113 10 8MB
English Pages [318]
Yu.L. Klimontovich
KINETIC THEORY OF NONIDEAL GASES AND NONIDEAL PLASMAS
Other Titles of Interest
AKHIEZER Collective Oscillations in a Plasma CHERRINGTON Gaseous Electronics and Gas Lasers LOMINADZE Cyclotron Waves in a Plasma POZHELA Plasma and Current Instabilities in Semiconductors SITENKO Fluctuations and Nonlinear Wave Interactions in Plasmas
Journals
Plasma Physics Journal of Quantitative Spectroscopy and Radiative Transfer
Full details o f any Pergamon publication and a free specimen copy o f any Pergamon journal available on request from your nearest Pergamon office.
Kinetic Theory o f Nonideal Gases and Nonideal Plasmas by
Yu L KLIMONTOVICH Moscow State University, USSR Translated by
R BALESCU University o f Brussels, Belgium
PERGAMON PRESS OXFORD
NEW YORK
TORONTO
SYDNEY • PARIS
FRANKFURT
U.K. U.S.A. CANADA AUSTRALIA FRANCE FEDERAL REPUBLIC OF GERMANY
Pergamon Press Ltd., Headington Hill Hall, Oxford 0X3 OBW, England Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A. Pergamon Press Canada Ltd., Suite 104, 150 Consumers Rd., Willowdale, Ontario M2J 1P9, Canada Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia Pergamon Press SARL, 24 rue des Ecoles, 75240 Paris, Cedex 05, France Pergamon Press GmbH, 6242 Kronberg-Taunus, Hammerweg 6, Federal Republic of Germany Copyright © 1982 Pergamon Press Ltd. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the publishers. First edition 1982 Library of Congress Cataloging in Publication Data Klimontovich, IU. L. (IUrii Lvovich) Kinetic theory of nonideal gases and nonideal plasmas. (International series in natural philosophy; v. 105) Translation of: Kineticheskaia teoriia neideal nogo gaza i neidelrioi plazmy. Includes bibliographical references. 1. Plasma (Ionized gases) 2. Gases, Kinetic theory of. I. Title. II. Series. QC718.K5513 1982 544L7 82-9044 ISBN 0-08-021671-4
In order to make this volume available as economically and as rapidly as possible the author's typescript has been reproduced in its original form. This method un fortunately has its typographical limitations but it is hoped that they in no way distract the reader.
Printed in Great Britain by A. Wheaton & Co. Ltd., Exeter
Preface
T here a r e many books on k i n e t i c t h e o r y o f g a s e s and p lasm a s on t h e m a r k e t . What was t h e m o t i v a t i o n o f t h e a u t h o r i n w r i t i n g a n o t h e r book on t h i s s u b j e c t ? The f o u n d a t i o n s o f p r e s e n t - d a y n o n - e q u i l i b r i u m s t a t i s t i c a l t h e o r y o f g a s e s and plasm as i s due t o t h e i m p o r t a n t work o f N.N. Bogolyubov, M. Born, A. A. V l a s o v , H. G reen, J . Kirkwood, J . Yvon, L.D. Landau and I . R . P r i g o g i n e . attem pt
to
present
a p p lie d to plasm as
a
some o f t h e
i d e a s and methods
In
th is
o f t h e i r w ork.
book we
They w i l l be
c o m p le te d e s c r i p t i o n o f th e k i n e t i c p r o c e s s e s i n n o n i d e a l g a s e s and
and t o
the d e r iv a tio n
of the k i n e t i c
theory
of
long-range
fluctuations.
The l a t t e r i s i m p o r t a n t , i n p a r t i c u l a r , f o r t h e d e s c r i p t i o n o f t u r b u l e n t p r o c e s s e s , d e f i n i n g t h e s o - c a l l e d anomalous t r a n s p o r t p r o c e s s e s . C le a rly , the sim p lest case p o ssib le
to
param eter.
in tro d u ce
a
s m a ll
is
t h e one o f weak n o n i d e a l i t y , i n which i t i s
param eter:
the
den sity
param eter
or
the
plasma
For d e n s e r sy ste m s one u s e s model e q u a t i o n s , a s i n e q u i l i b r i u m t h e o r y .
