279 79 29MB
English Pages 481 Year 1982
KIMBERLITES I: KIMBERLITES AND R E L A T E D ROCKS
Series
Developments in Petrology 1. K.R. Mehnert MIGMATITES AND T H E ORIGIN OF GRANITIC ROCKS 2. V . Marmo GRANITE PETROLOGY AND T H E G R A N I T E PROBLEM 3. J . Didier GRANITES AND T H E I R ENCLAVES The Bearing of Enclaves on the Origin of Granites 4. J.A. O'Keefe T E K T I T E S AND T H E I R ORIGIN 5. C.J. Allegre and S.R. Hart (Editors) T R A C E ELEMENTS I N IGNEOUS PETROLOGY 6. F. Barker (Editor) TRONDHJEMITES, DACITES, AND R E L A T E D ROCKS 7. Ch.J. Hughes IGNEOUS PETROLOGY 8. R.W. Le Maitre NUMERICAL PETROLOGY Statistical Information of Geochemical Data 9. M. Suk PETROLOGY OF METAMORPHIC ROCKS 10. C.E. Weaver and Associates SHALESLATE METAMORPHISM I N SOUTHERN APPALACHIANS 11B. J . Kornprobst (Editor) KIMBERLITES. I I : T H E MANTLE AND C R U S T M A N T L E RELATIONSHIPS
Developments in Petrology 11A
KIMBERLITES I: KIMBERLITES A N D RELATED ROCKS
Edited by J . KORNPROBST Departement de Geologie et Mineralogie, Universite de Clermont II, 5 rue Kessler, 6300 ClermontFerrand, France
Proceedings of the "Third International Kimberlite Conference" volume I
E L S E V I E R , Amsterdam — Oxford — New York — Tokyo 1984
ELSEVIER SCIENCE PUBLISHERS B.V. Molenwerf 1 P.O. Box 211,1000 AE Amsterdam, The Netherlands Distributors
for the United States and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY INC. 52, Vanderbilt Avenue New York, NY 10017
ISBN 0444422730 (Vol. 11A) ISBN 0444415629 (Series) © Elsevier Science Publishers B.V., 1984 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo copying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V., P.O. Box 330, 1000 AH Amsterdam, The Netherlands Printed in The Netherlands
ν
THIRD INTERNATIONAL KIMBERLITE CONFERENCE
Clermont F e r r a n d , September 1982
Sponsors
Centre National de l a Recherche S c i e n t i f i q u e I n t e r n a t i o n a l A s s o c i a t i o n o f Volcanology and Chemistry o f the E a r t h I n t e r i o r 1
European Union o f Geosciences S o c i e t e Geologique de France U n i v e r s i t e de Clermont I I M u n i c i p a l i t e de Clermont Ferrand Banque Nationale de P a r i s
Conveners:
A. N i c o l a s
and J . Kornprobst
O r g a n i z i n g Committee: F. B o u d i e r , J . C . M e r c i e r and C. A l l e g r e
E x c u r s i o n Leaders Moho T r i p : F. B o u d i e r , A. N i c o l a s R. Compagnoni, J . C . H u n z i k e r , G. Lensch, A. Steck Volcano T r i p : E . Berger F. Conquere, P.M. V i n c e n t
Proceedings o f the Conference : Volume I : K i m b e r l i t e s and r e l a t e d rocks C o n t r i b u t i o n t o a b e t t e r knowledge o f the e v o l u t i o n o f the mantle. J . K o r n p r o b s t , e d . , E l s e v i e r , Development i n P e t r o l o g y S e r i e s ( t h i s volume). Volume I I : The mantle and c r u s t / m a n t l e r e l a t i o n s h i p s M i n e r a l o g i c a l , P e t r o l o g i c a l and Geodynamic Processes. J . K o r n p r o b s t , e d . , E l s e v i e r , Development i n P e t r o l o g y S e r i e s . Volume I I I : K i m b e r l i t e I I I : Documents. J . K o r n p r o b s t , e d . , Ann. U n i v . Clermont F d . E d i t i o n S e c r e t a r y : M . C Kornprobst
This page intentionally left blank
VII
PREFACE
To convene the j u s t i f i e d
f u l l y
more than smaller
t h a t South A f r i c a and Bostwana t o g e t h e r p r o v i d e
38% o f
the
present w o r l d p r o d u c t i o n o f diamond. With c o n s i d e r a b l y
the
U n i t e d States
on
diamondbearing
ColoradoWyoming l o c a l i t i e s ,
next
I n t e r n a t i o n a l K i m b e r l i t e Conference i n Cape Town i s f a c t
r e s o u r c e s ,
o b s e r v a t i o n s
Arizona
1 s t .
by the
a r e a ,
o f America c o u l d ( i n 1977) present new
k i m b e r l i t e s
and so Santa
r e c e n t l y
Fe s i t u a t e d
d i s c o v e r e d
near
these
i n
the
k i m b e r l i t e
and even c l o s e r t o the c l a s s i c a l lamproites f i e l d s o f New M e x i c o ,
and Utah was a reasonable choice f o r the 2nd. meeting. C e r t a i n l y the
meeting
scheduled f o r 1986 i n Perth ( A u s t r a l i a ) w i l l a l s o demonstrate new
as w e l l as g i v e the o p p o r t u n i t y t o v i s i t the f i r s t diamondbearing
l o c a l i t i e s ,
lamproites ever d i s c o v e r e d . In
1982,
the
C l e r m o n t F e r r a n d , i n
I n t e r n a t i o n a l
K i m b e r l i t e
Conference
met
i n
f i e l d , i n F r a n c e , nor were any k i m b e r l i t e 1 i k e diatremes ever r e p o r t e d .
the
T h i s
3rd
France. From h i s t o r i c a l r e c o r d s , no diamonds were e v e r found,
absence o f diamonds i s i n keeping w i t h the e x i s t e n c e , i n t h i s c o u n t r y , o f
a r e l a t i v e l y
young basement
(mostly
dated
from the
time o f the hercynian
orogeny:
300500 m . y . ) ;
g r a n i t i c
and g n e i s s i c rocks ( I c a r t i a n : 18002000 m . y . ) , the surface o f which i s
i n s u f f i c i e n t not
be ever considered as a precambrian s h i e l d . K i m b e r l i t e s c o u l d
consequently
important the
t o
o n l y a few acres o f the french s o i l are made o f o l d e r
be shown t o
miocenequaternary
Massif
C e n t r a l :
the
p a r t i c i p a n t s
o f
the
3rd c o n f e r e n c e . An
b a s a l t i c volcanism n e v e r t h e l e s s o c c u r s , mainly i n
a few o f the s t r o n g l y undersaturated basic rocks (mostly
n e p h e l i n i t e s
w i t h r a r e m e l i l i t i t e s ) c o u l d have some a f f i n i t i e s w i t h lavas found
i n
the
some o f
s e c t i o n s o f
the
occur
i n
f a c i e s
x e n o l i t h s
v o l c a n i c
l o c a l i t y
f o r
u p l i f t e d
blocks
r e l a t i o n s h i p s
C e n t r a l ,
a number o f the volcanoes e x h i b i t c r o s s
scavenged from shallow mantle o r deep c r u s t l e v e l s
a r e a s . On the o t h e r hand, mantle d e r i v e d u l t r a m a f i c bodies
f r e n c h northern Pyrenees, c l o s e l y a s s o c i a t e d w i t h wedges o f g r a n u l i t e
metamorphic
the
f i e l d s ;
a t d i f f e r e n t l e v e l s o f the maardiatreme s t r u c t u r e s and a l a r g e number
them c o n t a i n
below
are
k i m b e r l i t e
r o c k s .
and a s s o c i a t e d
p e r i d o t i t e s
( t h e type
and can be construed as g i v i n g a p i c t u r e o f the c r u s t m a n t l e
a t depth, as does the IvreaVerbano zone o f northern I t a l y . These
reasons why the
G r a n u l i t e s
I h e r z o l i t e i s s i t u a t e d i n t h i s p a r t o f France) are i n t e r p r e t e d as
outcrops
i t of
was thought t h a t the v o l c a n i c p r o v i n c e o f the Massif the northern Pyrenees and the IvreaVerbano zone o f
VIII n o r t h e r n
I t a l y
g e n e r a l l y
c o u l d p r o v i d e k i m b e r l i t e g e o l o g i s t s w i t h a new look a t problems
considered w i t h i n
the
frame
o f
an o l d and s t a b l e craton on which
k i m b e r l i t e s are found. The o r i e n t a t i o n were
not
t o p i c s
such as
sample" 160
o f the papers presented i n ClermontFerrand
" K i m b e r l i t e s ,
diatremes
and diamonds" as well as "The mantle
were l a r g e l y debated i n a number o f sessions t h a t represented more than
communications
d i s c o v e r i e s gave
and content
however v e r y d i f f e r e n t from those d e l i v e r e d i n Cape Town o r Santa F e :
o f
r i s e
diamonds
t o
whose a b s t r a c t s
K i m b e r l i t e s , s p e c i f i c
and t h e i r
are t o be found i n T e r r a C o g n i t a . The new
and diamonds
i n lamproites i n Western A u s t r a l i a
d i s c u s s i o n s as d i d new data r e p o r t e d on i n c l u s i o n s i n
thermodynamic
s i g n i f i c a n c e .
P a r t i c i p a n t s alone can judge
whether o r not the Clermont Ferrand meeting was a s u c c e s s . Seventy coming 550
up t o
pages
reduce
n e a r l y
lengths
f o r p u b l i c a t i o n i n the Proceedings,
1600 s t a n d a r t pages. The p u b l i s h e r had i n i t i a l l y
o f f e r e d
o f
t h e i r
papers, second t o convince the p u b l i s h e r o f the
o f the a r t i c l e s . Reviewers were most h e l p f u l t o achieve the f i r s t o f
g o a l s .
d i s c o v e r i e s , lamproites
papers were submitted
so t h a t mighty arguments had t o be used f i r s t to convince authors t o
the
e x c e l l e n c e these
f i v e
Given
the
a l a r g e
i n t e r e s t
s e c t i o n
t h a t
o f
the
arose
from
the
a u s t r a l i a n
diamond
proceedings are devoted t o a u s t r a l i a n
and k i m b e r l i t e s . A r e l a t i v e l y l a r g e amount o f the a v a i l a b l e space i s
a l s o devoted to A l p i n e type u l t r a m a f i c b o d i e s . The The
l a s t stage was t o prepare a m u l t i p l e authors cameraready p u b l i c a t i o n .
present
e d i t o r
would r a t h e r
f o r g e t
about
t h i s
episode as q u i c k l y as
p o s s i b l e , and w i l l l e t a poet summarize some o f the d i f f i c u l t i e s encountered: 'He thought he saw a CoachandFour t h a t stood beside h i s bed He looked a g a i n , and found i t was a Bear w i t h o u t a Head "Poor t h i n g " , he s a i d , "Poor S i l l y t h i n g ! I t ' s w a i t i n g to be f e d " 1
S u r r e a l i s m c e r t a i n l y t h i s
volume
w i l l
(Lewis C a r r o l l )
not permeate f u r t h e r the s c i e n t i f i c content o f
and i t i s my hope and b e l i e f t h a t the f o l l o w i n g papers w i l l serve
to improve our knowledge o f the processes o p e r a t i v e a t depths i n the mantle.
Jacques Kornprobst e d i t o r
I X
CONTENTS
Academician V l a d i m i r Stepanovitch S o b o l e v , by J . B . Dawson
1
I DETECTION OF KIMBERLITIC OCCURRENCES (1) A T e l e d e t e c t i v e study of k i m b e r l i t e regions i n North America (ColoradoWyoming), E a s t A f r i c a (Mwadui), and S i b e r i a ( M i r ) , by T . L . Woodzick and M.E. McCallum 5 (2) E v a l u a t i o n o f Geophysical Techniques f o r diatreme d e l i n e a t i o n i n the ColoradoWyoming K i m b e r l i t e P r o v i n c e , by J . A . C a r l s o n , R.B. Johnson, M.E. McCallum, D.L. Campbell and J . P . Padgett 21 (3) Geobotanical e x p r e s s i o n o f a b l i n d k i m b e r l i t e p i p e , Central I n d i a , by P . O . Alexander and V . K . S h r i v a s t a v a 33 I I NATURAL OCCURRENCES OF KIMBERLITES AND RELATED ROCKS: GEOLOGY, PETROLOGY, MINERALOGY AND GEOCHEMISTRY (1) The Geology o f the Mayeng K i m b e r l i t e s i l l complex, South A f r i c a , by D.B. A p t e r , F . J . Harper, B.A. Wyatt and B . H . S . Smith 43 (2) The o x i d e minerals o f the Wesselton Mine K i m b e r l i t e , Kimberley, South A f r i c a , by S . R . Shee 59 (3) P e t r o l o g y o f carbonate t u f f from M e l k f o n t e i n , E a s t G r i q u a l a n d , Southern A f r i c a , by N . Z . B o c t o r , P . H . N i x o n , F. Buckley and F . R . Boyd 75 (4) The Koidu K i m b e r l i t e Complex, S i e r r a Leone: G e o l o g i c a l S e t t i n g , P e t r o l o g y and Mineral c h e m i s t r y , by L . A . Tompkins and S . E . Haggerty 83 (5) P e t r o g r a p h y , Geochemistry and Strontium i s o t o p i c composition o f the MbujiMayi and Kundelungu K i m b e r l i t e s ( Z a i r e ) , by M. Fieremans, J . Hertogen and D. Demaiffe 107 (6) K i m b e r l i t e s near O r r o r o o , South A u s t r a l i a , by B . H . S c o t t Smith, R.V. Danchin, J . W . H a r r i s and K . J . Stracke 121 (7) The Lake E l l e n K i m b e r l i t e , M i c h i g a n , U . S . A . , by E . S . McGee and B . C . Hearn J r 143 (8) P e t r o l o g y o f Megacrysts, mafic and u l t r a m a f i c x e n o l i t h s from the Pipe o f E g l a z i n e s , Causses, F r a n c e , by E . T . Berger and M. Vannier 155 (9) Oceanic c a r b o n a t i t e s , by M . J . Le Bas 169 I I I KIMBERLITES AND LAMPROITES: GENERAL SYNTHESES (1) K i m b e r l i t e s i n China and t h e i r major components: a d i s c u s s i o n on the physicochemical p r o p e r t i e s o f the upper mantle, by He GuanZhi (2) A review o f the k i m b e r l i t i c rocks o f western A u s t r a l i a , by W . J . A t k i n s o n , F . E . Hughes and C B . Smith (3) The Diamondbearing u l t r a p o t a s s i c ( l a m p r o i t i c ) rocks o f the West Kimberley r e g i o n , Western A u s t r a l i a , by A . L . J a q u e s , J . D . L e w i s , C B . Smith, G . P . G r e g o r y , J . Ferguson, B.W. Chappell and M.T. McCulloch
181 195
225
χ l 4 ) A New Look a t P r a i r i e Creek, Arkansas, by B . H . S c o t t Smith and E.M. W. Skinner . (5) Spanish and Western A u s t r a l i a n l a m p r o i t e s : aspects o f whole rock geochemistry, by P . H . N i x o n , M.F. T h i r l w a l l , F. Buckley and C . J . Davies
255
285
IV KIMBERLITES: PHYSICAL AND CHEMICAL PROCESSES (1) E x p l o s i v e volcanism o f the West E i f e l v o l c a n i c f i e l d / G e r m a n y , by V · Lorenz 299 (2) P h y s i c s o f the k i m b e r l i t e magmatism, by E . V . Artyushkov and S . V . Sobolev . 309 (3) K i m b e r l i t e : "The Mantle Sample" formed by ultrametasomatism, by D.K. B a i l e y 323 (4) Subsolidus r e a c t i o n s i n k i m b e r l i t i c i l m e n i t e s : e x s o l u t i o n , r e d u c t i o n and the redox s t a t e o f the mantle, by S . E . Haggerty and L . A . Tompkins 335 (5) An experimental and t h e o r e t i c a l a n a l y s i s o f p a r t i a l melting i n the system KAlSi04 CaO MgO Si02 C02 and a p p l i c a t i o n s to the genesis o f p o t a s s i c magmas, c a r b o n a t i t e s and k i m b e r l i t e s , by R . F . Wendlandt 359 (6) The formation o f k e l y p h i t e and a s s o c i a t e d s u b k e l y p h i t i c and s c u l p t u r e d surfaces on pyrope from k i m b e r l i t e , by 0. G. G a r v i e and D.N. Robinson 371 (7) Compositions o f f l u i d s i n e q u i l i b r i u m w i t h p e r i d o t i t e : i m p l i c a t i o n s f o r a l k a l i n e magmatismmetasomatism, by M.E. Schneider and D.H. E g g l e r 383 (8) K i m b e r l i t e and the e v o l u t i o n o f the M a n t l e , by D . L . Anderson 395 (9) Volume i n s t a b i l i t i e s i n the mantle as a p o s s i b l e source f o r k i m b e r l i t e f o r m a t i o n , by F. Freund 405 (10) K i m b e r l i t i c magmatism i n the eastern u n i t e d s t a t e s : r e l a t i o n s h i p s t o m i d a t l a n t i c t e c t o n i s m , by L . A . T a y l o r 417 (11) K i m b e r l i t e s o f southern A f r i c a Are they r e l a t e d t o subduction p r o c e s s e s , by H. Helmstaedt and J . J . Gurney 425
References
435
X I
ACKNOWLEDGEMENTS
The 75 manuscripts submitted to the Proceedings have been c a r e f u l l y read and most g e n e r a l l y improved by a number o f Reviewers. The f o l l o w i n g Referees are g r e a t l y acknowledged: F . A l b a r e d e , C . J . A l l e g r e , D.K. B a i l e y , R. Basu, J . B e r n a r d G r i f f i t h s , Y . B o t t i n g a , F. B o u d i e r , F . R . Boyd, D.A. C a r s w e l l , C R . Clement, F . Conquere, R.V. Danchin, L.R.M. D a n i e l s , J . B . Dawson, P. Deines, J . D i c k e y , C . Dupuy, P. Duvigneaud, D.H. E g g l e r , A . J . E r l a n k , G . E r n s t , J . F a b r i e s , J . F e r g u s o n , P.W. F r a n c i s , F. Freund, O . G . G a r v i e , M. G i r o d , W.L. G r i f f i n , J . J . Gurney, S . E . Haggerty, B. H a r t e , C . J . Hawkesworth, J . B . Hawthorne, C B . Hearn, H. Helmstaedt, J . C H u n z i k e r , B.B. J a h n , A . J . A . J a n s e , A . L . J a q u e s , A . P . J o n e s , J . K e l l e r , P.D. Kempton, M.B. K i r k l e y , B . L . Lago, B. L a s n i e r , M . J . Le Bas, R.W. Le M a i t r e , V . L o r e n z , M. Loubet, M.E. McCallum, E . S . McGee, R.M. M c l n t y r e , L . G . Medaris, M. Menzies, J . M e r c i e r , J . C . M e r c i e r , H.O.A. Meyer, R.M. M i t c h e l l , A . E . Moore, J . P . Mosnier, A. N i c o l a s , P . H . N i x o n , A . P e r s e i l , M. P i b o u l e , G . P . Pooley, M. P r i n z , A.M. R e i d , S . H . Richardson, J . V . A . Robey, M.G. S c h a r b e r t , B . H . S c o t t Smith, E . M . V . S k i n n e r , D . C Smith, Douglas Smith, P. Suddaby, F . L . S u t h e r l a n d , E . Takahashi, A . B . Thompson, L . A . Tompkins, J . T o u r e t , B . J . Upton, D . V e l d e , P. V i d a l , D. V i e l z e u f , P.M. V i n c e n t , S . Y . Wass, K . H . Wedepohl, R . F . Wendlandt, E. Woermann, B . J . Wood, B.A. Wyatt. Valuable suggestions have been p r o v i d e d by F. B o u d i e r , A. N i c o l a s , B. Velde and D. V e l d e . Considerable help was f u r n i s h e d by D. V i e l z e u f a l l along the r e a l i z a t i o n o f the books. The whole s t a f f o f the Department o f G e o l o g y , Clermont Ferrand experienced the c o h a b i t a t i o n t o g e t h e r w i t h an e x c i t e d e d i t o r during one f u l l y e a r . Thank you v e r y much to a l l o f them.
J . Kornprobst e d i t o r
M . C Kornprobst E d i t i o n S e c r e t a r y
XII
LIST OF CONTRIBUTORS
ALEXANDER P.O. Department o f A p p l i e d Geology, U n i v e r s i t y o f Sagar, Sagar, 470.003, I n d i a : ( 1 . 3 ) . ANDERSON D . L . Seismological L a b o r a t o r y , C a l i f o r n i a I n s t i t u t e o f Technology, Pasadena, C a l i f o r n i a 91125, U . S . A . : ( I V . 8 ) . APTER D.B. Anglo American 2025, South A f r i c a : ( I I . l ) . ARTYUSHKOV E . V . I n s t i t u t e D.242, U . S . S . R . : ( I V . 2 ) .
Research L a b o r a t o r i e s , P . O . Box 106, Crown Mines
o f Physics o f the E a r t h , B.Gruzinskaya 10, Moscow
ATKINSON W . J . CRA E x p l o r a t i o n P t y . L t d . , 21 Wynyard S t r e e t , Belmont, Western A u s t r a l i a 6104 : ( I I I . 2 ) . BAILEY D.K. Department o f Geology, U n i v e r s i t y o f Reading, W h i t e k n i g h t s , Reading RG6 2AB, UK : ( I V . 3 ) . BERGER E . T . Ecole Nationale des Mines de P a r i s , L a b o r a t o i r e de P e t r o l o g i e e t Thermochimie, 33 rue S a i n t Honore, 77305 F o n t a i n e b l e a u , France : ( I I . 8 ) . BOCTOR N . Z . Carnegie I n s t i t u t i o n o f Washington, Geophysical L a b o r a t o r y , 2801 Upton S t r e e t NW, Washington DC 20008, U . S . A . : ( I I . 3 ) . BOYD F . R . Carnegie I n s t i t u t i o n o f Washington, Geophysical L a b o r a t o r y , 2801 Upton S t r e e t NW, Washington DC 20008, U . S . A . : ( I I . 3 ) . BUCKLEY F . Department o f E a r t h S c i e n c e s , The U n i v e r s i t y , Leeds LS2 9 J T , UK : ( I I . 3 ) , ( I I I . 5 ) . CAMPBELL D . L . Department o f E a r t h Resources, Colorado State U n i v e r s i t y , F o r t C o l l i n s , Colorado 80523, U . S . A . : ( 1 . 2 ) . CARLSON J . A . The S u p e r i o r O i l Company, Minerals D i v i s i o n , 2020 Airway Avenue, S u i t e 1, F o r t C o l l i n s , Colorado 80524, U . S . A . : ( 1 . 2 ) . CHAPPELL B.W. Department o f Geology, A u s t r a l i a n National U n i v e r s i t y , Canberra, ACT 2600, A u s t r a l i a : ( I I I . 3 ) . DANCHIN R . V . Stockdale A u s t r a l i a : ( I I . 6 ) .
Prospecting
L t d . , 60 Wilson
S t r e e t , South Y a r r a ,
DAVIES C . J . Department o f Earth S c i e n c e s , The U n i v e r s i t y , Leeds LS2 9 J T , UK : ( I I I . 5 ) . DAWSON J . B . Department o f Geology, U n i v e r s i t y o f S h e f f i e l d , Mappin S t r e e t , S h e f f i e l d S I 3JD, UK. DEMAIFFE D. L a b o r a t o i r e s Associes de G e o l o g i e P e t r o l o g i e , U n i v e r s i t e L i b r e de B r u x e l l e s , Avenue F . D . Roosevelt 50, B1050 B r u x e l l e s , Belgium : ( I I . 5 ) . EGGLER D . H . Department o f Geosciences, The Pennsylvania State U n i v e r s i t y , U n i v e r s i t y Park, Pennsylvania 16802, U . S . A . : ( I V . 7 ) .
XIII
FERGUSON J . Bureau A u s t r a l i a : ( I I 1 . 3 ) .
o f
Mineral
Resources. GPO Box 378, Canberra, ACT 2601,
FIEREMANS C . Laboratorium voor S t r u c t u r e l e G e o l o g i e , U n i v e r s i t e i t Leuven, Redingenstraat 16, B3000, Leuven, Belgium : ( 1 1 . 5 ) . FREUND F. Mineralogische R . F . A . : ( I V . 9 ) .
I n s t i t u t e ,
Z u l p i c h e r
S t r a s s e
49, D5000 K o l n 1 ,
GARVIE O . G . Anglo American Research L a b o r a t o r i e s , P . O . Box 106, Crown Mines 2025, South A f r i c a : ( I V . 6 ) . GREGORY G . P . S e l t r u s t Mining C o r p . P t y . L t d . , 200 Adelaide T e r r a c e , P e r t h , Western A u s t r a l i a 6000 : ( I I 1 . 3 ) . GURNEY J . J . Department o f Geochemistry, U n i v e r s i t y o f Cape Town, Rondebosch 7700, South A f r i c a : ( I V . 1 1 ) . HAGGERTY S . E . Department o f G e o l o g y , U n i v e r s i t y o f Massachusetts, Amherst, Massachusetts 01003, U . S . A . : ( I I . 4 ) , ( I V . 4 ) . HARPER F . J . Anglo American Research L a b o r a t o r i e s , P . O . Box 106, Crown Mines 2025, South A f r i c a : ( I I . l ) . HARRIS J . W . Department o f A p p l i e d Geology, U n i v e r s i t y o f S t r a t h c l y d e , James Weir B l d g , 75 Montrose S t r e e t , Glasgow Gl 1 X J , UK : ( 1 1 . 6 ) . HEARN B . C . J r . U . S . G e o l o g i c a l S u r v e y , 951 National C e n t e r , Reston, V i r g i n i a 22092, U . S . A . : ( I I . 7 ) . HE GUANZHI I n s t i t u t e o f G e o l o g y , State Seismological Bureau, B e i j i n g , China : ( I I I . l ) . HELMSTAEDT H. Department o f G e o l o g i c a l S c i e n c e s , Queen's U n i v e r s i t y , K i n g s t o n , O n t a r i o , Canada K7L 3N6 : ( I V . 1 1 ) . HERTOGEN J . A f d e l i n g Fysicochemische G e o l o g i e , C e l e s t i j n e n l a a n 200C, B3030 Leuven, Belgium : ( I I . 5 ) . HUGHES F . E . CRA E x p l o r a t i o n A u s t r a l i a 6104 : ( I I I . 2 ) . JAQUES A . L . Bureau A u s t r a l i a : ( 1 1 1 3 ) .
o f
U n i v e r s i t e i t
Leuven,
P t y . L t d . , 21 Wynyard S t r e e t , Belmont, Western
Mineral
Resources, GPO Box 378, C a n b e r r a , ACT 2601,
JOHNSON R.B. Department o f E a r t h Resources, Colorado State U n i v e r s i t y , F o r t C o l l i n s , Colorado 80524, U . S . A . : ( 1 . 2 ) . LE
BAS M . J . ( I I . 9 ) .
Department
o f G e o l o g y , The U n i v e r s i t y , L e i c e s t e r L E I 7RH, UK :
LEWIS J . D . G e o l o g i c a l Survey o f Western A u s t r a l i a 6000 : ( I I I . 3 ) . LORENZ V . Department o f Mainz, R . F . A . : ( I V . 1 ) .
Western
A u s t r a l i a , Mineral House, P e r t h ,
Geology, U n i v e r s i t a t Mainz, Saarstrasse 21, D6500
McCALLUM M.E. Department o f Earth Resources, Colorado State U n i v e r s i t y , F o r t C o l l i n s , Colorado 80523, U . S . A . : ( 1 . 1 ) , ( 1 . 2 ) .
XIV McCULLOCH Μ .Τ . Research School o f E a r t h S c i e n c e s , U n i v e r s i t y , Canberra, ACT 2600, A u s t r a l i a : ( I I I . 3 ) . McGEE E . S . U . S . Geological 22092, U . S . A . : ( I I . 7 ) .
