148 72 976KB
Russian Pages 88 Year 2008
(
)
. .
И
,
Ы Э
. .
И
И
И
II
«
»
2008 1
621.3.11.7(075) 31.211 7 18 . .,
Э. . Л II: ч
Ч
.:
И И,
2008. – 88 .
« »( И И 2004 .).
-
Э. .
. .
, : ;
; . .
щ
-
«Э
-
, «
». ,
щ
». И
И И. -
.
В. .
,
ISBN 978-5-7262-1004-9 ©М (
а
ы
2
-
ч ), 2008
И
C
............................................................................................................ 4 1. Э ............................................................ 5 1.1. .......................................... 5 1.2. ...... 7 1.3. К ....................................................................... 10 1.4. ..................... 11 .......................................................................................................... 14 2. ............................... 18 2.1. .................................................................... 18 2.1.1. ........................................ 18 2.1.2. Э ....................................................... 20 2.1.3. Ч ..................................................... 22 2.1.4. ..................................................... 25 .......................................................................................................... 27 2.2. ............................................................................... 30 2.2.1. ................................................... 30 2.2.2. Э ......... 37 2.2.3. Ч ..................................................... 39 .......................................................................................................... 42 3. ( ) ....................................................... 47 3.1. ........................................................................ 47 3.2. К ................. 50 3.3. ............. 56 .......................................................................................................... 57 3.4. Х ( ) ................................ 65 3.5. ( ) ................................................................ 74 .......................................................................................................... 77 ......................................................................................... 87 3
; ; . -
,
, -
, . ,
щ
,
-
,
-
,
. , , , -
, . , -
. , ,
,
. ,
ё
, .
4
А А 1.
Э
Т
Т
к
1.1.
А
А
я Э
.Э
,
-
, .
.1
.1
(
),
-
. i1 ,
.
i2 . .1
,
щ 11
i1
–
-
,
щ
,
-
,
щ
,
-
i1 ; 22
-
. :
–
–
i2
i2 ; 5
12 –
21
,
щ – щ
i1 ,
; ,
i2 ,
. i1 :
, =
1
11
,
+
12 .
(1.1)
,
-
i2 : =
2
22
+
21 .
(1.2)
, (
(1.1)
) =
1
И,
1
,
±
21 .
(1.3)
±
12 .
(1.4)
: =
2
«+»
)
2
(1.3) (1.4) «–» – (
,
. -
: 1
, L1 ,
(1.2)
:
= L1i1 ,
2
= L2 i 2 ,
(1.5)
L2 –
.
-
: 12
=
⋅ i1 ,
12
21
=
21 ⋅ i 2 .
,
12 12
Э
. , e1
=
21
=
(1.6) 21
:
.
(1.7)
(1.3)–(1.7) : =−
d
1
dt
= − L1 6
di di1 ∓M 2 ; dt dt
(1.8)
=−
e2
d
1
= − L2
dt
(1.8)
di 2 di ∓M 1 . dt dt
(1.9) Э
(1.9)
-
: e1 L = − L1
di1 , dt
e 2 L = − L2
(1.8)
di 2 . dt
(1.10) Э
(1.9)
: e1 M = ∓ M
di 2 , dt
di1 . dt
e2 M = ∓ M
(1.11)
, (1.9)
(1.8)
, щ
-
: u1
= L1
di di1 ±M 2 , dt dt
(1.12)
u2
= L2
di di 2 ±M 1 . dt dt
(1.13)
(1.8), (1.9), (1.12)
(1.13)
, (
).
L1 ,
L2 , M
. ч
1.2.
к щ . (
) . (1.12)
«+» ( . 2, ).
, y(
(1.13)
,
. 2),
,
y
, ,
. 7
.2
«–»
(1.12) (
(1.13)
, i1 –
, , i2 –
.2, ).
,
. . 3.
