Handbook of Lumbar Spine and Lower Extremity Examination : A Practical Guide [1 ed.] 9783031378034, 9783031378041

In addition to complementary radiographic imaging, the physical exam is an essential diagnostic element for the orthoped

118 53 15MB

English Pages xxiii; 276 [284] Year 2023

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Acknowledgements
Introduction
Terminology: Osteoarthritis Vs Osteoarthrosis
Contents
About the Author
Part I: The Lumbar Spine
1: Anatomy and Function of the Lumbar Spine
1.1 Anatomy
1.2 Function
2: A Systematic Examination of the Lumbar Spine
2.1 The Examination
2.1.1 Patient Standing (Observation)
2.1.2 Gait
2.1.3 Additional Three Tests
2.1.4 Range of Motion
2.2 Supine on the Couch
2.2.1 Straight Leg Raising Test (SLR)
2.2.2 Neurological Examination
2.2.3 Autonomous Zones
2.3 Examination of the Sacroiliac Joint (SIJ)
2.3.1 Distraction Test
2.3.2 Patrick’s Test
2.3.3 Thigh Thrust Test
2.3.4 Gaenslen’s Test
2.3.5 Compression Test
2.3.6 Palpation Tests
2.4 Prone on the Couch
2.4.1 Slump Test
2.4.2 Segmental Innervation of muscles
2.5 Application
2.6 Checklist for Examination of the Lumbar Spine
2.6.1 Patient Standing
2.6.2 Gait
2.6.3 Three Additional Tests
2.6.4 Range of Motion
2.6.5 Supine on the Couch
2.6.6 Prone on the Couch
2.6.7 Additional
3: Examination for Specific Conditions of the Lumbar Spine
3.1 Intervertebral Disc Prolapse
3.1.1 Anatomic Classification (Stages of Disc Herniation)
3.1.2 Location Classification
3.1.3 Symptoms
3.1.3.1 Physical Signs
3.1.4 Investigations
3.1.5 Treatment
3.1.5.1 Non-operative
3.1.5.2 Operative
3.1.5.3 Important Additional Considerations
3.2 Lumbar Sprain and Strain
3.2.1 Lumbar Spinal Stenosis (LSS)
3.3 Cauda Equina Syndrome (CES)
3.3.1 Symptoms
3.3.2 Physical Signs
3.3.3 Investigations
3.3.4 CES Red Flags
3.4 Spondylolysis and Spondylolisthesis
3.4.1 Spondylolysis
3.4.2 Spondylolisthesis
3.4.3 Classification
3.4.4 Grading (Meyerding)
3.4.5 Clinical Presentation
3.4.6 Investigation
3.5 Facet Joint Arthropathy
3.5.1 Symptoms
3.5.2 Signs
3.5.3 Investigations
3.5.4 Diagnosis
3.5.5 Treatment
3.6 Ankylosing Spondylitis (AS)
3.6.1 Investigations
3.6.2 Imaging
3.7 Infections in the Lumbar Spine: Osteomyelitis and Discitis
3.7.1 Definitions
3.7.2 Causes
3.7.3 Epidemiology
3.7.4 Symptoms
3.7.5 Signs
3.7.6 Investigations
3.7.7 Treatment
3.8 The Lumbosacral Plexus
3.8.1 The Lumbar Plexus (Fig. 3.15)
3.8.2 The Sacral Plexus (Fig. 3.16)
Part II: The Hip Joint
4: Anatomy and Function of the Hip
4.1 Movements
4.2 Range of Movement
4.3 Ligaments
4.4 Stability
4.5 Functions
4.5.1 Hip Joint
4.5.2 Acetabular Labrum
5: Systematic Examination of the Hip
5.1 Inspection and Palpation
5.2 Gait
5.3 Supine
5.4 Block Method of Measuring Leg Length
5.5 Trendelenburg Sign (Standing and Gait)
5.5.1 Standing Test
5.5.2 Gait Test
5.5.3 Causes
5.6 Apparent Shortening
5.7 Thomas Test
6: Examination for Specific Conditions of the Hip
6.1 Childhood and Adolescence
6.2 Transient Synovitis (Ages 3–10 Years)
6.3 Developmental Dysplasia of the Hip (DDH)
6.3.1 Clinical Signs in Unilateral Dislocation
6.3.2 Clinical Tests (Under 3 Months Old)
6.3.3 Investigations
6.3.4 Treatment
6.4 Ortolani Test
6.5 Barlow Test
6.6 Galeazzi Test
6.7 Septic (Pyogenic) Arthritis (Usually Under Age 3 Years)
6.7.1 Routes of Infection
6.7.2 Signs and Symptoms
6.7.3 Diagnostic Investigations
6.8 Perthes Disease (Legg-Calve-Perthes Disease)
6.8.1 Classification
6.8.2 Prognostic Factors
6.8.3 Symptoms
6.8.4 Signs
6.8.5 Imaging (X-rays)
6.9 Slipped Capital Femoral Epiphysis (SCFE)
6.9.1 Grading
6.9.2 Aetiology and Risk Factors
6.9.3 Symptoms
6.9.4 Signs
6.9.5 Imaging
6.9.6 Treatment
6.9.7 Triplane Osteotomy
6.9.8 Complications
6.9.9 Something to Think About: A Malunited Femoral Fracture
6.10 Osteoarthrosis (OA) of the Hip
6.10.1 Symptoms
6.10.2 Signs
6.10.3 Imaging
6.10.4 Treatment
6.10.5 Correction of the Malunited Femoral Fracture
6.11 Femoro-Acetabular Impingement (FAI)
6.11.1 Symptoms
6.11.2 Signs
6.11.3 Imaging
6.12 Osteonecrosis of the Femoral Head (Also Known as Avascular Necrosis: AVN)
6.12.1 Causes
6.12.2 Symptoms
6.12.3 Signs
6.12.4 Investigations
6.12.5 Staging (Variously Described)
6.12.6 Prognosis
Part III: The Knee Joint
7: Anatomy and Function of the Knee Joint
7.1 General Considerations
7.2 Movements of the Knee Joint
7.2.1 Patellofemoral Joint
7.2.2 Knee Ligaments
7.2.2.1 Intracapsular: The Cruciate Ligaments
7.2.2.2 Anterior Cruciate Ligament (ACL) (Fig. 7.9)
7.2.2.3 Posterior Cruciate Ligament (PCL) (Fig. 7.9)
7.2.2.4 Menisci
7.2.2.5 Medial Meniscus
7.2.2.6 Lateral Meniscus
7.3 Functions
7.3.1 Load Transmission
7.3.2 Joint Stability
7.3.3 Joint Lubrication and Nutrition
7.3.4 Proprioception
7.3.5 Shock Absorption
7.4 Blood Supply of the Knee
7.5 Nerve Supply
8: A Systematic Examination of the Knee
8.1 Inspection and Palpation
8.1.1 Gait
8.1.2 Range of Movement
8.1.3 Fluid in the Knee
8.1.4 Patellofemoral Joint
8.2 Testing Stability
8.2.1 Collateral Ligaments
8.2.1.1 Medial Collateral Ligament (MCL)
8.2.1.2 Lateral Collateral Ligament (LCL)
8.3 Cruciate Ligaments
8.3.1 Drawer Test
8.3.2 Anterior Cruciate Ligament (ACL)
8.3.2.1 Lachman Test
8.3.2.2 Pivot Shift Test
8.3.3 Posterior Cruciate Ligament (PCL)
8.3.3.1 Posterior ‘Sag’ Test
8.3.3.2 Meniscal Injuries
8.4 Joint Line Tenderness
8.5 McMurray’s Test
8.5.1 Method for Carrying Out the Seated Lumbar Extension Test (SLE TEST)
8.5.2 Points to Emphasise
8.5.3 Explanation
8.5.4 Conclusion
9: Examination for Specific Conditions of the Knee
9.1 Osteoarthrosis of the Knee
9.1.1 Risk Factors
9.1.2 Symptoms
9.1.3 Signs
9.1.4 X-Rays
9.1.5 Treatment
9.1.5.1 Non-operative
9.1.5.2 Operative
9.2 Meniscal Lesions
9.2.1 Symptoms
9.2.2 Signs
9.2.2.1 Locking
9.2.2.2 McMurray’s Test
9.2.2.3 Apley’s Grinding Test
9.3 Knee Ligament Injuries
9.3.1 Signs and Symptoms
9.3.1.1 The Fibular Collateral Ligament: Palpating the Most Palpable Ligament in the Body
9.4 Dislocation of the Patella
9.4.1 Symptoms
9.4.2 Signs
9.5 Recurrent Dislocation of the Patella
9.5.1 Signs and Symptoms
9.6 Extensor Mechanism Failure
9.6.1 Risk Factors
9.6.2 Signs
9.6.3 Investigations
9.7 Osgood Schlatter’s Disease (Tibial Tubercle Apophysitis)
9.8 Osteochondritis Dissecans of the Knee (OCD)
9.8.1 Symptoms
9.8.2 Signs
9.8.3 Imaging
9.8.4 Differential Diagnosis
9.9 Osteonecrosis
9.9.1 Spontaneous Osteonecrosis of the Knee (SONK)
9.9.1.1 Investigations
9.9.1.2 Prognosis
9.9.1.3 Differential Diagnosis
9.9.2 Association with Underlying Conditions
9.10 Swellings of the Knee: More Common Causes
Part IV: The Foot and Ankle
10: Anatomy and Function
10.1 Bones
10.1.1 Talus
10.1.2 Calcaneus (Heel Bone)
10.1.3 Navicular
10.1.4 Cuneiform Bones (Cuneiform = Wedge Shaped)
10.1.5 Metatarsals
10.1.6 Phalanges
10.1.7 Sesamoid Bones
10.2 Joints and Ligaments
10.2.1 Ankle Joint (Talocrural Joint)
10.2.2 Subtalar Joint: Talocalcaneal Joint (ST)
10.2.3 Talocalcaneonavicular Joint (TCN)
10.2.4 Calcaneocuboid Joint
10.2.5 Tarsometatarsal Joints (TMT)
10.2.5.1 Lisfranc Joint/Injury
10.2.6 Other Important Ligaments
10.2.6.1 Lisfranc Ligament
10.2.6.2 Plantar Calcaneonavicular (Spring) Ligament
10.2.6.3 Short Plantar Ligament (Plantar Calcaneocuboid Ligament)
10.2.6.4 Long Plantar Ligament
10.2.6.5 Bifurcate Ligament
10.2.6.6 Tarsal Sinus
10.3 Muscles and Tendons
10.3.1 Extrinsic Muscles
10.3.1.1 Superficial Posterior Compartment
Gastrocnemius
10.3.1.2 Deep Posterior Compartment
10.3.1.3 Anterior Compartment
10.3.1.4 Lateral Compartment
10.3.2 Intrinsic Muscles
10.3.2.1 First Layer (Lies Deep to the Plantar Aponeurosis)
10.3.2.2 Second Layer
10.3.2.3 Third Layer
10.3.2.4 Fourth Layer
10.3.2.5 Plantar Fascia (Aponeurosis)
10.3.2.6 Windlass Mechanism
10.3.3 Arches of the Foot
10.3.3.1 Medial Arch
10.3.3.2 Lateral Arch
10.3.3.3 Transverse Arch
10.3.4 Nerve Supply of the Foot
10.3.4.1 Tibial Nerve (L4,5,S1,2,3)
10.3.4.2 Common Peroneal (Fibular) Nerve (L4,5,S1,2)
10.3.5 Arterial Supply of the Foot
10.3.6 Movements
11: Systematic Examination of the Foot and Ankle
11.1 Inspection and Palpation
11.1.1 Gait
11.1.2 Range of Movement
11.1.3 Ankle Stability
11.2 Neurological Examination
11.3 Vascular Examination
11.3.1 Gait
11.3.2 Foot Drop
12: Examination for Specific Conditions of the Foot and Ankle
12.1 Osteoarthrosis of the Ankle (OA)
12.1.1 Symptoms
12.1.2 Signs
12.1.3 Treatment
12.2 Diabetic Foot Problems
12.2.1 Peripheral Neuropathy
12.2.2 Peripheral Arterial Disease (PAD)
12.2.3 Symptoms
12.2.4 Amputations in Patients with Diabetes
12.3 Conditions Relating to the Hindfoot
12.3.1 Talipes Equinovarus (CTEV)
12.3.1.1 Bony Abnormalities
12.3.1.2 Associated Conditions
12.3.2 Metatarsus Adductus
12.3.3 Talipes Calcaneovalgus
12.3.4 Congenital Vertical Talus (CVT)
12.3.5 Achilles Tendinitis
12.3.5.1 Signs
12.3.6 Achilles Tendon (TA) Rupture
12.3.6.1 Signs
12.3.6.2 Treatment
12.3.7 Heel Pain
12.3.7.1 Plantar Fasciitis
12.3.7.2 Symptoms
12.3.7.3 Signs
12.3.7.4 Treatment
12.3.7.5 Note
12.3.8 Insertional Achilles Tendinitis
12.3.8.1 Calcaneal Bursitis
12.3.8.2 Calcaneal Lesions
12.3.8.3 Haglund’s Deformity
12.3.8.4 Calcaneal Spurs (Heel Spurs)
12.3.8.5 Sever’s Disease (Calcaneal Apophysitis)
12.3.9 Osteochondritis Dissecans of the Talus (OCD)
12.3.10 Tarsal Tunnel Syndrome (TTS)
12.3.11 Sinus Tarsi Syndrome
12.4 Conditions Relating to the Midfoot
12.4.1 Flat Foot (Pes Planus)
12.4.2 Flexible Flat Foot
12.4.3 Rigid Flat Foot
12.4.4 Adult Acquired Flat Foot Deformity (AAFD)
12.4.5 Flat Foot in Children
12.4.6 Pes Cavus
12.4.7 Midfoot Pain
12.4.7.1 Causes
12.5 Conditions Relating to the Forefoot
12.5.1 Hallux Valgus
12.5.2 Hallux Rigidus
12.5.2.1 Symptoms
12.5.2.2 Signs
12.5.2.3 X-Ray
12.5.3 Gout
12.5.3.1 Diagnosis
12.5.3.2 Treatment
12.5.4 Morton’s Neuroma
12.5.4.1 Symptoms
12.5.5 Sesamoiditis
12.5.6 Freiberg’s Disease (Osteochondritis of the Metatarsal Head)
12.5.7 Stress Fractures
12.6 Lesser Toe Deformities
12.6.1 Hammer Toes
12.6.2 Claw Toes
12.6.3 Mallet Toe
12.6.4 In Summary
12.6.5 Symptoms
12.7 Overlapping Fifth Toe
12.8 Tailor’s Bunion (Bunionette)
Figure Credits and Sources
Further Reading
Index
Recommend Papers

Handbook of Lumbar Spine and Lower Extremity Examination : A Practical Guide [1 ed.]
 9783031378034, 9783031378041

  • Commentary
  • Medicine\\Orthopedics
  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Handbook of Lumbar Spine and Lower Extremity Examination A Practical Guide Roger Pillemer

123

Handbook of Lumbar Spine and Lower Extremity Examination

Roger Pillemer

Handbook of Lumbar Spine and Lower Extremity Examination A Practical Guide

Roger Pillemer Cammeray, NSW, Australia

ISBN 978-3-031-37803-4    ISBN 978-3-031-37804-1 (eBook) https://doi.org/10.1007/978-3-031-37804-1 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To our grandchildren, Ben, Max, Noah, Lucas, Mya, Lachlan, Cole, and Grayson Pillemer, and Mia Weigler, and to their parents who have all brought us so much pride and joy.

Acknowledgements

A special thank you to Dr Brian Noll, Orthopaedic Surgeon, colleague, and friend, for his advice and support for every one of my endeavours over the past 20 years, including his significant contribution to this book. To Dr. Jerry Jersky, friend and mentor, for encouragement and guidance since my first days as an intern and until the present. Thank you to Dr Andreas Loefler, Dr Michael Solomon, Dr Myles Coolican, Dr Todd Gothelf, and Dr David Crocker for reading over their special interest areas in the book and making many helpful suggestions. All errors are my own. And to Ruth Hadfield for her enormous help and advice in the preparation of this book. And special thanks to my wife Margie for her love, friendship, and tolerance for close to 50 years.

vii

Introduction

As with the first book in this series on the examination of the upper extremity, the main object is once again to emphasise the importance of physical examination in the practice of medicine. It appears to me that this skill is being progressively lost with the advent of highly sophisticated methods of investigation. As noted in the first edition of Hamilton Bailey’s textbook Physical Signs in Clinical Surgery first published in 1927 and now in its 19th edition, Dr Bailey notes: ‘There is a growing tendency to rely on laboratory and other auxiliary reports for a diagnosis’. He goes on to note: ‘The history, and physical methods of examination, must always remain the main channels by which a diagnosis is made’. This is as true today as it was in 1927, over 90 years ago, and it is essential for medical students and postgraduates to appreciate once again the importance of the physical examination and the eliciting of physical signs. The four parts of the book are each divided into three sections: Section 1 • The anatomy and function of the region Section 2 • A systematic examination which is carried out in every case Section 3 • An examination for specific conditions relating to the region

ix

x

Introduction

Please note that throughout the text, items of particular clinical significance have been highlighted in bold. Although this book is directed to medical students, interns, and registrars, it could also be particularly useful to allied professions such as nursing, occupational therapy, and physiotherapy. It is hoped that many specialists will also find interesting and useful information in the book. I hope that you enjoy reading the book as much as I enjoyed writing it! Roger Pillemer, 2023

Terminology: Osteoarthritis Vs Osteoarthrosis

Theoretically ‘osteoarthritis’ should only apply to inflammatory joint disease, while ‘osteoarthrosis’ is the correct term for degenerative or non-inflammatory joint disease. However, osteoarthritis is the term generally used for both of these conditions. The present situation is simply wrong and causes much confusion, particularly among non-orthopaedic surgeons. It is only recently that some people have started using the correct terminology for degenerative/mechanical involvement of joints. It seems inevitable that this change will eventually occur although it may take a few generations! In this book I have elected to use the terms in the correct manner and would encourage others to do the same.

xi

Contents

Part I The Lumbar Spine 1 Anatomy  and Function of the Lumbar Spine�������������  3 1.1 Anatomy������������������������������������������������������������������  3 1.2 Function������������������������������������������������������������������ 13 2 A  Systematic Examination of the Lumbar Spine�������� 15 2.1 The Examination���������������������������������������������������� 15 2.1.1 Patient Standing (Observation) ������������������ 15 2.1.2 Gait�������������������������������������������������������������� 16 2.1.3 Additional Three Tests�������������������������������� 16 2.1.4 Range of Motion ���������������������������������������� 17 2.2 Supine on the Couch ���������������������������������������������� 19 2.2.1 Straight Leg Raising Test (SLR) ���������������� 19 2.2.2 Neurological Examination�������������������������� 20 2.2.3 Autonomous Zones ������������������������������������ 20 2.3 Examination of the Sacroiliac Joint (SIJ) �������������� 22 2.3.1 Distraction Test ������������������������������������������ 23 2.3.2 Patrick’s Test ���������������������������������������������� 23 2.3.3 Thigh Thrust Test���������������������������������������� 24 2.3.4 Gaenslen’s Test ������������������������������������������ 24 2.3.5 Compression Test���������������������������������������� 24 2.3.6 Palpation Tests�������������������������������������������� 24 2.4 Prone on the Couch������������������������������������������������ 24 2.4.1 Slump Test�������������������������������������������������� 26 2.4.2 Segmental Innervation of muscles�������������� 26

xiii

xiv

Contents

2.5 Application�������������������������������������������������������������� 27 2.6 Checklist for Examination of the Lumbar Spine����  28 2.6.1 Patient Standing������������������������������������������ 28 2.6.2 Gait�������������������������������������������������������������� 28 2.6.3 Three Additional Tests�������������������������������� 28 2.6.4 Range of Motion ���������������������������������������� 28 2.6.5 Supine on the Couch ���������������������������������� 28 2.6.6 Prone on the Couch������������������������������������ 29 2.6.7 Additional �������������������������������������������������� 29 3 Examination  for Specific Conditions of the Lumbar Spine������������������������������������������������������ 31 3.1 Intervertebral Disc Prolapse������������������������������������ 31 3.1.1 Anatomic Classification (Stages of Disc Herniation)�������������������������������������������������� 31 3.1.2 Location Classification������������������������������� 32 3.1.3 Symptoms �������������������������������������������������� 33 3.1.4 Investigations���������������������������������������������� 34 3.1.5 Treatment���������������������������������������������������� 34 3.2 Lumbar Sprain and Strain �������������������������������������� 37 3.2.1 Lumbar Spinal Stenosis (LSS)�������������������� 38 3.3 Cauda Equina Syndrome (CES)������������������������������ 39 3.3.1 Symptoms �������������������������������������������������� 40 3.3.2 Physical Signs �������������������������������������������� 40 3.3.3 Investigations���������������������������������������������� 40 3.3.4 CES Red Flags�������������������������������������������� 40 3.4 Spondylolysis and Spondylolisthesis���������������������� 41 3.4.1 Spondylolysis���������������������������������������������� 41 3.4.2 Spondylolisthesis���������������������������������������� 42 3.4.3 Classification���������������������������������������������� 42 3.4.4 Grading (Meyerding)���������������������������������� 43 3.4.5 Clinical Presentation ���������������������������������� 43 3.4.6 Investigation������������������������������������������������ 44 3.5 Facet Joint Arthropathy������������������������������������������ 45 3.5.1 Symptoms �������������������������������������������������� 46 3.5.2 Signs������������������������������������������������������������ 47 3.5.3 Investigations���������������������������������������������� 47

Contents

xv

3.5.4 Diagnosis���������������������������������������������������� 47 3.5.5 Treatment���������������������������������������������������� 47 3.6 Ankylosing Spondylitis (AS)���������������������������������� 48 3.6.1 Investigations���������������������������������������������� 48 3.6.2 Imaging ������������������������������������������������������ 49 3.7 Infections in the Lumbar Spine: Osteomyelitis and Discitis�������������������������������������������������������������� 50 3.7.1 Definitions�������������������������������������������������� 50 3.7.2 Causes �������������������������������������������������������� 50 3.7.3 Epidemiology���������������������������������������������� 51 3.7.4 Symptoms �������������������������������������������������� 51 3.7.5 Signs������������������������������������������������������������ 51 3.7.6 Investigations���������������������������������������������� 51 3.7.7 Treatment���������������������������������������������������� 52 3.8 The Lumbosacral Plexus���������������������������������������� 53 3.8.1 The Lumbar Plexus (Fig. 3.15) ������������������ 53 3.8.2 The Sacral Plexus (Fig. 3.16)���������������������� 55 Part II The Hip Joint 4 Anatomy  and Function of the Hip�������������������������������� 59 4.1 Movements�������������������������������������������������������������� 62 4.2 Range of Movement������������������������������������������������ 64 4.3 Ligaments���������������������������������������������������������������� 65 4.4 Stability ������������������������������������������������������������������ 66 4.5 Functions���������������������������������������������������������������� 67 4.5.1 Hip Joint������������������������������������������������������ 67 4.5.2 Acetabular Labrum ������������������������������������ 67 5 Systematic  Examination of the Hip������������������������������ 69 5.1 Inspection and Palpation ���������������������������������������� 69 5.2 Gait�������������������������������������������������������������������������� 70 5.3 Supine �������������������������������������������������������������������� 70 5.4 Block Method of Measuring Leg Length���������������� 72 5.5 Trendelenburg Sign (Standing and Gait)���������������� 74 5.5.1 Standing Test���������������������������������������������� 74 5.5.2 Gait Test������������������������������������������������������ 74

xvi

Contents

5.5.3 Causes �������������������������������������������������������� 75 5.6 Apparent Shortening ���������������������������������������������� 76 5.7 Thomas Test������������������������������������������������������������ 78 6 Examination  for Specific Conditions of the Hip��������� 81 6.1 Childhood and Adolescence������������������������������������ 81 6.2 Transient Synovitis (Ages 3–10 Years) ������������������ 81 6.3 Developmental Dysplasia of the Hip (DDH)���������� 82 6.3.1 Clinical Signs in Unilateral Dislocation ���� 83 6.3.2 Clinical Tests (Under 3 Months Old)���������� 83 6.3.3 Investigations���������������������������������������������� 85 6.3.4 Treatment���������������������������������������������������� 85 6.4 Ortolani Test������������������������������������������������������������ 86 6.5 Barlow Test ������������������������������������������������������������ 87 6.6 Galeazzi Test ���������������������������������������������������������� 87 6.7 Septic (Pyogenic) Arthritis (Usually Under Age 3 Years)���������������������������������������������������������������������� 88 6.7.1 Routes of Infection�������������������������������������� 88 6.7.2 Signs and Symptoms���������������������������������� 88 6.7.3 Diagnostic Investigations���������������������������� 89 6.8 Perthes Disease (Legg-Calve-Perthes Disease)������ 89 6.8.1 Classification���������������������������������������������� 89 6.8.2 Prognostic Factors�������������������������������������� 90 6.8.3 Symptoms �������������������������������������������������� 90 6.8.4 Signs������������������������������������������������������������ 90 6.8.5 Imaging (X-rays)���������������������������������������� 90 6.9 Slipped Capital Femoral Epiphysis (SCFE) ���������� 92 6.9.1 Grading ������������������������������������������������������ 92 6.9.2 Aetiology and Risk Factors������������������������ 92 6.9.3 Symptoms �������������������������������������������������� 92 6.9.4 Signs������������������������������������������������������������ 94 6.9.5 Imaging ������������������������������������������������������ 94 6.9.6 Treatment���������������������������������������������������� 96 6.9.7 Triplane Osteotomy������������������������������������ 96 6.9.8 Complications �������������������������������������������� 97 6.9.9 Something to Think About: A Malunited Femoral Fracture���������������������������������������� 97