S u r v e y ,
951
A u s t r a l i a n
National
National C e n t e r , Reston, V i r g i n i a
NIXON P . H . Department o f E a r t h S c i e n c e s , The U n i v e r s i t y , Leeds LS2 9 J T , UK : ( I I . 3 ) , ( I I I . 5 ) . PADGETT J . P . Department o f E a r t h Resources, Colorado State U n i v e r s i t y , F o r t C o l l i n s , Colorado 80523, U . S . A . : ( 1 . 2 ) . ROBINSON D.N. Anglo American Research L a b o r a t o r i e s , P.O. Box 106, Crown Mines 2025, South A f r i c a : ( I V . 6 ) . SCHNEIDER M.E. Department o f Geosciences, The Pennsylvania State U n i v e r s i t y , U n i v e r s i t y Park, Pennsylvania 16802, U . S . A . : ( I V . 7 ) . SCOTT SMITH B . H . Anglo American Research L a b o r a t o r i e s , P.O. Box 106, Crown Mines 2025, South A f r i c a : ( I I . 6 ) , ( I I I . 4 ) . SHEE S . R . Department o f Geochemistry, 7700, South A f r i c a : ( I I . 2 ) . SHRIVASTAVA V . K . Department 470.003, I n d i a : ( 1 . 3 ) .
o f
U n i v e r s i t y o f Cape Town, Rondebosch
A p p l i e d G e o l o g y , U n i v e r s i t y o f Sagar, Sagar
SKINNER E.M.V. Department o f Geology, De Beers C o n s o l i d a t e d Mines L t d . , P.O. Box 47, Kimberley, South A f r i c a : ( I I I . 4 ) . SMITH C . B . CRA E x p l o r a t i o n P t y . A u s t r a l i a 6104 : ( I I I . 2 ) , ( I I I . 3 ) . SOBOLEV S . V . I n s t i t u t e o f D.242, U . S . S . R . : ( I V . 2 ) .
L t d . , 21 Wynyard S t r e e t , Belmont, Western
Physics
o f the E a r t h , B. Gruzinskaya 10, Moscow
STRACKE K . J . Stockdale Prospecting L t d . , 60 Wilson S t r e e t , South Yarra 3141, A u s t r a l i a : ( I I . 6 ) . TAYLOR L . A . Department o f Geological S c i e n c e s , The U n i v e r s i t y o f Tennessee, K n o x v i l l e , Tennessee 37916, U . S . A . : ( I V . 1 0 ) . THIRLWALL M.F. Department o f E a r t h S c i e n c e s , The U n i v e r s i t y , UK : ( I I I . 5 ) .
Leeds
LS2 9 J T ,
TOMPKINS L . A . Department o f Geology, U n i v e r s i t y o f Massachusetts, Amherst, Massachusetts 01003, U . S . A . : ( I I . 4 ) , ( I V . 4 ) . VANNIER M. E c o l e Nationale des Mines de P a r i s , L a b o r a t o i r e de P e t r o l o g i e e t Thermochimie, 33 rue S a i n t Honore, 77305 F o n t a i n e b l e a u , France : ( I I . 8 ) . WENDLANDT R . F . Exxon Production Texas 77001, U . S . A . : ( I V . 5 ) .
Research Company, P.O. Box 2189, Houston,
WOODZICK T . L . Department o f E a r t h Resources, Colorado State U n i v e r s i t y , F o r t C o l l i n s , Colorado 80523, U . S . A . : ( 1 . 1 ) . WYATT B.A. Anglo American 2025, South A f r i c a : ( I I . l ) .
Research L a b o r a t o r i e s , P.O. Box 106, Crown Mines
ACADEMICIAN VLADIMIR STEPANOVICH SOBOLEV 1908 1982
by J . B . DAWSON
The T h i r d I n t e r n a t i o n a l K i m b e r l i t e Conference a t Clermont Ferrand began w i t h the
delegates standing i n t r i b u t e to the memory o f the l a t e V l a d i m i r Sobolev who
had died i n Moscow several days e a r l i e r , on September 1 s t , 1982. Sobolev
was born
Leningrad Mining I n s t i t u t e f l o o d time
he
I n s t i t u t e
i n
1930 and during the 1930's taught a t the Mining
i n Leningrag where he c a r r i e d out a d e t a i l e d p e t r o l o g i c a l study on the
b a s a l t s
s i m i l a r
i n 1908 a t Lugansk, i n the U k r a i n e , He graduated from the
and a s s o c i a t e d
i d e n t i f i e d t o
the
a u g i t i t e ,
rocks
v o l c a n i c s
of the S i b e r i a n p l a t f o r m ; during t h i s
l i m b u r g i t e and o l i v i n e m e l i l i t i t e which are very
a s s o c i a t e d w i t h
the
k i m b e r l i t e s
of South A f r i c a . The
2 r e c o g n i t i o n
o f
these
t e c t o n i c
resemblance
s u g g e s t ,
i n
t h a t
the
i n t r u s i o n .
T h i s
was
i n
found
found
the
r o c k s , t o g e t h e r w i t h the o v e r a l l
S i b e r i a n p l a t f o r m to South A f r i c a , l e d Sobolev to
a paper to the I n t e r n a t i o n a l G e o l o g i c a l Congress i n Moscow i n 1937
northern
p a r t o f the S i b e r i a n p l a t f o r m might be an area o f k i m b e r l i t e
p r e d i c t i o n was proved to be c o r r e c t when, i n 1954, a k i m b e r l i t e
the
T h i s
o p e r a t i o n s .
p e t r o l o g i c a l l y d i s t i n e t o f
head waters o f the Daldyn r i v e r a f t e r i n t e n s i v e p r o s p e c t i n g
was the
subsequently
i n
f i r s t o f the hundreds o f k i m b e r l i t e i n t r u s i o n s t o be
the Yakutia k i m b e r l i t e p r o v i n c e w h i c h , t o g e t h e r w i t h the
South A f r i c a n c r a t o n , i s one o f the most i n t e n s e area o f k i m b e r l i t e i n t r u s i o n i n the
w o r l d .
From 19451958 he was a P r o f e s s o r a t Lvov U n i v e r s i t y and during t h i s
time he s t u d i e d
general problems o f mineralogy but was i n t e r e s t e d p a r t i c u l a r l y
i n
o f
the
problems
s t u d i e s
h i g h p r e s s u r e mineralogy
e c l o g i t e s
p a r t i c u l a r l y i n connection w i t h
and p e r i d o t i t e s from the k i m b e r l i t e pipes i n Y a k u t i a . I n
he became the Deputy D i r e c t o r o f the I n s t i t u t e o f Geology and Geophysics o f
1958 the of
o f
S i b e r i a n branch o f the Academy o f Sciences o f the U . S . S . R . a t the U n i v e r s i t y N o v o s i b i r s k .
continued both
Here h i s work on high p r e s s u r e metamorphic and igneous minerals
and he made numerous
t h e o r i t i c a l
was
important c o n t r i b u t i o n s to the development o f
and experimental
mineralogy and p e t r o l o g y . Some o f t h i s work
i n c o r p o r a t e d i n the "Map o f Metamorphic F a c i e s o f the U . S . S . R . " p u b l i s h e d i n
1966. For c o u n t r y of
s c i e n t i f i c
achievements
he r e c e i v e d many honours both i n h i s own
and abroad. I n 1951 he was e l e c t e d a corresponding member o f the Academy
Science o f
Academy h i s
h i s
o f
Ukraine
Science o f
c o u n t r y ,
r e c o g n i t i o n p u b l i s h e d
the
i n c l u d i n g
o f
U . S . S . R . and 1958 was e l e c t e d a f u l l member o f the
the U . S . S . R . : he was a l s o awarded the h i g h e s t awards o f both
the
Lenin
and the
State p r i z e s , the l a t t e r i n
h i s book " I n t r o d u c t i o n t o the Mineralogy of S i l i c a t e s " which was
i n 1949. He was a l s o an honorary member o f the m i n e r a l o g i c a l s o c i e t i e s
o f
A u s t r i a ,
o f
I n t e r n a t i o n a l
Great B r i t a i n and France. I n the p e r i o d 19741978 he was P r e s i d e n t M i n e r a l o g i c a l A s s o c i a t i o n and i n 1978 was the host t o the 11th
General Meeting o f the I n t e r n a t i o n a l A s s o c i a t i o n a t N o v o s i b i r s k . However, upper
mantle
F e r r a n d .
Sobolev
p e t r o l o g y
provinces
f o r
which he was remembered by h i s f r i e n d s a t Clermont
i n
1959
but
heralded
the
book
f o r
f i n d i n g
one o f the w o r l d ' s major
"The Diamond F i e l d s o f Y a k u t i a " e d i t e d by
a renaissance i n the study o f k i m b e r l i t e s and upper
rocks both i n the U . S . S . R . and i n the West. He i s a l s o remembered f o r h i s
good company wonder
was f o r h i s major c o n t r i b u t i o n s to the f i e l d o f k i m b e r l i t e and
Not o n l y was he r e s p o n s i b l e
k i m b e r l i t e
mantle
i t
t h a t
and f o r h i s tremendous enthusiasm f o r h i s chosen s c i e n c e . I t i s no two
o f h i s c h i l d r e n N i k o l a i and Stefen have f o l l o w e d him i n making
t h e i r c a r e e r s i n the g e o l o g i c a l s c i e n c e s .
I DETECTION OF KIMBERLITIC OCCURRENCES
This page intentionally left blank
A TELEDETECTIVE STUDY OF KIMBERLITE REGIONS IN NORTH AMERICA (COLORADOWYOMING), EAST AFRICA (MWADUI), AND SIBERIA (MIR) by T . L . WOODZICK and M.E. McCALLUM A b s t r a c t T e l e d e t e c t i v e a n a l y s i s r e f e r s to the coordinated i n t e r p r e t a t i o n o f remote s e n s i n g , geomorphological, and geophysical data to d e f i n e the s u r f a c e and subsurface c h a r a c t e r o f k i m b e r l i t e regions t h a t occur i n extremely d i f f e r ent environments. Study areas i n ColoradoWyoming, T a n z a n i a , and Yakutia were chosen on the basis o f t h e i r d i v e r s i t y : e . g . e l e v a t i o n (2400m, 1200m, 300m, r e s p e c t i v e l y ) , climate (temperate, e q u a t o r i a l , s u b a r c t i c ) , c o u n t r y rock ( g r a n i t e , g r a n i t e , l i m e s t o n e ) , and v e g e t a t i v e cover (montane f o r e s t , g r a s s l a n d , t a i g a ) . The a n a l y s i s o f s i m i l a r l y scaled Landsat images, drainage networks, and geophysical maps permits the composite c h a r a c t e r o f a given k i m b e r l i t e province to be considered and compared to o t h e r k i m b e r l i t e p r o v i n c e s , p a r t i c u l a r l y i n terms o f t e x t u r a l p a t t e r n s . The t e l e d e t e c t i v e technique i n d i c a t e s t h a t a l l three k i m b e r l i t e study areas are c h a r a c t e r i z e d by some type o f c r o s s c u t t i n g t e x t u r a l p a t t e r n where the regional t r e n d i s i n t e r r u p t e d o r i n t e r s e c t e d by another t r e n d . In n o t i n g the a s s o c i a t i o n o f such t r a n s v e r s e t e x t u r e s with o t h e r k i m b e r l i t e r e g i o n s , previous i n v e s t i g a t o r s have f r e q u e n t l y c i t e d the i n t e r s e c t i o n o f deepseated zones of s t r u c t u r a l weakness, e . g . i n t e r s e c t i n g f a u l t systems, as p r o v i d i n g conduits f o r the ascent o f k i m b e r l i t e magma. The same argument can be made f o r the regions s t u d i e d h e r e . The present study demonstrates t h a t t r a n s v e r s e t e x t u r a l patterns are a common c h a r a c t e r i s t i c o f w i d e l y separated k i m b e r l i t e p r o v i n c e s , and may t h e r e f o r e have value as a t e x t u r a l s i g n a t u r e i n d e l i n e a t ing f a v o r a b l e t a r g e t areas during the reconnaissance phase o f k i m b e r l i t e e x p l o r a t i o n programs.
1
INTRODUCTION The sketches o f t e r r a i n i n c l u d e d i n T a v e r n i e r ' s account o f the diamondfields
o f seventeenth c e n t u r y I n d i a ( L e g r a n d , 1980) document an e a r l y example o f using twodimensional data to describe the environment o f diamond d e p o s i t s .
More r e
c e n t l y , B a r y g i n (1962) r e p o r t e d the use o f low a l t i t u d e a e r i a l photographs i n d e f i n i n g k i m b e r l i t e t a r g e t s i n S i b e r i a , and Barthelemy and Dempster (1975) used Landsat images to study the t e c t o n i c s e t t i n g o f k i m b e r l i t e s i n Lesotho. The aim o f the present paper i s to compare three k i m b e r l i t e regions t h a t occur i n v e r y d i f f e r e n t t e r r a n e s , using the t e l e d e t e c t i v e approach. l o c a t i o n o f the three study a r e a s .
F i g . 1 d e p i c t s the
Both the Mir and Mwadui provinces c e n t e r
on a major diatreme t h a t has been mined f o r diamonds f o r decades; the C o l o r a d o Wyoming State Line K i m b e r l i t e D i s t r i c t and i t s more than 40 diatremes have be gun to be developed o n l y r e c e n t l y .
The o b j e c t i v e o f the study i s to determine
i f any s i m i l a r i t i e s can be observed in the data planes t h a t were used to de p i c t these three r e g i o n s , towards the end o f d e f i n i n g a s i g n a t u r e t h a t may be c h a r a c t e r i s t i c o f k i m b e r l i t e regions i n g e n e r a l .
F i g . 1. Index map showing l o c a t i o n o f ColoradoWyoming State Line K i m b e r l i t e D i s t r i c t ( C ) i n the Western United S t a t e s , the Mwadui r e g i o n , Tanzania ( W ) , and Mir r e g i o n , S i b e r i a ( M ) . Shaded areas denote Precambrian platforms. Precambrian boundaries i n N. America, Europe, Asia and A u s t r a l i a from Ferguson (1979). Precambrian boundaries i n A f r i c a from Dawson (1980). Precambrian boundaries i n S. America from Legrand (1980). 2
PROCEDURE Using l i t e r a t u r e l o c a t i o n s as a g u i d e , Landsat images were previewed a t a
browse f i l e maintained by the National Cartographic Information Center i n Den v e r , Colorado, and 1 :1 ,000,000 black and white p r i n t s were acquired f o r the areas o f i n t e r e s t from the EROS Data Center i n Sioux F a l l s , South Dakota.
The
i n f r a r e d p o r t i o n o f the electromagnetic spectrum was chosen because o f i t s high s e n s i t i v i t y to v e g e t a t i v e and moisture v a r i a t i o n s .
Two Landsat Band 7 (0.8
1.1 urn) images from 1 October 1976 were acquired f o r the ColoradoWyoming r e g i o n , one Landsat Band 7 image from 25 A p r i l 1979 was obtained f o r the Mir r e g i o n , and two Landsat Band 6 (0.7 0.8 urn) images from 5 March 1979 were ob tained f o r the Mwadui r e g i o n .
Two images were acquired when the feature o f
i n t e r e s t o c c u r r e d near the border between the images ( i . e . the Mwadui pipe and the ColoradoWyoming State Line D i s t r i c t ) .
Then, 0NC 1:1,000,000 aeronautical
charts were obtained from a l o c a l a i r p o r t ; these provided gross t o p o g r a p h i c , drainage and geographic data about the surface o f the three regions i n a format t h a t could be d i r e c t l y compared to the Landsat images on a l i g h t t a b l e .
At
t h i s p o i n t , geophysical data ( g r a v i t y , magnetics) were acquired from the l i t e r ature i n order to appreciate the subsurface patterns o f the three r e g i o n s .
A
zoom t r a n s f e r scope was used to c o n v e r t the e x i s t i n g s c a l e s to 1:1 ,000,000 to match the o t h e r data planes.
F i n a l l y , a v i s u a l i n t e r p r e t a t i o n o f the t e x t u r a l
patterns i n the surface and subsurface data planes was conducted, and i n t e g r a
7 ted w i t h published g e o l o g i c a l and s t r u c t u r a l 3
i n f o r m a t i o n .
STUDY AREAS
3.1
ColoradoWyoming Region, Western United States F i g . 2a c o n s i s t s o f p o r t i o n s o f two Landsat Band 7 images t h a t have been
j o i n e d to d e p i c t the r e g i o n surrounding the ColoradoWyoming State Line Kimber l i t e D i s t r i c t .
The NS t r e n d o f the Front Range i n Colorado i s expressed by
the darker tone o f the montane f o r e s t s t h a t extend south from the Wyoming b o r der at 41°N, 105°25'W.
A l i g h t e r tone from a g r i c u l t u r e and rangeland flanks
the Front Range to the e a s t ; the r e g i o n from Denver (D) to Fort C o l l i n s ( F ) has a much lower e l e v a t i o n and i n c l u d e s many r e s e r v o i r s (black a r e a s ) .
S i m i l a r l y
the Laramie Basin i n Wyoming west o f the c i t y o f Laramie ( L ) i s a l i g h t e r t o n e d area o f rangeland and r e s e r v o i r s .
The spine o f the Southern Rocky Mountains
above t r e e l i n e i s expressed as the narrow l i g h t e r t o n e d s t r i p t h a t s t r e t c h e s southward from 40°40'N, 105°40'W.
On F i g . 2a, the white arrow (VD) i n d i c a t e s
the c i r c u l a r p a t t e r n o f the V i r g i n i a Dale r i n g dike complex, a Precambrian c o l lapsed c a l d e r a ( E g g l e r , 1968) which has a diameter o f 9 miles (14.5 km).
The
l o c a t i o n o f the ColoradoWyoming State Line K i m b e r l i t e D i s t r i c t i n the same general area i s i n d i c a t e d by the small r e c t a n g l e ( h e a v i e r l i n e ) .
I t i s 10
miles (16 km) wide and extends 3 miles (5 km) i n t o Wyoming and 12 miles (19 km) i n t o C o l o r a d o ; i t i n c l u d e s more than 40 occurrences o f k i m b e r l i t e , none o f which i s d e t e c t a b l e on F i g . 2a. The drainage o f the region was e x t r a c t e d from ONC a e r o n a u t i c a l c h a r t CF17 and i s shown i n F i g . 2b at a smaller s c a l e .
The dominant p a t t e r n i s o f streams
f l o w i n g east from the NS t r e n d i n g mountain ranges.
The State Line D i s t r i c t
northwest o f the V i r g i n i a Dale area i n c l u d e s a p o r t i o n o f the i n t e r f l u v e be tween streams t h a t flow north to the Laramie R i v e r and streams t h a t flow s o u t h east to the Poudre R i v e r . f t (4300 m). m).
The h i g h e s t peaks i n the Front Range exceed 14,000
The p l a i n s between F o r t C o l l i n s and Denver are at 5,000 f t (1500
A r e p r e s e n t a t i v e e l e v a t i o n i n the V i r g i n i a Dale area i s 7,500 f t (2300 m).
The c o u n t r y rock i n the ColoradoWyoming State Line K i m b e r l i t e D i s t r i c t c o n s i s t s o f g r a n i t e .
The V i r g i n i a Dale r i n g dike complex has a f f i n i t i e s w i t h
both the Sherman b a t h o l i t h to the north (1.41 b . y . ) and the Log Cabin b a t h o l i t h to the south (1.42 b . y , ) .
Metamorphic rocks in the area are approximately 1.75
b . y . o l d and c o n s i s t o f q u a r t z o f e l d s p a t h i c and a m p h i b o l i t i c gneisses and s c h i s t s (Precambrian ages from Peterman e t a l . , 1968).
Lower P a l e o z o i c s e d i
mentary rocks are preserved o n l y as blocks and fragments i n some o f the d i a tremes ( C h r o n i c e t a l . , 1969); e r o s i o n has removed a l l traces o f the o r i g i n a l i n s i t u formations i n the immediate a r e a .
F i s s i o n track dating o f z i r c o n s
(Naeser and McCallum, 1977) and RbSr dates on p h l o g o p i t e s ( S m i t h , 1979), as w e l l as c o n s i d e r a t i o n o f the probable age o f the i n f a l l e n sedimentary fragments
F i g . 2a. Landsat Band 7 image o f ColoradoWyoming r e g i o n . V i r g i n i a Dale r i n g dike complex i n d i c a t e d by white arrow ( V D ) . ColoradoWyoming State Line K i m b e r l i t e D i s t r i c t shown by r e c t a n g l e ( h e a v i e r l i n e ) be tween F o r t C o l l i n s ( F ) and Laramie ( L ) . Denver at ( D ) . Image d a t e : 1 October 1976. Path 36, Rows 31 and 32.
9
F i g . 2b. Drainage map o f Colorado Wyoming r e g i o n from ONC c h a r t CF17 ColoradoWyoming State Line Kimber l i t e D i s t r i c t shown by r e c t a n g l e ( h e a v i e r l i n e ) . Shading denotes l a r g e r r e s e r v o i r s . L a b e l s , c o v e r age, and o r i e n t a t i o n as i n F i g . 2a. Scale has been reduced.
F i g . 2 c Aeromagnetic map o f Colorado Wyoming r e g i o n from Z i e t z and o t h e r s (1969). Contour i n t e r v a l : hundreds o f gammas. AA' and BB' are n o r t h east trending f e a t u r e s . C C i s an eastwest trending f e a t u r e . L a b e l s , coverage, and o r i e n t a t i o n as i n F i g . 2a. Scale has been reduced.
on p a l e o n t o l o g i c a l grounds, i n d i c a t e a Devonian age o f emplacement f o r the State Line k i m b e r l i t e s .
The o l d e s t i n s i t u Paleozoic sedimentary rocks i n the
area are a r k o s i c sediments o f the Fountain Formation o f Pennsylvanian age which occur 2 miles (3.2 km) n o r t h o f the D i s t r i c t (McCallum and Mabarak, 1976b). Information about subsurface patterns i n the ColoraoWyoming r e g i o n i s presented i n F i g 2c, p a r t o f an aeromagnetic i n v e s t i g a t i o n f o r an e a s t w e s t Q
s t r i p across the western United States ( Z i e t z e t a l . , 1969).
The f l i g h t l i n e s
were approximately 5 miles (8 km) apart and the a i r c r a f t maintained a b a r o metric f l i g h t a l t i t u d e o f approximately 16,000 f e e t (4900 m).
Two n o r t h e a s t
trends are e v i d e n t i n the mountainous regions o f F i g . 2c, one i n Colorado ( Α Α ' ) and one i n Wyoming ( B B ) . 1
These are i n t e r r u p t e d by an e a s t w e s t t r e n d
( C C ) t h a t seems to be centered j u s t south o f the ColoradoWyoming b o r d e r . 1
The V i r g i n i a Dale r i n g dike (VD) and the ColoradoWyoming State Line Kimber l i t e D i s t r i c t are l o c a t e d i n t h i s zone o f i n t e r r u p t i o n .
Z i e t z e t a l . ( 1 9 6 9 )
a t t r i b u t e d the magnetic trends to Precambrian shear zones, suggesting t h a t the northeast trend i s p a r t o f a 200 mile (320 km) wide en echelon p a t t e r n o f
10 shear zones t h a t extends from the Grand Canyon i n A r i z o n a to the Black H i l l s o f South Dakota.
They suggested t h a t the e a s t w e s t trend i s p a r t o f a fundamental
f r a c t u r e system t h a t includes the Uinta Mountains i n Utah and s t r e t c h e s west ward to the P a c i f i c Ocean and perhaps i n t o the oceanic c r u s t .
In a l a t e r study
Warner (1978) i n d i c a t e d that the northeast t r e n d may extend as f a r east as Lake S u p e r i o r . 3.2
Mir Region, S i b e r i a F i g . 3a i s a p o r t i o n o f the Landsat Band 7 image o f the region s u r r o u n d
ing the Mir pipe i n S i b e r i a .
The white arrow i n d i c a t e s a dark f e a t u r e which i s
assumed to r e f l e c t mining a c t i v i t y associated w i t h the diamond r e c o v e r y p r o c e s s , e . g . mining benches and t a i l i n g s p i l e s .
The V i l y u y R i v e r trends g e n e r a l
l y eastward at 63°N; the black c o l o r west o f 113°20'E i s b e l i e v e d to be caused by open water below the dam at Chernyshevski which i s l o c a t e d j u s t o f f the im age to the w e s t .
The v e r y l i g h t tone o f the r i v e r east o f 113°20 E i s a t t r i b u ,
ted to snow cover and ( o r ) a f r o z e n s u r f a c e .
The other areas o f the image ap
pear to f a l l i n t o three tonal c a t e g o r i e s : dark g r a y , medium g r a y , and l i g h t g r a y .
Suslov (1961) i n d i c a t e d t h a t the western Yakutsk d i s t r i c t has f o r e s t s
t h a t are predominantly Dahurian l a r c h intermixed with p i n e , b i r c h , and aspen. A t y p i c a l i n f r a r e d response would be g r e a t e s t ( l i g h t e s t ) from the broadleaf s p e c i e s , intermediate from l a r c h , and l e a s t ( d a r k e s t ) from p i n e .
However, at
the season o f the image date ( A p r i l ) the b r o a d l e a f and l a r c h would not have t h e i r f o l i a g e .
Part o f the tonal d i f f e r e n t i a t i o n may be caused by permafrost
v a r i a t i o n s ; Suslov (1961) depicted t h i s as a region o f permafrost with i s l a n d s o f thawing ground. The drainage o f the Mir r e g i o n was e x t r a c t e d from ONC aeronautical c h a r t D7 Two n o r t h f l o w i n g major t r i b u t a r i e s to the V i l y u y
and i s shown in F i g . 3b.
R i v e r c o n s t i t u t e the dominant p a t t e r n .
The Mir pipe (M) i s located on a t r i b u
t a r y o f the Botuobuya (the I r e l y a k h ) which makes up part o f a s u b t l e e a s t n o r t h e a s t trend ( Β Β ' ) .
In the n o r t h e r n p a r t o f F i g . 3b, the Botuobuya d e f i n e s
a major northwest trend ( A A ) . 4
The Mir pipe occurs s l i g h t l y west o f the i n
t e r s e c t i o n o f these two t r e n d s . The topography o f the Mir r e g i o n v a r i e s from 500 to 1000 f t (150 to 300 m) according t o c h a r t D7 and e x h i b i t s the lowest e l e v a t i o n and the l e a s t r e l i e f o f the three regions s t u d i e d . Bardet (1973) r e p o r t e d t h a t the country rock i s composed o f O r d o v i c i a n lime stones and d o l o m i t e s , with some exposures o f Permian and J u r a s s i c c o n t i n e n t a l d e p o s i t s ; N a l i v k i n (I960) a t t r i b u t e d the traprocks o f the area to Permian and Lower T r i a s s i c i n f l u e n c e s .
Sobolev (1980) i n d i c a t e d the pipes o f the Mir r e
gion to be o f Late Devonian age.
Bardet (1973) reported that the k i m b e r l i t e s
o f t h i s region may approach the composition o f q u a r t z i t e s , due to s i l i c i f i c a
11
F i g . 3a. Landsat Band 7 Image o f Mir r e g i o n , S i b e r i a . Arrow (M) i n d i c a t e s darker tone o f mining a c t i v i t y i n v i c i n i t y o f Mir p i p e . Image d a t e : 25 A p r i l 1979. Path 143, Row 16.
12
F i g . 3b. Drainage map o f Mir r e g i o n from ONC c h a r t D7. Mir pipe l o c a t i o n i n d i c a t e d by arrow ( M ) . AA and BB are major alignments. Coverage and o r i e n t a t i o n as i n F i g . 3aο Scale has been reduced.
F i g . 3c. Magnetic map o f Mir r e g i o n (from M i n i s t r y o f G e o l o g y U . S . S . R . , 1974, Magnetic Map, sheet 10). Con t o u r i n t e r v a l i n m i l l i o e r s t e d s . Shading denotes p o s i t i v e magnetic a r e a s . AA and BB are l i n e a r trends in v i c i n i t y o f Mir pipe ( M ) . Coverage and o r i e n t a t i o n as i n F i g . 3a. Note scale change.
1
1
1
1
t i o n f o l l o w i n g an i n t e n s e , t e c h n i c a l l y induced b r e c c i a t i o n . F i g . 3c represents the subsurface t e x t u r e o f the Mir region i n terms o f a p o r t i o n o f a magnetic survey o r i g i n a l l y presented a t a s c a l e o f 1:2,500,000 ( M i n i s t r y o f Geology U . S . S . R . , 1974).
A s u b t l e e a s t n o r t h e a s t trend ( Β Β ' )
and a major northwest trend ( A A ) occur i n the subsurface a t n e a r l y the same 1
l o c a t i o n as the alignments noted f o r the drainages i n F i g . 3b.
As observed
p r e v i o u s l y , the Mir pipe occurs near the i n t e r s e c t i o n o f the AA and BB' 1
t r e n d s .
The shaded areas i n F i g . 3c are magnetic h i g h s .
