Islands in the Sand: Ecology and Management of Nearshore Hardbottom Reefs of East Florida [1st ed.] 9783030403560, 9783030403577

Nearshore hardbottom reefs of Florida’s east coast are used by over 1100 species of fishes, invertebrates, algae, and se

203 8 25MB

English Pages XVIII, 472 [480] Year 2020

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Front Matter ....Pages i-xviii
Front Matter ....Pages 1-1
Introduction (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 3-21
Nearshore Hardbottom Reefs of East Florida and the Regional Shelf Setting (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 23-43
Front Matter ....Pages 45-45
Macroalgae and Cyanobacteria (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 47-104
Invertebrates (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 105-213
Fishes (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 215-266
Sea Turtles (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 267-296
Front Matter ....Pages 297-297
Ecology of Nearshore Hardbottom Reefs Along the East Florida Coast (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 299-356
Management of Nearshore Hardbottom Reef Resources (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 357-395
Major Findings and Research Opportunities (Daniel A. McCarthy, Kenyon C. Lindeman, David B. Snyder, Karen G. Holloway-Adkins)....Pages 397-443
Back Matter ....Pages 445-472
Recommend Papers

Islands in the Sand: Ecology and Management of Nearshore Hardbottom Reefs of East Florida [1st ed.]
 9783030403560, 9783030403577

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Daniel A. McCarthy Kenyon C. Lindeman David B. Snyder Karen G. Holloway-Adkins

Islands in the Sand

Ecology and Management of Nearshore Hardbottom Reefs of East Florida

Islands in the Sand

Daniel A. McCarthy • Kenyon C. Lindeman David B. Snyder • Karen G. Holloway-Adkins

Islands in the Sand Ecology and Management of Nearshore Hardbottom Reefs of East Florida

Daniel A. McCarthy Department of Biology and Marine Science Marine Science Research Institute, Jacksonville University Jacksonville, FL, USA

Kenyon C. Lindeman Department of Ocean Engineering and Marine Sciences, Program in Sustainability, Florida Institute of Technology Melbourne, FL, USA

David B. Snyder CSA Ocean Sciences Inc. Stuart, FL, USA

Karen G. Holloway-Adkins East Coast Biologists, Inc. Indialantic, FL, USA

ISBN 978-3-030-40356-0    ISBN 978-3-030-40357-7 (eBook) https://doi.org/10.1007/978-3-030-40357-7 © Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

Almost everyone loves the shore. This margin between our own familiar ground and the vast ocean wilderness can both comfort and excite us. Many of us recall serenely filling our senses with surf tumbling onto a beach, only to have that peace punctuated by delight—a sudden and beautiful visage from the sea, a shadow in a wave, a leap and a splash, or a lingering presence offering detailed wonder. That nature and we share more than coincidence of space in this coastal ecosystem. We share a need for it. This book is about a vital but underappreciated natural feature—Florida’s nearshore reefs—oases of life that the authors refer to as “Islands in the Sand.” “Underappreciated?” you question. Yes, vastly so. Still, we enjoy these reefs immensely. We prosper from their flora and fauna, and are treated to the landscapes they present at low tide, and through our dive mask. Our profits from nearshore reef services occupy many levels, including the all-important economic benefit measured by dollars. Yet, although we gain from these lovely, diverse, accessible patches of hard sea-bottom, we fail to appreciate the full depth of these shallow reefs. That is to say, we fall short of understanding them, of grasping the habitat’s worth and significance, and of knowing outright how our actions can threaten it. The authors of this book, who are experts across multiple fields, have prepared a detailed ecological description of Florida’s coastal reefs. It is a portrayal that is both academic and easily absorbed, and is essential for coastal managers, scientists, or anyone wanting to deepen their coastal relationship. This book catalogs features of nearshore reefs—their dynamic cycles of ecological change, their function as hotspots for biodiversity, their role in the lives of rare species, and in our own lives. Especially now, our aptitude for the mutual relationship we have with nearshore reefs is crucial to their pulse of persistence. Over eons, these reefs of the surf zone blossomed and withered to the beat of storms and natural sand movement, periodically harboring unique lives lived in haste, and marine animals in formative stages or just passing through. But as our coast has become more crowded, this habitat has suffered from our insistence on permanence within such a dynamic system. Where beach sands once came and went, we construct buildings on dangerous ground requiring defense against change. This messy and expensive coastal battle often v

vi

Foreword

involves pumping sand to artificially replace what the sea consumes, and as an unintended consequence of this engineering, reefs, which contributed to the original value of the real estate, are kept smothered. The paradox of habitat affinity and habitat harm is precisely why this book is essential. The affinity is self-evident. To visit a Florida beach adorned by nearshore reef at low tide is to experience uniquely accessible nature—life-filled tide pools that tempt the curiosity of children and bring out blissful biophilia in us all. But understanding the potential harm to our nearshore reefs requires insight into how this habitat functions. To the extent that this knowledge leads to watchful stewardship and temperance of our coastal actions, we will keep our mutually beneficial relationship with coastal reefs. On this journey, this book will be our guide. Blair Witherington, Ph.D., Floridana Beach, Florida, USA  Florida’s Living Beaches and Our Sea Turtles

Preface

The management of coastal resources is increasingly focused on ecosystem approaches that not only consider primary habitats of concern but their connectivity to adjacent systems. Amidst the cross-shelf mosaic of habitats of mainland Florida’s east coast, estuaries with mangroves and seagrasses share many flows, including energy and propagules, with reefs and pelagic waters offshore. Along the highly dynamic land-ocean margin, nearshore hardbottom habitats at 0-4 m depths exist as reef patches for over a thousand documented organisms, amidst long stretches of sand. This volume is the first to describe the fundamentals of the biological, physical, ecological, and management attributes of east Florida’s nearshore reefs. Since many coastal residents interact with these reefs and have many questions, we have also tried to make this book accessible to laypersons (e.g., the imagery, a Glossary for technical terms, and book structure) to make these habitats more understandable. We introduce nearshore hardbottom habitats from southern St. Johns County to northern Miami-Dade County and foundational ecological concepts in Chap. 1. In Chap. 2, we discuss the geology and distribution of nearshore hardbottom reefs and the associated oceanographic setting in the region in which they occur. In Chap. 3 through 6, we synthesize the peer-reviewed scientific and gray literatures, and provide unpublished data based on decades of experience with these reefs among the co-authors. We describe the known species groups, their latitudinal and depth distributions, reproduction, trophic functions, and connectivity for algae and cyanobacteria (Chap. 3), invertebrates (Chap. 4), fishes (Chap. 5), and sea turtles (Chap. 6). In Chap. 7, we integrate assemblage-scale ecological perspectives among these flora and fauna. We discuss the potential roles of disturbance and latitude in affecting abundance and distribution with respect to habitat use, and populations and energetic connectivity along the east Florida coast. In Chap. 8, the responses of these organisms to varying degrees of natural and anthropogenic disturbances are examined. We then discuss approaches for minimizing impacts to nearshore hardbottom reefs during large fill projects, with a focus on artificial reef mitigation. In Chap. 9, we summarize research findings for each major taxonomic group, nearshore hardbottom reef ecology, and management with a focus on future research opportunities across all issues. vii

viii

Preface

In examining these diverse nearshore hardbottom reef issues, we hope to provide a useful reference for coastal researchers, managers, and educators, as well as anyone else interested in these habitats and their connectivity to the sea and land. We hope this book inspires increased research on these systems and improved science-­ based conservation of the marine biodiversity of coastal Florida and other regions with nearshore hardbottom reefs. Jacksonville, FL, USA  Daniel A. McCarthy Melbourne, FL, USA   Kenyon C. Lindeman Stuart, FL, USA   David B. Snyder Indialantic, FL, USA   Karen G. Holloway-Adkins

Acknowledgements

A number of outside reviewers improved this book immensely. We are extremely grateful to these reviewers of one or more chapters: Walter Nelson (US Environmental Protection Agency), Hal Wanless (University of Miami), Mark Fonseca (CSA Ocean Sciences Inc.), Aaron Adams (Bonefish and Tarpon Trust), Vladimir Kosmynin (Florida Department of Environmental Protection (FDEP), Blair Witherington (Archie Carr Center for Sea Turtle Research), Erin Hodel (CSA Ocean Sciences Inc.), Sandra Brooke (Florida State University), Clinton Dawes (University of South Florida), Grant Gilmore (Estuarine, Coastal and Ocean Science, Inc.), Jocelyn Karazsia (NOAA Fisheries), Laura Herren (Harbor Branch Oceanographic Institute), Brian Balcom (CSA Ocean Science Inc.), and Kristen Hart (US Geological Service). This project’s original Technical Advisory Committee provided editorial and technical comments for two products: CSA International Inc. (2009) and CSA Ocean Sciences Inc. (2014). TAC members on both included Marty Seeling (FDEP), Vladimir Kosmynin, Roxane Dow (FDEP), Cheryl Miller (Coastal Eco-Group), Jocelyn Karazsia (NOAA Fisheries), Jeff Beal and Robin Trindell (Florida Fish and Wildlife Conservation Commission), Don Deis (PBSJ), Terri Jordan (US Army Corps of Engineers), Danielle Irwin and Lanie Edwards (FDEP), and Kim Colstad (Coastal Technology Corporation). We received valuable communications and permission to reference unpublished data from many researchers: Gerry Pinto (Jacksonville University) developed an early draft of the arthropod section, Lee Ann Clements for help with ophiuroids and Harry Lee for help with mollusks. Jon Norenburg, Mary Rice, and Michael Boyle of the Smithsonian Marine Station provided significant input on nemertines and sipunculans. Terry Gibson (North Swell Media) provided policy literature. Larry Wood (National Save the Sea Turtle Foundation) and Dean Bagley (Inwater Research Group Inc., University of Central Florida) shared discussions on their sea turtle research. We thank Mike Daniel, Sara Brehm, and many others for their valuable photographs. Staff from agencies and consulting companies provided nearshore hardbottom acreage estimates or other assistance including Ken Banks (Broward County Environmental Protection and Growth Management Department), Brian Flynn (Miami-Dade Department of Environmental Resources Management), ix