Contents

xvii

6.10 Osteoarthrosis (OA) of the Hip������������������������������ 97 6.10.1 Symptoms �������������������������������������������������� 97 6.10.2 Signs������������������������������������������������������������ 98 6.10.3 Imaging ������������������������������������������������������ 98 6.10.4 Treatment���������������������������������������������������� 99 6.10.5 Correction of the Malunited Femoral Fracture ������������������������������������������������������100 6.11 Femoro-Acetabular Impingement (FAI) ����������������100 6.11.1 Symptoms ��������������������������������������������������100 6.11.2 Signs������������������������������������������������������������101 6.11.3 Imaging ������������������������������������������������������101 6.12 Osteonecrosis of the Femoral Head (Also Known as Avascular Necrosis: AVN)������������102 6.12.1 Causes ��������������������������������������������������������102 6.12.2 Symptoms ��������������������������������������������������103 6.12.3 Signs������������������������������������������������������������103 6.12.4 Investigations����������������������������������������������103 6.12.5 Staging (Variously Described)��������������������104 6.12.6 Prognosis����������������������������������������������������104 Part III The Knee Joint 7 Anatomy  and Function of the Knee Joint��������������������107 7.1 General Considerations������������������������������������������107 7.2 Movements of the Knee Joint ��������������������������������110 7.2.1 Patellofemoral Joint������������������������������������110 7.2.2 Knee Ligaments������������������������������������������113 7.3 Functions����������������������������������������������������������������121 7.3.1 Load Transmission��������������������������������������121 7.3.2 Joint Stability����������������������������������������������122 7.3.3 Joint Lubrication and Nutrition������������������122 7.3.4 Proprioception��������������������������������������������122 7.3.5 Shock Absorption����������������������������������������122 7.4 Blood Supply of the Knee��������������������������������������122 7.5 Nerve Supply����������������������������������������������������������123

xviii

Contents

8 A  Systematic Examination of the Knee������������������������125 8.1 Inspection and Palpation ����������������������������������������125 8.1.1 Gait��������������������������������������������������������������126 8.1.2 Range of Movement������������������������������������126 8.1.3 Fluid in the Knee����������������������������������������126 8.1.4 Patellofemoral Joint������������������������������������127 8.2 Testing Stability������������������������������������������������������132 8.2.1 Collateral Ligaments����������������������������������132 8.3 Cruciate Ligaments ������������������������������������������������133 8.3.1 Drawer Test ������������������������������������������������133 8.3.2 Anterior Cruciate Ligament (ACL)������������134 8.3.3 Posterior Cruciate Ligament (PCL)������������135 8.4 Joint Line Tenderness����������������������������������������������136 8.5 McMurray’s Test ����������������������������������������������������136 8.5.1 Method for Carrying Out the Seated Lumbar Extension Test (SLE TEST)����������136 8.5.2 Points to Emphasise������������������������������������137 8.5.3 Explanation ������������������������������������������������137 8.5.4 Conclusion��������������������������������������������������138 9 Examination  for Specific Conditions of the Knee ������139 9.1 Osteoarthrosis of the Knee��������������������������������������139 9.1.1 Risk Factors������������������������������������������������139 9.1.2 Symptoms ��������������������������������������������������139 9.1.3 Signs������������������������������������������������������������140 9.1.4 X-Rays��������������������������������������������������������140 9.1.5 Treatment����������������������������������������������������141 9.2 Meniscal Lesions����������������������������������������������������142 9.2.1 Symptoms ��������������������������������������������������144 9.2.2 Signs������������������������������������������������������������144 9.3 Knee Ligament Injuries������������������������������������������147 9.3.1 Signs and Symptoms����������������������������������147 9.4 Dislocation of the Patella����������������������������������������149 9.4.1 Symptoms ��������������������������������������������������151 9.4.2 Signs������������������������������������������������������������151 9.5 Recurrent Dislocation of the Patella ����������������������151 9.5.1 Signs and Symptoms����������������������������������151

Contents

xix

9.6 Extensor Mechanism Failure����������������������������������152 9.6.1 Risk Factors������������������������������������������������153 9.6.2 Signs������������������������������������������������������������154 9.6.3 Investigations����������������������������������������������154 9.7 Osgood Schlatter’s Disease (Tibial Tubercle Apophysitis) ��������������������������������154 9.8 Osteochondritis Dissecans of the Knee (OCD)������156 9.8.1 Symptoms ��������������������������������������������������156 9.8.2 Signs������������������������������������������������������������156 9.8.3 Imaging ������������������������������������������������������157 9.8.4 Differential Diagnosis ��������������������������������158 9.9 Osteonecrosis����������������������������������������������������������158 9.9.1 Spontaneous Osteonecrosis of the Knee (SONK) ������������������������������������������������������159 9.9.2 Association with Underlying Conditions ��������������������������������������������������160 9.10 Swellings of the Knee: More Common Causes ����������������������������������������������������160 Part IV The Foot and Ankle 10 Anatomy and Function��������������������������������������������������165 10.1 Bones��������������������������������������������������������������������165 10.1.1 Talus����������������������������������������������������������165 10.1.2 Calcaneus (Heel Bone) ����������������������������168 10.1.3 Navicular��������������������������������������������������168 10.1.4 Cuneiform Bones (Cuneiform = Wedge Shaped)������������������168 10.1.5 Metatarsals������������������������������������������������172 10.1.6 Phalanges��������������������������������������������������172 10.1.7 Sesamoid Bones����������������������������������������172 10.2 Joints and Ligaments��������������������������������������������174 10.2.1 Ankle Joint (Talocrural Joint) ������������������174 10.2.2 Subtalar Joint: Talocalcaneal Joint (ST) ��175 10.2.3 Talocalcaneonavicular Joint (TCN)����������176 10.2.4 Calcaneocuboid Joint��������������������������������178

xx

Contents

10.2.5 Tarsometatarsal Joints (TMT)������������������179 10.2.6 Other Important Ligaments����������������������181 10.3 Muscles and Tendons��������������������������������������������185 10.3.1 Extrinsic Muscles��������������������������������������186 10.3.2 Intrinsic Muscles��������������������������������������192 10.3.3 Arches of the Foot������������������������������������196 10.3.4 Nerve Supply of the Foot��������������������������199 10.3.5 Arterial Supply of the Foot ����������������������201 10.3.6 Movements������������������������������������������������203 11 Systematic  Examination of the Foot and Ankle����������205 11.1 Inspection and Palpation ��������������������������������������205 11.1.1 Gait������������������������������������������������������������206 11.1.2 Range of Movement����������������������������������206 11.1.3 Ankle Stability������������������������������������������207 11.2 Neurological Examination������������������������������������211 11.3 Vascular Examination ������������������������������������������211 11.3.1 Gait������������������������������������������������������������212 11.3.2 Foot Drop��������������������������������������������������214 12 Examination  for Specific Conditions of the Foot and Ankle����������������������������������������������������217 12.1 Osteoarthrosis of the Ankle (OA) ������������������������217 12.1.1 Symptoms ������������������������������������������������218 12.1.2 Signs����������������������������������������������������������218 12.1.3 Treatment��������������������������������������������������219 12.2 Diabetic Foot Problems����������������������������������������219 12.2.1 Peripheral Neuropathy������������������������������220 12.2.2 Peripheral Arterial Disease (PAD)������������220 12.2.3 Symptoms ������������������������������������������������221 12.2.4 Amputations in Patients with Diabetes ����221 12.3 Conditions Relating to the Hindfoot ��������������������221 12.3.1 Talipes Equinovarus (CTEV)��������������������221 12.3.2 Metatarsus Adductus��������������������������������223 12.3.3 Talipes Calcaneovalgus����������������������������224 12.3.4 Congenital Vertical Talus (CVT)��������������224 12.3.5 Achilles Tendinitis������������������������������������225 12.3.6 Achilles Tendon (TA) Rupture������������������226

Contents

xxi

12.3.7 Heel Pain��������������������������������������������������227 12.3.8 Insertional Achilles Tendinitis������������������231 12.3.9 Osteochondritis Dissecans of the Talus (OCD) ������������������������������������������������������235 12.3.10 Tarsal Tunnel Syndrome (TTS)����������������235 12.3.11 Sinus Tarsi Syndrome ������������������������������237 12.4 Conditions Relating to the Midfoot����������������������237 12.4.1 Flat Foot (Pes Planus) ������������������������������238 12.4.2 Flexible Flat Foot��������������������������������������238 12.4.3 Rigid Flat Foot������������������������������������������238 12.4.4 Adult Acquired Flat Foot Deformity (AAFD) ����������������������������������������������������239 12.4.5 Flat Foot in Children��������������������������������241 12.4.6 Pes Cavus��������������������������������������������������241 12.4.7 Midfoot Pain ��������������������������������������������242 12.5 Conditions Relating to the Forefoot����������������������243 12.5.1 Hallux Valgus��������������������������������������������244 12.5.2 Hallux Rigidus������������������������������������������246 12.5.3 Gout����������������������������������������������������������246 12.5.4 Morton’s Neuroma������������������������������������250 12.5.5 Sesamoiditis����������������������������������������������251 12.5.6 Freiberg’s Disease (Osteochondritis of the Metatarsal Head)����������������������������252 12.5.7 Stress Fractures ����������������������������������������253 12.6 Lesser Toe Deformities ����������������������������������������254 12.6.1 Hammer Toes��������������������������������������������256 12.6.2 Claw Toes��������������������������������������������������256 12.6.3 Mallet Toe ������������������������������������������������256 12.6.4 In Summary����������������������������������������������256 12.6.5 Symptoms ������������������������������������������������258 12.7 Overlapping Fifth Toe ������������������������������������������258 12.8 Tailor’s Bunion (Bunionette)��������������������������������259 Figure Credits and Sources ��������������������������������������������������261 Index����������������������������������������������������������������������������������������271

About the Author

Roger  Pillemer  OAM, MBBCh (Rand), FRCS (Ed), FRACS, FAOrthA, is an orthopaedic surgeon who did his early training in South Africa and the UK.  He was a 1974 ABC Travelling Fellow who is now resident in Australia. He has always had a passion for teaching.

xxiii

Part I The Lumbar Spine

1

Anatomy and Function of the Lumbar Spine

1.1 Anatomy • The vertebral column consists of 24 vertebrae (7 cervical, 12 thoracic, and 5 lumbar) separated by intervertebral discs as well as 5 fused vertebrae forming the sacrum and a further 4 fused vertebrae forming the coccyx (Fig. 1.1). • Confusion can arise in naming the lumbar vertebrae when there appear to be six when S1 separates from the sacrum (lumbarisation), or when there appear to be four when L5 fuses with the sacrum (sacralisation). These are both congenital abnormalities. • When viewed from behind the spine normally appears straight. If an abnormal lateral curvature is present (scoliosis), it might be relatively fixed (structural) or mobile (postural), as might occur with leg length discrepancy or hip pathology. Note that postural scoliosis disappears on sitting (Fig. 1.2). • When viewed from the side the lumbar spine has a backward concavity known as the lumbar lordosis. The curvature straightens with lumbar flexion. • Each lumbar vertebra consists of a kidney-shaped anterior weight-bearing body and a posterior vertebral arch containing a posterior projection (the spinous process) and two lateral

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_1

3

4 Fig. 1.1 Vertebral column—lateral view whole spinal column

1  Anatomy and Function of the Lumbar Spine

cervical curvature vertebra prominens

rib facet thoracic curvature

intervertebral disks

lumbar curvature

intervertebral foramina

sacrum sacral curvature coccyx

1.1 Anatomy

Fig. 1.2  Short-leg scoliosis disappears on sitting

5

6

1  Anatomy and Function of the Lumbar Spine

Fig. 1.3  Lumbar vertebra—viewed from above









projections (the transverse processes). These projections serve as attachment sites for muscles and ligaments which provide for spinal stability (Fig. 1.3). That part of the arch between the body and the transverse process on each side is the pedicle, and that part between the transverse process and the spinous process is the lamina. Each vertebral body has four facet joints, two superior to articulate with the vertebra above, and two inferior to articulate with the vertebra below. These joints allow for movement between the vertebral bodies as well as supplying significant stability to the spine (Fig. 1.4). The facet joints are located at the junction of the pedicles and the laminae, and the direction of their surfaces determines the type of movement that can occur between adjacent vertebrae. These are weight-bearing synovial joints. The space between the vertebral body anteriorly and the arch posteriorly is the intervertebral foramen or spinal canal. In the lumbar region this has a triangular shape.

1.1 Anatomy Fig. 1.4  Facet joints

7

Inferior articular process Left facet joint Superior articular process

Disc joint Right facet joint

Fig. 1.5  Cauda equina Spinal cord

Cauda equina

• The tapered end of the spinal cord terminates at L1 (the conus medullaris) and the spinal canal below this contains nerve roots only, the cauda equina, so named because of its resemblance to a horse’s tail (Fig. 1.5). • The height of the pedicles is slightly less than the height of the bodies such that adjacent pedicles form a foramen allowing the spinal nerves to exit the vertebral canal (Fig. 1.6). Each nerve

1  Anatomy and Function of the Lumbar Spine

8

Primary dorsal ramus Lateral branch Medial branch

Spinal nerve

Articular superior branch Articular inferior branch

Fig. 1.6  Spinal nerves exiting vertebral foramen

1.1 Anatomy

9 NORMAL DISC

a

Anulus Fibrosus

b

Nucleus Pulposus

Outer Zone Of Anulus Fibrosus Inner Zone Of Anulus Fibrosus

Hyaline Cartilage Endplate

Fig. 1.7 (a) Intervertebral disc from above; (b) Intervertebral disc from anterior

1  Anatomy and Function of the Lumbar Spine

10 Fig. 1.8 Vertebral segment

Normal spinal segment

Intervertebral disc vertebra



• •





Dura around spinal cord Nerve root

root is covered by a dural sleeve, as far as the intervertebral foramen. Each intervertebral disc has two distinct components (Fig. 1.7): –– An outer ring of very strong fibrous tissue, the annulus fibrosis –– A soft pliable inner section, the nucleus pulposus The intervertebral disc is innervated in the outer annulus fibrosus by sinuvertebral nerves. Intervertebral discs are avascular apart from a minimal peripheral blood supply. They receive nutrition by diffusion from adjacent vertebral bodies. Each ‘vertebral segment’ consists of two adjacent vertebral bodies and the intervertebral disc with an emerging spinal nerve root on each side (Fig. 1.8). There are four main groups of ligaments (Fig. 1.9): –– The anterior and posterior longitudinal ligaments which attach to the vertebral bodies and run the full length of the spine. They prevent hyperextension and hyperflexion, respectively. –– The interspinous and supraspinous ligaments which attach between the spinous processes and their tips, respectively. –– The intertransverse ligaments which extend between the transverse processes.

1.2 Function

11

Intertransverse ligament

Ligamentum flavum

Posterior longitudinal ligament

Supraspinous ligament

Anterior longitudinal ligament

Anterior longitudinal ligament

Interspinous ligament

Anterior longitudinal ligament

Ligamentum flavum

Posterior longitudinal ligament

Fig. 1.9  Spinal ligaments

12

1  Anatomy and Function of the Lumbar Spine

–– The ligamenta flava (ligamentum flavum—singular = yellow ligament) are a series of ligaments that connect the ventral aspects of the laminae of adjacent vertebrae. • In addition, there are the iliolumbar ligaments on each side which connect the transverse processes of L5 to the sacrum. • There are two main groups of extensor muscles each consisting of three subgroups (Fig. 1.10): –– Transversospinalis: includes the rotatores, multifidus, and semispinalis –– Erector spinae: includes iliocostalis, longissimus, and ­spinalis

Fig. 1.10  Extensor muscles of the spine

1.2 Function

13

1.2 Function • In conjunction with the rest of the vertebral column, the lumbar spine supports the weight of the body above the pelvis and transmits the weight of the upper body to the pelvis and lower limbs. • It protects the spinal cord and spinal nerves within the spinal canal. • It forms the central axis of the body. • Because of the orientation of the lumbar facet joints in the anteroposterior plane, a significant range of flexion and extension is possible, with moderate lateral flexion but minimal rotation.

2

A Systematic Examination of the Lumbar Spine

Unless one examines the lumbar spine on a regular basis it is very easy to forget to specifically look for all the relevant signs and do all the tests needed for a full/complete examination. It is very useful to have a ‘checklist’ to use until such time as one has full confidence in the completeness of one’s examination. A checklist is therefore provided at the end of this section. Note: • It is appropriate for males to be stripped down to shorts and females to bra and shorts. A chaperone of the same gender may be appropriate. • An examination of the lumbar spine must include an examination of the hips, knees, peripheral pulses, and a neurological examination.

2.1 The Examination 2.1.1 Patient Standing (Observation) • Any superficial abnormalities such as scars, tufts of hair, or pigmentation. • From the front: check the squareness of the shoulders and the pelvis, as well as any list. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_2

15

16

2  A Systematic Examination of the Lumbar Spine

• From the side: check the normal spinal curvatures including specifically loss of lumbar lordosis. • From the back: check for evidence of scoliosis.

2.1.2 Gait • If any abnormality of gait is present, attempt to determine the cause. • Get the patient to heel and toe walk (screening test for L5 and S1 function, respectively).

2.1.3 Additional Three Tests At this stage and before testing for range of movement, carry out the following three tests: • Test if the pelvis is square (Fig. 2.1) for leg length discrepancy. • Palpate for paraspinal guarding or spasm (often associated with loss of lumbar lordosis). • Test chest expansion. If this is not done, you may miss the occasional case of ankylosing spondylitis. Chest expansion in an adult male should be 5  cm or greater, and if there is any concern in this regard, two further tests should be carried out: Fig. 2.1  Square pelvis

2.2  Supine on the Couch

17

–– Wall test: with heels against the skirting board, ask the patient to place the occiput to the wall—loss of extension is most significantly affected in this condition. –– Schober’s test: Two fixed points, the spinous process of L5 and a point 10  cm above this, are marked and measured with the patient erect and compared to the distance with the patient in flexion. A discrepancy of less than 5cm between the two measurements indicates stiffness of the lumbar spine. (Normally palpation is carried out before movement, but with the spine it is more convenient to carry out palpation towards the end of the examination, when the patient is prone on the examination couch.)

2.1.4 Range of Motion Tested in three planes: sagittal, coronal, and vertical (rotation). It is appropriate to suggest that the patient should not force movements which cause pain. • Sagittal: Flexion and extension. With flexion, the patient is requested to keep the knees ‘straight’, and to attempt to touch the toes. • v: Lateral flexion to either side, with the request to run the palm down the side of the leg as far as possible. • Vertical: Rotate to either side while the examiner stabilises the pelvis (Fig. 2.2). Note that rotation occurs in the thoracic spine with minimal rotation in the lumbar spine.

18

2  A Systematic Examination of the Lumbar Spine

Fig. 2.2  Range of motion: rotation. Stabilise pelvis

2.2  Supine on the Couch

19

2.2 Supine on the Couch Check the hips and knees as well as peripheral pulses before proceeding with spine tests.

2.2.1 Straight Leg Raising Test (SLR) • This is carried out slowly, watching the patient’s face for any signs of discomfort/distress. • The examiner’s left hand is placed on the anterior thigh above the knee, and the right hand supporting the foot, with the ankle at a right angle (Fig. 2.3). • Start with the unaffected side. • Significant restriction of SLR suggests nerve root irritation. • When straight leg raising is restricted by discomfort or pain, dorsiflexion of the foot and ankle (Lasegue test) will increase

Fig. 2.3  Straight leg raising test (SLR)

20

2  A Systematic Examination of the Lumbar Spine

the symptoms if due to nerve root tension as opposed to ­hamstring tightness • Similarly, symptoms can be increased by compression of the popliteal fossa (a positive ‘Bowstring sign’). • When SLR on the unaffected leg causes symptoms on the affected side, this usually indicates significant nerve root involvement, the ‘crossed sciatic tension sign’.

2.2.2 Neurological Examination • A neurological examination is now carried out, testing for motor, sensory, and reflex function as well as checking for muscle wasting. • Figure 2.4a shows one accepted version of the sensory ­dermatomes.

2.2.3 Autonomous Zones As in the upper extremity there are so-called autonomous zones, which are those areas very specifically supplied by a particular nerve (Fig. 2.4b): • • • •

L2: Anteromedial mid-thigh L3: Medial femoral condyle L4: Medial malleolus L5: Third metatarso-phalangeal joint on dorsum of foot

2.2  Supine on the Couch

a

b

21

L3

L4

L5

a

b

L1 S3

S3 L2

L2

S4 S2 S1

S5 L3

S4 S5

L2 L4

L4

L3

L5

L5

S2

S2 S1

S1

S2

L3

L4

S1

L5

Fig. 2.4 (a) Dermatomes of the legs ((a) front; (b) back) . (b) Autonomous zones ((a) front; (b) back)

• S1: Lateral heel • S2: Popliteal fossa, slightly medial to the midline Table 2.1 shows the changes that might be found with involvement of specific nerve roots.

2  A Systematic Examination of the Lumbar Spine

22

Table 2.1  Clinical presentation of specific nerve root involvement Nerve root L3

Reflex Hip

Motor deficit Hip flexion and adduction

L4

Knee

L5

Medial hamstringa

S1

Ankle

Quadriceps Foot inversion Extensor hallucis longus and extensor digitorum brevisb (EHL and EDB) Plantar flexion Eversion

Sensory deficit Medial thigh to knee Medial leg and foot Anterolateral leg Dorsum of foot Lateral foot and sole

 The medial hamstring reflex is well described in the literature, but seldom referred to in clinical notes, suggesting that this reflex is not routinely being tested for. It is a very reliable test for L5 nerve root involvement! (See Roger Pillemer YouTube: ‘In Brief – Radiculopathy; the importance of the medial hamstring reflex in testing for L5 radiculopathy’) b  Another sign of L5 nerve root involvement that is well described but seldom referred to is wasting of EDB.  As Jack Last says this is a muscle ‘whose fleshy belly can be seen in most feet and felt in all’ (Fig. 2.5). It is supplied by the lateral terminal branch of the deep peroneal nerve (L5). a

Fig. 2.5 Extensor digitorum brevis (EDB)

2.3 Examination of the Sacroiliac Joint (SIJ) • Tests need to be repeated at least three times. • Combine at least three tests. • Pain indicates a positive test.

2.3  Examination of the Sacroiliac Joint (SIJ)

a

b

d

23

c

e

Fig. 2.6  Examination of the sacroiliac joint. (a) Distraction test. (b) Patrick’s test. (c) Thigh thrust test. (d) Gaenslen’s test. (e) Compression test

2.3.1 Distraction Test • Hands on anterior superior iliac spines (ASIS) and apply postero-­lateral pressure (Fig. 2.6a).

2.3.2 Patrick’s Test • FABER—hip in Flexion, Abduction, and External Rotation. • Place the foot of the examined extremity on top of the opposite knee (figure ‘4’ position).

24

2  A Systematic Examination of the Lumbar Spine

• Press down on the abducted knee and the opposite anterior superior iliac spine (Fig. 2.6b).

2.3.3 Thigh Thrust Test • Place one hand beneath the SIJ and flex the hip and knee to 90°. • Apply pressure to the knee through the femur to the SIJ (Fig. 2.6c).

2.3.4 Gaenslen’s Test • Flex and fix normal hip to chest. • Hang affected leg over the side of the couch. • Apply pressure to distal femur (Fig. 2.6d).

2.3.5 Compression Test • Patient lies on asymptomatic side with hips and knees flexed. • Apply pressure to upper iliac crest (Fig. 2.6e).

2.3.6 Palpation Tests • Considered to be not as effective as any of the tests noted above.

2.4 Prone on the Couch • Palpate from the coccyx to the thoracolumbar junction in the midline and along both sides (a good method is to have one thumb pressing on the other). • Check for a clinical ‘step’ in the lower lumbar region, which might indicate a spondylolisthesis.

2.4  Prone on the Couch

25

• Palpate both sacroiliac joints. • Palpate both buttocks for sciatic nerve tenderness particularly after localised trauma to the buttock area associated with sciatica and with a normal MRI. • Femoral nerve stretch test (FNST) (Fig. 2.7)—L2, L3, and L4 nerve roots. Femoral nerve stretch test (FNST) (Fig. 2.7) L2, L3, and L4 nerve roots: • The anterior corollary of the SLR test: –– Stabilise the pelvis and passively flex the knee (Fig. 2.7a). –– Keeping the knee flexed, passively extend the hip (Fig. 2.7b). –– Anterior thigh pain indicates a positive test. –– Symptoms can also be caused by quadriceps tightness or injury.

a

b

Fig. 2.7  Femoral nerve stretch test (a, b)

26

2  A Systematic Examination of the Lumbar Spine

Fig. 2.8  Segmental innervation lower limb

2.4.1 Slump Test Well described in the literature, it is an involved procedure, which can be tricky to interpret and tends not to give any additional information.

2.4.2 Segmental Innervation of muscles Probably the most informative page I have read since commencing medical school is in Jack Last’s textbook of anatomy, describing the segmental innervation of muscles (Fig. 2.8). In summary, last notes the following: • Most muscles are supplied equally from two adjacent segments of the spinal cord. • Muscles sharing a common primary action on a joint are supplied by the same two segments.

2.5 Application

27

• Their opponents, sharing the opposite action, are likewise all supplied by the same two segments which run in numerical sequence with the former. • For a joint one segment more distal in the limb the centre lies en bloc one segment lower in the cord. • The segments mainly responsible for the various limb joint movements are summarised in Fig. 2.8. • The above pattern enables the segmental innervation of a muscle to be determined, for example: –– Iliacus (flexes hip) L2,3 –– Biceps femoris (flexes knee) L5,S1 –– Soleus (plantar flexes ankle) S1,2 • Last notes that the above are simple flexion-extension movements and cover all knee and ankle moving muscles. • At the hip, movements other than flexion and extension are possible, but all innervated by the same four segments. Thus: –– Adduction or medial rotation (same as flexion) L2,3 –– Abduction or lateral rotation (same as extension) L4,5 • For innervation of the foot the formula is: –– Invert foot L4 –– Evert foot L5, S1

2.5 Application • • • •

Each joint is supplied by four segments of the cord. As you move down a joint you move down a segment. Anterior muscles contract first. Therefore, start the hip at L2, the knee at L3, and the ankle at L4.

Practice this a few times and you will know the segmental innervation of all the muscles of the lower limb!

28

2  A Systematic Examination of the Lumbar Spine

2.6 Checklist for Examination of the Lumbar Spine 2.6.1 Patient Standing • Superficial abnormalities, squareness of shoulders and pelvis, spinal curvatures—from the side and posterior

2.6.2 Gait • Abnormalities—determine cause • Heel and toe walk

2.6.3 Three Additional Tests • Pelvis square • Palpate for guarding or spasm • Chest expansion –– Wall test –– Schober test

2.6.4 Range of Motion • Test in all three planes

2.6.5 Supine on the Couch • SLR (can include Lasegue and bowstring tests) • Neurological examination • Examination of the sacroiliac joint

2.6  Checklist for Examination of the Lumbar Spine

2.6.6 Prone on the Couch • • • • •

Palpation from coccyx to thoracolumbar junction Check for clinical step Palpate sacroiliac joints Palpate both buttocks Femoral stretch test

2.6.7 Additional • Check hips, knees, and peripheral pulses

29

3

Examination for Specific Conditions of the Lumbar Spine

3.1 Intervertebral Disc Prolapse • A disc prolapse occurs when the gel-like nucleus pulposus ruptures through the annulus fibrosis, and is generally associated with degenerative changes in the nucleus or the annulus, or both. • Most protrusions occur at the lower two lumber levels, in the 4th and 5th decades, and are more common in males.