.3 8
y , -
-
( i1 = i 2 = i ) .
u12
. 3, : u12 = ( L1 di + M di ) + ir1 + ( L2 di + M di ) + ir2 = dt dt dt dt = i ( r1 + r2 ) + ( L1 + L2 + 2 M ) di dt .3 : u12 = ( L1 di − M di ) + ir1 + ( L2 di − M di ) + ir2 = dt dt dt dt = i ( r1 + r2 ) + ( L1 + L2 − 2 M ) di . dt
(1.14)
, ,
-
–
. (
щ
)
: i ( t ) = I m sin( ω t + ϕ ) .
:
i (t )
i ( t ) = Im [ Ie jωt ] , I = I m e jϕ .
I– u = M di dt
щ
: U = jωM I . jωM
-
, . ,
. 3, щ
1–2 . 9
. 3, : U 12 = ( jωL1 I + jωMI ) + r1 I + ( jωL 2 I + jωMI ) + r2 I =
(1.15)
= ( r1 + r2 ) I + jω ( L1 + L 2 + 2 M ) I .
.3 : U 12 = ( jωL1 I − jωMI ) + r1 I + ( jωL2 I − jωMI ) + r2 I = ( r1 + r2 ) I + jω( L1 + L2 − 2 M ) I .
1.3.
фф
я щ
щ
K ,
(
.
.1): K
12
=
21
⋅
1
.
(1.16)
2
, , . 21 = Mi 2 , (1.16)
1 = L1i1 , :
K
И 12
2
=
(1.16) ≤ 1, 21 ≤
,
12
, = Mi1 ,
= L2 i 2 Mi1 Mi2 ⋅ = L1i1 L2 i2
,
M . L1 L2
(1.17) , -
K
2.
,
K
: 0≤ K
≤1.
,
(1.18) 1,
K
-
. 4, . Э .
,
0,
K 10
. 4, , .
.4
щ
(L1+L2–2M), .
, (1.15),
(1.14)
-
:
(
L1 − L2
L1 + L 2 − 2 L1 L 2 ≥ 0 ,
)2 ≥ 0 L1 + L2 ≥ 2 L1 L2 .
L1 L2 = M . K
И (1.17)
(1.19)
(1.19):
L1 + L2 ≥ 2 M . Kc K
≤1 ,
(1.20)
(1.20)
,
:
L1 + L2 ≥ 2 M .
: L1 + L 2 − 2 M ≥ 0 .
1.4. Т щ
ф
.5
ф
ч к ,
щ
-
. ,
( ). 11
,
,
-
.5
щ
:
U 1 = ( r1 + jωL1 ) I 1 − jωMI 2 , − U 2 = ( r2 + jωL2 ) I 2 − jωMI 1 .
(1.21) jωMI 2
,
U1 =
:
[ r1 + jω( L1 − M ) + jωM ] I 1 − jωMI 2 ,
− U 2 = − jωMI 1 + [ r2 + jω( L2 − M ) + jωM ] I 2 .
(1.22)
(1.22) , ,
щ
I1
I2.
. 6.
.6
щ
, (
) 12
-
. ,
.5
-
. , (
)
-
щ
, , .
« »
-
Z ,
.
. 5,
,
E (1.21):
,
U 1 = ( r1 + jωL1 ) I 1 ± jωMI 2 , 0 = ± jωMI 1 + ( r2 + jωL 2 + Z ) I 2 .
(1.23)
(1.23) (
(
И
(1.23) I2 =
+), «–»).
:
∓ j ω MI 1 . r2 + jωL2 + Z
(1.23)
I2
:
Z1
=
U1 I1
= r1 + jωL1 +
( ωM ) 2 . r2 + jωL2 + Z
(1.24)
(1.24) ,
.Э
-
. 7, 7,
7, . (1.24),
( Z1
)
, : Z
(1.24)
. 13
)
) .7
, ( ).
З
ч 1.1
.8
, :
.8. .
2, 3
щ
: 14
1,
I1 − I 2 − I 3 = 0 , I2 − I6 − I4 = 0, I3 + I6 − I5 − J = 0 .
1, 2, 3 ( ) щ : r1 I 1 + jωL1 I 2 − jωMI 4 + jωL 2 I 4 − jωMI 2 = E , 1 I − r I − ( jωL I − jωMI ) = 0 , 1 2 4 jωC1 3 2 6 r6 I 6 + 1 I 5 − ( jωL 2 I 4 − jωMI 2 ) = 0 . jωC 2 L1 L2 . З
-
-
ч 1.2
.9
,
.9,
-
: E , M, x1 , x 2 , r1 , r2 , ω, r . I1
I2.
