r

2



 I i r 4  t 4  2r 2t 2 cos  I r  Er

2

 Ei

2



tr  rte tr  rte   I  r t  r t  2r t cos   i

2 2

2 2

i

2 2

i

The total intensity is then I tot  I d  I r

  I r  I r

 

 I i r 4  t 4  2r 2t 2 cos   I i 2r 2t 2  2r 2t 2 cos 

i



4

 t 4  2r 2t 2  4r 2t 2 I i cos 

2

 t2

i



2

 ,

 4r 2t 2 I i cos 

 I i  4r 2t 2 I i cos 

Which depends on the phase of the interferometer. For certain phases more energy would come out than is going in. For other phases less energy would be coming out than is going in. Clearly this does not conserve energy.

Complement 2.A

21

2.A.3 c 

1 2f

lc  cc

c 3 108 m / s lc    0.048 m  4.8 cm 2f 2 1 109 1/ s





2.A.4 f 

c 

c 

2 1  2f 2c

df  

c 2

d



f 

 

530 109 m 2  lc  cc  2 2 108 m



2.A.5 I max  I 0 , I min   0.6  I 0 V

I 0   0.6  I 0

I 0   0.6  I 0

 0.25

c 2

 (only care about the spread, so take the absolute value)

2

 4.5 106 m  4.5 m

Chapter 3 Quantum States 3.1* (Sec. 3.4) From Table 2.1 we know ε   cos ε H  sin εV , which means   cos  H  sin  V

3.2 (Sec. 3.4) P V |    V 

2

V   V cos    H  V sin    V  sin   

P  | V

  sin   2

3.3 (Sec. 3.4)

P  45 |    45 

2

45   45 cos    H  45 sin    V  cos   

1 HV 2

H

 sin   

1 HV 2

V

1  cos     sin     2 2 1 P  45 |     cos     sin     2 

Note also: 45  

1 1 cos     sin    2 2

 cos    cos  45o   sin    sin  45o   cos    45o 

so, P  45 |    cos 2    45o  .

23

24

Chapter 3

3.4* (Sec. 3.4)

(a) PA: input state V , output state  , probability to get through:

P  | V



2

V

 V 

2

V   V cos    H  V sin    V  sin   

P  | V

  sin   2

PAHV: input state  , output state H , probability to get through: PH |    H 

2

H   H cos    H  H sin    V  cos   

P  H |    cos 2    Ptot  P   | V

 P  H |    sin   cos    2

2

1  sin 2  2  4 (b) 1 Ptot  sin 2  2  has a maximum of 1/4 at =/4, or =45o. 4 (c) If the PA is removed, we simply have vertical photons going into a horizontal polarizer. None of the photons will get through. PH | V



H V

2

0

Chapter 3

3.5 (Sec. 3.5) PR |    R 

2

R   R cos    H  R sin    V  cos    

1  H i V 2

H

 sin   

1 1 i cos     i sin      e 2 2

PR |   

2

1 i 1 e  2 2

3.6* (Sec. 3.5) e1  cos    H  ei sin    V

in general: e2  cH H  cV V From orthogonality, we know e1 e2  cos    cH  e  i sin    cV  0 so: cos    cH  e  i sin    cV  i sin    cH e sin      i cV cos    e cos   

one solution is thus: cH  sin    cV  ei cos    or e2  sin    H  ei cos    V You can check that this is normalized.

1  H i V 2

V

25

26

Chapter 3

3.7 (Sec. 3.6) 1 1  H  V   H  i V  L  2 2 1 1 45 L   H  V   H  i V  2 2 1  1  i  2 1  1 1 45  L  1 1 HV   2  i  HV 2 1 1 1 45 L  1 1 HV   2 2  i  HV 45 

 3.8

1 1  i  2

(Sec. 3.6) e1  cos    H  ei sin    V

1  1  45 e1   H  V   cos    H  ei sin    V 2  2  1  cos     ei sin      2  cos   e1   i   e sin     HV  cos   1 45 e1   1 1 HV  i  2 sin  e     HV 1  cos     ei sin    2

45 

1 1 1 HV 2







Chapter 3

3.9

(Sec. 3.6) e1  cos    H  ei sin    V



P R e1



R e1

2

1  1   H i V   cos    H  ei sin    V  2  2  2 1   cos     iei sin     2 1   cos     ie  i sin      cos     iei sin     2 1  cos 2     sin 2     i ei  e  i  cos    sin    2 1  cos 2     sin 2     i  2i sin     cos    sin    2 1   cos 2     sin 2     2sin    cos    sin     2 1  1  sin    sin  2   2









3.10 (Sec. 3.6) We want  L 45  45     R 45 c

 L 45  45     R 45 c

We know everything in terms of the hv-basis: 1 1  H  i V   H  i V  R  L  2 2 1 1  H  V   H  V  45  45  2 2 so

2

27

28

Chapter 3 1  H  i V   H  V  2 1  1  i  2 1  1   1  i   2 2  1  i / 4 e  2

L 45 

similarly, R 45 

1 i / 4 e 2

L 45 

1 i / 4 e 2

R 45 

1  i / 4 e 2

so: 1  e  i /4  e  i /4 1 45       2  ei /4 c 2  i c 45 

1  ei /4  e  i /4  i       2  e  i /4 c 2 1c

It doesn’t really matter what phase factor you pull out front, but it’s customary to pull out the same phase factor. 3.11* (Sec. 3.7) No. If the beam entered in state V , it would only take one path through the interferometer. After the half-wave plate it would be changed to state H , and would leave the PAHV in that state. It would split equally on the PA45, and there would be no phase dependence. 3.12

(Sec. 3.7) Yes. Just like the state 45 , the state R would also split equally on the first PAHV and take both paths through the interferometer. The only difference is the relative phase shift between the horizontal and vertical components on input. On output the beam would split on the PA45, and adjusting the phase of the interferometer would cause interference fringes.

Chapter 3

3.13* (Sec. 3.4) (a) P  1| H



H H

2

1 P  1| H



V H

2

0 (b) HV   1 P  1| H

   1 P  1|

H



1 (c)

 HV 2

HV 

1/2



 HV 2  HV

HV 2   1 P  1| H

H



(b) HV   1 P  1| 45    1 P  1| 45



2

   12 P  1|



2 1/2

1 HV  1  1

1/2

0

3.14* (Sec. 3.4) (a) P  1| 45   H 45

2

 1/ 2 P  1| 45   V 45

2

 1/ 2



1 1  0 2 2

(c) HV 

 HV 2

1/2



 HV 2  HV



2 1/2

29

30

Chapter 3 HV 2   1 P  1| 45    1 P  1| 45 2



1 1  1 2 2

HV  1  0 

1/2

3.15

2

1

(Sec. 3.5) (a) P  1| e1   H e1

2

 cos 2 

P  1| e1   V e1

2

 sin 2 

(b) HV   1 P  1| e1    1 P  1| e1



 cos 2   sin 2   cos  2  (c)

 HV 2

HV 

1/2



 HV 2  HV



2 1/2

HV 2   1 P  1| e1    1 P  1| e1 2

2

 cos 2   sin 2  1



HV  1  cos 2  2 



1/2

 sin  2 





Chapter 4 Operators 4.1* (Sec. 4.2) The norm of  is   . The norm of Uˆ  is the same:  Uˆ †Uˆ     , because Uˆ †Uˆ  1ˆ if Uˆ is unitary. 4.2 (Sec. 4.3) Pˆ   

Pˆ 2    

 





       4.3 (Sec. 4.3)



 PˆH  H c*H  V cV*

H

H

 H H c*H H  V H cV* H  c*H H 4.4 (Sec. 4.4)  cos   sin   Rˆ p      .   sin  cos   HV  cos  sin   Rˆ †p     Rˆ p      .     sin cos   HV

31

32

Chapter 4  cos  sin   Rˆ †p    Rˆ p         sin  cos   HV

 cos   sin      sin  cos   HV

  cos  sin   sin  cos   cos 2   sin 2    2 2   sin  cos   cos  sin      sin cos   HV 1 0    0 1  HV  1ˆ

4.5 (Sec. 4.6)  cos   sin   Rˆ p      .   sin  cos   HV

Since O†ij  O ji* [Eq. (4.75)],  cos  sin   Rˆ †p      .    sin  cos   HV

Because cos     cos  and sin      sin  ,  cos     sin     Rˆ †p        Rˆ p      sin cos       HV

4.6* (Sec. 4.4)  cos   sin   Rˆ p         sin  cos   HV

 cos      sin   HV

 cos  cos   sin  sin      cos  sin   sin  cos   HV  cos          sin       HV  

4.7 (Sec. 4.5) We want  L H  H    R H C We know

 LV  V    R V C

Chapter 4 L 

1  H  i V  2

R 

1  H  i V  2

so 1  H  i V  H 2 1  2 similarly, 1 i R H  LV  2 2 so: 1 1 H    2  1 C L H 

V 

RV 

i 2

i  1   2  1 C

4.8 (Sec. 4.5) 1 1   2  1 C i  1 V    2  1 C H 

H V 

i  1 i 1 1 1C    (1  1)  0 2 2  1 C 2

4.9 (Sec. 4.5) e  cos    H  ei sin    V

We want  45 e  e    45 e 45

33

34

Chapter 4 45 e  45 cos    H  45 ei sin    V  cos    45 H  ei sin    45 V 1 cos     ei sin      2 45 e  45 cos    H  45 ei sin    V 

 cos    45 H  ei sin    45 V 1 cos     ei sin      2 i 1  cos     e sin     e    i 2  cos     e sin    45 

4.10 (Sec. 4.5) PˆH L  H H L 1 H 2 1 1 PˆH L  L H  2 2 1 1 PˆH L  R H  2 2 1  1 1    2  1 1C 

L R PˆH

PˆH R  H H R 1 H 2 1 1 L PˆH R  L H  2 2 1 1 R PˆH R  R H  2 2 

PˆV L  V V L

PˆV R  V V R

i V 2 i 1 L PˆV L  LV  2 2 i 1 R PˆV L  R V  2 2 1  1 1 PˆV    2  1 1 C

i V 2 i 1 L PˆV R  L V  2 2 i 1 R PˆV R  RV  2 2





Chapter 4 1 1 PˆH 2   4 1 1 1   2 1 1 1 PˆH PˆV   4 1 1 0   4 0

35

1  1 1  1 1 PˆV 2      4  1 1 C  1 1 C 1  1 1  ˆ     PV 2  1 1 C

1 1 1    1 C  1 1 C 1 ˆ   PH 1 C 1   1 1     1  C  1 1  C 0  0 0 C

1 1 PˆV PˆH   4  1 1 0   4 0

1   1 1     1 C  1 1 C 0  0 0 C

4.11 (Sec. 4.5) In Problem 4.6 we showed that Rˆ p         , so Rˆ p    45    45  cos    45  H  sin    45  V Rˆ p    45    45  cos    45  H  sin    45  V

 45 Rˆ p       45   45   45  

Rˆ p    45 Rˆ p    45

45 Rˆ p    45   45 Rˆ p    45 

cos    45  H  sin    45  V cos    45  H  sin    45  V

45

 

45 cos    45 H  sin    45  V 45 cos    45 H  sin    45  V

1  cos    45   sin    45  cos    45   sin    45     . 2  cos    45   sin    45  cos    45   sin    45  45

Can simplify this some more

    

45

36

Chapter 4  1   Rˆ p     2  

1  cos   sin    2 1  cos   sin    2

1  2 cos  2sin      2  2sin  2 cos  45

 cos  sin       sin  cos  45

1  sin   cos   2 1  sin   cos   2

1  cos   sin    2 1  cos   sin    2

1  sin   cos    2  . 1  sin   cos    2 45

Chapter 4

4.12 (Sec. 4.5)

 

1  1 1  1  Rˆ p 45o 45  V      2  1 1 45  0  45 

1 1   2  1  45

1 2 1  2



 45  45   1 H V   2



1  H  V   2 

 V

4.13 (Sec. 4.5) 1 Rˆ p    L  Rˆ p     H i V  2 1 ˆ  R p    H  iRˆ p    V    2  cos   sin    1  Rˆ p    H       sin  cos   HV  0  HV

 cos      sin   HV  cos   sin    0  Rˆ p    V       sin  cos   HV  1  HV   sin      cos   HV 1  cos  H  sin  V   i   sin  H  cos  V   Rˆ p    L   2 1  cos   i sin   H   sin   i cos   V   2 1  i  e H  ie i V    2  e i L

L is an eigenstate of Rˆ p    , with eigenvalue e i .

37

38

Chapter 4 1 Rˆ p    R  Rˆ p     H i V  2 1 ˆ  R p    H  iRˆ p    V    2 1  cos  H  sin  V   i   sin  H  cos  V     2 1  cos   i sin   H   sin   i cos   V   2 1  i  e H  iei V    2  e i R

R is an eigenstate of Rˆ p    , with eigenvalue ei .

 L Rˆ p    L ˆ Rp      R Rˆ p    L   e i   0 

L Rˆ p    R   ˆ R R p    R 

C

0   ei C

4.14* (Sec. 4.6) Physically this corresponds to a polarizer oriented along the +45° axis. From Table 2.2, its matrix representation is thus 1 1 1 Pˆ45    2 1 1 HV 1/ 2  

1/ 2

1/ 2

1/ 2  

 1/ 2     1/ 4 2

 2        1 0 eigenvalues are  a  1 ,  b  0 .

For  a  1  1/ 2 1/ 2     0        1/ 2 1/ 2  HV    HV  0  HV

Chapter 4

39

1/ 2       0   normalized eigenstate:

1  1    45 2  1 HV

For  b  0 1/ 2 1/ 2     0       1/ 2 1/ 2  HV    HV  0  HV 1/ 2       0    normalized eigenstate:

1 1    45 2  1 HV

Physically, these make sense. The 45 state is transmitted with 100% probability (eigenvalue 1), while the 45 state is completely blocked (eigenvalue 0). 4.15 (Sec. 4.6)  cos   sin   Rˆ p        sin  cos   HV

cos     sin  2   cos       sin 2  sin  cos   





 cos 2   2 cos    2  sin 2    2  2 cos   1



     ei    e i 

  2   ei  e i  1

0 So, the eigenvalues are    ei and    e i . The eigenstate corresponding to    ei is  cos   ei   sin  

 sin    cos   ei  HV

 0        HV  0  HV

40

Chapter 4









1 i i 1 e e  ei  ei  ei  i sin  2 2  i  1  0       sin         1 i  HV    HV  0  HV   i  0   i  cos   ei 

The normalized eigenstate is thus 1 1    R 2  i  HV This means that the eigenstate for    e i must be L , because the eigenstates form an orthonormal basis. You can check that it is if you like. These results are consistent with Problem 4.13. 4.16* (Sec. 4.6) The eigenvalues and eigenstates of Oˆ are the solutions to the equation Oˆ     ,  Oˆ          . If this is true, then in general  Oˆ †   * .  Oˆ †    *   *   . If Oˆ is Hermitian, Oˆ †  Oˆ , so  Oˆ †    Oˆ  . The above then implies that *   , and  must be real. 4.17 (Sec. 4.6) We know that the matrix elements of the adjoint are given by O†ij  O ji* [Eq. (4.75)], where the matrix elements are computed using arbitrary states. A ji   j a1 a2  i

Chapter 4 A ji*   j a1

*

a2  i

41

*

 a1  j  i a2   i a2 a1  j

 a2

 i

a1

 j

 A†ij   i Aˆ †  j

Comparing the last and the third to last lines yields Aˆ †  a2 a1 . 4.18* (Sec. 4.6) Let 1

be eigenvectors of Oˆ , corresponding to distinct eigenvalues 1 and  2

and  2

( 1   2 ). Oˆ 1  1 1 and Oˆ  2   2  2 Oˆ †  Oˆ , and the eigenvalues must be real (proved in Problem 4.17), so Oˆ   2  2 .

For Hermitian operators 1 Oˆ  1 1 and  2



1 Oˆ  2  1 Oˆ  2



 1  2  2   2 1  2 ,

and 1 Oˆ  2  1 Oˆ  2





 1 1  2  1 1  2 . 0  1 Oˆ  2  1 Oˆ  2   2 1  2  1 1  2    2  1  1  2 .

Since we’ve assumed 1   2 , then 1  2  0 , and 1 and  2 are orthogonal.

42

Chapter 4

4.19* (Sec. 4.6) 

1 ˆn O  n ! n 0

ˆ

eO    

1 n   n ! n 0



  1     n      n 0 n !   e  Note that the second line is true ONLY if  is an eigenstate of Oˆ . Otherwise, this problem is not solvable with the information we know. 4.20* (Sec. 4.6) First, express the function in terms of its power series: 

   cnOˆ n . n 0

f Oˆ 

Then use the identity operator, written as a sum of the eigenstates of Oˆ     ˆ ˆ f O 1    cnOˆ n    i i      n 0  i 

 

 i



 cnOˆ n

n 0

i i

       cn i n  i i   i  n 0    f  i  i i . i

Complement 4.A Changing Bases Using Similarity Transformations 4.A.1 * We need to prove that S†S  1 . Sij  ni o j [Eq. (4.75)] S †ij  S ji*  n j oi

*

 oi n j

In Chapter 1 [Eq. (1.42)] we found that the matrix elements of the product S†S can be written as

 S†S ij  k S †ik Skj 

oi nk

nk o j

k

   oi   nk nk  o j    k  Since the states nk form a basis:

 S†S ij  oi 1ˆ o j  oi o j  ij .

Since the matrix elements of S†S are given by the Kronecker delta, S†S is equal to the identity matrix (as shown in Chapter 1).

43

44

Complement 4.A

4.A.2 The matrix that transforms the HV-basis to the circular polarization basis is  C HV1 S 1  C2 HV1  L H   R H 

C1 HV2   C2 HV2  HV C LV   RV  HV C

1 1 i    2 1 i  HV C

H C  SH HV 

1 1 1 i      2 1 i  HV C  0  HV



1 1   2  1 C

V C  SV HV 

0 1  1 i      2 1 i  HV C  1  HV



i  1    2  1 C

4.A.3 In the text we found [Eq. (4.A.11)] 1 1 1  S   2 1 1 HV 45 e 45  Se HV  1 1 1    cos      i     2 1 1 HV 45   e sin   HV i 1  cos   e sin      2  cos   ei sin  

, 45

Complement 4.A

4.A.4 In the text we found [Eq. (4.A.11)] 1 1 1  S   2 1 1 HV 45 † R p45     SR HV p   S



 cos   sin   1 1 1  1 1 1        2  1 1 HV 45  sin  cos   HV 2 1 1 HV 45

 cos   sin  cos   sin   1 1 1       2  1 1 HV 45  sin   cos  sin   cos     cos   sin     sin   cos      cos   sin     sin   cos    cos  sin       sin  cos  45

 cos   sin     sin   cos     cos   sin     sin   cos   45

45

Chapter 5 Measurement 5.1*

(Sec. 5.1) In Problem 4.17 you showed that if Aˆ  a1 a2 , then Aˆ †  a2 a1 . This means PˆH  H H  PˆH † , and PˆV  V V  PˆV † ; both of these projection operators are Hermitian. ˆ HV   1 PˆH   1 PˆV , so We can write  ˆ HV †   1 PˆH   1 PˆV     † †   1 Pˆ   1 Pˆ H



V

  1 PˆH   1 Pˆ ˆ HV .  ˆ HV is Hermitian. So,  5.2*

(Sec. 5.1) ˆ HV H  H  1 H H   1 V V  H H   11   1 0  1 ˆ HV H  V  1 H H   1 V V  H V   1 0   1 0  0 ˆ HV V  H  1 H H   1 V V  V H   1 0   1 0  0 ˆ HV V  V  1 H H   1 V V  V V   1 0   11  1 1 0  ˆ HV      0 1 HV

47

48

Chapter 5

5.3

(Sec. 5.1) Work out the matrix elements: 1 ˆ HV L   H  i V  ˆ HV  H  i V  L 2 1 ˆ HV H  i H  ˆ HV V  i V  ˆ HV H  V  ˆ HV V    H  2 1  1  0  0  1 2 0 1 ˆ HV R   H  i V  ˆ HV  H  i V  L 2 1 ˆ HV H  i H  ˆ HV V  i V  ˆ HV H  V  ˆ HV V    H  2 1  1  0  0  1 2 1 ˆ HV is Hermitian ˆ ˆ HV R *  1 , because  R HV L  L  1 ˆ HV  H  i V   H  i V  2 1 ˆ HV H  i H  ˆ HV V  i V  ˆ HV H  V  ˆ HV V    H  2 1  1  0  0  1 2 0

ˆ HV R  R

0 1 ˆ HV      1 0 C 5.4

(Sec 5.1) ˆ HV H   1 H ,  ˆ HV V   1 V , so Eq. (5.3) says 

ˆ HV   cH ˆ HV H  cV ˆ HV V   cH H  cV V . ˆ HV   1 H H   1 V V , so Eq. (5.4) says 

Chapter 5 ˆ HV    1 H H   1 V V   cH H  cV V    1 H cH   1 V cV

49



 cH H  cV V .

These are equal to each other. 5.5

(Sec 5.2) The possible results are the eigenvalues: +1 for horizontal, and –1 for vertical. For a measurement yielding +1, the probability is

P  1|    H 

2

 1  2 i/3  H  H  e V  3  3  1  3

2

2

1  . 3

After such a measurement, the beam of photons is left in state H . For a measurement yielding –1, the probability is: P  1|    V 

2

 1  2 i/3 H  e V   V  3  3  

2 3

2



2

2 . 3

After such a measurement, the beam of photons is left in state V .

5.6*

(Sec 5.2)

Pˆ45  45 45  Pˆ45† , so the operator is Hermitian. This means it is an observable, as long as it can be physically measured. A physical implementation of this operator would simply be a PA45, set up to transmit the +45° output, and block the –45° output.

50

Chapter 5 We found the eigenvalues and eigenstates of Pˆ45 in Problem 4.14; they are Eigenvalue 1: 45 Eigenvalue 0: 45 . So, the possible outcomes from a measurement are either 1 or 0. If the outcome is 1, the system is left in state 45 ; if the outcome is 0, the system is left in state 45 (although this state is blocked in our implementation).

5.7*

(Sec 5.2) Remember that Rˆ p †     Rˆ p     Rˆ p    . Since the operator is not Hermitian, it cannot correspond to an observable.

5.8

(Sec 5.3)  1   1  2 i/3 2 i/3 ˆ HV   ˆ HV   V  V   3 H  3e  3 H  3e     1 ˆ HV H  2ei/3 H  ˆ HV V  2e i/3 V  ˆ HV H  2 V  ˆ HV V    H  3 1 1 1  0  0  2    . 3 3 This is the average. ˆ HV 2  1ˆ , so  ˆ HV 2  1 . The standard deviation is then In Example 5.2 we showed that  



ˆ HV 2   ˆ HV HV     1 2   1        3    0.943 .

1/2



2 1/2

Chapter 5

5.9

51

(Sec 5.3)







ˆ HV  cos  H  sin e i V  ˆ HV cos  H  sin ei V 



ˆ HV H  sin  cos ei H  ˆ HV V  cos 2  H  ˆ HV H  sin 2  V  ˆ HV V  sin  cos ei V   cos 2   sin 2   cos  2  ˆ HV 2  1ˆ , so  ˆ HV 2  1 . The standard deviation is then In Example 5.2 we showed that 



ˆ HV 2   ˆ HV HV    1  cos 2  2    sin 2  2  



2 1/2

1/2

1/ 2

 sin  2  . 5.10

(Sec 5.3)

Pˆ45   cos  H  sin  V  Pˆ45  cos  H  sin  V



 cos 2  H Pˆ45 H  sin  cos  H Pˆ45 V  sin  cos  V Pˆ45 H  sin 2  V Pˆ45 V Physically Pˆ45 corresponds to a polarizer oriented along the +45° axis. From Table 2.2, its matrix representation is thus 1 1 1 Pˆ45    2 1 1 HV Using these matrix elements: 1 Pˆ45  cos 2   sin  cos   sin  cos   sin 2  2 1  1  2sin  cos   2 1  1  sin  2   2





52

Chapter 5

Pˆ45 2  45 45 45 45  45 45  Pˆ45 , so Pˆ45 2  Pˆ45 . The standard deviation is then P45 



Pˆ45 2  Pˆ45



2 1/ 2

1/ 2

2 1 1   1  sin  2    1  sin  2    4 2 

1/ 2

1 1    1  sin  2    1  2sin  2   sin 2  2    4 2  1/ 2

1    1  sin 2  2    4  1  cos  2  . 2 5.11

(Sec 5.5) ˆ 45 H  H  1 45 45   1 45 45  H H 1 1   1     1    0 2 2 ˆ 45 V  H  1 45 45   1 45 45  V H

ˆ 45 V

1  1   1     1     1 2  2 H  V  1 45 45   1 45 45  H

1  1   1     1     1 2  2 ˆ 45 V  V  1 45 45   1 45 45  V V 1 1   1     1    0 2 2

0 1 ˆ 45      1 0  HV

Chapter 5

5.12* (Sec 5.5) ˆ C   1 L L   1 R R  ˆ C H  H  1 L L   1 R R  H H 1 1   1     1    0 2 2 ˆ C V  H  1 L L   1 R R  V H  i  i   1     1    i 2 2 ˆ C H  V  1 L L   1 R R  H V i  i    1     1    i 2 2 ˆ C V  V  1 L L   1 R R  V V 1 1   1     1    0 2 2

 0 i  ˆC     i 0  HV 5.13

(Sec 5.5) Example 5.4 shows that  0 2 ˆ HV , ˆ 45       2 0  HV ˆC. Problem 5.12 determines the matrix for   0 i  ˆ C  2i  2i   i 0  HV  0 2    2 0  HV ˆ HV , ˆ 45   2i ˆC. Thus, 

53

54

Chapter 5

5.14

(Sec 5.5) The matrix representations are given in Problems 5.2 and 5.12. ˆ HV , ˆ C   ˆ HV ˆ C  ˆ C ˆ HV   1 0   0 i   0 i   1 0           0 1 HV  i 0  HV  i 0  HV  0 1 HV  0 1 0 1  i  i   1 0  HV  1 0  HV 0 1  2i    1 0  HV ˆ 45  2i ˆ 45 was determined in Problem 5.11. The matrix representation of 

5.15

(Sec 5.5)  Pˆ45 , PˆV   45 45 V V  V V 45 45   1   45 V  V 45  2 1   H  V  V  V  H  V   2 1  H V V H  2

5.16

(Sec 5.5) The possible results are the eigenvalues: +1 for +45°, and –1 for –45°. For a measurement yielding +1, the probability is

Chapter 5 P  1|    45 

55

2

 1  2 i/3 H  e V   45  3  3 

2

2

 1   1   2   1  i/3     e  3   2   3   2  2 1  1  2 cos   / 3  i 2 sin   / 3 6 1 2 6  1 i 6 2 2

2

2   1  2  3  1    6  2  2     0.74 .

After such a measurement, the beam of photons is left in state 45 . For a measurement yielding –1, the probability is: P  1|    1  P  1|    0.26 . After such a measurement, the beam of photons is left in state 45 . 5.17* (Sec 5.5) 1 . 2

The probability of the first measurement is P HV  1| L   P  H | L   H L

2



The probability of the second measurement is P C  1| L   P  R | L   R L

2

 0.

2



The joint probability of +1 and –1 is then P HV  1| L  P C  1| L   0 . 5.18* (Sec 5.5) The probability of the first measurement is P HV  1| L   P  H | L   H L

1 . 2

After the measurement, the photon would be left in state H . The probability of the second measurement is P C  1| H

  PR |

H



R H

2



1 . 2

56

Chapter 5 The joint probability of +1 and –1 is then P HV  1| L  P C  1| H

5.19

(Sec 5.5) In Problem 5.8 we found HV  0.943 for this state. ˆ 45 is given in Problem 5.11. The matrix representation of 

ˆ 45    ˆ 45  



1 1 3





2 e  i /3





1 1 3



1 3



2 2 cos   / 3 3



2 e  i /3



0 1 1  1      HV 1 0  HV 3  2 ei /3  HV 

 2 ei /3    HV  1  HV

2 ei /3  2 e i /3



2 . 3



ˆ 45 2  1ˆ from Example 5.4, so 



ˆ 45 2   ˆ 45 45  



2 1/ 2

1/ 2

7  2  1     0.882 . 3  9 The commutator is given in Example 5.4 as

 0 2 ˆ HV , ˆ 45      .  2 0  HV The expectation value of the commentator is

   12   12   14 .   

Chapter 5



1 1 3

ˆ HV , ˆ 45   



2 e i /3





 2 2 ei /3    HV  2  HV



1 1 3



2 3



2 2 2i sin   / 3 3

i



2 e  i /3

 0 2 1  1      HV 2 0  HV 3  2 ei /3  HV 

2 ei /3  2 e  i /3



2 2  i1.633. 3

The indeterminacy relation then says HV 45 

1 ˆ HV , ˆ 45   2 

1 i1.633 2 0.832  0.817 , so the relation is satisfied.

 0.943 0.882  

5.20

(Sec 5.5) The matrix representations are given in Problems 5.2 and 5.12. In Problem 5.9 we found HV  sin  2  for this state. ˆC   ˆC     cos  sin  e  i 

 0 i   cos      HV  i 0  HV  sin  ei  HV 

 i  cos  sin  e  i 

  sin  ei    HV  cos   HV

 i   cos  sin ei  cos  sin e  i    i cos  sin   i 2sin    sin  2  sin .

 0 i   0 i  1 0 ˆ ˆ C2         1 i 0 i 0 0 1   HV   HV   HV

57

58

Chapter 5



ˆ C2   ˆC C  



2 1/2

 1  sin 2  2  sin 2  

1/ 2

ˆ HV , ˆ C   2i ˆ 45 . In Problem 5.14 you showed that  ˆ HV , ˆ C   2i  ˆ 45   2i  cos  sin  e  i 

 0 1   cos      HV  1 0  HV  sin  ei  HV 

 2i  cos  sin  e  i 

 sin  ei    HV  cos   HV

 2i  cos  sin ei  cos  sin e  i    2i cos  sin   2 cos    2i sin  2  cos .

The indeterminacy relation is HV C 

1 ˆ HV , ˆ C  . Substituting in  2 

1 2i sin  2  cos  2 sin 2  2  1  sin 2  2  sin 2    sin 2  2  cos 2  sin  2  1  sin 2  2  sin 2  

1/2

1  sin  2 sin    cos  1  sin  2 sin    1  sin 2

2

2

2



2

2



sin 2  2  sin 2   sin 2  This is true, so the indeterminacy relation is satisfied.

Chapter 5

5.21

(Sec 5.5) The matrix representations are given in Problems 5.11 and 5.12. ˆ 45    ˆ 45     cos  sin  e  i 

 0 1   cos      HV  1 0  HV  sin  ei  HV 

  cos  sin  e i 

 sin  ei    HV  cos   HV

  cos  sin ei  cos  sin e  i   cos  sin   2 cos    sin  2  cos  ˆ 45 2  1ˆ from Example 5.4, so 



ˆ 45 2   ˆ 45 45  



2 1/2

 1  sin 2  2  cos 2  

1/ 2

.

ˆC   ˆC     cos  sin  e  i 

 0 i   cos      HV  i 0  HV  sin  ei  HV 

 i  cos  sin  e  i 

  sin  ei    HV  cos   HV

 i   cos  sin ei  cos  sin e  i    i cos  sin   i 2sin    sin  2  sin .

 0 i   0 i  1 0 ˆ ˆ C2         1 i 0 i 0 0 1   HV   HV   HV



ˆ C2   ˆC C  



2 1/2

 1  sin 2  2  sin 2  

1/ 2

59

60

Chapter 5

ˆ 45 , ˆ C   ˆ 45 ˆ C  ˆ C ˆ 45   0 1   0 i   0 i   0 1           1 0  HV  i 0  HV  i 0  HV  1 0  HV 1 0   1 0   i  i   0 1 HV  0 1  HV 1 0   2i    0 1 HV ˆ HV  2i ˆ HV  cos  2  for this state, so In Problem 5.9 we found 

ˆ 45 , ˆ C   i 2  ˆ HV  i 2 cos  2   The indeterminacy relation is 45 C 

1 ˆ 45 , ˆ C  . Substituting in  2 

1  sin  2 cos  1  sin  2  sin    12 i2 cos  2 1  sin  2 cos  1  sin  2 sin   cos  2 1  sin  2   cos   sin    sin  2  sin  cos   cos  2  2

2

2

2

2

2

1/2

2

2

2

2

1/2

2

4

2

2

2

2

1  sin 2  2   sin 4  2  sin 2  cos 2   cos 2  2  cos 2  2   sin 4  2  sin 2  cos 2   cos 2  2  sin 4  2  sin 2  cos 2   0

This is true, so the indeterminacy relation is satisfied. 5.22

(Sec 5.5) The matrix representations are given in Problems 5.11 and 5.12. Use the 45 state as the eigenstate. ˆ 45  45  ˆ 45 45  1 45 45  1  ˆ 45 2  1ˆ from Example 5.4, so 

Chapter 5



ˆ 45 2   ˆ 45 45    1  1

1/ 2



2 1/2

 0.

ˆC   ˆC    0 i  1 1  1 1 1 HV     2  i 0  HV 2  1 HV  1 1  i 1 1 HV   2 1 1  i  1  1 2  0.



 0 i   0 i  1 0 ˆ ˆ C2         1 0 0 0 1 i i   HV   HV   HV



ˆ C2   ˆC C    1  0 

1/2



2 1/ 2

1

ˆ 45 , ˆ C   ˆ 45 ˆ C  ˆ C ˆ 45   0 1   0 i   0 i   0 1           1 0  HV  i 0  HV  i 0  HV  1 0  HV 1 0   1 0   i  i   0 1 HV  0 1  HV 1 0   2i    0 1 HV ˆ HV  2i

61

62

Chapter 5 ˆ 45 , ˆ C   i 2  ˆ HV  1 0  1 1  1 1 1 HV     2  0 1 HV 2  1 HV 1  i 1 1 HV    1

 i2

 i 1  1  0.

The indeterminacy relation is 45 C 

1 ˆ 45 , ˆ C  . Substituting in  2 

1 0 2 00

 0 1 

This is true, so the indeterminacy relation is satisfied. 5.23* (Sec 5.5)   a 

ba bb

b

  0        ba ba ab ba b   a  b    a  b   a  b   a    bb bb bb bb       ba ab ab  ba  ab  a a  bb bb

 a a 2  a a  0

a a bb  ab

2

a a bb  ab

2

0

ab bb ab bb

2

2



ab bb

2

2

bb

bb

2

Chapter 5 5.24

(Sec 5.5) ˆ ˆ  BA ˆˆ  Aˆ , Bˆ   AB  



 Aˆ , Bˆ   

ˆ ˆ  BA ˆ ˆ    AB †



    †

ˆ ˆ  BA ˆˆ  AB



 Bˆ † Aˆ †  Aˆ † Bˆ † ˆˆ ˆ ˆ  AB  BA    Aˆ , Bˆ  We’ve used the fact that the operators are Hermitian. 5.25

(Sec 5.5) Cˆ  i  Aˆ , Bˆ 



Cˆ †  i  Aˆ , Bˆ 







 ˆ ˆ    BA ˆ ˆ   i  AB   ˆ ˆ  BA ˆˆ  i AB







 i  Bˆ † Aˆ †  Aˆ † Bˆ †  ˆ ˆ ˆ ˆ  AB  i  BA   i  Aˆ , Bˆ   Cˆ

63

Complement 5.A Measuring a Quantum State 5.A.1 We'll express the state in the HV-basis, using    H  1   ei V . . First we determine ,  H 

2

 P  H |    0.5  1/ 2 .