3.1.1 Anatomic Classification (Stages of Disc Herniation) • Protrusion: posterior bulging of the disc with intact fibres of the annulus remaining (Fig. 3.1a). • Extrusion (rupture): the nucleus extends through the annulus (Fig. 3.1b). • Sequestration: a part of the nucleus separates and lies freely in the spinal canal (Fig. 3.1c).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_3

31

32

3  Examination for Specific Conditions of the Lumbar Spine

a

NORMAL DISC

NUCLEAR HERNIATION (DISC BULGE)

b

DISC PROTRUSION

c

DISC EXTRUSION

SEQUESTRATION (SEQUESTERED NUCLEUS)

Fig. 3.1  Stages to a disc herniation. (a) Protrusion, (b) Extrusion, (c) Sequestration

3.1.2 Location Classification • Central: Usually back pain only. If severe may cause cauda equina syndrome (Fig. 3.2a). • Paracentral (posterolateral) (>90%): on either side of the posterior longitudinal ligament (Fig. 3.2b). • Foraminal (Fig.  3.2c) or extraforaminal (far lateral) (100 ml must raise suspicion. • CES is a medical emergency requiring urgent decompression of the lumbar nerve roots. This should be carried out as soon as possible and certainly within 48 hours.

3.3.4 CES Red Flags Symptoms • Acute back pain • Urinary retention and/or incontinence • Faecal incontinence Signs • ‘Saddle anaesthesia’

3.4  Spondylolysis and Spondylolisthesis Fig. 3.5  Sensory loss in the lower extremities and perineal region (saddle area)

41

S3 S4 S5

S2

S2

• Laxity of anal sphincter and loss of voluntary anal contraction • Weakness and sensory loss of lower extremities

3.4 Spondylolysis and Spondylolisthesis 3.4.1 Spondylolysis • ‘Spondylo’ = vertebrae; ‘lysis’ = to break down. • This is the term used to describe pars interarticularis defects. • The pars is that region of the posterior vertebral arch between the superior and inferior articular processes (zygapophyseal joints) (Fig. 3.6).

42

3  Examination for Specific Conditions of the Lumbar Spine

Pars Interarticularis

Spondylolysis

Spondylolisthesis

Fig. 3.6  Spondylolisthesis—pars defects

• On X-ray there is a defect or fracture noted, without displacement. • The condition is attributed to repetitive mechanical stress but can also occur as an acute injury. • If the condition is bilateral then a spondylolisthesis can occur.

3.4.2 Spondylolisthesis • ‘Spondylo’ = vertebrae; ‘listhesis’ = slippage. • Occurs almost always at the lower two lumbar levels L4/L5, and L5/S1, but can also occur at L3/L4 level.

3.4.3 Classification Spondylolisthesis can be classified into five groups: • Lytic (isthmic): –– Most common form (50%). –– Likely genetic factor present. –– Present in 5% of people by the age of 7.

3.4  Spondylolysis and Spondylolisthesis

43

• Degenerative: (25%) –– Associated with disc, ligament, and facet joint degeneration. –– Occurs in older age groups especially middle-aged females affecting mainly the L4/L5 level. • Dysplastic: (20%) –– Usually due to dysplasia of the superior sacral facets allowing L5 to slip forward on the sacrum. • Traumatic: –– A rare injury requiring significant force. • Pathological: –– May be associated with tumours, osteoporosis, or infection.

3.4.4 Grading (Meyerding) There are 4 main grades (Fig. 3.7): • Grade 1: 100% slip) this is known as spondyloptosis.

3.4.5 Clinical Presentation • Commonly asymptomatic and discovered incidentally. • Symptoms include back pain, occasionally sciatica and possible neurological involvement. • A palpable ‘step’ may be felt at the level of slip.

44

3  Examination for Specific Conditions of the Lumbar Spine Grades of spondylolisthesis

Normal spine

Grade 1 75% slippage

Fig. 3.7  The four grades of spondylolisthesis

3.4.6 Investigation • Flexion and extension lateral X-rays will show any slippage, and if due to isthmic spondylolisthesis, the defect in the pars may be seen in this view. • The classical view is oblique, showing what appears to be a ‘Scottie dog with a collar’ (Fig. 3.8a, b).

3.5  Facet Joint Arthropathy

a

45

b

Fig. 3.8  X-ray showing ‘Scottie dog with collar sign’. (a) X-rays will show any slippage. (b) The classical view showing outline of ‘Scottie dog with a collar’

3.5 Facet Joint Arthropathy • The lumbar zygapophyseal joints (facet joints) are true synovial joints with hyaline cartilage surfaces, a synovial membrane and synovial fluid, and a fibrous capsule (Fig. 3.9). • These are subject to the same changes of arthritis as any other synovial joint with imaging studies in established cases ­showing joint space narrowing, subarticular bone erosions and subchondral cysts, osteophyte formation and bony hypertrophy. • These joints are load bearing and facilitate flexion and extension movements whilst limiting rotational movements. • Abnormalities of the facet joints may be associated with ‘segmental instability’ and a cause of chronic low back pain. • Facet joint arthritis is common with increasing age and felt to be present in close to 90% of people over the age of 65 years. A high body mass index (BMI) is a risk factor.

3  Examination for Specific Conditions of the Lumbar Spine

46

Facet joint Joint capsule Bilevel innervation of synovial membrane and capsule of facet joint

Facet joint

Superior articular process Inferior articular process

Facet joint and capsule innervated by dorsal rami from two spinal levels

Facet joint, composed of articular processes of adjacent vertebrae, limits torsion and translation

Joint space Articular cartilage

Superior articular process

Inferior articular process

Synovial membrane

Joint capsule Innervation of synovial membrane and capsule

Cartilage degeneration Degeneration of articular cartilage with synovial inflammation or capsule swelling may result in referred pain

Capsular swelling

Synovial inflammation

Osteophytes

Osteophytic overgrowth of articular processes of facet joint may impinage on nerve root

Fig. 3.9  Facet joint anatomy

3.5.1 Symptoms • Low back pain of varying degree which may be referred to the buttocks and posterior thigh. • Symptoms are intermittent initially but once established may become chronic with intermittent exacerbations. • Aggravated by prolonged sitting or standing and particularly by lumbar spine extension and jarring. • Relief is often obtained by lying down or changing position.

3.5  Facet Joint Arthropathy

47

3.5.2 Signs • When the back is painful there may be limitation of movement associated with localised tenderness, guarding, and spasm. • When the back is not painful there may be very little to find clinically.

3.5.3 Investigations • CT and MRI scans may show the typical features referred to above.

3.5.4 Diagnosis • It is essential to exclude other causes of back pain.

3.5.5 Treatment • Non-operative –– General supportive measures including oral medication (analgesic and nonsteroidal anti-inflammatory medication), physiotherapy, instruction in exercises and spinal care –– Facet joint injection and radio frequency neurotomy/ablation, following diagnostic block • Surgical –– The only surgical option is spinal fusion. This is rarely indicated for facet arthropathy. –– It is essential to exclude other causes of back pain.

48

3  Examination for Specific Conditions of the Lumbar Spine

3.6 Ankylosing Spondylitis (AS) • AS is a chronic multisystem inflammatory disorder which affects primarily the sacroiliac joints and the spine. • Other major joints involved include the hips and shoulders, but it can also affect more peripheral joints. • Extra-articular involvement can include the eyes (uveitis), the aorta as well as the lungs, kidneys, and gastrointestinal tract. • There is a genetic predisposition associated with the presence of the HLA-B27 gene. • Males are affected more frequently than females and the usual age of onset is between 15 and 30 years. • Pathophysiology includes ossification at the junction of the vertebrae and outer fibres of the annulus fibrosis of the intervertebral discs progressing to bony fusion (Fig. 3.10). Fusion of the sacroiliac joints also occurs. • The prognosis is variable, and most patients affected with AS remain functional, while in severe cases stiffness and deformity can be marked. • The most common symptom is low back pain which is worse in the mornings and after inactivity and improves with exercise. Fatigue is a common complaint. • There is a limited chest expansion, which is a diagnostic feature. As mentioned in the previous chapter, any patient with back pain, in the appropriate age group, should be tested for chest expansion. • Additional diagnostic tests include the ‘Wall’ test and the Schober test.

3.6.1 Investigations • Blood testing for ESR and CRP as well as HLA-B27

3.6  Ankylosing Spondylitis (AS)

Normal spine

Early ankylosing spondylitis

Inflammation

49 Advanced ankylosing spondylitis

Fusion

Fig. 3.10  Ankylosing spondylitis—bony fusion Fig. 3.11 Ankylosing spondylitis—SI joint fusion

3.6.2 Imaging • Sacroiliac joints: vary from early inflammatory changes to eventual bony ankylosis (Fig. 3.11) • Vertebral bodies: loss of the normal concavity of the anterior aspect of the bodies (squaring) and the ossification noted above (syndesmophytes), leading to the classical appearance of a ‘bamboo spine’ (Fig. 3.12)

50

3  Examination for Specific Conditions of the Lumbar Spine

Fig. 3.12 Bamboo spine

3.7 Infections in the Lumbar Spine: Osteomyelitis and Discitis 3.7.1 Definitions • Osteomyelitis: infection of a vertebral body. • Discitis: infection of an intervertebral disc. • It is possible that these two conditions are different stages of the same disease process: ‘spondylodiscitis’.

3.7.2 Causes • Haematogenous seeding from a site of primary infection –– Organisms may be pyogenic, tuberculous, or parasitic. • Iatrogenic, following disc injection or spinal surgery

3.7  Infections in the Lumbar Spine: Osteomyelitis and Discitis

51

3.7.3 Epidemiology • Primarily a disease of adults, although discitis does occur in childhood. • Men: women = 2:1. • Predisposing factors include diabetes mellitus, immuno-­ suppression or bacteraemia from any cause, previous spinal surgery, and intravenous drug use.

3.7.4 Symptoms • Back pain which is very localised and can be very severe. • In haematogenous seeding, symptoms may relate to primary site of infection. • Fever may be present in pyogenic infections. • Noting that this condition is uncommon, and that back pain is very common, and noting that symptoms may be protean, it is not surprising that diagnosis is often delayed. • A high index of suspicion is required.

3.7.5 Signs • Localised tenderness which can be very severe • Marked stiffness • Possible pyrexia

3.7.6 Investigations • Routine blood tests: white cell count (WCC), C-reactive protein (CRP), and ESR • Blood cultures—essential • X-ray, bone scan, and MRI—essential (Fig. 3.13) • Changes on MRI: –– Disc space narrowing –– Bony destruction (cortical erosion)

3  Examination for Specific Conditions of the Lumbar Spine

52

a

b

Fig. 3.13  MRI showing spine infection. (a) Xay. (b) MRI

–– Bone marrow oedema –– Prevertebral or epidural extrusion (paravertebral abscess)

3.7.7 Treatment • Non-operative –– Rest and pain relief –– Intravenous antibiotics, often for 6–8 weeks • Surgical –– Indicated in the presence of neurological involvement, abscess formation, or failure to respond to conservative treatment

3.8  The Lumbosacral Plexus

53

3.8 The Lumbosacral Plexus As each of the nerves forming the lumbosacral plexus leaves the spinal canal, these divide into anterior and posterior nerve fibres (rami). The lumbar plexus is formed by the anterior rami of L1–L4 while the sacral plexus is formed by the anterior rami of S1–S4 with a significant contribution from the lumbosacral trunk (L4 and L5) (Fig. 3.14).

3.8.1 The Lumbar Plexus (Fig. 3.15) • The plexus forms within psoas major. • The two main motor branches are: –– Femoral nerve (L2, 3, 4) which supplies the quadriceps (rectus femoris and the three vasti)

Lumbar plexus lliohypogastric nerve llioinguinal nerve Genitofemoral nerve Lateral cutaneous nerve

Lumbosacral trunk

Obturator nerve Psoas major muscle

Femoral nerve

Sacral plexus

Sciatic nerve

Common fibular nerve Tibial nerve Posterior femoral cutaneous nerve

Fig. 3.14  The lumbosacral plexus

3  Examination for Specific Conditions of the Lumbar Spine

54

Posterior Division Anterior Division

From 12th Thoraci. 1st Lumbar

lliohypograstic n. llioinguninal n.

2nd Lumbar

Genitofemoral n. 3rd Lumbar

Lateral femoral cutaneous n. 4th Lumbar To Psoas and lliacus 5th Lumbar Femoral Accessory obturator Obturator Lumbosacral Trunk

Fig. 3.15  The lumbar plexus

–– Obturator nerve (L2, 3, 4) which supplies adductor longus and brevis, and the pelvic component of adductor magnus • The main sensory branch is the saphenous nerve, a terminal branch of the femoral nerve arising in the femoral triangle. It extends all the way down the anteromedial thigh and medial lower leg, anterior to the medial malleolus, and down to the base of the big toe. Surely the longest nerve in the body!1 The

The literature suggests that the longest nerve in the body is the sciatic nerve which forms in the sacral plexus and extends all the way down the lower extremity and into the foot. As noted above, the sciatic nerve divides into its terminal branches in the region of the popliteal fossa, where it ceases to be the sciatic nerve.

1 

3.8  The Lumbosacral Plexus

55

infra-patellar branch is often damaged in anterior knee incisions. • A useful mnemonic for the main branches of the lumbar plexus: Interested In Getting Lunch On Friday Iliohypogastric Ilioinguinal Genitofemoral Lateral Obturator Femoral femoral cutaneous

3.8.2 The Sacral Plexus (Fig. 3.16) • Forms on the anterior aspect of piriformis muscle. • The largest branch of the plexus is the sciatic nerve (L4, 5, S1, 2, 3) formed by the union of its tibial and common peroneal (fibular) components. • It innervates all the muscles of the posterior thigh (hamstrings) as well as the ischial component of adductor magnus. • The nerve divides into its two components in the region of the popliteal fossa, which then go on to supply all the muscles below the knee. • Other branches of the plexus include: –– The pudendal nerve which supplies motor and sensory branches to the pelvic floor and perineum, including the perianal skin, the penis/clitoris, and the scrotum and vulva –– The superior and inferior gluteal nerves –– The nerve to obturator internus –– The nerve to quadratus femoris –– The perineal branch of S4 The saphenous nerve therefore must be the longest nerve in the body.

3  Examination for Specific Conditions of the Lumbar Spine

56

L4

L5

S1 Superior gluteal

S2

Inferior gluteal

S3

Sciatic (Fibular portion)

S4

(Tibial portion)

Posterior femoral

Pudendal

Fig. 3.16  The sacral plexus

©TeachMeAnatomy

Part II The Hip Joint

4

Anatomy and Function of the Hip

• The hip joint is a ball and socket synovial joint between the head of the femur and the acetabulum of the pelvis. It is a very stable joint (Fig. 4.1). • The acetabulum is deepened by the presence of the acetabular labrum surrounding it which acts as a fibrocartilaginous collar (Fig. 4.2). • The inferior labrum forms the transverse acetabular ligament. • The articular surface of the acetabulum is ‘C’ shaped and surrounds the non-articular cotyloid fossa at the base of the acetabulum. • The fossa contains the Haversian fat pad and ligamentum teres and its artery, a small branch of the obturator artery, which supplies part of the head of the femur particularly in childhood. • The head of the femur is smooth and covered with articular cartilage except for the fovea where the ligamentum teres attaches (Fig. 4.3).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_4

59

4  Anatomy and Function of the Hip

60

Anterior Inferior lliac Spine

Femoral Head

lliofemoral Ligament

Greater Trochanter

Pubofemoral Ligament

Superior Ramus

Femur

Fig. 4.1  Hip joint

Lesser Trochanter

Inferior Ramus

4  Anatomy and Function of the Hip

61

Fig. 4.2 Labrum

Labrum

Head of femur

Acetabulum Femur

a

Fig. 4.3 (a) Ligamentum teres. (b) Fovea

b

62

4  Anatomy and Function of the Hip

4.1 Movements • Despite the stability of the hip joint, a wide range of movement is possible. • Movements occur in three planes at right angles to each other (see Fig. 4.4a–h showing ROM): –– Flexion (a) (psoas major and iliacus, assisted by rectus femoris, sartorius, and pectineus) and extension (b) (gluteus maximus and the hamstrings) in the sagittal plane. –– Adduction (c) (adductor magnus, longus and brevis, gracilis, pectineus) and abduction (d) (gluteus medius and minimus, tensor fascia lata, and sartorius) in the coronal plane. –– Internal (medial) rotation (e) (tensor fascia lata, gluteus medius and minimus) and external (lateral) rotation (f) (gluteus maximus, gemellus superior and inferior, obturator internus and externus, quadratus femoris, piriformis) in the vertical plane. –– The centre of rotation lies in the centre of the head of the femur. Note that in impairment assessment, AMA Fifth Edition requires rotational movement to be carried out in the prone position (Fig. 4.4g, h). In fractures of the neck of the femur, there is a loss of the fulcrum of rotation, and the femur will now rotate on its own axis. The psoas muscle now becomes an external rotator of the leg. This leads to the classical clinical finding of a shortened leg in external rotation in these fractures (Fig. 4.5).

4.1 Movements

63

a

b

c

d

e

f

g

h

Fig. 4.4  Range of motion of hip joint

64

4  Anatomy and Function of the Hip

Fig. 4.5 Fracture of the neck of femur—shortened leg in external rotation

4.2 Range of Movement Table 4.1 shows the accepted normal ranges of movement • FFD (that is, loss of extension) can be unmasked using the Thomas test (Sect. 5.7) (Pages 78, 79). • To overcome pelvic tilt that might mask loss of abduction, the pelvis is stabilised by placing the normal hip in wide abduction.

65

4.3 Ligaments Table 4.1  Normal range of hip movement

Flexion Extensiona Abductiona Adduction Internal rotation External rotation

120–130° 20–30° 40–50° 20–30° 30° 50°

  Note that when testing for fixed flexion deformity (FFD) and loss of abduction, the pelvis needs to be stabilised, as movement of the pelvis can mask fixed deformity a

4.3 Ligaments • A good method of remembering the three main ligaments of the hip joint is to recall that the bony acetabulum is formed by the confluence of three bones, the ilium, the ischium, and the pubis. • The ligaments attach each of these bones to the femur (Fig. 4.6). –– The iliofemoral ligament (of Bigelow) is triangular, and the apex attaches to the ilium between the lower half of the anterior inferior iliac spine and the rim of the acetabulum, and its base attaches to the intertrochanteric line. It is the strongest ligament in the body and restricts extension of the hip to 20° beyond the vertical. –– The pubofemoral ligament attaches to the superior ramus and obturator crest of the pubic bone and passes beneath the iliofemoral ligament and blends with the capsule. –– The ischiofemoral ligament arises from the posterior margin of the acetabulum passing laterally to attach to the base of the greater trochanter and fuses with the capsule. –– The transverse ligament of the acetabulum (noted above) bridges the acetabular notch, forming the acetabular foramen, and allowing neurovascular structures to enter the hip joint.

4  Anatomy and Function of the Hip

66 Anterior

Posterior

lliofemoral ligament

Pubofemoral ligament

Ischiofemoral ligament

Fig. 4.6  Hip ligaments

4.4 Stability • The hip is a very stable joint, mainly due to the bony architecture, deepened by the labrum, and reinforced by ligaments and muscles. • In the normal hip dislocation can only occur with high energy trauma, such as a motor vehicle accident, and posterior ­dislocations (which account for >90% of dislocations) will often be associated with a fracture of the posterior wall of the acetabulum. • Anterior dislocations account for 1/2 (>50%)

6.9.4 Signs • • • •

Limp External rotation of the affected limb Shortening Decreased range of movement (flexion, abduction, and internal rotation) • Thigh atrophy

6.9.5 Imaging AP and frog-lateral views of both hips • AP: Trethowan’s sign (Fig.  6.10a): Normally a line drawn along the superior aspect of the femoral neck will pass through the lateral aspect of the femoral epiphysis; in SCFE the line passes above the epiphysis. • Lateral (more sensitive test) (Fig. 6.10b): Normally the lines drawn through the base of the epiphysis and through the centre of the neck will intersect at 90°. Less than 90° indicates slippage.

6.9  Slipped Capital Femoral Epiphysis (SCFE)

a

b

Fig. 6.10 (a) Trethowan’s sign; (b) lateral test

95

6  Examination for Specific Conditions of the Hip

96

6.9.6 Treatment • N.B. Manipulation of the hip to try and improve the position (i.e., overcome the slip) prior to internal fixation is associated with a high risk of avascular necrosis (AVN). It is best avoided. • Minor slip: –– Internal fixation using two screws. • Moderate slip: –– Accept the position and internally fix with two screws. –– Reassess after 2 years and if residual deformity considered to be unacceptable, carry out intertrochanteric osteotomy. • Severe slip: –– Open reduction and internal fixation (Dunn). –– Should be done in specialist centres—high risk of AVN. –– In the absence of specialist facilities, pin in position and carry out subsequent osteotomy.

6.9.7 Triplane Osteotomy • Removal of a wedge to correct the extension and adduction deformities combined with rotation to correct the external rotation deformity (Fig. 6.11)

Dunn (subcapital)

Base of neck (Kramer and Barmada)

Fig. 6.11  Proximal femoral osteotomy

Intertrochanteric (Southwick and Imhauser)

6.10  Osteoarthrosis (OA) of the Hip

97

6.9.8 Complications • AVN: almost invariably a complication of forceful manipulation, therefore to be avoided • Slipping of the opposite hip in 25–50% of cases • Chondrolysis: in up to 2% of cases

6.9.9 Something to Think About: A Malunited Femoral Fracture Say for example one has a malunited fracture of a femur that has healed with 15° of anterior angulation, 15° of lateral angulation, and 15° of external rotation. How would you design the wedge that needs to be removed to correct all three features of the malunion of the femur? Or indeed any long bone malunion (see Sect. 6.10.5) (Page 100).

6.10 Osteoarthrosis (OA) of the Hip Degenerative disease of the hip joint with progressive loss of articular cartilage. • Primary: No obvious cause identified, but this group is likely to decrease in the future as other causes of OA become apparent, e.g. femoro-acetabular impingement (FAI—see next section). • Secondary: Where there is an underlying cause (Table 6.3)1.

6.10.1 Symptoms Apley’s System of Orthopaedics and Fractures Ninth Edition

1 

98

6  Examination for Specific Conditions of the Hip

Table 6.3  Types of secondary osteoarthrosis of the hip Abnormal stress Subluxation Coxa magna Coxa vara Minor deformities Protrusio

Defective cartilage Infection Rheumatoid Calcinosis

Abnormal bone Fracture Necrosis Paget’s disease of bone Other causes of sclerosis

• Groin pain, often referred to the knee2 • Limp • Stiffness

6.10.2 Signs • Antalgic gait. • Decreased range of movement. First to diminish are internal rotation and abduction. • Apparent shortening with adduction contracture.

6.10.3 Imaging • X-rays: There are four classical radiological signs of OA of any joint (Fig. 6.12). • Loss of joint space (asymmetric). The earliest sign • Osteophyte formation • Subchondral sclerosis • Cyst formation Note: While plain X-rays are the most used investigation of OA because of availability and low cost, other methods are more

It is not uncommon for patients with OA of the hip to present with ipsilateral knee pain. Therefore, in any patient who presents with knee pain one must always examine the hips. A significant trap in orthopaedics! 2 

6.10  Osteoarthrosis (OA) of the Hip

99

Fig. 6.12 Osteoarthrosis (OA) of the hip

sensitive, particularly in early cases, e.g. MRI, CT, and nuclear medicine studies.

6.10.4 Treatment • Non-operative: –– General: weight loss, physiotherapy, stretching, walking stick –– Medication: analgesic/anti-inflammatory –– Injection • Operation: –– Total hip replacement or possibly a hip resurfacing replacement in a young active male (avoided in females due to high revision rate)

100

6  Examination for Specific Conditions of the Hip

6.10.5 Correction of the Malunited Femoral Fracture Step 1: Cut the femur at the site of the malunion at right angles to the long axis of the proximal shaft of the femur. Step 2: Now cut the distal shaft at right angles to the long axis of the distal shaft, removing as little bone as possible. Step 3: Placing the two ends together will overcome both the anterior and lateral angulations. Step 4: Internally rotate the distal shaft 15° to overcome the external rotation deformity, and complete the realignment.

6.11 Femoro-Acetabular Impingement (FAI) • Occurs when the head or neck of the femur impinges against the rim of the acetabulum in an abnormal fashion. This impingement is thought to lead to the development of osteoarthrosis of the hip. • FAI is a fairly recent concept and may be responsible for many cases of what was previously felt to be ‘primary osteoarthrosis’. • The abnormal contact between the femur and the acetabulum leads to labral and chondral damage. • There are three types of FAI: –– CAM: bony thickening in the region of the head/neck junction with impingement against a normal labrum and acetabulum (Fig. 6.13a) –– Pincer: increased acetabular bone/labrum overlay which impinges on a normal femoral neck (Fig. 6.13b) –– Combined CAM and pincer impingement (Fig. 6.13c)

6.11.1 Symptoms • Groin pain, especially after prolonged sitting • Restriction of movement • Exacerbated by hip flexion

6.12  Osteonecrosis of the Femoral Head (Also Known…

101

a

c

b

Fig. 6.13  Three types of FAI

6.11.2 Signs • Restriction of internal rotation in flexion

6.11.3 Imaging • AP X-ray of pelvis and true lateral of hip will demonstrate the type of FAI present. • CT scan: will show bony abnormalities. • MR arthrogram: useful to detect labral and articular cartilage damage.

102

6  Examination for Specific Conditions of the Hip

6.12 Osteonecrosis of the Femoral Head (Also Known as Avascular Necrosis: AVN) Osteonecrosis of the femoral head is caused by disruption of the blood supply to the proximal femur leading to varying degrees of collapse of the femoral head and the development of osteoarthrosis.

6.12.1 Causes • • • • •

Idiopathic Traumatic Fracture neck of femur Dislocation of the hip Non-traumatic: –– Most common causes: Steroid use Chronic alcohol consumption –– Less common causes: Caisson disease Sickle cell disease Gaucher’s disease Coagulopathies Systemic lupus erythematosus

A useful mnemonic for the causes of AVN of the femoral head is ‘ASEPTIC’: A: Alcohol, AIDS S: Steroids (most common cause)/sickle cell disease/SLE E: Erlenmeyer flask (Gaucher’s disease) P: Pancreatitis T: Trauma: fractured neck of femur/dislocation of hip

6.12  Osteonecrosis of the Femoral Head (Also Known…

103

I: Idiopathic/infection C: Caisson’s disease (the bends)

6.12.2 Symptoms • Hip pain, often bilateral • Limp • Restriction of movement

6.12.3 Signs • • • •

Limp Shortening Wasting Decreased range of movement, particularly internal rotation, and abduction

6.12.4 Investigations • X-ray3 –– Normal in early stages –– Reactive changes in surrounding bone –– ‘Crescent sign’: a thin subchondral fracture line best seen in the frog lateral view (Fig. 6.14) –– Collapse of the affected segment • MRI –– Changes seen long before X-ray changes noted. –– Seen as a clear line between the living and dead bone. It takes a minimum of 6–12 months after bone death for the first changes to be seen on X-ray. This may be important from a medicolegal point of view. Note that fragmentation and collapse only occur once the strong dead bone is being replaced by more fragile new bone formation. 3 

104

6  Examination for Specific Conditions of the Hip

Fig. 6.14 X-ray showing crescent sign

6.12.5 Staging (Variously Described) Stage 1: Necrosis with minimal symptoms and no X-ray changes, only on MRI. Stage 2: Early X-ray changes become visible but with no collapse of the head of the femur. Stage 3: Fragmentation and collapse of the femoral head. Stage 4: Re-ossification and remodelling.

