IL10

Interleukin 10 (IL-10) is a homodimeric cytokine, produced by activated monocytes and T cells, that is deeply involved i

291 58 202KB

English Pages 22 Year 2000

Report DMCA / Copyright

DOWNLOAD PDF FILE

IL10

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

IL-10 Rene de Waal Malefyt* Department of Molecular Biology, DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304-1104, USA * corresponding author tel: 650-496-1164, fax: 650-496-1200, e-mail: [email protected] DOI: 10.1006/rwcy.2000.03005.

SUMMARY Interleukin 10 (IL-10) is a homodimeric cytokine, produced by activated monocytes and T cells, that is deeply involved in the regulation of inflammatory responses and immune reactions. Its main overall function is best described as dampener of immune responses, but IL-10 possesses stimulatory activities as well. Clearly, IL-10 is pleiotropic and research into its many functions and mechanisms of action is still very active. It affects not only the immune system, but through its modulation of growth factors, cytokines and other mediators, it can influence many physiological processes, including for example angiogenesis, tumorigenesis and infection. It is a key molecule that is able to ameliorate potential pathological autoimmune processes through the inhibition of many facets of the inflammatory response. In addition, the induction of regulatory T cells by IL-10 points towards a crucial role in the establishment of peripheral tolerance. All these qualities make IL-10 a desirable candidate to use in clinical intervention and studies examining the efficacy of IL-10 in several chronic inflammatory or autoimmune diseases are well underway.

BACKGROUND

Discovery IL-10 was discovered when Tim Mosmann and collegues at DNAX pursued a biological activity in the supernatants of activated murine TH2 cell clones that could modulate the effector function of TH1 cells (Fiorentino et al., 1989). The assay that was used to follow this biological activity measured a reduced

capacity of TH1 cells to produce cytokines, in particular IFN , hence the name cytokine synthesis inhibitory factor. An IL-10 cDNA clone was identified by both biochemical purification and expression cloning (Vieira et al., 1991). Subsequent expression of the protein and production of neutralizing monoclonal antibodies revealed that IL-10 was also active in assays that examined B cell, mast cells, and macrophage/monocyte functions. IL-10 is now well recognized as a dominant immunoregulatory molecule with important immunostimulatory and unique immunosuppressive and anti-inflammatory activities.

Alternative names Cytokine synthesis inhibitory factor (CSIF), mast cell growth factor III (MCSFIII), and B cell-derived T cell growth factor (B-TCGF) are alternative names that have been used.

Structure IL-10 belongs to the family of long-chain cytokines, which also encompasses IFN / and IFN . Biologically active IL-10 is a homodimer.

Main activities and pathophysiological roles IL-10 affects many aspects of inflammatory and immune responses and acts on both hematopoietic and nonhematopoietic cells. It has dominant suppressive effects on the production of proinflammatory

166 Rene de Waal Malefyt cytokines by monocytes and neutrophils, and downregulates the expression of activating and costimulatory molecules on monocytes and dendritic cells, leading to its characterization as a macrophage deactivating factor. It also has important growth factor activities on B cells and mast cells, and inhibits or enhances the activities of T cells depending on their activation conditions and CD4 or CD8 subclass. By affecting these prominent players in immune and inflammatory reactions, it has an important regulatory function (Moore et al., 1993).

GENE AND GENE REGULATION

Accession numbers

dependent on NFB activation (Bondeson et al., 1999). Several polymorphisms have been observed in the human IL-10 gene 50 -flanking sequence. They include two areas of 6±11 (CA)n repeat microsatellite polymorphisms ÿ1109 kb and ÿ3942, as well as three linked point mutations at ÿ1082 (G/A), ÿ819 (C/ T ), and ÿ592 (C/A) (Eskdale et al., 1997a; Hurme et al., 1998). These polymorphisms have been linked to enhanced production of IL-10 by monocytes and T cells and are implicated in the levels of IL-10 production by patients suffering from or susceptible to systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and meningococcal disease (Eskdale et al., 1997b; Westendorp et al., 1997; Mehrian et al., 1998; Crawley et al., 1999) and can be prognostic for graft rejection following renal transplantation (Sankaran et al., 1999).

IL-10 cDNA: M57627 IL-10 gene: U16720

Cells and tissues that express the gene

Chromosome location IL-10 is located on chromosome 1q. The human IL-10 gene spans 4.7 kb and consists of five exons separated by four introns.

Regulatory sites and corresponding transcription factors A TATA box is located 84 bp 50 of the first methionine codon. Other consensus transcription factorbinding sequences have been identified by computer searches using the transcription factor database (GenBank tfdb). These include CCAAT motifs at ÿ148, ÿ363, ÿ864, AP-1-binding sites at 29 and ÿ695, NF-IL6 consensus binding sites at ÿ338, ÿ532, ÿ777, ÿ1504, ÿ1551, ÿ2085, ÿ2793, ÿ2894, and ÿ2937. In addition a glucocorticoid response element (GRE) and a cyclic AMP response element (CRE) are located at ÿ250 and ÿ311. The CRE appears to be functional, as agents that raise intracellular cAMP levels enhance the expression of IL-10 in monocytes. Expression of the IL-10 gene in monocytes is not

IL-10 is expressed by naõÈ ve and memory T cells derived from both peripheral blood or cord blood, T cell clones belonging to TH1, TH2, and Tr1 subsets, NK cells, B cells derived from peripheral blood, tonsils or spleen, Epstein±Barr virus (EBV)-transformed B cell lines, Burkitt's lymphoma, AIDS lymphomas, monocytes, placental trophoblasts, bronchial epithelial cells, and certain tumor cells including melanomas and carcinomas of various origin (de Waal Malefyt and Moore, 1998).

PROTEIN

Accession numbers P22301 (g124292)

Sequence See Figure 1.

Figure 1 Amino acid sequence for IL-10. MHSSALLCCL VKTFFQMKDQ QDPDIKAHVN EKGIYKAMSE

VLLTGVRASP LDNLLLKESL SLGENLKTLR FDIFINYIEA

GQGTQSENSC THFPGNLPNM LRDLRDAFSR LEDFKGYLGC QALSEMIQFY LEEVMPQAEN LRLRRCHRFL PCENKSKAVE QVKNAFNKLQ YMTMKIRN

IL-10 167

Description of protein The human IL-10 gene encodes a protein of 178 amino acids which includes 18 amino acids of hydrophobic signal sequence. The mature hIL-10 protein consists, therefore, of 160 amino acids and Ser1 was confirmed as the N-terminal residue by protein sequencing (Windsor et al., 1993). The predicted molecular weight of hIL-10 is 18,647 Da and it runs as a single species with an apparent molecular weight of 17 kDa in SDS-PAGE (Vieira et al., 1991). hIL-10 contains four cysteine residues which form two intramolecular disulfide bonds, with Cys12 pairing to Cys108 and Cys62 to Cys114 (Windsor et al., 1993). The isoelectric point (pI) of IL-10 is 7.92, which is close to its predicted value of 7.8. hIL-10 is acidic sensitive and exposure to a pH below 5.5 will result in biologically inactive material. IL-10 exists as a noncovalently linked homodimer and has a apparent molecular weight of 37 kDa in solution (Syto et al., 1998).

Discussion of crystal structure Structurally, IL-10 belongs to the family of longchain cytokines characterized by a four helix bundle (Sprang and Bazan, 1993). hIL-10 has been crystallized and the resulting IL-10 crystals were tetragonal, of space group P43 21 2 (Trotta and Windsor, 1994). The crystal structure was resolved at 3.5, 2.0, 1.8, and 1.6 AÊ resolution following X-ray diffraction (Walter and Nagabhushan, 1995; Zdanov et al., 1995). IL-10 is a dimer composed of identical polypeptide chains related by a 2-fold axis forming a V-shaped structure. Each half of the dimer consists of six helices, four originating from one subunit, and two from the other. The topology of the helices resemble that of IFN . The resolution map of 1.6 AÊ was used to generate a computer model of a complex of IL-10 with its two soluble receptors showing excellent complementary of polar and hydrophobic interactions (Zdanov et al., 1996). The crystal structure of viral IL-10 has also been resolved and shows a very comparable topology (Zdanov et al., 1997).

Important homologies Viral homologs of IL-10 have been found in Epstein± Barr Virus (EBV), equine herpes virus type 2 (EHV2), and poxvirus Orf genomes (Moore et al., 1990; Rode et al., 1993; Fleming et al., 1997). The EBV-encoded IL-10 (viral IL-10) is located on the BCRF sequence

and the protein has maintained some, but not all the biological activities of its cellular counterpart. hIL-10 has 90% homology at the amino acid level with viral IL-10 and 73% with murine IL-10. The greatest diversions between these IL-10 species are found in the signal sequence and the first 21 amino acids of the N-terminus (Vieira et al., 1991). The human IL-10 protein is active on murine cells but the murine cytokine is not active on human cells. IL-10 sequences for pig-tailed macaque, mangabey, rhesus, and owl monkeys, rat, guinea pig, Syrian hamster, rabbit, woodchuck, gerbil, opossum, cat, dog, cow, sheep, red deer, pig, horse, and killer whale are also deposited in GenBank.

Posttranslational modifications hIL-10 contains one possible N-linked glycosylation site at Asn115, but this site is unoccupied (Trotta and Windsor, 1994).

CELLULAR SOURCES AND TISSUE EXPRESSION

Cellular sources that produce IL-10 is expressed by naõÈ ve and memory T cells derived from both peripheral blood or cord blood, T cell clones belonging to TH1, TH2, and Tr1 subsets, NK cells, B cells derived from peripheral blood, tonsils, or spleen, EBV-transformed B cell lines, Burkitt's lymphoma, AIDS lymphomas, monocytes, microglia (Chabot et al., 1999), placental trophoblasts, bronchial epithelial cells, keratinocytes (mouse) and certain tumor cells including melanomas and carcinomas of various origin (de Waal Malefyt and Moore, 1998). Activation is generally required for expression for nontransformed cells of hematopoietic origin. IL-10 is produced by dendritic cells derived from Peyer's patches, but not from dendritic cells derived from spleen (Iwasaki and Kelsall, 1999).

Eliciting and inhibitory stimuli, including exogenous and endogenous modulators The inducing agents that have been used in various cell types are listed in Table 1. IL-10 production by T cells can be enhanced by IL-12, IL-4, IFN , and IL-10 itself can induce a population of T regulatory

168 Rene de Waal Malefyt

Table 1 Inducing agents used in various cell types Cell type

Inducing agent

T cells

Antigen presented by antigen-presenting cells (APCs) Anti-CD3 mAbs and PMA Combinations of anti-CD3 and anti-CD28 mAbs Mitogenic combination of anti-CD2 mAbs Concavalin A Mitogenic lectins Calcium ionophores and PMA (weak) Superantigens SEA, SEB Gangliosides GD1a, GM3 (Kanda, 1999) ICOS (Hutloff et al., 1999)

B cells

Staphylococcus aureus Cowan strain I (SAC) EBV Anti-IgM mAbs Anti-CD40 mAbs

NK cells

IL-2, IL-2 + IL-12 (Mehrotra et al., 1998)

Monocytes

Lipopolysaccharide (LPS) SAC Anti-CD40 mAbs Immune complexes (Sutterwala et al., 1998) CD23 crosslinking

Keratinocytes

UV irradiation (mouse) (Enk et al., 1995) CD23 ligation (human) (Becherel et al., 1997)

cells that produces very high levels of IL-10 upon antigen-specific activation. LFA-1/ICAM-1 costimulatory signals are more potent in the induction of IL-10 by anti-CD3 activation than ICAM-2 or ICAM-3 costimulation (Bleijs et al., 1999). Cyclosporin inhibits the production of IL-10 by T cells, but paradoxically can enhance IL-10 production by monocytes. LPS-induced IL-10 production by monocytes is enhanced by TNF , and agents that increase intracellular cAMP levels such as melanocyte-stimulating hormone, prostaglandin E2, cyclic nucleotide phosphodiesterase type IV inhibitors, adenosine, catecholamines (epinephrine), and chlorpromazine (dopamine receptor type I agonist), histamine (Elenkov et al., 1998), vasointestinal peptide (VIP) (Delgado et al., 1999), and is inhibited by IL-4, IL-10 itself, IL-13, IFN , and TGF . The inhibition of IL-10 by IL-4 monocytes is dependent on expression of the common chain (Bonder et al., 1999). LPS-induced IL-10 production by monocytes is dependent on endogenous TNF

and IL-1 and mediated by p38 MAP kinases (Foey et al., 1998). The release of IL-10 by monocytes induced by catecholamines following brain injury may represent a common pathway for immunodepression following brain injury and stress (Woiciechowsky et al., 1998). IL-10 production by monocytes is relatively insensitive to glucocorticoids (Visser et al., 1998). Murine cytomegalovirus induced IL-10 expression in murine macrophages (Redpath et al., 1999). The production of IL-10 following UV irradition by keratinocytes may be dependent on the production of IL-6 by Langerhans cells (Nishimura et al., 1999).

RECEPTOR UTILIZATION The IL-10 dimer interacts with two heterodimeric receptor complexes consisting of IL-10R and IL-10R subunits. This interaction, as well as the resulting signaling pathways, are discussed under the IL-10 receptor.

IL-10 169

IN VITRO ACTIVITIES

In vitro findings Effects of IL-10 on Monocytes, Macrophages, and Dendritic Cells IL-10 significantly modulates expression of cytokines, soluble mediators, and cell surface molecules on cells of myeloid origin. These changes have important consequences for the functions of these cells in activating and maintaining immune and inflammatory responses. IL-10 strongly inhibits the production of IL-1 , IL-1 , IL-6, IL-8, IL-10 itself, IL-12, GMCSF, G-CSF, M-CSF, TNF , MIP-1 , MIP 1 , MIP-2, RANTES, and LIF by activated monocytes/ macrophages (de Waal Malefyt et al., 1991a, 1993a; Fiorentino et al., 1991a; D'Andrea et al., 1993; Gruber et al., 1994; Berkman et al., 1995; MarfaingKoka et al., 1996). Inhibition of production of certain cytokines, like KC, results from destabilization of mRNA mediated by AU-rich elements in the 30 untranslated region of sensitive genes (Kim et al., 1998; Kishore et al., 1999). Alternative mechanisms for cytokine production are also described as inhibition of IL-12 occurs at the transcriptional level and is dependent on new protein synthesis (Aste-Amezaga et al., 1998) and inhibition of TNF production occurs by transcriptional and posttranscriptional mechanims but is independent of the ability of IL-10 to inhibit NFB activation (Clarke et al., 1998). IL-10 induced and enhanced the expression of a novel chemokine that is chemotactic for monocytes called HCC4 (Hedrick et al., 1998) and IL-10 enhanced expression of CCR5 (Sozzani et al., 1998). In addition, IL-10 enhanced production of IL-1Ra (Cassatella et al., 1994; de Waal Malefyt et al., 1991a; Jenkins et al., 1994) and expression of soluble p55 and p75 TNFR (Hart et al., 1996; Joyce and Steer, 1996; Linderholm et al., 1996; Dickensheets et al., 1997), indicating that IL-10 induces a shift from production of proinflammatory to anti-inflammatory mediators. IL-10 also inhibited expression of MHC class II antigens, CD54 (ICAM-1), CD80 (B7), and CD86 (B7.2) on monocytes, even following induction of these molecules by IL-4 or IFN (de Waal Malefyt et al., 1991b; Ding et al., 1993; Kubin et al., 1994; Willems et al., 1994). Downregulation of these stimulatory or costimulatory molecules significantly affected the T cell-activating capacity of monocyte APCs (de Waal Malefyt et al., 1991b; Fiorentino et al., 1991b; Ding and Shevach, 1992). IL-10 inhibits MHC class II expression by monocytes through a posttranscriptional mechanism involving inhibition of transport of mature, peptide-loaded MHC class II

