399 132 3MB
English Pages 209 Year 2008
GPS&Galileo:DualRFFront-endReceiver andDesign,Fabrication,andTest
ABOUTTHEAUTHOR JAIZKIMENDIZABALreceivedhisMSandPhDdegreesinelectricalengineeringfromtheTechnologicalCampusoftheUniversityofNavarra(TECNUN) inSanSebastian,Spain.Asaradiofrequency–integratedcircuitdesigner, hehasworkedaspartoftheRFICresearchgroupatFraunhoferInstitut fürIntegrierteSchaltungeninErlangen,Germany,from2000to2002;the RFdesigngroupoftheElectronicsandCommunicationDepartmentatthe CentrodeEstudioseInvestigacionesTécnicas(CEIT)inSanSebastianfrom 2002to2005;andtheMixedSignalresearchgroupoftheFrontierDevices DepartmentatSANYOElectric,Ltd.,inGifu,Japan,from2005to2006.His PhDresearchwasfocusedinlowIFconversionGlobalNavigationSatellite System(GNSS)front-ends.HeisnowinvolvedwithRFICsandanalogsystemsfortherailwayindustryatCEITandlecturesattheRFMeasurement LaboratoryandElectronicCircuitsatTECNUN. ROCBERENGUERreceivedMSandPhDdegreesfromTECNUNinSan Sebastianin1996and2000,respectively.HisPhDresearchwasfocusedin directdigitalisationfront-endsdesignforGPS.In1999hejoinedCEITas AssociatedResearcher.Hehascollaboratedinthedesignofseveralfront-ends forwirelessstandardssuchasWirelessLocalAreaNetwork(WLAN),Digital VideoBroadcasting–Handheld(DVB-H),Galileo,andGPS.Hehasalso workedasexternalconsultantforSiemens,Hitachi,Epson,andothers.Heis currentlyinterestedinlow-poweranaloguecircuitdesign,particularlylowpowerRFIDsforwirelesssensornetworks.Currentlyheisalsoanassistant professorofanalogueintegratedcircuitsatTECNUN.HeisauthorofDesign andTestofIntegratedInductorsforRFApplications. JUANMELÉNDEZreceivedhisMSandPhDdegreesinIndustrialEngineering fromTECNUNinSanSebastianin1998and2002,respectively.Heworked towardshisPhDinthefieldofmonolithicRFdesignforGNSSsystemsin CEIT,focusingindirectlowIFconversionfront-endsforGPS.Afterwards,he workedinthedesignofthird-generationmobilephoneoscillatorsinHitachi SemiconductorsEuropeinLondon.HisresearchinterestsincludeRFICs andanalogsystemsfortherailwayindustry.Currentlyheisalsoassistant professoroftheLaboratoryofElectronicComponentsandelectromagnetic compatibilityinTECNUN.HeisamemberoftheInstituteofElectricaland ElectronicsEngineers(IEEE),authoroffourtechnicalpublications,andhas made10contributionstointernationalcongresses.HeisauthorofDesignand CharacterizationofIntegratedVaractorsforRFApplications.
GPS&Galileo:DualRF Front-endReceiver andDesign,Fabrication, andTest JaizkiMendizabalSamper RocBerenguerPérez JuanMeléndezLagunilla
NewYork Chicago SanFrancisco Lisbon London Madrid MexicoCity Milan NewDelhi SanJuan Seoul Singapore Sydney Toronto
Copyright © 2009 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-159870-5 MHID: 0-07-159870-7 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-159869-9, MHID: 0-07-159869-3. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please visit the Contact Us page at www.mhprofessional.com. Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGrawHill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms. THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.
Contents
Acknowledgments vii ListofAbbreviationsandAcronyms viii
Chapter1. Introduction
1.1 1.2 1.3 1.4
SatelliteNavigation PositioningthroughSatellites State-of-the-ArtGNSSRFFront-EndReceivers DesignMethodology
1 1 8 19 24
Chapter2. ReceiverSpecifications
27
27 39 59
2.1 GlobalNavigationSatelliteSystems 2.2 SystemAnalysis 2.3 Summary
Chapter3. CircuitDesign
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8
ReceiverArchitecture Low-NoiseAmplifier RFPre-AmplifierandMixer IFLimitingAmplifiersandFilters Analogue-to-DigitalConversion(ADC) FrequencySynthesiser OverallConsiderations Summary
61 61 64 71 84 90 92 115 122
Chapter4. Measurements
123
123 123 124
4.1 Introduction 4.2 StagesintheValidationofanIntegratedCircuitDesign 4.3 ValidationofPassiveElementModels
v
vi Contents
4.4 IndividualValidationofReceiverChainBlocks 4.5 CharacterisationoftheCompleteRFFront-End 4.6 Summary
126 150 153
Chapter5. Applications
155
155 160 171
5.1 FieldsofApplication 5.2 ApplicationModuleforCars 5.3 Summary
Chapter6. Conclusions
173
Bibliography
179
Index
183
Acknowledgments
The authors would like to thank the Technological Campus of the UniversityofNavarra(TECNUN),CentrodeEstudioseInvestigaciones Técnicas(CEIT),andeverybodyattheCOMMICgroup(www.ceit.es/ electrocom/RF/)formakingpossiblethisbook’sresearch.Theyalsowish to express their gratitude to the Spanish government’s Centro Para elDesarrolloTecnológicoIndustrial(CDTI)office,theBasquegovernment’sDepartamentodeIndustria,andthecompaniesINCIDES.A.and OwasysS.L.L.fortheirfinancialsupport.Theywouldalsoliketothank HaymarMancisidorforhisinvaluablehelpwiththeartworkandMarc Oakleyforhiseditingworkandvaluablecommentsaboutthelanguage ofthisbook.TheauthorsareverygratefultotheMcGraw-Hillteam, notonlyforthechancetohavethisbookpublishedbutforcontributing toitsdevelopment. Finally,theauthorsthanktheirfamiliesfortheirsupportandpatience. Withoutitthisbookwouldnothavebeenpossible.
vii
ListofAbbreviations andAcronyms
3G
Thirdgenerationofmobilephonestandards
A/D
Analogtodigital
AC
Alternatingcurrent
ADC
Analog-to-digitalconverter
ADS
Advanceddesignsystem
AGC
Automaticgaincontrol
AltBOC
Alternativebinaryoffsetcarrier
b0
Low-frequencycurrentgain
BER
Biterrorrate
BJT
Bipolarjunctiontransistor
BOC
Binaryoffsetcarrier
BPSK
Bi-phaseshiftkey
BW
Bandwidth
C
Capacitance
C/A-code
Coarseacquisitioncode
C/N0
Carrier-to-noiseratio(dB)
c/n0
Carrier-to-noiseratio(expressedasaratio)
Cbc
Base-collectorcapacitance
CBD
Bulk-draincapacitance
CBE
Base-emittercapacitance
CDMA
Code-divisionmultipleaccess
CE
Chipenable
CFL
Compactfluorescentlamp
CGB
Gate-bulkcapacitance
CGD
Gate-draincapacitance
viii
ListofAbbreviationsandAcronyms ix
CGS
Gate-sourcecapacitance
CL
Loadcapacitance
Cm
Base-collectorparasiticcapacitance
CMOS
Complementarymetal-oxidesemiconductor
CP
Chargepump
Cp
Base-emitterparasiticcapacitance
CPU
Centralprocessingunit
CRT
Cathoderaytube
CS
Commercialservice(Galileo)
DC
Directcurrent
∆φ
Phasedifference
DGPS
DifferentialGPS
DGTREN
Directorate-GeneralforEnergyandTransport
DNSS
DefenseNavigationSatelliteSystem
DoD
DepartmentofDefense
DoT
DepartmentofTransportation
DSP
Digitalsignalprocessing
DVD
Digitalvideodisc
EC
EuropeanCommission
ECL
Emittercoupledlogic
ECP
Extendedcapabilityport
EGNOS
EuropeanGeostationaryNavigationOverlayService
EPP
Enhancedparallelport
ESA
EuropeanSpaceAgency
ESD
Electrostaticdischarge
EU
EuropeanUnion
FAA
U.S.FederalAviationAdministration
FDD
Floppydiskdrive
FDMA
Frequencydivisionmultipleaccess
FEC
Forwarderrorcorrection
FOC
Fulloperationalsystem
fp
Phasemargin
Fref
Referencefrequency
fres
Resonancefrequency
FS
Frequencyselection
fXtal
Crystalfrequency
G
Gain
x ListofAbbreviationsandAcronyms
GaAs
Galliumarsenide
GAGAN
Satellite-basedaugmentationsystem
Galileo
EuropeanGNSS
GC
Gaincontrol
GCA
Gain-controlledamplifier
GDP
Grossdomesticproduct
GIOVE
Galileoin-orbitvalidationelement
GIS
Geographicinformationsystem
GLONASS
Russianglobalnavigationsatellitesystem
gm
Transconductance
Gm
Effectivetransconductance
Gmax
Maximumgain
Gmin
Minimumgain
gmRF
Radiofrequencytransconductance
GMT
Greenwichmeantime
GND
Ground
GNSS
Globalnavigationsatellitesystem
GOC
Galileooperatingcompany
GPS
Globalpositioningsystem(U.S.GNSS)
GSM
Globalsystemformobilecommunications
GSS
GalileoSensorStation
Gv
Voltagegain
HA
Highaccuracy(GLONASS)
HBM
Humanbodymodel
HBT
Heterojunctionbipolartransistor
HDD
Harddiskdrive
I/O
Input/output
Ib
Basecurrent
Ic
Collectorcurrent
IC
Integratedcircuit
IDE
Integrateddriveelectronics
IDQ
Biascurrentofthedifferentialamplifier
Ie
Emittercurrent
IF
Intermediatefrequency
IFA
Intermediatefrequencyamplifier
IIP3
Inputthird-orderintermodulationproduct
IP3
Third-orderintermodulationproduct
ListofAbbreviationsandAcronyms xi
IRF
Radiofrequencycurrent
J/S
Jammer-to-signalpowerratio
j/s
Jammer-to-signalpowerratio(expressedasaratio)
JCAB
Japan’sministryofland,infrastructureandtransport
JPO
Jointprogrammeoffice
JTAG
JointTestActionGroup(IEEE1149.1standard)
JU
Jointundertaking
KPD
PFDgain
KVCO
Gainofthevoltage-controlledoscillator
L
Transistorlength
Lb
Baseinductance
LBS
Location-basedservices
LC
Inductorsandcapacitors
LCD
Liquidcrystaldisplay
Le
Emitterinductance
Le
Degenerationemitterinductance
LNA
Low-noiseamplifier
LO
Localoscillator
LORAN
Long-rangeradioaidtonavigation
LPF
Lowpassfilter
LPT
Lineprintterminal
LVDS
Low-voltagedifferentialsignaling
MEO
Mediumearthorbit
MM
Machinemodel
MOS
Metal-oxidesemiconductor
MP3
MPEG-1audiolayer3
MPW
Multiprojectwafer
MSAS
Multifunctionalsatelliteaugmentationsystem
N
PLLdividerdivisionratio
NASA
NationalAeronauticsandSpaceAdministration
NavstarGPS
GPS
NF
Noisefigure
NMOS
n-typechannelmetal-oxidesemiconductor
NUDET
Nucleardetonationdetectionsystem
OEM
Originalequipmentmanufacturer
OIP3
Outputthird-orderintermodulationproduct
xii ListofAbbreviationsandAcronyms
OMEGA
Globalradionavigationsystem
OS
Openservice(Galileo)
OSD
OfficeoftheSecretaryofDefense
P-code
Precisioncode
PAD
Flatsurfaceintheintegratedcircuitusedtomakeelectrical contactsolderingthebondingwire
PC
Personalcomputer
PCB
Printedcircuitboard
Pd
Signaldetectionprobability
PDF
Probabilitydensityfunction
Pfa
Falsealarmprobability
PFD
Phasefrequencydetector
Pin
Inputpower
PLL
Phase-lockedloop
PMOS
p-typechannelmetal-oxidesemiconductor
PN
Phasenoise
PN-junction
Ajunctionformedbycombiningp-typeandn-type semiconductors
PNP
Bipolarjunctiontransistortype
Pout
Outputpower
ppm
Partspermillion
PPP
Public-privatepartnerships
PPS
Precisepositioningservice
PQFP
Plasticquadflatpack
PRNcode
Pseudorandomnoisecode
PRS
Publicregulatedservices(Galileo)
PVT
Position,velocity,andtime
Q
Spreadspectrumprocessinggainadjustmentfactor (dimensionless)
Q
Qualityfactor
q
Electroniccharge
QPSK
Quadraturephase-shiftkeying
QZSS
Quasi-zenithsatellitesystem
rb
Baseresistance
Rbias
Biasresistor
RC
Replacementcode
rc
Collectorresistance
Rc
Chippingrate(chips/s)
ListofAbbreviationsandAcronyms xiii
Rc
Collectorresistor
RC-code
Replacementcode
re
Emitterresistance
Re
Emitterresistor
RF
Radiofrequency
RFIC
Radiofrequencyintegratedcircuit
RL
Loadresistance
RLCnetwork
Networkcomposedofatleastaresistance,inductance,and capacitance
RMS
Rootmeansquare
ROM
Read-onlymemory
Rs
Sourceresistance
S/N
Signal-to-noiseratio(dB)
s/n
Signal-to-noiseratio(expressedasaratio)
S11
Inputportvoltagereflectioncoefficient
S22
Outputportvoltagereflectioncoefficient
SA
Standardaccuracy(GLONASS)
SA
Selectiveavailability(GPS)
SAR
Searchandrescue
SAW
Surfaceacousticwave
SBAS
Satellite-basedaugmentationsystem
SiGe
Silicongermanium
sn
Rootmeansquarenoisepower
SNR
Signal-to-noiseratio(dB)
SoL
Safetyoflife(Galileo)
SOLAS
Safetyoflifeatsea
SPP
Serialportprofile
SPS
Standardpositioningservice(GPS)
SRAM
Staticrandomaccessmemory
SSB
Single-sideband
StarFire
Satellite-basedaugmentationandnavigationsystem
StarFix
DGPSsystem
System621B
Satellitenavigationsystem
T
Integrationtimeforeverycellbeforesignaldetection
T
Temperature
tbd
Tobedefined
TFT
Thin-filmtransistor
xiv ListofAbbreviationsandAcronyms
Timation
Globalradionavigationsystem
TQFP48
48-pinthinquadflatpack
Transit
Satellitenavigationsystem
Tsikada
Satellitenavigationsystem
TTFF
Timetofirstfix
UMTS
Universalmobiletelecommunicationssystem
U.S.
