372 12 2MB
English Pages [236] Year 2019
$/)$5$%,.$=$.+1$7,21$/81,9(56,7_ X t ht O t x x N t > zt
J X h u 'u J X u
'J
t
'z t @ ut 'ut _ _ X t O t x x N t z t ut _ @dt t
t
³ J X X u B t \ t h ! dt ³ J
t
u
uX 'u ! dt 'z t \ t
t
t
³ >ht 'ut N t 'z t @ >ht 'ut N t 'z t @dt
t
%HFDXVH t
d 'z t \ t ! dt dt t
'z t \ t ! ³
'z t \ t t
t
t
t
³ 'zt \ t ! dt ³ 'z t \ t ! dt t
³ 'z t A t \ t ! dt t
t
³ At 'z t Bt ht \ t ! dt t
t
t
³ Bt ht \ t ! dt
³ B t \ t ht ! dt
t
t
t
³ >ht 'u t N t 'z t @ >ht 'ut N t 'z t @dt d
R
t t
t
d ³ >_ ht _ _ 'u t _ N t 'z t @ dt d ³ >_ h _ _ 'u _ t
t
c c h @dt d c h 'u
ZKHUH c
t t c c GXHWRLQHTXDOLW\ a b d a b
VXS N t c
t d t d t
HVWLPDWLRQ DQG ERXQGDU\ FRQGLWLRQV WKHQ WKH LQFUHPHQW RI WKH IXQFWLRQDO FDQEHZULWWHQDV 'J
ZKHUH
h
_ R _
'u
t
t
t
t
³ J X uX h ! dt ³ J
o ZKHQ h 'u
u
uX 'u !dt R
o
+HQFHWKHIRUPXODV DUHSURYHQ /HW¶V SURYH WKDW WKH JUDGLHQW RI WKH IXQFWLRQDO VDWLVILHV FRQGLWLRQ ,Q IDFWWKHGLIIHUHQFH J X X u J X X u >X O t x x N t z t X u @ B t \ t X u >X O t x x N t z t X u @ B t \ t X u >X X u u N t z t X X @ B t \ t X X u u
J u X u J u X u
1RUPV
>X X u u N t z t X X @
_ J X X u J X X u _d >_ X X _ _ u u _ N t _ z t X X _@ B t _ \ t X X u u _
_ J u X u J u X u _d >_ X X _ _ u u _ N t _ z t X X _@
7KHQ _ I X X u I X X u _ d >_ X X _ _ u u _ ɫ _ z t X X _ @ c _ \ t X X u u _
_ J u X u J u X u _ d >_ X X _ _ u u _ c _ z t X X _ @
ZKHUH c
VXS N t c
t d t d t
VXS B t
t d t d t
$V z t X X
t
³ )tW BW >X W X W @dW
t
WKHQDVIROORZVIURP WKHQRUP _ z t X X _d c X X
$V
L
\ t X X u u \ t X u \ tX u t
³ N t >X X u u N t z t X X @dt
t
WKHQWKHQRUP t
_ \ t X X u u _d ³ c >_ X X _ _ u u _ cc _ X X _@dt d t
d c X X
L
u u
L
WDNLQJ LQFRQVLGHUDWLRQZKHUH c c c t t )URPWKHVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ LWIROORZVWKDW t
\ t X X u u \ t X X u u ³ A W \ W X X u u dW t
7KHQ t
_\ t X X u u _d_\ t X X u u _ ³ A W \ W X X u u dW t
)URPKHUHDSSO\LQJWKH*URQZDOOOHPPDZHREWDLQ
_\ tX X u u _d_\ t X X u u _ eO tt d c X X
XVLQJ ZKHUH O
VXS A t c
t dt dt
L
u u
L
c e O t t
)URP ZLWKFRQVLGHUDWLRQWKDW ZHREWDLQ
>
@
J X X u J X X u d _ X X _ _ u u _ c c X X
c c X X
L
u u
L L
>
@
J u X u J u X u d _ X X _ _ u u _ c c X X
7KHQ J X X u J X X u
L
t
³ JX X u JX X u
t
c c t t X X
L
L
t
³J
u
>
L
u u
dt d X X
c c t t X X
d c X X J u X u J u X u
L
L
u u
>
X u J u X u dt d X X
t
c c t t X X
L
d c X X
L
u u
L
u u
L
L
L
L
@
d
u u
L
@
L
ZKHUH ɫ ɫ ɫ t t c c t t c c c t t )URP ZHREWDLQ
J X u J X u
L
t
t
³ _ J X u J X u _ dt t
³ >_ JX X u JX X u _
t
_ J u X u J u X u _ dt d c c t t X X u u
X X L u u U
+HQFHZHREWDLQWKHHVWLPDWLRQ ZKHUH l c c t t 7KHWKHRUHPLV SURYHG %DVHG RQ WKH IRUPXODV ZH FRQVWUXFW VHTXHQFHV ^X n ` L I R m ^u n ` U DFFRUGLQJWRWKHIROORZLQJDOJRULWKP X n X n D n JX X n un un PU >un D n J u X n un @ n ZKHUH H D n d H
Dn
H ! H ! n l H
ZKHUH l l
,Q SDUWLFXODU ZKHQ H
l ZH REWDLQ
const ! /LSVFKLW]¶VFRQVWDQWIURP
$V IROORZV IURP 7KHRUHP WKH IXQFWLRQDO J X u C L I R m u U LH J X u FRQWLQXRXVO\ )UHFKHW GLIIHUHQWLDWLDEOH E\ X u DQG WKH JUDGLHQW RI WKH IXQFWLRQDOVDWLVILHVWKH/LSVFKLW]FRQGLWLRQ /HPPDLet U be bounded convex closed set in L I R m Then: functional J X u C L I R m u U from with conditions is convex functional J X u C L I R m u U reaches the lower bound on the set L I R m u U 3URRI/HWXVGHQRWH Im N t · § Im ¨ ¸ F X u z t z _ X O t x x N t z t u _ q ¨ I m Im N t ¸q ¨ N t N t N t N t ¸ © ¹ O t x x O t x x O t x x N t q O t x x O t x x
ZKHUH q X u z t ,WLVHDV\WRPDNHVXUHWKDW Im N t · § Im ¨ ¸ N t ¸ t t t I ¨ I m Im ¨ N t N t N t N t ¸ © ¹ ,WIROORZVWKDWWKHIXQFWLRQ F q t LVDFRQYH[IXQFWLRQE\ q LH w F wq
F Dq D q t d DF q t D F q t q q R mn D D >@
1RWHWKDWIRUDQ\ X L I R m X L I R m IRUDOO D D >@ WKHVROXWLRQRI WKHGLIIHUHQWLDOHTXDWLRQ KDVWKHSURSHUW\ z t DX D X Dz t X D z t X 7KHQ t
³ F Dq
J DX D X Du D u
D q t dt d
t
d DJ X u D J X u
X X L I R m u u U
GXHWRUHODWLRQV ,WIROORZVWKDWWKHIXQFWLRQDO XQGHUFRQGLWLRQV LVFRQYH[ /HW X L d U U ! TXLWH D ODUJH QXPEHU 7KHQ WKH VHW
LU I R m ^X L I R m X d U ` ERXQGHG FRQYH[ FORVHG VHW 7KHQ WKH VHW
X
LU I R m u U is ERXQGHG FRQYH[ FORVHG VHW LQ D UHIOH[LYH %DQDFK VSDFH
L I R m u L I R m 7KHUHIRUHWKHVHW X LVZHDNO\FRPSDFW&RQYH[IXQFWLRQDO J X u C X LV ZHDNO\ ORZHU VHPLFRQWLQXRXV RQ D FRQYH[ VHW X 7KHQ
H
DFFRUGLQJ WR WKH :HLHUVWUDVV WKHRUHP WKDW D ZHDNO\ ORZHU VHPLFRQWLQXRXV IXQFWLRQDO RQ D ZHDNO\ ELFRPSDFW VHW UHDFKHV WKH ORZHU ERXQG ZH KDYH J X u UHDFKHVWKHORZHUERXQGRQWKHVHW X /HPPDLVSURYHG 7KHRUHPLet the matrix W t t ! set U bounded, convex and closed, sequences ^X n ` L I R m ^u n ` U are determined by the formula (1.47). Then: Sequences ^X n ` ^u n ` are minimizing, i.e. OLP J X n u n J LQI J X u X LU I R m u U n of X u X Sequences ^X n `^u n ` weakly converge to the set X where weakly weakly X ^X u X J X u J ` Xn oX un o u when n o f The following estimate of the rate of convergence is true I X n X n I X u d
m m n
const ! n
In order for problem 2 to have a solution, it is necessary and sufficient that the value J X u J 3URRI)URP IROORZVWKDW X n X n D n JX X n X X n ! L X X L I R m
un un D n J u un u un ! L t u u U
§X ·
§X ·
§X
·
J
8VLQJ QRWDWLRQV T ¨¨ ¸¸ T n ¨¨ n ¸¸ T n ¨¨ n ¸¸ J X n un ©u¹ © un ¹ © un ¹ FDQEHZULWWHQDV J T n T T n ! L t
Dn
X
X n J u un UHODWLRQV
T n T n T T n ! L T T X
6LQFHWKHIXQFWLRQDO J X u C X WKHQ J Z J P t J Z Z P !
l P Z P Z X
+HQFHLQSDUWLFXODUZKHQ Z T n P T n ZHJHW J T n J T n t J T n T n T n !
l T n T n
T n T n X
)URP LWIROORZV § l· J T n J T n t ¨¨ ¸¸ T n T n t H T n T n D © n ¹ l H l ZKHUH t t H Dn Dn
)URP LQHTXDOLW\ LW IROORZV WKDW WKH QXPHULFDO VHTXHQFH ^J T n ` ^J X n un ` VWULFWO\ GHFUHDVHV GXH WR WKH OLPLWHG YDOXHV RI WKH IXQFWLRQDO J uX t FRQYHUJHV 7KHUHIRUH J T n J T n o ZKHQ n o f 7KHQ IURP
SDVVLQJWRWKHOLPLWDV n o f ZHJHW T n T n o ZKHQ n o f 1RWH WKDW WKH IXQFWLRQDO J uX LV FRQYH[ VHW M T ^T X J T d J T ` ERXQGHGFRQYH[DQGFORVHG $VIROORZVIURP/HPPDDQGWKHLQHTXDOLW\ IXQFWLRQDO J T UHDFKHVWKHORZHUERXQGRQWKHVHW M u VHTXHQFH ^T n ` M u /HWXVSURYHWKDWWKHVHTXHQFH ^T n ` ^X n u n ` LVPLQLPL]LQJ$V J T C X ± FRQYH[ IXQFWLRQDO WKHQ J Z J P d J Z Z P Z P M T +HQFH ZKHQ Z T n P T X M T ZHREWDLQ d an
J T n J T d J T n T n T ! J T n T n T n !
J T n T n T !d J T n T n T n ! d J T n
Dn
Dn
T n T n T T n !d
T T n T n T n d c T n T n
6LQFHWKHSURYHQDERYH T n T n
ZKHUH D GLDPHWHURIVHW M T H o ZKHQ n o f WKHQ OLP J T n J J T 7KLV
GXHWRLQHTXDOLW\ T T n d D
Dn
d
n of
PHDQVWKDWWKHVHTXHQFH ^T n ` M T LVPLQLPL]LQJ
$V M T LVZHDNO\FRPSDFWVHW ^T n ` M u WKHUHIRUHDOOZHDNOLPLWSRLQWV ^T n ` EHORQJWRWKHVHW X M u J T n J T !
)URP LQHTXDOLWLHV LW IROORZV WKDW a n an an t
H
c
an n
VHTXHQFHWKDW an d
+HQFH E\ WKH ZHOONQRZQ OHPPD RQ QXPHULFDO
A n ZKHUH A n
c
H
m ZHREWDLQWKHWKLUGVWDWHPHQWRI
WKHWKHRUHP 7KH ODVW VWDWHPHQW RI WKH WKHRUHP IROORZV IURP ,Q IDFW LI ZH J T J X u WKHQ u t X t O t x x N t z t X t I 7KHWKHRUHPLVSURYHG 3RVLWLRQ FRQWURO %DVHG RQ WKH IRXQG SURJUDP FRQWURO ZH FDQ FRQVWUXFWSRVLWLRQFRQWURO 7KHRUHP Let the conditions of Theorems 5, 6 be fulfilled, and let, besides: x Rx non-singular matrix 6 t t I , is determined by the formula (1.23), the value J T
J X u
X t
H t x *t
t
³ )t W BW H W dW t I
t
Then position control u x t K t x t where u t t I is determined by the formula (1.55), the function x t
z t X O t x x N t z t X t I
x t u
3RLQWSURMHFWLRQRQWKHVHW/HW X L I R m U t FRQYH[FORVHGVHWLQ L I R m Z PU >X @ SURMHFWLRQRISRLQW X RQWKHVHW U %HORZDUHWKHIRUPXODVE\ ZKLFK WKH SURMHFWLRQV RI WKH SRLQW X DUH GHWHUPLQHG RQ GLIIHUHQW VHWV U 2IWHQ HQFRXQWHUHGLQSUDFWLFH 7KHVHW U t ^u L I R m D i t d u i t d E i t ɩɜ t I ` ZKHUH D t D t D m t E t E t E m t t I ± VSHFLILHG FRQWLQXRXVIXQFWLRQV7KHQ D i t if Xi t d D i t ° Zi t PU >X @ ®Xi t if D i t d Xi t d Ei t ° E t if X t ! E t i i ¯ i
7KHVHW U ^u L I R m u u
L
L
t
³ _ X t _
dt
t
d R ` 7KHQ
X u R if X u L ! R °u X u L PU >X @ ® °X if X u L d R ¯
Z
ZKHUH X
i m t I
7KHVHW
^u L I R
U
m
ZKHUH c ct L I R m c u ! L
t
7KHQ
ZKHUH c
PU >X @ X J cX ! L
t
³ _ ct _
³c
t u t dt J R JLYHQ QXPEHU
t
>
Z
J `
c u ! L
@
c c
dt ct L I R m JLYHQYHFWRUIXQFWLRQ
t
7KH VHW U ^u L I R m Au b` ZKHUH A হ L I R m o L I R m OLQHDUERXQGHGRSHUDWRU b L I R m JLYHQYHFWRUIXQFWLRQ7KHQ Z PU >X @ X A AA AX b
ZKHUH A DGMRLQWRSHUDWRURSHUDWRU AA KDVDUHYHUVHRSHUDWRU 2SWLPDOSHUIRUPDQFH&RQVLGHUWKHSUREOHP SURYLGHGWKDWWKH ILQDOPRPHQWRIWLPH t LVQRWIL[HG,WLVQHFHVVDU\WRILQGWKHORZHVWYDOXH t t IRUZKLFKH[LVWVDFRQWURO u t t >t t @ u t U t ZKLFKWUDQVIHUVWKHWUDMHFWRU\ RIWKHV\VWHP RXWJRLQJIURPDJLYHQVWDUWLQJSRLQW x R n DWLQLWLDOWLPH t WRDJLYHQSRLQW x xt IRUDSHULRGRIWLPH t t t ! t 7KXV WKH VROXWLRQ RI WKH RSWLPDO SHUIRUPDQFH SUREOHP LV D SDLU t u t t >t t @ ZKHUH u t U t ±VROXWLRQRIWKHFRQWUROODELOLW\SUREOHP FRUUHVSRQGLQJWRWKHVPDOOHVWYDOXH t RIHQGWLPH t 6XSSRVH WKDW FRQWURO u t U t >t t @ t ! t LV IRXQG IURP WKH VROXWLRQ RI WKHFRQWUROODELOLW\SUREOHP ZKHUH t t NQRZQTXDQWLWLHV /HWXVFKRRVH t t $FFRUGLQJWRWKHGHVFULEHGDOJRULWKPE\VROYLQJWKH RSWLPL]DWLRQ SUREOHP ZH ZLOO ILQG D SDLU X
u
L I R m u U t >t t @ ,I IRU WKLV SDLU X
u
YDOXH J X
u
WKHQ ZH FKRRVH YDOXH t t t t DQGVROYHWKHSUREOHP ZLWKDIL[HG t t ,QFDVH WKHYDOXH J X
u
! SUREOHP QHHGWREHVROYHGIRUYDOXH t t DQGVRRQ ([DPSOH0LQLPL]HIXQFWLRQDO
t
J u t
³ dt
t o LQI
XQGHUFRQGLWLRQV
x x u t I > t @ x x x t x t x
u t U
^u L I R d ut d
ae t I `
)RUWKLVH[DPSOH A
§ · ¨¨ ¸¸ B © ¹
§ · ¨¨ ¸¸ x © ¹
§ x · ¨¨ x ¸¸ x © ¹
§ · ¨¨ ¸¸ x © ¹
§ · ¨¨ ¸¸ © ¹
,QWKHYHFWRUIRUPWKHRSWLPDOSHUIRUPDQFHSUREOHPZLOOEHZULWWHQDV J u t t o LQI x A x B u x x xt x t I u t U 0DWULFHV § t · ¸¸ T t ¨¨ © ¹
§ t · At ¸¸ e ¨¨ © ¹
eAt
e A t Ɏt W
e A t W
7KHOLQHDUFRQWUROOHGV\VWHPKDVWKHIRUP A y B w t y
y
x t I w L I R
x y t
/HWFDOFXODWHWKHIROORZLQJYHFWRUVDQGPDWULFHV a
t § t t ·
§ · ¸ ¨¨ ¸¸ T t ³ e A t B B e A t dt ¨¨ t ¸¹ ©¹ © t § t t · t ¸ / t B Ɏ t T t a T t ¨¨ ¸ t t t t ¹ © § t t · N t B Ɏ t T t Ɏ t ¨¨ ¸¸ t t t t ¹ ©
Ɏ t x x
/ t
x
§ t t t t · ¨ ¸ t ¨ ¸ ¨ t t t ¸ N t ¨ ¸ t © ¹
§ t t t ¨ t ¨ ¨ t t t ¨ t ©
t t t · ¸ t ¸ t t t ¸ ¸ t ¹
7KHQ w t
y t
§ t · § t · § t · v t ¨¨ ¸¸ ¨¨ ¸¸ z t v ¨¨ ¸¸ z t v t ¹ © t t ¹ © t © t t ¹ § t t t · t t t t § y t · ¸ z t v ¨¨ ¸¸ y t z t ¨¨ ¸ t t © y t ¹ © ¹
§ t t t · ¸¸ z t v y t ¨¨ t © ¹
t t t § t t t · ¸¸ z t v ¨¨ t t © ¹ § t t t · ¸¸ z t v ¨¨ t © ¹
z t
7KHSUREOHPRIRSWLPDOFRQWUROKDVDIRUP J T
t
³ F qt t dt
t
³ w t ut dt
t
§ t · ¸ t t ¸¹
³ v t ¨¨©
§ t · § t · ¨¨ ¸¸ z t v ¨¨ ¸¸ z t v ut dt o LQI t t t t ¹ ¹ © © z A z B v t z v L I R ut U ZKHUH T u v q zt zt u v
)XQFWLRQDOJUDGLHQW/HW¶VFDOFXODWHSDUWLDOGHULYDWLYHV w F q t wu
w u
w F q t w v
w u
w F q t wz
§ t · w F q t § t · w u ¨¨ ¸¸ w u ¨¨ ¸¸ t I t t z t w ¹ © t t ¹ © )XQFWLRQDOJUDGLHQW JcT Jc T Jc T H ZKHUH w F q t t w F q t t Jc T Jc T B \ t wu w v w F q t w z t
ZKHUH z t z t v t I ± VROXWLRQ RI GLIIHUHQWLDO HTXDWLRQV DQG IXQFWLRQ \ t t I VROXWLRQRIWKHDGMRLQWV\VWHP \
A \ \ t
t
w F qt t dt w z t
³
§\ t · ¨¨ ¸¸ ©\ t ¹
PU >un D n J c T n @ vn vn D n J c T n n un vn X D n d H ! l ±/LSVFKLW]FRQVWDQW l H
ZKHUH \ t
t
w F q t t dt \ t w z t
³
t
w F qt t dt w z t
³
0LQLPL]LQJVHTXHQFHV/HW¶VFRQVWUXFWVHTXHQFHV un
ZKHUH T n
&RQVWUXFWLQJDQRSWLPDOVROXWLRQ $/HW¶VFKRRVHDYDOXH t :HEXLOGDQDGPLVVLEOHFRQWUROE\FRQVWUXFWLQJD PLQLPL]LQJ VHTXHQFH XVLQJ )RU WKLV H[DPSOH ZKHQ t RSWLPDO VROXWLRQRIWKHSUREOHP LV ° if d t ° ° dt u t v t ® if ° ° ° if d t d ¯ 9DOXH J T T u t v t t I > @
w t
v t
%/HW¶VFKRRVH t y )RUYDOXH t WKHRSWLPDOVROXWLRQRIWKHSUREOHP ZLOOEH ° if d t ° ° u
t v
t ® if dt ° ° ° if d t d ¯ 9DOXH J T
T
u
t v
t t I > @
w t
v
t
&/HW¶V FKRRVH t y )RU YDOXH t t WKH RSWLPDO VROXWLRQ RI WKH SUREOHP ZLOOEH if d t w t ® ¯ if d t u
t v
t t I > @
u
t v
t
9DOXH J T
T
t
v
t
2SWLPDOWUDMHFWRU\IRUWKHSUREOHP x t
y t
t °° d t ® ° t t d t d ¯°
x t
y t
t d t ® ¯t d t d
7KHVHUHVXOWVFRLQFLGHZLWKWKHUHVXOWVREWDLQHGXVLQJ/63RQWU\DJLQ¶VPD[LPXP SULQFLSOH Lecture 4.&RQWUROODELOLW\RIOLQHDUV\VWHPVZLWKERXQGDU\FRQGLWLRQV DQGOLPLWHGFRQWURO &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\SUREOHP)LQGFRQWURO u t U t ^u L I R m u t V t R m ae t I ` ZKLFKWUDQVIHUVWKHWUDMHFWRU\RIWKHV\VWHP x At x Bt ut t I >t t @ IURP LQLWLDO SRLQW x x xt S R n LH x
xt S R n DW WKH PRPHQW RI WLPH t WR WKH SRLQW xt x
xt S u S R n
ZKHUH t t DUHIL[HG t ! t 7KHVROXWLRQRIWKLVSUREOHPFDQEHUHGXFHGWRWKHVROXWLRQRIWKHIROORZLQJ RSWLPL]DWLRQSUREOHP t
J v u x x
³ _ vt B t ) t t W
t t x B t ) t t u
t
u W t t )t t x N t z t v u t _ dt o LQI
ZLWKFRQGLWLRQV z
At z Bt vt z t
v L I R m I
u t U t x S x S
>t t @
ZKHUH S S JLYHQERXQGHGFRQYH[FORVHGVHWV 3URJUDPFRQWURO1RWHWKDW YDOXH J v u x x t IRUDQ\ v u x x L I R m u U u S u S X 7KHUH IRUHWKHIXQFWLRQDO J v u x x ERXQGHGEHORZ 3UREOHPKDVDVROXWLRQLIDQGRQO\LIWKHYDOXH J v u x x ZKHUH v u x x VROXWLRQRIWKHRSWLPL]DWLRQSUREOHP ± ,I J v u x x WKHQFRQWURO u t v t P t x P t x N t z t v t I ZKHUH P t B t ) t t W t t P t B t ) t t W t t ) t t ,QFDVH J v u x x ! SUREOHP ± KDVQRVROXWLRQ
7KHRUHP Let the matrix W t t ! . Then the functional (1.63) under the conditions (1.64), (1.65) is continuously Frechet differentiable, the gradient of the functional J cv u x x J vc J uc J xc J cx L I R m u L I R m u R n u R n H at any point T v u x x X is calculated by the formula J vc T >vt P t x P t x N t z t v u t @ B t \ t L I R m J uc T >vt P t x P t x N t z t v u t @ L I R m
J xc T
t
³ P t >vt P t x
P t x N t z t v u t @ dt L I R m
P t x N t z t v u t @ dt R n
t
J xc T
t
³ P t >vt P t x
t
where z t v t I , – solution of the differential equation (1.64), and the function \ t t I – solution of the adjoint system \
A t \ \ t
t
³ N t >v t P t x P t x N t z t v ut @ dt t
In addition, the gradient J cT H satisfies Lipschitz condition J cT J cT d l T T
where T
T T
T T X
L I R m u U u S u S H
T
v v u u _ x x _ _ x x _
v u x x
v u x x X
3URRI$VLQWKHSURRIRI7KHRUHPWKHLQFUHPHQWRIWKHIXQFWLRQDO FDQEHUHSUHVHQWHGDV 'J
J v h u 'u x 'x x 'x J v u x x t
³
t
J T 'T J T
t
J vc T h dt ³ J uc T 'u dt J xc T 'x J xc T 'x R t
_ R _ o ɩɪɢ __ 'T __o __ 'T __ __ h __ __ 'u __ _ 'x _ _ 'x _ __ 'T __ +HQFH WKH UHODWLRQV ZKHUH \ t t I ± VROXWLRQ RI WKH DGMRLQW
V\VWHP )RU _ 'z t _ HVWLPDWH LV WUXH HVWLPDWH IRU _ z t h _ FDQ EH REWDLQHGIURP ZKHQ h v v 'LIIHUHQFH J cT J cT J vc T J vc T J uc T J uc T J xc T J xc T J xc T J xc T ZKHUH
J vc T J vc T >v v u u P t x x P t x x N t z t v v @ B t \ t v v u u x x x x J uc T J uc T >v v u u P t x x P t x x N t z t v v @
t
J xc T J xc T ³ P t >v v u u P t x x t
P t x x N t z t v v @
t
J xc T J xc T ³ P t >v v u u P t x x t
P t x x N t z t v v @
ZKHUH T v u x x T v u x x X 1RUPV
_ J vc T J vc T _ >_ v v _ _ u u _ __ P t __ _ x x _ __ P t __ _ x x _
__ N t __ _ z t v v _@ __ B t __ _\ t T T _ _ J uc T J uc T _ d >_ v v _ _ u u _ __ P t __ _ x x _ __ P t __ _ x x _ __ N t __ _ z t v v _@
t
_ J xc T J xc T _ d ³ __ P t __ >_ v v _ _ u u _ __ P t __ _ x x _
t
__ P t __ _ x x _ __ N t __ _ z t v v _@ t
_ J xc T J xc T _ d ³ __ P t __ >_ v v _ _ u u _ __ P t __ _ x x _
t
__ P t __ _ x x _ __ N t __ _ z t v v _@
7KHQ _ J vc T J vc T _ d >_ v v _ _ u u _ @ __ P t __ _ x x _ __ P t __ _ x x _ __ N t __ _ z t v v _ __ B t __ _\ t T T _ _ J uc T J uc T _ d >_ v v _ _ u u _ @ __ P t __ _ x x _
__ P t __ _ x x _ __ N t __ _ z t v v _
'HQRWHE\ C
VXS __ P t __ C
t dt dt
VXS __ P t __ PD[ C C CC
t dt dt
C
7KHQ t
_ J xc T J xc T _ d CC ³ >_ v v _ _ u u _ _ x x _ t
_ x x _ __ v v __L @dt d CC t t __ v v __L __ u u __L CC t t _ x x _ _ x x _ CC t t __ v v __L
_ J xc T J xc T _ d CC t t __ v v __L __ u u __L CC t t _ x x _ _ x x _ CC t t __ v v __L
7KHUHIRUHWKHUHDUHFRQVWDQWV C C VXFKWKDW _ J xc T J xc T _ d C __ v v __L __ u u __L _ x x _ _ x x _ _ J xc T J xc T _ d C __ v v __ __ u u __ _ x x _ _ x x _
L
L
)URP ZHJHW _ J vc T J vc T _ d C __ v v __L __ u u __L _ x x _ _ x x _ _ J uc T J uc T _ d C __ v v __L __ u u __L _ x x _ _ x x _
ZKHUHVHH _ \ t T T _ d m __ v v __L __ u u __L _ x x _ _ x x _
)URP LWIROORZV __ J cT J cT __L
t
t
t
t
³ _ J cT J cT _ dt
³ >_ J c T J c T _ v
v
_ J uc T J uc T _ _ J xc T J xc T _ _ J xc T J xc T _ @ dt d
d C C C C t t __ v v __ __ u u __ _ x x _ _ x x _ L
L
C C C C t t 7KH +HQFH IROORZV WKH HVWLPDWH ZKHUH l WKHRUHPLVSURYHG %DVHGRQUHODWLRQV ± FRQVWUXFWVHTXHQFHV ^T ` ^vn `^un `^x n `^xn ` X L I R m u U u S u S DFFRUGLQJWRWKHIROORZLQJUXOHV vn x n
ZKHUH H D n d Dn
H
vn D n J nc T n
un
PS > x n D n J xc T n @ xn H ! H ! n l H
Pu >un D n J uc T n @ PS > xn D n J xc T n @ n
,Q SDUWLFXODU ZKHQ H
l ZH KDYH
ZKHUH l ! ±/LSVFKLW]FRQVWDQWIURP l
/HPPDLet S S – bounded convex closed sets in R n U – bounded convex closed set in L I R m Then: functional J T C X under conditions (1.64), (1.65) is convex. functional J T C X reaches the lower bound on the set X L I R m u U u S u S 3URRI/HW F v u x x z t t _ v P t x P t x N t z t u _ Im P t P t N t · § Im ¨ ¸ I I P t P t N t ¸ ¨ m m q ¨ P t P t P t P t P t P t P t N t ¸ q ¨ ¸
¨ P t P t P t P t P t P t P t N t ¸ ¨ N t N t N t P t N t P t N t N t ¸ © ¹
ZKHUH q v u x x z t ,W IROORZV WKDW w F wq t t t I 7KHUHIRUH IXQFWLRQ F q t LVDFRQYH[IXQFWLRQRI q )XUWKHUUHSHDWLQJWKHSURRIRI/HPPD ZHREWDLQWKHDVVHUWLRQVRIWKHOHPPD/HPPDSURYHG 7KHRUHPLet the matrix W t t ! U S S – bounded convex closed sets, sequences ^vn ` ^u n ` ^x n `^xn ` are determined by formulas (1.79). Then: is minimizing, i.e. sequence ^T n ` ^vn ` ^u n ` ^x n ` ^xn ` X OLP J T n
nof
J
LQI J T
T X
sequence ^T n ` X X
^T
weakly converges to the set
v u x x X J T
xn o x when n o f
J `
weakly
X X , where weakly
vn o v un o u x n o x
the following estimation of the rate of convergence is true J T n J d
d n
d
const
n
in order for problem 3 to have a solution, it is necessary and sufficient that the value J T n J T X X 3URRI$VLQWKHFDVHRIWKHSURRIRI7KHRUHPIURP ZHJHW vn vn D n J vc T n v vn ! L v v L I R m un un D n J uc T n u un ! L t u u U x n x n D n J xc T n x x n ! R t x x S xn xn D n J xc T n x xn ! R t x x S )URPLQHTXDOLWLHV LWIROORZV
n
n
§ l · ¸¸ __ T n T n __ t H __ T n T n __ J T n J T n t ¨¨ © Dn ¹ 6R J T n J T n o ZKHQ n o f 7KHQ __ T n T n __o ZKHQ n o f )URPWKH
FRQYH[LW\RIWKHIXQFWLRQDO XQGHUWKHFRQGLWLRQV ZHREWDLQ d D n J T n J T d r __ T n T n __ r const ! )URP LWIROORZVWKDWWKHVHTXHQFH ^T n ` X LVPLQLPL]LQJ,WLV HDV\ WR PDNH VXUH WKDW WKH VHW M T ^T X J T d J T ` ZHDNO\ FRPSDFW weakly
^T n ` M T 7KHQ T n o T ZKHQ n o f
)LQDOO\IURP ZHFDQJHWWKHHVWLPDWH an d
d 7KHODVWVWDWHPHQW n
IROORZVIURP J T t T T X ,QIDFWLI J T WKHQ v t P t x P t x N t z t v t I
u t
3RVLWLRQ FRQWURO 8VLQJ WKH NQRZQ SURJUDP FRQWURO ZH FDQ ILQG SRVLWLRQDOFRQWUROIRUWKHSUREOHP 7KHRUHP Let the conditions of Theorems 8, 9 be fulfilled, and, moreover, let: x Rx , non-singular matrix 6t t I , is determined by the formula (1.23),
the value J T , v t H
t x *t
t
³ )t W BW H
W dW t I . Then position
t
control u x t K t x t , where u t t I – is determined by the formula (1.86), the function x t x t u z t v O t x x N t z t v t I
3RLQWSURMHFWLRQRQWKHVHW/HWWKHSRLQW y R n SRLQWV w PS > y @ w PS > y @ ±SURMHFWLRQRISRLQW y RQVHWV S S UHVSHFWLYHO\ S ^ x x R n Cx Dx b` S S u S ZKHUHDUHWKHPDWUL[ D C D RI s u n RUGHU/HWWKHSRLQW y R n 7KHQ w w w PS > y @
w w
PS > y @ ^> y D D D D y b @i i n`
PS > y @ ^> y D D D D y b @i i
n n`
S ^x R n Ex c` w PS > y @ y E EE Ey c y y R n
S ^x R n Fx
d ` w
PS > y @
y F FF Fy d y y R n
S ^x R n D i d xi d Ei i n` y R n w PS > y@ w w n
wi
D i LIyi Įi ° ® E i LIyi ! ȕi ° y LID d y d E i i i ¯ i
S ^x R n D i d xi d Ei i n` y R n w wi
w
PS > y @ w wn
D i LI yi Įi ° i n ® Ei LI yi ! ȕi ° y LI D d y d E i i i ¯ i
n S ^x R _ x x _ d r `
w
i n
S
^x R n _ x x _ d R `
y x r LI _ y x _! r ° x _ y x _ PS > y @ ® ° y LI _ y x _d r ¯ y x R LI _ y x _! R ° x _ y x _ PS > y @ ® ° y LI _ _ y x d R ¯
2SWLPDO SHUIRUPDQFH 7R VROYH WKH SUREOHP RI RSWLPDO SHUIRUPDQFH LW LV QHFHVVDU\ WR ILQG WKH VPDOOHVW YDOXH t XQGHU ZKLFK WKHUH LV D FRQWURO IRU WKH SUREOHP ± /HW D VROXWLRQ WR WKH SUREOHP RI FRQWUROODELOLW\ EH IRXQG IRU VRPHVHOHFWHGYDOXH t 'HWHUPLQHWKHYDOXHV t ! t ! t ZKHUH t t DFFRUGLQJWRWKHIROORZLQJ DOJRULWKP &KRRVH YDOXH t ! t $FFRUGLQJ WR WKH DOJRULWKP RI VROYLQJ WKH RSWLPL]DWLRQSUREOHPSURSRVHGDERYHZHILQGWKHVHW v
t u
t x x t >t t @ +HUHDUHWKHSRVVLEOHFDVHV YDOXH J v
u
x x YDOXH J v
u
x x ! ,QWKHILUVWFDVHFKRRVHWKHYDOXH t t LQWKHVHFRQGFDVH t t DQGVRRQ Lecture 5.&RQWUROODELOLW\RIOLQHDUV\VWHPVZLWKSKDVHFRQVWUDLQWV 6HPLQDUOHVVRQ &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\SUREOHP)LQGFRQWURO u t U t ^u L I R m u t V t R m DH t I `
ZKLFKWUDQVIHUVWKHWUDMHFWRU\RIWKHV\VWHP x
At x B t u t I
RXWJRLQJIURPWKHVWDUWLQJSRLQW x SRLQW x xt S R n t ! t LH
>t t @
xt S R DWWKHPRPHQWRIWLPH t WRWKH n
VROXWLRQ RI WKH V\VWHP IXQFWLRQ xt t x u x S x xt S LVIURPWKHVHW G t R n LH xt t x u G t G t ^x R n Z t d Lt x l t d M t t I ` 7KHVROXWLRQRIWKHSUREOHP FDQEHUHGXFHGWRWKHVROXWLRQRIWKH IROORZLQJRSWLPL]DWLRQSUREOHP x
LQ
WKLV
FDVH
xt x
xt S u S
S R n
WKH
t
J v u x x p
³ >_ vt P t x
P t x N t z t v u t _
t
_ pt Lt xt l t _ @ dt o LQI
XQGHUFRQGLWLRQV z At z Bt vt z t v L I R m u t U t x S x S
ZKHUH Lt JLYHQPDWUL[ZLWKSLHFHZLVHFRQWLQXRXVHOHPHQWVRIRUGHU s u n l t NQRZQ YHFWRU IXQFWLRQ s u ZLWK SLHFHZLVH FRQWLQXRXV HOHPHQWV Z t Z t Zs t M t M t M s t t I JLYHQFRQWLQXRXVYHFWRUIXQFWLRQ $VIROORZVIURP7KHRUHPWKHIXQFWLRQVHH xt xt t x u z t v Q t x Q t x N t z t v t I ZKHUH Q t ) t t W t t W t t Q t ) t t W t t W t t ) t t :HLQWURGXFHWKHQRWDWLRQ T v u x x p H L I R m u L I R m u R n u R n u L I R s X L I R m u U u S u S u : H 1RWLFHWKDW YDOXH J T t T T X SUREOHPKDVDVROXWLRQLIDQGRQO\LIWKHYDOXH J T ZKHUH T X VROXWLRQRIRSWLPL]DWLRQSUREOHP ± LI J T WKHQ p t :t ^ p L I R s Z t d p t d M t t I `
u t x t
v t P t x P t x N t z t v t I
z t v Q t x Q t x N t z t v t I L t x t l t Z t d p t d M t t I v t u t x x p t X J T LQI J T T X
x t G t p t
ZKHUH T t
3URJUDP FRQWURO 1RWH WKDW LI ^T n ` X PLQLPL]LQJ VHTXHQFH IRU ZKLFK OLP I T n I LQI I T WKHQSUREOHPKDVDVROXWLRQ:KHQ I ! SUREOHP n of
T X
GRHVQRWKDYHDVROXWLRQ$VIROORZVIURPIRUPXOD WKHODVWWHUPIURP LV p t L t x t l t p t L t > z t X Q t x Q t x N t z t X @ l t 7KHRUHP Let the matrix W t t ! Then the functional (1.91) under the conditions (1.92)-(1.94) is continuously Frechet differentiable, the gradient of the functional
I T
I X T I u T I x T I x T I U T H
at any point T X calculated by the formula I X T
>X t P t x P t x N t z t X u t @ B t \ t L I R m
I u T
>X t P t x P t x N t z t X u t @ L I R m
t
³ ^ P t >X t P t x
I x T
P t x N t z t X u t @
t
Q t L t > p t Lt > z t X Q t x Q t x N t z t X @ t
³ ^ P t X t > P t P t Q t L t Lt Q t @x
l t @`dt
t
> P t P t Q t L t Lt Q t @x > P t N t Q t L t Lt N t @z t X Q t L t Lt z t X P t u t Q t L t l t Q t L t pt `dt R n I x T
t
³ ^ P X t > P t P t Q t L t Lt Q t @x
> P t P t
t
Q t L t Lt Q t @ x > P t N t Q t L t Lt N t @z t X
Q t L t Lt z t X P t ut Q t L t l t Q t L t U t `dt R
I p T
n
^ pt Lt > z t X Q t x Q t x N t z t X @ l t ` L I R s
where z t X t I solution of the differential equation (1.92), and the function \ t t I solution of the adjoint system \
A t \ L t ^ pt Lt > z t X Q t x Q t x N t z t X @ l t ` t
\ t ³ ^ N t >X t P t x P t x N t z t X u t @ N t L t > pt
t
Lt > z t X Q t x Q t x N t z t X @ l t @`dt
In addition, the gradient I T H satisfies Lipschitz condition I T I T d l T T T T X
3URRI /HW T t X t u t x x pt X T t 'T t >X t ht u t 'u t x 'x x 'x p t 'U t @ X IXQFWLRQ F q t
X t P t x P t x N t z t X u t
ZKHUH 'qt ht 'u t 'x 'x pt 'U t z t X 'z t X z t X 'z t $VIROORZVIURP WKHIXQFWLRQ F qt t FDQEHUHSUHVHQWHGDV F q t t q t Q t q t q t a t bt t I
U t Lt > z t X Q t x Q t x N t z t X @ l t
ZKHUH q X t u t x x U t z t X z t T t z t X z t X 7KHQWKHLQFUHPHQWRIWKHIXQFWLRQDO 'I
t
t
t
t
³ F qt 'qt t dt ³ F qt t dt
,WLVHDV\WRYHULI\WKDW IX T I x T
wF q t B t \ t I u T wX t
wF qt t ³t wx dt
I p T
wF q t I x T wu
wF q t wp
q
t
wF q t dt wx t
³
qt
$VIROORZVIURP SDUWLDOGHULYDWLYHV F q t VDWLVI\/LSVFKLW]FRQGLWLRQV wF q 'q t wF q t d L 'q wX wX
wF q 'q t wF q t d L 'q wu wu
wF q 'q t wF q t d L 'q wx wx
wF q 'q t wF q t d L 'q wx wx
wF q 'q t wF q t d L 'q wp wp
wF q 'q t wF q t d L 'q wz t wz t
wF q 'q t wF q t d L 'q wz wz
(TXDWLRQVIRUWKHDGMRLQWV\VWHP FDQEHZULWWHQDV \
wF qt t A t \ \ t wz
t
wF qt t dt wz t t
³
t I
7KHLQFUHPHQWRIWKHIXQFWLRQDO FDQEHUHSUHVHQWHGDV 'I
t
³ >h t
t
wF q t wF q t wF q t wF q t 'u t 'x 'x wX wu wx wx
'U t
wF q t wF q t wF q t 'z t X 'z t X @dt wp wz t wz R R R R R R R
ZKHUH t
R
ª wF q T'q t wF q t t º »¼ dt wX wX
³ h t «¬
t
t
R
ª wF qt T'qt t wF qt t º ³t 'u t «¬ wu »¼ dt wu t
R
t
ª wF q t T'qt t wF q t t º » dt wx wx ¼
³ 'x «¬
t t
R
ª wF qt T'q t t wF q t t º »dt wx wx ¼
³ 'x «¬
t
R
ª wF q t T'qt t wF qt t º » dt wp wp ¼
t
t
ª wF q t T'q t t wF qt t º dt wz t wz t »¼
³ 'z t «¬
t
R
³ 'p t «¬
t
R
ª wF qt T'qt t wF qt t º ³t 'z t «¬ wz »¼dt wz
)URPKHUHWDNLQJLQWRDFFRXQW ZHJHW t
t
R d L ³ ht 'qt dt
R d L ³ 'u t 'q t dt
t
t
t
t
R d L ³ 'x 'q t dt t
t
R d L ³ 'x 'qt dt
R d L ³ 'p t 'qt dt
t
t
t
t
t
t
R d L ³ 'z t 'q t dt R d L ³ 'z t 'q t dt
&RQVLGHUWKHODVWWZRWHUPVRI t
³ 'z tX
t
t
t
wF q t wF q t dt 'z t X ³ dt wz t wz t t
>
t
@
³ 'z t \ t 'z t \ t dt t
t
w >'z t \ t @dt t w t
@
t
ª wF qt t º ³ 'z t « A t \ » dt z w ¬ ¼ t
³ 'z t
>
t
³
³ 'z t A t h t B t \ t dt
t
t
'z t X \ t
t
t
t
t
³ h t B t \ t dt ³ 'z t
t
wF qt t wF q t dt ³ 'z t X dt wz wz t t
wF q t t dt wz
t
³ h t B t \ t dt t
1RZWKHLQFUHPHQWRIWKHIXQFWLRQDO LVZULWWHQDV 'I
t
t
t
wF q t ª wF q t º
wF q t ³t h t «¬ wX B t \ t »¼ dt t³ 'u t wu dt t³ 'x w x dt t
t
wF q t wF q t ³ 'x dt ³ 'U t dt ¦ Ri wx wp i t t
)URP JLYHQ WKDW 'qt d 'z t 'z t 'u t ht 'x 'x 'U t 'z t d c h
L
'q d c 'T ZHJHW
¦R
i
o
i
'T
h 'u 'x 'x 'U o ZKHQ 'T 7KHQIURPWKHUHODWLRQ LWIROORZVWKDWWKHJUDGLHQW I T LVGHWHUPLQHGE\ WKHIRUPXODV ZKHUH\ t t I VROXWLRQRIV\VWHP /HW T X h u 'u x 'x x 'x p 'U X T X u x x p X 7KHQ I T I T d
wF q 'q t wF q t wF q 'q t wF q t
BPD[ '\ t wX wX wu wu
t
t
wF q 'q t wF q t wF q 'q t wF q t wF q 'q t wF q t dt ³ dt ³ d wx wx wx wx wU wq t t
d L 'qt L '\ t L 'q
ZKHUH Bmzx
VXS B t DV '\ t d L 'q
t d t d t
L
7KHUHIRUH I T I T
t
³ I T I T
dt d L 'q
t
+HQFH JLYHQ WKDW 'q d L 'T L T T ZH ZLOO JHW DQ HVWLPDWH 7KH WKHRUHPLVSURYHG &RQVWUXFW VHTXHQFHV ^T n ` ^Xn `^un `^x n `^xn `^U n ` X DFFRUGLQJ WR WKH IROORZLQJDOJRULWKPVHH Xn Xn D n IX T x n
PS > x n D n I x T n @
ZKHUH H d D n d H Dn
PU >un D n I u T @
un
x n
P: > pn D n I p T n @
pn
H ! H ! n l H
PS > x n D n I x T @ n
,QSDUWLFXODUZKHQ H
l ZHKDYH
l ! /LSVFKLW]FRQVWDQWIURP l
/HPPD Let S S bounded convex closed sets in R n bounded convex n s closed set in L I R : bounded convex closed set in L I R Then: 1) functional I T C X from (1.89) under conditions (1.90)-(1.92) is convex; 2) functional I T C X reaches the lower bound on the set X
L I R m u U u S u S u :
3URRI$VIROORZVIURP WKHVHFRQGGHULYDWLYH w F q t Qt t t t I wq X u x x U z t z 7KHUHIRUH F q t LVDFRQYH[IXQFWLRQUHODWLYHWR q
ZKHUH q IRUDOO t I LH
F Dq D q d DF q t D F q t q q D D >@
$V z t TD Dz t T D z t T T T X TD DT D T WKHQ I TD
t
³ F qD t dt d DI T D I T
T T X D >@
t
ZKHUH qD Dq D q 7KH VHFRQG VWDWHPHQW RI WKH OHPPD IROORZV IURP WKH ZHDNORZHUVHPLFRQWLQXLW\RIWKHIXQFWLRQDO I T T X DQGZHDNFRPSDFWQHVVRI WKHVHW X /HPPDLVSURYHG 7KHRUHP Let the matrix W t t ! U S S : bounded convex closed sets, sequences ^Xn ` ^un ` ^x n ` ^xn ` ^U n ` are determined by the relations from (1.112). Then: 1) sequence ^T n ` X is minimizing, i.e. OLP I T n I LQI I T nof
2) sequence X
^T
^T n ` X
T X
weakly converges to the set
X u x x U X I T
I
LQI I T `
X X
where
X n oX weakly
T X
un o u x n o x xn o x pn o p when n o f weakly
weakly
weakly
weakly
3) in order for problem 4 to have a solution, it is necessary and sufficient that the value I T I T X X 4) true estimate I T n I d
d d n
const ! n
3URRI)URP ZHKDYH X n X n D n I X T n X X n ! L
X X L I R m
u n u n D n I u T n u u n ! L t
u u U
x n x n D n I x T n x x n ! R n t
x x S
x n x n D n I x T n x x n ! R n t
x x S
p n p n D n I p T n p p n ! L
p p :
)URPKHUHDVLQWKHSURRIRI7KHRUHPZHREWDLQ § l · I T n I T n t ¨¨ ¸¸ T n T n t H T n T n D © n ¹ +HQFH I T n I T n o ZKHQ n o f T n T n o ZKHQ n o f )URP WKH
FRQYH[LW\RIWKHIXQFWLRQDOZHKDYH d Dn
I T n I T d r T n T n r
const !
