730 83 7MB
English Pages 971 Year 2020
TM
Fundamentals of Fluid Mechanics
Fundamentals of Fundamentals of
G.S. Sawhney has served as Professor and Head, Department of Mechanical Engineering, GNIT Greater Noida. Earlier he was at Lord Krishna College of Engineering, Ghaziabad in the same capacity. Prior to joining teaching, he had served for 28 years in the Corps of Engineers and for 10 years in industry. His other books published by I.K. International Pvt. Ltd. are: ? Biomedical Electronics and Instrumentation ? Fluid Machinery Made Easy ? Fundamentals of Computer Aided Manufacturing ? Fundamentals of Biomedical Engineering Made Easy ? Heat and Mass Transfer ? Manufacturing Science (Volume-I, II) ? Materials Science and Engineering ? Mechanical Experiments and Workshop Practice ? Project Management Made Easy
Fluid Mechanics
Written for the second-year engineering students of undergraduate level, this well set out textbook explains the fundamentals of Fluid Mechanics. Written in questionanswer form, the book is precise and easy to understand. The book presents an exhaustive coverage of the theory, definitions, formulae and examples which are well supported by diagrams (wherever necessary) and problems in order to make the underlying principles more comprehensive. In the present third edition, the book has been thoroughly revised and enlarged. Modification to every chapter has been carried out on the basis of suggestions received and new developments in this area. Additional typical problems based on the examination papers of various technical universities have been included with solutions for easy understanding by the students. Objective questions of competitive examinations of GATE, IES and IAS have also been included with solutions and explanations at the end of each chapter.
Third Edition
Fluid Mechanics Third Edition
G.S. Sawhney
G.S. Sawhney
978-93-89795-22-6
Distributed by: 9 789389 795226
TM
Fundamentals of Fluid Mechanics
Fundamentals of
Fluid Mechanics Third Edition
G.S. SAWHNEY B.Tech. (IIT Madras), ME, Ptsc GNIT, Greater Noida AIMT, Greater Noida Formerly, Professor and HoD Lord Krishna College of Engineering Ghaziabad
Fundamentals of Fluid Mechanics, 3/E Authors: G.S. Sawhney Published by I.K. International Pvt. Ltd. 4435, 36/7, Ansari Rd, Daryaganj, New Delhi, Delhi 110002 ISBN: 978-93-90455-20-1 EISBN: 978-93-90455-25-6 ©Copyright 2020 I.K. International Pvt. Ltd., New Delhi-110002. This book may not be duplicated in any way without the express written consent of the publisher, except in the form of brief excerpts or quotations for the purposes of review. The information contained herein is for the personal use of the reader and may not be incorporated in any commercial programs, other books, databases, or any kind of software without written consent of the publisher. Making copies of this book or any portion for any purpose other than your own is a violation of copyright laws. Limits of Liability/disclaimer of Warranty: The author and publisher have used their best efforts in preparing this book. The author make no representation or warranties with respect to the accuracy or completeness of the contents of this book, and specifically disclaim any implied warranties of merchantability or fitness of any particular purpose. There are no warranties which extend beyond the descriptions contained in this paragraph. No warranty may be created or extended by sales representatives or written sales materials. The accuracy and completeness of the information provided herein and the opinions stated herein are not guaranteed or warranted to produce any particulars results, and the advice and strategies contained herein may not be suitable for every individual. Neither Dreamtech Press nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Trademarks: All brand names and product names used in this book are trademarks, registered trademarks, or trade names of their respective holders. Dreamtech Press is not associated with any product or vendor mentioned in this book. Edition: 2020 Printed at: Rekha Printers
PREFACE TO THE THIRD EDITION
In the third edition, the book has been thoroughly revised and enlarged. Additional typical problems based on the examination papers of various technical universities have been included with solutions for easy understanding by the students. Objective questions of competitive examinations of GATE, IES and IAS have been included with solutions and explanations at the end of each chapter. I once again request students and teachers to send constructive suggestions and criticism by emailing at [email protected]
G.S. Sawhney
PREFACE TO THE SECOND EDITION
In the second edition, the book has been thoroughly revised and enlarged. Additional typical problems based on the examination papers of various technical universities have been included with solutions for easy understanding by the students. I thank all the faculty members of Mechanical Department of GNIT, Greater Noida for their assistance in completing the second edition of the book. I once again request students and teachers to send constructive suggestions and criticism by emailing at [email protected] G.S. Sawhney
PREFACE TO THE FIRST EDITION
Fluid Mechanics is an important subject which has been given equal weightage in Mechanical, &LYLO&KHPLFDODQG$HURQDXWLFDOXQGHUJUDGXDWHHQJLQHHULQJFXUULFXOXP,WGHDOVZLWKWKHÀRZ RIÀXLGV7KLVERRNLVGHVLJQHGWRH[SODLQWKHIXQGDPHQWDOVRIÀXLGPHFKDQLFVLQWKHDUHDVRI SURSHUWLHV RI ÀXLGV SUHVVXUH DQG LWV PHDVXUHPHQWV K\GURVWDWLF IRUFHV EXR\DQF\ GLPHQVLRQDO DQDO\VLVK\GUDXOLFVLPLOLWXGHDQGPRGHOVWXGLHVÀXLGNLQHPDWLFVÀXLGG\QDPLFVODPLQDUDQG WXUEXOHQW ÀRZV ERXQGDU\ OD\HU DQDO\VLV ÀRZ WKURXJK SLSHV LGHDO ÀXLG ÀRZ DQG ÀRZ SDVW VXEPHUJHGERGLHV(൵RUWVKDYHEHHQPDGHWRFRYHUWKHV\OODELRIVHYHUDOXQLYHUVLWLHV Based on my teaching experience, I have tried to explain principles and concepts of Fluid Mechanics in simple and clear terms. The endeavour is to present the subject matter in the most comprehensive and useable form. The derivation of fundamental relations has been kept as VLPSOHDVSRVVLEOH'LDJUDPVKDYHEHHQXVHGDEXQGDQWO\WRHOXFLGDWHWKHGL൶FXOWFRQFHSWVZKLFK FDQQRW EH H[SODLQHG H൵HFWLYHO\7KH WKHRU\ LV IXUWKHU VXSSRUWHG ZLWK LOOXVWUDWLRQV DQG VXLWDEO\ worked out examples. The book has an easy-to-read style, as it is written in question-answer IRUPWKDWLVJRLQJWREHQH¿WWKHUHDGHUVLPPHQVHO\ I express my gratitude to K.K Aggarwal, Chairman, and Dr. A.M. Chandra, Director, Lord Krishna College of Engineering, Ghaziabad for their support and encouragement extended to me during the compilation of this book. I am grateful to my doctoral guide, Dr. Prasad, Galgotia Engineering College, Greater Noida for moral support extended to me. Above all, I wish to record my sincere thanks to my wife, Jasbeer Kaur for her patience shown throughout the preparation of the book. I would appreciate constructive suggestions and objective criticism from students and teachers alike with a view to enhance further usefulness of the book. They may mail me their views at [email protected] G.S. Sawhney
CONTENTS
Preface to the Third Edition ............................................................................................................ v Preface to the Second Edition ........................................................................................................ vi Preface to the First Edition ........................................................................................................... vii
)OXLGV'H¿QLWLRQV 3URSHUWLHV 1.1 Introduction 1.2 States of Matter 1.3 Fluids 1.4 Applications of Fluid Mechanics 1.5 Types of Fluids 1.6 Properties of Fluids 1.7 Newton’s Law of Viscosity 1.8 Change of Phase 1.9 Cohesion and Adhesion 1.10 Surface Tension 1.11 Pressure Inside a Droplet 1.12 Capillary Rise or Fall 1.13 Questions from Competitive Examinations
1 2 4 6 13 14 18 43 45 46 49 51 65
3UHVVXUHDQG+HDG 2.1 Introduction 2.2 Hydrostatic Law and Aerostatic Law 2.3 Absolute and Gauge Pressures 2.4 Pressure Measuring Devices 2.5 Manometers 2.6 Questions from Competitive Examinations
79 79 83 85 87 119
x
Contents
+\GURVWDWLF)RUFHV 3.1 Introduction 3.2 Total Pressure and Centre of Pressure 3.3 Pressure on Plane Surface 3.4 Pressure on Inclined Surface 3.5 Centre of Pressure: Vertical and Inclined Surfaces 3.6 Hydrostatic Forces on Plane and Curved Surfaces 3.7 Pressure Diagram 3.8 Stability of Dam 3.9 Gate and Lock Gates 3.10 Questions from Competitive Examinations
133 133 135 136 138 166 192 196 203 221
%XR\DQF\DQG)ORDWDWLRQ 4.1 Introduction 4.2 Buoyancy 4.3 Floatation 4.4 Stability of Floating and Submerged Body 4.5 Metacentre 4.6 Rolling of Floating Body 4.7 Questions from Competitive Examinations
233 233 235 237 240 244 285
)OXLG0DVVHV6XEMHFWHGWR$FFHOHUDWLRQ 5.1 Introduction 5.2 Dynamic Equilibrium 5.3 Translational Acceleration 5.4 Rotational Acceleration 5.5 D’Alembert’s Principle 5.6 Horizontal Acceleration 5.7 Vertical Acceleration 5.8 Acceleration on Inclined Plane 5.9 Radial Acceleration 5.10 Questions from Competitive Examinations
300 300 301 302 302 303 305 307 309 330
'LPHQVLRQDO$QDO\VLV 6.1 Introduction 6.2 Dimensional Analysis 6.3 Fundamental and Secondary Dimensions 6.4 Dimensional Homogeneity
332 332 334 335
Contents
xi
6.5 Methods of Dimensional Analysis 6.6 Dimensionless Numbers 6.7 Questions from Competitive Examinations
337 342 352
6LPLOLWXGHDQG0RGHO$QDO\VLV 7.1 Introduction 7.2 Model and Prototype 7.3 Hydraulic Similitude 7.4 Geometric Similarity 7.5 Kinematic Similarity 7.6 Dynamic Similarity 7.7 Reynolds Model Law 7.8 Froude’s Model Law 7.9 Euler’s Model Law 7.10 Weber’s Model Law 7.11 Mach’s Model Law 7.12 Questions from Competitive Examinations
358 358 360 361 362 362 366 367 369 370 370 386
)OXLG.LQHPDWLFV 8.1 Introduction 8.2 Methods of Describing Fluid Motion 8.3 Lines of Flow 8.4 Types of Displacements of Fluid Particles 8.5 Types of Fluid Flows 8.6 One-, Two- and Three-Dimensional Flows 8.7 Equation of Continuity 8.8 Rotation and Vorticity 8.9 Circulation 8.10 Stream Function 8.11 Flow Net 8.12 Velocity and Acceleration Vector 8.13 Forced and Free Vortex Flow 8.14 Questions from Competitive Examinations
395 396 398 400 402 404 406 411 414 415 421 425 428 461
)OXLG'\QDPLFV, 9.1 Introduction 9.2 Forces and Energies in Fluid Flow 9.3 Concept of Control Volume
485 486 487
xii
Contents
9.4 9.5 9.6 9.7 9.8 9.10 9.12 9.13 9.14 9.15
Reynolds Transport Theory Navier-Stokes Equations Euler’s Equations Bernoulli’s Equations Pitot Tube +\GUDXOLF&RH¿FLHQWV Vena Contracta 2UL¿FH Mouthpiece Free Liquid Jet Weir and Notch Questions from Competitive Examinations
488 489 490 492 493 497 505 517 520 567
)OXLG'\QDPLFV,, 10.1 Introduction 10.2 Momentum Principle 10.3 Force on Vane 10.4 Moment of Momentum 10.5 Vortex Motion 10.6 Force Exerted on a Bend 10.7 Torque Acting on a Sprinkler 9HQWXULPHWHU)ORZPHWHUDQG2UL¿FH0HWHU 10.9 Rotometer 10.10 Questions from Competitive Examinations
579 579 581 589 591 594 603 615 625
/DPLQDU)ORZ 11.1 Introduction 11.2 Laminar Flow 11.3 Turbulent Flow 11.4 Reynolds Number 11.5 Flow in Horizontal Pipes 11.6 Average Velocity 11.7 Hagen Poiseuille Formula 11.8 Friction Factor 11.9 Flow in Parallel Plates 11.10 Kinetic Energy Correction Factor 11.11 Flow in Inclined Pipe 11.12 Flow in Inclined Plates
636 637 638 638 640 642 644 645 646 659 663 671
Contents
11.13 11.14 11.15 11.16 11.17
xiii
Darcy’s Equation Oil Bearings Dashpot Measurement of Viscosity Questions from Competitive Examinations
673 674 680 682 691
7XUEXOHQW)ORZ 12.1 Introduction 12.2 Turbulent Flow 12.3 Instantaneous Velocity 12.4 Eddy Viscosity 12.5 Turbulence Shear Stress 12.6 Mixing Length Concept 12.7 Similarity Concept 12.8 Velocity Distribution 12.9 Smooth and Rough Boundary 12.10 Average Velocity 12.11 Friction Factor 12.12 Moody’s Diagram 12.13 Hot Wire Anemometer 12.14 Questions from Competitive Examinations
700 701 704 706 707 707 709 712 713 720 724 725 726 740
%RXQGDU\/D\HU$QDO\VLV 13.1 Introduction 13.2 Concept of Boundary Layer 13.3 Laminar Sublayer 13.4 Boundary Layer Thickness 13.5 Von Karman Momentum Equation 13.6 Separation of Boundary Layer 13.7 Questions from Competitive Examinations
746 746 750 751 757 764 795
)ORZ7KURXJK3LSHVDQG&RPSUHVVLELOLW\(൵HFWV 14.1 Introduction 14.2 Major and Minor Energy Losses 14.3 Friction Head Loss 14.4 Friction Factor 14.5 Chenzy’s Formula 14.6 Sudden Enlargement and Head Loss 14.7 Sudden Contraction and Energy Loss
808 809 812 813 815 818 820
xiv
Contents
14.8 14.9 14.10 14.11 14.12 14.13 14.14 14.15 14.16 14.17
Bend and Energy Loss Total Energy and Hydraulic Gradient Line Equivalent Pipe Parallel Pipes Pipe Networking Syphon Power Transmitted by a Flow Water Hammer Time to Empty a Tank Questions from Competitive Examinations
821 822 826 826 841 844 850 852 854 875
,GHDO)OXLG)ORZ 15.1 Introduction 15.2 Ideal Fluid Flow 15.3 Uniform Flow 15.4 Source Flow 15.5 Sink Flow 15.6 Vortex Flow 15.7 Doublet Flow 15.8 Superposition of Flow 15.9 Plotting Streamlines 15.10 Questions from Competitive Examinations
893 893 895 896 899 900 903 903 906 908
)ORZ3DVW6XEPHUJHG%RGLHV 16.1 Introduction 16.2 Submerged Bodies 16.3 Drag and Lift Force 16.4 Friction Pressure and Shear Drag &RH൶FLHQWRI'UDJDQG/LIW 16.6 Stokes’ Law Concerning Skin and Pressure Drag 16.7 Circulation in Free Vortex 0DJQXV(൵HFW 16.9 Karman Vortex Trail 16.10 Aerofoil 16.11 Aeroplane in Equilibrium 16.12 Questions from Competitive Examinations
910 910 911 912 916 918 922 923 926 942
,QGH[
Chapter
1
FLUIDS: DEFINITIONS & PROPERTIES
KEYWORDS AND TOPICS
CONCEPT OF CONTINUUM IDEAL FLUID REAL FLUID VISCOSITY KINEMATIC VISCOSITY NEWTON’S LAW OF VISCOSITY NEWTONIAN FLUIDS NON-NEWTONIAN FLUIDS
COMPRESSIBILITY VAPOUR PRESSURE COHESION ADHESION SURFACE TENSION CAVITATION DROPLET & PRESSURE CAPILLARITY
1.1 INTRODUCTION )OXLGPHFKDQLFVLVWKDWEUDQFKRIVFLHQFHZKLFKGHDOVZLWKWKHEHKDYLRXURIÀXLGVDWUHVWDQG LQPRWLRQ7KHVWXG\RIÀXLGVDWUHVWLVFDOOHGfluid static7KHVWXG\RIÀXLGVLQPRWLRQGXHWR pressure forces is called fluid dynamics7KHVWXG\RIÀXLGVLQPRWLRQZLWKRXWSUHVVXUHIRUFHV is called fluid kinematics. $ VROLG FDQ UHVLVW WHQVLOH FRPSUHVVLYH DQG VKHDU IRUFHV XSWR D FHUWDLQ OLPLW ZKLOH D ÀXLG KDVQRRUQHJOLJLEOHWHQVLOHVWUHQJWK$ÀXLGFDQUHVLVWFRPSUHVVLYHIRUFHVRQO\ZKHQLWLVNHSW LQDYHVVHO$ÀXLGGHIRUPVFRQWLQXRXVO\ZKHQVXEMHFWHGWRDVKHDULQJIRUFH7KHÀXLGWKHUHIRUH FKDQJHVVKDSHRULWÀRZVDVLWR൵HUVOLWWOHUHVLVWDQFHWRVKHDULQJVWUHVVHV7KHUHH[LVWKRZHYHU VKHDULQJVWUHVVHVEHWZHHQWKHDGMDFHQWÀXLGOD\HUVZKLFKWU\WRRSSRVHWKHPRYHPHQWRIRQH OD\HURYHUWKHDQRWKHU7KHPDJQLWXGHRIWKLVVKHDULQJVWUHVVLQDÀXLGGHSHQGVRQWKHUDWHRI GHIRUPDWLRQRIWKHÀXLGHOHPHQWV$VGXULQJUHVWWKHÀXLGKDVQRGHIRUPDWLRQUHVXOWLQJLQQRQ SUHVHQFHRIDQ\VKHDULQJIRUFHZKHQÀXLGLVVWDWLRQDU\ ,Q RUGLQDU\ FRQGLWLRQV D JDV FDQ EH FRPSUHVVHG HDVLO\ ZKLOH D OLTXLG LV GL൶FXOW WR EH compressed. Hence, liquids are regarded as incompressible.
2
Fundamentals of Fluid Mechanics
1.2
STATES OF MATTER
What do you understand by the composition and intermolecular forces in matter? How does intermolecular force vary? Every matter in nature is made up of molecules. Each molecule has positively charged nucleus and negatively charged electrons. The molecule is electrically neutral as negative charge in electrons is equal to the positive charge of its nucleus. When two molecules come close to each other, the distribution of charge in them becomes such that the force of attraction between opposite charges (positive charge of nucleus of one molecule and negative charge of electron of other molecule) becomes greater than the force of repulsion between similar charges (nucleus – nucleus and electron – electron of one and other molecule). This net force of attraction between the molecules is called “intermolecular force”. As the distance between the molecules increases, the net attractive force between them decreases and vice versa. However, at mean distance r0, no net force acts between them. In case distance is decreased below r0, then a repulsive force is generated. 7KHGLDJUDPJLYHQEHORZVKRZVDJUDSKRIGLVWDQFHr EHWZHHQWZRPROHFXOHVDJDLQVW WKH LQWHUPROHFXODU SRWHQWLDO HQHUJ\ U 6WDWH ZLWK SURSHU DUJXPHQW L ZKLFK SRLQWRIWKHJUDSKLQGLFDWHVWKHHTXLOLEULXPVWDWHRIWKHPROHFXOHV"LL :KLFKSDUW of the intermolecular force is attractive?
Intermolecular Potential Energy
+
A
r0 O
B
r E
F
D
The equilibrium state of the molecules is at point D because it is a point of minimum potential energy. In portion DBA of the curve, the potential energy increases as r decreases, i.e., intermolecular force is repulsive. In portion DEF of the curve, U increases as r increases. :KDWDUHWKHGLIIHUHQWVWDWHVRIPDWWHU" 0DWWHU H[LVWV LQ WKUHH VWDWHV QDPHO\ VROLG OLTXLG DQG JDV7KH OLTXLG DQG JDV VWDWHV FDQ EH JURXSHG WRJHWKHU ZKLFK LV FDOOHG ÀXLG VWDWH 6SDFLQJ RI PROHFXOHV r0) is ODUJHLQJDVVPDOOLQOLTXLGDQGH[WUHPHO\VPDOOLQDVROLG+HQFHLQWHUPROHFXODUERQGLQJ IRUFHVDUHYHU\ZHDNLQJDVVX൶FLHQWLQOLTXLGDQGYHU\VWURQJLQDVROLG'XHWRWKHVWURQJ LQWHUPROHFXODU IRUFHV D VROLG LV YHU\ FRPSDFW DQG ULJLG LQ IRUP $ OLTXLG KDV VX൶FLHQW intermolecular cohesive bonding forces to hold it as a continuous mass but without a shape. 7KLV LV WKH UHDVRQ ZK\ D OLTXLG DGMXVWV WR WKH VKDSH RI WKH FRQWDLQHU7KH LQWHUPROHFXODU ERQGLQJ IRUFHV DUH YHU\ ZHDN LQ JDVHV DQG D JDV FDQ ¿OO XS WKH ZKROH RI D FRQWDLQHU DV LW GRHV QRW KDYH DQ\ GH¿QLWH YROXPH )RU D JLYHQ PDVV D VROLG KDV GH¿QLWH YROXPH DQG
(NWKFU&GſPKVKQPU2TQRGTVKGU
3
VKDSH D OLTXLG KDV GH¿QLWH YROXPH ZKLOH D JDV KDV QHLWKHU VKDSH QRU YROXPH 6ROLGV DUH incompressible, liquids are slightly compressible and gases are compressible.
Gas Solid
Vessel
Definite Volume and Shape
Liquid
Definite Volume
No Volume, No Shape
Solid, Liquid & Gas
([SODLQWKHUHVSRQVHVRIVROLGVDQGIOXLGVWRH[WHUQDOIRUFHV )OXLGVGL൵HUIURPVROLGVLQWKHLUUHVSRQVHVWRH[WHUQDODSSOLHGIRUFHV:LWKLQHODVWLFOLPLW deformation occurs in solids on the application of shear force and deformation disappears when intermolecular force between the molecules restores the molecules to their original position on the removal of the shear force. T = Torque A
B
B A
f
B¢ comes back to same positive
B¢ T is removed
)RUH[DPSOHDVROLGWZLVWVZKHQDWRUTXHT) is applied by shear angle f, which disappears on the removal of the torque (T +RZHYHUWZLVWEHKDYLRXURIDÀXLGLVFRPSOHWHO\GL൵HUHQW 7KH ÀXLG FDQ VXVWDLQ RQO\ QRUPDO IRUFHV DQG GHIRUPV FRQWLQXRXVO\ ZKHQ VKHDU IRUFH LV DSSOLHG)OXLGVGRQRWDFTXLUHHTXLOLEULXPRQWKHDSSOLFDWLRQRIVKHDUIRUFHOLNHVROLGVEXWLW FRQWLQXHVWRGHIRUPDVORQJDVWKHVKHDUIRUFHLVDFWLQJHYHQZKHQLWLVVPDOO)RUH[DPSOH Fixed cylinder Torque (T )
Fluid
Outer cylinder
4
Fundamentals of Fluid Mechanics
if a torque (T LVDSSOLHGRQDQH[WHUQDOF\OLQGHUZKLFKLVURWDWDEOHDQGVHSDUDWHGIURPWKH ¿[HG F\OLQGHU E\ D WKLFNQHVV RI ÀXLG DV VKRZQ LQ WKH ¿JXUH WKH RXWHU F\OLQGHU GRHV QRW have equilibrium position with the applied torque (T DQGWKHRXWHUF\OLQGHUVWDUWVSLFNLQJ up velocity from the stationary state. However, the outer cylinder will attain an equilibrium YHORFLW\ GHSHQGLQJ XSRQ WKH PDJQLWXGH RI WKH WRUTXH DQG WKH SURSHUWLHV RI WKH ÀXLG VSHFLDOO\YLVFRVLW\ VHSDUDWLQJLWIURPWKH¿[HGF\OLQGHU,IT is large then the equilibrium velocity will be high and equilibrium velocity will be small, when T is made smaller. It is HYLGHQWIURPWKLVWKDWWKHÀXLGGRHVUHVLVWWKHDSSOLHGWRUTXHDVH[WHUQDOF\OLQGHUDFKLHYHV Ê df ˆ the equilibrium rate of deformation Á ˜ or equilibrium velocity. The deformation (f) in Ë dt ¯ ÀXLGVXQOLNHVROLGVGRHVQRWGLVDSSHDUZKHQWRUTXHT) is removed.
1.3 FLUIDS :KDWGR\RXXQGHUVWDQGIURPIOXLGV" $ÀXLGLVDVXEVWDQFHZKLFKGHIRUPVFRQWLQXRXVO\ZKHQVXEMHFWHGWRH[WHUQDOVKHDULQJIRUFH $ ÀXLG LV D VXEVWDQFH ZKLFK FDQQRW DFTXLUH DQ\ VWDWLF HTXLOLEULXP XQGHU WKH DFWLRQ RI DQ\ VKHDU IRUFH RI HYHQ D VPDOO PDJQLWXGH ,Q RWKHU ZRUGV ÀXLGV FDQQRW DFTXLUH D VWDWLF equivalent deformation (f LQ RUGHU WR DFKLHYH D HTXLOLEULXP ZLWK WKH H[WHUQDO DSSOLHG WRUTXH+RZHYHUWKHÀXLGUHVLVWVWKHDSSOLHGWRUTXHE\DWWDLQLQJWKHFRQVWDQWYDOXHRIWKH Ê df ˆ rate of change of deformation Á ˜ DQGWKHQWKHDFFHOHUDWLRQRIÀXLGEHFRPHV]HUR+HQFH Ë dt ¯
DÀXLGLVDVXEVWDQFHZKLFKFDQ DWWDLQWKHVKDSHRIWKHFRQWDLQHUDVLWKDVQRGH¿QLWH VKDSH RI LWV RZQ GHIRUP FRQWLQXRXVO\ XQGHU WKH DFWLRQ RI VKHDU IRUFH DWWDLQ WKH equilibrium rate of deformation and in which (4) the deformation does not disappear on the removal of the torque. :KDWDUHWKHFKDUDFWHULVWLFVRIDIOXLG" 7KHFKDUDFWHULVWLFVRIÀXLGDUH D ,IKDVQRGH¿QLWHVKDSHRILWVRZQEXWLWFRQIRUPVWRWKHVKDSHRIWKHFRQWDLQLQJYHVVHO E (YHQDVPDOODPRXQWRIVKHDUIRUFHDSSOLHGRQDÀXLGZLOOFDXVHLWWRXQGHUJRGHIRU mation which is continuous as the long as the force is applied. F $VROLGVX൵HUVVWUDLQZKHQVXEMHFWWRVKHDUIRUFHZKLOHDÀXLGVX൵HUVDUDWHRIVWUDLQ :KDWLVYLVFRVLW\RIDIOXLG" 7KH SURSHUW\ ZKLFK FKDUDFWHUL]HV WKH UHVLVWDQFH ZKLFK D ÀXLG R൵HUV WR WKH DSSOLHG VKHDU force is called viscosity. The resistance does not depend upon the deformation (f) but on Ê df ˆ the rate of deformation Á ˜ :KHQWKHUHLVDUHODWLYHPRWLRQEHWZHHQGL൵HUHQWOD\HUVRI Ë dt ¯ ÀXLGVWKHQWKHUHLVDWDQJHQtial friction force in between the layers. Viscosity is less in gases but larger in liquids.
(NWKFU&GſPKVKQPU2TQRGTVKGU
5
&RPSDULVRQEHWZHHQDVROLGDQGDIOXLG" Features
Solid
Fluid
1.
Spacing of molecules
Closely spaced
Spacing is large
2.
Intermolecular force
Large
Low
3.
External shape
Does not change
6KDSHFKDQJHVDQGLWFDQÀRZ
4.
Shear force
Can withstand elastic limit
&DQQRWZLWKVWDQGDQGLWÀRZVLQWKH direction of the shear force
5.
Extent of deformation
Deformation is constant and force dependent
Continuous with force
6.
Deformation
Disappears on the removal of shear force
Deformation does not disappear
7.
Rate of deformation
Deformation does not change with time, i.e., rate of change of deformation is zero
The rate of deformation becomes constant
8.
Motion on shear force Solid deforms without motion It is in motion in the direction of shear force. It comes to rest on the removal of shear force.
:KDWLVIOXLGPHFKDQLFV" Fluid mechanics is the science in which we study the behaviour of fluids, which are either at rest or in motion. The study of the fluids under static conditions (fluids at rest) is FDOOHGIOXLGVWDWLFV)RUH[DPSOHWKHVWXG\RIZDWHULQDGDPRURWKHUVWDWLFFRQGLWLRQV are done in fluid statics. Aerostatics is the term used for the study of incompressible gases under static conditions. The study of mechanics of fluids in motion is called fluid dynamics. The flow of fluids through pipes and channels due to shear force is studied in fluid dynamics.
:KDWLVIOXLGNLQHPDWLFV" )OXLGNLQHPDWLFVGHDOVZLWKWKHPRWLRQWUDQVODWLRQDQGURWDWLRQ DQGGHIRUPDWLRQRIWKHÀXLG elements without any consideration to the force or energy which is causing such motion or
6
Fundamentals of Fluid Mechanics
GHIRUPDWLRQ +HQFH NLQHPDWLFV GHDOV ZLWK WKH YHORFLWLHV DFFHOHUDWLRQV DQG ÀRZ SDWWHUQV RIDÀXLG :KDWLVIOXLGNLQHWLFV" ,QÀXLGNLQHWLFVZHVWXG\WKHUHODWLRQVKLSRIWKHYHORFLWLHVDFFHOHUDWLRQVGHYHORSHGE\WKH ÀXLGZKHQDQH[WHUQDOIRUFHLVDSSOLHGRQWKHÀXLGRUWKHIRUFHVH[HUWHGE\WKHPRYLQJÀXLG ZLWKFHUWDLQYHORFLWLHVDFFHOHUDWLRQV :KDWLVK\GUDXOLFV" +\GUDXOLFV LV D EUDQFK RI ÀXLG PHFKDQLFV LQ ZKLFK ZH VWXG\ WKH EHKDYLRXU RI ZDWHU (incompressible) in motion or rest. :KDWLVSQHXPDWLFV" 3QHXPDWLFVLVDEUDQFKRIÀXLGPHFKDQLFVLQZKLFKZHVWXG\WKHEHKDYLRXURIFRPSUHVVLEOH ÀXLGVZKLFKDUHLQPRWLRQRUUHVW
1.4 APPLICATIONS OF FLUID MECHANICS 'HVFULEHVRPHDSSOLFDWLRQVRIIOXLGPHFKDQLFV 7KHDSSOLFDWLRQVRIÀXLGPHFKDQLFVDUH 7KHGHVLJQRIGDPVFDQDOVDQGZHLUV$GDPLVDPDVRQU\VWUXFWXUHWRVWRUHZDWHUDQG the main forces acting on a dam is static water pressure (F) against upstream face and the weight of the masonry (W). The resultant of these two forces must pass through WKHPLGGOHWKLUGRIWKHEDVHRIWKHGDPIRULWVVWDELOLW\&DQDOVDUHPHDQWWRWDNHZDWHU from one place to another by gravitational action. Weir is any angular obstruction in an RSHQVWUHDPRYHUZKLFKWKHÀRZWDNHVSODFH Dam Weir Height of F water
W R
Flow
Middle third Dam
Weir
'HVLJQRISXPSVRYHUKHDGUHVHUYRLUVDQGSLSHOLQHVIRUWUDQVSRUWLQJZDWHUWRGRPHVWLF VHUYLFHOLQHV7KHUHLVSUHVVXUHKHDGORVVGXHWR IULFWLRQLQSLSHOLQHVDQG OLIWLQJ of water against gravity.
(NWKFU&GſPKVKQPU2TQRGTVKGU Overhead reservoir
7
Service tank
Pump
Underground water supply line Water Supply Installation and Distribution
'HVLJQRIÀXLGFRQWUROGHYLFHVVXFKDVK\GUDXOLFJDWHVYDOYHVFRFNVDQGWDSV7KHVH GHYLFHVDUHXVHGIRUFRQWUROOLQJWKHÀRZRIWKHÀXLGV$SOXJFRFNLVDVLPSOHGHYLFH Hole in plug
Plug cock Disc & washer
Seat Close
Open Stop Cock
Disc & washer
Water
Pin at the centre of curvature of the gate
Seat Angle Valve
Hydraulic Radial Gate
Head race Dam Penstock
Tailrace Dam
8
Fundamentals of Fluid Mechanics
LQZKLFKWKHÀXLGSDVVDJHLVDKROHLQDURWDWDEOHSOXJ¿WWHGLQWKHERG\RIWKHFRFN ,Q VFUHZ GRZQ VWRS YDOYH WKH VWRS KDV GLVF ZLWK ZDVKHU WR PDNH WKH DFWXDO FRQWDFW ZLWKVHDWWRVWRSWKHÀRZRIZDWHU$QJOHYDOYHDOVRZRUNVRQWKHVDPHDUUDQJHPHQW Hydraulic gates are used in dams to allow the water out of the dam by rotating the gate. ,QSUHVVXUHPHDVXUHPHQWXVLQJPDQRPHWHUV7KHGL൵HUHQFHRIWKHOHYHORIWKHÀXLGLQ the limbs of U-tube is an indicator of the pressure of the liquid in the vessel or pipe.
Pipe with filled liquid
h
Fluid
,QPHDVXULQJÀRZRIWKHÀXLGVLQWKHSLSHVE\YHQWXUHRURUL¿FHPHWHU
Orifice Metering
Venturi Metering
6. In designing an airplane. As an airplane is a mechanically driven machine and is heavier than air, it is supported by the dynamic reaction of the air over its wings, which are in the shape of aerofoils to provide the required lift. The airstream moves at higher speed over the upper surface of aerofoil as compared to airstream moving at the lower surface, thereby providing lift. Lift
V1 V1>V2 Propulsive thrust
Drag
V2 Weight
Aerofoil Flying of Aircraft
Lift
(NWKFU&GſPKVKQPU2TQRGTVKGU
9
7. In using wind power for moving sail boat. It is possible to move the boat in the desired GLUHFWLRQE\XVLQJVDLOVSURSHUO\ZKHQWKHZLQGLVDSSURDFKLQJIURPGL൵HUHQWGLUHFWLRQV
6ZLQJLQJRIDFULFNHWEDOOLVDFKLHYHGE\PDNLQJRQHVLGHVPRRWKDQGRWKHUVLGHURXJK The air stream moves with lesser velocity on the rough side as compared to smooth side, thereby providing side force.
6SLQQLQJRIWDEOHWHQQLVEDOODQGFULFNHWEDOOLVSRVVLEOHZLWKFKDQJHRIÀRZRIDLUVWUHDP on rotating ball.
10
Fundamentals of Fluid Mechanics
8VLQJ WKH SURSHUW\ WKDW WKH ÀXLGV H[HUW VDPH SUHVVXUH LQ DOO GLUHFWLRQV LQ GHVLJQLQJ hydraulic ram or press. It is possible to lift a heavy load with the application of small H൵RUWE\WKHPHWKRGVKRZQEHORZ Load = 1 ton Effort = 50 kg Lift
8VLQJVWUHDPOLQHGERG\WRUHGXFHGUDJZKLOHGHVLJQLQJWKHKXOORIDVKLSRULQFUHDVLQJ WKHGUDJWRDFWDVDLUEUDNHVLQDQDLUFUDIWDVZHOODVLQWKHUHPRYDORIFKD൵IURPWKH grain in a separator. Steam lined hull
Hull
Higher drag
Lower drag Stream Lining to Reduce Drag
Part of wing is raised
Grains with chaff
Wing
Gains
Chaff Separator
Airbrake of an aircraft Application of Drag
(NWKFU&GſPKVKQPU2TQRGTVKGU
11
7RXQGHUVWDQGWKHFLUFXODWLRQRIEORRGLQWKHDUWHULHVYHLQVKHDUWDQGOXQJV7KHEORRG KDVWREHR[\JHQDWHGDQGVXSSOLHGWRDOOWLVVXHVRIWKHERG\VRWKDWWKH\FDQSHUIRUP WKHLUIXQFWLRQV+XPDQKHDUWLVDWZRVWDJHIRXUFKDPEHUSXPS$UWL¿FLDOKHDUWPDFKLQH is used as a cardio-pulmonary bypass to enable the operation of the heart.
Heart Lungs
Oxygenation O2
Artery Deoxygenated Blood Vein
Pump Oxygenated blood
Artificial Blood Oxygenation
7RGHVLJQSXPSVIRUSXPSLQJOLTXLGWKURXJKSLSHV7KHSULQFLSOHLVWRSURGXFHVXFWLRQ DWRQHVLGHWRGUDZWKHÀXLGDQGWRFUHDWHH[FHVVSUHVVXUHRQWKHRWKHUVLGHWRIRUFHWKH OLTXLGRXW3XPSVFDQEH SLVWRQW\SH FHQWULIXJDOW\SHDQG MHWSXPSZKLFK XWLOL]HVWKHHQHUJ\RIÀRZLQJÀXLGV7KHFHQWULIXJDOSXPSSURGXFHVGHOLYHU\KHDGE\ FHQWULIXJDODFFHOHUDWLRQRIWKHÀXLGLQWKHURWDWLQJLPSHOOHU
12
Fundamentals of Fluid Mechanics
Impeller
Diffiuser
Inlet
Centrifugal Pump
7R GHVLJQ ZDWHU WXUELQHV WR REWDLQ PHFKDQLFDO ZRUN IURP WKH NLQHWLF HQHUJ\ RI WKH falling water. The oldest type of water turbine is the water wheel in which wheel is URWDWHGE\WKHGL൵HUHQFHRIZDWHUOHYHOLQDVWUHDP7KHSHOWRQZKHHOLVDOVREDVHGRQ WKHSULQFLSOHRIWKHROGZDWHUZKHHO)UDQFLV .DSODQWXUELQHVDUHXVHGZKHUHÀRZV and heads are small. The principle of these turbines is that the water is diverted to obtain FKDQJHRIPRPHQWXPLQVLGHWKHWXUELQH7KHGLYHUVLRQWDNHVSODFHDWULJKWDQJOHVWRWKH direction of entry, causing turbine rotor to rotate. Guide vanes are provided to ensure PD[LPXPURWDU\PRWLRQRIWKHWXUELQHURWRU
(NWKFU&GſPKVKQPU2TQRGTVKGU
13
1.5 TYPES OF FLUIDS :KDWDUHWKHGLIIHUHQFHVEHWZHHQOLTXLGV JDVHV" Liquids
Gases
1.
/LTXLGVKDYHGH¿QLWHYROXPH
1.
*DVHVGRQRWKDYHGH¿QLWHYROXPH
2.
/LTXLGVKDYHVLJQL¿FDQWFRKHVLYHIRUFHV due to closely packed molecules.
2.
Gases have weak cohesive forces due to widely spaced molecules.
3.
Liquids cannot expand.
3.
*DVHVFDQH[SDQGWR¿OODQ\YROXPH
4.
Liquids are almost incompressible.
4.
Gases are compressible.
5.
The change of temperature and pressure does not alter the volume of liquid.
5.
The volume of gas changes with temperature & pressure.
6.
Liquids form a free surface in gravitational ¿HOG
6.
Gases do not form free surface.
Free surface
:KDWDUHWKHGLIIHUHQFHVEHWZHHQLGHDOIOXLG UHDOIOXLG" Ideal Fluids
Real Fluids
1.
Have no viscosity.
1.
Have viscosity
2.
Have no surface tension.
2.
Have surface tension
3.
Incompressible.
3.
Slightly compressible
4.
6KHDUIRUFHLV]HURGXULQJÀRZDVYLVFRVLW\LV zero.
4.
6KHDUIRUFHLVDFWLQJGXULQJÀRZ
5.
,GHDOÀXLGGRHVQRWH[LVW
5.
$OOÀXLGVDUHUHDO
:KDWLVFRQWLQXXP",VDLUDFRQWLQXXP"'RHVLWDOZD\VUHPDLQVR" 8378 A substance is composed of a vast number of molecules. In the concept of continuum, the VXEVWDQFHLVFRQVLGHUHGIUHHIURPDQ\NLQGRIGLVFRQWLQXLW\7KHFRQFHSWLVYDOLGDVPRVW HQJLQHHULQJV\VWHPVDUHFRQFHUQHGZLWKWKHPDFURVFRSLFRUEXONEHKDYLRXURIDVXEVWDQFH rather than the microscopic or molecular behaviour. Hence in most cases, it is convenient to WKLQNRIDVXEVWDQFHDVDFRQWLQXRXVGLVWULEXWLRQRIPHGLXPRUDFRQWLQXXP$VWKHVFDOHRI analysis is large, the discontinuity of the order of intermolecular spacing or the free mean path is negligible The properties such as pressure, temperature and velocity, which are PHDVXUHGDWLQ¿QLWHO\VPDOOSRLQWVDWGL൵HUHQWSODFHVDUHFRQVLGHUHGWRYDU\FRQWLQXRXVO\ from one point to another if they are not the same. However, there are certain instances ZKHUH SUHVVXUHV DUH ORZ DQG KLJK DFFXUDF\ LV UHTXLUHG VXFK DV URFNHW SURSXOVLRQ WKH concept of continuum cannot be applied.
14
Fundamentals of Fluid Mechanics
Concept of continuum
Molecules with spacing
Continuous matter
Air is considered a continuum in most engineering applications. The atmospheric air has mean free path of about 5 to 7.5 ¥–6 cm. The molecular spacing of air increases under low pressures and this large spacing between the molecules cannot be neglected. In that case, the concept of continuum cannot be applied on air while determining its properties.
1.6 PROPERTIES OF FLUIDS :KDW GR \RX XQGHUVWDQG IURP WKH SURSHUWLHV" :KDW DUH WKH GLIIHUHQW W\SHV RI properties? (YHU\ ÀXLG KDV FHUWDLQ FKDUDFWHULVWLFV ZKLFK GHVFULEH WKH SK\VLFDO FRQGLWLRQ RI WKH ÀXLG 6XFK FKDUDFWHULVWLFV DUH FDOOHG SURSHUWLHV RI WKH ÀXLG 7KH SURSHUWLHV RI DQ\ ÀXLG DUH pressure, temperature, density, mass, volume, etc. 7KHSURSHUWLHVFDQEHLQWHQVLYHRUH[WHQVLYH,QWHQVLYHSURSHUWLHVGRQRWGHSHQGXSRQWKH PDVVRIWKHÀXLG3UHVVXUHWHPSHUDWXUHDQGGHQVLW\DUHH[WHQVLYHSURSHUWLHV7KHH[WHQVLYH SURSHUWLHVGHSHQGRQWKHPDVVRIWKHÀXLG9ROXPHDQGZHLJKWDUHH[WHQVLYHSURSHUWLHV :H FDQ FRQYHUW WKH H[WHQVLYH SURSHUWLHV LQWR LQWHQVLYH SURSHUWLHV E\ GLYLGLQJ WKHP E\ WKHPDVVRIWKHÀXLG+HQFHYROXPHDQGZHLJKWDUHH[WHQVLYHSURSHUWLHVEXWWKH\FDQEH converted into intensive properties by dividing them by mass, which gives us the properties DVVSHFL¿FYROXPHDQGVSHFL¿FZHLJKW :KDWGR\RXXQGHUVWDQGIURPWKHIROORZLQJIOXLGSURSHUWLHV GHQVLW\ VSHFL¿F ZHLJKW VSHFL¿FYROXPHDQG UHODWLYHGHQVLW\" 'HQVLW\,WLVGH¿QHGDVWKHPDVVRIWKHÀXLGSHUXQLWYROXPH7KHGHQVLW\RIZDWHULV NJP. Density (r) =
0DVV NJ = Volume m
6SHFL¿F:HLJKW IWLVGH¿QHGDVWKHZHLJKWRIWKHÀXLGSHUXQLWYROXPH SpHFL¿FZHLJKW =
Weight Volume Mass ¥ g Volume
(NWKFU&GſPKVKQPU2TQRGTVKGU
15
=r¥g =g 7KHVSHFL¿FZHLJKWRIZDWHU ¥ 9.8 QHZWRQP N1P 6SHFL¿F9ROXPH,WLVGH¿QHGDVWKHYROXPHRIWKHÀXLGSHUXQLWYROXPH v=
9ROXPH = = mNJ Mass r
5HODWLYH'HQVLW\6* ,WLVWKHUDWLRRIVSHFL¿FZHLJKWRIWKHÀXLGWRWKHVSHFL¿FZHLJKW RIWKHVWDQGDUGÀXLG:DWHULVWKHVWDQGDUGÀXLGIRUOLTXLGZKLOHDLURUK\GURJHQLVWKH VWDQGDUGÀXLGIRUWKHJDVHV SG of liquid =
=
Specific weight of the liquid Specific weight of water
g g = g w 9800
OLWUHVRISHWUROZHLJKV1&DOFXODWH VSZHLJKW GHQVLW\ VSYROXPHDQG 6* Guidance: All dimensions are to be in MKS. Litre has to be changed into m.
Volume (V OLWUHV ¥± m :HLJKW 1 Sp. weight (g) =
:HLJKW = 9ROXPH ¥ -
= 7 ¥1P Sp. weight = r ¥ g r=
\
g ¥ = J
NJP Sp. volume = =
1 r 1 713.6 ¥± mNJ
16
Fundamentals of Fluid Mechanics
SG =
rPetrol 713.6 = rWater 1000
V $OLTXLGKDV6* )LQGLWV GHQVLW\ VSYROXPHDQG VSZHLJKW SG =
rliquid rwater
= 0.9
r liquid = 0.9 ¥ NJP
\
Sp. volume =
1 rliquid
=
1 900
¥± mNJ Sp. weight = rliquid ¥ g = 900 ¥1P 1P $EORZHUGHOLYHUVPDLUSHUVHFRQGDW&DQGRQHDWPRVSKHULFSUHVVXUHEDU )LQGPDVVRIWKHDLUGHOLYHUHGLIPROHFXODUZHLJKWRIWKHDLULV$OVR¿QG GHQVLW\ VSYROXPHDQG VSZHLJKWRIWKHDLUEHLQJVXSSOLHG Guidance The mass of air can be calculated by the gas equation PV = mRT where P = Pressure, V = Volume, m = Mass, R = Gas constant & T 7HPSHUDWXUHLQNHOYLQXQLYHUVDO
gas constant R = MR where M = molecular weight and R = gas constant. The value of R 1PNJPRO.
Gas constant (R) for air =
R Mair
=
8314 30
T N P EDU ¥51P V = 8 m Mass of air, m =
PV RT
1 ¥ 10 5 ¥ 8 = 9.62 kg = 277.13 ¥ 300 Density (r) =
Mass Volume
(NWKFU&GſPKVKQPU2TQRGTVKGU
=
17
9.62 8
NJP
Sp. volume (v) = =
1 r 1 1.2
PNJ
Sp. weight (g ) = r ¥ g ¥ 1P :KDWLVWKHLPSRUWDQFHRIIOXLGPHFKDQLFV" )OXLGV OLNH ZDWHU DQG DLU DUH UHDGLO\ DYDLODEOH LQ QDWXUH:H HPSOR\ WKHVH ÀXLGV LQ PDQ\ HQJLQHHULQJDSSOLFDWLRQV0DQ\VXFKDSSOLFDWLRQVLQYROYHWKHÀRZRIWKHVHÀXLGV7KHÀRZ through pipes; energy conversion by pump and turbine, the storage capacity and stability RI GDPV WKH PRYHPHQW RI DLUFUDIW VXEPDULQHV DQG URFNHWV FDQ EH DQDO\VHG E\ WKH ÀXLGV PHFKDQLFV7KUHHEDVLFSULQFLSOHVZKLFKDUHXVHGLQWKHÀXLGPHFKDQLFVIRUDQDO\VLQJÀXLG ÀRZSUREOHPVDUH WKHSULQFLSOHRIWKHFRQVHUYDWLRQRIPDVVÀRZ WKHSULQFLSOHRI WKHFRQVHUYDWLRQRIHQHUJ\DQG WKHSULQFLSOHRIWKHFRQVHUYDWLRQRIPRPHQWXP :KDWGR\RXXQGHUVWDQGIURPWKHYLVFRVLW\RIWKHIOXLGV" When a solid mass slides over a surface, a friction force is developed to oppose the motion. 6LPLODUO\ZKHQDOD\HURIDÀXLGVOLGHVRYHUDQRWKHUOD\HURIWKHVDPHÀXLGDIULFWLRQIRUFH is developed between them opposing the relative motion. This tangential force is called WKHYLVFRXVIRUFH6XSSRVHDÀXLGLVPRYLQJLQVWUHDPOLQHGPDQQHURQD¿[HGKRUL]RQWDO surface ABDVVKRZQLQWKH¿JXUHEHORZ7KHOD\HURIWKHÀXLGLQWKHFRQWDFWRIWKHVXUIDFH remains stationary (at rest), while the velocity of other layers increases with distance from WKH ¿[HG VXUIDFH ,Q WKH ¿JXUH WKH OHQJWK RI DUURZV UHSUHVHQWV WKH LQFUHDVLQJ YHORFLW\ RI WKHOD\HUV,WFDQEHVHHQWKDWWKHUHLVDUHODWLYHPRWLRQEHWZHHQWKHGL൵HUHQWOD\HUV,IZH WDNHWKUHHSDUDOOHOOD\HUVa, b, and cIURPWKH¿[HGVXUIDFHWKHQWKHLUYHORFLWLHVDUHLQWKH
c
uc
Velocity a O A
uc > ub > ua
ub
b ua
B
Velocity Gradient Due to Viscosity
18
Fundamentals of Fluid Mechanics
increasing order. The layer a tends to retard the layer b and layer b tends to retard the layer c. Therefore, each layer tries to decrease the velocity of the layer above it. It also means that each layer tries to increase the velocity of the layer below it. There is therefore an internal tangential resistive force acting between two layers which is opposing their relative motion. 7KLV IRUFH LV FDOOHG YLVFRXV IRUFH ,Q RUGHU WR PDLQWDLQ WKH ÀRZ RI WKH ÀXLG ZH KDYH WR DSSO\DQH[WHUQDOIRUFHWRRYHUFRPHWKLVWDQJHQWLDOUHVLVWLYHRUYLVFRXVIRUFH,QWKHDEVHQFH RIH[WHUQDOIRUFHWKHYLVFRXVIRUFHZLOOUHVLVWWKHÀRZDQGEULQJWKHÀXLGWRUHVW 'H¿QHYLVFRVLW\*LYHH[DPSOHVWRVKRZWKHH[LVWHQFHRIYLVFRVLW\ 7KH SURSHUW\ RI WKH ÀXLG E\ YLUWXH RI ZKLFK LW RSSRVHV WKH UHODWLYH PRWLRQ EHWZHHQ LWV DGMDFHQWOD\HUVLVNQRZQDVYLVFRVLW\ 7KHSURSHUW\RIYLVFRVLW\FDQEHVHHQLQWKHIROORZLQJQDWXUDOSKHQRPHQRQ :H FDQQRW ZDON IDVW LQ ZDWHU DV FRPSDUHG WR DLU DV ZDWHU KDV FRPSDUDWLYHO\ ODUJHU viscosity. $VWLUUHGOLTXLGFRPHVWRUHVWRQDFFRXQWRIYLVFRVLW\ ,IZHSRXUKRQH\DQGZDWHURQDWDEOHWKHQWKHKRQH\ZLOOVWRSÀRZLQJVRRQZKLOHWKH ZDWHUZLOOÀRZIRUDODUJHGLVWDQFHDVLWKDVVPDOOYLVFRVLW\DVFRPSDUHGWRKRQH\
1.7 NEWTON’S LAW OF VISCOSITY 'HULYHWKH1HZWRQ¶VHTXDWLRQRIYLVFRVLW\ 8378 $WKLQOD\HURIÀXLGLVFRQWDLQHGEHWZHHQWZRSDUDOOHOSODWHVDVVKRZQEHORZ7KHXSSHU plate is moved by tangential force PZKLOHWKHORZHUSODWHLVNHSWVWDWLRQDU\7KHPRYHPHQW of upper plate is resisted by the liquid through its viscosity. Therefore, the magnitude of YHORFLW\RIXSSHUSODWHZLOOGHSHQGXSRQWKHYLVFRVLW\RIWKHÀXLG,QQRVOLSFRQGLWLRQWKH ÀXLGOD\HURQWKHORZHUVXUIDFHUHPDLQVVWDWLRQDU\ZKHUHDVWKHWRSÀXLGOD\HUPRYHVZLWK WKHVSHHGRIWKHXSSHUSODWH+HQFHDYHORFLW\JUDGLHQWZLOODFWUHVXOWLQJDYHUWLFDOÀXLG line OA deforms to the position OA. Point B on line OA at a height dy from O, will move to B due to its velocity du.
(NWKFU&GſPKVKQPU2TQRGTVKGU
BB = = BB = du ¥ dt =
Now, Also, \
19
velocity ¥ time du ¥ dt dy ¥ dq dy ¥ dq
du dq = dy dt The angle of deformation dq or strain increases with time but the time rate of shear strain per
or
Ê dq ˆ time Á ˜ remains constant as long force P is unchanged. As shear stress (t = PA) depends Ë dt ¯ upon the applied force (P) and area of contact (A), it remains constant and it depends upon the time rate of shear strain
dq dt du a dy
ta
t=m
du dy
This is called the Newton’s equation of viscosity. The constant of proportionality m is called YLVFRVLW\$ÀXLGLQZKLFKWKHVKHDUVWUHVVt ) is linearly proportional to time rate of strain LVFDOOHG1HZWRQLDQÀXLG (QXQFLDWH 1HZWRQ¶V ODZ RI YLVFRVLW\ 'LVWLQJXLVK EHWZHHQ 1HZWRQLDQ DQG QRQ Newtonian fluids. 8378 1HZWRQ¶V /DZ RI 9LVFRVLW\ 7KH WDQJHQWLDO VKHDU VWUHVV H[LVWLQJ EHWZHHQ WZR DGMDFHQW ÀXLGOD\HUVLVGLUHFWO\SURSRUWLRQDOWRWKHYHORFLW\JUDGLHQWH[LVWLQJLQWKHÀXLGLQDGLUHFWLRQ SHUSHQGLFXODUWRWKHÀXLGOD\HUV Shear stress (t ) a
\
or
t=m where,
du dy
du dy
du Ê dq ˆ = velocity gradient which is equal to the time rate of shear strain Á ˜ Ë dt ¯ dy m = viscosity
20
Fundamentals of Fluid Mechanics
Newtonian Fluids 1.
1.
1HZWRQLDQÀXLGVIROORZ1HZWRQ¶VODZRI viscosity, t = m
2.
Non-Newtonian Fluids
du dy
1RQ1HZWRQLDQÀXLGVGRQRWIROORZ 1HZWRQ¶VODZRIGHIRUPLW\ tπm
The value of m is constant and it does not changes with the rate of deformation.
2.
du ndy
The value of m is not constant and it changes with the rate of deformation. Non-Newtonian fluids
t
Newtonian fluids
t
tan q = μ = Viscosity
Ideal fluid
q du dy
3.
7KHFRPPRQÀXLGVVXFKDVZDWHUNHURVHQH DQGDLUDUH1HZWRQLDQÀXLGV
3.
7KHFRPPRQQRQ1HZWRQLDQÀXLGVDUH slurries, gels, blood, lubricants oils, polymer solutions and paints.
:KDWDUHSVHXGRSODVWLFIOXLGV" Fluids in which the apparent viscosity decreases with increasing rate of deformation are FDOOHG SVHXGRSODVWLF ÀXLGV 6OXUULHV JXPV EORRG DQG PLON DUH SVHXGRSODVWLF ÀXLGV7KH\ DUH DOVR FDOOHG VKHDU WKLQQLQJ ÀXLGV DV WKH UDWH RI LQFUHDVH RI VKHDU VWUHVV GHFUHDVHV ZLWK WKHUDWHRIGHIRUPDWLRQRIWKHÀXLGV
Ê du ˆ t = mÁ ˜ Ë dy ¯ 1
2
n
and
n
3 tan q1 > tan q2 > tan q3
t
μ1 > μ2 > μ3
q 1 q2 q3
q
(NWKFU&GſPKVKQPU2TQRGTVKGU
21
:KDWDUHGLODWDQWRUVKHDUWKLFNHQLQJIOXLGV" Fluids in which the apparent viscosity increases with increasing rate of deformation are FDOOHG GLODWDQW RU VKHDU WKLFNHQLQJ ÀXLGV 6XVSHQVLRQ RI VDQG EXWWHU VWDUFK DQG VXJDU VROXWLRQVDUHVKHDUWKLFNHQLQJÀXLGV
Ê du ˆ t = mÁ ˜ Ë dy ¯
n
and
n
3 tan q3 > tan q2 > tan q1
2
t
μ3 > μ2 > μ1 1 q3 q2 q1 du dy
:KDWDUH%LQJKDPSODVWLFVRULGHDOSODVWLFIOXLGV" 7KHÀXLGVZKLFKDFWOLNHVROLGVE\ZLWKVWDQGLQJDGH¿QLWHVKHDUVWUHVVZLWKRXWVWUDLQFKDQJH DQGODWHUUDWHRIVWUDLQLQFUHDVHZLWKVKHDUVWUHVVDIWHU\LHOGLQJ2LOSDLQWVMHOOLHVGULOOLQJ VDQGDQGVHZDJHVOXGJHDUHLGHDOSODVWLFÀXLGV
t
du dy
:KDWDUHWKL[RWURSKLFRUSODVWLFIOXLGV" 7KH ÀXLGV ZKLFK SRVVHVV D GH¿QLWH \LHOG VKHDU VWUHVV DQG ODWHU WKHLU VKHDU VWUHVV YDULHV QRQOLQHDUO\ZLWKWKHUDWHRIVWUDLQDUHFDOOHGWKL[RWURSLFRUSODVWLFÀXLGV/LSVWLFNDQGSULQWHU LQNDUHSODVWLFÀXLGV
t
du dy
22
Fundamentals of Fluid Mechanics
Ê du ˆ t = tym Á ˜ Ë dy ¯
n
and
n!
6KRZWKHFXUYHRIVROLGDQGLQYLVFLGRULGHDOIOXLGRQVKHDUVWUHVVYHUVXVVKHDUVWUDLQ UDWHGLDJUDP The solids deform or undergo strain on application of shear strain but their strains do not df du = = 0. Hence,VROLGVDUHVKRZQDORQJVWUHVVD[LV vary with time, i.e., dt dy
t Solid
du dy
Behaviour of Solids
7KHLGHDORULQYLVFLGÀXLGKDV]HURYLVFRVLW\+HQFHLWLVVKRZQDORQJ]HURVKHDUVWUHVVD[LV )ORZRIDIOXLGLVJLYHQE\ t m
Ê du ˆ ÁË dy ˜¯
7KHYHORFLW\GLVWULEXWLRQLVJLYHQE\ u
uPD[
È y y ˘ Í - ˙ Î h h ˚
where uPD[ PD[YHORFLW\DQGh ¿OPWKLFNQHVV,IYLVFRVLW\ 1VPWKHQ¿QG shear stress at solid surface for uPD[ PVDQGh PPDQG ZKDW1HZWRQLDQ IOXLGFDQLQGXFHVDPHVKHDUVWUHVVIRUVDPHYHORFLW\JUDGLHQWDQGPD[LPXPYHORFLW\"
Ê du ˆ Guidance: The velocity gradient Á ˜ can be founG RXW E\ GL൵HUHQWLDWLQJ WKH JLYHQ Ë dy ¯ relationship of velocity distribution. Shear stress can be found out by using shear stress and velocity gradient relationship. u=
umax 3
È y y3 ˘ Í2 - 3 ˙ Î h h ˚
(NWKFU&GſPKVKQPU2TQRGTVKGU
du umax È 2 3 y 2 ˘ = Í ˙ dy 3 Î h h3 ˚
t Ideal or non-viscous fluid du dy
Behaviour of Ideal Fluids At solid surface y = 0,
Ê du ˆ ÁË dy ˜¯ Ê du ˆ ÁË dy ˜¯
=
umax 2 ¥ 3 h
=
0.3 2 ¥ 3 0.01
y =0
y =0
V±
Ê du ˆ t0 = m Á ˜ Ë dy ¯
1.5
= 0.5 ¥ 1P
)RU1HZWRQLDQÀXLG
Ê du ˆ t0 = m Á ˜ Ë dy ¯ m ¥
m=
Ns 24.56 2 m 20
1HZWRQLDQÀXLGRIYLVFRVLW\
Ns can induce same shear stress. m2
23
24
Fundamentals of Fluid Mechanics
:KDW GR \RX XQGHUVWDQG IURP SRLVH FHQWLSRLVH VSHFL¿F YLVFRVLW\ DQG kinematic viscosity? Or Differentiate between dynamic and kinematic viscosity. 8378 Poise is the unit of viscosity in CGS system. One SRLVH
Ns . Poise is a relatively m2
large unit. Hence, centipoise is used which is equal WR SRLVH:DWHU KDV YLVFRVLW\ DW & FHQWLSRLVH .LQHPDWLFYLVFRVLW\LVWKHUDWLRRIWKHYLVFRVLW\RIÀXLGWRLWVGHQVLW\ Kinematic viscosity =
Viscosity m Ê m2 ˆ = Density r ÁË s ˜¯
7KHNLQHPDWLFYLVFRVLW\LQ&*6V\VWHPLVVWRNH –4 mV 6WRNHLVDUHODWLYHODUJHXQLW DQGFHQWLVWRNHcst ZKLFKLVHTXDOWRVWRNHLVXVHG7KHNLQHPDWLFYLVFRVLW\RIZDWHU DW&DQGDLUDW673DUHcstDQGcstUHVSHFWLYHO\$LUKDVKLJKHUNLQHPDWLFYLVFRVLW\ than water. Dynamic Viscosity 1.
It is the ratio of shear stress produced by unit rate of shear strain, t =
2.
Kinematic Viscosity
1 Ê du ˆ ÁË dy ˜¯
1.
.
It has unit of poise in CGS system and
It is the ratio of dynamic viscosity by unit density u =
2.
Ns in SI units m2
m r
It has unit of stoke in CGS system or m2/s in SI units
104 stokes = 1 m2/s
Ns 10 poise = 1 m2 4
Poise = 100 centipoises
1 stoke = 100 centistokes.
3.
It is an indicator of only viscous force of the liquid.
3.
It is the ratio of viscous force to the inertia IRUFHRIWKHÀXLG,IYLVFRXVIRUFHLVODUJH kinematic viscosity is large and vice versa.
4.
It is used where viscosity forces are predominant.
4.
It is used where both viscous and inertia forces are predominant.
(NWKFU&GſPKVKQPU2TQRGTVKGU
25
:KDWDUHWKHHIIHFWVRIWHPSHUDWXUHDQGSUHVVXUHRQYLVFRVLW\" Increase of temperature causes a decrease in the viscosity of liquid while it increases the YLVFRVLW\RIJDVHV7KHYLVFRXVIRUFHVLQDÀXLGDUHSURGXFHGE\WKHLQWHUPROHFXODUFRKHVLRQ and molecular moment transfer. The molecules of a liquid are comparatively more closely SDFNHGDQGPROHFXODUDFWLYLW\LVUDWKHUVPDOO+HQFHYLVFRVLW\RIDOLTXLGLVSULPDULO\GXH to molecular cohesion. The molecular cohesion decreases with elevated temperature which results into drop in viscosity of liquid. The molecular cohesive forces are very small in a gas and the viscosity is primarily due to the molecular momentum transfer. The rise of temperatures increases the molecular activity thereby increasing the viscosity of gas. +LJKSUHVVXUHVDOVRD൵HFWWKHYLVFRVLW\RIDOLTXLG7KHYLVFRVLW\LVIRXQGWREHLQFUHDVLQJ with rising pressure. Viscosity increases, as more energy is required for the relative movement of liquid molecules at elevated pressure. $SODWHPPGLVWDQFHIURPZLWKD¿[HGSODWHIOXLGLQEHWZHHQPRYHVRIPV,W UHTXLUHVDIRUFHRI1P to maintain the speed. Determine the viscosity. du = 1 m/s t = 2 N/m
2
0.05
Guidance: We have to apply the Newton’s law of viscosity, which relates velocity gradient to the applied shear stress. Shear force and velocity gradient are given. t=m
du dy
m ¥
1 0.05 ¥ 10 -3
m ¥ 0.05 ¥–61VP
¥± poise
$SODWHKDYLQJVL]H¥PPLVSXOOHGZLWKYHORFLW\RIPVRYHUD¿[HGSODWH DWGLVWDQFHRIPP)LQG IRUFHDQG SRZHUWRPDLQWDLQYHORFLW\LIIOXLGKDV m SRLVH Guidance 7KHVKHDUVWUHVVLVIRUFHGLYLGHGE\DUHDRIWKHSODWH1HZWRQ¶VODZRIYLVFRVLW\ LVXVHGWR¿QGWKHVKHDUVWUHVVIURPWKHYHORFLW\JUDGLHQWdu and dy are given)
26
Fundamentals of Fluid Mechanics
t=m
du dy
¥
0.5 1P ¥ -
F =t A F=A¥t ¥¥–6 ¥ N1 Power = Force × Velocity
du = 0.05 m/s
0.25
¥ ¥ 0.5 N: $ VNDWHU ZHLJKLQJ 1 LV VNDWLQJ ZLWK VSHHG RI PV7KH VNDWHV KDYH DUHD RI cm)LQGWKHWKLFNQHVVRIZDWHUOD\HUEHWZHHQVNDWHVDQGLFHLIm ¥± poise and G\QDPLFFRHIILFLHQWRIIULFWLRQRIWKHLFH Guidance 7KHVKHDUIRUFHHQDEOLQJVNDWHUWRPRYHLVIULFWLRQIRUFH7KHWKLFNQHVVRIZDWHU layer can be found out from Newton’s law of viscosity. Friction force
dy
Ice
Friction force = md ¥ mg ¥ 900 1
du = 20 m/s
(NWKFU&GſPKVKQPU2TQRGTVKGU
27
t = mwater du dy dy =
\
¥ -5 ¥ m
¥–5 m
¥± mm $ SODWH RI VL]H FP ¥ FP DQG ZHLJKW 1 VOLGHV GRZQ RQ LQFOLQHG VXUIDFH LQFOLQLQJWRWKHKRUL]RQWDOZKLFKKDVFHUWDLQWKLFNQHVVRIOXEULFDWLRQZLWKm SRLVH 7KLV DWWDLQV YHORFLW\ RI PV RYHU WKH OXEULFDWHG VXUIDFH )LQG WKLFNQHVV RI lubrication. Guidance 7KHFRPSRQHQWRIWKHZHLJKWDFWLQJDORQJWKHLQFOLQHGVXUIDFHZLOODFWDVVKHDU force. Shear force = wVLQ t ¥ t=
1 = 500 N 2
F 500 = = 0.8 ¥41P ¥ ¥ -4 A
Plate W cos q
W sin q W = 100 30°
t=m
8 ¥ =
dy =
du dy
¥ dy ¥ - ¥
¥± mm
28
Fundamentals of Fluid Mechanics
$SLVWRQKDYLQJPPGLDPHWHUDQGPPOHQJWKPRYHVLQVLGHDF\OLQGHURI PPGLDPHWHU7KHZHLJKWRIWKHSLVWRQLV1DQGDQQXODUVSDFHEHWZHHQSLVWRQDQG cylinder has lubrication oil of m 1VP)LQGWKHYHORFLW\ZLWKZKLFKWKHSLVWRQ will slide inside the cylinder. 100.4 Piston Cylinder 100
L = 150
w = 50 N
Guidance ,WLVWKHZHLJKWRIWKHSLVWRQZKLFKLVSURYLGLQJVKHDUIRUFH7KHVXUIDFHRI shear force is the surface area of the piston. Shear force = Weight of piston = 50 N Surface area = p DL = p ¥¥¥–6 m
¥± m 2LO¿OPWKLFNQHVVdy =
- ¥±
¥± t=
50 ¥ N ¥ -
t=m
du dy
¥
\
du =
du ¥ -
¥ ¥ ¥ - 0.5
PV 'HWHUPLQHWKHYLVFRVLW\RIDIOXLGKDYLQJNLQHPDWLFYLVFRVLW\RIVWRNHVDQG6*RI m Guidance .LQHPDWLFYLVcosity = , m FDQEHIRXQGRXWIURPNQRZQNLQHPDWLFviscosity r and density.
(NWKFU&GſPKVKQPU2TQRGTVKGU
SG =
29
r rwater
r = rwater ¥ SG ¥ NJP g= or
m r
m=r¥g
¥¥–4
1VP
VWRNH –4 mV
7KURXJK D YHU\ QDUURZ JDS RI KHLJKW h D WKLQ SODWH RI ODUJH H[WHQW LV SXOOHG DW D velocity v. On one side of the plate is oil of viscosity m and on other side oil of viscosity m &DOFXODWH WKH SRVLWLRQ RI WKH SODWH VR WKDW WKH SXOO UHTXLUHG WR GUDJ WKH SODWH LV minimum. 8378
μ1
y h
V μ2
Guidance :KHQSODWHLVSXOOHGGUDJIRUFHVF & FZLOOEHH[HUWHGDWXSSHUDQGlower VXUIDFHRIWKHSODWHE\ÀXLGV7KHWRWDOGUDJFF) will be minimum, when = 0, where y = distance of the plate from the upper surface of the gap. F GUDJIRUFHH[HUWHGE\XSSHUÀXLG = m1 F = m 2
V ¥A y V ¥A h-y
Êm m ˆ F = VA Á 1 + 2 ˜ Ë y b - y¯
d (F1 + F2 ) dy
30
Fundamentals of Fluid Mechanics
dF =0 dy
For minimum F,
dF Ê m m ˆ = VA Á - 1 - 2 ˜ = 0 dy Ë y b - y¯ 2
(h - y ) y
=
2
m2 m1
m h 2 + y 2 - 2hy = 2 m1 y2 2
Ê hˆ Ê hˆ Ê m2 ˆ ÁË y ˜¯ - 2 ÁË y ˜¯ + ÁË 1 - m ˜¯ = 0 1
h = y h y y=
Ê m ˆ 2 ± 4 - 4 Á1 - 2 ˜ m1 ¯ Ë 2
m2 m1
Êh ˆ ÁË y KDVWREH > ˜¯
h 1 + m 2 m1
7ZRODUJHSODQHVXUIDFHVDUHPPDSDUW7KHVSDFHLQEHWZHHQ¿OOHGZLWKJO\FHULQ :KDWIRUFHLVUHTXLUHGWRPRYHDYHU\WKLQSODWHKDYLQJVXUIDFHDUHDP between WKH WZR SODQH VXUIDFHV ZLWK YHORFLW\ RI PV ZKHQ WKLQ SODWH LV LQ WKH PLGGOH RI WZRDQG WKLQSODWHLVDWPPIURPRQHVXUIDFH7DNHm 16P. Guidance 7KHVKHDUIRUFHLVWKHVXPRIWKHVKHDUIRUFHRIXSSHUDQGORZHUÀXLG
dy1 = 16
dy1 = 12
du = 1 m/s dy2 = 12
du = 1 m/s
dy2 = 8
Case 1
Case 2
(NWKFU&GſPKVKQPU2TQRGTVKGU
Case dy dy \
31
t = t or F = F
¥ - = 1P F = A ¥ t = ¥ 1
t = 0.5 ¥
= 1 F = F + F = ¥ = 1 Case dy = 8, dy ¥ - = 1P F = ¥
¥ - = 1P F = ¥
t = 0.5 ¥
t = 0.5 ¥
= 1 F = F + F
= 1
= + = 1
du = 0.5
Drag force
Drag force
$VTXDUHSODWHPVLGHDQGPPWKLFNZHLJKLQJ1LVWREHOLIWHGWKURXJKDYHUWLFDO JDSRIPPRILQ¿QLWHH[WHQW7KHRLO¿OOLQJWKHJDVKDVm 1VPDQG6* 7KHSODWHLVPRYHGZLWKPV¿QGIRUFHDQGSRZHUUHTXLUHGIRUPRYLQJWKHSODWH
Plate Vertical gap
w Fb = w1
Ê du ˆ Guidance 7KHSODWHKDVWREHPRYHGDJDLQVWGUag force Á ª Am ˜ acting both surfaces dy ¯ Ë and weight (w) but the buoyancy force wl (weight of liquid displaced) is acting upwards.
32
Fundamentals of Fluid Mechanics
Weight of liquid displaced (w) = volume of the plate ¥ SG of liquid ¥ density of water ¥¥¥± ¥ 0.9 ¥ 1 1 = t ¥A
%XR\DQF\IRUFH Drag force
= ¥ 4 ¥ m
du dy
¥ 4 ¥¥
0.5 10 ¥ 10 -3
21 - 1 ˆ Ê ÁË dy = 2 ˜¯
1
)RUFHUHTXLUHG 'UDJIRUFHZHLJKW±Fb
± 1
Power required = force required ¥ velocity ¥ 0.5 ZDWWV 7KH YHORFLW\ GLVWULEXWLRQ LQ D YLVFRXV IORZ RYHU D SODWH LV JLYHQ DV u uy – y for y £PZKHUHu YHORFLW\PV DWGLVWDQFHy from the plate. If m 1VP)LQG shear stress at y DQGy Guidance %\GL൵HUHQWLDWLQJWKHYHORFLW\HTXDWLRQZHFDQ¿QGYHORFLW\JUDGLHQWDQGVKHDU stress. u = 4y – y
du ±y dy
2
y
u = 4y – y
Plate
Ê du ˆ ÁË dy ˜¯
y =0
Ê du ˆ =4& Á ˜ =0 Ë dy ¯ y = 2
(NWKFU&GſPKVKQPU2TQRGTVKGU
33
Ê du ˆ Ê du ˆ t0 = m Á ˜ t0 = m Á ˜ Ë dy ¯ y = 0 Ë dy ¯ y = 2 ¥ 4
1P t = 0 $ IOXLG NLQHPDWLF YLVFRVLW\ VWRNHV IORZV RYHU D KRUL]RQWDO SODWH ZLWK DUHD P. 7KHYHORFLW\LVJLYHQE\u y±y where y is distance from the plate. If shear force PHDVXUHGRQSODWHLV1¿QGVSZHLJKWDQG6*RIWKHIOXLG Guidance7KHYLVFRVLW\JUDGLHQWLVWREHIRXQGRXWE\GL൵HUHQWLDWLQJYHORFLW\HTXDWLRQ y
u = 2y – y
3
t = 0.4 N (due to flow) Plate F0 = t0 ´ A = t0 ´ 1
u y±y
du =±y dy Ê du ˆ ÁË dy ˜¯
y =0
Ê du ˆ t0 = m Á ˜ and F0 = t0 ¥ A = t 0 ¥ Ë dy ¯ y = 0 F0 = m ¥
m=
Ns 0.4 m 2
g=
m r
¥– 4 = r=
\
0.2 r 0.2 NJP 2.5 ¥ 10 -4
NJP SG =
r rwater
=
800 = 0.8 1000
34
Fundamentals of Fluid Mechanics
7KH YHORFLW\ RI D IOXLG RYHU D KRUL]RQWDO SODWH LV YDU\LQJ DV SDUDEROD ZLWK YHUWH[ DW FP IURP WKH SODWH ZKHUH WKH YHORFLW\ LV PV ,I m 16P ¿QG YHORFLW\ JUDGLHQWDQGVKHDUVWUHVVDWy DQGy PIURPWKHSODWH Guidance 7KH YHORFLW\ SUR¿OH FDQ EH DVVXPHG DV u = ay by c as it is varying SDUDEROLF7KHUHDUHWKUHHXQNQRZQVDQGZHUHTXLUHWKUHHFRQGLWLRQV$WSODWHZKHQy = 0,
Ê du ˆ then u DWYHUWH[y YHORFLW\u PVJLYHQ $OVRYHORFLW\JUDGLHQW Á ˜ Ë dy ¯ y = 0.1 DWWKHYHUWH[ U = 0.1 m/s
Velocity profit of the fluid y = 0.1 M Plate
u = ay 2 + by + c
u = aybyc
0=c u = ayby
¥ ab ab
Putting y = 0, u = 0 \ Putting y u or
Ê du ˆ =0 Puttting Á ˜ Ë dy ¯ y = 0.1 Ê du ˆ ÁË dy ˜¯ or
= ¥ a ¥b y = 0.1
a = – 5b
)URPHTXDWLRQV DQG
and \
– 5bb b a = – u ±yy
(4)
(NWKFU&GſPKVKQPU2TQRGTVKGU
35
Ê du ˆ ÁË dy ˜¯ = – y Ê du ˆ ÁË dy ˜¯
Ê du ˆ Á ˜ ± Ë dy ¯ y = 0.05 y =0 Ê du ˆ Ê du ˆ t0 = m Á ˜ t0.05 = m Á ˜ Ë dy ¯ y = 0 Ë dy ¯ y = 0.05 = 0.9 ¥
1P
¥ 1P
Ns LVPRYLQJRYHUD¿[HGVXUIDFHZLWKKHLJKW PA m2 IORDWPRYHVPLQVHFRQGV)LQGWKH YHORFLW\JUDGLHQWDQGVKHDUVWUHVVDFWLQJRQ the float.
$IOXLGRIYLVFRVLW\P
Guidance 7KHYHORFLW\JUDGLHQWLVHTXDOWRWLPHUDWHRIVWUDLQ
x - x d q tan q ª = h Rate of strain = dt dt =
= 0.05 per sec. ¥
du dq = = 0.05 per sec. dy dt But,
t=m
du ¥ 1 dy
)LQGWKHWRUTXHDQGSRZHUUHTXLUHGWRWXUQFPORQJFPGLDPHWHUVKDIWDW USP LQ D FP GLDPHWHU FRQFHQWULF EHDULQJ IORRGHG ZLWK OXEULFDWLQJ RLO RI YLVFRVLW\
Ns . m2
36
Fundamentals of Fluid Mechanics
Oil
Shaft Bearing
dy
Guidance 7KHSUREOHPLVVLPLODUWRDWKLQSODWHPRYLQJEHWZHHQWZR¿[HGSODWHV7KH YHORFLW\ FDQ EH FDOFXODWHG IURP USP DQG ZKHQ LW LV GLYLGHG E\ WKH WKLFNQHVV RI ÀXLG WKH velocity gradient is found out. d bearing - dshaft dy = 0.07 - 0.05 = = P
p dN p ¥ 0.05 ¥ 600 = 60 60 = PV du t=m dy = ¥ = 1P ¥ -
du =
Area = p dL = p ¥ ¥ ¥ -4 = ¥ - P \ F = p¥ A = ¥ ¥ - = N Torque = F ¥
d
5 ¥ - = ¥ - 1P = ¥
(NWKFU&GſPKVKQPU2TQRGTVKGU
37
p NT 60 p ¥ ¥ ¥ - = 60 = ZDWWV
Power =
$YHUWLFDOF\OLQGHURIGLDPHWHUPPURWDWHVFRQFHQWULFDOO\LQVLGHDELJJHUF\OLQGHU RIGLDPHWHUPPERWKKDYLQJKHLJKW PP7KHJDSEHWZHHQWKHF\OLQGHUV FRQWDLQVDIOXLGZLWKYLVFRVLW\XQNQRZQ)LQGYLVFRVLW\LIWRUTXHRI1PLVDSSOLHG WRURWDWHWKHLQQHUF\OLQGHUZLWKUSP T = 30 Nm Fluid
200 200.4
Guidance 9HORFLW\ JUDGLHQW FDQ EH IRXQG IURP WKH USP DQG ÀXLG JDS %\ 1HZWRQ¶V equation of viscosity, viscosity can be calculated. du =
=
p ¥ 0.2 ¥ 200 60
PV dy =
p dN 60
do - di 200.4 - 200 = ¥± 2 2
¥± m Force = t ¥ A Torque =
t¥ A¥d .2
A = pdL = p ¥¥¥– 6
¥± m t ¥¥± ¥
200 ¥± 2
38
Fundamentals of Fluid Mechanics
t=
30 ¥ 2 18.84 ¥ 200 ¥ 10 -5
¥1P
t=m
du dy
¥ = m ¥
m=
2.093 0.2 ¥ 10 -3
1.592 ¥ 10 3 ¥ 0.2 ¥ 10 -3 2.093
Ns2 m A circular disc haviQJUDGLXVRLVNHSWDWVPDOOKHLJKWDERYHD¿[HGVXUIDFHE\DOD\HU RIRLOKDYLQJYLVFRVLW\m'HWHUPLQHWKHH[SUHVVLRQIRUWKHYLVFRXVWRUTXHRQWKHGLVF Disc
w
R
Oil
h
r
dr
,QRUGHUWR¿QGYLVFRXVWRUTXHZHWDNHDQHOHPHQWDU\ULQJDWUDGLXVrDQGWKLFNQHVVdr. If w is angular velocity of the disc, the tangential velocity at ring is u = r.w and area of ring pr.dr t=m
=
du dy
m ¥ rw h
dFr = tr ¥ area of ring
(NWKFU&GſPKVKQPU2TQRGTVKGU
=
m ¥ rw ¥p rdr h
=
2pmw ¥ r dr h
dTr =
2pmw ¥ r dr h
39
Torque = Force ¥ radius
Total torque =
Ú
R
0
dTr =
2pmw R 3 r dr h Ú0 T=
2pmw R 4 ¥ 4 h
but
=
2pmw D4 ¥ 4 ¥ 16 h
=
pmwD4 32h
R=
D 2
$WKUXVWEHDULQJKDVFPGLDPHWHULVVHSDUDWHGE\DQRLO¿OPRIKHLJKWPPIURP ¿[HGEDVH)LQGSRZHUGLVVLSDWHGLQWKHEHDULQJLQFDVHLWURWDWHVDWUSP*LYHQm
Ns m2
N = 400 rpm
h = 2 ´ 10
3
0.1 m 4 Guidance 9LVFRXVWRUTXHT = pmwD can be calculated. Power is equal T ¥ w 32h
w = 2p N / 60 2p ¥ 0.1 ¥ 400 = 60 = 41.86 rad / sec.
40
Fundamentals of Fluid Mechanics
pmwD4 32h p ¥ 0.9 ¥ 41.86 ¥ (0.1)4 = 32 ¥ 2 ¥ 10 -3 = 0.1851 ¥ 10 -3 Nm
T=
Power = T ¥ w = 0.1851 ¥ 10 -3 ¥ 41.86 = 7.74 ¥ 10 -3 watts $VROLGFRne of radius RDQGYHUWH[DQJOHqLVPDGHWRURWDWHDWDQJXODUYHORFLW\w in WKHFRQLFDOFDYLW\FRQWDLQLQJRLOZLWKYLVFRVLW\m. If hLVWKHJDSEHWZHHQWKHFRQHDQG FDYLW\¿QGWRUTXHT to rotate the cone. R R q
r + dr 20
r
h
ds q
r r + dr
Oil
7DNHDVODQWKHLJKWds between a radius r and rdr sin q = or
ds =
dr ds dr sin q
Velocity at radius, r = u = wr 9HORFLW\GL൵HUHQFHdu at r from stationary outer cone surface = wr
(NWKFU&GſPKVKQPU2TQRGTVKGU
Shear stress at strip, tr = m
41
du dy =m
wr h
Force at strip, dF = tr ¥ dA
wr dr ¥pr ¥ h sin q
=m =
as
ds =
dr sin q
2pmw r dr h sin q
Torque at strip = dF ¥ r dTr = \
Torque = =
2pmw r dr h sin q
Ú
R
0
dTr =
2pmw h sin q
Ú
R
0
r 3 dr
2pmw R 4 pmwR 4 ¥ = h sin q 4 2h sin q
:KDWLVWKHFRPSUHVVLELOLW\DQGFRHIILFLHQWRIFRPSUHVVLELOLW\RIDIOXLG" Compressibility. )OXLGV FDQ EH FRPSUHVVLEOH RU LQFRPSUHVVLEOH ,QFRPSUHVVLEOH ÀXLGV KDYH FRQVWDQW GHQVLW\ ZKLOH LQFRPSUHVVLEOH ÀXLGV KDYH YDULDEOH GHQVLW\ ,Q FRPSUHVVLEOH ÀXLGVZKHQSUHVVXUHLVDSSOLHGÀXLGVFRQWUDFWDQGZKHQSUHVVXUHLVUHGXFHGWKH\H[SDQG &RPSUHVVLELOLW\LVWKHSURSHUW\RIDÀXLGZKLFKFKDUDFWHUL]HVLWVDELOLW\WRFKDQJHLWVYROXPH under pressure.
dp
dv V
Coefficient of compressibility. It is the ratio of the change of volume per unit volume, i.e., volumetric strain to change of pressure. If there is change of volume – dv from the original volume V and the change of pressure is dp, then
42
Fundamentals of Fluid Mechanics
dv V dp
&RH൶FLHQWRIFRPSUHVVLbility (b) =
:KDWLVEXONPRGXOXVRIHODVWLFLW\")LQGWKHYDOXHRIEXONPRGXOXVIRULVRWKHUPDODQG adiabable processes. 7KHEXONPRGXOXVRIHODVWLFLW\k) is the ratio of compressive stress to the volumetric strain
dp 1 = dV b V 7KHEXONPRGXOXVFDQEHDOVRH[SUHVVHGLQUHODWLYHFKDQJHLQGHQVLW\ k=
m = rV dm = dr ¥ Vr ¥ dV \ \
\
–
dV dr = V r K=
dP dr r
,VRWKHUPDOSURFHVVFDQEHH[SUHVVHGDV PV = constant \
pdVVdp = 0 p=
\
dp =k dV V
%XONPRGXOXVRILVRWKHUPDOSURFHVVLVHTXDOWRWKHSUHVVXUHRIWKHÀXLG
$GLDEDWLFSURFHVVFDQEHH[SUHVVHGDVPV g constant Pg Vg ± dVVg dp = 0 gP = –
dp =k dV V
\ %XONPRGXOXVLQDGLDEDWLFSURFHVVLVHTXDOWRg time the pressure. $QLQFUHDVHLQSUHVVXUHRIDOLTXLGIURP03DWR03DUHVXOWVLQWRGHFUHDVH LQLWVYROXPH)LQG EXONPRGXOXVDQG FRHIILFLHQWRIFRPSUHVVLELOLW\ P ± ¥61P
(NWKFU&GſPKVKQPU2TQRGTVKGU
43
dV V dp 7 ¥ 106 = dV .002 V
k=–
¥1P
b=
1 1 = k 3.5 ¥ 109
¥– 9 m1
$F\OLQGHUFRQWDLQVPDLUDWN1PZKLFKLVFRPSUHVVHGWRP)LQGEXON PRGXOXVLIFRPSUHVVLRQLVGRQH LVRWKHUPDOO\DQG DGLDEDWLFDOO\*LYHQg Guidance %XONPRGXOXVLQLVRWKHUPDOSURFHVVLVHTXDOWRP which it is g P for adiabatic process PV = PV for isothermal process P =
\
PV 100 ¥ 10 3 ¥ 0.4 1 1 = V2 0.08
= 500 ¥1P k = P
\%XONPRGXOXV
= 500 ¥1P PV g = PV g for adiabatic process
Ê V1 ˆ P = P ÁË V ˜¯
g
2
Ê 0.4 ˆ ¥ Á Ë 0.08 ˜¯
1.4
¥
¥51P K = g P
¥¥51P
1.8 CHANGE OF PHASE ([SODLQ (YDSRUDWLRQ YDSRXUSUHVVXUHDQG ERLOLQJ Evaporation (YDSRUDWLRQ PHDQV D FKDQJH RI SKDVH IURP OLTXLG WR JDVHRXV 7KH UDWH RI evaporation depends upon the pressure and temperature. Evaporation increases with the rise of temperature or lowering of pressure.
44
Fundamentals of Fluid Mechanics
Vapour Pressure&RQVLGHUDOLTXLGZKLFKLVHQFORVHGLQDFORVHGVSDFH7KHPROHFXOHVRI the liquid which attain high energy leave the liquid phase to vapour phase. However, some of the molecules in vapour phase have a tendency to rebound and get absorbed in the liquid. Hence, there is continuous interchange of molecules between the liquid and the vapour above it. The vapour pressure will have a constant value when the molecules leaving and HQWHULQJLQWRYDSRXUVWDWHLVVDPH7KHFRQVWDQWYDSRXUSUHVVXUHH[HUWHGE\WKHYDSRXURQ liquid is called the saturated vapour pressure. Higher the vapour pressure, more volatile is WKH OLTXLG 3HWURO KDV YDSRXU SUHVVXUH RI N1P while water has vapour pressure of N1PDW&+HQFHSHWUROYDSRUL]HVIDVWHUWKDQZDWHU0HUFXU\KDVYHU\ORZYDSRXU SUHVVXUHDQGKLJKGHQVLW\'XHWRWKLVLWLVYHU\VXLWDEOHDVÀXLGIRUPDQRPHWHU Boiling (YDSRUDWLRQRIOLTXLGFHDVHVZKHQVDWXUDWHGYDSRXUSUHVVXUHKDVEHHQDFKLHYHGRQ the liquid. In case vapour pressure decreases below the saturated vapuor pressure, evaporation of liquid starts again and it continues until new equilibrium condition is attained. If the vapour pressure falls considerably, then the molecules leave the liquid surface very rapidly to vapour state and this is called boiling. The boiling point of a liquid is the temperature at which its YDSRXUSUHVVXUHHTXDOVWKHH[WHUQDOSUHVVXUH)RUZDWHUWKHYDSRXUSUHVVXUHEHFRPHV EDUDW&ZKLFKLVHTXDOWRWKHDWPRVSKHULFSUHVVXUHUHVXOWLQJERLOLQJRIWKHZDWHU$W ORZHUDWPRVSKHULFSUHVVXUHOLNHLQKLOOVWDWLRQVZDWHUDWWDLQVYDSRXUSUHVVXUHHTXDOWRORZHU atmospheric pressure at lower temperature and water boils at lower temperature. :KDWLVFDYLWDWLRQ":KDWLVLWVHIIHFW"+RZLVLWDYRLGHG" 7KHÀXLGVWDUWVERLOLQJHYHQDWORZWHPSHUDWXUHLISUHVVXUHRQWKHÀXLGIDOOVWRLWVYDSRXU SUHVVXUHDWWKDWWHPSHUDWXUH6XFKERLOLQJRIWHQRFFXUVLQÀRZLQJÀXLGVVSHFLDOO\RQVXFWLRQ VLGH RI WKH SXPS :KHQ VXFK ERLOLQJ RFFXUV LQ WKH ÀRZLQJ ÀXLGV YDSRXU EXEEOHV EHJLQ to grow in local regions of very low pressure. The formation of bubbles of vapour in the ÀRZLQJÀXLGLVFDOOHGFDYLWDWLRQ Air at Patm
Vapour
Vapour at Pvapour Patm > Pvapour
Pvapour > Patm
Evaporation
Bubbles
Boiling
The bubbles of vapuor are formed due to cavitation in the region of low pressure and EXEEOHV DUH FDUULHG E\ WKH ÀXLG ÀRZ WR RWKHU UHJLRQV VXFK DV GHOLYHU\ VLGH RI WKH SXPS
(NWKFU&GſPKVKQPU2TQRGTVKGU
45
where the pressure is high. In the region of high pressure, bubbles suddenly collapse and vapour condenses, resulting in drop in volume occupied. The space occupied by the bubbles LVQRZDYDLODEOHIRUWKHÀXLGWRUXVKLQWR¿OOLW 7KHUXVKLQJRIÀXLGJHQHUDWHVQRLVHDQGYLEUDWLRQV,IEXEEOHVFROODSVHRQWKHLPSHOOHU YDQHV WKH UXVKLQJ ÀXLG FRUURGHV WKH YDQHV DQG RWKHU VXUIDFHV RI WKH SXPS &DYLWDWLRQ can also occur if a liquid contains dissolved air or other gases in liquid. The solubility of gases in a liquid decreases as the pressure is reduced. Gas or air bubbles are released in WKHVDPHZD\DVYDSRXUEXEEOHVZLWKWKHVDPHGDPDJLQJH൵HFWV7KHFDYLWDWLRQRFFXUVLQ K\GUDXOLFPDFKLQHVKDYLQJÀRZRIKLJKVSHHGÀXLGVVXFKDVWXUELQHVSXPSVSURSHOOHUVRI VKLSDQGSLSHOLQH7KHFDYLWDWLRQKDVWREHDYRLGHGE\HQVXULQJWKDWSUHVVXUHRQWKHÀXLG VKRXOGQRWIDOOEHORZLWVYDSRXUSUHVVXUHLQDQ\UHJLRQRIWKHÀRZE\SURSHUGHVLJQLQJ WKHÀXLGÀRZ
Pfluid < Pvapour
Bubble
Vapour
Pvapour > Pfluid
Fluid Collapse of Bubble
Cavitation
1.9 COHESION AND ADHESION :KDWDUHGLIIHUHQFHVEHWZHHQFRKHVLRQDQGDGKHVLRQ" Cohesion
Adhesion
1.
Cohesion is the intermolecular attraction EHWZHHQWKHPROHFXOHVRIVDPHÀXLGOLNH molecules).
1.
Adhesion is the force of attraction between alike molecules, i.e., the PROHFXOHVRIÀXLGDQGWKHPROHFXOHVRI solid boundary surface in contact with WKHÀXLG
2.
7KHÀXLGWHQGVWRUHVLVWWKHVKHDUVWUHVV due to cohesion.
2.
The property of adhesion enables a liquid to stick to another surface.
3.
If cohesive force is more than adhesive force, liquids form droplets without wetting the contact surface. Example: mercury.
3.
If adhesive force is more than cohesive force, liquids spread on the contact surface and wet the surface. Example: water
4.
For higher cohesion, contact angle is more than 90° for most surfaces.
4.
For higher adhesion contact angle is less than 90°.
46
Fundamentals of Fluid Mechanics
:KDWDUHZHWWLQJDQGQRQZHWWLQJOLTXLGV" Adhesion < Cohesion
Contact surface Cohesion < Adhesion q = Contact angle q Liquid
Liquid q
Contact surface
Wetting Liquid (Spread Out)
Contact surface
Non-Wetting Liquid (forms Droplet)
:KHQ D OLTXLG OLNH PHUFXU\ LV VSLOOHG RQ D VPRRWK VXUIDFH LW WHQGV WR IRUP GURSOHWV7KH cohesive molecular forces between the molecules of mercury are more than the adhesive forces between the molecules of mercury and the contact surface. Mercury tends to stay away from the contact surface. Hence, mercury is said to be a non-wetting liquid. In the case of water, cohesive molecular forces between molecules of water are smaller than the adhesive molecular forces between the molecules of water and the contact surface. Hence, when water is poured on the contact surface, it spreads and wets the contact surface. The wetting and non-wetting liquids are decided by the angle of contact between the liquids and the surface material. Liquids wet the contact surface if contact angle q < p7KHGHJUHH RIZHWWLQJLQFUHDVHVDVFRQWDFWDQJOHGHFUHDVHVWR]HUR,QWKHFDVHRIQRQZHWWLQJOLTXLGV the contact angle > p7KHFRQWDFWDQJOHIRUZDWHULVDOPRVW]HURZKLOHLWLVWR in case of mercury.
1.10 SURFACE TENSION 'H¿QHVXUIDFHWHQVLRQDQGH[SODLQLWVFDXVHV 8378 7KHVXUIDFHWHQVLRQRIDOLTXLGLVGH¿QHGDVWKHIRUFHSHUXQLWOHQJWKLQWKHSODQHRIOLTXLG surface which is acting at right angles on either side of an imaginary line drawn in that surface. /HWDOLTXLGVXUIDFHEHLQGLFDWHGE\SRLQWVDQGDQLPDJLQDU\OLQHAB is drawn LQDQ\GLUHFWLRQLQWKHOLTXLGVXUIDFHDVVKRZQLQWKH¿JXUH7KHVXUIDFHRQHLWKHUVLGHRI this line (AB H[HUWV D SXOOLQJ IRUFH RQ WKH OLQH ZKLFK LV LQ WKH SODQH RI WKH VXUIDFH DQG at right angle to the line (AB). The magnitude of this force per unit length of the line is a measure of the surface tension of the liquid. In case length of line = l and surface tension = sWKHQIRUFHDFWLQJRQRQHVLGHRIWKHOLQHLV F=s¥l or
surface tension
s=
F . The XQLWLV1P l
(NWKFU&GſPKVKQPU2TQRGTVKGU
47
2 F B 3
1 A F
Liquid surface
4 Surface Tension on Liquid Surface
Cause of Surface Tension:5DLQGURSVDQGVRDSEXEEOHVH[LVWLQSHUIHFWO\VSKHULFDOVKDSH Hence there is some other force besides gravity which is controlling the behaviour of the liquids. For a given volume, the surface area of a sphere is the least. Hence, we can say that free surface of the liquid has a tendency to contract to a minimum possible area under the action of this force, which is called surface tension. The free surface of the liquid tends to KDYHDPLQLPXPSRVVLEOHDUHDDQGLWEHKDYHVOLNHDVWUHWFKHGHODVWLFPHPEUDQH$OLTXLG VXUIDFHLVDOZD\VLQDVWDWHRIWHQVLRQ7KLVWHQVLRQLQWKHVXUIDFHLVNQRZQDVVXUIDFHWHQVLRQ The tension in a liquid surface always remains constant. The surface tension is caused by intermolecular cohesive forces between the molecules of the liquid. In order to understand how is surface tension caused on the free surface of a liquid, we FRQVLGHUIRXUOLTXLGPROHFXOHVOLNHA, B, C, and D with their sphere of molecular activity DVVKRZQLQWKH¿JXUHDERYH$VPROHFXOHA is well inside the liquid, it is attracted equally by other molecules in all directions, resulting no force acting on it. Similarly, force on the molecule BLVDOVR]HUR7KHVSKHUHRIDFWLYLW\RIPROHFXOHC is partly outside the liquid and more molecules are pulling it down as compared to molecules, which are pulling it up. Hence, there is a net force acting on it to pull it down. Similarly, molecule DZLOOH[SHULHQFH D QHW IRUFH SXOOLQJ LW GRZQ ZKLFK LV LQ IDFW PD[LPXP$OO PROHFXOHV RQ WKH OLTXLG IUHH VXUIDFH RU QHDU DERXW KDYH WR ZRUN DJDLQVW WKH GRZQZDUG FRKHVLYH IRUFH WR UHDFK WKHUH +HQFH ZRUN LV VWRUHG LQ WKHVH PROHFXOHV LQ WKH IRUP RI SRWHQWLDO HQHUJ\ 7KH SRWHQWLDO energy of the molecules lying on the free surface is greater than the molecules inside the OLTXLG:HNQRZWKDWDV\VWHPDWWDLQVHTXLOLEULXPZKHQLWKDVPLQLPXPSRWHQWLDOHQHUJ\,Q order to have minimum potential energy, the liquid surface tries to have minimum number of molecules in the surface, which is possible by contracting its surface to a minimum area. The contraction produces tension, which is called surface tension. (VWDEOLVKUHODWLRQEHWZHHQVXUIDFHWHQVLRQRIDOLTXLGDQGWKHZRUNGRQHLQLQFUHDVLQJ its surface area. The molecules in the surface have some additional energy due to their position. This additional energy per unit area of the liquid free surface is called surface energy. /HWDOLTXLG¿OPEHIRUPHGEHWZHHQDEHQWZLUHABCD in which the portion of the wire CD FDQ VOLGH RQ WKH UHVW RI WKH ZLUH$V WKH ¿OP VXUIDFH WHQGV WR FRQWUDFW WR UHGXFH WKH surface area, the wire CD tends to move upwards which is opposed by applying a force F.
48
Fundamentals of Fluid Mechanics
,WFDQEHVHHQWKDWWKHUHDUHWZRIUHHVXUIDFHVRIWKH¿OPIURQWDQGEDFN /HWWKHZLUHCD move a distance dx. or
F ¥ l ¥ s (l = length of wire CD & s = surface tension) :RUN F ¥ dx ¥ l ¥ s ¥ dx W = DA ¥ s (DA LQFUHDVHRIVXUIDFHDUHDRI¿OPIRUERWKVLGHV l ¥ dx) s=
W DA Molecules Liquid surface
Central molecule
B
Downward cohesive force
C
D
A Sphere of molecular activity Cohesive Force – Downward on Surface
Molecule and Sphere of Molecular Activity
If DA WKHQ s = W +HQFHWKHVXUIDFHWHQVLRQRIDOLTXLGLVHTXDOWRWKHZRUNUHTXLUHGWRWKHLQFUHDVHWKHVXUIDFH DUHDRIWKHOLTXLG¿OPE\XQLW\DWFRQVWDQWWHPSHUDWXUH7KHUHIRUHVXUIDFHWHQVLRQFDQDOVR EHH[SUHVVHGLQMRXOHPHWUH A
B
Liquid film
Surface tension
C
D
dx F Surface Tension & Work Done
([SODLQ IORDWDWLRQRIQHHGOHRQZDWHU ELJJHUEXEEOHVFDQEHIRUPHGIURPVRDS VROXWLRQDQG VRDSKHOSVLQFOHDQLQJWKHFORWKHV 7KHQHHGOHÀRDWVRQWKHZDWHUGXHWRWKHVXUIDFHWHQVLRQ7KHUHDUHWKUHHIRUFHVDFWLQJRQ WKHQHHGOHDVVKRZQLQWKH¿JXUHLHVXUIDFHWHQVLRQIRUFHVT & T and the weight of the QHHGOH7KH KRUL]RQWDO FRPSRQHQWV RI WKH VXUIDFH WHQVLRQ T & T cancel each other while vertical components add up to balance the weight W.
(NWKFU&GſPKVKQPU2TQRGTVKGU T
49
T Needle
W Floatation of Needle
%XEEOHV IRUPHG IURP SXUH ZDWHU FROODSVH LQ FDVH WKHLU VL]H JURZ 7KH UHDVRQ LV WKDW WKH surface tension of the water is large and pressure density inside the bubble varies inversely
4s ˆ , resulting in the formation of smaller bubbles. However, the with the diameter ÊÁ P = Ë d ˜¯ soap solution has a comparatively much lower surface tension (s is less) and it has two surfaces, resulting in the formation of bigger bubbles. The soap reduces the surface tension of the solution. Therefore a drop of soap solution wets a larger surface area of the cloth in comparison to a drop of pure water. Hence, the soap solution can enter and reach the restricted points of the cloth surface where pure water cannot reach and bring out the dirt particles with it. Also the cohesive forces between the molecules of soap solution are smaller than cohesive force between the molecule of soap solution and the dirt, resulting removal of the dirt.
1.11 PRESSURE INSIDE A DROPLET :K\LVWKHUHDQLQWHUQDOSUHVVXUHLQVLGHDGURSOHW" 8378 7KH H൵HFW RI VXUIDFH WHQVLRQ RI D OLTXLG LV WR UHGXFH WKH VXUIDFH DUHD RI LWV IUHH VXUIDFH UHVXOWLQJGURSVRIOLTXLGWHQGWRWDNHDVSKHULFDOVKDSHLQRUGHUWRPLQLPL]HLWVVXUIDFHDUHD Formation of such droplet due to surface tension will cause an increase of pressure (P) of the liquid inside the droplet, which balances the surface tension. Consider a spherical droplet of diameter dDQGH[FHVVSUHVVXUHGHYHORSHGLQVLGHWKHGURSOHWLVP. If the surface tension is s on the spherical surface of the droplet, then applying the equilibrium on the half droplet DVVKRZQLQWKH¿JXUHZHJHW
6XUIDFHWHQVLRQIRUFH )RUFHGXHWRH[FHVVSUHVVXUH 2 s ¥ p ¥ d = P ¥ pd 4
or
P=
4s d
Since d is very small, the value of P becomes very large. Also if the pressure P is greater than the pressure of vapour or gas in a bubble, the bubble will collapse.
50
Fundamentals of Fluid Mechanics s s
s P
d
s s
s
Spherical Droplet
:KDWLVWKHSUHVVXUHLQWHQVLW\LQVLGHDVRDSEXEEOH" Soap bubble has two surfaces in contact with air i.,e., inside and outside spherical surfaces. )RUHTXLOLEULXP
)RUFHGXHWRVXUIDFHWHQVLRQ )RUFHGXHWRH[FHVVSUHVVXUH spd = P ¥
P=
p d 4
8s d
The intensity of pressure inside the soap bubble is twice as that of water droplet of the same diameter. :KDWLVWKHSUHVVXUHLQWHQVLW\LQVLGHDOLTXLGMHW" 6XUIDFHWHQVLRQDOVRLQFUHDVHVWKHLQWHUQDOSUHVVXUHLQDF\OLQGULFDOMHWRIÀXLG&RQVLGHUD OLTXLGMHWRIF\OLQGULFDOVKDSHZLWKGLDPHWHUd and length lLVDVVKRZQLQWKH¿JXUH)RU HTXLOLEULXP )RUFHGXHWRH[FHVVSUHVVXUH )RUFHGXHWRVXUIDFHWHQVLRQ P(d ¥ l) = s l) P=
2s d
3UHVVXUHLVKLJKDVGLDPHWHURIWKHMet is small. d
l
l
Jet of Water
s s s
s s s s s
s
Forces on Jet
s s s
P
(NWKFU&GſPKVKQPU2TQRGTVKGU
51
$LULVVHQWLQWRDZDWHUWDQNWKURXJKDQR]]OHWRIRUPDVWUHDPRIEXEEOHVRIGLDPHWHU PP +RZ PXFK SUHVVXUH RI WKH DLU DW WKH QX]]OH PXVW H[FHHG IURP WKH ZDWHU IRU EXEEOHVIRUPDWLRQLIVXUIDFHWHQVLRQRIZDWHULV¥±1P )RUEXEEOHVWKHH[FHVVSUHVVXUHLV
4s d 4 ¥ 72 ¥ 10 -3 = 3 ¥ 10 -3 = 96 N/m 2
P=
1.12 CAPILLARY RISE OR FALL ([SODLQWKHSKHQRPHQRQRIFDSLOODU\2EWDLQDQH[SUHVVLRQIRUFDSLOODU\ULVHRUIDOORI DOLTXLGLQDYHU\VPDOOGLDPHWHUWXEH 8378 When a small diameter tube (diameter < 6 mm) open at both ends is lowered vertically into a liquid, which wets the tube, the liquid rises in the tube. However, if the liquid is such that it does not wet the tube, then the level of liquid in the tube depresses below the level of the liquid outside the tube. This phenomenon of the rise or fall of liquid level in the capillary tube is called capillarity. The cause of capillarity is the molecular forces of cohesion and adhesion. If the adhesion force between the molecules of liquid and the tube is more than the cohesion force between the liquid molecules, the liquid has the property to wet the glass as well as it rises in the capillary. The free surface of the liquid attains concave shape when liquid rises in the capillary. The surface tension forms angle q with the vertical, which is DOVROHVVWKDQ,QFDVHWKHOLTXLGLVVXFKWKDWLWKDVJUHDWHUFRKHVLYHIRUFHEHWZHHQLWV molecules than the adhesive force between its molecules and the molecules of the tube material, then liquid level falls below its level outside the tube. The free surface of the liquid LQ WKH WXEH DWWDLQV FRQYH[ VKDSH DQG WKH VXUIDFH WHQVLRQ IRUPV DQJOH q with the vertical ZKLFKLVJUHDWHUWKDQ
52
Fundamentals of Fluid Mechanics
Expression for capillary rise and fall: Let h be the capillary rise or fall of the liquid w.r.t. RXWVLGHÀXLGOHYHOd = diameter of tube, s = surface tension, and r GHQVLW\RIWKHÀXLG )RUFHGXHWRVXUIDFHWHQVLRQDFWLQJRQÀXLGLQYHUWLFDOGLUHFWLRQ ZHLJKWRIWKHZDWHURI height hZUWRXWVLGHÀXLGOHYHO s cos q ¥ pd = h=
pd 2 ¥h¥r¥g 4 4s cos q rgd
)LQGWKHFDSLOODU\ULVHRUIDOOIRUZDWHUDQGPHUFXU\ For capillary rise or fall h= For water,
q=0 h=
For mercury,
4s cos q rgd 4s rgd
q h=
=
+ 4s cos 140 rgd - 4s cos 50 rgd
=–
2.57 s rgd
Minus sign indicates fall of mercury level inside the tube. 7KHVXUIDFHWHQVLRQRIVRDSVROXWLRQLV¥± 1P+RZPXFKZRUNZLOOEHGRQHLQ PDNLQJDEXEEOHRIGLDPHWHUFPE\EORZLQJ" Guidance 7KHZRUNGRQHLQPDNLQJDEXEEOHE\EORZLQJLVVWRUHGLQWKHIRUPRIHQHUJ\ LQWKHVXUIDFHRIWKHEXEEOH7KHVRDSEXEEOHKDVWZRVXUIDFHVLHLQWHUQDODQGH[WHUQDO 6XUIDFHDUHDRIEXEEOH ¥ 4pr = 8 ¥ p ¥ ¥± m :RUNGRQH s ¥ area ¥± ¥¥± = 5 ¥–5MRXOHV
(NWKFU&GſPKVKQPU2TQRGTVKGU
53
$PHUFXU\GURSRIUDGLXVFPLVVSUD\HGLQWRGURSOHWVRIHTXDOVL]H&DOFXODWHWKH HQHUJ\H[SDQGHG7DNHs ¥± 1P Guidance :H KDYH WR ¿QG WKH FKDQJH RI VXUIDFH DUHD 7KH FKDQJH RI VXUIDFH DUHD LV multiplied by surface tension for obtaining energy. Let smaller droplets have radius = r
4 4 pR 6 ¥ ¥ pr (Volume remains same) 3 3 R r
\
r ¥– 4 m Let DAEHWKHGL൵HUHQFHRIVXUIDFHDUHDRIVPDOOHUGURSOHWVDQGELJJHUGURSOHWV DA 6 ¥ 4pr – 4pR = 4p >6r±r)] = 4p ¥ 99 ¥– 4 m :RUNGRQH s = DA
= ¥± ¥ 4p ¥ 99 ¥– 4 .98 ¥±MRXOHV 7ZRFDSLOODU\WXEHVRIGLDPHWHUPPDQGPPDUHKHOGYHUWLFDOO\LQVLGHZDWHURQH E\RQH+RZPXFKKLJKWKHZDWHUZLOOULVHLQWRHDFKWXEH7DNHs ¥±1P ,QFDSLOODU\WKHULVHRIOLTXLGLV h=
4s cos q rgd
For water, q = 0 for tube having d = 5 mm h = =
Now for
4s rgd 4 ¥ 7 ¥ 10 -2 5 ¥ 10 -3 ¥ 1 ¥ 10 3 ¥ 9.8
= 9.7 mm d = 4 mm h d = h d h =
9.7 ¥ 5 4
PP 1RWHRise and fall increases with the decrease of tube diameter.
54
Fundamentals of Fluid Mechanics
'ULYH DQ H[SUHVVLRQ IRU WKH FDSLOODU\ ULVH RI D OLTXLG EHWZHHQ SDUDOOHO SODWHV DW D distance t apart. Let the length of parallel plates be l Let the liquid rise to height be h Weight of liquid of height h = The force of surface tension at surface acting vertically h ¥ r ¥ g ¥ t ¥ l = s ¥¥ l cos q or
h=
2s cos q t ◊r◊ g
7ZRSDUDOOHOSODWHVRIJODVVDUHKHOGZLWKDJDSRIPP)LQGWKHULVHRIZDWHULQWKH JDSZKHQSODWHVDUHGLSSHGLQZDWHU7DNHs 1P The rise of water due to capillary action h= =
2s cos q t ¥r¥ g 2 ¥ 0.075 ¥ cos 0 0.001 ¥ 9.8 ¥ 10 3
PP l s
s
h
t Capillary Rise in Parallel Plates
$JODVVWXEHZLWKGLDPHWHUPPLVLPPHUVHGLQPHUFXU\:KDWLVWKHIDOORIPHUFXU\ in tube w.r.t. outside mercury? Take s 1PDQGq Capillary fall of mercury (h) is 4s cos q h= rgd =
4 ¥ 0.5 ¥ cos 130 13.6 ¥ 10 3 ¥ 9.81 ¥ 3 ¥ 10 -3
±PP
(NWKFU&GſPKVKQPU2TQRGTVKGU
55
Minus sign shows that the mercury in the tube falls below the mercury level outside the tube. )LQGPLQLPXPGLDPHWHURIJODVVWXEHLQZKLFKFDSLOODU\HIIHFWLVWREHUHVWULFWHGWR mm when immersed in water. Take s 1P Capillary rise (h) is h= ¥± =
d=
4s cos q rgd 4 ¥ 0.075 ¥ cos 0 10 3 ¥ 9.81 ¥ d 4 ¥ 0.075 3 ¥ 10 -3 ¥ 10 3 ¥ 9.81
PP $ 8 WXEH KDV WZR OLPEV RI LQWHUQDO GLDPHWHU RI DQG PP UHVSHFWLYHO\7KH WXEH FRQWDLQVZDWHU)LQGWKHGLIIHUHQFHRIOHYHOLQWKHOLPEVLIswater 1P 7KH ZDWHU ZLOO ULVH PRUH LQ WKH VPDOO GLDPHWHU OLPE7KH GL൵HUHQFH LQ WKH OHYHO ZDWHU LQ the limbs is 6
16
H
U Tube: 2 Capillaries
Ê 4s cos q ˆ Ê 4s cos q ˆ H = h1 - h2 = Á Ë rgd1 ˜¯ ÁË rgd2 ˜¯ q=0 H= =
\
cos q = 1
4s Ê 1 1ˆ - ˜ Á rg Ë d1 d2 ¯ 4 ¥ 0.075 È 1 1 ˘ -3 -3 ˙ 3 Í 10 ¥ 9.81 Î 6 ¥ 10 16 ¥ 10 ˚
56
Fundamentals of Fluid Mechanics
0.3 È 1 1 ˘ 9.81 ÍÎ 6 16 ˙˚ 0.3 = [0.166 - 0.0625] 9.81 0.3 = ¥ 0.1035 9.81 = 3.16 mm =
+RZGRHVWKHULVHRIOLTXLGOHYHOLQFDSLOODU\WXEHJHWDIIHFWHGL ZKHQWKHWXEHKDV LQVXIILFLHQWOHQJWKWRWKHSRVVLEOHULVHRIWKHOLTXLGOHYHODQGLL ZKHQWRSRIWXEHLV closed. The radius r of capillary tube and the radius of curvature of liquid free surface (R) are related DV
r = R cos q
r =R cos q
or
2s cos q rgr 2s = rgR
h=
R
s
q
R
s
s
1
R q
q
s q1
1
R >R q1 > q 1 h R
\
h1 =
Rh = R1 h1 h1 < h
(NWKFU&GſPKVKQPU2TQRGTVKGU
57
1RWHWater will never rise beyond the height of capillary and spill or fountain out of it. ,IWRSRIFDSLOODU\LVFORVHGDLUHQWUDSSHGDWWRSRIWKHFDSLOODU\H[HUWVSUHVVXUHVWRRSSRVH WKHULVHRIÀXLGLQWKHFDSLOODU\GXHWRFDSLOODULW\+HQFHWKHULVHRIOLTXLGOHYHOZRXOGEH less than the normal rise. :KDWDUHWKHGLIIHUHQWPHWKRGVRIGHWHUPLQDWLRQRIYLVFRVLW\DQGNLQHPDWLFYLVFRVLW\" 7KH PHWKRGV RI PHDVXULQJ YLVFRVLW\ DQG NLQHPDWLF YLVFRVLW\ DUH FDSLOODU\ WXEH VSKHUHUHVLVWDQFH URWDWLRQDOF\OLQGHUDQG YLVFRPHWHU Capillary Tube: The method is based on the fact that the volume (V ) per second of DÀRZWKURXJKDKRUL]RQWDOFDSLOODU\WXEHRIDJLYHQUDGLXVr) and length (l) under a FRQVWDQW GL൵HUHQFH RI SUHVVXUH dp) between its ends is inversely proportional to the YHORFLW\RIWKHÀXLG Flow Q =
V pr 4 dP = 8lm t Linear drop of pressure
dp Distance 2r
l Flow through Capillary
Sphere Resistance /LNH IULFWLRQ H[HUWLQJ UHVLVWDQFH WR PRWLRQ RQ GU\ VXUIDFH WKH viscosity of a liquid causes a frictional resistance to the motion of any body moving WKURXJKWKHOLTXLG$PHWDOEDOOZKHQGURSSHGLQWRDMDURIDOLTXLGPRYHVGRZQDQG DWWDLQVDFRQVWDQWWHUPLQDOYHORFLW\ZKLFKGHSHQGVXSRQWKHYLVFRVLW\RIWKHÀXLG7KH terminal velocity also varies inversely with the radius of sphere. The viscous force acting on the sphere is given by F = 6pmru where u = velocity, m = viscosity, and r = radius At the time of terminal velocity, the weight of sphere is equal to the drag force and buoyancy force. No more variation of velocity is possible after achieving terminal velocity. 4 3 4 pr grsolid = 6 pmruterminal + pr 3 grfluid 3 3 2r 2 or uterminal = g (rsolid - rfluid ) gm
58
Fundamentals of Fluid Mechanics
Sphere Achieving Terminal Velocity
Rotational Cylinder$F\OLQGHURIUDGLXVriLVURWDWHGFRD[LDOO\LQVLGHD¿[HGF\OLQGHURI radius ro7KHDQQXODUVSDFHEHWZHHQWKHF\OLQGHUVLV¿OOHGZLWKDOLTXLGKDYLQJYLVFRVLW\ m. The cylinders have equal length of l. Now a torque T is applied on the inner cylinder to move with angular velocity w the inner cylinder Shear stress on the ÀXLG m
du dy T
Fluid
ri
r0
ro - ri , V = ri w dv t=m ro - ri F = t¥ A r +r A = DUHD = p o i ¥ l r +r Torque, T = F ¥ o i dy =
(4) Viscometer ,Q WKLV PHWKRG WLPH WDNHQ WR SDVV D FHUWDLQ YROXPH RI OLTXLG WKURXJK DQ RUL¿FH ¿WWHG DW WKH ERWWRP RI WKH YLVFRPHWHU LV PHDVXUHG 7KH VD\EROW XQLYHUVDO YLVFRPHWHUKDVDYHUWLFDOWXEHRIOHQJWK±PPDQG±PPGLDPHWHU
(NWKFU&GſPKVKQPU2TQRGTVKGU
59
The time measured in seconds to pass 60 cc of any liquid is called “second saybolt” ZKLFKKHOSVLQ¿QGLQJYLVFRVLW\E\
v=
m = t t r = t t
IRU t £ IRU t >
$ EDOO RI PP GLDPHWHU LV GURSSHG LQWR D OLTXLG RI VS ZHLJKW N1P. If the sp ZHLJKWRIPDWHULDORIEDOOLVN1PDQGYHORFLW\RIEDOOGRZQZDUGLVPPLQ WKHQ¿QGYLVFRVLW\RIWKHOLTXLG u terminal =
r (rsolid ¥ g – rÀXLG ¥ g) 9m
¥ ¥ - 0.08 = [gsolid – gÀXLG] 9¥m 60 ¥– =
m=
¥ ¥ -6 [78 – 8] ¥ 9¥m ¥ ¥ - ¥ ¥ -
Ns m
$Q RLO RI PHDQ GHQVLW\ NJIP IORZV XQGHU D KHDG RI P WKURXJK P RI SLSHRIFPGLDPHWHU2ZLQJWRFRROLQJYLVFRVLW\FKDQJHVDORQJWKHOHQJWKDQGPD\ EH WDNHQ DV SHU VHFRQG RYHU WKH ¿UVW P DQG RYHU WKH VHFRQG P Determine the flow in mVHFQHJOHFWLQJHQWUDQFHDQGH[LWORVVHV 3000 m
m2
m1
1500
0.3
1500
dP1 h = 30 d2P2 Head Variation
60
Fundamentals of Fluid Mechanics
Flow through a pipe per second,
Q=
pr 4 d r 8l m
dr =
or
Q ¥ 8l m pr 4
where dp SUHVVXUHGL൵HUHQFHDWERWKHQGV r = radius l = length m = viscosity Total head =
dP dP + 0 rg rg
Q ¥ 8 ¥ lm Q ¥ 8 ¥ l ¥ m + = pr 4 ¥ rg pr 4 ¥ rg Q= =
s ¥ P ¥ g ¥ pr 4 (lm + l m )8
¥ ¥ ¥ p ¥ 4 + ¥
l = l =
= P V ,QRUGHUWRFODPSWKHYLEUDWLRQVDGDVKSRWKDYLQJDSLVWRQDQGF\OLQGHUGLDPHWHUVRI DQGFPUHVSHFWLYHO\LVXVHG,IWKHSLVWRQZKLFKKDVOHQJWKRIFPVOLGHVLQRLO RIYLVFRVLW\SRLVHZLWKDYHORFLW\RIFPVHF¿QGWKHUHVLVWDQFHWRPRYHPHQW Cylinder
9.8
Piston
Oil
12 cm
Shear force, t = m du PVdy =
10 cm
du dy
-
P
(NWKFU&GſPKVKQPU2TQRGTVKGU
t ¥
61
1P
Area, pdL = p ¥ 0.098 ¥
P
Resistance, F = t ¥ A
¥ 1
([SODLQWKHGLIIHUHQWNLQGVRIIOXLGVXVLQJQHDWVNHWFKRIUKHRJUDPZLWKRQHH[DPSOH RIHDFK 8378 7KHGL൵HUHQWNLQGVRIÀXLGVFDQEH du Newtonian Fluids:7KHVHÀXLGVIROORZ1HZWRQ¶VHTXDWLRn of viscosity, i.e., t = m dy . WaWHUDQGNHURVHQHDUH1HZWRQLDQÀXLGV Non-Newtonian Fluids:7KHVHÀXLGVGRQRWIROORZWKH1HZWRQ¶VHTXDWLRQRIYLVFRVLW\ du . Suspensions or solution of clay or graphites, polymer solution and even i.e., t π m dy
ouUEORRGDUHQRQ1HZWRQLDQÀXLGV Plastics: 6RPH ÀXLGV ZKLFK ÀRZ RQO\ DIWHU WKH DSSOLFDWLRQ RI VRPH ¿QLWH VWUHVV DUH NQRZQDVSODVWLFV 7KHEHKDYLRXURIWKHVHÀXLGVLVDVVKRZQLQ5KHRORJ\GLDJUDPEHORZ Elastic solids Thyxotropic fluids
Ideal plastic
Newtonian fluids Shear stress
Real plastic Ideal fluids
du dy
Rheology Diagram
62
Fundamentals of Fluid Mechanics
$VVXPLQJVDSLQWUHHVULVHVSXUHO\GXHWRFDSLOODU\ULVHSKHQRPHQRQ¿QGWKHGLDPHWHU RIWKHWXEHLQPPZKLFKFDQFDUU\LWWRDKHLJKWRIP$VVXPHWKHVDSWRKDYHWKH VDPHFKDUDFWHULVWLFVDVWKRVHRIZDWHU 8378 Capillary rise, h =
4cos q ¥ s rgd
s water = 1P \
¥ ¥ ¥ ¥ ¥ d ¥ ¥ d= ¥ - ¥ ¥ ¥ d = ¥ -6 P h=
= ¥ - PP Discuss effect of temperature and pressure on the physical properties of the fluid. 8378 7KHH൵HFWRIWHPSHUDWXUHDQGSUHVVXUHRQWKHSK\VLFDOSURSHUWLHVDUH Viscosity: Viscosity of liquids drops with increase of the temperature of the liquids. On the other hand, viscosity of gases rises with increase in the temperature of the gases. ,QOLTXLGVFRKHVLYHIRUFHVDUHSUHGRPLQDQWDVOLTXLGVKDYHFORVHO\SDFNHGPROHFXOHV The cohesive forces of the molecules in liquids decrease with increase in temperature. In gases, cohesive forces are small and the molecular momentum transfer predominates which increases with increase in temperature. Hence, viscosity of gases increases with WKHULVHRIWHPSHUDWXUH7KHYLVFRVLW\RIOLTXLGVDWDQ\WHPSHUDWXUHFDQEHJLYHQDV m=
m0 where m0, a & b are constants. On the other hand viscosity of gases + at + b t
foUDQ\WHPSHUDWXUHFDQEHJLYHQDV m = m0a tbt Density: Density of liquids may be considered constant. However, the density of gases varies as per the variation of pressure and temperature. The relationship is
PV = m RT V P = RT m P = RT r
The density varies inverse proportionally to temperature and proportionally to pressure. Surface Tension: Surface tension of the liquids decreases with the increase of temperature.