x

Acknowledgements

Brian Walker and Lance Jordan (Nova Southeastern University Oceanographic Center), and Janet Phipps and Carmen Vare (Palm Beach County Environmental Resources Management). We thank Stacey Prekel, Quin Robertson, and Jessica Craft of Coastal Protection Engineering for providing monitoring project and acreage data. Brent Gore, Charles Hagans, Kevin Noack, Keith VanGraafeiland, and Chris Dean of CSA Ocean Sciences assisted with aerial imagery, map figures, and hardbottom acreage estimates. We thank Beth Schoppaul and Heather McCarthy for editorial assistance. For assistance in the field we thank these CSA Ocean Sciences staff: Jeff Pennell, Bo Douglas, Chip Baumberger, Jeff Landgraf, David McGregor, Carl Loomis, Dustin Myers, Frank Johnson, Jeff Schroeder, and Stephen Viada. Ernesto Calix helped with sorting and identifying post-larval fishes. We thank Daryl Adkins, Shannon Hackett, Mario Mota, Jennifer Solis, Shanon Gann, and Dana Karelus from East Coast Biologists Inc. for their assistance with sea turtle surveys. A number of Jacksonville University and Florida Tech students assisted the development of this book. We thank Hannah Knighton, Julia Lyons, Taylor Greene, Montana Steel, Paige Carper, Jessica Fair, Madeline Phelan, Natalie Swaim, Evan Lindeman, and Bryan Harshey for literature work  or editing. We thank Alex Paradise, Tayler Massey, Keenan Carpenter, Krystal Dannenhoffer, Brett Durda, and Justina Dacey for student management and for processing algae and invertebrates. We thank the following Jacksonville University students for processing data: Sara Brehm, Devin Resko, Sara Dowudom, Nicole Martin, Rad Murphy, Amber Bruce, Bailey Estrada, Jenna Manis, Erika Kinchen, Logan Wood, Sara Debellis, Megan Zellner, Kyle Bosanko, Ashley Knight, Hannah Roddy, Anthony Flock, and Marina Gonzalez. Bryan, Adam, and Eric Lindeman provided varied assistance. This effort is dedicated to Ed Ricketts and Mike Blatus. Finally, we sincerely thank our families for their support and understanding during the development of this book.

Contents

Part I Nearshore Hardbottom Reefs Within the East Florida Seascape 1 Introduction����������������������������������������������������������������������������������������������    3 1.1 Nearshore Hardbottom Reefs of East Florida����������������������������������    3 1.2 Nearshore, Intermediate, and Offshore Hardbottom Reefs��������������    9 1.3 Ecological Concepts and Terms��������������������������������������������������������   12 1.3.1 Equilibrium and Scale����������������������������������������������������������   13 1.3.2 Foundation Species and Associated Concepts����������������������   13 1.3.3 Ecological Functions and Ecosystem Services ��������������������   14 References��������������������������������������������������������������������������������������������������   17 2 Nearshore Hardbottom Reefs of East Florida and the Regional Shelf Setting����������������������������������������������������������������������������������������������   23 2.1 Geological and Biological Attributes of Nearshore Hardbottom Reefs ������������������������������������������������������������������������������������������������   23 2.2 Distribution of Nearshore Reefs in East Florida������������������������������   26 2.3 Regional Oceanographic Processes��������������������������������������������������   30 2.3.1 Introduction��������������������������������������������������������������������������   30 2.3.2 Tides��������������������������������������������������������������������������������������   34 2.3.3 Wind, Waves and Storm Events��������������������������������������������   34 2.3.4 Currents and Upwelling��������������������������������������������������������   38 References��������������������������������������������������������������������������������������������������   40 Part II Organismal Assemblages of East Florida Nearshore Hardbottom Reefs 3 Macroalgae and Cyanobacteria��������������������������������������������������������������   47 3.1 Introduction��������������������������������������������������������������������������������������   47 3.1.1 Diversity��������������������������������������������������������������������������������   48 3.1.2 Trophic Patterns and Functional Groups������������������������������   50 3.1.3 Latitudinal and Depth Gradient Distribution������������������������   55 xi

xii

Contents

3.1.4 Reproduction and Life History ��������������������������������������������   60 3.1.5 Dispersal and Connectivity ��������������������������������������������������   62 3.1.6 Recruitment and Depth Gradient Habitat Use����������������������   63 3.1.7 Economic and Recreational Value����������������������������������������   65 3.2 Focal Taxonomic Groups and Species����������������������������������������������   65 3.2.1 Sheet Group��������������������������������������������������������������������������   65 3.2.2 Filamentous Group���������������������������������������������������������������   67 3.2.3 Coarsely-Branched Group����������������������������������������������������   70 3.2.4 Thick-Leathery Group����������������������������������������������������������   71 3.2.5 Jointed-Calcareous Group����������������������������������������������������   73 3.2.6 Crustose Group ��������������������������������������������������������������������   75 3.2.7 Cyanobacteria ����������������������������������������������������������������������   77 References��������������������������������������������������������������������������������������������������   98 4 Invertebrates��������������������������������������������������������������������������������������������  105 4.1 Introduction��������������������������������������������������������������������������������������  105 4.1.1 Diversity of Sessile and Motile Species��������������������������������  105 4.1.2 Ecological Functions������������������������������������������������������������  106 4.1.3 Latitudinal and Depth Gradient��������������������������������������������  106 4.1.4 Reproduction and Life History ��������������������������������������������  110 4.1.5 Dispersal and Genetic Connectivity��������������������������������������  110 4.1.6 Recruitment��������������������������������������������������������������������������  111 4.1.7 Economic and Recreational Value����������������������������������������  111 4.2 Focal Taxonomic Groups and Species����������������������������������������������  113 4.2.1 Polychaetes ��������������������������������������������������������������������������  113 4.2.2 Corals and Other Anthozoans ����������������������������������������������  119 4.2.3 Sponges ��������������������������������������������������������������������������������  126 4.2.4 Hydrozoans ��������������������������������������������������������������������������  129 4.2.5 Sessile Mollusks ������������������������������������������������������������������  130 4.2.6 Motile Mollusks��������������������������������������������������������������������  133 4.2.7 Sessile Crustaceans ��������������������������������������������������������������  136 4.2.8 Motile Crustaceans���������������������������������������������������������������  138 4.2.9 Echinoderms ������������������������������������������������������������������������  153 4.2.10 Other Sessile Fauna (Tunicates and Bryozoans)������������������  157 References��������������������������������������������������������������������������������������������������  203 5 Fishes��������������������������������������������������������������������������������������������������������  215 5.1 Introduction��������������������������������������������������������������������������������������  215 5.2 Demersal Fishes��������������������������������������������������������������������������������  216 5.2.1 Species Composition and Richness��������������������������������������  217 5.2.2 Spawning and Larval Transport��������������������������������������������  217 5.2.3 Habitat Use by Early Life Stages������������������������������������������  220 5.2.4 Juvenile and Adult Habitat Use��������������������������������������������  224 5.2.5 Trophic Patterns��������������������������������������������������������������������  224 5.2.6 Latitudinal Distribution��������������������������������������������������������  229

Contents

xiii

5.3 Cryptobenthic Fishes������������������������������������������������������������������������  235 5.3.1 Species Composition and Richness��������������������������������������  236 5.3.2 Spawning and Larval Transport��������������������������������������������  237 5.3.3 Habitat Use by Newly Settled and Early Juvenile Life Stages������������������������������������������������������������������������������������  238 5.3.4 Juvenile and Adult Habitat Use��������������������������������������������  238 5.3.5 Trophic Patterns��������������������������������������������������������������������  238 5.3.6 Latitudinal Distribution��������������������������������������������������������  240 5.4 Coastal Pelagic Fishes����������������������������������������������������������������������  241 5.4.1 Species Composition and Richness��������������������������������������  241 5.4.2 Spawning and Larval Transport��������������������������������������������  242 5.4.3 Habitat Use by Newly Settled and Early Juvenile Life Stages������������������������������������������������������������������������������������  242 5.4.4 Juvenile and Adult Habitat Use��������������������������������������������  243 5.4.5 Trophic Patterns��������������������������������������������������������������������  244 5.4.6 Latitudinal Distribution��������������������������������������������������������  245 5.5 Management and Conservation��������������������������������������������������������  246 References��������������������������������������������������������������������������������������������������  260 6 Sea Turtles������������������������������������������������������������������������������������������������  267 6.1 Introduction��������������������������������������������������������������������������������������  267 6.1.1 Diversity��������������������������������������������������������������������������������  269 6.1.2 Trophic Functions ����������������������������������������������������������������  270 6.1.3 Latitudinal and Cross-Shelf Distribution������������������������������  271 6.1.4 Depth Gradients��������������������������������������������������������������������  273 6.1.5 Reproduction and Life History ��������������������������������������������  274 6.1.6 Recruitment and Cross Shelf Habitat-Use����������������������������  274 6.1.7 Economic and Recreational Value����������������������������������������  276 6.2 Focal Species������������������������������������������������������������������������������������  276 6.2.1 Loggerhead ��������������������������������������������������������������������������  276 6.2.2 Green Turtle��������������������������������������������������������������������������  278 6.2.3 Hawksbill������������������������������������������������������������������������������  281 6.2.4 Kemp’s Ridley����������������������������������������������������������������������  283 References��������������������������������������������������������������������������������������������������  290 Part III Ecology and Management of Nearshore Reef Resources 7 Ecology of Nearshore Hardbottom Reefs Along the East Florida Coast����������������������������������������������������������������������������������������������������������  299 7.1 Introduction��������������������������������������������������������������������������������������  299 7.2 Ecological Functions������������������������������������������������������������������������  301 7.2.1 Structure and Shelter������������������������������������������������������������  301 7.2.2 Trophic Functions ����������������������������������������������������������������  308 7.3 Latitudinal and Depth Comparisons ������������������������������������������������  318 7.4 The Roles of Disturbance������������������������������������������������������������������  320