Substituting this into Eq. (5.A.6), we find P (45 |  )  

 1 1 1 1  2  1   cos   2  2 2  1 1  cos  . 2

Solving for cos  yields cos   2 P(45 |  )  1  2  0.75   1  0.50 . The two solutions for  are then   cos 1  0.5     / 3. As in Example 5.A.1, if   0 , P ( L |  )  0.5 , and if   0 , P ( L |  )  0.5 . Our data then indicate that we should choose the positive solution, which is = / 3 . The final solution is thus

 



1 H  ei/3 V 2

.

65

66

Complement 5.A

5.A.2 We'll express the state in the HV-basis, using    H  1   ei V . . First we determine ,   P( H |  )  0.67  2 / 3 (to within our precision).

Substituting this into Eq. (5.A.6), we find P (45 |  )  

 1 2 2 1  2  1   cos   2  3 3   1 2 2 cos  . 1  2 3 

Solving for cos  yields 2 2 cos   2 P(45 |  )  1 3  2  0.5   1  0. The two solutions for  are then   cos 1  0   0.54 rad = / 2. As in Example 5.A.1, if   0 , P ( L |  )  0.5 , and if   0 , P ( L |  )  0.5 . Our data then indicate that we should choose the positive solution, which is = / 2 . The final solution is thus

 

2 1 H i V . 3 3

5.A.3 The state of the photons is very nearly H . Since the coefficients in the state are given by the square root of the probabilities, the error in the coefficients will be of order 5%.

0.003  0.05 , or

Complement 5.A

67

While a good experimentalist always makes independent measurements (if possible) to verify his or her answer, making measurements at other device settings will probably not improve this answer very much. 5.A.4 A general linear polarization state can be written as   cos  H  sin  V . They key here is that the coefficients are real. We have been representing the    H  1   ei V . Since the coefficients are real, we know that   0,  .

state

as

So, we only need to perform measurements at two different device settings. Measurements with a PAHV determine  , and measurements with a PA45 can distinguish between the two possible values of  .

Chapter 6 Spin-1/2 6.1

(Sec. 6.1) F    μB    z

  Bz Bz   e z 2 z

The atoms are traveling in the y-direction at v=500 m/s, entering the magnetic field at y=0, and leaving it at y=0.035m. Assume no transverse velocity. The amount of time the atoms spend in the field is t  y/v. The

acceleration

of



m  (107.9u) 1.66  10

27

the



atoms

kg/u  1.79 10

in 25

the

z-direction

is

a  F /m,

where

kg is the mass of a silver atom. The amount of the

deflection is then 2

1 1 F y d  at 2     2 2 m v 

e

 Bz 2 2 2 z  y    e y Bz   2m  v  4mv 2 z

 1.76 10 s T 1.06 10 Js   0.035m  10 T/m  1.3 10 d   4 1.79  10 kg   500m/s  2

34

11 -1 -1

3

2

25

4

m  0.13mm

Negative sign is because atoms with spin-up (dipole moment down, because dipole moment comes from unpaired electrons) in an upward field gradient would be deflected downward. 6.2*

(Sec. 6.1)







31 11 -1 -1 2m e 2 9.1110 kg 1.76  10 s T ge    2.00 e 1.60 1019 C

In Dirac’s relativistic theory the g-factor is exactly 2. However, quantum electrodynamics yields corrections on the order of 0.1% to this value.

69

70

Chapter 6

6.3

(Sec. 6.2) A Hermitian operator can be written as the sum of the projection operators onto its eigenstates, weighted by the corresponding eigenvalues.  Sˆ z    z  z   z  z  . 2

6.4

(Sec. 6.3) 1 1 z  z  , x    z  z 2 2  z  1ˆ  z    x  x   x  x   z

We know:  x 

1  x  x 2 1 z  x z x  x z x   x  x 2 z  x z x  x z x 

6.5







(Sec. 6.3)  z Sˆ x    z 

Sˆ x  z Sˆ x  z

 z Sˆ x  z    z Sˆ x  z  z

Using the states found in Problem 6.4:









1 ˆ  1  Sˆ x  z  S x  x  Sˆ x  x  x  x   z  2 2 2 2 1 ˆ  1  Sˆ x  z  S x  x  Sˆ x  x  x  x   z  2 2 2 2  0 1  Sˆ x     σx 2  1 0 z 2 6.6

(Sec. 6.3)  0 1 Sˆ x    2  1 0 z

Chapter 6 0

/2

/2

0

       / 2  2

2

0 eigenvalues are     / 2 ,      / 2 . For     / 2   / 2  / 2      0          / 2  / 2  z    z  0  z  / 2       0

 

normalized eigenstate:

1  1    x 2  1 z

For      / 2   / 2  / 2   0         / 2  / 2 z   z  0 z  / 2      0

  

normalized eigenstate: 6.7

1 1    x 2  1 z

(Sec. 6.3) 1 1 z  i z  ,  y    z  i z 2 2  z  1ˆ  z    y  y   y  y   z

We know:  y 



1  y  y  2 1 i z   y z  y   y z  y  i  y  i  y     y  y 2 2

z   y z  y   y z  y 

6.8*

(Sec. 6.3)  z Sˆ y    z 

Sˆ y  z Sˆ y  z

 z Sˆ y  z   ˆ  z S y  z 

z



71

72

Chapter 6 Using the result of Problem 6.7:









1 ˆ  1  Sˆ y  z  S y  y  Sˆ y  y   y   y   i z  2 2 2 2 i ˆ  i  Sˆ y  z  S y  y  Sˆ y  y   y   y   i  z  2 2 2 2   0 i   Sˆ y     σy 2  i 0 z 2 6.9

(Sec 6.3) This is most easily done use the appropriate Pauli spin matrix:   0 i   1   0  Sˆ y  z          i z 2  i 0 z  0 z 2  i z 2   0 i   0    i   Sˆ y  z          i  z 2  i 0 z  1 z 2  0 z 2

6.10

(Sec. 6.3)   0 i  Sˆ y    2  i 0 z

0   i  / 2 i / 2

0

       / 2  2

2

0 eigenvalues are     / 2 ,      / 2 . For     / 2    / 2 i  / 2      0         i / 2   / 2  z    z  0  z  / 2  i     0

i  

normalized eigenstate: For      / 2

1  1    y 2  i z

Chapter 6   / 2 i  / 2      0         i / 2  / 2  z    z  0  z  / 2  i     0 i   

normalized eigenstate: 6.11

1 1    y 2  i  z

(Sec. 6.3)  1  1   z  i  z    z   z  P S y   / 2 |  x   y  x      2  2  1 1 1 2 P S y   / 2 |  x  1  i  12  12  4 4 2

6.12









2



2



(Sec. 6.3)  1  1   z   z    z  i  z  P  S x   / 2 |  y    x  y      2  2  1 1 1 2 P  S x    / 2 |  y   1  i  12  12  4 4 2 2





6.13* (Sec. 6.3)

 un corresponds to angles    and    . Therefore

2

73

74

Chapter 6  n  cos      / 2   z  ei () sin      / 2   z  cos   / 2   / 2   z  ei () sin   / 2   / 2   z  sin   / 2   z  ei ( ) cos   / 2   z  sin   / 2   z  ei cos   / 2   z

6.14

(Sec. 6.3) Need the result of Problem 6.13 for this.



 n n  cos   / 2   z  ei sin   / 2   z

 sin   / 2  z  e

i

cos   / 2   z



 cos   / 2  sin   / 2   sin   / 2  cos   / 2   0 6.15

(Sec. 6.3) Need the result of Problem 6.13 for this.

 Sˆn    n  n   n n  2   z Sˆn  z  z Sˆn  z   Sˆn   ˆ z    z Sˆ  z  z S n n  z 2    z Sˆn  z    z  n  n  z   z n n  z    z  n   z n 2 2    cos 2   / 2   sin 2   / 2   cos  2 2   z Sˆn  z    z  n  n  z   z n n  z  2   cos   / 2  e i sin   / 2    sin   / 2  e i cos   / 2    2    e i 2 cos   / 2  sin   / 2   e i sin  2 2  *  z Sˆn  z   z Sˆn  z  ei sin  (the operator is Hermitian) 2 2    z Sˆn  z    z  n  n  z   z n n  z    z  n   z n 2 2    sin 2   / 2   cos 2   / 2    cos  2 2







2















2



Chapter 6

75

 i   cos  e sin   ˆ  Sn   2  ei sin   cos   z

6.16

(Sec. 6.3) P  Sn   / 2 |  z    n  z

6.17

2

 cos   / 2   z  ei sin   / 2   z   z  

2

 sin 2   / 2 

(Sec. 6.3) Need the result of Problem 6.13 for this. P  Sn   / 2 |  x   n  x

2





 1   sin   / 2   z  e i cos   / 2   z   z   z    2 

2 1 sin   / 2   e i cos   / 2  2 1  sin 2   / 2   cos 2   / 2   sin   / 2  cos   / 2  e i  ei   2 1  1  sin    cos     2





6.18

(Sec. 6.3) Sˆ z   n Sˆ z  n



 cos   / 2  e i sin   / 2  



z



 cos   / 2  ei sin   / 2  2

  1 0   cos   / 2       2  0 1 z  ei sin   / 2   z



 cos   / 2     z  ei sin   / 2    z

 2 cos   / 2   sin 2   / 2    2   cos    2 

2  1 0   1 0  2  1 0  2 ˆ  Sˆ z 2   1       4  0 1 z  0 1 z 4  0 1  z 4

2 Sˆ z 2  4



2

76

Chapter 6 The standard deviation is then  S z   Sˆ z 2  Sˆ z  



2 1/2

 

1/2

 2 2     cos 2  4  4 



1/2   1  1  sin 2    sin    .   2 2

6.19* (Sec. 6.3) Need the result of Problem 6.13 for this. Sˆ x   n Sˆ x n



 sin   / 2  e i cos   / 2 





z

  sin   / 2  e i cos   / 2  2

  0 1   sin   / 2       2  1 0  z  ei cos   / 2   z



 ei cos   / 2     z  sin   / 2    z

  i e sin   / 2  cos   / 2   ei sin   / 2  cos   / 2     2    sin   / 2  cos   / 2  ei  e i 2    sin  cos  2







2  0 1   0 1  2  1 0  2 ˆ 2 ˆ Sx          1 4  1 0 z  1 0 z 4  0 1 z 4

2 Sˆ x 2  4 The standard deviation is then  S x   Sˆ x 2  Sˆ x  

2 1/2

 

1/2

 2 2     sin 2  cos 2  4  4 

1/2  1  sin 2  cos 2   .  2

Chapter 6

6.20* (Sec. 6.3) 1 3 z  i z 2 2

 

The probability of the first measurement is P  S z   / 2 |     z 

2



3 . 4

After the measurement, the electron would be left in state  z . The probability of the second measurement is P  S x   / 2 |  z    x  z The joint probability of   / 2 and  / 2 is then P  S z   / 2, S x   / 2 |    P  S z   / 2 |   P  S x   / 2 |   3  1  3       4  2  8

6.21

(Sec. 6.4)  0 1 Sˆ x    2  1 0 z

  0 i  Sˆ y    2  i 0 z

 1 0  Sˆ z    2  0 1 z

0 1  1 0   1 0   0 1  Sˆ x , Sˆ z       2 1 0  2  0 1  2  0 1 2  1 0   z  z  z  z  0 1  0 1    2  0 1         1 0 1 0     z  2  1 0  z z  2  0 i  ˆ  i    i S y 2  i 0  z



6.22

2 4

(Sec. 6.4)

 

1 3 z  i z 2 2

 Sˆ x , Sˆ z   iSˆ y  

S x S z 



1 Sˆ x   Sˆ x   1 i 3 2 



 1 i 3 8







z

 z  i 13 



 ˆ Sy 2 0 1 1  1     0  z 2  i 3  z

 z 2  1  i 8





3 3 0



2



1 . 2

77

78

Chapter 6 2  0 1   0 1  2  1 0  2 ˆ  1 Sˆ x 2         4  1 0 z  1 0 z 4  0 1 z 4

2 Sˆ x 2  4 The standard deviation is then  S x   Sˆ x 2  Sˆ x 

2 1/2

 

1/2

 2     0  4 



1 Sˆ z   Sˆ z   1 i 3 2

0  1 1     1 z 2  i 3  z

z 2  0 1

 1      1  3    4 3 z 8  2  1 0   1 0  2  1 0  2 ˆ 1          4  0 1 z  0 1 z 4  0 1  z 4 

Sˆ z 2

  . 2



 1 i 3 8

 z  i

2 Sˆ z 2  4 The standard deviation is then  S z   Sˆ z 2  Sˆ z 

2 1/2

 



 z 2  i

1 Sˆ y   Sˆ y   1 i 3 2 



 1 i 3 8

1/2

 2 2      4 16 

 3     i z 8

 z 



3 . 4

0 i  1  1     0  z 2  i 3  z





3 3 

3  4

   3   ˆ S x S z     Sy    2   4  2 So, the indeterminacy relation is satisfied with an equality.

Chapter 6

79

6.23* (Sec. 6.5)

The SAz splits the incoming beam into two beams – spin-up  z and spin-down  z . For the top beam, it essentially acts as a projection operator  z  z , while for the bottom beam it acts as  z  z . The SA-z recombines the beams, without changing them, so the operator for the system is the sum of the top and bottom beam operators: Oˆ   z  z   z  z  1ˆ . The sum of the projection operators onto a complete set of basis states is the identity operator.

Chapter 7 Angular Momentum and Rotation 7.1*

(Sec. 7.2)  ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ  AB, C   ABC  CAB ˆˆ ˆ ˆ  CB  Bˆ , Cˆ   BC   ˆˆ ˆ ˆ   Bˆ , Cˆ   CB BC  





ˆ ˆ ˆ ˆ  ˆ ˆ ˆ ˆ ˆˆ ˆ  AB  , C   A  B, C   CB  CAB ˆ ˆ ˆ  CAB ˆˆ ˆ  Aˆ  Bˆ , Cˆ   ACB ˆ ˆ  CA ˆˆ  Aˆ , Cˆ   AC   ˆ ˆ   Aˆ , Cˆ   CA ˆˆ AC  





ˆ ˆ ˆ ˆ  ˆ ˆ  ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ  AB  , C   A  B, C    A, C   CA B  CAB  Aˆ  Bˆ , Cˆ    Aˆ , Cˆ  Bˆ 7.2*

(Sec. 7.2)

 Jˆ    Jˆ  Jˆ  Jˆ    Jˆ    Jˆ    Jˆ  2



2

2

x

2

x

2

y



z



2



y

2



z

 Jˆ x 2  Jˆ y 2  Jˆ z 2  Jˆ 2

81

82

Chapter 7

7.3

(Sec. 7.2)  Jˆ 2 , Jˆ x    Jˆ x 2  Jˆ y 2  Jˆ z 2 , Jˆ x        Jˆ x 2 , Jˆ x    Jˆ y 2 , Jˆ x    Jˆ z 2 , Jˆ x        0

Using Eq. (7.8):  Jˆ 2 , Jˆ x   Jˆ y  Jˆ y , Jˆ x    Jˆ y , Jˆ x  Jˆ y  Jˆ z  Jˆ z , Jˆ x    Jˆ z , Jˆ x  Jˆ z            iJˆ Jˆ  iJˆ Jˆ  iJˆ Jˆ  iJˆ Jˆ y z

z y

z y

y z

 0.  Jˆ 2 , Jˆ y    Jˆ x 2  Jˆ y 2  Jˆ z 2 , Jˆ y        Jˆ x 2 , Jˆ y    Jˆ y 2 , Jˆ y    Jˆ z 2 , Jˆ y        0

 Jˆ x  Jˆ x , Jˆ y    Jˆ x , Jˆ y  Jˆ x  Jˆ z  Jˆ z , Jˆ y    Jˆ z , Jˆ y  Jˆ z  iJˆ x Jˆ z  iJˆ z Jˆ x  iJˆ z Jˆ x  iJˆ x Jˆ z  0. 7.4

(Sec. 7.3) Jˆ  Jˆ x  iJˆ y   σx  i σ y 2 2   0 1   0 i     i  2  1 0   i 0   0 1   . 0 0



 z  z z      z

 z  z

 z z  z z

 z z  z

z

 z z  z z

 0 1    .  0 0  z

Chapter 7

7.5

(Sec. 7.3) Jˆ  Jˆ x  iJˆ y

Jˆ  Jˆ x  iJˆ y

Invert these equations: 1 1 Jˆ x  Jˆ  Jˆ Jˆ y  i Jˆ  Jˆ 2 2



7.6







(Sec. 7.4) 1/2 Jˆ 1,1   1(1  1)  1(1  1)  1,1  1

0 1/2 Jˆ 1, 0   1(1  1)  0(0  1)  1, 0  1

  2 1,1 1/2 Jˆ 1, 1   1(1  1)  (1)(1  1)  1, 1  1

  2 1, 0

 1,1 Jˆ 1,1  Jˆ   1, 0 Jˆ 1,1  ˆ   1, 1 J  1,1

1,1 Jˆ 1, 0 1, 0 Jˆ 1, 0 

1, 1 Jˆ 1, 0

1,1 Jˆ 1, 1  0 1 0    ˆ 1, 0 J  1, 1    2  0 0 1  .    1, 1 Jˆ 1, 1  0 0 0

1/2 Jˆ 1,1   1(1  1)  1(1  1)  1,1  1

  2 1, 0 1/2 Jˆ 1, 0   1(1  1)  0(0  1)  1, 0  1

  2 1, 1 1/2 Jˆ 1, 1   1(1  1)  (1)(1  1)  1, 1  1

0

 1,1 Jˆ 1,1  Jˆ   1, 0 Jˆ 1,1  ˆ   1, 1 J  1,1

1,1 Jˆ 1, 0 1, 0 Jˆ 1, 0 1, 1 Jˆ 1, 0 

1,1 Jˆ 1, 1 1, 0 Jˆ 1, 1 1, 1 Jˆ 1, 1 

 0 0 0       2 1 0 0 .     0 1 0 

83

84

Chapter 7

7.7*

(Sec. 7.4) From Problem 7.5



1 Jˆ x  Jˆ  Jˆ 2





1 Jˆ y  i Jˆ  Jˆ 2



Use the matrix representations from Problem 7.6

Sˆx

Sˆ y

7.8*

0  2 0  2  0 0 i 2  1  2  0

1 0 0   2 0 1  1 2   0 0 0 0 0 0  i 2  0 0  0 2   1 0 0

0 0 0    0 0  1 2   1 0 0 1 0 0    0 1  i 2   0 0 0

1 0  0 1 1 0  i 0   0 i  i 0 

(Sec. 7.4)

Sˆ x  k   k  k

k

a    b c  z

Using the Matrix representation from Problem 7.7:    0   0 2   a a         0    b   k  b  2   c  2 c  z     z 0   0 2  z    k      2   0 

 2

 k  2

 0   a      b 0 2    c   z  k  z

Set determinant of matrix equal to 0 to find the eigenvalues:

Chapter 7

 k

 2

 2

 k

0

 2

 k

 k

 2

  k 

0

 0 2

      2 2   k 0

 2 

  k    k 2  

 2 00  k

2       k    0 2  2 2

 2 2 2   k     k    k  0 2  2 





k 2  k 2  0 Eigenvalues are (not surprisingly):  k  , 0,   Eigenstate for  k  0 is 1, 0 x .         

0

 2

 2

0

0

 2

 0   a      b 0 2    c   z 0  z

 b0 2   a c0 2 2

Only use 2 equations (third is always redundant) Solution: a=–c, b=0

85

86

Chapter 7 1   1, 0 x  a  0   1  z Normalize it:

x

1, 0 1, 0

1    a 1 0 1 z  0   1   z 2

x

2a

2

1 Therefore 1 a 2 1, 0

x

1 1   1 0    1,1  1, 1  2  2  1 z

Other eigenvalues  k            



 2

 2



0

 2

a 

 0   a      b 0 2    c   z   z

 b0 2

 b  c  0 2

b   2a 1 c ba 2  1    1, 1 x  a   2   1   z Normalize them:



Chapter 7  1   1 1 1, 1 x    2   1,1  2 1, 0  1, 1 2 2   1 z



7.9*



(Sec. 7.4)

Sˆ y  k   k  k     i    

 2

   a a       i   b   k  b  2   c c  z   z 0  z

 2

i

0

k

0

0 i

 2

i

 2

0

   k    i  2   0 

   a     i  b 0 2    c   z  k  z 0

 k  2

i

a    b c  z

Set determinant of matrix equal to 0 to find the eigenvalues:  k i

 2

i

 2

 k

0

i

  k 

i

 2

 k i

0

 2

 0 2

 k

i

 2

 k

  i    i  2 2  0

 2 00  k

i

87

88

Chapter 7  2 2        k    k    i   k i   0 2  2 2   2

 2  k 2   k 0  2  2 

  k  





 k 2   k 2  0

Eigenvalues are (not surprisingly):  k  , 0,   Eigenstate for  k  0 is 1, 0 y .     i    

0  2

0

 2

i

0 i

 2

   a     i  b 0 2    c   z 0  z 0

 b0 2   i a i c0 2 2 i

Only use 2 equations (third is always redundant) Solution: a=c, b=0 1   1, 0 y  a  0  1  z Normalize it:

y

1, 0 1, 0

1    a 1 0 1 z  0  1  z 2

y

2a 1 Therefore

2

Chapter 7 a

1, 0

1 2

y

1 1   1 0    1,1  1, 1  2  2  1 z



Other eigenvalues  k          i  2   0  a  i i

i

   a     i  b 0 2    c   z   z

 2

0



i

 2

 b0 2

 b  c  0 2

b  i 2 a i c b  a 2  1    1, 1 y  a  i 2   1   

z

Normalize them:  1   1 1 1, 1 y   i 2   1,1  i 2 1, 0  1, 1 2 2   1  z



7.10



(Sec. 7.4) The first measurement prepares the particle in state 1,1 y .



P S z  0 | 1,1

y



1, 0 1,1

2 y

89

90

Chapter 7

Using, 1,1

y



1 1,1  i 2 1, 0  1, 1 2





P S z  0 | 1,1

 from Problem 7.9 yields

y





y



1 1,1 1,1  2i 1,1 1, 0  1,1 1, 1  2







2

1 1, 0 1,1  2i 1, 0 1, 0  1, 0 1, 1 2

2



1 2

Similarly:



P S z   | 1,1



P S z   | 1,1 7.11

y











1 4

1 1, 1 1,1  2i 1, 1 1, 0  1, 1 1, 1 2



2



1 4

(Sec. 7.4) First measurement prepares particle in state 1, 0 y .



  1, 1 1, 0 1 1, 1 x   1,1  2 1, 0  1, 1  2

P S x    | 1, 0 Using

2

y

x

y

and 1, 0

y



1  1,1  1, 1 2



from Problems 7.8

and 7.9 yields



P S x    | 1, 0

y



2

1  1  1   1  1         .   2  2  2   2  2 

7.12* (Sec. 7.4)   1/ 3  2 1,1  i 1, 0  2 1, 1 P  S y   |    Using 1, 1

y



y

1, 1 



2



1 1,1  i 2 1, 0  1, 1 2

 from Problem 7.9 yields 2

2

2 2 2 2  1  2   2  1   1  2  P  S y    |          i    0.0556   i          6 6 6 36  2  3   2  3   2  3  7.13* (Sec. 7.4)

  1/ 3  2 1,1  i 1, 0  2 1, 1



Chapter 7 1  Sˆ 2    1,1 2  1, 0 i  1, 1 2  Sˆ 2  2 1,1  i 1, 0  2 1, 1  9 1   2 (1)(1  1)  1,1 2  1, 0 i  1, 1 2  2 1,1  i 1, 0  2 1, 1 9 2   2  4  1  4   2 2 9 1  Sˆz    1,1 2  1, 0 i  1, 1 2  Sˆz  2 1,1  i 1, 0  2 1, 1 9 1    1,1 2  1, 0 i  1, 1 2  2 1,1  2 1, 1  9 2  2  4  4  0 9 Using the matrix for Sˆ y found pin Problem 7.7:  0 i 0   2   ˆ  Sy    2 i 2   i 0 i   i  9 2 0 i 0  2      1     2 i 2   0  9 2 1      2  2   0 9 2

7.14

(Sec. 7.5) ˆ i  /2 /  Rˆ  , uz   z  e iJ z /   z  e    z  e i/2  z ˆ i   /2  /  Rˆ  , uz   z  e iJ z /   z  e   z  ei/2  z

 z Rˆ  , uz     z 

Rˆ  , uz   z Rˆ  , uz   z

 e i/2   0 

0   ei/2 

 z Rˆ  , uz   z    z Rˆ  , uz   z 





91

92

Chapter 7

7.15

(Sec. 7.5)





ˆ

iJ /  Rˆ , u y  z  e y  z

Using the result of Problem 6.7, we can write this as:  iJˆ /   1 Rˆ , u y  z  e y   y   y    2  1 i(  /2)/  e   y  e i(   /2)/   y 2 1  i/2 1 1    z  i  z   ei/2  z  i  z    e 2 2 2  1   e i/2  ei/2  z  i e i/2  ei/2  z   2  cos   / 2   z  sin   / 2   z





















ˆ

iJ /  Rˆ , u y  z  e y  z

Again using the result of Problem 6.7, we can write this as:  iJˆ /   i Rˆ , u y  z  e y   y   y    2  i ei(   /2)/   y  e i(  /2)/   y  2 1 i  i/2 1    z  i  z   e i/2  z  i  z    e 2 2 2  i   ei/2  e i/2  z  i ei/2  ei/2  z   2

















  sin   / 2   z  cos   / 2   z

 

 

 

 

  z Rˆ , u y  z  z Rˆ , u y  z    ˆ R , u y    z Rˆ , u  z ˆ  z R , u y  z  y    cos   / 2   sin   / 2      sin   / 2  cos   / 2  





Chapter 7

7.16* (Sec. 7.5)





First apply Rˆ , u y to  z . Using the result of Problem 7.15 we get  cos   / 2   sin   / 2    1   cos   / 2   Rˆ , u y  z         sin   / 2  cos   / 2    0   sin   / 2  





Apply Rˆ  , uz  to this. Using the result of Problem 7.14:  e i/2 Rˆ  , uz  Rˆ , u y  z    0 





0   cos   / 2     ei/2   sin   / 2  

 e i/2 cos   / 2    cos   / 2     e i/2  i    e sin   / 2    ei/2 sin   / 2       Apart from the overall phase, this is  n  cos   / 2   z  ei sin   / 2   z

93

94

Chapter 7

7.17

(Sec. 7.5) ˆ Rˆ  , ux   z  e iJ x /   z ˆ  1   e iJ x /    x   x    2  1 i(  /2)/    x  ei(   /2)/   x e 2 1  i/2 1 1    z   z   ei/2  z   z    e 2 2 2  1   i  i   z   i  i   z  2  i  z





Makes sense–should be spin down along z-axis. 7.18

(Sec. 7.5) ˆ Rˆ  , uz  1,1  e iJ z /  1,1  ei /  1,1  e i 1,1 ˆ Rˆ  , uz  1, 0  e iJ z /  1, 0  e i0/  1, 0  1, 0 ˆ Rˆ  , uz  1, 1  e iJ z /  1, 1  e i(   )/  1, 1  ei 1, 1

7.19

(Sec. 7.5) First we need to write 1,1 in the x-basis. Using the results of Problem 7.8: 1  1,1  1, 1  x 2 1 1, 1 x  1,1  2 1, 0  1, 1 2 1, 0







1,1 x  1, 1 x  1,1  1, 1 1,1 x  2 1, 0 1,1 



x

 1, 1 x  2 1,1

1 1,1 x  2 1, 0 2

x

 1, 1

x



Chapter 7



ˆ 1 1,1 x  2 1, 0 x  1, 1 x Rˆ   / 2, ux  1,1  e iJ x /2  2 1  e i/2 1,1 x  2 1, 0 x  ei/2 1, 1 2 1  i 1,1 x  2 1, 0 x  i 1, 1 x 2 i 1,1 x  i 2 1, 0 x  1, 1 x  2

 

 x









i  1 1 Rˆ   / 2, ux  1,1   1,1  2 1, 0  1, 1  i 2  1,1  1, 1 2 2 2 1   1,1  2 1, 0  1, 1  2  i  2 1, 0  i  1,1  1, 1  2 1  1,1  i 2 1, 0  1, 1 2  1, 1 y











 





Where I’ve used the result of Problem 7.9. 7.20

(Sec. 7.5) First we need to write 1,1 in the x-basis. Using the results of Problem 7.8: 1  1,1  1, 1  2 1 1, 1 x  1,1  2 1, 0  1, 1 2 1, 0

x







1,1 x  1, 1 x  1,1  1, 1 1,1 x  2 1, 0 1,1 



x

 1, 1 x  2 1,1

1 1,1 x  2 1, 0 2

x

 1, 1

x



95

96

Chapter 7





ˆ 1 1,1 x  2 1, 0 x  1, 1 x Rˆ  , ux  1,1  e iJ x /  2 1  e i 1,1 x  2 1, 0 x  ei 1, 1 x 2 1   1,1 x  2 1, 0 x  1, 1 x 2 1 1 1 Rˆ  , ux  1,1    1,1  2 1, 0  1, 1  2  1,1  1, 1 2 2 2 1   1,1  2 1, 0  1, 1  2  1   1,1  1, 1   1,1  1, 1  2   1, 1

 



 













Complement 7.B Eigenvalues and Eigenstates of Angular Momentum 7.B.1



Jˆ†  Jˆ x  iJˆ y





 Jˆ x†  iJˆ †y  Jˆ x  iJˆ y  Jˆ ,

where I’ve used the fact that the Jˆ x and Jˆ y are Hermitian.



Jˆ†  Jˆ x  iJˆ y





 Jˆ x†  iJˆ †y  Jˆ x  iJˆ y  Jˆ .

7.B.2  Jˆ , Jˆ    Jˆ x  iJˆ y , Jˆ x  iJˆ y        Jˆ x , Jˆ x   i  Jˆ y , Jˆ x   i  Jˆ x , Jˆ y    Jˆ y , Jˆ y          0

0

 Jˆ z  Jˆ z  2Jˆ z

7.B.3* j , m j Jˆ Jˆ j , m j  j , m j Jˆ† Jˆ j , m j

Using Eq. (7.B.19): j , m j Jˆ Jˆ j, m j  c * c  2 j , m j  1 j , m j  1 2

 c  2 Using Eq. (7.B.16):

97

98

Complement 7.B



j , m j Jˆ Jˆ j , m j  j , m j Jˆ 2  Jˆ z2  Jˆ z

 j, m

j

  2  j ( j  1)  m j 2  m j  j , m j j , m j     2  j ( j  1)  m j (m j  1)  c

2

  j ( j  1)  m j (m j  1)  1/2

c   j ( j  1)  m j (m j  1) 

1/2 Jˆ j , m j    j ( j  1)  m j (m j  1)  j, m j  1

7.B.4* Using Eq. (7.B.14):



Jˆ z Jˆ j , m j

  Jˆ  Jˆz    

j, m j



 Jˆ m j    j , m j



 

 m j  1  Jˆ j , m j







Jˆ j , m j is an eigenstate of Jˆ z with eigenvalue m j  1  , so Jˆ j , m j  c  j , m j  1 . j , m j Jˆ Jˆ j , m j  j , m j Jˆ† Jˆ j , m j  c * c  2 j , m j  1 j , m j  1 2

 c  2

Using Eq. (7.B.15): j , m j Jˆ Jˆ j , m j  j , m j Jˆ 2  Jˆ z2  Jˆ z



 j, m

j

  2  j ( j  1)  m j 2  m j  j , m j j , m j     2  j ( j  1)  m j (m j  1)  2 c   j ( j  1)  m j (m j  1)  1/2

c   j ( j  1)  m j (m j  1) 

Chapter 8 Two Particle Systems and Entanglement 8.1

(Sec. 8.1) ˆ sHV  V , L  ˆ sHV V , L  V , L (1) V , L  1 

ˆ iHV  V , L  ˆ iHV V , L    s V

i

  s V

i

  s V

i

1 ˆ iHV  V L   H i i V s 2  1   L   V s H i  i V i   2   L   V

s

i

 

R i   0

ˆ siHV  V , L  ˆ sHV ˆ iHV V , L  

s

ˆ sHV V V

s i

1 ˆ iHV  L  H i i V  2

 1  (1) i L   H i i V  2  (1) i L R i  0

8.2

i

i

 

 

(Sec. 8.1)

 1 2 ˆ sHV   , 45  H   H , 45  3 3 

 s  1 2 ˆ HV  , 45 H   H , 45   3 3  

  

1 2 2 2 H , 45 H , 45  H , 45 H , 45  H , 45 H , 45  H , 45 H , 45 3 3 3 3 1 2   1 3 3 1 1 ˆ iHV 45 i  H i  V i   H i  V i   45 i 2 2 1 1 ˆ iHV 45 i  H i  V i   H i  V i   45 i 2 2 

ˆ iHV  ˆ iHV 

99

100

Chapter 8 Therefore:  1 2 ˆ iHV     3 H , 45  3 H , 45 

 i  1 2 ˆ HV    3 H , 45  3 H , 45  

  

1 2 2 2 H , 45 H , 45  H , 45 H , 45  H , 45 H , 45  H , 45 H , 45 3 3 3 3 2 2 2 2    3 3 3  1  si  1  2 2 ˆ HV  , 45 , 45   H , 45  H , 45  H   H    3 3 3  3    

ˆ siHV 



1 2 2 2 H , 45 H , 45  H , 45 H , 45  H , 45 H , 45  H , 45 H , 45 3 3 3 3

 8.3

2 2 2 2 ˆ iHV     3 3 3

(Sec. 8.1) P  45s , 45i   Pˆ45S ,45i  1 2 H , 45  H , 45  3  3 

  45, 45 45, 45 

1 2 H , 45 45, 45  H , 45 45, 45 3 3

 1  1      1  0  3  2  1  6

2

2

 1 2 H , 45  H , 45  3  3

  

Chapter 8

8.4

101

(Sec. 8.1) There are two possibilities: Vs , H i and H s ,Vi . Calculate the probabilities and add them. P Vs , H i   PˆVs , Hi  R, 45 V , H V , H R, 45 2

 R, 45 V , H 

s

RV

s i

45 H

2 i

2

i 1 1  . 4 2 2



P  H s , Vi   PˆH s ,Vi  R, 45 H , V

H , V R, 45

 R, 45 H , V

2



s

R H

s i

45 V

2 i

2

1 1 1   . 4 2 2

P  P Vs , H i   P  H s , Vi   8.5*

1 . 2

(Sec. 8.2)   a H , H  b V ,V

Assume:  s s  cHs H   s

s

i

s

 cVs V

i

 cHs H



s

, i

s

i

 cHi H i  cVi V

 cVs V

s

  c

i H

i

H i  cVi V

i



 cHs cHi H , H  cHs cVi H ,V  cVs cHi V , H  cVs cVi V , V . In order for this to be equal to   a H , H  b V , V , the coefficients of the H , V and V , H terms must be zero. Starting with the H , V term, this means cHs cVi  0 . This implies that either cHs  0 , or cVi  0 . If the first is true then the H , H

term will be absent, while the second is

102

Chapter 8 true then the V , V term will be absent. This gives a contradiction, so our assumption is wrong, and the state cannot be factorized.