molecules to the plasma membrane (Koppelman et al., 1997). IL-10 selectively enhanced the expression of HLA-G on trophoblasts and monocytes, which may play a role in maternal/fetal tolerance (Moreau et al., 1999). In contrast, IL-10 upregulated expression of FcR on monocytes, including CD16 and CD64 (te Velde et al., 1992; de Waal Malefyt et al., 1993a; CalzadaWack et al., 1996) but downregulated the expression of IL-4-induced CD23 (Morinobu et al., 1996). Upregulation of CD64 correlated with enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) (te Velde et al., 1992). In contrast, IL-10 inhibited tumor cytotoxicity (Nabioullin et al., 1994). Upregulation of FcR by IL-10 enhanced the capacity of monocytes/macrophages to phagocytose opsonized particles, bacteria, or fungi (Capsoni et al., 1995; Spittler et al., 1995), but IL-10 reduced the ability of the cells to kill the ingested organisms by decreasing the generation of superoxide anion (O2ÿ) and nitric oxide (NO) (Bogdan et al., 1991; Cunha et al., 1992; Gazzinelli et al., 1992; Niiro et al., 1992, 1995; Cenci et al., 1993; Wu et al., 1993; Kuga et al., 1996; Roilides et al., 1997). The inhibitory effects of IL-10 on production of NO by mouse macrophages can occur by an indirect mechanism involving inhibition of cytokine synthesis (Oswald et al., 1992a, 1992b; Flesch et al., 1994). IL-10 inhibited production of prostaglandin E2, another proinflammatory mediator (Niiro et al., 1994). IL-10 inhibited the ability of monocytes/macrophages to modulate turnover of extracellular matrix through its inhibitory effects on production of gelatinase and collagenase, and its ability to enhance production of tissue inhibitor of metalloproteinases (Lacraz et al., 1995; Mertz et al., 1994). IL-10 enhanced the expression of the fMLP receptor and the PAF receptor on monocytes, making the cells more responsive to these chemotactic factors (Thivierge et al., 1999). IL-10 also inhibited C-reactive protein (CRP)-induced and LPS-induced, but not CD40-induced tissue factor (TF) expression by human monocytes, which leads to a reduction in procoagulant activity (Jungi et al., 1994; Pradier et al., 1993, 1996; Ramani et al., 1993, 1994). The effects of IL-10 on cytokine production and function of human macrophages are generally similar to those on monocytes, although a little less pronounced (Berkman et al., 1995; Nicod et al., 1995; Wilkes et al., 1995; Armstrong et al., 1996; Park and Skerrett, 1996; Thomassen et al., 1996; Zissel et al., 1996). Furthermore, IL-10 inhibited production of IL-12 and expresssion of costimulatory molecules on various types of dendritic cells (Macatonia et al., 1993; Peguet-Navarro et al., 1994; Buelens et al., 1995; Ludewig et al., 1995; Mitra et al., 1995), which

170 Rene de Waal Malefyt correlates with its ability to inhibit primary alloantigen-specific T cell responses (Bejarano et al., 1992; Caux et al., 1994). Furthermore, IL-10 treatment of dendritic cells may induce a state of anergy in alloantigen- or peptide antigen-activated T cells (Steinbrink et al., 1997). IL-10 also inhibits the generation of monocyte-derived dendritic cells cultured with GMCSF and IL-4 (Allavena et al., 1998) and induced apoptosis of plasmacytoid dendritic cells (DC2) (Rissoan et al., 1999).

expression which results in increase prostaglandin D2 production (Ashraf et al., 1996). IL-10 is produced constitutively by mucosal type mast cells but needs to be induced by IL-3 in connective tissue type mast cells (Marietta et al., 1996). IL-10 inhibits the expression of c-kit on mouse bone marrow-derived mast cells, resulting in a reduced production of IL-13 and TNF in response to SCF (Mirmonsef et al., 1999). Effects of IL-10 on B Cells

Effects of IL-10 on Granulocytes and Eosinophils Granulocyte function is also affected by IL-10. LPS-induced cytokine and chemokine production, generation of superoxide anions, and survival by polymorphonuclear leukocytes or neutrophils were inhibited by IL-10, whereas production of IL-1Ra was enhanced (Cassatella et al., 1993, 1994, 1997; Kasama et al., 1994; Wang et al., 1994; Chaves et al., 1996; Cox, 1996; Marie et al., 1996). IL-10 also inhibited LPS-induced survival and cytokine production by purified eosinophils (Takanaski et al., 1994). IL-10 reduced neutrophil migration in IgG complexinduced lung injury and LPS- or antigen-induced pulmonary inflammation (Shanley et al., 1995; Zuany-Amorim et al., 1995; Cox, 1996), which may be related to its regulation of chemokine expression. On the other hand, neutralization of IL-10 led to enhanced survival in murine models of Klebsiella pneumoniae, Streptococcus pneumoniae, and Mycobacterium avium infections, since killing of phagocytosed bacteria was partly suppressed by endogenous IL-10 (Denis and Ghadirian, 1993; Greenberger et al., 1995; van der Poll et al., 1996b). Inhibition by IL-10 of production of chemokines, proinflammatory cytokines, and mediators of granulocyte survival no doubt collectively limit the duration of inflammatory responses, as these agents perpetuate the inflammatory response. Effects of IL-10 on Mast Cells IL-10 is a cofactor for the IL-3- or IL-4-induced proliferation of mucosal-type mouse mast cells (Thompson-Snipes et al., 1991; Rennick et al., 1995). In addition, it induces the expression of two mast cellspecific proteases, mMCP-1 and mMCP-2 (Ghildyal et al., 1992a, 1992b, 1993). These activities of IL-10 may contribute to immune responses against helminth infections (Behnke et al., 1993). IL-10 also has an inhibitory effect on mast cell TNF and GM-CSF production following triggering of the high-affinity IgE receptor (Arock et al., 1996). However, the same activation induces prolonged cyclooxygenase (Cox-2)

IL-10 induced enhanced expression of MHC class II antigens and survival of resting mouse B cells (Go et al., 1990). In contrast, IL-10 inhibited motility and IL-5-induced antibody production against thymusindependent type I and II antigens (produced by B-1 B cells), but not against thymus-dependent antigens. This inhibition was reversed by IL-4 (Clinchy et al., 1994; Pecanha et al., 1992, 1993). However, serum immunoglobulin levels and development of B-1 B cells were normal in IL-10ÿ/ÿ mice (Kuhn, 1993). Furthermore, B cells do not seem to play a role in the inflammatory bowel disease that develops in these animals (Davidson et al., 1996). Current data suggest that the in vivo role of IL-10 in murine B cell responses may be limited. More extensive activities of IL-10 have been described on human B cells. IL-10 enhanced the survival of normal human B cells (depending on their activation state), which correlated with increased expression of the anti-apoptotic protein Bcl-2 (Levy and Brouet, 1994; Itoh and Hirohata, 1995). IL-10 strongly enhanced proliferation of human B cell precursors and mature B cells activated by anti-IgM monoclonal antibodies, Staphylococcus aureus strain Cowan I (SAC), or crosslinking of CD40 (Rousset et al., 1992; Saeland et al., 1993). Both IL-2 and IL-4 further enhanced B cell proliferation activated by IL-10 with anti-CD40. The synergistic effects of IL2 correlated with IL-10-enhanced expression of highaffinity IL-2 receptor on B cells (Fluckiger et al., 1993). B cell-derived and exogenous IL-10 also affected B cell differentiation and isotype switching (Burdin et al., 1995). Isotype committed B cells, activated by SAC or anti-CD40 mAbs, produced large amounts of IgM, IgG1±3, and IgA in the presence of IL-10, and IgG4 and IgE in the presence of both IL-10 and IL-4 (Garrone et al., 1994; Nonoyama et al., 1993; Punnonen et al., 1993; Rousset et al., 1992; Uejima et al., 1996). Activation (anti-CD40 and IL-10) of sIgD‡ naõÈ ve B cells also resulted in production of IgM, IgG1±3, and IgA (Defrance et al., 1992; Briere et al., 1994b). Furthermore, anti-CD40 and IL10 stimulation of sIgD‡ B cells induced isotype

IL-10 171 switching to IgG1 and IgG3 (Malisan et al., 1996) and, in combination with TGF , to IgA (Defrance et al., 1992). IL-10 induced production of IgA by antiCD40-activated B cells of patients suffering from IgA deficiency, although no defects in the production of IL-10 were observed in these patients (Briere et al., 1994a). Long-term culture of B cells stimulated by either anti-CD40 mAbs or by activated T cells expressing CD40 ligand in the presence of IL-10 resulted in differentiation of B cells into plasma cells (Merville et al., 1995; Rousset et al., 1995). Such effects of IL-10 may play a role in pathogenesis of systemic lupus erythematosus (SLE) where positive correlations between serum IL-10 levels and severity of disease, and between the production of IL-10 and autoantibodies by SLE patient's B cells were demonstrated (al-Janadi et al., 1996; Hagiwara et al., 1996; Houssiau et al., 1995; Llorente et al., 1994, 1995). A role for IL-10 in development of SLE was suggested by the delayed onset of autoimmunity in lupus-prone NZB mice treated with anti-IL-10 mAbs (Ishida et al., 1994). These results suggested that IL-10 antagonists could be useful therapeutics in SLE. Direct Effects of IL-10 on T Cells IL-10 strongly inhibited cytokine production and proliferation of T cells and T cell clones activated in the presence of APCs. This effect of IL-10 is due mostly to its downregulatory effects on APC functions (de Waal Malefyt et al., 1991b; Fiorentino et al., 1991b; de Waal Malefyt and de Vries, 1996). However, T cells do express IL-10R (Liu et al., 1994, 1997) and IL-10 modulates T cell function. IL-10 inhibits production of IL-2 and TNF , but not IL-4 and IFN when T cells were stimulated without APCs (de Waal Malefyt et al., 1993b; Taga and Tosato, 1992). In addition, inhibition of IL-2 production may also indirectly inhibit CD28- and PMA-induced production of IL-5, which is dependent on IL-2 (Schandene et al., 1994). Interestingly, activation of T cells in the presence of IL-10 can induce a longlasting state of nonresponsiveness/anergy, which cannot be reversed by IL-2 or stimulation by antiCD3 and anti-CD28 (Groux et al., 1996). A role for IL-10 in induction and maintenance of nonresponsiveness or anergy was suggested by studies of antitumor cell responses, UV-induced tolerance, hapten-specific tolerance, parasitic and HIV infections, and superantigen-induced hyporesponsiveness (Flores et al., 1993; Enk et al., 1993, 1994; Becker et al., 1994; Flores Villanueva et al., 1994; Suzuki et al., 1995; King et al., 1996; Schols and De Clercq, 1996; Sundstedt et al., 1997) and can be induced by specific immunotherapy (Akdis et al., 1998) or by

continuous antigenic challenge in vivo (Buer et al., 1998). IL-10 inhibited apoptosis of normal or infectious mononucleosis T cells following growth factor deprivation which correlated with upregulation of Bcl-2 (Taga et al., 1993, 1994; Cohen et al., 1997), and has chemotactic activity on CD8‡ T cells (Jinquan et al., 1993). In addition, IL-10 induced proliferation of CD8‡ T cells (Groux et al., 1998; Rowbottom et al., 1999). Stimulatory activities of IL-10 on T cells were also described in the mouse where it acts as a thymocyte growth factor and augments the outgrowth cytotoxic T cell precursors (MacNeil et al., 1990; Chen and Zlotnik, 1991). Effects of IL-10 on NK Cells IL-10 directly or indirectly affects the function of NK cells in several ways. IL-10 inhibited monocytedependent, IL-2-enhanced production of IFN and TNF by human NK cells. This effect was indirect and mediated via inhibition of production of monokines such as IL-1 and IL-12 (D'Andrea et al., 1993; Hsu et al., 1992). Inhibition by IL-10 of IFN production following infection of mice by intracellular parasites occurred through similar mechanisms (Tripp et al., 1993; Hunter et al., 1994; Cardillo et al., 1996). IL-10 also inhibited production of IL-5 by human NK cell clones stimulated by tumor cells and IL-2 (Warren et al., 1995). In contrast, IL-10 enhanced IL-2-induced proliferation of CD56 bright NK cells and cytokine production and cytotoxicity by CD56 bright and CD56 dim subsets (Carson et al., 1995). Studies with IL-10 also revealed a role for NK cells in antitumor responses. At low concentrations, IL10's inhibition of tumor metastasis in experimental or spontaneous models correlated with localization of high numbers of NK cells at the tumor site. These findings were repeated in T and B cell-deficient SCID mice, but not in NK cell-deficient mice (Zheng et al., 1996). Furthermore, administration of IL-10 or transduction of tumor cells with IL-10 expression plasmids resulted in NK cell-dependent inhibition of tumor growth/tumorigenity and in the establishment of protective memory responses (Giovarelli et al., 1995; Gerard et al., 1996; Kundu et al., 1996). Interestingly, IL-10 transfection of a B cell lymphoma resulted in inhibition of MHC class I expression and a change in phenotype from CTL-sensitive, NK-resistant to CTL-resistant, NK-sensitive (Salazar-Onfray et al., 1995). It is possible that the absence of MHC class I on these cells abrogated the inhibition of target cell lysis mediated by KIR (killer inhibitory receptors) on NK cells (Lanier, 1997). Downregulation of MHC class I antigens on human melanoma cells and

172 Rene de Waal Malefyt EBV-LCL following treatment of these targets with IL-10 also increased sensitivity to NK cell cytotoxicity and inhibited CTL activity (Matsuda et al., 1994).

Bioassays used A most commonly used bioassay is the cytokine synthesis inhibitory assay, which measures the ability of IL-10 to inhibit the production of IFN by PHAor anti-CD3-activated peripheral blood mononuclear cells (Vieira et al., 1991). Alternatively, murine Baf/3 cells that are transfected with the human IL-10R chain can be used to measure short-term proliferation in response to IL-10 (Liu et al., 1997).

IN VIVO BIOLOGICAL ACTIVITIES OF LIGANDS IN ANIMAL MODELS

Knockout mouse phenotypes IL-10ÿ/ÿ mice have been produced and have a normal appearance at birth as well as normal numbers and distribution of T cell, B cells, and macrophages. However, IL-10ÿ/ÿ mice become anemic and runted after 4±6 weeks due to a spontaneously developed enterocolitis (Kuhn et al., 1993), with the appearance of adenocarcinomas at advanced stages (Berg et al., 1996). Enterocolitis in IL-10ÿ/ÿ mice could be prevented by administration of IL-10 from birth and by treatment with anti-IFN or anti-IL-12 mAbs. IL-10 ameliorated but could not completely cure established disease. CD4‡ T cells isolated from diseased colon produced high levels of IFN and TNF and could transfer disease, indicating that the dysregulated interaction between enteric flora and inflammatory cells in the absence of IL-10 leads to uncontrolled TH1 responses (Davidson et al., 1996).