: .9
.
x1 r1
-
x 2 r2 15
; (
x2 –
x1
. 10).
. 10
(
1
2
):
r1 I 1 + [ jx1 I1 − jωM ( I1 + I 2 )] + r2 I 2 + [ jx 2 ( I 1 + I 2 ) − jωMI 1 ] = E ; − r I 2 − [ r2 ( I 1 + I 2 ) + jx 2 ( I1 + I 2 ) − jωMI 1 ] = 0 .
З
ч 1.3
. 11
. 11 U , x1 , x 2 , x c , K .
.И ,
x1 = x 2 = x c = x .
:
r .
I2
: щ x1 = ωL1 ,
x1 x 2 = ωL 2 ,
x2 – xc –
xc = 1 . ωC
– ,
x1 , x 2 16
K :
K
=
M = L1 L2
ωM ωM , = ωL1 ⋅ ωL2 K x1 x 2
x1 = x 2 = x , ωM = K x .
(1.25) ,
щ
:
U = I 1 jx1 − I 2 jωM − ( I1 − I 2) ⋅
xc . j
, ωM :
x1 = x 2 = x c = x ,
,
I1 − I 2 . K x (1.25)
-
U = − I 2 jK x + I 2 jx .
: I2 =
U . jx (1 − K )
, ,
-
r .
17
А А 2.
А
Ы
Ы Э
Т
я
2.1. 2.1.1.
Э
-
щ
, .
: Im Z = 0 ,
(2.1)
Z И (
. r, L, C,
. 12).
. 12
1 ⎞ Z = r + j ⎛⎜ ωL − ⎟. ωC ⎠ ⎝ (2.1) ωL −
И
1 =0. ωC
:
, (2.2) -
, . .
, : 18
ω0 =
1 . LC
(2.3) -
щ
I =| I |=
:
| E | E . = | Z | r + j ⎛ ωL − 1 ⎞ ⎜ ⎟ ωC ⎠ ⎝
Im Z = 0 , |Z|
,
-
r, I 0: I0 =
E . r r →0 . Э
-
, . : U L0 = jω 0 LI0 = ω 0 LI0 e
U C 0 =
j
π 2,
π
1 1 − j2 I0 = I 0e . jω 0 C ω 0C
,
(2.4)
(2.4)
U L0 = −U C 0 , , U L
«
. 13. , UC
-
»
.
. 13 19
(2.2) :
U L0 = −U C 0
,
-
L – C :
U L −C 0 = U L0 − U C 0 = 0 .
,
L
щ
C)
,
( щ
,
,
-
.
, , . 12, ( Э
щ
-
. 14). -
(2.2),
щ : . 14
щ
.
2.1.2. Э
(
. 12)
.
i(t ) = I m cos ω 0 t . , : π U C (t ) = U C m cos ⎛⎜ ω 0t + ⎞⎟ = U C m sin ω 0t . 2⎠ ⎝
: LI m2 cos 2 ω 0t = W Lmax cos 2 ω 0 t , 2 2 CU Cm sin 2 ω 0t = WC max sin 2 ω 0t . WC (t ) = 2 W L (t ) =
20
(2.5)
, W Lmax = WC max =
2 CU Cm 2
.
,
:
ΔW LC max = W Lmax − WC max =
LI m2 2
−
CU 2
ω 0C ω0 L =
1 , ω 0C
,
m
=
1 2 ⎡ω 0 LI m2 − ω 0CU Cm ⎤. ⎣ ⎦ 2ω 0
-
:
U L U C =| U L | , U Cm
U Lm
2
,
C⎡ ω 0 LI m2 ⎢ ⎣ 2 , щ =| U | ,
(
ΔW LC max =
U Lmax
LI m2 2
)
2
2 ⎤ − U Cm . ⎦⎥
(2.6) , : U L = −U C . ,
C
U Lm = U Cm . = ω 0 LI m ,
,
-
,
ΔW LC max = 0 ,
. . 15
WL
W
-
)
.
t. . 15 ( : W LC = W L + WC =
2 LI m2 LI 2 CU Cm ⎡cos 2 ω 0t + sin 2 ω 0t ⎤ = m = . ⎦ 2 ⎣ 2 2
21
. 15
, , «
»
, C,
L
, .
