Lectures  on mathematical control theory

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

$/)$5$%,.$=$.+1$7,21$/81,9(56,7_ X t  h t  O t x  x  N t > z t  

J X  h u  'u  J X  u

'J











t

 'z t @  u t  'u t _  _ X t  O t  x  x  N t z t  u t _ @dt t

t

³  J X X  u  B t \ t  h ! dt  ³  J

t

u



uX  'u ! dt  'z t \ t  

t

t

 ³ >h t  'u t  N t 'z t @ >h t  'u t  N t 'z t @dt  



 

t

%HFDXVH t

d  'z t \ t ! dt dt t

  'z t \ t !  ³

 'z t \ t t

t

t

t

 ³  'z t \ t ! dt  ³  'z t \ t ! dt t

 ³  'z t  A t \ t ! dt t



t

 ³  A t 'z t  B t h t \ t ! dt   t

t

t

 ³  B t h t \ t ! dt

 ³  B t \ t  h t ! dt  

t

t

t

³ >h t  'u t  N t 'z t @ >h t  'u t  N t 'z t @dt d 

R









t t

t

d ³ >_ h t _  _ 'u t _  N t 'z t @ dt d ³ > _ h _   _ 'u _    t

t







 c c h @dt d c  h  'u      

ZKHUH c

   t  t c c  GXHWRLQHTXDOLW\ a  b  d a   b   

VXS N t  c

t  d t d t

HVWLPDWLRQ   DQG ERXQGDU\ FRQGLWLRQV   WKHQ WKH LQFUHPHQW RI WKH IXQFWLRQDO  FDQEHZULWWHQDV 'J

ZKHUH

h

_ R _ 

 'u



  

t

t

t

t

³  J X uX  h ! dt  ³  J





o  ZKHQ h  'u



  

u

uX  'u !dt  R 

o  

+HQFHWKHIRUPXODV    DUHSURYHQ /HW¶V SURYH WKDW WKH JUDGLHQW RI WKH IXQFWLRQDO VDWLVILHV FRQGLWLRQ   ,Q IDFWWKHGLIIHUHQFH J X X  u  J X X   u  >X  O t  x  x  N  t z t X  u @  B t \ t X  u    >X   O t  x  x  N t z t X   u  @  B t \ t X   u   >X  X   u  u  N t z t X  X  @  B t \ t X  X   u  u    

J u X  u  J u X   u

1RUPV

>X  X   u  u  N t z t X  X  @ 

_ J X X  u  J X X   u  _d >_ X  X  _  _ u  u  _    N  t _ z t X  X  _@  B t _ \ t X  X   u  u  _ 

_ J u X   u  J u X   u  _d >_ X   X  _  _ u  u  _  N  t _ z t X   X  _@ 

7KHQ _ I X X  u  I X X   u _ d >_ X  X  _  _ u  u _   ɫ _ z t X  X  _ @  c _ \ t X  X   u  u _ 









 

_ J u X  u  J u X   u _ d >_ X  X  _  _ u  u _ c _ z t X  X  _ @ 

ZKHUH c

VXS N t  c

t  d t d t

 

VXS B t  

t  d t d t

$V z t X  X 

t

³ ) tW B W >X W  X W @dW   



t

WKHQDVIROORZVIURP  WKHQRUP _ z t X  X  _d c X  X 

$V

L

 









 



 

\ t X  X   u  u \ t X  u \ tX   u t

 ³  N t >X  X   u  u  N t z t X  X  @dt



t

WKHQWKHQRUP t

_ \ t X  X   u  u _d ³ c >_ X  X  _  _ u  u _  cc _ X  X  _@dt d t



d c X  X 

L

 u  u

L



WDNLQJ  LQFRQVLGHUDWLRQZKHUH c c   c t  t    )URPWKHVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ  LWIROORZVWKDW t

\ t X  X   u  u  \ t X  X   u  u   ³ A W \ W X  X   u  u  dW   t

7KHQ t

_\ t X  X   u  u _d_\ t X  X   u  u _  ³ A W \ W X  X   u  u dW   t

)URPKHUHDSSO\LQJWKH*URQZDOOOHPPDZHREWDLQ



_\ tX  X   u  u _d_\ t X  X   u  u _ eO tt d c X  X 

XVLQJ  ZKHUH O

VXS A t  c

t  dt dt

L

 u  u

L



c e O t t  

)URP    ZLWKFRQVLGHUDWLRQWKDW    ZHREWDLQ 

>

@

J X X  u  J X X   u d  _ X  X  _  _ u  u _  c c X  X 



 c c X  X 

 

 L

 u  u

 L  L







 

>



@



J u X  u  J u X   u  d  _ X  X  _   _ u  u  _   c c  X  X 

7KHQ J X X  u  J X X   u

 L

t

³ JX X  u  JX X  u









t



 c c t  t X  X 

L



 L

t

³J

u

>



 L

 u  u



dt d  X  X 

 c c t  t X  X 

d c X  X  J u X  u  J u X   u





 L



 L

 u  u

>





X  u  J u X   u dt d  X  X 

t

 c c t  t X  X     

 L



d c X  X 

 L

 u  u

L



 u  u

L

 L

L

L

@

d 

 u  u

L

@



 L





 



 

ZKHUH ɫ   ɫ ɫ t  t  c c t  t  c   c c t  t   )URP    ZHREWDLQ    

   

J X  u  J X   u

 L

   

t

t



 ³ _ J X  u  J X   u _ dt t

³ >_ JX X  u  JX X  u _













t



 _ J u X  u  J u X   u _ dt d c  c t  t X  X   u  u











X X   L  u  u  U 

+HQFHZHREWDLQWKHHVWLPDWLRQ  ZKHUH l c  c t  t   7KHWKHRUHPLV SURYHG %DVHG RQ WKH IRUPXODV     ZH FRQVWUXFW VHTXHQFHV ^X n `  L I  R m  ^u n `  U DFFRUGLQJWRWKHIROORZLQJDOJRULWKP X n  X n  D n JX X n  un  un  PU >un  D n J u X n  un @ n      ZKHUH H   D n d H

Dn

  H  !  H !  n l  H

  ZKHUH l l

  ,Q SDUWLFXODU ZKHQ H

l  ZH REWDLQ 

const !   /LSVFKLW]¶VFRQVWDQWIURP  

$V IROORZV IURP 7KHRUHP  WKH IXQFWLRQDO J X  u  C L I  R m u U   LH J X  u  FRQWLQXRXVO\ )UHFKHW GLIIHUHQWLDWLDEOH E\ X  u  DQG WKH JUDGLHQW RI WKH IXQFWLRQDOVDWLVILHVWKH/LSVFKLW]FRQGLWLRQ /HPPDLet U be bounded convex closed set in L I  R m  Then:  functional J X  u  C  L I  R m u U   from  with conditions    is convex  functional J X  u  C  L I  R m u U  reaches the lower bound on the set L I  R m u U   3URRI/HWXVGHQRWH  Im N  t · § Im ¨ ¸ F X  u  z t  z _ X  O t  x  x  N  t z t  u _ q ¨  I m Im  N t ¸q   ¨ N t  N t N t N t ¸    ©  ¹  O t  x  x  O t  x  x O t  x  x N t q  O t  x  x O t  x  x   





  

ZKHUH q X  u z t  ,WLVHDV\WRPDNHVXUHWKDW  Im N  t · § Im ¨ ¸  N  t ¸ t  t  t  I   ¨  I m Im ¨ N t  N t N t N t ¸    ©  ¹ ,WIROORZVWKDWWKHIXQFWLRQ F q t LVDFRQYH[IXQFWLRQE\ q LH w  F wq 



F Dq    D q  t d DF q  t    D F q  t  q  q  R  mn  D  D  >@

 





 

 1RWHWKDWIRUDQ\ X  L I  R m  X   L I  R m IRUDOO D  D  >@ WKHVROXWLRQRI WKHGLIIHUHQWLDOHTXDWLRQ  KDVWKHSURSHUW\ z t  DX    D X  Dz t X    D z t X    7KHQ t

³ F Dq

J DX    D X   Du    D u 





   D q   t dt d 

t

d DJ X  u    D J X   u  

X X   L I  R m  u  u   U 

GXHWRUHODWLRQV  ,WIROORZVWKDWWKHIXQFWLRQDO  XQGHUFRQGLWLRQV    LVFRQYH[ /HW X L d U  U !    TXLWH D ODUJH QXPEHU 7KHQ WKH VHW 

LU I  R m ^X ˜  L I  R m  X d U `   ERXQGHG FRQYH[ FORVHG VHW 7KHQ WKH VHW

X

LU I  R m u U   is ERXQGHG FRQYH[ FORVHG VHW LQ D UHIOH[LYH %DQDFK VSDFH

L I  R m u L I  R m  7KHUHIRUHWKHVHW X LVZHDNO\FRPSDFW&RQYH[IXQFWLRQDO J X  u  C  X  LV ZHDNO\ ORZHU VHPLFRQWLQXRXV RQ D FRQYH[ VHW X   7KHQ

H

DFFRUGLQJ WR WKH :HLHUVWUDVV WKHRUHP WKDW D ZHDNO\ ORZHU VHPLFRQWLQXRXV IXQFWLRQDO RQ D ZHDNO\ ELFRPSDFW VHW UHDFKHV WKH ORZHU ERXQG ZH KDYH J X  u  UHDFKHVWKHORZHUERXQGRQWKHVHW X  /HPPDLVSURYHG 7KHRUHPLet the matrix W t   t !  set U   bounded, convex and closed, sequences ^X n `  L I  R m  ^u n `  U are determined by the formula (1.47). Then:  Sequences ^X n ` ^u n ` are minimizing, i.e. OLP J X n  u n J LQI J X  u  X LU I  R m u U   n of X u X  Sequences ^X n `^u n ` weakly converge to the set X  where weakly weakly X ^ X  u  X  J X  u J ` Xn  oX  un  o u when n o f   The following estimate of the rate of convergence is true I X n X n  I X  u d

m  m n

const !  n  

 In order for problem 2 to have a solution, it is necessary and sufficient that the value J X  u J  3URRI)URP  IROORZVWKDW  X n   X n  D n JX X n  X  X n  ! L  X  X  L I  R m      

 

 un   un  D n J u un  u  un  ! L t  u u  U   

§X ·

§X ·

§X

·

J

8VLQJ QRWDWLRQV T ¨¨ ¸¸ T n ¨¨ n ¸¸ T n  ¨¨ n  ¸¸ J X n  un ©u¹ © un ¹ © un   ¹    FDQEHZULWWHQDV  J T n T  T n  ! L t



Dn



X





 

X n  J u un   UHODWLRQV

 T n  T n T  T n ! L  T  T  X   

 

6LQFHWKHIXQFWLRQDO J X  u  C  X  WKHQ J Z  J P t J Z  Z  P ! 

l  P  Z  P  Z  X   

+HQFHLQSDUWLFXODUZKHQ Z T n  P T n   ZHJHW J T n  J T n  t J T n  T n  T n  ! 

l  T n  T n  

T n T n   X   

 

)URP    LWIROORZV §  l·   J T n  J T n t ¨¨  ¸¸ T n  T n t H T n  T n   D  © n ¹ l  H   l  ZKHUH t   t H   Dn Dn  







 

)URP LQHTXDOLW\   LW IROORZV WKDW WKH QXPHULFDO VHTXHQFH ^J T n ` ^J X n  un `  VWULFWO\ GHFUHDVHV GXH WR WKH OLPLWHG YDOXHV RI WKH IXQFWLRQDO J uX t   FRQYHUJHV 7KHUHIRUH J T n  J T n  o   ZKHQ n o f  7KHQ IURP

 SDVVLQJWRWKHOLPLWDV n o f ZHJHW T n  T n  o  ZKHQ n o f  1RWH WKDW WKH IXQFWLRQDO J uX  LV FRQYH[ VHW M T ^T  X  J T d J T `  ERXQGHGFRQYH[DQGFORVHG $VIROORZVIURP/HPPDDQGWKHLQHTXDOLW\    IXQFWLRQDO J T UHDFKHVWKHORZHUERXQGRQWKHVHW M u     VHTXHQFH ^T n `  M u    /HWXVSURYHWKDWWKHVHTXHQFH ^T n ` ^X n  u n ` LVPLQLPL]LQJ$V J T  C  X  ± FRQYH[ IXQFWLRQDO WKHQ J Z  J P d J Z  Z  P  Z  P  M T    +HQFH ZKHQ Z T n  P T  X  M T  ZHREWDLQ   d an

J T n  J T d J T n  T n  T !  J T n  T n  T n ! 

  J T n  T n  T !d J T n  T n  T n !  d J T n 



Dn



Dn

 T n  T n  T  T n !d 

 

T  T n T n  T n d c T n  T n

6LQFHWKHSURYHQDERYH T n  T n





 ZKHUH D   GLDPHWHURIVHW M T    H o  ZKHQ n o f WKHQ OLP J T n J J T  7KLV

GXHWRLQHTXDOLW\   T  T n d D

Dn

d

n of

PHDQVWKDWWKHVHTXHQFH ^T n `  M T  LVPLQLPL]LQJ  



$V M T  LVZHDNO\FRPSDFWVHW ^T n `  M u   WKHUHIRUHDOOZHDNOLPLWSRLQWV ^T n ` EHORQJWRWKHVHW X  M u    J T n  J T ! 

)URP LQHTXDOLWLHV     LW IROORZV WKDW a n an  an  t

H  

c

an   n

VHTXHQFHWKDW an d



  +HQFH E\ WKH ZHOONQRZQ OHPPD RQ QXPHULFDO

A  n  ZKHUH A n

c

H

m  ZHREWDLQWKHWKLUGVWDWHPHQWRI

WKHWKHRUHP 7KH ODVW VWDWHPHQW RI WKH WKHRUHP IROORZV IURP   ,Q IDFW LI ZH J T J X  u  WKHQ u t X t  O t  x  x  N t z t X  t  I        7KHWKHRUHPLVSURYHG 3RVLWLRQ FRQWURO %DVHG RQ WKH IRXQG SURJUDP FRQWURO   ZH FDQ FRQVWUXFWSRVLWLRQFRQWURO 7KHRUHP Let the conditions of Theorems 5, 6 be fulfilled, and let, besides: x Rx  non-singular matrix 6 t  t  I , is determined by the formula (1.23), the value  J T

J X  u

  X t

H t x   * t

t

³ ) t W B W H W dW  t  I   

t

Then position control u x t K t x t  where u t  t  I  is determined by the formula (1.55), the function x t

z t X  O t  x  x  N  t z t X  t  I  

x t  u



3RLQWSURMHFWLRQRQWKHVHW/HW X ˜  L I  R m  U t   FRQYH[FORVHGVHWLQ L I  R m  Z PU >X @  SURMHFWLRQRISRLQW X RQWKHVHW U  %HORZDUHWKHIRUPXODVE\ ZKLFK WKH SURMHFWLRQV RI WKH SRLQW X  DUH GHWHUPLQHG RQ GLIIHUHQW VHWV U   2IWHQ HQFRXQWHUHGLQSUDFWLFH  7KHVHW U t ^u ˜  L I  R m  D i t d u i t d E i t ɩɜ t  I `  ZKHUH D t D  t   D m t   E t E t  E m t  t  I  ± VSHFLILHG FRQWLQXRXVIXQFWLRQV7KHQ ­D i t  if Xi t d D i t  ° Zi t PU >X @ ®Xi t  if D i t d Xi t d Ei t  ° E t  if X t ! E t  i i ¯ i

 7KHVHW U ^u ˜  L I  R m  u  u 

 L

L

t

³ _ X t _



dt 

t

 

d R  ` 7KHQ

X  u ­ R if X  u L ! R °u  X  u   L PU >X @ ®  °X  if X  u L d R ¯ 

Z

ZKHUH X



i  m t  I  

 7KHVHW

^u ˜  L I  R

U

m



ZKHUH c c t  L I  R m    c u ! L

t



7KHQ

ZKHUH c



PU >X @ X  J   cX ! L

t

³ _ c t _

³c





t u t dt  J  R  JLYHQ QXPEHU

t

>

Z

J `

 c u ! L

@

c c





dt  c t  L I  R m  JLYHQYHFWRUIXQFWLRQ

t

 7KH VHW U ^u ˜  L I  R m  Au b`  ZKHUH A  হ L I  R m o L I  R m   OLQHDUERXQGHGRSHUDWRU b  L I  R m  JLYHQYHFWRUIXQFWLRQ7KHQ Z PU >X @ X  A AA  AX  b  

ZKHUH A  DGMRLQWRSHUDWRURSHUDWRU AA  KDVDUHYHUVHRSHUDWRU 2SWLPDOSHUIRUPDQFH&RQVLGHUWKHSUREOHP    SURYLGHGWKDWWKH ILQDOPRPHQWRIWLPH t LVQRWIL[HG,WLVQHFHVVDU\WRILQGWKHORZHVWYDOXH t t  IRUZKLFKH[LVWVDFRQWURO u t  t  >t   t @ u t  U t  ZKLFKWUDQVIHUVWKHWUDMHFWRU\ RIWKHV\VWHP  RXWJRLQJIURPDJLYHQVWDUWLQJSRLQW x  R n DWLQLWLDOWLPH t   WRDJLYHQSRLQW x x t IRUDSHULRGRIWLPH t  t    t ! t  7KXV WKH VROXWLRQ RI WKH RSWLPDO SHUIRUPDQFH SUREOHP LV D SDLU t  u t  t  >t   t @ ZKHUH u t  U t ±VROXWLRQRIWKHFRQWUROODELOLW\SUREOHP     FRUUHVSRQGLQJWRWKHVPDOOHVWYDOXH t RIHQGWLPH t  6XSSRVH WKDW FRQWURO u t U  t  >t   t @ t ! t  LV IRXQG IURP WKH VROXWLRQ RI WKHFRQWUROODELOLW\SUREOHP    ZKHUH t  t  NQRZQTXDQWLWLHV /HWXVFKRRVH t t   $FFRUGLQJWRWKHGHVFULEHGDOJRULWKPE\VROYLQJWKH RSWLPL]DWLRQ SUREOHP     ZH ZLOO ILQG D SDLU X

 u

 L I  R m u U   t  >t   t @  ,I IRU WKLV SDLU X

 u

 YDOXH J X

 u

  WKHQ ZH FKRRVH YDOXH t t   t  t  DQGVROYHWKHSUREOHP    ZLWKDIL[HG t  t  ,QFDVH WKHYDOXH J X

 u

!  SUREOHP    QHHGWREHVROYHGIRUYDOXH t t    DQGVRRQ ([DPSOH0LQLPL]HIXQFWLRQDO 



t

J u t

³  ˜ dt

t o LQI 



XQGHUFRQGLWLRQV

x   x  u t  I > t @  x   x   x t  x t   x

u t U

^u ˜  L I  R   d u t d  



ae t  I ` 

)RUWKLVH[DPSOH A

§  · ¨¨   ¸¸ B © ¹

§ · ¨¨  ¸¸ x © ¹

§ x · ¨¨ x ¸¸ x © ¹ 



§ · ¨¨  ¸¸ x © ¹

§ · ¨¨  ¸¸  © ¹

,QWKHYHFWRUIRUPWKHRSWLPDOSHUIRUPDQFHSUREOHPZLOOEHZULWWHQDV J u t t o LQI  x A x  B u x  x  x t x  t  I  u t  U  0DWULFHV §  t · ¸¸ T t ¨¨ ©  ¹

§ t · At ¸¸ e ¨¨ ©  ¹

eAt

e A t  Ɏ t W

e A t W 

7KHOLQHDUFRQWUROOHGV\VWHPKDVWKHIRUP A y  B w t  y 

y

x  t  I  w ˜  L I  R 

x  y t

/HWFDOFXODWHWKHIROORZLQJYHFWRUVDQGPDWULFHV a

t § t     t   ·

§  · ¸  ¨¨ ¸¸  T  t ³ e  A t B B e  A t dt ¨¨   t ¸¹ ©¹ ©  t    §  t   t ·  t  ¸  / t B Ɏ  t T   t a T   t ¨¨    ¸ t t   t   t  ¹ © §  t  t  · N t  B Ɏ  t T   t Ɏ  t ¨¨        ¸¸  t t t t ¹  © 

Ɏ  t x  x

/  t

 x

§ t   t    t t  · ¨ ¸ t ¨ ¸  ¨  t    t t ¸ N  t ¨ ¸ t © ¹

§  t    t  t ¨ t ¨ ¨  t    t t ¨ t ©

 t   t t  · ¸ t ¸    t    t t ¸ ¸ t ¹

7KHQ w t

y t

§  t  · §  t  · § t  · v t  ¨¨    ¸¸  ¨¨    ¸¸ z t  v  ¨¨    ¸¸ z t  v  t ¹ © t t ¹ © t © t t ¹    §  t    t  t · t   t   t t § y t · ¸ z t  v   ¨¨ ¸¸  y t z t    ¨¨  ¸ t t © y t ¹ © ¹

§  t   t t  · ¸¸ z t  v  y t  ¨¨ t © ¹

 t    t t §  t    t t · ¸¸ z t  v    ¨¨ t t © ¹  §   t   t t · ¸¸ z t  v   ¨¨ t © ¹



z t 

7KHSUREOHPRIRSWLPDOFRQWUROKDVDIRUP J  T

t

³ F q t  t dt 

t

³ w t  u t dt 



t

§  t  ·  ¸ t t ¸¹

³ v t ¨¨© 



§ t  · §  t  ·   ¨¨    ¸¸ z t  v  ¨¨    ¸¸ z t  v  u t dt o LQI t t t t  ¹ ¹ ©  ©  z A z  B v t  z   v ˜  L I  R  u t  U    ZKHUH T u v  q z t  z t  u v 





 





 

  )XQFWLRQDOJUDGLHQW/HW¶VFDOFXODWHSDUWLDOGHULYDWLYHV w F q t wu

 w  u 

w F q t w v

 

 w  u 

w F q t wz

 

§  t  · w F q t § t ·  w  u ¨¨    ¸¸    w  u ¨¨    ¸¸  t  I  t t z t w  ¹   © t t ¹ ©  )XQFWLRQDOJUDGLHQW Jc T Jc T  Jc T  H ZKHUH w F q t  t w F q t  t  Jc T Jc T  B \ t  wu w v w F q t w z t

ZKHUH z t z t  v  t  I  ± VROXWLRQ RI GLIIHUHQWLDO HTXDWLRQV DQG IXQFWLRQ \ t  t  I VROXWLRQRIWKHDGMRLQWV\VWHP \

 A \  \ t

t

w F q t  t dt w z t 



§\  t · ¨¨ ¸¸  ©\  t ¹







 

PU >un  D n J c T n @ vn vn  D n J c T n  n      un  vn  X  D n d  H !  l ±/LSVFKLW]FRQVWDQW l   H

 

ZKHUH \  t

t

w F q t  t dt \  t w z t 



t

w F q t  t dt  w z t 



 0LQLPL]LQJVHTXHQFHV/HW¶VFRQVWUXFWVHTXHQFHV un

ZKHUH T n

 &RQVWUXFWLQJDQRSWLPDOVROXWLRQ $/HW¶VFKRRVHDYDOXH t  :HEXLOGDQDGPLVVLEOHFRQWUROE\FRQVWUXFWLQJD PLQLPL]LQJ VHTXHQFH XVLQJ   )RU WKLV H[DPSOH ZKHQ t   RSWLPDO VROXWLRQRIWKHSUREOHP    LV  ­ ° if  d t    °   °  dt   u t v t ® if   °  ° ° if  d t d  ¯ 9DOXH J T  T u t  v t  t  I > @ 

w t

v t  

%/HW¶VFKRRVH t  y   )RUYDOXH t  WKHRSWLPDOVROXWLRQRIWKHSUREOHP    ZLOOEH  ­ ° if  d t    °   °  u

t v

t ® if dt     °  ° ° if  d t d  ¯ 9DOXH J T

 T

u

t  v

t  t  I > @ 

w t

v

t  

&/HW¶V FKRRVH t  y    )RU YDOXH t   t   WKH RSWLPDO VROXWLRQ RI WKH SUREOHP    ZLOOEH ­ if  d t    w t ® ¯ if  d t   u

t  v

t  t  I > @ 

u

t v

t

9DOXH J T

 T

t

 

v

t  

2SWLPDOWUDMHFWRU\IRUWKHSUREOHP x t

y t

­ t °°    d t      ®  ° t   t    d t d  ¯° 

x t

y t

­ t   d t    ® ¯t    d t d 

7KHVHUHVXOWVFRLQFLGHZLWKWKHUHVXOWVREWDLQHGXVLQJ/63RQWU\DJLQ¶VPD[LPXP SULQFLSOH  Lecture 4.&RQWUROODELOLW\RIOLQHDUV\VWHPVZLWKERXQGDU\FRQGLWLRQV DQGOLPLWHGFRQWURO  &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\SUREOHP)LQGFRQWURO u t U t ^u ˜  L I  R m  u t V t  R m ae t  I `     ZKLFKWUDQVIHUVWKHWUDMHFWRU\RIWKHV\VWHP x A t x  B t u t  t  I >t  t @         IURP LQLWLDO SRLQW x x x t  S  R n LH x

x t  S  R n  DW WKH PRPHQW RI WLPH t   WR WKH SRLQW x t   x

x t  S  u S  R  n   









 

ZKHUH t  t DUHIL[HG t ! t   7KHVROXWLRQRIWKLVSUREOHPFDQEHUHGXFHGWRWKHVROXWLRQRIWKHIROORZLQJ RSWLPL]DWLRQSUREOHP t

J v u x  x

³ _ v t  B t ) t  t W







t   t x  B t ) t   t u

t







 

 

   

u W t   t ) t   t x  N t z t  v  u t _ dt o LQI 

ZLWKFRQGLWLRQV z

A t z  B t v t  z t 

 v ˜  L I  R m  I

u t  U t  x   S   x  S  

>t   t @ 

 

     ZKHUH S   S  JLYHQERXQGHGFRQYH[FORVHGVHWV  3URJUDPFRQWURO1RWHWKDW  YDOXH J v u x  x t  IRUDQ\ v u x  x  L I  R m u U u S u S X 7KHUH IRUHWKHIXQFWLRQDO J v u  x  x ERXQGHGEHORZ  3UREOHPKDVDVROXWLRQLIDQGRQO\LIWKHYDOXH J v  u  x  x  ZKHUH v  u  x  x  VROXWLRQRIWKHRSWLPL]DWLRQSUREOHP  ±    ,I J v  u  x  x  WKHQFRQWURO u t v t  P t x  P t x  N t z t  v  t  I        ZKHUH P t  B t ) t  t W  t  t  P t B t ) t  t W  t  t ) t  t    ,QFDVH J v  u  x  x !  SUREOHP  ±  KDVQRVROXWLRQ  

7KHRUHP Let the matrix W t   t !  . Then the functional (1.63) under the conditions (1.64), (1.65) is continuously Frechet differentiable, the gradient of the functional  J c v u x  x J vc  J uc  J xc  J cx  L I  R m u L I  R m u R n u R n H  at any point T v u  x  x  X is calculated by the formula J vc T >v t  P t x  P t x  N t z t  v  u t @  B t \ t  L I  R m     J uc T >v t  P t x  P t x  N t z t  v  u t @  L I  R m       

J xc T

t

³  P t >v t  P t x









 P t x  N t z t  v  u t @ dt  L I  R m  

 



 P t x  N t z t  v  u t @ dt  R n   

 

t

J xc T

t

³  P t >v t  P t x







t

where z t  v  t  I , – solution of the differential equation (1.64), and the function \ t  t  I – solution of the adjoint system \

 A t \  \ t

t

 ³  N t >v t  P t x  P t x  N t z t  v  u t @ dt    t

In addition, the gradient J c T  H satisfies Lipschitz condition J c T  J c T  d l T  T  

where T

T  T 



T T   X





L I  R m u U u S u S  H  



T

v  v  u  u  _ x  x _  _ x  x _   



 

v  u  x  x  

v  u  x  x  X  

3URRI$VLQWKHSURRIRI7KHRUHPWKHLQFUHPHQWRIWKHIXQFWLRQDO   FDQEHUHSUHVHQWHGDV 'J

J v  h u  'u  x  'x  x  'x  J v u  x  x t

³

t

J T  'T  J T

t

J vc T  h dt  ³ J uc T  'u dt  J xc T  'x  J xc T  'x  R  t

  _ R _ o  ɩɪɢ __ 'T __o   __ 'T __ __ h __  __ 'u __  _ 'x _  _ 'x _    __ 'T __  +HQFH WKH UHODWLRQV     ZKHUH \ t  t  I ± VROXWLRQ RI WKH DGMRLQW

V\VWHP   )RU _ 'z t _  HVWLPDWH   LV WUXH HVWLPDWH IRU _ z t  h _  FDQ EH REWDLQHGIURP  ZKHQ h v  v   'LIIHUHQFH J c T  J c T  J vc T  J vc T   J uc T  J uc T   J xc T  J xc T   J xc T  J xc T   ZKHUH 







J vc T  J vc T  >v  v  u  u  P t x  x  P t x  x   N t z t  v  v @  B t \ t  v  v  u  u  x  x  x  x  J uc T  J uc T  >v  v  u  u  P t x  x   P t x  x  N t z t  v  v @



t

J xc T  J xc T   ³ P t >v  v   u  u   P t x  x   t

 P t x  x  N  t z t  v  v  @

 





t

J xc T  J xc T   ³ P t >v  v  u  u  P t x  x  t



 P t x  x  N t z t  v  v @

ZKHUH T v  u  x  x  T  v  u   x  x  X   1RUPV

_ J vc T  J vc T  _ >_ v  v _  _ u  u _  __ P t __ _ x  x _  __ P t __ _ x  x _ 

 __ N t __ _ z t  v  v _@ __ B t __ _\ t T  T  _ _ J uc T  J uc T  _ d >_ v  v _  _ u  u _  __ P t __ _ x  x _  __ P t __ _ x  x _   __ N t __ _ z t  v  v _@

 

t

_ J xc  T  J xc  T  _ d  ³ __ P t __ >_ v  v _  _ u  u _  __ P t __ _ x  x _ 



t

 __ P t __ _ x  x _  __ N t __ _ z t  v  v _@ t

_ J xc T  J xc T  _ d  ³ __ P t __ >_ v  v _  _ u  u _  __ P t __ _ x  x _ 



t

 __ P t __ _ x  x _  __ N t __ _ z t  v  v _@

7KHQ _ J vc T  J vc T  _ d >_ v  v _  _ u  u _ @   __ P t __ _ x  x _    __ P t __ _ x  x _  __ N t __ _ z t  v  v _  __ B t __ _\ t T  T  _  _ J uc T  J uc T  _ d >_ v  v _  _ u  u _ @   __ P t __ _ x  x _ 



  __ P t __ _ x  x _  __ N  t __ _ z t  v  v _ 

 'HQRWHE\ C

VXS __ P t __ C

t dt dt

VXS __ P t __ PD[  C  C  CC

t dt dt 

    

C  

7KHQ t

_ J xc T  J xc T  _ d CC ³ >_ v  v _  _ u  u _  _ x  x _  t

 _ x  x _  __ v  v __L @dt d CC t  t __ v  v __L  __ u  u __L    CC t  t _ x  x _  _ x  x _  CC t  t __ v  v __L

_ J xc T  J xc T  _ d CC t  t __ v  v __L  __ u  u __L   CC t  t _ x  x _  _ x  x _  CC t  t __ v  v __L 



7KHUHIRUHWKHUHDUHFRQVWDQWV C  C VXFKWKDW _ J xc T  J xc  T  _  d C __ v  v __L  __ u  u __L  _ x  x _  _ x  x _   _ J xc T  J xc T  _ d C __ v  v __  __ u  u __  _ x  x _  _ x  x _   

 L

 L





   

)URP    ZHJHW _ J vc T  J vc T  _  d C __ v  v __L  __ u  u __L  _ x  x _  _ x  x _   _ J uc T  J uc T  _  d C __ v  v __L  __ u  u __L  _ x  x _  _ x  x _  

ZKHUH VHH   _ \ t T  T  _  d m __ v  v __L  __ u  u __L  _ x  x _  _ x  x _  

  

   

)URP    LWIROORZV __ J c T  J c T  __L

t

t

t

t

 ³ _ J c T  J c T  _ dt

³ >_ J c T  J c T _ v



v







 _ J uc T  J uc T  _   _ J xc T  J xc  T  _   _ J xc T  J xc T  _ @ dt d



d C  C  C  C t  t __ v  v __  __ u  u __  _ x  x _  _ x  x _   L

 L







C  C  C  C t  t   7KH +HQFH IROORZV WKH HVWLPDWH   ZKHUH l WKHRUHPLVSURYHG %DVHGRQUHODWLRQV  ±  FRQVWUXFWVHTXHQFHV ^T ` ^vn `^un `^x n `^xn `  X L I  R m u U u S u S  DFFRUGLQJWRWKHIROORZLQJUXOHV vn  x n 

ZKHUH H   D n d Dn

H

vn  D n J nc T n 

un 

PS  > x n  D n J xc  T n @ xn    H  !  H  !  n l  H 

Pu >un  D n J uc T n @ PS > xn  D n J xc T n @ n

 

 

  ,Q SDUWLFXODU ZKHQ H

 

l  ZH KDYH 

 ZKHUH l !  ±/LSVFKLW]FRQVWDQWIURP   l

/HPPDLet S   S – bounded convex closed sets in R n  U – bounded convex closed set in L I  R m  Then:  functional J T  C  X under conditions (1.64), (1.65) is convex.  functional J T  C X reaches the lower bound on the set X L I  R m u U u S u S  3URRI/HW F v u x  x z t  t _ v  P t x  P t x  N t z t  u _  Im P t P t N  t · § Im ¨ ¸     I I P t P t N  t ¸ ¨   m m  q ¨ P t  P t P t P t P t P t P t N t ¸ q ¨ ¸



¨ P t P t P t P t P t P t P t N t ¸ ¨ N t  N t N t P t N t P t N t N t ¸        ©  ¹

ZKHUH q v u x  x  z t  ,W IROORZV WKDW w  F  wq t  t  t  I  7KHUHIRUH IXQFWLRQ F q t LVDFRQYH[IXQFWLRQRI q )XUWKHUUHSHDWLQJWKHSURRIRI/HPPD ZHREWDLQWKHDVVHUWLRQVRIWKHOHPPD/HPPDSURYHG 7KHRUHPLet the matrix W t   t !  U  S   S – bounded convex closed sets, sequences ^vn ` ^u n ` ^x n `^xn ` are determined by formulas (1.79). Then:  is minimizing, i.e.  sequence ^T n ` ^vn ` ^u n ` ^x n ` ^xn `  X OLP J T n

nof



J

LQI J T 

T X

sequence ^T n `  X X

^T

weakly converges to the set

v  u  x  x  X  J T

xn o x when n o f  

J `

weakly

X  X , where weakly

vn o v  un o u  x n o x 



the following estimation of the rate of convergence is true J T n  J d

d  n

d

const 

n  

in order for problem 3 to have a solution, it is necessary and sufficient that the value J T n J  T  X  X   3URRI$VLQWKHFDVHRIWKHSURRIRI7KHRUHPIURP  ZHJHW  vn  vn  D n J vc T n  v  vn ! L  v v  L I  R m         un   un  D n J uc T n  u  un  ! L t  u u  U          x n   x n  D n J xc T n  x  x n  ! R t  x  x  S         xn   xn  D n J xc T n  x  xn  ! R t  x  x  S       )URPLQHTXDOLWLHV    LWIROORZV 





n



n



§  l ·  ¸¸ __ T n  T n  __ t H  __ T n  T n  __        J T n  J T n  t ¨¨ © Dn  ¹ 6R J T n  J T n  o  ZKHQ n o f 7KHQ __ T n  T n  __o  ZKHQ n o f )URPWKH

FRQYH[LW\RIWKHIXQFWLRQDO  XQGHUWKHFRQGLWLRQV    ZHREWDLQ     d D n J T n  J T d r __ T n  T n  __ r const !    )URP    LWIROORZVWKDWWKHVHTXHQFH ^T n `  X LVPLQLPL]LQJ,WLV HDV\ WR PDNH VXUH WKDW WKH VHW M T  ^T  X  J T d J T  `   ZHDNO\ FRPSDFW weakly

^T n `  M T  7KHQ T n o T ZKHQ n o f 

)LQDOO\IURP    ZHFDQJHWWKHHVWLPDWH an d

d 7KHODVWVWDWHPHQW n

IROORZVIURP J T t  T  T  X ,QIDFWLI J T  WKHQ v t  P t x  P t x  N  t z t  v  t  I  

u t







 



3RVLWLRQ FRQWURO 8VLQJ WKH NQRZQ SURJUDP FRQWURO   ZH FDQ ILQG SRVLWLRQDOFRQWUROIRUWKHSUREOHP     7KHRUHP Let the conditions of Theorems 8, 9 be fulfilled, and, moreover, let: x Rx , non-singular matrix 6 t  t  I , is determined by the formula (1.23),

the value J T  , v t H

t x  * t

t

³ ) t W B W H 



W dW  t  I . Then position

t

control u x t K t x t , where u t  t  I  – is determined by the formula (1.86), the function x t x t  u z t  v  O t  x  x  N  t z t  v  t  I   

3RLQWSURMHFWLRQRQWKHVHW/HWWKHSRLQW y  R n SRLQWV w PS > y @ w PS > y @   ±SURMHFWLRQRISRLQW y RQVHWV S   S UHVSHFWLYHO\  S ^ x  x  R  n  Cx  Dx b`  S S  u S ZKHUHDUHWKHPDWUL[ D C  D  RI s u n RUGHU/HWWKHSRLQW y  R  n 7KHQ w w  w PS > y @  

w w

PS > y @ ^> y  D D D  D y  b @i  i  n`

PS > y @ ^> y  D D D  D y  b @i  i 





n   n` 





 S ^x  R n  Ex c` w PS > y @ y  E EE  Ey  c  y y  R n   

S ^x  R n  Fx

d ` w

PS > y @

y  F FF  Fy  d  y y  R n  

 S ^x  R n  D i d xi d Ei  i  n` y  R n  w PS > y@ w w n   

wi

­D i   LIyi  Įi  ° ® E i  LIyi ! ȕi  ° y   LID d y d E  i i i ¯ i

S ^x  R n  D i d xi d Ei  i  n` y  R n  w wi

w



PS > y @ w wn  

­D i   LI yi  Įi  ° i  n  ® Ei   LI yi ! ȕi  ° y   LI D d y d E  i i i ¯ i

n    S  ^x  R  _ x  x _ d r `

w

i  n 

S



^x  R n  _ x  x _ d R ` 

y  x ­ r  LI  _ y  x _! r  ° x  _ y  x _ PS > y @ ®   ° y  LI _ y  x _d r  ¯  y x ­  R  LI _ y  x _! R  ° x  _ y  x _  PS > y @ ® ° y  LI _ _  y  x d R   ¯

 2SWLPDO SHUIRUPDQFH 7R VROYH WKH SUREOHP RI RSWLPDO SHUIRUPDQFH LW LV QHFHVVDU\ WR ILQG WKH VPDOOHVW YDOXH t  XQGHU ZKLFK WKHUH LV D FRQWURO IRU WKH SUREOHP  ±   /HW D VROXWLRQ WR WKH SUREOHP RI FRQWUROODELOLW\     EH IRXQG IRU VRPHVHOHFWHGYDOXH t  'HWHUPLQHWKHYDOXHV t ! t ! t  ZKHUH t  t DFFRUGLQJWRWKHIROORZLQJ DOJRULWKP &KRRVH YDOXH t ! t    $FFRUGLQJ WR WKH DOJRULWKP RI VROYLQJ WKH RSWLPL]DWLRQSUREOHPSURSRVHGDERYHZHILQGWKHVHW v

t  u

t  x  x  t  >t   t @  +HUHDUHWKHSRVVLEOHFDVHV YDOXH J v

 u

 x  x   YDOXH J v

 u

 x  x !   ,QWKHILUVWFDVHFKRRVHWKHYDOXH t t   LQWKHVHFRQGFDVH t t   DQGVRRQ  Lecture 5.&RQWUROODELOLW\RIOLQHDUV\VWHPVZLWKSKDVHFRQVWUDLQWV 6HPLQDUOHVVRQ  &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\SUREOHP)LQGFRQWURO u t  U t ^u ˜  L I  R m  u t  V t  R m DH t  I ` 



 

ZKLFKWUDQVIHUVWKHWUDMHFWRU\RIWKHV\VWHP x

A t x  B t u  t  I

RXWJRLQJIURPWKHVWDUWLQJSRLQW x SRLQW x x t  S  R n   t ! t LH

>t  t @  

       x t  S  R DWWKHPRPHQWRIWLPH t WRWKH n

 

      VROXWLRQ RI WKH V\VWHP   IXQFWLRQ x t  t   x   u  x   S   x x t  S LVIURPWKHVHW G t  R n LH x t  t  x  u  G t  G t ^x  R n  Z t d L t x  l t d M t  t  I `    7KHVROXWLRQRIWKHSUREOHP    FDQEHUHGXFHGWRWKHVROXWLRQRIWKH IROORZLQJRSWLPL]DWLRQSUREOHP x

LQ

WKLV

FDVH

x t  x

x t  S u S

S  R n  

WKH

t

J v u  x  x  p

³ >_ v t  P t x 



 P t x  N t z t  v  u t _ 

t





 



 

 _ p t  L t x t  l t _ @ dt o LQI 

XQGHUFRQGLWLRQV z A t z  B t v t  z t  v ˜  L I  R m   u t  U t  x  S   x  S     









      ZKHUH L t   JLYHQPDWUL[ZLWKSLHFHZLVHFRQWLQXRXVHOHPHQWVRIRUGHU s u n  l t   NQRZQ YHFWRU IXQFWLRQ s u  ZLWK SLHFHZLVH FRQWLQXRXV HOHPHQWV Z t Z t  Zs t   M t M t  M s t  t  I  JLYHQFRQWLQXRXVYHFWRUIXQFWLRQ $VIROORZVIURP7KHRUHPWKHIXQFWLRQ VHH     x t x t  t  x  u z t  v  Q t x  Q t x  N  t z t  v  t  I    ZKHUH Q t ) t  t W t  t W  t  t  Q t ) t  t W t  t W  t  t ) t  t   :HLQWURGXFHWKHQRWDWLRQ T v u  x  x  p  H L I  R m u L I  R m u R n u R n u L I  R s   X L I  R m u U u S u S u :  H   1RWLFHWKDW  YDOXH J T t  T  T  X    SUREOHPKDVDVROXWLRQLIDQGRQO\LIWKHYDOXH J T  ZKHUH T  X   VROXWLRQRIRSWLPL]DWLRQSUREOHP  ±    LI J T  WKHQ p t  : t ^ p ˜  L I  R s  Z t d p t d M t  t  I `  

u t x t

v t  P t x  P t x  N  t z t  v  t  I  

z t  v  Q t x   Q t x  N  t z t  v  t  I   L t x t  l t  Z t d p t d M t  t  I   v t  u t  x  x  p t  X   J T LQI J T   T  X  

x t  G t  p t

ZKHUH T t 

3URJUDP FRQWURO 1RWH WKDW LI  ^T n `  X  PLQLPL]LQJ VHTXHQFH IRU ZKLFK OLP I T n I LQI I T  WKHQSUREOHPKDVDVROXWLRQ:KHQ I !   SUREOHP n of

T X

GRHVQRWKDYHDVROXWLRQ$VIROORZVIURPIRUPXOD  WKHODVWWHUPIURP  LV   p t  L t x t  l t p t  L t > z t X  Q t x   Q t x  N  t z t X @  l t   7KHRUHP Let the matrix W t  t !  Then the functional (1.91) under the conditions (1.92)-(1.94) is continuously Frechet differentiable, the gradient of the functional  

I T

I X T  I u T  I x T  I x T  I U T  H 

at any point T  X calculated by the formula I X T

>X t  P t x   P t x  N t z t X  u t @  B t \ t  L I  R m 



I u T

>X t  P t x   P t x  N  t z t X  u t @  L I  R m 



t

³ ^ P t >X t  P t x

I x T







 P t x  N t z t X  u t @ 

t

 Q t L t > p t  L t > z t X  Q t x  Q t x  N  t z t X @  t

³ ^ P t X t  > P t P t  Q t L t L t Q t @x

 l t @`dt













 



t

 > P t P t  Q t L t L t Q t @x  > P t N t  Q t L t L t N  t @z t X   Q t L t L t z t X   P t u t  Q t L t l t  Q t L t p t `dt  R n  I x T

t

³ ^ P X t  > P t P t  Q t L t L t Q t @x













 > P t P t 

t

 Q t L t L t Q t @ x  > P t N  t  Q t L t L t N  t @z t X 



 Q t L t L t z t X   P t u t  Q t L t l t  Q t L t U t `dt  R 



I p T











n

^ p t  L t > z t X  Q t x  Q t x  N  t z t X @  l t `  L I  R s 

 where z t X  t  I  solution of the differential equation (1.92), and the function \ t  t  I  solution of the adjoint system \

 A t \   L t ^ p t  L t > z t X  Q t x  Q t x  N t z t X @  l t ` t

\ t  ³ ^ N t >X t  P t x  P t x  N t z t X  u t @   N  t L t > p t 



t

 L t > z t X  Q t x  Q t x  N  t z t X @  l t @`dt

In addition, the gradient I T  H satisfies Lipschitz condition I T  I T  d l T  T   T T   X 

 3URRI /HW T t X t  u t  x  x  p t  X   T t  'T t >X t  h t   u t  'u t   x  'x   x  'x   p t  'U t @  X  IXQFWLRQ F q t



X t  P t x  P t x  N t z t X  u t 

 



 





 

ZKHUH 'q t h t  'u t  'x  'x  p t  'U t  z t X  'z t X  z t X  'z t   $VIROORZVIURP  WKHIXQFWLRQ F q t  t FDQEHUHSUHVHQWHGDV    F q t  t q t Q t q t  q t a t  b t  t  I   

 



 U t  L t > z t X  Q t x  Q t x  N  t z t X @  l t 

ZKHUH q X t  u t  x  x  U t  z t X  z t T t  z t X  z t X   7KHQWKHLQFUHPHQWRIWKHIXQFWLRQDO 'I

t

t

t

t

³ F q t  'q t  t dt  ³ F q t  t dt 

 







,WLVHDV\WRYHULI\WKDW IX T I x T

wF q t  B t \ t  I u T wX t

wF q t  t ³t  wx dt 

I p T

wF q t  I x T wu

wF q t  wp

q

t

wF q t dt  wx t

³

  

q t 

$VIROORZVIURP  SDUWLDOGHULYDWLYHV F q t VDWLVI\/LSVFKLW]FRQGLWLRQV wF q  'q t wF q t  d L 'q  wX wX

wF q  'q t wF q t  d L 'q  wu wu

wF q  'q t wF q t  d L 'q  wx wx

wF q  'q t wF q t  d L 'q  wx wx

wF q  'q t wF q t  d L 'q  wp wp

wF q  'q t wF q t  d L 'q  wz t wz t



 

wF q  'q t wF q t  d L 'q  wz wz

(TXDWLRQVIRUWKHDGMRLQWV\VWHP  FDQEHZULWWHQDV \

wF q t  t  A t \  \ t wz

t

wF q t  t dt  wz t t



t  I 





 



 

7KHLQFUHPHQWRIWKHIXQFWLRQDO  FDQEHUHSUHVHQWHGDV 'I

t

³ >h t

t

wF q t wF q t wF q t wF q t  'u t   'x   'x   wX wu wx wx

 'U t

wF q t wF q t wF q t  'z t X   'z t X  @dt  wp wz t wz  R  R  R  R  R  R  R 

ZKHUH t

R

ª wF q  T'q t wF q t  t º  »¼ dt  wX wX

³ h t «¬

t

t

R

ª wF q t  T'q t  t wF q t  t º  ³t 'u t «¬  wu »¼ dt  wu  t

R

t



ª wF q t  T'q t  t wF q t  t º  » dt  wx wx ¼

³ 'x «¬



t t

R

ª wF q t  T'q t  t wF q t  t º  »dt  wx wx ¼

³ 'x «¬

t

R

ª wF q t  T'q t  t wF q t  t º  » dt  wp wp ¼

t



t



ª wF q t  T'q t  t wF q t  t º  dt  wz t wz t »¼

³ 'z t «¬

t

R



³ 'p t «¬

t

R



ª wF q t  T'q t  t wF q t  t º  ³t 'z t «¬  wz »¼dt wz  



)URPKHUHWDNLQJLQWRDFFRXQW  ZHJHW t

t

R d L ³ h t 'q t dt 

R d L ³ 'u t 'q t dt 

t

t

t

t

R d L ³ 'x 'q t dt  t

t

R d L ³ 'x 'q t dt 

R d L ³ 'p t 'q t dt 

t



 

t

t

t

t

t

R d L ³ 'z t 'q t dt  R d L ³ 'z t 'q t dt

&RQVLGHUWKHODVWWZRWHUPVRI   t

³ 'z tX

t

t

t

 wF q t wF q t dt 'z t X ³  dt wz t wz t t

>

t

@

 ³ 'z t \ t  'z t \ t dt t

t

w >'z t \ t @dt t w t

@



t

ª wF q t  t º  ³ 'z t «   A t \ » dt z w ¬ ¼ t

³ 'z t

>

t



 ³ 'z t A t  h t B t \ t dt 

t

t

 'z t X \ t

t

t

t

t

 ³ h t B t \ t dt  ³ 'z t

t

wF q t  t wF q t dt  ³ 'z t X  dt wz wz t t

wF q t  t dt  wz

t

 ³ h t B t \ t dt  t

1RZWKHLQFUHPHQWRIWKHIXQFWLRQDO  LVZULWWHQDV 'I

t

t

t

wF q t ª wF q t º



wF q t ³t h t «¬ wX  B t \ t »¼ dt  t³ 'u t wu dt  t³ 'x w x dt     t

t

  wF q t wF q t  ³ 'x dt  ³ 'U t  dt  ¦ Ri  wx wp i  t t



 



)URP   JLYHQ WKDW 'q t d 'z t  'z t  'u t  h t  'x  'x  'U t   'z t d c h



L



  'q d c 'T  ZHJHW 

¦R

i

o 

i 



'T 











 

h  'u  'x  'x  'U o   ZKHQ 'T 7KHQIURPWKHUHODWLRQ  LWIROORZVWKDWWKHJUDGLHQW I T LVGHWHUPLQHGE\ WKHIRUPXODV    ZKHUH\ t  t  I  VROXWLRQRIV\VWHP   /HW T X  h u  'u x  'x  x  'x  p  'U  X   T  X  u x  x  p  X  7KHQ I T  I T  d

wF q  'q t wF q t wF q  'q t wF q t

  BPD[ '\ t     wX wX wu wu

t

t

 wF q  'q t wF q t wF q  'q t wF q t wF q  'q t wF q t dt  ³  dt   ³     d wx wx wx wx wU wq t t

d L 'q t  L '\ t  L 'q

ZKHUH Bmzx

VXS B t  DV   '\ t d L 'q  

t  d t d t

 

L





7KHUHIRUH I T  I T 

t

³ I T  I T











 dt d L 'q  

t

+HQFH JLYHQ WKDW 'q d L 'T L T  T    ZH ZLOO JHW DQ HVWLPDWH   7KH WKHRUHPLVSURYHG &RQVWUXFW VHTXHQFHV ^T n ` ^Xn `^un `^x n `^xn `^U n `  X  DFFRUGLQJ WR WKH IROORZLQJDOJRULWKP VHH     Xn  Xn  D n IX T  x n 

PS > x n  D n I x T n @

ZKHUH H  d D n d H Dn

PU >un  D n I u T @

un 

x n 

P: > pn  D n I p T n @

pn 

  H  !  H !  n l  H 

PS > x n  D n I x T @ n



 ,QSDUWLFXODUZKHQ H



  l ZHKDYH 

   l !   /LSVFKLW]FRQVWDQWIURP   l

/HPPD Let S  S  bounded convex closed sets in R n  bounded convex n s closed set in L I  R  :  bounded convex closed set in L I  R  Then: 1) functional I T  C X from (1.89) under conditions (1.90)-(1.92) is convex; 2) functional I T  C X reaches the lower bound on the set X

L I  R m u U u S  u S u :

3URRI$VIROORZVIURP  WKHVHFRQGGHULYDWLYH w  F q t Q t t  t  t  I   wq  X  u x  x  U  z t  z 7KHUHIRUH F q t LVDFRQYH[IXQFWLRQUHODWLYHWR q 

ZKHUH q IRUDOO t  I  LH

F Dq    D q d DF q  t    D F q  t  q  q  D D  >@ 

$V z t TD Dz t T    D z t T    T T   X   TD DT    D T   WKHQ I TD

t

³ F qD  t dt d DI T    D I T  





T T   X  D  >@ 

t

ZKHUH qD Dq    D q   7KH VHFRQG VWDWHPHQW RI WKH OHPPD IROORZV IURP WKH ZHDNORZHUVHPLFRQWLQXLW\RIWKHIXQFWLRQDO I T   T  X  DQGZHDNFRPSDFWQHVVRI WKHVHW X  /HPPDLVSURYHG 7KHRUHP Let the matrix W t  t !  U  S  S  :  bounded convex closed sets, sequences ^Xn ` ^un ` ^x n ` ^xn ` ^U n ` are determined by the relations from (1.112). Then: 1) sequence ^T n `  X is minimizing, i.e. OLP I T n I LQI I T  nof

2) sequence X

^T

^T n `  X

T X

weakly converges to the set

X  u  x  x  U  X  I T

I

LQI I T `

X  X 

where

X n oX  weakly

T X

un o u  x n o x  xn o x  pn o p when n o f weakly

weakly

weakly

 

weakly

3) in order for problem 4 to have a solution, it is necessary and sufficient that the value I T I  T  X  X  4) true estimate I T n  I d

d  d n

const !  n 

3URRI)URP  ZHKDYH  X n  X n  D n I X T n X  X n ! L



X  X  L I  R m  

 u n   u n  D n I u T n  u  u n  ! L t 

u  u  U  

 x n   x  n  D n I x T n  x  x  n  ! R n t 

x  x   S   

 x n   x n  D n I x T n  x  x n  ! R n t 

x  x  S  

 p n   p n  D n I p T n  p  p n  ! L



p p  : 

)URPKHUHDVLQWKHSURRIRI7KHRUHPZHREWDLQ §  l ·   I T n  I T n t ¨¨   ¸¸ T n  T n t H T n  T n       D  © n ¹ +HQFH I T n  I T n  o   ZKHQ n o f  T n  T n  o   ZKHQ n o f  )URP WKH

FRQYH[LW\RIWKHIXQFWLRQDOZHKDYH  d Dn

I T n  I T d r T n  T n  r

const !   