7KHQ OLP I T n I GXH WR WKH IDFW WKDW T n T n nof HVWLPDWHV ZHJHW a n d
o ZKHQ n o f )URP WKH
d n n
)LQDOO\LI I T WKHQ
u t X t P t x P t x N t z t X t I p t
Lt x t l t Z t d p t
Lt x t l t d M t
t I x t G t t I
7KHWKHRUHPLVSURYHG
3RVLWLRQ FRQWURO )RU SURJUDP FRQWURO SRVLWLRQDO FRQWURO FDQ EH IRXQG u x t 7KHRUHP Let the conditions of Theorems 11, 12 be fulfilled, and let, besides x Rx non-singular matrix 6 t t I is determined by the formula (1.23), the
value I v t H
t x *t
t
³ )t W BW H
W dW Then position control
t
u x t
K t x t t I where x t
z t X Q t x Q t x N t z t X t I
2SWLPDO SHUIRUPDQFH ,W LV QHFHVVDU\ WR ILQG WKH ORZHVW YDOXH t LQ WKH SUREOHP 7RGRWKLVZHGHILQHWKHYDOXHV t ! t ! t ! DFFRUGLQJWR WKHIROORZLQJDOJRULWKP:HVROYHWKHSUREOHPRIFRQWUROODELOLW\ DQGILQGDSDLU u t x t t >t t @ ZKHUH I u x t GHWHUPLQHDSDLU u
t x
t t >t t @ t ,IYDOXH I u
x
WKHQFKRRVH t
&KRRVHYDOXH t
t DQGVRRQ
,IYDOXH I u
x
! WKHQ t
([DPSOH)LQGDVROXWLRQWRWKHQH[WFRQWUROODELOLW\SUREOHP 7KHHTXDWLRQRIPRWLRQRIWKHV\VWHPKDVDIRUP x x x u t t I >t t @ 7KHERXQGDU\FRQGLWLRQVDUHGHWHUPLQHGE\WKHUHODWLRQV x x S ^` R
x t
x t S
^ x t x t R
x t
`
7KHSKDVHFRQVWUDLQWVKDVDIRUP
x t x t Gt
ZKHUH J t
^ x t x t _ J t d x t x t d G t t I `
t G t
t
/LPLWDWLRQRIWKHFRQWUROYDOXH ^u L I R _ D d ut d E t I `
u U
ZKHUH D E )RU WKLV SUREOHP WKH OHIW HQG RI WKH WUDMHFWRU\ LV IL[HG WKHUHIRUH WKH VHW S ^ ` FRQWDLQVDVLQJOHSRLQW7KHULJKWHQGRIWKHWUDMHFWRU\LVIURPWKHVHW S ZKHUH x t DQG x t DUELWUDU\,QWURGXFLQJWKHQRWDWLRQ § · ¸¸ B A ¨¨ © ¹
§ · ¨¨ ¸¸ L ©¹
C
§ x · ¨¨ ¸¸ x © x ¹
x
§ x t · ¸¸ ¨¨ © x t ¹
§ x · ¸¸ x ¨¨ © x ¹
(TXDWLRQ FDQEHZULWWHQDV x
Ax Bu I ^ `
>t t @ t I t
t
xt G t ^x R _ J t d Lxt d G t t I ` u t U ^u L I R _ d u t d t I ` x S
x S
^x R _ Cx
`
)RUWKHV\VWHP PDWULFHV e At
§ t · ¨¨ ¸¸ © ¹
§ t · ¨¨ ¸¸ ) t W © ¹
e At
e A t W e A t
§ · ¨¨ ¸¸ © t ¹
7KHQ W t W
t
t
³ ) t BB ) t dt ³ e
ZKHUH t
At
BB e A t dt
'HWHUPLQDQW W t
W t
§ t ¨
A W AW ¨ e BB e d W ³ ¨ t ¨ ©
· t ¸ ¸ t ¸¸ ¹
t ! ,W LV HDV\ WR VHH WKDW WKH PDWUL[
W t LVSRVLWLYHO\GHILQHG0DWULFHV t
§ ¨ t ¨ ¨¨ t ©
t · ¸ ¸ ¸ t ¸ ¹
W t t
§ t t ¨ ¨ ¨ t t ¨ ©
t t · ¸ ¸ ¸ t t ¸ ¹
,QYHUVHPDWUL[ W t
§ ¨ ¨ t t ¨ t ¨ ©
t · ¸ ¸ t ¸ ¸ ¹
9HFWRU a
§ t x t · ¸¸ ¨¨ © x t ¹
e At x x
0DWUL[
§ tt t B e A tW t ¨¨ t ©
C t
tt t · ¸¸ t ¹
7KHQWKHTXDQWLWLHV ª tt t tt t º « » t t ¬ ¼ ª tt t tt t º « » x t t t ¬ ¼
O t x x C t a
N t z t
C t e At z t
§ · tt t ¸ z t ¨ ¹ t ©
ª § · § ·º « ¨ tt t ¸ ¨ tt t ¸» z t ¹¼ t t © ¹ © ¬
9HFWRUV C t x
e AtW t t W t x
§ § t t t t t · § t t · t t · ¨ ¨¨ ¸ ¸¸t t ¨¨ t t t ¸¸ ¨ © ¹ © ¹ ¸ ¸ § t · t ¨ t t ¨ ¸ ¨ ¸ t t t t t ¨ ¨ ¸ ¸¹ © © ¹ § § t t t t · · ¨ ¨¨ ¸¸ x t ¸ ¨ ¸ © ¹ C t x e AtW t W t e At x ¨ ¸ t § t t t t · ¨ ¨¨ ¸ ¸ x t ¸ ¨ ¸¹ ©© ¹
)XQFWLRQ y t
z t C t x C t x N t z t
ZKHUH N t
C t
e AtW t W t e At
§ tt tt ¨ ¨ t ¨ tt tt ¨ ©
tt tt · ¸ ¸ tt tt ¸ ¸ ¹
§ § tt tt · · § t t t t · ¨ ¨¨ ¸¸ z t ¨¨ ¸¸ z t ¸ ¨ © ¸ ¹ © ¹ ¸ § tt tt · t ¨ § tt tt · ¨ ¨¨ ¸ ¸ ¨ ¸ z t z t ¸ ¨ ¨ ¸¹ ¸¹ © © © ¹
N t z t
&RPSRVLWLRQ z t z t
Ly t
>
>
@
u t t t t t `
@
^ t t t t t t t t t u t
t t t t tt tt x t t
tt tt tt tt z t tt tt tt tt z t t I t t
7KHRSWLPL]DWLRQSUREOHPIRUV\VWHP FDQEHZULWWHQDV
I u vX x
t
³ F qt t dt o LQI
t I
x t R
XQGHUFRQGLWLRQV z
Az Bv
v L I R
z
u t U
X t V
x
ZKHUH F qt t u t >vt O t x N t z t @ X t Ly t q t u t v t X t x z t z t x x t IXQFWLRQV O t x N t z t O t x N t z t C t x C t x Ly t DUH GHWHUPLQHG E\ IRUPXODV WKHVHW V ^X L I R _ J t d X t d G t t I ` 6HW X U u L I R u V u R VSDFH Y L I R u L I R u L I R u R OHW¶VFDOFXODWHWKHJUDGLHQW I [ DWWKHSRLQW [ u t v t X t x X ZKHUH
u t { v t {
I [
wF wu
X t
J t G t
t
>
u t v t O t x x N t z t v
O t x x
t I
x
@
ª tt t tt t º « » L I R t t ¬ ¼
1RWH WKDW z t v t I LV D VROXWLRQ RI D GLIIHUHQWLDO HTXDWLRQ z Az Bv t z ,WIROORZVWKDWZKHQ v t { t I WKHYDOXH z t v { IRUDOO t I I [
wF B \ t wv
O t x x B \ t L I R
I [
wF wX
>X t Ly t @ ^
t > t t u t
u t t t t t t t t t t t t @` L I R
I [
t
wF ³ w x dt
t
ª tt t tt t º O ^ t x x « » ³ t t ¬ ¼
ª º >X t Ly t @« tt tt tt tt »`dt R t ¬ ¼
3DUWLDOGHULYDWLYHV wF wz
wF wz t
§ wF · ¨ ¸ ¨ wz t ¸ ¨ wF ¸ ¨ wz t ¸ © ¹
>
§ wF · ¨ ¸ ¨ dz ¸ ¨ wF ¸ ¨ dz ¸ ¹ ©
§ >X t Ly t @· ¨¨ ¸¸ © >X t Ly t @ ¹
@ @
§ t t t t tt t t · ¸ ¨ O t x x t tt t >X t Ly t @ t ¸ ¨ ¨ t t t t t t t t ¸ ¸ ¨ O t x x t tt t >X t Ly t @ t ¹ ©
>
ZKHUH q t t q t u t v t X t x z t v z t v )XQFWLRQ\ t t I LVDVROXWLRQWRWKHIROORZLQJDGMRLQWV\VWHP \
\ t
§\ · ¨¨ ¸¸ ©\ ¹ §\ t · ¨¨ ¸¸ ©\ t ¹
§ >X t Ly t @ · ¸¸ ¨¨ © >X t Ly t @ \ t ¹ § t wF · ¨³ dt ¸ ¨ wz t ¸ ¨ t wF ¸ ¸ ¨ ³ ¨ wz t dt ¸ ¹ ©
wF A \ wz
ZKHUHSDUWLDOGHULYDWLYHVDUHGHILQHGE\IRUPXODV 6XEVWLWXWLQJWKHVROXWLRQ RIWKHV\VWHP LQWKHULJKWKDQGSDUWRIWKHH[SUHVVLRQ ZH ILQG I [ $VIROORZVIURPUHODWLRQV QH[WDSSUR[LPDWLRQ
u
if u D I [ D I [ ! ° PU >u D I [ @ ® D I [ if d D I [ d ° if D I [ ¯
v
v D I [
D I [
X
G t if X D I [ ! G t ° PV >X D I [ @ ®X D I [ if J t d X D I [ d G t ° J t if X D I [ J t ¯
x D I [
x
n
,W FDQ EH VKRZQ WKDW IRU WKLV H[DPSOH VHTXHQFH ^un ` ^vn ` ^X n ` ^x ` FRQYHUJH DFFRUGLQJO\
x y t
x j t
WR
u t
$OVR IXQFWLRQV z t v
>
X t t
v t
@
t
t z t v
t > @
t y t
t
t t 7KHVROXWLRQWRWKHRULJLQDOSUREOHP LV
u t
)XQFWLRQV y t
x t
y t
>
^
t x t
@
t t I
y t
>
@`
t t t t t t t t t t t t t t t tt tt x tt tt z t tt tt z t t I t t t y t z t t t t t t t t t t tt tt x tt tt z t tt tt z t t I t t t z t
^
`
Lecture 6.&RQWUROODELOLW\RIOLQHDUV\VWHPVZLWKSKDVHDQGLQWHJUDO FRQVWUDLQWV6HPLQDUOHVVRQ &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\WDVN)LQGFRQWURO u t U ^u L I R m _u t V t R m aet I ` ZKLFKWUDQVIHUVWKHWUDMHFWRU\RIV\VWHP
At x B t u P t t I
>t t @
RXWJRLQJIURPWKHVWDUWLQJSRLQW x t x S R DWWKHPRPHQWRIWLPH t WRWKH SRLQW xt x S R n t ! t LH x x t x x t S u S S R n KHUHZLWKWKHVROXWLRQRIV\VWHP WKHIXQFWLRQ xt t x u x S x S LVRQ VHW Gt R n LH x t t x u G t G t ^x R n _ Z t d L t x l t d M t t I ` ,QWHJUDOFRQVWUDLQWVDUHVDWLVILHGDORQJWKHVROXWLRQRIV\VWHP x
n
g j x u
³ > a t x
b j t u dt d c j j m
@
³ > a t x
b j t u dt
t
j
t
g j x u
t
j
@
c j j
m m
t
ZKHUH a j t b j t j m ± JLYHQ SLHFHZLVH FRQWLQXRXV YHFWRU IXQFWLRQV RI RUGHUV m ± JLYHQ QXPEHUV P t
n u m u UHVSHFWLYHO\ c j j
P t } Pn t t I ±
JLYHQSLHFHZLVHFRQWLQXRXVIXQFWLRQ &RQVLGHU WKH LQWHJUDO FRQVWUDLQWV :H LQWURGXFH D YHFWRU IXQFWLRQK t K t }K m t t I LQWKHIROORZLQJZD\
K j t
³ > a W xW t
j
@
b j W uW dW
j m t I
t
)URP ZHKDYH
K A t x B t u t t I K t K t c
m c ȍ ^c R c j c j d j j m c j c j j m m d j t j m` :HLQWURGXFHWKHIROORZLQJYHFWRUVDQGPDWULFHV
§ At On m · § P t · § Bt · ¨ ¸ ¨ ¸ ¨ A t Om m ¸ B t ¨¨ B t ¸¸ P t ¨ Om ¸ © ¹ ¹ © © ¹ ZKHUH Ok q ±UHFWDQJXODUPDWUL[RI k u q RUGHUZLWK]HURHOHPHQWV
[
§ x· ¨¨ ¸¸ A t ©K ¹
§ a t · ¸ ¨ ¨ a t ¸ ¨ ¸ B t ¸ ¨ ¨¨ a m t ¸¸ ¹ ©
A t
§ b t · ¸ ¨ ¨ bt ¸ ¨ ¸ t I ¨ b t ¸ ¨ m ¸ ¹ ©
±PDWULFHVRI m u n m u m RUGHUUHVSHFWLYHO\ 1RZWKHLQLWLDOSUREOHP ZLOOEHZULWWHQLQWKHIRUP [ A t [ B t u P t t I x x S u S Ȇ[ t xt Gt ut U t § x t · § x · § x t · § x · ¸ [ t [ ¨¨ ¸¸ ¨¨ ¸¸ ¨¨ ¸¸ ¨¨ ¸ ©K t ¹ © c ¹ ©K t ¹ © Om ¹ [ S u Om [ t [ S u ȍ
[ t [
[ t
ZKHUH K t t I ± VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ ZLWK ERXQGDU\ FRQGLWLRQV Ȇ I n On m I n ±LGHQWLW\PDWUL[RI n u n RUGHU A t ±PDWUL[ RI n m u n m RUGHU B t ±PDWUL[RI n m u m RUGHU P t ±NQRZQYHFWRU IXQFWLRQ n m u 7KHVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ FDQEHZULWWHQDV
t
t
t
t
[ t ĭ t t [ ³ ĭ t W B W u W dW ³ ĭ t W P W dW t I
ZKHUH ĭ t W Ĭ t Ĭ W Ĭ t ± IXQGDPHQWDO PDWUL[ RI OLQHDU KRPRJHQHRXV V\VWHP y A t y $V [ t [ WKHQ t
t
t
t
[ t [ ĭ t t [ ³ ĭ t t B t u t dt ³ ĭ t t P t dt
7KHQWKHGHVLUHGFRQWURO u t U t LVDVROXWLRQWRWKHIROORZLQJLQWHJUDOHTXDWLRQ t
t
³ ĭ t t B t ut dt
ĭ t t [ [ ³ ĭ t t P t dt
a
t
t
)RUWKHLQWHJUDOHTXDWLRQ WKHIROORZLQJVWDWHPHQWVDUHWUXH 7KHRUHPLet the matrix t
W t t
³ ) t t B t B t ) t t dt
t
of n m u n m order positive definite. Then control u L I R m transfers the trajectory of the system (1.151) from any starting point [ R n m to any final state [ R n m if and only if, when
^u L I R u t vt T t [ T t [ M t z t v P t v v L I R `
u t /
m
m
where T t B t ) t t W t t T t B t ) t t W t t )t t t
M t B t ) t t W t t ) t t P t B t ) t t W t t ³ ) t t P t dt
function z t v , t I – solution of a differential equation A t z B t v
t
v L I R m
z t
The solution of the differential equation (1.151) corresponding to the control u t / is determined by the formula [ t z t v E t [ E t [ P t M t z t v t I where z
E t ) t t W t t W t t E t ) t t W t t W t t )t t
P t
t
t
³ ) t W P W dW ) t t W t t W t t ³ )t t P t dt
t
t
M t )t t W t t W t t ) t t
7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP $V IROORZV IURP 7KHRUHP WKH VROXWLRQ RI WKH SUREOHP HTXLYDOHQW WR FDQ EH UHGXFHG WR WKH VROXWLRQ RI WKH IROORZLQJ RSWLPL]DWLRQSUREOHP t
>
J v u [ [ p ³ v t T t [ T t [ M t z t v P t u t
W
@
p t Lt Ȇ[ t l t dt o LQI
ZLWKFRQGLWLRQV z
A t z B t v t z t
v L I R m
ut U t [ p t ȍt
[ t S u Om [ [ t S u ȍ
^p L I R _Zt d pt d M t t I ` s
1RWLFHWKDW § x · § x · ¸ T t T t ¨ ¸ T t x T t ¨¨ ¨ Om ¸ ¸ © ¹ © Om ¹ §c d · § x · T t T t ¨¨ ¸¸ T t x T t c T t x Ȉ t Ȉ t ¨¨ ¸¸ c © ¹ © c ¹
T t [
T t [
§x · T t ¨¨ ¸¸ ©c ¹
T t x Ȉ t d Tc § x · § x · ¸ E t E t ¨ ¸ E t x E t [ E t ¨¨ ¸ ¨ Om ¸ © Om ¹ © ¹ § x · § x · E t [ E t ¨¨ ¸¸ E t E t ¨¨ ¸¸ E t x E t c ©c¹ ©c¹ §c d · ¸¸ E t x F t F t ¨¨ © c ¹
§c ·
c d } c
ZKHUH c ¨¨ ¸¸ c c
© ¹
7KHQ
m
E t x F t d E t c
c
d m c
m
} cm
vt T t [ T t [ M t z t v P t u t vt T t x T t x Ȉ t d T t c M t z t v P u t vt T t x T t x Ȉ t d P t M t z t v u t [ t z t v E t x E t x F t d P t M t z t v
ZKHUH P t P t T t c P t P t E t c 1RZWKHRSWLPL]DWLRQSUREOHP FDQEHZULWWHQDV J T
t
³ F q t dt o LQI
t
XQGHUFRQGLWLRQV z
v L I R m
A t z B t v t z t
u t U t x S x S p t ȍ t d D
ZKHUH
F qt t
^d R
m
`
_d t
vt T t x T x Ȉ t d P t M t z t v u t
pt Lt Ȇ>z t v E t x E t x F t d P t M t z t v @ l t
T t
H
vt u t x x d p t X
X
m
L I R m u U u S u S u D u ȍ H
L I R m u L I R m u R n u R n u R u L I R s
q t
T t z t v z t v
3URJUDPFRQWURO1RWHWKDW YDOXH J T t T T X ±LHIXQFWLRQDO J T T X ERXQGHGEHORZ SUREOHPKDVDVROXWLRQLIDQGRQO\LI J T J infJ T LI J T T X X X ^T X _J T J ` WKHQ WKH GHVLUHG SURJ UDPFRQWURO
u t v t T t x T t x Ȉt d P t M t z t v t I WKHWUDMHFWRU\RIV\VWHP XQGHUFRQGLWLRQV LVGHWHUPLQHGE\ WKHIRUPXOD x t Ȇ >z t v E t x E t x F t d P t M t z t v @ ZKHUH t I Ȇ I n On m 7KHRUHPLet the matrix W t t ! . Then the functional (1.163) under the conditions (1.164), (1.165) is continuously Frechet differentiable, the gradient of the functional
J cT
J c T J c T J c T J c T J c T J c T H
v
x
u
x
at any point is calculated by the formula J v T
wF qt t B t \ t J u T wv wF qt t
³t wx dt J d T
p
wF qt t J x T wu
wF qt t ³t wd dt
t
J x T
d
t
wF qt t dt wx t t
³
J p T
wF qt t wp
where z t z t v t I – solution of a differential equation z
A t z B t v t z t
\
wF qt t A t \ t wz
v t L I R m t I
wF q t t dt wz t t
and function \ t t I – the solution of the adjoint system t
\ t ³
In addition, the gradient J cT H satisfies Lipschitz condition J cT J cT d l T T H T T X 3URRI/HW T t v t u t x x d p t X T ǻT
vt ht u t ǻu t x ǻx x ǻx d ǻd p t ǻpt X
7KHQWKHLQFUHPHQWRIWKHIXQFWLRQDO t
³ >F qt ǻqt t F qt t @dt
J T ǻT J T
ǻJ
t
ZKHUH qt ǻqt T t ǻT z t ǻz t z t ǻz t t
t
t
t
ǻz t d ³ Ɏ t W B W h W dW d C ³ h t dt d C h L t I c
sup ĭ t W B W t d t W d t C
C
t t
6LQFHWKHIXQFWLRQ F q t KDVFRQWLQXRXVGHULYDWLYHVE\ q WKHQ t
³ >h t F
'J
v
qt t 'u t Fu qt t 'x t F x qt t 'x t F x qt t
t
@
'd F d qt t 'p t F p qt t 'z t F z t qt t 'z t F z qt t dt ¦ Ri
i
ZKHUH R
t
t
t
t
³ h t >Fv qt ǻqt t Fv qt t @dt R
>
t
R
@
u
u
³ ǻx >F q ǻq t F q t @dt
x
x
t
³ ǻd >F q ǻq t F q t @dtR ³ ǻp t >F q ǻq t F q t @dt
t
t
d
d
p
t
p
t
³ ǻz t >F q ǻq t F q t @dt
t
R
t
³ ǻx F x q ǻq t F x q t dtR
t
R
³ ǻu t >F q ǻq t F q t @dt
z t
z t
t
³ ǻz t >F q ǻq t F q t @dt
R
z
t
z
t
)URP WDNLQJLQWRDFFRXQWWKHIDFWWKDWVHH t
t
³ ǻz t F z t qt t dt
t
t
>
t
t
@
d ³ ǻz t M t dt t dt t
ǻz t >\ t @
ǻz t ³ F z t qt t dt
>
@
t
>
@
³ ǻz t \ t dt ³ ǻz t \ t dt t
>
t
t
@
>
@
³ ǻz t A t h t B t \ t dt ³ ǻz t F z qt t A t \ t dt t
t
t
t
t
t
³ h t B t \ t dt ³ ǻz t F z qt t dt
ZHJHW
³ >h t >F qt t B t \ t @ ǻu t F qt t ǻx F qt t t
ǻJ
v
x
u
t
ǻx F
x
qt t ǻd
@
F d qt t ǻp t F p qt t dt ¦ Ri
i
1RWHWKDWWKHIXQFWLRQ F q t FDQEHUHSUHVHQWHGDV
F q t q Q t q q at bt t I
,WLVHDV\WRYHULI\WKDWWKHSDUWLDOGHULYDWLYHVVDWLVI\WKH/LSVFKLW]FRQGLWLRQ %HFDXVH ǻq t d ht ǻu t ǻx ǻx ǻd ǻp t ǻz t ǻz t ǻq
t
³ ǻqt
dt d C h ǻu ǻx ǻx ǻd ǻp
t
Fo v q ǻq t F v q t d L ǻq F u q ǻq t F u q t d L ǻq Fo x q ǻq t F x q t d L ǻq F x q ǻq t F x q t d L ǻq Fo d q ǻq t F d q t d L ǻq F p q ǻq t F p q t d L ǻq
Fo z t q ǻq t F z t q t d L ǻq F z q ǻq t F z q t d L ǻq
ZHJHW R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __ R d LC __ ǻT __ f
7KHUHIRUH R d ¦ Ri d C ǻT 7KHQIURP LWIROORZVWKDWWKHJUDGLHQW J T
i
LVGHWHUPLQHGE\WKHIRUPXOD
/HW T T T T ǻT 7KHQIURP IROORZV
F
J T J T t
v
qt 'qt t F v qt t B t '\ t Fu qt 'qt t
³ >F
Fu qt t
³ >F
d
x
@
qt 'qt t F x qt t dt
t
t t
t
@ ³ >F
x q t 'q t t F x q t t dt
qt 'qt t F d qt t @dt F p qt 'qt t F p qt t
t
7KHQ
J cT J cT d L ǻqt L ǻ\ t L ǻq J cT J cT
t
³ J cT J cT
t
$V
ǻ\ t
t
dt d L ǻq L ³ ǻ\ t dt
t
>F z qt ǻTt t F z qt t @ A t ǻ\ t t I t
>
@
ǻ\ t ³ F z t qt ǻqt t F z t qt t dt t
WKHQDSSO\LQJWKH*URQZDOOOHPPDZHREWDLQ
ǻ\ t d L ǻq t I
)URPWKHHVWLPDWHV ZHKDYH J cT J cT d l T T TT X 7KHWKHRUHPLVSURYHG :HFRQVWUXFWDVHTXHQFH ^T n ` X DFFRUGLQJWRWKHUXOHV
vn xn
vn D n J vc T n un
>
@
PU >un D n J uc T n @ x n
PS xn D n J xc T n d n n
} H d D n d
>
@
PS x n D n J xc T n
PD >d n D n J dc T n @pn
Pȍ >pn D n J cp T n @
H ! l H
ZKHUH l const ! ±/LSVFKLW]FRQVWDQW /HPPD Let S S – bounded convex closed sets, set D ^d R m _d t d d p `, p ! – quite a large number, U ȍ – bounded convex closed sets from L I R m L I R s respectively. Then: functional J T C X from under conditions is convex;
J T C X reaches L I R u U u S u S u D u ȍ
functional
the lower bound on the set
X,
m
X
w F q t Qt t t t I IXQFWLRQ F q t LV D FRQYH[ wT IXQFWLRQUHODWLYHWR q IRUDOO t I 7KHVROXWLRQ
3URRI %HFDXVH
z t DT D T Dz t T D z t T t t I IRUDOO T T X
YDOXH D >@ 7KHQ
J DT D T
t
³ F Dq D q t dt d
t t
t
t
t
d D ³ F q t dt D ³ F q t dt
DJ T D J T T T X D D >@
ZKHUH X ±ERXQGHGFRQYH[FORVHGVHWLQ H 7KHILUVWVWDWHPHQWRIWKHOHPPDLV SURYHG 7KH VHFRQG VWDWHPHQW RI WKH OHPPD IROORZV IURP WKH ZHDN ORZHU VHPLFRQWLQXLW\ RI D FRQYH[ IXQFWLRQDO J T C X DQG ZHDN FRPSDFWQHVV RI WKH VHW X /HPPDLVSURYHG 7KHRUHP Let the matrix W t t ! X – bounded convex closed set in a un `^x n `^xn `^d n `^ pn ` are determined reflexive Banach space H , sequences ^vn `^ from relations (1.178). Then: Sequence ^T n ` X is minimizing, i.e. OLP J T n J
LQI J T
T X
n of
Sequence ^T n ` X weakly converges to the set X X , where X weakly
^T
v u x x d p X _J T
weakly
J
`
LQI J T
T X
weakly
vn o v un o u x n o x xn o x d n o d pn o p when n o f in order for problem 5 to have a solution, it is necessary and sufficient that the value J T J T X X The following estimate of the rate of convergence is true
J T n J d
e e n
const ! n }
3URRI )URP WDNLQJ LQWR DFFRXQW WKH SURSHUW\ RI WKH SURMHFWLRQ RI D SRLQWRQWKHVHWZHREWDLQ vn vn D n J v T n v vn
vv L I R m
L
un un D n J u T n u un
L
t uu U
x n x n D n J x T n x x n
Rn
t x x S
xn xn D n J T n x xn
Rn
t x x S
x
d n d n D n J d T n d d n
R m
pn pn D n J T n p pn
p
L
t d d D t pp ȍ
+HQFHLQSDUWLFXODUZKHQ T v u x x d p T n ZHJHW
J v T n vn vn J x T n x n x n
Rn
J d T n d n d n
Dn
L
t
R m
x n x n
Dn
t
Dn
J u T n un un t
vn vn
Dn
J x T n xn xn
Rn
J p T n pn pn
t
d n d n
L
t
un un
Dn
Dn
xn xn
pn pn
6LQFHWKHIXQFWLRQDO J T & X WKHQZHKDYHWKHLQHTXDOLW\ J T J T t J ccT T T
l T T T T X
+HQFHZKHQ T T n T T n ZHKDYH J T n J T n t J cT n T n T n
l T n T n
T n T n X
)URP ZHKDYH J cT n T n T n t
Dn
T n T n
7KHQIURP LWIROORZVWKDW § l · J T n J T n t ¨¨ ¸¸ T n T n t H T n T n D © n ¹ l l H ZKHUH t t H )URP LW IROORZV WKDW WKH QXPHULFDO Dn Dn
VHTXHQFH ^J T n `VWULFWO\GHFUHDVHV6LQFHWKHYDOXHRIWKHIXQFWLRQDO J T n ERXQGHG EHORZ LH J T n t T T X WKHQ D QXPHULF VHTXHQFH ^J T n ` FRQYHUJHV &RQVHTXHQWO\ OLP>J T n J T n @ 7KHQ SDVVLQJ WR WKH OLPLW IURP ZH nof
KDYH T n T n o ZKHQ n o f /HW XV VKRZ WKDW WKH VHTXHQFH ^T n ` X LV PLQLPL]LQJ 6LQFH WKH IXQFWLRQDO J T & X LVFRQYH[WKHQWKHLQHTXDOLW\LVQHFHVVDU\DQGVXIILFLHQWO\VDWLVILHG J T J T d J cT T T T T X )URPWKLVLQHTXDOLW\ZLWK T T n T T X X T n X ZHJHW J Tn J T d J cT n T n T
J cT n T n T n T n T
J cT n T n T n J cT n T T n
)URP ZKHQ T T ZHJHW J cT n T T n t
Dn
T n T n T T n
)URP LWIROORZV J T n J T d J cT n
Dn
T T n Tn T n
§ r· d ¨¨ sup J cT n ¸¸ T n T n H ¹ ©
Dn
l T n T n l
ZKHUH r ±VHWGLDPHWHU X T T n r
Dn
d J cT n
d
H
T Tn Tn T n
d
const !
H d D n
$V T n T n o ZKHQ n o f KHQ IURP LW IROORZV WKDW OLP J T n J T J LQI J T 7KLVPHDQVWKDWWKHVHTXHQFH ^T n ` X LVPLQLPL]LQJ n of T X
/HWXVVKRZWKDWWKHVHTXHQFH ^T n ` X FRQYHUJHVZHDNO\WRDSRLQW T X ,Q IDFWVHW X LVZHDNO\FRPSDFWVHTXHQFH ^T n ` X 7KHUHIRUHWKHVHTXHQFH ^T n ` X KDV DW OHDVW RQH VXEVHTXHQFH ^T k
m
` X VXFK WKDW T
weakly km
o T ZKHQ m o f ZLWK
T X 6LQFH WKH VHTXHQFH ^J T n ` FRQYHUJHV WR J T WKHQ D QXPHULF VHTXHQFH ^J Tk `DOVRFRQYHUJHVWRQXPEHU J T LH OLP J T k J T mof
m
m
2Q WKH RWKHU KDQG WKH IXQFWLRQDO J T ZHDNO\ ORZHU VHPLFRQWLQXRXV RQ X WKHUHIRUHZHKDYHLQHTXDOLWLHV
J T d OLP J T km d OLP J T km m of
)URPKHUHZHKDYH OLP J T k m of
mof
m
J T
J T
weakly
T k o T when m o f m
weakly
T k o T ZKHQ m o f ZKHUH J T LQI J T TX
m
6RDWWKHZHDNOLPLWSRLQW T VHTXHQFHV ^T n ` X WKHORZHUERXQGRIWKHIXQFWLRQDO LVUHDFKHG J T RQVHW X 7KHVHFRQGVWDWHPHQWLVSURYHQ )URPLQHTXDOLWLHV LWIROORZVWKDW J T n J T n t H T n T n J T n J T d l T n T n /HW an J T n J T 7KHQLQHTXDOLWLHV FDQEHZULWWHQDV an d l T n T n
a n a n t H T n T n
7KXVWKHQXPHULFDOVHTXHQFH ^a n ` VDWLVILHVWKHFRQGLWLRQV an ! an an t Aan n } A
H l
)RUDQXPHULFVHTXHQFH ^a n ` VDWLVI\LQJLQHTXDOLW\ WKHHVWLPDWHLVWUXH m n } J T n J T d m An n
an
l
H
7KH WKLUG VWDWHPHQW RI WKH WKHRUHP IROORZV IURP 7KHRUHP 7KH SURJUDP FRQWURO LV GHWHUPLQHG E\ IRUPXOD WKH WUDMHFWRU\ RI V\VWHP XQGHU FRQGLWLRQV LVGHWHUPLQHGE\IRUPXOD 7KHWKHRUHPLVSURYHG 3RVLWLRQ FRQWURO )RU SURJUDP FRQWURO SRVLWLRQDO FRQWURO FDQ EH IRXQG u x t 7KHRUHPLet the conditions of Theorems 15, 16 be fulfilled, and let, besides: x Rx J v t H t x matrix ī t
t
³ ĭ t W B W H W dW
t
d R x non-singular matrix
6 t Ȇ >ĭ t t ī t E t E t R F t R M t ĭ t t īt @t I Then control u t t I representable as u x t K t x t P t where is the matrix K t >H t T t T t R Ȉt R M t ĭ t t ī t @Ȉ t t I P t P t K t P t t I 3URRI&RQWURO u t t I IURP ZHZLOOSUHVHQWLQWKHIRUPRIWKHVXP u t u t P t ZKHUH u t v t T t x T t x Ȉt d M t z t v t I 6LPLODUO\ WKH IXQFWLRQ x t t I IURP FDQ EH SUHVHQWHG LQ WKH IRUP x t x t P t ZKHUH x t Ȇ >z t v E t x E t x F t d M t z t v @ P t ȆP t 8QGHUWKHFRQGLWLRQRIWKHWKHRUHPIXQFWLRQV u t x t t I DUHHTXDO u t >H t T t T t R Ȉ t R M t ĭ t t īt @x t I x t ^Ȇ >ĭ t t ī t E t E t R F t R M t ĭ t t īt @`x t I ,I QRQVLQJXODU PDWUL[ Ȉ t t I GHWHUPLQHG E\ WKH IRUPXOD WKHQ u t K t x t ZKHUH K t t I ±PDWUL[RI mu n RUGHUIURP 1RWLFH WKDW u t u t P t K t x t P t t I ZKHUH LV WKH IXQFWLRQ P t t I IURP 7KHWKHRUHPLVSURYHG 2SWLPDO SHUIRUPDQFH &RQVLGHU WKH SUREOHP RI FRQWUROODELOLW\ IRUGLIIHUHQWYDOXHV t t ! t 7KHVPDOOHVWYDOXHRIWKHILQDOPRPHQWRIWLPH t HTXDO t DWZKLFKWKHUHLVD WULSOH u
t x
x
U t u S u S t >t t @ VXFKWKDWWKHFRUUHVSRQGLQJVROXWLRQRI V\VWHP WKH IXQFWLRQ x
t xt u
t >t t @ VDWLVILHV WKH ERXQGDU\ FRQGLWLRQV SKDVH FRQVWUDLQWV DQG LQWHJUDO FRQVWUDLQWV LV FDOOHG WKH RSWLPDO WLPH DQG IRXU t u
t x
x
± solution of the problem of optimal performance 7KXVWRVROYHWKHSUREOHPRIRSWLPDOSHUIRUPDQFH t u
t x
x
WKHUDWLRV DUHFRUUHFW u
t U t x
t xt u
t >t t @ x
t x
x
t x
x
x
S u S x
t G t g j x
u
d c j j m g j x
u
c j j m m 7R VROYH WKH SUREOHP RI RSWLPDO SHUIRUPDQFH LW LV QHFHVVDU\ WR VROYH FRQWUROODELOLW\SUREOHPVIRUWKHYDOXHV t t t } ZKHUH t ! t ! t ! t ! } /HW WKH FRQWUROODELOLW\ SUREOHP EH VROYHG IRU D JLYHQ YDOXH t ! t &KRRVH t t $FFRUGLQJ WR WKH GHVFULEHG DOJRULWKP E\ VROYLQJ WKH RSWLPL]DWLRQ SUREOHP ZHILQG T v u [ [ p ,IWKHFRUUHVSRQGLQJYDOXH
RIWKHIXQFWLRQDO J T WKHQFKRRVHWKHYDOXH t t LI J T ! WKHQFKRRVH t
t
t
t DQGVRRQ
$FFRUGLQJWRWKLVVFKHPHDIWHUDILQLWHQXPEHURIVWHSVLWLVSRVVLEOHWRREWDLQDQ DSSUR[LPDWHVROXWLRQRIWKHRSWLPDOSHUIRUPDQFHSUREOHPZLWKDJLYHQDFFXUDF\ ,Q D VLPLODU ZD\ RSWLPDO SHUIRUPDQFH SUREOHPV DUH VROYHG IRU RWKHU FRQWUROODELOLW\SUREOHPVGHVFULEHGDERYH &RPPHQWV 7KHVRXUFHRIWKHSUREOHPVRIFRQWUROODELOLW\RIG\QDPLFV\VWHPVLVWKHZRUNRI 5( .DOPDQ >@ 5( .DOPDQ FRQVWUXFWHG D FRQWURO ZLWK D PLQLPXP QRUP DQGREWDLQHGDUDQNFULWHULRQIRUWKHFRQWUROODELOLW\RIOLQHDUVWDWLRQDU\V\VWHPV 7KHVROXWLRQRIWKHSUREOHPRIFRQWUROODELOLW\RQWKHEDVLVRI±WKHSUREOHPRI PRPHQWVZDVSURSRVHGE\11.UDVRYVN\>@6HSDUDWHFRQWUROODELOLW\LVVXHVWKH VPDOOHVWGLPHQVLRQRIWKHFRQWUROYHFWRUFRQWUROODELOLW\RIQRQOLQHDUV\VWHPVZLWK DVPDOOSDUDPHWHUFRQWUROODELOLW\RIOLQHDUV\VWHPVZLWKDIWHUHIIHFWZHUHVWXGLHGLQ >@ $Q RYHUYLHZ RI WKH VWDWH RI WKH SUREOHP RI FRQWUROODELOLW\ EHIRUH WKH EHJLQQLQJRIWKHVWFHQWXU\LVJLYHQLQ>@7KHJHQHUDOSUREOHPRIFRQWUROODELOLW\ RIRUGLQDU\GLIIHUHQWLDOHTXDWLRQVZDVIRUPXODWHGLQWKHPRQRJUDSK>@ ,Q UHFHQW \HDUV D QXPEHU RI VFLHQWLILF DUWLFOHV KDYH EHHQ SXEOLVKHG RQ WKH SUREOHPV RI FRQWUROODELOLW\ DQG RSWLPDO SHUIRUPDQFH RI G\QDPLF V\VWHPV 7KHZRUN>@LVGHYRWHGWRWKHV\QWKHVLVRIERXQGHGFRQWUROSRVLWLRQFRQWURO E\OLQHDU G\QDPLFDO V\VWHPV EDVHG RQ WKH /\DSXQRY IXQFWLRQ 7KH JHRPHWULF DSSURDFK WR WKH SUREOHPRIFRQWUROODELOLW\RIQRQDXWRQRPRXVOLQHDUV\VWHPVZDVVWXGLHGLQ>@ 7KHSUREOHPRIFRQWUROODELOLW\LVFORVHO\UHODWHGWRWKHVROXWLRQRISUREOHPVRI VWDELOL]DWLRQ RI G\QDPLF V\VWHPV ,Q >@ WKH SUREOHP RI VWDELOL]LQJ WKH ]HUR HTXLOLEULXP RI ELOLQHDU DQG DIILQH V\VWHPV RI FDQRQLFDO IRUP LV FRQVLGHUHG 0LQLPDOVWDELOL]HUVIRUOLQHDUG\QDPLFDOV\VWHPVZHUHVWXGLHGLQ>@ ,WVKRXOGEHQRWHGWKDWLQWKHVHZRUNVSDUWLFXODUFDVHVRIWKHJHQHUDOSUREOHP RI FRQWUROODELOLW\ DQG VSHHG SHUIRUPDQFH RI G\QDPLF V\VWHPV ZLWKRXW SKDVH DQG LQWHJUDOFRQVWUDLQWVZHUHVWXGLHG $FWXDODQGXQVROYHGSUREOHPVRIFRQWUROODELOLW\DQGRSWLPDOSHUIRUPDQFHDUH REWDLQLQJ QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH VROYDELOLW\ RI FRPPRQ SUREOHPVRIFRQWUROODELOLW\DQGSHUIRUPDQFHGHYHORSPHQWRIFRQVWUXFWLYHPHWKRGV IRU FRQVWUXFWLQJ VROXWLRQV RI JHQHUDO SUREOHPV RI FRQWUROODELOLW\ DQG RSWLPDO SHUIRUPDQFHRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQV 7KLVFKDSWHULVZULWWHQRQWKHEDVLVRIWKHVFLHQWLILFUHVXOWVRIWKHDXWKRUJLYHQ LQ>@ :HUH SURSRVHG PHWKRGV IRU FRQVWUXFWLQJ SURJUDP DQG SRVLWLRQDO FRQWUROV IRUWKHSURFHVVHVGHVFULEHGE\OLQHDURUGLQDU\GLIIHUHQWLDOHTXDWLRQVLQWKHSUHVHQFH RI ERXQGDU\ FRQGLWLRQV DV ZHOO DV SKDVH DQG LQWHJUDO FRQVWUDLQWV WDNLQJ LQWR DFFRXQW UHVWULFWLRQV RQ FRQWUROV 7ZR SUREOHPV ZHUH VROYHG WKH SUREOHP RIWKHH[LVWHQFHRIDFRQWURODQGWKHSUREOHPRIFRQVWUXFWLQJWKHVHWRIDOOFRQWUROV WKDWWUDQVIHUVWKHWUDMHFWRU\RIWKHV\VWHPIURPDQ\LQLWLDOVWDWHWRDJLYHQILQDOVWDWH
7KH EDVLV RI WKH SURSRVHG PHWKRGV IRU FRQVWUXFWLQJ SURJUDP DQG SRVLWLRQDO FRQWUROV LV WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG $ QHFHVVDU\ DQG VXIILFLHQWFRQGLWLRQIRUWKHH[LVWHQFHRI DVROXWLRQRIDOLQHDULQWHJUDOHTXDWLRQLV REWDLQHG7KHJHQHUDOVROXWLRQRIRQHFODVVRIWKH)UHGKROPLQWHJUDOHTXDWLRQRIWKH ILUVWNLQGLVIRXQG ,W LV VKRZQ WKDW WKH ERXQGDU\ YDOXH SUREOHPV RI OLQHDU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV FDQ EH UHGXFHG WR LQLWLDO RSWLPDO FRQWURO SUREOHPV ZLWK D TXDGUDWLF IXQFWLRQDO$OJRULWKPVIRUFRQVWUXFWLQJPLQLPL]LQJVHTXHQFHVDQGHYDOXDWLQJWKHLU FRQYHUJHQFHDUHJLYHQ $OJRULWKPVIRUVROYLQJWKHRSWLPDOSHUIRUPDQFHSUREOHPEDVHGRQVROYLQJWKH SUREOHPRIFRQWUROODELOLW\DUHSUHVHQWHG 2QHRIWKHGLIILFXOWDQGXQVROYHGSUREOHPVRIFRQWUROWKHRU\LVWKHH[LVWHQFH RIDVROXWLRQWRDERXQGDU\YDOXHRSWLPDOFRQWUROSUREOHPLQWKHSUHVHQFHRISKDVH DQGLQWHJUDOFRQVWUDLQWV7RVROYHWKHSUREOHPVRIWKHH[LVWHQFHRIDVROXWLRQLWLV QHFHVVDU\ WR FUHDWH D JHQHUDO WKHRU\ RI FRQWUROODELOLW\ RI G\QDPLF V\VWHPV 7KLV SDSHU LV GHYRWHG WR VROYLQJ WKH SUREOHPV RI FRQWUROODELOLW\ RI FRPSOH[ G\QDPLF V\VWHPVZLWKERXQGDU\FRQGLWLRQVDQGFRQVWUDLQWV 7KHPDLQUHVXOWVREWDLQHGLQWKLVZRUNDUHVHOHFWLRQRIDVHWRISURJUDPDQG SRVLWLRQDO FRQWUROV IRU WKH SURFHVV GHVFULEHG E\ D OLQHDU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQLQDEVHQFHRIUHVWULFWLRQVRQWKHFRQWUROYDOXHVE\FRQVWUXFWLQJDJHQHUDO VROXWLRQ RI WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG GHWHUPLQDWLRQ RI SURJUDPDQGSRVLWLRQDOFRQWURODVZHOODVVROYLQJRSWLPDOSHUIRUPDQFHSUREOHPV LQWKHSUHVHQFHRIFRQVWUDLQWVRQWKHYDOXHVRIWKHFRQWURODQGSKDVHDQGLQWHJUDO FRQVWUDLQWV UHGXFLQJ WKH LQLWLDO ERXQGDU\ YDOXH SUREOHP ZLWK FRQVWUDLQWV WR D VSHFLDOLQLWLDORSWLPDOFRQWUROSUREOHPDQGFRQVWUXFWLQJPLQLPL]LQJVHTXHQFHVDQG E\ VXFFHVVLYHO\ QDUURZLQJ WKH UDQJH RI DGPLVVLEOH FRQWUROV VROYLQJ WKH RSWLPDO SHUIRUPDQFHSUREOHP 7KHVFLHQWLILFQRYHOW\RIWKHUHVXOWVREWDLQHGLVWKDWDJHQHUDOWKHRU\RIFRQWURO ODELOLW\DQGRSWLPDOVSHHGKDVEHHQFUHDWHGIRUDOLQHDURUGLQDU\GLIIHUHQWLDOHTXDWLRQ 4XRWHGOLWHUDWXUH .DOPDQ 5( ©2Q WKH JHQHUDO WKHRU\ RI FRQWURO V\VWHPVª 3URFHHGLQJV RI WKH , &RQJUHVV RI WKH ,QWHUQDWLRQDO )HGHUDWLRQ IRU $XWRPDWLF &RQWURO 9 ,, $FDGHP\RI6FLHQFHVRIWKH8665±3 .UDVRYVNLM117KHRU\RIPRWLRQFRQWURO±06FLHQFH±S $LVDJDOLHY 6$ 5HJLRQDO SUREOHPV RI RSWLPDO FRQWURO ± $OPDW\ 4D]DT XQLYHUVLW\±S $LVDJDOLHY6$$LVDJDOLHY760HWKRGVIRUVROYLQJERXQGDU\YDOXHSUREOHPV ±$OPDW\4D]DTXQLYHUVLW\±S $QDQ HYVNLM ,0 $QDKL 19 2YVHHYLFK $, 6\QWKHVLV RI OLPLWHG FRQWURO RI OLQHDUG\QDPLFDOV\VWHPVXVLQJWKHJHQHUDO/\DSXQRYIXQFWLRQ5HSRUWVRIWKH 5XVVLDQ$FDGHP\RI6FLHQFHV9ʋ 6HPHQRY-X02QFRPSOHWHFRQWUROODELOLW\RIOLQHDUQRQDXWRQRPRXVV\VWHPV 'LIIHUHQWLDOHTXDWLRQV9ʋS
.RURYLQ 6. .DSOLQ ,9 )RPLFKHY 99 0LQLPDO VWDELOL]HUV IRU OLQHDU G\QDPLFDOV\VWHPV5HSRUWVRI5$69ʋS $LVDJDOLHY 6$ &RQWUROODELOLW\ RI D FHUWDLQ V\VWHP RI GLIIHUHQWLDO HTXDWLRQV 'LIIHUHQWLDO(TXDWLRQV9ʋS $LVDJDOLHY 6$ 7KH JHQHUDO VROXWLRQ RI D FODVV RI LQWHJUDO HTXDWLRQV 0DWKHPDWLFDO-RXUQDO9ʋ S $LVDJDOLHY6$.DELGROGDQRYD$$2SWLPDOVSHHGRIQRQOLQHDUV\VWHPVZLWK UHVWULFWLRQV'LIIHUHQWLDOHTXDWLRQVDQGFRQWUROSURFHVVHVʋS $LVDJDOLHY 6$ %HORJXURY $3 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHG E\ D SDUDEROLF HTXDWLRQ ZLWK UHVWULFWHG FRQWURO 6LEHULDQ 0DWKHPDWLFDO-RXUQDO-DQXDU\)HEUXDU\9ʋS $LVDJDOLHY 6$ &RQVWUXFWLYH WKHRU\ RI ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHPV±$OPDW\4D]DTXQLYHUVLW\±S $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 7R WKH VROXWLRQ RI WKH )UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIRUDIXQFWLRQRIVHYHUDOYDULDEOHV 9HVWQLN.D]18VHUPDWPHKLQI±ʋ $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 7KHUPDO PDQDJHPHQW 9HVWQLN.D]18VHUPDWPHKLQI±ʋ S $LVDJDOLHY 6$ 6HYU\XJLQ ,9 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\DOLQHDUV\VWHPRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV 0DWKHPDWLFDO-RXUQDO9ʋ S $LVDJDOLHY 6$ 6HYU\XJLQ ,9 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV9HVWQLN.D]18 VHUPDWPHKLQI9ʋ S $LVDJDOLHY 6$ 6KDQJLWRYD 0( 7R WKH PDWKHPDWLFDO WKHRU\ RI FRQWUROOHG SURFHVVHV9HVWQLN.D]18VHUPDWPHKLQIʋ S $LVDJDOLHY 6$ 7R WKH 1DYLHU6WRNHV VROXWLRQ IRU D YLVFRXV LQFRPSUHVVLEOH IOXLG LQ DQ XQERXQGHG UHJLRQL 9HVWQLN .D]18 VHU PDW PHK LQI ʋ S $LVDJDOLHY6$$\D]EDHYD$07RFRQVWUXFWLQJRIRSWLPDOILOWHUIRUUDQGRP SURFHVVHV9HVWQLN.D]18VHUPDWPHKLQIʋ S $LVDJDOLHY 6$ $LVDJDOLHYD 66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV 'LIIHUHQWLDO (TXDWLRQVWʋS $LVDJDOLHY6$ &RQWUROODELOLW\ DQG 2SWLPDO &RQWURO LQ 1RQOLQHDU 6\VWHPV -RXUQDO RI &RPSXWHU DQG 6\VWHPV ± 6FLHQFHV ,QWHUQDWLRQDO ʋ S $LVDJDOLHY6$ $LVDJDOLHYD66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV 'LIIHUHQWLDO (TXDWLRQVYROʋS $LVDJDOLHY6$ %HORJXURY$3 &RQWUROODELOLW\ DQG 6SHHG RI WKH SURFHVV GHVFULEHGE\DSDUDEROLFHTXDWLRQZLWKERXQGHGFRQWURO6LEHULDQ0DWKHPDWLFDO -RXUQDOYROʋSS =XERY9,/HFWXUHVRQFRQWUROWKHRU\±06FLHQFHS *DEDVRY 5 .LRULOORYD )0 4XDOLWDWLYH WKHRU\ RI RSWLPDO SURFHVVHV ± 0 6FLHQFH±S
&KDSWHU,, 7+(25t t @ ZLWKERXQGDU\FRQGLWLRQV x
xt R n x
xt R n
DQGFRQWURO u L I R m ZKHUH x x ± IL[HG SRLQWV At Bt t I ± PDWULFHV ZLWK SLHFHZLVH FRQWLQXRXV
HOHPHQWV RI n u n n u k RUGHUV UHVSHFWLYHO\ IXQFWLRQ f x u t FRQWLQXRXV E\ VHW RI DUJXPHQWVDQGVDWLVILHVWKHFRQGLWLRQV 1RWH WKDW IRU DQ\ DEVROXWHO\ FRQWLQXRXV IXQFWLRQ xt t I DQG DQ\ FRQWURO u L I R m IXQFWLRQ f xt ut t L I R k $ORQJZLWKV\VWHP ZHFRQVLGHUDOLQHDUV\VWHPRIWKHIRUP y At y Bt wt t I yt x yt x k w L I R n n ZKHUH x R x R IURP wt w t wk t t I
6HOHFW WKH VHW RI DOO FRQWUROVIURP L I R k HDFK HOHPHQW RI ZKLFK WUDQVIHUV WKHWUDMHFWRU\RIWKHV\VWHP IURPWKHLQLWLDOVWDWH x R n WRWKHVWDWH x R n %DVHGRQWKHUHVXOWVJLYHQLQWKHILUVWFKDSWHUZHJLYHWKHIROORZLQJWKHRUHP t
7KHRUHPLet the matrix W t t
³ )t t Bt B t ) t t dt
of nu n order be
t
positive-definite. Then control w L I R k transfers the trajectory of the system (2.14) from a point x R n to the point x R n if and only if wt /
^w L I R
m
wt X t O t x x
(2.16)
`
N t zt X t I X X L I R k
where O t x x B t ) t t W t t >)t t x x @ N t B t ) t t W t t )t t
function z t X t I – solution of a differential equation At z Bt X t zt X L I R k
(2.17) The solution of the differential equation (2.14), corresponding to the control wt / is determined by the formula yt zt X O t x x N t z t X X X L I R k (2.18) where z
O t x x )t t W t t W t t x )t t W t t W t t )t t x N t )t t W t t W t t )t t .
7KH SURRI RI WKH WKHRUHP LV JLYHQ LQ WKH SUHYLRXV VHFWLRQ +HUH )t W T t T W T t ± IXQGDPHQWDO VROXWLRQ PDWUL[ RI D OLQHDU KRPRJHQHRXV V\VWHP [ At [ 1RWHWKDW Tt At T t T t I
n
&RQVLGHUWKHIROORZLQJRSWLPDOFRQWUROSUREOHPPLQLPL]HWKHIXQFWLRQDO t
³ X t O t x x N t zt X f yt ut t
J X u
dt o LQI
t
XQGHUFRQGLWLRQV At z Bt X t zt I
X L I R u L I R 7KHRUHP Let the matrix W t t ! . In order for system (2.11) to be controlled under conditions (2.12), (2.13), it is necessary and sufficient that the value J X u , where X u L I R k u L I R m – solution of optimization problem (2.19) – (2.21). 3URRI Necessity. /HW V\VWHP XQGHU FRQGLWLRQV EH PDQDJHDEOH/HWVVKRZWKDWYDOXH J X u /HW xt t x u t I ±VROXWLRQRIWKH GLIIHUHQWLDO HTXDWLRQ ZKHUH xt t x u x xt t x u x FRQWURO u u t t I WUDQVIHUVWKHWUDMHFWRU\RIWKHV\VWHP IURP x WR x 'HQRWH E\ w t f xt t x u u t t t I 1RZUHODWLRQV FDQEHZULWWHQDV x t t x u At xt t x u Bt w t t I >t t @ z
k
m
>t t @
xt t x u
x xt t x u
x u L I R m
:HLQWURGXFHWKHQRWDWLRQ yt xt t x u t I 7KHQ y At y B t w t t I y t x y t x $FFRUGLQJWR7KHRUHPWKHIXQFWLRQ w t / +HQFH w t X t O t x x N t z t X t I 7KHQWKHYDOXH J X u
t
³ X t O t x x N t zt X f yt u t t
dt
t
ZKHUH f yt u t t w t t I 1HFHVVLW\LVSURYHQ Sufficiency/HWWKHYDOXH J X u /HWVVKRZWKDWWKHSURFHVVGHVFULEHGE\ WKH GLIIHUHQWLDO HTXDWLRQ XQGHU FRQGLWLRQV LV FRQWUROODEOH ,Q IDFW WKH YDOXH J X u LI DQG RQO\ LI DOPRVW HYHU\ZKHUH IROORZLQJ HTXDOLW\ KROGVSODFH X t O t x x N t zt X f yt X u t t t I ZKHUH yt X zt X O t x x N t zt X t I /HW w t X t O t x x N t z t X f y t X u t t ZKHUH yt X x y t X x 1RZUHODWLRQV FDQEHZULWWHQDV y t X At yt X Bt w t yt x y t x ,W IROORZV WKDW yt X xt t x u xt x xt x 7KLV PHDQV WKDW V\VWHP LV FRQWUROODEOH XQGHU FRQGLWLRQV 6XIILFLHQF\ LV SURYHQ 7KH WKHRUHPLVSURYHG /HPPDLet the matrix W t t ! , function f x u t , x R n u R m , t I , is continuously differentiable by variables x u R n u R m , function F q t X T t x T t x N t zt X f y u t , where O t x x T t x T t x T t B t ) t t W t t T t
y
B t ) t t W t t )t t q X u z zt R k u R m u R n u R n ,
z C t x C t x N t zt , C t )t t W t t W t t , C t )t t W t t W t t )t t .