щ
, ,
.
(r = 0) .
-
2.1.3. Ч
(
.
щ
.12)
:
1 ⎞ 1 ⎤ ⎡ω Z = r + j ⎛⎜ ωL − ⎟ = r + jω 0 L ⎢ − ⎥= ωC ⎠ ⎝ ⎣ω 0 ωω 0 LC ⎦ ⎡ω ω ⎤ = r + jω 0 L ⎢ − 0 ⎥ . ⎣ω 0 ω ⎦ 22
(2.7)
, E = Z ⋅ I ,
Z =| Z | e jϕ ,
φ – .
(2.7): ϕ = arg tg
( .
-
ω0 L ⎡ ω ω0 ⎤ . − r ⎢⎣ω 0 ω ⎥⎦
(2.8)
)
-
Э . 16.
φ (ω)
. 16
φ (ω) ( ω < ω0
. 14.
щ
ω = ω 0,
-
),
φ ,
ω > ω0
,
φ -
, . (
)
щ
: 23
.
I=
UL =
E
1 ⎞ r 2 + ⎛⎜ ωL − ⎟ ωC ⎠ ⎝ E ωL
2
;
; 1 ⎞2 ⎛ r + ⎜ ωL − ⎟ ωC ⎠ ⎝ 1 E ωC . UC = 2 1 ⎞ r 2 + ⎛⎜ ωL − ⎟ ωC ⎠ ⎝ 2
. 17
.
. 17
,
E , r
,
(ω = ω 0 ) . U L =UC . ,
ω
щ
ω
щ
.Э , . 24
, -
И
(2.1)
, ,
-
. . 16, 17. . 18 .
. 18
L=L
=
1
-
ω 02C =
.
=
1 ω 02 L
.
2.1.4.
щ
, Q = ω0
Wmax . P
25
–
-
: (2.9)
Wmax –
, ,P–
-
щ
. Wmax = W Lmax = WC max =
2 LI 02 CU Cm . = 2 2
P=
I 02 r . 2
, :
щ
L ω0 L ρ 1 Q= = = C= , r r r ω 0Cr L C . (2.10)
ρ=
И
(2.10) -
, ω0 L
1 ω 0C
r. U L0 = −U C 0 = jω 0 LI0 ,
, (2.10),
I0 =
:
E U L0 = −U C0 = jω 0 L = jEQ . r
И (2.11)
(2.11)
, Q=
U L0 E
=
U C0 E
.
(2.12)
,
-
L . . 19 , Q1 > Q 2 .
E r
,
. 19, 26
«
-
» .
. 19
З
ч 2.1
=1[
. 12 r = 10 [ ], L = 1 [ ω0 ,
].
],
Q, UC,
10
.
: (2.3) 1 = 10 3 / . LC ω L Q = 0 = 100 . r UC = Q⋅ E =1 . ω0 =
З
(2.10) (2.12)
ч 2.2 ,
. 20, f 0 = 50
. : U = 220
щ , U rL = 204 , U C = 180 – r, L, 27
, I=4
. -
. r1 .
. 20
: UC =U L
1. L=
UC = 0,143 2 πf 0 I
. UC = I
2. I = 70,8 2π f 0U C 3.
C=
2 ⎡U ⎤ r = ⎢⎛⎜ rL ⎞⎟ − ( 2πf 0 L) 2 ⎥ ⎣⎝ I ⎠ ⎦ (
4.
U r1 = − r = 31 I
U = I (r1 + r )
1 , ω 0C
.
U rL = I(r + jω 0 L) .
З
ω 0 LI = U L ,
1/ 2
= 24
. .2
3)
41
,
.
ч 2.3 f = 50 – 9
.