(NWKFU&GſPKVKQPU2TQRGTVKGU
63
)RUm SRLVHr JPFPNLQHPDWLFYLVFRVLW\LQVWRNHVLV D E F G &LYLO6HUYLFHV u=
m 0.06 = = 0.067 r 0.9
Option (c) is correct. $WURRPWHPSHUDWXUHWKHG\QDPLFDQGNLQHPDWLFYLVFRVLW\RIZDWHU D DUHERWKJUHDWHUWKDQDLU E DUHERWKOHVVWKDQDLU F DUHUHVSHFWLYHO\JUHDWHUWKDQDQGOHVVWKDQDLU G DUHUHVSHFWLYHO\OHVVWKDQDQGJUHDWHUWKDQDLU ,(6 7KHG\QDPLFYLVFRVLW\RIZDWHULVJUHDWHUWKDQDLUEXWLWVNLQHPDWLFYLVFRVLW\LVOHVVWKDQ air. Option (c) is correct. 7KH VXUIDFH WHQVLRQ RI ZDWHU DW & LV ¥ ± 1P7KH GLIIHUHQFH LQ WKH ZDWHU VXUIDFH ZLWKLQ DQG RXWVLGH DQ RSHQHQGHG FDSLOODU\ WXEH RI PP LQWHUQDO ERUH LQVHUWHGDWWKHZDWHUVXUIDFHZRXOGEH D PP E PP F PP G PP ,(6 s
s
h
s cos q ¥ pd =
h=
pd ¥ r ¥ g ¥ h q = 0 for water 4
s ¥ ¥ - = rg ¥ d ¥ ¥ ¥ ¥ -
ª PP Option (d) is correct. $ VTXDUH SODWH FP ¥ FP ZHLJKLQJ 1 VOLGHV GRZQ RQ DQ LQFOLQHG SODQH RI VORSHYHUWLFDOKRUL]RQWDOZLWKDXQLIRUPYHORFLW\RIPV,IDWKLQOD\HURIRLO RIWKLFNQHVVFP¿OOVWKHVSDFHEHWZHHQWKHSODWHDQGWKHLQFOLQHGSODQHGHWHUPLQH WKHFRHIILFLHQWRIYLVFRVLW\RIWKHRLO 8378
64
Fundamentals of Fluid Mechanics W sinq q
tan q = \
q Force = W sin q ¥VLQ 1
du dy
Now shear stress = m ¥
=m¥
0.4 × −
t¥A
6KHDUIRUFHUHVLVWDQFH
=m¥
0.4 ¥ ¥ 50 ¥ 50 ¥–4 0.5
m \ Force due to gravity = shear resistance m
Ns = m $FPGLDVKDIWUXQVDWUSPLQDVOHHYHZLWKDUDGLDOGLVWDQFHRIPP,IWKH VOHHYH OHQJWK LV FP ORQJ DQG WKH VSDFH LV ¿OOHG ZLWK DQ RLO RI G\QDPLF YLVFRVLW\ m NJPVGHWHUPLQHWKHWRUTXHUHVLVWDQFH 8378 \
m=
Shaft Sleeve
15 cm Oil
1 mm
du =
pdN 60
- = p ¥ ¥ ¥ 60
(NWKFU&GſPKVKQPU2TQRGTVKGU
65
PV dy ¥± m t=m◊
du dy
¥
¥ -
= 4¥1P Force = t ¥ A ¥ ¥ pdl
¥ ¥ p ¥ ¥±) ¥ ¥±)
1
Torque = Force ¥5DGLXV 8 ¥
¥±
1P
,IWKHVXUIDFHWHQVLRQRIZDWHUDLULQWHUIDFHLV1PWKHJDXJHSUHVVXUHLQVLGHD UDLQGURSRIPPGLDPHWHUZLOOEH E 1P D 1P F 1P G 1P ,(6 Pressure in droplet =
= Option (d) is correct.
4s D ¥ ¥ -
1P
1.13 QUESTIONS FROM COMPETITIVE EXAMINATIONS :KLFKRQHRIWKHIROORZLQJVHWVRIFRQGLWLRQVFOHDUO\DSSO\WRDQLGHDOIOXLG"
D 9LVFRXVDQGFRPSUHVVLEOH
E 1RQYLVFRXVDQGLQFRPSUHVVLEOH
F 1RQYLVFRXVDQGFRPSUHVVLEOH G 9LVFRXVDQGLQFRPSUHVVLEOH
,GHDOÀXLGKDVQRYLVFRVLW\DQGFRPSUHVVLELOLW\ Option (b) is correct.
,$6
66
Fundamentals of Fluid Mechanics
,QD1HZWRQLDQIOXLGODPLQDUIORZEHWZHHQWZRSDUDOOHOSODWHVWKHUDWLREHWZHHQWKH VKHDUVWUHVVDQGUDWHRIVKHDUVWUDLQLVJLYHQE\
D μ d u dy
E μ
⎛ ⎞ F μ ⎜ du ⎟ ⎝ dy ⎠
du dy
G μ ⎛ du ⎞ ⎜⎝ dy ⎟⎠
,$6
FoU1HZWRQLDQÀXLGVZHKDYHVKHDUVWUHVVSURSRUWLRQWRWKHUDWHRIVWUDLQFKDQJHRUYHORFLW\ gradient du T= m dy Option (b) is correct. 7KH UHODWLRQV EHWZHHQ VKHDU VWUHVV W YHORFLW\ JUDGLHQW IRU LGHDO IOXLG 1HZWRQLDQ IOXLGVDQGQRQ1HZWRQLDQIOXLGVDUHJLYHQEHORZ
⎛ du ⎞ ⎛ du ⎞ a) W , t = μ ⎜ ⎟ , t = μ ⎜ ⎟ ⎝ dy ⎠ ⎝ dy ⎠
⎛ du ⎞ ⎛ du ⎞ b) W , t = μ ⎜ ⎟ , t = μ ⎜ ⎟ ⎝ dy ⎠ ⎝ dy ⎠
F W
⎛ du ⎞ ⎛ du ⎞ ⎛ du ⎞ μ⎜ ⎟,t = μ⎜ ⎟ ,t = μ⎜ ⎟ ⎝ dy ⎠ ⎝ dy ⎠ ⎝ dy ⎠
⎛ du ⎞ ⎛ du ⎞ G W μ ⎜ ⎟ , t = μ ⎜ ⎟ , t = 0 ⎝ dy ⎠ ⎝ dy ⎠
,$6
,GHDOÀXLGVKDYHQRYLVFRVLW\DQGW IRUWKHVHÀXLGV+RZHYHU1HZWRQLDQ¶VÀXLGVKDYHW = m⋅
du whLOHQRQ1HZWRQLDQÀXLGVKDYHVRPHSRZHURIYHORFLW\JUDGLHQWIRUVKHDUVtress dy
Option (b) is correct. )OXLGVWKDWUHTXLUHDJUDGXDOO\LQFUHDVLQJVKHDUVWUHVVWRPDLQWDLQDFRQVWDQWVWUDLQ rate are known as D 5KHGRSHWLFIOXLGV E 7KL[RWURSLFIOXLGV F 3VHXGRSODVWLFIOXLGV G 1HZWRQLDQIOXLGV ,$6
⎛ du ⎞ 1HZWRQLDQÀXLGVKDYHDFRQVWDQWVWrain rate ⎜ ⎟ for a given shear stress (W) ⎝ dy ⎠ Option (d) is correct.
(NWKFU&GſPKVKQPU2TQRGTVKGU
67
$WWKHLQWHUIDFHRIDOLTXLGDQGJDVDWUHVWWKHSUHVVXUHLV D +LJKHURQWKHFRQFDYHVLGHWRWKDWRQWKHFRQYH[VLGH E +LJKHURQWKHFRQYH[VLGHFRPSRUHGWRWKDWRQWKHFRQFDYHVLGH F (TXDOWRERWKVLGHV G (TXDOWRVXUIDFHWHQVLRQGLYLGHGE\UDGLXVRIFXUYDWXUHRQERWKHQGV ,$6 The pressure inside the air bubble is higher, i.e., concave side. Option (a) is correct. :KHQ D ÀDW SODWH RI P DUHD LV SXOOHG DW D FRQVWDQW YHORFLW\ RI FPV SDUDOOHO WR DQRWKHUVWDWLRQDU\SODWHORFDWHGDWDGLVWDQFHFPIURPLWDQGWKHVSDFHLQEHWZHHQLV ¿OOHGZLWKDÀXLGRIG\QDPLFYLVFRVLW\ 1VPWKHIRUFHUHTXLUHGWREHDSSOLHGLV D 1 E 1 F 1 G 1 ,$6 ⎛ du ⎞ W = m⋅ ⎜ ⎟ ⎝ dy ⎠ = ×
1P Force = W × A î 1
Option (a) is correct. &RQVLGHUWKHIROORZLQJVWDWHPHQWV *DVHVDUHFRQVLGHUHGLQFRPSUHVVLEOHZKHQ0DFKQXPEHULVOHVVWKDQ $1HZWRQLDQIOXLGLVLQFRPSUHVVLEOHDQGQRQYLVFRXV $QLGHDOIOXLGKDVQHJOLJLEOHVXUIDFHWHQVLRQ :KLFKRIWKHVHVWDWHPHQWVLVDUHFRUUHFW" D DQG E DORQH F DORQH G DQG ,$6 Option (d) is correct. 0DWFK /LVW, SK\VLFDO SURSHUWLHV RI IOXLG ZLWK /LVW,, GLPHQVLRQVGH¿QLWLRQV DQG select the correct answer. /LVW, /LVW,, du is constant D $EVROXWHYHORFLW\ dy
E .LQHPDWLFYHORFLW\ F 1HZWRQLDQÀXLG G 6XUIDFHWHQVLRQ
1HZWRQSHUPHWUH 3RLVH 6WUHVVVWUDLQLVFRQVWDQW 6WRNHV
68
Fundamentals of Fluid Mechanics
&RGHV $ % & ' D E F G ,$6 Option (d) is correct. Assertion (A): ,QDIOXLGWKHUDWHRIGHIRUPDWLRQLVIDUPRUHLPSRUWDQWWKDQWKHWRWDO deformation itself. Reason (R): $ÀXLGFRQWLQXHVWRGHIRUPVRORQJDVWKHH[WHUQDOIRUFHVDUHDSSOLHG D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,$6 %RWK$DQG5DUHFRUUHFWDQGDOVR5LVDFRUUHFWH[SODQDWLRQIRU5 Option (a) is correct. Assertion (A): ,QDIOXLGWKHUDWHRIGHIRUPDWLRQLVIRUPRUHLPSRUWDQWWKDQWKHWRWDO deformation itself. Reason (R): $IOXLGFRQWLQXHVWRGHIRUPVRORQJDVWKHH[WHUQDOIRUFHVDUHDSSOLHG D %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG%DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 7KHDVVHUWLRQ$ DQGUHDVRQ5 DUHSDUWRIWKHFKDUDFWLVWLFVRIÀXLG Option (a) is correct. 1HZWRQ¶VODZRIYLVFRVLW\GHSHQGVXSRQWKH D 6WUHVVDQGVWUDLQLQDIOXLGYHORFLW\ E 6KHDUVWUHVVSUHVVXUHDQGYHORFLW\ F 6KHDUVWUHVVDQGUDWHRIVWUDLQ G 9LVFRVLW\DQGVKHDUVWUHVV ,(6 A per Newton’s law du W = m⋅ dy where W = shear stress du = velocity gradient or rate of strain and dy Option (c) is correct.
(NWKFU&GſPKVKQPU2TQRGTVKGU
69
:KDWLVWKHXQLWRIG\QDPLFYLVFRVLW\RIDIOXLGWHUPHG³SRLVH´HTXLYDOHQWWR" D G\QHFP E JPVFP G JPFPV ,(6 F G\QHVFP ⎛ du ⎞ W = m⎜ ⎟ ⎝ dy ⎠
or
dyne dyne − s = cm = du FP V cm dy cm
τ
m
Option (c) is correct. 7KHVKHDUVWUHVVGHYHORSHGLQOXEULFDWLQJRLORIYLVFRVLW\SRLVH¿OOHGEHWZHHQWZR SDUDOOHOSODWHVFPDSDUWDQGPRYLQJZLWKUHODWLYHYHORFLW\RIPVLV D 1P E 1P
F
N m
G 1P
,(6
⎛ du ⎞ T = m×⎜ ⎟ ⎝ dy ⎠ = î î
1P Option (b) is correct. :KDWDUHWKHGLPHQVLRQVRINLQHPDWLFYLVFRVLW\RIIOXLG E L T± D LT± F ML± T± G ML± T± v=
,(6
m 6WUHVV UDWH RI VWUDLQ = r 0DVV PHWHU
± 1HZWRQ P M .L.T ± L ×T VHF = = P P M L
= LT ± Option (b) is correct. $QRLORI6*KDVYLVFRVLW\RIVWRNHVDW&:KDWZLOOEHLWVYLVFRVLW\LQ1V m ? D E F G ,(6
70
Fundamentals of Fluid Mechanics
7KHNLQHPDWLFYLVFosity v =
μ ρ
m = m × r î–4 îî) 1VP Option (c) is correct. 'HFUHDVHLQWHPSHUDWXUHLQJHQHUDOUHVXOWVLQ D DQLQFUHDVHLQYLVFRVLWLHVRIERWKJDVHVDQGOLTXLGV E DGHFUHDVHLQWKHYLVFRVLWLHVRIERWKOLTXLGVDQGJDVHV F DQLQFUHDVHLQWKHYLVFRVLWLHVRIOLTXLGVDQGGHFUHDVHLQWKDWRIJDVHV G DQGHFUHDVHLQWKHYLVFRVLWLHVRIOLTXLGVDQGDQLQFUHDVHLQWKDWRIJDVHV,(6 The viscosity of water will increase with decrease of temperature as cohesion increases while the viscosity of air will decrease with decrease of temperature as transfer of molecular momentum decreases. Option (c) is correct. Assertion (A): ,Q JHQHUDO YLVFRVLW\ LQ OLTXLGV LQFUHDVHV DQG JDVHV ZKLOH LW GHFUHDVHV with rise in temperature. Reason (R): 9LVFRVLW\LVFDXVHGE\LQWHUPROHFXODU IRUFHVRI FRKHVLRQDQGWUDQVIHURI PROHFXODUPRPHQWXPEHWZHHQIOXLGOD\HUVRIZKLFKLQOLTXLGVWKHIRUPHUDQGLQJDVHV WKHODWHUFRQWULEXWHWKHPDMRUSDUWWRZDUGVYLVFRVLW\ D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 The assertion (A) is false but reason (R) is true. Option (d) is correct. $VVHUWLRQ$ %ORRGLVD1HZWRQLDQIOXLG Reason (R): 7KHUDWHRIVWUDLQYDULHVQRQOLQHDUO\ZLWKVKHDUVWUHVVIRUEORRG D %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 $VVHUWLRQ$ LVIDOVHDVEORRGLVDQRQ1HZWRQLDQÀXLG+RZHYHUUHDVRQ5 LVWUXH Option (d) is correct. ,IWKHUHODWLRQVKLSEHWZHHQWKHVKHDUVWUHVVW DQGWKHUDWHRIVKHDUVWUDLQLVH[SUHVVHG n
as
⎛ du ⎞ du WKHQWKHIOXLGZLWKW μ ⎜ ⎟ ZLWKH[SRQHQWn!LVNQRZQDVZKLFKRQHRI ⎝ dy ⎠ dy
thHIROORZLQJ"
(NWKFU&GſPKVKQPU2TQRGTVKGU
71
D %LQJKDPSODVWLF E 'LODWHQWIOXLG F 1HZWRQLDQIOXLG G 3VHXGRSODVWLFIOXLG ,(6 'LODWDQWÀXLGVKDYHH[SRQHQWn! Option (b) is correct. 0DWFK/LVW,5KHRORJLFDOHTXDWLRQ ZLWK/LVW,,7\SHVRIIOXLGV DQGVHOHFWWKHFRUUHFW answer /LVW, /LVW,, n
a) τ = μ ⎛ du ⎞ , n = ⎜⎝ dy ⎟⎠
%LQJKDPSODVWLF
'LODWDQWIOXLG
1HZWRQLDQIOXLG
3VHXGRSODVWLFIOXLG
n
⎛ du ⎞ E W μ ⎜ ⎟ , n > ⎝ dy ⎠ n
⎛ du ⎞ F W μ ⎜ ⎟ , n ! ⎝ dy ⎠ n
⎛ du ⎞ G W τ + μ ⎜ ⎟ , n ⎝ dy ⎠
&RGHV $ % & ' D E F G ,(6 Option (c) is correct. 0DWFK/LVW,ZLWK/LVW,,DQGVHOHFWWKHFRUUHFWDQVZHU /LVW,3URSHUWLHVRIIOXLG /LVW,,'H¿QLWLRQ5HVXOW D ,GHDOÀXLG 9LVFRVLW\GRHVQRWFKDQJHZLWKUDWHRI deformation E 1HZWRQLDQÀXLG )OXLGRI]HURYLVFRVLW\
m r G 0HUFXU\LQJODVV &RGH $ % D E F G Option (b) is correct. F
&
'\QDPLFYLVFRVLW\
.LQHPDWLFYLVFRVLW\ &DSLOODU\ULVH '
,(6
72
Fundamentals of Fluid Mechanics
,QDQH[SHULPHQWWKHIROORZLQJVKHDUVWUHVVDQGWLPHUDWHRIVWUDLQYDOXHVDUHREWDLQHG for a fluid 7LPHUDWHRIVWUDLQV± 6KHDUVWUHVVN3D D 1HZWRQDLQIOXLG E %LQJKDPSODVWLF F 3VHXGRSODVWLF G 'XNDWHQW ,(6 4
n>1
t
2.6
n= 1.4
1 n
AB \ VB > VA $VYHORFLW\KHDGDWBLVPRUHWKDQDWAKHQFHPA > PBDQGWKHÀRZWDNHVSODFHIURPAWRB
1RZ PA – PB = r ◊ g ◊ DB ¥ 10 ¥¥¥ 10± N3D 2SWLRQD LVFRUUHFW
Pressure and Head
115
7KHPDQRPHWHUVKRZQLQWKH¿JXUHEHORZFRQQHFWVWZRSLSHVFDUU\LQJRLODQGZDWHU UHVSHFWLYHO\)URPWKH¿JXUHRQH Water
Oil
Horizontal plane Pipes Horizontal plane Mercury
D FDQFRQFOXGHWKDWWKHSUHVVXUHVLQWKHSLSHVDUHHTXDO E FDQFRQFOXGHWKDWWKHSUHVVXUHLQWKHRLOSLSHLVKLJKHU F FDQFRQFOXGHWKDWWKHSUHVVXUHLQWKHZDWHUSLSHLVKLJKHU G FDQQRWFRQFOXGHWKHSUHVVXUHLQWKHWZRSLSHVIRUZDQWRIVX൶FLHQWGDWD ,(6 1RZEDODQFLQJWKHOLTXLGFROXPQVDQGSUHVVXUHLQERWKWKHWXEHVZLWKUHVSHFWWRKRUL]RQWDO SODQHZHKDYH
PRLO + ro◊g◊H = PZDWHU + rw◊g◊H RU PRLO – PZDWHU = (rw – ro)◊g◊H $V ro < rw \ PRLO > PZDWHU 2SWLRQE LVFRUUHFW $GL൵HUHQWLDOPDQRPHWHULVXVHGWRPHDVXUHWKHGL൵HUHQFHLQSUHVVXUHDWSRLQWA & B LQWHUPVRIVSZWRIZDWHUW 7KHVSRIOLTXLGVXYDQGZDUHUHVSHFWLYHO\SS
P P DQGS7KHFRUUHFWGL൵HUHQFH ÁÊ A - B ˜ˆ LVJLYHQE\ ËW W ¯ liquid y¢ B+ A+
liquid x¢
h3
h1 h2 C
D liquid ‘z’
D hS±hS + hS F hS±hS + hS
E hS + hS±hS G hS + hS±hS
,(6
116
Fundamentals of Fluid Mechanics
)URPGDWXPOLQHCDZHKDYHIRUERWKOLPEV
P PA + h 1S 1 = B + h S 2 + h 2S W W PA PB W W
\
= h S 2 – h 1S 1 + h S
2SWLRQD LVFRUUHFW ,Q WKH ¿JXUH VKRZQ EHORZ DLU LV FRQWDLQHG LQ WKH SLSH DQG ZDWHU LQ WKH PDQRPHWHU OLTXLG7KHSUHVVDWALVDSSUR[LPDWHO\ Patm
A Air Water
C
D PRIZDWHUDEVROXWH F PRIZDWHUYDFXXP
)URPGDWXPCDZHKDYH
340 mm 200 mm D
E PRIZDWHU G 3D
,(6
7DNHPDWP PRIZDWHU PA ± ¥ 10±PRIZDWHUPDWP PP P
2SWLRQD LVFRUUHFW $8WXEHPDQRPHWHULVFRQQHFWHGWRDSLSHOLQHFRQYH\LQJZDWHUDVVKRZQEHORZ7KH SUHVVXUHKHDGRIZDWHULQWKHSLSHOLQHLV
D P F P
E P G P
,(6
Pressure and Head
117
7DNLQJGDWXPCDZHKDYH P¥ ¥¥ RU P PRIZDWHU 2SWLRQF LVFRUUHFW 7KUHH LPPLVFLEOH OLTXLGV RI VSHFL¿F GHQVLWLHV RI r r DQG r DUH NHSW LQ D MDU7KH KHLJKWRIWKHOLTXLGVLQWKHMDUDQGDWWKHSLH]RPHWHU¿WWHGWRWKHERWWRPRIWKHMDUDUH DVVKRZQLQWKH¿JXUH7KHUDWLRHhLV
r
3h
2r
1.5 h
H 3r
h
D F
E G
,(6
7DNLQJEDVHDVGDWXPZHKDYH h ¥ r h ¥ 2r + h ¥r = H ¥ r RU hhh H RU h = H
H h
RU
2SWLRQF LVFRUUHFW 7R PHDVXUH WKH SUHVVXUH KHDG RI WKH IOXLG RI 6* S IORZLQJ WKURXJK WKH SLSHOLQH D VLPSOHPLFURPDQRPHWHUFRQWDLQLQJDIOXLGRI6*SLVFRQQHFWHGWRLW7KHUHDGLQJV DUHDVLQGLFDWHGLQWKHGLDJUDP7KHSUHVVXUHKHDGLQWKHSLSHOLQHLV
S+
h1
h Dh
D hS±hS±DhS±S F hS±hS±DhS±6
E hS±hS + DhS±S G hS±hS + DhS±S
,(6
118
Fundamentals of Fluid Mechanics
%DODQFLQJERWKOLPEVZHKDYH PS + (h + Dh)S = (h1 + Dh) S1 RU PS = h1S1 – hS + Dh(S1 – S) 2SWLRQE LVFRUUHFW 7KHEDODQFLQJFROXPQVKRZQLQWKHGLDJUDPFRQWDLQVOLTXLGVRIGL൵HUHQWGHQVLWLHVr rDQGr7KHOLTXLGOHYHORIRQHOLPELVhEHORZWKHWRSOHYHODQGWKHUHLVDGL൵HUHQFH RIhUHODWLYHWRWKDWLQWKHRWKHUOLPE:KDWZLOOEHWKHH[SUHVVLRQRIh" P
P
r3
r1 h1 h
r2
D
r1 - r2 h 1 r - r
r - r h 1 r - r %DODQFLQJWKHOLPEV
F
E
r - r h r - r 1
G
r1 - r2 h1 r - r
,(6
P + h1r1 = h ¥ r2 + (h1 – h)r + P h(r2 – r) = h1(r1 – r)
RU
h=
RU
h (r - r ) (r - r )
2SWLRQF LVFRUUHFW 7KHUHDGLQJRIJDXJHAVKRZQEHORZ Air 0.25 m Oil 4m
Relative density of memory 13.6
Gauge A Relative density of oil 0.8
D ±N3D F N3D
E ±N3D G N3D
,(6
Pressure and Head
119
Pair ±¥ ±PRIZDWHU PA = PDLU¥ ± ±PRIZDWHU ±¥¥ 10 ±N3D 2SWLRQE LVFRUUHFW $VSHUPDQRPHWHU
2.6 QUESTIONS FROM COMPETITIVE EXAMINATIONS 7KHVWDQGDUGVHDOHYHODWPRVSKHULFSUHVVXUHLVHTXLYDOHQWWR NJ D PRIIUHVKZDWHURIU P E PRIVDOWZDWHURIU NJP F PRINHURVHQHRIU NJP NJ ,$6 P ,IZH¿QGRXWWKHYDOXHRIr◊g◊h IRUDOOIRXUFDVHVLIVKRXOGEHDVQHDUWRî1P2 2SWLRQE LVFRUUHFW +\GURVWDWLFODZRISUHVVXUHLVJLYHQDV
G PRIFDUERQWHWUDFKORULGHRIU
D
∂P = ρg ∂Z
∂P = ∂Z ∂P G &RQVWDQW ∂Z E
∂P =Z ∂Z OSWLRQD LVFRUUHFW 0DWFK/LVW,/DZV ZLWK/LVW,,3KHQRPHQ DQGVHOHFWWKHFRUUHFWDQVZHUXVLQJWKH FRGHVJLYHQEHORZWKHOLVWV F
/LVW, D +\GURVWDWLFODZ E 1HZWRQ¶VODZ F 3DVFDO¶VODZ G %HUQRXOOL¶VODZ &RGHV $ % D E F ± G 2SWLRQE LVFRUUHFW
/LVW,, 3UHVVXUHRISRLQWLVHTXDOLQDOOGLUHFWLRQVLQDIOXLG DWUHVW 6KHDUVWUHVVLVGLUHFWO\SURSRUWLRQDOWRWKHYHORFLW\ JUDGLHQW 5DWHRIFKDQJHRISUHVVXUHLQYHUWLFDOGLUHFWLRQLV SURSRUWLRQDOWRVSHFL¿FZHLJKWRIIOXLG & ± ±
' ±
,$6
120
Fundamentals of Fluid Mechanics
7KHUHDGLQJRIWKHSUHVVXUHJDXJH¿WWHGRQDYHVVHOLVEDUV7KHDWPRVSKHULFSUHVVXUH LVEDUDQGWKHYDOXHRIgLVPV7KHDEVROXWHSUHVVXUHLQWKHYHVVHOLV D EDUV E EDUV F EDUV G EDUV ,$6 $EVROXWHSUHVVXUH DWPRVSKHULFSUHVVXUHJDXJHSUHVVXUH EDUV 2SWLRQF LVFRUUHFW 7KHEDURPHWULFSUHVVXUHDWWKHEDVHRIDPRXQWDLQLVPP+JDQGDWWKHWRSPP +J,IWKHDYHUDJHDLUGHQVLW\LVNJPWKHKHLJKWRIWKHPRXQWDLQLVDSSUR[LPDWHO\ D P E P F P G P DH+J ± PP +HLJKWh RIPRXQWDLQ DH+Jîrîg î± î î P 2SWLRQD LVFRUUHFW 7KH SUHVVXUH GL൵HUHQFH EHWZHHQ SRLQWV B DQG A DV VKRZQ LQ WKH DERYH ¿JXUH LQ FHQWLPHWUHVRIZDWHULV D ± E F ± G ,$6 S = 0.65
25cm 50 cm A
100 cm
S = 0.8 S = SG
B S = 1.0
Pressure and Head
121
PB – PA î–2îîîg±î–2îîîg±î–2î îîg
±± î
î1P2 =
î î 10
FP RI ZDWHU
OSWLRQE LVFRUUHFW $GRXEOHWXEHPDQRPHWHULVFRQQHFWHGWRWZROLTXLGOLQHVADQGB5HOHYDQWKHLJKW DQG6*RIWKHIOXLGVDUHVKRZQLQWKHJLYHQ¿JXUH7KHSUHVVXUHGL൵HUHQFHLQKHDGRI ZDWHUEHWZHHQIOXLGVDWADQGBLV SA S2 A
S2 hA B hB
S3
S1
D SAhA + S◊hB ±S◊hB + SB◊hB
E SA◊ hA ±S◊hB ±ShA±hB S◊hB±SB◊hB
F SA◊hA + S◊hB±ShA±hB ±S◊hB + SB◊hB
G hA◊SA±hA±hB S±S ±hB◊SB
,$6
8VLQJKHLJKW×6*IRUPXOD HA + hA◊SA – (hA – hB) ◊ S1 – (hA – hB) ◊ S1 – hB ◊ SB = HB RUHB – HA = hASA – (hA – hB) (S1 – S) – hB ◊ SB 2SWLRQG LVFRUUHFW 7KHSUHVVXUHJDXJHUHDGLQJLQPHWHURIZDWHULQWKH¿JXUHEHORZZLOOEH D P E P F P G P ,$6
122
Fundamentals of Fluid Mechanics Gauge
Air
1m 20 cm
Water
Mercury S = 13.6 hg
8VLQJKHLJKW×6*IRUPXOD HG SW±îS+J = 0 RU HG î±î ± PRIZDWHU 2SWLRQG LVFRUUHFW 0DWFK/LVW,ZLWK/LVW,,DQGVHOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHVJLYHQEHORZWKH OLVWV
/LVW,'HYLFH /LVW,,8VH D %DURPHWHU *DXJHSUHVVXUH E +\GURPHWHU /RFDODWPRVSKHULFSUHVVXUH F 8WXEHPDQRPHWHU 5HODWLYHGHQVLW\ G %RXUGRQJDXJH 3UHVVXUHGL൵HUHQWLDO &RGHV $ % & ' D E F G 2SWLRQG LVFRUUHFW
,$6
$ EHDNHU RI ZDWHU LV IDOOLQJ IUHHO\ XQGHU WKH LQIOXHQFH RI JUDYLW\ 3RLQW B LV RQ WKH VXUIDFHDQGSRLQWCLVYHUWLFDOO\EHORZBQHDUWKHERWWRPRIWKHEHDNHU,IPBLVWKH SUHVVXUHDWSRLQWBDQGPCLVWKHSUHVVXUHDWSRLQWCWKHQZKLFKRQHLVWKHIROORZLQJ LVFRUUHFW D PB PC E PB < PC
F PB > PC
G ,QVX൶FLHQWGDWD
,(6
Pressure and Head
123
)RUIUHHIDOOLQJERGLHVUHODWLYHYDOXHRIgLV]HUR ∂P = rg = 0 ∂Z 2QO\DWPRVSKHULFSUHVVXUHZLOOEHDFWLQJDWSRLQWVBDQGC \ PB = PC 2SWLRQD LVFRUUHFW ,Q DQ RSHQ 8WXEH FRQWDLQLQJ PHUFXU\ NHURVHQH RI 6* LV SRXUHG LQWR RQH RI LWV OLPEVVRWKDWWKHOHQJWKRIFROXPQRINHURVHQHLVDERXWFP7KHOHYHORIPHUFXU\ FROXPQLQWKDWOLPELVORZHUHGDSSUR[LPDWHO\E\KRZPXFK" D FP E FP F FP G FP ,(6 PA = PB = zero gauge pressure B
2h
ho
A
8VLQJKHLJKW î 6* IRUPXOD îSk = (2h îS+J î h î × RU h = × FP 2SWLRQE LVFRUUHFW Assertion (A): ,IDFXEHLVSODFHGLQDOLTXLGZLWKWZRRILWVVXUIDFHVSDUDOOHOWRWKHIUHH VXUIDFHRIWKHOLTXLGWKHQWKHSUHVVXUHVRQWKHWZRVXUIDFHVZKLFKDUHSDUDOOHOWRWKH IUHHVXUIDFHDUHWKHVDPH Reason (R): 3DVFDO¶VODZVWDWHVWKDWZKHQDOLTXLGLVDWUHVWWKHSUHVVXUHDWDQ\SODQH LVWKHVDPHLQDOOGLUHFWLRQV &RGHV D %RWKADQGRDUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWFRQFOXVLRQRIA E %RWKADQGRDUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRIA F ALVWUXHEXWRLVIDOVH G ALVIDOVHEXWRLVWUXH ,(6 2SWLRQG LVFRUUHFW
124
Fundamentals of Fluid Mechanics
7KH VWDQGDUG DWPRVSKHULF SUHVVXUH LV PP RI +J $W D VSHFL¿F ORFDWLRQ WKH EDURPHWHUUHDGVPPRI+J$WWKLVSODFHZKDWGRHVDWDEVROXWHSUHVVXUHRI PPRI+JFRUUHVSRQGWR" D PP+JYDFXXP E PPRI+JYDFXXP F PPRI+JYDFXXP G PPRI+JJDXJH ,(6 7KHSUHVVXUHLV ± PPRI+JYDFXXP 2SWLRQD LVFRUUHFW 7KHSUHVVXUHGL൵HUHQFHRIWZRYHU\OLJKWJDVHVLQWZRULJLGYHVVHOVLVEHLQJPHDVXUHG E\DYHUWLFDO8WXEHZDWHU¿OOHGPDQRPHWHU7KHUHDGLQJLVIRXQGWREHFPZKDW LVWKHSUHVVXUHGL൵HUHQFH" D N3D E EDU F 3D G 1P ,(6 DP = h◊r◊g î–2 îî 1P2 2SWLRQG LVFRUUHFW 3UHVVXUHGURSRIIORZLQJWKURXJKDSLSHGHQVLW\NJP EHWZHHQWZRSRLQWVLV PHDVXUHGE\XVLQJDYHUWLFDO8WXEHPDQRPHWHU0DQRPHWHUXVHVDOLTXLGZLWKGHQVLW\ NJPWKHGL൵HUHQFHLQKHLJKWRIPDQRPHWULFOLTXLGLQWZROLPEVRIPDQRPHWHU LVREVHUYHGWREHFP7KHSUHVVXUHGURSEHWZHHQWZRSRLQWVLV N N D E P P F
N P
G 1
S1
2
y S2
RU
RU
P1 + yîS1 = P2 + yîS2 P1 – P2 = y(S2 – S1) = hîS1 ⎛S ⎞ h = y ⎜ 2 − 1⎟ ⎝ S1 ⎠
N P
,(6
Pressure and Head
125
⎛2 ⎞ h = ⎜ − ⎟ ⎝1 ⎠
P P1 – P2 = hîrîg îî
\
1
N P2
OSWLRQE LVFRUUHFW 'L൵HUHQWLDO SUHVVXUH KHDG PHDVXUHG E\ PHUFXU\ RLO GL൵HUHQWLDO 6* RI RLO LV HTXLYDOHQWWRDPPGL൵HUHQFHRIPHUFXU\OHYHOZLOOHTXDOWR D PPRIRLO E PPRIRLO F PPRIRLO G PPRIRLO ,(6 ⎛S ⎞ h = y ⎜ 1 − 1⎟ PD[RIRLOZKHUe S1 6*RI+JDQGS2 6*RIRLO S ⎝ 2 ⎠ ⎛ ⎞ − ⎟ PPRIRLO = ⎜ ⎝ ⎠ PPRIRLO 2SWLRQG LVFRUUHFW +RZ LV WKH GL൵HUHQFH RI SUHVVXUH KHDG h PHDVXUHG E\ PHUFXU\RLO GL൵HUHQWLDO PDQRPHWHUH[SUHVVHG"
⎛ S ⎞ D h y ⎜ − ⎟ S ⎠ ⎝
E h yS±S
F h±yS±S
⎛S ⎞ G h y ⎜ − ⎟ ⎝ S ⎠
,(6 ZKHUHy PDQRPHWHUUHDGLQJSDQGSDUHWKH6*RI+JDQGRLO 2SWLRQG LVFRUUHFW 7KHGL൵HUHQWLDOPDQRPHWHUFRQQHFWHGWRDSLORWVWDWLFWXEHXVHGIRUPHDVXULQJIOXLG YHORFLW\JLYHV D 6WDWLFSUHVVXUH E 7RWDOSUHVVXUH F '\QDPLFSUHVVXUH G 'L൵HUHQFHEHWZHHQWRWDOSUHVVXUHDQG G\QDPLFSUHVVXUH ,(6 ⎛ v2 ⎞ 7KHSLWRWWXEHPHDVXUHVG\QDPLFSUHVVXUH ⎜ ⎟ ⎝ 2g ⎠ OSWLRQF LVFRUUHFW
126
Fundamentals of Fluid Mechanics
Assertion (A): 8WXEHPDQRPHWHUFRQQHFWHGWRDYHQWXULPHWHU¿WWHGLQDSLSHOLQHFDQ PHDVXUHWKHYHORFLW\WKURXJKWKHSLSH Reason (R): 8WXEHPDQRPHWHUGLUHFWO\PHDVXUHVG\QDPLFDQGVWDWLFKHDGV &RGHV D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 2SWLRQD LVFRUUHFW ,Q RUGHU WR LQFUHDVH WKH VHQVLWLYLW\ RI 8WXEH PDQRPHWHU RQH OHJ LV XVXDOO\ LQFOLQHG E\DQDQJOHπ:KDWLVWKHVHQVLWLYLW\RILQFOLQHGWXEHFRPSDUHGWRWKHVHQVLWLYLW\RI 8WXEH" D VLQπ E VLQ θ F G WDQπ ,(6 FRV θ OSWLRQE LVFRUUHFW ,QDGL൵HUHQWLDOPDQRPHWHUDKHDGRIPRIIOXLGALQOLPELVIRXQGWREDODQFHD KHDGRIPRIIOXLGBLQOLPE7KHUDWLRRI6*RIADQGBLV D E F G ,(6
îSA îSB
RU
SA = SB
2SWLRQE LVFRUUHFW 0DQRPHWHULVDGHYLFHXVHGIRUPHDVXULQJ D 9HORFLW\DWDSRLQWLQDIOXLG E 3UHVVXUHDWDSRLQWLQDIOXLG F 'LVFKDUJHRIIOXLG G 1RQHRIWKHDERYH ,(6 2SWLRQE LVFRUUHFW :KHQ D GROSKLQ JOLGHV WKURXJK DLU LW H[SHULHQFHV DQ H[WHUQDO SUHVVXUH RI P RI PHUFXU\7KH DEVROXWH SUHVVXUH RQ GROSKLQ ZKHQ LW LV P EHORZ WKH IUHH VXUIDFH RI WKHZDWHULV N D 1PP E PP F
N PP
G
N PP
,(6
Pressure and Head
127
7KHDWPRVSKHULFSUHVVXUH î PRIZDWHU 7RWDOSUHVVXUH PRIZDWHU
N PP 2
2SWLRQG LVFRUUHFW Oil Horizontal plane 7KH PDQRPHWHU VKRZQ LQ WKH ¿JXUH EHORZ FRQQHFWV WZR SLSHV FDUU\LQJ RLO DQG ZDWHU UHVSHFWLYHO\)URPWKH¿JXUHRQHFDQ D FRQFOXGH WKDW WKH SUHVVXUH LQ WKH SLSHV DUH Water HTXDO E FRQFOXGH WKDW WKH SUHVVXUH LQ ZDWHU SLSH LV KLJKHU Horizontal plane F FRQFOXGHWKDWWKHSUHVVXUHLQWKHZDWHUSLSH LVKLJKHU G FRPSDUH WKH SUHVVXUH LQ WKH WZR SLSHV IRU Mercury ZDQWRIVX൶FLHQWGDWD ,(6 7KHGHQVLW\RIRLOLVOHVVWKDQZDWHUZKLFKPHDQVWKDWWKHVWDWLFKHDGRIRLOIRUVDPHKHLJKW ZLOO EH ORZHU WKDQ WKDW RI ZDWHU$V PHUFXU\ LV VKRZLQJ WKDW LW LV LQ WKH VDPH KRUL]RQWDO SODQHLQERWKOLPEVDQGKHLJKWVRIRLODQGZDWHUFROXPQDUHVDPHKHQFHSUHVVXUHRIRLOLQ SLSHLVORZHUWKDQWKDWRIZDWHU 2SWLRQE LVFRUUHFW 7KHUHDGLQJRIJDXJHAVKRZQLQWKHJLYHQ¿JXUHLV D ±N3D E ±N3D F N3D G N3D ,(6
Air 0.25 m 44 m A Gauge
Mercury (SHg = 13.6)
Oil (S0 = 0.8)
128
Fundamentals of Fluid Mechanics
Let HA SUHVVXUHRIJDXJHLQPHWHURIZDWHU 8VLQJh-sIRUPXODZHKDYH HA±îî RU HA ±PRI+2O ±îî ±N3D 2SWLRQE LVFRUUHFW $ PHUFXU\ PDQRPHWHU LV ¿WWHG WR D SLSH ,W LV PRXQWHG RQ WKH GHOLYHU\ OLQH RI D FHQWULIXJDOSXPS2QHOLPERIWKHPDQRPHWHULVFRQQHFWHGWRWKHXSVWUHDPVLGHRIWKH SLSHDWADQGWKHRWKHUOLPEDWBMXVWEHORZWKHYDOYHVDVVKRZQLQWKH¿JXUH7KH PDQRPHWHUUHDGLQJhYDULHVZLWKGL൵HUHQWYDOYHSRVLWLRQV
A
B h
$VVHUWLRQ A :LWK JUDGXDO FORVXUH RI WKH YDOYH WKH PDJQLWXGH RI h ZLOO JR RQ LQFUHDVLQJDQGHYHQDVLWXDWLRQPD\DULVHZKHQPHUFXU\ZLOOEHVXFNHGLQE\WKHZDWHU IORZLQJDURXQGB 5HDVRQ R :LWK WKH JUDGXDO FORVXUH RI WKH YDOYH WKH SUHVVXUH DW A ZLOO JR RQ LQFUHDVLQJ &RGHV D %RWKADQGRDUHLQGLYLGXDOO\WUXHDQGRLVWKHFRUUHFWH[SODQDWLRQRIA E %RWKADQGRDUHLQGLYLGXDOO\WUXHEXWRLVQRWWKHFRUUHFWH[SODQDWLRQRIA F ALVWUXHEXWRLVIDOVH G ALVIDOVHEXWRLVWUXH ,(6 7KH ÀRZ RI ZDWHU LV UHVWULFWHG ZLWK FORVLQJ RI YDOYH WKHUHE\ SUHVVXUH DW A ZLOO LQFUHDVH DQGLWGHFUHDVHVOHYHORIPHUFXU\5 DWB 2SWLRQD LVFRUUHFW ,Q WKH ¿JXUH VKRZQ EHORZ DLU LV FRQWDLQHG LQ WKH SLSH DQG ZDWHU LV XVHG DV WKH PDQRPHWHUOLTXLG7KHSUHVVXUHDWALVDSSUR[LPDWHO\
Pressure and Head
129
A
200 mm
Air
500 mm
Water
D PRIZDWHUDEVROXWH E PRIZDWHU F PRIZDWHUYDFXXP G 3D ,(6 /HWDLUSUHVVXUHEHHAPRIZDWHU8VLQJhHLJKWî6*IRUPXODZHKDYH HDLUî± î± ±î± î HDLU ±î±PJZDWHU îî3D 3DJDXJH 2SWLRQG LVFRUUHFW $PDQRPHWHULVPDGHRIDWXEHRIXQLIRUPERUHRIFPFURVVVHFWLRQDODUHDZLWK RQHOLPEYHUWLFDODQGRWKHUOLPELQFOLQHGDWWRWKHKRUL]RQWDO%RWKLWVOLPEVDUH RSHQWRWKHDWPRVSKHUHDQGLQLWLDOO\LWLVSDUWO\¿OOHGZLWKDPDQRPHWHUOLTXLGRI6* ,IDQDGGLWLRQDOYROXPHRIFPRIZDWHULVSRXUHGLQWKHLQFOLQHGWXEHZKDW LVWKHULVHRIWKHPHQLVFXVLQWKHYHUWLFDOWXEH" D FP E FP F FP G FP ,(6 $VVXPHxFPZLOOEHWKHULVHRIWKHPHQLVFXVLQWKHYHUWLFDOWXEH7KHQZHKDYH ⎛ ⎜⎝ x +
⎛ FP 2 ⎞ x⎞ VLQ î î ⎟⎠ × î î = ⎜ 2⎟ ⎝ FP ⎠ z
RU x FP 2SWLRQD LVFRUUHFW 7KHORZHUSRUWLRQRI8WXEHRIXQLIRUPERUHKDYLQJERWKOLPEVYHUWLFDODQGRSHQWR DWPRVSKHUH LV LQLWLDOO\ ¿OOHG ZLWK D OLTXLG RI 6* 6$ OLJKWHU IOXLG RI 6* S LV WKHQ SRXUHGLQWRRQHRIWKHOLPEVVXFKWKDWWKHOHQJWKRIFROXPQRIKLJKHUOLTXLGLVx:KDW LVWKHUHVXOWLQJPRYHPHQWRIWKHPHQLVFXVRIKHDYLHUOLTXLGLQWKHRWKHUOLPE" x D x E F
x
G x
,(6
130
Fundamentals of Fluid Mechanics
RU
xîS = yîS) x y=
x 5HVXOWLQJPRYHPHQWRIPHQLVFXVZLOOEHKDOILH 2SWLRQG LVFRUUHFW :KHQFDQDSLH]RPHWHUEHQRWXVHGIRUPHDVXUHPHQWLQSLSHV" D 3UHVVXUHGL൵HUHQFHLVOHVV E 9HORFLW\LVKLJK F 7KHIOXLGLQSLSHLVJDV G 7KHIOXLGLQSLSHLVKLJKO\YLVFRXV
,(6
2SWLRQF LVFRUUHFW $ YHUWLFDO FOHDQ JODVV WXEH RI XQLIRUP ERUH LV XVHG DV D SLH]RPHWHU WR PHDVXUH7KH SUHVVXUHRIOLTXLGDWDSRLQW7KHOLTXLGKDVVSZHLJKWRIN1PDQGDVXUIDFHWHQVLRQ RI1PLQFRQWDFWZLWKDLU,IIRUWKHOLTXLGWKHDQJOHRIFRQWDFWZLWKJODVVLV]HUR DQGWKHFDSLOODU\ULVHLQWKHWXEHLVQRWWRH[FHHGPPZKDWLVWKHUHTXLUHGPLQLPXP GLDPHWHURIWKHWXEH" D PP E PP F PP G PP ,(6 ,IFDSLOODU\ULVH h × σ × FRV θ ≤ h= ρ× g ×d \
d=
× × FRV ° î
PP 2SWLRQE LVFRUUHFW $PHUFXU\PDQRPHWHULVXVHGWRPHDVXUHWKHVWDWLFSUHVVXUHDWDSRLQWLQZDWHUSLSH DVVKRZQEHORZ7KHOHYHOGL൵HUHQFHRIPHUFXU\LQWKHWZROLPEVLVPP7KHJDXJH SUHVVXUHDWWKDWSRLQWLV
Water
10 mm
Hg
Pressure and Head
D 3D E 3D F =HUR G 3D $VVXPHSUHVVXUHLQSLSHLV hPHWHURIZDWHU+HQFH
131
*$7(
⎛ S+J ⎞ − 1⎟ h = y⎜ ⎝ S ZDWHU ⎠ ⎞ − ⎛ − ⎟ = î ⎜ ⎝ 1 ⎠ PRIZDWHU 3UHVVXUH hîrîg îî 3D 5HIHUWR¿JXUHEHORZWKHDEVROXWHSUHVVXUHRIJDVALQWKHEXOELV D PP+J E PP+J F PP+J G PP+J Pa
B
10 cm
C
A
5 cm 2 cm
D
E
r = 13.6 gm/ml
,QFDVHHALVSUHVVXUHLQPPRIZDWHUXVLQJh-sIRUPXODZHKDYH HA + (1 îî±îî±îx1 = hDWP î RU HA PPRIZDWHU =PPRIPHUFXU\ = OSWLRQD LVFRUUHFW
*$7(
132
Fundamentals of Fluid Mechanics
7KHSUHVVXUHJDXJHVGDQGGLQVWDOOHGRQWKHV\VWHPVKRZSUHVVXUHRI PG EDUV
DQG PG EDU:KDWLVWKHYDOXHRIXQNQRZQSUHVVXUHPLV" $WPRVSKHULFSUHVVXUH EDU D EDUV E EDUV F EDUV G EDUV G2
B
G1 A
P
PG2 3UHVVXUHLQVSDFHA±DWPRVSKHULFSUHVVXUH 1 = PA± PA EDUV PG1 3UHVVXUHLQVSDFHB±SUHVVXUHLQVSDFHA PB – PA = PB± \ PB EDUV 2SWLRQG LVFRUUHFW
*$7(
Chapter
3
HYDROSTATIC FORCES
KEYWORDS AND TOPICS
HYDROSTATIC FORCE TOTAL PRESSURE PRESSURE INTENSITY CENTRE OF PRESSURE FREE SURFACE IMAGINARY FREE SURFACE PIEZOMETRIC SURFACE HORIZONTAL SURFACE
VERTICAL SURFACE INCLINED SURFACE CURVED SURFACE PRESSURE DIAGRAM STABILITY OF DAM SLUICE GATE LOCK GATE GRAVTIY & ARCHED DAM
3.1 INTRODUCTION $ IRUFH LV H[HUWHG E\ WKH ÀXLG RQ D VXUIDFH HLWKHU SODQH RU FXUYHG ZKHQ D VWDWLF PDVV RI WKH ÀXLGFRPHVLQFRQWDFWZLWKWKHVXUIDFH7KLVÀXLGIRUFHDOZD\VDFWVQRUPDOWRWKHVXUIDFHDQGLW LVNQRZQDVWRWDOSUHVVXUH7KHSRLQWRIDSSOLFDWLRQRIWRWDOSUHVVXUHRQWKHVXUIDFHLVNQRZQDV WKHFHQWUHRISUHVVXUH7KHLQWHQVLW\RIWRWDOSUHVVXUHLQFUHDVHVZLWKWKHGHSWKRIDSRLQWLQWKH LPPHUVHGVXUIDFH$VWKHSUHVVXUHLQWHQVLW\LVQRQXQLIRUPWKHWRWDOSUHVVXUHIRUFHZLOOQRWDFW DWWKHFHQWUHRIJUDYLW\RIWKHYHUWLFDOVXUIDFHEXWDWWKHRWKHUSRLQWEHORZWKHFHQWUHRIJUDYLW\ FDOOHGWKHFHQWUHRISUHVVXUH,QFDVHRIKRUL]RQWDOVXUIDFHWKHLQWHQVLW\RISUHVVXUHLVXQLIRUP WKURXJKRXWWKHVXUIDFHPDNLQJWKHFHQWUHRISUHVVXUHPRYLQJXSDQGPHUJLQJZLWKWKHFHQWUHRI JUDYLW\7KHWRWDOSUHVVXUHDQGFHQWUHRISUHVVXUHKDYHWREHGHWHUPLQHGZKLOHGHVLJQLQJK\GUDXOLF VWUXFWXUHVVXFKDVGDPVVOXLFHJDWHVDQGORFNJDWHV
3.2 TOTAL PRESSURE AND CENTRE OF PRESSURE 'H¿QHWKHWHUPVµWRWDOSUHVVXUH¶DQGµFHQWUHRISUHVVXUH¶ 8378 2U 'H¿QHWKHWHUPµµFHQWUHRISUHVVXUH¶¶RISODQHDUHDLPPHUVHGLQDIOXLG:KDWUHODWLRQ KDVLWJRWZLWKWKHFHQWUHRIJUDYLW\RIWKHDUHD"'RWKHFHQWUHRISUHVVXUHDQGFHQWUH RIJUDYLW\HYHUFRLQFLGHDQGLIVRXQGHUZKDWFRQGLWLRQV" 8378
134
Fundamentals of Fluid Mechanics
7RWDO3UHVVXUH :KHQDÀXLGLVDWUHVWDQGWKHUHLVQRUHODWLYHYHORFLW\RUYHORFLW\JUDGLHQW EHWZHHQ WKH OD\HUV WKHQ WKH ÀXLG KDV QR WDQJHQWLDO VKHDU IRUFH ,W IROORZV WKDW WKH IRUFH H[HUWHGE\VWDWLRQDU\ÀXLGKDVQRFRPSRQHQWDORQJWKHVXUIDFH7KHIRUFHH[HUWHGE\WKH VWDWLF ÀXLG RQ WKH VXUIDFH LQ FRQWDFW ZLWK WKH ÀXLG LV FDOOHG µWRWDO SUHVVXUH¶ ,W LV DOZD\V QRUPDOWRWKHFRQWDFWVXUIDFH7KHVXUIDFHFDQEHKRUL]RQWDOYHUWLFDOLQFOLQHGRUFXUYHG +RZHYHUZDWHUPXVWEHLQFRQWDFWZLWKWKHVXUIDFH
Air Air
Air
Total Pressure Forces: Normal to Surface
&HQWUHRI3UHVVXUH The SRLQW DWZKLFKWRWDOSUHVVXUHLVVXSSRVHGWRDFWLVFDOOHGFHQWUH RISUHVVXUH7KHLQWHQVLW\RISUHVVXUHLQFUHDVHVZLWKWKHGHSWKRIDSRLQWRQWKHLPPHUVHG VXUIDFH +DG WKH SUHVVXUH LQWHQVLW\ EHHQ WKH VDPH DW HYHU\ HOHPHQWDU\ VXUIDFH DUHD WKH UHVXOWDQW SUHVVXUH IRUFH ZRXOG KDYH SDVVHG WKURXJK WKH FHQWURLG RI WKH LPPHUVHG DUHD ,W KDSSHQVVRIRUKRUL]RQWDOFRQWDFWVXUIDFH,QDOORWKHUVXUIDFHVWKHUHVXOWDQWRISUHVVXUHIRUFH VKDOOOLHQHDUWKHGHHSHUHQGRIWKHVXUIDFH7KHFHQWUHRISUHVVXUHRIWKHFRQWDFWVXUIDFH IURPIUHHVXUIDFHLVJLYHQE\
h=x+ ZKHUH
I G VLQ 2 q Ax
x FHQWUHRIJUDYLW\&* IURPIUHHVXUIDFH IG PRPHQWRILQHUWLDDERXW&* A $UHD q $QJOHRILQFOLQDWLRQRIWKHFRQWDFWVXUIDFH Patm Free surface h
u
Air
Hydrostatic Forces
135
3.3 PRESSURE ON PLANE SURFACE :KDWLVWRWDOSUHVVXUHDFWLQJRQDSODQHKRUL]RQWDOVXUIDFH"
h
Air
$ SODQH KRUL]RQWDO VXUIDFH ZKLFK LV O\LQJ LQ WKH ÀXLG RI GHQVLW\ r KDV VDPH GHSWK RI ZDWHURYHULWVHQWLUHVXUIDFHDUHD+HQFHSUHVVXUHDFWLQJRQWKHHQWLUHVXUIDFHLVWKHVDPH
,QWHQVLW\RISUHVVXUH h ¥ r ¥ g )RUFHDFWLQJRQHOHPHQWDU\DUHDdA dF = h rg ¥ dA F=
\
Ú
dF =
Ú h rgdA
F = h rg Ú dA F = h rgA )LQG WKH WRWDO SUHVVXUH DFWLQJ RQ D UHFWDQJXODU SODWH RI VL]H FP ¥ FP SODFHG KRUL]RQWDOO\DWDGHSWKRIPEHORZWKHIUHHVXUIDFHRIZDWHU )RUKRUL]RQWDOSODWH F = h rgA $UHD A ¥ P2 kg r = 1 ¥ 103 3 m
F ¥ 1 ¥ 103 ¥¥ 1 N1 :KDWLVWKHWRWDOIRUFHRUWRWDOSUHVVXUHRQDSODQHYHUWLFDOVXUIDFHVXEPHUJHGLQOLTXLG KDYLQJDUHDA DQGGHSWKRICG = x IURPWKHIUHHOLTXLGVXUIDFH"
h
b
dp dx
h
dh
Air
Front View
Side View Vertical Surface
x
h
136
Fundamentals of Fluid Mechanics
&RQVLGHU D YHUWLFDO VXUIDFH VXEPHUJHG LQ ZDWHU DV VKRZQ DERYH 7DNH DQ HOHPHQWDU\ KRUL]RQWDOVWULSRIWKLFNQHVVdxDQGZLGWKbDWDGHSWKRIxIURPWKHVXUIDFH7KHLQWHQVLW\ RISUHVVXUHRQWKLVVWULSLV P = xrg ZKHUHr GHQVLW\ Force dF = P ¥ dA
Ú Ú
dF =
Ú
dF = rg
xrg ¥ b ¥ dx
Ú
bxdx
F = rg x ¥ A )LQG WKH WRWDO SUHVVXUH RQ D UHFWDQJXODU VXUIDFH RI VL]H FP ¥ FP LPPHUVHG YHUWLFDOO\ LQ ZDWHU7KH ORQJHU HGJH LV YHUWLFDO DQG WKH XSSHU HGJH LV P EHORZ WKH IUHHVXUIDFH F = rgA ¥ x
5m
2 6
2 P 2 $UHDA ¥ P2 x
F = 1 ¥ 103 ¥¥¥ 6 N1
3.4 PRESSURE ON INCLINED SURFACE :KDWLVWKHWRWDOSUHVVXUHRQDQLQFOLQHGVXUIDFHLPPHUVHGLQOLTXLGDWWKHDQJOHqIURP WKHIUHHVXUIDFH"6KRZWKDWWRWDOSUHVVXUHLVLQGHSHQGHQWRIWKHDQJOHRILQFOLQDWLRQRI WKHFRQWDFWVXUIDFH q h
x
x dF
Plate surface y
y
F
hy C
G
dA = b ´ dx G C
dy
Total Pressure on the Inclined Surface
y
q
x = y sin q
x
Hydrostatic Forces
137
/HWDQLQFOLQHGVXUIDFHPDNLQJDQDQJOHqWRWKHIUHHVXUIDFHEHLPPHUVHGLQOLTXLGDVVKRZQ LQWKH¿JXUH/HWDQHOHPHQWDU\VWULSRIWKLFNQHVVdxDQGEUHDGWKbDWGHSWKRIxLVWDNHQ 7KHLQWHQVLW\RISUHVVXUHDFWLQJQRUPDODWWKLVVWULSLV P = rxg = ryVLQqg dF = P ¥ dA = ryVLQqg ¥ bdyDVdA = bdy F=
Ú
dF =
Ú
ryVLQq gbdy
F = r ¥VLQqg Ú bydyEXW Ú bydy = y A F = rgVLQq y A F = rg x ADV y VLQq = x +HQFHWRWDOSUHVVXUHLVLQGHSHQGHQWRIDQJOHRILQFOLQDWLRQRIWKHFRQWDFWVXUIDFH :KDW LV WKH WRWDO SUHVVXUH RQ D UHFWDQJXODU SODWH RI VL]H FP ¥ FP ZKLFK LV LPPHUVHGLQZDWHUDWDQDQJOHRIWRWKHIUHHVXUIDFH"7KHVKRUWHVWHGJHRIWKHSODWH LVKRUL]RQWDODQGLWVWRSHGJHLVDWDGHSWKRIPIURPWKHIUHHVXUIDFH
x
30°
x 0.6 G G 2m
F = rg x A
x
2 VLQ P 2
A ¥ P2 F ¥ 103 ¥¥¥ N1 :KDWGR\RXXQGHUVWDQGIURPWKHLPDJLQDU\IUHHVXUIDFHRUSLH]RPHWULFVXUIDFH" 7KH YHUWLFDO GHSWK RI D FHQWURLG RI WKH LPPHUVHG VXUIDFH LV WDNHQ IURP WKH IUHH VXUIDFH RIWKHOLTXLG,IWKHOLTXLGVXUIDFHLVQRWDIUHHVXUIDFHDQGLWKDVDSUHVVXUHLQWHQVLW\P1 DFWLQJRQLWWKHQWKHLPDJLQDU\IUHHVXUIDFHRIWKHOLTXLGFDQEHDVVXPHGWREHORFDWHGDWD
138
Fundamentals of Fluid Mechanics
KHLJKWRI
P1 froPWheDFWXDOOLTXLGVXUIDFH7KLVLPDJLQDU\IUHHVXUIDFHLVDOVRFDOOHG r1 ¥ g
SLH]RPHWULFVXUIDFH Imaginary free surface
Air with pressure P1
P1 r.g P
Actual free surface
Plate Plate
3.5 CENTRE OF PRESSURE: VERTICAL AND INCLINED SURFACES :KDW GR \RX XQGHUVWDQG IURP WKH FHQWUH RI SUHVVXUH" )LQG WKH H[SUHVVLRQ IRU WKH GHSWK RI WKH FHQWUH RI SUHVVXUH IRU D YHUWLFDO VXUIDFH LPPHUVHG LQ D OLTXLG IURP LWV IUHHVXUIDFH+RZLVLWUHODWHGWRWKHGHSWKRI&*RIWKHYHUWLFDOVXUIDFHIURPWKHIUHH VXUIDFH":KDWKDSSHQVLIWKHFRQWDFWVXUIDFHLVKRUL]RQWDOLQVWHDGRIYHUWLFDO" 7KHLQWHQVLW\RISUHVVXUHLQFUHDVHVZLWKWKHGHSWKRIWKHSRLQWRQWKHLPPHUVHGVXUIDFH+HQFH RQDYHUWLFDOFRQWDFWVXUIDFHWKHSUHVVXUHLQWHQVLW\FRQWLQXRXVO\LQFUHDVHVDVZHPRYHGRZQ IURP WKH WRS HGJH WR WKH ERWWRP HGJH $V WKH SUHVVXUH LQWHQVLW\ LV QRQXQLIRUP WKH WRWDO SUHVVXUHIRUFHZLOOQRWDFWDWWKHFHQWUHRIJUDYLW\RIWKHYHUWLFDOVXUIDFHEXWDWDQRWKHUSRLQW EHORZWKHFHQWUHRIJUDYLW\7KLVSRLQWLVFDOOHGWKHFHQWUHRISUHVVXUHRIWKHYHUWLFDOVXUIDFH
Point A = CG Point B = Centre of pressure
x A B
h h >x
Increasing Pressure Intensity on Vertical Surface
x
b
Expression for Centre of Pressure
x
h
Hydrostatic Forces
139
$YHUWLFDOVXUIDFHLVLPPHUVHGLQOLTXLGDVVKRZQDERYH7DNHDQHOHPHQWDU\VWULSRIGHSWK dxDQGZLGWKbDWWKHGHSWKRIxIURPWKHIUHHVXUIDFH 3UHVVXUHLQWHQVLW\P = xrg dF IRUFHRQWKHVWULS PdA = xrg b ¥ dx = rgbxdx F=
Ú
dF =
Ú
rgbxdx = rg x A
0RPHQWRIIRUFHdFDFWLQJRQWKHVWULSZLWKUHVSHFWWRWKHIUHHVXUIDFH dM = dF ¥ x = rgbx2dx
1RZ VXP RI WKH PRPHQW RI DOO VXFK SUHVVXUH IRUFHV RQ WKH YHUWLFDO FRQWDFW VXUIDFH ZLWK UHVSHFWWRWKHIUHHVXUIDFHFDQEHFDOFXODWHGE\LQWHJUDWLRQ
Ú or
dM =
Ú
$UHD
M = rg
rgbx2 dx x2◊dA
Ú
%XW Ú x2 ◊dA PRPHQWRILQHUWLDZLWKUHVSHFWWRWKHIUHHVXUIDFH Ifs M = rgIFs
\
L
,QFDVHCLVWKHFHQWUHRISUHVVXUHRIWKHYHUWLFDOVXUIDFHDQGLWVGHSWh is h fURPWKHIUHH sXUIDFHWKHQWKHPRPHQWRIWKHSUHVVXUHIRUFHDFWLQJRQWKHYHUWLFDOVXUIDFHZLWKUHVSHFW WRIUHHVXUIDFHLV M=F¥ h = rg x A ¥ h
IURPHTXDWLRQVL DQGLL M = rgIfs = rg x A ¥ h \ IURPWKHSDUDOOHOD[LVWKHRUHP
Ifs = x A h
Ifs = IGA x 2 ZKHUHIG PRPHQWRILQHUWLDIURPD[LVWKURXJK&* 2 xAh = I G + A x
,WLVREYLRXVWKDW h > x DQG h - x =
h =
I G A x 2 + Ax Ax
h =
IG +x Ax
IG Ax
LL
140
Fundamentals of Fluid Mechanics
7KHFHQWUHRISUHVVXUHDOZD\VOLHVEHORZWKHFHQWUHRIJUDYLW\DWDGLVWDQFHRI
IG ,QFDVH Ax
IG WHQGVWREH Ax ]eURUHVXOWLQJLQWKHFHQWUHRISUHVVXUHPRYLQJXSDQGPHUJLQJZLWKWKHFHQWUHRIJUDYLW\ x LVODUJHZKHQWKHYHUWLFDOVXUIDFHLVLPPHUVHGIRUDJUHDWHUGHSWKWKHQ
,QFDVHWKHSODWHLVPDGHKRUL]RQWDOWKHQWKHLQWHQVLW\RISUHVVXUHLVXQLIRUPWKURXJKRXWWKH sXUIDFHRIWKHSODWH,QWKLVFDVHWKHFHQWUHRIJUDYLW\DQGWKHFHQWUHRISUHVVXUHLVVDPH LH h = x )LQGWKHUHODWLRQEHWZHHQWKHFHQWUHRIJUDYLW\DQGFHQWUHRISUHVVXUHIRUDQLQFOLQHG VXUIDFHLPPHUVHGLQDOLTXLG O
h
x
x
q
yy
O hy CG C
dy
Inclined Surface
$WDQ\GHSWKWKHUHODWLRQEHWZHHQxDQGy is x = y VLQ q &RQVLGHUDQHOHPHQWDU\VWULSRIWKLFNQHVVdyDQGZLGWKb7KHLQWHQVLW\RISUHVVXUHDFWLQJ RQWKLVVWULSGXHWRGHSWKx P = xrgEXWx = yVLQq = yVLQq rg dF = PdA = y VLQ qrgbdy DV dA = dy b F=
Ú
dF = rgVLQq Ú ybda
= rgVLQq y A
L
= rg x A
LL
0RPHQWRIWKHSUHVVXUHIRUFHdF DFWLQJRQWKHFRQWDFWVXUIDFHZLWKUHVSHFWWRD[LV± dM = ydF = rgVLQq y2bdy M=
Ú
dM = rgVLQq Ú y2bdy
= rgVLQq I00 ,QFDVHGHSWKRIFHQWUHRISUHVVXUHLVhyIURPWKHD[LVWKHQ
M = F ¥ hy = rg VLQ q yAhy
LLL LY
Hydrostatic Forces
)URPHTQVLLL DQGYL
141
M = rg VLQ q I 00 = rg VLQ q yAhy
I 00 = yAhy
\ 8VLQJWKHSDUDOOHOD[LVWKHRUHP
I 00 = I G + A y 2 I G + A y 2 = yAhy h x DQG y = VLQ q VLQ q x h x 2 ¥ A¥ IG + A = VLQ q VLQ q VLQ q hy =
1RZ
h = x+
or
I G VLQ 2 q Ax
7DEXODWH&*DUHDDQGPRPHQWRILQHUWLDRILPSRUWDQWSODQHVXUIDFHV S. N. 1.
Plane surface
CG from base
Square
x= G
a
Area a2
Moment of inertia about CG a
4
12
2
a
x
x a
2.
Square with diagonal horizontal
x= a 2
a2
a4 12
a
G a
3.
x
Rectangle x=
d 2
bd
bd 3 12
G
d
x b
Contd.
142 4.
Fundamentals of Fluid Mechanics Triangle with base vertical
x=
h.b 3
d
1
2
2
h
1
3
2
d
πd 2
πd 2
2
4
64
2d
πd 2
πd 4
3p
8
128
bd
48
b G
x h
5.
Triangle with base horizontal x=
bh
bh 3 36
h G
x b
6.
Circle x= G x d
7.
Semicircle x=
= 0.21d
x
G d
8.
Trapezoidal
Ê 2a + b ˆ h Ë a + b ˜¯ 3
x=Á
a
a+b 2
¥h
⎛ a 2 + 4ab + b 2 ⎞ 2 ⎜⎝ 36(a + b ) ⎟⎠ h
h x b
)LQG WKH WRWDO SUHVVXUH RQ D WULDQJXODU VXUIDFH LPPHUVHG LQ ZDWHU DW DQ LQFOLQDWLRQ RIWRWKHIUHHVXUIDFHRIZDWHUDVVKRZQEHORZ7KHWRSHGJHLVDWDGHSWKRIP IURPWKHIUHHVXUIDFH
Hydrostatic Forces
143
30° 2m _ x A
G B G
3m
2m B
AG = ¥
2 =P 3
x = + VLQ $UHDRIVXUIDFHLQDWULDQJXODUIRUP
1 ¥3¥ 2 2
P2
7RWDOSUHVVXUHIRUFH F = rgAx = 1 × 103 îîî
N1 $WUDSH]RLGDOSODWHLVLPPHUVHGLQDOLTXLGRI6* DWDQLQFOLQDWLRQRIWRWKH IUHHVXUIDFHRIWKHOLTXLG7KHWUDSH]RLGKDVKHLJKW PDQGVLGHVRIDQGP7KH GHSWKRIWKHWRSHGJHRIWKHSODWHLVDWPIURPWKHIUHHVXUIDFH)LQGWKHK\GURVWDWLF IRUFHRQWKHSODWH 30º _ x
2m
2m G
G 2m 3m y B
144
Fundamentals of Fluid Mechanics
The CG of thHSODWH
y=
h Ê 2a + b ˆ 3 ÁË a + b ˜¯ 2 Ê 2 ¥ 2 + 3ˆ 3 ÁË 2 + 3 ˜¯
2 Ê 4 + 3ˆ ÁË ˜¯ 2 7 14 y= ¥ = y=
$UHD =
a+b 2+3 ¥h= ¥ = P2 2 2
14 ˆ Ê x = + Á - ˜ VLQ Ë ¯
NRZ
= 2+
16 1 ¥
= +
=
7RWDOSUHVVXUHIRUFH F = rgAx
¥ 103 ¥¥¥
N1
'RHVWKHFHQWUHRISUHVVXUHYDU\ZLWKGL൵HUHQWOLTXLGV" 7KHFHQWUHRISUHVVXUHLVJLYHQE\
h=x+
I G VLQ 2 q Ax
As h GRHVQRWGHSHQGXSRQWKHSGRIWKHOLTXLGKHQFe h UHPDLQVWKHVDPHIRUDSDUWLFXODU VXUIDFHIRUDOOOLTXLGV $UHFWDQJXODUVOXLFHJDWHLVVLWXDWHGRQWKHYHUWLFDOZDOORIDORFN7KHYHUWLFDOVLGHRIWKH VOXLFHLVd EUHDGWKLVb7KHFHQWURLGRIWKHVOXLFHJDWHLVDWDGHSWKRIPPHWHUIURP WKHIUHHVXUIDFH3URYHWKDWWKHFHQWUHRISUHVVXUHRQWKHVOXLFHJDWHLVDWWKHGHSWKRI
h=P+
d P
Hydrostatic Forces
x
145
=P
7KHFHQWUHRISUHVVXUH h
h=x+
IG Ax
3 HHQFH x = P DUHDA = b ¥ dDQG I G = bd 12
h = P+
\
bd 3 12 ¥ b ¥ d ¥ P
b2 12 P $UHFWDQJXODUJDWHRIPZLGWKDQGPKHLJKWLVORFDWHGLQDYHUWLFDOSODQHLQZDWHU DQGWKHRWKHUVLGHLVDLU)LQGWKHWRWDOSUHVVXUHDQGGHSWKRIFHQWUHRISUHVVXUHIURP WKHIUHHVXUIDFHLI WRSHGJHRIWKHJDWHFRQFRLGZLWKIUHHVXUIDFHDQG WRSHGJH LVDWGHSWKRIPIURPWKHIUHHVXUIDFH = P+
4 G C
G C
4 G
G C
C
2
2
Case-1
Case-2
Case F = x ¥ A¥r¥ g F = x ¥ A¥r¥ g HHUH
x =
4 = P A = ¥ = P 2 2
F = ¥ ¥ ¥ 3 ¥ N1
4
146
Fundamentals of Fluid Mechanics
&HQWUHRISUHVVXUHIURPWKHIUHHVXUIDFH I h=x+ G Ax bd 3 2 ¥ 43 IG = = = 12 12 h = 2+ ¥ = + = P Case F = x ¥ A¥r¥ g
x \
F = ¥ ¥ ¥ 3 ¥ N1 1RWH7RWDOSUHVVXUHKDVLQFUHDVHGZLWKGHSWK
h = x+ = 6+
IG Ax ¥
= + = P 3URYHWKHGLVWDQFHEHWZHHQWKHFHQWUHRISUHVVXUH h DQGFHQWURLGRIDUHFWDQJXODU d SODWHORFDWHGYHUWLFDOO\KDYLQJZDWHUDWRQHVLGHDQGDLUDWRWKHUVLGHLV ZKHUHdLV KHLJKWRIWKHSODWHDQGbLVZLGWKRIWKHSODWH
G
Air
G
C
d
C b
x =
d bd 3 IG = DQGA = b ¥ d 2 12 h=x+
IG Ax
Hydrostatic Forces
=
bd 3 d bd ¥ ¥ 12 2 d + 6 2 ¥ + = d 3
d + 2
d 2 d = 6 =
147
'LVWDQFH h - x =
2 1 d d - d= 3 2 6
)ORZLQDSLSHOLQHRIPLQGLDPHWHULVFRQWUROOHGE\DFLUFXODUJDWH7KH6*RIWKH IOXLGLV7KHSUHVVXUHDWWKHFHQWUHRIWKHJDWHLVN1P)LQG WRWDOSUHVVXUH IRUFHRQWKHJDWHDQG WKHGHSWKRIFHQWUHRISUHVVXUHIURPWKHIUHHVXUIDFH
_ x
_ h
4 Gate
Pipeline
Side view
PreVVXUHDW x N1P2 \ or
P = x ¥r¥ g
¥ 3 = x ¥ ¥ 3 ¥ x =
¥
P
3UHVVXUHforce = x ¥ r ¥ g ¥ A = ¥ ¥ 3 ¥ ¥ = 2261 kN
p 2 4
148
Fundamentals of Fluid Mechanics
7KHGHSWKRIFHQWUHRISUHVVXUH
h = x+ IG =
IG Ax
p d 4 p ¥ 4 = = p = P 4 64 64
h = +
¥
= + = P $WULDQJXODUSODWHLVXVHGDVJDWHDQGLWLVORFDWHGYHUWLFDOO\WRVWRSWKHIORZRIZDWHU DVVKRZQEHORZ)LQG WRWDOSUHVVXUHDQG GHSWKRIWKHFHQWUHRISUHVVXUH
x = +
2 ¥= += P 3
A=
1 ¥ ¥ = P2 2
IG =
bh3 6 ¥ 33 = = P 36 36
h = x+ = 4+
IG Ax 9¥4
F = xArg = ¥ ¥ ¥ 3 ¥ N1
Hydrostatic Forces
149
$VTXDUHSODWHRIPVLGHLVXVHGDVJDWHWRVWRSWKHIORZRIZDWHUDVVKRZQEHORZ )LQG K\GURVWDWLFIRUFHDQG GHSWKRIWKHFHQWUHRISUHVVXUHIURPWKHIUHHVXUIDFH 3
_ x
_ h
G C
Side a P 'LDJRQDO d
2
\
Êdˆ Êdˆ ÁË 2 ˜¯ + ÁË 2 ˜¯
2
=4
or
2d2 = 16
or
d=
\
x = 3+
P
2
a 4 24 IG = = = 12 12 A = 2 ¥ P2
h = x+ = 4+
IG Ax ¥
P F = xArg = ¥ ¥ ¥ 3 ¥ N1 $VTXDUHSODWHZLWKVLGHPDQGDKROHRIPGLDPHWHULVORFDWHGLQZDWHUYHUWLFDOO\ DVVKRZQEHORZ)LQG WRWDOSUHVVXUHDQG GHSWKRIFHQWUHRISUHVVXUH
a = d = a VLQ =
2¥3 2
= P
150
Fundamentals of Fluid Mechanics
If A1 DUHDRIVTXDUHDQGA2 DLURIFLUFOHWKHQQHWDUHDA A = A1 ±A2 = -
p 2 = - = P 2 4
3
_ x 3
2
1HWPRPHQWRILQHUWLD, I = I VTXDUH - I FLUFOH =
a 4 pd 4 12 64
=
p ¥ 12 64
±
x = +
d = + = P 2
7RWDOSUHVVXUHF = xArg = ¥ ¥ ¥ 3 ¥ = 646 kN 7KHGHSWKRIFHQWUHRISUHVVXUH
h = x+
IG Ax
¥ = + = P = +
_ h
Hydrostatic Forces
151
A vertical square having area 1 m ¥ 1 m submerged in water with layer edge 50 cm below the free surface. Find the distance of horizontal line from the upper edge of the square so that the forces on the upper and lower portions are equal on the square.
0.5 m F1
y
F2
Upper portion
(1) (2)
Horizontal line Lower portion
Guidance: We can solve the problem considering two rectangular surfaces at depth of 0.5 m and (0.5 + y) which have same total pressure force depending upon their areas. F1 on area 1 = x1rA1 g
yˆ Ê 3 = Á 0.5 + ˜ ¥ 1 ¥ 10 ¥ ( y ¥ 1) ¥ 9.81 Ë 2¯ F2 on area 2 = x2rA2 g
1- yˆ Ê ¥ 1 ¥ 103 ¥ [(1 - y ) ¥ 1] ¥ 9.81 = Á 0.5 + y + Ë 2 ˜¯ Now,
F1 = F2
yˆ Ê y + 1ˆ Ê 3 ¥ 1 ¥ 103 ¥ (1 - y )9.81 ÁË 0.5 + 2 ˜¯ ¥ 1 ¥ 10 ¥ ( y ¥ 1) ¥ 9.81 = Á 0.5 + Ë 2 ˜¯ 0.5 y +
y2 Ê y + 2ˆ ¥ (1 - y ) = Á Ë 2 ˜¯ 2
2 y2 + y = - y - y + 2
2 y2 + 2 y - 2 = 0 y2 + y - 1 = 0 y=
-1 ± 1 + 4 = 0.62 m 2
A circular opening of 4 m diameter in a vertical wall of a water tank is controlled by a circular disc of 4 m diameter and which can rotate about its horizontal diameter. Find (1) total pressure on the disc, and (2) torque required to maintain the disc in vertical position, and when the free surface is 6 m from its centre.
152
Fundamentals of Fluid Mechanics
hinges
Thydrostatic
B
Tapplied 4
Guidance:7RWDOSUHVVXUHIRUFHF DFWVEHORZWKH&*DWFHQWUHRISUHVVXUH7KHWRUTXHWR VWRSWKHGLVFIURPURWDWLQJGXHWRFLVHTXDOWRK\GURVWDWLFWRUTXH = F ¥ h - x F = x ¥ A ¥ rg = ¥
p 2 ¥ ¥ 3 ¥ 4
N1
h = x+ = 6+
IG Ax
IG =
pd 4 p ¥ 44 = = 4p 64 64
4p 4p ¥ 6
P \ \
h - x = - = +\GURVWDWLFWRUTXH h - x ¥ F =¥ 1PDQWLFORFNZLVH
+RZHYHUWRUTXHWREHDSSOLHGLQFORFNZLVHGLUHFWLRQ 1P $VTXDUHGRRUZLWKVLGHPLVSURYLGHGLQWKHVLGHZDOORIDWDQNZKLFKLV¿OOHGZLWK ZDWHU:KDWIRUFHPXVWEHDSSOLHGDWWKHORZHUHQGRIWKHJDWHVRDVWRNHHSWKHKLQJHG GRRUFORVHG"7KHXSSHUHGJHRIWKHGRRULVDWPIURPWKHIUHHVXUIDFH hinge hinge 4
_ _ x h
A
A
G C
G C
P = applied force
a=1
a
_ h–4 _ 5–h
F P
Hydrostatic Forces
x = +
153
1 = 2
A=1¥1=1
F = x ¥ A¥r¥ g = ¥ ¥ ¥ 3 ¥ = N1 1 IG 12 = + h = x+ Ax ¥ 1RZWDNLQJPRPHQWRIIRUFHVDFWLQJDWWKHJDWHIURPKLQJHGSRLQWA
F ¥ h - = P ¥ - P P=
¥
N1 $ SODWH RI VL]H P ¥ P LV KLQJHG DW WKH ERWWRP DQG VXSSRUWHG DW PLGSRLQW E\ D SURSVRWKDWLWUHPDLQVLQFOLQHGLQZDWHUDWWRKRUL]RQWDODVVKRZQEHORZDVIXOO\ LPPHUVHG)LQGWKHFRPSUHVVLYHIRUFHLQWKHSURSLILWLVLQFOLQHGDWKRUL]RQWDOO\ -DGDYSXU8QLYHUVLW\ 4
A _ h
_ x
C 2 sin 60
G C
45° 60°
F y2 y1
B
x =
2 3 VLQ = = 2 2
F = x ¥ A¥r¥ g
45° 60°
Fc sin 60
154
Fundamentals of Fluid Mechanics
= ¥ ( ¥ ) ¥ ¥ 3 ¥ N1
¥ 3 ¥ 2 I G VLQ q 12 = + h = x+ ¥ ¥ Ax 2
= +
¥ ¥ = + ¥ ¥
y1 GLVWDQFHIURPWKHKLQJHWRWKHFHQWUHRISUHVVXUHDORQJWKHJDWHVXUIDFH = 2-
h VLQ
= 2-
¥ 13
± y2 =
2 =1 2
7DNLQJPRPHQWDERXWKLQJHB
F ¥ y1 = Fc VLQ ¥ y2 ZKHUHFc FRPSUHVVLYHIRUFHLQWKHSURS ¥ = Fc ¥ ¥ \
Fc =
¥
N1 $ IODVK ERDUG LV UHFWDQJXODU RI VL]H P ¥ P LV LPPHUVHG LQ ZDWHU DQG KLQJHG DV VKRZQEHORZ)LQGWKHGHSWKRIZDWHUxDQGFRPSUHVVLYHIRUFHLQWKHVWUXWZKHQZDWHU LVDERXWWRWULSWKHIODVKERDUG ,,7.KDUDJSXU
Hydrostatic Forces
155
1 A _ h
h
3 3 sin 60
hinge
x
strut
1 60º 30º
Guidance 7KHÀDVKERDUGZLOOWULSZKHQWKHWRWDOSUHVVXUHIRUFHVWDUWVDFWLQJDERYHWKH KLQJH+HQFH h ≥ x - ¥ VLQ LVWKHFRQGLWLRQIRUWULSSLQJ 6XSSRVHWKHKHLJKWRIZDWHULVxWKHQ
h = CHQWUHRISUHVVXUH x + x =
I G VLQ 2 q A¥ x
x x ¥1 = x A= VLQ 3
Ê x ˆ 1¥ Á Ë VLQ ˜¯ = x 3 IG = 12 h = x +
x 3 ¥ VLQ 2 x ¥ x
= x + x = x 1RZIRUWULSSLQJRIÀDVKERDUG
h = x - ¥ VLQ
x = x± x x=
= P
F = x ¥ A¥r¥ g =
x ¥ x ¥ ¥ 3 ¥ g 2
=
¥ ¥ ¥ ¥ 3 ¥ 2
N1
156
Fundamentals of Fluid Mechanics
A rectangular gate of size 6 ¥ 2 is hinged at the base at inclination angle of 60° with the horizontal. The gate is kept in position by a weight of 6 tonnes by an arrangement as shown below. Find the water level (x) when the gate is about to open. Neglect the weight of the gate. P 6 tonnes
2 90º
6
_ F h
6
x
F
sin 60 x0
y2
60º
h = x+
I G sin 2 q Ax 3
2 Ê x ˆ 2¥Á ¥ (sin 60) ˜ Ë sin 60 ¯ x = + x x 2 12 ¥ 2 ¥ ¥ sin 60 2
= 0.5 x +
2x 12
= 0.5 x + 0.167 = 0.667x Force (P) acting on top edge to hold the gate, P = 6 ¥ 1000 ¥ g = 58.86 kN y = x-
h 0.667 x = xsin 60 sin 60
= x - 0.767 x = 0.233 x F=
x x ¥2¥ ¥ 1 ¥ 103 ¥ g = 0.233 x 2 sin 60
During equilibrium, the moment from hinge is zero, i.e., SM = 0
F ¥ y = P¥6 11.28 x 2 ¥ 0.767 x = 58.86 ¥ 6
6
Hydrostatic Forces
x3 =
157
¥ = ¥
x P 7KHJDWHZLOOWULSZKHQKHLJKWRIZDWHU x ≥ P $ YHUWLFDO UHFWDQJXODU JDWH P KLJK DQG P ZLGH KDV ZDWHU WR D GHSWK RI P DW XSVWUHDP DQG P DW GRZQVWUHDP &DOFXODWH WRWDO SUHVVXUH H[HUWHG DW XSVWUHDP DQGGRZQVWUHDPDQG WKHUHVXOWDQWWRWDOSUHVVXUHDQGLWVORFDWLRQZLWKUHVSHFWWR WKHERWWRPHGJH 4
_ h1
x1 6 5
5 2
x2
2
F1 = x1 ¥ A1 ¥ r ¥ g =
¥ ¥ ¥ 3 ¥ 2
N1
h = x+
= + 2
IG Ax 3
¥ () ¥ ¥ ¥ 2
= +
6
RUy1 ± P F2 = x2 ¥ A2 ¥ r ¥ g = ¥ ¥ ¥ ¥ 3 ¥ N1
F1 y1
F2 y2
158
Fundamentals of Fluid Mechanics
h2 = x2 + = 1+
IG A2 x2
4 ¥1 12 ¥ 4 ¥ 1 ¥ 1
RUy2 ± 5HVXOWDQWR = F1±F2 ± N1 Let RDFWDWGLVWDQFHyIURPWKHEDVH
R ¥ y = F1 y1 - F2 y2 ¥ y = ¥ - ¥ y= =
-
P
+HQFHUHVXOWDQWIRUFHLVN1ZKLFKLVDFWLQJWRZDUGVGRZQVWUHDPDWPIURPWKH ERWWRPRIWKHJDWH
7KHSUHVVXUHRIDLURYHUDWDQNLVNJFPN1 7KHUHLVDQRSHQLQJLQWKH WDQNZLWKIODSRIPVTXDUHZLWKFHQWUHRIVTXDUHDWPIURPWKHIUHHVXUIDFH7KH IODSLVKLQJHGDWWKHFHQWUH)LQGWKHIRUFHPWREHDSSOLHGYHUWLFDOO\DWERWWRPHGJH RIWKHIODSDWSRLQWBWRKROGWKHZDWHU 1 Air
4
A
_ x
B
Flap
_A h
P
B
A
F
hinged P B
Hinged at centre
6LQFHDLUKDVSUHVVXUHRINJIFP2 PRIZDWHUKHQFHLPDJLQDU\IUHHVXUIDFHLVP DERYHWKHDFWXDOIUHHVXUIDFH
Hydrostatic Forces
\
x P
Force
F = x1 ¥ A ¥ r ¥ g
159
= ¥ ( ¥ ) ¥ ¥ 3 ¥ g N1 )RUWKHVTXDUHSODWHIURPIUHHVXUIDFHDFWXDO
I G VLQ 2 q Ax ¥ ¥ VLQ 2 = 2+ 12 ¥ 1 ¥ 1 ¥ 2 = 2+ =
h2 = x +
1RZIRUFHF LVEDODQFLQJDJDLQVWWKHDSSOLHGIRUFHP DERXWWKHKLQJH \ SM IURPWKHKLQJH
F¥
¥
(h - x ) VLQ
( - ) ¥ 3
= P ¥ VLQ ¥ = P¥
P=
1 ¥ 2
¥ ¥ ¥ ¥
N1 $YHUWLFDOGRFNJDWHRIPKHLJKWLVUHLQIRUFHGE\WKUHHKRUL]RQWDOEHDPVLQVXFKD ZD\WKDWHDFKFDUULHVHTXDOWRWDOSUHVVXUHGXHWRGHSWKRIZDWHU)LQGWKHORFDWLRQRI EHDPVIURPWKHIUHHVXUIDFH h1 h2
F1
F2
h3 F3
_ h1
_ h2
_ h3
160
Fundamentals of Fluid Mechanics
Guidance 7KHJDWHGRFNLVGLYLGHGLQWKUHHSRUWLRQVh1h2 & h3 VRWKDWWKHWRWDOSUHVVXUH LQ HDFK SRUWLRQ LV HTXDO F1 = F2 = F3 DQG EHDPV DUH ORFDWHG DW WKH FHQWUHV RI SUHVVXUH JLYHQby h1 h2 h3 F = xArg = ¥ ¥ b ¥ r ¥ g F1 =
F2 =
F3 =
NRZ
h12 ¥ b ¥ r ¥ g ZKHUHb ZLGWK 2
(h
2
- h12
2
2
(h
2 3
± h22 2
) brg
) b rg
F1 = F2 = F3 =
F 3
(
)
(
(
) (
)
h22 ± h12 h32 ± h22 h12 b rg = b rg = b rg b rg = 2 2 3 2
)
100 3
or
h 12 = h22 ± h12 = h32 ± h22 =
NRZSXW
h3 ZHJHWh1 Ph2 P
h1 =
h1 + 2
h = 1+ 2
IG A¥
h1 2 1 ¥ h13
12 ¥ h1 ¥ 1 ¥
=
h1 h1 + 2 6
=
2 h1 3
=
2 ¥ = P 3
h1 2
Hydrostatic Forces
161
7KHSRVLWLRQRIUHVXOWDQWIRUFHF2FDQEHIRXQGRXWE\WDNLQJPRPHQWIURPWKHIUHHVXUIDFH
2
2 h1 + F2 ¥ h2 3 F F1 = F2 = 3
( F1 + F2 ) ¥ 3 ¥ h2
= F1 ¥
2F 2 F 2 F ¥ ¥ h2 = ¥ h1 + ¥ h 3 3 3 3 3 =
¥ ± ¥ 3
=
± 3 F1
h3 10 = h3
F2 F3
1RZDJDLQWDNLQJPRPHQWIURPIUHHVXUIDFH
(F + F 1
2
+ F3 ) ¥
2 2 ¥ 10 = ( F1 + F2 ) ¥ ¥ h2 + F3 ¥ h3 3 3 3F 2 2F 2 F ¥ ¥ ¥ ¥ ¥ h3 = 3 3 3 3 3
or
h3 =
- 3
P
162
Fundamentals of Fluid Mechanics
$FLUFXODUSODWHRIPGLDPHWHULVLPPHUVHGLQZDWHULQVXFKDZD\WKDWLWVJUHDWHVW DQG OHDVW GHSWK EHORZ WKH IUHH VXUIDFH DUH P DQG P UHVSHFWLYHO\ 'HWHUPLQH WKH WRWDOSUHVVXUHRQRQHIDFHRIWKHSODWHDQGSRVLWLRQRIWKHFHQWUHRISUHVVXUH 8378 q
2 q
4
G C G C 4
7KHDQJOHRILQFOLQDWLRQ
VLQq =
4-2 1 = 4 2
\ q = 30°
x VLQ A=
pd 2 p ¥ 42 = 4 4
IG =
pd 4 64
h = x+
IG VLQ 2 q A+ x
pd 4 ¥ VLQ 2 pd 2 64 ¥ ¥3 4 16 ¥ 1 = 3+ ¥ = 3+
F = xArg
p ¥ 42 ¥ ¥ 3 ¥ 4 N1 = ¥
Hydrostatic Forces
163
$QDQJXODUJDWH$%&LVGHVLJQHGWRWLSDXWRPDWLFDOO\ZKHQZDWHUULVHVDERYHFHUWDLQ OHYHOLQWKHWDQN7KHJDWHLVKLQJHGDWSRLQWBDQGABLVYHUWLFDOZKLOHBCP LV KRUL]RQWDO )LQG WKH KHLJKW h IURP WKH KLQJH B ZKHQ ZDWHU ULVHV WR WLS WKH JDWH WR DOORZWKHZDWHUWRIORZRXW A F2 h
y1
C
B 1
F1 x1
Guidance :KHQ OHYHO h LQFUHDVHV WKH IRUFH F2 RQ YHUWLFDO SODWH LQFUHDVHV :KHQ
F2 y1 ≥ F1 x1 WKHJDWHZLOOWLS7DNHZLGWKRIJDWH P F1 = h ¥ AKRUL]RQWDO ¥ r ¥ g = h ¥ ¥ ¥ ¥ 3 ¥ K F2 = =
h ¥ AYHUWLFDO ¥ r ¥ g 2 h ¥ h ¥ ¥ ¥ 3 ¥ 2
h2 x1 = GLVWDQFH of CBIURPKLQJH y1 = h - h = h -
1 = 2
2 1 h= h 3 3
F1 ¥ x1 = F2 ¥ y1 1 h ¥ = h 2 ¥ h 3 or
h2 = 3 h=
3 P
7KHJDWHZLOODXWRPDWLFDOO\WLSZKHQZDWHUULVHVDERYHPIURPWKHKLQJHB
164
Fundamentals of Fluid Mechanics
$ WDQN LV ¿OOHG XQGHU SUHVVXUH N3D ZLWK DQ RLO KDYLQJ 6* ,W KDV EHHQ D FRYHURIVL]HP¥PKLQJHGDWWRSHGJH WRKRUL]RQWDODQGKHOGLQSRVLWLRQ E\DIRUFHPDVVKRZQEHORZ)LQG IRUFHPDQG UHDFWLRQDWWKHKLQJHGSRLQW
*DXJHSUHVVXUHRIWKHRLO N3D 17 = h ¥ SG ¥ g or
h=
17 PRIRLO ¥
x = +
¥ VLQ 2
P F = x ¥ A ¥ r ¥ g = ¥ ¥ ¥ ¥ N1 N1
h = x+
I G VLQ 2 q A¥ x
1 4 = + ¥ ¥ ¥ ¥ 3 ¥
P
7DNLQJPRPHQWIURPWKHKLQJHSRLQWA P ¥ AB = F ¥ AC
AC =
P ¥ ¥
h - = = 1 VLQ 2
Hydrostatic Forces
P=
165
¥
N1 7KHUHDFWLRQDWSRLQWA is R
R=F-P = - = N1
$WDQNZLWKVTXDUHYHUWLFDOVLGHRIPDQGGHSWKRIPFRQWDLQVZDWHUXSWRDKHLJKW RIPDQGRLORI6*XSWRPDVVKRZQLQWKH¿JXUH¿QG WRWDOSUHVVXUHRQ WKHYHUWLFDOVLGHDQG FHQWUHRISUHVVXUHIURPWKHIUHHVXUIDFH
Pressure Intensity
3UHVVXUHLQWHQVLW\DWA = 0 3UHVVXUHLQWHQVLW\DWB = hRLO ¥¥N1 ¥¥N1 N1 3UHVVXUHLQWHQVLW\DWC hZDWHU ¥¥ 1 ¥ N1
,QWKHSUHVVXUHLQWHQVLW\GLDJUDPDVVKRZQDERYHWKHYDOXHVDUH BD = CE N1 EF = CF±CE ± N1 1RZ SUHVVXUHIRUFHF1 DUHDRIDABD ¥ZLGWKRIWDQN \
F1 =
1 ¥ ¥ ¥ 2
N1 7KHIRUFHDFWVDWGHSWKh1IURPWKHIUHHVXUIDFH
2 ¥ = P 3
F2 DUHDRIWULDQJOHDEF ¥ZLGWKRIWDQN
166
Fundamentals of Fluid Mechanics
=
1 ¥ ¥ ¥ 2
N1 7KLVIRUFHDFWVDWGHSWKh3 = +
1 ¥ = P 2
7RWDOIRUFHF = F1F2F3
N1 7KHFHQWUHRISUHVVXUH h =
¥ + ¥ + ¥ P
3.6 HYDROSTATIC FORCES ON PLANE AND CURVED SURFACES :KDWDUHWKHGL൵HUHQFHVRIK\GURVWDWLFIRUFHVDFWLQJRQDSODQHDQGFXUYHGVXUIDFH" ,QFDVHRISODQHVXUIDFHVWKHGL൵HUHQWLDOIRUFHVdF DFWLQJRQHYHU\HOHPHQWDU\DUHDRIWKH VXUIDFHKDYHWKHVDPHGLUHFWLRQ+HQFHWKRVHIRUFHVIRUPDV\VWHPRISDUDOOHOIRUFHV'XH WRWKLVUHDVRQWKHPDJQLWXGHRIWRWDOIRUFHFDQGLWVSRLQWRIDSSOLFDWLRQFDQEHGHWHUPLQHG E\LQWHJUDWLRQPHWKRG
x
P
dF = dP ´ dA & dP = xrg F = ò dPdA = ò xrgdbx Area
P + dp
= rgxA ` (Note: Integration is possible)
,QFDVHRIFXUYHGVXUIDFHVDOOWKHHOHPHQWVRIWKHDUHDGRQRWOLHLQWKHVDPHSODQH$OWKRXJK WKHGL൵HUHQWLDOIRUFHVUHPDLQSHUSHQGLFXODUWRWKHLUUHVSHFWLYHHOHPHQWVRIDUHDEXWWKH\GRQRW IRUPDV\VWHPRISDUDOOHOIRUFHV'XHWRWKLVUHDVRQWKHPDJQLWXGHRIWRWDOIRUFHF DQGLWV ORFDWLRQFHQWUHRISUHVVXUH FDQQRWEHGHWHUPLQHGE\WKHPHWKRGRILQWHJUDWLRQ+RZHYHU LQWHJUDWLRQFDQEHGRQHE\UHVROYLQJGL൵HUHQWLDOIRUFHVLQKRUL]RQWDODQGYHUWLFDOGLUHFWLRQV dFv dF
dF = normal force dfH = resolved horizontal force dfv = resolved vertical force, It can be upward or downward
dF H dF
dF H dFv Inside Curved
Outside Curved
Hydrostatic Forces
167
+RZLVWRWDOIRUFHF DQGLWVORFDWLRQIRXQGRXWRQWKHFXUYHGVXUIDFH"
8378±± C
D
dFv E
x
dF
B q
dFH A dA
/HWDVPDOOHOHPHQWRIWKHFXUYHGVXUIDFHRIDUHDdAEHLQFOLQHGDWDQJOHqWRWKHKRUL]RQWDO 7KHGL൵HUHQWLDOIRUFHdFLVDFWLQJQRUPDOWRdA:HFDQUHVROYHdFDVXQGHU dFH +RUL]RQWDOFRPSRQHQW dFVLQq = PdFVLQq = xrgdAVLQq dFV 9HUWLFDOFRPSRQHQW dF cos q = PdA cos q = xrg dA cos q FH = rg Ú xdAVLQq FH = rg Ú xdA cos q 1RZdAVLQqDQGdA cos qUHSUHVHQWWKHSURMHFWLRQVRIWKHHOHPHQWDU\DUHDLQYHUWLFDODQG KRUL]RQWDOSODQHV+HQFHLWIROORZV
D FH= rg Ú xdAVLQq = rgxAEA 3URMHFWHGDUHDRIFXUYHGVXUIDFHRQYHUWLFDOSODQH /HQJWK EA ¥ZLGWKRIWKHVXUIDFH
h= x+
IG ZKHUH h &HQWUHRISUHVVXUHRISURMHFWHGDUHDEA ¥ZLGWKRIWKHVXUIDFH Ax
ThHSRLQWRIDSSOLFDWLRQRIWKLVIRUFHLVWKHFHQWUHRISUHVVXUHRIWKHSURMHFWHGDUHDRI WKHFXUYHGVXUIDFHRQWKHYHUWLFDOSODQH
E Fv = rg Ú xdA cos q = rg ¥ V
ZKHUH V YROXPH
168
Fundamentals of Fluid Mechanics
ZHLJKWRIOLTXLGLQSUR¿OHAEDCBA, i.e., over the curved surface up to free surface. The point of this force is vertically downward of the centroid of the liquid volume above the curved surface. Ê FV ˆ The resultant force F is then equal to FH 2 + FV 2 which acts at angle q = tan–1 Á Ë F ˜¯ H
Find the resultant force due to water pressure acting on the curved surface AB (a quardant of a circle of radius 4 m) if width of the gate is unity.
The projected area of the curved surface on the vertical plane is a rectangle AA¢ B¢B as shown above. 4 x = 2+ = 2+2= 4m \ 2
h = x+
1 ¥ (4)3 IG IG = 12 Ax
A=4¥1=4
43 4 ¥ 4 ¥ 12 = 4.33 m = 4+
FH = xArg = 4 ¥ 4 ¥ 1 ¥ 103 ¥ 9.81 = 157 kN FH is acting at centre of pressure, h = 4.33 m FV = Weight of water supported by curved surface AB up to free surface = Weight in rectangular part (1) + Weight in curved surface (2) = 9.81 ¥ 2 ¥ 4 ¥ 1 ¥ 1 ¥ 103 + 9.81 ¥ 1 ¥
p 42 ¥ 1 ¥ 103 4
Hydrostatic Forces
169
N1 N1 7KHSRLQWRIDSSOLFDWLRQRIFVFDQEHIRXQGE\9HULJQRQ¶VWKHRUHPE\WDNLQJPRPHQWRI ZHLJKWRIZDWHULQHDFKSRUWLRQSRUWLRQ IURPWKHSRLQWBZUWWKHLUFHQWURLGV7KLV PXVWEHHTXDOWRWKHZHLJKWRIWRWDOZDWHUZUWLWVFHQWURLGIURPWKHSRLQWB Y1
W1 B W2
Y2
W y = W1 y1 + W2 y2 4 ¥ 4ˆ Ê ¥ y = ¥ + ¥ Á Ë 3p ˜¯ ¥ y = +
y = F=
= IURP% FH2 + FV2
=
()2 + ()2
=
¥ 4 + ¥ 4
N1 q WDQ±
FV WDQ± FH
$F\OLQGULFDOUROOHUJDWHRIPGLDPHWHULVSODFHGLQVXFKDZD\LQDGDPWKDWZDWHU LV DERXW WR IORZ RYHU LW ,I WKH OHQJWK RI WKH F\OLQGULFDO UROOHU JDWH LV P ¿QG WKH PDJQLWXGHDQGGLUHFWLRQRIWKHUHVXOWDQWIRUFHDFWLQJRQLW
170
Fundamentals of Fluid Mechanics 6
A
D
C
3
Fv
FH
Projected area on vertical
B
FH = xA ¥ rg where A is the projected area on the vertical plane.