Transgenic overexpression Four types of IL-10 transgenic mice have been produced, where IL-10 expression is driven by the IL-2 promoter, the MHC class II promoter, the human salivary amylase promoter, or the rat insulin promoter. Expression of IL-10 under islet-specific promoters accelerated the development insulin-dependent diabetes mellitus (IDDM) in transgenic NOD mice (Wogensen et al., 1993, 1994; Lee et al., 1994, 1996; Moritani et al., 1994, 1996; Balasa and Sarvetnick, 1996; Mueller et al., 1996). Localized

high level IL-10 expression in the pancreas, as compared to systemic administration or production at a different site, may activate endothelium and promote chemoattraction of lymphocytes and/or myeloid cells, thus predisposing the mice to development of disease. In contrast, transgenic mice expressing IL-10 under control of the IL-2 promoter (Hagenbaugh et al., 1997) do not become diabetic. Expression of IL-10 by the MHC class II promoter resulted in inhibitory effects on the generation of T cell responses to protein antigens but enhanced CTL responses to tumor antigens, in agreement with the stimulatory effects of IL-10 on CD8‡ cells. MBPspecific T cells could be generated in these mice following immunization, but were nonpathogenic, resulting in mice that are highly resistant to experimental allergic encephalomyelitis (EAE) induced by active immunization (Cua et al., 1999). On the other hand, these transgenic mice were highly susceptible to infection with intracellular pathogens, confirming the inhibitory effects of IL-10 on NO-dependent macrophage killing (Groux et al., 1999) and showed defects in the development of T cells (Rouleau et al., 1999). Transgenic expression of IL-10 in the salivary gland induced apoptosis of glandular tissue, destruction and lymphocyte infiltration consisting primarily of Fas ligand (FasL)‡ CD4‡ T cells, as well as in vitro upregulation of FasL expression on T cells, indicating that Fas/FasL bystander destruction plays a role in the development of the disease (Saito et al., 1999).

IN THERAPY

Preclinical ± How does it affect disease models in animals? Systemic Inflammation The effects of IL-10 on individual cell types suggested that it could have potent anti-inflammatory/immunosuppresive activities in vivo, which has been tested in a variety of experimental models. IL-10 rescued Balb/c and BDF1 mice from LPS- or SEB-induced toxic shock, which correlated with reduced serum levels of TNF (Bean et al., 1993; Gerard et al., 1993; Howard et al., 1993). Intratracheal IL-10 gene transfer protected mice from a lethal intraperitoneal endotoxin challenge and furthermore reduced pulmonary TNF levels and neutrophil infiltration following LPS challenge (Rogy et al., 1995). When administered at the time of challenge, IL-10 did not prevent lethality in Corynebacterium parvum-primed BDF1 mice following endotoxin challenge, but it

IL-10 173 prevented lethality to endotoxin challenge when administered at priming (Smith et al., 1994, 1996). Although IL-10 reduced TNF and IFN levels in the former situation, synergistic effects of TNF and IFN still resulted in mortality in this model. IL-10 also reduced serum levels of TNF , IL-6, and IL-8 as well as neutrophil accumulation, elastase production, and cortisone levels in human volunteers challenged with a low dose of endotoxin (Pajkrt et al., 1997). Administration of endotoxin induced IL-10 production in mice, chimpanzees, baboons, and humans (Durez et al., 1993; van der Poll et al., 1994; Jansen et al., 1996; Pajkrt et al., 1997). Interestingly, LPSinduced IL-10 expression by monocytes in vitro occurs late after activation (de Waal Malefyt, 1991a), but IL-10 serum levels in vivo were already elevated 3±6 hours after endotoxin challenge (Durez et al., 1993; van der Poll et al., 1994; Jansen et al., 1996; Pajkrt et al., 1997), indicating that other factors or cells may contribute to IL-10 production in these circumstances. Endogenous IL-10 confers significant protection to endotoxin challenge and reduces TNF , IFN , and MIP-2 production (Marchant et al., 1994a; Standiford et al., 1995). This is also clearly observed in mice treated from birth with anti-IL-10 mAbs and IL-10ÿ/ÿ mice which are killed by 20-fold lower doses of LPS (Ishida et al., 1993; Berg et al., 1995a). Furthermore, IL-10ÿ/ÿ mice were extremely vulnerable to a generalized Swartzman reaction where prior exposure to a small amount of LPS primes the host for a lethal response to a subsequent, otherwise sublethal dose (Berg et al., 1995a). In a model of septic peritonitis in which mice undergo cecal ligation and puncture, endogenous IL-10 also had a protective effect (Kato et al., 1995; van der Poll et al., 1995). IL-10 also protected neonatal mice from lethal streptococcal B infections (Cusumano et al., 1996). Furthermore, endogenous IL-10 prevented lethality from SEB-induced shock, which is dependent on IL-2 and IFN production by T cells (Florquin et al., 1994). In humans, IL-10 is produced during septicemia and septic shock and serum levels correlate with intensity of the inflammatory response (Marchant et al., 1994b, 1995; Gomez-Jimenez et al., 1995; Sherry et al., 1996; van der Poll et al., 1997), which was especially evident in patients suffering from septic shock associated with meningococcal infections (Frei et al., 1993; Derkx et al., 1995; Lehmann et al., 1995; van Furth et al., 1995). The inhibitory effects of IL-10 on the endotoxininduced production of proinflammatory cytokines, including indirect effects on endothelial cell activation and adhesion (Pugin et al., 1993; Eissner et al., 1996), monocyte tissue factor expression (which contributes to procoagulant activity and ultimately disseminated

intravascular coagulation) (Pradier et al., 1993, 1996; Ramani et al., 1993, 1994; Jungi et al., 1994), as well as the observation that many strategies to intervene in sepsis affected IL-10 production (Mengozzi et al., 1994; Bourrie et al., 1995; Suberville et al., 1996; van der Poll et al., 1996a), indicate an important role for this cytokine in controlling systemic inflammatory responses. IL-10 in Localized Inflammatory Diseases Similarly, IL-10 exhibited protective effects in a variety of experimental models of local inflammation, such as pancreatitis (Van Laethem et al., 1995), uveitis (Rosenbaum and Angell, 1995; Li et al., 1996), keratitis (Tumpey et al., 1994), hepatitis (Arai et al., 1995), peritonitis (Kato et al., 1995; van der Poll et al., 1995; Cusumano et al., 1996), and lung injury (Mulligan et al., 1993; Shanley et al., 1995). In addition, IL-10 inhibited allergic airway inflammation and infiltration of neutrophils and eosinophils in sensitized mice (Zuany-Amorim et al., 1995). In IL10ÿ/ÿ mice, a role for IL-10 as a natural suppressor of cytokine production and inflammation in allergic bronchopulmonary aspergillosis was revealed, indicating that IL-10 suppresses not only inflammatory TH1, but also TH2-related responses (GruÈnig et al., 1997). IL-10 also inhibited both the sensitization and effector phases of delayed-type hypersensitivity (DTH) responses (Li et al., 1994; Schwarz et al., 1994) as well as the elicitation of contact hypersensitivity (CHS) reactions in sensitized mice (Ferguson et al., 1994; Kondo et al., 1994). IL-10 synergized with IL-4 to inhibit tuberculin-type DTH reactions in Balb/c mice that had recovered from a Leishmania major infection (Powrie et al., 1993b). The role of endogenous IL-10 in these responses is critical since reactions to irritants, DTH and CHS responses in IL-10ÿ/ÿ mice are exaggerated and prolonged (Berg et al., 1995b). Keratinocyte-derived IL-10 plays a major role in UVinduced suppression of DTH, CHS, and antitumor responses (Enk and Katz, 1992; Rivas and Ullrich, 1992, 1994; Enk et al., 1994; Beissert et al., 1995; Yagi et al., 1996), since IL-10ÿ/ÿ mice were completely resistant to UV-induced immunosuppression (Beissert et al., 1996). Inflammatory Bowel Disease IL-10 is also involved in the development of inflammatory bowel disease (IBD) as revealed by two in vivo models. Transfer of naõÈ ve CD45RBhi T cells (which develop T cells that produce high levels of IFN and TNF in response to enteric antigens)

174 Rene de Waal Malefyt from Balb/c into CB-17 SCID mice resulted in the spontaneous development of IBD. The disease could be prevented by coadministration of CD45RBlo cells (which contain regulatory T cells producing IL-10 and IL-4), treatment with anti-IFN or anti-TNF mAbs, or administration of IL-10 (Powrie et al., 1993a, 1994; Powrie, 1995). Interestingly, both CD45RBhi and CD45RBlo cells from IL-10ÿ/ÿ mice could induce IBD in Rag2ÿ/ÿ mice, suggesting that IL-10 is involved in the protective effects of CD45RBlo cells in normal mice (Rennick et al., 1997). In addition, IL-10ÿ/ÿ mice spontaneously develop enterocolitis (Kuhn et al., 1993). Rheumatoid Arthritis A possible beneficial role for IL-10 in pathogenesis of rheumatoid arthritis (RA) has been described. Production of IL-10 was demonstrated in sera, synovial fluid, and synovial explant cultures from RA patients (Katsikis et al., 1994; Llorente et al., 1994; Cush et al., 1995; al-Janadi et al., 1996; Bucht et al., 1996). IL-10 inhibited TNF , IL-1 , and IL-8 production by synovial macrophages and synoviocytes (Deleuran et al., 1994; Chomarat et al., 1995; Hart et al., 1995), and synergistic effects were observed in combination with IL-4 (Sugiyama et al., 1995). Endogenous IL-10 partly suppressed cytokine production from synovial cells, indicating that IL-10 in vivo may have a protective role (Katsikis et al., 1994). IL-10-producing cells in the joint include both synovial macrophages and T cells (Katsikis et al., 1994; Cohen et al., 1995). On the other hand, IL-10 production in RA has been linked to increased autoantibody production, serum factor, and B cell activation (Cush et al., 1995; Perez et al., 1995; al-Janadi et al., 1996). IL-10 is protective in animal models of RA since it reduced joint swelling, infiltration, cytokine production and cartilage degradation in collagen-induced arthritis and streptococcal cell wall-induced arthritis (Kasama et al., 1995; Persson et al., 1996; Tanaka et al., 1996; van Roon et al., 1996; Walmsley et al., 1996; Apparailly et al., 1998). IL-4 and IL-10 synergistically reduced joint inflammation in acute and chronic athritis models (Joosten et al., 1997). Role of IL-10 Models of Autoimmunity IL-10 has been tested in mouse and rat models of experimental autoimmune encephalomyelitis (EAE) which are in part representative of the pathology observed in multiple sclerosis in humans. Systemic administration of IL-10 during the initiation phase of

the disease suppressed disease induction, and reduced T cell proliferation to myelin basic protein and CNS infiltration (Rott et al., 1994). In addition, IL-10 prevented TNF -induced relapses in SJL mice that had partially or completely recovered from acute EAE. Furthermore, neutralization of endogenous IL-10 increased both the incidence and severity of SEB- or TNF-induced relapses, suggesting a protective role for IL-10 in the development of disease (Crisi et al., 1995). Elevations of IL-10 mRNA levels were observed in the recovery phase of acute EAE in mice and rats (Kennedy et al., 1992; Issazadeh et al., 1995), and a lack of IL-10 production was observed in chronic relapsing EAE (Issazadeh et al., 1996). IL-10 expression was detected in CSF mononuclear cells of multiple sclerosis patients (Navikas et al., 1995). IFN , which was successfully used to treat MS patients, induced expression of IL-10 in PBMCs of MS patients, indicating that IL-10 could potentially be useful for treatment of MS. IL-10 in Infectious Diseases A number of infectious diseases are characterized by a lack of cell-mediated immunity and hyporesponsiveness to the inducing pathogen. IL-10 contributes to immunosuppression observed in lepromatous leprosy, filariasis, visceral leishmaniasis, toxoplasmosis, listerisosis, schistosomiasis, Legionella pneumophila infection, trypanosoma infection, malaria, and HIV infection. Involvement in human infections is revealed in many studies by enhanced production of IL-10 by patients' PBMCs and the restoration of antigenspecific proliferative responses of patients' PBMCs in vitro by neutralizing anti-IL-10 mAbs (Sieling et al., 1993; Peyron et al., 1994; Carvalho, 1995; Mahanty and Nutman, 1995; Sieling and Modlin, 1995; King et al., 1996; Mahanty et al., 1996). The role of IL-10 in animal models of infection has also been clearly established. Neutralization of IL-10 leads to enhanced antigen-specific IFN production from CD4‡ T cells of mice infected with Leishmania major or Schistosoma mansoni, and in vivo use of IL10 or anti-IL-10 mAbs can convert susceptible strains into resistant or vice versa, respectively (Sher et al., 1991; Flores Powrie and Coffman, 1993; Villanueva et al., 1994, 1996; Reed et al., 1994). IL-10 acts in several ways to modulate immune responses to parasites, including inhibition of production of IFN , which is necessary to activate macrophages for intracellular killing, and of production of IL-12, which induces protective cellular immune responses. On the other hand, the complete absence of IL-10 in acute infections also results in pathology. Infection of IL-10ÿ/ÿ mice with Trypanosoma cruzi resulted in

IL-10 175 reduced parasitemia and enhanced IFN production (Abrahamsohn and Coffman, 1996). Furthermore, IL-10ÿ/ÿ mice infected with Toxoplasma gondii succumbed to the infection and had high levels of TNF , IFN , IL-1 , and IL-12 in serum and lung, implying an important role for endogenous IL-10 synthesis in downregulating monokine and IFN responses to acute intracellular infection, and preventing host immunopathology (Gazzinelli et al., 1996). These data imply a required balance in the production of IL-10, IL-12, and IFN which determines the outcome of infection.

Effects of therapy: Cytokine, antibody to cytokine inhibitors, etc. No antibodies against IL-10 have been detected in single or multiple dose administration clinical trails.

Pharmacokinetics A randomized two-way crossover study was undertaken in 17 healthy volunteers in which recombinant human IL-10 was administered as 25 mg/kg s.c. and i.v. doses to study the pharmacokinetics and ex vivo leukocyte responses of recombinant human IL-10. rhIL-10 showed favorable PKPD characteristics, especially by the s.c. route of administration which produced prolonged suppression of cytokine production (ex vivo) (Radwanski et al., 1998).

Clinical results IL-10 has been tested in two phase I trials for its safety, tolerance, pharmacokinetics, and hematologic effects in healthy humans. IL-10 could be administered i.v. at doses up to 100 mg/kg with only mild to moderate flu-like symptoms at the highest doses while inhibiting production of IL-6, IL-1 , and TNF in ex vivo stimulation of whole blood cells with LPS (Chernoff et al., 1995; Huhn et al., 1996). A randomized, double-blind, placebo-controlled, rising singledose study has been conducted to investigate the effects of recombinant human IL-10 in renal transplant patients who received OKT3 as induction therapy. Pretreatment with doses of up to 1 mg/kg rhIL-10 reduced the release of TNF induced by OKT3. However, higher doses might promote early sensitization to OKT3 and have reversible adverse effects on acceptance of the transplant (Wissing et al., 1997). An open label phase 2 trial of 10 psoriasis

patients indicated that the treatment for 7 weeks with 8 mg/kg daily or 20 mg/kg three times a week administered subcutaneously was well tolerated and possibly effective as a significant decrease of the psoriatic area and severity index were observed in 9/10 patients (Asadullah et al., 1998, 1999).