Several northwest
trends i n a d d i t i o n to A A are expressed both by magnetic highs and lows. 1
In terms o f r e l a t i n g the patterns i n F i g . 3c to s t r u c t u r a l f e a t u r e s , Krasnov and Masaitis (1955) i d e n t i f i e d three major f a u l t zones bordering the Tunguska S y n e c l i s e ( T ) which occurs west o f the Mir r e g i o n (see F i g . 4 ) .
The f a u l t
zones are r e p o r t e d to be 30 to 90 miles (50 to 150 km) wide and are associated with p o s i t i v e magnetic anomalies.
The AA trend i n F i g . 3c may be r e l a t e d to 1
the V i l y u y K o t u i Zone ( I I I ) , which trends to the n o r t h w e s t .
The A n g a r a V i l y u y
Zone ( I I ) trends n o r t h e a s t , and the BB trend i n F i g . 3c may r e p r e s e n t a r e 1
l a t e d , s l i g h t l y r o t a t e d e x p r e s s i o n o f t h i s major s t r u c t u r e .
The BB' trend
a l s o i s roughly p a r a l l e l to the a x i s o f the V i l y u y S y n e c l i s e ( V ) to the east (Dawson, 1980).
13
Fault Zones I I I I I I
AngaraYenesei Zone A n g a r a V i l y u y Zone V i l y u y K o t u i Zone Other Features
AN AL Τ V
Precambrian Anabar S h i e l d Precambrian Aldan S h i e l d A x i s o f Tunguska S y n e c l i s e A x i s o f V i l y u y S y n e c l i s e
F i g . 4. S t r u c t u r e map o f East S i b e r ian P l a t f o r m . P o s i t i o n o f Mir r e g i o n i n d i c a t e d by arrow ( M ) . F a u l t zones and map p r o j e c t i o n a f t e r Krasnov and Masaitis (1955). Other f e a t u r e s a f t e r Dawson (1980)· Lake Baikal i s roughly 400 miles (640 km) l o n g .
More r e c e n t l y , Milashev and Rozenberg (1974) developed a method f o r d e t e r mining c r u s t a l s t r u c t u r e from g r a v i t y and seismic data and demonstrated t h a t the Mohorovicic d i s c o n t i n u i t y and thickness o f the c o n s o l i d a t e d c r u s t could be r e l a t e d to k i m b e r l i t e occurrence on the S i b e r i a n P l a t f o r m .
T h e i r sketch map
o f c r u s t a l s t r u c t u r e shows a major e a s t n o r t h e a s t trend i n the v i c i n i t y o f the Mir pipe t h a t p a r a l l e l s the BB* t r e n d i n F i g . 3b and F i g . 3c.
The Russian
l i t e r a t u r e thus provides several examples o f s t r u c t u r a l trends t h a t appear to c o i n c i d e w i t h the alignments noted i n t h i s s t u d y . 3.3
Mwadui Region, Tanzania F i g . 5a c o n s i s t s o f p o r t i o n s o f two Landsat Band 6 images t h a t have been
j o i n e d to d e p i c t the r e g i o n surrounding the Mwadui pipe in n o r t h e r n T a n z a n i a . Dixon (1979) d e s c r i b e d the region as a g e n t l y undulating high plateau w i t h a seasonal drainage t h a t g e n t l y descends to Lake V i c t o r i a to the n o r t h w e s t .
A
small p o r t i o n o f the Speke G u l f , the southeast e x t e n s i o n o f the Lake, i s e x pressed by the black area i n the l e f t top corner o f the f i g u r e .
The annual
r a i n f a l l i s about 24 inches (600 mm) and occurs f o r the most p a r t i n autumn. Dixon (1979) i n d i c a t e d t h a t the dominant v e g e t a t i v e cover i s t a l l grass savan nah, w i t h wooded areas where there i s more w a t e r .
The tonal v a r i a t i o n s i n F i g .
5a may r e f l e c t t h i s dichotomy i n p a r t ; i n f r a r e d r e f l e c t a n c e i s a l s o s e n s i t i v e to s o i l moisture v a r i a t i o n s which are accentuated during prolonged d r y p e r i o d s .
F i g . 5a. Landsat Band 6 image o f Mwadui r e g i o n , n o r t h e r n T a n z a n i a , Arrow (MW) i n d i c a t e s l i g h t e r tone o f mining a c t i v i t y i n v i c i n i t y o f Mwadui p i p e . Image d a t e : 5 March 1979. Path 182, Rows 62 and 63.
15 L. VICTORIA
34°*
F i g . 5b. Drainage map o f Mwadui Re gion from ONC c h a r t M5. P o s i t i o n o f Mwadui pipe shown by arrow (MW). Shading i n d i c a t e s l a r g e r lakes and r e s e r v o i r s . F i n d i c a t e s i n t e r f l u v e , Coverage and o r i e n t a t i o n as i n F i g . 5a. Scale has been reduced.
F i g . 5c. P a r t i a l g r a v i t y coverage o f Mwadui region from D a r r a c o t t (1974). Contour i n t e r v a l : 50 g r a v i t y u n i t s . G r a v i t y low at B. Arrow (MW) shows p o s i t i o n o f Mwadui p i p e . L i n e a r trends from F i g . 5a shown as number ed dashed l i n e s 1, 2, 3. Hypothe s i z e d trend a t X. Coverage and o r i e n t a t i o n as i n F i g . 5a. Scale has been reduced.
The l o c a t i o n o f the mining a c t i v i t y a s s o c i a t e d w i t h the Mwadui pipe i s i n d i c a ted by the a r r o w ; the l i g h t tone o f these features c o n t r a s t s s h a r p l y w i t h the dark tone o f those from the Mir pipe i n S i b e r i a ( F i g . 3 a ) .
In t h i s r e g a r d ,
Bruton (1978) suggested t h a t the r i g o r o u s climate o f S i b e r i a prevents o x i d a t i o n from o c c u r r i n g at the rate i t does i n A f r i c a , w i t h the r e s u l t t h a t " y e l l o w ground" i s not encountered as f r e q u e n t l y i n S i b e r i a n k i m b e r l i t e s as i t i s i n A f r i c a n o c c u r r e n c e s . Other features in F i g . 5a i n c l u d e three small lakes o r r e s e r v o i r s j u s t west o f the Mwadui pipe and a l a r g e r lake ( K i t a n g i r i ) i n the southeast p a r t o f the image; a l l have black s i g n a t u r e s .
A s e r i e s o f n o r t h
t r e n d i n g l i n e a r tonal d i s c o n t i n u i t i e s are expressed i n the southwest p a r t o f the image.
On the o r i g i n a l Landsat image several c l o s e l y s p a c e d , n o r t h e a s t
trending lineaments could be detected to the southeast o f Lake K i t a n g i r i . The drainage p a t t e r n o f the Mwadui region was taken from ONC a e r o n a u t i c a l chart M5 (see F i g . 5 b ) .
The Manonga R i v e r and Lake K i t a n g i r i are the p r i n c i
pal features o f the southern p a r t o f the region whereas the Simiyu R i v e r domi
16 nates the n o r t h e r n p a r t ,
A f a i r l y e x t e n s i v e east t o e a s t n o r t h e a s t trending
i n t e r f l u v e ( F ) occurs between the two systems and i s s i t u a t e d n o r t h e a s t o f the Mwadui p i p e . T o p o g r a p h i c a l l y , c h a r t M5 shows highlands exceeding 5,000 f t (1500 m) i n the northeast and southeast corners o f the Mwadui r e g i o n , and lowlands below 4,000 f t (1200 m) i n the northwest corner near Lake V i c t o r i a and i n the ManongaKitangiri d r a i n a g e .
The Mwadui pipe occurs j u s t n o r t h o f a c l u s t e r o f
i s o l a t e d highs o f 4,000 f t (1200 m) w i t h i n the southern l o w l a n d .
The Mwadui
region i s intermediate i n e l e v a t i o n to the ColoradoWyoming r e g i o n a t 8,000 f t (2400 m) and the Mir r e g i o n at 1,000 f t (300 m). Dixon (1979) c h a r a c t e r i z e d the Mwadui r e g i o n as c o n s i s t i n g mainly o f A r c h ean g r a n i t e s , g n e i s s e s , and g r a n u l i t e s .
Cenozoic sediments occupy the t o p o g r a
phic depression to the south o f 3°40 S . I
The Mwadui pipe and hundreds o f o t h e r
k i m b e r l i t e pipes southeast o f Lake V i c t o r i a are thought to be Cretaceous i n age ( D i x o n , 1979). Subsurface data d e s c r i b i n g the Mwadui r e g i o n were d i f f i c u l t t o obtain i n terms o f complete coverage.
F i g . 5c shows p a r t o f a g r a v i t y survey conducted
over the Speke G u l f r e g i o n to the north ( D a r r a c o t t , 1974).
A major high e x
tends southeastward from the northwest corner o f the f i g u r e .
A narrow g r a v i t y
low (B) trends southwest near the r i g h t margin o f the f i g u r e , near Lake K i t a n g i r i , but i t s e x t e n t i s undetermined.
Surface features observed on the Landsat
image ( f i g . 5a) have been added to F i g . 5c to supplement the l i m i t e d g e o p h y s i cal coverage. Three lineaments w i t h a NS t r e n d t h a t were observed on the Landsat image as tonal d i s c o n t i n u i t i e s have been t r a n s f e r r e d to F i g . 5c as dashed patterns 1, 2 , 3; these may r e f l e c t f a u l t s a t depth.
The Mwadui pipe
(MW) occurs near the i n t e r s e c t i o n o f dashed p a t t e r n 3 and a h y p o t h e t i c a l trend ( X ) .
The l o c a t i o n o f X was based on the g r a v i t y saddle t h a t i s expressed on
the eastern edge o f F i g . 5c; the t r e n d o f X i s r o u g h l y p a r a l l e l to the t r e n d observed a t B. Support f o r the e x i s t e n c e o f t r e n d X i s p r o v i d e d i n F i g . 6.
Faults o f the
East A f r i c a n r i f t system are depicted i n the v i c i n i t y o f the study a r e a , and they express the northeast trend p o s t u l a t e d f o r X.
The n o r t h e r l y trend o f
lineaments 1, 2, 3 ( F i g . 5c) i s a l s o supported by f a u l t t r a c e p a t t e r n D i n F i g . 6.
The n o r t h t r e n d i n g and n o r t h e a s t t r e n d i n g alignments noted i n F i g . 5 t h e r e
f o r e appear to have s t r u c t u r a l s i g n i f i c a n c e . Dixon (1979) pointed out t h a t the f a u l t s o f the East A f r i c a n R i f t system are Neogene i n age, which postdates the p o s t u l a t e d Cretaceous age o f the kimber l i t e s o f the Mwadui r e g i o n .
However, Baker and others (1972) mention the l o c a l
p a r a l l e l i s m between the r i f t f a u l t s and the s t r u c t u r a l g r a i n o f Precambrian metamorphic rocks and Paleozoic f a u l t t r o u g h s , which suggests the concept o f
17
32 Ε
34° Ε
36Έ
Cenozoic sediments Precambrian g r a n i t e , gneiss and metamorphics Faults
F i g . 6. Geology o f Mwadui Region ( p a t terned i n s e t r e c t a n g l e ) and f a u l t zones east o f Lake V i c t o r i a , Tanzania ( a f t e r D i x o n , 1979 and Baker, 1971). F a u l t D i n s i m i l a r p o s i t i o n to l i n e a r trend number 2 , F i g . 5c. X and F mark p o s i t i o n o f trends shown on F i g . 5c and F i g . 5b. Location o f Mwadui pipe i n d i c a t e d by W.
r e s u r g e n t t e c t o n i c s .
The Neogene f a u l t s may be the most recent e x p r e s s i o n o f
zones o f weakness t h a t e x i s t e d a t the time o f k i m b e r l i t e emplacement.
With
these q u a l i f i c a t i o n s , the Mwadui k i m b e r l i t e r e g i o n can be c h a r a c t e r i z e d as an area o f i n t e r s e c t i n g n o r t h e r l y and n o r t h w e s t t r e n d i n g s t r u c t u r a l t r e n d s . 4 4.1
DISCUSSION I n t e r p r e t a t i o n Although located i n d i v e r s e t e r r a n e s , the ColoradoWyoming State Line Kim
b e r l i t e D i s t r i c t , the Mir pipe and the Mwadui pipe a l l occur near the i n t e r s e c t i o n o r i n t e r r u p t i o n o f major s t r u c t u r a l trends t h a t may be i n t e r p r e t e d as deepseated f a u l t s .
Such an a s s o c i a t i o n suggests t h a t these features may have
provided the zones o f weakness t h a t allowed k i m b e r l i t e magma to ascend from up per mantle depths.
The present study demonstrates t h a t a s s o c i a t e d t r a n s v e r s e
patterns are detectable on a s m a l l s c a l e data base composed o f remote s e n s i n g , geomorphological, and geophysical i n p u t s , and may p r o v i d e a t e x t u r a l s i g n a t u r e t h a t i s e x p l o i t a b l e i n the search f o r new k i m b e r l i t e o c c u r r e n c e s . The coincidence o f t r a n s v e r s e t e x t u r a l patterns and k i m b e r l i t e provinces i s welldocumented.
P a r r i s h and Lavin (1982) termed such patterns " c r o s s
s t r u c t u r a l lineament i n t e r s e c t i o n s " and r e l a t e d them to k i m b e r l i t e l o c a t i o n s i n New York and P e n n s y l v a n i a . Koldaev (1976) l i n k e d the occurrence o f S i b e r ian k i m b e r l i t e s to deepseated f a u l t s and t h e i r i n t e r s e c t i o n s ; he suggested
18 t h a t such features are not always obvious a t the surface but can be r e f l e c t e d i n g r a v i t y and magnetic anomalies and o t h e r i n d i c a t o r s .
In an i n n o v a t i v e model
t h a t includes c u r v i l i n e a r as well as s t r a i g h t l i n e f e a t u r e s , P r e t o r i u s ( p e r s . commun., 1981), on the basis o f smoothed regional g r a v i t y d a t a , suggested t h a t diamond!ferous k i m b e r l i t e s i n southern A f r i c a tend to occur at the i n t e r s e c t i o n o f e x t e n s i v e a n t e d i s a l and r a d i a l p a t t e r n s .
He hypothesized s i m i l a r
in R u s s i a , A u s t r a l i a , and N. America ( P r e t o r i u s , 1979).
patterns
The present study p r o
vides a few a d d i t i o n a l examples o f t r a n s v e r s e t e x t u r a l patterns to support an idea t h a t appears to be f i n d i n g i n c r e a s i n g acceptance and expression i n the c o n t e x t o f t a r g e t i n g k i m b e r l i t e s a t megascopic s c a l e s . At a f i n e r f o c u s , the study demonstrates t h a t k i m b e r l i t e regions w i t h a long h i s t o r y o f production present a p a t t e r n on Landsat images t h a t i s q u i t e d i f f e r ent from t h a t shown by a r e l a t i v e l y undeveloped r e g i o n .
Mwadui ( F i g . 5 a ) , d i s
covered i n 1940, and Mir ( F i g . 3 a ) , d i s c o v e r e d i n 1955, both e x h i b i t e x t e n s i v e i n d i c a t i o n s o f surface mining a c t i v i t y , r e p r e s e n t i n g many years o f r e c o v e r y op e r a t i o n s .
Diamonds were not recognized i n ColoradoWyoming u n t i l 1975 (McCal
lum and Mabarak, 1976a and 1976b), and c o n s e q u e n t l y , the Landsat image o f t h i s r e g i o n ( F i g . 2a) shows no evidence o f a s s o c i a t e d mining a c t i v i t y . 4.2
Methodology Although Mwadui and Mir are exceptions (see F i g . 7 ) , k i m b e r l i t e occurrences
are g e n e r a l l y r e l a t i v e l y small f e a t u r e s ;
Mannard (1968) reckoned t h a t most are
smaller than 500 f t (150 m) i n diameter.
Some workers ( e . g . N i x o n , 1980) t h e r e
f o r e c o n s i d e r Landsat 1, 2, and 3 images w i t h a r e s o l u t i o n o f approximately 200 χ 260 f t (60 χ 80 m), to be o f l i m i t e d value i n d e t e c t i n g i n d i v i d u a l l i t e s d i r e c t l y .
kimber
F i g . 7 d e p i c t s the r a t i o n a l e f o r t h i s b e l i e f by comparing the
surface e x p r e s s i o n o f wellknown k i m b e r l i t e occurrences to a r e p r e s e n t a t i v e Landsat g r i d at the same s c a l e .
Smaller p i p e s , such as the F e r r i s 1 and Kimber
l e y , could e a s i l y be missed on a s u i t a b l y enlarged Landsat image; o n l y over the l a r g e s t pipes are enough p i c t u r e elements ( p i x e l s ) included to form a r e c o g n i z able p a t t e r n .
Nixon (1980) recommended t h a t a more a p p r o p r i a t e f u n c t i o n o f
Landsat images i s to express the r e g i o n a l s t r u c t u r a l s e t t i n g .
The present study
shows t h a t Landsat images at a s c a l e o f 1:1,000,000 are w e l l s u i t e d to regional s t u d i e s , p a r t i c u l a r l y when c o r e g i s t e r e d w i t h o t h e r twodimensional
d a t a .
However, t e l e d e t e c t i v e a n a l y s i s i s not l i m i t e d to a r e g i o n a l scale nor to the types o f data employed i n t h i s s t u d y .
Longman (1980) showed t h a t computer
enhanced Landsat data at a scale o f 1:35,000 could be r e l a t e d to i n d i v i d u a l k i m b e r l i t e occurrences i n northwestern A u s t r a l i a .
Landsat 4 , launched i n J u l y
o f 1982, produced images composed o f p i x e l s t h a t were c o n s i d e r a b l y smaller (100 χ 100 f t , o r 30 χ 30 m) than those making up the Landsat images used i n t h i s s t u d y .
I n comparison, the area covered by the 20 p i x e l s shown i n F i g . 7 would
be covered by more than 100 p i x e l s w i t h the newer system, p e r m i t t i n g much f i n e r
19
AFRICA
SIBERIA
COLORADOWYOMING
SLOAN 1 MIR FERRIS 1
0 MWADUI
>^
] KIMBERLEY
Ο ZARNITZA
PREMIER
5 0 0 Μ
1 ι ι ι I 1
5 x 5 GRID OF LANDSAT PIXELS (EACH ^ 6 0 χ 80 M)
F i g . 7. Comparison o f s i z e o f surface e x p r e s s i o n o f wellknown k i m b e r l i t e occurrences and a g r i d o f p i x e l s from Landsat 1, 2, o r 3. Surface plans from Bardet (1973) and McCallum and Mabarak (1976b). Note t h a t the scale o f t h i s f i g u r e i s c o n s i d e r a b l y l a r g e r than previous Landsat images. d i s t i n c t i o n s to be made and, i n p r i n c i p l e , smaller k i m b e r l i t e s to be s t u d i e d . When launched, the French SPOT system w i l l o f f e r even f i n e r r e s o l u t i o n .
Other
data sets t h a t might be c o r e g i s t e r e d are l i m i t e d o n l y by imagination and a v a i l Guinness e t a l . (1983) demonstrated t h a t d i g i t a l processing and the
a b i l i t y ;
s u p e r p o s i t i o n o f such d i v e r s e inputs as Bouguer g r a v i t y and a i r b o r n e gammaray data on Landsat images can generate v a l u a b l e questions regarding c r u s t a l s t r u c t u r e . 5
CONCLUSIONS 1.
Through the a n a l y s i s o f c o r e g i s t e r e d surface and subsurface data planes i n c l u d i n g both t r a d i t i o n a l and s a t e l l i t e p e r s p e c t i v e s the t e l e d e t e c t i v e approach provides an e f f e c t i v e means o f a s s e s sing the composite c h a r a c t e r o f w i d e l y separated study a r e a s .
2.
Transverse t e x t u r a l patterns appear to be a s s o c i a t e d w i t h w e l l known k i m b e r l i t e regions i n N. America, E. A f r i c a , and S i b e r i a , and may have value i n t a r g e t i n g new occurrences o f k i m b e r l i t e .
ACKNOWLEDGMENTS We would l i k e to acknowledge useful d i s c u s s i o n s w i t h f r i e n d s and colleagues at Colorado State U n i v e r s i t y , the Wyoming Geological S u r v e y , the U n i v e r s i t y o f Wyoming, the U . S . Geological Survey Denver, and Cominco America F o r t C o l l i n s . Support was p r o v i d e d by the Mining and Mineral Resour ces I n s t i t u t e , Colorado School o f Mines, Golden.
This page intentionally left blank
EVALUATION OF GEOPHYSICAL TECHNIQUES COLORADOWYOMING KIMBERLITE PROVINCE
FOR DIATREME
DELINEATION
IN THE
by J . A . CARLSON, R.B. JOHNSON, M.E. McCALLUM, D . L . CAMPBELL AND J . P . PADGETT
A b s t r a c t K i m b e r l i t e diatremes i n northern Colorado and southern Wyoming are g e n e r a l l y c h a r a c t e r i z e d by poor exposure due to t r u n c a t i o n by e r o s i o n surfaces and presence of u b i q u i t o u s c o l l u v i a l and/or s o i l c o v e r . Ground geophysical methods may be used i n c o n j u n c t i o n w i t h g e o l o g i c a l mapping to d e l i n e a t e diatreme c o n t a c t s . Magnetic surveys reveal t h a t most diatremes are charac t e r i z e d by small p o s i t i v e d i p o l a r anomalies. C o n v o l u t i o n of magnetic data and removal o f r e g i o n a l magnetic gradients allow f o r d e l i n e a t i o n of diatreme b o u n d a r i e s . E l e c t r i c a l r e s i s t i v i t y and c o n d u c t i v i t y ( e l e c t r o m a g n e t i c ) surveys show t h a t k i m b e r l i t i c s o i l s are g e n e r a l l y 5 t o 10 times more conductive than l o c a l g r a n i t i c s o i l s . A "lowinductionnumber" EM method was e f f e c t i v e f o r l o c a t i n g k i m b e r l i t e contacts i n areas of modest s o i l cover whereas k i m b e r l i t e covered by as much as 20 meters of s u r f i c i a l material could be detected using the VLF method. R a d i o a c t i v i t y surveys were e f f e c t i v e o n l y i n areas where s o i l c o v e r i s t h i n to absent. G r a v i t y and r e f r a c t i o n seismic methods were i n e f f e c t i v e i n determining diatreme contacts because of a common lack of appreciable c o n t r a s t s i n d e n s i t y and e l a s t i c i t y o f k i m b e r l i t e and host g r a n i t e s . Magnetic, e l e c t r i c a l r e s i s t i v i t y and electromagnetic methods c l e a r l y are the most e f f e c t i v e geophysical techniques tested f o r d e l i n e a t i n g k i m b e r l i t e con t a c t s i n the ColoradoWyoming k i m b e r l i t e p r o v i n c e .
INTRODUCTION Over 90 k i m b e r l i t e occurrences have been recognized i n the F r o n t Range of northern Colorado and the Laramie Range of southern Wyoming.
The k i m b e r l i t e s
are d i s t r i b u t e d along a n o r t h s o u t h trend extending from 1.6 kilometers west of B o u l d e r , Colorado 176 k i l o m e t e r s northward to F a r t h i n g , Wyoming. K i m b e r l i t e diatremes and plugs i n the ColoradoWyoming k i m b e r l i t e p r o v i n c e range from l e s s than 3 meters to n e a r l y 600 meters i n plan length (Smith e t a l , 1979). l a t e
The diatremes g e n e r a l l y have n e g l i g i b l e r e l i e f due to t r u n c a t i o n by a T e r t i a r y
to
P l e i s t o c e n e
e r o s i o n
s u r f a c e
(McCallum e t
a l ,
1975).
K i m b e r l i t e h o s t rock (mostly g r a n i t e and g r a n o d i o r i t e ) contacts are r a r e l y seen because of the common presence of g r a n i t i c g r u s , c o l l u v i u m and/or a l l u v i u m . Ground geophysical methods may be used i n c o n j u n c t i o n with mapping to d e l i n e a t e diatreme c o n t a c t s .
g e o l o g i c a l
Geophysical methods f o r k i m b e r l i t e
d e l i n e a t i o n depend on c o n t r a s t s in s p e c i f i c g r a v i t y , magnetic s u s c e p t i b i l i t y , e l e c t r i c a l
p r o p e r t i e s , r a d i o a c t i v i t y ,
and e l a s t i c i t y
e n c l o s i n g host rock (Paterson e t a l , 1977).
of k i m b e r l i t e and the
A number of geophysical techniques
have been t e s t e d i n the ColoradoWyoming p r o v i n c e i n c l u d i n g g r a v i t y , magnetic, e l e c t r i c a l r e f r a c t i o n .
r e s i s t i v i t y , e l e c t r o m a g n e t i c , gamma ray spectrometry and seismic
22 GRAVITY SURVEYS G e n e r a l l y , the g r a v i t y method was i n e f f e c t i v e i n determining diatreme con t a c t s because of a common lack of appreciable c o n t r a s t s i n d e n s i t i e s of kim b e r l i t e and host r o c k s . several
State
L i n e
unpublished d a t a ) . i n
p r e p . )
of
the
No s i g n i f i c a n t g r a v i t y anomalies were recognized over
k i m b e r l i t e s
t e s t e d
p r i o r
t o
t h i s
study
(McCallum,
R e s u l t s from a gravimeter survey reported by Padgett (1983, Green Mountain
k i m b e r l i t e
near B o u l d e r , Colorado were
i n c o n c l u s i v e , p o s s i b l y because of topographic e f f e c t s . A small negative g r a v i t y anomaly was detected o v e r the Maxwell 1 k i m b e r l i t e , which i s l o c a t e d near the S c h a f f e r pipe c l u s t e r i n the western p o r t i o n of the State L i n e d i s t r i c t .
G r a v i t y r e s i d u a l s were c a l c u l a t e d by applying Bouguer and
Free A i r c o r r e c t i o n s .
Standard l i n e a r
remove regional g r a v i t y t r e n d s .
r e g r e s s i o n techniques were used to
The r e s u l t i n g p r o f i l e
( F i g . 1) i n d i c a t e s a
small negative g r a v i t y anomaly (about 0.8 mgal) centered above the diatreme. The g r a v i t y anomalous curve c l o s e l y approximates the p a r a b o l i c shaped curve obtained by G e r r y t s (1967, g r a n i t e .
p. 441) f o r a Tanzanian k i m b e r l i t e emplaced i n
According to G e r r y t s (1967), the margin of the k i m b e r l i t e occurs a t
the h a l f maximum anomaly a f t e r
removal of regional e f f e c t s .
The estimated
western margin of the Maxwell 1 k i m b e r l i t e pipe based on g r a v i t y r e s u l t s i s i n c l o s e accord with the contact e s t a b l i s h e d by mapping changes i n eluvium ( F i g . 1 ) . O v e r a l l , the g r a v i t y method probably has l i t t l e p o t e n t i a l
f o r the d e l i n e
a t i o n of k i m b e r l i t e diatremes i n the ColoradoWyoming p r o v i n c e because g r a v i t y anomalies are small or absent i n most cases.
G r a v i m e t r i c surveys may be of
some value i n e s t a b l i s h i n g margins of l a r g e diatremes, p a r t i c u l a r l y i n areas where foundered blocks and/or c o l l u v i u m may obscure actual pipe boundaries.
Ε 0.50 r
K I M B E R L I T E
F i g u r e 1.
Bouguer g r a v i t y r e s i d u a l p r o f i l e of Maxwell 1 k i m b e r l i t e p i p e : e a s t
west b a s e l i n e .
S o l i d p a t t e r n represents i d e n t i f i e d k i m b e r l i t e , s t i p p l e d p a t
t e r n corresponds to suspected k i m b e r l i t e .
23 MAGNETIC SURVEYS The magnetic method g e n e r a l l y has been e f f e c t i v e i n determining c o n t a c t s i n the ColoradoWyoming k i m b e r l i t e p r o v i n c e .
diatreme
Most diatreme contacts
are n e a r l y v e r t i c a l , which r e s u l t s i n pronounced magnetic edge e f f e c t s . Ground magnetic surveys (proton magnetometer) were used by Smith (1977) to e s t a b l i s h contacts of the IM21 k i m b e r l i t e of the I r o n Mountain d i s t r i c t of Wyoming. The IM21 i s c h a r a c t e r i z e d by extreme (up to 2000 gamma) p o s i t i v e and n e g a t i v e magnetic peaks.