x =
3 = 1.5 2
A = 3 ¥ 6 = 18 FH = 1.5 ¥ 18 ¥ 1 ¥ 103 ¥ 9.81 = 264.87 kN FV = Weight supported by the curved surface ACB = Volume ¥ r ¥ g =
1 Ê pd 2 ˆ ¥ ¥"¥r¥ g 2 ÁË 4 ˜¯
=
1 p ¥ 32 ¥ ¥ 6 ¥ 1 ¥ 103 ¥ 9.81 2 4
= 207.9 kN F= =
FH 2 + FV 2
(264.87)2 + (207.9)2
= 336.8 kN -1 q = tan
FV 207.9 = tan -1 = 38.2∞ FH 264.87
A cylindrical roller gate of diameter 2 m and length 3 m is positioned as shown in the ¿JXUH,IWKHZHLJKWRIWKHJDWHLVN1¿QG KRUL]RQWDOUHDFWLRQDWSRLQWADQG YHUWLFDOUHDFWLRQDWSRLQWB D
C
FH
3 Projected area of
RA W
A RB
Fv B
2
roller
_ x
Hydrostatic Forces
171
FH = xArg =
2 ¥ ¥ ¥ ¥ 3 ¥ 2
N1 FV :HLJKWRIZDWHUVXSSRUWHGE\WKHFXUYHGVXUIDFHBCDLHKDOIDUHD RIFLUFOH¥ZLGWK =
1 Ê p ¥ 22 ˆ ¥ ¥3¥r¥ g 2 ÁË 4 ˜¯
N1 $SSO\LQJWKHFRQGLWLRQVIRUHTXLOLEULXPRQWKHUROOHUJDWH SPx RA = FH N1 SPy W±FV = RB \ RB ± N1 $ WDQN DV VKRZQ EHORZ FRQWDLQV D OLTXLG RI 6* XS WR D GHSWK RI P )LQG WKH PDJQLWXGHDQGGLUHFWLRQRIK\GURVWDWLFIRUFHSHUXQLWOHQJWKRIWKHWDQNRQWKHYHUWLFDO IDFHABFXUYHGVXUIDFHBCDQGKRUL]RQWDOERWWRPCD
9HUWLFDO)DFHAB
x =
1 = 2
$UHD AA1 B1 B = 1 ¥ 1 = 1 FAB = xArg = ¥ ¥ ¥ 3 ¥ N1 &XUYHG6XUIDFHBC FH = xArg
172
Fundamentals of Fluid Mechanics
x = +
1 = &HQWURLGRIBB1CC ZUWIUHHVXUIDFH 2
A = 1 ¥ $UHDRIBB1C1C FH = ¥ ¥ ¥ 3 ¥ N1 FV ZHLJKWRIOLTXLGVXSSRUWHGRQBC ZHLJKWRIOLTXLGLQYROXPH YROXPH
1 p ¥ 12 ¥ rg 4 3 = ¥ ¥ ( + )
= (1 ¥ 1 ¥ 1) rg +
N1 F= =
2
(F ) + (F )
2
V
H2
()2 + ()2
= + N1 q = WDQ -1
FV = WDQ -1 = ∞ FH
%RWWRP6XUIDFHCD
x =2 A=1¥1 FCD = xArg = ¥ ¥ ¥ 3 ¥ N1 $F\OLQGULFDOUROOHUJDWHKDVGLDPHWHUPDQGOHQJWKP7KHZDWHUOHYHODWXSVWUHDP LVDERXWWRIORZRYHUWKHJDWHZKLOHDWGRZQVWUHDPLWLVP)LQGD PDJQLWXGHDQG GLUHFWLRQRIWKHUHVXOWDQWK\GURVWDWLFIRUFHDFWLQJRQWKHJDWHE WKHOHDVWZHLJKWRI WKHJDWHWRDYRLGWKHJDWHWREHOLIWHGE\K\GURVWDWLFIRUFHDQGF FKHFNZKHWKHUWKH UHVXOWDQWIRUFHSDVVHVWKURXJKWKHFHQWUHRIWKHF\OLQGHU 8SVWUHDP FH1 = xArg
Hydrostatic Forces
x =
2 = 2
A = ¥ =
FH1 = ¥ ¥ ¥ 3 ¥
h1 = 2 ¥ = P IURPIUHHVXUIDFH 3 FV1 = rg ¥
FV1LVDFWLQJXSZDUGVDQGLVORFDWHG
1 p ¥ 2 ¥ = N1 2
4r 4 ¥ 1 = = P IURPSRLQWO 3p 3p
'RZQVWUHDP
FH 2 = xArg x =
1 = P 2
A = ¥ = P 2
FH 2 = ¥ ¥ ¥ 3 ¥ N1
h2 = 2 ¥ + = IURPIUHHVXUIDFH 3
FV2 :HLJKWRIWKHZDWHURQFXUYHGVXUIDFH
173
174
Fundamentals of Fluid Mechanics
=
1 ¥ p2 ¥ ¥ ¥ 3 ¥ 4
FV2 ZLOODOVRDFWDWIURPSRLQWO 7RWDO FV = FV1 + FV2 N1
FH = FH1 - FH 2 1RZUHVXOWDQWIRUFH
± N1 F= =
FH 2 + FV 2
()2 + ()2
N1 q = WDQ -1
FV = WDQ -1 = ∞ FH
7KHF\OLQGULFDOJDWHLVLQHTXLOLEULXP If or
SPy = 0
FV1 + FV2 = W W = FV N1
7KHF\OLQGULFDOJDWHKDVWREHN1IRUWKHVWDELOLW\ 1RZWDNHPRPHQWIURPSRLQWO
Hydrostatic Forces
175
SM = - ¥ + ¥ + ¥ - ¥ = +HQFHWKHUHVXOWDQWRIDOIRUFHVSDVVHVWKURXJKWKHSRLQWO VHFWRUJDWHABCRIPUDGLXVRQWKHVSLOOZD\RIDGDPLVSODFHGDVVKRZQLQWKH ¿JXUH7KHJDWHLVKLQJHGDWCDQGACLVKRUL]RQWDODWWKHOHYHORIIUHHVXUIDFH,IWKH OHQJWKRIJDWHLVP¿QGWKHPDJQLWXGHDQGGLUHFWLRQRIWKHUHVXOWDQWSUHVVXUHRQWKH JDWH A
hinge
4m 60° 4
B
C
5
A
4 sin 60
B
Side View
Guidance 7KHFXUYHGVXUIDFHABZLOOKDYHK\GURVWDWLFIRUFHQRUPDOWRLWVVXUIDFHZKLFK FDQEHIRXQGRXWE\FDOFXODWLQJKRUL]RQWDODQGYHUWLFDOFRPSRQHQW FH = xArg =
VLQ ¥ VLQ ¥ ¥ ¥ ¥ 2
= ¥¥
3 ¥ ¥ 4
N1 FV :HLJKWRILPDJLQDU\YROXPHRIZDWHURQWKHFXUYHGVXUIDFHAB $UHDRIVHFWRUABC±$UHDRIDBDC ¥OHQJWK¥ r ¥ g
60∞ 1 Ê ˆ - CD ¥ DC ˜ ¥ ¥ r ¥ g = Á pr ¥ Ë ¯ 30∞ 2 1 Ê ˆ = Á - ¥ ¥ ˜ ¥ ¥ ¥ 3 ¥ Ë ¯ 2 = ¥ ¥ N1 N1 F= =
FH 2 + FV 2
()2 + ()2
176
Fundamentals of Fluid Mechanics
=
¥ 4 + ¥ 4
=
¥ 4
N1 -1 q = WDQ
FV = WDQ -1 = ∞ FH
$FLUFXODUSLSHRIPLQGLDPHWHUDQGPORQJUHVWVZLWKLWVD[LVKRUL]RQWDODWWKH ERWWRPRIFDQDOKDYLQJPGHHSZDWHU)LQGWKHPDJQLWXGHRIK\GURVWDWLFIRUFHDQG ORFDWLRQRIWKHFHQWUHRISUHVVXUHRQHDFKRILWVIODWVXUIDFHV
E
10
F
B
FH
4 mf
1
FH
2
A
C
Fv
Fv 12 m
D Side View
Guidance: +HUHWKHFXUYHGVXUIDFHLVLQFLUFXODUVKDSH6LQFHWKHSUHVVXUHIRUFHLVDFWLQJ QRUPDOWRWKHVXUIDFHZHKDYHWR¿QGKRUL]RQWDODQGYHUWLFDOFRPSRQHQWVRIWKHK\GURVWDWLF IRUFHEHIRUH¿QGLQJWKHUHVXOWDQWIRUFH7KHKRUL]RQWDOFRPSRQHQWRQHDFKIODWIDFHLVVDPH DQGLQRSSRVLWHGLUHFWLRQWKHUHE\EDODQFLQJHDFKRWKHU2QO\YHUWLFDOIRUFHZLOOEHDFWLQJ
x = + A=
pd 2 p ¥ 42 = = p = P3 4 4
IG =
pd 2 p ¥ 42 = = 32 32
h = x+ = +
4 =P 2
IG A¥ x ¥
P FH +RUL]RQWDOIRUFHDFWLQJRQHDFKÀDWIDFH RIWKHVXUIDFHDQGEDODQFHHDFKRWKHU
Hydrostatic Forces
177
= xArg = ¥ ¥ ¥ 3 ¥ N1 FV 9HUWLFDOIRUFH FADCXSZDUGV±FABCGRZQZDUGV :HLJKWRIZDWHULQDUHDADLFE ¥P ±ZHLJKWRIZDWHULQDUHDABCFE ¥P :HLJKWRIZDWHULQFLUFOHABCD ¥ 12
=
pd 2 ¥ r ¥ g ¥ 12 4
=
p ¥ 2 ¥ ¥ 2 ¥ ¥ 4
N1XSZDUGV ,QWKHYHUWLFDOVLGHRIDWDQNFRQWDLQLQJZDWHUKDVDKHPLVSKHULFDOSURMHFWLRQRIP RQRQHYHUWLFDOVLGHDVVKRZQLQWKH¿JXUH,IKHLJKWRIWKHZDWHUIURPWKHFHQWUHRI VSKHUHLVP¿QGWKHKRUL]RQWDODQGYHUWLFDOK\GURVWDWLFIRUFHVDFWLQJRQWKHSURMHFWLRQ x P A=
pd 2 p ¥ 22 = = P 2 4 4
FH = xArg = ¥ ¥ ¥ 3 ¥ N1
E
D Water
4m
C B
O A
4
C B
O B1
2
A
FV = FAB±FBC = :HLJKWRIZDWHURQFXUYHGVXUIDFHAB ±:HLJKWRIZDWHURQFXUYHGVXUIDFHBC
:HLJKWRIZDWHULQKHPLVSKHUH =
1 Ê 4 3ˆ ¥ pr ˜ ¥ r ¥ g ¯ 2 ÁË 3
178
Fundamentals of Fluid Mechanics
=
1 4 ¥ p ¥ 3 ¥ ¥ 3 ¥ 2 3
N1
6LQFH ZHLJKW RI ZDWHU RQ FXUYHG VXUIDFH ABED LV PRUH WKDQ WKH ZHLJKW RI ZDWHU RQ FXUYHGVXUIDFHBCDE KHQFHQHWYHUWLFDOIRUFHRIN1ZLOOEHDFWLQJXSRQWRZDUGV IUHHVXUIDFH $F\OLQGHURIVL]HPGLDPHWHUDQGRQHPHWUHOHQJWKVWD\VLQHTXLOLEULXPZKHQLWLV SODFHGLQDWDQNFRQWDLQLQJOLJKWRLO6* DQGKHDY\RLO6* DVVKRZQLQWKH ¿JXUH)LQGWKHGHQVLW\RIWKHPDWHULDORIWKHF\OLQGHU E
Light oil
D
A
FV
B
O
1
FV
W
2
C Heavy oil
Guidance: 7KH F\OLQGHU ZLOO EH LQ HTXLOLEULXP ZKHQ LWV ZHLJKW LV VXSSRUWHG E\ WKH K\GURVWDWLFIRUFHDFWLQJRQLWYHUWLFDOO\XSZDUGV7KHK\GURVWDWLFIRUFHGXHWROLJKWRLOFV1 ZLOO DFW RQ XSZDUGV FXUYHG VXUIDFH AD DQG LW ZLOO DFW GRZQZDUGV7KH K\GURVWDWLF IRUFH RQWKHFXUYHGVXUIDFHCDFV2 GXHWRKHDY\RLOZLOODFWXSZDUGV7KHGL൵HUHQFHEHWZHHQ WKHVHVWZRK\GURVWDWLFIRrces FV2 - FV1 ZLOOEHHTXDOWRWKHZHLJKWRIWKHF\OLQGHUw FV1 :HLJKWRIRLOLQDUHDEAD
1 Ê ˆ = rgl Á DUHD AEDO - FLUFOH DUHD ˜ Ë ¯ 4 Ê 1 p ¥ 22 ˆ = ¥ 3 ¥ ¥ Á ¥ - ¥ 4 4 ˜¯ Ë = ¥ ¥ 3 ( - ) N1GRZQZDUGV FV2 :HLJKWRIKHDY\RLOLQDUHDAEDC
1 Ê ˆ = rgl Á DUHD AEDO + FLUFOH DUHD ˜ Ë ¯ 4
Hydrostatic Forces
179
= ¥ 3 ¥ ¥ ( + ) N1XSZDUGV 1HWK\GURVWDWLFIRUFHDFWLQJXSZDUGV FV = FV2±FV2 ± N1XSZDUGV 'XULQJHTXLOLEULXPRIF\OLQGHUSPy = 0 :HLJKWRIF\OLQGHU ¥ 103
4 3 rr ¥ r PHWDO ¥ g ¥ 103 3 rPHWDO =
¥ ¥ p ¥ 3 ¥
¥ 103NJP3 $JDWHRIPVTXDUHOLHVLQDSODQHPDNLQJDQDQJOHRI ZLWKWKHYHUWLFDO,WVXSSHU HGJHLVKRUL]RQWDODQGLVPEHORZWKHOLTXLGRI6* )LQGWKHUHVXOWDQWSUHVVXUH RQWKHJDWHDQGWKHORFDWLRQRIWKHFHQWUHRISUHVVXUH $0,(
x = + VLQ
F = xArg = ¥ ¥ ¥ ¥ 3 ¥
NN
1.6 SG = 1.5
F 30°
1 1
180
Fundamentals of Fluid Mechanics
h = x+
IG 1 ¥ 13 VLQ 2 q I G = 12 Ax
= +
1 ¥ ¥ ¥ ¥
PIURPIUHHVXUIDFH $ VTXDUH SODWH RI VLGH P LV LPPHUVHG YHUWLFDOO\ LQ ZDWHU VR WKDW DQ HGJH RI WKH VTXDUHPDNHVDQDQJOHRIZLWKWKHKRUL]RQWDO,IWKHKLJKHVWFRUQHURIWKHSODWHLV DWDGHSWKRIPEHORZWKHIUHHVXUIDFH¿QGWKHWRWDOSUHVVXUHRQWKHODPLQDDQG WKHGHSWKRIWKHFHQWUHRISUHVVXUH 3XQMDE8QLYHUVLW\
0.9
A 45°
B
D 0.6
0.6 C
x = + AB VLQ = + ¥ = + = P A î F = xArg = ¥ ¥ ¥ 3 ¥ N1 IG =
a 4 4 = = 12 12
h = x+
IG Ax
¥ = +
P
Hydrostatic Forces
181
$WDQNLV¿OOHGZLWKZDWHUXQGHUSUHVVXUH7KHSUHVVXUHJDXJHLQGLFDWHVSUHVVXUHRI N3D 7DQN KDV OHQJWK RI P 7KH WDQN KDV GHSUHVVLRQ RI D TXDUWHU RI FLUFXODU F\OLQGHU RI UDGLXV P )LQG WKH KRUL]RQWDO DQG YHUWLFDO FRPSRQHQWV RI K\GURVWDWLF IRUFHRQWKLVFXUYHGVXUIDFH 15 kPa
B
Imaginary free surface
2m C
Projected area
D
1.53 A
2.5 B
The gauge reading = 15 kPa =
A
2
15 15 = = 1.53 m of water rg 1 ¥ 103 ¥ 9.81
2 = 2.53 m 2 A = 2 ¥ 2.5 = 5 m
x = 1.53 +
FH = xArg = 2.53 ¥ 5 ¥ 1 ¥ 103 ¥ 9.81 = 124.1 kN FV = Imaginary weight of water in ABCD
1 Ê ˆ = rg Á1.53 ¥ 2.0 + ¥ p ¥ 12 ˜ " Ë ¯ 4 = 1 ¥ 103 ¥ 9.81 ¥ (2.06 + 0.785) ¥ 2.5 = 51.31 kN F=
FH 2 + FV 2
=
(124.1)2 + (51.31)2
=
154 ¥ 104 + 0.26 ¥ 104
=
1.80 ¥ 104
= 134.16 kN -1 q = tan
FV 51.31 = tan -1 = 23.4 FH 124.1
182
Fundamentals of Fluid Mechanics
)LQG WKH PDJQLWXGH DQG GLUHFWLRQ RI WKH UHVXOWDQW K\GURVWDWLF IRUFH DFWLQJ RQ WKH FXUYHGIDFHABRIDGDPSHUXQLWOHQJWKZKRVHSUR¿OHLVDFFRUGLQJWRWKHUHODWLRQx yZKHUHyLVWKHKHLJKWIURPWKHEDVHDVVKRZQLQWKH¿JXUH7KHKHLJKWRIZDWHU LQWKHGDPLVP A
A
1
A1
C 2
y= dy
x 16
Projected area on vertical plane
16
16 m
B
x
B
B
1
x 2 = 16y or
x=
16 y = 4 y
&RQVLGHUWKHSURMHFWHGDUHDRIWKHGDPRQWKHYHUWLFDOSODQHDVVKRZQE\AA1 BB1 y=
16 = 2
FH = yArg 3 = ¥ ¥ ¥ ¥ ¥
N1 FV :HLJKWRIZDWHURQWKHFXUYHGVXUIDFHAB 16
= rg ¥ 1Ú xdy o
16
= ¥ 3 ¥ ¥ Ú ¥ ydy o
16
Ê y 32 ˆ = ¥ ¥ Á 3 ˜ ÁË 2 ˜¯ o 3
=
3 2 ¥ 16 ( ) ¥ 103 3
N1 F= =
FH 2 + FV 2
()2 + ()2
Hydrostatic Forces
=
183
+ 4
N1 F = = ∞ q = WDQ -1 V = WDQ -1 FH
Ê xˆ $ GDP KDV D SDUDEROLF VKDSH y = y Á ˜ DV VKRZQ LQ WKH ¿JXUH EHORZ KDYLQJ Ë x ¯ x P7KHIOXLGLVZDWHUZLWKGHQVLW\¥NJP&RPSXWHWKHKRUL]RQWDOYHUWLFDO DQGWKHUHVXOWDQWWKUXVWVH[HUWHGE\ZDWHUSHUPHWHUOHQJWKRIGDP $0,( y
1
A
B
9
y0 = 9
Projected area on vertical plane
dy æx æ y = y0 æx 0
2
x
O x0 = 6
æ
2
2
Ê xˆ x2 Ê xˆ y = y0 Á ˜ = 9 Á ˜ = Ë 6¯ 4 Ë x0 ¯ or or
x2 = 4y x= 2 y
y =
9 = 2
A=9¥1=9 FH = yArg = ¥ ¥ ¥ 3 ¥ N1 FV :HLJKWRIZDWHULQOABIRUPHWHUOHQJWK = rg ¥ DUHD OAB ¥ 9
= rg Ú xdy o
184
Fundamentals of Fluid Mechanics 9
= rg Úo 2 y dy 9
È 2 ¥ y 32 ˘ ˙ = rg ¥ Í Í 3 ˙ 2 ˚0 Î = ¥ 3 ¥ ¥ =
3 4 ¥ 2 3
3 ¥ ¥ ¥ 3
N1 F= =
FH 2 + FV 2 2 + 2
N1 WDQ q =
FV = = FH
q WDQ± $WDQNFRQWDLQVRLODQGZDWHUXSWRWKHKHLJKWRIPDQGPUHVSHFWLYHO\DVVKRZQ 7KH6*RIWKHRLOLV)LQGWKHUHVXOWDQWIRUFHRQVLGHABCLI6*RIRLOLVDQGWKH OHQJWKRIWDQNLVP A Oil
Imaginary water surface
10 B
8 C
Guidance: 7RWDOKRUL]RQWDOIRUFHDFWLRQRQWKHVLGHLVHTXDOWRFABE\RLODQGFBC E\ZDWHU )RU¿QGLQJFBCLWLVHVVHQWLDOWRFRQYHUWWKHKHLJKWRIRLOLQWRHTXLYDOHQWZDWHUKHLJKW FAB = x1 A1 ¥ rg =
10 ¥ ¥ ¥ ¥ 3 ¥ 2
N1
Hydrostatic Forces
h1 = x1 +
185
IG 2 ¥ 103 =+ = P ¥ ¥ ¥ A1 x1
1RZPRIRLOLVHTXLYDOHQWWRhPRIZDWHU \ h = 10 ¥6*RIRLO = 10 ¥ P 1RZIRUZDWHUOD\HUIURPLPDJLQDU\ZDWHUVXUIDFHZHFDQ¿QGRXW
x2 = h + = + = 2 A 2 ¥ 2 = 16 FBC = x2 A2 ¥ rg = ¥ ¥ ¥ 3 ¥ N1
h2 = x2 +
IG ¥ 3 = + = + = 12 ¥ 16 ¥ 12 A2 x2
F = FAB + FBC = + N1 7DNLQJPRPHQWIURPWKHKRUL]RQWDOVXUIDFHSDVVLQJSRLQWAZHKDYH
3 hcp = ¥ + ¥ hcp =
+ = P IURP A
)LQGWKHUHVXOWDQWIRUFHGXHWRZDWHURQWKHYHUWLFDOVXUIDFHRIWKHWDQNDVVKRZQLQ WKH¿JXUH)LQGDOVRWKHFHQWUHRISUHVVXUH7KHOHQJWKRIWKHWDQNLVP Guidance: &RQVLGHUWKHDUHDLQWRDUHFWDQJOHDQGDWULDQJOH7KHWRWDOIRUFHDFWLQJLVHTXDO to F1DQGF2GXHWRUHFWDQJXODUDQGWULDQJXODUZDWHUFRQWHQW F1 = x1 A1 ¥ rg = ¥ ¥ ¥ ¥ 3 ¥ N1
h1 = x1 +
IG 2 ¥ 63 = + =P 3 ¥ 12 ¥ 12 A1 x1
F2 = x2 A2 ¥ rg
186
Fundamentals of Fluid Mechanics 4m 3m 6m
CG
2m 6m
CG
1 ˆ Ê1 Ê ˆ 3 = Á + ¥ ˜ ¥ Á ¥ ¥ ˜ ¥ ¥ ¥ Ë ¯ Ë ¯ 3 2 = ¥ ¥ = N1
IG 2 ¥ 63 =+ = P 36 ¥ 6 A2 x2
h2 = x2 +
F = F1 + F2 = + N1 7DNLQJPRPHQWIURPIUHHVXUIDFH
¥ hcp = ¥ + ¥ hcp =
+ = P
$PGLDPHWHUF\OLQGHUZHLJKVNJDQGUHVWVRQWKHERWWRPRIDWDQNZKLFKLV PORQJ:DWHUDQGRLODUHSRXUHGLQWRWKHOHIWDQGULJKWVLGHRIWKHWDQNWRGHSWKRI PDQGPUHVSHFWLYHO\DVVKRZQLQWKH¿JXUH)LQGWKHPDJQLWXGHRIKRUL]RQWDO DQGYHUWLFDOFRPSRQHQWRIK\GURVWDWLFIRUFHDFWLQJRQWKHF\OLQGHU
Hydrostatic Forces
187
O A B 0.5 m
q D
FH
FH
1m
C Water
SG = 0.75
Guidance: 7KH KRUL]RQWDO FRPSRQHQWV RI K\GURVWDWLF IRUFH GXH WR RLO DQG ZDWHU ZLOO RSSRVHHDFKRWKHUZKLOHWKHYHUWLFDOFRPSRQHQWVZLOODGGXS FH1 +RUL]RQWDOIRUFHGXHWRRLO = x1 ¥ A1 ¥ r ¥ g =
1 ¥ ¥ ¥ ¥ 3 ¥ 2
N1 FH2 = x2 ¥ A2 ¥ r ¥ g GXHWRZDWHU =
¥ ¥ ¥ ¥ 3 ¥ 2 N1
\
F = FH1±FH2 ± N1 $FWLQJIURPRLOVLGHWRZDWHUVLGH FV1 :HLJKWRIZDWHURQAC =
1 ¥ pr 2 ¥ " ¥ r ¥ g 4
=
1 ¥ p ¥ 2 ¥ ¥ ¥ 3 ¥ 4
N1XSZDUGV FV1 = :HLJKWRIZDWHURQBC :HLJKWRIZDWHULQVHFWRUOBC±:HLJKWRIZDWHULQDOBD
QRWH WKDW VHFWRUKDV∞ DVFRV q = LV
60∞ 1 = RIWKHFLUFOH 360∞ 6
1 RUq = ∞ DQGDUHD 2
188
Fundamentals of Fluid Mechanics
1 Ê1 ˆ = rJ ¥ " Á pr 2 - ¥ ¥ VLQ ∞˜ Ë6 ¯ 2 Ê ˆ 3 2 ¥ = ¥ ¥ ¥ Á p ¥ 2 2 ˜¯ Ë6 = ¥ 3 - N1 \
FV N1 W = ¥ = N1
1HWGRZQZDUGIRUFH W±FV ± N1 $%&LVDQDQJXODUJDWHPORQJDQGKLQJHGDWSRLQWBDVVKRZQLQWKH¿JXUH)LQG WKHXQEDODQFHGPRPHQWDFWLQJDWSRLQWBDVVKRZQLQWKH¿JXUHGXHWRWKHK\GURVWDWLF IRUFHVDFWLQJRQWKHJDWH1HJOHFWWKHZHLJKWRIWKHJDWH A
6m F AB 60°
B
C
F BC
3m
Guidance: FABLVK\GURVWDWLFIRUFHDFWLQJRQABSDUWRIWKHJDWHZKLFKLVQRUPDOWRAB DQGWHQGVWRPRYHWKHJDWHFORFNZLVHZKLOHFBC LVK\GURVWDWLFIRUFHDFWLQJQRUPDOWRBC SDUWRIWKHJDWHWU\LQJWRPRYHWKHJDWHDQWLFORFNZLVH FAB = x1 A1rg
x =
6 = 3M 2
Hydrostatic Forces
AB =
189
6 = VLQ
Ê 6 ˆ ¥ 2 ¥ 1 ¥ 103 ¥ g FAB = 3 ¥ Á Ë VLQ ˜¯ =
3¥ 6¥ 2 ¥ ¥
N1 3
h1 = x1 +
¥ () IG = + = + = P x¥A ¥ ( ¥ ) ¥
FBC = ¥ ¥ ¥ ¥ 3 ¥ N1 ,WZLOODFWXSZDUGVDWPIURPB 7DNLQJPRPHQWIURPSRLQWB
8QEDODQFHGPRPHQW
(
)
FAB AB - h1 - FBC ¥ = ¥ - - ¥ = - ¥ = - = N1P FORFNZLVH
$ F\OLQGHU SOXJ RI P GLDPHWHU LV XVHG LQ D UHFWDQJXODU WDQN P ORQJ:LWK ZKDW IRUFHWKHF\OLQGHULVSUHVVHGDJDLQVWWKHERWWRPRIWKHWDQNGXHWRPRIZDWHU"
Guidance 7KHYHUWLFDOFRPSRQHQWRIWKHK\GURVWDWLFIRUFHRQWKHFXUYHGVXUIDFHZLOOSUHVV WKHF\OLQGHUDJDLQVWWKHERWWRPRIWDQN
190
Fundamentals of Fluid Mechanics
VLQq =
= = 3 2
q = 30° FV BCD :HLJKW RI WKH ZDWHU LQ BB1 D1 D CB 1
= :HLJKW RI WKH ZDWHU LQ UHFWDQJOH BB1 D1 D - KDOI FLUFOH
1 2ˆ Ê = rg " Á ¥ - p ˜ Ë ¯ 2 3 = ¥ ¥ ¥ -
= 9N1GRZQZDUGV
FV1 AB DE = :HLJKW RI WKH ZDWHU RQ AB DE = :HLJKW RI WKH ZDWHU LQ DUHD ABB1 A1 A + DUHD EE1 D1 DE =
¥ r ¥ g ¥ " UHFWDQOJHBB1 A1 F + DUHD VHFWRURIFLUFOHIRU∞ - DOAF
= ¥ ¥ 3 ¥ ¥ > - r - r FRV +
pr 2 ¥
300 1 - ¥ r - r FRV r VLQ @ 360 2
= ¥ ¥ > ¥ - ¥ FRV + =
p ¥ 32 1 3 - - FRV ¥ @ 12 2 2
= ¥ ¥ + - =N1XSZDUGV F =± =N1GRZQZDUGV $ F\OLQGULFDO UROOHU RI P GLDPHWHU LV SODFHG LQ ZDWHU DV VKRZQ LQ WKH ¿JXUH )LQG WKH KRUL]RQWDO DQG YHUWLFDO FRPSRQHQWV RI K\GURVWDWLF IRUFH GXH WR ZDWHU DFWLQJ RQ F\OLQGULFDOUROOHUSHUZDWHUOHQJWK
Hydrostatic Forces K
J
L
H 2m E
F
C O
45°
G
D H A
B 45°
FH )RUFHRQFXUYHGVXUIDFHCDA±)RUFHRQFXUYHGVXUIDFHAB )RUWKLVZHKDYHWR¿QGWKHIRUFHVRQWKHYHUWLFDOSURMHFWLRQRIWKHDUHDRICDA FH = xAr g x = JE +
1 EA 2
1 ¥ + FRV 2 1 = + ¥ 2 = P A = EA ¥ 1 = +
= ¥ = P 2 FHCDA ¥ ¥ ¥ 3 ¥ N1WRZDUGVOHIW 1RZIRUFXUYHGDUHDABWKHSURMHFWLRQRQWKHYHUWLFDOSODQHJLYHVXV
x = 4 + EH +
1 HA 2
= + ¥ +
1 - 2
= + + P A = HA ¥ 1 = ¥ = P 2
191
192
Fundamentals of Fluid Mechanics
\
FHAB xArG = ¥ ¥ ¥ 3 ¥ = N1 WRZDUGV ULJKW FH = - = N1 WRZDUGV OHIW F V
9HUWLFDOIRUFHDFWLQJRQWKHF\OLQGULFDOUROOHU XSZDUGIRUFHRQDAB±GRZQZDUGIRUFHRQDC ZHLJKWRIYROXPHDABHKD ±YROXPHDCLK ZHLJKWRIYROXPHDCLK YROXPHRIUHFWDQJOHCFHL 1 YROXPHWULDQJOHCFB FLUFOHYROXPHCDAB ±YROXPHDCLK 2 1RWH9ROXPHDLCKFDQFHOVRXW
1 1 Ê 2ˆ = rg ¥ l Á ¥ + ¥ ¥ + p ¥ ˜ Ë ¯ 2 2 = ¥ 3 ¥ ¥ + + = ¥ N1 = N1 XSZDUGV
3.7 PRESSURE DIAGRAM :KDWGR\RXXQGHUVWDQGIURPWKHSUHVVXUHGLDJUDP":KDWLVLWVXVHIXOQHVV" $SUHVVXUHGLDJUDPLVWKHJUDSKLFDOUHSUHVHQWDWLRQRIWKHYDULDWLRQRILQWHQVLW\RISUHVVXUH GXHWROLTXLGGHSWKRQWKHVXUIDFH$VWKHGHSWKRIWKHOLTXLGLQFUHDVHVWKHSUHVVXUHLQWHQVLW\ LQFUHDVHV RQ WKH VXUIDFH7KH SUHVVXUH LQWHQVLW\ DFWV DOZD\V QRUPDO WR WKH VXUIDFH ,I WKH VXUIDFH LV KRUL]RQWDO WKH SUHVVXUH LQWHQVLW\ LV XQLIRUP RQ WKH VXUIDFH ,Q FDVH RI YHUWLFDO VXUIDFHWKHSUHVVXUHLQWHQVLW\LQFUHDVHVXQLIRUPO\RQWKHVXUIDFHLHOHDVWDWWRSHGJHDQG PD[LPXPDWERWWRPHGJH6LPLODUO\WKHSUHVVXUHLQWHQVLW\RQDQLQFOLQHGVXUIDFHLQFUHDVHV DVZHPRYHGRZQDORQJWKHVXUIDFH
x
h
x=h
Horizontal
Vertical
Inclined
Hydrostatic Forces
193
7KHSUHVVXUHGLDJUDPVRIDKRUL]RQWDOYHUWLFDODQGLQFOLQHGVXUIDFHKDYHEHHQVKRZQLQWKH ¿JXUH,WLVSRVVLEOHWRXVHWKHSUHVVXUHGLDJUDPWR¿QGWKHWRWDOSUHVVXUHK\GURVWDWLFIRUFH DQGFHQWUHRISUHVVXUHIRUWKHVXEPHUJHGVXUIDFH,WLVVSHFLDOO\XVHIXOLQFDVHWKHVXUIDFH LVVXEPHUJHGLQWZRRUPRUHGL൵HUHQWOLTXLGV)ROORZLQJVWHSVDUHWREHWDNHQ
'HWHUPLQHWKHSUHVVXUHDWERWWRPRIHDFKOLTXLGDVVKRZQLQ¿JXUHP1 = rgh1 P1 SUHVVXUHLQWHQVLW\h1LVKHLJKWRIOLTXLG
'UDZWKHSUHVVXUHGLDJUDPZKLFKLVWKHKHLJKWRIOLTXLGRQxD[LVDQGSUHVVXUHLQWHQVLW\ RQyD[LVRUYLFHYHUVD )LQG WRWDO SUHVVXUH F1 RI HDFK ÀXLG ZKLFK LV DUHD RI SUHVVXUH GLDJUDP ¥ OHQJWK RU ZLGWKRIWDQN F1 = A1 lZKHUHA1 DUHDRISUHVVXUHGLDJUDPDQGl OHQJWKRIWDQN
7RWDOK\GURVWDWLFIRUFHLVWKHVXPRIWRWDOSUHVVXUHVRIHDFKOLTXLG F3 = F1F2F3F4
&HQWUHRISUHVVXUHFDQEHIRXQGRXWE\XVLQJODZRIPRPHQW±
Fh = F1h1 + F2 h2 + F3 h3 O h1
S1
1
F1 = wt of vol (1) F2 = wt of vol (2) + (3)
P1 h2
2
S2
F3 = wt of vol (4) + (5) + (6)
P2 h3
4
S3 P3 O
5
6
h1 (h1 + h2) (h1 + h2 + h3) Pressure Diagram
Different Liquids
$WDQNRIOHQJWKPFRQWDLQVDQLPPLVFLEOHOLTXLGDQGZDWHUIRUWKHGHSWKRIPDQG PDVVKRZQLQWKH¿JXUH)LQG 7RWDOSUHVVXUHRQWKHYHUWLFDOVLGHRIWKHWDQN 7KHORFDWLRQRIWKHFHQWUHRISUHVVXUH Liquid (SG = 0.8)
A height
1m
1 F
B 2
0.5 m C
P1 = 7.85
3 P2 = 12.76 D
E
Pressure
Water Fluids
Pressure Diagram
194
Fundamentals of Fluid Mechanics
3UHVVXUH,QWHQVLW\ $WERWWRPRIOLTXLG
P1 = r1 gh1 = ¥ 3 ¥ ¥ = N1P 2
$WERWWRPRIZDWHU
P2 = P1 + rgh2 = + ¥ 3 ¥ ¥ = + = +RUL]RQWDOIRUFHRQWKHVLGHRIWKHWDQN FH $UHDRISUHVVXUHGLDJUDP¥OHQJWKRIWKHWDQN )URPWKHSUHVVXUHGLDJUDP
Ê1 ˆ F1 = Á ¥ P1 ¥ h1 ˜ ¥ l Ë2 ¯ 1 ¥ ¥ ¥ = N1 2 F2 = P1 ¥ h2 ¥ l = ¥ ¥ =
= N1 1 F3 = ( P2 - P1 ) ¥ h2 ¥ 2 2 1 = - ¥ ¥ = N1 2 +HQFHWRWDOK\GURVWDWLFIRUFHRQWKHYHUWLFDOVLGH
F = F1 + F2 + F3 = + + = N1
1RZWKHFHQWUHRISUHVVXUHFDQEHIRXQGRXWE\DSSO\LQJWKH ODZRIPRPHQW/HWWKHORFDWLRQ RIWKHFHQWUHRISUHVVXUHEH h IURPWKHIUHHVXUIDFH7DNLQJPRPHQWIURPIUHHVXUIDFH
F ¥ h = F1 ¥ h1 + F2 ¥ h2 + F3 ¥ h3 h1 LVFHQWUoid of DABFh2LVFHQWURLGRIUHFWDQJOHBCDFDQGh3LVFHQWURLGRIDDEF
Hydrostatic Forces
195
Ê ˆ Ê ˆ Ê ˆ h = ¥ Á ¥ ˜ + ¥ Á + ˜ + ¥ Á ¥ + ˜ Ë3 ¯ Ë 2 ¯ Ë3 ¯ = + + h= = P IURP IUHH VXUIDFH $ YHUWLFDO WDQN RI VTXDUH FURVV VHFWLRQ ZLWK VLGH ZLGWK P DQG KHLJKW P ,W LV FORVHG RQ DOO VLGHV ,W FRQWDLQV RLO 6* WR GHSWK P ZDWHU XS WR GHSWK P DQGUHPDLQLQJKHLJKWLV¿OOHGZLWKDLUXQGHUSUHVVXUHRIPRIZDWHU)LQG WRWDO K\GURVWDWLFIRUFHRQWKHYHUWLFDOVLGHDQG ORFDWLRQRIWKHFHQWUHRISUHVVXUH)URP WKHERWWRPRIWDQN Air
Oil
P1 P1 1
2
2.5
2
height
0.5
2.5
2
P1 3 P1
4
5 P1
Water
P2 6 P2
Pressure Pressure Distribution
P1 PRIZDWHU SUHVVXUHGXHWRDLU = ¥ r ¥ g = ¥ ¥ 3 ¥ = N1P 2 P2 3UHVVXUHLQWHQVLW\DWWKHERWWRPRIRLO = P1 + ¥ ¥ 3 ¥ g = + = N1P 2 P3 3UHVVXUHLQWHQVLW\DWWKHERWWRP = P2 + ¥ r ¥ g = + ¥ ¥ 3 ¥ = N1P 2 +RUL]RQWDOIRUFHRQWKHYHUWLFDOVLGHRIWDQNLV FH DUHDRISUHVVXUHGLDJUDP¥OHQJWKRIWKHWDQN
P3
196
Fundamentals of Fluid Mechanics
)URPSUHVVXUHGLDJUDP
F1 = P1 ¥ A1 = ¥ ¥ = N1 F2 = P1 ¥ h1 ¥ l = ¥ ¥ = N1 1 1 P2 - P1 ) ¥ h1 ¥ l = ¥ ¥ ¥ = N1 ( 2 2 F4 = P1 ¥ h2 ¥ l = ¥ ¥ = N1 F3 =
F = ( P - P ) ¥ h ¥ l = ¥ ¥ = N1 1 1 P3 - P2 ) ¥ h2 ¥ l = ¥ ¥ ¥ = N1 ( 2 2 F = F1 + F2 + F3 + F + F + F F6 =
= + + + + + = N1
&HQWUHRISUHVVXUHFDQEHIRXQGRXWE\DSSO\LQJODZRIPRPHQWIURPWKHERWWRPRIWKHWDQN
F ¥ h = Fh + F h + F h + F h + F h + F h = F + F + F ¥ hC + F h + F h + F h = ( + + ) ¥
Ê ˆ + ¥ Á + ˜ Ë3 ¯ 2
+ ¥ ¥ 2 3 + + + h= = = P + ¥
3.8 STABILITY OF DAM :KDWGR\RXXQGHUVWDQGIURPWKHVWDELOLW\RIDGDP"
Hydrostatic Forces
197
The forces acting on a dam are: (1) horizontal component of hydrostatic force (FH DFWLQJWRUZDUGVOHIWDVVKRZQLQWKH¿JXUH FH = xArg
where x is centroid of water and ALVZHWWHGDUHDRIYHUWLFDOVLGH (2) The weight of masonry of the dam acting down (W) 7KHGDPKDVWREHGHVLJQHGVXFKWKDWLWPXVWKDYH 7KHIDFWRUVDIHW\DJDLQVWVOLGLQJGXHWRK\GURVWDWLFIRUFHFH FH KDVWREHFRXQWHUDFWHG E\WKHZHLJKWRIWKHGDPDQGFRH൶FLHQWRIIULFWLRQEHWZHHQWKHEDVHRIWKHGDPDQG WKHIRXQGDWLRQRIVRLO+HQFHZHKDYH D 6OLGLQJUHVLVWDQFH m ◊W E 6OLGLQJIRUFH FH F )RUVWDELOLW\m ◊W > FH where m FRH൶FLHQWRIIULFWLRQ$VVHHQIURPWKHGLDJUDP m = tan aLHDQJOHRILQFOLQDWLRQRIWKHUHVXOWDQW)RUVWDELOLW\WKHDQJOHRIIULFWLRQ PXVWEHJUHDWHUWKDQWKHDQJOHRIIULFWLRQLHl > a G )DFWRURIVDIHW\DJDLQVWVOLGLQJLV
FSsliding =
6OLGLQJ UHVLVWDQFH m◊W 6OLGLQJ IRUFH FH
7RWDOULJKWLQJPRPHQWPXVWEHJUHDWHUWKDQWKHWRWDORYHUWXUQLQJPRPHQW7KHULJKWLQJ PRPHQWLVJHQHUDWHGE\WKHZHLJKWRIWKHGDPZKLFKVKRXOGDFWDVQHDUWRKHHOVRWKDW PRPHQWDUPZUWWKHWRHLVODUJH7KHIDFWRURIVDIHW\DJDLQVWRYHUWXUQLQJ FSRYHUWXUQLQJ =
Total righting moment 7RWDO RYHUWXUQLQJ PRPHQW =
W ¥x FH ¥ y
7KHPD[LPXPDQGPLQLPXPWHQVLRQGHYHORSHGDWWKHEDVHGXHWRHFFHQWULFLW\VKRXOG EHVDIH7RDYRLGWHQVLRQDWWKHEDVHWKHUHVXOWDQWR VKRXOGEHZLWKLQPLGGOHWKLUGRI WKHEDVH $ FRQFUHWH GDP LV UHWDLQLQJ P RI ZDWHU DV VKRZQ LQ WKH ¿JXUH 7KH ZHLJKW RI WKH masonry work of the dam is 30 kN/m2 )LQG IDFWRU RI VDIHW\ DJDLQVW VOLGLQJ IDFWRURIVDIHW\DJDLQVWRYHUWXUQLQJDQG WKHSUHVVXUHLQWHQVLW\RQWKHEDVH7DNH m EHWZHHQWKHEDVHDQGWKHIRXQGDWLRQVRLO
198
Fundamentals of Fluid Mechanics 3 C
6m
(1)
D
8m
(2)
W1E W2 3
A
B
3 x2 x1
:HLJKWRIWKHGDP :HLJKWRIUHFWDQJOHAECD:HLJKWRIDEBD = w1w2
1 Ê ˆ = Á ¥ ¥ + ¥ ¥ ˜ ¥ 30 Ë ¯ 2 N1 If x1DQGx2DUHGLVWDQFHVRIw1DQGw2IURPWKHWRHSRLQWB7KHQ&*RIWKHFRPSOHWHGDP x LVJLYHQE\ w x + w2 x2 x = 1 1 w 2 x1 = + = P x2 = ¥ = P 3
x =
¥ + ¥ + = = P
FH = yArg =
6 ¥ ¥ ¥ ¥ 3 ¥ 2
N1 I = y+ G Ay = 3+
1 ¥ 63 12 ¥ 6 ¥ 1 ¥ 3
P
2YHUWXUQLQJPRPHQW FH ¥ y ¥ 4 N1PFORFNZLVH
Hydrostatic Forces
5LJKWLQJPRPHQW w ¥ x ¥ N1PDQWLFORFNZLVH
7KHGDPLVVWDEOHDVULJKWLQJPRPHQW!RYHUWXUQLQJPRPHQW
5LJKWLQJ PRPHQW 2YHUWXUQLQJ PRPHQW = = 6OLGLQJ UHVLVWDQFH = 6OLGLQJ IRUFH
FSRYHUWXUQLQJ =
FSVOLGLQJ
=
mw FH
=
¥
= F= =
2
(w)2 + ( FH )
()2 + ()2
= + ¥ 4 = N1 If xRLVWKHGLVWDQFHIURPWKHWRHIURPZKHUHRSDVVHVWKURXJKWKHEDVH
ÂM
5LJKWLQJ PRPHQW - 2YHUWXUQLQJ PRPHQW R R - = 3263 = = P
xR =
A
(FFHQWULFLW\ froPFHQWUH
=
6 6 - = P < = 2 6
+HQFHWKHUHVXOWDQWOLHVZLWKLQPLGGOHWKLUGRIWKHEDVH
199
200
Fundamentals of Fluid Mechanics W
F
A
B 3
3
3.67
7KHSUHVVXUHLQWHQVLW\YDULHVGXHWRHFFHQWULFLW\ P=
w w ¥ - ¥ ¥ ± A 63
=
¥ ¥ ¥ ± 6 ¥1 63
= ± N1P 2 3UHVVXUHLQWHQVLW\DWKHHOSRLQWA N1P2 3UHVVXUHLQWHQVLW\DWWRHSRLQWB ± N1 $FRQWDLQHURIPOHQJWKLV¿OOHGZLWKOLTXLGKDYLQJ6* XSWRWRSRILWDVVKRZQLQ WKH¿JXUH)LQG IRUFHVDFWLQJRQABBCCD & AD FHQWUHRIJUDYLW\IRUVXUIDFH GUDZSUHVVXUHGLVWULEXWLRQGLDJUDPIRUVXUIDFHABBCCDDQGAD
0.2 1.5 m A
B
1m 60º D
C
E 1.5 m
PAB 3UHVVXUHLQWHQVLW\DWOHYHOAB = x rg ¥¥ 103 ¥ N1P2
)RUFHRQVXUIDFHAB
FAB = PAB ¥ ab ¥ 1 AB = CD±DE
Hydrostatic Forces
\
±¥FRW± ±± P FAB = ¥ N1
)RUFHRQVXUIDFHBC
x = +
1 = 2
PBC = xArg = ¥ ¥ ¥ ¥ 3 ¥ N1 )RUFHRQVXUIDFHCD
x = + = P PCD = xArg = ¥ ¥ ¥ ¥ 3 ¥ N1 )RUFHRQVXUIDFHAD
x = + A = ¥
1 =P 2
1 = P 2 VLQ
F = xArg = ¥ ¥ ¥ 3 ¥ N1 3UHVVXUHGLDJUDPRQAB A
≠ P ≠ P ≠ P ≠ P ≠ P ≠ P ≠B P N1P2
3UHVVXUHGLDJUDPRQBC 11.77
B
C 7.85
11.77
201
202
Fundamentals of Fluid Mechanics
PB N1P2 PC = + = +
1¥ r ¥ g 103 ¥ ¥ 3 ¥ 103
= + = 3UHVVXUHGLDJUDPRQCD D
Ø Ø Ø Ø Ø Ø Ø PCD
3 PCD = x rg = ¥ ¥ ¥
N1 3UHVVXUHGLDJUDPRQAD P PD = PA +
x rg 103
= +
¥ ¥ 3 ¥ 103
= + = N1 A 11.77 PA
D 11.77 7.85
PD
$ZRRGHQF\OLQGULFDOVWRUDJHYDWKDVPGLDPHWHUDWRXWVLGH,WLV¿OOHGZLWKDOFRKRO XS WR P KHLJKW$OFRKRO KDV 6* 7KH ZRRGHQ SODQNV RI WKH YDW DUH EUDFHG ZLWKIODWVWHHOEDQGVPPZLGHDQGPPZLGHZLWKDOORZDEOHVWUHVV¥N1 P)LQGWKHVSDFLQJRIWKHEDQGVQHDUWKHERWWRPRIWKHYDW
FH = xArg = ¥ ¥ ¥ ¥ 3 ¥ = N1
Hydrostatic Forces
203
1
8
FH
FH
8
T 6
Band Planks of vat
1RZLQFDVHWKHUHDUHnEDQGVWKHQ n ¥ 2T = FH Where TLVIRUFHLQHDFKEDQG s ¥$UHD = ¥ 4 ¥ ¥ ¥ -6 = 16 kN n ¥ 2T = FH n ¥ 2 ¥ N1
32
n=
6SDFLQJ
= n +
FP
3.9 GATE, AND LOCK GATES :KDWDUHWKHHQJLQHHULQJVWUXFWXUHVZKLFKDUHGHVLJQHGWRZLWKVWDQGK\GURVWDWLFIRUFHV" 7KHHQJLQHHULQJVWUXFWXUHVZKLFKDUHPHDQWWRKROGZDWHURUFRQWUROWKHÀRZRIZDWHU FDQEHJURXSHGDVXQGHU *DWHV *DWHV DUH XVHG LQ ULYHUV GDPV SLSHV DQG FDQDO ORFNV HLWKHU WR FRQWURO WKH ÀRZ RI WKH ZDWHU RU WR PDLQWDLQ WKH OHYHO RI WKH ZDWHU7KH K\GURVWDWLF IRUFHV DFWLQJ RQWKHVHJDWHVFDQEHRQRQHVLGHRUERWKVLGHVGHSHQGLQJXSRQWKHOHYHORIZDWHUDW XSVWUHDP DQG GRZQVWUHDP ,I WKHUH LV QR ZDWHU OHYHO DW GRZQVWUHDP WKHQ K\GURVWDWLF IRUFHVZLOODFWRQRQHVLGHLHVWDWLFVLGHRQO\7KHJDWHVFDQEH VLPSOHJDWH VOXLFHJDWH WDLQWHUJDWHRU UROOHUJDWH$VOXLFHJDWHLVXVHGWRFRQWUROWKHÀRZ RIZDWHUE\PRYLQJLWLQDYHUWLFDOSODQHWKURXJKWKHJURRYHVRUUDLOVSURYLGHGRQWKH PDVRQU\RXWOHWV$VOXLFHJDWHFRQVLVWVRIWZRYHUWLFDOSODWHVFDOOHGVNLQSODWHVLQZKLFK KRUL]RQWDOIEHDPVDUHSURYLGHG7KHIEHDPVDUHORFDWHGFORVHO\DWERWWRPWRVWDQG PRUHK\GURVWDWLFIRUFH DVFRPSDUHGWRWKHWRSRIWKHJDWH7KHJDWHPRYHVXSDQGGRZQ ZLWKWKHKHOSRIUROOHUV¿[HGRQWKHVNLQSODWHV7KHUROOHUVWUDYHORQWKHYHUWLFDOUDLOV JXLGHV ZKLFKDUH¿[HGRQWKHSLHUVRUYHUWLFDOZDOOVRIWKHRXWOHWV
204
Fundamentals of Fluid Mechanics Cable to move sluice gate up & down
Rail Vertical wall of the outlet
Upstream
Downstream
Sluice gate
Sluice Gate (to Control Flow)
$ORFNJDWHLVXVHGWRFKDQJHWKHZDWHUOHYHOLQWKHFDQDOE\FRQVWUXFWLQJDORFNIRUWKH SXUSRVHRIQDYLJDWLRQ:KHQDGDPLVFRQVWUXFWHGRQDFDQDORUULYHUWKHZDWHUOHYHO RQWKHWZRVLGHVRIWKHGDPZLOOEHGL൵HUHQW,QRUGHUWRSHUPLWERDWVWRPRYHGRZQ IURPWKHXSSHUOHYHORIZDWHUGXHWRGDPWRWKHORZHUOHYHORIZDWHURUYLFHYHUVDD FKDPEHUFDOOHGµORFN¶LVFRQVWUXFWHGEHWZHHQWKHVHWZROHYHOVRIZDWHUDVVKRZQLQWKH ¿JXUH7ZRVHWVRIORFNJDWHVDUHSURYLGHGWRFRQWUROWKHZDWHUOHYHOLQWKHORFN Lock gate (closed)
Lock gate (open)
Downstream lock gate
Length of lock
Lock gate (closed)
Boat Transfer to Upstream
q
Width of lock
Lock and Lock Gates
,QRUGHUWRSHUPLWDERDWIURPWKHORZHUOHYHOWRKLJKHUOHYHOLILV¿UVWDGPLWWHGLQWRWKH ORFNE\RSHQLQJWKHGRZQVWUHDPORFNJDWHDQGWKHQFORVLQJLW1RZWKHXSVWUHDPORFN
Hydrostatic Forces
205
JDWHLVRSHQHGWRUDLVHWKHOHYHORIZDWHULQWKHORFNXSWRWKHOHYHORIXSVWUHDP7KHERDW FDQQRZPRYHXSVWUHDP6LPLODUO\IRUWUDQVIHUULQJWKHERDWIURPXSVWUHDPORFNLV¿OOHG XSVRWKDWWKHERDWFDQPRYHWRORFN7KHQWKHGRZQVWUHDPORFNJDWHLVRSHQHGWREULQJ GRZQWKHOHYHORIWKHORFNXSWRWKHOHYHORIWKHGRZQVWUHDP(DFKORFNJDWHFRQVLVWVRI WZRVZLQJLQJSDUWVZKLFKDUHFDUULHGRQKLQJHV¿[HGWRWKHYHUWLFDOZDOODWWKHWRSDQG ERWWRP7KHJDWHVDUHWLJKWO\FORVHGWRRQHDQRWKHUE\WKHDFWLRQRIZDWHUSUHVVXUH 0DVRQU\ 'DP 0DVRQU\ GDP LV D VWUXFWXUH DFURVV D ULYHU ZKLFK LV FRQVWUXFWHG IRUVWRSSLQJZDWHUÀRZXSWRDOHYHO,WLVPHDQWIRUWKHVWRUDJHRIZDWHUE\ZD\RI LQFUHDVLQJ WKH OHYHO RI ZDWHU DW XSVWUHDP VLGH 7KH ZDWHU VWRUHG E\ GDP LV XVHG IRU LUULJDWLRQDQGSRZHUJHQHUDWLRQ7KHGDPVFDQEH JUDYLW\GDPRU DUFKHGGDP $QDUFKHGGDPLVFRQVWUXFWHGDFURVVDQDUURZJRUJH,QJUDYLW\GDPWKHK\GURVWDWLF IRUFHV DQG WKH ZHLJKW RI WKH PDVRQU\ DUH FRQVLGHUHG +RZHYHU LQ DUFKHG GDP WKH UHDFWLRQVRIVLGHURFNZDOOVLQZKLFKWKHGDPLVEXLOWDUHDOVRFRQVLGHUHGWRDQDO\VH WKHVWDELOLW\RIWKHGDP 2YHUKHDG :DWHU 7DQNV 2YHUKHDG ZDWHU WDQN LV HLWKHU PDVRQU\ RU PHWDOOLF SODWH VWRUDJH WDQN KDYLQJ VX൶FLHQW KHLJKW LQWR ZKLFK ZDWHU LV SXPSHG DQG VWRUHG VR WKDW WKHZDWHUFDQEHVXSSOLHGIURPLWXQGHUJUDYLW\DVDQGZKHQUHTXLUHG
(DFKJDWHRIORFNLVPKLJKDQGPZLGHLVVXSSRUWHGRQRQHVLGHE\WZRKLQJHVHDFK PIURPWKHWRSDQGIURPWKHERWWRP7KHDQJOHEHWZHHQWKHJDWHVLQFORVHGSRVLWLRQ LV,IWKHGHSWKRIZDWHURQWKHWZRVLGHVDUHDQGPUHVSHFWLYHO\¿QGWKH PDJQLWXGHDQGSRVLWLRQRIWKHUHVXOWDQWZDWHUSUHVVXUHRQHDFKJDWHWKHPDJQLWXGHRI UHDFWLRQEHWZHHQWKHJDWHVDQGWKHPDJQLWXGHDQGGLUHFWLRQVRIWKHUHDFWLRQVDWKLQJHV $VVXPHWKHUHDFWLRQEHWZHHQWKHJDWHVWREHLQWKHVDPHKRUL]RQWDOSODQHDVWKDWRI WKHUHVXOWDQWZDWHUSUHVVXUH6NHWFKHVRIWKHWRSYLHZDQGRIWKHHQGYLHZRIWKHORFN PXVWEHVKRZQ -DGDYSXU8QLYHUVLW\ 8SVWUHDP
'HSWKx P :HWWHGDUHDRIHDFKJDWH ¥P P2
0.5 5m 6m
5m
120 1.5
Width of lock
5m
0.5 Lock and Lock Gates hinge
206
Fundamentals of Fluid Mechanics
FH RQHDFKJDWH = xArg ¥ ¥ ¥ 3 ¥ 2 = N1 =
I G VLQ 2 A¥ x ¥ 3 = + ¥ ¥ ¥ = + = P IURP WKH IUHH VXUIDFH
h=x+
'RZQVWUHDP
2 = P
x=
A = ¥ = P 2 FH = xArg = ¥ ¥ ¥ 3 ¥ = N1 I h=x+ G Ax ¥ 3 VLQ 2 = + ¥ ¥ = + = P IURP WKH IUHH VXUIDFH F = ( FH )XSVWUHDP - ( FH )GRZQVWUHDP = - = N1
(F H)up (F H)down
Hydrostatic Forces
207
7DNLQJPRPHQWIURPERWWRP
F ¥ y = ( FH )XS ¥ y1 - ( FH )GRZQ ¥ y2 ¥ y = ¥ - - - 1024 - 16 y= = P IURP WKH ERWWRP
5HDFWLRQEHWZHHQWKHJDWHVLVNDQGWRWDOUHDFWLRQRIKLQJHVRT7KHIRUFHVDFWLQJRQDJDWH DUHDVVKRZQEHORZ
$VWKHJDWHLVLQHTXLOLEULXPUHVROYLQJIRUFHVDORQJDQGQRUPDOWRJDWH SPy N = RT SPx NVLQqRVLQq = FH \
N = RT = =
FH VLQ q
1 2¥ 2
= N1
N F RT
5
6 (F H)down (F H)up
208
Fundamentals of Fluid Mechanics
If R1DQGR2DUHUHDFWLRQVDWKLQJHVDWWKHWRSDQGERWWRPWDNLQJPRPHQWIURPWKHERWWRP KLQJH
R1 VLQ q ¥ = =
( FH )up 2
Ê hup ˆ ( FH )down Ê hdown ˆ ¥Á - ˜ ¥Á - ˜ Ë 3 ¯ 2 Ë 3 ¯
Ê ˆ Ê ˆ ¥ Á - ˜ ¥Á - ˜ Ë3 ¯ Ë 3 ¯ 2 2 R1 ¥
1 ¥ = - 2 R1 = N1 R2 = RT - R1 = - = N1
:DWHULVIORZLQJZLWKDKHDGRIPRYHUDQRYHUIORZGDPPKLJKDVVKRZQLQ WKH¿JXUH)LQG WKHWRWDOSUHVVXUHRQPOHQJWKRIWKHGDPDQG WKHGHSWKRI FHQWUHRISUHVVXUH 3XQMDE8QLYHUVLW\ 1.5
15 m
= + = P 2 A = ¥ = P 2 FH = xArg x = +
= ¥ ¥ ¥ 3 ¥ = ¥ 6 1 = 01 I h=x+ G Ax ¥ 3 =9+ ¥ ¥ = + = P
Hydrostatic Forces
209
7ZREUDVVKHPLVSKHUHVDUHMRLQHGDQGDLULVWDNHQRXWRIWKHP6KRZWKDWWKHIRUFHF UHTXLUHGWRSXOODSDUWWKHKHPLVSKHUHLVF = pR PZKHUHR RXWVLGHUDGLXVRIKHPLVSKHUH DQGPLVWKHGL൵HUHQFHLQSUHVVXUHRXWVLGHDQGLQVLGHWKHVSKHUH,IR PDQGLQVLGH SUHVVXUH DWPZKDWIRUFHZRXOGEHUHTXLUHGWRSXOODSDUWWKHKHPLVSKHUHV"
F
F R
&RQVLGHURQHRIWKHKHPLVSKHUHVDQGIRUFHVDFWLQJRQLWZKHQWKHVSKHUHLVDERXWWRRSHQ XSXQGHUWKHDFWLRQRIIRUFHF
R F
Projected area
7KH SUHVVXUH P LV DFWLQJ RQ WKH VXUIDFH RI KHPLVSKHUH DV VKRZQ DERYH ,I ZH UHVROYH WKH SUHVVXUH WR WKH KRUL]RQWDO DQG YHUWLFDO WKH YHUWLFDO FRPSRQHQWV ZLOO FDQFHO RXW 2QO\ KRUL]RQWDOFRPSRQHQWVZLOODFWOLNHSDUDOOHOIRUFHVRQWKHSURMHFWHGDUHDRIWKHKHPLVSKHUH RQWKHYHUWLFDOSODQH'XULQJHTXLOLEULXP SPx = 0 F = P ¥ pR 2 NRZ
P = bar - EDU = EDU = ¥ 3 Pa F = p ¥ 2 ¥ ¥ 3
N1 7KH¿JXUHEHORZVKRZVFURVVVHFWLRQRIDGDPZLWKDSDUDEROLFIRUFH9HUWH[RIWKHSDUDEROD LVDWO7KHD[LVRISDUDERODLVYHUWLFDODQGPIURPWKHIDFHDWWKHZDWHUOHYHO(VWLPDWH WKHUHVXOWDQWIRUFHLQWRQQHVSHUKRUL]RQWDOPHWHUUXQGXHWRZDWHULWVLQFOLQDWLRQWRWKH YHUWLFDODQGKRZIDUIURPO7KHOLQHRIDFWLRQFXWVWKHKRUL]RQWDOOP7KHFHQWURLGRI WKHKDOISDUDEROLFFURVVVHFWLRQRIZDWHULVPIURPWKHYHUWLFDOWKURXJKO /RQGRQ8QLYHUVLW\
210
Fundamentals of Fluid Mechanics
FH = xArg =
60 ¥ ¥ ¥ ¥ 3 ¥ 2
N1 FV :HLJKWRIZDWHURQWKHFXUYHGVXUIDFH 15 m
60 m
60
= r ¥ g ¥ l Ú0 ydx
h =
2 ¥ = P 3
y = 4 ax y ZKHQx = 60 2 = 4a ¥ 60 a=
= 240
\
y2 x
\
FV = ¥ 3 ¥ Ú
60
0
60
Ê x 32 ˆ ˜ kN = 19 Á ÁË 3 ˜¯ 2 0 = 19 ¥ 3
3
2
¥2
= ¥ N
¥ x dx
Hydrostatic Forces
R=
211
FH 2 + FV 2
=
()2 + ()2
=
¥ + ¥
=
¥
4 = ¥
N1 WDQq =
FV = = FH
q $SSO\LQJODZRIPRPHQWIURPERWWRPOHYHO
R VLQ ¥ x = FH ¥ - - FH ¥ VLQ ¥ ¥ x = ¥ - ¥ = P
x=
FH
R sin q
FV
20
R q
5.6 x
$FLUFXODUSODWHRIPGLDPHWHULVLPPHUVHGLQZDWHULQVXFKDZD\WKDWLWVJUHDWHVW DQGOHDVWGHSWKEHORZWKHIUHHVXUIDFHDUHP PUHVSHFWLYHO\'HWHUPLQHWKHWRWDO SUHVVXUHRQRQHIDFHRIWKHSODWHDQGSRVLWLRQRIWKHFHQWUHRISUHVVXUH 8378
212
Fundamentals of Fluid Mechanics
2 x 4
x P A=
p ¥ 22 = P 2 4
F = xArg = ¥ ¥ ¥ 3 ¥ N1 IG =
pd 4 p ¥ 24 p = = = 64 64 4
h = x+ = 3+
IG Ax ¥
P $YHUWLFDOWULDQJXODUSODQHDUHDVXEPHUJHGLQZDWHUZLWKRQHVLGHLQWKHIUHHVXUIDFH YHUWH[GRZQZDUGDQGDOWLWXGHhKDVWKHSUHVVXUHFHQWUHEHORZWKHIUHHVXUIDFHE\
D
h
E
h
F
h
G
h
*$7(
h
Hydrostatic Forces
213
7KHZDWHUGLVSODFHGLVWULDQJXODUDQGWKHFHQWUHRISUHVVXUHZLOOEHDWWKHFHQWURLG+HQFH 1 SUHVVXUHFHQWUHLVDW h 3
7KHDQVZHUE LVFRUUHFW ,QZKLFKRQHRIWKHIROORZLQJDUUDQJHPHQWVZRXOGWKHYHUWLFDOIRUFHRQWKHF\OLQGHU GXHWRZDWHUZRXOGEHWKHPD[LPXP
(a)
(b)
(c)
(d)
*$7(
7KHKRUL]RQWDOFRPSRQHQWRIK\GURVWDWLFIRUFHVDUHDFWLQJDVVKRZQ F2
F2
F1
F1 (a)
(b)
(c)
(d)
,WLVFOHDUWKDWK\GURVWDWLFIRUFHLQ¿JF LVPD[LPXP $ YHUWLFDO VTXDUH JDWH KROGV EDFN ZDWHU DV VKRZQ 7KH PRYHPHQW DERXW WKH ERWWRP HGJH
l
D g L
E g L
F g L
G
gL
)RUFHRQJDWH F = g xA = g¥
L g L3 ¥ L2 = 2 2
173&
214
Fundamentals of Fluid Mechanics
7KHSUHVVXUHYDULHVIURP]HURWRPD[LPXPLQDWULDQJXODUIDVKLRQ7KHFHQWUHRISUHVVXUH L DWFHQWURLGZKLFKDW IURPERWWRP 3 g L3 L g L4 0RPHQWIURPERWWRPHGJH ¥ = 2 2 6
2SWLRQG LVFRUUHFW 7KHIRUFHPQHHGHGWRKROGWKHPZLGHJDWHRQWKHSRVWLRQVKRZQ
P
5 4
Water
hinge
D ¥1 F ¥1
E ¥ N G ¥ N
+&/
F = xAr g = ¥ ¥ ¥ ¥ 3 ¥ = ¥ 1 /RFDWLRQRIF is
IURPWKHERWWRPHGJH 3
\ 7DNLQJPRPHQWIURPERWWRPHGJHKLQJH
P ¥ = F ¥ 3 P=
¥ = 1 3
2SWLRQG LVFRUUHFW 7KHVSHFL¿FZHLJKWRIWKHOLTXLGLQWKHFRQWDLQHUZKRVHFURVVVHFWLRQLVVKRZQEHORZ LVgDQGWKHFRQWDLQHULVwXQLWZLGH)LQGWKHPDJQLWXGHRIWKHXSZDUGIRUFHRQWKH LQFOLQHGZDOO
h 45º
Hydrostatic Forces
D g hw
F g h w
E
215
g hw
G g hw
,(6
7KH WRWDO YHUWLFDO IRUFH DFWLQJ RQ WKH LQFOLQHG ZDOO LV WKH ZHLJKW RI WKH ZDWHU DERYH WKH LQFOLQHGVXUIDFHLPDJLQDU\ZDWHU 7KHVDPHLVVKRZQDVVKDGHG h h F 45°
FV :HLJKWRIZDWHULQVKDGHGSRUWLRQ 9ROXPH¥ r ¥ g
Ê1 ˆ FV = Á ¥ h ¥ h ¥ w˜ ¥ g Ë2 ¯ =
g h2 w 2
2SWLRQF LVFRUUHFW $YHUWLFDOJDWHP¥PKROGVZDWHURQRQHVLGHZLWKWKHIUHHVXUIDFHDWLWVWRS7KH PRPHQWDERXWWKHERWWRPHGJHRIWKHJDWHRIWKHZDWHUIRUFHZLOOEHgLVVSZHLJKWRI ZDWHU D g E g F g G g ,(6 6
6
Area projected
6
6γ
AUHD ¥ x =
6 =3 2
Force = xArg = 3 ¥ 36 ¥ g
g N 2 2¥6 = P IURPIUHHVXUIDce h= ¥H = 3 3
216
Fundamentals of Fluid Mechanics
+HQFHPRPHQWRQJDWHIURPERWWRPHGJH M = F ¥ - h g ¥ 2 = 216g 2SWLRQG LVFRUUHFW $F\OLQGULFDOJDWHLVKROGLQJZDWHURQRQHVLGHDVVKRZQLQWKH¿JXUH7KHUHVXOWDQW YHUWLFDOFRPSRQHQWRIIRUFHRIZDWHUSHUPHWUHZLGWKRIJDWHZLOOEH
2m
D =HUR F 1P
E 1P G 1P
,(6
9HUWLFDOIRUFH ZHLJKWRIÀXLGFRUUHVSRQGLQJWRVHPLFLUFXODUYROXPH = r g
Ê pr 2 ˆ ÁË 2 ¥ L˜¯
¥ 103 ¥
p × 12 ¥1 2
1P 2SWLRQF LVFRUUHFW 7KHF\OLQGULFDOJDWHRIPDVVNJDVVKRZQLVPORQJLVKDQJHGDWSRLQWA:KDW LVWKHWRUTXHQHFHVVDU\WRKROGWKHJDWHLQSRVLWLRQ" Cylindrical gate Projected area 2m
2m A
h = 2/3 2.5 Projected area
3URMHFWHGDUHDRIWKHJDWHLQxGLUHFWLRQ ¥ P2 \3UHVVXUHDFWLQJDWxGLUHFWLRQ rx = r ¥ g ¥ x = 103 ¥ 10 ¥ 1 = 1041P2
A Centre of force
Fx
Hydrostatic Forces
Fx = rx ¥ Ax = 104 ¥ ¥ 104 N MAx 0RPHQWDERXWA = Fx ¥ h
\ \
= ¥ 104 ¥
217
2 3
¥ 1041FORFNZLVH FZ )RUFHDFWLQJYHUWLFDOO\ 9ROXPHRIWKHÀXLGGLVSODFHG¥ r ¥ g
= rg ¥
F\OLQGHU YROXPH = g r ¥ p ¥12 ¥ 4
¥ 1041P
Ê 4 Rˆ MAZ 0RPHQWDERXWA = FZ ¥ Á Ë 3p ˜¯
\
¥ 104 ¥
4¥2 ¥ 1041PFORFNZLVH 3¥ p
7KHWRUTXHQHFHVVDU\WRKROGWKHJDWHLQSRVLWLRQ MAxMAz = 3¥ 104¥ 104 = ¥ 1041P
DQWLFORFNZLVH
$UHFWDQJXODUSODWHP¥PLVLPPHUVHGLQDOLTXLGRIUHODWLYHGHQVLW\ZLWK LWVPVLGHKRUL]RQWDODQGMXVWDWWKHZDWHUVXUIDFH,IWKHSODQHRISODWHPDNHVDQ DQJOHRIZLWKWKHKRUL]RQWDOZKDWLVWKHDSSUR[LPDWHSUHVVXUHIRUFHRQRQHVLGH RIWKHSODWH" D N1 E N1 F N1 G N1 ,(6 60° 2.45 sin 60°
m 2.4 0.75 Projected area
Force = r ◊ g ◊ A ◊ x
¥ 103 ¥ ¥ ¥
N1
2SWLRQE LVFRUUHFW
VLQ ∞ 2
218
Fundamentals of Fluid Mechanics
$WULDQJXODUGDPRIKHLJKWµh¶DQGEDVHZLGWKµb¶LV¿OOHGWRLWVWRSZLWKZDWHUDVVKRZQ LQWKHJLYHQ¿JXUH7KHFRQGLWLRQRIVWDELOLW\LV
Dam in masonry (SG = 2.56) h
b
D b = h F b =
E b h G b h
K
,(6
Fv h/3
2b/3 A W
7KHIRUFHVDFWLQJRQWKHGDPDUHKRUL]RQWDOIRUFHFVDQGYHUWLFDOIRUFH:HLJKW WDVVKRZQ )RUVWDELOLW\ S MA
FV ¥
%XWFV = r W ¥ g ¥ A ¥
h 2b =W¥ 3 3
L
h h = rW ¥ g ¥ h ¥ ¥ 2 2
W = r m ¥ g ¥YROXPH ¥ rW ¥ g ¥
1 hb ¥ 2
3XWWLQJWKHVHYDOXHVLQHTXDWLRQL ZHKDYH \
rW ¥ g ¥ h ¥
h h bh 2b ¥ =¥ rW ¥ g ¥ ¥ 2 3 2 3
2 h3 = ◊b ◊h 3 6
or
b h
2SWLRQ G LVFRUUHFW $ FLUFXODU SODWH RI P GLDPHWHU LV VXEPHUJHG LQ ZDWHU ZLWK LWV JUHDWHVW DQG OHDVW GHSWKVEHORZWKHVXUIDFHEHLQJPDQGPUHVSHFWLYHO\:KDWLVWKHWRWDOSUHVVXUH DSSUR[LPDWHO\ RQRQHIDFHRIWKHSODWH"
Hydrostatic Forces
D N1 F N1
E N1 G QRQHRIWKHDERYH
x =
219
,(6
+ P 2
F = r ◊g◊A◊ x = 1000 ¥¥
p ¥ 2 ¥ 4
N1
2SWLRQF LVFRUUHFW $ UHFWDQJXODU WDQN IXOO WR WKH EULP KDV LWV OHJWK EUHDGWK DQG KHLJKW LQ WKH UDWLR RI 7KH UDWLR RI K\GURVWDWLF IRUFHV DW WKH ERWWRP WR WKDW DW DQ\ ODUJHU YHUWLFDO VXUIDFHLV D E F G ,(6 2
1
2
)RUFHDWERWWRPFB = r ¥ g ¥ A ¥ h = r ¥ g ¥ ¥ ¥ 2 = 4rg )RUFHDWYHUWLFDOVLGHFV = r ◊ gA ¥ x = r ¥ g ¥ ¥ ¥ 1 = 4rg
FB rJ = =1 FV rJ 2SWLRQE LVFRUUHFW $FLUFXODUDQQXODUSODWHKDYLQJRXWHUDQGLQQHUGLDPHWHUVRIPDQGPUHVSHFWLYHO\ LVLPPHUVHGLQZDWHUZLWKLWVSODQHPDNLQJDQDQJOHRIZLWKWKHKRUL]RQWDO7KH FHQWUHRIWKHFLUFXODUDQQXODUSODWHLVPEHORZWKHIUHHVXUIDFH7KHK\GURVWDWLF WKUXVWRQRQHVLGHRIWKHSODWHLV D 1 E 1 F 1 G 1 ,(6
220
Fundamentals of Fluid Mechanics
+\GURVWDWLFWKUXVW r ◊ g ◊ A ◊ x
¥ 103 ¥
p ¥2±2 4
N1 2SWLRQG LVFRUUHFW 9HUWLFDOVOXGJHJDWHPZLGHDQGZHLJKLQJNJLVKHOGLQSRVLWLRQGXHWRKRUL]RQWDO IRUFHRIZDWHURQRQHVLGHDQGDVVRFLDWHGIULFWLRQIRUFH:KHQWKHZDWHUOHYHOGURSVWR PDERYHWKHERWWRPRIWKHJDWHWKHJDWHMXVWVWDUWVVOLGLQJGRZQ7KHFRH൶FLHQWRI IULFWLRQEHWZHHQWKHJDWHDQGVXSSRUWLQJVWUXFWXUHLV D E F G ,(6 Vertical wall R
mR
Sledge gate
2m
mR P
R Vertical wall
+\GURVWDWLFIRUFHFx = ”r ◊ g ◊ A ◊ x
'XULQJHTXLOLEULXPZHKDYH Fx = 2R SPx or
R=
= 103 ¥¥ ¥ ¥ 1 N1
N1 2 mg = 2mR
DQG
SPy
RU
¥ ¥ m ¥¥ 103
or m 2SWLRQE LVFRUUHFW $GDPKDVDFXUYHGVXUIDFHDVVKRZQLQWKH¿JXUH y x2 4
20 m
y=
x
Hydrostatic Forces
221
7KHKHLJKWRIWKHZDWHUUHWDLQHGE\WKHGDPLVPGHQVLW\RIZDWHULVNJP $VVXPLQJgDVPVWKHKRUL]RQWDOIRUFHDFWLQJRQWKHGDPSHUXQLWOHQJWKLV E ¥ N D ¥1 G ¥1 ,(6 F ¥1
+\GURVWDWLFIRUFHSHUXQLWOHQJWKLQKRUL]RQWDOLV Fx = r ◊ g ◊ A ◊ x = 103 ¥¥ ¥ ¥ 10 2SWLRQF LVFRUUHFW
¥ 1061P
3.10 QUESTIONS FROM COMPETITIVE EXAMINATIONS $ FLUFXODU SODWH P GLDPHWHU LV VXEPHUJHG LQ ZDWHU ZLWK WKH JUHDWHVW DQG OHDVW GHSWKEHORZWKHVXUIDFHEHLQJPDQGPUHVSHFWLYHO\:KDWLVWKHWRWDOSUHVVXUH DSSUR[ RQRQHIDFHWKHSODWH D N1 E N1 F N1 G 1RQHRIWKHDERYH,$6,(6 3UHVVXUHP = ρ⋅ g ⋅ A ⋅ρ⋅ g ⋅ A ⋅ x ⎛ π⋅î2 ⎞ ⎛ ⎞ = 3 × × ⎜ ×⎜ ⎟ 2 ⎠ ⎝ 4 ⎟⎠ ⎝ = 24 kN 2SWLRQF LVFRUUHFW $WDQNZLWKIRXUHTXDOYHUWLFDOIDFHVRIZLGWKDQGGHSWKhLV¿OOHGXSZLWKDOLTXLG,IWKH h IRUFHRQDQ\YHUWLFDOVLGHLVHTXDOWRWKHIRUFHDWWKHERWWRPWKHQWKHYDOXHRI ZLOOEH t D Z E F G ,$6,(6 PERWWRP = Pside h◊r◊g◊t × t ρ⋅ g ⋅ x ⋅(t × h or
h h◊r◊g◊t × t ρ⋅ g ⋅ t × h 2 h 2
or
t=
or
h =2 t
2SWLRQD LsFRUUHFW
222
Fundamentals of Fluid Mechanics
7KHYHUWLFDOFRPSRQHQWRIWKHK\GURVWDWLFIRUFHRQDVXEPHUJHGFXUYHGVXUIDFHLVWKH D 0DVVRIOLTXLGYHUWLFDOO\DERYHLW E :HLJKWRIWKHOLTXLGYHUWLFDOO\DERYHLW F )RUFHRQDYHUWLFDOSURMHFWLRQRIWKHVXUIDFH G 3URGXFWRISUHVVXUHDWWKHFHQWURLGDQGWKHVXUIDFHDUHD ,$6 ,(6 2SWLRQE LVFRUUHFW :KDWLVWKHYHUWLFDOFRPSRQHQWRISUHVVXUHIRUFHRQVXEPHUJHGFXUYHGVXUIDFHHTXDOWR"
D E F G
7KHKRUL]RQWDOFRPSRQHQW 7KHIRUFHRQWKHYHUWLFDOSURMHFWLRQRIWKHFXUYHGVXUIDFH 7KHSURGXFWRIWKHSUHVVXUHDWFHQWURLGDQGVXUIDFHDUHD 7KH JUDYLW\ IRUFH RI OLTXLG YHUWLFDOO\ DERYH WKH FXUYHG VXUIDFH XSWR WKH IUHH VXUIDFH ,$6 ,(6 2SWLRQG LVFRUUHFW Assertion (A) 7KHWRWDOK\GURVWDWLFIRUFHRQDWKLQSODWHVXEPHUJHGLQDOLTXLGUHPDLQV VDPHQRPDWWHUKRZWKHVXUIDFHLVWXUQHG Reason (R): 7KHWRWDOK\GURVWDWLFIRUFHRQWKHLPPHUVHGVXUIDFHUHPDLQVWKHVDPHDV ORQJDVWKHGHSWKRIFHQWURLGIURPWKHIUHHVXUIDFHUHPDLQVXQDOWHUHG D %RWKADQGRDUHLQGLYLGXDOO\WUXHDQGRLVWKHFRUUHFWH[SODQDWLRQRIA E %RWKADQGRDUHLQGLYLGXDOO\WUXHEXWRLVQRWWKHFRUUHFWH[SODQDWLRQRIA F ALVWUXHEXWRLVIDOVH G ALVIDOVHEXWRLVWUXH ,$6 2SWLRQG LVFRUUHFW $FLUFXODUGLVFRIUDGLXVrLVVXEPHUJHGYHUWLFDOO\LQDVWDWLFIOXLGXSWRDGHSWKRIh IURPWKHIUHHVXUIDFH,Ih > rWKHQWKHSRVLWLRQRIFHQWUHRISUHVVXUHZLOO D GLUHFWO\SURSRUWLRQDOWRh E LQYHUVHO\SURSRUWLRQDOWRh F GLUHFWO\SURSRUWLRQDOWRt G QRWDIXQFWLRQRIhRUr ,$6 2SWLRQD LVFRUUHFW $YHUWLFDOGRFNJDWHPHWUHZLGHUHPDLQVLQSRVLWLRQGXHWRKRUL]RQWDOIRUFHRIZDWHU RQ RQH VLGH7KH JDWH ZHLJKV NJ DQG MXVW VWDUWV VOLGLQJ GRZQ ZKHQ WKH GHSWK RI ZDWHUXSWRWKHERWWRPRIWKHJDWHGHFUHDVHVWRPHWUHV7KHQWKHFRH൶FLHQWRIIULFWLRQ EHWZHHQWKHGRFNJDWHDQGGRFNZDOOZLOOEH D E F G ,$6
Hydrostatic Forces
223
Dock gate
D
H.P.
mg
m × p = m◊g μ × ρ⋅ A ⋅ g ⋅ x = mg m × 103îî î or
m=
1000 ×16
OSWLRQF LVFRUUHFW $UHFWDQJXODUWDQNRIEDVHPîPFRQWDLQVRLORI6*XSWRDKHLJKWRIP:KHQ LWLVDFFHOHUDWHGDWPVYHUWLFDOO\XSZDUGVWKHIRUFHRQWKHEDVHRIWKHWDQNZLOOEH D 1 E 1 F 1 G 1 ,$6 ⎛ a⎞ PresVXUH ρ⋅ g ⋅ h ⎜1 + ⎟ g⎠ ⎝ ⎛ ⎞ = ρ⋅ g ⋅ h ⎜ + g ⎟⎠ ⎝
î3 î î
1P2 F = P × A îî 1 2SWLRQF LVFRUUHFW $WDQNKDVLQLWVVLGHDYHU\VPDOOKRUL]RQWDOF\OLQGHU¿WWHGZLWKDIULFWLRQOHVVSLVWRQ 7KHKHDGRIOLTXLGDERYHWKHSLVWRU\LVhDQGSLVWRQDUHDaWKHOLTXLGKDYLQJDVSHFL¿F ZHLJKW VSHFL¿F a :KDW LV WKH IRUFH WKDW PXVW EH H[HUWHG RQ WKH SLVWRQ WR KROG LW LQ SRVLWLRQDJDLQVWWKHK\GURVWDWLFSUHVVXUH" D ◊a◊g◊h E a◊g◊h
F
⋅α⋅ γ ⋅h
G
⋅α⋅γ ⋅h
,(6
224
Fundamentals of Fluid Mechanics
h F
P Piston
\
sp wt = 29
P = g◊h F =P×a = g◊h × a
Force
2SWLRQE LVFRUUHFW :KLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVFRUUHFW" 7KHSUHVVXUHFHQWUHLV D 7KHF\FORLGRIWKHSUHVVXUHSULVP E $SRLQWRQWKHOLQHRIDFWLRQRIWKHUHVXOWDQWIRUFH F $WWKHFHQWURLGRIWKHVXEPHUJHGDUHD G $OZD\VDERYHWKHFHQWURLGRIWKHDUHD ,(6 2SWLRQE LVFRUUHFW $VHPLFLUFXODUSODQHDUHDRIGLDPHWHUPLVVXEMHFWHGWRDXQLIRUPJDVSUHVVXUHRI N1P:KDWLVWKHPRPHQWRIWKUXVWDSSUR[ RQWKHDUHDDERXWLWVVWUDLJKWHGJH" D N1P E N1P F N1P G N1P ,(6 7KHIRUFH F=P×A π × 12 = 420 × 4×2 = &HQWUHRISUHVVXUH h =
A
B 4r CP s = 3p
=h
× π kN 2
r × = = P 3π 3π 3π
0RPHQWRIWKUXVWDERXWAB m = F ×h =
π × 2 3π
N1P 2SWLRQD LVFRUUHFW $KRUL]RQWDORLOWDQNLVLQWKHVKDSHRIDF\OLQGHUZLWKKHPLVSKHULFDOHQGV,ILWLVH[DFWO\ KDOI IXOO ZKDW LV WKH UDWLR RI PDJQLWXGH RI WKH YHUWLFDO FRPSRQHQW RI WKH UHVXOWDQW K\GUDXOLFWKUXVWRQRQHKHPLVSKHULFDOHQGWRWKDWRIWKHKRUL]RQWDOFRPSRQHQW"
Hydrostatic Forces
E r
D r F
225
π
G
π
,(6
+RUL]RQWDOFRPSRQHQWRIWKUXVW PH = ρ⋅ g ⋅ A ⋅ x ⎛ πr 2 ⎞ 4r rg ⎜ × ⎝ 2 ⎟⎠ 3π =
2 ρg ⋅ r 3 3
9HUWLFDOFRPSRQHQWRIWKUXVW ⎧1 ⎛ 4 ⎞⎫ PV = ρ⋅ g ∀ = ρg × ⎨ × ⎜ × πr 3 ⎟ ⎬ ⎝ ⎠ 3 ⎩4 ⎭ =
π ρg × r 3 3
π ρg r 3 π = PVPH = 3 2 2 ρg r 3 3 OSWLRQE LVFRUUHFW $UHFWDQJXODUZDWHUWDQNIXOOWREULPKDVLWVOHQJWKEUHDGWKDQGKHLJKWLQWKHUDWLR RI7KHUDWLRRIK\GURVWDWLFIRUFHVDWWKHERWWRPWRWKDWDWDQ\ODUJHUYHUWLFDO VXUIDFHLV D E F
G
+\GURVWDWLFIRUFHDWERWWRP FB = ρg ⋅ A ⋅ Z
r◊g x ◊1x îx
rg x3
+\GURVWDWLFIRUFHDWODUJHUYHUWLFDOVXUIDFH FV = ρg A ⋅ x
rg x◊2x ◊
2x 2
,(6
226
Fundamentals of Fluid Mechanics
FBFV =
rg x3 ρg x3 =1 ρg x3
OSWLRQE LVFRUUHFW $ FLUFXODU SODWH RI P GLDPHWHU LV VXEPHUJHG LQ ZDWHU ZLWK LWV JUHDWHVW DQG OHDVW GHSWKVEHORZWKHVXUIDFHEHLQJPDQGPUHVSHFWLYHO\:KDWLVWKHWRWDOSUHVVXUH DSSUR[ RQRQHIDFHRISODWH D N1 E N1 F N1 G 1RQHRIWKHDERYH ,(6 ⎛ π × 2 ⎞ ⎛ ⎞ 3 P = ρ⋅ g A ⋅ x = × ⎜ ⎜ ⎟ 4 ⎟⎠ ⎝ 2 ⎠ ⎝ = 24 kN OSWLRQF LVFRUUHFW ,QWKHVLWXDWLRQDVVKRZQLQWKH¿JXUHWKHOHQJWKBCLVPDQGMLVWKHPLGSRLQWRI BCPHDVXUHGSHUXQLWZLGWKZLGWKEHLQJSHUSHQGLFXODUWRWKHSODQHRIWKHSDSHU ZLWKgEHLQJWKHDFFHOHUDWLRQGXHWRWKHJUDYLW\ZLOOEH Water
A
4m
B 60°
M BC = 3 m
D
D J
C
N SDVVLQJWKURXJK0 P
E J N SDVVLQJWKURXJKSRLQWEHWZHHQ0DQG& P F J N SDVVLQJWKURXJK0 P G J
N SDVVLQJWKURXJKSRLQWEHWZHHQ0DQG& P
,(6
Hydrostatic Forces
227
Fy 9HUWLFDOFRPSRQHQWPfK\GURVWDWLFIRUFHRQBC = ρ⋅ g ⋅ A ⋅ h ⎛ AB + BD ⎞ 3 = × × DC × × ⎜ ⎟⎠ ⎝ 2 ⎛ ⎞ ⎛ + ⎞ 3 × ⎟ × ⎜ = × × ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ îJî31P
FV 3URMHFWHGDUHDRIBCîGHSWKRIFHQWUHRIBC îr × g ⎞ ⎛ 3 = × × ⎜ + ⎟ × × g ⎝ 2⎠ îg × 1031P
FV2 + FH2
F =
3 2 2 = g × +
J1P
7KHUHVXOWDQWZLOODFWDWFHQWUHRISUHVVXUHORFDWHGDW
2 rd of BDLHDSRLQWEHWZHHQ 3
M DQGC 2SWLRQG LVFRUUHFW $FLUFXODUDQQXODUSODWHERXQGHGE\WZRFRQFHQWULFFLUFOHVRIGLDPHWHUPDQG PLVLPPHUVHGLQZDWHUZLWKLWVSODQHPDNLQJDQDQJOHRIZLWKWKHKRUL]RQWDO7KH FHQWUHRIWKHFLUFOHLVPEHORZWKHIUHHVXUIDFH:KDWZLOOEHWKHWRWDOSUHVVXUH IRUFHRQWKHIDFHRIWKHSODWH" D N1 E N1 F N1 G N1 ,(6 Force
F = ρ⋅ g ⋅ A ⋅ x = 3 × × = 10 kN
OSWLRQE LVFRUUHFW
π 2 − 2 × 4
228
Fundamentals of Fluid Mechanics
$UHFWDQJXODUSODWHKDYLQJWKHGLPHQVLRQVRIPîPLVLPPHUVHGLQZDWHUZLWK LWVORQJHUVLGHYHUWLFDO7KHWRWDOK\GURVWDWLFWKUXVWRQRQHVLGHRIWKHSODWHLVHVWLPDWHG DVN1$OORWKHUFRQGLWLRQVUHPDLQLQJWKHVDPHWKHSODWHLVWXUQHGWKURXJK VXFKWKDWLWVORQJHUVLGHUHPDLQVYHUWLFDO:KDWZRXOGEHWKHWRWDOIRUFHRQRQHRIWKH SODWH" D N1 E N1 F N1 G N1 ,(6 7KHIRUFHZLOOQRWFKDQJH 2SWLRQE LVFRUUHFW $ F\OLQGULFDO JDWH LV KROGLQJ ZDWHU RQ RQH VLGH DV VKRZQ LQ WKH JLYHQ ¿JXUH 7KH UHVXOWDQWYHUWLFDOFRPSRQHQWRIIRUFHRIZDWHUSHUPHWUHZLGWKRIJDWHZLOOEH
D =HUR
F
N P
E
N P
G
N P
,(6
FV :HLJKWRIWKHZDWHURQKDOIF\OLQGULFDOEDVHSRUWLRQ = rgYROXPHRIZDWHURQABC = ρg ×
πD 2 ⋅ L 4×2
= 3 × × =
π × 22 × 1
N P
OSWLRQF LVFRUUHFW &RQVLGHUWKHIROORZLQJVWDWHPHQWVDERXWK\GURVWDWLFIRUFHRQDVXEPHUJHGVXUIDFH ,WUHPDLQVWKHVDPHHYHQZKHQWKHVXUIDFHLVWXUQHG ,WDFWVYHUWLFDOO\HYHQZKHQWKHVXUIDFHLVWXUQHGZKLFKRIWKHVHLVDUHFRUUHFW"
Hydrostatic Forces
229
D 2QO\ E 2QO\ F %RWKDQG G 1HLWKHUQRU ,(6 2SWLRQD LVFRUUHFW 7KH GHSWK RI WKH FHQWUH RI SUHVVXUH IRU D UHFWDQJXODU ODPPD LPPHUVHG YHUWLFDOO\ LQ ZDWHUXSWRKHLJKWhLVJLYHQE\ h h E D F
h
G
h
,(6
OSWLRQF LVFRUUHFW 7KHSRLQWRIDSSOLFDWLRQRIDKRUL]RQWDOIRUFHRQDFXUYHGVXUIDFHVXEPHUJHGLQOLTXLG LV D
IG −h Ah
E
IG + Ah Ah
F
Ah +h IC
G
IG + Ah h
,(6
OSWLRQE LVFRUUHFW :KDWLVWKHGHSWKRIWKHFHQWUHRISUHVVXUHRIDYHUWLFDOLPPHUVHGVXUIDFHIURPIUHH VXUIDFHRIOLTXLGHTXDOWR" D
IG +h Ah
E
IG A h
F
IG ⋅ h +h A
G
Ah +h IG
,(6
OSWLRQD LVFRUUHFW Assertion (A): $FLUFXODUSODWHLVLPPHUVHGLQDOLTXLGZLWKLWVSHULSKHU\WRXFKLQJWKH IUHH VXUIDFH DQG WKH SODQH PDNHV DQ DQJOH RI q ZLWK WKH IUHH VXUIDFH ZLWK GL൵HUHQW YDOXHVRIqWKHSRVLWLRQRIWKHFHQWUHRISUHVVXUHZLOOEHGL൵HUHQW Reason (R): 6LQFHWKHFHQWUHRISUHVVXUHLVGHSHQGHQWRQVRXQGPRPHQWRIDUHDZLWK GL൵HUHQWYDOXHRIqVHFRQGPRPHQWRIDUHDIRUWKHFLUFXODUSODWHZLOOFKDQJH D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6
230
Fundamentals of Fluid Mechanics
The second moment of area, i.e., IG does not depend on angle q. Reason (R) is false. Option (c) is correct. A triangular dam of height hLV¿OOHGWRLWVWRSZLWKZDWHUDVVKRZQLQWKH¿JXUH7KH condition of stability
Fy
Dam in masonry (SG = 2.56)
h
0
b
D E K (c) b =
E E K 3h
G E K
,(6
The hydrostatic force FH is acting horizontal to topple the dam while weight W is acting to prevent this toppling about point O. Taking moment about point O, We get FH ×
(ρ⋅ g ⋅ h) ×
or
h 2h =W× 3 3 h ⎛ bh ⎞ 2b × 1⎟ × = (2.56 × ρ) × g × ⎜ ⎝ 2 ⎠ 3 3
or b ª 0.425 h Option (d) is correct. :KDWDFFHOHUDWLRQZRXOGFDXVHWKHIUHHVXUIDFHRIDOLTXLGFRQWDLQHGLQDQRSHQWDQN PRYLQJLQDKRUL]RQWDOWDQNWRGLSE\" (a)
g 2
(b) 2g
(c)
3 ⋅g 2
(d)
3 ⋅g 2
,(6
Option (c) is correct. 7KHFHQWUHRISUHVVXUHRIDSODQHVXEPHUJHGVXUIDFH D LV D SRLQW RQ WKH VXEPHUJHG DUHD DW ZKLFK WKH UHVXOWDQW K\GURVWDWLF IRUFH LV VXSSRVHGWRDFW E VKRXOGDOZD\VFRLQFLGHZLWKLQWKHFHQWUHRIVXEPHUJHGDUHD
Hydrostatic Forces
F VKRXOGEHDWWKHFHQWUHRIJUDYLW\RIWKHSODQHVXUIDFH G LVDOZD\VEHORZWKHFHQWURLGRIDUHD 7KHFHQWUHRISUHVVXUH
h = x+
I G ⋅ VLQ 2 θ A⋅ x
231
,(6
or h > x
OSWLRQG LVFRUUHFW
7KHIRUFHFQHHGHGWRVXSSRUWWKHOLTXLGRIGHQVLW\dDQGYHVVHORQWRSLV D g◊d{h◊a±H±h A` E g◊d◊H◊A F g◊D◊H◊a G g◊dH±h A *$7( 2SWLRQE LVFRUUHFW $ZDWHUFRQWDLQHULVNHSWRQDZHLJKLQJEDODQFH:DWHUIURPDWDSLVIDOOLQJYHUWLFDOO\ LQWRWKHFRQWDLQHUZLWKDYROXPHIORZUDWHRIQWKHYHORFLW\RIZDWHUZKHQLWKLWVWKH ZDWHUVXUIDFHLVU$WDSDUWLFXODULQVWDQWRIWLPHWKHWRWDOPDVVRIWKHFRQWDLQHUDQG ZDWHULVm7KHIRUFHUHJLVWHUHGE\ZHLJKLQJEDODQFHDWWKHLQVWDQWRIWLPHLV D PJrQU E mgrQ◊u
F PJ
ρ Q ⋅
G
ρ⋅ Q ⋅
*$7(
)RUFHGXHWRWKHIDOOLQJZDWHULVHTXDOWRWKHFKDQJHRIPRPHQWXPRIZDWHU
LQLWLDOPRPHQWXP±¿QDOPRPHQWXP = r◊Q◊U±O = r◊Q◊U 7RWDOIRUFH mgr◊Q◊U 2SWLRQD LVFRUUHFW 7KH¿JXUHVKRZVWZRF\OLQGHUVRIGLDPHWHUDDQGDFRQQHFWHGWRHDFKRWKHUFRQWDLQLQJ LQFRPSUHVVLEOH IOXLG7KH WZR F\OLQGHUV DUH ¿WWHG ZLWK OHDNSURRI SLVWRQV RI ZHLJKWV WDQGWDVVKRZQ:KLFKRIWKHIROORZLQJLVFRUUHFWH[SUHVVLRQ"
232
Fundamentals of Fluid Mechanics 2D
D
W2
D W =
W
F W W
W1
E W = W G W W
3UHVVXUHLVVDPHLQERWKF\OLQGHUV P=
P=
\
W1 4W = IRUWKH¿UVWF\OLQGHU 2 πD πD 2 4 W2 W = 22 for the VHFRQGF\OLQGHU 2 D πD 4 4W1 W2 2 = πD πD 2
or W2 = 4W1 2SWLRQG LVFRUUHFW
Chapter
4
BUOYANCY AND FLOATATION
KEYWORDS AND TOPICS
BUOYANCY BUOYANCY FORCE CENTRE OF BUOYANCY FLOATATION PRINCIPLE OF FLOATATION CONDITIONS OF STABILITY STABLE EQUILIBRIUM UNSTABLE EQUILIBRIUM NEUTRAL EQUILIBRIUM
STABILITY FOR SUBMERGED BODY STABILITY FOR FLOATING BODY METACENTRE METACENTRIC HEIGHT ROLLING PITCHING TIME PERIOD RADIUS OF GYRATION BILGE WATER
4.1 INTRODUCTION :KHQDERG\LVLPPHUVHGSDUWLDOO\RUIXOO\LQDÀXLGLWH[SHULHQFHVDYHUWLFDOXSZDUGIRUFH7KLV YHUWLFDOXSZDUGIRUFHDFWLQJRQDÀRDWLQJRUVXEPHUJHGERG\LVNQRZQDVEXR\DQWIRUFH7KH EXR\DQWIRUFHLVHTXDOWRWKHZHLJKWRIWKHÀXLGGLVSODFHGE\WKHERG\RUHTXDOWRWKHORVVRI ZHLJKWRIWKHERG\ZKHQLWLVZHLJKHGLQWKHOLTXLG7KLVEXR\DQWIRUFHDFWVWKURXJKWKHFHQWUH RIJUDYLW\RIWKHGLSODFHGÀXLGDQGWKLVSRLQWLVFDOOHGWKHFHQWUHRIEXR\DQF\ 7KH VWDELOLW\ RI DQ\ ÀRDWLQJ RU VXEPHUJHG ERG\ LV WKH WHQGHQF\ RI WKH ERG\ ZKHQ LW LV VOLJKWO\ GLVWXUEHG WR UHWXUQ WR RU WR JR DZD\ IURP LWV RULJLQDO SRVLWLRQ 7KH ERG\ LQ D VWDWLF HTXLOLEULXPPD\RUPD\QRWUHWDLQLWVRULJLQDOSRVLWLRQZKHQLWLVVOLJKWO\GLVWXUEHG7KHERG\ LVVWDEOHRQO\RULWUHWXUQVWRRULJLQDOSRVLWLRQZKHQLWVFHQWUHRIJUDYLW\OLHVEHORZLWVFHQWUHRI EXR\DQF\:KHQDVWDEOHÀRDWLQJERG\LVVOLJKWO\WLOWHGLWVWDUWVRVFLOODWLQJDERXWDSRLQWO\LQJ RQWKHQRUPDOD[LVRIWKHERG\ZKLFKLVFDOOHGWKHPHWDFHQWUHRIWKHERG\
4.2 BUOYANCY :KDWLVEXR\DQWIRUFH" $ ERG\ LPPHUVHG SDUWLDOO\ RU IXOO\ LQ D ÀXLG H[SHULHQFHV D YHUWLFDO XSZDUG IRUFH 7KLV YHUWLFDOXSZDUGIRUFHRQDÀRDWLQJRUVXEPHUJHGERG\LVNQRZQDVEXR\DQWIRUFH
234
Fundamentals of Fluid Mechanics
:KDWLVEXR\DQF\" 7KHWHQGHQF\RIDVXEPHUJHGERG\WRULVHLQDÀXLGEHFDXVHRIWKHXSZDUGÀXLGSUHVVXUH DJDLQVWWKHGRZQZDUGIRUFHRIJUDYLW\LVNQRZQDVEXR\DQF\ :KDWLVWKH$UFKLPHGHV¶SULQFLSOHRIEXR\DQF\" 7KH$UFKLPHGHV¶SULQFLSOHRIEXR\DQF\VWDWHVWKDWZKHQHYHUDERG\LVLPPHUVHGZKROO\RU SDUWLDOO\LQDÀXLGLWORVHVZHLJKWZKLFKLVHTXDOWRWKHZHLJKWRIWKHÀXLGGLVSODFHGE\WKH ERG\ %XR\DQWIRUFH ORVVRIZHLJKWRIWKHERG\ :HLJKWRIWKHÀXLGGLVSODFHGE\WKHERG\ 3URYHWKH$UFKLPHGHV¶SULQFLSOHRIEXR\DQF\ 2U 3URYHWKDWEXR\DQWIRUFHLVHTXDOWRÀXLGGLVSODFHPHQWE\DERG\ $ERG\DVVKRZQLQWKH¿JXUHEHORZLVLPPHUVHGLQDOLTXLG/HWWKHERG\EHGLYLGHGLQWR DODUJHQXPEHURIYHUWLFDOSULVPVRIFURVVVHFWLRQDODUHDdA
h1 h2
dA
Archimedes’ Principle
\ %XW
)RUFHDFWLQJXSZDUGVDWWKHERWWRPRIWKHSULVPLV )RUFHDFWLQJGRZQZDUGVDWWKHWRSRIWKHSULVPLV 1HWIRUFHDFWLQJXSZDUGV dA(h2 – h1
Ú
\
h2 rg dA h1 rg dA rg dA(h2 – h1) 9ROXPHRISULVP dV
dFb Ú rg dV Fb rg
Ú
dV rgV
6LQFHÀXLGGLVSODFHGE\WKHVuEPHUJHGERG\LVHTXDOWRLWVYROXPH \
%XR\DQF\IRUFH :HLJKWRIYROXPHRIÀXLGGLVSODFHG rgV
Buoyancy and Floatation
235
:KDWDUHWKHIRUFHVDFWLQJRQDVXEPHUJHGERG\E\WKHIOXLG" )RUWKHKRUL]RQWDOSULVPVWKHGHSWKRIWKHÀXLGDWERWKHQGDUHDVLVVDPHh +HQFHWKH SUHVVXUH IRUFH DFWLQJ DW OHIW DQG ULJKW RQ WKH SULVP LV HTXDO LQ PDJQLWXGH EXW RSSRVLWH LQ GLUHFWLRQ7KHUHIRUHWKHUHLVQRUHVXOWDQWKRUL]RQWDOIRUFHDFWLQJRQWKHERG\LQWKHÀXLG +RZHYHUWKHIRUFHDFWLQJDWWKHERWWRPDQGWRSHGJHRQWKHYHUWLFDOSULVPGL൵HUVDQGWKHUH LVDQHWXSZDUGIRUFHDFWLQJRQWKHERG\E\WKHÀXLG 'H¿QHWKHFHQWUHRIEXR\DQF\ 8378 $VEXR\DQF\IRUFHLVYHUWLFDODQGLWLVHTXDOWRWKHZHLJKWRIWKHÀXLGGLVSODFHGWKHUHIRUH LWDFWVWKURXJKWKHFHQWUHRIJUDYLW\RIWKHGLVSODFHGÀXLG7KHSRLQWRIDSSOLFDWLRQRIWKH EXR\DQWIRUFHLVNQRZQDVFHQWUHRIEXR\DQF\
h
h1
h dA
h2
dA Vertical Prism
Horizontal Prism
Forces Acting on Submerged Body
:KDWLVWKHEXR\DQF\IRUFHLIDERG\LVLPPHUVHGLQIOXLGVRIGL൵HUHQWVSHFL¿FZHLJKWV" ,IDERG\LVVXEPHUJHGLQÀXLGVRIGL൵HUHQWVSHFL¿FZHLJKWVWKHQEXR\DQF\IRUFH Fb r 1g V1 + r2g V2 + r3 g V3 ZKHUHV1V2 and V3DUHWKHYROXPHVRIÀXLGVGLVSODFHGE\WKHERG\ Liquid Displaced r1 r2
V1 V2
r3 V3
4.3 FLOATATION :KDWGR\RXXQGHUVWDQGE\IORDWDWLRQ" :KHQDERG\LVLPPHUVHGLQDQ\ÀXLGLWH[SHULHQFHVWZRIRUFHV)LUVWRQHLVWKHZHLJKW of the body (W DFWLQJ YHUWLFDOO\ GRZQZDUGV 6HFRQG LV WKH EXR\DQF\ IRUFH Fb DFWLQJ
236
Fundamentals of Fluid Mechanics
YHUWLFDOO\XSZDUGV,QFDVHW > FbWKHZHLJKWZLOOFDXVHWKHERG\WRVLQNLQWKHÀXLG,Q FDVHW FbWKHERG\ZLOOUHPDLQLQHTXLOLEULXPDWDQ\OHYHO,QFDVHW < FbWKHERG\ ZLOOPRYHXSZDUGVLQWKHÀXLG7KHERG\PRYLQJXSZLOOFRPHWRUHVWRUVWRSPRYLQJXS LQÀXLGZKHQWKHÀXLGGLVSODFHGE\LWVVXEPHUJHGSDUWLVHTXDOWRLWVZHLJKWW 7KHERG\ LQWKLVVLWXDWLRQLVVDLGWREHÀRDWLQJDQGWKLVSKHQRPHQRQLVNQRZQDVÀRDWDWLRQ ([SODLQWKHSULQFLSOHRIIORWDWLRQ 8378 7KHSULQFLSOHRIÀRDWDWLRQVWDWHVWKDWWKHZHLJKWRIWKHÀRDWLQJERG\LVHTXDOWRWKHZHLJKW RIWKHÀXLGGLVSODFHGE\WKHERG\ E
W
A
F B
D
C FB
&RQVLGHUDERG\ÀRDWLQJDWWKHIUHHVXUIDFHRIWKHOLTXLG7KHVKDGHGSDUWRIWKHERG\LV LQVLGHWKHÀXLGDQGLWKDVYROXPHV17KHRWKHUSDUWRIWKHERG\LVLQDLUDQGLWKDVYROXPH V21RZWKHERG\FDQEHFRQVLGHUHGWREHLQWZRÀXLGVYL]DLUDQGOLTXLG+HQFHEXR\DQW IRUFH 6LQFH
FB r OLTXLG V1 g1 + rair V2 g2 W rair FBDQGDQHWIRUFHW – FBDFWV RQWKHERG\WRPRYHLWWRLWVRULJLQDOHTXLOLEULXPSRVLWLRQ+HQFHDÀRDWLQJERG\UHPDLQV LQ VWDEOH HTXLOLEULXP ZKHQ LW LV YHUWLFDOO\ GLVSODFHG ,Q FDVH RI KRUL]RQWDO GLVSODFHPHQW QHLWKHUWKHPDJQLWXGHQRUWKHORFDWLRQRIWKHEXR\DQWIRUFHLVFKDQJHG+HQFHWKHKRUL]RQWDO GLVSODFHPHQWGRHVQRWD൵HFWWKHHTXLOLEULXPRIDÀRDWLQJERG\ :KDWKDSSHQVZKHQDIORDWLQJERG\LVDQJXODUO\GLVSODFHG" ,QWKHLQLWLDOHTXLOLEULXPSRVLWLRQRIDÀRDWLQJERG\WKHEXR\DQF\IRUFHFB DQGWKHZHLJKW (W RIWKHERG\DFWWKURXJKWKHVDPHYHUWLFDOOLQH:KHQWKHERG\LVVOLJKWO\WLOWHGFS and W QRORQJHUVWD\LQWKHVDPHYHUWLFDOOLQHZKLFKUHVXOWVLQIRUPDWLRQRIDFRXSOH7KLVFRXSOH FDQKDYHULJKWLQJRURYHUWXUQLQJGLUHFWLRQGHSHQGLQJXSRQWKHUHODWLYHSRVLWLRQRIWKHFHQWUH RIJUDYLW\G DQGFHQWUHRIEXR\DQF\B 'XHWRWKLVWKHERG\FDQEHHLWKHUEHLQVWDEOH RUXQVWDEOHFRQGLWLRQRIHTXLOLEULXP :KDWKDSSHQVZKHQDIXOO\LPPHUVHGERG\LQDIOXLGLVJLYHQDQDQJXODUGLVSODFHPHQW" 7KHSRVLWLRQRIWKHFHQWUHRIEXR\DQF\B GRHVQRWFKDQJHZLWKDQJXODUGLVSODFHPHQWLQ FDVHRIWKHERG\LVIXOO\LPPHUVHGLQWKHÀXLG+RZHYHUWKHOLQHRIDFWLRQRIZHLJKWFKDQJHV ZKLFKPD\IRUPULJKWLQJRURYHUWXUQLQJFRXSOHGHSHQGLQJXSRQWKHORFDWLRQRICGZUWWR WKHFHQWUHRIEXR\DQF\ :KDWDUHWKHFRQGLWLRQVRIVWDEOHXQVWDEOHDQGQHXWUDOHTXLOLEULXPRIDVXEPHUJHG ERG\" 2U :KDWDUHWKHFRQGLWLRQVRIHTXLOLEULXPIRUDVXEPHUJHGERG\" $60('HOKL8QLYHUVLW\
Stable equilibrium. $VWDEOHHTXLOLEULXPRIDVXEPHUJHGERG\H[LVWVLIWKHFHQWUHRI JUDYLW\ G RI WKH ERG\ LV EHORZ WKH FHQWUH EXR\DQF\ B RI WKH GLVSODFHG ÀXLG )RU H[DPSOH D EDOORRQ FDUU\LQJ ORDG LQ JRQGROD LV D VXEPHUJHG ERG\ LQ WKH DLU ZLWK WKH FHQWUH RI JUDYLW\ DW JRQGROD DQG WKH FHQWUH RI EXR\DQF\ DW WKH FHQWUH RI WKH EDOORRQ $Q\WLOWLQJRIWKHEDOORRQIURPLWVYHUWLFDOSRVLWLRQIRUPVDPRPHQWZKLFKUHVWRUHVWKH EDOORRQWRLWVRULJLQDOSRVLWLRQ
Buoyancy and Floatation
B
FB
B
239
FB
Air Righting Righting couple couple
G
G W
W
Stable Equilibrium
Unstable Equilibrium. 8QVWDEOH HTXLOLEULXP H[LVWV ZKHQ WKH FHQWUH RI JUDYLW\ G ) is ORFDWHGDERYHWKHFHQWUHRIEXR\DQF\B )RUH[DPSOHDWXEHZLWKDKHDY\VWRSSHULVWLOWHG WKHFRXSOHLVIRUPHGZKLFKIXUWKHUURWDWHVWKHWXEHDZD\IURPLWVRULJLQDOSRVLWLRQ
Overturning moment W
G FB
FB W
B
B
Unstable Equilibrium
Neutral Equilibrium. 1HXWUDOHTXLOLEULXPH[LVWVZKHQWKHFHQWUHRIJUDYLW\DQGFHQWUHRI EXR\DQF\FRQFLGH$Q\DQJXODUGLVSODFHPHQWGRHVQRWGLVWXUEWKHOLQHRIDFWLRQRIZHLJKW DQGEXR\DQF\DVERWKDUHORFDWHGDWDSRLQWRQWKHVXEPHUJHGERG\ :KDWLVWKHPDLQGL൵HUHQFHEHWZHHQWKHFRQGLWLRQRIHTXLOLEULXPRIVXEPHUJHGDQG IORDWLQJERG\ZKHQWKH\DUHWLOWHGRUOLWWOHDQJXODUGLVSODFHPHQWLVSURYLGHG"
2U 'LVFXVVVWDELOLW\FRQGLWLRQIRULPPHUVHGDQGIORDWLQJERGLHV 8378 )RUIXOO\LPPHUVHGERG\SRVLWLRQRIWKHFHQWUHRIEXR\DQF\UHPDLQV¿[HGIRUDOODQJXODU GLVSODFHPHQWV+HQFHWKHERG\LVVWDEOHRQO\ZKHQWKHFHQWUHRIJUDYLW\G OLHVEHORZWKH FHQWUHRIEXR\DQF\B ,QDÀRDWLQJERG\WKHFHQWUHRIEXR\DQF\VKLIWVZKLOHWKHFHQWUHRI JUDYLW\UHPDLQVXQDOWHUHG:LWKWKHVKLIWRIFHQWUHRIEXR\DQF\LWPD\EHDERYHRUEHORZ WKHFHQWUHRIJUDYLW\$FRXSOHLVIRUPHGZKLFKUHVWRUHVWKHERG\WRLWVRULJLQDOSRVLWLRQLQ FDVHWKHFHQWUHRIJUDYLW\OLHVDERYHWKHFHQWUHRIEXR\DQF\
240
Fundamentals of Fluid Mechanics
4.5 METACENTRE 'H¿QHPHWDFHQWUH 8378 :KHQDÀRDWLQJERG\LQDOLTXLGLVVOLJKWO\WLOWHGLWVWDUWVRVFLOODWLQJDERXWDSRLQWO\LQJRQ WKHQRUPDOD[LVRIWKHERG\ZKLFKLVFDOOHGWKHPHWDFHQWUHRIWKHERG\,WFDQEHGH¿QHGLQ DQRWKHUZD\:KHQDÀRDWLQJERG\LVWLOWHGLWVFHQWUHRIEXR\DQF\VKLIWVIURPWKHQRUPDO D[LV RI WKH ERG\ ZKHUH WKH FHQWUH RI JUDYLW\ LV ORFDWHG 7KH OLQH RI DFWLRQ RI WKH VKLIWHG EXR\DQF\ IRUFH ZKHUHYHU LQWHUVHFWV WKH QRUPDO D[LV RI WKH ERG\ WKDW SRLQW LV FDOOHG WKH PHWDFHQWUHRIWKHERG\ $VVKRZQLQWKH¿JXUHEHORZZKHQWKHÀRDWLQJERG\LVDWUHVWERWKWKHSRLQWVG and BOLH LQWKHVDPHYHUWLFDOOLQH$OVRW and FBDFWWKURXJKWKHVDPHYHUWLFDOOLQHEXWLQRSSRVLWH GLUHFWLRQV1RZZKHQWKHERG\LVWLOWHGIRUDVPDOODQJOHLQFORFNZLVHGLUHFWLRQWKHFHQWUH RIEXR\DQF\ZLOOVKLIWWRWKHOHIW7KHQHZYHUWLFDOOLQHSDVVLQJWKURXJKWKHVKLIWHGEXR\DQF\ FXWVWKHQRUPDOD[LVDWSRLQWMWKHPHWDFHQWUHRIWKHERG\
Normal axis
Normal axis Tilting M
W FB
Restoring
G B
G
B W
Body at Rest
FB
Body is Tilted Clockwise
:KDWLVWKHPHWDFHQWULFKHLJKW" 8378 :KHQ D ÀRDWLQJ ERG\ LV WLOWHG WKH GLVWDQFH EHWZHHQ WKH FHQWUH RI JUDYLW\ G) and the PHWDFHQWUH M LV FDOOHG PHWDFHQWULF KHLJKW +HQFH GLVWDQFH GM DV VKRZQ LQ WKH DERYH ¿JXUHLVWKHPHWDFHQWULFKHLJKW :KDWDUHWKHFRQGLWLRQVRIHTXLOLEULXPRIDIORDWLQJERG\"'LVFXVVZLWKDQHDWVNHWFK 8378 7KHFRQGLWLRQVRIHTXLOLEULXPRIDÀRDWLQJERG\DUH VWDEOH XQVWDEOHDQG QHXWUDO Stable condition. 7KH HTXLOLEULXP RI D ÀRDWLQJ ERG\ LV VWDEOH LI WKHUH LV D ULJKWLQJ PRPHQW WR UHVWRUH LW WR LWV RULJLQDO SRVLWLRQ ZKHQHYHU LW LV JLYHQ D VPDOO DQJXODU GLVSODFHPHQW,QVXFKHTXLOLEULXPWKHPHWDFHQWUHOLHVDERYHWKHFHQWUHRIJUDYLW\LH PHWDFHQWULFKHLJKWLVSRVLWLYH7KHH[WHUQDOFRXSOHLVEDODQFHGE\WKHFRXSOHGHYHORSHG E\WKHLQWHUQDOIRUFHV
Buoyancy and Floatation
241
M
W
G W
B B
FB
FB Righting couple Stable Equilibrium
Unstable condition. 7KHHTXLOLEULXPRIDÀRDWLQJERG\LVVDLGWREHXQVWDEOHLIDQ\ VPDOO WLOWLQJ RI WKH ERG\ LV DFFRPSDQLHG E\ WKH GHYHORSPHQW RI IRUFHV RU PRPHQW ZKLFK WHQG WR IXUWKHU LQFUHDVH WKH GLVSODFHPHQW RI WKH ERG\ ,Q XQVWDEOH HTXLOLEULXP PHWDFHQWUH M OLHV EHORZ WKH FHQWUH RI JUDYLW\ G LH WKH PHWDFHQWULF KHLJKW LV QHJDWLYH ([WHUQDO DSSOLHG FRXSOH DQG FRXSOH GHYHORSHG GXH WR LQWHUQDO IRUFHV DFW LQ VDPH GLUHFWLRQ WKHUHE\ LQFUHDVLQJ WKH GLVSODFHPHQW DQG PDNLQJ WKH HTXLOLEULXP XQVWDEOH
External couple G
G W FB
M
B
B FB
W
Couple due to internal forces
Unstable Equilibrium
Neutral condition. 7KHHTXLOLEULXPRIDERG\LVVDLGWREHQHXWUDOZKHQRQVPDOOWLOWLQJ RIWKHERG\WKHERG\WDNHVDQHZSRVLWLRQ,QWKLVHTXLOLEULXPPHWDFHQWUHDQGFHQWUH RIJUDYLW\FRQFLGH$VQHLWKHUDULJKWLQJPRPHQWQRUDRYHUWXUQLQJPRPHQWDFWVRQWKH ERG\WKHERG\UHPDLQVDWUHVWDWQHZSRVLWLRQ
Stability for immersed bodies 1.
Stable equilibrium when the centre of buoyancy (B) lies above the centre of gravity (G) of the body.
6WDELOLW\IRUÀRDWLQJERGLHV 1. 2.
The CG lies above the centre of buoyancy. Stable equilibrium when metacentre lies above the center of gravity.