UnitedStates
USB
Universalserialbus
UTC
Coordinateduniversaltime
Vbias
Biasvoltage
VCO
Voltage-controlledoscillator
VDD
Powersupplyvoltage
VGS
Gate-sourcevoltage
VHF
Veryhighfrequency
VIF
Intermediatefrequencyvoltage
Vin
Inputvoltage
VLO
Localoscillatorvoltage
VNA
Vectornetworkanalyzer
vnb
Base-emittershotnoise
vnc
Collectoremittershotnoise
vnm
Noiseofthemixerconvertedtoavoltagesourceattheinput
vnr
Thermalnoiseofparasiticresistances
vns
Noisegeneratedwithinthesource
Vod
Differentialoutputvoltage
VOR
VHFomnidirectionalradiorange
VRF
Radiofrequencyvoltage
VSWR
Voltagestandingwaveratio
Vt
Thresholdvoltage
VT
Thermalvoltage
W
Transistor’swidth
w0
Resonancefrequency
WAAS
Wideareaaugmentationsystem
WAGE
WideareaGPSenhancement
wc
Openloopgainbandwidth(third-orderfilter)
wp
Openloopgainbandwidth(second-orderfilter)
wT
Unitygainfrequency
Zin
Inputimpedance
Chapter
1
Introduction
Of the various applications that satellites have been used for, one of the most promising is that of global positioning. Made possible by Global Navigation Satellite Systems, global positioning enables any usertoknowhisorherexactpositiononEarth.Nowadays,theonly fully functioning system is theAmerican Global Positioning System (GPS).However,theEuropeansystem,knownasGalileo,isexpectedto beoperativein2012. Sinceancienttimes,mankindhastriedtofinditsbearingsbyusing milestonesandstars.Anewerahasbegun,however,thankstosatellite communication.Newdeviceswillbenecessarytotakeadvantageofboth GPSandGalileosystems. 1.1 SatelliteNavigation Navigationisdefinedastheprocessofplanning,reading,andcontrollingthemovementofacraftorvehiclefromoneplacetoanother.The word navigate is derived from the Latin root navis, meaning“ship,” andageremeaning“tomove”or“todirect.”Allnavigationaltechniques involvelocatingthenavigator’spositionbycomparingittoknownlocationsorpatterns. Sinceancienttimes,humanbeingshavebeendevelopingingenious waystonavigate.Polynesiansandmodernnaviesdevelopedtheuseof angularmeasurementsofthestars.Everyoneengagesinsomeformof navigationineverydaylife.Whenweuseoureyes,commonsense,and landmarkstofindourwaywhendrivingtoworkorwalkingtoastore, weareessentiallynavigating.Nevertheless,withthedevelopmentof radios,theneedforanotherclassofnavigationaidscamealong.This newphaseinnavigationcalledformoreaccurateinformationofposition,
1
2 ChapterOne
intendedcourse,and/ortransittimetoadesireddestination.Examples ofthesenavigationalaidsincludeasimpleclocktodeterminevelocity overaknowndistance,anodometertokeeptrackofthedistancetravelled,andmorecomplexnavigationaidsthattransmitelectronicsignals suchasradiobeacons,VHFomnidirectionalradioranges(VORs),longrangeradionavigation(LORAN),andOMEGA.Withartificialsatellites, morepreciseline-of-sightradio-navigationsignalsbecamepossible. Thepositionofanyonewithaproperradio-navigationreceivercan becomputedbymeansofthesignalsfromoneormoreradio-navigation aids.Inadditiontocomputingtheuser’sposition,someradio-navigation aidsprovidevelocitydeterminationandtimedissemination.Theuser’s receiver processes these signals, computes its position, and performs therequiredcomputationalcalculations(e.g.,range,bearing,estimated timeofarrival)sothattheusercanreachadesiredlocation. Radio-navigation aids can be classified as either ground-based or space-based. For the most part, the accuracy of ground-based radio- navigation aids is proportional to their operating frequency. Highly accurate systems generally transmit at relatively short wavelengths and the user must remain within the line of sight, whereas systems broadcastingatlowerfrequencies(longerwavelengths)arenotlimited tolineofsightbutarelessaccurate[Kaplan96],[Parkinson96]. 1.1.1 GPSPredecessors
Intheearly1960s,severalU.S.governmentalorganizations––including the Department of Defense (DOD), the National Aeronautics and SpaceAdministration(NASA),andtheDepartmentofTransportation (DOT)––were interested in developing satellite systems for position determination.Theoptimumsystemwasviewedashavingthefollowing attributes:globalcoverage,continuous/allweatheroperation,theability toservehigh-dynamicplatforms,andhighaccuracy. ThesystemTransitbecameoperationalin1964anditsoperationwas basedonthemeasurementoftheDopplershiftofatoneat400MHzsent bypolarorbitingsatellitesataltitudesofabout600nauticalmiles(ionospheric group delay was corrected by transmitting two frequencies). Transit satellites travelled along well-known paths and broadcasted theirsignalsonawell-knownfrequency. The received frequency will differ slightly from the broadcast frequency because of the movement of the satellite with respect to the receiver.Ifthefrequencyshiftismeasuredoverashorttimeinterval, thereceivercandetermineitslocationononesideortheotherofthe satellite. Many measurements such as these, combined with precise knowledgeofthesatellite’sorbit,canenableareceivertocomputea particularposition.Thisfirstsystemhaditslimitations,asitoffered
Introduction 3
an intermittent service with limited coverage with periods of 35min. to 100min. of unavailability. However, because of its low velocity, its two-dimensionalnaturewassuitableforshipboardnavigationrather thanforhighdynamicuses,asaircrafts.Thetechnologydevelopedfor Transit,whichincludedbothsatellitepredictionalgorithmsandmore than15yearsofspacesystemreliability,exceedingexpectationsmore than two or three times, has proved to be extremely useful for GPS. Limitationsofearlydevelopedspaced-basedsystems(theU.S.Transit andtheRussianTsikadasystem)ledtothedevelopmentofboththeU.S. GlobalPositioningSystem(GPS)andtheRussianGlobalNavigation SatelliteSystem(GLONASS). Overcoming these early systems’ shortcomings required either an enhancementofTransitorthedevelopmentofanothersatellitenavigationsystemwiththedesiredcapabilitiespreviouslymentioned.By 1972,breakthroughsweremadebyinstallinghigh-precisionclocksin satellites.Thesesatellites,knownasTimation,wereusedprincipallyto providehighlyprecisetimeandtimetransferbetweenvariouspoints onEarth.Theyadditionallyprovidednavigationalinformation.Several variantsoftheoriginalTransitsystemwereproposed,amongthemthe inclusionofhighlystablespace-basedatomicclocksinordertoachieve precisetimetransfer.ModificationsweremadetoTimationsatellitesto providearangingcapabilityfortwo-dimensionalpositiondetermination,employingside-tonemodulationforsatellite-to-userranging. LatermodelsoftheTimationsatellitesemployedthefirstatomicfrequencystandards(rubidiumandcesium),whichtypicallyhadafrequency stabilityofseveralpartsper1012(perday)orbetter.Thisfrequencystabilitygreatlyimprovesthepredictionofsatelliteorbits(ephemerides) andalsolengthenstherequiredupdatetimebetweencontrolsegment and satellites.This revolutionary work in space-qualified time standardswasalsoimportantforthedevelopmentofGPS. AtthesametimeastheNavywasconsideringtheTransitenhancements andundertakingtheTimationefforts,theAirForceconceptualizedasatellitepositioningsystemdenotedasSystem621B.By1972,thisprogramme hadalreadydemonstratedtheoperationofanewtypeofsatellite-rangingsignalbasedonpseudorandomnoise(PRN).Thesignalmodulation wasessentiallyarepeatedsignalsequenceoffairlyrandombits(onesor zeros)thatpossessedcertainusefulproperties.Thestart(“phase”)ofthe repeatedsequencecouldbedetectedandusedtodeterminetherangeofa satellite.Thesignalscouldbedetectedevenwhentheirpowerdensitywas lessthan1/100ththatofambientnoiseandallsatellitescouldbroadcast onthesamenominalfrequencybecauseproperlyselectedPRNcodeswere nearlyorthogonal.Theabilitytorejectnoisealsoimpliedapowerfulability toresistmostformsofjammingordeliberateinterference.
4 ChapterOne
Theuseofpseudorandomnoise(PRN)modulationforrangingwith digital signals provided three-dimensional coverage and continuous worldwideservice.TheuseofPRNmodulationwithranging(i.e.,pseudoranging),whichcouldbeconsideredthethirdfoundationoftheGPS system,wasdevelopedthroughArmyresearch. In1969,theOfficeoftheSecretaryofDefense(OSD)establishedthe Defense Navigation Satellite System (DNSS) programme to consolidatetheindependentdevelopmenteffortsofeachmilitarybranchinto a single joint-use system.The OSD also established the Navigation SatelliteExecutiveSteeringGroup,whichwasputinchargeofdeterminingtheviabilityofaDNSSandplanningitsdevelopment.ThisendeavourledtotheformingoftheGPSJointProgrammeOffice(JPO)in 1973,whichsetthedevelopmentofNavstarGPSinmotion.Thiswasnot exclusivelytheconceptofanypriorsystembutratherwasasynthesisof themall.TheJPO’smultibranchapproachavoidedanybasisforfurther bickering because all contending parties were part of the conception process.Fromthatpointon,theJPOactedasamultiserviceenterprise, withofficersfromallbranchesattendingmeetingsthatwerepreviously exclusive.ThesystemisgenerallyreferredtoassimplyGPS. In1973,thefirstphaseoftheprogrammewasapproved.Itincluded foursatellites(onewasarefurbishedtestmodel),launchvehicles,three varietiesofuserequipment,asatellitecontrolfacility,andanextensive testprogramme.Thefirstsatelliteprototypewaslaunchedin1978.By thistime,theinitialcontrolsegmentwasdeployedandworkingandfive typesofuserequipmentwereundergoingpreliminarytesting. Morethanfoursatelliteswerenowrequired.Theminimumnumber ofsatellitesrequiredtodeterminethree-dimensionalpositionisfour. Anylaunchoroperationalfailurewouldhavegravelyimpactedthefirst phaseofGPStesting.Theproblemoftheneedforsparesatelliteswas solved by joining theTransit programme, which was followed by the developmentoftwoadditionalsatellites.ApartfromextendingGPS,this jointendeavouravoidedthepossibilityofhavingtwosystemscompeting againsteachother. Eventhoughtoday’sGPSsystemconceptisthesameastheoneproposedin1973,itssatelliteshaveexpandedtheirfunctionalitytosupport additional capabilities.Although the orbits are slightly modified, the originalequipmentdesignedtoworkwiththeveryfirstfoursatellites wouldstillworktoday[Kaplan96],[Parkinson96]. 1.1.2 Galileo
TheEuropeanUnion(EU)andEuropeanSpaceAgency(ESA)agreed onMarch2002tointroduceanalternativetoGPS,calledtheGalileo positioning system.The system is scheduled to be working in 2012.
Introduction 5
ThefirstexperimentalsatellitewaslaunchedonDecember28,2005. GalileoisexpectedtobecompatiblewiththemodernizedGPSsystem. ThereceiverswillbeabletocombinethesignalsfrombothGalileoand GPSsatellitestoincreaseaccuracysignificantly. In1999,theEuropeanCommissionpresenteditsplansforaEuropean satellitenavigationsystemdefinedbyajointteamofengineersfrom Germany, France, Italy, and the United Kingdom. Contrary to its American and Russian counterparts, Galileo is designed specifically forcivilianandcommercialpurposes.TheUnitedStatesreservesthe righttolimitthesignalstrengthoraccuracyoftheGPSsystemsorto shutdownpublicGPSaccesscompletely(althoughithasneverdone thelatter)sothatonlytheU.S.militaryanditsallieswouldbeableto useitintimeofconflict.Until2000,theprecisionofthesignalavailable tonon–U.S.-militaryuserswaslimited,duetoatimingpulsedistortionprocessknownasselectiveavailability.TheEuropeansystemwill besubjecttoshutdownonlyformilitarypurposesunderextremecircumstances(althoughitmaystillbejammedbyanyonewiththeright equipment).Bothcivilandmilitaryuserswillhavecompleteandequal accesstothissystem. TheEuropeanCommissionfacedcertainchallengesinfindingfunding fortheproject’ssubsequentstage,becauseofnationalbudgetconstraints acrossEurope.TheUnitedStatesgovernmentopposedtheproject,arguing that it would jeopardize the ability of the United States to shut downGPSintimesofmilitaryoperationsinthewakeoftheSeptember 11, 2001, attacks. In 2002, as a result of U.S. pressure and economic difficulties,theGalileoprojectwasalmostputonhold.However,afew monthslater,thesituationchangeddramatically.Partiallyinreaction tothepressureoftheU.S.government,EuropeanUnionmemberstates decideditwasimportanttohavetheirownindependentsatellite-based positioningandtiminginfrastructure. TheEuropeanUnionandtheEuropeanSpaceAgencyagreedin2002 tofundtheproject.ThefirststageoftheGalileoprogrammewasagreed uponofficiallyin2003bytheEUandtheESA.Theplanwasforprivatecompaniesandinvestorstoinvestatleasttwo-thirdsofstart-up costs,withtheEUandESAdividingtheremainingcost.Anencrypted higher-bandwidthCommercialServicewithimprovedaccuracywould beavailableatextracost,withthebaseOpenServicefreelyavailable toanyonewithaGalileo-compatiblereceiver. In2007,itwasagreedtoreallocatefundsfromtheEU’sagriculture andadministrationbudgetsandtosoftenthetenderingprocessinorder towoomoreEUcompaniestojointheproject.In2008,EUtransport ministers approved the Galileo Implementation Regulation, which freedupfundingfromtheEU’sagricultureandadministrationbudgets.
6 ChapterOne
Thisallowedtheissuingofcontractstostartconstructionoftheground stationandsatellites. Fromitsconception,afundamentalpartoftheGalileoprogramme was to be a worldwide system that would maximise its benefits by meansofinternationalcooperation.Suchcooperationisforeseentohelp toreinforceindustrialknow-howandtominimisethetechnologicaland politicalrisksinvolved.Thisincludes,quitenaturally,cooperationwith thetwocountriesnowoperatingsatellitenavigationsystems.Europeis alreadyexamininganumberoftechnicalissueswiththeUnitedStates relatedtointeroperabilityandcompatibilitywiththeGPSsystem.The objectiveistoensurethateveryonewillbeabletousebothGPSand Galileo signals with a single receiver. Negotiations with the Russian Federation, which has valuable experience in the development and operationofitsGLONASSsystem,arealsoongoing. InadditiontothetechnicalharmonisationrequiredamongGalileo andexistingsatellitenavigationsystems,internationalcooperationis necessaryinthedevelopmentofground-basedequipmentandultimately topromotewidespreaduseofthistechnology.Suchcooperationalsofalls inlinewiththeobjectivesoftheEuropeanUnionwithrespecttoforeign policy, co-operation with developing countries, employment, and the environment.Severalnon-Europeancountrieshavealreadycontributed totheGalileoprogrammeintermsofsystemdefinition,research,and industrialcooperation.SincetheEuropeanCouncil’sdecisiontolaunch theGalileoprogramme,evenmorecountrieshaveexpressedthewish tobeassociatedwiththeprogrammeinoneformoranother.Indeed, the European Commission sees Galileo as highly relevant to all the countriesoftheworldandremainscommittedtofurthercollaboration withcountriesthatshareitsvisionofahigh-performance,reliable,and secureglobalcivilsatellitenavigationsystem.In2003,Chinajoinedthe Galileoprojectandinvestedheavilyintheprojectoverthefollowing fewyears.In2004,IsraelsignedanagreementwiththeEUtobecome apartnerintheGalileoproject.In2005,theUkraine,India,Morocco, andSaudiArabiasignedanagreementtotakepartintheproject.At thetimeofpublication,themostrecentlyaddedmembertotheproject wasSouthKorea,whichjoinedtheprogrammein2006. In 2007, the 27 member states of the European Union collectively agreedtomoveforwardwiththeproject,withplansforbasesinGermany andItaly[EU-Galileo]. TwoGalileoSystemTestBedsatellites,dedicatedtotakethefirststep oftheIn-OrbitValidationphasetowardsfulldeploymentofGalileo,can befoundunderthenameofGIOVE,whichstandsforGalileoIn-Orbit ValidationElement.Atthetimeofpublication,thefollowingmilestones hadbeenaccomplished:
Introduction 7
■ ■
■
In2005,GIOVE-A,thefirstGIOVEtestsatellite,waslaunched. In 2008, GIOVE-B, with a more advanced payload than GIOVE-A, wassuccessfullylaunched. In2008,theGIOVE-A2satellitewasreadytobelaunched.