However, deeply buried contacts of the k i m b e r l i t e
c o u l d not be e s t a b l i s h e d as v a r i a b i l i t y i n magnetite content of the enclosing g r a n i t e l i k e l y masks the magnetic e f f e c t of the buried k i m b e r l i t e (Smith,1977). The l o c a t i o n of the Green Mountain diatreme near B o u l d e r , Colorado was reasonably a c c u r a t e l y determined u t i l i z i n g a proton magnetometer.
F i g u r e 2 i s
a t o t a l magnetic contour map of the Green Mountain k i m b e r l i t e and surrounding a r e a . The
The k i m b e r l i t e i s c h a r a c t e r i z e d by a 200 t o 1600 gamma p o s i t i v e anomaly. o v e r a l l
a p p r o p r i a t e .
p a t t e r n
model
i s
C o m p l e x i t i e s of the magnetic s i g n a t u r e may be a t t r i b u t e d
suggests
t h a t
a
s t e e p l y
dipping
d i p o l e
to
topographic v a r i a t i o n s .
L
I
M E T E R S
F i g u r e 2.
T o t a l magnetic f i e l d contour map of Green Mountain k i m b e r l i t e
diatreme (thousands of gammas). k i m b e r l i t e i s shown by heavy l i n e .
Contour i n t e r v a l i s 200 gammas.
O u t l i n e of
24 Small d i p o l a r ground magnetic anomalies have been detected over a number of State L i n e diatremes ( r a n g e : 150 to +1000 gammas) and these have been useful i n e s t a b l i s h i n g pipe c o n t a c t s .
Magnetic i n c l i n a t i o n i n the State Line area i s
about 71 d e g r e e s , which causes a s l i g h t s o u t h e r l y displacement of magnetic peaks.
F o r example, the Aultman 1 and 2 diatremes show weak magnetic highs of
50 t o 60 gammas and 20 t o 30 gammas, r e s p e c t i v e l y , which are located over the e n c l o s i n g g r a n i t e a t the southern boundaries of the pipes (Hausel e t a l , 1979). The Nix 2 k i m b e r l i t e plug shows magnetic highs up to 1000 gammas but g e n e r a l l y averages about 200 gammas.
K i m b e r l i t e s of the S c h a f f e r c l u s t e r are charac
t e r i z e d by p o s i t i v e magnetic anomalies i n the range 60 t o 200 gammas.
F i g u r e 3
i s a t o t a l f i e l d magnetic p r o f i l e f o r the Maxwell 2 k i m b e r l i t e of the State L i n e d i s t r i c t .
Several State L i n e k i m b e r l i t e s
are c h a r a c t e r i z e d by magnetic
p r o f i l e s e x h i b i t i n g a broad p o s i t i v e d i p o l a r anomaly w i t h a superimposed nega t i v e c e n t e r , p o s s i b l y r e s u l t a n t from d i f f e r e n t i a l
weathering w i t h i n the p i p e s .
A v e r t i c a l magnetometer survey conducted by Puckett (1971) e s t a b l i s h e d t h a t the Sloan 1 k i m b e r l i t e pipe o f northern Colorado has a negative magnetic ano maly r e l a t i v e to the enclosing country r o c k s .
The eastern h a l f o f the pipe i s
c h a r a c t e r i z e d by a 30 t o 40 gamma low whereas the western h a l f shows a l a r g e r n e g a t i v e magnetic anomaly i n the range of 50 to 140 gammas ( P u c k e t t , 1971). G e n e r a l l y , i n the ColoradoWyoming k i m b e r l i t e p r o v i n c e , hypabyssal kim b e r l i t e bodies y i e l d g r e a t e r magnetic anomalies than diatremes c h a r a c t e r i z e d by b r e c c i a .
C o n v o l u t i o n of magnetic data (3 p o i n t f i l t e r element) and removal of
r e g i o n a l magnetic gradients allows f o r d e l i n e a t i o n of most ColoradoWyoming k i m b e r l i t e p i p e s . magnetic
surveys
E a s e , speed of operation and o v e r a l l e f f e c t i v e n e s s make p a r t i c u l a r l y
useful
i n
d e l i n e a t i n g
k i m b e r l i t e s
i n
the
ColoradoWyoming k i m b e r l i t e p r o v i n c e .
30 45 60 S T A T I O N NO. K I M B E R L I T E
F i g u r e 3. S t i p p l e d
T o t a l magnetic f i e l d p r o f i l e of Maxwell 2 p i p e : p a t t e r n
shows
l a t e r a l
e x t e n t
of
N35W b a s e l i n e .
suspected
k i m b e r l i t e .
25 ELECTRICAL RESISTIVITY SURVEYS R e s i s t i v i t y surveys c a r r i e d out i n the State L i n e d i s t r i c t
of northern
Colorado and southern Wyoming have been successful i n d i s t i n g u i s h i n g k i m b e r l i t e versus g r a n i t e d e r i v e d s o i l s i n areas of modest c o l l u v i a l and/or a l l u v i a l s o i l c o v e r .
In these areas k i m b e r l i t i c s o i l s are a t l e a s t 5 to 10 times more
c o n d u c t i v e than g r a n i t i c s o i l s . Both h o r i z o n t a l
and v e r t i c a l
p r o f i l i n g techniques have been applied
d i s t i n g u i s h i n g k i m b e r l i t i c s o i l s from g r a n i t i c s o i l s .
i n
H o r i z o n t a l r e s i s t i v i t y
p r o f i l i n g was e f f e c t i v e l y used by Puckett (1971) and Hausel e t al (1979) to determine contacts of the Sloan 1 diatreme of northern Larimer C o u n t y , Colorado and the Aultman 1 and 2 pipes of southern Albany C o u n t y , Wyoming, r e s p e c t i v e l y . Puckett (1971) r e p o r t s r e s i s t i v i t y values ranging from 24 t o 30 ohmmeters f o r weathered k i m b e r l i t e at the Sloan 1 s i t e .
Weathered k i m b e r l i t e present w i t h i n
the Aultman 1 and 2 diatremes showed apparent r e s i s t i v i t y ranges between 24 t o 76 ohmmeters whereas nearby g r a n i t e ranged from 1522256 ohmmeters (Hausel e t a l , 1979). V e r t i c a l
e l e c t r i c a l
p r o f i l e s of apparent r e s i s t i v i t y versus Schlumberger
a r r a y e l e c t r o d e spacings f o r the Maxwell 1 k i m b e r l i t e pipe and surrounding g r a Apparent r e s i s t i v i t i e s of k i m b e r l i t e and kim
n i t e are shown i n F i g u r e 4. b e r l i t e
d e r i v e d s o i l s
range from 85 to
158 ohmmeters
whereas apparent
r e s i s t i v i t i e s of g r a n i t i c materials range from 1801000 ohmmeters.
The kim
b e r l i t e v e r t i c a l r e s i s t i v i t y p r o f i l e ( F i g . 4) i s Ushaped which i s suggestive o f three l a y e r s whereas the v e r t i c a l p r o f i l e of the g r a n i t e i s n e a r l y l i n e a r w i t h a s l i g h t i n f l e c t i o n
suggesting a simple two l a y e r case with i n c r e a s i n g
apparent r e s i s t i v i t y with depth.
I000
F
Ε
ο
° o
ΙΟ Ο
(
0
Δ PC SHERMAN
G R A N I T E
Ο M A X W E L L I D I A T R E M E •
•5
• •
ι ι n u n
3.5
1—L_
35
SCHLUMBERGER L SPACING (meters)
F i g u r e 4.
V e r t i c a l r e s i s t i v i t y (ohmmeters) p r o f i l e s of Maxwell 1 k i m b e r l i t e
diatreme and surrounding Precambrian g r a n i t e .
26
The e l e c t r i c a l
r e s i s t i v i t y method i s useful i n d i s t i n g u i s h i n g k i m b e r l i t e
and g r a n i t e i n areas of l i m i t e d wet s o i l c o v e r .
Weathered k i m b e r l i t e has a
c h a r a c t e r i s t i c a l l y low r e s i s t i v i t y t h a t i s a t t r i b u t e d to i t s great capacity to r e t a i n water due to p e r v a s i v e f r a c t u r i n g and high c l a y content (Mannard, 1968). Complications i n i n t e r p r e t a t i o n of r e s i s t i v i t y data a r i s e from l a t e r a l changes i n s o i l thickness and rock type w i t h i n spread dimensions.
V e r t i c a l r e s i s t i v i t y
p r o f i l i n g can be used to gain information regarding thickness and average con d u c t i v i t y of subsurface k i m b e r l i t e l a y e r s .
H o r i z o n t a l p r o f i l i n g appears to be
most e f f e c t i v e i n l o c a t i n g k i m b e r l i t e h o s t rock c o n t a c t s .
ELECTROMAGNETIC SURVEYS As
i n
e l e c t r i c a l
r e s i s t i v i t y
s u r v e y s ,
d e l i n e a t i o n
of
diatremes
using
electromagnetic methods depends upon c o n t r a s t s i n c o n d u c t i v i t y of k i m b e r l i t e and the enclosing host rock.
C o n t r a s t s i n e l e c t r i c a l p r o p e r t i e s of k i m b e r l i t e
and the surrounding rocks may r e s u l t from weathering of k i m b e r l i t e to " y e l l o w g r o u n d " , t e s t e d
a h i g h l y conductive c l a y r i c h l a y e r . f o r
diatreme
d e l i n e a t i o n
i n
the
Electromagnetic techniques
S t a t e
L i n e
d i s t r i c t
"lowinductionnumber" and VLF ( v e r y low frequency) methods. number electromagnetic systems have small t r a n s m i t t e r
i n c l u d e
Lowinduction
to r e c e i v e r distances
and use frequencies i n s u r i n g r e l a t i v e l y l a r g e s k i n d e p t h s .
A t r a n s m i t t e r c o i l
induces
Each c u r r e n t
c i r c u l a r
eddy c u r r e n t loops i n t o
the e a r t h .
generates a magnetic f i e l d which i s p r o p o r t i o n a l f l o w i n g w i t h i n t h a t l o o p .
loop
to the amount of c u r r e n t
The r e c e i v e r c o i l i n t e r c e p t s p a r t of the magnetic
f i e l d from each loop r e s u l t i n g i n an output v o l t a g e which i s also proportional t o the t e r r a i n c o n d u c t i v i t y . EM31 (Geonics L t d . Trademark) system f u r n i s h e s c o n d u c t i v i t y readings i n u n i t s o f millimhos per meter.
T r a n s m i t t e r to r e c e i v e r distance i s 3.7 meters
and the operating frequency i s 9.8 k i l o h e r t z . (meters) versus c o n d u c t i v i t y material
P r o f i l e s of s t a t i o n distances
(mmhos/m) show t h a t c o n d u c t i v i t y of
s u r f i c i a l
o v e r l y i n g k i m b e r l i t e i s about 3 t o 5 times g r e a t e r than the conduc
t i v i t y o f g r a n i t i c residuum ( F i g . 5 ) .
Comparisons o f e a s t w e s t and northsouth
o r i e n t a t i o n s of the lowinductionnumber system measured over the same s t a t i o n s reveal t h a t c o n d u c t i v i t y i s n e a r l y i s o t r o p i c f o r both g r a n i t i c and k i m b e r l i t i c m a t e r i a l s .
High c o n d u c t i v i t y values encountered over swamps ( s i m i l a r to those
measured o v e r k i m b e r l i t e ) systems
are
not
s u i t a b l e
suggest t h a t lowinductionnumber f o r
use
i n
marshes
and
electromagnetic
a c t i v e
d r a i n a g e s .
A d d i t i o n a l l y , " f a l s e " readings may occur over l a r g e foundered blocks of host rocks w i t h i n diatremes.
8 5.01 4
£
ε w
>
30.01
> I5.0h α §
1 ι 0.0 — I 90 60 30 Ο ι — ι — 1 3 0 m . !
Ο ο
ι 0
ι 30
ι 60
ι 90
ι Π 120 150 180 S T A T I O N NO.
t
K I M B E R L I T E
F i g u r e 5.
C o n d u c t i v i t y (mmhos/meter) p r o f i l e of Maxwell 1 p i p e :
b a s e l i n e .
S o l i d p a t t e r n
shows l a t e r a l
e x t e n t
of
n o r t h s o u t h
i d e n t i f i e d
k i m b e r l i t e ,
s t i p p l e d p a t t e r n i n d i c a t e s suspected k i m b e r l i t e .
The VLF ( v e r y low frequency) method a l s o was e f f e c t i v e i n d e l i n e a t i n g kim b e r l i t e c o n t a c t s .
EM16R (Geonics L t d . trademark) i s a VLF system t h a t y i e l d s
values of apparent r e s i s t i v i t y and phase a n g l e . show marked peaks a t k i m b e r l i t e g r a n i t e
Apparent r e s i s t i v i t y p r o f i l e s
contacts
( F i g .
6 ) .
Phase angle
measurements are somewhat d e f i n i t i v e ( g e n e r a l l y 0 >45° over k i m b e r l i t e
indi
c a t i n g the presence of a conductor at depth) but may be ambiguous p o s s i b l y due t o topographic e f f e c t s and/or presence of mafic x e n o l i t h s w i t h i n the g r a n i t e . Average values of apparent r e s i s t i v i t y are 65 ohmmeters and 1000 ohmmeters f o r k i m b e r l i t e
and g r a n i t e r e s p e c t i v e l y .
Depth of p e n e t r a t i o n of the VLF
system i s dependent on the frequency of the chosen broadcast s t a t i o n and the c o n d u c t i v i t y
of
subsurface m a t e r i a l s
i n v o l v e d .
Average p e n e t r a t i o n
i n t o
Maxwell 1 k i m b e r l i t e was about 20 meters. W
Ε
_ 4 . 0 r
ο ο
ο .ο ϋ
150
120 90 60 Ο t—ι —130 m.
30
Ο
30
60
9 0 120 150 S T A T I O N NO.
K I M B E R L I T E
F i g u r e 6 · diatreme:
Apparent r e s i s t i v i t y e a s t w e s t b a s e l i n e .
i d e n t i f i e d k i m b e r l i t e ,
(ohmm)
p r o f i l e
of Maxwell
1
k i m b e r l i t e
Data from VLF s u r v e y . S o l i d p a t t e r n represents
s t i p p l e d p a t t e r n corresponds to suspected k i m b e r l i t e .
28 GAMMA RAY SPECTROMETRY R a d i o a c t i v i t y surveys were c a r r i e d out over two State L i n e diatremes and surrounding Precambrian g r a n i t e to t e s t the p o s s i b i l i t y of d e l i n e a t i n g diatreme contacts based upon d i f f e r e n c e s outcrops
and s o i l s .
i n r a d i o a c t i v i t y
C a l i b r a t i o n
equations
of k i m b e r l i t e and g r a n i t e
were applied
to
c o n v e r t
raw
c o r r e c t e d readings to % K, ppm ell and ppm e T h . T o t a l count (counts per second) r a d i o a c t i v i t y p r o f i l e s ( F i g . 7) are e f f e c t i v e f o r d e l i n e a t i o n of diatreme con t a c t s o n l y i n areas where s o i l cover i s t h i n or absent.
K I M B E R L I T E
F i g u r e 7.
T o t a l count r a d i o a c t i v i t y p r o f i l e of Maxwell 1 k i m b e r l i t e diatreme:
eastwest b a s e l i n e .
S o l i d p a t t e r n represents i d e n t i f i e d k i m b e r l i t e ,
s t i p p l e d
p a t t e r n i n d i c a t e s suspected k i m b e r l i t e .
P r o f i l e s of percentage potassium may help d i s t i n g u i s h shallow k i m b e r l i t e from g r a n i t i c s o i l s i n areas where s o i l s are r e s i d u a l ( F i g . 8 ) . s o i l s
t e s t e d average about 1.25
to
2.5
K i m b e r l i t i c
percentage potassium whereas the
surrounding g r a n i t i c s o i l s average 2.5 t o 3.5 percentage potassium.
N.35W.
S.35E.
3.0
30 45 60 S T A T I O N NO. K I M B E R L I T E
F i g u r e 8. b a s e l i n e .
Potassium r a d i o a c t i v i t y
(% K) p r o f i l e
of Maxwell 2 p i p e :
N35W
S t i p p l e d p a t t e r n i n d i c a t e s l a t e r a l e x t e n t of suspected k i m b e r l i t e .
29 P r o f i l e s
o f e q u i v a l e n t uranium
i n c o n c l u s i v e . o f
(ppm) and e q u i v a l e n t thorium
E r r a t i c concentrations of eU and eTh may r e f l e c t
isotopes by surface p r o c e s s e s .
O v e r a l l , i t
(ppm) are
r e d i s t r i b u t i o n
i s apparent t h a t gamma ray
spectrometry i s not v i a b l e f o r d e l i n e a t i n g ColoradoWyoming k i m b e r l i t e contacts because of
i t s
A d d i t i o n a l l y ,
l i m i t e d
depth p e n e t r a t i o n
( g e n e r a l l y
l e s s
than
1 m e t e r ) .
radioelement d i s p e r s i o n and/or s o i l movement may s i g n i f i c a n t l y
a l t e r o r i g i n a l r a d i o a c t i v i t y p a t t e r n s .
SEISMIC REFRACTION SURVEYS Seismic r e f r a c t i o n surveys of several State L i n e diatremes are reported by Puckett (1971), Puckett e t al (1972), Hausel e t al (1979) and C a r l s o n (1983). Puckett (1971) r e p o r t s seismic v e l o c i t i e s of 457 meters per second and 1983 meters per second f o r k i m b e r l i t i c s o i l and weathered k i m b e r l i t e r e s p e c t i v e l y of the Sloan 1 diatreme of northern Larimer County, C o l o r a d o .
Seismic survey
r e s u l t s of the Aultman 1 diatreme i n d i c a t e three dipping l a y e r s of subsurface k i m b e r l i t e (Hausel e t a l , 1979).
The top l a y e r has an average seismic v e l o c i t y
o f 6570 meters per second, the intermediate l a y e r has an average seismic v e l o c i t y of 1590 meters per second, and the lowest detectable l a y e r averages about 3530 meters per second (Hausel e t a l , 1979). Seismic v e l o c i t i e s determined f o r the materials present w i t h i n the Maxwell 1 and 2 k i m b e r l i t e diatremes tend to group the subsurface materials i n t o two c a t e g o r i e s : k i m b e r l i t e
k i m b e r l i t i c s o i l a l l u v i u m mixture ( " y e l l o w ground") and weathered ( " b l u e
g r o u n d " ) .
The v e l o c i t y
ranges corresponding
to
these
m a t e r i a l s are 339 meters per second f o r k i m b e r l i t i c s o i l and 2450 meters per second f o r weathered k i m b e r l i t e .
Seismic v e l o c i t i e s obtained f o r an area
u n d e r l a i n by Precambrian g r a n i t e average about 436 meters per second and 1543 meters per second f o r the c o l l u v i u m and u n d e r l y i n g weathered g r a n i t e bedrock r e s p e c t i v e l y . Comparison of
seismic r e f r a c t i o n
p r o f i l e s
of k i m b e r l i t e
( F i g . 9a) and
Precambrian g r a n i t e ( F i g . 9b) reveal t h a t seismic r e f r a c t i o n does not u n i q u e l y d i f f e r e n t i a t e k i m b e r l i t e and host g r a n i t e s .
E r r o r s i n seismic data i n t e r p r e t a
t i o n may a r i s e because of d i v e r s i t y of rock types near diatremes, presence of l a r g e x e n o l i t h s w i t h i n k i m b e r l i t e and g r a n i t e , weathering and f r a c t u r i n g g r a n i t e , and f a u l t s .
of
Use of seismic r e f r a c t i o n surveys i n the ColoradoWyoming
p r o v i n c e i s probably l i m i t e d to modeling subsurface l a y e r i n g and i r r e g u l a r i t i e s o f s o i l / w e a t h e r e d k i m b e r l i t e i n t e r f a c e s of r e l a t i v e l y l a r g e ( a t l e a s t 50 meters i n diameter) k i m b e r l i t e diatremes.
30
DISTANCE (meters) F i g u r e 9 ·
Seismic r e f r a c t i o n p r o f i l e s ,
eastwest survey l i n e .
a .
Maxwell 1 k i m b e r l i t e diatreme:
b. Precambrian Sherman g r a n i t e :
Western State Line
d i s t r i c t .
CONCLUSIONS K i m b e r l i t e diatremes i n the ColoradoWyoming p r o v i n c e are g e n e r a l l y charac t e r i z e d by poor exposure due to t r u n c a t i o n by e r o s i o n surfaces and presence of u b i q u i t o u s c o l l u v i a l and/or s o i l c o v e r .
Some k i m b e r l i t e h o s t rock contacts may
be p a r t l y defined by the presence of k i m b e r l i t i c e l u v i a l i n d i c a t o r s ; however, ground geophysical methods may be used to more a c c u r a t e l y d e l i n e a t e
diatreme
boundaries or to l o c a t e them i n areas of s i g n i f i c a n t c o v e r . Magnetic surveys have been r e l a t i v e l y c o n t a c t s .
successful i n determining
diatreme
Enhancement of magnetic edge e f f e c t s i s accomplished by c o n v o l u t i o n
o f magnetic data (3 p o i n t f i l t e r element) and removal of regional
magnetic
g r a d i e n t s .
magnetic
Most
diatremes
are
c h a r a c t e r i z e d
by
small
d i p o l a r
31 anomalies.
Hypabyssal k i m b e r l i t e bodies apparently y i e l d g r e a t e r magnetic ano
malies than diatremes c h a r a c t e r i z e d by i n t r u s i v e b r e c c i a . E l e c t r i c a l r e s i s t i v i t y and electromagnetic surveys were e f f e c t i v e i n d i f f e r e n t i a t i n g
k i m b e r l i t e ,
host g r a n i t e ,
and o v e r l y i n g s u r f i c i a l
m a t e r i a l .
Average ranges of apparent r e s i s t i v i t y f o r k i m b e r l i t i c and g r a n i t i c s o i l s are about 10 t o 30 ohmmeters and 150 t o 500 ohmmeters r e s p e c t i v e l y .
Marked peaks
occur at k i m b e r l i t e / g r a n i t e contacts f o r both VLF and lowinductionnumber s u r veys but VLF has the advantage of g r e a t e r depth of p e n e t r a t i o n ( g r e a t e r than 20 m e t e r s ) .
VLF system phase angle measurements were reasonably
( g e n e r a l l y g r e a t e r than 45° over k i m b e r l i t e ) .
Although e l e c t r i c a l
d e f i n i t i v e r e s i s t i v i t y
and electromagnetic surveys both e a s i l y d i s t i n g u i s h k i m b e r l i t e , EM surveys are favored because of g r e a t e r speed and ease of o p e r a t i o n . G r a v i t y
and seismic
r e f r a c t i o n
surveys were r e l a t i v e l y
i n e f f e c t i v e
i n
determining diatreme contacts because of a common lack of appreciable c o n t r a s t s i n density and e l a s t i c i t y of k i m b e r l i t e and host g r a n i t e s .
However, r e f r a c t i o n
seismic p r o f i l e s along with v e r t i c a l e l e c t r i c a l soundings (VES) may be useful i n determining
h o r i z o n t a l
f e a t u r e s
( e . g . l a y e r i n g ) w i t h i n k i m b e r l i t e p i p e s .
R a d i o a c t i v i t y surveys were e f f e c t i v e only i n areas of t h i n to absent s o i l c o v e r .
Average c o n c e n t r a t i o n s of thorium ( e T h ) , uranium (ell) and potassium f o r
k i m b e r l i t i c s o i l s are about 9.3 ppm, 3.8 ppm and 1.9% r e s p e c t i v e l y . T o t a l count readings were not l o c a l l y d e f i n i t i v e and the method does not appear to have much p o t e n t i a l i n the ColoradoWyoming k i m b e r l i t e p r o v i n c e . M a g n e t i c , e l e c t r i c a l
r e s i s t i v i t y and electromagnetic methods c l e a r l y are
the most e f f e c t i v e geophysical techniques tested f o r diatreme d e l i n e a t i o n the ColoradoWyoming k i m b e r l i t e p r o v i n c e .
i n
Ease, speed of operation and general
e f f e c t i v e n e s s make magnetic and electromagnetic surveys p a r t i c u l a r l y useful i n d e l i n e a t i n g k i m b e r l i t e bodies i n the F r o n t Range of Colorado and Laramie Range o f Wyoming.
ACKNOWLEDGEMENTS The authors wish to extend s i n c e r e a p p r e c i a t i o n to the students at Colorado State U n i v e r s i t y and employees a t the U n i t e d States Geological Survey Denver, Colorado who a s s i s t e d i n
geophysical
data
c o l l e c t i o n .
i n
James L.
Puckett was instrumental i n i n i t i a t i n g geophysical s t u d i e s of k i m b e r l i t e i n the Colorado F r o n t Range and i n suggesting ideas f o r f u r t h e r r e s e a r c h .
Thomas L.
Woodzick i s g r a t e f u l l y acknowledged f o r p r o v i d i n g numerous h e l p f u l
comments.
F i n a n c i a l support f o r the work reported h e r e i n was provided by grants from the Rocky Mountain Energy Company of B r o o m f i e l d , Colorado and the Geological S o c i e t y of America.
This page intentionally left blank
GEOBOTANICAL EXPRESSION OF A BLIND KIMBERLITE P I P E , CENTRAL INDIA by P . O . ALEXANDER and V . K . SHRIVASTAVA
A b s t r a c t The p o s i t i v e geobotanical e x p r e s s i o n recorded over the Hinota pipe i n C e n t r a l I n d i a i s o f such magnitude so as t o be apparent on a i r photographs.The pipe supports more l u x u r i a n t growth o f both the t r e e l a y e r and the undergrowth; they are h e a l t h i e r and t a l l e r i n c o n t r a s t t o the sparse and t h i n l y developed v e g e t a t i o n o u t s i d e the pipe boundary comprising quartz a r e n i t e . T h i s d i f f e r e n c e i s a t t r i b u t e d t o the s t r i k i n g l y d i f f e r i n g chemistry o f the k i m b e r l i t e and the c o u n t r y r o c k , i n p a r t i c u l a r t o the g r e a t e r a v a i l a b i l i t y o f p o t a s h , phosphorous, m i c r o n u t r i t i e n t s and a l s o water i n the pipe r o c k . The r o l e o f geobotany f o r k i m b e r l i t e p r o s p e c t i n g , i n p a r t i c u l a r w i t h i n the e n t i r e Panna Diamond b e l t o f C e n t r a l I n d i a i s recommended.
1
INTRODUCTION Even
though
d i s t i n t i v e
q u i t e
chemical
markedly
d i f f e r e n t
s e t t i n g .
T h i s
w o r l d
i n
s u r f a c e
e x p r e s s i o n ,
k i m b e r l i t e s
have such a
composition t h a t the v e g e t a t i o n growing on them ought t o be from the surrounding
host
rocks
i n an average c r a t o n i c
has indeed been observed i n a number o f k i m b e r l i t i c areas o f the
and i t s
useful
small
a p p l i c a t i o n
f o r
searching
b u r i e d
k i m b e r l i t e pipes c o n s i d e r e d
(Buks, 1965; C o l e , 1980). I n I n d i a , u l t r a m a f i c s o f Sukinda v a l l e y , O r i s s a
have w i t n e s s e d geobotanical s c r u t i n y ( R o y , 1974) but not the k i m b e r l i t e s .
HINOTA P I P E , CENTRAL INDIA
2
The Hinota magnetic C e n t r a l
I n d i a n
Q u a r t z i t e t h r e e the
o n l y
e l l i p t i c a l I t
forms
pipe (24°39' Ν : 80°02' E ) , d i s c o v e r e d as a r e s u l t o f r e s i s t i v i t y
p e n i n s u l a r
formation)
o f
km northwest
(Mathur,
rock
K i m b e r l i t e
and e l e c t r i c a l
s h i e l d
surveys
i n t r u d i n g
(Kailasam,
1970) occurs i n the
the Kaimur
sandstone (Dhandraul
the Vindhyan Supergroup ( F i g . 1 ) . T h i s diatreme l i e s
o f the more famous Majhagawan pipe (19 km from Panna T o w n ) ,
k i m b e r l i t e i n I n d i a which i s being mined f o r diamonds. The Hinota pipe 1961; Paul
e t a l . , 1976; Kresten and P a u l ,
1976) i s r o u g h l y an
body measuring 215 X 180 m. A t d e p t h , the pipe i s i n c l i n e d eastward. a s l i g h t depression i n the f l a t l y i n g sandstone c o u n t r y r o c k . The pipe
(predominantly micaceous k i m b e r l i t e ) weathered up t o several metres, occurs
under a mantle o f r e s i d u a l s o i l , about two metres t h i c k . I t i s exposed o n l y i n a small
stream
t h i c k
bedded quartz a r e n i t e , g e n e r a l l y f i n e g r a i n e d , o f f w h i t e i n c o l o u r w i t h a
s i l i c i o u s o v e r
t h a t
cuts
f e r r u g i n o u s
the c o u n t r y
across
cement.
rock
i t .