In t h i s f i e l d , t h e de v e lo p m e n ts a r e a t p r e s e n t s t i l l v e r y p r e l i m i n a r y . The
theory
is
constructed
i d e a l g a s e s and p l a s m a s .
as
a
g e n era liz atio n
of
the
k in etic
th eo ry of
I t is t h e r e f o r e im p o rtan t to analyze the l i m i t a t i o n s of
the u su a l k i n e t i c e q u a tio n s .
The book i s w r i t t e n w i t h g r e a t d e t a i l ;
therefore i t
sh ould be o f u s e n o t o n l y t o r e s e a r c h p h y s i c i s t s , b u t a l s o t o p r o f e s s o r s , and t o graduate stu d e n ts of v a rio u s s p e c i a l i z a t i o n s . The book c o n s i s t s o f t h r e e p a r t s .
The f i r s t p a r t i s d e v o te d t o th e c l a s s i
c a l k i n e t i c t h e o r y o f n o n i d e a l g a s e s , t h e second t o t h e c l a s s i c a l k i n e t i c t h e o r y o f f u l l y i o n i z e d p l a s m a s , and t h e t h i r d t o t h e quantum k i n e t i c t h e o r y o f n o n i d e a l g a s e s and p l a s m a s .
The c o n c l u d i n g c h a p t e r p r e s e n t s a s h o r t a c c o u n t o f t h e k i n e t i c t h e o r y
o f c h e m i c a l l y r e a c t i n g sy s te m s and o f p a r t i a l l y i o n i z e d p l a s m a s . inclu d ed in o rd e r present problem .
re su lts,
to and
in d icate to
some
a ttra c t
d irec tio n s
a tte n tio n
of
upon
fu rth er th is
T h is c h a p t e r was
g e n era liz atio n s
im portant
and
of th e
in te re stin g
PREFACE
X
The main s t r e s s R e la tiv e ly
little
sp a c e
is
l a i d h e r e on
is
given
to
th e
the
fu n d a m e n ta l
a p p lic atio n s .
aspects
of
Whenever
the
th eo ry .
p o ssib le ,
the
r e a d e r i s d i r e c t e d to w a rd s a d d i t i o n a l l i t e r a t u r e . In
several
w i t h my s t u d e n t s
p laces and
of
t h i s book
c o llab o rato rs:
W. K r a e f t , V.A. Puchkov, E .F . S l i n ' k o .
I
use d r e s u l t s o b t a i n e d i n c o l l a b o r a t i o n
V.V. B e l y i ,
YU. A. Kukharenko,
W. E b e l i n g ,
The c o l l a b o r a t i o n w i t h them was f o r me n o t
only u s e f u l , but a ls o p l e a s a n t. K.P. Gurov was th e f i r s t p e r s o n who r e a d my work on th e k i n e t i c t h e o r y of n o n i d e a l g a s e s and p l a s m a s . g r a t e f u l t o him f o r h i s h e l p .
He a l s o r e a d th e m a n u s c r i p t of t h i s book.
I am v e r y
I a l s o g r a t e f u l l y acknowledge t h e r e m a rk s and d i s
c u s s i o n s a b o u t t h e m a n u s c r i p t w i t h V.V. B e l y i , L.M. Gorbunov, M.E. M arinchuk and A.A. Rukhadze.
The Author
PART I
Kinetic Theory of Nonideal Gases
INTRODUCTION The b a s i s
of th e
kin etic
p a r ti c l e d i s t r ib u t i o n fu n ctio n :
theory c o n s is ts
of
the
the k i n e t i c eq u atio n s.
equations
for
the
one-
T y p ical k i n e t i c e q u atio n s
a r e t h o s e o f Boltzm ann, o f V l a s o v , o f L andau, and o f B a le s c u and L e n a r d . A ll sim p lified are
the
phenomena,
In o rd e r
k in etic
d escrip tio n
to
which
include
equations of
the
cannot
are
approxim ate;
sta tistic a l
processes
therefore
they
provide
i n g a s e s and p l a s m a s .
a There
be d e s c r i b e d i n te r m s o f t h e known k i n e t i c e q u a t i o n s .
such phenomena
in
the
d escrip tio n ,
the
a s s u m p t io n s
made
i n th e d e r i v a t i o n s o f t h e s e e q u a t i o n s must be weakened and t h e s e e q u a t i o n s m ust be g e n era liz ed . Thus, i n d e r i v i n g t h e Boltzmann e q u a t i o n from t h e L i o u v i l l e e q u a t i o n ( o r from t h e c o r r e s p o n d i n g s i t y param eter
e .