1.1.3 SatelliteBasedAugmentationSystem(SBAS)
ASatelliteBasedAugmentationSystem(SBAS)isasystemthatsupportswide-areaorregionalaugmentationbyusingadditionalinformationsentbythesesatellites.Inadditiontothesatellites,suchsystems are also composed of well-known multiple ground stations that take measurementsofoneormoreoftheGlobalNavigationSatelliteSystem (GNSS)satellites,theirsignals,orotherenvironmentalfactorsthatmay influencethesignalreceivedbyusers.SBASinformationmessagesare createdfromthesemeasurementsandsenttooneormoresatellitesto betransmittedtousers. Therefore,SatelliteBasedAugmentationSystemsuseexternalinformationwithintheuser’sreceivertoimprovetheaccuracy,reliability, andavailabilityofthesatellitenavigationsignalofaGNSS.Thereare manysuchsystemsinplacethataregenerallynameddependingonthe waythattheexternalinformationreachesthereceiver.Suchinformationincludesadditionalinformationaboutsourcesoferror(suchasclock drift, ephemeris, or ionospheric delay), direct measurements of how muchthesignalwasoffinthepast,oradditionalvehicleinformation tobeintegratedinthecalculationprocess. ExamplesofaugmentationsystemsofvariousSBASareasfollows. Notethatthelasttwoarecommercialsystems. ■
■
■
■
TheWideAreaAugmentationSystem(WAAS),operatedbytheUnited StatesFederalAviationAdministration(FAA) TheEuropeanGeostationaryNavigationOverlayService(EGNOS), operatedbytheEuropeanSpaceAgency TheWideAreaGPSEnhancement(WAGE),operatedbytheUnited States Department of Defense for use by military and authorized receivers TheMultifunctionalSatelliteAugmentationSystem(MSAS)system, operatedbyJapan’sMinistryofLand,InfrastructureandTransport (JCAB)
■
TheQuasi-ZenithSatelliteSystem(QZSS),proposedbyJapan
■
TheGAGANsystem,proposedbyIndia
8 ChapterOne
■
TheStarFirenavigationsystem,operatedbyJohnDeere
■
TheStarfixDGPSSystem,operatedbyFugro
1.2 PositioningthroughSatellites AGNSScalculatesthelocationoffixedandmovingobjectsanywhere intheworldbymeansofprecisetimingandgeometrictriangulation (seeFigure1-1).GNSSiscomposedofaconstellationofsatellitesthat sendradiosignals. Acombinationofpersonalisedradiosignals,whichareencodedwith the precise time they left the satellite, allows a ground receiver to determineitspositionthroughgeometricaltriangulation(Figure1-1). Satellitesareequippedwithhigh-precisionatomicclocksenablingthem tomeasuretimeaccurately.Receiversholdinformationregardingthe positionofanysatelliteatanygiventime.Thus,aprecisepositioncan becalculatedbytiminghowlongthesignalstaketoreachthereceiver fromthesatellitesinview.Byreadingtheincomingsignal,thereceiver canrecogniseaparticularsatellite,determinethetimetakenbythe
Figure1-1 Satellitetriangulationforpositioning
Introduction 9
signaltoarrive,andthereforecalculatethedistancebetweenitselfand theorbitingsatellite. Agroundreceivershouldtheoreticallybeabletocalculateitsthreedimensionalposition(latitude,longitude,andaltitude)bytriangulating thedatafromthreesatellitessimultaneously.However,afourthsatellite isnecessarytoaddressa“timingoffset”thatoccursbetweentheclock inareceiverandthoseinsatellites.Themoresatellitesthereare,the greatertheaccuracyis.AssatellitesaresynchronisedwithCoordinated UniversalTime(UTC),theyprovideprecisetime. Functioningaroundtheclock,GNSSsatellitesprovideaccuratethreedimensionalpositioningtoanyonewithappropriateradioreceptionand processingequipment.AlthoughthecoverageprovidedbyaGNSSis “global,”itsavailabilityandprecisionvariesaccordingtolocalconditions.Signalstendtobeweakeroverthepolesandinlow-lyingurban areassurroundedbybuildings. 1.2.1 GNSSSystems
Nowadays,thereareonlytwosystemsthatprovideglobalcoverage:the U.S.NavstarGPSandtheRussianGLONASS.AlthoughtheAmerican system is fully operational, the Russian programme is only partially available due to the decaying constellation of its satellites, owing in parttofinancialconstraintsstemmingfromthecollapseoftheSoviet Union. Both systems began as military applications and continue to be funded and operated by their respective departments of defence. Nevertheless,bothsystemsweremadeavailabletothecivilpopulation, althoughtheyremainundertotalmilitarycontrolandarelessprecise thantheoriginalsystems.TheEuropeanGalileoissettobecomethe thirdGNSSprovider,asitisplannedtobeoperationalin2012.Galileo willoffertotalinteroperabilitywithGPSandGLONASS.Thespectrum forthethreesystemsisshowninFigure1-2. ThecurrentGPSsystemisbasedon24satellitescirclingtheearth every12hours,locatedinsixorbitalplanesataheightof20200km(see Figure 1-3). Each satellite sends UTC and navigation data using the E5B
E5A L5 GPS/GALILEO 1164
GALILEO 1188
L2
L2
E6
GPS
GLONASS
GALILEO
1215 1216
1240
E1 L1
L2
GPS/GALILEO
GLONASS
1563
1587
1591
1256
1610 MHz
Figure1-2 GNSSspectrum,GPS,Galileo,andGLONASS
1260
1300 MHz
10 Chapter One
Figure1-3 Satelliteconstellation
spread spectrum code-division multiple access (CDMA) technique. A receivercancalculateitsownpositionandspeedbycorrelatingthesignal delaysfromanyfoursatellitesandcombiningtheresultwithorbit-correctiondatasentbythesatellites.Currently,twoservicesareprovided byGPS:aprecisepositioningservice(P-code),whichismainlyrestricted tomilitaryuse;andastandardpositioningservice(C/A-code),whichis lessprecisethantheP-codebutavailabletothepublic.All24satellites transmitsignalL1,whichcarriestheC/A-codeandtheP-code,andsignal L2,whichcarriestheP-code.ThecharacteristicsoftheL1andL2signals areshowninTable1-1.Interferencebetweensignalsofdifferentsatellites TABLE1-1 GPSsignalcharacteristics
Signal
Modulation
Central frequency
L1
QPSK
1575.42MHz
L2
BPSKorQPSK
1227.6MHz
Bandwidth ~20MHz(C/ACode2MHz+P-Code 20MHz) ~20MHz(P-Code20MHzorP-Code+C/A Code)
Introduction 11 TABLE1-2 GLONASSsignalcharacteristics
Signal
Modulation
Frequency
L1 L2
BPSK BPSK
1602MHz+n0.5625MHz 1246MHz+n0.4375MHz
isavoidedbyusingpseudorandomsignalswithlowcross-correlationfor codedivisionmultipleaccess(CDMA)modulation[ARINC06]. TheGLONASSsystem,liketheGPS,consistsof24satellitesplacedin threeorbitalplanesat19100km.EachsatelliteorbitstheEarthapproximatelyevery11hoursand15minutes.Twoservicesareoffered:standard accuracy(SA),designedtobeusedbyciviliansworldwide;andhighaccuracy(HA),usedonlybyauthorisationoftheRussianMinistryofDefence. BothsignalssentbyGLONASS,thecharacteristicsofwhicharesummarizedinTable1-2[GLONASS02],havefrequencydivisionmultiple access(FDMA)technologyintheL-bandforbothSAL1andHAL2. Similarly, the Galileo system will consist of 30 satellites (27 operational,3inreserve),positionedinthreecircularMediumEarthOrbit (MEO)planesat23616kmabovetheEarthandinclinedat56°tothe equatorforplanetcoverage.AsintheGPSsystem,areceiverwillbe able to calculate its own position and speed by correlating the signal delays from any four Galileo satellites and combine the result with orbitcorrectiondatasentbysatellites.Fourserviceswillbeprovidedby Galileo:OpenService(OS)(availabletoeveryone);SafetyofLife(SoL), Commercial(CS)andPublicRegulated(PRS).Alltheseserviceswillbe providedbyacomplexsignalstructure,whichincludesasmanyas10 signalcomponents.TheE1andE5A-BsignalsaredesignatedforOpen Service.TheircharacteristicsaresummarisedinTable1-3[Guenter02]. The GNSS architecture typically consists of three subsystems: a satelliteconstellation(spacesegment),agroundsegment(controland monitoringgroundstations),andend-usermobilereceivers.Thesesubsystemscanbeenhancedthroughspace-orground-basedaugmentation [HPAN1272]. 1.2.2 CommercialApplications
Overthelastfewyears,theUnitedStatesandtheEuropeanUnionhave beeninaracetolaunchnewversionsofGNSS,GPS,andGalileo.Forthe UnitedStates,itwillbeitssecondgenerationofGPS,asU.S.Commerce DepartmentsecretaryannouncedlastJanuary,“thesecondgeneration TABLE1-3 Galileosignalcharacteristics
Signal
Modulation
Centralfrequency
Bandwidth
E1 E5A-B
BOC(1,1) Alt-BOC(15,10)
1575.42MHz 1191.795MHz
~24MHz ~51MHz
12 Chapter One
hasbeenbornwithacommercialfocusasithasasecondchannelfor civilianuse.”Thismeansanincreaseinaccuracyandreliability.Some companies such as General Motors, IBM, Lucent Technologies, and TrimbleNavigationhavealreadyshowninterest.Ontheotherhand, theEU,aswellasitspartnerssuchasChinaandIndia,amongothers,is involvedinthelaunchingofGalileo.InDecember2005,thefirstGalileo satellite,Giove-A,wasputintoorbitfromtheBaikonurCosmodrome inKazakhstan.Atthesametime,anotherimportantachievementwas made when ESA, Europe, and their partners signed an agreement, pledging€950milliontocarryoutthesecondphaseofthesystem.This phaseconsistsofthevalidationoftheproject,theadditionoffoursatellites,andtheestablishmentoftheGalileogroundnetwork.Thethird phase,whichwillseetherestoftheGalileosatellitesputintoorbit,is expectedtocostaround€3.6billion. Tounderstandtheinterestbehindthosemillionaireinvestments,we needtotakeaharderlookatthepossibilitiesofferedbyGNSS. 1.2.2.1GNSSApplications Apartfrommilitaryapplications,GNSSoffers
amultitudeofcommercialopportunities.Thegrowthofthetransport sector,theskyrocketingevolutionoftelecommunications,andthedevelopmentofservicesrequiringprecisepositioningcapabilities–suchas rescueservices–reinforcethepromiseofGNSSasaninvaluablemultiple-usetechnology(seeFigure1-4). Signaltransmissionsareanintegralcomponentofaviation,shipping, telecommunications,andcomputernetworks,tonamejustafewapplicationsinwhichtheyareused.Positioningplaysanimportantrolein thesefieldsduetoitsabilitytoenhanceeconomicefficiency.Forexample,inaviation,savingsmaybeobtainedthroughmoredirectflights (attainedthroughimprovedtrafficmanagement),moreefficientground control,improveduseofairspacecapacity,andfewerflightdelays.GPS isalreadyanimportanttoolforin-flightsafety,assistinginsuchaspects asenroutenavigation,airportapproach,landing,andgroundguidance. ItisestimatedthatGalileo’seconomicbenefitstoEuropeanaviation andshippingsectorswillreach€15billionin2020[EU-Galileo]. ManyindustrieswillbenefitfromadvantagesofferedbyGNSS,such asdefence,aeronautics,andmining.Similareffectsonthemassmarket, motorvehicles,andsurveyingwillbeexplainedindetailinthefollowingsection.
1.2.2.1.1MassMarket PeoplearestartingtodiscovertherealmofrecreationalpossibilitiesofferedbyGNSS.Expertspredictthatmorethan 40 million potential users in Europe will use GNSS for recreational purposessuchassportfishing,seanavigation,andhiking.Aswithany massmarket,demandelasticityisakeyfactor,asisprice.Nowadaysa
Introduction 13
Figure1-4 ApplicationsforGNSS
basicreceivercostsaround€100,yetconsumerswillsoondemandretail pricesoflessthanhalfthatcost.GNSSmanufacturers,therefore,have nochoicebuttodecreasereceivercostandsize. Ontheotherhand,mandatoryservicessuchastheEuropeanE112 andAmericanE911willforcetelephoneproviderstopinpointthelocationoftheirusersfromanycalldowntoa100mradius.Thus,mobile phoneswillhavetoincludeaGNSSreceiver.Takingintoaccountthe 860millionusersofmobiletelephonesinSeptember2002andtheprediction of over 2 billion users by 2020, sales for GNSS mobile phone receiversalonewillbehuge.TheU.S.marketiscurrentlygearingup forthischangethankstocompaniessuchasQualcommorMotorola, whichareofferingGPS-equippedmobilephones. GNSSwillalsoprovetobeaninvaluablemedicalandsocialtoolwhen itcomestolocatingAlzheimer’spatientsandtheblind,amongothers. Moreover,GNSSalreadyplaysanimportantroleinemergencyservices suchassearchandrescue,disasterreliefandenvironmentalmonitoring. CurrentemergencybeaconsoperatewithintheCospas-Sarsatsatellite system.However,withnoreal-timeserviceguaranteesandinaccurate estimates(providedinkilometres),thereisroomforimprovement.
14 Chapter One 1.2.2.1.2 Motor Vehicles The motor vehicle market is continuously expanding.Itisestimatedthatmorethan670millioncars,33million busesandtrucks,andmorethan200millionmotorbikesandlightvehicleswillbeonthestreetsby2010.Moreover,by2020atleast450millionvehicleswillbefittedwithGNSS.Thankstotheirlowcost,GNSS deviceswillbecomestandardfeatureseveninmid-to-low-pricedcars. Furthermore,mostoftheinstalleddeviceswillbedualsystemsthatwork withGPSandGalileosimultaneously.Thiswillincreasereceiveraccuracyandintroducenewfeatures,includingcollisionprevention,emergencyservicenotificationofairbagactivation,orthelocationofstolen vehicles.Thismarketisexpectedtobeworth€25billionby2016. Ontheotherhand,accordingtoDGTREN,thesocialandeconomic costs of road accidents and fatalities amount to 1.5 to 2.5 percent of the European Gross Domestic Product (GDP). Road congestion adds additionalcostsequivalentto2percentofEuropeanGDP.Theuseof high-precisionGNSSdevicescouldlowerthesesocialcostsbyincreasing roadsafety,reducingtraveltime,andminimisingroadcongestion.More efficientuseoffuelsmayalsohavepositiveeffectsontheenvironment. Additionalroadapplicationspresentlygainingattentionincludein-car navigation,fleetmanagementoftaxis,anddriverassistance. 1.2.2.1.3Surveying Ahugeincreaseinsurveying-basedapplicationsis expected,namelyinthetruckingandshippingindustries,especiallyif thepriceforsurveyingsystemsdrops.Thiscanbeachievedbyreducing thecostofsystemelectronics.