Then partial derivatives
wF q t >X T t x T t x N t z t f z C t x C t x N t z t u t @ , wX wF q t f u y u t >X T t x T t x N t zt f y u t @ , wu wF q t f x y u t >X T t x T t x N t zt f y u t @ , wz wF q t N t N t f x y u t >X T t x T t x N t z t f y u t @ . wzt
>
@
)RUPXODV FDQ EH REWDLQHG GLUHFWO\ E\ GLIIHUHQWLDWLQJ WKH IXQFWLRQ F q t E\YDULDEOH q
'HQRWHE\ § wF wF wF wF · ¸¸ q t R k u R m u R n u R n u I ¨¨ © wX wu wz wz t ¹ ,W FDQ EH VKRZQ WKDW LI WKH IXQFWLRQ f x u t x R n u R m t I LV WZLFH wF q t wq
F q q t
FRQWLQXRXVO\ GLIIHUHQWLDEOH E\ YDULDEOHV x u R n u R m WKHQ IXQFWLRQ F q t LV WZLFHFRQWLQXRXVO\GLIIHUHQWLDEOHE\ q DQGPDWUL[ * q t * q t
wF q t RI k m n u k m n RUGHU wq
/HPPD Let matrix W t t ! , function f x u t continuously differentiable by x u R n u R m , t I , and inequality is fulfilled F q q t F q q t q q t q q R k m n . Then the functional (2.19) under conditions (2.20), (2.21) is convex. If function f x u t twice continuously differentiable by x u R n u R m , t I , and inequality is fulfilled * q t * q t t , q q R k m n , t I , then the functional (2.19) under conditions (2.20), (2.21) is convex. 3URRI )RU DQ\ IL[HG t I UHODWLRQ LV D QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQIRUWKHFRQYH[LW\RIDVPRRWKIXQFWLRQ F q t E\YDULDEOH q LH F Dq D q t d DF q t D F q t
q q R N N
k m n D D >@
6LQFH WKH GLIIHUHQWLDO HTXDWLRQ LV OLQHDU IRU DQ\ X X L I R k YDOXH zt DX D X D zt X D zt X IRUDOO D >@ t I 7KHQ J DX D X D u D u t
³ F DX
D X Du D u z t DX D X z t DX D X t dt
t t
³ F DX
D X D u D u D z t X D z t X D z t X D zt X t dt d
t
t
t
t
t
d D ³ F q t dt D ³ F q t dt D J X u D J X u
ZKHUH u u L I R m X X L I R k GXHWRLQHTXDOLW\ 7KLVPHDQVWKDWWKH IXQFWLRQDO XQGHUFRQGLWLRQV LVFRQYH[ 6LPLODUO\WKHVHFRQGVWDWHPHQWRIWKHOHPPDFDQEHSURYHG,QIDFWIRUDQ\ t I FRQGLWLRQ LVHTXLYDOHQWWRWKHIDFWWKDWWKHIXQFWLRQ F q t FRQYH[E\ YDULDEOH q /HPPDLVSURYHG 'HILQLWLRQ Let's say that the derivative
wF q t satisfies the Lipschitz wq
condition on a variable q in the area of R N N k m n , if wF q 'q t wF q t d L 'q wX wX
wF q 'q t wF q t d L 'q wu wu
wF q 'q t wF q t d L 'q wz wz
wF q 'q t wF q t d L 'q wz t wz t
where Li const ! i , 'q 'X 'u 'z 'z t . 7KHRUHP Let the matrix W t t ! , function f x u t continuously differentiable by x u and partial derivative
wF q t satisfies the Lipschitz wq
condition. Then the functional (2.19) under the conditions (2.20), (2.21) is Fréchet differentiable, the gradient J cX u J Xc X u J uc X u L I R k u L I R m
at any point X u L I R k u L I R m can be calculated by the formula
wF qt t wF qt t , B t \ t J uc X u wX wu where qt X t ut z t X zt X , z t X , t I – solution of a differential equation J Xc X u
(2.20) when X X t , and function \ t , t I – solution of the adjoint system \
t
wF qt t A t \ wz
wF qt t dt , t I . wz t t
\ t ³
In addition, the gradient J cX u L I R k u L I R m satisfies Lipschitz condition
J cX u J cX u d l X X
u u
X u X u L I R k u L I R m
,
3URRI7KHIXQFWLRQDO GRHVQRWEHORQJWRWKHFODVVRINQRZQW\SHVRI IXQFWLRQDOV WKH /DJUDQJH IXQFWLRQDO WKH 0D\HU IXQFWLRQDO WKH %ROW IXQFWLRQDO 7KHUHIRUHDVHSDUDWHSURRIRIHDFKVWDWHPHQWRIWKHWKHRUHPLVUHTXLUHG /HW X t X t ht L I R k DQG z t X z t X h t I ± VROXWLRQV RI V\VWHP FRUUHVSRQGLQJ WR FRQWUROV X t X t ht /HW z t X h z t X 'z t t I 7KHQLQFUHPHQW 'z t z t X h z t X t I LVDVROXWLRQWRDGLIIHUHQWLDOHTXDWLRQ 'zt At 'zt Bt ht 'zt t I 7KHVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ FDQEHZULWWHQDV t
'z t
³ )t W BW hW dW
t
+HQFHZHJHWWKHHVWLPDWH t
t
t
t
'z t d ³ )t W BW hW dW d c ³ ht dt dc h
L
t I
§ t · ¨ ht dt ¸ ¨ t³ ¸ © ¹
ZKHUH c VXS )t W BW t d t W d t c c t t h L
/HW X u X h u 'u L I R u L I R 7KHQ WKH LQFUHPHQW RI WKH IXQFWLRQDO k
'J
J X h u 'u J X u
m
t
³ >F qt 'qt t F qt t @dt
t
ZKHUH
qt 'qt X t ht ut 'ut z t 'z t z t 'z t qt X t ut z t z t 6LQFHWKHIXQFWLRQ F q t KDVFRQWLQXRXVGHULYDWLYHVE\ q WKHQ F qt 'qt t F qt t h t FX qt T'qt t 'u t F u qt T'qt t 'z t F z qt T'qt t 'z t F z qt T'qt t 6XEVWLWXWLQJWKLVH[SUHVVLRQLQWRWKHULJKWKDQGVLGHRI ZHJHW
'J
t
³ >h t F X qt t 'u t F
u
@
qt t 'z t F z qt t 'z t F z t qt t dt
t
R R R R
ZKHUH t
R
³ h t >F X qt T'qt t F X qt t @dt
t t
³ 'u t >F
R
u
qt T'qt t F u qt t @dt
t
t
³ 'z t >F
R
z
qt T'qt t F z qt t @dt
t t
³ 'z t >F
R
z t
@
qt T'qt t F z t qt t dt
t
7KHIROORZLQJHVWLPDWHVDUHWUXH t
t
R d ³ ht FX qt T'qt t FX qt t dt d L ³ ht 'qt dt t
t
t
t
t
t
t
t
R d L ³ 'ut 'qt dt R d L ³ 'z t 'qt dt R d L ³ 'z t 'qt dt
&RQVLGHUWKHODVWWHUPIURP t
t
d 'z t \ t dt dt t
'z t ³ F z t qt t dt
'z t \ t ³
t
t
t
t
t
³ 'z t \ t dt ³ 'z t \ t dt
GXH WR WKH UHODWLRQ DQG WKH IDFW WKDW 'zt $V 'zt \ t t I DUH GHWHUPLQHGE\H[SUHVVLRQV WKHQ t
t
'z t ³ F z t qt t dt t
t
>
@
t
@
³ 'z t F z qt t A t \ t dt t
>
³ 'z t A t h t B t \ t dt t
t
t
t
³ h t B t \ t dt ³ 'z t F z qt t dt
6XEVWLWXWLQJWKLVYDOXHRIWKHODVWWHUPLQ ZHJHW 'J
t
³ ^h t >F X qt t B t \ t @ 'u t F
u
`
t
6LQFHWKHQRUPRILW 'qt
ht 'ut 'z t 'z t
qt t dt ¦ Ri i
t
³ 'qt
'qt
t
³ > ht 'ut 'zt 'zt @ dt
dt
t
t
WKHQFRQVLVWHQWO\DSSO\LQJWKHLQHTXDOLW\ a b d a b a t b t ZHJHW t
^
>
`
'qt d ³ > ht 'ut @ > 'zt 'z t @ dt d ht 'ut
@
t
>
t ª t º « ³ 'z t dt ³ 'z t dt » d ht 'ut «¬t »¼ t ZKHUH c PD[ c t t
@ t t >c
ht
@d c > ht
'u t
@
1RWLFHWKDW 'ut d 'qt ht d 'qt )URPHVWLPDWLRQVIRU Ri i ZH JHW
§ t · § t · R d L ³ ht 'qt dt d L ¨ ³ ht dt ¸ ¨ ³ 'qt dt ¸ ¨t ¸ ¨t ¸ t © ¹ © ¹ R d L 'qt t
L ht 'qt d L 'qt
§ t · § t · R d L ³ 'z t 'qt dt d L ¨ ³ 'z t dt ¸ ¨ ³ 'qt dt ¸ d ¨t ¸ ¨t ¸ t © ¹ © ¹ d L c t t ht 'qt d L c t t 'qt t
>
@
R d L c t t 'qt
$V 'qt d c ht 'ut WKHQ R
¦R d ¦ R i
i
i
>
d c L L L c t t L c t t
@ h t
'u
i
R
h t
/HW '[ h 'u '[
R '[
d
'u
c '[ '[
R R R R
7KHQ
c '[ o ZKHQ '[ o
ZKHUH c c >L L L c t t L c t t @ )URP IROORZV 7KHILUVWDVVHUWLRQRIWKHWKHRUHPLVSURYHG /HWV VKRZ WKDW JUDGLHQW J c[ [ X u VDWLVILHV WKH /LSVFKLW] FRQGLWLRQ ,QIDFWIURP ZHKDYH
F
J c[ J c[
X
qt 'qt t FX qt t B t '\ t F u qt 'qt t F u qt t
[
X u [
X u
,WIROORZVWKDW
J c[ J c[ d FX qt 'qt t FX qt t BPD[ '\ t
F u qt 'qt t F u qt t
ZKHUH B
PD[
VXS B t 6LQFH WKH SDUWLDO GHULYDWLYHV VDWLVI\ WKH /LSVFKLW] FRQ
t dt dt
GLWLRQVWKHLQHTXDOLW\
J c[ J c[ d L L 'qt BPD[ '\ t
7KHQ
J c[ J c[ d L L 'qt BPD[
J c[ J c[
t
³
t
t
'\ t t I
J c[ J c[ dt d L L ³ 'qt dt BPD[
t
d c L L '[
B
t
³ '\ t
PD[
t
³ '\ t
dt d
t
dt
t
ZKHUH 'q d c '[ '[ h 'u '[ h 'u $VIROORZVIURPWKHHTXDWLRQRIWKHDGMRLQWV\VWHP WKHIXQFWLRQ '\ t t I LVDVROXWLRQWRDGLIIHUHQWLDOHTXDWLRQ '\
>F z qt 'qt t F z qt t @ A t '\ t
'\ t '\ t ³ >F z qW 'qW W F z qW W @ A W '\ W dW
t
>
@
'\ t ³ F z t qt 'qt t F z t qt t dt
t
7KHVROXWLRQRIV\VWHP FDQEHZULWWHQDV t
^
`
t
)URP LWIROORZVWKDW t
t
'\ t d '\ t ³ F z qW 'qW W F z qW W dW APD[ ³ '\ W dW d t
t
t
t
t
t
t
t
d L ³ 'qt dt L ³ 'qW dW APD[ ³ '\ W dW d
t
d L c t t L c t t '[ APD[ ³ '\ W dW t
)URPKHUHDSSO\LQJWKH*URQZDOOOHPPDZHREWDLQ
'\ t d L c t t L c t t e APD[ t t '[ t I
6XEVWLWXWLQJWKHHVWLPDWH LQWRWKHULJKWKDQGVLGHRILQHTXDOLW\ ZHJHW
J c[ J c[ d c L L '[ BPD[ t t L L c e A t t '[ l '[
PD[
ZKHUH l
>c L L B
t
PD[
@
t L L c e APD[ t t APD[
VXS At 7KLV
t dt dt
LPSOLHVWKHHVWLPDWH 7KHWKHRUHPLVSURYHG %DVHGRQWKHIRUPXODV ± ZHFRQVWUXFWWKHIROORZLQJVHTXHQFHV X n X n D n J X X n un un un D n J u X n un n ZKHUHDUHWKHTXDQWLWLHV D n n DUHVHOHFWHGIURPWKHFRQGLWLRQ RU D g n D n PLQ g n D D t
g n D
J X n D J Xc X n un un D J uc X n un n
RU E LIIXQFWLRQDO J X u C H H L I R k u L I R m WKHQ
H d Dn d
H ! n l H
ZKHUH l ±/LSVFKLW]FRQVWDQWIURP 7KHRUHP Let the conditions of Theorem 3, the sequence, the sequence ^X n ` L I R k , ^un ` L I R m is determined by the ratios (2.43), (2.44). Then: 1) numeric sequence ^J X n un ` strictly decreases; J cX n un . 2) OLP no f If, in addition, inequality (2.27) is satisfied, the set
^X u H
M X u
J X u d J X u `
is bounded 3) sequences ^X n ` ^un ` are minimizing, i.e. OLP J X n un no f
LQI J X u ;
J
X u H
4) sequences ^X n `^un ` weakly converge to the set U where U X u H J X u J LQI J X u , X u H
^
`
U z , where – empty set;
5) The following estimate of the rate of convergence takes place d J X n un J d
l D n n
where D – set diameter M X u . 6) The controllability problem (2.11) - (2.13) has a solution if and only if J X u J
3URRI6LQFHWKHFRQGLWLRQVRI7KHRUHPDUHVDWLVILHGWKHIXQFWLRQDO J X u )UHFKHW FRQWLQXRXVO\ GLIIHUHQWLDEOH DQG JUDGLHQW J X u VDWLVILHV WKH /LSVFKLW] FRQGLWLRQ &RQVHTXHQWO\ J X u C H H L I R k u L I R m 6LQFH WKH YDOXH RIWKHIXQFWLRQDO J X u t WKHQ J X u ERXQGHGEHORZ $V g n D n J [ n D J c[ n J [ n g n D J [ n D J [ n ZKHUH [ n X n un J c[ n J Xc X n un J uc X n un WKHQIURP ZHKDYH J [ n J [ n t J [ n J [ n D J c[ n D D t n $V J [ C H [ X u [ [ H WKHQZHKDYHLQHTXDOLW\ J [ J [ t J c[ [ [
H
l [ [ [ [ H
+HQFHZKHQ [ [ n [ [ n D J c[ n ZHJHW J [ n J [ n D J c[ n t J c[ n [ n [ n D J c[ n
L
l D J c[ n
ZKHUH D ! )URP IROORZV l J [ n J [ n t D J c[ n D J c[ n l § · t PD[¨ D D ¸ J c[ n D ! © ¹
l · § ¨ D D ¸ J c[ n t ¹ ©
J c[ n t n l
,IIRUVRPHILQLWH n JUDGLHQW J [ n l n n VRWKDW OLP J c[ n 2ILQWHUHVWLVWKHFDVH
ZKHUHWKHPD[LPXPLVUHDFKHGZKHQ D WKHQ [ n [ n J c[ k k
no f
ZKHQ J [ n z IRUWKHILQLWH n 6LQFHWKHYDOXHRI J c[ n ! J [ n z WKHQIURP LW IROORZV WKDW WKH QXPHULFDO VHTXHQFH ^J [ n ` VWULFWO\ GHFUHDVHV 6LQFH WKH IXQFWLRQDO J [ [ H ERXQGHG EHORZ WKHQ WKH QXPHULF VHTXHQFH ^J [ n ` ERXQGHG EHORZ 7KHUHIRUH WKHUH LV D OLPLW OLP J [ n DQG IURP WKH H[LVWHQFH RI WKH OLPLW LW
no f
IROORZV WKDW OLP>J [ n J [ n @ 3DVVLQJ WR WKH OLPLW ZKHQ n o f IURP ZH no f
JHW OLP J c[ n 7KXVDVVHUWLRQVRIWKHWKHRUHPDUHSURYHG no f
%\WKHFRQGLWLRQRIWKHWKHRUHPLQHTXDOLW\ KROGVSODFH7KHUHIRUHWKH IXQFWLRQDO J [ C H LVFRQYH[$VIROORZVIURPVWDWHPHQW WKHYDOXHV J [ n J [ n J [ J [
J X u
FRQVHTXHQWO\ ^[ n ` ^X n un ` M X u $V M X u M [ ± ERXQGHG FRQYH[ FORVHGVHWLQDUHIOH[LYH%DQDFKVSDFH H L I R k u L I R m WKHQ M [ ZHDNO\ ELFRPSDFW &RQYH[ IXQFWLRQDO J [ C H ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ 7KHQ DFFRUGLQJ WR WKH :HLHUVWUDVV WKHRUHP WKH IXQFWLRQDO J [ [ M [ UHDFKHVWKHORZHUHGJHLH U z U M [ /HWVVKRZWKDWWKHVHTXHQFH ^[ n ` M [ LVPLQLPL]LQJ)URPWKHFRQYH[LW\ RIWKHIXQFWLRQDO J [ C M [ LWIROORZVWKDW J [ n J [ d J c[ n [ n [ H d J c[ n [ n [ d J c[ n D ZKHUH [ X u U D ±VHWGLDPHWHU M [ 3DVVLQJWRWKHOLPLWDW n o f IURP JLYHQWKDW J [ n o ZKHQ n o f ZHJHW OLP>J [ n J [ @ d D OLP J c[ n no f no f 7KHQ OLP J [ n J [ J no f
LQI J [ 7KHUHIRUH WKH VHTXHQFH ^[ n ` M [ LV
[ M [
PLQLPL]LQJ $V ^[ n ` M [ U M [ VHW M [ LVZHDNO\FRPSDFWWKHQWKHVHTXHQFH ^[ n `ZHDNO\FRQYHUJHVWRWKHVHW U 'HQRWH an J [ n J [ J J [ 7KHQ LQHTXDOLWLHV FDQ EH ZULWWHQDV an an t
J c[ n an d D J c[ n l
,WIROORZVWKDWWKHVHTXHQFH ^an `VDWLVILHVWKHFRQGLWLRQV a n !
an an t
an n l D
7KH IROORZLQJ OHPPD LV WUXH LI D QXPHULF VHTXHQFH ^an ` VXFK WKDW an ! an an t A an IRU DOO n t n A const ! WKHQ LQHTXDOLW\ KROGV WUXH an d
n n ! n An
$SSO\LQJWKLVOHPPDIURP ZHREWDLQ A an d
n l D
l D l D n J [ n J [ d n n n
7KXVZHKDYHSURYHGWKHDVVHUWLRQV ± RIWKHWKHRUHP7KHWKHRUHPLVSURYHG 7KH SUDFWLFDO LPSOHPHQWDWLRQ RI WKH DOJRULWKP IRU FRQVWUXFWLQJ VHTXHQFHV LV 7KHVWDUWLQJSRLQWLVVHOHFWHG [ t X t u t H :HVROYHWKHGLIIHUHQWLDOHTXDWLRQ z At z Bt X t z t I >t t @ /HW zt X t I ±VROXWLRQRIWKLVV\VWHP7KHQWKHYHFWRU zt X LVNQRZQ 'HWHUPLQHGWKHVROXWLRQRIWKHDGMRLQWV\VWHP \
wF q t t A t \ wz
t
wF q t t dt t I wz t t
\ t ³
ZKHUH q t X t u t z t X zt X /HW \ t X u t I EH D VROXWLRQ RI WKLV V\VWHP &DOFXODWHVWKHJUDGLHQW J c[ J Xc [ J uc [ ZKHUH J Xc [
wF q t t B t \ t X u wX
J uc [
wF q t t wu
7KHIROORZLQJDSSUR[LPDWLRQLVFRQVWUXFWHGDFFRUGLQJWRWKHIRUPXOD X t X t D J X [ u t u t D J u [ DQGVRRQ ([DPSOH)LQGDVROXWLRQWRWKHQH[WFRQWUROODELOLW\SUREOHP 7KHHTXDWLRQRIPRWLRQRIWKHV\VWHPKDVWKHIRUP x x x x u t I >@ %RXQGDU\FRQGLWLRQV x x x x &RQWURO u L I R )RUWKLVSUREOHP
e At
§ A ¨¨ © § T t ¨¨ ©
· §· ¸¸ B ¨¨ ¸¸ f x u t x u x ¹ ©¹ t· § t · ¸ T t e A t ¨¨ ¸¸ Ɏt W ¸¹ © ¹
§ · ¨¨ ¸¸ x © ¹
e A t W
§· ¨¨ ¸¸ ©¹
§ · e A t ¨¨ ¸¸ ©t ¹
0DWULFHV § t t · § · ¸ ¨¨ ¸¸ W t ¨¨ ¹ t ¸¹ © © t § t t · § · § · ¸¸ W ¨¨ W t ¨¨ ¸¸ a ¨¨ ¸¸ t t ¹ © © ¹ ¹ ©
W
³ ) t B B ) t dt
&RUUHVSRQGLQJOLQHDUFRQWUROOHGV\VWHP y
A y B wt
y
x y
ZKHUH
x
t >@
w L I R
§· § · A ¨¨ ¸¸ B ¨¨ ¸¸ ©¹ ¹ ©
§· ¨¨ ¸¸ ©¹
§ · ¨¨ ¸¸ x © ¹
x
$FFRUGLQJWR7KHRUHPZHKDYH O t x x t N t z t t z t z § t t t · ¸¸ N t © t t ¹
§ t t t t · ¨¨ ¸¸ © t t t t ¹ wt X t t t z t z t >@
O t x x ¨¨ y t
z t t t t t t z t t z
z t t t t t z t t z t >@
y t
7KHRSWLPL]DWLRQSUREOHP IRUWKLVH[DPSOHLVZULWWHQDVIROORZV PLQLPL]HWKHIXQFWLRQDO J X u
³ F qt t dt o LQI
XQGHUFRQGLWLRQV z
ZKHUH
z
> >z t t
z
X t z z t I >@ X L I R u L I R
@ X t t t z t z t t t z t t z @ u t
wt y t u t
F qt t
t
qt X t ut z t z t z z )XUWKHU DFFRUGLQJ WR WKH DOJRULWKP RXWOLQHG DERYH WKH VHTXHQFHV DUH EXLOW ^X n `^un ` n Lecture 8.&RQWUROODELOLW\RIQRQOLQHDUV\VWHPVZLWKOLPLWHGFRQWURO 7KHHTXDWLRQRIPRWLRQLV x At x Bt f x u t t I >t t @ ZLWKERXQGDU\FRQGLWLRQV xt x R n xt x R n DQGFRQWURO ut U t ^u L I R m ut V t R m t I ` ZKHUH x x ±IL[HGSRLQWV At Bt t I ±PDWULFHVZLWKSLHFHZLVHFRQWLQXRXV HOHPHQWV RI n u n n u k RUGHUV UHVSHFWLYHO\ f x u t f x u t f k x u t ± D IXQFWLRQWKDWLVFRQWLQXRXVLQWKHDJJUHJDWHRIDUJXPHQWVDQGVDWLVILHVFRQGLWLRQV WKHFRQWUROIURP L I R m DQGIRUHDFKYDOXH t I WDNHVDYDOXHIURPD JLYHQVHW V t IURP R m ,QSDUWLFXODUVHW U t ^ u L I R m D i t d ui t d Ei t i m ae t I `
ZKHUH D t D t D m t E t E t E m t ±VSHFLILHGFRQWLQXRXVIXQFWLRQV
$VLQWKHFDVHRIVROYLQJSUREOHPWKHFRUUHVSRQGLQJOLQHDUFRQWUROV\VWHP KDVWKHIRUP 7KHVHWRIDOOFRQWUROVHDFKHOHPHQWRIZKLFKWUDQVIHUV WKHWUDMHFWRU\RIWKHV\VWHP IURPWKHLQLWLDOVWDWH x WRWKHVWDWH x LV GHWHUPLQHGE\WKHIRUPXOD ZKHUH z t t I ±LVDVROXWLRQRIV\VWHP IXQFWLRQ y t t I LVGHWHUPLQHGE\IRUPXOD 7KH VROXWLRQ RI SUREOHP LV UHGXFHG WR DQ RSWLPL]DWLRQ SUREOHP PLQLPL]H WKHIXQFWLRQDO J X u
t
³ _ X t O t x x N t zt X f yt ut t _ dt o LQI
t
XQGHUFRQGLWLRQV At z Bt X t zt I
X L I R ut U t I 7KXVWKHVROXWLRQRIWKHFRQWUROODELOLW\SUREOHPIRUWKHV\VWHP LVUHGXFHGWRWKHVROXWLRQRIWKHRSWLPL]DWLRQSUREOHP 7KHRUHPLet the matrix W t t ! . In order for system (2.51) to be controlled under conditions (2.52), (2.53), it is necessary and sufficient that J X u , where X u L I R k u U – solution of optimization problem (2.54)-(2.56). 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP 1RWLFHWKDW 6LQFH WKH YDOXH J X u t X u L I R k uU WKHQ WKH YDOXH RI WKH IXQFWLRQDO XQGHU WKH FRQGLWLRQV LV OLPLWHG IURP EHORZ ,I J X u WKHQWKHVROXWLRQWRSUREOHPLV x t yt X zt X O t x x N t zt X t I X t O t x x N t z t X f yt X u t t { t I %DVHGRQWKHIRUPXODV ZHEXLOGVHTXHQFHV X n X n D n J X X n un un PU >un D n J u X n un @ n z
>t t @
k
H d Dn d
H ! n l H
ZKHUH l ±/LSVFKLW]FRQVWDQWIURP PU >K @ ±SURMHFWLRQRISRLQW K RQDFRQYH[ FORVHGVHW U 7KHRUHP Let the conditions of Theorem 3 be fulfilled and, moreover, let, U – convex closed set in L I R m , sequences ^X n ` L I R k , ^un ` U L I R m are determined by the ratios (2.57), (2.58). Then: numeric sequence ^J X n un ` strictly decreases; X n X n o , un un o when n o f . If, in addition, inequality (2.27) holds place, the set M X u
^X u L I R
k
is limited below sequences ^X n ` ^un ` are minimizing, i.e.
`
uU J X u d J X u
OLP J X n un
LQI J X u
J
no f
X u X
L I R k uU ;
sequences ^X n `^un ` weakly converge to the set U where U X u X J X u J LQI J X u U z , X u X
^
`
The following estimate of the rate of convergence is true d J X n un J d
m n m n
const !
The controllability problem (2.51)-(2.53) has a solution if and only if J X u
J
3URRI)URP IROORZVWKDW X n X n D n J Xc X n un X X n un un D n J uc X n un u un §X ·
§X ·
§X
L
X X L I R k
u u U
L
t
§ J c X u ·
·
:HGHQRWH T ¨¨ ¸¸ T n ¨¨ n ¸¸ T n ¨¨ n ¸¸ J cX n un ¨¨ X n n ¸¸ ©u ¹ © J uc X n u n ¹ © un ¹ © un ¹ 1RZUHODWLRQV FDQEHZULWWHQDV J cT n T T n
L
t
Dn
T n T n T T n
T T X
6LQFHWKHIXQFWLRQDO J X u C X WKHQWUXHLQHTXDOLW\ J T J T t J cT T T
H
+HQFHZKHQ T T n T T n ZHJHW J T n J T n t J cT n T n T n
l T T T T X
l T n T n
)URPUHODWLRQV WDNLQJLQWRDFFRXQW ZHKDYH § l · ¸¸ T n T n J T n J T n t ¨¨ © Dn ¹
t H T n T n n
7KLVLPSOLHVWKHDVVHUWLRQV RIWKHWKHRUHP7KHSURRIVRIDVVHUWLRQV ± RI WKH WKHRUHP DUH VLPLODU WR WKH SURRIV RI WKH FRUUHVSRQGLQJ DVVHUWLRQV RI 7KHR UHP ,W LV HDV\ WR VHH WKDW WKH IXQFWLRQDO J T C X LV FRQYH[ DQG ZHDNO\ VHPLFRQWLQXRXVVHW M X u ZHDNO\ELFRPSDFWVHW U LVQRWHPSW\ $V ^T n ` M X u WKHQ DOO ZHDN OLPLW SRLQWV ^T n ` EHORQJ WR WKH VHW U M X u )URP J T C X ± FRQYH[ IXQFWLRQDO LW IROORZV WKDW an J T n J T d c T n T n ZKHUH T X u U &RQVHTXHQWO\ OLP J T n J T LQI J T T X
no f
VHTXHQFH ^T n ` ^X n un ` X LV PLQLPL]LQJ )URP WKLV HVWLPDWH WDNLQJ LQWR DFFRXQW ZHREWDLQWKHDVVHUWLRQ RIWKHWKHRUHP7KHWKHRUHPLVSURYHG &RQVLGHUWKHSUREOHPRIFRQWUROODELOLW\ ZKHQWKHILQDOWLPH t LV QRW IL[HG ,W LV QHFHVVDU\ WR ILQG WKH ORZHVW YDOXH t t IRU ZKLFK WKH V\VWHP LVFRQWUROODEOHLHWKHUHLVDFRQWURO u t U t ZKLFKWUDQVIHUVWKH WUDMHFWRU\RIWKHV\VWHP FRPLQJIURPDJLYHQVWDUWLQJSRLQW x R n LQWLPH PRPHQW t WRDJLYHQSRLQW x xt LQWKHVKRUWHVWWLPH t t t ! t
7KXV WKH VROXWLRQ RI WKH RSWLPDO SHUIRUPDQFH SUREOHP LV D SDLU t u t t >t t @ ZKHUH u t U t ± VROXWLRQ RI FRQWUROODELOLW\ SUREOHP FRUUHVSRQGLQJWRWKHORZHVWYDOXH t RIHQGSRLQWLQWLPH t 6XSSRVHFRQWUROLVIRXQG u t U t t >t t @ t ! t IURPWKHVROXWLRQRIWKH FRQWUROODELOLW\SUREOHP ZKHUH t t ±NQRZQTXDQWLWLHV &KRRVH t t $FFRUGLQJ WR WKH DERYH DOJRULWKP E\ VROYLQJ WKH RSWLPL]DWLRQ SUREOHP ZH ILQG D SDLU X
u
X t >t t @ ,I IRU WKLV SDLU X
u
X YDOXH J X
u
WKHQ FKRRVH YDOXH t t t t DQG VROYHWKHRSWLPL]DWLRQSUREOHP ZLWKDIL[HG t t ,QFDVHWKHYDOXH J X
u
! SUREOHP LVVROYHGIRUWKHYDOXH t DQGVRRQ ([DPSOH &RQVLGHU WKH FRQWUROODELOLW\ SUREOHP RI ([DPSOH ZKHQ WKH YDOXHV U t ^ u L I R d u t d ae t >@ ` 7KHFRUUHVSRQGLQJRSWLPL]DWLRQSUREOHPKDVDIRUP J X u
³ F qt t dt o LQI
z
A z BX t z I
>@
X L I R ut U
6HTXHQFHV ^X n ` L I R ^un ` U DUHEDVHGRQWKHIRUPXODV
ª wF X n t un t z t X n z t X n z X n z X n t º B \ t X n un » wX ¬ ¼ F t u t z t z t z z t X X X X X w º ª n n n n n PU «un t D n n »¼ n wu ¬
X n t X n t D n « un t
ZKHUHWKHYDOXH D n VSHFLILFDOO\HTXDOWR D n l ! &DVH H D n l H l un t
° ® °u t D J c X u n u n n ¯ n
if un t D n J uc Xn un if un t D n J uc Xn un !
if d un t D n J uc Xn un d t I
)XQFWLRQ\ t X n un t I LVDVROXWLRQRIDGLIIHUHQWLDOHTXDWLRQ \ t v n un
wF v n un z t v n z t vn z v n z v n t A \ t v n un t I wz
\ t v n un
³
wF vn un z t vn z t vn z vn z vn t dt wz vn
)XQFWLRQ z t vn t I LVDVROXWLRQRIDGLIIHUHQWLDOHTXDWLRQ
zt vn
Azt vn Bvn t vn L I R z vn
t I
Lecture 9.&RQWUROODELOLW\RIQRQOLQHDUV\VWHPVZLWKERXQGDU\FRQGLWLRQV DQGOLPLWHGFRQWURO &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\SUREOHPWKHHTXDWLRQRIPRWLRQKDVD IRUP x
At x Bt f x u t t I >t t @
ZLWKERXQGDU\FRQGLWLRQV
xt S x
x
xt S x x S R n
ZLWKOLPLWDWLRQVRQFRQWUROYDOXHV
ut U t ^u L I Rm ut V t Rm ae t I `
)LQG FRQWURO ut U t ZKLFK WUDQVIHUV WKH WUDMHFWRU\ RI WKH V\VWHP RXWJRLQJIURPWKHVWDUWLQJSRLQW x xt S R n DWWKHPRPHQWRIWLPH t WRWKH SRLQW x xt S R n DWWKHPRPHQWRIWLPH t ZKHUH t t t ! t IL[HGSRLQWVLQ WLPH +HUH S S JLYHQ FRQYH[ FORVHG VHWV LQ R n QRW H[FOXGHG WKH FDVH ZKHQ x x S R n 7KHVROXWLRQRIWKLVSUREOHPFDQEHUHGXFHGWRWKHVROXWLRQRIWKHIROORZLQJ RSWLPL]DWLRQSUREOHPPLQLPL]HWKHIXQFWLRQDO t
J v u x x
³ _ vt O t x x N t zt v f yt ut t _
dt o LQI
t
XQGHUFRQGLWLRQV z
At z Bt vt zt t I >t t @
v L I R ut U t x S x S k
+HUH
O t x x T t x T t x yt zt v C t x C t x N t zt v
ZKHUH y t y t w t I LVDVROXWLRQRIDGLIIHUHQWLDOHTXDWLRQ y
At y Bt wt yt
x S yt
x S w L I R k
IXQFWLRQ wt / 7KHRUHPLet matrix W t t ! . In order for the system (2.64)-(2.69) to be controllable, it is necessary and sufficient that the value J v u x x where v u x x L I R k uU u S u S solution of optimization problem (2.67)-(2.69). 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP W t t ! vector function f x u t x R n /HPPD Let matrix u R m t I continuously differentiable by variables x u R n u R m function
F q t _ vt T t x T t x N t z t v f zt v C t x C t x N t zt v ut t _ q v u x x zt v zt v Then partial derivatives F v q t Fu q t F z q t F z t q t are determined by
formulas (2.23) - (2.26), respectively, and partial derivatives F x q t >T t C t f y u t @>v T t x T t x N t zt x f y u t @ )RUPXODV FDQ EH REWDLQHG GLUHFWO\ E\ GLIIHUHQWLDWLQJ WKH IXQFWLRQ F q t 'HQRWHE\ F q q t Fv Fu F x F x F z F z t q t R k m n u I /HPPD Let W t t ! U t L I R m S R n S R n convex closed sets. Function f x u t continuously differentiable by x u and inequality holds place F q q t F q q t q q ! t q q R k m n Then the functional (2.67) under the conditions (2.68), (2.69) is convex. 7KHSURRIRIWKHOHPPDLVVLPLODUWRWKHSURRIRIWKHOHPPD 'HILQLWLRQ Let's say that the derivative F q q t satisfies the Lipschitz condition by a variable q in the area R N N k m n , if F x q t >T t C t f x y u t @>v T t x T t x N t zt x f y u t @
x
_ Fv q 'q t Fv q t _ d L _ 'q _ _ Fu q 'q t Fu q t _ d L _ 'q _ _ F z q 'q t F z q t _ d L _ 'q _ _ F z t q 'q t F z t q t _ d L _ 'q _ _ F x q 'q t F x q t _ d L _ 'q _ _ F x q 'q t F x q t _ d L _ 'q _
where Li const ! i norm _ 'q _ _ 'v 'u 'x 'x 'z 'zt _ W t t ! , function f x u t is continuously 7KHRUHP Let matrix x u R n u R m and partial derivative F q q t satisfies differentiable by variables the Lipschitz condition. Then the functional (2.67) under the conditions (2.68), (2.69) is Frechet differentiable, the gradient J cv u x x J vc v u x x J uc v u x x J cx v u x x J xc v u x x
L I R k u L I R m u R n u R n
H
at any point v u x x L I R uU u S u S X can be calculated by the formula k
J vc v u x x J xc v u x x
F v qt t B t \ t J uc v u x x t
³F
x
qt t dt J xc v u x x
t
F u qt t
t
³F
x
qt t dt
t
where qt vt ut x x zt v zt v zt v t I is the solution of the differential equation (2.68), and the function \ t t I adjoint system \
F z qt t A t \ \ t
t
³ F z t qt t dt t I
t
In addition, the gradient J c[ H satisfies Lipschitz condition __ J c[ J c[ __H d l __ [ [ __ X [ [ X
7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP %DVHG RQ WKH IRUPXODV ZH EXLOG VHTXHQFHV ^vn ` ^un ` ^x n ` ^xn ` DFFRUGLQJWRWKHUXOHV
vn x n
vn D n J vc vn un x n xn un PU >un D n J uc vn un x n xn @ PS > x n D n J xc vn un x n xn @ xn PS > xn D n J cx vn un x n xn @
n H d D n d
H ! l H
ZKHUH l const ! FRQVWDQWRI/LSVFKLW]IURP 7KHRUHP Let the conditions of Theorem 8, the sequence ^vn ` L I R k ^un ` U ^x n ` S ^xn ` S are determined by the formula (2.76). Then: 1) numeric sequence ^J vn un x n xn ` strictly decreases; 2) __ vn vn __o __ un un __o _ x n x n _o _ xn xn _o when n o f If, in addition, inequality (2.72) holds place, the set M v u x x ^v u x x X J v u x x d J v u x x ` is bounded: ^vn ` ^un ` ^x n ` ^xn ` are minimizing, i.e. 3) sequences OLP J vn un x n xn n of
J
LQI J v u x x v u x x X X
4) sequences
V
^vn ` ^un ` ^x n ` ^xn ` weakly converging to the set ^v u x x X J v u x x J LQI J v u x x v u x x X V z
5) the following estimate of the convergence rate is valid d J v n u n x n xn J d
m n m n
const !
6) the controllability problem (2.64)-(2.66) has a solution if and only if J 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP &RQVLGHUWKHFRQWUROODELOLW\SUREOHP ZKHQWKHILQDOPRPHQWRI WLPH t LV QRW IL[HG t IL[HG ,W LV QHFHVVDU\ WR ILQG WKH ORZHVW YDOXH t t IRU ZKLFKWKHV\VWHP LVFRQWUROODEOHLHWKHUHLVDFRQWURO u t U t SRLQWV x S x S VXFK WKDW WKH WUDMHFWRU\ RI WKH V\VWHP LQ WKH VKRUWHVW WLPHLVWUDQVIHUUHGIURPWKHVWDUWLQJSRLQW x S DWWKHPRPHQWRIWLPH t WRWKH SRLQW x S LQWKHVKRUWHVWWLPH t t t ! t 7KXVWKHVROXWLRQRIWKHSUREOHPRIRSWLPDOVSHHGLVWKHIRXU t u t x x ZKHUH u t x x VROXWLRQ RI FRQWUROODELOLW\ SUREOHP FRUUHVSRQGLQJWRWKHORZHVWYDOXH t RIHQGSRLQWLQWLPH /HWWKUHHEHIRXQG u t x x U u S u S t >t t @ t ! t IURPWKHVROXWLRQRI WKH FRQWUROODELOLW\ SUREOHP ZKHUH t t NQRZQ TXDQWLWLHV &KRRVH t t $FFRUGLQJWRWKHDERYHDOJRULWKPE\VROYLQJWKHRSWLPL]DWLRQSUREOHP ZH ILQG WKH IRXU v
u
x
x
X t >t t @ ,I IRU WKLV IRXU YDOXH J v
u
x
x
WKHQ FKRRVH YDOXH t t t t ,Q FDVH WKH YDOXH J v
u
x
x
! WKH FRQWUROODELOLW\ SUREOHP LV VROYHG IRU WKH YDOXH t DQGVRRQ ([DPSOH&RQVLGHUWKHFRQWUROODELOLW\SUREOHPRI([DPSOHZKHQ U ^u L I R d ut d ɩɜ t >@`
S
^ x
x x R x x d `
S ^x x x R x x d ` 6HWV U L I R S R S R DUHERXQGHGFRQYH[DQGFORVHG
$V T t t t T t t t § t t t t t · ¸ ¨ ¨ t t t t t ¸ ¹ © § t t t t · ¸ N t t t N t ¨¨ ¸ © t t t t ¹
§ t t t t t · ¸ C t C t ¨¨ t t ¸¹ © t t
WKHQ
wt vt O t x x N t z v vt t x t x t x t x t z v t z v § y t · yt ¨¨ ¸¸ z t v O t x x N t z v t >@ © y t ¹ y t z t v t t x t t t x t t x
t t t x t t z v t t z v y t
z t v t t x t t x t t x
t t t x t t z v t t z v t >@
7KHQWKHSDUWLDOGHULYDWLYHVDUHHTXDO
wF q t > vt T t x T t x N t z v y t u t @ wv wF q t u > vt T t x T t x N t z v y t u t @ wu §y · wF q t >T t C ¨¨ ¸¸@> vt T t x T t x N t z v y t u t @ wx © ¹
§y · >T t C ¨¨ ¸¸@> vt T t x T t x N t z v y t u t @ © ¹ §y · wF q t ¨¨ ¸¸>vt T t x T t x N t z v y t u t @ wz © ¹
wF q t wx
§y · > N t N t ¨¨ ¸¸@> vt T t x T t x N t z v y t u t @ © ¹ x § · §x · ¨¨ ¸¸ x ¨¨ ¸¸ 1H[WZHEXLOGVHTXHQFHV ^vn ` ^un ` ^x n ` ^xn ` DFFRUGLQJ x © x ¹ © ¹
wF q t wzt
ZKHUH x
WRWKHIRUPXOD WDNLQJLQWRDFFRXQWWKHUDWLRV
Lecture 10.&RQWUROODELOLW\RIQRQOLQHDUV\VWHPV ZLWKSKDVHUHVWULFWLRQV &RQVLGHUWKHIROORZLQJFRQWUROODELOLW\SUREOHPWKHHTXDWLRQRIPRWLRQKDVD IRUP x At x Bt f x u t t I >t t @ ZLWKERXQGDU\FRQGLWLRQV x xt S R n x xt S R n x x S R n FRQWURO ut U t ^u L I Rm ut V t Rm ae t I `
LQWKHSUHVHQFHRISKDVHUHVWULFWLRQV
Gt ^x R n J t d F x t d G t t I `
x t G t
)LQG FRQWURO ut U t ZKLFK WUDQVIHUV WKH WUDMHFWRU\ RI WKH V\VWHP FRPLQJIURPWKHVWDUWLQJSRLQW x xt S DWWKHPRPHQWRIWLPH t WRWKHSRLQW x xt S DWWKHPRPHQWRIWLPH t ZKHUH t t t ! t DUHIL[HG S S JLYHQ FRQYH[ FORVHG VHWV ZKLOH WKH VROXWLRQ RI HTXDWLRQ LV RQ WKH VHW Gt R n t I 6HW U t L I R m ERXQGHGFRQYH[DQGFORVHGQRWH[FOXGLQJD PL[HGUHVWULFWLRQ x x S R n 7KH VROXWLRQ RI WKLV SUREOHP FDQ EH UHGXFHG WR WKH VROXWLRQ RI WKH RSWLPL]DWLRQSUREOHPPLQLPL]HWKHIXQFWLRQDO J v u x x Z
t
³ >_ vt O t x x N t zt v f y t ut t _
t
_ Z t F y t t _ @ dt o LQI
XQGHUFRQGLWLRQV At z Bt vt zt
t I
v L I R ut U t x S x S S Z t :t ^Z L I R J t d Z t d G t ae t I ` ZKHUH J t J t J S t G t G t G S t VSHFLILHGFRQWLQXRXVIXQFWLRQV 7KHRUHP Let matrix W t t positively defined. In order for system (2.77) - (2.80) to be controllable, it is necessary and sufficient that the value J [ , where [ v u x x Z X L I R r uU u S u S u : optimal control of (2.81)-(2.84). 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP /HPPD Let matrix W t t ! , functions f x u t F x t x R m t I continuously differentiable by variables x u R n u R m , function z
>t t @
k
* q t
F q t _ Z F y u t _ _ v t O t x x N t z t v
f y u t _ _ Z F y u t _ q
v u x x z t v z t v Z
R u R u R u R u R u R O t x x T t x T t x t I k
m
n
n
n
S
Then partial derivatives * v q t
F v q t *u q t
* x q t
F x q t C t F y t >Z F y t @
* x q t
F x q t C t Fx y t >Z F y t @
* z q t
F z q t F y t >Z F y t @
* z t q t
Fu q t *Z q t
>Z F y u t @
x
x
F z t q t N t Fx y t >Z F y t @
where y t z t C t x C t x N t z t v t I 7KH SDUWLDO GHULYDWLYHV FDQ EH REWDLQHG E\ GLUHFWO\ GLIIHUHQWLDWLQJ WKH LQWHJUDQGIURP HTXDOWR * q t 'HQRWHE\ * q q t *v *u * x * x * z * z t *Z q t R N u I ZKHUH N k m s n /HPPD Let matrix W t t ! , functions f x u t F x continuously differentiable by x u , U t S S :t convex closed sets and the inequality holds place * q q t * q q t q q ! t q q R N Then the functional (2.81) under conditions (2.82) - (2.84) is convex. The proof of the lemma is similar to the proof of Lemma 2 'HILQLWLRQ Let's say that the derivative * q q t satisfies the Lipschitz condition by a variable q in the area of R N N k m s n , if
_ * v q 'q t * v q t _ d L _ 'q _ _ * u q 'q t * u q t _ d L _ 'q _ _ * x q 'q t * x q t _ d L _ 'q _ _ * x q 'q t * x q t _ d L _ 'q _ _ * z q 'q t * z q t _ d L _ 'q _ _ * z t q 'q t * z t q t _ d L _ 'q _ _ *Z q 'q t *Z q t _ d L _ 'q _
where Li const ! i _ 'q _ _ 'v 'u 'x 'x 'z 'zt 'Z _ 7KHRUHP Let matrix W t t ! , functions f x u t F x continuously differentiable by variables x u , and partial derivative * q q t satisfies the Lipschitz condition. Then the functional (2.81) under the conditions (2.82)-(2.84) is differentiable in the Frechet sense, the gradient J c[ J vc [ J uc [ J xc [ J xc [ J Zc [ L I R k u L I R m u R n u R n u L I R S H
at any point [ X
L I R k uU u S u S u : H can be calculated by the formula
J vc [ * v q t B t \ t J uc [ * u q t J xc [
t
³*
x
qt t dt
t
J xc [
t
³*
x
qt t dt J Zc [ *Z qt t
t
where qt vt ut x x zt v zt v Z t z t v t I solution of the differential equation (2.82) when v vt , and function \ t t I is a solution of adjoint system \
t
* z qt t A t \ \ t ³ * z t qt t dt t I t
In addition, the gradient J c[ H satisfies Lipschitz condition __ J c[ J c[ __ d l __ [ [ __ [ [ X
7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP /HW [ v u x x Z X L I R k uU u S u S u : VRPH IL[HG SRLQW %DVHGRQWKHIRUPXODV ZHFRQVWUXFWWKHIROORZLQJVHTXHQFHV vn x n
Zn
vn D n J nc [ n un PU >un D n J nc [ n @ PS > x D n J xc [ n @ xn PS > x D n J xc [ n @
H ! P: >Zn D n J Zc [ n @ D n d l H
/LSVFKLW] FRQVWDQW IURP [ n vn un x n xn Z n X Pu >@ PS >@ PS >@ P: >@ SURMHFWLRQV RI SRLQWV RQ VHWV U S S : UHVSHFWLYHO\ $V U L I R m S R n S R n : L I R S FRQYH[ FORVHG VHWV WKHQ HDFK SRLQW KDVDXQLTXHSURMHFWLRQRQWRWKHVHVHWV 7KHRUHP Let the conditions of the theorem 11 be satisfied, U S S : convex closed sets, sequence ^[ n ` X is determined by the formula (2.91). Then: 1. numerical sequence ^J [ n ` X strictly decreases; 2. __ [ n [ n __o when n o f If, moreover, inequality (2.87) holds place, the set M [ ^[ X J [ d J [ ` is bounded then: 3. sequence ^[ n ` X is minimizing, i.e. OLP J [ n J LQI J [
ZKHUH
l
[X
no f
4. sequence
^[ n ` X
X ^[ X J [
J
weakly
converges
to
set
weakly
LQI J [ ` X z [ n o [ when n o f [ X
5. The following estimate of the rate of convergence is valid d J [ n J d
m n m n
const !
The controllability problem (2.77) - (2.80) has a solution if and only if J [ . 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP &RQVLGHU WKH SUREOHP ZKHQ WKH ILQDO PRPHQW RI WLPH t QRW IL[HG t IL[HG ,W LV QHFHVVDU\ WR ILQG WKH ORZHVW YDOXH t t IRU ZKLFK WKH V\VWHP LV FRQWUROODEOH LH WKHUH LV D FRQWURO u t U t SRLQWV x S x S VXFKWKDWWKHWUDMHFWRU\RIWKHV\VWHP LQWKHVKRUWHVWWLPHLV WUDQVIHUUHG IURP WKH VWDUWLQJ SRLQW x S DW WKH PRPHQW RI WLPH t WR WKH SRLQW x S LQWKHVKRUWHVWWLPH t t ZKLOHWKHVROXWLRQRIWKHV\VWHP GRHVQRW OHDYHVHW G t t I 7KXV WKH VROXWLRQ RI WKH SUREOHP RI RSWLPDO SHUIRUPDQFH LV WKH ILYH v t u t x x Z t DQG IXQFWLRQ x t t x x Z G t t >t t @ FRUUHVSRQGLQJ WR WKH VPDOOHVW YDOXH t HQG SRLQW RI WLPH ZKHUH v t u t x x Z t X VROXWLRQRIRSWLPL]DWLRQSUREOHP
/HW ZH IRXQG ILYH v t u t x x Z t [ X t >t t @ t ! t IURP WKH VROXWLRQ RI WKH RSWLPL]DWLRQ SUREOHP ZKHUH t t NQRZQ TXDQWLWLHV J [ &KRRVH t t $FFRUGLQJ WR WKH DERYH DOJRULWKP E\ VROYLQJ WKH RSWLPL]DWLRQ SUREOHP ZH ILQG v
t u
t x
x
Z
t X t >t t @ ,I YDOXH J v
u
x
x
Z
WKHQ ZH FKRRVH YDOXH t t t t ,Q FDVH WKH YDOXH J v
u
x
x
Z
! WKHQ WKH RSWLPL]DWLRQSUREOHP LVVROYHGIRUWKHYDOXH t t DQGVRRQ ([DPSOH&RQVLGHUWKHFRQWUROODELOLW\SUREOHPRI([DPSOHZKHQ U
^u L I R d u t d ae t >@`
S
^x
x x R x x d `
x x R x x d ` R
S ^x
G t ^x x x R d x t d d x t d t >@`
)RUWKLVH[DPSOH § · ¸¸ C I R G t © ¹
J t ¨¨
§ · ¨¨ ¸¸ C I R s © ¹
§x · § · ¸¸ F x t ¨¨ ¸¸ Fu y t Fx y t ¨¨ x © ¹ © ¹ Z t § · Z t ¨¨ ¸¸ L I R Z t © ¹ :t ^Z L I R d Z t d d Z t d ɩɜ t >@`
7KHRSWLPL]DWLRQSUREOHP LVZULWWHQDVIROORZVPLQLPL]HWKH IXQFWLRQDO J v u x x Z
³ >_ vt O t x x N t z v y
t u t _
_ Z t y t _ _ Z t y t _ @ dt o LQI
XQGHUFRQGLWLRQV z z vt z z t I >@ v L I R ut U x S x S
z
Z t :t ^Z L I R d Z t d d Z t d ɩɜ t I `
3DUWLDOGHULYDWLYHVDUHHTXDO * q t _ v O t x x N t z v y u _ _ Z y _ _ Z y _ * v q t F v q t * u q t F u q t *Z Z y *Z Z y
§ § ·§ Z y ·
F x q t C t ¨¨ ¸¸¨¨ Z y ¸¸ * x F x q t C t ¨¨ © ¹ ¹© © § ·§ Z y · § ¸¸ * z t F z t q t N t ¨¨ * z q t F z q t ¨¨ ¸¸¨¨ © ¹© Z y ¹ © * x
· § Z y · ¸ ¸¨ ¸¹ ¨© Z y ¸¹
·§ Z y · ¸ ¸¨ ¸¹¨© Z y ¸¹
ZKHUH Fv Fu F x F x F z F z t y t y t t I DUH GHWHUPLQHG E\ WKH H[SUHVVLRQV JLYHQ LQ H[DPSOH 0DWULFHV T t T t C t C t N t N t WKH VDPH DV LQ H[DPSOH
6HTXHQFHV ^vn ` ^un ` ^xn ` ^xn ` ^Zn ` ^Z n ` DUHGHWHUPLQHGE\WKHUXOHV vn t D n >* v qn t t B t \ n t @ u n t
vn t
PS > x n D n ³ * x qn t t dt @ xn
x n
Zn
P: >Zn t *Z qn t t @ Z n
PU >u n t D n *u qn t t @
PS > xn D n ³ * x qn t t dt @
P: >Z n t *Z qn t t @ n
ZKHUH qn t vn t un t xn xn z t vn z vn Zn t Z n t Zn t : ^Z L I R d Z t d ɩɜ t >@` Z n t : ^Z L I R d Z t d ɩɜ t I ` Z Z Z : Lecture 11.&RQWUROODELOLW\RIQRQOLQHDUV\VWHPVZLWKSKDVH DQGLQWHJUDOFRQVWUDLQWV6HPLQDUOHVVRQ &RQVLGHUDFRQWUROOHGSURFHVVGHVFULEHGE\DQRUGLQDU\GLIIHUHQWLDOHTXDWLRQ x At x Bt f x u t t I >t t @ ZLWKERXQGDU\FRQGLWLRQV x xt S x xt S x x S R n LQWKHSUHVHQFHRISKDVHUHVWULFWLRQV xt G t G t ^x R n J t d F x t d G t t I ` DVZHOODVLQWHJUDOFRQVWUDLQWV g j u x xt xt d c j j m g j u x xt xt c j j m m t
g j u x xt xt
³f
oj
xt u t xt xt t dt j m
t
DQGOLPLWDWLRQVRQFRQWUROYDOXHV u t U t ^u L I R m u t V t ae t I `
3UREOHPFind the necessary and sufficient conditions for the existence of a system solution (2.92)-(2.97). 3UREOHPFind a solution to the system (2.92)-(2.97). 7UDQVIRUPDWLRQ /HW WKH YHFWRU f f f m :H LQWURGXFH D YHFWRU IXQFWLRQ x t x t xm t t I LQWKHIROORZLQJZD\
t
x t
³f
xW u W x x W dW t I
t
,WIROORZVWKDW
Q
x t
f xt ut x x t t I
x t
x t
^c R
m
cj
c Q
c j d j j m c j
c j j m m d j t j m`
j m d t ZKHUH c c cm d d d m DQG g j u x x x c j d j XQNQRZQYHFWRU1RZWKHLQLWLDOSUREOHP LVZULWWHQLQWKHIRUPVHH
At x B t f x u t t I
x x
f x u x x t x t
x x S u S x t Q xt G t ut U t
,QWURGXFLQJWKHIROORZLQJYHFWRUVDQGPDWULFHV § At
§x·
O
·
§ B t ·
n m ¸ B t ¨ ¸ P ¨¨ ¸¸ A t ¨¨ ¸ ¨ O ¸ B ©x¹ © O m n O m m ¹ © m k ¹
P
I n Onm P
Om n I m
§ O n m · ¨ ¸ ¨ Im ¸ © ¹
ZKHUH Or q UHFWDQJXODUPDWUL[RI r u q RUGHUZLWK]HURHOHPHQWV I n I m LGHQWLW\ PDWULFHV RI n u n m u m RUGHUV DFFRUGLQJO\ WKH V\VWHP FDQ EH ZULWWHQLQWKHYHFWRUIRUP P A t P B t f P P u t B f P P u x x t P P t P P t S u S P P t P P t c Q P P t G t ut U t t I /LQHDU FRQWUROOHG V\VWHP $ORQJ ZLWK WKH V\VWHP ZH FRQ VLGHUDOLQHDUFRQWUROOHGV\VWHP y A t y B t w t B t w t t I >t t @ y t P t P y t P t P m k w L I R w L I R ZKHUH
P t
P
§ x t · ¸¸ ¨¨ © x t ¹
/HW PDWUL[ wt
§ x · § xt · § x · ¸ ¨ ¸ ¨ Om ¸ P t P ¨¨ x t ¸ ¨¨ c ¸¸ P S Om P S u Q © ¹ © ¹ © ¹ B t B t B RI n m u k m RUGHU DQG YHFWRU
w t w t L I R k m %DVHGRQWKHLQLWLDOGDWDRIWKHSUREOHPZHGHILQH
WKHIROORZLQJPDWULFHVDQGYHFWRUV a
) t t P P P P R n m W t t
t
³ ) t t B t B
t ) t t dt
t t
³ ) t W B W B
W t t
W ) t W dW W t t W t t W t t t I
t
O t P P
B t ) t t W t t a N t
B t ) t t W t t ) t t
§ B t ) t t W t t ) t t · § N t · ¨ ¸ ¨ ¸ O t P P ¨ B t ) t t W t t ) t t ¸ ¨ N t ¸ ¹ © ¹ © ) t t W t t W t t P ) t t W t t W t t ) t t P N t
) t t W t t W t t ) t t t I
ZKHUH ) t W T t T W T W IXQGDPHQWDO VROXWLRQ PDWUL[ RI D OLQHDU KRPRJHQHRXVV\VWHPK A t K 7KHRUHPLet matrix W t t ! . Then control w L I R k m transfers the trajectory of system (2.107)-(2.109) from any given starting point P R nm in any given final state P R nm , if and only if
vt O t P P N t z t v
wt 6 ^w L I R k m wt v L I R
k m
t I `
where v L I R k m arbitrary function and function z t z t v t I solution of a differential equation z A t z B t vt z t t I The solution of the differential equation (2.107) corresponding to the equation wt 6 , has the form
y t
z t O t x x N t z t v t I
7KHSURRIRIVLPLODUWKHRUHPVLVJLYHQLQWKHSUHYLRXVVHFWLRQV1RWHWKDWWKH FRPSRQHQWVRIWKHIXQFWLRQYHFWRU wt 6 DUHHTXDO w t v t B t ) t t W t t a N t z t v t I
w t v t B t ) t t W t t a N t z t v t I ZKHUH vt v t v t t I :HLQWURGXFHWKHIROORZLQJEORFNPDWUL[ § 3 t · § S t · ) t t W t t ) t t ¨¨ ¸¸ ) t t W t t ¨¨ ¸¸ © 3 t ¹ © S t ¹ ) t t W t t W t t 3 t 3 t ) t t W t t W t t ) t t 3 t 3 t B t 3 t T t T t 3 t T t T t B t S t
D t D t S t
D t D t t I
1RZ IXQFWLRQV w t w t t I IURP UHVSHFWLYHO\ FDQ EH UHSUHVHQWHGDV w t v t D t x T t x T t c N t z t v t I w t v t D t x T t x T t c N t z t v t I )XQFWLRQ y t t I GHWHUPLQHGE\WKHIRUPXOD FDQEHZULWWHQDV y t z t 3 t x 3 t x 3 t c N t z t v t I /HPPD/HWPDWUL[ W t t ! 7KHQWKHERXQGDU\YDOXHSUREOHP LVHTXLYDOHQWWRWKHIROORZLQJSUREOHP w t v t D t x T t x T t c N t z t v f P y t u x x t t I w t v t D t x T t x T t c N t z t v f P y t u x x t t I z
A t z B t v t B v t z t t I
v L I R v L I R x S x S c Q ut U t k
m
Z t :t ^Z L I R S J t d Z t d G t ɩɜ t I ` Z t F y t t t I ZKHUH w t w t yt t I LVGHWHUPLQHGE\IRUPXODV UHVSHFWLYHO\
7KH SURRI RI WKH WKHRUHP IROORZV IURP WKH HTXLYDOHQFH RI WKH RULJLQDO SUREOHP WR WKH SUREOHP 7KHRUHP DOORZV XV WR
LVRODWH DOO WKH VHWV RI VROXWLRQV HDFK HOHPHQW RI ZKLFK WUDQVIHUUHV WKH WUDMHFWRU\ RI WKH V\VWHP IURP DQ\ SRLQW P R nm WR DQ\ SRLQW P R nm SDUWLFXODUO\WUXHIRUDQ\ P S u Om P S u Q ,QWXUQWKHFRQWUROODELOLW\SUREOHP ZKHQFRQGLWLRQV DUHVDWLVILHGLVHTXLYDOHQWWRWKHERXQGDU\YDOXHSUREOHP 7KHUHIRUH WKH LQLWLDO ERXQGDU\ YDOXH SUREOHP LV HTXLYDOHQW WR WKH FRQGLWLRQV ZKHQ P t y t t I Z t F y t t t I 2SWLPL]DWLRQ SUREOHP &RQVLGHU WKH IROORZLQJ RSWLPDO FRQWURO SUREOHP PLQLPL]HWKHIXQFWLRQDO
t
t
³ S qt t dt
J v v u Z x x d
³ >_ w t f P y t u t _
t
t
_ w t f P y t u x x t _ _ Z t F P y t t _ @ dt o LQI
XQGHUFRQGLWLRQV v L I R v L I R x S x S ut U t Z t :t m d D ^d R d t ` ZKHUH DUH WKH IXQFWLRQV w t w t yt t I DUH GHWHUPLQHG E\ IRUPXODV UHVSHFWLYHO\ q t v t v t ut Z t x x d z t v z t v v v v 0DWULFHV T t T t t I UHSUHVHQWHG LQ WKH IRUP T t T t T t T t T t T t /HWWKHYHFWRUV ɫ ɫ c m c c m c m 7KHQWKHYHFWRU c c d c SURGXFWV T t c T t c d T t c T t e T t d e c c T t c T t c d T t c T t e T t d t I 1RZIXQFWLRQV w t w t t I ZLOOEHZULWWHQDV w t v t D t x T t x T t e T t d N t z t v t I w t v t D t x T t x T t e T t d N t z t v t I ZKHUH T t e T t e t I NQRZQIXQFWLRQV,QDVLPLODUZD\ZHJHW y t z t v 3 t x 3 t x 3 t e 3 t d N t z t v t I ZKHUH 3 t 3 t 3 t t I ,Q WKH IXQFWLRQDO IXQFWLRQV w t w t yt t I DUHUHSUHVHQWHGDV :HLQWURGXFHWKHIROORZLQJQRWDWLRQV z
A t z B t v t B v t z t t I m
k
[
v t v t ut Z t x x d X
u S u S u D H
L I R k u L I R m u U u : u
L I R k u L I R m u L I R m u L I R S u R n u R n u R m X ^[ X J [ J LQI J [ `
[ X
7KHRUHPLet matrix W t t ! . In order for system (2.92)-(2.97) to be controllable, it is necessary and sufficient that the value J [ , where [ v t v t u t Z t x x d X optimal control in the problem (2.124)(2.128).