BBGKY h i e r a r c h y ) one makes u s e o f t h e s m a l l n e s s o f t h e d e n
S i m i l a r l y , f o r a plasm a one assum es t h a t t h e plasm a p a r a m e t e r
y
i s sm all. The p a r a m e t e r s
e and
y c h a r a c t e r i z e th e r o l e of th e i n t e r a c t i o n s in the
k i n e t i c eq u atio n s fo r gases or plasm as.
T h is r o l e i s t w o f o l d .
On t h e one h a n d , i t
d e f in e s th e r e l a x a t i o n p r o c e s s e s r e s p o n s i b l e , f o r i n s t a n c e , f o r th e approach to eq u ilib riu m .
In o th e r words, th e i n t e r a c t i o n determ in e th e d i s s i p a t i v e p ro c e ss e s
i n g a s e s and p l a s m a s . On t h e o t h e r hand, t h e i n t e r a c t i o n s c o n t r i b u t e t o t h e n o n - d i s s i p a t i v e p r o p e r t i e s , e . g . , t h e thermodynamic f u n c t i o n s ( i n t e r n a l e n e r g y , p r e s s u r e , e n t r o p y , e t c . ) . These c o n t r i b u t i o n s o f t h e i n t e r a c t i o n s a r e r e s p o n s i b l e f o r t h e d e v i a t i o n s o f t h e s e q u a n t i t i e s from t h e i r i d e a l v a l u e . I n t h e Boltzm ann, Landau o r B a le s c u - L e n a r d e q u a t i o n s , t h e i n t e r a c t i o n s d e t e r mine o n l y t h e d i s s i p a t i v e c h a r a c t e r i s t i c s .
1
I n t h i s s e n s e , t h e s e e q u a t i o n s c an be
KINETIC THEORY OF NONIDEAL GASES AND NONIDEAL PLASMAS
2
c a l l e d k i n e t i c e q u a t i o n s f o r th e i d e a l gas o r p la s m a . present
book
plasm as.
is
th e
construction
of
k in etic
One o f t h e problem s o f th e
equations
for
n cn id eal
gases
and
W it h i n t h e i r c o r r e s p o n d i n g models — t h e b i n a r y c o l l i s i o n a p p r o x i m a t i o n o r
th e p o l a r i z a t i o n a p p r o x i m a t i o n — t h e s e e q u a t i o n s t a k e a c c o u n t o f t h e c o n t r i b u t i o n s o f t h e i n t e r a c t i o n s t o b o t h th e d i s s i p a t i v e and t h e n o n - d i s s i p a t i v e p r o p e r t i e s [1 7 , 18].
(see a ls o r e fs
[ 6 , 67, 6 8 , 71, 7 3 ] ) .
The se cond p roblem o f t h e book i s th e c o n s t r u c t i o n o f k i n e t i c e q u a t i o n s f o r dense g a s e s .
The f i r s t d i f f i c u l t y i n t h i s d i r e c t i o n i s t h e d e r i v a t i o n o f e q u a t i o n s
t a k i n g i n t o a c c o u n t b o t h b i n a r y and t r i p l e c o l l i s i o n s .
Such an e q u a t i o n was d e r i v e d
by Choh and U hlenbeck [ 5 ] , by u s i n g B ogolyubov?s e x p r e s s i o n f o r th e t w o - p a r t i c l e d i s t r i b u t i o n fu n c tio n to the f i r s t o rd e r in the d e n s i ty p a ra m e te r. equation i s not q u ite c o n s i s t e n t .