The c o u n t r y rock i s a hard and i n d u r a t e d ,
The r e s i d u a l r e d d i s h brown sandy s o i l developed
has a pH o f 6.2 i n c o n t r a s t t o pH o f 7.7 o f the darker
34 c l a y e y s o i l developed on the p i p e . The
climate o f the r e g i o n i s o f the extreme t y p e . During the summer months o f
MayJune C i n
the maximum day temperature r i s e s to about 46° C , but f a l l s as low as 5°
DecemberJanuary during the w i n t e r n i g h t s . The annual r a i n f a l l v a r i e s from
1250
mm to
1500 mm mostly during the southwest monsoon (JuneSeptember) w i t h a
m i l d e r p r e c i p i t a t i o n during the w i n t e r .
\ ">^" | So/7 cover
Ν
>.| Kaimur
.: : : > ^ S
^
^
Ι ° ^ > < L X X
V ^
" V " V " V x ' ^ V X
. · q P χ ;
•JbboV Χ
• Ν / ' Χ
χ
'θ
X
"V
" V Χ
oo ν
^
%
£ < > 0 s e
quartzite fragments of
* ^ inferred kimberlite
ss* o o
> ^ r y
" V \ " V N
Χ
" Χ
χ χ ν > A χ χ χ
P%/
° v * % x v
Χ
V
V v . ° o ^ X>X. "·:ο ο * ;:.oo r χ χ Ο ' V V : ° Χ Χ ο ; 5
χ
v l v
V / V
Χ
> ^
X
Χ
X
χ
Χ
X _ V ' Χ
Χ
Ν Λ "
X X
X"
"V
Χ
Shield
, 1 0 0 m ,
Χ
Kimberlites
F i g . 1. S i m p l i f i e d g e o l o g i c a l map o f Hinota pipe b u r i e d under a mantle o f s o i l c o v e r . Majhagawan and Hinota pipes ( 1 ) , K i m b e r l i t e s o f Jungel (2) and South I n d i a n k i m b e r l i t e s (3) are shown i n the i n s e t . GEOBOTANICAL STUDIES
3
Host
rock
composition p a r t i c u l a r l y e f f e c t
i n
r e s u l t s case
o f
both
s i g n i f i c a n t
on p l a n t
b o t a n i c a l l e s s
f o r
s t r i c k i n g l y
the
w i t h
n u t r i t i o n
s t u d i e s .
Majhagawan and the
Hinota
pipes has a chemical
d i f f e r e n t from the pipe rock ( T a b l e 1 ) . The c o n t r a s t i s r e s p e c t
t o such elements t h a t have c o n s i d e r a b l e
and perhaps presents an i d e a l s i t u a t i o n f o r a p p l i e d
The choice
o f the Hinota pipe was obvious as i t i s more o r
i t s natural s t a t e and the s u r f a c e s o i l has not been much d i s t u r b e d . The t h e r e f o r e the
and recent
are expected t o be more unbiased, u n l i k e they would be i n the
Majhagawan diatreme which has been e x t e n s i v e l y churned over by o l d
workings
e x t e n t .
Geobotanical
and i s
being
and the
natural
v e g e t a t i o n
regime d i s t u r b e d to a g r e a t
f i e l d work was conducted during the month o f J a n u a r y , 1981
continued
f o r
o b s e r v a t i o n
o f
f i n e r geobotanical responses and
biogeochemical a s p e c t s , p a r t i c u l a r l y of shrub and grass l a y e r s . To pipe
begin w i t h , i t was aimed to e x p l o r e l o c a l i n d i c a t o r p l a n t s , i f any on the area as a g a i n s t those on the surrounding sandstone. However, we f a i l e d t o
35 pick
o u t any p a r t i c u l a r i n d i c a t o r p l a n t on the k i m b e r l i t e ground. But we found
t h a t
t h e r e
o u t s i d e
i s
t h e pipe
" k i m b e r l i t i c Thus
d i f f e r e n c e
v e g e t a t i o n
abundance o f some species on and
a r e a . S i g n i f i c a n t l y , v i s i b l e e f f e c t s o f high c o n c e n t r a t i o n o f
elements"
the work
i n the r e l a t i v e
on t h e p l a n t
i s b a s i c a l l y
on a b u r i e d
a study
growth h a b i t s c o u l d be c l e a r l y observed. o f anomaly
growth
c h a r a t e r i s t i e s
o f
k i m b e r l i t e pipe as compared t o i t s surrounding t e r r a i n
having a s t r i k i n g l y d i f f e r i n g c h e m i s t r y .
TABLE 1 C o n t r a s t i n g geochemistry o f the q u a r t z a r e n i t e country rock (1) and the Hinota k i m b e r l i t e pipe rock ( 2 ) . Major element data f o r average k i m b e r l i t e and the general range o f t r a c e elements i n k i m b e r l i t i c rocks are a l s o given ( 3 ; Dawson, 1980). ( + ) = as FeO. 1
2
3
Si0
2
96.71
Ti0
2
0.13
6.92
2.32
0.95
3.51
4.4
0.92
8.20
9.8^'
0.01
0.12
0.11
MgO
0.34
23.95
2 ° 3
A1
2°3 MnO Fe
36.5
35.2
27.9
CaO
0.07
5.2
7.6
Na 0
0.15
0.13
0.32
κ ο
0.19
1.65
0.98
2°5 1.0.1.
0.45
10.2
10.7
t o t a l
99.93
99.17
100.03
2
2
0.01
P
1 Ba Co Cu Cr Pb Ni Nb Rb Sr Th U V Z r
5 50 40
15 5 8 20 2 2 50 205
2 800 50 90 1250 85 900 150 75 900 18 4 180 800
3 137 1970 35 130 10 300 550 2900 . 9 50 710 1600 32 450 0 350 40 1900 4 54 . 6 18.3 21 250 84 700
0.7
2.79
The Tree Layer The
e n t i r e
t r e e
l a y e r o v e r the pipe area i s c h a r a c t e r i s e d by a more h e a l t h y
growth o f several species than o v e r t h e c o u n t r y r o c k . I n f a c t t h i s d i f f e r e n c e i s so conspicuous t h a t the pipe area can w e l l be picked o u t from a d i s t a n c e by the presence o f t a l l
and healthy t r e e s , whereas the c o u n t r y rock i n general shows
poor
development o f the t r e e l a y e r . A t r e e and shrub d e n s i t y map o f some o f the
more
important
dominant h e a l t h y t o
species
( F i g . 2) c l e a r l y d i s t i n g u i s h e s the pipe area from the
sandstone t e r r a i n . The diatreme n o t o n l y supports a more l u x u r i a n t and growth o f v e g e t a t i o n b u t a l s o d i s p l a y s more numerous species i n c o n t r a s t
t h e c o u n t r y
r o c k .
(Table 3) the most T e r m i n a l i a s i g n i f i c a n t
tomentosa,
Out o f a t o t a l o f 27 species recorded over t h e pipe area
dominant,
however, are Butea monosperma, Madhuca i n d i c a ,
Tectona grandis
d i f f e r e n c e s
and Lannea g r a n d i s . F u r t h e r , t h e r e i s
i n the r e l a t i v e h e i g h t s o f t h e same species growing on
36 and o u t s i d e
the
i n d i c a ,
example,
f o r
r e s p e c t i v e l y ,
pipe
a r e a . Tectona g r a n d i s , Diospyres melanoxylon and Madhuca a t t a i n
a general
h e i g h t
o f 11.0, 8.6 and 11.1 metres,
on the pipe a r e a , but reach o n l y 7.6, 5.6 and 5.0 m, r e s p e c t i v e l y ,
on the sandstone ( F i g . 3 ) ·
TABLE 2 More important C e n t r a l I n d i a .
species
Family
from k i m b e r l i t e pipe and the surrounding a r e a , H i n o t a ,
Species
A u t h o r i t y
Lannna comwdzlica Roxb. TiiAminaJLioL bzZ&Uca W & A T. tomentooa W a l l . Anogzlb6u6 Zcuti^otLa Compositae Xan&Uum AthumatiLum Ebenaceae Roxb. Vio&pysiO* moZayioxylon Euphorbliaceae Bmbttca o^ZcUnatU Gaertn F l a c o u r t i a c e a e flacousutia indica Leguminosae W i l l d . Acacia caXzchu O.Ktze Botea mono&pznmoL L i n n . Ccu>Aia tana Mimosoideae Wcmaoa Zndica Lythraceae LageJUtAoemia paAvifplia. OiotolasUa juncm Papilionaceae Indigo&VUJL g&anduZoAa VtoAacLonpuA mate upturn Rhamnaceae Lamk. lizyphuA jhujuba M i l l . Z. owoplla Lamk. 1. Aatundi^otia Rubiaceae Roxb. GatidzYiLa tuAgZda A i t . G. lati&olia MWiagyna pan\)l{fitia Rutaceae Correa feAonia eZzphantum Sapotaoeae Roxb. Uadhuca indica Sapinelaceae CaAxUoAp&tmum heLtcacabum L i n n . Tzctona ghandU Vltu Ι α £ί £ο Ι ί α Anacardiaceae Combretaceae
Common name ( i f any) Gunja Bah era Saj
Tendu Aon l a Katai K h a i r Palas Panwar Si jwa
B i j o Ber Makor J h a r b e r i Phera Papra Kema Kaith Mahua Sagon Ifllaoa
The Undergrowth The are
undergrowth o v e r the sandstone c o u n t r y rock i s s c a n t y ; grasses and shrubs
s p a r s e .
a r e a ,
The grasses have a general h e i g h t o f o n l y 1020 cm o u t s i d e the pipe
w h i l e 50100 cm on the pipe ( F i g . 4 ) . The shrub l a y e r on the k i m b e r l i t e i s
much more dense, healthy and t a l l , and c o n t a i n s more species than on the c o u n t r y r o c k .
The Combined E f f e c t P o s i t i v e grass
geobotanical
l a y e r
and magnitude d e f i n i t e l y
on the as t o
e x p r e s s i o n o f
both
the t r e e l a y e r and the shrub and
pipe rock i n c o n t r a s t t o i t s surrounding i s o f such a s i z e be apparent
on a i r
photographs.
The k i m b e r l i t e pipe
has a darker tone and can be picked up i n c o n t r a s t to i t s surrounding
37
F i g . 2. Vegetation d e n s i t y map i n c o r p o r a t i n g 10 common species f o r the pipe and the surrounding area (ca 330 X 275 m). The denser patch i n the middle r e presents the p i p e . F i l l e d t r i a n g l e = Mitragyna p a r v i f o l i a ; open square w i t h a dot = Gardenia t u r g i d a ; open square= F l a c o u r t i a i n d i c a : f i l l e d square = Zizyphus x y j p p y r a ; cross = Zizyphus oenoplia ; open c i r c l e = Tectona q r a n d i s ; f i l l e d c i r c l e = Butea monosperma; cross w i t h i n a c i r c l e = Lagerstroemia p a r v i f o l i a ; open t r i a n g l e = Diospyros melanoxylon ; h a l f f i l l e d square = Emblica o f f i c i n a l i s ; dot w i t h i n a c i r c l e = Madhuca i n d i c a .
15 metres
On pipe rock On country rock
CD L U
I
F i g . 3. R e l a t i v e heights o f the s i x species from pipe and the surrounding q u a r t z i t i c t e r r a i n . 1= Madhuca i n d i c a ; 2= Tectona qrandis ; 3= Diospyros melano x y l o n ; 4= Butea monosperma; 5= Lannea coromendelica; 6= Emblica o f f i c i n a l i s .
38 which i s p a l e r i n tone due t o t h i n n e r t r e e stand and undergrowth. Examination
o f
t o x i c i t i e s
l i k e
r e f l e c t i n g
h i g h e r
c o u n t r y other
rock
p l a n t s
i s
and white
dead patches
on leaves o f few s p e c i e s ,
C r and Ni contents i n s o i l s over the pipe area as a g a i n s t the
( T a b l e 3; Mathur and A l e x a n d e r , i n p r e s s ) . D e t a i l e d examination o f
morphological
f l o w e r s
growing o v e r pipe area a l s o r e v e a l e d e f f e c t s o f metal
c h l o r o s i s
and mutational changes i s under p r o g r e s s . Colour changes i n
l i k e l y
to
e i t h e r
r a d i o a c t i v i t y
1972);
both
o f
be a rewarding study s i n c e i t i s u s u a l l y the r e s u l t o f
o r
e x c e s s i v e l e v e l s o f c e r t a i n elements i n s o i l s (Brooks,
these are extremely high i n the pipe rock i n comparison to the
background.
Co Cu Cr Pb Ni Mn T i V Z r
4
a
b
25 40 140 18 105 580 4300 129 200
15 10 40 10 30 300 2000 30 400
TABLE 3 Trace elements i n s o i l covering the Hinota diatreme (a) and the surrounding country rock (b) ; a l l values i n ppm. From Mathur and Alexander ( i n p r e s s ) .
DISCUSSION p l a n t
The
k i m b e r l i t e o f
the
c o v e r ,
i s
thus
t r e e
under
on s o i l s
l a y e r
and the undergrowth, on the Hinota
d i s t i n c t i o n
geobotanical
t o the surrounding r o c k s . T h i s
e x p r e s s i o n cannot, however, be considered
a term which i s g e n e r a l l y used f o r v e g e t a t i o n w i t h abnormal r i c h
i n
e x p l a i n e d
under
n u t r i e n t s
among which
s i g n i f i c a n t .
t r e e
and c o v e r i n
p o s i t i v e
" g i g a n t i s m " ,
growth
the
c h a r a c t e r i s e d by g r e a t e r h e i g h t , and t h i c k e r trunk diameter
l a y e r
s i g n i f i c a n t l y
both
bitumen
s t i m u l a t o r y
The Hinota
o r b o r o n . The present case should b e t t e r be
e f f e c t s
potash
produced from an abundance o f
and phosphorous are
k i m b e r l i t e
countains
considered to
p l a n t
be most
generous amounts o f p h l o g o p i t e
(source
f o r potash) and a p a t i t e (source f o r phosphorous) and t h i s r e s u l t s i n the
o v e r a l l
h i g h e r
the
c o u n t r y
ammonical o f
bedrock
e f f e c t
2
( K 0 = 0.19% 2
;
P 0 2
5
= 0.01% ; Table 1 ) . Nitrogen (both
and n i t r a t e ) has the same l e v e l o f c o n c e n t r a t i o n i n s o i l s i r r e s p e c t i v e
elements
produce
abundance o f K 0 and P2O5 (1.65% and 2.79% r e s p e c t i v e l y ) than i n
rock
chemistry
than
on the
the
development
favourable
a d d i t i o n a l
but
the
surrounding o f
pipe
rock has enriched l e v e l s o f s e v e r a l t r a c e
q u a r t z i t e which a l s o p o s s i b l y have a favourable v e g e t a t i o n .
R a d i o a c t i v i t y
i s a l s o b e l i e v e d to
s t i m u l a t o r y e f f e c t ( B r o o k s , 1972) and perhaps t h i s may be an
cause f o r a h e a l t h i e r development o f v e g e t a t i o n over the pipe than i n
39 i t s
s u r r o u n d i n g s ,
r a d i o a c t i v e ppm)
elements
and the
Another
since
there
between
q u a r t z i t i c
i s f a i r d i f f e r e n c e i n the r e l a t i v e abundance o f
the
c o u n t r y
k i m b e r l i t e
( K 0 = 1.65%, Th = 18 ppm, U = 4 2
( K 0 = 0.19%, Th = 2 ppm, U = 2 ppm).
rock
2
s i g n i f i c a n t f a c t o r i s the abundance o f water and which i s r e l a t e d to the
type
and amount o f c l a y w i t h i n the s o i l s o f the two c o n t r a s t i n g u n i t s . The s o i l
over
the
the
h i g h e r
c o v e r
pipe i s c l a y e y w i t h predominance o f montmorillonites which account f o r water
l a c k i n g
c o n t e n t .
not
o n l y
I n
c o n t r a s t , the q u a r t z a r e n i t e s have a sandy s o i l
m o n t m o r i l l o n i t e but a l s o the e s s e n t i a l macro and micro
n u t r i t i e n t s . K i m b e r l i t e
as a s p e c i a l type o f u l t r a m a f i c rock seems to e x h i b i t a p o s i t i v e
geobotanical v e g e t a t i o n (Hawkes where
e x p r e s s i o n , i n i s
g e n e r a l l y
o t h e r
u l t r a m a f i c
rocks
on which
T h i s
i s t r u e o f the Sukinda V a l l e y , O r i s s a ( I n d i a ) ,
v e g e t a t i o n i s stunted and t h i n l y developed on the nickel i f e r o u s u l t r a m a f i c and some o f the species which are l u x u r i a n t and abundant on the o t h e r
rocks
t o t a l l y
being
one
disappear
t h e i r
by sparseness o f v e g e t a t i o n and shortage o f species i n r e l a t i o n t o
surroundings
( B r o o k s ,
d e f i c i e n c y
o f
which
extremely
are
e f f e c t s
on the u l t r a m a f i c p o r t i o n s (Roy, 1974), Shorea robusta
such s p e c i e s . Many o t h e r u l t r a m a f i c b e l t s o f the w o r l d are s i m i l a r l y
c h a r a c t e r i s e d
o f
v e g e t a t i o n
o f
t o
r e p o r t e d as c o n s p i c u o u s l y stunted and t h i n l y developed
and Webb, 1962).
h o r i z o n s ,
not
o p p o s i t i o n
1972).
T h i s
m a c r o n u t r i e n t s n i t r o g e n ,
h i g h e r
r i c h
i n
amounts
has
r i g h t l y
been a t t r i b u t e d t o the
p o t a s h , phosphorous ( u n l i k e k i m b e r l i t e s
phosphorous and p o t a s h ) , and Ca and Mo and t o x i c
o f C r , C o , F e , Mg and N i . C o n s i d e r i n g the l u x u r i a n t
on the Hinota pipe i t would thus appear t h a t these t o x i c elements do
have adverse e f f e c t on the p l a n t growth perhaps because o f h i g h e r a v a i b i l i t y Ρ ,
Κ and H 0 i n the k i m b e r l i t i c s o i l . T h i s t h e r e f o r e i s the most s i g n i f i c a n t 2
d i f f e r e n c e
between
u l t r a m a f i t e s p a r a l l e l
the
and the
geobotanical
were
f u t i l e .
( a l l
i n
stunted
p a t t e r n
d i s t r i c t ,
Archean Complex comprising There
i s
general
rock
due
t r a n s p o r t e d a r e a ,
i n
The k i m b e r l i t e
Anantpur
black
f l o r a
developed on the
o t h e r
to
the
Andhra Pradesh) are i n t r u s i v e i n t o the P e n i n s u l a r a v a r i e t y o f g n e i s s e s , g r a n u l i t e s and m e t a b a s i t e s . v e g e t a t i o n c o v e r i r r e s p e c t i v e o f pipe o r c o u n t r y
i n d i s c r i m i n a t e
c o t t o n
South I n d i a n k i m b e r l i t i c f i e l d ( F i g . 1)
pipes a t Wajrakarur, Lattavaram and M u l i g i r i p a l l i
absence o f
mainly
s e r p e n t i n e
l u x u r i a n t " k i m b e r l i t i c f l o r a " . However, attemps to f i n d a
s o i l
d e f o r e s t a t i o n
i n
the
a r e a . Moreover,
has u n i f o r m l y and completely covered the e n t i r e
and thus hampered whatever c o n t r a s t i n g v e g e t a t i o n p a t t e r n t h a t c o u l d have
developed on and o u t s i d e however,
are
e x p r e s s i o n .
s i m i l a r
From the
the
v e g e t a t i o n
the
surrounding
g r e a t e r
trunk
t o
the
p i p e .
Some o f
the
k i m b e r l i t e s O f the w o r l d ,
the Hinota pipe i n p r e s e n t i n g a p o s i t i v e geobotanical
Yakutian p o l a r r e g i o n i n USSR, Buks (1965) has shown t h a t
cover i s more i n t e n s i v e l y developed on k i m b e r l i t i c pipes than on r o c k s .
T h i s i s expressed by t h e i r g r e a t e r h e i g h t o f t r e e s (and
d i a m e t e r ) , shrubs and denser grasses and shrub l a y e r and a b e t t e r
40 m o s s / l i c h e n t o
c o v e r on the pipe r o c k . I n view o f t h i s , geobotanical s t u d i e s seems
have played important r o l e t h e r e i n searching f o r b u r i e d k i m b e r l i t e p i p e s . I n
the
s e m i a r i d
e a s t e r n
Orapa c o n t r a s t s t h i s
enables
K i m b e r l i t e
markedly
the
pipe
pipe
i n
geomorphological grass
Bostwana,
c i r c u l a r
be deciphered from a e r i a l photographs ( C o l e , 1980).
Maluti
mountains o f L e s o t h o , s i m i l a r l y , have d i s t i n c t
and geobotanical
covered b a s a l t i c
e x p r e s s i o n on k i m b e r l i t e s near
s i n c e i t has more species than the surrounding r o c k s ;
t o
the
geobotanical
t e r r a i n
e x p r e s s i o n . Here, the
k i m b e r l i t e s
are
i n
c o n t r a s t t o s p a r s e l y
r e v e a l e d by t h e i r boggy
depressions which have l u x u r i a n t s p e c i e s r i c h undergrowth o f herbs and
shrubs ( C o l e , 1980).
CONCLUDING REMARKS
5
H i s t o r i c a l
accounts
reasoning c a l l s The
e x i s t i n g
a l s o
g e n e r a l l y
p r o s p e c t i n g study
a t
d i s t u r b e d u s e f u l
t h e r e f o r e
o r
t o o l
are
not
devoid o f
Hinota
Diamond mining
i n
I n d i a
together w i t h g e o l o g i c a l
f a r more k i m b e r l i t e occurences i n the Indian s h i e l d a r e a s .
f o r
pipes
o f
w i l l
o n l y much smaller from the w o r l d standard but are
i n d i c a t o r m i n e r a l s . Recognised methods o f k i m b e r l i t e have l i m i t a t i o n s
suggests t h a t
where
natural
i n
the I n d i a n c o n t e x t . The case
s o i l v e g e t a t i o n
c o v e r
i s not
d e s t r o y e d , a e r i a l and ground geobotanical s t u d i e s may be f a r more i n
l o c a t i n g
b u r i e d
k i m b e r l i t e s i n areas o f known p o t e n t i a l . T h i s
should be t r u e f o r p o t e n t i a l areas i n p a r t s o f the w o r l d w i t h s i m i l a r g e o l o g i c a l setup
and i n
Biogeochemistry A u s t r a l i a n
p a r t i c u l a r t o the e n t i r e PannaDiamond b e l t o f the C e n t r a l I n d i a . o f
t r e e
l a y e r which i s i n progress f o r the Indian and the West
K i m b e r l i t e areas can be expected t o be useful even i n areas where the
pipes have a t r a n s p o r t e d overburden.
Ackowledgements We are thankful t o the C h i e f Conservator o f F o r e s t s , M.P. Bhopal and the N.M.D.C. Panna f o r a l l o w i n g us t o c a r r y out f i e l d work i n the Hinota area and a l s o f o r extending f a c i l i t i e s . We are g r a t e f u l to P r . S.M. Mathur f o r d i s c u s s i o n and s c r u t i n y o f the manuscript.
NATURAL OCCURRENCES OF KIMBERLITES AND RELATED ROCKS GEOLOGY, PETROLOGY, MINERALOGY AND GEOCHEMISTRY
This page intentionally left blank
THE GEOLOGY OF THE MAYENG KIMBERLITE SILL COMPLEX, SOUTH AFRICA by D.B. APTER, F . J · HARPER, B.A. WYATT and B . H . S . SMITH A b s t r a c t The r e c e n t l y d i s c o v e r e d Mayeng k i m b e r l i t e s i l l complex, approximately 70 km north o f Kimberley, South A f r i c a p r e f e r e n t i a l l y i n t r u d e s the P r o t e r o z o i c Ventersdorp L a v a , u n l i k e o t h e r l o c a l k i m b e r l i t e s i l l s which i n t r u d e the younger Carboniferous Dwyka s h a l e s . M a c r o c r y s t and a p h a n i t i c k i m b e r l i t e v a r i e t i e s are p r e s e n t , but both are b r o a d l y m i n e r a l o g i c a l l y and c o m p o s i t i o n a l l y s i m i l a r and are c l a s s i f i e d as hypabyssal f a c i e s , i l m e n i t e r i c h , p h l o g o p i t e k i m b e r l i t e . The t e x t u r a l m o d i f i c a t i o n i s probably an imposed f e a t u r e p o s s i b l y by a process such as f i l t e r p r e s s i n g . The mineral chemistry o f m a c r o c r y s t i c and m a t r i x phases as w e l l as i l m e n i t e s i l i c a t e x e n o l i t h s has been examined. Groundmass p h l o g o p i t e occurs as ( i ) a dark c o l o u r e d v a r i e t y r i c h i n T i 0 (46 wt%), and ( i i ) a l a t e stage p a l e c o l o u r e d mica, c o n t a i n i n g i n c l u s i o n s o f C r r i c h t i t a n o m a g n e t i t e , poor i n T i 0 (23 wt%), which i s dominant i n the a p h a n i t i c k i m b e r l i t e . P h l o g o p i t e i n i l m e n i t e p h l o g o p i t e x e n o l i t h s i s c h a r a c t e r i s e d by 11.5 wt% T i 0 c o n t e n t s . Most o f the abundant i l m e n i t e occurs e i t h e r as anhedral g r a i n s l a r g e r than 0.5mm i n s i z e (MgO= 915 wt%, C r 0 = 0.12 wt%) o r as smaller anhedral chromiumrich g r a i n s l e s s than 0.5mm (MgO= 1415 wt%, C r 0 = 1.57 wt%) which are termed ' m a t r i x i l m e n i t e . I l m e n i t e , s i m i l a r i n composition t o the m a t r i x v a r i e t y , mantles m a c r o c r y s t i c g r a i n s and a l s o occurs as i n c l u s i o n s i n the dark c o l o u r e d p h l o g o p i t e and o l i v i n e . The l a t t e r a s s o c i a t i o n g i v e s e q u i l i b r a t i o n temperatures o f 1150° 1180° C assuming 50 kb. I l m e n i t e from the x e n o l i t h s span the m a c r o c r y s t i c and matrix compositional ranges. M a t r i x i l m e n i t e c r y s t a l l i s a t i o n , which i s i n t i m a t e l y r e l a t e d to matrix o l i v i n e c r y s t a l l i s a t i o n , appears t o be r e s t r i c t e d to an e a r l y mantle phase o f k i m b e r l i t e formation and preceeded the i n c o r p o r a t i o n o f m a c r o c r y s t i c i l m e n i t e . The dark c o l o u r e d T i 0 r i c h p h l o g o p i t e probably c r y s t a l l i z e d over a wide time i n t e r v a l o v e r l a p p i n g the m a t r i x i l m e n i t e , and was f o l l o w e d by l a t e phase, pale c o l o u r e d , T i 0 p o o r p h l o g o p i t e . A t l e a s t some o f the m a c r o c r y s t i c i l m e n i t e and i l m e n i t e s i l i c a t e x e n o l i t h s may r e l a t e t o a metasomatic f r o n t emanating from a p r o t o k i m b e r l i t e e v e n t . 2
2
2
2
3
2
3
1
2
2
1.
INTRODUCTION The Mayeng s i l l s ,
A f r i c a ,
r e p r e s e n t
BellsbankFrank (1914).
l o c a t e d a
Smith
approximately
r e c e n t
70 km north
d i s c o v e r y w i t h i n
k i m b e r l i t e
p r o v i n c e ,
the
o f K i m b e r l e y , South
otherwise
o r i g i n a l l y
w e l l
known
d e s c r i b e d by Wagner
The s i l l s , t e n t a t i v e l y dated at 117 m.y. ( J . B . Hawthorne pers.comm.) are
nondiamondiferous
and are
p a r t i c u l a r
s e t t i n g ,
the presence o f unusual x e n o l i t h s , as w e l l as v a r i o u s p o p u l a t i o n s o f and i l m e n i t e .