References Abrahamsohn, I. A., and Coffman, R. L. (1996). Trypanosoma cruzi: IL-10, TNF, IFN-gamma, and IL-12 regulate innate and acquired immunity to infection. Exp. Parasitol. 84, 231±244. Akdis, C. A., Blesken, T., Akdis, M., Wuthrich, B., and Blaser, K. (1998). Role of interleukin 10 in specific immunotherapy. J. Clin. Invest. 102, 98±106. al-Janadi, M., al-Dalaan, A., al-Balla, S., al-Humaidi, M., and Raziuddin, S. (1996). Interleukin-10 (IL-10) secretion in systemic lupus erythematosus and rheumatoid arthritis: IL-10dependent CD4‡CD45RO‡ T cell-B cell antibody synthesis. J. Clin. Immunol. 16, 198±207. Allavena, P., Piemonti, L., Longoni, D., Bernasconi, S., Stoppacciaro, A., Ruco, L., and Mantovani, A. (1998). IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur. J. Immunol. 28, 359±369. Apparailly, F., Verwaerde, C., Jacquet, C., Auriault, C., Sany, J., and Jorgensen, C. (1998). Adenovirus-mediated transfer of viral IL-10 gene inhibits murine collagen-induced arthritis. J. Immunol. 160, 5213±5220. Arai, T., Hiromatsu, K., Kobayashi, N., Takano, M., Ishida, H., Nimura, Y., and Yoshikai, Y. (1995). IL-10 is involved in the protective effect of dibutyryl cyclic adenosine monophosphate on endotoxin-induced inflammatory liver injury. J. Immunol. 155, 5743±5749. Armstrong, L., Jordan, N., and Millar, A. (1996). Interleukin 10 (IL-10) regulation of tumour necrosis factor alpha (TNF-alpha) from human alveolar macrophages and peripheral blood monocytes. Thorax 51, 143±149. Arock, M., Zuany-Amorim, C., Singer, M., Benhamou, M., and Pretolani, M. (1996). Interleukin-10 inhibits cytokine generation from mast cells. Eur. J. Immunol. 26, 166±170. Asadullah, K., Sterry, W., Stephanek, K., Jasulaitis, D., Leupold, M., Audring, H., Volk, H. D., and Docke, W. D. (1998). IL-10 is a key cytokine in psoriasis. Proof of principle by IL-10 therapy: a new therapeutic approach. J. Clin. Invest. 101, 783±794. Asadullah, K., Docke, W. D., Ebeling, M., Friedrich, M., Belbe, G., Audring, H., Volk, H. D., and Sterry, W. (1999). Interleukin 10 treatment of psoriasis: clinical results of a phase 2 trial. Arch. Dermatol. 135, 187±192. Aste-Amezaga, M., Ma, X., Sartori, A., and Trinchieri, G. (1998). Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10. J. Immunol. 160, 5936±5944. Ashraf, M., Murakami, M., and Kudo, I. (1996). Cross-linking of the high-affinity IgE receptor induces the expression of cyclooxygenase 2 and attendant prostaglandin generation requiring interleukin 10 and interleukin 1 beta in mouse cultured mast cells. Biochem. J. 320, 965±973. Balasa, B., and Sarvetnick, N. (1996). The paradoxical effects of interleukin 10 in the immunoregulation of autoimmune diabetes. J. Autoimmun. 9, 283±286.

176 Rene de Waal Malefyt Bean, A. G., Freiberg, R. A., Andrade, S., Menon, S., and Zlotnik, A. (1993). Interleukin 10 protects mice against staphylococcal enterotoxin B-induced lethal shock. Infect. Immun. 61, 4937±4939. Becherel, P. A., LeGoff, L., Frances, C., Chosidow, O., Guillosson, J. J., Debre, P., Mossalayi, M. D., and Arock, M. (1997). Induction of IL-10 synthesis by human keratinocytes through CD23 ligation: a cyclic adenosine 30 ,50 -monophosphate-dependent mechanism. J. Immunol. 159, 5761±5765. Becker, J. C., Czerny, C., and Brocker, E. B. (1994). Maintenance of clonal anergy by endogenously produced IL-10. Int. Immunol. 6, 1605±1612. Behnke, J. M., Wahid, F. N., Grencis, R. K., Else, K. J., Ben, S. A., and Goyal, P. K. (1993). Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): downregulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunol. 15, 415±421. Beissert, S., Ullrich, S. E., Hosoi, J., and Granstein, R. D. (1995). Supernatants from UVB radiation-exposed keratinocytes inhibit Langerhans cell presentation of tumor-associated antigens via IL-10 content. J. Leukoc. Biol. 58, 234±240. Beissert, S., Hosoi, J., Kuhn, R., Rajewsky, K., Muller, W., and Granstein, R. D. (1996). Impaired immunosuppressive response to ultraviolet radiation in interleukin-10-deficient mice. J. Invest. Dermatol. 107, 553±557. Bejarano, M. T., de, W. M. R., Abrams, J. S., Bigler, M., Bacchetta, R., de, V. J., and Roncarolo, M. G. (1992). Interleukin 10 inhibits allogeneic proliferative and cytotoxic T cell responses generated in primary mixed lymphocyte cultures. Int. Immunol. 4, 1389±1397. Berg, D. J., Kuhn, R., Rajewsky, K., Muller, W., Menon, S., Davidson, N., Grunig, G., and Rennick, D. (1995a). Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J. Clin. Invest. 96, 2339± 2347. Berg, D. J., Leach, M. W., Kuhn, R., Rajewsky, K., Muller, W., Davidson, N. J., and Rennick, D. (1995b). Interleukin 10 but not interleukin 4 is a natural suppressant of cutaneous inflammatory responses. J. Exp. Med. 182, 99±108. Berg, D. J., Davidson, N., Kuhn, R., Muller, W., Menon, S., Holland, G., Thompson-Snipes, L., Leach, M. W., and Rennick, D. (1996). Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(‡) TH1-like responses. J. Clin. Invest. 98, 1010±1020. Berkman, N., John, M., Roesems, G., Jose, P. J., Barnes, P. J., and Chung, K. F. (1995). Inhibition of macrophage inflammatory protein-1 alpha expression by IL-10. Differential sensitivities in human blood monocytes and alveolar macrophages. J. Immunol. 155, 4412±4418. Bleijs, D. A., de Waal Malefyt, R., Figdor, C. G., and van Kooyk, Y. (1999). Co-stimulation of T cells results in distinct IL-10 and TNF-alpha cytokine profiles dependent on binding to ICAM-1, ICAM-2 or ICAM-3. Eur. J. Immunol. 29, 2248±2258. Bogdan, C., Vodovotz, Y., and Nathan, C. (1991). Macrophage deactivation by interleukin 10. J. Exp. Med. 174, 1549±1555. Bondeson, J., Browne, K. A., Brennan, F. M., Foxwell, B. M., and Feldmann, M. (1999). Selective regulation of cytokine induction by adenoviral gene transfer of IB into human macrophages: lipopolysaccharide-induced, but not zymosan-induced,proinflammatory cytokines are inhibited, but IL-10 is nuclear factor-B independent. J. Immunol. 162, 2939±2945.

Bonder, C. S., Finlay-Jones, J. J., and Hart, P. H. (1999). Interleukin-4 regulation of human monocyte and macrophage interleukin-10 and interleukin-12 production. Role of a functional interleukin-2 receptor gamma-chain. Immunology 96, 529±536. Bourrie, B., Bouaboula, M., Benoit, J. M., Derocq, J. M., Esclangon, M., Le Fur, G., and Casellas, P. (1995). Enhancement of endotoxin-induced interleukin-10 production by SR 31747A, a sigma ligand. Eur J. Immunol. 25, 2882±2887. Briere, F., Bridon, J. M., Chevet, D., Souillet, G., Bienvenu, F., Guret, C., Martinez-Valdez, H., and Banchereau, J. (1994a). Interleukin 10 induces B lymphocytes from IgA-deficient patients to secrete IgA. J. Clin. Invest. 94, 97±104. Briere, F., Servet-Delprat, C., Bridon, J. M., Saint-Remy, J. M., and Banchereau, J. (1994b). Human interleukin 10 induces naive surface immunoglobulin D‡ (sIgD‡) B cells to secrete IgG1 and IgG3. J. Exp. Med. 179, 757±762. Bucht, A., Larsson, P., Weisbrot, L., Thorne, C., Pisa, P., Smedegard, G., Keystone, E. C., and Gronberg, A. (1996). Expression of interferon-gamma (IFN-gamma), IL-10, IL-12 and transforming growth factor-beta (TGF-beta) mRNA in synovial fluid cells from patients in the early and late phases of rheumatoid arthritis (RA). Clin. Exp. Immunol. 103, 357±367. Buelens, C., Willems, F., Delvaux, A., Pierard, G., Delville, J. P., Velu, T., and Goldman, M. (1995). Interleukin-10 differentially regulates B7-1 (CD80) and B7-2 (CD86) expression on human peripheral blood dendritic cells. Eur. J. Immunol. 25, 2668±2672. Buer, J., Lanoue, A., Franzke, A., Garcia, C., von Boehmer, H., and Sarukhan, A. (1998). Interleukin 10 secretion and impaired effector function of major histocompatibility complex class IIrestricted T cells anergized in vivo. J. Exp. Med. 187, 177±183. Burdin, N., Van Kooten, C., Galibert, L., Abrams, J. S., Wijdenes, J., Banchereau, J., and Rousset, F. (1995). Endogenous IL-6 and IL-10 contribute to the differentiation of CD40activated human B lymphocytes. J. Immunol. 154, 2533±2544. Calzada-Wack, J. C., Frankenberger, M., and Ziegler-Heitbrock, H. W. (1996). Interleukin-10 drives human monocytes to CD16 positive macrophages. J. Inflamm. 46, 78±85. Capsoni, F., Minonzio, F., Ongari, A. M., Carbonelli, V., Galli, A., and Zanussi, C. (1995). IL-10 up-regulates human monocyte phagocytosis in the presence of IL-4 and IFNgamma. J. Leukoc. Biol. 58, 351±358. Cardillo, F., Voltarelli, J. C., Reed, S. G., and Silva, J. S. (1996). Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells. Infect. Immun. 64, 128±134. Carson, W. E., Lindemann, M. J., Baiocchi, R., Linett, M., Tan, J. C., Chou, C.-C., Narula, S., and Caligiuri, M. A. (1995). The functional characterization of interleukin-10 receptor expression on human natural killer cells. Blood 85, 3577± 3585. Carvalho, E. (1995). In ``Interleukin-10'' (ed J. E. de Vries and R. de Waal Malefyt), IL-10 in human leishmaniasis pp. 79± 87. R. G. Landes Co., Austin, TX. Cassatella, M. A., Meda, L., Bonora, S., Ceska, M., and Constantin, G. (1993). Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J. Exp. Med. 178, 2207±2211. Cassatella, M. A., Meda, L., Gasperini, S., Calzetti, F., and Bonora, S. (1994). Interleukin 10 (IL-10) upregulates IL-1 receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J. Exp. Med. 179, 1695±1699.

IL-10 177 Cassatella, M. A., Gasperini, S., Calzetti, F., Bertagnin, A., Luster, A. D., and McDonald, P. P. (1997). Regulated production of the interferon- -inducible protein-10 (IP-10) chemokine by human neutrophils. Eur. J. Immunol. 27, 111±115. Chabot, S., Williams, G., Hamilton, M., Sutherland, G., and Yong, V. W. (1999). Mechanisms of IL-10 production in human microglia-T cell interaction. J. Immunol. 162, 6819± 6828. Caux, C., Massacrier, C., Vanbervliet, B., Barthelemy, C., Liu, Y. J., and Banchereau, J. (1994). Interleukin 10 inhibits T cell alloreaction induced by human dendritic cells. Int. Immunol. 6, 1177±1185. Cenci, E., Romani, L., Mencacci, A., Spaccapelo, R., Schiaffella, E., Puccetti, P., and Bistoni, F. (1993). Interleukin-4 and interleukin10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. Eur. J. Immunol. 23, 1034±1038. Chaves, M. M., Silvestrini, A. A., Silva-Teixeira, D. N., and Nogueira-Machado, J. A. (1996). Effect in vitro of gamma interferon and interleukin-10 on generation of oxidizing species by human granulocytes. Inflamm Res. 45, 313±315. Chen, W.-F., and Zlotnik, A. (1991). IL-10: A novel cytotoxic T cell differentiation factor. J. Immunol. 147, 528±534. Chernoff, A. E., Granowitz, E. V., Shapiro, L., Vannier, E., Lonnemann, G., Angel, J. B., Kennedy, J. S., Rabson, A. R., Wolff, S. M., and Dinarello, C. A. (1995). A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J. Immunol. 154, 5492±5499. Chomarat, P., Vannier, E., Dechanet, J., Rissoan, M. C., Banchereau, J., Dinarello, C. A., and Miossec, P. (1995). Balance of IL-1 receptor antagonist/IL-1 beta in rheumatoid synovium and its regulation by IL-4 and IL-10. J. Immunol. 154, 1432±1439. Clarke, C. J., Hales, A., Hunt, A., and Foxwell, B. M. (1998). IL10-mediated suppression of TNF-alpha production is independent of its ability to inhibit NF kappa B activity. Eur. J. Immunol. 28, 1719±1726. Clinchy, B., Bjorck, P., Paulie, S., and Moller, G. (1994). Interleukin-10 inhibits motility in murine and human B lymphocytes. Immunology 82, 376±382. Cohen, S. B., Katsikis, P. D., Chu, C. Q., Thomssen, H., Webb, L. M., Maini, R. N., Londei, M., and Feldmann, M. (1995). High level of interleukin-10 production by the activated T cell population within the rheumatoid synovial membrane. Arthritis Rheum. 38, 946±952. Cohen, S. B., Crawley, J. B., Kahan, M. C., Feldmann, M., and Foxwell, B. M. (1997). Interleukin-10 rescues T cells from apoptotic cell death: association with an upregulation of Bcl-2. Immunology 92, 1±5. Cox, G. (1996). IL-10 enhances resolution of pulmonary inflammation in vivo by promoting apoptosis of neutrophils. Am. J. Physiol. 271, L566±L571. Crawley, E., Kay, R., Sillibourne, J., Patel, P., Hutchinson, I., and Woo, P. (1999). Polymorphic haplotypes of the interleukin-10 50 flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum. 42, 1101±1108. Crisi, G. M., Santambrogio, L., Hochwald, G. M., Smith, S. R., Carlino, J. A., and Thorbecke, G. J. (1995). Staphylococcal enterotoxin B and tumor-necrosis factor-alpha-induced relapses of experimental allergic encephalomyelitis: protection by transforming growth factor-beta and interleukin-10. Eur. J. Immunol. 25, 3035±3040. Cua, D. J., Groux, H., Hinton, D. R., Stohlman, S. A., and Coffman, R. L. (1999). Transgenic interleukin 10 prevents

induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 189, 1005±1010. Cunha, F. Q., Moncada, S., and Liew, F. Y. (1992). Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem. Biophys. Res. Commun. 182, 1155±1159. Cush, J. J., Splawski, J. B., Thomas, R., McFarlin, J. E., SchulzeKoops, H., Davis, L. S., Fujita, K., and Lipsky, P. E. (1995). Elevated interleukin-10 levels in patients with rheumatoid arthritis. Arthritis Rheum. 38, 96±104. Cusumano, V., Genovese, F., Mancuso, G., Carbone, M., Fera, M. T., and Teti, G. (1996). Interleukin-10 protects neonatal mice from lethal group B streptococcal infection. Infect. Immun. 64, 2850±2852. D'Andrea, A., Aste, A. M., Valiante, N. M., Ma, X., Kubin, M., and Trinchieri, G. (1993). Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J. Exp. Med. 178, 1041±1048. Davidson, N. J., Leach, M. W., Fort, M. M., Thompson-Snipes, L., Kuhn, R., Muller, W., Berg, D. J., and Rennick, D. M. (1996). T helper cell 1-type CD4‡ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J. Exp. Med. 184, 241±251. Delgado, M., Munoz-Elias, E. J., Gomariz, R. P., and Ganea, D. (1999). Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: in vitro and in vivo studies. J. Immunol. 162, 1707±1716. de Waal Malefyt, R., and de Vries, J. E. (1996). In ``Human Cytokines: A Handbook For Basic and Clinical Research'' (ed B. Aggarwal and J. Gutterman), Interleukin-10 pp. 19±42.. Blackwell Science, Cambridge, MA. de Waal Malefyt, R., and Moore, K. M. (1998). In ``The Cytokine Handbook, 3rd edn'' (ed A. Thompson), Interleukin-10 pp. 333±364.. Academic Press, London. de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C., and de Vries, J. (1991a). IL-10 inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209±1220. de Waal Malefyt, R., Haanen, J., Spits, H., Roncarolo, M.-G., te Velde, A., Figdor, C., Johnson, K., Kastelein, R., Yssel, H., and de Vries, J. E. (1991b). IL-10 and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II MHC expression. J. Exp. Med. 174, 915±924. de Waal Malefyt, R., Figdor, C. G., Huijbens, R., Mohan, P. S., Bennett, B., Culpepper, J., Dang, W., Zurawski, G., and de, Vries, J. (1993a). Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL10. J. Immunol. 151, 6370±6381. de Waal Malefyt, R., Yssel, H., and de Vries, J. E. (1993b). Direct effects of IL-10 on subsets of human CD4‡ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J. Immunol. 150, 4754±4765. Defrance, T., Vanbervliet, B., Briere, F., Durand, I., Rousset, F., and Banchereau, J. (1992). Interleukin 10 and transforming growth factor cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J. Exp. Med. 175, 671±682. Deleuran, B., Iversen, L., Kristensen, M., Field, M., Kragballe, K., Thestrup-Pedersen, K., and Stengaard-Pedersen, K. (1994). Interleukin-8 secretion and 15-lipoxygenase activity in rheumatoid arthritis: in vitro anti-inflammatory effects by interleukin-4