In
th e
d issip a tiv e
T his k i n e t i c
c h ara cte ristics
it
takes
a c c o u n t of b o t h b i n a r y and t r i p l e c o l l i s i o n s , b u t i n th e n o n - d i s s i p a t i v e p r o p e r t i e s i t r e t a i n s only b in a r y c o l l i s i o n s .
I n t h i s book we d e r i v e an e q u a t i o n i n w hich t h e
t r i p l e c o l l i s i o n s a r e t r e a t e d more c o m p l e t e l y . In r e f .
[ 4 ] , Bogolyubov d e v e lo p e d
a method
by w h ic h ,
assum ing
th e
com
p l e t e w eakening o f th e i n i t i a l c o r r e l a t i o n s , he expands t h e two-body c o r r e l a t i o n s s y s t e m a t i c a l l y i n powers o f t h e d e n s i t y p a r a m e t e r .
C l e a r l y , t h i s method a l s o l e a d s
to an e x p a n s io n o f t h e c o l l i s i o n i n t e g r a l o f t h e k i n e t i c e q u a t i o n i n powers o f t h e de n sity .
However, th e r e a l i z a t i o n o f B ogolyubov’ s programme f a c e s some d i f f i c u l
t i e s of p r i n c i p l e .
The i n v e s t i g a t i o n s o f W einstock [ 1 9 ] , Goldman and Freeman [ 2 0 ] ,
Dorfman and Cohen [ 2 1 ] , showed t h a t t h e c o l l i s i o n i n t e g r a l , i n c l u d i n g f o u r - b o d y and h ig h er o rd e r c o l l i s i o n s , d iv e rg e s [ 22]. The s o l u t i o n o f t h e s e d i f f i c u l t i e s l e a d s t o t h e m o d i f i c a t i o n o f t h e b a s i c a s s u m p tio n s u n d e r l y i n g t h e k i n e t i c e q u a t i o n s .
It
was
shown t h a t
the
c om p le te
w eakening o f th e i n i t i a l c o r r e l a t i o n s must be r e p l a c e d by t h e more f l e x i b l e assum p tio n
of
the
a s s u m p t io n ,
p a rtial
w eakening o f
we d e r i v e
from
the
these
co rrelatio n s
L io u v ille
d i s t r i b u t i o n f u n c t i o n i n phase s p a c e . t h e smoothed d i s t r i b u t i o n f u n c t i o n s .
equation
[ 2 3 , 24] .
By u s i n g
th is
an e q u a t i o n f o r t h e smoothed
From t h e l a t t e r we d e r i v e a h i e r a r c h y f o r I t d i f f e r s from th e
BBGKY h i e r a r c h y i n r e
t a i n i n g e x p l i c i t l y th e d i s s i p a t i o n due t o b i n a r y c o l l i s i o n s .
If th is h ierarchy is
so l v e d by assum ing t h e c om p le te w eakening o f t h e i n i t i a l c o r r e l a t i o n s i n a tim e s h o r t e r than the b in a ry
c o llisio n
re la x atio n
t im e ,
the
Boltzm ann
equation
is
recovered. For d e n s e r g a s e s , we o b t a i n from t h e smoothed h i e r a r c h y whose c o l l i s i o n i n t e g r a l i s c o n v e r g e n t . equations
tak in g
in to
account
In
fo u r-b o d y ,
e q u a t i o n s become more and more c o m p l i c a t e d .
th is
way,
five-body
one
a k i n e tic equation
may c o n s t r u c t
c o llisio n s, e tc .
But
k in etic these
One t h e r e f o r e u s e s a more c o n v e n i e n t
method, a n a lo g o u s t o t h e one use d i n e q u i l i b r i u m s t a t i s t i c a l m ec hanic s o f de n se
INTRODUCTION g a s e s and f l u i d s .
3 In ste a d of a k i n e t i c e q u a tio n f o r th e o n e - p a r t i c l e d i s t r i b u t i o n ,
one r a t h e r u s e s a s e t of e q u a t i o n s f o r t h e o n e - p a r t i c l e d i s t r i b u t i o n and f o r t h e binary c o r re la tio n s . From t h e h i e r a r c h y f o r t h e sm oothed d i s t r i b u t i o n f u n c t i o n s we may d e r i v e k i n e t i c eq u atio n s ta k in g in to account the long-range f l u c t u a t i o n s .