7KH SURRI RI WKH WKHRUHP IROORZV IURP WKH HTXLYDOHQFH RI WKH SUREOHPV DQG 3DUWLDOGHULYDWLYHV:HLQWURGXFHWKHIROORZLQJQRWDWLRQV w qt t
w t f P y t u t t t I
w qt t
w t f P y t ut x x t t I
w qt t
Z t F P y t t t I
1RZIXQFWLRQDO FDQEHZULWWHQDV J [
t
³ S qt t dt
t
t
³ _ w qt t _
_ w qt t _ _ w qt t _ dt
t
ZKHUH qt v t v t ut Z t x x d zt v z t v t I 3DUWLDOGHULYDWLYHVDUHHTXDO
wS q t t wS q t t w q t t w q t t wv wv wS qt t f u P y u t w qt t f ou P y u x x t w qt t wu
wS qt t wZ
wS qt t w qt t wx
> D t 3 t P f x P y u t
f x P y u t @ w q t > D t 3 t P f x P y u x x t f x P y u x x t @ w q t 3 t P Fx P y t w q t wS qt t wx
>T t 3 t P f x P y u t f x P y u t @ w q t
>T t 3 t P f x P y u x x t f x P y u x x t @ w q t 3 t P Fx P y t w q t wS qt t wz t
> N t N t P f x P y u t @ w q t
> N t N t P f x P y u x x t @ w q t N t P Fx P y t w q t wS qt t
P f x P y u t @ w q t wz P f x P y u x x t @ w q t P Fx P y t w q t wS qt t > T t 3 t P f x P y u t @ w q t wd > T t 3 t P f x P y u x x t @ w q t 3 t P Fx P y t w q t
'HILQLWLRQLet's say that the derivative S q q t S v q t S v q t S u q t S Z q t S x q t S x q t S z q t S z t q t S d q t
satisfies the Lipschitz condition by a variable q in the area of R N N k m m s n m n m , if
_ S v q 'q t S v q t _ d L _ 'q _ _ S v q 'q t S v q t _ d L _ 'q _
_ S u q 'q t S u q t _ d L _ 'q _ _ S Z q 'q t S Z q t _ d L _ 'q _ _ S x q 'q t S x q t _ d L _ 'q _ _ S x q 'q t S x q t _ d L _ 'q _ _ S d q 'q t S d q t _ d L _ 'q _ _ S z q 'q t S z q t _ d L _ 'q _ _ S z t q 'q t S z t q t _ d L _ 'q _
where Li const ! i _ 'q _ _ 'v 'v 'u 'w 'x 'x 'd 'z 'z t _ /HPPDLet matrix W t t ! , function S q t continuously differentiable by q q R N , sets U S S : convex and closed, inequality holds place S q q t S q q t q q ! R t q q R N Then the functional (2.124) under the conditions (2.125)-(2.128) is convex. 7KHSURRIRIWKHOHPPDLVVLPLODUWRWKHSURRIRIWKHOHPPD )XQFWLRQDO JUDGLHQW 7KH IROORZLQJ WKHRUHP JLYHV DQ DOJRULWKP IRU FDOFXODWLQJ WKH JUDGLHQW RI WKH IXQFWLRQDO XQGHU WKH FRQGLWLRQV 7KHRUHPLet matrix W t t ! , functions f x u t f x u x x t , F x t continuously differentiable by variables x u x x , partial derivative S q q t satisfies Lipschitz condition. Then the functional (2.124) under conditions (2.125)-(2.128) is continuously Frechet differentiable, the gradient
N
J c[
J vc [ J vc [ J uc [ J Zc [ J xc [ J xc [ J dc [ H
at any point [ X can becalculated by the formulas J vc [
wS q t t B t \ J vc [ wv
J uc [
wS q t t J Zc [ wu
J xc [
t
wS q t t B \ wv
wS q t t J xc [ wZ
wS q t t ³t wx dt J dc [
t
wS q t t dt wx t
³
t
wS q t t dt wd t
³
where partial derivatives are defined by the expressions above, the function z t v v t I solution of a differential equation (2.125), and function \ t t I solution of the adjoint system \
wS qt t A t \ \ t wz
t
wS qt t dt wd t
³
In addition, the gradient J c[ [ X satisfies Lipschitz condition __ J c[ J c[ __ d K __ [ [ __ [ [ X const !
where K 7KHSURRIVRIVLPLODUWKHRUHPVDUHJLYHQDERYH 8VLQJ UDWLRV ZH FRQVWUXFW D n ^v vn u n Z n xn xn d n ` X DFFRUGLQJWRWKHIROORZLQJUXOH
VHTXHQFH
^[ n `
vn
vn D n J vc [ n vn
un
PU >un D n J uc [ n @ Z n
x
vn D n J vc [ n P: >Z n D n J Zc [ n @
PS > x D n J xc [ n @ x
n
PS > xn D n J xc [ n @
n
n
PD > d n D n J dc [ n @ n
d n
ZKHUH D n H ! K ! /LSVFKLW]FRQVWDQWIURPLQHTXDOLW\ K H :H LQWURGXFH WKH VHW / ^[ X J [ d J [ ` ZKHUH [ v v u Z x x d X VWDUWLQJSRLQWIRUWKHVHTXHQFH
0LQLPL]LQJ VHTXHQFHV 7KH IROORZLQJ WKHRUHP JLYHV D QHFHVVDU\ DQG VXIILFLHQWFRQGLWLRQIRUFRQWUROODELOLW\RIV\VWHP 7KHRUHPLet the conditions of Theorem 15 be satisfied, the sequence ^[ n ` is determined by the formula (2.136), U S S : convex closed sets. Then: 1) numerical sequence ^J [ n ` strictly decreases; 2) __ [ n [ n __o when n o f 3) If, in addition, inequality (2.132) holds place, the set / is bounded then: J [ n J LQI J [ 4) sequence ^[ n ` X is minimizing, i.e. OLP no f [ X weakly
5) sequence ^[ n ` X weakly converges to the set, i.e. X X z [ n o [ when n o f 6) the following estimate of the rate of convergence is valid d J [ n J d
m n m n
const !
7) the controllability problem (2.92) - (2.96) has a solution if and only if J [
7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRI7KHRUHP 7KH VROXWLRQ WR WKH SUREOHP RI RSWLPDO SHUIRUPDQFH LV WKH VDPH DV LQ WKH SUHYLRXVVHFWLRQV ([DPSOH &RQVLGHU WKH FRQWUROODELOLW\ SUREOHP IRU WKH V\VWHP RI ([DPSOH ZKHQWKHVHWV U S S G t t I WKHVDPHDVLQH[DPSOHLQWKHSUHVHQFHRIDQ LQWHJUDOFRQVWUDLQWRIWKHIROORZLQJYLHZ
g j u x x x
³>x
t x t u t x R t x x R t x @dt d c
ZKHUH R t R t t I JLYHQPDWULFHVRIRUGHU u c JLYHQQXPEHU )RUWKLVH[DPSOHWKHIXQFWLRQ t
x t
³ > x W x W u
W x P W x x P W x @dW t I
7KHQ x
> x t x t u t x P t x x P t x @ t I
x
x c
c d d t
>@
9HFWRUVDQGPDWULFHV P
§ x · ¨ ¸ ¨ x ¸ A ¨x ¸ © ¹
§ · ¨ ¸ ¨ ¸ B ¨ ¸ © ¹
§ · ¨ ¸ ¨ ¸ B ¨ ¸ © ¹
§ · ¨ ¸ ¨ ¸ P ¨ ¸ © ¹
§ · ¨¨ ¸¸ P © ¹
7KHV\VWHP FDQEHZULWWHQDV P
A P B P u B P P u x P t x x P t x
P P S P P S P P c d
d D
^d R d t ` P t P t G t ut U
7KHOLQHDUFRQWUROOHGV\VWHPKDVWKHIRUP y
y
>@
§ x · § x · ¨ ¸ ¸ ¨ ¨ x ¸ y P ¨ x ¸ x x S x x S ¨ ¸ ¨c d ¸ ¹ © © ¹ d D ^d R d t `
P
0DWULFHV T t e
A y Bw t B w t t I
At
§ t · § t · § t · ¨ ¸ ¨ ¸ ¨ ¸ At ¨ ¸ e ¨ ¸ ) t ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ © ¹ © ¹ © ¹ t · § · § ¸ ¨ ¸ ¨ ) t ¨ ¸ B B B ¨ ¸ ¨ ¸ ¨ ¸ ¹ © ¹ ©
§t ¨ ³ ¨¨ t ©
W
A t
A t ³ e B B e dt
t · ¸ ¸dt ¸¹
W
§ · ¨ ¸ ¨ ¸ W t ¨ ¸ © ¹
§ · ¨ ¸ ¸ ! ¨ ¨ ¸¹ ©
§ t t · ¨ ¸ ¸ W t t ¨ t ¨ ¸¹ ©
§ t t · ¨ ¸ t ¸ ¨ t ¨ t ¸¹ ©
7KHQ a
) t P P
e At P P
§ x x x · ¸ ¨ ¨ x x ¸ ¸ ¨ cd ¹ ©
O t P P
B t ) t W a
§ x t x t x t x t · ¸¸ ¨¨ cd ¹ ©
N t
§t t · ¸ ¨¨ ¸¹ ©
B ) t W )
O t P P e A tW t W P e A tW t W e A P
§ x t t x t t t x t t x t t · ¸ ¨ ¨ x t t x t t x t t x t t ¸ ¸ ¨ t c d ¹ ©
N t
e W t W e At
A
§ t t ¨ ¨ t t ¨ ©
t t t t
w t
· ¸ ¸ t ¸¹
v t x t x t x t x t t z v v t z v v
w t
y t
v t c d z v v
z t v v x t t x t t t x t t x t t t t z v v t t z v v
y t
z t v v x t t x t t x t t x t t t t z v v t t z v v
y t
z t v v t c d t z v v t >@
7KHRSWLPL]DWLRQSUREOHP IRUWKLVH[DPSOHFDQEHZULWWHQDV J v v u Z Z x x d
³ >_ w t y
u _ _ w t y y
u x P t x x P t x _ _ Z t y t _ _ Z t y t _ @ dt o LQI
XQGHUFRQGLWLRQV z
z z
v z
v z
z
v L I R v L I R x
z
x x S x
t I x x S
u t U Z t : ^Z L I R d Z d t >@` Z t : ^Z L I R d Z d t >@` u t U ^u L I R d u t d t I ` d D ^d R d t ` S ^x x x R x x d ` R S
^x
x x R x x d ` R
&RPPHQWV 7KH WKHRU\ RI FRQWUROODELOLW\ IRU QRQOLQHDU V\VWHPV GHVFULEHG E\ RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV LV D SRRUO\ VWXGLHG DUHD RI PDWKHPDWLFDO FRQWURO WKHRU\ 9DULRXVDSSURDFKHVWRWKHVWXG\RIWKHFRQWUROODELOLW\RIG\QDPLFV\VWHPVZLWKRXW ERXQGDU\FRQGLWLRQVSKDVHDQGLQWHJUDOFRQVWUDLQWVFDQEHIRXQGLQ>@1RWHWKDW IRUQRQOLQHDUSURFHVVHVLWLVSRVVLEOHWRREWDLQRQO\ORFDOFULWHULDDQGUHVXOWVDQG QRWJOREDOWKHRU\DVLQWKHFDVHRIOLQHDUV\VWHPV $V IROORZV IURP WKH FRQWHQWV RI &KDSWHU ,, DQ DWWHPSW LV PDGH WR VROYH WKH SUREOHPV RI FRQWUROODELOLW\ RI QRQOLQHDU G\QDPLFDO V\VWHPV LQ WKH SUHVHQFH RI ERXQGDU\ FRQGLWLRQV LQ WKH IRUP RI FRQYH[ DQG FORVHG VHWV DQG ZLWK SKDVH DQG LQWHJUDOFRQVWUDLQWVDVZHOODVOLPLWDWLRQVRQWKHFRQWUROYDOXHV7KHVHUHVXOWVZHUH REWDLQHG E\ FRQVWUXFWLQJ D JHQHUDO VROXWLRQ RI WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG ,W LV VKRZQ WKDW WKH ERXQGDU\ YDOXH SUREOHPV RI FRQWUROODELOLW\ RI RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKSKDVHDQGLQWHJUDOFRQVWUDLQWVFDQEHUHGXFHG WR LQLWLDO SUREOHPV RI RSWLPDO FRQWURO 6ROXWLRQV RI WKH RSWLPDO SHUIRUPDQFH SUREOHPFDQEHREWDLQHGIURPVROYLQJWKHJHQHUDOSUREOHPRIFRQWUROODELOLW\ 7KHUHVXOWVREWDLQHGLQWKLVFKDSWHUFDQEHWKHEDVLVIRUDGHHSHUVWXG\RIWKH FRQWUROODELOLW\ RI QRQOLQHDU G\QDPLFDO V\VWHPV :H GUDZ UHDGHUV DWWHQWLRQ WR WKH IROORZLQJ XQVROYHG SUREOHPV 7KH FRQVWUXFWHG VHTXHQFHV DUH PLQLPL]LQJ IRU FDVHVZKHQWKHFRUUHVSRQGLQJIXQFWLRQDOVDUHFRQYH[,WLVDGYLVDEOHWRVLQJOHRXW WKH FODVV RI QRQOLQHDU V\VWHPV IRU ZKLFK WKH LQGLFDWHG IXQFWLRQDOV DUH FRQYH[ 7KH FRQGLWLRQV IRU WKH H[LVWHQFH RI D )UHFKHW IXQFWLRQDO GHULYDWLYH LPSRVH FHUWDLQ UHTXLUHPHQWV RQ WKH LQLWLDO GDWD RI WKH SUREOHP $SSDUHQWO\ WKHVH UHTXLUHPHQWVDUHTXLWH³WRXJK´ 7KHTXHVWLRQDULVHVLVLWSRVVLEOHWRZHDNHQWKHUHTXLUHPHQWVLPSRVHGRQWKH SURSHUWLHV RI IXQFWLRQV WR HQVXUH WKH H[LVWHQFH RI WKH )UHFKHW GHULYDWLYH" 6XSSRVHWKDWWKHIXQFWLRQDOLQWKHLQLWLDOVSHFLDORSWLPDOFRQWUROSUREOHPLVQRW GLIIHUHQWLDEOH LQ WKH )UHFKHW VHQVH EXW KDV D *DWHDX[ GHULYDWLYH RU LV QRW GLIIHUHQWLDEOH DW DOO ,W LV QHFHVVDU\ WR ILQG PLQLPL]LQJ VHTXHQFHV ZKHQ WKHUH LV D *DWHDX[GHULYDWLYHRIWKHIXQFWLRQDODVZHOODVLQWKHFDVHZKHQWKHIXQFWLRQDOLV QRW GLIIHUHQWLDEOH $V PHQWLRQHG DERYH LQ VRPH FDVHV IRU FDOFXODWLQJ DQG GHVLJQLQJDFRQWUROV\VWHPLWVXIILFHVWRVROYHWKHSUREOHPRIFRQWUROODELOLW\LQLWV JHQHUDO IRUPXODWLRQ 7KHUHIRUH LW LV DGYLVDEOH WR GHYHORS RQ WKH EDVLV RI WKH SURSRVHG DOJRULWKP DQ DSSOLFDWLRQ SDFNDJH IRU VROYLQJ WKH JHQHUDO SUREOHP RI FRQWUROODELOLW\RIRUGLQDU\GLIIHUHQWLDOHTXDWLRQV 4XRWHGOLWHUDWXUH $LVDJDOLHY6$5HJLRQDOSUREOHPVRIRSWLPDOFRQWURO±$OPDW\4D]DTXQLYHU VLW\±S $LVDJDOLHY6$$LVDJDOLHY760HWKRGVIRUVROYLQJERXQGDU\YDOXHSUREOHPV ±$OPDW\4D]DTXQLYHUVLW\±S
$LVDJDOLHY 6$ &RQWUROODELOLW\ RI D FHUWDLQ V\VWHP RI GLIIHUHQWLDO HTXDWLRQV 'LIIHUHQWLDO(TXDWLRQV9ʋS $LVDJDOLHY 6$ 7KH JHQHUDO VROXWLRQ RI D FODVV RI LQWHJUDO HTXDWLRQV 0DWKHPDWLFDO-RXUQDO9ʋ S $LVDJDOLHY6$.DELGROGDQRYD$$2SWLPDOVSHHGRIQRQOLQHDUV\VWHPVZLWK UHVWULFWLRQV'LIIHUHQWLDOHTXDWLRQVDQGFRQWUROSURFHVVHVʋS $LVDJDOLHY 6$ %HORJXURY $3 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHG E\ D SDUDEROLF HTXDWLRQ ZLWK UHVWULFWHG FRQWURO 6LEHULDQ 0DWKHPDWLFDO-RXUQDO-DQXDU\)HEUXDU\9ʋS $LVDJDOLHY 6$ &RQVWUXFWLYH WKHRU\ RI ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHPV±$OPDW\4D]DTXQLYHUVLW\±S $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 2Q WKH VROXWLRQ RI WKH )UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIRUDIXQFWLRQRIVHYHUDOYDULDEOHV 9HVWQLN.D]18VHUPDWPHKLQI±ʋ $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 7KHUPDO PDQDJHPHQW 9HVWQLN.D]18VHUPDWPHKLQI±ʋ S $LVDJDOLHY 6$ 6HYUMXJLQ ,9 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\DOLQHDUV\VWHPRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV 0DWKHPDWLFDO-RXUQDO9ʋ S $LVDJDOLHY 6$ 6HYU\XJLQ ,9 &RQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV9HVWQLN.D]18 VHUPDWPHKLQI9ʋ S $LVDJDOLHY 6$ 6KDQJLWRYD 0( 7R WKH PDWKHPDWLFDO WKHRU\ RI FRQWUROOHG SURFHVVHV9HVWQLN.D]18VHUPDWPHKLQIʋ S $LVDJDOLHY 6$ 7R WKH 1DYLHU6WRNHV VROXWLRQ IRU D YLVFRXV LQFRPSUHVVLEOH IOXLG LQ DQ XQERXQGHG UHJLRQ 9HVWQLN .D]18 VHU PDW PHK LQI ʋ S $LVDJDOLHY6$$MD]EDHYD$07RFRQVWUXFWLQJRIRSWLPDOILOWHUIRUUDQGRP SURFHVVHV9HVWQLN.D]18VHUPDWPHKLQIʋ S $LVDJDOLHY 6$ $LVDJDOLHYD 66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV 'LIIHUHQWLDO (TXDWLRQVWʋS $LVDJDOLHY6$ &RQWUROODELOLW\ DQG 2SWLPDO &RQWURO LQ 1RQOLQHDU 6\VWHPV -RXUQDO RI &RPSXWHU DQG 6\VWHPV ± 6FLHQFHV ,QWHUQDWLRQDO ʋ S $LVDJDOLHY6$ $LVDJDOLHYD66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV 'LIIHUHQWLDO (TXDWLRQVYROʋS $LVDJDOLHY6$ %HORJXURY$3 &RQWUROODELOLW\ DQG 6SHHG RI WKH SURFHVV GHVFULEHGE\DSDUDEROLFHTXDWLRQZLWKERXQGHGFRQWURO6LEHULDQ0DWKHPDWLFDO -RXUQDOYROʋSS $QDQ HYVNLM ,0 $QDKL 19 2YVHHYLFK $, 6\QWKHVLV RI OLPLWHG FRQWURO RI OLQHDUG\QDPLFDOV\VWHPVXVLQJWKHJHQHUDO/\DSXQRYIXQFWLRQ5HSRUWV5$6 9ʋ $WKDQRVLRV&$QWRXODV(G 0DWKHPDWLFDO6\VWHP7KHRU\7KHLQIOXHQFHRI 5(.DOPDQ6SULQJHU9HUODJ±S %RRWRQ5& $Q RSWLPL]DWLRQ WKHRU\ IRU WLPHYDU\LQJ OLQHDU V\VWHPV ZLWK QRQVWDWLRQDU\VWDWLVWLFDOLQSXWV3URF,5(±±Y±S
%UDPPHU . =LIIOLQJ * .DOPDQ%XF\ )LOWHU SHU V QHP SRG UHG ,(.D]DNRYD±01DXND±S %XWNRYVNLM $* &RQWURO PHWKRGV IRU V\VWHPV ZLWK GLVWULEXWHG SDUDPHWHUV ±06FLHQFH :LHQHU1([WUDSRODWLRQLQWHUSRODWLRQDQGVPRRWKLQJRIVWDWLRQDU\7LPHVHULHV -:LOH\1HZ a t xt ! b t ut !@dt j
j
j m
t
DVZHOODVUHVWULFWLRQVRQWKHYDOXHVRIFRQWUROV vW V W ^v L I R vW V W R p
p
ae W I >a b@`
+HUH At Bt C t Dt DUH PDWULFHV ZLWK SLHFHZLVHFRQWLQXRXV HOHPHQWV RI GLPHQVLRQV n u n n u m n u s n u k UHVSHFWLYHO\ PDWULFHV K tW PKij tW P i s j p t I W I >a b@ /t O P/ij t O P i k j n ZLWK HOHPHQWV
RI L RQWKHVHWV E ^tW Rt d t d t a d W d b` E ^t O Rt d t O d t` b t
³ ³ _ Kij tW _ dtdW f a t
t t
³³ _ /
ij
t O _ dtdO f
t t
WKH IXQFWLRQ Pt L I Rn LV JLYHQ Lt t I LV WKH SUHVFULEHG PDWUL[ RI s u n RUGHU ZLWK FRQWLQXRXV HOHPHQWV :H VXSSRVH WKDW S S DUH SUHVFULEHG FRQYH[ FORVHGVHWVZKLFKGHILQHFRQVWUDLQWVRQWKHLQLWLDODQGILQDOVWDWHVRIWKHSKDVHYDOXHV 7KH YHFWRUV J t J t J s G t G t G s t I DUH JLYHQ IXQFWLRQV ZLWK FRQWLQXRXV HOHPHQWV WKH TXDQWLWLHV c j j m DUH JLYHQ FRQVWDQWV a j t a j t anj t b j t b j t bm t j m DUH WKH JLYHQ YHFWRU IXQFWLRQV j ZLWKFRQWLQXRXVHOHPHQWV Ut Rm V W R p DUHJLYHQFRQYH[FORVHGVHWV 'HILQLWLRQThe process described by (3.1) is called controlled at the instant of time t if there exist controls u t U t v W V W that conduct a trajectory of the system (3.1) from the point x xt S to the point x x t S at fixed t t t ! t and conditions (3.3)-(3.5). 'HILQLWLRQ A quadruple ut vW x x U uV u S u S is called to be admissible if the function xt t x x u v t I solution of the integral and differential equation (3.1) satisfies conditions (3.2)-(3.7). We denote the set of all admissible four by 6 i.e. ut vW x x 6 U uV u S u S 7KXV WKH SURFHVV GHVFULEHG E\ WKH LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ LV FRQWUROODEOHLIWKHVHW 6 z LVDQHPSW\VHW)XUWKHUWKHSURFHVVJHQHUDWHGE\WKH UHODWLRQV LVFDOOHGWKHFRQWUROODELOLW\SUREOHP 3UREOHPFind the necessary and sufficient controllability conditions for the process described by the integral and differential equation (3.1) under the conditions (3.2)-(3.7). ,QRWKHUZRUGVWRILQGWKHQHFHVVDU\DQGVXIILFLHQWFRQGLWLRQVIRUWKHVHW 6 QRW WREHHPSW\ 3UREOHPLet the set be 6 z Find a quadruple ut vW x x 6 , i.e. find the controls u t U t v W V W which transform the trajectory of the system (3.1) starting from the point x xt S at time t to the point x x t S t ! t , in this case the solution of equation (3.1), the function xt xt t x x u v t I x S x S is on the set Gt R n and the integral constraints (3.4) and (3.5) are also satisfied along the solution of system (3.1).
6ROXWLRQV WR FRQWUROODELOLW\ SUREOHPV RI G\QDPLFDO V\VWHPV PDWKHPDWLFDO WKHRU\ RI RSWLPDO SURFHVVHV ERXQGDU\ YDOXH SUREOHPV RI GLIIHUHQWLDOHTXDWLRQVZLWK SKDVH DQG LQWHJUDO FRQVWUDLQWV DQG FRQWUROODELOLW\ SUREOHPV IRU OLQHDU LQWHJUDO DQG GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWVDUHUHGXFHGWRVROYDELOLW\DQGFRQVWUXFWLRQRID JHQHUDOVROXWLRQRIWKHLQWHJUDOHTXDWLRQ t
³*t t wt dt
*w
a t I
>t t @
t
ZKHUH *t t || *ij t t || i n j n LV WKH NQRZQ PDWUL[ RI RUGHU n u n ZLWK n
SLHFHZLVHFRQWLQXRXVHOHPHQWVZLWKUHVSHFWWR t DWIL[HG t t t ! t w L I R n
n
n
LVWKHRULJLQIXQFWLRQ a R LVDQ\YHFWRU * L I R o R LVRSHUDWRU 3UREOHPFind the necessary and sufficient conditions for the existence of a n solution of the integral equation (3.8) for any a R 3UREOHP Find the general solution of the integral equation (3.8) for any n
a R n
7KHVROXWLRQVRISUREOHPVDQGIRUDQ\ a R LPSO\VWULFWUHTXLUHPHQWVRQ WKHNHUQHORIWKHLQWHJUDOHTXDWLRQ DQGWKH\DUHQHFHVVDU\IRUFDVHVZKHQ S S JLYHQVHWVRI R n )RUWKHFDVHZKHQWKHVHWV S S FRQWDLQXQLTXHSRLQWVVROXWLRQV RIWKHIROORZLQJSUREOHPVDUHUHTXLUHG 3UREOHPFind the necessary and sufficient conditions for the existence of a solution of the integral equation (3.8) for a given a R n 3UREOHPFind the general solution of the integral equation (3.8) for a given n aR 6ROXWLRQVWRSUREOHPVKDYHPDQ\DSSOLFDWLRQVLQPDWKHPDWLFV,QWKLVZRUN WKHVHUHVXOWVKDYHDX[LOLDU\PHDQLQJV 7KHHVVHQFHRIWKHSURSRVHGPHWKRGLVWKDWDWWKHILUVWVWDJHRIWKHLQYHVWLJDWLRQ E\ PHDQV RI WKH WUDQVIRUPDWLRQ WKH LQWHJUDO FRQVWUDLQWV DUH UHGXFHG WR GLIIHUHQWLDO HTXDWLRQV ZLWK ERXQGDU\ FRQGLWLRQV DQG WKH LQWURGXFWLRQ RI ILFWLWLRXV FRQWURO 7KH LQLWLDO SUREOHP LV LPPHUVHG LQ WKH ERXQGDU\ YDOXH SUREOHP RI D OLQHDU GLIIHUHQWLDO HTXDWLRQ )XUWKHU XVLQJ WKH UHVXOWV RI LQYHVWLJDWLQJ WKH LQWHJUDO HTXDWLRQ ZHILQGDOOVHWVRIFRQWUROVHDFKHOHPHQWRIZKLFKWUDQVIRUPVWKHWUDMHFWRU\RID OLQHDUV\VWHPIURPDQ\LQLWLDOSRLQWRIWKHVHW S WRDILQLWHVWDWHIURPWKHVHW S 7KLV DSSURDFKDOORZVXVWRREWDLQHTXLYDOHQWLGHQWLWLHVWRWKHRULJLQDOFRQWUROSUREOHPDQG UHGXFH WKH VROXWLRQV RI SUREOHPV WR LQLWLDO SUREOHP RI RSWLPDO FRQWURO 7KH QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH VROYDELOLW\ RI WKH LQLWLDO FRQWUROODELOLW\ SUREOHP DUH GHWHUPLQHG E\ WKH UHTXLUHPHQW IRU WKH YDOXH RI WKHORZHU ERXQG RI WKH IXQFWLRQDO DQG VROXWLRQV DUH FRQVWUXFWHG RQ WKH EDVLV RI WKH OLPLW SRLQW RI WKH PLQLPL]LQJVHTXHQFHV
/HWWKHPDWULFHV A B t t I EH § a t · ¨ ¸ ¨ ¸ B t ¨¨ ¸ a t ¸ © m ¹
A t
§ b t · ¨ ¸ ¨ ¸ ¨¨ ¸ b t ¸ © m ¹
§ a j t · ¨ ¸ a j t ¨ ¸ b j t ¨ a t ¸ © nj ¹
§ b j t · ¨ ¸ ¨ ¸ j m ¨ b t ¸ © mj ¹
ZKHUH LVDVLJQRIWUDQVSRVLWLRQ:HLQWURGXFHWKHYHFWRUIXQFWLRQ K t
t
³> A O x O B O u O @dO
t I
t
7KHLQWHJUDOFRQVWUDLQWV FDQEHUHSUHVHQWHGLQWKHIRUP Kt A t xt B t ut t I K t K t c Q m
Q ^c R c j
c j d j j m c j
m m d j t j m`
cj j
ZKHUH c c c m d d d m g j x u c j d j j m d t LV DQ XQNQRZQ YHFWRU1RZFRQWUROODELOLW\SUREOHP FDQEHZULWWHQLQWKHIRUP [
b
t
a
t
A t [ B t ut C t ³K t W v W dW D t ³/ t O P[ O dO P t t I
x x S u S
S xt Gt ut U t vt V t
[ t [
x Om S u Om [ t
[
x c S u Q
ZKHUH § At
·
O
§ · § · nm ¸ B t ¨ ¸¸ [ t ¨¨ ¸¸ A t ¨ ¨ ¨ ¸ A t O m m ¹ ©K t ¹ © B t ¹ © x t
C t
§ C t · ¨ ¸ D t ¨ Om s ¸ © ¹
§ D t · ¨ ¸ P t ¨ Om k ¸ © ¹
x t
P[ t P
B t
§ P t · ¨ ¸ ¨ Om ¸ © ¹
I n Onm
Onq LVDUHFWDQJXODUPDWUL[RIRUGHU r u q ZLWK]HURHOHPHQWV I n LVWKHLGHQWLW\PDWUL[
RIRUGHU n u n
Lecture 13.,QWHJUDOHTXDWLRQ :HFRQVLGHUWKHVROXWLRQVRISUREOHPVDQGIRUWKHLQWHJUDOHTXDWLRQ 7R VROYH SUREOHPV DQG ZH QHHG WKH IROORZLQJ WKHRUHPV RQ WKH H[LVWHQFH DQG JHQHUDOIRUPRIWKHVROXWLRQRIWKHLQWHJUDOHTXDWLRQ n 7KHRUHPIntegral equation (3.8) for any fixed a R has a solution if and only if the matrix t
W t t
³*t t * t t dt
t ! t
t
order n u n is positive definite, where is the sign of transposition. 3URRISufficiency. /HWWKHPDWUL[ W t t EHSRVLWLYHGHILQLWHLH W t t ! n
:H VKRZ WKDW WKH LQWHJUDO HTXDWLRQ KDV D VROXWLRQ IRU DQ\ a R :H FKRRVH wt * t t W t t a t I 7KHQ *w
t
³*t t * t t W
t t adt
a
t
&RQVHTXHQWO\LQWKHFDVHZKHQWKHPDWUL[ W t t ! WKHLQWHJUDOHTXDWLRQ KDV n
DW OHDVW RQH VROXWLRQ wt * t t W t t a t I a R LV DQ\ YHFWRU 7KH VXIILFLHQF\LVSURYHG n Necessity./HWWKHLQWHJUDOHTXDWLRQ KDYHDVROXWLRQIRUDQ\IL[HG a R :HVKRZWKDWWKHPDWUL[ W t t ! 6LQFH W t t t IRUWKHSURRI W t t ! LWLV VXIILFLHQWWRVKRZWKDWWKHPDWUL[ W t t LVQRQVLQJXODU :HVXSSRVHWKHFRQWUDU\/HWWKHPDWUL[ W t t EHVLQJXODU7KHQWKHUHH[LVWV DYHFWRU c R n c z VXFKWKDW c W t t c :HGHILQHWKHIXQFWLRQ v t * t t c n
t I v L I R :HQRWHWKDW t
³v t vt dt
t
t
c ³*t t * t t dt c
c W t t c
t
7KHQ WKH IXQFWLRQ v t t I 6LQFH WKH LQWHJUDO HTXDWLRQ KDV D VROXWLRQ IRU DQ\ a R n LQSDUWLFXODUWKHUHH[LVWVDIXQFWLRQ w L I R n VXFKWKDW a c t
³*t t wt dt
c
t
7KHQWKHHTXDOLW\LVYDOLG t
³v t wt dt
t
t
c ³*t t wt dt
c c
t
7KLVFRQWUDGLFWVWKHIDFWWKDW c z 1HFHVVLW\LVSURYHG7KHWKHRUHPLVSURYHG
7KHRUHP Let the matrix W t t of (3.15) be positive definite. Then the n
general solution of the integral equation (3.8) for any a R has the form t
wt
* t t W t t a pt * t t W t t ³*t K pK dK t I
t
n
n
ZKHUH p L I R LVDQDUELWUDU\IXQFWLRQ a R LVDQ\YHFWRU 3URRI:HLQWURGXFHWKHVHWV t
W ^w L I R ³*t t wt dt n
a`
t
n
Q ^w L I R wt t
* t t W t t a pt
* t t W t t ³*t K pK dK p L I R ` n
t
7KH VHW W FRQWDLQV DOO VROXWLRQV RI WKH LQWHJUDO HTXDWLRQ DW W t t ! 7KH n
WKHRUHPDVVHUWVWKDWWKHIXQFWLRQ w L I R EHORQJVWRWKHVHW W LIDQGRQO\LILW EHORQJV WR WKH VHW Q LH W Q :H SURYH WKDW W Q 7R GR WKLV LW VXIILFHV WR SURYHWKDW Q W W Q :H VKRZ WKDW Q W ,Q IDFW LI wt Q WKHQ DV IROORZV IURP WKH HTXDOLW\LVYDOLG t
t
t
t
t
t
³*t t wt dt
³*t t * t t dtW t t a ³*t t pt dt
t
t
t
t
³*t t * t t dtW t t ³*t K pK dK
t
t
t
t
a ³*t t pt dt ³*t K pK dK
a
7KLVLPSOLHVWKDW wt W &RQVHTXHQWO\ Q W :H VKRZ WKDW W Q /HW w t W LH IRU WKH IXQFWLRQ w t W WKH HTXDOLW\ LVVDWLVILHGLH t
³*t t w t dt
a
t
n
:H QRWH WKDW LQ WKH UHODWLRQ WKH IXQFWLRQ pt L I R LV DUELWUDU\ ,Q SDUWLFXODU ZH FDQ FKRRVH p t w t t I 1RZ WKH IXQFWLRQ w t Q LV ZULWWHQ LQ WKHIRUP
wt
t
* t t W t t a w t * t t W t t ³*t t w t dt
t
t
* t t W t t ³*t t w t dt w t * t t W t t u t
t
u ³*t t w t dt
w t t I
t
&RQVHTXHQWO\ w t wt Q 7KLVLPSOLHVWKDW W Q )URPWKHLQFOXVLRQV Q W W Q 7KHWKHRUHPLVSURYHG 7KHEDVLFSURSHUWLHVRIVROXWLRQVRIWKHLQWHJUDOHTXDWLRQ 7KH IXQFWLRQ wt t I FDQ EH UHSUHVHQWHG LQ WKH IRUP wt w t w t ZKHUH w t * t t W t t a LV D SDUWLFXODU VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ t
w t
pt * t t W t t ³*t K pK dK t I LV D VROXWLRQ RI KRPRJHQHRXV LQWHJUDO t
HTXDWLRQ t
³*t t w t dt
t n
ZKHUH p L I R LVDQDUELWUDU\IXQFWLRQ,QIDFW t
³*t t w t dt
t
t
³*t t * t t dtW
t t a
a
t
t
³*t t w t dt
t
t
t
t
t
t
t
³*t t pt dt ³*t t * t t dtW t t ³*t K pK dK
n
n
7KH IXQFWLRQV w t L I R w t L I R DUH RUWKRJRQDO LQ L LH w A w ,QIDFW t
³w t w t dt
w w ! L
t
a W t t ³*t t pt dt
t
t
t
t
t
t
³a W t t *t t * t t dtW t t ³*t K pK dK
t
t
t
t
a W t t ³*t t pt dt a W t t ³*t K pK dK
7KH IXQFWLRQ w t * t t W t t a t I LV D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ ZLWK PLQLPDO QRUP LQ ,QGHHG || w || || w || || w || ,W IROORZV WKDW || w || t|| w || ,IWKHIXQFWLRQ p t t I WKHQWKHIXQFWLRQ w t t I 7KHQ w t w t || w || || w || 7KHVHWRIVROXWLRQVRIWKHLQWHJUDOHTXDWLRQ LVFRQYH[ :HFRQVLGHUWKHVROXWLRQVRISUREOHPVDQGIRUWKHLQWHJUDOHTXDWLRQ 7KH TXHVWLRQ DULVHV LI WKH PDWUL[ W t t LV QRW SRVLWLYH GHILQLWH GRHV WKH LQWHJUDO HTXDWLRQ KDYH D VROXWLRQ" ,Q WKLV FDVH WKH LQWHJUDO HTXDWLRQ FDQ KDYH D VROXWLRQEXWQRWIRUDQ\YHFWRU a R n 7KHFRQGLWLRQ W t t ! LVDULJLGFRQGLWLRQ RQWKHNHUQHORIWKHLQWHJUDOHTXDWLRQ$QDQDORJXHRIWKLVFRQGLWLRQLVWKHH[LVWHQFHRI DQ LQYHUVH PDWUL[ A IRU D OLQHDU DOJHEUDLF HTXDWLRQ Ax b WKDW JXDUDQWHHV WKH H[LVWHQFHRIDVROXWLRQIRUDQ\ b R n $OJHEUDLFHTXDWLRQ Ax b FDQKDYHDVROXWLRQ DOVRLQWKHFDVHZKHUHWKHUHLVQRLQYHUVHPDWUL[KRZHYHUQRWIRUDQ\YHFWRU a R n rankA rank A b 7RVROYHSUREOHPVDQGLWLVQHFHVVDU\WRLQYHVWLJDWHWKHH[WUHPDOSUREOHP WRPLQLPL]HWKHIXQFWLRQDO t
J w _ a ³*t t wt dt _ o LQI
t
DWFRQGLWLRQ n
w L I R
ZKHUH a R LVJLYHQYHFWRU 7KHRUHP Let the kernel of the operator * t * t t be measurable and belong to the class L Then: WKH IXQFWLRQDO XQGHU WKH FRQGLWLRQ LV FRQWLQXRXVO\ n )UHFKHWGLIIHUHQWLDEOH WKH JUDGLHQW RI WKH IXQFWLRQDO J c w L I R DW DQ\ SRLQW n w L I R LVGHWHUPLQHGE\WKHIRUPXOD n
J c w
t
* t t a ³* t t *t V wV dV t I
t
n
JUDGLHQWRIWKHIXQFWLRQDO J c w L I R VDWLVILHVWKH/LSVFKLW]FRQGLWLRQ n || J c w h J c w ||d l || h || w w h L I R
IXQFWLRQDO XQGHUFRQGLWLRQ LVFRQYH[LH n
J Dw D u d DJ w D J u w u L I R D D >@
WKHVHFRQG)UHFKHWGHULYDWLYHLV J cc w
* t V *t t V t I
LILQHTXDOLW\LVKROG t t
³ ³[
ª t º « ³*t t [ t dt » t «¬t »¼
V * t V *t t [ t dtdV
t t
t
t P ³ _ [ t _ dt P ! [ [ t L I R n
t
WKHQWKHIXQFWLRQDO XQGHUFRQGLWLRQ LVVWURQJO\FRQYH[ n 3URRILet w w h L I R Then the increment of the functional 'J
t t
t
t
t
t
³ * t V a ³* t V *t t wt dt hV ! dV
J w h J w
³ ³h t * t t *t V hV dVdt J c w h ! L oh
t t
ZKHUH _ o h _d c || h || )URP IROORZVWKDW J cw LVGHILQHGE\IRUPXOD 6LQFH t
J c w h J c w * t t ³*t V hV dV t
WKDW || J c w h J c w ||d l || h || 7KLVLPSOLHVLQHTXDOLW\ n 6LQFH WKH IXQFWLRQDO J w C L I R WKHQ IRU WKH FRQYH[LW\ RI WKH IXQFWLRQDO LWLVQHFHVVDU\DQGVXIILFLHQWWKDW
J c w J c w w w ! L
t t
³ ³> w t w t @ * t t *t V u t t
u > w V w V @dVdt t
7KLVLPSOLHVWKHLQHTXDOLW\ $VLWIROORZVIURP WKHLQFUHPHQW
J c w h J c w J cc w h ! * t V * t t hV ! L
t
³* t t *t V hV dV t
&RQVHTXHQWO\ J ccw LVGHILQHGE\IRUPXOD )URP IROORZVWKDW n n J cc w [ [ !t P || [ || w w L I R [ [ L I R n 7KLV PHDQV WKDW WKH IXQFWLRQDO J w LV VWURQJO\ FRQYH[ LQ L I R 7KHRUHP LV SURYHG n 7KHRUHP Let for extreme problem (3.19), (3.20) a sequence ^wn t ` L I R be constructed by the algorithm
wn t
wn t Dn J c wn gn Dn
gn D
J wn DJ c wn n
PLQ gn D D !
7KHQ WKH QXPHULFDO VHTXHQFH ^J wn ` PRQRWRQLFDOO\ GHFUHDVHV WKH OLPLW OLP J c wn nof
n
,IPRUHRYHUWKHVHW M w ^w L I R J w d J w ` LVERXQGHGWKHQ n
WKHVHTXHQFH ^wn t ` LVPLQLPL]LQJLH OLP J LQI J w w L I R nof
wn o w DW n o f ZKHUH w
w t W
n
^w L I R J w
PLQ J w
wM w
J
LQI
n wL I R
J w `
WKHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHKROGV
d J wn J w d
m m n
const ! n
LQRUGHUWRWKHLQWHJUDOHTXDWLRQ WRKDYHDVROXWLRQLWLVQHFHVVDU\DQG VXIILFLHQW WKDW WKH YDOXH J w w W ,Q WKLV FDVH w W LV WKH VROXWLRQ RI WKH LQWHJUDOHTXDWLRQ LI WKH YDOXH J w ! WKHQ LQWHJUDO HTXDWLRQ KDV QRW DQ\ VROXWLRQ IRU WKHULJKWVLGH a R n LI LVKROGWKHQ Pwn w P o DW n o f n
3URRIFrom conditions g n D n d g n D J w C L I R follow, that J wn J wn DJ c wn t D
Dl
|| J c wn || D t n
ZKHUH l const ! LV/LSVKLW]FRQVWDQW 7KHQ J wn J wn t
|| J c wn || l
7KLV LPSOLHV WKDW OLP J c wn DQG WKH QXPHULF VHTXHQFH ^J wn ` nof PRQRWRQLFDOO\GHFUHDVHV6LQFHWKHIXQFWLRQDO J w LVFRQYH[WKHQWKHVHW M w LV FRQYH[7KHQ d J w n J w d J c w n w n w ! d__ J c w n __ __ w n w __d D __ J c w n __ ZKHUH D LV D GLDPHWHU RI WKH VHW M w 6LQFH M w LV ZHDNO\ ELFRPSDFW WKH IXQFWLRQDO J w LV ZHDNO\ ORZHU VHPLFRQWLQXRXV WKHQ WKH VHW W z W M w w M w 1RWHWKDW d OLP J wn J w d D OLP || J c w n || OLP J wn J w J nof
nof
n of
&RQVHTXHQWO\ WKH VHTXHQFH ^wn ` M w LV PLQLPL]LQJ )URP LQHTXDOLWLHV IROORZWKHHVWLPDWLRQ
n
$V LW IROORZV IURP WKH YDOXH J w t w w L I R 7KH n VHTXHQFH ^wn ` LV PLQLPL]LQJ IRU DQ\ LQLWLDO SRLQW w w L I R J w PLQ J w J LQI J w WKHQLQWKHFDVH J w WKHHTXDOLW\LVYDOLG wL
wL
t
³*t t w t dt
a
t
7KXVWKHLQWHJUDOHTXDWLRQ KDVDVROXWLRQLIDQGRQO\LIIRUDJLYHQYHFWRU a R n WKH YDOXH J w ZKHUH w w t t I LV WKH VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ ,I WKH YDOXH J w ! WKHQ w w t t I LV QRW D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ ,I LQHTXDOLW\ KROGV WKHQ WKH IXQFWLRQDO XQGHU FRQGLWLRQ LV VWURQJO\FRQYH[7KHQ J wn J w d J c wn wn w !