178 Rene de Waal Malefyt and interleukin-10, but not by interleukin-1 receptor antagonist protein. Br. J. Rheumatol. 33, 520±525. Denis, M., and Ghadirian, E. (1993). IL-10 neutralization augments mouse resistance to systemic Mycobacterium avium infections. J. Immunol. 151, 5425±5430. Derkx, B., Marchant, A., Goldman, M., Bijlmer, R., and van Deventer, S. (1995). High levels of interleukin-10 during the initial phase of fulminant meningococcal septic shock. J. Infect. Dis. 171, 229±232. Dickensheets, H. L., Freeman, S. L., Smith, M. F., and Donnelly, R. P. (1997). Interleukin-10 upregulates tumor necrosis factor receptor type-II (p75) gene expression in endotoxinstimulated human monocytes. Blood 90, 4162±4171. Ding, L., and Shevach, E. M. (1992). IL-10 inhibits mitogeninduced T cell proliferation by selectively inhibiting macrophage costimulatory function. J. Immunol. 148, 3133±3139. Ding, L., Linsley, P. S., Huang, L. Y., Germain, R. N., and Shevach, E. M. (1993). IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J. Immunol. 151, 1224±1234. Durez, P., Abramowicz, D., Gerard, C., Van Mechelen, M., Amraoui, Z., Dubois, C., Leo, O., Velu, T., and Goldman, M. (1993). In vivo induction of interleukin-10 by anti-CD3 monoclonal antibody or bacterial lipopolysaccharide: differential modulation by cyclosporin A. J. Exp. Med. 177, 551±555. Eissner, G., Lindner, H., Behrends, U., Kolch, W., Hieke, A., Klauke, I., Bornkamm, G. W., and Holler, E. (1996). Influence of bacterial endotoxin on radiation-induced activation of human endothelial cells in vitro and in vivo: protective role of IL-10. Transplantation 62, 819±827. Elenkov, I. J., Webster, E., Papanicolaou, D. A., Fleisher, T. A., Chrousos, G. P., and Wilder, R. L. (1998). Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J. Immunol. 161, 2586±2593. Enk, A. H., and Katz, S. I. (1992). Identification and induction of keratinocyte-derived IL-10. J. Immunol. 149, 92±95. Enk, A. H., Angeloni, V. L., Udey, M. C., and Katz, S. I. (1993). Inhibition of Langerhans cell antigen-presenting function by IL10. A role for IL-10 in induction of tolerance. J. Immunol. 151, 2390±2398. Enk, A. H., Saloga, J., Becker, D., Mohamadzadeh, M., and Knop, J. (1994). Induction of hapten-specific tolerance by interleukin 10 in vivo. J. Exp. Med. 179, 1397±1402. Enk, C. D., Sredni, D., Blauvelt, A., and Katz, S. I. (1995). Induction of IL-10 gene expression in human keratinocytes by UVB exposure in vivo and in vitro. J. Immunol. 154, 4851±4856. Eskdale, J., Kube, D., Tesch, H., and Gallagher G. (1997a). Mapping of the human IL10 gene and further characterization of the 50 flanking sequence. Immunogenetics 46, 120±128. Eskdale, J., Wordsworth, P., Bowman, S., Field, M., and Gallagher, G. (1997b). Association between polymorphisms at the human IL-10 locus and systemic lupus erythematosus. Tissue Antigens 49, 635±639. Ferguson, T. A., Dube, P., and Griffith, T. S. (1994). Regulation of contact hypersensitivity by interleukin 10. J. Exp. Med. 179, 1597±1604. Fiorentino, D. F., Bond, M. W., and Mosmann, T. R. (1989). Two types of mouse helper T cell. IV. TH2 clones secrete a factor that inhibits cytokine production by TH1 clones. J. Exp. Med. 170, 2081±2095. Fiorentino, D. F., Zlotnik, A., Mosmann, T. R., Howard, M., and O'Garra, A. (1991a). IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815±3822. Fiorentino, D. F., Zlotnik, A., Vieira, P., Mosmann, T. R., Howard, M., Moore, K. W., and O'Garra, A. (1991b). IL-10

acts on the antigen-presenting cell to inhibit cytokine production by TH1 cells. J. Immunol. 146, 3444±3451. Fleming, S. B., McCaughan, C. A., Andrews, A. E., Nash, A. D., and Mercer, A. A. (1997). A homolog of interleukin-10 is encoded by the poxvirus Orf virus. J. Virol. 71, 4857±4861. Flesch, I. E., Hess, J. H., Oswald, I. P., and Kaufmann, S. H. (1994). Growth inhibition of Mycobacterium bovis by IFNgamma stimulated macrophages: regulation by endogenous tumor necrosis factor-alpha and by IL-10. Int. Immunol. 6, 693±700. Flores, V. P., Chikunguwo, S. M., Harris, T. S., and Stadecker, M. J. (1993). Role of IL-10 on antigen-presenting cell function for schistosomal egg-specific monoclonal T helper cell responses in vitro and in vivo. J. Immunol. 151, 3192±3198. Flores-Villanueva, P. O., Reiser, H., and Stadecker, M. J. (1994). Regulation of T helper cell responses in experimental murine schistosomiasis by IL-10. Effect on expression of B7 and B7-2 costimulatory molecules by macrophages. J. Immunol. 153, 5190±5199. Flores-Villanueva, P. O., Zheng, X. X., Strom, T. B., and Stadecker, M. J. (1996). Recombinant IL-10 and IL-10/Fc treatment down-regulate egg antigen-specific delayed hypersensitivity reactions and egg granuloma formation in schistosomiasis. J. Immunol. 156, 3315±3320. Florquin, S., Amraoui, Z., Abramowicz, D., and Goldman, M. (1994). Systemic release and protective role of IL-10 in staphylococcal enterotoxin B-induced shock in mice. J. Immunol. 153, 2618±2623. Fluckiger, A. C., Garrone, P., Durand, I., Galizzi, J. P., and Banchereau, J. (1993). Interleukin 10 (IL-10) upregulates functional high affinity IL-2 receptors on normal and leukemic B lymphocytes. J. Exp. Med. 178, 1473±1481. Foey, A. D., Parry, S. L., Williams, L. M., Feldmann, M., Foxwell, B. M., and Brennan, F. M. (1998). Regulation of monocyte IL-10 synthesis by endogenous IL-1 and TNFalpha: role of the p38 and p42/44 mitogen-activated protein kinases. J. Immunol. 160, 920±928. Frei, K., Nadal, D., Pfister, H. W., and Fontana, A. (1993). Listeria meningitis: identification of a cerebrospinal fluid inhibitor of macrophage listericidal function as interleukin 10. J. Exp. Med. 178, 1255±1261. Garrone, P., Galibert, L., Rousset, F., and Banchereau, J. (1994). Regulatory effects of prostaglandin E2 on the growth and differentiation of human B lymphocytes activated through their CD40 antigen. J. Immunol. 152, 82±90. Gazzinelli, R. T., Oswald, I. P., Hieny, S., James, S. L., and Sher, A. (1992). The microbicidal activity of interferongamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta. Eur. J. Immunol. 22, 2501±2506. Gazzinelli, R. T., Wysocka, M., Hieny, S., Scharton-Kersten, T., Cheever, A., Kuhn, R., Muller, W., Trinchieri, G., and Sher, A. (1996). In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4‡ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J. Immunol. 157, 798±805. Gerard, C., Bruyns, C., Marchant, A., Abramowicz, D., Vandenabeele, P., Delvaux, A., Fiers, W., Goldman, M., and Velu, T. (1993). Interleukin 10 reduces the release of tumor necrosis factor and prevents lethality in experimental endotoxemia. J. Exp. Med. 177, 547±550. Gerard, C. M., Bruyns, C., Delvaux, A., Baudson, N., Dargent, J. L., Goldman, M., and Velu, T. (1996). Loss of tumorigenicity and

IL-10 179 increased immunogenicity induced by interleukin-10 gene transfer in B16 melanoma cells. Hum. Gene Ther. 7, 23±31. Ghildyal, N., McNeil, H. P., Gurish, M. F., Austen, K. F., and Stevens, R. L. (1992a). Transcriptional regulation of the mucosal mast cell-specific protease gene, MMCP-2, by interleukin 10 and interleukin 3. J. Biol. Chem. 267, 8473±8477. Ghildyal, N., McNeil, H. P., Stechschulte, S., Austen, K. F., Silberstein, D., Gurish, M. F., Somerville, L. L., and Stevens, R. L. (1992b). IL-10 induces transcription of the gene for mouse mast cell protease-1, a serine protease preferentially expressed in mucosal mast cells of Trichinella spiralis-infected mice. J. Immunol. 149, 2123±2129. Ghildyal, N., Friend, D. S., Nicodemus, C. F., Austen, K. F., and Stevens, R. L. (1993). Reversible expression of mouse mast cell protease 2 mRNA and protein in cultured mast cells exposed to IL-10. J. Immunol. 151, 3206±3214. Giovarelli, M., Musiani, P., Modesti, A., Dellabona, P., Casorati, G., Allione, A., Consalvo, M., Cavallo, F., di Pierro, F., De Giovanni, C., Musso, T., and Forni, G. (1995). Local release of IL-10 by transfected mouse mammary adenocarcinoma cells does not suppress but enhances antitumor reaction and elicits a strong cytotoxic lymphocyte and antibody-dependent immune memory. J. Immunol. 155, 3112±3123. Go, N. F., Castle, B. E., Barrett, R., Kastelein, R., Dang, W., Mosmann, T. R., Moore, K. W., and Howard, M. (1990). Interleukin 10 (IL-10), a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J. Exp. Med. 172, 1625±1631. Gomez-Jimenez, J., Martin, M. C., Sauri, R., Segura, R. M., Esteban, F., Ruiz, J. C., Nuvials, X., Boveda, J. L., Peracaula, R., and Salgado, A. (1995). Interleukin-10 and the monocyte/macrophage-induced inflammatory response in septic shock. J. Infect. Dis. 171, 472±475. Greenberger, M. J., Strieter, R. M., Kunkel, S. L., Danforth, J. M., Goodman, R. E., and Standiford, T. J. (1995). Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumonia. J. Immunol. 155, 722±729. Groux, H., Bigler, M., de Vries, J. E., and Roncarolo, M. G. (1996). Interleukin-10 induces a long-term antigen-specific anergic state in human CD4‡ T cells. J. Exp. Med. 184, 19±29. Groux, H., Bigler, M., de Vries, J. E., and Roncarolo, M. G. (1998). Inhibitory and stimulatory effects of IL-10 on human CD8‡ T cells. J. Immunol. 160, 3188±3193. Groux, H., Cottrez, F., Rouleau, M., Mauze, S., Antonenko, S., Hurst, S., McNeil, T., Bigler, M., Roncarolo, M. G., and Coffman, R. L. (1999). A transgenic model to analyze the immunoregulatory role of IL-10 secreted by antigen-presenting cells. J. Immunol. 162, 1723±1729. Gruber, M. F., Williams, C. C., and Gerrard, T. L. (1994). Macrophage-colony-stimulating factor expression by antiCD45 stimulated human monocytes is transcriptionally upregulated by IL-1 beta and inhibited by IL-4 and IL-10. J. Immunol. 152, 1354±1361. GruÈnig, G., Corry, D. B., Leach, M. W., Seymour, B. W. P., Kurup, V. P., and Rennick, D. M. (1997). Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J. Exp. Med. 185, 1089±1099. Hagenbaugh, A., Sharma, S., Dubinett, S. M., Wei, S. H.-Y., Aranda, R., Cheroutre, H., Fowell, D., Binder, S., Tsao, B., Locksley, R. M., Moore, K. W., and Kronenberg, M. (1997). Altered immune responses in IL-10 transgenic mice. J. Exp. Med. 185, 2101±2110. Hagiwara, E., Gourley, M. F., Lee, S., and Klinman, D. K. (1996). Disease severity in patients with systemic lupus erythematosus

correlates with an increased ratio of interleukin-10:interferongamma-secreting cells in the peripheral blood. Arthritis Rheum. 39, 379±385. Hart, P. H., Ahern, M. J., Smith, M. D., and Finlay-Jones, J. J. (1995). Comparison of the suppressive effects of interleukin-10 and interleukin-4 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis. Immunology 84, 536±542. Hart, P. H., Hunt, E. K., Bonder, C. S., Watson, C. J., and FinlayJones, J. J. (1996). Regulation of surface and soluble TNF receptor expression on human monocytes and synovial fluid macrophages by IL-4 and IL-10. J. Immunol. 157, 3672±3680. Hedrick, J. A., Helms, A., Vicari, A., and Zlotnik, A. (1998). Characterization of a novel CC chemokine, HCC-4, whose expression is increased by interleukin-10. Blood 91, 4242±4247. Houssiau, F. A., Lefebvre, C., Vanden Berghe, M., Lambert, M., Devogelaer, J. P., and Renauld, J. C. (1995). Serum interleukin 10 titers in systemic lupus erythematosus reflect disease activity. Lupus 4, 393±395. Howard, M., Muchamuel, T., Andrade, S., and Menon, S. (1993). Interleukin 10 protects mice from lethal endotoxemia. J. Exp. Med. 177, 1205±1208. Hsu, D.-H., Moore, K. W., and Spits, H. (1992). Differential effects of interleukin-4 and -10 on interleukin-2-induced interferon- synthesis and lymphokine-activated killer activity. Int. Immunol. 4, 563±569. Huhn, R. D., Radwanski, E., O'Connell, S. M., Sturgill, M. G., Clarke, L., Cody, R. P., Affrime, M. B., and Cutler, D. L. (1996). Pharmacokinetics and immunomodulatory properties of intravenously administered recombinant human interleukin10 in healthy volunteers. Blood 87, 699±705. Hunter, C. A., Subauste, C. S., Van Cleave, V. H., and Remington, J. S. (1994). Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin-12, and tumor necrosis factor alpha. Infect. Immun. 62, 2818±2824. Hurme, M., Lahdenpohja, N., and Santtila, S. (1998). Gene polymorphisms of interleukins 1 and 10 in infectious and autoimmune diseases. Ann. Med. 30, 469±473. Hutloff, A., Dittrich, A. M., Beier, K. C., Eljaschewitsch, B., Kraft, R., Anagnostopoulos, I., and Kroczek, R. A. (1999). ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263±266. Ishida, H., Hastings, R., Thompson, S. L., and Howard, M. (1993). Modified immunological status of anti-IL-10 treated mice. Cell Immunol. 148, 371±384. Ishida, H., Muchamuel, T., Sakaguchi, S., Andrade, S., Menon, S., and Howard, M. (1994). Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J. Exp. Med. 179, 305±310. Issazadeh, S., Ljungdahl, A., Hojeberg, B., Mustafa, M., and Olsson, T. (1995). Cytokine production in the central nervous system of Lewis rats with experimental autoimmune encephalomyelitis: dynamics of mRNA expression for interleukin-10, interleukin-12, cytolysin, tumor necrosis factor alpha and tumor necrosis factor beta. J. Neuroimmunol. 61, 205±212. Issazadeh, S., Lorentzen, J. C., Mustafa, M. I., Hojeberg, B., Mussener, A., and Olsson, T. (1996). Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta. J. Neuroimmunol. 69, 103±115. Itoh, K., and Hirohata, S. (1995). The role of IL-10 in human B cell activation, proliferation, and differentiation. J. Immunol. 154, 4341±4350.