7KHQ OLP I T n I  GXH WR WKH IDFW WKDW T n  T n  nof HVWLPDWHV    ZHJHW a n d





  o   ZKHQ n o f  )URP WKH





d   n     n

)LQDOO\LI I T  WKHQ

u t X t  P t x  P t x  N t z t X  t  I  p t

L t x t  l t  Z t d p t

L t x t  l t d M t  

 

t  I  x t  G t  t  I 

7KHWKHRUHPLVSURYHG 

3RVLWLRQ FRQWURO )RU SURJUDP FRQWURO   SRVLWLRQDO FRQWURO FDQ EH IRXQG u x t   7KHRUHP Let the conditions of Theorems 11, 12 be fulfilled, and let, besides x Rx  non-singular matrix 6 t  t  I is determined by the formula (1.23), the

value I  v t H

t x  * t

t

³ ) t W B W H 



W dW  Then position control

t

u x t

K t x t  t  I  where x t

z t X  Q t x  Q t x  N  t z t X  t  I 



2SWLPDO SHUIRUPDQFH ,W LV QHFHVVDU\ WR ILQG WKH ORZHVW YDOXH t  LQ WKH SUREOHP    7RGRWKLVZHGHILQHWKHYDOXHV t ! t ! t !  DFFRUGLQJWR WKHIROORZLQJDOJRULWKP:HVROYHWKHSUREOHPRIFRQWUROODELOLW\     DQGILQGDSDLU u t  x t   t  >t  t @ ZKHUH I u  x   t  GHWHUPLQHDSDLU u

t  x

t   t  >t   t @   t ,IYDOXH I u

 x

 WKHQFKRRVH t    

&KRRVHYDOXH t

 

t DQGVRRQ 

,IYDOXH I u

 x

!  WKHQ t 

([DPSOH)LQGDVROXWLRQWRWKHQH[WFRQWUROODELOLW\SUREOHP 7KHHTXDWLRQRIPRWLRQRIWKHV\VWHPKDVDIRUP x x  x  u t  t  I >t   t   @   7KHERXQGDU\FRQGLWLRQVDUHGHWHUPLQHGE\WKHUHODWLRQV x   x     S  ^`  R     

x t

 x  t  S

^ x t  x t  R



x t



 



   

 ` 

7KHSKDVHFRQVWUDLQWVKDVDIRUP

x t  x t  G t

ZKHUH J t  

^ x t  x t _ J t d x t  x t d G t  t  I `   

 t   G t 

t   

/LPLWDWLRQRIWKHFRQWUROYDOXH ^u   L I  R _ D d u t d E  t  I ` 

u ˜  U



 

ZKHUH D  E   )RU WKLV SUREOHP WKH OHIW HQG RI WKH WUDMHFWRU\ LV IL[HG WKHUHIRUH WKH VHW S ^  ` FRQWDLQVDVLQJOHSRLQW7KHULJKWHQGRIWKHWUDMHFWRU\LVIURPWKHVHW S  ZKHUH x t  DQG x t  DUELWUDU\,QWURGXFLQJWKHQRWDWLRQ § · ¸¸ B A ¨¨ ©  ¹

§ · ¨¨ ¸¸ L ©¹

    C

§ x · ¨¨ ¸¸ x © x ¹

   x

§ x t · ¸¸  ¨¨ © x t ¹

§ x  · ¸¸ x ¨¨ © x  ¹

(TXDWLRQ    FDQEHZULWWHQDV x

Ax  Bu I ^  `

>t  t @ t  I  t

   

 t

 x t  G t ^x  R _ J t d Lx t d G t  t  I `   u t  U ^u   L I  R _   d u t d  t  I `   x  S 

x  S

^x  R _ Cx 

` 



   

   

       

 )RUWKHV\VWHP    PDWULFHV e At

§ t · ¨¨ ¸¸ ©  ¹

§  t · ¨¨ ¸¸ ) t W ©  ¹

e  At

e A t W  e A t

§  · ¨¨ ¸¸  © t ¹

7KHQ W  t W    

t

t

³ )  t BB )  t dt ³ e





ZKHUH t

 At

BB e  A t dt



    'HWHUPLQDQW W  t

W  t

§ t ¨

A W  AW ¨  e BB e d W ³ ¨ t ¨ © 

 

 ·  t ¸  ¸  t ¸¸ ¹

t !   ,W LV HDV\ WR VHH WKDW WKH PDWUL[ 

W  t LVSRVLWLYHO\GHILQHG0DWULFHV t

§   ¨ t ¨  ¨¨   t   © 



t · ¸  ¸  ¸ t ¸ ¹

W t  t

§ t  t  ¨ ¨   ¨ t  t ¨  ©



t  t  · ¸  ¸  ¸ t  t ¸ ¹

,QYHUVHPDWUL[ W   t

§ ¨  ¨ t   t ¨ t ¨ ©

t · ¸  ¸   t ¸ ¸ ¹

9HFWRU a

§  t x t   · ¸¸  ¨¨ © x t   ¹

e  At x  x

0DWUL[

§  tt  t  B e  A tW   t ¨¨ t ©

C t

 tt  t · ¸¸  t ¹

7KHQWKHTXDQWLWLHV ª   tt  t  tt  t º  « » t t ¬ ¼  ª   tt  t  tt  t º «  » x t  t t ¬ ¼

O t  x  x C t a

N  t z t

C t e  At z t



 §  ·  tt  t ¸ z t   ¨  ¹ t ©

ª  §  ·  §   ·º  «  ¨  tt  t ¸   ¨  tt  t ¸» z  t     ¹¼ t t © ¹ ©  ¬ 

 



 



 

9HFWRUV C t x

e AtW t  t W   t x

§ § t  t  t t  t  · § t  t · t   t · ¨ ¨¨ ¸ ¸¸ t  t  ¨¨     t t  t ¸¸     ¨ ©  ¹ © ¹  ¸  ¸ §  t · t ¨ t  t   ¨ ¸ ¨ ¸      t t t t t      ¨ ¨ ¸   ¸¹ © © ¹     § § t t t t · · ¨ ¨¨ ¸¸ x t ¸     ¨ ¸ © ¹ C t x e AtW  t W   t e  At x  ¨    ¸   t § t t t t · ¨ ¨¨ ¸ ¸ x t    ¸ ¨   ¸¹ ©© ¹

 

 

)XQFWLRQ y t

z t  C t x  C t x  N  t z t  









ZKHUH N  t

C t

e AtW  t W   t e  At

 

§ tt  tt  ¨  ¨     t ¨ tt  tt  ¨  © 

tt  tt  · ¸    ¸     tt tt ¸     ¸   ¹



 

§ § tt  tt  · · § t t  t t  · ¨ ¨¨ ¸¸ z t  ¨¨     ¸¸ z t ¸       ¨ © ¸ ¹ © ¹ ¸  § tt  tt · t ¨ § tt  tt · ¨ ¨¨ ¸ ¸ ¨ ¸  z t    z t     ¸ ¨  ¨   ¸¹  ¸¹ © © © ¹

N  t z t

&RPSRVLWLRQ z t  z t 

Ly t

>

>

@

u  t  t    t  t t   `  

@

 ^ t  t  t  t    t  t  t    t  t u t







   t t  t t  tt   tt x t  t







 



  tt   tt   tt   tt z t    tt   tt   tt   tt z t  t  I  t t

7KHRSWLPL]DWLRQSUREOHPIRUV\VWHP    FDQEHZULWWHQDV



I u vX  x 

t

³ F q t  t dt o LQI  







t  I  













 

 x t  R   

 

   



XQGHUFRQGLWLRQV z

Az  Bv

v ˜  L I  R 

z 



u t  U 



X t  V 



x

ZKHUH F q t  t u t  >v t  O t  x   N t z t @  X t  Ly t    q t u t  v t X t  x   z t  z t  x  x t   IXQFWLRQV O t  x   N t z t  O t  x   N  t z t  C t x  C t x  Ly t  DUH GHWHUPLQHG E\ IRUPXODV    WKHVHW  V ^X ˜  L I  R _ J t d X t d G t  t  I `        6HW X U u L I  R u V u R  VSDFH Y L I  R u L I  R u L I  R u R   OHW¶VFDOFXODWHWKHJUDGLHQW I [  DWWKHSRLQW [  u t  v t X t  x   X  ZKHUH  







u t {  v t { 

  I  [



wF ˜ wu

X  t

J t  G t 

 

    t    

>

 u t  v t  O t  x  x  N t z t  v



O t  x  x 



t  I

x

 

@

ª   tt  t  tt  t º   «  »  L I  R    t t   ¬ ¼

 

 

1RWH WKDW z t  v  t  I   LV D VROXWLRQ RI D GLIIHUHQWLDO HTXDWLRQ z Az  Bv t   z   ,WIROORZVWKDWZKHQ v t {   t  I  WKHYDOXH z t  v {  IRUDOO t  I     I  [

wF ˜  B \ t wv



O t  x  x   B \ t  L I  R  

  







 

  I  [

wF ˜ wX

>X  t  Ly t @ ^ 

     t   > t  t u t  

u  t  t   t  t t    t  t  t  t   t  t t   @`  L I  R   



 



 

 

 



  



  I  [

t

wF ˜ ³ w x  dt

t

  ª  tt  t  tt  t º   O ^  t  x  x    «   » ³ t t ¬ ¼

ª º  >X  t  Ly t @«  tt   tt   tt   tt »`dt  R t ¬ ¼

 

 



3DUWLDOGHULYDWLYHV wF ˜ wz

wF  wz t

§ wF ˜ · ¨ ¸ ¨ wz t ¸ ¨ wF  ¸ ¨ wz t ¸ ©   ¹

>

§ wF ˜ · ¨ ¸ ¨ dz ¸ ¨ wF ˜ ¸ ¨ dz ¸  ¹ ©

§  >X  t  Ly t @· ¨¨ ¸¸  © >X  t  Ly t @ ¹



@ @

 § t t   t t   tt   t t · ¸ ¨  O t  x  x   t   tt   t  >X  t  Ly t @   t ¸   ¨         ¨   t t  t t  t t  t t ¸      ¸ ¨  O t  x  x   t   tt   t  >X  t  Ly t @ t ¹ ©

>





ZKHUH  q t  t  q t u t  v t X t  x   z t  v  z t  v   )XQFWLRQ\ t  t  I  LVDVROXWLRQWRWKHIROORZLQJDGMRLQWV\VWHP \

\ t

§\ · ¨¨ ¸¸ ©\  ¹ §\  t · ¨¨ ¸¸ ©\  t ¹



§  >X  t  Ly t @ · ¸¸  ¨¨ © >X  t  Ly t @ \ t ¹ § t wF ˜ · ¨³ dt ¸ ¨  wz t ¸     ¨ t wF ˜ ¸   ¸ ¨ ³ ¨ wz t dt ¸ ¹ ©   

wF ˜  A \ wz





 





 



ZKHUHSDUWLDOGHULYDWLYHVDUHGHILQHGE\IRUPXODV  6XEVWLWXWLQJWKHVROXWLRQ RIWKHV\VWHP    LQWKHULJKWKDQGSDUWRIWKHH[SUHVVLRQ  ZH ILQG I  [   $VIROORZVIURPUHODWLRQV    QH[WDSSUR[LPDWLRQ 

u

­ if u  D  I [  D  I [  !  ° PU >u  D  I [ @ ® D  I [  if   d D  I [ d  °  if  D  I [   ¯ 



v

v  D  I  [  



D  I  [   

X

G t  if X  D  I  [ ! G t  ­ ° PV >X  D  I  [  @ ®X  D  I  [   if J t d X  D  I  [  d G t  ° J t  if X  D  I  [  J t  ¯ 







x   D  I  [   

x

n

,W FDQ EH VKRZQ WKDW IRU WKLV H[DPSOH VHTXHQFH ^un ` ^vn ` ^X n ` ^x  `  FRQYHUJH DFFRUGLQJO\

x y t

x j  t

WR

u t

 

   $OVR IXQFWLRQV z t  v

>

X t   t 

 

v t



@

t     

t   z t  v 

t  >   @ 

t   y t



t     

t    t       7KHVROXWLRQWRWKHRULJLQDOSUREOHP    LV

 u t

 )XQFWLRQV y t

 x t

y t

>

^





t     x t 

@



t   t  I  

y t

>



@`

 t  t  t  t   t t  t   t  t   t  t   t t  t   t      tt   tt  x     tt   tt  z t   tt   tt  z t  t  I   t t t     y t z t     t  t t  t  t  t t  t   t      tt   tt x     tt   tt z t   tt   tt z t  t  I   t t t z t 







^























`



  Lecture 6.&RQWUROODELOLW\RIOLQHDUV\VWHPVZLWKSKDVHDQGLQWHJUDO FRQVWUDLQWV6HPLQDUOHVVRQ  &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\WDVN)LQGFRQWURO u t U ^u ˜  L I  R m _u t V t  R m aet  I `      ZKLFKWUDQVIHUVWKHWUDMHFWRU\RIV\VWHP

A t x  B t u  P t  t  I

>t  t @  

     RXWJRLQJIURPWKHVWDUWLQJSRLQW x t x  S  R DWWKHPRPHQWRIWLPH t  WRWKH SRLQW x t x  S  R n t ! t LH x x t x x t  S u S S  R n        KHUHZLWKWKHVROXWLRQRIV\VWHP  WKHIXQFWLRQ x t t  x  u  x  S  x  S LVRQ VHW G t  R n LH   x t  t  x  u  G t  G t ^x  R n _ Z t d L t x  l t d M t t  I `   ,QWHJUDOFRQVWUDLQWVDUHVDWLVILHGDORQJWKHVROXWLRQRIV\VWHP   x

n

 

g j x u

³ > a t  x

 b j t  u dt d c j  j  m   

@

³ > a t  x

 b j t  u dt

t

j







 







 

t

g j x u

t

j

@

c j  j

m   m  

t

ZKHUH a j t b j t j  m ± JLYHQ SLHFHZLVH FRQWLQXRXV YHFWRU IXQFWLRQV RI RUGHUV  m  ± JLYHQ QXPEHUV P t

n u   m u   UHVSHFWLYHO\ c j j

P t } Pn t  t  I  ±

JLYHQSLHFHZLVHFRQWLQXRXVIXQFWLRQ &RQVLGHU WKH LQWHJUDO FRQVWUDLQWV     :H LQWURGXFH D YHFWRU IXQFWLRQK t K t }K m t t  I LQWKHIROORZLQJZD\ 

K j t

³ > a W  x W t

j

@

 b j W  u W dW 

j  m  t  I   



t

)URP  ZHKDYH

K A t x  B t u t  t  I   K t   K t c   

 

 

 

 

 

    m c  ȍ ^c  R c j c j  d j  j  m  c j c j  j m   m  d j t  j  m`  :HLQWURGXFHWKHIROORZLQJYHFWRUVDQGPDWULFHV 

§ A t On m · § P t · § B t · ¨ ¸ ¨ ¸ ¨ A t Om m ¸ B t ¨¨ B t ¸¸ P t ¨ Om  ¸ ©  ¹   ¹ © ©  ¹ ZKHUH Ok q ±UHFWDQJXODUPDWUL[RI k u q RUGHUZLWK]HURHOHPHQWV

[

§ x· ¨¨ ¸¸ A t ©K ¹

§ a t · ¸ ¨ ¨ a t ¸ ¨  ¸ B t ¸ ¨ ¨¨ a m t ¸¸ ¹ ©

A t

§ b t · ¸ ¨ ¨ b t ¸ ¨  ¸ t  I  ¨ b t ¸ ¨ m ¸ ¹ ©

±PDWULFHVRI m u n m u m RUGHUUHVSHFWLYHO\ 1RZWKHLQLWLDOSUREOHP    ZLOOEHZULWWHQLQWKHIRUP [ A t [  B t u  P t  t  I         x x  S u S  Ȇ[ t x t  G t  u t  U t     § x t · § x · § x t · § x · ¸ [ t [ ¨¨  ¸¸ ¨¨  ¸¸  ¨¨ ¸¸ ¨¨ ¸ ©K t ¹ © c ¹ ©K t ¹ © Om  ¹ [  S u Om   [ t [  S u ȍ     

   

[ t [ 



 

[ t



 



ZKHUH K t t  I ± VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ   ZLWK ERXQGDU\ FRQGLWLRQV   Ȇ I n On m  I n ±LGHQWLW\PDWUL[RI n u n RUGHU A t ±PDWUL[   RI n  m u n  m RUGHU B t ±PDWUL[RI n  m u m RUGHU P t ±NQRZQYHFWRU IXQFWLRQ n  m u   7KHVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ  FDQEHZULWWHQDV 

t

t

t

t

[ t ĭ t t [  ³ ĭ t W B W u W dW  ³ ĭ t W P W dW  t  I   

ZKHUH ĭ t W Ĭ t Ĭ W   Ĭ t  ± IXQGDPHQWDO PDWUL[ RI OLQHDU KRPRJHQHRXV V\VWHP y A t y $V [ t [ WKHQ t

t

t

t

[ t [ ĭ t t [  ³ ĭ t  t B t u t dt  ³ ĭ t  t P t dt

7KHQWKHGHVLUHGFRQWURO u t U t LVDVROXWLRQWRWKHIROORZLQJLQWHJUDOHTXDWLRQ t

t

³ ĭ t  t B t u t dt

ĭ t  t [  [   ³ ĭ t  t P t dt 

a

t



 

t

)RUWKHLQWHJUDOHTXDWLRQ  WKHIROORZLQJVWDWHPHQWVDUHWUXH 7KHRUHPLet the matrix t

W t  t

³ ) t  t B t B t ) t  t dt 











t

of n  m u n  m order positive definite. Then control u ˜  L I  R m transfers the trajectory of the system (1.151) from any starting point [   R n  m to any final state [  R n  m if and only if, when 



^u ˜  L I  R u t v t  T t [  T t [  M t z t  v  P t  v v ˜  L I  R `

u t  /

m











m

















where T t  B t ) t  t W t t  T t B t ) t  t W t  t ) t  t  t

M  t  B t ) t  t W t t ) t  t  P  t  B t ) t  t W t  t ³ ) t  t P t dt 

 function z t  v , t  I – solution of a differential equation A t z  B t v

t

v ˜  L I  R m   

z t 

    The solution of the differential equation (1.151) corresponding to the control u t  / is determined by the formula [ t z t  v  E t [  E t [  P t  M  t z t  v  t  I      where z

E t ) t  t W t  t W t  t  E t ) t  t W t  t W t  t ) t  t 

P t

t

t

³ ) t W P W dW  ) t  t W t  t W t  t ³ ) t  t P t dt 



t















t

M  t ) t  t W t  t W t  t ) t  t 

7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP $V IROORZV IURP 7KHRUHP  WKH VROXWLRQ RI WKH SUREOHP     HTXLYDOHQW WR     FDQ EH UHGXFHG WR WKH VROXWLRQ RI WKH IROORZLQJ RSWLPL]DWLRQSUREOHP t

>

J v u [  [  p ³ v t  T t [  T t [  M  t z t  v  P t  u t  

W

@



 



 

 p t  L t Ȇ[ t  l t dt o LQI 

ZLWKFRQGLWLRQV z

A t z  B t v t  z t

 v ˜  L I  R m  

 







u t  U t  [  p t  ȍ t

[ t  S u Om   [ [ t  S u ȍ   

 



^p ˜  L I  R _Z t d p t d M t  t  I `  s





 

   

1RWLFHWKDW § x · § x · ¸ T t T t ¨  ¸ T t x   T t ¨¨ ¨ Om  ¸ ¸ ©  ¹ © Om  ¹ §c  d · § x · T t T t ¨¨ ¸¸ T t x  T t c T t x  Ȉ t  Ȉ  t ¨¨  ¸¸ c © ¹ © c ¹

T t [ 

T t [

§x · T t ¨¨  ¸¸ ©c ¹

T t x  Ȉ t d  Tc   § x · § x · ¸ E t  E t ¨  ¸ E t x   E t [  E t ¨¨ ¸ ¨ Om  ¸ © Om  ¹ ©  ¹ § x · § x · E  t [ E t ¨¨ ¸¸ E t  E t ¨¨ ¸¸ E  t x  E  t c ©c¹ ©c¹ §c  d · ¸¸ E t x  F t  F t ¨¨  © c ¹

§c ·

c  d } c

ZKHUH c ¨¨  ¸¸ c c



© ¹

7KHQ

m





E t x  F t d  E t c  

c

 d m  c



m 



} cm  

v t  T t [   T t [  M  t z t  v  P t  u t  v t  T t x  T t x  Ȉ t d  T t c  M t z t  v  P  u t  v t  T t x  T t x  Ȉ t d  P t  M  t z t  v  u t   [ t z t  v  E t x  E t x  F t d  P t  M  t z t v  

ZKHUH P t P t  T t c  P t P t  E t c   1RZWKHRSWLPL]DWLRQSUREOHP    FDQEHZULWWHQDV J T

t

³ F q t dt o LQI 

















 



   

t

XQGHUFRQGLWLRQV z

 v ˜  L I  R m  

A t z  B t v t  z t

u t  U t  x  S   x  S  p t  ȍ t  d  D

ZKHUH

F q t  t



^d  R

 m

`

_d t  

v t  T t x  T x  Ȉ t d  P  t  M  t z t  v  u t   

 p t  L t Ȇ>z t  v  E t x  E t x  F t d  P t  M  t z t  v @  l t  

T t

H

v t  u t  x  x  d  p t  X 









X

m







L I  R m u U u S u S u D u ȍ  H 





L I  R m u L I  R m u R n u R n u R  u L I  R s 

q t

T t  z t  v  z t  v  



3URJUDPFRQWURO1RWHWKDW  YDOXH J T t  T T  X ±LHIXQFWLRQDO J T  T  X ERXQGHGEHORZ  SUREOHPKDVDVROXWLRQLIDQGRQO\LI J T J infJ T    LI J T  T  X  X  X ^T  X _J T J ` WKHQ WKH GHVLUHG SURJ UDPFRQWURO  

u t v t  T t x  T t x  Ȉ t d  P t  M  t z t  v  t  I     WKHWUDMHFWRU\RIV\VWHP  XQGHUFRQGLWLRQV    LVGHWHUPLQHGE\ WKHIRUPXOD   x t Ȇ  >z t  v  E t x  E  t x  F t d  P t  M  t z t  v @  ZKHUH t  I  Ȇ I n  On m   7KHRUHPLet the matrix W t  t !  . Then the functional (1.163) under the conditions (1.164), (1.165) is continuously Frechet differentiable, the gradient of the functional 

J c T

J c T J c T J c T  J c T  J c T  J c T  H

v



x

u

x

at any point is calculated by the formula J v T

wF q t  t  B t \ t  J u T wv wF q t  t

³t  wx dt J d T 

p

wF q t  t  J x  T wu

wF q t  t ³t  wd dt  

t

J x  T

d

t

wF q t  t dt  wx t t

³

J p T

 

wF q t  t  wp

where z t z t v t  I – solution of a differential equation z

A t z  B t v t  z t

\

wF q t  t  A t \ t  wz

v t  L I  R m t  I   



 

wF q t  t dt   wz t t









 

and function \ t t  I – the solution of the adjoint system t

\  t  ³

In addition, the gradient J c T  H satisfies Lipschitz condition J c T  J c T  d l T  T  H  T T   X     3URRI/HW T t v t  u t  x  x  d  p t  X   T  ǻT

v t  h t  u t  ǻu t  x  ǻx  x  ǻx  d  ǻd  p t  ǻp t  X  

 7KHQWKHLQFUHPHQWRIWKHIXQFWLRQDO t

³ >F q t  ǻq t  t  F q t  t @dt 

J T  ǻT  J T

ǻJ







 

 

 

t

ZKHUH q t  ǻq t T t  ǻT z t  ǻz t z t  ǻz t   t

t

t

t

ǻz t d ³ Ɏ t W B W h W dW d C ³ h t dt d C h L  t  I  c



sup ĭ t W B W  t d t W d t  C

C

t  t 

 6LQFHWKHIXQFWLRQ F q t KDVFRQWLQXRXVGHULYDWLYHVE\ q WKHQ t

³ >h t F

'J

v

q t  t  'u t Fu q t  t  'x t F x q t  t  'x t F x q t  t 

t

@



 'd F d q t  t  'p t F p q t  t  'z t F z t q t  t  'z t F z q t  t dt  ¦ Ri 





i 

  

 

ZKHUH R

t

t

t

t

³ h t >Fv q t  ǻq t  t  Fv q t  t @dt R

>

t

R

@

u

u

³ ǻx >F q  ǻq t  F q t @dt 



 x

 x

t

³ ǻd >F q  ǻq t  F q t @dtR ³ ǻp t >F q  ǻq t  F q t @dt 

t

t



d

d



p

t

p

t

³ ǻz t >F q  ǻq t  F q t @dt

t

R

t

³ ǻx F x q  ǻq t  F x q t dtR

t

R

³ ǻu t >F q  ǻq t  F q t @dt 



 z t

 z t

t

³ ǻz t >F q  ǻq t  F q t @dt 

R

z

t

z

t

)URP  WDNLQJLQWRDFFRXQWWKHIDFWWKDW VHH     t

t

³ ǻz t F z t q t  t dt

t

t

>

t

t

@

d  ³ ǻz t M t dt t  dt t

ǻz t >\ t @ 

ǻz t ³ F z t q t  t dt

>

@

t

>

@

 ³ ǻz t \ t dt  ³ ǻz t \ t dt  t

>

t

t

@

>

@

 ³ ǻz t A t  h t B t \ t dt  ³ ǻz t F z q t  t  A t \ t dt t



t

t

t

t

t

 ³ h t B t \ t dt  ³ ǻz t F z q t  t dt  

ZHJHW

³ >h t >F q t  t  B t \ t @ ǻu t F q t  t  ǻx F q t  t  t

ǻJ





v



  x

u

t

 ǻx F

  x

q t  t  ǻd

@





 

F d q t  t  ǻp t F p q t  t dt  ¦ Ri

i 

1RWHWKDWWKHIXQFWLRQ F q t FDQEHUHSUHVHQWHGDV 

F q t q Q t q  q a t  b t  t  I 

  ,WLVHDV\WRYHULI\WKDWWKHSDUWLDOGHULYDWLYHVVDWLVI\WKH/LSVFKLW]FRQGLWLRQ %HFDXVH ǻq t d h t  ǻu t  ǻx  ǻx  ǻd  ǻp t  ǻz t  ǻz t   ǻq



t

³ ǻq t



















dt d C h  ǻu  ǻx  ǻx  ǻd  ǻp  

t

Fo v q  ǻq t  F v q t d L ǻq F u q  ǻq t  F u q t d L ǻq   Fo x q  ǻq t  F x  q t d L ǻq F x q  ǻq t  F x q t d L ǻq   Fo d q  ǻq t  F d q t d L ǻq F p q  ǻq t  F p q t d L ǻq  

Fo z t q  ǻq t  F z t q t d L ǻq F z q  ǻq t  F z q t d L ǻq  

  

ZHJHW R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __  R d LC __ ǻT __  R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __   f



7KHUHIRUH R d ¦ Ri d C ǻT  7KHQIURP  LWIROORZVWKDWWKHJUDGLHQW J T  

i 

LVGHWHUPLQHGE\WKHIRUPXOD   

/HW T  T   T T  ǻT  7KHQIURP  IROORZV



F

J T  J T  t

v

q t  'q t  t  F v q t  t  B t '\ t  Fu q t  'q t  t  

³ >F

 Fu q t  t 

³ >F

d

 x

@

q t  'q t  t  F x q t  t dt  

t

t t

t

@ ³ >F

 x  q t  'q t  t  F x  q t  t dt 

q t  'q t  t  F d q t  t @dt  F p q t  'q t  t  F p q t  t 

t

7KHQ

J c T  J c T  d L ǻq t  L ǻ\ t  L ǻq  J c T  J c T 

t

³ J c T  J c T







t

$V

ǻ\ t



t

dt d L ǻq  L ³ ǻ\ t dt 





 



 

t

>F z q t  ǻT t  t  F z q t  t @  A t ǻ\ t t  I   t

>

@

ǻ\ t  ³ F z t q t  ǻq t  t  F z t q t  t dt   t

WKHQDSSO\LQJWKH*URQZDOOOHPPDZHREWDLQ 

ǻ\ t d L ǻq  t  I  















)URPWKHHVWLPDWHV    ZHKDYH J c T  J c T  d l T  T   TT   X   7KHWKHRUHPLVSURYHG :HFRQVWUXFWDVHTXHQFH ^T n `  X DFFRUGLQJWRWKHUXOHV 

vn  xn 

vn  D n J vc T n  un 

>

@

PU >un  D n J uc T n @ x n 

PS xn  D n J xc T n  d n n

 }   H  d D n d

>

@

PS x n  D n J xc T n 

PD >d n  D n J dc T n @pn 

Pȍ >pn  D n J cp T n @ 

 

  H  !  l  H 



ZKHUH l const !  ±/LSVFKLW]FRQVWDQW   /HPPD Let S S – bounded convex closed sets, set D ^d  R m _d t  d d p `, p !  – quite a large number, U  ȍ  – bounded convex closed sets from L I  R m L I  R s respectively. Then:  functional J T  C X from  under conditions    is convex; 

 

J T  C X reaches L I  R u U u S  u S u D u ȍ

 functional

the lower bound on the set

X,

m

X

w  F q t Q t t  t t  I  IXQFWLRQ F q t  LV D FRQYH[ wT  IXQFWLRQUHODWLYHWR q IRUDOO t  I  7KHVROXWLRQ

3URRI %HFDXVH

z t DT    D T  Dz t T    D z t T  t t  I IRUDOO T T   X  

YDOXH D  >@ 7KHQ

J DT    D T 

t

³ F Dq    D q  t dt d  





t t

t

t

t

d D ³ F q  t dt    D ³ F q  t dt

DJ T    D J T   T  T   X  D D  >@ 

ZKHUH X ±ERXQGHGFRQYH[FORVHGVHWLQ H  7KHILUVWVWDWHPHQWRIWKHOHPPDLV SURYHG 7KH VHFRQG VWDWHPHQW RI WKH OHPPD IROORZV IURP WKH ZHDN ORZHU VHPLFRQWLQXLW\ RI D FRQYH[ IXQFWLRQDO J T  C X  DQG ZHDN FRPSDFWQHVV RI WKH VHW X  /HPPDLVSURYHG 7KHRUHP Let the matrix W t  t !  X – bounded convex closed set in a   un `^x n `^xn `^d n `^  pn ` are determined reflexive Banach space H , sequences ^vn `^ from relations (1.178). Then:  Sequence ^T n `  X is minimizing, i.e. OLP J T n J

LQI J T 

T X

n of

 Sequence ^T n `  X weakly converges to the set X  X , where X weakly

^T

v  u  x  x  d  p  X _J T

weakly

J

`

LQI J T 

T X

weakly

vn o v  un o u  x n o x  xn o x  d n o d  pn o p when n o f  in order for problem 5 to have a solution, it is necessary and sufficient that the value J T J  T  X  X   The following estimate of the rate of convergence is true

J T n  J d

e  e n

const !  n }

3URRI )URP   WDNLQJ LQWR DFFRXQW WKH SURSHUW\ RI WKH SURMHFWLRQ RI D SRLQWRQWKHVHWZHREWDLQ vn   vn  D n J v T n  v  vn

 vv  L I  R m 

L

un   un  D n J u T n  u  un 

L

t  uu  U 

x n   x n  D n J x  T n  x  x n 

Rn

t  x x  S  

xn   xn  D n J T n  x  xn 

Rn

t  x x  S 

x

d n   d n  D n J d T n  d  d n 

R m

pn   pn  D n J T n  p  pn 

p

L

t  d d  D t  pp  ȍ

+HQFHLQSDUWLFXODUZKHQ T v u x  x  d  p T n  ZHJHW  







 

J v T n  vn  vn  J x  T n  x n  x n 

Rn

J d T n  d n  d n 



Dn

L

t

R m





x n  x n  

Dn

t



Dn

J u T n  un  un  t



vn  vn  



Dn

 J x  T n  xn  xn 

Rn

J p T n  pn  pn 

t



d n  d n  

L



t

un  un   

Dn



Dn



xn  xn      

pn  pn  

6LQFHWKHIXQFWLRQDO J T  & X WKHQZHKDYHWKHLQHTXDOLW\ J T   J T  t J cc T  T  T  

l  T  T   T  T   X   

+HQFHZKHQ T T n  T  T n  ZHKDYH J T n  J T n  t J c T n T n  T n  

l  T n  T n     





 

T n T n   X   





 

)URP  ZHKDYH J c T n T n  T n  t



Dn



T n  T n 

7KHQIURP    LWIROORZVWKDW §  l ·      J T n  J T n  t ¨¨  ¸¸ T n  T n  t H  T n  T n      D © n ¹  l  l  H ZKHUH t  t H   )URP   LW IROORZV WKDW WKH QXPHULFDO  Dn Dn   

VHTXHQFH ^J T n `VWULFWO\GHFUHDVHV6LQFHWKHYDOXHRIWKHIXQFWLRQDO J T n ERXQGHG EHORZ LH J T n t  T T  X   WKHQ D QXPHULF VHTXHQFH ^J T n ` FRQYHUJHV &RQVHTXHQWO\ OLP>J T n  J T n  @   7KHQ SDVVLQJ WR WKH OLPLW IURP   ZH nof

KDYH T n  T n  o  ZKHQ n o f  /HW XV VKRZ WKDW WKH VHTXHQFH ^T n `  X  LV PLQLPL]LQJ 6LQFH WKH IXQFWLRQDO J T  & X LVFRQYH[WKHQWKHLQHTXDOLW\LVQHFHVVDU\DQGVXIILFLHQWO\VDWLVILHG J T   J T d J c T   T   T  T  T   X   )URPWKLVLQHTXDOLW\ZLWK T  T n  T T  X  X  T n  X  ZHJHW J Tn  J T d J c T n T n  T

J c T n T n  T n  T n  T

J c T n T n  T n  J c T n T  T n 

 

 



 

)URP  ZKHQ T T ZHJHW J c T n T  T n  t



Dn

T n  T n  T  T n   







)URP    LWIROORZV J T n  J T d J c T n 



Dn

T  T n Tn  T n

§ r· d ¨¨ sup J c T n  ¸¸ T n  T n  H ¹ ©



Dn

l T n  T n  l

ZKHUH r ±VHWGLDPHWHU X   T  T n   r  



Dn

 

d J c T n 

d



H

T  Tn Tn  T n

d

  const ! 

   H  d D n  

$V T n  T n  o   ZKHQ n o f  KHQ IURP   LW IROORZV WKDW OLP J T n J T J LQI J T  7KLVPHDQVWKDWWKHVHTXHQFH ^T n `  X LVPLQLPL]LQJ n of T X

/HWXVVKRZWKDWWKHVHTXHQFH ^T n `  X FRQYHUJHVZHDNO\WRDSRLQW T  X  ,Q IDFWVHW X LVZHDNO\FRPSDFWVHTXHQFH ^T n `  X  7KHUHIRUHWKHVHTXHQFH ^T n `  X  KDV DW OHDVW RQH VXEVHTXHQFH ^T k

m

`  X  VXFK WKDW T

weakly km

o T  ZKHQ m o f  ZLWK

T  X   6LQFH WKH VHTXHQFH ^J T n ` FRQYHUJHV WR J T  WKHQ D QXPHULF VHTXHQFH ^J Tk `DOVRFRQYHUJHVWRQXPEHU J T LH OLP J T k J T   mof

m

m

2Q WKH RWKHU KDQG WKH IXQFWLRQDO J T  ZHDNO\ ORZHU VHPLFRQWLQXRXV RQ X  WKHUHIRUHZHKDYHLQHTXDOLWLHV





J T d OLP J T km d OLP J T km m of

)URPKHUHZHKDYH OLP J T k m of

mof

m



J T 

J T 

weakly

T k o T  when  m o f  m

weakly

T k o T ZKHQ m o f ZKHUH J T LQI J T   TX

m

6RDWWKHZHDNOLPLWSRLQW T VHTXHQFHV ^T n `  X WKHORZHUERXQGRIWKHIXQFWLRQDO LVUHDFKHG J T RQVHW X  7KHVHFRQGVWDWHPHQWLVSURYHQ )URPLQHTXDOLWLHV    LWIROORZVWKDW J T n  J T n  t H T n  T n    J T n  J T d l T n  T n        /HW an J T n  J T  7KHQLQHTXDOLWLHV  FDQEHZULWWHQDV an d l T n  T n  



a n  a n  t H  T n  T n   

7KXVWKHQXPHULFDOVHTXHQFH ^a n ` VDWLVILHVWKHFRQGLWLRQV an !  an  an  t Aan  n } A

H l

 









 

)RUDQXPHULFVHTXHQFH ^a n ` VDWLVI\LQJLQHTXDOLW\  WKHHVWLPDWHLVWUXH  m  n } J T n  J T d   m An n

an 

l

H



7KH WKLUG VWDWHPHQW RI WKH WKHRUHP IROORZV IURP 7KHRUHP  7KH SURJUDP FRQWURO LV GHWHUPLQHG E\ IRUPXOD   WKH WUDMHFWRU\ RI V\VWHP   XQGHU FRQGLWLRQV    LVGHWHUPLQHGE\IRUPXOD  7KHWKHRUHPLVSURYHG 3RVLWLRQ FRQWURO )RU SURJUDP FRQWURO   SRVLWLRQDO FRQWURO FDQ EH IRXQG u x t   7KHRUHPLet the conditions of Theorems 15, 16 be fulfilled, and let, besides:  x Rx    J    v t H t x    matrix ī t

t

³ ĭ t W B W H W dW   





t 

 d R x    non-singular matrix    

  6 t Ȇ  >ĭ t  t ī t  E t  E t R  F t R  M  t ĭ t  t ī t @t  I  Then control u t t  I representable as u x  t K t x t  P t  where is the matrix K t >H t  T t  T t R  Ȉ t R  M  t ĭ t  t ī t @Ȉ  t  t  I     P t P t  K t P t  t  I            3URRI&RQWURO u t t  I IURP  ZHZLOOSUHVHQWLQWKHIRUPRIWKHVXP u t u t  P t  ZKHUH u t v t  T t x  T t x  Ȉ t d  M t z t  v  t  I   6LPLODUO\ WKH IXQFWLRQ x t  t  I  IURP   FDQ EH SUHVHQWHG LQ WKH IRUP x t x t  P  t  ZKHUH x t Ȇ >z t  v  E t x  E t x  F t d  M  t z t  v @ P  t ȆP  t   8QGHUWKHFRQGLWLRQRIWKHWKHRUHPIXQFWLRQV u t x t t  I DUHHTXDO u t >H t  T t  T t R  Ȉ t R  M  t ĭ t  t ī t @x  t  I   x t ^Ȇ >ĭ t  t ī t  E t  E t R  F t R  M  t ĭ t  t ī t @`x  t  I   ,I QRQVLQJXODU PDWUL[ Ȉ t t  I  GHWHUPLQHG E\ WKH IRUPXOD   WKHQ u t K t x t  ZKHUH K t t  I ±PDWUL[RI mu n RUGHUIURP   1RWLFH WKDW u t u t  P t K t x t  P t t  I   ZKHUH LV WKH IXQFWLRQ P t t  I IURP  7KHWKHRUHPLVSURYHG 2SWLPDO SHUIRUPDQFH &RQVLGHU WKH SUREOHP RI FRQWUROODELOLW\    IRUGLIIHUHQWYDOXHV t t ! t   7KHVPDOOHVWYDOXHRIWKHILQDOPRPHQWRIWLPH t HTXDO t DWZKLFKWKHUHLVD WULSOH u

t  x

 x

U t u S u S  t  >t t @ VXFKWKDWWKHFRUUHVSRQGLQJVROXWLRQRI   V\VWHP   WKH IXQFWLRQ x

t x t  u

 t  >t  t @ VDWLVILHV WKH ERXQGDU\ FRQGLWLRQV   SKDVH FRQVWUDLQWV   DQG LQWHJUDO FRQVWUDLQWV     LV FDOOHG WKH RSWLPDO WLPH DQG IRXU t  u

t  x

 x

± solution of the  problem of optimal performance 7KXVWRVROYHWKHSUREOHPRIRSWLPDOSHUIRUPDQFH t  u

t  x

 x

WKHUDWLRV  DUHFRUUHFW u

t  U t  x

t x t  u

 t  >t  t @  x

t x

 x

t x

 x

 x

 S u S  x

t  G t    g j x

 u

d c j  j  m g j x

 u

c j  j m   m  7R VROYH WKH SUREOHP RI RSWLPDO SHUIRUPDQFH LW LV QHFHVVDU\ WR VROYH FRQWUROODELOLW\SUREOHPVIRUWKHYDOXHV t t t } ZKHUH t ! t ! t ! t ! }  /HW WKH FRQWUROODELOLW\ SUREOHP EH VROYHG IRU D JLYHQ YDOXH t ! t   &KRRVH t t    $FFRUGLQJ WR WKH GHVFULEHG DOJRULWKP E\ VROYLQJ WKH RSWLPL]DWLRQ SUREOHP    ZHILQG T v  u  [   [  p ,IWKHFRUUHVSRQGLQJYDOXH

RIWKHIXQFWLRQDO J T  WKHQFKRRVHWKHYDOXH t t   LI J T !  WKHQFKRRVH t

t  

t 

t DQGVRRQ  



$FFRUGLQJWRWKLVVFKHPHDIWHUDILQLWHQXPEHURIVWHSVLWLVSRVVLEOHWRREWDLQDQ DSSUR[LPDWHVROXWLRQRIWKHRSWLPDOSHUIRUPDQFHSUREOHPZLWKDJLYHQDFFXUDF\ ,Q D VLPLODU ZD\ RSWLPDO SHUIRUPDQFH SUREOHPV DUH VROYHG IRU RWKHU FRQWUROODELOLW\SUREOHPVGHVFULEHGDERYH   &RPPHQWV  7KHVRXUFHRIWKHSUREOHPVRIFRQWUROODELOLW\RIG\QDPLFV\VWHPVLVWKHZRUNRI 5( .DOPDQ >@ 5( .DOPDQ FRQVWUXFWHG D FRQWURO ZLWK D PLQLPXP QRUP DQGREWDLQHGDUDQNFULWHULRQIRUWKHFRQWUROODELOLW\RIOLQHDUVWDWLRQDU\V\VWHPV 7KHVROXWLRQRIWKHSUREOHPRIFRQWUROODELOLW\RQWKHEDVLVRI±WKHSUREOHPRI PRPHQWVZDVSURSRVHGE\11.UDVRYVN\>@6HSDUDWHFRQWUROODELOLW\LVVXHVWKH VPDOOHVWGLPHQVLRQRIWKHFRQWUROYHFWRUFRQWUROODELOLW\RIQRQOLQHDUV\VWHPVZLWK DVPDOOSDUDPHWHUFRQWUROODELOLW\RIOLQHDUV\VWHPVZLWKDIWHUHIIHFWZHUHVWXGLHGLQ >@ $Q RYHUYLHZ RI WKH VWDWH RI WKH SUREOHP RI FRQWUROODELOLW\ EHIRUH WKH EHJLQQLQJRIWKHVWFHQWXU\LVJLYHQLQ>@7KHJHQHUDOSUREOHPRIFRQWUROODELOLW\ RIRUGLQDU\GLIIHUHQWLDOHTXDWLRQVZDVIRUPXODWHGLQWKHPRQRJUDSK>@ ,Q UHFHQW \HDUV D QXPEHU RI VFLHQWLILF DUWLFOHV KDYH EHHQ SXEOLVKHG RQ WKH SUREOHPV RI FRQWUROODELOLW\ DQG RSWLPDO SHUIRUPDQFH RI G\QDPLF V\VWHPV 7KHZRUN>@LVGHYRWHGWRWKHV\QWKHVLVRIERXQGHGFRQWURO SRVLWLRQFRQWURO E\OLQHDU G\QDPLFDO V\VWHPV EDVHG RQ WKH /\DSXQRY IXQFWLRQ 7KH JHRPHWULF DSSURDFK WR WKH SUREOHPRIFRQWUROODELOLW\RIQRQDXWRQRPRXVOLQHDUV\VWHPVZDVVWXGLHGLQ>@ 7KHSUREOHPRIFRQWUROODELOLW\LVFORVHO\UHODWHGWRWKHVROXWLRQRISUREOHPVRI VWDELOL]DWLRQ RI G\QDPLF V\VWHPV ,Q >@ WKH SUREOHP RI VWDELOL]LQJ WKH ]HUR HTXLOLEULXP RI ELOLQHDU DQG DIILQH V\VWHPV RI FDQRQLFDO IRUP LV FRQVLGHUHG 0LQLPDOVWDELOL]HUVIRUOLQHDUG\QDPLFDOV\VWHPVZHUHVWXGLHGLQ>@ ,WVKRXOGEHQRWHGWKDWLQWKHVHZRUNVSDUWLFXODUFDVHVRIWKHJHQHUDOSUREOHP RI FRQWUROODELOLW\ DQG VSHHG SHUIRUPDQFH RI G\QDPLF V\VWHPV ZLWKRXW SKDVH DQG LQWHJUDOFRQVWUDLQWVZHUHVWXGLHG $FWXDODQGXQVROYHGSUREOHPVRIFRQWUROODELOLW\DQGRSWLPDOSHUIRUPDQFHDUH REWDLQLQJ QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH VROYDELOLW\ RI FRPPRQ SUREOHPVRIFRQWUROODELOLW\DQGSHUIRUPDQFHGHYHORSPHQWRIFRQVWUXFWLYHPHWKRGV IRU FRQVWUXFWLQJ VROXWLRQV RI JHQHUDO SUREOHPV RI FRQWUROODELOLW\ DQG RSWLPDO SHUIRUPDQFHRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQV 7KLVFKDSWHULVZULWWHQRQWKHEDVLVRIWKHVFLHQWLILFUHVXOWVRIWKHDXWKRUJLYHQ LQ>@ :HUH SURSRVHG PHWKRGV IRU FRQVWUXFWLQJ SURJUDP DQG SRVLWLRQDO FRQWUROV IRUWKHSURFHVVHVGHVFULEHGE\OLQHDURUGLQDU\GLIIHUHQWLDOHTXDWLRQVLQWKHSUHVHQFH RI ERXQGDU\ FRQGLWLRQV DV ZHOO DV SKDVH DQG LQWHJUDO FRQVWUDLQWV WDNLQJ LQWR DFFRXQW UHVWULFWLRQV RQ FRQWUROV 7ZR SUREOHPV ZHUH VROYHG WKH SUREOHP RIWKHH[LVWHQFHRIDFRQWURODQGWKHSUREOHPRIFRQVWUXFWLQJWKHVHWRIDOOFRQWUROV WKDWWUDQVIHUVWKHWUDMHFWRU\RIWKHV\VWHPIURPDQ\LQLWLDOVWDWHWRDJLYHQILQDOVWDWH  

7KH EDVLV RI WKH SURSRVHG PHWKRGV IRU FRQVWUXFWLQJ SURJUDP DQG SRVLWLRQDO FRQWUROV LV WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG $ QHFHVVDU\ DQG VXIILFLHQWFRQGLWLRQIRUWKHH[LVWHQFHRI DVROXWLRQRIDOLQHDULQWHJUDOHTXDWLRQLV REWDLQHG7KHJHQHUDOVROXWLRQRIRQHFODVVRIWKH)UHGKROPLQWHJUDOHTXDWLRQRIWKH ILUVWNLQGLVIRXQG ,W LV VKRZQ WKDW WKH ERXQGDU\ YDOXH SUREOHPV RI OLQHDU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV FDQ EH UHGXFHG WR LQLWLDO RSWLPDO FRQWURO SUREOHPV ZLWK D TXDGUDWLF IXQFWLRQDO$OJRULWKPVIRUFRQVWUXFWLQJPLQLPL]LQJVHTXHQFHVDQGHYDOXDWLQJWKHLU FRQYHUJHQFHDUHJLYHQ $OJRULWKPVIRUVROYLQJWKHRSWLPDOSHUIRUPDQFHSUREOHPEDVHGRQVROYLQJWKH SUREOHPRIFRQWUROODELOLW\DUHSUHVHQWHG 2QHRIWKHGLIILFXOWDQGXQVROYHGSUREOHPVRIFRQWUROWKHRU\LVWKHH[LVWHQFH RIDVROXWLRQWRDERXQGDU\YDOXHRSWLPDOFRQWUROSUREOHPLQWKHSUHVHQFHRISKDVH DQGLQWHJUDOFRQVWUDLQWV7RVROYHWKHSUREOHPVRIWKHH[LVWHQFHRIDVROXWLRQLWLV QHFHVVDU\ WR FUHDWH D JHQHUDO WKHRU\ RI FRQWUROODELOLW\ RI G\QDPLF V\VWHPV 7KLV SDSHU LV GHYRWHG WR VROYLQJ WKH SUREOHPV RI FRQWUROODELOLW\ RI FRPSOH[ G\QDPLF V\VWHPVZLWKERXQGDU\FRQGLWLRQVDQGFRQVWUDLQWV 7KHPDLQUHVXOWVREWDLQHGLQWKLVZRUNDUHVHOHFWLRQRIDVHWRISURJUDPDQG SRVLWLRQDO FRQWUROV IRU WKH SURFHVV GHVFULEHG E\ D OLQHDU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQLQDEVHQFHRIUHVWULFWLRQVRQWKHFRQWUROYDOXHVE\FRQVWUXFWLQJDJHQHUDO VROXWLRQ RI WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG GHWHUPLQDWLRQ RI SURJUDPDQGSRVLWLRQDOFRQWURODVZHOODVVROYLQJRSWLPDOSHUIRUPDQFHSUREOHPV LQWKHSUHVHQFHRIFRQVWUDLQWVRQWKHYDOXHVRIWKHFRQWURODQGSKDVHDQGLQWHJUDO FRQVWUDLQWV UHGXFLQJ WKH LQLWLDO ERXQGDU\ YDOXH SUREOHP ZLWK FRQVWUDLQWV WR D VSHFLDOLQLWLDORSWLPDOFRQWUROSUREOHPDQGFRQVWUXFWLQJPLQLPL]LQJVHTXHQFHVDQG E\ VXFFHVVLYHO\ QDUURZLQJ WKH UDQJH RI DGPLVVLEOH FRQWUROV VROYLQJ WKH RSWLPDO SHUIRUPDQFHSUREOHP 7KHVFLHQWLILFQRYHOW\RIWKHUHVXOWVREWDLQHGLVWKDWDJHQHUDOWKHRU\RIFRQWURO ODELOLW\DQGRSWLPDOVSHHGKDVEHHQFUHDWHGIRUDOLQHDURUGLQDU\GLIIHUHQWLDOHTXDWLRQ   4XRWHGOLWHUDWXUH   .DOPDQ 5( ©2Q WKH JHQHUDO WKHRU\ RI FRQWURO V\VWHPVª  3URFHHGLQJV RI WKH , &RQJUHVV RI WKH ,QWHUQDWLRQDO )HGHUDWLRQ IRU $XWRPDWLF &RQWURO 9 ,, $FDGHP\RI6FLHQFHVRIWKH8665±3  .UDVRYVNLM117KHRU\RIPRWLRQFRQWURO±06FLHQFH±S  $LVDJDOLHY 6$ 5HJLRQDO SUREOHPV RI RSWLPDO FRQWURO ± $OPDW\ 4D]DT XQLYHUVLW\±S  $LVDJDOLHY6$$LVDJDOLHY760HWKRGVIRUVROYLQJERXQGDU\YDOXHSUREOHPV ±$OPDW\4D]DTXQLYHUVLW\±S  $QDQ HYVNLM ,0 $QDKL 19 2YVHHYLFK $, 6\QWKHVLV RI OLPLWHG FRQWURO RI OLQHDUG\QDPLFDOV\VWHPVXVLQJWKHJHQHUDO/\DSXQRYIXQFWLRQ5HSRUWVRIWKH 5XVVLDQ$FDGHP\RI6FLHQFHV9ʋ  6HPHQRY-X02QFRPSOHWHFRQWUROODELOLW\RIOLQHDUQRQDXWRQRPRXVV\VWHPV 'LIIHUHQWLDOHTXDWLRQV9ʋS  

 .RURYLQ 6. .DSOLQ ,9 )RPLFKHY 99 0LQLPDO VWDELOL]HUV IRU OLQHDU G\QDPLFDOV\VWHPV5HSRUWVRI5$69ʋS  $LVDJDOLHY 6$ &RQWUROODELOLW\ RI D FHUWDLQ V\VWHP RI GLIIHUHQWLDO HTXDWLRQV  'LIIHUHQWLDO(TXDWLRQV9ʋS  $LVDJDOLHY 6$ 7KH JHQHUDO VROXWLRQ RI D FODVV RI LQWHJUDO HTXDWLRQV  0DWKHPDWLFDO-RXUQDO9ʋ  S  $LVDJDOLHY6$.DELGROGDQRYD$$2SWLPDOVSHHGRIQRQOLQHDUV\VWHPVZLWK UHVWULFWLRQV'LIIHUHQWLDOHTXDWLRQVDQGFRQWUROSURFHVVHVʋS  $LVDJDOLHY 6$ %HORJXURY $3 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHG E\ D SDUDEROLF HTXDWLRQ ZLWK UHVWULFWHG FRQWURO  6LEHULDQ 0DWKHPDWLFDO-RXUQDO-DQXDU\)HEUXDU\9ʋS  $LVDJDOLHY 6$ &RQVWUXFWLYH WKHRU\ RI ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHPV±$OPDW\4D]DTXQLYHUVLW\±S  $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 7R WKH VROXWLRQ RI WKH )UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIRUDIXQFWLRQRIVHYHUDOYDULDEOHV 9HVWQLN.D]18VHUPDWPHKLQI±ʋ    $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 7KHUPDO PDQDJHPHQW  9HVWQLN.D]18VHUPDWPHKLQI±ʋ  S  $LVDJDOLHY 6$ 6HYU\XJLQ ,9 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\DOLQHDUV\VWHPRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV 0DWKHPDWLFDO-RXUQDO9ʋ  S  $LVDJDOLHY 6$ 6HYU\XJLQ ,9 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV9HVWQLN.D]18 VHUPDWPHKLQI9ʋ  S  $LVDJDOLHY 6$ 6KDQJLWRYD 0( 7R WKH PDWKHPDWLFDO WKHRU\ RI FRQWUROOHG SURFHVVHV9HVWQLN.D]18VHUPDWPHKLQIʋ  S  $LVDJDOLHY 6$ 7R WKH 1DYLHU6WRNHV VROXWLRQ IRU D YLVFRXV LQFRPSUHVVLEOH IOXLG LQ DQ XQERXQGHG UHJLRQL  9HVWQLN .D]18 VHU PDW PHK LQI  ʋ  S  $LVDJDOLHY6$$\D]EDHYD$07RFRQVWUXFWLQJRIRSWLPDOILOWHUIRUUDQGRP SURFHVVHV9HVWQLN.D]18VHUPDWPHKLQIʋ  S  $LVDJDOLHY 6$ $LVDJDOLHYD 66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV  'LIIHUHQWLDO (TXDWLRQVWʋS  $LVDJDOLHY6$ &RQWUROODELOLW\ DQG 2SWLPDO &RQWURO LQ 1RQOLQHDU 6\VWHPV -RXUQDO RI &RPSXWHU DQG 6\VWHPV ± 6FLHQFHV ,QWHUQDWLRQDO ʋ    S  $LVDJDOLHY6$ $LVDJDOLHYD66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV  'LIIHUHQWLDO (TXDWLRQVYROʋS  $LVDJDOLHY6$ %HORJXURY$3 &RQWUROODELOLW\ DQG 6SHHG RI WKH SURFHVV GHVFULEHGE\DSDUDEROLFHTXDWLRQZLWKERXQGHGFRQWURO6LEHULDQ0DWKHPDWLFDO -RXUQDOYROʋSS  =XERY9,/HFWXUHVRQFRQWUROWKHRU\±06FLHQFHS  *DEDVRY 5 .LRULOORYD )0 4XDOLWDWLYH WKHRU\ RI RSWLPDO SURFHVVHV ± 0 6FLHQFH±S

 

&KDSWHU,, 7+(25t  t @    ZLWKERXQGDU\FRQGLWLRQV  x

x t  R n  x

x t  R n 

 

DQGFRQWURO u ˜  L I  R m          ZKHUH x  x ± IL[HG SRLQWV A t  B t  t  I ± PDWULFHV ZLWK SLHFHZLVH FRQWLQXRXV

HOHPHQWV RI n u n n u k  RUGHUV UHVSHFWLYHO\ IXQFWLRQ f x u t  FRQWLQXRXV E\ VHW RI DUJXPHQWVDQGVDWLVILHVWKHFRQGLWLRQV     1RWH WKDW IRU DQ\ DEVROXWHO\ FRQWLQXRXV IXQFWLRQ x t  t  I  DQG DQ\ FRQWURO u ˜  L I  R m IXQFWLRQ f x t  u t  t  L I  R k  $ORQJZLWKV\VWHP  ZHFRQVLGHUDOLQHDUV\VWHPRIWKHIRUP y A t y  B t w t  t  I  y t x  y t x    k w ˜  L I  R    n n ZKHUH x  R  x  R IURP   w t w t  wk t  t  I  

6HOHFW WKH VHW RI DOO FRQWUROVIURP L I  R k  HDFK HOHPHQW RI ZKLFK WUDQVIHUV WKHWUDMHFWRU\RIWKHV\VWHP  IURPWKHLQLWLDOVWDWH x  R n WRWKHVWDWH x  R n  %DVHGRQWKHUHVXOWVJLYHQLQWKHILUVWFKDSWHUZHJLYHWKHIROORZLQJWKHRUHP t

7KHRUHPLet the matrix W t  t

³ ) t  t B t B t ) t  t dt







of nu n order be

t

positive-definite. Then control w ˜  L I  R k transfers the trajectory of the system (2.14) from a point x  R n to the point x  R n if and only if w t  /

^w ˜  L I  R

m



 w t X t  O t  x  x 

(2.16)

`

 N t z t X  t  I  X  X ˜  L I  R k 

where O t  x  x B t ) t  t W  t  t >) t  t x  x @ N t  B t ) t  t W  t  t ) t  t 

function z t X  t  I  – solution of a differential equation A t z  B t X t  z t  X ˜  L I  R k 

(2.17) The solution of the differential equation (2.14), corresponding to the control w t  /  is determined by the formula y t z t X  O t  x  x  N  t z t X  X  X ˜  L I  R k  (2.18) where z

O t  x  x ) t  t W t  t W  t  t x  ) t  t W t  t W  t  t ) t  t x  N  t ) t  t W t  t W  t  t ) t  t .

7KH SURRI RI WKH WKHRUHP LV JLYHQ LQ WKH SUHYLRXV VHFWLRQ +HUH ) t W T t T  W   T t ± IXQGDPHQWDO VROXWLRQ PDWUL[ RI D OLQHDU KRPRJHQHRXV V\VWHP [ A t [ 1RWHWKDW T t A t T t  T t I  

n

&RQVLGHUWKHIROORZLQJRSWLPDOFRQWUROSUREOHPPLQLPL]HWKHIXQFWLRQDO t

³ X t  O t  x  x  N t z t X  f y t  u t  t

J X  u













dt o LQI 



 

t

XQGHUFRQGLWLRQV A t z  B t X t  z t  I

     X ˜  L I  R  u ˜  L I  R         7KHRUHP Let the matrix W t  t !  . In order for system (2.11) to be controlled under conditions (2.12), (2.13), it is necessary and sufficient that the value J X  u  , where X  u  L I  R k u L I  R m – solution of optimization problem (2.19) – (2.21). 3URRI Necessity. /HW V\VWHP   XQGHU FRQGLWLRQV     EH PDQDJHDEOH/HWVVKRZWKDWYDOXH J X  u  /HW x t t  x  u  t  I ±VROXWLRQRIWKH GLIIHUHQWLDO HTXDWLRQ   ZKHUH x t  t  x  u x  x t  t  x  u x  FRQWURO u u t  t  I WUDQVIHUVWKHWUDMHFWRU\RIWKHV\VWHP  IURP x WR x 'HQRWH E\ w t f x t t  x  u  u t  t  t  I 1RZUHODWLRQV    FDQEHZULWWHQDV x t t  x  u A t x t t  x  u  B t w t  t  I >t  t @  z

k

m

 

>t  t @ 

x t  t  x  u

x  x t  t  x  u

x  u ˜  L I  R m  



:HLQWURGXFHWKHQRWDWLRQ y t x t t  x  u  t  I 7KHQ y A t y  B t w t   t  I  y t x   y t x $FFRUGLQJWR7KHRUHPWKHIXQFWLRQ w t  / +HQFH w t X t  O t  x  x  N t z t X  t  I 7KHQWKHYDOXH J X  u

t

³ X t  O t  x  x  N t z t X  f y t  u t  t













dt



t

ZKHUH f y t  u t  t w t  t  I 1HFHVVLW\LVSURYHQ Sufficiency/HWWKHYDOXH J X  u  /HWVVKRZWKDWWKHSURFHVVGHVFULEHGE\ WKH GLIIHUHQWLDO HTXDWLRQ   XQGHU FRQGLWLRQV     LV FRQWUROODEOH ,Q IDFW WKH YDOXH J X  u   LI DQG RQO\ LI DOPRVW HYHU\ZKHUH IROORZLQJ HTXDOLW\ KROGVSODFH X t  O t  x  x  N t z t X f y t X  u t  t  t  I  ZKHUH y t X z t X  O t  x  x  N  t z t X  t  I /HW w t X t  O t  x  x  N t z t X f y t X  u t  t   ZKHUH y t X x   y t X x 1RZUHODWLRQV    FDQEHZULWWHQDV y t X A t y t X  B t w t  y t x  y t x  ,W IROORZV WKDW y t X x t t  x  u  x t x  x t x  7KLV PHDQV WKDW V\VWHP   LV FRQWUROODEOH XQGHU FRQGLWLRQV     6XIILFLHQF\ LV SURYHQ 7KH WKHRUHPLVSURYHG /HPPDLet the matrix W t  t !  , function f x u t , x  R n  u  R m , t  I , is continuously differentiable by variables x u  R n u R m , function  F q t X  T t x  T t x  N  t z t X  f y u t ,  where O t  x  x T t x  T t x  T t  B t ) t  t W  t  t  T t

y

B t ) t  t W  t  t ) t  t  q X  u z  z t  R k u R m u R n u R n ,

z  C t x  C t x  N  t z t , C t ) t  t W t  t W  t  t , C t ) t  t W t  t W  t  t ) t  t .