P
__ wn w __ d P __ J c wn __ n
ZKHUH P ! LVDFRHIILFLHQWRIVWURQJFRQYH[LW\ P
7KHUHIRUH ZLWK WDNLQJ LQWR DFFRXQW ZH KDYH an an t an ZKHUH an
l
J wn J w
P
P
l
l
&RQVHTXHQWO\ d an d an qan q q 7KHQWKHHVWLPDWLRQV DUHYDOLG d J wn J w d > J w J w @q n
§· __ wn w __d ¨¨ ¸¸> J w J w @q n n ©P¹ +HQFH __ w n w __o DW n o f 7KHRUHPLVSURYHG
Lecture 14.7KHH[LVWHQFHRIDVROXWLRQWRFRQWUROODELOLW\SUREOHP ,Q DGGLWLRQ WR WKH OLQHDU LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ ZLWK WKH FRQGLWLRQV ZHFRQVLGHUWKHOLQHDUV\VWHPRIWKHGLIIHUHQWLDOHTXDWLRQ y A t y B t w t C t w t D t w t P t t I y t [ [ t y t [ [ t w L I R m w L I R s w L I R k ZKHUH [ x Om S u Om [ x c S u Q :HQRWHWKDW
t
b
³K tW vW dW L I R ³/t O xO dO L I R s
a
k
t
/HW WKH PDWUL[ EH B t B t C t D t RI RUGHU n m u m s k WKH YHFWRU IXQFWLRQ wt w t w t w t L I R s m k )URP WKH LQLWLDO GDWD ZH GHILQHWKHIROORZLQJPDWULFHVDQGYHFWRUV t
a
t
) t t [ [ ³) t t P t dt W t t
³)t t B t B t ) t t dt
t
t
t
³) t W B W B W ) t W dW W t t
W t t
W t t W t t t I
t
/ t [ [
B t ) t t W t t a N t
B t ) t t W t t ) t t
§ B t ) t t W t t ) t t · ¨ ¸
¨ C t ) t t W t t ) t t ¸ ¨ D t ) t t W t t ) t t ¸ ¹ ©
§ N t · ¸ ¨ ¨ N t ¸ / t [ [ ¨ N t ¸ © ¹
) t t W t t W t t [ ) t t W t t W t t ) t t [ t
t
³) t W P W dW ) t t W t t W t t ³) t t P t dt
t
t
N t
) t t W t t W t t ) t t t I
ZKHUH ) t W N t N W N W LV WKH IXQGDPHQWDO PDWUL[ RI VROXWLRQV RI D OLQHDU KRPRJHQHRXVV\VWHP ] A t ] 7KHRUHP Let the matrix W t t be positive definite. Then the control w L I R s m k takes the trajectory of the system (3.31) from any initial point n m n m [ R to any given finite state [ R if and only if wt 6 ^w L I R smk wt N t zt p p L I R
pt / t [ [ s mk
t I `
where p L I R s m k is an arbitrary function and the function z t z t p t I is a solution of the differential equation z A t z B t p t z t t I Solution of the differential equation (3.31), corresponding to the equation w t 6 has the form y t z t p / t [ [ N t z t p t I
3URRIThe proof of the theorem follows from Theorems 1, 2. Indeed, from the solution of (3.31) under the conditions (3.32), (3.33) we have t
³)t t B t wt dt
a
t
7KLVLQWHJUDOHTXDWLRQIRUWKHXQNQRZQIXQFWLRQ wt L I R s m k LVDVSHFLDOFDVHRI ZKHUH * t t ) t t B t ,W LV QHFHVVDU\ DQG VXIILFLHQW IRU WKH H[LVWHQFH RI D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ WKDW WKH PDWUL[ W t t EH SRVLWLYH GHILQLWH )XUWKHUE\UHSODFLQJ * t t E\ ) t t B t RI ZHREWDLQ t
W t t
³)t t B t B t ) t t dt
t
)URP IROORZV 'LIIHUHQWLDO HTXDWLRQ DQG UHODWLRQ GLUHFWO\ IROORZIURPWKHIRUPXODV z t p
t
t
t
t
³)tW B W pW dW zt p )t t ³)t t B t pt dt
,WLVHDV\WRYHULI\WKDW y t [ y t [ 7KHWKHRUHPLVSURYHG 1RWHWKDWWKHFRPSRQHQWVRIWKHYHFWRUIXQFWLRQ w t 6 DUH w t p t B t ) t t W t t a N t z t p t I
w t
p t C t ) t t W t t a N t z t p t I
w t
p t D t ) t t W t t a N t z t p t I
ZKHUH p t p t p t p t p L I R m p L I R s p L I R k )URP ± ZLWK WDNLQJ LQWR DFFRXQW WKDW t
a
)t t [ [ ³)t t P t dt ZHREWDLQ t
w t
p t D t x T t x T t d P t N t z t p t I
w t
p t D t x T t x T t d P t N t z t p t I
w t
p t D t x T t x T t d P t N t z t p t I
z t p S t x S t x S t d P t N t z t p t I
y t
ZKHUH P t P t P t P t t I DUHWKHNQRZQIXQFWLRQV /HPPDLet the matrix W t t be positive definite. Then the controllability problem defined by the relations (3.12)-(3.14) (or (3.1)-(3.7)) is equivalent to the identities
t
b
w t ut w t
³K tW vW dW
w t
a
³/t O PyO dO
t I
t
t I
A t z B t p t C p t D t p t z t
z
p L I R m p L I R s p L I R k m
x x S u S R n d D ^d R _ d t ` u t U t v W V W Py t
x t G t I
IRUPXODV
ZKHUH w t w t w t yt t I DUH GHILQHG E\ FRUUHVSRQGLQJO\ 3URRI If the identities (3.45) are satisfied, then the function yt t I is a solution of the differential equation y t
b
t
a
t
A t y t B t ut C t ³K t W vW dW D t ³/ t O Py O dO
P t t I y t [ y t [ $V LW IROORZV IURP IRUPXODV WKH IXQFWLRQ y t z t p / t [ [ N t z t p t I ZKHUH z t z t p t I VDWLVILHV WR WKH LGHQWLW\ IRU DQ\ p L I R m p L I R s p L I R k ,Q SDUWLFXODU [ x Om S u Om [ x c S u Q
)XUWKHU IURP LQFOXVLRQV d D ut U t v W V W IROORZ WKDW y t { [ t t I ZKHUH Py t P[ t x t G t t I 7KXV ZKHQ WKH LGHQWLWLHV DUH VDWLVILHGWKHUHODWLRQV DUHWUXH7KHOHPPDLVSURYHG )URP7KHRUHPDQG/HPPDLWIROORZVWKDWWKHVROXWLRQRIWKHFRQWUROODELOLW\ SUREOHPFDQEHUHGXFHGWRVROYLQJWKHIROORZLQJRSWLPDOFRQWUROSUREOHPPLQLPL]H WKHIXQFWLRQDO J u v p p p Z x x d b
t
a
t
t
³^_ w t ut _
t
_ ³K t W v W dW w t _ _ ³/ t O Py O dO w t _
t I
_ Z t Lt Py t _ `dt o LQI
DWFRQGLWLRQV z
A t z B t p t C t p t D t p t z t
p L I R m p L I R s p L I R k
m
x x S u S R n d D ^d R _ d t `
u t U t v W V W Z t :t t I
ZKHUHWKHVHW s
:t ^Z L I R J t d Z t d G t ٝ PDWUL[ P I n Onm WKH IXQFWLRQV w t w t w t y t t I DUH GHILQHG E\
IRUPXODV ± FRUUHVSRQGLQJO\ :HLQWURGXFHWKHQRWDWLRQV T
T
u t v W p t p t p t Z t x x d X
U t u V W u LD I R m u LD I R s u LD I R k u :t u S u S u DD H
L I R m u L I R p u L I R m u L I R s u L I R k u
s
m
u L I R u R n u R n u R
LD I R m
LD I R s
^ p L I R m __ p __d D ` ^ p L I R s __ p __d D `
LD I R k
^ p L I R k __ p __d D `
DD
m
^d R _ d _d D`
ZKHUH D ! LVVXIILFLHQWO\ODUJHQXPEHU D f 7KHQWKHRSWLPL]DWLRQSUREOHP LVZULWWHQPLQLPL]HWKHIXQFWLRQDO J T
t
³F T zt p zt p t dt o LQI T X H
t
ZKHUH t
b
F _ w u _ _ ³K t W vW dW w _ _ ³/ t O Py O dO w _ _ Z LPy _ a
t
:H QRWH WKDW U t V W L I R L I R s LD I R k :t DUH ERXQGHG FRQYH[ FORVHGVHWVLQDUHIOH[LYH%DQDFKVSDFH6LQFH DD S S DUHERXQGHGFRQYH[FORVHG VHWVWKHVHW X LVZHDNO\FRPSDFWLQ H ,WVKRXOGEHQRWHGWKDWWKHIXQFWLRQDO J T T X LV D FRQWLQXRXV FRQYH[ IXQFWLRQDO LQ D ZHDNO\FRPSDFW VHW X 7KHUHIRUH WKH VHW X ^T XJ T J LQI J T ` LV QRW HPSW\ ,Q RWKHU ZRUGV D ZHDNO\ ORZHU D
m
D
T X
VHPLFRQWLQXRXVIXQFWLRQDO J T UHDFKHVWKHORZHUERXQGRQDZHDNO\FRPSDFWVHW X
/HPPD Let the matrix W t t be positive definite. In order that the controllability problem (3.1) - (3.7) has a solution it is necessary and sufficient that the value J T where T u t v W p t p t p t Z t x x d X X is the optimal control in problem (3.56). 3URRINecessity. We suppose, that the controllability problem (3.1) - (3.7) (or (3.12) - (3.14)) has a solution. Let x t x t t x x u v t I be a solution of the integral and differential equation (3.1). :H VKRZ WKDW WKH YDOXH J T $V LW IROORZV IURP /HPPDWKH UHODWLRQV DUH HTXLYDOHQW WR WKH LGHQWLWLHV b
&RQVHTXHQWO\ w t u t U t
w t
³K tW v W dW
v W V W W I
a
t
w t
³/t O Py O dO
y t
z t p / t [ [ N t z t p [ t [
x Om
t
[
x c c
t I Z t w
w
w
c c m c j
c j d j j
m P [ t
x t t x x u v
x t
L t Py t t I ZKHUH p t D t x T t x T t d P N t z t p p t D t x T t x T t d P N t z t p p t D t x T t x T t d P N t z t p
y t
Py t
z t p S t x S t x S t d P N t z t p t I
x t Z t
L t Py t
L t x t t I
7KHQ J T
t
³>_ w
t
b
t u t _ _ ³K t W v W dW w t _ a
t
_ ³/ t O Py O dO w t _ _ Z t Lt Py t _ @dt
t
1HFHVVLW\LVSURYHG 6XIILFLHQF\ /HW WKH YDOXH EH J T T X X :H VKRZ WKDW WKH FRQWUROODELOLW\ SUREOHP KDV D VROXWLRQ ,Q IDFW WKH YDOXH J T LI DQG b
RQO\ LI w t u t ³K tW v W dW a
t
w t ³/ t O Py O dO
w t Z t
L t Py t
t
t I ZKHUH u t U t v W V W Z t : t t I x S x S d D
7KHQ y t [ t x t K t t I ,W IROORZV WKDW x t t I LV D VROXWLRQ RI WKH LQWHJUDODQGGLIIHUHQWLDOHTXDWLRQ 7KHVXIILFLHQF\LVSURYHG7KHWKHRUHPLVSURYHG Lecture 15.&RQVWUXFWLRQRIWKHVROXWLRQWRWKHFRQWUROODELOLW\SUREOHP 6HPLQDUOHVVRQ :HLQWURGXFHWKHQRWDWLRQV b
³K tW v W dW w t
w t ut F qt t
F qt t
a
t
F qt t
³/t O PyO dO w t
F qt t Z t LPy t
t
q t
T z t p z t p t I
7KHQWKHIXQFWLRQDO LVZULWWHQLQWKHIRUP J T
t
t
³F qt t dt ³ _ F qt t _
t
_ F qt t _
t
_ F qt t _ _ F qt t _ dt
3DUWLFXODUGHULYDWLYHVDUHHTXDOWR wF qt t wu
Fu qt t F qt t
wF q t wv
Fv q t
t
t b
t
t a
³ K t W w t dt ³ ³K t W K t V v V dVdt
wF q t wp
F p q t
F qt t B t \ t
F p q t
F qt t C t \ t
F p q t
F qt t D t \ t
wF q t wp
wF q t wp
wF q t wZ
FZ q t F q t
wF q t wx
F x q t
D t F q t D t F q t S t F q t
D t F q t S t P L F q t
wF q t wx
T t F q t T t F q t S t F q t
F x q t
T t F q t S t P L F q t
wF q t wd
Fd q t T t F q t T t F q t S t F q t
T t F q t S t P L F q t
wF q t wz
F z q t
wF q t wz t
F z t q t
F q t P L F q t
N t F q t N F q t N t F q t
N t F q t N t P L F q t
ZKHUH t
t t
t
t t
³P / O t w O dO ³ ³ P / O t / O V Py V dVdO
F q t
7KHRUHPLet the matrix W t t be positive definite. Then the functional (3.50) under the conditions (3.51)-(3.55) is continuously Frechet-differentiable, the gradient J cT J uc T J vc T J cp T J cp T J cp T J Zc T J xc T J xc T J dc T H LQDQ\SRLQW T X DUHFDOFXODWHGE\IRUPXOD J uc T
Fu q t J vc T
J cp T
F p q t J cp T
t
³F
J xc T
t
x
q t dt J xc T
F v q t J cp T F p q t F p q t J Zc T FZ q t
t
³F
t
x
q t dt J dc T
t
³F
d
q t dt
t
WKH IXQFWLRQ z t p t I LV D VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ DQG WKH IXQFWLRQ \ t t I LVDVROXWLRQRIWKHDGMRLQWIXQFWLRQ \
F z q t A t \ \ t
t
³F z t q t dt t
,QDGGLWLRQWKHJUDGLHQW J cT T X VDWLVILHVWRWKH/LSVKLW]FRQGLWLRQ
__ J cT J cT __d K __ T T __ T T X
ZKHUH K const !
t I be a solution of
3URRI Let T t T t 'T t X z t p z t p 'p equation (3.51). Let z t p 'p z t p 'z t t I Since t
t
t
t
t
t
³) t W B W p W dW ³) t W C W p W dW ³) t W D W p W dW
z t p
WKDW t
'z t p
t
t
³) t W B W 'p W dW ³) t W C W 'p W dW ³) t W D W 'p W dW
t
t
t
&RQVHTXHQWO\ t
_ 'z t p _d
³
t
t
__ ) t W ____ B W ___ 'p W _ dW ³ __ ) t W ____ C W ___ 'p W _ dW t
t
³ __ ) t W __ __ D W ___ 'p W _ dW d c __ 'p __ c __ 'p __ c __ 'p __ t I t
ZKHUH c c c const ! 7KHLQFUHPHQWRIWKHIXQFWLRQDO J T 'T J T
'J
t
³> F qt 'qt t F qt t @dt
t
t
³^>_ F q 'q t _
_ F q t _ @ >_ F q 'q t _ _ F q t _ @
t
>_ F q 'q t _ _ F q t _ @ >_ F q 'q t _ _ F q t _ @`dt
7KHUHIRUHZLWKWDNLQJLQWRDFFRXQWWKDW D _ F q 'q t _ _ F q t _ w u 'u ! w u 'w ! _ 'w 'u _ 'w 'p D t ' x T t 'x T t ' d N t 'z t p b
b
a
a
E _ F q 'q t _ _ F q t _ ³K tW 'vW dW 'w t ³K t W vW dW b
w t ! _ ³K t W 'v W dW 'w t _
a
'w
'p D t 'x T t 'x T t 'd N t 'z t p t
t
t
t
F _ F q 'q t _ _ F q t _ ³/t O P'ydO 'w ³/t O PydO t
w ! _ ³/ t O P'ydO 'w t _ t
'w 'p D t 'x T t 'x T t 'd N t 'z t p 'y 'z t S t 'x S t 'x S t 'd N t 'z t p
G _ F q 'q t _ _ F q t _ Z LPy 'Z LP 'y ! _ 'Z LP 'y _ ZHREWDLQ
t
³^'u F
'J
u
q t 'v F v q t 'p > F q t @
t
'p > F q t @ 'p > F q t @ 'Z FZ q t 'x F x q t 'x F q t 'd F d q t 'z t F z q t
x
'z t F z t q t R R R R `dt
b
R _ ³K t W 'v W dW 'w t _
ZKHUH R _ 'w 'u _
a
t
R _ ³/ t O P'ydO 'w _ t
R _ 'Z LP 'y _ R
R R R R 8VLQJ)XELQL VWKHRUHPRQWKHFKDQJHRIYDULDEOHVRILQWHJUDWLRQZHKDYH D
t
b
b
t
a
a
³ ³K tW vW dW w t ³K tW 'vW dW ! dt
b
b
b
t b
a
a
a
t a
³ ³K tV w t dt 'vV ! dV ³ ³ ³K tV K tW vW dWdt
'vV ! dV J vc W 'v ! L
t
t b
t
t a
³ K t mW w t dt ³ ³K t W K t V dVdt
J vc W
F v q t
E
t
t
t
t
t
t
³ ³/t O PydO w ³/t O P'ydO ! dt
t
t
t
t
³ ³P / t V w t dt 'y V ! dV
t
t t
t
t t
³ ³ ³ P / t V / t O PydOdt 'y V ! dV J cy V 'y ! L
J cy t
t
t t
t
t t
³P / O t w O dO ³ ³ P / O t / O V PydVdO
F q t
:HFRQVLGHUWKHODVWWZRWHUPVLQ 6LQFHVHH
t
³'z t F
t
z t
t
'z t ³ F z t q t dt
q t dt
t
'z t \ t
t
³ t
w >'z t \ t @dt wt
t
³>'z t \ t 'z t \ t @dt t
t
³>'z t A t 'p t B t 'p t C t 'p t D t @\ t dt t
t
³'z t > F z q t A t \ t @dt t
t
³'p t B t \ t dt t
t
t
t
t
t
t
³'p t C t \ t dt ³'p t D t \ t dt ³'z t F z q t dt
WKDW t
t
³'z t F z t q t dt ³'z t F z q t dt
t
t
t
t
t
³'p t B t \ t dt t
³'p t C t \ t dt ³'p t D t \ t dt
t
t
)URP ZLWKWDNLQJLQWRDFFRXQW ± ZHJHW
'J J uc T 'u ! L J vc T 'v ! L J cp T 'p ! L J cp T 'p ! L J cp T 'p ! L J Zc T 'Z ! L J xc T 'x ! n J xc T 'x ! n J dc T 'd ! m R R R R _ R _d c __ T __ R
t
³ Rdt
t
$V LW IROORZV IURP IRUPXOD WKH )UHFKHW GHULYDWLYH RI WKH IXQFWLRQDO XQGHUWKHFRQGLWLRQV LVGHWHUPLQHGE\WKHIRUPXOD /HW T T T 'T X 6LQFH _ J cT J cT _ d L _ 'qt _ L _ '\ t _ L _ 'T _ ZKHUH _ 'qt _d L __ 'T __ _ '\ t _d L __ 'T __ WKHQ __ J cT J cT __d K __ 'T __ T T X 7KHWKHRUHPLVSURYHG
8VLQJUHODWLRQV ZHFRQVWUXFWWKHVHTXHQFH ^T n ` ^un vn pn p n pn Zn x n xn d n ` X E\WKHDOJRULWKP
un PU >un D n J uc T n @ vn PV >vn D n J vc T n @ pn P D > pn D n J cp T n @ p n P D > p n D n J cp T n @ pn x n
L
P D > pn D n J cp T n @ Zn
L
P: >Zn D n J Zc T n @ L PS > x n D n J xc T n @ xn PS > xn D n J xc T n @ d n P D >d n D n J dc T n @ n
D
H ! K ! LVWKH/LSVFKLW]FRQVWDQWIURPWKHLQHTXDOLW\ K H :H LQWURGXFH WKH VHW / ^T X _ J T d J T ` ZKHUH T u v p p p Z
ZKHUH Dn
LVDVWDUWLQJSRLQWIRUVHTXHQFH 7KHRUHP We suppose, that the conditions of Theorems 5 and 6 are satisfied, the sequence ^T n ` is determined by the formula (3.65), and U V LD I R m LD I R s LD I R k : S S DD are bounded convex closed sets. Then: 1. the numerical sequence ^J T n ` is strictly decreasing; PT n T n P o DW n o f ,IPRUHRYHUWKHVHW / LVERXQGHGWKHQ WKHVHTXHQFH ^T n ` X LVPLQLPL]LQJLH OLP J T n J LQI J T x x d X
nof
T X
WKHVHTXHQFH ^T n ` X ZHDNO\FRQYHUJHVWRWKHVHW X X z Tn o T DW n o f WKHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHWDNHVSODFH d J Tn J d
c n c n
const !
WKHFRQWUROODELOLW\SUREOHPGHILQHGE\ KDVDVROXWLRQLIDQG RQO\LI J T 3URRI Assertions 1), 2) follow directly from the property of the projection of a point on a convex closed set and the algorithm (3.65). Since the functional (3.50) under conditions (3.51) - (3.55) is convex, the bounded convex closed set / in a reflexive Banach space H is weakly bicompact, J T C X then J T is weakly lower semicontinuous on / Consequently, the functional J T reaches the lower bound on the set / and the inequality d J T n J T d C __ T n T n __ c const ! n holds, where J T LQI T / J T PLQ J T T /
+HQFHWDNLQJLQWRDFFRXQWWKDW __ T n T n __o n o f ZHKDYHWKHVHTXHQFH ^T n ` LVPLQLPL]LQJVLQFH ^T n ` / / LVZHDNO\ELFRPSDFWWKHQ Tn o T DW n o f
6LQFH d J T n J T d C __ T n T n __ J T n J T n t H __ T n T n __ WKHQDVVHUWLRQ LVWUXH$VLWIROORZVIURP/HPPDLIWKHYDOXH J T WKHQWKHFRQWUROODELOLW\ SUREOHP KDVDVROXWLRQ:HQRWHWKDWLI J T t V V X 7KHRUHPLV SURYHG /HW t ! t EH WKH VPDOOHVW YDOXH t IRU ZKLFK J T 7R VROYH WKH RSWLPDO VSHHG SUREOHP LW LV QHFHVVDU\ WR VROYH WKH FRQWUROODELOLW\ SUREOHP IRU WKH YDOXHV t t ZKHUH t ! t ! t ! ! t 7KHFRQVWUXFWLYHQHVVRIWKHSURSRVHGPHWKRGLVGHPRQVWUDWHGE\RQHH[DPSOH ([DPSOH:HFRQVLGHUWKHFRQWUROODELOLW\SUREOHPRIWKHIROORZLQJIRUP
x
x u t ³ FRV tW v W dW W I
>@ t I
>@
x
u t ³ets x s ds t I
g x x u
³> x t x t u t @dt d c
x t G t G t
u t U
^ x R e d x t d e e d x t d e t I `
^u L I R d u t d
e e d
d u t d e e ٝ v W V ^v L I R d v W d ٝ
§ x t · x t ¨¨ ¸¸ x © x t ¹
x S
§ x · ¨¨ ¸¸ x © x ¹
§ x · ¨¨ ¸¸ © x ¹
^ d x d e e d x d e `
x S ^ d x d e e d x d e ` )RUWKLVH[DPSOH
K t
t
³> x W x W u W @dW
K t x t x t u t K K c d d ! 7KHQWKHUHODWLRQV ± FDQEHZULWWHQLQWKHIRUP
[
A[ Bu C ³ FRV tW v W dW D ³ets x s ds t I
ZKHUH
§ · § · ¨ ¸ ¨ ¸ B ¨ ¸ ¨ ¸ C ¨ ¸ ¨ ¸ © ¹ © ¹ § x · § x t · ¸ ¨ ¸ ¨ [ t ¨ x t ¸ [ ¨ x ¸ [ ¨ ¸ ¨ K t ¸ ¹ © ¹ © [ [ [ [ t I
§· ¨ ¸ ¨ ¸ D ¨ ¸ © ¹
A
§ x · ¸ ¨ ¨ x ¸ ¨c d ¸ ¹ ©
§ · ¨ ¸ ¨ ¸ ¨ ¸ © ¹
/LQHDUFRQWUROODEOHV\VWHPKDVWKHIRUP y A y Bw t Cw t Dw t t I y [ y [ w L I R w L I R w L I R WKH IXQGDPHQWDO PDWUL[ RI VROXWLRQV RI D OLQHDU KRPRJHQHRXV V\VWHP ] A] LV GHWHUPLQHGE\WKHIRUPXOD
T t e
A t
§ t ¨ ¨ ¨ t ¨¨ t ©
· ¸ ¸¸ ¸¸ ¹
e
A t
T t
§ ¨ ¨ ¨ ¨¨ t ©
· ¸ ¸¸ ¸¸ ¹
t t
) t W T t T W
§ ¨ ¨ ¨ ¨¨ t W ©
t W t W
6LQFH
B
B C D
§ · ¨ ¸ ¨ ¸ ¨ ¸ ¨¨ ¸¸ © ¹
· ¸ ¸¸ ¸¸ ¹
WKDWWKHPDWUL[
W
³) t B B ) t dt
§ ¨ t t t ¨ t ³ ¨ ¨ ¨ t t t t ©
· ¸ ¸ t ¸ t ¸ t t t ¸ ¹ t t t
§ · ¸ ¨ ¸ ¨ ¨ ¸ ¹ © ZKHUHWKHSULQFLSDOPLQRUV ' ' ' +HQFHWKHPDWUL[ W LVSRVLWLYHGHILQLWH7KHLQYHUVHPDWUL[ · § ¸ ¨ W ¸ ¨ ¨ ¸¹ © 0DWUL[ W t W W t ZKHUH
W t
§ t t t t t ¨ t ¨ t t ¨ t t t t t t t © t t t t
t t t
t t t t t
· ¸ ¸ ¸ ¹
7KHYHFWRU
a
) [ [
§ x x x · ¸ ¨ x x ¸ ¨ ¨ x x c d ¸ ¹ ©
$VLWIROORZVIURPIRUPXOD WKHYHFWRUIXQFWLRQ
§ p t · § / t [ [ · § N t z p · ¸ ¸ ¨ ¸ ¨ ¨ ¨ p t ¸ ¨ / t [ [ ¸ ¨ N t z p ¸ ¨ p t ¸ ¨ / t [ [ ¸ ¨ N t z p ¸ ¹ ¹ © © ¹ ©
wt
§ w t · ¸ ¨ ¨ w t ¸ ¨ w t ¸ © ¹
p t
§ p t · ¨¨ ¸¸ / t [ [ © p t ¹
ZKHUH
§ / t [ [ · ¨¨ ¸¸ N t z p © / t [ [ ¹
§ N t z p · ¨¨ ¸¸ © N t z p ¹
7KHQ
w t
§ p t · § / t [ [ · § N t z p · ¸¸ ¨¨ ¸¸ t I ¨¨ ¸¸ ¨¨ © p t ¹ © / t [ [ ¹ © N t z p ¹
w t
p t / t [ [ N t z p t I
w t p t / t [ [ N t z p t I ZKHUHIXQFWLRQ z t p t I LVDVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ z A z B p t C p t D p t z t I p L I R p L I R p L I R +HUH / t [ [ B ) t W a / t [ [ C ) t W a / t [ [ D) t W a N t z p B ) t W ) z p N t z p C ) t W ) z p N t z p D ) t W ) z p %\WKHVLPLODUZD\RI ZHJHW
y t
§ y t · ¸ ¨ ¨ y t ¸ ¨ y t ¸ © ¹
§ z t p · § / t [ [ · § N t z p · ¸ ¸ ¨ ¸ ¨ ¨ ¨ z t p ¸ ¨ / t [ [ ¸ ¨ N t z p ¸ ¨ z t p ¸ ¨ / t [ [ ¸ ¨ N t z p ¸ ¹ ¹ © ¹ © ©
ZKHUH
z t p
§ z t p · ¸ ¨ ¨ z t p ¸ / t [ [ ¨ z t p ¸ ¹ ©
§ / t [ [ · ¸ ¨ ¨ / t [ [ ¸ N t z t p ¨ / t [ [ ¸ ¹ ©
§ N t z p · ¸ ¨ ¨ N t z p ¸ ¨ N t z p ¸ ¹ ©
2SWLPL]DWLRQSUREOHP)RUWKLVH[DPSOHWKHRSWLPDOFRQWUROSUREOHP KDVWKHIRUP
J T
J u v p p p Z x x d
³^_ w t ut _ _ ³ FRVtW vW dW
w t _ _ ³ets y s ds w t _ _ Z t LPy t _ `dt o LQI
DWFRQGLWLRQV z A z B p t C p t D p t z t I p L I R p L I R p L I R x x S u S d D ^d Rd t ` u t U v W V Z t : ^Z L I R e d Z t d e e d Z t d e ٝ
P
I O L
§ y · ¨¨ ¸¸ © y ¹
§ · ¨¨ ¸¸ LPy © ¹
7KH IXQFWLRQV F q t w u F q t
³FRV tW vW dW w
F q t
Z LPy )RUHDFKIL[HG T n
F q t
³e
ts
y s ds w
un vn pn p n pn Zn x n xn d X
WKHJUDGLHQWRI
WKHIXQFWLRQDOLVFDOFXODWHGE\WKHIRUPXOD ,W FDQ EH VKRZQ WKDW IRU WKLV H[DPSOH WKH OLPLWLQJ YDOXHV RI WKH PLQLPL]LQJ VHTXHQFHVDUHDVIROORZV
u t u t u t u t
p t
p t
VLQ t VLQ t FRV t u t et t t t
d W ® ¯ d W
VLQ t e t et t I v W t t t
§ p t · ¨¨ ¸¸ p t © p t ¹
u t p t
u t
³ FRVtW v W dW p t
³e
ts
y s ds y t
x t
y t et
Z t
VLQ t t
x t t I Z t
x t
x t t I x
e · § ¸¸ x ¨¨ © e VLQ ¹
³> x
t x t u t @dt
c d
7KHYDOXH J T J u v p p p Z x x d
§ e · ¨¨ ¸¸ © e VLQ ¹
et
Lecture 16.6SHFLDOFDVHV 7KH VROYDELOLW\ DQGFRQVWUXFWLRQ RI WKH VROXWLRQ RI WKH FRQWUROODELOLW\SUREOHP IRUWKHJHQHUDOSUREOHP DUHJLYHQDERYH7KHVHUHVXOWVDUHDOVRDSSOLFDEOH LQWKHIROORZLQJVSHFLDOFDVHV ,I K t W { / t O { t >t t @ W >a b@ O >t t @ WKHQ FRQWUROODELOLW\ SUREOHPRI ± KDVWKHIRUP x A t x B t u P t t I >t t @
x t
xt G t G
g j x u d c j j m g j x u c j j
x x t
S Rn
x S u S
^ x R n J t d L t x d G t t I `
t
g j x u
m m
³> a t xt ! b t ut !@dt j
j
j m
t
u t U t
^u L I R m u t U t R m
,QSDUWLFXODUWKHVHWV S S S DUHGHILQHGE\UHODWLRQV S ^x R n h x d Ex c` S ^x R n h x d Fx d ` S ^ x x R n H x x d Cx Dx b` ZKHUH h x h x H x x DUH FRQYH[ IXQFWLRQV E F C D DUH JLYHQ PDWULFHV c d b DUHJLYHQYHFWRUV ,QWKHDSSOLHGSUREOHPVWKHVHW U t KDVWKHIRUP D U t ^u L I R m D t d u t d E t E U t ^u L I R m _ u t _ d r ZKHUH D t E t t I DUHJLYHQFRQWLQXRXVIXQFWLRQV 7KHFRUUHVSRQGLQJOLQHDUFRQWUROOHGV\VWHPEH y A y Bw t P t t I y t [ y t [ w L I R m ZKHUH w t { w t { t I 7KH RSWLPL]DWLRQ SUREOHP LV ZULWWHQ DV IROORZV PLQLPL]HWKHIXQFWLRQDO J u p Z x x d
t
³>_ w t ut _
_ Z t Lt Py t _ @dt o f
t
DWFRQGLWLRQV z A t z B t p t z t I p L I R m x x S d D u t U t Z t : t t I
PLQLPL]LQJVHTXHQFH ^T n ` ^un pn Zn x n xn d n ` ZKHUH un PU >un D n J uc T n @ pn P D > pn D n J cp T n @ L
Zn P: >Zn Dn J Zc Tn @ xn PS > xn Dn J xc Tn @
xn
PS > xn D n J xc T n @ d n
P D >d n D n J dc T n @ n D
7KHFRQWUROODELOLW\SUREOHPKDVDVROXWLRQLIDQGRQO\LI J T ZKHUH T X LVD VROXWLRQRIWKHSUREOHP ,I B t { K t W { b j t { j m t >t t @ W >a b@ WKHQ IURP ± ZHJHW
t
x
At x Dt ³/ t O xO dO P t t I
>t t @
t
x t
xt G t G
g j x d c j j m g j x c j j
x x t
x S u S
S Rn
^ x R n J t d L t x d G t t I `
t
g j x
³> a t xt !@dt j
m m
j m
t
,Q WKLV FDVH WKH SURSRVHG PHWKRG PDNHV LW SRVVLEOH WR VROYH WKH ERXQGDU\ YDOXH SUREOHP RI D OLQHDU LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ ZLWK SKDVH DQG LQWHJUDO FRQVWUDLQWV )RUWKLVFDVHD WKHOLQHDUFRQWUROOHGV\VWHPLVGHILQHGE\WKHHTXDWLRQ y A t y D t w t P t t I
y t [ y t [ w L I R k ZKHUH w t { w t { t I E 7KH RSWLPL]DWLRQ SUREOHP LV ZULWWHQ DV IROORZV PLQLPL]H WKH IXQFWLRQDO
J p Z x x d
t
t
t
t
³>_ ³/t O PyO dO w t _
_ Z t L t Py t _ @dt o f DWFRQGLWLRQV z A t z D t p t z t I
p L I R k x x S d D F JUDGLHQW RI WKH IXQFWLRQDO J cT J cp T J Zc T J xc T J xc T J dc T LV GHILQHG E\IRUPXOD ZKHUH F { F { G WKHPLQLPL]LQJVHTXHQFHVDUHGHWHUPLQHGE\WKHIRUPXOD
H WKH QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH VROYDELOLW\ RI WKH FRQWUROODELOLW\ SUREOHP DUH GHWHUPLQHG E\ WKH FRQGLWLRQ J T ZKHUH T LV WKH VROXWLRQRIWKHSUREOHP ,I / t O { t I >t t @ WKHQ WKH VROXWLRQ RI WKH FRQWUROODELOLW\ SUREOHP ZLWK DIWHUEXUQHU FRQWURO LQ WKH SUHVHQFH RI ERXQGDU\ FRQGLWLRQV ZLWK SKDVH DQG LQWHJUDOFRQVWUDLQWVIROORZVIURP ,QWKLVFDVHWKHVHW V W W >a b@ KDVWKHIRUP D V W ^v L I R p D W d v W d E W ٝ E V W ^v L I R p _ v W _ d r ٝ 7KHXUJHQF\RIVROYLQJWKHFRQWUROODELOLW\SUREOHPIRULQWHJUDODQGGLIIHUHQWLDO HTXDWLRQVLVVKRZQE\RQHH[DPSOH:HFRQVLGHUWKHSUREOHPRIEHQGLQJDKDQJLQJ EULGJHFRQVLVWLQJRIDEHDPDQGDFKDLQ7KHFKDLQDQGWKHEHDPDUHFRQQHFWHGZLWK HDFKRWKHUE\SHQGDQWV /HW l EHWKHOHQJWKRIWKHHODVWLFEHDPZLWKIL[HGHQGV T EHWKHKRUL]RQWDOWHQVLOH IRUFH WKH RULJLQ LV RQ WKH OHIW HQG RI WKH EHDP WKH D[LV Ox LV GLUHFWHG DORQJ WKH EHDP DQG WKH D[LV Oy LV GLUHFWHG GRZQZDUG /HW x [ d x d l d [ d l EH WKH FXUUHQWFRRUGLQDWHV$FRQFHQWUDWHGIRUFHLVDSSOLHGWRWKHSRLQW x a RQWKHEHDPE\ DGLVWULEXWHGORDGZLWKDGHQVLW\ p [ VLQ Zt DWDSRLQW [ YDU\LQJLQWLPH 7KHLQIOXHQFHIXQFWLRQKDVWKHIRUP x l [ d x d [ °° Tl G x [ ® l x [ ° d x d l °¯ Tl OLQHDU GHQVLW\RI WKH EHDP DWD SRLQW [ WKHQWKH LQHUWLD IRUFHEHWZHHQWKHSRLQWV [ DQG [ '[ DWWKHWLPH t >@ dy U [ '[ U [ y [ Z VLQ Zt '[ dt ZKHUH y y x VLQ Zt d x d l 7KHIXQFWLRQ y x VLQ Zt
l
³G x [ > U [ VLQ Zt Z U [ y [ VLQ Zt @d[
+HQFH LW IROORZV WKDW WKH PD[LPXP EHQGLQJ RI WKH EHDP yx FDXVHG E\ WKH GLVWULEXWHGORDG p [ DQGWKHLQHUWLDIRUFHLVGHWHUPLQHGE\WKHIRUPXOD y x
l
l
³G x [ U [ y[ d[ ³G x [ U [ d[
ZKHUH WKH ILUVW WHUP LV WKH EHQGLQJ RI WKH EHDP JHQHUDWHG E\ WKH LQHUWLD IRUFH WKH VHFRQGWHUPLVWKHEHQGLQJRIWKHGLVWULEXWHGORDG6LQFHWKHEHQGLQJRIWKHEHDPIURP WKHFRQFHQWUDWHGIRUFH P LVHTXDOWR G x a P WKHWRWDOEHQGLQJRIWKHEHDP
l
y x G x a P
w x
G x a P ³G x [ p[ d[
l
³G x [ U [ y [ d[ d x d l
,QWKHFDVHRIDKDQJLQJEULGJHSDUWRIWKHEHDPEHQGLVWUDQVPLWWHGWRWKHFKDLQ/HW WKHFKDLQDQGEHDPVDUHFRQQHFWHGWRJHWKHUE\SHQGDQWV H EHWKHKRUL]RQWDOWHQVLRQ RIWKHFKDLQ z x d x d l EHWKHGHYLDWLRQRIWKHFKDLQIURPWKHKRUL]RQWDOSRVLWLRQ XQGHU WKH ORDG RQ WKH EHDP 7KHQ WKH IXQFWLRQ z x d x d l LV D VROXWLRQ RI WKH GLIIHUHQWLDOHTXDWLRQ>@ H
d z x dx
q x d x d l
ZKHUH q x LVGLVWULEXWHGORDGVHQVLQJFLUFXLW 7KH IXQFWLRQ z x d x d l LV OLQHDU ZLWK UHVSHFW WR WKH EHQGLQJ RI WKH EHDP w x &RQVHTXHQWO\ z x k w x k const k ,Q WKLV FDVH WKH EHDP EHQG w x k w x d x d l 'LVWULEXWHG ORDG q x k x w x k x k w x k x ! d x d l ZKHUH k x LV WKH ORDG FRUUHVSRQGLQJ WR WKH XQLW RI WKH EHDP EHQGLQJ 6XEVWLWXWLQJ WKH YDOXHV z x q x d x d l LQWR WKH HTXDWLRQ RI WKH FKDLQ ZHREWDLQ Hk
d w x dx
k x k >G x a P
k x k w x
l
l
³G x [ p[ d[ ³G x [ U [ y [ d[ @
ZKHUH y x w x G x a P +HQFHLWIROORZV d w x dx
l
l
B x u C x ³K x [ v[ d[ D x ³/ x [ w[ d[
w
wl
x > l @
ZKHUH l
k x k > ³G x [ U [ G [ a d[ G x a @ Hk
B x
C x
D x
/ x [
k x k K x [ Hk
G x [ U [ u
P v [
G x [ p [
$IWHU WKH UHSODFHPHQW x [ E\ t W UHVSHFWLYHO\ GHQRWLQJ w x E\ x t t I > t @ t l WKHHTXDWLRQRIWKHKDQJLQJEULGJHZHZULWHLQWKHIRUP
t
d x t dt
t
B t u C t ³K t W v W dW D t ³/ t W x W dW
x x t t I > t @ 6XSSRVLQJ x t x t x t x t ZHZULWHWKLVHTXDWLRQLQYHFWRUIRUP t
x
t
Ax B t u C t ³K t W v W dW D t ³/ t W x W dW
x
x x S x
x t x t S
u U
^u R d u d p ` v W V W ^v L I R
d v W d U W I
>@
ZKHUH § x t · § · ¸¸ A ¨¨ ¨¨ ¸¸ Bt x t © ¹ © ¹
§ · § · ¨¨ ¸¸ C t Dt ¨¨ ¸¸ B t © ¹ © C t ¹ p LV WKH JUHDWHVW YDOXH RI WKH FRQFHQWUDWHG IRUFH U LV WKH JUHDWHVW YDOXH RI WKH x t
GLVWULEXWHGORDG7KXVWKHEHQGLQJHTXDWLRQRIWKHKDQJLQJEULGJHKDVWKHIRUP )RU WKLV H[DPSOH LQ SDUWLFXODU WKH FRQWUROODELOLW\SUREOHP LV IRUPXODWHG DV IROORZV )LQG FRQWUROV u U v W V W VR WKDW WKH EHQGLQJ RI WKH EHDP k x t t I VDWLVILHVWKHSKDVHFRQVWUDLQW d k x t d G t t I DQGWKHSRWHQWLDOHQHUJ\LQ t
EHQGLQJ k ³ x W dW d c ZKHUH G c DUHJLYHQQXPEHUV
6LPLODUFRQWUROODELOLW\SUREOHPVFDQEHIRUPXODWHGLQRWKHUILHOGVRIVFLHQFHIRU LQWHJUDODQGGLIIHUHQWLDOHTXDWLRQVIURP>@7KHPRGHUQWKHRU\RILQWHJUDOHTXDWLRQV DQGWKHWKHRU\RIH[WUHPDOSUREOHPVPDNHLWSRVVLEOHWRVROYHFRPSOH[FRQWUROODELOLW\ SUREOHPVIRULQWHJUDODQGGLIIHUHQWLDOHTXDWLRQV &RPPHQWV 0DWKHPDWLFDOPRGHOVRIPDQ\SKHQRPHQDLQYDULRXVILHOGVRIVFLHQFHELRORJ\ >@ PHGLFLQH >@ ELRSK\VLFV >@ WKHUPRG\QDPLFV RI ELRORJLFDO SURFHVVHV >@ PHFKDQLFVDQGHOHFWURG\QDPLFV>@HFRQRPLFV>@SRZHUHQJLQHHULQJ>@DUHLQWHJUDO DQGGLIIHUHQWLDOHTXDWLRQV 0RQRJUDSKV>@DUHGHYRWHGWRWKHJHQHUDOWKHRU\RILQWHJUDODQGGLIIHUHQWLDO HTXDWLRQV JHQHUDOL]HG VROXWLRQV RI LQWHJUDO HTXDWLRQV ,Q WKHVH SDSHUV TXHVWLRQV RI H[LVWHQFHXQLTXHQHVVDQGPHWKRGVIRUFRQVWUXFWLQJDSSUR[LPDWHVROXWLRQVRILQWHJUDO DQGGLIIHUHQWLDOHTXDWLRQVDUHFRQVLGHUHG
7KH VWXG\ RI WKH FRQWUROODELOLW\ RI SURFHVVHV GHVFULEHG E\ LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQV LQ WKH SUHVHQFH RI ERXQGDU\ FRQGLWLRQV SKDVH DQG LQWHJUDO FRQVWUDLQWVWDNLQJLQWRDFFRXQWWKHOLPLWHGUHVRXUFHVRIWKHV\VWHPLVDQHZGLUHFWLRQ LQ WKH WKHRU\ RI LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQV 7KH SUREOHP RI FRQWUROODELOLW\ DULVLQJ IURP WKH QHHG WR VROYH XUJHQW SUREOHPV LQ WKH ILHOG RI QDWXUDO VFLHQFHV PHGLFLQHHFRQRPLFVDQGWHFKQLFDOVFLHQFHVVWDWHPRUHFRPSOH[SUREOHPVIRULQWHJUDO DQGGLIIHUHQWLDOHTXDWLRQV,QWKHDXWKRU VSDSHUV>@WKHSUREOHPVRIFRQWUROODELOLW\ RISURFHVVHVGHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKERXQGDU\FRQGLWLRQVLQ WKHSUHVHQFHRISKDVHDQGLQWHJUDOFRQVWUDLQWVDUHLQYHVWLJDWHGWDNLQJLQWRDFFRXQWWKH OLPLWHGFRQWUROUHVRXUFHV,QWKLVFKDSWHUDQDWWHPSWLVPDGHWRH[WHQGWKHVHUHVXOWVWR LQWHJUDODQGGLIIHUHQWLDOHTXDWLRQV 7KHWKHRU\RIFRQWUROODELOLW\RULJLQDWHVIURPWKHZRUNRI5(.DOPDQ>@+H FRQVWUXFWHGDFRQWUROZLWKDPLQLPXPQRUPDQGREWDLQHGDUDQNFRQWUROODELOLW\FULWHULRQ IRUOLQHDUV\VWHPVZLWKFRQVWDQWFRHIILFLHQWV7KHVROXWLRQRIWKHFRQWUROODELOLW\SUREOHP RQ WKH EDVLV RI WKH l ± SUREOHP RI PRPHQWV ZDV SURSRVHG E\ 11 .UDVRYVN\ >@ 6HSDUDWHTXHVWLRQVRIFRQWUROODELOLW\ZHUHLQYHVWLJDWHGLQ>@ 7KHLVVXHVRIFRQWUROODELOLW\REVHUYDELOLW\DQGVWDELOLW\RIFRQWUROODEOHV\VWHPV DUH GLVFXVVHG LQ >@ ,Q UHFHQW \HDUV D QXPEHU RI VFLHQWLILF DUWLFOHV GHYRWHG WR WKH SUREOHPV RI FRQWUROODELOLW\ DQG RSWLPDO VSHHG RI G\QDPLF V\VWHPV KDYH EHHQ SXEOLVKHG7KHSDSHU>@LVGHYRWHGWRWKHV\QWKHVLVRIERXQGHGFRQWURORQWKHEDVLV RI /\DSXQRY IXQFWLRQV $ JHRPHWULF DSSURDFK WR WKH FRQWUROODELOLW\ RI QRQDXWRQRPRXV OLQHDUV\VWHPVZDVVWXGLHGLQ>@ 7KH SUREOHP RI FRQWUROODELOLW\ LV FORVHO\ UHODWHG WR VROYLQJ WKH SUREOHPV RI VWDELOL]LQJ G\QDPLF V\VWHPV ,Q >@ WKH SUREOHP RI VWDELOL]LQJ WKH ]HUR HTXLOLEULXP SRVLWLRQRIELOLQHDUDQGDIILQHV\VWHPVRIFDQRQLFDOIRUPLVFRQVLGHUHG0LQLPDOVWDELOL]HUV IRUOLQHDUG\QDPLFDOV\VWHPVZHUHLQYHVWLJDWHGLQ>@0RQRJUDSK>@LVGHYRWHGWRDQ DQDO\WLFDOVWXG\RIFRQWUROODELOLW\DQGRSWLPDOFRQWUROSUREOHPV,WVKRXOGEHQRWHGWKDWLQ WKHZRUNVPHQWLRQHG>@SDUWLFXODUFDVHVRIWKHJHQHUDOSUREOHPRIFRQWUROODELOLW\DQG VSHHGRIG\QDPLFV\VWHPVZLWKRXWSKDVHDQGLQWHJUDOFRQVWUDLQWVZHUHLQYHVWLJDWHG ,Q>@DPHWKRGIRUFRQVWUXFWLQJDVHWRIFRQWUROVHDFKHOHPHQWRIZKLFKWDNHV WKH WUDMHFWRU\ RI D OLQHDU V\VWHP IURP DQ\ LQLWLDO SRLQW WR DQ\ GHVLUHG ILQDO VWDWH LV JLYHQ,Q>@WKHVROYDELOLW\FRQGLWLRQVDQGWKHFRQVWUXFWLRQRIDJHQHUDOVROXWLRQRI WKH LQWHJUDO HTXDWLRQ IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHPV RI G\QDPLFDO V\VWHPV ZHUH IRXQG 6ROXWLRQV WR WKH SUREOHP RI RSWLPDO FRQWURO ZLWK ERXQGDU\ FRQGLWLRQV SKDVH DQG LQWHJUDO FRQVWUDLQWV EDVHG RQ WKH VROXWLRQ RI FRQWUROODELOLW\ SUREOHPV DUH FRQWDLQHG LQ >@ 7KH FRQWUROODELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHG E\ D SDUDEROLFHTXDWLRQZLWKOLPLWHGFRQWUROZHUHLQYHVWLJDWHGLQ>@,Q>@PHWKRGV IRUVROYLQJERXQGDU\YDOXHSUREOHPVRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQVRQWKHEDVLVRI VROYLQJWKHSUREOHPVRIFRQWUROODELOLW\RIG\QDPLFDOV\VWHPVDUHFRQVLGHUHG 7KLVZRUNLVDFRQWLQXDWLRQRIWKHVFLHQWLILFUHVHDUFKZRUNV>@7KHDLPRI WKLVZRUNLVWRFUHDWHDQHZPHWKRGIRUVROYLQJWKHFRQWUROODELOLW\SUREOHPIRUDOLQHDU
LQWHJUDODQGGLIIHUHQWLDOHTXDWLRQLQWKHSUHVHQFHRISKDVHDQGLQWHJUDOFRQVWUDLQWVZLWK DOORZDQFHIRUFRQVWUDLQWVRQFRQWUROYDOXHV 7KH WKHRU\ RI FRQWUROODELOLW\ RI G\QDPLFDO V\VWHPV LV RQH RI WKH GLUHFWLRQV LQ WKH TXDOLWDWLYH WKHRU\ RI GLIIHUHQWLDO HTXDWLRQV WKDW DURVH IURP WKH QHHGV RI QHZ DUHDV RI VFLHQFHDQGWHFKQRORJ\VXFKDVWKHH[SORUDWLRQRIRXWHUVSDFHVXSHUVRQLFDYLDWLRQFRQWURO RIFRPSOH[WHFKQRORJLFDOSURFHVVHVFRQWURORIQXFOHDUDQGFKHPLFDOUHDFWRUVDQGWKHQHHG WRVROYHFRPSOH[SUREOHPVRIHFRQRPLFVDQGHFRORJ\QDWXUDODQGWHFKQLFDOVFLHQFHV $G\QDPLFDOV\VWHPLVFDOOHGWREHFRQWUROODEOHLIWKHUHH[LVWVDFRQWURODFWLRQ WKDWWDNHVWKHWUDMHFWRU\RIWKHV\VWHPIURPDQ\LQLWLDOVWDWHWRWKHGHVLUHGILQDOVWDWH GHWHUPLQHG E\ WKH ERXQGDU\ FRQGLWLRQV ZKLOH WKH SKDVH DQG LQWHJUDO FRQVWUDLQWV DUH VDWLVILHGDORQJWKHVROXWLRQRIWKHV\VWHP 7KH LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ FRQQHFWV WKH SUHVHQW WKH IXWXUH DQG WKH SDVW RI WKH SURFHVV 6XFK PDWKHPDWLFDO PRGHOV RI SKHQRPHQD PRUH DGHTXDWHO\ GHVFULEHWKHLUSURSHUWLHV2QHRIWKHIRXQGHUVRITXDQWXPPHFKDQLFV:+HLVHQEHUJ LQKLVERRN3K\VLFVDQG3KLORVRSK\PDNHVWKHIROORZLQJDVVXPSWLRQWKHEDVLF HTXDWLRQ RI PDWWHU FRQVLGHUHG DV D PDWKHPDWLFDO UHSUHVHQWDWLRQ RI DOO PDWWHU PXVW KDYHWKHDSSHDUDQFHRIDFRPSOH[V\VWHPRILQWHJUDODQGGLIIHUHQWLDOHTXDWLRQV 7RSLFDO DQGXQVROYHG SUREOHPV LQ WKH WKHRU\ RIFRQWUROODELOLW\RI LQWHJUDODQG GLIIHUHQWLDO HTXDWLRQV ZLWK FRQVWUDLQWV DUH REWDLQLQJ QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH VROYDELOLW\ RI JHQHUDO FRQWURO SUREOHPV WKH GHYHORSPHQW RI FRQVWUXFWLYHPHWKRGVIRUFRQVWUXFWLQJWKHLUVROXWLRQV7KHDLPRIWKLVZRUNLVWRFUHDWH DJHQHUDOWKHRU\RIFRQWUROODELOLW\RISURFHVVHVGHVFULEHGE\LQWHJUDODQGGLIIHUHQWLDO HTXDWLRQVZLWKERXQGDU\FRQGLWLRQVLQWKHSUHVHQFHRISKDVHDQGLQWHJUDOFRQVWUDLQWV WDNLQJLQWRDFFRXQWWKHOLPLWHGUHVRXUFHVRIWKHV\VWHP &RQVWUXFWLYH WKHRU\ RI FRQWUROODELOLW\ RI WKH SURFHVV GHVFULEHG E\ D OLQHDU LQWHJUDO DQG GLIIHUHQWLDO HTXDWLRQ LV FUHDWHG 7KH EDVLV IRU WKH SURSRVHG PHWKRG RI VROYDELOLW\RIWKHFRQWUROODELOLW\SUREOHPLVWKHSRVVLELOLW\RIUHGXFLQJLWWRDFODVVRI WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG ,W LV VKRZQ WKDW WR FRQVWUXFW D VROXWLRQ WR WKH FRQWUROODELOLW\ SUREOHP LW LV QHFHVVDU\ WR FRQVWUXFW PLQLPL]LQJ VHTXHQFHVIRUWKHLQLWLDORSWLPDOFRQWUROSUREOHP7KHVROXWLRQRIWKHRULJLQDOSUREOHP LVZHDNO\OLPLWLQJSRLQWVRIPLQLPL]LQJVHTXHQFHV 4XRWHGOLWHUDWXUH 99ROWHUUD0DWKHPDWLFDOWKHRU\RIVWUXJJOHIRUH[LVWHQFH±01DXND 5%HOOPDQ0DWKHPDWLFDOPHWKRGVLQPHGLFLQH±00LU v n D n J c v n wn @
ZKHUH V
®v L Q v ¯
w
w
xW ɢ J v
w
J
!
d r
PLQLPL]LQJ
PW >wn D n J c v n wn @
wn
r ½ ¾ $V D UHVXOW ZH ILQG v
¿
ZLWKDQHZPHDQLQJ r r · § ¨ r ¸ © ¹
v
[ W
J
+HUH WKH FDVHV DUH SRVVLEOH ɚ J
,Q WKH FDVH RI ɚ ZH FKRRVH D QHZ YDOXH r
r
VHTXHQFH
n
r
§ r · ¨ ¸ © ¹
ɛ
r DQG VROYH SUREOHP
,QWKHFDVHRIE ZHFKRRVHWKHPHDQLQJ
r DQG VROYH SUREOHP HWF $SSO\LQJ WKH SURFHGXUH
ZHILQGDPLQLPDOYDOXH r ! 2SWLPDOVSHHG2SWLPDOVSHHGSUREOHPFDQEHVROYHGE\WKHDOJRULWKP &KRRVH D PHDQLQJ T T ZKHUH T LV D SUHVFULEHG YDOXH &RQVWUXFW D VHTXHQFH ^vn wn ` V u W E\WKHUXOH ZKHUH T ½ v [ W L Q v [ W d[ dW d r ¾ ® k ³ ³ ¯ ¿ r LVDSUHVFULEHGQXPEHU'HILQH v v [ W w w xW LQI J v w ZKHUH J v w J
V
v w V uW
,I J ! WKHQDVDQHZYDOXHZHWDNH T
T DQGLQWKHFDVHRI J
ZH
DVVXPH T T T J ! WKHVHTXHQFHVDUHFRQVWUXFWHG ^v n wn ` ¯T J
)RUWKHQHZYDOXHV T ®
DQGGHILQHG v
v
[ W w
w
xW DQGWKHYDOXH J v
w
J
LQI
v w V uW
J v w
T J
! LV ¯T J
+HUH WKH FDVHV DUH SRVVLEOH ɚ J
! E J
$ YDOXH T ®
GHILQHG:HILQGDPLQLPDOYDOXH T T E\DSSO\LQJFRQVHTXHQWO\WKHVFKHPHRI FDOFXODWLRQV T
Lecture 19.,QWHJUDOHTXDWLRQRI)UHGKROPRIWKHILUVWNLQG IRUDIXQFWLRQRIVHYHUDOYDULDEOHV 0HWKRGV IRU VROYLQJ WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG IRU WKH RULJLQIXQFWLRQRIVHYHUDOYDULDEOHVDUHSURSRVHG 7KHLQWHJUDOHTXDWLRQLVFRQVLGHUHG b d
/u
³ ³ /t [ W u[ W d[ dW
f t t >t t @
a c
ZKHUH /t [ W
Oij t [ W i n j m LV WKH NQRZQ PDWUL[ RI RUGHU n u m
HOHPHQWVRIWKHPDWUL[ /t [ W IXQFWLRQV Oij t [ W DUHPHDVXUDEOHDQGEHORQWRWKH FODVV L RQWKHVHW
:
^t[ W R
`
t d t d t a d W d b c d [ d d
t b d
³³³ O
ij
t [ W d[ dW dt f
t a c
IXQFWLRQ f t L I R n I >t t @ LV SUHVFULEHG u [ W L Q R m LV DQ RULJLQ IXQFWLRQ Q ^[ W c d [ d d a d W d b` WKH YDOXHV t t a b c d DUH IL[HG RSHUDWRU / L Q R m o L I R n /u f $ PHWKRG IRU VROYLQJ RI LQWHJUDO HTXDWLRQ E\ UHGXFLQJ WR WKH LQWHJUDO HTXDWLRQLQWKHIRUPLVVXSSRVHG b d
Ku
³ ³ K tW utW dW dt
a a R n
a c
ZKHUH K tW
Kij tW i n j m LVWKHNQRZQPDWUL[RIRUGHU n u m HOHPHQWV
RIWKHPDWUL[ K t W IXQFWLRQV K ij t W DUHPHDVXUDEOHDQGEHORQJWRWKHFODVV L RQWKHVTXDUH Q
^t W a d t d b
c d W d d `
b d
³³ K
ij
t W dW dt f
a c
a R n LV D SUHVFULEHG YHFWRU u t W L Q R m LV DQ RULJLQ IXQFWLRQ WKH YDOXHV a b c d DUHSUHVFULEHGRSHUDWRU K L Q R m o R n Ku
a 7KHSUREOHPVDUHVHW 3UREOHP Find necessary and sufficiently condition for solving integral equation (4.70) for any a R n . 3UREOHPFind a general solution of the integral equation (4.70). 3UREOHP Let elements of the matrix / t [ W , t [ W : the function Oij t [ W L : R have traces Oij [ W L I R which are continuous in metrics L I R i.e. t
OLP ³ Oij t [ W Oij t [ W dt ,
[ o[ W oW t
at all [ W Q . Necessary to find an approximation solution u [ W L Q R m of equation (4.69). Find an estimation u u L where u u [ W L Q R m is a
solution of equation (4.69). :H FRQVLGHU D VROXWLRQ RI WKH SUREOHP IRU LQWHJUDO HTXDWLRQ LQ WKH IRUP $VROYDELOLW\FRQGLWLRQRIHTXDWLRQ IRUDQ\SHUPDQHQWYHFWRU a R n LVSUHVHQWHGEHORZ 7KHRUHPIn order to exists a solution of the integral equation (4.70) at any a R n necessary and sufficiently, that the matrix b d
³ ³ K t W K
T a b c d
t W dW dt
a c
of order n u n to be positive defined. 3URRINecessity./HWLQWHJUDOHTXDWLRQ KDYHDVROXWLRQ:HVKRZWKDW WKH PDWUL[ T a b c d ! $V LW IROORZV IURP IRUPXOD IRU DQ\ YHFWRU y R n TXDGUDWLFIRUP b d
y T a b c d y
³ ³ y K t W K
t W ydW dt
a c
b d
³³
K t W y K t W y dW dt t
a c
7KLVLPSOLHVWKDWWKHPDWUL[ T a b c d t 7KHQIRUSURYH T a b c d ! QHFHVVDU\ WRVKRZWKDW T a b c d LVQRQVLQJXODU :H DVVXPH WKH FRQWUDU\ LH WKH PDWUL[ T a b c d LV VLQJXODU 7KHQ WKHUH H[LVWVDYHFWRU c R n VXFKWKDW c T a b c d c c z /HWDYHFWRURIWKHIXQFWLRQ wt W K t W c w L Q R m 7KHQ b d
³ ³ w tW wtW dW dt
c
a c
b d
³ ³ K t W K
t W dW dt c
c T a b c d c
a c
7KLVLPSOLHVWKDWWKHIXQFWLRQ wt W { t W Q 6LQFH LQWHJUDO HTXDWLRQ KDV D VROXWLRQ IRU DQ\ YHFWRU a R n WKH LQ SDUWLFXODUXQGHU a c R n WKHUHH[LVWVDYHFWRUIXQFWLRQ vt W L Q R m VXFKWKDW b d
³ ³ K tW vtW dW dt
c c z
a c
)URP ZHJHW b d
³ ³ w t W vt W dW dt
a c
c
b d
³³ K t W vt W dW dt
c c
a c
7KLV FRQWUDGLFWV WKDW c z 7KH FRQWUDGLFWLRQ DURVH IURP WKH DVVXPSWLRQ WKDW WKH PDWUL[ T a b c d LVVLQJXODU&RQVHTXHQWO\WKHPDWUL[ T a b c d ! 1HFHVVLW\LV SURYHG Sufficiency. /HW WKH PDWUL[ T a b c d ! :H VKRZ WKDW LQWHJUDO HTXDWLRQ KDV D VROXWLRQ 6LQFH T a b c d ! WKDW WKHUH H[LVWV DQ LQYHUVH PDWUL[ T a b c d /HWDYHFWRUPDWUL[EH
u t W
K t W T a b c d a t W Q u t W L Q R m
7KHQ b d
b d
³ ³ K t W u t W dW dt ³ ³ K t W K
Ku
a c
t W dW dtT a b c d a
a c
T a b c d T a b c d a
a .