6.12.6 Prognosis • Depends on the extent of involvement of the femoral head. • Mild involvement may have a good prognosis with minimal or no collapse of the head. • Any significant collapse will be followed by osteoarthrosis.

Part III The Knee Joint

7

Anatomy and Function of the Knee Joint

7.1 General Considerations • The knee is a synovial joint and the largest joint in the body. • It is a modified hinge joint, in that in addition to flexion and extension, it allows a small amount of rotation when the knee is flexed, as well as gliding.1 • The convex condyles of the femur articulate with the slightly concave condyles of the tibia, with the medial and lateral menisci being partly between them and increasing the congruity (Fig. 7.1). • The third bone forming the knee joint is the triangular shaped patella, which is situated within the quadriceps femoris tendon, and is regarded as a sesamoid bone. • The knee is surrounded by a capsule which contains two gaps, one allowing communication with the suprapatellar pouch and the other allowing passage of the tendon of popliteus muscle. • Stability of the knee is provided by two groups of ligaments, intracapsular and extracapsular.

The femur has a greater articular surface area than the tibia, so that when the knee goes from flexion to extension, the femoral condyles glide posteriorly over the tibial plateaux. If this did not occur, the femur would roll off the tibia before full extension was achieved. 1 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_7

107

7  Anatomy and Function of the Knee Joint

108 Patella

Lateral collateral ligament

Lateral meniscus

Fibula

Femur

Medial collateral ligament

Medial meniscus

Tibia

Fig. 7.1  Knee joint anatomy

• Bursae: There are 13 bursae in and around the knee, the clinically most significant being the pre-patellar, infra-patellar, and pes anserinus bursa (Fig. 7.2). • Loading of the knee (multiples of body weight) alters with various activities (Table 7.1).

109

7.1  General Considerations

Suprapatellar Bursa

Prepatellar Bursa

Infrapatellar Bursa Pes Anserine Bursa

Fig. 7.2  Bursae of the knee Table 7.1  Loading of the knee with various activities Activity Walking Climbing stairs Squatting

Body weight 1.5 times 3–4 times 8 times

110

7  Anatomy and Function of the Knee Joint

7.2 Movements of the Knee Joint • During flexion and extension of the knee, in addition to rolling over the tibial plateau, the femoral condyles also glide anteriorly and posteriorly, necessitated by the discrepancy in the sizes of the articular surfaces. • Posterior femoral roll back with knee flexion occurs more on the lateral side. • Because of the configuration of the femoral condyles, during the last few degrees of extension, the tibia passively rotates externally on the femur, and the knee then ‘locks’. In this position the knee is capable of weight-bearing without the need for any muscle action. • The knee is ‘unlocked’ by the contraction of popliteus, which externally rotates the femur on the tibia, allowing the knee to flex. When non-weight-bearing, popliteus internally rotates the tibia (rather than externally rotating the femur) (Fig. 7.3). • Note that the range of knee flexion is greater when the hip is flexed than when it is extended. This is because with the hip flexed the rectus femoris, which crosses the hip joint, is relaxed allowing the greater range of knee flexion. • This is analogous to the increased range of ankle dorsiflexion with the knee flexed rather than extended, because of the relaxation of gastrocnemius. (Take your time to clearly picture the concept involved in these two situations.) The muscles acting on the knee joint are listed in Table  7.2 (Page 112).

7.2.1 Patellofemoral Joint • A very important function is to increase the distance of the extensor mechanism from the axis of flexion and extension of the knee, which can increase the force of extension by up to 50% (Fig. 7.4).

7.2  Movements of the Knee Joint

111

Semimembranosus tendon

Oblique popliteal ligament

Popliteus muscle

Fig. 7.3  Popliteus muscle

7  Anatomy and Function of the Knee Joint

112

Table 7.2  Muscles acting on the knee joint Flexion Extension Internal rotation External rotation

Hamstrings (semimembranosus, semitendinosus, and biceps femoris) assisted by gracilis and sartorius Quadriceps femoris (rectus femoris and the three vasti) assisted by tensor fasciae latae Semimembranosus, semitendinosus assisted by sartorius and gracilis Biceps femoris

40°

100°

Fig. 7.4  Patellofemoral joint

• The compression force in the joint increases with increasing flexion and can go as high as eight times the body weight in squatting. • Because of the importance of the patella, patellectomy should be avoided as a treatment option if possible!

7.2  Movements of the Knee Joint

113

7.2.2 Knee Ligaments The ligaments of the knee can be divided into two groups: • Extracapsular –– Medial (tibial) collateral ligament –– Lateral (fibular) collateral ligament –– Popliteal ligaments Oblique Arcuate • Intracapsular –– Anterior cruciate ligament –– Posterior cruciate ligament • Extracapsular ligaments: • Medial (tibial) collateral ligament (Fig. 7.5) –– Two components, superficial and deep, sometimes separated by a bursa –– Origin: medial femoral epicondyle –– Insertion: periosteum of the proximal tibia –– The deep portion attaches to the medial meniscus –– Function: resists valgus angulation • Lateral collateral ligament (Fig. 7.6) –– Origin: lateral femoral epicondyle –– Insertion: head of the fibula –– Cord-like structure, readily palpable in the ‘Figure 4’ position –– Function: resists varus angulation • Oblique popliteal ligament (Fig. 7.7) –– Origin: expansion of the semimembranosus tendon on the posterior aspect of the medial tibial condyle; passes superiorly and laterally –– Insertion: posterior aspect of the lateral condyle of the femur • Arcuate popliteal ligament (Fig. 7.7) –– Y-shaped thickening of postero-lateral capsule –– Origin: posterior aspect of the head of the fibula—stem of the Y

114

7  Anatomy and Function of the Knee Joint

Superficial medial collateral ligament Deep medial collateral ligament Superficial medial collateral ligament Patellar tendon

Fig. 7.5  Medial collateral ligament

Popliteus

7.2  Movements of the Knee Joint

115

Femur Anterolateral Ligament Popliteus Tendon

Lateral Meniscus

Gerdy’s Tubercle

Lateral collateral Ligament

Fibula

Fig. 7.6  Lateral knee ligaments

Tibia

7  Anatomy and Function of the Knee Joint

116

Medical collateral ligament

Semimembranosus

Oblique popliteal ligament Lateral collateral ligament Arcuate popliteal ligament

Popliteus muscle

Fig. 7.7  Oblique and arcuate popliteal ligaments

–– Insertion: Medial limb: attaches to the posterior tibial intercondylar area Lateral limb: attaches to the lateral femoral condyle • Popliteo-fibular ligament (Fig. 7.7) –– Passes from the popliteus tendon to the fibular head –– An important restrainer of external tibial rotation

7.2.2.1 Intracapsular: The Cruciate Ligaments • Very strong ligaments connecting the femur to the tibia, resembling a cross (Latin: cross = crux) • Although the ligaments are intracapsular, these are extra-­ synovial, being covered by synovium anteriorly and laterally but not posteriorly (Fig. 7.8)

7.2  Movements of the Knee Joint

117

Intercondylar region Anterior cruciate ligament Posterior cruciate ligament Medial meniscus Lateral meniscus

Fig. 7.8  Cruciate ligaments

7.2.2.2 Anterior Cruciate Ligament (ACL) (Fig. 7.9) • Inferior attachment: anterior tibial plateau slightly posterior to the attachment of the anterior horn of the medial meniscus. Passes posteriorly and laterally • Superior attachment: posterior aspect of the lateral femoral condyle within the intercondylar notch 7.2.2.3 Posterior Cruciate Ligament (PCL) (Fig. 7.9) • Inferior attachment: posterior intercondylar area of the tibia extending slightly onto the posterior surface of the tibia. Passes anteriorly and medially • Superior attachment: anterolateral aspect of the medial femoral condyle within the intercondylar notch

118

7  Anatomy and Function of the Knee Joint Back of knee Medial meniscus

Fibula

Lateral meniscus

Tibia (shinbone) Front of knee

Fig. 7.9  Superior (top) view of right knee showing menisci

7.2.2.4 Menisci (Greek: meniskos = crescent) (Fig. 7.9) • Crescent-shaped fibrocartilaginous wedges on the medial and lateral sides of the knee. • The superior surfaces articulate with the convex femoral condyles and are concave, while the inferior surfaces are flat and attach to the periphery of the tibial plateaux. • Triangular in cross section being thick peripherally (red zone— vascular) and tapering to a thin free edge (white zone—avascular) (Fig. 7.10). • The transverse ligament connects the anterior horns of both menisci. • Both menisci are mobile antero-posteriorly during flexion and extension of the knee, being constrained by the attachments to the tibial plateau. The lateral meniscus is more mobile than the medial.

7.2  Movements of the Knee Joint

119

FEMORAL CONDYLE

WHITE

RED-WHITE

RED

PMCP

TIBIAL PLATEAU

Fig. 7.10  Blood supply to the meniscus

7.2.2.5 Medial Meniscus • Semicircular and broader posteriorly (Fig. 7.9). • Anterior horn: attaches to the intercondylar area of the tibia in front of the ACL (Fig. 7.9). • Posterior horn: attaches to the intercondylar area of the tibia in front of the PCL (Fig. 7.9). • Medially: attaches to the capsule and tibial collateral ligament (Fig. 7.9).

120

7  Anatomy and Function of the Knee Joint

7.2.2.6 Lateral Meniscus • Almost circular (Fig. 7.9). • Anterior horn: attaches to the intercondylar area of the tibia behind the ACL (Fig. 7.9). • Posterior horn: attaches to the intercondylar area of the tibia in front of the posterior horn of the medial meniscus (Fig. 7.9). • Anterior and posterior meniscofemoral ligaments (of Humphrey and Wrisberg, respectively) extend from the posterior aspect of the lateral meniscus and pass medially to the lateral aspect of the medial femoral condyle, in front of and behind the PCL (Fig. 7.11). a

b

Fig. 7.11 (a) Anterior and (b) posterior meniscofemoral ligaments (ligaments of Humphrey and Wrisberg)

7.3 Functions

121

7.3 Functions 7.3.1 Load Transmission • Axial loads are converted into tensile stresses in the circumference of the menisci—‘hoop stresses’ (Fig. 7.12). • Fifty per cent of the load in each compartment is transmitted through the intact menisci in the extended knee. This can increase to 80–90% in flexion. • Total medial meniscectomy results in 50–70% reduction in femoral condyle contact area and a 100% increase in contact stress in the medial compartment. • Total lateral meniscectomy results in 40–50% reduction in contact area and up to 200% increase in contact stress in the lateral compartment. • It is well recognised that removal of a meniscus leads to the development of degenerative arthritis of the knee (first described by Fairbank in 1948). • The aim of any surgical treatment is to preserve meniscal tissue if possible!

Fig. 7.12  Hoop stresses

122

7  Anatomy and Function of the Knee Joint

7.3.2 Joint Stability • The menisci play a significant role in knee joint stability. • Total medial or lateral meniscectomy results in an increase in knee joint laxity. • This applies particularly in the ACL deficient knee, where the menisci act as a secondary stabiliser to anterior translation.

7.3.3 Joint Lubrication and Nutrition • The menisci are thought to play a role, but the mechanism is unclear.

7.3.4 Proprioception • The presence of specific mechanoreceptive nerve structures in the anterior and posterior horns of the menisci suggests that the menisci could provide proprioceptive information.

7.3.5 Shock Absorption • It has long been held that the menisci provide a shock absorbing function in the knee. There is however some uncertainty about this as a result of recent investigations.

7.4 Blood Supply of the Knee The main supply is via the five branches of the popliteal artery which form an anastomosis around the knee (Fig. 7.13). • Medial and lateral superior genicular arteries • Medial and lateral inferior genicular arteries • Middle genicular artery, which supplies the cruciate ligaments

7.5  Nerve Supply

a

123

b

Fig. 7.13  Arterial supply to the knee

7.5 Nerve Supply Nerve supply is via the nerves which supply all the muscles which cross the joint (Hilton’s law).2

Hilton’s law: The nerve supplying the muscles extending directly across and acting at a given joint not only supplies the muscle, but also innervates the joint and the skin overlying the muscle. 2 

8

A Systematic Examination of the Knee

• As with joint examinations in general, a careful history is always taken prior to the examination, particularly regarding any history of injury. • As with any joint, examination of the proximal (hip) and distal (ankle) joints must be carried out. • This is particularly the case regarding examination of the hip in patients who present with knee pain. I would suggest that one of the biggest pitfalls in orthopaedic examination is to miss the arthritic hip in the patient who presents with only knee pain. • The suggested mechanism for this not uncommon situation has not been clearly defined, but is likely related to referred pain in the distribution of the femoral nerve. • ‘The examination of a patient presenting with knee pain is not complete without an examination of the hip’.

8.1 Inspection and Palpation • Sufficient exposure is required to inspect from the front, sides, and back for any abnormalities including scars, swelling, deformity, or wasting. • Valgus alignment: normal = 4°–8°, greater in females.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_8

125

126

8  A Systematic Examination of the Knee

• Leg length inequality/shortening is covered in Part II under the heading ‘Systematic Examination of the Hip’ on Sect. 5 (Pages 70–73).

8.1.1 Gait The most common abnormalities are: • Short leg gait: the shoulder on the affected side drops down with no sway to either side. Picture a person walking without a shoe on that side. • Antalgic gait: short-stepped with decreased stance phase on the affected side (rapid swing-through). • Trendelenburg gait (see Part II: Sect. 5) (Pages 74–76).

8.1.2 Range of Movement • Normally 0°–140°. • Lack of full extension: –– Passive: fixed flexion contracture –– Active: extensor lag • Test for crepitus during flexion and extension with the free hand on the patella. • A shallow squat assesses strength and crepitus may be audible.

8.1.3 Fluid in the Knee • Patellar tap –– Compress the suprapatellar pouch with the left hand while tapping the patella against the femur with the right hand (Fig. 8.1). –– If there is fluid present in the knee, a tap will be readily felt. –– A very sensitive test for moderate-sized effusions.

8.1  Inspection and Palpation

127

Fig. 8.1  Patellar tap

• Bulge test –– Once again compress the suprapatellar pouch (Fig.  8.2a) and then compress the medial side of the knee to shift any fluid laterally (Fig. 8.2b). –– Then compress the lateral side of the joint (Fig. 8.2c) and slight bulging will be noted on the medial side if fluid is present. –– Used to detect smaller effusions.

8.1.4 Patellofemoral Joint • Patellar tracking: normally the patella should remain within the trochlear groove of the femur on flexion and extension of the knee. Note any subluxation associated with movement. • Patellar apprehension test: with the knee in extension and the quadriceps relaxed, the patella is pushed laterally with the examiners thumb (Fig. 8.3); pain or apprehension is suggestive of instability.

8  A Systematic Examination of the Knee

128

a

b

c

Fig. 8.2  Bulge test: (a) Compress suprapatellar pouch; (b) Compress medial side; (c) Compress lateral side

8.1  Inspection and Palpation

Fig. 8.3  Patellar apprehension test

129

130

8  A Systematic Examination of the Knee

Fig. 8.4  Clarke’s patellar grind test

• Clarke’s patellar grind test: with the quadriceps relaxed, hold the patella down with the left hand and then get the patient to contract their quadriceps (Fig. 8.4); pain indicates patellofemoral irritability. • If crepitus is present, it is readily felt. • Insell’s sign: flex the knee to 30° and mobilise the patella medially; pain indicates an irritable patellofemoral joint. • Palpation of the joint surface of the patella for tenderness: with the quadriceps relaxed palpate the joint surface after pushing the patella medially and then laterally (Fig. 8.5a, b).

8.1  Inspection and Palpation

a

b

Fig. 8.5  Palpation of joint surface of the patella (a) medial; (b) lateral

131

132

8  A Systematic Examination of the Knee

8.2 Testing Stability 8.2.1 Collateral Ligaments 8.2.1.1 Medial Collateral Ligament (MCL) • Valgus stress applied to the knee in extension (Fig. 8.6a) and 30° of flexion (Fig. 8.6b) –– Laxity at 30° only: indicates MCL laxity. –– Laxity at 0°: indicates MCL laxity, damage to one or both cruciates, and posterior capsule laxity. 8.2.1.2 Lateral Collateral Ligament (LCL) • Varus stress applied to the knee in extension (Fig.  8.6c) and 30° of flexion (Fig. 8.6d) –– Laxity at 30° only: indicates LCL laxity. –– Laxity at 0°: indicates LCL laxity, damage to one or both cruciates, and posterior capsule laxity. a

b

c

d

Fig. 8.6 (a) Valgus stress applied to the knee in extension. (b) Valgus stress applied to the knee in 30° of flexion. (c) Varus stress applied to the knee in extension. (d) Varus stress applied to the knee in 30° of flexion

8.3  Cruciate Ligaments

133

8.3 Cruciate Ligaments Always compare with the opposite/normal side.

8.3.1 Drawer Test • With the hip flexed, the knee at 90° and the foot flat on the examining couch, grasp the upper tibia with both hands (Fig. 8.7) and assess the step-off between the femoral condyles and the front of the medial and lateral tibial plateaux. • Use your index fingers to encourage and ensure that the hamstrings are relaxed. • Slide the tibia backwards and forwards in the sagittal plane; increased anterior glide may indicate anterior cruciate ligament (ACL) laxity (positive anterior drawer test) whilst increased posterior glide indicates posterior cruciate ligament (PCL) laxity (positive posterior drawer test).

Fig. 8.7  Drawer test

134

8  A Systematic Examination of the Knee

• A seated drawer test called ‘The seated lumbar extension test (SLE test)’ has been described. This method encourages greater hamstring relaxation and is considered to be a more sensitive test for ACL laxity (Sect. 8.5.1) (Pages 136–138).

8.3.2 Anterior Cruciate Ligament (ACL) 8.3.2.1 Lachman Test • Regarded as the most sensitive test for ACL laxity. • While supporting the lower thigh with one hand, with the knee in 20–30° of flexion, and the other hand holding the upper tibia, slide the tibia backwards and forwards on the femur (Fig. 8.8). • Excess anterior glide indicates ACL laxity.

Fig. 8.8  Lachman test

8.3  Cruciate Ligaments

135

8.3.2.2 Pivot Shift Test • With the knee extended and relaxed, the leg is elevated and internally rotated. • The knee is then flexed while applying a valgus force. • In the cruciate deficient knee, the tibia is anteriorly subluxed in extension, and as flexion occurs the subluxation is reduced often with a jerk. • This can be very uncomfortable for the patient and is usually not performed in the acute setting.

8.3.3 Posterior Cruciate Ligament (PCL) 8.3.3.1 Posterior ‘Sag’ Test • With the hip flexed and the knee at 90°, view from the side with the eye level with the knee. • With PCL rupture, the tibia will be seen to be shifted slightly posteriorly in relation to the femur (Fig. 8.9a). • In this position, have the patient actively contract the quadriceps while stabilising the tibia. The tibia will be seen to move forward into its normal position if a posterior sag was present (Fig. 8.9b). (In all the tests noted above, always determine whether the endpoint of any movement is ‘hard’ or ‘soft’. A small shift with a hard endpoint may be normal. Always compare with the opposite side.)

8.3.3.2 Meniscal Injuries • These are discussed in more detail in ‘Sect. 9.1: Osteoarthrosis of the Knee’.

136

8  A Systematic Examination of the Knee

a

b

Fig. 8.9  Posterior sag test (a) overcome with quadriceps contraction (b)

8.4 Joint Line Tenderness • This is the simplest and possibly the most sensitive test for meniscal lesions. Palpation over the medial and lateral joint lines may produce discomfort or pain.

8.5 McMurray’s Test • Place the knee in full flexion with thumb and fingers on medial and lateral joint lines. • The knee is then slowly extended while applying valgus and varus stresses alternatively, and with the knee in both internal and external rotation. • The test needs to be repeated to allow all the above to be carried out. • Feeling or hearing a ‘click’ is suggestive of a torn meniscus.

8.5.1 Method for Carrying Out the Seated Lumbar Extension Test (SLE TEST) • Patient seated and leaning back at 60° without posterior support (Fig. 8.10). • Test for ACL laxity in the standard fashion.

8.5  McMurray’s Test

137

Fig. 8.10  Seated drawer test with patient leaning backwards (SLE TEST)

8.5.2 Points to Emphasise • The key to testing for ACL laxity is relaxation of the hamstring muscles. • It is very difficult to get the hamstrings to completely relax. • The hamstrings are more relaxed in the position suggested than in the supine position.

8.5.3 Explanation • In the seated lumbar extended position, the muscles preventing further extension are the hip flexors, particularly the psoas muscles. • When the hip flexors contract, the antagonistic muscles, the hip extensors, that is the hamstrings, relax.

138

8  A Systematic Examination of the Knee

8.5.4 Conclusion • The seated lumbar extension test is more sensitive than the standard anterior drawer test when assessing anterior cruciate laxity.1

Roger Pillemer YouTube: Physical signs Part I.

1 

9

Examination for Specific Conditions of the Knee

9.1 Osteoarthrosis of the Knee Degenerative disease of the knee joint with progressive loss of articular cartilage. • Three times as common as OA of the hip and often bilateral • Very commonly no obvious cause (idiopathic); possible genetic basis

9.1.1 Risk Factors • • • • •

Damage to the articular cartilage Torn meniscus Ligamentous laxity Obesity Smoking

9.1.2 Symptoms • Symptoms may be present to varying degrees.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_9

139

140

9  Examination for Specific Conditions of the Knee

• Pain, usually localised to compartment involved, medial or lateral. If the patellofemoral joint is mainly involved, felt particularly negotiating stairs. • Limp. • Stiffness, especially after sitting for a period. • Swelling, locking, clicking, or catching sensation. • Difficulty with stairs, crouching, or kneeling. • Feeling of instability.

9.1.3 Signs • • • •

Antalgic gait Decreased range of movement often associated with crepitus Quadriceps wasting Valgus/varus deformity, depending on which compartment is mainly involved • Effusion

9.1.4 X-Rays There are four classical radiological signs of OA of any joint (Fig. 9.1): • • • •

Loss of joint space (asymmetric). The earliest sign Osteophyte formation Subchondral sclerosis Cyst formation

Note: Plain X-rays are the most used investigation of OA of the knee because of availability and low cost and being very sensitive. The most sensitive X-ray to assess joint space narrowing is the Rosenberg view, which is a PA weight-bearing X-ray with the knee in 30–45° of flexion (Fig. 9.2).

9.1  Osteoarthrosis of the Knee

141

Fig. 9.1  X-ray of the knee showing the four classical signs of OA

9.1.5 Treatment 9.1.5.1 Non-operative • General: weight loss, physiotherapy, stretching, walking stick, quadriceps exercises, external support • Medication: analgesic/anti-inflammatory • Injection: steroid, PRP, hyaluronic acid • Unloaded brace 9.1.5.2 Operative • High tibial osteotomy (HTO) in younger patients and where only medial or lateral compartment involved. May delay the need for arthroplasty for many years • Hemi-arthroplasty • Total joint replacement

142

9  Examination for Specific Conditions of the Knee

Fig. 9.2  Rosenberg view

9.2 Meniscal Lesions • The important functions of the menisci have been described in Sect. 7.3 (Pages 121, 122). • The medial meniscus is far more commonly torn than the lateral meniscus as it is less mobile. • There are two types of meniscal tear: –– Acute: usually associated with a twisting force on a bent knee while weight-bearing. –– Degenerative: menisci become more fibrotic and less elastic with ageing and more susceptible to tearing; 60% of the population over the age of 60 have degenerative tears present. • Description of tears (Fig. 9.3):

9.2  Meniscal Lesions Vertical

143 Horizontal

Longitudinal

Radial (perpendicular)

Complex

Oblique (parrot-beak)

Fig. 9.3  Description of meniscal tears

–– Longitudinal: horizontal (cleavage) or vertical; the vertical type can lead to bucket handle tear if extensive and displaced. –– Radial: perpendicular to long axis of meniscus and in the avascular (inner) zone. This is more common in the lateral meniscus. –– Parrot beak: oblique radial tear. –– Flap: displaced horizontal tear. –– Complex: combination of any of the above. • Healing of a torn meniscus is only possible in the outer (red/ vascular) zone (Fig. 7.10). • Risk of meniscal tears is higher in ACL deficient knees.

144

9  Examination for Specific Conditions of the Knee

9.2.1 Symptoms • Pain following injury, often located to medial or lateral side of the knee • Swelling, typically occurring several hours after injury, or even the next day • Stiffness and/or instability • Catching or ‘locking’ (see Sect. 9.2.2.1) (Page 144)

9.2.2 Signs • Joint line tenderness, typically on the affected side. This is the simplest and possibly the most sensitive test. • Effusion. • Loss of range of movement, most commonly slight loss of extension. • Special tests: –– McMurray’s test (see Sect. 9.2.2.2) (Page 145) –– Apley’s grinding test (see Sect. 9.2.2.3) (Page 145) Diagnosis confirmed on MRI

9.2.2.1 Locking There are two types of locking: • Pseudo locking is any cause of severe pain which may significantly restrict range of movement as a protective mechanism. The knee however is capable of movement.

9.2  Meniscal Lesions

145

• True locking is the inability to actively or passively fully extend the knee due to either: –– Bucket handle tear of the meniscus –– Loose body within the joint –– Dislocated patella Note: With a trapped loose body, neither flexion nor extension is possible. With a bucket handle tear a certain amount of flexion may still be present.

9.2.2.2 McMurray’s Test • With the knee in full flexion, the examiner’s one hand supports the knee with finger and thumb along the joint line, while the other hand controls the heel. • The knee is then extended while maintaining external tibial rotation (medial meniscus) or internal tibial rotation (lateral meniscus). • Pain associated with a ‘pop’ or click is regarded as a positive test, and is due to meniscal tissue being ‘trapped’. 9.2.2.3 Apley’s Grinding Test • Carried out with the patient prone and the knee flexed to 90° (Fig. 9.4). • The tibia is then medially and laterally rotated while applying a compressive force. • A painful response suggests a meniscal lesion.