xiv

Contents

7.5 Habitat Use and Dependency������������������������������������������������������������  324 7.6 Population Connectivity��������������������������������������������������������������������  326 7.6.1 Planktonic Dispersal and Connectivity��������������������������������  326 7.6.2 Post-settlement Connectivity������������������������������������������������  328 References��������������������������������������������������������������������������������������������������  345 8 Management of Nearshore Hardbottom Reef Resources��������������������  357 8.1 Introduction��������������������������������������������������������������������������������������  357 8.2 Characterizing Stressors and Responses by Type of Organism��������  359 8.2.1 Responses of Algae ��������������������������������������������������������������  364 8.2.2 Responses of Invertebrates����������������������������������������������������  365 8.2.3 Responses of Fishes��������������������������������������������������������������  367 8.2.4 Responses of Sea Turtles������������������������������������������������������  370 8.3 Mitigation of Nearshore Reef Burial in East Florida������������������������  371 8.3.1 Shallow Artificial Reefs to Mitigate Effects of Burial����������  372 8.3.2 Differences Across Shallow Depths for Natural and Artificial Habitats������������������������������������������������������������������  374 8.3.3 Mitigation of Burial Impacts on Worm Reef and Associated Invertebrates ������������������������������������������������������  376 8.3.4 Mitigation of Burial Impacts on Fishes��������������������������������  377 8.3.5 Mitigation of Burial Impacts on Macroalgae and Sea Turtles ����������������������������������������������������������������������������������  378 8.3.6 Regional Mitigation Efforts��������������������������������������������������  379 8.4 Assessing Impacts����������������������������������������������������������������������������  380 8.4.1 Setting Goals������������������������������������������������������������������������  381 8.4.2 Framing Hypotheses ������������������������������������������������������������  381 8.4.3 Study Design and Analysis ��������������������������������������������������  382 References��������������������������������������������������������������������������������������������������  388 9 Major Findings and Research Opportunities����������������������������������������  397 9.1 Nearshore Reef Organisms ��������������������������������������������������������������  397 9.1.1 Algae ������������������������������������������������������������������������������������  397 9.1.2 Invertebrates��������������������������������������������������������������������������  401 9.1.3 Fishes������������������������������������������������������������������������������������  404 9.1.4 Sea Turtles����������������������������������������������������������������������������  409 9.2 Nearshore Hardbottom Reef Ecology����������������������������������������������  411 9.2.1 Species Richness and Distribution Patterns��������������������������  412 9.2.2 Cross-shelf Connectivity������������������������������������������������������  414 9.2.3 Trophic Patterns��������������������������������������������������������������������  415 9.2.4 Larval Connectivity��������������������������������������������������������������  418 9.2.5 Effects of Climate Change����������������������������������������������������  419 9.2.6 Comparative Patterns Among Western Atlantic Nearshore Hardbottom Systems������������������������������������������������������������  420

Contents

xv

9.3 Assessing Impacts����������������������������������������������������������������������������  422 9.3.1 Assessment of Mitigation and Fill Site Impacts ������������������  423 9.3.2 Organismal Considerations��������������������������������������������������  427 9.4 Socio-Ecological Systems and Nearshore Reefs������������������������������  432 References��������������������������������������������������������������������������������������������������  433 Glossary������������������������������������������������������������������������������������������������������������  445 Index������������������������������������������������������������������������������������������������������������������  453

Author Biography

Daniel A. McCarthy, PhD  is a professor in the Department of Biology and Marine Science and the Marine Science Research Institute, Jacksonville University. He is a marine benthic ecologist with over 25 years of field and laboratory research experience. His research has focused on the ecology and restoration of estuarine and coastal reef systems. He obtained his Bachelor of Science at Jacksonville University, Master of Science at Florida State University, and Ph.D. at King’s College, University of London. He served as a postdoctoral fellow with the Smithsonian Institution for 3 years before coming to Jacksonville University. Kenyon C. Lindeman, PhD  is a professor in the Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology. His work focuses on nearshore habitats, fishery management, marine protected areas, and coastal climate adaptation. He has worked as a research scientist with NOAA, the University of Miami, and several conservation science nonprofit organizations. Over 70 research publications include articles in over 20 peer-reviewed journals and 4 coauthored or coedited books. He received a Bachelor of Science at FIT, Master of Science at the University of Puerto Rico, and PhD at the Rosenstiel School of Marine and Atmospheric Science, University of Miami. David  B.  Snyder, MS  is a senior scientist at CSA Ocean Sciences Inc., Stuart, Florida. He is a fish ecologist and marine biologist with more than 35 years of experience. He has participated in marine environmental assessments worldwide and has sampled fishes from a variety of habitats ranging from the continental slope to freshwater streams. Such efforts have included multiple surveys of fishes and epibiota associated with nearshore reefs subject to impact from dredge and fill projects off the eastern and western Florida coasts. He obtained his Bachelor of Science from the University of Florida and his Master of Science from Florida Atlantic University.

xvii

xviii

Author Biography

Karen G. Holloway-Adkins, PhD  is a senior scientist and executive director of East Coast Biologists, Inc. (a non-profit for scientific research and education) in Indialantic, Florida. She has over 28 years of experience in the field of marine biology and sea turtle ecology with research that is focused on inwater developmental habitat and the ecological role of sea turtles in marine ecosystems. She worked 18+ years as a biologist monitoring protected species and habitat at NASA’s  John F. Kennedy Space Center. She received her Bachelor and Master of Science degrees in Biology from the University of Central Florida and her Doctoral degree from Florida Atlantic University. She currently serves as courtesy affiliate faculty within the Biology Department at both universities.

Part I

Nearshore Hardbottom Reefs Within the East Florida Seascape

Chapter 1

Introduction

1.1 

Nearshore Hardbottom Reefs of East Florida

Nearshore hardbottom reefs (NHRs) are a relatively little-known component of the diverse marine habitat mosaic along Florida’s east coast. Also known as nearshore hardbottom, coquina, or worm rock, these shallow reefs occur across the coast between deeper offshore reefs, and estuarine mangroves and seagrass meadows, straddling the marine surf zone in some areas of east Florida’s coastline. These reefs were not created by corals but are large rock outcroppings of the Anastasia Limestone and Miami Limestone geological formations in most cases (Fig. 1.1). The Anastasia Limestone formation is composed of sand and mollusk shells (particularly the small coquina clam, Donax) and was formed  during the late Pleistocene geological period. It occurs along most of Florida’s central east coast, southward to approximately Hillsboro Inlet in Broward County where it intergrades in complex manners with nearshore ridges of mixed Holocene origin (e.g., Banks et al. 2007) and also abuts the Miami Limestone formation. More information on these limestone formations and their marine outcroppings that form the rigid foundation for these NHRs is in Chap. 2. The reefs are surrounded by sediments that are continuously redistributed by waves and tides, which bury and uncover reef habitat within and among seasons. This book seeks to compile the most current information on this complex and lesser-known coastal habitat system. Nearshore hardbottom that is not created by living corals has many geological sources and forms around the Greater Caribbean, from the coquina and worm reefs of NHRs of  mainland east Florida, to the ironshore of the Bahamas and Cayman Islands, to the razor sharp dientes de perro (dog teeth) of northern Cuba, including much of Havana’s shore. NHRs are commonly called rocky reefs or rocky intertidal shores in many regions globally. Although the nearshore reefs of mainland east Florida span an approximately 450 kilometer (km) stretch of coastline, little summary information is available on this discontinuous reef system at the current northern limits of the subtropical northwest Atlantic.  © Springer Nature Switzerland AG 2020 D. A. McCarthy et al., Islands in the Sand, https://doi.org/10.1007/978-3-030-40357-7_1

3

4

1 Introduction

Fig. 1.1  East Florida counties with Anastasia Limestone in yellow and Miami Limestone in green. Text has more detail on the complex interface of these two limestone formations. (Modified from Scott et al. 2001)

The study area of this book encompasses the nearshore rock outcroppings from the Anastasia and Miami Limestone formations or mixed relict Holocene ridges that can occur in coastal waters from southern St. Johns and Flagler counties in northeast Florida (approx. 29°42  N latitude) to Broward and northern Miami-Dade