Net (positioning only) Revenues (Billion €)
1.2.2.2SalesEstimates Salesestimatesforupcomingyearshavebeenthoroughlystudiedbymarketsurveyconsultantsin[DGTREN03].Figure1-5 showstheexpectedprofitsgeneratedbyGNSShardwareoverthenext fewyears,andFigure1-6showsannualearningsinthenavigationand
25
Cen & S America
20
Middle East India
15
Central Asia Africa
10
Russia & Non Acc Pacific Rim
5
Europe 0 2000
N America 2010
Figure1-5 GNSShardwareprofits[DGTREN03]
2020
Introduction 15
Gross Revenues (Billion €)
Cen & S America Middle East
150 140
India
120
Central Asia
100 80
Africa
60 40 20 0 2000
Russia & Non Acc Pacific Rim Europe 2005
2010
2015
2020
N America
Figure1-6 Navigationandlocationsystemmarketprofits[DGTREN03]
locationsystemmarket,includinghardware.Thegrowthinthenextdecade ofGNSS-relatedmarketscanbeseen.Itpresentsagreatopportunityfor thoseabletooffertechnologicalsolutionstomarketneeds. Figure 1-7 shows which industries made up the GNSS business marketin2001andthemarketforecastfor2015.Theconsumerand motor vehicle markets will see the highest growth.The former went frombeingalmostnonexistenttoverysignificant.Locationandsurveyingmarketswillexperiencemoresteadygrowththanthefirsttwo. GNSSsystemswillundoubtedlyplayanimportantroleintheworld economy, specifically in regard to services offered and products sold (seeFigure1-8),intensifyingtheinterestofEuropeanditspartnersin havingtheirownsystem. 1.2.3 SystemLimitationsandVulnerabilities
Despitemilitaryandcommercialadvantages,GNSShasitslimitations. Therearethreefrequentlydocumentedweaknesses.First,positioning
Breakdown of turnover 2001
Survey
Breakdown of turnover 2015
Personal mobility Mass market vehicles Commercial vehicles Aviation Rail Maritime Emergency services Survey Others Figure1-7 MarketshareforGNSSapplications[DGTREN03]
16 Chapter One
Gross Revenues (Billion €)
300 250 200 150 100 50 0 2000
2005
2010 Services revenues
2015
2020
Product revenues
Figure1-8 MarketshareforGNSSapplications[DGTREN03]
signalstendtobelesspreciseinurbanenvironmentsorunderfoliage,in areaswherethenumberofsatellitesinsightarelow(typicallyatupper andlowerlatitudesaroundthepoles)andundercertainweatherconditionssuchasthickclouds.TransmissionstrengthalsoaffectsGNSS precision.Amorepowerfulandlessdistortedsignalcouldincreaseprecisionsignificantly.Toaddressthis,groundorspace-basedaugmentationsuchasadditionalgroundstationscanbeusedtoimproveprecision inlocalisedareas. Inaddition,GNSSservicesmaysufferfromintermittentservicecoverage.Giventhelimitedlifespanofthespacecomponent,thesystemneeds tobereplacedand/orreconfiguredperiodically.Forexample,duringcertainupgradingoperations,receiversrelyingoninformationfromground stationsorsatellitesundermaintenancemaybeaffected.Evenifservice sufferssetbacksofonlyacoupleofsecondsorminutes,theimpactmay besignificantformanyapplications,suchasairtrafficcontrol. Finally, as a vital component for a growing number of commercial and military applications, global navigation and positioning systems may be vulnerable to hostile parties. For example, a ground station maybephysicallyattackedortakenover,resultinginanynumberof consequences to service, or parts of the system can be electronically jammed.Inthedistantfuture,thesethreatsmayalsoaffectthespace sector,resultinginpotentiallysevereconsequences. Thegreaterthedependenceonthesystemis,themoreseriousthe economicconsequencesofsystemfailureorshutdowncouldbe.Inaddition,anysystemfailurecouldprovetohavedirectconsequencesonsectors(suchasaviation)requiringcontinualandprecisesignals[ISS02], [EU-Galileo].
Introduction 17
1.2.4 DualReceivers,OvercomingLimitations
Toprovideenhancedservices,receiverswillhavetobeabletoobtain specificinformationthroughsignalssentbysatellitesofbothGPSand Galileosystems. To meet this need, highly integrated low-cost GPS/Galileo receiverswillberequired.Theinteroperabilityofbothsystemswilloffera numberofveryimportantadvantages.Moreover,toensurelowprice andreliability,developerswilldesignreceiverswiththelowestpossible numberofexternalcomponents,lowpowerconsumption,andsmaller size,anduselow-costtechnologytofabricatethedevices. 1.2.4.1WhyaGPS/GalileoReceiver? AsthemajorityofsatellitenavigationapplicationsarecurrentlybasedonGPS,greattechnologicaleffort isbeingspenttointegratesatellite-derivedinformationwithanumber ofothertechniquesinordertoobtainbetterpositioningprecisionwith improvedreliability. Thisscenariowillsignificantlychangeinthenearfuturesincethe GNSSinfrastructurewilldoubleinsizewiththeintroductionofGalileo. Theavailabilityoftwoormoreconstellations,morethandoublingthe totalnumberofavailablesatellitesinthesky,willenhanceservicequality,increasingthenumberofpotentialusersandapplications. Galileo-specificcharacteristicswillincludesignificantenhancements. First,forurbanareasorindoorapplications,thedesignofGalileosignals will improve service availability by broadcasting dataless rangingchannels,inadditiontotheclassicalpseudorandomrangingcodes. Second, the high-end professional market will also benefit from the characteristicsofGalileosignals,whichwillleadtocentimetre-sensitive accuracyoverlargeregions[EU-Galileo]. AcomparisonbetweenGalileoandthecurrentGPSsystemishelpful inprovidingabetterunderstandingoftheneedsoftheEuropeanGNSS system.AccordingtotheDirectorate-GeneralforEnergyandTransport withintheEuropeanCommission(EC),itiscrucialforEuropetohave anoptionindependentofthecurrentU.S.-GPSmonopoly,whichisless advanced,lessefficient,andlessreliable.AsstatedbytheCommission, thespecificdrawbacksofGPSareidentifiedas: ■
■
Mediocreandvaryingpositionaccuracy Dependingonthetime and place, GPS accuracy is sometimes given within“several dozen metres.”FromaEuropeanperspective,thisinaccuracyisblatantly insufficient, particularly within the transportation sector.With its betterprecision,Galileoissettofillthisgap. Questionable geographic reliability In northern regions that arefrequentlyusedasaviationroutes,GPSprovideslimitedcoverage. This also affects the coverage accuracy in northern Europe, which
18 Chapter One
includesseveralEUmemberstates.Inaddition,Galileowouldboost overallurbancoveragefromthecurrentrateof50percent(provided byGPSalone)to95percent. ■
Questionable signal reliability With GNSS services playing a significant role in society, there is concern about the possibility of service shutdown. If the GPS system became dysfunctional or was turnedoff(accidentallyornot),ithasbeenconservativelyestimated thatthecosttoEuropeaneconomieswouldbebetween€130and€500 millionperday.
1.2.4.2 Receiver Improvements A GPS/Galileo receiver offers a range ofnewservicesnotcurrentlyavailable.Theinteroperabilitybetween GPS and Galileo will present new possibilities beyond the realm of imagination. Including Galileo technology in the receiver would not onlyimprovetheaccuracydowntothecentimetreandmaintaincurrent services,itwouldalsoimprovethefollowing: ■
■
■
■
■
Dataintegrity Thisopensabroadrangeofapplicationsfordifferentproducts,especiallyforthosewheredataintegrityiscritical,such asuserauthentication.Otherexamplesinclude,butarenotlimitedto, securityapplications,thesurveillanceandtransportingofdangerous orsensitivegoods,andrailwaytransportsecurity. Emergencymanagement Galileotechnologycanhelpavoidsudden accidentsorspeedupemergencyassistancevehicleswhenrequired. Rescue services Galileo technology could locate specific boats, planes,andvehiclesafteranaccident,especiallyinthewakeofnaturaldisasters. Dataconfidentiality Applicationsdependingondataconfidentialitywillbepossiblebecauseofinformationencryption’scompatibility withGalileo. Advancedassistance Galileoiscapableofusinganauto-pilotfeatureforremotecontrolofmotorvehicles.
Galileoisacivilservice,whichensuresconstantsignalavailability, while GPS could be stopped at any time for any military emergency, which would result in economic losses. Galileo improves information accuracyandcontinuityaswellasserviceavailability.Itisespecially usefulforlocatingusersinhostileenvironmentssuchasgeographically ruggedorhighlydevelopedurbanlocations. Finally,itisworthwhiletopointoutthattocarryouttheaforementioneddevelopments,itwillbetechnologicallynecessarytointroduce new,small,low-cost,highlyautonomousdualreceivers(GPS/Galileo).
Introduction 19
1.3 State-of-the-ArtGNSSRFFront-EndReceivers Areviewofcurrentstate-of-the-artGNSSradiofrequency(RF)frontendreceiversisrequiredtoestablishthestartingpointinthecreation ofanyelectronicdevice.Notonlyhavescientificpapersbeenpublished onGNSSfront-endreceiversbutanumberofthesedevicesarealsoon themarket.Thus,bothscientificpapersandcommercialreceiverswill beanalysed. 1.3.1 ScientificPapers
AnintegratedGPSfront-endwasfirstmentionedinscientificliteraturein1992[Benton92].Itwasdesignedwithgalliumarsenide(GaAs) technologyandwascapableofa54dBgainat1600mW,withalownoise amplifier(LNA)of2.7dB,asshowninTable1-4. As usual, GaAs technology played an important role in the early stagesofthesedevices.Assoonasbipolarandcomplementarymetaloxidesemiconductor(CMOS)performanceimproved,designsadapted thesetechnologies.Thus,from1997on,allpublisheddesignshavebeen either bipolar, CMOS, or silicon germanium (SiGe).Although CMOS makesupthemajorityofdesigns,twobipolarreferences,[Kucera98] and[Cloutier99],havebeenfoundandonlyoneofthedesignsusesSiGe technology[Sivonen02].Thereisstilladebateaboutwhichtechnology, CMOSorSiGe,isthemostsuitableforRFapplications.AlthoughSiGe performsbetterthanCMOSwhenitcomestoRF,thelatteristhemore affordableofthetwo.Furthermore,thelowestnoisefigure(NF)forthe LNAisachievedwithSiGetechnology[Sivonen02]. Abriefanalysisofthefront-endscanbefoundinTable1-4.Asreflected inthetable,someofthefront-endsmakeuseofanexternalLNAas in[Murphy97]and[Piazza98].AlthoughtheLNAhasahighgain,it also presents high NF throughout the entire system. Other designs such as [Shahani97], [Svelto00], and [Sivonen02] do not integrate a phased-lockloop(PLL),voltage-controlledoscillator(VCO),oranalogue todigitalconverter(ADC)andconsequentlyconsumelesspower.Dueto integrationcomplexity,mostofthemhavebothexternalintermediate frequency(IF)filtersandRFfilters[Sainz05].Finally,thedigitalization formostofthedesignsiscarriedoutbya1bitADC. [Chen05]and[Sahu05],whichemployedCMOS0.18umandCMOS 90nmrespectively,donotmatchthegainandNFperformancefoundin [Shaeffer98]and[Kadoyama04],bothofwhichalsomadeuseofCMOS technologyandarehighlyintegrated.Thesecondoneexhibitslowerpower consumptionandincludesthecorrelatorandprocessorinthesamechip, makingitsuitableformobileapplications.Themaincharacteristicsofthe GPSfront-endscollectedherearesummarizedinTable1-4.
Reference
LNA NF [dB]
chip NF [dB]
Gain [dB]
[Benton92] [Murphy97]
2.7 2
— 6.1
[Shahani97]
3.8
—
Power consumption [mW] Technology
P1dB [dBm]
IIP3 [dBm]
54 107
— –29
— —
1600@8V 81@3V
GaAs Bipolar
Digit.IF Hetero
13
—
—
[email protected]
CMOS0.5µm
Digit.IF
Architecture
External components
ADC
[Kucera98]
2.3
3.5
20
—
—
16.5@3V
Bipolar
—
— Filters,LNA, PLL Filters,VCO, PLL,ADC —
[Piazza98]
1.5
8.1
94.5
–28
—
32@3V
Hetero
2filters,LNA
[Shaeffer98]
2.4
4.1
98
–58
—
112@3V
BiCMOS 1µm CMOS0.5µm
DigitIF
Filters
1bit
[Cloutier99]
3
4
120
—
–26
49@3V
Bipolar
-----
Filters
2bit
[Meng98]
2.4
5.4
82
—
—
79
CMOS0.5µm
Digit.IF
VCO,PLL
1bit
[Svelto00]
—
3.8
40
—
–25.5
[email protected]
—
1.38
2.7
25.8
–27.6
–14.5
[email protected]
[Steyaert02]
1.5
—
15.5
—
–6
—
—
—
—
—
[email protected]
CMOS 0.25µm CMOS 0.18µm CMOS 0.18µm CMOS90nm SiGe0.35µm
Filters,VCO, PLL,ADC Filters,PLL, ADC —
—
[Sivonen02]
CMOS 0.35µm SiGe
—
Filters
1bit
—
—
—
— LowIF
— Filters
— 1bit
[Kadoyama04]
—
4
[Chen05]
—
4.13
1.8 3.2
2 3.7
[Sahu05] [Berenguer06]*
*GPS/Galileofront-end.
110 27.7 38 103
–29.9 — —
–19 — —
[email protected] [email protected] 62@3V
—
— 1bit
1bit
— —
—
20 Chapter One
TABLE1-4 State-of-the-artGPSfront-ends
Introduction 21
ThelatestreportedGPSfront-end[Berenguer06]istheonlydevice that could currently be applied to GPS and Galileo. It encompasses 0.35umSiGetechnology,exhibitsahighvoltagegainof103dB,asinglesidebandmodulation(SSB)noiselevelof3.7dB(whichmakesitsuitable forhigh-sensitivityapplications),apowerconsumptionofonly62mW froma3Vsupply,andaminimalamountofexternalcomponents(which makesitsuitableformobileapplications). 1.3.2 CommercialReceivers
ManysemiconductorcompaniesofferaGPSreceiverchipset.Outofall thereviewedcommercialreceivers,only[ubloxATR0630_35]includes the baseband processor together with the RF front-end; the rest are mostlycomposedoftwointegratedcircuits(ICs):thefront-endandthe processor.Acomparisonofcharacteristicsoffront-endsfromdifferent manufacturersissummarisedinTable1-5. Although most devices described in scientific papers are designed withCMOS,mostcommercialfront-endsusebipolartechnology.Notall TABLE1-5 State-of-the-artGPScommercialICfront-ends
Reference
VCC Power Gain NF [V] [mW] [dB] [dB]
Bit nr.