242
Fundamentals of Fluid Mechanics
+RZFDQ\RXGHWHUPLQHWKHPHWDFHQWULFKHLJKWE\WKHRUHWLFDOPHWKRG" M
W
dq G A
C
B
G D
g2
D
C
A
dq
B
B¢
D¢
FB
Before Tilt
dFB
A¢
A¢
After Tilt
A
g1 dFB y
D
C D¢ y
Couple by Wedges
$ERG\LVÀRDWLQJRYHUDÀXLGZLWKADDVRULJLQDOZDWHUOLQHDVVKRZQLQWKH¿JXUHDERYH 1RZWKHERG\LVWLOWHGE\DVPDOODQJOHdqDQGZDWHUOLQHFKDQJHVWRA¢D¢7KHWLOWLQJRIWKH ERG\SURGXFHVZDWHUZHGJHAA¢COLIWLQJXSWKHZDWHUOLQHDQGZHGJHDD¢CVXEPHUJLQJLQ WKHZDWHUOLQH7KHFHQWUHRIEXR\DQF\PRYHVIURPB to B¢)RUVPDOOdqWKHYROXPHRIWKH ZHGJHVdV FDQEHWDNHQWREHHTXDO(DFKZHGJHSURGXFHVEXR\DQWIRUFHdFB7KHEXR\DQW IRUFHRIZHGJHAA¢CLVDFWLQJGRZQZDUGVZKLOHWKDWRIZHGJHDD¢CLVDFWLQJXSZDUGV$ FRXSOHLVSURGXFHGE\WKHVHDQGVXPPDWLRQRIDOOVXFKFRXSOHVLVHTXDOWRPRPHQWSURGXFHG RIWKHEXR\DQWIRUFHRIWKHERG\GXHWRWKHPRYHPHQWRIWKHEXR\DQF\FHQWUHIURPB to B¢ FB ¥ BB¢
\
Ú
dFB ¥ g1g2
ZKHUHg1 and g2DUHWKHFHQWURLGVRIWKHZHGJHV rgV BB¢ Ú rg dV g1g2
dx
A¢ A
G B y
B D¢
y
(dx WKLFNQHVVRUORQJLWXGLQDOVWULS 1RZ BB¢ BM ¥ dq
DQG
9ROXPHRIZHGJHdV
1 AA¢ ¥ AC ¥ dx 2
1 1 ydq ¥ ¥ dx 2 2
Buoyancy and Floatation
aQG
243
GLVWDQFHg1g2 cg1 + cg2)
4 2 2 y + y y 3 3 3
PXWWLQJWKHVHYDOXHVLQHTQL rgV BM dq Ú V ¥ BM Ú
y Ê4 ˆ ¥ y dq ¥ dx Á y˜ Ë3 ¯ 2 2 3 y dx 3
1RZWKHPRPHQWRILQHUWLDDERXWORQJLWXGLQDOD[LVSDVVLQJWKURXJKSRLQWCRIWKHZHGJHV dI
2 dx ¥ (2 y )3 y3 dx 3 12
V ¥ BM Ú dI
\
V ¥ BM I BM
I V
ILVWKHPRPHQWRILQHUWLDRIWKHDUHDRIWKHOLTXLGOLQHOHYHODVVHHQIURPWKHWRSDERXWWKH ORQJLWXGLQDOD[LVDQGVLVWKHYROXPHRIOLTXLG
7KHPHWDFHQWULFKHLJKWGM BM ± BG
I ± BG V BGLVQHJDWLYHLIG is DERYe BRWKHUZLVHLWLVSRVLWLYH +RZFDQ\RXGHWHUPLQHWKHPHWDFHQWULFKHLJKWE\H[SHULPHQW"
M
x
dq
G
W1 W
B
FB
W1
G B
G1 B1 FB
Body at Rest
Body at Tilted
&RQVLGHUDÀRDWLQJERG\ZLWKDPRYDEOHZHLJKWW1ZKLFKLVQRZVKLIWHGWRDGLVWDQFHx IURPLWVQRUPDOD[LVGXHWRZKLFKWKHERG\WLOWVE\DQJOHq0RPHQWFUHDWHGE\VKLIWLQJRI ZHLJKWW1XSWRGLVWDQFHIURPQRUPDOD[LV M1 W1x
244
Fundamentals of Fluid Mechanics
7KLVPRPHQWLVEDODQFHGE\VKLIWLQJRI&*RIWKHERG\IURPG to G1 or $V
M 2 M2 M 1 W1x
W GG 1 W GM tan q ZKHUH GM 0HWDFHQWULFKHLJKW M2 W GM tan q
GM
W1 x W tan q
:K\FRPSDUWPHQWVDUHSURYLGHGLQWKHORZHUSRUWLRQRIWKHVKLSWRVWRUHELOJHZDWHU" 7KHZDWHUUHTXLUHGIRUWKHYDULRXVSXUSRVHVLVVWRUHGLQWKHVKLSLQWKHORZHUSRUWLRQ,QFDVH FRPSDUWPHQWVDUHQRWSURYLGHGLQWKHORZHUSRUWLRQRIWKHVKLSWRVWRUHELOJHRUEDOODVW ZDWHUWKLVZDWHUZLOODOVRVKLIWDZD\IURPWKHFHQWUHRIWKHVKLSWRWKHWLOWHGVLGHWKHUHE\ UHGXFLQJWKHVWDELOLW\RIWKHVKLS
4.6 ROLLING OF FLOATING BODY :KDWLVUROOLQJRIWKHIORDWLQJERG\RUDVKLS")LQGWLPHSHULRGRIUROOLQJ+RZGRHV UROOLQJVWRS" :KHQDÀRDWLQJERG\RUDVKLSLVWLOWHGDWDQDQJOHqE\DSSO\LQJDQH[WHUQDOFRXSOHDQG LWLVUHPRYHGWKHQRQO\IRUFHDFWLQJRQWKHERG\RUVKLSLVUHVWRULQJFRXSOH7KHUHVWRULQJ FRXSOH EULQJV WKH ERG\ WR LWV RULJLQDO SRVLWLRQ EXW WKH ERG\ OLNH D SHQGXOXP FURVVHV LWV RULJLQDOSRVLWLRQGXHWRVSHHGJDLQHGLQGRLQJVRDQGWLOWVWRRWKHUVLGH7KHYDOXHRIFRXSOH LVHTXDOWR
5HVWRULQJFRXSOH W GM tan q ZKHUHGM 0HWDFHQWULFKHLJKW 5DWHRIFKDQJHRIDQJXODUPRPHQW ± I ¥ a Here ILVWKHPRPHQWRILQHUWLDRIWKHERG\RUWKHVKLSDERXWLWVORQJLWXGLQDOD[LVDQGa is DQJXODUDFFHOHUDWLRQRIWKHERG\RUVKLS1HJDWLYHVLJQLQGLFDWHVWKDWWKHFRXSOHLVDFWLQJ LQWKHGLUHFWLRQWRUHGXFHWKHWLOWDQJOHq
d 2q $QJXODUDFFHOHUDWLRQa 2 dt
and +HQFH
tan q q if q is small W ¥ GM ¥ tan q ± I a W ¥ GM ¥ q
or
d 2q –I 2 dt
Ê W ◊ GM ˆ d 2q + Á q 0 2 Ë I ˜¯ dt
Buoyancy and Floatation
245
7KLVLVWKHHTXDWLRQUHSUHVHQWLQJVLPSOHKDUPRQLFPRWLRQ6+0 7KHWLPHSHULRGT of the RVFLOODWLRQLVJLYHQE\ I T p W ◊ GM
W 2 K and K WKHUDGLXVRIJ\UDWLRQ g 7KHVLPSOHKDUPRQLFPRWLRQRIDVKLSLVFDOOHGUROOLQJDQGWKHVKLSWDNHVWLPHT ) to roll IURPRQHVLGHWRDQRWKHUDQGEDFN7KHUROOLQJVWRSVGXHWRWKHIULFWLRQIRUFHVEHWZHHQWKH VKLSDQGZDWHU 7KH WLPH SHULRG RI UROOLQJ VKRXOG EH ODUJH HVSHFLDOO\ LQ D SDVVHQJHU VKLS VR WKDW WKH SDVVHQJHUV VKRXOG QRW EH LQFRQYHQLHQW RU JHW VHD VLFNQHVV ,W LV REYLRXV WKDW SLWFKLQJ RVFLOODWLRQDERXWyyD[LV KDVODUJHUWLPHSHULRGDVIyy > Ixx $ERG\ZHLJKV1LQDLUDQG1ZKHQLPPHUVHGLQZDWHU)LQG YROXPHDQG 6*RIWKHERG\
I
ZKHUH
T = 100 N
T = Tension in cord
FB W = 180 N
Body in Water
7KHERG\ZHLJKLQJ1PHDQVWKDWWKHWHQVLRQLQWKHFRUGLV1DVVKRZQLQWKH¿JXUH
'XULQJHTXLOLEULXPSPy ZKHUHFB EXR\DQF\IRUFH \ W – T – FB 180 – 100 – FB \ FB 1 6LQFHEXR\DQF\IRUFHLVHTXDOWRWKHZHLJKWRIGLVSODFHGZDWHUDQGVLVYROXPHRIGLVSODFHG ZDWHUWKHQ V ¥ r ¥ g FB
80 ¥ 10–3 m3 ¥ 3 ¥
\
V
7KHYROXPHRIWKHERG\ 9ROXPHRIZDWHUGLVSODFHG
¥ 10 –3 m3
6*
:HLJKWRIWKHERG\ :HLJKWRIHTXDOYROXPHRIZDWHU 180 80
246
Fundamentals of Fluid Mechanics
$K\GURPHWHUZHLJKV1DQGLWKDVDF\OLQGULFDOVWHPRIUDGLXVPP+RZPXFK GHHSHUWKHK\GURPHWHUZLOOIORDWLQRLORI6*DVFRPSDUHGWRDOFRKRORI6*" 6XSSRVHWKHK\GURPHWHUÀRDWVhPHWUHGHHSHULQRLODVFRPSDUHGWRDOFRKRODVVKRZQLQWKH ¿JXUH h
Hydrometer h deeper in oil
Alcohol
Oil
Hydrometer
,IZHFRQVLGHUWKHHTXLOLEULXPRIK\GURPHWHULQDOFRKRO
:HLJKWRIWKHK\GURPHWHU :HLJKWRIDOFRKROGLVSODFHG r ¥ g ¥ V (V YROXPH V
¥ 10–6 m3 ¥ 3 ¥
1RZFRQVLGHUWKHHTXLOLEULXPRIK\GURPHWHULQRLO :HLJKWRIK\GURPHWHU :HLJKWRIRLOGLVSODFHG 9ROXPHRIRLOGLVSODFHG V + Ah A DUHDRIVWHP h KHLJKWGL൵HUHQFHDVVKRZQLQWKH¿JXUH ¥ 103 ¥V + p ¥ r2 ¥ h) ¥ 103>¥ 10–6 + p ¥¥ 10–3)2 ¥ h] –6 –6 RU ¥ 10 ¥ 10 ¥ h ¥ 10–6 RU h h
P
PP
$ZRRGHQORJPORQJDQGFPKDV6*:KDWPDVVRIOHDGLVWREHWLHGWRRQH HQGRIWKHORJVRWKDWLWIORDWVXSULJKWZLWKPLQVLGHWKHZDWHU7DNHWKHGHQVLW\RI OHDGDV¥NJP
Buoyancy and Floatation
247
Log
4.2
Lead
7RWDOZHLJKWRIWKHORJDQGOHDG :HLJKWRIGLVSODFHGZDWHU
9ROXPHRIORJ ¥¥P3 ¥ 10–2 m3 9ROXPHLQVLGHWKHZDWHU ¥ 10–2 m3 $VVXPHYROXPHRIOHDG V. 1RZWRWDOZHLJKW :HLJKWRIZDWHUGLVSODFHG ¥ 10–2 ¥¥¥ 103 + V ¥ 12 ¥ 103 ¥ ¥ 10–2 + V) ¥ 1 ¥ 103 ¥ –2 ¥ 10 + 12 V ¥ 10–2 + V) or 11 V ¥ 10–2 V
¥ -2 ¥ 10–3 m3 11
0DVVRIOHDG V ¥ r ¥ 10–3 ¥ 12 ¥ 103
NJ $PHWDOOLFIORDWLVDWWKHLQWHUIDFHRIPHUFXU\DQGZDWHULQVXFKDZD\WKDWLWV YROXPHLVVXEPHUJHGLQPHUFXU\DQGWKHUHPDLQLQJLQZDWHUDVVKRZQEHORZ)LQGWKH GHQVLW\RIWKHIORDWrHg ¥NJP Float Water
Mercury
Metallic Float
&RQVLGHUWKHÀRDWKDVYROXPH 9ROXPHLQPHUFXU\ 9ROXPHLQZDWHU
V V V± V
248
Fundamentals of Fluid Mechanics
:HLJKWRIÀRDW :HLJKWRIPHUFXU\GLVSODFHG :HLJKWRIZDWHUGLVSODFHG V ¥ rÀRDW ¥ g V ¥ rHg ¥ gV ¥ rw ¥ g rÀRDW ¥¥ 103¥ 1 ¥ 103 ¥ 103 ¥ 103NJP3 ¥ 103 ,IGHQVLW\RILFHEHUJLV¥NJPDQGWKDWRIVHDZDWHULV¥NJPWKHQ ¿QGWKHSHUFHQWYROXPHRILFHEHUJDERYHWKHVHDZDWHUZKHQLWIORDWV" V1
Iceberg in Seawater
&RQVLGHUWKHYROXPHRILFHEHUJDVV and V1YROXPHRILFHEHUJUHPDLQVDERYHWKHVHDZDWHU ZKHQLWÀRDWV+HQFHWKHZHLJKWRIWKHLFHEHUJLVHTXDOWRWKHZHLJKWRIVHDZDWHUGLVSODFHG \ WLFHEHUJ V ¥ rLFHEHUJ ¥ g V – V1) ¥ rVHDZDWHU ¥ g or V ¥¥ 103 ¥ g V – V1) ¥¥ 103 ¥ RU V V±V1 RU V V1 V1 or V
or V1 RIWRWDOYROXPHRIWKHLFHEHUJ $ VXEPDULQH KDV YROXPH RI P DQG ZHLJKW RI ¥ N1 )LQG WKH YROXPH RI ZDWHUWREHSXPSHGDVEDOODVWLQWRVXEPDULQHVRWKDWLWFDQVXEPHUJHLQWKHZDWHU Submarine
Submarine in Water
7KHEXR\DQF\IRUFHDFWLQJRQWKHVXEPDULQH :HLJKWRIZDWHUGLVSODFHG FB 9ROXPH¥ rZDWHU ¥ g
Buoyancy and Floatation
249
¥ 1 ¥ 103 ¥ ¥ 103N1 %XWZHLJKWW RIWKHVXEPDULQH ¥ 103N1
+HQFHFB > WDQGVXEPDULQHZLOOÀRDW \ 7KHVXEPDULQHZLOOVXEPHUJHLILWVZHLJKWLVLQFUHDVHGWRLWVEXR\DQF\IRUFHFB +HQFHLIV m3RIZDWHULVWREHSXPSHGWRVXEPHUJHWKHVXEPDULQHWKHQZHKDYH WSXPSHGZDWHU FB V ¥r¥ g ¥ 103 9 ¥ 103 + 103
V ¥ ¥ 3 ¥ 103
\
¥ 103
¥ 3 P3 V
or
$ UHFWDQJXODU SRQWRRQ LV P ORQJ DQG P ZLGH7KH ZHLJKW RI WKH SRQWRRQ LV N1)LQGWKHSRVLWLRQRIWKHFHQWUHRIJUDYLW\DERYHWKHEDVHRIWKHSRQWRRQVXFKWKDW LWGRHVQRWRYHUWXUQLQVWLOOZDWHU Guidance: )RUVWDELOLW\PHWDFHQWUHMVKRXOGEHDERYHG or MVKRXOGFRQFLGHZLWKG :HLJKWRISRQWRRQ :HLJKWRIZDWHUGLVSODFHG 9ROXPHRIZDWHUGLVSODFHG¥ r ¥ g or
V
V ¥ ¥ 3 ¥ 103
400 P3
V OHQJWK¥ZLGWK KHLJKWRISRQWRRQLQVLGHWKHZDWHU ¥ 4 ¥ h
or
h
m 32 4
M G B
Pontoon in Water
250
Fundamentals of Fluid Mechanics
'LVWDQFHRIWKHFHQWUHRIEXR\DQF\B from the base is OB
h P 2 2
For stability of the pontoon BM
I ZKHUH I PRPHQW RI LQHUWLD DERXW ORQJLWXGLQDO D[LV RI WKH SRQWRRQ VS is VS
suEPHUJHGYROXPH I
\
BM
OHQJWK ¥ ZLGWK 3 12 8 ¥ 43 P3 12 P ¥ ¥
1RZ OM OB + BM P )RUVWDELOLW\CGPXVWOLHEHORZWKHPHWDFHQWUHRUDWOHDVWDWVDPHOHYHO 7KHUHIRUHWKHPD[LPXPKHLJKWRIWKHFHQWUHRIJUDYLW\IURPWKHEDVHLV OG OM P )LQGRXWWKH6*RIDORJRIPGLDPHWHUDQGPOHQJWKLILWKDVGHSWKRIPLQVLGH WKHZDWHU A
C q
B
O 1.5
2
D
Log in Water
OC ±
FRVq
OC 33 OB
q
Wetted arHD
360 - 2q ¥ pr2 + 2 DAOC 360
(Note:KDWFKHGSRUWLRQ LVZHWWHGDUHDRIORJ
Buoyancy and Floatation
251
360 - 2q ¥ p ¥2 + 2 ¥ 6 ¥¥VLQq 360 360 - 2q VLQq ¥ 360
ZHWWHGDUHD ¥ OHQJWK pr 2 ¥ OHQJWK
p ¥ 2
¥¥ P2 9ROXPHRIGLVSODFHGZDWHU 6* 9ROXPHRIORJ
$VKLSRIZHLJKW01KDVKRUL]RQWDOFURVVVHFWLRQRIZDWHUOLQHDVVKRZQLQWKH¿JXUH ,ILWKDVLWVFHQWUHRIJUDYLW\DWDGHSWKFPIURPWKHIUHHVXUIDFH¿QGLWVPHWDFHQWUH KHLJKWIRUUROOLQJDERXWxxD[LV IRUSLWFKLQJDERXWyyD[LV 7KHVKLSKDVWKHFHQWUH RIEXR\DQF\DWDGHSWKRIFPEHORZWKHIUHHVXUIDFH
'HSWKRIFHQWUHRIJUDYLW\ 'HSWKRIFHQWUHRIEXR\DQF\ BG
\
P P ± P
:HLJKW r¥ g
9ROXPHGLVSODFHG
P3
15 ¥ 106 3 ¥
y 0.7 G B x
x
42
8
40
20
8
y
Water Line of the Ship
Centre of Gravity & Buoyancy
3.2
252
Fundamentals of Fluid Mechanics
0HWDFHQWULFKHLJKWLVJLYHQE\
I – BG V
GM
Ixx
Iyy
1 40 ¥ 123 +4¥ ¥ 8 ¥ 63 12 12
1 1 ¥ 12 ¥ 403 + 2 ¥ ¥ 12 ¥ 83 + 96 ¥ 2 12 36
P4
)RUUROOLQJ GM
I xx – BG V 6336 ± 1529
± P
)RUSLWFKLQJ
GM
I yy V
– BG
± 1529
±
P
$UHFWDQJXODUSRQWRRQLVPORQJPZLGHDQGPKLJK7KHGHSWKRILPPHUVLRQ RIWKHSRQWRRQLVPLQVHDZDWHU,IWKHFHQWUHRIJUDYLW\LVPDERYHWKHERWWRP RIWKHSRQWRRQGHWHUPLQHWKHPHWDFHQWULFKHLJKW7KHGHQVLW\RIVHDZDWHULVNJ 'HOKL8QLYHUVLW\ P Guidance: 7KHFHQWUHRIEXR\DQF\LVDWWKHKDOIKHLJKWRILPPHUVLRQ7KHFHQWHURIJUDYLW\ I – BG LVJLYHQ0HWDFHQWULFKHLJKWFDQEHIRXQGRXWE\WKHIRUPXODGM V )URPWKH¿JXUHWKHKHLJKWRI&*DQGFHQWUHRIEXR\DQF\ OG PJLYHQ
Buoyancy and Floatation
OB
253
P 2 y
x
x
5
1.2 G
0.8
B O
3
3
y
Immersion & Water Line
BG ± P Iyy
1 ¥ 3 ¥ 53 12
P2 9ROXPHRIZDWHUGLVSODFHG OHQJWK¥ breadth ¥KHLJKWRIERG\LPPHUVHG ¥ 3 ¥ P3 I yy GM – BG V V
\
± 12
P
$F\OLQGULFDOEXR\KDVPGLDPHWHUDQGPOHQJWK,WZHLJKV¥NJ,IGHQVLW\ RIVHDZDWHULVNJPVKRZWKDWWKHEXR\FDQQRWIORDWZLWKLWVD[LVYHUWLFDO Guidance: 'HSWK RI LPPHUVLRQ FDQ EH IRXQG RXW IURP WKH GLVSODFHG ZDWHU 7KH FHQWUH RIEXR\DQF\LVKDOIRIWKHGHSWKRILPPHUVLRQ7KHKHLJKWRIFHQWUHRIJUDYLW\ZLOOEHWKH KDOIKHLJKWRIWKHEXR\BGFDQEHIRXQGIURPWKHVHWZRGMFDQEHFDOFXODWHG,IGM is QHJDWLYHWKHEXR\LVXQVWDEOHLQÀRDWDWLRQZLWKWKHD[LVYHUWLFDO
:HLJKWRIEXR\ mg ¥ 103 ¥ N1
254
Fundamentals of Fluid Mechanics
If hLVWKHKHLJKWLPPHUVHGZKHQWKHEXR\LVÀRDWLQJZLWKLWVD[LVYHUWLFDO
pd 2 ¥h 4
9ROXPHGLVSODFHG
p ¥ 22 ¥h 4 y
G
2.5
2
x
x
B y
Plan of Water Surface at Water Line
ph :HLJKWRIWKHEXR\ :HLJKWRIZDWHUGLVSODFHG ph ¥ r ¥ g or \
h
\
2
P 2
BG ± P I
h 2
P OG KHLJKWRIFHQWUHRIJUDYLW\
¥ 3 P p ¥ ¥
OB KHLJKWRIFHQWUHRIEXR\DQF\
p ¥ ¥ ¥h 1000
pd 4 p ¥ 24 64 64
P4
Buoyancy and Floatation
255
9ROXPHRIGLVSODFHGZDWHUV ph p ¥ P3
I – BG V ± ±
± P
GM
M G
100 cm
6LQFHGMLVQHJDWLYHWKHEXR\LVXQVWDEOHLQÀRWDWLRQLQYHUWLFDOD[LV $KROORZF\OLQGHUZLWKHQGVRSHQKDVLQWHUQDODQGH[WHUQDOGLDPHWHURIFPDQG FP7KHOHQJWKRIWKHF\OLQGHULVFPDQGLWZHLJKV1)LQGZKHWKHUWKHF\OLQGHU LVVWDEOHLQIORWDWLRQLQYHUWLFDOD[LV
B
Plan of Water Surface at Water Line
$UHDRIFURVVVHFWLRQRIF\OLQGHU
p (r 02 – r12 p2±2) :HLJKWRIGLVSODFHGZDWHU A :HLJKWRIF\OLQGHU \
26 m2 A ¥ h ¥ r ¥ g DUHD h KHLJKWLPPHUVHG :HLJKWRIZDWHUGLVSODFHG ¥ h ¥ 1000 ¥
h
P ¥ ¥
I
p d14 p d 04 – 64 64
p 4±4) 64
p ± 64 ¥ 10–3 m4
256
Fundamentals of Fluid Mechanics
V ¥ ¥ 10–2 m2 OB
h 2 2
P OG
1 2
BG ±
P GM
I – BG V ¥ -3 ± ¥ -2
± ± P
6LQFHGMLVQHJDWLYHKHQFHWKHF\OLQGHULVXQVWDEOHLQÀRWDWLRQLQYHUWLFDOD[LV $UHFWDQJXODUSRQWRRQLVPORQJPZLGHDQGPKLJK,WZHLJKVN1,WFDUULHV RQLWVXSSHUGHFNDQHPSW\ERLOHUPLQGLDPHWHUZKLFKZHLJKVN1,IWKHFHQWUH RIJUDYLW\RIWKHSRQWRRQDQGERLOHUDUHDWWKHLUJHRPHWULFFHQWUHRQWKHQRUPDOD[LV ¿QGWKHVWDELOLW\RIWKHSRQWRRQ Guidance: 7KH&*RIWKHV\VWHPFDQEHIRXQGRXWE\W ¥ OG W1 CG1 + W2 OG2ZKHUH &*OG1 and OG2DUHGLVWDQFHVIURPWKHUHIHUHQFHSRLQW7KHFHQWUHRIEXR\DQF\FDQEH IRXQGRXWIURPWKHGHSWKRILPPHUVLRQ 4 CG2 G CG1 B O
OG2 OG OG 1
x
x
10
4
8
Plan of Water Surface at Water Line
W ¥ OG W1 OG1 + W2 OG2
4ˆ Ê Ê 4ˆ (800 + 400) ¥ OG ¥ Á ˜ + 400 ÁË 4 + ˜¯ 2 Ë 2¯
8
Buoyancy and Floatation
257
1200 ¥ OG OG
3600 P 1200
:HLJKWRISRQWRRQERLOHU :HLJKWRIZDWHUGLVSODFHG ¥ 10 ¥ h ¥¥
h OB
\
1000 1000
1200 P ¥ ¥ h P 2 2
OG BG OG – OB ±
P Ixx
10 ¥ 83 P4 12
V ¥ 8 ¥ P2 GM
I – BG V ±
± P 6LQFHPHWDFHQWULFKHLJKWLVSRVLWLYHWKHSRQWRRQLVVWDEOHLQLWVÀRDWDWLRQLQYHUWLFDOD[LV $VKLSZHLJKV¥NJDQGLWVZDWHUOLQHFURVVVHFWLRQLVDVVKRZQLQWKH¿JXUH7KH FHQWUHRIEXR\DQF\LVPEHORZWKHVXUIDFH)LQGWKHPD[LPXPSHUPLVVLEOHKHLJKWRI WKH&*IRUVWDWLFVWDELOLW\ Guidance: 7KHVWDELOLW\KDVWREHFKHFNHGIRUUROOLQJDQGSLWFKLQJLHDERXWxx and yy D[LV+RZHYHULQVWDELOLW\LVPRUHFULWLFDODERXWxxD[LVDVIxx < Iyy y D
C
R = 10 M G B
2
x
F G 90°
E A
y 60
Water Line Cross Section of Ship
B
x
258
Fundamentals of Fluid Mechanics
Ixx Ixx of ABCD + Ixx CBF + Ixx ADE
60 ¥ 203 1 p ¥ 104 10 ¥ 103 +2¥ + 12 2 64 12
¥ 102 m4 :HLJKWRIWKHVKLS :HLJKWRIWKHZDWHU 2 ¥ 10 ¥ g V ¥ r ¥ g
V
\
2 ¥ 10 103
¥ 104 m4
1RZ
BM
I xx V 456 ¥ 102 P 2 ¥ 104
6LQFH EXR\DQF\ LV ORFDWHG DW D GHSWK RI P IURP WKH IUHH VXUIDFH LW PHDQV WKDW WKH PHWDFHQWUHLVORFDWHGDWP± P DERYHWKHIUHHVXUIDFH)RUVWDELOLW\ PHWDFHQWUHKDVWREHHLWKHUDERYHWKH&*RUDWOHDVWDWWKHVDPHKHLJKW+HQFHPD[LPXP SRVVLEOHKHLJKWRI&*LVPDERYHWKHIUHHVXUIDFH $FRQHKDYLQJEDVHUDGLXVRDQGKHLJKWHIORDWVLQZDWHUZLWKLWVYHUWH[GRZQZDUGV
H DQG H < 3URYHIRUVWDEOHHTXLOLEULXP VHF q > h
È R S ˘ ZKHUH hLVGHSWK Í ˙ Î - S ˚ RILPPHUVLRQqLVVHPLYHUWH[FRQHDQJOHDQGSLV6*RIWKHFRQHPDWHULDO
3 7KH&*RIDFRQHLVORFDWHGRQQRUPDOD[LVDWDKHLJKWRI WK 4 3 \ OG H 4 R
y r = h tan q
M G B
8378
x
x
h
q O
Cross-Sectional Area at Water Line
y
Buoyancy and Floatation
259
6LPLODUO\LIhLVWKHKHLJKWLPPHUVHGWKHQWKHFHQWUHRIEXR\DQF\LVDWWKHCGRIWKHZDWHU GLVSODFHG 3 OB h 4
1RZ
\
1RZ \
BM
I V
I
pr 2 4
V
1 2 pr h 3
BM
3 p r4 r2 ¥ 1 4 h 4 ¥ p r2 h 3
r h tan q BM
2 2 3 ¥ h tan q 4 h
3 ¥ h tan2 q 4 3 3 OM OB + BM h + h tan2 q 4 4 3 h (1 + tan2 q) 4
3 hVHF2 q 4
)RUVWDELOLW\PHWDFHQWUHPXVWEHDERYHCG OM > OG
3 3 hVHF2 q > H 4 4 RU
VHF2 q >
H h
:HLJKWRIFRQH :HLJKWRIGLVSODFHGZDWHU
1 1 2 pR H ¥ S ¥ rw p r2h rw 3 3
(1)
260
Fundamentals of Fluid Mechanics
R H tan q r h tan q
$OVR
h H S
\ )URPHTQV
VHF2 q >
H h
>
1 S
1 + tan2 q >
1 S
tan2 q >
or %XW
WDQq
(2)
1 - S S R H
\
R2 1 - S > H2 S
or
H2 S < 2 R 1 - S
È R S ˘ H< Í ˙ Î1 - S ˚
or
A EXR\ FDUU\LQJ D EHDFRQ OLJKW KDV WKH XSSHU SRUWLRQ F\OLQGULFDO RI P GLDPHWHU DQG PGHHS7KHORZHUSRUWLRQZKLFKLVFXUYHGGLVSODFHVDYROXPHRIOLWHUVDQGLWV FHQWUHRIEXR\DQF\LVVLWXDWHGPEHORZWKHWRSRIWKHF\OLQGHU7KHFHQWUHRIJUDYLW\ RIWKHZKROHEXR\DQGEHDFRQLVVLWXDWHGPEHORZWKHWRSRIWKHF\OLQGHUDQGWKHWRWDO GLVSODFHPHQWLVN1)LQGWKHPHWDFHQWULFKHLJKW7DNHvIRUVHDZDWHU N1P 2
Y
h
B2 B
1.25
O
X
X
B1
Y
Cross-Sectional Area of Water Line
Buoyancy and Floatation
Guidance: 7KHORFDWLRQRIWKHFHQWUHRIEXR\DQF\RIWKHEXR\LVWREHIRXQGRXWIURPWKH ODZRIPRPHQWDVORFDWLRQVRIWKHFHQWUHRIEXR\DQF\RIWKHXSSHUDQGORZHUSRUWLRQVKDYH EHHQJLYHQ OB1 GHSWKRIFHQWUHRIEXR\DQF\IURPZDWHUVXUIDFH PJLYHQ h OB2 ZKHUHh KHLJKWRILPPHUVLRQRIXSSHUSRUWLRQ 2 \
OG :HLJKWRIWKHEXR\ ¥ 103 V V
PJLYHQ :HLJKWRIZDWHUGLVSODFHG V ¥ r ¥ g V ¥ 10 ¥ 103 P3 Vupper + VORZHU
Vupper +
\
\ \
400 1000
Vupper P3 Vupper
h
pd 2 ¥h 4 p ¥ 22 ¥h 4 ¥ PIURPVXUIDFH 4p
OB2 ±h) +
h IURPWRS 2 2
1RZWR¿QGWKHFHQWUHRIEXR\DQF\OB IURPWRSZHXVHWKHODZRIPRPHQW
V ¥ OB Vupper ¥ OB2 + VORZHU ¥ OB1 ¥ OB ¥¥
OB
261
1RZ
+
P BG OB – OG ± P
262
Fundamentals of Fluid Mechanics
GM
I – BG V
p ¥ 24 pd 4 P4 I 64 64 ±
GM
±
P
+HQFHPHWDFHQWULFKHLJKWRIWKHEXR\LVP
FDQQRWEHLQVWDEOHHTXLOLEULXPZKHQ IORDWLQJXSULJKWLQZDWHUZKHQLWVOHQJWKH[FHHGVRILWVGLDPHWHU
6KRZWKDWDXQLIRUPFLUFXODUF\OLQGHURI6* =
SG = 1/3 x
l
x
G h
B d
d
O
Cross Section at Water Line
Let hEHWKHKHLJKWRIWKHF\OLQGHULPPHUVHG
:HLJKWRIF\OLQGHU :HLJKWRIZDWHUGLVSODFHG
pd 2 pd 2 ¥ l ¥ S h 4 4 \ l ¥ S h )URPEDVHWKHORFDWLRQVRI&*DQGFHQWUHRIEXR\DQF\DUH OG
l 2
OB
h lS 2 2
BG OG OB
l (1 – S) 2
(1)
Buoyancy and Floatation
Ixx V GM
263
pd 4 64 pd 2 h pd 2 ¥ lSIURPHTQ 4 4 I – BG > 0 for stability V
I > BG V
or
pd 4 > l (1 – S) pd 2 IS 2 64 ¥ 4 S
*LYHQ
l 3
d2
lÊ 1ˆ 1- ˜ 1 > 2 ÁË 3¯ 16 ¥ l ¥ 3 d2 >
16l 2 2 ¥ 2¥3 3
d2 >
16 2 l 9 4 l 3
d> or
3d >l 4
)RUVWDELOLW\WKHOHQJWKRIWKHF\OLQGHUKDVWREHOHVVWKHQ
3 d 4
$VROLGFXEHRIZRRGZHLJKLQJNJIN1P IORDWVZLWKDIDFHSDUDOOHOWRZDWHU SODQH,IWKHOHQJWKRIWKHHGJHLVRQHPHWHU¿QGWKHPHWDFHQWULFKHLJKW
G h
–1
B O 1
264
Fundamentals of Fluid Mechanics
OG
1 2
If hLVWKHKHLJKWLPPHUVHGWKHQ
\ \
:HLJKWRIFXEH :HLJKWRIZDWHUGLVSODFHG ¥ 103 ¥ 1 ¥ h ¥ 1 ¥ 103 ¥ h P OB
h P 2
BG OG – OB
± P I
1 1¥1 m4 12 12
V ¥ 1 ¥ P3 GM
I – BG V 1 ± ¥
±
P
AEULGJHIRUVWUHDPKDVDSDUDEROLFRSHQLQJIRUSDVVDJHRIZDWHU7KHRSHQLQJKDVVSDQ RIPDQGDULVHRIP,IWKHGHSWKRIIORZLVP¿QGWKHXSOLIWIRUFHH[HUWHGE\ ZDWHURQWKHEULGJH7DNHZLGWKRIEULGJHDVP Guidance: 7KH EULGJH KDV SDUDEROLF RSHQLQJ DQG LW UHVWULFWV RU GLVSODFHV WKH ZDWHU WR WKLVVKDSHLQWKHSDVVDJHRIZDWHUWKURXJKLW9ROXPHRIZDWHUUHVWULFWHGLVLQIDFWZDWHU GLVSODFHGZKLFKLVHTXDOWRWKHEXR\DQWIRUFHH[HUWHGE\WKHZDWHURQWRWKHEULGJH:HKDYH WR¿QGWKHUHVWULFWHGYROXPHRIWKHZDWHUZKLFKLVQRWDOORZHGWRSDVVWKURXJKWKHSDVVDJH LQWKHEULGJH 5HVWULFWHGDUHDVWRSDVVDJHRIZDWHUDUHHTXDOZHGJHVDQGVKRZQDVVKDGHG
5HVWULFWHGDUHDV DUHDDUHD±¥ area 1689 ¥ 8 +
Ú
0
xdy –
Ú
2 0
xdy
Buoyancy and Floatation 8 0.5
7
6
x y
5
265
4
3
2 1.5
1
9
2
4
4
7KH HTXDWLRQ RI SDUDEROD x2 ay ZLWK RULJLQ DW SRLQW 3RLQW ZLOO VDWLVI\ WKLV HTXDWLRQZLWKFRRUGLQDWHDV x2 ay a ¥ 2 a
\(TXDWLRQRISDUDERODLVx2 y or
x 8 y
y
5HVWULFted arHDV 2 – 2 Ú
– 2 Ú
Ê y ˆ 2± Á Ë ˜¯
0 2
2
ydy – 2 Ú ydy 0
ydy 2
±>± ] ±>±@
±¥5
±
P2 9ROXPHRIZDWHUUHVWULFWHGGLVSODFHG
¥:LGWKRIWKHEULGJH ¥ 6 P3
266
Fundamentals of Fluid Mechanics
%XR\DQF\IRUFH :HLJKWRIZDWHUGLVSODFHG ¥ r ¥ g ¥ 1 ¥ 103 ¥ N1 +HQFHXSOLIWIRUFHRQWKHEULGJHLVWKHEXR\DQF\IRUFH N1 $VKLSZHLJKV01DQGDZHLJKWN1LVPRYHGIRUPDFURVVLWGHFNUHVXOWLQJ LQWLOWLQJRIWKHVKLS7LOWLQJLVVKRZQE\WKHSOXPEOLQHZKLFKLVPORQJDQGLWPRYHV FPDWWKHERWWRP)LQG PHWDFHQWULFKHLJKWDQG ULJKWLQJPRPHQWZKHQWKH DQJOHRILQFOLQDWLRQLV
$SSOLHGPRPHQW $SSOLHGPRPHQW 3 GM ¥ 50 ¥ 10 ¥ tan q
w ¥ d ¥ 10 N1P ULJKWLQJPRPHQW GM ¥ W ¥ tan q
SOXPEPRYHPHQW OHQJWKRISOXPE
tan q
GM
3 100 ¥ 3 ¥
P 1RZULJKWLQJPRPHQWIRUWLOWRI GM ¥ W ¥ tan q ¥ 50 ¥ 106 ¥ tan 30 ¥¥ 106 N1P $ VKLS ZLWK WRWDO GLVSODFHPHQW RI 01 UROOV WR RQH VLGH WKURXJK DQ DQJOH RI ZKHQDGHFNORDGRIN1LVPRYHGODWHUDOO\WKURXJKDGLVWDQFHRIP'HWHUPLQH WKHPHWDFHQWULFKHLJKWIRUWKHSDUWLFXODUSRVLWLRQRIWKHYHVVHO 7LOWLQJPRPHQW ULJKWLQJPRPHQW w ¥ d W ¥ GM ¥ tan q 49 ¥ ¥ GM ¥WDQ¥ 103 GM
49 ¥ 5 ¥ WDQ ¥ 3
P
Buoyancy and Floatation
267
$UHFWDQJXODUSRQWRRQPORQJPEURDGDQGPGHHSZHLJKVN1LQIUHVK ZDWHU ,W FDUULHV RQ LWV XSSHU GHFN D ERLOHU P LQ GLDPHWHU ZHLJKLQJ N1 7KH FHQWUH RI JUDYLW\ RI WKH ERLOHU DQG SRQWRRQ PD\ EH DVVXPHG WR EH DW WKHLU FHQWUH RI WKH¿JXUHVDQGLQWKHVDPHYHUWLFDOOLQH)LQGWKHPHWDFHQWULFKHLJKW7DNHWKHZHLJKW RIVHDVZDWHUDVN1P 5 G2
G1
3 h
B O 7.5
Let OG1 and OG2 DUH WKH GLVWDQFHV RI FHQWUHV RI JUDYLW\ RI UHFWDQJXODU DQG FLUFXODU SDUW from point D$SSO\LQJODZRIPRPHQWV W ¥ OG W1 ¥ OG1 + W2 OG2 5ˆ 3 Ê 1680 ¥ OG ¥ ¥ Á 3 + ˜ Ë 2¯ 2 OG
\
+ 1680
PZKHUHGLVFRPELQHG&* Let hPHWHUEHLPPHUVHG
:HLJKWRISRQWRRQ :HLJKWRIZDWHUGLVSODFHG 1680 ¥ 103 V ¥ r ¥ g V
P3 V :LGWK¥OHQJWK¥LPPHUVHGKHLJKW ¥ 12 ¥ h h
1680 ¥ 103 ¥ 3
¥
P OB GLVWDQFHRIFHQWUHRIEXR\DQF\
h 924 2 2
268
Fundamentals of Fluid Mechanics
BG OG – OB ± P
bd 3 ¥ 3 12 12
I GM
I – BG V ±
± P
$VKLSKDVDGLVSODFHPHQWRI01LQVHDZDWHU:KHQDZHLJKWRI01LVPRYHG PDFURVVWKHGHFNLWLQFOLQHVWKHVKLSE\¿QG WKHPHWDFHQWULFKHLJKWDQG LIUDGLXVRIJ\UDWLRQWKURXJKWKHFHQWUHRIJUDYLW\RIWKHYHVVHOLVPGHWHUPLQHWKH SHULRGRIUROOLQJRIWKHVKLS
wd W ¥ GM tan q ¥ 106 ¥ ¥ 106 ¥ GM ¥WDQ
¥ ¥ WDQ ∞
GM
¥ ¥
P T 2p
I
W 2 K g
T p
I W ◊ GM
pk
k2 g ¥ GM 1 ¥
p ¥ 3 ¥
VHFRQGV
$VKLSPORQJDQGPEURDGKDVGLVSODFHPHQWRIN1$ZHLJKWRI N1LVPRYHGDFURVVWKHGHFN7KHVKLSLVWLOWHGWKURXJK7KHPRPHQWRILQQHUWLDRI WKHVKLSDWZDWHUOLQHDERXWLWVIRUHDQGDIWD[LVLVRI02,RIWKHFLUFXPVFULELQJ
Buoyancy and Floatation
269
UHFWDQJOH 7KH FHQWUH RI EXR\DQF\ LV P EHORZ ZDWHU OLQH )LQG WKH PHWDFHQWULF KHLJKWDQGSRVLWLRQRIWKHFHQWUHRIJUDYLW\RIWKHVKLSLIVSHFL¿FZHLJKWRIVHDZDWHU LV1P $QQD8QLYHUVLW\
7LOWLQJPRPHQW ULJKWLQJPRPHQW w1 ¥ d W ¥ GM tan q GM
¥ W1 ¥ d 19620 ¥ tan 6∞ W ¥ tan q
P
1RZ GM
I – BG V
I
OHQJWK ¥ ZLGWK 3 12
¥ ¥ 3 P3 12
V 9ROXPHVXEPHUJHG
\
\
GM BG OB OG
1.251
W rg
19620 P3 10104 – BG
±BG ± P PJLYHQ OB – BG ± P
G B
2.25
270
Fundamentals of Fluid Mechanics
$ YHVVHO RI UHFWDQJXODU VHFWLRQ KDV D OHQJWK RI P EUHDGWK P DQG GLVSODFHPHQW RI017KHVHFRQGPRPHQWRIWKHZDWHUSODQHDUHDDERXWLWVIRUHDQGDIWD[LVLV RIWKHPRPHQWRILQHUWLDRIWKHFLUFXPVFULELQJUHFWDQJOHDQGWKHSRVLWLRQRIWKH FHQWUHRIEXR\DQF\LVEHORZWKHZDWHUOLQH)LQGWKHPHWDFHQWUHRIWKHYHVVHO7KH ZHLJKWRIRQHFXELFPHWUHRIVHDZDWHUPD\EHWDNHQDVN1 5RRUNHH8QLYHUVLW\ 3 OHQJWK ¥ EUHDGWK I 12
60 ¥ 83 ¥ 12
P4
6XEPHUJHGYROXPHV
¥ 3 10
P3
I – BG V I GM + BG BM V GM
BM
1664 883
M G
O 1.75
B
1RZKHLJKWRIPHWDFHQWUHIURPIUHHVXUIDFH
OM BM – OB ± P FP 0HWDFHQWUHLVFPDERYHWKHIUHHVXUIDFH $VROLGF\OLQGHUFPORQJFPGLDPHWHUKDVLWVKHDGFPWKLFNDQG6*7KH UHPDLQLQJ SRUWLRQ RI WKH F\OLQGHU KDV 6* RI &DQ LW IORDW YHUWLFDOO\ LQ ZDWHU" ,I QRWZKDWLVWKHPD[LPXPOHQJWKSHUPLVVLEOHIRUVWDEOHHTXLOLEULXP Let V1 and V2EHWKHYROXPHVRIDPDWHULDOZLWK6*DQGUHVSHFWLYHO\
Buoyancy and Floatation
V 1
p ¥ 2 ¥± P3 4
V 2
p ¥ 2 ¥ ¥ 10–4 m3 4
100
20
G2
2.5
G1 O
&HQWUHRIJUDYLW\RIF\OLQGHUFDQEHIRXQGRXWE\WKHODZRIPRPHQW W1 V1 ¥¥ 103 ¥ g ¥¥ 103 ¥ 1 W2 V2 ¥ 8 ¥ 103 ¥ g ¥ 10–4 ¥ 8 ¥ 103 ¥ 1 OG2
P 2
OG1
P 2
W W1 + W2 1 7DNLQJPRPHQWIURPERWWRPRIF\OLQGHU W ¥ OG W1 ¥ OG1 + W2 ¥ OG2
¥ OG ¥¥ OG
V
8465 P W r◊ g ¥ 3
¥ 10–2 m3
271
272
Fundamentals of Fluid Mechanics
6XEPHUJHGKHLJKWhFDQEHJLYHQDV
V ¥ -2 P p ¥ 2 4
h
OB KHLJKWRIFHQWUHRIEXR\DQF\
P 2
\
BG OG – OB ±
p ¥ d2 p ¥ 4 ¥ 10–5 m4 64 64
I GM
h 2
¥ -5 I – BG ± ¥ -3 V
± ± P
6LQFHGMLVQHJDWLYHWKHF\OLQGHULVXQVWDEOHDQGWKHPHWDFHQWUHLVORFDWHGDWGLVWDQFHRI FPEHORZWKH&*RIWKHF\OLQGHU 7KHWLPHSHULRGRIUROOLQJRIDVKLSRIZHLJKWN1LQVHDZDWHULVVHFRQGV7KH FHQWUHRIEXR\DQF\RIWKHVKLSLVPEHORZWKHFHQWUHRIJUDYLW\)LQGWKHUDGLXVRI J\UDWLRQRIWKHVKLSLIWKHPRPHQWRILQHUWLDRIWKHVKLSDWZDWHUOLQHDERXWIRUHDQG DIWD[LVLVP7DNHVSZWRIVHDZDWHUDV ¥1P T 2p
k2 GM ¥ g
I P4 V
W 3 ¥ 10 rg ¥ 4
BM
10000 I P V
BG P \
GM BM – BG ± P
Buoyancy and Floatation
T p
or
273
k2 ¥
2pk k P M G 1.5 B
$ZRRGHQF\OLQGHURI6* DQGFLUFXODULQFURVVVHFWLRQLVUHTXLUHGWRIORDWLQRLORI 6* )LQGWKHHDUDWLRIRUWKHF\OLQGHUWRIORDWZLWKLWVORQJLWXGLQDOD[LVYHUWLFDO LQRLOZKHUHHLVWKHKHLJKWRIF\OLQGHUDQGDLVLWVGLDPHWHU 8378
M G
H h
B O D
:HLJKWRIWKHERG\ :HLJKWRIRLOGLVSODFHG
pD 2 pD 2 H ¥¥ 103 ¥ g h ¥¥ 103 ¥ g 4 4 HHUH
h KHLJKWRIF\OLQGHULPPHUVHG
\
4 H 3 h
NRZ
Ixx V
or h H
p D4 64 p D2 p D2 ¥ h ¥H 4 4
274
Fundamentals of Fluid Mechanics
7KH&*RIWKHERG\IRUF\OLQGHUIURPWKHEDVH OG H 7KHFHQWUHRIEXR\DQF\IURPWKHEDVH OB
h 2
H H 2
BG OG – OB H±H
\ 1RZWKHPHWDFHQWULFKHLJKW
H
GM
I xx – BG V pD 4 ¥ 4 ±H ¥ pD 2 ¥
D2 ±H H
)RUVWDELOLW\GM > 0 \
D2 ±H > 0 H D2 >
2 H
H < D
$ZRRGHQF\OLQGHURI6*RIDQGFLUFXODULQFURVVVHFWLRQLVUHTXLUHGWRIORDWLQRLO RI6*)LQGHDUDWLRIRUWKHF\OLQGHUWRIORDWZLWKLWVORQJLWXGLQDOD[LVYHUWLFDOLQ RLOZKHUHHLVWKHKHLJKWRIF\OLQGHU DLVWKHGLDPHWHU
M G
h
B O D
H
Buoyancy and Floatation
Weight of the cylinder = Weight of oil displaced 2 pD 2 ¥ H ¥ 0.5 ¥ 103 ¥ g = pD ¥ h ¥ 0.7 ¥ 103 ¥ g 4 4
h=
0.5 H = 0.714 H 0.7
OG =
H 2
OB =
h 0.714 = H = 0.375 H 2 2
Ixx = V= BM =
pD 4 64 pD 2 pD 2 ¥h= ¥ 0.714 H 4 4 pD 4 ¥ 4 I xx = 64 ¥ pD 2 ¥ 0.714 H V
= 0.0875 ¥
D2 H
OM = OB + BM = 0.357 H + For stability,
0.0875 D 2 H
OM ≥ OG 0.357 H +
0.0875 D 2 ≥ 0.5 H H 0.0875
D2 ≥ 0.143 H H 0.143 D2 ≥ 2 0.0875 H ≥ 1.634
or or
D ≥ 1.278 H H £ 0.782 D
275
276
Fundamentals of Fluid Mechanics
$ZRRGHQF\OLQGHU6* SRIFLUFXODUFURVVVHFWLRQKDYLQJOHQJWK lDQGGLDPHWHU dIORDWVLQZDWHU)LQGWKHPD[LPXPSRVVLEOHldUDWLRVRWKDWWKHF\OLQGHUPD\IORDW LQVWDEOHHTXLOLEULXPZLWKLWVD[LVYHUWLFDO
M l
G
h
B O d
:HLJKWRIWKHF\OLQGHU :HLJKWRIZDWHUGLVSODFHG
\
pd 2 pd 2 ¥ l ¥ S ¥ 103 ¥ g ¥ h ¥ 1 ¥ 103 ¥ g 4 4 Yh Sl Ixx V
pd 4 64 pd 2 pd 2 ¥ h ¥S¥l 4 4
OG
l 2
OB
h Sl 2 2
BG
l (1 – S) 2
BM
d2 pd 4 ¥ 4 I xx 16 Sl 64 ¥ pd 2 ¥ Sl V
OM OB + BM
Sl d2 + 2 16 Sl
)RUVWDEOHHTXLOLEULXPPHWDFHQWUHPXVWEHDWKLJKHUGLVWDQFHIURPODVFRPSDUHGWROG OM > OG
SI l d2 + > 2 2 16 Sl
Buoyancy and Floatation
or
277
d
l
H S - S ZKHUHSLV6*RIF\OLQGHUPDWHULDO$OVRVKRZWKDWLI R>
H
WKHF\OLQGHULVVWDEOHIRUDOOYDOXHVRIS
M H
G B
h
O
,WKDVEHHQDOUHDG\VKRZQWKDW h SH OG
H 2
OB
h SH 2 2
BM
(2 R ) 2 I xx 16 SH V
OM > OG for stability 2
SH (2 R ) > H + 2 2 16 SH
(2 R )2 16 SH
>
H (1 – S) 2
R2 > 2 SH 2 (1 – S) R > H 2 S (1 - S ) )RUDQ\YDOXHVRISSXWS
h H Ï 2h R2 > H2 Ì ÓH
h ˆ¸ Ê ÁË1 - H ˜¯ ˝ ˛
278
Fundamentals of Fluid Mechanics
R2 > 2hH – 2h2 1RZGL൵HUHQWLDWLQJZUWhWRJHWPD[LPXPYDOXHRIh
d (2hH – 2h2 dh 2 H – 4 h or
h
H 2
R2 > 2 hH – 2 h2
1RZ Put
h H 2 R2 > H2 R 2 >H
or
R>
H
2 $F\OLQGULFDOEXR\LVPLQGLDPHWHUDQGPORQJDQGLWZHLJKV¥16KRZ WKDWWKHEXR\ZLOOQRWIORDWYHUWLFDOO\*LYHQVSZWRIVHDZDWHU N1P)LQGWKH ZHLJKWWREHDWWDFKHGZLWKFKDLQWRLWVEDVHWRPDNHLWIORDWYHUWLFDOO\
M
M¢
G B
G¢ W
B¢
O
O WA
Without Weight
With Weight
W ¥ 103 N
' LVSODFHGYROXPHRIVHDZDWHU
W 23 ¥ 103 r¥ g 10 ¥ 103
P3 h KHLJKWRILPPHUVLRQ
V P 2 pd p 4
Buoyancy and Floatation
OB
\
279
h P 2 2
p ¥ 24 I 64 P BM xx V OM OB + BM
P OG
\
2
As OG > OMKHQFHWKHEXR\LVQRWVWDEOH TRPDNHWKHEXR\VWDEOHZHDWWDFKDQDGGLWLRQDOZHLJKWWaDWWKHERWWRPRIWKHF\OLQGHU WT W + Wa
1RZ
'LVSODFHGZDWHU
h
OB¢
W + Wa WTN1 10 WT WT p 2 ¥2 4 h ¥ WT 2 2
WT OG¢
¥ + Wa ¥ WT WT
B¢M¢
p (2) 4 I xx WT ¥ WT V
OM¢ OB¢ + B¢M¢ WT +
WT
OM¢ ≥ OG¢ for stability
WT +
≥ WT WT
280
Fundamentals of Fluid Mechanics
W T2 ≥
≥ WT ≥N1 Wa ±
\
N1
$UHFWDQJXODUIORDWLQJERG\PORQJLVPZLGH7KHZDWHUOLQHLVPDERYHWKH ERWWRP,IWKHFHQWUHJUDYLW\LVPIURPWKHERWWRPWKHQLWVPHWDFHQWULFKHLJKWZLOO EHDSSUR[LPDWHO\ D P E P F P G P &LYLO6HUYLFHV
M G B O
1 ¥ 20 ¥ 54 I xx 12 BM P ¥ ¥ V h
2
OB
\
BG BG – OB
± P \ 0HWDFHQWULFKHLJKWMG BM – BG
±
P 2SWLRQD LVFRUUHFW $ZRRGHQSODQN6* P¥P¥PIORDWVLQZDWHUZLWKN1ORDGRQLWZLWK P¥PVXUIDFHKRUL]RQWDO7KHGHSWKRISODQNO\LQJEHORZZDWHUVXUIDFHZLOOEH D P E P F P G P &LYLO6HUYLFHV
Buoyancy and Floatation
281
1.5 kN
:HLJKWRIZRRGHQSODQNDQGORDG :HLJKWRIZDWHUGLVSODFHG 1 ¥ 1 ¥¥¥ 103 ¥ g¥ 103 ¥ 1 ¥ h 103 ¥ g h ¥ 0
P
2SWLRQF LVFRUUHFW $V\PPHWULFDOULJKWFLUFXODUEDVHRIZRRGIORDWVLQIUHVKZDWHUZLWKD[LVYHUWLFDODQG DSH[ GRZQ PRVW 7KH D[LDO KHLJKW RI WKH FHQWUH LV L 7KH VXEPHUJHG SRUWLRQ KDV D KHLJKWhPHDVXUHGXSZDUGVIURPWKHDSH[:KDWZRXOGEHWKHKHLJKWRIWKHFHQWUHRI EXR\DQF\IURPWKHDSH["
D
h
F
h
h h G E
,(6
M A
G B
C L h
O
7KHFHQWUHRIEXR\DQF\LVWKHFHQWURLGRIWKHGLVSODFHGZDWHU7KHGLVSODFHGZDWHULVFRQH OACDQGWKHFHQWULRGRIWKHGLVSODFHGZDWHULV OB
3 ¥h 4
2SWLRQG LVFRUUHFW $ERG\ZHLJKV1DQG1ZKHQZHLJKHGXQGHUVXEPHUJHGFRQGLWLRQVLQOLTXLGVRI UHODWLYHGHQVLWLHVDQGUHVSHFWLYHO\:KDWLVWKHYROXPHRIWKHERG\" D OLWUHV E OLWUHV F OLWUHV G OLWUHV ,(6
282
Fundamentals of Fluid Mechanics
$VSHU$UFKLPHGHV¶SULQFLSOHWKHORVVRIZHLJKWRIERG\LVHTXDOWRWKHZHLJKWRIOLTXLG +HQFH W – V ◊ r1 ◊ g W – V ◊ r2 ◊ g
$OVR
W - V r1 g W - V r2 g
\
L LL
W – V ¥¥¥ 103 W – V ¥¥¥103)
or or
W V
3XWWLQJWKHYDOXHRIWLQHTXDWLRQL 15680 V – V ¥ 800 ¥ V ¥ 10–3 m3
or
0.5 l
OLWUHV 2SWLRQE LVFRUUHFW $ZRRGHQUHFWDQJXODUEORFNRIOHQJWKRIlLVPDGHWRIORDWLQZDWHUZLWKLWVD[LVYHUWLFDO 7KH FHQWUH RI JUDYLW\ RI WKH IORDWLQJ ERG\ LV ¥ l DERYH WKH FHQWUH RI EXR\DQF\ :KDWLVWKH6*RIWKHZRRGHQEORFN" D E F G ,(6
0.5 l
C B
0.15 l
&HQWUHRIEXR\DQFH% IURPERWWRPRIWKHEORFN
l±l l
+HQFHVXEPHUJHGEORFNOHQJWK ¥l ¥ l +HQFHZHLJKWRIZDWHUGLVSODFHG ¥ l ¥ A ¥ r W ¥ g 7KHZHLJKWRIWKHEORFN l ¥ A ¥ rb ¥ g )URPWKHODZRIÀRDWDWLRQZHKDYH l ¥ A ¥ rb ¥ g ¥ l ¥ A ¥ rW ¥ g or rb rW 2SWLRQF LVFRUUHFW
Buoyancy and Floatation
283
$F\OLQGULFDOERG\RIFURVVVHFWLRQDODUHDAKHLJKWHDQGGHQVLW\r SLVLPPHUVHGWR DGHSWKhLQDOLTXLGRIGHQVLW\rDQGWLHGWRWKHERWWRPZLWKDVWULQJ7KHWHQVLRQLQ WKHVWULQJLV D r ◊ g ◊ h ◊ A E r S – r g hA G rh – rS H gA *$7( F r – r S ghA
H
h T
String
)RUFHVDFWLQJGRZQ )RUFHDFWLQJXS T + m ◊J %XR\DQF\IRUFH ZKHUH P PDVV T + (r S ¥ H ¥ A) ¥ g 9ROXPHLPPHUVHG¥ r ¥ g A ¥ h) ¥ r ¥ g T gA(r ◊ h – r S ◊ H) 2SWLRQG LVFRUUHFW $K\GURPHWHUZHLJKV1DQGKDVDVWHPDWWKHXSSHUHQGZKLFKLVF\OLQGULFDODQG PPLQGLDPHWHU,WZLOOIORDWGHHSHULQRLORI6*WKDQLQDOFRKRORI6*E\ KRZPXFKDPRXQW" D PP E PP F PP G PP ,(6 :HKDYHZKHQK\GURPHWHUÀRDWVLQRLO ¥ r ¥ g ¥ A ¥ x1 ZKHUH x1 GHSWKRIÀRDW ¥ 103 ¥ ¥
or x1 P :KHQK\GURPHWHUÀRDWVLQDOFRKROWKHQZHKDYH ¥ 103 ¥¥
or NRZ
p ¥ (3 ¥ 10–3)2 ¥ x1 4
p ¥ (3 ¥ 10–3)2 ¥ x2 ZKHUH x2 GHSWKRIÀRDW 4 x2 P x1 – x2 ± PP
2SWLRQG LVFRUUHFW
284
Fundamentals of Fluid Mechanics
$EDUJHPORQJDQGPZLGHKDVDGUDIWRIPZKHQIORDWLQJZLWKLWVVLGHVLQ YHUWLFDOSRVLWLRQ,ILWVFHQWUHRIJUDYLW\LVPDERYHWKHERWWRPWKHQHDUHVWYDOXH RIPHWDFHQWULFKHLJKWLV D P E P F P G =HUR ,(6 30 m
10 M G 2.5 B A
3m
1.5 m
30 ¥ 103 l ¥ b3 I 12 12 BM ZKHUHI PRPHQWRILQHUWLD GLVSODFHPHQW RI ZDWHU 30 ¥ 10 ¥ 3 30 ¥ 10 ¥ 3 P AB
3 P 2
AM AB + BM P GM AM – AG ± aP
\
2SWLRQF LVFRUUHFW $VROLGF\OLQGHURIPGLDPHWHURIKHLJKWPLVIORDWLQJLQZDWHUZLWKLWVD[LVYHUWLFDO ,I WKH 6* RI WKH F\OLQGHU LV ¿QG LWV PHWDFHQWULF KHLJKW DQG VWDWH ZKHWKHU WKH HTXLOLEULXPLVVWDEOHRUXQVWDEOH 8378 2m
G B 1m
A
'HSWKRIF\OLQGHULQZDWHU
6*¥KHLJKW
2m
B = centre of buoyancy G = centre of gravity
Buoyancy and Floatation
285
¥ 2 P 7KHKHLJKWRIFHQWUHRIEXR\DQF\IURPERWWRPSRLQWA AB
P 2
'LVWDQFHRIFHQWUHRIJUDYLW\IURPA AG \
KHLJKW 2 P 2 2
BG AG – AB ± P
0HWDFHQWULFKHLJKWGM
I – BGZKHUHI 0RPHQWRILQHUWLDDQGV LPPHUVHGYolume V
pd4 64 ± pd2 ¥ 4
4 ± ± ¥
±8 1HJDWLYH VLJQ LQGLFDWHV WKDW WKH PHWDFHQWUH LV EHORZ WKH FHQWUH RI JUDYLW\ +HQFH WKH F\OLQGHUKDVXQVWDEOHHTXLOLEULXP
4.7 QUESTIONS FROM COMPETITIVE EXAMINATIONS $ PHWDOOLF SLHFH ZHLJKV 1 LQ DLU DQG 1 LQ ZDWHU 7KH UHODWLYH GHQVLW\ RI WKH PHWDOOLFSLHFHLVDERXW D E F G ,$6 Density
2SWLRQF LVFRrrHFW
:HLJKW LQ DLU /RVV RI ZHLJKW LQ ZDWHU 80 =4 80 − 60
286
Fundamentals of Fluid Mechanics
Assertion (A): $ ERG\ ZLWK ZLGH UHFWDQJXODU FURVV VHFWLRQ SURYLGHV D KLJKO\ VWDEOH VKDSHLQIORDWQHVV Reason (R): 7KH FHQWUH RI EXR\DQF\ VKLIWV WRZDUGV WKH WLSSHG HQG FRQVLGHUDEO\ WR SURYLGHDULJKWO\FRXSOH D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHDQG5LVIDOVH G $LVIDOVHEXW5LVWUXH ,$6 2SWLRQD LVFRUUHFW 0DWFK /LVW, 1DWXUH RI HTXLOLEULXP RI IORDWLQJ ERG\ ZLWK /LVW,, &RQGLWLRQV IRU HTXLOLEULXP DQGVHOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHVJLYHQEHORZWKHOLVWV
/LVW,1DWXUHRIHTXLOLEULXP /LVW,,&RQGLWLRQIRUHTXLOLEULXP RIIORDWLQJERG\ D 8QVWDEOHHTXLOLEULXP MG E 1DWXUDOHTXLOLEULXP MGLVDERYHG F 6WDEOHHTXLOLEULXP MGLVEHORZG BG >ZKHUHMGDQGBDUHPHWDFHQWUHFHQWUHRIJUDYLW\DQGFHQWUHRIEXR\DQF\ &RGH $ % & D E F G ,$6 2SWLRQE LVFRUUHFW $ IORDW YDOYH RI WKH ³EDOOFORFN´ W\SH LV UHTXLUHG WR FORVH DQ RSHQLQJ RI VXSSO\ SLSH IHHGLQJDFLVWHUQDVVKRZQLQWKH¿JXUH
7KH EXR\DQW IRUFH FB UHTXLUHG WR EH H[HUWHG E\ WKH IORDW WR NHHS WKH YDOYH FORVHG DJDLQVWDSUHVVXUHRI1PPLV D 1 E 1 F 1 G 1 ,$6
Buoyancy and Floatation
287
7DNLQJPRPHQWRIIRUFHVDERXWKLQJHSRLQWRQFORVLQJSRVLWLRQZHKDYH FVî FB × 500 or
or
⎛ π × 102 ⎞ × × FB × 500 ⎜⎝ 4 ⎟⎠ F V
× π 5
1 2SWLRQD LVFRUUHFW $ZHLJKWRIWRQQHVLVPRYHGRYHUDGLVWDQFHRIPDFURVVWKHGHFNRIYHVVHORI WRQQHVIORDWLQJLQZDWHU7KLVPDNHVDSHQGXOXPRIOHQJWKPWRVZLQJWKURXJKD GLVWDQFHRIFPKRUL]RQWDOO\7KHPHWDFHQWULFKHLJKWRIWKHYHVVHOLV D P E P F P G P ,$6 7LOWLQJPRPHQW ULJKWLQJPRPHQW :HLJKWîGLVWDQFH 6KLSZHLJKWî*0îWDQq or
GM
GM
:HLJKW î GLVWDQFH 6KLS ZHLJKW î WDQq (10 × 10)3 × 6 ⎛ × − 2 ⎞ (1000 × 103 ) × ⎜ ⎟⎠ ⎝ 6 × 100 100 × 5
P 2SWLRQF LVFRUUHFW 7KHIUDFWLRQRIWKHYROXPHRIVROLGSLHFHRIPHWDORIUHODWLYHGHQVLW\IORDWLQJDERYH WKHVXUIDFHRIDFRQWDLQHURIPHUFXU\RIUHODWLYHGHQVLW\LV
D E F G If xLVIUDFWLRQVXEPHUJHGWKHQ Vî xV î or x )UDFWLRQDERYHWKHPHUFXU\ ±x ± 2SWLRQF LVFRUUHFW
,$6
288
Fundamentals of Fluid Mechanics
,IDF\OLQGULFDOZRRGHQSROHFPLQGLDPHWHUDQGPLQKHLJKWLVSODFHGLQDYHUWLFDO SRVLWLRQJUDYLW\RIZRRGLV WKHQLWZLOO D )ORDWLQVWDEOHHTXLOLEULXP E )ORDWLQXQVWDEOHHTXLOLEULXP F )ORDWLQQHXWUDOHTXLOLEULXP G 6WDUWPRYLQJKRUL]RQWDOO\ ,$6 GM BM – BG
and
I V
BM
2 2 :HLJKW Sd îî Sd × 1 × h 4 4
h P BG GM
1 h – ± 2 2
d2 ± 16 u
2SWLRQE LVFRUUHFW $QRSHQWDQNFRQWDLQVZDWHUWRDGHSWKRIPDQGRLORYHULWWRDGHSWKRIP,I6* RIWKHRLOLVWKHQWKHSUHVVXUHLQWHQVLW\DWWKHLQWHUIDFHRIWKHWZRIOXLGOD\HUVZLOO EH
D
N P
E
F
N P
G
N P
N P
,$6
3UHVVXUHDWLQWHUIDFHLV
r◊g × h î3îî 1 2SWLRQF LVFRUUHFW &RQVLGHUWKHIROORZLQJVWDWHPHQWVIRUDERG\WRWDOO\LPPHUVHGLQDIOXLG , 7KHZHLJKWDFWVWKURXJKWKHFHQWUHRIJUDYLW\RIWKHERG\ ,, 7KHXSZDUGWKUXVWDFWVWKURXJKWKHFHQWURLGRIWKHERG\ 2IWKHVHVWDWHPHQWV² D %RWK,DQG,,DUHWUXH E ,LVWUXHEXW,,LVIDOVH F ,LVIDOVHEXW,,LVWUXH G 1HLWKHU,QRU,,LVWUXH ,$6 2SWLRQE LVFRUUHFW &RQVLGHUWKHIROORZLQJVWDWHPHQWVUHJDUGLQJVWDELOLVLQJRIIORDWLQJERGLHV ,I RVFLOODWLRQ LV VPDOO WKH SRVLWLRQ RI WKH PHWDFHQWUH RI D IORDWLQJ ERG\ ZLOO QRW DOWHUZKDWHYHUWKHD[LVRIURWDWLRQ )RU D IORDWLQJ YHVVHO FRQWDLQLQJ OLTXLG FDUJR WKH VWDELOLW\ LV UHGXFHG GXH WR WKH PRYHPHQWVRIJUDYLW\DQGFHQWUHRIEXR\DQF\
Buoyancy and Floatation
289
,QZDUVKLSVDQGUDFLQJERDWVWKHPHWDFHQWUHKHLJKWZLOOKDYHWRVPDOOWRUHGXFH UROOLQJ 2IWKHVHVWDWHPHQWV² D DQGDUHFRUUHFW E DQGDUHFRUUHFW F DORQHLVFRUUHFW G DORQHLVFRUUHFW ,$6 2SWLRQF LVFRUUHFW Assertion (A): 7RUHGXFHWKHUROOLQJPRWLRQRIDVKLSWKHPHWDFHQWUHKHLJKWVKRXOGEH ORZ Reason (R): 'HFUHDVHLQWKHPHWDFHQWUHKHLJKWLQFUHDVHVWKHULJKWLQJFRXSOH D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,$6 2SWLRQF LVFRUUHFW :KDWLVEXR\DQWIRUFH" D /DWHUDOIRUFHDFWLQJRQDVXEPHUJHGERG\ E 5HVXOWDQWIRUFHDFWLQJRQDVXEPHUJHGERG\ F *UDYLWDWLRQDOIRUFHDFWLQJRQDVXEPHUJHGERG\ G 5HVXOWDQWK\GURVWDWLFIRUFHRQDERG\GXHWRIOXLGVXUURXQGLQJLW ,(6 2SWLRQG LVFRUUHFW Assertion (A): 7KH EXR\DQW IRUFH IRU D IORDWLQJ ERG\ SDVVHV WKURXJK WKH FHQWURLG RI WKHGLVSODFHGYROXPH Reason (R): 7KHIRUFHRIEXR\DQF\LVDYHUWLFDOIRUFHDQGHTXDOWRWKHZHLJKWRIWKH IOXLGGLVSODFHG D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 2SWLRQD LVFRUUHFW :KLFKRQHRIIROORZLQJLVWKHFRQGLWLRQIRUVWDEOHHTXLOLEULXPIRUDIORDWLQJERG\" D 7KHPHWDFHQWUHFRLQFLGHVZLWKWKHFHQWUHRIJUDYLW\ E 7KHPHWDFHQWUHLVEHORZWKHFHQWUHRIJUDYLW\ F 7KHPHWDFHQWUHLVDERYHWKHFHQWUHRIJUDYLW\ G 7KHFHQWUHRIEXR\DQF\LVEHORZWKHFHQWUHRIJUDYLW\ ,(6 2SWLRQF LVFRUUHFW
290
Fundamentals of Fluid Mechanics
5HVXOWDQWSUHVVXUHRIDOLTXLGLQFDVHRIDQLPPHUVHGERG\DFWVWKURXJKZKLFKRQHRI WKHIROORZLQJ" D &HQWUHRIJUDYLW\ E &HQWUHRISUHVVXUH F 0HWDFHQWUH G &HQWUHRIEXR\DQF\ ,(6 2SWLRQG LVFRUUHFW Assertion (A): ,IDERDWEXLOWZLWKVKHHWPHWDORQZRRGHQIUDPHKDVDQDYHUDJHGHQVLW\ ZKLFK LV JUHDWHU WKDQ WKDW RI ZDWHU WKHQ WKH ERDW FDQ IORDW LQ ZDWHU ZLWK LWV KROORZ IDFHXSZDUGVEXWZLWKVLQNRQFHLWRYHUWXUQV Reason (R): %RX\DQWIRUFHDOZD\VDFWVLQWKHXSZDUGGLUHFWLRQ D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 2SWLRQE LVFRUUHFW $K\GURPHWHUZHLJKWV1DQGKDVDVWHPDWWKHXSSHUHQGZKLFKLVF\OLQGULFDODQG PPLQGLDPHWHU,WZLOOIORDWGHHSHULQRLORI6*WKDQLQDOFRKRORI6*E\ KRZPXFKDPRXQW" D PP E PP F PP G PP ,(6 W ra × Va × g ro × Vo × g 1 Vo
m3 × 3 × g
Va
m3 × 3 × g
Vo – Va
103 × g
⎞ ⎛ − ⎜⎝ ⎟ ⎠
× × g × × 3
or
× π × 2 × h 3 × g × × 4
or
h î–3 PP
OSWLRQG LVFRUUHFW
Buoyancy and Floatation
291
$ZRRGHQUHFWDQJXODUEORFNRIOHQJWKlLVPDGHWRIORDWLQZDWHUZLWKLWVD[LVYHUWLFDO 7KH&*RIIORDWLQJERG\LVîlDERYHWKHFHQWUHRIEXR\DQF\:KDWLVWKH6*RI WKHZRRGHQEORFN" D E F G ,(6 B 0.5 l
Ñ
CG 0.5 l
:HLJKWW l × A) × rb × g l × A) × rw × g or rb rw or (SG)b 2SWLRQE LVFRUUHFW :KLFKRIWKHIROORZLQJVWDWHPHQWLVWUXH" D )RUDQLGHDOIOXLGP U FRQVWDQWDQG. E $ IORDWLQJ ERG\ LV VWDEOH XQVWDEOH RU LQ QHXWUDO HTXLOLEULXP DFFRUGLQJ WR WKH PHWDFHQWULFKHLJKWLV]HURSRVLWLYHRUQHJDWLYH F 7KHH[DFWDQDO\VLVRIYLVFRXVIORZSUREOHPFDQEHGRQHE\(XOHU¶VHTXDWLRQ G 7KHPRVWHFRQRPLFDOGLDPHWHURISLSHLVWKHRQHIRUZKLFKWKHDQQXDO¿[HGFRVW WRRYHUFRPHIULFWLRQ DUHPLQLPXP ,(6 2SWLRQG LVFRUUHFW ,IBLVWKHFHQWUHRIEXR\DQF\GLVWKH&*DQGMWKHPHWDFHQWUHRIDIORDWLQJERG\ WKHQWKHERG\ZLOOEHLQVWDEOHHTXLOLEULXPLI D MG E MLVEHORZG F BG G MLVDERYHG ,(6 2SWLRQG LVFRUUHFW )RUIORDWLQJERGLHVKRZLVWKHPHWDFHQWULFUDGLXVLVGH¿QHG" D 7KHGLVWDQFHEHWZHHQ&*DQGWKHPHWDFHQWUH E 6HFRQGPRYHPHQWRIDUHDRISODQHRIIORDWDWLRQDERXWFHQWURLGD[LVSHUSHQGLFXODU WRWKHSODQHRIURWDWLRQLPPHUVHGYROXPH F 7KHGLVWDQFHEHWZHHQ&*DQGFHQWUHRIEXR\DQF\ G 0RPHQW RI LQHUWLD RI WKH ERG\ DERXW LWV D[LV RI URWDWLRQLPPHUVHG YROXPH ,(6 2SWLRQD LVFRUUHFW 7KHPHWDFHQWULFKHLJKWRIDSDVVHQJHUVKLSLVNHSWORZHUWKDQWKDWRIDQDYDORUFDUJR VKLSEHFDXVH
292
Fundamentals of Fluid Mechanics
D $SSDUHQWZHLJKWZLOOLQFUHDVH E 2WKHUZLVHLWZLOOEHLQQHXWUDOHTXLOLEULXP F ,WZLOOGHFUHDVHWKHIUHTXHQF\RIUROOLQJ G 2WKHUZLVHLWZLOOVLQNDQGEHWRWDOO\LPPHUVHG ,(6 2SWLRQF LVFRUUHFW &RQVLGHUWKHIROORZLQJVWDWHPHQWV 7KHPHWDFHQWULFKHLJKWRIDIORDWLQJERG\GHSHQGV² 'LUHFWO\RQWKHVKDSHRILWVZDWHUOLQHDUHD 2QWKHYROXPHRIOLTXLGGLVSODFHGE\WKHERG\ 2QWKHGLVWDQFHEHWZHHQWKHPHWDFHQWUHDQGWKHFHQWUHRIJUDYLW\ 2QWKHVHFRQGPRPHQWRIZDWHUOLQHDUHD 2IWKHVHVWDWHPHQWVFRUUHFWDUH D DQG E DQG F DQG G DQG ,(6 2SWLRQE LVFRUUHFW $ F\OLQGULFDO YHVVHO KDYLQJ LWV KHLJKW HTXDO WR LWV GLDPHWHU LV ¿OOHG ZLWK OLTXLG DQG PRYHG KRUL]RQWDOO\ DW DFFHOHUDWLRQ HTXDO WR DFFHOHUDWLRQ GXH WR JUDYLW\ WKH UDWLR RI WKHOLTXLGOHIWLQWKHYHVVHOWRWKHOLTXLGDWVWDWLFHTXLOLEULXPFRQGLWLRQLV D E F ,(6
g
q
d
d
tan q
DFFHOHUDWLRQ a g = =1 g g
or
q
,WPHDQVZDWHUZLOOVSLOORXW OSWLRQF LVFRUUHFW
Buoyancy and Floatation
293
+RZLVWKHPHWDFHQWULFKHLJKWGMH[SUHVVHG" D GM = BG – F GM =
I V
E GM =
I − BG V
V I
G GM = BG −
V I
ZKHUH I 0RPHQWRILQHUWLDRIWKHSODQRIWKHIORDWLQJERG\DWWKHZDWHUVXUIDFH V 9ROXPHRIWKHERG\VXEPHUJHGLQZDWHU BG 'LVWDQFHEHWZHHQ&*DQGFHQWUHRIEXR\DQF\ ,(6 2SWLRQF LVFRUUHFW 6WDELOLW\RIDIORDWLQJERG\FDQEHLPSURYHGE\ 0DNLQJLWVZLGWKODUJH 0DNLQJWKHGUDIWVPDOO .HHSLQJWKHFHQWUHRIPDVVORZ 5HGXFLQJWKHGHQVLW\ 6HOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHJLYHQEHORZ D DQG E DQGRQO\ F DQGRQO\ G DQGRQO\ ,(6 2SWLRQE LVFRUUHFW I ZKHUHVd 7KHGLVWDQFHIURPWKHFHQWUHRIEXR\DQF\WRWKHPHWDFHQWUHLVJLYHQE\ Vd LVWKHYROXPHRIIOXLGGLVSODFHG:KDWGRHVIUHSUHVHQW" D 0RPHQWRILQHUWLDRIDKRUL]RQWDOVHFWLRQRIWKHERG\WDNHQDWWKHVXUIDFHRIWKH ERG\WDNHQDWWKHVXUIDFHRIWKHIOXLG E 0RPHQWRILQHUWLDDERXWLWVYHUWLFDOFHQWURLGDOD[LV F 3RODUPRPHQWRILQHUWLD G 0RPHQWRILQHUWLDDERXWLWVKRUL]RQWDOFRQWURLGDOD[LV,(6 2SWLRQD LVFRUUHFW $FPORQJSULVPDWLFKRPRJHQHRXVVROLGIORDWVLQZDWHUZLWKLWVVROLGIORDWVLQZDWHU ZLWKLWVD[LVYHUWLFDODQGFPSURMHFWLQJDERYHWKHZDWHUVXUIDFH,IWKHVDPHVROLG IORDWVLQVRPHRLOZLWKD[LVYHUWLFDODQGFPSURMHFWLQJDERYHWKHOLTXLGVXUIDFHZKDW LVWKH6*RIWKHRLO" D E F G ,(6 :HLJKW îa × Ss × g îa × 1 × g îa × So × g \
S S
15 25
294
Fundamentals of Fluid Mechanics
and
S o
15 = 25
2SWLRQF LVFRUUHFW &RQVLGHUWKHIROORZLQJVWDWHPHQWV)LOOLQJXSDSDUWRIWKHHPSW\KROGRIDVKLSZLWK EDOODVWVZLOO 5HGXFHWKHPHWDFHQWULFKHLJKW /RZHUWKHSRVLWLRQRIWKH&* (OHYDWHWKHSRVLWLRQRI&* (OHYDWHWKHFHQWUHRIEXR\DQF\RIWKHVHVWDWHPHQWV D DQGDUHFRUUHFW E DQGDUHFRUUHFW F DQGDUHFRUUHFW G DQGDUHFRUUHFW ,(6 2SWLRQG LVFRUUHFW :KLFKRQHRIWKHIORZLQJVWDWHPHQWVLVFRUUHFW" D )RUDIORDWLQJERG\WKHVWDEOHHTXLOLEULXPFRQGLWLRQH[LVWVZKHQSRVLWLRQRIWKH PHWDFHQWUHUHPDLQVKLJKHUWKDQWKH&*RIERG\ E )RUDIORDWLQJERG\WKHVWDEOHHTXLOLEULXPFRQGLWLRQH[LVWVZKHQSRVLWLRQRIWKH PHWDFHQWUHUHPDLQVORZHUWKDQWKH&*RIWKHERG\ F )RUDIORDWLQJERG\WKHQHXWUDOHTXLOLEULXPFRQGLWLRQH[LVWVZKHQSRVLWLRQRIWKH PHWDFHQWUHUHPDLQVKLJKHUWKDQWKH&*RIWKHERG\ G )RUDIORDWLQJERG\WKHXQVWDEOHHTXLOLEULXPFRQGLWLRQH[LVWVZKHQSRVLWLRQRIWKH PHWDFHQWUHUHPDLQVKLJKHUWKDQ&*RIWKHERG\ ,(6 2SWLRQD LVFRUUHFW $SLHFHRIPHWDORI6*IORDWVLQPHUFXU\RI6*:KDWIUDFWLRQRILWVYROXPHLV XQGHUPHUFXU\" D E F G IXOO\LPPHUVHG ,(6 :HLJKW SS × V S+J × x × V
or
x
Ss = S +J
2SWLRQF LVFRUUHFW 7KHFHQWUHRISUHVVXUHRIDSODQHVXEPHUJHGVXUIDFH D LV D SRLQW RQ WKH VXEPHUJHG DUHD DW ZKLFK WKH UHVXOWDQW K\GURVWDWLF IRUFH LV VXSSRVHGWRDFW E VKRXOGDOZD\VFRLQFLGHZLWKLQWKHFHQWUHRIVXEPHUJHGDUHD F VKRXOGEHDWWKHFHQWUHRIJUDYLW\RIWKHSODQHVXUIDFH G LVDOZD\VEHORZWKHFHQWURLGRIDUHD ,(6
Buoyancy and Floatation
295
$VK\GURVWDWLFSUHVVXUHZLWKGHSWKNHHSRQLQFUHDVLQJWKHFHQWUHRISUHVVXUHLVDOZD\V EHORZWKHFHQWURLGRIDUHD
2SWLRQG LVFRUUHFW
Assertion (A): $FLUFXODUSODWHLVLPPHUVHGLQDOLTXLGZLWKLWVSHULSKHU\WRXFKLQJWKH IUHH VXUIDFH DQG WKH SODQH PDNHV DQ DQJOH µq¶ ZLWK WKH IUHH VXUIDFH :LWK GL൵HUHQW YDOXHVRIµq¶WKHSRVLWLRQRIWKHFHQWUHRISUHVVXUHZLOOEHGL൵HUHQW Reason (R): 6LQFHWKHFHQWUHRISUHVVXUHLVGHSHQGHQWRQVHFRQGPRPHQWRIDUHDZLWK GL൵HUHQWYDOXHVRIqVHFRQGPRPHQWRIDUHDIRUWKHFLUFXODUSODWHZLOOFKDQJH
D %RWKADQGRDUHLQGLYLGXDOO\WUXHDQGRLVWKHFRUUHFWH[SODQDWLRQRIA
E %RWKADQGRDUHLQGLYLGXDOO\WUXHEXWRLVQRWWKHFRUUHFWH[SODQDWLRQRIA
F ALVWUXHEXWRLVIDOVH
G ALVIDOVHEXWRLVWUXH
,(6
2SWLRQF LVFRUUHFW
$QRSHQUHFWDQJXODUER[RIEDVHPîPFRQWDLQVDOLTXLGRI6*RIXSWRDKHLJKW RIP,IWKHER[LVLPSDUWHGDYHUWLFDOO\XSZDUGDFFHOHUDWLRQRIPV:KDWZLOO EHWKHSUHVVXUHRQWKHEDVHRIWKHWDQN"
D N3D
E N3D
F N3D
G N3D
,(&
P h × r(g + a) îî3
N3D 2SWLRQG LVFRUUHFW
Assertion (A): )RUDYHUWLFDOO\LPPHUVHGVXUIDFHWKHGHSWKRIWKHFHQWUHRISUHVVXUH LVLQGHSHQGHQWRIWKHGHQVLW\RIOLTXLG Reason (R): &HQWUHRISUHVVXUHOLHVDERYHWKHFHQWUHRIDUHDRIWKHLPPHUVHGVXUIDFH
D %RWKADQGRDUHLQGLYLGXDOO\WUXHDQGRLVWKHFRUUHFWH[SODQDWLRQRIA
E %RWKADQGRDUHLQGLYLGXDOO\WUXHEXWRLVQRWWKHFRUUHFWH[SODQDWLRQRIA
F ALVWUXHEXWRLVIDOVH
G ALVIDOVHEXWRLVWUXH 2SWLRQF LVFRUUHFW
,(6
$ EDUJH P ORQJ DQG P ZLGH KDV GUDIW RI P ZKHQ IORDWLQJ ZLWK LWV VLGHV LQ YHUWLFDOSRVLWLRQ,ILWV&*LVPDERYHWKHERWWRPWKHQHDUHVWYDOXHRIPHWDFHQWULF KHLJKWLV
D P
E P
F P
G =HUR
,(6
Fundamentals of Fluid Mechanics
10
296
∇
30 G
Draft = 3 mm
B
2.5 m o
1.5 m
I PRPHQWRILQHUWLD 3
l×w 12
30 × 10 12
3
P2 V GLVSODFHGZDWHU DUHDîGUDIW
îî P3 BM
I 2500 = = P V 900
GM OM – OG
OB + BM) – OG
5 + ±
8 m 2SWLRQF LVFRUUHFW 0DWFK/LVW±,ZLWK/LVW,,DQGVHOHFWWKHFRUUHFWDQVZHU /LVW,6WDELOLW\ /LVW,,&RQGLWLRQV D 6WDEOHHTXLOLEULXPRI &HQWUHRIEXR\DQF\EHORZWKH&* DIORDWLQJERG\ E 6WDEOHHTXLOLEULXPRI 0HWDFHQWUHDERYHWKH&* DVXEPHUJHGERG\ F 8QVWDEOHHTXLOLEULXPRID &HQWUHRIEXR\DQF\DERYHWKH&* VXEPHUJHGERG\ G 8QVWDEOHHTXLOLEULXPRI 0HWDFHQWUHEHORZWKH&* DVXEPHUJHGERG\ &RGH $ % & ' D E
Buoyancy and Floatation
297
F G ,(6 2SWLRQE LVFRUUHFW ,IDSLHFHRIPHWDOKDYLQJ6*RILVSODFHGLQPHUFXU\RI6*WKHQ D 7KHPHWDOSLHFHZLOOVLQNWRERWWRP E 7KHPHWDOSLHFHZLOOVLPSO\IORDWRYHUWKHPHUFXU\ZLWKQRLPPHUVLRQ F 7KHPHWDOSLHFHZLOOEHLPPHUVHGLQPHUFXU\E\KDOI G 7KHZKROHRIPHWDOSLHFHZLOOEHLPPHUVHGZLWKWRSVXUIDFHMXVWDWPHUFXU\OHYHO ,(6 2SWLRQG LVFRUUHFW $EXFNHWRIZDWHUKDQJVZLWKDVSULQJEDODQFH,IDQLURQSLHFHLVVXVSHQGHGLQWRZDWHU IURPDQRWKHUVXSSRUWZLWKRXWWRXFKLQJWKHVLGHVRIWKHEXFNHWWKHVSULQJEDODQFHZLOO VKRZ D $QLQFUHDVHGUHDGLQJ E $GHFUHDVHGUHDGLQJ F 1RFKDQJHLQUHDGLQJ G ,QFUHDVHGRUGHFUHDVHGUHDGLQJGHSHQGLQJXSRQWKHGHSWKRILPPHUVLRQ ,(6 2SWLRQF LVFRUUHFW $F\OLQGULFDOSLHFHRIFRUNZHLJKLQJWIORDWVZLWKLWVD[LVLQKRUL]RQWDOSRVLWLRQLQD OLTXLGRIUHODWLYHKXPLGLW\ %\DQFKRULQJWKHERWWRPWKHFRUNSLHFHLVPDGHWRIORDWDWQHXWUDOHTXLOLEULXPSRVLWLRQ ZLWKLWVD[LVYHUWLFDO7KHYHUWLFDOO\GRZQZDUGIRUFHH[HUWHGE\DQFKRULQJZRXOGEH D W E W F W G W ,(6
&RUNZLOOÀRDWZLWK
3 YROXPHXSWKHVXUIDFHDVLWLVÀRDWLQJLQOLTXLGZKLFKLVIRXUWLPHV 4
heDYLHU7RPDNHLWWRÀRDWIXOO\VXEPHUJHGLWVZHLJKWKDVWREH:+HQFHYHUWLFDOO\GRZQ DQFKRULQJSXOOLVW – W W 2SWLRQG LVFRUUHFW 0DWFK /LVW, ZLWK /LVW,, UHJDUGLQJ D ERG\ SDUWO\ VXEPHUJHG LQ D OLTXLG DQG VHOHFW DQVZHUXVLQJWKHFRGHVJLYHQEHORZ /LVW, /LVW,, D &HQWUHRISUHVVXUH 3RLQWRIDSSOLFDWLRQRIWKHZHLJKWRI GLVSODFHGOLTXLG E &HQWUHRIJUDYLW\ 3RLQWDERXWZKLFKWKHERG\ VWDUWVRVFLOODWLQJZKHQWLOWHGE\D VPDOODQJOH
298
Fundamentals of Fluid Mechanics
F &HQWUHRIEXR\DQF\ 3RLQWRIDSSOLFDWLRQRIK\GURVWDWLF SUHVVXUHIRUFH G 0HWDFHQWUHWKHERG\ 3RLQWRIDSSOLFDWLRQRIWKHZHLJKWRI &RGH $ % & ' D E F G ,(6 2SWLRQF LVFRUUHFW $ODUJHPHWDFHQWULFKHLJKWLQDYHVVHO D ,PSURYHVVWDELOLW\DQGPDNHVSHULRGLFWLPHWRRVFLOODWLRQORQJHU E ,PSDLUVVWDELOLW\DQGPDNHVSHULRGLFWLPHRIRVFLOODWLRQVKRUWHU F +DVQRH൵HFWRIVWDELOLW\RUWKHSHULRGLFWLPHRIRVFLOODWLRQ G ,PSURYHVVWDELOLW\DQGPDNHVWKHSHULRGLFWLPHRIRVFLOODWLRQVKRUWHU ,(6 2SWLRQG LVFRUUHFW 7KH OHDVW UDGLXV RI J\UDWLRQ RI D VKLS LV P DQG WKH PHWDFHQWULF KHLJKW LV PP 7KHWLPHSHULRGRIRVFLOODWLRQRIWKHVKLSLV D 6 E 6 F 6 G 6 ,(6 T
2π
2π
k2 (GM ) ⋅ g 92 ×
6 2SWLRQF LVFRUUHFW :KDWDUHWKHIRUFHVWKDWLQIOXHQFHWKHSUREOHPRIIOXLGVWDWLF" D *UDYLW\DQGYLVFRXVIRUFH E *UDYLW\DQGSUHVVXUHIRUFH F 9LVFRXVDQGVXUIDFHWHQVLRQIRUFH G *UDYLW\DQGVXUIDFHWHQVLRQ ,(6 2SWLRQE LVFRUUHFW %HVLGHVLQIORDWDWLRQWREHLQVWDEOHHTXLOLEULXPWKHQHFHVVDU\DQGVX൶FLHQWFRQGLWLRQ LVWKDWWKHFHQWUHRIJUDYLW\LVORFDWHGEHORZWKH D 0HWDFHQWUH E &HQWUHRISUHVVXUH F &HQWUHRIJUDYLW\ G &HQWUHRIEXR\DQF\ *$7( 2SWLRQD LVFRUUHFW
Buoyancy and Floatation
299
$QREMHFWZHLJKWV1ZKHQIXOO\LPPHUVHGLQZDWHUDQGZHLJKV1ZKHQIXOO\ LPPHUVHGLQRLORI6*7KHYROXPHRIWKHREMHFWP LVPRVWQHDUO\ D E F G
W – V ◊ Sw
W – V ◊ Sw
V(Sw±Sw)
RU
V × 1 × 103 × gî
or
V
50 ×
P3
OSWLRQE LVFRUUHFW :KHQDXQLIRUPIODWSODWHLVSODFHGKRUL]RQWDOO\DWDGHSWKRIhDVVKRZQLQ¿JXUHD 7KHPDJQLWXGHRIWKHIRUFHH[HUWHGE\WKHIOXLGRQWKHSODWHLV1:KHQWKHSODWH LV WLOWHG DERXW LWV FHQWUH RI JUDYLW\ WKURXJK DV VKRZQ LQ E WKH PDJQLWXGH N1 H[HUWHGE\WKHIOXLGRQWKHSODWHLVPRVWQHDUO\ Ñ
Ñ h
h 30° (b)
(a)
D VLQ F WDQ
E FRV G FoUFH ρ⋅ g ⋅ A ⋅ x Zhere x GHSWKRI&*RIWKHSODWH
As x UHPDLQVVDPHLQERWKWKH¿JXUHVHTXDOWR ‘h’KHQFHIRUFHZLOOQRWFKDQJHDQGUHPDLQ N1 2SWLRQG LVFRUUHFW
Chapter
5
FLUID MASSES SUBJECTED TO ACCELERATION
KEYWORDS AND TOPICS
STATIC BODY RELATIVE EQUILIBRIUM TRANSLATION ACCELERATION HORIZONTAL ACCELERATION VERTICAL ACCELERATION INCLINED FREE SURFACE CONSTANT PRESSURE LINE
D’ALEMBERT’S PRINCIPLE ROTATIONAL ACCELERATION INCLINED ACCELERATION PARABOLOID FREE SURFACE FORCED VORTEX VERTEX AND RISE OF LIQUID IN VORTEX ROTATION OF CLOSED VESSEL
5.1 INTRODUCTION :KHQ D FRQWDLQHU FRQWDLQLQJ D ÀXLG LV PDGH WR PRYH ZLWK D FRQVWDQW DFFHOHUDWLRQ WKHQ WKH OLTXLG SDUWLFOHV LQLWLDOO\ ZLOO PRYH UHODWLYH WR HDFK RWKHU DQG DIWHU VRPH WLPH WKHUH ZLOO QRW EHDQ\UHODWLYHPRWLRQEHWZHHQWKHOLTXLGSDUWLFOHVDQGWKHZDOOVRIWKHFRQWDLQHU7KHOLTXLG ZLOO WDNH XS D QHZ SRVLWLRQ XQGHU WKH H൵HFW RI DFFHOHUDWLRQ LPSDUWHG WR WKH FRQWDLQHU $ FRQWDLQHU FRQWDLQLQJ D ÀXLG PD\ EH VXEMHFWHG WR L WUDQVODWRU\ DFFHOHUDWLRQ LQ KRUL]RQWDO RU YHUWLFDO GLUHFWLRQ DQG LL URWDWLRQDO PRWLRQ DW FRQVWDQW DFFHOHUDWLRQ G¶$OHPEHUW¶V SULQFLSOH KHOSV LQ FKDQJLQJ WKH G\QDPLF HTXLOLEULXP RI ÀXLG PDVV VXEMHFWHG WR DFFHOHUDWLRQ LQWR VWDWLF HTXLOLEULXP 7KH FRQGLWLRQV IRU WKH UHODWLYH HTXLOLEULXP RI D OLTXLG PDVV VXEMHFWHG WR DFFHOHUDWLRQ DUH L QR VKHDU VWUHVV LQ OLTXLG LL QR PRWLRQ EHWZHHQ ÀXLG SDUWLFOHV DQG LLL QRPRWLRQEHWZHHQWKHÀXLGDQGLWVFRQWDLQHU
5.2 DYNAMIC EQUILIBRIUM What do you understand by a static body?
$VWDWLFERG\LVDERG\ZKLFKGRHVQRWPRYH,QRWKHUZRUGVWKHERG\LVDWUHVW
Fluid Masses Subjected to Acceleration
301
Is anybody at rest in the universe? ,QWKHXQLYHUVHQRQHLVDWUHVWRULQVWDWLFVWDWHDVXQLYHUVHLVPRYLQJDQGHYHU\ERG\LQLW LVPRYLQJ How do we say that a body is at rest or in static state? $ERG\RQWKHHDUWKLVVDLGWREHDWUHVWRULQVWDWLFVWDWHZKHQLWGRHVQRWFKDQJHLWVSRVLWLRQ ZLWK UHVSHFW WR RWKHU ERGLHV H[LVWLQJ RQ WKH HDUWK ,W FDQ EH DSSUHFLDWHG WKDW WKH ERG\ DW UHVWRULQVWDWLFFRQGLWLRQLVLQIDFWLVPRYLQJZLWKWKHVDPHYHORFLW\DVWKDWRIWKHHDUWK 7KHUHIRUHZHDUHFRQVLGHULQJWKHERG\WREHDWUHVWRULQVWDWLFVWDWHUHODWLYHWRWKHPRYHPHQW RIWKHHDUWK What do you understand by relative or dynamic equilibrium in moving fluid mass? ,IWKHÀXLGSDUWLFOHVLQWKHPRYLQJÀXLGPDVVGRQRWPRYHUHODWLYHWRHDFKRWKHUWKHQWKH\ DUHVDLGWREHLQVWDWLFSRVLWLRQDQGLQWKLVVLWXDWLRQG\QDPLFRUUHODWLYHHTXLOLEULXPH[LVWV EHWZHHQWKHÀXLGSDUWLFOHVXQGHUWKHDFWLRQRIDFFHOHUDWLQJIRUFH ,IDFRQWDLQHUFRQWDLQLQJDOLTXLGLVPDGHWRPRYHZLWKDFRQVWDQWDFFHOHUDWLRQWKHOLTXLG SDUWLFOHVLQLWLDOO\ZLOOPRYHUHODWLYHWRHDFKRWKHUDQGDIWHUVRPHWLPHWKHUHZLOOQRWEHDQ\ UHODWLYHPRWLRQEHWZHHQWKHOLTXLGSDUWLFOHVDQGWKHZDOOVRIWKHFRQWDLQHU7KHOLTXLGZLOO WDNHXSDQHZSRVLWLRQXQGHUWKHH൵HFWRIDFFHOHUDWLRQLPSDUWHGWRWKHFRQWDLQHU7KHHQWLUH OLTXLGPDVVPRYHVDVDVLQJOHXQLW7KHOLTXLGDWWDLQVVWDWLFHTXLOLEULXPLQDQHZSRVLWLRQ UHODWLYHWRWKHFRQWDLQHUDQGODZRIK\GURVWDWLFFDQEHDSSOLHGWR¿QGRXWWKHOLTXLGSUHVVXUH
5.3 TRANSLATIONAL ACCELERATION How can a fluid be subjected to horizontal translational acceleration? 7KH ÀXLG FDQ EH VXEMHFWHG WR WUDQVODWLRQDO DFFHOHUDWLRQ ZLWKRXW UHODWLYH PRWLRQ EHWZHHQ WKHÀXLGSDUWLFOHVE\PRYLQJWKHYHVVHOFRQWDLQLQJWKHÀXLGZLWKKRUL]RQWDODFFHOHUDWLRQ$ ÀXLGLQYHVVHOWUDQVSRUWHGE\DYHKLFOHLVVXEMHFWHGWRKRUL]RQWDOWUDQVODWLRQDODFFHOHUDWLRQ DVVKRZQLQWKH¿JXUH Fluid is sloped
Acceleration =a
Vehicle of Rest
Vehicle While Accelerating
How can a fluid mass be subjected to vertical translational acceleration? 7KH ÀXLG FDQ EH VXEMHFWHG WR YHUWLFDO WUDQVODWLRQDO DFFHOHUDWLRQ ZLWKRXW UHODWLYH PRWLRQ EHWZHHQWKHÀXLGSDUWLFOHVE\PRYLQJWKHYHVVHOFRQWDLQLQJWKHÀXLGZLWKYHUWLFDODFFHOHUDWLRQ $YHVVHORIÀXLGNHSWLQDODXQFKHGURFNHWLVVXEMHFWHGWRYHUWLFDODFFHOHUDWLRQ
302
Fundamentals of Fluid Mechanics
Vessel with fluid Fluid remains horizontal
Acceleration = a
Rocket Before Launch
Rocket After Launch
5.4 ROTATIONAL ACCELERATION How is a fluid subjected to rotational acceleration? 7KH ÀXLG FDQ EH VXEMHFWHG WR URWDWLRQDO DFFHOHUDWLRQ ZLWKRXW UHODWLYH PRWLRQ EHWZHHQ WKH ÀXLGSDUWLFOHVE\URWDWLQJWKHYHVVHOFRQWDLQLQJWKHÀXLGE\H[WHUQDODJHQF\
Fluid at Rest
Fluid Subjected Tp Rotational Acceleration
'HSHQGLQJXSRQWKHW\SHRIDFFHOHUDWLRQZKDWDUHWKHGL൵HUHQWHTXLOLEULXPVZKLFKD fluid may have? 7KHÀXLGFDQKDYHWKHIROORZLQJUHODWLYHHTXLOLEULXPV D +RUL]RQWDOUHODWLYHHTXLOLEULXP E 9HUWLFDOUHODWLYHHTXLOLEULXP F 5RWDWLRQDOUHODWLYHHTXLOLEULXP What are the conditions for the relative equilibrium? 7KH FRQGLWLRQV IRU WKH UHODWLYH HTXLOLEULXP DUH WKH ÀXLG LV IUHH IURP VKHDU IRUFH QRPRWLRQEHWZHHQWKHÀXLGSDUWLFOHVDQG QRPRWLRQEHWZHHQWKHÀXLGDQGWKHYHVVHO FRQWDLQLQJÀXLG
5.5 D’ALEMBERT’S PRINCIPLE What is D’Alembert’s principle? '¶$OHPEHUW¶VSULQFLSOHVWDWHVWKDWDPRYLQJÀXLGPDVVPD\EHEURXJKWWRDVWDWLFHTXLOLEULXP SRVLWLRQ E\ DSSO\LQJ DQ LPDJLQDU\ LQHUWLD IRUFH RI WKH VDPH PDJQLWXGH DV WKDW RI WKH DFFHOHUDWLQJIRUFHEXWLQWKHRSSRVLWHGLUHFWLRQ
Fluid Masses Subjected to Acceleration
303
What is achieved by applying D’Alembert’s principle? '¶$OHPEHUW¶VSULQFLSOHKHOSVLQFKDQJLQJWKHG\QDPLFHTXLOLEULXPRIÀXLGPDVVLQWRDVWDWLF HTXLOLEULXP$QLPDJLQDU\LQHUWLDIRUFHRIVDPHPDJQLWXGHEXWRSSRVLWHLQGLUHFWLRQLQSODFH RIDFWXDODFFHOHUDWLRQIRUFHLVDSSOLHGWRWKHPRYLQJÀXLGVRWKDWLWFDQEHEURXJKWWRVWDWLF HTXLOLEULXP &RQVLGHUDWDQN¿OOHGZLWKOLTXLGZLWKPDVVm LVPRYLQJZLWKXQLIRUPDFFHOHUDWLRQa IURPULJKWWROHIWDVVKRZQLQ¿JXUH7KHDFFHOHUDWLQJIRUFHZLOOEHHTXDOWRM ¥ aDFWLQJ IURP ULJKW WR OHIW $FFRUGLQJ WR '¶$OHPEHUW¶V SULQFLSOH WKLV DFFHOHUDWLQJ IRUFH LV WR EH UHSODFHGE\WKHLQHUWLDIRUFHRIPDJQLWXGH M ¥ aEXWLWZLOODFWIURPOHIWWRULJKW
D’ Alembert’s F = m.a
Inertia force = m.a
Principle
Application of D’ Alembert’s Principle
5.6 HORIZONTAL ACCELERATION What happens to a liquid when it is subjected to a horizontal acceleration? Determine the slope of the free liquid surface when subjected to the constant horizontal acceleration. :KHQDOLTXLGLVVXEMHFWHGWRDFRQVWDQWKRUL]RQWDODFFHOHUDWLRQWKHOHYHORIWKHOLTXLGRQ WKHIURQWVLGHRIWDQNIDOOVZKLOHWKHOHYHORIWKHOLTXLGRQWKHEDFNVLGHULVHVWKLVPDNHVWKH IUHH OLTXLG VXUIDFH WR VORSH XSZDUGV LQ WKH GLUHFWLRQ RSSRVLWH WR WKH GLUHFWLRQ RI FRQVWDQW DFFHOHUDWLRQDVVKRZQLQWKH¿JXUH Free surface of liquid
Free surface of liquid q
Lines of constant pressure
Acceleration =a
h1
F = m.a F1 F2
h2
Free Surface on Horizontal Acceleration from Right to Left
Free Body Diagram of Liquid Mass
7KHIUHHERG\GLDJUDPRIWKHHQWLUHPDVVRIOLTXLGLVDVVKRZQLQWKH¿JXUH,IZHFRQVLGHU WKHHTXLOLEULXPRIWKHHQWLUHPDVVRIOLTXLGWKHYHUWLFDOFRPSRQHQWRIK\GURVWDWLFDOSUHVVXUH IRUFHDWUHDUHQGLVFDQGDWIURQWHQGLVF6LQFHWKHOHYHORIOLTXLGDWUHDUHQGLVPRUH WKDQWKHIURQWHQGKHQFHF > F)RUHTXLOLEULXPSPx
304
Fundamentals of Fluid Mechanics
\ DQG
$OVR
F – F m ◊aZKHUHm PDVV a DFFHOHUDWLRQ F x A rg DQG F x A rg
Here ADQGADUHZHWWHGDUHDVDWUHDUDQGIURQWZDOOVRIWKHWDQN x DQG x DUHFHQWULRGV
DWZeWWHGDUHDVDWUHDUDQGIURQWZDOOVRIWKHWDQN Slope of free surface of the liquid &RQVLGHU D OLTXLG SDUWLFOH A RQ WKH IUHH VXUIDFH$V WKHUH LV QR UHODWLYH PRWLRQ EHWZHHQ OLTXLGSDUWLFOHVQRVKHDUIRUFHLVDFWLQJRQDQ\OD\HU+HQFHSUHVVXUHIRUFHFH[HUWHGE\ WKH VXUURXQGLQJ OLTXLG RQ SRLQW A LV QRUPDO WR WKH IUHH VXUIDFH DV VKRZQ LQ ¿JXUH ,I ZH UHVROYH WKLV IRUFH F DORQJ YHUWLFDO DQG KRUL]RQWDO GLUHFWLRQ DQG DSSO\ WKH FRQGLWLRQV RI HTXLOLEULXPLH SPx DQGSPy Free surface
q
A
A
m.a Free surface
F
q mg
S Px FVLQq maZKHUHqLVWKHDQJOHRIVORSHRIIUHHVXUIDFHIURPKRUL]RQWDO SPy FFRVq mg
F VLQ q ma F FRV q mg tan q
a g
What are the lines of constant pressure in liquid mass when subjected to constant horizontal acceleration?
P1 P2 P3 P4
Lines 1 – 1, 2 – 2, 3 – 3, & 4 – 4 are pressure lines
1 2 3 4
P1 < P2 < P3 < P4 ---
1 2 3 Constant pressure lines
4
:KHQ D OLTXLG PDVV LV JLYHQ D FRQVWDQW KRUL]RQWDO DFFHOHUDWLRQ WKH VORSH RI DOO SRLQWV RQ WKH IUHH VXUIDFH RI WKH OLTXLG UHPDLQV FRQVWDQW +HQFH WKH IUHH VXUIDFH RI WKH OLTXLG
305
Fluid Masses Subjected to Acceleration
LV LQFOLQHG DW D FRQVWDQW DQJOH q WR WKH KRUL]RQWDO7KH OLQHV SDUDOOHO WR WKH IUHH VXUIDFH DUH FRQVWDQW SUHVVXUH OLQHV DV DOO SRLQWV RQ HDFK OLQH KDYH VDPH SUHVVXUH +RZHYHU WKH LQWHQVLW\RISUHVVXUHZLOOLQFUHDVHRQOLQHVDVWKH\GLVWDQWDZD\IURPWKHIUHHVXUIDFHRI WKHOLTXLG
5.7 VERTICAL ACCELERATION What happens when a liquid is subjected to constant vertical acceleration? :KHQDOLTXLGLVVXEMHFWHGWRFRQVWDQWYHUWLFDODFFHOHUDWLRQWKHIUHHVXUIDFHRIWKHOLTXLG UHPDLQV KRUL]RQWDO DV LW ZDV HDUOLHU ZLWKRXW VXEMHFWLQJ WKH OLTXLG WR WKH DFFHOHUDWLRQ +RZHYHU WKH SUHVVXUH LQWHQVLW\ QRZ DW DQ\ SRLQW LQ WKH OLTXLG LV JUHDWHU WKDQ WKH VWDWLF
Ê aˆ SUHVVXUHrgh E\DQDPRXQWJLYHQE\rgh Á ˜ ZKHUHaLVDFFHOHUDWLRQLQYHUWLFDOGLUHFWLRQ Ë g¯ Height
h h
h mxa
rgh
Pressure
rgh
FG H
r 1+ Pgh Static Liquid & Static Pressure
a g
IJ K
Liquid Subjected to Vertical Acceleration
Find the pressure variation in a liquid when it is accelerated upwards and downwards with acceleration of a. m.a h h a
H
a mg F = P, dA
Liquid Subjected to Vertical Acceleration
Upward Acceleration &RQVLGHUDVPDOOFROXPQRIOLTXLGKDYLQJKHLJKWhDVVKRZQLQWKH¿JXUH$VWKHUHLVQR UHODWLYH PRWLRQ RI ÀXLG SDUWLFOH WKH FROXPQ RI WKH OLTXLG LV LQ VWDEOH HTXLOLEULXP ,I ZH DSSO\WKHFRQGLWLRQVRIHTXLOLEULXPWKHQSPx DQGSPy
306
Fundamentals of Fluid Mechanics
SPy F – mg PdA – mg m P ◊dA – r ◊dA h ◊g P – rgh
1RZ
ma ma r dAh rdAha rah
Ê aˆ P rgh Á + ˜ g¯ Ë Downward Acceleration
ma h h mg
a
F
)RUFHVDFWLQJRQGRZQZDUGDFFHOHUDWLRQRQWKHFROXPQRIWKHOLTXLGDUHVKRZQLQWKH¿JXUH mg – F ma m r ¥ h ¥ dA F P ¥ dA rhdAg – PdA rhdAa
Ê aˆ P rhg Á - ˜ g¯ Ë +HQFHGXULQJGRZQZDUGDFFHOHUDWLRQWKHSUHVVXUHDWDQ\SRLQWLQOLTXLGLVOHVVWKDQVWDWLF SUHVVXUHrhg E\DQDPRXQWHTXDOWR
a g
What will happen if a liquid is subjected to downward acceleration equal to the FRH൶FLHQWRIDFFHOHUDWLRQg " 8378 7KHSUHVVXUHDWDQ\SRLQWZLWKGRZQZDUGDFFHOHUDWLRQ
Ê aˆ P rgh Á - ˜ g¯ Ë NRZ
a g WKHQ P
+HQFHWKHSUHVVXUHLQWHQVLW\LQWKHOLTXLGGRHVQRWYDU\DQGLWLVVDPHDWHYHU\SRLQWRIWKH OLTXLG7KHSUHVVXUHLVVDPHDVDWPRVSKHULFSUHVVXUH
Fluid Masses Subjected to Acceleration
307
5.8 ACCELERATION ON INCLINED PLANE What happens when a liquid is subjected to constant acceleration while moving up along an inclined plane? Find the angle of slope of the free surface of the liquid. 8378 :KHQDOLTXLGFRQWDLQHURQDWUDQVSRUWLVVWDQGLQJRQDLQFOLQHGSODQHWKHIUHHVXUIDFHRI WKH OLTXLG UHPDLQV KRUL]RQWDO LQ VSLWH RI WKH QRUPDO D[LV RI WKH OLTXLG VORSLQJ ZLWK DQJOH LQFOLQDWLRQDQJOH ZLWKWKHYHUWLFDO Vertical Normal axis f Liquid surface horizontal
Inclined plane or road
f
Liquid at Rest on Inclined Plane
:KHQ WUDQVSRUW PRYHV XS ZLWK XQLIRUP DFFHOHUDWLRQ a DORQJ WKH LQFOLQHG SODQH ZH FDQ UHVROYH WKH DFFHOHUDWLRQ LQ WZR D[HV YL] DORQJ WKH KRUL]RQWDO DV a x a FRV f DORQJ WKH YHUWLFDO DV az a VLQ f 7KH OLTXLG FDQ EH FRQVLGHUHG WR EH VLPXOWDQHRXVO\ VXEMHFWHG WR FRQVWDQW KRUL]RQWDO DQG YHUWLFDO DFFHOHUDWLRQV +RUL]RQWDO DFFHOHUDWLRQ ZLOO PDNH WKH IUHH VXUIDFHRIWKHOLTXLGWRVORSHXSZDUGVDWDQJOHqDWWKHUHDUHQGRIWKHFRQWDLQHUZKLOHWKH YHUWLFDODFFHOHUDWLRQZLOOLQFUHDVHWKHSUHVVXUHDWDQ\SRLQWLQOLTXLGDERYHLWVVWDWLFSUHVVXUH Horizontal level at rest q
Sloping free surface due to acceleration
A
m-g q
f
rati ele ’ c c A ‘a
m.ax
A
on f Free Surface on Acceleration
F
m.az
Forces on Point A
&RQVLGHU D OLTXLG SDUWLFOH A RQ WKH IUHH VXUIDFH RI WKH OLTXLG 6LQFH WKHUH LV QR UHODWLYH PRYHPHQW RI WKH OLTXLG SDUWLFOHV WKH FRQGLWLRQV RI HTXLOLEULXP FDQ EH DSSOLHG LH SPx DQGS Py
308
Fundamentals of Fluid Mechanics
SPx FVLQq max SPy mg + maz FFRVq
1RZ
max F VLQ q mg + maz F FRV q
\
tan q
ax g + az
What happens when a liquid is subjected to constant acceleration while moving down along an inclined plane?
A q Mg
f
tion era l e c Ac ‘a’
Max
A
f
F Maz
:KHQWUDQVSRUWPRYHVGRZQZLWKXQLIRUPDFFHOHUDWLRQaDORQJWKHLQFOLQHGSODQHWKHIUHH VXUIDFHVORSHVXSWRZDUGVWKHUHDUZDOORIWKHFRQWDLQHUDVVKRZQLQWKHGLDJUDP'XULQJ HTXLOLEULXPZHKDYH SPx FVLQq m ax SPy FFRVq mg – ma z ax \ tan q g - az
The transport tanks for carrying liquid in mountainous region are specially designed to avoid any spillover of the liquid. Elucidate. 7KHWUDQVSRUWWDQNVIRUWUDQVSRUWLQJOLTXLGDUHVSHFLDOO\GHVLJQHGLQVXFKDZD\WKDWOLTXLG GHSWK DW ERWK HQGV UHPDLQV WKH VDPH ZKHQ WKH WUDQVSRUW LV DW UHVW RQ DQ LQFOLQHG URDG DV VKRZQLQWKH¿JXUH7KHWDQNKDVUHDUHQGUDLVHGXSWRHQVXUHWKDWEDVHRIWKHWDQNLVSDUDOOHO WRWKHKRUL]RQWDO Free surface horizontal
Base is almost horizontal f Tanks for Inclined Plane
Fluid Masses Subjected to Acceleration
309
Explain why the ends of railway wagons used for transporting petroleum or other liquids are made hemispherical.
Railway Wagons for Petroleum
7KHVORSHRIWKHIUHHVXUIDFHRIWKHOLTXLGFKDQJHVZLWKWKHPDJQLWXGHRIWKHDFFHOHUDWLRQ 7KHVORSHRIOLTXLGZLOOVPRRWKO\FKDQJHLQFDVHHQGZDOOVDUHKHPLVSKHULFDO7KHK\GURVWDWLF SUHVVXUH IRUFHV RQ WKH HQG ZDOOV ZLOO DOVR EH OHVV LQ FDVH WKH HQGV DUH KHPLVSKHULFDO SURMHFWHGDUHDRQYHUWLFDOSODQHLVVPDOO
5.9 RADIAL ACCELERATION What happens when a liquid is subjected to radial acceleration? :KHQ D OLTXLG LV PDGH WR URWDWH E\ D IRUFHG YRUWH[ WKH ZKROH OLTXLG PDVV URWDWHV ZLWK FRQVWDQW DQJXODU YHORFLW\ WKHUHE\ DWWDLQLQJ WKH VLWXDWLRQ RI UHODWLYH HTXLOLEULXP LH QR UHODWLYHPRWLRQRIOLTXLGSDUWLFOHV
Forced Vortex in Open Vessel
7KH IRUP RI WKH IUHH VXUIDFH RI D OLTXLG LQ D URWDWLQJ RSHQ YHVVHO LV VLPLODU WR WKDW RI D SDUDERORLGRIUHYROXWLRQ$Q\YHUWLFDOSODQHSDVVLQJWKURXJKWKHD[LVRIURWDWLRQZKLFKFXWV WKHOLTXLGZLOOSURGXFHDSDUDEROD7KHHTXDWLRQRIWKHSDUDERODz
w x ZKHUHZLVWKH g
anJXODUYHORFLW\DQGxLVUDGLDOGLVWDQFHIURPWKHYHUWH[DQGzLVKHLJKWIURPWKHYHUWH[
310
Fundamentals of Fluid Mechanics
What are constant pressure surfaces when a liquid is subjected to a forced vortex? :KHQDOLTXLGLVURWDWHGLQDQRSHQYHVVHOLWVIUHHVXUIDFHDWWDLQVWKHIRUPRISDUDERORLG $Q\VXUIDFHLQWKHOLTXLGKDYLQJDOOLWVSRLQWVDWHTXDOGLVWDQFHIURPWKHIUHHVXUIDFHZLOO KDYH FRQVWDQW SUHVVXUH +HQFH DOO VXFK VXUIDFHV DUH FDOOHG FRQVWDQW SUHVVXUH VXUIDFHV DV VKRZQLQWKH¿JXUH
Free surface Constant pressure surfaces
$Q RSHQ YHVVHO SDUWO\ ¿OOHG ZLWK D OLTXLG URWDWHV DERXW D YHUWLFDO D[LV DW FRQVWDQW angular velocity. Determine the equation of the free surface of the liquid after liquid has acquired the angular velocity of the vessel.
:KHQDOLTXLGLVVXEMHFWHGWRDIRUFHGYRUWH[WKHIUHHVXUIDFHDWWDLQVWKHVKDSHRIDSDUDERORLG $VWKHUHLVQRUHODWLYHPRWLRQEHWZHHQWKHOLTXLGSDUWLFOHVWKHUHODWLYHHTXLOLEULXPSUHYDLOV LQWKHOLTXLG&RQVLGHUWKHHTXLOLEULXPRIDVPDOOPDVVmRIWKHOLTXLGDWDSRLQWARQIUHH VXUIDFH,WLVVXEMHFWHGWRWKHIROORZLQJIRUFHV FHQWULIXJDOIRUFHc mZ xDFWLQJDORQJ xD[LVLHKRUL]RQWDOO\ ZHLJKWRIWKHÀXLGSDUWLFOHDFWLQJGRZQZDUGLHmgDQG ÀXLG SUHVVXUH IRUFH F DFWLQJ QRUPDO WR WKH IUHH VXUIDFH 1RZ DSSO\LQJ WKH FRQGLWLRQV RI VWDWLFHTXLOLEULXPLHSPx DQG SPz FFRVq mg SPx FVLQq c mZx
Fluid Masses Subjected to Acceleration
F VLQ q F FRV q
%XW
wx g
tan q
wx g
tan q
dz dx
311
dz wx dx g or
dz
Ú
z
dz
z
wx ¥ dx g
Ú
x
wx dx g
w x g
7KHDERYHLVWKHHTXDWLRQRIIUHHVXUIDFHRIWKHOLTXLGVXEMHFWHGWRDUDGLDODFFHOHUDWLRQ What are axial depth and rise of water? How is the rise of water is related to original level? When is the axial depth of water zero?
B Original level
D
Rise of water
O Axial depth of water A
:KHQ D OLTXLG LV VXEMHFWHG WR UDGLDO DFFHOHUDWLRQ WKH IUHH VXUIDFH DWWDLQV WKH VKDSH RI D SDUDERORLGDVVKRZQLQWKH¿JXUH7KHGLVWDQFHOALVFDOOHGD[LDOGHSWKRIZDWHUDQGOB LVFDOOHGWKHULVHRIZDWHU$OVROD BDZKHUHDLVRQRULJLQDOOHYHORIOLTXLG 7KH D[LDO GHSWK RI ZDWHU LV ]HUR ZKHQ YHUWH[ RI WKH SDUDERORLG LV DW WKH ERWWRP RI WKH FRQWDLQHU
312
Fundamentals of Fluid Mechanics
What is the volume of empty space in the paraboloid?
B¢¢
A¢¢
B
r2
A
r1
B¢
A¢
Z2 Z1
O (vertex)
7KHHPSW\VSDFHLQWKHSDUDERORLGGHSHQGVXSRQWKHUDGLXV7KHHPSW\VSDFHDWUDGLXVr YROXPHOA≤ AA¢ LVHTXDOWR p r ZZ OA 6LPLODUO\WKHHPSW\VSDFHDWUDGLXVr pr ZZ OB
What is spill out? When does it happen?
r
r
R
R z
H
H = height of vessel from vertex
:KHQDOLTXLGLVVXEMHFWHGWRUDGLDODFFHOHUDWLRQWKHULVHRIZDWHULVJLYHQE\ZDV Z
w r g
,IZ > HWKHQWKHOLTXLGDVVKRZQVKDGHGZLOOVSLOORXW$IWHUVSLOOLQJWKHSDUDERORLGVXUIDFH ZLOOVDWLVI\WKHHTXDWLRQ H
w R g
Fluid Masses Subjected to Acceleration
313
:KDWKDSSHQVZKHQOLTXLGLVVXEMHFWHGWRUDGLDODFFHOHUDWLRQDQGVX൶FLHQWKHLJKWIRU liquid to rise is unavailable in the closed vessel?
Lid
z z¢
Modified free surface paraboloid
r¢ r
,IVX൶FLHQWKHLJKWLQWKHYHVVHOLVXQDYDLODEOHWKHZDWHUFDQQRWULVHDERYHWKLVKHLJKWDQG VSLOO RXW LV LPSRVVLEOH DV WKH YHVVHO LV FORVHG DW WKH WRS7KH OLTXLG DWWDLQV DQRWKHU VKDSH RIWKHSDUDERORLGIRULWVIUHHVXUIDFHDVVKRZQE\GRWWHGOLQHLQWKH¿JXUH7KHSDUDERORLG KDVUDGLXVr¢LQVWHDGRIrDQGKHLJKWz¢LQVWHDGRIz6LQFHWKHYROXPHRIDLULQWKHYHVVHO UHPDLQVWKHVDPHDVZHOODVYROXPHRIWKHZDWHUQRVSLOORXW KHQFHZHKDYH
9ROXPHRIDLULQWKHYHVVHO YROXPHRIVSDFHLQPRGL¿HGSDUDERORLG p r
z
p r¢ z ¢
z¢
%XW or \
r¢ gz¢/w p r
z g z ¢ ¥p¥ ¥ z¢ w
z¢ \
r ¢ w g
rz w g
m wZKHUHm
rz g
z¢ mw
$UHFWDQJXODURSHQWDQNPORQJPGHHSFRQWDLQVPRIZDWHU,IWKHKRUL]RQWDO acceleration of 3 m/s LV DSSOLHG WKHQ ¿QG IRUFHV DFWLQJ RQ WKH HQGV RI WKH WDQN DQG VKRZWKDWWKHGL൵HUHQFHEHWZHHQWKHVHIRUFHVHTXDOWRWKHPDJQLWXGHRIIRUFH to accelerate the water mass.
314
Fundamentals of Fluid Mechanics q
B
D
1m
Acceleration = 3 m/s
2
C
A
6
:KHQKRUL]RQWDODFFHOHUDWLRQLVDSSOLHGWKHIUHHVXUIDFHRIWKHZDWHUZLOOVORSHE\DQJOHq DVVKRZQLQWKH¿JXUH tan q
a g
q
5LVHDQGIDOORIZDWHU
\
6 WDQ
P AB P CD ± P FAB rg
AB ¥$UHD ¥¥ ¥¥¥¥
N: FCB rg ¥
CD ¥$UHD ¥¥ ¥¥¥
N: F FAB – FCD \
M Facc F
± N: 0DVVRI:DWHU 9ROXPH¥ r ¥¥¥¥ ¥NJ M ¥ a ¥ ¥ N: Facc
$QRSHQWDQNPORQJDQGPGHHSLV¿OOHGZLWKPRIRLOKDYLQJ6*7KH WDQNLVVXEMHFWHGWRKRUL]RQWDODFFHOHUDWLRQWRWKHYHORFLW\RIPV:KDWLVWKHOHDVW time to attain this velocity without spilling out?
Fluid Masses Subjected to Acceleration
315
7KHRLOVXUIDFHZLOOVORSHDWDQJOHqRQWKHDSSOLFDWLRQRIDFFHOHUDWLRQ tan q
a g a
AB - OB
AOVR
WDQq
tan q
a
a PV A q Acceleration = a
O
B
2
1.5 C
10
1RZDSSO\YHORFLW\HTXDWLRQ V U + at U V PV ¥ t
t
VHF
$UHFWDQJXODURSHQWDQNRIVL]HPOHQJWKPZLGHDQGPKHLJKWLVFRPSOHWHO\¿OOHG ZLWKZDWHUDQGLVVXEMHFWHGWRKRUL]RQWDODFFHOHUDWLRQRIPV. Find the volume of the water spilled. B q A
O
2 Acceleration 2
a = 0.8 m/s 3
316
Fundamentals of Fluid Mechanics
7KHIUHHVXUIDFHVORSHVE\DQJOHqDVVKRZQDQGZDWHUULVHVE\ABUHVXOWLQJZDWHULQYROXPH AOBVSLOOLQJRXW
$OVR
tan q
a g
WDQq
AB AO
AB
¥
9ROXPHRIZDWHU $UHDRIWULDQJOHAOB ¥ZLGWK
¥ ¥¥
P $QRSHQWDQNKDVPKHLJKWDQGLWFRQWDLQVPRIZDWHU+RZKLJKPXVWLWVVLGH EHLIQRZDWHUWREHVSLOOHGRXWZKHQVXEMHFWHGWRKRUL]RQWDODFFHOHUDWLRQRIPV" B q A
2
O Acceleration = a
1.8 C
2
7KHIUHHVXUIDFHZLOOVORSHZKHQVXEMHFWHGWRDFFHOHUDWLRQ
AOVR \
tan q
a g
WDQq
AB AB AO
ZDWHUULVH AB P +HLJKWRIWDQN +HLJKWQHHGHG CB
+HQFHVLGHRIWDQNPXVWEHPWRDYRLGDQ\VSLOOLQJ
Fluid Masses Subjected to Acceleration
317
$UHFWDQJXODURSHQWDQNLVPORQJPGHHSDQGPZLGHLVFRQWDLQLQJZDWHUXSWR PKHLJKW,IWKHWDQNLVVXEMHFWHGWRKRUL]RQWDODFFHOHUDWLRQRIPV)LQG VORSH RIVXUIDFH PD[LPXPDQGPLQLPXPSUHVVXUHLQWHQVLW\DWWKHEDVHDQG SUHVVXUH forces acting on each end walls. E B
q
D O
2
1
F
3 m/s
C
A
$OVR
Acceleration
6
tan q
a g
WDQq
BE BO
q
6 ¥
or
BE
\
AE P CF ± P
0D[LPXPSUHVVXUHLQWHQVLW\DWSRLQWARIWKHEDVH
PA ¥ r ¥ g ¥¥ ¥ N1P
0LQLPXPSUHVVXUHLQWHQVLW\DWSRLQWCRIWKHEDVH
Pc ¥¥ ¥ N1P
0D[LPXPSUHVVXUHIRUFHDWUHDUHQGZDOO FPD[
x Ar g
¥¥ ¥¥ ¥ N1 0LQLPXPSUHVVXUHIRUFHDWIURQWHQGZDOO FPLQ x APg ¥¥ ¥¥ ¥ N1
318
Fundamentals of Fluid Mechanics
$UHFWDQJXODUFRQWDLQHUPORQJPZLGHDQGPGHHSLVFRQWDLQLQJRLOXSWRWRS 2LOKDV6* )LQGWKHSUHVVXUHGL൵HUHQFHDWWKHOLGH[LVWLQJDWWKHUHDUDQGIURQW ends when container is subjected to horizontal acceleration of 4 m/s. E D
q
C
O
F
5
Acceleration 2
4 m/s B
A
10
,I WKH FRQWDLQHU ZDV QRW KDYLQJ OLG WKHQ RLO ZRXOG KDYH ULVHQ DW ORZHU HQG DQG DQJOH RI VORSHLVJLYHQE\ a 4 tan q g tan q
$OVR
ED ED OD
ED P AE AD + DE P
\ \
BF BC – CF ± P +HLJKWGL൵HUHQFHEHWZHHQSRLQWE FLV h AE – BF
±
P PD – PC hrRLO g ¥¥ ¥
N:P $Q RSHQ UHFWDQJXODU WDQN P ORQJ P KLJK DQG P ZLGH FRQWDLQV RLO 6* XS WR KHLJKW RI P )LQG WKH WRWDO SUHVVXUH IRUFH RQ WKH EDVH RI WKH WDQN ZKHQ WKH tank is moving with acceleration of
g m/s L YHUWLFDOO\ XSZDUGV DQG LL YHUWLFDOO\
downwards. Acceleration g 2
3 2
6
or
g 2
Fluid Masses Subjected to Acceleration
Case 7KHRLOLVVXEMHFWHGWRWKHDFFHOHration RI
319
g XSZDUGV
7RWDOSUHVVXUHDWEDVHRIWDQN
Ê aˆ P rgh Á + ˜ g¯ Ë gˆ Ê Á ˜ ¥¥ Á + ˜ g¯ Ë ¥¥¥
¥
N:P F P ¥EDVHDUHD
¥ 6 ¥
N: Case $FFHOHUDWLRQLVDSSOLHGGRZQZDUGV
aˆ Ê P rgh Á - ˜ g¯ Ë g ˆ Ê P ¥ ¥¥ Á g ˜¯ Ë ¥¥¥
N:P 3UHVVXUHIRUFHRQWKHEDVH F P ¥ A ¥ 6 ¥ N: $QRSHQF\OLQGULFDOWDQNLVPKLJKPLQGLDPHWHUFRQWDLQVPRIZDWHU,IWKH F\OLQGULFDOWDQNLVURWDWHGDERXWLWVQRUPDOD[LV¿QG WKHPD[LPXPDQJXODUYHORFLW\ without spill out of water, and WKHSUHVVXUHDWFHQWUHDQGHGJHRIWKHF\OLQGHUDWEDVH 7KHZDWHUOHYHOZDVDWADLQLWLDOO\EHIRUHWKHURWDWLRQRIWKHF\OLQGHU2QURWDWLRQWKHIUHH VXUIDFH DWWDLQV WKH VKDSH RI SDUDERORLG ZLWK YHUWH[ DWO7KH ULVH RI WKH ZDWHU DW AE DQG DFIURPRULJLQDOOHYHOAD AD ± P
320
Fundamentals of Fluid Mechanics
,IZHWDNHRULJLQDWOWKHQ y OK EG ¥ AD P xDWWRS EK or FK 1RZ
y
w x g
w ¥ ¥ g
w
¥ g
w UDGV
E
F
K
A
D
G
2
H
O
1.5
l
B
C 1
0D[LPXPSUHVVXUHLVDWSRLQWcDWEDVH
Pc hrg ¥¥ ¥ N1P
0LQLPXPSUHVVXUHDWSRLQWlDWEDVH
Pl hrg ¥¥ ¥ N1P
)LQGRXWWKHWRWDOSUHVVXUHIRUFHRQWKHOLGDQGEDVHRIIXOO\¿OOHGOLTXLGZKHQVXEMHFWHG to radial acceleration.
Fluid Masses Subjected to Acceleration
:KHUHOLTXLGLVVXEMHFWHGWRUDGLDODFFHOHUDWLRQWKHIUHHVXUIDFHFDQQRWDWWDLQWKHSDUDERORLG VKDSHDVYHVVHOLVFORVHGZLWKOLG+HQFHWKHUHLVDSUHVVXUHKHDGz JLYHQE\
w x ◊ g
z 6LQFHSUHVVXUHP rgz
P w x ¥r
\
Total pressure line
z
z
Lid
x
H
Bottom
1RZWDNHDVPDOOFLUFXODUVWULSRIWKLFNQHVVdxDWGLVWDQFHxIURPFHQWUH
dx
x
321
3UHVVXUHIRUFHRQWKLVVWULS dF p ¥ area p ¥p xdx
Ú
x
w x r ¥p xdx x
dF pwr Ú x dx
322
Fundamentals of Fluid Mechanics
FWRS
pwr x 4
+HQFHFLVWKHWRWDOSUHVVXUHIRUFHDFWLQJRQWKHOLGRIWKHF\OLQGHUGXHWRUDGLDODFFHOHUDWLRQ 1RZWRWDOSUHVVXUHIRUFHDWEDVHRIWKHYHVVHOLVVXPRIIRUFHDWWKHWRSOLG DQGZHLJKWRI OLTXLGLQWKHYHVVHO FEDVH FWRS + rgH
pwr x + rgH 4
0.67 m
$F\OLQGULFDOYHVVHORIPKHLJKWDQGFPGLDPHWHULV¿OOHGXSWRPZLWKZDWHU ,WLVVXEMHFWHGWRUDGLDODFFHOHUDWLRQ¿QG VSHHGRIURWDWLRQZKHQZDWHUULVHVWRLWV WRSDQG WKHVSHHGZKHQYHUWH[WRXFKHVWKHEDVH
1m
0.15
Case :KHQWKHOLTXLGULVHVWRWKHWRS :HKDYH
z ¥± ¥P P
x
P
z
w x g
DQG
w
\
w ¥ ¥ ¥ ¥
w UDGVHF
Fluid Masses Subjected to Acceleration
323
p N ¥ ¥p
N
USP
Case :KHQYHUWH[WRXFKHVWKHEDVH 9ROXPHRISDUDERORLG 9ROXPHRIHPSW\VSDFHEHIRUHURWDWLRQ
p r ¥ H p r H± r ¥ ¥ ¥ ± r Z H
w
r w g
¥ w ¥ ¥ ¥ -
w ¥ w UDGVHF
p N N
¥ ¥p USP
$ FORVHG F\OLQGULFDO YHVVHO RI P GLDPHWHU DQG P KHLJKW LV FRPSOHWHO\ ¿OOHG ZLWK ZDWHU,IYHVVHOLVURWDWHGDWUSP¿QGWKHWRWDOSUHVVXUHRQWKHWRSERWWRPDQG sides of the cylinder.
324
Fundamentals of Fluid Mechanics
3
2
w
p ¥ pN p UDGVHF
3UHVVXUHIRUFHDWWRS FWRS
prw x 4 p ¥ ¥ ¥ ¥ 4
N: 3UHVVXUHIRUFHDWERWWRP FERWWRP FWRSZHLJKWRIZDWHU
p ¥ ¥¥¥ 4
+
N:
3UHVVXUHIRUFHDWVLGHV
rAg
Ê x w ˆ ÁË g + ˜¯
Ê ¥ ˆ ¥ ¥¥¥ H ¥ g ¥ Á + ˜ Ë ¥ ¯ p ¥ N1 N1 $JODVVWXEHFPLQGLDPHWHUDQGVX൶FLHQWO\KLJKRSHQDWWKHWRSFRQWDLQLQJDOLTXLG URWDWHVDERXWLWVYHUWLFDOD[LVDWUSP)LQGWKHGHSUHVVLRQRIWKHORZHVWSRLQWRI free liquid surface below the original surface of liquid when at rest.
Fluid Masses Subjected to Acceleration
z
w x g
w
p N p ¥ UDGVHF
Ê ˆ ¥ Á Ë ˜¯ z ¥
325
¥ ¥ ¥ - ¥ ¥± P P
'HSUHVVLRQRIIUHHVXUIDFH OA
z
P
FP $FORVHGF\OLQGHUFPGLDPHWHUDQGFPGHHSLVFRPSOHWHO\¿OOHGZLWKZDWHU,W LVURWDWHGDERXWLWVD[LVZKLFKLVYHUWLFDODWUSP&DOFXODWHWKHWRWDOSUHVVXUHRI ZDWHUDWHDFKHQG 5RRUNHH8QLYHUVLW\ 240 rpm
2.5 cm
30 cm
PWRS
prw x 4
326
Fundamentals of Fluid Mechanics
w
¥ p ¥ pN
UDGVHF
Ê ˆ p ¥ ¥ ¥ ¥ Á Ë ˜¯ PWRS 4
4
- p ¥ ¥ ¥ ¥ 4
¥ N 1 PERWWRP PWRS:HLJKWRIZDWHULQF\OLQGHU p ¥ ¥¥± ¥¥ ¥ 1 $UHFWDQJXODURSHQFRQWDLQHULVSDUWLDOO\¿OOHGZLWKZDWHUDQGLVVKRZQEHORZDWUHVW If the container is moved horizontally to the right at constant uniform acceleration, the pressure at AZLOOD GHFUHDVHE LQFUHDVHF VWD\WKHVDPHRUG ¿UVWGHFUHDVH WKHQUHPDLQWKHVDPH ,(6%+(/
Water
Acceleration
A
When water is subjected to acceleration, the free surface slopes, thereby increasing the level of water at the rear end and decreasing the level of water at the front end as shown below.
q
h
hinitial A
$VWKHKHLJKWRIZDWHUDWAULVHVGXHWRWKHDFFHOHUDWLRQRIZDWHUWKHK\GURVWDWLFSUHVVXUH LQFUHDVHV P rghA hLQLWLDO hA
PLVPRUHZKHQDFFHOHUDWLRQLVDSSOLHGDVFRPSDUHGWRVWDWLFSUHVVXUH 2SWLRQE LVFRUUHFW
Fluid Masses Subjected to Acceleration
327
$RQHPHWHU8-tube acceleration meter having its vertical ends open to atmospheric. 7KH FURVVVHFWLRQDO DUHD RI WXEH LV XQLIRUP WKURXJKRXW 7KH PHWHU LV SODFHG LQ D vehicle moving horizontally towards right at a constant acceleration of gPVHF. Find reading on the left side scale of the acceleration meter.
B A hinitial
O
q
C
SG = 1.5
D
Acceleration g 2 = m/s 2
1
6LQFH 8WXEH OLTXLG LV FRQWLQXRXV LQ ERWK OLPEV LW ZLOO EHKDYH VLPLODU WR D FRQWDLQHU FRQWDLQLQJOLTXLGZKLFKLVZKHQVXEMHFWHGWRKRUL]RQWDODFFHOHUDWLRQ7KHOLTXLGDWWKHIURQW HQGZLOOIDOODQGWKHUHDUHQGZLOOULVHLHOLTXLGOHYHOULVLQJLQWKHULJKWOLPEDVFRPSDUHG WRWKHOHIWOLPE tan q
a g g g
AB OB
\
or AB ¥ 5LVHLQULJKWOLPE P )DOOLQOHIWOLPE P )LQGWKHVORSHRIIUHHVXUIDFHRIOLTXLGLQDWDQND PRYLQJKRUL]RQWDOO\WRZDUGVULJKW E PRYLQJGRZQZDUGVDORQJDWLQFOLQHGSODQHDQGF PRYLQJXSZDUGVDORQJ inclined plane if the constant acceleration of liquid is 4 m/s. Case 0RYLQJKRUL]RQWDOO\ tan q
a 4 g q
Case 0RYLQJGRZQZDUGVDWLQFOLQHGSODQH
20° a
328
Fundamentals of Fluid Mechanics
7KHKRUL]RQWDOFRPSRQHQWRIDFFHOHUDWLRQLVDFRVDQGDVLQLVDFWLQJDJDLQVWJUDYLW\ tan q
\
a FRV g - a VLQ ¥ - ¥
q
Case 0RYLQJXSZDUGVDWLQFOLQHGSODQH a FRV tan q g + a VLQ
¥ +
¥ q Note: 7KHVORSLQJRIIUHHVXUIDFHRIOLTXLGLVDOZD\VPRUHZKHQWDQNFDULVPRYLQJGRZQ RQDQLQFOLQHGSODQH $QRSHQFLUFXODUF\OLQGHUPKHLJKWLV¿OOHGZLWKDOLTXLGWRLWVWRS7KHOLTXLGLV given a rigid body rotation about the axis of the cylinder and the pressure at the centre OLQHDWWKHERWWRPVXUIDFHLVIRXQGWREHPRIOLTXLG:KDWLVWKHUDWLRRIYROXPH of liquid spilled out of the cylinder to original volume?
4 F
D
E
3 8
G
,(6
0.6 m
1.2 m
2r
Fluid Masses Subjected to Acceleration
329
2ULJLQDOYROXPHRIOLTXLGV p r h p r ¥ P 9ROXPHRIOLTXLGVSLOOHGRXWV p r ¥ p r ¥P
V pr ¥ V pr ¥
NRZ
4
2SWLRQD LVFRUUHFW $ F\OLQGULFDO YHVVHO KDYLQJ LWV KHLJKW HTXDO WR LWV GLDPHWHU LV ¿OOHG ZLWK OLTXLG DQG moved horizontally at an acceleration equal to acceleration due to gravity. The ratio of the liquid left in the vessel to the liquid at static equilibrium is D E F G ,(6
C
E h
D
q
O
a=g F
d
7KHOLTXLGDWWKHIURQWHQGZLOOIDOODQGOLTXLGDWWKHUHDUHQGZLOOULVH
%XW \ or
tanq
a g g g
WDQq ED
ED ED d OD
d h
+HQFHWDQNZLOOEHHPSW\E\KDOI 2SWLRQF LVFRUUHFW $QRSHQUHFWDQJXODUER[RIEDVHP¥PFRQWDLQVDOLTXLGRI6*XSWRDKHLJKW RIP,IWKHER[LVLPSDUWHGYHUWLFDOO\XSZDUGDFFHOHUDWLRQRIPV, what will be the pressure on the base of the tank?
330
Fundamentals of Fluid Mechanics
D N3D F N3D
E N3D G N3D
,(6
Ê aˆ P r ◊ g ◊ h ◊ Á + ˜ g¯ Ë
2SWLRQG LVFRUUHFW
ˆ Ê ¥ ¥¥¥ Á + Ë ˜¯ NPa
5.10 QUESTIONS FROM COMPETITIVE EXAMINATIONS $ F\OLQGULFDO YHVVHO KDYLQJ LWV KHLJKW HTXDO WR LWV GLDPHWHU LV ¿OOHG ZLWK OLTXLG DQG moved horizontally at acceleration equal to acceleration due to gravity. The ratio of the liquid left in the vessel to the liquid at static equilibrium is (a) 0.2 (b) 0.4 (c) 0.5 (d) 0.75 (IES 2001) tan q
a g = = g g
q 2SWLRQF LVFRUUHFW $Q RSHQ UHFWDQJXODU WDQN P ORQJ P ZLGH DQG P GHHS LV FRPSOHWHO\ ¿OOHG ZLWKZDWHU,IWKHWDQNLVPRYHGZLWKDFFHOHUDWLRQRIPV¿QGWKHVORSHRIWKHIUHH surface? (a) 7.8° (b) 8.7° (c) 6.7° (d) 9.7° tan q
a = = g
\ q Option (b) is correct. r A closed cylinder 2R diameter DQGFPGHHSLVFRPSOHWHO\¿OOHGDQGLWLVURWDWHGZLWK angular speed of R radians per second. The pressure at top end is (a)
π × R × − 1 4
(b) π × R × − 1 4
(c)
π × R × − 1 4
(d) π × R × − 1 4
Fluid Masses Subjected to Acceleration
PWRS
331
πρω × x 4 πρ × R × R × − 4
π × R × − 1 4
Option (c) is correct. $QRSHQUHFWDQJXODUER[RIEDVHPîPFRQWDLQVDOLTXLGRI6*XSWRDKHLJKW RIP,IWKHER[LVLPSDUWHGDYHUWLFDOO\XSZDUGDFFHOHUDWLRQRIPV, what will be the pressure on the base of the box? (a) 9.81 kPa (b) 19.62 kPa (c) 36.8 kPa (d) 29.4 kPa (IES 2004) P
⎛ a⎞ ρgh ⎜ + ⎟ ⎝ g⎠
⎞ ⎛ × × × ⎜ + ⎟ ⎝ ⎠
N3D Option (d) is correct. If a liquid of height h in a vessel is accelerated upwards with acceleration a, the pressure in liquid will be ⎛a ⎞ (a) rha (b) ρh ⎜ + ⎟ ⎝g ⎠ ⎛a ⎞ (c) ρh ⎜ − ⎟ ⎝g ⎠
(d) None of these
Option (b) is correct. If a liquid of height h is accelerated downwards with acceleration of g, the pressure in liquid will be (a) r ◊ g ◊ h (b) r ◊ h(2g) (c) Zero (d) None of these Option (c) is correct.
Chapter
6
DIMENSIONAL ANALYSIS
KEYWORDS AND TOPICS
FUNDAMENTAL DIMENSIONS SECONDARY DIMENSIONS HOMOGENEOUS EQUATION DIMENSIONAL FORM NON-DIMENSIONAL FORM RAYLEIGH’S METHOD p THEOREM VARIABLES
DEPENDENT VARIABLES REPEATING VARIABLES DIMENSIONLESS NUMBERS REYNOLDS NUMBER FORDE’S NUMBER WEBER’S NUMBER MACH’S NUMBER EULER’S NUMBER
6.1 INTRODUCTION Dimensional analysis is a mathematical technique which uses the dimensions of quantities in solving the engineering problems. Dimensional analysis helps in determining a possible arrangement of variables in a physical relationship. Physical relationship is rational in case the dimensions of the left hand of the relation are equal to the dimensions of the right hand. All physical relationships are dimensionally homogeneous. ,QÀXLGPHFKDQLFVDÀXLGSDUWLFOHLVVXEMHFWHGWRDQXPEHURIIRUFHVVXFKDVL LQHUWLDIRUFH LL YLVFRXVIRUFHLLL JUDYLWDWLRQDOIRUFHLY SUHVVXUHIRUFHY VXUIDFHWHQVLRQIRUFHDQGYL HODVWLFIRUFH'LPHQVLRQOHVVSDUDPHWHUVDUHXVHIXOLQÀXLGPHFKDQLFVZKHQDQ\WZRIRUFHVDUH SUHGRPLQDQW 7KH GLPHQVLRQOHVV SDUDPHWHUV DUH L 5H\QROGV QXPEHU LL (XOHU¶V QXPEHU LLL and Weber’s number.
6.2 DIMENSIONAL ANALYSIS What do you understand from dimensions and units? $Q\ SK\VLFDO VLWXDWLRQ FDQ EH GHVFULEHG E\ FHUWDLQ IDPLOLDU SURSHUWLHV VXFK DV OHQJWK YHORFLW\ DUHD YROXPH RU DFFHOHUDWLRQ 7KHVH DUH DOO NQRZQ DV GLPHQVLRQV DQG DUH RI QR use without a magnitude being attached. Dimensions are properties which can be measured
Dimensional Analysis
333
VXFK DV OHQJWK DQG XQLWV DUH WKH VWDQGDUG HOHPHQWV ZKLFK ZH XVH WR TXDQWLI\ WKHVH GLPHQVLRQV,QGLPHQVLRQDODQDO\VLVZHDUHFRQFHUQHGZLWKWKHQDWXUHRIGLPHQVLRQVLH its quality instead of its quantity. The common abbreviations which are used for dimension DUHD OHQJWK LE PDVV MF WLPH TG )RUFH FDQGH WHPSHUDWXUH q. The dimensions of common physical quantities are as per Table 6.1. Table 6.1
Dimensions of common physical quantities
Qunatity
SI unit
Dimensions
1.
Velocity
m/s
LT –1
2.
Acceleration
m/s2
LT –2 2
MLT –2
3.
Force
Newton (N) or kg m/s
4.
Energy or work
Nm or kg m2/s2
ML2T –2
5.
Power
Nm/s or kg m2s–3
ML2T –3
2
6.
Pressure or stress
N/m kg/ms
7.
Density
kg/m3
2
2
ML–1T –2 ML–3T 0
8.
Viscosity
Ns/m or kg/ms
ML–1T –1
9.
Surface tension
N/m or kg/s2
MT –2
What do you understand from dimensional analysis? Dimensional analysis is a branch of mathematics which deals with the dimensions of quantities. Dimensional analysis helps in determining a possible arrangement of variables in a physical relationship. This is achieved by forming a number of non-dimensional group free from units from a given number of dimensional quantities in such a way that variables can be reduced and the physical relationship can be expressed in a possible arrangement of remaining variables. What are the uses of dimensional analysis? The uses of dimensional analysis are: 7R DVFHUWDLQ ZKHWKHU DQ\ HTXDWLRQ RI SK\VLFDO SKHQRPHQRQ LV UDWLRQDO RU QRW ,I WKH HTXDWLRQLVGLPHQVLRQDOO\KRPRJHQHRXVGLPHQVLRQDOXQLWVDWERWKVLGHVRIWKHHTXDWLRQ DUHDVDPH WKHSK\VLFDOSKHQRPHQRQLVUDWLRQDO2WKHUZLVHLWLVLPSRVVLEOH 7RDVFHUWDLQZKHWKHUWKHUHODWLRQVKLSEHWZHHQYDULRXVTXDQWLWLHVLQDQHTXDWLRQVLJQLI\ a physical phenomenon. 7RUHGXFHWKHQXPEHURIYDULDEOHVLQYROYHGLQDSK\VLFDOSKHQRPHQRQ7KHSHUIRUPDQFH of experiment becomes easy due to this reduction of variables. 7RFRQYHUWWKHWKHRUHWLFDOHTXDWLRQLQWRDVLPSOHGLPHQVLRQOHVVIRUP 7RVROYHDQ\FRPSOH[SK\VLFDOSKHQRPHQRQ 7RFRQYHUWWKHXQLWVRITXDQWLWLHVIURPRQHV\VWHPWRDQRWKHUV\VWHP 7R IDFLOLWDWH PRGHO WHVWLQJ E\ UHGXFLQJ WKH QXPEHU RI YDULDEOHV LQWR IRXU SULPDU\ quantities.
334
Fundamentals of Fluid Mechanics
6.3 FUNDAMENTAL AND SECONDARY DIMENSIONS What are the fundamental dimensions or primary quantities? 0DVV OHQJWK WLPH DQG WHPSHUDWXUH DUH IXQGDPHQWDO RU SULPDU\ GLPHQVLRQV 7KHVH IRXU physical quantities are called fundamental dimensions or primary quantities as the units of these quantities do not depend on the units of any other physical quantities. What are the derived or secondary dimensions? The unit of physical quantity which depends on the unit of other physical quantities is called derived or secondary dimension. Find the dimensions of (1) force, (2) angular velocity, (3) discharge, (4) torque, (5) power, (6) density, and (7) viscosity )RUFH 0DVV¥ Acceleration F M ¥ Angular velRFLW\ w
L MLT± T2
Angles in radian Time 1 T
T–1
DiVFKDUJH 9HORFLW\¥ Area Q
L ¥ L L T–1 T
TorTXH )RUFH¥ Distance 0DVV¥$FFHOHUDWLRQ ¥ Distance T M ¥ PoZHU
L ¥ L ML T± T -2
Work done Time
Force ¥ Distance Time
Mass ¥ Acceleration ¥ Distance Time M¥
P
L ¥L T -2 ML T± T
Dimensional Analysis
Density r ViscoVLW\
Mass Volume M ML± L3 Shear stress Velocity gradient
Force/Area Velocity/Distance
Mass ¥ Acceleration ¥ Distance Area ¥ Velocity
335
M ¥ LT -2 ¥ L L2 ¥ LT -1
m ML–1 T–1
6.4 DIMENSIONAL HOMOGENEITY What is dimensional homogeneity? What are variables and dependent variables? Or What do you understand by a dimensionally homogenous equation? Write three dimensionless parameters. A physical phenomenon is given in variables in the form of an equation. The physical phenomenon is rational in case the dimensions of left hand of the relation is equal to the GLPHQVLRQV RI ULJKW KDQG ,I LW LV VR ZH VD\ WKDW HTXDWLRQ LV GLPHQVLRQDOO\ KRPRJHQRXV )RUH[DPSOHWDNHWKHH[SUHVVLRQRIVWDWLFSUHVVXUH P rgh Mass ¥ acceleration 3UHVVXUH )RUFH$UHD Area M ¥ LT±L ML–1 T± r GHQVLW\
Mass Volume
M ML± L3
g DFFHOHUDWLRQ LT± h KeighW L P
rgh
336
Fundamentals of Fluid Mechanics
ML–1 T± ML± ¥ LT± ¥ L ML–1 T± GLPHQVLRQVRIOHIWVLGH GLPHQVLRQVRIULJKWVLGH ,QWKHDERYHHTXDWLRQP is a dependent variable and rg and h are variables. What are the applications of dimensional homogeneity? The applications of dimensional homogeneity are: 7R DVFHUWDLQ ZKHWKHU WKH HTXDWLRQ LV KRPRJHQHRXV WKHUHE\ ¿QGLQJ RXW ZKHWKHU WKH phenomenon is rational. 7RDVFHUWDLQWKHGLPHQVLRQVRIDYDULDEOH 7RIDFLOLWDWHHDV\FRQYHUVLRQRIXQLWVIURPRQHV\VWHPWRDQRWKHU 7RKHOSLQGLPHQVLRQDODQDO\VLVDQGPRGHOWHVWLQJ ,QÀXLGPHFKDQLFVDÀXLGSDUWLFOHLVVXEMHFWHGWRDQXPEHURIIRUFHVVXFKDVLQHUWLDIRUFH YLVFRXV IRUFH JUDYLWDWLRQDO IRUFH SUHVVXUH IRUFH VXUIDFH WHQVLRQ IRUFH DQG HODVWLF IRUFH 'LPHQVLRQOHVV SDUDPHWHUV DUH XVHIXO LQ ÀXLG PHFKDQLFV ZKHQ DQ\ RI WKH WZR IRUFHV DUH SUHGRPLQDQW +HQFH GLPHQVLRQOHVV SDUDPHWHUV DUH WKH UDWLRV RI WZR IRUFHV ZKLFK DUH predominant. The dimensionless parameters are: D Reynolds number. ,WLVWKHUDWLRRILQHUWLDIRUFHWRYLVFRXVIRUFHLQÀXLG R e
r l2V 2 mVL
rVL m b Euler’s number. ,WLVWKHUDWLRRILQHUWLDIRUFHWRSUHVVXUHIRUFHLQWKHÀXLG
E
r l 2V 2 DPL2
rV 2 DP F Weber’s number. It is the ratio of inertia force to surface tension force.