8.6*

(Sec. 8.2) Remember that if the sum of the projection operators onto a set of states is equal to the identity operator, then the states form a basis. 

  



  



  

1  H , H  V ,V  1  H , H  V ,V  2 2 1   H , H  V ,V  1  H , H  V ,V  2 2 1   H , H H , H  H , H V ,V  V ,V H , H  V , V V ,V 2 1   H , H H , H  H , H V , V  V ,V H , H  V ,V V ,V 2  H , H H , H  V ,V V ,V

 

 

1  H ,V  V , H  1  H ,V  V , H  2 2 1   H ,V  V , H  1  H ,V  V , H  2 2 1   H , V H ,V  H ,V V , H  V , H H ,V  V , H V , H  2 1   H ,V H ,V  H , V V , H  V , H H , V  V , H V , H  2  H ,V H ,V  V , H V , H

 

   

  

   H , H H , H  V ,V V ,V  H ,V

H ,V  V , H V , H

 1ˆ

This is the identity, because we know that the states H , H , V , V , H , V basis, and hence the projection operators onto those states add to the identity.

and V , H are a

Chapter 8

8.7

103

(Sec 8.2) (a) P  45s   Pˆ45s 1  45, 45  45, 45   45 s s 45  1  45, 45  45, 45  2 2 1   s 45 i 45  s 45 i 45  45 s   s 45  45 s 45 i  45 s 45 i   2 1   s 45 45 s i 45  s 45 45 s i 45   s 45 45 s 45 i  s 45 45 s 45 i  2 1   i 45   45 i  2 1  . 2 

(b) Probabilities must be normalized. P  45s   P  45s   1

P  45s   1  P  45s   1 

1 1  . 2 2

(c) P  45i   Pˆ45i 1  45, 45  2 1   s 45 i 45 2 1   i 45 45 i s 2 1   s 45   45 2 1  . 2 

45, 45   45  s 45

i



45 

1  45, 45  45, 45 2

45  45 i   i 45  45

45  i 45 45 s

i i

i s

45 i  45

s

45   i 45 45

i

 s

45

45 s  i 45 45

i

 i

45 s 

104

Chapter 8 P  45s , 45i   Pˆ45S , 45i 1  45, 45  45, 45  45, 45 45, 45  1  45, 45  45, 45 2 2 2 1  45, 45 45, 45  45, 45 45, 45 2 1  . 2 P  45s , 45i  1/ 2 P  45s | 45i    1 . 1/ 2 P  45i  

8.8

(Sec. 8.2) (a) P  H s   PˆH s 1  45, 45  45, 45   H s s H  1  45, 45  45, 45  2 2 1   s 45 i 45  s 45 i 45  H s   s H  45 s 45 i  45 s 45 i   2 1   s 45 H s i 45  s 45 H s i 45   s H 45 s 45 i  s H 45 s 45 i  2 1 1 1 1  1    45  45   45 i  45 i  i i 2 2 2 2  2  



1 1 1 1    2 2 2 2

(b) Probabilities must be normalized. P  H s   P Vs   1

P Vs   1  P  H s   1 

1 1  . 2 2



Chapter 8

105

(c) P  H i   PˆHi 1  45, 45  45, 45   H i i H  1  45, 45  45, 45  2 2 1   s 45 i 45  s 45 i 45  H i   i H  45 s 45 i  45 s 45 i   2 1   i 45 H i s 45  i 45 H i s 45   i H 45 i 45 s  i H 45 i 45 s  2 1 1 1 1  1         45 s  45 45 45   s s s 2 2 2 2  2  



1 1 1 1    2 2 2 2

P  H s , H i   PˆH S , Hi 1  45, 45  45, 45  H , H H , H 2 2 1  45, 45 H , H  45, 45 H , H 2 

1  1   1   1  1      2  2   2   2   2  1  2 P  H s | Hi  

P  H s , H i  1/ 2  1 . 1/ 2 P  Hi 

2



1  45, 45  45, 45 2



106

Chapter 8

8.9*

(Sec. 8.2) es  cos  s  H  eis sin  s  V

 

1  H , H  V ,V 2

(a)

 e ,e

P  es , ei  

s

i

es , ei

ei  cos  i  H  eii sin  i  V



 



1  H , H  V ,V  es , ei es , ei 1  H , H  V ,V 2 2 1   H , H  V , V  es , ei   es , ei  H , H  V , V   2 2 1  H es H ei  V es V ei s i i s s i i 2 s 2 1 i    cos  s  cos  i   e  s i  sin  s  sin  i  2 

(b)

P  ei  

e

i

ei

 

 12  H , H

1  H , H  V ,V  ei ei 2 1   H , H  V , V  ei   ei  2 1   s H H ei  s V V ei i i i 2 



H , H  V , V   i

  ei H  i

i

H

1  s H cos  i   s V eii sin  i    cos  i  H  2 1 1  cos 2  i   sin 2  i    2 2 

(c) Using the results from a) and b): P (es , ei ) P (es | ei )  P(ei ) 2 1 i   cos  s  cos  i   e  s i  sin  s  sin  i  2 1/ 2

 cos  s  cos  i   e 

i s i 



 V ,V

sin  s  sin  i 

2

s

s



i

e

ei V

 ii

i

V s 

sin  i  V s 

Chapter 8

107

(d) Using the result from (c), for s  i   and s  i   P (es | ei )  cos    cos     ei  sin    sin     cos 2     sin 2   

2

2

1 For a measurement that finds the idler photon to be in an arbitrary elliptical polarization state, there is always a measurement that can be performed on the signal beam that will find the polarization of the signal to be perfectly correlated with the idler polarization. (e) If s  i  0 , then (d) means that measurements of linear polarizations along the angles s  i   are perfectly correlated between the two beams. The fact that every possible linear polarization in one beam is perfectly correlated with the same linear polarization in the other is a fairly remarkable (and highly nonclassical) result. 8.10* (Sec. 8.3)



P  Hs   P Hs H , H

 P H, H   PH

s

V ,V

1 1  H , H PˆH s H , H  V ,V PˆH s V ,V 2 2 1 1  H , H H s s H H , H  V ,V H s 2 2 1  . 2



P  Hi   P Hi H , H

 P H, H   PH

i

V ,V

 P  V ,V 

s

H V ,V

 P  V ,V 

1 1  H , H PˆHi H , H  V ,V PˆH i V , V 2 2 1 1  H , H H i i H H , H  V ,V H i i H V ,V 2 2 1  . 2

108

Chapter 8



P  H s , Hi   P H s , Hi H , H

 P H, H   PH , H s

i

V ,V

 P  V ,V 

1 1  H , H PˆH s , Hi H , H  V ,V PˆH s , Hi V ,V 2 2 1 1  H , H H , H H , H H , H  V ,V H , H H , H V ,V 2 2 1  . 2 P  H s | Hi  

P  H s , H i  1/ 2  1 . 1/ 2 P  Hi 

These are the same probabilities determined in Example 8.5. 8.11

(Sec. 8.3) (a) A horizontally polarized signal photon has a 50% probability of passing through a linear polarizer oriented at +45°. (b) A horizontally polarized idler photon has a 50% probability of passing through a linear polarizer oriented at +45°. (c) There are four possibilities: both photons are detected, the signal is detected, the idler is detected, neither photon is detected. All of these are equally likely, so the probability of detecting both is 25%. (d) If the idler is detected, there are two possibilities: the signal is detected, the signal is not detected. Both of these are equally likely, so the probability of detecting the signal, given that the idler is detected, is 50%. (e) A vertically polarized signal photon has a 50% probability of passing through a linear polarizer oriented at +45°. (f) A vertically polarized idler photon has a 50% probability of passing through a linear polarizer oriented at +45°. (g) There are four possibilities: both photons are detected, the signal is detected, the idler is detected, neither photon is detected. All of these are equally likely, so the probability of detecting both is 25%.

Chapter 8

109

(h) If the idler is detected, there are two possibilities: the signal is detected, the signal is not detected. Both of these are equally likely, so the probability of detecting the signal, given that the idler is detected, is 50%. (i)-(l) Notice that the measurement results are independent of whether the photons are prepared in the state H , H or the state V , V . Thus, the answers for the mixture will be the same as those above for either state preparation. These answers agree with those in Example 8.7. 8.12

(Sec. 8.3) (a) P  45s   P 45s 45, 45 P  45, 45   P 45s 45, 45 P  45, 45











1 1  45, 45 Pˆ45s 45, 45  45, 45 Pˆ45s 45, 45 2 2 1 1  45, 45 45 s s 45 45, 45  45, 45 45 s s 45 45, 45 2 2 1   i 45 45 i  2 1  . 2

(b) Probabilities must be normalized. P  45s   P  45s   1

P  45s   1  P  45s   1 

1 1  . 2 2

110

Chapter 8

(c) P  45i   P 45i 45, 45 P  45, 45   P 45i 45, 45 P  45, 45











1 1  45, 45 Pˆ45i 45, 45  45, 45 Pˆ45i 45, 45 2 2 1 1  45, 45 45 i i 45 45, 45  45, 45 45 i i 45 45, 45 2 2 1   s 45 45 s  2 1  . 2









P  45s , 45i   P 45s , 45i 45, 45 P  45, 45   P 45s , 45i 45, 45 P  45, 45



1 1  45, 45 Pˆ45s ,45i 45, 45  45, 45 Pˆ45s ,45i 45, 45 2 2 1 1  45, 45 45, 45 45, 45 45, 45  45, 45 45, 45 45, 45 45, 45 2 2 1  . 2

P  45s | 45i  

P  45s , 45i  1/ 2  1 ‘ 1/ 2 P  45i 

These all agree with Problem 8.7. 8.13

(Sec. 8.3) (a) P  H s   P H s 45, 45 P  45, 45   P H s 45, 45 P  45, 45









1 1  45, 45 PˆH s 45, 45  45, 45 PˆH s 45, 45 2 2 1 1  45, 45 H s s H 45, 45  45, 45 H s s H 45, 45 2 2  1  1   1   1  1    45 45 i   45 45 i       i i 2  2   2   2  2   1  . 2



Chapter 8

111

(b) Probabilities must be normalized. P  H s   P Vs   1

P Vs   1  P  H s   1 

1 1  . 2 2

(c) P  H i   P H i 45, 45 P  45, 45   P H i 45, 45 P  45, 45











1 1  45, 45 PˆHi 45, 45  45, 45 PˆHi 45, 45 2 2 1 1  45, 45 H i i H 45, 45  45, 45 H i i H 45, 45 2 2  1  1  1   1  1    45 45 s   45 45 s      s s 2  2  2   2  2   1  . 2









P  H s , H i   P H s , H i 45, 45 P  45, 45   P H s , H i 45, 45 P  45, 45



1 1  45, 45 PˆH s , Hi 45, 45  45, 45 PˆH s , Hi 45, 45 2 2 1 1  45, 45 H , H H , H 45, 45  45, 45 H , H H , H 45, 45 2 2 1  1   1   1   1   1   1   1   1      2  2   2   2   2   2   2   2   2   1  . 4

P  H s | Hi  

P  H s , H i  1/ 4 1   1/ 2 2 P  Hi 

Parts (a) and (b) agree with Problem 8.8, but not part (c), which is OK, because the states are not the same.

112

Chapter 8

8.14* (Sec. 8.4) 1  0.2 H , H  0.8 V ,V (a) P (θ A ,θ B ) 



A

θA

B

 θ  A

θB

1

A

θB

B



A

  

P (θ A ,θ B ) 



 

2

1

θA

B

θB



0.2 H

H

A

B

A A

0.2cosθ A cos θ B  0.8 sinθ A sin θ B

θ A 1

0.2 H , H θ A 0.2

B

 0.8 V

A

V

0.2 θ A H θ B H  0.8 θ A V θ B V

0.2cosθ A cos θ B  0.8 sinθ A sin θ B

(b) P (θ A )  1 θ A 



A

 V sin θ 

 0.8 V ,V θ A

H cos θ A  0.8

B

A

A







B



2

0.2

A

θ A H , H  0.8

0.2 cos θ A H

B

A

θ A V ,V

 0.8 sin θ A V

B

 

 0.2 cos 2 θ A  0.8sin 2 θ A P(θ B )  1 θ B

  

B B

θ B 1

0.2 H , H θ B 0.2

A

B

 V sin θ 

 0.8 V , V θ B

H cos θ B  0.8

A

B

B

0.2

B

θ B H , H  0.8

0.2 cos θ B H

A

B

θ B V ,V

 0.8 sin θ B V

A

 

 0.2 cos θ B  0.8sin θ B 2

P (θ A |θ B ) 

2

P (θ A ,θ B ) P(θ B )

P (θ B |θ A ) 

P (θ A ,θ B ) P(θ A )

Plug the angles given into a spreadsheet, using the formulas above. The numbers that are bold and underlined are the ones we are interested in. A 19 19 -35 -35

B -19 35 -19 35

P(A,B) 0.0930 0.2636 0.2636 0.0000

P(A) 0.2636 0.2636 0.3974 0.3974

P(B) 0.2636 0.3974 0.2636 0.3974

P(A|B) 0.3529 0.6633 0.9999 0.0001

P(B|A) 0.3529 0.9999 0.6633 0.0001

Chapter 8

113

(c) These results are consistent with Observations 1-4, but are not consistent with local realism. 8.15* (Sec. 8.4) 1  0.2 H , H  0.8 V ,V (a) P (θ A )  1 θ A

  

A A

θ A 1

0.2 H , H θ A 0.2

B

A

 V sin θ 

 0.8 V ,V θ A

H cos θ A  0.8

B

A

A

0.2

A

θ A H , H  0.8

0.2 cos θ A H

B

A

θ A V ,V

 0.8 sin θ A V

B

 

 0.2 cos θ A  0.8sin θ A 2

P(θ B )  1 θ B

  

2

B B

θ B 1

0.2 H , H θ B 0.2

A

B

 V sin θ 

 0.8 V , V θ B

H cos θ B  0.8

A

B

B

0.2

B

θ B H , H  0.8

0.2 cos θ B H

A

B

θ B V ,V

 0.8 sin θ B V

A

 

 0.2 cos θ B  0.8sin θ B 2

2

(b) Bob's measured probabilities depend only on θ B . This parameter is not under Alice's control, so Alice can in no way send a signal to Bob using her measurement apparatus. Note that we have only proved that Alice cannot send a signal to Bob by performing a measurement in the linear polarization basis. This does not prove that there is nothing she can do to send a message. However, more general proofs do show that there is no local operation that Alice can perform to send a message to Bob.

Complement 8.A The Density Operator 8.A.1 The density operator corresponding to this mixed state is 1 1 ˆ  45, 45 45, 45  45, 45 45, 45 2 2 (a) P  H s   PˆH s  Tr  PˆH s ˆ    Tr  H 

s s

1  H   45, 45 45, 45   2 

 1   Tr  H s s H   45, 45 45, 45   2   1 1  45, 45 H s s H 45, 45  45, 45 H s s H 45, 45 2 2  1  1   1   1  1    45 45 i   45 45 i       i i 2  2   2   2  2   1  . 2

(b) Probabilities must be normalized. P  H s   P Vs   1

P Vs   1  P  H s   1 

1 1  . 2 2

115

116

Complement 8.A

(c) P  H i   PˆHi  Tr  PˆHi ˆ    Tr  H 

i i

1 H   45, 45 45, 45 2

  

 1  Tr  H i i H   45, 45 45, 45   2   1 1  45, 45 H i i H 45, 45  45, 45 H i i H 45, 45 2 2  1  1  1   1  1    45 45 s   45 45 s       s s 2  2  2   2  2   1  . 2 P  H s , H i   PˆH s , Hi  Tr  PˆH s , Hi ˆ   1  Tr  H , H H , H   45, 45 45, 45 2 

  

 1   Tr  H , H H , H   45, 45 45, 45   2   1 1  45, 45 H , H H , H 45, 45  45, 45 H , H H , H 45, 45 2 2 1  1   1   1   1   1   1   1   1      2  2   2   2   2   2   2   2   2   1  . 4

P  H s | Hi  

P  H s , H i  1/ 4 1   . 1/ 2 2 P  Hi 

The results are the same as in Problem 8.13.

Complement 8.A

117

8.A.2



  1/ 2

 H , H

 V ,V



The density matrix is ˆ 

1   3

 

2 V ,V V ,V 3

1 Tr  ˆ   Tr    3 1 2     3 3

 2    Tr  V ,V V ,V   3  1 2 V ,V V ,V    1 3 3

2 2 1  1  ˆ 2      V , V V , V      V , V V , V  3 3 3  3  1 2 2 4       V , V V , V  V , V V , V     V , V V , V 9 9 9 9 1 2 2 4 V , V   V , V V , V      V , V  9 9 9 2 9 2

 

 2   2  1  4  V , V    Tr  V , V V , V   V , V   Tr  Tr ˆ 2  Tr     +Tr  9  9  9 2  9 2  1 2 2 4 V , V      V , V  9 9 2 9 9 2 1 1 1 4 7      1 9 9 9 9 9 Since Tr  ˆ   1 and Tr ˆ 2  1 , these are what we would expect.

 

Complement 8.B The Bell-Clauser-Horne Inequality 8.B.1* (a) P (θ A ,θ B ) 



A

θA

B

 θ  A

θB

1

A

θB

B



A

  

P (θ A ,θ B ) 





2

1

θA

B

θB



0.2 H

A

H

B

 0.8 V

A

V

0.2 θ A H θ B H  0.8 θ A V θ B V 0.2cosθ A cos θ B  0.8 sinθ A sin θ B

0.2cosθ A cos θ B  0.8 sinθ A sin θ B







B



2

(b) Plug the angles given into a spreadsheet, using the formula from part (a) above. A 19 19 -35 -35

B -19 35 -19 35

A_p

B_p

109 109 55 55

71 125 71 125

P(A,B) 0.0930 0.2636 0.2636 0.0000

P(A,B_p) 0.1706 0.0000 0.1338 0.3974

P(A_p,B) 0.1706 0.1338 0.0000 0.3974

In this table A_p and B_p refer to A and B . The numbers that are bold and underlined are the ones we are interested in. (c) The Bell-Clauser-Horne inequality is

P   A1 ,  B1   P   A 2 ,  B 2   P   A1 , B 2   P  A 2 ,  B1  .

Plugging in values from the table gives 0.093  0  0  0 , which is clearly false, so the inequality is violated. The results are not consistent with local realism.

119

120

Complement 8.B

8.B.2 I'll solve this problem using conditional probabilities, as discussed in Sec. 8.3. You could also solve it using the density operator (Complement 8.A). (a) P  θ A ,θ B   P θ A ,θ B H , H



 P  H , H   P θ

A

,θ B V ,V

 P  V ,V 

 H , H Pˆθ A ,θ B H , H  0.2   V ,V Pˆθ A ,θ B V ,V  0.8    0.2  H , H θ A ,θ B θ A ,θ B H , H   0.8  V ,V θ A ,θ B θ A ,θ B V ,V   cos  H  sin  V

P  θ A ,θ B    0.2  cos θ A cos θ B  cos θ A cos θ B    0.8  sinθ A sin θ B  sinθ A sin θ B    0.2  cos 2 θ A cos 2 θ B   0.8  sin 2θ A sin 2 θ B (b) Plug the angles given into a spreadsheet, using the formula from part (a) above. A 19 19 -35 -35

B -19 35 -19 35

A_p

B_p

109 109 55 55

71 125 71 125

P(A,B) 0.1688 0.1479 0.1479 0.1766

P(A,B_p) 0.0948 0.1157 0.2495 0.2208

P(A_p,B) 0.0948 0.2495 0.1157 0.2208

In this table A_p and B_p refer to A and B . The numbers that are bold and underlined are the ones we are interested in. (c) The Bell-Clauser-Horne inequality is

P   A1 ,  B1   P   A2 ,  B 2   P   A1 , B 2   P  A2 ,  B1  .

Plugging in values from the table gives 0.1688  0.1157  0.1157  0.1766  0.4080 ,

which is true, so the inequality is satisfied. The results for the mixed state are consistent with local realism.

Complement 8.C Two Spin-1/2 Particles 8.C.1* Using Eqs. (8.C.14) and (8.C.15): Sˆ (1)  Sˆ (2)  z ,  z  Sˆx(1) Sˆx(2)  z ,  z  Sˆ y(1) Sˆ y(2)  z ,  z  Sˆ z(1) Sˆz(2)  z ,  z 1 2 1 1   z,  z  2  z,  z  2  z,  z 4 4 4 1 2    z,  z 4 

  , and the other 2-particle basis states]:

Using Eq. (8.C.7) [which also holds for Sˆ (1)

 

Sˆ 2  z ,  z  Sˆ (1)

2

 

 z ,  z  Sˆ (2)

2

2

 z ,  z  2 Sˆ (1)  Sˆ (2)  z ,  z

3 2  3   2  2  2   z,  z 4 4  4 2  2  z ,  z  11  1  2  z ,  z

So s  1 .





Sˆz  z ,  z  Sˆz(1)  Sˆz(2)  z ,  z

         z,  z  2 2    z,  z

So ms  1 .

121

122

Complement 8.C

8.C.2* Using Eqs. (8.C.14) and (8.C.15): Sˆ (1)  Sˆ (2)  z ,  z  Sˆx(1) Sˆx(2)  z ,  z  Sˆ y(1) Sˆ y(2)  z ,  z  Sˆz(1) Sˆz(2)  z ,  z 1 2 1 1   z ,  z   2  i  i   z ,  z   2  z ,  z 4 4 4 1 1  2  z,  z  2  z,  z 2 4 

Sˆ (1)  Sˆ (2)  z ,  z  Sˆx(1) Sˆx(2)  z ,  z  Sˆ y(1) Sˆ y(2)  z ,  z  Sˆz(1) Sˆz(2)  z ,  z 1 2 1 1   z ,  z   2  i  i   z ,  z   2  z ,  z 4 4 4 1 1  2  z,  z  2  z,  z 2 4 

  , and the other 2-particle basis states]:

Using Eq. (8.C.7) [which also holds for Sˆ (1)

 

Sˆ 2  z ,  z  Sˆ (1)

2

 

 z ,  z  Sˆ (2)

2

2

 z ,  z  2 Sˆ (1)  Sˆ (2)  z ,  z

3  1 3   2  2   z,  z  2  z,  z  2  z,  z 4  2 4  2  z,  z  2  z,  z

 

Sˆ 2  z ,  z  Sˆ (1)

2

 

 z ,  z  Sˆ (2)

2

 z ,  z  2 Sˆ (1)  Sˆ (2)  z ,  z

3  1 3   2  2   z,  z  2  z,  z  2  z,  z 4  2 4  2  z,  z  2  z,  z

2 2 1 ˆ S   z,  z   z,  z     z,  z   z,  z   z,  z   z,  z 2 2 1  2 2   z,  z   z,  z  2 1  11  1  2   z,  z   z,  z  2 So s  1 .



Complement 8.C





1 Sˆz   z,  z   z,  z   Sˆz(1)  Sˆz(2) 1   z,  z   z,  z  2 2 1           2  2   z ,  z    2  2   z ,  z  2      0 So ms  0 . 8.C.3 0, 0  c1  z ,  z  c2  z ,  z  c3  z ,  z  c4  z ,  z 1,1 0, 0   z ,  z 0, 0  c1  0 1, 1 0, 0   z ,  z 0, 0  c4  0

1, 0 0, 0 

1 1   z ,  z 0, 0   z ,  z 0, 0    c2  c3   0 2 2

c3  c2 After using the normalization condition: 1   z ,  z   z ,  z  0, 0  2 8.C.4* Sˆ (1)  Sˆ (2)  z ,  z  Sˆx(1) Sˆx(2)  z ,  z  Sˆ y(1) Sˆ y(2)  z ,  z  Sˆz(1) Sˆz(2)  z ,  z 1 2 1 1   z ,  z   2  i  i   z ,  z   2  z ,  z 4 4 4 1 2 1 2    z,  z    z,  z 2 4 

Sˆ (1)  Sˆ (2)  z ,  z  Sˆx(1) Sˆx(2)  z ,  z  Sˆ y(1) Sˆ y(2)  z ,  z  Sˆz(1) Sˆz(2)  z ,  z 1 2 1 1   z ,  z   2  i  i   z ,  z   2  z ,  z 4 4 4 1 2 1 2    z,  z    z,  z 2 4 

123

124

Complement 8.C

 

Sˆ 2  z ,  z  Sˆ (1)

2

 

 z ,  z  Sˆ (2)

2

 z ,  z  2 Sˆ (1)  Sˆ (2)  z ,  z

3  1 3   2  2   z,  z  2  z,  z  2  z,  z 4  2 4 2 2    z,  z    z,  z

 

Sˆ 2  z ,  z  Sˆ (1)

2

 

 z ,  z  Sˆ (2)

2

 z ,  z  2 Sˆ (1)  Sˆ (2)  z ,  z

3  1 3   2  2   z,  z  2  z,  z  2  z,  z 4  2 4 2 2    z,  z    z,  z 2 1 Sˆ 2   z,  z   z,  z      z,  z   z,  z   z,  z   z,  z 2 2 0

So s  0 .





1 Sˆz   z,  z   z,  z   Sˆz(1)  Sˆz(2) 1   z,  z   z,  z  2 2 1           2  2   z ,  z    2  2   z ,  z  2      0 So ms  0 . 8.C.5  1   1  x,  x   z 1  z 1    z 2  z  2   2 1    z,  z   z,  z   z,  z   z,  z 2 1 1 1  1,1  0, 0  1, 1 2 2 2







1 1 ˆ2 1 Sˆ 2  x,  x  Sˆ 2 1,1  S 0, 0  Sˆ 2 1, 1 2 2 2   2 1,1   2 1, 1

2







Complement 8.C Sˆ 2   x,  x Sˆ 2  x,  x



1 1 1    1,1  0, 0  1, 1   2 1,1   2 1, 1 2 2 2  1 1  2     2 2 2

1 1 ˆ 1 Sˆ z  x,  x  Sˆ z 1,1  S z 0, 0  Sˆ z 1, 1 2 2 2    1,1  1, 1 2 2 Sˆ z   x,  x Sˆ z  x,  x  1 1 1    0, 0  1, 1   1,1  1, 1    1,1  2 2 2  2  2 1 1      0 4 4



125

Chapter 9 Time Evolution and the Schrödinger Equation 9.1

(Sec. 9.3) d d  (t ) Aˆ  (t ) A  dt dt d  d  d    (t )  Aˆ  (t )   (t )  Aˆ  (t )  (t ) Aˆ   (t )   dt   dt   dt  i ˆ ˆ (t )  (t )  d Aˆ   (t ) ˆ ˆ (t )  i (t ) AH  (t ) HA      dt  

i d  (t )  Hˆ , Aˆ   (t )   (t )  Aˆ   (t ) .   dt 

A term gets added. 9.2*

(Sec. 9.3) (a)  (0)  q12

is an eigenstate of the Hamiltonian. We know that if a system starts in an

eigenstate of the Hamiltonian, the state only picks up an overall phase factor as it evolves in time—the state itself doesn’t change. Therefore, in general, no expectation values will change in time. (b) 1  q12  q14  q16  is not an eigenstate of the Hamiltonian, it will evolve in 3 time, and expectation values will in general depend on time. Since  (0) 

(c) Operators that commute with the Hamiltonian have expectation values that do not depend on time. So, if Yˆ , Hˆ    Yˆ , Qˆ   0 , Yˆ will be time independent.

127

128

Chapter 9

9.3

(Sec. 9.4) Hˆ  Sˆ zB  Sˆ ,

z ˆ / iHt

 t   e

x

ˆ

 eiS zt /   x





1 it /2 e  z  eit /2  z 2 1  eit /2  z  e it  z . 2 





P   x, t     t  Pˆ x   t    x  t 

2



1 1   z   z  eit /2  z  e it  z  2 2 2 1  1  e it 4 1  1  cos t  . 2



2

P   y, t     t  Pˆ y   t    y  t 

2



1 1   z  i  z  eit /2  z  e it  z  2 2 2 1  1  ieit 4 1  1  sin t  . 2



2

Chapter 9

129

P   z , t     t  Pˆ z   t  2

  z  t    z eit /2 

9.4



1  z  e it  z 2



2

1 . 2

(Sec. 9.4) Using Eqs. (9.19) and (9.22): d i S x   (t )  Hˆ , Sˆ x  (t )  dt i   (t )  Sˆ z , Sˆ x   (t )  i  (t ) iSˆ y  (t ) 



  Sy



t  .

Using Eq. (9.29) d  S x   sin t 2 dt  S x  cos t 2 This agrees with Eq. (9.28). 9.5

(Sec. 9.4)  Pˆ z , Hˆ     z  z , Sˆ z         z  z Sˆ z  Sˆ z  z  z





        z  z       z  z  2 2   0

By Eq. (9.19) Pˆ z should thus be independent of time. Since P   z   Pˆ z the probability of measuring spin up along the z-direction should be constant in time. This agrees with Problem 9.3.

130

Chapter 9

9.6*

(Sec. 9.4) ˆ

  t   eiHt /   n



ˆ



 eiHt /  cos   / 2   z  ei sin   / 2   z ˆ

ˆ

 cos   / 2  eiS zt /   z  ei sin   / 2  eiS zt /   z  cos   / 2  ei(  /2)t /   z  ei sin   / 2  ei(   /2)t /   z  cos   / 2  eit /2  z  ei sin   / 2  e it /2  z





 eit /2 cos   / 2   z  ei sin   / 2  e it  z . S  t   S x  t  ux  S y

t  uy 

S z  t  uz

Using Eqs. (6.14) and (6.15): S x  t     t  Sˆ x   t 



 

 cos   / 2   z  eit e i sin   / 2   z Sˆ x cos   / 2   z  ei sin   / 2  e it  z







   i t     z  cos   / 2   z  sin   / 2  e  z  2 2    i t   i t    cos   / 2  sin   / 2  e   cos   / 2  sin   / 2  e  2   sin  cos  t    , 2  cos   / 2   z  sin   / 2  e 

i t  





Using Eq. (6.26): S y  t     t  Sˆ y   t 



 

 cos   / 2   z  eit e i sin   / 2   z Sˆ y cos   / 2   z  ei sin   / 2  e it  z



 cos   / 2   z  sin   / 2  e 

i t  





   i t     z  i cos   / 2   z  i sin   / 2  e  z  2 2  

 i t   i t    cos   / 2  sin   / 2  ie  cos   / 2  sin   / 2  (i )e  2    sin  sin  t    , 2 





Chapter 9 S z  t     t  Sˆ z   t 



 

131

 cos   / 2   z  eit ei sin   / 2   z Sˆ z cos   / 2   z  ei sin   / 2  e it  z



 cos   / 2   z  sin   / 2  e 

i t  







   i t     z  cos   / 2   z  sin   / 2  e  z  2 2  



 cos 2   / 2   sin 2   / 2  2   cos  2 S  t  makes an angle of  with the z-axis, and sweeps out a cone as it processes around the z-



axis at the Larmor frequency. 9.7

(Sec. 9.4) Hˆ  Sˆ xB  Sˆ , x

ˆ

  t   eiHt /   z ˆ

 eiHt / 



1  x  x 2





ˆ 1 iSˆxt /  e  x  eiS xt /   x 2 1 i(  /2)t /   e  x  ei(   /2)t /   x 2 1  eit /2  x  eit  x . 2











S  t   S x  t  ux  S y

t  uy 

S z  t  uz

S x  t     t  Sˆ x   t  1   e it /2 2  



 x  e

1  x  eit  2

1      2 2 2 0







1     x  Sˆ x eit /2  x  eit  x  2         x    x  e it  x     2 2 



it

132

Chapter 9

  0 i  1 1  1  i   Sˆ y  x          i  x 2  i 0  z 2 1 z 2 2  i  z 2   0 i  1  1   1  i   Sˆ y  x          i x 2  i 0  z 2  1  z 2 2  i  z 2 S y  t     t  Sˆ y   t  1    eit /2 2 

 x  e



it







1     x  Sˆ y eit /2  x  e it  x  2   



   1   x  eit  x   i  x  ie it  x     2 2 2    ieit  ieit 4   sin t , 2 





  1 0  1 1  1  1   Sˆz  x          x 2  0 1 z 2 1 z 2 2  1 z 2   1 0  1  1   1 1  Sˆz  x          x 2  0 1 z 2  1 z 2 2 1 z 2

S z  t     t  Sˆ z   t  1   e it /2 2  

 x  e





 it it e e 4   cos t . 2

9.8



1  x  eit 2



(Sec. 9.4) Hˆ  Sˆ zB  Sˆ z







1     x  Sˆ z  eit /2  x  eit  x  2         x    x  e it  x     2 2 



it

Chapter 9 ˆ

 (t )  eiHt /  1, 1



x

ˆ ˆ 1 iSˆzt /  e 1,1  2eiS zt /  1, 0  eiS zt /  1, 1 2 1  eit /  1,1  2 1, 0  ei(  )t /  1, 1 2 1  eit 1,1  2 1, 0  e it 1, 1 2  eit   1   2 2   e it   z



 







S  t   S x  t  ux  S y

t  uy 

S z  t  uz

The matrices for the spin operators for spin-1 are found in Sec. 7.4. 0 1 0    ˆ Sx  1 0 1  2   0 1 0 z S x (t )   (t ) Sˆ x  (t )



1   e it 2









4

e 2

it

 2

 2

eit



it     0 1 0     e        1   1 0 1       2   2   z 2     0 1 0  z    e it    z 

eit



it  0 1 0   e    1 0 1   2   z  0 1 0   it   z  e z



   2    eit  e it  z    2  z 



e 2



 2   e it  eit  e it  eit   2

4

it

4   cos t

 2

eit

133

134

Chapter 9  0 1 0     ˆ Sy  i 1 0 1  2   0 1 0 z S y (t )   (t ) Sˆ y  (t ) it     0 1 0     e   1      1   e it  2 eit  i 1 0 1     2    z 2  2  0 1 0    2  e it   z  z    it  0 1 0   e  i   e it  2 eit  1 0 1   2   z 4 2  0 1 0   it   z  e z











i e it 4 2

 



 2

eit



  2    eit  e it  z    2   z

i 2 e it  eit  e it  eit 4 2   sin t 

1 0 0    Sˆz    0 0 0   0 0 1   



Chapter 9 S z (t )   (t ) Sˆ z  (t )



1   e it 2





 4

 4

e 2 e 2





4 2 0 9.9

it

it

 2

eit



it     1 0 0     e        1 0 0 0     2      z  2  0 0 1   2  eit   z  z   

eit

 2

eit

 2



it  1 0 0   e    0 0 0   2  z  0 0 1  it   z  e z



 eit     0  z  it  z  e

1  1

(Sec. 9.4) Hˆ  Sˆ zB  Sˆ z

The initial state is an eigenstate of the Hamiltonian, with eigenvalue 0: Hˆ 1, 0  Sˆ z 1, 0  0 . As such, the state will not change in time, so P   z1 ,  z2 , t   P   z1 ,  z2 , 0    z ,  z 1, 0

2

1   z,  z   z,  z   z,  z 2 1  . 2



2

135

136

Chapter 9

9.10

(Sec. 9.4) Hˆ  Sˆ zB  Sˆ z

The initial state is an eigenstate of the Hamiltonian, with eigenvalue 0:





   Hˆ  z ,  z  Sˆ z  z ,  z   Sˆ z(1)  Sˆ z(2)  z ,  z        z ,  z  0 .  2 2 As such, the state will not change in time, so P   z1 ,  z2 , t   P   z1 ,  z2 , 0    z,  z  z,  z

2

 0. 9.11

(Sec. 9.4)

q L× B 2m In the above picture the torque points out of the page (along  u y ).