-
,
C = 51
? 28
: (
r
L)
-
: Z = r + jω L .
f = 50
41 2
41 = r + (ωL) ,
|Z| = 41 , 1 = | Z | 2 − r 2 = 0,127 2 πf = 62,5 .
З
, . .
2
L= f0 =
.
1 = 2π LC
ч 2.4 Э R = 16
-
E = 1,6 r
. -
щ ? :
-
r. -
Э (
. 21
. 21).
щ
, *
Z =Z ,
,
Z
Z
. Z = R,
щ
Z =r,
r = R = 16
: 29
щ-
I Ig =
E
2 ⎛ E ⎞ P = I g2 ⋅ r = ⎜ ⎟ ⋅r , ⎝R + r⎠ щ
–
I E х , Eg = х. 2 2
P = 20
Э
:
. к
2.2. 2.2.1.
Э
,
-
, (
),
(
). : Im Y = 0 ,
(2.13)
Y–
(
щ
-
). (
. 22)
.
-
r( 1 g = ). r
,
L,
–
C.
. 22 30
,
:
1 1 + jωC = g − j ⎛⎜ − ωC ⎞⎟ . j ωL ⎝ ωL ⎠ 1 − ωC = 0 . Э , : ωL 1 щ ω0 = . , LC
Y =g+
(
.
(2.3)).
,
Y (ω 0 ) = g !
IC ,
щ
-
U I , I , g L
, , I = I g + I L + IC (
щ
(2.13)
). ,
,
ω. U 1 − ωC ⎞⎤ : I = U ⋅ Y = U ⎡⎢g − j ⎛⎜ ⎟ . ⎣ ⎝ ωL ⎠⎦⎥ Y (ω 0 ) = g :
Y
I = U ⋅ g .
Э
,
I
,
U
щ
. ( . 31
-
(2.14)
, щ
-
)
-
щ
:
1 I =| I |=| U | ⋅ | Y |= U g − j ⎜⎛ − ωC ⎟⎞ . L ω ⎝ ⎠ Im Y = 0 , , I0 =U ⋅ g
|Y| = g. Э ( ω ≠ ω0 ) . (2.14)
,
,
-
I = I g , . .
,
щ .
1 = yL = jωL =−j
1 = − j ⋅ bL , ωL
bL =
y C = jωC = j ⋅ bC ,
1 – ωL
.
bC = ωC –
,
.
, π −j ⋅e 2 ,
IC = U ⋅ y C = U ⋅ jωC = ωCU ⋅ e
1
IC
j
(2.15)
π 2.
I L
, ,
I L
-
:
1 1 I L = U ⋅ y L = U ⋅ = ⋅U jω L ω L
Э
-
IC
-
1 = ω 0C , ω0 L
-
.
-
щ
1
:
ρ=
« , . 32
L », C
-
I L = − IC = −ω 0CU ⋅ e
j
π 2
=−
. 23. Э
щ
,
U L C
⋅e
j
π U j 2 =− e . ρ
π 2
:
I0 = I g + ( I L + IC ) = I g , (I L + IC ) = 0 .
(2.15), (2.16) , IL
. 23
-
-
IC
Ig . Э
I0
I L = IC =
, | U | L C
(2.16)
>>
| U | = I g = I0 . r
L ρ , ⎨ ⎩r2 > ρ
>0
⎧ r1 < ρ . ⎨ ⎩r2 < ρ
r 1 = r2 ≠ ρ , r1 = r2 = ρ ,
, ω p = ω0 . Im Y = 0 (
щ
ωp
,
b(ω) = 0 )
,
-
Z =ρ.
(2.19) r2 = 0
,
. 26: p = ω0 ω
( (
.
27
. 25 28),
ρ 2 − r12 ρ2
= ω0 1 −
r12 ρ2
.
. 26) , . Y p = g (ω p )
щ . 25,
,
(
-
, . 26): I p = U ⋅ Y = U ⋅ g (ω p ) .