M a t e r i a l
the
geology o f
from two
Over
o f
d i f f e r e n t
because o f t h e i r unusual
g e o l o g i c a l
concerning
development
i n t e r e s t
k i m b e r l i t e , p h l o g o p i t e
the
o f
t e x t u r a l
one hundred boreholes
v a r i e t i e s
s u p p l i e d
o f
information
the complex but only t h r e e s u p p l i e d c o r e specimens.
such h o l e s ,
boreholes
180
and 209, was s e l e c t e d f o r the
d e t a i l e d p e t r o g r a p h i c and geochemical i n v e s t i g a t i o n presented i n t h i s s t u d y .
2 .
GEOLOGY AND SETTING OF THE MAYENG COMPLEX I n i t i a l
p r o s p e c t i n g
l o c a t e d a narrow ( l e s s than 20 cm) n o r t h e a s t s o u t h w e s t
44 t r e n d i n g
k i m b e r l i t e f i s s u r e
at
s u r f a c e and subsequent d r i l l i n g d e l i n e a t e d
FIGURE 1: SCHEMATIC SECTION SHOWING THE GEOLOGICAL SETTING OF THE MAYENG KIMBERLITE SILLS
t e d ,
a s i m i l a r l y
orien
o v a l shaped (1250 χ 500m)
s i l l complex at d e p t h . The s i l l s are a p p a r e n t l y r e l a t e d f i s s u r e
to
the
and as i l l u s t r a t e d
i n
F i g u r e 1 are l e n s o i d i n shape, o f v a r i a b l e t h i c k n e s s (up t o 2m) and occur at d i f f e r e n t depths. The
c o u n t r y
Precambrian
rocks
Lava
o v e r l a i n
by
unconformably Palaeozoic
comprise
Ventersdorp
Karroo
sediments,
which are i n t r u d e d by younger
FISSURE
Karroo
d o l e r i t e
s i l l s .
Mayeng k i m b e r l i t e s i l l s
KEY
The prefe
KARROO DOLERITE SILLS
r e n t i a l l y
KARROO fOWYKA) SHALES
Ventersdorp
i n t r u d e
j o i n t e d
PORPHYRITIC VENTERSDORP LAVA
r a r e l y , the contacts o f c o u n t r y
Lava,
or
more
MASSIVE , JOINTED VENTERSDORP LAVA
rock u n i t s . The j o i n t i n g o f the
AMYGDALOIDAL VENTERSDORP LAVA
Ventersdorp Lava has presumably
KIMBERLITE
acted as the s t r u c t u r a l
c o n t r o l
which produced a s t o c k w o r k l i k e
SECTION BASED ON COMPOSITE BOREHOLE DATA NO SCALE ASSUMED
complex
o f
tinuous
s i l l s .
l a r g e l y In
o t h e r k i m b e r l i t e
discon c o n t r a s t ,
s i l l s
in
the
Kimberley area ( e . g . B e n f o n t e i n , Wesselton f l o o r s ) i n t r u d e Karroo sediments at the
base o f
the
Kimberley d o l e r i t e
sheet
and i n
consequence, e x t e n s i v e ,
r e l a t i v e l y t h i c k s i l l s are produced (Hawthorne, 1968). 3. 3.1
PETROGRAPHY K i m b e r l i t e s Two extreme t e x t u r a l v a r i e t i e s o f k i m b e r l i t e are represented at Mayeng. ( i )
The coarse g r a i n e d k i m b e r l i t e
contains
abundant macrocrysts
generate
a d i s t i n c t i v e
i s
described as m a c r o c r y s t i c
(as defined by Clement e t
i n e q u i g r a n u l a r
t e x t u r e .
a l . ,
1977)
i . e . which
The term m a c r o c r y s t i c
i s
i n t r o d u c e d , as suggested by McCullum (1982 p u b l . comm.), i n p r e f e r e n c e to the p r e v i o u s l y used term m a c r o p o r p h y r i t i c . Modal analyses o f t h i s k i m b e r l i t e ( T a b l e 1) i l l u s t r a t e v a r i a t i o n
i n
macrocryst
content
between
s i l l s ,
as
w e l l
t h a t t h e r e i s a as
an
e r r a t i c
45 TABLE 1: Modal Analyses o f M a c r o c r y s t i c and A p h a n i t i c K i m b e r l i t e s (expressed as volume %) A p h a n i t i c S i l l S i l l 1 8 0 ( i i ) 1 8 0 ( i i ) macrocryst f r e e
M a c r o c r y s t i c S i l l 2 0 9 ( i i )
Average s i l l S i l l 180(i) 180(i) macro Base c r y s t f r e e Top
OLIVINE macrocryst
24
35.2
12.2
15.2
OLIVINE phenocryst
29.5
29.6
22.8
29.4
ILMENITE macrocryst
8.1
0.6
2.2
0.4
0
0.4
0
ILMENITE m a t r i x
2.0
2.6
3.0
3.6
3.9
2.6
2.7
16.2
15.0
26.2
18.6
26.3
25.8
26.4
CALCITE
9.2
7.6
12.0
9.6
12.7
12.6
12.9
PHLOGOPITE groundmass
0 30.5
1.8
0
39.2
40.1
SERPENTINE
2.6
3.6
14.2
10.2
14.4
7.8
7.9
APATITE
1.3
0.4
2.4
8.8
6.6
3.8
3.9
PEROVSKITE
2.0
1.2
2.4
1.6
2.4
0.6
0.6
OXIDES groundmass
5.1
4.2
2.6
2.6
3.1
5.4
5.5
d i s t r i b u t i o n
o f
these
coarse
c o n s t i t u e n t s
w i t h i n
i n d i v i d u a l
s i l l s .
Some
c o n c e n t r a t i o n of macrocrysts t o the base o f s i l l s
i s apparent and l o c a l i s e d
zones o f macrocryst poor k i m b e r l i t e
f l o w
suggest t h a t
d i f f e r e n t i a t i o n
has
o c c u r r e d . O l i v i n e s
i n
the
m a c r o c r y s t i c
k i m b e r l i t e
occur
in
the
two
p o p u l a t i o n s
d i a g n o s t i c o f k i m b e r l i t e (Clement et a l . , 1977); namely anhedral macrocrysts ( g e n e r a l l y g r e a t e r
than 0.5mm in
s i z e )
and smaller
subhedral
t o
euhedral
phenocrysts ( l e s s than 0.5mm). The l a t t e r p o p u l a t i o n o n l y , c o n t a i n a n h e d r a l , 'bleblike 1
i n c l u s i o n s o f i l m e n i t e ( l e s s than 0.05mm). Ilmenite
i s u n u s u a l l y
abundant, 310 volume per cent ( T a b l e 1 ) , compared to other k i m b e r l i t e s and, as i l l u s t r a t e d
i n
Table
1,
forms
two p o p u l a t i o n s ;
a n h e d r a l ,
p o l y c r y s t a l l i n e
macrocrysts (0.5 t o 4mm) and smaller ( l e s s than 0.5mm), anhedral g r a i n s . The paragenesis o f t h i s l a t t e r p o p u l a t i o n cannot be determined p e t r o g r a p h i c a l l y and i n order t o d i s t i n g u i s h them from the macrocryst p o p u l a t i o n , these small g r a i n s have been termed matrix i l m e n i t e s . Both the m a c r o c r y s t i c and matrix
i l m e n i t e s
are e i t h e r mantled by or replaced by complex rims o f p e r o v s k i t e and euhedral s p i n e l s , s i m i l a r to those d e s c r i b e d by Shee (1979) i n the Wesselton k i m b e r l i t e . Phlogopite occurs r a r e l y as l a r g e , anhedral macrocrysts (+ 0.5mm) which are p a l e c o l o u r e d , normally p l e o c h r o i c and s t r a i n e d , s t r o n g l y resembling the deformed mica o f the p h l o g o p i t e i l m e n i t e x e n o l i t h s d e s c r i b e d below. These coarse c o n s t i t u e n t s are set i n a groundmass o f p h l o g o p i t e ,
c a l c i t e ,
46 s e r p e n t i n e , a p a t i t e , p e r o v s k i t e and euhedral opaque minerals (Table 1 ) . Phlogopite i s the c h a r a c t e r i s t i c
groundmass mineral
i n the m a c r o c r y s t i c
k i m b e r l i t e and two p e t r o g r a p h i c a l l y d i s t i n g u i s h a b l e types are present namely; ( i ) dark coloured (orange to pale y e l l o w ) p l e o c h r o i c mica which forms e u h e d r a l , equant g r a i n s l e s s than 0.4mm i n s i z e . Rounded ' b l e b l i k e i l m e n i t e i n c l u s i o n s 1
s i m i l a r to those in the o l i v i n e p h e n o c r y s t s , are noted in t h i s p o p u l a t i o n o n l y . ( i i ) Pale coloured l a t e r c r y s t a l l i z i n g mica, w i t h abundant s p i n e l i n c l u s i o n s , occurs as overgrowths on the dark mica and as small l a t h s s c a t t e r e d throughout the groundmass. I n d i v i d u a l m a c r o c r y s t i c k i m b e r l i t e s i l l s assemblages o f groundmass p h l o g o p i t e .
have v e r y
For example, s i l l
d i f f e r e n t
209 contains
both
populations o f p h l o g o p i t e , the dark mica ( t y p e ( i ) ) being the most abundant. In c o n t r a s t , the pale mica ( t y p e ( i i ) ) i s completely absent in s i l l 180(i) and the dark p h l o g o p i t e s are rimmed by deep red/brown rims o f r e v e r s e d p l e o c h r o i c mica. S i n g l e , euhedral c r y s t a l s o f p e r o v s k i t e and s p i n e l are u b i q u i t o u s , and i n a d d i t i o n to the p e r o v s k i t e s p i n e l mantles on i l m e n i t e , these two minerals form c l u s t e r s and aggregates throughout the groundmass. A p a t i t e i s present i n a l l m a c r o c r y s t i c k i m b e r l i t e s b u t , as shown i n Table 1, i s c o n s i d e r a b l y more abundant i n some s i l l s than o t h e r s . Pools o f s e r p e n t i n e and rhombic c a l c i t e , p r o b a b l y p r i m a r y , occur throughout the groundmass and a p a t i t e i s p r e f e r e n t i a l l y associated w i t h these segregations o f l a t e stage m i n e r a l s . In summary, the m a c r o c r y s t i c s i l l s at Mayeng, apart from v a r i a t i o n s in the p r o p o r t i o n s o f macrocrysts and groundmass phases (Table 1 ) , are m i n e r a l o g i c a l l y s i m i l a r and can be c l a s s i f i e d as hypabyssal f a c i e s , i l m e n i t e r i c h ,
p h l o g o p i t e
k i m b e r l i t e s ( a f t e r Clement et a l . , 1977; Clement and S k i n n e r , 1979; Skinner and Clement, 1979). ( i i )
The term ' a p h a n i t i c '
g r a i n e d , p o r p h y r i t i c
k i m b e r l i t e
as applied to k i m b e r l i t e s in
which m a c r o c r y s t s ,
d e s c r i b e s a f i n e
l a r g e r
than
o l i v i n e
p h e n o c r y s t s , are absent. The second and v o l u m e t r i c a l l y most abundant t e x t u r a l v a r i e t y o f k i m b e r l i t e at Mayeng i s e s s e n t i a l l y a p h a n i t i c , d e s p i t e the f a c t t h a t some
r a r e
o l i v i n e
and
i l m e n i t e
macrocrysts
are
present
(Table
1 ) .
M i n e r a l o g i c a l l y t h i s a p h a n i t i c k i m b e r l i t e i s v i r t u a l l y i d e n t i c a l to the m a t r i x or macrocryst f r e e p o r t i o n s of the m a c r o c r y s t i c k i m b e r l i t e (Table 1 ) ,
i . e .
c h a r a c t e r i z e d by abundant p h l o g o p i t e , i l m e n i t e and a p a t i t e . The two types o f p h l o g o p i t e described in the m a c r o c r y s t i c k i m b e r l i t e are also present i n the a p h a n i t i c t y p e , except i n the l a t t e r case they are f i n e r grained and the p a l e coloured s p i n e l r i c h mica i s by f a r the most abundant. The a p h a n i t i c are also c l a s s i f i e d as hypabyssal f a c i e s , i l m e n i t e r i c h , p h l o g o p i t e
k i m b e r l i t e s k i m b e r l i t e .
3.2 X e n o l i t h s The r a r e i l m e n i t e s i l i c a t e
x e n o l i t h s present at Mayeng are m i n e r a l o g i c a l l y
v a r i a b l e . P h l o g o p i t e i l m e n i t e x e n o l i t h s appear t o be the most common and range
47 5 15 mm in s i z e . The p h l o g o p i t e occurs as h i g h l y deformed p l a t e s which are separated by granulated and p a r t i a l l y
r e c r y s t a l l i z e d zones of f i n e
grained
c h l o r i t i z e d p h l o g o p i t e . The i l m e n i t e i s p o l y c r y s t a l l i n e and the c o n t a c t between the p h l o g o p i t e p l a t e s and i l m e n i t e i s sharp suggesting t h a t they are a s t a b l e , p o s s i b l e
c o g e n e t i c ,
assemblage.
The
two
i l m e n i t e c l i n o p y r o x e n e
l a m e l l a r
i n t e r g r o w t h s examined are t y p i c a l of those r e p o r t e d in the l i t e r a t u r e . A s i n g l e i l m e n i t e o r t h o p y r o x e n e
x e n o l i t h was i d e n t i f i e d
and comprises p o l y c r y s t a l l i n e
i l m e n i t e and r e l i c orthopyroxene i s l a n d s in secondary s e r p e n t i n e . 4.
BULKROCK GEOCHEMISTRY Table I I g i v e s X r a y f l u o r e s c e n c e bulkrock analyses o f the m a c r o c r y s t i c and
a p h a n i t i c k i m b e r l i t e s . The m i n e r a l o g i c a l s i m i l a r i t y o f the two t e x t u r a l types o f k i m b e r l i t e i s r e f l e c t e d
i n s i m i l a r
bulk compositions. These k i m b e r l i t e s
are
c o n s i d e r a b l y enriched i n T i 0 as compared to others r e p o r t e d by Dawson (1980) 2
and Fesq et a l . (1976), which i s c o n s i s t e n t with t h e i r i l m e n i t e r i c h n a t u r e . V a r i a t i o n s i n MgO r e f l e c t the marked v a r i a t i o n in the p r o p o r t i o n s o f o l i v i n e macrocrysts noted in the m a c r o c r y s t i c k i m b e r l i t e . CaO, K 0 , P2O5 and to 2
some e x t e n t MgO r e l f e c t
Furthermore, v a r i a t i o n s
in
the v a r y i n g p r o p o r t i o n s
o f
groundmass, c a l c i t e , p h l o g o p i t e , a p a t i t e and s e r p e n t i n e noted in s e c t i o n 3.
TABLE I I : Bulk Rock Analyses o f A p h a n i t i c and M a c r o c r y s t i c K i m b e r l i t e M a c r o c r y s t i c S i l l 209 wt %
Top
Si0 Ti0 AI2O3 Fe 03 MnO MgO CaO Na 0 K 0 P 0 LOI TOTAL
27.32 5.42 2.47 10.78 0.25 22.60 12.70 0.09 1.43 1.28 12.98 97.32
2
2
2
2
2
2
5
Base 29.2 4.7 2.03 11.85 0.18 31.11 7.47 0.13 0.88 0.69 9.94 98.18
A p h a n i t i c S i l l 180(11) Centre 26.57 5.12 2.30 11.54 0.18 25.02 11.2 0.10 1.32 1.19 14.50 99.00
Analyses r e p o r t e d on a d r i e d basis (110°C) T o t a l Fe r e p o r t e d as Fe 03 2
5.
MINERAL CHEMISTRY Analyses were obtained u t i l i z i n g the ARLSEMQ e l e c t r o n microprobe at AARL.
A l l p h l o g o p i t e s were analysed using a defocused beam w i t h an e x c i t a t i o n area o f 2030 u . Fe 03 values are c a l c u l a t e d s t o i c h i o m e t r i c a l l y ( F i n g e r , 1972). 2
48 5.1 Phlogopite 5.1.1
Groundmass Phlogopites
Selected analyses o f groundmass p h l o g o p i t e s in both the m a c r o c r y s t i c and a p h a n i t i c k i m b e r l i t e s are presented in Table I I I . The p e t r o g r a p h i c
d i s t i n c t i o n
i n t o two v a r i e t i e s , namely ( i ) a dark coloured mica and ( i i ) l a t e r c r y s t a l l i z i n g pale coloured mica w i t h s o i n e l
i n c l u s i o n s , i s c l e a r l y s u b s t a n t i a t e d by the
mineral chemistry o f these g r a i n s .
TABLE I I I : Selected Analyses o f Groundmass and X e n o l i t h i c Phlogopites
Phlogopite Type
Dark Coloured Mica
Pale C o l o u r e d , ! S pinel Rich Phlogopite
P h l o g o p i t e P l a t e s i n Ph l o g o p i t e
TFP
l l men i t e K i m b e r l i t e MK S i l l MK S i l l AK S i l l AK S i l l MK S i l l AK S i l l MK S i l l X e n o l i t h s Type 180(i) 209 209 180(11) 180(1) 180(11) 180(11) A n a l y t i c a l Centre P o s i t i o n A n a l y s i s Si0 T i 0 2 AI2O3 Ο 2 Ο 3 FeO MnO NiO MgO CaO Na20 K20 TOTAL 2
Centre
Centre
Edge o f Edge o f Centre Rim o f Β of l a t h C A
A
Β
C
38.95 5 . 2 1 13.94
39.09
39.04
3 5 . 7 4
4.63
4.66
2.32
14.19
14.62
15.79
0.63
0.32
5 . 1 1
4 . 9 4
0.31 4.87
0.03
0.02 0.17
0.15
0.02 5.16 0.04 0.07
T
0 . 1 1 21.42
0.02 0.19 10.13 9 5 . 7 4
D*
Ε *
F
G
Η
35.48 2 . 5 7 14.98 nd 6.96
38.35
42.51 0 . 3 3 0 . 5 7 0.01 1 1 . 9 9
41.44 1 . 2 2 12.19
0.06 0.04
0.08 0.03
22.19
22.78
2 2 . 9 5
0.03 0.15 9.19
0.08 0.14 9.50
0.09 0.13
90.70
92.59
0.01
21.41 nd
21.42 nd
0.14
0.17
9.94 94.85
10.28 9 5 . 5 3
MK = m a c r o c r y s t i c k i m b e r l i t e AK = A p h a n i t i c k i m b e r l i t e TFP t e t r a f e r r i p h l o g o p i t e
2.69 13.75
0.04 5 . 9 3
0.05 5.27 0.02
0.14 0.01 27.39 0 . 1 2
0 . 1 0 24.20 0.01 0 . 1 2 10.05 95.20
0.26
10.08 9 4 . 1 2
10.18 93.52
nd = not detected F e O = t o t a l Fe reported as FeO * = low t o t a l due to a l t e r a t i o n T
As i l l u s t r a t e d i n F i g u r e 2 the dark coloured micas p r e s e n t i n both t e x t u r a l v a r i e t i e s
o f
k i m b e r l i t e ,
c h a r a c t e r i s t i c a l l y contents
are
t i t a n i f e r o u s ,
c o m p o s i t i o n a l l y
TiOz
s i m i l a r .
T h i s
ranging 46 wt%, w i t h
mica
v a r i a b l e
(01 wt%) and v i r t u a l l y constant FeO ( 4 . 5 5 . 3 wt%). AI2O3 i n
i s
Ο 2 Ο 3 t h i s
p h l o g o p i t e ranges 13.2715.60 wt%. In the case o f m a c r o c r y s t i c s i l l 1 8 0 ( i ) these t i t a n i f e r o u s
p h l o g o p i t e s
are mantled
by dark
redbrown
rims
o f
r e v e r s e d
p l e o c h r o i c t i t a n i u m poor mica (0.30.68 wt% T i O ? ) , which has high FeO (1013.3 wt%) contents and c h a r a c t e r i s t i c a l l y ( F i g u r e 2 ) . These rim compositions
low Al2Ο 3 ( 2 wt%) and Ο 2 Ο 3 contents correspond to
the
t e t r a f e r r i p h l o g o p i t e s
r e p o r t e d by Hogarth et a l . ( 1 9 7 0 ) . The
pale
c o l o u r e d , s p i n e l b e a r i n g
m a c r o c r y s t i c s i l l
mica
(which
i s
p o o r l y developed
in
209 but abundant i n a p h a n i t i c 1 8 0 ( i ) ) occurs as overgrowths
49
(A) Dork coloured phlogopite: • Macrocrystic sill 180 (i) a Macrocrystic sill 209 Δ Aphanitic sill 180(H)
(B) Rale coloured spinel bearing phlogopife: • Macrocrystic sill 209 A Aphanitic sill 180 (ii)
f Red brown, tetraferriphlogopite manttes on dark coloured mica sill 180 (i) Cone and mantle analysis of a single grain Core to edge trends in zoned phlogopites
50 on the dark coloured mica and i s markedly d i f f e r e n t in composition ( F i g u r e 2 ) . With r a r e exceptions the "Π Ο 2 and Ο 2 Ο 3 contents are constant and low: 2.52.92 and 0.040.12 wt% r e s p e c t i v e l y , presumably the r e s u l t o f c o c r y s t a l l i z a t i o n o f the p h l o g o p i t e and the i n c l u s i o n s o f C r r i c h t i t a n o m a g n e t i t e . 5.1.2
P h l o g o p i t e in P h l o g o p i t e I l m e n i t e X e n o l i t h s
The l a r g e deformed p h l o g o p i t e p l a t e s i n the p h l o g o p i t e i l m e n i t e
x e n o l i t h s
are r e s t r i c t e d i n composition w i t h Mg/(Mg+Fe) r a t i o s ranging 0.890.907, low T i O
contents (1.211.4 wt%), v e r y low Ο 2 Ο 3 contents and intermediate to high
FeO (5.105.90 wt%) ( T a b l e I I I ) . In terms o f C r 0 , T i 0 and FeO ( F i g u r e 3) 2
3
2
these micas are most s i m i l a r to the MARID and megacryst s u i t e s as defined by Delaney et a l . (1980). FIGURE 3 : j 5
Τ 1Ό 7 AND C r 0 VS. FeO FOR THE DEFORMED PHLOGOPITE PLATES IN THE ILMENITE /PHOGOPITE 2
3
XENOLITHS PRIMARY "PERiDOTiTIC PRIMARY METASOMATIC, MARIO
5 i *
/
•M&ACRYST
• CZ3 CD" I C~"V
PHLOGOPITE PLATES IN XENOLITHS PRMARf METASOMATIC PHLOGOPITE (HARTE AND GURNEY 1975) F'ELD OF PRIMARY PERiDOTiTE PHLOGOPITE (DELANEY ET. AL., 19Θ 0 )
I MEGACRYST PHLOGOPITES (DAWSON ET.AL, 1977 ) MARID SUITE PHLOGOPITES (DAWSON ET.AL., 1977)
5.2 I l m e n i t e The v a r i o u s i l m e n i t e v a r i e t i e s o c c u r r i n g at Mayeng are also c o m p o s i t i o n a l l y d i s t i n c t i v e . Representative i l m e n i t e a n a l y s e s , and associated s i l i c a t e s where a p p l i c a b l e ,
are given i n Table I V . F i g u r e 4 i s
a MgO vs Ο 2 Ο 3 p l o t
and
51 i l l u s t r a t e s the i n t e r r e l a t i o n s h i p between the i l m e n i t e t y p e s . E s s e n t i a l l y t h r e e major chemical p o p u l a t i o n s are apparent; the low MgO m a c r o c r y s t s , the low Ο 2 Ο 3 l a m e l l a r i n t e r g r o w t h types and c o m p o s i t i o n a l l y a s s o c i a t e d m a c r o c r y s t s , and the high MgO, high Ο 2 Ο 3 matrix and b l e b t y p e i l m e n i t e s . No chemical
d i f f e r e n c e
between any i l m e n i t e s from the m a c r o c r y s t i c and a p h a n i t i c k i m b e r l i t e s was found and i l m e n i t e data from both t e x t u r a l types are t h e r e f o r e considered t o g e t h e r . TABLE I V : I l m e n i t e and Some A s s o c i a t e d S i l i c a t e Analyses Si0
Ti0
1 2 3 4 5
0.00 0.00 0.00 0.00 0.00
49.95 51.84 52.97 55.24 53.60
0.32 0.40 0.74 0.23 0.48
6 7 8 9 10
0.00 0.00 0.00 0.00 0.00
48.16 51.81 54.30 53.06 54.16
1.58 0.45 0.16 0.44 0.30
2
2
A1 0
Fe 0
MnO
NiO
MgO
0.90 1.02 0.13 1.53 2.47
27.44 12,10 26.33 9.99 9.15 24.89 5.45 22.64 7.16 22.20
0.26 0.28 0.20 0.49 0.41
nd nd nd nd nd
9.61 11.19 12.61 14.78 14.08
0.06 0.04 0.05 0.15 0.38
100.64 101.09 100.74 100.51 100.78
6.40 4.14 1.99 2.97 2.05
17.63 12,80 21.04 8.97 18.99 8.00 22.21 6.95 21.30 7.06
0.36 0.45 0.58 0.44 0.46
0.18 nd nd 0.13 0.14
14.10 13.96 16.10 13.91 14.71
0.06 0.16 0.43 0.20 0.56
101.24 100.98 100.55 100.31 100.74
0.21 0.10 0.11 0.28
14.79 49.05
0.15 99.87 0.05 100.36
nd 0.52 0.01 0.18
15.57 22.21
0.28 0.01
0.20 0.12
nd 0.05
12.60 18.66
0.05 101.19 17.14 97.99
0.51 1.58 24.86 10.57 5.88 0.76 2.10 23.29 0.83 0.07 6.09
0.23 0.26 0.10
nd nd 0.08
11.67 13.99 35.11
0.04 100.56 0.05 100.33 0.55 100.66
0.21 0.40
U.5U U.14 nd 0.26
lb.68 11.19
0.16 100.54 0.05 100.56
2
3
Cr 0 2
3
FeO
0.63 1.95 21.72 0.01 0.00 11.23
2
3
6.92
11 12
0.00 54.03 36.61 0.02
13 14
0.00 39.67
53.82 0.28 4.26 13.19
2.26 19.75 0.26 4.70
7.43
15 16
0.00 54.22
52.84 0.44
0.32 24.79 0.03 5.13
9.52
17 18 19
0.00 51.10 0.00 54.00 57.63 0.20
20 21
0.00 0.00
54.13 51.92
Analyses 1
6 11 13 15 17 20
0.87 2.20
1.52 1.07
19.91 26.25
8.29 9.42
3 : 4 : 5 : 9 : 10 : 12 : 14 : 16 : 19 :
CaO T o t a l
99.91 94.55
Cores o f m a c r o c r y s t i c i l m e n i t e Rim o f a n a l y s i s 1 Rim o f a n a l y s i s 3 Cores o f matrix i l m e n i t e Rim o f a n a l y s i s 9 I l m e n i t e bleb and idiomorphic o l i v i n e host Ilmenite bleb and p h l o g o p i t e (Na?0 * 0.19, K 0 = 9.87) host I l m e n i t e and d i o p s i d e (Na20 * l . b O ) from l a m e l l a r i n t e r g r o w t h I l m e n i t e ( m i n . and max. MgO and C r 0 3 ) and orthopyroxene from I l m O p x S e r p e n t i n e x e n o l i t h 21 : I l m e n i t e from I l m e n i t e P h l o g o p i t e x e n o l i t h s IP1 and IP2 2
2
FeO and Fe2U3 c a l c u l a t e d s t o i c h i o m e t r i c a l l y f o r i l m e n i t e analyses FeO i s t o t a l Fe f o r s i l i c a t e s ; nd = not determined
The
macrocrysts
e x h i b i t
c o n s i d e r a b l e
chemical
v a r i a t i o n
e s p e c i a l l y
52
O
MACROCRYSTS
*
LAMELLAR
•
MATRIX
•
PHLOGOPITE / ILMENITE XENOLITHS
Β
BLEBS IN OLIVINE
m
BLEBS IN PHLOGOPITE
ARROWS SHOW CORE TO RIM
χ
COMPOSITION
INTERGROWTHS
ORTHOPYROXENE /
ILMENITE XENOLITH
5 3 n o t i c e a b l e f o r Ο 2 Ο 3 ( r a n g e : 0.142.23, mean 1.3 wt),MgO ( r a n g e : 9.414.7, mean 13.0 wt%), and AI2O3 which v a r i e s s y m p a t h e t i c a l l y w i t h MgO between 0.2 and 0.8 wt%. Fe2U3 i s g e n e r a l l y l e s s than 10 wt% and has a p o s i t i v e r e l a t i o n s h i p w i t h FeO (range 2027 wt%). The m a j o r i t y o f these i l m e n i t e s have MgTi03 l e s s than 50 mole %. A f e a t u r e o f the macrocrysts i s t h a t w h i l e cores are homogeneous, MgO, Ο 2 Ο 3 , MnO and CaO enrichment and A12U3 d e p l e t i o n occurs on r i m s . These r i m s , which are r e s t r i c t e d to extreme edges o f g r a i n s , approach matrix type i l m e n i t e compositions. The macrocrysts may be s u b d i v i d e d i n t o two g r o u p s , those w i t h low MgO and those w i t h low Ο 2 Ο 3 core compositions. The l a t t e r are comparable w i t h i l m e n i t e from i l m e n i t e c l i n o p y r o x e n e l a m e l l a r M a t r i x i l m e n i t e s
i n t e r g r o w t h s .
are c h a r a c t e r i s e d by high MgO (mean: 14.6 wt%) and high
Ο 2 Ο 3 · The l a t t e r shows a c o n s i d e r a b l e range (1.6 t o 6.8 wt%) but the m a j o r i t y o f the data occur between 2 and 3 wt%. AI2O3 i s a l s o v a r i a b l e ( r a n g e : 0.162.19 wt%) but most g r a i n s have 0.2 t o 0.6 wt%. Fe2U3 ( r a n g e : 5.214.3 wt%)
i s
i n v e r s e l y r e l a t e d to FeO which i s g e n e r a l l y low ( r a n g e : 16.422.9 wt%). The matrix i l m e n i t e s mostly have MgTi03 g r e a t e r than 50 mole %. Chemical v a r i a t i o n s were found between matrix core and r i m s ; t h i s i s e s p e c i a l l y e v i d e n t f o r
the
matrix g r a i n s w i t h high 0 ^ 0 3 c o n t e n t s . Core to rim v a r i a t i o n s show an i n c r e a s e in MgO, a decrease in ^ 0 3
and AI2O3 ( s l i g h t l y )
c o n s t a n t . Increases in CaO are o n l y e v i d e n t when ^ 0 3
w h i l e MnO i s
reaches i t s lower l i m i t .