[AtmelATR0603]
3
38
76
8
1
[FreescaleMRFIC1505]
3
84
105
2
—
[MAXIMMAX2741]
3
90
80
4.7
2/3
[MAXIMMAX2769]
3
54
96
1.4
2/3
[PHILIPSUAA1570HL] 3
165
148
4.5
1
[SiGeSE4120L]
3
30
18
>1.6
—
[SONYCXA1951AQ]
3
90
100
7
—
[STSTB5610]
3.3
122
139
3
1
[ubloxATR0630_35]
3
87
90
[uNAVun8021C]
3
62
~106
20
2
[zarlinkGP2015]
3
173
120
9
2
6.8
1.5
Comments ExternalLNA,single conversion,AGC InternalLNA,double conversion,AGC,no ADC InternalLNA,double conversion,AGC TwointernalLNA, singleconversion,ready forGalileo TwointernalLNA, doubleconversion,AGC InternalLNA,ready forGalileo,multibit serializeddigitalI/Q output InternalLNA,double conversion,noADC Internalandexternal LNA,singleconversion Integratedsolution includingRF,IFfilter, andbaseband InternalLNA,single conversion ExternalLNA,triple conversion,AGC
22 Chapter One
systemsarefullyintegrated,sincetheLNAisexternalinsomecases. Moreover,mainly1bitand2bitADCsareusedfordigitalisation. The [ST STB5610] front-end presents the best gain-to-noise figure ratio with a gain of 139dB and an NF of 3dB, achieved at a rate of consumption as high as 122mW. [Freescale MRFIC1505] also has a highgainof105dBwithalowNFof2dB.Ontheotherhand,[uNAV un8021C]achievesagainof106dBwhileconsuming62mW.However, itpresentsahighNFof20dB.[SiGeSE4120L]and[MAXIMMAX2769] aredualfront-endscurrentlyreadyforGPSandGalileoapplications. 1.3.3 Components
Athoroughanalysisofavailablekeycomponentsofafront-endsuchas theLNA,mixer,andPLLisrequiredpriortothedefinitionofthefrontendblockstobedesigned.Thereviewedscientificpapersanddatasheets failedtoprovideallrequiredinformation. First, characteristics of some LNAs of the previously mentioned front-endsareshowninTable1-6.Mostofthedesignsaresingle-ended designsandworkwithapowersupplybetween1.5Vand3.3V.Themost important characteristics to consider are noise, gain, and power consumption.Thehighestgainisachievedby[Shaeffer97],whichexhibits 20dBwitha3.5dBnoiselevel.Ontheotherhand,thelowestnoiselevel isachievedinthefirstLNAofthetwoincludedin[MAXIMMAX2769], whichexhibits0.83dBfora19dBgain. Table1-7showsthecharacteristicsofthemixersofsomeofthepreviouslymentionedGPSfront-ends.Conversiongain,noise,andpower TABLE1-6 State-of-the-artLNAsforGPS
Reference
Vdd [V]
Current [mA]
Gain [dB]
NF [dB]
P-1dB [dBm]
IIP3 [dBm]
[Shaeffer97]
1.5
20
22
3.5
–24.5
–9.3
[Shahani97]
1.5
8
17
3.8
–21
–6
[Shaeffer98]
2.5
5
16
2.4
–23
–8
18
–16.8
–1.5
[Piazza-Orsati98]
2.5
14
2
[Sanav02]
2.5
4.5
19.5
1.3
—
—
[Maxim01]
3
5.8
15
1.5
–18
–3
–24
[Alvarado07]
3
8
18
3.3
[MAXIMMAX2769]
3
—
19
0.83
[MAXIMMAX2769]
3
—
13
1.14
[PHILIPSUAA1570HL]
3
—
15.5
3.7
[STSTB5610]
3.3
—
19
[FreescaleMRFIC1505]
3
—
15
[ubloxATR0610]
3
3.3
16
1.6
—
— –1.1
—
1
–22
–13
3
—
–20
2
–14
—
–9
–1
Introduction 23 TABLE1-7 State-of-the-artGPSmixers
Vdd [V] —
Current [mA] —
[Sullivan97]
3
13
6.5
8.5
–12
–3
[Wang88]
1
—
6
9.6
–5
10
[PHILIPSUAA1570HL] [zarlinkGP2015]
3 3
— —
17.7 18
–25.4 –16
–16.3 —
[AtmelATR0603]
3
—
~20
6.9
—
[STSTB5610]
3
—
30
5.5
—
[SONYCXA1951AQ]
3
—
16
7
—
—
[FreescaleMRFIC1505]
3
—
14
13
–27
—
Reference [Kilicaslan97]
Gain [dB] 3.35
NF [dB] 9
12 9
P-1dB [dBm] –12
IIP3 [dBm] 2.17
— –19
consumptionarethekeyparametersforthiscomponent.Thehighestgain of30dBandthelowestnoiselevelof5.5dBareobtainedby[STSTB5610], madepossiblebyapreamplifyingstagepriortothemixeritself. Finally,Table1-8includesnotonlyPLLsofGPSfront-ends,butalso PLLs of other applications working at similar frequencies.The main parameters to take into account are the phase noise and the power consumptionofthedevice. 1.3.4 Summary
Keyparametersusefulincomparingthequalityoffront-endsaregain, noiselevel,powerconsumption,integrationratio,andsize.Thus,sensitivity,requiredspace,andbatterylifecanbedetermined.Acomparison ofavailablefront-endsisworthwhiletosetrealisticcompetitiverequirementsforthedesiredfront-end. Mostcommercialfront-endshaveahighgainexceeding100dB.The highgainisachievedatacostofeitherahighnoiselevelorhighpower consumption.Thesamecanbeseenwithdesignspublishedinscientific TABLE1-8 State-of-the-artPLLsforGPS
Reference
Vdd[V]
PN[dBc/Hz]
Current[mA]
[Nhat92] [Craninckx95] [Craninckx98] [Hajimiri99]
5 3 3 3
–88@100kHz –115@200kHz –123@600kHz –125@600kHz
14 8 3.7 16
[Rogers00] [PHILIPSUAA1570HL] [STSTB5610] [AtmelATR0603]
3.3 3 3 3
–96@100kHz –72@10kHz –60@10kHz –100@1kHz
6 — — —
[zarlinkGP2015]
3
–88@100kHz
—
24 Chapter One
papers;highgainisobtainedatacostofpowerornoise.However,the gainislowerthanthatfoundincommercialreceivers. High power consumption means shorter battery life and therefore lessmobility.However,manyapplicationsarenotpowercritical,asin theautomotiveindustry,wherethebatteryofthecarcouldbeused.A highnoiselevelcouldmeanlowerreceiversensitivity,whichisnota drawbackinopenspacessuchashikingpathsfreeoftreesoronthe sea,wherethebatteryofamobiledeviceplaysamoreimportantrole. However,manyapplicationsrequirelongbatterylifeandhighsensitivity,whichessentiallycallsforafront-endwithahighgain,lownoise, andlowpowerconsumption. 1.4 DesignMethodology Foranyresearchprojecttosucceed,clearobjectiveshavetobedefined. Themorespecifictheobjectives,themorelikelytheycanbeachieved. SpecificobjectiveswillbeusedtodevelopaGPS/Galileofront-end,the benefitsofwhichwillbedescribedinthischapter.Toeasereadercomprehension,thecontentsandstructureofthisbookarebrieflyexplained. 1.4.1 Objectives
Themainobjectiveofthisbookistodescribeamethodologyinorderto design,fabricate,andtestahighlyintegrated,low-noise,low-power,and low-costRFfront-endprototypeforbothsatellite-basedglobalnavigationsystems,GPSandGalileo.Asshownearlierinthischapter,this receiverwillbeakeycomponentforaccessingavarietyofnewservices offeredbythesesystems. Thismainobjectivemustbedividedintointermediategoalsthatwill leadtothedesignofthefront-end.Thesehavetobeaccomplishedstep bystep;thatis,oncethefirstgoalhasbeenfulfilled,thesecondonewill bereadytobetackled.Theobjectivestobecarriedoutareasfollows: ■
■
■
AstudyofGPSandGalileostandardsinordertosettherequirements forthereceiver. Specificationofthereceiverasawholeandtheintegratedcircuittobe designed,particularlythefeaturesofthedifferentblocks.Itcoversthe technology,front-end,andreceiverblockarchitecturesandselection ofthenecessaryexternalcomponents,andsoon. Designofthereceiverspanningfromsimulationtopostlayoutresults thatfulfilthepreviouslydefinedspecifications.Itcoversnotonlythe receiverblocks,butalsotheinternallogicandtheelectrostaticdischarge(ESD)ofthedifferentinput/output(I/O)PADs.
Introduction 25
■
■
■
On-wafercharacterisationofthedifferentcircuitsintheIC,including thepassivecomponentsandtheactivecircuits. Designandfabricationoftheprintedcircuitboard(PCB)forthefinal application. MeasurementofthewholeICinordertovalidatetheprototype.
Throughout this book, a dual GPS/Galileo RF front-end will be described as an example. This design hails from CEIT`s COMMIC groupoftheElectronicsandCommunicationsDepartment(www.ceit. es/electrocom/RF/),whichhaspreviousexperienceinresearchingGPS front-endreceivers. 1.4.2 BenefitsoftheReceiver
ThemostpromisingobjectiveoftheproposeddualRFfront-endisits compatibilitywithbothGPSandGalileo.Thus,receiveraccuracywill beimproved,offeringtheuserarangeofnewservicesnotyetavailable. GPS/Galileo will change the way many people do their work. It will fundamentallyalterbusinessasweknowitandprovideopportunities fornewapplicationswehavenotyetimagined. Additional objectives are proposed to improve features and reduce costs compared to those of actual receivers existing on the market. Among the improvements, a high integration of the proposed architecture is intended; that is, it integrates components that previously wereleftout,minimisingthenumberofexternalcomponentsneeded. Componentintegrationandexternalcomponentminimisationoffersthe useranumberofadvantages:cost,sizeandweightreductionforthe receiver,andatthesametimelowerpowerconsumption,improvement offeatures,andreliabilityenhancementduetothedrasticreduction ofthenumberofinterconnectionsandsoldering.Forusers,thismeans longerbatterylifeandhigherreceiverquality. 1.4.3 BookStructure
ThisbookisarrangedaccordingtothelogicalorderinwhichanICshould bedesigned.Itconsistsofsixchaptersbrieflydescribedasfollows. Thischapterservesasanintroductiontoandbrieflytakesalookat thehistoryofGlobalNavigationSatelliteSystems.Itgoesontopresent thedrivingforceofthisbookbyshowingthestrengthandversatility of a dual GPS/Galileo receiver. Moreover, a state-of-the-art GPS RF front-endisalsoincludedandbothcommercialandacademicreceivers areanalysed.Finally,themethodologytobefollowedforthedesignis described,thebenefitsofthereceiverareexpounded,andthestructure ofthisbookisshown.
26 Chapter One
Thesecondchapterdealswiththespecificationsofthereceiver.How itsspecificationshavebeenobtainedisdescribed,beginningwithatechnicalexplanationandstudyofGPSandGalileo.Withtheintroductory tospecifications,thethirdchaptershowsthedesignofalltheICblocks, includingthereceiverchain,PLL,controllogic,andPADs,aswellas the front-end and its component architectures. In addition, the floor planningoftheentireICisshown.Then,thefourthchapterdealswith thecharacterisationofthefabricateddevicesdesignedintheprevious chapter. It illustrates the procedures taken to measure them as well astheentirefront-end.Thefifthchapternamessomefieldsthatwill benefitfromsuchareceiver,andshowsanapplicationmoduleforcars thatincludestheRFfront-enddesignexampledescribedindetailin thisbook.Conclusionstothisbookaresummarisedinthesixthchapter. Finally,thebibliographyreferencedthroughoutthebookisalsolisted.
Chapter
2
ReceiverSpecifications
ThischapterdealswiththespecificationsofthedualGPS/GalileoRF front-end.AsthestartingpointforthedesignoftheRFfront-end,a studyofthetechnicalissuesrelatedtothesignalsoftheGPSandGalileo standardsisshown.Thisisemployedtoobtainthespecificationsofan interoperabledualGPS/GalileoRFfront-end,whichisexplainedinthe secondpartofthischapter. 2.1 GlobalNavigationSatelliteSystems Inthischapter,theGPSandGalileostandardsareexplainedinmore detail.SpecificationsoftheRFfront-endmustbedeterminedinresponse tothesignalstransmittedbythesatellites. 2.1.1 GlobalPositioningSystem(GPS)
The development of the Navstar GPS took nearly 20 years and cost morethan$10billion.Itisthefirstandcurrentlytheonlyfullyoperational Global Navigation Satellite System (GNSS).The GPS project beganin1973andattainedfulloperationalcapability(FOC)in1995, althoughitwasalreadyinuseatthebeginningofthe1980s.Developed bytheU.S.DepartmentofDefense(DoD),GPSisintendedtoserveas primarymeansofradionavigationwellintothetwenty-firstcentury. GPSreplacedless-accuratesystemssuchasLORAN-C,OMEGA,VOR, DME,TACAN,andTransmit. GPS has become much more than a military navigation platform sinceithasbeenopenedtocivilianuse.Manynewcivilapplications have appeared over the last few years in response to the decreasing cost,size,andpowerconsumptionofGPSreceivers.Moreover,receiver capabilitiescontinuetoimproveandsmallmultichannelreceiverswith 27
28 Chapter Two
sophisticated tracking, filtering, and diagnostic features are making evenadvancedapplicationspossible. The civil uses of GPS include, but are not limited to, marine and aviation navigation, precision timekeeping, surveying fleet management(rentalcars,taxis,deliveryvehicles),aircraftapproachassistance, geographic information systems (GIS), wildlife management, natural resource location, disaster management, meteorological studies, and recreation(hikingandboating)[HPAN1272]. 2.1.1.1Architecture AnyGNSSconsistsofthreedifferentparts,namely
thespacesegment,groundsegment,andreceiver.Thespacesegmentis composedofthesatellitesinspace,whereasthegroundsegmentcontrols theoperationofthesystemfromtheEarth.Varyingdegreesofaccuracy andservicescanbeobtaineddependingonthereceiverinuse. TheGPSspacesegmentiscomprisedof24Navstarsatellites(and oneormorein-orbitspares)distributedthroughoutsixorbitalplanes. Ittakes12hoursforthesatellitetoorbittheEarth,duringwhichtime itwillhavetravelled10900nauticalmiles(approximately20200km) orbits,meaningthateachsatellitepassesoverthesamelocationonthe Earthroughlyonceaday.Normally,fivesatellitesarewithinrangeof usersworldwideatanygivenmoment.Duringthelast28years,four different generations of GPS satellites have been developed: Block I, Block IIA, Block IIR (replenishment), and Block IIF (follow-on).The averagelifespanofthefirstthreegenerationsofsatellitesisfrom7to 10years,whilethelastgenerationisexpectedtolast15years. Firstlaunchedin1997,BlockIIRsatellitesmakeupthemajorityofthe currentconstellationofsatellites.BlockIIRsatellitesareequippedwith anauto-navigationcapacity(AUTONAV)thatallowseachspacecraftto maintainfullpositioningaccuracyforatleast180dayswithoutControl Segment support. The latest satellites in this series (Block IIR-M) carry a new military code or M-code.The M-code will be more jamresistantthanthecurrentmilitaryGPScode(alsoknownasP-code).In addition,thesesatelliteswillofferasecondcivilsignalontheL2band. BeyondtheBlockIIR-M,therearealsoplanstoupgradethesystem throughtheintroductionoftheGPSIIFprogramme(itsfirstlaunchis plannedfor2008).TheBlockIIFprogrammewilltransmitathirdcivil signalontheL5band.AfifthgenerationofGPSsatellites,BlockIII,is expectedtodramaticallyenhancetheperformanceofthesystem.Itwill addathirdsignalontheL1andL2bands(forwhichthefirstlaunchis plannedfor2012).Thesesatelliteswillprovideamoreresistant,accurate,andreliablesignalthroughincreasedtransmissionpower. Thegroundsegmentconsistsofdifferentstationsscatteredthroughout the world.A master control station in Colorado Springs controls thespacesegment.Inadditiontooperatingthemastercontrolstation,
ReceiverSpecifications 29
theUnitedStatesoperatesfiveunmannedmonitorstationsandfour groundantennastopickupGPSsatellitesignals.Thedatacollectedby themonitorstationsareusedtocalculatepositioningcorrectionsforthe satellites.Thisprocessensuresthesynchronisationofthesatellitesand theaccuracyofthesignalssenttotheEarth. 2.1.1.2GPSSignalsandServices TherearetwotypesofGPSterminals,
categorisedaccordingtothecodetheycanacquire.Theservicesavailabledependonthecodereceived.Therefore,dependingonthereceiver, theofferedservicesareasfollows:
■
■
Standard Positioning Service (SPS) This service is available freelytothegeneralpublicforcivilianapplications.Positionissetby usingthecoarseacquisition(C/A)signal. PrecisePositioningService(PPS)PPSreceiversareusedexclusivelybyauthorisedgovernmentagencies.Militaryreceiversdonot havetogothroughtheC/AsignaltotracktheP(Y)signal.Then,once military personnel is equipped with PPS receivers, C/A signal can be switched off on the battlefield without fear of repercussions for friendlymilitaryforces[Kaplan96].