Then partial derivatives

wF q t >X  T t x  T t x  N t z t  f z  C t x  C t x  N  t z t  u t @ ,   wX wF q t  f u y u t >X  T t x  T t x  N t z t  f y u t @ ,  wu wF q t  f x y u t >X  T t x  T t x  N t z t  f y u t @ ,  wz wF q t  N  t  N  t f x y  u t >X  T t x  T t x  N t z t  f y u t @ .   wz t

>

@

 )RUPXODV     FDQ EH REWDLQHG GLUHFWO\ E\ GLIIHUHQWLDWLQJ WKH IXQFWLRQ F q t E\YDULDEOH q    

'HQRWHE\ § wF wF wF wF · ¸¸  q t  R k u R m u R n u R n u I  ¨¨    © wX wu wz wz t ¹ ,W FDQ EH VKRZQ WKDW LI WKH IXQFWLRQ f x u t  x  R n   u  R m  t  I  LV WZLFH wF q t wq

F q q t

FRQWLQXRXVO\ GLIIHUHQWLDEOH E\ YDULDEOHV x u  R n u R m  WKHQ IXQFWLRQ F q t  LV WZLFHFRQWLQXRXVO\GLIIHUHQWLDEOHE\ q DQGPDWUL[ * q  t * q t

wF q t RI k  m  n u k  m  n RUGHU wq 

/HPPD Let matrix W t  t !  , function f x u t continuously differentiable by x u  R n u R m , t  I , and inequality is fulfilled F q q  t  F q q  t  q  q t  q  q  R k m n .  Then the functional (2.19) under conditions (2.20), (2.21) is convex. If function f x u t twice continuously differentiable by x u  R n u R m , t  I , and inequality is fulfilled * q t * q t t  , q q  R k m n , t  I ,  then the functional (2.19) under conditions (2.20), (2.21) is convex. 3URRI )RU DQ\ IL[HG t  I  UHODWLRQ   LV D QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQIRUWKHFRQYH[LW\RIDVPRRWKIXQFWLRQ F q t E\YDULDEOH q LH F Dq    D q  t d DF q  t    D F q  t 

q  q  R N  N

k  m  n D  D  >@







 

6LQFH WKH GLIIHUHQWLDO HTXDWLRQ   LV OLQHDU IRU DQ\ X ˜ X  ˜  L I  R k  YDOXH z t DX    D X  D z t X    D z t X  IRUDOO D  >@  t  I 7KHQ J DX    D X  D u    D u  t

³ F DX 



   D X   Du    D u  z t DX    D X   z t DX    D X   t dt 

t t

³ F DX 



   D X   D u    D u D z t X    D z t X  D z t X    D z t X   t dt d

t

t

t

t

t

d D ³ F q  t dt    D ³ F q  t dt D J X  u    D J X   u  

ZKHUH u  u  L I  R m  X X   L I  R k GXHWRLQHTXDOLW\  7KLVPHDQVWKDWWKH IXQFWLRQDO  XQGHUFRQGLWLRQV    LVFRQYH[ 6LPLODUO\WKHVHFRQGVWDWHPHQWRIWKHOHPPDFDQEHSURYHG,QIDFWIRUDQ\ t  I FRQGLWLRQ  LVHTXLYDOHQWWRWKHIDFWWKDWWKHIXQFWLRQ F q t FRQYH[E\ YDULDEOH q /HPPDLVSURYHG 'HILQLWLRQ  Let's say that the derivative

wF q t satisfies the Lipschitz wq

condition on a variable q in the area of R N  N k  m  n , if wF q  'q t wF q t  d L 'q  wX wX

wF q  'q t wF q t  d L 'q  wu wu 



wF q  'q t wF q t  d L 'q  wz wz

wF q  'q t wF q t  d L 'q  wz t wz t

where Li const !  i  , 'q 'X  'u 'z 'z t . 7KHRUHP Let the matrix W t  t !  , function f x u t continuously differentiable by x u and partial derivative

wF q t satisfies the Lipschitz wq

condition. Then the functional (2.19) under the conditions (2.20), (2.21) is Fréchet differentiable, the gradient J c X  u J Xc X  u  J uc X  u  L I  R k u L I  R m

at any point X  u  L I  R k u L I  R m can be calculated by the formula

wF q t  t wF q t  t ,   B t \ t  J uc X  u wX wu where q t X t  u t  z t X  z t X , z t X , t  I – solution of a differential equation J Xc X  u

(2.20) when X X t , and function \ t , t  I – solution of the adjoint system \

t

wF q t  t  A t \  wz

wF q t  t dt , t  I . wz t t

\ t  ³



In addition, the gradient J c X  u  L I  R k u L I  R m satisfies Lipschitz condition



J c X  u  J c X   u d l X  X 



 u  u









 X  u  X   u  L I  R k u L I  R m

,



3URRI7KHIXQFWLRQDO  GRHVQRWEHORQJWRWKHFODVVRINQRZQW\SHVRI IXQFWLRQDOV WKH /DJUDQJH IXQFWLRQDO WKH 0D\HU IXQFWLRQDO WKH %ROW IXQFWLRQDO 7KHUHIRUHDVHSDUDWHSURRIRIHDFKVWDWHPHQWRIWKHWKHRUHPLVUHTXLUHG /HW X t  X t  h t  L I  R k  DQG z t X  z t X  h   t  I ± VROXWLRQV RI   V\VWHP FRUUHVSRQGLQJ WR FRQWUROV X t  X t  h t  /HW z t X  h z t X  'z t  t  I   7KHQLQFUHPHQW 'z t z t X  h  z t X  t  I  LVDVROXWLRQWRDGLIIHUHQWLDOHTXDWLRQ 'z t A t 'z t  B t h t  'z t  t  I       7KHVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ  FDQEHZULWWHQDV t

'z t

³ ) t W B W h W dW 

t

+HQFHZHJHWWKHHVWLPDWH t

t

t

t

'z t d ³ ) t W B W h W dW d c ³ h t dt dc h

L

  t  I 





 



§ t ·  ¨ h t  dt ¸  ¨ t³ ¸ © ¹

ZKHUH c VXS ) t W B W  t d t  W d t  c c t  t   h L



/HW X  u  X  h u  'u  L I  R u L I  R  7KHQ WKH LQFUHPHQW RI WKH IXQFWLRQDO k

'J

J X  h u  'u  J X  u

m

t

³ >F q t  'q t  t  F q t  t @dt  



t

ZKHUH  



 

q t  'q t X t  h t  u t  'u t  z t  'z t  z t  'z t  q t X t  u t  z t  z t  6LQFHWKHIXQFWLRQ F q t KDVFRQWLQXRXVGHULYDWLYHVE\ q WKHQ F q t  'q t  t F q t  t  h t FX q t  T'q t  t  'u t F u q t  T'q t  t    'z t F z q t  T'q t  t  'z t F z q t  T'q t  t  6XEVWLWXWLQJWKLVH[SUHVVLRQLQWRWKHULJKWKDQGVLGHRI  ZHJHW

'J

t

³ >h t F X q t  t  'u t F



u



@

q t  t  'z t F z q t  t  'z t F z t q t  t dt 

t



 R  R  R  R

  ZKHUH t

R

³ h t >F X q t  T'q t  t  F X q t  t @dt 





t t

³ 'u t >F

R

u

q t  T'q t  t  F u q t  t @dt 

t

t

³ 'z t >F

R

z

q t  T'q t  t  F z q t  t @dt 

t t

³ 'z t >F

R



 z t

@

q t  T'q t  t  F z t q t  t dt 

t

7KHIROORZLQJHVWLPDWHVDUHWUXH t

t

R d ³ h t FX q t  T'q t  t  FX q t  t dt d L ³ h t 'q t dt  t

t

t

t

t

t

t

t

R d L ³ 'u t 'q t dt  R d L ³ 'z t 'q t dt  R d L ³ 'z t 'q t dt 

&RQVLGHUWKHODVWWHUPIURP   t

t

d 'z t \ t dt  dt t

'z t ³ F z t q t  t dt

 'z t \ t  ³

t

t

t

t

t

 ³ 'z t \ t dt  ³ 'z t \ t dt 

GXH WR WKH UHODWLRQ   DQG WKH IDFW WKDW 'z t   $V 'z t  \ t  t  I  DUH GHWHUPLQHGE\H[SUHVVLRQV    WKHQ t

t

'z t ³ F z t q t  t dt t

t

>

@

t

@

 ³ 'z t F z q t  t  A t \ t dt t

>

 ³ 'z t A t  h t B t \ t dt   t

t

t

t

 ³ h t B t \ t dt  ³ 'z t F z q t  t dt 

6XEVWLWXWLQJWKLVYDOXHRIWKHODVWWHUPLQ  ZHJHW 'J

t

³ ^h t >F X q t  t  B t \ t @ 'u t F





u

`

t

6LQFHWKHQRUPRILW 'q t

h t  'u t  'z t  'z t 

 



q t  t dt  ¦ Ri  i 



 

t

³ 'q t



'q t



t

³ > h t  'u t  'z t  'z t @ dt 

dt





t

t

WKHQFRQVLVWHQWO\DSSO\LQJWKHLQHTXDOLW\ a  b  d  a   b    a t  b t  ZHJHW t

^

>

`

'q t d  ³ > h t  'u t @  > 'z t  'z t @ dt d  h t  'u t 









@ 

t

>

t ª t º      « ³ 'z t dt  ³ 'z t dt » d  h t  'u t «¬t »¼ t   ZKHUH c PD[   c t  t 



@  t  t >c 



 

h t



@d c > h t  



 'u t



@

1RWLFHWKDW 'u t d 'q t  h t d 'q t )URPHVWLPDWLRQVIRU Ri  i  ZH JHW 



§ t ·  § t ·  R d L ³ h t 'q t dt d L ¨ ³ h t dt ¸ ¨ ³ 'q t dt ¸ ¨t ¸ ¨t ¸ t © ¹ © ¹  R d L 'q t  t



L h t 'q t d L 'q t 





§ t ·  § t ·  R d L ³ 'z t 'q t dt d L ¨ ³ 'z t dt ¸ ¨ ³ 'q t dt ¸ d  ¨t ¸ ¨t ¸ t © ¹ © ¹  d L c t  t h t 'q t d L c t  t 'q t  t





>





@

R d L c t  t 'q t 

$V 'q t d c h t  'u t WKHQ R





¦R d ¦ R i

i

i 

>

d c L  L  L c t  t  L c t  t

@ h t



 'u





i 

R

h t

/HW '[ h 'u  '[

R '[

d



 'u

c  '[ '[

R  R  R  R 

7KHQ

  



c '[ o  ZKHQ '[ o   



 

ZKHUH c c >L  L  L c t  t  L c t  t @ )URP     IROORZV   7KHILUVWDVVHUWLRQRIWKHWKHRUHPLVSURYHG /HWV VKRZ WKDW JUDGLHQW J c [  [ X  u  VDWLVILHV WKH /LSVFKLW] FRQGLWLRQ  ,QIDFWIURP  ZHKDYH

F

J c [  J c [ 

X



q t  'q t  t  FX q t  t  B t '\ t  F u q t  'q t  t  F u q t  t 

[

X  u  [ 

X   u 

,WIROORZVWKDW

J c [  J c [  d FX q t  'q t  t  FX q t  t  BPD[ '\ t  

 F u q t  'q t  t  F u q t  t 

ZKHUH B

PD[

VXS B t  6LQFH WKH SDUWLDO GHULYDWLYHV VDWLVI\ WKH /LSVFKLW] FRQ

t dt dt

GLWLRQVWKHLQHTXDOLW\  

J c [  J c [  d L  L 'q t  BPD[ '\ t 

7KHQ 









J c [  J c [  d  L  L  'q t   BPD[

J c [  J c [ 

t

³



t

t



'\ t  t  I 



J c [  J c [  dt d  L  L  ³ 'q t dt   BPD[ 



t

d c L  L '[ 

 















 B

t

³ '\ t



PD[



t

³ '\ t 



dt d

t

  

dt

t



ZKHUH 'q d c '[   '[ h  'u  '[ h 'u  $VIROORZVIURPWKHHTXDWLRQRIWKHDGMRLQWV\VWHP  WKHIXQFWLRQ '\ t  t  I LVDVROXWLRQWRDGLIIHUHQWLDOHTXDWLRQ '\

>F z q t  'q t  t  F z q t  t @  A t '\ t 



 

'\ t '\ t  ³ >F z q W  'q W W  F z q W W @  A W '\ W dW  

 

t

>



@

'\ t  ³ F z t q t  'q t  t  F z t q t  t dt



t

7KHVROXWLRQRIV\VWHP  FDQEHZULWWHQDV t

^

`

t

)URP  LWIROORZVWKDW t

t

'\ t d '\ t  ³ F z q W  'q W W  F z q W W dW  APD[ ³ '\ W dW d  t

t

t

t

t

t

t

t

d L ³ 'q t dt  L ³ 'q W dW  APD[ ³ '\ W dW d 





t

d L c t  t  L c t  t '[  APD[ ³ '\ W dW  t

)URPKHUHDSSO\LQJWKH*URQZDOOOHPPDZHREWDLQ





'\ t d L c t  t  L c t  t e APD[ t t '[  t  I 

   6XEVWLWXWLQJWKHHVWLPDWH  LQWRWKHULJKWKDQGVLGHRILQHTXDOLW\  ZHJHW   

J c [  J c [  d c L  L '[   BPD[  t  t  L  L  c e  A t t '[  l '[  

PD[

ZKHUH l

>c L  L   B  







t



PD[







@



 t  L  L c e  APD[ t t   APD[ 

VXS A t  7KLV

t dt dt

LPSOLHVWKHHVWLPDWH  7KHWKHRUHPLVSURYHG %DVHGRQWKHIRUPXODV  ±  ZHFRQVWUXFWWKHIROORZLQJVHTXHQFHV X n X n  D n J X X n  un  un un  D n J u X n  un  n       ZKHUHDUHWKHTXDQWLWLHV D n  n  DUHVHOHFWHGIURPWKHFRQGLWLRQ RU D g n D n PLQ g n D  D t

g n D

J X n  D J Xc X n  un  un  D J uc X n  un  n  

RU E LIIXQFWLRQDO J X  u  C  H  H L I  R k u L I  R m WKHQ  



 

  H d Dn d

  H  !  n   l  H 

ZKHUH l ±/LSVFKLW]FRQVWDQWIURP   7KHRUHP Let the conditions of Theorem 3, the sequence, the sequence ^X n `  L I  R k , ^un `  L I  R m is determined by the ratios (2.43), (2.44). Then: 1) numeric sequence ^J X n  un ` strictly decreases; J c X n  un  . 2) OLP no f If, in addition, inequality (2.27) is satisfied, the set

^ X  u  H

M X   u

J X  u d J X   u `

is bounded 3) sequences ^X n ` ^un ` are minimizing, i.e. OLP J X n  un no f

LQI J X  u ;

J

X u H

4) sequences ^X n `^un ` weakly converge to the set U  where U X  u  H J X  u J LQI J X  u , X u H

^

`

U z ‡ , where ‡ – empty set;

5) The following estimate of the rate of convergence takes place  d J X n  un  J d

l D   n  n





where D – set diameter M X   u . 6) The controllability problem (2.11) - (2.13) has a solution if and only if J X  u J



3URRI6LQFHWKHFRQGLWLRQVRI7KHRUHPDUHVDWLVILHGWKHIXQFWLRQDO J X  u  )UHFKHW FRQWLQXRXVO\ GLIIHUHQWLDEOH DQG JUDGLHQW J X  u  VDWLVILHV WKH /LSVFKLW] FRQGLWLRQ &RQVHTXHQWO\ J X  u  C  H  H L I  R k u L I  R m  6LQFH WKH YDOXH RIWKHIXQFWLRQDO J X  u t  WKHQ J X  u ERXQGHGEHORZ $V g n D n J [ n  D J c [ n J [ n  g n D J [ n  D J [ n  ZKHUH [ n X n  un  J c [ n J Xc X n  un  J uc X n  un WKHQIURP  ZHKDYH J [ n  J [ n t J [ n  J [ n  D J c [ n  D  D t   n       $V J [  C H  [ X  u  [  [  H WKHQZHKDYHLQHTXDOLW\ J [   J [  t J c [  [   [ 

H



 l  [  [   [   [   H  

+HQFHZKHQ [  [ n  [  [ n  D J c [ n ZHJHW J [ n  J [ n  D J c [ n t J c [ n [ n  [ n  D J c [ n

L

l    D  J c [ n   

 

ZKHUH D !  )URP    IROORZV l  J [ n  J [ n t D J c [ n   D  J c [ n  l § · t PD[¨ D   D  ¸ J c [ n D ! ©  ¹



l ·  § ¨ D   D ¸ J c [ n t  ¹ ©

  J c [ n t  n  l 









 

 ,IIRUVRPHILQLWH n JUDGLHQW J [ n   l n n   VRWKDW OLP J c [ n  2ILQWHUHVWLVWKHFDVH

ZKHUHWKHPD[LPXPLVUHDFKHGZKHQ D WKHQ [ n [ n   J c [ k   k

no f

ZKHQ J [ n z  IRUWKHILQLWH n 6LQFHWKHYDOXHRI J c [ n !   J [ n z  WKHQIURP   LW IROORZV WKDW WKH QXPHULFDO VHTXHQFH ^J [ n `  VWULFWO\ GHFUHDVHV 6LQFH WKH IXQFWLRQDO J [  [  H  ERXQGHG EHORZ WKHQ WKH QXPHULF VHTXHQFH ^J [ n `  ERXQGHG EHORZ 7KHUHIRUH WKHUH LV D OLPLW OLP J [ n  DQG IURP WKH H[LVWHQFH RI WKH OLPLW LW 

no f

IROORZV WKDW OLP>J [ n  J [ n @   3DVVLQJ WR WKH OLPLW ZKHQ n o f  IURP   ZH no f

JHW OLP J c [ n  7KXVDVVHUWLRQVRIWKHWKHRUHPDUHSURYHG no f

%\WKHFRQGLWLRQRIWKHWKHRUHPLQHTXDOLW\  KROGVSODFH7KHUHIRUHWKH IXQFWLRQDO J [  C  H LVFRQYH[$VIROORZVIURPVWDWHPHQW WKHYDOXHV J [ n  J [ n     J [  J [ 

J X   u  

FRQVHTXHQWO\ ^[ n ` ^ X n  un `  M X   u  $V M X   u M [  ± ERXQGHG FRQYH[ FORVHGVHWLQDUHIOH[LYH%DQDFKVSDFH H L I  R k u L I  R m WKHQ M [  ZHDNO\ ELFRPSDFW &RQYH[ IXQFWLRQDO J [  C  H  ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ 7KHQ DFFRUGLQJ WR WKH :HLHUVWUDVV WKHRUHP WKH IXQFWLRQDO J [  [  M [   UHDFKHVWKHORZHUHGJHLH U z ‡  U  M [   /HWVVKRZWKDWWKHVHTXHQFH ^[ n `  M [ LVPLQLPL]LQJ)URPWKHFRQYH[LW\ RIWKHIXQFWLRQDO J [  C  M [  LWIROORZVWKDW J [ n  J [ d J c [ n  [ n  [ H d J c [ n [ n  [ d J c [ n D     ZKHUH [ X  u  U  D ±VHWGLDPHWHU M [  3DVVLQJWRWKHOLPLWDW n o f IURP  JLYHQWKDW J [ n o  ZKHQ n o f ZHJHW OLP>J [ n  J [ @ d D OLP J c [ n   no f no f 7KHQ OLP J [ n J [ J no f

LQI J [  7KHUHIRUH WKH VHTXHQFH ^[ n `  M [   LV

[ M [

PLQLPL]LQJ $V ^[ n `  M [  U  M [  VHW M [  LVZHDNO\FRPSDFWWKHQWKHVHTXHQFH ^[ n `ZHDNO\FRQYHUJHVWRWKHVHW U  'HQRWH an J [ n  J [  J J [  7KHQ LQHTXDOLWLHV     FDQ EH ZULWWHQDV an  an t

  J c [ n  an d D J c [ n   l





 

,WIROORZVWKDWWKHVHTXHQFH ^an `VDWLVILHVWKHFRQGLWLRQV a n ! 

an  an t

 an  n   l D 

7KH IROORZLQJ OHPPD LV WUXH LI D QXPHULF VHTXHQFH ^an ` VXFK WKDW an !  an  an t A an  IRU DOO n t n   A const !   WKHQ LQHTXDOLW\ KROGV WUXH an d

n    n ! n  An

 

$SSO\LQJWKLVOHPPDIURP  ZHREWDLQ A an d

  n l D 

 

l D  l D   n   J [ n  J [ d   n   n n

7KXVZHKDYHSURYHGWKHDVVHUWLRQV ± RIWKHWKHRUHP7KHWKHRUHPLVSURYHG 7KH SUDFWLFDO LPSOHPHQWDWLRQ RI WKH DOJRULWKP IRU FRQVWUXFWLQJ VHTXHQFHV  LV  7KHVWDUWLQJSRLQWLVVHOHFWHG [  t X  t  u t  H   :HVROYHWKHGLIIHUHQWLDOHTXDWLRQ z A t z  B t X  t  z t  I >t  t @  /HW z t X   t  I ±VROXWLRQRIWKLVV\VWHP7KHQWKHYHFWRU z t X  LVNQRZQ  'HWHUPLQHGWKHVROXWLRQRIWKHDGMRLQWV\VWHP \

wF q t  t  A t \  wz

t

wF q t  t dt  t  I  wz t t

\ t  ³

ZKHUH q t X  t  u t  z t X   z t X   /HW \ t X   u  t  I  EH D VROXWLRQ RI WKLV V\VWHP  &DOFXODWHVWKHJUDGLHQW J c [  J Xc [   J uc [  ZKHUH J Xc [ 

wF q t  t  B t \ t X   u  wX

J uc [ 

wF q t  t  wu

 7KHIROORZLQJDSSUR[LPDWLRQLVFRQVWUXFWHGDFFRUGLQJWRWKHIRUPXOD   X t X  t  D  J X [   u t u t  D  J u [   DQGVRRQ ([DPSOH)LQGDVROXWLRQWRWKHQH[WFRQWUROODELOLW\SUREOHP  7KHHTXDWLRQRIPRWLRQRIWKHV\VWHPKDVWKHIRUP x x  x  x  u   t  I >@   %RXQGDU\FRQGLWLRQV x   x   x   x     &RQWURO u ˜  L I  R  )RUWKLVSUREOHP

e At

§ A ¨¨ © § T t ¨¨ ©

· §· ¸¸ B ¨¨ ¸¸ f x u t x  u   x ¹ ©¹ t· §  t · ¸ T  t e  A t ¨¨ ¸¸ Ɏ t W ¸¹ ©  ¹

§  · ¨¨ ¸¸ x ©  ¹

e A t W 

§· ¨¨ ¸¸  ©¹

§  · e A t ¨¨ ¸¸  ©t ¹

0DWULFHV § t    t  · §     · ¸  ¨¨ ¸¸  W  t ¨¨   ¹ t ¸¹ ©   © t    §   t       t    · §    · §  · ¸¸  W    ¨¨ W t  ¨¨ ¸¸  a ¨¨ ¸¸            t     t ¹ © © ¹ ¹ © 

W 

³ )  t B B )  t dt

&RUUHVSRQGLQJOLQHDUFRQWUROOHGV\VWHP y

A y  B w t 

y 

x  y 

ZKHUH  

x 

t  >@

w ˜  L I  R 

§· § · A ¨¨ ¸¸ B ¨¨ ¸¸   ©¹ ¹ ©

§· ¨¨ ¸¸  ©¹

§  · ¨¨ ¸¸ x © ¹

x

$FFRUGLQJWR7KHRUHPZHKDYH O t  x  x  t    N t z t  t   z    t   z    §  t   t   t   · ¸¸  N  t  ©  t  t   ¹

§  t   t   t   t  · ¨¨ ¸¸    ©  t  t   t   t ¹ w t X t   t     t   z    t   z    t  >@ 

O t  x  x ¨¨ y t





z t   t   t   t     t    t  z   t   t  z   

z  t   t   t     t   t z    t    t z    t  >@ 

y  t

7KHRSWLPL]DWLRQSUREOHP    IRUWKLVH[DPSOHLVZULWWHQDVIROORZV PLQLPL]HWKHIXQFWLRQDO J X  u



³ F q t  t dt o LQI  



XQGHUFRQGLWLRQV z

ZKHUH

z 

>  >z t   t

z

X t  z   z    t  I >@  X ˜  L I  R  u ˜  L I  R 

@ X t   t     t   z    t   z     t     t   t z   t  t z  @  u t 

w t  y t  u  t

F q t  t





t



























q t X t  u t  z t  z  t  z   z    )XUWKHU DFFRUGLQJ WR WKH DOJRULWKP RXWOLQHG DERYH WKH VHTXHQFHV DUH EXLOW ^X n `^un `  n     Lecture 8.&RQWUROODELOLW\RIQRQOLQHDUV\VWHPVZLWKOLPLWHGFRQWURO  7KHHTXDWLRQRIPRWLRQLV x A t x  B t f x u t  t  I >t  t @       ZLWKERXQGDU\FRQGLWLRQV x t x  R n  x t x  R n        DQGFRQWURO u t U t ^u ˜  L I  R m u t V t  R m  t  I `    ZKHUH x  x ±IL[HGSRLQWV A t  B t  t  I ±PDWULFHVZLWKSLHFHZLVHFRQWLQXRXV HOHPHQWV RI n u n n u k  RUGHUV UHVSHFWLYHO\ f x u t f x u t  f k x u t  ± D IXQFWLRQWKDWLVFRQWLQXRXVLQWKHDJJUHJDWHRIDUJXPHQWVDQGVDWLVILHVFRQGLWLRQV    WKHFRQWUROIURP L I  R m DQGIRUHDFKYDOXH t  I WDNHVDYDOXHIURPD JLYHQVHW V t IURP R m ,QSDUWLFXODUVHW U t ^ u ˜  L I  R m D i t d ui t d Ei t  i  m ae t  I ` 

ZKHUH D t D t D m t  E t E t  E m t ±VSHFLILHGFRQWLQXRXVIXQFWLRQV  

$VLQWKHFDVHRIVROYLQJSUREOHPWKHFRUUHVSRQGLQJOLQHDUFRQWUROV\VWHP KDVWKHIRUP    7KHVHWRIDOOFRQWUROVHDFKHOHPHQWRIZKLFKWUDQVIHUV WKHWUDMHFWRU\RIWKHV\VWHP    IURPWKHLQLWLDOVWDWH x WRWKHVWDWH x LV GHWHUPLQHGE\WKHIRUPXOD  ZKHUH z t  t  I ±LVDVROXWLRQRIV\VWHP   IXQFWLRQ y t  t  I  LVGHWHUPLQHGE\IRUPXOD   7KH VROXWLRQ RI SUREOHP  LV UHGXFHG WR DQ RSWLPL]DWLRQ SUREOHP PLQLPL]H WKHIXQFWLRQDO J X  u

t

³ _ X t  O t  x  x  N t z t X  f y t  u t  t _ dt o LQI  













 

t

XQGHUFRQGLWLRQV A t z  B t X t  z t  I

    X ˜  L I  R  u t U  t  I         7KXVWKHVROXWLRQRIWKHFRQWUROODELOLW\SUREOHPIRUWKHV\VWHP     LVUHGXFHGWRWKHVROXWLRQRIWKHRSWLPL]DWLRQSUREOHP     7KHRUHPLet the matrix W t  t !  . In order for system (2.51) to be controlled under conditions (2.52), (2.53), it is necessary and sufficient that J X  u  , where X  u  L I  R k u U – solution of optimization problem (2.54)-(2.56). 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP 1RWLFHWKDW  6LQFH WKH YDOXH J X  u t    X  u  L I  R k uU  WKHQ WKH YDOXH RI WKH IXQFWLRQDO   XQGHU WKH FRQGLWLRQV     LV OLPLWHG IURP EHORZ  ,I J X  u  WKHQWKHVROXWLRQWRSUREOHPLV x t y t X z t X  O t  x  x  N  t z t X  t  I  X t  O t  x  x  N t z t X  f y t X  u t  t {  t  I  %DVHGRQWKHIRUPXODV    ZHEXLOGVHTXHQFHV X n X n  D n J X X n  un  un PU >un  D n J u X n  un @ n     z

>t  t @  

k

  H d Dn d

  H  !  n    l  H 







 

ZKHUH l ±/LSVFKLW]FRQVWDQWIURP   PU >K @ ±SURMHFWLRQRISRLQW K RQDFRQYH[ FORVHGVHW U  7KHRUHP Let the conditions of Theorem 3 be fulfilled and, moreover, let, U – convex closed set in L I  R m , sequences ^X n `  L I  R k , ^un `  U   L I  R m are determined by the ratios (2.57), (2.58). Then:  numeric sequence ^J X n  un ` strictly decreases;  X n  X n o  , un  un o  when n o f . If, in addition, inequality (2.27) holds place, the set M X   u

^ X  u  L I  R

k



is limited below  sequences ^X n ` ^un ` are minimizing, i.e.  

`

uU J X  u d J X   u

OLP J X n  un

LQI J X  u 

J

no f

X  u  X

L I  R k uU ;

 sequences ^X n `^un ` weakly converge to the set U  where U X  u  X J X  u J LQI J X  u  U z ‡ , X u X

^

`

 The following estimate of the rate of convergence is true  d J X n  un  J d

m  n  m n

const ! 

 The controllability problem (2.51)-(2.53) has a solution if and only if J X  u

J



3URRI)URP  IROORZVWKDW X n  X n  D n J Xc X n  un X  X n un  un  D n J uc X n  un  u  un §X ·

§X ·

§X

L

X  X  L I  R k  

 

u u  U 



 



 



 



 



L

t 



§ J c X  u ·

·

:HGHQRWH T ¨¨ ¸¸ T n ¨¨ n ¸¸ T n ¨¨ n ¸¸ J c X n  un ¨¨ X n n ¸¸  ©u ¹ © J uc X n  u n ¹ © un ¹ © un ¹ 1RZUHODWLRQV    FDQEHZULWWHQDV J c T n T  T n

L

t



Dn

T n  T n T  T n 

T  T  X 

6LQFHWKHIXQFWLRQDO J X  u  C  X WKHQWUXHLQHTXDOLW\ J T   J T  t J c T  T   T 

H



+HQFHZKHQ T  T n  T  T n ZHJHW J T n  J T n t J c T n T n  T n 

 l  T  T   T  T   X  

l  T n  T n  



)URPUHODWLRQV    WDNLQJLQWRDFFRXQW  ZHKDYH §  l ·  ¸¸ T n  T n J T n  J T n t ¨¨ © Dn  ¹





t H  T n  T n  n  

7KLVLPSOLHVWKHDVVHUWLRQV  RIWKHWKHRUHP7KHSURRIVRIDVVHUWLRQV ± RI WKH WKHRUHP DUH VLPLODU WR WKH SURRIV RI WKH FRUUHVSRQGLQJ DVVHUWLRQV RI 7KHR UHP  ,W LV HDV\ WR VHH WKDW WKH IXQFWLRQDO J T  C  X  LV FRQYH[ DQG ZHDNO\ VHPLFRQWLQXRXVVHW M X   u ZHDNO\ELFRPSDFWVHW U LVQRWHPSW\ $V ^T n `  M X   u  WKHQ DOO ZHDN OLPLW SRLQWV ^T n `  EHORQJ WR WKH VHW U  M X   u  )URP J T  C  X  ± FRQYH[ IXQFWLRQDO LW IROORZV WKDW an J T n  J T d c T n  T n ZKHUH T X  u U &RQVHTXHQWO\ OLP J T n J T LQI J T  T X

no f

VHTXHQFH ^T n ` ^X n  un `  X  LV PLQLPL]LQJ )URP WKLV HVWLPDWH WDNLQJ LQWR DFFRXQW  ZHREWDLQWKHDVVHUWLRQ RIWKHWKHRUHP7KHWKHRUHPLVSURYHG &RQVLGHUWKHSUREOHPRIFRQWUROODELOLW\    ZKHQWKHILQDOWLPH t LV QRW IL[HG ,W LV QHFHVVDU\ WR ILQG WKH ORZHVW YDOXH t t  IRU ZKLFK WKH V\VWHP    LVFRQWUROODEOHLHWKHUHLVDFRQWURO u t U t ZKLFKWUDQVIHUVWKH WUDMHFWRU\RIWKHV\VWHP  FRPLQJIURPDJLYHQVWDUWLQJSRLQW x  R n LQWLPH PRPHQW t WRDJLYHQSRLQW x x t LQWKHVKRUWHVWWLPH t  t  t ! t   

7KXV WKH VROXWLRQ RI WKH RSWLPDO SHUIRUPDQFH SUREOHP LV D SDLU t  u t  t  >t  t @  ZKHUH u t U t ± VROXWLRQ RI FRQWUROODELOLW\ SUREOHP     FRUUHVSRQGLQJWRWKHORZHVWYDOXH t RIHQGSRLQWLQWLPH t  6XSSRVHFRQWUROLVIRXQG u t U t  t  >t  t @  t ! t IURPWKHVROXWLRQRIWKH FRQWUROODELOLW\SUREOHP    ZKHUH t t ±NQRZQTXDQWLWLHV &KRRVH t t    $FFRUGLQJ WR WKH DERYH DOJRULWKP E\ VROYLQJ WKH RSWLPL]DWLRQ SUREOHP      ZH ILQG D SDLU X

 u

 X  t  >t  t @  ,I IRU WKLV SDLU X

 u

 X  YDOXH J X

 u

  WKHQ FKRRVH YDOXH t t    t  t  DQG VROYHWKHRSWLPL]DWLRQSUREOHP    ZLWKDIL[HG t t ,QFDVHWKHYDOXH J X

 u

!  SUREOHP    LVVROYHGIRUWKHYDOXH t   DQGVRRQ ([DPSOH &RQVLGHU WKH FRQWUROODELOLW\ SUREOHP RI ([DPSOH  ZKHQ WKH YDOXHV U t ^ u ˜  L I  R   d u t d  ae t  >@ `  7KHFRUUHVSRQGLQJRSWLPL]DWLRQSUREOHPKDVDIRUP J X  u



³ F q t  t dt o LQI  





z

A z  BX t  z   I

>@ 



X ˜  L I  R  u t U 

6HTXHQFHV ^X n `  L I  R  ^un `  U DUHEDVHGRQWKHIRUPXODV 

ª wF X n t  un t  z t X n  z t X n  z X n  z  X n  t º  B \ t X n  un »  wX ¬ ¼ F t u t z t z t z z t X X X X X             w º ª n  n  n  n  n PU «un t  D n  n »¼ n   wu ¬

X n t X n t  D n « un t

 ZKHUHWKHYDOXH D n VSHFLILFDOO\HTXDOWR D n   l !  &DVH H  D n   l  H  l     un  t

­ ° ®  °u t  D J c X  u  n u n n ¯ n

if un t  D n J uc Xn  un   if un t  D n J uc Xn  un ! 



if   d un t  D n J uc Xn  un d  t  I 

 )XQFWLRQ\ t X n  un  t  I LVDVROXWLRQRIDGLIIHUHQWLDOHTXDWLRQ  \ t  v n  un

wF v n  un  z t  v n  z  t  vn  z  v n  z   v n  t  A \ t  v n  un  t  I  wz 



\ t  v n  un



³ 

wF vn  un  z t  vn  z  t  vn  z  vn  z   vn  t dt wz  vn

  



)XQFWLRQ z t  vn  t  I LVDVROXWLRQRIDGLIIHUHQWLDOHTXDWLRQ 

z t vn

Az t vn  Bvn t  vn ˜  L I  R  z  vn

 t  I  

  Lecture 9.&RQWUROODELOLW\RIQRQOLQHDUV\VWHPVZLWKERXQGDU\FRQGLWLRQV DQGOLPLWHGFRQWURO  &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\SUREOHPWKHHTXDWLRQRIPRWLRQKDVD IRUP x

A t x  B t f x u t  t  I >t  t @ 









 





 



 

ZLWKERXQGDU\FRQGLWLRQV 

x t  S   x

x

x t  S  x  x  S   R  n





ZLWKOLPLWDWLRQVRQFRQWUROYDOXHV 

u t U t ^u ˜  L I  Rm  u t V t  Rm ae t  I ` 



)LQG FRQWURO u t U t   ZKLFK WUDQVIHUV WKH WUDMHFWRU\ RI WKH V\VWHP   RXWJRLQJIURPWKHVWDUWLQJSRLQW x x t  S  R n DWWKHPRPHQWRIWLPH t WRWKH SRLQW x x t  S  R n DWWKHPRPHQWRIWLPH t ZKHUH t  t  t ! t   IL[HGSRLQWVLQ WLPH +HUH S   S   JLYHQ FRQYH[ FORVHG VHWV LQ R n   QRW H[FOXGHG WKH FDVH ZKHQ x  x  S  R  n   7KHVROXWLRQRIWKLVSUREOHPFDQEHUHGXFHGWRWKHVROXWLRQRIWKHIROORZLQJ RSWLPL]DWLRQSUREOHPPLQLPL]HWKHIXQFWLRQDO t

J v u x  x

³ _ v t  O t  x  x  N t z t  v  f y t  u t  t _ 







dt o LQI 





 

t

XQGHUFRQGLWLRQV z

A t z  B t v t  z t  t  I >t  t @ 

v ˜  L I  R  u t U t  x  S   x  S   k

+HUH

 

 

 

   

O t  x  x T t x  T t x  y t z t  v  C t x  C t x  N  t z t  v  

ZKHUH y t y t  w  t  I LVDVROXWLRQRIDGLIIHUHQWLDOHTXDWLRQ y

A t y  B t w t  y t

x  S   y t

x  S  w ˜  L I  R k  

IXQFWLRQ w t  /  7KHRUHPLet matrix W t  t !  . In order for the system (2.64)-(2.69) to be controllable, it is necessary and sufficient that the value J v  u x  x  where v  u  x  x  L I  R k uU u S  u S  solution of optimization problem (2.67)-(2.69). 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP W t  t !  vector function f x u t  x  R n  /HPPD Let matrix u  R m  t  I continuously differentiable by variables x u  R n u R m  function  

F q t _ v t  T t x  T t x  N t z t  v  f z t  v  C t x   C t x  N  t z t  v  u t  t _  q v u x  x  z t  v  z t  v  Then partial derivatives F v q t  Fu q t  F z q t  F z t q t are determined by

formulas (2.23) - (2.26), respectively, and partial derivatives  F x q t >T t  C t f y u t @>v  T t x  T t x  N  t z t  x  f y u t @  )RUPXODV     FDQ EH REWDLQHG GLUHFWO\ E\ GLIIHUHQWLDWLQJ WKH IXQFWLRQ F q t 'HQRWHE\ F q q t Fv  Fu  F x  F x  F z  F z t   q t  R k m n u I   /HPPD Let W t  t !  U t  L I  R m  S   R n  S  R n   convex closed sets. Function f x u t continuously differentiable by x u and inequality holds place  F q q  t  F q q  t  q  q ! t  q  q  R k m n   Then the functional (2.67) under the conditions (2.68), (2.69) is convex. 7KHSURRIRIWKHOHPPDLVVLPLODUWRWKHSURRIRIWKHOHPPD 'HILQLWLRQ Let's say that the derivative F q q t satisfies the Lipschitz condition by a variable q in the area R N  N k  m  n , if F x q t >T t  C t f x y u t @>v  T t x  T t x  N t z t  x  f y u t @







x







_ Fv q  'q t  Fv q t _ d L _ 'q _ _ Fu q  'q t  Fu q t _ d L _ 'q _ _ F z q  'q t  F z q t _ d L _ 'q _ _ F z t q  'q t  F z t q t _ d L _ 'q _ _ F x q  'q t  F x q t _ d L _ 'q _ _ F x q  'q t  F x q t _ d L _ 'q _

where Li const !  i  norm _ 'q _ _ 'v 'u 'x  'x  'z 'z t _  W t  t !  , function f x u t is continuously 7KHRUHP Let matrix x  u  R n u R m and partial derivative F q q t satisfies differentiable by variables the Lipschitz condition. Then the functional (2.67) under the conditions (2.68), (2.69) is Frechet differentiable, the gradient J c v u x  x J vc v u x  x  J uc v u x  x  J cx v u x  x  J xc v u x  x 

 L I  R k u L I  R m u R n u R n

H

at any point v u x  x  L I  R uU u S  u S X can be calculated by the formula k

J vc v u x  x J xc v u x  x

F v q t  t  B t \ t  J uc v u x  x t

³F

 x

q t  t dt  J xc v u x  x

t

F u q t  t 

t

³F

 x

q t  t dt 



t

where q t v t  u t  x  x  z t v  z t  v  z t v  t  I  is the solution of the differential equation (2.68), and the function \ t  t  I  adjoint system \

F z q t  t  A t \  \ t

t

 ³ F z t q t  t dt  t  I 



t

In addition, the gradient J c [  H satisfies Lipschitz condition __ J c [  J c [  __H d l  __ [  [  __ X  [  [   X 



7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP %DVHG RQ WKH IRUPXODV     ZH EXLOG VHTXHQFHV ^vn ` ^un ` ^x n ` ^xn `  DFFRUGLQJWRWKHUXOHV  

vn x n

vn  D n J vc vn  un  x n  xn  un PU >un  D n J uc vn  un  x n  xn @ PS > x n  D n J xc vn  un  x n  xn @ xn PS > xn  D n J cx vn  un  x n  xn @   

n    H  d D n d

  H  !  l   H 

ZKHUH l const !   FRQVWDQWRI/LSVFKLW]IURP   7KHRUHP Let the conditions of Theorem 8, the sequence ^vn `  L I  R k  ^un `  U  ^x n `  S   ^xn `  S are determined by the formula (2.76). Then: 1) numeric sequence ^J vn  un  x n  xn ` strictly decreases; 2) __ vn  vn __o  __ un  un __o  _ x n  x n _o  _ xn  xn _o  when n o f If, in addition, inequality (2.72) holds place, the set M v  u  x  x ^ v u x  x  X  J v u x  x d J v  u  x  x ` is bounded: ^vn ` ^un ` ^x n ` ^xn ` are minimizing, i.e. 3) sequences OLP J vn  un  x n  xn n of

J

LQI J v u x  x  v u x  x  X  X

4) sequences

V

^vn ` ^un ` ^x n ` ^xn ` weakly converging to the set ^ v  u  x  x  X  J v  u  x  x J LQI J v u x  x  v u x  x  X  V z ‡

5) the following estimate of the convergence rate is valid  d J v n  u n  x n  xn  J d

m  n  m n

const ! 

6) the controllability problem (2.64)-(2.66) has a solution if and only if J  7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP &RQVLGHUWKHFRQWUROODELOLW\SUREOHP    ZKHQWKHILQDOPRPHQWRI WLPH t  LV QRW IL[HG t  IL[HG ,W LV QHFHVVDU\ WR ILQG WKH ORZHVW YDOXH t t  IRU ZKLFKWKHV\VWHP    LVFRQWUROODEOHLHWKHUHLVDFRQWURO u t U t  SRLQWV x  S  x  S  VXFK WKDW WKH WUDMHFWRU\ RI WKH V\VWHP   LQ WKH VKRUWHVW WLPHLVWUDQVIHUUHGIURPWKHVWDUWLQJSRLQW x  S DWWKHPRPHQWRIWLPH t WRWKH SRLQW x  S LQWKHVKRUWHVWWLPH t  t t ! t   7KXVWKHVROXWLRQRIWKHSUREOHPRIRSWLPDOVSHHGLVWKHIRXU t  u t  x  x  ZKHUH u t  x  x   VROXWLRQ  RI FRQWUROODELOLW\ SUREOHP     FRUUHVSRQGLQJWRWKHORZHVWYDOXH t RIHQGSRLQWLQWLPH /HWWKUHHEHIRXQG u t  x  x U u S u S  t >t  t @ t ! t IURPWKHVROXWLRQRI WKH FRQWUROODELOLW\ SUREOHP     ZKHUH t  t   NQRZQ TXDQWLWLHV &KRRVH t t   $FFRUGLQJWRWKHDERYHDOJRULWKPE\VROYLQJWKHRSWLPL]DWLRQSUREOHP     ZH ILQG WKH IRXU v

 u

 x

 x

 X  t >t  t @  ,I IRU WKLV IRXU YDOXH J v

 u

 x

 x

  WKHQ FKRRVH YDOXH t t   t  t  ,Q FDVH WKH YDOXH J v

 u

 x

 x

!   WKH FRQWUROODELOLW\ SUREOHP      LV VROYHG IRU WKH YDOXH t   DQGVRRQ ([DPSOH&RQVLGHUWKHFRQWUROODELOLW\SUREOHPRI([DPSOHZKHQ U ^u ˜  L I  R    d u t d  ɩɜ t >@`   

S

^ x

x  x  R   x     x    d ` 

S ^x x  x  R   x  x d `  6HWV U  L I  R  S   R  S  R   DUHERXQGHGFRQYH[DQGFORVHG 



$V T t t   t    T t   t  t     §  t   t  t   t   t  · ¸ ¨ ¨  t   t t   t   t ¸  ¹ ©     § t  t  t  t · ¸  N t t    t    N  t ¨¨   ¸ ©  t  t  t  t ¹

§ t  t    t   t   t · ¸ C t C t ¨¨  t   t  ¸¹ ©  t  t 

WKHQ

w t v t  O t  x  x  N t z  v v t  t   x  t   x     t x  t   x  t   z  v  t   z   v  § y t · y t ¨¨  ¸¸ z t  v  O t  x  x  N  t z  v  t  >@  © y  t ¹ y t z t  v  t   t    x  t   t   t x  t   t  x 

 t   t   t  x  t   t  z  v  t   t  z   v  y  t

z  t  v   t   t x  t   t   x  t   t x 

 t   t   t x   t  t z  v  t   t z   v  t  >@







7KHQWKHSDUWLDOGHULYDWLYHVDUHHTXDO

wF q t > v t  T t x  T t x  N  t z  v  y t  u  t @  wv wF q t u  > v t  T t x  T t x  N  t z  v  y t  u  t @  wu §y · wF q t >T t  C ¨¨  ¸¸@> v t  T t x  T t x  N t z  v  y t  u  t @  wx © ¹

§y · >T t  C ¨¨  ¸¸@> v t  T t x  T t x  N t z  v  y t  u  t @  © ¹  §y · wF q t ¨¨  ¸¸>v t  T t x  T t x  N t z  v  y t  u  t @  wz © ¹

wF q t wx

§y · > N t  N  t ¨¨  ¸¸@> v t  T t x  T t x  N t z  v  y t  u  t @  © ¹ x §  · §x · ¨¨ ¸¸ x ¨¨  ¸¸ 1H[WZHEXLOGVHTXHQFHV ^vn ` ^un ` ^x n ` ^xn ` DFFRUGLQJ x © x ¹ ©  ¹

wF q t wz t

ZKHUH x

WRWKHIRUPXOD  WDNLQJLQWRDFFRXQWWKHUDWLRV          

Lecture 10.&RQWUROODELOLW\RIQRQOLQHDUV\VWHPV ZLWKSKDVHUHVWULFWLRQV  &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\SUREOHPWKHHTXDWLRQRIPRWLRQKDVD IRUP x A t x  B t f x u t  t  I >t  t @        ZLWKERXQGDU\FRQGLWLRQV x x t  S   R n  x x t  S  R n x  x  S  R  n      FRQWURO u t U t ^u ˜  L I  Rm u t V t  Rm ae t  I `     

LQWKHSUHVHQFHRISKDVHUHVWULFWLRQV 

G t ^x  R n J t d F x t d G t  t  I ` 

x t  G t 



  

)LQG FRQWURO u t U t  ZKLFK WUDQVIHUV WKH WUDMHFWRU\ RI WKH V\VWHP   FRPLQJIURPWKHVWDUWLQJSRLQW x x t  S DWWKHPRPHQWRIWLPH t WRWKHSRLQW x x t  S DWWKHPRPHQWRIWLPH t ZKHUH t  t  t ! t  DUHIL[HG S   S   JLYHQ FRQYH[ FORVHG VHWV ZKLOH WKH VROXWLRQ RI HTXDWLRQ   LV RQ WKH VHW G t  R n  t  I 6HW U t  L I  R m   ERXQGHGFRQYH[DQGFORVHGQRWH[FOXGLQJD PL[HGUHVWULFWLRQ x  x  S  R  n   7KH VROXWLRQ RI WKLV SUREOHP FDQ EH UHGXFHG WR WKH VROXWLRQ RI WKH RSWLPL]DWLRQSUREOHPPLQLPL]HWKHIXQFWLRQDO J v u x  x  Z

t

³ >_ v t  O t x  x  N t z t  v  f y t  u t  t _













t





 

 _ Z t  F y t  t _ @ dt o LQI 

XQGHUFRQGLWLRQV A t z  B t v t  z t

 t  I

    v ˜  L I  R  u t U t  x  S   x  S       S Z t : t ^Z ˜  L I  R  J t d Z t d G t  ae t  I `      ZKHUH J t J  t J S t  G t G t G S t  VSHFLILHGFRQWLQXRXVIXQFWLRQV 7KHRUHP Let matrix W t  t positively defined. In order for system (2.77) - (2.80) to be controllable, it is necessary and sufficient that the value J [  , where [ v  u  x  x Z  X L I  R r uU u S  u S u :  optimal control of (2.81)-(2.84). 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP /HPPD Let matrix W t  t !  , functions f x u t  F x t  x  R m  t  I  continuously differentiable by variables x u  R n u R m , function z

>t  t @ 

k

* q t

 

 

F q t  _ Z  F y  u t _ _ v t  O t  x  x  N  t z t  v 

 f y  u t _  _ Z  F y  u t _  q

v u x  x  z t  v  z t  v  Z 

 R u R u R u R u R u R  O t  x  x T t x  T t x  t  I  k

m

n

n

n

S

 



Then partial derivatives * v q t

F v q t  *u q t

* x q t

F x q t  C t F y  t >Z  F y  t @

* x q t

F x q t  C  t Fx y  t >Z  F y  t @

* z q t

F z q t   F y  t >Z  F y  t @



* z t q t

Fu q t  *Z q t

>Z  F y  u t @

x





x

F z t q t   N  t Fx y  t >Z  F y  t @

where y t z t  C t x  C t x  N  t z t  v  t  I  7KH SDUWLDO GHULYDWLYHV   FDQ EH REWDLQHG E\ GLUHFWO\ GLIIHUHQWLDWLQJ WKH LQWHJUDQGIURP  HTXDOWR * q t   'HQRWHE\ * q q t *v  *u  * x  * x  * z  * z t  *Z  q t  R N u I   ZKHUH N k  m  s  n  /HPPD Let matrix W t  t !  , functions f x u  t  F x continuously differentiable by x u , U t  S   S  : t  convex closed sets and the inequality holds place  * q q  t  * q q  t  q  q ! t  q  q  R N   Then the functional (2.81) under conditions (2.82) - (2.84) is convex. The proof of the lemma is similar to the proof of Lemma 2 'HILQLWLRQ Let's say that the derivative * q q t satisfies the Lipschitz condition by a variable q in the area of R N  N k  m  s  n , if 





_ * v q  'q t  * v q t _ d L _ 'q _ _ * u q  'q t  * u q t _ d L _ 'q _ _ * x q  'q t  * x q t _ d L _ 'q _ _ * x q  'q t  * x q t _ d L _ 'q _ _ * z q  'q t  * z q t _ d L _ 'q _ _ * z t q  'q t  * z t q t _ d L _ 'q _ _ *Z q  'q t  *Z q t _ d L _ 'q _

where Li const !  i  _ 'q _ _ 'v 'u 'x  'x  'z 'z t  'Z _  7KHRUHP Let matrix W t  t !  , functions f x u  t  F x continuously differentiable by variables x u , and partial derivative * q q t satisfies the Lipschitz condition. Then the functional (2.81) under the conditions (2.82)-(2.84) is differentiable in the Frechet sense, the gradient J c [ J vc [  J uc [  J xc [  J xc [  J Zc [  L I  R k u L I  R m u R n u R n u L I  R S H

at any point [  X

L I  R k uU u S  u S u :  H can be calculated by the formula

J vc [ * v q t  B t \ t  J uc [ * u q t  J xc [

t

³*

x

q t  t dt 

t

J xc [

t

³*

 x

q t  t dt  J Zc [ *Z q t  t



t

where q t v t  u t  x  x  z t  v  z t  v Z t  z t  v  t  I  solution of the differential equation (2.82) when v v t , and function \ t  t  I  is a solution of adjoint system \

t

* z q t  t  A t \  \ t  ³ * z t q t  t dt  t  I  t

 



In addition, the gradient J c [  H satisfies Lipschitz condition __ J c [  J c [  __ d l __ [  [  __ [  [   X 



7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP /HW [ v  u  x  x Z  X L I  R k uU u S  u S u :   VRPH IL[HG SRLQW %DVHGRQWKHIRUPXODV    ZHFRQVWUXFWWKHIROORZLQJVHTXHQFHV vn  x n 

Zn 

vn  D n J nc [ n  un  PU >un  D n J nc [ n @ PS > x  D n J xc [ n @ xn  PS > x  D n J xc [ n @  



 

  H !  P: >Zn  D n J Zc [ n @   D n d l  H

/LSVFKLW] FRQVWDQW IURP   [ n vn  un  x n  xn Z n  X   Pu >˜@ PS >˜@ PS >˜@  P: >˜@   SURMHFWLRQV RI SRLQWV RQ VHWV U  S   S  :  UHVSHFWLYHO\ $V U  L I  R m  S   R n  S  R n  :  L I  R S   FRQYH[ FORVHG VHWV WKHQ HDFK SRLQW KDVDXQLTXHSURMHFWLRQRQWRWKHVHVHWV 7KHRUHP Let the conditions of the theorem 11 be satisfied, U  S   S  :   convex closed sets, sequence ^[ n `  X is determined by the formula (2.91). Then: 1. numerical sequence ^J [ n `  X strictly decreases; 2. __ [ n  [ n __o  when n o f If, moreover, inequality (2.87) holds place, the set M [ ^[  X  J [ d J [  ` is bounded then: 3. sequence ^[ n `  X is minimizing, i.e. OLP J [ n J LQI J [ 

ZKHUH

l  





[X

no f

4. sequence

^[ n `  X

X ^[  X  J [

J

weakly

converges

to

set

weakly

LQI J [ ` X z ‡ [ n o [ when n o f [ X

5. The following estimate of the rate of convergence is valid  d J [ n  J d

m  n  m n

const ! 

 The controllability problem (2.77) - (2.80) has a solution if and only if J [  . 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP &RQVLGHU WKH SUREOHP     ZKHQ WKH ILQDO PRPHQW RI WLPH t  QRW IL[HG t   IL[HG ,W LV QHFHVVDU\ WR ILQG WKH ORZHVW YDOXH t t  IRU ZKLFK WKH V\VWHP     LV FRQWUROODEOH LH WKHUH LV D FRQWURO u t  U t  SRLQWV x  S   x  S VXFKWKDWWKHWUDMHFWRU\RIWKHV\VWHP  LQWKHVKRUWHVWWLPHLV WUDQVIHUUHG IURP WKH VWDUWLQJ SRLQW x  S   DW WKH PRPHQW RI WLPH t  WR WKH SRLQW x  S LQWKHVKRUWHVWWLPH t  t ZKLOHWKHVROXWLRQRIWKHV\VWHP  GRHVQRW OHDYHVHW G t  t  I   7KXV WKH VROXWLRQ RI WKH SUREOHP RI RSWLPDO SHUIRUPDQFH LV WKH ILYH v t  u t  x  x Z t  DQG IXQFWLRQ x t t  x  x Z  G t  t  >t  t @  FRUUHVSRQGLQJ WR WKH VPDOOHVW YDOXH t   HQG SRLQW RI WLPH ZKHUH v t  u t  x  x Z t  X   VROXWLRQRIRSWLPL]DWLRQSUREOHP      

/HW ZH IRXQG ILYH v t  u t  x  x  Z t [  X  t  >t  t @ t ! t  IURP WKH VROXWLRQ RI WKH RSWLPL]DWLRQ SUREOHP      ZKHUH t  t   NQRZQ TXDQWLWLHV J [   &KRRVH t t    $FFRUGLQJ WR WKH DERYH DOJRULWKP E\ VROYLQJ WKH RSWLPL]DWLRQ SUREOHP     ZH ILQG v

t  u

t  x

 x

 Z

t  X  t  >t  t @  ,I YDOXH J v

 u

 x

 x

Z

  WKHQ ZH FKRRVH YDOXH t t   t  t  ,Q FDVH WKH YDOXH J v

 u

 x

 x

Z

!   WKHQ WKH RSWLPL]DWLRQSUREOHP    LVVROYHGIRUWKHYDOXH t t   DQGVRRQ ([DPSOH&RQVLGHUWKHFRQWUROODELOLW\SUREOHPRI([DPSOHZKHQ U

^u ˜  L I  R    d u t d  ae t  >@`

S

^x

x  x  R   x     x    d `



x  x  R   x  x d `  R  

S ^x

G t ^x x  x  R     d x t d    d x t d  t  >@`

)RUWKLVH[DPSOH §  · ¸¸  C I  R   G t   © ¹

J t ¨¨

§ · ¨¨ ¸¸  C I  R   s © ¹



§x · § · ¸¸ F x t ¨¨  ¸¸ Fu y  t   Fx y  t ¨¨ x  © ¹ © ¹ Z t § · Z t ¨¨  ¸¸  L I  R   Z t ©  ¹ : t ^Z ˜  L I  R     d Z t d    d Z  t d  ɩɜ t  >@`

7KHRSWLPL]DWLRQSUREOHP    LVZULWWHQDVIROORZVPLQLPL]HWKH IXQFWLRQDO J v u x  x Z



³ >_ v t  O t  x  x  N t z  v  y 









t  u  t _ 





 _ Z t  y t _  _ Z t  y  t _ @ dt o LQI 



XQGHUFRQGLWLRQV z   z v t  z   z    t  I >@  v ˜  L I  R  u t U  x  S   x  S 

z

Z t  : t ^Z ˜  L I  R     d Z t d    d Z t d  ɩɜ t  I `



3DUWLDOGHULYDWLYHVDUHHTXDO * q t _ v  O t  x  x  N  t z  v  y   u  _  _ Z  y _  _ Z   y  _   * v q t F v q t  * u q t F u q t  *Z  Z  y  *Z  Z   y   

§ §   ·§ Z  y ·

F x q t  C t ¨¨ ¸¸¨¨ Z  y ¸¸ * x F x q t  C t ¨¨    © ¹ ¹©  © §   ·§ Z  y · § ¸¸ * z t F z t q t   N  t ¨¨ * z q t F z q t  ¨¨ ¸¸¨¨ ©   ¹© Z  y  ¹ © * x

 · § Z  y · ¸  ¸˜¨  ¸¹ ¨© Z  y  ¸¹

 ·§ Z  y · ¸  ¸¨  ¸¹¨© Z  y ¸¹

ZKHUH Fv  Fu  F x  F x  F z  F z t  y t  y t  t  I  DUH GHWHUPLQHG E\ WKH H[SUHVVLRQV JLYHQ LQ H[DPSOH  0DWULFHV T t  T t  C t  C t  N t  N  t  WKH VDPH DV LQ H[DPSOH 





 

6HTXHQFHV ^vn ` ^un ` ^xn ` ^xn ` ^Zn ` ^Z n ` DUHGHWHUPLQHGE\WKHUXOHV vn t  D n >* v qn t  t  B t \ n t @ u n t

vn t



PS > x n  D n ³ * x qn t  t dt @ xn

x n



Zn 

P: >Zn t  *Z qn t  t @ Z n 

PU >u n t  D n *u qn t  t @ 



PS > xn  D n ³ * x qn t  t dt @  

P: >Z n t  *Z qn t  t @ n

  ZKHUH qn t vn t  un t  xn  xn  z t  vn  z  vn  Zn t  Z n t   Zn t  : ^Z ˜  L I  R     d Z t d  ɩɜ t  >@`  Z n t  :  ^Z ˜  L I  R    d Z t d  ɩɜ t  I `  Z ˜  Z ˜ Z ˜  :    Lecture 11.&RQWUROODELOLW\RIQRQOLQHDUV\VWHPVZLWKSKDVH DQGLQWHJUDOFRQVWUDLQWV6HPLQDUOHVVRQ  &RQVLGHUDFRQWUROOHGSURFHVVGHVFULEHGE\DQRUGLQDU\GLIIHUHQWLDOHTXDWLRQ x A t x  B t f x u t  t  I >t  t @         ZLWKERXQGDU\FRQGLWLRQV      x x t   S   x x t  S  x  x  S  R  n   LQWKHSUHVHQFHRISKDVHUHVWULFWLRQV x t  G t  G t ^x  R n  J t d F x t d G t  t  I `       DVZHOODVLQWHJUDOFRQVWUDLQWV g j u x x t  x t d c j  j  m  g j u x x t  x t c j  j m   m     t

g j u x x t  x t

³f

oj

x t  u t  x t  x t  t dt  j  m  





 

t

DQGOLPLWDWLRQVRQFRQWUROYDOXHV u t  U t ^u ˜  L I  R m  u t  V t  ae t  I ` 

     3UREOHPFind the necessary and sufficient conditions for the existence of a system solution (2.92)-(2.97). 3UREOHPFind a solution to the system (2.92)-(2.97). 7UDQVIRUPDWLRQ /HW WKH YHFWRU f  f   f  m  :H LQWURGXFH D YHFWRU IXQFWLRQ x t x t  xm t  t  I LQWKHIROORZLQJZD\ 



t

x t

³f



x W  u W  x  x  W dW  t  I  

t

,WIROORZVWKDW

Q

x t

f  x t  u t  x  x  t  t  I   

x t

 x t

^c  R

m

 cj

c  Q 



c j  d j  j  m  c j

 

 

 

 

     c j  j m   m  d j t  j  m`  

j  m  d t   ZKHUH c c  cm  d d  d m   DQG g j u x x  x c j  d j    XQNQRZQYHFWRU1RZWKHLQLWLDOSUREOHP    LVZULWWHQLQWKHIRUP VHH      



 

A t x  B t f x u t  t  I  

x x

   

f  x u x  x  t  x t   

  

x  x  S  u S  x t  Q  x t  G t  u t U t  

  

     

,QWURGXFLQJWKHIROORZLQJYHFWRUVDQGPDWULFHV § A t

§x·

O

·

§ B t ·

n m ¸ B t ¨ ¸ P ¨¨ ¸¸ A t ¨¨ ¸ ¨ O ¸ B ©x¹ © O m  n O m m ¹ © m k ¹ 

P









I n  Onm  P

Om n  I m  

§ O n m · ¨ ¸ ¨ Im ¸ ©  ¹

ZKHUH Or q   UHFWDQJXODUPDWUL[RI r u q RUGHUZLWK]HURHOHPHQWV I n  I m   LGHQWLW\ PDWULFHV RI n u n m u m  RUGHUV DFFRUGLQJO\ WKH V\VWHP     FDQ EH ZULWWHQLQWKHYHFWRUIRUP P A t P  B t f P P  u t  B f  P P  u x  x  t       P P t  P P t  S  u S  P P t  P P t c  Q       P P t  G t  u t U t  t  I         /LQHDU FRQWUROOHG V\VWHP $ORQJ ZLWK WKH V\VWHP     ZH FRQ VLGHUDOLQHDUFRQWUROOHGV\VWHP y A t y  B t w t  B t w t  t  I >t  t @      y t P t P   y t P t P         m k w ˜  L I  R  w ˜  L I  R         ZKHUH 



P t

P

§ x t  · ¸¸ ¨¨ © x t  ¹

/HW PDWUL[  w t

§ x · § x t · § x · ¸ ¨ ¸ ¨ Om  ¸ P t P ¨¨ x t ¸ ¨¨ c ¸¸ P   S   Om   P  S u Q  ©  ¹ © ¹ ©  ¹ B t B t  B  RI n  m u k  m RUGHU DQG YHFWRU

w t  w t  L I  R k  m %DVHGRQWKHLQLWLDOGDWDRIWKHSUREOHPZHGHILQH

WKHIROORZLQJPDWULFHVDQGYHFWRUV a

) t  t P  P   P   P  R n  m  W t  t

t

³ ) t  t B t B



t ) t  t dt  

t t

³ ) t W B W B

W t  t



W ) t  W dW  W t  t W t  t  W t  t  t  I  

t

O t  P   P

B t ) t   t W  t   t a  N t

 B t ) t   t W  t   t ) t   t

§  B t ) t   t W  t   t ) t   t · § N t · ¨ ¸ ¨ ¸ O t  P   P  ¨  B t ) t  t W  t  t ) t  t ¸ ¨ N t ¸ ¹ ©       ¹ © ) t  t  W t  t W  t   t P   ) t  t  W t   t W  t   t ) t   t P   N  t



 ) t  t  W t   t W  t   t ) t   t  t  I 

 ZKHUH ) t  W T t T  W  T W   IXQGDPHQWDO VROXWLRQ PDWUL[ RI D OLQHDU KRPRJHQHRXVV\VWHPK A t K  7KHRUHPLet matrix W t  t !  . Then control w ˜  L I  R k m transfers the trajectory of system (2.107)-(2.109) from any given starting point P   R nm in any given final state P  R nm , if and only if 





 

v t  O t  P   P  N  t z t  v 

w t  6 ^w ˜  L I  R k  m  w t v ˜  L I  R

k  m



 t  I `

where v ˜  L I  R k m  arbitrary function and function z t z t  v  t  I  solution of a differential equation  z A t z  B t v t  z t   t  I  The solution of the differential equation (2.107) corresponding to the equation w t  6 , has the form 

y t

z t  O t  x  x  N  t z t  v  t  I 

 7KHSURRIRIVLPLODUWKHRUHPVLVJLYHQLQWKHSUHYLRXVVHFWLRQV1RWHWKDWWKH FRPSRQHQWVRIWKHIXQFWLRQYHFWRU w t  6 DUHHTXDO   w t v t  B t ) t  t W  t  t a  N  t z t  v  t  I   

   w t v  t  B t ) t  t W t  t a  N  t z t  v  t  I    ZKHUH v t v t  v t  t  I  :HLQWURGXFHWKHIROORZLQJEORFNPDWUL[ § 3 t · § S t · ) t  t W  t  t ) t  t ¨¨  ¸¸ ) t  t W  t  t ¨¨  ¸¸  © 3 t ¹ © S t ¹   ) t  t  W t  t W t   t 3  t  3  t  ) t  t  W t   t W t   t ) t   t  3  t  3  t  B t 3  t T t  T t  3  t T t  T t    B t S t

D t  D t   S t

D t  D t  t  I  

1RZ IXQFWLRQV w t  w t  t  I  IURP     UHVSHFWLYHO\ FDQ EH UHSUHVHQWHGDV w t v t  D t x   T t x  T t c  N  t z t  v  t  I      w t v  t  D t x  T t x  T t c  N  t z t  v  t  I      )XQFWLRQ y t  t  I GHWHUPLQHGE\WKHIRUPXOD  FDQEHZULWWHQDV y t z t  3  t x  3  t x  3  t c  N  t z t  v  t  I      /HPPD/HWPDWUL[ W t  t !  7KHQWKHERXQGDU\YDOXHSUREOHP    LVHTXLYDOHQWWRWKHIROORZLQJSUREOHP w t v t  D t x  T t x  T t c  N  t z t  v f P y t  u x  x  t  t  I  w t v t  D t x  T t x  T t c  N t z t  v f P y t  u x  x  t  t  I  z

A t z  B t v t  B v t  z t  t  I   

v ˜  L I  R  v ˜  L I  R   x  S   x  S  c  Q  u t U t   k

m

   





 





 

  

  

     

Z t  : t ^Z ˜  L I  R S  J t d Z t d G t  ɩɜ t  I `     Z t F y t  t  t  I  ZKHUH w t  w t  y t  t  I LVGHWHUPLQHGE\IRUPXODV    UHVSHFWLYHO\

7KH SURRI RI WKH WKHRUHP IROORZV IURP WKH HTXLYDOHQFH RI WKH RULJLQDO SUREOHP     WR WKH SUREOHP     7KHRUHP  DOORZV XV WR   

LVRODWH DOO WKH VHWV RI VROXWLRQV     HDFK HOHPHQW RI ZKLFK WUDQVIHUUHV WKH WUDMHFWRU\ RI WKH V\VWHP   IURP DQ\ SRLQW P   R nm  WR DQ\ SRLQW P  R nm SDUWLFXODUO\WUXHIRUDQ\ P   S  u Om   P  S u Q  ,QWXUQWKHFRQWUROODELOLW\SUREOHP    ZKHQFRQGLWLRQV    DUHVDWLVILHGLVHTXLYDOHQWWRWKHERXQGDU\YDOXHSUREOHP     7KHUHIRUH WKH LQLWLDO ERXQGDU\ YDOXH SUREOHP     LV HTXLYDOHQW WR WKH FRQGLWLRQV    ZKHQ P t y t  t  I  Z t F y t  t  t  I  2SWLPL]DWLRQ SUREOHP &RQVLGHU WKH IROORZLQJ RSWLPDO FRQWURO SUREOHP PLQLPL]HWKHIXQFWLRQDO 





t

t

³ S q t  t dt

J v  v  u Z x  x  d

³ >_ w t  f P y t  u t _





t





t

 

 

 _ w t  f  P y t  u x  x  t _  _ Z t  F P y t  t _ @ dt o LQI 



XQGHUFRQGLWLRQV     v ˜  L I  R  v ˜  L I  R         x  S   x  S  u t U t  Z t  : t         m d  D ^d  R  d t `        ZKHUH DUH WKH IXQFWLRQV w t  w t  y t  t  I  DUH GHWHUPLQHG E\ IRUPXODV    UHVSHFWLYHO\ q t v t  v t  u t  Z t  x  x  d  z t  v  z t  v  v v  v  0DWULFHV T t  T t  t  I  UHSUHVHQWHG LQ WKH IRUP T t T t T t   T t T t  T t /HWWKHYHFWRUV ɫ ɫ  c m  c c m   c m 7KHQWKHYHFWRU c c  d  c SURGXFWV T t c T t c  d  T t c T t e  T t d  e c  c   T t c T t c  d  T t c T t e  T t d  t  I   1RZIXQFWLRQV w t  w t  t  I ZLOOEHZULWWHQDV w t v t  D t x  T t x  T t e  T t d  N  t z t  v  t  I     w t v t  D t x  T t x  T t e  T t d  N  t z t  v  t  I     ZKHUH T t e T t e t  I  NQRZQIXQFWLRQV,QDVLPLODUZD\ZHJHW y t z t  v  3  t x  3  t x  3  t e  3  t d  N  t z t  v  t  I     ZKHUH 3  t 3  t  3  t  t  I  ,Q WKH IXQFWLRQDO   IXQFWLRQV w t  w t  y t  t  I DUHUHSUHVHQWHGDV     :HLQWURGXFHWKHIROORZLQJQRWDWLRQV z

A t z  B t v t  B v t  z t  t  I    m

k





[

v t  v t  u t  Z t  x  x  d  X

u S  u S u D  H





L I  R k u L I  R m u U u : u

L I  R k u L I  R m u L I  R m u L I  R S u R n u R n u R m  X ^[  X  J [ J LQI J [ ` 



[ X

7KHRUHPLet matrix W t  t !  . In order for system (2.92)-(2.97) to be controllable, it is necessary and sufficient that the value J [  , where [ v t  v t  u t  Z t  x  x  d  X  optimal control in the problem (2.124)(2.128).  