W
r l 2V 2 r V 2L sl s
What are dimensional form and non-dimensional form of homogenous equation? ,QGLPHQVLRQDOIRUPRIKRPRJHQRXVHTXDWLRQVWKHGLPHQVLRQVRIWKHOHIWVLGHDUHHTXDOWR the dimension of the right side. For example: Q
8 Cd 2 g tan q H 15
On reduction L T –1 L T –1
Dimensional Analysis
337
,Q QRQGLPHQVLRQDO IRUP RI KRPRJHQRXV HTXDWLRQV WKH OHIW VLGH DQG ULJKW VLGH KDYH QR GLPHQVLRQ )RU H[DPSOH WKH DERYH KRPRJHQHRXV HTXDWLRQ FDQ EH ZULWWHQ LQ QRQ dimensional form as:
Q g ◊H
5 /2
8 2 Cd tan q 15
6.5 METHODS OF DIMENSIONAL ANALYSIS What are different methods of dimensional analysis? 7KHUH DUH WZR PHWKRGV RI GLPHQVLRQDO DQDO\VLV YL] 5D\OHLJK¶V PHWKRG DQG %XFNLQJKDP¶VPHWKRGRU%XFNLQJKDP¶Vp–theorem. Explain dimensional analysis by Rayleigh’s method. The Rayleigh’s method is used for determining the expression for a dependent variable ZKLFK GHSHQGV XSRQ PD[LPXP WKUHH RU IRXU YDULDEOHV RU RWKHUZLVH LW EHFRPHV GL൶FXOW WR¿QGWKHH[SUHVVLRQIRUWKHGHSHQGHQWYDULDEOH,IX is a variable which is dependent on three variables X1X and XWKHQWKHH[SUHVVLRQFDQEHZULWWHQDVX fX1XX 7KLV H[SUHVVLRQFDQEHVLPSOL¿HGE\5D\OHLJK¶VPHWKRGE\ZULWLQJX m◊X1a Xb Xc where m constant and ab and c are powers. The values of ab and c can be found out by comparing fundamental dimensions of both sides. Hence the expression for dependent variable can be obtained. Prove by the method of dimensional analysis that R, the resistance to be motion of a sphere of radius r falling with a velocity V through a fluid of viscosity h is given by R = kh rV where k is a dimensional constant. Guidance: 7KHGHSHQGHQWYDULDEOHGHSHQGVXSRQWKUHHYDULDEOHVZKLFKPDNHVLWVXLWDEOH for Rayleigh’s method of dimensional analysis R μ ra ¥ rb ¥ Vc ¥ hd Putting fundamental dimensions MLT± μML± a ¥L b ¥LT1 c ¥ML–1 T–1 d MLT± μ Ma+d ¥ L±a+b+c–d ¥ T 1RZHTXDWHSRZHUVRIERWKVLGHVZHJHWWKUHHHTXDWLRQVDVXQGHU
a + d ±a + b + c – d ± ±c – d
)URPHTXDWLRQV DQG ZHFDQ¿QGWKHYDOXHVRIab and c in term of d as under a ±d b ±d c ±d
338
Fundamentals of Fluid Mechanics
Putting the values to the equation R μ r1–d r±d V±d hd
Ê n ˆ k rr V Á Ë r rV ˜¯
d
PXWWLQJ
d R kh rV State Buckingham’s theorem. What are repeating variables? How are these selected in dimensional analysis? (UPTU 2004-5) Or Describe Buckingham’s theorem? Why this theorem is considered superior to Rayleigh’s method for dimensional analysis? (UPTU 2005-6) BUCKINGHAM’S THEOREM %XFNLQJKDP¶V WKHRUHP VWDWHV WKDW LI WKHUH DUH n number of variables and m number of IXQGDPHQWDOGLPHQVLRQVLQDGLPHQVLRQDOO\KRPRJHQHRXVHTXDWLRQWKHQWKHYDULDEOHVFDQ EHDUUDQJHGLQn – m QXPEHURIGLPHQVLRQOHVVWHUPV7KHVHGLPHQVLRQOHVVWHUPVDUHFDOOHG p terms. Let X1 fXX … Xn or fX1X … Xn If there are nYDULDEOHVZLWKIXQGDPHQWDOGLPHQVLRQVWKHQWKHHTXDWLRQFDQEHZULWWHQDV fp1p … pn± Each pWHUPLVIRUPHGZLWKYDULDEOHVLQZKLFKWKUHHYDULDEOHVDUHUHSHDWLQJYDULDEOHVVD\ XX and X +HQFHp terms can be written as p1 Xa1 Xb1 Xc1 X1 p Xa Xb Xc X and so on but up to pn± Xan± Xbn± Xcn± Xn± The above equations are solved by the principle of dimensional homogeneity. When the values of p1p … pn±DUHDNQRZQWKHUHTXLUHGH[SUHVVLRQFDQEHZULWWHQDV fp1p … pn±
REPEATING VARIABLES These are variables which are selected to appear in each p term. The number of repeating variables is equal to the number of fundamental dimensions appearing in the variables of the equation. The choice of repeating variables is made on basis of the following: 7KHGHSHQGHQWYDULDEOHVVKRXOGQRWEHVHOHFWHG 9DULDEOHVKDYLQJGL൵HUHQWFDWHJRULHVRISURSHUW\LQVWHDGRIRQHVKRXOGEHVHOHFWHG)RU H[DPSOH YDULDEOHV VKRXOG EH RQH HDFK IURP JHRPHWULF SURSHUW\ OHQJWK KHLJKW DQG GLDPHWHU ÀRZSURSHUW\YHORFLW\DFFHOHUDWLRQ DQGÀXLGSURSHUW\YLVFRVLW\GHQVLW\
Dimensional Analysis
339
6KRXOGQRWEHGLPHQVLRQOHVV 6KRXOGKDYHGL൵HUHQWGLPHQVLRQV 6KRXOGKDYHVDPHQXPEHURIIXQGDPHQWDOGLPHQVLRQV Superiority of p theorem over Rayleigh’s method: The Rayleigh’s method of dimensional analysis becomes more laborious as the number of variables becomes more than fundamental dimensions. Such problem is not faced when p theorem is used. The drag force F on a partially submerged body depends on the relative velocity V between the body and the fluid, characteristics linear dimension l, height of surface roughness k, fluid density r, the viscosity m and the acceleration due to gravity (g). Obtain an expression for the drag force using the method of dimensional analysis. (UPTU 2001-2) Guidance: 7KHUH DUH VL[ YDULDEOHV ZKLFK VXJJHVW WR XVH %XFNLQJKDP¶V p theorem for solving the expression. Let the expression be f FlkVmrg
7RWDOQXPEHURIYDULDEOHVm 7RWDOQXPEHURIIXQGDPHQWDOGLPHQVLRQn ML & T
Number of pWHUPV ± Each p term consists of MYDULDEOHVLH We select repeating variables as LV and r. p1 La1 Vb1 rc1 F
\
p La Vb rc m p La Vb rc g p La Vb rc k 1RZ
p1 La1LT–1 b1ML± c1MLT± MLT La1+b±c1+1 Mc1+1 T–b± –b1± RUb1 ± + c1 RUc1 ± a1 + b1±c1 RUa1 ± p1 L± V±± rF
\
F r L2V 2
p La Vb rcm
1RZ
LaLT–1 bML± c2ML–1 T–1
340
Fundamentals of Fluid Mechanics
MLT Lab±c± Mc T –b± c RUc ±
\
–b± RUb ± a + b±c± RUa ± p L–1 V–1 r–1 m
\ 1RZ
m LV r
p La Vb rc g MLT LaLT–1 bML± cLT± Lab±c Mc T–b± c
\
–b± RUb ± a + b±c RUa p L1 V± g 1RZ
L g V2
p La Vb rc k p LaLT–1 bML± c L
Lab±c Mc T–b
\
c b a ±
\
p L–1 k
k L
f p1ppp
Ê F m L kˆ , 2 g , ˜ fÁ 2 2, L¯ Ë r L V LV r V F Ê m Lg k ˆ f Á , , r L2 V 2 Ë LV r V 2 L ˜¯ or
Ê m Lg k ˆ , , F rLV ¥ f Á Ë LV r V 2 L ˜¯
Show by p theorem that a general equation for discharge Q over a weir of any shape is given by ⎛ 5 1 n s ⎞ Q = H 2 g 2 f ⎜ 2/ 3 1/ 2 2 ⎟ H gr ⎠ ⎝H g
Dimensional Analysis
341
where H = head over weir, n = kinematic viscosity, r = density of the fluid g = acceleration due to gravity and s = surface tension. (UPTU 2006-7) FQHrngs Select Hr and g as repeating variables. +HQFHZHZLOOKDYHM YDULDEOHVLQHDFKp term and there will n – m ± p terms p1 Ha1gb1rc1Q
La1LT± b1ML± c1 L T–1
La+b±c Mc T±b–1 c1 b1
\
-1 and a1 ± 2
\
p1 H± g± Q
1RZ
p Ha gb rc n
Q H g1/2 5 /2
LaLT± bML± c LT–1
Lab±c Mc T±b± \
c b ±DQGa ±
\
p
H± g± n
p Ha gb rc s
LaLT± bML± cMT±
Lab±c T±b± Mc
\
c ±b ±DQGa ± p H± g–1 r–1 s
Ê n s ˆ Q F Á 5/2 1/2 , 3/2 1/2 , 2 ˜ H g H gr ¯ ËH g Q Ê n s ˆ f Á 3/2 1/2 , 2 ˜ H 5/2 g1/2 H gr ¯ ËH g Ê n s ˆ Q H g f Á 3/2 1/2 , 2 ˜ H gr ¯ ËH g
342
Fundamentals of Fluid Mechanics
6.6 DIMENSIONLESS NUMBERS What do you mean by dimensionless numbers? Derive an expression for any two dimensionless numbers. (UPTU 2002-3, 2007-08) Or What is the importance of dimensionless numbers? Derive their expressions and write their applications. $ÀXLGLVJHQHUDOO\VXEMHFWHGWRYDULRXVIRUFHVVXFKDV LQHUWLDIRUFH YLVFRXVIRUFH JUDYLWDWLRQDOIRUFH ඉUHVVXUHIRUFH VXUIDFHWHQVLRQIRUFHDQG HODVWLFIRUFH7KH ratio of any two forces is a dimensionless parameter. These parameters have great physical VLJQL¿FDQFHDVÀXLGVKDYLQJVDPHSDUDPHWHUKDYHG\QDPLFDOVLPLODULW\7KHPRVWLPSRUWDQW GLPHQVLRQOHVVQXPEHUVDUH 5H\QROGVQXPEHU )URXGH¶VQXPEHU (XOHU¶VQXPEHU 0DFK¶VQXPEHUDQG :HEHU¶VQXPEHU Reynolds Number: ,I LQHUWLD IRUFH DQG YLVFRXV IRUFH DUH SUHGRPLQDQW LQ DQ\ ÀRZ SKHQRPHQRQWKHQ5H\QROGVQXPEHULVXVHGWRFRPSDUHPRGHODQGSURWRW\SH5H\QROGV number is the ratio of inertia force to the viscous force. R e
Inertia force Viscous force
,QHUWLDIRUFH PDVV¥ acceleration YROXPH¥ density ¥ acceleration
L ¥ r ¥ LT± 2
Ê Lˆ ÁË T ˜¯ ¥ L ¥ r but
VLr 9LVFRXVIRUFH 7HQVLRQ¥ area
m
dV ¥ area dy
m
LT -1 ¥ L L
mL T–1 mVL \
R e
L2V 2r mVL LV r m
L V 9HORFLW\ T
Dimensional Analysis
5H\QROGVQXPEHULVXVHGIRUVWXG\RI PRWLRQRIFRPSOHWHO\VXEPHUJHGERGLHVOLNH VXEPDULQHV DHURSODQHV DQG DXWRPRWLYHV DQG LQFRPSUHVVLEOH ÀRZ WKURXJK SLSHV bends and turbines in which inertia and viscous forces are predominant. Froude’s Number: Froude’s number is used where inertia and gravitational forces are predominant. It is the square root of the ratio of inertia force to the gravitational force. ,QHUWLDIRUFH PDVV¥ acceleration VLr *UDYLWDWLRQDOIRUFH PDVV¥ g YROXPH¥ r ¥ g Lrg F
Inertia force Gravitational force
V 2 L2r L3r g
V2 Lg
343
V L◊ g
)URXGH¶V QXPEHU LV XVHG IRU WKH VWXG\ RI ÀXLG ÀRZ IURP RSHQ K\GUDXOLF VWUXFWXUHV VXFK DV VSLOOZD\V ZHLUV VOXLFHV DQG RSHQ FKDQQHOV ZKHUH JUDYLWDWLRQDO IRUFHV DUH predominant. Weber’s number: It is the square root of the ratio of the inertial force to the surface WHQVLRQIRUFHLQWKHÀXLG W
Inertia force Surface tension force
IQHUWLDIRUFH VLr 6XUIDFHWHQVLRQIRUFH s ¥ L W
V 2 L2r sL V s rL
344
Fundamentals of Fluid Mechanics
7KH:HEHU¶VQXPEHULVXVHGIRUWKHVWXG\RI FDSLOODU\PRYHPHQWRIZDWHULQVRLODQG ÀRZRIEORRGLQDUWHULHVDQGYHLQVZKHQWKHVXUIDFHWHQVLRQIRUFHVDUHSUHGRPLQDQW LQWKHÀRZ Euler’s number: It is the square root of the ratio of inertia force to the pressure force LQWKHÀXLG E
Inertia force Pressure force
,QHUWLDIRUFH VLr 3UHVVXUHIRUFH P◊A PL E
V P r
7KH(XOHU¶VQXPEHULVXVHGIRUWKHVWXG\RIÀXLGZKHUHSUHVVXUHIRUFHLVSUHGRPLQDQW VXFKDV ZDWHUKDPPHUH൵HFWVLQSHQVWRFNVRIK\GURSRZHUSODQWVDQG GLVFKDUJH FRH൶FLHQWVRIRUL¿FHVVOXLFHJDWHVDQGPRXWKSLHFHV Mach’s Number: (ODVWLFIRUFHEHFRPHVSUHGRPLQDQWLQFRPSUHVVLEOHÀXLGV0DFK¶V QXPEHULVVLJQL¿FDQWLQ¿QGLQJG\QDPLFDOVLPLODULW\RIWKHÀXLGVZKHUHHODVWLFIRUFHV are predominant. Mach’s number is the square root of the ratio of inertia force to the HODVWLFIRUFHLQWKHÀXLG M
V 2 L2r PL2
Inertia force Elastic force
V 2 L2r ZKHUHE 9ROXPHWULFPRGXOXVRIHODVWLFLW\ E ¥ L2
rV 2 E
M
V E r
0DFK¶VQXPEHULVXVHGIRUWKHVWXG\RIÀRZDWKLJKVSHHGVXFKDV ÀRZLQSLSHV ZDWHUKDPPHUH൵HFWDQG KLJKVSHHGPRWLRQREMHFWVOLNHDHURSODQHVSURMHFWLYH and missiles in atmosphere where the elastic forces are predominant.
Dimensional Analysis
345
Develop an expression for the distance travelled by a freely falling body in time (T). Take it to be dependent on mass of the body, the acceleration of gravity and time. Guidance: 7KHUHDUHYDULDEOHVYL]GLVWDQFHS PDVVM DFFHOHUDWLRQg DQGWLPHT +HQFHZHFDQXVH5D\OHLJK¶VPHWKRGRIGLPHQVLRQDODQDO\VLV S fMgT 1
M L T k ¥ Ma ¥LT± b ¥T c 1
a b
M L T M L T \
where k FRQVWDQW
±b+c
a b c
\ S k g T Derive an expression for an ideal fluid flow (Q ZKLOH IORZLQJ WKURXJK DQ RUL¿FH ZKLFKLVGHSHQGHQWRQWKHGHQVLW\RIIOXLGWKHGLDPHWHURIWKHRUL¿FHDQGWKHSUHVVXUH difference. Q frDP k ra Db Pc
MLT–1 kML± aL bML–1T± c k Ma+c L±a+b–c T±c
1 a + b RUa ±±a + b – c ± 2
\
c
or
b Q k r± D P kD
P r
Derive an expression for the power delivered to a pump which is dependent on the sp. wt. of the fluid, the flow and the head delivered.
3RZHUGHOLYHUHG P fvQH MLT± kML± T± aL T–1 bL c kMa L±ab+c T±a–b \ \
a b c P k VQH
8VLQJ GLPHQVLRQDO DQDO\VLV ¿QG WKH H[SUHVVLRQ RI G\QDPLF SUHVVXUH H[HUWHG E\ D flowing incompressible fluid on an immersed object if it is dependent on density and velocity. 3UHVVXUH P frV or
P k ra Vb
346
Fundamentals of Fluid Mechanics a
Ê Mˆ Ê Lˆ ML–1 T ± k Á 3 ˜ Á ˜ Ë L ¯ ËT¯
b
k M a L±a+b T –b \ b a \ P krV Using p theorem show that the shear stress of the pipe wall is given by
Ê r Vd ˆ t = rV2 f Á Ë m ˜¯ where,
r = fluid density, m = viscosity, V = average velocity, d = diameter of pipe
The relationship can be expressed as ftrmVd
+HUHm DQGn +HQFHWKHUHZLOOEHWZRp terms with each p term having four variables. Select dV & r as repeated variables \ \
p1 da Vb rc ¥ t MLT LaLT–1 bML± c MLT± Mc+1 La+b±c+1 T–b±
\
c ±b ±DQGa p1 d V± r–1 t
1RZ
t V 2r
p da Vb rc m LaLT–1 bML± c ML–1 T–1 MLT Mc+1 La+b±c–1 T–b–1 b ±c ±DQGa ±
\
p d–1 V–1 r–1 m
Ê t m ˆ f Á 2 , Ë V r dV r ˜¯
m dV r
Dimensional Analysis
347
Ê m ˆ t f Á V 2r Ë dV r ˜¯
or
Ê m ˆ t Vr f Á Ë dV r ˜¯
or
Assuming that thrust T of a screw propeller is dependent upon the diameter d, speed of advance V, fluid density r, revolution per second n and coefficient of viscosity m, show using the principle of dimensional homogeneity that it can be represented by
Ê m d ◊nˆ , T = rd2V2 f Á Ë rVd V ˜¯ (Allahabad University) Let the expression be given by FTrdVmn +HUHm DQGn +HQFHWKHUHZLOOEHWKUHHp terms and each p term will have four variables. Select rV & d as repeated variables p1 ra Vb dcT ML± aLT–1 bL c MLT± MLT Ma+1 L±a+b+c+1 T–b± a ±b ±DQGc ±
\
p1 r–1 V– d± T p ra Vb dc m
NRZ
ML± aLT–1 bL c ML–1 T–1 MLT Ma+1 L±a+b+c–1 T–b–1 a ±b ±DQGc ±
\
p r–1 V–1 d–1 m
\
m rVd
p ra Vb dc r
1RZ
\
T rV 2 d 2
ML± aLT–1 bL c T–1
Ma L±a+b+c T–b–1 a b ±c p V–1 d1 n
d ◊n V
348
Fundamentals of Fluid Mechanics
m d ◊nˆ Ê T , , FÁ 2 2 Ë rV d rVd V ˜¯ or
T rV 2 d 2
Ê m dn ˆ , f Á Ë rVd V ¯˜
Ê m dn ˆ , T rV d f Á Ë rVd V ¯˜ Show by the method of dimensional analysis that the volume rate of flow of a gas WKURXJKDVKDUSHGJHRUL¿FHLVJLYHQE\ Q = d2
P ÊV fÁ ¥ r Ëd
Pˆ r ˜¯
where dLVWKHGLDPHWHURIWKHRUL¿FHr is the pressure difference between the two sides RIWKHRUL¿FHr and V are the density and kinematic viscosity of the gas respectively. Let the expression be given by FQdPrV Here m DQGn +HQFHWKHUHZLOOEHWZRp terms and each will have four variables. Select dP and r as repeated variables. p1 da pb rc Q L aML–1 T± bML± c LT–1 MLT Mb+c La–b±c T±b–1 \
b
1 -1 c and a ± 2 2
\
p1 d± P± r Q
NRZ
p da Pb rc v L aML–1 T± bML± c LT–1 MLT Mb+c La–b±c T±b–1
\
b ±c
1 and a ± 2
p d–1 P± r v
V r ◊ d P
Ê Q V , FÁ Á d2 P d ÁË r
Pˆ r ˜˜ ˜¯
Dimensional Analysis
P ÊV f r ÁË d
Q d
or
349
Pˆ r ˜¯
Prove by the method of dimensions that in the rotation of similar discs in fluid with turbulent motion, the frictional torque T of a disc diameter D rotating at speed N, in a fluid of viscosity m and density r.
Ê m ˆ T = D 2N 2r f Á 2 Ë D N r ˜¯ Let the expression be FTDNrm +HUHm DQGn +HQFHWKHUHDUHWZRp terms and each p term has four variables p1 Da Nb rc T L aT–1 bML± c ML T±
MLT Mc+1 La±c T–b± c ±b ±DQGa ±
\
p 1
T D N 2r 2
p Da Nb rcm
NRZ
L aT–1 bML± c Mc–1 T–1 MLT Mc+1 La±c–1 T–b–1
\
c ±b ±a p
m D Nr 2
\
m ˆ Ê T F Á 2 2 , 2 ˜ Ë D N r D Nr ¯
or
Ê m ˆ T DNr f Á 2 ˜ Ë D Nr ¯
In turbomachinery, the relevant parameters are volume flow rate, density, viscosity, bulk modulus, pressure difference, power consumption, rotation speed and a characteristic dimension. According to Buckingham’s pi(p) theorem, the number of independent non-dimensional groups for this case is (a) 3 (b) 4 (c) 5 (d) 6 (IES 93)
350
Fundamentals of Fluid Mechanics
+HUHWRWDOQXPEHUVRIYDULDEOHVm 1XPEHURISULPDU\GLPHQVLRQn +HQFHQXPEHURILQGHSHQGHQWQRQGLPHQVLRQDOJURXSV m – n ± 2SWLRQF LVFRUUHFW 8VLQJ %XFNLQJKDP¶V pWKHRUHP VKRZ WKDW WKH YHORFLW\ WKURXJK D FLUFXODU RUL¿FH LV given by ⎛D m ⎞ V 2 g H fn ⎜ ⎝ H rVH ⎟⎠ where,
H +HDGFDXVLQJÀRZ D 'LDPHWHURIWKHRUL¿FH m = Coefficient of viscosity r = Mass density g = Acceleration due to gravity
:HKDYH V fHDmrg or FVHDmrg Select Hg and r as repeating variables \ m ZKLOH n \ Variables in each p term will be n – m ± \
p1 Ha1 ◊ gb1 ◊ rc1 ◊ V p Ha ◊ gb ◊ rc ◊ D
p H a1 ◊ g b1 ◊ r c ◊ m Now putting dimensions in p1ZHKDYH MLT L a1LT± b1ML c1LT–1 Equating the power of ML and r on boWKVLGHVZHKDYH c1 a1 ± b1 ± \
p1 H
or
p1
-
1 2
. g± . r . V
V H◊g
Putting now dimensions in pZHKDYH MLT L aLT± bML± cL
(UPTU 2006-7)
Dimensional Analysis
Equating the powers of c a b p
ML and rRQERWKVLGHVZHKDYH ± H–1 g r D
D H
Putting now dimensions in pZHKDYH M L T La ◊ gb ◊ rc ◊ m Equating the power of ML and tRQERWKVLGHVZHKDYH c ± a -
3 2
b ± \
p H± ◊ g± ◊ P–1 ◊ m m r ⋅ H ⋅ g m ¥ V ⋅H ⋅r
p1 ¥
V gH
m V ⋅H ⋅r
\
F p1pp
or
⎛ V D m ⎞ p1 × F⎜ ⎟ VH r ⎠ ⎝ gH H
or
⎛ V D m ⎞ F⎜ ⎟ ⎝ gH H VH r ⎠
or
or
V
⎛D m ⎞ f ⎜ gH ⎝ H VH r ⎟⎠
⎛D m ⎞ V gH f ⎜ ⎝ H rVH ⎟⎠ ⎛D m ⎞ 2 gH fn ⎜ ⎝ H rVH ⎟⎠
351
352
Fundamentals of Fluid Mechanics
6.7 QUESTIONS FROM COMPETITIVE EXAMINATIONS The drag force D on a certain object in a certain flow is a function of the coefficient of viscosity m, the flow speed n and the body dimension L (for geometrical similar objectives), then D is proportion to 2 2 (a) L × m × v (b) μ ⋅V L2 (d) μ⋅ L V
(c) m2V2L2
(IAS 2001)
D is function of m n and L 2SWLRQD LVFRUUHFW If the number of fundamental dimensions is equal to m, then the repeating variables shall be equal to (a) m and none of the repeating variables shall represent the dependent variable (b) m + 1 and one of the repeating variables shall represent the dependent (c) m + 1 and none of the repeating variables shall represent the dependent variable (d) m and one of the repeated variables shall represent the dependent variable (GATE 2002, IES 1998, 1999) 2SWLRQF LVFRUUHFW The dimensionless group formed by wavelength O, density of fluid r, acceleration due to gravity (g) and surface tension s, (a)
σ λ 2 gρ
(b)
σ λg 2 ρ
(c)
σ⋅ g λ 2ρ
(d)
σ λ ⋅ g ⋅σ
salbgcrd 0LT
MT ± aL bLT± cML± d MLT
M a+dL b+c±dT ±a±c MLT \ a + d RUa ±d7DNHa d ± b + c±d RUb + c RUb + c ± ±a±c RU±C ±DQGb ± \
salbgcrd s × l± × g–1 × r–1
2SWLRQD LVFRUUHFW
σ λ ⋅ g ⋅σ
(IES 2000)
Dimensional Analysis
353
Match List-I (Fluid parameters) with List-II (Basic dimensions) and select the correct answer List-I (a) Dynamic viscosity (b) Chezy’s roughness coefficient (c) Bulk modulus of elasticity
List-II 1. M/T2 2. M/LT2 3. M/LT
(d) Surface tension Code: A B (a) 3 2 (b) 1 4 (c) 3 4 (d) 1 2
4. C 4 ? 2 4
L/T
D 1 3 1 3
(IES 2002)
OSWLRQF LVFRUUHFW In M-L-T system, what is the dimension of sp speed for a rotodynamic pump? 1
1
(a) L–3/4 T 3/2
(b) M 2 L4 T – 5/ 2
(c) L3/4 T–3/2
(b) L3/4 T3/2 N
(IES 2006)
n Q T ± L T = H L
L
−
×T
−1 −
Lu T± 2SWLRQF LVFRUUHFW A dimensionless group formed with the variables r (density), Z (angular velocity), m (dynamic viscosity) and D (characteristic diameter) is (a)
ρωμ D
(b)
(c) rZmD2
(d) r◊Z◊m◊D
Let F ρa ⋅ D b ⋅μ c ⋅ω = M L T or ML± a ◊L b ◊ML–1T –1 c ◊T –1 MLT On solving a b DQGc ± \ OSWLRQE LVFRUUHFW
ρ⋅ω⋅ D μ
F
ρ⋅ω⋅ D μ
(IES 1995)
354
Fundamentals of Fluid Mechanics
:KLFKRIWKHIROORZLQJLVQRWDGLPHQVLRQOHVVJURXS" (a)
ΔP ρN 2 D 2
(b)
gH N 2 D2
(c)
ρ⋅ wD 2 μ
(d)
ΔP ρV 3
(IES 1992)
OSWLRQG LVFRUUHFW Which is the correct dimensionless group formed with the variable r (density), N (rotational speed), d (diameter) and p (coefficient of viscosity)? (a)
ρNd 2 π
(b) ρ⋅ N ⋅ d π
(c)
Nd ρ⋅π
(d)
Nd 2 ρ⋅π
(IES 2009)
OSWLRQD LVFRUUHFW In a steady flow through a nozzle, the flow velocity on the nozzle axis is given by V = μ o ⎛⎜ 1 + 3 x ⎞⎟ i , where x is distance along the axis of the nozzle from its inlet plane ⎝ I L⎠
and L is the length of the nozzle. The time required for a fluid particle on the axis to travel from the inlet to the exit plane of the nozzle is (a)
L μo
(b)
1 log e 4 3μ o
(c)
L 4μ o
(d)
L 2.5 μ o
(GATE 2007)
dx μ ⎛1 + x ⎞ ⎟ o ⎜ ⎝ L⎠ dt
or
dx x 1+ L
mo dt
2QLQWHJUDWLRQZHJHW
∫
L
t dx ∫ μ o dt x L+ L L
or
L⎡ x ⎤ mo × t ⎢log e ⎛⎜1 + ⎞⎟ ⎥ ⎝ ⎣ ⎠ ⎦
Dimensional Analysis
or
L × ORJ e
t
L ORJ e μ o
355
OSWLRQE LVFRUUHFW 7KH5H\QROGVQXPEHUIRUIORZRIDFHUWDLQIOXLGLQDFLUFXODUWXEHLVVSHFL¿HGDV What will be the Reynolds number when the tube diameter is increased by 25% and the fluid viscosity is decreased by 40% keeping the fluid same (a) 1200
(b) 1800
(c) 3000
(d) 200
Reynolds numEHURe or
(GATE 1997)
ρ ⋅V ⋅ D μ R′e
ρ × V D μ
îî The square root of the ratio of inertia force to gravity force is called (a) Reynolds number
(b) Froude’s number
(c) Mach’s number
(d) Euler’s number (IAS 2003, GATE 1994)
2SWLRQE LVFRUUHFW
Given power P of a pump, the head H and the discharge Q and the sp wt. W of the liquid, dimensionless analysis would lead to the result that P is proportional to (a) H1/2 Q2W
(b) H1/2 W
(c) HQ1/2W
(d) H◊Q◊W P μ H a Qb W MLT ± μ L aLT –1 b ML±T ± μ Lab± ◊ M ◊ T–b±
ab± DQG± ±b± or
or 2SWLRQG LVFRUUHFW
a RUb P μ HQW
(IES 1998)
356
Fundamentals of Fluid Mechanics
Volumetric flow rate Q, acceleration due to gravity g and H form a dimensionless group, which is given by Q g⋅H (b) (a) Q gH 5 (c)
Q gH
(d)
3
Q g2 H
(IES 2002)
F MLT Q ◊ ga ◊ Hb LT –1 1 ◊L ◊ T ± a ◊ Lb 0 ◊ La+b± a
−1 b
−
F Qg± H±
Q gH
2SWLRQE LVFRUUHFW The time period of a simple pendulum depends on its effective length l and the local acceleration due to gravity g. What is the number of dimensionless parameter involved? (a) two (b) one (c) three (d) zero (IES 2009) Here n LQFOXGHVL WLPHSHULRGLL OHQJWKDQGLLL g m LQFOXGHVL OHQJWKDQGLL WLPH Dimensionless terms or p terms are n – m ± 2SWLRQE LVFRUUHFW In fluid mechanics, the relevant parameters are volume, flow rate, density, viscosity, bulk modulus, pressure difference, power consumption, rotational speed and characteristic dimension. Using Buckingham S theorem, what would be the number of independent non-dimensional group? (a) 3 (b) 4 (c) 5 (d) None of the above (IES 1993, 2007) 1RRIYDULDEOHn 1RRILQGHSHQGHQWGLPHQVLRQm No. of pWHUPV n – m ± 2SWLRQF LVFRUUHFW
Dimensional Analysis
357
Consider the following statements: 1. Dimensional analysis is used to determine the number of variables involved in a certain phenomenon. 2. The group of repeating variables in dimensional analysis should include all the fundamental units. 3. Buckingham’s p theorem stipulates the number of dimensionless group for a given phenomenon. 4. The coefficient in Chezy’s equation has no dimension. Which of these are correct? (a) 1, 2, 3, and 4 (b) 2, 3, and 4 (c) 1 and 4 (d) 2 and 3 (IES 2003) 2SWLRQG LVFRUUHFW The variables controlling the motion of a floating vessel through water are drag force F, the speed V, the length l, the density U, dynamic viscosity m of water and gravitational constant g. If non-dimensional groups are Reynolds number (Re), Weber’s number (We), Prandtl’s number (Pr) and Froude’s number (Fr), the expression F is given by (a)
F = f ρV 2 l 2
(b)
F = f R e , Pr ρV 2 l 2
(c)
F = f (R e We ) ρV 2 l 2
(d)
F = f (R e , Fr ) ρV 2 l 2
(IES 1997)
OSWLRQG LVFRUUHFW (XOHUQXPEHULVGH¿QHGDVWKHUDWLRRILQHUWLDIRUFHWR
(a) Viscous force (b) Elastic force (c) Pressure force (d) Gravity force (IES 1997) 2SWLRQF LVFRUUHFW :KLFKRQHRIWKHGLPHQVLRQOHVVQXPEHULGHQWL¿HVWKHFRPSUHVVLELOLW\HIIHFWRIDIOXLG" (a) Euler’s number (b) Froude’s number (c) Mach’s number (d) Weber’s number (IES 2005) 2SWLRQF LVFRUUHFW A phenomenon is modeled using n dimensional variables with k primary dimensions. The number of non-dimensional variable is
(a) k (c) n – k 2SWLRQF LVFRUUHFW
(b) n (d) n + k
(GATE 2012)
Chapter
7
SIMILITUDE AND MODEL ANALYSIS
KEYWORDS AND TOPICS PROTOTYPE
SIMILARITY LAW
MODEL
MODEL LAW
MODEL TESTING
REYNOLDS MODEL LAW
MODEL ANALYSIS
FROUDE’S MODEL LAW
HYDRAULIC SIMILITUDE
EULER’S MODEL LAW
GEOMETRIC SIMILARITY
WEBER’S MODEL LAW
KINEMATIC SIMILARITY
MACH’S MODEL LAW
DYNAMIC SIMILARITY
DISTORTED MODEL
7.1 INTRODUCTION The behaviour of the hydraulic structures and machines can be predicted by performing tests on their models. Since prototypes are costly as compared to the models, any failure of model does not therefore involve much loss of material and human labour. Geometric similarity implies similarity of shape between the model and prototype. Kinematic similarity means the similarity of motion. Dynamic similarity implies that the forces acting on the matching points of the prototype and its model are equal in magnitude and direction. Model testing is used in design of (i) aeroplanes, rockets and missiles, (ii) harbours, (iii) ships and submarines, (iv) skyscrapers, Y WXUELQHV SXPSV DQG FRPSUHVVRUV YL GDPV ZHLUV VSLOOZD\V DQG FDQDOV DQG YLL ÀRRG control measures.
7.2 MODEL AND PROTOTYPE What is a model? A model is small-scale replica of the actual machine or structure.
Similitude and Model Analysis
359
What is a prototype? The actual structure or machine is called prototype. Can a model be bigger than its prototype? It is not necessary that the models should be smaller than the prototypes. However, in most of cases, models are smaller than prototypes. What is the model analysis? Or :KDWLVWKHGL൵HUHQFHEHWZHHQDPRGHODQGSURWRW\SH" (UPTU 2006-7) It can be appreciated that when hydraulic structure or machine has been built, it becomes GL൶FXOWWRPRGLI\LWWRPHHWWKHGHVLUHGUHTXLUHPHQWV,QRUGHUWRSUHGLFWWKHSHUIRUPDQFH of hydraulic structures or machines before they are built, it is advantageous to make their models and perform experiments on them to see that the performance is as required. In case any changes are necessary to modify the performance, it is very convenient to incorporate LQ WKH PRGHO +HQFH PRGHO PDNLQJ DQG PRGHO DQDO\VLV DQ XVHIXO WHFKQLTXH LQ WKH ÀXLG machines. ([SODLQH[SHULPHQWDOPRGHOWHVWLQJRUZLQGWXQQHOWHVWLQJ A prototype of tractor-trailer unit is to be manufactured and there is a need to measure the drag fore before it is manufactured. A model of smaller size (say 1 : 16 scale) with length about 0.901 metre which is geometrically similar to the prototype is made and tested in a ZLQGWXQQHOZLWKPD[LPXPVSHHGRIPVDVVKRZQLQ¿JXUH7KHDLULQZLQGWXQQHOLV DWWKHVDPHWHPSHUDWXUHDQGSUHVVXUHDVWKHDLUÀRZLQJDURXQGSURWRW\SH%\HQVXULQJDLU velocity of 70 m/s in testing, it has been ensured that air velocity of 60 kmph or 26.8 m/s with resultant drag force would be acting on the prototype.
Model Testing in a Wind Tunnel
What are the advantages of model testing? The advantages of model testing are: (1) The behaviour and performance of the structures or machines can be predicted by performing tests on their models. Since prototypes are costly as compared to the models, any failure of model does not involve much loss of material and human labour.
360
Fundamentals of Fluid Mechanics
(2) It is possible to make models of a prototype based on alternative designs which facilitates selecting most economical, safe and sound design of the prototype. (3) Safety and reliability of a structure or machine can be ascertained by model testing before actually constructing or putting into the use of the prototype. (4) Model testing also helps in identifying the defects in existing structure or machines. :KLFKDUHWKH¿HOGVZKHUHPRGHOWHVWLQJFDQEHXVHG"
0RGHOWHVWLQJLVXVHGLQWKHIROORZLQJ¿HOGV (1) Design of aeroplane, rockets and missiles. The models are tested in wind tunnels by VXEMHFWLQJWKHPWRVLPLODUDLUÀRZ (2) Design of harbour (3) Design of ships and submarines by testing their models (4) Design of skyscrapers by subjecting their models to wind loads (5) Design of irrigation channels (6) Design of turbines, pumps and compressors (7) Design of civil engineering structures such as dams, weirs, spillways, and canals
'HVLJQRIÀRRGFRQWUROPHDVXUHV
7.3 HYDRAULIC SIMILITUDE :KDWLVK\GUDXOLFVLPLOLWXGH" For ascertaining the soundness and performance of the hydraulic structure or machine, it is most essential that model should represent its prototype completely in all aspects. This similarity between the prototype and its model is known as hydraulic similitude. :KDWLVWKHRXWFRPHRIWKHK\GUDXOLFVLPLOLWXGH" The outcome of hydraulic similitude is that the results of model tests can be successfully applied to the prototype of the hydraulic structure or machine. Similitude helps us to assume WKDWWKHÀRZVRIWKHÀXLGDUHPHFKDQLFDOO\VLPLODUIRUERWKSURWRW\SHDQGLWVPRGHO :KDWDUHWKHGL൵HUHQWVLPLODULWLHVZKLFKVKRXOGH[LVWEHWZHHQPRGHOVDQGSURWRW\SHV" Or 'LVFXVV JHRPHWULF NLQHPDWLF DQG G\QDPLF VLPLODULWLHV $UH WKHVH VLPLODULWLHV WUXO\ (UPTU 2005-6) DWWDLQDEOH",IQRWZK\" Models must reproduce the behaviour of the prototype. Hence, it must possess the following similarities: (1) Geometric similarity (2) Kinematic similarity (3) Dynamic similarity $PRGHOZKLFKVDWLV¿HVDOOWKHDERYHVLPLODULWLHVZLWKLWVSURWRW\SHLVNQRZQDVFRPSOHWHO\ similar and true model.
Similitude and Model Analysis
361
In practice, it is not possible to achieve complete similarity in models. It is, therefore, common to consider only those forces which are predominant in a phenomenon and design WKHPRGHOVXFKWKDWWKHVDPHIRUFHVLQÀXHQFHWKHÀRZSKHQRPHQRQLQWKHPRGHODOVR7KH H൵HFWV RI DOO RWKHU IRUFHV ZKLFK DUH LQVLJQL¿FDQW DUH HLWKHU QHJOHFWHG RU FRQVLGHUHG E\ D correction factor based on experimentation.
7.4 GEOMETRIC SIMILARITY :KDWLVJHRPHWULFVLPLODULW\" Geometric similarity implies similarity of shape between the model and prototype. The model is an exact replica of the prototype having identical shape but smaller in size. The model and prototype have same ratio for all corresponding linear dimensions but all included angles are same. For geometric similarity,
hp hm
=
Wp Wm
=
Lp Lm
= Ls = length scale
And angle aP = aM = 60° in this case
Similarity leads to: (1) Area scale ratio: As =
Ap Am
(2) Volume scale ratio: Vs =
=
Vp Vm
Lp ¥ Wp Lm ¥ Wm
=
= Ls2
Ls ¥ W p ¥ hp Lm ¥ Wm ¥ hm
= Ls3
362
Fundamentals of Fluid Mechanics
7.5 KINEMATIC SIMILARITY :KDWLVNLQHPDWLFVLPLODULW\" Kinematic similarity means the similarity of motion. For obtaining similarity of motion, both the model and its prototype must produce identical time rates of change of motion. In RWKHUZRUGVWKHUDWLRRIYHORFLWLHVDQGDFFHOHUDWLRQVRIDÀXLGSDUWLFOHDWFHUWDLQSRLQWVLQ the model and at the matching point of prototype must be same in magnitude and direction. For kinematic similarity, we must have: (1) Same velocity ratio, Vs =
Vp Vm
(2) Same acceleration ratio, as =
ap am
(3) Same direction of velocity VP Vm
Prototype
Model
7.6 DYNAMIC SIMILARITY :KDWLVG\QDPLFVLPLODULW\" $0,( The dynamic similarity implies that the forces acting on the matching points of the prototype and its model are equal in magnitude and direction. Dynamic similarity can be said to exist EHWZHHQWKHPRGHODQGLWVSURWRW\SHLIWKHUDWLRVRIDOOIRUFHVDFWLQJRQFRUUHVSRQGLQJÀXLG particles or corresponding boundary surfaces of the model and prototype are identical. Both geometric and kinematic similarities are prerequisites for dynamic similarity. For dynamic similarity: (a) Same force ratio, Fs =
Fp Fm
(b) Same direction of forces.
Similitude and Model Analysis
363
WP FP RP
Fm
Prototype
Wm Rm Model
Fs =
Fp Fm
=
Wp Wm
=
Rp Pm
'\QDPLFVLPLODULW\LVWKHVLPLODULW\RIIRUFHV([SODLQYDULRXVIRUFHVDFWLQJRQDIOXLG HOHPHQW In dynamically similar systems, the magnitude of forces at the corresponding similar points in HDFKV\VWHPSURWRW\SHDQGPRGHO DUHLQD¿[HGUDWLR,QDV\VWHPLQYROYLQJÀXLGÀRZGL൵HUHQW IRUFHVGXHWRGL൵HUHQWFDXVHVPD\DFWRQDÀXLGHOHPHQW7KHVHIRUFHVDUHDVSHU7DEOH Table 7.1 'LႇHUHQWIRUFHVDFWLQJRQÀXLGHOHPHQW S. No.
Force
Cause of Force
Force Parameters
1.
9LVFRXVIRUFH
9LVFRVLW\
FV μ m ◊v ◊l
2.
3UHVVXUHIRUFH
3UHVVXUHGLႇHUHQFH
FP μ DP ◊l 2
3.
*UDYLW\IRUFH
*UDYLWDWLRQDODWWUDFWLRQ
Fg μ r◊ l 3 ◊ g
4.
&DSLOODU\IRUFHRUVXUIDFH WHQVLRQIRUFH
6XUIDFHWHQVLRQ
Fs μ s ◊l
5.
&RPSUHVVLELOLW\RU HODVWLFIRUFH
(ODVWLFLW\
Fe μ E ◊l 2
6.
,QHUWLDIRUFH
$FFHOHUDWLRQ
FL μ r◊ l 2 ◊V 2
1. ,QHUWLD )RUFH 7KH LQHUWLD IRUFH DFWLQJ RQ D ÀXLG HOHPHQW LV HTXDO WR WKH PDVV RI WKH element multiplied by its acceleration & 3 Fi = m ¥ a = rl ¥ a a=
V V V2 = = t l /V l
& V2 = r◊ l 2 ◊V 2 Fi = (r◊ l 3 ) ¥ l
364
Fundamentals of Fluid Mechanics Inertia force (man-falling backward)
Accerlation
& 9LVFRXV)RUFH ( FV ) 7KHYLVFRXVIRUFHDULVHVIURPVKHDUVWUHVVLQDÀRZRIÀXLG9LVFRXV force can be written, & ( FV ) = Shear stress ¥ Surface area The shear stress, t = viscosity ¥ rate of shear strain ÊV ˆ μ m ¥ velocity gradient Á ˜ Ël¯ 7KHYLVFRXVIRUFHFDQEHVLPSOL¿HG FV μ m◊
V 2 ◊l l
μ m◊V ◊ l Moving plate Viscous force (FV)
V Applied force
l
Viscous fluid (m)
Stationary plate
& 3UHVVXUH)RUFH ( Fp ) 7KHSUHVVXUHIRUFHDULVHVGXHWRGL൵HUHQFHRISUHVVXUHLQDÀRZ ¿HOG & Pressure force FP = DP ¥ area = DP ◊ l 2 F2
F1
Piston (A2) F1 = P × A A2 F 2 = P × A 2 A5 = A2 >> A1 Hence, F2 >> F1
A1 Piston (A1)
Fluid
Similitude and Model Analysis
365
& *UDYLW\)RUFH ( Fg ) 7KHJUDYLW\IRUFHRQDÀXLGHOHPHQWLVLWVZHLJKW Fg = r (volume) ¥ g 3 μ = r◊l ◊ g
Fruit falling (gravity force)
6XUIDFH7HQVLRQ)RUFHFs The surface tension force acts tangentially to a surface. Fs μ s ◊ 2pr μ r◊l
T
T
r
(ODVWLF)RUFH Fe (ODVWLFIRUFHDULVHVGXHWRWKHFRPSUHVVLELOLW\RIWKHÀXLGLQWKHFRXUVH ofÀRZ)RUDJLYHQFRPSUHVVLRQWKHLQFUHDVHLQSUHVVXUHLVSURSRUWLRQDOWRWKHEXONPRGXOXV of elasticity (E), i.e., DP μ E Force Fe μ DP ¥ area μ E ◊ l2
V
V 2
366
Fundamentals of Fluid Mechanics
:KDWDUHVLPLODULW\ODZVRUPRGHOODZV" $0,( 7KHVLPLODULW\LVGL൶FXOWWREHDFKLHYHGLQDOOUHVSHFWVDV (1) For the dynamic similarity, the ratio of corresponding forces acting at the matching points of the model and the prototype must be equal. (2) The dimensionless numbers should be have same magnitude for the model and prototype. %XW LW LV YHU\ GL൶FXOW WR KDYH DOO GLPHQVLRQOHVV QXPEHUV VXFK DV 5H\QROGV QXPEHU Froude’s number, Euler’s number, Weber’s number and Mach’s number same for both model and prototype. (3) The models are therefore designed on the basis of the few forces out of all forces such as inertia force, viscous force, elastic force, pressure force and gravitational force which DUHSUHGRPLQDQWLQWKHÀRZVLWXDWLRQ The laws on which models are designed for dynamic similarity are called model laws or similarity laws. The model laws are: (1) Reynolds model law, (2) Froude’s model law, (3) Euler’s model law, (4) Weber’s model law, and (5) Mach’s model law.
7.7 REYNOLDS MODEL LAW :KDWLV5H\QROGVPRGHOODZ" If the model is designed on the basis of Reynolds number then the model is said to be based on Reynolds model law. Reynolds model law is used whenever inertia and viscous forces DUHSUHGRPLQDQWLQWKHÀXLGDVFRPSDUHGWRRWKHUIRUFHV (Re)prototype = (Re)model
r p Vp Lp mp
=
rm Vm Lm mm
r p Vp Lp ◊ ◊ Pm Vm Lm =1 mp mm rr Vr Lr = 1 r = scale ratio mr
\
)LQGWKHYDOXHVRIIROORZLQJE\WKH5H\QROGVPRGHOODZ DFFHOHUDWLRQVFDOHUDWLR IRUFHVFDOHUDWLRDQG GLVFKDUJHVXFKUDWLR (1) Acceleration scale ratio, ar = But,
a =
ap am Velocity V = Time T
Similitude and Model Analysis
367
Vp \
ar =
=
(2) Force scale ratio,
Fr = =
=
Tp Vp T V = ◊ m = r Vm T Tr Vm p Tm Vr Tr Fp Fm mp a p mm am r p L3p a p rm L3m am
= rr L r 3 ar (3) Discharge scale ratio,
Qr =
=
Qp Qm r p L3p V p rm L3m Vm
= rr Lr3 Vr3 :KHUHFDQZHXVH5H\QROGVPRGHOODZ" 7KH5H\QROGVPRGHOODZFDQEHXVHGIRUWKHIROORZLQJÀXLGÀRZVLWXDWLRQV )ORZRIÀXLGLQSLSHVÀRZPHWHUVDQGIDQV (2) Flow around the submerged bodies such as aeroplanes and submarines.
7.8 FROUDE’S MODEL LAW :KLFKLV)URXGH¶VPRGHOODZ" :KHQHYHULQHUWLDDQGJUDYLWDWLRQDOIRUFHVDUHSUHGRPLQDQWLQWKHÀXLGWKH)URXGH¶VQXPEHU for the model and the prototype must be equal for dynamic stability. The Froude’s model law is based on the Froude’s number for establishing similarity between prototype and its model. (F)protype = (F)model
Vp gL p
=
Vm gLm
368
Fundamentals of Fluid Mechanics
Vp Vm
or
Lp
=1
Lm Vr
or
Lr
or
=1
Lr
Vr =
)LQG WKH IROORZLQJ E\ WKH )URXGH¶V PRGHO ODZ DFFHOHUDWLRQ VFDOH UDWLR GLVFKDUJHVFDOHUDWLR IRUFHVFDOHUDWLRDQG SUHVVXUHVFDOHUDWLR ap 1. Acceleration scale ratio, ar = am
or
ar =
=
ÊV ˆ ÁË T ˜¯ p ÊV ˆ ÁË T ˜¯ m Lr
=
1 Lr
Vp Vm
1 ◊ Tp Tm
=1
Lp Vp
As,
Vm Vp
But,
Vm
Hence,
=
=
Tr =
Tp 1 = Lr ¥ , Lm Tr Tm Lr and Lr
2. Discharge scale ratio, 3 Ê L3p ˆ 1 Ê Tm ˆ Ê Lp ˆ Qr = = Á ˜ ¥ Á 3 ˜ = Á ˜ ◊ T Ê pˆ Qm Ë Lm ¯ Ë Lm ¯ Ë Tp ¯ ÁË T ˜¯ m 1 = Lr3 ¥ = L r5/2 Lr
Qp
Similitude and Model Analysis
369
3. Force scale ratio, Fr =
Fp Fm
=
r p L2p V p2 rm L2m Vm2
Generally, r p = rm GHQVLW\RIWKHÀXLG 2
ÊL ˆ ÊV ˆ Fr = Á p ˜ ¥ Á p ˜ Ë Lm ¯ Ë Vm ¯
\
2
= L r2 ◊ L r = L r3 4. Pressure scale ratio, pr =
Pp
=
Pm
r p V p2 rm Vm2
Generally, r p = r m = dHQVLW\RIÀXLG 2
Ê Vp ˆ = Lr pr = ÁË V ˜¯
\
m
7.9 EULER’S MODEL LAW :KDWLV(XOHU¶VPRGHOODZ" Euler’s model law is applicable to the models which are designed on the basis of the Euler’s QXPEHU :KHUHYHU SUHVVXUH DQG LQHUWLDO IRUFHV DUH SUHGRPLQDQW LQ D ÀXLG IRU G\QDPLF stability the Euler’s number of the model and its prototype must be equal. (E)prototype = (E)model
Vp Pp
=
rp
Vm Pm rm
Generally, rp = rm GHQVLW\RIWKHÀXLG
Vp Vm
¥
1 Pp
=1
Pm :KHUHFDQ(XOHU¶VPRGHOODZEHDSSOLHG" (XOHU¶VPRGHOODZLVDSSOLFDEOHLQWKHIROORZLQJÀXLGPHFKDQLFVVLWXDWLRQV (1) To avoid water hammer phenomenon (2) Ascertaining pressure distribution on ship
370
Fundamentals of Fluid Mechanics
(3) To avoid cavitation phenomenon (4) To ascertain pressure forces on aircraft wings and fan blades 7RDVFHUWDLQIXOO\WXUEXOHQWÀRZLQFDVHRIFORVHGSLSHV
7.10 WEBER’S MODEL LAW :KDWLV:HEHU¶VPRGHOODZ" The models which are based on the Weber’s number, they obey Weber’s model law. :KHQHYHU LQHUWLD DQG VXUIDFH WHQVLRQ IRUFHV DUH SUHGRPLQDQW LQ D ÀXLG IRU G\QDPLF similarity Weber’s number for the model and its prototype must be equal. (W)protoype = (W)model
Vp
=
sp r p Lp
Vm sm rm Lm
:KHUHFDQ:HEHU¶VPRGHOODZEHDSSOLHG" Weber’s model law can be applied for: (1) Study of capillary movement of water in soil 6WXG\RIÀRZRYHUZHLUVIRUVPDOOKHDGV (3) Study of droplets and very small jet (4) Study of capillary waves in channels
7.11 MACH’S MODEL LAW :KDWLV0DFK¶VPRGHOODZ" Mach’s model law is applicable for the models which are based on Mach’s number. :KHQHYHULQHUWLDDQGHODVWLFIRUFHVDUHSUHGRPLQDQWLQWKHÀXLG0DFK¶VQXPEHUIRUPRGHO and its prototype must be equal for dynamic stability. (M)prototype = (M)model
Vp Ep rp
=
Vm Em rm
where E = Elastic modulus
:KHUHFDQ0DFK¶VPRGHOODZEHDSSOLHG" The Mach’s model law can be applied for: 6WXG\RIÀRZRIDLURQWKHDHURSODQHVZLWKVXSHUVRQLFVSHHG (2) Study of movement of torpedoes underwater (3) Overcoming the problem of water hammer phenomenon
Similitude and Model Analysis
371
(4) Study of movement of rockets and missiles (5) aerodynamic testing. 'H¿QH VLJQL¿FDQFH DQG DUHD RI DSSOLFDWLRQ RI 5H\QROGV QXPEHU )URXGH¶V QXPEHU 0DFK¶VQXPEHU:HEHU¶VQXPEHUDQG(XOHU¶VQXPEHU ,(6 7KHV\PEROJURXSRIYDULDEOHVVLJQL¿FDQFHDQG¿HOGRIDSSOLFDWLRQRIYDULRXVGLPHQVLRQDO numbers are as per Table 7.2 Table 7.2 'LPHQVLRQOHVVQXPEHUV Dimensionless Number 5H\QROGV QXPEHU
Symbol
Group of Variables
RH
r◊V ◊ L m
)URXGH¶VQXPEHU
FU
V L ◊g
(XOHU¶VQXPEHU
E
V P r
:HEHU¶VQXPEHU
W
rV 2L s
0DFK¶VQXPEHU
M
V k /r
6LJQL¿FDQFH ,QHUWLDO IRUFH 9LVFRXV IRUFH ,QHUWLDO IRUFH *UDYLW\ IRUFH ,QHUWLDO IRUFH 3UHVVXUH IRUFH
,QHUWLD IRUFH 6XUIDFH WHQVLRQ IRUFH ,QHUWLD IRUFH (ODVWLF IRUFH
Field of Application :KHUHYLVFRXVHႇRUWV DUHVLJQL¿FDQW :KHUHJUDYLW\HႇRUWV DUHVLJQL¿FDQW &RQGXLWÀRZ
:KHUHVXUIDFHWHQVLRQ LVVLJQL¿FDQW :KHUHFRPSUHVVLELOLW\ HႇRUWLVVLJQL¿FDQW
:KDWLVPHDQWE\JHRPHWULFDONLQHPDWLFDQGG\QDPLFVLPLODULWLHV"$UHWKHVHVLPLODULWHV WUXHO\DWWDLQDEOH",IQRWZK\" $0,) For geometrical similarity, the ratio of corresponding length in the model and prototype must be same and included angles between two corresponding sides must be same. For kinematic similarity, there should be similarity of motion, i.e., the direction of velocity DQGDFFHOHUDWLRQDWFRUUHVSRQGLQJSRLQWVLQWKHWZRÀRZVVKRXOGEHWKHVDPH (a ) (a ) (V1 )m (V2 )m and 1 m = 2 m = (a1 ) P (a1 ) P (V1 ) P (V2 ) P '\QDPLFVLPLODULW\LVWKHVLPLODULW\RIIRUFHVDWWKHFRUUHVSRQGLQJSRLQWVLQWKHÀRZV (Fgravity ) m ( Finertia )m (F ) = Force ratio = viscous m = ( Finertia ) P ( FViscous ) P ( Fgravity ) P
These similarities are not truely attainable for the following reasons: D 7KHJHRPHWULFVLPLODULW\FDQEHIXOO\DWWDLQDEOHZKHQVXUIDFHURXJKQHVVSUR¿OHVDUHDOVRLQ WKHVDPHUDWLR$VLWLVGL൶FXOWWRSUHSDUHDPRGHOWRKDYHWLPHVEHWWHUVXUIDFH¿QLVKLQ 1:20 scale, hence complete geometrical similarity cannot be achieved.
372
Fundamentals of Fluid Mechanics
E 7KHNLQHPDWLFVLPLODULW\LVPRUHGL൶FXOWWRDFKLHYHDVWKHÀRZSDWWHUQDURXQGWKHVPDOO PRGHOWHQGVWREHGL൵HUHQWIURPWKRVHDURXQGODUJHSURWRW\SH (c) Dynamic similarity is almost impossible as Reynolds number and Froude’s number cannot be equated simultaneously. 2LORINLQHPDWLFYLVFRVLW\¥ –5 m2VLVWREHXVHGLQDSURWRW\SHLQZKLFKERWKYLVFRXV DQG JUDYLW\ IRUFHV GRPLQDQW$ PRGHO VFDOH RI LV DOVR GHVLUHG :KDW YLVFRVLW\ RI PRGHOOLTXLGLVQHFHVVDU\WRPDNHWKHERWKWKH)URXGH¶VQXPEHUDQG5H\QROGVQXPEHU the same in model and prototype? If Reynolds number is same, then
rr Vr Lr = 1 or mr
Vr Lr =1 vr
Also Froude’s number is same. Vr =
Lr
Given,
Lr = 4
\
Vr =
Now,
\ \ or
Lr =
4 =2
Vr Lr =1 vr 2¥4 =1 vr 1 vr = 8 vp vm
=
1 8
vm = 8vp = 8 ¥ 5 ¥ 10–5 m2/s = 40 ¥ 10 –5 m2/s $PRGHORIVXEPDULQHLVWREHWHVWHGLQDWRZLQJWDQNFRQWDLQLQJVDOWZDWHU,IWKH VXEPDULQHPRYHVDWNPKDWZKDWYHORFLW\VKRXOGWKHPRGHOEHWRZHGIRUG\QDPLF VWDELOLW\ Since the submarine is fully submerged, hence viscous force is predominant and Reynolds model rule is applicable. Given,
L r = 20 rr = 1 mr = 1
Similitude and Model Analysis
Now,
373
rr Vr Lr =1 mr 1 ¥ Vr ¥ 20 =1 1
or
Vr =
Vp
or
=
Vm
1 20 1 20
or
Vm = 20 ¥ Vp = 20 ¥ 30 = 600 km/h $PRGHORIUHVHUYRLULVGUDLQHGLQPLQE\RSHQLQJDVOXLFHJDWH7KHPRGHOVFDOHLV +RZPXFKWLPHZRXOGLWWDNHWRHPSW\WKHSURWRW\SH" Here gravitational force is predominant and we have to apply Froude’s model law.
Vr Lr
= 1 and given L r = 256
Vr = But,
256 = 16
Lr = Vr Tr Lr 256 = = 16 Vr 16
\
Tr =
\
Tr =
\
Tp = 5 ¥ 16 = 80 min
Tp Tm
=
Tp 5
= 16
$ UHFWDQJXODU SLHU LQ ULYHU LV P ZLGH DQG P ORQJ 7KH DYHUDJH GHSWK RI ZDWHU LVP$PRGHOLVEXLOWWRDVFDOHRI7KHYHORFLW\RIIORZLQWKHPRGHOLVPV DQGWKHIRUFHDFWLQJRQWKHPRGHOLV1)LQGD WKHYDOXHVRIYHORFLW\DQGIRUFHRQ SURWRW\SHDQGE WKHKHLJKWRIWKHVWDQGLQJZDYHDWWKHSLHULILWLVPLQPRGHO DQGF FRH൶FLHQWRIGUDJUHVLVWDQFH As gravitational force is predominant, Froude’s model law is applicable Vr =
Lr
374
Fundamentals of Fluid Mechanics
L r = 16 (given) \ \ \
Vr = 16 = 4 Vp =4 Vm Vp = 4 ¥ Vm = 4 ¥ 1 = 4 m/s
Force acting is gravitational force which is
\ Now,
F = mg = r L3g Fr = L r3 = 16 3 = 4096 Fp = 4096 ¥ 5 N = 20480 N Vr =
Lr =
\
hr = 4
\
hp = 4 ¥ =4¥
or
hr
hm 0.09
= 4 ¥ 0.3 = 1.2 m hp = 1.44 m = standing wave height 2
Drag force = CD r A V 2
3ˆ Ê 2 12 Drag force = 5 = CD ¥ 1 ¥ 103 ¥ Á ¥ ˜ ¥ Ë 16 16 ¯ 2 \
CD =
5 ¥ 2 ¥ 16 ¥ 16 103 ¥ 6
= 42.67 ¥ 10 –2 = 0.427 $PRGHORIUHVHUYRLUHPSWLHGLQPLQ,IWKHPRGHOVFDOHLVWKHWLPHWDNHQE\ WKHSURWRW\SHWRHPSW\LWVHOIFRXOGEH (a) 250 min (b) 50 min F PLQ G PLQ ,(6
Similitude and Model Analysis
Tr =
Tp Tm
=
375
Lr
L r = 25 (given) Tr = Tr =
25 = 5 Tp Tm
=5
TP = 5 ¥ Tm = 5 ¥ 10 = 50 min Option (b) is correct. $RFHDQOLQHUPORQJKDVPD[LPXPVSHHGRIPV7KHWRZLQJVSHHGRIDPRGHO PORQJWRVLPXODWHWKHZDYHUHVLVWDQFHVKRXOGEH D PV E PV F PV G PV 173& Guidance: The wave resistance is a function of Froude’s number. In order to determine the model speed, Froude model law is used
Vr Lr
=1
Lr =
250 = 25 10
Vr =
25 = 5
Vp Vm
=5
Vm =
15 = 3 m/s 5
Option (b) is correct. $ K\GUDXOLF PRGHO RI D FDSLOODU\ LV FRQVWUXFWHG ZLWK D VFDOH ,I WKH SURWRW\SH GLVFKDUJHLVP3VWKHQWKHFRUUHVSRQGLQJGLVFKDUJHIRUZKLFKWKHPRGHOVKRXOG be tested is D P3/s (b) 2 m3/s G P3V &LYLO6HUYLFHV F P3V Here Froude’s model law is applicable
Vr Lr
=1
376
Fundamentals of Fluid Mechanics
Vr =
16 = 4
L3r Qr = Tr L r = 16, Tr = Qr =
\
Qp Qm
163 = 1024 4
= 1024
Qm =
\
16 Lr = =4 4 Vr
2048 = 2 m3/s 1024
Option (b) is correct. :KDW IORZ UDWH LQ P2V LV QHHGHG XVLQJ D VFDOH PRGHO RI D GDP RYHU ZKLFK m3VRIZDWHUIORZV" D E F G ,(6 Froude’s model law is to be used.
Vr Lr
=1
Vr = Tr = Qr =
Lr =
20 = 4.472
Lr 20 = = 4.472 Vr 4.472 (Lr )3 203 = Tr 4.472
= 1.789 ¥ 10 3
Qp Qm
= 1.789 ¥ 10 3
Qm =
4 = 2.2 ¥ 10 –3 1.789 ¥ 103
= .0022 m3/s Option (d) is correct.
Similitude and Model Analysis
377
,Q PRGHO RI D VWLOOLQJ EDVLQ WKH KHLJKW RI WKH K\GUDXOLF MXPS LQ WKH PRGHO LV REVHUYHGWREHP7KHKHLJKWRIWKHK\GUDXOLFMXPSLQWKHSURWRW\SHZLOOEH D P E P F P G P ,(6 Given, L r = 20 Now,
hp hm
= L r = 20
\ hp = 20 ¥ 0.2 = 4 m Option (c) is correct. 7KHPRGHORIDSURSHOOHUPLQGLDPHWHUFUXLVLQJPVLQDLULVWHVWHGLQDZLQG WXQQHORQDVFDOHPRGHO,IWKHWKUXVWRI1LVPHDVXUHGRQWKHPRGHODWPV ZLQGVSHHGWKHQWKHWKUXVWRQWKHSURWRW\SHZLOOEH D 1 E 1 F 1 G QRQH ,(6 Fr = r r Vr2 L r2 2
10 10 = 1 ¥ ÊÁ ˆ˜ ÊÁ ˆ˜ Ë 5¯ Ë 5¯
2
4 = 10 5
Fr =
\
Fp =
Fp Fm
=
104 52
Fm ¥ 104 50 ¥ 10000 = 25 25
= 20,000 N Option (a) is correct. :KDWGR\RXXQGHUVWDQGE\GLVWRUWHGPRGHO" A distorted model is one which has its one or more characteristics not similar to the FRUUHVSRQGLQJ FKDUDFWHULVWLFV RI WKH SURWRW\SH $ PRGHO KDYLQJ GL൵HUHQW KRUL]RQWDO DQG vertical scale ratio is a distorted model. In order to predict the performance of a prototype, the law of distortion has to be applied to the results obtained from the model test. The GLVWRUWLRQFDQEH JHRPHWULFGLVWRUWLRQLHKRUL]RQWDODQGYHUWLFDOVFDOHVDUHGL൵HUHQW K\GUDXOLFGLVWRUWLRQLHÀXLGVLQPRGHODQGSURWRW\SHVDUHGL൵HUHQW PDWHULDOGLVWRUWLRQ LH PDWHULDOV LQ PRGHO DQG SURWRW\SH DUH GL൵HUHQW DQG FRQ¿JXUDWLRQ GLVWRUWLRQ LH VORSHLQPRGHODQGSURWRW\SHLVGL൵HUHQW
378
Fundamentals of Fluid Mechanics
+RZDUHVFDOHUDWLRVIRUGLVWRUWHGPRGHOVXWLOL]HGIRU¿QGLQJ YHORFLW\ YHUWLFDO FURVVVHFWLRQ GLVFKDUJHDQG WLPHRIIORZ In case the horizontal scale for non-tidal model be 1: m, then
Lp Lm
=
Bp Bm
= m (where L = length & B = breath)
In case the vertical scale is 1: n, then
hp
= n (where h = height)
hm
Generally, the horizontal scale is greater than the vertical scale, i.e., m > n (1) Velocity ratio: As per Froude’s law
Vp Vm
Ê hp ˆ = Vr = Á ˜ = Ë hm ¯
n
(2) If A is vertical cross section, then
Ê Ap ˆ B p ¥ hp = =m¥n ÁË A ˜¯ Bm ¥ hm m vertical (3) If Q is the discharge, then
Qp Qm
=
V p ¥ Ap Vm ¥ Am
=
n ¥m¥n
= m n3/2 (4) If T is the timeRIÀRZWKHQ
Lp Tp Tm
=
Tr =
Vm Lp Vp = ¥ Vp Lm Lm Vm m n
$KRUL]RQWDOPRGHOKDVKRUL]RQWDOUDWLRRIDQGDYHUWLFDOVFDOHUDWLRRI ,IWKHIORRGSHDNUHTXLUHVKRXUVWRWUDYHODGLVWDQFHNPLQWKHPRGHO¿QGWLPH WKHIORRGSHDNZLOOWDNHLQWKHDFWXDOULYHU 3DWQD8QLYHUVLW\ Here,
m = 2500 & n = 225
Similitude and Model Analysis
Tr =
Tp Tm \
=
Tp =
2500 225
=
379
2500 15
500 3 500 ¥ 10 = 1666.67 hours 3
= 69 days 11 hours 40 min A model of spillway is built to a scale of 1:36. If the model velocity and discharge are 1.25 m/s and 2.5 m3/s respectively, what are the corresponding values for the prototype? (Punjab University) Applying Froude’s model law Vr = =
Lr 36 = 6
Q r = Vr (L r)2 = 6 ¥ 362 = 7776 Vr = \
Vp Vm
=6
V p = 6 ¥ 1.25 = 7.50 m/s Qr =
Qp Qm
= 7776
Q p = 7776 ¥ 2.5 m3/s = 19440 m3/s A model of a reservoir is drained in 6 min by operating the sluice gate. How long should it take to empty the prototype if the scale ratio is 1:256? (Poona University) Applying Froude’s model law Vr = =
Lr 256
= 16 Tr =
Lr 256 = = 16 Vr 16
380
Fundamentals of Fluid Mechanics
Tr = or
Tp Tm
= 16
Tp = 16 ¥ 6 = 96 min
$JHRPHWULFDOPRGHORIDVXUIDFHYHVVHOLVWHVWHGLQDODERUDWRU\7KHOLQHDUVFDOHRIWKH PRGHOLV,WLVREVHUYHGWKDWZLWKDVSHHGRIPVWKHUHVLVWDQFHRIWKHPRGHO LV17KHOLTXLGXVHGIRUWKHWHVWLVWKHVDPHDVWKDWRQHZKLFKWKHVXUIDFHYHVVHOLV WRVDLO&DOFXODWHWKHFRUUHVSRQGLQJVSHHGDQGWKHUHVLVWDQFHRIPRWLRQRIWKHVXUIDFH YHVVHO&RQVLGHUWKHH൵HFWRIJUDYLW\RQO\ 3XQMDE8QLYHUVLW\ $VH൵HFWRIJUDYLW\LVWREHFRQVLGHUHGWKH)URXGH¶VPRGHOODZLVDSSOLFDEOH Vr =
Vp Vm
Lr =
49 = 7
= 7, or Vp = 7 ¥ 10 = 70 m/s
Fr = r r Vr2 L r2
Fr = resistance force scale
= 72 ¥ 492 Fp = 49 ¥ 492 ¥ 3
Now,
as
Fm = 3 N (given)
= 353 kN (VWLPDWHD WKHVSHHGRIURWDWLRQE WKHWKUXVWSURGXFHGF WKHWRUTXHGHYHORSHG DQGG WKHH൶FLHQF\RISURSXOVLRQE\DPGLDPHWHUSURSHOOHUWRFUXLVHDWPVLI DVFDOHPRGHOSURGXFHGWKHIROORZLQJUHVXOWV
For dynamic similitude,
Vm PV Nm = 750 rpm Fm = 50 N and Tm 1P
Nr dr =1 Vr d r = 10 (given) Vr =
Vp Vm
=
10 =2 5
N r ¥ 10 =1 2 \
Nr =
1 5
Np =
1 ¥ 750 = 150 rpm 5
Similitude and Model Analysis
Now,
Fr = Pr Vr2 N r2 2
381
where Fr = thrust ratio scale.
= 1 ¥ 2 ¥ 10
2
= 400 F p = 400 ¥ 50 = 20 kN where Fp = thrust produced Tr = Torque ratio = r r N r2 dr5 2
Ê 150 ˆ =1¥ Á ¥ (10)5 Ë 750 ˜¯ =
100 ¥ 103 25
= 40 kN 3URWRW\SHH൶FLHQF\
=
Fp ¥ V p T ¥ 2 pN /60
=
20 ¥ 10 ¥ 60 40 ¥ 2p ¥ 150
= 31.8% 0RGHOH൶FLHQF\
=
50 ¥ 5 ¥ 60 Fm ¥ Vm = T ¥ 2 pN 10 ¥ 2p ¥ 750 60
= 31.8% 7KHGUDJRIDVPDOOVXEPHUJHGKXOOLVGHVLUHGZKHQLWLVPRYLQJIDUEHORZWKHVXUIDFH RI ZDWHU $ VFDOH PRGHO LV WR EH WHVWHG :KDW GLPHQVLRQOHVV JURXS VKRXOG EH GXSOLFDWHG EHWZHHQ WKH PRGHO DQG SURWRW\SH DQG ZK\" ,I WKH GUDJ RI WKH SURWRW\SH DWNQRWLVGHVLUHGDWZKDWVSHHGVKRXOGWKHPRGHOEHPRYHGWRJLYHWKHGUDJWREH H[SHFWHGE\WKHSURWRW\SH":RXOGWKLVUHVXOWVWLOOEHWUXHLIWKLVSURWRW\SHZHUHWREH FORVHGWRWKHVXUIDFH"([SODLQ When the body is moving fully submerged, the viscous forces are predominant and Reynolds model law is applicable. If the prototype is moving close the surface, then gravitational forces are also acting due to wave resistance, thereby drag force also contributes to the resistance Using Reynolds model law rr Vr Lr =1 mr Now, L r = 10 and r r = 1 and m r = 1 Vr L r = 1 or
Vr =
1 10
382
Fundamentals of Fluid Mechanics
Vp Vm Now,
=
1 10
Vp = 1 Knot Vm = 10 Vp Knot = 10 Knot F r = Drag ratio = rr Vr2 Lr2 =1¥
1 ¥ 100 100
=1 Hence, drag force experienced by the prototype at 1 knot and model at 10 knot is same. &DOFXODWH WKH VSHHG RI URWDWLRQ WKH WRUTXH SURGXFHG DQG WKH SRZHU RI D ZLQGPLOO RI P GLDPHWHU LQ D ZLQG VSHHG RI NPKU IURP WKH SHUIRUPDQFH RI D VFDOH JHRPHWULFDOPRGHOLQDZLQGWXQQHOZLWKPVIUHHVWUHDP7KHPRGHOURWDWHGDW USPSURGXFHGDWRUTXHRI1P Apply speed parameter for the model & the prototype.
N r Dr =1 Vr Dr =
Dp Dm
= 10
Vp = 30 kMh =
30 ¥ 103 = 8.33 m/s 3600
Vm = 10 m/s Vr =
Now,
\
Vp Vm
=
8.33 = 0.833 10
N r Dr =1 Vr Nr =
=
Vr Dr 0.833 = 0.0833 10
Similitude and Model Analysis
Np Nm
383
= 0.0833
N p = 1200 ¥ 0.0833 = 100 rpm Tr = Torque ratio = r r N r2 D r5 2
Ê 100 ˆ =1¥ Á (10)5 Ë 1200 ˜¯ Tp = Tm ¥ =
1 ¥ 105 144
2.5 ¥ 100 kNm 144
= 1.736 kNm Power of wind mill = Tp ¥ w = Tp ¥ = 1736 ¥
2p NP 60
100 ¥ 2p 60
= 18.2 kW $QR൵VKRUHRLOGULOOLQJSODWIRUPLVH[SHFWHGWRHQFRXQWHUZDYHVRIPKHLJKWDW +]IUHTXHQF\DQGDVWHDG\FXUUHQWRIPV'HWHUPLQHWKHSDUDPHWHUVIRUWKHPRGHO ZDYHFKDQQHOZKHUHDRQHVL[WHHQWKPRGHORIWKHSODWIRUPFDQEHWHVWHG Froude model scale is to be applied as gravitational force is predominant
Vr Lr
= 1 or Vr = Vr =
Now, \
Lr 16 = 4
Vp = 1 m/s (given) Vm =
Vp
= 0.25 m/s
4
h r = Lr = 16 hm = Frequency ratio
hp 16
=
4 = 0.25 m 16
= fr =
1 V = r Tr Lr
384
Fundamentals of Fluid Mechanics
fr =
4 1 = 16 4
= fr =
1 4
fm = 4 ¥ fp = 4 ¥ 0.1 = 0.4 Hz $QDXWRPRELOHPRYLQJDWDYHORFLW\RINPKULVH[SHULHQFLQJDZLQGUHVLVWDQFHRI N1 ,I WKH DXWRPRELOH LV PRYLQJ DW D YHORFLW\ RI NPKU WKH SRZHU UHTXLUHG WR RYHUFRPHWKHZLQGUHVLVWDQFHLV D N: E N: F N: G N: ,(6 F = r ◊ V 2 ◊ d2 F2 ÊV ˆ r V22 d 2 = = Á 2˜ 2 2 F1 r V1 d Ë V1 ¯
\
Ê 50 ˆ F2 = 2 Á ˜ Ë 40 ¯
or
2
2
= 3.125 kN Ê 50 ¥ 103 ˆ Power = 3.125 ¥ Á ˜ kW Ë 3600 ¯ = 43.4 kW Option (a) is correct. $VFDOHPRGHORIDUHVHUYRLULVGUDLQHGLQPLQE\RSHQLQJWKHVOXLFHJDWH7KH WLPHUHTXLUHGWRHPSW\WKHSURWRW\SHZLOOEH D PLQ E PLQ F PLQ G PLQ ,(6 tμ
tr tm
=
=
h hr hm 256 1
Similitude and Model Analysis
\
tr =
385
256 ¥ tm
tr = 16 ¥ 4 = 64 min Option (b) is correct. $VKLSPRGHOVFDOHZLWKQHJOLJLEOHIULFWLRQLVWHVWHGLQDWRZLQJWDQNDWDVSHHGRI PLQV,IDIRUFHRINJLVUHTXLUHGWRWRZWKHPRGHOWKHSURSXOVLYHIRUFHUHTXLUHG WRWRZSURWRW\SHVKLSZLOOEH D 01 E 01 F 01 G 01 ,(6 As per Froude’s law for dynamic similarity, we have Ê V ˆ Ê V ˆ Á ˜ = Á ˜ Ë gl ¯ m Ë gl ¯ r or Now, or
\
Vm = Vr
lm = lr
1 60
F = r V2 L2 Ê Fm ˆ Ê Vm ˆ Á ˜ = Á ˜ Ë Fr ¯ Ë Vr ¯
2
Ê Lm ˆ Á ˜ Ë Lr ¯
Ê Vr ˆ Fr = Fm ¥ Á ˜ ËV ¯
2
m
= 0.5 ¥ 9.81 ¥
2
Ê Lr ˆ ÁË L ˜¯
2
m
2
( 60 )
¥ (60)2
= 0.5 ¥ 9.81 ¥ 63 ¥ 103 = 1.06 ¥ 106 N = 1.06 MN ª 1 MN Option (c) is correct. $PRGHOLVWREHFRQGXFWHGLQDZDWHUWXQQHOXVLQJDPRGHORIDVXEPDULQHZKLFK LVWRWUDYHODWDVSHHGRINPKGHHSXQGHUVHDVXUIDFH7KHZDWHUWHPSHUDWXUHLQ WKHWXQQHOLVPDLQWDLQHGVRWKDWLWVNLQHPDWLFYLVFRVLW\LVWKHKDOIWKDWRIVHDZDWHU$W ZKDWVSHHGLVWKHPRGHOWHVWWREHFRQGXFWHGWRSURGXFHXVHIXOGDWDIRUWKHSURWRW\SH" D NPK E NPK F NPK G NPK ,(6
386
Fundamentals of Fluid Mechanics
(Re)model = (Re)prototype Ê r ◊V ◊ d ˆ Ê rVd ˆ ÁË m ˜¯ = ÁË m ˜¯ r M Ê d r ˆ Ê m m ˆ Ê rr ˆ Vm = Vp Á Á ˜ Ë d M ˜¯ Ë m r ¯ ÁË rM ˜¯ Ê 20 ˆ Ê 1 ˆ = 12 Á ˜ Á ˜ Ë 1 ¯ Ë 2¯ = 120 km/h Option (d) is correct.
7.12 QUESTIONS FROM COMPETITIVE EXAMINATIONS ,W LV REVHUYHG LQ D IORZ SUREOHP WKDW WRWDO SUHVVXUH LQHUWLD DQG JUDYLW\ IRUFHV DUH LPSRUWDQW7KHQVLPLODULW\UHTXLUHVWKDW D 5H\QROGVDQG:HEHU¶VQXPEHUVEHHTXDO E 0DFK¶VDQG)URXGH¶VQXPEHUVEHHTXDO F (XOHU¶VDQG)URXGH¶VQXPEHUVEHHTXDO G 5H\QROGVDQG0DFK¶VQXPEHUVEHHTXDO ,(6 Option (c) is correct. $ VSKHUH LV PRYLQJ LQ ZDWHU ZLWK D YHORFLW\ RI PV$QRWKHU VSKHUH RI WZLFH WKH GLDPHWHULVSODFHGLQDZLQGWXQQHODQGWHVWHGZLWKDLUWLPHVOHVVYLVFRXVWKDQZDWHU 7KHYHORFLW\RIDLUWKDWZLOOJLYHG\QDPLFDOO\VLPLODUFRQGLWLRQLV D PV E PV F PV G PV ,(6 Re is to be maintained r ¥ V ¥ 2d r ¥ 1.6 ¥ d 750 = m m 60 = 10 m/s Option (b) is correct. 7KHPRGHORIDSURSHOOHUPLQGLDPHWHUFUXLVLQJDWPVLQDLULVWHVWHGLQDZLQG RQDVFDOHPRGHO,IDWKUXVWRI1LVPHDVXUHGRQWKHPRGHODWPVZLQGWKHQ WKUXVWRQWKHSURWRW\SHZLOOEH
Similitude and Model Analysis
D 1 F 1
E 1 G 1
387
,(6
Fm Pm ◊ L2m ◊Vm2 = FP PP ◊ L2P ◊VP2 2
Ê 1ˆ Ê 5ˆ = (1) ¥ Á ˜ Á ˜ Ë 10 ¯ Ë 10 ¯
2
50 1 25 1 ¥ = = FP 100 100 400 FP = 50 × 400 = 20,000 N Option (a) is correct. $PRGHOWHVWLVWREHFRQGXFWHGLQDZLQGWXQQHOXVLQJDPRGHORIVXEPDULQHZKLFK LVWRWUDYHODWDVSHHGRINPSKGHHSXQGHUVHDVXUIDFH7KHZDWHUWHPSHUDWXUHLQ WKHWXQQHOLVPDLQWDLQHGVRWKDWLWVNLQHPDWLFYLVFRVLW\LVKDOIWKDWRIVHDZDWHU$WZKDW VSHHGLVWKHPRGHOWHVWWREHFRQGXFWHGWRSURGXFHXVHIXOGDWDIRUWKHSURWRW\SH" D NPSK E NPSK F NPSK G NPSK (IES 2002) rm ◊Vm ◊ Lm Ê r ˆ ÊV ˆ Ê L ˆ Ê m ˆ (Re) m mm =Á m˜ Á m˜ Á m˜ Á P˜ = rP ¥ VP ¥ LP Ë rP ¯ Ë VP ¯ Ë LP ¯ Ë m m ¯ (Re) P mP
ÊV ˆ 1 = (1) Á m ˜ Ë 12 ¯
Ê 1ˆ ÁË 20 ˜¯ (2)
Vp = 12 ¥ 20 = 120 kmph 2
or
Option (d) is correct. )RUDPVFDOHPRGHORIK\GUDXOLFWXUELQHWKHVSHFL¿FVSHHGRIWKHPRGHONm is related to the prototype sp speed Np as (a) Nm =
NP m
(b) NM = m NP
F Nm = (NP)m (d) Nm = NP 7KHVSHFL¿FVSHHGRIPRGHODQGSURWRW\SHUHPDLQVVDPH Option (d) is correct.
,$6
388
Fundamentals of Fluid Mechanics
A
model RIDVKLSLVWREHWHVWHGIRUHVWLPDWLQJWKHZDYHGUDJ,IVSHHGRIVKLSLV 25
PVWKHQVSHed aWZKLFKWKHPRGHOPXVWEHWHVWHGLV D PV E PV F PV G PV Froude model law: (Fr)m = (Fr)p
VP g ◊ LP
Vm = g ◊ Lm
or
Vm = V p ¥
or
=
,$6,(6
Lm =1¥ LP
1 25
1 = 0.2 m/s 5
Option (b) is correct. $VKLS¶VPRGHOZLWKVFDOHKDVZDYHUHVLVWDQFHRI1DWWKHGHVLJQVSHHG:KDW LVWKHFRUUHVSRQGLQJSURWRW\SHZDYHUHVLVWDQFHLQN1" D E F G ,QVX൶FLHQWGDWD ,(6 3
ÊL ˆ FP 3 = Á P ˜ = (100) FM Ë LM ¯ FP = 10 × 1000 × 103 = 10,000 kN Option (c) is correct. $VKLSZLWKKXOOOHQJWKRIPLVWRUXQZLWKVSHHGRIPV)RUG\QDPLFVLPLODULW\ WKHYHORFLW\IRUDPRGHORIWKHVKLSLQDWRZLQJWDQNVKRXOGEH D PV E PV F PV G PV ,(6 Vm gLm Vm 100 25
=
=
VP g ◊ LP 10 100
(Froude Model Law)
Similitude and Model Analysis
389
4 ¥ 10 = 2 m/s 100
Vm = Option (a) is correct.
,Q D IORZ FRQGLWLRQ ZKHUH ERWK YLVFRXV DQG JUDYLW\ IRUFHV GRPLQDWH DQG ERWK WKH )URXGH¶VQXPEHUDQGWKH5H\QROGVQXPEHUDUHWKHVDPHLQWKHPRGHODQGSURWRW\SH DQGWKHUDWLRRINLQHPDWLFYLVFRVLW\RIPRGHOWRWKDWRIWKHSURWRW\SHLV:KDWLV WKHPRGHOVFDOH"
D F
E G
,(6
( Re ) m Ê ˆ Ê ˆ = Vm ¥ Lm ¥ n P = 1 ( Re ) P ËÁ VP ¯˜ ËÁ LP ¯˜ nm
(i)
( Fr )m V = 1, m = ( Fr ) P VP
(ii)
Lm LP
From Eqs. (i) and (ii), we have Ê Lm ˆ ÁË L ˜¯ P
3/ 2
=
nP = 0.0894 nM
Lm = 1 : 5 = model scale LP
Option (d) is correct $PRGHORIVSLOOZD\GLVVLSDWHVKS7KHFRUUHVSRQGLQJKRUVHSRZHUGLVVLSDWHG ZLOOEH
D
E
F
G
Prandtl’s number (Pr) remains same ÊL ˆ PP = Á P˜ Pm Ë Lm ¯
3.5
= (20)3.5
PP = 0.25 × (20)35 = 8944 hp.
,(6
390
Fundamentals of Fluid Mechanics
$VFDOHPRGHORIDUHVHUYRLULVGUDLQHGLQPLQXWHVE\RSHQLQJWKHVOXLFHJDWH 7KHWLPHUHTXLUHGWRHPSW\WKHSURWRW\SHZLOOEH
D PLQ
E PLQ
F PLQ
G PLQ
,(6
Froude’s number (Fr) remains constant (Fr)p = (Fr)m L1/P 2 L1/2 = m TP Tm ÊL ˆ TP = Tm ¥ Á P ˜ ËL ¯
or
1/ 2
= 4 ¥ 256
m
= 4 × 16 = 64 min Option (b) is correct. $ PRGHO WHVW LV WR EH FRQGXFWHG IRU DQ XQGHUZDWHU VWUXFWXUH ZKLFK LV OLNHO\ WR EH H[SRVHGWRVWURQJZDWHUFXUUHQWV7KHVLJQL¿FDQWIRUFHVDUHGHQVLW\DQGYLVFRVLW\ÀXLG GHSWK DQG DFFHOHUDWLRQ GXH WR JUDYLW\ &KRRVH IURP WKH FRGHV JLYHQ EHORZ ZKLFK RI WKHIROORZLQJQXPEHUVPXVWPDWFKIRUWKHPRGHOZLWKWKDWRIWKHSURWRW\SH
D 0DFKQXPEHU
E :HEHUQXPEHU
F )URXGHQXPEHU
G 5H\QROGVQXPEHU
,(6
Option (d) is correct. &RQVLGHUWKHIROORZLQJVWDWHPHQWV
&RPSOHWH VLPLODULW\ EHWZHHQ WKH PRGHO DQG SURWRW\SH HQYLVDJHV JHRPHWULF DQG G\QDPLFVLPLODULWLHVRQO\
'LVWRUWHGPRGHOVDUHQHFHVVDU\ZKHUHJHRPHWULFVLPLODULW\LVQRWSRVVLEOHGXHWR SUDFWLFDOUHDVRQV
,QWHVWLQJRIPRGHOVRIDVKLSWKHVXUIDFHWHQVLRQIRUFHVDUHJHQHUDOO\QHJOHFWHG
7KHVFDOHH൵HFWWDNHVFDUHRIWKHH൵HFWRIGLVVLPLODULW\EHWZHHQPRGHODQGSURWRW\SH
:KLFKRIWKHVHVWDWHPHQWVDUHFRUUHFW"
D DQG
E DQG
F DQG
G DQG
,(6
Option (c) is correct. .LQHPDWLFVLPLODULW\EHWZHHQPRGHODQGSURWRW\SHLVVLPLODULW\RI
D 6KDSH
E 'LVFKDUJH
F 6WUHDPOLQHSDWWHUQ
G )RUFHV
Option (c) is correct.
,(6
Similitude and Model Analysis
391
&RQVLGHUWKHIROORZLQJVWDWHPHQWV )RUDFKLHYLQJG\QDPLFVLPLODULW\LQPRGHOVWXGLHVRQVKLSV)URXGH¶VQXPEHUDUH HTXDWHG 5H\QROGVQXPEHUVKRXOGEHHTXDWHGIRUVWXGLHVRQDHURIRLOIRUG\QDPLFVLPLODULW\ ,QPRGHOVWXGLHVRQDVSLOOZD\WKHUDWLRRIZLGWKWRKHLJKWLVHTXDWHGIRUNLQHPDWLF VLPLODULW\ :KLFKRIWKHVWDWHPHQWVJLYHQDERYHDUHFRUUHFW D DQG E DQG F DQG G DQG ,(6 Option (d) is correct. 0DWFK/LVW,)ORZ:DYH ZLWK/LVW,,'LPHQVLRQOHVVQXPEHU DQGVHOHFWWKHFRUUHFW DQVZHU
/LVW, /LVW,, D &DSLOODU\ZDYHVLQFKDQQHO 5H\QROGVQXPEHU E 7HVWLQJRIDHURIRLO )URXGH¶VQXPEHU F )ORZDURXQGEULGJHSLHU :HEHU¶VQXPEHU G 7XUEXOHQWIORZWKURXJKSLSHV 0DFK¶VQXPEHU &RGHV $ % & ' (a) 5 4 3 2 E F G ,(6 Option (d) is correct. 0DWFK/LVW,SUHGRPLQDQWIRUFH ZLWK/LVW,,GLPHQVLRQOHVVQXPEHU DQGVHOHFWWKH FRUUHFWDQVZHU /LVW, /LVW,, D &RPSUHVVLELOLW\H൵HFW (XOHU¶VQXPEHU E *UDYLW\IRUFH 3UDQGWO¶VQXPEHU F 6XUIDFHWHQVLRQIRUFH 0DFK¶VQXPEHU G 9LVFRXVIRUFH 5H\QROGVQXPEHU :HEHU¶VQXPEHU &RGHV $ % & ' D (b) 3 2 5 4 F G ,(6 Option (b) is correct.
392
Fundamentals of Fluid Mechanics
0DWFK/LVW,IRUFHV ZLWK/LVW,,GLPHQVLRQOHVVJURXS DQGVHOHFWWKHFRUUHFWDQVZHU /LVW, /LVW,, D 9LVFRXVIRUFH 5H\QROGVQXPEHU E (ODVWLFIRUFH )URXGH¶VQXPEHU F 6XUIDFHWHQVLRQ :HEHU¶VQXPEHU G *UDYLW\ 0DFK¶VQXPEHU &RGHV $ % & ' D E F G ,(6 Option (d) is correct. 0DWFK/LVW,GLPHQVLRQOHVVQXPEHU ZLWK/LVW,,QDWXUHRIIRUFHVLQYROYHGDQGVHOHFW WKHFRUUHFWDQVZHUXVLQJWKHFRGHJLYHQEHORZWKHOLVWV /LVW, /LVW,, D (XOHU¶VQXPEHU 6XUIDFHWHQVLRQ E :HEHU¶VQXPEHU *UDYLW\ F 0DFK¶VQXPEHU 3UHVVXUH G )URXGH¶VQXPEHU (ODVWLF &RGHV $ % & ' D E F G ,(6 Option (a) is correct. 0DWFK/LVW,GLPHQVLRQOHVVQXPEHUV ZLWK/LVW,,GH¿QLWLRQDVWKHUDWLRRI DQGVHOHFW WKHFRUUHFWDQVZHU /LVW, /LVW,, D 5H\QROGVQXPEHU ,QHUWLDIRUFHDQGHODVWLFIRUFH E )URXGH¶VQXPEHU ,QHUWLDIRUFHDQGVXUIDFHWHQVLRQ F :HEHU¶VQXPEHU ,QHUWLDIRUFHDQGJUDYLW\IRUFH ,QHUWLDIRUFHDQGYLVFRXVIRUFH &RGHV $ % & ' D E F G ,(6 Option (b) is correct.
Similitude and Model Analysis
393
0DWFK/LVW,W\SHRIPRGHO ZLWK/LVW,,WUDQVIHUHQFHUDWLRRIYHORFLW\ DQGVHOHFWWKH FRUUHFWDQVZHU /LVW, /LVW,, (a) Reynolds model
kr rr s r /(rr lr )
(b) FrRXGH¶VPRGHO
F :eEHU¶VPRGHO
Pr /(Urlr)
G 0DtFK¶VPRGHO
g r ◊ lr
ZKHUHV\PEROVg P U V and kKDYHWKHLU XVXDO PHDQLQJV DQG VXEVFULSWr refers to the ratio) &RGHV $ % & ' D E F G (IES 2004) Option (b) is correct. $VKLSZKRVHKXOOOHQJWKPLVWRWUDYHODWPV)RUG\QDPLFVLPLODULW\DWZKDW YHORFLW\DPRGHOEHORZHUHGWKURXJKZDWHU" D PV E PV F PV G PV Froude’s number has to be same which means Vm = VP or
Lm = Lp
Vm = 10 ¥
1 25
1 = 2 m/s 5
Option (c) is correct. $PRGHORIWRUSHGRLVWHVWHGLQDWRZLQJWDQNDWDYHORFLW\RIPV7KHSURWRW\SHLV H[SHFWHGWRDWWDLQDYHORFLW\RIPV:KDWPRGHOVFDOHKDVEHHQXVHG" D E F G
394
Fundamentals of Fluid Mechanics
As per Froude’s model law
or
Vm = VP
Lm LP
5 = 25
Lm 1 = Lp 5
Lm:LP = 1:52 = 1:25
Option (b) is correct. $PRGHORIDUHVHUYRLULVGUDLQHGLQPLQE\RSHQLQJWKHVOXLFHJDWH7KHPRGHOVFDOH LV+RZORQJVKRXOGLWWDNHWRHPSW\WKHSURWRW\SH" D PLQ E PLQ F PLQ G PLQ The gravitational force is predominant and we have to apply Froude’s model law Vm = Vp Now,
1 1 = 225 15
L =V T Lm Vm Tm L T = m ¥ P = LP VP LP Tm TP =
Lm = LP
T 1 1 ¥ P = 225 Tm 15
Tp = Tm ¥ 225 ¥
1 15
= 4 × 15 = 60 min Option (b) is correct.
Chapter
8
FLUID KINEMATICS
KEYWORDS AND TOPICS
FLUID KINEMATICS STREAMLINE STREAM TUBE STREAK LINE PATH LINE EQUIPOTENTIAL LINE ROTATION DISTORTION VORTICITY CIRCULATION ROTATION & IRROTATIONAL FLOW STEADY & UNSTEADY FLOW
UNIFORM & NON-UNIFORM FLOW LAMINAR & TURBULENT FLOW CONTINUITY EQUATION ONE-DIMENSIONAL FLOW TWO-DIMENSIONAL FLOW THREE-DIMENSIONAL FLOW STREAM FUNCTION POTENTIAL FUNCTION LAPLACE EQUATIONS FLOW NETS FREE VORTEX FORCED VORTEX
8.1 INTRODUCTION )OXLG NLQHPDWLFV LV D EUDQFK RI ÀXLG PHFKDQLFV ZKLFK GHDOV ZLWK WKH VWXG\ RI YHORFLW\ DQG DFFHOHUDWLRQ RI WKH SDUWLFOHV RI WKH ÀXLG LQ PRWLRQ DQG WKHLU GLVWULEXWLRQ LQ VSDFH ZLWKRXW FRQVLGHULQJDQ\IRUFHRUHQHUJ\LQYROYHG)OXLGNLQHPDWLFVSURYLGHVDQLGHDDERXWL WKHUDWH RIÀRZDQGLL W\SHRIÀRZ7KHÀXLGPRWLRQFDQEHGHVFULEHGXVLQJL /DJUDQJLDQPHWKRG DQG LL (XOHULDQ PHWKRG 7KH (XOHULDQ PHWKRG LV FRPPRQO\ DGRSWHG 7KH PRWLRQ RI ÀXLG LV DOVR GHVFULEHG E\ YDULRXV OLQHV RI ÀRZ VXFK DV L SDWK OLQH LL VWUHDPOLQH LLL VWUHDP WXEH LY VWUHDNOLQHDQGY SRWHQWLDOOLQH7KHÀRZFDQEHL XQLIRUPRUQRQXQLIRUPLL ODPLQDU RU WXUEXOHQW LLL FRPSUHVVLEOH RU LQFRPSUHVVLEOH LY URWDWLRQDO RU LUURWDWLRQDO Y VWHDG\ RU XQVWHDG\DQGYL RQHGLPHQVLRQDOWZRGLPHQVLRQDODQGWKUHHGLPHQVLRQDO What is fluid kinematics? )OXLG NLQHPDWLFV LV D EUDQFK RI ÀXLG PHFKDQLFV ZKLFK GHDOV ZLWK WKH VWXG\ RI YHORFLW\ DQGDFFHOHUDWLRQRIWKHSDUWLFOHVRIÀXLGVLQPRWLRQDQGWKHLUGLVWULEXWLRQLQVSDFHZLWKRXW
396
Fundamentals of Fluid Mechanics
considering any force or energy involved. Kinematics provides: (1) idea about the rate of ÀRZZKLFKLVDOVRFDOOHGGLVFKDUJHDQG LGHDDERXWGL൵HUHQWW\SHVRIYHORFLWLHVRIÀRZ What are the aspects of kinematics of fluid? .LQHPDWLFVRIÀXLGGHVFULEHWKHÀXLGPRWLRQDQGLWVFRQVHTXHQFHVDVVKRZQEHORZ Three aspects of kinematics of fluid
Methods to describe the motion of fluids
Determine the conditions for fluid motions to occur
Characteristics of motion and deformation rates of fluid elements
8.2 METHODS OF DESCRIBING FLUID MOTION :KDWLVWKH¿UVWDQGIXQGDPHQWDOHTXDWLRQRIIORZ" 7KHHTXDWLRQRIFRQWLQXLW\LVWKH¿UVWDQGIXQGDPHQWDOHTXDWLRQRIÀRZ What is fluid motion? What are the methods used to describe fluid motion? ,Q ÀXLG PRWLRQ HDFK ÀXLG SDUWLFOH KDV LWV RZQ YHORFLW\ DQG DFFHOHUDWLRQ DW DQ\ SRLQW RI WLPH9HORFLW\DQGDFFHOHUDWLRQRIDSDUWLFOHPD\FKDQJHZLWKWLPHRUFKDQJHWKHSRVLWLRQ RIWKHSDUWLFOHGXULQJWKHÀRZ7ZRPHWKRGVDUHXVHGIRUGHVFULELQJÀXLGPRWLRQYL] WKH/DQJUDQJLDQPHWKRGDQG WKH(XOHULDQPHWKRG What is the Langrangian method of describing fluid motion? ,Q /DQJUDQJLDQ PHWKRG WKH PRWLRQ RI HDFK SDUWLFOH LV GH¿QHG ZLWK UHVSHFW WR LWV ORFDWLRQ LQ VSDFH DQG WLPH IURP D ¿[HG SRVLWLRQ EHIRUH WKH VWDUW RI WKH PRWLRQ 7KH PRYHPHQW RI D VLQJOH SDUWLFOH LV REVHUYHG ZKLFK JLYHV WKH SDWK IROORZHG E\ WKH SDUWLFOH 7KH SRVLWLRQ RI WKH ÀXLG SDUWLFOH LQ VSDFH x y z DW DQ\ WLPH IURP LWV ¿[HG SRVLWLRQ (abc) at t VKDOOEH x = f1 (abct) y = f (abct) z = f3 (abct) )URPWKHSRVLWLRQYHORFLWLHVuv and w and acceleration axay and a z can be given as (1) Velocities, u =
∂y ∂x ∂x v = &w= ∂t ∂t ∂t
Accelerations, ax =
∂ x ∂ y ∂ x a y = & az = ∂t ∂t ∂ t
Fluid Kinematics
397
7KHUHVXOWDQWRIYHORFLWLHVDQGDFFHOHUDWLRQFDQEHFDOFXODWHG7KHUHVXOWDQWRISUHVVXUHDQG GHQVLWLHVFDQDOVREHZRUNHGRXW/DJUDQJLDQGHVFULSWLRQLVWRIROORZWKHSDWKRILQGLYLGXDO REMHFWVRUSDUWLFOHVVXFKDVELOOLDUGEDOOVRQDSRROWDEOH:LWKDVPDOOQXPEHURIREMHFWV LQGLYLGXDOREMHFWVFDQEHWUDFNHG
Billiard Balls on a Pool Table
What is the Eulerian method of describing fluid motion? ,Q WKLV PHWKRG LQVWHDG RI FRQFHQWUDWLQJ RQ D VLQJOH ÀXLG SDUWLFOH DQG LWV PRYHPHQW FRQFHQWUDWLRQLVPDGHRQDOOÀXLGSDUWLFOHVSDVVLQJWKURXJKD¿[HGSRLQW7KHFKDQJHVRI YHORFLW\DFFHOHUDWLRQSUHVVXUHDQGGHQVLW\RIWKHÀXLGSDUWLFOHVDVWKH\SDVVWKURXJKWKH¿[HG SRLQWDUHREVHUYHG+HQFHWKH(XOHULDQPHWKRGGHVFULEHVWKHRYHUDOOÀRZFKDUDFWHULVWLFVDW YDULRXVSRLQWVDVÀXLGSDUWLFOHVSDVVWKURXJKWKHP7KHYHORFLW\DWDQ\SRLQWxyz FDQ EHJLYHQDV u = f xyzt v = fxyzt w = f3xyzt
,QWKHGHVFULSWLRQZHGH¿QH¿HOGYDULDEOHVVXFKDVWKHSUHVVXUH¿HOGDQGWKHYHORFLW\¿HOG DWDQ\ORFDWLRQDQGLQVWDQWRIWLPHDVVKRZQEHORZ
:KDWDUHWKHGL൵HUHQFHVEHWZHHQ/DQJUDQJLDQDQG(XOHULDQPHWKRGV" Or 'L൵HUHQWLDWHEHWZHHQ(XOHULDQ /DQJUDQJLDQDSSURDFK 8378 Langrangian
Eulerian
1.
Observer concentrates on the movement of single particle
1.
2EVHUYHUFRQFHQWUDWHVRQYDULRXV¿[HGSRLQW particles
2.
2EVHUYHUKDVWRPRYHZLWKWKHÀXLGSDUWLFOH 2. to observe its movement
2EVHUYHU UHPDLQV VWDWLRQDU\ DQG REVHUYHV SDUDPHWHUV DW WKH ¿[HG SRLQW RQO\ FKDQJHV LQWKHÀXLG Cont.
398
Fundamentals of Fluid Mechanics
3.
7KH SDWK DQG FKDQJHV LQ YHORFLW\ 3. DFFHOHUDWLRQ SUHVVXUH DQG GHQVLW\ RI D VLQJOHSDUWLFOHDUHGHVFULEHG
4.
1RWFRPPRQO\XVHG
P
P
4.
7KH PHWKRG GHVFULEHV WKH RYHUDOO IORZ FKDUDFWHULVWLFV DW YDULRXV SRLQWV DV IOXLG particles pass. &RPPRQO\XVHG
P P
P
8.3 LINES OF FLOW :KDWDUHWKHYDULRXVOLQHVRIIORZWRGHVFULEHWKHPRWLRQRIDIOXLG" 7KHYDULRXVOLQHVRIÀRZDUH SDWKOLQH VWUHDPOLQH VWUHDPWXEH VWUHDNOLQH RU¿ODPHQWOLQHDQG SRWHQWLDOOLQHV :KDWLVDSDWKOLQHLQIOXLGPRWLRQ":KDWKDSSHQVWRLWGXULQJVWHDG\DQGXQVWHDG\IORZ" 7KHSDWKWUDFHGRUWDNHQE\DVLQJOHÀXLGSDUWLFOHLQPRWLRQRYHUDSHULRGRIWLPHLVFDOOHG LWVSDWKOLQH+HQFHSDWKOLQHLVDORFXVRIDÀXLGSDUWLFOHDVLWPRYHVDORQJ7KHSDWKOLQH VKRZV WKH GLUHFWLRQ RI YHORFLW\ RI WKH SDUWLFOH DV LW PRYHV DKHDG 'XULQJ VWHDG\ ÀRZ LW FRQFLGHVZLWKWKHVWUHDPOLQHDVWKHUHLVQRÀXFWXDWLRQLQYHORFLW\+RZHYHUWKHSDWKOLQH ÀXFWXDWHVEHWZHHQGL൵HUHQWVWUHDPOLQHVGXULQJDQXQVWHDG\ÀRZ What is a streamline? $VWUHDPOLQHLVDQLPDJLQDU\OLQHGUDZQWKURXJKDÀRZLQJÀXLGVXFKWKDWWKHWDQJHQWDWHDFK SRLQW RQ WKH OLQH LQGLFDWHV WKH GLUHFWLRQ RI WKH YHORFLW\ RI WKH ÀXLG SDUWLFOH DW WKDW SRLQW )RU H[DPSOHLIABCLVDVWUHDPOLQHWKHQWKHGLUHFWLRQRIYHORFLWLHVRIAB and is CDVVKRZQEHORZ
([SODLQJUDSKLFDOO\DVWUHDPOLQH V
v
dr
dy
Point x,y dx
u
Fluid Kinematics
399
$VWUHDPOLQHLVDFXUYHWKDWLVHYHU\ZKHUHWDQJHQWWRWKHLQVWDQWDQHRXVORFDOYHORFLW\YHFWRU If d r = dxi + dyj + d z k arc lenJWKWKHYHORFLW\YHFWRU V = ui + vj + wk DQGHTXDWLRQ ofVWUHDPOLQHLV dr dx dy dz = = = V u v w
([SODLQWKHIROORZLQJ WKHYDOXHRIYHORFLW\DWULJKWDQJOHWRWKHVWUHDPOLQH FDQ WKHUHEHDQ\IORZDFURVVWKHVWUHDPOLQHDQG FDQWZRVWUHDPOLQHVFURVVHDFKRWKHU" 6LQFHYHORFLW\RIDÀXLGSDUWLFOHDWDQ\SRLQWRQWKHVWUHDPOLQHLVWDQJHQWLDOWRWKHVWUHDPOLQH WKHUHFDQQRWE\DQ\FRPSRQHQWRIYHORFLW\QRUPDORUULJKWDQJOHWRWKHVWUHDPOLQHLHWKH FRPSRQHQWRIYHORFLW\DWULJKWDQJOHWRWKHVWUHDPOLQHLV]HUR 7KHUH FDQQRW EH DQ\ ÀRZ DFURVV WKH VWUHDPOLQH DV WKH ÀRZ LV DOZD\V WDQJHQWLDO WR WKH VWUHDPOLQH 7ZR VWUHDPOLQHV FDQQRW FURVV HDFK RWKHU RWKHUZLVH WKHUH ZRXOG EH WZR YHORFLWLHV DW WKDW SRLQW RQH HDFK WDQJHQWLDO WR WKH VWUHDPOLQHV7KLV LV LQFRQVLVWHQW ZLWK WKH GH¿QLWLRQ RI D VWUHDPOLQH +RZGRHVDVWUHDPOLQHEHKDYHLQWKHYLFLQLW\RIDVROLGVXUIDFH" 7KH VWUHDPOLQH LQ WKH YLFLQLW\ RI D VROLG VXUIDFH FRQIRUPV WR WKH RXWOLQH RI WKH ERXQGDU\ VXUIDFH)RUH[DPSOHWKHVWUHDPOLQHVDURXQGDVROLGF\OLQGHUDQGZLWKLQDFORVHGFRQGXLW DUHDVVKRZQLQWKH¿JXUHEHORZ
Stream Line Around a Solid Cylinder
Stream Lines within a Closed Conduct
:KDWKDSSHQVWRVWUHDPOLQHVGXULQJVWHDG\DQGXQVWHDG\IORZFRQGLWLRQV" ,Q VWHDG\ ÀRZ WKH SDWWHUQ RI VWUHDPOLQHV UHPDLQV XQFKDQJLQJ ZLWK WLPH +RZHYHU WKH SDWWHUQRIVWUHDPOLQHVPD\RUPD\QRWUHPDLQVDPHZLWKWLPHIRUXQVWHDG\ÀRZ,IXQVWHDG\ ÀRZLVGXHWRWKHFKDQJHRIPDJQLWXGHRIYHORFLW\WKHVWUHDPOLQHSDWWHUQUHPDLQVLQYDULDQW XQFKDQJLQJ ZLWKWLPH+RZHYHULIWKHXQVWHDGLQHVVGXHWRWKHFKDQJHLQWKHGLUHFWLRQRI WKHYHORFLW\WKHVWUHDPOLQHSDWWHUQFDQQRWUHPDLQVDPH What is a stream tube? 7KHVWUHDPWXEHFRQVLVWVRIVWUHDPOLQHVIRUPLQJLWVERXQGDU\VXUIDFH7KHVWUHDPWXEHLV GH¿QHG DV D FLUFXODU VSDFH IRUPHG E\ WKH FROOHFWLRQ RI VWUHDPOLQHV SDVVLQJ WKURXJK WKH SHULPHWHU RI D FORVHG FXUYH LQ D VWHDG\ ÀRZ$V VWUHDP WXEH LV ERXQGHG RQ DOO VLGHV E\ VWUHDPOLQHV WKHUHIRUH QR ÀXLG FDQ HQWHU RU OHDYH WKH VWUHDP WXEH IURP WKH VLGHV H[FHSW IURP WKH HQGV +HQFH VWUHDP WXEH EHKDYHV DV D VROLG VXUIDFH WXEH7KH JHQHUDO HTXDWLRQ
400
Fundamentals of Fluid Mechanics
RIFRQWLQXLW\FDQEHDSSOLHGRQVWUHDPWXEHWKRXJKLWKDVQRVROLGERXQGDULHV6WUHDPWXEH PD\EHRIUHJXODURULUUHJXODUVKDSH7KHYHORFLW\LVXQLIRUPWKURXJKRXWWKHFURVVVHFWLRQ RIWKHVWUHDPWXEHZKLFKQHFHVVLWDWHVVPDOOFURVVVHFWLRQIRUWKHVWUHDPWXEH,QVWHDG\ÀRZ ZLWKXQLIRUPYHORFLW\DOOVWUHDPOLQHVDUHVWUDLJKWDQGSDUDOOHO7KHFRQWHQWVRIVWUHDPWXEH DUHFDOOHGFXUUHQW¿ODPHQWV
Stream Tube
:KDWGR\RXXQGHUVWDQGIURPVWUHDNOLQHRU¿ODPHQWOLQH" ,WLVDQLQVWDQWDQHRXVSLFWXUHRIWKHSRVLWLRQVRIDOOÀXLGSDUWLFOHVLQWKHÀRZZKLFKKDYH SDVVHGRUHPHUJHGIURPDJLYHQSRLQW7KHOLQHRIVPRNHIURPDFLJDUHWWHRUIURPDFKLPQH\ LVQRWKLQJEXWDVWUHDNOLQH What is a potential line? 7KH OLQHV RI HTXDO YHORFLW\ SRWHQWLDO DUH FDOOHG SRWHQWLDO OLQHV 7KHVH SRWHQWLDO OLQHV FXW VWUHDPOLQHV RUWKRJRQDOO\ LH D VWUHDPOLQH DQG D SRWHQWLDO OLQH DUH DW ULJKW DQJOH WR HDFK RWKHU 'LVWLQJXLVKVWUHDPOLQHVVWUHDNOLQHVDQGSDWKOLQHV 8378 Features
Streak lines
Path lines
1.
Imaginary lines showing YDULRXVÀXLGSDUWLFOHV positions of
1.
Real line showing instantaneous positions of various particles
1.
Real line showing successive position of one particle.
2.
Particle may change VWUHDPOLQHGHSHQGLQJ RQW\SHRIÀRZ
2.
May change from instant to instant
2.
Particle may cross its path line
3.
Streamlines cannot LQWHUVHFWHDFKRWKHU they are always parallel
3.
Streak line changes with time. Two streak lines may intersect each other
3.
Two path lines for two particles may intersect each other
4.
1RÀRZDFURVV streamline
4.
Flow across streak line is possible
4.
Flow across a path line is possible by other particles.