146

9  Examination for Specific Conditions of the Knee

Fig. 9.4  Apley’s grinding test

9.3  Knee Ligament Injuries

147

9.3 Knee Ligament Injuries Methods of testing for ligament instability of the knee are described in Chap. 8.

9.3.1 Signs and Symptoms • Pain: varies from mild to severe. Paradoxically complete ligament tears are often less painful than partial tears. • With acute tears, pain may severely restrict the examination. • Tenderness: at the site of the tear. • Swelling: usually more marked with partial tears as the intact capsule confines the swelling to the joint. Occurs immediately, unlike meniscal tears where swelling is delayed. • It is important to differentiate between partial and complete tears, and if there is any doubt, an examination under anaesthetic will clarify the issue. • Diagnosis in chronic instability is far easier.

9.3.1.1 The Fibular Collateral Ligament: Palpating the Most Palpable Ligament in the Body • In the seated position, rest the lateral aspect of the left distal leg on the distal thigh of the right leg (the figure 4 position; Fig. 9.5). • With the middle finger of the left hand palpate the space between the prominent head of the fibula and the lateral femoral condyle. • The thick cord-like lateral ligament is readily palpable. • Actively lift the ankle 1  cm off the distal thigh and feel the ligament disappear once the passive stress is removed.

148

9  Examination for Specific Conditions of the Knee

Fig. 9.5  Palpating the lateral ligament of the knee (figure 4 position)

9.4  Dislocation of the Patella

149

9.4 Dislocation of the Patella • Because of the valgus angulation of the knee, contraction of the quadriceps muscle pulls the patella laterally. • The only bony structures that provide stability to the patella are the intercondylar groove of the femur and the prominent lateral femoral condyle (Fig. 9.6). • The other stabilising factors are all soft tissue and include: –– The medial patellofemoral ligament in particular (Fig. 9.7). –– The patellofemoral, patellomeniscal, and patellotibial ligaments. –– Contraction of the quadriceps pulls the patella into the trochlear groove. • In the normal knee considerable force is required to dislocate the patella. • However, any abnormalities in the supporting structures, including those noted above, may make the patella more susceptible to dislocation (see following section on recurrent dislocation of the patella).

Fig. 9.6  Skyline view of patellofemoral joint

150

9  Examination for Specific Conditions of the Knee

Fig. 9.7  Medial patellofemoral ligament

9.5  Recurrent Dislocation of the Patella

151

9.4.1 Symptoms • Severe pain and inability to move the knee. • The dislocation may reduce spontaneously, or with medial pressure applied to the patella while gently extending the knee.

9.4.2 Signs • Obvious deformity if unreduced • Following reduction, significant swelling (haemarthrosis) • Medial tenderness with possible bruising

9.5 Recurrent Dislocation of the Patella • May follow an acute dislocation of the patella. • Predisposing factors: –– Family history –– Generalised ligamentous laxity –– Valgus alignment of the knee (knock-knee) –– Under development of the lateral femoral condyle –– Trochlear dysplasia –– Small or high-riding patella (patella alta)

9.5.1 Signs and Symptoms • • • •

Obvious deformity if unreduced. Following reduction, significant swelling (haemarthrosis). Medial tenderness with possible bruising. In habitual dislocation there may be minimal swelling. (In this condition the patella dislocates whenever the knee is flexed and spontaneously relocates with extension of the knee.) • Patellar apprehension test (Fig. 8.3) (Page 129): –– Passive lateral translation results in significant apprehension.

9  Examination for Specific Conditions of the Knee

152

Female

Male

Anterior superior iliac spine

Q-angle

Midpoint of patella Tibial tubercle

Fig. 9.8  Q-angle

• Increase in passive patellar translation. • Increase in Q-angle (Quadriceps angle).1

9.6 Extensor Mechanism Failure • Caused by sudden resisted extension of the knee. • Transverse fracture of the patella is the most common cause of extension mechanism failure. • Tendon rupture may occur above the patella (avulsion of the quadriceps tendon from the upper pole of the patella) or below the patella (rupture/avulsion of the patellar tendon).

The Q-angle is defined as the angle between a line drawn from the anterior superior iliac spine (ASIS) to the centre of the patella and a line drawn from the centre of the patella to the tibial tubercle (Fig. 9.8). A Q-angle greater than 15° may cause the patella to sublux laterally during quadriceps contraction. 1 

9.6  Extensor Mechanism Failure

153

• Avulsion of the tibial apophysis is rare and usually requires urgent surgery as it is a physeal injury. • As noted in Fig. 9.9, with increasing age the site of failure rises from the tibial apophysis to the quadriceps tendon.

9.6.1 Risk Factors • • • •

Steroid use Rheumatoid arthritis Diabetes Renal failure

Fig. 9.9  Site of extensor mechanism failure by age: site rises with increasing age

60-80

40-60

20-40

10-15

154

9  Examination for Specific Conditions of the Knee

9.6.2 Signs • Inability to actively extend the knee in complete ruptures. • Palpable defect at the site of rupture.

9.6.3 Investigations • X-ray will show a fracture of the patella and an abnormal positioning of the patella with soft tissue ruptures. • MRI will differentiate between complete and partial tears.

9.7 Osgood Schlatter’s Disease (Tibial Tubercle Apophysitis) • A traction injury of the tibial tubercle (apophysis) caused by quadriceps contraction exerting force via the patellar tendon insertion. • More common in boys (12–15 years) than in girls (8–12 years). • Usually, spontaneous onset with no history of injury and often bilateral. • Presents with pain in the anterior aspect of the knee, especially after activity, with swelling and tenderness of the tibial tubercle. • Pain reproduced by resisted extension of the knee. • X-rays may show irregularity and fragmentation of the tibial tubercle (Fig. 9.10). • In most cases the condition settles spontaneously, with some patients being left with a prominent tibial tuberosity, or a separate ossicle within the tibial tubercle bed as in Fig. 9.10.

9.7  Osgood Schlatter’s Disease (Tibial Tubercle Apophysitis)

155

Fig. 9.10  Fragmentation of the tibial tubercle ‘Osgood Schlatter’s disease’

156

9  Examination for Specific Conditions of the Knee

9.8 Osteochondritis Dissecans of the Knee (OCD) • A segment of bone beneath the joint cartilage separates. • While OCD can affect any joint, the knee is the most affected joint in the body (70%). • In most cases the lesion occurs in the lateral surface of the medial femoral condyle. • The most likely cause is felt to be traumatic, due to impact of the medial tibial spine against the femoral condyle. • However other factors would seem to be associated, as multiple joints may be involved, and there is also a familial incidence. • Males are affected more often than females (3:1). The lesion is usually present by the age of 20, and lesions are bilateral in 30–60% of cases. • If the overlying cartilage remains intact the bony fragment will remain in position. At a later stage the lesion may separate and become a loose body (Fig. 9.11a).

9.8.1 Symptoms • Pain and swelling, a feeling of instability, and if a loose body is present, there may be locking.

9.8.2 Signs • Tenderness of the medial femoral condyle, an effusion and eventual quadriceps wasting • Wilson’s test –– Patient seated on couch with legs dangling and knee at 90° of flexion. –– The tibia/foot is internally rotated, and the knee extended. –– The test is positive when pain is experienced at about 30° from full extension. –– External rotation of the tibia/foot in this position relieves the pain.

9.8  Osteochondritis Dissecans of the Knee (OCD)

157

a Osteochondritis Dissecans

b

Fig. 9.11 (a) Loose body; (b) X-rays showing OCD lesion with dome shape and clear line of demarcation

9.8.3 Imaging • X-rays will eventually show the dome-shaped lesion with a clear line of demarcation (Fig. 9.11b). • If the fragment breaks loose, the empty socket will be seen, with a loose body (Fig. 9.11a).

158

9  Examination for Specific Conditions of the Knee

9.8.4 Differential Diagnosis Osteonecrosis of the medial femoral condyle. The lesion is always in the dome of the condyle (Fig. 9.12).

9.9 Osteonecrosis • Development of a crescent-shaped osteonecrotic lesion with the most common site being the dome of the medial femoral condyle (Fig. 9.12).

Fig. 9.12  Osteonecrosis: X-ray showing lesion in dome of medial femoral condyle

9.9 Osteonecrosis

159

• For most this is a subchondral insufficiency fracture. –– Most common in osteoporotic females. –– May occur as a complication of root tear of medial meniscus. There are two types:

9.9.1 Spontaneous Osteonecrosis of the Knee (SONK) • Generally aged over 55 • Female:male = 3:1 • Signs and symptoms: –– Sudden onset of severe pain on the medial side of the knee –– Effusion –– Tenderness over the medial femoral condyle • Possibly due to stress fractures

9.9.1.1 Investigations • X-ray: in the later stages will show a crescent-shaped line of demarcation (Fig. 9.12). • Bone scan: will show increased activity in the affected area. • MRI: showing the crescent-shaped demarcation between the viable and necrotic bone (Fig. 9.13). 9.9.1.2 Prognosis • A minor episode may settle with little consequence; if severe, can lead to collapse of the femoral condyle. 9.9.1.3 Differential Diagnosis • Osteochondritis dissecans: the lesion here is in the lateral side of the medial femoral condyle rather than the dome of the condyle. • Stress fracture. • Fracture of an osteophyte.

160

9  Examination for Specific Conditions of the Knee

Fig. 9.13  MRI in osteonecrosis showing demarcation

9.9.2 Association with Underlying Conditions • • • • • •

Steroid use Alcohol abuse Sickle cell disease Decompression sickness Systemic lupus erythematosus Gaucher’s disease

9.10 Swellings of the Knee: More Common Causes • Injury: haemarthrosis or synovial effusion. • Osteoarthrosis. • Rheumatoid arthritis: smaller joints usually involved; symmetrical involvement is common.

9.10  Swellings of the Knee: More Common Causes

161

• Gout (urate crystals) and pseudogout (calcium pyrophosphate deposition—CPPD). • Infections. • Bursitis: there are 13 bursae related to the knee. The two most frequently involved being the pre-patellar and infra-patellar bursae (Fig. 9.14). • Popliteal/Baker’s cyst: swelling in the popliteal fossa which communicates with the knee joint (Fig. 9.15).

Femur

Suprapatellar Bursa

Patella Popliteal Bursa Subsartorial Bursa

Prepatellar Bursa

Semitendinosus Tendon

Deep Infrapatellar Bursa

Gracilis Tendon Sartorius Tendon Pes Anserinus

Subcutaneous Infrapatellar Bursa Patellar Tendon

Fibula Tibia

Fig. 9.14  Bursae of knee

162

9  Examination for Specific Conditions of the Knee

Baker’s cyst

Fig. 9.15  Baker’s cyst

Part IV The Foot and Ankle

Anatomy and Function

10

10.1 Bones There are 26 bones forming the foot and ankle (28 if you include the tibia and fibula) and it is helpful to consider these as being divided into three regions (Figs. 10.1 and 10.2) • Hindfoot: –– Extends from the ankle joint to the talonavicular and calcaneocuboid joints (the mid-tarsal joint). –– Two bones: talus and calcaneus. • Midfoot: –– Extends from the mid-tarsal joint to the tarsometatarsal (TMT) joint. –– Five bones: navicular, cuboid, and the three cuneiform bones (medial, middle, and lateral). • Forefoot: –– Extends from the TMT joint to the tips of the toes. –– 21 bones: metatarsals, phalanges and two sesamoids.

10.1.1 Talus • Second largest of the tarsal bones (Fig. 10.3). © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_10

165

10  Anatomy and Function

166

• It carries the whole weight of the body in the single support phase of gait. • Sixty to 70% covered by hyaline cartilage for articulation with surrounding joints. • Most of the blood supply is via blood vessels connected to the neck of the talus and is very fragile. Fracture of the neck can result in avascular necrosis of the body of the talus. • No tendons attach to the talus.

Hallux

Distal

Phalanges

Middle Proximal

Metatarsals

Medial cuneiform Intermediate cuneiform

Lateral cuneiform

Navicular

Cuboid Tarsals

Talus Calcaneus

Fig. 10.1  Bones of the foot

10.1 Bones

167

Head of talus Navicular bone

Neck of talus

2nd (intermed.) cuneiform bone

Med. malleolar surface Body of talus

1st (med.) cuneiform bone Metatarsal bones

Talus

Post. proc. of talus, med. tubercle Sustentaculum tali

Proximal phalanges Middle phalanges Distal phalanges

Calcaneus, med. tuberal proc.

Med. and lat. sesamoid bones 1st metatarsal bone,

Fig. 10.2  Medial view

Fig. 10.3 Talus

5th metatarsal bone, tuberosity

Groove for tendon of flexor hallucis longus m. Cuboid bone,

168

10  Anatomy and Function

10.1.2 Calcaneus (Heel Bone) • Largest bone in the foot (Fig. 10.4). • The anterior half of the bone articulates with the talus above and the cuboid distally. • The sustentaculum tali is a horizontal shelf that projects from the antero-medial aspect of the calcaneus. –– Its superior surface articulates with the talus. –– The inferior surface is grooved for the tendon of flexor hallucis longus (FHL). –– The anterior margin gives attachment to the plantar calcaneonavicular ligament (spring ligament) (Fig. 10.17) (Page 183). –– Medially it gives attachment to part of the deltoid ligament (the medial ligament of the ankle joint). • The bifurcate ligament extends from the anterior process of the calcaneus and attaches to the lateral aspect of the navicular and the cuboid bones (Fig. 10.18) (Page 184).

10.1.3 Navicular • Articulates with the head of the talus proximally and with the three cuneiform bones distally and the cuboid laterally (Fig. 10.1). • The navicular tuberosity on the medial aspect gives attachment to the tendon of tibialis posterior (Fig. 10.5). • The spring ligament attaches to the inferior margin of the navicular medially (Figs. 10.8 (Page 175) and 10.17 (Page 183)).

10.1.4 Cuneiform Bones (Cuneiform = Wedge Shaped) • Articulate proximally with the navicular, distally with the medial three metatarsals (one for each cuneiform), and laterally with the cuboid (Fig. 10.1) (Page 166).

10.1 Bones

Fig. 10.4 Calcaneus

169

170

10  Anatomy and Function

Fig. 10.4 (continued)

Navicular Posterior tibialis tendon

Fig. 10.5  Navicular tuberosity and attachment of tibialis posterior

10.1 Bones

171

• Tibialis anterior attaches to the medial and inferior surface of the medial cuneiform, as well as to the base of the first metatarsal (Figs. 10.6a and 10.24) (Page 190).

a

Tibialis Anterior

b Peroneus brevis muscle Peroneus longus muscle

Peroneus tertius muscle

Anterior tibial fibular ligament

Tendo calcaneus

Inferior extensor retinaculum

Anterior talofibular ligament Supeior peroneal retinaculum

Peroneus tertius tendon

Calcaneal fibular ligament

Lateral talocalcaneal ligament Inferior peroneal retinaculum Peroneus longus tendon

Peroneus brevis tendon MAYO ©2008

Fig. 10.6 (a) Tibialis anterior attachment to the medial cuneiform and base of first metatarsal; (b) Peroneal tendons

172

10  Anatomy and Function

10.1.5 Metatarsals • The five metatarsals articulate proximally with the tarsal bones as noted above, forming the tarsometatarsal joints or Lisfranc joint complex (Fig. 10.1) (Page 166). • Peroneus brevis inserts into the prominent tuberosity of the base of the fifth metatarsal, which is readily palpable on the lateral border of the foot (Fig. 10.6b). • The metatarsal heads form the weight-bearing aspect of the forefoot. • Distally each metatarsal articulates with the proximal phalanx of its related toe.

10.1.6 Phalanges • These follow the pattern of the hand, with two phalanges for the big toe and three for the lesser toes.

10.1.7 Sesamoid Bones • Medial and lateral sesamoid bones are embedded within the split tendon of flexor hallucis brevis, which inserts into the plantar aspect of the proximal phalanx of the big toe (Fig. 10.7a). • These lie directly beneath the head of the first metatarsal (Fig. 10.7b).

10.1 Bones

173

a

Lateral sesamoid Deep transverse metatarsal ligament

Proximal phalanx Medial sesamoid Joint capsule

of adductor hallucis

Transverse head Oblique head

First metatarsal

Abductor hallucis Medial head Lateral head

of flexor hallucis brevis

b

Fig 10.7 (a) Sesamoids within flexor hallucis brevis. (b) Sesamoids lying beneath the head of the first metatarsal

174

10  Anatomy and Function

10.2 Joints and Ligaments 10.2.1 Ankle Joint (Talocrural Joint) • The ankle joint is a hinged synovial joint formed by the tibia and fibula above and the talus below. • Weight is transmitted from the tibia to the talus with the medial and lateral malleoli providing the stability of the ankle ‘mortise’. • The articulating surface of the talus is wedge-shaped being broad anteriorly and narrow posteriorly, making the ankle joint less stable in plantar flexion (Fig. 10.3). • Additional stability is provided by the medial (deltoid) and lateral ligaments, which arise from the medial and lateral malleoli, respectively. • Medial ligament (Fig. 10.8): –– Has deep and superficial layers. –– The deep layer attaches to the medial side of the talus. –– The superficial layer is triangular shaped, apex above, and attaching in a continuous line to the medial tubercle of the talus, along the edge of the sustentaculum tali and spring ligament to the tuberosity of the navicular. • Lateral ligament (Fig. 10.9) –– Has three separate bands: Anterior talofibular—lateral malleolus to neck of talus Posterior talofibular—lateral malleolus to the posterior aspect of the talus Calcaneofibular—tip of lateral malleolus, passing downwards and slightly posterior, to the lateral surface of the calcaneus An important consideration in relation to the ankle joint: • Widening of the ankle mortise by 1 mm with lateral shift of the talus decreases the contact area of the tibiotalar joint by approximately 40%!

10.2  Joints and Ligaments

175

Medial ligament of the ankle joint

Posterior tibiotalar part

Tibiocalcaneal part Tibionavicular part Anterior tibiotalar part

Medial tubercle of talus

Sustentaculum tali of calcaneus bone

Tuberosity of navicular bone

Plantar calcaneonavicular ligament

Fig. 10.8  Medial ligament of the ankle

10.2.2 Subtalar Joint: Talocalcaneal Joint (ST) • This joint is formed by the concave inferior surface of the talus with the convex superior surface of the calcaneus. • This joint is very commonly involved in fractures of the calcaneus. • The calcaneus has three articulating surfaces, posterior, middle, and anterior, while the talus has two (Fig. 10.10).

10  Anatomy and Function

176

Interosseous membrane

Anterior inferior tibiofibular ligament

Anterior talofibular ligament

Deltoid ligament

Calcaneofibular ligament

Posterior inferior tibiofibular ligament

Inferior transverse tibiofibular ligament

Tibia Fibula Anterior inferior tibiofibular ligament Anterior talofibular ligament

Calcaneofibular ligament

Fig. 10.9  Lateral ligament of the ankle

10.2.3 Talocalcaneonavicular Joint (TCN) • A ball and socket joint, with the ball being the head of the talus and the socket being formed by the calcaneus and the ­navicular, with the spring ligament spanning the gap between them (Fig. 10.11). • The calcaneonavicular component of the bifurcate ligament also gives support to the joint (Fig. 10.18) (Page 184).

10.2  Joints and Ligaments

177

Posterior talar articular facet

Corpus calcanei

Sulcus calcanei

Middle talar articular facet Anterior talar articular facet

Posterior calcaneal articular facet

Talar sulcus

Flexor hallucis longus sulcus

Fig. 10.10  Subtalar joint

Medial calcaneal articular facet

Anterior calcaneal articular facet

Navicular articular facet

178

10  Anatomy and Function

10.2.4 Calcaneocuboid Joint • The joint between the anterior aspect of the calcaneus and the posterior aspect of the cuboid (Fig. 10.12).

Fig. 10.11  Talonavicular joint

10.2  Joints and Ligaments

Calcaneus

179

Cuboid bone

Calcaneocuboid joint

Fig. 10.12  Calcaneocuboid joint

• This joint and the talonavicular part of the TCN joint form the mid-tarsal joint, also known as ‘Chopart’s joint’.

10.2.5 Tarsometatarsal Joints (TMT) • See Fig. 10.1 (Lisfranc joint complex). • Formed by the articulation of the bases of the five metatarsals with the distal surfaces of the three cuneiform bones and the cuboid. –– First metatarsal articulates with the medial cuneiform. –– Second metatarsal with the intermediate cuneiform. –– Third metatarsal with the lateral cuneiform. –– Fourth metatarsal with the lateral cuneiform and the cuboid. –– Fifth metatarsal with the cuboid. • Note that the second metatarsal base is recessed and the joint immobile, and supported by the very strong plantar surface ligament connecting the medial cuneiform to the base of the second metatarsal (Lisfranc ligament) (see Sect. 10.2.5.1) (Fig. 10.13). • There is no direct ligament attachment between the first and second metatarsals.

180

10  Anatomy and Function

Fig. 10.13  Lisfranc ligament

10.2.5.1 Lisfranc Joint/Injury • Specifically mentioned as injuries to this joint are often missed (in up to 20% of cases) with possible serious consequences. • The severity of injury can range from mild sprain to severe dislocations or fracture dislocations. • A high degree of suspicion is required and weight-bearing X-rays of both feet are essential. • On X-ray look specifically at the space between the bases of the first and second metatarsals for any widening and check the alignment between the second metatarsal and the medial cuneiform (Figs. 10.14 and 10.15).

10.2  Joints and Ligaments

181

Fig. 10.14  Lisfranc injury

10.2.6 Other Important Ligaments 10.2.6.1 Lisfranc Ligament This is such an important ligament; it is worth having a clear picture of its attachments. It extends obliquely from the lateral surface of the medial cuneiform to the medial aspect of the base of the second metatarsal (Fig. 10.15). It is composed of three bands (Fig. 10.16): • Dorsal ligament: (weakest—red) • Interosseous ligament: (Lisfranc ligament proper—blue)

182

10  Anatomy and Function

Second metatarsal

Lisfranc ligament

Medial cuneiform

Middle cuneiform

Fig. 10.15  Lisfranc ligament

Fig. 10.16  The three bands of the Lisfranc ligament

10.2  Joints and Ligaments

183

• Plantar ligament: (sends bundles to bases of second and third metatarsals—green)

10.2.6.2 Plantar Calcaneonavicular (Spring) Ligament • Thick, wide, and strong band of connective tissue which extends from the sustentaculum tali of the calcaneus to the navicular (Figs. 10.8 (Page 175) and 10.17). • The head of the talus articulates with the upper surface, where there is a fibrocartilaginous facet. • Failure of this ligament leads to a pathological flat foot deformity.

Tibialis anterior

Fibularis longus Short plantar ligament Long plantar ligament

Plantar calcaneonavicular ligament

Tibialis posterior

Fig. 10.17  Spring ligament, long and short plantar ligaments

10  Anatomy and Function

184

10.2.6.3 Short Plantar Ligament (Plantar Calcaneocuboid Ligament) • Connects the inferior aspect of the calcaneus to the plantar aspect of the cuboid (Fig. 10.17). • Lies deep to the long plantar ligament.

10.2.6.4 Long Plantar Ligament • Attaches to the plantar surface of the calcaneus anterior to the tuberosity (Fig. 10.17). • Inserts into the bases of the middle three metatarsals, and occasionally into the base of the fifth metatarsal. • It covers the short plantar ligament.

10.2.6.5 Bifurcate Ligament • Arises from the upper surface of the calcaneus and consists of two components which form a Y-shape (Fig. 10.18). –– The medial component attaches to the navicular. –– The lateral component attaches to the cuboid. • Injury to the bifurcate ligament can result in fracture of the anterior process of the calcaneus.

Talonavicular ligament

Navicular

Cuboid

Interosseous talocalcaneal ligament

Fig. 10.18  Bifurcate ligament

Bifurcate ligament

10.2  Joints and Ligaments

185

Fig. 10.19  Sinus tarsi

10.2.6.6 Tarsal Sinus • A cylindrical canal bordered by the neck of the talus and the anterosuperior aspect of the calcaneus (Fig. 10.19). • It is funnel shaped with the funnel opening laterally. • It separates the anterior from the posterior subtalar joint. • It contains the very strong interosseous talocalcaneal ligament.

10.3 Muscles and Tendons As in the hand, there are two groups of muscles that move the joints of the foot and ankle:

10  Anatomy and Function

186

• Extrinsic muscles which arise above the foot and ankle, and which provide the main source of power of the foot and ankle • Intrinsic muscles which arise and insert in the foot and assist in the finer movements of the toes

10.3.1 Extrinsic Muscles A good way of being able to visualise the groups of muscles and their function is to consider a cross section of the leg showing the four muscle compartments (Fig. 10.20):

10.3.1.1 Superficial Posterior Compartment • Gastrocnemius and soleus: –– Insertion: large muscles which join to form the Achilles tendon which inserts into the posterior surface of the calcaneus.

Superficial posterior compartment

Deep posterior compartment

Fibula

Lateral compartment

Tibia Anterior compartment

Fig. 10.20  Compartments of the lower leg

Nerve

10.3  Muscles and Tendons

187

–– Action: plantar flexion of the foot; gastrocnemius is also a flexor of the knee. –– Innervation: tibial nerve (S1,2). • Plantaris: –– Insertion: fuses with the medial border of the Achilles tendon. –– Action: minimal function but can rupture causing pain. Can be used as a tendon graft. Gastrocnemius • Arises above the knee via two heads, from the posterior aspect of the distal femur, this proximal attachment accounts for it being a flexor of the knee (Fig. 10.21). • The muscle is taut when the knee is in extension but relaxed when the knee is in flexion. • Hence the restricted range of active and passive ankle extension when the knee is in extension. • This is analogous to the greater range of knee flexion when the hip is flexed as opposed to extended (see Chap. 7).

10.3.1.2 Deep Posterior Compartment • Tibialis posterior: –– Insertion: into the tuberosity of the navicular, as well as tendinous slips to all three cuneiforms (Fig. 10.22a), the cuboid and the bases of the second, third, fourth, and occasionally fifth metatarsals (Fig. 10.22b). –– Action: inverts and adducts the forefoot and plantar flexes the ankle joint. –– Innervation: tibial nerve (L4). –– Clinical: inverting the slightly flexed foot against resistance allows palpation of the tendon below the medial malleolus.