From t h e l a t t e r
we may d e r i v e hydrodynam ic e q u a t i o n s i n which t h e v i s c o s i t y and t h e t h e r m a l c onduc tiv ity
are
d e te r m i n e d
not
o n l y by
the
c o llisio n s,
but
a lso
by
th e
lo n g -ran g e
flu ctu atio n s. I n t h e d e r i v a t i o n o f t h e Boltzm ann e q u a t i o n , one assumes i m p l i c i t l y t h e c o n t i n u i t y of t h e c o l l i s i o n p r o c e s s d e f i n i n g t h e c o l l i s i o n i n t e g r a l .
T h is amounts
to d e s c r i b i n g t h e d i s t r i b u t i o n f u n c t i o n a s a d e t e r m i n i s t i c ( n o n - f l u c t u a t i n g ) quan tity .
T aking i n t o a c c o u n t t h e d i s c r e t e n e s s o f t h e c o l l i s i o n p r o c e s s e s l e a d s t o
f l u c t u a t i o n s of t h e d i s t r i b u t i o n f u n c t i o n .
These f l u c t u a t i o n s have a r a n g e much
l o n g e r t h a n t h e one of t h e f l u c t u a t i o n s d e f i n i n g t h e c o l l i s i o n i n t e g r a l .
In order
to d e s c r i b e t h e f o r m e r , we may c o n s i d e r t h e Boltzm ann e q u a t i o n a s a L an g e v in eq u a tio n w ith a given source of f l u c t u a t i o n s : [25].
t h e l a t t e r was f i r s t s t u d i e d by Kadomtsev
The d e velopm ent of t h e k i n e t i c t h e o r y o f t h e e q u i l i b r i u m and n o n - e q u i l i b r i u m
f l u c t u a t i o n s i n g a s e s i s a n o t h e r pro b lem of ou r book ( c h a p t e r 4 ) . i n g t h e o r y f o r p las m a s i s s t u d i e d i n c h a p t e r 11.
The c o r r e s p o n d
CHAPTER 1
The Method o f Distribution Functions and the Method o f Moments EQUATIONS FOR THE POSITION AND MOMENTUM DISTRIBUTION FUNCTIONS IN A GAS OF MONATOMIC PARTICLES The m i c r o s c o p i c m e c h a n i c a l s t a t e o f a monatomic p a r t i c l e ga s a t tim e d e f i n e d by t h e s p e c i f i c a t i o n o f t h e p o s i t i o n s
t
is
and o f momenta p ^ ..........p^
f
F o r c o n c i s e n e s s , we i n t r o d u c e t h e n o t a t i o n s : x . — ( r. , p . ) , U t t a s i x - d i m e n s i o n a l v e c t o r d e f i n i n g t h e s t a t e o f t h e p a r t i c l e l a b e l l e d i ( I < £ < N) , of a l l the
N p a rticle s.
and x = (x^j . . . j x ^ ) 9 a 6N—d i m e n s i o n a l v e c t o r d e f i n i n g t h e s t a t e o f t h e c o m p le te sy s te m . The d i s t r i b u t i o n f u n c t i o n o f t h e v a r i a b l e s
x i s d e n o te d by f ^ ( x 9t ) .
e x p r e s s i o n f ^( x 9 t ) dx r e p r e s e n t s t h e p r o b a b i l i t y t h a t , a t tim e and momenta o f t h e p a r t i c l e s have v a l u e s w i t h i n a r a n g e dx i s norm alized as fo llo w s: Let
/ dx
The
t 9 the c o o rd in a te s
aro u n d x.
The f u n c t i o n
Kx , t ) - 1 .
rj \ ) ~ ® d e n o t e t h e p o t e n t i a l e n e r g y o f c e n t r a l i n t e r a c t i o n o f
th e p a i r o f p a r t i c l e s
L e t a l s o m d e n o t e t h e mass o f t h e a to m s.
t,J .