O v e r a l l , the c r y s t a l l i z a t i o n t r e n d f o r matrix
i l m e n i t e s
i n c r e a s i n g MgO associated w i t h decreasing ^ 0 3
( F i g . 4 ) .
The small
b l e b l i k e
i n c l u s i o n s
o c c u r r i n g
i n
r e l a t i v e l y
appears to be one o f
o l i v i n e
and, more
r a r e l y ,
p h l o g o p i t e are c o m p o s i t i o n a l l y s i m i l a r to the bulk o f the matrix i l m e n i t e d a t a . I l m e n i t e blebs i n o l i v i n e tend to have a much wider compositional range than those o c c u r r i n g i n p h l o g o p i t e where 0 ^ 0 3 contents are c o n s i s t e n t l y low. Two o f the l a t t e r were f o u n d , however, having h i g h e r MgO than recorded f o r any o f the former ( F i g . 4 ) . S i m i l a r i l m e n i t e i n c l u s i o n s in o l i v i n e have p r e v i o u s l y been r e p o r t e d from the Benfontein s i l l s near Kimberley (Dawson and Hawthorne, 1973) and from the temperatures
I son Creek k i m b e r l i t e , o f e q u i l i b r i u m
Kentucky
(Boyd and N i x o n ,
o f the Mayeng i l m e n i t e o l i v i n e
1973) . The b
p a i r s have been
estimated using the r e v i s e d method o f Anderson and L i n d s l e y (1982) v a r i o u s
p r e s s u r e s
o f
e q u i l i b r a t i o n .
Table
V g i v e s
minimum
and
assuming maximum
temperatures obtained although the m a j o r i t y o f the data occur i n the range 1150 t o 1180°C at 50 kb. I l m e n i t e
from
the
i l m e n i t e s i l i c a t e
x e n o l i t h s
v a r i e s
c o m p o s i t i o n a l l y
according to the associated s i l i c a t e s , ( i ) I l m e n i t e o c c u r r i n g w i t h p h l o g o p i t e i s e s s e n t i a l l y homogeneous f o r each o f the t h r e e x e n o l i t h s examined, but v a r i a t i o n s between x e n o l i t h s occur and edges, where i n c o n t a c t w i t h k i m b e r l i t e , are a l t e r e d t o h i g h e r MgO. In one case the i l m e n i t e has moderate Cr2U3 and MgO (1.1 and 11.2 wt% r e s p e c t i v e l y ) another has h i g h e r Cr2U3 and MgO (1.5 and 14.7 core t o
15.7
54 TABLE V : Temperatures o f E q u i l i b r a t i o n o f Selected I l m e n i t e / O l i v i n e P a i r s Mole %
Temp. °C
I l m .
G e i k .
Fo
10 kb
30 kb
50 kb
43.01 46.26 42.26 42.60 43.78 43.90 42.20
51.22 49.27 51.51 51.80 51.32 51.17 52.81
90.7 88.3 88.5 88.6 88.1 88.0 8/.9
768 884 949 945 968 971 1044
853 980 1047 1046 1020 1075 1155
937 1076 1146 1147 1176 1179 1267
edge wt% r e s p e c t i v e l y ) , see Table I V . The composition o f the former matches t h a t o f the low MgO macrocryst cores w h i l e the o t h e r s are c o m p o s i t i o n a l l y s i m i l a r to low MgO macrocryst rim compositions and appears to approximate the low MgO macrocryst c o r e / r i m trends in terms o f Ο 2 Ο 3 and MgO as shown i n F i g u r e 4. ( i i ) I l m e n i t e
associated w i t h the o r t h o p y r o x e n e s e r p e n t i n i z e d s i l i c a t e x e n o l i t h
c o m p o s i t i o n a l l y heterogeneous w i t h v a r i a b l e MgO (1214 wt%) and C r 0 2
wt%).
The low MgO and 0*203 compositions
m a c r o c r y s t s , the h i g h e r compositions
approaches t h a t
being t y p i c a l
3
i s
( 1 . 6 2 . 2
o f the low MgO
o f matrix
i l m e n i t e
and
o c c u r r i n g towards edges. The orthopyroxene ( T a b l e I V ) i s both Ή Ο 2 (0.2 wt%) and MgO (35.1 wt%, Mg/(Mg+Fe) = 91.1%) r i c h w h i l e Ο 2 Ο 3 i s poor (0.1 wt%). T h i s x e n o l i t h shares s i m i l a r i t i e s w i t h the p o l y m i c t p e r i d o t i t e s d e s c r i b e d by Lawless et a l .
(1979)
and p o s s i b l y has a s i m i l a r
c l i n o p y r o x e n e lamellar
o r i g i n ,
( i i i )
The two
ilmenite
i n t e r g r o w t h s examined are c h e m i c a l l y s i m i l a r to those
d e s c r i b ed by P a s t e r i s e t a l . (1979) and M i t c h e l l
(1977) from the nearby Frank
Smith k i m b e r l i t e . The i l m e n i t e s from these i n t e r g r o w t h s a r e , however, d i s t i n c t l y more magnesian than those from the Monastery k i m b e r l i t e
(Gurney et a l . , 1973).
The i n t e r g r o w t h d i o p s i d e (Ca/(Ca+Mg) = 39.7 %) corresponds w i t h t h a t r e p o r t e d by P a s t e r i s e t a l . (1979) from Frank Smith which a p p a r e n t l y e q u i l i b r a t e d at 1200 to 1250°C. In a d d i t i o n to the i l m e n i t e s analysed in t h i n s e c t i o n (as d e s c r i b e d a b o v e ) , macrocrysts (0.51.0mm) from concentrate from both m a c r o c r y s t i c and a p h a n i t i c k i m b e r l i t e
specimens were also examined. These g r a i n s were obtained from each
sample by crushing core specimens t o 5mm s i z e p a r t i c l e s which were acid d i g e s t e d and the heavy minerals
s e p a r a t e d . No geochemical d i f f e r e n c e s were observed
between the i l m e n i t e s from the two t e x t u r a l types o f k i m b e r l i t e . Consequently the
data
(more than 400 a n a l y s e s ) were pooled and grouped using
c l u s t e r
a n a l y s i s . The m a j o r i t y o f these data (95%) resemble the low Ο 2 Ο 3 ( 0 . 5 1 . 5 wt%) low MgO (911 wt%) d i s c r e t e macrocryst types analysed i n t h i n s e c t i o n . The remainder o f the concentrate data are s i m i l a r to both matrix (3%) and l a m e l l a r i n t e r g r o w t h (2%) type c o m p o s i t i o n s .
55
5.3 Garnet Garnet x e n o c r y s t s (0.51.Omm) were obtained from the same concentrate as the i l m e n i t e s . These g r a i n s were c l a s s i f i e d using the scheme of Danchin and Wyatt (1979);
no d i f f e r e n c e s were found between g r a i n s from the m a c r o c r y s t i c and
a p h a n i t i c samples. A l l the garnets are p e r i d o t i t i c being mostly C r 0 3 (15 wt%) 2
and CaO (46 wt%) r i c h w i t h approximately equal p r o p o r t i o n s o f these g r a i n s being T i 0 poor ( l e s s than 0.1 wt%) and T i 0 r i c h . A few (10% o f data) o f the 2
2
garnets are C r 0 3 poor ( l e s s than 1.0 wt%) but these have high T i 0 (more than 2
2
1.0 wt%). 5.4 O l i v i n e E x t e n s i v e s e r p e n t i n i z a t i o n o f the o l i v i n e s l i m i t e d a n a l y s i s i n most cases t o r e l i c s o n l y . Macrocrysts are v a r i a b l e in composition w i t h f o r s t e r i t e (Fo) values ranging 87 to 93% and NiO ranging 0.2 t o 0.38 wt%. Phenocrysts a l s o have v a r y i n g Fo contents but w i t h a more r e s t r i c t e d range o f 88 to 90%. A general t r e n d o f i n c r e a s i n g NiO (0.190.38 wt%) w i t h i n c r e a s i n g Fo i s noted. Both macrocrysts and phenocrysts show FeO enrichment and NiO d e p l e t i o n o f r i m s ,
to a r e s t r i c t e d
composition o f Fo (87.988.2%) and NiO (0.150.18 wt%). The chemistry o f o l i v i n e phenocrysts w i t h i l m e n i t e b l e b i n c l u s i o n s ( T a b l e I V ) are s i m i l a r to o l i v i n e s i n which no i l m e n i t e was o b s e r v e d . 6
DISCUSSION AND CONCLUSIONS The s t o c k w o r k l i k e , d i s c o n t i n u o u s nature o f the Mayeng s i l l s i s d i f f e r e n t t o
o t h e r k i m b e r l i t e s i l l s i n the Kimberley area and i s considered a consequence o f the
unique
s t r u c t u r a l
c o n t r o l
imposed
by j o i n t i n g
i n
the
c o u n t r y
rock
Ventersdorp Lava. Two
p e t r o g r a p h i c a l l y
d i s t i n c t
t e x t u r a l
v a r i e t i e s
o f
k i m b e r l i t e
are
r e c o g n i z e d at Mayeng; a m a c r o c r y s t i c and a p h a n i t i c t y p e , and apart from obvious d i f f e r e n c e s i n macrocryst content and minor v a r i a t i o n s i n the p r o p o r t i o n s o f groundmass
phases
these
k i m b e r l i t e s
are
m i n e r a l o g i c a l l y
s i m i l a r
and
c l a s s i f i e d as hypabyssal f a c i e s , i l m e n i t e r i c h , p h l o g o p i t e k i m b e r l i t e s Clement et a l . , 1977; Clement and S k i n n e r , 1979). T h i s m i n e r a l o g i c a l
are
( a f t e r
s i m i l a r i t y
implies d e r i v a t i o n from a common magma and the t e x t u r a l v a r i a t i o n s t h e r e f o r e are considered to
r e s u l t
from some imposed p h y s i c a l
p r o c e s s , p o s s i b l y
f i l t e r
p r e s s i n g . The p e t r o g r a p h i c a l l y defined p o p u l a t i o n s o f phenocrysts and x e n o c r y s t s are c o m p o s i t i o n a l l y
d i s t i n c t
and the
chemistry
o f
these phases expresses
the
p o s s i b l e p a r a g e n e t i c h i s t o r y o f the k i m b e r l i t e . M a t r i x i l m e n i t e s , some o f which are zoned w i t h Cr r i c h cores and Cr poorer r i m s , d e f i n e a t r e n d o f decreasing Cr w i t h s l i g h t Mg enrichment
( F i g u r e 4 ) . The reason f o r the Mg enrichment
unknown but a s i m i l a r s i t u a t i o n i s noted in the Wesselton k i m b e r l i t e ,
i s
Kimberley
56 ( S . Shee p e r s . comm.). S i g n i f i c a n t l y , i l m e n i t e blebs included i n p h e n o c r y s t a l o l i v i n e have the same composition as the Cr poor m a t r i x ilmenites and p a r a l l e l the CrMg t r e n d . The anhedral matrix ilmenites may t h e r e f o r e be i n t e r p r e t e d as p h e n o c r y s t s . T h i s being the case,
i t
would seem t h a t the high Cr matrix
ilmenites c r y s t a l l i z e d f i r s t , f o l l o w e d by the c o c r y s t a l l i z a t i o n o f o l i v i n e and the bulk o f the matrix i l m e n i t e s . Ilmenite blebs included i n T i r i c h p h l o g o p i t e are also r e s t r i c t e d t o Cr poor matrix i l m e n i t e compositions and t h i s shows an overlap i n c r y s t a l l i z a t i o n o f o l i v i n e , C r p o o r matrix
i l m e n i t e and T i r i c h
p h l o g o p i t e . A subsequent c e s s a t i o n in o l i v i n e c r y s t a l l i z a t i o n i s then implied by the u n u s u a l l y high Mg contents o f some low Cr matrix ilmenites and some blebs i n p h l o g o p i t e . While
matrix
c r y s t a l l i z a t i o n
ilmenites
p r o v i d e
information
h i s t o r y o f the k i m b e r l i t e ,
the
concerning
e a r l y
t h * chemistry o f the groundmass
p h l o g o p i t e s extend t h i s examination t o the l a t e r stages o f magma e v o l u t i o n . Dark c o l o u r e d , t i t a n i f e r o u s
micas o f i d e n t i c a l composition occur i n both
t e x t u r a l
v a r i e t i e s o f k i m b e r l i t e and c r y s t a l l i z a t i o n from a common magma i s
i m p l i e d .
However, f o l l o w i n g the c r y s t a l l i z a t i o n o f t h i s p a r t i c u l a r p h l o g o p i t e , the magma o f i n d i v i d u a l s i l l s evolved s e p a r a t e l y t o produce unique assemblages o f l a t e r groundmass p h l o g o p i t e ,
mica, w h i l s t
e . g .
m a c r o c r y s t i c
m a c r o c r y s t i c
s i l l
s i l l
180(i)
c r y s t a l l i z e d
209 and a p h a n i t i c
s i l l
tetraferri 1 8 0 ( i i )
both
c r y s t a l l i z e d pale coloured s p i n e l bearing mica. By f a r the m a j o r i t y o f the p h l o g o p i t e i n the a p h a n i t i c k i m b e r l i t e i s t h i s pale coloured mica and s i n c e these micas c r y s t a l l i z e d l a t e , the a p h a n i t i c k i m b e r l i t e could r e p r e s e n t a l a t e stage f r a c t i o n o f the m a c r o c r y s t i c k i m b e r l i t e . In a d d i t i o n to the phases c r y s t a l l i z i n g d i r e c t l y from the k i m b e r l i t e magma, x e n o c r y s t i c minerals
are also present
i n c l u d i n g
i l m e n i t e ,
garnet and some
o l i v i n e . Two p o p u l a t i o n s o f m a c r o c r y s t i c i l m e n i t e are i d e n t i f i e d , a IowCr203 type and a lowMgO type ( F i g u r e 4 ) , both o f which are zoned. The macrocryst core compositions are t o t a l l y d i f f e r e n t t o the matrix i l m e n i t e , t h e r e b y suggesting a paragenesis other than i n the Mayeng k i m b e r l i t e l i q u i d . I n a d d i t i o n macrocryst p o p u l a t i o n s
are chemically d i f f e r e n t
parageneses f o r each m a c r o c r y s t i c p o p u l a t i o n .
which would imply Rim compositions
i n d i v i d u a l separate
o f the two
p o p u l a t i o n s are d i f f e r e n t , i . e . rims o f the low 0*203 macrocrysts are i d e n t i c a l to and p a r a l l e l the CrMg trend o f the matrix i l m e n i t e s , w h i l s t the lowMgO macrocryst rims are marked by increased MgO contents ( F i g u r e 4 ) . The i m p l i c a t i o n i s t h a t the low 0*203 macrocrysts were i n c o r p o r a t e d i n t o the k i m b e r l i t e during m a t r i x i l m e n i t e c r y s t a l l i z a t i o n , i . e . e a r l y i n the e v o l u t i o n o f the k i m b e r l i t e magma, w h i l s t the low MgO macrocrysts were i n c o r p o r a t e d l a t e r . The
IowCr203
macrocrysts
c l i n o p y r o x e n e lamellar
are
c h e m i c a l l y
s i m i l a r
t o
i l m e n i t e
from
i n t e r g r o w t h s and a r e l a t e d paragenesis i s p r o b a b l e . A
57 s i m i l a r
s i t u a t i o n
i s noted i n the Frank Smith k i m b e r l i t e s
1979), where the e q u i l i b r a t i o n
( P a s t e r i s et a l . ,
temperature o f the i n t e r g r o w t h s
i s quoted as
1200°C C a l c u l a t e d e q u i l i b r a t i o n temperatures f o r the bleb i l m e n i t e included in o l i v i n e i n the Mayeng k i m b e r l i t e are s i m i l a r ( i . e . 11501180°C) at 50 kb. Since these i n t e r g r o w t h s
are a p p a r e n t l y i n c o r p o r a t e d i n t o the magma during
i l m e n i t e c r y s t a l l i z a t i o n , a deep mantle o r i g i n ( a p p r o x . the l a m e l l a r
matrix
50 kb) i s suggested f o r
i n t e r g r o w t h s , t h e i r a s s o c i a t e d i l m e n i t e m a c r o c r y s t s , the
matrix
ilmenites as w e l l as t h e i r g e n e t i c a l l y associated phases, the euhedral o l i v i n e s and some T i r i c h p h l o g o p i t e s . Not
o n l y
are
the
low
MgO i l m e n i t e
macrocrysts
v o l u m e t r i c a l l y
most
s i g n i f i c a n t , but these g r a i n s and t h e i r rim compositions match the i l m e n i t e from the i l m e n i t e p h l o g o p i t e x e n o l i t h s . T e x t u r a l evidence i n d i c a t e s t h a t the i l m e n i t e and p h l o g o p i t e
i n
these
x e n o l i t h s
are
a s t a b l e
and presumably
c o g e n e t i c
assemblage. The p h l o g o p i t e s i n question correspond c o m p o s i t i o n a l l y t o n e i t h e r primary mantle nor metasomatic p h l o g o p i t e s as defined to date and are s i m i l a r , although not i d e n t i c a l ,
t o the " n o n p e r i d o t i t i c "
megacryst and p o s s i b l e the
MARID s u i t e s as defined by Dawson (1980). Whatever the o r i g i n o f these x e n o l i t h s i t does not appear to be d i r e c t l y r e l a t e d t o the Mayeng magma but would be most s i m i l a r t o t h a t o f the lowMgO m a c r o c r y s t s . The i l m e n i t e i n the i l m e n i t e o p x x e n o l i t h , although v a r i a b l e i n c o m p o s i t i o n , i s the most s i m i l a r to the m a t r i x i l m e n i t e s o f a l l the x e n o c r y s t i c i l m e n i t e s the k i m b e r l i t e .
i n
A paragenesis c l o s e l y associated w i t h the Mayeng magma i s
t h e r e f o r e a p o s s i b i l i t y . Furthermore, the s i m i l a r i t y between t h i s i l m e n i t e and t h a t o f veined p o l y m i c t p e r i d o t i t e s
may suggest t h a t t h i s
x e n o l i t h
i s
the
product o f i n f i l t r a t i o n metasomatism by f l u i d s emanating as a " f r o n t " from the Mayeng k i m b e r l i t e magma. I t can be speculated t h a t a s i m i l a r p r o t o k i m b e r l i t e e v e n t , as discussed by M i t c h e l l
(1973) , may account f o r the lowMg i l m e n i t e b
macrocrysts and associated i l m e n i t e p h l o g o p i t e 7.
x e n o l i t h s .
ACKNOWLEDGEMENT S
We acknowledge P h i l Dobbs f o r the i n i t i a l f i e l d work and would l i k e t o thank Graham Hutchinson and B r i a n Lowry f o r t h e i r a n a l y t i c a l a s s i s t a n c e . We thank the s t a f f o f Anglo American Research L a b o r a t o r i e s and De Beers C o n s o l i d a t e d Mines Geology Department, i n p a r t i c u l a r Paddy Lawless and Mike Skinner f o r
h e l p f u l
d i s c u s s i o n . The Anglo American C o r p o r a t i o n and De Beers Consolidated Mines are g r a t e f u l l y acknowledged f o r permission to p u b l i s h t h i s p a p e r .
This page intentionally left blank
THE OXIDE MINERALS OF THE WESSELTON MINE KIMBERLITE, KIMBERLEY, SOUTH AFRICA
by
Simon R. SHEE
A b s t r a c t : The compositions o f the c o n s t i t u e n t s p i n e l s , i l m e n i t e s , r u t i l e s and p e r o v s k i t e s have been determined i n s i x k i m b e r l i t e i n t r u s i o n s at Wesselton. Groundmass s p i n e l s show a normal magmatic t r e n d o f C r r i c h , T i p o o r chromite cores and T i r i c h , C r p o o r t i t a n o m a g n e t i t e r i m s . S p i n e l s from p e r i d o t i t e x e n o l i t h s are c o m p o s i t i o n a l l y d i s t i n c t from groundmass s p i n e l s . I l m e n i t e s occur as ( a ) macrocrysts ( b ) i n metasomatised p e r i d o t i t e s ( c ) as i n c l u s i o n s i n o l i v i n e phenocrysts and ( d ) as groundmass g r a i n s i n the k i m b e r l i t e . Despite some o v e r l a p these groups can be d i s t i n g u i s h e d c o m p o s i t i o n a l l y . The o r i g i n and c r y s t a l l i s a t i o n sequence o f oxide minerals a t Wesselton i s : PREINTRUSION : Chromites ( x e n o c r y s t s ) , r u t i l e macrocrysts ( x e n o c r y s t s ) , i l m e n i t e macrocrysts ( phenocrysts o r x e n o c r y s t s ? ) , groundmass c h r o m i t e , r u t i l e and i l m e n i t e i n c l u s i o n s i n o l i v i n e p h e n o c r y s t s , groundmass i l m e n i t e ( m i c r o p h e n o c r y s t s ) . POSTINTRUSION : groundmass t i t a n o m a g n e t i t e s , p e r o v s k i t e s and magnetites ( m i c r o p h e n o c r y s t s ) .
1.
INTRODUCTION Oxide minerals i n the Wesselton k i m b e r l i t e s have been s t u d i e d i n an attempt
to monitor the changing composition and p h y s i c a l c o n d i t i o n s o f k i m b e r l i t e magmas as they e v o l v e .
A t e n t a t i v e c r y s t a l l i s a t i o n sequence f o r the oxide minerals has
been e s t a b l i s h e d and chemical parameters between chosen
x e n o c r y s t i c and p h e n o c r y s t i c f o r
d e t a i l e d
study
have been suggested to
s p i n e l s
because
and i l m e n i t e s .
mining
o p e r a t i o n s
d i s t i n g u i s h
Wesselton was
have exposed
f r e s h
hypabyssal f a c i e s k i m b e r l i t e s i n the r o o t zone o f the p i p e .
2.
LOCATION AND PETROGRAPHY The Wesselton mine i s one o f
i n K i m b e r l e y .
In 1982 i t y i e l d e d 314 000 c a r a t s o f diamonds a t an average grade
o f 22,66 c a r a t s per The pipe has
f o u r k i m b e r l i t e s c u r r e n t l y mined f o r diamonds
100 tons (De Beers C o n s o l i d a t e d Mines
been mapped by De Beers g e o l o g i s t s
Annual Report 1982).
( C R . Clement, L. K l e i n j a n and
P. B a r t l e t t ) who have shown t h a t i t has a complex g e o l o g i c a l h i s t o r y . minor dykes and s i l l s , ten d i f f e r e n t
between the 435 and 1020 metre l e v e l s . b r e c c i a s occur below been designated 162°) across
In a d d i t i o n two
the 600 metre l e v e l .
Wl to
W10 (Clement, 1983).
the pipe showing the
E x c l u d i n g
k i m b e r l i t e i n t r u s i o n s have been r e c o g n i z e d major areas o f c o n t a c t
The ten main i n t r u s i v e
bodies have
F i g u r e 1 i s a s e c t i o n ( s t r i k i n g
c r o s s c u t t i n g
r e l a t i o n s h i p s o f some o f these
60 i n t r u s i o n s .
S i x
d i f f e r e n t
k i m b e r l i t e
p e t r o g r a p h i c a l l y i n t h i s s t u d y .
i n t r u s i o n s
have
been
These are the Wesselton s i l l s ; the
examined W2, W3, W7
and W8 k i m b e r l i t e s and an a p h a n i t i c dyke (W3a) a s s o c i a t e d w i t h the W3 i n t r u s i o n . The Wesselton s i l l s and associated dykes are exposed i n tunnels s i t u a t e d on the 40 metre l e v e l i n the country the c o n t a c t
rock surrounding the mine.
The s i l l s i n t r u d e
zone between the upper Dwyka shales (upper C a r b o n i f e r o u s , 310280
F i g u r e 1. S e c t i o n ( s t r i k i n g a t 162°) across the Wesselton mine showing the (Geology by r e l a t i o n s h i p s between the d i f f e r e n t k i m b e r l i t e i n t r u s i o n s . C R . Clement, De Beers Geology Department, K i m b e r l e y ) . Note t h a t the W7 and W8 i n t r u s i o n s occupy a ' b l i n d dome which does not reach the s u r f a c e . 1
my) and a Karoo d o l e r i t e s i l l (195135 m y ) .
They have a maximum thickness o f
f i v e metres but are g e n e r a l l y l e s s than one metre t h i c k ( H i l l , 1977). extend o v e r a minimum area o f the s i l l s
predate the
70 h e c t a r e s .
pipe (E.M.W. Skinner
F i e l d r e l a t i o n s h i p s p e r s . comm.).
i n t r u s i o n s s t u d i e d have been c l a s s i f i e d t e x t u r a l l y
The s i l l s
i n d i c a t e t h a t
The s i x k i m b e r l i t e
using the scheme proposed by
Clement and Skinner (1979) see Table 1. In general the k i m b e r l i t e s have m a c r o c r y s t i c presence
o f
( t y p i c a l l y
anhedral
o l i v i n e , i l m e n i t e ,
g r e a t e r than
phenocrysts
0.5 mm)
s e t i n
( 50wt% Ο 2 Ο 3 ) w i t h
and low
t i t a n i u m contents
moderate
chromiumrich and have compositions which chromites orange
o c c u r r i n g as
f i n g e r p r i n t
r e l a t i v e l y common chromium s p i n e l s
i n c l u s i o n s
chromites i n the
contents
the
o t h e r
i n
(0.5mm)
i n euhedral c o n t a i n i n g
The i n c l u s i o n s
R u t i l e
i n c l u s i o n s i n
the Wesselton k i m b e r l i t e s and are a l s o
Snowden (1981) and Clement (1983).
are
t i n y
are arranged z o n a l l y w i t h i n
o l i v i n e p h e n o c r y s t s .
Kimberley area
o l i v i n e o r i e n t e d
the
o l i v i n e
present i n
as documented by P a s t e r i s
(1980),
S i m i l a r i n c l u s i o n s have been r e p o r t e d from
the Tunraq k i m b e r l i t e , Somerset I s l a n d , Canada, ( M i t c h e l l ,1979) .
