Logic as Algebra

This book is based on the notes for a course in logic given by Paul Halmos. This book retains the spirit and purpose of

217 11 2MB

English Pages 149 [150] Year 2009

Report DMCA / Copyright

DOWNLOAD DJVU FILE

Table of contents :
Cover
Title Page
Table of Contents
Preface
What is logic?
1. To count or to think
2. A small alphabet
3. A small grammar
4. A small logic
5. What is truth?
6. Motivation of the small language
7. All mathematics
Propositional calculus
8. Propositional symbols
9. Propositional abbreviations
10. Polish notation
11. Language as an algebra
12. Concatenation
13. Theorem schemata
14. Formal proofs
15. Entailment
16. Logical equivalence
17. Conjunction
18. Algebraic identities
Boolean algebra
19. Equivalence classes
20. Interpretations
21. Consistency and Boolean algebra
22. Duality and commutativity
23. Properties of Boolean algebras
24. Subtraction
25. Examples of Boolean algebras
Boolean universal algebra
26. Subalgebras
27. Homomorphisms
28. Examples of homomorphisms
29. Free algebras
30. Kernels and ideals
31. Maximal ideals
32. Homomorphism theorem
33. Consequences
34. Representation theorem
Logic via algebra
35. Pre-Boolean algebras
36. Substitution rule
37. Boolean logics
38. Algebra of the propositional calculus
39. Algebra of proof and consequence
Lattices and infinite operations
40. Lattices
41. Non-distributive lattices
42. Infinite operations
Monadic predicate calculus
43. Propositional functions
44. Finite functions
45. Functional monadic algebras
46. Functional quantifiers
47. Properties of quantifiers
48. Monadic algebras
49. Free monadic algebras
50. Modal logics
51. Monadic logics
52. Syllogisms
Index

Logic as Algebra

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
Recommend Papers