&RQVHTXHQWO\LQWKHFDVHZKHQWKHPDWUL[ T a b c d ! LQWHJUDOHTXDWLRQ KDV D RQH VROXWLRQ u t W K t W T a b c d a a R n 6XIILFLHQF\ LV SURYHG 7KHRUHPLVSURYHG :H FRQVLGHU D VROXWLRQ RI WKH SUREOHP IRU LQWHJUDO HTXDWLRQ RI WKH IRUP 7KHRUHP Let the matrix T a b c d ! . Then the general solution of integral equation (3.69) is defined by formula u t W
v t W K t W T a b c d a
b d
K t W T a b c d u ³ ³ K t W v t W dW dt a c
where vt W L Q R m is an arbitrary function, a R n is any vector. 3URRI:HLQWURGXFHDVHW m ®utW L Q R ¯ ^u t W L Q R m u t W W
U
½ a ¾ a c ¿ v t W K t W T a b c d a b d
³ ³ K tW utW dW dt
b d
K t W T a b c d ³ ³ K t W u t W dW dt v v t W L Q R m `
a c
ZKHUH WKH VHW W FRQWDLQV DOO VROXWLRQV RI LQWHJUDO HTXDWLRQ 7KH WKHRUHP DVVHUWV WKDW WKH IXQFWLRQ u t W L Q R m EHORQJV WR WKH VHW W LI DQG RQO\ LI LW EHORQJVWRWKHVHW U LH W U :HSURYHWKDW W U ,WLVVXIILFLHQWO\WRVKRZWKDWD U W E W U :H VKRZWKDW U W ,QIDFWLI u t W U WKHDVLWIROORZVIURPUHODWLRQ WKH HTXDOLW\LVKROG b d
³³ K t W u t W dW dt a c
b d
³ ³ K t W >vtW K
t W T a b c d a
a c
b d
K t W T a b c d ³ ³ K t W vt W dW dt @dWdt
a c
b d
³ ³ K t W u a c
b d
u vt W dWdt ³ ³ K t W K t W dW dtT a b c d a a c
b d
b d
a c
a c
³ ³ K t W K t W dW dtT a b c d ³ ³ K t W vt W dW dt
a
7KLVLPSOLHVWKDW u t W &RQVHTXHQWO\WKHVHW U W :HVKRZWKDW W U /HW u t W W LHIRUIXQFWLRQ u t W W WKHHTXDOLW\ LVKHOGVHH
b d
³ ³ K t W u t W dW dt
a
a c
:H QRWH WKDW LQ UHODWLRQ WKH IXQFWLRQ vt W L Q R m LV DUELWUDU\ ,Q SDUWLFXODULWFDQEHFKRVHQ v t W u t W t W Q 1RZWKHIXQFWLRQ u t W U LV ZULWWHQLQWKHIRUP u t W u t W K t W T a b c d a K t W T a b c d u b d
u ³ ³ K t W u t W dW dt
u t W
u t W t W Q
a c
&RQVHTXHQWO\ u t W u t W U 7KLVLPSOLHVWKDW W U )URPLQFOXVLRQ U W W U IROORZVWKDW W U 7KHRUHPLVSURYHG 7KH PDLQ SURSHUWLHV RI WKH VROXWLRQ *HQHUDO VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ KDVWKHSURSHUWLHV 7KH IXQFWLRQ ut W t W Q IURP FDQ EH SUHVHQWHG LQ WKH IRUP u t W u t W u t W ZKHUH u t W
K t W T a b c d a L Q R m
LVDSDUWLFXODUVROXWLRQRIWKHLQWHJUDOHTXDWLRQ DQGIXQFWLRQ u t W
b d
vt W K t W T a b c d ³ ³ K t W vt W dW dt L Q R m a c
LVDVROXWLRQRIKRPRJHQHRXVLQWHJUDOHTXDWLRQ b d
³ ³ K t W u
t W dW dt
a c
,QIDFW b d
b d
³ ³ K t W u t W dW dt
³³ K t W K
a c
b d
³³ K t W u
t W dW dt
a c
t W dW dtT a b c d a
a
a c
b d
b d
³³ K t W vt W dW dt ³³ K tW K a c
t W dW dt u
a c
b d
u T a b c d ³ ³ K t W vt W dW dt
a c
IRUDQ\IXQFWLRQ vt W L Q R m 7KHIXQFWLRQV u t W L Q R m u t W L Q R m DUHRUWKRJRQDO u L Q R m ,QIDFW b d
u u
L
³³ u tW u tW dW dt
a c
A u LQ
b d
a T a b c d ³ ³ K t W u
a c
b d
u >vt W K t W T a b c d ³ ³ K t W vt W dW dt @
a c
b d
b d
a c
a c
a T a b c d > ³³ K t W vt W dW dt ³³ K t W vt W dW dt @
7KH IXQFWLRQ u t W K t W T a b c d a L Q R m LV D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ ZLWK PLQLPDO QRUP LQ L Q R m ,Q IDFW WKH QRUP
u
u u 7KLV LPSOLHV WKDW u t u ,I WKH IXQFWLRQ vt W { WKHQ WKH
u IXQFWLRQ u t W { 7KHQ u t W u t W u 7KHVHWRIVROXWLRQVRIWKHLQWHJUDOHTXDWLRQ LVFRQYH[$VLWIROORZV IURPSURYHRIWKHRUHPWKHVHWRIDOOVROXWLRQVRIWKHHTXDWLRQLV U :HVKRZ WKDW U LVFRQYH[VHW /HW u t W U wt W U uD t W Du t W D wt W a >@ ,WLVHDV\WR PDNHVXUHWKDW uD t W U DWDOO D D >@ ,QIDFW b d
K t W T a b c d a Q t W K t W T a b c d ³ ³ K t W Q t W dW dt
u t W
a c
b d
K t W T a b c d a K t W K t W T a b c d ³ ³ K t W K t W dW dt
wt W
a c
Q t W L Q R m K t W L Q R m
7KHQ uD t W Du t W D wt W
K t W T a b c d a vD t W b d
K t W T a b c d ³³ K t W vD t W dW dt U a c
ZKHUH vD t W DQ t W D K t W L Q R m &RQVWUXFWLRQ RI DQ DSSUR[LPDWH VROXWLRQ RI DQ LQWHJUDO HTXDWLRQ :H FRQVLGHUWKHVROXWLRQRISUREOHPIRUDQLQWHJUDOHTXDWLRQRIWKHIRUP /HW LQ L D FRPSOHWH V\VWHP LV JLYHQ LQ SDUWLFXODU t t DQG WKH FRUUHVSRQGLQJ FRPSOHWHRUWKRJRQDOV\VWHP M t M t /HWWKHFRQGLWLRQVRIWKH)XELQLWKHRUHP EHVDWLVILHGLH § t
·
· § ³ ¨¨© ³ ³ O t [ W u [ W d[dW ¸¸¹M t dt ³ ³ ¨¨ ³ O t [ W M t dt ¸¸u [ W d[dW t
b d
b d
ij
t
j
k
a c
a c
© t
ij
k
b d
³ ³ l [ W u [ W d[dW ijk
j
i n
j
m k
¹
j
a c
t
³ f t M t dt i
ZKHUH f i t L I R i 7KHQ
k
aik i n k
t
n
§b d · /t [ W u[ W d[dW ¸¸M k t dt ³t ¨¨© ³³ a c ¹ t b d § t § bd§ · · · ¨ ¨ O t [ W M k t dt ¸u [ W d[dW ¨ Om t [ W M k t dt ¸um [ W d[dW ¸ ³ ³ ³ ³ ³ ³ ¸ ¨ ¸ ¨ a c ¨t ¸ a c © t © ¹ ¹ ¨ ¸ ¨ ¸ b d § t ¨ b d § t ¸ · · ¨ ³ ³ ¨ ³ On t [ W M k t dt ¸u [ W d[dW ³ ³ ¨ ³ Onm t [ W M k t dt ¸um [ W d[dW ¸ ¸ ¨ ¸ ¨ a c ¨t ¸ a c © t ¹ ¹ © © ¹ t
b d · §b d ¨ ³ ³ lk [ W u [ W d[dW ³ ³ lmk [ W um [ W d[dW ¸ ¸ ¨a c a c ¸ ¨ ¨ ¸ b d ¸ ¨b d ¨¨ ³ ³ lnk [ W u [ W d[dW ³ ³ lnmk [ W um [ W d[dW ¸¸ a c ¹ ©a c b d
³ ³ K [ W u[ W d[dW k
k
a c
§ t · ¨ f t M k t dt ¸ ³ ¨ t ¸ ¨ ¸ ¨ ¸ ¨ t ¸ ¨ f n t M k t dt ¸ ¨ t³ ¸ © ¹
t
ak
³ f t M t dt k
t
1RZIRUHDFKLQGH[ k ZHJHW b d
³³ K [ W u[ W d[dW k
§ ak · ¨ ¸ ¨ ¸ ¨ ¸ k ¨ ¸ ¨ ¸ ¨a ¸ © nk ¹
ak k
a c
ZKHUH K k [ W LV D PDWUL[ RI RUGHU n u m ak R n 7KH WUXQFDWHG HTXDWLRQ IRU WKH YDOXHV k N LV b d
³ ³ K [ W u [ W d[dW
a
a c
ZKHUH K [ W
§ K [ W · ¸ ¨ ¸a ¨ ¨ K [ W ¸ ¹ © N
§ a · ¨ ¸ ¨ ¸ ¨ ¸ u [ W L Q R m LV D VROXWLRQ RI WKH LQWHJUDO ¨ ¸ ¨ ¸ ¨a ¸ © N¹
HTXDWLRQ 7KHRUHPLet the matrix T a b c d
b d
³ ³ K [ W K [ W d[dW
a c
of order N n u N n be positive defined. Then the general solution of the integral equation (4.76) has the form b d
u [ W K [ W T a b c d a Z [ W K [ W T a b c d ³³ K [ W Z [ W d[dW
where Z [ W L Q R m is an arbitrary function. 3URYHRIWKHWKHRUHPIROORZVIURPWKHRUHPV :HFDOFXODWHWKHIXQFWLRQ f t Z E\IRUPXOD f t Z
b d
³³ /t [ W u[ W d[dW t I a c
a c
>t t @
ZKHUH u [ W LVGHILQHGE\IRUPXOD 7KHQWKHGLIIHUHQFH u [ W u [ W LVD VROXWLRQRIWKHLQWHJUDOHTXDWLRQ
b d
³ ³ /t[ W >u [ W u[ W @d[dW
f t f t Z t I
a c
ZKHUH u [ W LV D VROXWLRQ RI LQWHJUDO HTXDWLRQ :H GHQRWH E\ ' u [ W u [ W u [ W ' f t f t f t Z t I 7KHHTXDWLRQ ZLWKUHVSHFW WRWKHRULJLQIXQFWLRQ ' u [ W LVZULWWHQLQWKHIRUP b d
³³ /t[ W 'u[ W d[dW
'f t t I
a c
ZKHUH 'f t L I R m LV WKH NQRZQ IXQFWLRQ $V LQ WKH SUHYLRXV FDVH HTXDWLRQ FDQEHUHGXFHGWRWKHWUXQFDWHGHTXDWLRQ b d
³³ K [ W 'u[ W d[dW
' a
a c
ZKHUH 'f t
'a
'a 'an
'ak
'f t 'fn t
7KHRUHPLet the matrix The estimation is satisfied 'u [ W
T a b c d
b d
t § t · ¨ 'f t M t dt 'f t M t dt ¸ k ³t n k ¸ ¨ t³ © ¹
be positive defined by formula (4.77).
³ ³ K [ W T a b c d 'a
d[dW
a c
3URYHRIWKHWKHRUHPIROORZVIURPWKHRUHPVDQGSURSHUW\ :H FRQVLGHU DQ RWKHU PHWKRG IRU DSSUR[LPDWH VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ RULHQWHGRQDSSO\LQJRIFRPSXWHUV7KHVHJPHQW >t t @ LVGLYLGHG LQWR N SDUWVDQGZHFRQVLGHUWKHLQWHJUDOHTXDWLRQ IRUWLPHPRPHQWV t k I k N t N t
b d
$VDUHVXOWZHJHW ³ ³ /t k [ W u [ W d[dW
f t k k
N
a c
§ /t [ W · ¨ ¸ ¨ /t [ W ¸ b :HLQWURGXFHWKHPDWUL[HVDQGYHFWRUV K [ W ¨ ¸ ¨ ¸ ¨ /t [ W ¸ © N ¹ ZKHUH K [ W LVPDWUL[RIRUGHU n N u m b R n N
§ f t · ¨ ¸ ¨ f t ¸ ¨ ¸ ¨ ¸ ¨ f tN ¸ ¹ ©
7KHQWKHDSSUR[LPDWHLQWHJUDOHTXDWLRQLVZULWWHQLQWKHIRUP b d
³ ³ K [ W u[ W d[dW
b
a c
7KHRUHPLet the matrix b d
T a b c d
³ ³ K [ W K [ W d[dW
a c
of order n N u n N be positive defined. Then the general solution of the integral equation (4.81) is defined by formula
b d
u [ W K [ W T a b c d b w [ W K [ W T a b c d ³ ³ K [ W w [ W d[dW
a c
where w [ W L Q R m is an arbitrary function. 3URYHRIWKHWKHRUHPLVVLPLODUWRSURYHRIWKHRUHP /HW 'u[ W u [ W u[ W 7KHIXQFWLRQ 'u[ W L Q R m LVDVROXWLRQRIWKH LQWHJUDOHTXDWLRQ b d
³ ³ /t [ W 'u[ W d[dW
'f t t I
a c
ZKHUH ' f t
f t f t Z
b d
³ ³ /t [ W u[ W d[dW
f t Z
a c
7KHRUHPLet the matrix b d
'u
L
T a b c d !
Then the estimation is held
³ ³ K [ W T a b c d 'b d[dW
a c
§ ¨t © 'f t t
· ¸ ¹
t
where 'b 'b 'bn , 'bk ¨ ³ 'f t M k t dt ³ 'f n tM k t dt ¸ , t
'f t 'f n t ,
tI .
3URYHRIWKHWKHRUHPLVVLPLODUWRWKHSURYHRIWKHRUHP Lecture 20.0DQDJHPHQWRIWKHUPDOSURFHVVHV6HPLQDUOHVVRQ 7KH SUREOHPV RI FRQWUROODELOLW\ DQG RSWLPDO SHUIRUPDQFH RI WKH SURFHVVHV GHVFULEHG E\ D SDUDEROLF HTXDWLRQ ZLWK GLVWULEXWHG FRQWURO IURP D JLYHQ VHW DUH FRQVLGHUHG 0HWKRGV IRU VROYLQJ WKHVH SUREOHPV E\ FRQVWUXFWLQJ PLQLPL]LQJ VHTXHQFHVDUHSURSRVHG 3UREOHP VWDWHPHQW :H FRQVLGHU D FRQWUROODEOH SURFHVV GHVFULEHG LQVLGH RI WKHDUHD Q ^ d x d d t d T `E\WKHHTXDWLRQ wu x t wt
w u x t P x t v x t wx VDWLVILHGRQWKHERXQG Q WRWKHLQLWLDODQGERXQGDU\FRQGLWLRQV wu t wu t u x M x Du t wx wx +HUH P x t L Q u x t u x t v H Q ^u x t L Q u x x t L Q `WKH a
u x L I DUH FRQWLQXRXV LQ PHWULFV L I I
^t R
`
d t d T DW DOO x I x R d x d WKH WUDFHV u t L I DUH FRQWLQXRXV LQ PHWULFV L I DW DOO t >t t @ WKHWUDFH u t DW t FRLQFLGHVZLWKWKHIXQFWLRQ M x L I DQGDW
WUDFHV
^
`
t T FRLQFLGHV ZLWK WKH IXQFWLRQ \ x L I D LV D JLYHQ QXPEHU v x t LV FRQWURO7ZRFDVHVDUHFRQVLGHUHG ½ v x t L Q v x t V °®v x t L Q ³³ v x t dxdt d r °¾ °¯
Q
°¿
7KHSUREOHPVDUHVHW 3UREOHP (Controllability problem without restriction). Find a control v x t L Q , which transfers the system (4.83), (4.84) from the initial state u x M x , x I , to the given final state u x T \ x , x I , at the time moment T , where \ x L I is a prescribed function. 3UREOHP (Controllability problem with restriction). Find a control v x t V , which transfers the system (4.83), (4.84) from the initial state u x M x , x I , to the given final state u x T \ x , x I , at the time moment T , where \ x L I is a prescribed function. 3UREOHP (Controllability problem with minimal norm). Find a control v x t L Q with minimal norm, which transfers the system (4.83), (4.84) from the initial state u x M x to the state u x T \ x 3UREOHP(Optimal performance problem). Let v x t V , u x T \ x . The time moment T is not fixed. Find a control v x t V , which for the short time T transfers the system (4.83), (4.84) from the initial state u x M x , x I , to the desired final state u x T \ x , x I . 7KH LQWHJUDO HTXDWLRQV 6ROXWLRQ RI WKH HTXDWLRQ ZLWK FRQGLWLRQV WKURXJKWKHVRXUFHIXQFWLRQFDQEHUHSUHVHQWHGDV u x T
t
³ G x [ t M [ d[ ³ ³ G x [ t W >P [ W v[ W @d[ dW
ZKHUH G x [ t
f
¦e O
n a t
FRV On x FRV On[
Zn
n
On DUHSRVLWLYHURRWVRIWKHHTXDWLRQ OtgO D
Zn
³ FRV On xdx
On D D n On D
)URP DW t T ZHJHW u x T \ x
T
³ G x [ T M [ d[ ³ ³ G x [ T W P [ W d[ dW
T
³ ³ G x [ T W v[ W d[ dW
7KLV LPSOLHV WKDW WKH RULJLQ HTXDWLRQ v [ W L Q LV D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ T
³ ³ G x [ T W v[ W d[ dW
\ x x I
ZKHUH T
\ x \ x ³ G x [ T M [ d[ ³ ³ G x [ T W P [ W d[ dW x I
7KHV\VWHP ^Mn x ` ZKHUH M n x f n
Zn
FRV On x DUHIXOORUWKRQRUPDOV\VWHPLQ L
7KHIXQFWLRQ f
¦e O
G x [ t
n a t
FRV On x FRV On[
Z
n
f
¦e O
n
n a T W
M n x M n [
n
6LQFH ^Mn x `fn LVIXOORUWKRQRUPDOV\VWHPWKDW f
¦\
\ x
M n x \ n
n
n
³\ x M x dx
n
7KHQWKHLQWHJUDOHTXDWLRQ LVZULWWHQLQWKHIRUP T f
³ ³ ¦e
f
¦\
On a T W
M n x M n [ v[ W d[ dW
n
M n x
n
n
7KLVLPSOLHVWKDWHTXDWLQJWKHFRHIILFLHQWVDW\ n x T
³³e
On a T W
M n [ v[ W d[ dW \ n n
n
,IZHGHQRWH Ln [ W e O a T W M n [ WKHQHTXDWLRQ LVZULWWHQLQWKHIRUP T
³ ³ L [ W v[ W d[ dW
\ n n
n
ZKHUH a b T c d 6LQFH
³ v[ W M [ d[ n
vn W v [ W
f
¦v
n
W M n [
n
WKDWWKHLQWHJUDOHTXDWLRQ FDQEHUHSUHVHQWHGLQWKHIRUP T
³e
On a T W
vn W dW \ n n
7KH LQWHJUDO HTXDWLRQV DUH FRQVLGHUHG VHSDUDWHO\ EHORZ IRU WZRFDVHVZKHQ v [ W L Q v[ W V 6ROXWLRQ RI WKH LQWHJUDO HTXDWLRQ $V LW IROORZV IURP WKH WUXQFDWHGHTXDWLRQIRUWKHYDOXHV n N LVZULWWHQLQWKHIRUP T
³ ³ L [ W v[ W d[ dW
\ N
n
ZKHUH § e On a T W M [ · ¸ ¨ ¨ e On a T W M [ ¸ LN [ W ¨ ¸ \ N ¸ ¨ ¨ e On a T W M [ ¸ N ¹ ©
§ \ · ¸ ¨ ¨ \ ¸ ¨ ¸ ¸ ¨ ¨\ ¸ © N ¹
$SSO\LQJWRWKHLQWHJUDOHTXDWLRQ WKHRUHPRIZHREWDLQ /HPPDThe integral equation (4.90) has a solution if and only if when T
S
S T
³³L
N
[ W L N [ W d[ dW
of order N u N is positive defined. 3URYH RI WKH OHPPD IROORZV IURP WKHRUHP RI E\ VXEVWLWXWLQJ K t W RQ L [ W
/HPPDLet the matrix be S ! Then the general solution of the integral equation (4.90) is defined by formula v N [ W
T
p[ W L N [ W S\ N L N [ W S ³ ³ LN [ W p[ W d[ dW
where p [ W L Q is an arbitrary function. Moreover, control v[ W with minimal norm in L Q is equal to v N [ W L N [ W S\ N 3URYHRIWKHOHPPDIROORZVIURPWKHRUHPSUHVHQWHGLQ /HW v [ W EH D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ :H FDOFXODWH D T
³ ³ G x [ T W v
IXQFWLRQ \ x
N
[ W d[ dW ZKHUH v N [ W LV GHILQHG E\ IRUPXOD
RU 7KHQ WKH GLIIHUHQFH v [ W v N [ W 'v N [ W LV D VROXWLRQ RI WKHLQWHJUDOHTXDWLRQ T
³ ³ G x [ T W ' v
N
[ W d[ dW \ x \ x
'\ N x x >@
&RUUHVSRQGLQJWUXQFDWHGHTXDWLRQLVZULWWHQDV T
³ ³ LN [ W 'v N [ W d[ dW
'\ N '\ N
ZKHUH '\ N
³ '\ M
n
§ '\ · ¨ ¸ ¨ ¸ ¨ '\ ¸ N ¹ ©
x dx n N
/HPPDLet the matrix be 'v N [ W
T
³³ L
N
S ! .
Then the estimation is held
[ W S'[ N d[ dW OLP 'v N [ W
N
N of
/HPPDV DUH UHODWHG WR WKH FDVH ZKHQ v [ W L Q DQ JLYH VROXWLRQV RI WKH SUREOHPVIRUWUXQFDWHGLQWHJUDOHTXDWLRQ :HFRQVLGHUWKHFDVHZKHQ v[ W V
° ½ ° ®v[ W L Q ³³ v[ W d[dW d r ¾ °¯ °¿ Q
/HW w[ W
T
p[ W L N [ W S ³ ³ LN [ W p [ W d[ dW p [ W L Q
:HLQWURGXFHDVHW M
®w[ W L Q w[ W ¯
T ½ p[ W L N [ W S ³³ LN [ W p[ W d[ dW ¾ ¿
$VLWIROORZVIURPOHPPDVROXWLRQRIWKHLQWHJUDOHTXDWLRQ KDVWKHIRUP v [ W L N S\ w[ W w[ W M :HFRQVLGHUDQRSWLPL]DWLRQSUREOHPPLQLPL]HWKHIXQFWLRQDO T
I N v w
³ ³ >v[ W L
N
S\ N w[ W @ d[ dW o LQI
DWFRQGLWLRQV v [ W V w[ W M /HPPD Let the pair v [ W w [ W V u M be a solution of the optimization problem (4.93), (4.94) at N o f In order to the function v[ W V be a solution of the integral equation (4.86), necessary and sufficiently, that I N v w at N o f . 7KXVIRUVROYLQJWKHFRQWUROODELOLW\SUREOHPLQWKHFDVH v[ W V QHFHVVDU\ WRILQGDVROXWLRQRIWKHRSWLPL]DWLRQSUREOHP *UDGLHQW RI WKH IXQFWLRQDO 2SWLPL]DWLRQ SUREOHP FDQ EH VROYHG E\ FRQVWUXFWLQJ WKH PLQLPL]LQJ VHTXHQFHV ^vn [ W ` V ^wn [ W ` M ZKLFK FRQYHUJHV WR v N [ W V w N [ W M DW n o f ZKHUH OLP v N [ W v [ W V OLP w N [ W w [ W M N of N of 7KHRUHP Functional (4.93) under conditions (4.94) is continuously differentiable by Freshet, gradient of the functional I Nc v w IcN v w I c N v w L Q u L Q
at any point v w V u M is equal to >v [ W L [ W S \ N w[ W @ L Q , 7KHRUHP Gradient of the functional I Nc v w L Q u L Q satisfies to the Lipshitz condition, i.e. I Nc v w I Nc v w d L v v L w w L , IcN v w
I c N v w
>v [ W L N [ W S\ N w[ W @ L Q ,
N
v w , v w V u M
, l const ! .
3URMHFWLRQRIDSRLQWRQWKHVHW:HQRWHWKDW IRUDQ\QXPEHUV D DQG E WKHSRLQW D w [ W E w [ W M DW w [ W M w [ W M ,QIDFW T
Dw [ W Ew [ W >Dp [ W E p [ W @ L N [ W S ³ ³ LN [ W >Dp [ W
E p [ W @ d [ d W M
7KLVLPSOLHVWKDW M LVDOLQHDUPDQLIROGLQ L Q LI p [ W { [ W Q WKHQ w[ W M &RQVHTXHQWO\OLQHDUPDQLIROG M LVVXEVSDFHLHFRQYH[FORVHGVHW 7KHRUHP Any element f [ W L Q has an unique projection on the set M , moreover PM > f [ W @
T
f [ W L N [ W S ³ ³ LN [ W f [ W d[ dW [ W Q
where
PM > f [ W @
is a projection of the point f [ W on M .
3URMHFWLRQRIWKHSRLQW f [ W L Q RQ V LVGHILQHG f [ W °°r f [ W if f L ! r L PV > f [ W @ ® ° f [ W if f r d L °¯
&RQYH[ IXQFWLRQDO :H FRQVLGHU WKH IXQFWLRQDO XQGHU FRQGLWLRQV DVLWLVVKRZQDERYHWKHVHW M LVFRQYH[DQGFORVHGWKHVHW V LVFRQYH[ FORVHGVSKHUH&RQVHTXHQWO\WKHVHW V u M LVFRQYH[DQGFORVHG 7KHRUHP Functional I Nc v w on the set V u M is twice continuously differentiable by Freshet and convex. 0LQLPL]LQJVHTXHQFHV:HFRQVLGHUWKHRSWLPL]DWLRQSUREOHP :HFRQVWUXFWWKHVHTXHQFH ^vn [ W ` V ^wn [ W ` M E\WKHUXOH vn [ W PV >vn [ W D n IcN vn wn @ n wn [ W PM > wn [ W D n I c N vn wn @ n ZKHUH H d D n d
H ! ,QSDUWLFXODU H L H
L D n
H L
L
*UDGLHQW I Nc v w IcN v w I c N v w LV GHILQHG E\ IRUPXODV L ! LVD/LSVKLW]FRQVWDQWRI PRUHRYHU PV >@ PW >@ DUHGHILQHGE\UHODWLRQV 7KHRUHP Let the sequences ^vn [ W ` V , ^wn [ W ` M are defined by relations (4.101), (4.102).Then: 1) The lower bound of the functional I N v w is reached on the set V u M and I N v w LQI I N v w I N vn wn at any fixed N ; v w V u M 2) The sequence ^vn [ W wn [ W ` V u M is minimizing, i.e. OLP I N vn wn I N LQI I N v w v w V u M n of 3) The sequence ^vn [ W wn [ W ` V u M is weekly converges to the point v N
vN [ W wN
weakly
weakly
wN [ W at n o f , i.e. vn o vN , wn o wN at any
fixed N ; 4) The estimation of the convergence rate is held d I N vn wn I N d
5)
c n c const ! n
I N OLP I N vN wN , then the equation If I NOLP of N of
OLP vN [ W V
N of
transfers a trajectory of the system (4.83), (4.84) from the initial state u x M x , x I , to the given final state u x T \ x ; if I ! , then control v [ W V minimizes the norm u x T \ x , i.e. control v [ W V provides the best approximation u x T to \ x . 6ROXWLRQ RI WKH LQWHJUDO HTXDWLRQ 7KH RWKHU DSSUR[LPDWLRQ PHWKRG IRUVROYLQJRIWKHLQWHJUDOHTXDWLRQ FDQEHREWDLQHGE\GLYLGLQJWKHVHJPHQW
>@ RQ N SDUWVZLWKVSOLWSRLQWV x
YDOXHV x xi i
$VLWIROORZVIURP IRU
x xN
N ZHJHW T f
³ ³ ¦e
On a T W
M n [ M n xi v [ W d[ dW
\ xi i
N
n
7KHWUXQFDWHGHTXDWLRQLVSUHVHQWHGLQWKHIRUP T
³³P
N
[ W v N [ W d[ dW
\ N
ZKHUH · § f On a T W M n [ M n x ¸ ¨ ¦e ¸ ¨n PN [ W ¨ ¸ \ N f ¸ ¨ On a T W M n [ M n x N ¸ ¨¦e ¹ ©n
§ \ x · ¨ ¸ ¨ ¸ ¨\ x ¸ © N ¹
/HPPD The integral equation (4.104) has a solution if and only if the matrix T
S
³³P
S T
N
[ W PN [ W d[ dW
of order N u N is positive defined. 3URYHRIWKHOHPPDIROORZVIURPWKHRUHPSUHVHQWHGLQ /HPPD Let S ! . Then the general solution of the integral equation (4.104) is defined by formula v N [ W
T
U [ W PN [ W S \ N PN [ W S ³ ³ PN [ W U [ W d[ dW ,
where U [ W L Q is an arbitrary function. In addition, control with minimal norm in L Q is equal to v N [ W PN [ W S \ N .
3URYHRIWKHOHPPDIROORZVIURPWKHRUHPSUHVHQWHGLQWKHZRUN :HFDOFXODWHWKHIXQFWLRQ \ x
T
³ ³ G x [ T W v
N
[ W d[ dW
ZKHUH
v [ W
v [ W v [ W
LV GHILQHG E\ IRUPXOD RU 7KHQ WKH GLIIHUHQFH ' v [ W LVDVROXWLRQRIWKHLQWHJUDOHTXDWLRQ
T
³ ³ G x [ T W 'v
N
[ W d[ dW
\ x \ x
'\ N x x >@
&RUUHVSRQGLQJWUXQFDWHGVROXWLRQKDVWKHIRUP T
³ ³ PN [ W 'v N [ W d[ dW
§ \ N x · ¨ ¸ \ N x '\ N x ¨ ¸ ¨\ x ¸ © N N ¹
/HPPDLet the matrix 'v N [ W
S ! .
T
³³ P
N
The estimation is held
[ W S '\ N d[ dW , OLP v N [ W N of
.
3URYH RI WKH OHPPD IROORZV IURP WKHRUHPV SUHVHQWHG LQ DW N o f WKHLQWHJUDOHTXDWLRQV DQG FRLQFLGH
/HPPDV DUH UHODWHG WR WKH FDVH v [ W L Q DQG JLYH WKH VROXWLRQV RI SUREOHPV IRU WUXQFDWHG LQWHJUDO HTXDWLRQ 7KH FDVH ZKHQ v[ W V LV FRQVLGHUHGEHORZ 1RZZHFRQVLGHUWKHWUXQFDWHGLQWHJUDOHTXDWLRQ WKHJHQHUDOVROXWLRQ RIZKLFKKDVWKHIRUP /HW T
P [ W U [ W PN [ W S ³ ³ PN [ W U [ W d[ dW , U [ W L Q .
:HLQWURGXFHWKHVHW T ½ * ®P [ W L Q P [ W U [ W PN [ W S ³ ³ PN [ W U [ W d[ dW ¾ . ¯ ¿
$VLWIROORZVIURPOHPPDWKHVROXWLRQRIWKHLQWHJUDOHTXDWLRQ KDVWKH IRUP v[ W PN [ W S \ N P [ W , P [ W * . :HFRQVLGHUWKHRSWLPL]DWLRQSUREOHPPLQLPL]HWKHIXQFWLRQDO
I N v P
T
³ ³ >v[ W P
N
[ W S\ N P [ W @ d[ dW o LQI
DWFRQGLWLRQV v[ W V P [ W *
)RU RSWLPL]DWLRQ SUREOHP OHPPD WKHRUHPV DUH YDOLG DIWHUVXEVWLWXWLRQWKHLQGH[ N E\ N WKHIXQFWLRQV w[ W E\ P [ W WKHVHWV M E\ * 6ROXWLRQ RI WKH LQWHJUDO HTXDWLRQ ,Q WKH ZRUN >@ IRU VROYLQJ WKH LQWHJUDOHTXDWLRQ E\WKHPHWKRGRIPRPHQWVDFRQWUROZLWKPLQLPDOQLUPLQ WKH FDVH v [ W L Q LV IRXQG 7KH UHVXOW LV D SDUWLFXODU FDVH RI WKH JHQHUDO VROXWLRQRIWKHLQWHJUDOHTXDWLRQ /HPPDThe integral equation (4.89) has a solution if and only if the value T
Cn
Cn T
³e
On a T W
dW ! n
3URYHRIWKHOHPPDIROORZVIURPWKHUHVXOWVRIWKHZRUN>@ /HPPDLet Cn ! . Then the general solution of the integral equation (4.89) has the form vn W
pn W e On a
T W
Cn\ n e On a
T W
T
Cn ³ e On a
T W
pn W dW
where pn W L T is an arbitrary function. In addition, control with minimal norm equals
vnPLQ W eOn a
T W
Cn\ n W > T @
:H QRWH WKDW WKH UHVXOW EHORQJV $, (JRURY >@ FRQWURO ZLWK PLQLPDOQRUP f
¦e O
vPLQ [ W
na
T W
Cn\ nM n [ [ W Q
n
:H FRQVLGHU WKH FDVH ZKHQ v[ W V $V LW IROORZV IURP WKHRUHP WKH JHQHUDOVROXWLRQRIWKHLQWHJUDOHTXDWLRQ KDVWKHIRUP f
¦v
v[ W
n
f
¦M
t M n [
n
n
[ > pn W e On a
T W
Cn\ n
n
e On a
T
Cn ³ e Ona
T W
T W
pn W dW @
ZKHUH pn W L T LVDQDUELWUDU\IXQFWLRQ/HWWKHIXQFWLRQ
pn W e On a
Zn W
T W
T
Cn ³ e On a
T W
pn W dW
7KHQWKHFRQWURO v[ W RI ZLWKWDNLQJLQWRDFFRXQW LVZULWWHQLQWKH IRUP f
f
vPLQ [ W ¦ Zn [ W M [
v [ W
¦ v W M [ n
n
n
ZKHUH f
¦e O
vPLQ [ W
n a T
W
f
¦v
Cn\ nM n [
n
n
n PLQ
W M [
:H QRWH WKDW LI vPLQ [ W d r WKHQ WKH HTXDWLRQ LV D VROXWLRQ RI
SUREOHP LI vPLQ [ W ! r WKHQ SUREOHP KDV QRW DQ\ VROXWLRQ LI
vPLQ [ W r WKHQ SUREOHP KDV D VROXWLRQ ,Q WKLV FDVH QHFHVVDU\ WR ILQG D
FRQWURO v[ W ZKHUH v[ W d r 7KH FDVH ZKHQ vPLQ [ W r LV FRQVLGHUHG EHORZ 6LQFH ^M k [ `fk LV DQ
RUWKRQRUPDO V\VWHP WKHQ Mk [
³ M k [ M j [ d[
k z j $V LW IROORZV IURP
OHPPDWKHIXQFWLRQ
e On a
vn W T W n
ZKHUH V n W e O a
T W
C n\ n Z n W V n W Z n W
V n A Z n LH V n Zn
E\ WKHRUHP DQG IURP
L
7KHQ vn
Vn
L
L
Zn
L
vn L
³ v W dW n
)URP IROORZVWKDWWKHQRUP f
vL f
ZKHUH vPLQ L
¦V n
n L
¦v n
f
¦V
n L
f T
n
¦³ e O
n L
n a T W
f
¦ Zn n
Cn\ n dW
n
L
f
¦v n
r
PLQ L
f
¦ Zn n
L
6LQFH v L r WKDW
f
¦Z
n L
n
d r r r r !
$VLWIROORZVIURPIRUPXOD WKHQRUP Zn
T
³ Zn W dW
L
Zn
L
§T · Cn ¨¨ ³ e On a T W pn W dW ¸¸ ! © ¹
)URP ZHJHW f
¦p n
f
,QSDUWLFXODULI ¦ p n n
n L
L
§T · ¦ C ¨¨ ³ e On a T W pn W dW ¸¸ d r r n © ¹ f
n
r r WKHQWKHHTXDOLW\ LVKHOG
6LQFH pn W L DUHVRPHDUELWUDU\IXQFWLRQVWKDWDW p W z p j W { DW j ! ZH JHW p
T
³ p W dW
r r LH
r r 7KHUHIRUH DW p t
c
const
ZH
r r T
REWDLQ c
&RQWURO ZLWK PLQLPDO QRUP $V LW IROORZV IURP OHPPD IRU LQWHJUDO HTXDWLRQ FRQWURO ZLWK PLQLPDO QRUP LV GHILQHG E\ IRUPXOD ,Q WKLV FDVHIRURULJLQLQWHJUDOHTXDWLRQ FRQWUROZLWKPLQLPDOQRUP vPLQ [ W OLP L N [ W S\ N [ W Q N of )RULQWHJUDOHTXDWLRQ FRQWUROZLWKPLQLPDOQRUP vPLQ [ W
f
¦e O
na
T W
Cn\ nM n [ [ W Q
n
)URP OHPPD IROORZV WKDW WKH FRQWURO ZLWK PLQLPDO QRUP IRU LQWHJUDO HTXDWLRQ LVGHILQHGE\IRUPXOD ,QWKLVFDVHWKHRULJLQ vPLQ [ W OLP PN [ W S\ N [ W Q N of
2SWLPDOVSHHG3UREOHPRIRSWLPDOVSHHGFRQQHFWHGZLWKFKRLFHRIWKHYDOXH T FDQEHVROYHGE\WKHDOJRULWKP 7KHYDOXH T T LVVHOHFWHGZKHUH T LVDSUHVFULEHGYDOXH7KHVHTXHQFH
vn wn V u M LVFRQVWUXFWHGE\WKHUXOH ZKHUH T ° ½ ° ®v[ W L Q ³ ³ v [ W dW d[ d r ¾ °¯ °¿ LV WKH JLYHQ QXPEHU :H GHILQH v [ W v w [ W
V
w
ZKHUH
,I I ! WKHQ DV D QHZ YDOXH ZH WDNH T T DQG LQ WKH FDVH I
ZH
I
OLP I N vN wN v
N of
DVVXPH T
OLP wN [ W w
N of
OLP wN [ W
N of
T :HQRWHWKDWWKHYDOXH I t
)RUQHZYDOXHV
T
T if I ! ° ® T °¯ if I
WKH VHTXHQFHV ^vn wn ` DUH FRQVWUXFWHG DQG v
v
[ W w
w
[ W WKH YDOXH I
DUH GHILQHG +HUH WKHUH DUH WZR FDVHV D I
! ɛ I
7KH YDOXHLVGHILQHG T
T if I
! ° ® T °¯ if I
$SSO\LQJFRQVHTXHQWO\WKHVFKHPHRIFDOFXODWLRQ T ZHILQGWKHPLQLPDO YDOXH T T
&RPPHQWV $VXWIROORZVIURPWKHSUREOHPVWDWHPHQWWKHFRQWUROODELOLW\SUREOHP WDNLQJLQWRDFFRXQWWKHOLPLWHGUHVRXUFHV LVWKH PDLQ SUREOHP 6ROXWLRQVRI SUREOHPVFDQEHREWDLQHGE\VROYLQJPHWKRGRISUREOHP7KHFRQWUROODELOLW\ SUREOHPV IRU WKH SURFHVVHV GHVFULEHG E\ RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV ZHUH VWXGLHGLQ>@WKHFRQWUROODELOLW\SUREOHPZLWKWKHPLQLPXPQRUPEDVHG RQWKHSUREOHPRIPRPHQWVZDVVROYHGLQ>@3UREOHPFDQQRWEHVROYHGE\ WKH PHWKRGV SURSRVHG LQ > @ 8QOLNH WKH FRQWUROODELOLW\ SUREOHP ZLWK WKH PLQLPXPQRUPWKLVSUREOHPGRHVQRWDOZD\VKDYHDVROXWLRQ,QDPHWKRG IRU VROYLQJ SUREOHPV ± LV SURSRVHG EDVHG RQ WKH FRQVWUXFWLRQ RI D JHQHUDO VROXWLRQRIDFODVVRIWKH)UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIROORZHGE\ WKH UHGXFWLRQ RI WKH RULJLQ SUREOHP WR DQ RSWLPL]DWLRQ SUREOHP 6XFK DSSURDFK DOORZVWRREWDLQVROXWLRQVRIWKHVHSUREOHPVE\FRQVWUXFWLQJPLQLPL]LQJVHTXHQFHV ZLWKRXWXVLQJVSHFWUDOWKHRU\DVLQ>@ 7KH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG RI WKH RULJLQ IXQFWLRQ RI VHYHUDOYDULDEOHV LVDPRQJWKHSXUHVWXGLHGSUREOHPVRILQWHJUDOHTXDWLRQV 7KH )UHGKROP LQWHJUDO HTXDWLRQ ZLWK WKH GHVLUHG IXQFWLRQ RI RQH YDULDEOH ZLWK D FORVHGV\PPHWULFNHUQHOZDVVWXGLHGLQ>@7KHDSSOLFDWLRQRIWKHPHWKRGRI VXFFHVVLYHDSSUR[LPDWLRQVWRWKHVROXWLRQRIWKH)UHGKROPLQWHJUDOHTXDWLRQRIWKH ILUVWNLQGZDVFDUULHGRXWLQ>@$VLWLVVKRZQLQ>±@WKHVROXWLRQRISUREOHPV RI FRQWUROOHG G\QDPLFDO V\VWHPV UHGXFHV WR WKH H[LVWHQFH DQG FRQVWUXFWLRQ RI D VROXWLRQ WR DQ LQWHJUDO HTXDWLRQ RI WKH IRUP 7KHUHIRUH WKH VWXG\ RI WKH SURSHUWLHVRIWKHVROXWLRQRIWKHLQWHJUDOHTXDWLRQ LVUHOHYDQW 2QHRIWKHDSSURDFKHVWRVROYLQJSUREOHPVIURPJLYHQLQ>@PRUH FRPSOHWHGHVFULSWLRQRIWKLVPHWKRGLVFRQWDLQHGLQ>@,Q>@PHWKRGVIRUVROYLQJ WKH)UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIRUWKHGHVLUHGIXQFWLRQRIVHYHUDO YDULDEOHVZHUHSURSRVHG,QVROXWLRQVRISUREOHPV±GLIIHUHQWIURP>@ DUHREWDLQHGRQWKHEDVLVRIWKHUHVXOWVRIWKHVWXG\RILQWHJUDOHTXDWLRQVIURP>@ 7KH UHVXOWV SUHVHQWHG LQ FKDSWHU ,,, FDQ EH XVHG IRU PRUH GHHS VWXG\ RI WKH SUREOHPVRIFRQWUROODELOLW\IRUSDUWLDOGLIIHUHQWLDOHTXDWLRQV
4XRWHGOLWHUDWXUH (JRURY$,2SWLPDOFRQWURORIWKHUPDODQGGLIIXVLRQSURFHVVHV±06FLHQFH $LVDJDOLHY6$5HJLRQDOSUREOHPVRIRSWLPDOFRQWURO±$OPDW\.D]DNK8QLYHU VLW\±S $LVDJDOLHY6$$LVDJDOLHY760HWKRGVIRUVROYLQJERXQGDU\YDOXHSUREOHPV ±$OPDW\.D]DNK8QLYHUVLW\±S $LVDJDOLHY 6$ &RQWUROODELOLW\ RI D V\VWHP RI GLIIHUHQWLDO HTXDWLRQV 'LIIHUHQWLDO (TXDWLRQV91RS $LVDJDOLHY6$7KHJHQHUDOVROXWLRQRIDFODVVRILQWHJUDOHTXDWLRQV0DWKHPDWLFDO -RXUQDO9RO1R S $LVDJDOLHY6$.DELGROGDQRYD$$2SWLPDOVSHHGRIQRQOLQHDUV\VWHPVZLWK UHVWULFWLRQV'LIIHUHQWLDOHTXDWLRQVDQGFRQWUROSURFHVVHV1RS $LVDJDOLHY6$%HORJXURY$3&RQWUROODELOLW\DQGRSWLPDOSHUIRUPDQFHRIWKH SURFHVV GHVFULEHG E\ D SDUDEROLF HTXDWLRQ ZLWK UHVWULFWHG FRQWURO 6LEHULDQ 0DWKHPDWLFDO-RXUQDO-DQXDU\)HEUXDU\91RS $LVDJDOLHY 6$ &RQVWUXFWLYH WKHRU\ RI ERXQGDU\ YDOXH SUREOHPV RI RSWLPDO FRQWURO±$OPDW\.D]DNKXQLYHUVLW\±S $LVDJDOLHY6$6HYU\XJLQ,9&RQWUROODELOLW\DQGRSWLPDOSHUIRUPDQFHRIWKH SURFHVVGHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQVZLWKFRQVWUDLQWV9HVWQLN .D]18VHUPDWSK\VLQI91R S $LVDJDOLHY 6$ 6KDQJLWRYD 0( 7R WKH PDWKHPDWLFDO WKHRU\ RI FRQWUROOHG SURFHVVHV9HVWQLN.D]18VHUPDWSK\VLQI1R S %XWNRYVN\$* &RQWURO PHWKRGV IRU V\VWHPV ZLWK GLVWULEXWHGSDUDPHWHUV±0 6FLHQFH .ROPRJRURY $1 )RPLQ 69 (OHPHQWV RI WKH WKHRU\ RI IXQFWLRQV DQG IXQFWLRQDODQDO\VLV±06FLHQFH±S .UDVQRY0/,QWHJUDOHTXDWLRQV±06FLHQFH±S $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 0DQDJHPHQW RI WKHUPDO SURFHVVHV %XOOHWLQ RI WKH .D]DNK 1DWLRQDO 8QLYHUVLW\ VHU PDW SK\V LQI ±ʋ S $LVDJDOLHY 6$ %HORJXURY $3 6HYU\XJLQ ,9 7R WKH VROXWLRQ RI WKH )UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQGIRUDIXQFWLRQRIVHYHUDOYDULDEOHV 9HVWQLN.D]18VHUPDWSK\VLQI±ʋ
&KDSWHU9 678' I u J @ > Au b d @ > Au b d @ > A u b @ > A u b @ ZKHUH u U J * d D ^d R m d t ` /HW X u J d EHDVHW V U u * u D :HFRQVLGHUWKHRSWLPL]DWLRQSUREOHP ) X o LQI X V ZKHUH WKH IXQFWLRQ ) X ) u J d LV GHILQHG E\ IRUPXOD /HW V ^X u J d V ) X ) LQI ) X ` XV
7KHRUHPLet u U U be a solution of problem (5.1), (5.2). Then X
u J
I u d
Au b V
is a solution of problem (5.9) corresponding to the value ) X Conversely, if X u J d V is a solution of problem (5.9) at ) X then u U U is a solution of problem (5.1), (5.2). If the value ) X ! then problem (5.1), (5.2) has not any solution. 3URYH /HW u U EH D VROXWLRQ RI SUREOHP ZKHUH I u I LQI I u &RQVHTXHQWO\ u U Au b d A u b :H FKRRVH uU
7KHQ ) X > I u J @ > Au b d @> Au b d @ > A u b @ > A u b @ 6LQFHWKHYDOXH ) X t X X V WKDW )X LQI )X t
J
I u
d
Au b t
XV
7KLVLPSOLHVWKDW u J d V LVDVROXWLRQRISUREOHP DW ) X 7KH ILUVWSDUWRIWKHWKHRUHPLVSURYHG 7KH YDOXH ) X LI DQG RQO\ LI ZKHQ I u J Au b d A u b u U J * d D 6LQFH Au b d d A u b u U WKDW u U )URP I u J u U IROORZV WKDW J I )LQDOO\ I u J I LQI I u uU
&RQVHTXHQWO\ u U LVDVROXWLRQRISUREOHP ,I ) X ! WKHQ RU > I u J @ ! RU > Au b d @ > Au b d @ ! RU > A u b @ > A u b @ ! 7KLV LPSOLHV WKDW RU I u z J RU Au b d z RU A u b z &RQVHTXHQWO\ u U 7KLVPHDQVWKDWWKHSUREOHP KDVQRW DQ\VROXWLRQ7KHRUHPLVSURYHG 7KHRUHPLet U be a convex set. Then: 1) the set V U u * u D is convex. 2) the function ) X is defined on the convex set V which is convex function, i.e. ) DX D X d D ) X D ) X X X V D D >@
3) if for a prescribed point Y V the set
M Y ^X V I X d I Y `
is bounded, then the set V is not empty, compact and any minimizing sequence ^X n ` M Y converges to the set V 3URYH /HW X u J d V X u J d V DQG WKH QXPEHU D >@ 7KHQ DX D X D u D u DJ D J D d D d V E\ Du D u U DJ D J * D d D d D ZKHUH U * D LVDFRQYH[VHW 6LQFH )X C V WKDW WKH QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQ RI FRQYH[LW\ ) X RQ V KDVWKHIRUP )ccX [ [ !t X X V [ [ R n m $V LW IROORZV IURP WKH IXQFWLRQ )X X QX qX b b b b ZKHUH WKH PDWUL[ Q
§ cc A A A A ¨ c ¨ ¨ A ©
c
A · ¸ ¸ I m ¸¹
Q t q
§ A b A b · ¨ ¸ ¨ ¸ ¨ ¸ b © ¹
WKHQ )ccX Q t X X V 7KLV LPSOLHV WKDW WKH IXQFWLRQ ) X LV D FRQYH[ RQ WKHFRQYH[VHW V 6LQFH )X C V WKDWWKHVHW M Y LVFORVHG%\FRQGLWLRQRIWKHWKHRUHP M Y LV ERXQGHG &RQVHTXHQWO\ WKH VHW M Y LV FRPSDFW RQ V 7KHQ E\ :HLHUVKWUDVV WKHRUHP WKH VHW V z LV DQ HPSW\ VHW /HW ^X k ` M Y EH D PLQLPL]LQJVHTXHQFHLH OLP )Xk ) LQI )X :HVKRZWKDW OLPXk X V XV
k of
k of
:HQRWHWKDWWKHUHH[LVWVDOZD\VWKHPLQLPL]LQJVHTXHQFH /HW X LV D OLPLWHG SRLQW ^X k ` &RQVHTXHQWO\ WKHUH H[LVWV D VXEVHTXHQFH X %u n D n )cu X n @ u n
PU >u n D n )cu X n @
PU >u n D n )cu X n @ u n PU >u n D n )cu X n @ P* >J n D n )cJ X n @ d n PD >d n D n )cd X n @ n
ZKHUH D n const
L
L H
DW H
Dn
const ! )RU QXPHULFDO FDOFXODWLRQV WKH
YDOXHLVVHOHFWHG D n :HQRWHWKDWWKHSURMHFWLRQRIWKHSRLQWY R n RQDVHW U ^u R n u t ` LV GHILQHG DV PU >Y @ ^PD[Y PD[Y PD[Y n ` ZKHUH Y
Y Y n
7KHOLPLWHGSRLQWVRIWKHVHTXHQFHDUHIRXQG n
OLP u nof
u
OLP u n nof
OLP u n nof
n
OLP u nof
7KH u
VROXWLRQV
u u u u
RI
OLP J n nof
WKH
OLP d n nof
RULJLQ
SUREOHP
§ · ¨ ¸ WKH YDOXH I u J © ¹
DUH
7KH VDPH UHVXOWV FDQ EH
REWDLQHG E\ VROYLQJ WKH SUREOHP E\ WKH VLPSOH[ PHWKRG DIWHU LWV UHGXFWLRQWRWKHFDQRQLFDOIRUP ,W LV HDV\ WR PDNH VXUH WKDW WKH YDOXH ) X ) u J d ZKHUH X
u J d V
§ · ¨ ¸ © ¹
)X
Au d
)
LQI )X XV
,Q
IDFW
A u b
I u J
· § ¨ ¸ ¸ ¨ ¨ ¸ ¸ ¨ ¹ ©
/HW U ^u t u R u t u R` 7KLV FDVH GLIIHUV IURP WKH ILUVW FDVH RQO\LQWKDWWKHVHTXHQFHV ^un ` ^u n ` DUHGHWHUPLQHGE\WKHUHODWLRQV u n u n D n ) cu X n u n u n D n ) cu X n n 7KHUHLVQRQHHGWRUHGXFHWKHSUREOHP WRWKHFDQRQLFDOIRUP E\LQWURGXFLQJDGGLWLRQDOYDULDEOHV u X q X t q t u X q X t q t ,Q WKH FDVH ZKHQ WKH YDOXH J LV XQNQRZQ LW LV QHFHVVDU\ WR VROYH WKH RSWLPL]DWLRQ SUREOHP RQ WKH VHW u U J * d D ZKHUH WKH VHW * ^J R a d J d J d J
` ZKHUH J
DUH SUHVFULEHG QXPEHUV $V D UHVXOW D IHDVLEOH WULSOH LV GHWHUPLQHG v u J d J J u )XUWKHU E\ FRQVLVWHQWO\ UHGXFLQJWKHYDOXHV J
ZHILQGWKHVROXWLRQWRSUREOHP Lecture 22.6WXGLHVRQFRQYH[DQGQRQOLQHDUSURJUDPPLQJ :HFRQVLGHUWKHFRQYH[SURJUDPPLQJSUREOHP /HPPD Let the set be U ^u U I u J LQI I u ` z Then the sum uU
g u d t under all uU for any
d D
^d R m d t d d
g u t `
7KH SURRI RI WKH OHPPD LV VLPLODU WR WKH SURRI RI /HPPD $V LQ WKH SUHYLRXVFDVHIURPWKHLQLWLDOGDWDRISUREOHP ZHGHILQHWKHIXQFWLRQ < u J d > I u J @ > g u d @ > g u d @ > Au b@ > Au b@ ZKHUH u U J * d D 7KHIXQFWLRQV I u g u g u g m u DUHFRQYH[RQWKHVHW U /HW X u J d WKHVHW V U u * u D :HFRQVLGHUWKHRSWLPL]DWLRQSUREOHP < X o LQI X V ZKHUH WKH IXQFWLRQ < X < u J d LV GHILQHG E\ IRUPXOD /HW U ^u U I u I LQI I u ` DUHWKHVROXWLRQVVHWVRISUREOHP WKHVHW uU
V ^X
u J d V <X
I u J @I cu · ¸¸ I cu @ > I u J @I ccu I cu · ¸ ¨ ¨ ¸¹ > I cu @ ©
u U J *
,Q RUGHU WR WKH IXQFWLRQ F qt 'qt t F qt t @dt
t
t
³>'u t F
u
qt t 'p t F p qt t 'v t Fv qt t
t
'v t Fv qt t 'x Fx qt t 'x Fx qt t 'd Fd qt t
'z t Fz qt t 'z t F
z t
t
qt t @dt ¦Ri i
t
t
t
t
ZKHUH _ R _d l ³ _ 'u t __ 'q t _ dt _ R _d l ³ _ 'p t __ 'q t _ dt _ R _d l ³ _ 'v t __ 'q t _ dt t
t
_ R _d l ³ _ 'v t __ 'q t _ dt t
t
_ R _d l ³ _ 'x __ 'q t _ dt t
t _ R _d l ³ _ 'x __ 'q t _ dt t
t
t
t
t
t
t
_ R _d l ³ _ 'd __ 'q t _ dt _ R _d l ³ _ 'z t __ 'q t _ dt _ R _d l ³ _ 'z t __ 'q t _ dt LQ YLUWXH RI
WKH/LSVKLW]FRQGLWLRQ :HQRWHWKDWVHH t
³'z t F
z t
t
q t t dt