И ωp
, rp =
(2.19)
ωp
1 . g (ω p )
-
(2.18)
-
, (
)
: g (ω p ) =
r1 + r2
rp =
r1r2 + ρ 2 36
r1r2 + ρ 2 . r1 + r2
(2.18) Im Y = 0
, ωp,
|Y|
щ
ωm ,
ω p ≠ ωm . ωm ,
I щ
(
-
ωp. Э
. 26) . . 23),
-
( Im Y = 0
. 25 -
min | Y |
ω0 .
2.2.2. Э
Э ,
. 22,
R–L–C . I L = − IC . Э
, (
π).
iC (t ) =
i L (t )
iC (t )
: = I C cos(ωt + ψ ) .
: i L (t ) = I L cos(ωt + ψ − π) = − I C cos(ωt + ψ ) . u (t ) :
щ
p L + p C = u (t ) ⋅ i L (t ) + u (t ) ⋅ iC (t ) = u (t )[i L (t ) + iC (t )] = = u (t )[−iC (t ) + iC (t )] = 0.
:
u (t ) = U sin(ωt + ψ ) . ,
,
:
37
u (t ) = -
π iC (t ) = I C sin ⎛⎜ ωt + ψ + ⎞⎟ = I C cos(ωt + ψ ) , 2⎠ ⎝ π i L (t ) = I L sin ⎜⎛ ωt + ψ − ⎟⎞ = − I L cos(ωt + ψ ) . 2⎠ ⎝
(
,
uC (t ) = u L (t ) = u (t ) ): W L (t ) =
Li L2 LI L2 = cos 2 (ωt + ψ ) = 2 2
(2.20)
= W L cos 2 (ωt + ψ ) = W L [1 + cos 2(ωt + ψ )], WC (t ) =
Cu C2 CU 2 = sin 2 (ωt + ψ ) = 2 2
= WC sin 2 (ωt + ψ ) = W [1 − cos 2(ωt + ψ )].
,
W L (t )
.И p L = − pC ,
,
WC (t ) p L + pC = 0
,
, d d (W L (t )) = − (WC (t )) . dt dt
(2.21)
(2.20) (2.21)
: W L [− sin 2(ωt + ϕ)] ⋅ 2ω = −WC [sin(2ωt + ϕ)] ⋅ 2ω .
щ
: W L = WC . ( W L (t )
ψ = 0) . 38
.15, WC (t ) ( ,
.
2.1.2). -
. ,
( ) ) (
, щ
),
(
щ
-
.
g. 2.2.3. Ч
(
. 22)
:
⎛ 1 ω⎞ 1 − ωC ⎟⎞ = g − jω 0C ⎜ − Y = g − j ⎜⎛ ⎟= ⎝ ωL ⎠ ⎝ ωω 0CL ω 0 ⎠
,
⎡ω ω⎤ = g − j ω 0C ⎢ 0 − ⎥ = Y ⋅ e − jϕ . ⎣ ω ω0 ⎦ φ– ( , ϕ(ω) = arctg ϕ(ω)
щ
ω 0 C ⎡ω 0 ω ⎤ . − g ⎢⎣ ω ω 0 ⎥⎦ . 27.
. 27 39
) :
ϕ(ω 0 ) = 0 . ϕ > 0,
ω < ω0
, ( b L > bC ).
ϕ ω0 ,
. 28.
. 28
Ig =U ⋅ g ,
:
IL =
I C = U ⋅ ωC .
U , ωL -
. 29. ω0
щ
–
.
I,
U( )
IL, IC, Ig
(
): 40
,
-
. 29
U (ω) =
I
2 1 g + ⎜⎛ − ωC ⎟⎞ ⎝ ωL ⎠
;
2
I⋅ I L (ω) =
I C (ω) =
1 ωL
2 1 g 2 + ⎜⎛ − ωC ⎟⎞ ⎝ ωL ⎠
I ⋅ ωC
2 1 g + ⎜⎛ − ωC ⎟⎞ ⎝ ωL ⎠
;
.
2
. 30 (
.
щ
. 30)
-
, . 17.
щ
щ U (ω) , I L (ω)
, ( U C (ω) , I C (ω)
) U L (ω) . 41
: I (ω)
-
. 30
З
ч 2.5 ,
U = 1,4 , : r = 50 ω0 , I g , I L IC И
( , L = 0,25
,
= 2,5
. 22),
.