180 Rene de Waal Malefyt Iwasaki, A., and Kelsall, B. L. (1999). Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229±239. Jansen, P. M., van der Pouw Kraan, T. C., de Jong, I. W., van Mierlo, G., Wijdenes, J., Chang, A. A., Aarden, L. A., Taylor, F.B. Jr., and Hack, C. E. (1996). Release of interleukin-12 in experimental Escherichia coli septic shock in baboons: relation to plasma levels of interleukin-10 and interferongamma. Blood 87, 5144±5151. Jenkins, J. K., Malyak, M., and Arend, W. P. (1994). The effects of interleukin-10 on interleukin-1 receptor antagonist and interleukin-1 beta production in human monocytes and neutrophils. Lymphokine Cytokine Res. 13, 47±54. Jinquan, T., Larsen, C. G., Gesser, B., Matsushima, K., and Thestrup, P. K. (1993). Human IL-10 is a chemoattractant for CD8‡ T lymphocytes and an inhibitor of IL-8induced CD4‡ T lymphocyte migration. J. Immunol. 151, 4545±4551. Joosten, L. A., Lubberts, E., Durez, P., Helsen, M. M., Jacobs, M. J., Goldman, M., and van den Berg, W. B. (1997). Role of interleukin-4 and interleukin-10 in murine collagen-induced arthritis.Protective effect of interleukin-4 and interleukin-10 treatment on cartilage destruction. Arthritis Rheum. 40, 249±260. Joyce, D. A., and Steer, J. H. (1996). IL-4, IL-10 and IFN-gamma have distinct, but interacting, effects on differentiation-induced changes in TNF-alpha and TNF receptor release by cultured human monocytes. Cytokine 8, 49±57. Jungi, T. W., Brcic, M., Eperon, S., and Albrecht, S. (1994). Transforming growth factor-beta and interleukin-10, but not interleukin-4, down-regulate procoagulant activity and tissue factor expression in human monocyte-derived macrophages. Thromb. Res. 76, 463±474. Kanda, N. (1999). Gangliosides GD1a and GM3 induce interleukin-10 production by human T cells. Biochem. Biophys. Res. Commun. 256, 41±44. Kasama, T., Strieter, R. M., Lukacs, N. W., Burdick, M. D., and Kunkel, S. L. (1994). Regulation of neutrophil-derived chemokine expression by IL-10. J. Immunol. 152, 3559±3569. Kasama, T., Strieter, R. M., Lukacs, N. W., Lincoln, P. M., Burdick, M. D., and Kunkel, S. L. (1995). Interleukin-10 expression and chemokine regulation during the evolution of murine type II collagen-induced arthritis. J. Clin. Invest. 95, 2868±2876. Kato, T., Murata, A., Ishida, H., Toda, H., Tanaka, N., Hayashida, H., Monden, M., and Matsuura, N. (1995). Interleukin 10 reduces mortality from severe peritonitis in mice. Antimicrob. Agents Chemother. 39, 1336±1340. Katsikis, P. D., Chu, C. Q., Brennan, F. M., Maini, R. N., and Feldmann, M. (1994). Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J. Exp. Med. 179, 1517±1527. Kennedy, M. K., Torrance, D. S., Picha, K. S., and Mohler, K. M. (1992). Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J. Immunol. 149, 2496±2505. Kim, H. S., Armstrong, D., Hamilton, T. A., and Tebo, J. M. (1998). IL-10 suppresses LPS-induced KC mRNA expression via a translation-dependent decrease in mRNA stability. J. Leukoc. Biol. 64, 33±39. King, C. L., Medhat, A., Malhotra, I., Nafeh, M., Helmy, A., Khaudary, J., Ibrahim, S., El-Sherbiny, M., Zaky, S., Stupi, R. J., Brustoski, K., Shehata, M., and Shata, M. T. (1996). Cytokine control of parasite-specific anergy in human

urinary schistosomiasis. IL-10 modulates lymphocyte reactivity. J. Immunol. 156, 4715±4721. Kishore, R., Tebo, J. M., Kolosov, M., and Hamilton, T. A. (1999). Clustered AU-rich elements are the target of IL-10mediated mRNA destabilization in mouse macrophages. J. Immunol. 162, 2457±2461. Kondo, S., McKenzie, R. C., and Sauder, D. N. (1994). Interleukin-10 inhibits the elicitation phase of allergic contact hypersensitivity. J. Invest. Dermatol. 103, 811±814. Koppelman, B., Neefjes, J. J., de Vries, J. E., and de Waal Malefyt, R. (1997). Interleukin-10 down-regulates MHC class II alphabeta peptide complexes at the plasma membrane of monocytes by affecting arrival and recycling. Immunity 7, 861±871. Kubin, M., Kamoun, M., and Trinchieri, G. (1994). Interleukin-12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production by human T cells. J. Exp. Med. 180, 263±274. Kuga, S., Otsuka, T., Niiro, H., Nunoi, H., Nemoto, Y., Nakano, T., Ogo, T., Umei, T., and Niho, Y. (1996). Suppression of superoxide anion production by interleukin10 is accompanied by a downregulation of the genes for subunit proteins of NADPH oxidase. Exp. Hematol. 24, 151±157. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., and Muller, W. (1993). Interleukin-10 deficient mice develop chronic enterocholitis. Cell 75, 263±274. Kundu, N., Beaty, T. L., Jackson, M. J., and Fulton, A. M. (1996). Antimetastatic and antitumor activities of interleukin 10 in a murine model of breast cancer. J. Natl Cancer Inst. 88, 536±541. Lacraz, S., Nicod, L. P., Chicheportiche, R., Welgus, H. G., and Dayer, J. M. (1995). IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J. Clin. Invest. 96, 2304±2310. Lanier, L. (1997). Natural Killer Cells: from no receptors to too many. Immunity 6, 371±378. Lee, M. S., Wogensen, L., Shizuru, J., Oldstone, M. B., and Sarvetnick, N. (1994). Pancreatic islet production of murine interleukin-10 does not inhibit immune-mediated tissue destruction. J. Clin. Invest. 93, 1332±1338. Lee, M. S., Mueller, R., Wicker, L. S., Peterson, L. B., and Sarvetnick, N. (1996). IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity. J. Exp. Med. 183, 2663±2668. Lehmann, A. K., Halstensen, A., Sornes, S., Rokke, O., and Waage, A. (1995). High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. Infect. Immun. 63, 2109±2112. Levy, Y., and Brouet, J. C. (1994). Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl2 protein. J. Clin. Invest. 93, 424±428. Li, L., Elliott, J. F., and Mosmann, T. R. (1994). IL-10 inhibits cytokine production, vascular leakage, and swelling during T helper 1 cell-induced delayed-type hypersensitivity. J. Immunol. 153, 3967±3978. Li, Q., Sun, B., Dastgheib, K., and Chan, C. C. (1996). Suppressive effect of transforming growth factor beta1 on the recurrence of experimental melanin protein-induced uveitis: upregulation of ocular interleukin-10. Clin. Immunol. Immunopathol. 81, 55±61. Linderholm, M., Ahlm, C., Settergren, B., Waage, A., and Tarnvik, A. (1996). Elevated plasma levels of tumor necrosis factor (TNF)-alpha, soluble TNF receptors, interleukin (IL)-6, and IL-10 in patients with hemorrhagic fever with renal syndrome. J. Infect. Dis. 173, 38±43.

IL-10 181 Liu, Y., Wei, S.H.-Y., Ho, A. S.-Y., de Waal Malefyt, R., and Moore, K. W. (1994). Expression cloning and characterization of a human interleukin-10 receptor. J. Immunol. 152, 1821±1829. Liu, Y., de Waal Malefyt, R., Briere, F., Parham, C., Bridon, J.-M., Banchereau, J., Moore, K. W., and Xu, J. (1997). The Epstein-Barr virus interleukin-10 (IL-10) homolog is a selective agonist with impaired binding to the IL-10 receptor. J. Immunol. 158, 604±613. Llorente, L., Richaud-Patin, Y., Fior, R., Alcocer-Varela, J., Wijdenes, J., Fourrier, B. M., Galanaud, P., and Emilie, D. (1994). In vivo production of interleukin-10 by non-T cells in rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus. A potential mechanism of B lymphocyte hyperactivity and autoimmunity. Arthritis Rheum. 37, 1647±1655. Llorente, L., Zou, W., Levy, Y., Richaud-Patin, Y., Wijdenes, J., Alcocer-Varela, J., Morel-Fourrier, B., Brouet, J. C., AlarconSegovia, D., and Galanaud, P. (1995). Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J. Exp. Med. 181, 839±844. Ludewig, B., Graf, D., Gelderblom, H. R., Becker, Y., Kroczek, R. A., and Pauli, G. (1995). Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-alpha, but strongly enhanced by interleukin-10. Eur. J. Immunol. 25, 1943±1950. Macatonia, S. E., Doherty, T. M., Knight, S. C., and O'Garra, A. (1993). Differential effect of IL-10 on dendritic cell-induced T cell proliferation and IFN-gamma production. J. Immunol. 150, 3755±3765. MacNeil, I., Suda, T., Moore, K. W., Mosmann, T. R., and Zlotnik, A. (1990). IL-10: a novel cytokine growth cofactor for mature and immature T cells. J. Immunol. 145, 4167±4173. Mahanty, S., and Nutman, T. B. (1995). Immunoregulation in human lymphatic filariasis: the role of interleukin 10. Parasite Immunol. 17, 385±392. Mahanty, S., Mollis, S. N., Ravichandran, M., Abrams, J. S., Kumaraswami, V., Jayaraman, K., Ottesen, E. A., and Nutman, T. B. (1996). High levels of spontaneous and parasite antigen-driven interleukin-10 production are associated with antigen-specific hyporesponsiveness in human lymphatic filariasis. J. Infect. Dis. 173, 769±773. Malisan, F., Briere, F., Bridon, J. M., Harindranath, N., Mills, F. C., Max, E. E., Banchereau, J., and MartinezValdez, H. (1996). Interleukin-10 induces immunoglobulin G isotype switch recombination in human CD40-activated naive B lymphocytes. J. Exp. Med. 183, 937±947. Marchant, A., Alegre, M. L., Hakim, A., Pierard, G., Marecaux, G., Friedman, G., De Groote, D., Kahn, R. J., Vincent, J. L., and Goldman, M. (1995). Clinical and biological significance of interleukin-10 plasma levels in patients with septic shock. J. Clin. Immunol. 15, 266±273. Marchant, A., Bruyns, C., Vandenabeele, P., Ducarme, M., Gerard, C., Delvaux, A., De Groote, D., Abramowicz, D., Velu, T., and Goldman, M. (1994a). Interleukin-10 controls interferon-gamma and tumor necrosis factor production during experimental endotoxemia. Eur. J. Immunol. 24, 1167±1171. Marchant, A., Deviere, J., Byl, B., De Groote, D., Vincent, J. L., and Goldman, M. (1994b). Interleukin-10 production during septicaemia. Lancet 343, 707±708. Marfaing-Koka, A., Maravic, M., Humbert, M., Galanaud, P., and Emilie, D. (1996). Contrasting effects of IL-4, IL-10 and corticosteroids on RANTES production by human monocytes. Int. Immunol. 8, 1587±1594.

Marie, C., Pitton, C., Fitting, C., and Cavaillon, J. M. (1996). IL10 and IL-4 synergize with TNF-alpha to induce IL-1ra production by human neutrophils. Cytokine 8, 147±151. Marietta, E. V., Chen, Y., and Weis, J. H. (1996). Modulation of expression of the anti-inflammatory cytokines interleukin-13 and interleukin-10 by interleukin-3. Eur. J. Immunol. 26, 49±56. Matsuda, M., Salazar, F., Petersson, M., Masucci, G., Hansson, J., Pisa, P., Zhang, Q. J., Masucci, M. G., and Kiessling, R. (1994). Interleukin 10 pretreatment protects target cells from tumor- and allo-specific cytotoxic T cells and downregulates HLA class I expression. J. Exp. Med. 180, 2371±2376. Mehrian, R., Quismorio, F.P. Jr., Strassmann, G., Stimmler, M. M., Horwitz, D. A., Kitridou, R. C., Gauderman, W. J., Morrison, J., Brautbar, C., and Jacob, C. O. (1998). Synergistic effect between IL-10 and bcl-2 genotypes in determining susceptibility to systemic lupus erythematosus. Arthritis Rheum. 41, 596±602. Mehrotra, P. T., Donnelly, R. P., Wong, S., Kanegane, H., Geremew, A., Mostowski, H. S., Furuke, K., Siegel, J. P., and Bloom, E. T. (1998). Production of IL-10 by human natural killer cells stimulated with IL-2 and/or IL-12. J. Immunol. 160, 2637±2644. Mengozzi, M., Fantuzzi, G., Faggioni, R., Marchant, A., Goldman, M., Orencole, S., Clark, B. D., Sironi, M., Benigni, F., and Ghezzi, P. (1994). Chlorpromazine specifically inhibits peripheral and brain TNF production, and up-regulates IL-10 production, in mice. Immunology 82, 207±210. Mertz, P. M., DeWitt, D. L., Stetler-Stevenson, W. G., and Wahl, L. M. (1994). Interleukin 10 suppression of monocyte prostaglandin H synthase-2. Mechanism of inhibition of prostaglandin-dependent matrix metalloproteinase production. J. Biol. Chem. 269, 21322±21329. Merville, P., Dechanet, J., Grouard, G., Durand, I., and Banchereau, J. (1995). T cell-induced B cell blasts differentiate into plasma cells when cultured on bone marrow stroma with IL-3 and IL-10. Int. Immunol. 7, 635±643. Mirmonsef, P., Shelburne, C. P., Fitzhugh Yeatman, C. 2nd., Chong, H. J., and Ryan, J. J. (1999). Inhibition of Kit expression by IL-4 and IL-10 in murine mast cells: role of STAT6 and phosphatidylinositol 30 -kinase. J. Immunol. 163, 2530±2539. Mitra, R. S., Judge, T. A., Nestle, F. O., Turka, L. A., and Nickoloff, B. J. (1995). Psoriatic skin-derived dendritic cell function is inhibited by exogenous IL-10. Differential modulation of B7-1 (CD80) and B7-2 (CD86) expression. J. Immunol. 154, 2668±2677. Moore, K. W., Vieira, P., Fiorentino, D. F., Trounstine, M. L., Khan, T. A., and Mosmann, T. R. (1990). Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein Barr Virus gene BCRFI. Science 248, 1230±1234. Moore, K. W., O'Garra, A., de Waal Malefyt, R., Vieira, P., and Mosmann, T. R. (1993). Interleukin-10. Annu. Rev. Immunol. 11, 165±190. Moreau, P., Adrian-Cabestre, F., Menier, C., Guiard, V., Gourand, L., Dausset, J., Carosella, E. D., and Paul, P. (1999). IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. Int. Immunol. 11, 803±811. Morinobu, A., Kumagai, S., Yanagida, H., Ota, H., Ishida, H., Matsui, M., Yodoi, J., and Nakao, K. (1996). IL-10 suppresses cell surface CD23/Fc epsilon RII expression, not by enhancing soluble CD23 release, but by reducing CD23 mRNA expression in human monocytes. J. Clin. Immunol. 16, 326±333. Moritani, M., Yoshimoto, K., Tashiro, F., Hashimoto, C., Miyazaki, J., Ii, S., Kudo, E., Iwahana, H., Hayashi, Y., and Sano, T. (1994). Transgenic expression of IL-10 in pancreatic islet A cells accelerates autoimmune insulitis and diabetes in non-obese diabetic mice. Int. Immunol. 6, 1927±1936.