1.1  Nearshore Hardbottom Reefs of East Florida

5

counties in southeast Florida (approx. 25°46 N latitude). In these regions, hardbottom reefs are the only natural hard-structure habitats at depths of 0–4 meters (m) available to nearshore organisms (Fig. 1.2). Currently, most of these structures are within shallow coastal waters and display a variety of forms from flat expanses with little relief, to vertical mounds that are emergent at low tide, to deeper structures that are less subject to tide and wave effects. Overall, these habitats are patchily distributed from northeast to southeast Florida, usually occupying a relatively low percent of the longshore distance of most of the ten county shorelines in the region. One exception is Indian River County where large amounts of shallow hardbottom can be routinely present in nearshore areas (Fig. 1.3; see Chap. 2). These high-relief nearshore reef systems (at a latitude of 27.5° N) are known locally for some of the largest spiny lobsters in Florida and as habitat for juvenile through adult life stages of recreationally and commercially valuable reef fishes. Throughout east Florida, the structural complexity of nearshore reef (based commonly on weathering of limestone bedrock) varies latitudinally and with water depth (Figs.  1.4 and 1.5). It is often enhanced by framework-building organisms such as tube-building polychaete worms (Gram 1965; Kirtley and Tanner 1968; Pandolfi et al. 1998; McCarthy 2001), other invertebrates (e.g., sponges, anthozoans, bryozoans), and macroalgae (Goldberg 1973; Gore et al. 1978; Nelson 1989; Nelson and Demetriades 1992; CSA International, Inc. 2009) (Fig. 1.5). Situated among broad expanses of bare sand bottom, hardbottom reefs can serve a wide variety of ecological functions for many common tropical and subtropical reef fish and invertebrate species. These functions include settlement and nursery areas, the only feeding and spawning sites available, and shelter for hundreds of species of resident crabs, worms, shrimp and fishes, as well as a number of other animals and plants that occur in close proximity (Fig.  1.6). These functions also translate into important ecosystem services for humans as identified in the Millennium Ecosystem Assessment (MEA 2005). Nearshore reefs explicitly support recreational services (including fishing, snorkeling, surfing, and photography) and educational opportunities, under the cultural category of the MEA guidance for ecosystem services. Warm temperate to subtropical  beaches and nearshore reefs from St. Johns to Miami-Dade counties along east Florida are major economic factors influencing sun-and-sand tourism and coastal real estate markets. The beaches are subject to many challenges to long-term sustainable management. Continuous pressure for more coastal development is degrading many coastal resources and threats to environmental and socio-economic systems are amplified by sea level rise (HernándezDelgado and Rosado-Matías 2017; Kulp and Strauss 2017). Over 6 million people share limited land and water resources within the narrow and low-elevation corridor between Miami-Dade and Palm Beach counties alone (Broward County Planning and Development Management Division 2019), with a continued push of coastal growth northward. Many NHR habitats in this region have been buried by large beach restoration projects that involve the placement of hundreds of thousands of cubic yards of fill (sediments from off-site sources). These

6

1 Introduction

Fig. 1.2  Nearshore hardbottom outcroppings along the Florida coast. (a) South of Marineland, Flagler County, Florida. (b) Coral Cove Park, Palm Beach County, with reef fishes, worm rock, tunicates, bryozoans, sponges, and macroalgae. (Sources: D. McCarthy; D.B. Snyder)

Fig. 1.3  Examples of nearshore reef systems in Indian River County, Florida. (a) Substantial hardbottom systems throughout the county are used by divers, Wabasso area. (b) Large spiny lobsters are captured on hardbottom reefs at nearshore and intermediate depths. (Sources: Sebastian Inlet Tax District, VeroBeachReefs.com) Fig. 1.4  Tide pools along nearshore hardbottom reefs, Coral Cove County Park, south Jupiter Island, northern Palm Beach County, Florida. (Source: D.B. Snyder)

8

1 Introduction

Fig. 1.5  Macro- and micro-scale complexity created by sessile epibiota on shallow Florida reefs. (a) Microhabitat complexity under a nearshore reef ledge with over ten species of sponges, tunicates, hydrozoans, macroalgae, and fish, MacArthur Beach State Park, Palm Beach County, Florida. (b) Nearshore hardbottom reef at the St. Lucie Reef (Peck’s Lake) in Martin County, Florida. (Sources: D.B. Snyder, D. McCarthy)

1.2  Nearshore, Intermediate, and Offshore Hardbottom Reefs

9

Fig. 1.6  Juvenile stage of the green sea turtle (Chelonia mydas) feeding on algae on a nearshore hardbottom reef, Boca Raton, Palm Beach County, Florida. (Source: K. Jones)

projects involve complex policies to administratively permit the burial and mitigation of the  reefs (Lindeman and Ruppert 2011; FDEP (Florida Department of Environmental Protection) 2014; Kosmynin et  al. 2016). These issues reflect a pressing need for a comprehensive survey of these nearshore reefs and functions to effectively employ ecosystem-based management for their conservation. Although comparatively little is published in peer-reviewed scientific journals about NHRs of mainland east Florida, much information is available from research, industry, and permitting literature that include fields such as organismal and population biology, community ecology, coastal geology, physical oceanography, and fishery science. Therefore, we examined relevant peer-reviewed journals and texts as well as unpublished (or gray) literature to hierarchically structure and compare the primary biotic assemblages for these reefs. This synthesis of information consists of three sections. Part 1 (Chaps. 1 and 2) contains an introduction to east Florida nearshore reefs, their oceanographic setting, geologic sources, and distribution across mainland counties. Part 2 (Chaps. 3, 4, 5, and 6) contains assemblage-scale chapters on macroalgae and cyanobacteria, invertebrates, fishes, and sea turtles; reviewing known nearshore reef diversity and functions. Part 3 (Chaps. 7, 8, and 9) synthesizes the information from prior chapters to address integrative ecology, stress/disturbance characterization, management alternatives, and future research needs and opportunities. We have also included a Glossary of terms at the end of the book.

1.2  N  earshore, Intermediate, and Offshore Hardbottom Reefs Scientists generally examine patterns of change in species composition along environmental gradients to help understand the role of factors (e.g., depth, sedimentation, predation, disturbance) on ecological community structure and function (e.g., Nekola and White 1999; Worm and Tittensor 2018). In many cases, distinguishing between NHRs and deeper habitats can be complicated, with patterns also varying

10

1 Introduction

by latitude along the east Florida coast (CSA International, Inc. 2009; Walker 2012; Walker and Gilliam 2013). Individual taxa can respond to dozens of physical and biological gradients independently, such that biotic assemblages may not conform to strict rules based on depth zonation. However, important reef tract characteristics do vary with broad depth categories in east Florida (Gilmore Jr. et al. 1981; CSA International, Inc. 2009; Walker 2012; Walker and Gilliam 2013; CSA Ocean Sciences Inc. 2014; Gilliam et al. 2018). Our primary focus here is on comparative analyses of invertebrates, fishes, macroalgae, and marine turtles (Part 2) among NHRs of 0–4 m depths although we also discuss connectivity with the deeper intermediate hardbottom reefs at 4–10 m (IHR), and offshore hardbottom reefs deeper than 10 m (OHR). Figure 1.7 shows examples of an IHR and OHR. We emphasize that depth “boundaries” between NHRs, IHRs, and OHRs are artificial benchmarks to allow comparison among highly variable abiotic and biotic gradients; they are not self-contained zones. The use of the 0–4 m depth range for NHRs of east Florida’s mainland is based on assemblage differences by depth ranges previously reported (CSA International, Inc. 2009; CSA Ocean Sciences Inc. 2014). Shallow reefs in many sites along the coast are often not present below 4 m until reef lines re-emerge at greater depths. Within the 0–4 m depth range, quantitative differences have been observed in both epibiota coverage and macroalgae biomass between the shallowest and deepest depths of NHRs (CSA Ocean Sciences Inc. 2014). It can be useful to refer to an intertidal (0–1 m) and a subtidal area (1–4 m) (CSA Ocean Sciences Inc. 2014). This approach allows for a finer scale assessment of assemblages considering observed microhabitat variability that can occur at very small spatial scales. Both areas are populated by disturbance-adapted organisms, and distributional patterns vary due to the dynamics of the physical environment. The 0–4 m depth range is also most susceptible to burial by sediments placed in efforts to widen eroded beaches. Complex physical and biological assemblage relationships exist between intermediate and offshore depth ranges for hardbottom (Fig. 1.7), with most available studies concentrated on the southern part of the east Florida coast (Goldberg 1973; Moyer et  al. 2003; Banks et  al. 2008; Walker 2012; Walker and Gilliam 2013; Stathakopoulos and Riegl 2015). Light penetration, water temperature, sedimentation, and circulation vary considerably in shallower hardbottom areas and greatly influence the structure and dynamics of invertebrate assemblages (Rogers 1990; Banks et  al. 2008; Harborne et  al. 2017). Species composition and abundance at settlement for common reef fishes also varies across nearshore and mid shelf depths (e.g., Jordan et al. 2012). Palm Beach through Monroe counties have the most highly studied coral reef areas along the mainland east Florida coast (Lighty 1977; Moyer et al. 2003; Banks et  al. 2007; Walker 2012). Onshore to offshore, several studies from southeast Florida counties refer to the nearshore ridge complex (3–5 m), and inner (~ 8 m), middle (~ 15 m) and outer reefs (~ 16 m) (Moyer et al. 2003; Banks et al. 2008; Walker 2012; Cumming 2017). The hardbottom habitats across the reef lines are colonized by characteristic northern Caribbean, tropical reef fauna and flora, and

1.2  Nearshore, Intermediate, and Offshore Hardbottom Reefs

11

Fig. 1.7  Examples of: (a) intermediate hardbottom (8 m depth), Dania, Broward County (b) offshore hardbottom with coral structure near Jupiter, Palm Beach County (20 m depth). (Source: D. B. Snyder)

12

1 Introduction

are necessary for coral colonization and growth (Goldberg 1973; Banks et  al. 2008). Moyer et al. (2003) found differences in benthic communities between the inner, middle, and outer reefs (e.g., densities of octocorals and sponges were lower on the inner reef, presumably in response to greater physical variability in shallower waters). The majority of NHRs of east Florida are within 200 m of the mean high-water mark with little hardbottom in intermediate depths. However, there are notable exceptions in which hardbottom structure is continuous across the shelf through NHR, IHR, and OHR depths. Locations include Riomar Reef in Indian River County, Bathtub Reef and St. Lucie Reef (Peck’s Lake) in Martin County, Breakers Reef in Palm Beach County, and some areas of Broward County. More details on the distribution and latitudinal variation of these nearshore reefs is provided in Chap. 2.