2.1.1.3 Currently Transmitted Signals A GPS satellite currently sends
signalsL1andL2withacentralfrequencyof1575.42MHzforL1and 1227.6MHzforL2,asshowninFigs.2-1and2-2.Thereisathirdsignal, definedasL3,sentbysatelliteswithacentralfrequencyof1382.05MHz. This signal will not be covered in this book due to the fact that it is employedbytheNuclearDetonationDetectionSystem(NUDET)and hasnonavigationfinality. Figure2-1showshowL1andL2arebuilt.TheL1signalisaQPSK signalmodulatedinphasebytheC/A-codeandtheinformationofthe navigationmessage,andinquadraturebytheprecisioncode(P-code) andthenavigationmessage.TheL2 signalisaBPSKorQPSKsignal modulatedbyasinglesignal,theC/A-code,theP-code,ortheP-code andtheinformationofthenavigationmessage,dependingontheselectorposition. Figure2-2showsthebasebandspectrumofthesignalsforanormalised transmitted power of 1W while Eq. 2-1 and Eq. 2-2 express the signalsanalytically.
SL( k1) (t) = 2 PC ⋅ D( k) (t) ⋅ x ( k) (t) ⋅ cos(2π f L1 t + θ L1 ) + 2 PY 1 ⋅ D( k) (t) ⋅ y( k) (t) ⋅ cos(2π f L1 t + θ L1 )
SL( k2) (t) = 2 PY 2 ⋅ D( k) (t) ⋅ y( k) (t) ⋅ sin(2π f12 t + θ L 2 )
(2-1) (2-2)
30 Chapter Two
x120
120f0 carrier
BPSK modulator
−6dB
145f0 carrier
BPSK modulator
−3dB Σ
X145
Limiter
90°
BPSK modulator
F clock
P-code generator
X1
/10
X1 F clock /10
L2 1227.6MHz
L1 1575.42MHz
Selector
C/A-code generator 100Hz
/2
X1
50Hz Navigation information
Navigation data generator
50bps
Exclusive OR
Figure2-1 SignalssentbyaGPSsatellite
InEq.2-1andEq.2-2,thesquarerootisthesignalamplitude(sqrt(2Pc)), D(k)(t)isthenavigationmessage,x(k)(t)andy(k)(t)aretheacquisitioncodes (spreadspectrumcodes),andfL1isthecarrierfrequency. ThecoarseacquisitioncodeC/Aisalsoapseudorandomnoise(PRN) codewithaclockfrequencyof1.023MHz.Itisthebasisforthecode- divisionmultipleaccess(CDMA),usedtosendthesignalfromthesatellites to the receivers. Every satellite has a unique C/A-code.These signals are detected and then separated through these codes, which have high-quality cross-correlation properties.This acquisition code constitutesthebasisfortheserviceusedbythecivilianSPS. TheP-codeisa10.23MHzfrequencyPRNcodeItisuniqueforeach satelliteandusedforcodificationpurposes.AsPPSbasesitsserviceon thiscode,itisexclusivelyformilitaryuse. Thisbookfocusesonthecivilianuseofthereceiver.Thus,thefrequencybandconsideredistheoneduetotheC/A-code,plusthenavigationmessage,whichis2.046MHzcentredonthe1575.42MHzfrequency. ThesignallocatedontheL2bandwillnotbeconsideredforthedual
ReceiverSpecifications 31
Spectral power (dBW/Hz)
Spectral power of a BPSK signal (2.046 MHz, 1W) BPSK
−65 −70 −75 −80 −85 −90 −95 −10
−5
0 Frequency (MHz)
5
10
Spectral power (dBW/Hz)
Spectral power of a BPSK signal (10.23 MHz, 1W) −65 −70 −75 −80 −85 −90 −95 −10
−5
0 Frequency (MHz)
5
10
Figure2-2 (a)L1signalspectrum;(b)L2signalspectrum
GPS/GalileoRFfront-enddealtwithinthisbook.Commercialreceivers onlyemploytheL1band.Before1May2000,employingtheC/A-code onL1andwiththeSelectiveAvailabilityswitchedon,the3Daccuracy wasaround25-100m,95percentofthetime.Nowadays,employingthe C/A-codeonL1,andwiththeSAsetto0the3Daccuracy,itisaround 6-11m95percentofthetime.Newcivilsignalswillofferanimproved accuracy,integrityandcontinuityofservice. 2.1.1.4PlannedSignalsfortheFuture TheU.S.DoDisplanningtorenew theGPSsatelliteconstellation.Twenty-ninenewsatellitesarebeing launchedbetween2003and2012.Thesesatelliteswillsendnotonly currentsignalsbutalsoadditionalonesthatwillallowmoreaccurate andreliablepositioning. Fournewsignalsareexpectedtobeused:twoformilitarypurposeson theL1andL2bands,andtwoforciviluseontheL2bandandthenew L5band.Sincethisbookisnotfocusedonmilitaryapplications,only thosesignalsusedbyciviliansarediscussedinthissection.
32 Chapter Two
CL-code generator period = 767.250 CL-code generator period = 10.230 CNAV message 25bps C/A-code generator
511.5Kcps
Chip by chip multiplex 1.023Mcps
511.5Kcps
FEC rate 1/2
1.023Mcps
cos(2πft)
Legacy nav message 50bps All 1’s Figure2-3 L2sentbyGPSsatellites
The L2signalsentbynewsatellitescanbeexpressedanalytically asfollows:
SL( k2) (t) = 2 PY 2 ⋅ D( k) (t) ⋅ y( k) (t) ⋅ cos(2π f L 2 t + θ L 2 ) + 2 PC ⋅ F[ D( k) (t)]⋅ RC (t) ⋅ cos(2π f L 2 t + θ L 2 ) + M
(2-3)
wherethefirsttermrepresentsthesignalbeingcurrentlysentasshown inEq.2-3.Thesecondtermrepresentsthesignalforcivilianuse.The generationofthesignal,a1227.6MHz(fL2)frequencysignalmodulated bytwocodes,isshowninFigure2-3.Navigationmessagesarecodedby ForwardErrorCorrection(FEC)techniques.Thelasttermrepresentsthe newsignalformilitarypurposes,thedetailsofwhichareunknown. ThenewsignalusesC/A-codeoranotherdifferentonefromwhatit isusednow,thereplacementcode(RC),asacquisitioncode.TheC/Ais aPRN-codewithaclockfrequencyof1.023MHz.ComparedtoC/A,the newRC-codeissignificantlylonger. BymeansofthissignalandtheoneontheL1band,acivilianreceiver willbeabletocorrectdelayscausedbytheionosphereandtroposphere, offeringmoreaccuratepositioningthantheydonow. Figure2-4showsthespectrumforthenewsignaloftheL2band.Signal bandwidthis2.046MHz,thesameastheciviliansignaloftheL1band. TheL5signalwillbetransmittedbythenewsatellites(fromBlockIIF) andcanbeexpressedanalyticallyasfollows:
SL( k5) (t) = 2 PG F DL( k2) (t) NH10 (t) g1( k) (t)cos(2π f L5 t + θ L5 ) + 2 PG NH20 (t) g2( k) (t) sen(2π f L5 t + θ L5 )
(2-4)
ReceiverSpecifications 33 Spectral power of a QPSK signal (L2, 1W)
Spectral power (dBW/Hz)
−65 −70 −75 −80 −85
−10
−5
0 5 Frequency (MHz)
10
15
Figure2-4 SpectralpoweroftheL2band’snewsignal
ItisaQPSKsignalphasemodulatedbyg2(t)andNH20(t)codesand inquadraturebyF[DL2(k)(t)],NH10(t),andg1(k)(t)codes.Thecodesg1(t) and g2(t) are PRN codes with a clock frequency of 10.23MHz.Thus, thebandwidthoftheRF-modulatedsignalis20.46MHz.NH10(t)and NH20(t)areNeumann-Hoffcodeswithaclockfrequencyof10.23MHz. Theyincreasethesizeoftheg1(k)(t)from10230chipsto1023000chips andg2(k)(t)from10230chipsto204600chips.Thecarrierfrequency(fL5) is1176.45MHz. Figure 2-5 shows how to obtain the new L5 signal and Figure 2-6 illustratesthespectrumofthesignal. AsinthecaseoftheL2bandsignal,thesignalonthenewL5band canbeusedtogetherwiththeL1bandsignaltoeliminatetheeffectof NH20(t)
sin(2πft)
NH10(t)
cos(2πft)
g2(k)(t)
SV-codes 10.23Mcps 10230 period
Nav data 50bps
g1(k)(t)
FEC
F[D(k)](t)
Figure2-5 SignalL5sentbyGPSsatellites
34 Chapter Two Spectral power of a QPSK signal (L5, 1W) −70
Spectral power (dBW/Hz)
−75 −80 −85 −90 −95 −25
−20
−15
−10
5 −5 0 Frequency (MHz)
10
15
20
Figure2-6 SpectralpowerofthenewsignalontheL5band
thedelayscausedbytheionosphereandtroposphere,thusobtaining moreaccuratepositioning. Moreover, Block III satellites will add a new civilian signal, called L1C,whichwillbetransmittedontheL1carrierfrequencyinaddition totheC/A-codesignal.ThedevelopmentofL1Crepresentsanewstage forGNSS;thesignalisnotonlydesignedforGPStransmission,itwill alsobeinteroperablewithGalileo’sOpenServicesignalcentredonthe samefrequency[Betz06]. 2.1.1.5DescriptionofGPSSignals Table2-1brieflyshowsthecurrent signalsofGPSsatellitesandthesignalsofthenewgeneration,planned tobeinusestartingin2012. TABLE2-1 SignalssentbythenewGPSsatelliteconstellation[ARINC00]
Frequencyband
L1
L2
L5
Channels
ABC
ABC
IQ
Frequency
1575.42MHz
1227.6MHz
1176.45MHz
Modulationtype
A,B→QPSK C→BOC(1,1) Bitrates A→1.023MBs B→10.23MBs C→1.023MBs Minimumreceived A→−131dBm power@elevation10º B→−128dBm C→−127dBm
A,B→BPSKorQPSK QPSK C→BOC(10,5) I,Q→10.23MBs A→1.023MBs B→10.23MBs C→5.115MBs I,Q→−128dBm A→−134dBm B→−130dBm C→tbd
ReceiverSpecifications 35
Inthefuture,civilianuserswillbeofferedthreekindsofreceivers dependingontheirlocationaccuracy[ARINC00]: ■
■
■
Currentreceiverswillstillworkwiththesameaccuracyasnowtens ofmetres,andshouldbesufficientforcertainapplications. Dualreceiversthatreceiveandprocesstwosignals,L1andL2orL1 andL5,willbemoreaccurate,metrelevel.Thisisachievedbycorrectingdelayscausedbytheionosphereandtroposphere,offeringmore accuratepositioning. High-accuracy receivers will make use of signals L1, L2 and, L5. Thesekindsofreceiverswilloffercentimetre-levelaccuracyandwill berequiredtobedifferential.
2.1.2Galileo
In 1998, the European Space Agency (ESA) and the European CommissionjointlydecidedtostudythefeasibilityofatrulyindependentEuropeanGNSS.NamedGalileo,theprogramwasfirstapproved in1999.Besidesbeingindependent,Galileoisexpectedtooffergreater accuracy,integrity,availability,andcontinuityofservicescomparedto presentsystems.Inspiteofthedual-usenatureofanyGNSSsystem, Galileoisintendedforcivilianapplicationonly.Ithasbeendeemeda “civilprogrammeundercivilcontrol.” Beingcivilian-friendlymeansthat,sofar,noneofGalileo’sfundinghas comedirectlyfromdefencebudgets.Withdeploymentcostsestimated between€3.2–3.6billion,fundingisexpectedtocomefrompublic-privatepartnerships(PPP)andfee-forservicechargestobecollectedby theGalileoOperatingCompany(GOC).Totalcosts,including12yearsof operationalcosts,arelikelytoreach€6billion.Withrespecttopartnerships,theEuropeanInvestmentBankandanumberofprivateenterprisesarecollectivelyplanningtopledgeaminimumof€5millionto the project.They may team up with Joint Undertaking (JU), which ispresentlyresponsibleforthedevelopmentandvalidationphase.To avoidconflictsofinterest,privateenterprisesmaynotbecomemembers untilthetenderingprocesshasfinished. 2.1.2.1Architecture LikeanyGNSS,Galileoconsistsofthespacesegment,thegroundsegment,andtheuserreceiver.Thespacesegment willbecomprisedof30satellites(27activeand3spare)intheMedium EarthOrbit(MEO)atanaltitudeof23600km.Thesatelliteswilltravel alongthreecircularorbitsataninclinationof56°,ensuringglobalcoverage.Withasatelliteorbittimeof14hours,theconfigurationofthe constellationwillguaranteeatleastsixin-sightsatellitesatanygiven timeforanylocation,includingthepoles.
36 Chapter Two
The Galileo satellites will have an expected lifespan of 10 years. Individualsatelliteswillbereplacedonaregularbasistoaccountfor eventual malfunctioning, residual life, and accommodation of future payloadtechnology. Thespacesegmentwillbemanagedbytwocontrolcentreslocatedin Europe,supportedby20GalileoSensorStations(GSS).Dataexchanges betweenthecontrolcentresandthesatelliteswillbecarriedoutthrough specificuplinkstations.Atotalof15uplinkstationswillbeinstalled aroundtheworldtofacilitatethistypeofdatatransfer.Astheprincipal componentofthegroundsegment,thecontrolcentreswillberesponsibleforthemanagementofthesatellites,theintegrityofthesignals, andthesynchronisationoftheatomicclocksonboardthesatellites. 2.1.2.2GalileoSignalsandServices Galileosatelliteswilltransmitten
differentsignalslocatedonthefollowingbands:E5aandE5b(1164– 1215MHz),E6(1260–1300MHz),andE1-L1-E2(1559–1592MHz).Six signals will be devoted to civilian (Open Service) and Safety of Life (SoL)services,twoforcommercialusers,andtheremainingtwo(Public Regulated Services, or PRS) for official/regulated personnel. Apart fromthesetimingandnavigationtransmissions,Galileowillprovide informationconcerningtheaccuracyandstatusofitssignals.Known as“integrity messages,” these signals are specifically geared for SoL applications,althoughtheyarelikelytobeofferedtoserviceindustries requiringlegalguarantees(duringthetransportationofvaluablegoods, forexample).TheservicesofferedbyGalileoareasfollows:
■
■
■
The Open Service (OS) will be available to civilian users free of chargeandwillaccuratelyprovidepositioning,speed,andUTCtime. AccordingtotheplansoftheEuropeanCommission,thequalityof theOSwillbebetterthanthatofthepresentandfutureGPScivil services.ItwillbeofferedbytheE5a,E5b,andE1-L1-E2bands. TheCommercialService(CS)willoperateunderafee-for-serviceplan. Assuch,accesstotheCSwillrequireapaymenttotheGOCthrough the service provider in return for the encryption keys required to receive the signals. Compared to the OS, CS signals will be of a higherqualityandwillguaranteeacertainlevelofreliabilityand accuracy.ServicewillbeprovidedbysignalslocatedonE5b,E6,and E1-L1-E2bands. TheSoLservicewillofferthesameaccuracyastheOSbutwitha highlevelofintegrity.Agreaterlevelofintegrityisrequiredforan effectiveandaccurateserviceforcompaniesworkinginthefieldof airandmaritimenavigation.Atsomestage,SoLmaybeencrypted andthereforerequireafeeforaccess.TheSearchandRescue(SAR) service will be a certified service developed in accordance with
ReceiverSpecifications 37
internationalregulations.Itwillprovidereal-timetransmissionsof emergencyrequeststofacilitatethelocationofdistressmessages. SoLwillbeprovidedbythesignalsontheE5a,E5b,andE1-L1-E2 bandsandwillbearestrictedservice. ■
ThePublicRegulatedServices(PRS)signalwillbeforgovernmental useonlyandisdesignedtoguaranteecontinuoussignalaccessinthe eventofthreatsorcrisis.Itwillrequirenoncommercialreceiversthat canstoretheneededdecryptionkeysandwillbeprovidedbysignals ontheE6andL1bands.Anaccess-regulatedservicesuchastheSoL willalsoberequired.