10  Anatomy and Function

188

Origin of medial head: Medial epicondyle of femur

Origin of lateral head: Lateral epicondyle of femur

Gastrocnemius muscle

Insertion: Calcaneus via the Achilles tendon

Fig. 10.21  Gastrocnemius origin

• Flexor hallucis longus: –– Insertion: into the base of the distal phalanx of the big toe (Fig. 10.23) –– Action: flexion of the big toe –– Innervation: tibial nerve (S1,2) • Flexor digitorum longus: –– Insertion: into the bases of the distal phalanges of the lateral four toes (Fig. 10.23) –– Action: flexion of the lateral four toes –– Innervation: tibial nerve (S1,2)

10.3  Muscles and Tendons

189

a

b

LCB

IIMB

IIIMB

ICB

IVMB

MCB

MCB

VMB

TPT

TPT

Fig. 10.22  Tibialis posterior insertion; TPT tibialis posterior tendon, MCB medial cuneiform bone, ICB intermediate cuneiform bone, LCB lateral cuneiform bone, MB metatarsal bones Tibialis Posterior

Flexor Hallucis Longus

Medial Malleolus *“Tom, Dick & Harry” flex hall longus

post tibial

flex digit longus

Flexor Digitorum Longus

Fig. 10.23  Tibialis Posterior (TP), Flexor Digitorum Longus (FDL), and Flexor Hallucis Longus (FHL). *Note the mnemonic ‘Tom, Dick & Harry’ to remember the tendons from anterior to posterior: TP, FDL, FHL

190

10  Anatomy and Function

Fig. 10.24  Tibialis anterior insertion; TA tibialis anterior, MCB medial cuneiform bone, 1MB first metatarsal bone

10.3.1.3 Anterior Compartment • Tibialis anterior (Fig. 10.6a) (Page 171): –– Splits to insert into the medial and inferior surfaces of the medial cuneiform and first metatarsal (Fig. 10.24) –– Action: extension (dorsiflexion) of the ankle and inversion of the foot –– Innervation: deep peroneal nerve (L4) • Extensor hallucis longus (EHL): –– Insertion: dorsum of the base of the terminal phalanx of the big toe (Fig. 10.25) –– Action: extension of the big toe –– Innervation: deep peroneal nerve (L5) • Extensor digitorum longus (EDL): –– Insertion: mimics the insertion of extensor digitorum communis in the hand, with three slips. The central slip inserts into the base of the middle phalanx and the lateral slips join and insert into the base of the distal phalanx (Fig. 10.25). –– Action: extends the lateral four toes. –– Innervation: deep peroneal nerve (L5,S1).

10.3  Muscles and Tendons

191

Fig. 10.25  Extensor hallucis longus (EHL) and extensor digitorum longus (EDL) insertions

• Peroneus tertius: –– Insertion: into the dorsum of the base of the fifth metatarsal (Fig. 10.26) –– Action: dorsiflexion and eversion of the foot –– Innervation: deep peroneal nerve (L5,S1)

10.3.1.4 Lateral Compartment • Peroneus longus (Fibularis longus): –– Insertion: crosses the sole of the foot obliquely and inserts into the lateral aspect of the base of the first metatarsal and medial cuneiform (Fig. 10.17) (Page 183). –– Action: eversion of the foot and plantar flexion of the ankle. –– Innervation: superficial peroneal nerve (L5,S1).

10  Anatomy and Function

192

Peroneus brevis muscle Peroneus longus muscle

Peroneus tertius muscle

Tendo calcaneus

Anterior tibial fibular ligament Inferior extensor retinaculum

Anterior talofibular ligament Superior peroneal retinaculum

Peroneus tertius tendon

Calcaneal fibular ligament

Lateral talocalcaneal ligament Inferior peroneal retinaculum Peroneus longus tendon

Peroneus brevis tendon

MAYO ©2008

Fig. 10.26  Peroneal tendons

• Peroneus brevis: –– Insertion: the tubercle of the base of the fifth metatarsal (Fig. 10.26) –– Action: eversion of the foot and plantar flexion of the ankle –– Innervation: superficial peroneal nerve (L5,S1) Note: All the muscles that insert on the medial side of the foot help to maintain the medial longitudinal arch of the foot, namely tibialis anterior and posterior, as do FHL, FDL, and the intrinsic muscles (see below).

10.3.2 Intrinsic Muscles • These muscles originate and insert within the foot. • They have two main actions: –– Stabilise the foot and support the arches. –– Produce the fine movement of the toes.

10.3  Muscles and Tendons

193

• All the muscles are innervated by the tibial nerve, except for extensor digitorum brevis (EDB) which is innervated by the deep fibular (peroneal) nerve. • Vascular supply is via dorsalis pedis and posterior tibial arteries. • There are two main groups: –– Dorsal group (Fig. 10.27): Extensor digitorum brevis Extensor hallucis brevis –– Plantar group: these are in four layers (10  in number) (Fig. 10.28). Note that extrinsic muscles have been labelled in italics below.

10.3.2.1 First Layer (Lies Deep to the Plantar Aponeurosis) • Abductor hallucis (1): abducts and flexes the big toe. • Flexor digitorum brevis (2): flexes the lateral four toes at the PIP joint. • Abductor digiti minimi (3): abducts the little toe.

10.3.2.2 Second Layer • Lumbricals (1): maintain extension of the digits at the IP joints (as in the hand). • Quadratus plantae (4): flexes the minor four toes. • [(2): Flexor hallucis longus (3): Flexor digitorum longus]

10.3.2.3 Third Layer • Adductor hallucis (1) and (6): adducts the big toe at the MTP joint. • Flexor hallucis brevis (2): flexes the big toe at the MTP joint. • Flexor digiti minimi brevis (5): flexes the little toe at the MTP joint. • [(3): Tibialis posterior (4): Peroneus longus]

194

10  Anatomy and Function

Extensor hallucis brevis

Extensor digitorum brevis

© Dr. Joe Muscolino (www.learnmuscles.com) art by Giovanni Rimasti

Fig. 10.27  Extensor hallucis brevis (EHB) and extensor digitorum brevis (EDB)

10.3  Muscles and Tendons

195

1

5 2 3

1 3 2

4

Second layer of muscle on sole of the foot

First Layer of muscle on sole of the foot (most superficial)

6

1 1

2 2 3

5

3

4

Third layer of muscle on sole of the foot

Fig. 10.28  Intrinsic muscles of the foot

Fourth layer of muscle on sole of the foot (most deep)

196

10  Anatomy and Function

10.3.2.4 Fourth Layer • Plantar interossei (2): adduction of the third, fourth, and fifth toes at the MTP joints. • Dorsal interossei (3): abduction of the third, fourth, and fifth toes at the MTP joints. • [(1): Deep transverse metatarsal ligament] Recall the mnemonic:

Pad = palmar interossei adduct Dab = dorsal interossei abduct

10.3.2.5 Plantar Fascia (Aponeurosis) • A broad band of collagen fibres which extends from the heel to the toes. It divides into five bands, one for each toe (Fig. 10.29). • Origin: medial calcaneal tubercle. • Insertion: predominantly to the base of the proximal phalanx of each toe. • Contributes to the maintenance of the long arch of the foot, acting as a ‘tie-rod’. • During gait the plantar fascia has a dynamic function due to the ‘windlass mechanism’ (see Sect. 10.3.2.6) (Page 198).

10.3.2.6 Windlass Mechanism Note: Windlass is a sailing term (Fig. 10.30). During the push-off phase of gait, the heel lifts and the toes extend. This tightens the plantar fascia causing the distance between the MTP joint and the calcaneus to shorten. This in turn results in slight elevation of the medial longitudinal arch. This also has a spring effect.

10.3.3 Arches of the Foot • The foot has three arches, two longitudinal (medial and lateral) and a transverse arch (Fig. 10.31).

10.3  Muscles and Tendons

197

Superficial transverse metatarsal ligaments

Proper plantar digital arteries and nerves Superficial branch of medial plantar artery Transverse fasciculi

Digital slips of plantar aponeurosis

Lateral plantar fascia

Medial plantar fascia

Cutaneous branches of lateral plantar artery and nerve Cutaneous branches of medial plantar artery and nerve

Plantar aponeurosis Lateral band of plantar aponeurosis (calcaneometatarsal ligament)

Tuberosity of calcaneus with overlying fat pad (partially cut away)

Medial calcaneal branches of tibial nerve and posterior tibial artery

Fig. 10.29  Plantar aponeurosis

• The arches are supported by ligaments, muscles and tendons, the plantar fascia, and the bony architecture, to varying degrees. • The medial arch is higher than the lateral, and the transverse arch is half an arch.

10.3.3.1 Medial Arch • Formed by the calcaneus, talus (high point of the arch), navicular, three cuneiforms, and the first three metatarsals (Fig. 10.2) (Page 167).

10  Anatomy and Function

198 windlass

arch-spring

applied force

windlass inactive

arch elongation

MTPJ dorsiflexion

windlass active

recoil

Fig. 10.30  Windlass mechanism Transverse arch

Medial longitudinal arch

Lateral longitudinal arch

Fig. 10.31  Arches of the foot

• Supported by the plantar aponeurosis and the spring ligament, with assistance from tibialis anterior, tibialis posterior, FHL, FDL, and the intrinsic muscles of the foot.

10.3  Muscles and Tendons

199

• The bony structure is of less importance. • The posterior pillar is the tuberosity of the calcaneus, and anteriorly rests on the medial three metatarsal heads.

10.3.3.2 Lateral Arch • Flattens with weight bearing. • Formed by the calcaneus, cuboid, and fourth and fifth metatarsal heads. • Supported by the long plantar ligament and the plantar calcaneocuboid ligament. • The posterior pillar is the tuberosity of the calcaneus, resting anteriorly on the lateral two metatarsal heads.

10.3.3.3 Transverse Arch • • • •

Lies in the coronal plane of the foot. Formed by the cuboid and cuneiform bones. The arch is completed when the feet are placed together. Supported by interosseus, plantar and dorsal ligaments, peroneus longus, as well as the bony architecture.

10.3.4 Nerve Supply of the Foot The two nerves supplying the foot are the tibial nerve and the common peroneal (fibular) nerve. The saphenous nerve, a branch of the femoral nerve, supplies the skin on the medial side of the foot and ankle (Fig. 10.32).

10.3.4.1 Tibial Nerve (L4,5,S1,2,3) • Course: runs down the leg between gastrocnemius and soleus, then curves under the medial malleolus where it divides into medial and lateral plantar nerves (Fig. 10.33). • Motor: supplies all the muscles of the posterior compartment as well as all the intrinsic muscles of the foot, apart from exten-

10  Anatomy and Function

200

Tibial (Inferior calcaneal)

Saphenous

Saphenous

Sural

Medial plantar

Superficial peroneal

Lateral plantar

Deep peroneal Tibial (Inferior calcaneal)

Fig. 10.32  Cutaneous nerve supply of the foot

Flexor retinaculum Medial plantar nerve Lateral plantar nerve

Plantar proper digital nerves

Posterior tibial nerve

Medial calcaneal nerve

Inferior calcaneal nerve

Fig. 10.33  Tibial nerve

sor digitorum brevis (EDB) which is supplied by the deep peroneal nerve. • Sensory (Fig. 10.32): –– Sural nerve: (which obtains a branch from the common peroneal nerve) supplies the skin of the lateral leg and foot.

10.3  Muscles and Tendons

201

–– Medial calcaneal nerves: supply the skin of the heel including the weight-bearing area. –– Medial plantar nerve: supplies the skin of the medial sole and the plantar skin of the medial three and a half toes. –– Lateral plantar nerve: supplies the skin of the lateral sole and the plantar skin of the lateral one and a half toes. (Note the striking similarity to the sensory innervation of the hand)

10.3.4.2 Common Peroneal (Fibular) Nerve (L4,5,S1,2) Curves around the neck of the fibula where it divides into the deep and superficial peroneal nerves. • Deep peroneal nerve (Fig. 10.34):Course: passes deep to the muscles to reach the interosseous membrane and continues down and into the foot.Motor: supplies all the muscles of the anterior/extensor compartment as well as EDB.Sensory: supplies the skin of the triangular web space between the big and second toes.Superficial peroneal nerve: Course: runs down the lateral compartment and divides into medial and lateral branches.Motor: supplies all the muscles of the lateral compartment.Sensory: supplies the skin over the anterior and lateral aspects of the distal part of the leg, as well as the skin of the dorsum of the foot and toes, apart from the triangular web space noted above, which is supplied by the deep peroneal nerve (Figs. 10.32 and 10.34b).

10.3.5 Arterial Supply of the Foot Derived from the anterior and posterior tibial arteries (Fig 10.35). • Posterior tibial artery: –– Follows the tibial nerve behind and below the medial malleolus where it gives off medial calcaneal branches before dividing into medial and lateral plantar arteries.

10  Anatomy and Function

202 Fig. 10.34 (a) Deep peroneal nerve. (b) Superficial peroneal nerve

a Common peroneal nerve

Deep peroneal nerve Superficial peroneal nerve

Tibialis anterior

Extensor digitorum longus

Extensor hallucis longus

Peroneus tertius

Cutaneous distribution

Extensor digitorum brevis Dorsal digital cutaneous nerve

b

Common peroneal n. Lateral cutaneous n. of calf Deep peroneal n. (cut)

Cutaneous distribution

Superficial peroneal n. Peroneus longus Peroneus brevis

Medial cutaneous branch Lateral cutaneous branch

Anterior

Lateral

10.3  Muscles and Tendons

203

Posterior tibial artery Anterior tibial artery Peroneal artery Lateral tarsal artery Dorsalis pedis artery Arcuate artery Deep plantar artery

Medial plantar artery Lateral plantar artery

Fig. 10.35  Arterial supply of the foot

–– The lateral plantar artery forms the plantar arch by joining the deep plantar branch of the dorsalis pedis artery. –– There is only one plantar arch. • Anterior tibial artery: –– Becomes the dorsalis pedis artery midway between the medial and lateral malleoli. –– Passes along the dorsum of the foot giving off numerous branches. –– Terminates as the deep plantar artery in the sole of the foot by joining the lateral plantar artery to form the plantar arch.

10.3.6 Movements • As noted, the ankle is a hinge joint allowing only flexion and extension movement (Fig. 10.36). • In full dorsiflexion where the talus is widest, slight widening of the mortice occurs by stretching the tibiofibular syndesmosis. • The subtalar joint allows for inversion and eversion.

204

10  Anatomy and Function

Fig. 10.36  Movements of the foot and ankle

• The talocalcaneonavicular joint is a ball and socket joint allowing for a small range of movement in all directions. • Tarsometatarsal and intertarsal joints allow for pronation and supination. • Inversion of the hindfoot is accompanied by adduction and supination of the forefoot, and is greatest in plantar flexion. • Eversion of the hindfoot is accompanied by abduction and pronation of the forefoot, and is greatest in dorsiflexion. • Equinus: the position where the whole foot is in plantar flexion. • Plantaris: the position where only the forefoot is in flexion. • Calcaneus: the position where the whole foot is in extension. • Cavovarus: abnormally high arch and varus heel.

Systematic Examination of the Foot and Ankle

11

As with joint examinations in general, a careful history is always taken prior to the examination, particularly regarding any history of injury.

11.1 Inspection and Palpation • Note any abnormalities including scars, swelling, deformity, bunions, claw or hammer toes, corns, and callosities. • Note the height of each arch. • Observe static standing alignment from behind (Fig.  11.1a) and in heel raise (Fig. 11.1b) and compare with the opposite side. • Must do a single stance to truly assess the ability to form the arch. • Palpate carefully for tenderness as accurate localisation of the site of pathology is frequently possible. • Inspect the soles of the shoes for abnormal wear.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_11

205

206

11  Systematic Examination of the Foot and Ankle

11.1.1 Gait • The commonest abnormalities of gait (see Sect. 11.3.1) are described in the systematic examination of the hip (see Chap. 5) (Page 70). • Abnormalities in the normal ‘heel to toe’ phase of the gait cycle may occur for example with loss of heel strike with equinus deformity, walking on the lateral border of the foot, or with a drop-foot (see Sect. 11.3.2) gait.

11.1.2 Range of Movement • Ankle joint: normal range: (plantar) flexion = 40–50°; extension (dorsiflexion) = 10–30°. • Subtalar joint: –– Test with the ankle and forefoot at 90° to ‘lock’ the talus in the mortice. –– Normal range: inversion = 15–20°; eversion = 0–10°. –– It is interesting to note how often there is no eversion present.

a

b

Fig. 11.1 (a) View from behind; (b) Bilateral heel raise

11.1  Inspection and Palpation

207

• Midtarsal joint: with the ankle at 90° and stabilising the heel with one hand, carry out passive movements of the forefoot in relation to the hindfoot, using the other hand. The movements tested are flexion and extension, adduction and abduction, and rotation. • Metatarsophalangeal (MTP) joints: –– Note particularly the range of motion of the big toe MTP joint, flexion = 20–30°; extension = 70°. –– Note that there is no active flexion at the MTP joints of the lesser toes by the long flexors, or flexor digitorum brevis, but only by the intrinsics, as in the hand.

11.1.3 Ankle Stability • Tested in both coronal and sagittal planes. • Medial and lateral stability: passively stress the ankle alternatively into valgus and varus (Fig. 11.2a, b). –– On testing for lateral instability, it is often useful to test both sides simultaneously, as slight instability may otherwise be difficult to detect (Fig. 11.3). –– Stress X-rays may be needed to confirm lateral instability (Fig. 11.4). • Anteroposterior instability: –– Stabilise the distal tibia and fibula with one hand while firmly gripping the heel with the other hand, and attempt to move the talus backwards and forwards in the mortise (Drawer test) (Fig. 11.5). –– The knee must be flexed. –– Commonly carried out with the patient seated on the examination couch, knee flexed with the foot relaxed, and in slight plantar flexion (Fig. 11.5b). –– Always compare with the other side.

208

11  Systematic Examination of the Foot and Ankle

a

b

Fig. 11.2 (a) Valgus stress; (b) varus stress

11.1  Inspection and Palpation

Fig. 11.3  Testing both sides simultaneously

209

210

11  Systematic Examination of the Foot and Ankle

Fig. 11.4  Stress X-ray showing lateral ligament instability

11.3  Vascular Examination

211

Fig. 11.5 (a) Drawer test—testing AP stability. (b) Drawer test—foot relaxed and in slight plantar flexion

11.2 Neurological Examination • See Part I: Lumbar Spine (Chap. 1, Sect. 1.1). • Always test for motor power as well as sensation and ankle reflex.

11.3 Vascular Examination • Check posterior tibial and dorsalis pedis pulses. • Always compare pulse strength with the opposite side. • Dorsalis pedis: –– Felt on the dorsum of the foot, lateral to the tendon of extensor hallucis longus, and overlying the intermediate and ­lateral cuneiforms (Fig. 11.6) –– Absent in 2–3% of people

212

11  Systematic Examination of the Foot and Ankle

Fig. 11.6  Dorsalis pedis pulse

• Posterior tibial: –– Postero-inferior to the medial malleolus (Fig. 11.7)

11.3.1 Gait Definitions: • A step: heel strike of one leg to heel strike of the other leg • A stride: a whole gait cycle • Step time: the time between heel strike of one leg and heel strike of the other leg The gait cycle can be broken down into two distinct phases (Fig. 11.8): • Stance phase: entire time that the foot is on the ground—60% of gait cycle.

11.3  Vascular Examination

213

Fig. 11.7  Posterior tibial pulse BAC 1

BAC 2

BAC 3

Double Support I

Initial Contact

Loading Response

BAC 4

Single Support

Mid Stance

BAC 5

BAC 7

Initial Swing

Mid Swing

BAC 8

Double Support II

Terminal Stance

PreSwing

Stance

Terminal Swing

Swing

Stride (Gait Cycle)

Fig. 11.8  Gait cycle

BAC 6

214

11  Systematic Examination of the Foot and Ankle

• Swing phase: the entire time that the foot is in the air—40% of gait cycle. • In a walking cycle there will be a time when both feet are on the ground simultaneously—the ‘double support’ phase. This occurs twice in every stride. • In a running cycle there will be a time when both feet are off the ground simultaneously—the ‘float’ phase. This occurs twice in every stride. Support phase: • Initial double support: the phase between heel contact and contralateral toe-off • Single support: only one limb in contact with the ground • Terminal double support: contralateral foot to ground, until toe-off Swing phase: • Pre-swing: phase between stance and swing in which the foot is lifted off the ground • Initial swing: flexion of the hip, knee, and ankle to create clearance of the foot over the ground • Mid-swing: limb advancement until thigh reaches peak advancement • Terminal swing: final advancement with foot positioned for contact and to start the next cycle

11.3.2 Foot Drop • Caused by significant weakness of ankle and toe dorsiflexion. • The two commonest causes are injuries of the common peroneal nerve and radiculopathy involving the L5 nerve root (the differential diagnosis of these conditions is discussed in Part I Chap. 3 on the lumbar spine) (Pages 35–37).

11.3  Vascular Examination

215

• Always test for tibialis anterior tendon rupture, a less common cause, and often missed. • Foot drop gait: –– In the stance phase the unrestrained forefoot hits the ground prematurely, causing the foot to slap down (‘slap gait’). –– In the swing phase there is increased flexion of the hip and the knee to raise the foot high enough to prevent the toe from dragging, as if walking upstairs (hence ‘steppage gait’). –– An alternative to hip and knee flexion, the leg may swing to the side (‘circumduction gait’).

Examination for Specific Conditions of the Foot and Ankle

12

Rule: In all conditions affecting the foot, always check for abnormalities of circulation and sensation. Conditions considered under the following headings: • Osteoarthrosis of the ankle • Diabetic foot problems • Conditions related to the hindfoot (A), midfoot (B), and forefoot (C)

12.1 Osteoarthrosis of the Ankle (OA) Degenerative disease of the ankle joint with progressive loss of articular cartilage. • Far less common than OA of the hip or knee • There are three types of OA of the ankle: –– Primary—uncommon –– Post-traumatic—accounts for the vast majority of cases –– Related to other conditions such as avascular necrosis or osteochondritis dissecans of the talus

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1_12

217

218

12  Examination for Specific Conditions of the Foot and Ankle

12.1.1 Symptoms Symptoms may be present to varying degrees. • • • • •

Pain, particularly on weight-bearing Limp Stiffness Swelling Difficulty with stairs

12.1.2 Signs • Antalgic gait • Decreased range of movement • Calf wasting X-rays: there are four classical radiological signs of OA of any joint (Fig. 12.1).

Fig. 12.1  X-ray showing the classical signs of osteoarthrosis

12.2  Diabetic Foot Problems

• • • •

219

Loss of joint space, the earliest sign1 Osteophyte formation Subchondral sclerosis Cyst formation

12.1.3 Treatment • Non-operative –– General: weight loss, rest, physiotherapy, walking stick, external support –– Medication: analgesic/anti-inflammatory • Operation –– Joint debridement and removal of osteophytes, either by arthroscopy or open, for early arthritis with symptoms primarily from anterior bony impingement –– Ankle fusion Optimal position: • 0° of flexion (i.e. plantigrade) • 5° hindfoot valgus (varus to be particularly avoided) • 10° of external rotation of the foot (compare to opposite side) –– Total joint replacement, indicated in older, less active individuals

12.2 Diabetic Foot Problems • Foot problems that might occur in patients with long-standing diabetes include ulcerations that do not heal, infection, neuropathic arthropathy, and gangrene. • There are two main aetiological factors, related to diabetes, causing these problems: –– Peripheral neuropathy –– Peripheral arterial disease (PAD) A weight-bearing view is helpful to assess loss of joint space.

1 

220

12  Examination for Specific Conditions of the Foot and Ankle

12.2.1 Peripheral Neuropathy • Sensory loss: minor injuries remain undiscovered and progress to ulceration. These are non-painful and non-tender. • Motor loss: associated with claw toes and high arches. • Development of neuropathic joint disease (Charcot joints) (Fig. 12.2) with joint destruction and collapse with occurrence of deformity.

12.2.2 Peripheral Arterial Disease (PAD) • Caused by the buildup of plaque in the leg arteries. • Involves the small vessels of the foot or toes, but can also involve larger more proximal vessels. • Half of all patients presenting with foot ulceration have PAD. • Ulcers differ from those caused by peripheral neuropathy, as they are painful and tender. • Note that peripheral neuropathy can mask the usual warning signs of PAD, rest pain, and claudication.

Fig. 12.2  Charcot joint

12.3  Conditions Relating to the Hindfoot

221

12.2.3 Symptoms • • • •

Loss of sensation in the feet Numbness or tingling Painless blisters or wounds Infections which do not settle

12.2.4 Amputations in Patients with Diabetes • The lifetime risk of foot ulceration in patients with diabetes is between 15% and 25%.2 • Foot ulceration is the main precursor for amputation in patients with diabetes. • Over 85% of major amputations are preceded by foot ulceration. • The risk of a person with diabetes undergoing a lower extremity amputation is estimated to be 23 times that of a person without diabetes.

12.3 Conditions Relating to the Hindfoot 12.3.1 Talipes Equinovarus (CTEV) • Also known as idiopathic club foot. • A rigid deformity (Fig. 12.3) present at birth characterised by: –– Ankle equinus (a) –– Heel varus and poorly developed (b) –– Midfoot and forefoot adduction and varus (c) & (d) –– Underdeveloped calf muscle –– A crease along the medial border of the foot –– A smaller foot • Idiopathic—cause unknown. Evidence-based Management of PAD & the Diabetic Foot. J.R.W. Brownrigg et al: European Journal of Vascular and Endovascular Surgery. Volume 45, Issue 6, June 2013, Pages 673-681. 2 

222

12  Examination for Specific Conditions of the Foot and Ankle

a

b

c

d

Fig. 12.3  Talipes equinovarus (CTEV). (a) Ankle equinus (b) Heel varus and poorly developed (c) and (d) Midfoot and forefoot adduction and Varus

• Incidence: 1:1000 and in some populations as frequently as 1:250 (for example Hawaiian and Maori populations). • Male: female = 2:1. • Bilateral in up to 50% of cases. • Genetic component present. • The majority of cases respond to conservative treatment consisting of progressive manipulation and splintage, when recognised and treated early. • Surgery is reserved for the more rigid cases that fail to respond to conservative treatment.

12.3.1.1 Bony Abnormalities • Talar neck deviated medially and in plantar flexion • Calcaneus in varus and rotated medially • Navicular and cuboid displaced medially 12.3.1.2 Associated Conditions • Neurological abnormalities such as spina bifida • Arthrogryposis • Other abnormalities such as tibial hemimelia and constriction rings

12.3  Conditions Relating to the Hindfoot

223

12.3.2 Metatarsus Adductus • Adduction of the forefoot with none of the other features of CTEV (Fig. 12.4). • Severity varies from mild, which may correct without treatment, to severe, requiring surgical treatment.

Fig. 12.4  Metatarsus adductus

224

12  Examination for Specific Conditions of the Foot and Ankle

12.3.3 Talipes Calcaneovalgus • Presents in the newborn with severe dorsiflexion of the foot, usually reflecting the position of the foot in utero (Fig. 12.5). • The position is flexible and can be partially corrected p­ assively. • In most cases it will correct spontaneously. • It is important to rule out the more serious underlying condition of congenital vertical talus, which is not passively correctable.