τ = μ× B 

d q L L× B 2m dt Consider a small time interval t . Over this time interval the angular momentum will change by a small amount L . q q L   L× B  t  LBt u y 2m 2m After t the angular momentum will be L '  L  L . In a view from the top:

τ=





Chapter 9

137

Since we’re assuming L is huge and L is small, then L is nearly perpendicular to L ' , as well as being perpendicular to L . This means L '  L . The direction of L changes, but its magnitude does not. Note that τ will always be perpendicular to L . This means that the change in angular momentum L will always be perpendicular to L , so L will always change direction, but not magnitude. L will rotate about in a circle (clockwise in the above figure) and since μ is parallel to L , it will rotate as well. The dipole moment μ will process about the magnetic field. 9.12* (Sec. 9.5) Invert Eq. (9.31) to write the flavor eigenstates in terms of the mass eigenstates:  e  cos  1  sin   2  x  sin  1  cos   2 The masses determine the energies:  m 2c 4   m 2c 4  E1  E0 1  1 2  E2  E0  1  2 2  ,   2 E0  2 E0    where E0  pc . The state at future times is ˆ

  t   e iHt /    0  ˆ

 e iHt /   e ˆ

ˆ

 cos eiHt /  1  sin eiHt /   2  cos eiE1t /  1  sin e iE2t /   2 . The probability that this state will be detected as an electron neutrino is:

138

Chapter 9

P  e   e   t  

2

 1 cos   sin   2   cos eiE t /  1

 cos 2 e iE1t /   sin 2 e iE2t / 

1  sin e iE2t /   2



2

2

2 i E  E t /   cos 2   sin 2 e  2 1 

 cos 4   sin 4   2 cos 2  sin 2  cos  Et /   , where we've defined E  E2  E1 

c4

m22  m12

2 E0

m 2c 4 . 2 E0 Applying a few trig identities: 1 2 1 2 1 P  e   1  cos 2   1  cos 2   sin 2  2  cos  Et /   4 4 2 1 1  2  2 cos 2  cos 2 2  2 cos 2  cos 2 2  sin 2  2  cos  Et /   4 2 1 1  1  cos 2 2  sin 2  2  cos  Et /   2 2 1 1  1  sin 2  2   sin 2  2  cos  Et /   2 2 1  1  sin 2  2  1  cos  Et /    2 

 





 1  sin 2  2  sin 2  Et / 2  , Substituting for E :  m 2c 4t  P  e   1  sin 2  2  sin 2   4 E   0  

 m 2c 4 L   1  sin 2  2  sin 2  ,  4 E c  0   where we've used the fact that L  ct .

Chapter 9

139

9.13* (Sec. 9.5) P  e   1  sin

2

 2  sin

2  m

c L    4 E0 c  2 4

As a function of L / E0 this has peaks at m 2c 4 L  n 4 E0 c

n  0,1, 2, .

The peak in Fig. 9.2 at L / E0  34 km/MeV should correspond to n  1 m 2c 4 L  4 E0 c 2

m 

4E0 c Lc

4



4c

 L / E0  c

4















4 6.6 1016 eV  s 3.0 105 km / s 106 eV / MeV

 34km / MeV  c

4

 7.3  105 eV 2 / c 4 Second peak at L / E0  70 km/MeV should correspond to n  2 m 2c 4 L  2 4 E0 c 2

m 

8E0 c Lc

4



8c

 L / E0  c

4







8 6.6  1016 eV  s 3.0  105 km / s 106 eV / MeV

 70km / MeV  c

4

 7.1 105 eV 2 / c 4 These correspond to an average of m 2  7.2  105 eV 2 / c 4 . The KamLAND collaboration performed a much more sophisticated analysis of all the data, and obtained m 2  7.6 105 eV 2 / c 4 . 9.14* (Sec. 9.2) (a) Need to find the eigenvalues of  1  0    Hˆ    * 1 0   0 0   2 

140

Chapter 9 1     * 1   0

0 0

0

2  

0

  1    1     2      *   2    2    2     1    1         2    2      2  21  12      0

one solution is    2 . Other solutions are given by 2  2  21  12    0 . Solve the quadratic equation





21  414  4 12  

2

2

  2  2      1

2

1

This gives two more solutions. (b) Before finding the time dependence, we need to find the eigenstates of the Hamiltonian. The eigenstate corresponding to the eigenvalue  2 is c , because  1  ˆ H c  *  0  where I've set

 1

0

0 0 0     0   0    2  0    2 c  E3 E3 , 1  2   1   

 2  E3 , and E3  c .

Because the eigenstates of a Hermitian operator are orthogonal, the other states will have no c component. The other states are found by  1   1      a  0     0 * 1   1       b   0    0 0  2   1      0   Which yields (we know that the other equation will be linearly dependent, so we only need one equation).

Chapter 9   a  b  0

Writing    ei this becomes   a   eib  0

b   a e  i The properly normalized states are then, for E1  1   :









1 a  e i b . 2 for E2  1   : E1 

E2 

1 a  e i b . 2

Inverting: 1 a   E1  E2 2

,

b 

ei  E1  E2 2



The time evolution of the state is given by ˆ

  t   e iHt /    0  ˆ

 e iHt /  a









ˆ ˆ 1 iHt e /  E1  e iHt /  E2 2 1 iE1t /   e E1  eiE2t /  E2 2 1 i E  E t /   e iE1t /  E1  e  2 1  E2 2 1 i2  t /  e iE1t /  E1  e E2 2 The probability of a measurement yielding the result b is



 





141

142

Chapter 9 P  b, t   b   t 

2

 b eiE1t /  



1 i2  t/ E1  e E2 2

1 1  i 1  i i 2  t /  e  e e 2 2 2



2

2

2 1 i2  t / 1 e 4 1   2  2 cos  2  t /     sin 2   t /   . 4



Complement 9.A Magnetic Resonance 9.A.1





0   pB  2.68 108 s-1T -1  4T   1.07 109 rad/s





f 0  0 / 2  1.07 109 rad/s / 2  170 MHz

9.A.2 (a) In order to flip with 100% certainty, the field must be on resonance:





  0   pBz  2.68  108 s-1T -1  8.5T   2.28 109 rad/s





f 0  0 / 2  2.28  109 rad/s / 2  363 MHz

(b) R 

   0 2  (1 / 2)2

On resonance:







 R  1 / 2   pBx / 2  2.68  108 s-1T -1 106 T / 2  1.34  102 rad/s

A  -pulse (which guarantees a spin flip) has a duration of:





t   /  R   / 1.34 102 rad/s  23 ms .

143

Chapter 10 Position and Momentum 10.1

(Sec 10.1) (a) Let the normalization constant be c. We then have   2 x 2   dx x c     dx rect  a  a /2

c

2



dx

 a /2

 c2 x

x a / 2 x  a /2

 c a  1. 2

So c  1/ a and   x 

1  x rect   . a a

(b) 

x 



dx   x  x  x 

 a/2



1 dx x a  a/2

0 because the integrand is odd.

145

146

Chapter 10 

x2 

dx   x  x 2   x 



 a /2



1 dx x 2  a a/2



1 3 x 3a

x  a /2

x  a /2

1  3 3 a / 2    a / 2     3a  2 a  12 

x  10.2

x

2

 x



2 1/2

1/2

 a2     0  12 



a 2 3

(Sec 10.1) (a) Let the normalization constant be c. We then have 







dx   x   c 2  dx e 2 x 2

0

c2   e 2 x 2  

x 

x 0

2

c  0  1 2

c2  1. 2

So c  2  and  0   x   x  2 e

x0 x0

.

Chapter 10

(b) This probability is P  0  x  1/   

1/ 

 dx   x 

2

0

1/ 

 2   dx e 2 x 0

 e

2 x x 1/  x 0

2

 e  1  0.865 . (c) 

x 

dx   x  x  x 



 

 2   dx xe 2 x 0

x 

1   e 2 x  2 x  1 2 x 0 

1 2 

x2 

dx   x  x 2   x 



 

 2   dx x 2 e 2 x 0

x 

1   2 e 2 x  2  2 x 2  2 x  1 2 x 0 

x 

1 2 2

x

2

 x



2 1/2

1/2

 1 1   2  2   2 4 



1  x . 2

147

148

Chapter 10

10.3

(Sec 10.1) (a) Let the normalization constant be c. We then have   2 1 2  dx   x   c  dx a 2  x 2 2   c2  2 2a

x 

arctan  x / a    x   2  2 a a  x  x   / 2   /2 0 0     a a 



c2 2a 2



c2  1. 2a 3

So c  2a 3 /  and 2a 3 1 2  a  x2

  x 

(b) This probability is 2a 3 P  a  x  a   

a

 dx

a

a

1

2

 x2 

2

x a

arctan  x / a   a x   2   2 a  a  x  x  a 

a a  / 4 a  / 4    2 2 a 2a a    2a



a 1   1 1     0.818 .   a 2a   2

(c) 

x 



dx    x  x  x 





2a 3 



 dx



a

x

2

 x2 

2

0 because the integrand is odd.

Chapter 10 

x2 

dx   x  x 2   x 







2a 3 

a3  

x  10.4





dx



a

x2

2

 x2 

2 x 

 arctan  x / a   x   2  2 a  a x  x  /2  / 2   0 0     a2   a a 



a3 



x2  x

   a  0

2 1/2

1/2

2

a.

(Sec 10.1) (a) Let the normalization constant be c. We then have 

 dx   x 

2



c

2



 dx sech

2

( x / a)



 c 2  a tanh 2 ( x / a ) 

x  x 

 2ac  1. 2

So c  1/ 2a and





  x   1/ 2a sech  x / a  (b) This probability is P 0  x  a 

a

1 dx sech 2 ( x / a)  2a 0

1 x a tanh( x / a ) x 0 2 1  tanh(1)  0.381. 2 

149

150

Chapter 10

(c) 

x 

dx   x  x  x 



 



1 2  dx x sech ( x / a) 2a 

0 because the integrand is odd. 

x2 

dx   x  x 2   x 



 

1  dx x 2 sech 2 ( x / a )  2a  2 a 2 12 This integral was calculated using Maple. 

x 

x

2

 x



2 1/2



a . 2 3

10.5* (Sec 10.2) Tˆ  x  dx   Tˆ  dx  Tˆ  x  i     1ˆ  pˆ x dx  Tˆ  x     i  Tˆ  x   pˆ xTˆ  x  dx  ˆ ˆ T  x  dx   T  x  i   pˆ xTˆ  x  dx  d ˆ i T  x    pˆ xTˆ  x  dx  Tˆ  x   e ipˆ x x /  , or Tˆ  D   e ipˆ x D / 

Chapter 10

151

10.6* (Sec 10.2) Tˆ †  D  Tˆ  D   eipˆ x D /  e ipˆ x D /   1ˆ , so the translation operator is unitary. 10.7* (Sec 10.2) ipˆ  D /  Tˆ †  D   eipˆ x D /   e x    Tˆ   D 

10.8

(Sec 10.2) ˆ ˆ , Cˆ   Aˆ  Bˆ , Cˆ    Aˆ , Cˆ  Bˆ . Equation (7.56) says:  AB      Rearranging: ˆ ˆ    Aˆ  Bˆ , Cˆ    Aˆ , Cˆ  Bˆ Cˆ , AB        Aˆ Cˆ , Bˆ   Cˆ , Aˆ  Bˆ Therefore:  Aˆ , Bˆ 2   Bˆ  Aˆ , Bˆ    Aˆ , Bˆ  Bˆ  c 2 Bˆ      

 Aˆ , Bˆ 3   Bˆ  Aˆ , Bˆ 2    Aˆ , Bˆ  Bˆ 2  c 2 Bˆ 2  cBˆ 2  c3Bˆ 2       The proof follows by induction. 10.9

(Sec 10.2) Eq. (10.71) says: if  Aˆ , Bˆ   c ,  Aˆ , Bˆ n   cnBˆ n 1 .

 

 Aˆ , f Bˆ    Aˆ , f  b   f   b  Bˆ  1 f   b  Bˆ 2  ...     2 1   Aˆ , f  b    f   b   Aˆ , Bˆ   f   b   Aˆ , Bˆ 2   ... 2 1 ˆ  ... f   b  2 Bc 2  c  f   b   f   b  Bˆ  ... Notice that the series in the square brackets is the derivative of the power series representation of the original function. Therefore, it is the derivative of the original function.  0  f  b  c 

 

 

 Aˆ , f Bˆ   cf  Bˆ .  

152

Chapter 10

10.10 (Sec 10.2)   Tˆ  D    e ipˆ x D /   ˆ ipˆ x D /   x   xˆ    eipˆ x D /  xe

 

 

Eq. (10.85) says: if  Aˆ , Bˆ   c ,  Aˆ , f Bˆ   cf  Bˆ . Applying it:    ipˆ x D /  ˆ ipˆ x D /   e ipˆ x D /  xˆ   xˆ , pˆ x   i  iD /   e ipˆ x D /   Deipˆ x D /  xe e pˆ x ˆ ipˆ x D /   e ipˆ x D /  xˆ  De ipˆ x D /  xe





x   eipˆ x D /  e ipˆ x D /  xˆ  De ipˆ x D /     xˆ    D  xD

So the average position shifts by D, as would be expected. ˆ ipˆ x D /     eipˆ x D /  e ipˆ x D /  pˆ    pˆ   p p   pˆ    eipˆ x D /  pe So the average momentum does not change, as would be expected. 10.11* (Sec 10.2) We'll start by rewriting   x  as   x     x  2  e x , where   x  is the step function  1    x   1/ 2  0 

x0 x 0. x0

Differentiate   x       x   2  e  x   x   2   x  e x x x x  x x  2 e   x   2    x  e , where we've used the fact that the derivative of the step function is the delta function (in Complement 10.A). This yields

Chapter 10 

p 

    dx   x   i x    x  





 i 2   dx e 2 x   x     x      x   

 i 2 e   0   i 2 0

 2

 dx e

2 x

0

  i   i  0

10.12

(Sec 10.2) For the particle in Problem 10.3: 2a 3 1   x  , x  a 2  a  x2  2a 3  1 2a 3 2x   x    2 2 x  x a  x   a 2  x 2 2 

p 

    dx   x   i x    x  



 i

2a 3 



 dx a

2



1 2x 2 2  x  a  x 2 2

0

because the integrand is odd.   2 2a 3  x 2a 3  4 x 2 x    x   2 2  x 2  x  a 2  x 2 2    a 2  x 2 3  a 2  x 2  2    2



p2 

     dx   x   i x    x 

  2 

2 2a 2

4a 3 







dx

  1  4 x2 x   a 2  x 2   a 2  x 2 3  a 2  x 2  2   

153

154

Chapter 10

This integral was done using Maple. p 





2 1/2

p2  p



 2a

     2a 2 2 so the indeterminacy relation is satisfied.

xp  a

10.13

(Sec 10.2) For the particle in Problem 10.4:





  x   1/ 2a sech  x / a  , x 

a 2 3

1  1  x x x sech     sech   tanh     x  x 2a x a 2a a a a 

p 

    dx   x   i x    x  



 i

1 2a 2



 dx sech



2

x x   tanh   a a

0 because the integrand is odd. 1  2 x x sech   tanh     x   2 x a 2a x a a 1  x  x  2 x 2  x    2 sech   tanh    sech   1  tanh     a 2a  a a  a   a   

1 a

2

 x  x  sech    2 tanh 2    1 2a  a  a 

Chapter 10 2



p2 

155

     dx   x   i x    x 

1   2a 3



2



 dx sech



2

  x  2 x    2 tanh    1  a  a 

2

 3a 2

This integral was done using Maple.





 3a a    xp    2 3 3a 6 2 so the indeterminacy relation is satisfied.

p 

p2  p

2 1/2



10.14 *

(Sec 10.3)

  x  x  



 dp

x p p



1  2



 dp e

ipx / 

  p 



where we've used Eq. (10.56). 10.15 *

(Sec 10.3)

For a position eigenstate x :   p   p x  x p  p  x   

1 e  ipx /  2

The probability density corresponding to this wave function is 2 1   p   , 2 which is constant over all space. This means that the uncertainty in the momentum is infinitely large. For a position eigenstate, the uncertainty in the position is 0. The only way to satisfy the indeterminacy principle with a position uncertainty of 0 is if the momentum uncertainty is infinitely large, so the state is consistent with the indeterminacy principle.

156

Chapter 10

10.16 *

(Sec 10.3)

  x 

1



  p  

2  2

  x  x  /4 2 2



1/2

e



1



2 



1/2

 dx e

2  ipx /    x  x  /4  2

e



1/4

  2   p 22 / 2  ipx /   e   e   This was integrated using Maple. 

p 

 dp   p  p  p  



1/2 

 2    

 dp pe

2 p 2 2 /  2



0 because the integrand is odd. 

p2 

 dp   p  p   p  

2



1/2 

 2     

 dp p e

2 2 p 2 2 /  2



2

 4 2

This was integrated using Maple. p 



p2  p



2 1/2



 2

From Section 10.1.4 we know that x   , so   xp    2 2 The Gaussian wave packet is a minimum uncertainty wave packet, because the indeterminacy relation is satisfied with an equality. 10.17 (Sec 10.3)

Chapter 10 For the particle in Problem 10.3: 2a 3 1   x  , x  a 2  a  x2 

2a 3 1 dx e  ipx /  2  a  x2  

1 2

  p  

a  p a/ e 



This was integrated using Wolfram Alpha (http://www.wolframalpha.com/). 

p 

 dp   p  p  p  







a 2 p a /  dp pe   

0 because the integrand is odd. 

p

2



 dp   p  p   p  

2







a 2 p a /  dp p 2 e   

2  2 2a

This integral was done using Maple. p 



p2  p



2 1/2



 2a

     2a 2 2 so the indeterminacy relation is satisfied.

xp  a

157

Complement 10.A Useful Mathematics 10.A.1 1   p   2 



 dx e

1  x rect   a a

 ipx / 



1 2a

a /2



dx e  ipx / 

a/2 x a / 2

1   ipx /   e    2a  ip  x  a /2 

 i ipa /2  ipa /2  e  e  2a p



 2sin  pa / 2  p 2a



 a sin  pa / 2  2a  pa / 2



a sinc  pa / 2  2

10.A.2* We know:   p  

1 2



 dx e

 ipx / 

  x



Therefore:    p  

1 2



 dx e

ipx / 

  x



And then 

1 dx e  ipx /    x   2  Use the fact that for a real function:  *( x)   ( x) , so     p  

159

160

Complement 10.A

    p  

1 2



 dx e

 ipx / 

  p .   x  



Taking the magnitude of both sides:     p     p     p     p 

10.A.3* 

1  ipx /  F   x  x0    dx e   x  x0  2  Let u  x  x0 , so du  dx 1 F   x  x0   2 

1 2



 du e

 ip  u  x0  / 

 u 

 

 du e

 ipu /   ipx0 / 

e

 u 





1  e ipx0 /   du e  ipu /    u  2 

  p .  e  ipx0 /  

Chapter 11 Wave Mechanics and the Schrödinger Equation 11.1

(Sec. 11.1) (i) Substitute  n  x, t    n  x  n  t  into Eq. (11.8):  2  2    V  x    n  x, t   i   n  x, t    2  t  2m x   2  2   V x        n  x  n  t   i  n  x  n  t  2 t  2m x   2  2   V x n  t         n  x    n  x  i n  t   2m x 2 t   (ii) Divide the resulting equation by  n  x  n  t  , and separate the temporal and spatial dependencies on opposite sides of the = sign:  2  2  1 1   V x x x i n  t        n  t         n n  2m x 2  x t t  n  x  n  t         n n    2  2  1  V x i n  t         n  x   2  n  x   2m x n  t  t  1

(iii) Note that time changes cannot affect the spatial part of the equation, and vice versa. The only way for the temporal and spatial parts to be equal to each other is if they are both constants. Set both the temporal and spatial parts equal to the same constant, En , yielding two equations:  2  2   V x       n  x   En  n  x   2m x 2  1  i n  t   En n  t  t 1

(v) Rearrange the spatial equation to obtain Eq. (11.19). 161

162

Chapter 11

 2  2   V x       n  x   En  n  x  2  2m x  2 2  d   n  x   V  x   n  x   En  n  x  2m dx 2 (vi) Solve the temporal equation. Compare your solution to Eq. (11.20). E  n  t   n n  t  t i The solution to this equation is n  t   e int , with En  n . 11.2* (Sec. 11.3) Start with Eqs. (11.42) and (11.43) A1  B1  A2 . ik1 A1  ik1 B1  ik2 A2 . Substitute (11.42) into (11.43): ik1 A1  ik1B1  ik2  A1  B1 

 k1  k2  A1   k1  k2  B1 k  k  B1  1 2 A1  k1  k2 

Substitute this back into (11.42) k  k  A1  1 2 A1  A2  k1  k2  A2 

2k1 A  k1  k2  1

(11.42) (11.43)

Chapter 11

11.3* (Sec. 11.3) (a)   i k x  t  i k x  t  Im  A2 e  2 2  A2e  2 2   x m   k 2  2 A2 . m 2 4 E  E  V0  jxA2  x, t  k2 A2 4k1k2 T  A1    2 2 jx  x, t  k1 A1  k1  k2  E  E  V0

jxA2  x, t  





2

(b) In part (a) we see that T

k2 A2 k1 A1

2 2

.

2

2

Since k2  k1 , it cannot be the case that T  A2 / A1 . 11.4* (Sec. 11.3) Start with Eqs. (11.51) and (11.52) A1  B1  A2 ik1 A1  ik1 B1  A2 . Substitute (11.51) into (11.52) ik1 A1  ik1B1    A1  B1 

 ik1    A1   ik1    B1  ik    A B1  1  ik1    1

Substitute this back into (11.51)  ik    A  A A1  1  ik1    1 2 2ik1 A2  A  ik1    1

(11.51) (11.52)

.

163

164

Chapter 11

11.5

(Sec. 11.3) jxA2  x, t    T

11.6

    Im  A2 ex i1t A2 ex i1t  x m     2   A2 Im  e x e x   0 x m  

jxA2  x, t  0 jxA1  x, t 

(Sec. 11.3) We know from Eq. (11.53) that B1 

 ik1    A .  ik1    1

This means  ik    A  k12   2 A  A . B1  1  ik1    1 k12   2 1 1 To find the phase shift, first note that  ik1     ik1     ik1    k12   2  i 2k1    ik1     ik1     ik1    k12   2 So,  2 k   B1  ei A1 , where   tan 1  2 1 2  .  k1   

11.7* (Sec. 11.3) Since there is no right-traveling wave to the left of the cliff  B1e  ik1x x0   x    ik x  ik2 x 2 0 x  A2 e  B2 e Applying the continuity of the wave function and its derivative at x  0 yields B1  A2  B2 (A) ik1 B1  ik2 A2  ik2 B2 (B) Substituting (A) into (B)

Chapter 11

165

ik1  A2  B2   ik2 A2  ik2 B2 A2  k2  k1    k2  k1  B2 A2 

 k2  k1  B  k2  k1  2

  i k x  t  i k x  t  Im  A2 e  2 2  A2e  2 2   x m   k 2  2 A2 . m   i k x  t  i k x  t  jxB2  x, t   Im  B2 e  2 2  B2e  2 2   x m   k 2   2 B2 . m

jxA2  x, t  

jxA2  x, t 

R

jxB2  x, t 



k2 A2 k2 B2

2 2



A2 B2

2 2

2 k1  k2     k1  k2 2

  

 2 E  V0 

E  E  V0 E

2

Notice that this is exactly the same as Eq. (11.47), which describes a particle with E  V0 incident on a barrier from the left. This means that the transmission coefficient T [Eq. (11.48)] must be the same as well, so

T

11.8



4 E  E  V0  E  E  V0



2

.

(Sec. 11.4) (a) We know that the wave function takes the form  A1eikx  B1e ikx x0  x 0 x L   x    A2 e  B2 ex ikx  A3e xL  with 1/ 2

 2mE  k  2    

 2m V0  E     2  

1/ 2

166

Chapter 11 Applying the boundary conditions (the wave function and its derivative are continuous) at x  0 yield A1  B1  A2  B2 ikA1  ikB1  A2  B2 .

(A) (B)

At x  L the boundary conditions give A2 e L  B2 eL  A3eikL

(C)

A2 e L  B2 eL  ikA3eikL .

(D)

Multiply (A) by ik and add it to (B), to obtain 2ikA1   ik    A2   ik    B2

(E)

Multiply (C) by  and add it to (D), to obtain 2B2 eL   ik    A3eikL B2 

 ik    A eik   L 2

(F)

3

Insert (F) into (D) to obtain   ik     A2 e L    A3eik   L  eL  ikA3eikL  2  A2 e L 

 ik    A eikL  ikA eikL 3

2  ik    A eikL A2 e L  3 2  ik    A eik   L A2   3 2

3

Substitute (F) and (G) into (E) to obtain   ik       ik     A3e ik   L    ik1     A3e ik   L  2ik1 A1   ik1      2    2  1 2 2   ik    e L   ik    eL  A eikL   2 3 1 A3   2  k 2  i 2k  eL    2  k 2  i 2k  eL 2k A1  2 1 A3   2  k 2  2sinh  L   i 4k cosh  L   2

(G)

Chapter 11 A1 A3

2 2



2 1  2   k 2  sinh 2  L   4 2 k 2 cosh 2  L   2 2   4 k 



1 4 2 k 2

 

2

 

 k2 

4 k 2

2

4



 2 2 k 2  k 4  sinh 2  L   4 2 k 2 1  sinh 2  L  

2

sinh 2  L   1

V0  E   E   1  sinh 2  L  4 V0  E  E 2

 1

V0 2 sinh 2  L  4 E V0  E 

  i kx t   i kx t   Im  A3e  A3e   m  x  k 2 A3 .  m 1 2 A3   jx  x, t  k A3 V0 2 2 T  A1 sinh  L     1  jx  x, t  k A1 2  4 E V0  E  

jxA3  x, t  

11.9

(Sec. 11.4)  eL  e L  eL Lim sinh 2  L   Lim   L 1 L 1 2 2  

Therefore: 1

 16 E V0  E  2 L V0 2 e 2 L  T   1  e   2 4 4  E V E V   0 0  

167

168

Chapter 11

11.10 (Sec. 11.5) 



dx m



L

2 mx   nx   x   n  x    dx sin   sin   L0  L   L  xL

   n  m  x    n  m  x    sin   sin   L L 2         nm nm      x 0  sin   n  m    sin   n  m        nm nm   0 nm 

2 

Thus, the wave functions are orthogonal. The case of n  m is the normalization integral given in the text [Eq. (11.69)]. 11.11* (Sec. 11.5) Assume an approximate equality for the indeterminacy relation:  xp  2 The particle must be inside the well, which has width L. We also know that the wave function must be 0 at the edges of the well, so the particle is less likely to be near the edges. Assume that L the particle spends most of its time in the middle half of the well. This implies x  , which 4 2 . means p  L The particle is equally likely to travel to the left or right, so p  0 , which means p 2  p 2  p

2

 p2 

4 2 . L2

Inside the well the potential energy is 0, and the energy is all kinetic. E 

p2 2m



4 2 . 2mL2

This is within factor of 3 of the actual ground state energy E1 .

Chapter 11 11.12* (Sec. 11.5) 

 dx  n  x  x  n  x 

x 



 L



2  nx  dx x sin 2    L0  L  xL

  2nx   2nx   cos   2 x sin    2 x  L   L     2 L 4  n   n   4   8    L   L   x 0 

1 L cos  2n    2 2 2  n   n  4L   4L    L   L  L  2 

By symmetry, it should be fairly obvious that this is what we had to obtain. x

2





 dx  n  x  x 

2

n  x 

 L



2  nx  dx x 2 sin 2    L0  L  xL

2      2nx   2  n  x 2  1 sin  2nx    x cos     L   2  x3  L     L      2 3 L 6  n   n   4  8    L L       x 0

L2 cos  2n   2 3  n  2   L  1  1  L2   2 2   3 2n   

x 



x  x 2



2 1/2

1/2

 1 1  L2    L2   2 2      3 2n   4 

1/ 2

1  1  L  2 2   12 2n  

169

170

Chapter 11 We know

p  0 by symmetry (the particle is equally likely to be moving to the right or the

left), or because the average momentum is always 0 if the wave function is real (see Sec. 10.2). p2 



2

     dx  n  x   i x   n  x  

2  n     L L 

2L

 0

 n  dx sin 2  x  L  x L

  2n   sin  x 2 2  n  x L         4n L  L  2    L x 0  n     L  p 



2

p2  p



2 1/2



n L 1/2

1  n n  1 xp  L   2 2    , L 12 2  12 2n   so the indeterminacy relation is satisfied. 11.13 (Sec 11.5) (a) Note that this wave function is equal to  1 2   2  x   i 3  x  0  x  L   x, 0    3 3  elsewhere 0  Clearly this means that the coefficients in the expansion of   x, 0  [Eq. (11.17)] are c2 

1 2 , c3  i , and all other coefficients are 0. 3 3

As was the case in Example 11.1, the probability of measuring a particular energy is independent of time. Therefore, 1 2 P  E2 , t   , P  E3 , t   , all other probabilities are zero. 3 3

Chapter 11

171

(b) If the probability distribution is independent of time, the average will also be independent of time. E  E2 P  E2   E3 P  E3  

2 2  2  22 3  2      2mL2  3 3 



112  2 3mL2

(c) x t  



 dx   x, t  x   x, t  



  cm eimt  cn e  int m

x t  

n



 dx   x  x   x   m

n



2  mx   nx  i   t cm cn e  m n   dx sin    x sin   L m,n  L   L  0 L

 2 1 2 i  2 3 t i  3 2 t   2 a33  a e a e   a22  i  23 32  3  L3 3   where L

 mx   nx  amn  anm   dx sin   x sin    L   L  0 xL

amn

   n  m  x    n  m  x    x sin   L cos   L L L       2  2   nm 2 n  m     x 0

x L

   n  m  x    n  m  x    x sin   L cos   L L L       2  2   nm 2 n  m     x 0 L2  cos   n  m     1 cos   n  m     1     2 2  22  n m n m       note that this is NOT valid for n  m 

(A)

172

Chapter 11

a32  

cos  5   1  L2  cos     1   2  25 2   L2  1 24 L2     1 2  25  252

For n  m : L

 nx  ann   dx x sin 2    L  0 x L

  2nx   2nx   cos   2 x sin    x L  L        2 4  n   n   4   8    L   L   x 0  



L2 cos  2n  1   2 2 4  n   n  8  8   L   L  L2 4

Substituting back into (A): 1 2  24  2 x  t   2 L   i 2i sin  2  3  t     2  3  25  12   12



 1 32 2  t sin  L          2 3 2     2 25  1   L   (0.18) sin  3  2  t   2 

2 

4 2  9 2    , 3 2mL2 2mL2



Chapter 11

(d) Using Ehrenfest's Thrm: d p t   m x t  dt  d  1 32 2  mL   sin  3  2  t   2 dt  2 25  32 2  3  2  cos  3  2  t  252 32 2  52     mL   cos  3  2  t  252  2mL2    mL



16 2 cos  3  2  t  5L

11.14 (Sec. 11.5)

(a) First find the coefficients cn in the linear expansion of   x, 0  :

173

174

Chapter 11 

cn 

 dx  n  x    x, 0  



2 2  L

L /2

 0

 2x   nx  dx sin   sin    L   L  x  L /2

   n  2  x    n  2  x    sin   sin   L L 2         n2 n2      x 0    n  2     n  2     sin   sin   2 2 2         n2 n2       

2 1   n   1 sin        2 n  2 n  2  n  sin    2   n 4 4 2





2

Note that this expression is not valid for n  2 , which we need to treat separately. 

c2 

 dx  2  x    x, 0  





2 2 L

L /2

 0

 2x  dx sin 2    L  x  L /2

  4x   sin    2 2 x  L     L 2  2  4     L   x 0 

2 2

It is possible to split the coefficients into three categories:

Chapter 11  4 2  n  sin    2    n  4  2   cn   0  2   2 

175

n odd n even, n  2 n2

  x, t    cn  n  x  e int n



8  L





n 1,3,5,...



 n   nx  i n sin   sin  e 2  2   L  n 4 1



2 1  2x  i 2   sin  e  L  L 



mL2 t

2 2



  2 mL2 t

.

(b) As was the case in Example 11.1, the probability of measuring a particular energy is independent of time. Therefore,

P  En , t   cn

2

32  2  2 2    n  4   0  1  2  

n odd n even, n  2 n2

11.15 (Sec. 11.5)

(a) First find the coefficients cn in the linear expansion of   x, 0  :

176

Chapter 11 

cn 

 dx  n  x    x, 0  



L

30 2  nx   5 dx x  L  x  sin    L L0  L  L L 2 15   nx    3  L  dx x sin  L    dx x 2 sin   L  0  L   0 x L

2 15  L   nx   nx      sin    x cos    Ln  n   L   L   x 0  

x L





2 15  2 2  nx   nx   2 cos 2 sin L n x n Lx            3  L   L   x 0 L2  n  





2 15 2 15 4 15 2 cos  n   2   n cos  n   , 3 n  n   n 3

For odd n we have 2 15 2 15 4 15 8 15 2 2   n   (n odd) , cn    3 3 3 n  n   n   n  while for even n we have 2 15 2 15 4 15 2 2   n   cn     0 (n even) . 3 n  n   n 3









The time-dependent wave function is then:   x, t    cn  n  x  e int n



2 2 30 1  nx  i n   sin e    L n1,3,5,... n3  L 

8 3





2 mL2 t

.

(b) As was the case in Example 11.1, the probability of measuring a particular energy is independent of time. Therefore,

P  En , t   cn

2

 960 6     n   0 

n odd n even

.