Thegoalofthisbookistoexplainthedesignprocessofareceiverthat willofferbasicservicestotheuser.Thus,signalsontheE5a,E5b,andE1L1-E2bandsthatmakeuptheOpenServicewillbedescribedindetail. 2.1.2.3SignalsontheE5Band FourdifferentsignalsaresentontheE5
bandwithacentralfrequencyof1191.795MHz;E5aandE5bhavetwo componentsinquadratureeachone.ThesignalmodulationisthealternativeBOC,AltBOC(15,10).Thesignalprocessingtechniquesrequired toprocessAltBOCmodulationaremuchmorechallengingthanthose used for traditional BPSK or even for usual BOC modulation.This stemsfromtheextremelylargebandwidthandfromthecomplexinteractionoffourcomponentsofthespreadingcode.Itcanbeassumedthat thefoursignalcomponentsontheE5 bandaremodulatedasasingle widebandsignalgeneratedfollowingAltBOC(15,10)8-PSKmodulation. ThiswidebandsignaliscentredontheE5frequencyof1191.795MHz andhasabandwidthofatleast70MHz.AltBOCmodulationoffersthe advantagethattheE5a(I&Q)andE5b(I&Q)bandscanbeprocessed independently,liketraditionalBPSK(10)signals,ortogether,leadingto tremendousperformanceintermsoftrackingnoiseandmultipathfunctions.CharacteristicsofallfoursignalsaresummarizedinTable2-2.
2.1.2.4SignalsontheE1-L1-E2Band TheE1-L1-E2bandiscomposedof
threechannelssentbythesamecarrier(fL1=1575.42MHz)andmodulatedthroughthe“modifiedhexaphasemodulation.”Inbaseband,channelsBandCwillshowaBOC(1,1)modulation,whilecodedinformation willbesentthroughflexiblemodulationBOC(15,2.5)onchannelA.
TABLE2-2 CharacteristicsofthecomponentsoftheE5signalband
Signalcomponent
Modulation
Data
Centrefrequency
E5aI
BPSK(10)
Yes
1176.45MHz
E5aQ
BPSK(10)
No
1176.45MHz
E5bI
BPSK(10)
Yes
1207.14MHz
E5bQ
BPSK(10)
No
1207.14MHz
38 Chapter Two TABLE2-3 SignalssentbyGalileosatellites
Frequencyband
E1-L1-E2
E5
Channels
ABC
IQ
Frequency
1575.42MHz
1164–1214MHz
Modulationtype
B,C→BOC(1,1) A→flexibleBOC(15,2.5) A→max1.023MBs B,C→2.046MBs A→−125dBm B,C→−128dBm
AltBOC(15,10)
Bitrates Minimumreceived power@elevation10º
I,Q→10.23MBs I,Q→−128dBm
2.1.2.5DescriptionofGalileoSignals Table2-3summarisesthesignals oftheGalileosatellitesthatprovidetheOS.Theservicewillbeoperativestartingin2012. 2.1.3 GPSandGalileoInteroperability
AfteranalysingthesignalsoftheGPSandGalileonavigationsystems, itcanbeseenthattherearetwofrequencybandswherebothsystems simultaneously send the navigation message: GPS L1 with Galileo E1-L1-E2andGPSL5withGalileoE5(seeFigure2-7).AGPS/Galileo multistandard terminal should receive signals from one or both frequencybandsandbeabletoprovidethepositionwithoneorbothsystemsatthesametime. This book aims to show the design process of a RF front-end that receivesthesignalsofthefirstfrequencyband,namelyGPS L1and GalileoE1-L1-E2,sothereceivercanrelaypositiondatawithoneorboth systemsatthesametime.AstheE1-L1-E2signalbandwidth(24MHz) ishigherthantheL1signal(2.046MHz),theformerwillestablishthe bandwidthoftheinputsignalthathastobeprocessed.
1176.45 MHz L5
1227.6 MHz L2
15575.42 MHz L1
1191.795 MHz E5
1278.75 MHz E6
1575.42 MHz E1-L1-E2
Figure2-7 SignalsbandssentbyGalileo[Chatre05]andGPS[Stansell06]
ReceiverSpecifications 39
Oncethesignalstobereceivedbythefront-endareidentified,requirementsforthereceiverhavetobedefined.Specificationsregardingnoise, linearity,andbandwidthmustbestudiedtoobtainareliableandaccuratepositioningthroughGPSand/orGalileo. 2.2 SystemAnalysis This section deals with the establishment of the specifications for a dualRFGPS/GalileoRFfront-end,whichisrequiredforproperdesign and fabrication.The receiver’s noise figure, third-order intermodulation product (IP3), and bandwidth requirements are taken from the GPS and Galileo standards analysed in the previous section.These parameterstypicallydeterminesensitivity,thelowestsignalpowerthat canbereceived;linearity,whichisrelatedtohighestsignalpowerthat canbereceivedandthefrequencybandwidthofthereceiver.Allthese parametersarerelatedtothepositioningaccuracyandintegrationtime throughtheBERasitisshownintheFigure2-8. Themannerinwhichtheseareobtainedisexplainedindetailinthis section, along with the receiver architecture and the receiver blocks: receiverchainandphase-lockedloop(PLL)specifications. 2.2.1 SystemSpecifications
AswithanyotherRFfront-end,theparametersthatcharacterisethe receiverarethenoisefigure,linearity,andfrequencybandwidth,which willbeexplainedinthefollowingsubsections. 2.2.1.1NoiseFigure GNSSsignalsaretransmittedbymediumpower
satellites,withapproximately40dBm.WhentheyreachtheEarth,they are normally received by low-gain, low-power quasi-omnidirectional antennas with a minimum power of approximately –131dBm.Thus, multiple-accessnoisecanbeconsideredsecond-ordernoiseratherthan thermalorwhitenoise.Moreover,[Parkinson96]explainsthatthetransmissionchanneladdsonlyGaussian-distributedwhitenoise. Firstofall,theBPSK-modulatedGPSL1 signalisconsidered.The errorprobabilityforthedemodulationofaBPSKsignalsentthrough achannelthatconsidersGaussiandistributednoisecanbecalculated byEq.2-5.
PE = erfc
2C 2 Eb 2 PsTd = erfc = erfc N0 N 0 fd N0
(2-5)
whereEbistheenergyperbit,Psisthepowerofthereceivedsignal, C is the power of the received signal in 1Hz, and fd is 50bps of the navigationmessage.Thisprovidesavaluableparametertomeasurethe
Ionosphere attenuation
BW
Troposphere attenuation
Attenuation due to the environment
C/N0 input
Positioning accuracy
Urban canyons Atmosphere attenuation
Integration time
Foliage
Satellite position
BER
C/N0 output
Mountains
Antenna gain
NF_blocks
NF front-end C/N0eq
Gain_blocks Front-end gain
ADC degradation
V_offset_ADC
N_bits_ADC
Jammers degradation
Jammer power at the ADC input
Jammer power at the front-end input Front-end gain BW
Q Rc
Figure2-8 RelationshipbetweenvariousparametersofaGNSSreceiver
OIP3 PN
40 Chapter Two
T
ReceiverSpecifications 41
performancequalityofthefront-endwhenitcomestothelowestsignal power it can detect: the carrier-power-density-to-noise ratio (C/N0), whichistypicallygivenindecibels. Thecarrier-to-noiseratio(C/N0)isrelatedtothemaximumbiterror rate (BER) required for a GPS receiver at the output, which is 10–5 [Parkinson96].Eq.2-5demonstratesthatC/N0fdshouldbeabove10to achievethenecessaryBER.Ifthenavigationmessagehasafrequency of50bps,thentheminimumrequiredC/N0attheoutputoftheRFfrontendwillbe27dB/Hz.Ontheotherhand,thermalnoisedensityatthe inputoftheantennaistypically–174dBm/Hzandtheminimumreceived inputpowerinthecaseofGPSis–131dBm[ARINC00].Therefore,C/N0 attheinputoftheRFfront-endresultsin43dB/Hz.Thus,themaximum allowednoisefigurecanbeobtainedfromthedifferencebetweenthe minimumexpectedC/N0attheinputandtheminimumrequiredC/N0 attheoutput,whichcomesoutto16dB. Let’snowmovetotheBOC(1,1)-modulatedE1-L1-E2Galileosignal. Toensurecorrectpositioningfordifferentreceiverdesigns,thedigital partofthereceivermusthaveatleastaC/N0of30dB/Hzattheoutput oftheRFfront-end[Hein02].SuchaC/N0doesnotimplyanerrorin thedemodulation,itonlymeansahigherorloweraccuracypositioning. Figure2-9showshowRMSerrorinmetres,duetocodetrackingerror, increases exponentially for values of C/N0 below 30dB/Hz.The thermalnoisedensityattheinputoftheantennaistypically–174dBm/Hz andtheminimumreceivedsignalpowercanbeestimatedas–128dBm. T=20ms BL=1 Hz RF-Bandwidth=12MHz and Delta=40ns
RMS code tracking error (m)
2.5 2 1.5 1 0.5
25
35 30 Input C/N0 (dB-Hz)
Figure2-9 RMScodetrackingerrorinmetres
40
42 Chapter Two
Therefore,theC/N0attheinputoftheRFfront-endis46dB/Hz.Thus, themaximumallowednoisefigure(NF)forcorrectpositioningcanbe setat16dB.AswascalculatedfortheGPScase,thisisthedifference betweentheminimumC/N0attheinputandtheminimumrequired C/N0attheoutput. As the C/N0 values employed for the calculations have been set to meet minimum requirements for a receiver the obtained NF values arethemaximumonesallowed.However,notonlytheNFbutalsothe integrationtime(T)ofthereceiverandthesignaldetectionprobability determine the quality of the receiver. For a better understanding of therelationamongtheseparameters,anexplanationofhowareceiver acquiresthesignalisfirstrequired. Thesignalacquisitionprocessisasearchprocesswhereitisnecessary torepeattheC/Aofthesatellitefromwhichthesignalisreceivedand thecarrierfrequencyofthemodulatedcode.Thereceivedcarriersignal presentsafrequencyvariationduetotheDopplerEffectasaresultof thespeedofthesatelliteinitsorbitandthespeedofthereceiver. Figure2-10showsthebidimensionalsearchingprocess.ThegeneratedC/A-codephaseandthegeneratedcarrierfrequencyareswung, obtaining cells that are compared with the received signal by a correlation process. Every cell correlation process lasts T seconds.The decisiontomaintainordiscardthesignalistakenbycomparingthe valueobtainedinthecorrelationprocesswithagiventhresholdvalue. Cell
1/2 bit
10 8 6 4 2 1
Search direction
Starting point 3 (expecting Doppler 5 effect) 7 9 11
Doppler effect search sequency Figure2-10 Bidimensionalsearchingprocess
1023 bits
ReceiverSpecifications 43 Pn(z)=Noise PDF
Ps(z)=Noise and signal PDF
Vt
Vt
(a)
(c)
Vt
Vt
(b)
(d)
Figure2-11 (a)Falsealarmprobability.(b)Falsediscardprobability.Althoughthereisa
signal,itisnotdetected.(c)Signaldetectionprobability.(d)Correctdiscardprobability.
Everycomparisonhasitsprobabilitydensityfunction(PDF);asthere isnoisewithorwithoutthesignalineverycell,thedetectionprocess isastatisticalone. Figure 2-11 shows the probability density functions for the receptionoftheGPSL1signal,whenthedecisionistakeninthefirsttry.If theobtainedvalueishigherthanathresholdvalue,thesignalmaybe maintained;otherwise,itwillbediscarded.Thesignaldetectionprobability Pd, and the false alarm probability Pfa, when maintaining the signal is considered in its absence, can be analytically expressed by Eq.2-6andEq.2-7. ∞
Pd = ∫ ps ( z) dz
Pfa = ∫ pn ( z) dz
Vt
∞
Vt
(2-6) (2-7)
where ps(z) is the probability density function in the presence of the signal, pn(z) is the probability density function in the absence of the signal,andVtisagiventhresholdvalue. AsphaseIandquadratureQL1signalsareGaussiandistributed, probability density functions ps(z) and pn(z) can be calculated by Eq.2-8andEq.2-9[Kaplan96].
s z2 s z − 2σ 2 + n z 2 n n I0 Pd = 2 e σn σ n
(2-8)
z2
Pd =
z − 2σ 2 n e σ n2
(2-9)
44 Chapter Two
where: ■
■
s/n is the signal-to-noise ratio estimated before signal detection (10S/N/10). S/Nisthesignal-to-noiseratioestimatedbeforesignaldetectionin decibelsandcanbecalculatedbyC/N0+10logT(dB).
■
Tistheintegrationtimeforeverycellbeforesignaldetection.
■
σnistherootmeanssquare(RMS)noisepower.
ForthresholdvalueVt,definedbyEq.2-10andaPfaof16percent, thesignaldetectionprobability(Pd)canbecalculatedfromEq.2-6and Eq.2-8.ThisresultsinTable2-4,whichshowsPddependingonC/N0 andTforanormalisedunityσn.
Vt = σ n −21nPfa
(2-10)
ThevaluesinTable2-4canonlybeconsideredaguideasittakescommercialreceiversmorethanoneattempttodecidewhethertomaintain orleaveasignalout.Thevaluesofthetablehavebeenshownherefor abetterunderstandingoftherelationamongthenoisefigure,signal detectionprobability,andintegrationtime.Consequently,apropernoise figurecanbeobtainedaccordingtothefeaturesofthereceiver. AsshowninTable2-4,thehigherC/N0is,thehigherthesignaldetectionprobabilitywillbe,ifitexists.Thiswould,inturn,resultinshorter integrationtime,whichresultsinbetterreceiverperformance.Thisis whythisprocesswillrequirealowernoisefigurethanthepreviously defined maximum of 16dB, although it could sufficiently provide for accurateGPSorGalileopositioning.
TABLE2-4 DetectionprobabilityversusC/N0andintegrationtimeT
C/N0(dB/Hz) Pd
T=0.001s
T=0.0025s
T=0.005s
T=0.010s
0.43105
30.00
26.02
23.01
20.00
0.63852
33.01
29.03
26.02
23.01
0.78084
34.77
30.79
27.78
24.77
0.87185
36.02
32.04
29.03
26.02
0.92721
36.99
33.01
30.00
26.99
0.95964
37.78
33.80
30.79
27.78
0.97807
38.45
34.47
31.46
28.45
0.98829
39.03
35.05
32.04
29.03
0.99384
39.54
35.56
32.55
29.54
ReceiverSpecifications 45
AnotherreasonforrequiringalowernoisefigureliesintheincreasinguseofGNSSreceiversinurbanenvironments.Thereceivedsignal power is reduced in places with high buildings and narrow streets, reachingvaluesofC/N0around15dB/Hzinsomecases.Inthiscase,the receiverisunabletodetectthesatellitesignalorprovidesanimprecise position.Moreover,anotherfactortoconsiderinurbanenvironments is the presence of interference signals that the receiver can capture, increasingSNRdegradation. Amaximumnoisefigureof3.5~4dBhasbeendefinedtakingallthese reasonsintoaccount.Thesevalueshavebeentakenfromanexhaustive studyofcommercialGPSreceivers,makingthereceivercompatiblewith anydetectionmethodusedtoday. 2.2.1.2Linearity ReceiverlinearityrequirementsforGPSandGalileo
receiversarenotcriticalwhenitcomestothereceivedsignalbecause the power received is very low and practically constant. Linearity requirementsarethereforeimposedbyreceiverbehaviourtoexternal interferences.Section2.2.2.3showsawiderstudyofthisbehaviour.