12.3.4 Congenital Vertical Talus (CVT) • A rare but serious condition, often bilateral, and resembling a very rigid flat foot, often with a rocker-bottom appearance. • The hindfoot is in equinus and valgus while the talus is in plantar flexion (Fig.  12.6), with subluxation of the talonavicular joint.

Fig. 12.5  Talipes calcaneovalgus

12.3  Conditions Relating to the Hindfoot

225

Fig 12.6  Congenital vertical talus (CVT)

• The forefoot is abducted, pronated, and dorsiflexed. • Passive correction is not possible, and surgery is always indicated.

12.3.5 Achilles Tendinitis • The Achilles tendon is the largest and strongest tendon in the body. • Achilles tendinitis is a common overuse injury. • Two types of tendinitis are described: –– Non-insertional tendinitis: The more common type. Affects the mid-section of the tendon approximately 4 cm above its insertion. May be associated with degenerative tears within the tendon, and with inflammation of the tendon sheath or paratenon. The blood supply to this area is poor.

226

12  Examination for Specific Conditions of the Foot and Ankle

Presents with localised pain, swelling, and tenderness in this region. –– Insertional tendinitis: Inflammation where the tendon attaches to the calcaneus. Bone spurs arising from the back of the heel are common in this condition. Presents with pain, swelling, and tenderness at the site of insertion of the tendon.

12.3.5.1 Signs • Swelling. • Tenderness to palpation. • Decreased range of active and passive extension (dorsiflexion) of the ankle may be present. • Calf wasting in chronic cases. Note: Injection with corticosteroids is contra-indicated due to a real risk of tendon rupture.

12.3.6 Achilles Tendon (TA) Rupture • Usually occurs during sporting activity without prodromal symptoms. • Patients are often convinced that they have been struck from behind. • The typical site of rupture is in the mid-tendon region, some 4 cm above the insertion of the tendon into the calcaneus.

12.3.6.1 Signs • A palpable gap in the tendon may be felt, occasionally masked by swelling. • Weakness of plantar flexion. Note that active plantar flexion is often still possible as the long toe flexors are also flexors of the ankle. • Single stance heel raise is not possible.

12.3  Conditions Relating to the Hindfoot

227

Fig. 12.7  Thompson test

• Positive Thompson test, carried out with the patient prone (Fig. 12.7): –– Normally, if the calf is squeezed, the foot will automatically plantar flex. –– In TA rupture, no movement occurs. –– Diagnostic

12.3.6.2 Treatment • Conservative: a below knee cast is applied with the foot and ankle in plantar flexion. • Surgical: tends to give better long-term results, and less likely to be associated with re-rupture.

12.3.7 Heel Pain The commonest causes of pain around the heel are: • Plantar fasciitis • Insertional Achilles tendinitis (see above) • Calcaneal bursitis

228

• • • •

12  Examination for Specific Conditions of the Foot and Ankle

Calcaneal lesions, e.g. stress fracture ‘Pump bump’—Haglund’s deformity Calcaneal spurs Sever’s disease

12.3.7.1 Plantar Fasciitis • The plantar fascia is a broad band of collagen fibres that extends from the medial calcaneal tubercle to the toes. It divides into five bands, one for each toe (Fig. 10.29). • It is a painful condition caused by micro-tears and/or inflammation of the plantar fascia/aponeurosis at the site of origin on the calcaneus. • Obesity is a risk factor, and it may be associated with generalised inflammatory conditions such as gout or ankylosing spondylitis. 12.3.7.2 Symptoms • The onset of symptoms is usually insidious, but may be associated with a sudden change in the level of activity or change of footwear. • Often worse on first getting up in the morning or at the end of the day after prolonged standing. • Tends to improve with walking. 12.3.7.3 Signs • Localised tenderness on the medial side of the heel in relation to the tuberosity of the calcaneus at the origin of the plantar fascia (Fig. 12.8). • Dorsiflexion of the foot and toes may increase the symptoms. • Occasionally associated with a tight Achilles tendon, with limitation of ankle extension. 12.3.7.4 Treatment • Conservative measures include anti-inflammatory medication, heel pads, stretching, and injections. • Surgical treatment to be avoided, if possible, but can be considered after 1 year of symptoms.

12.3  Conditions Relating to the Hindfoot

229

12.3.7.5 Note • Lesions of the first branch of the lateral plantar nerve (Baxter’s nerve) can present in much the same way as plantar fasciitis (Fig. 12.9a). • The condition is known as ‘Baxter’s nerve impingement’ and it has been suggested that this condition is the cause of heel pain in up to 20% of patients diagnosed as plantar fasciitis.

Fig. 12.8  Palpation for plantar fasciitis

a

SPHN

b

TN PM PL MCN

MAYO ©2012

MPN LPN QP AH FDB

ADM

AQD

FBLPN (Baxter Nerve)

Fig. 12.9 (a) Baxter’s nerve; (b) abductor digiti minimi (ADM)

230

12  Examination for Specific Conditions of the Foot and Ankle

• How can the two conditions be differentiated? Note that the nerve supplies abductor digiti minimi (ADM) (Fig. 12.9b). • Weakness of abductor digiti minimi may be present but difficult to detect clinically. • If the compression of this nerve has been of sufficient severity and chronicity, then an MRI may show evidence of fatty infiltration of this muscle (Fig. 12.10).

Fig. 12.10  MRI showing fatty infiltration of abductor digiti minimi

12.3  Conditions Relating to the Hindfoot

231

12.3.8 Insertional Achilles Tendinitis • Discussed above

12.3.8.1 Calcaneal Bursitis • There are two bursae related to the heel region, one deep and one superficial to the Achilles tendon (Fig. 12.11) –– Deep (retrocalcaneal) bursa Located just proximal to where the Achilles tendon inserts into the calcaneus. Saddles the posterosuperior prominence of the c­ alcaneus. Bursitis usually occurs without obvious cause but is known to be associated with sport or trauma. Commonly associated with Haglund deformity (Fig. 12.12a, b). Symptoms include pain, swelling, and tenderness in the posterior heel region, specifically a positive two finger squeeze test just anterior to the Achilles tendon, with no

Achilles Tendon

Retro-calcaneal Bursa Subcutaneous Calcaneal Bursa Calcaneus (Heel Bone)

Fig. 12.11  Calcaneal bursae

232

12  Examination for Specific Conditions of the Foot and Ankle

a

b

Fig. 12.12 (a) Haglund’s deformity. (b) X-ray showing Haglund’s deformity

12.3  Conditions Relating to the Hindfoot

233

tenderness directly over the distal insertion of the tendon. –– Superficial bursa (Achilles bursa) Located between the skin and the posterior aspect of the insertion of the Achilles tendon onto the calcaneus. Differentiate from Achilles tendinopathy. Bursitis is caused mainly by pressure from footwear.

12.3.8.2 Calcaneal Lesions • For example, stress fractures, tumours, or infections 12.3.8.3 Haglund’s Deformity • Osseous enlargement and prominence of the posterolateral corner of the calcaneus (Fig. 12.12a). • Commonly associated with retrocalcaneal bursitis. • ‘Pump bump’ being an early description, associated with pump-style shoes with firm backs causing pressure on the area. • Signs and symptoms include pain, swelling, redness, and a noticeable ‘bump’ clearly seen on X-ray (Fig. 12.12b). 12.3.8.4 Calcaneal Spurs (Heel Spurs) • Bony outgrowths of the calcaneus (Fig. 12.13), of two types: –– Plantar heel spur Related to the insertion of the plantar fascia. Often associated with, but not the cause of, plantar fasciitis. –– Dorsal heel spur Develops at the back of the heel within the insertion of the Achilles tendon. 12.3.8.5 Sever’s Disease (Calcaneal Apophysitis) • Traction injury of the posterior calcaneal growth plate. • Males more commonly affected than females. • Tends to occur between the ages of 9 and 12 years of age. • X-rays show fragmentation of a dense apophysis (Fig. 12.14). • Treatment involves avoiding stress to the area with rest and a raised heel. • Invariably settles spontaneously within weeks to months.

234

12  Examination for Specific Conditions of the Foot and Ankle

Fig. 12.13  Calcaneal spurs

Fig. 12.14  Sever’s disease

12.3  Conditions Relating to the Hindfoot

235

12.3.9 Osteochondritis Dissecans of the Talus (OCD) • Detachment of an osteochondral fragment of the talar dome in a growing patient. • As with OCD elsewhere in the body, the cause is not clearly understood. May be due to ischaemia or involve trauma or repeated microtrauma. There may well be a genetic factor present. • The talus is the third most common site of OCD after the knee and the elbow. • OCD of the talus is classically located in the medial part of the talus, with lateral and posterior involvement being less common. • The condition may only manifest in adult life and then only as a chance finding when an ankle is X-rayed for another reason. • If it does become symptomatic, the usual complaint is pain in the ankle associated with activities such as running. • If the fragment detaches there may be a significant increase in symptoms, including pain, swelling, clicking, or ‘locking’. • OCD needs to be differentiated from fractures of the talar dome which occur in adults, following trauma to the ankle. • Because of the usual mechanism of injury, inversion and internal rotation, the common site of a traumatic lesion is the lateral margin of the talar dome. • Diagnosis is confirmed on X-ray (Fig. 12.15). • MRI is indicated with persistent ankle pain after ankle sprain to look for osteochondral lesions of the talar dome.

12.3.10 Tarsal Tunnel Syndrome (TTS) • TTS is a compressive neuropathy of the tibial nerve at the level of the tarsal tunnel. • The tunnel lies posterior to the medial malleolus, beneath the flexor retinaculum.

236

12  Examination for Specific Conditions of the Foot and Ankle

Fig. 12.15  Osteochondritis dissecans (OCD) of talus

• The nerve divides into its terminal branches, the medial and lateral plantar nerves, in the tunnel (Fig. 12.16). • The contents of the tunnel, in addition to the posterior tibial nerve, are the tendons of tibialis posterior, flexor hallucis longus, flexor digitorum longus, as well as the posterior tibial artery and vein. • Symptoms include pain in the tarsal tunnel region as well as radiating into the foot in the distribution of the nerve (Fig. 10.32) (Page 200), and may be aggravated by weight-bearing or forced eversion of the foot. • Percussion of the tarsal tunnel may cause paraesthesiae to radiate into the foot (positive Tinel’s sign), and sensory changes may also be present. • Nerve conduction studies may help to confirm the diagnosis.

12.4  Conditions Relating to the Midfoot

237

Tarsal Tunnel

Tibial N Flexor Retinaculum

Medial Plantar N

Lateral Plantar N

Fig. 12.16  Tarsal tunnel

12.3.11 Sinus Tarsi Syndrome • Pain and tenderness on the lateral side of the hindfoot, between the ankle and the heel, in relation to the lateral opening of the tarsal sinus (Fig. 10.19). • Usually caused by trauma or prolonged overuse, and may be associated with over-pronated feet or instability of the subtalar joint. • Often associated with a feeling of instability, and pain on walking on uneven surfaces. • Symptoms are aggravated by inversion and eversion of the foot.

12.4 Conditions Relating to the Midfoot The following conditions relate mainly to the midfoot:

238

12  Examination for Specific Conditions of the Foot and Ankle

12.4.1 Flat Foot (Pes Planus) This is a deformity in which the medial longitudinal arch (MLA) of the foot is depressed, resulting in the medial aspect of the sole coming into contact with the ground. There are three main categories: • Flexible • Rigid • Adult acquired

12.4.2 Flexible Flat Foot • The most common type of flat foot with no obvious cause. • Most children have flexible flat feet up to about the age of 6 years. This persists in about 20%. • Around 20% of the adult population therefore have mobile flat feet. • When non-weight-bearing or standing on toes, the MLA is present. • Many people with flexible flat foot do not have any symptoms and there is no loss of function. (Carl Lewis, the American track and field athlete, who won nine Olympic gold medals, was said to have had flat feet.)

12.4.3 Rigid Flat Foot • No MLA on sitting, standing, or going up on toes. • The condition is rare and is usually related to congenital pathology such as tarsal coalition (Fig. 12.17), vertical talus, or accessory navicular bone.

12.4  Conditions Relating to the Midfoot

239

Fig. 12.17 Tarsal coalition (calcaneonavicular coalition)

12.4.4 Adult Acquired Flat Foot Deformity (AAFD) • Pathology of the tibialis posterior tendon, either inflammation or a tear, is the most common form of AAFD. • Tibialis posterior has an important function maintaining the MLA when weight-bearing. • Loss of function results in the progressive collapse of the MLA.

240

12  Examination for Specific Conditions of the Foot and Ankle

Fig. 12.18  Valgus heel and ‘too many toes’ sign

• The clinical signs include (Fig. 12.18): –– Valgus deformity of the heel –– Abduction of the forefoot • These deformities are best viewed from behind, with abduction of the forefoot giving rise to the ‘too many toes’ sign. • Other causes of AAFD include rheumatoid arthritis, diabetic collapse (Charcot foot), and following injury (Lisfranc injury and damage to the spring ligament).

12.4  Conditions Relating to the Midfoot

241

12.4.5 Flat Foot in Children • All babies have flat feet at birth. • The MLA is usually visible by age six, but as suggested above, 20% of cases persist into adulthood. • A rigid flat foot indicates an underlying abnormality as outlined above (rigid flat foot in adults).

12.4.6 Pes Cavus • Characterised by a high MLA that does not flatten on weight-­ bearing, and is often associated with clawing of the toes and heel varus (Fig. 12.19). • In many cases, no obvious cause can be found, but the condition can be associated with neuromuscular disorders. • The most common causes are hereditary motor and sensory neuropathies (HMSNs) such as Charcot-Marie-Tooth (CMT) disease.

Fig. 12.19  Pes cavus

242

12  Examination for Specific Conditions of the Foot and Ankle

12.4.7 Midfoot Pain 12.4.7.1 Causes • Acute onset following injury—bony or ligament damage • Foot strain caused by overuse • Stress fracture • Tarsal coalition (Fig. 12.17) • OA of the mid-tarsal or tarsometatarsal joints (Fig. 12.20) • Osteochondritis of the navicular (Kohler’s disease) in young children, settles spontaneously (Fig. 12.21) a

c

Fig. 12.20  OA of mid-tarsal and TMT joints (a–c)

b

12.5  Conditions Relating to the Forefoot

Fig. 12.21  Kohler’s disease

12.5 Conditions Relating to the Forefoot 1. In relation to the big toe: (a) Hallux valgus (b) Hallux rigidus (c) Gout

243

244

12  Examination for Specific Conditions of the Foot and Ankle

12.5.1 Hallux Valgus • The most common foot deformity. • Characterised by medial deviation of the first metatarsal resulting in lateral deviation of the big toe with medial prominence of the head of the first metatarsal and subluxation of the ­metatarsophalangeal (MTP) joint (Fig.  12.22; note how the metatarsal head has shifted medially to the stationary sesamoids).

Fig. 12.22  Hallux valgus with subluxation of MTP joint

12.5  Conditions Relating to the Forefoot

245

• The prominent metatarsal head is often accompanied by an overlying bursa, forming the well-recognised bunion (Fig. 12.23). • In addition to the lateral angulation, the big toe also tends to rotate, causing the nail to face more medially. • There are also significant soft tissue changes, including stretching and attenuation of the medial capsule, with contraction of the lateral capsule and adductor hallucis. This latter abnormality contributes to the deforming force. • In more severe cases there is lateral deviation of flexor and extensor hallucis longus. • Deformities of the lesser toes are common, including hammer toes, corns, and callosities. • Hallux valgus is more common in women because of narrow footwear and high heels. • There is a strong family predisposition.

Fig. 12.23 Bunions

246

12  Examination for Specific Conditions of the Foot and Ankle

12.5.2 Hallux Rigidus • A common condition characterised by stiffness of the metatarsophalangeal (MTP) joint of the big toe, usually due to degenerative arthritis. • There may have been a history of trauma or an underlying condition such as gout. • Most commonly occurs in the fourth to sixth decades. • If it affects younger people, it is usually associated with previous trauma or osteochondritis dissecans of the first metatarsal head.

12.5.2.1 Symptoms • Pain and stiffness of the MTP joint of the big toe, especially in the ‘push-off’ stage of gait • Swelling of the dorsal aspect of the joint due to osteophytes • A tendency to walk on the lateral border of the foot to avoid stressing the big toe MTP joint • Limping 12.5.2.2 Signs • Classical signs are loss of active and passive extension of the MTP joint of the big toe. • Dorsal osteophyte (Fig. 12.24). 12.5.2.3 X-Ray • Shows the classical features of osteoarthrosis with joint space narrowing, osteophyte formation, sclerosis, and cyst formation (see Fig. 12.25a, b).

12.5.3 Gout • A form of arthritis characterised by the sudden onset of intense pain, swelling, redness, and tenderness in one or more joints, with the MP joint of the big toe being most frequently involved. • It is caused by a buildup of uric acid crystals (monosodium urate) in a joint.

12.5  Conditions Relating to the Forefoot

247

Fig. 12.24  Hallux rigidus—note dorsal osteophyte

• Needs to be distinguished from pseudo-gout, which is due to the deposition of calcium pyrophosphate dihydrate (CPPD), as well as from septic arthritis. • Attacks most often occur without obvious cause, but may be precipitated by minor injury. More common in patients with diabetes, obesity, hypertension, alcohol abuse, or in people taking diuretics. • In chronic cases swellings due to the accumulation of uric acid crystals (tophi) occur in relation to joints (Fig. 12.26).

248

12  Examination for Specific Conditions of the Foot and Ankle

Fig. 12.25 (a) X-ray of hallux rigidus. (b) X-ray of hallux rigidus

a

b

Fig. 12.26  Gout involving joints

12.5  Conditions Relating to the Forefoot

249

12.5.3.1 Diagnosis • Elevated uric acid in the blood stream is sometimes present, but its absence does not rule out gout. • The finding of urate crystals in synovial fluid is diagnostic. • X-rays may show erosions in relation to joints in chronic cases (Fig. 12.27). Fig. 12.27 Gouty erosion of metatarsal head

250

12  Examination for Specific Conditions of the Foot and Ankle

12.5.3.2 Treatment • In the acute phase, rest, anti-inflammatories, and occasionally steroids, either orally or by injection. • Once the acute attack has settled, uricosuric agents are used to lower the uric acid level in the blood, and any associated conditions, as noted above, are eliminated. 1. In relation to the lesser toes: (a) Morton’s neuroma (b) Sesamoiditis (c) Freiberg’s disease (d) Stress fractures

12.5.4 Morton’s Neuroma • A common cause of forefoot pain due to swelling of a digital nerve to the toes, most commonly in the third web space, and affecting the adjacent sides of the third and fourth toes (Fig. 12.28). • Although described as a ‘neuroma’, it has been suggested that the swelling is a perineural fibroma, caused by compression or entrapment.

12.5.4.1 Symptoms • Pain in the region of the metatarsal heads with symptoms extending into the affected toes. • The main clinical finding is reproduction or increase in symptoms by applying localised plantar to dorsal pressure to the interspace between the two relevant metatarsal heads and ­compressing the forefoot from side-to-side with the other hand (Fig. 12.29). • A click may be felt which reproduces the pain (Mulder’s sign) which is pathognomonic for Morton’s neuroma (100% ­specificity). • Altered sensation may be present in the adjacent sides of the affected toes.

12.5  Conditions Relating to the Forefoot

251

Fig. 12.28  Morton’s neuroma

12.5.5 Sesamoiditis • As noted previously, the medial and lateral sesamoids are embedded within the split tendon of flexor hallucis brevis, and lie directly beneath the head of the first metatarsal (Fig. 10.7a, b). • Localised pain and tenderness in relation to the sesamoids can be caused by direct trauma and fracture, stress fracture, or local inflammation.

252

12  Examination for Specific Conditions of the Foot and Ankle

Fig. 12.29  Clinical test for Morton’s neuroma

• The medial sesamoid is affected more commonly than the lateral. • More common in dancers and runners.

12.5.6 Freiberg’s Disease (Osteochondritis of the Metatarsal Head) • Characterised by infarction and fracture of the metatarsal head. • Most commonly affects the second metatarsal head, females more than males, with an age range between 12 and 18. • Pain and palpable swelling occur. • Diagnosis confirmed on X-ray showing flattening and widening of the metatarsal head with subchondral sclerosis (Fig. 12.30); in advances cases the joint may be destroyed. • In early cases X-rays can be normal. Confirm with MRI.

12.5  Conditions Relating to the Forefoot

253

Fig. 12.30  Freiberg’s disease

12.5.7 Stress Fractures • Most commonly involving the second or third metatarsal bones. • Caused by overuse or recent increase in activity. • Careful palpation of the affected bone will invariably localise the site of the fracture. • Confirmed on X-ray, which may be normal in the early stages (a bone scan is positive prior to the condition manifesting on X-ray). An MRI is also positive early. • Eventually a fine fracture line surrounded by callus (Fig. 12.31) will be visible on X-ray.

254

12  Examination for Specific Conditions of the Foot and Ankle

Fig. 12.31  Stress fracture

Important consideration: when ordering an MRI for a localised condition, do not request an MRI of the whole foot. Ask specifically for central or forefoot views which will give a better resolution of the area of interest.

12.6 Lesser Toe Deformities Three types of deformity are described (Fig. 12.32): • Claw toes • Hammer toes • Mallet toes

12.6  Lesser Toe Deformities Mallet toe

Hammer toe

Claw toe

Fig. 12.32  Toe deformities

255

256

12  Examination for Specific Conditions of the Foot and Ankle

12.6.1 Hammer Toes • Flexion at the PIP joint is the main abnormality with consequential extension at the MP joint and extension at the DIP joint (Fig. 12.33).

12.6.2 Claw Toes • Hyperextension at the MP joint with flexion at the PIP and DIP joints (Fig. 12.34). • Mimics the deformity seen in the claw hand of ulnar nerve lesions, which is explained because of unbalanced paralysis due to loss of intrinsic muscle function, with intact function of the long flexors of the toes. ‘Intrinsic minus’ deformity.

12.6.3 Mallet Toe • Flexion at the DIP joint (Fig. 12.35).

12.6.4 In Summary MTP PIP DIP

Claw toe Hyperextension Flexion Flexion

Fig. 12.33  Hammer toes

Hammer toe Slight extension Flexion Extension

Mallet toe Normal Normal Flexion

12.6  Lesser Toe Deformities

257

Fig. 12.34  Claw toes

Fig. 12.35  Mallet toe

• In many cases the cause is unknown, but recognised causes include trauma, tight shoes, diabetes, associated with hallux valgus, and underlying neurological disorders (particularly with claw toes). • In the early stages the deformities are mobile but in later/ advanced stages the deformities become fixed.

258

12  Examination for Specific Conditions of the Foot and Ankle

12.6.5 Symptoms • ‘Corns’ and callosities where there is excessive pressure, either in the tip of the toe (mallet toe), or the dorsum of the PIP joint with claw and hammer toes. • Callosities may also occur on the sole of the foot in relation to the prominent metatarsal heads.

12.7 Overlapping Fifth Toe • Overlapping fifth toe is a congenital condition in which the toe overlaps the fourth toe (Fig. 12.36). • Often bilateral, and other toes may be affected by the condition. • It is caused by contraction of extensor digitorum longus and associated with tight medial soft tissue structures.

Fig. 12.36  Overlapping fifth toe

12.8  Tailor’s Bunion (Bunionette)

259

• Conservative treatment with stretching and taping may be tried, but surgery is usually needed to correct the deformity. • Many people are simply content to live with the deformity.

12.8 Tailor’s Bunion (Bunionette) • See Fig. 12.37. • Forms in relation to lateral aspect of the fifth metatarsal head, which may be prominent.

Fig. 12.37  Tailor’s bunion

260

12  Examination for Specific Conditions of the Foot and Ankle

• Symptoms are caused by tight fitting shoes, and if wider shoes do not relieve the symptoms, surgery is indicated. • Often simply removing the bony prominence is sufficient, but if there is lateral bowing of the shaft, a corrective osteotomy may be required.