Chapter 11

177

This probability decreases extremely rapidly with n. The most probable energy is E1 [with

P  E1   0.9986 ]. We could probably have guessed this, because the initial wave function

  x, 0  (see above, or Fig. 11.9) looks very similar to 1  x  (Fig. 11.5). (c) Energy must be conserved, so the average energy must be independent of time. Since the potential energy is zero inside the well, the energy is all kinetic, and is given by E 

1 p2 2m 

2

  1   dx    x, 0   i    x, 0   2m  x   

30 2 5

2mL

L

 dx   x

2



 Lx  2 

0

x L

30 2  2 3    x  Lx 2  5  3 2mL   x 0 30 2  2 3 3    L  L  2mL5  3  

10 2 2mL2

Notice E  E1 , as we'd expect since P  E1   0.9986 . 11.16 (Sec. 11.5) L . By symmetry, we would 2 expect this result to be time independent. Let's verify that this is the case.

By simply examining initial wave function, we can see that x  0  

In general: x t  



 dx   x, t  x   x, t  



 c e

 im t m

m



cn e

 in t



 dx   x  x   x   m

n



n

2  mx   nx  i   t x  t    cm cn e  m n   dx sin   x sin   L m ,n  L   L  0 L

(A)

178

Chapter 11 x L

   n  m  x    n  m  x    x sin   L cos   L L L L   mx   nx        dx sin  L  x sin  L   22  2  nm  n  m 0     x 0

x L

   n  m  x    n  m  x    x sin   L cos   L L L       2  2   nm 2  n  m     x 0 

L2  cos   n  m     1 cos   n  m     1     2 2 22  n m n m       

Not that this equation fails for n  m , which we'll have to treat separately. In Problem 11.15, the time dependent wave function is   x, t    cn  n  x  e int n



8 3



2 2 30 1  nx  i n   sin e    L n1,3,5,... n3  L 



2 mL2 t

.

So, the only contributions to the wave function occur for odd terms in the expansion. If m and n are both odd, then n  m and n  m are both even. In these cases this integral above is 0, because the cosine's are 1. L

 mx   nx   x sin    0  m odd, n odd  . L   L 

 dx sin  0

This means that the only possible nonzero terms in the sum of Eq. (A) are when n  m (we haven't worked out this integral yet). Calculating the integral for n  m :

Chapter 11

179

x L

  2nx   2nx   cos   2 x sin  L    L   L  2  nx   x sin   dx x    2  n   L  4  n   0 4   8    L   L   x 0  



1 L2 cos  2n    2 2 4  n   n  8  8   L   L  L2 4

x t  

2 2 2 L c  n 4 L n 1,3,5,...



L  P  En  2 n 1,3,5,...

Here we've used the fact that the square magnitude of the coefficients in the expansion are equal to the probabilities of the energies. Since the probabilities must be normalized, the sum must add to 1, and L x t   . 2 11.17 (Sec. 11.5) Ehrenfest's Theorem states that d p t   m x t  . dt From the previous problem we know that x  t  is constant, so its derivative is zero, and hence p t   0 .

180

Chapter 11

11.18 (Sec. 11.5)

(a) First find the coefficients cn in the linear expansion of   x, 0  : 

cn 

 dx  n  x    x, 0  



L /2 L L 24   nx   nx   nx    2   dx x sin   L dx sin  dx x sin        L L L  0  L       L /2 L /2 x  L /2

24  L   L   nx   nx    2     sin    x cos   L  n   n   L   L   x 0

x L

 

24  L    nx    nx   L   nx   L cos    x cos       sin  2  n   L    L   x  L /2  L   n   L 

24 nL 

 L   n  L  n    n  sin  2   2 cos  2        

24 nL

  L   L   n  L  n      n  sin  n    n  sin  2   2 cos  2           



 24   n  n 2sin sin         n 2 2   2  



 n  sin   n   2  4 6

2 2

This can be simplified as

Chapter 11 4 6 ( n 1)/2  2 2  1 cn   n   0 

181

n odd n even

  x, t    cn  n  x  e int n



8 

2

2 2 3  1 ( n 1)/2  nx  i n    1 sin e      L n1,3,5,... n 2  L 



2 mL2 t

.

(b) First, note that E  t  is independent of time, so we just need to find E  t  0  . There are two ways to approach this problem. The first is to use a sum. We know P  En   cn

2

 96    n 4 4  0

n odd n even

Therefore E   En P  En  n

 n 2 2  2   96   2  4 4  n 1,3,5,...  2mL   n    48 2 1  2 2   mL n 1,3,5,... n 2 





48 2  2   2 2   mL  8  

6 2 mL2

The other way is to use: 1 E  p2 2m 

2

1    dx    x, 0   i    x, 0    2m  x  

182

Chapter 11  12 0 x L/2  3 L   12    x, 0     3 L / 2  x  L x  L  0 elsewhere    12 1  2   x  L / 2   0  x  L    L3   elsewhere 0  where   x  is the step function (see Complement 10.A). 2 12   x , 0   2 3   x  L / 2  2 x L 

E   

 2 12   dx   x, 0    x  L / 2  m L3   2 12  12 L    m L3  L3 2  6 2 mL2

11.19 (Sec. 11.5) Using EQ. (9.19): d i p   (t )  Hˆ , pˆ   (t )  dt  pˆ 2   i   (t )   V  xˆ   , pˆ   (t )     2m   i   (t ) V  xˆ  , pˆ  (t )  i   (t )  pˆ , V  xˆ    (t )  Using Eq. (10.72):

Chapter 11

183

d i p   (t )  iV   xˆ    (t )  dt d   V  x dx  F  x 11.20 (Sec. 11.5) Expand F  x  in a power series about the point x  x F  x  F  x   F x

 x  x   12 F   x  x  x 

F  x  F  x   F x  F  x   F x  F x 

1  F   x 2 1 x  x   F   x 2

2

 ...

 x  x 

 x  x 



 x  x 

2

 ...

2

 ...

1 F   x  x 2  ... 2

Here we have used the fact that the variance of x is x 2 

x  x 

2

. F  x  F  x

We have an exact correspondence



if the second and higher derivatives of

F  x  are all zero. This occurs if F  x   const , or F  x   x .

Note that the harmonic oscillator is one of the special cases where F  x   F  x  . Despite this fact, expectation values for the harmonic oscillator can still behave in ways that we would not expect classically, as we'll see in Chapter 12. The approximation F  x   F  x



is valid if the uncertainty in the particle's position x is

small compared to the length scale over which F  x  varies.

184

Chapter 11

11.21 (Sec. 11.5)

If E  V0 , the wave function solution looks like:  A1e x  B1ex    x    A2 eikx  B2 e  ikx  A e x  B ex 3  3

x0 0 xL xL

with 1/ 2

 2mE  k  2  ,   

 2m V0  E     2  

1/ 2

The normalization condition requires that the solutions may not diverge, which reduces the allowed wave function to  B1ex    x    A2 eikx  B2 e  ikx  A3e x 

x0 0 xL xL

The boundary conditions (wave function and its derivative continuous) at x  0 mean B1  A2  B2 B1  ikA2  ikB2 Substituting (A) into (B) yields   A2  B2   ikA2  ikB2

(A) (B)

Chapter 11 A2 

ik   B2 ik  

(C)

The boundary conditions at x  L mean A2 eikL  B2 e  ikL  A3e L ikA2 e

ikL

 ikB2 e

 ikL

 A3e

(D) L

(E)

Multiplying (D) by  and adding it to (E) yields

 ik    A2eikL   ik    B2eikL  0 Substituting (C) into this equation yields ik    ikL  ikL  ik      B2 e   ik    B2 e  0  ik   

 ik    eikL   ik    eikL  0 2 2    ik  eikL     ik  eikL  0 2 2 Im    ik  eikL   0   2

2





Im   2  k 2  i 2k  cos  kL   i sin  kL    0 2k cos  kL     2  k 2  sin  kL   0 2k cos  kL    k 2   2  sin  kL  tan  kL  

2k  k  2  2

k and  are both functions of E, and the solutions of this equation determine E.

185

Complement 11.A Wave Packet Propagation 11.A.1* Equation (11.A.1) is 1  x 2 /4 2 ip0 x /    x, 0   e e 1/2 2 







p 

     dx   x, 0   i x    x, 0 



   x, 0   x 

1



  x 2 /42 ip0 x /  e e x



2 



p0   x 2 /42 ip0 x /   2 x  i e  e 1/2 2  4    2 

1/2

1



p   2 x   2  i 0    x, 0     4 

p  i 

p   2 x   dx   x, 0   42  i 0    x, 0 







2 2  2   i  2   dx x    x, 0   p0  dx    x, 0   4   

The first integral is 0 because the integrand is an odd function. The second integral is 1 because it is just the normalization integral of the wave function. Therefore p  p0 .

187

188

Complement 11.A

11.A.2 Equation (11.A.4) is 1/4

  2   p  p0 2 2 / 2   p   .   e   

p 

 dp   p  p   p  *



   2 1/4           

2



 dp pe

2 p  p0  2 /  2 2



Substitute: u  p  p0 , du  dp    2 1/4  p          

2



 du u e



2

2 u 2 2 /  2

    2 1/ 4  2 u 2 2 /  2  p    0  du e       

The first integral is 0 because the integrand is an odd function. The second integral is 

p  p0  du   u   p0 . 2



The integral is 1 because the wave function is normalized. 11.A.3* 

E k 22   2m

vg 

k p d  0  0  v0 dk k  k0 m m

vp 

 k0  p0 v0    k0 2 m 2 m 2

Chapter 12 The Harmonic Oscillator 12.1* (Sec. 12.2) m  i i   †  aˆ , aˆ   2  xˆ  m pˆ  ,  xˆ  m    m i   pˆ , xˆ    xˆ, pˆ  2 m 1  i  2i  2 1

12.2

 pˆ   

(Sec. 12.2)  nˆ , aˆ †    aˆ † aˆ , aˆ †   aˆ †  aˆ , aˆ †    aˆ † , aˆ †  aˆ  aˆ † . Here we've used Eq. (7.56).

12.3* (Sec. 12.2)  nˆ , aˆ †   na ˆ ˆ †  aˆ † nˆ  aˆ † ˆ ˆ †  aˆ † nˆ  aˆ † na nˆ  aˆ † n    aˆ † nˆ  aˆ †  n   aˆ † n  aˆ †  n   n  1  aˆ † n



  n  1  c n  1



because aˆ n is an eigenstate of nˆ with eigenvalue n  1 . †

aˆ † n  c n  1 n aˆ  n  1 c

190

Chapter 12

ˆ ˆ † n  n  1 c c n  1 n aa

ˆ ˆ †  aˆ † aˆ  1  aa ˆ ˆ †  aˆ † aˆ  1 Note:  aˆ , aˆ †   aa n  aˆ † aˆ  1 n  c

2

n  nˆ  1 n  c

2

n  1  c

2

n  1  c aˆ † n  n  1 n  1 12.4* (Sec. 12.2) In Example 12.1 we showed that for the state n , 1/2

   1  x    n   2   m 



En . m2

For this same state we have p  n pˆ n  i 2   i 2   i 2 0 

n  aˆ  aˆ †  n  n aˆ n  n aˆ † n   n n n 1  n 1 n n 1   

Chapter 12

191

p 2  n pˆ 2 n  2 2 2 2 2   2 2 2   2



n  aˆ  aˆ †  n 2

 n aa ˆ ˆ n  n aa ˆ ˆ † n  n aˆ † aˆ n  n aˆ † aˆ † n   n n aˆ n  1  n  1 n aˆ n  1 

 n n aˆ † n  1  n  1 n aˆ † n  1   2 2  n(n  1) n n  2  (n  1) n n 2   n n n  (n  1)(n  2) n n  2  m   2n  1 . 2



p 



p  p 2



2 1/ 2

 1     m  n    2   

   1  xp    n   2   m  12.5

1/2

1/2

 mEn 1/2

 1    m  n  2     

1    n    2 2 

(Sec. 12.2) aˆ n  n n  1 amn  m aˆ n  n m n  1  n  m ,n 1 this means that all of the elements are 0, except that in column n, the element in row n  1 is equal to n . (NOTE on numbering: since n  0,1, 2,... , I'm numbering the columns 0,1,2,…, not 1,2,3,…) In other words: 0  0 aˆ   0  0  

1 0 0 0

0 2 0 0 

  0   3   0    0

192

Chapter 12

12.6

(Sec. 12.2) aˆ † n  n  1 n  1 † amn  m aˆ † n  n  1 m n  1  n  1 m ,n 1

This means that all of the elements are 0, except that in column n, the element in row n  1 is equal to n  1 . (NOTE on numbering: since n  0,1, 2,... , I'm numbering the columns 0,1,2,…, not 1,2,3,…) In other words:    † aˆ      

12.7

0

0

1

0

0 0

2 0

  0 0   0 0   3 0     0

0

(Sec. 12.2) 1 1  2 2 x   xˆ 

 



1



  aˆ  aˆ †  

 2 1   aˆ    aˆ †     2 1  1 aˆ 1  1 aˆ 2  2 aˆ 1  2 aˆ 2  1 aˆ † 1  1 aˆ † 2  2 aˆ † 1  2 aˆ † 2   2 2 1   0  2  0  0  0  0  2  0  2 2  1   x 2   xˆ 2  2 1   aˆ  aˆ †   2 2 1 ˆ ˆ  aa ˆ ˆ †  aˆ † aˆ  aˆ † aˆ †    2   aa 2



Chapter 12

193

ˆ ˆ †  aˆ † aˆ  1 , so Using  aˆ , aˆ †   1 , aa  1  ˆ ˆ    aˆ † aˆ †     aˆ † aˆ  1  aˆ † aˆ    x 2  2   aa   2  0 0  1  2   2nˆ  1  2 1  2  1  2nˆ  1 1  1  2nˆ  1 2  2  2nˆ  1 1  2  2nˆ  1 2  4 1  3  0  0  5 42 2  2  

x 

x

2

 x



2 1/2

2

 2 1  1  2  2      

p   pˆ     aˆ  aˆ †   i 2    aˆ    aˆ †    i 2   1 aˆ 1  1 aˆ 2  2 aˆ 1  2 aˆ 2  1 aˆ † 1  1 aˆ † 2  2 aˆ † 1  2 aˆ † 2   i2 2    0  2  0  0  0  0  2  0  i2 2  0 

194

Chapter 12 p 2   pˆ 2  2  2 2    aˆ  aˆ †   2 2 2  ˆ ˆ  aa ˆ ˆ †  aˆ † aˆ  aˆ † aˆ †      aa 2   2 2  ˆ ˆ    aˆ † aˆ †     aˆ † aˆ  1  aˆ † aˆ       aa   2  0 0  2 2     2nˆ  1  2  2 2  1  2nˆ  1 1  1  2nˆ  1 2  2  2nˆ  1 1  2  2nˆ  1 2   4 

 2 2  3  0  0  5 4  2  2 2



p 



p2  p

1 xp     12.8





2 1/2



 2 

2   2  

 2

(Sec. 12.2) 1 1  2 2 x   xˆ 

 

1



  aˆ  aˆ †    2 1  2 aˆ 2  2 aˆ 4  4 aˆ 2  4 aˆ 4  2 aˆ † 2  2 aˆ † 4  4 aˆ † 2  4 aˆ † 4   2 2 1   0  0  0  0  0  0  0  0 2 2 0 

Chapter 12

195

x 2   xˆ 2  2 1   aˆ  aˆ †   2 2 1 ˆ ˆ  aa ˆ ˆ †  aˆ † aˆ  aˆ † aˆ †    2   aa 2



ˆ ˆ †  aˆ † aˆ  1 , so Using  aˆ , aˆ †   1 , aa

x2 

1  ˆ ˆ    aˆ † aˆ †     aˆ † aˆ  1  aˆ † aˆ     aa 2     2

1 1 1  ˆ ˆ 4  4 aˆ † aˆ † 2    2nˆ  1   2 aa 2  2  2 2  1  2   4  3   4  3  2  2nˆ  1 2  2  2nˆ  1 4  4  2nˆ  1 2  4  2nˆ  1 4   4  1  2 4 3 5009 4 5.23  2 





x 

x

2

 x





2 1/2



5.23 2.29   

p   pˆ     aˆ  aˆ †   i 2    aˆ    aˆ †    i 2   2 aˆ 2  2 aˆ 4  4 aˆ 2  4 aˆ 4  2 aˆ † 2  2 aˆ † 4  4 aˆ † 2  4 aˆ † 4   i2 2    0  0  0  0  0  0  0  0 i2 2 0 

196

Chapter 12 p 2   pˆ 2 

 2 2  2 2 2   2 2 2   2 2 2   2

  aˆ  aˆ †   2

ˆ ˆ  aa ˆ ˆ †  aˆ † aˆ  aˆ † aˆ †     aa   aa ˆ ˆ    aˆ † aˆ †     aˆ † aˆ  1  aˆ † aˆ        1 1  ˆ ˆ 4  4 aˆ † aˆ † 2    2nˆ  1    2 2 aa 2  

 2 2   4  3   4  3  2  2nˆ  1 2  2  2nˆ  1 4  4  2nˆ  1 2  4  2nˆ  1 4  4   2 2  2 3 5009 4   2.63  22 



p 



p2  p





2 1/2

 2.63   1.62  

 2.29   xp    1.62      3.71   2    12.9

(Sec. 12.2) From Section 11.5, we know that Ehrenfest's theorem says d x dt d d p   V  x dt dx p m

 

d 1 2 2  m x  dx  2 

  m2 x

For a Fock state: x  0 from Example 12.1.

(A)

(B)

Chapter 12

197

p  n pˆ n

 i 2   i 2   i 2 0 

n  aˆ  aˆ †  n  n aˆ n  n aˆ † n   n n n 1  n 1 n n 1   

Since x  0 and p  0 , (A) and (B) are both satisfied. 12.10* (Sec. 12.3) The differential equation is   0  x   2 x 0  x  x Substitute in the solution 1/ 4

 2  2 x2 /2 , 0  x     e  

and we obtain 1/4

1/4

2 2   2  2 x2 /2  2      2 x  e  x /2   e x       2 x 0  x 

So it is a solution to the differential equation. The function  0  x  is a Gaussian wave packet, as given in Complement 10.A, with x  0 , and 2  1/ 22 . We know that such a wave packet is properly normalized.

12.11 (Sec. 12.3) The recursion formula 'Eq. (12.43)] is: H n 1  x   2 xH n  x   2nH n 1  x 

We know H 0  x   1 , H1  x   2 x .

198

Chapter 12 H 2  x   2 xH1  x   2 1 H 0  x   2 x  2 x   2 1  4 x 2  2

H 3  x   2 xH 2  x   2  2  H1  x   2 x  4 x 2  2   4  2 x   8 x 3  12 x

H 4  x   2 xH 3  x   2  3 H 2  x   2 x  8 x3  12 x   6  4 x 2  2   16 x 4  48 x 2  12 12.12 (Sec. 12.3) n

2  d  H n  x    1 e   e  x  dx 

n x2

H 0  x   e x e x  1 2

2

2  d  2 2 2 H1  x    1 e x   e  x   1 e x  2 x  e  x  2 x  dx 

2

2 2  d  2 2 2 d  H 2  x    1 e   e  x  e x    2 x  e  x   e x  2  4 x 2  e  x  4 x 2  2   dx   dx  

2

x2

12.13 (Sec. 12.3) 1/4

 2  n  x     

1 2 n! n

H n  x  e  x

2 2

1/4

 2  x 2  n  x   n  n 1  x      

/2

 1  x 2 n H n  x  2 n! 

 22 H n 1  x   e  x /2  2n 1  n  1 !  1

 n

1/4

 2     

 1  x 2 n 1 H n   x  2 n! 

 22 2n H n 1   x   e  x /2 n 1  2 n  n  1 !  1

1/4

 2     

1 2

n 1

 2xH n  x   2nH n 1  x   e  x

2 2

n!

/2

Using the recursion formula [Eq. (12.43)] H n 1  x   2 xH n  x   2nH n 1   x  :

Chapter 12 1/4

 2  x 2  n  x   n  n 1  x      

1 2

n 1

H n 1   x  e  x

2 2

n!

1/4

 2     

n 1

1 2

n 1

 n  1!

 n  1  n 1  x  12.14* (Sec. 12.4) 1 1 e iE1t /   2 e  iE2t /    2 1 1 e i 3t /2  2 e i 5t /2    2 1 1 e it  2 e i 2 t  e it /2   2 x  t     t  xˆ   t 

 t  



1

  t   aˆ  aˆ †    t 

 2 1    t  aˆ   t     t  aˆ †   t      2 1  i  2 t  i  2 t  1 aˆ 2 e    2 aˆ † 1 e    2 2 all other matrix elements are 0.

1  2 e  it  2 e  it   2 2 1  cos  t  

x t  

Ehrenfest's theorem says d p m x , dt so p t   m

 d 1 m sin  t   cos  t     dt    

/2

H n 1  x  e  x

2 2

/2

199

200

Chapter 12 H  t     t  Hˆ   t  1      t   nˆ     t  2     1  2  2 2  2 

This is time-independent, as it should be. 12.15* (Sec. 12.4) 1 n e  iEnt /   n e  iEnt /  2 1 n e  int  n e  int  e  it /2   2 x  t     t  xˆ   t 



 t  



1



  t   aˆ  aˆ †    t 

 2 1    n aˆ n  n aˆ † n  n aˆ n ei n n t  n aˆ † n ei n n t  2 2

 i n nt  i n nt  n aˆ n e   n aˆ † n e   n aˆ n  n aˆ † n  1   i n nt  i n nt n n ,n ' 1  n  1  n , n '1 e    n  n,n 1  n  1  n,n 1 e    2 2



Three possibilities: If n  n  1 x t   

1  n  1 e it  n  1 eit   2 2 1 n 1 cos  t  2 

If n  n  1 x t   

1  n eit  n e it   2 2 1 n cos  t   2







Chapter 12

201

Otherwise, x  t   0 . Thus, if n and n are adjacent states ( n  n  1 ) the expectation value oscillates. Otherwise, it does not. 12.16 (Sec. 12.5) From Section 11.5, we know that Ehrenfest's theorem says d x dt d d p   V  x dt dx p m

 

d 1 2 2  m x  dx  2 

  m2 x

For a coherent state, we learned in Sec 12.5 that x  t   A cos  t  0  . p  t    mA sin  t  0  .

m

d x  t   mA sin  t  0   p  t  dt

d p  t   m2 A cos  t  0   m2 x  t  dt Thus, Ehrenfest's theorem is satisfied.

(A)

(B)

202

Chapter 12

12.17* (Sec. 12.5) From Eq. (12.68) we know that: 1 X  2 P   Pˆ  1   aˆ  aˆ †   2i 1    aˆ    aˆ †  2i 1         2i  Im    



P 2   Pˆ 2  1   aˆ  aˆ †  aˆ  aˆ †   4 1 ˆ ˆ †  aˆ † aˆ       aˆ 2  aˆ †2  aa 4 ˆ ˆ †  aˆ † aˆ  1 , so Using  aˆ , aˆ †   1 , aa 

1   aˆ 2  aˆ †2  2aˆ † aˆ  1  4 2 1 2        2    1 4

P2  





2

1  1           2i  4 1 2   Im()   . 4

P 

P2  P

2

 2  xp   X    





1 2



2P 

 . 2

Coherent states are minimum uncertainty states of position and momentum.

Chapter 12 12.18 (Sec. 12.5) 2

 aˆ † ,  aˆ      aˆ † , aˆ   

2

Thus, Glauber's formula says: † †    Dˆ     eaˆ  aˆ  eaˆ e  aˆ e

2

/2

  /2 aˆ †  aˆ 0 Dˆ    0  e e e 2

e

2

  /2 aˆ †

e

0

This is true because 0 is an eigenstate of aˆ , with eigenvalue 0.

Dˆ    0  e

  /2

e

  /2

2

2

    n 0  

 n 0

 aˆ  aˆ  aˆ  aˆ  aˆ

    

 aˆ 

† n

n!

n † n  aˆ  0 n!

† 0

0  0

† 1

0  11

† 2

0  aˆ † 1 1  2 1 2

† 3

0  aˆ †

† n

0  n! n



 Dˆ    0  e

 0  



2  1 2  3  2 1 3

2

/2



 n0

n n   n!

12.19* (Sec. 12.5)

x aˆ   t   x   t    t  m  i  xˆ  2  m

 pˆ    t   x   t    t     1 d   it x 2     x, t    0 e    x, t   dx 2  where we've used the fact that   t    0 e  it . Subsituting in for    x, t  :

x

203

204

Chapter 12 1/4

1/4

2 2 1 d   2  2  x  x t 2 /2 i p  t  x /    2  x  x  t   /2 i  it    x e e e e    0   e    2  dx      2   p  t    1  2    it  x  2    x  x  t    i    0e    2   

p t  x / 

p t   x t   i   0 ei0 e it 2 2 

From Eqs. (12.72) and (12.73) we know 2 2  0 cos  t  0    0 cos  t  0   m

x t  

p  t    2m  0 sin  t  0    2   0 sin  t  0 

Substituting these in, we see,  0 cos  t  0   i  0 sin  t  0    0 e 0 e

 i  t 0 

 0 e

 i  t 0   i  t 0 

So    x, t  is the solution. 12.20 (Sec. 12.5) 1/4

 2  2 x  x  t 2 /2 i e    x, t     e   

x t  





p t  x / 

dx x    x, t   2



1/2 

 2     



2 2 x  x  t   dx xe 



This is exactly the integral for the expectation value for a Gaussian wavepacket, given in Complement 10.A (with x  t   x , and 2  1/ 22 ), so x t   x t  .

Chapter 12 

p t  





   dx    x, t   i     x, t  x   1/2

 2     

p  t   2  x  x  t  2  dx  2  x  x  t    i e      2 2 dx x    x, t   x  t   dx    x, t     

 i  

   i       2



 p  t   dx    x, t 

2



We showed above that 



dx x    x, t   x  t  , 2



and from normalization we know that 



2

dx    x, t   1 ,



so p  t    i  2  x  t   x  t   p  t   p t  12.21* (Sec. 12.5)

P  n  n  e 

2

2

  /2



2n

n!

e

n n!



2

.

2

205

Complement 12.A Solving the Schrödinger Equation Directly 12.A.1 d2 d

2





     2      

     h    e

2

/2

d2  2  2 /2   2 /2       h e h e      d  2 





 2 2 d  2 /2 d h     h    e /2    2   h    e /2 e d   d 



e 

2

/2

d2 d 2



h     2e 



  2   h    e  d2 d

2

h     2

2

2

n

hn  x    a j x j j 0



2 j  1  n a  j  2  j  1 j 2 j  1   2n  1

 j  2  j  1

For n  0

2 2 d h      2 h    e  /2  h    e /2 d

/2

d h        1 h     0 . d

12.A.2

a j2 

/2

aj



208

Complement 12.A h0  x   a0 .

If a0  1 , h0  x   1  H 0  x  . For n  1  a0  0  h1  x   a1 x

If a1  2 , h1  x   2 x  H1  x  . For n  2  a1  0   4  2 h2  x   a0  a2 x 2  a0  a0   x   2 1  If a0  2 , h2  x   4 x 2  2  H 2  x  . For n  3  a0  0   26  3 h3  x   a1 x  a3 x3  a1 x  a1   x   3 2   If a1  12 , h3  x   8 x 3  12 x  H 3  x  .

Chapter 13 Wave Mechanics in Three Dimensions 13.1

(Sec. 13.1) In the tables below, the energy is expressed in units of 2  2 / 2mL2 : nx ny nz E nx ny 1 1 1 3 2 2 1 1 2 6 2 3 1 2 1 6 3 2 2 1 1 6 1 1 1 2 2 9 1 4 2 1 2 9 4 1 2 2 1 9 1 3 1 1 3 11 3 1 1 3 1 11 3 3 3 1 1 11 1 2 2 2 2 12 1 4 1 2 3 14 2 1 1 3 2 14 2 4 2 1 3 14 4 1 2 3 1 14 4 2 3 1 2 14 3 2 1 14 The degeneracies of the levels are: Degen. E 3 1 6 3 9 3 11 3 12 1 14 6 17 3 18 3 19 3 21 6

nz 3 2 2 4 1 1 3 3 1 4 2 4 1 2 1

E 17 17 17 18 18 18 19 19 19 21 21 21 21 21 21

210

Chapter 13

13.2

(Sec. 13.1) The Schrödinger equation is 1 2   2 2 2  2 2 2 2  2  2  2    r   m x  y  z   r   E  r  2m  x 2 y z 





Substitute in a solution of the form   r   X  x  Y  y  Z  z  , and then divide through by   r  . The result is  1 1 2 1 2 2  1  2 X x Y y Z  z    m2 x 2  y 2  z 2  E        2 2 2  2 Y  y  y Z  z  z 2m  X  x  x  2  2 1  2  1 1 2 1 2 2    X x m x Y  y   m2 y 2          2 2 2 2  2m X  x  x   2m Y  y  y   2 1  2 1 2 2 Z z m z E      2 2  2m Z  z  z 





Each of the terms in brackets depends only on a single variable, and hence must be constant in order for the terms to add to a constant. We thus have Ex  E y  Ez  E , and the differential equation for the x-direction is: 2  2 1 X x m2 x 2 X  x   E x X  x  .    2 2m x 2 This is exactly the equation for the one-dimensional harmonic oscillator [Eq. (12.A.1)], so the solutions must be the same. 1  Enx    nx   nx  0,1, 2, . . . 2  and the wave functions are given by the Hermite Gaussians, Eq. (12.42). Since the differential equations for the other directions are the same, they will also have the same solutions, so the final energies are 3  Enx ny nz    nx  n y  nz   nx , ny , nz  0,1, 2, . . . 2  The final wave functions are given by the product of Hermite Gaussians along three directions.

Chapter 13

13.3

(Sec. 13.2)  z z r  x 2  y 2  z 2 ,   cos 1    cos 1   x2  y 2  z 2 r 

  y  ,   tan 1    x 

x  r sin  cos  , y  r sin  sin  , z  r cos   r         x x r x  x          2x   2 xz    1 1  y       2 2r 3     y  2  x 2    2r r  z    1   1         x  r      sin  cos 

   1 sin    1 sin  cos  cos          2 2 r r  sin     1  tan   r sin  cos    

 sin  cos 

sin    cos  cos     r r  r sin  

 r         y y r y  y          2y   2 yz    1 1  1      2 2r 3     y  2  x    2r r   1  z    1        x     r      sin  sin 

   1 1   1 sin  sin  cos          2 r r  sin     1  tan   r sin  cos    

 sin  sin 

cos    cos  sin     r  r sin   r

211

212

Chapter 13  r         z z r z  z       2z2 1    2z   1        0  3 2 2r r r   2 r   1  z        r     1     cos 2   1   cos    r  sin r    sin    cos   r  r

13.4

(Sec. 13.2)

Yl Yl

ml

 ,     1

 ml

ml

 ,     1

  2l  1 l  ml  !    4  l  ml  ! 

 ml

1/ 2

Pl ml  cos   eiml 

  2l  1 l  ml  !    4  l  ml  ! 

1/ 2

Pl  ml  cos   e iml 

From (13.48) we know m  l  ml  ! m Pl  ml  x    1 l P l  x  l  ml ! l 1/ 2

Yl

 ml

 ,     1

ml

  1

ml

  2l  1 l  ml  ! ml  l  ml  ! m Pl l  x  e iml     1  l  ml !  4  l  ml  !  1/2   ml   2l  1 l  ml  !  im   m  1   Pl l  cos   e l   4  l  ml  !   

  1 l Yl ml   ,   m

13.5

(Sec. 13.2) Call the spherical harmonics Yl ml  ,    clml Pl ml  cos   eiml  , where

clml   1

ml

  2l  1 l  ml  !    4  l  ml  ! 

1/ 2

Chapter 13 2

 0



 d  d  sin Ylml   ,   Ylm   ,   0

2

 clml clml



0 







iml  l d  d  sin Plml  cos   eiml  Plm   cos   e 0

 clml clml  d  sin Pl

ml

 cos  

l Plm 

0

2

 cos   



d eiml eiml 

0

Use Eq. (13.42): 2

 0



 d  d  sin Ylml   ,   Ylm   ,   0





l  clml clml  d  sin Plml  cos   Plm   cos   2 ml ml

0



l  clml clml 2 ml ml  d  sin Plml  cos   Plm   cos  

0

Use Eq. (13.49): 2

 0

13.6



 d  d  sin Ylml   ,   Ylm   ,    clml clml 2 ml ml 0

(Sec. 13.3) In 3 dimensions: pˆ  i , so Lˆ  rˆ  pˆ  i  r   

2  l  ml  ! l l   ml ml l l  2l  1  l  ml  !

213

214

Chapter 13

13.7* (Sec. 13.3)

x  r sin  cos  , y  r sin  sin  , z  r cos  ˆ ˆ z  zp ˆˆ y Lˆx  yp      i   y  z  y   z   cos      sin     cos  sin     i  r sin  sin   cos      r cos   sin  sin    r   r r r  r sin             i   sin 2  sin   cos 2  sin   cot  cos             i  sin   cot  cos       ˆˆ z ˆ ˆ x  xp Lˆ y  zp

     i   z  x  z   x   sin     cos  cos    sin       i  r cos   sin  cos       r sin  cos   cos   r r    r  r sin    r         i cos 2  cos   sin 2  cos   cot  sin             i   cos   cot  sin       ˆˆ y  yp ˆˆx Lˆz  xp      i  x  y  x   y    cos  sin   cos     i  r sin  cos   sin  sin     r r  r sin       sin      cos  cos    r sin  sin   sin  cos     r r  r sin          i  cos 2   sin 2         i  

Chapter 13

215

13.8* (Sec. 13.3)         Lˆ2x  i  sin   cot  cos   i  sin   cot  cos            2            2 sin 2  2  sin  cos   cot    cot  cos   sin              cot 2  cos 

     cos        

  1     2       2 sin 2  2  sin  cos   cot   2   cot  cos   sin   cos          sin      2    cot 2  cos   cos  2  sin         2   2 2  2 2 2    sin  2  2 cot  sin  cos   cot  cos  2       cot  cos 2 

  sin  cos      cot 2  cos  sin    2   sin    

        Lˆ2y  i   cos   cot  sin   i   cos   cot  sin            2            2 cos 2  2  cos  sin   cot    cot  sin   cos              cot 2  sin 

     sin        

  1     2       2 cos 2  2  cos  sin   cot   2   cot  sin   cos   sin          sin      2    cot 2  sin   sin  2  cos         2   2 2  2 2 2    cos  2  2 cot  sin  cos   cot  sin  2       cot  sin 2  2 2 2  ˆ Lz    2

  sin  cos      cot 2  cos  sin    2   sin    

216

Chapter 13 Lˆ2  Lˆ2x  Lˆ2y  Lˆ2z  2 2  2    2  2  cot 2  2  cot   2         1   1 2    sin  2         sin 2  2   sin   

13.9

(Sec. 13.3) Starting from Eq. (13.114):

Lˆ  i  r     1  1     i  rur  ur  rur  u  rur  u  r  r sin    r   1     i  u  u  sin      13.10 (Sec. 13.3) 1  rˆ   rˆ      pˆ  pˆ      2  r   r  1  rˆ   1   rˆ   r pˆ r   r    pˆ    r  pˆ      2  r   2   r  ih   ur    r     ur   r   2 

pˆ r 

Using Eqs (13.116) and (13.118) ih   1  2  r pˆ r    r   2 r   r   2  r r r  ih  ih      r   2  2r   r   r 2   r   2 r 2r  r   ih  ih   r    r  r r   1  i    r   r r  

1    1 pˆ r  i     i r r r  r r 

Chapter 13 13.11* (Sec. 13.3) r Hˆ   r E   pˆ r2 Lˆ2  r    V  rˆ     r E   2m 2 I 

Using Eqs. (13.60) and (13.63) this becomes   2 1   2    2  r  2  2m r r  r  2 I

  1   1 2    sin    V  r     r   E  r  \    2 2   sin     sin    

Using I  mr 2 and assuming a central potential: 1   2   1 1    2    r 2 r  r r   r    r 2 sin    sin     r    r 2 sin 2  2   r          V  r    r   E  r  .