1.3  Ecological Concepts and Terms Documentation of how nearshore reefs function as habitat for a diverse set of organisms was guided by fundamental ecological concepts regarding distributions, abundances, and diversities of very different, co-occurring species. To accomplish this, we documented not only the identities of taxa present, but also how these taxa organize into assemblages, how their life histories are adapted for these shallow habitats, and how they respond to or recover from disturbances in these nearshore areas with high wind and wave energy. Our ecological perspectives include the importance of non-equilibrium conditions in shallow ecological systems. This is because resource managers and others often need to consider a general lack of equilibrium when managing ecosystems (e.g., Shrader-Frechette and McCoy 1995; Sale 2011; Selkoe et al. 2015). To interpret local diversity or assemblage structure, we focused on ecological patterns among species to better understand the distribution and abundance of organisms. This reflects a perspective similar to that advanced by Andrewartha et al. (1954, 1984) and others including Walter and Hengeveld (2014). These autecological approaches mesh well with theories that incorporate spatial and temporal dynamics into understanding of assemblages (e.g., Pickett and White 1985; Petraitis 2013; Menge et  al. 2017; Pittman 2017). NHR environments can vary considerably over space and time, and support a broad range of species with distinct environmental adaptations. These invertebrate and algae species interact in manners that can also induce regime shifts in assemblage composition (O’Brien and Scheibling 2018). To constrain ambiguity introduced by sometimes variable terminologies, many technical terms are defined in the Glossary within the context in which they are applied.

1.3  Ecological Concepts and Terms

13

1.3.1  Equilibrium and Scale Ecological communities of nearshore reefs do not typically exhibit equilibrium conditions either spatially or temporally when examined over long time-scales. The lack of equilibrium conditions exhibited by many biotic components (e.g., Chaps. 7 and 9) has important implications for assessing impacts of stressors on these ecological systems, as well as assessing the success of mitigation approaches (Parker and Wiens 2005; Perring et al. 2015; Rohr et al. 2018). The assumption of equilibrium conditions does not accurately portray the individual and community-level dynamics among many faunal and floral groups when assessing impacts and the results of mitigation to offset impacts (Parker and Wiens 2005; Giron-Nava et al. 2017). In non-equilibrium systems like that of NHRs, disturbance can be considered an inherent property of the ecosystem and equilibria can be artefacts of observation, not major properties of the system (Wallington et al. 2005). Unfortunately, many of these ideas have not been translated into regulatory arenas (Sale 2011). Shrader-­Frechette and McCoy (1995) summarized key conceptual issues and emphasized the importance of case study approaches, contending that problem-­ solving would be most effective when ecological knowledge (natural history) as well as ecological theory was applied (Boström et al. 2011). Extreme events (e.g., Gaines and Denny 1993) often influence the outer boundaries of what may be observed in an assemblage, with NHRs as prominent examples in coastal east Florida. The assessment of equilibrium of biota encountered on or in the vicinity of nearshore reefs is inherently based on the scale of observation. The perceived structure of all levels of ecological hierarchies depends upon the spatial and temporal scales at which they are examined. Clearly, smaller scales (m) will exhibit higher variability than larger scales (km). Consideration of spatial scale is paramount to an understanding of assemblage patch dynamics, particularly in disturbance-mediated environments (Levin and Paine 1974; Pickett and White 1985; Wiens 1989; Kotliar and Wiens 1990; Wu and Loucks 1995; O’Connor and Byrnes 2013; Menge et al. 2015; Witman et  al. 2015; Jackson et  al. 2017; Schneider 2017) such as east Florida’s coast.

1.3.2  Foundation Species and Associated Concepts Prominent species have been used to characterize assemblages for many decades in theoretical and applied ecology, and the concepts of focal or indicator species have been discussed in detail (Zacharias and Roff 2001; Siddig et al. 2016). For example, a keystone species is commonly treated as any predator or functional group which exerts a strong effect over the food-web structure of the associated community (Paine 1966, 1969). We also use the term ‘foundation’ species (Dayton 1972) to

14

1 Introduction

include any species that has a strong (often increasing) effect on local species richness, distribution, and abundance by either creating habitat, modifying the environment, or affecting species interactions or resource availability (Altieri and van de Koppel 2014). Foundation species that create substantial habitat features are often referred to as habitat or ecosystem engineers which can increase available shelter to enhance species richness and abundance as well as reduce abiotic stress (e.g., Wright and Gribben 2017; Pocklington et al. 2019). A foundation species in many nearshore hardbottom areas is the sabellariid reef-building worm Phragmatopoma lapidosa (see Chaps. 4 and 7). Simberloff (1998) reviewed a variety of approaches that use representative or analytically valuable species with terms including indicator, flagship, and umbrella species. Specific distinctions among these terms can be considered tenuous, commonly because of imprecise metrics of performance and unclear objectives (Simberloff 1998), though various reviews and many studies still usefully employ these terms to varying degrees (e.g., Zacharias and Roff 2001; Siddig et al. 2016).

1.3.3  Ecological Functions and Ecosystem Services The conceptual underpinnings and terminology associated with the concept of ecological functions are highly variable and encompass many metrics (Wilson 1999; Hooper et al. 2002; Törnroos et al. 2015; Bellwood et al. 2019). At least four broad meanings for the term function were identified by Jax (2005): (1) processes of changes of state (e.g., organismal feeding); (2) the merging of multiple processes in a whole system context (e.g., system functioning); (3) ecological roles within systems (e.g., functional groups such as producers or consumers); and (4) particular services of the system to society (e.g., ecosystem services for humans such as photosynthesis or maintenance of biological diversity). In terms of marine organisms and assemblages on NHRs, we primarily focus on ecological functions that are related to: (1) habitat structure and shelter use (e.g. nesting and spawning sites, settlement and juvenile habitat use, ecosystem engineering), and (2) trophic dynamics (e.g., autotrophy, herbivory, carnivory, cleaning symbiosis, planktivory and suspension feeding, detritivory and omnivory). This approach considers important feeding interactions and also non-trophic interactions as emphasized in recent research (Kéfi et al. 2015; Pérez-Matus et al. 2017). In addition, we also recognize the functional connectivity among coastal systems and uses by adjacent human populations. The examination of ecological functions and human societies has a considerable history and humans receive services from ecosystems in at least four major categories (Hooper et al. 2002; MEA 2005; Folke et al. 2005; Bodin et al. 2014; Armitage et al. 2017). In terms of the regulating services category, NHRs as in Figs. 1.3, 1.4, 1.5 and 1.6 are important in the original positioning of barrier island and beach

1.3  Ecological Concepts and Terms

15

systems along the coast, and in helping to hold it where it is. For example, for at least the next 1 m of sea level rise, these reefs will be highly valuable in retarding landward shifts of the barrier islands (Mayhew and Parkinson 2007; H.R. Wanless, pers. comm. 2019). Thousands of year-round local residents and tourists in east Florida use shorelines not only for the beach itself but also to explore nearshore reefs and experience the provisioning and cultural services they provide, including fishing (Chap. 5). These shoreline reefs are popular with knowledgeable water-users because they occur in warm waters of the continental U.S. and harbor some of the northernmost tropical reef fishes and invertebrates along the Eastern Seaboard. Following MEA (2005) and Arkema et al. (2015), ecosystem services provided by NHRs under the provisioning category include food services (Fig. 1.8). Under the cultural category, recreational, educational, and aesthetic services are provided. These services are often culturally transmitted across multiple generations of coastal human families and include fishing, surfing, diving, birding, photography, and tide pool exploration by children and adults (Fig. 1.8). Many of the provisioning and cultural ecosystem services involve coastal communities at local and regional scales. Anthropological research on fisherfolk cultures in the Caribbean (e.g., McConney and Phillips 2011) has empirically demonstrated multiple cultural attributes of importance for human societies. For example, master fishers empirically demonstrate expert systems thinking skills in the prediction of coastal fish behaviors and habitat use (Grant and Berkes 2007). Diverse examples of research into traditional ecological knowledge and the applications to governance exist, including detailed guidelines for assessment (e.g., Brown et al. 2014). Despite the growing research literature on ecosystems services and coastal cultures around the world  (e.g., Arkema et  al. 2015), there has been relatively little information available on these issues in Florida until recently. Voss (2016) documented early twentieth century east Florida coastal fishing cultures with examples of waterfolk knowledge applications to science. Some of the valuable roles of multi-­ generation expert waterfolk are considered in a case study of potential NHR burial by a beach fill project in southeast Florida (Lindeman et al. 2010). Ariza et al. (2014) compared the perspectives of multiple stakeholder groups on beach governance, including nonprofits with waterfolk identities (multi-generation fishing and surfing cultures, e.g., over ten chapters of the Surfrider Foundation around Florida). In addition to traditional ecological knowledge, the waterfolk culture is of high economic value in coastal regions, with estimates of $225 million and $53 million annually for fishing and surfing cultures from Brevard County in east-central Florida (Kelly 2008). There are many opportunities for further studies on the roles of ecosystem services and coastal waterfolk cultures along barrier island and mainland communities of east Florida. A recent review of human dimensions and climate change in Florida examines many additional factors of social systems, some of relevance to coastal subcultures around the state, including political economy, demography and social architecture (Jacques et al. 2017).

