Table of contents : Cover......Page 1 Series......Page 2 TABLE OF CONTENTS......Page 3 INTRODUCTION......Page 5 Remarks on Notation......Page 14 CHAPTER 1: Background on Homogeneous Groups......Page 15 A. Homogeneous Groups......Page 16 B. Convolutions......Page 29 C. Derivatives and Polynomials......Page 34 D. The Schwartz Class......Page 49 E. Integral Representations of the $\\delta$ Function......Page 59 F. Covering Lemmas......Page 67 G. The Heat Kernel on Stratified Groups......Page 69 Notes and References......Page 75 CHAPTER 2: Maximal Functions and Atoms......Page 76 Notes and References......Page 93 CHAPTER 3: Decomposition and Interpolation Theorems......Page 94 A. The Calderon-Zygmund Decomposition......Page 95 B. The Atomic Decomposition......Page 111 C. Interpolation Theorems......Page 121 Notes and References......Page 125 A. Relationships Among Maximal Functions......Page 127 B. Construction of Commutative Approximate Identities......Page 142 Notes and References......Page 153 A. The Dual of $H^p$......Page 155 B. BM0......Page 160 C. Lipschitz Classes......Page 170 Notes and References......Page 196 A. Kernels of Type $(\\alpha,r)$......Page 198 B. A Multiplier Theorem......Page 222 Notes and References......Page 229 CHAPTER 7: Characterization of $H^p$ by Square Functions: The Lusin and Littlewood-Paley Functions......Page 231 Notes and References......Page 260 CHAPTER 8: Boundary Value Problems......Page 261 A. Temperatures on Stratified Groups......Page 262 B. Poisson Integrals on Stratified Groups......Page 267 C. Poisson Integrals on Symmetric Spaces......Page 275 Notes and References......Page 286 BIBLIOGRAPHY......Page 287 Index of Terminology......Page 295 Index of Notation......Page 297 Date-line......Page 299