t t ³ > 'v t B t 'v t B @\ t dt ³ 'z t F z q t t dt t
t
)URP ZHJHW t
³^'u t Fu qt t 'p t F p qt t 'v t > Fv qt t B t \ t @
' I
t
'v t > Fv q t t B \ t @ 'x F x q t t 'x F x q t t
'd Fd q t t `dt ¦Ri IcT 'T ! H R
i
ZKHUH R
_R_ o DW __ 'T __o Ri _ R _d C __ 'T __ ¦ __ 'T __ i
7KLV LPSOLHV WKH UHODWLRQV /HW T u 'u p 'p v 'v v 'v x 'x x 'x d 'd T u p v v x x d X 6LQFH _ IcT IcT _ d l _ 'q t _ l _ '\ t _ l _ 'T _ _ 'qt _d l __ 'T __ _ '\ t _d l __ 'T __ WKDW t
³ _ I cT I cT
__ IcT IcT __
_ dt d l __ 'T __
t
l ZKHUH li const ! i 7KLV LPSOLHV WKH HVWLPDWLRQ ZKHUH K 7KHRUHPLVSURYHG /HPPDLet a matrix be T t t ! , the function F q t be convex by the variable q R N , N n m s r m , i.e. F Dq D q d DF q t D F q t q q R N D D >@ (6.56) Then the functional (6.45) under the conditions (6.46) – (6.48) is convex. 3URRI/HW T T X D >@ ,WFDQEHVKRZQWKDW z t Dv D v Dv D v Dz t v v D z t v v r m v v v v L I R 7KHQ I DT D T
t
³ F Dq t D q t dt d DI T D I T
t
T T X T
u p v v x x d T
u p v v x x d
7KHOHPPDLVSURYHG 7KHLQLWLDORSWLPDOFRQWUROSUREOHP FDQEHVROYHGE\QXPHULFDO PHWKRGVIRUVROYLQJH[WUHPDOSUREOHPV>@:HLQWURGXFHWKHIROORZLQJVHWV U ^u L I R m __ u __d E `
V I R r ^v L I R r __ v __d E ` m
m
V I R ^v L I R __ v __d E ` m
* ^d R d t _ d _d E `
E ! LV D TXLWH ODUJH QXPEHU :H FRQVWUXFW WKH VHTXHQFHV ^T n ` ^un pn vn vn xn xn d n ` X n E\WKHDOJRULWKP u n PU >u n D n Icu T n @ pn PV > pn D n Icp T n @ vn PV >vn D n Icv T n @ vn PV >vn D n Icv T n @
PS > xn D n Icx T n @ xn PS > xn D n Icx T n @ d n P* > d n D n Icd T n @ n H ! H d Dn d K H ZKHUH P: >@ LVDSURMHFWLRQRIWKHSRLQWRQWKHVHW : K const ! RI xn
7KHRUHP /HW WKH FRQGLWLRQV RI WKHRUHP EH IXOILOOHG PRUHRYHU WKH IXQFWLRQ F q t EH FRQYH[ ZLWK UHVSHFW WR D YDULDEOH q R N DQG WKH VHTXHQFH ^T n ` X EHGHWHUPLQHGE\IRUPXOD 7KHQ WKH ORZHU ERXQG RI WKH IXQFWLRQDO LV UHDFKHG XQGHU FRQGLWLRQV ± LQI I T I T PLQ I T T X T X
T X
WKHVHTXHQFH ^T n ` X LVPLQLPL]LQJ OLP I T n I n of
LQI I T
T X
WKH VHTXHQFH ^T n ` X LV ZHDNO\ FRQYHUJHG WR WKH SRLQW T X xs xs n
n
n
xs u n o u pn o p v o v v o v xn o x x o x d n o d DW n o f
ZKHUH T u p v v x x d X ,Q RUGHU WR WKH SUREOHP ± WR KDYH D VROXWLRQ QHFHVVDU\ DQI VXIILFLHQWO\WKDW OLP I T n I xs
nof
7KHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHLVYDOLG C n C const ! n 3URRI 6LQFH WKH IXQFWLRQ F q t t I LV FRQYH[ WKHQ DFFRUGLQJ WR WKH d I T n I d
VWDWHPHQWRIOHPPDWKHIXQFWLRQDO I T T X LVFRQYH[RQDZHDNO\ELFRPSDFW VHW X &RQVHTXHQWO\ I T C X LV ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ RQ D ZHDNO\ FRPSDFW VHW X DQG UHDFKHV WKH ORZHU ERXQG LQ X 7KLV LPSOLHV WKH ILUVW DVVHUWLRQRIWKHWKHRUHP 8VLQJWKHSURSHUWLHVRIDSURMHFWLRQRQWKHSRLQWRQWKHFRQYH[FORVHGVHW X DQG WDNLQJ LQWR DFFRXQW WKDW I T C X LW FDQ EH VKRZQ WKDW I T n I T n t H __ T n T n __ n H ! 7KLVLPSOLHVWKDW WKHQXPHULFDO VHTXHQFH ^I T n ` LVVWULFWO\GHFUHDVHG __ T n T n __o DW n o f 6LQFHWKHIXQFWLRQDOLVFRQYH[DQGWKHVHW X LVERXQGHGWKHLQHTXDOLW\LVKHOG d I T n I T d C __ T n T n __ C const ! n
+HQFH WDNLQJ LQWR DFFRXQW WKH IDFW __ T n T n __o DW n o f ZH KDYH WKH VHTXHQFH ^T n ` LVPLQLPL]LQJ OLP I T n I T LQI I T T X
n of
ɫɥ 6LQFH ^Tn ` X X LVZHDNO\FRPSDFWWKHQ T n o T ZLWK n o f $VLWIROORZVIURPOHPPDLIWKHYDOXH I T WKHQWKHSUREOHPRIWKH RSWLPDOHTXDWLRQ KDVDVROXWLRQ 7KH HVWLPDWH IROORZV GLUHFWO\ IURP LQHTXDOLWLHV I T n I T n t H __ T n T n __ 7KHPDLQVWDJHVRIWKHSURRIRIWKHWKHRUHPDUHEULHIO\GHVFULEHGDERYH$ GHWDLOHGSURRIRIDVLPLODUWKHRUHPLVJLYHQLQ>@7KHWKHRUHPLVSURYHG )RU WKH FDVH ZKHQ WKH IXQFWLRQ F q t LV QRW FRQYH[ LQ D YDULDEOH q WKH IROORZLQJWKHRUHPLVWUXH 7KHRUHP Let the conditions of theorem 4 be fulfilled, the sequence ^T n ` X be determined by formula (6.57). Then: 1) the value of the functional I Tn is strictly decreased at n ; 2) __ T n T n __o ; at n o f 7KHSURRIRIWKHWKHRUHPIROORZVIURP7KHRUHP )URP WKH DERYH UHVXOWV LW IROORZV LI T u p v v x x d X LV D VROXWLRQ RI WKH RSWLPDO FRQWURO SUREOHP IRU ZKLFK I T WKHQ u u t x x 6 U u S u S LV DQ DGPLVVLEOH FRQWURO WKH IXQFWLRQ x t t x t I LV WKH VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ VDWLVILHV WKH FRQGLWLRQV x t t x x x t t x G t t I IXQFWLRQDOV g j u x x d j m g j u x x j m m D QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQ IRU WKH H[LVWHQFH RI D VROXWLRQ WR WKH ERXQGDU\ YDOXH SUREOHP LV I T ZKHUH T X LV WKH VROXWLRQ RI WKH SUREOHP IRU DQ DGPLVVLEOH FRQWUROWKHYDOXHRIWKHIXQFWLRQDO LVHTXDOWR
t
³ F x t u t x x t dt
I u x x
t I
,Q
J
WKH
YDOXH
t
ZKHUH
x t
x t t x
I u x x z I u x x
WKH
JHQHUDO
FDVH
LQI I u x x u x x L I R u S u S m
Lecture 25.&RQVWUXFWLRQRIWKHVROXWLRQRIWKHYDULDWLRQ FDOFXOXVSUREOHP :H FRQVLGHU WKH RSWLPDO FRQWURO SUREOHP :H GHILQH D VFDODU IXQFWLRQ V t t I DVIROORZV V t
t
³ F xW u W x x W dW t I
t
7KHQ V t F xt ut x x t V t V t J
I u x x :
^J R _ J t J J ! f` ZKHUH J
I u x x t J WKH PHDQLQJ RI J LV ERXQGHG IURPEHORZLQSDUWLFXODU J LI F t 1RZWKHRSWLPDOFRQWUROSUREOHP ± LVZULWWHQVHH
V t J
I u x x o LQI
x At x Bt f x u t xt x xt x S u S K f xt u t x x t K t K t c Q m xt Gt u L I R t I :HLQWURGXFHWKHQRWDWLRQV
DWFRQGLWLRQV
V t F xt ut x x t V t V t J
§ O § · On Om ·¸ ¨ ¨ ¸ ¨ O ¸ B ¨ O ¸ A t O n m ¨ n ¸ ¨ n ¸ ¨ Om Om n Om m ¸ ¨ Om ¸ © ¹ © ¹ § Om · ¨ ¸ ¨ Onm ¸ P On Om P On I n Onm ¨ ¸ ¨ Im ¸ © ¹
§ V t · ¸ ¨ P t ¨ xt ¸ A t ¨ K t ¸ ¹ ©
§ Or · ¸ ¨ C t ¨ Bt ¸ D t ¸ ¨ ¨ Om r ¸ © ¹ ZKHUH P P t V t PP x
7KHQWKHRSWLPDOFRQWUROSUREOHP KDVWKHIRUP P P t J I u x x o LQI DWFRQGLWLRQV P
A t P B F PP u x x t C t f PP u t D f PP u x x t
P t P
§ V t · ¨ ¸ ¨ xt ¸ ¨ K t ¸ © ¹
P t P
§ V t · ¨ ¸ ¨ xt ¸ ¨ K t ¸ © ¹
§ O · ¨ ¸ ¨ x ¸O u S uO T m ¨ ¸ ¨ Om ¸ © ¹ §J · ¨ ¸ ¨ x ¸ : u S u Q T ¨c¸ © ¹
PP t Gt u L I R m d * ZKHUH xt PP t V t P P t t I J DUHGHILQHGE\IRUPXOD
3ULQFLSOHRILPPHUVLRQ:HFRQVLGHUWKHERXQGDU\YDOXHSUREOHP ± &RUUHVSRQGLQJOLQHDUFRQWUROODEOHV\VWHPKDVWKHIRUP
]
A t ] B w t C t w t D w t t I
m
w L I R w L I R w L I R ] t P T ] t P T
r
:HLQWURGXFHWKHQRWDWLRQV B t
w t w t w t < t W K t K W t
< t t P P R t t ³ < t t B t B t < t t dt
B C t D wt a
t
t
³< t W B
R t t
W B W < t W dW R t t
R t t R t t
t
/ t P P
§ B < t t R t t a · ¸ ¨ ¨ C < t t R t t a ¸ ¸¸ ¨¨
© D < t t R t t a ¹
B t < t t R t t a
§ / t P P · ¸ ¨ ¨ / t P P ¸ ¸¸ ¨¨ © / t P P ¹
B < t t t R t t < t t
K t
§ B < t t R t t < t t · ¨ ¸ ¨ C < t t R t t < t t ¸ ¨ < ¸ © D t t R t t < t t ¹
§ K t · ¨ ¸ ¨ K t ¸ ¨ K t ¸ © ¹
/ t P P
<t t Rt t R t t P <t t Rt t R t t < t t P K t
< t t R t t R t t < t t t I
7KHRUHP /HW D PDWUL[ EH Rt t ! 7KHQ WKH FRQWURO wt w t r m
w t w t L I R
n m
LQLWLDOSRLQW P R
WUDQVIHUVDWUDMHFWRU\RIWKHV\VWHP IURPDQ\
WRDQ\SUHVFULEHGILQDOVWDWH P R
n m
LIDQGRQO\LI
w t W ^w L I R w t v t / t P P K t z t v
v L I R t I `
w t W ^w L I R r w t v t / t P P K t z t v v L I R r t I ` w t W
m
^w L I R w t
v t / t P P K t z t v
m
v L I R t I `
ZKHUH vt v t v t v t z t z t v t I LVDVROXWLRQRIWKHGLIIHUHQWLDOHTXDWLRQ z A t z B v t C t v t D v t z t m
v L I R v L I R r v L I R
7KHVROXWLRQRIWKHV\VWHP KDVWKHIRUP ] t z t v / t P P K t z t v t I 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHRUHP /HPPD /HW D PDWUL[ EH Rt t ! 7KHQ WKH ERXQGDU\ YDOXH SUREOHP ± LVHTXLYDOHQWWRWKHSUREOHP
F P] u x x t t I
w t W w t f P] u t t I w t W w t f P] u x x t t I pt V t ^ p L I R s pt F P] t Z t d pt d M t t I ` z A t z B v t C t v t D v t z t t I
w t W w t
m
v L I R v L I R r v L I R x x S u S u L I R m J : d *
ZKHUH ] t t I LV GHILQHG E\ IRUPXOD z t v LV D VROXWLRQ RI WKH V\VWHP 7KHVWDWHPHQWRIOHPPDIROORZVIURPWKHRUHP :HFRQVLGHUWKHSUREOHPRIRSWLPDOFRQWUROPLQLPL]HWKHIXQFWLRQDO t
t
t
t
³ F qt t dt
J v u p x x d J
³>_ w t F P] t ut x x t _
_ w t f P] t u t t _ _ w t f P] t u t x x t _
_ p t F P] t t _ @dt o LQI
DW FRQGLWLRQV ± ZKHUH w t W w t W w t W v v v v qt v v v u p x x d J z t z t :HQRWHWKDWWKHRSWLPL]DWLRQSUREOHP ± DUHREWDLQHGRQWKHEDVHRIUHODWLRQV ± 7KHRUHP /HW D PDWUL[ EH Rt t ! GHULYDWLYH
wF q t VDWLVILHV WR WKH wq
/LSVKLW]FRQGLWLRQ7KHQ IXQFWLRQDO XQGHUWKHFRQGLWLRQV ± LVFRQWLQXRXVO\ GLIIHUHQWLDEOHE\)UHVKHWJUDGLHQWRIWKHIXQFWLRQDO J v T J v T J v T J u T J p T J x T J x T J d T J J T
J T
T
v v v u p x x d J X m
L I R u L I R r u L I R u L I R m u V u S u S u * u :
X
m
L I R u L I R u L I R u L I R u L I R u R u R u r
H
m
u R u R
m
s
n
n
X H J T H
DWDQ\SRLQW T X LVFDOFXODWHGE\IRUPXOD
J v T J v T
wF qt t B \ t J v T wv
wF qt t D \ t J u T w v
wF qt t C \ t wv
wF qt t J p T wu
wF qt t wp
t
t
t
wF qt t
³t wx dt J x T
J x T
t
t
wF qt t
³t wd dt J J T
J d T
³
wF qt t dt wx
wF qt t ³t wJ dt
ZKHUH\ t t I LVDVROXWLRQRIWKHDGMRLQWV\VWHP \
t
wF q t t A t \ \ t wz
³ t
wF q t t dt w z t
JUDGLHQW J T T X VDWLVILHVWRWKH/LSVKLW]FRQGLWLRQ __ J T J T __d l __ T T __ T T X 7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHRUHP n n n :H FRQVWUXFW WKH VHTXHQFHV ^T n ` ^v v v u n p n xn xn d n J n ` X E\ WKH DOJRULWKP
n
v
n
v
pn n
x
n n PV >v D n J v T n @ v
n PV >v D n J v T n @
n PV >v D n J v T n @ un
PV > pn D n J p T n @
xn
PS > x D n J x T n @ d n
J n
n
PU >un D n J u T n @ PS > xn D n J x T n @
P* >d n D n J T n @
P: >J n D n J J T n @
d
n
H ! l const ! l H ^v L I R __ v __d E ` V ^v L I R r __ v __d E ` d Dn d
ZKHUH V
m
V ^v L I R __ v __d E ` U : ^J RJ d J d E ` X U
m
^u L I R m __ u __d E ` * ^d R d t _ d _d E `
V u V u V u U u V u S u S u * u : H
^u L I R __ u __d E ` E ! LVDTXLWODUJHQXPEHU m
7KHRUHP:HVXSSRVHWKDWWKHFRQGLWLRQVRIWKHRUHPDUHVDWLVILHG X LV DERXQGHGFRQYH[FORVHGVHWWKHVHTXHQFH ^T n ` X LVGHWHUPLQHGE\WKHIRUPXOD 7KHQ QXPHULFDOVHTXHQFH ^J T n ` LVVWULFWO\GHFUHDVHG __ T n T n __o DW n o f ,ILQDGGLWLRQ F q t LVDFRQYH[IXQFWLRQE\WKHYDOXH q WKHQ WKHORZHUERXQGRIWKHIXQFWLRQDO LVUHDFKHGXQGHUWKHFRQGLWLRQV ± J T inf J T min J T J T X
T X
VHTXHQFH ^T n ` X LVPLQLPL]LQJ lim J T n J nof
inf J T
T X
VHTXHQFH ^T n ` X LVZHDNO\FRQYHUJHGWRWKHSRLQW T X
X
^T J T
n
J
n
inf J T
n
weakly weakly min J T ` ZKHUH v o v v o v
T X
T X
weakly weakly weakly v o v un o u pn o p xn o x xn o x d n o d
J n o J ZKHQ n o f T
v v v u p x x d J
LI J T WKHQWKHRSWLPDOFRQWUROWRWKHSUREOHP ± DUH
u U x S x S DQGWKHRSWLPDOWUDMHFWRU\ x t P] t P> z t v / t P P K t z t v @ t I ZKHUH
v
v v v P
d j t j m c j
cj j
O x Om P
m
J x c c Q ^c R c j
cj d j
m m ` WKH LQFOXVLRQ x t G t DQG WKH UHVWULFWLRQV
± J u x x J DUHKHOG WKHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHLVYDOLG d J T n J d
c n c n
const !
7KHSURRIRIDVLPLODUWKHRUHPLVJLYHQDERYH $ PRUH YLVXDO PHWKRG IRU VROYLQJ SUREOHP LV WKH PHWKRG RI QDUURZLQJWKHUHJLRQRIDGPLVVLEOHFRQWUROV 7KHRUHP :H VXSSRVH WKDW WKH FRQGLWLRQV RI WKHRUHP DUH VDWLVILHG X V u V u V u U u V u S u S u * LV D ERXQGHG FRQYH[ FORVHG VHW WKH VHTXHQFH ^T n ` X LVGHWHUPLQHGE\IRUPXOD H[FHSWIRUWKHVHTXHQFH ^J n ` : 7KHQ QXPHULFDOVHTXHQFH ^J T n ` ^T n ` X LVVWULFWO\GHFUHDVHG __ T n T n __o XQGHU n o f ^T n ` X ,ILQDGGLWLRQWKHIXQFWLRQ F q t LVDFRQYH[IXQFWLRQZLWKUHVSHFWWRD YDULDEOH q ZLWKDIL[HG J WKHQ WKHVHTXHQFH ^T n ` X XQGHUWKHIL[HG J J LVPLQLPL]LQJ weakly T n oT X DW n o f J J J T inf J T n min J T n X
Tn
X
Tn
WKHHVWLPDWLRQLVYDOLG d J T n J T d
c c n
const ! n ^T n ` X
7KH SURRI RI WKH WKHRUHP IROORZV IURP WKHRUHP XQGHU WKH IL[HG J : J
J
/HW T X EHDVROXWLRQRIWKHSUREOHP ± DW J +HUHWKHFDVHVDUHSRVVLEOH WKHYDOXH J T ! WKHYDOXH J T :HQRWLFHWKDW J T t T X
J :
,I J T ! WKHQ ZH VHOHFW D QHZ YDOXH J DQG LI J T WKHQ D QHZ YDOXH J
J
$FFRUGLQJWRWKLVVFKHPHE\GLYLGLQJWKHLQWHUYDORIXQFHUWDLQW\LQ
KDOIZHFDQILQGWKHVPDOOHVWYDOXHRIWKHIXQFWLRQDO XQGHUFRQGLWLRQV Lecture 26.7KHVLPSOHVWSUREOHPRIWKHFDOFXOXVRIYDULDWLRQV $VLWLVNQRZQWKHVRXUFHRIWKHFODVVLFDOYDULDWLRQFDOFXOXVLVWKHSUREOHP RI WKH EUDFKLVWRFKURQH , %HUQRXOOL 7KH JHQHUDOL]DWLRQ RI WKLV SUREOHP LV WKH VLPSOHVWSUREOHPWRPLQLPL]HWKHIXQFWLRQDO J x x
t
³ F xt x t t dt o LQI
t
DWFRQGLWLRQV xt x xt x ZKHUH t t DUHIL[HG x x DUHJLYHQSRLQWV $VLWIROORZVIURPWKHZRUNRI(XOHUDQHFHVVDU\FRQGLWLRQIRUDZHDNORFDO PLQLPXPLVWKH(XOHUHTXDWLRQ Fx x t x t t
d Fx x t x t t { t >t t @ dt
ZKHUH Fx Fx DUH SDUWLDO GHULYDWLYHV )URP IROORZV WKDW DORQJ WKH H[WUHPDO x t t >t t @ WKHHTXDOLW\LVVDWLVILHG Fx Fxt Fxx x t Fxx x t { t >t t @ 'HVSLWH RI WKH IDFW WKDW WKH IRUPXODWLRQ RI WKH VLPSOHVW SUREOHP UHTXLUHV ILQGLQJ D VROXWLRQ LQ WKH FODVV RI RQFH GLIIHUHQWLDEOH IXQFWLRQV WKH (XOHU HTXDWLRQRIIHUVDVROXWLRQWRWKHRULJLQDOH[WUHPDOSUREOHPLQWKHFODVVRIGRXEO\ GLIIHUHQWLDEOHIXQFWLRQV,WVHHPVWKDWLQVWHDGRIWKHRULJLQDOSUREOHPWKHDQRWKHU SUREOHP LV VROYHG ,Q RWKHU ZRUGV WKH (XOHU HTXDWLRQ GRHV QRW VROYH WKH RULJLQDO SUREOHPLQWKHFODVVRIDGLIIHUHQWLDEOHIXQFWLRQ $QRWKHULQFRUUHFWQHVVLQVROYLQJWKHVLPSOHVWSUREOHP LVWKDWWKHUHLV QR JXDUDQWHH WKDW WKH VROXWLRQ RI D GLIIHUHQWLDO HTXDWLRQ RI VHFRQG RUGHU VDWLVILHVWKHERXQGDU\FRQGLWLRQV x t x t x ,QGHHGWKHVROXWLRQRIHTXDWLRQ LVDIXQFWLRQ x t x t c c WKDWPXVWVDWLVI\WKHFRQGLWLRQ x t c c x x t c c x 7KHTXHVWLRQDULVHV,VWKHUHDFRQVWDQWV cc VXFKWKDWWKHVSHFLILHG ERXQGDU\FRQGLWLRQVDUHKHOG$V:HLHUVWUDVVVKRZHGWKHDQVZHUWRWKLVTXHVWLRQ LVJHQHUDOO\QHJDWLYH:HVKRZWKLVLQFRUUHFWQHVVRQWKHH[DPSOHRI:HLHUVWUDVV PLQLPL]HWKHIXQFWLRQDO J x x
³t
x t dt o LQI x x
6LQFH Fx Fx t x
d Fx dt
Fxt Fxx x Fxx x WKDW WKH (XOHU HTXDWLRQ
KDV WKH IRUP tx t t x t { t >@ 7KH VROXWLRQ RI WKH HTXDWLRQ LV
x t ct c t >@ ,W LV HDV\ WR PDNH VXUH WKDW WKURXJK WKH SRLQWV x x QRFXUYHRIWKLVIDPLO\SDVVHV
$V LW IROORZV IURP WKH (XOHU HTXDWLRQ LW LV UHTXLUHG WZLFH GLIIHUHQWLDELOLW\ RI D IXQFWLRQ F x z t ZLWK UHVSHFW WR YDULDEOHV x z t 7KLV LV D VWULFWUHTXLUHPHQWIRUWKHLQLWLDOGDWDRIWKHVLPSOHVWSUREOHP ,QWKHZRUNVRI'X%RLV5D\PRQG/63RQWU\DJLQWKHQHFHVVDU\FRQGLWLRQ IRUDVWURQJORFDOPLQLPXPIRUWKHVLPSOHVWSUREOHPREWDLQHGLQWKHIRUP t
³Fx x W x W W dW
t
wF x t x t t wx
const
+RZHYHU WKH YHULILFDWLRQ RI WKH H[LVWHQFH RI D VROXWLRQ RI WKH LQWHJUDO HTXDWLRQ VDWLVI\LQJWKHERXQGDU\FRQGLWLRQVLVUDWKHUFRPSOLFDWHGDQGLVDQ XQVROYHGSUREOHP 7KH GHYHORSPHQW RI D QHZ PHWKRG IRU VROYLQJ WKH VLPSOHVW SUREOHP WKDW DOORZVWRHOLPLQDWHWKHVHGUDZEDFNVLVUHOHYDQW 7RVROYHDZLGHUDQJHRIWDVNVLQWKHFDOFXOXVRIYDULDWLRQVLWLVDGYLVDEOHWR FRQVLGHUVROXWLRQVWRWKHVLPSOHVWSUREOHPRIWKHIROORZLQJIRUP 0LQLPL]HWKHIXQFWLRQDO J x x
J x u
t
³ F xt ut t dt o LQI
t
DWFRQGLWLRQV x ut t >t t @ I
x
ZLWKERXQGDU\YDOXHV xt
x xt
ZLWKFRQWURO ut L I R
)URPRSWLPL]DWLRQSUREOHP LQSDUWLFXODUIROORZV :HQRWHWKDW IRUWKHH[LVWHQFHRIWKHLQWHJUDO LWLVQHFHVVDU\WKDW WKHIXQFWLRQ F x u t x R u R t I VDWLVILHVWKHFRQGLWLRQ _ F x u t _d c _ x _ _ u _ c t x u t R u R u I ZKHUH c const ! c t t c t L I R VROXWLRQ x t t I RI GLIIHUHQWLDO HTXDWLRQ LV DQ DEVROXWHO\ FRQWLQXRXV IXQFWLRQ KDYLQJ DOPRVW HYHU\ZKHUH GHULYDWLYH x t t I PRUHRYHU x t L I R 7KHSUREOHPVDUHVHW 3UREOHP Find a set of controls U L I R each element of which translates the trajectory of the system (6.96) from the starting point x xt to the state x xt 3UREOHP Find a general solution of equation (6.96) for which xt u x xt u x for any u t U
3UREOHP Find a method of reducing the initial boundary value optimal control problem (6.95) - (6.98) to the initial optimal control problem with a free right end of the trajectory. 3UREOHP Construct minimizing sequences for the initial optimal control problem, prove its convergence, and obtain an estimate of convergence. 3UREOHPFormulate an algorithm for solving the simplest problem of the calculus of variations. 7KHHVVHQFHRIWKHSURSRVHGPHWKRGIRUVROYLQJWKHVLPSOHVWSUREOHPLVWKDW WKHVHWRIDOOFRQWUROVLVGHWHUPLQHGHDFKHOHPHQWRIZKLFKWUDQVODWHVWKHV\VWHP V WUDMHFWRU\ IURP WKH LQLWLDO VWDWH x WR WKH ILQDO VWDWH x DQG DOO NLQGV RI D SDLU u t x t IRUWKHERXQGDU\YDOXHSUREOHP 6XFKDSSURDFKWRVROYLQJ DSUREOHPDOORZVRQHWRLPPHUVHVROXWLRQVRIWKHRULJLQDOH[WUHPDOSUREOHPWRWKH LQLWLDO RSWLPDO FRQWURO SUREOHP ZLWK D IUHH ULJKW HQG RI WKH WUDMHFWRU\ 7KH LQLWLDO SUREOHPLVVROYHGE\FRQVWUXFWLQJDPLQLPL]LQJVHTXHQFH 7KHQRYHOW\DQGSUDFWLFDOYDOXHRIWKHPHWKRGFRQVLVWVLQWKHIDFWWKDWILUVWRIDOO WKHVROYDELOLW\RIWKHERXQGDU\YDOXHSUREOHPLVSURYLGHGLQWKHIRUPRIH[WUDFWLQJDVHW RIDGPLVVLEOHSDLUV u t x t DQGWKHVROXWLRQRIWKHVLPSOHVWSUREOHPLVSHUIRUPHGE\ VHDUFKLQJIRUDQH[WUHPDODPRQJWKHVHWRIDGPLVVLEOHSDLUV,WLVQRWHZRUWK\WKDWWKH DOJRULWKPIRUVROYLQJWKHSUREOHPLVIRFXVHGRQWKHXVHRIFRPSXWHUV
3UREOHPV FDQ EH VROYHG E\ WKH PHWKRG RI WKH LPPHUVLRQ SURQFLSOH RI >@ /HPPDLet be t ! t . Then the control u L I R transfers a trajectory of system (6.96) from any initial point to any final state x xt if and only if u t U
t x x X t dt X t X L I R ` t t t t t³
^u L I R ut X t
3URRI7KHVROXWLRQRIGLIIHUHQWLDOHTXDWLRQ KDVWKHIRUP x t
t x ³u W dW t >t t @
t
+HQFHZLWKWDNLQJLQWRDFFRXQWWKHIDFWWKDW t t ZKHQWKHYDOXH xt x ZHJHW xt
x
t x ³ut dt t
7KHQ WKH FRQWURO u L I R WUDQVODWHV WKH WUDMHFWRU\ RI WKH V\VWHP IURPWKHVWDUWLQJSRLQW x WRWKHSRLQW x LVDVROXWLRQRIWKHLQWHJUDOHTXDWLRQ t ³ut dt
x x
a a R
t
7KH LQWHJUDO HTXDWLRQ LV D SDUWLFXODU FDVH ZKHUH K t { 7KHQ C t t t t ! XQGHU t ! t C t t
VHH 6LQFH WKH DVVXPSWLRQV t t
RIWKHRUHPVDUHVDWLVILHGWKHQ
t K t C t t a X t K t C t t ³ K t X t dt
u t
t
X t
t x x X t dt t >t t @ t t t t t³
ZKHUHX L I R LVDQ\IXQFWLRQ/HPPDLVSURYHG /HPPDLet be t ! t . Then the solution of the differential equation (6.96) corresponding to the control u t U from (6.99), is determined by the formula z t x
x t
x x t t t t z t X t >t t @ t t t t
where zt ztX t >t t @ is a solution of the differential equation z t X t z t
X L I R
3URRI$VLWIROORZVIURP WKHIXQFWLRQ xt
t t x x x ³> X W X t dt @dW t t t t t³ t
t x ³uW dW t
t t x x t t x t t ³X W dW X t dt t t t t t³ t
GXHWRWKHIDFWWKDW u t U VHH )URP ZHJHW z t
t
t
t
t
³X W dW ztX
³X t dt
1RZWKHUHODWLRQ WDNLQJLQWRDFFRXQW LVZULWWHQLQWKHIRUP /HPPDLVSURYHG :HLQWURGXFHWKHQRWDWLRQV x x N t t t t x x t t x t t N t t t t t
O x x O t x x
7KHQWKHUHODWLRQV DUHZULWWHQ
ut X t O x x NztX U t >t t @ I ztX O t x x N t ztX t I
1RZWKHVLPSOHVWSUREOHP LVZULWWHQLQWKHIRUP x t
t
³ F z t X O t x x N
J z z t X
t z t X X t
t
O x x N z t X t dt o LQI
XQGHUWKHFRQGLWLRQV
z X zt t I
>t t @
X L I R
7KH WUDQVLWLRQ IURP WKH LQLWLDO ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHP WR WKH LQLWLDO RSWLPDO FRQWURO SUREOHP ZLWK WKH IUHH HQG RI WKH WUDMHFWRU\LVFDOOHGWKHLPPHUVLRQSULQFLSOH )XQFWLRQDOJUDGLHQW:HLQWURGXFHWKHQRWDWLRQ q X t ztX zt F q t F zt O t N t zt X t O Nzt t 1RZ WKH IXQFWLRQDO LVZULWWHQLQWKHIRUP t
³ F q t dt
JX J z z t X
t
:H QRWH WKDW LI WKH IXQFWLRQ F x u t x R u R t I LV FRQWLQXRXVO\ GLIIHUHQWLDEOH E\ YDULDEOHV x u R u R WKHQ WKH IXQFWLRQ F q t LV FRQWLQXRXVO\ GLIIHUHQWLDEOHE\YDULDEOHV X z zt R u R u R 7KHRUHP Let the function F x u t be is continuously differentiable by variables x u and partial derivatives
wF q t be satisfied to the Lipshitz i.e. wq
wF q 'q t wF q t _d L _ 'q _ wX wX wF q 'q t wF q t _ _d L _ 'q _ wz wz wF q 'q t wF q t _ _d L _ 'q _ wz t wz t const ! i 'q 'X 'z 'zt _ 'q _ _ 'X 'z 'zt _ . _
Then the where Li functional (6.108) is differentiable in the Frechet sense, the gradient JcX L I R at any point X L I R is calculated by the formula JcX
wF qt t \ t X wX
where qt Xt zt zt zt ztX t I is a solution of the differential equation (6.109) at X X t , and the function \ t \ t X t I is a solution of the adjoint system \
wF qt t \ \ t wz
t wF qt t dt ³ wz t t
In addition, the gradient JcX L I R satisfies to the Lipshitz condition __ JcX JcX __ d l __X X __ X X L I R 3URRI /HW X t X t ht L I R DQG z t X z t X h t I EH VROXWLRQV RI HTXDWLRQ FRUUHVSRQGLQJ WR WKH HTXDWLRQV X t t ht /HW z t X h z t X 'z t t I 7KH LQFUHPHQW 'z t LV D VROXWLRQ RI WKH HTXDWLRQ 'z
h t 7KLV LPSOLHV _ 'z t _d
t
³ _ ht _ dt d c
__ h __L t I )LQDOO\ _ zt _d c __ h __L
t
_ 'z t _d c __ h __L 7KHLQFUHPHQWRIWKHIXQFWLRQDO
t
³ > F qt 'qt t F qt t @dt
'J JX h JX
t
ZKHUH 'qt 'Xt 'zt 'zt 6LQFH WKH IXQFWLRQ F q t KDV FRQWLQXRXV GHULYDWLYHVE\ q WKDW F qt 'qt t
F qt t ht FX qt T'qt t
'z t F z qt T'qt t 'z t F z t qt T'qt t d T d
7KLVLPSOLHVWKDW t
³ >ht F X qt t 'zt F
'J
z
qt t 'z t F z t qt t @dt R
t
t R
³ ^ht > F X qt T'qt t F X qt t @ 'z t > F
z
qt T'qt t F z qt t @
t
'z t > F z t qt T'qt t F z t qt t @`dt
,WFDQEHVKRZQWKDW 'J
t
_ R _
³ht > F X qt t \ t @dt R __ h __
o ZKHQ __ h __L o
L
t
ZKHUH\ t t I LV DVROXWLRQRIWKHDGMRLQW 7KLVLPSOLHVIRUPXOD )URP IROORZVWKDW _ '\ t _d c __ h __L ZKHUH '\ t \ t X h \ t X 6LQFH F z
VDWLVILHV
WR
WKH
/LSVKLW]
FRQGLWLRQ
WKHQ
__ JcX JcX __ d l __X X __ X X L I R 7KHRUHPLVSURYHG 0LQLPL]LQJ VHTXHQFHV /HW X t L I R EH WKH LQLWLDO IL[HG SRLQW :H
FRQVWUXFWDVHTXHQFH ^X n ` L I R E\WKHUXOH X n X n D n JcX n n ZKHUH H d D n d H ! ,Q SDUWLFXODU H l H
l H Dn l ZKHUH l const!
RI 7KHRUHP Let the conditions of theorem 3 be satisfied, the functional JX be bounded below, and the sequence Xn be determined by rule (6.115). Then: 1) the numerical sequence JXn decreases strictly; 2) OLP JcXn (a necessary condition for optimality). nof
3URRI6LQFHWKHIXQFWLRQDO JX C L WKDWWKHLQHTXDOLW\LVKHOG JX Ju t JcX X u ! L
l __ u X __L uX L
+HQFHXQGHUX Xn u Xn Xn Dn JcXn ZHJHW
l JX n JX n t JcX n D n JcX n ! __ D n JcX n __L D l Dl D n __ JcX n __ n __ JcX n __ D n n __ JcX n __
WKHLQHTXDOLW\LVVDWLVILHG l JX n JX n t __ JcX n __ l ,I IRU D ILQLWH n WKH JUDGLHQW JcX n WKHQ Xn Xn DQG JcXk
&RQVHTXHQWO\DW D n
k
n n VLQFH OLP JcXn 2I LQWHUHVW LV WKH FDVH JcX n z IRU WKH ILQLWH n nof
6LQFH WKH YDOXH __ JcX n __ ! JcX n z WKHQ IURP LW IROORZV WKDW WKH QXPHULFDO VHTXHQFH ^JXn ` LV VWULFWO\ GHFUHDVHG 6LQFH WKH IXQFWLRQDO JX X L LV ERXQGHG EHORZ WKH QXPHULF VHTXHQFH ^JXn ` LV ERXQGHG EHORZ 7KHUHIRUH WKHUH LV D OLPLW OLP JXn 7KHQ >OLP JXn JXn @ 3DVVLQJ WR WKH OLPLW DW n o f IURP nof
nof
ZHKDYH OLP JcXn 7KHRUHPLVSURYHG nof
7KHRUHP Let the conditions of theorem 4 be fulfilled, moreover: 1) functional JX be convex on L 2) the set M X ^X L JX d JX ` be limited. Then the sequence ^X n ` L I R minimizes the functional JX on L and weakly in L converges to the set U ^X L JX J PLQ JX LQI JX ` z . The XL
XL
following estimate of the rate of convergence is true JX n J d
D l n n
where D is a diameter of the set M X 3URRI $V LW IROORZV IURP WKHRUHP WKH VHTXHQFH ^Xn ` M X )URP WKH ERXQGHGQHVV FRQYH[LW\ DQG FORVHGQHVV RI WKH VHW M X LQ L LW IROORZV WKDW WKH VHW M X LV ZHDNO\ FRPSDFW $ FRQYH[ GLIIHUHQWLDEOH IXQFWLRQDO JX RQ M X LV ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ 7KHUHIRUH WKH IXQFWLRQDO üX UHDFKHV WKH ORZHUERXQGRQWKHVHW M X LHWKHVHW U z U M X 6LQFH WKH IXQFWLRQDO JX LV FRQYH[ X M X WKHQ WKH LQHTXDOLW\ JXn J d __ JcXn __ D KROGV ZKHUH J LQI JX JX X U 7UDQVIHUULQJ WR WKH XM u
OLPLW XQGHU n o f WDNLQJ LQWR DFFRXQW WKH IDFW WKDW __ JcXn __o XQGHU n o f ZH REWDLQ OLP JXn J &RQVHTXHQWO\WKHVHTXHQFH ^Xn ` M X LVPLQLPL]LQJ nof
)URP LQHTXDOLW\ DQG JXn J d __ JcXn __ D LW IROORZV WKH HVWLPDWLRQ 6LQFH M X LVZHDNO\ELFRPSDFW ^Xn ` M X LVDPLQLPL]LQJVHTXHQFH WKDWXn o X XQGHU n o f 7KHRUHPLVSURYHG /HPPDIf the function F x u t x u t R u R u I is convex by x u i.e. F Dx D y Du D Z t d aF x u t D F y Z t
x u t y Z t R u R u I D >@
then the functional JX is convex.
3URRI:HFRQVLGHUWKHRSWLPL]DWLRQSUREOHP ± ,WLVHDV\WR PDNHVXUHWKDWLI F x u t LVDFRQYH[IXQFWLRQE\YDULDEOH x u WKHQWKHIXQFWLRQ F q t LVFRQYH[E\YDULDEOH q LH F Dq D q t d DF q t D F q t q t q t R D >@ ,WFDQEHVKRZQWKDWIRUDQ\X t L I R X t L I R WKHYDOXH ztDX D X DztX D ztX D >@t I 7KHQ JDX D X
t
t F D q t D q t t dt d D ³ ³ F q t t dt
t
t
t D ³ F q t t dt DJX D JX X X L D >@ t
LQYLUWXHRILQHTXDOLW\ /HPPDLVSURYHG Lecture 27.$QDOJRULWKPIRUVROYLQJRIWKHVLPSOHVWSUREOHP $ IXQFWLRQ u t U FRUUHVSRQGLQJ WR FRQWURO u t U LV GHILQHG E\ WKH LQLWLDOGDWDWKHIXQFWLRQ x t x t u E\IRUPXODV FRUUHVSRQGLQJO\ %DVHGRQWKHSULQFLSOHRILPPHUVLRQWKHLQLWLDOSUREOHPLVUHGXFHGWRWKH LQLWLDO RSWLPDO FRQWURO SUREOHP ZLWK D IUHH ULJKW HQG RI WKH WUDMHFWRU\ 7KH JUDGLHQW RI WKH IXQFWLRQDO LV FDOFXODWHG E\ IRUPXOD DQG WKH DGMRLQWV\VWHP LVGHWHUPLQHG $ VHTXHQFH ^Xn ` LV FRQVWUXFWHGE\ IRUPXOD 7R GR WKLV VHOHFWLQJ WKH VWDUWLQJ SRLQW X t L I R :H ILQG D VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ z X t z t I ,Q SDUWLFXODU ZH FDOFXODWH z t :H FRPSHWH\ tX DQG ILQG D VROXWLRQ RI WKH DGMRLQW V\VWHP \ tX t I :H GHILQH D GHULYDWLYH E\ )UHVKHW LQ WKH SRLQW X HTXDOV WR ücX
wF qX t \ t X 7KH QH[W YDOXH wX
X t X t DücX )XUWKHUWKHFDOFXODWLRQSURFHVVLVUHSHDWHG JcX :HILQGWKHOLPLWSRLQWX L I Rc RIWKHVHTXHQFH ^Xn ` L ,QJHQHUDO c J X D QHFHVVDU\ FRQGLWLRQ IRU RSWLPDOLW\ ,Q WKH FDVH RI D FRQYH[ OLP n nof
IXQFWLRQDO WKH VHTXHQFH ^Xn ` LV PLQLPL]LQJ WKH ORZHU ERXQG LV UHDFKHGXn o X ZHDNO\ZLWK n o f xtX WKHVROXWLRQRIWKHVLPSOHVWSUREOHP ([DPSOH $V DQ H[DPSOH ZH FRQVLGHU WKH VLPSOHVW :HLHUVWUDVV SUREOHP )RUSUREOHP IXQFWLRQV u t X t z X x t t z t tz X t I &RUUHVSRQGLQJO\RSWLPL]DWLRQSUREOHPKDVWKHIRUP
³t
JX
> X t z X @ dt o LQI
t > X t z X @ \ t L I R
DWFRQGLWLRQV z X z t I >@X L I R 7KHIXQFWLRQV F q t t > X z @ 3DUWLDOGHULYDWLYHV wF wF wF t > X z @ t > z X @ wX wz wz
*UDGLHQWRIWKHIXQFWLRQDO JcX
wF \ wX
7KHDGMRLQWV\VWHP
\
\
³ t > X t zX @dt
0LQLPL]LQJVHTXHQFH X n t X n t D n JcX n X n t D n t > X n t z X n @ D n\ t X n n
$VLWIROORZVIURP \
c
const c \
³ t > X t zX @dt
n
n
7KHQ JcX n
t > X n t z X n @ ³t > X n t z X n @dt
7KH LQLWLDO YDOXH X t L I R LV VHOHFWHG ,Q SDUWLFXODU X t { t I :H ILQG D VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ z X t z t I )RU X t { WKH YDOXH zt { t I :H ILQG D VROXWLRQ RI WKH DGMRLQW V\VWHP
\ t \ ³t > X t z @dt )RU X t { z t { \ t t I :H GHILQH
GHULYDWLYH E\ )UHVKHW J cX t > X t z @ \ t t I )RU X t { ZH JHW JcX
X t
t 7KH QH[W DSSUR[LPDWLRQ X t X t DJcX )RU X t { D t D const HWF /HWDIWHU n ±LWHUDWLRQVWKHYDOXHEHIRXQGVHH
Xn t
°°n z Xn ® ° z X n °¯
7KHQ
dt n d t n
°°t n n d t n ® ° d t °¯ n n
JcXn 6LQFH WKH YDOXH t n
WKDW OLP JcXn QHFHVVDU\ RSWLPDOLW\ nof n n n
FRQGLWLRQLVIXOILOOHG )RUWKHYDOXHXn t ZHGHILQH un t DQG xn t HTXDOWR dt °°n n un t Xn t z Xn ® ° d t °¯ n °°nt d t n xn t t z t Xn tz Xn ® ° d t °¯ n :H QRWH WKDW IRU DQ\ n WKH YDOXH xn xn 7KH YDOXH RI WKH RULJLQDO IXQFWLRQDO Jun
³t u
n
t dt
o XQGHU n o f n
$QDSSUR[LPDWLRQVROXWLRQRIWKH:HLHUVWUDVVVLPSOHVWSUREOHP dt dt °° N °° Nt N n u N t ® xN t ® ° ° d t d t °¯ °¯ N n ZKHUH N LVDVXIILFLHQWO\ODUJHQXPEHU7KHYDOXH J u N
N
$ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH VLPSOHVW SUREOHP RI WKH FDOFXOXV RI YDULDWLRQVEDVHGRQWKHFRQVWUXFWLRQRIDJHQHUDOVROXWLRQRIWKH)UHGKROPLQWHJUDO HTXDWLRQRIWKHILUVWNLQGLVGHYHORSHG $GLVWLQFWLYHIHDWXUHRIWKHSURSRVHGPHWKRGLVWKDWWKHFODVVRIWKHRULJLQDO IXQFWLRQ LV H[SDQGHG WKH GLIILFXOWLHV DVVRFLDWHG ZLWK ERXQGDU\ FRQGLWLRQV DUH HOLPLQDWHG WKH VROXWLRQ RI WKH SUREOHP LV UHGXFHG WR WKH FRQVWUXFWLRQ RI D PLQLPL]LQJVHTXHQFHHDVLO\LPSOHPHQWHGRQDFRPSXWHU 7KHHVVHQFHRIWKHSURSRVHGPHWKRGLVWKDWDOOVHWVRIFRQWUROVDUHVHSDUDWHG IURPDQGDOOVROXWLRQVRI L DQGDOOVROXWLRQVRIWKHGLIIHUHQWLDOHTXDWLRQVDWLVI\LQJ ERXQGDU\FRQGLWLRQVIURPDFODVVRIDEVROXWHO\FRQWLQXRXVIXQFWLRQVZKLFKDOORZV WR UHGXFH WKH VROXWLRQ RI WKH VLPSOHVW SUREOHP WR VROYH DQ LQLWLDO RSWLPDO FRQWURO SUREOHPZLWKDIUHHHQGRIDWUDMHFWRU\ )RU WKH JHQHUDO FDVH D QHFHVVDU\ FRQGLWLRQ IRU RSWLPDOLW\ RID VWURQJ ORFDO PLQLPXPDQGDQHFHVVDU\DQGVXIILFLHQWFRQGLWLRQIRURSWLPDOLW\IRUWKHFDVHRID FRQYH[IXQFWLRQDODUHREWDLQHG
$Q DOJRULWKP IRU VROYLQJ WKH VLPSOHVW SUREOHP LV IRUPXODWHG DQG WKH :HLHUVWUDVVH[DPSOHLVVROYHG ,WLVQRWHZRUWK\WKDWOHVVVWULQJHQWUHTXLUHPHQWVDUHLPSRVHGRQWKHRULJLQDO GDWDRIWKHSUREOHPRQO\WKHGLIIHUHQWLDELOLW\RIWKHLQWHJUDQGRIWKHIXQFWLRQDOLV UHTXLUHGWKHGHVLUHGIXQFWLRQEHORQJVWRWKHFODVVRIDOPRVWHYHU\ZKHUHGLIIHUHQ WLDEOHIXQFWLRQV &RPPHQWV 7KHYDULDWLRQFDOFXOXVSUREOHPLVLQYHVWLJDWHGLQWKHSUHVHQFHRISKDVHDQG LQWHJUDOFRQVWUDLQWVIRUWKHSURFHVVHVGHVFULEHGE\RUGLQDU\GLIIHUHQWLDOHTXDWLRQV 6SHFLDO FDVHV RI ZKLFK DUH WKH VLPSOHVW SUREOHP WKH %RO] SUREOHP WKH LVRSHULPHWULFSUREOHPWKHSUREOHPIRUWKHFRQGLWLRQDOH[WUHPXP ,QFRQWUDVWWRWKHZHOONQRZQPHWKRGIRUVROYLQJWKHSUREOHPRIFDOFXOXVRI YDULDWLRQV EDVHG RQ WKH /DJUDQJH SULQFLSOH D FRPSOHWHO\ QHZ DSSURDFK LV SURSRVHG WKH LPPHUVLRQ SULQFLSOH 7KH SULQFLSOH RI LPPHUVLRQ LV EDVHG RQ WKH VWXG\RIWKH)UHGKROPLQWHJUDOHTXDWLRQRIWKHILUVWNLQG)RUWKH)UHGKROPLQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG D WKHRUHP RQ WKH H[LVWHQFH RI D VROXWLRQ DV ZHOO DV D WKHRUHPRQLWVJHQHUDOVROXWLRQVLVSURYHG 7KHPDLQVFLHQWLILFUHVXOWVDUH ±LQIRUPDWLRQRIWKHERXQGDU\YDOXHSUREOHPUHODWHGWRWKHFRQGLWLRQVLQWKH /DJUDQJHSUREOHPWRWKHLQLWLDORSWLPDOFRQWUROSUREOHPZLWKDVSHFLILFIXQFWLRQDO ±QHFHVVDU\DQGVXIILFLHQWFRQGLWLRQVIRUWKHH[LVWHQFHRIDGPLVVLEOHFRQWURO ± PHWKRG IRU FRQVWUXFWLQJ DQ DGPLVVLEOH FRQWURO E\ WKH OLPLW SRLQW RI WKH PLQLPL]LQJVHTXHQFH ± QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQV IRU WKH H[LVWHQFH RI D VROXWLRQ WR WKH /DJUDQJHSUREOHP ±PHWKRGIRUFRQVWUXFWLQJWKHVROXWLRQRIWKH/DJUDQJHSUREOHP 7KH VFLHQWLILF QRYHOW\ RI WKH UHVXOWV LV WKDW WKHUH LV QR QHHG WR LQWURGXFH DGGLWLRQDOYDULDEOHVLQWKHIRUPRI/DJUDQJHPXOWLSOLHUVSURRIVRIWKHH[LVWHQFHRI D VDGGOH SRLQW RI WKH /DJUDQJH IXQFWLRQDO WKH H[LVWHQFH DQG FRQVWUXFWLRQ RI D VROXWLRQWRWKH/DJUDQJHSUREOHPDUHVROYHGWRJHWKHU 4XRWHGOLWHUDWXUH %OLVV-/HFWXUHVRQYDULDWLRQFDOFXOXV±0,/±S /DYUHQWLHY0$/\XVWHUQLN/$%DVLFVRIYDULDWLRQFDOFXOXV±0/217, ±93DUW±S93DUW±S _ w t
f P y t u t t _ _ w t f P y t u t x x t _ _ pt F P y t t _ @dt
z
A t z B t v t B v t z t m
t I
v L I R r v L I R n x x S u S S R p t V t u t U t d *
t I ZKHUH w t W w t W IXQFWLRQ y t LVGHWHUPLQHGE\WKHIRUPXOD 3URRI7KHSURRIIROORZVIURP/HPPD7KHYDOXHRIWKHIXQFWLRQDO I t )XQFWLRQDO I LIDQGRQO\LIHTXDOLWLHV DUHVDWLVILHGUHODWLRQV FRLQFLGHZLWK 7KHIXQFWLRQDO FDQEHZULWWHQLQWKHIRUP /HPPDSURYHG )XQFWLRQ F qt t _ w t f P y t ut x x t _ _ w t f P y t ut x x t _ _ pt F P y t t _ ZKHUH w t W w t W y t z t v / t [ [ N t z t v t I q t z t v z t v u t pt v t v t x x d 1RWHWKDW 6LQFHWKHLQLWLDORSWLPDOFRQWUROSUREOHP LVHTXLYDOHQWWR WKHQ SUREOHP KDV D VROXWLRQ LI DQG RQO\ LI UHODWLRQV DUHVDWLVILHG 6LQFH WKH YDOXH I t WKHQ IRU WKH H[LVWHQFH RI D VROXWLRQ WR WKH RSWLPDO FRQWURO SUREOHP LW LV QHFHVVDU\ DQG VXIILFLHQW WKDW LQI I u p v v x x d XQGHUFRQGLWLRQV 7UDQVLWLRQ IURP WKH LQLWLDO ERXQGDU\ YDOXH SUREOHP WR WKH LQLWLDO RSWLPDO FRQWURO SUREOHP I u p v v x x d o LQI XQGHU FRQGLWLRQV LVFDOOHGWKHSULQFLSOHRILPPHUVLRQ
Lection 29.([LVWHQFHRIDGPLVVLEOHFRQWURO &RQVLGHUWKHIROORZLQJRSWLPDOFRQWUROSUREOHPPLQLPL]HWKHIXQFWLRQDO t
I u p v v x x d
³ F q t t o LQI
t I
t
8QGHUFRQGLWLRQV z
A t z B t v t B v t z t
S d *
m
v L I R v L I R pt V t u t U t x x S u S r
m
:HLQWURGXFHWKHIROORZLQJQRWDWLRQ H L I R m u L I R s u L I R r u L I R u m m u R n u R n u R X U u V u L I R r u L I R u S u S u * H YHFWRU IXQFWLRQ T t u t pt v t v t x x d X H q t z t z t T t 7KHRSWLPL]DWLRQSUREOHP FDQEHUHSUHVHQWHGDV I T
t
³ F qt t o LQI T X H
t
/HWWKHVHW X ^T X _ I T LQI I T ` T X
/HPPD /HW WKH PDWUL[ T t t ! . In order for problem (7.2)-(7.7) to have a solution, it is necessary and sufficient that OLP I T n I LQI I T , where T X
n of
^T n ` X – is a minimizing sequence in the problem (7.43)-(7.46)
7KHSURRIRIWKHOHPPDIROORZVIURP7KHRUHPDQG/HPPDV 7KHRUHP /HW WKH PDWUL[ T t t ! , function F q t is defined and continuous on a set of variables q t together with partial derivatives with respect to q and satisfies Lipschitz conditions _ Fq q 'q t Fq q t _d l _ 'q _ t I ZKHUH Fq q t Fz q t F q t Fu q t F p q t Fv q t Fv q t Fx q t Fx q t Fd q t z t
q
z z t u p v v x x d R
n m
uR
n m
u Rm u Rs u Rr u R
'z 'z t 'u 'p 'v 'v 'x 'x 'd l
'q
m
m
u R n u R n u R
const !