16

1 Introduction

Fig. 1.8  Cultural and provisioning services of nearshore hardbottom reefs in east Florida. (a) Many coastal families grew up exploring tide pools and other reef features. (b) Anglers fishing on nearshore hardbottom reefs to capture food. Both photos taken in Brevard County, Florida. (Sources: M. Daniel, K. Lindeman)

References

17

References Altieri AH, van de Koppel J (2014) Foundation species in marine ecosystems. In: Bertness M, Bruno J, Silliman B, Stachowicz J (eds) Marine community ecology and conservation. Sinauer Associates, Sunderland, p 37–56 Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. University of Chicago Press, Chicago Andrewartha HG, Birch LC, Birch C (1984) The ecological web: more on the distribution and abundance of animals. University of Chicago Press, Chicago Ariza E, Lindeman KC, Mozumder P, Suman DO (2014) Beach management in Florida: assessing stakeholder perceptions on governance. Ocean Coast Manag 96:82–93. https://doi. org/10.1016/j.ocecoaman.2014.04.033 Arkema KK, Verutes GM, Wood SA, Clarke-Samuels C, et al (2015) Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc Natl Acad Sci 112:7390–7395. https://doi.org/10.1073/pnas.1406483112 Armitage D, Charles A, Berkes F (2017) Governing the coastal commons: communities, resilience and transformation, 1st edn. Taylor & Francis, London Banks KW, Riegl BM, Shinn EA, et al (2007) Geomorphology of the Southeast Florida Continental Reef Tract (Miami-Dade, Broward, and Palm Beach counties, USA). Coral Reefs 26:617–633. https://doi.org/10.1007/s00338-007-0231-0 Banks KW, Riegl BM, Richards VP, et al (2008) The reef tract of continental southeast Florida (Miami-Dade, Broward and Palm Beach counties, USA). In: Riegl BM, Dodge RE (eds) Coral reefs of the USA. Springer Science + Business Media B.V., London, p 175–220 Bellwood DR, Streit RP, Brandl SJ, Tebbett SB (2019) The meaning of the term ‘function’ in e­cology: A coral reef perspective. Funct Ecol 33:948–961. https://doi. org/10.1111/1365-2435.13265 Bodin Ö, Crona B, Thyresson M, et al (2014) Conservation success as a function of good alignment of social and ecological structures and processes. Conserv Biol 28:1371–1379. https:// doi.org/10.1111/cobi.12306 Boström C, Pittman SJ, Simenstad C, Kneib RT (2011) Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar Ecol Prog Ser 427:191–217. https://doi.org/10.3354/ meps09051 Broward County Planning and Development Management Division (2019) Miami-Fort Lauderdale-West Palm Beach metropolitan statistical area. In: Broward County by the numbers. p  6. ­https://www.broward.org/Planning/Demographics/Documents/BBTN/BBTN-­ MSAComparison-­2019-02_FINAL.pdf Brown C, Reyers B, Ingwall-King L, et  al (2014) Measuring ecosystem services: guidance on developing ecosystem service indicators. UNEP-WCMC, Cambridge CSA International, Inc. (2009) Ecological functions of nearshore hardbottom habitats in east Florida: a literature synthesis. Prepared for Florida Dept. of Envir. Protection, Bureau of Beaches and Coastal Systems. Tallahassee, p 266 CSA Ocean Sciences Inc. (2014) Mitigating the functions of nearshore hardbottom in east Florida: field comparisons of natural and artificial reef structures. Report to Florida Dept. of Envir. Protection, Bureau of Beaches and Coastal Systems. Tallahassee, p 93+apps Cumming KA (2017) The relationship between near shore hardbottom exposure and benthic community composition and distribution in Palm Beach County, FL.  Master Thesis, Nova Southeastern University  Dayton PK (1972) Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Antarctica. In: Proceedings of the colloquium on conservation problems in Antarctica. Allen Press, Lawrence, p 81–95 FDEP (Florida Department of Environmental Protection) (2014) Monitoring standards for beach erosion control projects. Florida Dept. of Envir. Protection, Division of Water Resource Mgmt., Tallahassee, p 40

18

1 Introduction

Folke C, Hahn T, Olsson P, Norberg J (2005) Adaptive governance of social-ecological systems. Annu Rev Environ Resour 30:441–473. https://doi.org/10.1146/annurev.energy.30.050504.144511 Gaines SD, Denny MW (1993) The largest, smallest, highest, lowest, longest, and shortest: extremes in ecology. Ecology 74:1677–1692 Gilliam DS, Hayes NK, Ruzicka R, Colella M (2018) Southeast Florida Coral Reef Evaluation and Monitoring Project 2017, Year 15 executive summary. Florida DEP Report #RM143. Miami Beach, p 15 Gilmore Jr RG, Donohoe C, Cooke D, Herrema D (1981) Fishes of the Indian River Lagoon and adjacent waters, Florida. Harbor Branch Foundation technical report no. 41. Ft. Pierce, p 36+ Giron-Nava A, James CC, Johnson AF, et al (2017) Quantitative argument for long-term ecological monitoring. Mar Ecol Prog Ser 572:269–274. https://doi.org/10.3354/meps12149 Goldberg WM (1973) The ecology of the coral-octocoral communities off the Southeast Florida coast: geomorphology, species composition, and zonation. Bull Mar Sci 23:465–488 Gore RH, Scotto LE, Becker LJ (1978) Community composition, stability, and trophic partitioning in decapod crustaceans inhabiting some subtropical sabellariid worm reefs. Bull Mar Sci 28:221–248 Gram R (1965) A Florida Sabellariidae reef and its effect on sediment distribution. J Sediment Petrol 38:863–868 Grant S, Berkes F (2007) Fisher knowledge as expert system: a case from the longline fishery of Grenada, the Eastern Caribbean. Fish Res 84:162–170. https://doi.org/10.1016/j. fishres.2006.10.012 Harborne AR, Rogers A, BozecY-M, Mumby PJ (2017) Multiple stressors and the functioning of coral reefs. Annu Rev Mar Sci 9:445–468. https://doi.org/10.1146/annurev-marine-010816-060551 Hernández-Delgado EA, Rosado-Matías BJ (2017) Long-lasting impacts of beach renourishment on nearshore urban coral reefs: a glimpse of future impacts of shoreline erosion, climate change and sea level rise. Ann Mar Biol Res 4:1021 Hooper DU, Solan M, Symstad A, et al (2002) Species diversity, functional diversity, and ecosystem functioning. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, p 195–208 Jackson EL, Santos-Corujo RO, Pittman SJ (2017) Seascape patch dynamics. In: Pittman SJ (ed) Seascape ecology. Wiley-Blackwell, Hoboken, p 153–188 Jacques PJ, Broad K, Butler W, et al (2017) Human dimensions and communication of Florida’s climate. In: Chassignet EP, Jones JW, Misra V, Obeysekera J (eds) Florida’s climate: changes, variations, & impacts. Florida Climate Institute, Gainesville, p 1–50 Jax K (2005) Function and “functioning” in ecology: what does it mean? Oikos 111:641–648. https://doi.org/10.1111/j.1600-0706.2005.13851.x Jordan LKB, Lindeman KC, Spieler RE (2012) Depth-variable settlement patterns and predation influence on newly settled reef fishes (Haemulon spp., Haemulidae). PLoS One 7:e50897. https://doi.org/10.1371/journal.pone.0050897 Kéfi S, Berlow EL, Wieters EA, et al (2015) Network structure beyond food webs: mapping non-­ trophic and trophic interactions on Chilean rocky shores. Ecology 96:291–303. https://doi. org/10.1890/13-1424.1 Kelly B (2008) Coastal recreation values in Brevard County: saltwater fishing and surfing. Master Thesis, Florida Institute of Technology  Kirtley DW, Tanner WF (1968) Sabellariid worms; builders of a major reef type. J Sediment Res 38:73–78. https://doi.org/10.1306/74D718D9-2B21-11D7-8648000102C1865D Kosmynin VN, Edwards L, Peterson J, Biggs B (2016) Standard operation procedures for nearshore hardbottom monitoring of beach nourishment projects. Florida Dept. of Envir. Protection, Division of Water Resource Mgmt., Tallahassee, p 75 Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260. https://doi.org/10.2307/3545542