2.2.1.3Bandwidth Asmentionedinsection2.1.3,thebandwidthofthe
GalileosignalishigherthanthatoftheGPSsignal.Tobeabletoreceive alltheinformationsent,designersshouldchoosethehighestbandwidth. Nevertheless,lowerbandwidthfilterslowerthanthosesetbythestandard canbeappliedwithoutmajordamagetotheC/N0.Figure2-12showsthe 0 BPSK
Correlation loss (dB)
−0.5
−1 BOC(1,1) −1.5
−2
−2.5
2
4
6
8 10 12 14 Front-end bandwidth (MHz)
Figure2-12 C/N0degradationversusreceiverbandwidth
16
18
46 Chapter Two
BPSK
−60
BOC (1,1) Power spectrum (dBW/Hz)
−70 −80 −90
−100 −110 −120 −15 −12.5 −10 −7.5
−5
−2.5 0 2.5 Frequency (MHz)
5
7.5
10 12.5
15
Figure2-13 PowerspectraldensityofaBOC(1,1)andBPSK-modulatedsignals
correlationlossduetothebandwidthofthefilterusedforsignalreception.Itcanbeseenthatforafilterwithabandwidthhigherthan14MHz, thedegradationofC/N0islessthan0.25dBandlossesincreaseexponentiallyforafilterwithabandwidthlowerthan6MHz.Therefore,a6MHz bandwidthisspecifiedfortheRFfront-endtoavoiddegradationhigher than0.5dBandtobeabletofilterinterferencesinneighbourbands.It improvestheC/N0ratioandsensitivityduetolowernoisebandwidth. Figure2-13showsthatthespecifiedbandwidthcomprisesthetwo mainlobesoftheGalileoBOC(1,1)signalaswellasthemainlobeof theGPSC/A-codewithitstwosidelobes. 2.2.2 ReceiverSpecifications
Oncetherequirementsofthereceiverhavebeenobtained,anumberof importantstepshavetobecarriedoutpriortostartingwiththereceiver design.Firstofall,thegain,theC/N0,andthelinearityofthefront-end havetobesettoensureproperperformanceofthereceiver.Moreover, thereceiverarchitecturehastobechosenandalltheblocksandexternalcomponentshavetobespecifiedtomeetrequirements. 2.2.2.1Gain TherequiredgainoftheRFfront-endisdefinedbythepower
attheinputofthereceiverchainandbytheinputanalogue-to-digital
ReceiverSpecifications 47
convertercharacteristics.Thereceivedinputsignalattheantennahas tobeamplifieduntiltheADCisabletodigitaliseit.Thus,thegaincan bedefinedasthequotientoftheinputandoutputsignalasexpressed inthefollowingequation. G=
σ N (output ) σ N ( input )
(2-11)
whereσN(output) istwicethemaximumoffsetoftheanalogue-to-digital converter estimated to be 50mV [Baghai97] and σN(input) is the RMS valueofthenoiseover50Ω,whichcorrespondsto–106dBmor1.12µV (i.e.,thethresholdnoisepowerat290Kin6MHz).Thesystem’svoltage gaincannowbeobtained.
G=
σ N (output ) 100mV = = 91133 σ N ( input ) 1.12µV
(2-12)
Transformingthegaintodecibels,itresultsin:
σ N (output ) G[dB] = 20 log = 99dB σ N ( input )
(2-13)
The fact that the specified gain of 99dB is the minimum required gainforthedetectionofasignalof–130dBmmustbekeptinmind.If thegainwerehigher,lowerpowersignalscouldbedetected,thereby improving the sensitivity of the receiver. Moreover, there would be a surplusofthespecifiedgainiftheoffsetoftheADCwerehigherthan theestimated50mV.Ontheotherhand,iftheADChadaloweroffset, thesystemgainspecificationcouldalsobedecreased.However,thisis usuallynotacontrastedvalueforthestate-of-the-arttechnologywhen thetimecomesforsystemanalysis. Onceitisdefined,systemgainshouldbesharedamongtheblocksthat composethereceiver.Beforedoingso,twocriticalpointsthatdetermine finalfeaturesofthereceiverhavetobetakenintoaccount.First,lowfrequencyamplifiersaremoreefficientthanhigh-frequencyamplifiers intermsofpowerconsumption.Second,materialinwhichthereceiver isfabricatedhastobeabletoisolateoutputandinputinordertoavoid oscillationproblemscausedbypositivefeedback.Asanexample,asubstratesuchastheSiGeprocessofAMStypicallypresentsisolatelevels at1.6GHzbelow40dB,whileitiscloseto90dBatthe3MHzisolation level.Therefore,splittinggainintodifferentfrequenciesisrequired. 2.2.2.2C/N0DegradationDuetotheADC Eq.2-14definestheC/N0with-
outjamminginthebaseband.Thisparameterisdirectlyrelatedtothe
48 Chapter Two
behaviourofthereceiverundertheprobabilityofdetectingthesignal [Kaplan96].
C / N 0 = Sr + Ga − 10 log( kT0 ) − NF − L
(2-14)
whereSristhesignalpowerattheinputofthesystemindBW,Gaisthe antennagaintothesatelliteindBic,10log(kT0)accountsforthethermal noisedensityindBW/Hz,NFisthenoisefigureofthereceiver,indB andLconsidersthelossesinimplementationplustheADClossindB. Thedegradationintroducedbythedigitalisationofa1bitADCcanbe obtainedfrom[Chang82]andresultsin2.2dB. FromtheC/N0requiredforthesystem,thenoisefigurecanbecalculated by means of the Friis formula or system simulations for a giveninputsignalpower,antennagain,receiverbandwidth,and1bit ADC from Eq. 2-14.With this relationship, every component of the system can be characterised to make the whole system meet noise specifications. 2.2.2.3Interferences Noiseisusuallydefinedasthefloorofthelowest signal power that can be detected. On the other hand, linearity is definedastheceilingofthehighestsignalpowerthesystemadmits beforesaturation.Thespanbetweenthesetwoparametersdefinesthe dynamicrangeofthereceiver.Nevertheless,linearitydefinitionshould beslightlyredefinedinthecaseofGNSSsignalsbecausesignalpower isneverhighenoughtosaturatethesystem. Evenifthereceivedsignalisalow-powernarrowbandsignalinthe L1band,signalsfromclosebands,orevenintermodulationproductsof othersignalsfromotherbands,couldcreateasignalinthesamebandas thetargetsignal.Thisiswhylinearityinthefirstblocksofthesystem isveryimportant.Thosesignalswillaffecttheperformanceofthesignal processing,astheywillnotbefilteredintheRFfront-end.Therefore, thelinearityoftheGPS/Galileoreceiverisredefinedasthelimitofthe highestinterferencepowerthatthereceivercanhandlebeforeitbegins toperformincorrectly. As interferences are unwanted signals, they could be considered noiseandthereforereducethevalueofC/N0withoutdistortion.Inthat case,theequivalentcarrier-to-noisepowerdensityratio(C/N0eq)canbe definedasinEq.2-15,whereC/N0andJ/S(thejammer-to-signalpower ratio)arerelatedtoeachother.
c/ n0 eq =
1 j /s 1 + c/ n0 QRc
(2-15)
ReceiverSpecifications 49
where: ■
c/n0 is the carrier power-to-noise without jamming for a 1Hz band expressedasaratio.
■
j/sisthejammer-to-signalpowerratioexpressedasaratio.
■
RcisthechippingrateoftheGPSPRNcode(chips/sec).
■
Q is the spread spectrum processing gain adjustment factor (dimensionless).
To obtain the maximum allowed J/S for the receiver, the designer mustsettheminimumC/N0foran acceptablereceiver(C/N0min)and thespecifiedC/N0forthereceivertobedesigned(C/N0)whichshould beequalorlowerthanthepreviousone. The difference between these two values will be the interference margin(Minterf),whichisthealloweddegradationintheC/N0dueto interferencesandcanbecalculatedbyEq.2-16.
Mint erf = C / N 0 ter min al − C / N 0 min
(2-16)
Nevertheless,interferenceswillnotonlydegradetheC/N0butalso quantification.Thus,evenifithasahighenoughC/N0,thereceivermay notworkproperlyduetoerroneousdigitalisation.Therefore,depending onthequalityoftheADC,theblockinglevelshouldbehigherthanthe specifiedvalueinEq.2-16. In the case of a 1bitADC, due to the absence of a gain-controlled amplifier(GCA),interferencescouldcausethesignaltocrossthezero levelintheinputoftheconverter.Inthiscase,thecrossingwouldbe generatedbytheunwantedinterferenceratherthanbyacombination ofrandomnoiseandthenavigationsignal.Thiswouldresultinboth erroneousdigitalisationandincorrectlocalisation. ThemaximumalloweddegradationfortheSNRinthe1bitquantifier byinterferenceis14dBMinterf(Eq.2-16).Thisdegradationisobtained when J/S is 32dB, which is achieved by an input power signal of –115dBmattheL1andE1-L1-E2bandfrequencies. 2.2.2.4Architecture Amultitudeofwell-knownmainRFfront-endarchi-
tecturesareinexistence:heterodyne,directconversion,intermediate frequency digitalisation, and direct digitalization. For the combined GPS/Galileo front-end, a low-IF architecture can be selected. This architecture, when compared to Zero-IF, is insensitive to DC-offsets andflickernoise.TheDC-offsetcompensationisasevereproblemfor Zero-IF receivers, as most of the GPS C/A-code signal energy comes
50 Chapter Two
fromDC.Themaindrawbackofthelow-IFarchitectureisitslimited imagerejection.Thisissuecanbeminimisedwhenthefrequencyplan oftheentirereceiveriscarefullydesigned.IfthecombinedGPS/Galileo L1signalisdown-convertedtoalowIFof20.42MHz,ifthecombined GPS/GalileoL1signalisdown-convertedtoalowIFof20.42MHz,the rejectionoftheimagesignalbytheRFSAWfiltercanbeensured.The obtainedimagerejectionratiocanreachmorethan40dB.Bysampling theIFsignalat16.638MHz,theA/Dconverteralsodown-convertsthe incomingsignaltoasecondIFof4.092MHz.Signaldetectionisthenperformeddigitallyonasecondchipthatcontainsallthedigitalprocessing andcontrollingpartsofthereceiver.ThePLLalsoallowsthechoosing ofaLOfrequencythatdown-convertstheincomingRFsignaldirectly toanIFof4.092MHz.Whenthisischosen,theimagethatliesinthe GPS/Galileo L1 band mainly consists of thermal noise. Choosing the gainlevelwithinthevariousblocksofthereceiverisalwaysatrade-off. Ahigh-gainLNAwillhelpreduceNFbyminimisingmixercontribution, butattheexpenseofhigherpowerconsumptioninthisblock.Alow-gain LNAmayimprovelinearityandpowerconsumption,butwouldrequire alow-noisemixer.Suchamixerwouldconsumealotofpower.Inother words,alow-gainLNAcombinedwithalow-noisemixermaynotoffer asignificantadvantageintotalpowerconsumptionoverahigh-gain LNAcombinedwithamixerwithahigherNF.Therefore,arelatively high-gainreceiverconfigurationhasbeenchosen.Moreover,IFdigitalisationrequiresfewexternalcomponentsandisrelativelysimple.Thus, thefront-endwillconsistofpassiveoractiveantenna,externalfilters, theLNA,themixer,thePLL,amplifiers(RFandIF),andtheADC(see Figure2-14). NumerousapplicationscanuseaGPS/Galileoreceiver.Toaddfelxibilitytothereceiver,threedifferentstructures,bothwithandwithout anactiveantennaandtheinternalLNAhavebeenstudied.Figure2-15 showsallthreestructures.Structure(A)makesuseofanactiveantenna, avoidingtheuseoftheLNAofthefront-end.Astheconsumptionofthe LNAisnotrequired,averylow-powerfront-endcanbeemployedwitha separatedvoltagesupplyfortheLNA.The(B)and(C)structuresemploy theLNAanditsantennaselectionsensor,whichsetstheworkingmode oftheLNAdependingontheuseofanactiveorpassiveantenna.The(B) structuremakesuseofanactiveantenna,whichmeanstheLNAissetto workinthelow-gainmodesoasnottosaturatethesystem.Furthermore, highersensitivitycanbeachievedbymeansofthegainoftheexternal antenna.Inthe(C)structure,apassiveantennaisemployedandthe LNAissettothehigh-gainmode,avoidingthepowerconsumptionofthe antennaandresultinginalowpowerconsumptionsystem.
SAW filter
LC filters
I
Active or passive antenna
Q 1bit
RF mixer RF_in
A
Antenna sensor
Dual gain LNA
Data ~4MHz
SIN MAP COS MAP
D
IF Amp. 20.46MHz
RF Amp.
NCO Carrier
LO 95/96
CP&PFD
Correlator
Clock
Pulse swallow divider
16.368MHz
Other Channels Clock
CE_A
Figure2-14 Blockdiagramofthereceiver
f_select Xtal
ReceiverSpecifications 51
Loop filter
CE_D
52 Chapter Two
Active antenna
(A)
LNA
Filter SAW RF amp.
(B)
Mixer
Filter LC
IF amp.
Filter LC
IF amp.
Filter LC
IF amp.
Active antenna
LNA (C)
Filter SAW RF amp.
Mixer
Passive antenna
LNA
Filter SAW RF amp.
Mixer
Figure 2-15 Receiver block diagram: (A) with active antenna and without the LNA;
(B)withactiveantennaandtheLNA;(C)withpassiveantennaandtheLNA
2.2.2.5 Receiver Chain Specifications The specifications of the componentsoftheproposedfront-endareshowninTable2-5.Theyhavebeen obtainedfromtheexhaustivesystemanalysisofcomponentsandsystem simulationspreviouslyexplainedinthischapter.Thesupplyvoltagefor thereceiverhasbeendefinedas3.3V,theoperatingtemperaturerange as–30°C∼+70°C,andthestoragetemperatureas–40°C∼+85°C. From system simulations and analyses, gain, noise, linearity, and powerconsumptionhavebeensettoeverycomponentofthechainto meetrequiredglobalspecifications.Moreover,inputandoutputimpedances have been carefully selected to optimise the system gain and minimisethetotalnoise.DuetothehighgainrequiredfortheIFamplifier,twostageshavebeendefined.Ifanychangeisrequiredduringthe designstage,systemsimulationscanberedonetoresetthespecificationsfortheblocks. Front-endlinearityisnotanissue,sincethereceivedGalileoandGPS signalsarelowpowerandrelativelyconstant.Therefore,thelinearity specificationisdictatedbytherequiredsystem’sresistancetoexternal interferingsignals.Theeffectsoftheinterferencesonthethreedifferent structurespreviouslymentionedhavebeenstudiedforthesespecifications(seeTable2-5).Theyhavebeenobtainedfromsystemsimulations withatwo-toneinput.Inthesesimulations,theminimumpowerthat generatesathird-orderintermodulationproductatthestudiedband
ReceiverSpecifications 53 TABLE2-5 Receiverchainspecifications
Symbol
Parameter
Value
Unit
20
dB
LNA Gmax
Highmodepowergain
Gmin
Lowmodepowergain
8
dB
NFmin
NoiseFigureforGmax
2.5
dB
NFmax
NoiseFigureforGmin
10
dB
OIP3
OutputIP3
8
dBm
VSWRin
Voltagestat.waveratio