7KH SURRI RI WKH WKHRUHP IROORZV IURP WKH HTXLYDOHQFH RI WKH SUREOHPV    DQG     3DUWLDOGHULYDWLYHV:HLQWURGXFHWKHIROORZLQJQRWDWLRQV w q t  t

w t  f P y t  u t  t  t  I 

w q t  t

w t  f  P y t  u t  x  x  t  t  I  

w q t  t

Z t  F P y t  t  t  I 

1RZIXQFWLRQDO  FDQEHZULWWHQDV J [

t

³ S q t  t dt

t

t

³ _ w q t  t _





 _ w q t  t _  _ w q t  t _ dt  

t

ZKHUH q t v t  v t  u t Z t  x  x  d  z t  v  z t  v  t  I   3DUWLDOGHULYDWLYHVDUHHTXDO

wS  q t  t wS  q t  t  w q t  t   w q t  t   wv wv wS  q t  t  f u P y  u t w q t  t   f ou P y  u x  x  t w q t  t  wu  

wS  q t  t wZ

wS  q t  t  w q t  t  wx

> D t  3  t P f x P y u t 

  f x  P y  u t @ w q t  > D t  3  t P f  x P y u x  x  t    f  x P y u x  x  t @ w q t  3  t P Fx P y  t w q t  wS  q t  t wx





>T t  3  t P f x P y  u t   f x  P y  u t @ w q t 

 >T t  3  t P f  x P y  u x  x  t   f  x P y  u x  x  t @ w q t   3  t P Fx P y  t w q t  wS  q t  t wz t



> N  t   N  t P f x P y  u t @ w q t 

 > N  t   N  t P f  x P y  u x  x  t @ w q t    N  t P Fx P y  t w q t   wS  q t  t

 P f x P y  u t @ w q t  wz   P f  x P y  u x  x  t @ w q t   P Fx P y  t w q t   wS  q t  t > T t   3  t P f x P y  u t @ w q t  wd  > T t  3  t P f  x P y  u x  x  t @ w q t     3  t P Fx P y  t w q t 

'HILQLWLRQLet's say that the derivative S  q q t S  v q t  S  v q t  S  u q t  S Z q t  S  x q t  S  x q t  S  z q t  S  z t q t  S  d q t

satisfies the Lipschitz condition by a variable q in the area of R N  N k   m  m  s  n  m   n  m , if 

 

_ S v q  'q t  S  v q t _ d L _ 'q _ _ S  v q  'q t  S  v q t _ d L _ 'q _

_ S u q  'q t  S u q t _ d L _ 'q _ _ S Z q  'q t  S Z q t _ d L _ 'q _ _ S  x q  'q t  S  x q t _ d L _ 'q _ _ S  x q  'q t  S  x q t _ d L _ 'q _ _ S  d q  'q t  S  d q t _ d L _ 'q _ _ S  z q  'q t  S  z q t _ d L _ 'q _ _ S  z t q  'q t  S  z t q t _ d L _ 'q _

where Li const !  i  _ 'q _ _ 'v  'v  'u 'w 'x  'x  'd  'z 'z t _  /HPPDLet matrix W t  t !  , function S  q t continuously differentiable by q q  R N , sets U  S   S  :  convex and closed, inequality holds place  S  q q  t  S  q q  t  q  q ! R t  q  q  R N   Then the functional (2.124) under the conditions (2.125)-(2.128) is convex. 7KHSURRIRIWKHOHPPDLVVLPLODUWRWKHSURRIRIWKHOHPPD )XQFWLRQDO JUDGLHQW 7KH IROORZLQJ WKHRUHP JLYHV DQ DOJRULWKP IRU FDOFXODWLQJ WKH JUDGLHQW RI WKH IXQFWLRQDO   XQGHU WKH FRQGLWLRQV     7KHRUHPLet matrix W t  t !  , functions f x u t  f  x u x  x  t , F x t continuously differentiable by variables x u x  x , partial derivative S  q q t satisfies Lipschitz condition. Then the functional (2.124) under conditions (2.125)-(2.128) is continuously Frechet differentiable, the gradient 



N

J c [

J vc [  J vc [  J uc [  J Zc [  J xc [  J xc [  J dc [  H

at any point [  X can becalculated by the formulas J vc [

wS  q t  t  B t \  J vc [ wv

J uc [

wS  q t  t  J Zc [ wu

J xc [

t

wS  q t  t  B \  wv

wS  q t  t  J xc [ wZ

wS q t  t ³t  wx dt  J dc [ 

t

wS  q t  t dt  wx t

³



t

wS  q t  t dt  wd t

³

where partial derivatives are defined by the expressions above, the function z t  v  v  t  I   solution of a differential equation (2.125), and function \ t  t  I  solution of the adjoint system \

wS  q t  t  A t \  \ t wz

t

wS  q t  t dt wd t





In addition, the gradient J c [  [  X satisfies Lipschitz condition __ J c [  J c [  __ d K __ [  [  __ [  [   X  const ! 

where K 7KHSURRIVRIVLPLODUWKHRUHPVDUHJLYHQDERYH 8VLQJ UDWLRV     ZH FRQVWUXFW D n ^v  vn  u n Z n  xn  xn  d n `  X DFFRUGLQJWRWKHIROORZLQJUXOH   

 VHTXHQFH

^[ n ` 

vn

vn  D n J vc [ n  vn

un

PU >un  D n J uc [ n @ Z n

x

vn  D n J vc [ n  P: >Z n  D n J Zc [ n @

PS > x  D n J xc [ n @ x

n  

PS > xn  D n J xc [ n @

n  

n 







 

PD > d n  D n J dc [ n @ n  

d n



 ZKHUH   D n   H !  K !   /LSVFKLW]FRQVWDQWIURPLQHTXDOLW\   K  H :H LQWURGXFH WKH VHW /  ^[  X  J [ d J [  `  ZKHUH [  v  v  u Z   x  x  d   X  VWDUWLQJSRLQWIRUWKHVHTXHQFH  

0LQLPL]LQJ VHTXHQFHV 7KH IROORZLQJ WKHRUHP JLYHV D QHFHVVDU\ DQG VXIILFLHQWFRQGLWLRQIRUFRQWUROODELOLW\RIV\VWHP     7KHRUHPLet the conditions of Theorem 15 be satisfied, the sequence ^[ n ` is determined by the formula (2.136), U  S   S  :  convex closed sets. Then: 1) numerical sequence ^J [ n ` strictly decreases; 2) __ [ n  [ n __o  when n o f 3) If, in addition, inequality (2.132) holds place, the set /  is bounded then: J [ n J LQI J [  4) sequence ^[ n `  X is minimizing, i.e. OLP no f [ X weakly

5) sequence ^[ n `  X weakly converges to the set, i.e. X  X z ‡ [ n o [ when n o f 6) the following estimate of the rate of convergence is valid  d J [ n  J d

m  n   m n

const ! 

7) the controllability problem (2.92) - (2.96) has a solution if and only if J [ 

7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRI7KHRUHP 7KH VROXWLRQ WR WKH SUREOHP RI RSWLPDO SHUIRUPDQFH LV WKH VDPH DV LQ WKH SUHYLRXVVHFWLRQV ([DPSOH &RQVLGHU WKH FRQWUROODELOLW\ SUREOHP IRU WKH V\VWHP RI ([DPSOH ZKHQWKHVHWV U  S   S  G t  t  I WKHVDPHDVLQH[DPSOHLQWKHSUHVHQFHRIDQ LQWHJUDOFRQVWUDLQWRIWKHIROORZLQJYLHZ 

g j u x x  x

³>x

 

t  x t  u  t  x R t x  x R t x @dt d c  



ZKHUH R t  R t  t  I  JLYHQPDWULFHVRIRUGHU  u  c  JLYHQQXPEHU )RUWKLVH[DPSOHWKHIXQFWLRQ t

x t

³ > x W  x W  u  

 



W  x P W x  x P W x @dW  t  I



7KHQ x

> x t  x t  u  t  x P t x  x P t x @ t  I 

 x 

 x  c 



c  d  d t  

>@ 

9HFWRUVDQGPDWULFHV  P

§ x · ¨ ¸ ¨ x ¸ A ¨x ¸ © ¹

§   · ¨ ¸ ¨    ¸ B ¨   ¸ © ¹

§ · ¨ ¸ ¨ ¸ B ¨ ¸ © ¹

§ · ¨ ¸ ¨  ¸ P ¨ ¸ © ¹

§   · ¨¨    ¸¸ P © ¹



  

 7KHV\VWHP    FDQEHZULWWHQDV P



A P  B P  u   B P  P   u   x P t x  x P t x  



P   P    S   P   P    S  P    P   c  d  

 d D

^d  R  d t ` P t  P  t  G t  u t  U  

 7KHOLQHDUFRQWUROOHGV\VWHPKDVWKHIRUP  y

y 



>@ 

§ x · § x · ¨ ¸ ¸ ¨ ¨ x ¸ y  P ¨ x ¸ x  x  S   x  x  S  ¨ ¸ ¨c  d ¸ ¹ © © ¹  d  D ^d  R  d t ` 

P

0DWULFHV T t e

A y  Bw t  B w t  t  I

At

§ t · §  t · § t · ¨ ¸ ¨ ¸ ¨ ¸  At ¨    ¸ e ¨    ¸ ) t  ¨    ¸  ¨  ¸ ¨  ¸ ¨  ¸ © ¹ © ¹ © ¹      t · § · § ¸ ¨ ¸ ¨ )  t ¨    ¸ B B  B ¨  ¸ ¨  ¸ ¨  ¸ ¹  © ¹ ©



§t ¨ ³ ¨¨  t ©  



W 

A t

A t ³ e  B B e  dt





 t · ¸   ¸dt   ¸¹

 W  

§   · ¨ ¸ ¨    ¸ W  t ¨   ¸ © ¹

§        · ¨ ¸   ¸ !  ¨  ¨    ¸¹ © 

§ t    t    · ¨  ¸  ¸ W t  t ¨ t   ¨    ¸¹ ©

§   t    t       · ¨  ¸  t  ¸ ¨ t     ¨     t ¸¹ ©

7KHQ a

)  t P  P 

e  At P  P 

 

§ x  x  x · ¸ ¨ ¨ x  x ¸ ¸ ¨ cd ¹ ©





O t  P   P

B t )  t W   a

§ x t    x t    x t    x t   · ¸¸ ¨¨ cd ¹  © 

N t

§t    t    · ¸ ¨¨    ¸¹  ©

 B )  t W   ˜ )  

O t  P   P e A tW t  W   P   e A tW  t W   e  A P 









§ x t   t     x t   t   t  x t   t   x t   t  · ¸ ¨     ¨ x t  t  x t  t    x t  t  x t  t ¸ ¸  ¨ t c  d ¹ © 

N  t



e W  t W  e At

 A

§ t   t  ¨  ¨ t  t ¨  ©

 t  t  t  t 





w t

· ¸  ¸  t ¸¹ 

v t  x t    x t    x t    x t     t   z  v  v  t   z   v  v   

w t

y t

v t  c  d  z  v  v  

z t  v  v  x t   t     x t   t   t  x t   t    x t   t   t   t  z  v  v  t   t  z   v  v  



y t

z  t  v  v  x t   t  x t   t    x t   t  x t   t   t   t z  v  v  t   t z   v  v  



y t

z t  v  v  t c  d  t z  v  v  t  >@ 

 7KHRSWLPL]DWLRQSUREOHP    IRUWKLVH[DPSOHFDQEHZULWWHQDV J v  v  u  Z  Z   x  x  d



³ >_ w t  y

 



 u  _  _ w t  y  y 



 u   x P t x  x P t x _  _ Z t  y t _  _ Z t  y t _ @ dt o LQI 



XQGHUFRQGLWLRQV z

z  z

v  z

v  z 

 z  

v ˜  L I  R  v ˜  L I  R  x 

 z 

x  x  S   x

 t  I   x  x  S 



u t  U  Z t  : ^Z ˜  L I  R    d Z d  t  >@`  Z t  :  ^Z ˜  L I  R    d Z d  t  >@`  u t  U ^u ˜  L I  R    d u t d  t  I ` d  D ^d  R  d t `  S  ^x x  x  R   x     x    d `  R    S

^x

x  x  R   x  x d `  R    

 

&RPPHQWV  7KH WKHRU\ RI FRQWUROODELOLW\ IRU QRQOLQHDU V\VWHPV GHVFULEHG E\ RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV LV D SRRUO\ VWXGLHG DUHD RI PDWKHPDWLFDO FRQWURO WKHRU\ 9DULRXVDSSURDFKHVWRWKHVWXG\RIWKHFRQWUROODELOLW\RIG\QDPLFV\VWHPVZLWKRXW ERXQGDU\FRQGLWLRQVSKDVHDQGLQWHJUDOFRQVWUDLQWVFDQEHIRXQGLQ>@1RWHWKDW IRUQRQOLQHDUSURFHVVHVLWLVSRVVLEOHWRREWDLQRQO\ORFDOFULWHULDDQGUHVXOWVDQG QRWJOREDOWKHRU\DVLQWKHFDVHRIOLQHDUV\VWHPV $V IROORZV IURP WKH FRQWHQWV RI &KDSWHU ,, DQ DWWHPSW LV PDGH WR VROYH WKH SUREOHPV RI FRQWUROODELOLW\ RI QRQOLQHDU G\QDPLFDO V\VWHPV LQ WKH SUHVHQFH RI ERXQGDU\ FRQGLWLRQV LQ WKH IRUP RI FRQYH[ DQG FORVHG VHWV DQG ZLWK SKDVH DQG LQWHJUDOFRQVWUDLQWVDVZHOODVOLPLWDWLRQVRQWKHFRQWUROYDOXHV7KHVHUHVXOWVZHUH REWDLQHG E\ FRQVWUXFWLQJ D JHQHUDO VROXWLRQ RI WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG ,W LV VKRZQ WKDW WKH ERXQGDU\ YDOXH SUREOHPV RI FRQWUROODELOLW\ RI RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKSKDVHDQGLQWHJUDOFRQVWUDLQWVFDQEHUHGXFHG WR LQLWLDO SUREOHPV RI RSWLPDO FRQWURO 6ROXWLRQV RI WKH RSWLPDO SHUIRUPDQFH SUREOHPFDQEHREWDLQHGIURPVROYLQJWKHJHQHUDOSUREOHPRIFRQWUROODELOLW\ 7KHUHVXOWVREWDLQHGLQWKLVFKDSWHUFDQEHWKHEDVLVIRUDGHHSHUVWXG\RIWKH FRQWUROODELOLW\ RI QRQOLQHDU G\QDPLFDO V\VWHPV :H GUDZ UHDGHUV  DWWHQWLRQ WR WKH IROORZLQJ XQVROYHG SUREOHPV   7KH FRQVWUXFWHG VHTXHQFHV DUH PLQLPL]LQJ IRU FDVHVZKHQWKHFRUUHVSRQGLQJIXQFWLRQDOVDUHFRQYH[,WLVDGYLVDEOHWRVLQJOHRXW WKH FODVV RI QRQOLQHDU V\VWHPV IRU ZKLFK WKH LQGLFDWHG IXQFWLRQDOV DUH FRQYH[   7KH FRQGLWLRQV IRU WKH H[LVWHQFH RI D )UHFKHW IXQFWLRQDO GHULYDWLYH LPSRVH FHUWDLQ UHTXLUHPHQWV RQ WKH LQLWLDO GDWD RI WKH SUREOHP $SSDUHQWO\ WKHVH UHTXLUHPHQWVDUHTXLWH³WRXJK´ 7KHTXHVWLRQDULVHVLVLWSRVVLEOHWRZHDNHQWKHUHTXLUHPHQWVLPSRVHGRQWKH SURSHUWLHV RI IXQFWLRQV WR HQVXUH WKH H[LVWHQFH RI WKH )UHFKHW GHULYDWLYH"  6XSSRVHWKDWWKHIXQFWLRQDOLQWKHLQLWLDOVSHFLDORSWLPDOFRQWUROSUREOHPLVQRW GLIIHUHQWLDEOH LQ WKH )UHFKHW VHQVH EXW KDV D *DWHDX[ GHULYDWLYH RU LV QRW GLIIHUHQWLDEOH DW DOO ,W LV QHFHVVDU\ WR ILQG PLQLPL]LQJ VHTXHQFHV ZKHQ WKHUH LV D *DWHDX[GHULYDWLYHRIWKHIXQFWLRQDODVZHOODVLQWKHFDVHZKHQWKHIXQFWLRQDOLV QRW GLIIHUHQWLDEOH   $V PHQWLRQHG DERYH LQ VRPH FDVHV IRU FDOFXODWLQJ DQG GHVLJQLQJDFRQWUROV\VWHPLWVXIILFHVWRVROYHWKHSUREOHPRIFRQWUROODELOLW\LQLWV JHQHUDO IRUPXODWLRQ 7KHUHIRUH LW LV DGYLVDEOH WR GHYHORS RQ WKH EDVLV RI WKH SURSRVHG DOJRULWKP DQ DSSOLFDWLRQ SDFNDJH IRU VROYLQJ WKH JHQHUDO SUREOHP RI FRQWUROODELOLW\RIRUGLQDU\GLIIHUHQWLDOHTXDWLRQV   4XRWHGOLWHUDWXUH   $LVDJDOLHY6$5HJLRQDOSUREOHPVRIRSWLPDOFRQWURO±$OPDW\4D]DTXQLYHU VLW\±S  $LVDJDOLHY6$$LVDJDOLHY760HWKRGVIRUVROYLQJERXQGDU\YDOXHSUREOHPV ±$OPDW\4D]DTXQLYHUVLW\±S  

 $LVDJDOLHY 6$ &RQWUROODELOLW\ RI D FHUWDLQ V\VWHP RI GLIIHUHQWLDO HTXDWLRQV  'LIIHUHQWLDO(TXDWLRQV9ʋS  $LVDJDOLHY 6$ 7KH JHQHUDO VROXWLRQ RI D FODVV RI LQWHJUDO HTXDWLRQV  0DWKHPDWLFDO-RXUQDO9ʋ  S  $LVDJDOLHY6$.DELGROGDQRYD$$2SWLPDOVSHHGRIQRQOLQHDUV\VWHPVZLWK UHVWULFWLRQV'LIIHUHQWLDOHTXDWLRQVDQGFRQWUROSURFHVVHVʋS  $LVDJDOLHY 6$ %HORJXURY $3 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHG E\ D SDUDEROLF HTXDWLRQ ZLWK UHVWULFWHG FRQWURO  6LEHULDQ 0DWKHPDWLFDO-RXUQDO-DQXDU\)HEUXDU\9ʋS  $LVDJDOLHY 6$ &RQVWUXFWLYH WKHRU\ RI ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHPV±$OPDW\4D]DTXQLYHUVLW\±S  $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 2Q WKH VROXWLRQ RI WKH )UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIRUDIXQFWLRQRIVHYHUDOYDULDEOHV 9HVWQLN.D]18VHUPDWPHKLQI±ʋ    $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 7KHUPDO PDQDJHPHQW  9HVWQLN.D]18VHUPDWPHKLQI±ʋ  S  $LVDJDOLHY 6$ 6HYUMXJLQ ,9 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\DOLQHDUV\VWHPRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV 0DWKHPDWLFDO-RXUQDO9ʋ  S  $LVDJDOLHY 6$ 6HYU\XJLQ ,9 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV9HVWQLN.D]18 VHUPDWPHKLQI9ʋ  S  $LVDJDOLHY 6$ 6KDQJLWRYD 0( 7R WKH PDWKHPDWLFDO WKHRU\ RI FRQWUROOHG SURFHVVHV9HVWQLN.D]18VHUPDWPHKLQIʋ  S  $LVDJDOLHY 6$ 7R WKH 1DYLHU6WRNHV VROXWLRQ IRU D YLVFRXV LQFRPSUHVVLEOH IOXLG LQ DQ XQERXQGHG UHJLRQ  9HVWQLN .D]18 VHU PDW PHK LQI  ʋ  S  $LVDJDOLHY6$$MD]EDHYD$07RFRQVWUXFWLQJRIRSWLPDOILOWHUIRUUDQGRP SURFHVVHV9HVWQLN.D]18VHUPDWPHKLQIʋ  S  $LVDJDOLHY 6$ $LVDJDOLHYD 66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV  'LIIHUHQWLDO (TXDWLRQVWʋS  $LVDJDOLHY6$ &RQWUROODELOLW\ DQG 2SWLPDO &RQWURO LQ 1RQOLQHDU 6\VWHPV -RXUQDO RI &RPSXWHU DQG 6\VWHPV ± 6FLHQFHV ,QWHUQDWLRQDO ʋ    S  $LVDJDOLHY6$ $LVDJDOLHYD66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV  'LIIHUHQWLDO (TXDWLRQVYROʋS  $LVDJDOLHY6$ %HORJXURY$3 &RQWUROODELOLW\ DQG 6SHHG RI WKH SURFHVV GHVFULEHGE\DSDUDEROLFHTXDWLRQZLWKERXQGHGFRQWURO6LEHULDQ0DWKHPDWLFDO -RXUQDOYROʋSS  $QDQ HYVNLM ,0 $QDKL 19 2YVHHYLFK $, 6\QWKHVLV RI OLPLWHG FRQWURO RI OLQHDUG\QDPLFDOV\VWHPVXVLQJWKHJHQHUDO/\DSXQRYIXQFWLRQ5HSRUWV5$6 9ʋ  $WKDQRVLRV&$QWRXODV (G 0DWKHPDWLFDO6\VWHP7KHRU\7KHLQIOXHQFHRI 5(.DOPDQ6SULQJHU9HUODJ±S  %RRWRQ5& $Q RSWLPL]DWLRQ WKHRU\ IRU WLPHYDU\LQJ OLQHDU V\VWHPV ZLWK QRQVWDWLRQDU\VWDWLVWLFDOLQSXWV3URF,5(±±Y±S  

 %UDPPHU . =LIIOLQJ * .DOPDQ%XF\ )LOWHU  SHU V QHP SRG UHG ,(.D]DNRYD±01DXND±S  %XWNRYVNLM $* &RQWURO PHWKRGV IRU V\VWHPV ZLWK GLVWULEXWHG SDUDPHWHUV ±06FLHQFH  :LHQHU1([WUDSRODWLRQLQWHUSRODWLRQDQGVPRRWKLQJRIVWDWLRQDU\7LPHVHULHV -:LOH\1HZ a t  x t !   b t  u t !@dt j

j

j  m  

t

DVZHOODVUHVWULFWLRQVRQWKHYDOXHVRIFRQWUROV v W V W ^v ˜  L I  R  v W V W  R p

 

p

ae W  I >a b@` 

+HUH A t   B t   C t   D t  DUH PDWULFHV ZLWK SLHFHZLVHFRQWLQXRXV HOHPHQWV RI GLPHQVLRQV n u n  n u m  n u s  n u k  UHVSHFWLYHO\ PDWULFHV K tW PKij tW P  i  s  j  p  t  I   W  I >a  b@  / t O P/ij t O P  i  k   j  n  ZLWK HOHPHQWV

RI L  RQWKHVHWV E ^ tW  Rt d t d t a d W d b`  E ^ t O  Rt d t O d t`   b t

 ³ ³ _ Kij tW _ dtdW  f a t

t t

³³ _ /

ij

t  O _ dtdO  f 

t t

WKH IXQFWLRQ P t  L I  Rn  LV JLYHQ L t   t  I  LV WKH SUHVFULEHG PDWUL[ RI s u n  RUGHU ZLWK FRQWLQXRXV HOHPHQWV :H VXSSRVH WKDW S   S  DUH SUHVFULEHG FRQYH[ FORVHGVHWVZKLFKGHILQHFRQVWUDLQWVRQWKHLQLWLDODQGILQDOVWDWHVRIWKHSKDVHYDOXHV 7KH YHFWRUV J t J  t    J s   G t G t    G s   t  I  DUH JLYHQ IXQFWLRQV ZLWK FRQWLQXRXV HOHPHQWV WKH TXDQWLWLHV c j   j  m  DUH JLYHQ FRQVWDQWV a j t a j t    anj t   b j t b j t  bm t   j  m  DUH WKH JLYHQ YHFWRU IXQFWLRQV j ZLWKFRQWLQXRXVHOHPHQWV U t  Rm   V W  R p  DUHJLYHQFRQYH[FORVHGVHWV 'HILQLWLRQThe process described by (3.1) is called controlled at the instant of time t  if there exist controls u t  U t  v W  V W that conduct a trajectory of the system (3.1) from the point x x t  S to the point x x t  S at fixed t  t  t ! t and conditions (3.3)-(3.5). 'HILQLWLRQ A quadruple u t  v W  x  x U uV u S u S is called to be admissible if the function x t t  x  x u v  t  I solution of the integral and differential equation (3.1) satisfies conditions (3.2)-(3.7). We denote the set of all admissible four by 6 i.e. u t  v W  x  x  6  U uV u S u S 7KXV WKH SURFHVV GHVFULEHG E\ WKH LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ   LV FRQWUROODEOHLIWKHVHW 6 z ‡  ‡  LVDQHPSW\VHW)XUWKHUWKHSURFHVVJHQHUDWHGE\WKH UHODWLRQV    LVFDOOHGWKHFRQWUROODELOLW\SUREOHP 3UREOHPFind the necessary and sufficient controllability conditions for the process described by the integral and differential equation (3.1) under the conditions (3.2)-(3.7). ,QRWKHUZRUGVWRILQGWKHQHFHVVDU\DQGVXIILFLHQWFRQGLWLRQVIRUWKHVHW 6  QRW WREHHPSW\ 3UREOHPLet the set be 6 z ‡ Find a quadruple u t  v W  x  x  6 , i.e. find the controls u t  U t  v W  V W which transform the trajectory of the system (3.1) starting from the point x x t  S at time t to the point x x t  S  t ! t , in this case the solution of equation (3.1), the function x t x t t  x  x u v  t  I  x  S  x  S is on the set G t  R n  and the integral constraints (3.4) and (3.5) are also satisfied along the solution of system (3.1).  

6ROXWLRQV WR FRQWUROODELOLW\ SUREOHPV RI G\QDPLFDO V\VWHPV PDWKHPDWLFDO WKHRU\ RI RSWLPDO SURFHVVHV ERXQGDU\ YDOXH SUREOHPV RI GLIIHUHQWLDOHTXDWLRQVZLWK SKDVH DQG LQWHJUDO FRQVWUDLQWV DQG FRQWUROODELOLW\ SUREOHPV IRU OLQHDU LQWHJUDO DQG GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWVDUHUHGXFHGWRVROYDELOLW\DQGFRQVWUXFWLRQRID JHQHUDOVROXWLRQRIWKHLQWHJUDOHTXDWLRQ t

³* t  t w t dt

*w



a t  I

>t  t @ 







 

t

ZKHUH * t   t || *ij t   t ||  i  n  j  n  LV WKH NQRZQ PDWUL[ RI RUGHU n u n  ZLWK n

SLHFHZLVHFRQWLQXRXVHOHPHQWVZLWKUHVSHFWWR t  DWIL[HG t   t   t ! t   w ˜  L I  R   n

n

n

LVWKHRULJLQIXQFWLRQ a  R   LVDQ\YHFWRU *  L I  R  o R   LVRSHUDWRU 3UREOHPFind the necessary and sufficient conditions for the existence of a n solution of the integral equation (3.8) for any a  R   3UREOHP  Find the general solution of the integral equation (3.8) for any n

a  R  n

7KHVROXWLRQVRISUREOHPVDQGIRUDQ\ a  R  LPSO\VWULFWUHTXLUHPHQWVRQ WKHNHUQHORIWKHLQWHJUDOHTXDWLRQ  DQGWKH\DUHQHFHVVDU\IRUFDVHVZKHQ S   S  JLYHQVHWVRI R n   )RUWKHFDVHZKHQWKHVHWV S   S  FRQWDLQXQLTXHSRLQWVVROXWLRQV RIWKHIROORZLQJSUREOHPVDUHUHTXLUHG 3UREOHPFind the necessary and sufficient conditions for the existence of a solution of the integral equation (3.8) for a given a  R n  3UREOHPFind the general solution of the integral equation (3.8) for a given n aR  6ROXWLRQVWRSUREOHPVKDYHPDQ\DSSOLFDWLRQVLQPDWKHPDWLFV,QWKLVZRUN WKHVHUHVXOWVKDYHDX[LOLDU\PHDQLQJV 7KHHVVHQFHRIWKHSURSRVHGPHWKRGLVWKDWDWWKHILUVWVWDJHRIWKHLQYHVWLJDWLRQ E\ PHDQV RI WKH WUDQVIRUPDWLRQ WKH LQWHJUDO FRQVWUDLQWV     DUH UHGXFHG WR GLIIHUHQWLDO HTXDWLRQV ZLWK ERXQGDU\ FRQGLWLRQV DQG WKH LQWURGXFWLRQ RI ILFWLWLRXV FRQWURO 7KH LQLWLDO SUREOHP LV LPPHUVHG LQ WKH ERXQGDU\ YDOXH SUREOHP RI D OLQHDU GLIIHUHQWLDO HTXDWLRQ )XUWKHU XVLQJ WKH UHVXOWV RI LQYHVWLJDWLQJ WKH LQWHJUDO HTXDWLRQ  ZHILQGDOOVHWVRIFRQWUROVHDFKHOHPHQWRIZKLFKWUDQVIRUPVWKHWUDMHFWRU\RID OLQHDUV\VWHPIURPDQ\LQLWLDOSRLQWRIWKHVHW S  WRDILQLWHVWDWHIURPWKHVHW S  7KLV DSSURDFKDOORZVXVWRREWDLQHTXLYDOHQWLGHQWLWLHVWRWKHRULJLQDOFRQWUROSUREOHPDQG UHGXFH WKH VROXWLRQV RI SUREOHPV   WR LQLWLDO SUREOHP RI RSWLPDO FRQWURO 7KH QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH VROYDELOLW\ RI WKH LQLWLDO FRQWUROODELOLW\ SUREOHP DUH GHWHUPLQHG E\ WKH UHTXLUHPHQW IRU WKH YDOXH RI WKHORZHU ERXQG RI WKH IXQFWLRQDO DQG VROXWLRQV DUH FRQVWUXFWHG RQ WKH EDVLV RI WKH OLPLW SRLQW RI WKH PLQLPL]LQJVHTXHQFHV   

/HWWKHPDWULFHV A   B t   t  I  EH   § a t · ¨ ¸ ¨  ¸ B t ¨¨ ¸ a t ¸ © m ¹

A t

§ b t · ¨ ¸ ¨  ¸  ¨¨ ¸ b t ¸ © m ¹

 § a j t · ¨ ¸ a j t ¨  ¸ b j t ¨ a t ¸ © nj ¹

§ b j t · ¨ ¸ ¨  ¸ j  m   ¨ b t ¸ © mj ¹

ZKHUH  LVDVLJQRIWUDQVSRVLWLRQ:HLQWURGXFHWKHYHFWRUIXQFWLRQ  K t

t

³> A O x O  B O u O @dO  



t  I 

t

7KHLQWHJUDOFRQVWUDLQWV    FDQEHUHSUHVHQWHGLQWKHIRUP K t A t x t  B t u t  t  I      K t  K t c  Q      m

Q ^c  R  c j

c j  d j  j  m  c j

 

   

m   m  d j t  j  m`   

cj j

ZKHUH c c  c m   d d   d m   g j x u c j  d j   j  m   d t   LV DQ XQNQRZQ YHFWRU1RZFRQWUROODELOLW\SUREOHP    FDQEHZULWWHQLQWKHIRUP  [

b

t

a

t

A t [  B t u t  C t ³K t W v W dW  D t ³/ t  O P[ O dO  P t  t  I    

 x  x  S u S

S  x t  G t  u t U t  v t V t   

[ t [ 



x  Om   S u Om   [ t

[



x  c  S u Q  









    

ZKHUH  § A t

·

O

§ · § · nm ¸ B t ¨ ¸¸  [ t ¨¨ ¸¸ A t ¨ ¨ ¨ ¸ A t O m m ¹ ©K t ¹ © B t ¹ ©  x t

 C t

§ C t · ¨ ¸ D t ¨ Om s ¸  ©  ¹

§ D t · ¨ ¸ P t ¨ Om k ¸ ©  ¹



x t

P[ t  P

B t

§ P t · ¨ ¸  ¨ Om  ¸ ©  ¹

I n  Onm   

Onq  LVDUHFWDQJXODUPDWUL[RIRUGHU r u q  ZLWK]HURHOHPHQWV I n  LVWKHLGHQWLW\PDWUL[

RIRUGHU n u n    

Lecture 13.,QWHJUDOHTXDWLRQ  :HFRQVLGHUWKHVROXWLRQVRISUREOHPVDQGIRUWKHLQWHJUDOHTXDWLRQ   7R VROYH SUREOHPV  DQG  ZH QHHG WKH IROORZLQJ WKHRUHPV RQ WKH H[LVWHQFH DQG JHQHUDOIRUPRIWKHVROXWLRQRIWKHLQWHJUDOHTXDWLRQ   n 7KHRUHPIntegral equation (3.8) for any fixed a  R  has a solution if and only if the matrix t

W t  t

³* t  t * t  t dt





t ! t  







 

t

order n u n  is positive definite, where  is the sign of transposition. 3URRISufficiency. /HWWKHPDWUL[ W t  t  EHSRVLWLYHGHILQLWHLH W t  t !   n

:H VKRZ WKDW WKH LQWHJUDO HTXDWLRQ   KDV D VROXWLRQ IRU DQ\ a  R   :H FKRRVH w t * t  t W  t  t a  t  I   7KHQ  *w

t

³* t  t * t  t W







t  t adt

a 

t

&RQVHTXHQWO\LQWKHFDVHZKHQWKHPDWUL[ W t  t !   WKHLQWHJUDOHTXDWLRQ  KDV n

DW OHDVW RQH VROXWLRQ w t * t  t W  t  t a   t  I   a  R   LV DQ\ YHFWRU 7KH VXIILFLHQF\LVSURYHG n Necessity./HWWKHLQWHJUDOHTXDWLRQ  KDYHDVROXWLRQIRUDQ\IL[HG a  R    :HVKRZWKDWWKHPDWUL[ W t  t !   6LQFH W t  t t   IRUWKHSURRI W t  t !   LWLV VXIILFLHQWWRVKRZWKDWWKHPDWUL[ W t  t  LVQRQVLQJXODU :HVXSSRVHWKHFRQWUDU\/HWWKHPDWUL[ W t  t  EHVLQJXODU7KHQWKHUHH[LVWV DYHFWRU c  R n   c z   VXFKWKDW c W t  t c   :HGHILQHWKHIXQFWLRQ v t * t  t c  n

t  I   v ˜  L I  R    :HQRWHWKDW t

³v t v t dt

t

t

c ³* t  t * t  t dt ˜ c

c W t  t c

 

t

7KHQ WKH IXQFWLRQ v t   t  I   6LQFH WKH LQWHJUDO HTXDWLRQ   KDV D VROXWLRQ IRU DQ\ a  R n   LQSDUWLFXODUWKHUHH[LVWVDIXQFWLRQ w ˜  L I  R n  VXFKWKDW a c  t

³* t  t w t dt 

c 

t

7KHQWKHHTXDOLW\LVYDOLG  t



³v t w t dt

t

t

c ³* t  t w t dt

c c 

t

7KLVFRQWUDGLFWVWKHIDFWWKDW c z   1HFHVVLW\LVSURYHG7KHWKHRUHPLVSURYHG  

7KHRUHP  Let the matrix W t  t of (3.15) be positive definite. Then the n

general solution of the integral equation (3.8) for any a  R  has the form t

w t

* t  t W  t  t a  p t  * t  t W  t  t ³* t K p K dK  t  I  

 

t

n

n

ZKHUH p ˜  L I  R   LVDQDUELWUDU\IXQFWLRQ a  R   LVDQ\YHFWRU  3URRI:HLQWURGXFHWKHVHWV  t

W ^w ˜  L I  R   ³* t  t w t dt n

a`  







 

t

 n

Q ^w ˜  L I  R w t t



* t  t W t  t a  p t 

 * t  t W  t  t ³* t K p K dK  p ˜  L I  R  ` n

 



 

t

7KH VHW W  FRQWDLQV DOO VROXWLRQV RI WKH LQWHJUDO HTXDWLRQ   DW W t  t !   7KH n

WKHRUHPDVVHUWVWKDWWKHIXQFWLRQ w ˜  L I  R   EHORQJVWRWKHVHW W  LIDQGRQO\LILW EHORQJV WR WKH VHW Q  LH W Q  :H SURYH WKDW W Q 7R GR WKLV LW VXIILFHV WR SURYHWKDW Q  W   W  Q  :H VKRZ WKDW Q  W  ,Q IDFW LI w t  Q   WKHQ DV IROORZV IURP   WKH HTXDOLW\LVYDOLG t

t

t

t

t

t

³* t  t w t dt



³* t  t * t  t dtW t  t a  ³* t  t p t dt  

 t

t

t

t

 ³* t  t * t  t dtW  t  t ³* t K p K dK



 t

t

t

t

a  ³* t  t p t dt  ³* t K p K dK

a 

7KLVLPSOLHVWKDW w t  W  &RQVHTXHQWO\ Q  W  :H VKRZ WKDW W  Q  /HW w t  W  LH IRU WKH IXQFWLRQ w t  W  WKH HTXDOLW\  LVVDWLVILHGLH  t

³* t  t w t dt 

a 

t

n

:H QRWH WKDW LQ WKH UHODWLRQ   WKH IXQFWLRQ p t  L I  R  LV DUELWUDU\ ,Q SDUWLFXODU ZH FDQ FKRRVH p t w t   t  I   1RZ WKH IXQFWLRQ w t  Q  LV ZULWWHQ LQ WKHIRUP  

w t

t

* t  t W t  t a  w t  * t  t W t  t ³* t  t w t dt  



t

 t

* t  t W  t  t ³* t  t w t dt  w t  * t  t W  t  t u  t

 t

u ³* t  t w t dt

w t  t  I  

t

&RQVHTXHQWO\ w t w t  Q  7KLVLPSOLHVWKDW W  Q  )URPWKHLQFOXVLRQV Q  W   W  Q 7KHWKHRUHPLVSURYHG   7KHEDVLFSURSHUWLHVRIVROXWLRQVRIWKHLQWHJUDOHTXDWLRQ    7KH IXQFWLRQ w t   t  I  FDQ EH UHSUHVHQWHG LQ WKH IRUP w t w t  w t   ZKHUH w t * t  t W  t  t a  LV D SDUWLFXODU VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   t

w t

p t  * t  t W  t  t ³* t K p K dK   t  I LV D VROXWLRQ RI KRPRJHQHRXV LQWHJUDO t

HTXDWLRQ   t

³* t  t w t dt 



 

t n

ZKHUH p ˜  L I  R   LVDQDUELWUDU\IXQFWLRQ,QIDFW   t

³* t  t w t dt

t

t

³* t  t * t  t dtW







t  t a

a 

t



t

³* t  t w t dt

t

t

t

t

t

t

t



³* t  t p t dt  ³* t  t * t  t dtW t  t ³* t K p K dK

n

n

 

 7KH IXQFWLRQV w t  L I  R    w t  L I  R   DUH RUWKRJRQDO LQ L   LH w A w   ,QIDFW  t

³w t w t dt

 w  w ! L





t

a W t  t ³* t  t p t dt  



t



t



t

t

t

t

 ³a W  t  t * t  t * t  t dtW  t  t ³* t K p K dK





t

t

t

t

a W  t  t ³* t  t p t dt  a W  t  t ³* t K p K dK  

 

 7KH IXQFWLRQ w t * t  t W  t  t a  t  I  LV D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   ZLWK PLQLPDO QRUP LQ ,QGHHG || w || || w ||  || w  ||  ,W IROORZV WKDW || w || t|| w ||   ,IWKHIXQFWLRQ p t   t  I   WKHQWKHIXQFWLRQ w t   t  I   7KHQ  w t w t   || w || || w ||   7KHVHWRIVROXWLRQVRIWKHLQWHJUDOHTXDWLRQ  LVFRQYH[ :HFRQVLGHUWKHVROXWLRQVRISUREOHPVDQGIRUWKHLQWHJUDOHTXDWLRQ   7KH TXHVWLRQ DULVHV LI WKH PDWUL[ W t  t  LV QRW SRVLWLYH GHILQLWH GRHV WKH LQWHJUDO HTXDWLRQ   KDYH D VROXWLRQ" ,Q WKLV FDVH WKH LQWHJUDO HTXDWLRQ   FDQ KDYH D VROXWLRQEXWQRWIRUDQ\YHFWRU a  R n   7KHFRQGLWLRQ W t  t !   LVDULJLGFRQGLWLRQ RQWKHNHUQHORIWKHLQWHJUDOHTXDWLRQ$QDQDORJXHRIWKLVFRQGLWLRQLVWKHH[LVWHQFHRI DQ LQYHUVH PDWUL[ A  IRU D OLQHDU DOJHEUDLF HTXDWLRQ Ax b  WKDW JXDUDQWHHV WKH H[LVWHQFHRIDVROXWLRQIRUDQ\ b  R n   $OJHEUDLFHTXDWLRQ Ax b  FDQKDYHDVROXWLRQ DOVRLQWKHFDVHZKHUHWKHUHLVQRLQYHUVHPDWUL[KRZHYHUQRWIRUDQ\YHFWRU a  R n  rankA rank A b   7RVROYHSUREOHPVDQGLWLVQHFHVVDU\WRLQYHVWLJDWHWKHH[WUHPDOSUREOHP WRPLQLPL]HWKHIXQFWLRQDO t

J w _ a  ³* t  t w t dt _ o LQI  







 







 

t

DWFRQGLWLRQ  n

w ˜  L I  R   







ZKHUH a  R  LVJLYHQYHFWRU 7KHRUHP  Let the kernel of the operator * t * t  t be measurable and belong to the class L  Then:   WKH IXQFWLRQDO   XQGHU WKH FRQGLWLRQ   LV FRQWLQXRXVO\ n )UHFKHWGLIIHUHQWLDEOH WKH JUDGLHQW RI WKH IXQFWLRQDO  J c w  L I  R   DW DQ\ SRLQW n w ˜  L I  R   LVGHWHUPLQHGE\WKHIRUPXOD n



J c w

t

* t  t a   ³* t  t * t  V w V dV  t  I  







 

t



n

 JUDGLHQWRIWKHIXQFWLRQDO J c w  L I  R   VDWLVILHVWKH/LSVFKLW]FRQGLWLRQ  n || J c w  h  J c w ||d l || h || w w  h  L I  R         

 IXQFWLRQDO  XQGHUFRQGLWLRQ  LVFRQYH[LH  n

J Dw    D u d DJ w    D J u  w u  L I  R   D  D  >@ 

 



 WKHVHFRQG)UHFKHWGHULYDWLYHLV J cc w

 * t  V * t  t  V  t  I  

 











 

 LILQHTXDOLW\LVKROG t t

³ ³[



ª t º « ³* t  t [ t dt » t «¬t »¼ 

V * t  V * t  t [ t dtdV

t t

t







 

t P ³ _ [ t _ dt  P !  [  [ t  L I  R  n



t

WKHQWKHIXQFWLRQDO  XQGHUFRQGLWLRQ  LVVWURQJO\FRQYH[ n 3URRILet w w  h  L I  R   Then the increment of the functional 'J

t t

t

t

t

t

³  * t V a   ³* t V * t  t w t dt h V ! dV 

J w  h  J w

  

 ³ ³h t * t  t * t  V h V dVdt  J c w  h ! L o h 





t t

ZKHUH _ o h _d c || h ||   )URP  IROORZVWKDW J c w  LVGHILQHGE\IRUPXOD   6LQFH  t

J c w  h  J c w * t  t ³* t  V h V dV   t

WKDW || J c w  h  J c w ||d l || h ||   7KLVLPSOLHVLQHTXDOLW\   n 6LQFH WKH IXQFWLRQDO J w  C L I  R    WKHQ IRU WKH FRQYH[LW\ RI WKH IXQFWLRQDO  LWLVQHFHVVDU\DQGVXIILFLHQWWKDW 

 J c w  J c w  w  w ! L



t t

 ³ ³> w t  w t @ * t  t * t  V u  t t

u > w V  w V @dVdt t   

7KLVLPSOLHVWKHLQHTXDOLW\   $VLWIROORZVIURP  WKHLQFUHPHQW 

J c w  h  J c w  J cc w  h !   * t  V * t  t  h V ! L





t

 ³* t  t * t  V h V dV   t

&RQVHTXHQWO\ J cc w  LVGHILQHGE\IRUPXOD  )URP    IROORZVWKDW   n n  J cc w [  [ !t P || [ ||  w w  L I  R   [  [  L I  R    n 7KLV PHDQV WKDW WKH IXQFWLRQDO J w  LV VWURQJO\ FRQYH[ LQ L I  R    7KHRUHP LV SURYHG  n 7KHRUHP Let for extreme problem (3.19), (3.20) a sequence ^wn t `  L I  R  be constructed by the algorithm   

wn  t

wn t  Dn J c wn  gn Dn

gn D

J wn  DJ c wn  n

PLQ gn D  D !



 



  

7KHQ WKH QXPHULFDO VHTXHQFH ^J wn `  PRQRWRQLFDOO\ GHFUHDVHV WKH OLPLW OLP J c wn   nof

n

,IPRUHRYHUWKHVHW M w ^w ˜  L I  R  J w d J w ` LVERXQGHGWKHQ n

 WKHVHTXHQFH ^wn t `  LVPLQLPL]LQJLH OLP J LQI J w   w ˜  L I  R    nof



  wn o w  DW n o f  ZKHUH w

w t  W

n

^w ˜  L I  R  J w

PLQ J w

wM w

J

LQI

n wL I  R 

J w ` 

 WKHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHKROGV 

 d J wn  J w d

m  m n

const !  n  



  

 LQRUGHUWRWKHLQWHJUDOHTXDWLRQ  WRKDYHDVROXWLRQLWLVQHFHVVDU\DQG VXIILFLHQW WKDW WKH YDOXH J w   w  W   ,Q WKLV FDVH w  W  LV WKH VROXWLRQ RI WKH LQWHJUDOHTXDWLRQ     LI WKH YDOXH J w !   WKHQ LQWHJUDO HTXDWLRQ   KDV QRW DQ\ VROXWLRQ IRU WKHULJKWVLGH a  R n    LI  LVKROGWKHQ Pwn  w P o   DW n o f   n

3URRIFrom conditions g n D n d g n D  J w  C L I  R  follow, that J wn  J wn  DJ c wn t D  

Dl 

|| J c wn ||  D t  n

 

ZKHUH l const !   LV/LSVKLW]FRQVWDQW  7KHQ J wn  J wn  t

 || J c wn ||    l







 

7KLV LPSOLHV WKDW OLP J c wn   DQG WKH QXPHULF VHTXHQFH ^J wn `  nof PRQRWRQLFDOO\GHFUHDVHV6LQFHWKHIXQFWLRQDO J w  LVFRQYH[WKHQWKHVHW M w  LV FRQYH[7KHQ   d J w n  J w d  J c w n  w n  w  ! d__ J c w n __ __ w n  w __d D __ J c w n __    ZKHUH D  LV D GLDPHWHU RI WKH VHW M w   6LQFH M w  LV ZHDNO\ ELFRPSDFW WKH IXQFWLRQDO  J w  LV ZHDNO\ ORZHU VHPLFRQWLQXRXV WKHQ WKH VHW W z ‡  W  M w   w  M w   1RWHWKDW  d OLP J wn  J w d D OLP || J c w n ||  OLP J wn J w J   nof

nof

n of

&RQVHTXHQWO\ WKH VHTXHQFH ^wn `  M w  LV PLQLPL]LQJ )URP LQHTXDOLWLHV    IROORZWKHHVWLPDWLRQ    

n

$V LW IROORZV IURP   WKH YDOXH J w t   w  w ˜  L I  R    7KH n VHTXHQFH ^wn `  LV PLQLPL]LQJ IRU DQ\ LQLWLDO SRLQW w w ˜  L I  R    J w PLQ J w J LQI J w   WKHQLQWKHFDVH J w   WKHHTXDOLW\LVYDOLG  wL

wL

t

³* t  t w t dt 

a



t

7KXVWKHLQWHJUDOHTXDWLRQ  KDVDVROXWLRQLIDQGRQO\LIIRUDJLYHQYHFWRU a  R n  WKH YDOXH J w   ZKHUH w w t   t  I  LV WKH VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   ,I WKH YDOXH J w !   WKHQ w w t   t  I  LV QRW D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   ,I LQHTXDOLW\   KROGV WKHQ WKH IXQFWLRQDO   XQGHU FRQGLWLRQ   LV VWURQJO\FRQYH[7KHQ J wn  J w d J c wn  wn  w ! 