Representative
b
r u t i l e analyses are presented i n Table 5. TABLE 5. REPRESENTATIVE ANALYSES OF RUTILES AND PEROVSKITES, WESSELTON MINE. 1 Si0 Ti0 2
3
2
3
Cr 0 FeO MnO MgO Cao
3
4
ND ND ND ND 96.64 99.29 93.63 94.11 ND 0.07 ND ND 2.34 0.77 2.98 2.38 0.55 0.12 0.45 0.55 ND ND ND ND 0.12 0.13 0.15 0.21 0.05 MD 0.04 ND
2 2
Al 6
2
5
6
7
0.30 ND 93.74 91.89 ND 0.37 2.51 3.13 0.44 0.72 ND ND 0.62 0.22 0.04 0.11
8
9
10
ND 0.34 ND ND 55.44 51.67 55.75 55.48 0.27 0.52 0.27 0.24 ND ND 0.06 ND 0.99 2.14 1.45 1.07 0.04 ND ND ND 0.08 0.22 0.19 0.05 35.64 38.40 38.92 36.80
99.78 100.38 97.29 97.26 97.67 96.46 92.45 93.31
96.69 93.67
13 R u t i l e M a c r o c r y s t C o r e s , W2. 46 R u t i l e I n c l u s i o n s i n Euhedral O l i v i n e P h e n o c r y s t s , W2. 78 Groundmass P e r o v s k i t e Core and Rim, W7. 9 P e r o v s k i t e I n c l u s i o n i n Euhedral O l i v i n e P h e n o c r y s t s , S i l l . 10 Groundmass P e r o v s k i t e , W3.
The compositions o f the r u t i l e i n c l u s i o n s are
s i m i l a r i n
0^03).
t h a t
The main
both types
i n o l i v i n e and the r u t i l e macrocrysts
have high chromium contents
compositional d i f f e r e n c e
between the
(up to 3 wt%
r u t i l e macrocrysts
70
and the r u t i l e i n c l u s i o n s i n o l i v i n e phenocrysts the former are around and 98 wt%). r u t i l e .
100 wt% and the t o t a l s o f the l a t t e r
The low
t o t a l s could be due to the
The presence o f
study but
i s t h a t the a n a l y s i s t o t a l s o f
niobium i n the
are low (between 96
presence o f niobium
r u t i l e s was not e s t a b l i s h e d
has been r e p o r t e d i n k i m b e r l i t i c
r u t i l e s elsewhere
i n the i n t h i s
( M i t c h e l l 1979
b
E l t h o n and R i d l e y , 1979). 4.4 P e r o v s k i t e P e r o v s k i t e i s a u b i q u i t o u s groundmass mineral i n the Wesselton k i m b e r l i t e s . I t occurs as (1) d i s c r e t e , subhedral to euhedral g r a i n s i n the groundmass (2) as aggregates
w i t h
groundmass
phenocrysts i n the
and groundmass i l m e n i t e s . i n
p e r o v s k i t e .
been n o t e d .
(3)
as
r a r e
i n c l u s i o n s
i s
o f t e n
observed t o
i n
o l i v i n e
on i l m e n i t e macrocrysts
T i n y i n c l u s i o n s o f t i t a n o m a g n e t i t e
P e r o v s k i t e
t i t a n o m a g n e t i t e s .
s p i n e l s ,
s i l l k i m b e r l i t e s and (4) as mantles
f r e q u e n t l y occur
mantle
c o a r s e r
grained
A s i n g l e instance o f a p h l o g o p i t e i n c l u s i o n i n p e r o v s k i t e has
The above t e x t u r a l
o b s e r v a t i o n s
i n d i c a t e t h a t
p e r o v s k i t e i s
a
r e l a t i v e l y l a t e c r y s t a l l i s i n g mineral i n the k i m b e r l i t e groundmass. R e p r e s e n t a t i v e p e r o v s k i t e analyses are g i v e n i n Table 5.
They c o n t a i n some
i r o n (12 vit% FeO) and some p e r o v s k i t e s are zoned w i t h r e s p e c t to i r o n w i t h rims being i r o n r i c h compared
t o the c o r e s . The analyses have low t o t a l s
thought to be due to the presence o f niobium and r a r e
which i s
e a r t h elements.
Boctor
and Boyd (1980) r e p o r t the presence o f Nbbearing p e r o v s k i t e from the Liqhobong k i m b e r l i t e .
The Liqhobong p e r o v s k i t e s
are e n r i c h e d i n
l i g h t REE r e l a t i v e to
heavy REE (up t o 6 vtt% REE o x i d e s ) .
5.
DISCUSSION AND CONCLUSIONS S p i n e l s
i n
p e r i d o t i t e
groundmass s p i n e l s . are mantled
x e n o l i t h s
by euhedral
t i t a n o m a g n e t i t e s .
e a r l y c r y s t a l l i s i n g microphenocrysts euhedral
are
The l a t t e r f r e q u e n t l y
t i t a n o m a g n e t i t e s
are
c o m p o s i t i o n a l l y
d i s t i n c t
have rounded, anhedral
The groundmass chromite
(deep s e a t e d ,
r e l a t i v e l y
p r e i n t r u s i o n ? )
s h a l l o w ,
l a t e r
from
cores which cores are w h i l s t the
c r y s t a l l i s i n g
( p o s t i n t r u s i o n ? ) phases. The abrupt t r a n s i t i o n between cores and rims seen i n r e f l e c t e d l i g h t
implies a break i n
which may correspond to groundmass s p i n e l s d e f i n e decrease i n
mantle
s p i n e l c r y s t a l l i s a t i o n to
surface
between these
two
Chemically
the
emplacement.
a magmatic c r y s t a l l i s a t i o n sequence which i n v o l v e d a
C r and an i n c r e a s e i n
T i , Mg, t o t a l i r o n ,
and F e
3 +
/ F e r a t i o as 2 +
c r y s t a l l i s a t i o n proceeds and as oxygen f u g a c i t y i n c r e a s e s . The occurrence o f i l m e n i t e
f o l l o w e d
phenocrysts and and p e r o v s k i t e
( 1 ) chromites
mantled
by t i t a n o m a g n e t i t e ,
( 3 ) anhedral groundmass
( 2 )
s e q u e n t i a l l y by
i l m e n i t e
i l m e n i t e s mantled
a l l show t h a t p i c r o i l m e n i t e
magnesiumrich
i n c l u s i o n s
i n
o l i v i n e
by titanomagnetites
i s a r e l a t i v e l y e a r l y
groundmass
71 phase.
O l i v i n e phenocrysts i n the main k i m b e r l i t e i n t r u s i o n s a t Wesselton range
i n composition
from F094_87*
phenocrysts a t the the
The i l m e n i t e
l e s s f o r s t e r i t i c
end o f o l i v i n e
end o f t h i s range (F08g 788.4^
· · Ί
Θ
#
Once o l i v i n e stops
c r y s t a l l i s a t i o n .
a v a i l a b l e magnesium i n
i n c l u s i o n s tend to occur i n o l i v i n e
the melt i s p a r t i t i o n e d i n t o
n
c r y s t a l l i s i n g
e
a
r
any
groundmass i l m e n i t e s which
could e x p l a i n why the groundmass i l m e n i t e s
are more magnesian than the i l m e n i t e
i n c l u s i o n s
i l m e n i t e
i l m e n i t e s which
i n o l i v i n e are
p h e n o c r y s t s . Both
chromiumrich
i m p l i e s t h a t
these
(means 4.48
phases d i d
i n c l u s i o n s and groundmass
and 2.77
not
wt% Ο 2 Ο 3 r e s p e c t i v e l y )
c r y s t a l l i s e contemporaneously
s p i n e l because chromium would be p r e f e r e n t i a l l y p a r t i t i o n e d than
i n t o
i l m e n i t e
compositions o f a t e r n a r y are
from
p l o t the
i f
both were p r e s e n t .
the Wesselton i l m e n i t e s o f
Fe203FeTi03MgTi03.
experimental
the
Log fU2
i s o b a r s
diagram
are two b u f f e r s which are a p p l i c a b l e to
upper mantle c o n d i t i o n s .
These are the
w u s t i t e m a g n e t i t e (WM) b u f f e r (Eugster
and Wones, 1962) and the EMOG
Haggerty
There i s a l a r g e s o l v u s i n
extends from the
and Tomkins
compositions o f
Woermann e t a l . ,
on t h i s
A l s o shown
c l a r i t y ) which
o f
between
i s shown i n F i g u r e 5 which i s
(1969).
( E g g l e r and Baker, 1981).
work
The r e l a t i o n s h i p
and f02
w i t h
i n t o spinel r a t h e r
(1983)
Fe203MgTi03 s i d e l i n e
suggest t h a t
k i m b e r l i t i c i l m e n i t e s i s
the
f i g u r e 5
b u f f e r
(omitted f o r
towards FeTi03.
dominant
i n f l u e n c e
on
the
the presence o f t h i s s o l v u s and the
f02 environment o f f o r m a t i o n . Examination
o f
f i g u r e
5 shows
phenocrysts and groundmass i l m e n i t e s cuts the
l o g f02
i s o b a r s .
t h a t
i l m e n i t e
i n c l u s i o n s
i n
o l i v i n e
d e f i n e a c r y s t a l l i s a t i o n sequence which
T h i s implies
t h a t the
groundmass i l m e n i t e s have
c r y s t a l l i s e d a t r e l a t i v e l y higher oxygen f u g a c i t e s than the i l m e n i t e i n c l u s i o n s . The p o s i t i o n o f the s o l v u s ( F i g u r e 5) changes w i t h temperature but the magnitude and d i r e c t i o n s
o f these
s h i f t s
have not y e t
been deturmined
e x p e r i m e n t a l l y
(Haggerty pers.comm.). However i t i s tempting t o p o s t u l a t e t h a t the compositions o f the Wesselton i l m e n i t e
i n c l u s i o n s i n o l i v i n e and groundmass i l m e n i t e s d e f i n e
the g e i k i e l i t e r i c h limb o f the t e r n a r y s o l v u s . The o r i g i n o f the c o u l d
i l m e n i t e
have c r y s t a l l i s e d
macrocrysts i s p r o b l e m a t i c a l .
i n a p r o t o k i m b e r l i t e
melt as
The macrocrysts
suggested by
M i t c h e l l
(1977) i n which case they c o u l d be regarded as e a r l y c r y s t a l l i s i n g p r e i n t r u s i o n phenocrysts i n the k i m b e r l i t e magma. A l t e r n a t i v e l y l i q u i d d e r i v e d from
a p a r t i a l melt o f
they c o u l d have formed i n a
mantle p e r i d o t i t e which i s
u n r e l a t e d to
k i m b e r l i t e ( P a s t e r i s , 1980) and are hence x e n o c r y s t s . No matter what the o r i g i n o f the
i l m e n i t e m a c r o c r y s t s , they are mantled by t h i n rims o f
groundmass
i l m e n i t e .
e q u i l i b r a t e I l m e n i t e s i n
w i t h
T h i s
i n d i c a t e s
the more magnesian
heavy mineral concentrates
i n t r u s i o n s ( w i t h the
t h a t
the
macrocrysts
k i m b e r l i t e
l i q u i d
from the v a r i o u s
e x c e p t i o n o f the s i l l )
more magnesian are
t r y i n g
( P a s t e r i s ,
to
1980).
Wesselton k i m b e r l i t e
are s i m i l a r to one another and t o
72
F e
2 ° 3
F i g u r e 5. T e r n a r y p l o t o f hematite ^ 2 0 3 ) i l m e n i t e (FeTiU3) g e i k i e l i t e ( M g T i O j ) f o r the Wesselton i l m e n i t e s . Symbols as i n f i g u r e 4. A s o l v u s extending from the Fe?03MgTi03 s i d e l i n e towards FeTi03 i n the t e r n a r y diagram has been omitted so as not t o confuse the diagram. Oxygen f u g a c i t y i s o b a r s are from Woermann e t a l . , (1969); the w u s t i t e magnetite (WM) b u f f e r i s from E u g s t e r and Wones (1962) w h i l s t the EMOG b u f f e r i s from E g g l e r and Baker (1981). T h i s diagram i s s i m i l a r to t h a t used by Haggerty and Tomkins (1983).
the i l m e n i t e m a c r o c r y s t s . are
d e r i v e d from
d i s a g g r e g a t e d
because the metasomatic i l m e n i t e .
I t i s u n l i k e l y t h a t the
macrocrysts and concentrate
i l m e n i t e b e a r i n g
metasomatised
i l m e n i t e s are more chromiumrich
p e r i d o t i t e s
than the m a c r o c r y s t i c
F i g u r e 5 shows t h a t most o f the metasomatic i l m e n i t e and m a c r o c r y s t i c
i l m e n i t e s appear t o have formed a t s i m i l a r oxygen f u g a c i t e s probably between WM and EMOG.
An i n t e r e s t i n g f e a t u r e
the l o g f 0 2
values
i s o b a r s r i s e up to
o f F e 0 3 . 2
contents c o u l d i n f e r
T h i s
o f F i g u r e
5 i s t h a t towards the FeTi03 apex
i n t e r e s e c t the
i m p l i e s
t h a t
F e 0 3 F e T i 0 3 s i d e l i n e a t higher 2
i l m e n i t e s
have formed under i d e n t i c a l f02
t h a t an F e 2 0 3 r i c h
w i t h
v e r y
d i f f e r e n t
Fe2U3
c o n d i t i o n s and t h a t one cannot
i l m e n i t e has formed under more o x i d i s i n g c o n d i t i o n s
than a F e 0 3 p o o r i l m e n i t e j u s t on the b a s i s o f t h e i r Fe 03 c o n t e n t s . 2
The
2
r u t i l e macrocrysts are
i d e n t i c a l i n
appearance and composition
to
r u t i l e i n r u t i l e i l m e n i t e i n t e r g r o w t h s i n m a r i d s u i t e nodules r e p o r t e d by Dawson and Smith (1977). p o l y m i c t
p e r i d o t i t e
They
are a l s o
x e n o l i t h s
s i m i l a r
(Lawless
t o
e t a l ,
r u t i l e i l m e n i t e aggregates 1979)
and i n
i n
metasomatised
73 p e r i d o t i t e s
from Wesselton ( t h i s
s t u d y ) .
The r u t i l e macrocrysts
c o u l d be
d e r i v e d from any o f these s o u r c e s . The
s i l l k i m b e r l i t e s
f e a t u r e s
i n d i c a t e t h a t
h i s t o r y .
These
p e r o v s k i t e
the s i l l
are (1)
i n
predate the
c r y s t a l l i s a t i o n o f +
k i m b e r l i t e s
i n t r u s i o n s and a number
have had a d i f f e r e n t
the presence o f i n c l u s i o n s
o l i v i n e
F e 3 and T i r i c h
main pipe
p h e n o c r y s t s .
these m i n e r a l s .
compositions
T h i s
o f groundmass i n d i c a t e s
(2) The groundmass s p i n e l s e v o l v e to more
than do s p i n e l s i n the
c o n t a i n
i n concentrates
from k i m b e r l i t e s .
more chromiumrich
( mean: 4.19
i l m e n i t e
c o n c e n t r a t e
i s
abundant magnetite
o t h e r k i m b e r l i t e s .
unusual
magnetite
i n t r u s i o n spinel and
contemporaneous
Heavy mineral c o n c e n t r a t e s to f i n d
o f
and
i l m e n i t e .
I t
(4) The
wt% 0 ^ 0 3 )
(3) i s s i l l than
i l m e n i t e c o n c e n t r a t e s from the o t h e r i n t r u s i o n s (mean: 1.83 wt% 0 2 0 3 ) . In summary
the o x i d e mineral c r y s t a l l i s a t i o n
k i m b e r l i t e s as deduced by petrographic
sequence f o r
the Wesselton
o b s e r v a t i o n s and mineral compositions i s
as f o l l o w s : P r e i n t r u s i o n :
Chromite ( x e n o c r y s t i c ) R u t i l e macrocrysts ( x e n o c r y s t i c ) I l m e n i t e macrocrysts (phenocrysts o r x e n o c r y s t s ? ) groundmass chromite, r u t i l e and i l m e n i t e i n c l u s i o n s i n o l i v i n e p h e n o c r y s t s , groundmass i l m e n i t e (microphenocrysts)
P o s t i n t u s i o n :
groundmass t i t a n o m a g n e t i t e s , p e r o v s k i t e s and magnetites, (microphenocrysts)
The exac t timing
and sequence o f c r y s t a l l i s a t i o n i s d i f f i c u l t
the c r y s t a l l i s a t i o n p e r i o d s
o f many o f the oxide minerals
t o e s t a b l i s h and
probably o v e r l a p one
another to some e x t e n t . Acknowledgements I am indebted to the Anglo American C o r p o r a t i o n o f South A f r i c a and to De Beers C o n s o l i d a t e d Mines Limited f o r f i n a n c i a l a s s i s t a n c e and f o r permission to p u b l i s h t h i s paper. G . Hutchinson o f the Anglo American Research L a b o r a t o r i e s i s thanked f o r h i s t e c h n i c a l a s s i s t a n c e on the e l e c t r o n microprobe and f o r the analyses o f i l m e n i t e concentrate g r a i n s . An e a r l i e r v e r s i o n o f t h i s manuscript has b e n e f i t e d g r e a t l y from comments and suggestions by J . J . Gurney, C. R. Clement, E.M.W. S k i n n e r , B. Wyatt, D. A p t e r , J . P a s t e r i s , F . R. Boyd S. Haggerty and R.O. Moore. To a l l o f the above mentioned people I extend my thanks.
This page intentionally left blank
PETROLOGY OF CARBONATE T U F F FROM M E L K F O N T E I N , EAST GRIQUALAND, SOUTHERN A F R I C A by N . Z . BOCTOR, P . H . N I X O N , F . BUCKLEY and F . R . BOYD
A b s t r a c t T h e M e l k f o n t e i n c a r b o n a t e t u f f i n t h e E a s t G r i q u a l a n d k i m b e r l i t e f i e l d , T r a n s k e i , SE L e s o t h o , and n e i g h b o r i n g S o u t h A f r i c a , i s much y o u n g e r i n age ( 6 3 . 4 M . Y . ) i n c o m p a r i s o n t o a s s o c i a t e d k i m b e r l i t e s ( 1 5 0 1 9 0 M . Y . ) and has e r u p t e d i n an e d g e c r a t o n i c e n v i r o n m e n t c h a r a c t e r i z e d by l i t h o s p h e r i c t h i n n i n g . T h e c a r b o n a t e t u f f i s composed o f c a l c i t e t h a t e n c l o s e s x e n o c r y s t s o f g a r n e t , c l i n o p y r o x e n e , a m p h i b o l e , m i c a , and p l a g i o c l a s e . A p a t i t e and m a g n e t i t e a r e p r e s e n t b o t h as x e n o c r y s t s and as c o g n a t e p h a s e s . T h e m i n e r a l c h e m i s t r y o f c l i n o p y r o x e n e , g a r n e t , a m p h i b o l e , and m i c a i n t h e M e l k f o n t e i n t u f f i s d i f f e r e n t f r o m t h a t r e p o r t e d f o r t h e s e k i n d s o f m i n e r a l s i n k i m b e r l i t e s o r c a r b o n a t i t e s . I t i s s i m i l a r , h o w e v e r , t o t h e m i n e r a l c h e m i s t r y o f g a r n e t g r a n u l i t e x e n o l i t h s f r o m L e s o t h o k i m b e r l i t e s . T h i s s i m i l a r i t y s u g g e s t s t h a t t h e x e n o c r y s t s a r e d e r i v e d b y d i s a g g r e g a t i o n o f g a r n e t g r a n u l i t e x e n o l i t h s f r o m t h e l o w e r c r u s t . X e n o c r y s t i c m a g n e t i t e i s more e n r i c h e d i n T i and d e p l e t e d i n Mg and Mn t h a n c o g n a t e m a g n e t i t e ; t h e c o m p o s i t i o n o f t h e l a t t e r o v e r l a p s t h a t o f c a r b o n a t i t e s . M i c a , a m p h i b o l e , and c l i n o p y r o x e n e show l i g h t r a r e e a r t h e l e m e n t ( L R E E ) e n r i c h e d p a t t e r n s t h a t a r e s i m i l a r t o t h o s e o f some g a r n e t g r a n u l i t e x e n o l i t h s f r o m L e s o t h o k i m b e r l i t e s . T h e LREE e n r i c h m e n t i n t h e x e n o c r y s t s s u g g e s t s t h a t t h e y a r e d e r i v e d f r o m a m e t a s o m a t i z e d g a r n e t g r a n u l i t e s o u r c e o r h a v e e q u i l i b r a t e d w i t h a L R E E e n r i c h e d v a p o r a f t e r t h e i r i n c o r p o r a t i o n i n t h e c a r b o n a t e m e l t . T h e l o w t o t a l REE c o n t e n t and t h e h i g h LREE e n r i c h m e n t o f a p a t i t e f r o m t h e t u f f i n c o m p a r i s o n t o t h a t f r o m c a r b o n a t i t e s i s a t t r i b u t e d t o a d i l u t i o n e f f e c t b y a p a t i t e x e n o c r y s t s d e r i v e d f r o m a m e t a s o m a t i z e d g a r n e t g r a n u l i t e s o u r c e . I t may a l s o be due t o t h e l o w c o n c e n t r a t i o n s o f REE i n t h e c a r b o n a t e m e l t f r o m w h i c h c o g n a t e a p a t i t e c r y s t a l l i z e d r e l a t i v e t o c a r b o n a t i t e m e l t s . The M e l k f o n t e i n c a r b o n a t e t u f f a p p e a r s t o be g e n e t i c a l l y u n r e l a t e d t o t h e k i m b e r l i t e i n t r u s i o n s i n E a s t G r i q u a l a n d .
1
INTRODUCTION T h e E a s t G r i q u a l a n d k i m b e r l i t e f i e l d i n s o u t h e r n A f r i c a c o m p r i s e s a number
o f k i m b e r l i t e d i k e s and p i p e s t h a t a r e o u t s i d e b u t m a r g i n a l t o t h e K a a p v a a l c r a t o n .
A t M e l k f o n t e i n , t h e r e i s an o c c u r r e n c e o f c a r b o n a t e t u f f ( F i g . 1)
t h a t
p r e v i o u s l y was t h o u g h t t o be a k i m b e r l i t e and was p r o s p e c t e d f o r d i a m o n d s .
I t
o c c u p i e s a s p u r on t h e n o r t h bank o f an e a s t f l o w i n g t r i b u t a r y o f t h e r i v e r U m z i m v u b u .
T h e t u f f i s a b o u t 50 m t h i c k , has a s h a l l o w SSW d i p , and o v e r l i e s
t h e s o u t h e r n s l o p e s o f a r i d g e o f B e a u f o r t s a n d s t o n e s c u t b y K a r r o o d o l e r i t e i n t r u s i o n s ( N i x o n e t a l . , 1 9 8 3 ) . M . Y . ,
T h e M e l k f o n t e i n t u f f has a z i r c o n age o f
6 3 . 4
w h i c h i n d i c a t e s t h a t i t i s much y o u n g e r t h a n t h e s u r r o u n d i n g E a s t G r i q u a
l a n d k i m b e r l i t e s 1977, 1 9 7 8 ) .
( R a m a t s e l i s o p i p e , 150 M . Y . ; C l a r k t o n p i p e , 190 M . Y . ; D a v i s ,
No c a r b o n a t e d i k e s o r l a v a s a r e p r e s e n t .
76
2
PETROGRAPHY AND MINERAL CHEMISTRY T h e M e l k f o n t e i n t u f f c o n s i s t s o f c r e a m c o l o r e d c a l c i t e w i t h v a r y i n g p r o p o r
t i o n s o f a n g u l a r x e n o l i t h s o f K a r r o o s h a l e s and s a n d s t o n e s up t o s e v e r a l c e n t i m e t e r s i n s i z e , as w e l l as basement and g a r n e t g r a n u l i t e x e n o l i t h s . b e a r s s i m i l a r i t i e s
t o t h e t u f f s a t F o r t P o r t a l , Uganda ( N i x o n ,
T h e t u f f
1 9 7 5 ) .
T h e t u f f e n c l o s e s x e n o c r y s t s o f g a r n e t , c l i n o p y r o x e n e , a m p h i b o l e , and p l a g i o c l a s e .
M a g n e t i t e and a p a t i t e o c c u r as d i s s e m i n a t e d c r y s t a l s i n t h e
c a r b o n a t e m a t r i x .
Z i r c o n was r e c o v e r e d f r o m a c o n c e n t r a t e , b u t was n o t o b
s e r v e d i n a n y o f t h e t h i n s e c t i o n s . G a r n e t ( F i g . 2 , T a b l e 1) i s p r e s e n t as e q u a n t c r y s t a l s o r f r a q m e n t s
o f
c r y s t a l s [ ( M g / ( M g + F e ) = 0 . 3 0 9 0 . 5 6 5 ) ] and has v e r y low C r ( < 0 . 0 1 0 . 0 4 w t . % C ^ O ^ ) . C l i n o p y r o x e n e ( F i g . 2 , T a b l e 1) o c c u r s as p a l e g r e e n x e n o c r y s t s [ M g / ( M g + F e ) = 0 . 4 4 2 0 . 6 0 8 , C a / ( C a + Mg) = 0 . 5 4 0 0 . 5 7 3 ] and c o n t a i n s 3 . 2 6 . 5 w t . % Na20 i n s o l i d s o l u t i o n .
T h e a t o m i c p r o p o r t i o n o f s o d i u m i n t h e c l i n o
p y r o x e n e e x c e e d s t h e sum o f t h e a t o m i c p r o p o r t i o n s o f C r + A l .
T h i s
r e s u l t
s u g g e s t s t h a t t h e c l i n o p y r o x e n e c o n t a i n s s i g n i f i c a n t amounts o f a c m i t e c o m p o n e n t .
Thfc c l i n o p y r o x e n e i s e n r i c h e d i n t h e l i g h t r a r e e a r t h e l e m e n t s
( L R E E ) and has a L a / L u o f 58 ( F i g . 3 a ) . M i c a i s i r o n r i c h [ M g / ( M g + F e ) = 0 . 5 1 3 0 . 5 3 4 ] , i s commonly k i n k e d , and some i s p a r t i a l l y o r t o t a l l y a l t e r e d t o c h l o r i t e .
M i c a shows a L R E E e n r i c h e d
p a t t e r n ( L a / L u = 1 5 1 ) .
F i g . 1. Map s h o w i n g t h e l o c a t i o n o f t h e M e l k f o n t e i n c a r b o n a t e t u f f and a s s o c i a t e d k i m b e r l i t e s i n E a s t G r i q u a l a n d , S o u t h e a s t L e o s t h o ( a f t e r N i x o n , 1 9 7 5 ) .
77
S o d i c h o r n b l e n d e ( T a b l e 1) f o r m s as s u b h e d r a l c r y s t a l s o r a n g u l a r and c o n t a i n s 4 . 3 4 . 5 w t . % N a 0 and 1 . 1 1 . 4 w t . % Κ ,,Ο . 2
b e t w e e n 1.2 and 2.0 w t . %.
f r a g m e n t s
T h e T i 0 c o n t e n t
v a r i e s
2
A m p h i b o l e i s r i c h i n LREE w i t h a L a / L u o f 115 ( F i g .
3 a ) . Two v a r i e t i e s o f p l a g i o c l a s e w e r e f o u n d ( T a b l e 2 ) . x e n o c r y s t s ( A b g g g_gg ^ 2 c a l c i t e m a t r i x .
A l b i t e o c c u r s as t w i n n e d
Q ) t h a t a r e c o r r o d e d and r e p l a c e d b y t h e
gOr^
A n d e s i n e ( A b g g ^ _ J Q 2 ^ 2 7 529 4 ^ l n
r
72 3^
1
P
S
r
e
s
e
n
t
a
s
f
r
a
9 "
ments o f c r y s t a l s a t t a c h e d t o g a r n e t o r c l i n o p y r o x e n e x e n o c r y s t s . A p a t i t e ( T a b l e 2) o c c u r s as d i s s e m i n a t e d , r o u n d e d o r s u b h e d r a l c r y s t a l s t h e c a r b o n a t e t u f f and r a r e l y as i n c l u s i o n s i n g a r n e t .
A f e w o f t h e
c r y s t a l s i n t h e c a l c i t e m a t r i x d i s p l a y d r o p l e t s h a p e d i n c l u s i o n s o f w h i c h may r e p r e s e n t t h e o r i g i n a l T h e a p a t i t e
c a r b o n a t e m e l t f r o m w h i c h a p a t i t e
i n c l u s i o n s i n g a r n e t x e n o c r y s t s a r e s i m i l a r i n t h e i r
c h e m i s t r y t o t h e a p a t i t e
c a l c i t e , c r y s t a l l i z e d .
m a j o r e l e m e n t
i n t h e c a r b o n a t e b u t h a v e l o w e r c h l o r i n e
(