 2 2m

13.12* (Sec. 13.3) From Eq. (7.19): Lˆ  Lˆ x  iLˆ y Using Eqs. (13.57) and (13.58)         Lˆ  i  sin   cot  cos       cos   cot  sin                 cos   i sin    i cot   cos   i sin           ei   i cot         ei   i cot   Yl ml  ,        e

i

 1

ml

 e

i

 1

ml

  2l  1 l  ml  !    4  l  ml  ! 

1/2

  2l  1 l  ml  !    4  l  ml  ! 

1/2

   ml iml     i cot    Pl  cos   e     ml  iml  ml   Pl  cos    i cot Pl  cos   iml   e

217

218

Chapter 13   ei   i cot   Yl ml  ,          1

ml

  2l  1 l  ml  !    4  l  ml  ! 

1/ 2

  ml  i ml 1 ml   Pl  cos    ml cot Pl  cos    e

From Eq. (13.45): Pl ml  cos    1  cos 2  

ml /2

m

l  d    Pl  cos    d cos  

m

l  d   sin    Pl  cos    d cos  

ml

Pl

ml 1

 cos    sin

 ml 1

 sin 

ml 1

 d     d cos  

ml 1

Pl  cos   m

l  d  d     Pl  cos    d cos    d cos  

Let x  cos  , then dx  d cos    sin d 

Pl

ml 1

 cos    sin

 ml 1

m

l d   d     Pl  cos     sin d    d cos  

m

l  d  d    sin      Pl  cos    d    d cos   d  1    sin ml  Pl ml  cos    ml  d   sin   cos  d ml  1    sin ml   ml Pl  cos    ml Pl ml  cos    ml 1  sin   sin  d  

ml

d     Pl ml  cos    ml cot Pl ml  cos     d  Substitute this into (A):

(A)

Chapter 13

219

  ei   i cot   Yl ml  ,          1

ml

  2l  1 l  ml  !    4  l  ml  ! 

1/ 2

  Pl ml 1  cos    ei ml 1 1/2

 l   ml  1  ! l   ml  1  !     l   ml  1  ! l   ml  1  !   l  ml  ! l  ml  1!     l  ml  1!  l  ml  ! 

 1

1/2

 1

ml 1

ml 1

  2l  1 l  ml  !    4  l  ml  ! 

1/2

  2l  1 l   ml  1  !    4 l   ml  1  ! 

Pl ml 1  cos   e 

i ml 1

1/2

Pl ml 1  cos   e 

i ml 1

   l  ml  l  ml  1  Yl ml 1  ,   1/2

  l 2  l   ml2  ml   Yl ml 1  ,   1/2

  l  l  1  ml  ml  1  Yl ml 1  ,   1/2

This is consistent with the position representation of Eq. (7.20). 13.13* (Sec. 13.4) Eq. (13.74) is:   l  l  1 1  2  2 R   R       R   0 2    2 4  Eq. (13.82) is: R     l e  /2 w    , so 2 2 l e /2 w     R     2 2    

   l 1  / 2  1 l e w     l e /2 w     l e  /2 w      2 

  1  l  l  1 l  2 w     ll 1w     ll 1 w  2   1 1 1  w   ll 1w     l w     l 2 4 2   ll 1

 1   2 w     l w     l 2 w     e  /2 2    

2   1 l  l 1 l l  l 2 l 1   w     e / 2   l  l  1   l    w      2l    w      2 4     

220

Chapter 13

  2  2 1 R     ll 1w     l w     l w     e  /2     2     w     e  /2   2ll  2  l 1  w     2l 1   

Substituting these into Eq. (13.74), rearranging terms, and dividing by a common factor of e /2 yields: l

2  1   w      2ll 1  l  w     l  l  1 l  2  ll 1  l  w    2   4  

2l 1

l

  l  l  1 1  l  w      2ll  2  l 1  w          w   0  2 4 

2  w      2  l  1 l 1  l  w    2  

1 1    l  l  1 l  2  ll 1  l  2ll  2  l 1  l 1  l  l  1 l  2  l  w     0 4 4   l

2  w      2  l  1 l 1  l  w        l  1 l 1  w     0 2  

2   2 w      2  l  1    w        l  1 w     0  

This is Eq. (13.83). 13.14* (Sec. 13.4) ˆˆ y  yp ˆˆx Lˆz  xp  Lˆz , xˆ    xp ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    y  ypx , x    y  px , x   iy  Lˆz , yˆ    xp ˆˆ ˆˆ ˆ ˆ  ˆ ˆ ˆ    y  ypx , y   x  p y , y   ix  Lˆz , zˆ   0    Lˆz , pˆ x    xp ˆˆ ˆˆ ˆ  ˆ ˆ ˆ ˆ    y  ypx , px    x, px  p y  ip y  Lˆz , pˆ y    xp ˆˆ ˆˆ ˆ  ˆ ˆ ˆ  ˆ    y  ypx , p y     y, p y  px  ipx  Lˆz , pˆ z   0  

Chapter 13

221

2 pˆ 2 pˆ pˆ 2 Hˆ  x  y  z  V  xˆ 2  yˆ 2  zˆ 2   f  pˆ x2  pˆ y2  pˆ z2   V  xˆ 2  yˆ 2  zˆ 2  2m 2m 2m

 Lˆz , pˆ x2  pˆ y2  pˆ z2    Lˆz , pˆ x2    Lˆz , pˆ y2    Lˆz , pˆ z2          Using Eq. (7.56):  Lˆz , pˆ x2  pˆ y2  pˆ z2   pˆ x  Lˆz , pˆ x    Lˆz , pˆ x  pˆ x  pˆ y  Lˆz , pˆ y    Lˆz , pˆ y  pˆ y            i  pˆ x pˆ y  pˆ y pˆ x  pˆ y pˆ x  pˆ x pˆ y  0

Therefore:  Lˆz , f  pˆ x2  pˆ y2  pˆ z2    0    Lˆz , xˆ 2  yˆ 2  zˆ 2    Lˆz , xˆ 2    Lˆz , yˆ 2    Lˆz , zˆ 2           xˆ  Lˆz , xˆ    Lˆz , xˆ  xˆ  yˆ  Lˆz , yˆ    Lˆz , yˆ  yˆ ˆˆ  yx ˆ ˆ  yx ˆ ˆ  xy ˆˆ   i  xy 0 Therefore:  Lˆz ,V  xˆ 2  yˆ 2  zˆ 2    0   This means  Lˆz , Hˆ   0 . We could repeat the above for Lˆx and Lˆ y , or simply note that the Hamiltonian is radially symmetric, this means that there's nothing special about the z-axis, and we could just as well call it the x-axis or the y-axis. Therefore:  Lˆx , Hˆ   0    Lˆ y , Hˆ   0   Therefore  Lˆ2 , Hˆ    Lˆ2x  Lˆ2y  Lˆ2z , Hˆ   0    

222

Chapter 13

13.15 (Sec. 13.4) The final state for the Lyman series ends at n  1 . The shortest wavelength corresponds to the largest frequency, which is the largest energy. The largest energy transition has as its initial state E  0 . The energy is thus

E  Ei  E f  E  E1  13.6 eV The corresponding wavelength is 15 8 c hc  4.14 10 eV  s  3.00  10 m/s      91.3 nm 13.6 eV f E which is in the ultraviolet.

13.16 (Sec. 13.4) The final state for the Paschen series ends at n  3 . The longest wavelength corresponds to the smallest frequency, which is the smallest energy. The smallest energy transition has as its initial state E4 . The energy is thus  1 1 E  E4  E3  13.6 eV  2  2   0.661 eV 4 3  The corresponding wavelength is 15 8 c hc  4.14 10 eV  s  3.00  10 m/s      1.88 m 0.661 eV f E which is in the infrared.

13.17 (Sec. 13.4) Ignoring constant multipliers, the radial wave function for l  n  1 is:  2r  n 1  r / na0 , Rn l  n 1  r   r n 1e  r / na0 L20n 1  r e  na0  because from Eq. (13.87) Lk0  x   e k  e k   1 . The radial probability density is then



pn l  n 1  r   r 2 r n 1e  r / na0

Differentiating,



2

 r 2 n e 2 r / na0 .

Chapter 13

223

d 2 2 n 2 r / na0 pn l  n 1  r   2nr 2 n 1e 2 r / na0  r e dr na0 Solving for the root of this equation, we find that the max is located at: 2 2 n 2 r / na0 r e 0  2nr 2 n 1e 2 r / na0  na0  n

1 r na0

r  n 2 a0 13.18* (Sec. 13.4) R21  r  

1 1  r   r /2 a0  e 2 6a03  a0  2

1 1  r   r / a0 1 4  r / a0  p21  r   r  R21  r    r r e  e 3  4 6a0  a0  24a05 2

2

2

Integrate this to get the probability (use www.wolframalpha.com for the integral): 3 a0 3 a0 1 4 r /a 0 dr p21  r   24a05 0 dr r e 0 

1 3a05  8  131e 3   5   24a0

131 8e3  0.18  1

13.19 (Sec. 13.4) For 3s the wave function is 2 1  300  r   R30  r  Y  ,    9 3a03 0 0

 2  r 2  r     2  3 e  r /3a0 a0  9  a0  

1 4

For a small volume the wave function is approximately constant, so the probability is given by 2

P  r  0    300  0 

2

2 1 1  4 3 dV   3   R  , 3   4   3   9 3a0

where R is the radius of the nucleus. This gives

224

Chapter 13 P  r  0 

3 1 1 4  1015 m    3.34  1016  3 9 3  0.529 1010 m   3 

13.20* (Sec. 13.4) 100  r   R10  r  Y00  ,    2

1  r / a0 e a03

1 4

1  r / a0 e a03 1 Y00  ,    4 R10  r   2

4 2 r / a0 e a03

p10  r   r 2  R10  r    r 2 2

Use www.wolframalpha.com for the integrals. 

4 dr rp10  r   3 a0

r  0



r 2   dr r 2 p10  r   0





dr r 3e 2 r / a0 

4 a03



0



4  3a04  3    a0 a03  8  2

dr r 4 e 2 r / a0 

0

4  3a05  2   3a0 3  a0  4 

z  r cos  



2

0 

0

0

z   dr  d   d  r 2 sin   r cos     r  2



2 0

2

  dr r 2  R10  r   r  d   d  sin  cos  Y00  ,      0 



0 2

0

0

0

  dr p10  r  r  d   d  sin  cos 

2

1 4



 r

1 d  sin  cos  2 0

0 Could have noted that this integral is odd in z, so it will be 0.

Chapter 13 



2

0 

0

0

z 2   dr  d   d  r 2 sin   r cos     r  2

2 2

  dr r  R10  r   r 2

0 







0 2

0

0

2

2

d   d  sin  cos 2  Y00  ,     

2

0

  dr p10  r  r 2  d   d  sin  cos 2  0

225

1 4



 r2

1 d  sin  cos 2  2 0

 3a02

12  a02 23

13.21 (Sec. 13.4) Let 1  E1 /  and 2  E2 /  , then 1  i1t 1  i1t  t   e e  1, 0, 0  e it 2,1, 0 1, 0, 0  e i2t 2,1, 0    2 2

,

where   2  1 .

z  t     t  zˆ   t   1, 0, 0 zˆ 1, 0, 0 



1  1, 0, 0 zˆ 1, 0, 0  2 Re  e it 1, 0, 0 zˆ 2,1, 0   2,1, 0 zˆ 2,1, 0   2

dxdydz z 100  r 

2

all space 1/2  1  x 2  y 2  z 2  / a0   dxdydz z  2 3 e  a0 all space

This integral is odd in z, so it must be 0.

1   4 

2

226

Chapter 13 2,1, 0 zˆ 2,1, 0 

dxdydz z  210  r 



2

all space





dxdydz z  R21  r  Y10  ,   

2

all space



2 3 dxdydz z R r cos 2      21    4 all space

2 z 3  dxdydz z  R21  r      4 all space r

 R r   3 dxdydz z 3  21    4 all space  r 

2

2

Since r is even in z, this integral is odd in z, so it is 0 as well.   2  1 1, 0, 0 zˆ 2,1, 0   dr  d   d  r 2 sin   2 3 e  r / a0  a0 0 0 0

1 1  3  2 6a0

  r   r /2 a0 3 e cos     4   a0 

 1   4a03  a0 1

 

1 4a04

  2  3 4 3r /2 a0 2 dr r e   d  sin  cos   d  3   24a0 0 0 0

 256a05   2       2  2  81   3 

256 a0  0.74a0 243 2

Used www.wolframalpha.com for the integrals. z  t   0.74a0 cos t .

13.22 (Sec. 13.4)

V r   

e2 4 0 r

p10  r   r 2  R10  r    r 2 2

1    r cos   4 

4 2 r / a0 e a03

Chapter 13 V r   

e2 4 0





e2 4 1 p10  r    r 4 0 a03

dr

0





dr re 2 r / a0  

0

227

e 2 4  a02   . 4 0 a03  4 

Used www.wolframalpha.com for the integral. Simplify: 2

 e2  e2 1 e2 me 2     m    2 E1  27.2 eV 40 a0 40 4 0  2  4 0 

V r 

This is twice the total energy of the ground state. The average kinetic energy is the difference of the total and the potential: K  E1  V  13.6 eV  27.2 eV=13.6 eV 13.23 (Sec. 13.5)

a

1 1  1 3! 1 

a 

1   1 6  1  1 6

 3

1

2

1

2

2

2

3

2 1

1

1

2

2 3

2

1

3

2

3 3

3

2

3

3

2

2 2

1

3

 2

2

 3

1

3

 3 3  1 3

1

1

1

3

2

2

1

2

1

3

3

2 3

3

2

3

2

1

 3

1

3

 2

1

1

2

1

2 3

2 2

3 3   2

1

2 3

   

3

2

1

3



The symmetric combination is the same, with all the minus signs changed to plus signs: s 

1  1 6

 3

1

1

1

2 2

2

2

 3 3  1 3

 3

1

1

2

3 2

13.24 (Sec. 13.4)

e2 V r    4 0 r  e2  r V  r   r   V  r  2   4 0 r 

Using the virial theorem, this means

2

1

2 3



3

 2

1

1

2

3 3   2

1

3

2

1

3

228

Chapter 13

K 

1 V 2

E K  V  K 

1 V 2

1 V  E 2

Complement 13.A Quantum Dots and the Infinite Spherical Well 13.A.1 Light is produced when an electron and hole recombine. The photon energy is the energy of the electron-hole pair. The longest wavelength corresponds to the minimum energy, which we know is Eeh [Eq. (13.A.13)]: 15 8 hc  4.14  10 eV  s  3.00 10 m/s    2.04 eV Eeh  hf   610  109 m

Eeh  Eg 

2  2 2  2  2me R 2 2mh R 2

2  2  1 1  Eeh  Eg     2  2 R  me mh  1/2

  1 1  2  2 R       2  Eeh  Eg   me mh  

R    6.58 1016    6.58 1016  3.6 nm

  1 1 1  eV  s     3 2   2  2.04 eV  1.75 eV   511 10 eV / c    0.13  0.45    2   3.00  108 m/s   1  1   eV  s      2  0.29 eV   511 103 eV    0.13  0.45     

1/2

1/ 2

Complement 13.B Series Solution to the Radial Equation 13.B.1* This is a central potential, so we know that the angular solutions are given by the spherical harmonics. The radial equation is:   2l  l  1 1   2   2m  1 2 2 r R r m r     E R r   0   2   2 2 r r  r 2mr   2  Using   m /  r , this becomes l  l  1   2 m   m 1   2  R      2  2   E  R   0  2 2 2         2    2   2 l  l  1 1   2  R     E  R   0     2 2 2        2 

Using   2 E /  : l  l  1    1   2  R       2     R   0 .  2 2         l  l  1   2 2  R   R      2     R   0 2 2      

In the limit    , this becomes 2 R     2 R    2 

R     Ae 

2

/2

 Be

2

/2

Must have B  0 for a normalizable solution, so we get R      e  

2

/2

In the limit   0 , (A) becomes

(A)

232

Complement 13.B l  l  1 2 2  R   R   R   0 2    2

This is the same equation we got for   0 for the hydrogen atom, so the solution is R     l 0 The above suggests the substitution 2 R     l e  /2 w    2  2  l 2 /2 R w    e    2 2  

2 2    l 1 2 /2  l e w     l 1e /2 w     l e  /2 w        

  w   l  l  1 l  2 w     ll w     ll 1    w     l  1 l w     l  2 w     l 1   ll 1

 2   2 w     l 1 w     l 2 w     e /2    

   2   l  l  1 l  2   2l  1 l  l  2  w      2ll 1  2l 1  w     l 2 w     e  /2      2  2  2 R     ll 1w     l 1w     l w     e  /2        2  w     e  /2   2ll  2  2l  w     2l 1   

Putting all this into Eq. (A) yields: 2  w      2ll 1  2l 1  w     l  l  1 l  2   2l  1 l  l  2  w    2    2l 1 w      2ll  2  2l  w     l  2  l  l  1 l  2  l  w     0 

l

l

2  w      2  l  1 l 1  2l 1  w     2  

  2l  1  2      l  l  1  2l  l  l  1   w    0 l

l 2

Complement 13.B



2  w     2  l  1  2  w         2l  3  w     0 2  

233

(B)

Look for a series solution to this equation. w    c j j j 0

 c j j  j  1  j  2  2  l  1  2   c j j j 1     2l  3   c j  j  0 j 0

j 0

  j  1  2  l  1 jc 

j 1

j

j 0

j 0

     2l  3  2 j  c j  j 1  0 j 0

c1 2  l  1    j  1  2  l  1  jc j  j 1      2l  3  2 j  c j  j 1  0 j 2

j 0

Set j   j  2 in the first sum: c1 2  l  1    j   1  2  l  1   j   2  c j 2 j1      2l  3  2 j  c j  j 1  0 j  0

j 0

Set j   j and combine: c1 2  l  1   j 0

 j  1  2  l  1  j  2  c

j2



    2l  3  2 j  c j  j 1  0

(C)

Each term in the sum must be 0. This means:

c1  0 c j 2  

    2l  3  2 j  2 j  2l  3   cj  c  j  1  2  l  1   j  2   2l  3  j  j  2  j

Because c1  0 , all of the values of c j for odd j are 0. This menas that the sum contains only odd powers of  [even values of j in the series of Eq. (C)]. Limiting behavior: c j2 2j 2   2  j  cj j j

234

Complement 13.B Compare this to Eq. (12.A.20), and this tells us that the series diverges as e , so R    would 2

2

diverge as e /2 if the series doesn't truncate. This is not normalizable, so the series must truncate, which means:

2 jmax  2l  3    0 2E  2 jmax  2l  3  3  E    jmax  l   2  jmax must be an even integer, so set jmax  2n , where n  0,1, 2,... , then 3  Enl    2n  l   2  We already know that for the spherical harmonics l  0,1, 2,... 13.B.2* Cartesian: 3  Enx ny nz    nx  n y  nz   2 

nx , n y , nz  0,1, 2, . . .

Spherical: 3  Enl    2n  l   , n, l  0,1, 2,... . 2  Define the principal quantum number N. For Cartesian N  nx  n y  nz , while for spherical N  2n  l . Energies are then 3  EN    N   2 

N  0,1, 2, . . . .

Allowed states for N=0 (degeneracy of 1): nx

ny

nz

n

l

ml

0

0

0

0

0

0

Complement 13.B

Allowed states for N=1 (degeneracy of 3): nx

ny

nz

n

l

ml

1 0 0

0 1 0

0 0 1

0 0 0

1 1 1

-1 0 1

Allowed states for N=2 (degeneracy of 6): nx

ny

nz

n

l

ml

1 1 0 2 0 0

1 0 1 0 2 0

0 1 1 0 0 2

0 0 0 0 0 1

2 2 2 2 2 0

-2 -1 0 1 2 0

235

Chapter 14 Time-Independent Perturbation Theory 14.1

(Sec. 14.1) En1   n0 V0  n0  V0 To first order, all levels are shifted by V0 . Note that this is also the exact result.  m  V0  n  0

 n1  

 0

 0

 m0   V0

En  Em mn No corrections to the wave functions. mn

 m   n  0

0

 0

0

 0

E n  Em

 m0  0

En 2   n0 Hˆ p  n1  0 No second-order corrections, because there are no corrections to the wave functions. 14.2

(Sec. 14.1) (a) En1   n0  Hˆ p  n0 L /2  a /2

2  n   V0 dx sin 2  x  L L /2 a /2  L    2  n    na   na  2  n    2  cos  2   sin  2   cos  2 L  sin  2 L             a  V0    n L       na    cos  n  sin  L  a     V0   n L     n  na    a  1 sin  L     .  V0    n L   

238

Chapter 14

(b) For a  L : n a a 1 En   V0    1  L L n even  0    2a  L V0 n odd 14.3

(Sec. 14.1) 1 0 0 En    n  Hˆ p  n 

2  n   M   dx sin  x  sin  x  L0  L   L  L

 V0

0  V0

nM nM

It does seem reasonable that states with the same periodicity as the perturbation are the most strongly affected. 14.4

(Sec. 14.1)  n   n0    n1   2  n2    n  n   n0  n0     n1  n0   n0  n1   O   2   

But we know  n1  n0  0 , and  n0  n0  1 , so n n  1  O  2  , Which is normalized to first order.

Chapter 14

14.5

(Sec. 14.1) 1

n



mn

 m0 Hˆ p  n0  0

 m0

 0

En  Em

2  m   n   m0 Hˆ p  n0    dx sin  x  qEx sin  x L0  L   L  L

1 n  m    4qEL  nm 1   1   2 2 2 2     n  m    n  m even 0   8qEL nm  n  m odd 2    n 2  m 2 2 

If n is even: 8qEL  2mL2  nm 1 1 n  2  2 2    m0 2 2 2 2 2      mn  n  m   n  m  m odd 16qEmL3  4  2 If n is odd: 16qEmL3 1  n   4  2



mn m odd



mn m even

n

nm 2

n

m

nm 2



2 3

m



2 3

 m0

 m  0

14.6* (Sec. 14.1) D ˆ / Tˆ  D   e  ipD  1  ipˆ  D  Tˆ  D  n  1  ipˆ  n    n 

m D aˆ  aˆ †  n  2 

 n 

m D 2



n n 1  n 1 n 1



239

240

Chapter 14 In Example 14.2, the exact solution tells us that the wave functions are shifted by D  qE / m2 m  qE  Tˆ  D  n  n  2  m2   n  qE

1 2m3



n n 1  n 1 n 1





n n 1  n 1 n 1



This is consistent with the first-order wave function correction in Example 14.2 [Eq. (14.33)]. 14.7

(Sec. 14.2) 2    Hˆ p  1/ 2  xˆ 2  aˆ x  aˆ x†   aˆ x2  aˆ x†2  aˆ x aˆ x†  aˆ x† aˆ x      aˆx2  aˆ x†2  2nˆx  1 4m 4m 4m The ground state is nondegenerate, so

 1 E111  0, 0, 0 Hˆ p 0, 0, 0  4m The ground state is shifted by

 . 4m

To find the corrections for the first excited state, we need to diagonalize:  1, 0, 0 Hˆ p 1, 0, 0 1, 0, 0 Hˆ p 0,1, 0 1, 0, 0 Hˆ p 0, 0,1    0,1, 0 Hˆ p 0,1, 0 0,1, 0 Hˆ p 0, 0,1  H p   0,1, 0 Hˆ p 1, 0, 0    0, 0,1 Hˆ p 1, 0, 0 0, 0,1 Hˆ p 0,1, 0 0, 0,1 Hˆ p 0, 0,1   Perturbation does not affect y or z, so matrix elements must be proportional to  ny ny  nz nz :  1, 0, 0 Hˆ p 1, 0, 0  0 Hp     0  3 0 0     0 1 0  4m   0 0 1

0 0,1, 0 Hˆ p 0,1, 0 0

  0   0, 0,1 Hˆ p 0, 0,1  0

This is diagonal, so we know that the states 0,1, 0 and 0, 0,1 are shifted by the same amount as the ground state, and 1, 0, 0 is shifted by 3 times that amount.

Chapter 14

14.8

(Sec. 14.3) rˆ 1  

40 V  rˆ  , e2

where V  rˆ  is the potential energy for the Hydrogen atom. The virial thrm says: 2 K  r V  r   e2  r V  r   r   V  r  2   4 0 r 

Applying the virial theorem: K 

1 V 2

E K  V 

1 V 2 2

 e2  1 V  m   2   4 0  n 2 4 0   e 2  1  me 2 1 1 1 ˆr   2   m    2 2 2 e    40  n   4 0 n a0 n 2   14.9

(Sec. 14.3) If m and n are positive integers: 0 mn  m  m! mn    n   n ! m  n  ! 1 n0 

241

242

Chapter 14

r

1

 1 

11

2n

 1

 na0     2 

1

11

 1  1!  k 0

 1

k

 1  1  n  l  k   n  l  k  1      k   1  1   1  1 

0

 2  0 k  0   n  l  k   n  l  k  1     1      0 2n  na0  k 0  k  0   1  0   n  l   n  l  1    2      n a0  0   0   0   



1 n a0 2

For v  2,   0 2

1  na  r 2   0    2  2n  0  1 ! k 0 0

 1

0 k

 0   n  l 1 k     0  k      2 l 0 1 k     0 1  

 0   n  l  1  2  1  0   0     na0  2n  2l  1    1  2



2 1 2 n a0  2l  1



1 n a  l  1/ 2 

3

3

2 0

14.10 (Sec. 14.3) Hˆ SO  Sˆ  Lˆ  Sˆ x Lˆ x  Sˆ y Lˆ y  Sˆ z Lˆ z We know:  Lˆ2 , Lˆi   0 ,  Sˆ 2 , Sˆi   0 ,  Lˆi , Sˆ j   0 ,    

i , j  x, y , z

These imply  Lˆ2 , Hˆ SO    Lˆ2 , Sˆ  Lˆ   0 and  Sˆ 2 , Hˆ SO    Sˆ 2 , Sˆ  Lˆ   0 .        

Chapter 14

243

 Lˆ z , Hˆ SO    Lˆ z , Sˆ x Lˆ x  Sˆ y Lˆ y  Sˆ z Lˆ z        Lˆ z , Lˆ x  Sˆ x   Lˆ z , Lˆ y  Sˆ y  iLˆ Sˆ  iLˆ Sˆ y x

x y

0  Sˆ z , Hˆ SO  behaves similarly.   14.11* (Sec. 14.3) In Problem 13.14 we showed that Hˆ 0 commutes with Lˆ2 and Lˆ z . There is nothing special about the z-direction, so Hˆ 0 will commute with Lˆ x and Lˆ y as well. There is no spin dependence in Hˆ 0 , so it will commute with all the components of Sˆ , and with Sˆ 2 .









Jˆ 2  Jˆ  Jˆ  Sˆ + Lˆ  Sˆ + Lˆ  Sˆ 2  Lˆ2  2 Sˆ  Lˆ



Jˆ z  Sˆ z  Lˆ z

Since Hˆ 0 commutes with Lˆ2 , Sˆ 2 , and all the components of Sˆ and Lˆ , it will commute with Jˆ 2 and Jˆ z . Hˆ SO  Sˆ  Lˆ  Sˆ x Lˆ x  Sˆ y Lˆ y  Sˆ z Lˆ z We know:  Lˆ2 , Lˆi   0 ,  Sˆ 2 , Sˆi   0 ,  Lˆi , Sˆ j   0 ,    

i , j  x, y , z

These imply  Lˆ2 , Hˆ SO    Lˆ2 , Sˆ  Lˆ   0 and  Sˆ 2 , Hˆ SO    Sˆ 2 , Sˆ  Lˆ   0 .         An operator must commute with itself, so  Sˆ  Lˆ , Sˆ  Lˆ   0 .









Jˆ 2  Jˆ  Jˆ  Sˆ + Lˆ  Sˆ + Lˆ  Sˆ 2  Lˆ2  2 Sˆ  Lˆ



Hˆ SO commutes with each of the 3 terms, so  Jˆ 2 , Hˆ SO   0 .  

244

Chapter 14  Jˆ z , Hˆ SO    Lˆ z , Hˆ SO    Sˆ z , Hˆ SO          Lˆ z , Sˆ x Lˆ x  Sˆ y Lˆ y  Sˆ z Lˆ z    Sˆ z , Sˆ x Lˆ x  Sˆ y Lˆ y  Sˆ z Lˆ z    Lˆ z , Lˆ x  Sˆ x   Lˆ z , Lˆ y  Sˆ y   Sˆ z , Sˆ x  Lˆ x   Sˆ z , Sˆ y  Lˆ y  iLˆ Sˆ  iLˆ Sˆ  iSˆ Lˆ  iSˆ Lˆ y x

0

x y

y x

x y

Chapter 14

14.12 (Sec. 14.3) For v  3,   1 3

1 1  na  r 3   0    2  2n 1  1 ! k 0

 1

1 k

 1   n  l 1 k     1  k    2l  1  1  k    11  

  1   n  l  1 1 n  l      2  1   0   1  1 1        2l  2   2l  1   na0  4n         2   2    3

 n  l 1 nl    (2l  2)(2l  1)  (2l  1)(2l )   



2 n a03



2  n  l 1 nl    3  n a0  (2l  2)(2l  1) (2l  1)(2l ) 



 (2l )  n  l  1 (2l  2)  n  l   2    n a (2l  1)  (2l  2)(2l ) (2l  2)(2l ) 

4

4

4

3 0

 (2nl  2l 2  2l )   2nl  2l 2  2n  2l   1    4 3 n a0 (l  1/ 2)  (2l  2)(2l )   

  1 2n  n a (l  1/ 2)  (2l  2)(l ) 



1 n a (l  1)(l  1/ 2)(l )

4

3 0

3 3 0

245

246

Chapter 14

14.13* (Sec. 14.3) Must have j  l  1/ 2 , then Eq. (14.79) becomes: 1

ESO

mc 2  4   l  1/ 2  l  3 / 2   l  l  1  3 / 4     4n3  l  l  1/ 2  l  1 

2 2 mc 2  4   l  2l  3 / 4    l  l   3 / 4      4n 3  l  l  1/ 2  l  1    mc 2  4  l   3  4n  l  l  1/ 2  l  1   1 mc 2  4    3  4n   l  1/ 2  l  1 

l  0: 1 ESO 

mc 2  4 2n 3

14.14 (Sec. 14.3) r1  x , etc.:   2V    rirj    ri rj   V  1 3   2V   rirj     ri    2 i , j 1  ri rj   ri 

 V  1 3   ri   2 i , j 1  ri 

3

V  r  r   V  r    i 1

3

V  r  r   V  r    i 1

Compute averages: c

x 



0 c



dV  x 

2



c

0

0

0

 d  d  

dr  r 2 sin   r  sin  cos  

dV 

0

4 3  c 3

0

Can see that this integral is 0 in two ways: i) the  integral yields 0, ii) x is positive over half the sphere, and negative over the other half. Similarly y and z  will be 0. All the terms in the first sum for V  r  r   are 0.

Chapter 14 c

xy 



dV  xy 

0

c



2



c

0

0

0

 d  d  

247

dr  r 2 sin   r  sin  cos   r  sin  sin   4 3  c 3

dV 

0

0

Once again, the  integral yields 0; also, the product xy is positive over half the sphere, and negative over the other half. All the other cross terms are 0 as well. Only terms left are the squares: c

x 2 



dV  x2

0

c



dV 

0





2



c

0

0

0

2  d  d   dr  r  sin   r  sin  cos 

4 3  c 3 2



c

0

0

0

2 3 4  d  cos  d  sin   dr  r 

4 3  c 3

 4  1       5c  3 5     4 3  c 3 1   2c 5 y2 and z 2 are the same. This means: 1 3   2V  2    ri   2 i 1  ri 2  1  1  3   2V   V  r     2c    2    2  5  i 1  ri 

V  r  r   V  r  

 V r  

2  2V  r  2 2 10m c

2

248

Chapter 14

14.15 (Sec. 14.3) For l  0 : Hˆ D  

2  2e2  n 00  0  2 2 8m c  0 2  2e2 Rn 0  0  Y00  ,   2 2 8m c  0 2

 2e2 1 Rn 0  0   2 2 8m c  0 4 Using Eq. (13.94): 2  4  n  1 ! 1 2e2 ˆ   HD  L 0     1 n   8  4 0  m 2 c 2 a03  n 4 n !  

Using Eqs. (13.91) and (14.103): 3

Hˆ D 

 me 2   4   n !  2e2     8  4 0  m 2 c 2  4 0  2   n5    n  1 ! 4

mc 2  e 2   4  2 n    8  40 c   n5  

mc 2  4 2n 3

For l  0 Rnl  0   0 , so 1 ED  Hˆ D

 mc 2 4    2n3  0 

l 0 l0

14.16 (Sec. 14.3)  0

En

mc 2  2  2n 2

[Eq. (14.65)]

Use Eqs. (14.66), (14.80), and (14.86). First, for l  0 , j  1/ 2 :

2

Chapter 14 1 1 1 1 EF  ER  ESO  ED

 mc 2 4  mc 2 4 4n 3 0      8n 4   0  1/ 2   2n3 0 0 En  2 En  2  8n  3  n 4n 2 0 En  2  8n  3      n  n 2  4   0 En  2  3  n  2 4 n 



3  2  0 0  1 Enj  En   EF  En  1  2  n    4    n  This is consistent with Eq. (14.87), for l  0 , j  1/ 2 . l  0 , j  l  1/ 2 : l  j  1/ 2 1 1 1 1 EF  ER  ESO  ED

 mc 2 4  j  j  1  l  l  1  3 / 4  mc 2 4  4n 3   0   4  n3l  l  1 l  1/ 2   8n 4   l  1/ 2   0 0  En  2  j  j  1   j  1/ 2  j  1/ 2   3 / 4  En  2  4n   3     2n   j  1/ 2  j  1/ 2  j 4n 2  j   0 En  2  n 3  n  j 2  j  j 2  1/ 4  3 / 4         n 2  j 4  2   j  1/ 2  j  1/ 2  j   0  3 En  2  n n  1      n 2  j 2   j  1/ 2  j  4  0  3 En  2  n  1 1      n 2  j  2  j  1/ 2   4  0 En  2  n  2 j  1  1  3      n 2  j  2  j  1/ 2   4  0 En  2  n 3    n 2  j  1/ 2 4 

      

249

250

Chapter 14 3  2  n 0 0  1 Enj  En   EF  En  1  2     n  j  1/ 2 4   This is consistent with Eq. (14.87). l  0 , j  l  1/ 2 : l  j  1/ 2 1 1 1 1 EF  ER  ESO  ED

 mc 2 4  j  j  1  l  l  1  3 / 4  mc 2 4  4n   3   0  4  n3l  l  1 l  1/ 2   8n 4   l  1/ 2   0 0  E   2  j  j  1   j  1/ 2  j  3 / 2   3 / 4  E    2  4n  n 2   3  n   2n   j  1/ 2  j  3 / 2  j  1 4n  j  1   0 E   2  n 3  n  j 2  j  j 2  2 j  3 / 4  3 / 4    n 2      n  j  1 4  2   j  1/ 2  j  3 / 2  j  1   0  3 En  2  n  j 6/ 4 n       n 2  j  1 2   j  1/ 2  j  3 / 2  j  1  4  0  3 En  2  n  j6/4   1     n 2  j  1  2  j  1/ 2  j  3 / 2   4  2     0 En  2  n  2 j  2 j  3 / 4  j  6 / 4  3    n 2  j  1  2  j  1/ 2  j  3 / 2   4      0  3 E   2  n  2 j2  5 j  3  n 2      j  1  2  j  1/ 2  j  3 / 2   4  n     0 E   2  n  2  j  1 j  3 / 2   3   n 2     j  1  2  j  1/ 2  j  3 / 2   4  n     0 E   2  n 3  n 2    n  j  1/ 2 4  3  2  n 0 0  1   Enj  En  EF  En 1  2     n  j  1/ 2 4  



This is consistent with Eq. (14.87).