P 

__ wn  w __ d P __ J c wn __  n

 

ZKHUH P !   LVDFRHIILFLHQWRIVWURQJFRQYH[LW\ P

7KHUHIRUH ZLWK WDNLQJ LQWR DFFRXQW   ZH KDYH an  an t an   ZKHUH an

l

J wn  J w  

P

P

l

l

&RQVHTXHQWO\  d an d an   qan   q       q    7KHQWKHHVWLPDWLRQV DUHYDOLG   d J wn  J w d > J w  J w @q n  

 §· __ wn  w __d ¨¨ ¸¸> J w  J w @q n  n ©P¹ +HQFH __ w n  w __o   DW n o f  7KHRUHPLVSURYHG

 

  Lecture 14.7KHH[LVWHQFHRIDVROXWLRQWRFRQWUROODELOLW\SUREOHP  ,Q DGGLWLRQ WR WKH OLQHDU LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ   ZLWK WKH FRQGLWLRQV    ZHFRQVLGHUWKHOLQHDUV\VWHPRIWKHGLIIHUHQWLDOHTXDWLRQ y A t y  B t w t  C t w t  D t w t  P t  t  I             y t [  [ t  y t [ [ t        w ˜  L I  R m  w ˜  L I  R s  w ˜  L I  R k  ZKHUH [ x  Om  S u Om  [ x  c  S u Q  :HQRWHWKDW   

t

b

³K tW v W dW  L I  R  ³/ t O x O dO  L I  R s





a

k

 

t

/HW WKH PDWUL[ EH B t B t  C t  D t  RI RUGHU n  m u m  s  k   WKH YHFWRU IXQFWLRQ w t w t  w t  w t  L I  R s  m  k   )URP WKH LQLWLDO GDWD     ZH GHILQHWKHIROORZLQJPDWULFHVDQGYHFWRUV t

a

t

) t  t [  [  ³) t  t P t dt W t  t

³) t  t B t B t ) t  t dt  

t







t

 t

³) t W B W B W ) t W dW  W t  t

W t  t











W t  t  W t  t  t  I  

t



/ t  [  [

B t ) t  t W  t  t a  N t

 B t ) t  t W  t  t ) t  t 

 §  B t ) t  t W  t  t ) t  t · ¨ ¸ 

¨  C t ) t  t W t  t ) t  t ¸ ¨  D t ) t  t W  t  t ) t  t ¸        ¹ ©

§ N t · ¸ ¨ ¨ N t ¸ /  t  [  [ ¨ N t ¸ ©  ¹



 ) t  t W t  t W  t  t [  ) t  t W t  t W  t  t ) t  t [    t

t

 ³) t W P W dW  ) t  t W t  t W t  t ³) t  t P t dt  

t

t



N  t

) t  t W t  t W  t  t ) t  t  t  I 

  ZKHUH ) t W N t N  W   N W  LV WKH IXQGDPHQWDO PDWUL[ RI VROXWLRQV RI D OLQHDU KRPRJHQHRXVV\VWHP ] A t ]   7KHRUHP  Let the matrix W t  t be positive definite. Then the control w ˜  L I  R s  m  k takes the trajectory of the system (3.31) from any initial point n m n m [  R  to any given finite state [  R   if and only if w t  6 ^w ˜  L I  R smk w t  N t z t  p  p ˜  L I  R

p t  / t [  [  s mk

 t  I `



where p ˜  L I  R s  m  k is an arbitrary function and the function z t z t  p  t  I is a solution of the differential equation  z A t z  B t p t  z t  t  I  Solution of the differential equation (3.31), corresponding to the equation w t  6 has the form  y t z t  p  /  t  [   [  N  t z t  p  t  I   

3URRIThe proof of the theorem follows from Theorems 1, 2. Indeed, from the solution of (3.31) under the conditions (3.32), (3.33) we have t

³) t  t B t w t dt 



a 













 

t

7KLVLQWHJUDOHTXDWLRQIRUWKHXQNQRZQIXQFWLRQ w t  L I  R s  m  k  LVDVSHFLDOFDVHRI   ZKHUH * t  t ) t  t B t   ,W LV QHFHVVDU\ DQG VXIILFLHQW IRU WKH H[LVWHQFH RI D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   WKDW WKH PDWUL[ W t  t  EH SRVLWLYH GHILQLWH )XUWKHUE\UHSODFLQJ * t  t  E\ ) t  t B t  RI   ZHREWDLQ t

W t  t

³) t  t B t B t ) t  t dt  







t

)URP   IROORZV   'LIIHUHQWLDO HTXDWLRQ   DQG UHODWLRQ   GLUHFWO\ IROORZIURPWKHIRUPXODV z t  p

t

t

t

t

³) tW B W p W dW  z t p ) t t ³) t  t B t p t dt 

,WLVHDV\WRYHULI\WKDW y t [    y t [  7KHWKHRUHPLVSURYHG 1RWHWKDWWKHFRPSRQHQWVRIWKHYHFWRUIXQFWLRQ w t  6  DUH w t p t  B t ) t  t W  t  t a  N t z t  p  t  I  



 

w t

p t  C t ) t  t W  t  t a  N t z t  p  t  I  



 

w t

p t  D t ) t  t W  t  t a  N t z t  p  t  I  



 





ZKHUH p t p t  p t  p t   p ˜  L I  R m   p ˜  L I  R s   p ˜  L I  R k   )URP     ±   ZLWK WDNLQJ LQWR DFFRXQW WKDW t

a

) t  t [  [  ³) t  t P t dt  ZHREWDLQ  t

w t

p t  D t x  T t x  T t d  P t  N  t z t  p  t  I  

 

w t

p t  D t x  T t x  T t d  P t  N  t z t  p  t  I  

 

w t

p t  D t x  T t x  T t d  P t  N  t z t  p  t  I  

 

z t  p  S  t x  S  t x  S  t d  P t  N  t z t  p  t  I  

 

  

y t

ZKHUH P t   P t   P t   P t   t  I  DUHWKHNQRZQIXQFWLRQV /HPPDLet the matrix W t  t be positive definite. Then the controllability problem defined by the relations (3.12)-(3.14) (or (3.1)-(3.7)) is equivalent to the identities  

t

b

w t u t  w t

³K tW v W dW 

w t

a

³/ t O Py O dO 

t  I

 

t



 t  I  

A t z  B t p t  C p t  D t p t  z t

z

p ˜  L I  R m  p ˜  L I  R s  p ˜  L I  R k   m

x  x  S u S  R n  d  D ^d  R  _ d t `   u t  U t  v W  V W  Py t

x t  G  t  I   



                  IRUPXODV    

ZKHUH w t   w t   w t   y t   t  I  DUH GHILQHG E\ FRUUHVSRQGLQJO\ 3URRI If the identities (3.45) are satisfied, then the function y t  t  I is a solution of the differential equation y t

b

t

a

t

A t y t  B t u t  C t ³K t W v W dW  D t ³/ t  O Py O dO  

 P t  t  I  y t [  y t [  $V LW IROORZV IURP IRUPXODV   WKH IXQFWLRQ y t z t  p  /  t  [   [  N  t z t  p   t  I   ZKHUH z t z t  p   t  I  VDWLVILHV WR WKH LGHQWLW\   IRU DQ\ p ˜  L I  R m   p ˜  L I  R s   p ˜  L I  R k   ,Q SDUWLFXODU [ x  Om   S u Om    [ x  c  S u Q   

)XUWKHU IURP LQFOXVLRQV d  D   u t  U t   v W V W  IROORZ WKDW y t { [ t   t  I   ZKHUH Py t P[ t x t  G t   t  I   7KXV ZKHQ WKH LGHQWLWLHV     DUH VDWLVILHGWKHUHODWLRQV    DUHWUXH7KHOHPPDLVSURYHG )URP7KHRUHPDQG/HPPDLWIROORZVWKDWWKHVROXWLRQRIWKHFRQWUROODELOLW\ SUREOHPFDQEHUHGXFHGWRVROYLQJWKHIROORZLQJRSWLPDOFRQWUROSUREOHPPLQLPL]H WKHIXQFWLRQDO J u v p  p  p  Z x  x  d b

t

a

t

t

³^_ w t  u t _







t

 _ ³K t W v W dW  w t _  _ ³/ t  O Py O dO  w t _  



 

 t  I  







    

 _ Z t  L t Py t _ `dt o LQI

DWFRQGLWLRQV  z

A t z  B t p t  C t p t  D t p t  z t

p ˜  L I  R m  p ˜  L I  R s  p ˜  L I  R k  

 

m

x  x  S u S  R n  d  D ^d  R  _ d t `  





u t  U t  v W  V W  Z t  : t  t  I  







    

ZKHUHWKHVHW  s

: t ^Z ˜  L I  R  J t d Z t d G t ٝ       PDWUL[ P I n  Onm   WKH IXQFWLRQV w t   w t   w t   y t  t  I  DUH GHILQHG E\ 

IRUPXODV  ±  FRUUHVSRQGLQJO\ :HLQWURGXFHWKHQRWDWLRQV  T

T ˜˜

u t  v W  p t  p t  p t  Z t  x  x  d  X



 U t u V W u LD I  R m u LD I  R s u LD I  R k u : t u S u S u DD  H





L I  R m u L I  R p u L I  R m u L I  R s u L I  R k u 

 s

m

u L I  R  u R n u R n u R   

 LD I  R m

 LD I  R s

^ p ˜  L I  R m  __ p __d D `  ^ p  ˜  L I  R s  __ p  __d D ` 

 LD I  R k

^ p  ˜  L I  R k  __ p  __d D ` 

 DD

m

^d  R   _ d _d D` 

ZKHUH D !   LVVXIILFLHQWO\ODUJHQXPEHU D  f  7KHQWKHRSWLPL]DWLRQSUREOHP    LVZULWWHQPLQLPL]HWKHIXQFWLRQDO  J T

t

³F T ˜˜  z t p  z t  p  t dt o LQI  T  X  H   







 

t

ZKHUH  t

b

F _ w  u _  _ ³K t W v W dW  w _  _ ³/ t  O Py O dO  w _  _ Z  LPy _   a

t

:H QRWH WKDW U t   V W   L I  R   L I  R s   LD I  R k   : t  DUH ERXQGHG FRQYH[ FORVHGVHWVLQDUHIOH[LYH%DQDFKVSDFH6LQFH DD   S   S  DUHERXQGHGFRQYH[FORVHG VHWVWKHVHW X LVZHDNO\FRPSDFWLQ H   ,WVKRXOGEHQRWHGWKDWWKHIXQFWLRQDO J T   T  X  LV D FRQWLQXRXV FRQYH[ IXQFWLRQDO LQ D ZHDNO\FRPSDFW VHW X   7KHUHIRUH WKH VHW X ^T  XJ T J LQI J T `  LV QRW HPSW\ ,Q RWKHU ZRUGV D ZHDNO\ ORZHU D

m

D

T X

VHPLFRQWLQXRXVIXQFWLRQDO J T  UHDFKHVWKHORZHUERXQGRQDZHDNO\FRPSDFWVHW X    

/HPPD  Let the matrix W t  t be positive definite. In order that the controllability problem (3.1) - (3.7) has a solution it is necessary and sufficient that the value J T  where T u t  v W  p t  p t  p t  Z t  x  x  d  X  X is the optimal control in problem (3.56). 3URRINecessity. We suppose, that the controllability problem (3.1) - (3.7) (or (3.12) - (3.14)) has a solution. Let x t x t t  x  x  u  v  t  I be a solution of the integral and differential equation (3.1). :H  VKRZ  WKDW  WKH  YDOXH J T   $V  LW  IROORZV  IURP  /HPPDWKH  UHODWLRQV     DUH HTXLYDOHQW WR WKH LGHQWLWLHV     b

&RQVHTXHQWO\ w t u t  U t  

w t

³K tW v W dW 

 v W  V W   W  I 

a

t

w t

³/ t O Py O dO  

y t

z t  p  /  t  [   [  N  t z t  p [ t   [

x  Om    

t

[

x  c   c

t  I   Z t w

 w

 w





c  c m   c j

c j  d j   j

 m   P [ t

x t  t  x  x  u  v  

x t

L t Py t   t  I   ZKHUH  p t  D t x  T t x  T t d  P  N  t z t  p   p t  D t x  T t x  T t d  P  N  t z t  p   p t  D t x  T t x  T t d  P  N  t z t  p  

 y t

 Py t

z t  p  S  t x  S  t x  S  t d  P  N  t z t  p  t  I  

x t  Z t

L t Py t

L t x t  t  I  

7KHQ  J T

t

³>_ w



t

b

t  u t _  _ ³K t W v W dW  w t  _   a

 t

 _ ³/ t  O Py O dO  w t _  _ Z t  L t Py t _ @dt



t

1HFHVVLW\LVSURYHG  6XIILFLHQF\ /HW WKH YDOXH EH J T   T  X  X   :H VKRZ WKDW WKH FRQWUROODELOLW\ SUREOHP     KDV D VROXWLRQ ,Q IDFW WKH YDOXH J T   LI DQG b

RQO\ LI w t u t   ³K tW v W dW a

t

w t   ³/ t  O Py O dO

w t   Z t

L t Py t  

t

t  I   ZKHUH u t  U t   v W  V W   Z t  : t   t  I   x  S    x  S   d  D     

7KHQ y t [ t x t K t   t  I   ,W IROORZV WKDW x t   t  I  LV D VROXWLRQ RI WKH LQWHJUDODQGGLIIHUHQWLDOHTXDWLRQ  7KHVXIILFLHQF\LVSURYHG7KHWKHRUHPLVSURYHG   Lecture 15.&RQVWUXFWLRQRIWKHVROXWLRQWRWKHFRQWUROODELOLW\SUREOHP  6HPLQDUOHVVRQ  :HLQWURGXFHWKHQRWDWLRQV  b

³K tW v W dW  w t  

w t  u t  F q t  t

F q t  t





a

 t

F q t  t

³/ t O Py O dO  w t  

F q t  t Z t  LPy t  

t



q t

T ˜˜  z t  p  z t  p  t  I  

7KHQWKHIXQFWLRQDO  LVZULWWHQLQWKHIRUP  J T

t

t

³F q t  t dt ³ _ F q t  t _







t

 _ F q t  t _  

t

  _ F q t  t _  _ F q t  t _ dt 

3DUWLFXODUGHULYDWLYHVDUHHTXDOWR  wF q t  t wu

Fu q t  t  F q t  t  

 wF q t wv

Fv q t

t

t b

t

t a

 ³ K t W w t dt   ³ ³K t W K t  V v V dVdt  



wF q t wp

F p q t

 F q t  t  B t \ t  

F p q t

 F q t  t  C t \ t  

F p q t

 F q t  t  D t \ t  





wF q t wp





wF q t wp





wF q t wZ

FZ q t  F q t   



wF q t wx

F x q t 

 D t F q t   D t F q t  S  t F  q t  



  D t F q t  S  t P L F q t   

wF q t wx

T t F q t  T t F q t  S  t F  q t  

F x q t 



 T t F q t  S  t P L F q t   

wF q t wd

Fd q t T t F q t  T t F q t  S  t F  q t  



 T t F q t  S  t P L F q t   



wF q t wz

F z q t

wF q t wz t

F z t q t

F  q t   P L F q t  



 N t F q t   N F q t  N  t F  q t  



  N t F q t   N  t P L F q t  

ZKHUH  t

t t

t

t t

 ³P / O  t w O dO   ³ ³ P / O  t / O  V Py V dVdO  

F  q t 

7KHRUHPLet the matrix W t  t be positive definite. Then the functional (3.50) under the conditions (3.51)-(3.55) is continuously Frechet-differentiable, the gradient J c T J uc T  J vc T  J cp T  J cp T  J cp T  J Zc T  J xc T  J xc T  J dc T  H        LQDQ\SRLQW T  X  DUHFDOFXODWHGE\IRUPXOD J uc T

Fu q t  J vc T

J cp T 

F p q t  J cp T 

t

³F

J xc T 

t

 x



q t dt  J xc T 

F v q t  J cp T F p q t    F p q t  J Zc T FZ q t 

t



³F

t

 x

q t dt  J dc T

 



 

t

³F

d

q t dt 

t

WKH IXQFWLRQ z t  p   t  I  LV D VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ   DQG WKH IXQFWLRQ \ t   t  I  LVDVROXWLRQRIWKHDGMRLQWIXQFWLRQ  \

F z q t  A t \  \ t

t

 ³F z t q t dt  t









 



 

,QDGGLWLRQWKHJUDGLHQW J c T   T  X  VDWLVILHVWRWKH/LSVKLW]FRQGLWLRQ 

__ J c T   J c T  __d K __ T   T  __ T   T   X  

ZKHUH K const !      





t  I be a solution of

3URRI Let T t  T t  'T t  X  z t  p  z t  p  'p  equation (3.51). Let z t  p  'p z t  p  'z t  t  I  Since t

t

t

t

t

t

³) t W B W p W dW  ³) t W C W p W dW  ³) t W D W p W dW  

z t  p

WKDW t

'z t  p

t

t

³) t W B W 'p W dW  ³) t W C W 'p W dW  ³) t W D W 'p W dW   





t





t



t

&RQVHTXHQWO\  t

_ 'z t  p _d

³

t

t

__ ) t W ____ B W ___ 'p W _ dW  ³ __ ) t W ____ C W ___ 'p  W _ dW   t



t

 ³ __ ) t W __ __ D W ___ 'p  W _ dW d c __ 'p __  c  __ 'p  __  c  __ 'p  __ t  I   t

ZKHUH c  c  c const !   7KHLQFUHPHQWRIWKHIXQFWLRQDO  J T  'T  J T

'J

t

³> F q t  'q t  t  F q t  t @dt 





t



t

³^>_ F q  'q t _





 _ F q t _ @  >_ F q  'q t _  _ F q t _ @  

t



 >_ F q  'q t _  _ F q t _ @  >_ F q  'q t _  _ F q t _ @`dt 

7KHUHIRUHZLWKWDNLQJLQWRDFFRXQWWKDW D  _ F q  'q t _  _ F q t _   w  u 'u !   w  u 'w !  _ 'w  'u _    'w 'p  D t ' x  T t 'x  T t ' d  N  t 'z t  p   b

b

a

a

E  _ F q  'q t _  _ F q t _   ³K tW 'v W dW  'w t  ³K t W v W dW   b

 w t !  _ ³K t W 'v W dW  'w t _ 



a

'w

'p  D t 'x  T t 'x  T t 'd  N  t 'z t  p   t

t

t

t

F  _ F q  'q t _  _ F q t _   ³/ t O P'ydO  'w  ³/ t O PydO   t

 w !  _ ³/ t  O P'ydO  'w t _  t

'w 'p  D t 'x  T t 'x  T t 'd  N  t 'z t  p  'y 'z t  S  t 'x  S  t 'x  S  t 'd  N  t 'z t  p  

G  _ F q  'q t _  _ F q t _   Z  LPy  'Z  LP 'y !  _ 'Z  LP 'y _   ZHREWDLQ  

t

³^'u F

'J

u

q t  'v F v q t  'p > F q t @ 

t

 'p > F q t @  'p > F q t @  'Z FZ q t  'x F x q t    'x F q t  'd F d q t  'z t F z q t 

  x







 

 'z t F z t q t  R  R  R  R `dt  

b

R _ ³K t W 'v W dW  'w t _  

ZKHUH R _ 'w  'u _  

a

t

R _ ³/ t  O P'ydO  'w _   t

R _ 'Z  LP 'y _   R

R  R  R  R   8VLQJ)XELQL VWKHRUHPRQWKHFKDQJHRIYDULDEOHVRILQWHJUDWLRQZHKDYH D   

t

b

b

t

a

a

³   ³K tW v W dW  w t  ³K tW 'v W dW ! dt 

 

b

b

b

t b

a

a

a

t a

³    ³K tV w t dt 'v V ! dV  ³   ³ ³K tV K tW v W dWdt 

 

'v V ! dV  J vc W  'v ! L  





 t

t b

t

t a

 ³ K t  mW w t dt   ³ ³K t W K t  V dVdt

J vc W



F v q t   

 

 E   

t

t

t

t

t

t

³   ³/ t O PydO  w  ³/ t O P'ydO ! dt 

 

t

t

t

t

³   ³P / t V w t dt 'y V ! dV  





 

t

t t

t

t t

 ³   ³ ³ P / t  V / t  O PydOdt  'y V ! dV  J cy V  'y ! L   

 J cy t

t

t t

t

t t

 ³P / O  t w O dO   ³ ³ P / O  t / O  V PydVdO

  

F  q t    

:HFRQVLGHUWKHODVWWZRWHUPVLQ  6LQFH VHH   

t

³'z t F



t

 z t

t

'z t ³ F z t q t dt

q t dt

t



 'z t \ t 

 

t

³ t

w >'z t \ t @dt wt

t

 ³>'z t \ t  'z t \ t @dt  t

 

t

 ³>'z t A t  'p t B t  'p t C t  'p t D t @\ t dt   t

 

t

 ³'z t > F z q t  A t \ t @dt t

t

 ³'p t B t \ t dt   t

 

t

t

t

t

t

t

 ³'p t C t \ t dt  ³'p t D t \ t dt  ³'z t F z q t dt  

WKDW  t

t

³'z t F z t q t dt  ³'z t F z q t dt

t



t

t

t

t

 ³'p t B t \ t dt  t



 



 

 ³'p t C t \ t dt  ³'p t D t \ t dt





t





t

 )URP  ZLWKWDNLQJLQWRDFFRXQW  ±  ZHJHW 

'J  J uc T  'u ! L   J vc T  'v ! L   J cp T  'p ! L        J cp T  'p  ! L   J cp T  'p  ! L   J Zc T  'Z ! L         J xc T  'x  ! n   J xc T  'x ! n   J dc T  'd ! m   R R   R   R _ R _d c  __ T __  R

t

³ Rdt

t



$V LW IROORZV IURP IRUPXOD   WKH )UHFKHW GHULYDWLYH RI WKH IXQFWLRQDO  XQGHUWKHFRQGLWLRQV    LVGHWHUPLQHGE\WKHIRUPXOD   /HW T   T  T  'T  X   6LQFH _ J c T  J c T  _ d L _ 'q t _  L _ '\ t _  L _ 'T _   ZKHUH _ 'q t _d L __ 'T __  _ '\ t _d L __ 'T __  WKHQ __ J c T   J c T  __d K __ 'T __  T   T   X    7KHWKHRUHPLVSURYHG  

8VLQJUHODWLRQV    ZHFRQVWUXFWWKHVHTXHQFH ^T n ` ^un  vn  pn  p n  pn  Zn  x n  xn  d n `  X  E\WKHDOJRULWKP 

un  PU >un  D n J uc T n @ vn  PV >vn  D n J vc T n @ pn  P D > pn  D n J cp T n @ p n  P D > p n  D n J cp T n @ pn  x n 

L



P D > pn  D n J cp T n @ Zn 

L



P: >Zn  D n J Zc T n @   L  PS > x n  D n J xc T n @ xn  PS > xn  D n J xc T n @     d n  P D >d n  D n J dc T n @ n 



 

D

   H !   K !   LVWKH/LSVFKLW]FRQVWDQWIURPWKHLQHTXDOLW\   K  H :H LQWURGXFH WKH VHW  /  ^T  X _ J T d J T  `  ZKHUH T  u  v  p  p  p  Z  

ZKHUH   Dn 

 LVDVWDUWLQJSRLQWIRUVHTXHQFH   7KHRUHP We suppose, that the conditions of Theorems 5 and 6 are satisfied, the sequence ^T n ` is determined by the formula (3.65), and U  V  LD I  R m  LD I  R s  LD I  R k  : S  S  DD are bounded convex closed sets. Then: 1. the numerical sequence ^J T n `  is strictly decreasing;      PT n  T n P o   DW n o f   ,IPRUHRYHUWKHVHW /   LVERXQGHGWKHQ        WKHVHTXHQFH ^T n `  X  LVPLQLPL]LQJLH OLP J T n J LQI J T    x  x  d   X

nof

T X

    WKHVHTXHQFH ^T n `  X  ZHDNO\FRQYHUJHVWRWKHVHW X   X z ‡   Tn  o T  DW n o f       WKHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHWDNHVSODFH  d J Tn  J d

c  n  c n

const !  

    WKHFRQWUROODELOLW\SUREOHPGHILQHGE\    KDVDVROXWLRQLIDQG RQO\LI J T   3URRI Assertions 1), 2) follow directly from the property of the projection of a point on a convex closed set and the algorithm (3.65). Since the functional (3.50) under conditions (3.51) - (3.55) is convex, the bounded convex closed set /  in a reflexive Banach space H is weakly bicompact, J T  C  X  then J T is weakly lower semicontinuous on /   Consequently, the functional J T reaches the lower bound on the set /  and the inequality  d J T n  J T d C __ T n  T n  __ c const !  n    holds, where J T LQI T /  J T PLQ J T   T / 

+HQFHWDNLQJLQWRDFFRXQWWKDW __ T n  T n  __o   n o f  ZHKDYHWKHVHTXHQFH ^T n `   LVPLQLPL]LQJVLQFH ^T n `  /    /   LVZHDNO\ELFRPSDFWWKHQ Tn  o T  DW n o f    

6LQFH  d J T n  J T d C __ T n  T n  __  J T n  J T n  t H __ T n  T n  __  WKHQDVVHUWLRQ  LVWUXH$VLWIROORZVIURP/HPPDLIWKHYDOXH  J T   WKHQWKHFRQWUROODELOLW\ SUREOHP    KDVDVROXWLRQ:HQRWHWKDWLI J T t   V   V  X   7KHRUHPLV SURYHG /HW t ! t  EH WKH VPDOOHVW YDOXH t   IRU ZKLFK J T   7R VROYH WKH RSWLPDO VSHHG SUREOHP LW LV QHFHVVDU\ WR VROYH WKH FRQWUROODELOLW\ SUREOHP IRU WKH YDOXHV t  t     ZKHUH t ! t ! t !  ! t   7KHFRQVWUXFWLYHQHVVRIWKHSURSRVHGPHWKRGLVGHPRQVWUDWHGE\RQHH[DPSOH ([DPSOH:HFRQVLGHUWKHFRQWUROODELOLW\SUREOHPRIWKHIROORZLQJIRUP 



x

x  u t  ³ FRV tW v W dW  W  I

>@ t  I

>@ 







x

u t  ³ets x s ds t  I   





g x  x  u

³> x t  x t  u t @dt d c   













x t  G t  G t



u t  U

^ x  R  e d x t d e   e   d x t d e    t  I ` 

 ^u ˜  L I  R     d u t d    

e e  d  

  

 d u t d e  e   ٝ   v W  V ^v ˜  L I  R    d v W d  ٝ 







§ x t · x t ¨¨  ¸¸ x © x t ¹



x  S 

§ x  · ¨¨ ¸¸ x © x  ¹

§ x  · ¨¨ ¸¸  © x  ¹

^ d x  d e e   d x  d e  ` 



 x  S ^ d x  d e   e    d x  d e   `  )RUWKLVH[DPSOH 

K t

t

³> x W  x W  u W @dW   









 K t x t  x t  u t  K   K  c  d  d !   7KHQWKHUHODWLRQV  ±  FDQEHZULWWHQLQWKHIRUP  



[









A[  Bu  C ³ FRV tW v W dW  D ³ets x s ds t  I  

ZKHUH  



§   · §  · ¨ ¸ ¨ ¸ B     ¨ ¸  ¨   ¸ C ¨   ¸ ¨  ¸ © ¹ © ¹ § x  · § x t · ¸ ¨ ¸ ¨ [ t ¨ x t ¸ [ ¨ x  ¸ [ ¨  ¸ ¨ K t ¸ ¹ © ¹ © [  [   [ [   t  I  

§· ¨ ¸ ¨  ¸ D ¨ ¸ © ¹

A

§ x  · ¸ ¨ ¨ x  ¸  ¨c  d ¸ ¹ © 

§ · ¨ ¸ ¨  ¸  ¨ ¸ © ¹

  /LQHDUFRQWUROODEOHV\VWHPKDVWKHIRUP   y A y  Bw t  Cw t  Dw t  t  I     y  [  y  [  w ˜  L I  R   w ˜  L I  R  w ˜  L I  R   WKH IXQGDPHQWDO PDWUL[ RI VROXWLRQV RI D OLQHDU KRPRJHQHRXV V\VWHP ] A] LV GHWHUPLQHGE\WKHIRUPXOD  

T t e

A t 

§ t  ¨  ¨   ¨    t ¨¨ t    ©

· ¸  ¸¸   ¸¸ ¹

 

e

 A t 

T  t

§ ¨  ¨  ¨ ¨¨  t ©

· ¸  ¸¸   ¸¸ ¹

 t    t  

 

) t W T t T  W

§ ¨  ¨  ¨ ¨¨ t  W ©

t W  t  W  

6LQFH  

B

B  C  D

§    · ¨ ¸ ¨    ¸ ¨     ¸  ¨¨ ¸¸ © ¹

  

· ¸  ¸¸   ¸¸ ¹

WKDWWKHPDWUL[  



W 

³)  t B B )  t dt 







 § ¨   t  t    t ¨     t ³ ¨ ¨    ¨   t  t  t   t © 



· ¸ ¸    t ¸    t ¸    t  t  t  ¸  ¹   t  t   t 

 §      · ¸ ¨   ¸   ¨  ¨     ¸ ¹ © ZKHUHWKHSULQFLSDOPLQRUV '   '    '   +HQFHWKHPDWUL[ W   LVSRVLWLYHGHILQLWH7KHLQYHUVHPDWUL[  · §   ¸  ¨ W        ¸  ¨  ¨  ¸¹   ©  0DWUL[ W t  W   W  t   ZKHUH



W  t

§ t  t   t    t  t    ¨  t   ¨ t  t   ¨ t  t    t   t     t  t   t    © t  t    t   t    



t  t  t    



t  t    t   t    t    



· ¸ ¸  ¸ ¹

7KHYHFWRU  

a

)  [  [

§ x   x   x  · ¸ ¨ x   x  ¸  ¨ ¨  x   x    c  d ¸   ¹ © 

$VLWIROORZVIURPIRUPXOD  WKHYHFWRUIXQFWLRQ 

§ p t · § / t  [  [ · § N t z  p · ¸ ¸ ¨ ¸ ¨ ¨ ¨ p t ¸  ¨ / t  [  [ ¸  ¨ N t z  p ¸  ¨ p t ¸ ¨ / t  [  [ ¸ ¨ N t z  p ¸   ¹ ¹ ©  ©  ¹ © 

w t

§ w t · ¸ ¨ ¨ w t ¸ ¨ w t ¸ ©  ¹

p t

§ p t · ¨¨ ¸¸ / t  [  [ © p t ¹

ZKHUH  

§ / t  [  [ · ¨¨ ¸¸ N t z  p © / t  [  [ ¹

  

§ N t z  p · ¨¨ ¸¸  © N t z  p ¹

7KHQ 





w t

§ p t · § / t  [  [ · § N t z  p · ¸¸  ¨¨ ¸¸ t  I   ¨¨ ¸¸  ¨¨ © p t ¹ © / t  [  [ ¹ © N t z  p ¹



w t

p t  /  t  [   [  N  t z  p  t  I  



 w t p t  /  t  [   [  N  t z  p  t  I   ZKHUHIXQFWLRQ z t  p   t  I  LVDVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ   z A z  B p t  C p t  D p t  z   t  I     p ˜  L I  R   p ˜  L I  R  p ˜  L I  R   +HUH   / t  [   [ B )  t W   a     / t  [  [ C )  t W   a     / t  [   [ D)  t W   a     N  t z  p  B )  t W   )  z  p     N  t z  p C )  t W   )  z  p     N t z  p  D )  t W   )  z  p   %\WKHVLPLODUZD\RI  ZHJHW 

y t

§ y t · ¸ ¨ ¨ y t ¸ ¨ y t ¸ ©  ¹

§ z t  p · § /  t  [  [ · § N  t z  p · ¸ ¸ ¨ ¸ ¨ ¨ ¨ z t  p ¸  ¨ /  t  [  [ ¸  ¨ N  t z  p ¸  ¨ z t  p ¸ ¨ / t  [  [ ¸ ¨ N t z  p ¸   ¹ ¹ ©  ¹ ©  © 

ZKHUH  

z t  p

§ z t  p · ¸ ¨ ¨ z t  p ¸ /  t  [  [ ¨ z t  p ¸ ¹ © 

§ /  t  [  [ · ¸ ¨ ¨ /  t  [  [ ¸ N  t z t  p ¨ / t  [  [ ¸   ¹ © 

§ N  t z  p · ¸ ¨ ¨ N  t z  p ¸  ¨ N t z  p ¸ ¹ © 

2SWLPL]DWLRQSUREOHP)RUWKLVH[DPSOHWKHRSWLPDOFRQWUROSUREOHP     KDVWKHIRUP 

J T

J u v p  p  p  Z x  x  d









 ³^_ w t  u t _  _ ³ FRV tW v W dW  





 w t _  _ ³ets y s ds  w t _  _ Z t  LPy t _ `dt o LQI  

  

DWFRQGLWLRQV   z A z  B p t  C p t  D p t  z   t  I    p ˜  L I  R   p ˜  L I  R  p ˜  L I  R      x  x  S u S  d  D ^d  Rd t ` u t  U  v W  V    Z t  : ^Z ˜  L I  R   e d Z t d e   e   d Z t d e    ٝ   

P

I   O  L

§ y · ¨¨ ¸¸  © y ¹

§  · ¨¨ ¸¸ LPy ©  ¹



7KH IXQFWLRQV F q t w  u  F q t



³ FRV tW v W dW  w 

 F q t





Z  LPy   )RUHDFKIL[HG T n

F q t

³e

ts

y s ds  w  



un  vn  pn  p n  pn  Zn   x n  xn  d  X

WKHJUDGLHQWRI

WKHIXQFWLRQDOLVFDOFXODWHGE\WKHIRUPXOD   ,W FDQ EH VKRZQ WKDW IRU WKLV H[DPSOH WKH OLPLWLQJ YDOXHV RI WKH PLQLPL]LQJ VHTXHQFHVDUHDVIROORZV 

u t u t  u t  u t







p t



p t

VLQ t VLQ t  FRV t  u t et    t t t



­   d W    ® ¯   d W  

 VLQ t e t  et     t  I  v W t t  t 

 § p t · ¨¨ ¸¸ p t © p t ¹

u t  p t

u t  

 

³ FRV tW v W dW  p t 



³e

ts

y s ds y t

x t







y t et 



Z t

 VLQ t t

x t  t  I  Z t

x t  



x t  t  I  x

e · § ¸¸ x ¨¨ © e   VLQ  ¹

 



³> x



t  x t  u t @dt

c  d  



7KHYDOXH J T J u  v  p  p  p  Z  x  x  d    

§ e · ¨¨  ¸¸  © e  VLQ  ¹

et  

Lecture 16.6SHFLDOFDVHV  7KH VROYDELOLW\ DQGFRQVWUXFWLRQ RI WKH VROXWLRQ RI WKH FRQWUROODELOLW\SUREOHP IRUWKHJHQHUDOSUREOHP    DUHJLYHQDERYH7KHVHUHVXOWVDUHDOVRDSSOLFDEOH LQWKHIROORZLQJVSHFLDOFDVHV  ,I K t W {   / t  O {   t  >t  t @  W  >a  b@  O  >t  t @  WKHQ FRQWUROODELOLW\ SUREOHPRI  ±  KDVWKHIRUP  x A t x  B t u  P t  t  I >t  t @  





x t



x t  G t  G



g j x u d c j  j  m g j x u c j  j

x  x t

S  Rn  

x  S u S

^ x  R n J t d L t x d G t  t  I ` 





t

g j x u

m   m  

³> a t  x t !   b t  u t !@dt j

j

j  m  

t



u t  U t

^u ˜  L I  R m  u t  U t  R m 



,QSDUWLFXODUWKHVHWV S   S   S  DUHGHILQHGE\UHODWLRQV  S ^x  R n h x d  Ex c` S ^x  R n h x d  Fx d `   S ^ x  x  R  n H x  x d  Cx  Dx b`  ZKHUH h x   h x   H x  x  DUH FRQYH[ IXQFWLRQV E  F   C   D  DUH JLYHQ PDWULFHV c  d   b  DUHJLYHQYHFWRUV ,QWKHDSSOLHGSUREOHPVWKHVHW U t  KDVWKHIRUP D  U t ^u ˜  L I  R m  D t d u t d E t   E  U t ^u ˜  L I  R m  _ u t _ d r   ZKHUH D t   E t   t  I  DUHJLYHQFRQWLQXRXVIXQFWLRQV 7KHFRUUHVSRQGLQJOLQHDUFRQWUROOHGV\VWHPEH  y A y  Bw t  P t  t  I    y t  [  y t [  w ˜  L I  R m   ZKHUH w t {   w t {   t  I   7KH RSWLPL]DWLRQ SUREOHP LV ZULWWHQ DV IROORZV PLQLPL]HWKHIXQFWLRQDO  J u p Z x  x  d

t

³>_ w t  u t _





 _ Z t  L t Py t _ @dt o f 

t

DWFRQGLWLRQV   z A t z  B t p t  z   t  I    p ˜  L I  R m  x  x  S  d  D    u t  U t  Z t  : t  t  I    

PLQLPL]LQJVHTXHQFH ^T n ` ^un  pn  Zn  x n  xn  d n `  ZKHUH  un  PU >un  D n J uc T n @ pn  P D > pn  D n J cp T n @  L  







Zn P: >Zn  Dn J Zc Tn @ xn PS > xn  Dn J xc Tn @ 



xn 

PS > xn  D n J xc T n @ d n  



P D >d n  D n J dc T n @ n D

 

7KHFRQWUROODELOLW\SUREOHPKDVDVROXWLRQLIDQGRQO\LI J T   ZKHUH T  X  LVD VROXWLRQRIWKHSUREOHP  ,I B t {   K t W {   b j t {   j  m   t  >t  t @  W  >a  b@  WKHQ IURP   ±  ZHJHW 

t

x

A t x  D t ³/ t  O x O dO  P t  t  I

>t  t @ 

t



x t



x t  G t  G



g j x d c j  j  m g j x c j  j

x  x t

x  S u S

S  Rn  



^ x  R n J t d L t x d G t  t  I ` 





t

g j x

³> a t  x t !@dt j

m   m  

j  m  

t

,Q WKLV FDVH WKH SURSRVHG PHWKRG PDNHV LW SRVVLEOH WR VROYH WKH ERXQGDU\ YDOXH SUREOHP RI D OLQHDU LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ ZLWK SKDVH DQG LQWHJUDO FRQVWUDLQWV )RUWKLVFDVHD WKHOLQHDUFRQWUROOHGV\VWHPLVGHILQHGE\WKHHTXDWLRQ y A t y  D t w t  P t  t  I    

 y t [   y t [  w ˜  L I  R k   ZKHUH w t {   w t {   t  I   E  7KH RSWLPL]DWLRQ SUREOHP LV ZULWWHQ DV IROORZV PLQLPL]H WKH IXQFWLRQDO 

J p  Z x  x  d

t

t

t

t

 ³>_ ³/ t O Py O dO  w t _  



  _ Z t  L t Py t _ @dt o f  DWFRQGLWLRQV   z A t z  D t p t  z   t  I   

 p ˜  L I  R k  x  x  S  d  D   F  JUDGLHQW RI WKH IXQFWLRQDO J c T J cp T  J Zc T  J xc T  J xc T  J dc T  LV GHILQHG E\IRUPXOD  ZKHUH F {   F {   G WKHPLQLPL]LQJVHTXHQFHVDUHGHWHUPLQHGE\WKHIRUPXOD    

H  WKH QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH VROYDELOLW\ RI WKH FRQWUROODELOLW\ SUREOHP DUH GHWHUPLQHG E\ WKH FRQGLWLRQ J T  ZKHUH T  LV WKH VROXWLRQRIWKHSUREOHP  ,I / t  O {   t  I >t  t @  WKHQ WKH VROXWLRQ RI WKH FRQWUROODELOLW\ SUREOHP ZLWK DIWHUEXUQHU FRQWURO LQ WKH SUHVHQFH RI ERXQGDU\ FRQGLWLRQV ZLWK SKDVH DQG LQWHJUDOFRQVWUDLQWVIROORZVIURP     ,QWKLVFDVHWKHVHW V W   W  >a  b@  KDVWKHIRUP D  V W ^v ˜  L I  R p D W d v W d E W  ٝ  E  V W ^v ˜  L I  R p  _ v W _  d r ٝ   7KHXUJHQF\RIVROYLQJWKHFRQWUROODELOLW\SUREOHPIRULQWHJUDODQGGLIIHUHQWLDO HTXDWLRQVLVVKRZQE\RQHH[DPSOH:HFRQVLGHUWKHSUREOHPRIEHQGLQJDKDQJLQJ EULGJHFRQVLVWLQJRIDEHDPDQGDFKDLQ7KHFKDLQDQGWKHEHDPDUHFRQQHFWHGZLWK HDFKRWKHUE\SHQGDQWV /HW  l  EHWKHOHQJWKRIWKHHODVWLFEHDPZLWKIL[HGHQGV T  EHWKHKRUL]RQWDOWHQVLOH IRUFH WKH RULJLQ LV RQ WKH OHIW HQG RI WKH EHDP WKH D[LV Ox  LV GLUHFWHG DORQJ WKH EHDP DQG WKH D[LV Oy  LV GLUHFWHG GRZQZDUG /HW x   [    d x d l    d [ d l EH WKH FXUUHQWFRRUGLQDWHV$FRQFHQWUDWHGIRUFHLVDSSOLHGWRWKHSRLQW x a  RQWKHEHDPE\ DGLVWULEXWHGORDGZLWKDGHQVLW\ p [ VLQ Zt  DWDSRLQW [  YDU\LQJLQWLPH 7KHLQIOXHQFHIXQFWLRQKDVWKHIRUP ­ x l  [   d x d [ °° Tl G x [ ®  l  x [ °   d x d l °¯ Tl OLQHDU GHQVLW\RI WKH EHDP DWD SRLQW [   WKHQWKH LQHUWLD IRUFHEHWZHHQWKHSRLQWV [  DQG [  '[  DWWKHWLPH t  >@ dy  U [ '[  U [ y [ Z  VLQ Zt ˜ '[   dt ZKHUH y y x VLQ Zt    d x d l  7KHIXQFWLRQ  y x VLQ Zt

l

³G x [ > U [ VLQ Zt  Z U [ y [ VLQ Zt @d[   



+HQFH LW IROORZV WKDW WKH PD[LPXP EHQGLQJ RI WKH EHDP y x  FDXVHG E\ WKH GLVWULEXWHGORDG p [  DQGWKHLQHUWLDIRUFHLVGHWHUPLQHGE\WKHIRUPXOD y x

l

l





³G x [ U [ y [ d[  ³G x [ U [ d[  

ZKHUH WKH ILUVW WHUP LV WKH EHQGLQJ RI WKH EHDP JHQHUDWHG E\ WKH LQHUWLD IRUFH WKH VHFRQGWHUPLVWKHEHQGLQJRIWKHGLVWULEXWHGORDG6LQFHWKHEHQGLQJRIWKHEHDPIURP WKHFRQFHQWUDWHGIRUFH P  LVHTXDOWR G x  a P  WKHWRWDOEHQGLQJRIWKHEHDP  

l

y x  G x a P

w x

G x a P  ³G x [ p [ d[   

l

 ³G x [ U [ y [ d[   d x d l  

,QWKHFDVHRIDKDQJLQJEULGJHSDUWRIWKHEHDPEHQGLVWUDQVPLWWHGWRWKHFKDLQ/HW WKHFKDLQDQGEHDPVDUHFRQQHFWHGWRJHWKHUE\SHQGDQWV H  EHWKHKRUL]RQWDOWHQVLRQ RIWKHFKDLQ z x    d x d l  EHWKHGHYLDWLRQRIWKHFKDLQIURPWKHKRUL]RQWDOSRVLWLRQ XQGHU WKH ORDG RQ WKH EHDP 7KHQ WKH IXQFWLRQ z x    d x d l  LV D VROXWLRQ RI WKH GLIIHUHQWLDOHTXDWLRQ>@ H

d  z x dx 

 q x   d x d l  

ZKHUH q x  LVGLVWULEXWHGORDGVHQVLQJFLUFXLW 7KH IXQFWLRQ z x    d x d l  LV OLQHDU ZLWK UHVSHFW WR WKH EHQGLQJ RI WKH EHDP w x   &RQVHTXHQWO\ z x k  w x   k  const     k     ,Q WKLV FDVH WKH EHDP EHQG w x   k  w x    d x d l   'LVWULEXWHG ORDG q x k x w x k x   k  w x   k x !    d x d l   ZKHUH k x  LV WKH ORDG FRUUHVSRQGLQJ WR WKH XQLW RI WKH EHDP EHQGLQJ 6XEVWLWXWLQJ WKH YDOXHV z x   q x    d x d l  LQWR WKH HTXDWLRQ RI WKH FKDLQ ZHREWDLQ Hk 

d  w x dx 

 k x   k >G x  a P  

 k x   k  w x



l

l





 ³G x [ p [ d[  ³G x [ U [ y [ d[ @ 

ZKHUH y x w x  G x a P  +HQFHLWIROORZV d  w x dx 

l

l

B x u  C x ³K x [ v [ d[  D x ³/ x [ w [ d[   





w 

 w l

 x  > l @ 

ZKHUH  l

k x   k > ³G x [ U [ G [  a d[  G x a @  Hk 

B x



C x

D x

/ x [

k x   k    K x [ Hk 

G x [ U [  u 

P v [

G x [   p [  

$IWHU WKH UHSODFHPHQW x   [  E\ t   W  UHVSHFWLYHO\ GHQRWLQJ w x  E\ x t   t  I > t @  t l  WKHHTXDWLRQRIWKHKDQJLQJEULGJHZHZULWHLQWKHIRUP  

t

d  x t dt 

t

B t u  C t ³K t W v W dW  D t ³/ t W x W dW   





x   x t  t  I > t @  6XSSRVLQJ x t x t   x t x t   ZHZULWHWKLVHTXDWLRQLQYHFWRUIRUP t

x

t

Ax  B t u  C t ³K t W v W dW  D t ³/ t W x W dW   





x

x   x   S   x

x t  x t  S  



u U

^u  R d u d p ` v W  V W ^v ˜  L I  R  

 d v W d U   W  I

>@ 

ZKHUH  § x t · § · ¸¸ A ¨¨ ¨¨ ¸¸ B t x t ©  ¹ ©  ¹

§  · §  · ¨¨ ¸¸ C t D t ¨¨ ¸¸  B t ©  ¹ © C t ¹ p  LV WKH JUHDWHVW YDOXH RI WKH FRQFHQWUDWHG IRUFH U   LV WKH JUHDWHVW YDOXH RI WKH x t

GLVWULEXWHGORDG7KXVWKHEHQGLQJHTXDWLRQRIWKHKDQJLQJEULGJHKDVWKHIRUP   )RU WKLV H[DPSOH LQ SDUWLFXODU WKH FRQWUROODELOLW\SUREOHP LV IRUPXODWHG DV IROORZV )LQG FRQWUROV u U   v W V W  VR WKDW WKH EHQGLQJ RI WKH EHDP   k  x t   t  I  VDWLVILHVWKHSKDVHFRQVWUDLQW  d   k  x t d G   t   t  I  DQGWKHSRWHQWLDOHQHUJ\LQ t

EHQGLQJ   k ³ x W dW d c  ZKHUH G   c  DUHJLYHQQXPEHUV 

6LPLODUFRQWUROODELOLW\SUREOHPVFDQEHIRUPXODWHGLQRWKHUILHOGVRIVFLHQFHIRU LQWHJUDODQGGLIIHUHQWLDOHTXDWLRQVIURP>@7KHPRGHUQWKHRU\RILQWHJUDOHTXDWLRQV DQGWKHWKHRU\RIH[WUHPDOSUREOHPVPDNHLWSRVVLEOHWRVROYHFRPSOH[FRQWUROODELOLW\ SUREOHPVIRULQWHJUDODQGGLIIHUHQWLDOHTXDWLRQV   &RPPHQWV   0DWKHPDWLFDOPRGHOVRIPDQ\SKHQRPHQDLQYDULRXVILHOGVRIVFLHQFHELRORJ\ >@ PHGLFLQH >@ ELRSK\VLFV >@ WKHUPRG\QDPLFV RI ELRORJLFDO SURFHVVHV >@ PHFKDQLFVDQGHOHFWURG\QDPLFV>@HFRQRPLFV>@SRZHUHQJLQHHULQJ>@DUHLQWHJUDO DQGGLIIHUHQWLDOHTXDWLRQV  0RQRJUDSKV>@DUHGHYRWHGWRWKHJHQHUDOWKHRU\RILQWHJUDODQGGLIIHUHQWLDO HTXDWLRQV JHQHUDOL]HG VROXWLRQV RI LQWHJUDO HTXDWLRQV ,Q WKHVH SDSHUV TXHVWLRQV RI H[LVWHQFHXQLTXHQHVVDQGPHWKRGVIRUFRQVWUXFWLQJDSSUR[LPDWHVROXWLRQVRILQWHJUDO DQGGLIIHUHQWLDOHTXDWLRQVDUHFRQVLGHUHG  

 7KH VWXG\ RI WKH FRQWUROODELOLW\ RI SURFHVVHV GHVFULEHG E\ LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQV LQ WKH SUHVHQFH RI ERXQGDU\ FRQGLWLRQV SKDVH DQG LQWHJUDO FRQVWUDLQWVWDNLQJLQWRDFFRXQWWKHOLPLWHGUHVRXUFHVRIWKHV\VWHPLVDQHZGLUHFWLRQ LQ WKH WKHRU\ RI LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQV 7KH SUREOHP RI FRQWUROODELOLW\ DULVLQJ IURP WKH QHHG WR VROYH XUJHQW SUREOHPV LQ WKH ILHOG RI QDWXUDO VFLHQFHV PHGLFLQHHFRQRPLFVDQGWHFKQLFDOVFLHQFHVVWDWHPRUHFRPSOH[SUREOHPVIRULQWHJUDO DQGGLIIHUHQWLDOHTXDWLRQV,QWKHDXWKRU VSDSHUV>@WKHSUREOHPVRIFRQWUROODELOLW\ RISURFHVVHVGHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKERXQGDU\FRQGLWLRQVLQ WKHSUHVHQFHRISKDVHDQGLQWHJUDOFRQVWUDLQWVDUHLQYHVWLJDWHGWDNLQJLQWRDFFRXQWWKH OLPLWHGFRQWUROUHVRXUFHV,QWKLVFKDSWHUDQDWWHPSWLVPDGHWRH[WHQGWKHVHUHVXOWVWR LQWHJUDODQGGLIIHUHQWLDOHTXDWLRQV  7KHWKHRU\RIFRQWUROODELOLW\RULJLQDWHVIURPWKHZRUNRI5(.DOPDQ>@+H FRQVWUXFWHGDFRQWUROZLWKDPLQLPXPQRUPDQGREWDLQHGDUDQNFRQWUROODELOLW\FULWHULRQ IRUOLQHDUV\VWHPVZLWKFRQVWDQWFRHIILFLHQWV7KHVROXWLRQRIWKHFRQWUROODELOLW\SUREOHP RQ WKH EDVLV RI WKH l ± SUREOHP RI PRPHQWV ZDV SURSRVHG E\ 11 .UDVRYVN\ >@ 6HSDUDWHTXHVWLRQVRIFRQWUROODELOLW\ZHUHLQYHVWLJDWHGLQ>@  7KHLVVXHVRIFRQWUROODELOLW\REVHUYDELOLW\DQGVWDELOLW\RIFRQWUROODEOHV\VWHPV DUH GLVFXVVHG LQ >@ ,Q UHFHQW \HDUV D QXPEHU RI VFLHQWLILF DUWLFOHV GHYRWHG WR WKH SUREOHPV RI FRQWUROODELOLW\ DQG RSWLPDO VSHHG RI G\QDPLF V\VWHPV KDYH EHHQ SXEOLVKHG7KHSDSHU>@LVGHYRWHGWRWKHV\QWKHVLVRIERXQGHGFRQWURORQWKHEDVLV RI /\DSXQRY IXQFWLRQV $ JHRPHWULF DSSURDFK WR WKH FRQWUROODELOLW\ RI QRQDXWRQRPRXV OLQHDUV\VWHPVZDVVWXGLHGLQ>@  7KH SUREOHP RI FRQWUROODELOLW\ LV FORVHO\ UHODWHG WR VROYLQJ WKH SUREOHPV RI VWDELOL]LQJ G\QDPLF V\VWHPV ,Q >@ WKH SUREOHP RI VWDELOL]LQJ WKH ]HUR HTXLOLEULXP SRVLWLRQRIELOLQHDUDQGDIILQHV\VWHPVRIFDQRQLFDOIRUPLVFRQVLGHUHG0LQLPDOVWDELOL]HUV IRUOLQHDUG\QDPLFDOV\VWHPVZHUHLQYHVWLJDWHGLQ>@0RQRJUDSK>@LVGHYRWHGWRDQ DQDO\WLFDOVWXG\RIFRQWUROODELOLW\DQGRSWLPDOFRQWUROSUREOHPV,WVKRXOGEHQRWHGWKDWLQ WKHZRUNVPHQWLRQHG>@SDUWLFXODUFDVHVRIWKHJHQHUDOSUREOHPRIFRQWUROODELOLW\DQG VSHHGRIG\QDPLFV\VWHPVZLWKRXWSKDVHDQGLQWHJUDOFRQVWUDLQWVZHUHLQYHVWLJDWHG  ,Q>@DPHWKRGIRUFRQVWUXFWLQJDVHWRIFRQWUROVHDFKHOHPHQWRIZKLFKWDNHV WKH WUDMHFWRU\ RI D OLQHDU V\VWHP IURP DQ\ LQLWLDO SRLQW WR DQ\ GHVLUHG ILQDO VWDWH LV JLYHQ,Q>@WKHVROYDELOLW\FRQGLWLRQVDQGWKHFRQVWUXFWLRQRIDJHQHUDOVROXWLRQRI WKH LQWHJUDO HTXDWLRQ IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHPV RI G\QDPLFDO V\VWHPV ZHUH IRXQG 6ROXWLRQV WR WKH SUREOHP RI RSWLPDO FRQWURO ZLWK ERXQGDU\ FRQGLWLRQV SKDVH DQG LQWHJUDO FRQVWUDLQWV EDVHG RQ WKH VROXWLRQ RI FRQWUROODELOLW\ SUREOHPV DUH FRQWDLQHG LQ >@ 7KH FRQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHG E\ D SDUDEROLFHTXDWLRQZLWKOLPLWHGFRQWUROZHUHLQYHVWLJDWHGLQ>@,Q>@PHWKRGV IRUVROYLQJERXQGDU\YDOXHSUREOHPVRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQVRQWKHEDVLVRI VROYLQJWKHSUREOHPVRIFRQWUROODELOLW\RIG\QDPLFDOV\VWHPVDUHFRQVLGHUHG  7KLVZRUNLVDFRQWLQXDWLRQRIWKHVFLHQWLILFUHVHDUFKZRUNV>@7KHDLPRI WKLVZRUNLVWRFUHDWHDQHZPHWKRGIRUVROYLQJWKHFRQWUROODELOLW\SUREOHPIRUDOLQHDU  

LQWHJUDODQGGLIIHUHQWLDOHTXDWLRQLQWKHSUHVHQFHRISKDVHDQGLQWHJUDOFRQVWUDLQWVZLWK DOORZDQFHIRUFRQVWUDLQWVRQFRQWUROYDOXHV  7KH WKHRU\ RI FRQWUROODELOLW\ RI G\QDPLFDO V\VWHPV LV RQH RI WKH GLUHFWLRQV LQ WKH TXDOLWDWLYH WKHRU\ RI GLIIHUHQWLDO HTXDWLRQV WKDW DURVH IURP WKH QHHGV RI QHZ DUHDV RI VFLHQFHDQGWHFKQRORJ\VXFKDVWKHH[SORUDWLRQRIRXWHUVSDFHVXSHUVRQLFDYLDWLRQFRQWURO RIFRPSOH[WHFKQRORJLFDOSURFHVVHVFRQWURORIQXFOHDUDQGFKHPLFDOUHDFWRUVDQGWKHQHHG WRVROYHFRPSOH[SUREOHPVRIHFRQRPLFVDQGHFRORJ\QDWXUDODQGWHFKQLFDOVFLHQFHV  $G\QDPLFDOV\VWHPLVFDOOHGWREHFRQWUROODEOHLIWKHUHH[LVWVDFRQWURODFWLRQ WKDWWDNHVWKHWUDMHFWRU\RIWKHV\VWHPIURPDQ\LQLWLDOVWDWHWRWKHGHVLUHGILQDOVWDWH GHWHUPLQHG E\ WKH ERXQGDU\ FRQGLWLRQV ZKLOH WKH SKDVH DQG LQWHJUDO FRQVWUDLQWV DUH VDWLVILHGDORQJWKHVROXWLRQRIWKHV\VWHP  7KH LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ FRQQHFWV WKH SUHVHQW WKH IXWXUH DQG WKH SDVW RI WKH SURFHVV 6XFK PDWKHPDWLFDO PRGHOV RI SKHQRPHQD PRUH DGHTXDWHO\ GHVFULEHWKHLUSURSHUWLHV2QHRIWKHIRXQGHUVRITXDQWXPPHFKDQLFV:+HLVHQEHUJ LQKLVERRN3K\VLFVDQG3KLORVRSK\PDNHVWKHIROORZLQJDVVXPSWLRQWKHEDVLF HTXDWLRQ RI PDWWHU FRQVLGHUHG DV D PDWKHPDWLFDO UHSUHVHQWDWLRQ RI DOO PDWWHU PXVW KDYHWKHDSSHDUDQFHRIDFRPSOH[V\VWHPRILQWHJUDODQGGLIIHUHQWLDOHTXDWLRQV 7RSLFDO DQGXQVROYHG SUREOHPV LQ WKH WKHRU\ RIFRQWUROODELOLW\RI LQWHJUDODQG GLIIHUHQWLDO HTXDWLRQV ZLWK FRQVWUDLQWV DUH REWDLQLQJ QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH VROYDELOLW\ RI JHQHUDO FRQWURO SUREOHPV WKH GHYHORSPHQW RI FRQVWUXFWLYHPHWKRGVIRUFRQVWUXFWLQJWKHLUVROXWLRQV7KHDLPRIWKLVZRUNLVWRFUHDWH DJHQHUDOWKHRU\RIFRQWUROODELOLW\RISURFHVVHVGHVFULEHGE\LQWHJUDODQGGLIIHUHQWLDO HTXDWLRQVZLWKERXQGDU\FRQGLWLRQVLQWKHSUHVHQFHRISKDVHDQGLQWHJUDOFRQVWUDLQWV WDNLQJLQWRDFFRXQWWKHOLPLWHGUHVRXUFHVRIWKHV\VWHP &RQVWUXFWLYH WKHRU\ RI FRQWUROODELOLW\ RI WKH SURFHVV GHVFULEHG E\ D OLQHDU LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ LV FUHDWHG 7KH EDVLV IRU WKH SURSRVHG PHWKRG RI VROYDELOLW\RIWKHFRQWUROODELOLW\SUREOHPLVWKHSRVVLELOLW\RIUHGXFLQJLWWRDFODVVRI WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG ,W LV VKRZQ WKDW WR FRQVWUXFW D VROXWLRQ WR WKH FRQWUROODELOLW\ SUREOHP LW LV QHFHVVDU\ WR FRQVWUXFW PLQLPL]LQJ VHTXHQFHVIRUWKHLQLWLDORSWLPDOFRQWUROSUREOHP7KHVROXWLRQRIWKHRULJLQDOSUREOHP LVZHDNO\OLPLWLQJSRLQWVRIPLQLPL]LQJVHTXHQFHV   4XRWHGOLWHUDWXUH    99ROWHUUD0DWKHPDWLFDOWKHRU\RIVWUXJJOHIRUH[LVWHQFH±01DXND   5%HOOPDQ0DWKHPDWLFDOPHWKRGVLQPHGLFLQH±00LU   v n  D n J c v n  wn @

ZKHUH V

­ ®v  L Q v ¯



w

w

xW  ɢ J v

 w

J

!  

d r

PLQLPL]LQJ

PW >wn  D n J c v n  wn @

wn 

r  ½ ¾  $V D UHVXOW ZH ILQG v

¿

   ZLWKDQHZPHDQLQJ r r · § ¨ r  ¸ © ¹

v

[ W  

J

 +HUH WKH FDVHV DUH SRVVLEOH ɚ  J

,Q WKH FDVH RI ɚ  ZH FKRRVH D QHZ YDOXH r

r

VHTXHQFH  

n

r 

 § r · ¨ ¸ ©  ¹

  ɛ 

r  DQG VROYH SUREOHP 

,QWKHFDVHRI E ZHFKRRVHWKHPHDQLQJ

r  DQG VROYH SUREOHP     HWF $SSO\LQJ WKH SURFHGXUH 

ZHILQGDPLQLPDOYDOXH r !   2SWLPDOVSHHG2SWLPDOVSHHGSUREOHPFDQEHVROYHGE\WKHDOJRULWKP  &KRRVH D PHDQLQJ T T  ZKHUH T  LV D SUHVFULEHG YDOXH &RQVWUXFW D VHTXHQFH ^vn  wn `  V u W E\WKHUXOH    ZKHUH T  ­ ½  v [  W L Q v  [ W d[ dW d r  ¾  ® k ³ ³   ¯ ¿ r LVDSUHVFULEHGQXPEHU'HILQH v v [ W  w w xW  LQI J v w  ZKHUH J v  w J

V

v  w V uW

 ,I J !  WKHQDVDQHZYDOXHZHWDNH T

T DQGLQWKHFDVHRI J

 ZH

DVVXPH T T    ­T  J !  WKHVHTXHQFHVDUHFRQVWUXFWHG ^v n  wn `  ¯T   J 

 )RUWKHQHZYDOXHV T ®

DQGGHILQHG v

v

[ W   w

w

xW DQGWKHYDOXH J v

 w

J

LQI

v w V uW

J v w 

­T  J

!   LV ¯T   J



+HUH WKH FDVHV DUH SRVVLEOH ɚ  J

!   E  J

  $ YDOXH T ®

GHILQHG:HILQGDPLQLPDOYDOXH T T E\DSSO\LQJFRQVHTXHQWO\WKHVFKHPHRI FDOFXODWLRQV T   

Lecture 19.,QWHJUDOHTXDWLRQRI)UHGKROPRIWKHILUVWNLQG IRUDIXQFWLRQRIVHYHUDOYDULDEOHV  0HWKRGV IRU VROYLQJ WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG IRU WKH RULJLQIXQFWLRQRIVHYHUDOYDULDEOHVDUHSURSRVHG 7KHLQWHJUDOHTXDWLRQLVFRQVLGHUHG b d

/u

³ ³ / t  [ W u [ W d[ dW

f t  t  >t   t @  







 

a c

ZKHUH / t [ W

Oij t [ W  i  n  j  m  LV WKH NQRZQ PDWUL[ RI RUGHU n u m 

HOHPHQWVRIWKHPDWUL[ / t  [  W IXQFWLRQV Oij t  [ W DUHPHDVXUDEOHDQGEHORQWRWKH FODVV L RQWKHVHW 

:

^ t[ W  R



`

 t  d t d t  a d W d b c d [ d d 

t b d

³³³ O



ij

t  [ W d[ dW dt  f 

t a c

IXQFWLRQ f t  L I  R n  I >t  t @  LV SUHVFULEHG u [ W  L Q R m  LV DQ RULJLQ IXQFWLRQ Q ^ [ W  c d [ d d  a d W d b` WKH YDOXHV t   t  a b c d  DUH IL[HG RSHUDWRU /  L Q R m o L I  R n  /u f  $ PHWKRG IRU VROYLQJ RI LQWHJUDO HTXDWLRQ   E\ UHGXFLQJ WR WKH LQWHJUDO HTXDWLRQLQWKHIRUPLVVXSSRVHG b d

Ku

³ ³ K tW u tW dW dt

a  a  R n 







 

a c

ZKHUH K tW

Kij tW  i  n  j  m LVWKHNQRZQPDWUL[RIRUGHU n u m HOHPHQWV

RIWKHPDWUL[ K t W IXQFWLRQV K ij t W DUHPHDVXUDEOHDQGEHORQJWRWKHFODVV L  RQWKHVTXDUH Q

^ t W  a d t d b

c d W d d ` 

b d

³³ K



ij

t W dW dt  f 

a c

 a  R n  LV D SUHVFULEHG YHFWRU  u t W  L Q R m  LV DQ RULJLQ IXQFWLRQ WKH YDOXHV a b c d DUHSUHVFULEHGRSHUDWRU K  L Q R m o R n  Ku

a  7KHSUREOHPVDUHVHW 3UREOHP Find necessary and sufficiently condition for solving integral equation (4.70) for any a  R n . 3UREOHPFind a general solution of the integral equation (4.70). 3UREOHP Let elements of the matrix / t  [ W , t  [ W  : the function Oij t  [ W  L : R  have traces Oij ˜ [ W  L I  R  which are continuous in metrics L I  R i.e. t



OLP ³ Oij t  [ W  Oij t  [ W dt  ,

[ o[ W oW t

 

at all [ W  Q . Necessary to find an approximation solution u [ W  L Q R m of equation (4.69). Find an estimation u  u L where u u [ W  L Q R m is a 

solution of equation (4.69).  :H FRQVLGHU D VROXWLRQ RI WKH SUREOHP  IRU LQWHJUDO HTXDWLRQ LQ WKH IRUP  $VROYDELOLW\FRQGLWLRQRIHTXDWLRQ  IRUDQ\SHUPDQHQWYHFWRU a  R n  LVSUHVHQWHGEHORZ 7KHRUHPIn order to exists a solution of the integral equation (4.70) at any a  R n necessary and sufficiently, that the matrix b d

³ ³ K t W K

T a b c d

t W dW dt



a c

of order n u n to be positive defined. 3URRINecessity./HWLQWHJUDOHTXDWLRQ  KDYHDVROXWLRQ:HVKRZWKDW WKH PDWUL[ T a b c d !   $V LW IROORZV IURP IRUPXOD   IRU DQ\ YHFWRU y  R n  TXDGUDWLFIRUP b d

y T a b c d y

³ ³ y K t W K



t W ydW dt



a c

b d

³³

K t  W y  K t W y dW dt t  

a c

7KLVLPSOLHVWKDWWKHPDWUL[ T a b c d t  7KHQIRUSURYH T a b c d !  QHFHVVDU\ WRVKRZWKDW T a b c d LVQRQVLQJXODU :H DVVXPH WKH FRQWUDU\ LH WKH PDWUL[ T a b c d  LV VLQJXODU 7KHQ WKHUH H[LVWVDYHFWRU c  R n VXFKWKDW c T a b c d c   c z  /HWDYHFWRURIWKHIXQFWLRQ w t W K t W c  w ˜  L Q R m 7KHQ b d

³ ³ w tW w tW dW dt

c

a c

b d

³ ³ K t W K

t W dW dt c

c T a b c d c





 

a c

7KLVLPSOLHVWKDWWKHIXQFWLRQ w t W {    t W  Q  6LQFH LQWHJUDO HTXDWLRQ   KDV D VROXWLRQ IRU DQ\ YHFWRU a  R n  WKH LQ SDUWLFXODUXQGHU a c  R n WKHUHH[LVWVDYHFWRUIXQFWLRQ v t W  L Q R m VXFKWKDW b d

³ ³ K tW v tW dW dt

c  c z  

a c

)URP  ZHJHW b d

³ ³ w t W v t W dW dt

a c

c

b d

³³ K t W v t W dW dt

c c  

a c

7KLV FRQWUDGLFWV WKDW c z   7KH FRQWUDGLFWLRQ DURVH IURP WKH DVVXPSWLRQ WKDW WKH PDWUL[ T a b c d LVVLQJXODU&RQVHTXHQWO\WKHPDWUL[ T a b c d !  1HFHVVLW\LV SURYHG Sufficiency. /HW WKH PDWUL[ T a b c d !   :H VKRZ WKDW LQWHJUDO HTXDWLRQ   KDV D VROXWLRQ 6LQFH T a b c d !   WKDW WKHUH H[LVWV DQ LQYHUVH PDWUL[ T  a b c d /HWDYHFWRUPDWUL[EH  

u t W

K t W T  a b c d a  t  W  Q  u t  W  L Q R m 

7KHQ b d

b d

³ ³ K t W u t W dW dt ³ ³ K t W K

Ku

a c

t  W dW dtT  a b c d a



a c

T a b c d T  a b c d a

a .