7KHQ IXQFWLRQDO XQGHU FRQGLWLRQV LV FRQWLQXRXVO\ GLIIHUHQWLDEOHDFFRUGLQJWR)UHFKHWWKHJUDGLHQW IcT Iu T I p T Iv T Iv T Ix T Ix T Id T H ,QDQ\SRLQW T X FDQEHFDOFXODWHGE\WKHIRUPXOD Iu T
Fu qt t I p T Iv T
Fv q t t B \ t Ix T
Ix T
F p qt t Iv T
t
³ Fx qt t dt Id T
t
t
Fv qt t B t \ t t ³ Fx qt t dt t
³F
d
t
q t t dt
ZKHUH zt t I LV D VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ D IXQFWLRQ\ t t I LVDVROXWLRQRIWKHDGMRLQWV\VWHP \
t ³F
Fz q t t A t \ \ t
t
z t
q t t dt
,QDGGLWLRQWKHJUDGLHQW IcT T X VDWLVILHV/LSVFKLW]FRQGLWLRQ __ I c T I c T __d K __ T T __ T T X ZKHUH K const ! 3URRI/HW T t T t 'T t X z t v v z t v 'v v 'v t I ±VROXWLRQV RIV\VWHP /HW z t v 'v v 'v z t v v 'z t t I 7KHQ _ 'z t _d C __ 'v __ C __ 'v __ ,QFUHPHQWRIIXQFWLRQDOORRNLQ t
³> F qt 'qt t F qt t @dt
I T 'T I T
'I
t
t
³>'u t F
u
qt t 'p t F p qt t 'v t Fv qt t
t
'v t Fv qt t 'x Fx qt t 'x Fx qt t 'd Fd q t t
'z t Fz qt t 'z t F
z t
qt t @dt ¦Ri i
t
t
t
t
t
t
ZKHUH _ R _d l ³ _ 'u t __ 'q t _ dt _ R _d l ³ _ 'p t __ 'q t _ dt _ R _d l ³ _ 'v t __ 'q t _ dt t _ R _d l ³ _ 'v t __ 'q t _ dt
t _ R _d l ³ _ 'x __ 'q t _ dt
t
t _ R _d l ³ _ 'd __ 'q t _ dt t
t _ R _d l ³ _ 'x __ 'q t _ dt
t
t _ R _d l ³ _ 'z t __ 'q t _ dt t
t
t _ R _d l ³ _ 'z t __ 'q t _ dt
ɜ ɫɢɥɭ
t
/LSVFKLW]FRQGLWLRQV 1RWLFHWKDWORRNLQ t
³'z t F
z t
t
q t t dt
t t ³ > 'v t B t 'v t B @\ t dt ³ 'z t F z q t t dt t
t
)URP ZHJHW t
³^'u t Fu q t t 'p t F p q t t 'v t > Fv q t t B t \ t @
'I
t
'v t > Fv q t t B \ t @ 'x F x q t t 'x F x q t t
'd Fd q t t `dt ¦Ri IcT 'T ! H R
i
ZKHUH R
_R_ o ZKHQ __ 'T __o Ri _ R _d C __ 'T __ ¦ __ 'T __ i
+HQFH ZH JHW WKH UHODWLRQV /HW T u 'u p 'p v 'v v u p v v x x d X $V _ IcT IcT _ d l _ 'q t _ l _ '\ t _ l _ 'T _ _ 'qt _d l __ 'T ___ '\ t _d l __ 'T __
'v x 'x x 'x d 'd T
WKHQ t
³ _ I c T I cT
__ I c T I c T __
_ dt d l __ 'T __
t
l 7KH WKHQ li const ! i +HQFHZHJHWWKHHVWLPDWH ZKHUH K WKHRUHPLVSURYHG /HPPD /HW T t t ! , function F q t convex by variable q R N , N n m s r m , i.e. F Dq D q d DF q t D F q t q q R N D D >@ 7KHQWKHIXQFWLRQDO XQGHUWKHFRQGLWLRQV LVFRQYH[ 3URRI/HW T T X D >@ ,WFDQEHVKRZQWKDW z t Dv D v Dv D v Dz t v v D z t v v r m v v v v L I R 7KHQ I DT D T
t
³ F Dq t D q t dt d DI T D I T
t
T T X T
u p v v x x d T
u p v v x x d
/HPPDLVSURYHG 1RWH WKDW LI U V S S ± DUH ERXQGHG FRQYH[ FORVHG VHWV WKHQ X ± LV ERXQGHG FRQYH[ FORVHG VHW $V H ± UHIOH[LYH %DQDFK VSDFH WKHQ WKH VHW X ± m ZHDNO\FRPSDFWZKHUH X U u V u V I R r u V I R u S u S u * H m
m
V I R r ^v L I R r _ PvP d E ` V I R ^v L I R _ PvP d E ` m
* ^d R d t _ d _d E `
E !
±
TXLWH
D
ODUJH
QXPEHU
%XLOG
VHTXHQFHV
^T n ` ^un pn vn vn xn xn d n ` X n E\DOJRULWKP u n PU >u n D n Icu T n @ pn PV > pn D n Icp T n @ vn PV >vn D n Icv T n @ vn PV >vn D n Icv T n @
PS > xn D n Icx T n @ xn PS > xn D n Icx T n @ d n P* > d n D n Icd T n @ n H d Dn d H ! K H ZKHUH P: >@ ±SRLQWSURMHFWLRQRQWRWKHVHW : K const ! IURP xn
7KHRUHP/HWWKHFRQGLWLRQVRI7KHRUHPEHIXOILOOHGDQGPRUHRYHUOHW WKH IXQFWLRQ F q t be convex by variable q R N and sequence ^T n ` X is determined by the formula (7.55). Then:
WKHORZHUERXQGRIWKHIXQFWLRQDO LVUHDFKHGXQGHUWKHFRQGLWLRQV LQI I T I T PLQ I T T X T X
T X
VHTXHQFH ^T n ` X LVPLQLPL]LQJ OLP I T n I n of
LQI I T
T X
VHTXHQFH ^T n ` X FRQYHUJHVZHDNO\WRDSRLQW T X u n weakly o u o v v n weakly o v xn o x xn o x d n o d ZKHQ n o f p n weakly o p vn weakly ZKHUH T u p v v x x d X ,QRUGHUIRUSUREOHP WRKDYHDVROXWLRQLWLVQHFHVVDU\DQG VXIILFLHQWWKDW OLP I T n I n of
7KHIROORZLQJHVWLPDWHRIWKHUDWHRIFRQYHUJHQFHLVYDOLG C n C n 3URRI6LQFHWKHIXQFWLRQ F q t t I d I T n I d
const !
LVFRQYH[WKHQDFFRUGLQJWR/HPPD WKHIXQFWLRQDO I T T X LVFRQYH[RQDZHDNO\FRPSDFWVHW X &RQVHTXHQWO\ I T C X LV ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ RQ D ZHDNO\ FRPSDFW VHW X DQG UHDFKHV WKH ERWWRP LQ X 7KLV LPSOLHV WKH ILUVW DVVHUWLRQ RI WKHWKHRUHP 8VLQJSURSHUWLHVRIWKHSURMHFWLRQRIDSRLQWRQDFRQYH[FORVHGVHW X DQG FRQVLGHULQJ WKDW I T C X ZH FDQ VKRZ WKDW I T n I T n t H __ T n T n __ n H ! ,WIROORZVWKDW DQXPHULFVHTXHQFH ^I T n ` VWULFWO\GHFUHDVHV __ T n T n __o ZKHQ n o f 6LQFHWKHIXQFWLRQDOLVFRQYH[DQGWKHVHWLVERXQGHGWKHLQHTXDOLW\ d I T n I T d C __ T n T n __ C const ! n +HQFHWDNLQJLQWRDFFRXQWWKHIDFWWKDW __ T n T n __o ZKHQ n o f ZHKDYH VHTXHQFH ^T n ` LVPLQLPL]LQJ OLP I T n I T LQI I T T X
n of
$V ^T n ` X X ±ZHDNO\ELFRPSDFWWKHQ T n weakly o T ZQHQ n o f $V IROORZV IURP /HPPD LI WKH YDOXH I T WKHQ WKH SUREOHP RI RSWLPDOFRQWURO KDVDVROXWLRQ 7KH HVWLPDWH IROORZV GLUHFWO\ IURP WKH LQHTXDOLWLHV I T n I T n t H __ T n T n __ $ERYHWKHPDLQVWDJHVRIWKHSURRIRIWKHWKHRUHPZHUHEULHIO\GHVFULEHG $GHWDLOHGSURRIRIDVLPLODUWKHRUHPLVJLYHQLQ>@7KHWKHRUHPLVSURYHG )RU WKH FDVH ZKHQ WKH IXQFWLRQ F q t LV QRW FRQYH[ E\ YDULDEOH q WKH IROORZLQJWKHRUHPLVWUXH 7KHRUHP /HW WKH FRQGLWLRQV RI 7KHRUHP EH VDWLVILHG WKH VHTXHQFH ^T n ` X is determined by the formula (7.55). Then: 1) the value of the functional I T n is strictly decreases when n ; 2) __ T n T n __o when n o f . 7KHSURRIRIWKHWKHRUHPIROORZVIURPWKHWKHRUHP
)URP WKH DERYH UHVXOWV LW IROORZV LI T u p v v x x d X ± LV D VROXWLRQRIWKHSUREOHPRIRSWLPDOFRQWURO IRUZKLFK I T WKHQ u u t x x 6 U u S u S ± DGPLVVLEOH FRQWURO IXQFWLRQ x t t x t I ± VROXWLRQ RI GLIIHUHQWLDO HTXDWLRQ VDWLVILHV WKH FRQGLWLRQV xt t x x x t t x G t t I IXQFWLRQDOV g j u x x d c j j m g j u x x c j j m m DQHFHVVDU\DQGVXIILFLHQWFRQGLWLRQIRUWKHH[LVWHQFHRIDVROXWLRQ WRWKHERXQGDU\YDOXHSUREOHP LV I T ZKHUH T X ±LVDVROXWLRQ RIWKHSUREOHP IRUDYDOLGFRQWUROWKHYDOXHRIWKHIXQFWLRQDO LVHTXDOWR t
³ F x t u t x x t dt
I u x x
J
t
ZKHUH x t x t t x t I ,Q JHQHUDO WKH YDOXH I u x x z I u x x LQI I u x x u x x U t u S u S /HW t LV IL[HG t LV QRQ IL[HG &RQVLGHU WKH DOJRULWKP IRU VROYLQJ WKH SUREOHPRIRSWLPDOSHUIRUPDQFH A.$Q\SHUPLVVLEOHFRQWUROLVFRQVWUXFWHGDVGHVFULEHGDERYH7RGRWKLVZH QHHG MXVW WR VHOHFW VRPH YDOXH t t t ! t WKHQ ILQG WKH VROXWLRQ RI WKH RSWLPL]DWLRQ SUREOHP /HW SRLQW EH IRXQG T X J T LQI J T T X 7ZRFDVHVDUHSRVVLEOHKHUHD J T J ! E J T J &DVHE /HW J T J ! ,Q WKLV FDVH ZH DJDLQ VROYH SUREOHP WKH IODW YDOXH t t $V D UHVXOW ZH KDYH D SRLQW T T t X 9DOXH J T t 7KHUH DUH DOVR WZR SRVVLEOH FDVHV J T t ! J T t ,I YDOXH J T t ! WKHQZHZLOOFRQWLQXHWKHSURFHVV t t DQGVRRQ,IYDOXH J T t WKHQZH SDVVWRWKHSRLQW% B./HWIRUVRPHYDOXH t mt YDOXH J T mt LQSDUWLFXODUZKHQ m ZHKDYHFDVHE ,QWKLVFDVHZHVHOHFWWKHYDOXH t m t )XUWKHUZHVROYHWKH
SUREOHP IRUWKHYDOXH t
m t
5HSHDWLQJ WKLV SURFHGXUH \RX FDQ ILQG ZLWK DV PXFK SUHFLVLRQ DV SRVVLEOH t t t ±DQRSWLPDOSRLQWLQWLPHDVZHOODV T t X VROXWLRQRIWKHSUREOHPRI RSWLPDOSHUIRUPDQFH
Lecture 30.&RQVWUXFWLQJDQRSWLPDOVROXWLRQ &RQVLGHU WKH RSWLPDO FRQWURO SUREOHP 'HILQH D VFDODU IXQFWLRQ V t t I LQWKHIROORZLQJZD\ V t
t
³ F xW u W x x W dW t I
t
7KHQ V t F xt u t x x t V t V t J I u x x : I u x x t J YDOXH J LV ERXQGHG EHORZ LQ SDUWLFXODU J LI F t 1RZWKHRSWLPDOFRQWUROSUREOHP FDQEHZULWWHQLQWKHIRUPVHH V t J I u x x o LQI 8QGHUFRQGLWLRQV V t F xt u t x x t V t V t J x At x Bt f x u t xt x xt x S u S K f xt u t x x t K t K t c Q x t G t u t U t t I :HLQWURGXFHWKHQRWDWLRQ ^J R _ J t J J ! f` ZKHUH J
§ O § · On Om ·¸ ¨ ¨ ¸ ¨ O ¸ ¨ O ¸ A t O B n m ¨ n ¸ ¨ n ¸ ¨ Om Om n Om m ¸ ¨ Om ¸ © ¹ © ¹ § Om · ¨ ¸ ¨ On m ¸ P On Om P On I n On m ¨ ¸ ¨ Im ¸ © ¹
§ V t · ¸ ¨ P t ¨ xt ¸ A t ¨ K t ¸ ¹ ©
§ Or · ¨ ¸ C t ¨ Bt ¸ D t ¨ ¸ ¨ Om r ¸ © ¹ ZKHUH P P t V t PP x
7KHQWKHRSWLPDOFRQWUROSUREOHP KDVWKHIRUP P P t J I u x x o LQI 8QGHUFRQGLWLRQV P
A t P B F PP u x x t C t f PP u t D f PP u x x t
§ O · ¨ ¸ ¨ x ¸ O u S uO P t P T m ¨ ¸ ¨ Om ¸ © ¹ § V t · § J · ¨ ¸ ¨ ¸ P t P ¨ xt ¸ ¨ x ¸ : u S u Q T ¨ K t ¸ ¨ c ¸ © ¹ © ¹ PP t G t u t U t d * PP t V t P P t t I J ±LVGHWHUPLQHGE\WKHIRUPXOD § V t · ¨ ¸ ¨ xt ¸ ¨ K t ¸ © ¹
ZKHUH xt 3ULQFLSOH RI LPPHUVLRQ &RQVLGHU WKH ERXQGDU\ YDOXH SUREOHP 7KHFRUUHVSRQGLQJOLQHDUFRQWUROOHGV\VWHPLV ] A t ] B w t C t w t D w t t I m
w L I R w L I R r w L I R ] t P T ] t P T
:HLQWURGXFHWKHIROORZLQJQRWDWLRQ B t
w t w t w t < t W K t K W t
< t t P P R t t ³ < t t B t B t < t t dt
B C t D wt a
t
t
³< t W B
R t t
W B W < t W dW R t t
R t t R t t
t
/ t P P
B t < t t R t t a
§ B < t t R t t a · ¨ ¸ ¨ C < t t R t t a ¸ ¨¨ ¸¸
© D < t t R t t a ¹
§ / t P P · ¨ ¸ ¨ / t P P ¸ ¨¨ ¸¸ © / t P P ¹
B < t t t R t t < t t
K t
§ B < t t R t t < t t · ¨ ¸ ¨ C < t t R t t < t t ¸ ¨ D < t t R t t < t t ¸ ¹ ©
/ t P P
§ K t · ¨ ¸ ¨ K t ¸ ¨ K t ¸ © ¹
<t t Rt t R t t P <t t Rt t R t t <t t P K t
< t t R t t R t t < t t t I
7KHRUHP /HW WKH PDWUL[ Rt t ! . Then control wt w t w t w t L I R
r m
transfers the trajectory of the system (7.69)-(7.71) from any
starting point P R
n m
to any given final state P R
n m
if and only if
v t / t P P K t z t v
w t W ^w L I R w t
v L I R t I `
w t W
v t / t P P K t z t v
^w L I R r w t
v L I R t I ` r
w t W
m
^w L I R w t
v t / t P P K t z t v
m
v L I R t I `
ZKHUH vt v t v t v t z t z t v t I ±VROXWLRQRIDGLIIHUHQWLDOHTXDWLRQ z A t z B v t C t v t D v t z t m
v L I R v L I R r v L I R
7KHVROXWLRQRIWKHV\VWHP KDVDIRUP ] t
z t v / t P P K t z t v t I
7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP /HPPD /HW WKH PDWUL[ Rt t ! . Then the boundary value problem (7.65) ± (7.68) is equivalent to the following problem. w t W w t F P] u x x t t I w t W w t f P ] u t t I
f P] u x x t t I
pt V t ^ p L I R pt F P] t Z t d p t d M t t I ` z A t z B v t C t v t D v t z t t I
w t W w t
s
m
v L I R v L I R r v L I R x x S u S u t U t J : d *
ZKHUH ] t t I LVGHWHUPLQHGE\WKHIRUPXOD z t v ±VROXWLRQRIDV\VWHP IXQFWLRQV w t w t w t LV GHWHUPLQHG E\ WKH IRUPXODV UHVSHFWLYHO\ 7KHDVVHUWLRQRI/HPPDIROORZVIURPWKHWKHRUHP &RQVLGHUWKHIROORZLQJRSWLPDOFRQWUROSUREOHPPLQLPL]HWKHIXQFWLRQDO t
t
t
t
³ F qt t dt
J v u p x x d J
³>_ w t F P] t ut x x t _
_ w t f P] t u t t _ _ w t f P] t u t x x t _
_ p t F P] t t _ @dt o LQI
XQGHUFRQGLWLRQV ± ZKHUH w t W w t W w t W v v v v qt v v v u p x x d J z t z t 1RWH WKDW WKH RSWLPL]DWLRQ SUREOHP ZDVREWDLQHGRQWKHEDVLVRIWKHUHODWLRQV wF q t satisfies the wq
7KHRUHP /HW WKH PDWUL[ Rt t ! , derivative
Lipschitz condition. Then: IXQFWLRQDO XQGHUFRQGLWLRQV LVFRQWLQXRXVO\)UHFKHW GLIIHUHQWLDEOHWKHJUDGLHQWRIWKHIXQFWLRQDO J T
J v T J v T J v T J u T J p T J x T J x T J d T J J T
T X
v v v u p x x d J X m
L I R u L I R r u L I R u U u V u S u S u * u :
m
L I R u L I R u L I R u L I R u L I R u R u R u
H
r
m
u R u R
m
s
n
n
X H J T H
DWDQ\SRLQW T X FDQEHFDOFXODWHGE\WKHIRUPXODV J v T J v T
wF qt t B \ t J v T w v
wF qt t wF qt t wF qt t D \ t J u T J p T wu wp wv t t wF qt t wF qt t J x T ³ dt J x T ³ dt wx wx t t
J d T
t
³
t
wF qt t dt J J T wd
wF qt t C \ t wv
t
³
t
wF qt t dt wJ
ZKHUH\ t t I ±VROXWLRQRIFRQMRLQWV\VWHP t wF q t t dt ³ w z t t
wF q t t A t \ \ t wz
\
JUDGLHQW J T T X VDWLVILHV/LSVFKLW]FRQGLWLRQ
__ J T J T __d l __ T T __ T T X
7KHSURRIRIWKHWKHRUHPLVVLPLODUWRWKHSURRIRIWKHWKHRUHP n n n &RQVWUXFW WKH IROORZLQJ VHTXHQFHV ^T n ` ^v v v u n p n x n xn d n J n ` X E\DOJRULWKP n n PV >v D n J v T n @ v
n
v
n
v
n PV >v D n J v T n @ un
PV > pn D n J p T n @
pn n
x
n PV >v D n J v T n @
xn
PS > x D n J x T n @ d n
J n
n
PU >un D n J u T n @ PS > xn D n J x T n @
P* >d n D n J T n @
P: >J n D n J J T n @
H ! l l H ^v L I R __ v __d E `
V
V m
^v L I R __ v __d E ` U
: ^J RJ d J d E ` X
n
d Dn d
ZKHUH
d
const ! ^v L I R r __ v __d E `
V
m
^u L I R m __ u __d E ` * ^d R d t _ d _d E `
V u V u V u U u V u S u S u * u : H
7KHRUHP /HW WKH FRQGLWLRQV RI 7KHRUHP EH VDWLVILHG, X - is bounded convex closed set, sequence ^T n ` X is determined by the formula (7.86). Then: QXPHULFVHTXHQFH ^J T n ` VWULFWO\GHFUHDVHV __ T n T n __o ZKHQ n o f ,IPRUHRYHU F q t LVFRQYH[IXQFWLRQE\YDULDEOH q WKHQ WKHORZHUERXQGRIWKHIXQFWLRQDO LVUHDFKHGXQGHUWKHFRQGLWLRQV ± J T inf J T min J T J T X
T X
VHTXHQFH ^T n ` X LVPLQLPL]LQJ lim J T n J
inf J T
nof
X n
T X
VHTXHQFH ^T n ` X FRQYHUJHV ZHDNO\ WR D SRLQW T X n
n
weakly weakly o v v o v ^T J T J inf J T min J T ` ZKHUH v T X
T X
weakly o p xn o x xn o x d n o d J n o J ZKHQ v o v un o u pn weakly
n o f T
weakly
v v v u p x x d J
LI J T WKHQ RSWLPDO FRQWURO IRU WKH SUREOHP DUH u U
x S x S DQGWKHRSWLPDOWUDMHFWRU\ x t P] t P> z t v / t P P K t z t v @ t I
ZKHUH
v
v v v P
d j t j m c j
cj j
O x O
m
m m `
P
J x c c Q
m
^c R c j
cj d j
VDWLVILHG WKH LQFOXVLRQ x t G t DQG
OLPLWDWLRQV J u x x J WKHIROORZLQJHVWLPDWHRIWKHFRQYHUJHQFHUDWHLVYDOLG d J T n J d
c n c n
const !
7KHSURRIRIDVLPLODUWKHRUHPLVJLYHQDERYH $ PRUH YLVXDO PHWKRG IRU VROYLQJ SUREOHP LV WKH PHWKRG RI QDUURZLQJWKHUDQJHRIDGPLVVLEOHFRQWUROV 7KHRUHP Let the conditions of the theorem 8 be satisfied, X V u V u V u U u V u S u S u * is bounded convex closed set, sequence ^T n ` X is determined by the formula (7.86) except for the sequence ^J n ` : Then: QXPHULFVHTXHQFH ^J T n ` ^T n ` X VWULFWO\GHFUHDVHV __ T n T n __o ZKHQ n o f ^T n ` X ,ILQDGGLWLRQWKHIXQFWLRQ F q t LVFRQYH[IXQFWLRQE\YDULDEOH q ZLWK IL[HG J WKHQ VHTXHQFH ^T n ` X ZLWKIL[HG J J LVPLQLPL]LQJ ɫɥ T n o T X ZKHQ n o f J J J T inf J T n min J T n X
Tn
X
Tn
IROORZLQJHVWLPDWHLVWUXH d J T n J T d
c c n
const ! n ^T n ` X
7KHSURRIRIWKHWKHRUHPIROORZVIURP7KHRUHPIRUDIL[HG J : J J VHH /HW T X EH D VROXWLRQ RI WKH SUREOHP ZKHQ J J : 7KHUHPD\EHFDVHV YDOXH J T ! YDOXH J T 1RWLFHWKDW J T t T X ,I J T ! WKHQQHZYDOXH J ZHZLOOFKRRVH J J DQGLI J T WKHQ QHZYDOXH J
J
$FFRUGLQJWRWKLVVFKHPHE\GLYLGLQJWKHLQWHUYDORIXQFHUWDLQW\
LQKDOIZHFDQILQGWKHVPDOOHVWYDOXHRIWKHIXQFWLRQDO XQGHUWKHFRQGLWLRQV
Lecture 31.%RXQGDU\SUREOHPVRIRSWLPDOFRQWURORIOLQHDUV\VWHPV ZLWKTXDGUDWLFIXQFWLRQDOZLWKRXWUHVWULFWLRQV 3UREOHP VWDWHPHQW &RQVLGHU WKH IROORZLQJ RSWLPDO FRQWURO SUREOHP PLQLPL]HWKHIXQFWLRQDO t
J x u
>
@
x t Qt xt x t M t u t u t Rt u t dt o LQI t³
8QGHUFRQGLWLRQV x
At x Bt u t P t t I
xt x xt x u x L I R
ZKHUH Rt R t ! Qt Q t ! M t t I ± PDWULFHV ZLWK FRQWLQXRXV HOHPHQWV RI mu m n u n n u m RUGHUV UHVSHFWLYHO\ At B t ± JLYHQ PDWULFHV ZLWK SLHFHZLVHFRQWLQXRXVHOHPHQWVRI n u n n u m RUGHUVUHVSHFWLYHO\ P t KC I R n ± SLHFHZLVH FRQWLQXRXV IXQFWLRQ WLPH PRPHQWV t t DUH IL[HG xt x R n xt x R n ±VSHFLILHGV\VWHPVWDWHV /HWXVVKRZWKDWWKHPDWUL[ x
>t t @
m
§ Qt M t · ¨¨ ¸¸ t t I >t t @ © M t Rt ¹ :H QHHG WR ILQG RSWLPDO FRQWURO u t t I RSWLPDO WUDMHFWRU\ x t t I $V N t
IROORZVIURPWKHUHVXOWVRI&KDSWHUIRUWKHH[LVWHQFHRIDVROXWLRQRIWKHSUREOHP LWLVQHFHVVDU\DQGVXIILFLHQWWKDWWKHPDWUL[ t
T t t
³ )t t Bt B t )t t dt
t
ZDV SRVLWLYHO\ GHILQHG ZKHUH ) t W N t N W N t ± WKH IXQGDPHQWDO PDWUL[ RI x
VROXWLRQVRIDOLQHDUKRPRJHQHRXVV\VWHPZKHUH p At p 3ULQFLSOHRILPPHUVLRQ$VIROORZVIURPWKHUHVXOWVRIFKDSWHUWKRVHDQG RQO\WKRVHFRQWUROVWUDQVIHUWKHWUDMHFWRU\RIWKHV\VWHP IURPDQ\LQLWLDOVWDWH x t x R n LQDQ\GHVLUHGILQDOVWDWH xt x R n ZKLFK u t U ^u x L I R m u t vt O t x x N t z t v t I ` m ZKHUH vx L I R ± DUELWUDU\ IXQFWLRQ z t z t v t I ± VROXWLRQ RI D GLIIHUHQWLDOHTXDWLRQ x
At z Bt vt z t
7KH VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ FRUUHVSRQGLQJ WR WKH FRQWURO u t U LVGHWHUPLQHGE\WKHIRUPXOD xt z t O t x x N t z t v t I +HUH z
O t x x
t I vx L I R m
B t ) t t T t t a a
t
)t t >x )t t x @ ³ )t t P t dt t
N t
B t ) t t T t t ) t t T t t T t t T t t
O t x x ) t t T t t T t t x ) t t T t t T t t ) t t x t
t
³ )t W P W dW )t t T t t T t t ³ ) t t P t dt t
t
t
) t t T t t T t t ³ )t t P t dt t
N t ) t t T t t T t t ) t t t I /HPPD Let the matrix T t t ! Then the boundary value optimal control problem (7.87)-(7.89) is equivalent to the following initial optimal control problem: minimize the functional
t
J z x z t vx
^> z t O t x x N t z t v @ Qt u t³
u > z t O t x x N t z t v @ > z t O t x x N t z t v @ M t u u >v t O t x x N t z t v @ >v t O t x x N t z t v @ R t u
u >vt O t x x N t z t v @` o LQI
Under conditions x
z
At z Bt vt , z t
,t I
>t t @ , vx L I R m .
3URRI6LQFHWKHVHW U GHILQHGE\WKHIRUPXOD FRQWDLQVWKRVHDQGRQO\ WKRVH FRQWUROV WKDW WUDQVODWH WKH WUDMHFWRU\ RI WKH V\VWHP IURP x WR x WKHQWKHIXQFWLRQ u t t I LQWKHIXQFWLRQDO FDQEHUHSODFHGE\ u t U 7KH VROXWLRQ RI WKH GLIIHUHQWLDO HTXDWLRQ FRUUHVSRQGLQJ WR WKH FRQWURO u t U KDV WKH IRUP 7KHUHIRUH WKH IXQFWLRQ xt t I LQ WKH IXQFWLRQDO FDQEHUHSODFHGE\ x t x t u t I u t U /HPPDLVSURYHG 1RWLFHWKDW XQOLNH WKH ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHP WKH SUREOHP LVWKHLQLWLDOSUREOHPRIRSWLPDOFRQWURO GXH WR WKH HTXLYDOHQFH RI SUREOHPV DQG WKH RSWLPDOFRQWUROFDQEHIRXQGE\VROYLQJWKHSUREOHP u U t I DQG RSWLPDOWUDMHFWRU\ x t u t I RILQLWLDOSUREOHPE\IRUPXOD u t v t O t x x N t z t v t I x t z t v O t x x N t z t v t I ZKHUH v t z t v t I ± RSWLPDO FRQWURO DQG RSWLPDO WUDMHFWRU\ LQ WKH SUREOHP WKHWUDQVLWLRQIURPWKHRULJLQDOSUREOHP WRWKHLQLWLDOSUREOHP LVFDOOHGWKHLPPHUVLRQSULQFLSOH &RQYH[ IXQFWLRQDO :HVWXG\WKHSURSHUWLHVRIWKHIXQFWLRQDO XQGHU WKHFRQGLWLRQV
/HPPD Let the matrix T t t ! . If matrices Qt Q t t , Rt R t ! , N t N t t , t I , then the functional (7.93) under the conditions (7.94) is convex.
3URRI7KHIXQFWLRQDO FDQEHUHSUHVHQWHGDV J qx
t
³ F qt t dt
t
t
³ >q t Pt qt S t qt f t @dt
t
ZKHUH qt z t z t vt t I P t
Q t § ¨
¨ N t Q t N t M t ¨
M t ©
P t
S t
Q t N t M t N t N t Q t N t N t M t N t N t R t N t M t N t R t N t
M t · ¸ N t R t N t M t ¸ ¸ R t ¹
O t x x Q t O t x x Q t N t
O t x x Qt N t O t x x M t N t O t x x M t N t O t x x Rt N t >O t x x Q t O t x x O t x x M t O t x x O t x x R t O t x x @
O t x x R t O t x x M t f t
'HULYDWLYHV w F q t wF q t Pt t I Pt q S t w q wq 6LQFHWKHPDWUL[ Pt P t t WKHQIXQFWLRQ F q t FRQYH[E\YDULDEOH q LH
F Dq D q t d DF q t D F q t
DF z z v D F z z v q q R n u R n u R m D D > @
)RUDQ\ v x L I R m v x L I R m DQGIRUDOO D t D >@ VROXWLRQRI DGLIIHUHQWLDOHTXDWLRQ ZLWK vD Dv D v KDVWKHSURSHUW\ z t vD Dz t v D z t v t I 7KHYDOXHRIWKHIXQFWLRQDO XQGHUWKHFRQGLWLRQV LVHTXDOWR J vD
J z x vD z t vD vD
t
³ F z t vD z t vD vD t dt
t t
³ F Dzt v D zt v D zt v D zt v Dv t D v t dt d
t
t
t
t
t
d D ³ F z t v z t v v t dt D ³ F z t v z t v v t dt
DJ z x v z t v v x D J z x v z t v v x D D > @
E\YLUWXHRI /HPPDSURYHG
)XQFWLRQDOJUDGLHQW&RQVLGHUWKHRSWLPDOFRQWUROSUREOHP 7KHRUHP Let the matrix T t t ! The functional (7.93) under the conditions (7.94) is continuously Frechet differentiable, the gradient of the functional at any point v x L I R m is determined by the formula Rt >vt O t x x N t z t @
J cv
M t >z t O t x x N t z t @ B t \ t L I R m ,
where z t z t v , t I – solution of a differential equation (7.94) and funvtion \ t , t I –solution of adjoin system
x
\
Qt >z t O t x x N t z t @
M t >v t O t x x N t z t @ A t \ , t I ,
t
\ t ³ ^> N t Qt N t M t @> z t O t x x N t z t @ t
> N t R t N t M t @>vt O t x x N t z t @`dt .
In addition, the gradient J cv L I R satisfies Lipschitz condition __ J cv J c w __ L d l __ v w __ L , vx wx L I R m , where l const ! – Lipschitz constant. 3URRI/HW vt vt ht L I R m DQG z t v z t v h t I ±VROXWLRQRID GLIIHUHQWLDO HTXDWLRQ z t v h z t v 'z t t I ,W FDQ EH VKRZQ WKDW _ 'z t _d c __ h __ L t I 3DUWLDOGHULYDWLYHV m
wF q t R t >v t O t x x N t z t @ wv
M t >z t O t x x N t z t @ F v wF q t Q t >z t O t x x N t z t @ wz M t >vt ht O t x x N t z t @ F z
wF q t wz t
>N
@
t Q t N t M t >z t O t x x N t z t @
>
@
N t Rt N t M t >vt O t x x N t z t @ F z t
,WFDQEHVKRZQWKDW 'J
J v h J v
t
³ ^h t F
v
'z t F z 'z t F z t `dt R R R
t
ZKHUH _ R _d c __ h __ _ R _d c __ h __ _ R _d c __ h __ +HQFHJLYHQWKDW t
³ 'z t F z t dt
t
t
t
t
t
³ h t B t \ t dt ³ 'z t F z dt
ZHREWDLQ $VIROORZVIURP
_ J cv h J cv _d__ Rt __ >_ ht _ __ N t ___ 'z t _@
__ M t __ _ 'z t _ __ M t __ __ N t __ _ 'z t _ __ B t __ _ '\ t _ ZKHUH '\ t \ t v h \ t v +HQFH JLYHQ WKDW _ '\ t _d c __ h __ ZH REWDLQ WKH
HVWLPDWH 7KHWKHRUHPLVSURYHG
2SWLPDOFRQGLWLRQV&RQVLGHUWKHSUREOHP :HLQWURGXFHWKH QRWDWLRQ ½ m PLQ J v ¾ ®v x L I R J v x m v x L I R ¯ ¿ 7KHRUHP Let the matrix T t t ! . Then: V
1) set V z ; 2) for any point v t V it is necessary and sufficient to fulfill the condition J cv . 3URRI :H LQWURGXFH WKH VHW LU I R m L I R m U ! ± TXLWH D ODUJH QXPEHU 6HW LU I R m ± ZHDNO\ ELFRPSDFW IXQFWLRQDO XQGHU FRQGLWLRQV ZHDNO\ VHPLFRQWLQXRXV IURP EHORZ J v t 7KHUHIRUH VHW V z V LU I R m V ±ERXQGHGFRQYH[FORVHGVHW
/HW v t V 7KHQ d J v D v v J v D J cv v v ! oD
oD
D
o
ZKHQ D o )URPKHUHZHKDYH J cv ZKHUH v L I R m 1HFHVVLW\SURYHQ /HW J cv 6KRZWKDW v t V %HFDXVH J v C h I R m LWLVQHFHVVDU\ DQG VXIILFLHQW WR IXOILOO WKH LQHTXDOLW\ J v J u t J cu v u ! u v L I R m +HQFH LQ SDUWLFXODU ZKHQ u v ZH JHW J v J v t v v L I R m &RQVHTXHQWO\ v t V 6XIILFLHQF\LVSURYHQ7KHWKHRUHPLVSURYHG Lecture 32.0LQLPL]LQJVHTXHQFHV /HW v x L I R m ± DQ\ VWDUWLQJ SRLQW %DVHG RQ UHODWLRQV ZHEXLOGDVHTXHQFH vn vn D n J cvn g n D n PLQ g n D D t
g n D
J vn DJ cvn n
7KHRUHP Let the matrix T t t ! sequence ^vn ` L I R m is determined by the formula (7.104). Then: 1) sequence ^vn ` L I R m is minimizing and any weak limit of it belongs to the set V ; 2) the following estimate of the convergence rate is valid: D l , n , n where D – set diameter M v ^vx L I R m J v d J v `.
d J vn J v d
3URRI
$V
g n D n d g n D
g n D n
J vn D n J cvn
J vn
WKHQ
J vn DJ cvn t J vn J vn 2Q WKH EDVLV RI WKH IRUPXOD IRU WKH ILQDO /DJUDQJH
LQFUHPHQWVWDNLQJLQWRDFFRXQWWKHHVWLPDWH ZHREWDLQ J vn J vn t
__ J cvn __ n l
,W IROORZV WKDW WKH QXPHULFDO VHTXHQFH ^J vn ` LV VWULFWO\ GHFUHDVHV )URP GXHWRWKHIDFWWKDW J vn t V z LWIROORZV OLP J cvn nof
1RWLFHWKDW VHW M v LVFRQYH[ERXQGHGFORVHG V M v ^vn ` M v J v J w d J cv v w ! v w M v +HQFHLQSDUWLFXODUZKHQ w v v vn M v ZHJHW d J vn J v d D __ J cvn __ %HFDXVH OLP J cvn WKHQ OLP J vn J v J 7KLV PHDQV WKDW WKH VHTXHQFH nof
nof
^vn ` M v LVPLQLPL]LQJ
7KHHVWLPDWLRQ IROORZVIURP DQG d J vn J v d D __ J cvn __ 7KHWKHRUHPLVSURYHG ([DPSOH &RQVLGHU WKH IROORZLQJ RSWLPDO FRQWURO SUREOHP PLQLPL]H WKH IXQFWLRQDO
>
@
x t u t dt o LQI ³
J x u
>@
x
XQGHUFRQGLWLRQV x
x
x u x x
u x L I R t I
)RUWKLVH[DPSOH Q M R A B t I x
3ULQFLSOHRILPPHUVLRQ$V T
x x e T e
t e t T t e e a e e t e t e t O t x x e N t e O t e e t e e e e N t et e t WKHQ WKH SUREOHP KDV WKH IRUP e
T t
PLQLPL]H
IXQFWLRQDO
J v
J z x z vx >vt
e t e t ^> z t e e e t e t z @ ³ e e
e t e t e e z @ `dt o LQI e e
>@ vx L I R
8QGHUFRQGLWLRQV x
z
z vt z t I
)XQFWLRQDO JUDGLHQW &DOFXODWH WKH JUDGLHQW RI WKH IXQFWLRQDO IRU WKH SUREOHP )XQFWLRQDOJUDGLHQW J cv
ª º e t e t R «vt e e z v » \ t L I R e e ¬ ¼
ZKHUH\ t t I ±VROXWLRQRIDGMRLQV\VWHP ª º e t e e e t e t e t z v » t I \ « z t e e ¬ ¼ ª º e e t e ³ ^ et e t « z t e e t e t e t z v » e e e ¬ ¼ x
\ \
º e t ª e t e t e «vt e e z v »`dt e ¬ e e ¼
2SWLPDO FRQGLWLRQ )RU SUREOHP WKH RSWLPDOLW\ FRQGLWLRQKDVDIRUP J cv
ª º e t e t R «v t e e z v » \ t v { e e ¬ ¼
ZKHUH z t v t I ± VROXWLRQ RI D GLIIHUHQWLDO HTXDWLRQ ZKHQ v v ɚ z t v t I 0LQLPL]LQJVHTXHQFH6HTXHQFH ^vn ` L I R EXLOWDFFRUGLQJWRWKHUXOH vn t vn t D n J cvn n ZKHUH D n ! GHWHUPLQHGE\WKHFRQGLWLRQ g n D n PLQ g n D PLQ J vn DJ cvn
\ t v t I ± VROXWLRQ RI DGMRLQ V\VWHP ZKHQ v v z
D t
D t
,WFDQEHVKRZQWKDW vn o v ZKHQ n o f ZKHUHWKHZHDNO\OLPLWSRLQW v t
e
t
e
t
§ e e · ¸ u¨ ¨ ¸ e e © ¹
>
e
t
e
e
t
t
e
@u t
t I
2SWLPDOWUDMHFWRU\ x t
e
t
e
t
t I
7KHPLQLPXPYDOXHRIWKHIXQFWLRQDO
J x x u x
>
@
x t u t dt ³
2SWLPDOFRQWURO u t v t t I &RPPHQWV ,QWKHVHFRQGSDUWRIWKHWZHQWLHWKFHQWXU\WKDQNVWRWKHZRUNVRIRXWVWDQGLQJ PDWKHPDWLFLDQV /6 3RQWU\DJLQ >@ /9 .DQWRURYLFK >@ 11 .UDVRYVN\ >@ 5%HOOPDQ>@5.DOPDQ>@9).URWRYD>@DQGRWKHUVKDYHEHHQFUHDWHGWKH PD[LPXP SULQFLSOH WKH G\QDPLF SURJUDPPLQJ PHWKRG WKH WKHRU\ RI FRQWUROODELOLW\WKHPHWKRGRIPRPHQWVILQLWHFRQWUROIRUVROYLQJSUREOHPVRIWKH PDWKHPDWLFDOWKHRU\RIRSWLPDOSURFHVVHV$PRQJWKHVHZRUNVWKHRQHFORVHVWWR WKLVZRUNLV>@,WVKRXOGEHQRWHGWKDWWKHVROXWLRQRIWKHRSWLPDOFRQWUROSUREOHP
DFFRUGLQJ WR WKH PHWKRG RI >@ LV EDVHG RQ WKH /DJUDQJH SULQFLSOH DVVRFLDWHG ZLWK WKH H[LVWHQFH RI D VDGGOH SRLQW RI WKH /DJUDQJH IXQFWLRQDO 7KHUH DUH SUREOHPV RI WKH IRUP IRU ZKLFK WKH /DJUDQJH IXQFWLRQDO GRHV QRW KDYH D VDGGOH SRLQW EXW VXFK SUREOHPV KDYH RSWLPDO VROXWLRQV ,Q WKLV SDSHU ZH SURSRVH RQH RI WKH PHWKRGV IRU HOLPLQDWLQJ WKLV GUDZEDFN E\ EXLOGLQJ D JHQHUDO VROXWLRQ RI WKH )UHGKROP LQWHJUDO HTXDWLRQ RI WKH ILUVW NLQG ZLWK WKH VXEVHTXHQW DSSOLFDWLRQRIQXPHULFDOPHWKRGVIRUVROYLQJH[WUHPDOSUREOHPV>@ 7KHSXUSRVHRIWKLVFKDSWHULVWRFUHDWHDPHWKRGIRUVROYLQJERXQGDU\YDOXH SUREOHPV RI RSWLPDO FRQWURO IRU SURFHVVHV GHVFULEHG E\ RUGLQDU\ GLIIHUHQWLDO HTXDWLRQVZLWKSKDVHDQGLQWHJUDOFRQVWUDLQWVZKLFKGLIIHUVIURPNQRZQPHWKRGV EDVHG RQ WKH /DJUDQJH SULQFLSOH DQG LV UHODWHG WR WKH H[LVWHQFH RI /DJUDQJH PXOWLSOLHUV,WLVDFRQWLQXDWLRQRIWKHUHVHDUFKRXWOLQHGLQ>@ $ UHYLHZ RI UHVHDUFK RQ RSWLPDO FRQWURO LV FRQWDLQHG LQ PRQRJUDSKV > @7KHH[LVWHQFHDQGFRQVWUXFWLRQRIDJHQHUDOVROXWLRQRIWKH)UHGKROPLQWHJUDO HTXDWLRQRIWKHILUVWNLQGZDVVWXGLHGLQ>@2SWLPDOFRQWURORIOLQHDUV\VWHPV ZLWKOLQHDUFRQVWUDLQWVLVFRQVLGHUHGLQ>@6SHFLDOFDVHVRIRSWLPDOFRQWURORI QRQOLQHDU V\VWHPV DUH JLYHQ LQ > @ 7KH FRQWUROODELOLW\ DQG VSHHG RI WKH SURFHVVHV GHVFULEHG E\ RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV DV ZHOO DV SDUWLDO GHULYDWLYHVZHUHVWXGLHGLQ>@ 7KH EDVLV RI WKH SURSRVHG PHWKRG IRU VROYLQJ D ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHP LV WKH SULQFLSOH RI LPPHUVLRQ 7KH HVVHQFH RI WKH SULQFLSOH RI LPPHUVLRQLVWKDWWKHLQLWLDOERXQGDU\SUREOHPLVUHSODFHGE\DQHTXLYDOHQWRSWLPDO FRQWURO SUREOHP ZLWK D IUHH ULJKW HQG RI WKH WUDMHFWRU\ 7KLV DSSURDFK ZDV PDGH SRVVLEOHE\ILQGLQJDJHQHUDOVROXWLRQRIDFODVVRI)UHGKROPLQWHJUDOHTXDWLRQVRI WKHILUVWNLQG7KHH[LVWHQFHRIDVROXWLRQWRDERXQGDU\YDOXHSUREOHPLVUHGXFHG WR FRQVWUXFWLQJ D PLQLPL]LQJ VHTXHQFH DQG GHWHUPLQLQJ WKH YDOXH RI WKH ORZHU ERXQGRIWKHIXQFWLRQDO 7KHFRQVWUXFWLRQRIDQDGPLVVLEOHFRQWUROLVFRQQHFWHGZLWKILQGLQJDZHDN OLPLWSRLQWRID PLQLPL]LQJVHTXHQFH 7KHFRQVWUXFWLRQRIWKHRSWLPDO VROXWLRQLV FDUULHGRXWE\VXFFHVVLYHO\QDUURZLQJWKHUDQJHRIDGPLVVLEOHFRQWUROVGHSHQGLQJ RQWKHYDOXHRIWKHIXQFWLRQDO $V IROORZV IURP /HPPD WKH ERXQGDU\ YDOXH SUREOHP KDV D VROXWLRQ LI DQG RQO\ LI WKH YDOXH I T ZKHUH T u p v v x x d X ± RSWLPDOFRQWUROIRUSUREOHP ,QJHQHUDOWKHRSWLPL]DWLRQSUREOHP FDQKDYHDQLQILQLWHVHWRI VROXWLRQV ^T ` IRU ZKLFK J ^T ` 'HSHQGLQJ RQ WKH FKRLFH RI WKH LQLWLDO DSSUR[LPDWLRQ WKH PLQLPL]LQJ VHTXHQFHV VHH 7KHRUHP FRQYHUJH WR VRPHHOHPHQWRIWKHVHW ^T ` /HW T X J T ±VRPHVROXWLRQ+HUH x xt x xt x x S u U :KHUHLQ xt t x G t g j u x x d c j j m g j u x x c j j m m ,QWKHIRUPXODWLRQRIWKHSUREOHPWKHUHTXLUHPHQWVLPSRVHGRQWKHIXQFWLRQ f x u t IRU ZKLFK WKH LQLWLDO &DXFK\ SUREOHP IRU HTXDWLRQ KDV D XQLTXH VROXWLRQ IRU DQ\ IL[HG xt x DQG IRU DQ\ IL[HG u t U &RQVHTXHQWO\ WKH
GLIIHUHQWLDOHTXDWLRQ ZLWKWKHLQLWLDOVWDWH xt x ZLWKIL[HGFRQWURO u t U KDV WKH VLQJXODU VROXWLRQ ZKHQ t >t t @ 0RUHRYHU xt x xt t x G t g j u x x d c j j m g j u x x c j j m m 7KXV IRU HDFK RSWLPDO VROXWLRQ RI SUREOHP WKH ERXQGDU\ YDOXHSUREOHP KDVDXQLTXHVROXWLRQ 4XRWHGOLWHUDWXUH 3RQWUMDJLQ /6 %ROWMDQVNLM 9* *DPNUHOLG]H 59 0LVKKHQNR () 0DWKHPDWLFDOWKHRU\RIRSWLPDOSURFHVVHV±06FLHQFH±S .DQWRURYLFK/9$NLORY*3)XQFWLRQDODQDO\VLV±06FLHQFH±S .UDVRYVNLM117KHRU\RIPRWLRQFRQWURO±06FLHQFH±S %HOOPDQ5'LQDPLFKHVNRHSURJUDPPLURYDQLH±0,/±S .DOPDQ5(2QWKHJHQHUDOWKHRU\RIFRQWUROV\VWHPV3URFHHGLQJVRIWKH VW &RQJUHVV RI WKH ,QWHUQDWLRQDO )HGHUDWLRQ IRU $XWRPDWLF &RQWURO 9 $16665S .URWRY 9) *XUPDQ 9, 0HWKRGV DQG REMHFWLYHV RI RSWLPDO FRQWURO ± 0 6FLHQFH±S 9DVLO HY )3 1XPHULFDO PHWKRGV IRU VROYLQJ H[WUHPDO SUREOHPV ± 0 6FLHQFH±S 9DVLO HY )3 0HWKRGV IRU VROYLQJ H[WUHPDO SUREOHPV ± 0 6FLHQFH ±S 0RLVHHY 11 ,YDQLORY -X3 6WROMDURY (0 2SWLPL]DWLRQ PHWKRGV ± 0 6FLHQFH±S $LVDJDOLHY6$&RQWUROODELOLW\RIDFHUWDLQV\VWHPRIGLIIHUHQWLDOHTXDWLRQV 'LIIHUHQWLDO(TXDWLRQV9ʋS $LVDJDOLHY 6$ $LVDJDOLHY 66 $ FRQVWUXFWLYH PHWKRG IRU VROYLQJ WKH FRQWUROODELOLW\ SUREOHP IRU RUGLQDU\ GLIIHUHQWLDO HTXDWLRQV 'LIIHUHQWLDO (TXDWLRQV9ʋS $LVDJDOLHY 6$ 2SWLPDO FRQWURO RI OLQHDU V\VWHPV ZLWK IL[HG HQGV RI WKH WUDMHFWRU\DQGOLPLWHGFRQWURO'LIIHUHQWLDOHTXDWLRQV9ʋS $LVDJDOLHY 6$ &RQWUROODELOLW\ DQG RSWLPDO FRQWURO RI QRQOLQHDU V\VWHPV 1HZV5$67HFKQLFDO&\EHUQHWLFVʋS $LVDJDOLHY 6 .DELGROGDQRYD $ 2SWLPDO VSHHG RI QRQOLQHDU V\VWHPV ZLWK FRQVWUDLQWV'LIIHUHQWLDOHTXDWLRQVDQGFRQWUROSURFHVVHVʋS $LVDJDOLHY6$%HORJXURY$37KHFRQWUROODELOLW\DQGVSHHGRIWKHSURFHVV GHVFULEHGE\DSDUDEROLFHTXDWLRQZLWKOLPLWHGFRQWURO6LEHULDQ0DWKHPDWLFDO -RXUQDO-DQXDU\±)HEUXDU\9ʋS $LVDJDOLHY6$7RWKHWKHRU\RIFRQWUROODELOLW\RIOLQHDUV\VWHPV$$8665 $XWRPDWLRQDQG5HPRWH&RQWUROʋS $LVDJDOLHY 6$ .DELGROGDQRYD $$ 2Q RSWLPDO FRQWURO RI OLQHDU V\VWHPV ZLWKDOLQHDUTXDOLW\FULWHULRQDQGFRQVWUDLQWV'LIIHUHQWLDO(TXDWLRQV 9ʋS $LVDJDOLHY 6$ 7KH JHQHUDO VROXWLRQ RI D FODVV RI LQWHJUDO HTXDWLRQV 0DWKHPDWLFDO-RXUQDO±±9ʋ
$LVDJDOLHY 6$ 6HYU\XJLQ , 0DQDJHDELOLW\ DQG VSHHG RI WKH SURFHVV GHVFULEHGE\DOLQHDUV\VWHPRIRUGLQDU\GLIIHUHQWLDOHTXDWLRQV0DWKHPDWLFDO -RXUQDO±±9ʋ S± $LVDJDOLHY 6$ &RQVWUXFWLYH WKHRU\ RI ERXQGDU\ YDOXH RSWLPDO FRQWURO SUREOHPV±$OPDW\8QLYHUVLW\±S $LVDJDOLHY 6$ .DELGROGDQRYD $$ 2SWLPDO FRQWURO RI G\QDPLF V\VWHPV 3DOPDULXP$FDGHPLF3XEOLVKLQJ9HUODJ*HUPDQLMD ±±S
ȿGXFDWLRQDOLVVXH
$LVDJDOLHY6HULNEDL
/(&785(6210$7+(0$7,&$/ &21752/7+(25