8.4 TYPES OF DISPLACEMENTS OF FLUID PARTICLES :KDWDUHGL൵HUHQWW\SHVRIGLVSODFHPHQWVRIIOXLGSDUWLFOHV" $Q\ ÀXLG HOHPHQW FDQ EH VXEMHFWHG WR WUDQVODWLRQ URWDWLRQ RU GLVWRUWLRQ GXULQJ LWV FRXUVH RIPRWLRQ,QWUDQVODWLRQWKHÀXLGHOHPHQWPRYHVWRDQRWKHUSRVLWLRQLQWKHVDPHGLUHFWLRQ )RUH[DPSOHWUDQVODWLRQWDNHVSODFHZKHQOLTXLGÀRZVWKURXJKSLSHVRULQRSHQFKDQQHO 3XUHWUDQVODWLRQGRHVQRWFDXVHDQ\VWUHVVLQWKHHOHPHQW
Fluid Kinematics Element at original position D
C
Original position D
Element at new position C¢
D¢
C
D¢
C¢
401
New position
B A
B
B¢
A¢
B¢
A A¢
Translation
Translation
,Q URWDWLRQDO GLVSODFHPHQW WKH ÀXLG HOHPHQW LV VXEMHFWHG WR WKH URWDWLRQ DV VKRZQ LQ WKH ¿JXUH 1R VWUHVV LV FDXVHG DV WKHUH LV QR UHODWLYH PRYHPHQW RI WKH HOHPHQW ZLWK UHVSHFW WR WKH URWDWLQJ V\VWHP AB and AC are rotating in the same direction to AB¢ and AC ¢ $QJXODU GHIRUPDWLRQ LV ]HUR =
dq - dq = 0 and shear stresV LV ]HUo as strain rate
Ê ∂v ∂ u ˆ =0 ÁË ∂ x ∂ y ˜¯ D¢ C
C¢
D
dq
B¢ dq A
B
'LVWRUWLRQFDQEH DQJXODURU YROXPHGLVWRUWLRQDVVKRZQLQWKH¿JXUH6WUHVVHVDUH SURGXFHGZKHQÀXLGHOHPHQWLVGLVWRUWHG,QDQJXODUGLVWRUWLRQVWUHVVLQGXFHGLVVKHDUVWUHVV due to shear strDLQDVJLYHQE\WKHDQJOHRIGLVWRUWLRQ$QJXODUGLVWRUWLRQLV d q + d q and Ê ∂ v ∂ uˆ shear strain rate = Á Ë ∂ x ∂ x ˜¯ D¢ C
D
C
C¢
dq2
C¢
dq1 A
D D¢
B¢ B
Angular Distortion
A
B Volume Distortion
402
Fundamentals of Fluid Mechanics
8.5 TYPES OF FLUID FLOWS :KDWDUHGL൵HUHQWW\SHVRIIOXLGIORZ" 7KHÀXLGÀRZVFDQEH VWHDG\RUXQVWHDG\ XQLIRUPRUQRQXQLIRUP ODPLQDURU WXUEXOHQW FRPSUHVVLEOH RU LQFRPSUHVVLEOH URWDWLRQDO RU LUURWDWLRQDO DQG RQH WZRRUWKUHHGLPHQVLRQDO 'H¿QHVWHDG\DQGXQVWHDG\IORZZLWKRQHSUDFWLFDOH[DPSOH 8378 7KH ÀRZ LQ ZKLFK ÀXLG FKDUDFWHULVWLFV OLNH YHORFLW\ DFFHOHUDWLRQ SUHVVXUH RU GHQVLW\ GR QRWFKDQJHZLWKWLPHDWDQ\SRLQWLQWKHÀXLGLVFDOOHGVWHDG\ÀRZ$ÀRZRIZDWHUZLWK FRQVWDQW GLVFKDUJH WKURXJK D SLSHOLQH LV DQ H[DPSOH RI VWHDG\ ÀRZ )RU VWHDG\ ÀRZ ZH KDYHWKHIROORZLQJ ∂r ∂v ∂ v dP =0 ∂t ∂t ∂t ∂t 7KH ÀRZ LQ ZKLFK ÀXLG FKDUDFWHULVWLFV OLNH YHORFLW\ DFFHOHUDWLRQ SUHVVXUH DQG GHQVLW\ FKDQJH ZLWK WLPH DW DQ\ SRLQW LV FDOOHG XQVWHDG\ ÀRZ7KH ZDWHU ZLWK YDU\LQJ GLVFKDUJH WKURXJKDSLSHLVDQXQVWHDG\ÀRZ)RUXQVWHDG\ÀRZZHKDYH
∂r ∂v dP ∂ v π π π π0 ∂t ∂t ∂t ∂t ,QVWHDG\ÀRZWKHSDWKOLQHDQGVWUHDPOLQHZLOOFRQFLGH,QXQVWHDG\ÀXLGÀRZWKHSDWKOLQH RIVXFFHVVLYHSDUWLFOHZLOOEHGL൵HUHQWDQGVWUHDPOLQHSDWWHUQRIWKHÀRZZLOOEHFKDQJLQJ DWHYHU\LQVWDQW :KDWGR\RXXQGHUVWDQGE\XQLIRUPDQGQRQXQLIRUPIORZ" 8QLIRUPÀRZLVWKHÀRZLQZKLFKYHORFLW\RIWKHÀRZGRHVQRWFKDQJHDORQJLWVGLUHFWLRQ RI ÀRZ DW DQ\ SRLQW RI WLPH$ ÀRZ WKURXJK D FRQVWDQW GLDPHWHU SLSH OLQH LV DQ XQLIRUP ÀRZ)RUXQLIRUPÀRZZHKDYH
∂v = 0 ZKHUHv YHORFLW\DQGs GLVWDQFHLQGLUHFWLRQRIÀRZ ∂s 1RQXQLIRUPÀRZLVWKHÀRZLQZKLFKYHORFLW\RIWKHÀRZFKDQJHVLQWKHGLUHFWLRQRIWKH ÀRZ DW DQ\ LQVWDQW RI WLPH )ORZ WKURXJK D SLSH KDYLQJ YDUL\LQJ FURVV VHFWLRQ LV D QRQ XQLIRUPÀRZ)RUQRQXQLIRUPÀRZZHKDYH dv π0 ds
Uniform Flow
Non-Uniform Flow
Fluid Kinematics
403
'H¿QHODPLQDUDQGWXUEXOHQWIORZZLWKRQHH[DPSOH 8378 $ ODPLQDU ÀRZ LV RQH LQ ZKLFK WKH ÀXLG SDUWLFOHV PRYH LQ OD\HUV ZLWK HDFK OD\HU VOLGLQJ RYHUWKHRWKHU7KHUHLVQRPRYHPHQWRIÀXLGSDUWLFOHVIURPRQHOD\HUWRDQRWKHU)ORZRI EORRGLQVPDOOYHLQVDQGRLOÀRZLQEHDULQJVDUHH[DPSOHVRIODPLQDUÀRZ,WLVDVPRRWK UHJXODUÀRZZKHUHYHORFLW\RIÀRZLVYHU\VPDOO
Laminar Flow
7KHÀRZLQZKLFKDGMDFHQWOD\HUVFURVVHDFKRWKHUDQGWKHOD\HUVGRQRWPRYHDORQJWKH ZHOOGH¿QHGSDWKLVFDOOHGWXUEXOHQWÀRZ7KHÀRZWKURXJKULYHUVRUFDQDOVVPRNHIURP FKLPQH\RUFLJDUHWWHDUHH[DPSOHVRIWXUEXOHQWHUÀRZ
Turbulent Flow
+RZFDQIORZVEHFODVVL¿HGLHODPLQDURUWXUEXOHQWRUWUDQVLWIORZ" 7KHÀRZFDQEHFODVVL¿HGE\5H\QROGVQXPEHU7KH5H\QROGVQXPEHULVWKHUDWLRRILQHUWLD IRUFH WR YLVFRXV IRUFH 7KH YLVFRXV IRUFH WHQGV WR PDNH WKH PRWLRQ RI D ÀXLG LQ SDUDOOHO OD\HUVZKLOHLQHUWLDIRUFHPDVVxDFFHOHUDWLRQ WHQGVWRGL൵XVHWKHÀXLGSDUWLFOHV+LJKHU YLVFRXVÀRZVDUHODPLQDUÀRZZKLFKKDYHORZHUYDOXHRI5H\QROGVQXPEHU/RZYLVFRXV IRUFH KLJKHU LQFUHDVH LQ YHORFLW\ RU LQHUWLDO IRUFH DUH WXUEXOHQW ÀRZ ZKLFK KDYH KLJKHU YDOXHVRI5H\QROGVQXPEHU 5H\QROGVQXPber =
r VL Inertia force = m Viscous force
)RUÀRZLQSLSHVWKHÀRZFDQEH D /DPLQDUÀRZLI5H\QROGVQXPEHU E 7UDQVLWÀRZLI5H\QROGVQXPEHULVLQEHWZHHQDQG F 7XUEXOHQWÀRZLI5H\QROGVQXPEHU! :KDWGR\RXXQGHUVWDQGE\FRPSUHVVLEOHDQGLQFRPSUHVVLEOHIORZV" 7KHÀRZLQZKLFKWKHYROXPHDQGWKHUHE\WKHGHQVLW\RIÀXLGGRHVQRWUHPDLQFRQVWDQW GXULQJWKHÀRZLVFDOOHGFRPSUHVVLEOHÀRZ*DVHVDUHPRVWFRPSUHVVLEOH7KHFRPSUHVVLELOLW\ UHODWHGSUREOHPVDUHREVHUYHGZKHQJDVHVÀRZWKURXJKRUL¿FHQR]]OHWXUELQHFRPSUHVVRU DQGLQÀLJKWRISODQHV
404
Fundamentals of Fluid Mechanics
7KH ÀRZ LQ ZKLFK WKH FKDQJHV LQ YROXPH DQG WKHUHE\ LQ WKH GHQVLW\ RI WKH ÀXLG DUH LQVLJQL¿FDQWWKHÀRZLVVDLGLVWREHLQFRPSUHVVLEOH)ORZRIOLTXLGVLVLQFRPSUHVVLEOHÀRZ )RUJDVHVLQVXEVRQLFDHURG\QDPLFFRQGLWLRQVDLUÀRZFDQEHFRQVLGHUHGLQFRPSUHVVLEOH :KDWDUHURWDWLRQDODQGLUURWDWLRQDOIORZV" 7KH URWDWLRQDO ÀRZ LV D ÀRZ LQ ZKLFK WKH ÀXLG SDUWLFOHV DOVR URWDWH DERXW WKHLU RZQ D[LV ZKLOH ÀRZLQJ DORQJ VWUHDPOLQHV 0RWLRQ RI D OLTXLG LQ D URWDWLQJ F\OLQGHU LV D URWDWLRQDO ÀRZ7KHLUURWDWLRQDOÀRZLVDÀRZLQZKLFKÀXLGSDUWLFOHVGRQRWURWDWHDERXWWKHLURZQ D[LVZKLOHÀRZLQJDORQJVWUHDPOLQHV)ORZRIZDWHULQHPSW\LQJZDVKEDVLQLVDLUURWDWLRQDO ÀRZ7KHRWKHUH[DPSOHRILUURWDWLRQDOPRWLRQLVWKDWRIFDUULDJHVRQDJLDQWZKHHOXVHGIRU DPXVHPHQWULGHV(DFKFDUULDJHGHVFULEHVDFLUFXODUSDWKDVWKHZKHHOUHYROYHVEXWLWGRHV QRWURWDWHZLWKUHVSHFWWRLWVRZQD[LV B
B
A
A B
B
B A
A
A
B
A B
A Irrotational Motion
A Element AB circling but not rotating
B
Element AB circling and rotating
Rotational Motion
8.6 ONE-, TWO- AND THREE-DIMENSIONAL FLOWS 'L൵HUHQWLDWHRQHWZRDQGWKUHHGLPHQVLRQDOIORZV 2QHGLPHQVLRQDOÀRZ2QHGLPHQVLRQDOÀRZLVWKHÀRZLQZKLFKWKHYHORFLW\RIWKH ÀRZLVDIXQFWLRQRIWLPHDQGRQHVSDFHFRRUGLQDWHxy or z 7KHÀRZWKURXJKDSLSH LVRQHGLPHQVLRQDOÀRZ)RURQHGLPHQVLRQDOÀRZZHKDYHIRU D 6WHDG\ÀRZV = f x E 8QVWHDG\ÀRZV = f xt V = f (x)
x axis
One-Dimensional Flow
Fluid Kinematics
405
7ZRGLPHQVLRQDOÀRZ7ZRGLPHQVLRQDOÀRZLVWKHÀRZLQZKLFKWKHYHORFLW\RIWKH ÀRZLVDIXQFWLRQRIWZRVSDFHFRRUGLQDWHVxyxz or yz DQGWLPH7KHÀRZVEHWZHHQ WZR SDUDOOHO SODWHV RI ODUJH H[WHQW ÀRZ RYHU D ORQJ VSLOOZD\ DQG ÀRZ DW WKH PLGGOH SDUWRIWKHZLQJRIDQDLUFUDIWDUHWZRGLPHQVLRQDOÀRZV)RUWZRGLPHQVLRQDOÀRZZH KDYHIRU D 6WHDG\ÀRZv = f xy E 8QVWHDG\ÀRZv = f xyt
7KUHHGLPHQVLRQDO ÀRZ7KUHHGLPHQVLRQDO ÀRZ LV WKH ÀRZ LQ ZKLFK WKH YHORFLW\ RI WKHÀRZLVDIXQFWLRQRIWKUHHVSDFHFRRUGLQDWHVxyz DQGWLPH)ORZLQFRQYHUJLQJ RUGLYHUJLQJSLSHVHFWLRQLVDWKUHHGLPHQVLRQDOÀRZ
)RUWKUHHGLPHQVLRQDOÀRZZHKDYHIRU D 6WHDG\ÀRZv = f xyz E 8QVWHDG\ÀRZv = f xyzt :KDWLVGLVFKDUJHRUUDWHRIIORZQ " 7KHGLVFKDUJHLVWKHDPRXQWRIÀXLGÀRZSHUXQLWWLPH+HQFHGLVFKDUJHLV Q=
=
Volume Time Area ¥ Length Time
406
Fundamentals of Fluid Mechanics
= Area ¥9HORFLW\ =A¥V 7KHGLVFKDUJHFDQDOVREHGH¿QHGDVWKHFURVVVHFWLRQDODUHDRIWKHÀRZPXOWLSOLHGE\WKH YHORFLW\RIÀRZ
8.7 EQUATION OF CONTINUITY What is the principle of conservation of mass? 7KHSULQFLSOHRIFRQVHUYDWLRQRIPDVVVWDWHVWKDWPDWWHUFDQQRWEHFUHDWHGRUGHVWUR\HGLQ QRQQXFOHDUSURFHVVHV :KDWLVWKHHTXDWLRQRIFRQWLQXLW\RIIORZ" 7KHHTXDWLRQRIFRQWLQXLW\RIÀRZLVEDVHGRQWKHSULQFLSOHRIFRQVHUYDWLRQRIPDVV,WVWDWHV WKDWWKHPDVVRIÀXLGHQWHULQJWKHVWUHDPWXEHIURPRQHHQGPXVWEHHTXDOWRWKHPDVVRI ÀXLGOHDYLQJWKHVWUHDPWXEHDWWKHRWKHUHQGSHUXQLWWLPHDQGWKHUHLVQRDFFXPXODWLRQRI ÀXLGLQWKHVWUHDPWXEH 'HULYHWKHHTXDWLRQRIFRQWLQXLW\IRURQHGLPHQVLRQDOVWHDG\IORZEDVHGRQWKHVWUHDP WXEHFRQFHSW 7KHFRQWLQXLW\HTXDWLRQFDQEHGHULYHGEDVHGRQVWUHDPWXEHZLWKWKHIROORZLQJDVVXPSWLRQV VWHDG\ÀRZ XQLIRUPÀRZ LQFRPSUHVVLEOHÀRZDQG RQHGLPHQVLRQDOÀRZ A¢
A
B¢ E¢
B
E
C¢ D¢
C
2-2 section D 1-1 section
&RQVLGHUDVWUHDPWXEHDVVKRZQDERYH)OXLGHQWHUVWXEHIURPVHFWLRQDQGH[LWVIURP VHFWLRQ/HWdsEHGLVWDQFHEHWZHHQVHFWLRQDQGVHFWLRQ 5DWHRILQFUHDVHRIPDVVZLWKLQWKHVWUHDPWXEH PDVVRIÀXLGHQWHULQJ±PDVVRIÀXLGOHDYLQJ
0DVVRIÀXLGHQWHULQJ rAV ZKHUHA = cross-sectional area and V YHORFLW\ Mass oIÀXLGOHDYLQJ rAV +
∂ rAV ds ∂s
Ê ˆ d \ 5DWHRILQFUHDVHRIPDVVZLWKLQWKHVWUHDPWXEH rAV± Á rAV rAV ds˜ ds Ë ¯ ±
∂ r A◊V ds ∂s
Fluid Kinematics
%XWWKHUDWHRILQFUHDVHRIPDVVEHWZHHQVHFWLRQDQGVHFWLRQ =
∂ r ¥ Ads ∂t
407
∂ GHQVLW\¥YROXPH ∂t
%\ODZRIFRQVHUYDWLRQRIPDVVZHKDYH 5DWHRIPDVVLQFUHDVLQJLQVWUHDPWXEH 'L൵HUHQFHRIÀXLGHQWHULQJDQGOHDYLQJWKHVWUHDP tube
∂ ∂ r Ads ± r AV ds ∂s ∂t ∂ ∂ rA rAV ∂t ∂s 7KLVLVWKHFRQWLQXLW\HTXDWLRQ)RUdL൵HUHQWFRQGLWLRQVZHKDYH D 6WHDG\ÀRZ
∂ ∂ rA Kence rAV ∂t ∂s
E )RUVWHDG\DQGLQFRPSUHVVLEOHÀRZr is constant As
or or or
∂ rAV = 0 ∂s ∂ AV r FRQVWDQW ∂s AV = constaQW RQLQWHJUDWLRQ AV = AV
'HULYHWKHFRQWLQXLW\HTXDWLRQLQWKUHHGLPHQVLRQDO&DUWHVLDQFRRUGLQDWHV 8378 Or 'HULYH WKH H[SUHVVLRQ IRU WKH FRQWLQXLW\ HTXDWLRQ IRU WKH VWHDG\VWDWH ' IORZ RI D FRPSUHVVLEOHIOXLG 8378 'HULYDWLRQLVEDVHGRQWKHSULQFLSOHRIFRQVHUYDWLRQRIPDVVZKLFKVWDWHVWKDWWKHTXDQWLW\ RIÀXLGSHUVHFRQGUHPDLQVFRQVWDQWZKHQDÀXLGÀRZVWKURXJKDQ\VHFWLRQRIWKHSLSH
408
Fundamentals of Fluid Mechanics Z E G F
w H
dz
A B Y
v
D dy
u
dx
X
C
Fluid Element
&RQVLGHUDÀXLGHOHPHQWDVVKRZQLQWKH¿JXUHDERYHKDYLQJOHQJWKVdxdy and dz in xy and zGLUHFWLRQ$VVXPHuv and wDUHLQOHWYHORFLWLHVDORQJxy and zGLUHFWLRQUHVSHFWLYHO\ rLVWKHGHQVLW\RIÀXLGHOHPHQWDWDSDUWLFXODULQVWDQW 0DVVRIÀXLGHQWHULQJIURPIDFHABEF = r ¥ u ¥dy ¥ dz 0DVVRIÀXLGOHDYLQJIURPIDFHCDGH ru dy dz
∂ ru ◊ dy dz dx ∂x
∂ È ˘ ru ◊ d y dz dx ˙ ±ru dy ◊ dz Rate of mass increase in x-direction = Íru ◊ d y dz + ∂ x Î ˚ =
∂ ru dx dy dz ∂x
6LPLODUO\ZHFDQ¿QGIRUy and z direction as under Rate in mass increase in y-direction =
∂ rv ◊dx dydz ∂y
Rate in mass increase in z-direction =
∂ rw dx dy dz ∂z
È∂ ˘ ∂ ∂ Total rate in mass increase = dx ◊ dy ◊ dz Í ru + rv + rw ˙ ∂y ∂z Î ∂x ˚ $V WKHUH LV QR DFFXPXODWLRQ RI ÀXLG PDVV WKHUH LV QR PDVV LQFUHDVH DV SHU WKH ODZ RI FRQVHUYDWLRQRIPDVV HencH
È ∂ ru ∂ rv ∂ r w ˘ + + Í ˙ dx ◊ dy ◊ dz = 0 ∂y ∂z ˚ Î ∂x
Fluid Kinematics
409
∂ rv ∂ ru ∂ rw + + =0 ∂y ∂x ∂z
or
If r IRULQFRPSUHVVLEOHÀXLGV
∂u ∂w ∂v + + =0 ∂x ∂y ∂z 7KLVLVDFRQWLQXLW\HTXDWLRQIRUWKUHHGLPHQVLRQDOÀRZ )RUWZRGLPHQVLRQDOÀRZYHORFLW\YDULDWLRQDORQJz-direction iV]HURLH ∂ w = 0 ∂z \
∂u ∂v + LVDFRQWLQXLW\HTXDWLRQLQWZRGLPHQVLRQDOÀRZ ∂x ∂y
'HULYHDFRQWLQXLW\HTXDWLRQLQWZRGLPHQVLRQVLQSRODUFRRUGLQDWHVIRULQFRPSUHVVLEOH IOXLGV Vq +
∂Vq ⋅ dq ∂q
D
Vr +
∂Vr dr ∂r
A C dq Vr
B Vq
q O r r + dr
&RQVLGHUDÀXLGHOHPHQWABCDEHWZHHQUDGLXVRIr and r + drZKLFKLVVXEWHQGLQJDQDQJOH dq at origin O/HIWVrLVUDGLDOYHORFLW\DQGVqLVWDQJHQWLDOYHORFLW\$VVXPHWKHWKLFNQHVV RIWKHÀXLGHOHPHQWDVXQLW\&RQVLGHULQJWKHÀRZLQUDGLDOGLUHFWLRQ Fluid entering from AB face = r ¥9HORFLW\Vr ¥ Area ¥ Time = r ¥ Vr rdq ¥ dt
∂V Ê ˆ )OXLGOHDYLQJIURPCD face = r Á Vr + r ◊ dr˜ r + dr dq dt Ë ¯ ∂r
410
Fundamentals of Fluid Mechanics
È Ê ˘ ∂V ˆ 0DVVRIÀXLGDFFXPXODWHG rVr r dq◊ dt – Ír Á Vr + r ◊ dr˜ (r + dr) d q ◊ dt˙ Ë ¯ ∂r Î ˚ ∂V ± ÈÍrVr dr ◊ d q ◊ dt + r r ¥ r ¥ dr ¥ d q ¥ dt˘˙ ∂r Î ˚
>QHJOHFWdr)2WHUP@
∂V ± r ÈÍVr + r r ˘˙ dr ◊ dq ◊ dt ∂r ˚ Î ∂V ˘ ÈV ± r Í r + r ˙ ¥ dr ¥ (r dq) ◊dt ∂r ˚ Îr
1RZFRQVLGHULQJWKHÀRZLQWDQJHQWLDOGLUHFWLRQLQWKHVHOHFWHGÀXLGHOHPHQWABCDZHKDYH
0DVVHQWHULQJIURPIDFHBC rVq ◊ dr ◊dt
0DVVOHDYLQJIURPIDFHAD r Ê V + ∂Vq ◊ d qˆ ◊ dr ◊dt ÁË q ∂q ˜¯
0DVVDFFXPXODWHG rVQ dr ◊ dt±r ÊÁ Vq + ∂Vq ◊ d qˆ˜ ¥ dr ◊dt Ë ¯ ∂q ± r ¥
∂Vq ¥ dq ¥ dr ¥ dt ∂q
± r ¥ ∂Vq Ê rd q ¥ dr ¥ dt ˆ ˜¯ ∂q ÁË r ±
r ∂Vq (rdq ¥ dr ¥ dt) r ∂q
&KDQJHRIÀXLGPDVVLQWLPHdtLQWKHHOHPHQW
∂ PDVV ¥ dt ∂t
∂ (r ¥YROXPH ¥ dt ∂t
∂ (r ¥ r dq ¥ dr) ¥ dt ∂t
B\WKHODZRIFRQVHUYDWLRQRIPDVV
∂ (r ¥ r dq ¥ dr) ◊ dt ± r ∂t
ÈVr ∂Vr ˘ dr (rdq)dt± r ∂Vq (rdq ¥ dr ¥ d t) Í r + ∂r ˙ r ∂q Î ˚
Fluid Kinematics
If dt
411
∂ IRUVWHDG\ÀRZDQGr = constant ∂t Vr +
∂ Vr ¥ r + ∂ Vq ∂r ∂q ∂ ∂ r ¥ Vr Vq ∂r ∂q
or
8.8 ROTATION AND VORTICITY What do you understand from rotation and vorticity of fluid particles? $ÀRZLVVDLGWREHURWDWLRQDOLIÀXLGSDUWLFOHVDUHURWDWLQJDERXWWKHLURZQPDVVFHQWUHV7KH URWDWLRQRIDÀXLGSDUWLFOHDWDSRLQWLVVSHFL¿HGE\¿QGLQJWKHDYHUDJHDQJXODUYHORFLW\RI WZRSHUSHQGLFXODUOLQHDUHOHPHQWVRIÀXLGSDUWLFOH5RWDWLRQRIWKHÀXLGSDUWLFOHWDNHVSODFH DERXWDQD[LVZKLFKLVSHUSHQGLFXODUWRWKHSODQHIRUPHGE\WKHVHWZRHOHPHQWVRIWKHÀXLG 7KHVHQVHRIURWDWLRQLVJLYHQE\WKHULJKWKDQGUXOHIRUWKHPRWLRQRIDULJKWKDQGVFUHZ 9RUWLFLW\RIDURWDWLRQÀRZKDVWZLFHWKHYDOXHRIWKHURWDWLRQRIWKHÀRZ%RWKURWDWLRQDQG YRUWLFLW\DUHYHFWRUV 'HULYH WKH H[SUHVVLRQV IRU URWDWLRQ DQG YRUWLFLW\ LQ WHUPV RI YHORFLWLHV LQ x, y and z GLUHFWLRQV C¢
D
D¢
C
dq B¢ dq A
dx
B
Rotation about z axis
&RQVLGHUDUHFWDQJXODUHOHPHQWDOVKHHWRIÀXLGLQx-ySODQHDVVKRZQLQWKH¿JXUHDERYH During the time dtWKHSHUSHQGLFXODUÀXLGHOHPHQWAB and ADKDYHURWDWHGLQx-y plane E\VPDOODQJOHdq7KHYHORFLW\A in x- and y-direction is u and vUHVSHFWLYHO\+HQFHZH KDYH
Ê ˆ ∂u 7KHYHORFLW\FRPSRQHQWVLQx-direction at A and D = u and Á u + ◊ d y˜ ∂y Ë ¯ ∂v Ê ˆ 7KHYHORFLW\FRPSRQHQWVLQy-direction at A and B = v and Á v + ◊ dx˜ Ë ¯ ∂x
412
Fundamentals of Fluid Mechanics
6LQFHWKHYHORFLWLHVDWD and BDUHGL൵HUHQWIURPSRLQWAHOHPHQWAB and ADZLOOPRYH UHODWLYHWRSRLQWA 7KHÀXLGVKHHWZLOOURWDWHE\dq in time dtDQGWDNHQHZSRVLWLRQDWAB ¢ C ¢D ¢
ÈÊ ˘ ∂v ˆ Distance BB¢ = ÍÁ v + ◊ dx˜ - v ˙ dt Ë ¯ ∂ x Î ˚ =
∂v dx ◊ dt ∂x
È Ê ˆ˘ ∂u ◊ d y˜ ˙ ¥ dt Distance DD¢ = Íu - Á u + ∂y Ë ¯˚ Î ±
dq =
∂u ◊dy ◊dt ∂y
BB ¢ DD ¢ = dx dy
∂u ∂v ◊ d y ◊ dt ◊ dx ◊ dt ∂y ∂x = dy dx ∂u ∂v ◊ dt ± ◊ dt ∂y ∂x 1RZDQJXODUYHORFLW\Z =
\
dq dt
ZAB
∂v ◊ dt ∂v ∂x = = ∂x dt -
ZAD =
∂u ◊ dt ∂u ∂y ± dt ∂y
7KHDYHUDJHRIZAB and ZADZLOOJLYHWKHURWDWLRQRIÀXLGÀRZDERXWzD[LV \
Zz =
=
ZAB + ZAD Ê ∂ v ∂ uˆ ÁË ∂ x ∂ y ˜¯
Fluid Kinematics
413
:HFDQDOVR¿QGRXWWKHFRPSRQHQWRIURWDWLRQDERXWx- and yD[LV
$OVR
Zx =
È ∂w ∂v˘ - ˙ Í Î ∂y ∂ z ˚
Zy =
È ∂u ∂w ˘ ÍÎ ∂ z ∂ x ˙˚
Z=
w x + w y + w z
5RWDWLRQDOYHFWRUZ = Zx i + Zy j + Zzk 9RUWLFLW\ ¥ rotation W Z 7KUHHFRPSRQHQWVRIYRUWLFLW\DUH W x Zx =
∂w ∂v ± ∂y ∂z
W y Zy =
∂u ∂w ± ∂z ∂x
W z Zz =
∂u ∂v ± ∂y ∂x
Note: 9RUWLFLW\LQSRODUFRRUGLQDWHVLVW =
∂Vq V ∂Vr + q ± ∂r r ∂q r
:KDWDUHWKHFRQGLWLRQVIRULUURWDWLRQDOIORZ" 7KHLUURWDWLRQDOÀRZZLOOKDYHERWKURWDWLRQDQGYRUWLFLW\DV]HUR Z = 0 and W = 0 or Zx = Zy = Zz DQG W x = Wy = W z = 0 7KHDERYHJLYHVWKHFRQGLWLRQVRILUURWDWLRQRIWKHÀRZDV
∂w ∂v = ∂y ∂z ∂w ∂u = ∂x ∂z ∂w ∂u = ∂x ∂y 1RWH7KHFRQGLWLRQVLQSRODUFRRUGLQDWHVLVW ZKLFKJLYHV
∂Vr V ∂Vq + q + =0 r ∂q r ∂r
414
Fundamentals of Fluid Mechanics
8.9 CIRCULATION :KDWLVFLUFXODWLRQ"+RZLVLWUHODWHGWRYRUWLFLW\" &LUFXODWLRQ LV GH¿QHG DV WKH OLQH LQWHJUDO RI WKH WDQJHQWLDO YHORFLW\ RI WKH ÀXLG DURXQG D FORVHGFXUYH Circulation = G =
\
³ V ¥ ds
ZKHUHVq WDQJHQWLDOYHORFLW\ ds VPDOOOHQJWKRIFXUYH Vq
VA
u+ D
Vn
∂u ⋅ dy ∂y
C
Curve C dy
v A
B u
v+
∂v ⋅ dx ∂x
dx Circulation
&RQVLGHUDQXPEHURIVWUHDPOLQHVLQDFORVHGFXUYH/HWWDQJHQWLDODQGQRUPDOFRPSRQHQWV RIYHORFLW\V are Vq = V be q and Vr = V sin q,IZHFDOFXODWHFLUFXODWLRQDURXQGDUHFWDQJXODU URWDWLQJHOHPHQWRIVL]Hdx ¥ dyWKHQZHJHW \
G=
³ Vcos q ds
Ê Ê ∂v ˆ ∂u ˆ = udx + Á v + dx˜ dy± Á u + d y dx± ∂y ¯ ∂ y ˜¯ Ë Ë Ê ∂v ∂ uˆ = Á dx ◊dy Ë ∂ x ∂ y ˜¯ = W z ¥ dx ¥ dy = W z ¥DUHDHQFORVHGE\FORVHGFXUYHLQSODQHDWULJKWDQJOHWRzD[LV +HQFHYRUWLFLW\LVWKHFLUFXODWLRQSHUXQLWVXUIDFHDUHD \
W=
G ZKHUH A DUHHQFORVHGE\FORVHGFXUYHG A
or
W=
G Ê ∂v ∂ uˆ = Á dx d y Ë ∂ x ∂ y ˜¯
Fluid Kinematics
8.10
415
STREAM FUNCTION
([SODLQWKHSK\VLFDOVLJQL¿FDQFHDQGXVHRIWKHWHUPµVWUHDPIXQFWLRQ¶ 8378 7KHÀRZUDWHq EHWZHHQWZRVWUHDPOLQHVSHUXQLWWKLFNQHVVDQGWLPHLVNQRZQDVVWUHDP IXQFWLRQy 3K\VLFDOVLJQL¿FDQFH &RQVLGHU D ÀRZ EHWZHHQ WZR VWUHDPOLQHV AA¢ and BB¢ ZKLFK LV WZRGLPHQVLRQDO VWHDG\ DQG LQFRPSUHVVLEOH7KHÀRZq SHUXQLWWLPHDQGWKLFNQHVVEHWZHHQWKHVHVWUHDPOLQHVAA¢ and BB¢ is stream function y7KHÀRZDFURVVSRLQWVA and BZLOOUHPDLQVDPH y = qLUUHVSHFWLYH RIWKHLUMRLQLQJOLQHZKLFKPD\EHAB or ACB or ADB,IZHDVVXPHy = 0 at point AWKHQ y at point BZLOOEHÀRZSHUXQLWWLPHDQGWKLFNQHVV q = y. Y B D B¢ C A
Streamline A¢
X
Physical Concept of Y ¢
6WUHDP IXQFWLRQ LV DOVR GH¿QHG DV WKH VFDODU IXQFWLRQ RI VSDFH DQG WLPH ZKRVH SDUWLDO GHULYDWLYHZLWKUHVSHFWWRDQ\GLUHFWLRQJLYHVWKHYHORFLW\FRPSRQHQWDWULJKWDQJOHVWRWKDW GLUHFWLRQ +HQFH LQ VWHDG\ WZRGLPHQVLRQDO ÀRZ y = f x y ZKLFK JLYHV
∂y = v and ∂x
∂y =u ∂y 'HULYHWKHHTXDWLRQRIVWUHDPOLQH
8378 v
V
w
y u A Streamline
z
x O Equation of Streamline
&RQVLGHU D VWUHDPOLQH KDYLQJ YHORFLW\ DW SRLQW A x y z DV V 7KH FRPSRQHQWV RI WKLV YHORFLW\DUHuv and w in x-y- and zGLUHFWLRQ$IWHUWLPHdtWKHGLVWDQFHPRYHGE\WKH SDUWLFOHRQWKUHHPDMRUD[HVDUH
416
Fundamentals of Fluid Mechanics
dx dy dz dx d y dz
\
= = = =
u dt vdt wdt u v w
u z v = = dx dz dy
or
7KLVLVNQRZQDVHTXDWLRQRIVWUHDPOLQH ([SODLQWKHPDWKHPDWLFDOFRQFHSWRIVWUHDPIXQFWLRQ Or 3URYH WKDW
∂y ∂y = – u and = vDQG yDORQJDVWUHDPLVFRQVWDQW ∂y ∂x
Or Prove that a stream function yUHSUHVHQWVWKHHTXDWLRQIRUDVWUHDPOLQH Streamline
y A
u
v
dy
B O
dx Mathematical Concept
&RQVLGHU D WZRGLPHQVLRQDO VWHDG\ ÀRZ LQ ZKLFK y = f x y 7KH SRLQW A and B on the VWUHDPOLQHDUHVHSDUDWHGE\DVPDOOGLVWDQFHd x7KLVGLVWDQFHdsFDQEHUHSUHVHQWHGE\dx and dy on x and yD[LVUHVSHFWLYHO\/HWu and vEHYHORFLWLHVDWSRLQWA7KHHTXDWLRQRI VWUHDPOLQHLV u dy±v dx The discharge across dyZLOOEH dy = u dy or
u=
- ∂y ∂y
6LPLODUO\
v=
∂y +HQFHSURYHG ∂x
3XWWLQJWKHYDOXHVRIu and vLQHTQ
∂y ∂y ◊ dy + ◊ dx = 0 ∂y ∂x
Fluid Kinematics
or
417
dy = 0
or
y = constant
+HQFHSURYHG
7KHVWUHDPIXQFWLRQDORQJDVWUHDPOLQHLVFRQVWDQW7KHGLVFKDUJHEHWZHHQWZRVWUHDPOLQHV LVWKHGL൵HUHQFHRIWKHVWUHDPIXQFWLRQV GLVFKDUJHq y ± y
1RZWRSURYHWKDWVWUHDPIXQFWLRQUHSUHVHQWVVWUHDPOLQHZHNQRZWKDWVWUHDPOLQHHTXDWLRQ FDQEHJLYHQDV u dy±v dx = 0
$OVR
u=±
∂y ∂y and v = ∂y ∂x
TKHUHIRUHZHJHW
∂y ∂y ◊ dy + ◊ dx = 0 ∂x ∂y or
dy = 0
+HQFHyUHSUHVHQWVWKHVWUHDPOLQHHTXDWLRQ 6KRZWKDWVWUHDPIXQFWLRQVDWLV¿HVWKHHTXDWLRQRIFRQWLQXLW\ 7KHHTXDWLRQRIFRQWLQXLW\IRUDWZRGLPHQVLRQDOÀRZLV
∂u ∂v + = ∂x ∂y
$VSHUVWUHDPIXQFWLRQZHKDYH u ± v=
∂y ∂y
∂y ∂x
3XWWKHYDOXHVRIu and vLQWKHFRQWLQXLW\HTXDWLRQHTQ
∂ - ∂y ∂ + ∂ x ∂y ∂y RU
±
Ê ∂y ˆ ÁË + ∂ x ˜¯ = 0
∂ y ∂ y + =0 ∂x ∂y ∂ y ∂x
7KH DERYH LV VDWLVI\LQJ DV /+6 5+6 +HQFH VWUHDP IXQFWLRQ VDWLV¿HV WKH HTXDWLRQ RI FRQWLQXLW\
418
Fundamentals of Fluid Mechanics
+RZy and fLQSRODUFRRUGLQDWHVDUHXVHGWR¿QGYHORFLW\FRPSRQHQWVLQUDGLDODQG WDQJHQWLDOGLUHFWLRQV y = f rq Radial YHORFLW\ur = 7DQJHQWLDOYHORFLW\uq =
∂y r ∂q ∂y ∂r
f = f rq 5DGLDOYHORFLW\ur =
∂f ∂r
∂f r ∂q Note: )ROORZLQJPD\EHXVHGDVDVLPSOHZD\WRUHPHPEHU 7DQJHQWLDOYHORFLW\uq =
u ∫ uqv ∫ ur dx ∫ r dq dy ∫ d r 'HULYH/DSODFHHTXDWLRQRIVWUHDPIXQFWLRQIRULUURWDWLRQIORZ )RUWZRGLPHQVLRQDOÀRZLQxy SODQHWKHYRUWLFLW\WLVJLYHQE\ W=
∂v ∂u ± ∂x ∂y
For stream function yZHKDYH u ±
∂y ∂y
v=+
∂y ∂x
3XWWKHYDOXHVRIu and vLQHTQ W=
= FRULUURWDWLRQÀRZW = 0
∂ Ê ∂y ˆ ∂ Ê ∂y ˆ ± Á ˜ ∂ y ÁË ∂ y ˜¯ ∂x Ë ∂x ¯ ∂y ∂ y + ∂y ∂ x
Fluid Kinematics
419
∂y ∂ y + =0 ∂y ∂ x
\
7KLVLV/DSODFHHTXDWLRQ Enumerate the properties of stream function y 7KHSURSHUWLHVRIVWUHDPIXQFWLRQDUH yLVFRQVWDQWDWDOOSODFHVLQDVWUHDPOLQH 7KHÀRZDURXQGDQ\SDWKLQWKHÀXLGLV]HUR 7KHYHORFLW\YHFWRUDWDQ\SRLQWRQWKHVWUHDPOLQHFDQEHIRXQGRXWE\GL൵HUHQWLDWLQJ its stream functiRQLHu = ±
∂y ∂y and v = ∂x ∂y
7KHGLVFKDUJHEHWZHHQWKHVWUHDPOLQHVLVHTXDOWRGL൵HUHQFHRIWKHLUVWUHDPIXQFWLRQV LH q = y±y
7KHUDWHRIFKDQJHRIVWUHDPIXQFWLRQZLWKGLVWDQFHLVSURSRUWLRQDOWRWKHFRPSRQHQW RIYHORFLW\QRUPDOWRWKDWGLUHFWLRQ
,IWZRVWUHDPOLQHVDUHVXSHULPSRVHGWKHQ
∂ y + y ∂y ∂y + = ∂s ∂s ∂s
What do you understand from the velocity potential? 8378 7KHÀRZWDNHVSODFHDVLQSLSHOLQHZKHQWKHUHLVDGL൵HUHQFHRISUHVVXUH7KHÀRZDOZD\V WDNHVSODFHIURPKLJKHUWRORZHUSUHVVXUHVLGH7KLVSRWHQWLDOGL൵HUHQFHUHVXOWLQJLQWRWKH ÀRZRIÀXLGLVNQRZQDVYHORFLW\SRWHQWLDODQGLWLVGHQRWHGE\f7KHYHORFLW\SRWHQWLDOLV GH¿QHGDVDVFDODUIXQFWLRQRIVSDFHDQGWLPHVXFKWKDWLWVQHJDWLYHGHULYDWLYHZLWKUHVSHFW WRDQ\GLUHFWLRQJLYHVWKHÀXLGYHORFLW\LQWKDWGLUHFWLRQ+HQFHIRUVWHDG\ÀRZLIYHORFLW\ SRWHQWLDOLVJLYHQE\f = f xyz WKHQ u =±
∂f ∂f v = ± ∂y ∂x
and
w=±
∂f ∂z
1RWH1HJDWLYHVLJQLQGLFDWHVWKDWWKHÀRZLVWDNLQJSODFHLQGLUHFWLRQLQZKLFKYHORFLW\ SRWHQWLDOGHFUHDVHV 'HULYHWKH/DSODFHHTXDWLRQIRUWKHYHORFLW\SRWHQWLDO )RUVWHDG\ÀRZWKHFRQWLQXLW\HTXDWLRQLV
∂u ∂v ∂w + + =0 ∂x ∂y ∂z
420
Fundamentals of Fluid Mechanics
1RZ u = ±
∂f ∂f ∂f v = ± and w = ± 3XWWKHVHYDOXHVLQFRQWLQXLW\HTXDWLRQ ∂x ∂z ∂y ∂ ∂x
∂ ∂ Ê ∂f ˆ Ê ∂f ˆ ÁË - ∂ x ˜¯ + ∂ y Á - ˜ + ∂ z Ë ∂y ¯
TKLVLV/DSODFHHTXDWLRQ
\
Ê ∂f ˆ ÁË - ∂ z ˜¯ = 0
∂ f ∂ f ∂ f + + =0 ∂y ∂x ∂ z
What are the properties of a potential function? 7KHSURSHUWLHVRIDSRWHQWLDOIXQFWLRQDUH )ORZKDYLQJSRWHQWLDOIXQFWLRQfDUHLUURWDWLRQDO
)ORZV DUH VWHDG\ LQFRPSUHVVLEOH DQG LUURWDWLRQDO LI YHORFLW\ SRWHQWLDO VDWLV¿HV WKH /DSODFHHTXDWLRQ
:KDWLVWKHUHODWLRQEHWZHHQVWUHDPIXQFWLRQy DQGYHORFLW\SRWHQWLDOf " $V SHU GH¿QLWLRQ WKH GHULYDWLYHV RI VWUHDP DQG YHORFLW\ SRWHQWLDO JLYH FRPSRQHQWV RI YHORFLWLHVDVXQGHU u=±
∂y ∂y v = ∂y ∂x
$OVR
u=±
∂f ∂f v = ± ∂y ∂x
\
u=±
∂y ∂f =± ∂y ∂x
and
v=
∂y ∂f =± ∂x ∂y
+HQFHZHFDQZULWH
∂y ∂f = ∂y ∂x and
∂f ∂y =± ∂y ∂x
Fluid Kinematics
421
3URYHHTXLSRWHQWLDOOLQHDQGVWUHDPOLQHDUHRUWKRJRQDOWRHDFKRWKHU 8378 (TXLSRWHQWLDOOLQHVKDYHSRWHQWLDOIXQFWLRQDVFRQVWDQW f = f xy FRQVWDQW df =
\
∂f ∂f ◊ dx + dy = 0 ∂y ∂x
∂f ∂f ± u and ±vZHJHW ∂y ∂x ± udx±v d y = 0
\
u dy =± v dx
or
It is slope mRIHTXLSRWHQWDLOOLQH 1RZVWUHDPIXQFWLRQDORQJDVWUHDPOLQHLVFRQVWDQW y = f xy FRQVWDQW
\ or As
dy =
∂y ∂y ◊ dx + ◊ dy = 0 ∂y ∂x
∂y ∂y = v and ± uZHJet ∂y ∂x v dx±u dy = 0
\
dy v = dx u
+HQFHWKHDERYHLVVORSHm of streamline
1RZm ¥ m = ±
u v ¥ ± v u
+HQFHHTXLSRWHQWLDOOLQHDQGVWUHDPOLQHDUHRUWKRJRQDO
8.11 FLOW NET :KDWLVDIORZQHW":KDWLVWKHFRQGLWLRQRIIORZQHWWREHDVHWRIVTXDUH" $ÀRZQHWLVDJUDSKLFDOUHSUHVHQWDWLRQRIVWUHDPOLQHVDQGHTXLSRWHQWLDOOLQHV7KHVWUHDPOLQHV LQWKHÀRZQHWVKRZWKHGLUHFWLRQRIÀRZZKLFKWKHHTXLSRWHQWLDOOLQHVMRLQWKHHTXDOYHORFLW\ SRWHQWLDOf SRLQWVLQWKHÀRZ)ORZQHWSURYLGHVDVLPSOHJUDSKLFDOWHFKQLTXHIRUVWXG\LQJ ÀRZVZKLFKDUHWZRGLPHQVLRQDODQGLUURWDWLRQDODVFRPSDUHGWRPDWKHPDWLFDOFDOFXODWLRQ WHFKQLTXHVZKLFKDUHGL൶FXOWDQGWHGLRXV,QDÀRZQHWWKHVWUHDPOLQHVDUHVSDFHGVXFKWKDW WKHUDWHRIÀRZqLVVDPHEHWZHHQHDFKVXFFHVVLYHSDLURIVWUHDPOLQHV7KHÀRZQHWFDQEH GUDZQIRULUURWDWLRQDOÀRZVy is constant along the streamline and f is constant along the HTXLSRWHQWLDOOLQHDVVKRZQLQWKH¿JXUH
422
Fundamentals of Fluid Mechanics
If qLVWKHÀRZDQGV & VDUHYHORFLWLHVDORQJVWUHDPOLQHVy and y q = V Dn = V Dn = constant
\
Where Dn and DnDUHWKHGLVWDQFHVEHWZHHQWZRVWUHDPOLQHV
V D n = V D n
\ f1
f3
f2
f4 y1
ds
q y2
dn
q y3 q y4
Flow net
But Df = VDs = V Ds = constant \
V D s = V D s D s D n = D s D n
or
or In case
D n D n = D s D s Dn = constant Ds Dn WKHQDn = Ds:HJHWDVHWRIVTXDUHLQWKHÀRZQHW Ds
:KDWDUHWKHPHWKRGVXVHGIRUGUDZLQJWKHIORZQHWV"
8378
7KUHH PHWKRGV DUH XVHG IRU GUDZLQJ WKH ÀRZ QHWV ZKLFK DUH DQDO\WLFDO PHWKRG JUDSKLFDO PHWKRG DQG HOHFWULFDO DQDORJ\ PHWKRG ,Q DQDO\WLFDO PHWKRG ÀRZ QHW FDQ EH GUDZQ EH ¿QGLQJ WKH H[SUHVVLRQ IRU f and y in terms of x and y ZKLFK FDQ EH SORWWHG,QJUDSKLFDOPHWKRGWKHÀRZSDVVDJHLVHTXDOO\GHYLGHGWRGUDZVWUHDPOLQHVDQG WKHQ HTXDOO\ SRWHQWLDO OLQHV DUH GUDZQ RUWKRJRQDOO\ WR WKH VWUHDPOLQH ,Q HOHFWULF DQDORJ\ PHWKRGHTXLSRWHQWLDOOLQHVDUHGUDZQXVLQJWKHQXOOPHWKRG6WUHDPOLQHVDUHODWHUGUDZQ RUWKRJRQDOO\
Fluid Kinematics
423
([SODLQWKHJUDSKLFDOPHWKRGRIGUDZLQJIORZQHW 7KHJUDSKLFDOPHWKRGLVFDUULHGRXWDVXQGHU 7KHÀRZSDVVDJHEHWZHHQWKHERXQGDULHVLVGHYLGHGLQWRVXLWDEOHQXPEHURIHTXDOSDUWV DQGDVHWRIVWUHDPOLQHVDUHGUDZQHQFORVLQJWKHVHHTXDOSDUWV (TXLSRWHQWLDOOLQHVDUHGUDZQRUWKRJRQDOO\WRWKRVHVWUHDPOLQHVVXFKWKDWHDFKEORFNRI ÀRZQHWLVDOPRVWDVTXDUH
Flow
Flow Pipes or parallel plates
Converging pipe Flow
Flow Bend pipe
Outlet from tank
Flow Nets: Graphical Method
7KHUH LV VLPLODULW\ EHWZHHQ IORZ RI IOXLGV DQG IORZ RI HOHFWULFLW\ :KDW DUH WKHVH similarities? Flow of electricity
)ORZRIÀXLGV 1.
Velocity potential ϕLVHVVHQWLDOIRUÀXLGÀRZ +HQFHϕ is analogous to voltage (V)
2.
9HORFLW\RIÀRZUHVXOWVZLWKWKHPDJQLWXGHRI (OHFWULFFXUUHQWÀRZGXHWRSRWHQWLDO velocity potential. GLႇHUHQFH Velocity is analogous to current (I)
3.
Phenomenon takes place in homogeneous ÀXLGV
)ORZRIFXUUHQWQHHGVKRPRJHQHRXV FRQGXFWRU
4.
Darcy-Weisbach equation is applicable
Ohm’s law is applicable
5.
,WLVSRVVLEOHWRGLYLGHÀRZE\SLSHQHWZRUN
,WLVSRVVLEOHWRGLYLGHFXUUHQWE\HOHFWULFDO network
Q1
(OHFWULFLW\SRWHQWLDOY LVHVVHQWLDOIRUÀRZ of current
i1 Q
i
i i2
Q2
Q = Q1 + Q2 i = i1 + i 2
424
Fundamentals of Fluid Mechanics
'HVFULEHWKHHOHFWULFDODQDORJPHWKRGRIGUDZLQJIORZQHW Conducting boundary
Vessel
Water with electrolyte
Conducting boundary G
10 volt Electrical Analogy Method
7KHDSSDUDWXVFRQVLVWVRIDYHVVHOZLWKQRQFRQGXFWLQJZDOOVFRQWDLQLQJHOHFWURO\WHZKLFK FDQ FRQGXFW HOHFWULFLW\7ZR FRSSHU SODWHV ZLWK YROWDJH VXSSO\ DUH XVHG WR REWDLQ FXUUHQW ÀRZ7KHDSSOLHGYROWDJHYROWV JUDGXDOO\IDOOVIURPSRVLWLYHSODWHWRQHJDWLYHSODWHLQ WKHHOHFWURO\WH7KHHTXDOSRWHQWLDOOLQHVFDQEHDVFHUWDLQHGZLWKWKHKHOSRIJDOYDQRPHWHU E\ ¿QGLQJ QXOO SRLQWV RQ WKH SRWHQWLDO PHWHU ZLWK WKH KHOS RI SUREH$IWHU GUDZLQJ HTXDO SRWHQWLDOOLQHVVWUHDPOLQHVZKLFKDUHRUWKRJRQDOWRWKHHTXDOSRWHQWLDOFDQEHDVFHUWDLQHG %\GUDZLQJVWUHDPOLQHVDQGSRWHQWLDOOLQHVÀRZQHWFDQEHPDGH 'HVFULEHWKHXVHVDQGOLPLWDWLRQVRIWKHIORZQHWV" 8378 7KHXVHVRIÀRZQHWVDUH 7KHÀRZSUREOHPVLQZKLFKERXQGDU\FRQ¿JXUDWLRQDQGÀRZFRQGLWLRQVDUHVXFKWKDW WKHPDWKHPDWLFDODQDO\VLVLVGL൶FXOWFDQEHVROYHGE\ÀRZQHWV)ORZWKURXJKD)UDQFLV ZDWHUWXUELQHURWRULVDQDO\VHGHDVLO\E\ÀRZQHWV 2QFHWKHÀRZQHWLVDVFHUWDLQHGLWFDQEHXVHGIRUGL൵HUHQWGLVFKDUJHV ,WLVSRVVLEOHWRDVFHUWDLQWKHYHORFLW\RIGL൵HUHQWSODFHVLQÀRZQHWLIYHORFLW\DWVRPH SRLQWVLQWKHÀRZQHWDUHJLYHQ )ORZQHWVFDQEHXVHGWRDVFHUWDLQWKHVHHSDJHDQGXSZDUGVK\GUDXOLFSUHVVXUHIRUFH DFWLQJEHORZWKHK\GUDXOLFVWUXFWXUHOLNHLQDGDP (IILFLHQWERXQGDU\VKDSHVRIEODGHVRIWXUELQHFDQEHGHVLJQHGE\WKHXVHRIIORZ QHWV )ORZQHWVKHOSLQWKHLGHQWL¿FDWLRQRIOLNHO\SRLQWVRIVWDJQDWLRQDQGVHSDUDWLRQZKLFK PD\RFFXULQWKHÀRZVRWKDWWKHGHVLJQRIERXQGDU\VKDSHFDQEHLPSURYHGWRDYRLG WKHVHSRLQWVRIVWDJQDWLRQDQGVHSDUDWLRQLQWKHÀRZRIÀXLG
Fluid Kinematics
425
7KHOLPLWDWLRQRIÀRZQHWVDUH )ORZQHWDQDO\VLVFDQQRWEHDSSOLHGZKHUHYLVFRXVIRUFHVDUHSUHGRPLQDQWVXFKDVFORVH WRWKHERXQGDU\VXUIDFH )ORZQHWDQDO\VLVFDQQRWEHDSSOLHGWRWKHÀRZLQVKDUSO\GLYHUJLQJÀRZSDVVDJHV )ORZQHWVFDQQRWVKRZDFFXUDWHO\WKHIRUPDWLRQRIZDNHVUHVXOWLQJIURPWKHVHSDUDWLRQ DQGHGG\IRUPDWLRQ
8.12 VELOCITY AND ACCELERATION VECTOR :KDWLVWKHGL൵HUHQFHEHWZHHQYHORFLW\DQGDFFHOHUDWLRQYHFWRURIDIOXLGSDUWLFOH" 7KH YHORFLW\ YHFWRU LV DOZD\V LQ WDQJHQWLDO GLUHFWLRQ WR WKH SDWK RI WKH ÀXLG SDUWLFOH +RZHYHU WKH DFFHOHUDWLRQ YHFWRU PD\ DOVR EH LQ WKH QRUPDO GLUHFWLRQ LQ DGGLWLRQ WKH GLUHFWLRQ RI YHORFLW\ YHFWRU )RU H[DPSOH ZKHQ D ÀXLG LV ÀRZLQJ LQ D FXUYHG SDWK WKH YHORFLW\DWDQ\SRLQWLVWDQJHQWLDOEXWWKHDFFHOHUDWLRQLVERWKWDQJHQWLDODQGQRUPDO
9HORFLW\YHFWRULVJLYHQE\ V xyzt DQGDcceleration YHFWRUE\ a =
or
a =
dV dt
∂V dx ∂V ∂ y ∂V ∂ z ∂V ◊ + π + ∂ x dt ∂y ∂ t ∂z ∂x ∂t
=u
∂V ∂V ∂v ∂V +v +w + ∂x ∂t ∂y ∂z
$FFHOHUDWLRQRIÀXLGSDUWLFOHRFFXUVGXHWR FKDQJHRISRVLWLRQDQG FKDQJHLQÀRZ ZLWK WLPH $FFHOHUDWLRQ GXH WR FKDQJH LQ SRVLWLRQ LV NQRZQ DV WUDQVSRUW RU FRQYHFWLYH DFFHOHUDWLRQ7KHDFFHOHUDWLRQGXHWRFKDQJHLQÀRZZLWKWLPHLVFDOOHGWHPSRUDORUORFDO DFFHOHUDWLRQ ,Q VWHDG\ ÀRZ unLIRUPÀRZ
∂V ∂t
KHQFH FRQYHFWLYH RU ORFDO DFFHOHUDWLRQ LV ]HUR ,Q
∂V KHQFHWUDQVSRUWDFFHOHUDWLRQ+RZHYHUIRUERWKVWHDG\DQGXQLIRUP ∂s
ÀRZVDFFHOHUDWLRQLV]HUR :KDW LV QRUPDO DFFHOHUDWLRQ ZKHQ D IOXLG SDUWLFOH PRYHV DORQJ D FXUYLOLQHDU SDWK" )LQGDFFHOHUDWLRQYHFWRUDOVR :KHQ D IOXLG SDUWLFOH PRYHV DORQJ D FXUYLOLQHDU SDWK LWV YHORFLW\ Vs FRQWLQXRXVO\ FKDQJHVGLUHFWLRQDORQJWKHSDWK+HQFHWKHPRYLQJSDUWLFOHKDVWRKDYHDQDFFHOHUDWLRQ FRPSRQHQWQRUPDOWRWKHGLUHFWLRQRIIORZZKLOHPRYLQJRQWKHFXUYLOLQHDUSDWK
426
Fundamentals of Fluid Mechanics
dq Radius = r of curvature
VS
+d
VS
B A
(Vs + dVs) sin q (Vs + dVs) cos q
VS = V q
&RQVLGHUÀXLGSDUWLFOHAPRYLQJWRSRLQWBLQFXUYLOLQHDUSDWK
&KDQJHRIWDQJHQWLDOYHORFLW\Vq Vs + dVs FRVq±Vs cos q = if dq is small
+HQFH
dVq = Vs + dVs± Vs = dVs
6LPLODUO\FKDQJHRIYHORFLW\QRUPDOWRVq dVn Vs + dVs VLQdq
1RZ
VLQdq = dq for small dq dVn = Vs dq
\
1RZ
∂Vq dVs ∂Vn = + ∂ t dt ∂t =
But
QHJOHFWLQJdVs ¥ dq
∂q ∂Vs + Vs ∂t ∂t
dq V = w DQJXODUYHORFLW\ s dt r Ê V ˆ Ê dV ˆ a = Á s ˜ + Á Vs s ˜ Ë r ¯n Ë dt ¯ q
\
Ê ∂Vs ∂Vs ˆ V + = Á Vs + s ˜ Ë ∂s ∂t ¯ r :KDWDUHWKHHTXDWLRQVRINLQHPDWLFVZKLFKDUHDSSOLFDEOHIRUWKHDQDO\VLVRIDWZR GLPHQVLRQDOVWHDG\LGHDOIORZLQKRUL]RQWDOSODQH" &RQWLQXLW\ D Cartesian coordinates
∂v ∂u + =0 ∂y ∂x
Fluid Kinematics
u=
427
∂y ∂y v = ± ∂y ∂x
E Polar coordinates
∂ uq ∂ rur + =0 ∂r ∂q
ur =
∂y ∂y uq = ∂r r ∂q
,UURWDWLRQ D Cartesian coordinates
∂u ± ∂ v = 0 ∂y ∂x u=
∂f ∂f v = ∂y ∂x
E Polar coordinates
∂u ∂ ruq ± r = 0 ∂q ∂r ur =
∂f ∂f uq = ∂r r ∂q
)OXLGÀRZLQWZRGLPHQVLRQV
D 3RVVLEOHLIVWUHDPIXQFWLRQyH[LVWV E ,UURWDWLRQDOLIYHORFLW\SRWHQWLDOfH[LVWV
/DSODFHHTXDWLRQIRULUURWDWLRQLQy function is
∂ y ∂ y + =0 ∂ y ∂ x
∂ f ∂ f + ,QSRODUFRRUGLQDWHVLWLV /DSODFHHTXDWLRQRIFRQWLQXLW\LQf function is ∂y ∂ x ∂f ∂ f ∂ f + + =0 r ∂r r ∂ r ∂ r
428
Fundamentals of Fluid Mechanics
8.13 FORCED AND FREE VORTEX FLOW 'LVWLQJXLVKEHWZHHQIRUFHGYRUWH[DQGIUHHYRUWH[IORZ
8378
)RUFHGYRUWH[IORZ)RUFHGYRUWH[ÀRZLVGH¿QHGDVDÀRZLQZKLFKVRPHH[WHUQDOWRUTXH LVXVHGWRURWDWHWKHÀXLGPDVV7KHÀXLGPDVVLQIRUFHGYRUWH[URWDWHVDWFRQVWDQWDQJXODU YHORFLW\w7KHQWKHWDQJHQWLDOYHORFLW\RIDÀXLGSDUWLFOH Vq = w ◊r ZKHUHrLVWKHUDGLXVRIÀXLGSDUWLFOHIURPWKHD[LVRIURWDWLRQ([DPSOHVRIIRUFHGYRUWH[ DUH ÀRZRIÀXLGLQVLGHWKHLPSHOOHURIFHQWULIXJDOSXPS ÀRZRIZDWHUWKURXJKWKH UXQQHURIDWXUELQHDQG DOLTXLGPDVVLQDFRQWDLQHUURWDWHGDERXWLWVFHQWUDOD[LVZLWK FRQVWDQWDQJXODUYHORFLW\
Rise of fluid
2 2
wr _____ Initial level Z = 2g
Fall of fluid
Forced Vortex
)UHHYRUWH[IORZ:KHQWKHÀXLGPDVVURWDWHVZLWKRXWDSSOLFDWLRQRIH[WHUQDOWRUTXHWKHQ LWLVFDOOHGIUHHYRUWH[ÀRZ7KHÀXLGLQIUHHYRUWH[URWDWHVGXHWRWKHURWDWLRQLPSDUWHGWR WKHÀXLGSUHYLRXVO\([DPSOHVRIIUHHYRUWH[DUH DZKLUOSRROLQDULYHU ÀRZRIÀXLG WKURXJKDKROHSURYLGHGDWWKHERWWRPRIDYHVVHO ÀRZDURXQGDFLUFXODUEHQGDQG ÀRZLQFDVLQJRIFHQWULIXJDOSXPS $W D SRLQW RQ D VWUHDPOLQH WKH YHORFLW\ LV PV DQG WKH UDGLXV RI FXUYDWXUH LV P ,IWKHUDWHRILQFUHDVHRIYHORFLW\DORQJWKHVWUHDPOLQHDWWKLVSRLQWLVPV, then the WRWDODFFHOHUDWLRQDWWKLVSRLQWZRXOGEH D PV E PV
F
PV
G
an =
PV
,(6
9 V = PV 9 r
aq PV a= OSWLRQG LVFRUUHFW
aq + an =
+ =
PV
Fluid Kinematics
429
If u and v are the components of velocity in the x and y GLUHFWLRQV RI IORZ JLYHQ E\ u = ax + by, v = cx + dy7KHQWKHFRQGLWLRQWREHVDWLV¿HGLV
D a + c
E b + d
F a + b + c + d
G a + d u = ax + by
v = cx + dy
∂u =a ∂x
∂v =d ∂y
)ORZKDVWRsatiVI\FRQWLQXLW\HTXDWLRQ
∂u ∂v + =0 ∂x ∂y a+d=0
2SWLRQG LVFRUUHFW
x FRPSRQHQW RI YHORFLW\ LQ D WZRGLPHQVLRQDO LQFRPSUHVVLEOH IORZ LV JLYHQ E\ u = y xy,IYFRPSRQHQWRIYHORFLW\vHTXDOV]HURDWy WKHH[SUHVVLRQVIRUv is given by:
D uy
E y
F ±y
G xy
*$7(
u = y xy
∂u y ∂x FURPFRQWLQXLW\HTXDWLRQ
\ \
∂u ∂v + =0 ∂x ∂y ∂v ∂u ± ± y ∂y ∂x v = ± y + c ±y + c
Condition y v = 0 \
c=0
\
v ±y
2SWLRQF LVFRUUHFW *LYHQWKHxFRPSRQHQWRIYHORFLW\u xy – ∂x, the yFRPSRQHQWRIIORZv is given by E ± xyx D y ±xy G xy±y &LYLO6HUYLFHV F ± x ±xy
430
Fundamentals of Fluid Mechanics
7KHFRQWLQXLW\HTXDWLRQLV
∂v ∂u + =0 ∂y ∂x u xy±x
∂u y±x ∂x ∂v ∂u ± ±yx ∂y ∂x
\
IIZHFDUU\RXWLQWHJUDWLRQZHJHW v ±
y xy + c
±yxy + c OSWLRQG LVFRUUHFW 7KHYHORFLW\FRPSRQHQWUHSUHVHQWLQJWKHLUURWDWLRQDOIORZLV D u = x + y, v = x – y E u = x + y, v = –y2 + x F u = x , v ±xy G u ±x, v y
∂u ∂v ± =0 ∂y ∂x
For irrotatioQÀRZ
FRUFKRLFHD
\
For chRLFHE
\
FRUFKRLFHF
∂u ∂v DQG ∂y ∂x ∂u ∂v ± ± ±π 0 ∂y ∂x ∂u ∂v = + 3 and ∂y ∂x ∂u ∂v ± ± π 0 ∂y ∂x ∂v ∂u ±y ∂x ∂y
&LYLO6HUYLFHV
Fluid Kinematics
431
∂u ∂v ± y π 0 ∂y ∂x
\
FRUFKRLFHG
∂v ∂u =0 =0 ∂x ∂y ∂v ∂u ± =0 ∂x ∂y ∂u ∂v + ± ∂y ∂x
$OVR
HHQFHWKHÀRZLVLUURWDWLRQDO OSWLRQG LVFRUUHFW If the stream function is y xyWKHQYHORFLW\DWDSRLQW LVHTXDOWR
D
F
E
G
&LYLO6HUYLFHV
y xy u ±
∂y ±x ∂y
v=+
∂y y ∂x
\uv DWSRLQW ± Resultant =
u + v
=
+
=
OSWLRQF LVFRUUHFW 7KH JLYHQ ¿JXUH VKRZV WKH IORZ QHW IRU WZRGLPHQVLRQDO FRQVWUXFWLRQV 7KH VL]H RI PHVKVTXDUHDWOLVPP,IYHORFLW\DWOLVPVWKDQWKHYHORFLW\DWA is D PV E PV F PV G PV
432
Fundamentals of Fluid Mechanics C O A P0V0
C
Dn0 = 7 ¥ ± m D nA ¥± m V0 ¥ Dn0 = VA ¥ DnA VA =
\
=
D n0 ¥ V0 D nA ¥ -3 ¥ V0 ¥ -3
V0 ¥ PV 2SWLRQE LVFRUUHFW :KLFKRIWKHIROORZLQJLVURWDWLRQDOIORZ" D u = y, v x E u = xy, v = x y F %RWKD DQGE G QRQHRIWKHRWKHU )RUFKRLFHD ZHKDYH
∂u DQG ∂y
∂u ∂v ± ±π 0 ∂y ∂x
\ ,WLVURWDWLRQDOÀRZ )RUFKRLFHE ZHKDYH
∂u xy and ∂y \
∂v ∂x
∂v xy ∂x
∂u ∂v ± xy±xy = 0 ∂y ∂x
IWLVDQLUURWDWLRQDOÀRZ 2SWLRQD LVFRUUHFW
,(6
Fluid Kinematics
A two-dimensional f l ow is described by the velocity u = 5x 2 and v = – 15 x 2y. The stream function at (1, 2) will be: (b) 5 m2/s (a) 2 m2/s 2 (d) 20 m2/s (c) 10 m /s
433
components,
(IES 1992)
u = 5x 2 v = – 15x 2y ∂y =
∂y ∂y ◊ dx + ◊ dy ∂x ∂y
= + v dx + u dy = + 15x 2y dx + 5x2dy y=+
\
15 x 3 y + 5x 2 y 3
= 10 x3y (y)1,2 = 10 ¥ 1 ¥ 2 = 20 m2/s Option (c) is correct. Of the possible irrotation flow functions given below, the incorrect relation is: (a) y = xy (b) y = A (x 2 – y2) (c) f = u r cos q –
4 sin q r
2ˆ Ê (d) f = Á r - ˜ sin q Ë r¯
Guidance: The Laplace equation of irrotation in y is for continuity in f is
∂2 f ∂2 f + = 0 or ∂y 2 ∂ x2
∂2 y ∂2 y = 0 and Laplace equation 2 + ∂x ∂y 2
1 ∂f 1 ∂2 f ∂2 f + + =0 r ∂r r 2 ∂q ∂ r2
For choice (a)
\
∂y =x ∂y
∂y =y ∂x
∂2 y =0 ∂ x2
∂2 x =0 ∂ x2 ∂2 x ∂2 y =0 2 + ∂x ∂y 2
(IES 1995)
434
Fundamentals of Fluid Mechanics
HHQFHy = xyUHSUHVHQWVDSRVVLEOHLUURWDWLRQDOÀRZ FRUFKRLFHE y = A x ±y
∂y ∂y = Ax ±Ay ∂y ∂x ∂ y ∂ y A A ∂ x ∂y ∂ y ∂ y + A±A = 0 ∂y ∂ x
\
HHQFHy = Ax ±y UHSUHVHQWVDSRVVLEOHLUURWDWLRQDOÀRZ &KRLFHF f = urcos q
u cos q r
∂f u = u cos q± cos q ∂r r ∂ f u = + 3 cos q ∂ r r ∂f u ± ursin q± sin q ∂q r ∂ f u ± ur cos q± cos q ∂q r
/DSODFHHTXDWLRQ
LHS =
∂ f ∂f ∂ f + + =0 r ∂q r ∂r ∂ r v u Ê ˆ ˆ u Ê ÁË u cos q - r cos q˜¯ + 3 cos q + ÁË - ur cos q - r cos q˜¯ r r r
ˆ Ê = v cos q Á - 3 + 3 - - 3 ˜ Ër r r r r ¯ = 0 = RHS
Fluid Kinematics
435
+HQFHfUHSUHVHQWVDSRVVLEOHLUURWDWLRQDOÀRZ &KRLFHG
Ê f = Ár Ë
ˆ sin q r ˜¯
∂f ˆ Ê = Á + ˜ cos q Ë ∂r r ¯ ∂ f = ± 3 sin q r ∂r ∂f = Ê r - ˆ cos q ÁË ∂q r ˜¯ ∂ f Ê ± Á r Ë ∂q LDSODFHHTXDWLRQ LHS =
ˆ sin q r ˜¯
∂f ∂ f ∂ f + + =0 r ∂r r ∂q ∂r r
Ê ˆ ˆ Ê ÁË + r ˜¯ sin q± 3 sin q± r ÁË r - r ˜¯ sin q r
ˆ Ê = sin q Á + 3 - 3 - + 3 ˜ Ër r r r r ¯ =0 +HQFHfUHSUHVHQWVDSRVVLEOHLUURWDWLRQDOÀRZ 7KHYHORFLW\FRPSRQHQWVLQDIORZIOXLGLQx- and y-direction are u = xy and v yz UHVSHFWLYHO\ ([DPLQH ZKHWKHU WKHVH YHORFLW\ FRPSRQHQWV UHSUHVHQW WZR RU WKUHH GLPHQVLRQDOLQFRPSUHVVLYHIORZZLWKWKHVHGLPHQVLRQV'HWHUPLQHWKHzFRPSRQHQW 8378 u = xy
v yz
∂v z ∂y
du =y ∂x CRQWLQXLW\HTXDWLRQIRUWZRGLPHQVLRQV
∂v ∂u + =0 ∂y ∂x yz π 0
436
Fundamentals of Fluid Mechanics
7KHÀRZLVQRWDWZRGLPHQVLRQDOÀRZ,WLVWKHUHIRUHDWKUHHGLPHQVLRQDOÀRZDQGLWPXVW VDWLVI\WKHFRQWLQXLW\HTXDWLRQ
∂v ∂u ∂w + + =0 ∂y ∂x ∂z ∂w =0 ∂z
yz + or
dw ± z±y ∂z
or
w ±z±yz + c
c = constant $YHORFLW\IXQFWLRQLQDWZRGLPHQVLRQDOIORZLVy xy'HWHUPLQHWKHFRUUHVSRQGLQJ velocity potential f 8378 y xy 1RZ
u=± v= df =
∂y ±x ∂y
∂y y ∂x ∂f ∂f ◊ dx + ◊dy ∂y ∂x
± udx±vdy x dx±y dy
\
f=
x y ± = c
= x±y + c &KHFN ZKHWKHU WKH IXQFWLRQ y = A x – y UHSUHVHQWV WKH SRVVLEOH LUURWDWLRQDO IORZ SKHQRPHQRQ 8378 y = Ax±y
∂y = Ax = v ∂x ∂y ±Ay ±u ∂y 1RZ
u Ay
Fluid Kinematics
\
437
∂u A ∂y v Ax
$OVR
∂v A ∂x )RULUURWDWLRQÀRZWPXVWEH]HUR W=
∂v ∂u ± ∂x ∂y
A±A =0 +HQFHÀRZLVLUURWDWLRQDO 9HORFLW\IRUDWZRGLPHQVLRQDOIORZLVJLYHQE\ V xyt ixy + 3t j )LQGWKHYHORFLW\DQGDFFHOHUDWLRQDWSRLQW DIWHUVHF Guidance 7KHYHORFLW\LVH[SUHVVHGLQxy and zGLUHFWLRQE\YHFWRUDVV = ui + vj + wk +HQFHuv and wFDQEHIRXQGRXWIURPWKHYHFWRUHTXDWLRQ u xyt uDW DQGt ¥¥ ¥
PV v = xy + 3t vDW DQGt ¥ + 3 ¥
v=
u + v =
+
PV NRZ
a=
∂V ∂V ∂V ∂V = u◊ +v◊ + ∂x ∂y dt ∂t
∂V yi + yj ∂x ∂V xixyj ∂y
438
Fundamentals of Fluid Mechanics
∂V = 8t ◊ i + 3◊j ∂t \
a xyt yi + y j xy + 3t x ◊ixy ◊j t◊ i + 3◊ j
NRZSXWx y DQGt a ij \
a=
+
$IORZLVJLYHQE\ 3 V x i±x yj
&ODULI\ IORZLVVWHDG\RUXQVteaG\DQG IORZLVWZRRUWKUHHGLPHQVLRQDO)LQG YHORFLW\ORFDODFFHOHUDWLRQDQGFRQYHFWLYHDFFHOHUDWLRQDWSRLQW Guidance 7KH YHORFLW\ RI ÀRZ KDV QR WHUP RI WLPH ZKLFK LQGLFDWHV WKDW ÀRZ LV QRQ GHSHQGHQW RI WLPH LH LW LV VWHDG\ ÀRZ7KH YHORFLW\ LV DOVR QRQGHSHQGHQW RQ WKH ÀRZ in z direction as w +HQFH LW LV D WZRGLPHQVLRQDO ÀRZ /RFDO DFFHOHUDWLRQ LV WLPH independent as ∂V LQWKLVFDVHLV]HUR ∂t x3 ◊i ±xy◊ j
V 3XW \ \
x DQG y
V
¥ 3 ◊ i± ◊ ◊ ◊ j i± ◊ j
V= =
+ +
PV
a =u
∂V ∂V ∂V +v + ∂ y ∂x ∂t
u x3 and
∂V x ◊ i±xy ◊j ∂x
v ±x y and
∂V =KHQFH local acceleration = 0 ∂t
∂V ±x ◊ j ∂y
Fluid Kinematics
x3xi±x yj ±xy±x ◊ j xi±xy±xy j xixyj y i±j
a x a
\
3XW
439
a=
+ ¥ + ¥ PV
=
$RQHGLPHQVLRQDOVWHDG\IORZWKURXJKDFRQYHUJLQJQR]]OHLVKDYLQJOLQHDUYHORFLW\ distribution u x $W HQWUDQFH u = V DQG DW H[LW u V )LQG WKH H[SUHVVLRQ IRU DFFHOHUDWLRQ ,I QR]]OH KDV OHQJWK PP DQG YHORFLW\ V PV FDOFXODWH DFFHOHUDWLRQDWWKHHQWUDQFHDQGH[LW y x x=0 Vo
3Vo
l
7KHYHORFLW\u ZLOOYDU\OLQHDUO\DVXQGHU u = V0 + 3
V0 - V0 ¥x l
x ˆ Ê = V0 Á + ˜ Ë l ¯ a =u
∂u ∂u + ∂x ∂t
◊ x ˆ Ê = V0 ÁË + ¥ V0 ¥ ˜ ¯ l l =
x ˆ V0 Ê ÁË + l ˜¯ l
ax =0 =
¥ PV
ax
¥ ¥ PV
=
440
Fundamentals of Fluid Mechanics
:DWHULVIORZLQJWKURXJKDSLSHRIPGLDPHWHUZLWKDYHUDJHYHORFLW\RIPV:KDW LVLWVGLVFKDUJH",IWKHIORZWDNHVSODFHLQWKHVHFWLRQKDYLQJGLDPHWHUPZKDWZLOO be the velocity? Q = A V = p d ¥ V
p ¥ ¥
=
= p P3V A V = A V
p d p d ¥ V = ¥ V ¥ ¥ V V =
\
PV
A pipe AB EUDQFKHV LQWR WZR SLSHV C and D DV VKRZQ LQ WKH ¿JXUH7KH SLSH KDV D GLDPHWHURIFPDWAFPDWBFPDWC FPDWD'HWHUPLQHWKHGLVFKDUJH at A if the velocity at ALVPV$OVRGHWHUPLQHWKHYHORFLWLHVDWB and D if velocity at CLVPV C dc = 0.5 m A da = 1.2 m
B db = 0.9 m
D dc = 0.2 m
Va = 2 m/s
QA = = 1RZ
Vc = 4 m/s
p d a ¥ Va p ¥ ¥ P3V
Aa Va = Ab Vb
= PV p ¥ Vb = Q B = Q c + Q d
QB = QA
Fluid Kinematics
441
Ac Vc + Ad Vd =
p ¥ p ¥ ¥ ¥ Vd
Vd Vd PV
\
A stream function is give by: y x yt y Find the velocity vector and its value at position vector r
ij±kZKHQt VHF
y x yt y
∂y ± v = 8xy ∂x ∂y = + u x t y ∂y V = ui + vj >x t y] i±xyj
1RZSXWx y z ±DQGt = 3
V - >@i±j i±j V=
+
= + PV ,IIRUDWZRGLPHQVLRQDOSRWHQWLDOIORZWKHYHORFLW\LVJLYHQE\f = x y± 'HWHUPLQH the velocity and stream function at point P $0,( f = x y±
\
u=±
∂f ± y± ±y ∂x
v=±
∂f ±x ∂y
V = ui + vj ±y i±xj
442
Fundamentals of Fluid Mechanics
Put
x y V ± i±j
\
V=
9 + 8 PV
y = f xy dy =
∂y ∂y dx + dy ∂x ∂y
= vdx±udy ±xdx±±y dy
\
y=
-x y ±y +
± x + y±y Put
x y y ±±
6NHWFK WKH VWUHDPOLQH UHSUHVHQWHG E\ y = x + y $OVR ¿QG RXW WKH YHORFLW\ DQG GLUHFWLRQRISRLQW $0,( y = x + y u ±
v=
∂y ∂y
±y
∂y x ∂x
V = ui + vj±yixj V ±¥ij
± ij \
V= tan q =
+ =
PV
v = u
q ZLWKxD[LV y = x + y = r If r «VRRQ then y = r «DQGVRRQ
Fluid Kinematics 5 4 3
443
y=4 y=9
2
y = 25
1
2
3 4
5
Streamlines
Determine the circulation GDURXQGDUHFWDQJOHGH¿QHGE\x y x DQGy = IRUWKHYHORFLW\RIIOXLGu xy and v ±y. C (1, 4)
y
y=4 B (5, 4)
x=1
x=5 A (5, 1)
y=1
D (1, 1) O
x
6SHFL¿HG5HFWDQJOH
&LUFXODWLRQLVDOLQHLQWHJUDORIYHORFLW\DURXQGDFORVHGFXUYH u ds =
G=
Ú
=
Ú
ABCD
=
Ú
AB
=
FXUYH
Ú
Ú
ABCD
u dx + vdy
x + 3y dx±ydy
±y dy + ±ydy +
Ú Ú
Bc
x + 3y dx +
CD
±x dx +
Ê x ˆ Ê x ˆ = Á + x˜ + Á + 3 x˜ Ë ¯ Ë ¯
±±±± ± ±
±y dy +
Ú
Ú
Ú
DA
±y dy +
x + 3y dx
Ú
x± dx
444
Fundamentals of Fluid Mechanics
Another method W YRUWLFLW\ w =
∂u ∂v ± ∂y ∂x
± ± $UHD ¥ Circulation G = W ¥ A ±¥ ± $WZRGLPHQVLRQDOLQFRPSUHVVLEOHÀRZLQSRODUFRRUGLQDWHVLVJLYHQE\ Vr r sin q cos q and Vq ± r sin q )LQGZKHWKHUWKHVHFRPSRQHQWVUHSUHVHQWDSRVVLEOHIORZ Guidance7KHYHORFLW\FRPSRQHQWVPXVWVDWLVI\WKHFRQWLQXLW\HTXDWLRQ,QSRODUFRRUGLQDWHV WKHFRQWLQXLW\HTXDWLRQLV
∂Vr V ∂Vq + + r =0 ∂r r ∂q r Vr r sin q cos q
∂Vr = sin q cos q ∂r Vq ±r sin q
∂Vq ±r ¥VLQq cos q ∂q /+6RIFRQWLQXLW\HTXDWLRQLV
r VLQ q FRV q ±r ¥VLQ FRVq VLn q cos q = r r VLQq cos q ± = 0 = RHS +HQFHWKHÀRZLVDSRVVLEOHÀRZ ,QDWZRGLPHQVLRQDOIORZWKHWDQJHQWLDOFRPSRQHQWRIWKHYHORFLW\LV Vq = –
Asin q ZKHUHA = constant r
)LQGD UDGLDOYHORFLW\VrE PDJQLWXGHDQGGLUHFWLRQRIWKHUHVXOWDQW Guidance 8VHFRQWLQXLW\HTXDWLRQWR¿QGUDGLDOYHORFLW\
∂Vq V ∂Vr + + r =0 r ∂q r ∂r
Fluid Kinematics
or
445
∂Vq ∂ + rVr ∂q ∂r
NoZ
q Vq = ± A sin r ∂Vq A cos q ± ∂q r
\
A cos q ∂rVr = r ∂r rVr = ±
A cos q r
A cos q r
\
Vr =
1RZ
)& V = Vq + Vr
\
V=
Vq + Vr A sin q A cos q + r r
=
=
A r
$IOXLGIORZLVJLYHQE\
aˆ Ê aˆ Ê Vq = Á 1 + ˜ sin q, Vr = Á 1 - ˜ cos q Ë Ë r ¯ r ¯ 6KRZWKDWLWUHSUHVHQWVDSRVVLEOHIORZDQG¿QGZKHWKHULWLVLUURWDWLRQIORZ Guidance 8VHFRQWLQXLW\HTXDWLRQLQSRODUFRRUGLQDWHVWRVKRZWKHÀRZLVSRVVLEOH)RU URWDWLRQDOÀRZYRUWLFLW\ZLOOEH]HUR
aˆ Ê Vr = Á - ˜ cos q Ë r ¯ Ê r Vr = Á r Ë
aˆ cos q r ˜¯
∂ aˆ Ê rVr Á + ˜ cos q Ë ∂r r ¯
446
Fundamentals of Fluid Mechanics
aˆ Ê Vq ± Á + ˜ sin q Ë r ¯ aˆ ∂Vq Ê ± Á + ˜ cos q Ë r ¯ ∂q \&RQWLQXLW\HTXDWLRQLV
∂Vq ∂rVr + =0 ∂q ∂r aˆ Ê aˆ Ê /+6 ± Á + ˜ cos q + Á + ˜ cos q Ë Ë r ¯ r ¯ = 0 = RHS
+HQFHÀRZLVSRVVLEOH W=
1RZ
∂ ∂V rVq ± r ∂r ∂q
aˆ Ê Vq ± Á + ˜ sin q Ë r ¯ aˆ Ê rVq ± Á r + ˜ sin q Ë r¯ aˆ Ê ∂ rVq ± ÁË - ˜¯ sin q r ∂r aˆ Ê Vr = Á - ˜ cos q Ë r ¯ ∂Vr ± Ê - a ˆ sin q ÁË r ˜¯ ∂q 1RZ
W=
∂V ∂ r Vq ± r ∂r ∂q
aˆ Ê aˆ Ê ± Á - ˜ sin q + Á - ˜ sin q Ë Ë r ¯ r ¯ =0
+HQFHÀRZLVLUURWDWLRQDO
Fluid Kinematics
447
'R WKH IROORZLQJ YHORFLW\ SRWHQWLDOV UHSUHVHQW SRVVLEOH IORZV ,I VR GHWHUPLQH WKH VWUHDPIXQFWLRQV D f = y + x – y E f = ur cos q + u cos q r Ê ˆ q a F f = u Á r + ˜ cos q + p r ¯ Ë Case f = y + x ±y
∂f x ∂x ∂ f ∂ x ∂f ±y ∂y ∂ f ± ∂y ∂ f ∂ f + ± ∂ x ∂y +HQFH/DSODFHHTXDWLRQLVVDWLV¿HGDQGWKHÀRZLVSRVVLEOH ∂y ∂f u=+ =+ x ∂y ∂x v=+ \
dy =
∂f ∂y ± ±y ∂y ∂x
∂y ∂y ◊ dx + ◊dy ∂y ∂x
± ±y dxx dy
Case
y ± xxyxy ± xxy xy± x f FRVq +
&RQWLQXLW\HTXDWLRQ
FRVq r
∂ f ∂f ∂ f + + =0 r ∂ r r ∂r ∂ r
448
Fundamentals of Fluid Mechanics
u ∂f FRVq± cos q r ∂r ∂ f = + u cos q r3 ∂ r ∂f u ± ur sin q± sin q ∂q r ∂ f ± ur cos q± u cos q r ∂q L+6RIFRQWLQXLW\HTXDWLon =
u ˆ Ê Ê u u ˆ ÁË u cos q - r cos q˜¯ + 3 cos q + ÁË - ur cos q - cos q˜¯ r r r r ˘ È = u cos q Í - 3 + 3 - - 3 ˙ r r r ˚ Îr r = 0 = RHS
+HQFHÀRZLVSRVVLEOHDQGLVLUURWDWLRQDO ur =
∂f ∂y u = = u cos q± cos q ∂r r ∂q r
uq =
∂f Ê u ∂y ˆ = = Á - ur sin q - sin q˜ r ∂q Ë ¯ r r ∂r
dy = ur ◊r◊dq + uq dr
u ˆ Ê ˆ Ê dy = Á ur cos q - cos q˜ dq±u sin q Á + 3 ˜ ◊ dr Ë ¯ Ë r r ¯ 2QLQWHJUDWLRQZHJHW
Ê y = u sin q Á r Ë
ˆ ˆ Ê ± u sin q Á r - ˜ ˜ ¯ r Ë r ¯
ˆ Ê = u sin q Á r - - r + ˜ Ë r r ¯ = ±
u Ê ˆ VLQ q Á - Ë r ˜¯ r
Fluid Kinematics
Case
Ê q a ˆ f = u Á r + ˜ cos q + p r ¯ Ë Ê ∂f a ˆ = u Á - ˜ cos q ∂r r ¯ Ë ∂ f ∂ r
± a u cos q r3
∂f Ê a ˆ sin q + ±u r + ÁË ∂q p r ˜¯ Ê ∂ f a ˆ ±u Á r + ˜ cos q ∂q r ¯ Ë CRQWLQXLW\HTXDWLRQ
LHS =
∂f ∂ f ∂ f + + =0 r ∂q r ∂r ∂ r
˘ È Ê a ˆ u Ê a ˆ a Íu Á - ˜ FRV q ˙ ± 3 u cos q± Á r + ˜ cos q r ÎÍ Ë r ¯ r Ë r ¯ r ˙˚
È a a a ˘ = u cos q Í - 3 - 3 - - 3 ˙ r r r ˚ Îr r =0 uq =
∂f -u ∂y = = r ∂q r ∂r
ur =
∂y ∂f Ê a ˆ = = u Á - ˜ cos q r ∂q ∂r r ¯ Ë
dy =
Ê a ˆ sin q + r + ÁË ˜ pr r ¯
∂y ∂y dr + dq ∂r ∂q
±
u r
Ê a ˆ sin q x dr + dr + ur Ê - a ˆ cos q x dq r + ÁË ˜ ÁË pr ¯ r ˜¯
Ê Ê a ˆ a ˆ ±u sin q Á + ˜ dr + dr + u cos q Á r - ˜ dq r ¯ r ¯ Ë Ë pr
449
450
Fundamentals of Fluid Mechanics
On integration, we get
Ê Ê log r a2 ˆ a2 ˆ y = – u sin q Á r - 2 ˜ + + u sin q Á r - 2 ˜ 2p r ¯ r ¯ Ë Ë Ê a2 a2 ˆ log r = – u sin q Á r +r- ˜ + r r ¯ 2p Ë Ê a2 ˆ log r = 2 u sin q Á - r˜ + Ë r ¯ 2p )RUJLYHQf = 4(x2 – y2 ¿QGy
(UPTU 2006-7) u=
∂y ∂f = 8x = ∂y ∂x
v=
∂f - ∂y = – 8y = ∂y ∂x
dy =
∂y - ∂y ◊dx + ◊dy ∂y ∂x
= 8y dx + 8x dy y = 8xy + 8xy = 16xy $VWUHDPIXQFWLRQLVJLYHQE\ y = 3 x2y + (3 + t) y2 )LQGWKHIORZUDWHVDFURVVWKHIDFHVRIWKHWULDQJXODUSULVPDWt VHFLISULVPWKLFNQHVV LVPLQzGLUHFWLRQ A
y
2m
O B
O
3m Prism: 3 m thick
Prism: 3 m thick y = 3x2y + (3+ t) y2 At point A, x = 0, y = 2, t = 5
z x
Fluid Kinematics
451
yA = 3 ¥ 0 ¥ ¥ At point Bx y t yB = 3 ¥ 9 ¥ ¥ 0 = 0 At point Ox y t \
yO = 0 )ORZUDWH y±y ¥ thickness )ORZIURPAO yA±y0 ¥ 3 ± ¥ 3 P3V )ORZIURPBO yB±y0 =0 )ORZIURPAB yA±yB ¥ 3 ± ¥ 3
,IWKHYHORFLW\¿HOGLVJLYHQE\u y±x, v y±x¿QGWKHFLUFXODWLRQDURXQG WKHFORVHGFXUYHGH¿QHGE\x y x y W=
∂v ∂u ± ∂x ∂y
u y±x
∂u ∂y v = 8y±x
∂v ± ∂x \
W ±± ± $UHD y±y x±x ± ± G=W¥A ±¥ ±
452
Fundamentals of Fluid Mechanics y 8
2 4
8
$SLSHOLQHFPGLDPHWHUELIXUFDWHVDWD\MXQFWLRQLQWRWZREUDQFKHVFPDQG FPGLDPHWHU,IWKHUDWHRIIORZLQWKHPDLQSLSHLVFXPVDQGPDVVYHORFLW\RIIORZ LQFPGLDPHWHUSLSHLVPVGHWHUPLQHWKHUDWHRIIORZLQWKHFPGLDPHWHU SLSH 8378 dC = 0.4 m C dB = 0.6 m A
3
B
QB = 1.5 m /s D
dD = 0.3 m Vd = 7.7 m/s
qB = qC + qD \
qC = qB±qD = ± p ¥ ¥
± P3V 7KHVWUHDPOLQHVSDFLQJLVFPDWDVHFWLRQKDYLQJDYHORFLW\RIPVLQWZRGLPHQVLRQDO IORZ,IDWDQRWKHUVHFWLRQWKHVSDFLQJLVFPZKDWLVYHORFLW\" D PV E PV F PV G PV H PV VD n = VDn ¥ V ¥
\ OSWLRQD LVFRUUHFW
V =
¥ PV
Fluid Kinematics
453
If velocity along a streamline is given by V tDWs 7KHQWKHDFFHOHUDWLRQDIWHUVHFLVJLYHQE\ E as at D as at G QRQHRIa, b and c F as at V s + t + 3
∂V = ∂s ∂V ∂t as = V ¥
∂V t ¥ ∂s
¥ at =
∂V ∂t
2SWLRQD LVFRUUHFW $IOXLGSDUWLFOHPRYHVDORQJDFXUYHGSDWKRIUDGLXVPZLWKDYHORFLW\RIPV,WV QRUPDODFFHOHUDWLRQLQPVLVD ]HURE yF G F QRQHRIDERYH v ar = r =
OSWLRQE LVFRUUHFW :KLFKRIIROORZLQJVWUHDPIXQFWLRQVVDWLV¿HV/DSODFHHTXDWLRQ" E xy D x + y G x y F x + y y = x + y
\
∂y ∂ y x ∂x ∂x
∂y ∂ y y ∂y ∂y ∂ y ∂ y + π'RHVQRWVDWLVI\/DSODFHHTXDWLRQ ∂y ∂x
454
Fundamentals of Fluid Mechanics
y xy
1RZ
∂y y and ∂x
∂ y =0 ∂x
∂y ∂ y x = 0 ∂y ∂y ∂ y ∂ y + 6DWLV¿HV/DSODFHHTXDWLRQ ∂y ∂x y = x3 + y3
∂y ∂ y = 3x x ∂x ∂x
∂y ∂ y = 3y y ∂y ∂y ∂ y ∂ y x + y π'RHVQRWVDWLVI\/DSODFHHTXDWLRQ + ∂x ∂y y = xy
1RZ
∂y xy ∂ y y ∂x ∂x
∂y ∂ y xy x ∂y ∂y ∂ y ∂ y + x + y π'RHVQRWVDWLVI\/DSODFHHTXDWLRQ ∂y ∂x OSWLRQE LVFRUUHFW
& )& Æ $ IOXLG IORZ LV UHSUHVHQWHG E\ WKH YHORFLW\ ¿HOG V = a ◊ x ◊ i + a ◊ y ◊ j ZKHUH a is a FRQVWDQW7KHHTXDWLRQRIVWUeamlLQHSDVVLQJWKURXJKDSRLQW LV
D x±y F x – y
+HQFH and (TXDWLRQRIDVWUHDPOLQHLV
E x + y G xy )& & Æ V = a◊x◊ i + a◊y◊ j
ux = a ◊ x uy = a ◊ y dx dy = ux uy
*$7(
Fluid Kinematics
or
dy dx = a◊ y a◊x
or
dy dx = y x
455
2QLQWHJUDWLRQZHKDYH
log x = logy + logc ZKHUH c = constant or x = c◊y 6LQFHWKHVWUHDPOLQHSDVVHGWKURXJKSRLQW KHQFH ◊ C or C
7KHHTXDWLRQRIVWUHDPOLQHLV x=
y
x±y = 0
RU OSWLRQF LVFRUUHFW
7KHYHORFLW\FRPSRQHQWVLQx and yGLUHFWLRQVRIDWZRGLPHQVLRQDOSRWHQWLDOIORZDUH u and v respectively7KHn
∂u LVHTXDOWR ∂x
D
∂v ∂x
E −
∂v ∂x
F
∂v ∂y
G −
∂v ∂y
*$7(
CRQWLQXLW\HTXDWLRQLVVDWLV¿HGLQDÀRZ+HQFH ∂v ∂u + =0 ∂y ∂x or
∂v ∂u = ∂y ∂x
\ 2SWLRQG LVFRUUHFW 6KRZWKDWWKHYHORFLW\YHFWRUVLVWDQJHQWLDOWRWKHVWUHDPOLQHVHYHU\ZKHUHLQWKHxy SODQH The stream function in x-y plane can be represented as y xy FRQVWDQW
456
Fundamentals of Fluid Mechanics
7KHVWUHDPIXQFWLRQFDQEHH[SUHVVHGDV dy =
∂y ∂y ◊ dx + ◊ dy ∂y ∂x
1RZ
yxy FRQVWDQW+HQFH∂y = 0
\
∂y ∂y ◊ dx + ◊ dy = 0 ∂y ∂x
%XW
Vx =
\
Vx dy±Vy dx = 0
or
Vy dy = dx Vx
∂y - ∂y and Vy = ∂y ∂x
7KHDERYHLQdiFDWHVWKDWYHORFLW\YHFWRUV is tangent to lines of yxy FRQVWDQW $YHORFLW\¿HOGFDQEHJLYHQDVu = Vcosq, v = Vsinq and w 'HWHUPLQHWKHH[SUHVVLRQ RIWKHVWUHDPOLQHVRIWKLVIORZ 7KHVWUHDPOLQHVFDQEHH[SUHVVHGDV dx dz dy = = u w v dy dz dx = = V sin q 0 V cos q
or
dy V sin q = = tanq dx V cos q
or or
dy = tanq ◊ dx
2QLQWHJUDWLRQZHJHW y = tanq ◊ x + c +HQFHVWUHDPOLQHVDUHJURXSRIOLQHVLQFOLQHGDWDQJOHq to the xD[LV $WZRGLPHQVLRQDOIORZ¿HOGLVVSHFL¿HGE\V yixj)LQGZKHWKHUWKHIORZLV VWHDG\LUURWDWLRQDODVZHOODVIHDVLEOH'HWHUPLQHWKHVWUHDPIXQFWLRQDQGYROXPHIORZ UDWHSDVVLQJEHWZHHQVWUHDPOLQHVWKURXJKWKHSRLQWV DQG *LYHQ
Vx = 3y and Vy = 3x and
1RZ
W=
∂V y ∂x
±
∂Vx ∂y
±
∂V =0 dt
Fluid Kinematics
457
7KHUHIRUHWKH¿HOGLVLUURWDWLRQDO7KH¿HOGLVIHDVLEOHLILWREH\VFRQWLQXLW\HTXDWLRQZKLFK LVJLYHQE\ ∂V y ∂Vx + L ∂y ∂x BXW
and
∂ y ∂Vx = =0 ∂y ∂x ∂V y
=
∂y
∂ x ∂y
3XWWLQJ WKHVH YDOXHV LQ HTXDWLRQ L ZH JHW /+6 5+6 +HQFH WKH ¿HOG VDWLV¿HV WKH FRQWLQXLW\HTXDWLRQDQGLWLVIHDVLEOH1RZZHKDYH dy =
∂y ∂y ◊ dx + ◊ dy ∂y ∂x
= ±Vy dx + Vx dy ±xdx + 3ydy 2QLQWHJUDWLRQZHJHW y=
3 3 y ± x + c
TKHGLVFKDUJHEHWZHHQVWUHDPOLQHV DQG LV = y ±y =
3 3 ± ± ±
XQLWV 'HWHUPLQHZKHWKHUWKHWZRGLPHQVLRQDOIORZ¿HOGDVJLYHQEHORZLVURWDWLRQDO V = xyi + ∂V y
:HNQRZ
y=
+HUH
Vx x3y
∂x
\
∂Vx x3 ∂y
and
Vy =
x
±
x j ∂Vx ∂y
458
Fundamentals of Fluid Mechanics
∂V y
\
∂x
x3
y x3±x3 = 0
\
+HQFHWKHJLYHQÀRZLVLUURWDWLRQDO 2IWKHSRVVLEOHLUURWDWLRQDOIORZIXQFWLRQVJLYHQEHORZWKHLQFRUUHFWUHODWLRQLVZKHUH y = stream function and f YHORFLW\SRWHQWLDO D y = xy E y = Ax – y
F f = u ◊ r cosq +
,(6
∂y =0 ∂y
D 1RZy = xy ∂y =y ∂x SLPLODUO\
ˆ Ê G f = Á r - ˜ sinq Ë r¯
,IVWUHDPIXQFWLRQy VDWLV¿HVWKH/DSODFHHTXDWLRQWKHQWKHÀRZLVLUUotatiRQDOLH +
u cosq r
and
∂y =0 ∂x
∂y ∂ y = x and =0 ∂y ∂y
HHQFHy = xyVDWLV¿HVWKH/DSODFHHTXDWLRQDQGWKHÀRZLVLUURWDWLRQDO E 1RZy = Ax±y \
∂y ∂y =Ax and A ∂x ∂x
$OVR
∂y ∂ y ±Ay and ±A ∂y ∂y
HHQFHy = Ax±y VDWLV¿HVWKH/DSODFHHTXDWLRQDQGWKHÀRZLVLUURWDWLRQDO
F 1RZ
\ and
f = ur cosq +
Vr = -
u cosq r
∂f u ±u cosq + cosq ∂r r
Vq ±
u ∂f = u sinq + sinq r r ∂q
∂y ∂x
Fluid Kinematics
Now,
2WZ =
=
1 ∂ 1 ∂2 [Vq] – [Vr] r ∂r r ∂q
1 ∂ È u 1 ˘ u sin q + 2 cos q ˙ – 2 r ∂r ÍÎ r r ˚
= -
459
∂ È- u cos q + u cos q ˘ Í ˙ r2 ˚ ∂q Î
u 2 u sin q u sin q - 4 sinq π 0 - 2 4 r r r
HeQFHÀRZLVQRWLUURWDWLRQDO 2ˆ Ê (d) Now, f = Á r - ˜ sinq Ë r¯ Vr = -
∂f 2˘ È = – Í1 + 2 ˙ sinq ∂r Î r ˚
Vq = –
1 È 1 ∂f 2˘ =– r - ˙ cosq r ÍÎ r ∂q r˚ = – È1 - 2 ˘ cosq Í r2 ˙ Î ˚
Now,
1 ∂ 1 ∂ (rVr) + (Vv) is r ∂r r ∂q =
˘ 2ˆ 1 ∂ ÈÊ - r - 2 ˆ sin q ˘ 1 ∂ È Ê + - Á - 1 - ˜ cos q ˙ ÍÁË ˙ ˜ Í r¯ r¯ r ∂r Î r ∂r Î Ë ˚ ˚
=
1 Ê 1 Ê 2ˆ 2ˆ - 1 - 2 ˜ sinq + ÁË1 - r ˜¯ sinq ¯ r ÁË r r
DQGÀRZLVURWDWLRQDO 7KHUHODWLRQLQF LVLQFRUUHFW )RUVWHDG\LQFRPSUHVVLEOHIORZLIWKHuFRPSRQHQWRIYHORFLW\LVu = AexWKHQZKDWLV WKHvFRPSRQHQWRIYHORFLW\" D Ae E Aexy G ±Aex ,(6 F ±Aexy &RQWLQXLW\HTXDWLRQLV dv du + =0 dy dx
460
Fundamentals of Fluid Mechanics
dv d Ae x + =0 dy dx
or
dv =0 dy
or
Aex +
or
dv ±Aexdy
2QLQWHJUDWLRQZHJHW v ±Aexy 2SWLRQF LVFRUUHFW )RU D VWHDG\ WZRGLPHQVLRQDO IORZ WKH VFDODU FRPSRQHQWV RI WKH YHORFLW\ ¿HOG DUH Vx ±x, Vy y, VZ :KDWDUHWKHFRPSRQHQWVRIDFFHOHUDWLRQ" E ax x, ay D ax ay G ax x, ay y ,(6 F ax ay y du du du du +v +w + dt dy dy dx
ax = u \
ax ±x ± x
AOVR
ay = u
dv dv dv dv +v +w + dy dx dt dz
y ◊ y
2SWLRQG LVFRUUHFW 7KHVWUHDPIXQFWLRQy = x – yLVREVHUYHGIRUDWZRGLPHQVLRQDOIORZ¿HOG:KDWLV WKHPDJQLWXGHRIWKHYHORFLW\DWSRLQW± " D E F G ,(6 ∂ 3 ∂y = x ±y3 x = Vx ∂x ∂x ∂ 3 ∂y = x ±y3 ±y ±Vy ∂y ∂y V= 2SWLRQD LVFRUUHFW
Vx + Vy =
3 + 3
Fluid Kinematics
461
8.14 QUESTIONS FROM COMPETITIVE EXAMINATIONS :KLFKRQHRIWKHIROORZLQJLVWKHFRQWLQXLW\HTXDWLRQLQGL൵HUHQWLDOIRUP"
D
dA dV d r &RQVW + + A V r
E
dA dV d r + + A V r
F
r A V &RQVW + + dA dV d r
G AdA + Vdv + rdr
,$6
dA dV d r =0 + + A V r 2QLQWHJUDWLRQZHJHW logA + logV + logr = logC RUORJAÂVÂr ORJC or A VÂr = C or AV = Constant 7KHDERYHLVDFRQWLQXLW\HTXDWLRQ 2SWLRQE LVFRUUHFW :KLFK RQH RI WKH IROORZLQJ HTXDWLRQV UHSUHVHQWV WKH FRQWLQXLW\ HTXDWLRQ IRU VWHDG\ FRPSUHVVLEOHIOXLGIORZ" D Dr ◊ V +
∂r ∂t
E Dr ◊ V +
F DV
∂r = Const ∂t
G DrÂV
,$6
*HQHUDOFRQWLQXLW\HTXDWLRQLV Dr ◊ V +
∂r =0 ∂t
L
)RUVWHDG\ÀRZZHKDYH ∂r = 0 ∂t 3XWWLQJHTXDWLRQLL LQHTXDWLRQL ZHKDYH
or
2SWLRQG LVFRUUHFW
¨r ÂV = 0 ∂r ◊ u ∂r ◊ v ∂r ◊ w + + =0 ∂x ∂y ∂z
LL
462
Fundamentals of Fluid Mechanics
7KHFRQWLQXLW\HTXDWLRQIRUGLPHQVWLRQDOIORZ
D 6WHDG\IORZ F ,GHDOIOXLGIORZ
∂u ∂v ∂w + + LVDSSOLFDEOHWR ∂x ∂y ∂z
E 8QLIRUPIORZ G ,GHDODVZHOODVYLVFRXVIORZ ,(6
2SWLRQF LVFRUUHFW ,Q VWHDG\ LQFRPSUHVVLEOH WZRGLPHQVLRQDO IORZ RQH YHORFLW\ FRPSRQHQW LQ WKH xGLUHFWLRQLVJLYHQ by u = c ◊
D V = – c x + y
x 7KHYHORFLW\FRPSRQHQWLQWKHyGLUHFWLRQZLOOEH y cx E V = y
F V = – xy
G V = -c ◊
y x
,$6
)RUGLPHQVLRQDOLQFRPSUHVVLEOHÀRZZHKDYH du dv + =0 dx dy du dx
or
or
d dx
dv dy
Ê x ˆ dv Á c ◊ y ˜ = Ë ¯ dy
or
= -
cx dv = y dy
2QLQWHJUDWLRQZHJHt V =
-cx -cx = y y
2SWLRQE LVFRUUHFW The components of velocity u and v along x and yGLUHFWLRQLQ'IORZRILQFRPSUHVVLEOH fluid are D u = x cos y, v = ±x sin y E u = x v – y F u = xyt, v = x – y,
t
G u = log x + y, v = xy -
y x
Fluid Kinematics
7KRVHZKLFKZRXOGVDWLVI\WKHFRQWLQXLW\HTXDWLRQZRXOGLQFOXGH D DQG E DQG F DQG G DQG
463
,$6
7KHHTXDWLRQLV du dv = =0 dx dy Checking for u and vYDOXHsRID d d x FRV y + - x VLQ y dx dy x cos y±x cos y = 0 &KHFNLQJLQJLYHQYDOXHVLQE d d x + + - y ± dx dy Checking for u and vDVJLYHQLQF d d Ê tˆ xyt + ÁË x - y ◊ ˜¯ = yt±yt = 0 dx dy Checking for u and vDVJLYHQLQG d d Ê yˆ ORJ x + y + -x- π0 ÁË xy - ˜¯ = dx dy x x x +HQFHDQGDUHWUXH 2SWLRQD LVFRUUHFW & & If V is velocity vector of fluid, then DV LVVWULFWO\WUXHIRUZKLFKRIWKHIROORZLQJ
D 6WHDG\DQGLQFRPSUHVVLEOHIORZ E 6WHDG\DQGLUURWDWLRQDOIORZ F ,QYLVHLGIORZLUUHVSHFWLYHRIVWHDGLQHVV G ,QFRPSUHVVLYHIORZLUUHVSHFWLYHRIVWHDGLQHVV ,$6*$7( 2SWLRQG LVFRUUHFW :KLFK RQH RI WKH IROORZLQJ LV WKH H[SUHVVLRQ RI WKH URWDWLRQDO FRPSRQHQW IRU D WZR dimensional fluid element in xy plane? D wz =
⎛ ∂v ∂u ⎞ ⎜⎝ ∂x − ∂y ⎟⎠
E wz =
⎛ ∂v ∂u ⎞ + ⎜⎝ ∂x ∂y ⎟⎠
F wz =
⎛ ∂u ∂v ⎞ ⎜⎝ ∂x − ∂y ⎟⎠
G wz =
2SWLRQD LVFRUUHFW
⎛ ∂u ∂v ⎞ ⎜⎝ ∂x + ∂y ⎟⎠
464
Fundamentals of Fluid Mechanics
:KLFK RI WKH IROORZLQJ UHODWLRQV PXVW KROG IRU LUURWDWLRQDO WZRGLPHQVLRQDO IORZ LQ the x–y plane? D
∂v ∂v = ∂y ∂x
E
∂u ∂w = ∂z ∂x
F
∂w ∂v = ∂y ∂z
G
∂u ∂u = ,$6,(6 ∂x ∂y
2SWLRQG LVFRUUHFW $ OLTXLG PDVV UHDGMXVWV LWVHOI DQG XQGHUJRHV D ULJLG ERG\ W\SH RI PRWLRQ ZKHQ LW LV VXEMHFWHGWRD D &RQVWDQWDQJXODUYHORFLW\ E &RQVWDQWDQJXODUDFFHOHUDWLRQ F /LQHDUO\YDU\LQJYHORFLW\ G /LQHDUO\YDU\LQJDFFHOHUDWLRQ ,$6 2SWLRQD LVFRUUHFW 7KHFRQYHQWLRQDODFFHOHUDWLRQRIIOXLGLQWKHxGLUHFWLRQLVJLYHQE\ D u
∂u ∂v ∂w +v +w ∂x ∂y ∂z
E ∂u + ∂v + ∂w ∂t ∂t ∂t
F u
∂u ∂v ∂w +u +u ∂x ∂y ∂z
G u
∂u ∂u ∂u +v +w ∂x ∂y ∂z
,(6
2SWLRQG LVFRUUHFW )RU D VWHDG\ WZR GLPHQVLRQDO IORZ WKH VFDODU FRPSRQHQWV RI WKH YHORFLW\ ¿HOG DUH Vx ±x, Vy y and Vz :KDWDUHWKHFRPSRQHQWVRIDFFHOHUDWLRQ" E ax x, ay D ax ay G ax x, ay y ,(6 F ax ay y ax = u u = – 2x, v = 2y, w = 0 and
du du du du +v +w + dx dy dz dt
du =0 dt
ԙax = – 2x(– 2) + 2y × 0 + 0 + 0 = 4x ay = u ◊
dv dv dv +v +w dx dy dz
= – 2x × 0 + 2y × 2 + 0 = 4y
Fluid Kinematics
465
ԙ ax = 4x and ay = 4y 2SWLRQG LVFRUUHFW $ VWHDG\ LQFRPSUHVVLEOH IORZ LV JLYHQ E\ u x + y and v = ± xy :KDW LV WKH convective acceleration along xGLUHFWLRQDWSRLQW " E ax XQLW G ax ±XQLW
D ax XQLW F ax ±XQLW ax = u
du du +v dx dy
x + y x ±xyy = 8x3xy±xy
axDWSRLQW LV
,(6
ax îîî±îî ± ±XQLW
2SWLRQF LVFRUUHFW 7KHDUHDRIDPWDSHUHGGXFWGHFUHDVHVDVA ±x ZKHUHx is the distance in PHWUHV$WDJLYHQLQVWDQWDGLVFKDUJHRIPVLVIORZLQJLQWKHGXFWDQGLVIRXQG WRLQFUHDVHDWDUDWHRIPV7KHORFDODFFHOHUDWLRQLQPV DWx ZLOOEH D E F G ,(6
du dQ ¥ = Ax dt dt =
¥ = - x - x
Ê du ˆ = = ÁË ˜¯ dt x = 0 - ¥ 2SWLRQF LVFRUUHFW 7KHFRPSRQHQWVRIYHORFLW\LQDWZRGLPHQVLRQDOIULFWLRQOHVVLQFRPSUHVVLEOHIORZDUH u = t y and v tx:KDWLVWKHDSSUR[LPDWHUHVXOWDQWWRWDODFFHOHUDWLRQDWWKH SRLQW DQGt " D E F G ± ,(6 ax = u
∂u ∂u ∂u ∂u +v +w + ∂t ∂y ∂z ∂t
466
Fundamentals of Fluid Mechanics
t + 3y ît + 3x ît = 9t + 9xt x îî
OSWLRQF LVFRUUHFW Assertion (A): 7KHORFDODFFHOHUDWLRQLV]HURLQDVWHDG\PRWLRQ Reason (R): The convective component across due to the fact that a fluid element H[SHULHQFHVGL൵HUHQWYHORFLWLHVDWGL൵HUHQWORFDWLRQV D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 2SWLRQE LVFRUUHFW 0DWFK /LVW, 3LSH IORZ ZLWK /LVW,, W\SH RI $FFHOHUDWLRQ DQG VHOHFW WKH FRUUHFW DQVZHU /LVW, /LVW,, D ) ORZDWFRQVWDQWUDWHSDVVLQJWKURXJKDEHQG =HURDFFHOHUDWLRQ E )ORZDWFRQVWDQWUDWHSDVVLQJWKURXJKD /RFDODQGFRQYHFWLYH VWUDLJKWXQLIRUPGLDPHWHUSLSH DFFHOHUDWLRQ F *UDGXDOO\FKDQJLQJIORZWKURXJKDEHQG &RQYHFWLYHDFFHOHUDWLRQ G *UDGXDOO\FKDQJLQJIORZWKURXJKD /RFDODFFHOHUDWLRQ VWUDLJKWSLSH Codes: A B C D (a) 3 1 2 4 (b) 3 1 4 2 (c) 1 3 2 4 (d) 1 3 4 2 (IES 1999) 2SWLRQD LVFRUUHFW 0DWFK/LVW,)ORZVRYHURULQVLGHWKHV\VWHPV ZLWK/LVW,,7\SHVRIIORZ DQGVHOHFW WKHFRUUHFWDQVZHU /LVW, /LVW,, D )ORZRYHUDVSKHUH 7ZRGLPHQVLRQDOIORZ E )ORZRYHUDORQJFLUFXODUF\OLQGHU 2QHGLPHQVLRQDOIORZ F )ORZLQSLSHEHQG $[LVV\PPHWULFIORZ G ) XOO\GHYHORSHGIORZLQDSLSHDW 7KUHHGLPHQVLRQDO FRQVWDQWIORZUDWHIORZ
Fluid Kinematics
467
Codes: A B C D (a) 3 1 2 4 (b) 1 4 3 2 (c) 3 1 4 2 (d) 1 4 2 3 (IES 2003) 2SWLRQF LVFRUUHFW 0DWFK/LVW,ZLWK/LVW,,DQGVHOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHVJLYHQEHORZWKH lists /LVW, /LVW,, D ([LVWHQFHRIVWUHDPIXQFWLRQ ,UURWDWLRQDOLW\RIIORZ E ([LVWHQFHRIYHORFLW\SURWHQWLDO &RQWLQXLW\RIIORZ F $EVHQFHRIWHPSRUDOYDULDWLRQ 8QLIRUPIORZ G &RQVWDQWYHORFLW\YHFWRU 6WHDG\IORZ Codes: A B C D (a) 4 3 2 1 (b) 2 1 4 3 (c) 4 1 2 3 (d) 2 3 4 1 (IES 2007) 2SWLRQE LVFRUUHFW :KLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVFRUUHFW" ,UURWDWLRQDOIORZLVFKDUDFWHUL]HGDVWKHRQHLQZKLFK D 7KHIOXLGIORZVDORQJDVWUDLJKWOLQH E 7KHIOXLGGRHVQRWURWDWHDVLWPRYHVDORQJ F 7KHQHWURWDWLRQRIIOXLGSDUWLFOHVDERXWWKHLUPDVVFHQWUHVUHPDLQV]HUR
,(6 2SWLRQF LVFRUUHFW ,UURWDWLRQDOIORZRFFXUVZKHQ D )ORZWDNHVSODFHLQDGXFWDWXQLIRUPFURVVVHFWLRQDWFRQVWDQWPDVVIORZUDWH E 6WUHDPOLQHVDUHFXUYHG F 7KHUHLVQRQHWURWDWLRQRIIOXLGHOHPHQWDERXWLWVPDVVFHQWUH G )OXLGHOHPHQWGRHVQRWXQGHUJRDQ\FKDQJHLQVL]HVKDSH ,(6 2SWLRQF LVFRUUHFW ,QDWZRGLPHQVLRQDOIORZLQx–y plane, if
D 7UDQVODWLRQDORQO\ F 7UDQVODWLRQDQGGHIRUPDWLRQ 2SWLRQF LVFRUUHFW
∂u ∂v = WKHQWKHIOXLGHOHPHQWZLOOXQGHUJR ∂y ∂x E 7UDQVODWLRQDODQGURWDWLRQ G 5RWDWLRQDQGGHIRUPDWLRQ
,(6
468
Fundamentals of Fluid Mechanics
7ZRIORZVDUHVSHFL¿HGDV
D u = y, v = -
x
E u = xy, v = xÂy
:KLFKRQHRIWKHIROORZLQJFDQEHFRQFOXGHG"
D %RWKIORZVDUHURWDWLRQDO E %RWKIORZVDUHLUURWDWLRQDO F )ORZ$LVURWDWLRQDOZKLOHIORZ%LVLUURWDWLRQDO G )ORZ$LVLUURWDWLRQDOZKLOHIORZ%LVURWDWLRQDO $ )OXLG wz =
=
=
,WLVURWDWLRQDO % )OXLG
,(6
Ê ∂v ∂u ˆ - ˜ Á Ë ∂x ∂u ¯
˘ È d Ê - ˆ ∂ x˜ y ˙ ÁË Í Î dx ¯ ∂y ˚ Ê - ˆ - ¥Á - ˜ = π ¯ Ë
wz =
Ê ∂v ∂u ˆ - ˜ ÁË ∂x ∂z ¯
=
È∂ ∂ ˘ Í ∂x x y - ∂y xy ˙ Î ˚
=
xy - xy
=0 ,WLVLUURWDWLRQDO 2SWLRQF LVFRUUHFW 0DWFK/LVW,DQG/LVW,,DQGVHOHFWWKHFRUUHFWDQVZHU /LVW, D )ORZLVDVWUDLJKWORQJSLSHZLWKYDU\LQJIORZUDWH E )ORZRIJDVWKURXJKWKHQR]]OHRIDMHWHQJLQH F )ORZRIZDWHUWKURXJKWKHKRVHRID¿UH ¿JKWLQJSXPS G )ORZLQULYHUGXULQJWLGDOERUH
/LVW,, 8QLIRUPVWHDG\ 1RQXQLIRUPVWHDG\ 8QLIRUPXQVWHDG\ 1RQXQLIRUPXQVWHDG\
Fluid Kinematics
469
Codes: A B C D (a) 1 4 3 2 (b) 3 2 2 4 (c) 1 2 3 4 (d) 3 4 1 2 (IES 2002) 2SWLRQE LVFRUUHFW A streamline is a line D :KLFKLVDORQJWKHSDWKRIWKHSDUWLFOH E :KLFKLVDOZD\VSDUDOOHOWRWKHPDLQGLUHFWLRQRIIORZ F $ORQJZKLFKWKHUHLVQRIORZ G 2QZKLFKWDQJHQWGUDZQDWDQ\SRLQWJLYHVWKHGLUHFWLRQRIYHORFLW\ ,(6 2SWLRQG LVFRUUHFW Assertion (A): 6WUHDPOLQHVFDQFURVVRQHDQRWKHULIIOXLGKDVKLJKHUYHORFLW\ Reason (R): $WVX൶FLHQWO\KLJKYHORFLW\WKH5H\QROGVQXPEHULVKLJKDQGDWVX൶FLHQWO\ KLJK5H\QROGVQXPEHUVWKHVWUXFWXUHRIWKHIORZLVWXUEXOHQWW\SH D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 2SWLRQG LVFRUUHFW The streamlines and the lines of constant velocity potential in an inviscid irrotational IORZ¿HOGIRUP D 3DUDOOHOJULGOLQHVSODFHGLQDFFRUGDQFHZLWKWKHLUPDJQLWXGH E ,QWHUVHFWLQJJULGQHWZLWKDUELWUDU\RULHQWDWLRQ F $QRUWKRJRQDOJULGV\VWHP G 1RQHRIWKHDERYH ,(6 2SWLRQF LVFRUUHFW $ YHORFLW\ ¿HOG LV JLYHQ E\ u xy and and v = x - y :KDW LV WKH UHOHYDQW HTXDWLRQRIDVWUHDPOLQH" xy E D dx = x - y x - y dy xy F
dx xy = dy x - y
G
(TXDWLRQRIVWUHDPOLQHLV
vdx = uÃdy
dx x - y = dy xy
,(6
470
Fundamentals of Fluid Mechanics
u dx = v dy
or 3XWWLQJYDOXHVRIu and v
3 xy dx = 3 dy x - y xy
= x - y
2SWLRQF LVFRUUHFW
&RQVLGHUWKHIROORZLQJVWDWHPHQWVUHJDUGLQJDSDWKOLQHLQIOXLGIORZ $SDWKOLQHLVDOLQHWUDFHGE\DVLQJOHSDUWLFOHRYHUDWLPHLQWHUYDO $SDWKOLQHVKRZVWKHSRVLWLRQRIWKHVDPHSDUWLFOHDWVXFFHVVLYHWLPHLQVWDQWV $SDWKOLQHVKRZVWKHLQVWDQWDQHRXVSRVLWLRQVRIDQXPEHURIDSDUWLFOHSDVVLQJ WKURXJKDFRPPRQSRLQWDWVRPHSUHYLRXVWLPHLQWHQWV Which of the statements given above are correct? D 2QO\DQG E 2QO\DQG F 2QO\DQG G DQG ,(6 2SWLRQE LVFRUUHFW :KLFKRQHRIWKHIROORZLQJLVWKHFRUUHFWVWDWHPHQW" 6WUHDPOLQHVSDWKOLQHDQGVWUHDNOLQHDUHLGHQWLFDOZKHQWKH D )ORZLVVWHDG\ E )ORZLVXQLIRUP F )ORZYHORFLWLHVGRQRWFKDQJHZLWKWLPH G )ORZLVQHLWKHUVWHDG\QRUXQLIRUP 2SWLRQD LVFRUUHFW
,(6
7KHGL൵HUHQWLDOIRUPRIFRQWLQXLW\HTXDWLRQIRUWZRGLPHQVLRQDOIORZRIIOXLGPD\EH ZULWWHQLQWKHIROORZLQJform r ◊
du dv + r◊ = ZKHUHu and v are velocities in the x dx dy
and y directions and rLVWKHGHQVLW\7KLVLVYDOLGIRU D &RPSUHVVLEOHVWHDG\IORZ E &RPSUHVVLEOHXQVWHDG\IORZ F ,QFRPSUHVVLEOHXQVWHDG\IORZ G ,QFRPSUHVVLEOHVWHDG\IORZ ,(6 2SWLRQG LVFRUUHFW
Fluid Kinematics
471
7KH JHQHUDO IRUP RI H[SUHVVLRQ IRU WKH FRQWLQXLW\ HTXDWLRQ LQ &DUWHVLDQ FRRUGLQDWH system for incompressible or compressible form is given by
D
∂u ∂v ∂w + + = ∂x ∂y ∂z
E
∂ru ∂rv ∂rw + + = ∂x ∂y ∂z
F
∂r ∂ru ∂rv ∂rw + + + = ∂t ∂x ∂y ∂z
G
∂r ∂ru ∂rv ∂rw + + + = ∂t ∂x ∂y ∂z
,(6
2SWLRQF LVFRUUHFW
& :KLFKRIWKHIROORZLQJHTXDWLRQVDUHIRUPVRIFRQWLQXLW\HTXDWLRQ" V is the velocity and "LVYROXPH g g AV = AV
∫
S
∂ ∂t
rV γ ⋅ dA +
∫
∀
r ⋅ d∀ =
∂u ∂v + = ∂x ∂y
∂ ∂ Vr = rVr + r ∂r ∂r
6HOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHVJLYHQEHORZ
Codes: D DQG F DQG 2SWLRQE LVFRUUHFW
E DQG G DQG
,(6
&RQVLGHUWKHIROORZLQJHTXDWLRQV
AV = AV
³Ú V ◊ dA + ∂t (³Ú dV ) = ∂
S
V
∂u ∂v + = ∂x ∂y
∂ ∂ Vr = rVr + r ∂r ∂r
:KLFK RI WKH DERYH HTXDWLRQV DUH IRUPV RI FRQWLQXLW\ HTXDWLRQV" ZKHUH u,v are velocities and VLVYROXPH D RQO\ E DQG F DQG G DQG ,(6 2SWLRQE LVFRUUHFW :KLFKRQHRIWKHVWUHDPIXQFWLRQLVSRVVLEOHDVLUURWDWLRQDOIORZ¿HOG" D Y = xy F Y = A · xy
E Y xy G Y = Ax + By
,(6
472
Fundamentals of Fluid Mechanics
)RULUURWDWLRQDOÀRZ/DSODFHHTXDWLRQ
∂ Y ∂ Y + =0 ∂x ∂y D
∂ ∂ x y x y + = xy + π ∂x ∂y
E
∂ ∂ xy + xy = + = ∂x ∂y
F
∂ ∂ Ax y + Ax y = Ay + Ax π ∂x ∂y
G
∂ ∂ Ax + By + Ax + By = + B π ∂x ∂y
2QO\HTXDWLRQE VDWLV¿HV 2SWLRQE LVFRUUHFW :KLFKRQHRIWKHIROORZLQJVWUHDPIXQFWLRQVLVDSRVVLEOHLUURWDWLRQDOIORZIOXLG" D Y = y – x E Y = AVLQxy G Y = Ax + By ,(6 F Y = Axy For irrotationalÀRZ
∂ Y ∂ Y + =0 ∂x ∂y ∂ y - x ∂ y - x + ± ∂x ∂y
2SWLRQD LVFRUUHFW
7KHFRQWLQXLW\HTXDWLRQVWDWHVIRUDVWHDG\IORZVWDWHVWKDW D 9HORFLW\¿HOGLVFRQWLQXRXVDWDOOSRLQWVLQIOXLGIORZ E 7KHYHORFLW\LVWDQJHQWLDOWRWKHVWUHDPOLQHV F 7KHVWUHDPIXQFWLRQH[LVWVWKURXJKWKHFRQWUROVXUIDFHVLV]HUR G 7KHQHWHIIOX[UDWHRIPDVVWKURXJKWKHFRQWUROVXUIDFHLV]HUR 2SWLRQF LVFRUUHFW
,(6
:KLFKRIWKHIROORZLQJUHODWLRQVPXVWKROGIRUDQLUURWDWLRQDOWZRGLPHQVLRQDOIORZ in the x–y plane?