&RQVHTXHQWO\LQWKHFDVHZKHQWKHPDWUL[ T a b c d !  LQWHJUDOHTXDWLRQ   KDV D RQH VROXWLRQ u t  W K t  W T  a b c d a  a  R n  6XIILFLHQF\ LV SURYHG 7KHRUHPLVSURYHG :H FRQVLGHU D VROXWLRQ RI WKH SUREOHP  IRU LQWHJUDO HTXDWLRQ RI WKH IRUP   7KHRUHP Let the matrix T a b c d !  . Then the general solution of integral equation (3.69) is defined by formula u t W

v t W  K t W T  a  b c d a 



b d

 K t W T  a  b c d u ³ ³ K t W v t W dW dt  a c

where v t  W  L Q R m is an arbitrary function, a  R n is any vector. 3URRI:HLQWURGXFHDVHW ­ m ®u tW  L Q R  ¯ ^u t  W  L Q  R m  u t  W W

U

½ a ¾   a c ¿ v t  W  K t  W T  a  b c d a  b d

³ ³ K tW u tW dW dt

b d

 K t  W T  a  b c d ³ ³ K t  W u t  W dW dt  v v t  W  L Q  R m `



 

 

 

a c

ZKHUH WKH VHW W  FRQWDLQV DOO VROXWLRQV RI LQWHJUDO HTXDWLRQ   7KH WKHRUHP DVVHUWV WKDW WKH IXQFWLRQ u t W  L Q R m  EHORQJV WR WKH VHW W  LI DQG RQO\ LI LW EHORQJVWRWKHVHW U LH W U  :HSURYHWKDW W U ,WLVVXIILFLHQWO\WRVKRZWKDWD U Ž W E W Ž U :H VKRZWKDW U Ž W ,QIDFWLI u t  W  U WKHDVLWIROORZVIURPUHODWLRQ  WKH HTXDOLW\LVKROG b d

³³ K t W u t W dW dt a c

b d

³ ³ K t W >v tW  K

t W T  a b c d a  

a c

b d

 K t W T a b c d ³ ³ K t W v t W dW dt @dWdt



a c

b d

³ ³ K t W u  a c

b d

u v t W dWdt  ³ ³ K t W K t W dW dtT  a b c d a   a c

b d

b d

a c

a c

 ³ ³ K t  W K t  W dW dtT  a b c d ³ ³ K t  W v t  W dW dt

a 

7KLVLPSOLHVWKDW u t  W &RQVHTXHQWO\WKHVHW U Ž W  :HVKRZWKDW W Ž U /HW u t W  W LHIRUIXQFWLRQ u t W  W WKHHTXDOLW\ LVKHOG VHH    

b d

³ ³ K t W u t W dW dt

a 

a c

:H QRWH WKDW LQ UHODWLRQ   WKH IXQFWLRQ v t  W  L Q R m  LV DUELWUDU\ ,Q SDUWLFXODULWFDQEHFKRVHQ v t W u t W  t W  Q 1RZWKHIXQFWLRQ u t  W  U LV ZULWWHQLQWKHIRUP u t W u t W  K t W T  a b c d a  K t W T  a b c d u  b d

u ³ ³ K t  W u t  W dW dt

u t  W

u t  W  t  W  Q 

a c

&RQVHTXHQWO\ u t W u t W  U 7KLVLPSOLHVWKDW W Ž U )URPLQFOXVLRQ U Ž W  W Ž U IROORZVWKDW W U 7KHRUHPLVSURYHG 7KH PDLQ SURSHUWLHV RI WKH VROXWLRQ *HQHUDO VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ  KDVWKHSURSHUWLHV 7KH IXQFWLRQ u t W  t W  Q  IURP   FDQ EH SUHVHQWHG LQ WKH IRUP u t W u t W  u  t W ZKHUH u t W

K t W T  a b c d a  L Q R m

LVDSDUWLFXODUVROXWLRQRIWKHLQWHJUDOHTXDWLRQ  DQGIXQFWLRQ u  t  W

b d

v t  W  K t  W T  a b c d ³ ³ K t  W v t  W dW dt  L Q R m a c

LVDVROXWLRQRIKRPRJHQHRXVLQWHJUDOHTXDWLRQ b d

³ ³ K t W u



t W dW dt



a c

,QIDFW b d

b d

³ ³ K t W u t W dW dt

³³ K t W K

a c

b d

³³ K t W u



t W dW dt

a c

t W dW dtT  a b c d a

a 

a c

b d

b d

³³ K t W v t W dW dt  ³³ K tW K a c

t W dW dt u 

a c

b d

u T  a b c d ³ ³ K t  W v t  W dW dt



a c

IRUDQ\IXQFWLRQ v t  W  L Q R m  7KHIXQFWLRQV u t W  L Q R m  u  t W  L Q R m DUHRUWKRJRQDO u L Q R m ,QIDFW b d

u  u 

L

³³ u tW u tW dW dt

a c

A u  LQ

b d

a T  a b c d ³ ³ K t W u 

a c

b d

u >v t  W  K t  W T a b c d ³ ³ K t  W v t  W dW dt @ 



a c

b d

b d

a c

a c

a T  a b c d > ³³ K t W v t W dW dt  ³³ K t W v t W dW dt @  

7KH IXQFWLRQ u t W K t W T  a b c d a  L Q R m  LV D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   ZLWK PLQLPDO QRUP LQ L Q R m  ,Q IDFW WKH QRUP  

u











u  u  7KLV LPSOLHV WKDW u t u  ,I WKH IXQFWLRQ v t  W {   WKHQ WKH 



u  IXQFWLRQ u  t W {  7KHQ u t W u t W  u 7KHVHWRIVROXWLRQVRIWKHLQWHJUDOHTXDWLRQ  LVFRQYH[$VLWIROORZV IURPSURYHRIWKHRUHPWKHVHWRIDOOVROXWLRQVRIWKHHTXDWLRQLV U :HVKRZ WKDW U LVFRQYH[VHW /HW u t  W  U  w t  W  U  uD t W Du t  W    D w t  W  a  >@ ,WLVHDV\WR PDNHVXUHWKDW uD t  W  U DWDOO D  D  >@ ,QIDFW b d

K t  W T  a b c d a  Q t  W  K t  W T  a b c d ³ ³ K t  W Q t  W dW dt 

u t  W

a c

b d

K t  W T  a b c d a  K t  W  K t  W T  a b c d ³ ³ K t  W K t  W dW dt 

w t  W

a c

Q t W  L Q R m K t W  L Q R m 

7KHQ uD t W Du t W    D w t  W

K t W T  a b c d a  vD t  W   b d

 K t W T  a b c d ³³ K t W vD t W dW dt U  a c

ZKHUH vD t W DQ t W    D K t W  L Q R m  &RQVWUXFWLRQ RI DQ DSSUR[LPDWH VROXWLRQ RI DQ LQWHJUDO HTXDWLRQ :H FRQVLGHUWKHVROXWLRQRISUREOHPIRUDQLQWHJUDOHTXDWLRQRIWKHIRUP  /HW LQ L   D FRPSOHWH V\VWHP LV JLYHQ LQ SDUWLFXODU  t  t     DQG WKH FRUUHVSRQGLQJ FRPSOHWHRUWKRJRQDOV\VWHP M t  M  t   /HWWKHFRQGLWLRQVRIWKH)XELQLWKHRUHP EHVDWLVILHGLH § t

·

· § ³ ¨¨© ³ ³ O t  [ W u [ W d[dW ¸¸¹M t dt ³ ³ ¨¨ ³ O t  [ W M t dt ¸¸u [ W d[dW t

b d

b d

ij

t

j

k

a c

a c

© t

ij

k

b d

³ ³ l [ W u [ W d[dW  ijk

j

i  n

j

 m k

¹

j





a c

t

³ f t M t dt i

ZKHUH f i t  L I  R  i 7KHQ

k

aik  i  n k  

t

 n 

§b d · / t [ W u [ W d[dW ¸¸M k t dt  ³t ¨¨© ³³ a c ¹  t b d § t § bd§ · · · ¨ ¨ O t  [  W M k t dt ¸u [  W d[dW    ¨ Om t  [ W M k t dt ¸um [  W d[dW ¸ ³ ³ ³ ³ ³ ³ ¸ ¨ ¸ ¨ a c ¨t ¸ a c © t © ¹ ¹ ¨ ¸ ¨ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜¸  b d § t ¨ b d § t ¸ · · ¨ ³ ³ ¨ ³ On t  [ W M k t dt ¸u [  W d[dW    ³ ³ ¨ ³ Onm t  [  W M k t dt ¸um [ W d[dW ¸ ¸ ¨ ¸ ¨ a c ¨t ¸ a c © t ¹ ¹ © © ¹ t

 

b d · §b d ¨ ³ ³ lk [  W u [  W d[dW    ³ ³ lmk [  W um [  W d[dW ¸ ¸ ¨a c a c ¸ ¨ ¨ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜¸ b d ¸ ¨b d ¨¨ ³ ³ lnk [ W u [  W d[dW    ³ ³ lnmk [ W um [ W d[dW ¸¸ a c ¹ ©a c b d

³ ³ K [ W u [ W d[dW  k



 

k

a c

§ t · ¨ f t M k t dt ¸ ³ ¨ t ¸ ¨ ¸ ¨ ˜˜˜˜˜ ˜˜˜˜˜ ¸ ¨ t ¸ ¨ f n t M k t dt ¸ ¨ t³ ¸ © ¹

t

ak

³ f t M t dt k

t

1RZIRUHDFKLQGH[ k ZHJHW b d

³³ K [ W u [ W d[dW k

§ ak · ¨ ¸ ¨  ¸ ¨  ¸  k ¨ ¸ ¨  ¸ ¨a ¸ © nk ¹

ak  k

  

  

a c

ZKHUH K k [  W  LV D PDWUL[ RI RUGHU n u m  ak  R n  7KH WUXQFDWHG HTXDWLRQ IRU WKH YDOXHV k   N LV b d

³ ³ K [ W u [ W d[dW

a  







 

a c

ZKHUH K [ W

§ K [  W · ¸ ¨ ¸a ¨  ¨ K [  W ¸ ¹ © N

§ a · ¨ ¸ ¨  ¸ ¨  ¸  u [ W  L Q R m  LV D VROXWLRQ RI WKH LQWHJUDO  ¨ ¸ ¨  ¸ ¨a ¸ © N¹





HTXDWLRQ   7KHRUHPLet the matrix T a b c d

b d

³ ³ K [ W K [ W d[dW



a c

of order N n u N n be positive defined. Then the general solution of the integral equation (4.76) has the form b d

u [ W K [ W T a b c d a  Z [ W  K [ W T a b c d ³³ K [ W Z [ W d[dW  

where Z [ W  L Q R m is an arbitrary function. 3URYHRIWKHWKHRUHPIROORZVIURPWKHRUHPV :HFDOFXODWHWKHIXQFWLRQ f t  Z E\IRUPXOD  f t  Z

b d

³³ / t [ W u [ W d[dW  t  I a c

a c

>t   t @ 

ZKHUH u [ W LVGHILQHGE\IRUPXOD  7KHQWKHGLIIHUHQFH u [  W  u [  W LVD VROXWLRQRIWKHLQWHJUDOHTXDWLRQ  

b d

³ ³ / t[ W >u [ W  u [ W @d[dW

f t  f t  Z  t  I 



 

a c

ZKHUH u [  W  LV D VROXWLRQ RI LQWHJUDO HTXDWLRQ   :H GHQRWH E\ ' u [ W u [ W  u [ W  ' f  t f t  f  t  Z   t  I 7KHHTXDWLRQ  ZLWKUHVSHFW WRWKHRULJLQIXQFWLRQ ' u [  W LVZULWWHQLQWKHIRUP b d

³³ / t[ W 'u [ W d[dW

'f t  t  I 







 

a c

ZKHUH 'f t  L I  R m  LV WKH NQRZQ IXQFWLRQ $V LQ WKH SUHYLRXV FDVH HTXDWLRQ  FDQEHUHGXFHGWRWKHWUXQFDWHGHTXDWLRQ b d

³³ K [ W 'u [ W d[dW

' a 

a c

ZKHUH 'f t

'a

'a  'an 

'ak

'f t 'fn t 

7KHRUHPLet the matrix The estimation is satisfied 'u [ W



T a  b  c  d

b d

t § t · ¨ 'f t M t dt  'f t M t dt ¸   k ³t n k ¸ ¨ t³  © ¹

be positive defined by formula (4.77).

³ ³ K [ W T a b c d 'a  



d[dW 

a c

3URYHRIWKHWKHRUHPIROORZVIURPWKHRUHPVDQGSURSHUW\ :H FRQVLGHU DQ RWKHU PHWKRG IRU DSSUR[LPDWH VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ  RULHQWHGRQDSSO\LQJRIFRPSXWHUV7KHVHJPHQW >t  t @ LVGLYLGHG LQWR N  SDUWVDQGZHFRQVLGHUWKHLQWHJUDOHTXDWLRQ  IRUWLPHPRPHQWV t k  I  k  N   t N t  

b d

$VDUHVXOWZHJHW ³ ³ / t k  [ W u [ W d[dW

f t k  k

 N



a c

§ / t   [ W · ¨ ¸ ¨ / t  [ W ¸  b :HLQWURGXFHWKHPDWUL[HVDQGYHFWRUV K [ W ¨  ¸ ¨ ¸ ¨ / t  [ W ¸ © N ¹ ZKHUH K [  W LVPDWUL[RIRUGHU n N    u m  b  R n N  

§ f t · ¨ ¸ ¨ f t ¸ ¨  ¸  ¨ ¸ ¨ f tN ¸  ¹ ©



7KHQWKHDSSUR[LPDWHLQWHJUDOHTXDWLRQLVZULWWHQLQWKHIRUP b d

³ ³ K [ W u [ W d[dW

b  







 

a c

7KHRUHPLet the matrix b d

T a b c d

³ ³ K [ W K [ W d[dW

a c

of order n N    u n N    be positive defined. Then the general solution of the integral equation (4.81) is defined by formula  

b d

u [ W K [ W T a b c d b  w [ W  K [ W T a b c d ³ ³ K [ W w [ W d[dW   



a c

where w [ W  L Q R m is an arbitrary function. 3URYHRIWKHWKHRUHPLVVLPLODUWRSURYHRIWKHRUHP /HW 'u [ W u [ W  u [ W  7KHIXQFWLRQ 'u [ W  L Q R m LVDVROXWLRQRIWKH LQWHJUDOHTXDWLRQ b d

³ ³ / t  [ W 'u [ W d[dW

'f  t  t  I 

a c

ZKHUH ' f  t

f t  f  t  Z  

b d

³ ³ / t  [ W u [ W d[dW

f  t  Z 

a c

7KHRUHPLet the matrix b d

'u

L

T a  b  c  d !  

Then the estimation is held 

 ³ ³ K [ W T a b c d 'b d[dW 

a c

§ ¨t © 'f  t t

· ¸ ¹

t

where 'b 'b  'bn , 'bk ¨ ³ 'f  t M k t dt  ³ 'f  n tM k t dt ¸ , t

'f  t  'f  n t ,

tI .

3URYHRIWKHWKHRUHPLVVLPLODUWRWKHSURYHRIWKHRUHP   Lecture 20.0DQDJHPHQWRIWKHUPDOSURFHVVHV6HPLQDUOHVVRQ  7KH SUREOHPV RI FRQWUROODELOLW\ DQG RSWLPDO SHUIRUPDQFH RI WKH SURFHVVHV GHVFULEHG E\ D SDUDEROLF HTXDWLRQ ZLWK GLVWULEXWHG FRQWURO IURP D JLYHQ VHW DUH FRQVLGHUHG 0HWKRGV IRU VROYLQJ WKHVH SUREOHPV E\ FRQVWUXFWLQJ PLQLPL]LQJ VHTXHQFHVDUHSURSRVHG 3UREOHP VWDWHPHQW :H FRQVLGHU D FRQWUROODEOH SURFHVV GHVFULEHG LQVLGH RI WKHDUHD Q ^ d x d  d t d T `E\WKHHTXDWLRQ wu x t wt

w  u x t         P x t  v x t   wx  VDWLVILHGRQWKHERXQG Q WRWKHLQLWLDODQGERXQGDU\FRQGLWLRQV wu  t wu  t      u x M x     Du  t   wx wx +HUH P x  t  L Q  u x t u x t  v  H  Q ^u x t  L Q  u x x t  L Q `WKH a

u x ˜  L I   DUH FRQWLQXRXV LQ PHWULFV L I   I 

^t  R

`

  d t d T   DW DOO x  I x  R   d x d   WKH WUDFHV u ˜ t  L I  DUH FRQWLQXRXV LQ PHWULFV L I  DW DOO t  >t  t @ WKHWUDFH u ˜ t DW t  FRLQFLGHVZLWKWKHIXQFWLRQ M x  L I DQGDW

WUDFHV

^



`



t T  FRLQFLGHV ZLWK WKH IXQFWLRQ \ x  L I   D  LV D JLYHQ QXPEHU v x t  LV FRQWURO7ZRFDVHVDUHFRQVLGHUHG ­ ½    v x  t  L Q   v x t  V °®v x t  L Q  ³³ v x t dxdt d r  °¾  °¯

Q

 

°¿

7KHSUREOHPVDUHVHW 3UREOHP (Controllability problem without restriction). Find a control v x  t  L  Q , which transfers the system (4.83), (4.84) from the initial state u x M x , x  I  , to the given final state u x T \ x , x  I  , at the time moment T , where \ x  L I is a prescribed function. 3UREOHP (Controllability problem with restriction). Find a control v x t  V , which transfers the system (4.83), (4.84) from the initial state u x M x , x  I  , to the given final state u x T \ x , x  I  , at the time moment T , where \ x  L I is a prescribed function. 3UREOHP (Controllability problem with minimal norm). Find a control v x  t  L Q with minimal norm, which transfers the system (4.83), (4.84) from the initial state u x M x to the state u x T \ x  3UREOHP(Optimal performance problem). Let v x t  V , u x T \ x . The time moment T is not fixed. Find a control v x t  V , which for the short time T transfers the system (4.83), (4.84) from the initial state u x M x , x  I , to the desired final state u x T \ x , x  I . 7KH LQWHJUDO HTXDWLRQV 6ROXWLRQ RI WKH HTXDWLRQ   ZLWK FRQGLWLRQV  WKURXJKWKHVRXUFHIXQFWLRQFDQEHUHSUHVHQWHGDV u x T



t 



 

³ G x [  t M [ d[  ³ ³ G x [  t  W >P [ W  v [ W @d[ dW 

ZKHUH G x [  t

f

¦e O

 n a t

˜

FRV On x FRV On[

Zn

n 



 



On DUHSRVLWLYHURRWVRIWKHHTXDWLRQ OtgO D 

Zn



 ³ FRV On xdx 

On  D   D  n    On  D 

)URP  DW t T ZHJHW u x T \ x



T 

³ G x [  T M [ d[  ³ ³ G x [  T  W P [ W d[ dW   

 

T 

 ³ ³ G x [  T  W v [ W d[ dW   

7KLV LPSOLHV WKDW WKH RULJLQ HTXDWLRQ v [ W  L Q  LV D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ T 

³ ³ G x [  T  W v [ W d[ dW

\  x  x  I  







 

 

ZKHUH T 



\  x \ x  ³ G x [  T M [ d[  ³ ³ G x [  T  W P [ W d[ dW  x  I   

7KHV\VWHP ^Mn x ` ZKHUH M n x f n 

 



Zn

FRV On x DUHIXOORUWKRQRUPDOV\VWHPLQ L   

 

7KHIXQFWLRQ f

¦e O

G x [  t

 n a t

˜

FRV On x FRV On[

Z

n 

f

¦e O

 n

 n a  T W

M n x M n [ 

n 

6LQFH ^Mn x `fn  LVIXOORUWKRQRUPDOV\VWHPWKDW f

¦\

\  x

M n x \ n

n

n 



³\ x M x dx  

n



7KHQWKHLQWHJUDOHTXDWLRQ  LVZULWWHQLQWKHIRUP T  f

³ ³ ¦e

f

¦\

On a  T W

M n x M n [ v [ W d[ dW

  n 

M n x 

n

n 

7KLVLPSOLHVWKDW HTXDWLQJWKHFRHIILFLHQWVDW\ n x  T 

³³e

On a  T W

M n [ v [ W d[ dW \ n  n  





 

 

  n

,IZHGHQRWH Ln [ W e  O a T W M n [ WKHQHTXDWLRQ  LVZULWWHQLQWKHIRUP T 

³ ³ L [ W v [ W d[ dW

\ n  n   

n





 





 

 

ZKHUH a   b T  c   d  6LQFH 

³ v [ W M [ d[ n

vn W  v [ W

f

¦v

n

W M n [ 

n 



WKDWWKHLQWHJUDOHTXDWLRQ  FDQEHUHSUHVHQWHGLQWKHIRUP T

³e

On a  T W

vn W dW \ n  n  





7KH LQWHJUDO HTXDWLRQV       DUH FRQVLGHUHG VHSDUDWHO\ EHORZ IRU WZRFDVHVZKHQ  v [ W  L Q   v [ W  V  6ROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   $V LW IROORZV IURP   WKH WUXQFDWHGHTXDWLRQIRUWKHYDOXHV n   N LVZULWWHQLQWKHIRUP T 

³ ³ L [ W v [ W d[ dW

\ N 

n









 

 

ZKHUH § e  On a T W M [ · ¸ ¨  ¨ e On a T W M  [ ¸ LN [ W ¨ ¸ \ N ¸ ¨   ¨ e On a T W M [ ¸ N ¹ ©  

§ \  · ¸ ¨ ¨ \  ¸ ¨  ¸  ¸ ¨ ¨\ ¸ © N ¹

$SSO\LQJWRWKHLQWHJUDOHTXDWLRQ  WKHRUHPRI†ZHREWDLQ /HPPDThe integral equation (4.90) has a solution if and only if when T 

S

S  T 

³³L

N

[ W L N [ W d[ dW

 

of order N u N is positive defined. 3URYH RI WKH OHPPD IROORZV IURP WKHRUHP  RI † E\ VXEVWLWXWLQJ K t W  RQ L [ W   

/HPPDLet the matrix be S !   Then the general solution of the integral equation (4.90) is defined by formula v N [ W

T 

p [ W  L N [ W S\ N  L N [ W S ³ ³ LN [ W p [ W d[ dW 

 

 

where p [ W  L Q is an arbitrary function. Moreover, control v [ W with minimal norm in L  Q is equal to      v N [ W L N [ W S\ N   3URYHRIWKHOHPPDIROORZVIURPWKHRUHPSUHVHQWHGLQ† /HW v [ W  EH D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   :H FDOFXODWH D T 

³ ³ G x [  T  W v

IXQFWLRQ \  x

N

[ W d[ dW  ZKHUH v N [ W  LV GHILQHG E\ IRUPXOD

 

  RU   7KHQ WKH GLIIHUHQFH v [ W  v N [ W 'v N [ W  LV D VROXWLRQ RI WKHLQWHJUDOHTXDWLRQ T 

³ ³ G x [  T  W ' v

N

[ W d[ dW \  x \  x

'\ N x  x  >@ 

 

&RUUHVSRQGLQJWUXQFDWHGHTXDWLRQLVZULWWHQDV T 

³ ³ LN [ W 'v N [ W d[ dW

'\ N  '\ N

 

ZKHUH '\ N



³ '\ M

n

§ '\  · ¨ ¸ ¨  ¸  ¨ '\ ¸ N ¹ ©

x dx  n  N 



/HPPDLet the matrix be 'v N [ W



T 

³³ L

N

S !  .

Then the estimation is held 

[ W S'[ N d[ dW  OLP 'v N [ W

 

N

N of

 

/HPPDV  DUH UHODWHG WR WKH FDVH ZKHQ v [ W  L  Q  DQ JLYH VROXWLRQV RI WKH SUREOHPVIRUWUXQFDWHGLQWHJUDOHTXDWLRQ   :HFRQVLGHUWKHFDVHZKHQ v [ W  V

­° ½  ° ®v [ W  L Q  ³³ v [ W d[dW d r ¾  °¯ °¿ Q

/HW w [ W

T 

p [ W  L N [ W S ³ ³ LN [ W p [ W d[ dW  p [ W  L  Q   

:HLQWURGXFHDVHW M

­ ®w [ W  L Q  w [ W ¯

T  ½ p [ W  L N [ W S ³³ LN [ W p [ W d[ dW ¾    ¿

$VLWIROORZVIURPOHPPDVROXWLRQRIWKHLQWHJUDOHTXDWLRQ  KDVWKHIRUP v [ W L N S\  w [ W  w [ W  M  :HFRQVLGHUDQRSWLPL]DWLRQSUREOHPPLQLPL]HWKHIXQFWLRQDO T 

I N v w

³ ³ >v [ W  L

N

S\ N  w [ W @ d[ dW o LQI  

 

 



 

DWFRQGLWLRQV      v [ W  V  w [ W  M   /HPPD Let the pair v [ W  w [ W  V u M be a solution of the optimization problem (4.93), (4.94) at N o f  In order to the function v [ W  V be a solution of the integral equation (4.86), necessary and sufficiently, that I N v  w  at N o f . 7KXVIRUVROYLQJWKHFRQWUROODELOLW\SUREOHPLQWKHFDVH v [ W  V QHFHVVDU\ WRILQGDVROXWLRQRIWKHRSWLPL]DWLRQSUREOHP      *UDGLHQW RI WKH IXQFWLRQDO 2SWLPL]DWLRQ SUREOHP     FDQ EH VROYHG E\ FRQVWUXFWLQJ WKH PLQLPL]LQJ VHTXHQFHV ^vn [ W `  V  ^wn [ W `  M  ZKLFK FRQYHUJHV WR v N [ W V  w N [ W  M  DW n o f  ZKHUH OLP v N [ W v [ W  V  OLP w N [ W w [ W  M  N of N of 7KHRUHP Functional (4.93) under conditions (4.94) is continuously differentiable by Freshet, gradient of the functional I Nc v w IcN v w  I c N v w  L Q u L Q

 

at any point v w  V u M is equal to   >v [ W  L [ W S \ N  w [ W @  L Q , 7KHRUHP  Gradient of the functional I Nc v w  L Q u L Q satisfies to the Lipshitz condition, i.e. I Nc v  w  I Nc v  w d L v  v L  w  w L ,  IcN v w

I c N v w

>v [ W  L N [ W S\ N  w [ W @  L Q ,  

N





 v  w , v  w  V u M





, l const !  .



3URMHFWLRQRIDSRLQWRQWKHVHW:HQRWHWKDW IRUDQ\QXPEHUV D DQG E WKHSRLQW D w [  W  E w [  W  M DW w [  W  M  w [  W  M ,QIDFW  T 

Dw [ W  Ew [ W >Dp [ W  E p [ W @  L N [ W S ³ ³ LN [ W >Dp [ W    

 E p  [ W @ d [ d W  M



 7KLVLPSOLHVWKDW M LVDOLQHDUPDQLIROGLQ L Q  LI p [ W {   [ W  Q WKHQ w [ W  M &RQVHTXHQWO\OLQHDUPDQLIROG M LVVXEVSDFHLHFRQYH[FORVHGVHW 7KHRUHP Any element f [  W  L Q has an unique projection on the set M , moreover PM > f [ W @

T 

f [ W  L N [ W S ³ ³ LN [ W f [ W d[ dW  [ W  Q    

where

PM > f [ W @

is a projection of the point f [ W on M .  

 

3URMHFWLRQRIWKHSRLQW f [ W  L Q RQ V LVGHILQHG f [ W  ­  °°r ˜ f [ W  if f L ! r   L PV > f [ W @ ®    °  f [  W  if f r  d   L °¯







 

 &RQYH[ IXQFWLRQDO :H FRQVLGHU WKH IXQFWLRQDO   XQGHU FRQGLWLRQV  DVLWLVVKRZQDERYHWKHVHW M LVFRQYH[DQGFORVHGWKHVHW V LVFRQYH[ FORVHGVSKHUH&RQVHTXHQWO\WKHVHW V u M LVFRQYH[DQGFORVHG 7KHRUHP Functional I Nc v w on the set V u M is twice continuously differentiable by Freshet and convex. 0LQLPL]LQJVHTXHQFHV:HFRQVLGHUWKHRSWLPL]DWLRQSUREOHP     :HFRQVWUXFWWKHVHTXHQFH ^vn [ W `  V  ^wn [ W `  M E\WKHUXOH vn  [ W PV >vn [ W  D n IcN vn  wn @  n        wn  [ W PM > wn [ W  D n I c N vn  wn @  n        ZKHUH   H  d D n d

  H  !  ,QSDUWLFXODU H L  H

L  D n 

  H  L

  L

*UDGLHQW I Nc v w IcN v w  I c N v w  LV GHILQHG E\ IRUPXODV     L !  LVD/LSVKLW]FRQVWDQWRI  PRUHRYHU PV >˜@  PW >˜@ DUHGHILQHGE\UHODWLRQV     7KHRUHP Let the sequences ^vn [ W `  V , ^wn [ W `  M are defined by relations (4.101), (4.102).Then: 1) The lower bound of the functional I N v w is reached on the set V u M and I N v w LQI I N v w I N vn  wn at any fixed N ; v  w V u M 2) The sequence ^vn [ W  wn [ W `  V u M is minimizing, i.e. OLP I N vn  wn I N LQI I N v w  v w  V u M  n of 3) The sequence ^vn [ W  wn [ W `  V u M is weekly converges to the point v N

vN [ W  wN

weakly

weakly

wN [ W at n o f , i.e. vn o vN , wn o wN at any

fixed N ; 4) The estimation of the convergence rate is held  d I N vn  wn  I N d

5)

c  n   c const !   n



I N OLP I N vN  wN  , then the equation If I NOLP of N of





OLP vN [ W V

N of

transfers a trajectory of the system (4.83), (4.84) from the initial state u x M x , x  I , to the given final state u x T \ x ; if I !  , then control v [  W  V minimizes the norm u x T  \ x , i.e. control v [  W  V provides the best approximation u x  T to \ x . 6ROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   7KH RWKHU DSSUR[LPDWLRQ PHWKRG IRUVROYLQJRIWKHLQWHJUDOHTXDWLRQ  FDQEHREWDLQHGE\GLYLGLQJWKHVHJPHQW  

>@ RQ N  SDUWVZLWKVSOLWSRLQWV x

YDOXHV x xi  i

 $VLWIROORZVIURP  IRU

 x   xN

 N  ZHJHW T  f

³ ³ ¦e

On a  T W

M n [ M n xi v [ W d[ dW

\  xi  i

 N  

  n 

7KHWUXQFDWHGHTXDWLRQLVSUHVHQWHGLQWKHIRUP T 

³³P

N

[  W v N [ W d[ dW

\ N  







 

 

ZKHUH · § f  On a  T W M n [ M n x ¸ ¨ ¦e ¸ ¨n PN [ W ¨  ¸ \ N f ¸ ¨  On a  T W M n [ M n x N ¸ ¨¦e ¹ ©n 

§ \  x · ¨ ¸ ¨  ¸  ¨\ x ¸ ©  N ¹

/HPPD The integral equation (4.104) has a solution if and only if the matrix T 

S

³³P

S  T 

N

[ W PN  [ W d[ dW

 

of order   N  u   N  is positive defined. 3URYHRIWKHOHPPDIROORZVIURPWKHRUHPSUHVHQWHGLQ† /HPPD Let S  !  . Then the general solution of the integral equation (4.104) is defined by formula v N [ W

T 

U [  W  PN [ W S \ N  PN [  W S  ³ ³ PN [ W U [  W d[ dW , 









 

where U [  W  L Q is an arbitrary function. In addition, control with minimal norm in L Q is equal to   v N [  W PN [  W S \ N . 





3URYHRIWKHOHPPDIROORZVIURPWKHRUHPSUHVHQWHGLQWKHZRUN† :HFDOFXODWHWKHIXQFWLRQ \  x

T 

³ ³ G x [  T  W v

N

[ W d[ dW 

 

ZKHUH

v [  W 

v [  W  v [  W

LV GHILQHG E\ IRUPXOD   RU   7KHQ WKH GLIIHUHQFH ' v [  W LVDVROXWLRQRIWKHLQWHJUDOHTXDWLRQ

T 

³ ³ G x [  T  W 'v

N

[  W d[ dW

\  x \  x

'\ N x  x  >@ 

 

&RUUHVSRQGLQJWUXQFDWHGVROXWLRQKDVWKHIRUP T 

³ ³ PN [ W 'v N [ W d[ dW  

§ \ N x · ¨ ¸ \ N x  '\ N x ¨  ¸  ¨\ x ¸ © N N ¹ 







  



/HPPDLet the matrix 'v N [  W



S !  .

T 

³³ P

N

The estimation is held 

[ W S '\ N d[ dW , OLP v N [ W N of

 

.

3URYH RI WKH OHPPD IROORZV IURP WKHRUHPV   SUHVHQWHG LQ † DW N  o f WKHLQWHJUDOHTXDWLRQV  DQG  FRLQFLGH

/HPPDV DUH UHODWHG WR WKH FDVH v [  W  L Q  DQG JLYH WKH VROXWLRQV RI SUREOHPV IRU WUXQFDWHG LQWHJUDO HTXDWLRQ   7KH FDVH ZKHQ v [ W  V LV FRQVLGHUHGEHORZ 1RZZHFRQVLGHUWKHWUXQFDWHGLQWHJUDOHTXDWLRQ  WKHJHQHUDOVROXWLRQ RIZKLFKKDVWKHIRUP  /HW T 

P [ W U [ W  PN [ W S  ³ ³ PN [ W U [ W d[ dW , U [  W  L Q . 



 

:HLQWURGXFHWKHVHW T  ­ ½ * ®P [ W  L Q  P [ W U [ W  PN  [ W S ³ ³ PN [ W U [ W d[ dW ¾ .   ¯ ¿

$VLWIROORZVIURPOHPPDWKHVROXWLRQRIWKHLQWHJUDOHTXDWLRQ  KDVWKH IRUP v [ W PN [ W S \ N  P [ W , P [ W  * . :HFRQVLGHUWKHRSWLPL]DWLRQSUREOHPPLQLPL]HWKHIXQFWLRQDO 

I N  v P



T 

³ ³ >v [ W  P

N

[ W S\ N  P [ W @ d[ dW o LQI 



 

 

DWFRQGLWLRQV v [ W  V  P [ W  * 

      )RU RSWLPL]DWLRQ SUREOHP     OHPPD  WKHRUHPV  DUH YDOLG DIWHUVXEVWLWXWLRQWKHLQGH[ N E\ N  WKHIXQFWLRQV w [ W E\ P [ W WKHVHWV M  E\ *  6ROXWLRQ RI WKH LQWHJUDO HTXDWLRQ   ,Q WKH ZRUN >@ IRU VROYLQJ WKH LQWHJUDOHTXDWLRQ  E\WKHPHWKRGRIPRPHQWVDFRQWUROZLWKPLQLPDOQLUPLQ WKH FDVH v [  W  L Q LV IRXQG 7KH UHVXOW LV D SDUWLFXODU FDVH RI WKH JHQHUDO VROXWLRQRIWKHLQWHJUDOHTXDWLRQ   /HPPDThe integral equation (4.89) has a solution if and only if the value T

Cn

Cn  T

³e

 On a  T W

dW !   n  



3URYHRIWKHOHPPDIROORZVIURPWKHUHVXOWVRIWKHZRUN>@ /HPPDLet Cn !  . Then the general solution of the integral equation (4.89) has the form vn W



pn W  e  On a



T W



˜ Cn\ n  e  On a



T W

T

Cn ³ e On a 



T W

pn W dW 

 



where pn W  L  T is an arbitrary function. In addition, control with minimal norm equals  

 

vnPLQ W eOn a

T W

˜ Cn\ n  W  > T @ 

     :H QRWH WKDW WKH UHVXOW   EHORQJV $, (JRURY >@ FRQWURO ZLWK PLQLPDOQRUP f

¦e O

vPLQ [  W



  na

T W

˜ Cn\ nM n [  [ W  Q 

n 

:H FRQVLGHU WKH FDVH ZKHQ v [ W  V  $V LW IROORZV IURP WKHRUHP  WKH JHQHUDOVROXWLRQRIWKHLQWHJUDOHTXDWLRQ  KDVWKHIRUP f

¦v

v [  W

n

f

¦M

t M n [

n 

 

n

[ > pn W  e On a

T W

˜ Cn\ n 

n 

 

 e On a

T

Cn ³ e Ona

T W

 

T W

 

 



 

pn W dW @



ZKHUH pn W  L  T LVDQDUELWUDU\IXQFWLRQ/HWWKHIXQFWLRQ 

pn W  e On a

Zn W



T W

T

Cn ³ e On a 



T W

pn W dW  





7KHQWKHFRQWURO v [ W RI  ZLWKWDNLQJLQWRDFFRXQW  LVZULWWHQLQWKH IRUP f

f

vPLQ [ W  ¦ Zn [  W M [

v [ W

¦ v W M [  n

n 





 





 

n 

ZKHUH f

¦e O

vPLQ [ W



  n a T

W

f

¦v

˜ Cn\ nM n [

n 

n 

n PLQ

W M [ 



:H QRWH WKDW   LI vPLQ [ W d r   WKHQ WKH HTXDWLRQ   LV D VROXWLRQ RI 

SUREOHP    LI vPLQ [ W ! r   WKHQ SUREOHP  KDV QRW DQ\ VROXWLRQ   LI 

vPLQ [ W  r   WKHQ SUREOHP  KDV D VROXWLRQ ,Q WKLV FDVH QHFHVVDU\ WR ILQG D 

FRQWURO v [ W ZKHUH v [ W d r   7KH FDVH ZKHQ vPLQ [ W  r   LV FRQVLGHUHG EHORZ 6LQFH ^M k [ `fk   LV DQ 

RUWKRQRUPDO V\VWHP WKHQ Mk [





  ³ M k [ M j [ d[

  k z j  $V LW IROORZV IURP



OHPPDWKHIXQFWLRQ  

e  On a

vn W   T W n

ZKHUH V n W e  O a

T W

C n\ n  Z n W V n W  Z n W 

 V n A Z n  LH V n  Zn

  E\ WKHRUHP  DQG IURP †

L

7KHQ vn



Vn

L

 L

 Zn





 L

 vn L



³ v W dW   n



)URP  IROORZVWKDWWKHQRUP f



vL f



ZKHUH vPLQ L



¦V n 



 n L 

¦v n 

f

¦V

 n L 

f T

n 

¦³ e O 

 n L 

  n a T W

f

 ¦ Zn n 



Cn\ n dW

n  

 

 L

f

¦v n 

r 

 PLQ L 

f

 ¦ Zn n 

 L





6LQFH v L  r  WKDW 

f

¦Z

 n L 

n 

d r   r  r   r !  









 

$VLWIROORZVIURPIRUPXOD  WKHQRUP Zn



T

³ Zn W dW

 L



Zn



 L

§T   ·  Cn ¨¨ ³ e On a T W pn W dW ¸¸ !   © ¹

 

)URP    ZHJHW f

¦p n 

f

,QSDUWLFXODULI ¦ p n n 



n L 

 L



§T   ·  ¦ C ¨¨ ³ e On a T W pn W dW ¸¸ d r   r    n  © ¹ f

 n



 

r   r  WKHQWKHHTXDOLW\  LVKHOG

6LQFH pn W  L  DUHVRPHDUELWUDU\IXQFWLRQVWKDWDW p W z   p j W {  DW j !   ZH JHW p

T

³ p W dW

r   r   LH

r   r  7KHUHIRUH DW p t

 

c

const

 ZH



r   r  T

REWDLQ c

&RQWURO ZLWK PLQLPDO QRUP $V LW IROORZV IURP OHPPD  IRU LQWHJUDO HTXDWLRQ   FRQWURO ZLWK PLQLPDO QRUP LV GHILQHG E\ IRUPXOD   ,Q WKLV FDVHIRURULJLQLQWHJUDOHTXDWLRQ  FRQWUROZLWKPLQLPDOQRUP vPLQ [ W OLP L N [ W S\ N  [ W  Q  N of )RULQWHJUDOHTXDWLRQ  FRQWUROZLWKPLQLPDOQRUP vPLQ [  W

f

¦e O 

  na

T W

˜ Cn\ nM n [  [ W  Q 

n 

)URP OHPPD  IROORZV WKDW WKH FRQWURO ZLWK PLQLPDO QRUP IRU LQWHJUDO HTXDWLRQ  LVGHILQHGE\IRUPXOD  ,QWKLVFDVHWKHRULJLQ vPLQ [ W OLP PN [ W S\ N  [ W  Q  N of 





2SWLPDOVSHHG3UREOHPRIRSWLPDOVSHHGFRQQHFWHGZLWKFKRLFHRIWKHYDOXH T FDQEHVROYHGE\WKHDOJRULWKP  7KHYDOXH T T LVVHOHFWHGZKHUH T LVDSUHVFULEHGYDOXH7KHVHTXHQFH

vn  wn  V u M LVFRQVWUXFWHGE\WKHUXOH    ZKHUH T  ­° ½ °  ®v [ W  L Q  ³ ³ v [ W dW d[ d r ¾  °¯ °¿   LV WKH JLYHQ QXPEHU :H GHILQH v [ W v  w [ W

V

w 

ZKHUH

,I  I !   WKHQ DV D QHZ YDOXH ZH WDNH T T  DQG LQ WKH FDVH I

  ZH

I

OLP I N vN  wN  v

N of

DVVXPH T

OLP wN [ W  w

N of

OLP wN [ W 

N of

T :HQRWHWKDWWKHYDOXH I t   

)RUQHZYDOXHV  

T

­ T  if I !  °  ® T °¯   if I 

WKH VHTXHQFHV ^vn  wn `  DUH FRQVWUXFWHG DQG v

v

[  W  w

w

[ W  WKH YDOXH I

 DUH GHILQHG +HUH WKHUH DUH WZR FDVHV D  I

!   ɛ  I

  7KH YDOXHLVGHILQHG T

­T  if I

!  °  ® T °¯   if I



$SSO\LQJFRQVHTXHQWO\WKHVFKHPHRIFDOFXODWLRQ T ZHILQGWKHPLQLPDO YDOXH T T   

&RPPHQWV  $VXWIROORZVIURPWKHSUREOHPVWDWHPHQW†WKHFRQWUROODELOLW\SUREOHP WDNLQJLQWRDFFRXQWWKHOLPLWHGUHVRXUFHV  LVWKH PDLQ SUREOHP 6ROXWLRQVRI SUREOHPVFDQEHREWDLQHGE\VROYLQJPHWKRGRISUREOHP7KHFRQWUROODELOLW\ SUREOHPV IRU WKH SURFHVVHV GHVFULEHG E\ RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV ZHUH VWXGLHGLQ>@WKHFRQWUROODELOLW\SUREOHPZLWKWKHPLQLPXPQRUPEDVHG RQWKHSUREOHPRIPRPHQWVZDVVROYHGLQ>@3UREOHPFDQQRWEHVROYHGE\ WKH PHWKRGV SURSRVHG LQ > @ 8QOLNH WKH FRQWUROODELOLW\ SUREOHP ZLWK WKH PLQLPXPQRUPWKLVSUREOHPGRHVQRWDOZD\VKDYHDVROXWLRQ,Q†DPHWKRG IRU VROYLQJ SUREOHPV ± LV SURSRVHG EDVHG RQ WKH FRQVWUXFWLRQ RI D JHQHUDO VROXWLRQRIDFODVVRIWKH)UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIROORZHGE\ WKH UHGXFWLRQ RI WKH RULJLQ SUREOHP WR DQ RSWLPL]DWLRQ SUREOHP 6XFK DSSURDFK DOORZVWRREWDLQVROXWLRQVRIWKHVHSUREOHPVE\FRQVWUXFWLQJPLQLPL]LQJVHTXHQFHV ZLWKRXWXVLQJVSHFWUDOWKHRU\DVLQ>@ 7KH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG RI WKH RULJLQ IXQFWLRQ RI VHYHUDOYDULDEOHV † LVDPRQJWKHSXUHVWXGLHGSUREOHPVRILQWHJUDOHTXDWLRQV 7KH )UHGKROP LQWHJUDO HTXDWLRQ ZLWK WKH GHVLUHG IXQFWLRQ RI RQH YDULDEOH ZLWK D FORVHGV\PPHWULFNHUQHOZDVVWXGLHGLQ>@7KHDSSOLFDWLRQRIWKHPHWKRGRI VXFFHVVLYHDSSUR[LPDWLRQVWRWKHVROXWLRQRIWKH)UHGKROPLQWHJUDOHTXDWLRQRIWKH ILUVWNLQGZDVFDUULHGRXWLQ>@$VLWLVVKRZQLQ>±@WKHVROXWLRQRISUREOHPV RI FRQWUROOHG G\QDPLFDO V\VWHPV UHGXFHV WR WKH H[LVWHQFH DQG FRQVWUXFWLRQ RI D VROXWLRQ WR DQ LQWHJUDO HTXDWLRQ RI WKH IRUP   7KHUHIRUH WKH VWXG\ RI WKH SURSHUWLHVRIWKHVROXWLRQRIWKHLQWHJUDOHTXDWLRQ  LVUHOHYDQW 2QHRIWKHDSSURDFKHVWRVROYLQJSUREOHPVIURP†JLYHQLQ>@PRUH FRPSOHWHGHVFULSWLRQRIWKLVPHWKRGLVFRQWDLQHGLQ>@,Q>@PHWKRGVIRUVROYLQJ WKH)UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIRUWKHGHVLUHGIXQFWLRQRIVHYHUDO YDULDEOHVZHUHSURSRVHG,Q†VROXWLRQVRISUREOHPV±GLIIHUHQWIURP>@ DUHREWDLQHGRQWKHEDVLVRIWKHUHVXOWVRIWKHVWXG\RILQWHJUDOHTXDWLRQVIURP>@ 7KH UHVXOWV SUHVHQWHG LQ FKDSWHU ,,, FDQ EH XVHG IRU PRUH GHHS VWXG\ RI WKH SUREOHPVRIFRQWUROODELOLW\IRUSDUWLDOGLIIHUHQWLDOHTXDWLRQV  

 4XRWHGOLWHUDWXUH   (JRURY$,2SWLPDOFRQWURORIWKHUPDODQGGLIIXVLRQSURFHVVHV±06FLHQFH   $LVDJDOLHY6$5HJLRQDOSUREOHPVRIRSWLPDOFRQWURO±$OPDW\.D]DNK8QLYHU VLW\±S  $LVDJDOLHY6$$LVDJDOLHY760HWKRGVIRUVROYLQJERXQGDU\YDOXHSUREOHPV ±$OPDW\.D]DNK8QLYHUVLW\±S  $LVDJDOLHY 6$ &RQWUROODELOLW\ RI D V\VWHP RI GLIIHUHQWLDO HTXDWLRQV  'LIIHUHQWLDO (TXDWLRQV91RS  $LVDJDOLHY6$7KHJHQHUDOVROXWLRQRIDFODVVRILQWHJUDOHTXDWLRQV0DWKHPDWLFDO -RXUQDO9RO1R  S  $LVDJDOLHY6$.DELGROGDQRYD$$2SWLPDOVSHHGRIQRQOLQHDUV\VWHPVZLWK UHVWULFWLRQV'LIIHUHQWLDOHTXDWLRQVDQGFRQWUROSURFHVVHV1RS  $LVDJDOLHY6$%HORJXURY$3&RQWUROODELOLW\DQGRSWLPDOSHUIRUPDQFHRIWKH SURFHVV GHVFULEHG E\ D SDUDEROLF HTXDWLRQ ZLWK UHVWULFWHG FRQWURO  6LEHULDQ 0DWKHPDWLFDO-RXUQDO-DQXDU\)HEUXDU\91RS  $LVDJDOLHY 6$ &RQVWUXFWLYH WKHRU\ RI ERXQGDU\ YDOXH SUREOHPV RI RSWLPDO FRQWURO±$OPDW\.D]DNKXQLYHUVLW\±S  $LVDJDOLHY6$6HYU\XJLQ,9&RQWUROODELOLW\DQGRSWLPDOSHUIRUPDQFHRIWKH SURFHVVGHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV9HVWQLN .D]18VHUPDWSK\VLQI91R  S  $LVDJDOLHY 6$ 6KDQJLWRYD 0( 7R WKH PDWKHPDWLFDO WKHRU\ RI FRQWUROOHG SURFHVVHV9HVWQLN.D]18VHUPDWSK\VLQI1R  S  %XWNRYVN\$* &RQWURO PHWKRGV IRU V\VWHPV ZLWK GLVWULEXWHGSDUDPHWHUV±0 6FLHQFH  .ROPRJRURY $1 )RPLQ 69 (OHPHQWV RI WKH WKHRU\ RI IXQFWLRQV DQG IXQFWLRQDODQDO\VLV±06FLHQFH±S .UDVQRY0/,QWHJUDOHTXDWLRQV±06FLHQFH±S  $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 0DQDJHPHQW RI WKHUPDO SURFHVVHV  %XOOHWLQ RI WKH .D]DNK 1DWLRQDO 8QLYHUVLW\ VHU PDW SK\V LQI ±ʋ  S  $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 7R WKH VROXWLRQ RI WKH )UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIRUDIXQFWLRQRIVHYHUDOYDULDEOHV 9HVWQLN.D]18VHUPDWSK\VLQI±ʋ  

 

 

 &KDSWHU9  678' I u  J @  > Au  b  d @ > Au  b  d @  > A u  b @ > A u  b @    ZKHUH u  U   J  * d  D ^d  R m  d t `  /HW X u  J  d  EHDVHW V U  u * u D :HFRQVLGHUWKHRSWLPL]DWLRQSUREOHP         ) X o LQI  X  V    ZKHUH WKH IXQFWLRQ ) X ) u  J  d LV GHILQHG E\ IRUPXOD   /HW V ^X u  J  d   V  ) X ) LQI ) X `  XV

7KHRUHPLet u U  U be a solution of problem (5.1), (5.2). Then X

u  J

I u  d

Au  b  V

is a solution of problem (5.9) corresponding to the value ) X  Conversely, if X u  J  d  V is a solution of problem (5.9) at ) X  then u  U  U is a solution of problem (5.1), (5.2). If the value ) X !  then problem (5.1), (5.2) has not any solution. 3URYH /HW u  U EH D VROXWLRQ RI SUREOHP     ZKHUH I u I LQI I u  &RQVHTXHQWO\ u  U   Au  b d  A u  b  :H FKRRVH uU

7KHQ ) X > I u  J @  > Au  b  d @> Au  b  d @   > A u  b @ > A u  b @  6LQFHWKHYDOXH ) X t  X  X V  WKDW ) X LQI ) X t  

J

I u 

d

 Au  b t 

XV

7KLVLPSOLHVWKDW u  J  d  V LVDVROXWLRQRISUREOHP  DW ) X  7KH ILUVWSDUWRIWKHWKHRUHPLVSURYHG 7KH YDOXH ) X  LI DQG RQO\ LI ZKHQ I u  J  Au  b  d  A u  b  u  U   J  *  d  D  6LQFH Au  b  d d  A u  b  u  U   WKDW u  U  )URP I u  J  u  U IROORZV WKDW J I  )LQDOO\ I u J I LQI I u   uU

&RQVHTXHQWO\ u  U  LVDVROXWLRQRISUREOHP     ,I ) X !  WKHQ RU > I u  J @ !  RU > Au  b  d @ > Au  b  d @ !  RU > A u  b @ > A u  b @ !  7KLV LPSOLHV WKDW RU I u z J  RU Au  b  d z  RU A u  b z  &RQVHTXHQWO\ u  U  7KLVPHDQVWKDWWKHSUREOHP    KDVQRW DQ\VROXWLRQ7KHRUHPLVSURYHG 7KHRUHPLet U   be a convex set. Then: 1) the set V U  u * u D is convex. 2) the function ) X is defined on the convex set V which is convex function, i.e. ) DX     D X  d D ) X    D ) X    X  X   V   D  D  >@

3) if for a prescribed point Y V the set

M Y ^X  V  I X d I Y `

 

is bounded, then the set V is not empty, compact and any minimizing sequence ^X n `  M Y converges to the set V  3URYH /HW X u  J   d  V  X  u   J   d   V DQG WKH QXPEHU D  >@ 7KHQ DX     D X  D u    D u   DJ     D J   D d    D d   V E\ Du    D u  U   DJ     D J   *  D d     D d   D  ZKHUH U   *  D LVDFRQYH[VHW 6LQFH ) X  C  V  WKDW WKH QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQ RI FRQYH[LW\ ) X RQ V KDVWKHIRUP  )cc X [  [ !t  X X V  [  [  R n m   $V LW IROORZV IURP   WKH IXQFWLRQ ) X X QX  qX  b b  b b  ZKHUH WKH PDWUL[ Q

§ cc  A A  A A ¨  c ¨ ¨ A ©

c  

A · ¸ ¸ I m ¸¹

Q t  q

§   A b   A b · ¨ ¸  ¨ ¸ ¨ ¸ b   © ¹





WKHQ )cc X Q t  X  X V  7KLV LPSOLHV WKDW WKH IXQFWLRQ ) X LV D FRQYH[ RQ WKHFRQYH[VHW V   6LQFH ) X  C  V  WKDWWKHVHW M Y LVFORVHG%\FRQGLWLRQRIWKHWKHRUHP M Y LV ERXQGHG &RQVHTXHQWO\ WKH VHW M Y LV FRPSDFW RQ V  7KHQ E\ :HLHUVKWUDVV WKHRUHP WKH VHW V z ‡  ‡ LV DQ HPSW\ VHW /HW ^X k `  M Y EH D PLQLPL]LQJVHTXHQFHLH OLP ) Xk ) LQI ) X  :HVKRZWKDW OLPXk X V   XV

k of

k of

:HQRWHWKDWWKHUHH[LVWVDOZD\VWKHPLQLPL]LQJVHTXHQFH /HW X  LV D OLPLWHG SRLQW ^X k ` &RQVHTXHQWO\ WKHUH H[LVWV D VXEVHTXHQFH X  %u n  D n )cu X n @ u n  



PU >u n  D n )cu X n @ 



 PU >u n  D n )cu X n @ u n  PU >u n  D n )cu X n @     P* >J n  D n )cJ X n @ d n  PD >d n  D n )cd X n @ n  

ZKHUH D n const

 L

L  H 

DW H 

Dn



 

const !  )RU QXPHULFDO FDOFXODWLRQV WKH

YDOXHLVVHOHFWHG D n  :HQRWHWKDWWKHSURMHFWLRQRIWKHSRLQWY  R n RQDVHW U  ^u  R n  u t ` LV GHILQHG DV PU >Y @ ^PD[ Y   PD[ Y   PD[ Y n ` ZKHUH  Y

Y  Y n  

7KHOLPLWHGSRLQWVRIWKHVHTXHQFHDUHIRXQG n

OLP u nof

u

  OLP u  n  nof

 

  OLP u n  nof

 

n

OLP u  nof

7KH u

VROXWLRQV

u  u  u  u 

RI

 OLP J n nof

WKH



  OLP d n  nof

RULJLQ

  

SUREOHP

§   · ¨   ¸ WKH YDOXH I u J ©  ¹

 

 

DUH

   7KH VDPH UHVXOWV FDQ EH 

REWDLQHG E\ VROYLQJ WKH SUREOHP     E\ WKH VLPSOH[ PHWKRG DIWHU LWV UHGXFWLRQWRWKHFDQRQLFDOIRUP ,W LV HDV\ WR PDNH VXUH WKDW WKH YDOXH ) X ) u  J  d  ZKHUH X

u  J  d  V 

§  · ¨ ¸ ©  ¹

) X

 Au    d



)

LQI ) X XV

    ˜      

,Q



IDFW

 A u  b



I u  J

 ˜

   ˜   

  · § ¨ ˜    ¸   ¸  ¨ ¨  ˜    ˜     ¸ ¸ ¨   ¹ ©

 /HW U  ^u t  u  R  u t  u  R` 7KLV FDVH GLIIHUV IURP WKH ILUVW FDVH RQO\LQWKDWWKHVHTXHQFHV ^un ` ^u n ` DUHGHWHUPLQHGE\WKHUHODWLRQV u n  u n  D n ) cu X n  u n  u n  D n ) cu X n  n       7KHUHLVQRQHHGWRUHGXFHWKHSUREOHP    WRWKHFDQRQLFDOIRUP E\LQWURGXFLQJDGGLWLRQDOYDULDEOHV u  X   q   X  t  q  t  u  X   q   X  t  q  t   ,Q WKH FDVH ZKHQ WKH YDOXH J LV XQNQRZQ LW LV QHFHVVDU\ WR VROYH WKH RSWLPL]DWLRQ SUREOHP   RQ WKH VHW u  U   J  *  d  D ZKHUH WKH VHW * ^J  R  a d J d J d J