Chapter 14

14.17 (Sec. 14.3) 2 n 3 0   1 EF  En  2    n  j  1/ 2 4  1  137

n  2 , j  1/ 2 :

3 1  13.6 eV   2    5.66 105 eV EF   2 4 24 137   n  2, j  3/ 2: 1  13.6 eV   3  1    1.13 105 eV EF  2  4 2 137   4 

Separation of n  2 and n  3 levels  13.6 eV    13.6 eV   1.89 eV E3  E2  32 22 The fine structure shifts are much smaller than the separation of the electronic levels. 14.18* (Sec. 14.4) Hˆ DD 



3 Sˆ e ur

 Sˆ u   Sˆ  Sˆ r

p

r

e

p

3

Need to average this, assuming a spherically symmetric wave function. First note:



3 Sˆ e  ur

 Sˆ

p

r



 ur  Sˆ e  Sˆ p 3





3 Sˆ p  r

 Sˆ  r 

r

e

5



 Sˆ  Sˆ 

Start with the first term: Sˆ e  r Sˆ p  r  Sex x  Sey y  Sez z  S px x  S py y  S pz z   5 r r5







e

p

r

3

(A)

251

252

Chapter 14 Sex S py xy

Notice that this has terms such as

r5

. For the moment, we are only interested in the spatial

contributions. In other words, for this term we need to compute

xy r5

assuming a spherically

symmetric wave function [   r     r  ].



all space

dV

2 xy  r   0 , 5 r

because the product xy is positive half the time, and negative the other half. Similarly, all other cross terms will also be 0. The only nonzero contributions will come from terms that involve squares of the position variables. Furthermore: 2 2 2 2 x2 y2 z2 1 r2 dV  r  dV  r  dV  r  dV  r        5 5 5 5     r r r 3 all r all all all space



space

3 Sˆ p  r

 Sˆ  r 

r

e

5

space

 3 

S dV

ex

all space

space

S px x 2  Sey S py y 2  Sez S pz z 2  r

5

 r 

2

 2 2 1 1 r2 r2   3  Sex S px  dV 5   r   Sey S py  dV 5   r  3 all 3 all r r  space space   2 1 r2  Sez S pz  dV 5   r   r 3 all  space  2 1  Sˆ e  Sˆ p  dV 3   r  r all





space



 Sˆ  Sˆ  e

p

r

3

Substituting this back into (A), we see that the dipole-dipole term is 0 for spherically symmetric wavefunctions (wavefunctions with l  0 are spherically symmetric).

Chapter 14

253

14.19* (Sec. 14.4) 1  EHF

2 g p me2 c 2  4  6   s s 1    3m p 4 

The energy difference between the s  1 and s  0 states is E 

4 g p me2 c 2  4 3m p

4 g p  me c 2   4 2



3m p c

2



4  5.59   511103 eV  3  938  10 eV  137  6

2

4

 5.89 106 eV

f  E / h   5.89 106 eV  /  4.14 1015 eV  s   1.42 109 Hz

  c / f   3.00 108 m/s  / 1.42 109 Hz   21.1 cm 14.20 (Sec. 14.5) (a)



eB ˆ Hˆ Ze  Lz  2Sˆz 2m



If the magnetic field is stronger than the spin-orbit field, the external field is perturbing the original Hamiltonian, Hˆ 0 (the Coulomb Hamiltonian), not the fine structure. The fine structure will be a perturbation on the Zeeman effect, not vice versa. Thus, we're looking for the eigenstates of operators that commute with Hˆ 0 and Hˆ Ze . We already know that Lˆ2 and Lˆz commute with Hˆ 0 , and since the unperturbed Hamiltonian has no spin dependence, then Sˆ 2 and Sˆ must commute with it as well. z

We know:  Lˆ2 , Lˆi   0 ,  Sˆ 2 , Sˆi   0 ,  Lˆi , Sˆ j   0 , i, j  x, y, z , so Lˆ2 , Sˆ 2 , Lˆz and Sˆz all     ˆ commute with H Ze . This means that we can use the eigenstates of those operators, l , ml , s, ms , for our perturbation calculation, since they are non-degenerate.

254

Chapter 14

(b) Using these states, we find that the first-order energy corrections are 1 EZe  Hˆ Ze

eB  ml  2ms  2m eB   ml  1 . 2m 

14.21 (Sec. 14.5) (a) The perturbing Hamiltonian is: H p  z   qEz  eEz The ground state is nondegenerate. For the ground state: 1 ES  H s

 eE



2

dV z 100  r   0 ,

all space

because the z integral is odd. So there is no first-order shift. (b) For degenerate theory of the n  2 level, we need to diagonalize:       

2, 0, 0 Hˆ s 2, 0, 0 2,1, 0 Hˆ 2, 0, 0

2, 0, 0 Hˆ s 2,1, 0 2,1, 0 Hˆ 2,1, 0

2, 0, 0 Hˆ s 2,1,1 2,1, 0 Hˆ 2,1,1

2,1,1 Hˆ s 2, 0, 0 2,1, 1 Hˆ s 2, 0, 0

2,1,1 Hˆ s 2,1, 0 2,1, 1 Hˆ s 2,1, 0

2,1,1 Hˆ s 2,1,1 2,1, 1 Hˆ s 2,1,1

s

s

s

We need to calculate the matrix elements 2, l , ml Hˆ s 2, l , m  eE



dV 2lml  r  z  2lml  r 

all space

We know z  r cos  , so the angular integrals are:

2, 0, 0 Hˆ s 2,1, 1   2,1, 0 Hˆ s 2,1, 1   2,1,1 Hˆ s 2,1, 1  2,1, 1 Hˆ s 2,1, 1 

Chapter 14 

 0

255

2

d   d  sin  cos Yl ml*  ,   Yl ml  ,   0



 cl ml clml

 0

2

d  sin  cos Pl ml  cos  Pl ml  cos    d e

 i  ml  ml  

0

This is 0 unless ml  ml , so the matrix simplifies to:  2, 0, 0 Hˆ s 2, 0, 0   2,1, 0 Hˆ s 2, 0, 0  0   0 

2, 0, 0 Hˆ s 2,1, 0 2,1, 0 Hˆ 2,1, 0

0

0 0

0

0 2,1,1 Hˆ s 2,1,1

0

0

s

0 2,1, 1 Hˆ s

     2,1, 1 

Look at  integrals: 





d  sin  cos P  cos  P  cos     d  sin  cos   0



d  sin  cos P10  cos  P10  cos     d  sin  cos  cos 2   0



d  sin  cos P11  cos  P11  cos     d  sin  cos  sin 2   0

0 

0 

0

0 0

0 0

0 

0



0

Therefore, are the diagonal terms are 0:    2,1, 0    

0 Hˆ s 2, 0, 0 0 0

2, 0, 0 Hˆ s 2,1, 0 0 0 0

0 0  0 0 0 0  0 0 

Therefore, we only need to calculate 2 matrix elements, and they are complex conjugates of each other, so we only need to do 1 integral:

256

Chapter 14 2, 0, 0 Hˆ s 2,1, 0  eE



dV 200  r   r cos   210  r 

all space

 eE



 0



2

0

0

drr 3 R20  r  R21  r   d  sin  cos   d  Y00  ,   Y10  ,  

1 1  eE   2 2a3 0 

 1 1   2 6a3 0 



  r   r    drr 3    2  e r /2a0   e r /2a0   a0   a0  0

2

  1  3   d  sin  cos   d     4 cos    4    0 0  3   r /2 a0  r   r /2 a0  r 3 d  sin  cos 2   eE 3    drr    2  e  e  8a0 3  2  0  a0   a0  0 1 4 2  eE  a 72 0   16a03 3 1





 3eEa0  0   3eEa0   0  0 

3eEa0 0 0 0

0 0  0 0  0 0 0 0 

Find eigenvalues and eigenvectors: So two of the levels, 2,1, 1 are unaffected by the electric field (eigenvalues are 0). To find the other eigenvalues and eigenvectors, diagonalize  0   3eEa 0 

3eEa0   0 

You'll find that: 1  2, 0, 0  2,1, 0  . 2 1 Eigenvalue 3eEa0 (energy decreases), corresponding eigenstate  2, 0, 0  2,1, 0  . 2

Eigenvalue 3eEa0 (energy increases), corresponding eigenstate

Chapter 14

257

14.22 (Sec. 14.2) 0  0 Aˆ  n, j  a j  n, j

, and the values of a j are nondegenerate ( a j  a j if j   j .) Aˆ is

Hermitian, because it corresponds to an observable. We know  Hˆ p , Aˆ   0 , therefore  0  0 0  0 0 ˆ ˆ  0  n, j  Hˆ p , Aˆ   n, j   n, j Hˆ p Aˆ  n, j   n, j AH p  n, j



 a j  a j



 0  0  n, j Hˆ p  n, j

0  0  0 Since a j  a j if j   j ,  n, j Hˆ p  n, j  0 if j   j , so the matrix is diagonal.

Chapter 15 Time-Dependent Perturbation Theory 15.1

(Sec. 15.1) P12  t   c2  t 

2

t

i c2  t     dt  ei21t H p 21  t   0 H p 21  t    2 Vˆ 1  V21 t

i c2  t    V21  dt  ei21t  0 t  t

 1 i21t  i   V21  e    i21 t   0 





V21 i21t e 1 21





V P12  t    21 ei21t  1 21 V  21 21

2

2

 2  2 cos 21t  2

V  4 21 sin 2  21t / 2  21 15.2

(Sec. 15.1) (a) P12  t   c2  t  c2  t   

t

2

i dt  ei21t H p 21  t    0

260

Chapter 15 0t T V H p 21  t    2 Hˆ p  t  1   21 t T  0 For t > T: T

i c2  t    V21  dt  ei21t   0 t T

 1 i21t   i   V21  e   i   21 t   0





V21 i21T 1 e 21







V P12  t    21 ei21T  1 21 V  21 21

2

2

 2  2 cos 21T  2

V  4 21 sin 2  21T / 2  21 (b) V21   / T 2

 P12  t   4 sin 2  21T / 2  21T 

2 2  sin  21T / 2    21T / 2 2



 sinc2  21T / 2  

2

Lim T  0 : P12  t  

 

2

Chapter 15

15.3

(Sec. 15.1) V  xˆ , t    qExˆ 0  x  L, 0  t  T during the pulse.

H p 21  t    2 V  xˆ , t   1 L

2  2    x  qEx sin  x     dx sin  L0  L  L  

16qEL

0  t  T

92 T

i 16qEL c2  t    dt  ei21t  2  9 0 t T

i 16qEL  1 i21t   e     92  i21 t   0 

16qEL 2

9 21

P12  t    

e

16qEL 92 21

16qEL 16qEL 2

e



1

i21T



2

1

2

92 21

4

i21T

9 21

 2  2 cos 21T  2

sin 2  21T / 2 

15.4* (Sec. 15.1) i  x  

2   sin  x  L L 

 f  x 

2  2  sin  x 1.1L  1.1L 

0 xL 0  x  1.1L

261

262

Chapter 15 Pif  t    f i

2

L

2     2   dx sin  x  sin  x  L 1.1 0  L   1.1L 

2

2

 0.142  0.020 The integral was calculated using Maple. 15.5* (Sec. 15.2) Hˆ p  t   Vˆ cos t Follow the derivation in Sec. 15.2, just swap 1 and 2: 2  1 P21  t   c1  t 

2

t

i c1  t     dt  ei12t  H p 12  t   0 t

i    V12  dt  e i0t cos  t    0



iV  i  t  i  t    21  dt  e  0   e  0  2 0 t

V   21 2



 ei 0 t  1 e i 0 t  1         0    0     

  V12 . Now make resonance Here we've used the fact that the matrix elements satisfy V21 approximation: i  t V e  0  1 P21  t   21 2 4    0  2

2





2 V21 2  2 cos    0  t   2 4 2    0  2 V sin    0  t / 2   212 2     0  2

 P12  t 

where P12  t  is given in Eq. (15.29).

Chapter 15 15.6

(Sec. 15.3) Hˆ ED  t   dˆ zE  t  d  2 dˆ 1 z

z

P12  t   c2  t 

2

t

i  c2  t     dt  ei0t H p 21  t   0 t



i    d zE  dt  ei0t 1  e t/   0

 t t

 ei0t e i0 1/  t   i   d zE      i0 i0  1/    t 0 t t

 ei0t  i e t /      d zE   1     i0  1  i / 0    t0  ei0t i   d zE    i0

  1 e t /   1  1    1    1  i / 0   i0  1  i / 0   

This expression is valid in both limits. (a)   1/ 0 , 0   1  ei0t i c2  t    d zE    i0

 e t /   1  1   1    1    1 i 1     0  

 ei0t i 1  e t /    d zE    i0



P12  t   c2  t  2

2

2 d E2  z 2 2 1  e t /    0



 

263

264

Chapter 15

(b) 1/ 0  

, 1  0 

 ei0t i c2  t    d zE    i0

 e t /   1  1   1 1       i / 0   i0  i / 0   

 ei0t  i 1   d zE  1  i0 e t /   1  i0    i0  i0 





 ei0t  1  i   d zE     i0  P12  t   c2  t 

2

2

dz E 2  2 2  2  2 cos 0t   0 2

dz E 2  4 2 2 sin 2  0t / 2   0 Note that this result agrees with that of Problem 15.1, as it should. 15.7

(Sec. 15.3)   1/ A21 

3 0 c 3  2

d 30 2

Need to calculate d . 2

2

2

d  dx  d y  dz

2

d z  2,1, 0  ezˆ  1, 0, 0  e  dV 210  r  z 100  r  all space

analogous integrals for d y and d x . 8 / 3 1 Y1  ,    Y11  ,    2 i 8 / 3 1 Y1  ,    Y11  ,    y  r sin  sin   r 2 z  r cos   r 4 / 3Y10  ,  

x  r sin  cos   r

Chapter 15

265

Angular integral for d x :  8 / 3 1   1  0 1   d d sin Y , Y , Y ,                  1 1 1 0 0     4   0 ,   2   because the spherical harmonics are orthogonal. So d x  0 , and d y  0 for the same reason. 2



Angular integral for d z :  4 0  1  1 d   d  sin Y10  ,    Y1  ,     ,   3 0  3   4 

2



 0

because the spherical harmonics are normalized. Radial integral for d z : 

 0



drr R21  r  rR10  r    drr 3 R21  r  R10  r  2

0

1 1   drr 3  3 0  2 6a0 

 r   r /2 a0   1 r /a    2 3 e 0   e  a0    a0 

128 6 a0 243 This integral was done using Maple. 

2

2

d  dz

2

1  128 6   e  a0    0.55  e 2 a02 3  243  2

 1 1 13.6 eV  2  2  E E   1  2 1   1.55 1016 s 1 0  2   6.58 1016 eV  s 

3 0 c3  2

d 30 3  8.85 1012 C2 / J  m  3.00 108 m / s  1.06 1034 J  s  3



 0.55 1.60 1019 C 

 1.6 ns

2

 0.529 10

10

m  1.55  1016 s 1  2

3

266

Chapter 15

15.8* (Sec. 15.3) Start with exact equations, Eq. (15.9), and assume   1 : d i i t cn  t     e nj H p nj  t  c j  t   j dt Hˆ ED  t   dˆ zE cos t 0  2  1 d  2 dˆ 1 z

z

Write 2-level equations. Start with level 1: d i c1  t     H p 11  t  c1  t   ei12t H p 12  t  c2  t     dt i  d*zEei0t cos t c2  t   Ignore the first term, because selection rules tell us that l2  l1  l  1 ; matrix elements of the

dipole moment are 0 otherwise. So, the diagonal matrix elements H p 11  t  and H p 22  t  must be 0. Expand the cosine, and only keep the near resonant term: d i * i0t it it c1  t   e e c2  t  d zEe dt 2 i * i 0 t  c2  t  d zEe 2





(A)

Level 2: d i c2  t     H p 22  t  c2  t   ei21t H p 21  t  c1  t     dt i  d zEei0t cos t c1  t   i i  t  d zEe  0  c1  t  2 c1  t  

2 id zE

e

i 0 t

d c2  t  dt

Take the second derivative of the level-2 equation:

(B)

(C)

Chapter 15

d2 dt

c 2 2

t  

1 i i  t i  t d d zE    0  e  0  c1  t   d zEe  0  c1  t  2 2 dt

Substitute (A) and (C) into this, yielding: d2 dt

c t   2 2 

 1 i  t  2 i  t d d zE    0  e  0   e  0 c2  t   2 dt  id zE  i  i  t  i i  t d zEe  0   d*zEe  0  c2  t   2  2  2

dz E 2 d c2  t   i    0  c2  t   dt 4 2 2

dz E 2 d      c t i c t c2  t   0       2 0 2 dt dt 2 4 2 d2

Assume c2  t   eit , then: 2     0   

2

dz E 2 4 2

0

Solve for  :    

    0    R 2

,

where R 

   0 

2

2



dz E 2 2

General solution is: c2  t   aeit  beit Substitute this into (C): 2 i 0 t  c1  t   e a eit  b eit    dE z

Use the initial conditions: c2  0   a  b  0 b  a

267

268

Chapter 15 c1  0   a

2

a       1

d zE

d zE dE  z 2      2 R

c2  t  



d zE eit  eit 2  R







d zE i 0 t /2 i Rt /2 i Rt /2 e e e 2  R



d zE i 0 t /2  2i sin   R t / 2   e 2  R

P12  t   c2  t 

2

2

 

dz E 2 



2

 2R 2 2

sin 2   R t / 2 

dz E 1 1  cos   R t    2 2R 2

In the perturbative (weak field) limit  R     0  , and P12  t  

2

dz E 2 

2

   0 

2

sin 2    0  t / 2 

This agrees with Eq. (15.34).

Complement 15.A Einstein's A and B Coefficients 15.A.1 Let Rsp  1/  sp and Rc  1/ c be the rates of the decay. Ignoring absorption and stimulated emission: d N 2   Rsp N 2  Rc N 2    Rsp  Rc  N 2 dt The total rate is the sum of the rates, so the effective lifetime is the inverse of that: 

1 1   Rsp  Rc  1/ sp  1/ c

Chapter 16 Quantum Fields 16.1

(Sec. 16.1) pˆ 2 1 Hˆ   m2 xˆ 2 2m 2

 d i  pˆ 2 1  m2 xˆ 2 , pˆ  pˆ     2m 2 dt  

im2  2  xˆ , pˆ  2 

im2  xˆ  xˆ, pˆ    xˆ, pˆ  xˆ  2  m2 xˆ . 

For a classical harmonic oscillator, we know that m2   , where  is the spring constant. Hooke's law says F  x  m2 x From Newton's second law: F

d p   m2 x dt

This is equivalent to the Heisenberg equation of motion.

272

Chapter 16

16.2

(Sec. 16.1) pˆ 2 Hˆ  2m d i  pˆ 2  , xˆ  xˆ     2m  dt i  2   pˆ , xˆ  2m  i   pˆ  pˆ , xˆ    pˆ , xˆ  pˆ  2m 1  pˆ . m Classically, we know: d 1 xv p , dt m which is equivalent to the Heisenberg equation of motion. d i  pˆ 2  , pˆ  pˆ   dt   2m  0

The momentum of a free particle is conserved, which is also true classically. 16.3

(Sec. 16.1) Hˆ  μˆ B  Sˆ B z

 Sˆ z .

The initial conditions are:

 S x  t  0    x Sˆ x  x  2 S y  t  0    x Sˆ y  x  0 S z  t  0    x Sˆ z  x  0

Chapter 16

273

The Heisenberg equations of motion for the x- and y-directions are: d ˆ i S x   Sˆ z , Sˆ x   dt  Sˆ y d Sx   S y dt d ˆ i S y   Sˆ z , Sˆ y   dt  Sˆ x d S y   S x dt

(A)

(B)

(A) and (B) represent coupled differential equations for the expectation values. To solve, we first uncouple them by differentiating (A): d2 dt

2

Sx  

d Sy dt

Substitute (B) into this: d2 S x   2 S x 2 dt The solution to this is: S x  t   C cos t  D sin t

From (A) we know that Sy 

1 d S x  C sin t  D cos t  dt

We can solve for C and D using the initial conditions. The final solution is:  S x  t   cos t 2  S y  t    sin t . 2 These agree with Eqs. (9.28) and (9.29). The Heisenberg equations of motion for the z-directions is:

274

Chapter 16 d ˆ i S z   Sˆ z , Sˆ z   dt 0 d Sz  0 dt Therefore S z  t   constant , and using the initial condition we learn that Sz t   0 .

This agrees with Eq. (9.30). 16.4* (Sec. 16.1) 1  Hˆ    nˆ   2  d i  1  aˆ  t      nˆ   , aˆ  t   dt 2     iaˆ  t 

where we used Eq. (12.12). The solution to this equation is: aˆ  t   aˆ  0  e it  aˆ e  it .

16.5

(Sec. 16.1) If there is no explicit time dependence, the Heisenberg equation of motion is: d ˆ i H  t    Hˆ  t  , Hˆ  t    0 dt  This means that Hˆ  t  is constant in time, so Hˆ  t   Hˆ  Hˆ . H

S

16.6* (Sec. 16.2)   A0 eik  r  ik x A0 x eik  r  ik y A0 y eik  r  ik z A0 z eik  r  ik  A0 eik  r

Maxwell's equations for free fields say:

Chapter 16

275

 E  r , t     E  t  eik  r  E   t  e ik  r   ik E  t  eik  r  ik E   t  e ik  r  2 Re ik E  t  eik  r   0

Which means that k E  t   0 . Thus, k must be perpendicular to E  r , t  , and E  r , t  is transverse. B  r , t  is also transverse because  B  r , t   0 . 16.7

(Sec. 16.2)

E  r , t   E  t  eikx  E   t  e ikx  uz (16.15)

E  t   E  0  e  it

(16.18)

Combine these: E  r , t   E  0  ei kx t   E   t  e  i kx t   uz

(A)

Wave equation is: 1 2  2E  2 2 E  0 c t Substitute (A) into this, and it becomes 2  uz  12  2 E  0  ei kx t   E   t  e i kx t   uz   c t  2  i kx t  i kx t   uz  2 E  0  ei kx t   E   t  e  i kx t   uz   k 2 E  0  e   E  t  e    c  2   k 2E  r , t   2 E  r , t  c 0

 2 E  0  e 

i kx t 

 E  t  e

 i  kx t 

This is true, as long as   ck . 16.8

(Sec. 16.2) The electric and magnetic fields are related by   E   B t E  r , t   E  t  eikx  E   t  e ikx  uz

 E  0  e  it eikx  E   0  eit e  ikx  uz

276

Chapter 16

Here we've used Eq. (16.18). Take the curl of this   E  r , t   E  0  e  it    eikx uz   E ks  0  eit    e ikx uz    E  0  e  it  ikeikx uy   E ks  0  eit  ike ikx uy  

1  iE  0  e  it eikx  iE ks  0  eit e ikx    uy  , c where we've used   ck . Integrate this to get the magnetic field

B  r , t     dt    E 

1  E  0  e  it eikx  E   0  eit e ikx    uy  c 1  E  t  eikx  E   t  e ikx    uy  c 16.9

(Sec. 16.2) E

1  X  iP  2  0V 1 X  0V

E E   X

 0V 

E E  

P  i 0V E  E  

E  E  

V d X 0 dt  V  0  0V

d E t   E  t   dt d E  0  e  it  E   0  eit   dt

 iE  0  e  iE  0  e    i  V E  t   E  t   

 it



0

P

i P  0V



it

Chapter 16

16.10 (Sec. 16.4) Eˆ  r , t   

  i k  r t   i k  r t   n aˆ n e  ε  n aˆ † n e  ε   20V   n n n  1 ei k  r t ε  n  1 n n  1 e  i k  r t ε  20V 

 0.

 E 

2

 E 2  r, t   E r, t 

2

0

 Eˆ  r , t Eˆ  r , t  

2   2 i 2 k  r t  ˆe ˆ †  e  i 2 k  r t   ε ε   aa ˆ ˆ †  aˆ † aˆ  a  a  ε ε       20V



2   ˆ 2 n ei 2 k  r t   εε   n  aˆ †  n e  i 2 k  r t   ε ε  n a 20V 

ˆ ˆ † n  n aˆ † aˆ n   n aa   0  0  (n  1)  n 20V 

  2n  1 . 20V

16.11 (Sec. 16.4) Eˆ  r , t  

  i k  r t   i k  r t   ε   aˆ †  e  ε   aˆ  e   2 0V



  i k  r t   i k  r t   ε  *e  ε  e 2 0V 



 i k  r t  2 Re e  ε  . 2 0V

277

278

Chapter 16

16.12 (Sec. 16.4)



1 ˆ i  aˆ †ei Xˆ   ae 2



[Eq. (16.37)]

X    Xˆ  





1 ˆ i  aˆ †ei   ae 2 1   aˆ  ei   aˆ †  ei 2 1  e i  ei   2 

 









 Re ei . This is just a phase-shifted version of X  Re    , so changing  effectively shifts the phase of the coherent state. X 2   Xˆ 2 

  





1 ˆ i  aˆ †ei ae ˆ i  aˆ †ei   ae 4 1 ˆ ˆ †  aˆ † aˆ    aˆ 2 ei 2  aˆ †2ei 2  aa 4 1   aˆ 2 ei 2  aˆ †2ei 2  2aˆ † aˆ  1  4 2 2 1    e i  ei  2  1 4  2 1 1  e i  ei  4 4 2 1   Re e i     4 2 1  X  . 4 







 







X  





X 2  X 

2



1 2

This is independent of theta.

Chapter 16

16.13 (Sec. 16.4) From Eq. (16.53), we know that 

P  n 

2n

e

n!



2



n   nP  n  n 0

e



2







n

n!

n0

e



2







n

e





2

2n

n!

n 1

2

2n

 

2 n 1



  n  1! n 1

let k  n  1 n e



2



2



2





  

k!

k 0

e

2

 e



2 k

2

2





n2   n2 P  n  n 0

e



2





n

2

n 0

e



2



2





2n

n!    n

2 n 1

  n  1! n 1

e



2



2



 n 1

   1 1   n  

2 n 1

 n  1!

 

 

2 n 1  2 n 1        2 2 2 2        e    n  1  e     n  1!    n  1!  n 1 n 1     Above we showed that the second term in [ ] is equal to n , so:

279

280

Chapter 16

n

 2  2  e  

 

   n  n  2 !   2 n2

 

2

2 

n2

Let k  n  2  2  2  e  

     n 2 k

 

n2

e



2

2 

  e 2 2

k!  

k 0



2

 n

2

 n  n

n 

n2  n

2

2



n  n  n

 n

1/2

2

16.14 (Sec. 16.4)









1  1  ˆ ˆ  r   exp  r aˆ †2  aˆ 2  aˆ exp  r aˆ 2  aˆ †2  Sˆ †  r  aS 2  2  Using Eq. (16.119):   1  1  1  1 ˆ ˆ  r   aˆ   aˆ , r aˆ 2  aˆ †2     aˆ , r aˆ 2  aˆ †2  , r aˆ 2  aˆ †2    Sˆ †  r  aS  2  2!   2  2 

 





2











 



1 1 1   aˆ  r  aˆ , aˆ 2  aˆ †2    r    aˆ , aˆ 2  aˆ †2  , aˆ 2  aˆ †2        2 2!  2   





 aˆ , aˆ 2  aˆ †2     aˆ , aˆ †2     



  aˆ †  aˆ , aˆ †    aˆ , aˆ †  aˆ †    



 2aˆ † 1 1  1  ˆ ˆ  r   aˆ   r   2  aˆ †   r  Sˆ †  r  aS 2!  2  2 

2

 2   aˆ † ,  aˆ 2  aˆ †2   

Chapter 16





 aˆ † , aˆ 2  aˆ †2    aˆ † , aˆ 2     



 aˆ  aˆ † , aˆ    aˆ † , aˆ  aˆ      2aˆ

 2

1 1  2 1  ˆ ˆ  r   aˆ   r   2  aˆ †   r   2  aˆ   Sˆ †  r  aS 2!  2  2  1  1     aˆ 1  r 2    aˆ †  r  r 3    2!   3!   aˆ cosh r  aˆ † sinh r †

 Sˆ †  r  aS ˆ ˆ  r    Sˆ †  r  aˆ †  Sˆ †  r       † †  Sˆ  r  aˆ Sˆ  r 



 aˆ † cosh r  aˆ sinh r 16.15 (Sec. 16.4)



1 Xˆ  Xˆ 0  aˆ  aˆ † 2 ˆ X  r X r





1 Pˆ  Xˆ /2  aˆ  aˆ † 2i



ˆ ˆ r  0  0 Sˆ †  r  XS





1 ˆ ˆ  r  0  0 Sˆ †  r  aˆ † Sˆ  r  0 0 Sˆ †  r  aS 2 1   0 aˆ 0 cosh r  0 aˆ † 0 sinh r  0 aˆ † 0 cosh r  0 aˆ 0 sinh r  2 1   0  0  0  0 2 0 

Similarly, P  0 .

281

282

Chapter 16 X 2  r Xˆ 2 r  0 Sˆ †  r  Xˆ 2 Sˆ  r  0 1 ˆ ˆ †  aˆ † aˆ  Sˆ  r  0 0 Sˆ †  r   aˆ 2  aˆ †2  aa 4 1  0 Sˆ †  r   aˆ 2  aˆ †2  2aˆ † aˆ  1 Sˆ  r  0 4 1 ˆ ˆ  r  Sˆ †  r  aS ˆ ˆ  r   Sˆ †  r  aˆ † Sˆ  r  Sˆ †  r  aˆ † Sˆ  r   0  Sˆ †  r  aS 4 ˆ ˆ  r   1 0 ,  2 Sˆ †  r  aˆ † Sˆ  r  Sˆ †  r  aS  

where we've used the fact that Sˆ  r  is unitary. X2 

1  0  aˆ cosh r  aˆ † sinh r  aˆ cosh r  aˆ † sinh r    aˆ † cosh r  aˆ sinh r  aˆ † cosh r  aˆ sinh r  4   2  aˆ † cosh r  aˆ sinh r  aˆ cosh r  aˆ † sinh r   1 0

We know that expectation values of terms containing aˆ 2 or aˆ †2 will be 0. Eliminating them, we find: 1  ˆ ˆ †  aˆ † aˆ   2 cosh 2 r aˆ † aˆ  2sinh 2 r aa ˆ ˆ † 1 0 0  2 cosh r sinh r  aa 4 1  0  2 cosh r sinh r  2nˆ  1  2 cosh 2 r nˆ  2sinh 2 r  nˆ  1 1 0 4 1   2 cosh r sinh r  2sinh 2 r  1 4 1 1 1      e r  e  r  e r  e  r    er  e  r  er  e r   1 4 2 2 

X2 

1  1 2 r 2 r 1 2 r    e  e    e  e 2 r  2   1  4 2 2  1  e 2 r 4



X 

X2  X

2



1 r e 2

Chapter 16

283

P 2  r Pˆ 2 r  0 Sˆ †  r  Pˆ 2 Sˆ  r  0 1 ˆ ˆ †  aˆ † aˆ  Sˆ  r  0 0 Sˆ †  r    aˆ 2  aˆ †2  aa 4 1  0 Sˆ †  r    aˆ 2  aˆ †2  2aˆ † aˆ  1 Sˆ  r  0 4 1 ˆ ˆ  r  Sˆ †  r  aS ˆ ˆ  r   Sˆ †  r  aˆ † Sˆ  r  Sˆ †  r  aˆ † Sˆ  r   0   Sˆ †  r  aS 4 ˆ ˆ  r   1 0 ,  2 Sˆ †  r  aˆ † Sˆ  r  Sˆ †  r  aS  

where we've used the fact that Sˆ  r  is unitary. P2 

1  0    aˆ cosh r  aˆ † sinh r  aˆ cosh r  aˆ † sinh r    aˆ † cosh r  aˆ sinh r  aˆ † cosh r  aˆ sinh r  4  2  aˆ † cosh r  aˆ sinh r  aˆ cosh r  aˆ † sinh r   1 0

We know that expectation values of terms containing aˆ 2 or aˆ †2 will be 0. Eliminating them, we find: 1  ˆ ˆ †  aˆ † aˆ   2 cosh 2 r aˆ † aˆ  2sinh 2 r aa ˆ ˆ † 1 0 0  2 cosh r sinh r  aa 4 1  0  2 cosh r sinh r  2nˆ  1  2 cosh 2 r nˆ  2sinh 2 r  nˆ  1 1 0 4 1   2 cosh r sinh r  2sinh 2 r  1 4 1 1 1     e r  e  r  e r  e  r    er  e r  er  e r   1 4 2 2 

P2 

1  1 2 r 2 r 1 2 r  e  e    e  e 2 r  2   1   4 2 2  1  e2 r 4



P 

P2  P

2



1 r e 2

284

Chapter 16

16.16 (Sec. 16.4)





1  Sˆ  r   exp  r aˆ 2  aˆ †2  2  



n 0





1 1  r aˆ 2  aˆ †2   n!  2 

n

The squeezing operator Sˆ  r  contains only even powers of aˆ †2 and aˆ 2 . Thus Sˆ  r  0 





n 0

cn n will contain only terms with even n .