Fluid Kinematics
dv ∂u D dy − ∂x =
E
∂u ∂w − = ∂z ∂x
∂w ∂v − = ∂y ∂z
G
∂v ∂u − = ∂x ∂y
F
473
,$6,(6
2SWLRQG LVFRUUHFW ,UURWDWLRQDOIORZRFFXUVZKHQ D )ORZWDNHVSODFHLQDGXFWRIXQLIRUPFURVVVHFWLRQDWFRQVWDQWPDVVIORZUDWH E 6WUHDPOLQHVDUHFXUYHG F 7KHUHLVQRQHWURWDWLRQRIWKHIOXLGHOHPHQWDERXWLWVPDVVFHQWUH G )OXLGHOHPHQWGRHVQRWXQGHUJRDQ\FKDQJHLQVL]HRUVKDSH ,(6 2SWLRQF LVFRUUHFW 7KHFXUORIDJLYHQYHORFLW\¿HOG— × V ¢ indicates the rate of D ,QFUHDVHRUGHFUHDVHRIIORZDWDSRLQW E 7ZLVWLQJRIWKHOLQHVRIIORZ F 'HIRUPDWLRQ G 7UDQVODWLRQ ,(6 2SWLRQF LVFRUUHFW & ,IWKHJRYHUQLQJHTXDWLRQIRUDÀXLG¿HOGLVJLYHQE\ V ◊ f = and the velocity is given by V = —f,, then
(a) × Vr = 0
(b) × Vr = 1
(c) 2 × Vr = 1
(d) |Vr × × |Vr =
∂V ∂r
(IES 1993)
2SWLRQD LVFRUUHFW
The relation
∂ψ ∂ψ = = IRU DQ LUURWDWLRQDO IORZ LV NQRZQ E\ ZKLFK RQH RI WKH ∂x ∂y
IROORZLQJ D 1DYLHU6WRNHVHTXDWLRQ
E /DSODFHHTXDWLRQ
F RH\QROGVHTXDWLRQ
G (XOHU¶VHTXDWLRQ
OptionE LVFRUUHFW &RQVLGHUWKHIROORZLQJVWDWHPHQWV )RUDWZRGLPHQVLRQDOSRWHQWLDOIORZ /DSODFHHTXDWLRQIRUVWUHDPIXQFWLRQPXVWEHVDWLV¿HG /DSODFHHTXDWLRQIRUYHORFLW\SRWHQWLDOPXVWEHVDWLV¿HG
,(6
474
Fundamentals of Fluid Mechanics
6WUHDPOLQHVDQGequipotential lines are mutually perpendicular 6WUHDPIXQFWLRQDQGSRWHQWLDOIXQFWLRQDUHQRWLQWHUFKDQJHDEOH D DQGDUHFRUUHFW E DQGDUHFRUUHFW F DQGDUHFRUUHFW G DQGDUHFRUUHFW ,(6 2SWLRQF LVFRUUHFW :KLFKRIWKHIROORZLQJIXQFWLRQVUHSUHVHQWWKHYHORFLW\SRWHQWLDOLQDWZRGLPHQVLRQDO IORZRIDQLGHDOIOXLG"
xy
x±y
FRVx – y
WDQ±
x y
6HOHFWWKHFRUUHFWDQVZHUXVLQJFRGHVJLYHQEHORZ D DQG F DQG
E DQG G DQG
,(6
)RU'LGHDOÀXLGÀRZ ∂f ∂f + =0 ∂x ∂y If f = 2x + 2y, we have LHS =
Now,
= 0 + 0 = 0 = RHS f = cos (x – y) LHS =
∂ x + y ∂ x + y + ∂x ∂x
∂ ∂ FRV x - y + FRV x ± y ∂x ∂y
±FRVx±y FRVx±y = 0 = LHS
2SWLRQD LVFRUUHFW ,IIRUDIORZDVWUHDPIXQFWLRQH[LVWVDQGVDWLV¿HVWKH/DSODFHHTXDWLRQWKHQZKLFK RQHRIWKHIROORZLQJLVWKHFRUUHFWVWDWHPHQW" D 7KHFRQWLQXLW\HTXDWLRQVDWLV¿HGDQGWKHIORZLVLUURWDWLRQDO E 7KHFRQWLQXLW\HTXDWLRQLVVDWLV¿HGDQGWKHIORZLVURWDWLRQDO F 7KHIORZLVLUURWDWLRQDOEXWGRHVQRWVDWLVI\WKHFRQWLQXLW\HTXDWLRQ G 7KHIORZLVURWDWLRQDO ,(6 2SWLRQD LVFRUUHFW
Fluid Kinematics
475
,QDWZRGLPHQVLRQDOIORZWKHYHORFLW\FRPSRQHQWLQx- and yGLUHFWLRQVLQWHUPVRI stream function are ∂ψ ∂ψ v = ∂x ∂y
D u =
F u = −
∂ψ ∂ψ v = ∂y ∂x
E u =
∂ψ ∂ψ v = ∂y ∂x
G u =
∂ψ −∂ψ v = ∂x ∂y
,(6
2SWLRQF LVFRUUHFW
2IWKHSRVVLEOHLUURWDWLRQDOIORZIXQFWLRQVJLYHQEHORZWKHLQFRUUHFWUHODWLRQLV D Y = xy E Y = Ax±y F f = u × cos q +
u cos q r
ˆ Ê G f = Á r - ˜ sin q Ë r¯
,(6
∂ y ∂ y + LV/DSODFHHTXDWLRQIRUURWDWLRQDOÀRZ ∂x ∂y D Check ∂ ∂ xy + xy \ LUURWDWLRQDO ∂x ∂y E Check ∂ ∂ A x y + A x - y ± \ LUURWDWLRQDO ∂x ∂y F Check Vr = -
∂f ∂f and VT = ∂r r ∂q
Vr = -
u ∂ Ê ˆ ur cos q + cos q˜ and Á Ë ¯ ∂r r
VT = -
∂ Ê u ˆ ur cos q + cos q˜ Á ¯ r ∂q Ë r
Vr = -u cos q +
wz =
u cos q
and Vq = u sin q +
u sin q r
u ∂ Ê ∂ Ê u ˆ ˆ ◊ u sin q + sin q ˜ ± u cos q + cos q ˜ Á Á Ë ¯ ¯ r ∂r r r ∂q Ë r
476
Fundamentals of Fluid Mechanics
=
2u sin q u sin q u - 4 sin q π 0 r4 r2 r
(d) Check Vq =
1 ∂f 1Ê 2ˆ 2ˆ Ê = - Á r - ˜ cos q = - Á1 - 2 ˜ cos q , Ë r ∂q rË r¯ r ¯
Vr = 2wZ =
∂f 2ˆ Ê = - Á1 + 2 ˜ sin q Ë ∂r r ¯
˘ 1 ∂ 1 ∂ ÈÊ 2ˆ ÁË - r - ˜¯ sin q ˙ + ◊ Í r ∂r Î r ˚ r ∂r
ÈÊ ÍÁË -1 Î
˘ 2ˆ ˜¯ cos q ˙ = 0 r ˚
Option (d) is correct. 7KHYHORFLW\SRWHQWLDORIYHORFLW\¿HOGLVJLYHQE\f = x2 – y2FRQVW,WVVWUHDPIXQFWLRQ ZLOOEHJLYHQE\ D ±xyFRQVWDQW E xyFRQVWDQW F ±xy + f(x G xy + f(y ,(6 u =
-∂f -∂f and v = ∂x ∂y
u =
-∂ 2 -∂ 2 ( x - y 2 + c) ( x - y 2 + c) v = ∂y ∂x
Y =
∂y ∂y dx + ◊ dy ∂y dx
= (v) dx + (– u) dy = (2y) dx + (2x) dy = 2xy + 2xy = 2 ή 2xy f (y) Option (d) is correct. 7KH VWUHDP IXQFWLRQ LQ D GLPHQVLRQDO IORZ ¿HOG LV JLYHQ E\ Y = xy7KH SRWHQWLDO IXQFWLRQLV 2 2 x2 - y2 E D x + y 2 2
G x2y + y2x
F xy Y = xy ∂y =–u=x ∂y
∂y =v=y ∂x
,(6
Fluid Kinematics
477
Ê ∂f ˆ Ê ∂f ˆ f = Á ˜ ◊ dx + Á ˜ ◊ dy Ë ∂x ¯ Ë ∂y ¯ ±u dx±v dy x dx±y dy
=
x y x - y =
2SWLRQE LVFRUUHFW 7KH YHORFLW\ FRPSRQHQWV IRU D ' LQFRPSUHVVLEOH IORZ RI IOXLG DUH u = x ± y and v = – y±x It can be concluded that D 7KHIORZGRHVQRWVDWLVI\WKHFRQWLQXLW\HTXDWLRQ E 7KHIORZLVURWDWLRQDO F 7KHIORZLVLUURWDWLRQDO G 1RQHRIWKHDERYH ,(6 )RUFRQWLQXLW\HTXDWLRQ ∂u ∂u + =0 ∂x ∂y
/HWXVYHULI\LW ∂ ∂u x - y = + = ∂ x ∂x ∂ ∂u - y - x = - = ∂y ∂y
∂u ∂v + =1–1=0 ∂x ∂y
7KHVWDWHPHQWWKDWÀRZLVQRWVDWLVI\LQJFRQWLQXLW\HTXDWLRQLVIDOVH
1RZFKHFNIRUURWDWLRQRULUURWDWLRQDO ∂v ∂u ∂x ∂y
7KHÀRZLVLUURWDWLQDO
2SWLRQF LVFRUUHFW
=
∂ ∂ - y - x x - y ∂x ∂y
±
478
Fundamentals of Fluid Mechanics
The stream function Y = x – yLVREVHUYHGIRUD'IOXLGIORZ:KDWLVWKHPDJQLWXGH RIYHORFLW\DWSRLQW± " D E F G ,(6 u =
∂y = - y = - ¥ - = - ∂y
v =
5HVXOWDQWYHORFLW\ =
∂y = - x = - ¥ = - ∂x u + v = - + -
2SWLRQD LVForrHFW 7KHVWUHDPIXQFWLRQLQDIORZ¿HOGLVJLYHQE\Y xy,QWKHVDPHIORZ¿HOGZKDW LVWKHYHORFLW\DWDSRLQW D XQLW E XQLW F XQLW G XQLW ,(6
-∂y -∂ = xy = - x = - ¥ = ∂y ∂y
v =
∂y ∂ = xy = y = ∂x ∂y
5HVXOWDQWYHORFLW\ - + =
u =
2SWLRQG LVFRUUHFW
)RU LUURWDWLRQDO DQG LQFRPSUHVVLEOH IORZ WKH YHORFLW\ SRWHQWLDO DQG VWUHDP IXQFWLRQ are given by f and YUHVSHFWLYHO\:KLFKRQHRIWKHIROORZLQJVHWVLVFRUUHFW"
D ∇ φ = ∇ ψ =
E ∇ φ ≠ ∇ ψ =
F ∇ φ = ∇ ψ ≠
E ∇ φ ≠ ∇ ψ ≠
,(6
2SWLRQD LVFRUUHFW :KLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVWUXHLQD'IORZRILGHDOIOXLG" D 3RWHQWLDOIXQFWLRQH[LVWVLIVWUHDPIXQFWLRQH[LVWV E 6WUHDPIXQFWLRQPD\RUPD\QRWH[LVW F %RWKSRWHQWLDOIXQFWLRQDQGVWUHDPIXQFWLRQPXVWH[LVWIRUHYHU\IORZ G 6WUHDPIXQFWLRQZLOOH[LVWEXWSRWHQWLDOIXQFWLRQPD\RUPD\QRWH[LVW ,(6 2SWLRQG LVFRUUHFW
Fluid Kinematics
7KHUHDOL]DWLRQRIYHORFLW\SRWHQWLDOLQIOXLGIORZLQGLFDWHVWKDWWKH D )ORZPXVWEHLUURWDWLRQDO E &LUFXODWLRQDURXQGDQ\FORVHGFXUYHPXVWKDYHD¿QLWHYDOXH F )ORZLVURWDWLRQDODQGVDWLV¿HVWKHFRQ¿QXLW\HTXDWLRQ G 9RUWLFLW\PXVWEHQRQ]HUR 2SWLRQD LVFRUUHFW
479
,(6
7KHYHORFLW\SRWHQWLDOIXQFWLRQLQD'IORZ¿HOGLVJLYHQE\f = x – y7KHPDJQLWXGH RIYHORFLW\DWWKHSRLQW LV D E F
,$6
2SWLRQD LVFRUUHFW u =
- ∂f - ∂ x - y = - x = - = ∂x ∂x
v =
± ∂f - ∂ = x - y = y = + ∂y ∂y
5HVXOWDQWYHORFLW\ u + v = - + =
G
2SWLRQF LVFRUUHFW
,QDWZRGLPHQVLRQDOYHORFLW\¿HOGZLWKYHORFLWLHVu and v along the x and y directions respectively, the convection acceleration along the x direction is given by
D u ◊
F u
du du + v◊ dx dy
dv du + v◊ dx dy
E u ◊
du dv +v dx dy
G v
du ∂u +u dx ∂y
*$7(
2SWLRQD LVFRUUHFW
)RUDIOXLGIORZWKURXJKDGLYHUJHQWSLSHRIOHQJWKl having inlet and outlet radii of R and RUHVSHFWLYHO\DQGDFRQVWDQWIORZUDWHRIQDVVXPLQJWKLVYHORFLW\WREHD[LDO DQGXQLIRUPDWDQ\FURVVVHFWLRQWKHDFFHOHUDWLRQDWWKHH[LWLV D
F
Q R - R p ◊ L ◊ R
Q Rc - R p ◊ L ◊ R
E
G
Q R - R p LR
Q R - R p ◊ L ◊ R
*$7(
480
Fundamentals of Fluid Mechanics
Rx = R +
R - R ◊x L
A = p Rx
u =
Q Q = Ax R - R ˆ Ê p Á R + ◊ x˜ Ë ¯ L
ax = u ◊
du du du =0 but + dt dx dt
R - R L ¥ = R R ˆ Ê R R Ê ˆ p Á R + ◊ x˜ p Á R + ◊ x˜ Ë ¯ L Ë ¯ L - ◊Q ◊
Q
At x = LZHKDYH aH[LW =
Q R - R p ◊ L ◊ R
2SWLRQF LVFRUUHFW $ WZRGLPHQVLRQDO IORZ ¿HOG KDV YHORFLWLHV DORQJ WKH x and y directions given by u = xÂt and v ±xyÂtUHVSHFWLYHO\ZKHUHtLVWLPH7KHHTXDWLRQRIVWUHDPOLQHLV
D xy FRQVWDQW
E xy = constant
F xy FRQVWDQW
G 1RWSRVVLEOHWRGHWHUPLQH
dy dx = u v
dx x ◊t or
dy - xy ◊ t
= -
dy y
log x + log y = 0
or RU
dx x
=
ORJxy
or xy = constant 2SWLRQD LVFRUUHFW
*$7(
Fluid Kinematics
481
The velocity components in the x- and yGLUHFWLRQVDUHJLYHQE\ u = lxy – xy
v = xy -
and
¥ y
The value of lIRUDSRVVLEOHIORZ¿HOGLQYROYLQJDQLQFRPSUHVVLEOHIOXLGLV
D
-
E
F
G
- *$7(
&RQWLQXLW\HTXDWLRQLV
∂u ∂v + =0 ∂x ∂y ∂ ∂ Ê 3 ˆ lxy - x y + xy - ¥ y ˜ = 0 Á ¯ ∂x ∂y Ë or ly3±xyxy±y3 = 0
or l = 3 2SWLRQG LVFRUUHFW
7KH'IORZZLWKYHORFLW\n xy i±y j is D &RPSUHVVLEOHDQGLUURWDWLRQDO E &RPSUHVVLEOHDQGQRWLUURWDWLRQDO F ,QFRPSUHVVLEOHDQGLUURWDWLRQDO G ,QFRPSUHVVLEOHDQGQRWLUURWDWLRQDO u = xy v ±y ∂u ∂v + ∂x ∂y
=
∂ ∂ x + y + + - y ∂x ∂y
± &RQWLQXLW\HTXDWLRQLVVDWLV¿HG
)RUURWDWLRQDOÀRZ
∂v ∂u + =0 ∂x ∂y
∂ ∂ - y + x + y + ∂x ∂y =0+2=2്0
(GATE 2001)
482
Fundamentals of Fluid Mechanics
,WLVLUURWDWLRQDO 2SWLRQG LVFRUUHFW $YHORFLW\SRWHQWLDOIXQFWLRQH[LVWVIRU D 6WHDG\IORZ E 8QLIRUPIORZ F ,UURWDWLRQDOIORZ G &RPSUHVVLEOHIORZ ,(6 2SWLRQF LVFRUUHFW 7KH/DJUDQJLDQGHVFULSWLRQRIIORZPRWLRQLVDQDORJXVWR D &RQWUROYROXPHDQDO\VLV E 7UDQVLHQWDQDO\VLV F 6\VWHPDQDO\VLV G 1RQHRIWKHDERYH ,(6 2SWLRQD LVFRUUHFW 7KHIORZLQDSLSHZKRVHYDOYHLVEHLQJRSHQHGDQGFORVHGJUDGXDOO\LVDQH[DPSOHRI D 6WHDG\IORZ E 1RQVWHDG\IORZ F 6WHDG\XQLIRUPIORZ G 6WHDG\QRXQLIRUPIORZ ,(6 2SWLRQE LVFRUUHFW $VWHDG\LUURWDWLRQDOIORZRIDQLQFRPSUHVVLEOHIOXLGLVFDOOHG D VWUHDPOLQHIORZ E FUHHSLQJIORZ F VKHDUIORZ G SRWHQWLDOIORZ ,(6 2SWLRQG LVFRUUHFW 7KHVWUHDPOLQHSDVVLQJWKURXJKSRLQW ZLOOEH D x + y E y = x F x + y G 1RQHRIWKHDERYH ,(6 7KHJHQHUDOHTXDWLRQRIVWUHDPOLQHSDVVLQJWKURXJKSRLQWV LV y± mx± If m =DVJLYHQLQFKRLFHE WKHQ y± x± or y = x 2SWLRQE LVFRUUHFW 7KHYHORFLW\SRWHQWLDOIXQFWLRQLVDWZRGLPHQVLRQDOIORZ¿HOGLVJLYHQE\f = x – y The magnitude of velocity at point P LV D =HUR E
F
G u =
- ∂f - ∂ = x - y = - x = ± ∂x ∂x
v =
- ∂f - ∂ x - y = y = = ∂y ∂y
,(6
Fluid Kinematics
483
5HVXOWDQWYHORFLW\ - + =
=
2SWLRQF LVFRUUHFW
&
$ ' IORZ ¿HOG LV GH¿QHG DV v = ix - j ◊ y 7KH HTXDWLRQ RI VWUHDPOLQH SDVVLQJ WKURXJKSRLQW LV D xy± E xy F xy + 2 G xy± ,(6 7KHHTXDWLRQRIVWUHDPOLQHSDVVLQJ LV y±y = mx±x y± = -
- x - LIm = x x
±xy + x = x
or xy 2SWLRQE LVFRUUHFW BWKHGLUHFWLRQRIÀRZLVIURPAWRB /RVVRIKHDG KHDGDWA±KHDGDWB ± PRIZDWHU $ SXPS RI +3 ZLWK H൶FLHQF\ LV GLVFKDUJLQJ FUXGH RLO 6* WR WKH RYHUKHDGWDQNEL P IURPWKHVWRUDJHWDQNEL P DVVKRZQLQWKH¿JXUH ,IWKHORVVLQWKHZKROHV\VWHPLVPRIIORZLQJIOXLG¿QGWKHGLVFKDUJH3UHVVXUHLQ VWRUDJHWDQNLVN1P B Pressure = 37.67 kN/m
EL = 9 m
EL = 30
2
A
Pump
3XPSLQJ6WRUDJHWR2YHUKHDG7DQN
$SSO\LQJ%HUQRXOOL¶VHTXDWLRQEHWZHHQSRLQWVA B PA P V V + A + zA + Hp = B + B + zB + HLOSS rg rg g g 1RZ
zA zB PA N1 VA ªVB ªPB DWPRVSKHULF Hp SXPSHe ¥ Hp ¥ ¥
RU
Hp Hp ± P 3XPSKRUVHSRZHU HP h (QHUJ\VXSSOLHGWRWKHV\VWHPE\WKHSXPS ¥ +3 HP =
r g ◊Q ◊ H p
534
Fundamentals of Fluid Mechanics
1.8 ¥ 0.746 ¥ 103 Q= 0.8 ¥ 103 ¥ 9.81 ¥ 18.2
or
= 0.094 m3/s Brine of SG 1.15 is draining from the bottom of a large open tank through a 80 mm pipe. The drain pipe ends at a point 10 m below the surface of the brine in the tank. &RQVLGHULQJ D VWUHDPOLQH VWDUWLQJ DW WKH RUL¿FH RI WKH EULQH LQ WKH WDQN DQG SDVVLQJ through the centre of the drain line to the point of discharge and assuming the friction is negligible, calculate the velocity of flow along the streamline at the point of discharge from the pipe. (AMIE 2000) 1
10
2
Draining from Pipe
Applying Bernoulli’s equation between points 1 and 2, we get P1 P V2 V2 + 1 + z 1 = 2 + 2 + z2 rg rg 2g 2g Now,
we get
or
z1 – z2 = 10,
P1 P P = 2 = atm and V1 = 0, rg rg rg 10 =
V2 =
V22 2g 2 g ¥ 10
= 14 m/s 7KH¿JXUHVKRZVDWXUELQHZLWKLQOHWSLSHDQGDGUDIWWXEH,IWKHH൶FLHQF\RIWXUELQH LVDQGGLVFKDUJHLVOLWUHVV¿QG WKHSRZHUGHYHORSHGE\WKHWXUELQH the reading of gauge G.
Fluid Dynamics-I 1
535
2
350 kN/m
Dia = 0.4 m of inlet pipe
2m
Turbine 1m
Dia - 0.5 m
3m G
2
Datum Draft tube
Q OLWUHVV PV A DUHDRILQOHWSLSH
p ¥ p d =
P 9HORFLW\DWLQOHW V =
Q = A
PV /HWHT WXUELQHKHDGGHYHORSHGSHUXQLWZHLJKWRIWKHZDWHU DQG HL KHDGORVVHV $SSO\LQJ%HUQRXOOL¶VWKHRUHPEHWZHHQSRLQW DWLQOHWDQGSRLQW DWIUHHVXUIDFHDQG WDNLQJIUHHVXUIDFHDVGDWXP P P V V + + z = + + z + HT + HL rg rg g g ¥ + HT ¥ ¥ \
HT P
PRZHUGHYHORSHG
P = h m g HT = h ¥ Q ¥ r ¥ g ¥ HT ¥¥¥¥¥ N:
536
Fundamentals of Fluid Mechanics
)LJXUHVKRZVDSXPSHPSOR\HGIRUOLIWLQJZDWHUIURPDVXPS,ILWLVUHTXLUHGWRSXPS OLWUHVVRIZDWHUWKRXJKDPGLDPHWHUSLSHIURPWKHVXPSWRDSRLQWPDERYH GHWHUPLQHWKHSRZHUUHTXLUHG$OVRGHWHUPLQHSUHVVXUHLQWHQVLWLHVDWLDQGM 2
M 6m 4m L 4m
Dia = 0.1 m
1
Pump sump
/LIWLQJIURPD6XPS
Q OLWUHVV PV A DUHDRISLSH
p p ¥ d = ¥
P Q = AVZKHUHV YHORFLW\DWRXWOHW RU
YHORFLW\
Q = PV A
$SSO\LQJ %HUQRXOOL¶V HTXDWLRQ EHWZHHQ SRLQW DW WKH VXUIDFH RI ZDWHU DQG SRLQW DW WKH RXWOHWZHJHW P V P V + + z + Hp = + + z + HL rg g rg g HP +HDGGHYHORSHGE\WKHSXPS HL +HDGORVVLQWKHV\VWHP 1RZ
P P = =DWPRVSKHUHVV V PV rg rg z z 0 + 0 + 0 + HP = 0 +
¥
Fluid Dynamics-I
HP PRIZDWHU
RU PRZHUWRUXQSXPS
P = m g HP h =
r ¥ Q ¥ g ¥
=
¥ ¥ ¥ ¥
N: $SSO\LQJ%HQRXOOL¶VHTXDWLRQEHWZHHQSRLQWDQGSRLQWLZHJHW P P V V + + z = L + L + zL rg rg g g 0+0+0=
PL + rg g
PL ± rg RU
PL ± ¥¥¥ ± N1P
$SSO\LQJ%HUQRXOOL¶VHTXDWLRQEHWZHHQSRLQWVDQGMZHJHW P P V V + + z + HP = M + M + zm rg rg g g NRZ
P V Z HP P rg Zm P
PM + rg g
PM ± ± rg ¥ ±± P PM ¥ ¥¥ N1P
537
538
Fundamentals of Fluid Mechanics
$VXEPDULQHLVFUXLVLQJDWDGHSWKRIPLQRFHDQVHDZDWHU6* ,IWKHVSHHG RI WKH VXEPDULQH LV PV ¿QG WKH UHDGLQJ RI 3LWRW WXEH DQG VWDWLF SUHVVXUH SUREH ZKLFKLVORFDWHGDWXSVWUHDP 6WDWLFSUHVVXUHPVWDWLF = r g H ¥ ¥¥ N3D
'\QDPLFKHDGHd =
=
V g ¥
P \ '\QDPLFSUHVVXUHPd = r g Hd ¥¥¥ N3D \ 3LWRWWXEHUHDGLQJ '\QDPLFKHDG N3D 6WDWLFSUHVVXUHSUREHUHDGLQJ N3D 6WDJQDWLRQSUHVVXUH N3D $ 3LWRW WXEH LV XVHG WR PHDVXUH YHORFLW\ RI DQ DHURSODQH $Q 8WXEH GL൵HUHQWLDO PDQRPHWHUJLYHVDUHDGLQJRIPRIZDWHU,IVSZWRIDLULV1PDQGFRH൶FLHQW RI3LWRWWXEHLV¿QGVSHHGRIWKHDHURSODQH$VVXPHFRPSUHVVLELOLW\DV]HUR Sa 6*RIDLU=
1RZ
\
¥ ± ¥ ¥
Sw 6*RIZDWHU Sw ¥ hw = Sa ¥ ha Sw Sa ¥ ± ha =
¥ ¥ - ¥ -
\ '\QDPLFKHDGRIWKH3LWRWWXEH = hd = ha 1RZ
V = Cv g hd ¥ ¥
hw FP
Fluid Dynamics-I
539
¥ PV 7KHVSHHGRIWKHDHURSODQHLVPV $3LWRWWXEHLVSODFHGDWWKHFHQWUHRISLSHKDYLQJGLDPHWHURIPLQZKLFKZDWHULV IORZLQJ7KH3LWRWWXEHUHFRUGVN1PDVVWDJQDWLRQSUHVVXUH7KHVWDWLFSUHVVXUH LQWKHSLSHLVPRI+JJDXJHYDFXXP )LQGGLVFKDUJHLIPHDQYHORFLW\LVWLPHV WKHPD[LPXPYHORFLW\ 7DNH
CV PVWDJQDWLRQ N1P 6WDWLFSUHVVXUH PVWDWLF PRIHgYDFXXP ± ¥ rHg ¥ g ± ¥¥ ±N1P PVWDJQDWLRQ = PVWDWLF + PG\QDPLF \ PG\QDPLF ±± N1P HG\QDPLF =
PG\QDPLF r¥ g
=
¥ ¥ ¥
PRIZDWHU 0D[LPXPYHORFLW\ Cd
g H G\QDPLF
¥ ¥ PV
0HDQYHORFLW\ ¥0D[LPXPYHORFLW\ ¥ PV 'LVFKDUJHQ = VPHDQ ¥DUHDRISLSH ¥
p ¥
PV $3LWRWWXEHKDYLQJDFRH൶FLHQWRILVXVHGWRPHDVXUHWKHYHORFLW\RIZDWHUDWWKH FHQWUHRIDSLSH7KHVWDJQDWLRQSUHVVXUHKHDGLVPDQGWKHVWDWLFSUHVVXUHKHDGLV P:KDWLVWKHYHORFLW\" HVWDJQDWLRQ HVWDWLF HG\QDPLF ±
540
Fundamentals of Fluid Mechanics
V = Cd
g H G\QDPLF
¥ ¥ PV 7KHKHDGRIZDWHURYHUDQRUL¿FHRIGLDPHWHUPPLVP)LQGWKHDFWXDOGLVFKDUJH DQGYHORFLW\RIWKHMHWDWYHQDFRQWUDFWDLICd DQGCV
15 m d = 50 mm
2UL¿FH'LVFKDUJH 9HORFLW\
Vth = =
gH ¥ ¥
PV A=
p d p ¥ =
¥±P Qth = Vth ¥ A ¥¥± ¥±PV QDFWXDO = Cd ¥ Qth ¥¥± ¥±PV 1RZ $FWXDOYHORFLW\ CV ¥ Vth RU VDFWXDO ¥ PV 7KHDERYHLVWKHYHORFLW\DWYHQDFRQWUDFWD $Q RUL¿FH KDV D GLDPHWHU RI FP ZKLFK LV GLVFKDUJLQJ DW WKH KHDG RI P 7KH GLDPHWHU RI WKH MHW DW YHQD FRQWUDFWD LV FP ,I WKH GLVFKDUJH LV OLWUHV ¿QG WKH K\GUDXOLFFRH൶FLHQWVRIWKHRUL¿FH
$UHDRIRUL¿FH
p ¥ ¥ ±P
Fluid Dynamics-I
$UHDRIYHQDFRQWUDFWD
p ¥ ¥±P
&RH൶FLHQWRIFRQWUDFWLRQ CC = =
541
$UHDRIYHQDFRQWUDFWD $UHDRIRULILFH
¥ - ¥ -
7KHRUHWLFDOGLVFKDUJHQth = A ¥ Vth +RZHYHU
Vth = =
g ¥ h ¥ ¥
PV \
Qth ¥¥ ± PV
QDFWXDO ¥ ±PV \
Cd =
=
QDFWXDO Qth ¥ - ¥ -
1RZ
Cd = CC ¥ CV
RU
CV = =
Cd CC
$ MHW RI ZDWHU HPHUJLQJ IURP D VKDUS HGJH YHUWLFDO RUL¿FH XQGHU D FRQVWDQW KHDG RI FP DW D FHUWDLQ SRLQW KDV WKH KRUL]RQWDO DQG YHUWLFDO FRRUGLQDWHV PHDVXUHG IURP WKH YHQD FRQWUDFWD DV FP DQG FP UHVSHFWLYHO\ )LQG K\GUDXOLF FRH൶FLHQWV RI FRQWUDFWLRQDQGYHORFLW\
542
Fundamentals of Fluid Mechanics
Jet
H = 20 cm
y = 21 cm
x = 38 cm
Jet of Water
Vth = =
gH ¥ ¥
PV x = VDFWXDO ¥ t y=0+
gt
)URPHTQ y=
Ê x ˆ ¥ gÁ Ë VDFWXDO ˜¯
x
RU
VDFWXDO =
RU
VDFWXDO =
\
CV =
1RZ
Cd = CV CC ¥
y g ¥
=
PV
Vth = VDFWXDO
$ WDQN FRQWDLQLQJ ZDWHU LV SURYLGHG ZLWK D VKDUS HGJHG FLUFXODU RUL¿FH RI GLDPHWHU PP7KHKHLJKWRIZDWHULQWKHWDQNLVPDERYHWKHRUL¿FH7KHMHWVWULNHVDZDOO PDZD\DQGPYHUWLFDOO\EHORZWKHFHQWUHRIWKHRUL¿FH,IGLVFKDUJHLVOLWUHVV ¿QG K\GUDXOLFFRH൶FLHQWVDQG SRZHUORVVLQWKHRUL¿FH
Fluid Dynamics-I
Vth = =
gH ¥ g ¥ PV
x = VDFWXDO ¥ t y=
gt
RU
y=
Ê x ˆ g ÁË VDFWXDO ˜¯
\
VDFWXDO =
=
CV =
x y g ¥
PV
VDFWXDO = Vth
Qth =
=
pd ¥ Vth p ¥ ¥ - ¥
¥ ±PV Cd =
¥ - QDFWXDO = Qth ¥ -
Cd = CV ¥ CC RU
CC =
543
544
Fundamentals of Fluid Mechanics
$ WDQN KDV WZR LGHQWLFDO RUL¿FHV DW RQH VLGH LQ LWV YHUWLFDO ZDOO7KH XSSHU RUL¿FH LV P EHORZ WKH ZDWHU VXUIDFH ZKLOH WKH ORZHU RQH LV P EHORZ WKH ZDWHU VXUIDFH ,Q FDVHWKHYDOXHRIFRH൶FLHQWRIYHORFLW\CV LVVDPHDQGHTXDOWR¿QGWKHSRLQWRI LQWHUVHFWLRQRIWKHWZRMHWVIURPWKHRUL¿FHV
4 6 y1 y2 x
7ZR2UL¿FHV
CV = CV = AOVR RU
x
RU
=
y ¥
x y H x y H
=
x y H
x y ¥
y y y y – y y – y y y CV =
1RZ RU
y H
CV = CVWKHUHIRUH
RU RU %XW \ RU \
x
x ¥
y x y ¥
=
x ¥ 0¥
y
P 7KHSRLQWRILQWHUVHFWLRQRIWKHWZRMHWVLVDWPIURPWKHRUL¿FH
Fluid Dynamics-I
545
7ZRRUL¿FHVDUHORFDWHGLQDZDWHUWDQNLQVXFKDZD\WKDWWKHORZHU XSSHURUL¿FHV DUHDWPDQGPKHLJKWIURPWKHJURXQG7KHGLVWDQFHVWUDYHOOHGE\WKHXSSHUMHW DQGORZHUMHWDUHWR)LQGWKHKHLJKWRIZDWHUDERYHWKHXSSHURUL¿FHLIFRH൶FLHQW RIYHORFLW\IRUERWKWKHRUL¿FHVLVVDPH
H
y2
10 m y1
0.5 m x 3x
7ZR2UL¿FHV
%RWWRPRUL¿FHCV =
=
8SSHURUL¿FHCV =
= NRZ RU
RU
x y H x ¥ + H x y H x ¥
CV = CV x ¥ + H H H H
=
x ¥ H >¥H @ H H P
$ PP GLDPHWHU RUL¿FH GLVFKDUJHV OLWUHVV RI ZDWHU XQGHU D FRQVWDQW KHDG RI P$IODWSODWHKHOGQRUPDOWRWKHMHWHPHUJLQJIURPWKHRUL¿FHUHTXLUHV1WR UHVLVWWKHLPSDFWRIWKHMHW'HWHUPLQHWKHK\GUDXOLFFRH൶FLHQWV
546
Fundamentals of Fluid Mechanics
Jet: Q = 48 litre/s 2.6 m Plate
Jet of Water
)RUFH FKDQJHRIPRPHQWXP PDVV¥YHORFLW\RIYHQDFRQWUDFWD = rgQDFWXDO ¥ VDFWXDO ¥¥¥¥ ± ¥ VDFWXDO
VDFWXDO =
¥
PV Vth = =
gh ¥ ¥
PV CV =
VDFWXDO = Vth
Qth = a ¥ Vth a=
p d p ¥ =
P Qth ¥ \
Cd =
QDFWXDO ¥ - = = Qth
NRZ
Cd = CV ¥ CC
Fluid Dynamics-I
CC =
\
547
Cd = CV
$WDQNDVVKRZQLQWKH¿JXUHKDVDQR]]OHRIH[LWGLDPHWHUdDWDGHSWKHEHORZWKH IUHHVXUIDFH$WWKHVLGHRSSRVLWHWRWKDWRIQR]]OHDQRWKHUQR]]OHLVSURSRVHGDWD H deSWK :KDW VKRXOG EH WKH GLDPHWHU d LQ WHUPV RI d VR WKDW WKH QHW KRUL]RQWDO IRUFHRQWKHWDQNis zHUR
$0,(
H1 2
d2
H1
d1
Two Nozzels
'LVFKDUJHYHORFLW\DWQR]]OH V =
gH
Q = AV M = rAV = r ¥
p ◊d ¥
F FKDQJHRIPRPHQWXP M V = r ¥ p d ◊ gH ¥
= r◊
gH
p d ◊ gH
'LVFKDUJHYHORFLW\DWQR]]OH V =
gH =
g ◊
H =
M = r A V = r ¥ p d ◊ gH
gH
gH
548
Fundamentals of Fluid Mechanics F = M V = r ¥ p d ¥ gH
NRZ
F = FLHQRIRUFHLV]HUR p d ¥ gH r p d ◊gH = r
RU RU
d = d d =
d d
:KDWDUHWKHSUDFWLFDODSSOLFDWLRQVRIZHLUV" 7KHSUDFWLFDODSSOLFDWLRQVRIZHLUVDUH 0HDVXUHPHQWRIGLVFKDUJHV $QLFXWUDLVHGZHLURUEDUUDJHDUHFRQVWUXFWHGDQGUHJXODWHGRQWKLVSULQFLSOH 'LVFKDUJH WKURXJK EULGJH RSHQLQJV VSHFLDOO\ D൷X[ DQG EDFN ZDWHU FXUYH FDQ EH GHWHUPLQHG 2UJHHZHLULVSRVVLEOHDVSHUÀRZ :KDWLVDQDQLFXWEDUUDJHRUUDLVHGZHLU" $QDQLFXWLVDPDVRQU\ZDOORUGDPEXLOWDFURVVDULYHUIRUUDLVLQJWKHZDWHUOHYHORQWKH XSVWUHDPVLGHVRWKDWUDLVHGZDWHUFDQÀRZLQWRWKHFDQDOVHPDQDWLQJIURPWKHULYHU+HQFH DQLFXWLVQRWKLQJEXWDZHLURYHUZKLFKWKHZDWHUFDQÀRZZKHQZDWHUOHYHOLVKLJKHUWKDQ WKHFUHVWRIWKHDQLFXW([DPSOHVDUH)DUUDNDEDUUDJHDQG2NKODEDUUDJH,WLVSRVVLEO\WR UDLVHWKHZDWHUOHYHODWXSVWUHDPRIWKHULYHUZLWKWKHKHOSRIZRRGHQVKXWWHUVRUÀDVKERDUGV ZKLFKFDQEH¿[HGRQWKHFUHVWRIWKHZHLU6XFKZHLUVDUHFDOOHGUDLVHGZHLUV ([SODLQ DIIOX[DQG EDFNZDWHUFXUYH $ULYHUEULGJHLVFRQVWUXFWHGRYHUDEXWPHQWVDQGSLHUV7KHVHVWUXFWXUHVDUHREVWUXFWLRQVWR WKHÀRZRIZDWHU$VZDWHUKDVOHVVZLGWKWRÀRZGXHWRWKHSUHVHQFHRISLHUVDQGDEXWPHQWV WKH OHYHO RI ZDWHU ULVHV DW XSVWUHDP RI WKH ULYHU 6XFK ULVH RI ZDWHU OHYHO LV FDOOHG D൷X[ 7KH ULVH H[LVWV XS WR D FHUWDLQ GLVWDQFH RQ WKH XSVWUHDP VLGH DQG LW JUDGXDOO\ GHFUHDVHV XSVWUHDP+HQFHWKHZDWHUVXUIDFHDWXSVWUHDPGRHVQRWUHPDLQLQKRUL]RQWDOSODQHEXWLW FXUYHVORQJLWXGLQDOO\ZLWKFRQFDYLW\XSZDUGV6XFKDFXUYHGVXUIDFHLVFDOOHGDEDFNZDWHU FXUYH :KDWLVDQDTXDGXFW" ,WFDQEH DEULGJHIRUFRQYH\LQJZDWHURIDFDQDODERYHWKHJURXQGVRWKDWDURDGFDQ SDVVXQGHUWKHEULGJHDQG DFRDUVHIRUFRQYH\LQJZDWHUXQGHUWKHJURXQGZKLFKPD\ KDYHURDGRUDVWUXFWXUHVRWKDWZDWHUKDVWRÀRZXQGHULW )LQGWKHGLVFKDUJHWKURXJKDIXOO\VXEPHUJHGRUL¿FHKDYLQJZLGWKPLIWKHGL൵HUHQFH RIZDWHUOHYHORQERWKVLGHVRIWKHRUL¿FHLVFP7KHKHLJKWRIWKHZDWHUIURPWKH WRSDQGERWWRPHGJHRIWKHRUL¿FHDUHPDQGPUHVSHFWLYHO\$VVXPHCd
Fluid Dynamics-I
549
'LVFKDUJHIURPDIXOO\VXEPHUJHGRUL¿FH Q = Cd ¥ b ¥H – H ¥
gH
*LYHQH H PH P b P DQG Cd Q ¥¥± ¥ ¥
PV )LQGGLVFKDUJHWKURXJKDRUL¿FHPZLGHDQGGHHSLQDYHUWLFDOZDOORIDWDQN KDYLQJZDWHUOHYHORIPDERYHWKHXSSHUHGJHRIWKHRUL¿FH:DWHUDWGRZQVWUHDP VLGHLVPDERYHWKHERWWRPHGJHRIWKHRUL¿FH$VVXPHCd
H1
H2 0.8
0.4 12 m Orifice
7KHRUL¿FHKDVWZRSRUWLRQVQDPHO\WKHXSSHUSRUWLRQDFWVDVIUHHÀRZDQGORZHUSRUWLRQ DFWVDVVXEPHUJHGÀRZ Q IUHHÀRZ Q VXEPHUJHGÀRZ Q WRWDOÀRZ Q = Q + Q Q =
◊Cd◊b◊ g [H – H]
=
¥¥¥
=
¥¥¥>±@
¥ > ± @
PV Q = Cd ¥ bH – H gH ¥± ¥ g ¥ ¥¥¥
550
Fundamentals of Fluid Mechanics
PV Q PV 7KHGLVFKDUJHYHORFLW\DWWKHSLSHH[LWLQWKHJXDJHKHDGDVVKRZQLQ¿JXUHLV
h H
D
gH
E
F
2g(H + h)
G
gh *$7(
7KH KHDG EHWZHHQ IUHH VXUIDFH DQG WKH RXWOHW LV h$V SHU 7RUULFHOOL¶V ODZ WKH GLVFKDUJH YHORFLW\LV gh OSWLRQE LVFRUUHFW :DWHU LV IORZLQJ ZLWK D IORZ UDWH RI PV:KDW LV WKH DYHUDJH YHORFLW\ DW WKH RXWOHWZKRVHDUHDLVFP" D PV E PV F PV G PV 173& )URPWKHFRQWLQXLW\HTXDWLRQ Q = A◊V ZKHUHA DUHD V DYHUDJHYHORFLW\ V=
RU
¥ - PV ¥ -
2SWLRQE LVFRUUHFW ,IWKHSUHVVXUHLQWKHDLULVGRXEOHGWKHIORZUDWHRIZDWHUIURPWKHQR]]OHZLOOLQFUHDVH E\ZKDWSHUFHQWDJH" D E F G 6$,/ Pressure P0
1 Air
Piston Water
2
Fluid Dynamics-I
551
)ORZUDWHLVYHORFLW\PXOWLSOLHGE\DUHD$VWKHDUHDGRHVQRWFKDQJHKHQFHWKHUDWHGHSHQGV XSRQWKHYHORFLW\RQO\8VLQJ%HUQRXOOL¶VHTXDWLRQDWVHFWLRQDQG P0 P V V + 0 = + z – z rw g rDLU g g g P DWPRVSKHULF rw g
7DNLQJz – z
V0 = 0 V P0 = g rDLU ¥ g
\
RU
P0 =
rDLU V
RU
V =
P0 rDLU
,IP0LVGRXEOHGWKHYHORFLW\VZLOOLQFUHDVHE\ +HQFHSHUFHQWDJHLQFUHDVHLV 2SWLRQG LVFRUUHFW )RU WKH QR]]OH VKRZQ DSSUR[LPDWH WKH SUHVVXUH P QHJOHFW IULFWLRQ DQG DVVXPH D XQLIRUPSUR¿OHDWVHFWLRQ
D
V r
E rV
F
V r
G A1
A2
V
A1 = 4 A 2
P1
)URPWKHFRQWLQXLW\HTXDWLRQZHKDYH A V = AV RU
V r
V =
A V A
+&/
552
Fundamentals of Fluid Mechanics
=
A V V A
1RZDSSO\%HUQRXOOL¶VHTXDWLRQWRLQOHWDQGRXWOHW P P V + + z = + V + z rg rg g g
P DWPRVSKHULF rg
1RZ
z = z
\
ÊV V ˆ P = r ◊g Á - ˜ Ë g g ¯ =
r V ±
=
r V
2SWLRQG LVFRUUHFW 7KHIORZUDWHIURPWKHQR]]OHDWWDFKHGWRWKHWDQNFDQEHGRXEOHGE\KROGDOORWKHU YDULDEOHVFRQVWDQWV
H Diameter D area A
100
D GRXEOLQJD F GRXEOLQJA
E GRXEOLQJT F GRXEOLQJW Q=A¥V V=
gH
Q=A¥
gH
+HQFHQ μ ADVHLVFRQVWDQW7KHÀRZFDQEHGRXEOHGE\GRXEOLQJWKHDUHD 2SWLRQF LVFRUUHFW ,QDQLVRWKHUPDODWPRVSKHUHWKHSUHVVXUH D LVFRQVWDQWZLWKHOHYDWLRQ E GHFUHDVHVOLQHDUO\ZLWKHOHYDWLRQ
+&/
Fluid Dynamics-I
F FDQQRWEHUHODWHGWRHOHYDWLRQ G GHFUHDVHVH[SRQHQWLDOO\ZLWKHOHYDWLRQ dP = – rgdz 3HUIHFWJDVHTXDWLRQDVDLULVDQLGHDOJDV
,(6 z KHLJKW
P = rRT RUr = dP = –
553
P RT
Pg dz RT
dP -g = dz p RT
RU
dP -g = p RT
RU
Ú
RU
ORJP =
Ú
dz
-g g z SXWc = RT RT
P = e–cz
RU
+HQFHSUHVVXUHGHSHQGVXSRQWKHHOHYDWLRQH[SRQHQWLDOO\ 2SWLRQD LVFRUUHFW $QLVKDSHGWXEH3LWRWWXEH LVXVHGWRPHDVXUHWKHKRUL]RQWDOYHORFLW\LQDVWUHDP DVVKRZQ7KHG\QDPLFRUYHORFLW\KHDGLVQHJOHFWORVVHV
Dh
H V
Pitot tube
D H F Dh
E Dh + H G
7KH3LWRWWXEHKDV
VWDJQDWLRQKHDG VWDWLFKHDGG\QDPLFKHDG = H + Dh +HQFHG\QDPLFKHDGLVDh. 2SWLRQF LVFRUUHFW
,(6
554
Fundamentals of Fluid Mechanics
7KHJLYHQ¿JXUHUHSUHVHQWVIORZRIZDWHUSDVWDERG\ZLWKYHORFLW\V LQDODNH7KHFXUYHAB is D DQHTXLSRWHQWLDO E DSDWKOLQH F DVWUHDNOLQH G DVWUHDPOLQH
B A
Body
V
,(6
7KHFXUYHABUHSUHVHQWVDVWUHDNOLQHDVVWUHDNOLQHLVDFXUYHZKLFKJLYHVDQLQVWDQWDQHRXV SLFWXUHRIWKHORFDWLRQRIWKHÀXLGSDUWLFOHVZKLFKKDYHSDVVHGWKURXJKDJLYHQSRLQW 2SWLRQF LVFRUUHFW ,IDKROHLVPDGHLQWKH7RUULFHOOLVYDFXXPSRUWLRQRIEDURPHWHUWKHQWKHPHUFXU\ D OHYHOZLOOIDOOLQWKHVWHPDQGWKHPHUFXU\ E OHYHOZLOORVFLOODWHEHWZHHQWKHUHVHUYRLUOHYHODQGWKHRULJLQDOOHYHORIWKHPHUFXU\ LQWKHVWHP F ZLOOVSLOOWKURXJKWKHKROHPDGH G OHYHO LQ WKH VWHP ZLOO UHPDLQ DW WKH VDPH OHYHO LQGLFDWLQJ DWPRVSKHULF SUHVVXUH ,(6 :KHQDKROHLVPDGHWKHPHUFXU\OHYHOZLOOIDOOGRZQLQWKHEDURPHWHU7KHUXVKLQJRXW PHUFXU\ZLOOUDLVHWKHOHYHOLQWKHUHVHUYRLUWLOOLWLVVWRSSHGE\WKHJUDYLWDWLRQDOIRUFH1RZ PHUFXU\ VWDUWV IDOOLQJ LQ WKH UHVHUYRLU DIWHU UHDFKLQJ WKH VDPH OHYHO DQG ULVHV LQ WKH WXEH 7KLVNHHSVRQKDSSHQLQJDQGPHUFXU\ZLOORVFLOODWH 2SWLRQE LVFRUUHFW 7KUHHUHVHUYRLUVABDQGCDUHLQWHUFRQQHFWHGE\SLSHVDVVKRZQLQWKH¿JXUH:DWHU VXUIDFH HOHYDWLRQ LQ WKH UHVHUYRLU DQG WKH SLH]RPHWULF KHDG DW WKH MXQFWLRQ J DUH LQGLFDWHGLQWKH¿JXUH Piezometric head = 160 m EL = 200 m
A B
EL = 180 m
Q2
Q1
EL = 140 m
J Q3
'LVFKDUJHQQDQGQDUHUHODWHGDV D Q + Q = Q F Q = Q + Q
C
E Q = Q + Q G Q + Q + Q
6LQFHELDWA !KHDGDWJKHQFHÀRZQLVIURPAWRJ 6LQFHELDWB !KHDGDWJKHQFHÀRZLVIURPBWRJ 6LQFHELDWC !KHDGDWJKHQFHÀRZLVIURPJWRB \ Q + Q = Q 2SWLRQD LVFRUUHFW
*$7(
Fluid Dynamics-I
555
7KHRXWOHWRIDWDQNRIZDWHULVFKDQJHGDVVKRZQEHORZIURPDGLVWDQFHdWRDGLVWDQFH dIURPWKHVXUIDFHRIWKHZDWHU:KLFKRIWKHIROORZLQJH൵HFWVRQWKHYHORFLW\RIWKH ZDWHUOHDYLQJWKHWDQN" d
V0 Hd V0
D LQFUHDVHWKHYHORFLW\E\IDFWRU E LQFUHDVHWKHYHORFLW\E\IDFWRU F LQFUHDVHWKHYHORFLW\RQO\LIWKHGLDPHWHURIWKHRXWOHWLVLQFUHDVHG G GHFUHDVHWKHYHORFLW\GXHWRORZHUSUHVVXUH
,(6
$VSHU7RUULFHOOL¶VODZYHORFLW\RIGLVFKDUJH V=
gh
h KHDGRIZDWHU
)LUVWFDVHh = d KHQFHV = 6HFRQGFDVHh d KHQFHV =
gd g ¥ d
gd V +HQFHYHORFLW\ZLOOLQFUHDVHE\IDFWRU 2SWLRQD LVFRUUHFW $FPGLDSLSHWUDQVSRUWVZDWHUDWPV,WH[LWVIURPWZRVPDOOPPGLDKROHV 7KHH[LWYHORFLW\LQPVZLOOEH D E F G ,(6 $SSO\LQJFRQWLQXLW\HTXDWLRQ A V ¥ AV - p ¥ - ¥ ¥ p ¥ ¥ V
RU 2SWLRQG LVFRUUHFW
V =
¥
556
Fundamentals of Fluid Mechanics
,QIRUFHYHUWH[IORZYHORFLW\VDQGUDGLDOGLVWDQFHrDUHUHODWHGDV D V μ r E V μ r F V μ G V μ r ,(6 r ,QIRUFHYHUWH[ÀRZZHKDYH V = Zr ZKHUHZLVDQJXODUYHORFLW\,IDQJXODUYHORFLW\LVFRQVWDQWWKHQ Vμr 2SWLRQD LVFRUUHFW $MHWRIZDWHULVVXHVIURPDQR]]OHZLWKDYHORFLW\PVDQGLWLPSLQJHVQRUPDOO\RQ WKHIODWSODWHPRYLQJDZD\IURP,WDWPV,IWKHFURVVVHFWLRQDODUHDRIWKHMHWLV PDQGWKHGHQVLW\RIZDWHULVWDNHQDVNJPWKHQIRUFHGHYHORSHGRQWKH SODWHZLOOEH D 1 E 1 F 1 G 1 &LYLO6HUYLFHV )RUFHRQWKHSODWH FKDQJHRIPRPHQWXP 0DVVRIZDWHU¥FKDQJHRIYHORFLW\ r ¥ A ¥ V ¥ V ¥ ¥¥ 1 2SWLRQG LVFRUUHFW $QR]]OHKDVYHORFLW\KHDGDWRXWOHWRIP,ILWLVNHSWYHUWLFDOWKHKHLJKWUHDFKHG E\WKHVWUHDPLV D P E P
F
P
G
P
,(6
7KHVWUHDPZLOOULVHXSWRDKHLJKWHTXDOWRLWVKHDG P 2SWLRQE LVFRUUHFW $Q H[WHUQDO F\OLQGULFDO PRXWKSLHFH KDV PP GLDPHWHU ¿WWHG DW D VLGH RI D ODUJH YHVVHO)LQGGLVFKDUJHLIWKHKHDGRYHUWKHPRXWKSLHFHLVP 8378 $UHD a =
\
p p d = ¥ ¥±P
$VVXPHCd Q = Cd ¥DUHD¥YHORFLW\ ¥¥¥
±
¥ P V
¥ ¥
Fluid Dynamics-I
557
$FRQYHUJHQWGLYHUJHQWPRXWKSLHFHLV¿WWHGWRWKHVLGHRIDWDQN,IWKHGLDPHWHURIWKH RXWOHWDQGYHQDFRQWUDFWDEHDQGPPUHVSHFWLYHO\)LQGWKHPD[LPXPKHDGRI ZDWHUIRUVWHDG\IORZ*LYHQDWPRVSKHULFSUHVVXUHDVPRIZDWHUDQGVHSDUDWLRQ SUHVVXUHDVPRIZDWHU 7KH ORZHVW SUHVVXUH SRVVLEOH DW YHQD FRQWUDFWD KHDG Hc LV VHSDUDWLRQ SUHVVXUH ZKLFK LV PRIZDWHU7KHDWPRVSKHULFKHDGH0 P,Idc GLDPHWHUDWYHQDFRQWUDFWDDQG d GLDPHWHUDWWKHRXWOHWRIWKHPRXWKSLHFHWKHQZHKDYH d = d c
+
H0 - Hc H
ZKHUHH PD[LPXPKHDGRIZDWHUDWWKHPRXWKSLHFH Ê ¥ - ˆ Á ¥ - ˜ Ë ¯
=
+
H=
RU
- H
H
PRIZDWHU :DWHU IORZLQJ WKURXJK D FRQYHUJHQW GLYHUJHQW PRXWKSLHFH LV KDYLQJ D GLDPHWHU RI FRQYHUJHQFH PP DQG KHDG DW WKH PRXWKSLHFH LV P )LQG WKH PD[LPXP GLDPHWHUWRWKHGLYHUJHQFHRIMHWLIWKHPD[LPXPYDFXXPSUHVVXUHLVPRIZDWHU d = d c
+
H0 - Hc H
d = ¥ -
+
d ¥ ± d P PP $QLQWHUQDOPRXWKSLHFHRIPPGLDPHWHULVGLVFKDUJLQJZDWHUXQGHUDFRQVWDQWKHDG DWP'HWHUPLQHWKHGLVFKDUJHZKHQ LWLVUXQQLQJIUHHDQG UXQQLQJIXOO RU RU
$UHD
p p d = ¥¥ ± ¥±P
5XQQLQJIUHHFRQGLWLRQZHKDYH
'LVFKDUJH Q ¥ a ¥
gH
558
Fundamentals of Fluid Mechanics
¥¥ ± ¥
¥ ¥
¥±PV 5XQQLQJIXOOFRQGLWLRQZHKDYH 'LVFKDUJH Q ¥ a ¥
gH
¥¥ ± ¥
¥ ¥
¥±PV 7KHPD[LPXPIORZWKURXJKDUHFWDQJXODUFKDQQHORIVL]HPZLGHDQGPGHHSLV PV,WLVSURSRVHGWRLQVWDOODVKDUSFUHVWHGVXSSUHVVHGQRWFKDFURVVWKHFKDQQHO WRPHDVXUHWKHGLVFKDUJH)LQGWKHPD[LPXPKHLJKWRIWKHZDWHURYHUWKHFUHVWRIWKH QRWFKZKLFKLVSRVVLEOHZLWKRXWZDWHURYHUIORZLQJIURPWKHVLGHVRIWKHFKDQQHO7DNH Cd 'LVFKDUJHWKURXJKWKHVXSSUHVVHGZHLUQRWFKQHJOHFWLQJWKHYHORFLW\RIDSSURDFK Q=
Cd ◊L◊ g H
ZKHUHH KHLJKWRIZDWHURYHUWKHFUHVW L ZLGWKRIQRWFK
RU
H =
¥¥¥
¥ ¥
¥ ¥ ¥ ¥
RU RU
H H P
,QDFKDQQHODUHFWDQJXODUQRWFKRIZLGWKPLVXVHGWRPHDVXUHWKHGLVFKDUJH,I ZDWHU KHLJKW LV P RYHU WKH FUHVW DQG GLVFKDUJH FRH൶FLHQW LV P IRU WKH QRWFK ¿QGWKHGLVFKDUJH,IWKHUHFWDQJXODUQRWFKLVUHSODFHGE\DWULDQJXODUQRWFKZKLFKKDV QRZKHLJKWRIZDWHUDVPGHWHUPLQHCdIRUWKHQRWFK1HJOHFWYHORFLW\RIDSSURDFK DQGHQGFRQWUDFWLRQ 5HFWDQJXODUQRWFK Q = Cd ◊L◊ g H =
¥¥ ¥
¥ ¥
Fluid Dynamics-I
=
559
¥¥¥¥
PV 7ULDQJXODUQRWFK )RUVDPHÀRZQZHKDYH Q=
\
Cd =
q Cd◊WDQ ¥
g ◊H
◊Cd ¥WDQ¥
¥ ¥
¥ ¥ ¥ ¥
'HWHUPLQHWKHGLVFKDUJHRIZDWHURYHUDWULDQJXODUQRWFKRIDQJOHZKHQWKHKHDG RIZDWHURYHUWKHFUHVWLVP7DNHCd QHJOHFWYHORFLW\RIDSSURDFK 'LVFKDUJHWULDQJXODUQRWFK Q=
Q C g WDQ ¥ H d
=
¥¥
=
¥¥ ¥¥
¥ ¥WDQ¥
PV $WULDQJXODUQRWFKZLWKDSH[DQJOHRILVORFDWHGDFURVVDFKDQQHORIFPZLGH 7KHDSH[LVDWDKHLJKWRIFPIURPWKHEHGDQGKHLJKWRIWKHZDWHULQWKHQRWFKLV FPIURPWKHEHG$VVXPHCd 7KHKHLJKWRIWKHZDWHULQWKHQRWFKIURPWKHDSH[ ± FP \ H P Q=
q ◊C ◊WDQ ◊ g H d
=
¥¥WDQ¥
=
¥¥¥¥
PV
¥ ¥
560
Fundamentals of Fluid Mechanics
$UHVHUYRLUPORQJDQGPZLGHKDVDUHFWDQJXODUQRWFKPZLGH)LQGWKH WLPHWRORZHUWKHZDWHUOHYHOLQWKHUHVHUYRLUIURPPWRPLICd 6XUIDFHDUHDRIWKHUHVHUYRLU
¥ P
7LPHUHTXLUHGWRORZHUWKHOHYHORIZDWHULQWKHUHVHUYRLUZLWKWKHQRWFK T=
=
=
È ¥ Í Col ◊ L ◊ g ÎÍ H A
¥ ¥ ¥ ¥
È Í ¥ ÍÎ
˘ ˙ H ˚˙ ˘ ˙ ˙˚
¥ ¥ >±@ ¥ ¥
¥VHF PLQVHF $WULDQJXODUQRWFKZLWKDSH[DQJOHLVXVHGWRGLVFKDUJHZDWHUIURPDUHVHUYRLURI VL]HP¥PIURPWKHOHYHOPWRP$VVXPHCd )LQGWLPH A 6XUIDFHDUHD ¥ P 7LPHIRUORZHULQJOHYHOE\WKHWULDQJXODUQRWFK T=
◊
A q Col WDQ
ÈÊ ˆ Ê ˆ ˘ Í ˙ Á ˜ - ÁË H ˜¯ ˙ g ÍÎË H ¯ ˚
=
ÈÊ ˆ Ê ˆ ˘ ¥ ÍÁ ˜ - Á ˜ ˙ Ë ¯ ˙ ¥ WDQ ¥ ¥ ÎÍË ¯ ˚
=
È ˘ ¥ ¥ ¥ ÍÎ ˙˚
=
¥ ¥ ¥
È ˘ Í ¥ ˙ Î ˚
¥
VHF
'HWHUPLQHWKHWLPHUHTXLUHGWRORZHUWKHOHYHORIZDWHUIURPWRPLQDUHVHUYRLU KDYLQJVXUIDFHDUHDRIPE\ UHFWDQJXODUQRWFKRIZLGWKPZLGHDQG D ULJKWDQJOHWULDQJXODUQRWFK$VVXPHCd
Fluid Dynamics-I
561
Case 5HFWDQJXODUQRWFK 7LPHIRUORZHULQJOHYHO T=
A
Ê Cd ◊ L ◊ g ÁË
H
-
ˆ H ˜¯
¥
=
˘ È Í ˙ ¥ ¥ ¥ Î ˚
=
¥ >±@ ¥ ¥
¥VHFRQGV V Case 7ULDQJXODUQRWFK 7LPHIRUORZHULQJOHYHO T=
=
A ¥ q Cd ¥ WDQ ¥
˘ È Í H - H ˙ ˚ g Î
È ¥ ¥ ¥ ÍÎ
˘ ˙˚
¥>±@
¥VHFRQGV V Note:- 7LPHUHTXLUHGWRORZHUWKHOHYHOLVOHVVLQWULDQJXODUQRWFK
$WUDSH]RLGDOQRWFKKDVFPEDVHDQGVLGHVLQFOLQHGWRWKHYHUWLFDO,IWKHKHDG RIZDWHULVFP¿QGWKHGLVFKDUJH$VVXPHCd
30°
0.16 m
0.30 m Trapezoidal Notch
Guidance 7KH WUDSH]RLGDO QRWFK LV HTXLYDOHQW WR D UHFWDQJXODU QRWFK DQG D WULDQJXODU QRWFK7KHVXPRIGLVFKDUJHVIURPWKHVHWZRQRWFKHVLVWKHGLVFKDUJHRIWUDSH]RLGDOQRWFK
562
Fundamentals of Fluid Mechanics
Q = QUHFW + QWUL q Cd◊L◊ g H + CdWDQ p
= =
¥¥¥
g H
¥ ¥ +
¥¥ WDQ¥
¥ ¥
PV
$¿UHEULJDGHPDQLVKROGLQJDIUHHVWUHDPQR]]OHRIPPGLDPHWHUDVVKRZQLQWKH ¿JXUH7KHMHWHPHUJHVZLWKYHORFLW\RIPVDQGWKHMHWLVPDGHWRVWULNHDEXUQLQJ ZLQGRZ )LQG WKH DQJOH RI HOHYDWLRQ RI WKH MHW IURP WKH QR]]OH IURP KRUL]RQWDO DQG DPRXQWRIZDWHUIDOOLQJRQWKHZLQGRZ
Window
8.5 q 1.5 6
Jet of Water
+HUH
x y ± U PV Ux FRVq Uy VLQq Ux ¥ t RU t = y = Uy t –
gt
= UVLQq ¥
= g FRV q FRV q
= UWDQq –
gVHFq
= UWDQq –
gWDQ q
WDQq –
¥WDQ q
U FRV q
Fluid Dynamics-I
RU RU RU
563
WDQ q WDQq± WDQq WDQq WDQq = =
RU
+ ± - ±
RU q RU
:DWHUIDOOLQJRQWKHZLQGRZLVHTXDOWRWKHGLVFKDUJHIURPWKHQR]]OH q $UHD¥9HORFLW\ p = d ¥ u =
p ¥ ¥
PV :DWHUIORZVRYHUDUHFWDQJXODUZHLUPZLGHDWGHSWKRIPPDQGDIWHUZDUGV SDVVHV WKURXJK D WULDQJXODU ULJKW DQJOHG ZHLU7DNLQJ Cd IRU WKH UHFWDQJXODU DQG WULDQJXODU ZHLU DV DQG UHVSHFWLYHO\ ILQG WKH GHSWK RYHU WKH WULDQJXODU ZHLU $0,(2VPDQLD8QLYHUVLW\ 5HFWDQJXODUZHLU Q= =
¥ Cd ¥ L ¥ ¥¥¥
g ¥ H ¥ ¥
PV 7ULDQJXODUZHLU Q=
RU
H =
q ¥ Cd ¥WDQ ¥ ¥ 0¥WDQ¥ ¥ ¥ ¥ ¥
RU
H P
g ¥ H
¥ ¥ H
564
Fundamentals of Fluid Mechanics
:DWHUIORZVWKURXJKDWULDQJXODUULJKWKDQGHGZHLU¿UVWDQGWKHQRYHUDUHFWDQJXODU ZHLU RI P ZLGWK7KH GLVFKDUJH FRH൶FLHQW RI WKH WULDQJXODU DQG UHFWDQJXODU ZHLUV DUHDQGUHVSHFWLYHO\,IWKHGHSWKRIZDWHULQWKHWULDQJXODUQRWFKLVPP ¿QGWKHGHSWKRIZDWHURYHUWKHUHFWDQJXODUZHLU $0,( 7ULDQJXODUZHLU Q= =
q Cd ¥WDQ ¥
g ¥ H
¥¥WDQ¥
¥ ¥
PV 5HFWDQJXODUZHLU Q=
¥ Cd ¥ L ¥
¥¥¥
g ¥
¥ ¥ H
H H P PP 7KH¿JXUHEHORZVKRZVDVWHSSHGQRWFK)LQGWKHGLVFKDUJHWKURXJKWKLVQRWFKLICd UHPDLQVFRQVWDQWDQGLVHTXDOWR RU RU
H1
120 3
H2 H3
95
80 2 45 1
15
40
Guidance. 7KH JLYHQ VWHSSHG QRWFK FDQ EH FRQVLGHUHG D WKUHHUHFWDQJXODU QRWFK DQG GLVFKDUJHZLOOEHWKHVXPRIWKHGLVFKDUJHVRIWKHVHUHFWDQJXODUQRWFKHV Q = =
Cd ¥ L ¥
g [H – H]
¥¥¥
PV
¥ ±
Fluid Dynamics-I
Q =
¥¥¥
565
¥ > ± ]
PV
Q =
¥¥¥
¥ > ]
PV
Q = Q + Q + Q
PV
$ ZHLU P ORQJ LV GLYLGHG LQWR HTXDO ED\V E\ YHUWLFDO SRVWV HDFK FP ZLGH 'HWHUPLQHWKHGLVFKDUJHRYHUWKHZHLU,IWKHKHDGRYHUWKHFUHVWLVPDQGYHORFLW\ RIDSSURDFKLVPV $0,( Guidance. 7KH DGGLWLRQDO KHDG GXH WR YHORFLW\ RI DSSURDFK
V0 ZKHUH V0 YHORFLW\ g
RIDSSURDFK(DFKED\KDVWZRHQGFRQWUDFWLRQV)UDQFLVIRUPXODIRUWKHGLVFKDUJHLVWREH XVHG
/HQJWKRIZHLU P
1XPEHURIED\V SRVWV
(൵HFWLYHOHQJWK ±¥ P
'LVFKDUJHE\)UDQFLVIRUPXOD Q >L±¥nH + h0 @¥>H + ha ±ha] h0 =
V0 = P g ¥
Q >±¥¥ @¥> ± ]
PV
7KHKHLJKWVRIZDWHURQWKHXSVWUHDPDQGGRZQVWUHDPVLGHRIDVXEPHUJHGZHLURI POHQJWKDUH PUHVSHFWLYHO\,ICdIRUIUHHDQGGURZQHGSRUWLRQVDUHDQG UHVSHFWLYHO\¿QGWKHGLVFKDUJHRYHUWKHZHLU Guidance 7RWDO GLVFKDUJH LV WKH VXP RI WKH GLVFKDUJHV IURP XSSHU IUHH ÀRZ DQG ORZHU VXEPHUJHGÀRZ,IHDQGhDUHOHYHOVDWXSVWUHDP GRZQVWUHDP Q=
Cd ¥ L ¥
g H – h + Cd ¥ L ¥ h g H - h
566
Fundamentals of Fluid Mechanics
=
¥¥¥
¥ ±
¥¥¥¥
¥ ¥
PV ,QDQRUQDPHQWDOIRXQWDLQWKHUHDUHQR]]OHVHDFKRIPPGLDPHWHUDOOLQFOLQHG DWDQDQJOHRIZLWKWKHKRUL]RQWDO7KHMHWLVVXLQJIURPWKHQR]]OHIDOOVLQWRDEDVLQ DWDSRLQWGLVWDQFHPYHUWLFDOO\EHQHDWKWKHQR]]OHDQGPKRUL]RQWDOO\IURPLW 7KHYHORFLW\FRH൶FLHQWRIQR]]OHLV)LQGWKHSUHVVXUHKHDGRIWKHQR]]OHDQGWRWDO GLVFKDUJHIURPLW U 45°
Nozzle
1.4 m
4.6 m
x = UFRV¥ tRU FRV¥ t
U FRV
RU
t=
1RZ
h = UVLQ¥ t –
UVLQ¥
±
RU
U =
gt
– ◊g ¥ U FRV U FRV
¥ U
¥
U PV
RU
PUHVVXUHKHDGDWQR]]OH
U = H= ¥ ¥ Cd ¥ g P
Fluid Dynamics-I
567
Êp ˆ DLVFKDUJHIRUQR]]OHV Q = Á ¥ ¥ ˜ ¥ Ë ¯ PV
9.15 QUESTIONS FROM COMPETITIVE EXAMINATIONS
%HUQRXOOL¶VHTXDWLRQUHSUHVHQWV D )RUFHVDWDQ\SRLQWLQWKHIORZ¿HOGDQGLVREWDLQHGE\LQWHJUDWLQJWKHPRPHQWXP HTXDWLRQIRUYLVFRXVIORZV E (QHUJLHVDWDQ\SRLQWLQWKHÀRZ¿HOGDQGLVREWDLQHGE\LQWHJUDWLQJ(XOHU¶VHTXDWLRQ F 0RPHQWXP DW DQ\ SRLQW LQ WKH IORZ ¿HOG DQG LV REWDLQHG E\ LQWHJUDWLQJ WKH HTXDWLRQRIFRQWLQXLW\ G 0RPHQWRIPRPHQWXPDQGLVREWDLQHGE\LQWHJUDWLQJWKHHQHUJ\HTXDWLRQ ,(6 2SWLRQE LVFRUUHFW :KHQLV%HUQRXOOL¶VHTXDWLRQEHWZHHQDQ\WZRSRLQWVLQDIORZ¿HOG" D 7KHIORZLVVWHDG\LQFRPSUHVVLEOHDQGURWDWLRQDO E 7KHIORZLVVWHDG\LQFRPSUHVVLEOHDQGLUURWDWLRQDO F 7KHIORZLVXQVWHDG\LQFRPSUHVVLEOHDQGLUURWDWLRQDO G 7KHIORZLVVWHDG\LQFRPSUHVVLEOHDQGLUURWDWLRQDO ,(6 :KLFKRIWKHIROORZLQJDVVXPSWLRQVDUHPDGHIRUGHULYLQJ%HUQRXOOL¶VHTXDWLRQ" )ORZLVVWHDG\DQGLQFRPSUHVVLEOH )ORZLVXQVWHDG\DQGFRPSUHVVLEOH (൵HFWRIIULFWLRQLVQHJOHFWHGDQGÀRZLVDORQJDVWUHDPOLQH (൵HFWRIIULFWLRQLVWDNHQLQWRFRQVLGHUDWLRQDQGÀRZLVDORQJDVWUHDPOLQH D DQG E DQG F DQG G DQG ,(6 2SWLRQD LVFRUUHFW
Ê Vˆ 7KH H[SUHVVLRQ Á P + r gz + r LV FRPPRQO\ XVHG WR H[SUHVV %HUQRXOOL¶V HTXDWLRQ ˜¯ Ë DQGKDVXQLWVRI D 7RWDOHQHUJ\SHUXQLWPDVV E 7RWDOHQHUJ\SHUXQLWZHLJKW F 7RWDOHQHUJ\SHUXQLWYROXPH G 7RWDOHQHUJ\SHUXQLWFURVVVHFWLRQDODUHDRIIORZ ,(6 7KHXQLWHQHUJ\SHUXQLWYROXPHLH1PP 2SWLRQF LVFRUUHFW
568
Fundamentals of Fluid Mechanics
:KLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVFRUUHFW":KLOHXVLQJERXQGDU\OD\HUHTXDWLRQ %HUQRXOOL¶VHTXDWLRQ D &DQEHXVHGDQ\ZKHUH E &DQEHXVHGRQO\RXWVLGHWKHERXQGDU\OD\HU F &DQEHXVHGRQO\LQVLGHWKHERXQGDU\OD\HU G &DQQRWEHXVHGHLWKHULQVLGHRURXWVLGHWKHERXQGDU\OD\HU ,(6 2SWLRQE LVFRUUHFW Assertion (A) %HUQRXOOL¶VHTXDWLRQLVDQHQHUJ\HTXDWLRQ Reason (R) 6WDUWLQJIURP(XOHU¶VHTXDWLRQRQHFDQDUULYHDW%HUQRXOOL¶VHTXDWLRQ D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DUH5LQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 2SWLRQE LVFRUUHFW &RQVLGHUWKHIROORZLQJDVVXPSWLRQV 7KHIOXLGLVFRPSUHVVLEOH 7KHIOXLGLVLQYLVFLG 7KHIOXLGLVLQFRPSUHVVLEOHDQGKRPRJHQHRXV 7KHIOXLGLVYLVFRXVDQGFRPSUHVVLEOH 7KH(XOHU¶VHTXDWLRQRIPRWLRQUHTXLUHVDVVXPSWLRQVLQGLFDWHGLQ D DQG E DQG F DQG G DQG ,(6 2SWLRQE LVFRUUHFW 7KH(XOHU¶VHTXDWLRQRIPRWLRQLVDVWDWHPHQWRI D (QHUJ\EDODQFH E &RQVHUYDWLRQRIPRPHQWXPIRUDQLQYLVFLGIOXLG F &RQVHUYDWLRQRIPRPHQWXPIRUDQLQFRPSUHVVLEOHIORZ G &RQVHUYDWLRQRIPRPHQWXPIRUUHDOIOXLG ,(6 2SWLRQE LVFRUUHFW 7KH (XOHU¶V HTXDWLRQ RI PRWLRQ IRU WKH IORZ RI DQ LGHDO IOXLG LV GHULYHG FRQVLGHULQJ WKHSULQFLSOHRIFRQVHUYDWLRQRI D 0DVVDQGWKH¿HOGDVLQFRPSUHVVLEOHDQGLQYLVFLG E 0RPHQWXPDQGWKH¿HOGDVLQFRPSUHVVLEOHDQGYLVFRXV F 0RPHQWXPDQGWKHIOXLGDVLQFRPSUHVVLEOHDQGLQYLVFLG G (QHUJ\DQGWKHIOXLGDVLQFRPSUHVVLEOHDQGLQYLVFLG ,(6 2SWLRQF LVFRUUHFW
Fluid Dynamics-I
569
7KH YHORFLW\ RI D ZDWHU VWUHDP LV EHLQJ PHDVXUHG E\ /VKDSHG 3LWRW WXEH DQG WKH UHDGLQJLVFP7KHQZKDWLVWKHDSSUR[LPDWHYDOXHRIYHORFLW\" D PV E PV F PV G FPV ,(6 V = gh = ¥ ¥ = ª P V 2SWLRQE LVFRUUHFW $3UDQGW3LORWWXEHZDVXVHGWRPHDVXUHWKHYHORFLW\RIDIOXLGRI6*S7KHGL൵HUHQWLDO PDQRPHWHUZLWKDIOXLG6*SFRQQHFWHGWRWKH3LWRWWXEHUHFRUGHGDOHYHOGL൵HUHQFH as h7KHYHORFLW\VLVJLYHQE\WKHH[SUHVVLRQ D
ÊS ˆ gh Á - ˜ Ë S ¯
E
ÊS ˆ gh Á - ˜ Ë S ¯
F
gh S - S
G
gh S - S
,(6
P P S + h + y ¢ + y¢ + h ◊ = r◊g rg S RU
RU
ÊS ˆ V P - P = h Á - ˜ = rg Ë S ¯ g V =
ÊS ˆ gh Á - ˜ Ë S ¯
2SWLRQE LVFRUUHFW 0DWFK/LVW,PHDVXULQJGHYLFHV ZLWK/LVW,,0HDVXUHGSDUDPHWHU DQGVHOHFW7KH FRUUHFWDQVZHUXVLQJWKHFRGHVJLYHQEHORZ /LVW, /LVW,, D 3LWRWWXEH )ORZVWDWLFSUHVVXUH E 0LFURPHWHU 5DWHRIIORZLQGLUHFW F 3LSHEHQGPHWHU 'L൵HUHQWLDOSUHVVXUH G :DOOSUHVVXUHWDS )ORZVWDJQDWLRQSUHVVXUH Codes: A B C D (a) 1 3 2 4 (b) 4 3 2 1 (c) 1 2 3 4 (d) 4 2 3 1 (IES 2004) 2SWLRQE LVFRUUHFW
570
Fundamentals of Fluid Mechanics
:KDW LV WKH GL൵HUHQFH LQ SUHVVXUH KHDG PHDVXUHG E\ D PHUFXU\ RLO GL൵HUHQWLDO PDQRPHWHUIRUDFPGL൵HUHQFHRIPHUFXU\OHYHO"6*RIRLO D PRIRLO E PRIRLO F PRIRLO G PRIRLO ,(6 ÊS ˆ 'LIIHUHQFHRISUHVVXUHKHDG Á Ho - ˜ ¥ y ¢ Ë So ¯
Ê ˆ - ˜ ¥ = Á Ë ¯ P 2SWLRQF LVFRUUHFW $ 3LWRW WXEH F LV XVHG WR PHDVXUH DLU IORZ :LWK ZDWHU LQ WKH GL൵HUHQWLDO PDQRPHWHUDQGDJDXJHGL൵HUHQFHRIPPZKDWLVWKHYDOXHRIDLUVSHHGLIr NJP D PV E PV F PV G PV ,(6 ÊS ˆ Ê ˆ h = y ¢ Á w - ˜ = ¥ Á - ˜ PRIDLU Ë ¯ Ë Sa ¯ 1RZ
V
gh =
¥ ¥ PV
OSWLRQF LVFRUUHFW $3LWRWVWDWLFWXEHLVXVHGWRPHDVXUHWKHYHORFLW\RIZDWHUXVLQJDGL൵HUHQWLDOJDXJH ZKLFKFRQWDLQVDPDQRPHWULFIOXLGRIUHODWLYHGHQVLW\7KHGHIOHFWLRQRIWKHJDXJH IOXLGZKHQZDWHUIORZVDWDYHORFLW\RIPVZLOOEH D PP E PP F PP G PP ,(6 V =
RU
h =
ÊS ˆ gh ZKHUHh = y ¢ Á l - ˜ Ë Sw ¯ V = g ¥
¥ y¢ = = PP - 2SWLRQD LVFRUUHFW
Fluid Dynamics-I
571
1DYLHU6WRNHVHTXDWLRQUHSUHVHQWVWKHFRQVHUYDWLRQRI D (QHUJ\ E 0DVV F 3UHVVXUH G 0RPHQWXP *$7( 2SWLRQG LVFRUUHFW $VWHDG\LUURWDWLRQDOIORZRILQFRPSUHVVLEOHIOXLGLVFDOOHG D 6WUHDPOLQHIORZ E &UHHSLQJIORZ F 6KHDUIORZ G 3RWHQWLDOIORZ ,(6 2SWLRQG LVFRUUHFW $YHORFLW\SRWHQWLDOIXQFWLRQH[LVWVRQO\IRU D 6WHDG\IORZ E 8QLIRUPIORZ F ,UURWDWLRQDOIORZ G &RPSUHVVLEOHIORZ ,(6 2SWLRQF LVFRUUHFW $VLPSOH3LWRWWXEHFDQEHXVHGWRPHDVXUHZKLFKRIWKHIROORZLQJTXDQWLWLHV" 6WDWLFKHDG 'DWXPKHDG '\QDPLFKHDG )ULFWLRQKHDG 7RWDOKHDG 6HOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHVJLYHQEHORZ &RGHV D DQG E DQG F DQG G DQG ,(6 2SWLRQE LVFRUUHFW $ODUJHWDQNZLWKDQR]]OHDWWDFKHGFRQWDLQVWKUHHLPPLVFLEOHLQYLVFLGIOXLGVDVVKRZQ LQWKH¿JXUH $VVXPLQJWKDWWKHFKDQJHVLQhhDQGhDUHQHJOLEOHWKHLQVWDQWDQHRXVGLVFKDUJH YHORFLW\LV h1 h2
U1 U1 U1
h3 2 1
D
Ê r h r h ˆ gh Á + + ˜ r h r h ¯ Ë
E
g h + h + h
F
Ê r h + r h + r h ˆ g Á ˜¯ r + r + r Ë
G
Ê r h h + r h h + r hh ˆ g Á Ë rh + r h + r h ˜¯
*$7(
572
Fundamentals of Fluid Mechanics
7DNLQJSRLQW DWEHIRUHH[LWDQGSRLQW DWH[LWDQGDSSO\LQJ%HUQRXOOL¶VHTXDWLRQ P V P V + + Z = + Z + g r g g r g P = PDWPZ = ZV = 0 P V = r g g V =
RU
P r
P = rÂgÂh + r ÂgÂh + rÂgÂh V =
RU
gh +
r ◊ h r ◊ h + r ◊ h r ◊ h
OSWLRQD LVFRUUHFW :DWHU IORZV WKURXJK D YHUWLFDO FRQWUDFWLRQ IURP D SLSH RI GLDPHWHU d WR DQRWKHU d GLDPHWHU 7KH IORZ YHORFLW\ DW WKH LQOHW WR WKH FRQWUDFWLRQ LV PV DQG SUHVVXUH N1P,IWKHKHLJKWRIWKHFRQWUDFWLRQPHDVXUHVPWKHSUHVVXUHDWWKHH[LWRI FRQWUDFWLRQZLOOEHQHDUO\ d 2
2m
d
D N1P
F
N1 P
E
N1 P
G
N1 P
pd ¥ VLQ
Êdˆ pÁ ˜ Ë ¯ ¥ VH[LW =
*$7(
Fluid Dynamics-I
RU
573
VH[LW = VLQ RUVH[LW VLQ î
=P $SSO\LQJ%HUQRXOOL¶VHTXDWLRQ PLQ VLQ P V + = H[LW + H[LW rg g rg g PLQ – PH[LW =
P P - = = P
PH[LW = PLQ±P = î±î N1
2SWLRQE LVFRUUHFW $QRUL¿FHPHWHUKDYLQJDQRUL¿FHRIGLDPHWHUdLV¿WWHGLQDSLSHRIGLDPHWHUD)RU WKLVRUL¿FHPHWHUZKDWLVWKHFRH൶FLHQWRIGLVFKDUJHCd" D $IXQFWLRQRI5H\QROGVQXPEHURQO\ E $IXQFWLRQRI
d RQO\ D
F $IXQFWLRQRI
d DQG5H\QROGVQXPEHU D
G ,QGHSHQGHQWRI
d DQG5H\QROGVQXPEHU D
,(6
ÊA ˆ - Á o ˜ Ë Ai ¯
Cd = Cc ¥ -
cc
ÊA ˆ ¥Á o˜ Ë Ai ¯
ÊA ˆ Êdˆ = f ¥Á o˜ = f Á ˜ Ë D¯ A Ë i¯ OSWLRQE LVFRUUHFW $ WDQN FRQWDLQLQJ ZDWHU KDV WZR RUL¿FHV RI WKH VDPH VL]H DW GHSWKV RI FP DQG FPEHORZWKHIUHHVXUIDFHRIZDWHU7KHUDWLRRIGLVFKDUJHWKURXJKWKHVHRUL¿FHVLV D E F G ,(6
574
Fundamentals of Fluid Mechanics
FRUVDPHVL]HRULILFHWKHGLVFKDUJHQ μ Q = Q
gh
h = h
=
2SWLRQE LVFRUUHFW +RZ LV WKH YHORFLW\ FRH൶FLHQW Cv WKH GLVFKDUJH FRH൶FLHQW Cd DQG WKH FRQWUDFWLRQ FRH൶FLHQWCcRIDQRUL¿FHUHODWHG" E Cc = CvÂCd D Cv = Cc × Cd F Cd = CcÂCv G CcÂCvÂCd ,(6 2SWLRQF LVFRUUHFW $JODVVWXEHZLWKEHQGLVRSHQDWERWKHQGV,WLVLQVHUWHGLQWRDIORZLQJVWUHDPRI RLOS VRWKDWRQHRSHQLQJLVGLUHFWHGXSVWUHDPDQGWKHRWKHULVGLUHFWHGXSZDUGV 2LOLQVLGHWKHWXEHLVPPKLJKHUWKDQWKHVXUIDFHRIWKHIORZLQJRLO7KHYHORFLW\ PHDVXUHGE\WKHWXEHLVQHDUO\ D PV E PV F PV G PV ,(6 V =
◊ g ◊ h = ¥ ¥ ¥ -
V PV OSWLRQE LVFRUUHFW $FRQVWDQWKHDGZDWHUWDQNKDVRQRQHVLGHRIWKHYHUWLFDOVLGHVWZRLGHQWLFDOVPDOO RUL¿FHV LVVXLQJ WZR KRUL]RQWDO MHWV LQ WKH VDPH YHUWLFDO SODQH 7KH YHUWLFDO GLVWDQFH EHWZHHQWKHFHQWUHRIRUL¿FHVLVPDQGWKHMHWWUDMHFWRULHVLQWHUVHFWDWDSRLQWP EHORZWKHRUL¿FH:KDWLVWKHDSSUR[KHLJKWRIZDWHUOHYHOLQWKHWDQNDERYHWKHSRLQW RILQWHUVHFWLRQRIWUDMHFWRULHV" Ñ
h
Orifices 2 1.5 m Orifices 1 0.5 m
D P F P
E P G P
,(6
Fluid Dynamics-I
x ¥ y ¥ h +
Cv = VHORFLW\FRHIILFLHQWRIILUVWRULILFH
y YHUWLFDOGLVWDQFH x KRUL]RQWDOGLVWDQFH
ZKHUH
Cv 9HORFLW\FRHIILFLHQWRIVHFRQGRULILFH Cv = Cv
,I RU RU RU
575
x ¥ y ¥ h
x x = = + y ¥ + ¥ y ¥ h
îîh îîh h h h h =
=
7RWDOKHLJKW = P 2SWLRQE LVFRUUHFW 7KHHOERZQR]]OHDVVHPEO\VKRZQLQJLYHQ¿JXUHLVLQDKRUL]RQWDOSODQH7KHYHORFLW\ RIMHWLVVXLQJIURPWKHQR]]OHLV 2.5 mm f
500 mm
1.5 m/s 100 mm f
D PV F PV $VSHUFRQWLQXLW\HTXDWLRQ
E PV G PV A V = AV
p ¥ p ¥ ¥ V ¥ =
RU 2SWLRQF LVFRUUHFW
V
PV
,(6
576
Fundamentals of Fluid Mechanics
$OLTXLGMHWLVVXHVIURPDQR]]OHLQFOLQHGDWDQDQJOHRIWRKRUL]RQWDODQGLVGLUHFWHG XSZDUGV,IWKHYHORFLW\RIWKHMHWDWWKHQR]]OHLVPVZKDWVKDOODSSUR[LPDWHO\EH WKHPD[LPXPYHUWLFDOGLVWDQFHDWWDLQHGE\WKHMHWIURPWKHSRLQWRIH[LWRIWKHQR]]OH" D P E P F P G P ,$6 H VLQqî t –
t =
RU H
PD[
VLQ q g
= VLQ q ¥ =
· gt
VLQ q VLQ q - ¥ g ¥ g g
¥ ¥ VLQ VLQ q = g ¥ P
0DWFK/LVW,ZLWK/LVW,,DQGVHOHFWWKHFRUUHFWDQVZHU /LVW, /LVW,, D 2UL¿FHPHWHU 0HDVXUHPHQWRIIORZLQDFKDQQHO E %URDGFUHVWHGZHLU 0HDVXUHPHQWRIYHORFLW\LQDSLSHFKDQQHO F 3LWRWWXEH 0HDVXUHPHQWRIIORZLQDSLSHRIDQ\LQFOLQDWLRQ G 5RWDPHWHU 0HDVXUHPHQWRIXSZDUGIORZLQDYHUWLFDOIORZ &RGHV A B C D (a) 3 1 4 2 (b) 1 3 2 4 (c) 3 1 2 4
(d) 1 3 2SWLRQF LVFRUUHFW
4
2
7KHYHORFLW\DWWKHH[LWRIWKHSLSHDVVKRZQLQ¿JXUHZLOOEH
(IAS 2000)
Fluid Dynamics-I
D PV F PV
E PV G PV v =
577
,(6
gh = ¥ ¥ = P V
OSWLRQD LVFRUUHFW ,QWKHOD\RXWRISLSLQJDVVKRZQLQ¿JXUHZKDWLVYHORFLW\LQPPGLDPHWHUSLSH" mm 00 m/s 3 = .5 D2 = 2 V2
V1 = 3 m/s D1 = 450 mm
D 3
V
3 = = ? 20 0
m
m
D PV F PV
E PV G PV A V = AV + A V
,(6
î îîV
RU
V PV OSWLRQG LVFRUUHFW :KLFKRIWKHIROORZLQJLVDUHUHODWHGWRPHDVXUHWKHGLVFKDUJHE\DUHFWDQJXODUQRWFK"
Cd b g ◊ H
Cd ◊ b g ◊ H
C d ◊ b h ◊ H
C d = b g ◊ H
6HOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHVJLYHQEHORZ D DQG E DQG F DORQH G DORQH ,(6 2SWLRQF LVFRUUHFW 0DWFK /LVW, PHDVXULQJ LQVWUXPHQW ZLWK WKH /LVW,, YDULDEOH WR EH PHDVXUHG DQG VHOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHJLYHQWKHOLVWV /LVW, /LVW,, D +RWZLUHDQHPRPHWHU 'LVFKDUJH E 3LWRWWXEH 5RWDWLRQDOVSHHG
578
Fundamentals of Fluid Mechanics
F 9QRWFKZHLU 9HORFLW\IOXFWXDWLRQ G 7DFKRPHWHU 6WDJQDWLRQSUHVVXUH Codes: A B C D (a) 4 3 2 1 (b) 3 4 2 1 (c) 4 3 1 2 (d) 3 4 1 2 (IES 2007) 2SWLRQG LVFRUUHFW $VWDQGDUG9QRWFKLVXVHGWRPHDVXUHGLVFKDUJH7KHGLVFKDUJHLVQIRUKHLJKW HDERYHWKHVLOODQGQLVGLVFKDUJHIRUDKHLJKWH,I
D F
RU
E G Q =
q ◊ g ◊ WDQ ◊ H
Q =
q g ◊ WDQ ◊ H
ÊH ˆ Q = Á ˜ Q Ë H ¯
H Q LVWKH is H Q
,(6
= =
OSWLRQD LVFRUUHFW $WULDQJXODUQRWFKLVPRUHDFFXUDWHPHDVXULQJGHYLFHWKDQWKHUHFWDQJXODUQRWFKIRU PHDVXULQJZKLFKRIWKHIROORZLQJ D /RZIORZUDWH E 0HGLXPIORZUDWH F +LJKIORZUDWH G $OOIORZUDWH ,$6 2SWLRQD LVFRUUHFW
Chapter
10
FLUID DYNAMICS-II
KEYWORDS AND TOPICS
PRINCIPLE OF DYNAMICS MOMENTUM PRINCIPLE MOMENT OF MOMENTUM LINEAR MOMENTUM ANGULAR MOMENTUM VANES FLOW EXERTED BY JET FORCES ON BENDS RECTILINEAR FLOW
RADIAL FLOW ROTARY FLOW FORCED VORTEX FREE VORTEX ROTATION OF SPRINKLER VENTURIMETER ORIFICE METER FLOW NOZZLE ROTO METER
10.1 INTRODUCTION The fundamental principle of dynamics is Newton’s second law of motion. It states that time rate FKDQJHRIPRPHQWXPFRQWDLQHGLQDYROXPHRIÀXLGLVSURSRUWLRQDOWRWKHDSSOLHGIRUFHDQGWKLV change of momentum takes place in the direction of force. This is called impulse momentum principle which is very useful in addition to the continuity and the energy principles. The impulse PRPHQWXPSLUQFLSOH¿QGVYDVWDSSOLFDWLRQVLQWKHVROXWLRQRIVHYHUDOÀXLGÀRZSUREOHPV7KH LPSXOVH PRPHQWXP HTXDWLRQ LV XVHG IRU WKH ÀRZ DQDO\VLV RI L SLSH EHQGV DQG UHGXFHUV LL MHW SURSXOVLRQV LLL ¿[HG DQG PRYLQJ YDQHV LY SURSHOOHUV RI VKLSV DLUFUDIW DQG KHOLFRSWHUV Y KHDGORVVGXHWRVXGGHQHQODUJHPHQWRUFRQWUDFWLRQLQSLSHV\VWHPDQGYL K\GUDXOLFMXPS GXULQJÀRZLQRSHQFKDQQHO
10.2 MOMENTUM PRINCIPLE :KDWLVWKHIXQGDPHQWDOSULQFLSOHRIG\QDPLFV" The fundamental principle of dynamics is Newton’s second law of motion. The second law states that the time rate of change of momentum contained in a volume is proportional
580
Fundamentals of Fluid Mechanics
to the applied force and this change of momentum takes place in the direction of force. $FFRUGLQJ WR WKLV ODZ WKH UHVXOWDQW H[WHUQDO IRUFH DFWLQJ RQ D PDVV SDUWLFOH DORQJ DQ\ DUELWUDULO\ FKRVHQ GLUHFWLRQ LV HTXDO WR WLPH UDWH FKDQJH RI LWV OLQHDU PRPHQWXP LQ WKH same direction. Dynamic force = Rate of change of momentum in the same direction or
F=
d mv ZKHUHm PDVVv = velocity and T = time dT
:KDWLVLPSXOVHPRPHQWXPSULQFLSOH" 2U 'HVFULEHWKHPRPHQWXPHTXDWLRQ 8378 The impulse momentum principle states that the force FDFWLQJRQDÀXLGPDVVm in short Ê d ˆ interval of time dT is equal to the change of momentum Á mv ˜ in the direction of force. Ë dT ¯ 7KHLPSXOVHPRPHQWXPSULQFLSOHLVEDVHGRQWKHODZRIFRQVHUYDWLRQRIPRPHQWXPZKLFK states WKDWWKHQHWIRUFHDFWLQJRQDÀXLGPDVVLVHTXDOWRWKHFKDQJHLQWKHPRPHQWXPRI ÀRZSHUXQLWWLPHLQWKHGLUHFWLRQRIQHWIRUFH Force = change of momentum F= or
d mv dT
F ◊dT = d mv
7KHDERYHLVLPSXOVHPRPHQWXPHTXDWLRQ 6WDWHWKHSUDFWLFDODSSOLFDWLRQVRIWKHPRPHQWXPHTXDWLRQ 8378 7KHPRPHQWXPHTXDWLRQLVXVHGWRGHWHUPLQHWKHUHVXOWDQWIRUFHH[HUWHGE\DÀRZLQJÀXLG RQ DQ\ VXUIDFH ZKHQ WKH ÀXLG FKDQJHV LWV PDJQLWXGH RU GLUHFWLRQ RU ERWK PDJQLWXGH DQG GLUHFWLRQZKLOHÀRZLQJRQWKHVXUIDFH7KHGHFUHDVHRIWKHPRPHQWXPRIWKHÀXLGPHDQV WKDWÀXLGLVJLYLQJHQHUJ\WRWKHVXUIDFHDVLQWXUELQHVZKLOHWKHLQFUHDVHRIWKHPRPHQWXP RI WKH ÀXLG PHDQV WKDW WKH ÀXLG LV WDNLQJ WKH HQHUJ\ IURP WKH VXUIDFH DV LQ SXPSV 7KH PRPHQWXPHTXDWLRQLVXVHGIRUWKHÀRZDQDO\VLVRI SLSHEHQGVDQGUHGXFHUV MHWSURSXOVLRQV ¿[HGDQGPRYLQJYDQHV SURSHOOHUVRIVKLSVDLUFUDIWDQGKHOLFRSWHUV KHDGORVVGXHWRVXGGHQHQODUJHPHQWRUFRQWUDFWLRQIRUDÀRZLQSLSHV\VWHP K\GUDXOLFMXPSGXULQJÀRZLQRSHQFKDQQHO
Fluid Dynamics-II
581
10.3 FORCE ON VANE :KDWLVDYDQH" $YDQHLVDÀDWRUFXUYHGSODWH$QXPEHURIYDQHVDUH¿[HGRQWKHULPRIDZKHHOWRIRUP DZDWHUZKHHORUWXUELQH Curved vanes Vane Guide vanes
Flow
Turbine
Water Wheel
'HULYHDQH[SUHVVLRQIRUWKHIRUFHH[HUWHGRQDVWDWLRQDU\YDQHE\DMHWRIZDWHUZKLFK LVVWULNLQJQRUPDOO\WRWKHYDQH
V Nozzel
Vane Water jet
Stationary Vane: Jet Normal
7KH¿JXUHDERYHVKRZVDMHWRIZDWHUVWULNLQJQRUPDOO\WRDÀDWVWDWLRQDU\YDQH$VSHUWKH PRPHQWXPHTXDWLRQWKHIRUFHH[HUWHGE\WKHMHWRIZDWHULVHTXDOWRWKHUDWHRIFKDQJHRI momentum of the water. Mass of water striking the vane = m = r ◊a◊v
ZKHUHr = density a = area of jet and v = velocity of jet The velocity of water is reduced to zero from velocity v after striking the vane. \
Force on the vane = rate of change of momentum of water on vane surface = m ¥ dv rAv v± F = rav
582
Fundamentals of Fluid Mechanics
'HULYH DQ H[SUHVVLRQ IRU IRUFH H[HUWHG E\ D MHW RI ZDWHU VWULNLQJ LQFOLQHG VWDWLRQDU\ YDQH Vane V Fx = F sin q
Nozzle q
F
Jet
Fy = F cos q
q
Jet Inclined to Vane
When a jet of water strikes inclined qWRWKHVWDWLRQDU\YDQHWKHQIRUFHH[HUWHGQRUPDOWR WKHYDQHLV F = m ¥ vsin q = mass ¥ normal velocity = ra v sin q ZKHUHa = area of jet and v = velocity of jet
7KH DERYH IRUFH FDQ EH UHVROYHG LQWR WZR FRPSRQHQWV YL] IRUFH Fx LQ GLUHFWLRQ RI ÀRZDQG IRUFHFy DFWLQJQRUPDOWRWKHGLUHFWLRQRIÀRZ+HQFHZHKDYH Fx = = Fy = =
and
F sin q rav sin q F cos q ravsin q cos q
$ MHW RI ZDWHU VWULNHV D SODWH KLQJHG DW WKH WRS HQG 7KH SODWH KDV ZHLJKW W DQG OHQJWK L)LQGD WKHDQJOHqWRZKLFKWKHSODWHZLOOVZLQJRQDFWLRQRIWKHMHWE IRUFHpWRH[HUWHGDWWKHERWWRPRIWKHSODWHWRVWRSWKHSODWHIURPVZLQJLQJZKHQD L MHWLVDFWLQJDW E MHWLVDFWLQJDW L 4 Hinged Jet
L 2
q F
W Swinging of Plate
3 L 4 L
F L 2
F P
Force P to Hold the Plate
P
Fluid Dynamics-II
583
'XULQJHTXLOLEULXPWKHSODWHKDVVZXQJE\DQDQJOHq from vertical due to force FH[HUWHG E\WKHMHWRIOLTXLG7DNLQJPRPHQWZLWKUHVSHFWWRKLQJHGSRLQWZHKDYH Â Mhinged ± F ¥
L L – W ¥ sin q = 0
ZKHUHF IRUFHH[HUWHGE\MHWDQG W = weight of the plate or
sin q =
F W
Now we apply force p to stop the plate from swinging. Taking moment with respect to KLQJHGSRLQWZHKDYH Â MELQJHG ± F ¥
L +P¥L=0
F
or
p=
In case the jet is acting at a point
LIURPWKHKLQJHGSRLQWWKHQRQWDNLQJPRPHQWZLWK
reVSHFWWRKLQJHGSRLQWZHKDYH Â MELQJHG =± F ¥
L+p¥L=0
F 'HULYHDQH[SUHVVLRQIRUIRUFHH[HUWHGE\DMHWRIZDWHUZKLOH VWULNLQJRQDPRYLQJ YHUWLFDOSODWH)LQGDOVR ZRUNGRQH H൶FLHQF\DQG FRQGLWLRQIRUPD[LPXP H൶FLHQF\ or
p=
Plate
V V1
Nozzle Jet of water Normal Jet on Moving Plate
Consider a jet of water striking a plate with a velocity of V. The plate is moving with a velocity of VLQWKHVDPHGLUHFWLRQRIWKHMHW+HQFHUHODWLYHYHORFLW\RIWKHMHWZLWKUHVSHFW to the moving plate is V – V. The velocity of the water of the jet is zero after it strikes.
584
Fundamentals of Fluid Mechanics
or
)RUFHH[HUWHGE\WKHMHW UDWHRIFKDQJHRIPRPHQWXPRIWKHZDWHU F = mass ¥ change of velocity = r ¥ a ¥V – V ◊V – V ZKHUHr = density & a = area of jet or F = r ◊ a ◊ V – V
1RZWKHIRUFHDFWLQJRQWKHSODWHLVJLYHQE\WKHDERYHHTXDWLRQ7KHZRUNGRQHE\WKH IRUFHLVHTXDOWRWKHIRUFHPXOWLSOLHGE\GLVWDQFH
:RUNGRQH W = force ¥ distance = r ◊a◊ V – V ¥ V
7KHMHWKDVEHHQVXSSOLHGNLQHWLFHQHrJ\E\WKHQR]]OH KE =
=
◊ r ◊ a ◊ V◊V
=
r aV
(൶FLHQFy =
=
or
mV
h=
:RUNGRQHE\MHW Energy supplied to jet r ◊ a ◊ V - V ◊ V ◊ r ◊ a ◊ V V - V ◊ V V
,QRUGHUWR¿QGPD[LPXPH൶FLHQF\ ∂h KDVWREHHTXDWHGWR]HUR ∂V ∂h V ◊ V - V V 3 - V ◊ V - V = =0 ∂V V RU or
V± ◊V – V V ◊V
Fluid Dynamics-II
585
7KHDERYHLVWKHFRQGLWLRQIRUPD[LPXPH൶FLHQF\7KHPD[LPXPH൶FLHQF\ V - V ◊ V
h ma[ =
V
=
=
◊ ◊ V ◊ V ◊ V 8
'HULYH DQ H[SUHVVLRQ IRU ZRUN GRQH E\ WKH MHW RI ZDWHU RQ PRYLQJ LQFOLQHG SODWH RU IODWYDQH Nozzle
V
F
Fy = F cos q
y x q
Fx = F sin q
Jet on Moving Inclined Plate
7KH MHW LV VWULNLQJ LQFOLQHG WR WKH SODWH DV VKRZQ LQ WKH ¿JXUH 7KH UHODWLYH YHORFLW\ LV V – V Force = F = m V – V VLQq = r ◊a◊V – V sin q Force along xGLUHFWLRQFx = Fsin q \
Fx = r ◊ a ◊ V – V sin q
6LPLODUO\ZHKDYH Fy = r ◊a◊ V – V sin q cos q :RUNGRQHE\WKHMHW W = Fx◊ displacement = r ◊ a◊ V – V sin q ◊ V = r ◊a ◊V V – V sin q $PPGLDPHWHUZDWHUMHWVWULNHVDKLQJHGYHUWLFDOSODWHRI1ZHLJKWQRUPDOO\ DWWKHFHQWUHZLWKPVYHORFLW\'HWHUPLQHWKHDQJOHRIGHIOHFWLRQqRIWKHKLQJHG SODWHIURPYHUWLFDO$OVRGHWHUPLQHWKHPDJQLWXGHRIIRUFHFWKDWPXVWEHDSSOLHGDW LWVORZHUHGJHWRNHHSWKHSODWHYHUWLFDO 8378
586
Fundamentals of Fluid Mechanics
Jet with dia = 40 cm q Nozzle
F V = 1.5 m/s P 800 N
Area of jet
p ¥ pd =
¥ ± m )RUFHH[HUWHGE\MHWF = raV ¥ ¥¥± ¥ 1
Force PWRKROGWKHSODWHLQYHUWLFDO F =
P=
1
1RZ
sin q =
or
F = W 800
q
$MHWRIZDWHUKDYLQJGLDPHWHURIPPLVGLVFKDUJLQJXQGHUDFRQVWDQWKHDGRI P)LQGWKHIRUFHEHLQJH[HUWHGE\WKHMHWRQWKHYHUWLFDOSODWH7DNHcv Jet, dia = 50 mm 60
or
$UHDRIWKHMHW a =
p ¥ pd = ¥ ± m
9HORFLW\RIMHW v = cv g h ¥ ¥ ¥ v PV
Fluid Dynamics-II
587
)RUFHH[HUWHGE\WKHMHWLV F = r ◊a◊v ¥ ¥¥± ¥ N1 $MHWRIZDWHULVHPHUJLQJIURPDQR]]OHXQGHUDFRQVWDQWKHDGRIP&DOFXODWHWKH GLDPHWHURIWKHMHWLIWKHIRUFHH[HUWHGE\WKHMHWVWULNLQJDSODWHQRUPDOO\LVN1 $VVXPHcv
9HORFLW\RIWKHMHW cv =
g h
v =¥ )RUFHH[HUWHGE\WKHMHWLV
¥ ¥
PV F = r ◊a ◊ v
or
a=
=
¥ ¥ ¥ ◊
¥± m
or
F r ◊ v
pd ¥ ±
or
d=
¥ ¥ - p
= 8 ¥± m = .08 m = 80 mm $MHWRIZDWHURIPPGLDPHWHUHPHUJHVZLWKDYHORFLW\RIPVDQGVWULNHVDSODWH )LQGWKHIRUFHH[HUWHGRQWKHSODWHLI WKHMHWVWULNHVQRUPDOO\WRWKHSODWHDQG WKHMHWLVLQFOLQHGDWWRWKHSODWH Area of jeWa =
p ¥ pd = ¥ ± m
588
Fundamentals of Fluid Mechanics
&DVH,:KHQWKHMHWLVVWULNLQJQRUPDOO\WRWKHSODWHWKHIRUFH F = r ◊ a ◊v ¥ ¥¥ ± ¥ N1
&DVH,,7KHMHWLVLQFOLQHGWRWKHSODWHWKHIRUFHH[HUWHG F = r ◊a◊vsin =¥
N1
$MHWRIZDWHUZLWKPPGLDPHWHUH[HUWVDIRUFHRIN1LQWKHGLUHFWLRQRIWKHIORZ RQDIODWSODWH7KHMHWLVLQFOLQHGDWWRWKHSODWH)LQGWKHUDWHRIGLVFKDUJH The area ofMHWa =
p ¥ ¥ ± m
7KHIRUFHH[HUWHGRQWKHSODWH F = r ◊a◊vsin
¥ ¥ ¥¥– ¥ v ¥ v =
or
¥ ¥ ¥
v PV 1RZ 'LVFKDUJHQ = a ◊v ¥ ± ¥ PV $MHWRIZDWHUZLWKGLDPHWHURIPPVWULNHVQRUPDOO\DSODWHZLWKYHORFLW\RIPV 7KHSODWHKDVOHQJWKRIPDQGWKHMHWVWULNHVDWWKHFHQWUHRIWKHSODWH:KDWIRUFH LVWREHH[HUWHGDWPPEHORZWKHKLQJHGWRSWRVWRSSODWHWRPRYH"
200 V Nozzle 100 P
Fluid Dynamics-II
Area of the jet =
589
pd p ¥ = ¥ ± ¥ m
F = r ◊a◊v ¥ ¥¥± ¥ 1 7DNLQJPRPHQWIURPKLQJHGSRLQW Â m hinged ± F ¥P ¥ or
P= =
F ¥ ¥
1
$MHWRIZDWHUKDYLQJPPGLDPHWHULVPRYLQJZLWKYHORFLW\RIPVDQGLPSLQJHV QRUPDOO\RQDSODWH)LQGWKHIRUFHRQWKHSODWHZKHQ SODWHLV¿[HGDQG SODWH LVPRYLQJZLWKYHORFLW\RIPV The area of the jeta =
p ¥ ¥ ± m
Case3ODWHLV¿[HG Force = F = r◊ a◊v or
F ¥ ◊ ¥ ± ¥ 1
Case 3ODWHLVPRYLQJZLWKPV F = r ◊a ◊ V – V ¥ ¥¥ ± ¥ 1
10.4 MOMENT OF MOMENTUM 'HVFULEHGL൵HUHQFHVEHWZHHQOLQHDUPRPHQWXPDQGPRPHQWRIPRPHQWXP :KHQDÀXLGSDUWLFOHLVPRYLQJLQDVWUDLJKWGLUHFWLRQLWKDVOLQHDUPRPHQWXP+RZHYHU ZKHQ D ÀXLG SDUWLFOH PRYHV DORQJ D FXUYHG SDWK VXFK WKDW LWV GLVWDQFH IURP WKH D[LV RI URWDWLRQFKDQJHVZLWKWLPHVWKHQWKHGLVWDQFHIURPWKHD[LVRIURWDWLRQRIWKHSDUWLFOHZLOO EHGL൵HUHQWDWGL൵HUHQWSRVLWLRQVRIWKHSDUWLFOH+HQFHWKHPRPHQWRIPRPHQWXPRIWKH SDUWLFOHZLOOFKDQJHIURPWKHD[LVRIURWDWLRQ7KHPRPHQWRIPRPHQWXPLVDOVRNQRZQDV DQJXODUPRPHQWXP$VSHUWKHHTXDWLRQRIPRPHQWRIPRPHQWXPRUDQJXODUPRPHQWXP
590
Fundamentals of Fluid Mechanics
ZKHQDÀXLGPRYHVLQFXUYHGSDWKLWH[HUWVDWRUTXHRQWKHFXUYHGVXUIDFHZKLFKLVHTXDO WRWKHUDWHRIFKDQJHRIDQJXODUPRPHQWXPRIWKHÀXLG 'HULYHDQH[SUHVVLRQIRUWKHPRPHQWRIPRPHQWXPRUDQJXODUPRPHQWXP Axis of rotation O
V2 r2
Vr
r Vr
r1 Vr
1
V1
2
2
2
V
A Vq
Vq
Vq
1
1
Consider a particle ALVPRYLQJRQDFXUYHGSDWKZLWKUHVSHFWWRWKHD[LVRIURWDWLRQSDVVLQJ through point ODVVKRZQLQWKH¿JXUH7KHYHORFLW\VRIWKHSDUWLFOHFDQEHUHVROYHGLQWR WZR FRPSRQHQWV YL] Vr is normal velocity acting along the radius r and towards the centre of rotation O DQG Vq is tangential velocity acting normal to the radius r. The DQJXODUPRPHQWXPVRIWKHSDUWLFOHDWSRLQWDQGDUH $QJXODUPRPHQWXPDWSRLQW PRPHQWRIWKHPRPHQWXP = r mVq1 $QJXODUPRPHQWXPDWSRLQW r m◊ Vq Change of angular momentum = m rVq – r Vq If the change of angular momentum takes place in time t Rate of change of angular momentum =
m r Vq – rVq t
1RZWKHUDWHRIFKDQJHPRPHQWXPLVHTXDOWRWRUTXHT T= %XW \
m r Vq – rVq t
m = rgQ PDVVRIÀXLGÀRZLQJSHUXQLWWLPH t T = rgQr Vq – r Vq
The toque T LV WKH WRTXH H[HUWHG E\ VRPH H[WHUQDO DJHQF\ RQ WKH ÀXLG DV WKH DQJXODU PRPHQWXP LV LQFUHDVLQJ ,Q FHQWULIXJDO SXPS WKH WRUTXH LV H[HUWHG RQ WKH ÀXLG E\ WKH FHQWULIXJDO SXPS ZKHQ LW PDNHV WKH ZDWHU WR PRYH RQ WKH FXUYHG SDWK 6LPLODUO\ D FRPSUHVVRUH[HUWVWRUTXHRQWKHDLUDQGDSURSHOOHUH[HUWVWRUTXHRQWKHDLU,QFDVHWKHÀXLG LVPDGHWRPRYHRQDFLUFXODUSDWKWKHQr = r = rDQGWRUTXH
Fluid Dynamics-II
591
T = rgQ r Vq – Vq
,QFDVHWKHDQJXODUPRPHQWXPRIWKHÀXLGGHFUHDVHVWKHWRUTXHLVH[HUWHGE\WKHÀXLGRQ WKHFXUYHGVXUIDFH)RUH[DPSOHDWXUELQHLQZKLFKWRUTXHLVH[WUDFWHGIURPWKHÀXLGKDYLQJ higher inlet angular momentum.
7KHHTXDWLRQ T = rg ◊Q ◊r Vq – Vq is called the equation of moment of momentum or angular momentum.
10.5 VORTEX MOTION 'L൵HUHQWLDWH UHFWLOLQHDUIORZ UDGLDOIORZDQG URWDU\RUYRUWH[PRWLRQ 5HFWLOLQHDUÀRZ 5HFWLOLQHDUÀRZLVRQHGLPHQVLRQDOÀRZLQZKLFKVWUHDPOLQHVDUHSDUDOOHO 5DGLDOÀRZ 5DGLDOÀRZLVWKHÀRZLQZKLFKWKHÀXLGÀRZLVLQUDGLDOGLUHFWLRQLQVXFK a way that pressure and velocity at any point change with respect to distance of that point IURP WKH FHQWUDO D[LV RQO\ ,Q WKLV FDVH WKH YHORFLW\ RI ÀRZ LV LQ UDGLDO GLUHFWLRQ DQG WKH ÀRZPD\WDNHSODFHUDGLDOO\LQZDUGRUUDGLDOO\RXWZDUGIURPWKHFHQWUH7KHÀRZLVWZR dimensional and streamlines are not parallel. Flow Flow
Flow Inwardly (as in Pump)
Flow Outwardly (as in Turbine)
5RWDU\RUYRUWH[PRWLRQ$PDVVRIÀXLGLQURWDWLRQDERXWD¿[HGD[LVLVFDOOHGYRUWH[,QWKLV ÀRZWKHYHORFLW\RIURWDWLQJSDUWLFOHVLVDFWLQJLQWDQJHQWLDOGLUHFWLRQ$OVRWKHZKROHÀXLG PDVVURWDWHVDERXWDQD[LV7KHURWDWLQJÀRZFDQEH IUHHYRUWH[DQG IRUFHGYRUWH[ ,QIUHHYRUWH[WKHÀXLGPDVVURWDWHVZLWKRXWH[HUWLQJDQ\H[WHUQDOWRUTXHZU FRQVWDQW
z
Original level
Forced Vortex
592
Fundamentals of Fluid Mechanics
7KHURWDWLRQLVWDNLQJGXHWRÀXLGSUHVVXUHRUJUDYLW\RUURWDWLRQDOUHDG\SRVVHVVHGE\WKH ÀXLGPDVV7KHFRPPRQH[DPSOHRIIUHHYRUWH[DUH ZKLUOSRRO ÀRZLQFHQWULIXJDO FDVLQJ DIWHU HPHUJLQJ IURP SURSHOOHU DQG ÀRZ LQ WXUELQH FDVLQJ EHIRUH HQWHULQJ WKH JXLGHYDQHV,QIRUFHGYRUWH[WKHÀXLGPDVVLVPDGHWRURWDWHE\PHDQVRIVRPHH[WHUQDO DJHQF\)RUH[DPSOHVSLQQLQJWKHYHVVHOFRQWDLQLQJOLTXLGDERXWDYHUWLFDOD[LV The centrifugalKHDG z =
Z U ◊ zLVDOVRFDOOHGGHSWKRISDUDEROD g
([SODLQIUHHYRUWH[IORZ ,QIUHHYHUWH[ÀRZZHKDYH D )ORZSDUWLFOHVPRYLQJLQFLUFOHVDERXWDSRLQW E 7DQJHQWLDOYHORFLW\FRPSRQHQWVq H[LVWVZKLOHUDGLDOYHORFLW\FRPSRQHQWLV]HURLH Vr = 0 and VqH[LVWV F 7DQJHQWLDOYHORFLW\YDULHVUDGLXVr so that same circulation is maintained. G $OO VWUHDPOLQHV DUH FRQFHQWULF FLUFOHV DERXW D JLYHQ SRLQW ZKHUH WKH YHORFLW\ DORQJ HDFK VWUHDPOLQH LV LQYHUVHO\ SURSRUWLRQDO WR WKH GLVWDQFH IURP WKH FHQWUH7KH ÀRZ LV QHFHVVDULO\LUURWDWLRQDO9HORFLW\FRPSRQHQWVDUH y3
C r1 C y2 = r2 C y3 = r3
y1 =
y2 y1
r1 r2
r3
D 7DQJHQWLDOYHOocity Vq = = =
Circulation constant r G 2p ZKHUHG = circulation r c r
Fluid Dynamics-II
593
E 5DGLDOYHORFLW\Vr = 0 F 6WUHDP funFWLRQY = -
G log e r + c1 p
([SODLQIRUFHGYRUWH[IORZ Flows where streamlines are concentric circles and tangential velocity is directly proportional WR WKH UDGLXV RI FXUYDWXUH DUH FDOOHG SODQH FLUFXODU IRUFHG YRUWH[ ÀRZV7KH ÀRZ ¿HOG LV GHVFULEHGLQDSRODUFRRUGLQDWHV\VWHPDV Vq = ω ◊ r and
Vr = 0
$OOÀXLGSDUWLFOHVURWDWHZLWKWKHVDPHDQJXODUYHORFLW\wOLNHDVROLGERG\7KLVLVWKHUHDVRQ ZK\DIRUFHGYRUWH[ÀRZLVDOVRFDOOHGDVROLGERG\URWDWLRQ7KHYRUWLFLW\WIRUWKHÀRZ W =
∂Vq 1 ∂Vr Vq + r ∂q r ∂r
= w – 0 + w w
7KHUHIRUHDIRUFHGYRUWH[PRWLRQLVQRWLUURWDWLRQDOEXWDURWDWLRQDOÀRZZLWKDFRQVWDQW YRUWLFLW\w.