` ZKHUH J

 DUH SUHVFULEHG QXPEHUV $V D UHVXOW D IHDVLEOH WULSOH LV GHWHUPLQHG v u  J  d  J J u  )XUWKHU E\ FRQVLVWHQWO\ UHGXFLQJWKHYDOXHV J

 ZHILQGWKHVROXWLRQWRSUREOHP       Lecture 22.6WXGLHVRQFRQYH[DQGQRQOLQHDUSURJUDPPLQJ  :HFRQVLGHUWKHFRQYH[SURJUDPPLQJSUREOHP     /HPPD Let the set be U ^u U  I u J LQI I u ` z ‡ Then the sum uU

g u  d t  under all uU for any

d  D

^d  R m  d t d  d

 g u t `

7KH SURRI RI WKH OHPPD LV VLPLODU WR WKH SURRI RI /HPPD  $V LQ WKH SUHYLRXVFDVHIURPWKHLQLWLDOGDWDRISUREOHP    ZHGHILQHWKHIXQFWLRQ < u J  d > I u  J @  > g u  d @ > g u  d @  > Au  b@ > Au  b@     ZKHUH u  U  J  * d  D   7KHIXQFWLRQV I u  g u g u  g m u  DUHFRQYH[RQWKHVHW U    /HW X u  J  d  WKHVHW V U  u * u D :HFRQVLGHUWKHRSWLPL]DWLRQSUREOHP        < X o LQI  X  V    ZKHUH WKH IXQFWLRQ < X < u J  d LV GHILQHG E\ IRUPXOD   /HW U ^u  U  I u I LQI I u `  DUHWKHVROXWLRQVVHWVRISUREOHP    WKHVHW uU

 

V ^X

u  J  d V  < X
I u  J @I c u · ¸¸ I c u @  > I u  J @I cc u   I c u · ¸  ¨ ¨  ¸¹  > I c u @ © 

u  U   J  * 

,Q RUGHU WR WKH IXQFWLRQ F q t  'q t  t  F q t  t @dt 



t

t

³>'u t F

u

q t  t  'p t F p q t  t  'v t Fv q t  t 

 



t

 

 'v t Fv q t  t  'x Fx q t  t  'x Fx q t  t  'd Fd q t  t  





 'z t Fz q t  t  'z t F



 z t

t





q t  t @dt  ¦Ri  i 

t

t

t

t

ZKHUH _ R _d l ³ _ 'u t __ 'q t _ dt  _ R _d l ³ _ 'p t __ 'q t _ dt  _ R _d l ³ _ 'v t __ 'q t _ dt  t

t

_ R _d l ³ _ 'v t __ 'q t _ dt  t

t

_ R _d l ³ _ 'x __ 'q t _ dt  t

 

t _ R _d l ³ _ 'x __ 'q t _ dt  t

t

t

t

t

t

t

_ R _d l ³ _ 'd __ 'q t _ dt  _ R _d l ³ _ 'z t __ 'q t _ dt  _ R _d l ³ _ 'z t __ 'q t _ dt LQ YLUWXH RI

WKH/LSVKLW]FRQGLWLRQ  :HQRWHWKDW VHH     t

³'z t F

 z t

t



q t  t dt

t t  ³ > 'v t B t  'v t B @\ t dt  ³ 'z t F z q t  t dt   t

 

t

)URP    ZHJHW t



³^'u t Fu q t  t  'p t F p q t  t  'v t > Fv q t  t  B t \ t @  

' I



t

 'v t > Fv q t  t  B \ t @  'x F x q t  t  'x F x q t  t   







 'd Fd q t  t `dt  ¦Ri  Ic T  'T ! H  R 

i 

ZKHUH R



_R_ o  DW __ 'T __o   Ri  _ R _d C __ 'T __  ¦ __ 'T __ i  

7KLV LPSOLHV WKH UHODWLRQV   /HW T u  'u p  'p v  'v  v   'v  x  'x  x  'x d  'd  T  u p v  v  x  x  d  X 6LQFH _ Ic T  Ic T  _ d l _ 'q t _ l _ '\ t _ l _ 'T _   _ 'q t _d l __ 'T __ _ '\ t _d l __ 'T __  WKDW t

³ _ I c T  I c T

__ Ic T  Ic T  __









_ dt d l __ 'T __  

t

l  ZKHUH li const !   i   7KLV LPSOLHV WKH HVWLPDWLRQ   ZKHUH K 7KHRUHPLVSURYHG /HPPDLet a matrix be T t  t !  , the function F q t be convex by the variable q  R N , N n  m  s  r  m , i.e. F Dq   D q d DF q  t   D F q  t  q  q  R N  D  D >@ (6.56) Then the functional (6.45) under the conditions (6.46) – (6.48) is convex. 3URRI/HW T T   X  D  >@ ,WFDQEHVKRZQWKDW z t  Dv    D v  Dv    D v  Dz t  v  v    D z t  v  v    r m  v  v  v  v   L I  R    7KHQ I DT     D T 

t

³ F Dq t    D q t dt d DI T    D I T 













 

t

T T   X  T

u  p  v  v  x  x  d  T 

u  p  v  v   x   x  d  

7KHOHPPDLVSURYHG 7KHLQLWLDORSWLPDOFRQWUROSUREOHP    FDQEHVROYHGE\QXPHULFDO PHWKRGVIRUVROYLQJH[WUHPDOSUREOHPV>@:HLQWURGXFHWKHIROORZLQJVHWV U ^u ˜  L I  R m  __ u __d E `   

V I  R r ^v ˜  L I  R r  __ v __d E `  m

m

V I  R  ^v ˜  L I  R   __ v __d E `   m

* ^d  R  d t  _ d _d E ` 

E !  LV D TXLWH ODUJH QXPEHU :H FRQVWUXFW WKH VHTXHQFHV ^T n ` ^un  pn  vn  vn  xn  xn  d n `  X   n   E\WKHDOJRULWKP u n  PU >u n  D n Icu T n @ pn  PV > pn  D n Icp T n @ vn  PV >vn  D n Icv T n @ vn  PV >vn  D n Icv T n @ 







PS > xn  D n Icx T n @ xn  PS > xn  D n Icx T n @          d n  P* > d n  D n Icd T n @ n       H !    H d Dn d K  H ZKHUH P: >˜@ LVDSURMHFWLRQRIWKHSRLQWRQWKHVHW :  K const !  RI   xn 

7KHRUHP /HW WKH FRQGLWLRQV RI WKHRUHP  EH IXOILOOHG PRUHRYHU WKH IXQFWLRQ F q t EH FRQYH[ ZLWK UHVSHFW WR D YDULDEOH q  R N DQG WKH VHTXHQFH ^T n `  X EHGHWHUPLQHGE\IRUPXOD  7KHQ   WKH ORZHU ERXQG RI WKH IXQFWLRQDO   LV UHDFKHG XQGHU FRQGLWLRQV  ±   LQI I T I T PLQ I T  T  X   T  X

T  X

 WKHVHTXHQFH ^T n `  X LVPLQLPL]LQJ OLP I T n I n of

LQI I T 

T  X

  WKH VHTXHQFH ^T n `  X LV ZHDNO\ FRQYHUJHG WR WKH SRLQW  T  X   xs xs n

n

n

xs u n o u  pn o p  v o v  v o v  xn o x  x o x  d n o d DW n o f 

ZKHUH T u  p  v  v  x  x  d  X     ,Q RUGHU WR WKH SUREOHP   ±   WR KDYH D VROXWLRQ QHFHVVDU\ DQI VXIILFLHQWO\WKDW OLP I T n I   xs

nof

 7KHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHLVYDOLG C      n    C const !    n 3URRI 6LQFH WKH IXQFWLRQ F q t  t  I LV FRQYH[ WKHQ DFFRUGLQJ WR WKH  d I T n  I d

VWDWHPHQWRIOHPPDWKHIXQFWLRQDO I T  T  X  LVFRQYH[RQDZHDNO\ELFRPSDFW VHW X   &RQVHTXHQWO\ I T  C X LV ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ RQ D ZHDNO\ FRPSDFW VHW X  DQG UHDFKHV WKH ORZHU ERXQG LQ X   7KLV LPSOLHV WKH ILUVW DVVHUWLRQRIWKHWKHRUHP 8VLQJWKHSURSHUWLHVRIDSURMHFWLRQRQWKHSRLQWRQWKHFRQYH[FORVHGVHW X   DQG WDNLQJ LQWR DFFRXQW WKDW I T  C X LW FDQ EH VKRZQ WKDW I T n  I T n t H __ T n  T n __  n    H !  7KLVLPSOLHVWKDW WKHQXPHULFDO VHTXHQFH ^I T n ` LVVWULFWO\GHFUHDVHG  __ T n  T n __o  DW n o f  6LQFHWKHIXQFWLRQDOLVFRQYH[DQGWKHVHW X  LVERXQGHGWKHLQHTXDOLW\LVKHOG  d I T n  I T d C __ T n  T n __ C const !  n       

+HQFH WDNLQJ LQWR DFFRXQW WKH IDFW __ T n  T n __o  DW n o f  ZH KDYH WKH VHTXHQFH ^T n ` LVPLQLPL]LQJ OLP I T n I T LQI I T  T  X

n of

ɫɥ 6LQFH ^Tn `  X  X  LVZHDNO\FRPSDFWWKHQ T n o T ZLWK n o f  $VLWIROORZVIURPOHPPDLIWKHYDOXH I T  WKHQWKHSUREOHPRIWKH RSWLPDOHTXDWLRQ    KDVDVROXWLRQ 7KH HVWLPDWH   IROORZV GLUHFWO\ IURP LQHTXDOLWLHV   I T n  I T n t H __ T n  T n __  7KHPDLQVWDJHVRIWKHSURRIRIWKHWKHRUHPDUHEULHIO\GHVFULEHGDERYH$ GHWDLOHGSURRIRIDVLPLODUWKHRUHPLVJLYHQLQ>@7KHWKHRUHPLVSURYHG )RU WKH FDVH ZKHQ WKH IXQFWLRQ F q t LV QRW FRQYH[ LQ D YDULDEOH q  WKH IROORZLQJWKHRUHPLVWUXH 7KHRUHP  Let the conditions of theorem 4 be fulfilled, the sequence ^T n `  X be determined by formula (6.57). Then: 1) the value of the functional I Tn is strictly decreased at n   ; 2) __ T n  T n __o  ; at n o f 7KHSURRIRIWKHWKHRUHPIROORZVIURP7KHRUHP )URP WKH DERYH UHVXOWV LW IROORZV   LI T u  p  v  v  x  x  d  X  LV D VROXWLRQ RI WKH RSWLPDO FRQWURO SUREOHP      IRU ZKLFK I T   WKHQ u u t  x  x  6  U u S  u S LV DQ DGPLVVLEOH FRQWURO   WKH IXQFWLRQ x t  t   x  t  I LV WKH VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ   VDWLVILHV WKH FRQGLWLRQV x t  t   x x  x t  t   x  G t  t  I   IXQFWLRQDOV g j u ˜  x  x d   j  m  g j u ˜  x  x   j m   m    D QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQ IRU WKH H[LVWHQFH RI D VROXWLRQ WR WKH ERXQGDU\ YDOXH SUREOHP      LV I T   ZKHUH T  X  LV WKH VROXWLRQ RI WKH SUREOHP        IRU DQ DGPLVVLEOH FRQWUROWKHYDOXHRIWKHIXQFWLRQDO  LVHTXDOWR

t

³ F x t  u t  x  x  t dt

I u ˜  x  x





t I



,Q





J  







 

WKH

YDOXH

t

ZKHUH

x t

x t  t  x





I u ˜  x  x z I u  x  x







WKH

JHQHUDO

FDVH

 LQI I u ˜  x  x  u ˜  x  x  L I  R u S  u S  m

  Lecture 25.&RQVWUXFWLRQRIWKHVROXWLRQRIWKHYDULDWLRQ FDOFXOXVSUREOHP  :H FRQVLGHU WKH RSWLPDO FRQWURO SUREOHP     :H GHILQH D VFDODU IXQFWLRQ V t  t  I DVIROORZV V t

t

³ F x W  u W  x  x W dW  t  I   





t

7KHQ V t F x t  u t  x  x  t  V t   V t J  

I u ˜  x  x  : 

^J  R _ J t J    J  ! f`  ZKHUH J

I u ˜  x  x t J   WKH PHDQLQJ RI J LV ERXQGHG IURPEHORZLQSDUWLFXODU J   LI F t   1RZWKHRSWLPDOFRQWUROSUREOHP  ±  LVZULWWHQ VHH   

V t J

I u ˜  x  x o LQI 





 

 x A t x  B t f x u t  x t x  x t x  S u S    K f  x t  u t  x  x  t  K t  K t c  Q    m x t  G t  u ˜  L I  R  t  I       :HLQWURGXFHWKHQRWDWLRQV

   

       

DWFRQGLWLRQV







V t F x t  u t  x  x  t  V t  V t J   

§ O §  · On Om ·¸ ¨  ¨ ¸  ¨ O ¸ B ¨ O ¸  A t O n  m ¨ n ¸  ¨ n  ¸ ¨ Om  Om n Om m ¸ ¨ Om  ¸ ©  ¹ ©  ¹ § Om · ¨  ¸ ¨ Onm ¸ P  On  Om  P On  I n  Onm      ¨ ¸ ¨ Im ¸ ©  ¹

§ V t · ¸ ¨ P t ¨ x t ¸ A t ¨ K t ¸ ¹ ©

§ Or · ¸ ¨ C t ¨ B t ¸ D t ¸ ¨ ¨ Om r ¸ ©  ¹ ZKHUH P P t V t  PP x 









7KHQWKHRSWLPDOFRQWUROSUREOHP    KDVWKHIRUP P P t J I u ˜  x  x o LQI         DWFRQGLWLRQV P

A t P  B F PP  u x  x  t  C t f PP  u t  D f  PP  u x  x  t  

P t P

§ V t · ¨ ¸ ¨ x t ¸ ¨ K t ¸ ©  ¹

P t P

§ V t · ¨ ¸ ¨ x t ¸ ¨ K t ¸ ©  ¹

§ O · ¨  ¸ ¨ x ¸O u S uO T     m  ¨  ¸ ¨ Om  ¸ ©  ¹ §J · ¨ ¸  ¨ x ¸  : u S u Q T   ¨c¸ © ¹

   







 







 

PP t  G t  u ˜  L I  R m  d  *       ZKHUH x t PP t  V t P P t  t  I  J DUHGHILQHGE\IRUPXOD  

 



 3ULQFLSOHRILPPHUVLRQ:HFRQVLGHUWKHERXQGDU\YDOXHSUREOHP  ±  &RUUHVSRQGLQJOLQHDUFRQWUROODEOHV\VWHPKDVWKHIRUP 

]

A t ]  B w t  C t w t  D w t  t  I  





 

m

 

 

   

w ˜  L I  R  w ˜  L I  R  w ˜  L I  R   ] t P  T  ] t P  T     

r

 

 :HLQWURGXFHWKHQRWDWLRQV B  t

w t  w t  w t  < t W K t K  W   t

< t   t P  P   R t  t ³ < t   t B  t B  t < t  t dt  

B  C t  D  w t a

t

t

³< t W B

R t  t





W B  W < t W dW  R t  t

R t  t  R t  t  

t

/  t  P   P

§ B < t  t R t  t a · ¸ ¨ ¨ C < t  t R  t  t a ¸ ¸¸ ¨¨ 

© D < t  t R t  t a ¹











B  t < t   t R  t   t a

§ / t  P  P · ¸ ¨ ¨ / t  P  P ¸ ¸¸ ¨¨ © / t  P  P ¹





 B  < t t   t R  t   t < t   t

K  t

§  B < t  t R  t  t < t  t · ¨ ¸ ¨  C < t  t R  t  t < t  t ¸ ¨  < ¸  © D t  t R t  t < t  t ¹



§ K t · ¨ ¸ ¨ K t ¸  ¨ K t ¸ ©  ¹

 /  t  P  P

< t  t R t  t R  t  t P  < t  t R t  t R  t  t < t  t P   K  t

 < t  t  R t   t R  t   t < t   t  t  I  

7KHRUHP  /HW D PDWUL[ EH R t  t !   7KHQ WKH FRQWURO w t w t   r  m

w t  w t  L I  R

 n  m

LQLWLDOSRLQW P  R

WUDQVIHUVDWUDMHFWRU\RIWKHV\VWHP    IURPDQ\

WRDQ\SUHVFULEHGILQDOVWDWH P  R

 n  m

LIDQGRQO\LI

w t W  ^w ˜  L I  R  w t v t  / t  P  P  K t z t  v  

v ˜  L I  R  t  I `





w t W  ^w ˜  L I  R r  w t v  t  / t  P  P  K t z t  v  v  ˜  L I  R r  t  I ` w t  W 

m

^w ˜  L I  R   w t

 



v  t  / t  P   P  K t z t  v 

m

v  ˜  L I  R  t  I `

  

 

ZKHUH v t v t  v  t  v  t  z t z t  v  t  I LVDVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ z A t z  B v t  C t v  t  D v t  z t        m

v ˜  L I  R  v  ˜  L I  R r  v  ˜  L I  R   







 

7KHVROXWLRQRIWKHV\VWHP    KDVWKHIRUP ] t z t  v  /  t  P  P  K  t z t  v  t  I         7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHRUHP /HPPD /HW D PDWUL[ EH R t  t !   7KHQ WKH ERXQGDU\ YDOXH SUREOHP  ±  LVHTXLYDOHQWWRWKHSUREOHP  

F P]  u x  x  t  t  I   

     w  t  W   w t f P]  u  t  t  I   w t  W   w t f  P]  u x  x  t  t  I     p t V t ^ p ˜  L I  R s p t F P]  t  Z t d p t d M t  t  I `    z A t z  B v t  C t v  t  D v t  z t  t  I      

w t W   w t

  

  

  

m

v ˜  L I  R  v  ˜  L I  R r  v  ˜  L I  R     x  x  S  u S  u ˜  L I  R m  J  : d  * 

        ZKHUH ] t  t  I LV GHILQHG E\ IRUPXOD   z t  v LV D VROXWLRQ RI WKH V\VWHP    7KHVWDWHPHQWRIOHPPDIROORZVIURPWKHRUHP :HFRQVLGHUWKHSUREOHPRIRSWLPDOFRQWUROPLQLPL]HWKHIXQFWLRQDO t

t

t

t

³ F q t  t dt

J  v u  p x  x  d  J

³>_ w t  F P] t  u t  x  x  t _ 











 _ w t  f P] t  u t  t _  _ w t  f  P] t  u t  x  x  t _ 





 

 _ p t  F P] t  t _ @dt o LQI 



DW FRQGLWLRQV   ±   ZKHUH w t  W   w  t  W   w t  W   v v  v   v   q t v  v   v   u p x  x  d  J  z t  z t  :HQRWHWKDWWKHRSWLPL]DWLRQSUREOHP    ±  DUHREWDLQHGRQWKHEDVHRIUHODWLRQV  ±   7KHRUHP /HW D PDWUL[ EH R t  t !   GHULYDWLYH

wF q t VDWLVILHV WR WKH wq

/LSVKLW]FRQGLWLRQ7KHQ  IXQFWLRQDO  XQGHUWKHFRQGLWLRQV  ±  LVFRQWLQXRXVO\ GLIIHUHQWLDEOHE\)UHVKHWJUDGLHQWRIWKHIXQFWLRQDO J  v T  J  v  T  J  v T  J  u T  J  p T  J  x T  J  x T  J  d T  J  J T 

J  T



T



v  v   v   u p x  x  d  J  X  m



L I  R u L I  R r u L I  R  u L I  R m u V u S  u S u * u : 

X

m

L I  R u L I  R u L I  R u L I  R u L I  R u R u R u r



H

m

u R  u R 

m

s

n

n

X  H  J  T  H



DWDQ\SRLQW T  X LVFDOFXODWHGE\IRUPXOD 

J  v T J  v T

wF q t  t  B \ t  J  v T wv

wF q t  t  D \ t  J  u T w v

 

wF q t  t  C \ t  wv

wF q t  t  J  p T wu

wF q t  t wp



t

t



t

wF q t  t

³t  wx dt  J  x T

J  x T 

t

t





wF q t  t

³t  wd dt  J J T

J  d T

³

wF q t  t dt  wx



wF q t  t ³t  wJ dt

ZKHUH\ t  t  I LVDVROXWLRQRIWKHDGMRLQWV\VWHP \

t

wF q t  t  A t \  \ t wz

³ t

wF q t  t dt   w z t

 JUDGLHQW J T T  X VDWLVILHVWRWKH/LSVKLW]FRQGLWLRQ     __ J  T   J  T  __d l __ T   T  __ T   T   X   7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHRUHP n n n :H FRQVWUXFW WKH VHTXHQFHV ^T n ` ^v  v   v   u n  p n  xn  xn   d n  J n `  X  E\ WKH DOJRULWKP



n 

v

n 

v

pn  n  

x

n n  PV  >v  D n J  v T n @ v 

n PV  >v   D n J  v  T n @

n PV  >v   D n J  v T n @ un 

PV > pn  D n J  p T n @

xn 

PS > x  D n J  x T n @ d n  

J n 

n 



PU >un  D n J  u T n @ PS > xn  D n J  x T n @ 



P* >d n  D n J T n @

P: >J n  D n J  J T n @

d

n





 



  H !  l const !  l  H ^v ˜  L I  R  __ v __d E ` V  ^v  ˜  L I  R r  __ v  __d E `  d Dn d

ZKHUH V 

m

V  ^v  ˜  L I  R   __ v  __d E ` U : ^J  RJ d J d E ` X  U

m

^u ˜  L I  R m  __ u __d E ` * ^d  R  d t  _ d _d E `

V  u V  u V  u U u V u S  u S u * u :  H 

^u ˜  L I  R  __ u __d E ` E !  LVDTXLWODUJHQXPEHU m



7KHRUHP:HVXSSRVHWKDWWKHFRQGLWLRQVRIWKHRUHPDUHVDWLVILHG X  LV DERXQGHGFRQYH[FORVHGVHWWKHVHTXHQFH ^T n `  X  LVGHWHUPLQHGE\WKHIRUPXOD  7KHQ  QXPHULFDOVHTXHQFH ^J  T n ` LVVWULFWO\GHFUHDVHG __ T n  T n __o  DW n o f  ,ILQDGGLWLRQ F q t LVDFRQYH[IXQFWLRQE\WKHYDOXH q WKHQ  WKHORZHUERXQGRIWKHIXQFWLRQDO  LVUHDFKHGXQGHUWKHFRQGLWLRQV  ±   J  T inf J  T min J  T J    T X 

T X 

 VHTXHQFH ^T n `  X  LVPLQLPL]LQJ lim J  T n J  nof

inf J  T  

T X 

 VHTXHQFH ^T n `  X  LVZHDNO\FRQYHUJHGWRWKHSRLQW T  X    

X 

^T J  T

n

J 

n

inf J  T

n

weakly weakly min J  T ` ZKHUH v  o v  v   o v 

T X 

T X 



weakly weakly weakly v   o v   un  o u  pn  o p  xn o x   xn o x  d n o d 

J n o J ZKHQ n o f  T







v  v   v   u  p  x   x  d  J  

 LI J  T  WKHQWKHRSWLPDOFRQWUROWRWKHSUREOHP  ±  DUH

u  U  x   S   x  S  DQGWKHRSWLPDOWUDMHFWRU\ x t P] t P> z t  v  /  t  P  P  K  t z t  v @ t  I   ZKHUH

v





v  v   v   P 

d j t  j  m c j

cj  j



O  x   Om   P 

m

J  x  c  c  Q ^c  R   c j

cj  d j 

m   m ` WKH LQFOXVLRQ x t  G t DQG WKH UHVWULFWLRQV



 ±   J u  x  x J DUHKHOG  WKHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHLVYDOLG  d J  T n  J  d

c  n  c  n

const !  

7KHSURRIRIDVLPLODUWKHRUHPLVJLYHQDERYH $ PRUH YLVXDO PHWKRG IRU VROYLQJ SUREOHP     LV WKH PHWKRG RI QDUURZLQJWKHUHJLRQRIDGPLVVLEOHFRQWUROV 7KHRUHP :H VXSSRVH WKDW WKH FRQGLWLRQV RI WKHRUHP  DUH VDWLVILHG X  V  u V  u V  u U u V u S u S u * LV D ERXQGHG FRQYH[ FORVHG VHW WKH VHTXHQFH ^T n `  X  LVGHWHUPLQHGE\IRUPXOD  H[FHSWIRUWKHVHTXHQFH ^J n `  : 7KHQ  QXPHULFDOVHTXHQFH ^J  T n ` ^T n `  X  LVVWULFWO\GHFUHDVHG   __ T n  T n __o  XQGHU n o f ^T n `  X    ,ILQDGGLWLRQWKHIXQFWLRQ F q t LVDFRQYH[IXQFWLRQZLWKUHVSHFWWRD YDULDEOH q ZLWKDIL[HG J  WKHQ WKHVHTXHQFH ^T n `  X   XQGHUWKHIL[HG J J LVPLQLPL]LQJ weakly   T n  oT  X  DW n o f J J     J  T inf J  T n min J  T n   X 

Tn

X 

Tn

 WKHHVWLPDWLRQLVYDOLG  d J  T n  J  T d

c  c n

const !  n  ^T n `  X   

7KH SURRI RI WKH WKHRUHP IROORZV IURP WKHRUHP  XQGHU WKH IL[HG J  : J

J  

/HW T  X  EHDVROXWLRQRIWKHSUREOHP    ±  DW J +HUHWKHFDVHVDUHSRVVLEOH WKHYDOXH J  T !   WKHYDOXH J  T    :HQRWLFHWKDW J  T t  T  X     

J  : 

,I J  T !   WKHQ ZH VHOHFW D QHZ YDOXH J  DQG LI J  T   WKHQ D QHZ YDOXH J

J 

$FFRUGLQJWRWKLVVFKHPHE\GLYLGLQJWKHLQWHUYDORIXQFHUWDLQW\LQ

KDOIZHFDQILQGWKHVPDOOHVWYDOXHRIWKHIXQFWLRQDO  XQGHUFRQGLWLRQV       Lecture 26.7KHVLPSOHVWSUREOHPRIWKHFDOFXOXVRIYDULDWLRQV  $VLWLVNQRZQWKHVRXUFHRIWKHFODVVLFDOYDULDWLRQFDOFXOXVLVWKHSUREOHP RI WKH EUDFKLVWRFKURQH , %HUQRXOOL 7KH JHQHUDOL]DWLRQ RI WKLV SUREOHP LV WKH VLPSOHVWSUREOHPWRPLQLPL]HWKHIXQFWLRQDO J x x

t

³ F x t  x t  t dt o LQI 









 

t

DWFRQGLWLRQV x t x   x t x ZKHUH t t DUHIL[HG x  x DUHJLYHQSRLQWV $VLWIROORZVIURPWKHZRUNRI(XOHUDQHFHVVDU\FRQGLWLRQIRUDZHDNORFDO PLQLPXPLVWKH(XOHUHTXDWLRQ Fx x  t  x  t  t 

d Fx x  t  x  t  t {  t  >t  t @  dt



 

ZKHUH Fx  Fx DUH SDUWLDO GHULYDWLYHV )URP   IROORZV WKDW DORQJ WKH H[WUHPDO x  t  t  >t  t @ WKHHTXDOLW\LVVDWLVILHG     Fx  Fxt  Fxx x  t  Fxx x t {  t  >t  t @  'HVSLWH RI WKH IDFW WKDW WKH IRUPXODWLRQ RI WKH VLPSOHVW SUREOHP   UHTXLUHV ILQGLQJ D VROXWLRQ LQ WKH FODVV RI RQFH GLIIHUHQWLDEOH IXQFWLRQV WKH (XOHU HTXDWLRQRIIHUVDVROXWLRQWRWKHRULJLQDOH[WUHPDOSUREOHPLQWKHFODVVRIGRXEO\ GLIIHUHQWLDEOHIXQFWLRQV,WVHHPVWKDWLQVWHDGRIWKHRULJLQDOSUREOHPWKHDQRWKHU SUREOHP LV VROYHG ,Q RWKHU ZRUGV WKH (XOHU HTXDWLRQ GRHV QRW VROYH WKH RULJLQDO SUREOHPLQWKHFODVVRIDGLIIHUHQWLDEOHIXQFWLRQ $QRWKHULQFRUUHFWQHVVLQVROYLQJWKHVLPSOHVWSUREOHP  LVWKDWWKHUHLV QR JXDUDQWHH WKDW WKH VROXWLRQ RI D GLIIHUHQWLDO HTXDWLRQ RI VHFRQG RUGHU   VDWLVILHVWKHERXQGDU\FRQGLWLRQV x  t   x t x ,QGHHGWKHVROXWLRQRIHTXDWLRQ  LVDIXQFWLRQ x  t x  t c c WKDWPXVWVDWLVI\WKHFRQGLWLRQ x  t  c  c x   x  t c c x 7KHTXHVWLRQDULVHV,VWKHUHDFRQVWDQWV cc VXFKWKDWWKHVSHFLILHG ERXQGDU\FRQGLWLRQVDUHKHOG$V:HLHUVWUDVVVKRZHGWKHDQVZHUWRWKLVTXHVWLRQ LVJHQHUDOO\QHJDWLYH:HVKRZWKLVLQFRUUHFWQHVVRQWKHH[DPSOHRI:HLHUVWUDVV PLQLPL]HWKHIXQFWLRQDO J x x



³t



x  t dt o LQI  x   x   





 



6LQFH Fx  Fx t  x 

d Fx dt

Fxt  Fxx x   Fxx x  WKDW WKH (XOHU HTXDWLRQ  

KDV WKH IRUP tx  t  t  x t {  t  >@ 7KH VROXWLRQ RI WKH HTXDWLRQ LV  

x  t ct   c  t  >@ ,W LV HDV\ WR PDNH VXUH WKDW WKURXJK WKH SRLQWV x    x    QRFXUYHRIWKLVIDPLO\SDVVHV

$V LW IROORZV IURP WKH (XOHU HTXDWLRQ   LW LV UHTXLUHG WZLFH GLIIHUHQWLDELOLW\ RI D IXQFWLRQ F x z t ZLWK UHVSHFW WR YDULDEOHV x z  t  7KLV LV D VWULFWUHTXLUHPHQWIRUWKHLQLWLDOGDWDRIWKHVLPSOHVWSUREOHP ,QWKHZRUNVRI'X%RLV5D\PRQG/63RQWU\DJLQWKHQHFHVVDU\FRQGLWLRQ IRUDVWURQJORFDOPLQLPXPIRUWKHVLPSOHVWSUREOHPREWDLQHGLQWKHIRUP t

  ³Fx x W  x W W dW 

t

wF x  t  x  t  t wx

const  



 

+RZHYHU WKH YHULILFDWLRQ RI WKH H[LVWHQFH RI D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ  VDWLVI\LQJWKHERXQGDU\FRQGLWLRQVLVUDWKHUFRPSOLFDWHGDQGLVDQ XQVROYHGSUREOHP 7KH GHYHORSPHQW RI D QHZ PHWKRG IRU VROYLQJ WKH VLPSOHVW SUREOHP WKDW DOORZVWRHOLPLQDWHWKHVHGUDZEDFNVLVUHOHYDQW  7RVROYHDZLGHUDQJHRIWDVNVLQWKHFDOFXOXVRIYDULDWLRQVLWLVDGYLVDEOHWR FRQVLGHUVROXWLRQVWRWKHVLPSOHVWSUREOHPRIWKHIROORZLQJIRUP 0LQLPL]HWKHIXQFWLRQDO J x x

J x u

t

³ F x t  u t  t dt o LQI  



 

t

DWFRQGLWLRQV x u t  t  >t  t @ I  









 

x  









 

ZLWKERXQGDU\YDOXHV x t

x  x t

ZLWKFRQWURO u t  L I  R  

       )URPRSWLPL]DWLRQSUREOHP    LQSDUWLFXODUIROORZV   :HQRWHWKDW IRUWKHH[LVWHQFHRIWKHLQWHJUDO  LWLVQHFHVVDU\WKDW WKHIXQFWLRQ F x u t  x  R u  R t  I VDWLVILHVWKHFRQGLWLRQ _ F x  u  t _d c _ x _  _ u _  c t   x  u  t  R  u R  u I   ZKHUH c const !  c t t  c t  L I  R     VROXWLRQ x t  t  I RI GLIIHUHQWLDO HTXDWLRQ   LV DQ DEVROXWHO\ FRQWLQXRXV IXQFWLRQ KDYLQJ DOPRVW HYHU\ZKHUH GHULYDWLYH x t  t  I  PRUHRYHU x t  L I  R   7KHSUREOHPVDUHVHW 3UREOHP Find a set of controls U  L I  R  each element of which translates the trajectory of the system (6.96) from the starting point x x t to the state x x t  3UREOHP Find a general solution of equation (6.96) for which x t  u x  x t u x for any u t  U   

3UREOHP Find a method of reducing the initial boundary value optimal control problem (6.95) - (6.98) to the initial optimal control problem with a free right end of the trajectory. 3UREOHP Construct minimizing sequences for the initial optimal control problem, prove its convergence, and obtain an estimate of convergence. 3UREOHPFormulate an algorithm for solving the simplest problem of the calculus of variations. 7KHHVVHQFHRIWKHSURSRVHGPHWKRGIRUVROYLQJWKHVLPSOHVWSUREOHPLVWKDW WKHVHWRIDOOFRQWUROVLVGHWHUPLQHGHDFKHOHPHQWRIZKLFKWUDQVODWHVWKHV\VWHP V WUDMHFWRU\ IURP WKH LQLWLDO VWDWH x WR WKH ILQDO VWDWH x DQG DOO NLQGV RI D SDLU u t  x t IRUWKHERXQGDU\YDOXHSUREOHP    6XFKDSSURDFKWRVROYLQJ DSUREOHPDOORZVRQHWRLPPHUVHVROXWLRQVRIWKHRULJLQDOH[WUHPDOSUREOHPWRWKH LQLWLDO RSWLPDO FRQWURO SUREOHP ZLWK D IUHH ULJKW HQG RI WKH WUDMHFWRU\ 7KH LQLWLDO SUREOHPLVVROYHGE\FRQVWUXFWLQJDPLQLPL]LQJVHTXHQFH 7KHQRYHOW\DQGSUDFWLFDOYDOXHRIWKHPHWKRGFRQVLVWVLQWKHIDFWWKDWILUVWRIDOO WKHVROYDELOLW\RIWKHERXQGDU\YDOXHSUREOHPLVSURYLGHGLQWKHIRUPRIH[WUDFWLQJDVHW RIDGPLVVLEOHSDLUV u t  x t DQGWKHVROXWLRQRIWKHVLPSOHVWSUREOHPLVSHUIRUPHGE\ VHDUFKLQJIRUDQH[WUHPDODPRQJWKHVHWRIDGPLVVLEOHSDLUV,WLVQRWHZRUWK\WKDWWKH DOJRULWKPIRUVROYLQJWKHSUREOHPLVIRFXVHGRQWKHXVHRIFRPSXWHUV 

3UREOHPV  FDQ EH VROYHG E\ WKH PHWKRG RI WKH LPPHUVLRQ SURQFLSOH RI >@ /HPPDLet be t ! t . Then the control u ˜  L I  R transfers a trajectory of system (6.96) from any initial point to any final state x x t if and only if u t  U

t x  x    X t dt  X t X ˜  L I  R `  t  t t  t t³

^u ˜  L I  R u t X t 



3URRI7KHVROXWLRQRIGLIIHUHQWLDOHTXDWLRQ  KDVWKHIRUP x t

t x  ³u W dW  t  >t  t @ 









 

t

+HQFHZLWKWDNLQJLQWRDFFRXQWWKHIDFWWKDW t t ZKHQWKHYDOXH x t x ZHJHW x t

x

t x  ³u t dt  t

7KHQ WKH FRQWURO u ˜  L I  R WUDQVODWHV WKH WUDMHFWRU\ RI WKH V\VWHP   IURPWKHVWDUWLQJSRLQW x WRWKHSRLQW x LVDVROXWLRQRIWKHLQWHJUDOHTXDWLRQ t ³u t dt

x  x

a a  R  









 

t

7KH LQWHJUDO HTXDWLRQ   LV D SDUWLFXODU FDVH   ZKHUH K t {  7KHQ C t  t t  t !  XQGHU t ! t  C  t  t

  VHH   6LQFH WKH DVVXPSWLRQV t  t

RIWKHRUHPVDUHVDWLVILHGWKHQ  

t K t C  t  t a  X t  K t C  t  t ³ K t X t dt 

u t

t

X t 

t x  x    X t dt  t  >t  t @  t  t t  t t³ 

ZKHUHX ˜  L I  R LVDQ\IXQFWLRQ/HPPDLVSURYHG /HPPDLet be t ! t . Then the solution of the differential equation (6.96) corresponding to the control u t  U from (6.99), is determined by the formula z t  x 

x t

x  x t  t t  t  z t X  t  >t  t @ t  t t  t



where z t z tX  t  >t  t @ is a solution of the differential equation z t X t  z t



 X ˜  L I  R  

3URRI$VLWIROORZVIURP  WKHIXQFWLRQ x t

t t x x   x  ³>    X W  X t dt @dW t  t t  t t³ t

t x  ³u W dW t





t t x x t  t  x     t  t  ³X W dW  X t dt t  t t  t t³ t 



 



 



GXHWRWKHIDFWWKDW u t  U  VHH  )URP  ZHJHW z t

t

t

t

t

³X W dW  z tX

³X t dt 







1RZWKHUHODWLRQ  WDNLQJLQWRDFFRXQW  LVZULWWHQLQWKHIRUP   /HPPDLVSURYHG  :HLQWURGXFHWKHQRWDWLRQV x  x   N   t  t t  t x x t  t x    t  t  N  t  t  t t  t

 O x  x O t  x  x

7KHQWKHUHODWLRQV    DUHZULWWHQ

u t X t  O x  x  Nz tX U  t  >t  t @ I   z tX  O t x  x  N  t z tX  t  I  

 1RZWKHVLPSOHVWSUREOHP    LVZULWWHQLQWKHIRUP x t

t

³ F z t X  O t  x  x  N

J z z t X









 

t z t X X t 

t

   



 

 O x  x  N  z t X  t dt o LQI

XQGHUWKHFRQGLWLRQV

z X  z t  t  I

>t  t @ 

X ˜  L I  R  





 



 

 

 

 

   

7KH WUDQVLWLRQ IURP WKH LQLWLDO ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHP     WR WKH LQLWLDO RSWLPDO FRQWURO SUREOHP ZLWK WKH IUHH HQG RI WKH WUDMHFWRU\LVFDOOHGWKHLPPHUVLRQSULQFLSOH )XQFWLRQDOJUDGLHQW:HLQWURGXFHWKHQRWDWLRQ q X t  z tX  z t   F q t F z t  O t  N  t z t X t  O  Nz t  t  1RZ WKH IXQFWLRQDO  LVZULWWHQLQWKHIRUP t

³ F q t dt 

J X J z z t X



t

:H QRWH WKDW LI WKH IXQFWLRQ F x u t  x  R u  R t  I LV FRQWLQXRXVO\ GLIIHUHQWLDEOH E\ YDULDEOHV x u  R u R  WKHQ WKH IXQFWLRQ F q t LV FRQWLQXRXVO\ GLIIHUHQWLDEOHE\YDULDEOHV X  z z t  R u R u R  7KHRUHP Let the function F x u t be is continuously differentiable by variables x u and partial derivatives

wF q t be satisfied to the Lipshitz i.e. wq

wF q  'q t wF q t _d L _ 'q _  wX wX wF q  'q t wF q t _  _d L _ 'q _  wz wz wF q  'q t wF q t _  _d L _ 'q _  wz t wz t const !  i  'q 'X  'z 'z t  _ 'q _ _ 'X  'z 'z t _ . _



Then the where Li functional (6.108) is differentiable in the Frechet sense, the gradient Jc X  L I  R at any point X ˜  L I  R is calculated by the formula Jc X

wF q t  t  \ t X  wX



where q t X t  z t  z t  z t z tX  t  I is a solution of the differential equation (6.109) at X X t , and the function \ t \ t X  t  I is a solution of the adjoint system \

wF q t  t  \  \ t wz

t wF q t  t dt ³  wz t t





In addition, the gradient Jc X  L I  R satisfies to the Lipshitz condition __ Jc X  Jc X __ d l __X  X __ X  X  L I  R    3URRI /HW X t  X t  h t  L I  R DQG z t X  z t X  h  t  I EH VROXWLRQV RI HTXDWLRQ   FRUUHVSRQGLQJ WR WKH HTXDWLRQV X t  t  h t  /HW z t X  h z t X  'z t   t  I  7KH LQFUHPHQW 'z t LV D VROXWLRQ RI WKH HTXDWLRQ 'z

h t  7KLV LPSOLHV _ 'z t _d

t

³ _ h t _ dt d c



__ h __L  t  I  )LQDOO\ _ z t _d c __ h __L  

t

_ 'z t _d c __ h __L  7KHLQFUHPHQWRIWKHIXQFWLRQDO 

 





t

³ > F q t  'q t  t  F q t  t @dt 

'J J X  h  J X





t

ZKHUH 'q t 'X t  'z t  'z t  6LQFH WKH IXQFWLRQ F q t KDV FRQWLQXRXV GHULYDWLYHVE\ q WKDW F q t  'q t  t

F q t  t  h t FX q t  T'q t  t 

 'z t F z q t  T'q t  t  'z t F z t q t  T'q t  t   d T d 





7KLVLPSOLHVWKDW t

³ >h t F X q t  t  'z t F

'J



z

q t  t  'z t F z t q t  t @dt  R  

t

t R

³ ^h t > F X q t  T'q t  t  F X q t  t @  'z t > F 



z

q t  T'q t  t  F z q t  t @ 

t



 'z t > F z t q t  T'q t  t  F z t q t  t @`dt 



,WFDQEHVKRZQWKDW 'J

t

_ R _

³h t > F X q t  t \ t @dt  R  __ h __ 



o  ZKHQ __ h __L o   

L

t

ZKHUH\ t  t  I LV DVROXWLRQRIWKHDGMRLQW  7KLVLPSOLHVIRUPXOD   )URP  IROORZVWKDW _ '\ t _d c __ h __L ZKHUH '\ t \ t X  h  \ t X 6LQFH F z

VDWLVILHV

WR

WKH

/LSVKLW]

FRQGLWLRQ

WKHQ

__ Jc X  Jc X __ d l __X  X __ X X  L I  R  7KHRUHPLVSURYHG 0LQLPL]LQJ VHTXHQFHV /HW X  t  L I  R  EH WKH LQLWLDO IL[HG SRLQW :H

FRQVWUXFWDVHTXHQFH ^X n `  L I  R  E\WKHUXOH X n X n  D n Jc X n  n     ZKHUH   H  d D n d  H !  ,Q SDUWLFXODU H l  H







 

l H  Dn l  ZKHUH l const!  

RI   7KHRUHP Let the conditions of theorem 3 be satisfied, the functional J X be bounded below, and the sequence Xn be determined by rule (6.115). Then: 1) the numerical sequence J Xn decreases strictly; 2) OLP Jc Xn  (a necessary condition for optimality). nof

3URRI6LQFHWKHIXQFWLRQDO J X  C L WKDWWKHLQHTXDOLW\LVKHOG J X  J u t  Jc X X  u ! L  

l __ u  X __L  uX  L   

+HQFHXQGHUX Xn  u Xn Xn  Dn Jc Xn ZHJHW

l J X n  J X n  t  Jc X n  D n Jc X n !  __ D n Jc X n __L   D l Dl D n __ Jc X n __  n __ Jc X n __ D n   n __ Jc X n __   

 

  WKHLQHTXDOLW\LVVDWLVILHG l       J X n  J X n  t __ Jc X n __   l ,I IRU D ILQLWH n WKH JUDGLHQW Jc X n   WKHQ Xn Xn  DQG Jc Xk  

&RQVHTXHQWO\DW D n

k

n n   VLQFH OLP Jc Xn   2I LQWHUHVW LV WKH FDVH Jc X n z  IRU WKH ILQLWH n  nof

6LQFH WKH YDOXH __ Jc X n __ !  Jc X n z   WKHQ IURP   LW IROORZV WKDW WKH QXPHULFDO VHTXHQFH ^J Xn ` LV VWULFWO\ GHFUHDVHG 6LQFH WKH IXQFWLRQDO J X X  L LV ERXQGHG EHORZ WKH QXPHULF VHTXHQFH ^J Xn ` LV ERXQGHG EHORZ 7KHUHIRUH WKHUH LV D OLPLW OLP J Xn  7KHQ >OLP J Xn  J Xn @   3DVVLQJ WR WKH OLPLW DW n o f IURP nof

nof

 ZHKDYH OLP Jc Xn  7KHRUHPLVSURYHG nof

7KHRUHP Let the conditions of theorem 4 be fulfilled, moreover: 1) functional J X be convex on L  2) the set M X ^X  L J X d J X ` be limited. Then the sequence ^X n `  L I  R  minimizes the functional J X on L and weakly in L converges to the set U ^X  L J X J PLQ J X LQI J X ` z ‡ . The XL

XL

following estimate of the rate of convergence is true   J X n  J d

 D l  n  n

 

where D is a diameter of the set M X  3URRI $V LW IROORZV IURP WKHRUHP  WKH VHTXHQFH ^Xn `  M X   )URP WKH ERXQGHGQHVV FRQYH[LW\ DQG FORVHGQHVV RI WKH VHW M X LQ L LW IROORZV WKDW WKH VHW M X LV ZHDNO\ FRPSDFW $ FRQYH[ GLIIHUHQWLDEOH IXQFWLRQDO J X RQ M X LV ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ 7KHUHIRUH WKH IXQFWLRQDO ü X UHDFKHV WKH ORZHUERXQGRQWKHVHW M X LHWKHVHW U z ‡U  M X   6LQFH WKH IXQFWLRQDO J X LV FRQYH[ X  M X  WKHQ WKH LQHTXDOLW\ J Xn  J d __ Jc Xn __ D KROGV ZKHUH J LQI J X J X X U  7UDQVIHUULQJ WR WKH XM u

OLPLW XQGHU n o f  WDNLQJ LQWR DFFRXQW WKH IDFW WKDW __ Jc Xn __o  XQGHU n o f  ZH REWDLQ OLP J Xn J  &RQVHTXHQWO\WKHVHTXHQFH ^Xn `  M X LVPLQLPL]LQJ nof

)URP LQHTXDOLW\   DQG J Xn  J d __ Jc Xn __ D  LW IROORZV WKH HVWLPDWLRQ  6LQFH M X LVZHDNO\ELFRPSDFW ^Xn `  M X LVDPLQLPL]LQJVHTXHQFH WKDWXn o X XQGHU n o f 7KHRUHPLVSURYHG /HPPDIf the function F x u t  x u t  R u R u I is convex by x u i.e. F Dx    D y  Du    D Z  t d aF x u t    D F y  Z  t 

 x u t  y Z t  R u R u I  D  >@

then the functional J X is convex.  

3URRI:HFRQVLGHUWKHRSWLPL]DWLRQSUREOHP  ±  ,WLVHDV\WR PDNHVXUHWKDWLI F x u t LVDFRQYH[IXQFWLRQE\YDULDEOH x u WKHQWKHIXQFWLRQ F q t LVFRQYH[E\YDULDEOH q LH F Dq    D q  t d DF q  t    D F q  t   q  t  q  t  R   D  >@    ,WFDQEHVKRZQWKDWIRUDQ\X t  L I  R X t  L I  R WKHYDOXH z tDX   D X Dz tX   D z tX D >@t  I   7KHQ J DX    D X 

t

t F D q t    D q t  t dt d D  ³   ³ F q t  t dt  

t

t

t    D ³ F q t  t dt DJ X    D J X   X X   L  D  >@  t

LQYLUWXHRILQHTXDOLW\  /HPPDLVSURYHG   Lecture 27.$QDOJRULWKPIRUVROYLQJRIWKHVLPSOHVWSUREOHP   $ IXQFWLRQ u t  U FRUUHVSRQGLQJ WR FRQWURO u t  U LV GHILQHG E\ WKH LQLWLDOGDWDWKHIXQFWLRQ x t x t  u E\IRUPXODV    FRUUHVSRQGLQJO\ %DVHGRQWKHSULQFLSOHRILPPHUVLRQWKHLQLWLDOSUREOHPLVUHGXFHGWRWKH LQLWLDO RSWLPDO FRQWURO SUREOHP ZLWK D IUHH ULJKW HQG RI WKH WUDMHFWRU\      7KH JUDGLHQW RI WKH IXQFWLRQDO LV FDOFXODWHG E\ IRUPXOD   DQG WKH DGMRLQWV\VWHP  LVGHWHUPLQHG  $ VHTXHQFH ^Xn ` LV FRQVWUXFWHGE\ IRUPXOD   7R GR WKLV VHOHFWLQJ WKH VWDUWLQJ SRLQW X  t  L I  R   :H ILQG D VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ z X t   z   t  I  ,Q SDUWLFXODU ZH FDOFXODWH z t  :H FRPSHWH\ tX DQG ILQG D VROXWLRQ RI WKH DGMRLQW V\VWHP \ tX   t  I  :H GHILQH D GHULYDWLYH E\ )UHVKHW LQ WKH SRLQW X HTXDOV WR üc X

wF q X   t  \ t X   7KH QH[W YDOXH wX

X t X t  Düc X  )XUWKHUWKHFDOFXODWLRQSURFHVVLVUHSHDWHG Jc X   :HILQGWKHOLPLWSRLQWX ˜  L I  Rc RIWKHVHTXHQFH ^Xn `  L ,QJHQHUDO c J X   D QHFHVVDU\ FRQGLWLRQ IRU RSWLPDOLW\  ,Q WKH FDVH RI D FRQYH[ OLP n nof

IXQFWLRQDO WKH VHTXHQFH ^Xn ` LV PLQLPL]LQJ WKH ORZHU ERXQG LV UHDFKHGXn o X  ZHDNO\ZLWK n o f x tX WKHVROXWLRQRIWKHVLPSOHVWSUREOHP ([DPSOH $V DQ H[DPSOH ZH FRQVLGHU WKH VLPSOHVW :HLHUVWUDVV SUREOHP )RUSUREOHP  IXQFWLRQV u t   X t  z X  x t t  z t  tz X  t  I   &RUUHVSRQGLQJO\RSWLPL]DWLRQSUREOHPKDVWKHIRUP  



³t

J X



>  X t  z X @ dt o LQI 







 



 

t  >  X t  z X @  \ t  L I  R   

 



DWFRQGLWLRQV z X  z   t  I >@X ˜  L I  R    7KHIXQFWLRQV F q t t  >  X  z  @   3DUWLDOGHULYDWLYHV wF wF wF t  >  X  z  @    t  > z     X @  wX wz wz 

*UDGLHQWRIWKHIXQFWLRQDO   Jc X

wF \ wX

  7KHDGMRLQWV\VWHP  

\

\ 



³ t >  X t  z X @dt  







 



0LQLPL]LQJVHTXHQFH  X n  t X n t  D n Jc X n X n t  D n t  >  X n t  z  X n @    D n\ t X n  n   

$VLWIROORZVIURP  \

c

const  c \ 

 



³ t >  X t  z X @dt  

n

n



7KHQ Jc X n



t  >  X n t  z X n @   ³t  >  X n t  z X n @dt 

 





7KH LQLWLDO YDOXH X  t  L I  R  LV VHOHFWHG ,Q SDUWLFXODU X t {  t  I  :H ILQG D VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ z X t  z  t  I  )RU X t {  WKH YDOXH zt {  t  I  :H ILQG D VROXWLRQ RI WKH DGMRLQW V\VWHP 

\  t \    ³t  >  X  t  z  @dt )RU X t {  z t { \  t t  I  :H GHILQH 

GHULYDWLYH E\ )UHVKHW J c X  t  >  X  t  z  @  \  t  t  I  )RU X t {  ZH JHW Jc X 

X t

 t    7KH QH[W DSSUR[LPDWLRQ X t X t  DJc X  )RU X t {     D  t    D  const HWF  /HWDIWHU n ±LWHUDWLRQVWKHYDOXHEHIRXQG VHH    

Xn t

­ °°n    z Xn  ® °  z X  n °¯

7KHQ  

 dt   n   d t   n

   ­  °°t n   ˜ n    d t  n   ®  °   d t   °¯ n  n

Jc Xn 6LQFH WKH YDOXH t n 

      WKDW  OLP Jc Xn   QHFHVVDU\ RSWLPDOLW\ nof n  n n 

FRQGLWLRQLVIXOILOOHG )RUWKHYDOXHXn t ZHGHILQH un t DQG xn t HTXDOWR  ­ dt   °°n n un t   Xn t  z Xn ®   ° d t   °¯ n  ­ °°nt   d t  n  xn t t  z t Xn  tz Xn ®   ° d t   °¯ n :H QRWH WKDW IRU DQ\ n WKH YDOXH xn   xn   7KH YDOXH RI WKH RULJLQDO IXQFWLRQDO J un



³t u 



 n

t dt

 o  XQGHU n o f  n 

$QDSSUR[LPDWLRQVROXWLRQRIWKH:HLHUVWUDVVVLPSOHVWSUREOHP   ­ ­ dt   dt   °° N  °° Nt  N n u N t ®  xN t ®    ° °  d t   d t   °¯ °¯ N n ZKHUH N LVDVXIILFLHQWO\ODUJHQXPEHU7KHYDOXH J u N

  N 

$ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH VLPSOHVW SUREOHP RI WKH FDOFXOXV RI YDULDWLRQVEDVHGRQWKHFRQVWUXFWLRQRIDJHQHUDOVROXWLRQRIWKH)UHGKROPLQWHJUDO HTXDWLRQRIWKHILUVWNLQGLVGHYHORSHG $GLVWLQFWLYHIHDWXUHRIWKHSURSRVHGPHWKRGLVWKDWWKHFODVVRIWKHRULJLQDO IXQFWLRQ LV H[SDQGHG WKH GLIILFXOWLHV DVVRFLDWHG ZLWK ERXQGDU\ FRQGLWLRQV DUH HOLPLQDWHG WKH VROXWLRQ RI WKH SUREOHP LV UHGXFHG WR WKH FRQVWUXFWLRQ RI D PLQLPL]LQJVHTXHQFHHDVLO\LPSOHPHQWHGRQDFRPSXWHU 7KHHVVHQFHRIWKHSURSRVHGPHWKRGLVWKDWDOOVHWVRIFRQWUROVDUHVHSDUDWHG IURPDQGDOOVROXWLRQVRI L DQGDOOVROXWLRQVRIWKHGLIIHUHQWLDOHTXDWLRQVDWLVI\LQJ ERXQGDU\FRQGLWLRQVIURPDFODVVRIDEVROXWHO\FRQWLQXRXVIXQFWLRQVZKLFKDOORZV WR UHGXFH WKH VROXWLRQ RI WKH VLPSOHVW SUREOHP WR VROYH DQ LQLWLDO RSWLPDO FRQWURO SUREOHPZLWKDIUHHHQGRIDWUDMHFWRU\ )RU WKH JHQHUDO FDVH D QHFHVVDU\ FRQGLWLRQ IRU RSWLPDOLW\ RID VWURQJ ORFDO PLQLPXPDQGDQHFHVVDU\DQGVXIILFLHQWFRQGLWLRQIRURSWLPDOLW\IRUWKHFDVHRID FRQYH[IXQFWLRQDODUHREWDLQHG  

$Q DOJRULWKP IRU VROYLQJ WKH VLPSOHVW SUREOHP LV IRUPXODWHG DQG WKH :HLHUVWUDVVH[DPSOHLVVROYHG ,WLVQRWHZRUWK\WKDWOHVVVWULQJHQWUHTXLUHPHQWVDUHLPSRVHGRQWKHRULJLQDO GDWDRIWKHSUREOHPRQO\WKHGLIIHUHQWLDELOLW\RIWKHLQWHJUDQGRIWKHIXQFWLRQDOLV UHTXLUHGWKHGHVLUHGIXQFWLRQEHORQJVWRWKHFODVVRIDOPRVWHYHU\ZKHUHGLIIHUHQ WLDEOHIXQFWLRQV   &RPPHQWV  7KHYDULDWLRQFDOFXOXVSUREOHPLVLQYHVWLJDWHGLQWKHSUHVHQFHRISKDVHDQG LQWHJUDOFRQVWUDLQWVIRUWKHSURFHVVHVGHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQV 6SHFLDO FDVHV RI ZKLFK DUH WKH VLPSOHVW SUREOHP WKH %RO] SUREOHP WKH LVRSHULPHWULFSUREOHPWKHSUREOHPIRUWKHFRQGLWLRQDOH[WUHPXP ,QFRQWUDVWWRWKHZHOONQRZQPHWKRGIRUVROYLQJWKHSUREOHPRIFDOFXOXVRI YDULDWLRQV EDVHG RQ WKH /DJUDQJH SULQFLSOH D FRPSOHWHO\ QHZ DSSURDFK LV SURSRVHG WKH LPPHUVLRQ SULQFLSOH 7KH SULQFLSOH RI LPPHUVLRQ LV EDVHG RQ WKH VWXG\RIWKH)UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQG)RUWKH)UHGKROPLQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG D WKHRUHP RQ WKH H[LVWHQFH RI D VROXWLRQ DV ZHOO DV D WKHRUHPRQLWVJHQHUDOVROXWLRQVLVSURYHG 7KHPDLQVFLHQWLILFUHVXOWVDUH ±LQIRUPDWLRQRIWKHERXQGDU\YDOXHSUREOHPUHODWHGWRWKHFRQGLWLRQVLQWKH /DJUDQJHSUREOHPWRWKHLQLWLDORSWLPDOFRQWUROSUREOHPZLWKDVSHFLILFIXQFWLRQDO ±QHFHVVDU\DQGVXIILFLHQWFRQGLWLRQVIRUWKHH[LVWHQFHRIDGPLVVLEOHFRQWURO ± PHWKRG IRU FRQVWUXFWLQJ DQ DGPLVVLEOH FRQWURO E\ WKH OLPLW SRLQW RI WKH PLQLPL]LQJVHTXHQFH ± QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH H[LVWHQFH RI D VROXWLRQ WR WKH /DJUDQJHSUREOHP ±PHWKRGIRUFRQVWUXFWLQJWKHVROXWLRQRIWKH/DJUDQJHSUREOHP 7KH VFLHQWLILF QRYHOW\ RI WKH UHVXOWV LV WKDW WKHUH LV QR QHHG WR LQWURGXFH DGGLWLRQDOYDULDEOHVLQWKHIRUPRI/DJUDQJHPXOWLSOLHUVSURRIVRIWKHH[LVWHQFHRI D VDGGOH SRLQW RI WKH /DJUDQJH IXQFWLRQDO WKH H[LVWHQFH DQG FRQVWUXFWLRQ RI D VROXWLRQWRWKH/DJUDQJHSUREOHPDUHVROYHGWRJHWKHU   4XRWHGOLWHUDWXUH   %OLVV-/HFWXUHVRQYDULDWLRQFDOFXOXV±0,/±S  /DYUHQWLHY0$/\XVWHUQLN/$%DVLFVRIYDULDWLRQFDOFXOXV±0/217, ±93DUW±S93DUW±S  _ w t  

 f P y t  u t  t _  _ w t  f  P y t  u t  x  x  t _   _ p t  F P y t  t _ @dt 

z

A t z  B t v t  B v t  z t m

 t  I  







 





  

v ˜  L I  R r  v ˜  L I  R        n x  x  S  u S S  R  p t  V t  u t  U t  d  *  

      t  I ZKHUH w t  W  w t  W IXQFWLRQ y t  LVGHWHUPLQHGE\WKHIRUPXOD   3URRI7KHSURRIIROORZVIURP/HPPD7KHYDOXHRIWKHIXQFWLRQDO I t   )XQFWLRQDO I  LIDQGRQO\LIHTXDOLWLHV    DUHVDWLVILHGUHODWLRQV     FRLQFLGHZLWK    7KHIXQFWLRQDO  FDQEHZULWWHQLQWKHIRUP  /HPPDSURYHG )XQFWLRQ F q t  t _ w t  f P y t  u t  x  x  t _  _ w t  f  P y t  u t  x  x  t _  _ p t  F P y t  t _  ZKHUH w t  W  w t  W  y t z t  v  /  t  [   [   N  t z t  v  t  I  q t z t  v  z t  v  u t  p t  v t  v t  x  x  d  1RWHWKDW  6LQFHWKHLQLWLDORSWLPDOFRQWUROSUREOHP    LVHTXLYDOHQWWR      WKHQ SUREOHP     KDV D VROXWLRQ LI DQG RQO\ LI UHODWLRQV    DUHVDWLVILHG   6LQFH WKH YDOXH I t   WKHQ IRU WKH H[LVWHQFH RI D VROXWLRQ WR WKH RSWLPDO FRQWURO SUREOHP     LW LV QHFHVVDU\ DQG VXIILFLHQW WKDW LQI I u p v  v  x  x  d  XQGHUFRQGLWLRQV       7UDQVLWLRQ IURP WKH LQLWLDO ERXQGDU\ YDOXH SUREOHP     WR WKH LQLWLDO RSWLPDO FRQWURO SUREOHP I u p v  v  x  x  d o LQI XQGHU FRQGLWLRQV    LVFDOOHGWKHSULQFLSOHRILPPHUVLRQ    

Lection 29.([LVWHQFHRIDGPLVVLEOHFRQWURO  &RQVLGHUWKHIROORZLQJRSWLPDOFRQWUROSUREOHPPLQLPL]HWKHIXQFWLRQDO t

I u ˜  p ˜  v ˜  v ˜  x  x  d

³ F q t  t o LQI 





 

 t  I 

  

  

     



t

8QGHUFRQGLWLRQV z

A t z  B t v t  B v t  z t

   S  d  * 

m

v ˜  L I  R  v ˜  L I  R    p t  V t  u t  U t  x  x  S  u S r

m

:HLQWURGXFHWKHIROORZLQJQRWDWLRQ H L I  R m u L I  R s u L I  R r u L I  R  u m m u R n u R n u R   X U u V u L I  R r u L I  R  u S  u S u *  H  YHFWRU IXQFWLRQ T t u t  p t  v t  v t  x  x  d  X  H  q t z t  z t  T t  7KHRSWLPL]DWLRQSUREOHP    FDQEHUHSUHVHQWHGDV I T ˜

t

³ F q t  t o LQI  T ˜  X  H   

t

/HWWKHVHW X ^T ˜  X _ I T ˜ LQI I T ˜ `  T X

/HPPD /HW WKH PDWUL[ T t  t !  . In order for problem (7.2)-(7.7) to have a solution, it is necessary and sufficient that OLP I T n I LQI I T  , where T X

n of

^T n ˜ `  X – is a minimizing sequence in the problem (7.43)-(7.46) 

7KHSURRIRIWKHOHPPDIROORZVIURP7KHRUHPDQG/HPPDV 7KHRUHP /HW WKH PDWUL[ T t  t !  , function F q t is defined and continuous on a set of variables q t together with partial derivatives with respect to q and satisfies Lipschitz conditions       _ Fq q  'q t  Fq q t _d l _ 'q _ t  I   ZKHUH Fq q t Fz q t  F q t  Fu q t  F p q t  Fv q t  Fv q t  Fx q t  Fx q t  Fd q t   z t     

q

z  z t  u  p v  v  x  x  d  R

n  m

uR

n  m

u Rm u Rs u Rr u R

'z 'z t  'u 'p 'v  'v  'x  'x  'd  l

'q

m

m

u R n u R n u R  

const !  