182 Rene de Waal Malefyt Moritani, M., Yoshimoto, K., Ii, S., Kondo, M., Iwahana, H., Yamaoka, T., Sano, T., Nakano, N., Kikutani, H., and Itakura, M. (1996). Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific TH1 lymphocytes.A gene therapy model for autoimmune diabetes. J. Clin. Invest. 98, 1851±1859. Mueller, R., Lee, M. S., Sawyer, S. P., and Sarvetnick, N. (1996). Transgenic expression of interleukin 10 in the pancreas renders resistant mice susceptible to low dose streptozotocin-induced diabetes. J. Autoimmun. 9, 151±158. Mulligan, M. S., Jones, M. L., Vaporciyan, A. A., Howard, M. C., and Ward, P. A. (1993). Protective effects of IL-4 and IL-10 against immune complex-induced lung injury. J. Immunol. 151, 5666±5674. Nabioullin, R., Sone, S., Mizuno, K., Yano, S., Nishioka, Y., Haku, T., and Ogura, T. (1994). Interleukin-10 is a potent inhibitor of tumor cytotoxicity by human monocytes and alveolar macrophages. J. Leukoc. Biol. 55, 437±442. Navikas, V., Link, J., Palasik, W., Soderstrom, M., Fredrikson, S., Olsson, T., and Link, H. (1995). Increased mRNA expression of IL-10 in mononuclear cells in multiple sclerosis and optic neuritis. Scand. J. Immunol. 41, 171±178. Nicod, L. P., el Habre, F., Dayer, J. M., and Boehringer, N. (1995). Interleukin-10 decreases tumor necrosis factor alpha and beta in alloreactions induced by human lung dendritic cells and macrophages. Am. J. Respir. Cell. Mol. Biol. 13, 83±90. Niiro, H., Otsuka, T., Abe, M., Satoh, H., Ogo, T., Nakano, T., Furukawa, Y., and Niho, Y. (1992). Epstein-Barr virus BCRF1 gene product (viral interleukin 10) inhibits superoxide anion production by human monocytes. Lymphokine Cytokine Res. 11, 209±214. Niiro, H., Otsuka, T., Kuga, S., Nemoto, Y., Abe, M., Hara, N., Nakano, T., Ogo, T., and Niho, Y. (1994). IL-10 inhibits prostaglandin E2 production by lipopolysaccharide-stimulated monocytes. Int. Immunol. 6, 661±664. Niiro, H., Otsuka, T., Tanabe, T., Hara, S., Kuga, S., Nemoto, Y., Tanaka, Y., Nakashima, H., Kitajima, S., and Abe, M. (1995). Inhibition by interleukin-10 of inducible cyclooxygenase expression in lipopolysaccharide-stimulated monocytes: its underlying mechanism in comparison with interleukin-4. Blood 85, 3736±3745. Nishimura, N., Tohyama, C., Satoh, M., Nishimura, H., and Reeve, V. E. (1999). Defective immune response and severe skin damage following UVB irradiation in interleukin-6deficient mice. Immunology 97, 77±83. Nonoyama, S., Hollenbaugh, D., Aruffo, A., Ledbetter, J. A., and Ochs, H. D. (1993). B cell activation via CD40 is required for specific antibody production by antigen-stimulated human B cells. J. Exp. Med. 178, 1097±1102. Oswald, I. P., Gazzinelli, R. T., Sher, A., and James, S. L. (1992a). IL-10 synergizes with IL-4 and transforming growth factorbeta to inhibit macrophage cytotoxic activity. J. Immunol. 148, 3578±3582. Oswald, I. P., Wynn, T. A., Sher, A., and James, S. L. (1992b). Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma-induced activation. Proc. Natl Acad. Sci. USA 89, 8676±8680. Pajkrt, D., Camoglio, L., Tiel - van Buul, M. C. M., de Bruin, K., Cutler, D., Affrime, M. B., Rikken, G., van der Poll, T., ten Cate, J. W., and van Deventer, S. J. H. (1997). Attenuation of proinflammatory response by recombinant human IL-10 in human endotoxemia: Effect of timing of recombinant human IL-10 administration. J. Immunol. 158, 3971±3977.

Park, D. R., and Skerrett, S. J. (1996). IL-10 enhances the growth of Legionella pneumophila in human mononuclear phagocytes and reverses the protective effect of IFN-gamma: differential responses of blood monocytes and alveolar macrophages. J. Immunol. 157, 2528±2538. Pecanha, L. M., Snapper, C. M., Lees, A., and Mond, J. J. (1992). Lymphokine control of type 2 antigen response. IL-10 inhibits IL-5- but not IL-2-induced Ig secretion by T cell-independent antigens. J. Immunol. 148, 3427±3432. Pecanha, L. M., Snapper, C. M., Lees, A., Yamaguchi, H., and Mond, J. J. (1993). IL-10 inhibits T cell-independent but not T cell-dependent responses in vitro. J. Immunol. 150, 3215±3223. Peguet-Navarro, J., Moulon, C., Caux, C., Dalbiez-Gauthier, C., Banchereau, J., and Schmitt, D. (1994). Interleukin-10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells. Eur. J. Immunol. 24, 884±891. Perez, L., Orte, J., and Brieva, J. A. (1995). Terminal differentiation of spontaneous rheumatoid factor-secreting B cells from rheumatoid arthritis patients depends on endogenous interleukin-10. Arthritis Rheum. 38, 1771±1776. Persson, S., Mikulowska, A., Narula, S., O'Garra, A., and Holmdahl, R. (1996). Interleukin-10 suppresses the development of collagen type II-induced arthritis and ameliorates sustained arthritis in rats. Scand. J. Immunol. 44, 607±614. Peyron, F., Burdin, N., Ringwald, P., Vuillez, J. P., Rousset, F., and Banchereau, J. (1994). High levels of circulating IL-10 in human malaria. Clin. Exp. Immunol. 95, 300±303. Powrie, F. (1995). T cells in inflammatory bowel disease: protective and pathogenic roles. Immunity 3, 171±174. Powrie, F., and Coffman, R. L. (1993). Inhibition of cell-mediated immunity by IL4 and IL10. Res. Immunol. 144, 639±643. Powrie, F., Leach, M. W., Mauze, S., and Coffman, R. L. (1993a). Phenotypically distinct subsets of CD4‡ T cells induce or protect from chronic intestinal inflammationin C. B-17 scid mice. Int. Immunol. 5, 1461±1471. Powrie, F., Menon, S., and Coffman, R. L. (1993b). Interleukin-4 and interleukin-10 synergize to inhibit cell-mediated immunity in vivo. Eur. J. Immunol. 23, 3043±3049. Powrie, F., Leach, M. W., Mauze, S., Menon, S., Barcomb Caddle, L., and Coffman, R. L. (1994). Inhibiton of TH1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4‡ T cells. Immunity 1, 553±562. Pradier, O., Gerard, C., Delvaux, A., Lybin, M., Abramowicz, D., Capel, P., Velu, T., and Goldman, M. (1993). Interleukin-10 inhibits the induction of monocyte procoagulant activity by bacterial lipopolysaccharide. Eur J. Immunol. 23, 2700±2703. Pradier, O., Willems, F., Abramowicz, D., Schandene, L., de Boer, M., Thielemans, K., Capel, P., and Goldman, M. (1996). CD40 engagement induces monocyte procoagulant activity through an interleukin-10 resistant pathway. Eur. J. Immunol. 26, 3048±3054. Pugin, J., Ulevitch, R. J., and Tobias, P. S. (1993). A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation. J. Exp. Med. 178, 2193±2200. Punnonen, J., de Waal Malefyt, R., van Vlasselaer, P., Gauchat, J. F., and de Vries, J. E. (1993). IL-10 and viral IL10 prevent IL-4-induced IgE synthesis by inhibiting the accessory cell function of monocytes. J. Immunol. 151, 1280±1289. Radwanski, E., Chakraborty, A., Van Wart, S., Huhn, R. D., Cutler, D. L., Affrime, M. B., and Jusko, W. J. (1998). Pharmacokinetics and leukocyte responses of recombinant human interleukin-10. Pharm. Res. 15, 1895±1901. Ramani, M., Ollivier, V., Khechai, F., Vu, T., Ternisien, C., Bridey, F., and de Prost, D. (1993). Interleukin-10 inhibits

IL-10 183 endotoxin-induced tissue factor mRNA production by human monocytes. FEBS Lett. 334, 114±116. Ramani, M., Khechai, F., Ollivier, V., Ternisien, C., Bridey, F., Hakim, J., and de Prost, D. (1994). Interleukin-10 and pentoxifylline inhibit C-reactive protein-induced tissue factor gene expression in peripheral human blood monocytes. FEBS Lett. 356, 86±88. Redpath, S., Angulo, A., Gascoigne, N. R., and Ghazal, P. (1999). Murine cytomegalovirus infection down-regulates MHC class II expression on macrophages by induction of IL-10. J. Immunol. 162, 6701±6707. Reed, S. G., Brownell, C. E., Russo, D. M., Silva, J. S., Grabstein, K. H., and Morrissey, P. J. (1994). IL-10 mediates susceptibility to Trypanosoma cruzi infection. J. Immunol. 153, 3135±3140. Rennick, D., Hunte, B., Holland, G., and Thompson-Snipes, L. (1995). Cofactors are essential for stem cell factor-dependent growth and maturation of mast cell progenitors: comparative effects of interleukin-3 (IL-3), IL-4, IL-10, and fibroblasts. Blood 85, 57±65. Rennick, D. M., Fort, M. M., and Davidson, N. J. (1997). Studies with IL-10ÿ/ÿ mice: an overview. J. Leukoc. Biol. 61, 389±396. Rissoan, M. C., Soumelis, V., Kadowaki, N., Grouard, G., Briere, F., de Waal Malefyt, R., and Liu, Y. J. (1999). Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183±1186. Rivas, J. M., and Ullrich, S. E. (1992). Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes. An essential role for keratinocyte-derived IL-10. J. Immunol. 149, 3865±3871. Rivas, J. M., and Ullrich, S. E. (1994). The role of IL-4, IL-10, and TNF-alpha in the immune suppression induced by ultraviolet radiation. J. Leukoc. Biol. 56, 769±775. Rode, H.-J., Janssen, W., Rosen-Wolff, A., Bugert, J. J., Thein, P., Becker, Y., and Darai, G. (1993). The genome of equine herpesvirus type 2 harbors an interleukin-10 (IL-10)-like gene. Virus Genes 7, 111±116. Rogy, M. A., Auffenberg, T., Espat, N. J., Philip, R., Remick, D., Wollenberg, G. K., Copeland, E. M. r., and Moldawer, L. L. (1995). Human tumor necrosis factor receptor (p55) and interleukin 10 gene transfer in the mouse reduces mortality to lethal endotoxemia and also attenuates local inflammatory responses. J. Exp. Med. 181, 2289±2293. Roilides, E., Dimitriadou, A., Kadiltsoglou, I., Sein, T., Karpouzas, J., Pizzo, P. A., and Walsh, T. J. (1997). IL-10 exerts suppressive and enhancing effects on antifungal activity of mononuclear phagocytes against Aspergillus fumigatus. J. Immunol. 158, 322±329. Rosenbaum, J. T., and Angell, E. (1995). Paradoxical effects of IL-10 in endotoxin-induced uveitis. J. Immunol. 155, 4090±4094. Rouleau, M., Cottrez, F., Bigler, M., Antonenko, S., Carballido, J. M., Zlotnik, A., Roncarolo, M. G., and Groux, H. (1999). IL-10 transgenic mice present a defect in T cell development reminiscent of SCID patients. J. Immunol. 163, 1420±1427. Rott, O., Fleischer, B., and Cash, E. (1994). Interleukin-10 prevents experimental allergic encephalomyelitis in rats. Eur. J. Immunol. 24, 1434±1440. Rousset, F., Garcia, E., Defrance, T., Peronne, C., Hsu, D.-H., Kastelein, R., Moore, K. W., and Banchereau, J. (1992). IL-10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl Acad. Sci. USA 89, 1890± 1893. Rousset, F., Peyrol, S., Garcia, E., Vezzio, N., Andujar, M., Grimaud, J. A., and Banchereau, J. (1995). Long-term cultured

CD40-activated B lymphocytes differentiate into plasma cells in response to IL-10 but not IL-4. Int. Immunol. 7, 1243±1253. Rowbottom, A. W., Lepper, M. W., Garland, R. J., Cox, C. V., Corley, E. G., Oakhill, A., and Steward, C. G. (1999). Interleukin-10-induced CD8 cell proliferation. Immunology 98, 80±89. Saeland, S., Duvert, V., Moreau, I., and Banchereau, J. (1993). Human B cell precursors proliferate and express CD23 after CD40 Ligation. J. Exp. Med. 178, 113±120. Saito, I., Haruta, K., Shimuta, M., Inoue, H., Sakurai, H., Yamada, K., Ishimaru, N., Higashiyama, H., Sumida, T., Ishida, H., Suda, T., Noda, T., Hayashi, Y., and Tsubota, K. (1999). Fas ligand-mediated exocrinopathy resembling Sjogren's syndrome in mice transgenic for IL-10. J. Immunol. 162, 2488± 2494. Salazar-Onfray, F., Petersson, M., Franksson, L., Matsuda, M., Blankenstein, T., Karre, K., and Kiessling, R. (1995). IL-10 converts mouse lymphoma cells to a CTL-resistant, NK-sensitive phenotype with low but peptide-inducible MHC class I expression. J. Immunol. 154, 6291±6298. Sankaran, D., Asderakis, A., Ashraf, S., Roberts, I. S., Short, C. D., Dyer, P. A., Sinnott, P. J., and Hutchinson, I. V. (1999). Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney Int. 56, 281±288. Schandene, L., Alonso-Vega, C., Willems, F., Gerard, C., Delvaux, A., Velu, T., Devos, R., de Boer, M., and Goldman, M. (1994). B7/CD28-dependent IL-5 production by human resting T cells is inhibited by IL-10. J. Immunol. 152, 4368±4374. Schols, D., and De Clercq, E. (1996). Human immunodeficiency virus type 1 gp120 induces anergy in human peripheral blood lymphocytes by inducing interleukin-10 production. J. Virol. 70, 4953±4960. Schwarz, A., Grabbe, S., Riemann, H., Aragane, Y., Simon, M., Manon, S., Andrade, S., Luger, T. A., Zlotnik, A., and Schwarz, T. (1994). In vivo effects of interleukin-10 on contact hypersensitivity and delayed-type hypersensitivity reactions. J. Invest. Dermatol. 103, 211±216. Shanley, T. P., Schmal, H., Friedl, H. P., Jones, M. L., and Ward, P. A. (1995). Regulatory effects of intrinsic IL-10 in IgG immune complex-induced lung injury. J. Immunol. 154, 3454±3460. Sher, A., Fiorentino, D., Caspar, P., Pearce, E., and Mosmann, T. (1991). Production of IL-10 by CD4‡ T lymphocytes correlates with down-regulation of TH1 cytokine synthesis in helminth infection. J. Immunol. 147, 2713±2716. Sherry, R. M., Cue, J. I., Goddard, J. K., Parramore, J. B., and DiPiro, J. T. (1996). Interleukin-10 is associated with the development of sepsis in trauma patients. J. Trauma 40, 613±616; discussion 616±617. Sieling, P. A., and Modlin, R. L. (1995). In ``Interleukin-10'' (ed J. E. de Vries and R. de Waal Malefyt), IL-10 in mycobacterial infection pp. 79±87. R.G. Landes Company, Austin, TX. Sieling, P. A., Abrams, J. S., Yamamura, M., Salgame, P., Bloom, B. R., Rea, T. H., and Modlin, R. L. (1993). Immunosuppressive roles for IL-10 and IL-4 in human infection. In vitro modulation of T cell responses in leprosy. J. Immunol. 150, 5501±5510. Smith, S. R., Terminelli, C., Kenworthy-Bott, L., Calzetta, A., and Donkin, J. (1994). The cooperative effects of TNF-alpha and IFN-gamma are determining factors in the ability of IL-10 to protect mice from lethal endotoxemia. J. Leukoc. Biol. 55, 711±718. Smith, S. R., Terminelli, C., Denhardt, G., Narula, S., and Thorbecke, G. J. (1996). Administration of interleukin-10 at the time of priming protects Corynebacterium parvum-primed