References

19

Kulp S, Strauss BH (2017) Rapid escalation of coastal flood exposure in US municipalities from sea level rise. Clim Chang 142:477–489. https://doi.org/10.1007/s10584-017-1963-7 Levin SA, Paine RT (1974) Disturbance, patch formation, and community structure. Proc Natl Acad Sci 71:2744–2747. https://doi.org/10.1073/pnas.71.7.2744 Lighty RG (1977) Relict shelf-edge Holocene coral reef: southeast coast of Florida. In: Taylor DL (ed) Proceedings from the 3rd international coral reef symposium. University of Miami, Miami, p 215–221 Lindeman KC, Ruppert T (2011) Policy recommendations and training to improve agency permitting, compliance, and enforcement for coral resource conservation in Southeast Florida. Projects 4, 21, 23, 24-Phase 2. Southeast Florida Coral Reef Initiative, Miami, p 207. https:// floridadep.gov/sites/default/files/MICCI_04_21_23_24_Phase_2_Report.pdf Lindeman KC, Gibson HT, Yu H (2010) Participatory climate adaptation in coastal Florida: increasing roles for water-users and independent science. Proc Gulf Caribb Fish Inst 62:7–11 Mayhew TA, Parkinson RW (2007) Holocene evolution of the barrier island system, east-central Florida. Florida Sci 70:383–397 McCarthy DA (2001) Life-history patterns and the role of disturbance in intertidal and subtidal populations of the polychaete Phragmatopoma lapidosa lapidosa (Kinberg, 1867) in the tropical Western Atlantic. Doctoral Dissertation, Kings College-University of London McConney P, Phillips T (2011) Collaborative planning to create a network of fisherfolk organisations in the Caribbean. In: Goldstein E (ed) Collaborative resilience: moving through crisis to opportunity. M.I.T. Press, Cambridge, p 207–230 MEA (Millenium Ecosystem Assessment) (2005) Marine and coastal ecosystems and human well-­ being: synthesis. Island Press, Cambridge Menge BA, Gouhier TC, Hacker SD, et  al (2015) Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecol Monogr 85:213–233. https://doi. org/10.1890/14-0113.1 Menge BA, Bracken MES, Lubchenco J, Leslie HM (2017) Alternative state? Experimentally induced Fucus canopy persists 38 yr. in an Ascophyllum-dominated community. Ecosphere 8:e01725. https://doi.org/10.1002/ecs2.1725 Moyer RP, Riegl B, Banks K, Dodge RE (2003) Spatial patterns and ecology of benthic communities on a high-latitude South Florida (Broward County, USA) reef system. Coral Reefs 22:447–464. https://doi.org/10.1007/s00338-003-0334-1 Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878. https://doi.org/10.1046/j.1365-2699.1999.00305.x Nelson WG (1989) Beach nourishment and hard bottom habitats: the case for caution. In: Tait S (ed) Beach preservation technology. Florida Shore and Beach Preservation Association, Tallahassee, p 109–113 Nelson WG, Demetriades L (1992) Peracarids associated with Sabellariid worm rock (Phragmatopoma lapidosa Kinberg) at Sebastian Inlet, Florida, USA.  J Crustac Biol 12:647–654 O’Brien JM, Scheibling RE (2018) Turf wars: competition between foundation and turf-­forming species on temperate and tropical reefs and its role in regime shifts. Mar Ecol Prog Ser 590:1–17. https://doi.org/10.3354/meps12530 O’Connor MI, Byrnes JEK (2013) Biodiversity and ecosystem function: does pattern influence process. In: Bertness MD, Bruno JF, Silliman BR, Stachowicz JJ (eds) Marine community ecology and conservation. Sinauer, Sunderland, p 109–130 Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75 Paine RT (1969) The Pisaster-Tegula interaction: prey patches, predator food preference, and intertidal community structure. Ecology 50:950–961 Pandolfi J, Robertson D, Kirtley D (1998) Roles for worms in reef-building. Coral Reefs 17:120 Parker KR, Wiens JA (2005) Assessing recovery following environmental accidents: environmental variation, ecological assumptions, and strategies. Ecol Appl 15:2037–2051.  https://doi. org/10.1890/04-1723

20

1 Introduction

Pérez-Matus A, Ospina-Alvarez A, Camus PA, et al (2017) Temperate rocky subtidal reef community reveals human impacts across the entire food web. Mar Ecol Prog Ser 567:1–16. https:// doi.org/10.3354/meps12057 Perring MP, Standish RJ, Price JN, et al (2015) Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6:131. https://doi.org/10.1890/ES15-00121.1 Petraitis PS (2013) Multiple stable states in natural ecosystems. Oxford University Press, Oxford Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, San Diego Pittman S (2017) Seascape ecology. Wiley-Blackwell, Hoboken Pocklington JB, Keough MJ, O’Hara TD, Bellgrove A (2019) The influence of canopy cover on the ecological function of a key autogenic ecosystem engineer. Diversity 11:1–26. https://doi. org/10.3390/D11050079 Rogers C (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202 Rohr JR, Bernhardt ES, Cadotte MW, Clements WH (2018) The ecology and economics of restoration: when, what, where, and how to restore ecosystems. Ecol Soc 23:15. https://doi. org/10.5751/ES-09876-230215 Sale PF (2011) Our dying planet: an ecologist’s view of the crisis we face. University of California Press, Berkley and Los Angeles Schneider D (2017) Scale and scaling in seascape ecology. In: Pittman S (ed) Seascape ecology. Wiley-Blackwell, Hoboken, p 90–108 Scott TM, Campbell KM, Rupert FR, et al (2001) Geologic map of the state of Florida. Open-File Report 80. Florida Geological Survey, Tallahassee, p 28 Selkoe KA, Blenckner T, Caldwell MR, et al (2015) Principles for managing marine ecosystems prone to tipping points. Ecosyst Health Sustain 1:1–18. https://doi.org/10.1890/ehs14-0024.1 Shrader-Frechette KS, Mccoy ED (1995) Natural landscapes, natural communities, and natural ecosystems. For Conserv Hist 39:138–142 Siddig AA, Ellison AM, Ochs A, et al (2016) How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in ecological indicators. Ecol Indic 60:223- 230. http://dx.doi.org/10.1016/j.ecolind.2015.06.036 Simberloff D (1998) Flagships, umbrellas, and keystones: is single-species management passe in the landscape era? Biol Conserv 83:247–257. https://doi.org/10.1016/S0006-3207(97)00081-5 Stathakopoulos A, Riegl BM (2015) Accretion history of mid-Holocene coral reefs from the Southeast Florida continental reef tract, USA. Coral Reefs 34:173–187. https://doi.org/10.1007/ s00338-014-1233-3 Törnroos A, Bonsdorff E, Bremner J, et  al (2015) Marine benthic ecological functioning over decreasing taxonomic richness. J Sea Res 98:49–56. https://doi.org/10.1016/j. seares.2014.04.010 Voss GL (2016) A pioneer son at sea: fishing tales of old Florida. University Press of Florida, Gainesville Walker BK (2012) Spatial analyses of benthic habitats to define coral reef ecosystem regions and potential biogeographic boundaries along a latitudinal gradient. PLoS One 7:e30466. https:// doi.org/10.1371/journal.pone.0030466 Walker BK, Gilliam DS (2013) Determining the extent and characterizing coral reef habitats of the northern latitudes of the Florida reef tract (Martin County). PLoS One 8:e80439. https://doi. org/10.1371/journal.pone.0080439 Wallington T, Moore S, Hobbs R (2005) Implications of current ecological thinking for biodiversity conservation: a review of the salient issues. Ecol Soc 10:15. https://doi.org/10.5751/ ES-01256-100115 Walter GH, Hengeveld R (2014) Autecology: organisms, interactions and environmental dynamics. CRC Press/Taylor and Francis, Boca Raton Wiens J (1989) Spatial scaling in ecology. Funct Ecol 3:385–397 Wilson EO (1999) The diversity of life. W.W. Norton & Company, Inc., New York

References

21

Witman JD, Lamb RW, Byrnes JEK (2015) Towards an integration of scale and complexity in marine ecology. Ecol Monogr 85:475–504. https://doi.org/10.1890/14-2265.1 Worm B, Tittensor DP (2018) A theory of global diversity. Princeton University Press, Princeton Wright JT, Gribben PE (2017) Disturbance-mediated facilitation by an intertidal ecosystem engineer. Ecology 98:2425–2436. https://doi.org/10.1002/ecy.1932 Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70:439–466. https://doi.org/10.1086/419172 Zacharias MA, Roff JC (2001) Management: a review and critique. Aquat Conserv Mar Freshw Ecosyst 76:59–76

Chapter 2

Nearshore Hardbottom Reefs of East Florida and the Regional Shelf Setting

2.1  G  eological and Biological Attributes of Nearshore Hardbottom Reefs The geological, hydrographic, and climatic conditions of Florida’s east coast vary along a north-south latitudinal gradient, resulting in spatially varying occurrences of a wide range of subtropical and tropical algae, invertebrates, fishes, and sea turtle species on nearshore hardbottom reefs (NHRs). For many shallow marine organisms, the biogeographic transition between subtropical and warm-temperate regions typically occurs between Jupiter Inlet and Cape Canaveral, approximately 200 km to the north, coinciding with the offshore displacement of the northward Gulf Stream by the continental shelf (Briggs 1974; Gilmore Jr. 1995). North of Jupiter Inlet, a more temperate, wide-shelf system exists versus more tropical, narrow-shelf systems to the south. The Anastasia Limestone formation composes the bedrock of much of coastal east Florida from the border of  St. Johns and Flagler  counties to the north,  into southeast Florida and was created by the hardening of massive sand bars on ancient shorelines due to geochemical conditions during low sea levels in the last Pleistocene interglacial period, 114,000 to 125,000 years ago (Cooke and Mossom 1929; Cooke 1945; Duane and Meisburger 1969). The majority of nearshore reefs along mainland east Florida are derived primarily from this lithified Anastasia shell-rock (coquina rock). However, there is a transition in southern Palm Beach County through northern Miami-Dade County where the Anastasia formation intergrades with relict Holocene ridges (Banks et al. 2007, 2008) and is then replaced to the south by the Miami Limestone,  the coastal components of which are partially  derived from oolites (Hoffmeister 1974; Glossary). The Miami Limestone extends south to the south-central Biscayne Bay area beyond the study area of this book (southern St. Johns to northern Miami-Dade counties; Chap. 1), where it is replaced by the Key Largo Limestone extending south through the Florida Keys (Cooke 1945; Hoffmeister 1974; Mitchell-Tapping 1980; Stauble and McNeill 1985). © Springer Nature Switzerland AG 2020 D. A. McCarthy et al., Islands in the Sand, https://doi.org/10.1007/978-3-030-40357-7_2