Then t h e
H a m il t o n ia n H o f t h e g a s c an be w r i t t e n a s :
H= where u(r .)
& - + u[r. j ) +
2
y
9. .
( 1 . 1)
i s t h e p o t e n t i a l e n e r g y o f an atom i n t h e e x t e r n a l f i e l d .
The d i s t r i b u t i o n f u n c t i o n
11* + 9t
f ^( x 9t ) obeys t h e L i o u v i l l e e q u a t i o n :
T l< i< N
9r,
dH 9 f =o dr. dp. )
( 1. 2)
We now u se H a m i l t o n ’ s e q u a t i o n s f o r t h e p a r t i c l e s :
P. —k- = v . m i
. _ 3H ” 3fT
5
(1.3)
KINETIC THEORY OF NONIDEAL GASES AND NONIDEAL PLASMAS
6
2
^
P , r . *)
(1 .3 )
E q u a t i o n ( 1 . 2 ) can t h e n be r e w r i t t e n
3 // „ l f +
^x* 2 1 ^ i, ^ j
v.•
93 // , .
We i n t r o d u c e d h e r e th e e x p r e s s i o n F ( r . , t ) p a rtic le lab elled
(1.4)
+F(ri } '
t
r e p r e s e n t i n g th e f o r c e a c t i n g on th e
i : (1 .5 )
(ri - ^ ‘ - S 7T < \J < N % +F^{ri ' ' t 11 < where F = —du/ dr . i s t h e e x t e r n a l f o r c e . 0 ^ We now c o n s i d e r s e v e r a l d i f f e r e n t forms o f t h e L i o u v i l l e e q u a t i o n .
We
i n t r o d u c e th e f o l l o w i n g o p e r a t o r n o t a t i o n s :
'
=
6
= ! !ii
T
(v • ’ *ri
'* 1 ..........* s
E(S 0 ) ....... *« Using t h e d e f i n i t i o n s
+
+
— +2 34 (1 .6 ),
_L
+ F • —- ) ° a,V
( 1 . 6)
e ..
2
(v. . ^ - + F . — \ 1< « S ^
3ri
°
(1 .7 )
K i< j (1 . 8 )
1
( 1 . 7 ) , t h e L i o u v i l l e e q u a t i o n can be w r i t t e n a s :
( Vi ' 3 ^
+F° ' * P l ) ~
^
" °
(1 .9 )
....... / We s e e
th at
th is
eq u atio n
is
p a r ti c l e d i s t r ib u t i o n fu n c tio n .
2
*!
1
J
not
clo sed
V 2 ( * i » * 2 »*)
2 3 rl for
( 1 .1 9 )
dpx
, as
it
a l s o i n v o l v e s t h e two-
S i m i l a r l y , i n t e g r a t i n g Eq. ( 1 . 4 ) o v e r a l l t h e
v a r i a b l e s e x c e p t t h o s e o f two p a r t i c l e s , we f i n d , f o r
N > 1, t h e e q u a t i o n f o r t h e
fu n ctio n f 2 :
= « | d x 3 ( 0 J 3 + e 2 3) ^3 Here we used t h e d e f i n i t i o n s
(1 .6 ),
Thus t h e e q u a t i o n f o r fu n ctio n
.
.
(1.20)
(1 .8 ).
f 2 i s not c lo s e d , as i t in v o lv e s the d i s t r i b u t i o n
The e q u a t i o n f o r
h ie r a r c h ic a l chain of eq u atio n s.
in v o lv e s
f ^ 9 and so o n .
We th u s o b t a i n a
For t h e d e t e r m i n a t i o n o f t h e f u n c t i o n
to know a l l t h e d i s t r i b u t i o n f u n c t i o n s o f t h e s y s te m , up to
.
we need
T h is c h a i n o f
e q u a t i o n s i s c a l l e d t h e Bogolyubov h i e r a r c h y , o r t h e BBGKY h i e r a r c h y (B ogolyubovB o rn-G re en-K irkw ood-Y von).
(2 < 3 < N) c an be w r i t t e n
The g e n e r a l e q u a t i o n f o r
as fo llo w s:
J