16.17 (Sec. 16.5) (a) Problem 16.6 proves that the wave vector must be orthogonal to the polarization vector. Clearly the vectors uk  uz ,  k1  ux and  k 2  u y are all mutually orthogonal. (b) Generalizing Eq. (4.51) to rotations in three dimensions, rotation by  about the y-axis is:  cos  0 sin     1 0  Ry   0   sin  0 cos     Rotation by  about the z-axis:  cos   sin  0    R z   sin  cos  0   0 0 1    cos   sin  0   cos  0 sin    cos  cos   sin  sin  cos        1 0    cos  sin  cos  sin  sin   R z R y   sin  cos  0   0  0 0 1    sin  0 cos     sin  0 cos     cos  cos   sin  sin  cos   0   sin  cos        uk  R z R y uz   cos  sin  cos  sin  sin   0    sin  sin     sin     0 cos     1   cos   uk  sin  cos  ux  sin  sin  u y  cos uz

Chapter 16

285

 cos  cos   sin  sin  cos    1   cos  cos         k1  R z R y ux   cos  sin  cos  sin  sin    0    cos  sin     sin  0 cos    0    sin     k1  cos  cos  ux  cos  sin  u y  sin uz

k 2

k 2

 cos  cos   sin  sin  cos    0    sin         R z R y u y   cos  sin  cos  sin  sin    1    cos     sin  0 cos    0   0     sin  ux  cos uz

16.18* (Sec. 16.6)   Iˆ  r , t   Eˆ    r , t Eˆ    r , t 



 20V

Iˆ  r , t  0 

   k ,s 

 20V

   k ,s 

 k  aˆk†s  t  e ik  r εk s      k ,s   k  aˆk†s  t  eik  r εk s      k ,s 

 k aˆks  t  eik  r ε    ks  k aˆks  t  eik  r ε  0  0   ks

0 Iˆ  r , t  0  0 0 Iˆ2  r , t  0  0

 I 2  0 The expectation value and variance of the field for a vacuum state were calculated in Example 16.3. The expectation value was 0, but the variance was not. The vacuum field fluctuations that lead to a nonzero field variance do not affect the variance the intensity. Intensity measurements are not sensitive to the vacuum.

286

Chapter 16

16.19 (Sec. 16.6) Iˆ  r , t   Eˆ     r , t Eˆ     r , t 

 I 

2



 aˆ † aˆ 2 0V



 n nˆ n 2 0V



n . 2 0V

 Iˆ 2  r , t   Iˆ  r , t        2 0V 

2

 n nˆ

2

2

n  n2 

2

   2 2   n  n   2 0V   0. 16.20 (Sec. 16.6) Iˆ  r , t   Eˆ     r , t Eˆ     r , t  

  aˆ † aˆ  2 0V



 2  2 0V



 n . 2 0V

Chapter 16

 I 

2

 Iˆ 2  r , t   Iˆ  r , t        2 0V 

2

      2 0V 

2

      2 0V 

2

287

2

  aˆ aaˆ ˆ aˆ     †

4



  aˆ  aˆ aˆ  1 aˆ     †



4

4



2

 

4



2

   2     2 0V  2

     n .  2 0V  16.21 (Sec. 16.6) Referring to Fig. 15.5, the atom makes a transition from the lower energy ( E1 ) to the upper

energy ( E ) state, so  fi   E  E1  /   0 , and c f t    H ED

fi

t

i  dt  ei0t H ED  0

t   

fi

t

.

E , F f dˆ Eˆ  r , t  1, Fi

  E dˆ 1  F f Eˆ  r , t  Fi     E dˆ 1   F f Eˆ    r , t  Fi  F f Eˆ    r , t  Fi     Eˆ    r , t  

 Eˆ    r , t  

 20V



k aˆks  t  eik  r ε ks 

 2 0V



k aˆk†s e  ik  r eik t εks

i  c f t    20V

k ,s



k aˆks eik  r e  ik t ε ks

k ,s

k ,s



k F f aˆks Fi e

k ,s

 i   20V

 20V

 k ,s

ik  r



E dˆ 1 ε ks

t





dt  ei0t eik t

0

k

F f aˆk†s Fi e ik  r



E dˆ 1 εks

t

  dt e 0

i0t  ik t

e

288

Chapter 16 Near resonance approximation: k  0 . The second term averages to 0 because the integrand oscillates rapidly, so it can be dropped. Left with just the first term, which is the positive frequency part, and it can be written as c f t  

t

i   dt  ei0t E dˆ 1  F f Eˆ    r , t  Fi .  0

16.22 (Sec. 16.7) if r1   r2  r ,

t1  t2  t ,

r 2  t 2  1,

then  aˆ3 , aˆ3†    r1aˆ1  t2 aˆ2 , r1aˆ1†  t2 aˆ2†   r12  t22  r 2  t 2  1  aˆ4 , aˆ4†   t1aˆ1  r2 aˆ2 , t1aˆ1†  r2 aˆ2†   t12  r2 2  t 2  r 2  1  aˆ3 , aˆ4†    r1aˆ1  t2 aˆ2 , t1aˆ1†  r2 aˆ2†   r1t1  r2t2  r t  r t  0 16.23* (Sec. 16.7)  aˆ3 , aˆ3†    r aˆ1 , r aˆ1†   r 2  1  aˆ4 , aˆ4†   taˆ1 , taˆ1†   t 2  1  aˆ3 , aˆ4†    raˆ1 , taˆ1†   r t  0 16.24 (Sec. 16.7) Create 2 photons in mode 1, and use Eq. (16.110):

 aˆ 

† 2 1

2 2 2

1

1

0   raˆ3†  taˆ4†  0 2

3 2 0 2   r 2  aˆ3†   t 2  aˆ4†   rt  aˆ3† aˆ4†  aˆ4† aˆ3†   0   1 02 2 r 2 2 3 0 4  2 t 2 0 3 2 4  2rt 1 3 1 4 . 2





Chapter 16

289

16.25* (Sec. 16.7) Create 1 photons in each input mode, and use Eqs. (16.110) and (16.111): aˆ2† aˆ1† 0   taˆ3†  raˆ4†  raˆ3†  taˆ4†  0 3 2 1 1 1 2   rt  aˆ3†   rt  aˆ4†    t 2 aˆ3† aˆ4†  r 2 aˆ4† aˆ3†   0  

1 1 1 2  rt 2 2

3

0 4  rt 2 0

3

2 4  t 2  r 2  1 3 1 4 .

For a 50/50 beamsplitter r  t  1/ 2 : 11 12 

1 2 2

3

0 4 0

3

2

4

.

There is 0 probability for one photon to leave from each port. Both photons will be measured to come out the same port (either 3 or 4). 16.26* (Sec. 16.7)

The operator for the difference of the number of photons striking each detector is nˆ12  nˆ1  nˆ2  aˆ1†aˆ1  aˆ2†aˆ2

 







1 † 1 aˆ S  aˆ R†  aˆS  aˆ R   aˆS†  aˆ R†  aˆS  aˆ R  2 2 1  aˆ S† aˆS  aˆ R† aˆ R  aˆ R† aˆS  aˆS† aˆ R  aˆS† aˆ S  aˆ R† aˆ R  aˆ R† aˆ S  aˆ S† aˆ R 2  aˆ R† aˆS  aˆS† aˆ R . 

Taking the expectation value of this in state  operator becomes

R

  ei

R



, the photon-difference-number

290

Chapter 16 nˆ12  aˆS  aˆS†



  e i aˆ S  ei aˆ S†



 2  Xˆ  where Xˆ  is the quadrature amplitude operator of the signal field [Eq. (16.37)].

Complement 16.A Second-Order Coherence and the Grangier Experiment 16.A.1 From Eq. (16.A.14): 2 g    0 

aˆ I†aˆ I†aˆ I aˆ I aˆ I†aˆ I

2

ˆ ˆ †  aˆ † aˆ  1 , so aˆ †aˆ  aa ˆ ˆ †  1 , and Using the commutation relationship  aˆ , aˆ †   aa   2 g    0 

 





n aˆ I† aˆ I aˆ I†  1 aˆ I n



n nˆ I n

2



n nˆI 2  nˆ I n n

2

2

n n

n2 1  1 n 2 For n  1 this is 0, which agrees with what we already know. As n increases, g    0  increases. 2 In the limit of large n g   0 approaches 1, but it is always less than 1. It always violates the

 

classical inequality.

Chapter 17 Quantum Information 17.1* (Sec. 17.3) 

AB



1 0 2



0

A

B

1

A

1

B

0 

1 0 1 2



1 

0 

1  0  1 2



1 



AB



AB



 1 0 1 2



1  0  1 2





 



1  0 A  1 A 0 B  1 B  0 A  1 A 0 2 2 1  0 A 0 B  1 A 1 B  0 A 1 B  1 A 0 B 2 2 1  0 A 0 B  1 A 1 B  0 A 1 B  1 A 0 B 2 2 











1 0 2



A

0

B

 1

A

1

B



B

 0

B

 1

B



17.2* (Sec. 17.4)    

a

 



1  0 2

AB a



 1 a 0

A

0



a



 1 a 1

A

1 B. 

Write the identity as a sum of projection operators onto the Bell basis: 1ˆ             



aA aA



aA aA



aA aA



aA aA



294

Chapter 17 1 1ˆ   2 1  2 1  2 1  2

   

 aA aA



   1  0     0   1  0      0   1  0      0   1  0 

   0 

a

A

a

a

A



aA aA 



aA aA 

1 2

a

a

A

a

a

A



aA aA

 1    0 0 B  aA   2  1     0 0 B  aA   2  1   0   0 B  aA   2

1   1ˆ   2 

0

a

0

B

0 0



a

 1 a 1



a

 1 a 1

 0

B

 0

B

A

1 B 



A

1 B 



a

 1 a 1



a

 1 a 1

 0

B



 0



A

1 B 



A

1 B 

B

 1

1   0   1 B  2  1   0   1 B  2 

1     0 1 B  2  1 1  1      0 1 B  0   0 B     aA  2 2 2  

1 2













1  0 B  1 B 1ˆ    aA 2 1    0 B  1 B aA 2 1    0 B  1 B aA 2 1    0 B   1 B aA 2



17.3



(Sec. 17.4) If Alice measures   0

B

aA



. Bob's qubit is projected into the state  0

B

 . Bob must turn

into 1 B , and vice versa. The matrix representation of the unitary transformation that will

turn this into Alice's state is 0 1 Uˆ      1 0 Note that this is the X-gate (or NOT gate) of Sec. 17.5.

Chapter 17 If Alice measures   turn 0

B

aA



Bob's qubit is projected into the state  0

into  1 B , and 1

B

into 0

B

B

 1

 0 1 Uˆ       1 0  Note that this is the Y-gate (apart from an overall phase factor of -i) of Sec. 17.5. (Sec. 17.4) The state of the three-particle system is    

a

 



1  0 2

AB

a



 1 a 0

A

1

B



 0

a



 1 a 1

A

0

.

B

Write the identity as a sum of projection operators onto the Bell basis: 1ˆ             





aA aA

1 1ˆ   2 1  2 1  2 1  2

   

 aA aA





aA aA



aA aA

a

a

A

B

a

a

A

B

a

a

A

B

a

a

A

B



aA aA 



aA aA 

a

a

A

B

a

a

A

B

a

a

A

B

a

a

A

B



aA aA

 1    0 1 B  aA   2  1     0 1 B  aA   2  1   0   1 B  aA   2

1   1ˆ   2



aA aA

    1  0 1    0   1  1 0      0   1  0 1    0   1  1 0        0   1  0 1    0   1  1 0        0   1  0 1    0   1  1 0   

   0 

B

 . Bob must

. The matrix representation of the unitary transformation

that will turn this into Alice's state is

17.4

295

1  0   0 2



B

 1 1    0   0 B  2 2  1 1     0 0 B  2 2  1 1  1    0   1 B      0 0 B   aA 2 2  2 

296

Chapter 17













1  1 B  0 B 1ˆ    aA 2 1    1 B  0 B aA 2 1    1 B  0 B aA 2 1    1 B   0 B aA 2





From this, we can see that if Alice measures  

aA

, Bob's qubit is projected into the state of

Alice's original qubit. If Alice measures any other Bell state, Bob's qubit can be transformed into the state of Alice's original qubit with a unitary transformation. 17.5

(Sec. 17.5)

A 0 0 1 1 17.6

B 0 1 0 1

C 1 1 1 0

D 1 1 0 1

(Sec. 17.5) 1 1 1  0 1 0 1 2 2 ˆ  0 1 X   1 0 ˆ 0   0 1  1  1  1 1  0 X       2 1  1 0  2  1 ˆ 1   0 1  1  1   1  1   1 X       2 1   1 0  2  1 0 



E 1 0 1 1

Q 0 1 1 0

Chapter 17

297

This does not look like the behavior of a NOT gate in the prime-basis, as in the prime-basis we'd like a NOT gate to turn 0 into 1 , and vice versa. 17.7

(Sec. 17.5) ˆ  X B

AB



A



A

1 0 2 1  0 2 

  ˆ  Y B

AB

ˆ 0 X B

B

1

A

1

B

1

A

0



B

ˆ 1 X B



AB



1 ˆ 0  1 Y ˆ 1 0 A Y B B B A 2 1  i 0 A 1 B i 1 A 0 B 2 

B



 i 

B





AB

The phase factor in front is not physically significant. Zˆ B 

AB



A



A

1 0 2 1  0 2 

 

 Zˆ B 0 0

B

1

B

A

1

A

1



B

 Zˆ B 1

B



AB

It is also possible to operate on qubit A, and achieve essentially the same results. 17.8* (Sec. 17.5) (a)

Cin

Tin

Cout

Tout

0

0

0

0

0

1

0

1

1

0

1

1

1

1

1

0

298

Chapter 17 (b) From Eq. (17.17): 1  0  CNOT   0  0

0

0

1

1

C

C

C

C

0

1

0

1

T

T

T

T



0 0 0  1 0 0 0 0 1  0 1 0 01



1 0 2



C



C



1 0 2



1 0 2



C



C



1 0 2



1 0 2



C



C



1 0 2



1 0 2



C



1 0 2

C

1C

0

 0

T

1C

0

T

T

0

T

1T  1C 0

T





1   1 1    2 1     101



1   1 1   2  1     101



1   1 1    2  1    1 01

 1C 1T

C

1T  1C 0

T

1C 1T

 0 T  1 T 

 0

1C

C

 1   1  1  2  1   101

 0 T  1 T 

 0

1C

0

 0 T  1 T 

C

1T 1C 0

T

1C 1T

 0 T  1 T 

 0

C

1T 1C 0

T

 1C 1T

Chapter 17

 0 CNOT

 0 CNOT

 1 CNOT

 1 CNOT

C

C

C

C

0

1

0

1

T

T

T

T

1  0  0  0

0 0 0  1 1      1 0 0  1  1 1 1     0 0 0 1  2  1 2 1      0 1 0 01  101 101

1  0  0  0

0 0 0 1 1      1 0 0  1  1 1  1   1 0 0 1 2  1  2  1      0 1 0 01  101  1 01

1  0  0  0

0 0 0 1 1      1 0 0 1  1  1 1     1 0 0 1  2  1 2  1      0 1 0 01  101  101

1  0  0  0

0 0 0 1 1      1 0 0  1  1 1  1    0 0 0 1  2  1 2 1       0 1 0 01  1 01  101

0

C

C

C

C

Cin

Tin

Cout

Tout

0

0

0

0

0

1

1

1

1

0

1

0

1

1

0

1

299

T

1

0

1

T

T

T

(c) We see from the truth table in part (b) that in the 0'1'-basis a CNOT data has no effect on the target qubit, but flips the control qubit if the target qubit is 1 . Clearly the control qubit can change in a CNOT gate. In the 0'1'-basis it appears that the action of the control and target qubits is opposite from what it is in the 01-basis.

300

Chapter 17

17.9

(Sec. 17.5)

(a) The truth table for a CZ gate is Cin Tin

Cout

Tout

0

0

0

0

0

1

0

1

1

0

1

0

1

1

1

1

Therefore, its matrix representation is 1 0 0 0    0 1 0 0   CZ  0 0 1 0     0 0 0 101

(b) The truth table for a Hadamard gate operating on the "target" qubit is Cin Tin Cout Tout 0

0

0

1 0 1 2



0

1

0

1 0 1 2



1

0

1

1 0 1 2



1

1

1

1 0 1 2



So the matrix representation is

Chapter 17 1 1  ˆ  1  1 1 H T 2 0 0  0 0

301

0  0 0 1 1  1 101 0

1 1  H ˆ CNOT ˆ  1  1 1 H T T 2 0 0  0 0 1 1  1  1 1  2 0 0  0 0 1  0  0  0

0  1   0 0  0 1 1  0   1 101  0

0 0 0 1 1   1 0 0   1 1 0 0 1 0 0   0 1 0 01  0 0

0

0  1 1   0 0   1 1 1 1  0 0   1 101  0 0

0  0 0 1 1  1 101 0

0  0 0 1 1  1 1 01

0

0

0  1 0 0 0 1 0  0 0 101 0 0

  CZ

17.10 (Sec. 17.5) We know that the input to the U f -gate is:

 1   1 0 1 11  0 212 2    2   2 1 0 1 0 2 0 1 1 2 11 0 2 11  2









 12



Qubit 1 is x, and is unchanged. Qubit 2 is y, and gets replaced with y  f  x  . The functions are defined in Table 17.3. In the text we showed that for f1  x  : f1  0   0,



1 0 1 0 2 0 1 1 2 11 0 2 11 2  1   1  0 1 11  0 212  2   2

3 







12

 .



f1 1  0 , and the output state is:

302

Chapter 17 For f 2  x  : f 2  0   1,

f 2 1  1 , and the output state is:



1 0 1 1 2 0 1 0 2 11 1 2 11 0 2 2  1   1    0 1 11  0 212   2   2 

3 





For f3  x  : f3  0   0,





f3 1  1 , and the output state is:



1 0 1 0 2 0 1 1 2 11 1 2 11 2  1   1  0 1 11  0 212  2   2

3 







For f 4  x  : f 4  0   1,

0

2

f 4 1  0 , and the output state is:





Therefore:       3      





1 0 1 1 2 0 1 0 2 11 0 2 11 1 2 2  1   1    0 1 11  0 212   2   2 

3 











1   1 0 1 11  0 212 2   2 1   1 0 1 11  0 212 2   2









f  f1 , f 2









f  f3 , f 4

17.11* (Sec. 17.5) The input state is:  1   1 0 1 11  0 212 2    2   2 1 0 1 0 2 0 1 1 2 11 0 2 11  2









 12



The output states are worked out in the previous problem. For f 2  x  : 3 



1 0 1 1 2 0 1 0 2 11 1 2  11 0 2

2



ˆ to qubit 2: This is obtained from  2 by applying X

Chapter 17

303

ˆ Uˆ f 2  X 2 For f3  x  : 3 



1 0 1 0 2 0 1 1 2 11 1 2  11 0 2

2



 with 1 as the control, and 2 as the target: This is obtained from  2 by applying CNOT  Uˆ  CNOT f3

For f 4  x  :: 3 



1 0 1 1 2 0 1 0 2 11 0 2 11 1 2 2



 to  , ˆ to the state  for f  x  , so first we apply CNOT This is obtained by applying X 2 3 3 2 ˆ : then we apply X 2

 ˆ CNOT Uˆ f 4  X 2

(b) Using the operations from part (a):

Lab 1 Spontaneous Parametric Downconversion Lab Ticket

We know that k p  ks  ki . z-components: k p  k s z  ki z  cos   k s  ki 

n n2   c Since the signal and idler have the same wavelength and index of refraction, they have the same magnitude of wave vector. k s  ki  k k

k p  2k cos  n p 2

p np

p



n 4 cos  



n2 cos  

306

Lab 1 We know that  p   / 2 , so cos  

np n

 1.659  o   cos 1    2.8  1.661 

Q1: Should be around 3 degrees (or whatever angle your crystal is cut for). Q2: Should be around 3 degrees (or whatever angle your crystal is cut for). Q3: Depends on the thickness of the crystal, the alignment of the focusing optics, etc. Hopefully it's smaller than one degree. Q4: The polarizer should be oriented parallel to the pump polarization. The A detector counts should be minimized because the downconverted photons are perpendicular to the pump beam. Q5: This beam should behave exactly the same as the other beam. Q6: Rotating the wave plate 45° (which rotates the pump polarization by 90°) should extinguish the downconversion counts. The polarization of the downconversion should not change as the pumpbeam polarization changes (can verify this with the polarizer). Q7: Hopefully about 1ns or less. Q8: Typically a few nanoseconds. Q9: Students should see a peak on top of a constant background. The peak represents true coincidences, while the background represents accidentals. They should determine the total number of accidentals in an 8ns window (assuming constant background), and compare it to the total number of coincidences in that window. This is easy enough to do by importing the data into a spreadsheet.

Lab 2 “Proof” of the Existence of Photons Lab Ticket Two-detector measurements use only the two detectors monitoring the outputs of the beam splitters. Three-detector measurements further condition the results on the detection of an idler photon. We should measure g (2)  0   1 for three-detector measurements, because the signal beam is only prepared in a true single-photon state conditionally upon the detection of an idler photon. Measuring g (2)  0   1 is a sign that a quantum mechanical description of the field is necessary to explain the results, because classical waves must satisfy g (2)  0   1 . For the two-detector measurements we expect to measure g (2)  0   1 , because the signal beam is not prepared in a single-photon state without conditioning on the third detector. Q1: Depends on how the crystal is aligned--whether it produces vertical or horizontal pairs. Horizontals are transmitted to B, verticals are reflected to B’. Rotate the wave plate 45° to maximize other count rate, because a half-wave plate rotates the polarization by twice its rotation angle. Q2: Depends on crystal orientation. Q3: There are always accidental coincidences. Q4: This number is calculated using the formula in Thorn et al. (Ref. [L2.2]) for the expected g ( 2) 0 , given the measured rates and the coincidence window: N   t   N g (2)  0   N A    B  B   T   N AB N AB 

If the coincidence window t is set properly in the program, the measured value should agree reasonably well.

308

Lab 2

Q5: Because the measurements involve different quantum states for two-detector and three-detector measurements. Two-detector measurements correspond to the field in a thermal-like (classical) state, while three-detector measurements correspond to the field in a single-photon state because of the conditional state preparation.

Lab 3: Single Photon Interference Lab Ticket

The Jones matrix of the combination of the two BDPs, wave-plate 2, and the phase shift is given by J  J  J  /2  45o JV  J  /2  45o J H  ei  0

00 10 0 0 11 0      11 00 1 1 00 0

 0 e i   0 0   0 e i     .  0 0  1 0 1 0 

The Jones matrix for the whole interferometer, corresponding to the beam transmitted through the PBS to detector-B is:

310

Lab 3 J PI  J H J  /2 22.5o J J  /2 1

 1 0  1 1 1   0 ei   cos 21 sin 21         0 0  2 1 1  1 0   sin 21  cos 21  1  1 0 1 1   ei sin 21 ei cos 21       2  0 0 1 1  cos 21 sin 21  i i 1  1 0   e sin 21  cos 21 e cos 21  sin 21       2  0 0   ei sin 21  cos 21 ei cos 21  sin 21  1  ei sin 21  cos 21 ei cos 21  sin 21     2  0 0  For vertically polarized input:  0  1  ei sin 21  cos 21 ei cos 21  sin 21   0  J PI        2  0 0 1 1 

1  ei cos 21  sin 21    2  0 

So, the intensity of the horizontally polarized output is: 2 1 i e cos 21  sin 21 2 1  sin 2 21  cos 2 21  2sin 21 cos 21 cos  2 1  1  2sin 21 cos 21 cos   2 1  1  sin 41 cos   2

I



Calculate the visibility: 1 1 1  sin 41   1  sin 41  2 V2 1 1 1  sin 41   1  sin 41  2 2  sin 41



Lab 3

311

Q1: Beams get alternately brighter and dimmer--when one is bright the other is dim. The input to wave-plate 3 is linearly polarized (by the PBS), and the wave plate rotates the input polarization to the BDP; the beams split differently on the BDP for different input linear polarizations. Q2: The intensity of each of the beams (horizontal and vertical) coming out of interferometer is constant. The intensity doesn’t get brighter or dimmer in front of the polarizer because there is no interference between these two beams, as they are orthogonally polarized. The total intensity is constant. However, the relative phase of the horizontal and vertical beams does change. Inserting the polarizer projects each of the beams emerging from the interferometer onto the polarizer axis. After the polarizer the beams are polarized along the same direction, and will interfere. Only after the polarizer is the interference apparent. Q3: Use the formula from the ticket to calculate the visibility and compare it to the data. The measured visibility will almost certainly be less than theory, because it's hard to get perfect interference. Q4: The pattern with 1  22.5o should have higher visibility. With 1  0o the photons strike the first BDP with vertical polarization (referring to Fig. L3.1), so we know they will take the top path through the interferometer. With 1  22.5o the path information is erased; we don't know which path the photon takes, because it will split at the first BDP. With 1  0o we have the path information, so we cannot see interference, while with 1  22.5o we don't have path information, so we should see interference. Q5: The pattern with 3  22.5o should have higher visibility. With 3  0o the photons detected at detector-B (referring to Fig. L3.1) have emerged from the second BDP with horizontal polarization, so we know they have taken the top path through the interferometer. With 3  22.5o the path information is erased; we don't know which path the photon has taken, because either path will have equal probability of being transmitted through the PBS. With 3  0o we have the path information, so we cannot see interference, while with 3  22.5o we don't have path information, so we should see interference. Q6: The rates should be roughly equal--only one polarization is incident on the polarizing beam splitter, so the beam splits equally. Q7: Same as previous question.

312

Lab 3

Q8: AB maximum, AB' minimum. This is because the two beams interfere, and the phase of the interferometer has been adjusted to send all of the signal photons to detector-B.

Q9: Should be less than 1.

Lab 4 Quantum State Measurement Lab Ticket The beam goes through QWP then HWP, then Horizontal polarizer: Both waveplates set at 0 deg:  a  1 J H J  /2 0o J  /4 0o  i     be   0 1  0 1  0 a   0 P  H   a2

0  1 0  1 0  a      0  0 1 0 i  bei  0  1 0  a     0  0 i  bei  0  a    0  bei 

[Eq. (L4.2)]

QWP @ 45, HWP @ 22.5  a   1 0  1 1 1  1  1 i  a  J H J  /2 22.5o J  /4 45o  i         i   be   0 0  2 1 1 2  i 1  be  1  1 1  1 i  a       2  0 0  i 1  bei  1 1  i i  1 a      0  bei  2 0  1 1  a  1 1  i    i  2  0 0  be    a  bei    i /4 1 e    2  0 



314

Lab 4

PH  

a b i e  2 2

2

1 2 a  2ab cos   b 2    2 1  1  2ab cos  2 This is the same as P 45  [Eq. (L4.5)]. 





QWP @ 45, HWP @ 0  a   1 0  1 0  J H J  /2 0o J  /4 45o  i       be   0 0  0 1 1  1 0  1    2  0 0  i

1  1 i  a    i  2  i 1  be  i  a    1  bei 

1  1 i  a    i  2  0 0  be  i 1   a  ibe       2  0  

2

a b i PH   e i 2 2 1   a 2  ab iei  iei  b 2   2 1  1  2ab sin  2 This is the same as P L  [Eq. (L4.6)].







Q1:



It should be! Should have a  1 b  0 , or a  0 b  1, depending on source polarization. The phase is insignificant (see Q2).

Q2:

  a H  bei V If a is very small, then b  1 , and   bei V  V ; the phase is an overall phase, which is not physically significant. If b is very small, then a  1 , and   a H  H , so the phase doesn't matter.

Lab 4

315

Q3:

45 

1 H V 2 1 ab , 0 2



1 H V 2 1 ab ,  2



Q4:

45 

30  cos 30 H  sin 30 V a  cos 30  0.866

b  sin 30  0.5 ,   0

Q5:

1  H i V  2 1 ab ,  /2 2

L 

Q6:

1  H i V  2 1 ab ,    / 2 2

R 

I'll assume that the photons coming from the downconversion crystal are vertical. A quarter wave plate at an arbitrary angle then produces the state

316

Lab 4  cos 2   i sin 2  1  i  sin  cos    0  ˆJ   /4  V    1  i  sin  cos  sin 2   i cos 2    1     1  i  sin  cos   2  sin   i cos 2      e i/4 2 sin  cos      1  1  i  cos 2      e i/4 2 sin  cos      1  ei/4 2 cos 2      2 sin  cos    e i/4    e  i/4  2 cos 2     1   sin 2   2   e i/4   1 2  1  i   2 cos     2  1   sin 2   2   e i/4  1   1 2 1  2 cos   i  2   2





  a H  bei V a

1 sin 2 2



1/2



2 1 1 b   1  2 cos 2    2 2   1 1   tan   1  2 cos 2    





1   1  2 cos 2   2



For   15o : 1 1 sin 30  a  0.35 2 2 2 b

1 2



 2  1  2 cos 15 



2

1/2

  1 

 0.935



2

1/2

  1 

Lab 4  1   tan 1   1  2 cos 2 15  





   tan 1  1   2.28rad  0.727   130 deg     0.866  

317

Lab 5 Testing Local Realism Lab Ticket From Carlson et al. the probabilities are P (θ A ,θ B ) 



A

θA

B

 θ  A

θB

1

A

θB

B



A

  

P (θ A ,θ B ) 





θA

2

1

B

θB



0.2 H

A

H

B

 0.8 V

A

V

0.2 θ A H θ B H  0.8 θ A V θ B V 0.2cosθ A cos θ B  0.8 sinθ A sin θ B

0.2cosθ A cos θ B  0.8 sinθ A sin θ B







B



2

Can use this in a spreadsheet to generate all the plots. Plots of P,    and P    , are identical (apart from negative signs):

This is 0 at approximately   19o ,

320

Lab 5

H

H (alpha=35 deg.) 0.2 0.15 0.1 0.05 0 -0.05 0 -0.1 -0.15 -0.2 -0.25 -0.3

20

40

60

80

100

H

Beta

with   35o and   19o , P ,   , P ,    and P    , should all be

For 1

approximately 0. Notice in the plot of H, as  decreases from   19o , H will increase. [This is because P, increases faster than P,    and P    , in this region]. So, decreasing









 is the key to maximizing H for 1 . P ,   and P    , are both less than 0.01 as long

as   120 . Q1: We know that an expectation value (or average) can be calculated by multiplying the probability of a measurement by the measured value, and then summing over all possible measurements. If Alice measures her photon polarization to be along  A she gets value of +1, while if she measures perpendicular to that she gets a value of -1. Bob's values are the same, whether he measures along  B or perpendicular to it. The measured value for the joint polarization operator is the product of Alice and Bob's measurements. Therefore: ˆ AB E   A , B    A B

  1 1 P   A ,  B    1 1 P  A , B    1 1 P  A ,  B    1 1 P   A , B   P   A , B   P  A , B   P  A ,  B   P   A , B 

Lab 5

Q2: P (θ A ,θ B ) 



A

θA

B

θB



A

θA





θB

B





θA

A

B



321

2

 1 θB  H  2

H

A

B

V

A

V

1  θ A H θB H  θ A V θB V 2 1   cosθ A cos θ B  sinθ A sin θ B  2 

B

 



1 2  cosθ A cos θ B  sinθ A sin θ B  2 1  cos 2  θ A  θ B  2

P (θ A ,θ B ) 

S  E   A1 ,  B1   E   A 2 ,  B1   E   A 2 ,  B 2   E   A1 ,  B 2 

For the given angles, we can easily calculate the probabilities, expectation values and S using a spreadsheet: A 



P(A,B)  0  22.5  0.426777 45  22.5  0.426777 45  ‐22.5  0.073223 0  ‐22.5  0.426777       Here Ap=A+90, and Bp=B+90 

P(Ap,Bp)  0.426777 0.426777 0.073223 0.426777    

P(Ap,B)  0.073223 0.073223 0.426777 0.073223    

P(A,Bp)  0.073223 0.073223 0.426777 0.073223   S= 

E(A,B)  0.707107  0.707107  ‐0.70711  0.707107    2.828427 

Q3: Probability of an A’B coincidence is given by: PA' B 



A V

B

A

V H

B



H 



2

 a

A V

B

H

0

Likewise for an AB’ coincidence.

 H

A

H

B



1  aei

A V

B

H

 V

A

V

B



322

Lab 5

Q4: The A beam is unchanged, but the half-wave plate in the B beam transforms the state. We can determine the transformation by using the operator corresponding to a half-waveplate at 45o on the B beam:  out  Jˆ B  / 2 45o   out  a H

A

 a H

A

Jˆ B  /2 45o H V

B

B

 1  a e i V

 1  a e i V

A

H

A

Jˆ B  /245o V

B

B

This state has H A V B photons which make AB’ coincidences, and V A H B photons which make A’B coincidences, but no other terms. You should see AB’ and A’B coincidences, but no AB or A’B’ coincidences. Q5: Equal probabilities of AB or A’B’ coincidences mean a and 1  a are equal. We don't know anything about the phase, so with proper normalization the source state is 1 s  H A H B  ei V A V B . 2





Q6: The state from the source is:





1 H A H B  ei V A V B 2 Again, the half-wave plates act as operators to transform the state: s 

Jˆ A  / 2 22.5o H

A

  45

, Jˆ A  / 2 22.5o V

A

A

  45 A ,



A

and likewise for B. So, the state after the wave plates is:

1  out  Jˆ A  /2 22.5o Jˆ B  /2 22.5o  s  45 2

45

Probability of an A’B coincidence is then given by: PA' B 



A

V

B



H  out

2

B

 ei 45

A

45

B



Lab 5

A V

 out







1  V B H 45 A 45 B  ei A  2 1  1 1  1  1    ei      2 2 2 2  2  For this to be 0, must have   0 . The source state is thus 1 s  H A H BV AV B . 2 B

H





Q7: P (θ A ,θ B ) 



A

θA

B

θB

A V

B





A

θA



s

θB

B





θA

A

2 s

 1 θB  H  2

B

H

A

B

V

A

1  θ A H θB H  θ A V θB V 2 1   cosθ A cos θ B  sinθ A sin θ B  2 

V

B

 



1 2  cosθ A cos θ B  sinθ A sin θ B  2 1  cos 2  θ A  θ B  2 2 1 P   A ,  B   cos   A  cos   B   sin   A  sin   B  2 1  cos 2   A   B  2 P (θ A ,θ B ) 

Q8: P   A , B H A , H B  

Q9: P   A ,  B VA , VB  





A

A

θA

θA

B

B

θB

θB

 H

 V

A

A

V

H

B



B

2



2

 cos 2   A  cos 2   B 

 sin 2   A  sin 2   B 

Q10: Pmix   A ,  B  

1 cos 2   A  cos 2   B   sin 2   A  sin 2   B    2

For the graphs, want plots of: 1 Pmix  0,  B   cos 2   B  2

H

323

 45 A 45 B 

324

Lab 5 Pmix  45o ,  B  

1 1 cos 2   B   sin 2   B     4 4

Q11: No Q12: There's a symmetry: the difference between the states  1 and  2 is that horizontal and vertical have been flipped, which corresponds to a reflection about a line that makes an angle of 45°. For  1   is 10° less than 45°, so for  2   will be 10° more than 45°.  can be found in a similar manner by reflecting it about 45°. This means   55o   71o You can verify that these angles yield the proper probabilities. Redoing the lab ticket: for  2 with   55o and   71o , P ,   , P ,    and P    ,

should all be 0. As  increases from   71o , H will increase. [This is because P, increases faster than P ,    and P    , in this region]. So, increasing  is the key to

maximizing H for  2 .