23

24

2  Nearshore Hardbottom Reefs of East Florida and the Regional Shelf Setting

Conspicuous upland features of Anastasia and Miami Limestone rock may be readily observed along U.S. Highway 1 through some areas of east Florida (e.g., Rockledge in Brevard County or  Coconut Grove in  Miami-Dade County). This present-day rocky ridge, the Atlantic Coastal Ridge, runs parallel to the shore and consists of Anastasia or Miami Limestone. The extent of exposure of terrestrial limestone (upland rocks) or marine components (NHRs) depends on the local geomorphology of the formation including depth of the bedrock and the dynamics of overlying sediments. Anastasia Limestone outcrops can also occur on lagoon shorelines and serve as both terrestrial and estuarine habitats (Fig. 2.1). NHRs occur in intertidal and subtidal areas and are locally referred to by a variety of names that include coquina reefs, worm rock or worm reef, Anastasia outcrops, and nearshore hardbottom. In some areas, NHR habitats reach heights of 1.5 to 2 m above the bottom and can be highly convoluted (Figs. 1.4 and 1.5). In other areas, NHRs are of low-relief and form pavement-like surfaces, sometimes with small ledges and crevices (Fig. 1.8). In contrast to the reefs of mainland east Florida, nearshore reefs of the Florida Keys (Monroe County) can differ both geologically and biologically from east Florida areas (Hoffmeister 1974; Chiappone and Sullivan 1996) (Table  2.1). Emergent upland limestone rocks of the Florida Keys are derived from ancient reefs now termed the Key Largo Limestone. Rocky upland features of Key Largo

Fig. 2.1  Mainland Anastasia Limestone formation outcrops, west shore of Indian River Lagoon, Rotary Park, Town of Rockledge, Brevard County, Florida. (Source: K. Lindeman)

2.1  Geological and Biological Attributes of Nearshore Hardbottom Reefs

25

Table 2.1  Simplified geological and biological attributes among nearshore areas of mainland east Florida and the Florida Keys. Geographic transition areas are in italics for each component Geological or Biological Component Geological formation

Mainland, North of Transition Anastasia Limestone

Island type

Sedimentary barrier islands

Sabellariid worm reefs Shallow corals

Locally common

Seagrasses on the windward shore Predominant sediment type Wave energy

Absent

Uncommon

Quartz – calcium carbonate Intermediate to high

Geographic Transition Areas South Palm Beach – north Miami-Dade counties (Holocene ridges also present) Key Biscayne – Soldier Key Broward – MiamiDade counties Broward County – Soldier Key Miami Beach – Virginia Key Key Biscayne – Monroe County Martin – Broward counties

South of Transition Miami Limestone and Key Largo Limestone Limestone islands derived from coral Rare/absent Common Abundant Calcium carbonate Low

Modified from Lindeman (1997)

Limestone, may also be seen along U.S. Highway 1 in the Florida Keys. The Florida Keys typically do not have sizeable beaches, nor do they have a nearshore current regime for delivery of high volumes of beach-quality sediments. Compared to mainland east Florida, many NHRs in the Florida Keys are distributed among areas with higher organic sediments, greater seagrass cover, more corals, and reduced wave conditions Table 2.1), though there are exceptions (Ginsburg 1953). In contrast to the Keys, beach systems are common on the mainland coast of east Florida with its geologically distinct, sedimentary barrier islands (Table 2.1). Stony corals are rare or uncommon on many mainland NHRs due to high turbidity and wave energy, although several species can be locally present (e.g., Oculina diffusa and O. varicosa in St. Lucie County; Acropora cervicornis in Broward County). The Siderastrea spp. (starlet corals) are the most common, occurring on shallow hardbottom at least from Brevard to Miami-Dade in our study area. A locally prominent contributor to habitat structure and diversity of nearshore reefs along east Florida is the polychaete, Phragmatopoma lapidosa, also known as P. caudata (Nelson and Demetriades 1992; Kirtley 1994; Drake et  al. 2007) that creates worm rock. Worms of this species (family Sabellariidae) settle on hardbottom and glue together sedimentary particles of specific sizes and origins to build sand tubes. Masses of these tube-building worms form shallow reefs in intertidal and shallow subtidal hardbottom areas (Gram 1965; Kirtley and Tanner 1968; Pandolfi et al. 1998; McCarthy 2001). This species can be a foundation ecosystem engineer of NHR assemblages in mainland east Florida (Jones et al. 1994; Coleman and Williams 2002; Altieri and Kopel 2014). Its distribution extends from Cape

26

2  Nearshore Hardbottom Reefs of East Florida and the Regional Shelf Setting

Canaveral southward to Santa Catarina, Brazil (Kirtley 1994), although it is generally uncommon in the Florida Keys and islands of the Bahamas and Caribbean (McCarthy et al. 2008). In east Florida, the invertebrate fauna of intertidal and subtidal nearshore hardbottom habitats varies considerably, driven in part by the presence or absence of P. lapidosa (Fig. 1.6) (McCarthy et al. 2003; CSA Ocean Sciences Inc. 2014; also Chaps. 4, 5, and 7). Bathtub Reef in Stuart, Florida has one of the most prominent intertidal worm reefs built by P. lapidosa (Fig. 2.2). In east Florida, the structure provided by NHRs and associated worm rock formations supports a significantly higher diversity and abundance of many marine invertebrate species than neighboring sand or hardbottom habitats (Gore et al. 1978; Nelson 1988). Similar faunal differences likely exist for nearshore hardbottom habitats dominated by macroalgae, stony corals, and sponges (CSA Ocean Sciences Inc. 2014). At least 16 species that associate with NHRs off mainland east Florida are listed by federal or state governments as threatened or endangered (Florida Fish and Wildlife Conservation Commission (FWC) 2016). Federally listed species include five turtle, one mammal and several coral species. State listed species on nearshore reefs include at least four bird and one coral species (FWC 2016). Further, NHRs benefit juvenile green turtles (Chelonia mydas) by providing essential structure for the algae they feed upon as well as shelter from waves and predators (Wershoven and Wershoven 1989; Ehrhart et al. 1996; Holloway-Adkins 2001; Stadler et al. 2015). Previous studies collectively report that nearshore reefs provide shelter and food resources for over 534 invertebrate species (Gore et al. 1978; Nelson 1988, 1989; Nelson and Demetriades 1992; CSA International, Inc. 2009) and 257 fish species (Gilmore Jr. 1977; Gilmore Jr. et al. 1981; Lindeman 1997; Lindeman and Snyder 1999). Geological evidence suggests that NHRs and associated worm rock are also important in the maintenance and persistence of beaches and barrier islands by retention of sediments and the progradation of beaches (Gram 1965; Kirtley 1966, 1967, 1974; Multer and Milliman 1967; Kirtley and Tanner 1968; Mehta 1973; Pandolfi et al. 1998). However, the vast majority of nearshore reefs are not encrusted by, or derived from, tube-building worms (Fig. 2.3). Further, polychaetes that construct worm reefs can monopolize space, precluding the presence of algae and other sessile invertebrates. The worm structure can be relatively fragile and substantially damaged by high wave energy (McCarthy 2001).

2.2  Distribution of Nearshore Reefs in East Florida Information on distribution and emergent acreage of shallow reefs from Miami-­ Dade through St. Johns counties are typically collected and housed by local agencies. Most counties use geo-rectified aerial images collected annually to map reef distribution and exposed acreage as it changes with sand movement. In the southern counties of Dade, Broward, Palm Beach, and Martin (in part), laser assisted (LIDAR) bathymetry has been used to produce high resolution maps of nearshore, intermediate, and offshore reefs (Banks et al. 2007; Finkl and Andrews 2008; Walker 2012;

2.2  Distribution of Nearshore Reefs in East Florida

27

Fig. 2.2  Aerial image of Bathtub Reef with depth contours, June 2007, Martin County, Florida. (Source: Martin County) 

Walker and Gilliam 2013). Table 2.2 summarizes some of the available county-level information on NHR acreage and distributions. These values are essentially an average from single snapshots (usually aerial photographs) taken annually. Based on this information (i.e., mapping products), the counties with the largest estimated area of NHR are Indian River, Martin, Broward, and Palm Beach.

28

2  Nearshore Hardbottom Reefs of East Florida and the Regional Shelf Setting

Fig. 2.3  Algal and invertebrate coverage of a ledge on a nearshore reef exposed during a full moon low tide, Brevard County, Florida. Algal species present include: Caulerpa racemosa, C. prolifera, Ulva lactuca, Laurencia sp., Aghardiella subulata, Gelidiopsis sp., and others. Cuban stone crabs (Menippe nodifrons) are present on the lower left. (Source: K. Lindeman)

Nearshore reef habitats from limestone formations are present in at least 9 of 10 counties in our study area. The amount of exposed nearshore reef varies considerably due to shallow sediment dynamics as does the availability of data on the reef habitat (Table 2.2). The shoreline length of each county is not directly related to the reported acreage of hardbottom. From northern through southern counties, nearshore hardbottom outcroppings occur at Marineland, in northern Flagler County, abutting the southern boundary of St. Johns County (latitudes in Table  2.2). No nearshore reefs have been identified in Volusia County. South of Cape Canaveral, NHRs in Brevard are concentrated in the central part of the county. Large amounts of nearshore and deeper hardbottom reefs occur in Indian River County in areas such as Riomar and Wabasso. St. Lucie and Martin County have subtidal and intertidal reefs along the Hutchinson Island system, for example at Walton Rocks and Bathtub Reef, respectively. The long shoreline of Palm Beach County has substantial NHR formations including Coral Cove Park, Breakers Reef, and Red Reef Park. Broward has complex nearshore ridges and colonized pavement rock in depths approximating 3 to 5 m (Walker 2012) (Fig.  2.4). Northern Miami-Dade County currently has few shallow nearshore reefs (