Figure Credits and Sources

Unless listed below, all images are copyright of the author or are in the public domain and permission was not obtainable. Where possible, we have sought permission to use images reproduced in this publication. If you are the copyright owner and we have inadvertently not acknowledged you appropriately, please contact us so that we may rectify the situation. Image Figure 1.3

Figure 1.4 Figure 1.6

Figure 1.7

Reproduced with permission from or under license of Reference: Bijendra, D., Wu, X., Jiang, Z., Zhu, L., Promish, M. and Ratish, S. (2018) Adjacent Level Vertebral Fractures in Patients Operated with Percutaneous Vertebroplasty. Open Journal of Orthopedics, 8, 116–126. doi: 10.4236/ojo.2018.83014 Reproduced under the Creative Commons Attribution 4.0 International license Image credit: Learnmusles.com Reference: Lavignolle, B. (2020). Spinal Nerves (Innervation of the Spine). In: Vital, J., Cawley, D. (eds) Spinal Anatomy. Springer, Cham. https://doi. org/10.1007/978-­3-­030-­20925-­4_25 Reprinted by permission from Springer under License no. 5545740055244 Reference: Pearson J., Niemeier T.E., Theiss S.M. (2017) Vertebral Disc Disease. In: Eltorai A., Eberson C., Daniels A. (eds) Orthopedic Surgery Clerkship. Springer, Cham. https://doi.org/10.1007/978-­3-­319-­52567-­9_97 Reprinted by permission from Springer under License no. 5379171451968

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1

261

262 Image Figure 1.9

Figure 1.10

Figure 2.8 Figure 3.6 Figure 3.7

Figure 3.9

Figure 3.14

Figure 3.15 Figure 3.16

Figure Credits and Sources Reproduced with permission from or under license of Reference: Masuda R., Tanuma K. (2015) Subarachnoid (Intrathecal) Ligaments. In: Reina M., De Andrés J., Hadzic A., Prats-Galino A., Sala-Blanch X., van Zundert A. (eds) Atlas of Functional Anatomy for Regional Anesthesia and Pain Medicine. Springer, Cham. https://doi. org/10.1007/978-­3-­319-­09522-­6_34 Reprinted by permission from Springer under License no. 5379180208498 Reference: Rawls, A., Fisher, R.E. (2018). Developmental and Functional Anatomy of the Spine. In: Kusumi, K., Dunwoodie, S. (eds) The Genetics and Development of Scoliosis. Springer, Cham. https://doi.org/10.1007/978-­3-­ 319-­90149-­7_1 Reprinted by permission from Springer under License no. 5545740379487 Reference: Sinnatamby, Last’s Anatomy Regional and Applied, 1999. Reprinted by permission from Elsevier Image credit: AAOS.org Reference: Cooper G. (2015) Spondylolisthesis. In: Non-Operative Treatment of the Lumbar Spine. Springer, Cham. https://doi.org/10.1007/978-­3-­319-­21443-­6_8 Reprinted by permission from Springer under License no. 5423400540608 Reference: Manchikanti L., Schultz D.M., Falco F.J.E., Singh V. (2018) Lumbar Facet Joint Interventions. In: Manchikanti L., Kaye A., Falco F., Hirsch J. (eds) Essentials of Interventional Techniques in Managing Chronic Pain. Springer, Cham. https://doi.org/10.1007/978-­3-­319-­ 60361-­2_19 Reprinted by permission from Springer under License no. 5423400908717 Reference: Uskova, A., Halaszynski, T. (2015). Regional Anesthesia for Hip Surgery. In: Scuderi, G., Tria, A. (eds) Minimally Invasive Surgery in Orthopedics. Springer, Cham. https://doi.org/10.1007/978-­3-­319-­15206-­6_9-­1 Reprinted by permission from Springer under License no. 5423410889521 Reprinted by permission from TeachMeAnatomy.info Reprinted by permission from TeachMeAnatomy.info

Figure Credits and Sources Image Figure 4.1 Figure 4.2 Figure 4.3

263

Reproduced with permission from or under license of Image credit: Shouldereducation.com, Paul B. Roache MD Image credit: Beckerorthopedics.com Reference: Perumal, V., Woodley, S.J. & Nicholson, H.D. The morphology and morphometry of the fovea capitis femoris. Surg Radiol Anat 39, 791–798 (2017). https://doi. org/10.1007/s00276-­016-­1810-­y Reprinted by permission from Springer under License no. 5423411379097 Figure 6.5 Reprinted by permission of The Hospital for Sick Children www.aboutkidshealth.ca Figure 6.6 Reference: Weinstein S.L., Holt J.B. (2019) Developmental Dysplasia of the Hip in Young Children. In: Alshryda S., Howard J., Huntley J., Schoenecker J. (eds) The Pediatric and Adolescent Hip. Springer, Cham. https://doi. org/10.1007/978-­3-­030-­12003-­0_4 Reprinted by permission from Springer under License no. 5423420677720 Figure 6.7 This work is licensed under Creative Commons Attribution 4.0 License DOI: 10.19080/OROAJ.2018.10.555794 Priyanka Kumari, Manisha Rani. Developmental Dysplasia of the Hip. Ortho & Rheum Open Access 2018; 10(4): 555794 Figure 6.10a Reference: Shapiro, F. (2019). Slipped Capital Femoral Epiphysis: Developmental Coxa Vara. In: Pediatric Orthopedic Deformities, Volume 2. Springer, Cham. https:// doi.org/10.1007/978-­3-­030-­02021-­7_3 Reprinted by permission under License no. 5550140904929 Figure 6.11 Reference: Ritesh A. Rathi, Tahir Khan, Slipped upper femoral epiphysis, Orthopaedics and Trauma, Volume 30, Issue 6, 2016, 482–491, https://doi.org/10.1016/j. mporth.2016.08.002. (https://www.sciencedirect.com/ science/article/pii/S1877132716301099) Reprinted by permission under License no. 5550150012314 Figure 7.4 Reference: Jack T. Andrish, Biomechanics of the Patellofemoral Joint, Operative Techniques in Sports Medicine, Volume 23, Issue 2, 2015, Pages 62–67, https:// doi.org/10.1053/j.otsm.2015.03.001 Reprinted by permission under License no. 5423561153234 Figure 7.5 Reprinted by permission from Musculoskeletalkey.com

264 Image Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

Figure 7.13

Figure Credits and Sources Reproduced with permission from or under license of Reference: Vincent, Jean-Philippe & Magnussen, Robert & Gezmez, Ferittu & Uguen, Arnaud & Jacobi, Matthias & Weppe, Florent & Al-Saati, Ma’ad & Lustig, Sébastien & Demey, Guillaume & Servien, Elvire & Neyret, Philippe. (2012). The anterolateral ligament of the human knee: An anatomic and histologic study. Knee Surgery, Sports Traumatology, Arthroscopy. 20. 147–152. 10.1007/ s00167-011-1580-3 Reproduced under the Creative Commons Attribution 4.0 International license Reference: Fekete, Gusztáv (2013) Kinetics and kinematics of the human knee joint under standard and non-standard squat movement; PhD thesis Reproduced under the Creative Commons Attribution 4.0 International license Reference: Sriramkausik, K. & Alphin, Masilamany Santha. (2016). Experimental Study for Dynamic and Surface Interaction Characteristics of Knee In-vitro. Procedia Engineering. 144. 321–327. 10.1016/j.proeng.2016.05.139 Reproduced under the Creative Commons Attribution 4.0 International license Reference: Wegrecki et al (2016) Australian Medical Student Journal available at: www.amsj.org/archives/5453 Reproduced under the Creative Commons Attribution 4.0 International license Reference: Winkler, P.W., Zsidai, B., Wagala, N.N. et al. Evolving evidence in the treatment of primary and recurrent posterior cruciate ligament injuries, part 1: anatomy, biomechanics and diagnostics. Knee Surg Sports Traumatol Arthrosc 29, 672–681 (2021). https://doi.org/10.1007/ s00167-­020-­06357-­y Reproduced under the Creative Commons Attribution 4.0 International license Reprinted by permission from Orthonika (www.orthonika. com). https://orthonika.com/total-­meniscus-­replacement/ total-­meniscus-­replacement-­technology Reference: Goldman, D.T., Piechowiak, R., Nissman, D. et al. Current Concepts and Future Directions of Minimally Invasive Treatment for Knee Pain. Curr Rheumatol Rep 20, 54 (2018). https://doi.org/10.1007/s11926-­018-­0765-­x Reprinted by permission under License no. 5423911085698

Figure Credits and Sources Image Figure 9.2

265

Reproduced with permission from or under license of Reference: Mortensen, J.F., Kappel, A., Rasmussen, L.E. et al. The Rosenberg view and coronal stress radiographs give similar measurements of articular cartilage height in knees with osteoarthritis. Arch Orthop Trauma Surg 142, 2349–2360 (2022). https://doi.org/10.1007/s00402-­021-­ 04136-­z Reprinted by permission from Springer under License no. 5545740916964 Figure 9.7 Reference: V.B. Duthon / Orthopaedics & Traumatology: Surgery & Research 101 (2015) S59–S67 Acute traumatic patellar dislocation, Orthopaedics & Traumatology: Surgery & Research, Volume 101, Issue 1, Supplement, 2015, Pages S59–S67, ISSN 1877-0568, https://doi.org/10.1016/j. otsr.2014.12.001 Figure 9.8 Reference: Shampain, K., Gaetke-Udager, K., Leschied, J.R. et al. Injuries of the adolescent girl athlete: a review of imaging findings. Skeletal Radiol 48, 77–88 (2019). https:// doi.org/10.1007/s00256-­018-­3029-­y Reprinted by permission under License no. 5423920731325 Figure 9.11a Image credit: Drahmadalqadi.online Figure 9.11b Reference: Johnston, L., Faimali, M., Gikas, P.D., Briggs, T.W.R. (2014). Matrix-Induced Autologous Chondrocyte Implantation. In: Shetty, A.A., Kim, SJ., Nakamura, N., Brittberg, M. (eds) Techniques in Cartilage Repair Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-­3-­ 642-­41921-­8_20 Reprinted by permission under License no. 5425620988991 Figure 10.2 Reference: Ganesan, B., Luximon, A., Al-Jumaily, A., Yip, J., Gibbons, P.J., & Chivers, A. (2018). Developing a Three-Dimensional (3D) Assessment Method for Clubfoot—A Study Protocol. Frontiers in Physiology, 8 Reproduced under the Creative Commons Attribution 4.0 International license Figure 10.3 Image courtesy of Dr. Matt Skalski Figure 10.4 Image courtesy of Dr. Matt Skalski Figure 10.5 Image credit: solesinmotion.ca Figure 10.7a Reference: Wong, Duo. (2013). Biomechanics of Hallux Valgus and Evaluation of Interventions. 10.13140/ RG.2.2.36341.60643; PhD thesis Reproduced under the Creative Commons Attribution 4.0 International license

266

Figure Credits and Sources

Image Reproduced with permission from or under license of Figure 10.7b Reference: Sun, T., Zhao, H., Wang, L. et al. Distribution patterns and coincidence of sesamoid bones at metatarsophalangeal joints. Surg Radiol Anat 39, 427–432 (2017). https://doi.org/10.1007/s00276-­016-­1759-­x Reprinted by permission under License no. 5424000256226 Figure 10.8 Image credit: EarthsLab.com Figure 10.9 Reference: D’Hooghe, P., Cruz, F. & Alkhelaifi, K. Return to Play After a Lateral Ligament Ankle Sprain. Curr Rev Musculoskelet Med 13, 281–288 (2020). https://doi. org/10.1007/s12178-­020-­09631-­1 Reproduced under the Creative Commons Attribution 4.0 International license Figure 10.10 Reference: Candela V., Longo U.G., Salvatore G., Berton A., Maffulli N., Denaro V. (2019) Subtalar Joint Instability. In: Canata G., d’Hooghe P., Hunt K., Kerkhoffs G., Longo U. (eds) Sports Injuries of the Foot and Ankle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-­3-­662-­ 58704-­1_7 Reprinted by permission under License no. 5424010066197 Figure 10.11 Reproduced with permission from Anatomystandard.com Figure 10.13 Reference: McCormick, J.J., Fisher, B.M. (2022). Lisfranc Injuries of the Foot and Ankle: Diagnosis and Treatment Indications. In: D’Hooghe, P., Hunt, K.J., McCormick, J.J. (eds) Ligamentous Injuries of the Foot and Ankle. Springer, Cham. https://doi.org/10.1007/978-­3-­031-­08682-­3_19 Reprinted by permission under License no. 5425630961261 Figure 10.14 Reference: Mulcahy H. Lisfranc Injury: Current Concepts. Radiol Clin North Am. 2018 Nov;56(6):859–876. doi: 10.1016/j.rcl.2018.06.003. Epub 2018 Sep 17. PMID: 30322487 Reprinted by permission under License no. 5424151059357 Figure 10.15 Reference: McCormick, J.J., Fisher, B.M. (2022). Lisfranc Injuries of the Foot and Ankle: Diagnosis and Treatment Indications. In: D’Hooghe, P., Hunt, K.J., McCormick, J.J. (eds) Ligamentous Injuries of the Foot and Ankle. Springer, Cham. https://doi.org/10.1007/978-­3-­031-­08682-­3_19 Reprinted by permission under License no. 5425630961261 Figure 10.17 Reproduced with permission from TeachMeAnatomy.info

Figure Credits and Sources

267

Image Reproduced with permission from or under license of Figure 10.18 Reference: Yoo, B.J. (2020). Isolated Fractures of the Anterior Process. In: Adams, M., Benirschke, S. (eds) Fractures and Dislocations of the Talus and Calcaneus. Springer, Cham. https://doi.org/10.1007/978-­3-­030-­ 37363-­4_18 Reprinted by permission under License no. 5424460716892 Figure 10.19 Reference: Dellon, A.L. (2019). Lateral Ankle (Sinus Tarsi) Denervation. In: Joint Denervation. Springer, Cham. https:// doi.org/10.1007/978-­3-­030-­05538-­7_11 Reprinted by permission under License no. 5424460885508 Figure 10.22 Reference: Park, J.-H.; Kim, D.; Kwon, H.-W.; Lee, M.; Choi, Y.-J.; Park, K.-R.; Youn, K.H.; Cho, J. A New Anatomical Classification for Tibialis Posterior Tendon Insertion and Its Clinical Implications: A Cadaveric Study. Diagnostics 2021, 11, 1619. https://doi.org/10.3390/ diagnostics11091619 Reproduced under the Creative Commons Attribution 4.0 International license Figure 10.24 Olewnik, Ł., Podgórski, M., Polguj, M. et al. A cadaveric and sonographic study of the morphology of the tibialis anterior tendon – a proposal for a new classification. J Foot Ankle Res 12, 9 (2019). https://doi.org/10.1186/s13047-­ 019-­0319-­0 Reproduced under the Creative Commons Attribution 4.0 International license Figure 10.27 Reproduced with permission from Learnmuscles.com Figure 10.29 Reference: Richie Jr, D.H. (2021). Plantar Heel Pain. In: Pathomechanics of Common Foot Disorders. Springer, Cham. https://doi.org/10.1007/978-­3-­030-­54201-­6_8 Reprinted by permission under License no. 5424161173864 Figure 10.30 Image credit: The Journal of the Royal Society Reference: Influence of the windlass mechanism on arch-spring mechanics during dynamic foot arch deformation. Lauren Welte, Luke A. Kelly,Glen A. Lichtwark, and Michael J. Rainbow.J R. Soc. Interface. 15201802702018027 Reproduced under the Creative Commons Attribution 4.0 International license Figure 10.31 Image credit: MoreThanAnatomy.com

268

Figure Credits and Sources

Image Reproduced with permission from or under license of Figure 10.32 Reference: Grainger, A.J. (2017). Imaging the Foot. In: Hodler, J., Kubik-Huch, R., von Schulthess, G. (eds) Musculoskeletal Diseases 2017-2020. Springer, Cham. https://doi.org/10.1007/978-­3-­319-­54018-­4_2 Reprinted by permission under License no. 5424480864397 Figure 10.33 Reference: Brown, M.N., Pearce, B.S., Vanetti, T.K., Trescot, A.M., Karl, H.W. (2016). Medial Calcaneal Nerve Entrapment. In: Trescot, A.M. (eds) Peripheral Nerve Entrapments. Springer, Cham. Reprinted by permission under License no. 5424501039522 Figure 11.8 Reference: Tanner Amundsen, Matthew Rossman, Ishfaq Ahmad, Addison Clark, Manfred Huber, Fall risk assessment and visualization through gait analysis, Smart Health, Volume 25, 2022, 100284, ISSN 2352-6483, https:// doi.org/10.1016/j.smhl.2022.100284 Reprinted by permission under License no. 5424510954317 Figure 12.9b Reference: Rodrigues RN, Lopes AA, Torres JM, Mundim MF, Silva LL, Silva BR. Compressive neuropathy of the first branch of the lateral plantar nerve: a study by magnetic resonance imaging. Radiol Bras. 2015 NovDec;48(6):368–72. doi: 10.1590/0100-3984.2013.0028. PMID: 26811554; PMCID: PMC4725398. Reproduced under the Creative Commons Attribution 4.0 International license Figure 12.15 Image credit: Mikael Häggström, MD Reproduced under the Creative Commons Attribution 4.0 International license Figure 12.16 Reproduced with permission from Stephen Pinney MD, Editor-in-Chief FootEducation.com Figure 12.19 Reference: Kučerová, Lenka & Dolina, Jiri & Dastych, Milan & Bartušek, Daniel & Honzík, Tomáš & Mazanec, Jan & Kunovsky, Lumir. (2018). Mitochondrial Neurogastrointestinal Encephalomyopathy Imitating Crohn’s Disease: A Rare Cause of Malnutrition. Journal of gastrointestinal and liver diseases : JGLD. 27. 321–325. 10.15403/jgld.2014.1121.273.kuc Reproduced under the Creative Commons Attribution 4.0 International license

Figure Credits and Sources

269

Image Reproduced with permission from or under license of Figure 12.28 Reference: Arsanious, D., Lai, K. (2017). Morton’s Neuroma. In: Eltorai, A., Eberson, C., Daniels, A. (eds) Orthopedic Surgery Clerkship. Springer, Cham. https://doi. org/10.1007/978-­3-­319-­52567-­9_95 Reprinted by permission under License no. 5424520739941

Further Reading1 1. Sinnatamby C, editor. Last’s anatomy, regional and applied. 10th ed. Edinburgh: Churchill Livingstone; 1999. ISBN 0 443 05611 0. 2. Solomon L, Warwick D, Nayagam S, editors. Apley’s system of orthopaedics and fractures. 9th ed. London: Hodder Arnold; 2010. ISBN: 9780340942086.

A number of textbooks and journal articles have been used as reference to produce this book; the two main books are listed above references. 1 

Index

A Acetabular labrum, 67 Acetabulum, 59, 65 Adduction, 62 Ankle dorsiflexion, 110 Ankle joint (talocrural joint), 174, 176, 206 Ankylosing spondylitis (AS), 48–50 Annulus fibrosis, 10 Anterior compartment, 190–191 Anterior cruciate ligament (ACL), 117 laxity, 133 Anterior superior iliac spines (ASIS), 23 Anterior tibial artery, 203 Anteroposterior instability, 207 Apley’s grinding test, 145–147 Apparent shortening, 77 Arches of foot, 196–199 Arcuate popliteal ligament, 113 Autonomous zones, 20–22 B Baker’s cyst, 162 Bamboo spine, 50 Barlow test, 86

Bifurcate ligament, 168, 184–185 Block method, 72–74 Blood supply, 119 Bones, 165–174 of foot, 166 Bony abnormalities, 222 Bony fusion, 49 Bulge test, 127, 128 C Calcaneocuboid joint, 178–179 Calcaneus (heel bone), 168, 169 Cauda equina, 7 Cauda equina syndrome (CES) investigations, 40 physical signs, 40, 41 red flags, 40–41 symptoms, 40 Clarke’s patellar grind test, 130 Coccyx, 3 Common peroneal (fibular) nerve, 201 Compression test, 24 Crescent sign, 104 Cruciate ligaments, 117 Cuneiform bones, 168–172 Cutaneous nerve supply, 200

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Pillemer, Handbook of Lumbar Spine and Lower Extremity Examination, https://doi.org/10.1007/978-3-031-37804-1

271

Index

272 D Deep peroneal nerve, 201, 202 Deep posterior compartment, 187–190 Developmental dysplasia of the hip (DDH), 82, 83 Distraction test, 23 Dorsalis pedis, 211 pulse, 212 Drawer test, 133–134, 211 E Erector spinae, 12 Extensor digitorum brevis (EDB), 194 Extensor digitorum longus (EDL), 190 insertions, 191 Extensor hallucis brevis (EHB), 194 Extensor hallucis longus (EHL), 190, 191 Extensor mechanism failure, 152–154 Extensor muscles, 12 Extracapsular ligaments, 113 Extrinsic muscles, 186–192 F Facet joints, 6, 7, 45 arthropathy, 45, 47 Femoral nerve stretch test (FNST), 25 Femoral shortening, 72 Femoro-acetabular impingement (FAI), 100–101 Fibular collateral ligament, 147–149 Fixed flexion deformity (FFD), 65 Flexion, 62 Flexor digitorum longus (FDL), 188, 189 Flexor hallucis brevis, 173 Flexor hallucis longus (FHL), 168, 188, 189

Foot and ankle ankle stability, 207–211 diabetic foot problems, 219–221 foot drop, 214 gait, 206 inspection and palpation, 205, 206 metatarsus adductus, 223–224 neurological examination, 211 osteoarthrosis of the ankle (OA), 217–219 range of movement, 206–207 talipes calcaneovalgus, 224 talipes equinovarus (CTEV), 221–222 vascular examination, 211–215 Foot drop, 214–215 Forefoot, 165 G Gaenslen’s test, 24 Gait, 70, 126, 212–214 cycle, 213 test, 74 Galeazzi test, 87–88 Gastrocnemius, 187 origin, 188 H Haematogenous seeding, 50 Haversian fat pad, 59 Hilton’s law, 123 Hindfoot, 165 Hip examination apparent shortening, 76–78 Barlow test, 87 block method, 72–74 childhood and adolescence, 81 clinical test, 84 DDH, 82, 83 FAI, 100–101

Index gait, 70 Galeazzi test, 87–88 inspection and palpation, 69 investigations, 85, 86 Ortolani test, 87 osteoarthrosis (OA) of hip, 97–100 Perthes disease (Legg-CalvePerthes disease), 89, 91 SCFE, 92–97 septic (pyogenic) arthritis, 88–89 supine, 70–72 Thomas test, 78 transient synovitis, 81–82 trendelenburg sign, 74–76 unilateral dislocation, 83 functions, 67 ligaments, 65–66 movements, 62–64 ranges of movement, 64 stability, 66 I Iliofemoral ligament, 65 Inferior labrum, 59 Insell’s sign, 130 Internal (medial) rotation, 62 Interspinous and supraspinous ligaments, 10 Intertransverse ligaments, 10 Intervertebral disc prolapse anatomic classification, 31 investigations, 34 location classification, 32–33 physical signs, 34 symptoms, 33–34 treatment, 34–37 Intervertebral discs, 3, 9, 10 Intervertebral foramen, 10 Intrinsic muscles, 192–196

273 J Joints and ligaments, 174–185 line tenderness, 136 lubrication, 122 stability, 122 K Knee joint activities, 109 anatomy, 108 blood supply of, 122–123 bursae of, 109, 161 cruciate ligaments, 133–135 dislocation of patella, 149–151 extensor mechanism failure, 152, 153 functions, 121–122 inspection and palpation, 125–132 ligaments, 113 meniscal lesions, 142–147 movements of, 110–121 nerve supply, 123 OCD, 156, 158, 159 Osgood Schlatter’s disease, 154–156 osteoarthrosis, 139–142 recurrent dislocation of patella, 151, 152 seated lumbar extension test, 136–137 swelling, 160, 161 testing stability, 132 Knee ligament injuries, 147, 148 signs and symptoms, 147–149 L Labrum, 61 Lachman test, 134–135

Index

274 Lateral arch, 199 Lateral collateral ligament (LCL), 113, 132 Lateral instability, 207 Lateral knee ligaments, 115 Lateral meniscus, 118, 120–121 Lateral test, 95 Ligament instability, 210 Ligamenta flava, 12 Lisfranc ligament, 181–183 L5 nerve root involvement, 22 Long plantar ligament, 184 Loss of abduction, 65 Lower leg, 186 Lumbar lordosis, 3 Lumbar plexus, 53–55 Lumbar spinal stenosis (LSS), 38 Lumbar spine anatomy, 3, 6, 9, 12 ankylosing spondylitis, 48–50 CES, 39, 40 examination autonomous zones, 20–22 gait, 16 intervertebral disc prolapse, 31–34, 37 neurological examination, 20 patient standing, 15–16 range of motion, 17–19 SIJ, 22–24, 27 SLR, 19–20 three tests, 16, 17 facet joint arthropathy, 45, 47 function, 13 LSS, 38 lumbosacral plexus, 53 osteomyelitis and discitis, 50–52 spondylolysis and spondylolisthesis, 41–43 and strain, 37–39 Lumbar vertebra, 3, 6 Lumbar zygapophyseal joints, 45 Lumbosacral plexus, 53

M McMurray’s test, 136–138, 145 Medial arch, 197–199 Medial (tibial) collateral ligament (MCL), 113, 114, 132 Medial meniscus, 119 Medial patellofemoral ligament, 150 Meniscal injuries, 135 Meniscal lesions signs, 144–147 symptoms, 144 Meniscofemoral ligaments, 120 Metatarsals, 172 Metatarsophalangeal (MTP) joints, 207 Metatarsus adductus, 223–224 Meyerding grading, 43 Midfoot, 165 Midtarsal joint, 207 Movements, 203–204 Muscles and tendons, 185–204 N Navicular tuberosity, 168, 170 Nerve root involvement, 22 L4–5, 36 Nerve supply, 123, 199–201 Normal hip dislocation, 66 Nucleus pulposus, 10 O Oblique popliteal ligament, 113 and arcuate ligament, 116 Ortolani test, 86 Osteoarthrosis risk factors, 139 signs, 140 symptoms, 139–140 treatment, 141 X-rays, 140–141

Index Osteoarthrosis of the ankle (OA) signs, 218–219 symptoms, 218 treatment, 219 Osteochondritis dissecans of the knee (OCD), 156, 158 Osteonecrosis, 159 P Palpation tests, 24 Patellar apprehension test, 127, 129 Patellar tap, 126 Patellar tracking, 127 Patellofemoral joint, 110, 149 Patrick’s test, 23–24 Pavlik harness, 85 Peroneal tendons, 171, 192 Peroneus brevis, 192 Peroneus longus, 191 Peroneus tertius, 191 Perthes disease (Legg-Calve-Perthes disease), 89, 90 Phalanges, 172 Pivot shift test, 135 Plantar calcaneonavicular (spring) ligament, 183–184 Plantar fascia (aponeurosis), 196 Popliteo-fibular ligament, 116 Popliteus muscle, 111 Posterior cruciate ligament (PCL), 117–118, 135 Posterior tibial, 212 artery, 201 pulse, 213 Postural scoliosis, 3 Proprioception, 122 Pseudo locking, 144 Psoas muscle, 62 Pubofemoral ligamen, 65 Q The Q-angle, 152

275 R Range of movement, 126 S Sacral plexus, 55 Sacroiliac joint (SIJ), 22–24, 27 Saphenous nerve, 55 Schober’s test, 17 Seated lumbar extension test, 134 Secondary osteoarthrosis, 98 Segmental innervation, 26–27 lower limb, 26 Septic (pyogenic) arthritis, 88–89 Sesamoid bones, 172–174 Shock absorption, 122 Short-leg scoliosis, 5 Short plantar ligament (plantar calcaneocuboid ligament), 184 Slipped capital femoral epiphysis (SCFE), 92–97 Slump test, 26 Spinal cord, 7 Spinal ligaments, 11 Spinal nerves, 7, 8 Spondylolisthesis, 42 Spondylolysis, 41–42 Spontaneous osteonecrosis of the knee (SONK), 159 Spring ligament, 183 Standing test, 74, 76 Straight leg raising test (SLR), 19–20 Subtalar joint, 175–176, 206 Superficial abnormalities, 15, 28 Superficial peroneal nerve, 201, 202 Superficial posterior compartment, 186–187 Supine, 70–72 Support phase, 214 Sustentaculum tali, 168 Swing phase, 214

Index

276 T Talipes calcaneovalgus, 224 Talipes equinovarus (CTEV), 221–222 Talocalcaneonavicular joint (TCN), 176–178 Talus, 165–168 Tarsal sinus, 185 Tarsometatarsal joints (TMT), 179–181 Temporal grading, 94 Test chest expansion, 16 Thigh thrust test, 24 Thomas test, 64, 78, 79 Tibial nerve, 199–201 Tibialis anterior attachment, 171, 190 Tibialis anterior insertion, 190 Tibialis posterior (TP), 187, 189 insertion, 189

Transient synovitis, 81–82 Transverse arch, 199 Transverse ligament, 118 Transverse process, 6 Transversospinalis, 12 Trendelenburg sign, 75 Trethowan’s sign, 94, 95 Triplane osteotomy, 96–97 True locking, 145 V Valgus stress, 132, 208 Varus stress, 132, 208 Vertebral column, 3, 4 Vertebral segment, 10 W Wall test, 17 Windlass mechanism, 196, 198