7KHQ IXQFWLRQDO  XQGHU FRQGLWLRQV     LV FRQWLQXRXVO\ GLIIHUHQWLDEOHDFFRUGLQJWR)UHFKHWWKHJUDGLHQW Ic T Iu T  I p T  Iv T  Iv T  Ix T  Ix T  Id T  H      ,QDQ\SRLQW T  X FDQEHFDOFXODWHGE\WKHIRUPXOD Iu T

Fu q t  t  I p T Iv T 



Fv q t  t  B \ t  Ix T

Ix T 

F p q t  t  Iv T





t

³ Fx q t  t dt  Id T

t



 

t

Fv q t  t  B t \ t   t ³ Fx q t  t dt  t

³F

d

t



q t  t dt 

  

ZKHUH z t  t  I LV D VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ   D IXQFWLRQ\ t  t  I LVDVROXWLRQRIWKHDGMRLQWV\VWHP \

t  ³F

Fz q t  t  A t \  \ t

t

 z t



q t  t dt  





 

,QDGGLWLRQWKHJUDGLHQW Ic T  T  X VDWLVILHV/LSVFKLW]FRQGLWLRQ       __ I c T  I c T  __d K __ T  T  __ T T   X   ZKHUH K const !   3URRI/HW T t  T t  'T t  X  z t  v  v  z t  v  'v  v  'v  t  I ±VROXWLRQV RIV\VWHP    /HW z t  v  'v  v   'v  z t  v  v    'z t  t  I 7KHQ        _ 'z t _d C __ 'v __ C  __ 'v  __   ,QFUHPHQWRIIXQFWLRQDO ORRNLQ   t

³> F q t  'q t  t  F q t  t @dt

I T  'T  I T

'I





t

t

³>'u t F

u

q t  t  'p t F p q t  t  'v t Fv q t  t 

  



t

 'v t Fv q t  t  'x Fx q t  t  'x Fx q t  t  'd Fd q t  t  





 'z t Fz q t  t  'z t F



 z t





q t  t @dt  ¦Ri  i 

t

t

t

t

t

t

ZKHUH _ R _d l ³ _ 'u t __ 'q t _ dt  _ R _d l ³ _ 'p t __ 'q t _ dt  _ R _d l ³ _ 'v t __ 'q t _ dt  t _ R _d l ³ _ 'v t __ 'q t _ dt 

t _ R _d l ³ _ 'x __ 'q t _ dt 

t

t _ R _d l ³ _ 'd __ 'q t _ dt  t

t _ R _d l ³ _ 'x __ 'q t _ dt 

t

t _ R _d l ³ _ 'z t __ 'q t _ dt  t

t

t _ R _d l ³ _ 'z t __ 'q t _ dt

ɜ ɫɢɥɭ

t

/LSVFKLW]FRQGLWLRQV  1RWLFHWKDW ORRNLQ     t

³'z t F

 z t

t



q t  t dt

t t  ³ > 'v t B t  'v t B @\ t dt  ³ 'z t F z q t  t dt   t

t

)URP    ZHJHW t



³^'u t Fu q t  t  'p t F p q t  t  'v t > Fv q t  t  B t \ t @  

'I 



t

 'v t > Fv q t  t  B \ t @  'x F x q t  t  'x F x q t  t   







 'd Fd q t  t `dt  ¦Ri  Ic T  'T ! H  R 

i 

ZKHUH R



_R_ o  ZKHQ __ 'T __o   Ri  _ R _d C  __ 'T __  ¦ __ 'T __ i 

 

 

+HQFH ZH JHW WKH UHODWLRQV   /HW T u  'u p  'p v  'v  v  u  p v  v  x  x  d  X $V  _ Ic T  Ic T  _ d l _ 'q t _ l _ '\ t _ l _ 'T _   _ 'q t _d l __ 'T ___ '\ t _d l __ 'T __ 

 'v  x  'x  x  'x  d  'd  T 

WKHQ t

³ _ I c T  I c T

__ I c T  I c T  __









_ dt d l __ 'T __  

t

l 7KH WKHQ li const !   i  +HQFHZHJHWWKHHVWLPDWH  ZKHUH K WKHRUHPLVSURYHG /HPPD /HW T t  t !  , function F q t convex by variable q  R N , N  n  m  s  r  m , i.e.  F Dq    D q d DF q  t    D F q  t  q  q  R N  D  D  >@    7KHQWKHIXQFWLRQDO  XQGHUWKHFRQGLWLRQV    LVFRQYH[ 3URRI/HW T  T   X  D  >@ ,WFDQEHVKRZQWKDW z t  Dv    D v  Dv    D v  Dz t  v  v    D z t  v  v    r m  v  v  v  v   L I  R    7KHQ I DT     D T 

t

³ F Dq t    D q t dt d DI T    D I T 













 

t

T  T   X  T

u  p  v  v  x  x  d  T 

u  p  v  v   x   x  d  

/HPPDLVSURYHG 1RWH WKDW LI U V  S  S ± DUH ERXQGHG FRQYH[ FORVHG VHWV WKHQ X  ± LV ERXQGHG FRQYH[ FORVHG VHW $V H ± UHIOH[LYH %DQDFK VSDFH WKHQ WKH VHW X  ± m ZHDNO\FRPSDFWZKHUH X  U u V u V I  R r u V I  R  u S u S u *  H  m

m

V I  R r ^v ˜  L I  R r _ PvP d E ` V I  R  ^v ˜  L I  R  _ PvP d E `   m

* ^d  R  d t  _ d _d E ` 

E !

±

TXLWH

D

ODUJH

QXPEHU

%XLOG

VHTXHQFHV

^T n ` ^un  pn  vn  vn  xn  xn  d n `  X   n   E\DOJRULWKP u n  PU >u n  D n Icu T n @ pn  PV > pn  D n Icp T n @ vn  PV >vn  D n Icv T n @ vn  PV >vn  D n Icv T n @ 







PS > xn  D n Icx T n @ xn  PS > xn  D n Icx T n @        d n  P* > d n  D n Icd T n @ n        H d Dn d  H !  K  H ZKHUH P: >˜@ ±SRLQWSURMHFWLRQRQWRWKHVHW :  K const !  IURP   xn 

 

7KHRUHP/HWWKHFRQGLWLRQVRI7KHRUHPEHIXOILOOHGDQGPRUHRYHUOHW WKH IXQFWLRQ F q t be convex by variable q  R N and sequence ^T n `  X  is determined by the formula (7.55). Then:  

 WKHORZHUERXQGRIWKHIXQFWLRQDO  LVUHDFKHGXQGHUWKHFRQGLWLRQV     LQI I T I T PLQ I T  T  X   T  X

T  X

 VHTXHQFH ^T n `  X  LVPLQLPL]LQJ OLP I T n I n of

LQI I T 

T  X

 VHTXHQFH ^T n `  X  FRQYHUJHVZHDNO\WRDSRLQW T  X   u n weakly o u  o v  v n weakly o v   xn o x  xn o x  d n o d ZKHQ n o f  p n weakly o p  vn weakly ZKHUH T u  p  v  v  x  x  d  X    ,QRUGHUIRUSUREOHP    WRKDYHDVROXWLRQLWLVQHFHVVDU\DQG VXIILFLHQWWKDW OLP I T n I   n of

 7KHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHLVYDOLG C  n    C  n 3URRI6LQFHWKHIXQFWLRQ F q t  t  I  d I T n  I d

const !  







 

LVFRQYH[WKHQDFFRUGLQJWR/HPPD WKHIXQFWLRQDO I T  T  X  LVFRQYH[RQDZHDNO\FRPSDFWVHW X   &RQVHTXHQWO\ I T  C X  LV ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ RQ D ZHDNO\ FRPSDFW VHW X   DQG UHDFKHV WKH ERWWRP LQ X   7KLV LPSOLHV WKH ILUVW DVVHUWLRQ RI WKHWKHRUHP 8VLQJSURSHUWLHVRIWKHSURMHFWLRQRIDSRLQWRQDFRQYH[FORVHGVHW X  DQG FRQVLGHULQJ WKDW I T  C X  ZH FDQ VKRZ WKDW I  T n  I  T n t H __ T n  T n __  n    H !  ,WIROORZVWKDW DQXPHULFVHTXHQFH ^I T n ` VWULFWO\GHFUHDVHV   __ T n  T n __o  ZKHQ n o f  6LQFHWKHIXQFWLRQDOLVFRQYH[DQGWKHVHWLVERXQGHGWKHLQHTXDOLW\  d I  T n  I  T d C __ T n  T n __ C const !  n      +HQFHWDNLQJLQWRDFFRXQWWKHIDFWWKDW __ T n  T n __o  ZKHQ n o f ZHKDYH VHTXHQFH ^T n ` LVPLQLPL]LQJ OLP I T n I T LQI I T  T  X

n of

$V ^T n `  X   X  ±ZHDNO\ELFRPSDFWWKHQ T n weakly o T ZQHQ n o f  $V IROORZV IURP /HPPD  LI WKH YDOXH I T   WKHQ WKH SUREOHP RI RSWLPDOFRQWURO    KDVDVROXWLRQ 7KH HVWLPDWH   IROORZV GLUHFWO\ IURP WKH LQHTXDOLWLHV   I  T n  I  T n  t H __ T n  T n  __  $ERYHWKHPDLQVWDJHVRIWKHSURRIRIWKHWKHRUHPZHUHEULHIO\GHVFULEHG $GHWDLOHGSURRIRIDVLPLODUWKHRUHPLVJLYHQLQ>@7KHWKHRUHPLVSURYHG )RU WKH FDVH ZKHQ WKH IXQFWLRQ F q t LV QRW FRQYH[ E\ YDULDEOH q  WKH IROORZLQJWKHRUHPLVWUXH 7KHRUHP /HW WKH FRQGLWLRQV RI 7KHRUHP  EH VDWLVILHG WKH VHTXHQFH ^T n `  X  is determined by the formula (7.55). Then: 1) the value of the functional I T n is strictly decreases when n   ; 2) __ T n  T n  __o  when n o f .  7KHSURRIRIWKHWKHRUHPIROORZVIURPWKHWKHRUHP   

)URP WKH DERYH UHVXOWV LW IROORZV   LI T u  p  v  v  x  x  d  X  ± LV D VROXWLRQRIWKHSUREOHPRIRSWLPDOFRQWURO    IRUZKLFK I T  WKHQ u u t  x  x  6  U u S  u S ± DGPLVVLEOH FRQWURO   IXQFWLRQ x t  t   x  t  I ± VROXWLRQ RI GLIIHUHQWLDO HTXDWLRQ   VDWLVILHV WKH FRQGLWLRQV x t  t  x x  x t  t  x  G t  t  I  IXQFWLRQDOV g j u ˜  x  x d c j  j  m  g j u ˜  x  x c j  j m   m  DQHFHVVDU\DQGVXIILFLHQWFRQGLWLRQIRUWKHH[LVWHQFHRIDVROXWLRQ WRWKHERXQGDU\YDOXHSUREOHP    LV I T  ZKHUH T  X  ±LVDVROXWLRQ RIWKHSUREOHP     IRUDYDOLGFRQWUROWKHYDOXHRIWKHIXQFWLRQDO   LVHTXDOWR t

³ F x t  u t  x  x  t dt

I u ˜  x  x







J  







 

t



ZKHUH x t x t  t  x  t  I  ,Q JHQHUDO WKH YDOXH I u ˜  x   x z I u  x   x   LQI I u ˜  x   x  u ˜  x  x U t u S  u S  /HW t LV IL[HG t LV QRQ IL[HG &RQVLGHU WKH DOJRULWKP IRU VROYLQJ WKH SUREOHPRIRSWLPDOSHUIRUPDQFH A.$Q\SHUPLVVLEOHFRQWUROLVFRQVWUXFWHGDVGHVFULEHGDERYH7RGRWKLVZH QHHG MXVW WR VHOHFW VRPH YDOXH t t  t ! t  WKHQ ILQG WKH VROXWLRQ RI WKH RSWLPL]DWLRQ SUREOHP     /HW SRLQW EH IRXQG T  X   J T LQI J  T  T  X  7ZRFDVHVDUHSRVVLEOHKHUHD  J  T J  !  E  J T J  &DVHE /HW J T J !  ,Q WKLV FDVH ZH DJDLQ VROYH SUREOHP     WKH IODW YDOXH t t  $V D UHVXOW ZH KDYH D SRLQW T T t  X  9DOXH J T t  7KHUH DUH DOVR WZR SRVVLEOH FDVHV   J T t !    J T t  ,I YDOXH J T t !   WKHQZHZLOOFRQWLQXHWKHSURFHVV t t DQGVRRQ,IYDOXH J T t  WKHQZH SDVVWRWKHSRLQW% B./HWIRUVRPHYDOXH t mt YDOXH J T mt  LQSDUWLFXODUZKHQ m   ZHKDYHFDVHE ,QWKLVFDVHZHVHOHFWWKHYDOXH t m   t  )XUWKHUZHVROYHWKH 

SUREOHP    IRUWKHYDOXH t

 m  t   

5HSHDWLQJ WKLV SURFHGXUH \RX FDQ ILQG ZLWK DV PXFK SUHFLVLRQ DV SRVVLEOH t t  t ±DQRSWLPDOSRLQWLQWLPHDVZHOODV T t  X  VROXWLRQRIWKHSUREOHPRI RSWLPDOSHUIRUPDQFH 



Lecture 30.&RQVWUXFWLQJDQRSWLPDOVROXWLRQ  &RQVLGHU WKH RSWLPDO FRQWURO SUREOHP     'HILQH D VFDODU IXQFWLRQ V t  t  I LQWKHIROORZLQJZD\ V t

t

³ F x W  u W  x  x W dW  t  I   



t

 



7KHQ V t F x t  u t  x  x  t  V t   V t J I u ˜  x  x  :  I u ˜  x  x t J   YDOXH J LV ERXQGHG EHORZ LQ SDUWLFXODU J   LI F t   1RZWKHRSWLPDOFRQWUROSUREOHP    FDQEHZULWWHQLQWKHIRUP VHH   V t J I u ˜  x  x o LQI        8QGHUFRQGLWLRQV V t F x t  u t  x  x  t  V t  V t J       x A t x  B t f x u t  x t x  x t x  S u S      K f  x t  u t  x  x  t  K t  K t c  Q            x t  G t  u t  U t  t  I   :HLQWURGXFHWKHQRWDWLRQ ^J  R  _ J t J   J  ! f`  ZKHUH J

§ O §  · On Om ·¸ ¨  ¨ ¸  ¨ O ¸ ¨ O ¸  A t O B  n  m ¨ n ¸  ¨ n  ¸ ¨ Om  Om n Om m ¸ ¨ Om  ¸ ©  ¹ ©  ¹ § Om · ¨  ¸ ¨ On m ¸ P  On  Om  P On   I n  On m      ¨ ¸ ¨ Im ¸ ©  ¹

§ V t · ¸ ¨ P t ¨ x t ¸ A t ¨ K t ¸ ¹ ©

§ Or · ¨ ¸ C t ¨ B t ¸ D t ¨ ¸ ¨ Om r ¸ ©  ¹ ZKHUH P P t V t  PP x 









7KHQWKHRSWLPDOFRQWUROSUREOHP    KDVWKHIRUP P P t J I u ˜  x  x o LQI       8QGHUFRQGLWLRQV P

A t P  B F PP  u x  x  t  C t f PP  u t  D f  PP  u x  x  t  

   

§ O · ¨  ¸ ¨ x ¸ O u S uO P t P T        m  ¨  ¸ ¨ Om  ¸ ©  ¹ § V t · § J · ¨ ¸ ¨ ¸ P t P ¨ x t ¸ ¨ x ¸  : u S u Q T       ¨ K t ¸ ¨ c ¸ ©  ¹ © ¹       PP t  G t  u t  U t  d  *  PP t  V t P P t  t  I  J ±LVGHWHUPLQHGE\WKHIRUPXOD   § V t · ¨ ¸ ¨ x t ¸ ¨ K t ¸ ©  ¹

ZKHUH x t 3ULQFLSOH RI LPPHUVLRQ &RQVLGHU WKH ERXQGDU\ YDOXH SUREOHP    7KHFRUUHVSRQGLQJOLQHDUFRQWUROOHGV\VWHPLV  ] A t ]  B w t  C t w t  D w t  t  I      m

w ˜  L I  R  w ˜  L I  R r  w ˜  L I  R    ] t P  T  ] t P  T      

 

   

:HLQWURGXFHWKHIROORZLQJQRWDWLRQ B  t

w t  w t  w t  < t W K t K  W   t

< t   t P  P   R t  t ³ < t   t B  t B  t < t  t dt  

B  C t  D  w t a

t

t

³< t W B

R t  t





W B  W < t W dW  R t  t

R t  t  R t  t  

t

/  t  P   P

B  t < t   t R  t   t a

§ B < t  t R t  t a · ¨ ¸ ¨ C < t  t R  t  t a ¸ ¨¨ ¸¸

 © D < t  t R t  t a ¹









§ / t  P  P · ¨ ¸ ¨ / t  P  P ¸  ¨¨ ¸¸ © / t  P  P ¹

 B  < t t   t R  t   t < t   t

K  t

§  B < t  t R t  t < t  t · ¨ ¸ ¨  C < t  t R  t  t < t  t ¸ ¨  D < t  t R  t  t < t  t ¸      ¹ ©







/  t  P  P







§ K t · ¨ ¸ ¨ K t ¸  ¨ K t ¸ ©  ¹

< t  t R t  t R  t  t P  < t  t R t  t R  t  t < t  t P   K  t

 < t  t R t   t R  t  t < t  t  t  I  

7KHRUHP /HW WKH PDWUL[ R t  t !  . Then control w t w t  w  t  w  t  L I  R

 r  m

transfers the trajectory of the system (7.69)-(7.71) from any

starting point P  R

 n  m

to any given final state P  R

 n  m

if and only if 

v t  / t  P   P  K t z t  v 

w t W  ^w ˜  L I  R  w t 

v ˜  L I  R  t  I ` 

w t W 

v  t  / t  P  P  K t z t  v 

^w ˜  L I  R r  w t

v  ˜  L I  R  t  I ` r

w t  W 

m

^w ˜  L I  R   w t



 



 

v  t  / t  P   P  K t z t  v 

m

v  ˜  L I  R  t  I `



 

ZKHUH v t v t  v  t  v  t  z t z t  v  t  I ±VROXWLRQRIDGLIIHUHQWLDOHTXDWLRQ z A t z  B v t  C t v  t  D v  t  z t       m

v ˜  L I  R  v  ˜  L I  R r  v  ˜  L I  R   





 

7KHVROXWLRQRIWKHV\VWHP    KDVDIRUP ] t

z t  v  /  t  P  P  K  t z t  v  t  I  

     7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP  /HPPD /HW WKH PDWUL[  R t  t !  . Then the boundary value problem (7.65) ± (7.68) is equivalent to the following problem.   w t W   w t F P]  u x  x  t  t  I                 w t  W  w t f P ]  u  t  t  I         

f  P]  u x  x  t  t  I  

  p t  V t ^ p ˜  L I  R p t F P]  t  Z t d p t d M t  t  I `    z A t z  B v t  C t v  t  D v  t  z t  t  I      

w t  W   w t







s

m

v ˜  L I  R  v  ˜  L I  R r  v  ˜  L I  R    x  x  S  u S  u t U t  J  : d  *   

        ZKHUH ] t  t  I LVGHWHUPLQHGE\WKHIRUPXOD   z t  v ±VROXWLRQRIDV\VWHP     IXQFWLRQV w t  w t  w t LV GHWHUPLQHG E\ WKH IRUPXODV    UHVSHFWLYHO\ 7KHDVVHUWLRQRI/HPPDIROORZVIURPWKHWKHRUHP &RQVLGHUWKHIROORZLQJRSWLPDOFRQWUROSUREOHPPLQLPL]HWKHIXQFWLRQDO t

t

t

t

³ F q t  t dt

J  v u  p x  x  d  J

³>_ w t  F P] t  u t  x  x  t _ 











 _ w  t  f P] t  u t  t _  _ w t  f  P] t  u t  x  x  t _ 





 

 _ p t  F P] t  t _ @dt o LQI 

XQGHUFRQGLWLRQV  ±  ZKHUH w t  W   w  t  W   w t  W   v v  v   v   q t v  v   v   u p x  x  d  J  z t  z t  1RWH WKDW WKH RSWLPL]DWLRQ SUREOHP      ZDVREWDLQHGRQWKHEDVLVRIWKHUHODWLRQV     wF q t satisfies the wq

7KHRUHP /HW WKH PDWUL[ R t  t !  , derivative

Lipschitz condition. Then:  IXQFWLRQDO  XQGHUFRQGLWLRQV    LVFRQWLQXRXVO\)UHFKHW GLIIHUHQWLDEOHWKHJUDGLHQWRIWKHIXQFWLRQDO J  T

J  v T  J  v  T  J  v T  J  u T  J  p T  J  x T  J  x T  J  d T  J  J T  

T X



v  v   v   u p x  x  d  J  X  m



L I  R u L I  R r u L I  R  u U u V u S  u S u * u : 

m

L I  R u L I  R u L I  R u L I  R u L I  R u R u R u 

H

r

m

u R  u R 

m

s

n

n

X  H  J  T  H

DWDQ\SRLQW T  X FDQEHFDOFXODWHGE\WKHIRUPXODV J  v T J  v T

wF q t  t  B \ t  J  v  T w v

wF q t  t wF q t  t wF q t  t  D \ t  J  u T  J  p T wu wp wv t t  wF q t  t wF q t  t J  x T ³  dt  J  x T ³  dt    wx wx t t 



J  d T

t

³

t

wF q t  t dt  J  J T wd 



wF q t  t  C \ t  wv 

t

³

t

wF q t  t dt  wJ

ZKHUH\ t  t  I ±VROXWLRQRIFRQMRLQWV\VWHP t wF q t  t dt   ³  w z t t

wF q t  t  A t \  \ t wz

\



JUDGLHQW J T T  X VDWLVILHV/LSVFKLW]FRQGLWLRQ



__ J  T   J  T  __d l __ T   T  __ T  T   X  

7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP n n n &RQVWUXFW WKH IROORZLQJ VHTXHQFHV ^T n ` ^v   v   v   u n  p n  x n  xn  d n   J n `  X   E\DOJRULWKP n n  PV  >v  D n J  v T n @ v 

n 

v

n 

v

n PV  >v   D n J  v T n @ un 

PV > pn  D n J  p T n @

pn  n  

x

n PV  >v   D n J  v  T n @

xn 

PS > x  D n J  x T n @ d n  

J n 

n 



PU >un  D n J  u T n @ PS > xn  D n J  x T n @ 

P* >d n  D n J T n @

P: >J n  D n J  J T n @

  H !  l l  H ^v  ˜  L I  R   __ v  __d E `

V

V m

^v  ˜  L I  R  __ v  __d E ` U

: ^J  RJ d J d E ` X 





 



n

 d Dn d

ZKHUH



d

const !  ^v  ˜  L I  R r  __ v  __d E `

V

m

^u ˜  L I  R m  __ u __d E ` * ^d  R  d t  _ d _d E `

V  u V  u V  u U u V u S  u S u * u :  H 

7KHRUHP /HW WKH FRQGLWLRQV RI 7KHRUHP  EH VDWLVILHG, X  - is bounded convex closed set, sequence ^T n `  X  is determined by the formula (7.86). Then:  QXPHULFVHTXHQFH ^J  T n ` VWULFWO\GHFUHDVHV __ T n  T n __o  ZKHQ n o f  ,IPRUHRYHU F q t LVFRQYH[IXQFWLRQE\YDULDEOH q WKHQ WKHORZHUERXQGRIWKHIXQFWLRQDO  LVUHDFKHGXQGHUWKHFRQGLWLRQV  ±   J  T inf J  T min J  T J    T X 

T X 

VHTXHQFH ^T n `  X  LVPLQLPL]LQJ lim J  T n J 

inf J  T  

nof

X  n 

T X 

 VHTXHQFH ^T n `  X  FRQYHUJHV ZHDNO\ WR D SRLQW T  X   n

n

weakly weakly o v  v   o v  ^T J  T J  inf J  T min J  T `  ZKHUH v  T X 

T X 





weakly o p  xn o x   xn o x  d n o d  J n o J ZKHQ v o v  un o u  pn  weakly

n o f  T

weakly







v  v   v   u  p  x   x  d  J  

 LI J  T   WKHQ RSWLPDO FRQWURO IRU WKH SUREOHP     DUH u  U 

x  S   x  S  DQGWKHRSWLPDOWUDMHFWRU\ x t P] t P> z t  v  /  t  P  P  K  t z t  v @ t  I  



 

ZKHUH

v





v   v   v   P 

d j t  j  m  c j

cj j

O  x   O

m

m   m `





 P

J  x   c  c  Q

m

^c  R   c j

cj  d j

VDWLVILHG WKH LQFOXVLRQ x t  G t DQG



OLPLWDWLRQV     J u  x  x J   WKHIROORZLQJHVWLPDWHRIWKHFRQYHUJHQFHUDWHLVYDOLG  d J  T n  J  d

c  n  c  n

const !  

7KHSURRIRIDVLPLODUWKHRUHPLVJLYHQDERYH $ PRUH YLVXDO PHWKRG IRU VROYLQJ SUREOHP     LV WKH PHWKRG RI QDUURZLQJWKHUDQJHRIDGPLVVLEOHFRQWUROV 7KHRUHP Let the conditions of the theorem 8 be satisfied, X  V  u V  u V  u U u V u S u S u * is bounded convex closed set, sequence ^T n `  X  is determined by the formula (7.86) except for the sequence ^J n `  : Then:  QXPHULFVHTXHQFH ^J  T n ` ^T n `  X  VWULFWO\GHFUHDVHV  __ T n  T n __o  ZKHQ n o f ^T n `  X    ,ILQDGGLWLRQWKHIXQFWLRQ F q t LVFRQYH[IXQFWLRQE\YDULDEOH q ZLWK IL[HG J  WKHQ VHTXHQFH ^T n `  X   ZLWKIL[HG J J LVPLQLPL]LQJ ɫɥ  T n o T  X  ZKHQ n o f J J    J  T inf J  T n min J  T n   X 

Tn

X 

Tn

IROORZLQJHVWLPDWHLVWUXH  d J  T n  J  T d

c  c n

const !  n  ^T n `  X   

7KHSURRIRIWKHWKHRUHPIROORZVIURP7KHRUHPIRUDIL[HG J  : J J   VHH   /HW T  X  EH D VROXWLRQ RI WKH SUREOHP       ZKHQ J J  : 7KHUHPD\EHFDVHV YDOXH J  T !   YDOXH J  T   1RWLFHWKDW J  T t  T  X    ,I J  T !  WKHQQHZYDOXH J ZHZLOOFKRRVH J J DQGLI J  T  WKHQ QHZYDOXH J

J 

$FFRUGLQJWRWKLVVFKHPHE\GLYLGLQJWKHLQWHUYDORIXQFHUWDLQW\

LQKDOIZHFDQILQGWKHVPDOOHVWYDOXHRIWKHIXQFWLRQDO  XQGHUWKHFRQGLWLRQV          

Lecture 31.%RXQGDU\SUREOHPVRIRSWLPDOFRQWURORIOLQHDUV\VWHPV ZLWKTXDGUDWLFIXQFWLRQDOZLWKRXWUHVWULFWLRQV   3UREOHP VWDWHPHQW &RQVLGHU WKH IROORZLQJ RSWLPDO FRQWURO SUREOHP PLQLPL]HWKHIXQFWLRQDO t

J x u

>

@

  x t Q t x t   x t M t u t  u t R t u t dt o LQI   t³

 

8QGHUFRQGLWLRQV x

A t x  B t u t  P t  t  I

     x t x  x t x  u x  L I  R       

ZKHUH R t R t !   Q t Q t !   M t  t  I ± PDWULFHV ZLWK FRQWLQXRXV HOHPHQWV RI mu m  n u n  n u m RUGHUV UHVSHFWLYHO\ A t  B t ± JLYHQ PDWULFHV ZLWK SLHFHZLVHFRQWLQXRXVHOHPHQWVRI n u n  n u m RUGHUVUHVSHFWLYHO\ P t  KC I  R n ± SLHFHZLVH FRQWLQXRXV IXQFWLRQ WLPH PRPHQWV t  t DUH IL[HG x t  x  R n  x t x  R n ±VSHFLILHGV\VWHPVWDWHV  /HWXVVKRZWKDWWKHPDWUL[ x

>t   t @ 

m

§ Q t M t · ¨¨ ¸¸ t   t  I >t  t @  © M t R t ¹ :H QHHG WR ILQG RSWLPDO FRQWURO u t  t  I  RSWLPDO WUDMHFWRU\ x t  t  I  $V N t

IROORZVIURPWKHUHVXOWVRI&KDSWHUIRUWKHH[LVWHQFHRIDVROXWLRQRIWKHSUREOHP    LWLVQHFHVVDU\DQGVXIILFLHQWWKDWWKHPDWUL[ t

T t   t

³ ) t  t B t B t ) t  t dt 





t

ZDV SRVLWLYHO\ GHILQHG ZKHUH ) t  W N t N  W  N t ± WKH IXQGDPHQWDO PDWUL[ RI x

VROXWLRQVRIDOLQHDUKRPRJHQHRXVV\VWHPZKHUH p A t p   3ULQFLSOHRILPPHUVLRQ$VIROORZVIURPWKHUHVXOWVRIFKDSWHUWKRVHDQG RQO\WKRVHFRQWUROVWUDQVIHUWKHWUDMHFWRU\RIWKHV\VWHP  IURPDQ\LQLWLDOVWDWH x t  x  R n LQDQ\GHVLUHGILQDOVWDWH x t x  R n ZKLFK   u t  U ^u x  L I  R m  u t v t  O t  x  x  N t z t  v  t  I ` m ZKHUH v x  L I  R ± DUELWUDU\ IXQFWLRQ z t z t  v  t  I ± VROXWLRQ RI D GLIIHUHQWLDOHTXDWLRQ x

A t z  B t v t  z t

    7KH VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ   FRUUHVSRQGLQJ WR WKH FRQWURO u t  U LVGHWHUPLQHGE\WKHIRUPXOD x t z t  O t  x  x  N  t z t  v  t  I       +HUH z

O t  x  x

  t  I  v x  L I  R m 

B t ) t   t T  t   t a  a

t

) t   t >x  ) t  t x @  ³ ) t   t P t dt  t

N  t

 B t ) t   t T  t   t ) t   t  T t   t T t   t  T t  t 

 

O t  x  x ) t  t T t  t T  t  t x  ) t  t  T t   t T  t  t ) t  t x   t

t

 ³ ) t W P W dW  ) t  t T t   t T  t  t ³ ) t  t P t dt   t

t

t

 ) t  t T t  t T  t   t ³ ) t  t P t dt  t

N  t ) t  t  T t   t T t   t ) t   t  t  I  /HPPD Let the matrix T t  t !   Then the boundary value optimal control problem (7.87)-(7.89) is equivalent to the following initial optimal control problem: minimize the functional 

t

J z x  z t v x

 ^> z t  O t  x  x  N  t z t  v @ Q t u  t³

u > z t  O t  x  x  N  t z t  v @  > z t  O t  x  x  N  t z t  v @ M t u u >v t  O t  x  x  N t z t  v @  >v t  O t  x  x  N t z t  v @ R t u

u >v t  O t  x  x  N t z t  v @` o LQI



Under conditions x

z

A t z  B t v t , z t

 ,t  I

>t  t @ , v x  L I  R m .

 

 3URRI6LQFHWKHVHW U GHILQHGE\WKHIRUPXOD  FRQWDLQVWKRVHDQGRQO\ WKRVH FRQWUROV WKDW WUDQVODWH WKH WUDMHFWRU\ RI WKH V\VWHP     IURP x WR x  WKHQWKHIXQFWLRQ u t  t  I LQWKHIXQFWLRQDO  FDQEHUHSODFHGE\ u t  U  7KH VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ   FRUUHVSRQGLQJ WR WKH FRQWURO u t  U  KDV WKH IRUP   7KHUHIRUH WKH IXQFWLRQ x t  t  I LQ WKH IXQFWLRQDO  FDQEHUHSODFHGE\ x t x t  u  t  I  u t  U /HPPDLVSURYHG  1RWLFHWKDW   XQOLNH WKH ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHP     WKH SUREOHP    LVWKHLQLWLDOSUREOHPRIRSWLPDOFRQWURO   GXH WR WKH HTXLYDOHQFH RI SUREOHPV     DQG     WKH RSWLPDOFRQWUROFDQEHIRXQGE\VROYLQJWKHSUREOHP     u U  t  I DQG RSWLPDOWUDMHFWRU\ x t  u  t  I RILQLWLDOSUREOHPE\IRUPXOD u t v t  O t  x  x  N t z t  v  t  I       x t z t  v  O t  x  x  N  t z t  v  t  I      ZKHUH v t  z t  v  t  I ± RSWLPDO FRQWURO DQG RSWLPDO WUDMHFWRU\ LQ WKH SUREOHP      WKHWUDQVLWLRQIURPWKHRULJLQDOSUREOHP    WRWKHLQLWLDOSUREOHP    LVFDOOHGWKHLPPHUVLRQSULQFLSOH  &RQYH[ IXQFWLRQDO :HVWXG\WKHSURSHUWLHVRIWKHIXQFWLRQDO  XQGHU WKHFRQGLWLRQV    



/HPPD Let the matrix T t  t !  . If matrices Q t Q t t  , R t R t !  , N t N t t  , t  I , then the functional (7.93) under the conditions (7.94) is convex. 

3URRI7KHIXQFWLRQDO  FDQEHUHSUHVHQWHGDV J q x

t

³ F q t  t dt

t

t

³ >q t P t q t  S t q t  f t @dt 



 

t

ZKHUH q t z t  z t  v t  t  I  P t

Q t § ¨

¨ N  t Q t  N  t M t ¨

M t ©

P t

S t

Q t N  t  M t N  t N  t Q t N  t   N  t M t N  t  N  t R t N  t M t N  t  R t N  t

M t · ¸ N  t R t  N  t M t ¸ ¸ R t ¹

O t  x  x Q t  O t  x  x Q t N  t  



O  t x  x Q t N t  O  t x  x M t N t  O t x  x M t N t  O t x  x R t N t    >O t  x  x Q t O t  x  x     O  t  x  x M t O t  x  x  O t  x  x R t O t  x  x @ 

O t  x  x R t  O  t  x  x M t  f t

'HULYDWLYHV w  F q t wF q t  P t  t  I   P t q  S t  w q wq 6LQFHWKHPDWUL[ P t P t t  WKHQIXQFWLRQ F q t FRQYH[E\YDULDEOH q LH



F Dq    D q  t d DF q  t    D F q  t 

DF z  z  v    D F z  z  v  q  q  R n u R n u R m  D  D  > @ 

    )RUDQ\ v x  L I  R m  v x  L I  R m DQGIRUDOO D t   D  >@ VROXWLRQRI DGLIIHUHQWLDOHTXDWLRQ  ZLWK vD Dv    D v KDVWKHSURSHUW\  z t  vD Dz t  v    D z t  v  t  I        7KHYDOXHRIWKHIXQFWLRQDO  XQGHUWKHFRQGLWLRQV  LVHTXDOWR J vD

J z x vD  z t  vD  vD



t

³ F z t  vD  z t  vD  vD  t dt 







t t

³ F Dz t  v    D z t  v  D z t  v    D z t  v  Dv t    D v t dt d  

















t

t

t

t

t

d D ³ F z t  v  z t  v  v  t dt    D ³ F z t  v  z t  v  v  t dt

DJ z x v  z t  v  v x    D J z x v  z t  v  v x  D  D  > @ 

E\YLUWXHRI    /HPPDSURYHG   



 )XQFWLRQDOJUDGLHQW&RQVLGHUWKHRSWLPDOFRQWUROSUREOHP      7KHRUHP Let the matrix T t  t !   The functional (7.93) under the conditions (7.94) is continuously Frechet differentiable, the gradient of the functional at any point v x  L I  R m is determined by the formula R t >v t  O t  x  x  N t z t @ 

J c v

 M t >z t  O t  x  x  N  t z t @  B t \ t  L I  R m ,

 where z t z t  v , t  I – solution of a differential equation (7.94) and funvtion \ t , t  I –solution of adjoin system

x

\

Q t >z t  O t  x  x  N  t z t @ 

 M t >v t  O t  x  x  N t z t @  A t \ , t  I ,



t

\ t  ³ ^> N  t Q t  N t M t @> z t  O t  x  x  N  t z t @  t

 > N t R t  N  t M t @>v t  O t  x  x  N t z t @`dt .



In addition, the gradient J c v  L I  R satisfies Lipschitz condition  __ J c v  J c w __ L d l __ v  w __ L , v x  w x  L I  R m , where l const !  – Lipschitz constant.  3URRI/HW v t  v t  h t  L I  R m DQG z t  v  z t  v  h  t  I ±VROXWLRQRID GLIIHUHQWLDO HTXDWLRQ   z t  v  h z t  v  'z t  t  I  ,W FDQ EH VKRZQ WKDW _ 'z t _d c __ h __ L  t  I 3DUWLDOGHULYDWLYHV m







wF q  t R t >v t  O t  x  x  N  t z t @   wv

 M t >z t  O t  x  x  N  t z t @ F v  wF q  t Q t >z t  O t  x  x  N  t z t @   wz  M t >v t  h t O t  x  x  N t z t @ F z 

wF q t wz t

>N



@

t Q t  N t M t >z t  O t  x  x  N  t z t @  

>

@

 N t R t  N  t M t >v t  O t  x  x  N t z t @ F z t 

,WFDQEHVKRZQWKDW 'J

J v  h  J v

t

³ ^h t F

v

 'z t F z  'z t F z t `dt  R  R  R 

t

ZKHUH _ R _d c __ h __  _ R _d c __ h __  _ R _d c __ h __ +HQFHJLYHQWKDW t

³ 'z t F z t dt

t

t

t

t

t

 ³ h t B t \ t dt  ³ 'z t F z dt 

ZHREWDLQ    $VIROORZVIURP  

_ J c v  h  J c v _d__ R t __ >_ h t _  __ N t ___ 'z t _@  

 __ M t __ _ 'z t _  __ M t __ __ N  t __ _ 'z t _  __ B t __ _ '\ t _  ZKHUH '\ t \ t  v  h  \ t  v  +HQFH JLYHQ WKDW _ '\ t _d c __ h __  ZH REWDLQ WKH

HVWLPDWH  7KHWKHRUHPLVSURYHG  

 2SWLPDOFRQGLWLRQV&RQVLGHUWKHSUREOHP    :HLQWURGXFHWKH QRWDWLRQ ­ ½ m PLQ J v ¾  ®v x  L I  R  J v x m v x L I  R ¯ ¿ 7KHRUHP Let the matrix T t  t !  . Then: V



1) set V z ‡ ; 2) for any point v t  V it is necessary and sufficient to fulfill the condition J c v  . 3URRI :H LQWURGXFH WKH VHW LU I  R m  L I  R m  U !  ± TXLWH D ODUJH QXPEHU 6HW LU I  R m ± ZHDNO\ ELFRPSDFW IXQFWLRQDO   XQGHU FRQGLWLRQV   ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ J v t   7KHUHIRUH VHW V z ‡  V  LU I  R m  V ±ERXQGHGFRQYH[FORVHGVHW 

/HW v t  V 7KHQ  d J v  D v  v  J v D  J c v  v  v ! o D 

o D

D

o

ZKHQ D o  )URPKHUHZHKDYH J c v  ZKHUH v  L I  R m 1HFHVVLW\SURYHQ  /HW J c v  6KRZWKDW v t  V %HFDXVH J v  C  h I  R m LWLVQHFHVVDU\ DQG VXIILFLHQW WR IXOILOO WKH LQHTXDOLW\ J v  J u t  J c u  v  u !  u v  L I  R m  +HQFH LQ SDUWLFXODU ZKHQ u v  ZH JHW J v  J v t   v v  L I  R m  &RQVHTXHQWO\ v t  V 6XIILFLHQF\LVSURYHQ7KHWKHRUHPLVSURYHG    Lecture 32.0LQLPL]LQJVHTXHQFHV  /HW v x  L I  R m ± DQ\ VWDUWLQJ SRLQW %DVHG RQ UHODWLRQV     ZHEXLOGDVHTXHQFH vn vn  D n J c vn  g n D n PLQ g n D  D t

g n D

J vn  DJ c vn  n

   

     7KHRUHP Let the matrix T t  t !   sequence ^vn `  L I  R m is determined by the formula (7.104). Then: 1) sequence ^vn `  L I  R m is minimizing and any weak limit of it belongs to the set V ; 2) the following estimate of the convergence rate is valid:  D l , n    , n where D – set diameter M v ^v x  L I  R m  J v d J v `.

 

 d J vn  J v d



3URRI

$V

g n D n d g n D



g n D n

J vn  D n J c vn

J vn



WKHQ

J vn  DJ c vn t J vn  J vn  2Q WKH EDVLV RI WKH IRUPXOD IRU WKH ILQDO /DJUDQJH

LQFUHPHQWVWDNLQJLQWRDFFRXQWWKHHVWLPDWH  ZHREWDLQ J vn  J vn t

 __ J c vn __  n l

 

   





 

,W IROORZV WKDW WKH QXPHULFDO VHTXHQFH ^J vn ` LV VWULFWO\ GHFUHDVHV )URP   GXHWRWKHIDFWWKDW J vn t   V z  LWIROORZV OLP J c vn   nof

 1RWLFHWKDW   VHW M v LVFRQYH[ERXQGHGFORVHG    V  M v     ^vn `  M v     J v  J w d J c v  v  w !  v w  M v  +HQFHLQSDUWLFXODUZKHQ w v  v vn  M v ZHJHW  d J vn  J v d D __ J c vn __  %HFDXVH OLP J c vn   WKHQ OLP J vn J v J  7KLV PHDQV WKDW WKH VHTXHQFH nof

nof

^vn `  M v LVPLQLPL]LQJ

 7KHHVWLPDWLRQ  IROORZVIURP  DQG  d J vn  J v d D __ J c vn __  7KHWKHRUHPLVSURYHG  ([DPSOH &RQVLGHU WKH IROORZLQJ RSWLPDO FRQWURO SUREOHP PLQLPL]H WKH IXQFWLRQDO 

>

@

 x  t  u  t dt o LQI    ³

J x u







 

>@ 

  x   

XQGHUFRQGLWLRQV x

x

x  u  x    x 

  u x  L I  R  t  I

)RUWKLVH[DPSOH Q   M   R   A   B   t  I  x 

3ULQFLSOHRILPPHUVLRQ$V T 

x    x        e  T    e  

  t   e   t  T t  e  e    a    e     e  t    e  t e  t O t  x  x  e  N t e  O t  e   e t    e    e   e e  N  t et  e t  WKHQ WKH SUREOHP     KDV WKH IRUP  e 

T  t

PLQLPL]H

IXQFWLRQDO 

J v

J z x  z   v x  >v t 

 e  t e  t ^> z t  e   e  e t  e t z  @    ³   e  e   

   e  t e  t e   e z  @ `dt o LQI    e e 





 

>@  v x  L I  R 



 

8QGHUFRQGLWLRQV x

z

z  v t  z    t  I



  )XQFWLRQDO JUDGLHQW &DOFXODWH WKH JUDGLHQW RI WKH IXQFWLRQDO IRU WKH SUREOHP     )XQFWLRQDOJUDGLHQW J c v

ª º    e  t e  t R «v t  e   e z  v »  \ t  L I  R     e e   ¬ ¼ 



ZKHUH\ t  t  I ±VROXWLRQRIDGMRLQV\VWHP ª º e  t e  e   e t   e t  e t z  v »  t  I  \ « z t      e e  ¬ ¼  ª º e  e  t e   ³ ^  et  e t « z t  e   e t   e t  e t z  v »    e     e e   ¬ ¼  x

\ \ 



º e  t ª    e  t e  t e «v t  e   e z  v »`dt    e  ¬  e e  ¼





 

  2SWLPDO FRQGLWLRQ )RU SUREOHP     WKH RSWLPDOLW\ FRQGLWLRQKDVDIRUP J c v

ª º    e  t e  t R «v t  e  e z  v »  \ t  v {      e e  ¬ ¼

ZKHUH z t  v  t  I ± VROXWLRQ RI D GLIIHUHQWLDO HTXDWLRQ   ZKHQ v v  ɚ z t  v  t  I   0LQLPL]LQJVHTXHQFH6HTXHQFH ^vn `  L I  R EXLOWDFFRUGLQJWRWKHUXOH vn t vn t  D n J c vn  n     ZKHUH D n !  GHWHUPLQHGE\WKHFRQGLWLRQ g n D n PLQ g n D PLQ J vn  DJ c vn 

\ t  v  t  I ± VROXWLRQ RI DGMRLQ V\VWHP     ZKHQ v v  z

D t

D t

,WFDQEHVKRZQWKDW vn o v ZKHQ n o f ZKHUHWKHZHDNO\OLPLWSRLQW v t

  

e

t

 e

t





  §        e      e   · ¸ u¨    ¨ ¸  e e © ¹

>

   e

t

    e 

e

t

t

 e 

@u  t

 t  I 

2SWLPDOWUDMHFWRU\ x t

e

t

 e 

t

 t  I 

7KHPLQLPXPYDOXHRIWKHIXQFWLRQDO 

J x x  u x

>

@

 x  t  u  t dt  ³

 

2SWLPDOFRQWURO u t v t  t  I    &RPPHQWV  ,QWKHVHFRQGSDUWRIWKHWZHQWLHWKFHQWXU\WKDQNVWRWKHZRUNVRIRXWVWDQGLQJ PDWKHPDWLFLDQV /6 3RQWU\DJLQ >@ /9 .DQWRURYLFK >@ 11 .UDVRYVN\ >@ 5%HOOPDQ>@5.DOPDQ>@9).URWRYD>@DQGRWKHUVKDYHEHHQFUHDWHGWKH PD[LPXP SULQFLSOH WKH G\QDPLF SURJUDPPLQJ PHWKRG WKH WKHRU\ RI FRQWUROODELOLW\WKHPHWKRGRIPRPHQWVILQLWHFRQWUROIRUVROYLQJSUREOHPVRIWKH PDWKHPDWLFDOWKHRU\RIRSWLPDOSURFHVVHV$PRQJWKHVHZRUNVWKHRQHFORVHVWWR WKLVZRUNLV>@,WVKRXOGEHQRWHGWKDWWKHVROXWLRQRIWKHRSWLPDOFRQWUROSUREOHP  

    DFFRUGLQJ WR WKH PHWKRG RI >@ LV EDVHG RQ WKH /DJUDQJH SULQFLSOH DVVRFLDWHG ZLWK WKH H[LVWHQFH RI D VDGGOH SRLQW RI WKH /DJUDQJH IXQFWLRQDO 7KHUH DUH SUREOHPV RI WKH IRUP     IRU ZKLFK WKH /DJUDQJH IXQFWLRQDO GRHV QRW KDYH D VDGGOH SRLQW EXW VXFK SUREOHPV KDYH RSWLPDO VROXWLRQV ,Q WKLV SDSHU ZH SURSRVH RQH RI WKH PHWKRGV IRU HOLPLQDWLQJ WKLV GUDZEDFN E\ EXLOGLQJ D JHQHUDO VROXWLRQ RI WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG ZLWK WKH VXEVHTXHQW DSSOLFDWLRQRIQXPHULFDOPHWKRGVIRUVROYLQJH[WUHPDOSUREOHPV>@ 7KHSXUSRVHRIWKLVFKDSWHULVWRFUHDWHDPHWKRGIRUVROYLQJERXQGDU\YDOXH SUREOHPV RI RSWLPDO FRQWURO IRU SURFHVVHV GHVFULEHG E\ RUGLQDU\ GLIIHUHQWLDO HTXDWLRQVZLWKSKDVHDQGLQWHJUDOFRQVWUDLQWVZKLFKGLIIHUVIURPNQRZQPHWKRGV EDVHG RQ WKH /DJUDQJH SULQFLSOH DQG LV UHODWHG WR WKH H[LVWHQFH RI /DJUDQJH PXOWLSOLHUV,WLVDFRQWLQXDWLRQRIWKHUHVHDUFKRXWOLQHGLQ>@ $ UHYLHZ RI UHVHDUFK RQ RSWLPDO FRQWURO LV FRQWDLQHG LQ PRQRJUDSKV > @7KHH[LVWHQFHDQGFRQVWUXFWLRQRIDJHQHUDOVROXWLRQRIWKH)UHGKROPLQWHJUDO HTXDWLRQRIWKHILUVWNLQGZDVVWXGLHGLQ>@2SWLPDOFRQWURORIOLQHDUV\VWHPV ZLWKOLQHDUFRQVWUDLQWVLVFRQVLGHUHGLQ>@6SHFLDOFDVHVRIRSWLPDOFRQWURORI QRQOLQHDU V\VWHPV DUH JLYHQ LQ > @ 7KH FRQWUROODELOLW\ DQG VSHHG RI WKH SURFHVVHV GHVFULEHG E\ RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV DV ZHOO DV SDUWLDO GHULYDWLYHVZHUHVWXGLHGLQ>@ 7KH EDVLV RI WKH SURSRVHG PHWKRG IRU VROYLQJ D ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHP LV WKH SULQFLSOH RI LPPHUVLRQ 7KH HVVHQFH RI WKH SULQFLSOH RI LPPHUVLRQLVWKDWWKHLQLWLDOERXQGDU\SUREOHPLVUHSODFHGE\DQHTXLYDOHQWRSWLPDO FRQWURO SUREOHP ZLWK D IUHH ULJKW HQG RI WKH WUDMHFWRU\ 7KLV DSSURDFK ZDV PDGH SRVVLEOHE\ILQGLQJDJHQHUDOVROXWLRQRIDFODVVRI)UHGKROPLQWHJUDOHTXDWLRQVRI WKHILUVWNLQG7KHH[LVWHQFHRIDVROXWLRQWRDERXQGDU\YDOXHSUREOHPLVUHGXFHG WR FRQVWUXFWLQJ D PLQLPL]LQJ VHTXHQFH DQG GHWHUPLQLQJ WKH YDOXH RI WKH ORZHU ERXQGRIWKHIXQFWLRQDO 7KHFRQVWUXFWLRQRIDQDGPLVVLEOHFRQWUROLVFRQQHFWHGZLWKILQGLQJDZHDN OLPLWSRLQWRID PLQLPL]LQJVHTXHQFH 7KHFRQVWUXFWLRQRIWKHRSWLPDO VROXWLRQLV FDUULHGRXWE\VXFFHVVLYHO\QDUURZLQJWKHUDQJHRIDGPLVVLEOHFRQWUROVGHSHQGLQJ RQWKHYDOXHRIWKHIXQFWLRQDO $V IROORZV IURP /HPPD  WKH ERXQGDU\ YDOXH SUREOHP     KDV D VROXWLRQ LI DQG RQO\ LI WKH YDOXH I T  ZKHUH T u  p  v  v  x  x  d  X ± RSWLPDOFRQWUROIRUSUREOHP     ,QJHQHUDOWKHRSWLPL]DWLRQSUREOHP    FDQKDYHDQLQILQLWHVHWRI VROXWLRQV ^T ` IRU ZKLFK J ^T `  'HSHQGLQJ RQ WKH FKRLFH RI WKH LQLWLDO DSSUR[LPDWLRQ WKH PLQLPL]LQJ VHTXHQFHV   VHH 7KHRUHP   FRQYHUJH WR VRPHHOHPHQWRIWKHVHW ^T ` /HW T  X  J T  ±VRPHVROXWLRQ+HUH x x t  x x t  x  x  S  u  U  :KHUHLQ x t  t  x  G t  g j u  x  x d c j  j  m  g j u  x  x c j  j m   m   ,QWKHIRUPXODWLRQRIWKHSUREOHPWKHUHTXLUHPHQWVLPSRVHGRQWKHIXQFWLRQ f x u  t  IRU ZKLFK WKH LQLWLDO &DXFK\ SUREOHP IRU HTXDWLRQ   KDV D XQLTXH VROXWLRQ IRU DQ\ IL[HG x t x DQG IRU DQ\ IL[HG u t  U  &RQVHTXHQWO\ WKH  

GLIIHUHQWLDOHTXDWLRQ  ZLWKWKHLQLWLDOVWDWH x t x ZLWKIL[HGFRQWURO u t U  KDV WKH VLQJXODU VROXWLRQ ZKHQ t  >t  t @ 0RUHRYHU x t x  x t  t  x  G t  g j u  x  x d c j  j  m  g j u  x  x c j  j m   m   7KXV IRU HDFK RSWLPDO VROXWLRQ RI SUREOHP      WKH ERXQGDU\ YDOXHSUREOHP    KDVDXQLTXHVROXWLRQ   4XRWHGOLWHUDWXUH   3RQWUMDJLQ /6 %ROWMDQVNLM 9* *DPNUHOLG]H 59 0LVKKHQNR () 0DWKHPDWLFDOWKHRU\RIRSWLPDOSURFHVVHV±06FLHQFH±S  .DQWRURYLFK/9$NLORY*3)XQFWLRQDODQDO\VLV±06FLHQFH±S  .UDVRYVNLM117KHRU\RIPRWLRQFRQWURO±06FLHQFH±S  %HOOPDQ5'LQDPLFKHVNRHSURJUDPPLURYDQLH±0,/±S  .DOPDQ5(2QWKHJHQHUDOWKHRU\RIFRQWUROV\VWHPV3URFHHGLQJVRIWKH VW &RQJUHVV RI WKH ,QWHUQDWLRQDO )HGHUDWLRQ IRU $XWRPDWLF &RQWURO 9  $16665S  .URWRY 9) *XUPDQ 9, 0HWKRGV DQG REMHFWLYHV RI RSWLPDO FRQWURO ± 0 6FLHQFH±S  9DVLO HY )3 1XPHULFDO PHWKRGV IRU VROYLQJ H[WUHPDO SUREOHPV ± 0 6FLHQFH±S  9DVLO HY )3 0HWKRGV IRU VROYLQJ H[WUHPDO SUREOHPV ± 0 6FLHQFH  ±S  0RLVHHY 11 ,YDQLORY -X3 6WROMDURY (0 2SWLPL]DWLRQ PHWKRGV ± 0 6FLHQFH±S  $LVDJDOLHY6$&RQWUROODELOLW\RIDFHUWDLQV\VWHPRIGLIIHUHQWLDOHTXDWLRQV 'LIIHUHQWLDO(TXDWLRQV9ʋS  $LVDJDOLHY 6$ $LVDJDOLHY 66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV  'LIIHUHQWLDO (TXDWLRQV9ʋS  $LVDJDOLHY 6$ 2SWLPDO FRQWURO RI OLQHDU V\VWHPV ZLWK IL[HG HQGV RI WKH WUDMHFWRU\DQGOLPLWHGFRQWURO'LIIHUHQWLDOHTXDWLRQV9ʋS  $LVDJDOLHY 6$ &RQWUROODELOLW\ DQG RSWLPDO FRQWURO RI QRQOLQHDU V\VWHPV 1HZV5$67HFKQLFDO&\EHUQHWLFVʋS  $LVDJDOLHY 6 .DELGROGDQRYD $ 2SWLPDO VSHHG RI QRQOLQHDU V\VWHPV ZLWK FRQVWUDLQWV'LIIHUHQWLDOHTXDWLRQVDQGFRQWUROSURFHVVHVʋS  $LVDJDOLHY6$%HORJXURY$37KHFRQWUROODELOLW\DQGVSHHGRIWKHSURFHVV GHVFULEHGE\DSDUDEROLFHTXDWLRQZLWKOLPLWHGFRQWURO6LEHULDQ0DWKHPDWLFDO -RXUQDO-DQXDU\±)HEUXDU\9ʋS  $LVDJDOLHY6$7RWKHWKHRU\RIFRQWUROODELOLW\RIOLQHDUV\VWHPV$$8665 $XWRPDWLRQDQG5HPRWH&RQWUROʋS  $LVDJDOLHY 6$ .DELGROGDQRYD $$ 2Q RSWLPDO FRQWURO RI OLQHDU V\VWHPV ZLWKDOLQHDUTXDOLW\FULWHULRQDQGFRQVWUDLQWV'LIIHUHQWLDO(TXDWLRQV 9ʋS  $LVDJDOLHY 6$ 7KH JHQHUDO VROXWLRQ RI D FODVV RI LQWHJUDO HTXDWLRQV  0DWKHPDWLFDO-RXUQDO±±9ʋ    

 $LVDJDOLHY 6$ 6HYU\XJLQ , 0DQDJHDELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\DOLQHDUV\VWHPRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQV0DWKHPDWLFDO -RXUQDO±±9ʋ  S±  $LVDJDOLHY 6$ &RQVWUXFWLYH WKHRU\ RI ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHPV±$OPDW\8QLYHUVLW\±S  $LVDJDOLHY 6$ .DELGROGDQRYD $$ 2SWLPDO FRQWURO RI G\QDPLF V\VWHPV 3DOPDULXP$FDGHPLF3XEOLVKLQJ 9HUODJ*HUPDQLMD ±±S

 

ȿGXFDWLRQDOLVVXH  

$LVDJDOLHY6HULNEDL 



/(&785(6210$7+(0$7,&$/ &21752/7+(25