-
ρ .
: (2.13)
-
: ω0 =
1 LC
1
=
ρ=
0, 25 ⋅ 10
−3
⋅ 2,5 ⋅ 10
−6
= 4 ⋅ 10 4
L 0, 25 ⋅ 10 −3 = = 10 C 2,5 ⋅ 10 −6
/ .
. :
1 1 I g = U ⋅ = 1, 4 ⋅ = 0,028 A = 28 50 r 42
,
U = 0,14 A = 1, 4 ⋅ 10 2 L C , IL ( Ig = I
I L = IC =
.
-
IC )
r
-
ρ З
I L IC r = = = 5. I I ρ
ч 2.6 (
. 25) ωp,
. : r1 = 8
, r2 = 6 ω0 ,
, L = 0,25
, C = 2,5 щ
. .
:
L
,
щ ω 0 ρ.
(2.19) : L − r12 ρ2 − r 2 100 − 64 C ωp = = ω 0 2 12 = ω 0 = L 100 − 36 LC ρ − r2 − r22 C 3 3 / = 3 ⋅ 10 4 / . = ω 0 = ⋅ 4 ⋅ 10 4 4 4 1
3 ω p = ω0 < ω0 . Э 4 , r1 < r2 < ρ
,
,
r2 < r1 < ρ . , ω p > ω0 . 43
C .
-
З
ч 2.7 2.6, Y1 = g 1 − jb1
Y2 = g 2 + jb2 . ,
-
u (t ) = 1, 4sin (ω p t ) [ ].
: (2.18)
-
ωp: Y1 = g 1 − jb1 =
r1 r12
+ (ω p L )
2
ω pL
−j
r12
+ (ω p L)
2
=
32 30 −j , 481 481
1 Y2 = g 2 + jb2 =
r2
⎛ 1 ⎞ r22 + ⎜⎜ ⎟⎟ ⎝ ω pC ⎠
2
+j
ω pC
⎛ 1 ⎞ r22 + ⎜⎜ ⎟⎟ ⎝ ω pC ⎠
2
=
27 30 +j . 962 481
щ
-
: Y = Y1 + Y2 = g 1 + g 2 =
щ ,
, )
91 7 = [ 962 74
–1
щ
U
].
, u. Э
( I
-
,
u (t) 7 : I = U ⋅ Y = 1, 4 ≈ 132 74
. U = 1, 4 ⋅ e j 0 = 1, 4 ,
-
щ
щ :
32 30 ⎞ I1 = U ⋅ Y1 = 1, 4 ⎛⎜ −j ⎟ ≈ 93 − j87,3 481⎠ ⎝ 481 44
.
,
27 30 ⎞ I2 = U ⋅ Y2 = 1,4 ⎛⎜ +j ⎟ ≈ 39 + j87,3 962 ⎠ ⎝ 962
. 31 I2
I1 I1A = 93
щ
, щ
: I1 = I1А + I1 p , I2 = I2 A + I2 p .
. I = − j87,3 1p
I2 p = j87,3
щ
щ
-
.
, ( щ
I1
I2 ) :
-
I1 p = − I2 p ,
. 31
I1A + I2 A = I .
З
щ
-
I2 A = 39
, щ
.
ч 2.8 (
.И-
.26) I2 = 12
щ
I =5
.
I1 .
: u (t ) = U sin (ω p t ) , U = U ⋅ e j 0 . 45
-
: I2 = U ⋅ jω p C =
I2 = U ωpC ⋅ e
jπ
2
. (
щ
(2.18))
:
Y = Y1 + Y2 =
⎛ ⎞ ωp L j C − − ω = ⎜ ⎟ p ⎜ r 2 + (ω L )2 ⎟ r 2 + (ω p L )2 p ⎝ ⎠ r = 2 = g (ω p ). r + (ω p L )2 r
: I = U ⋅ Y = U ⋅ g (ω p ) . , I U , I 2
U
щ . 32,
. ,
U
щ
, ,
I = I
, I2 = I2
. 32
: I = I1 + I2 (
. I1
I1
: I1 = I − I2 . И
) : I1 =| I1 |= | I |2 + | I1 |2 = 52 + 122 = 13
46
-
.