184 Rene de Waal Malefyt mice against LPS- and TNF-alpha-induced lethality. Cell Immunol. 173, 207±214. Sozzani, S., Ghezzi, S., Iannolo, G., Luini, W., Borsatti, A., Polentarutti, N., Sica, A., Locati, M., Mackay, C., Wells, T. N., Biswas, P., Vicenzi, E., Poli, G., and Mantovani, A. (1998). Interleukin 10 increases CCR5 expression and HIV infection in human monocytes. J. Exp. Med. 187, 439±444. Spittler, A., Schiller, C., Willheim, M., Tempfer, C., Winkler, S., and Boltz-Nitulescu, G. (1995). IL-10 augments CD23 expression on U937 cells and down-regulates IL-4-driven CD23 expression on cultured human blood monocytes: effects of IL-10 and other cytokines on cell phenotype and phagocytosis. Immunology 85, 311±317. Sprang, S. R., and Bazan, J. F. (1993). Cytokine structural taxonomy and mechanisms of receptor engagement. Curr. Opin. Struct. Biol. 3, 815±827. Standiford, T. J., Strieter, R. M., Lukacs, N. W., and Kunkel, S. L. (1995). Neutralization of IL-10 increases lethality in endotoxemia. Cooperative effects of macrophage inflammatory protein-2 and tumor necrosis factor. J. Immunol. 155, 2222±2229. Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J., and Enk, A. H. (1997). Induction of tolerance by IL-10-treated dendritic cells. J. Immunol. 159, 4772±4780. Suberville, S., Bellocq, A., Fouqueray, B., Philippe, C., Lantz, O., Perez, J., and Baud, L. (1996). Regulation of interleukin-10 production by beta-adrenergic agonists. Eur J Immunol. 26, 2601±2605. Sugiyama, E., Kuroda, A., Taki, H., Ikemoto, M., Hori, T., Yamashita, N., Maruyama, M., and Kobayashi, M. (1995). Interleukin 10 cooperates with interleukin 4 to suppress inflammatory cytokine production by freshly prepared adherent rheumatoid synovial cells. J. Rheumatol. 22, 2020±2026. Sundstedt, A., Hoiden, I., Rosendahl, A., Kalland, T., van Rooijen, N., and Dohlsten, M. (1997). Immunoregulatory role of IL-10 during superantigen-induced hyporesponsiveness in vivo. J. Immunol. 158, 180±186. Sutterwala, F. S., Noel, G. J., Salgame, P., and Mosser, D. M. (1998). Reversal of proinflammatory responses by ligating the macrophage Fcgamma receptor type I. J. Exp. Med. 188, 217± 222. Suzuki, T., Tahara, H., Narula, S., Moore, K. W., Robbins, P. D., and Lotze, M. T. (1995). Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J. Exp. Med. 182, 477±486. Syto, R., Murgolo, N. J., Braswell, E. H., Mui, P., Huang, E., and Windsor, W. T. (1998). Structural and biological stability of the human interleukin 10 homodimer. Biochemistry 37, 16943±16951. Taga, K., and Tosato, G. (1992). IL-10 inhibits human T cell proliferation and IL-2 production. J. Immunol. 148, 1143±1148. Taga, K., Cherney, B., and Tosato, G. (1993). IL-10 inhibits apoptotic cell death in human T cells starved of IL-2. Int. Immunol. 5, 1599±1608. Taga, K., Chretien, J., Cherney, B., Diaz, L., Brown, M., Tosato, G. (1994). Interleukin-10 inhibits apoptotic cell death in infectious mononucleosis T cells. J. Clin. Invest. 94, 251±260. Takanaski, S., Nonaka, R., Xing, Z., O'Byrne, P., Dolovich, J., and Jordana, M. (1994). Interleukin 10 inhibits lipopolysaccharide-induced survival and cytokine production by human peripheral blood eosinophils. J. Exp. Med. 180, 711±715. Tanaka, Y., Otsuka, T., Hotokebuchi, T., Miyahara, H., Nakashima, H., Kuga, S., Nemoto, Y., Niiro, H., and Niho, Y. (1996). Effect of IL-10 on collagen-induced arthritis in mice. Inflamm. Res. 45, 283±288.

te Velde, A. A., de Waal Malefyt, R., Huijbens, R. J. F., de Vries, J. E., and Figdor, C. G. (1992). IL-10 stimulates monocyte Fc R surface expression and cytotoxic activity: distinct regulation of ADCC by IFN , IL-4, and IL-10. J. Immunol. 149, 4048±4052. Thivierge, M., Parent, J. L., Stankova, J., and Rola-Pleszczynski, M. (1999). Modulation of formyl peptide receptor expression by IL-10 in human monocytes and neutrophils. J. Immunol. 162, 3590±3595. Thomassen, M. J., Divis, L. T., and Fisher, C. J. (1996). Regulation of human alveolar macrophage inflammatory cytokine production by interleukin-10. Clin. Immunol. Immunopathol. 80, 321±324. Thompson-Snipes, L., Dhar, V., Bond, M. W., Mosmann, T. R., Moore, K. W., and Rennick, D. (1991). Interleukin-10: a novel stimulatory factor for mast cells and their progenitors. J. Exp. Med. 173, 507±510. Tripp, C. S., Wolf, S. F., and Unanue, E. R. (1993). Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc. Natl Acad. Sci. USA 90, 3725±3729. Trotta, P. P., and Windsor, W. T. (1994). In ``Interleukin-10'' (ed J.E. de Vries and R. de Waal Malefyt,), Physicochemical and structural properties of interleukin-10, pp. 11±18. R.G. Landes Company, Austin, TX. Tumpey, T. M., Elner, V. M., Chen, S. H., Oakes, J. E., and Lausch, R. N. (1994). Interleukin-10 treatment can suppress stromal keratitis induced by herpes simplex virus type 1. J. Immunol. 153, 2258±2265. Uejima, Y., Takahashi, K., Komoriya, K., Kurozumi, S., and Ochs, H. D. (1996). Effect of interleukin-10 on anti-CD40and interleukin-4-induced immunoglobulin E production by human lymphocytes. Int. Arch. Allergy Immunol. 110, 225±232. van der Poll, T., Jansen, J., Levi, M., ten Cate, H., ten Cate, J. W., and van Deventer, S. J. (1994). Regulation of interleukin 10 release by tumor necrosis factor in humans and chimpanzees. J. Exp. Med. 180, 1985±1988. van der Poll, T., Marchant, A., Buurman, W. A., Berman, L., Keogh, C. V., Lazarus, D. D., Nguyen, L., Goldman, M., Moldawer, L. L., and Lowry, S. F. (1995). Endogenous IL-10 protects mice from death during septic peritonitis. J. Immunol. 155, 5397±5401. van der Poll, T., Coyle, S. M., Barbosa, K., Braxton, C. C., and Lowry, S. F. (1996a). Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J. Clin. Invest 97, 713±719. van der Poll, T., Marchant, A., Keogh, C. V., Goldman, M., and Lowry, S. F. (1996b). Interleukin-10 impairs host defense in murine pneumococcal pneumonia. J. Infect. Dis. 174, 994±1000. van der Poll, T., de Waal Malefyt, R., Coyle, S. M., and Lowry, S. F. (1997). Antiinflammatory cytokine responses during clinical sepsis and experimental endotoxemia: sequential measurements of plasma soluble interleukin (IL)-1 receptor type II, IL-10, and IL-13. J. Infect. Dis. 175, 118±122. van Furth, A. M., Seijmonsbergen, E. M., Langermans, J. A., Groeneveld, P. H., de Bel, C. E., and van Furth, R. (1995). High levels of interleukin 10 and tumor necrosis factor alpha in cerebrospinal fluid during the onset of bacterial meningitis. Clin. Infect. Dis. 21, 220±222. Van Laethem, J. L., Marchant, A., Delvaux, A., Goldman, M., Robberecht, P., Velu, T., and Deviere, J. (1995). Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology 108, 1917±1922. van Roon, J. A., van Roy, J. L., Gmelig-Meyling, F. H., Lafeber, F. P., and Bijlsma, J. W. (1996). Prevention and

IL-10 185 reversal of cartilage degradation in rheumatoid arthritis by interleukin-10 and interleukin-4. Arthritis Rheum. 39, 829±835. Vieira, P., de Waal Malefyt, R., Dang, W., Johnson, K. E., Kastelein, R., Fiorentino, D. F., de Vries, J. E., Roncarolo, M. G., Mossmann, T. R., and Moore, K. W. (1991). Isolation and expression of human cytokine synthesis inhibitory factor (CSIF) cDNA clones: homology to Epstein Barr virus open reading frame BCRFI. Proc. Natl Acad. Sci. USA 88, 1172±1176. Visser, J., van Boxel-Dezaire, A., Methorst, D., Brunt, T., de Kloet, E. R., and Nagelkerken, L. (1998). Differential regulation of interleukin-10 (IL-10) and IL-12 by glucocorticoids in vitro. Blood 91, 4255±4264. Walmsley, M., Katsikis, P. D., Abney, E., Parry, S., Williams, R. O., Maini, R. N., and Feldmann, M. (1996). Interleukin-10 inhibition of the progression of established collagen-induced arthritis. Arthritis Rheum. 39, 495±503. Walter, M. R., and Nagabhushan, T. L. (1995). Crystal structure of interleukin-10 reveals an interferon gamma-like fold. Biochemistry 34, 12118±12125. Wang, P., Wu, P., Anthes, J. C., Siegel, M. I., Egan, R. W., and Billah, M. M. (1994). Interleukin-10 inhibits interleukin-8 production in human neutrophils. Blood 83, 2678±2683. Warren, H. S., Kinnear, B. F., Phillips, J. H., and Lanier, L. L. (1995). Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J. Immunol. 154, 5144±5152. Westendorp, R. G., Langermans, J. A., Huizinga, T. W., Elouali, A. H., Verweij, C. L., Boomsma, D. I., Vandenbroucke, J. P., and Vandenbrouke, J. P. (1997). Genetic influence on cytokine production and fatal meningococcal disease. Lancet 349, 170±173. Wilkes, D. S., Neimeier, M., Mathur, P. N., Soliman, D. M., Twigg, H. L. r., Bowen, L. K., and Heidler, K. M. (1995). Effect of human lung allograft alveolar macrophages on IgG production: immunoregulatory role of interleukin-10, transforming growth factor-beta, and interleukin-6. Am. J. Respir. Cell Mol. Biol. 13, 621±628. Willems, F., Marchant, A., Delville, J. P., Gerard, C., Delvaux, A., Velu, T., de Boer, M., and Goldman, M. (1994). Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur. J. Immunol. 24, 1007± 1009. Windsor, W. T., Syto, R., Tsarbopoulos, A., Zhang, R., Durkin, J., Baldwin, S., Paliwal, S., Mui, P. W., Pramanik, B., Trotta, P. P., and Tindall, S. H. (1993). Disulfide bond assignments and secondary structure analysis of human and murine interleukin 10. Biochemistry 32, 8807±8815. Wissing, K. M., Morelon, E., Legendre, C., De Pauw, L., LeBeaut, A., Grint, P., Maniscalki, M., Ickx, B.,

Vereerstraeten, P., Chatenoud, L., Kreis, H., Goldman, M., and Abramowicz, D. (1997). A pilot trial of recombinant human interleukin-10 in kidney transplant recipients receiving OKT3 induction therapy. Transplantation 64, 999±1006. Wogensen, L., Huang, X., and Sarvetnick, N. (1993). Leukocyte extravasation into the pancreatic tissue in transgenic mice expressing interleukin 10 in the islets of Langerhans. J. Exp. Med. 178, 175±185. Wogensen, L., Lee, M. S., and Sarvetnick, N. (1994). Production of interleukin 10 by islet cells accelerates immune-mediated destruction of beta cells in nonobese diabetic mice. J. Exp. Med. 179, 1379±1384. Woiciechowsky, C., Asadullah, K., Nestler, D., Eberhardt, B., Platzer, C., Schoning, B., Glockner, F., Lanksch, W. R., Volk, H. D., and Docke, W. D. (1998). Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nature Med. 4, 808±813. Wu, J., Cunha, F. Q., Liew, F. Y., and Weiser, W. Y. (1993). IL-10 inhibits the synthesis of migration inhibitory factor and migration inhibitory factor-mediated macrophage activation. J. Immunol. 151, 4325±4332. Yagi, H., Tokura, Y., Wakita, H., Furukawa, F., and Takigawa, M. (1996). TCRV beta 7‡ TH2 cells mediate UVB-induced suppression of murine contact photosensitivity by releasing IL-10. J. Immunol. 156, 1824±1831. Zdanov, A., Schalk-Hihi, C., Gustchina, A., Tsang, M., Weatherbee, J., and Wlodawer, A. (1995). Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon . Structure 3, 591±601. Zdanov, A., Schalk-Hihi, C., and Wlodawer, A. (1996). Crystal structure of human interleukin-10 at 1.6 A resolution and a model of a complex with ts soluble receptor. Protein Sci. 5, 1955±1962. Zdanov, A., Schalk-Hihi, C., Menon, S., Moore, K. W., and Wlodawer, A. (1997). Crystal structure of Epstein-Barr virus protein BCRF1, a homolog of cellular interleukin-10. J. Mol. Biol. 268, 460±467. Zheng, L. M., Ojcius, D. M., Garaud, F., Roth, C., Maxwell, E., Li, Z., Rong, H., Chen, J., Wang, X. Y., Catino, J. J., and King, I. (1996). Interleukin-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J. Exp. Med. 184, 579±584. Zissel, G., Schlaak, J., Schlaak, M., and Muller-Quernheim, J. (1996). Regulation of cytokine release by alveolar macrophages treated with interleukin-4, interleukin-10, or transforming growth factor beta. Eur. Cytokine Netw. 7, 59±66. Zuany-Amorim, C., Haile, S., Leduc, D., Dumarey, C., Huerre, M., Vargaftig, B. B., and Pretolani, M. (1995). Interleukin-10 inhibits antigen-induced cellular recruitment into the airways of sensitized mice. J. Clin. Invest. 95, 2644±2651.