-
А А 3.
Ы
Ы А
(
Т
к
3.1.
щ
Ы Э Т А ТА)
к
,
-
(
-
, , .
(
)
,
). –
( ,
). И
( )
(
-
. 33),
.
-
, ,
:
– (
. 33, ), )
(
, . 33, ).
,
( -
. 33
. 34 .
щ .
47
, . 35
,
-
. 34
. 35
( = C1 .
Ca =
(
),
2
)
-
C1 ⋅ C2 . C1 + C2
,
/
, .
tK = 0 . И Δ tK = 0 . tK = 0 , . . t 3τ = 15 [
( ,
].
. 66) Э
:
-
. IC = 0 ,
: i1
=
E 2, 4 = = 0, 05 [A] . r1 + r3 8 + 40 82
. 66
. 67
4. И
: i1 = A ⋅ e A
−
t τ
+ 0, 05 .
-
.
i1 (0)
, –
uC (0+ ) =
uC (0+ ) . И ).
= uC (0−) = 0 (
t =0+ « i1 (0+ ) : i1 (0+ ) =
»(
. 67).
E 2, 4 = = 0,15 [A] . r1 + r2 || r3 8 + 10 ⋅ 40 10 + 40
А:
Э i1 (t = 0) = A ⋅ e 0 + 0,05 = i1 (0+ ) = 0,15 .
: A + 0, 05 = 0,15 → A = 0,1 [A] . = 0,1 ⋅ e i1 (t ) ,
−
t τ
i1 (t < 0) =
+ 0, 05 [A] .
. 68
E = 0,05 [A] . r1 + r3 83
, i1 (t ) =
. 68
З
ч 3.8 u1 (t )
E = 2, 4 [B]; L = 12 [
. 69, ]; r2 = r3 = 4 [
]; r1 = 2 [ 1.
,
, :
].
( -
щ
): u1 (t ) = B ⋅ e
τ
t τ
. ( . 70) E =0, « »
, λL .
,
= r1 + r3 ,
(3.8): τ=
+ u1
2.
. 69
R
−
L L 12 ⋅ 10 −3 = = =2[ R r1 + r3 2+4
84
].
. 70
t > 3τ = 6 [ I
3. ( . 71) UL = 0 , u1 : u1
= I ⋅ r1 =
E ⋅ r1 = r1 + r3
2, 4 ⋅ 2 = 0,8 [B]. 2+4
.
4.
:
u1 (t ) = B ⋅ e
−
t τ
]. -
+ 0,8 ,
. 71
B.
1 E iL (0+ ) = iL (0−) = ⋅ = 0,3 [A] 2 (r1 + r2 || r3 ) ( . 72) t =0+ ( 3.2). , u1 (0+ ) = J L 0 ⋅ r1 = iL (0+ ) ⋅ r1 = 0,3 ⋅ 2 = 0,6 [B] .
: B:
u1 (t = 0+ ) = A ⋅ e 0 + 0,8 = u1 (0+ ) = 0,6 [B] .
: А + 0,8 = 0,6,
А = 0,2. 85
. 72
u1 (t ) = 0, 2 ⋅ e .73.
, : E ⋅ r1 = 1, 2 [B] u1 (t < 0) = r1 + r2 || r3
−
t τ
+ 0,8 ,
.
. 73
86
-
1.
.И. .
.: Э
2.
. . , 1978. 3. И . ., . .I. , 1976. 4. .И. 5. . ., 1998. 6. .: 7.
И И, 1987. . ., . .:
.
.I.
.
.:
-
, 1978.
.И.
-
. .Э
.
/ И И, 2004.
.:
И И, 1984. . .: Э
. . . Э. .
87
, И. .
, щ
. -
И
Ы Э
И
И
И
II
.В. Ш -
. . 5,5
(
я«
.В.
01.12.2008 .. . 5,5 . № 4/89 № ) 115409, », . , 88
60×84 1/16 150 .
,
., 31 .