7KHGL൵HUHQFHRIWRWDOKHDGEHWZHHQSRLQWµ¶DQGµ¶RQVDPHSODQHLV È P2 P ˘ w2 2 r2 - r12 - 1˙+ H – H = Í 2 g g g r r Î ˚ But H – H =
w2 2 r2 - r12 DQGZHFDQZULWHSUHVVXUHGL൵HUHQFHDV g P2 - P1 w2 2 r2 - r12 = r
$ RSHQ FLUFXODU WDQN RI GLDPHWHU FP DQG FP ORQJ FRQWDLQV ZDWHU XS WR D KHLJKWRIFP7KHWDQNLVURWDWHGDERXWLWVYHUWLFDOD[LVDWUSP)LQGWKHGHSWK RISDUDERODIRUPHGDWWKHIUHHVXUIDFHRIZDWHU
z 60 cm
594
Fundamentals of Fluid Mechanics
1RZ
Z=
p N ¥ p ¥ =
z=
Z U g
=
UDGV
¥ ¥
P
10.6 FORCE EXERTED ON A BEND 'HULYHDQH[SUHVVLRQIRUIRUFHH[HUWHGE\IOXLGIORZRQDEHQGZKHQWKH EHQGLVLQ KRUL]RQWDOSODQHDQG EHQGLVLQYHUWLFDOSODQH 2U 6WDWHWKHPRPHQWXPHTXDWLRQ+RZLVLWXVHGLQGHWHUPLQLQJWKHIRUFHH[HUWHGE\WKH IORZLQJOLTXLGRQDSLSHEHQG 8378 P2A2 sin q 2
V2 cos q
1
P1 A 1
P2A2 cos q
V2
Fy
2
V2 sin q
q
V1
P2 A 2
Fx
1
Forces on Bend (In Horizontal Plane)
Case&RQVLGHUDÀRZLQDEHQGZKLFKLVLQKRUL]RQWDOSODQH6HOHFWVHFWLRQDQG DWWKHLQOHWDQGRXWOHWRIWKHEHQGVLQFHÀRZLVWDNLQJSODFHLQx-ySODQHQHWIRUFH acting in each x and yGLUHFWLRQLVWKHUDWHRIFKDQJHRIPRPHQWXPRIWKHÀXLGLQx and y GLUHFWLRQUHVSHFWLYHO\E\WKHIRUFHVDFWLQJRQWKHEHQGZLOOEHLQRSSRVLWHGLUHFWLRQWRIRUFHV H[HUWHGE\WKHÀXLG7KHIRUFHVH[HUWHGE\WKHÀXLGDUH
3UHVVXUHIRUFH P◊A
)RUFHRIÀXLGRQWKHEHQG F
:HLJKWRIÀXLGÀRZLQJ WWREHFRQVLGHUHGLQEHQGLQYHUWLFDOSODQH
Fluid Dynamics-II
595
Applying momentum equation in xGLUHFWLRQZHJHW P A – PA cos q + Fx = rQ v cos q – v Fx = rQ vcos q – v P Acos q – PA
or
6LPLODUO\HTXDWLQJIRUFHVLQyGLUHFWLRQZHJHW Fy = rQ v sin q PAsin q Resultant forFHF =
\
Fx + F y
7KHDQJOHRIUHVXOWDQWZLWKKRUL]RQWDO q = tan±
Fy Fx
Case)RUFHVRQEHQGZKLFKKDVLQOHWLQKRUL]RQWDOSODQHDQGRXWOHWLQYHUWLFDOSODQH1HW force in xGLUHFWLRQ ZLOO UHPDLQ VDPH EXW WKH QHW IRUFH LQ y-direction will change as the ZHLJKWRIÀXLGSDUWLFOHLQyGLUHFWLRQKDVWREHFRQVLGHUHG 2 P2A2 Fy 1 V2 P1A1
V1
2
q Fx W
1
Fx = rQvcos q – v P A cos q – P A Fy = rQvsin q P A sin q + W $EHQGLQSLSHOLQHFRQYH\LQJZDWHUJUDGXDOO\UHGXFHVIURPFPWRFPLQGLDPHWHU DQGWKHEHQGGHIOHFWVWKHIORZWKURXJK7KHJDXJHSUHVVXUHDWLQOHWLVN3D )LQGWKHPDJQLWXGHDQGGLUHFWLRQRIWKHIRUFHRQWKHEHQGZKHQ WKHUHLVQRIORZ DQG IORZLVPV A = area at inlet = A = area at outlet =
p ¥ p d = P p d p ¥ = P
596
Fundamentals of Fluid Mechanics
Case :KHQ QR ÀRZ LV WDNLQJ SODFH WKHQ WKH QHW IRUFH LQ x-direction is the change of momentum in x-direction. P A – PAcos q + Fx = rQv cos q – v +HUH
q = 0 and P = P = P
\
Fx = P A cos q – P A = P A cos q – A
¥ FRV±
¥±
±¥ ¥
± N1
6LPLODUO\ZH¿QGRXWFy. Fy = P A sin q + rq vcos q %XW \
q=0 Fy ¥ ¥ 0.¥ N1 Fx + F y =
R= =
- +
+ + N1
q = tan± Case:KHQÀRZRI
or q
m LVWDNLQJSODFHZHFDQDSSO\WKHFRQWLQXLW\HTXDWLRQ s q = a v = a v
\
v =
0.8
and
v =
0.8 PV
PV
Fluid Dynamics-II
Apply Bernoulli’VHTXDWLRQDWVHFWLRQDQG 2 P2 A2
1
V1
P1
60°
2
A1 V1 1
p p v v + = + rg rg g g p ¥ + = + ¥ ¥ ¥ ¥ ¥ ¥
p ¥
p ¥¥
or Now net force in xGLUHFWLRQLV
N1P
P A – PA + Fx = rq v cos q – v Fx ±¥ ¥¥ ¥¥
or
¥¥FRV±
±¥¥ Fx ± N1
Now net force in yGLUHFWLRQLV Fy – P Asin q = rQv sin q Fy ¥ ¥ VLQ¥ ¥ 0.8 ¥VLQ
¥¥
N1 R=
Fx + F y
=
- +
=
+
597
598
Fundamentals of Fluid Mechanics
q = tan±
= tan–
Fy Fx
$ PP GLDPHWHU SLSH FDUULHV ZDWHU XQGHU D KHDG RI P ZLWK D YHORFLW\ RI PV,IWKHD[LVRIWKHSLSHWXUQVWKURXJK¿QGWKHPDJQLWXGHDQGGLUHFWLRQRIWKH UHVXOWDQWIRUFHDWWKHEHQG 8378 2
V2
1 2 H1
45°
V1 1
A = A = 1RZ 6LQFH
p ¥ P
A V = AV A = AKHQFHV = V PV
$SSO\LQJ%HUQRXOOL¶VHTXDWLRQEHWZHHQDQG p p v v + + z = + + z rg rg g g 1RZ +HQFH
z = z
p p = H = Hv = v r g rg
H = H p = p ¥ rg ¥¥ ¥
N1P
1RZ P A = PA cos q + Fx = rQvcos q – v
Fluid Dynamics-II
599
¥±¥¥FRVFx ¥¥ ¥ FRV± ¥ ±FRV Fx ¥ FRV±
\
Fx ± ± Fx ± N1
6LPLODUO\ \ or
Fy – P A sin q = r◊Qvsin q Fy ¥¥VLQ¥ VLQ¥
\
R=
Fx + F y
=
+
=
+
N1 q = tan±
$SLSHKDVGLDPHWHURIPPDQGULJKWDQJOHEHQGLQDKRUL]RQWDOSODQH,IPV ZDWHULVIORZLQJ¿QGIRUFHVDFWLQJRQWKHEHQG7KHSUHVVXUHDWWKHLQOHWDQGRXWOHW DUHDQGN1PUHVSHFWLYHO\ P2, A2, V2 2
1 P1 A1 V1 1 Right Hand Bend (in Horizontal Plane)
2
600
Fundamentals of Fluid Mechanics
Area A = A = A =
p ¥ P
A V = A V = Q
&RQWLQXLW\HTXDWLRQ or
V =
Q Q = PV A
V = V PV Applying momentum equation in x-direction P A + Fx = rQv or Fx ¥ ¥¥±¥¥ ± N1 Applying momentum equation in y-direction Fy – P A = rQv or Fy ¥ ¥¥q ¥ ¥ Fy N1 R= =
f x + f y + ◊
N1 Angle of resultant from horizontal q = tan±
fy = tan± fx
q ∞ $ SLSH KDV GLDPHWHU RI PP DQG EHQG RI LQ KRUL]RQWDO SODQH ,I WKH IORZ LV PV)LQGWKHPDJQLWXGHDQGGLUHFWLRQRIWKHUHVXOWDQWRIIRUFHV7KHSUHVVXUHLQ SLSHLVN1P 2 P2, A2, V2 2
Fy
1 135° P1 A1
Fx
V1 1 A Bend in Horizontal Plane
Fluid Dynamics-II
A = A = A = &RQWLQXLW\HTXDWLRQ
1RZ
A V = AV = Q V = V =
or
p ¥ P
PV
P = P N1P
Applying momentum equation in x-direction P A + Fx + P Acos q = rQ± vcos q – v or
Fx ¥ ¥± FRV ± ¥ ¥±¥ ¥FRV
or
Fx ± ± ± N1
Applying momentum equation in y-direction – P A sin q + Fy = rQ –v sin q or
Fy = r ◊Q◊v VLQP AVLQ
¥ ¥¥VLQ¥¥VLQ
N1 R=
Fx + F y
=
+
=
+
N1 q = tan±
601
602
Fundamentals of Fluid Mechanics
:DWHULVIORZLQJWKURXJKPGLDPHWHUSLSHDQGUHGXFHULV¿WWHGWRWKHSLSHZKLFK KDVGLDPHWHURIPDWWKHRXWOHW,ILQOHWYHORFLW\DQGJDXJHSUHVVXUHDWLQOHWRIWKH UHGXFHULVPVDQGN1P¿QGWKHUHVXOWDQWWKUXVWLQWKHUHGXFHU7DNHIULFWLRQV ORVVLQUHGXFHUDWPRIZDWHU 1 2 P1
P2, A2, V2
A1 V1 2 1
Reducer
A =
p d p ¥ 0.8 = P
A =
p d p ¥ = P
Continuity equation = A V = A V RU or
¥ ¥ v V =
¥
PV Q = A V ¥ PV
$SSO\LQJ%HUQRXOOL¶VHTXDWLRQEHWZHHQVHFWLRQ p p v v + + z = + + z + hloss rg rg g g z = z p ¥ + = + ¥ ¥ ¥ ¥ ¥ ¥ or
p
¥ ¥
±±
Fluid Dynamics-II
or
603
p N1
Applying momentum equation in x direction P A – P A + Fx = rQv – v Fx = rQ v – v P A – PA Fx ¥ ¥¥± ¥ ¥±¥ ¥ ¥¥±¥ ± N1
or
10.7 TORQUE ACTING ON A SPRINKLER 'HULYH DQ H[SUHVVLRQ IRU WRUTXH DFWLQJ RQ D VSULQNOHU XVLQJ PRPHQW RI PRPHQWXP HTXDWLRQ r1
r2
1
2
A V1
V2
Sprinkler
&RQVLGHUDVSULQNOHUZLWKQR]]OHDWDQGDQGKLQJHGDWSRLQWA. 0RPHQWXPDWSRLQW PDVV¥ velocity = rQ ¥ v
0RPHQWRIPRPHQWXPDWSRLQW r ◊Q◊v ¥ r
0RPHQWXPRISRLQW r ¥ Q ¥ v
0RPHQWRIPRPHQWXPDWSRLQW r ◊ Q◊v ¥ r Rate of change of moment of momentum = rQ vr – v r $FFRUGLQJWRWKHPRPHQWRIPRPHQWXPHTXDWLRQWKHUDWHRIFKDQJHRIPRPHQWRIPRPHQWXP LVHTXDOWRWKHWRUTXHT
T = rQ v r – vr $VSULQNOHUKDVWZRQR]]OHVHDFKORFDWHGDWPIURPWKHFHQWUHZKLFKLVKLQJHG7KH GLDPHWHURIQR]]OHVLVPDQGGLVFKDUJHLV¥ ±PV)LQGWKHVSHHGRIURWDWLRQ LIWKHUHLVQRIULFWLRQORVV$OVR¿QGWRUTXHWRKROGWKHVSULQNOHUVWDWLRQDU\
d2 = 0.01 m
d1 = 0.01 m V1
0.3 m
0.3 m Sprinkler
V2
604
Fundamentals of Fluid Mechanics
A = A = A =
¥ - Q = ¥ ¥ - A
v = v =
pd p ¥ = ¥± m
PV v = v = ZU
or
or
Z=
UDGV
Z=
p N
N=
¥ USP p
7RUTXH T = rQvr – vr %XW v = – v \ T ¥ ¥¥± ¥¥ 1P $Q XQV\PPHWULFDO VSULQNOHU KDV HTXDO IORZ WKURXJK HDFK QR]]OH ZLWK YHORFLW\ RI PV)LQGWKHVSHHGRIURWDWLRQLQUSP 0.5 1
1m w
8 m/s
2 8 m/s
Since r > r +HQFHZU > ZU. Sprinkler will rotate anticlockwise. v = 8 + ZU Z v = 8 – ZU = 8 – Z As per moment of momentum equation T = rQ v r – vr $VQRH[WHUQDOWRUTXHLVDSSOLHGT = 0 \ v r = v r ±Z ¥ Z ¥ or 8 – Z Z RU Z
Fluid Dynamics-II
1RZ
or
Z=
UDGV
Z=
p N
N=
¥ USP p
605
$ODZQVSULQNOHUKDVFPGLDPHWHUQR]]OHDWWKHHQGRIDURWDWLQJDUPDQGGLVFKDUJHV ZDWHUDWWKHUDWHRIPVYHORFLW\'HWHUPLQHWKHWRUTXHUHTXLUHGWRKROGWKHURWDWLQJ DUPVWDWLRQDU\$OVRGHWHUPLQHWKHFRQVWDQWVSHHGRIURWDWLRQRIWKHDUPLILWLVIUHHWR URWDWH 10 m/s w wr2 20 cm
wr1
25 cm
10 m/s
A=
p ¥ ¥ - pd = ¥± m
Q = AV ¥± ¥ ¥ ± mV T = rQvr – vr
¥ ¥¥± ¥¥
¥±
¥¥± 1P If Zis the angular velocity of the sprinkler. Since r > rWKHVSULQNOHUZLOOURWDWHFORFNZLVHDVPRPHQWRIPRPHQWXPRIVHFWLRQLV more v DEVROXWH Z v DEVROXWH Z 1RZT DVQRH[WHUQDOWRUTXHLVDSSOLHG T = rQ rv DEVROXWH – rv DEVROXWH \
r v DEsolute = rv DEVROXWH Z Z
606
Fundamentals of Fluid Mechanics
Z Z Z Z=
UDGV
Z=
p N
N=
¥ USP p
$VSULQNOHUZLWKHTXDODUPVRIPEXWQR]]OHVLQFOLQHGWRVSULQNOHUD[LVDVVKRZQ LQWKH¿JXUH7KHQR]]OHVKDYHGLDPHWHURIFPDQGVSHHGRIURWDWLRQLVUSP)LQG WKHIORZRXWRIWKHVSULQNOHULIWKHUHLVQRIULFWLRQORVV V2 60 60
1m
1m
V1
Area of nozzle =
p ¥
¥± m
Now velocity component v VLQDQGv VLQKDYHPRPHQWRIPRPHQWXPZUWKLQJHG point of sprinkler v VLQ¥ r = vVLQ¥ r = ZU %XW r = r = r P Z= = \
p N ¥ p ¥
UDGs v = v =
¥ VLQ
PV
Fluid Dynamics-II
607
Q for each nozzle = A ¥ V = A V
¥¥±
¥± mV QIRUERWKQR]]OHV ¥± mV
$YHUWLFDOO\XSZDUGMHWRIZDWHUFPLQGLDPHWHULVVXLQJIURPDQR]]OHDWYHORFLW\RI PVVWULNHVQRUPDOWRDIODWFLUFXODUSODWHRIPDVVNJDQGGLDPHWHUFPDQGVXSSRUWV LW)LQGWKHYHUWLFDOGLVWDQFHDERYHWKHQR]]OHZKHUHWKHSODWHLVKHOGLQHTXLOLEULXP Plate
Jet
Nozzle
)RUFHH[HUWHGE\WKHMHW rAV A=
pd p ¥ = ¥± m
1RZSODWHLVLQHTXLOLEULXP or
F = mg ra v = mg
or
v =
¥ ¥ ¥ ¥ -
or v PV Initial velocity of jet u PV v = u ±gh ±¥¥ h or
h=
- ¥
P
7ZRWDQNVADQGBRQIULFWLRQOHVVZKHHOVDUHSODFHGDVVKRZQAMHWHPHUJLQJIURP WDQN A VWULNHV WKH EODGH RQ WDQN B )LQG WKH IRUFHV UHTXLUHG WR KROG WKH WDQNV VWDWLRQDU\:LOOWKHIRUFHVUHTXLUHGZLOOEHGL൵HUHQWLIHLWKHURQHRUERWKRIWKHPDUH DOORZHGWRUHFHGHDWPV"
608
Fundamentals of Fluid Mechanics
Consider control volume of tank A and jet is emerging from it with force FA. Then FA = rva ¥ ¥
(
gH
¥¥¥
1
)
¥
pd
p ¥
Jet diameter = 2 cm 2m
A
B
FA FB
Consider control volume of tank BWKHQIURFHDFWLQJRQLWGXHWRMHWLVMHWLVGHÀHFWHGEDFN FB = – rvB ¥ a – r vB ¥ a z ± rvB ¥ a
1RZ
vA = vB =
¥
± ¥ ¥¥¥
p ¥
TB ±1 The force FB is opposite to FA. If tank ALVPRYHGWROHIWRUULJKWWKHIRUFHFA remains the VDPHLHUHDFWLRQRIWKHMHW 1+RZHYHULIWDQNBLVPRYHGWRULJKWYHORFLW\vB LVUHGXFHGE\PVDQGFBEHFRPHV ¥ ¥ ¥ p ¥ 1,IWDQN
is moved WRWKHOHIWWKHYHORFLW\vBLVLQFUHDVHGE\PVDQGFBEHFRPHV
¥ ¥ ¥ p ¥ 1
Fluid Dynamics-II
609
$MHWHQJLQHZKHQWHVWHGWDNHVLQDLUDWPVDQGGLVFKDUJHVWKHH[KDXVWJDVHVDW PV7KH LQOHW DQG RXWOHW FURVV VHFWLRQV DUH P DQG IXHOWRDLU UDWLR LV )LQGWKHIRUFHH[SHFWHGWRDFWRQWKHHQJLQH7DNHGHQVLW\RIDLUDWHQWU\ NJP DQGp p . mf
V1 . ma
V2
Jet Engine
Applying momentum equation in x-direction P A – PA + Fx = m a + m f v – m a v m a = r ¥ A ¥ V ¥¥
NJV m f =
6LQFH
= NJV
P = P and A = A Fx m a + m f ± m a ¥ ±¥
± N1 N1 $ MHW HQJLQH IO\LQJ DW PV WDNHV LQ DLU WKURXJK P GLDPHWHU LQOHW LQ WKH IURQW DQGGLVFKDUJHVWKHH[KDXVWJDVHVWKURXJKPGLDPHWHUQR]]OHDWPVUHODWLYHWR HQJLQH¿QGD WKUXVWE SRZHUORVWDQGF SRZHURXWSXW7DNHra NJP v = intake air velocity
PV v RXWOHWH[KDXVWJDVYHORFLW\
PV air intake = m = rAV ¥
p ¥ ¥
NJV 6LQFHIXHOZHLJKWLVQHJOHFWHGWKHRXWOHWH[KDXVWJDVHV m NJV
610
Fundamentals of Fluid Mechanics
F = m v – v ±
¥ 1 Thrust = F 1
\
3RZHUORVV NLQHWLFHQHUJ\RIH[KDXVWJDVHV =
¥
N: Power output from engine = thrust ¥ velocity of jet
¥ N:
10.8 VENTURIMETER, FLOWMETER AND ORIFICE METER :KDWLVDYHQWXULPHWHU":KDWLVLWVSULQFLSOH" 9HQWXULPHWHULVDGHYLFHXVHGIRUPHDVXULQJWKHUDWHRIÀRZWKURXJKDSLSH ,W ZRUNV RQ WKH SULQFLSOH RI %HUQRXOOL¶V HTXDWLRQ 7KH YHORFLW\ RI ÀRZ LV LQFUHDVHG E\ UHGXFLQJWKHFURVVVHFWLRQRIWKHÀRZWKHUHE\UHGXFLQJWKHSUHVVXUHKHDGDWWKHQDUURZHG VHFWLRQ7KHSUHVVXUHGL൵HUHQFHDWQRUPDOVHFWLRQDQGQDUURZHGVHFWLRQRIWKHSLSHFDQEH PHDVXUHGZKLFKHQDEOHVWRGHWHUPLQHWKHÀRZWKURXJKWKHSLSH 'HVFULEHWKHFRQVWUXFWLRQRIDYHQWXULPHWHU Converging cone Throat Diverging cone
Flow
Main pipe
20°
h
6°
Main pipe
U-tube
Venturimeter
Venturimeter consists of a short length of gradual convergence and a longer length of gradual GLYHUJHQFH7KHDQJOHRIFRQYHUJHQFHLVWRDQGDQJOHRIGLYHUJHQFHLVWR$ short length connecting converging and diverging section is called the throat. A pressure WDSSLQJµ¶LVSURYLGHGDWDORFDWLRQEHIRUHWKHFRQYHUJHQFHFRPPHQFHVDQGDQRWKHUSUHVVXUH WDSSLQJ µ¶ LV SURYLGHG DW WKH WKURDW VHFWLRQ RI WKH YHQWXULPHWHU 7KH SUHVVXUH GL൵HUHQFH
Fluid Dynamics-II
611
p – p EHWZHHQ WKH WZR WDSSLQJV LV PHDVXUHG E\ PHDQV RI D uWXEH PDQRPHWHU 7KH PDQRPHWHUPD\FRQWDLQZDWHURUPHUFXU\DVWKHPDQRPHWULFÀXLGGHSHQGLQJRQWKHSUHVVXUH GL൵HUHQFHH[SHFWHG 'HVFULEHWKHFRQVWUXFWLRQRIDIORZQR]]OH Gauge
Flow
Gauge
d
D
Nozzle Pipe
Flow Nozzle
)ORZQR]]OHLVDOVRDGHYLFHXVHGIRUPHDVXULQJÀRZWKURXJKWKHSLSHV8QOLNHYHQWXULPHWHU WKHFRQWUDFWLRQRIDUHDLVEURXJKWDERXWE\DQR]]OH2QHRIWKHSUHVVXUHWDSSLQJVLVSURYLGHG at a distance of one diameter upstream the nozzle plate and the other is provided at the QR]]OHH[LW 'HVFULEHWKHFRQVWUXFWLRQRIDQRUL¿FHPHWHU Pipe
D Flow
h
2UL¿FH0HWHU
2UL¿FHPHWHULVDOVRDGHYLFHXVHGIRUPHDVXULQJÀRZLQWKHSLSHV$QRUL¿FHPHWHULVD FLUFXODU SODWH ZLWK DQ RUL¿FH DW LWV FHQWUH 7KH ÀRZ LQ RUL¿FH PHWHU DGMXVWV LWVHOI VXFK WKDWLWFRQWUDFWVXQWLODSRLQWDWGRZQVWUHDPRIWKHRUL¿FHSODWHDQGODWHUWKHÀRZH[SDQGV WR ¿OO WKH SLSH 2QH RI WKH SUHVVXUH WDSSLQJV LV SURYLGHG DW D GLVWDQFH RI RQH GLDPHWHU XSVWUHDPWKHRUL¿FHSODWHDQGWKHRWKHUDWDGLVWDQFHRIKDOIDGLDPHWHUGRZQVWUHDPWKH RUL¿FH SODWH7KH SUHVVXUH GL൵HUHQFH EHWZHHQ WKH SUHVVXUH WDSSLQJV LV PHDVXUHG E\ WKH uWXEHPDQRPHWHU
612
Fundamentals of Fluid Mechanics
'HULYHDQH[SUHVVLRQIRUWKHIORZIRUYHQWXULPHWHU 1
2
Flow
h
Venturimeter
$SSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQVHFWLRQDQGDVVKRZQLQWKH¿JXUH p p v v + + z = + + z rg rg g g %XW
z = z
\
p - p v - v = rg g
p - p = hWKHSUHVVXUHKHDGGL൵HUHQFHPHDVXUHGE\uWXEHPDQRPHWHU rg \
h=
v - v g
$VSHUFRQWLQXLW\HTXDWLRQ a v= av where a = pipe cross-sectional area and a = throat cross-sectional area or
v =
a v a
v \
h=
or
h=
or
v =
or
v =
Êa ˆ - Á ˜ v Ëa ¯
g v Ê a - a ˆ Á ˜ g Ë a ¯
a ¥ gh a - a a gh a - a
È Ê a ˆ˘ v Í - Á ˜ ˙ Í Ë a ¯ ˙ Î ˚ = g
Fluid Dynamics-II
Q = v a
)ORZWKURXJKSLSH or
613
Q=
a ◊ a gh a - a
7KHDERYHLVWKHRretical discharge. The actual discharge is less than the theoretical discharge ZKLFKLV Qactual = Cd
aa gh a - a
ZKHUHCd FRH൶FLHQWRIGLVFKDUJH 1RWH ,I GL൵HUHQWLDO PDQRPHWHU KDV KHDYLHU OLTXLG WKDQ WKH OLTXLG ÀRZLQJ WKURXJK SLSH Ê SG of manometer liquid ˆ then hLVWREHPXOWLSOLHGE\ Á - ˜ . SimilarO\LQFDVHGL൵HUHQWLDO Ë SG of flowing liquid ¯ maQRPHWHUKDVOLJKWHUOLTXLGWKDQOLTXLGÀRZLQJWKURXJKSLSHWKHQhLVWREHPXOWLSOLHGE\ Ê SG of manometer liquid ˆ ÁË - SG of flowing liquid ˜¯ 'HULYHDQH[SUHVVLRQIRUWKHIORZWKURXJKRUL¿FHPHWHU 1
0
h
2UL¿FH0HWHU
$SSO\LQJ%HUQRXOOL¶VHTXDWLRQEHWZHHQVHFWLRQDQGVHFWLRQ p v p v + + z = 0 + 0 + z0 rg g g rg 1RZ
z = z0
614
Fundamentals of Fluid Mechanics
p - p v - v = =h rg g Applying continuity equation Q = a v = a 0v0 or
v =
a0 v a 0
v0
h=
\
Êa ˆ - Á 0 ˜ v0 Ëa ¯ g
È a - a ˘ v0 Í ˙ gh ÎÍ a ˚˙ or
a gh
v0 =
a - a
'LVFKDUJHWKURXJKWKHRUL¿FHPHWHU Qth = v0 a0 =
a a gh a - a
$FWXDOGLVFKDUJHLVOHVVHUDQGJLYHQE\ Qactual = Cd
a a gh a - a
ZKHUHCd FRH൶FLHQWRIGLVFKDUJH 'LVFXVVWKHUHODWLYHPHULWVDQGGHPHULWVRIYHQWXULPHWHUZLWKUHVSHFWWRRUL¿FHPHWHU 8378 Venturimeter
2UL¿FHPHWHU
1.
In venturimeter the losses are less. Hence, FRHႈFLHQWRIGLVFKDUJHLVKLJK
1.
/RVVHVDUHPRUHDQGFRHႈFLHQWRI GLVFKDUJHLVOHVV
2.
,WUHTXLUHVPRUHVSDFHGXHWRFRQYHUJLQJ DQGGLYHUJLQJVHFWLRQVWREHSURYLGHG
2.
,WUHTXLUHVOHVVHUVSDFHWR¿WRQDSLSH
3.
,WLVQRWVLPSOHDQGFKHDSHUOLNHRUL¿FH meter
3.
6LPSOHDQGFKHDSHU
Fluid Dynamics-II
615
10.9 ROTOMETER :KDWLVDURWRPHWHU" $URWRPHWHULVDGHYLFHIRUPHDVXULQJÀRZLQDYHUWLFDOVHJPHQWRIDSLSHV\VWHP,IFRQVLVWV RIDQDFFXUDWHO\JURXQGJODVVWXEHGLYHUJLQJXSZDUGVLQWKHGLUHFWLRQRIÀRZ7KHWXEHKDVD ÀRDWDVVKRZQLQWKH¿JXUH)RUDSDUWLFXODUÀRZWKHSRVLWLRQRIWKHÀRDWGHSHQGVRQWKUHH IRUFHV GUDJIRUFHDFWLQJXSZDUGV EXR\DQFHIRUFHDFWLQJXSZDUGVDQG ZHLJKW IRUFHDFWLQJGRZQZDUGV+HQFHWKHSRVLWLRQRIWKHÀRDWLVUHODWHGWRWKHÀRZ6SLUDOVOLWV DUHFXWRQDSDUWRIWKHÀRDWWRPDNHLWURWDWHVRWKDWLWLVVWDEOHDJDLQVWWLOWLQJ Drag buoyancy
Diverging tube
Graduated scale
Float
Weight
Flow Rotometer
$YHQWXULPHWHUKDVDQDUHDUDWLRRIWKHODUJHGLDPHWHULVFP'XULQJIORZWKH SUHVVXUHKHDGVDUHPDQGPUHVSHFWLYHO\LQODUJHUDQGWKURDWVHFWLRQ,ICd ¿QGIORZWKURXJKWKHYHQWXULPHWHU a = = Rr a a a h ± P Q=
=
=
%XW
a =
Cd a ◊ a gh a - a ¥ ¥ a ¥ g ¥ a - a ¥ ¥ a ¥ ¥ a p ¥
616
Fundamentals of Fluid Mechanics
\
Q ¥ PV
$YHQWXULPHWHULVXVHGWRPHDVXUHWKHIORZRIRLOLQDSLSHLQFOLQHGDWWRKRUL]RQWDO 7KHDUHDRISLSHDQGWKURDWDUHDLVDQG6*RIRLOLV,IWKHGL൵HUHQFHRIPHUFXU\ OHYHOV LQ WKH PDQRPHWHU LV PP ¿QG WKH IORZ 3LSH GLDPHWHU LV PP DQG Cd
2
1 x = 50 mm
w Flo
Pressure head =
or
\
p - p Ês ˆ z – z = x Á m - ˜ rg Ë s ¯
Ê ˆ - Á Ë ˜¯ h PRIRLO a =
p ¥ pd =
a =
P
Q = Cd ◊
=
P
aa gh a - a
¥ ¥ ¥ ¥
Q =PV
-
Fluid Dynamics-II
617
2LORI6* IORZVXSZDUGVZLWKIORZ PVWKURXJKDYHUWLFDOYHQWXULPHWHU ,QOHWGLDPHWHU PPDQGWKURDWGLDPHWHU PPCd 9HUWLFDOGL൵HUHQFH EHWZHHQSUHVVXUHWDSSLQJVLVFP)LQG LIWZRSUHVVXUHJDXJHVDUHXVHGDWSUHVVXUH WDSSLQJVWKHQGL൵HUHQFHLQWKHLUUHDGLQJVDQG LIPHUFXU\PDQRPHWHULVXVHGWKH GL൵HUHQFHRIPHUFXU\FROXPQ
40 cm
Flow
Area a = p ¥ P
Area a =
p ¥ P
Q = Cd
=
¥ ¥ h =
a ◊ a gh a - a
¥ ¥ ¥ ¥ h - ¥ - ¥ - ¥ ¥
h=
P ¥
618
Fundamentals of Fluid Mechanics
Case'L൵HUHQFHRIUHDGLQJRIWZRSUHVVXUHJDXJHVLV Ê p p ˆ h = Á - ˜ z – z Ë rg rg ¯ =
p - p ¥ ¥
±
p – p ¥ 0.8 ¥ ¥
¥ 0.8 ¥¥
N1P
Case'L൵HUHQFHLQOHYHORIPHUFXU\PDQRPHWHU Ê sin ˆ h =xÁ - ˜ Ë s ¯ Ê ˆ x Á - ˜ Ë 0.8 ¯
or
x=
P
FPRIPHUFXU\ $Q RUL¿FH PHWHU RI GLDPHWHU FP LQ LQVHUWHG LQ D SLSH RI FP GLDPHWHU 7KH SUHVVXUH JDXJHV ¿WWHG XSVWUHDP DQG GRZQVWUHDP JLYH UHDGLQJV RI N3D DQG .3DUHVSHFWLYHO\CdRIWKHRUL¿FHPHWHULV)LQGIORZRIWKHZDWHU
Flow
1
0
a =
p d p ¥ =
a0 =
p d 0 p ¥ = P
h=
P
- ¥ p - p = rg ¥ ¥
Fluid Dynamics-II
=
Q=
=
PRIZDWHU Cd ¥ aa gh a - a ¥ ¥ ¥ ¥ ¥ - ¥ -
=
=
619
- ¥ - ¥ - ¥ -
î± PV
$YHQWXULPHWHULVWREHLQWURGXFHGLQDFPGLDPHWHUSLSHFRQYHUJLQJIORZRI PV7KHSUHVVXUHLQWKHLQOHWLVPRIZDWHUJDXJH¿QGWKHPLQLPXPGLDPHWHURIWKH WKURDWIRUWKHYHQWXULPHWHUVRWKDWWKHSUHVVXUHKHDGLV]HUR$OVRFDOFXODWHGLVFKDUJH ZKHQ8WXEHGL൵HUHQWLDOPDQRPHWHUUHDGVDGHIOHFWLRQRIFP Applying Bernoulli’s equation p p v v + + z = + + z rg rg g g z = z
\
p p = 0 & =P r g rg
v v = g g a =
p ¥ d p ¥ = P
v =
Q = a
v g ¥
PV
620
Fundamentals of Fluid Mechanics
v
v a v = Q
or 1RZ
a =
p d d =
¥ p
d P 1RZPDQRPHWHUVKRZVGHÀHFWLRQRIFP Ê sin ˆ h=xÁ - ˜ Ë s ¯
\
ˆ ÊÁ - ˜ Ë ¯
P Q =
=
a ◊ a gh a - a ¥ ¥ ¥ - PV
7KHFRQVWDQWDQJXODUYHORFLW\DWZKLFKDOLTXLGURWDWHVLQDF\OLQGHUDERXWDYHUWLFDO D[LVVXFKWKDWWKHSUHVVXUHDWDSRLQWRQWKHD[LVLVWKHVDPHDVDWDSRLQWPKLJKHU DWDUDGLXVPLV D UDGV E UDGV F g UDGV G g UDGV &LYLO6HUYLFHV
y
Initial level
Fluid Dynamics-II
621
)RUIRUFHGYRUWH[ZHKDYH
7KHDQVZHUG LVFRUUHFW
y=
Z U g
Z ¥ or Z = g
g
$LU ÀRZV WKURXJK D YHQWXUL DQG LQWR WKH DWPRVSKHUH $LU GHQVLW\ LV r DWPRVSKHULF SUHVVXUHLVPaWKURDWGLDPHWHULVDtH[LWGLDPHWHULVDDQGH[LWYHORFLW\LVu7KHWKURDW LVFRQQHFWHGWRDF\OLQGHUFRQWDLQLQJDIULFWLRQOHVVSLVWRQDWWDFKHGWRDVSULQJ7KHVSULQJ FRQVWDQWLVk7KHERWWRPVXUIDFHRIWKHSLVWRQLVH[SRVHGWRDWPRVSKHUH'XHWRWKHÀRZ WKHSLVWRQPRYHVE\GLVWDQFHx$VVXPLQJLQFRPSUHVVLEOHIULFWLRQOHVVÀRZx
D r uk p Dt
⎛ D ⎞ E ruk ⎜ − ⎟ p Ds ⎝ Dt ⎠
F r uk p Ds
⎛ D ⎞ G ruk ⎜ − ⎟ p Ds ⎝ Dt ⎠
D
D U
Dt
Ds x
k
$VSHUFRQWLQXLW\HTXDWLRQDWWKURDWDQGH[LWZHKDYH AV = A V or
ÊA ˆ Vt = Á ˜ V Ë A ¯ ⎛ ⎜ = ⎜ ⎜ ⎝
p ⎞ D ⎟ u p ⎟ ⋅ Dt ⎟ ⎠
⎛ D⎞ = ⎜ ⎟ u ⎝D ⎠ t
*$7(
622
Fundamentals of Fluid Mechanics
1RZDSSO\%HUQRXOOL¶VHTXDWLRQZHKDYH V Pt P V + t = + rg rg g g P − Pt V −V = t rg g
or
P – Pt
r Vt – V
r =
ÈÊ D ˆ ˘ ÍÁ ˜ u - u ˙ ÍË Dt ¯ ˙ Î ˚
Now pressure force acting on the piston is =
p Ds ¥ P – Pt
p Ds r ¥ =
ÈÊ D ˆ ˘ ÍÁ ˜ - ˙ u ÍË Dt ¯ ˙ Î ˚
Now spring force = pressure force rx =
\
r u 8
r u x= 8k
ÈÊ D ˆ ˘ ÍÁ ˜ - ˙ pDs ÍË Dt ¯ ˙ Î ˚ ÈÊ D ˆ ˘ ÍÁ ˜ - ˙ pDs ÍË Dt ¯ ˙ Î ˚
2SWLRQG LVFRUUHFW $YHQWXULPHWHURIPPWKURDWGLDPHWHULVXVHGWRPHDVXUHWKHYHORFLW\RIZDWHULQD KRUL]RQWDOSLSHRIPPGLDPHWHU,IWKHSUHVVXUHGL൵HUHQFHEHWZHHQWKHSLSHDQGWKURDW VHFWLRQLVIRXQGWREHN3DWKHQQHJOHFWLQJIULFWLRQDOORVVHVWKHÀRZYHORFLW\LV D PV E PV F PV G PV *$7( Dh
40 mm
20 mm 2 1
Fluid Dynamics-II
623
$SSO\LQJFRQWLQXLW\HTXDWLRQZHJHW AV = AV p ¥ D A V = V = ¥ V p A ¥ D
Ê ˆ = Á ˜ ¥ V V Ë ¯ 1RZRQDSSO\LQJ%HUQRXOOL¶VHTXDWLRQIRUVHFWLRQVDQGZHKDYH P P V V + + Z = + + Z r◊g r◊g g g As
Z = Z P - P = V – V r◊g =
>u V – V]
¥ V = ¥ ¥
or
or V PV 2SWLRQG LVFRUUHFW $3LWRWVWDWLFWXEHLVXVHGWRPHDVXUHWKHYHORFLW\RIZDWHUXVLQJDGL൵HUHQWLDOJDXJH ZKLFKFRQWDLQVDPDQRPHWULFIOXLGRIUHODWLYHGHQVLW\7KHGHIOHFWLRQRIWKHJDXJH IOXLGZKHQZDWHUIORZVDWDYHORFLW\RIPVZLOOEHWKHFRH൶FLHQWRIWKHWXEHPD\ EHDVVXPHGWREH D PP E PP F PP G PP ,(6 7KHYHORFLW\RIÀRZ V=
ÊS ˆ g x Á m - ˜ Ë S ¯
Ê ˆ - ˜ ¥¥ x ¥ Á Ë ¯
x PP 2SWLRQD LVFRUUHFW
where x GHÀHFWLRQ
Sm 6*RIPDQRPHWULFÀXLG S 6*RIÀRZLQJÀXLG
624
Fundamentals of Fluid Mechanics
$ ODUJH WDQN LV ¿[HG WR D FDUW DV VKRZQ LQ WKH ¿JXUH :DWHU IORZV IURP WKH WDQN WKURXJKDQR]]OHRIGLDPHWHUPPDWDVSHHGRIPV7KHZDWHUOHYHOLQWKHWDQNLV PDLQWDLQHGE\DGGLQJZDWHUWKURXJKDSLSH)LQGWKHWHQVLRQLQWKHZLUHKROGLQJWKH FDUWVWDWLRQDU\ Tank
Pipe
Nozzle V Moving cart
Wire
7KHIRUFHRIWKHMHWHMHFWLQJIURPWKHQR]]OH Fx r ◊ A ◊ V ◊ V = r ◊ A” ◊ V Ê p ¥ ˆ Á ˜8 Ë ¯
1
Due to this force Fx WKH WDQN RQ WKH PRYLQJ FDUW WHQGV WR PRYH LQ RSSRVLWH GLUHFWLRQ DV UHDFWLRQWKHUHE\FUHDWLQJDWHQVLRQT 1LQWKHZLUH $YHQWXULPHWHULV¿WWHGKRUL]RQWDOO\LQDFPGLDSLSHDQGWKHSUHVVXUHLQWKHSLSH FRUUHVSRQGVWRDZDWHUKHDGRIP,IWKHPD[LPXPIORZWKURXJKWKHPHWHULV PV¿QGWKHVPDOOHVWWKURDWGLDPHWHUVRWKDWWKHSUHVVXUHGRHVQRWIDOOEHORZP RIZDWHUDEVROXWH 8378 1
2
Flow h
P P V V + + Z = + + Z rg rg g g As
Z = Z h +
V V = h + g g
Fluid Dynamics-II
or
h = h – h =
625
V - V V V – = g g g
NRZ h ± P Q ¥ = = p ¥ Q p ¥
V =
1RZ
¥g = V± V
or
or
V PV
1RZ
a =
Q = P V
1RZ
a =
p d
or
d =
¥ p
P
FP
10.10 QUESTIONS FROM COMPETITIVE EXAMINATIONS %RWK IUHH YHUWH[ DQG IRUFHG YRUWH[ FDQ EH H[SUHVVHG DV IXQFWLRQV RI WDQJHQWLDOO\ YHORFLW\VDWWKHFRUUHVSRQGLQJUDGLXVr)UHHYRUWH[DQGIRUFHGYRUWH[DUHGH¿QDEOH WKURXJKVDQGrDV )UHHYRUWH[ )RUFHGYRUWH[ D V rîFRQVW VÂr FRQVW E V × r FRQVW V rFRQVW F V × r FRQVW V rÂFRQVW G V × r FRQVW V rîFRQVW ,(6 2SWLRQF LVFRUUHFW $QLQFRPSUHVVLEOHIOXLGIORZVUDGLDOO\RXWZDUGVIURPDOLQHVRXUFHLQDVWHDG\PDQQHU +RZGRHVWKHYHORFLW\LQDQ\UDGLDOGLUHFWLRQYDU\"
626
Fundamentals of Fluid Mechanics
D r
E r
F r
G
r
,(6
2SWLRQG LVFRUUHFW ,QDF\OLQGULFDOYRUWH[PRWLRQDERXWDYHUWLFDOD[LVrDQGrDUHWKHUDGLDOGLVWDQFHV RIWZRSRLQWVRQWKHKRUL]RQWDOSODQHr > r ,IIRUDJLYHQWDQJHQWLDOIOXLGYHORFLW\ DWrWKHSUHVVXUHGL൵HUHQFHEHWZHHQWKHSRLQWVLQIUHHYRUWH[LVRQHKDOIRIWKDWZKHQ WKHYRUWH[LVDIRUFHGRQHWKDQZKDWLVWKHYDOXHRIWKHUDWLRrr"
D
F
)UHHYRUWH[ V =
E
G
c where c = wr r
Ê ˆ (οP)free = rc Á - ˜ r ¯ Ë r
)RUFHGYRUWH[
(οP)forced = r ¥
V =c r V - V r¥w r - r =
It is given
2 îοP)free = – (οP)forced ¥
r ¥ c Ê ˆ - ˜ Á r ¯ Ë r
= r ¥ w r - r
or
Ê r - r ˆ w r Á ˜ Ë r r ¯
=
w r - r
or
r r
=
,(6
Fluid Dynamics-II
r r
or
=
627
2SWLRQE LVFRUUHFW
$QLQYLVFLGLUURWDWLRQDOIORZ¿HOGRIIUHHYRUWH[PRWLRQKDVDFLUFXODWLRQFRQVWDQWW 7KH WDQJHQWLDO YHORFLW\ DW DQ\ SRLQW LQ WKH IORZ ¿HOG LV JLYHQ E\
W ZKHUH r LV WKH r
UDGLDOGLVWDQFHIURPWKHFHQWUH$WWKHFHQWUHWKHUHLVDPDWKHPDWLFDOVLQJXODULW\ZKLFK FDQEHSK\VLFDOO\VXEVWLWXWHGE\DIRUFHGYRUWH[$WWKHLQWHUIDFHRIWKHIUHHDQGIRUFHG YRUWH[PRWLRQr rc WKHDQJXODUYHORFLW\wLVJLYHQE\
D
W rc
E
G WÂrc
F WÂrc )RUIUHHYRUWH[ZHKDYH V =
W rc ,(6
W r
)RUIRUFHGYRUWH[ZHKDYH V = rÂω or
ω =
v r
V =
V W and w = rc rc
At r = rcZHKDYH
W rc W = w ൌ rc rc
2SWLRQD LVFRUUHFW
:KLFK FRPELQDWLRQ RI WKH IROORZLQJ VWDWHPHQWV DERXW VWHDG\ LQFRPSUHVVLEOH IRUFHG YRUWH[IORZLVFRUUHFW" 3 6KHDUVWUHVVLV]HURDWDOOSRLQWVLQWKHIORZ 4 9RUWLFLW\LV]HURDWDOOSRLQWVLQWKHIORZ 5 9RUWLFLW\LVGLUHFWO\SURSRUWLRQDOWRWKHUDGLXVIURPWKHFHQWUHRIWKHYRUWH[ 6 7RWDOPHFKDQLFDOHQHUJ\SHUXQLWPDVVLVFRQVWDQWLQWKHHQWLUHIORZIOXLG D 3DQG4 E 5DQG6 F 3DQG5 G 3DQG6 *$7( 2SWLRQE LVFRUUHFW
628
Fundamentals of Fluid Mechanics
$FORVHGF\OLQGHUKDYLQJDUDGLXVRIRDQGKHLJKWHLV¿OOHGZLWKRLORIGHQVLW\ρ,IWKH F\OLQGHULVURWDWHGDERXWLWVD[LVDWDQDQJXODUYHORFLW\RIωWKHQWKUXVWDWWKHERWWRP RIWKHF\OLQGHULV rw R 4
D pRrgH
E pR
F pRrwR + rgH
Ê r◊ w R ˆ + r◊ g ◊ H ˜ G pR Á 4 Ë ¯ ∂P ∂r
=
rV r◊ wr = = r◊w ◊ r r r
∂P
=
Ú
2QLQWHJUDWLRQZHJHW
Ú
P
R
or
P =
r
R
r◊w ◊ r ◊ dr
r◊w ◊ r dr
H
R
)RUFHRQULQJRIWKLFNQHVVdr = Pîprdr Total force due to rotation =
Ú
R
R
rw r ◊ pr dr
=
R r w ◊p Ú r dr R
=
r w ¥ pR
*$7(
Fluid Dynamics-II
629
7RWDOIRUFHRQERWWRP ZHLJKWRIZDWHUIRUFHGXHWRURWDWLRQ = r◊ g ◊ pR H +
r ◊w ¥ pR w
˘ È r◊w R + r◊ g ◊ H ˙ = pR Í Î ˚
2SWLRQG LVFRUUHFW :KLFKRQHRIWKHVWDWHPHQWVLVFRUUHFWIRUDIRUFHGYRUWH[" D 7XUQVLQDQRSSRVLWHGLUHFWLRQWRDIUHHYRUWH[ E $OZD\VRFFXUVLQFRQMXQFWLRQZLWKDIUHHYRUWH[ F +DVWKHOLQHDUYHORFLW\GLUHFWO\SURSRUWLRQDOWRWKHUDGLXV G +DVWKHOLQHDUYHORFLW\LQYHUVHO\SURSRUWLRQDOWRWKHUDGLXV ,(6 2SWLRQF LVFRUUHFW $ULJKWFLUFXODUF\OLQGHURSHQDWWKHWRSLV¿OOHGZLWKOLTXLGRIUHODWLYHGHQVLW\RI,W LVURWDWHGDERXWWKHYHUWLFDOD[LVDWVXFKDVSHHGWKDWKDOIOLTXLGVSLOOVRXW7KHSUHVVXUH DWWKHFHQWUHRIERWWRPZLOOEH D =HUR E 2QHIRXUWKRIWKHYDOXHZKHQWKHF\OLQGHUZDVIXOO F +DOIRIWKHYDOXHZKHQWKHF\OLQGHUZDVIXOO G 1RWGHWHUPLQDEOHIURPWKHJLYHQGDWD ,(6
7KHOLTXLGRQURWDWLRQZLOOVSLOORXWDQGKDOIRIOLTXLGUHPDLQLQJZLOOULVHRQWKHZDOOWKHUHE\ UHVXOWLQJQROLTXLGDWWKHFHQWUH7KHSUHVVXUHZLOOEH]HURGXHWRDEVHQFHRIOLTXLGDWFHQWUH 2SWLRQD LVFRUUHFW Assertion (A): $F\OLQGHUSDUWO\¿OOHGZLWKOLTXLGLVURWDWHGDERXWLWVYHUWLFDOD[LV7KH ULVHRIOLTXLGOHYHODWWKHHQGVLVHTXDOWRWKHIDOORIOLTXLGOHYHODWWKHD[LV Reason (R): 5RWDWLRQFUHDWHVIRUFHGYRUWH[PRWLRQ D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$
630
Fundamentals of Fluid Mechanics
F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,(6 2SWLRQE LVFRUUHFW $QRSHQFLUFXODUF\OLQGHUPKHLJKWLV¿OOHGZLWKOLTXLGWRLWVWRS7KHOLTXLGLVJLYHQ DULJLGERG\URWDWLRQDERXWWKHD[LVRIWKHF\OLQGHUDQGWKHSUHVVXUHDWWKHFHQWUHOLQH DW WKH ERWWRP VXUIDFH LV IRXQG WR EH P RI OLTXLG:KDW LV WKH UDWLR RI YROXPH RI OLTXLGVSLOOHGRXWRIWKHF\OLQGHUWRWKHRULJLQDOYROXPH"
D
4
E
F
G
4
,(6 D
O
F
E
0.6 m
1.2 m
A
C
B
¥ VADEF Ratio of volume spilled = ABC D ¥ EDVH DUHD ¥ = %DVH DUHD ¥ =
2SWLRQG LVFRUUHFW $ULJKWFLUFXODUF\OLQGHULV¿OOHGZLWKDOLTXLGXSWRLWVWRSOHYHO,WLVURWDWHGDERXWLWV YHUWLFDOD[LVDWVXFKDVSHHGWKDWKDOIWKHOLTXLGVSLOOVRXW7KHQWKHSUHVVXUHDWWKH SRLQWRILQWHUVHFWLRQRIWKHD[LVDQGERWWRPVXUIDFHLV D 6DPHDVEHIRUHURWDWLRQ E +DOIWKHYDOXHEHIRUHURWDWLRQ F 4XDUWHURIWKHYDOXHEHIRUHURWDWLRQ G (TXDOWRWKHDWPRVSKHULFSUHVVXUH ,(6 2SWLRQG LVFRUUHFW
Fluid Dynamics-II
631
$YHQWXULPHWHURIPPWKURDWGLDPHWHULVXVHGWRPHDVXUHWKHYHORFLW\RIZDWHULQ DKRUL]RQWDOSLSHRIPPGLDPHWHU,IWKHSUHVVXUHGL൵HUHQFHEHWZHHQWKHSLSHDQG WKURDWVHFWLRQLVIRXQGWREHN3DWKHQQHJOHFWLQJIULFWLRQDOORVVHVWKHÀRZYHORFLW\ LV D PV E PV F PV G PV *$7( If V is velocity in pipe and VLVYHORFLW\LQWKURDW AV = AV
or
V
pD pD ¥ V = V
D V = ¥ V = V = D
$SSO\LQJ%HUQRXOOL¶VHTXDWLRQDWSRLQWDQG P V + rg g
=
P V + rg g
or
P - P rg
=
V - V - V = ◊V = g g g
or
V
=
g ¥ ¥ = ¥ g
or V PV 2SWLRQG LVFRUUHFW $LUIORZVWKURXJKDYHQWXULLQWRWKHDWPRVSKHUH$LUGHQVLW\LVrDWPRVSKHULFSUHVVXUH PaWKURDWGLDPHWHUDtH[LWGLDPHWHULVDDQGH[LVWYHORFLW\LVU7KHWKURDWLVFRQQHFWHG WRDF\OLQGHUFRQWDLQLQJDIULFWLRQOHVVSLVWRQDWWDFKHGWRDVSULQJ7KHVSULQJFRQVWDQW LVk7KHERWWRPVXUIDFHLVH[SRVHGWRDWPRVSKHUH'XHWRIORZWKHSLVWRQPRYHVE\ GLVWDQFHx$VVXPLQJLQFRPSUHVVLEOHIULFWLRQOHVVIORZxLV D
r◊U ◊pDs k
ˆ r◊ U Ê D pDS F Á ˜ k Ë Dt ¯
E
ˆ r◊U Ê D - ˜ pD Á k Ë Dt ¯
G
ˆ rU Ê D - ˜ pDt 4 Á k Ë Dt ¯
*$7(
632
Fundamentals of Fluid Mechanics D
D6
U
Piston moves
Piston Spring const = K
x
P V + rg g
=
P – Pa =
P V + rg g r V - V
as P = Pa
AV = AV EXWV = U
V
Ê Dˆ = Á ˜ ¥U ËD ¯ t
\
P – Pa
˘ P È Ê Dˆ = ÍU - Á ˜ U ˙ Í Ë Dt ¯ ˙˚ Î
=
AsxP – P
or
r◊U
È D ˘ Í - ˙ Î Dt ˚
r U È Ê D ˆ ˘ pDs Í ˙¥ kx = Í ÁË Dt ˜¯ ˙ Î ˚
x =
È D ˘ rU ¥ pDS Í - ˙ 8 Î Dt ˚
2SWLRQG LVFRUUHFW :KLFKRQHRIWKHIROORZLQJLVPHDVXUHGE\DURWDPHWHU" D 9HORFLW\RIIOXLG E 'LVFKDUJHRIIOXLG F 9LVFRVLW\RIIOXLG G 5RWDWLRQDOVSHHGRIVROLGVKDIW ,(6 2SWLRQE LVFRUUHFW
Fluid Dynamics-II
,QDURWRPHWHUDVWKHIORZUDWHLQFUHDVHVWKHIORDW D 5RWDWHVDWKLJKHUVSHHG E 5RWDWHVDWORZHUVSHHG F 5LVHVLQWXEH G 'URSVLQWKHWXEH 2SWLRQF LVFRUUHFW
633
,(6
)OXLGIORZUDWHQFDQEHPHDVXUHGHDVLO\ZLWKWKHKHOSRIDYHQWXULWXEHLQZKLFKWKH GL൵HUHQFHRIWZRSUHVVXUHV¨PLVPHDVXUHGDWDQXSVWUHDPSRLQWDQGDWWKHVPDOOHVW FURVVVHFWLRQRIWKHWXEHLVXVHG,IDUHODWLRQ¨P × Q nH[LVWVWKHQnLVHTXDOWR D
F
G Q =
or
E
Q μ¨P or n
Cd ◊ A ◊ A ◊ gh A - A
,$6 while h v¨P
2SWLRQG LVFRUUHFW
7ZR YHQWXULPHWHUV RI GL൵HUHQW DUHD UDWLRV DUH FRQQHFWHG DW GL൵HUHQW ORFDWLRQV RI D SLSHOLQHWRPHDVXUHGLVFKDUJH6LPLODUPDQRPHWHUVDUHXVHGDFURVVWKHWZRYHQWXUL PHWHUVWRUHJLVWHUWKHKHDGGL൵HUHQFHV7KH¿UVWYHQWXULPHWHURIDUHDUDWLRUHJLVWHUV D KHDG GL൵HUHQFH RI h ZKLOH WKH VHFRQG YHQWXULPHWHU UHJLVWHU µh¶7KH DUHD UDWLR RI VHFRQGYHQWXULPHWHULV D E F G ,(6 Q=
or
cd A A gh A - A h
=
Ê A ˆ ÁË A ˜¯ - or
-
=
Cd ◊ A ◊ A g ¥ h A - A h
Ê A ˆ ÁË A ˜¯ - =
Ê A ˆ ÁË A ˜¯ -
634
Fundamentals of Fluid Mechanics
or
Ê A ˆ ÁË A ˜¯ - A A
or
2SWLRQE LVFRUUHFW
:KDWLVWKHSHUFHQWDJHHUURULQWKHHVWLPDWLRQRIGLVFKDUJHGXHWRDQHUURURILQ WKHPHDVXUHPHQWRIUHDGLQJRIDGL൵HUHQWLDOPDQRPHWHUFRQQHFWHGWRDQRUL¿FHPHWHU" D E F G ,$6 Q=
Cd A A gh A - A
= Const. ¥ h
7DNHORJDWERWKVLGHVZHJHW log
Q=
log h + Const
'L൵HUHQWLDWLQJERWKVLGHVZHJHW dQ Q
=
dh = ¥ = h
2SWLRQG LVFRUUHFW ,IDIOXLGMHWGLVFKDUJLQJIURPDPPGLDPHWHURUL¿FHKDVDPPGLDPHWHUDWLWV YHQDFRQWUDFWDWKHQLWVFRH൶FLHQWRIFRQWUDFWLRQZLOOEH D E F G ,$6 Cc =
=
2SWLRQE LVFRUUHFW
Area of vena contracta Area of orifice Dc = = DR
Fluid Dynamics-II
635
:KDWLVWKHQRUPDOUDQJHRIH[LWFRQHDQJOHRIDYHQWXULPHWHU" D WR E WR F WR G ! 2SWLRQE LVFRUUHFW 3RZHUORVVLQDQRUL¿FHPHWHULVBBBBBBBBBBBWKDQLQDYHQWXULPHWHU)LOOLQWKHEODQNV RXWRIFKRLFH² D OHVVWKDQ E PRUHWKDQ F VDPHDV G FDQQRWEHSUHGLFW 2SWLRQE LVFRUUHFW :KLFKRIWKHIROORZLQJLQVWUXPHQWFDQEHXVHGIRUPHDVXULQJVSHHGRIDQDHURSODQH D 9HQWXULPHWHU E 2UL¿FHSODWH F 5RWRPHWHU G 3LWRWWXEH 2SWLRQG LVFRUUHFW :KLFK RI WKH IROORZLQJ LQVWUXPHQW LV XVHG WR PHDVXUH IORZ RQ WKH DSSOLFDWLRQ RI %HUQRXOOL¶VWKHRUHP D 9HQWXULPHWHU E 2UL¿FHSODWH F 3LWRWWXEH G 1R]]OH H $OOWKHDERYH 2SWLRQH LVFRUUHFW
Chapter
11
LAMINAR FLOW
KEYWORDS AND TOPICS
LAMINAR FLOW TURBULENT FLOW FLOW IN HORIZONTAL PIPES FLOW IN PARALLEL PLATES AVERAGE VELOCITY MAXIMUM VELOCITY HEAD LOSS FRICTION FACTOR FLOW IN INCLINED PIPES CORRECTION FACTOR FOR KINETIC ENERGY CORRECTION FACTOR FOR MOMENTUM
FLOW IN POROUS MATERIAL DARCY’S EQUATION FLUIDIZATION JOURNAL BEARING FOOT STOP BEARING COLLAR BEARING DASHPOT FALLING SPHERE METHOD CAPILLARY METHOD ROTATING CYLINDER METHOD FLOW IN OPEN CHANNEL
11.1 INTRODUCTION ,QODPLQDUÀRZWKHÀXLGSDUWLFOHVPRYHDORQJVWUDLJKWSDUDOOHOSDWKVLQOD\HUV7KHUHLVQRPL[LQJ RIÀXLGSDUWLFOHVEHWZHHQWKHWZRDGMDFHQWOD\HUV7KHVKDSHRIODPLQDOD\HU GHSHQGVRQWKH VKDSHRIWKHERXQGDU\WKURXJKZKLFKWKHÀRZLVWDNLQJSODFH,QODPLQDUÀRZWKHÀXLGSDUWLFOHV PRYHLQXQPL[LQJOD\HUVRUVWUHDPVLQVPRRWKFRQWLQXRXVSDWKV6ROGLHUVPDUFKLQJLQRUGHUO\ PDQQHULVDQDQDORJ\WRODPLQDUÀRZ/DPLQDUÀRZRFFXUVDWORZYHORFLW\VRWKDWIRUFHVGXHWR YLVFRVLW\DUHSUHGRPLQDQWLQFRPSDULVRQWRLQHUWLDOIRUFHV 7KHYLVFRVLW\RIÀXLGWKHUHIRUHLQGXFHVUHODWLYHPRWLRQZLWKLQWKHÀXLGZKHQÀXLGOD\HUVVOLGH RYHU HDFK RWKHU 7KH JUDGLHQW RI YHORFLW\ EHWZHHQ WKH OD\HUV JLYHV ULVH WR VKHDU VWUHVVHV 7KH VKHDUVWUHVVLQWKHÀXLGYDULHVIURPSRLQWWRSRLQW,WLVPD[LPXPDWWKHERXQGDU\DQGJUDGXDOO\ VWDUWVGHFUHDVLQJZLWKLQFUHDVHLQWKHGLVWDQFHIURPWKHERXQGDU\7KHVKHDUVWUHVVHVLQEHWZHHQ WKHOD\HUVGHYHORSDUHVLVWDQFHWRÀRZ7KHSUHVVXUHRIWKHÀXLGJUDGXDOO\GURSVLQWKHGLUHFWLRQ RIWKHÀRZ7KHUHLVDOZD\VKHDGORVVLQYLVFRXVÀRZ
Laminar Flow
637
11.2 LAMINAR FLOW r What is laminar flow (viscous flow)? /DPLQDUÀRZLVDÀRZLQZKLFKÀRZWDNHVSODFHLQOD\HUV7KHUHLVQRPL[LQJRIÀXLG SDUWLFOHV EHWZHHQ DQ\ WZR DGMDFHQW OD\HUV 7KH VKDSH RI ODPLQD OD\HU GHSHQGV RQ WKH VKDSH RI WKH ERXQGDU\ WKURXJK ZKLFK ÀRZ LV WDNLQJ SODFH ,Q ODPLQDU ÀRZ WKH ÀXLG SDUWLFOHVPRYHLQXQPL[LQJOD\HUVRUVWUHDPVDQGIROORZDVPRRWKFRQWLQXRXVSDWK7KH SDWKVRIÀXLGSDUWLFOHVUHWDLQWKHLUUHODWLYHSRVLWLRQVDWVXFFHVVLYHFURVVVHFWLRQVRIWKHÀRZ SDVVDJH7KHUHLVQRWUDQVYHUVHGLVSODFHPHQWRIÀXLGSDUWLFOH6ROGLHUVPDUFKLQJLQRUGHUO\ PDQQHULVDQDQDORJ\WRODPLQDUÀRZ7KHVKDSHRIODPLQDHLIÀRZWDNHVSODFHEHWZHHQ WZRSDUDOOHOÀDWSODWHVDUHSODQHVKHHWVSDUDOOHOWRHDFKRWKHUDVVKRZQEHORZ,QFDVHWKH ÀRZWDNHVSODFHWKURXJKDFLUFXODUSLSHWKHODPLQDHEHFRPHFRQFHQWULFF\OLQGULFDOVKHHWV DVVKRZQEHORZ Layers
Layers
Layers as Plane Sheets
Concentric Cylindrical Sheets
r What are the conditions which help the flow to be laminar? The flow will be laminar when: 9HORFLW\RIÀRZLVORZ 'LDPHWHURISLSHLVVPDOO 9LVFRVLW\RIWKHÀXLGLVKLJK 'HQVLW\RIWKHÀXLGLVOHVV 5H\QROGVQXPEHULVOHVVWKDQIRUÀRZLQSLSHV Can Bernoulli’s equation be applied to viscous or laminar flow? 'XH WR WKH SUHVHQFH RI YLVFRVLW\ UHDO ÀXLGV GL൵HU IURP QRQYLVFRXV LGHDO ÀXLGV 'XH WR YLVFRVLW\HDFKÀXLGOD\HUUHVLVWVWKHUHODWLYHWUDQVODWLRQPRWLRQRIDGMDFHQWÀXLGOD\HUV6RPH HQHUJ\LVUHTXLUHGWRRYHUFRPHWKLVUHVLVWDQFHZKLFKLVFRQYHUWHGWRWKHUPDOHQHUJ\DVDORVV 7KH%HUQRXOOL¶VHTXDWLRQKDVEHHQGHULYHGIRUÀRZRIDQLGHDOÀXLGQRQYLVFRXVÀXLG +RZHYHU%HUQRXOOL¶VHTXDWLRQDVVXFKFDQQRWEHDSSOLHGIRUYLVFRXVÀRZ7KHUHIRUHWKH %HUQRXOOL¶VHTXDWLRQLQWKHPRGL¿HGIRUPLVXVHGLQDQDO\]LQJWKHÀRZRIUHDOÀXLGV7KH KHDGORVVLVDFFRXQWHGLQWKH%HUQRXOOL¶VHTXDWLRQDVJLYHQEHORZ p p v v + + z = + + z + hl rg rg g g ZKHUHhl KHDGORVVGXHWRYLVFRVLW\
638
Fundamentals of Fluid Mechanics
What are the various factors on which friction resistance in laminar flow is dependent and independent? 7KHIULFWLRQUHVLVWDQFHGHSHQGVRQ 9HORFLW\RIÀRZ $UHDRIVXUIDFHLQFRQWDFW 7HPSHUDWXUHRIWKHÀXLG 7KHIULFWLRQUHVLVWDQFHGRHVQRWGHSHQGRQ 1DWXUHRIVXUIDFHLQFRQWDFW 3UHVVXUHRIÀRZ
11.3 TURBULENT FLOW What is turbulent flow? :KHQWKHYHORFLW\RIÀRZUHDFKHVDFHUWDLQOLPLWVXFKWKDWWKHÀXLGSDUWLFOHVQRORQJHUPRYH LQOD\HUVRUODPLQDH9LROHQWPL[LQJRIÀXLGSDUWLFOHVQRZWDNHVSODFHGXHWRZKLFKWKH\ PRYHLQUDQGRPPDQQHU$VDUHVXOWWKHYHORFLW\DWDQ\SRLQWYDULHVERWKLQPDJQLWXGHDQG GLUHFWLRQIURPLQVWDQWWRLQVWDQW,QWXUEXOHQWÀRZWKHPRWLRQRIÀXLGSDUWLFOHVLVLUUHJXODU 7KHÀXLGSDUWLFOHVPRYHDORQJHUUDWLFDQGXQSUHGLFWDEOHSDWK7KHYHORFLW\RIÀXLGSDUWLFOHV ÀXFWXDWHVERWKDORQJWKHGLUHFWLRQRIÀRZDQGDOVRSHUSHQGLFXODUWRWKHÀRZ$FURZGRI FRPPXWHUVRQDUDLOZD\VWDWLRQUXVKLQJIRUERDUGLQJDWUDLQLVDQDQDORJ\RIWKHWXUEXOHQW ÀRZ7KHÀRZLQSLSHVKDYLQJ5H\QROGVQXPEHUDQGDERYHLVDOZD\VWXUEXOHQW
Turbulent Flow
11.4 REYNOLDS NUMBER What is Reynolds number? How is it useful? 5H\QROGV QXPEHU LV WKH UDWLR RI LQHUWLD IRUFH WR WKH YLVFRXV IRUFH ,W LV D GLPHQVLRQOHVV QXPEHUDQGLWLVJLYHQE\ Re =
rV d m
ZKHUHr GHQVLW\V YHORFLW\ d GLDPHWHURUGLVWDQFHDQGm YLVFRVLW\
5H\QROGVQXPEHULVYHU\XVHIXOIRU 3UHGLFWLQJZKHWKHUWKHÀRZLVODPLQDURUWXUEXOHQW )LQGLQJRXWWKHFRH൶FLHQWRIIULFWLRQ f LQRUGHUWRGHWHUPLQHWKHORVVRIKHDGGXHWR IULFWLRQ
Laminar Flow
639
([SODLQWKHH[SHULPHQWVHWXSWRVWXG\GL൵HUHQWW\SHVRIIORZ Or What is Reynolds experiment to demonstrate laminar and turbulent flows? 7KHVHWXSFRQVLVWVRIDWDQNIXOORIZDWHU$EHOOPRXWKHGJODVVWXEHLV¿WWHGDWWKHERWWRPRI WKHWDQN2QHHQGRIWKHJODVVWXEHLVLQWKHZDWHUDQGWKHRWKHUHQGKDVDYDOYHIRUFRQWUROOLQJ ÀRZLQJODVVWXEHDQGÀRZIDOOVLQDPHDVXULQJWDQN$G\HLQMHFWLRQDUUDQJHPHQWLV¿WWHGDW WKHPRXWKRIWKHJODVVWXEH,WFRQVLVWVRIDVPDOORYHUKHDGWDQNFRQWDLQLQJDFRORXUHGOLTXLG KDYLQJVDPHVSHFL¿FJUDYLW\DVWKDWRIZDWHU7KHKHDGRIZDWHULVPDLQWDLQHGFRQVWDQWLQ WKHWDQN7KHÀRZRIZDWHUIURPWKHZDWHUWDQNWKURXJKWKHJODVVWXEHLVQRZUHJXODWHGE\ RSHQLQJWKHUHJXODWLQJYDOYH7KHYHORFLW\RIÀRZGHSHQGHGRQWKHRSHQLQJRIWKHUHJXODWLQJ YDOYH$VORQJWKHYHORFLW\LQWKHJODVVWXEHLVPDLQWDLQHGVX൶FLHQWO\ORZWKHFRORXUEDQG UHPDLQVDWKLQVWUDLJKWOLQHÀRZLQJDORQJWKHHQWLUHOHQJWKRIWKHJODVVWXEHZLWKRXWPL[LQJ ZLWKZDWHU6XFKÀRZLVODPLQDUÀRZ$VWKHYHORFLW\RIÀRZLVJUDGXDOO\LQFUHDVHGDVWDJH LVUHDFKHGZKHQWKHG\HWHQGVWRGHYHORSDZDY\IRUP7KLVLQGLFDWHVWKDWWKHODPLQDUÀRZ KDVEHFRPHXQVWDEOH2QIXUWKHULQFUHDVLQJWKHYHORFLW\RIÀRZE\RSHQLQJWKHUHJXODWLQJ YDOYHWKHG\HVWDUWVPL[LQJZLWKWKHVXUURXQGLQJZDWHU7KLVÀRZLVFDOOHGWXUEXOHQWÀRZ 7KHLQWHUPHGLDWHÀRZZKHQWKHG\HGHYHORSVDZDY\IRUPLVFDOOHGWUDQVLWLRQIURPODPLQDU WRWXUEXOHQWÀRZ Coloured liquid Glass tube L
Tank with water
Valve Measuring tank Reynolds experiment setup
Laminar flow
Unstable flow
Violent mixing Flow through Glass Table
640
Fundamentals of Fluid Mechanics
11.5 FLOW IN HORIZONTAL PIPES What is the shear stress acting on a fluid while flowing through a pipe? Draw the VKHDUVWUHVVGLVWULEXWLRQDWDFURVVVHFWLRQ R t Flow
P
D
C P +
A
B
F I H K ∂P ∂x
R
dx
r
dx
&RQVLGHUDVPDOOF\OLQGULFDOÀXLGHOHPHQWRIUDGLXVrDQGOHQJWKdxDVVKRZQDERYH2QWKH ∂p ˆ Ê ÀXLGHOHPHQWSUHVVXUHPLVDFWLQJRQIDFHADDQGSUHVVXUH Á p + d x˜ RQIDFHBC,ItLV Ë ∂x ¯ rHVLVWLYHRUVKHDUVWUHVVDFWLQJGXHWRÀRZWKHQVKHDUIRUFHDFWLQJRQWKLVHOHPHQWLVVKHDU VWUHVVPXOWLSOLHGVXUIDFHDUHDLHt ¥prdx $VÀRZKDGYHU\ORZYHORFLW\WKHLQHUWLD IRUFHPDVV¥DFFHOHUDWLRQ FDQEHQHJOHFWHG'XULQJHTXLOLEULXPRIWKHÀXLGHOHPHQW ∂p ˆ Ê d x˜ ¥ pr – t ¥prdx P ¥ p r – Á p + Ë ∂x ¯ –
RU
∂p ◊ dx◊p r = t ¥prdx ∂x t=
RU
- r Ê ∂p ˆ Á ˜ Ë ∂x ¯
∂p LVFRQVWDQWDWDQ\FURVVVHFWLRQRIWKHSLSHWKHVKHDUVWUHVVYDULHVZLWKUDGLXV ∂x TKHVKHDUVWUHVVLV]HURDWr FHQWUHRIWKHSLSH DQGPD[LPXPDWr = RLQVLGHUDGLXV RIWKHSLSH 7KHVKHDUVWUHVVGLVWULEXWLRQDWDQ\FURVVVHFWLRQLVDVVKRZQEHORZ SLQFH
r=R
r=0
Shear Stress Distribution
Laminar Flow
641
'HULYHDQH[SUHVVLRQIRUYHORFLW\IRUDIORZLQVLGHDSLSH'UDZWKHYHORFLW\GLVWULEXWLRQ DWDVHFWLRQ du ZKHUHm YLVFRVLW\ $VSHU1HZWRQ¶VHTXDWLRQRIYLVFRVLW\ZHKDYHVKHDUVWUHVVt = m dy du anG LVYHORFLW\JUDGLHQWIURPVWDWLRQDU\VXUIDFH dy 7KHUHIRUHWKHGLVWDQFHRIÀXLGOD\HULVWREHPHDVXUHGIURPWKHERXQGDU\VXUIDFH
R
r y
y=R–r
\ 2QGL൵HUHQWLDWLRQZHJHW
dy = – dr DV R &RQVWDQW t=m
\ %XWZHKDYHIRXQGRXWt = –
r ∂p ∂x r ∂p du = m ∂x dr
\
Ú du =
Rr
RU
du du = –m dy dr
u=
∂p m∂ x
Ú
rdr
∂p r +C m ∂x
C FRQVWDQW
:KHQr = Ru DWÀXLGLVVWDWLRQDU\DWERXQGDU\ \
C=–
\
u=
∂p ¥ R m ∂x
Ê - ∂p ˆ r – R m ÁË ∂x ˜¯
642
Fundamentals of Fluid Mechanics
KHUH
∂p mDQGRDUHFRQVWDQWV+HQFHYHORFLW\DWDQ\VHFWLRQLQSLSHYDULHVZLWKWKHVTXDUH ∂x
RIUDGLXVr :KHQr WKHYHORFLW\LVPD[LPXPDQGZKHQr = RWKHYHORFLW\LV]HUR 7KHYHORFLW\YDULHVSDUDEROLFIURP]HURDWWKHERXQGDU\VXUIDFHWRWKHPD[LPXPDWFHQWUH RIWKHSLSH7KHYHORFLW\GLVWULEXWLRQDWDQ\VHFWLRQLVDVVKRZQEHORZ r=R
r=0
Velocity Distribution
11.6 AVERAGE VELOCITY 'HULYH DQ H[SUHVVLRQ IRU DYHUDJH YHORFLW\ IRU D IORZ WKURXJK SLSH )LQG WKH UDWLR RI PD[LPXPYHORFLW\WRDYHUDJHYHORFLW\ Or )RUDVWHDG\ODPLQDUIORZWKURXJKDFLUFXODUSLSHSURYHWKDWYHORFLW\GLVWULEXWLRQDFURVV WKHVHFWLRQLVSDUDEROLFDQGWKHDYHUDJHYHORFLW\LVKDOIRIWKHPD[LPXPYHORFLW\
(UPTU 2006-07) r
r + dr
&RQVLGHU WKH ÀRZ WKURXJK D FLUFXODU ÀXLG ULQJ HOHPHQW RI UDGLXV r DQG WKLFNQHVV dr7KH GLVFKDUJH WKURXJK WKLV ULQJ HOHPHQW LV HTXDO WR WKH YHORFLW\ RI WKH ÀRZ PXOWLSOLHG E\ WKH FURVVVHFWLRQDODUHDRIWKHULQJHOHPHQW dQ = u ¥prdr %XW
\
u=–
dQ = –
∂p R – r m ∂x ∂p R – r ¥prdr m ∂x
Laminar Flow
RU
Q=–
p ∂ p m ∂x
643
R
Ú
R – r rdr
R
p ∂p È r r ˘ =– ◊ - ˙ ÍR m ∂x Î ˚ =–
p ∂p ◊ R 8m ∂x
,QFDVHDYHUDJHYHORFLW\ u WKHQ ∂p ◊R ∂x Q = u = $UHDRISLSH 8m ¥ p ¥ R -p
=
Ê - ∂p ˆ R 8 m ÁË ∂x ˜¯
7KHDERYHLVWKHH[SUHVVLRQIRUDYHUDJHYHORFLW\RIWKHÀRZWKURXJKDSLSH 7KHYHORFLW\RIÀRZDWDQ\FURVVVHFWLRQLVJLYHQE\ u=
Ê - ∂p ˆ R – r m ËÁ ∂x ¯˜
7KHPD[LPXPYHORFLW\RIÀRZLVDWWKHFHQWUHRIWKHSLSHLHr uPD[ =
Ê - ∂p ˆ R m ÁË ∂x ˜¯
7KHUDWLRRIPD[LPXPYHORFLW\DQGDYHUDJHYHORFLW\RIWKHÀRZLV
uPD[ u
Ê ∂p ˆ R m ÁË ∂x ˜¯ = Ê ∂p ˆ R 8 m ÁË ∂x ˜¯
+HQFHWKHPD[LPXPYHORFLW\RIWKHÀRZLVWZRWLPHVWKHDYHUDJHYHORFLW\RIWKHÀRZLQ DSLSH
644
Fundamentals of Fluid Mechanics
11.7 HAGEN POISEUILLE FORMULA Derive an expression for drop of pressure for a given length of pipe when the fluid is flowing through a pipe. Or Derive Hagen Poiseuille formula. 1
Flow
2
P1
P2
x1
L x2
&RQVLGHUDÀRZWKURXJKDSLSHWKHOHQJWKRISLSHLVLEHWZHHQVHFWLRQDQGVHFWLRQDV VKRZQLQWKH¿JXUH 7KHDYHUDJHYHORFLW\RIÀRZWKURXJKDSLSHLVJLYHQE\ u =
or
–
Ê - ∂p ˆ R 8 m ÁË ∂x ˜¯ ∂p 8u m = ∂x R
1RZLQWHJUDWLQJIRUVHFWLRQWRVHFWLRQ –
Ú
∂p =
or
p – p = = p – p =
8u m R
Ú
x x
∂x
8u m (x – x) R D 8u m ◊L EXW R = R u m ◊L D
hf /RVVRISUHVVXUHKHDG =
p - p rg
Laminar Flow
hf =
\
645
u m p - p = ◊L r g D rg
7KHDERYHHTXDWLRQLVNQRZQDV+DJHQ3RLVHXLOOHIRUPXOD What is the power required to overcome the viscous resistance to make the fluid flow through length L and discharge Q? 3RZHUUHTXLUHG :HLJKWRIWKHÀXLGÀRZLQJSHUVHFRQG¥KHDGORVV = m ¥ g ¥ hf = Q◊r ¥ g ¥ =
u m L r g D
u m L Q D
11.8 FRICTION FACTOR What is friction factor ( f)? ,Q WKH SLSH ÀRZ WKH ORVV RI HQHUJ\ RU IULFWLRQ KHDG ORVV WDNHV SODFH EHWZHHQ DQ\ WZR VHFWLRQVRIWKHSLSH$UDWLRQDOH[SUHVVLRQIRUIULFWLRQORVVKHDGFDQGHULYHGE\GH¿QLQJD GLPHQVLRQOHVVFRH൶FLHQWf NQRZQDVIULFWLRQIDFWRU)ULFWLRQIDFWRULV f =
8t rV
ZKHUH t VKHDUVWUHVVDWSLSHZDOODQGVLVDYHUDJHYHORFLW\
What is Darcy’s equation? 'DUF\¶VHTXDWLRQLVIULFWLRQORVVLQSLSHÀRZ7KHIULFWLRQKHDGLVJLYHQLQWHUPVRIIULFWLRQ IDFWRU f DVXQGHU hf =
f LV ZKHUH gD
L OHQJWKV DYHUDJHYHORFLW\DQGD GLDPHWHU
f 'DUF\FRH൶FLHQWDQGf IULFWLRQDOIDFWRU f 'HULYH DQ H[SUHVVLRQ IRU FRH൶FLHQW RI IULFWLRQ LQ YLVFRXV IORZ LQ WHUPV RI 5H\QROGV QXPEHU Head loss in viscous flows by Hagen Poiseuille formula is: hf =
u m L r g D
/RVVRIKHDGGXHWRIULFWLRQE\'DUF\¶VHTXDWLRQ hf =
f LV gD
646
Fundamentals of Fluid Mechanics
,QFDVHRISLSHÀRZV = u LHYHORFLW\LVDOZD\VDYHUDJHYHORFLW\LQSLSHÀRZ m u L f Lu = rg D gD f=
RU
m ru D
ru D = m rvD m
5H\QROGV QXPEHU = Re =
%XW
f=
\
Re
11.9 FLOW IN PARALLEL PLATES Derive an expression for local velocity of viscous flow between two stationary flat SODWHV6WDWHVWKHDVVXPSWLRQVPDGH 8378 7KHDVVXPSWLRQVPDGHDUH )ORZLVWZRGLPHQVLRQDOVWHDG\ODPLQDUÀRZ )OXLGLV1HZWRQLDQ 7KHUHLVQRVOLSRIÀXLGSDUWLFOHVDWWKHVROLGERXQGDU\ t+ x
∂t . dy ∂y P+
dy
t
P dx
x1
y
dy
∂P . dx ∂x
dx t
L x2 Viscous Flow through Two Stationary Parallel Plates
&RQVLGHUWZRVWDWLRQDU\SDUDOOHOSODWHVNHSWDWDGLVWDQFHtDSDUWDQGDYLVFRXVÀRZLVWDNLQJ SODFH DV VKRZQ LQ WKH ¿JXUH 7DNH D VPDOO ÀXLG HOHPHQW RI WKLFNQHVV dy OHQJWK dx DQG ZLGWKXQLW\DWDGLVWDQFHyIURPWKHERWWRPSODWH,IZHGUDZDIUHHERG\GLDJUDPRIWKLV ∂p ◊dx DFWLQJ DORQJ x ÀXLG HOHPHQW WKHQ IRUFHV DFWLQJ DUH SUHVVXUH IRUFHV p DQG p + ∂x GiUHFWLRQDWERWKHQGIDFHV WKHVKHDULQJIRUFHVUHVLVWLQJÀRZDWORZHUDQGXSSHUVXUIDFH
Laminar Flow
647
Ê ∂t ˆ RIWKHHOHPHQW6KHDUVWUHVVLVtDWORZHUIDFHDQGVKHDUVWUHVVLV Á t + ˜ DWXSSHUIDFH ∂y ¯ Ë FRUSUDFWLFDOSXUSRVHLWLVDVVXPHGWKDWJUDYLWDWLRQDOIRUFHLV]HURIRUKRUL]RQWDOÀRZDQG ∂p ∂y
,QHTXLOLEULXPFRQGLWLRQQHWIRUFHDFWLQJRQWKHÀXLGHOHPHQWLV]HUR Ê ˆ ∂p ◊ dx˜ dy ¥ ±t dx ¥ pdy ¥ – Á p + ∂x Ë ¯ Ê ˆ ∂t ◊ d y˜ dx ¥ + Át + ∂y Ë ¯ ∂p ∂t = ∂x ∂y
7KHDERYHHTXDWLRQVKRZVWKDWSUHVVXUHJUDGLHQWLQxGLUHFWLRQLVHTXDOWRWKHUDWHRIFKDQJH RIVKHDUVWUHVVLQyGLUHFWLRQ 2QLQWHJUDWLRQ dp dt = dy dx
Ú
Ú
t=
dp ◊y + c ZKHUH c FRQVWDQW dx
1RZDVSHU1HZWRQ¶VODZRIYLVFRVLW\ZHKDYH t=m
RU
du =
RU
Ú du =
RU
u=
du dp = y + c dy dx
c dp y dy + dy m m dx dp m dx
Ú
ydy +
c m
Ú
dy
c d p y ◊ + y + c m m dx
$VWKHUHLVVOLSDWVROLGERXQGDULHVWKHERXQGDU\FRQGLWLRQVDUH y u KHQFHc
648
Fundamentals of Fluid Mechanics
DQG
Ê d pˆ y = tu KHQFH c =± Á Ë dx ˜¯
u=
\
dp ◊ y – ty m dx
6LQFHt◊y > yZHFDQZULWH u=
m
Ê - d pˆ ÁË dx ˜¯ t◊y – y
7KH DERYH HTXDWLRQ LV D HTXDWLRQ RI SDUDEROD +HQFH ORFDO YHORFLW\ YDULHV LQ SDUDEROLF PDQQHUZKHQDYLVFRXVÀRZWDNHVSODFHEHWZHHQWZRSDUDOOHODQGVWDWLRQDU\SODWHV
t
Local Velocity Distribution
Draw the shear stress distribution for the viscous flow through two parallel and VWDWLRQDU\SODWHV 7KHORFDOYHORFLW\ u=
Ê - d pˆ ty – y m ÁË dx ˜¯
2QGL൵HUHQWLDWLQJZUWy du Ê - d pˆ = t±y dy m ÁË dx ˜¯ %XW
\
t=m
t=
du dy
Ê -d pˆ t±\ ÁË dx ˜¯
t ZKHQ y =
t
t PD[LPXP ZKHQ y RUy = t
Laminar Flow
649
7KHGLVWULEXWLRQRIVKHDUVWUHVVLVDVVKRZQEHORZ
t
Shear Stress Distribution
)LQGWKHH[SUHVVLRQIRUDYHUDJHYHORFLW\IRUWKHYLVFRXVIORZEHWZHHQWZRSDUDOOHODQG VWDWLRQDU\SODWHV)LQGWKHUDWLRRIPD[LPXPYHORFLW\RIWKHDYHUDJHYHORFLW\ 7KHORFDOYHORFLW\DWGLVWDQFHyLVJLYHQE\ u=
Ê - d pˆ t◊y – y m ÁË dx ˜¯
'LVFKDUJHWKURXJKDVPDOOHOHPHQWRIKHLJKWdy dQ = u ¥ dy ¥ =
Ê - d pˆ t◊y – y dy m ÁË dx ˜¯
1RZWRWDOGLVFKDUJHQLVE\LQWHJUDWLQJ \
Q=
Ê - d pˆ m ÁË dx ˜¯
Ú
t
ty – y dy t
Ê - d p ˆ È ty y ˘ - ˙ = Í m ÁË dx ˜¯ Î ˚ =
Ê - d p ˆ È t t ˘ Í - ˙ m ÁË dx ˜¯ Î ˚
=
Ê - d pˆ t m ÁË dx ˜¯
1RZDYHUDJHYHORFLW\ u Ê -d pˆ t ÁË dx ˜¯ Q = u = m t ¥ A
650
Fundamentals of Fluid Mechanics
u =
Ê -d pˆ t m ÁË dx ˜¯
7R¿QGPD[LPXPYHORFLW\ZKLFKLVDWWKHHTXDOGLVWDQFHIURPERWKWKHSODWHSXWy =
u=
uPD[ =
=
t
Ê -d pˆ t◊y – y m ÁË dx ˜¯ Ê -d pˆ m ÁË dx ˜¯
Ê t t ˆ Át ◊ - ˜ Ë ¯
Ê -d pˆ t 8 m ÁË dx ˜¯
1RZWKHUDWLRRIuPD[WR u LV uPD[ = u
=
Ê -d pˆ t 8 m ÁË dx ˜¯ Ê -d pˆ t m ÁË dx ˜¯
Derive an expression for drop of pressure head of a viscous flow through two parallel and stationary plates for a length of L
Flow
t
P2
P1
x1
L x2
Ê - d pˆ 7KHDYHUDJHYHORFLW\ u IRUDSUHVVXUHJUDGLHQW Á YLVFRVLW\RIÀXLGDQGGLVWDQFH Ë dx ˜¯ t EHWZHHQWKHSODWHVLVJLYHQE\
Laminar Flow
u =
RU
RU
±∂p =
±
651
Ê - ∂p ˆ ◊t m ÁË ∂x ˜¯
u m ∂p = ∂x t
u m ◊ ∂x t
1RZLQWHJUDWLQJWKHHTXDWLRQIURPxWRxZHJHW
Ú
- ∂p =
p – p
RU
p – p =
u m t
Ú
x x
∂x
u m x – x t m u ◊ L t
7KHKHDGORVVGXULQJÀRZLV m u L p - p = hf = rg rgt Note: 7KH KHDG ORVV LQFUHDVHV ZLWK YHORFLW\ DQG OHQJWK RI ÀRZ EXW GHFUHDVHV ZLWK LQFUHDVLQJGLVWDQFHEHWZHHQWKHSODWHV Derive an expression of local velocity for viscous flow between parallel plates when one SODWHLV¿[HGDQGWKHRWKHULVPRYLQJ:KDWLVWKHQDPHJLYHQWRWKLVNLQGRIIORZ" Moving plate
t+
dx dy
t
P+
P
y
∂t . dy ∂y ∂P . dx ∂x
t
7KLVW\SHRIÀRZLVFDOOHG&RXHWWHÀRZ,QFDVHZHFRQVLGHUWKHHTXLOLEULXPRIWKHÀXLG HOHPHQWZHJHW Ê ∂p ˆ p◊dy◊± Á p + dx dy◊ – t ◊dx◊ ∂x ˜¯ Ë ∂t ∂p = ∂y ∂x
Ê ∂t ˆ ÁË t + ∂ y d y˜¯ dx◊
652
Fundamentals of Fluid Mechanics
RU
RU
∂p ◊ dy ∂x
Ú ∂t = Ú
Ê ∂p ˆ t = Á ˜ y + c Ë ∂x ¯ t=m
%XW
du =
\
du dy
Ê ∂p ˆ y dy + c ∂y m ÁË ∂x ˜¯
,QWHJUDWLQJWKHHTXDWLRQZHJHW
Ú ∂u = u=
Ê ∂p ˆ m ÁË ∂x ˜¯
Ú y dy + Ú dy
Ê ∂ p ˆ y + c y + c m ÁË ∂x ˜¯
L
$SSO\LQJWKHERXQGDU\FRQGLWLRQVWR¿QGcDQGc y u KHQFHc y = tu = v KHQFHc =
Ê ∂p ˆ t v – Á ˜ m Ë ∂x ¯ t
3XWWLQJWKHYDOXHRIC & CLQHTQL u=
=
Ê ∂ p ˆ y Ê v ∂p t ˆ + Á y ◊ Á ˜ m Ë ∂x ¯ Ë t m ∂x ˜¯ v Ê - ∂p ˆ [ty – y] + ◊y Á ˜ t m Ë ∂x ¯
7KHHTXDWLRQVKRZVWKDWORFDOYHORFLW\GHSHQGVRQ
∂p ∂p DQGYHORFLW\v RIWKHSODWH ∂x ∂x
FaQEHQHJDWLYHRUSRVLWLYH,QFDVHLWLV]HURWKHQ u=
v ◊y t
7KH HTXDWLRQ VKRZV WKDW YHORFLW\ u FKDQJHV WR ]HUR IURP VWDWLRQDU\ SODWH WR PD[LPXP YHORFLW\vOLQHDUO\ZKLFKLVWKHYHORFLW\RIWKHPRYLQJSODWH,QFDVH YHORFLW\ZLOOYDU\SDUDEROLFDOO\
∂p πWKHQWKHORFDO ∂x
Laminar Flow
)LQGWKHVWUHVVGLVWULEXWLRQLQ&RXHWWHIORZ ,Q&RXHWWHÀRZWKHORFDOYHORFLW\v LVJLYHQE\ u=
Ê - ∂p ˆ v ty – y ◊y m ÁË ∂x ˜¯ t
V
V V
V
31
31
∂P π0 ∂x
13
Velocity distribution
13
Velocity distribution
∂P =0 ∂x
'L൵HUHQWLDWLQJWKHHTXDWLRQZHJHW Ê - ∂p ˆ ∂u v = t±y Á ˜ m Ë ∂x ¯ ∂y t t=m
%XWVKHDUVWUHVV
RU
t=
∂u ∂y Ê ∂p ˆ mv ÁË - ∂x ˜¯ t±y t
6KHDUVWUHVVDWVWDWLRQDU\SODWHLVt FDQEHIRXQGRXWE\SXWWLQJy t =
Ê - ∂p ˆ t mv + Á ◊ t Ë ∂x ˜¯
6KHDUVWUHVVDWPRYLQJSODWHFDQEHIRXQGRXWE\SXWWLQJy = t tm =
= 6KHDUVWUHVVDWy =
Ê - ∂p ˆ Ê t mv ˆ + Á ÁË - t ˜¯ ˜ t Ë ∂x ¯ Ê ∂p ˆ t mv + Á ˜◊ Ë ∂x ¯ t
t LHFHQWUHRIWZRSODWHV mv tc = t
653
654
Fundamentals of Fluid Mechanics
$SRLQWZKHUHVKHDUVWUHVVLV]HURLV O=m
RU
y=
t Ê - ∂p ˆ Ê t ˆ + Á - y˜ Á ˜ ¯ Ë ∂x ¯ Ë
t v –m ¥ Ê - ∂p ˆ t ÁË ∂x ˜¯
7KHVKHDUVWUHVVGLVWULEXWLRQLVDVVKRZQEHORZ V
t y = t/2
+ mv ×
1
F I H K ∂P
13
t 2
31
y =
Shear Stress Distribution
∂x
$ IOXLG RI YLVFRVLW\ 1VP2 DQG 6* LV IORZLQJ WKURXJK D FLUFXODU SLSH RI GLDPHWHU PP7KH PD[LPXP VKHDU VWUHVV DW WKH SLSH ZDOO LV JLYHQ DV 1P2 )LQGL SUHVVXUHJUDGLHQWLL DYHUDJHYHORFLW\DQGLLL 5H\QROGVQXPEHURIWKHIORZ (UPTU 2005-6) Ê - ∂p ˆ r Guidance: )RUÀRZWKURXJKSLSHVKHDUVWUHVVt = Á +HQFHIRUPD[LPXPVKHDU Ë ∂x ˜¯ VWUHVVDWSLSHZDOOLVZKHQr = R$YHUDJHYHORFLW\iV u =
Ê - ∂p ˆ ¥ R 8 m ÁË ∂x ˜¯
Ê - ∂p ˆ R t PD[ = Á Ë ∂x ˜¯
\
Ê ˆ - ∂ p ¥ ÁË ∂x ˜¯ ¥ - ∂p = = 8 ¥1P ∂x
Laminar Flow
655
$YHUDJHYHORFLW\ u u =
=
Ê - ∂p ˆ R 8 m ÁË ∂x ˜¯ ¥ 8 ¥ ¥ ¥
=PV
5H\QROGVQXPEHU =
=
u ◊r◊ D m ¥ ¥ ¥
Show that for viscous flow through a circular pipe mean velocity of flow occurs at a UDGLDOGLVWDQFHRIR from the centre of pipe where R is the radius of pipe 7KHORFDOYHORFLW\ u=
Ê - ∂p ˆ R – r m ÁË ∂x ˜¯
L
DQGDYHUDJHYHORFLW\ u =
Ê - ∂p ˆ R 8 m ÁË ∂x ˜¯
LL
(TXDWLQJHTQVL DQGLL Ê - ∂p ˆ Ê - ∂p ˆ R – r R Á ˜ m Ë ∂x ¯ 8 m ÁË ∂x ˜¯ RU RU RU
R±r = R R r
r=
R
R $ OXEULFDWLQJ RLO RI YLVFRVLW\ 1VP2 DQG 6* LV SXPSHG WKURXJK D PP GLDPHWHUSLSH,IWKHSUHVVXUHGURSSHUPHWUHRISLSHLVN1P2¿QGWKHIORZ
$YHUDJHYHORFLW\ u =
Ê - ∂p ˆ p 8 m ÁË ∂x ˜¯
656
Fundamentals of Fluid Mechanics
¥ ¥ ¥
u =
RU
u PV
'LVFKDUJHQ = u ¥ A ¥ p ¥
PV
2LOKDYLQJ6*LVSXPSHGWKURXJKDPPGLDPHWHUSLSH7KHGLVFKDUJHLV mPLQDQGSUHVVXUHGURSLVN3DIRUPOHQJWKRISLSH)LQGYLVFRVLW\
$YHUDJHYHORFLW\ u =
RU
u =
Q A 0.9 ¥ 4 6 ¥ p ¥ (0.20) 2
PV 7KHSUHVVXUHGURSLQDSLSHIRUOHQJWKL p – p =
¥ =
RU
u m L D m ¥ ¥
m=
¥ ¥ ¥ ¥
1VP
$ SUHVVXUH GURS RI 1P2 WDNHV SODFH LQ D FLUFXODU SLSH RI OHQJWK P 7KH 5H\QROGVQXPEHURIWKLVIORZLV)LQGGURSLQSUHVVXUHLQFDVHIORZLVPDGHGRXEOH ZLWKRXWFKDQJLQJOLTXLGSURSHUWLHV 6LQFH5H\QROGVQXPEHUWKHÀRZLVODPLQDU p – p =
u m L D
:KHQÀRZLVPDGHGRXEOHLH Q¢ Q
Laminar Flow
657
A u ¢ ◊A u
ZHKDYH RU
u ¢ u p¢ – p¢ =
\
u ¢ ¥ m ¥ L D
=¥ u ¥ m ¥ L D
¥ N1P
A viscous flow of oil is taking place in a pipe of 12 cm diameter with discharge of ¥ 10± mV:KDWSRZHUSHUNLORPHWUHLVUHTXLUHGWRPDLQWDLQWKHIORZLI6*RI WKHIOXLGLVDQGYLVFRVLW\LV1VP2? u =
Q ¥ - ¥ = A p ¥
PV
3UHVVXUHGURS u m L p - p = hf = r gD rg RU
hf =
¥ ¥ ¥ ¥ ¥ ¥
PRIRLO 3RZHU rg◊Qhf
¥ ¥¥¥± ¥ ZDWWV $PPGLDPHWHUSLSHNPORQJLVXVHGIRUWUDQVSRUWLQJRLOIURPDWDQNHULQVHD WRVKRUHDWIORZRIPV)LQGWKHSRZHUUHTXLUHGWRPDLQWDLQWKHIORZ$VVXPHm 1PV 6* IRUWKHRLO
)ORZ u ¥$UHD Q = u ¥ pd
u =
¥ PV p ¥
658
Fundamentals of Fluid Mechanics
1RZWRFKHFN5H\QROGVQXPEHU ru d m
Re = =
¥ ¥ ¥
6LQFHReKHQFHÀRZLVODPLQDU p – p =
1RZ
=
u m L D ¥ ¥ ¥ ¥
¥1P 3RZHUORVV p – p ¥ Q
¥¥
ZDWWV
N:
$QRLOKDVYLVFRVLW\RI1PVDQG6*RIIORZVWKURXJKDKRUL]RQWDOSLSHRI FPGLDPHWHUZLWKDSUHVVXUHGURSRIN1P2SHUPHWUHOHQJWKRISLSH)LQG UDWH RIIORZ VKHDUVWUHVVDWSLSHZDOO GUDJIRUPOHQJWKRISLSHDQG SRZHU WRPDLQWDLQIORZLQPSLSHOHQJWK -dp -dp = = 6 ¥1P dx dL 1RZ
Q=
= 1RZVKHDUVWUHVV
p Ê - ∂p ˆ R 8 m ÁË ∂x ˜¯ p ¥ ¥ ¥
PV t=–
∂p r ◊ ∂x
DWZDOOt PD[ = –
∂p R ◊ ∂x
Laminar Flow
= 6 ¥ ¥
659
1P
7KHDUHDDWZKLFKWKHVKHDUVWUHVVLVDFWLQJLVWKHSHULSKHU\PXOWLSOLHGE\OHQJWK+HQFH GUDJIRUFH Fd VKHDUVWUHVV¥VXUIDFHDUHD ¥p ¥ d ¥ L
¥ p ¥¥ N1 3RZHU UHTXLUHG WR PDLQWDLQ WKH ÀRZ FDQ EH IRXQG RXW E\ PXOWLSO\LQJ GLVFKDUJH WR WKH SUHVVXUHGURS 3RZHU Q ¥
∂P ◊L ∂x
¥ 6 ¥ ¥ ¥ZDWWV N:
11.10 KINETIC ENERGY CORRECTION FACTOR The velocity distribution for viscous flow in a circular pipe of radius R is given by: u umax
± ÊÁ r ˆ˜ Ë R¯
2
Where u is the local velocity at radius r and umaxLVWKHPD[LPXPYHORFLW\DWWKHFHQWUH )LQGWKHYDOXHVRIFRUUHFWLRQIDFWRUVIRUNLQHWLFHQHUJ\DQGPRPHQWXPLQFDVHDYHUDJH YHORFLW\LVXVHGLQWKHLUFDOFXODWLRQ Or 3URYHWKDWIRUYLVFRXVIORZWKURXJKDFLUFXODUSLSHWKHNLQHWLFHQHUJ\FRUUHFWLRQIDFWRU LVHTXDOWR 8378 Guidance: :HKDYHWRDSSO\FRUUHFWLRQIDFWRUVLQFDVHNLQHWLFHQHUJ\DQGPRPHQWXPDUH FDOFXODWHGRQWKHEDVLVRIDYHUDJHYHORFLW\ Local velocity (u)
r r + dr
R
Viscous Flow through Pipe
660
Fundamentals of Fluid Mechanics
&RQVLGHUDQHOHPHQWDU\DUHDDWUDGLXVrDQGWKLFNQHVVdr7KHQDUHDRIWKHFLUFXODUVWULS dA prdr A=
Ú prdr
7KHDYHUDJHYHORFLW\ u
%XW
u =
Q A
Q=
Ú
udA =
Ú
Ê r ˆ uPD[ Á - ˜ p ◊ r ◊ dr R ¯ Ë
u =
Ú
u ◊prdr =
Ú
Ê r ˆ uPD[ Á - ˜ ¥pr ¥ dr R ¯ Ë
Ú p rdr uPD[
=
Ú
Ê r ˆ r dr Á R ˜¯ Ë
R
Ú
R
rdr R
uPD[ =
=
=
È r r ˘ Í ˙ Î R ˚ R
Ê r ˆ Á ˜ Ë ¯ uPD[ ◊
> R - R @ R
uPD[
.LQHWLFHQHUJ\FRUUHFWLRQIDFWRU a=
$FWXDONLQHWLFHQHUJ\ .LQHWLFHQHUJ\FDOFXODWHGE\DYHUDJHYHORFLW\
a= A
Ú
Ê uˆ ÁË ˜¯ u
dA
Laminar Flow
= p R %XW
\
Ú
u ¥prdr u
R
u =
uPD[
a=
p R
= R R
=
661
Ú
R
Ú
R
Ú
R
◊ u prdr uPD[
Ê r ˆ Á - R ˜ Ë ¯
r ◊dr
Ê r r r ˆ Á - R + R - R ˜ r ◊dr Ë ¯ R
È r r r r ˘ + = Í ˙ R Î R R R ˚
=
>R±RR±R] R
=
◊ R >@ R
7KHPRPHQWXPFRUUHFWLRQIDFWRU b=
=
A
Ú
p R
8 = R
u dA = p R u
Ú
R
Ú
R
◊
Ú
R
u ¥ p r dr u
u ◊ prdr uPD[
Ê r ˆ ◊ rdr Á R ˜¯ Ë
+HQFHDFWXDONLQHWLFHQHUJ\DQGPRPHQWXPFDQEHIRXQGRXWE\¿QGLQJWKHVHZLWKDYHUDJH YHORFLW\ DQG WKHQ PXOWLSO\LQJ WKH FDOFXODWHG YDOXHV ZLWK FRUUHFWLRQ IDFWRU RI DQG UHVSHFWLYHO\
662
Fundamentals of Fluid Mechanics
2LORIDEVROXWHYLVFRVLW\SRLVHDQGGHQVLW\NJPIORZVWKURXJKDFPSLSH ,IWKHKHDGORVVLQOHQJWKSLSHLVPDVVXPLQJDODPLQDUIORZGHWHUPLQHL WKH YHORFLW\LL 5H\QROGVQXPEHUDQGLLL IULFWLRQIDFWRU)DQQLQJ¶V $0,( p – p = hf =
u m L p - p = D rL rg
u =
¥ D r L m L
\
=
u m L D
¥ ¥ ¥ ¥ ¥
PV 5H\QROGVQXPEHr =
ru D m
= ¥ ¥ )ULFWLRQIDFWRU
f= =
5H\QROGVQXPEHU ¥
Crude oil of m SRLVHDQGUHODWLYHGHQVLW\ IORZVWKURXJKDPPGLDPHWHU YHUWLFDOSLSH7KHSUHVVXUHJDXJHV¿[HGPDSDUWUHDGN1P2DQGN1P2 as VKRZQLQ¿JXUH)LQGGLUHFWLRQDQGUDWHRIIORZWKURXJKWKHSLSH 2
20
P2 = 200 kN/m
2
P1 = 600 kN/m
20 f
Laminar Flow
663
Guidance: 7KHSUHVVXUHGURSLQFOXGHVWKHGL൵HUHQFHRIKHLJKWRIWKHJDXJHV+HQFHDGG hrgDWULJKWVLGHRIWKHSUHVVXUHGURSHTXDWLRQ 32 u m L + hrg D2
p1 – p2 =
32 ¥ u ¥¥ 20 + 20 ¥ 900 ¥ 2
(600 – 200) ¥ 103 =
> - @ ¥ 3 ¥ ¥ - 4 ¥ ¥
u =
\ 1RZ5H\QROGVQXPEHU
PV
Re =
ru D ¥ ¥ = m
Since ReÀRZLVODPLQDU 1RZ ÀRZUDWHQ = u ¥ A =
¥ p ¥ 2 4
¥ 104P3V
11.11 FLOW IN INCLINED PIPE A liquid of viscosity 0.07 poise and RD of 0.86 flows through an inclined pipe of 20 m diameter. A discharge of 0.013 m3/min is to be maintained through the pipe in such a way that pressure along the length is constant. Find the required inclination of the pipe. Flo
L L sin q
Z2 q
Z1
w
664
Fundamentals of Fluid Mechanics
Guidance: 7KHÀRZKDVWRWDNHIURPKLJKHUOHYHOWRORZHUOHYHOVRWKDWWKHSUHVVXUHGURS KHDGGXHWRYLVFRVLW\LVHTXDOWRVWDWLFKHDGGXHWRGL൵HUHQFHRIOHYHOVIRUOHQJWKL,QRWKHU ZRUGVhf = (z1 – z2) = LVLQq +HDGORVV hf =
u = =
32 u m L D2 ¥ r ¥ g Q A 0.013 p 60 ¥ ¥ (0.02)2 4
PV hf =
\
32 ¥ 0.69 ¥ 0.07 ¥ L (0.02) 2 ¥ .86 ¥ 103 ¥ 9.81
6LQFHSUHVVXUHLVFRQVWDQWKHQFH hf = LVLQq RU
LVLQq =
32 ¥ 0.69 ¥ 0.07 ¥ L 4 ¥ 10- 4 ¥ 0.86 ¥ 103 ¥ 9.81
RU VLQq = 0.45 RU q = 27.2 A tank has 4 cm diameter and 100 cm long pipe attached at its bottom. The tank has oil of SG = 0.9 and viscosity = 0.15 Ns/m2. Find flow through pipe when the height of oil in tank is 0.6 m above the pipe.
1 0.6 m
1m
Dia = 4 cm 2
$SSO\LQJ%HUQRXOOL¶VHTXDWLRQEHWZHHQVHFWLRQVDQG p1 p v2 v2 + 1 + z1 = 2 + 2 + z2 + hL rg rg 2g 2g
Laminar Flow
665
p p = v ªz – z P rg rg V= u DYHUDJHYHORFLW\DWRXWOHWRISLSH
DQG
%XWKHDGORVVLV
u g
±hL
hL =
u m ◊ L D ◊ rg
L
◊ u ¥ ◊ ¥ ¥ ¥
=
u
3XWWLQJWKHYDOXHRIhLLQHTQL u ± u g RU
u u ± u = u =
1RZ5H\QROGVQXPEHU
- ± + - ±
PV
Re = =
r uD m ¥ ¥
6LQFHReWKHÀRZLVODPLQDU 1RZ
Q= u ¥A =
¥ p ¥
¥ mV
666
Fundamentals of Fluid Mechanics
A laminar flow is taking place between two parallel and stationary plates 100 mm DSDUW0D[LPXPYHORFLW\RIWKHIORZLVPV¿QG IORZSHUPHWUHZLGWK VKHDU VWUHVVDWWKHSODWHV WKHSUHVVXUHGURSIRUIORZRIP YHORFLW\JUDGLHQWEHWZHHQ WKHSODWHVDWDVHFWLRQDQG ORFDOYHORFLW\DWPPIURPWKHSODWH7DNHYLVFRVLW\ 1VP2
t = 100 mm
Guidance: 7KHORFDOYHORFLW\RIWKHÀRZLVJLYHQE\u =
YHORFLW\ u =
Ê - ∂p ˆ ty – y DYHUDJH m ÁË ∂ x ˜¯
u mL Ê - ∂p ˆ t DQGuPD[ u 3UHVVXUHGURS p – p = DQG m ÁË ∂ x ˜¯ t
Ê - ∂p ˆ t±y t= Á Ë ∂ x ˜¯ uPD[ PV \
u =
PV
Q = u ◊A
1RZ
¥¥ = PV
1RZ
\
u =
Ê - ∂p ˆ ◊t m ÁË ∂ x ˜¯
¥ ¥ m - ∂p = ∂x =
¥ 1P ¥ -
1RZWR¿QGp – p EHWZHHQWZRSRLQWVDWPDSDUWZHNQRZ p – p =
u mL ¥ ¥ ¥ = t
N1P
Laminar Flow
667
6KHDUVWUHVVLV Ê - ∂p ˆ t±y ÁË ∂ x ˜¯
t=
7KHVKHDUVWUHVVDWSODWHVLVVDPHZKLFKFDQEHIRXQGRXWE\SXWWLQJy RUy = t Ê - ∂p ˆ t ÁË ∂ x ˜¯
t ZDOO =
¥¥
=
1P
1RZWR¿QGRXWYHORFLW\JUDGLHQWEHWZHHQWKHSODWHVZHXVH1HZWRQ¶VHTXDWLRQ t=m
RU
YHORFLW\JUDGLHQW
du dy
du t = dy m
du = V± dy
\ 7R¿QGYHORFLW\DWy PP u = =
Ê - ∂p ˆ ty – y m ÁË ∂ x ˜¯ >¥± ] ¥
PV
7ZR SDUDOOHO SODWHV DUH PP DSDUW DQG D VWHDG\ YLVFRXV IORZ RI RLO LV WDNLQJ SODFH EHWZHHQWKHP,ISUHVVXUHGURSLV.1P2 per metre length of plates and m = 5 ¥ 10–2 1VP2 IRU RLO ¿QG IORZ SHU PHWHU ZLGWK PD[LPXP VKHDU DQG PD[LPXP YHORFLW\RIIORZ P1
t = 4 mm
L
P2
668
Fundamentals of Fluid Mechanics
'URSRISUHVVXUHRIWKHÀRZLQOHQJWKLRIWKHSODWHV p – p =
¥ =
u =
\
u mL +HUHL P t ¥ u ¥ ¥ - ¥ ¥ ¥ ¥ - ¥ ¥ -
¥± PV
'LVFKDUJHSHUPHWUHZLGWK 1RZPD[LPXPVKHDUVWUHVV
Q = u ¥ A = u ¥t ¥ ¥¥ ¥± mV
Ê - ∂p ˆ t ¥ tPD[ = Á ˜ Ë ∂x ¯ Ê - ¥ ˆ = Á ¥ ˜ Ë ¯
1P
1RZPD[LPXPYHORFLW\
uPD[ u ¥ PV
$PDVRQU\ZDOORIDZDWHUWDQNLVPWKLFN,WKDVGHYHORSHGDFUDFNRIPPDQG PZLGHDQGWKLVFUDFNH[WHQGVWRHQWLUHWKLFNQHVVRIWKHZDOO7KHKHLJKWRIZDWHULV PDERYHWKHFUDFN)LQGOHDNDJHYROXPHSHUGD\LIm 1VP2
1 4m
Leakage Through Tank
Laminar Flow
669
Guidance: 7KH SUREOHP LV QRWKLQJ EXW WKH ÀRZ WKURXJK WZR SDUDOOHO VWDWLRQDU\ SODWHV IRUPHGE\WKHFUDFN+HUHt PPL PDQGZLGWK P hf =
p - p u mL = rg t ◊ rg
hf
u mL t rg
u =
\
=
¥ ¥ - ¥ ¥ ¥ ¥ ¥ - ¥ ¥ ¥ - ¥ ¥ ¥ -
¥±PV Q ÀRZ A u ¥¥± ¥ ¥± mV /HDNDJHSHUGD\ Q ¥¥ ¥± ¥¥ P 7ZRKRUL]RQWDOSODWHVPDSDUWFRQWDLQRLOZLWKYLVFRVLW\RI1VP2,IWKHXSSHU SODWHLVPRYHGZLWKPVDQGWKHSUHVVXUHGL൵HUHQFHRIWZRVHFWLRQVPDSDUWLV N1P2 )LQG L YHORFLW\ GLVWULEXWLRQ LL GLVFKDUJH SHU XQLW ZLGWK DQG LLL VKHDU VWUHVVRQWKHXSSHUSODWH Guidance: 7KH YHORFLW\ GLVWULEXWLRQ RI WKH ÀXLG LQ FDVH RQH SODWH LV PRYLQJ LV JLYHQ DV
u=
Ê - ∂p ˆ ◊y + Á m Ë ∂ x ˜¯
Ú
t
ty – y 'LVFKDUJHFDQEHIRXQGE\LQWHJUDWLQJDV Q =
VWUHVVE\GL൵HUHQWLDWLQJYHORFLW\DQGDSSO\LQJt = m 1
Ú
t
∂u ∂y
2 Moving plate with v = 1.2 m/s
L = 12 mm
Stationary L = 100 m
udyVKHDU
670
Fundamentals of Fluid Mechanics
+HUH
dx P dP ¥ ¥1P
- ∂p ¥ = 1P ∂x
\
)LQGYHORFLW\GLVWULEXWLRQ u=
=
y+ y – y ¥
yy – y yyy y± y
V Ê - ∂p ˆ ◊y + ty – y t m ÁË ∂ x ˜¯
'LVFKDUJHSHUXQLWZLGWKRIWKHSODWHV Q=
Ú
t
u ◊dy
)URPHTQL Q=
Ú
t
=
Ú
y±y dy
y±y dy
È y y ˘ = Í - ˙ ˚ Î ¥ –
± ¥± mV
6KHDUVWUHVVDWXSSHUSODWH t=m
∂ ∂u =m y±y ∂y ∂y
8VLQJHTQL RIYHORFLW\ t = m ±y
8SSHUSODWHPHDQVy P
L
Laminar Flow
\
t XSSHU
671
± ¥¥± ± ¥ 1P
11.12 FLOW IN INCLINED PLATES Laminar flow of a fluid (m 1P2DQG6* LVPDLQWDLQHGLQSDUDOOHOSODWHV RIH[WHQVLYHZLGWK7KHSODWHVDUHLQFOLQHGDWWRWKHKRUL]RQWDODQGDUHNHSWPP DSDUW8SSHUSODWHLVPRYHGZLWKPVLQGLUHFWLRQRSSRVLWHWRWKHIORZ7ZRSUHVVXUH JDXJHV¿WWHGRQXSSHUSODWHDWPYHUWLFDOO\DSDUWUHDGVSUHVVXUHDVN1P2 and N1P2UHVSHFWLYHO\)LQG WKHYHORFLW\DQGVKHDUVWUHVVGLVWULEXWLRQEHWZHHQWKH SODWHV PD[LPXPIORZYHORFLW\DQG VKHDUVWUHVVRQWKHXSSHUSODWH Moving plate 1 250 kN/m2 2
z=
10
/s
.5 m
1 V=
mm
L 1m
30 kN/m2
45°
z2
z1
/HQJWKRIWZRVHFWLRQ L L VLQ
\ RU
L=
m
$SSO\LQJ%HUQRXOOL¶VHTXDWLRQEHWZHHQVHFWLRQVDQG P P V V + + z = + + z + hL rg rg g g 6LQFHSLSHKDVFRQVWDQWGLDPHWHUKHQFHV = V \
HL = =
P - P + z – z rg - ¥ ¥ ¥
672
Fundamentals of Fluid Mechanics
= 14.44 + 1 = 15.44 m H ¥ r¥ g - ∂P = L 2 ∂x
Now,
as dx = L
15.44 ¥ 1.2 ¥ 103 ¥ 9.81 - ∂P = ∂x 2 = 128.5 ¥ 103 N/m3 The velocity distribution, u=
=
V 1 Ê - ∂P ˆ 2 y+ Á ˜ (ty – y ) t 2 m Ë ∂x ¯ - 1.5 1 y+ (128.5 ¥ 103)(0.01 y – y2) 0.01 2 ¥ 0.8
= –150 y + 80.3 ¥ 103(0.01y – y2) The condition for maximuPYHORFLW\RIWKHÀRZLVZKHQ
∂u = 0, hence ∂y
∂u = –150 + 80.3 ¥ 103(0.01 – 2y) = 0 ∂y or
0.01 – 2y =
150 = 1.86 ¥ 10–3 80.3 ¥ 103
= 0.00186 2y = 0.01 – 0.00186 = 8.14 ¥ 10–3 or y = 4.07 ¥ 10–3 m Put y = 4.07 ¥ 10–3 in velocity equation to get maximum velocity. umax = – 150 ¥ 4.07 ¥ 10–3 + 80.3 ¥ 103 [0.01 ¥ 4.07 ¥ 10–3 – (4.07 ¥ 10–3)2] = – 0.610 + 3.268 – 1.330 = 1.327 m/s Shear stress distribution is: or
Ê - ∂P ˆ Ê t ˆ t = mV + Á ˜¯ Á - y˜ Ë Ë ¯ ∂ 2 x t = 0.8 ¥
Ê 0.01 1.5 + (128.5 ¥ 103) Á Ë 2 0.01
ˆ y˜ ¯
Laminar Flow
673
= –120 + 642.5 – 128.5 ¥ 103 ¥ y = 522.5 – 128.5 ¥ 103 ¥ y Shear stress at upper plate can be found out by putting y = 0.01 t upper = 522.5 – 128.5 ¥ 103 ¥ 0.01 = 522.5 – 128.5 = –762.2 N/m2
11.13 DARCY’S EQUATION Derive the expression for Darcy’s equation for laminar flow through a porous material. Darcy proved by experiments that the velocity of a fluid through a porous material varies linearly with the loss of head (hf ) and the flow is therefore laminar/viscous. Since the loss of head through a pipe is given by hf = by hf =
32 u mL and through parallel plates rg D2
12 u mL , hence a general expression for laminar flow is: D2 ◊ rg k ¢u m L rg D2
hf =
where
k ¢ = Constant
Now porous material has a number of small pores say n of diameter d p hence, we can write: D = n ◊dp Hence, we say that the head loss,
or
Now, \
hf =
k ¢u m L r g ◊ n 2 d P2
u =
r g n 2 d P2 Ê h f ˆ Á ˜ k ¢m Ë L ¯
hf L
= hydraulic gradient = i
u = ki
k LV FDOOHG FRH൶FLHQW RI SHUPHDELOLW\ 7KH DERYH HTXDWLRQ LV FDOOHG 'DUF\¶V HTXDWLRQ IRU ÀRZRIZDWHUWKURXJKVRLO7KHHTXDWLRQLVDSSOLFDEOHLIR e < 1. 41. Water at a rate of 8 ¥ 10–7 m3/s is flowing through a soil 10 cm height and 50 cm2 crossVHFWLRQDODUHDXQGHUDFRQVWDQWKHDGRIFP)LQGWKHFRH൶FLHQWRISHUPHDELOLW\ $YHUDJHYHORFLW\RIÀRZRIZDWHUWKURXJKWKHVRLO 8 ¥ 10-7 Q = u = 50 ¥ (10-2 ) 2 A
674
Fundamentals of Fluid Mechanics
¥ - = ¥±PV ¥ - $VSHU'DUF\¶VHTXDWLRQ Êh ˆ u = ki = k Á f ˜ Ë L¯ ¥± = k ¥
¥ - ¥ -
RU k ¥± PV :KDWLVIOXLGL]DWLRQ":KHUHLVLWXVHG" :KHQDOLTXLGLVIRUFHGXSZDUGVDWLQFUHDVLQJYHORFLW\WKURXJKDFROXPQRIJUDQXODUPDWHULDO RIVL]HdDVWDWHLVUHDFKHGZKHQDOOSDUWLFOHVDUHHQWUDLQHGRUFDUULHGLQWKHÀRZLHWKH EHGLVLQÀXLGVWDWH7KLVVWDWHLVFDOOHGÀXLGL]DWLRQ7KHFRUUHVSRQGLQJYHORFLW\LVFDOOHG ÀXLGL]DWLRQYHORFLW\ZKLFKLVJLYHQE\ Vf =
rg - r g d c m
ZKHUH c SRURVLW\RIWKHPDWHULDOrg & rDUHGHQVLWLHV RIJUDQXOHVDQGZDWHU
)OXLGL]DWLRQ LV XVHG LQ WKH EDFN ZDVKLQJ RI JUDYLW\ ¿OWHU IRU ZDWHU SXUL¿FDWLRQ %\ EDFN ZDVKLQJLPSXULWLHVLQWKH¿OWHUDUHZDVKHGRXWUHPRYHG
11.14 OIL BEARINGS :KDW LV D MRXUQDO EHDULQJ" )LQG WKH YLVFRXV UHVLVWDQFH DQG SRZHU WR RYHUFRPH WKH UHVLVWDQFH Bearing Shaft N
D
Thickness of oil film
L
Lubricating oil
Journal Bearing
,QMRXUQDOEHDULQJDYHU\WKLQ¿OPRIOXEULFDWLQJRLOLVPDLQWDLQHGEHWZHHQVWDWLRQDU\VXUIDFH RIWKHEHDULQJDQGWKHURWDWLQJVKDIW7KHVKDIWKDVGLDPHWHUDDQGVSHHG N
Laminar Flow
\
$QJXODUYHORFLW\ Z =
675
p N UDGV
7KHWDQJHQWLDOYHORFLW\RIRLODWWKHVKDIWLV D
u = ZR = Z u=
p DN p N D ¥ =
7KHYHORFLW\JUDGLHQWEHWZHHQVWDWLRQDU\VXUIDFHRIWKHEHDULQJDQGPRYLQJVXUIDFHRIWKH VKDIWLV du u- = ZKHUH t WKLFNQHVVRIRLO¿OP dy t 1RZDSSO\LQJ1HZWRQ¶VODZRIYLVFRVLW\
6KHDUVWUHVVt = m
du dy
= m◊
u t
= m◊
p DN ◊ t
\6KHDUIRUFHRUYLVFRXVUHVLVWDQFH F = t ¥6XUIDFHDUHD = m◊
p DN ¥ pDL ◊ t
= m◊
p D N ◊ L ◊ t
7RUTXHUHTXLUHGWRRYHUFRPHYLVFRXVUHVLVWDQFH T=F¥
=
D D m p D NL = ¥ ◊ t
m p D N ◊ L ◊ t
3RZHUDEVRUEHGE\WKHEHDULQJWRRYHUFRPHWKHYLVFRXVUHVLVWDQFH P = T ◊w =
p NT
676
Fundamentals of Fluid Mechanics
ZKHUHT =
mp D N ◊ L ◊ t
$VKDIWRIPPGLDPHWHUURWDWHVDWUSPLQDPPORQJEHDULQJ7KHVKDIWDQG EHDULQJDUHVHSDUDWHGE\DGLVWDQFHRIPPRIRLOZLWKm 1VP)LQGWKHSRZHU DEVRUEHGE\WKHEHDULQJ T=
mp D NL ◊ t
=
¥ p ¥ ¥ ¥ ¥ ¥ -
=
¥ - ¥ p ¥ ¥ - ¥ ¥ -
¥± Nm 3RZHUDEVRUEHG =
p NT p ¥ ¥ ¥ - =
¥±ZDWWV ZDWWV
'HULYHDQH[SUHVVLRQIRUSRZHUDEVRUEHGLQIRRWVWRSEHDULQJ D = 2R
Shaft
Bearing
Oil
Foot Stop Bearing
$IRRWVWRSEHDULQJLVWRSURYLGHVXSSRUWWRDURWDWLQJYHUWLFDOVKDIW7KHVSDFHEHWZHHQWKH VXUIDFHRIWKHVKDIWDQGWKHEHDULQJLV¿OOHGZLWKRLO7KHUSPRIWKHVKDIWLVNWKHQ
Laminar Flow
$QJXODUYHORFLW\Z =
p N
7DQJHQWLDOYHORFLW\ u = Z◊
D
=
p N D ◊
=
p DN
u- u du = = t t dy 6KHDUVWUHVV t = m =m
du dy u t
6KHDUIRUFHRQWKHHOHPHQWDU\ULQJRIUDGLXVrDQGWKLFNQHVVdr dF = m◊
u ¥pr ◊dr t
= m◊
p DN ¥pr ◊dr t
=
m◊ p rN ◊ pr ◊ dr ◊ t
=
m p Nr dr ◊ t
dT = dF◊r = \
T=
Ú
R
m p Nr dr ¥ t
m ◊p Nr dr t
=
m R p N t
=
m p N R t
677
678
Fundamentals of Fluid Mechanics
=
m p NR t
3RZHUDEVRUEHGE\EHDULQJ P = Tw = ZKHUH T =
p NT
m ¥ p ◊N◊R ◊ t
)LQG SRZHU UHTXLUHG WR URWDWH D YHUWLFDO VKDIW RI GLDPHWHU PP DW USP7KH ORZHUHQGRIWKHVKDIWUHVWVLQDIRRWVWRSEHDULQJ7KHHQGRIWKHVKDIWDQGVXUIDFHRI WKHEHDULQJDUHERWKIODWDQGDUHVHSDUDWHGE\DQRLO¿OPRIWKLFNQHVVPP2LOKDV YLVFRVLW\ SRLVH (Punjab University)
7RUTXHT
=
m ◊pN R t Ê ˆ ¥ p ¥ Á ˜ Ë ¯ ¥ ¥ -
1P 3RZHU
=
p NT p ¥ ¥
:
'HULYHDQH[SUHVVLRQIRUSRZHUFRQVXPHGLQFROODUEHDULQJ Bearing Collar Shaft
r r + dr
Collar Bearing
Laminar Flow
679
7KHFROODUEHDULQJVXSSRUWVWKHD[LDOWKUXVWRIWKHURWDWLQJVKDIWE\VHSDUDWLQJWKHFROODURI WKHVKDIWIURPWKHVXUIDFHRILWWKHEHDULQJZLWKD¿OPRIRLORIXQLIRUPWKLFNQHVVZKLFKLV PDLQWDLQHGE\DIRUFHGOXEULFDWLQJV\VWHP,INLVUSPRIWKHVKDIWWKHQ
$QJXODUYHORFLW\Z =
p N
7DQJHQWLDOYHORFLW\= u = Zr =
p N ◊r
u t = m du = m◊ t dy dF = t ¥ dA = m◊ =m¥ =
u ◊pr◊dr t
p N ¥ r ◊prdr ◊ t
m p Nr dr ◊ t
dT = dF ¥ r =
\
T=
m p Nr dr t
Ú
R
R
m ◊p N r dr t
R & RDUHUDGLLRIRXWHU LQQHUVXUIDFHRIWKHFROODU
T=
R m Ê ˆ p N Á r ˜ t Ë ¯R
T=
m ◊pNR – R t
3RZHUFRQVXPHG
pN ◊T W
$FROODUEHDULQJKDYLQJLQWHUQDODQGLQWHUQDOGLDPHWHURIPPDQGPPRLO¿OP WKLFNQHVV PPDQGm SRLVHLVWDNLQJWKHWKUXVWRIWKHVKDIWDQGRYHUFRPLQJ YLVFRXVUHVLVWDQFHZKHQWKHVKDIWURWDWHVZLWKUSP)LQGWKHSRZHUFRQVXPHGE\ WKHFROODUEHDULQJ
680
Fundamentals of Fluid Mechanics
7RUTXHUHTXLUHGWRRYHUFRPHYLVFRXVUHVLVWDQFH T=
m p N R – R t
=
¥ p ¥± ¥ ¥ -
=
¥ - ¥ p ¥± ¥± ¥ -
¥± ¥ 1P
3RZHUFRQVXPHG P=
¥ p ¥ ¥ p N =
:
11.15 DASHPOT :KDWLVDGDVKSRW"([SODLQLWVZRUNLQJDQGGHULYHWKHHTXDWLRQRIORDG
W
Piston
Oil
Cylinder Dashpot Mechanism
'DVKSRWLVDK\GUDXOLFGHYLFHIRUGDPSLQJYLEUDWLRQVRIDPDFKLQH,WFRQVLVWVRIDF\OLQGHU ¿OOHGXSZLWKYLVFRXVÀXLGDQGDSLVWRQZKLFKLQVLGHWKHF\OLQGHUGLVSODFLQJWKHOLTXLGLQ RSSRVLWHGLUHFWLRQWRLWVPRYHPHQW7KHSLVWRQLVFRQQHFWHGWRWKHPRYLQJORDGwXSZDUGV DQGGRZQZDUGV 7KH SULQFLSOH RI WKH GDVKSRW LV EDVHG RQ WKH GUDJ IRUFH H[HUWHG E\ WKH ÀXLG ZKHQ D PRYHDEOHSODWHLVPRYHGSDUDOOHOWRDVWDWLRQDU\DQGSDUDOOHOSODWHV
Laminar Flow
681
If WLVORDGRQWKHSLVWRQWKHQGL൵HUHQFHRISUHVVXUHEHWZHHQWZRHQGVRIWKHSLVWRQ dp =
W 4W = 2 pd pd 2 4
7KHÀRZRIRLOEHWZHHQWKHJDSRIWKHSLVWRQDQGF\OLQGHUVXUIDFHLVVLPLODUWRWKHYLVFRXV ÀRZEHWZHHQSDUDOOHOSODWHVDQGSUHVVXUHGURSIRUOHQJWKL, dp =
12 u mL ZKHUH t WKLFNQHVVRIJDp and u DYHUDJHYHORFLW\ t2 12 u mL 4W = 2 t2 pd
\
RU
u =
Wt 2 3p m Ld 2
1RZVXSSRVHSLVWRQPRYHVZLWKYHORFLW\ vpWKHQÀRZQ is Q = vp ¥
pd 2 4
$OVRZLWKDYHUDJHYHORFLW\ u WKHGLVFKDUJHQWKURXJKWKHJDS Q = u ◊p ◊d ◊t \
2 vp ¥ pd = u ◊p◊d◊t 4
\
u =
Vp ◊ d 4t
2
\
RU
V d Wt = r 3pm Ld 2 4t
m=
4Wt 3 3p L d 3 V p
A oil dashpot is used for damping vibrations. Piston falls 50 mm in 50 seconds in the oil of the cylinder If additional load of 1.2 N is applied, the piston falls through 50 mm in 40 seconds. The diameter of piston is 50 mm and its length is 100 mm. The gap thickness is 1 mm. Find viscosity of the oil. W W + 1.2 = V V1
682
Fundamentals of Fluid Mechanics
V=
5 ¥ - ¥±PV
V¢ =
5 ¥ - ¥±PV
W + W = - ¥ - ¥ W = W
Rr
1RZ
W=
1
m=
Wt p L d V p
=
¥ ¥ ¥ - p ¥ ¥ ¥ -
1VP
11.16 MEASUREMENT OF VISCOSITY :KDWLV6WRNHV¶ODZ":KDWDUHWKHFRQGLWLRQVDQGDVVXPSWLRQVPDGHIRU6WRNHV¶ODZ" 8378 $VSHUWKH6WRNHV¶ODZZKHQDVPDOOVSKHUHPRYHVWKURXJKDYLVFRXVÀXLGZLWKFRQVWDQW YHORFLW\u DGUDJIRUFHH[SHULHQFHGE\WKHVSKHUHLQDGLUHFWLRQRSSRVLWHWRWKHPRWLRQLV JLYHQE\Fd p muDZKHUHu WHUPLQDOYHORFLW\m YLVFRVLW\RIÀXLGDQGD GLDPHWHU RIVSKHUH 7KHFRQGLWLRQIRUDSSO\LQJ6WRNHVWZRLVWKDWWKH5H\QROGVQXPEHURIWKHÀXLGLVOHVVWKDQRQH 7KHDVVXPSWLRQVPDGHLQ6WRNHV¶ODZDUH ,QHUWLDIRUFHDFWLQJRQWKHERG\LVVPDOODVFRPSDUHGWRYLVFRXVIRUFH :DOOVRIYHVVHOFRQWDLQLQJWKHÀXLGGRQRWD൵HFWWKHÀRZRIÀXLGDURXQGWKHVSKHUH )OXLGGRHVQRWVOLSRYHUWKHVSKHUH 7KHVSKHUHLVULJLG What are the various methods of measuring viscosity? )ROORZLQJDUHYDULRXVPHWKRGVIRUPHDVXUHPHQWRIYLVFRVLW\ )DOOLQJVSKHUHPHWKRG &DSLOODU\WXEHPHWKRG
Laminar Flow
683
5RWDWLQJF\OLQGHUPHWKRG 2UL¿FHW\SHYLVFRPHWHU 7KHGHYLFHVXVHGIRUWKHPHDVXUHPHQWRIYLVFRVLW\DUHFDOOHGYLVFRPHWHUV 'HVFULEHIDOOLQJVSKHUHPHWKRGRIPHDVXULQJYLVFRVLW\ Sphere Transparent tube with fluid
Bath for constant temperature
Fd = drag force u
Sphere
u
w = weight of sphere
u
FB = Buoyaucy force
Falling Sphere Viscometer
Free Body DIagram of Sphere
7KHIDOOLQJVSKHUHPHWKRGLVEDVHGRQ6WRNHV¶ODZ$YHUWLFDOWUDQVSDUHQWWXEHLVXVHGZKLFK LV¿OOHGZLWKOLTXLGZKRVHYLVFRVLW\LVWREHDVFHUWDLQHG$VSKHULFDOEDOOLVUHOHDVHGLQWR WKHOLTXLG7KHEDOODWWDLQVDFRQVWDQWYHORFLW\DWDPHDVXUDEOHLQWHUYDORIWLPH'XULQJWKH VWDWHRIFRQVWDQWYHORFLW\WKHIRUFHVDFWLQJGRZQZDUGVPXVWEHHTXDOWRWKHIRUFHVDFWLQJ XSZDUGV,Irs GHQVLW\RIVSKHUHDQGrL GHQVLW\RIOLTXLGWKHQZHKDYH W = Fd + FBZKHUHFd GUDJIRUFHFB ERX\DQF\IRUFHDQGW¢ :HLJKW p p ¥ d ¥ rs ¥ g pmd◊u + ◊d◊rL ¥ g 6 6 \
pm◊u◊d =
m=
p d ¥ g rs – rL 6 gd rs – rL u
684
Fundamentals of Fluid Mechanics
Describe capillary tube method for measuring viscosity. &DSLOODU\ WXEH PHWKRG LV EDVHG RQ WKH SULQFLSOH RI KHDG ORVV RI WKH OLTXLG ZKLOH ÀRZLQJ WKURXJKFDSLOODU\WXEHRIGLDPHWHUdDQGOHQJWKL. The head loss depends on viscosity of WKHOLTXLGZKLFKFDQEHGHWHUPLQHGE\PHDVXULQJÀRZQ). Piezometer Liquid under test
Capillary tube of diameter ‘d ’
h
L
Measurement tank
Capillary Tube Method
$FDSLOODU\WXEHLVDWWDFKHGWRWKHWDQNDVVKRZQLQWKH¿JXUHDQGGLVFKDUJHWKURXJKWKH FDSLOODU\LVFROOHFWHGLQWKHPHDVXULQJWDQNIRUDJLYHQWLPH7KHÀRZQ is found out by PHDVXULQJYROXPHRIOLTXLGFROOHFWHGLQPHDVXULQJWXEHGLYLGHGE\WLPH3LH]RPHWHUJLYHV the loss of head of the liquid. Q=
9ROXPHRIOLTXLGLQPHDVXULQJWDQN time
u =
Q DYHUDJHYHORFLW\ area of capillary
=
Q 4Q 2 = pd pd 2 4
The head loss,
or
h=
32 ¥ 4Q ¥ m ¥ L 32u mL = 2 pd 4 r g d ¥ r¥ g
m=
prg hd 4 128 ◊ Q ◊ L
Viscosity can be determined from the above equation.
Laminar Flow
685
'HVFULEHURWDWLQJF\OLQGHUPHWKRGIRUPHDVXULQJYLVFRVLW\ Dial to measure deflection of torsional spring
Torsional spring Inner stationary cylinder of radius R1
Gap ‘t’ of liquid
h
Outer rotating cylinder of radius R2
Rotating Cylinder Method
5RWDWLQJF\OLQGULFDOPHWKRGLVEDVHGRQ1HZWRQ¶VODZRIYLVFRVLW\$OLTXLGZKRVHYLVFRVLW\ LVWREHGHWHUPLQHGLV¿OOHGLQWKHJDSEHWZHHQLQQHUVWDWLRQDU\F\OLQGHUDQGRXWHUURWDWDEOH F\OLQGHUVXVSHQGHGE\DWRUVLRQDOVSULQJ1RZWKHRXWHUF\OLQGHULVURWDWHGZLWKFRQVWDQW VSHHGDQGGHÀHFWLRQRIWRUVLRQVSULQJLVQRWHG ,IWKHRXWHUF\OLQGHUURWDWHVDWNUSPWKHQDQJXODUYHORFLW\ w=
p N
7DQJHQWLDOYHORFLW\u = w ¥ R =
p N R
\ 9HORFLW\JUDGLHQWLQWKHJDS p N R du = ZKHUH t WKLFNQHVVRIJDS ◊ t dy \
t=m
p N R du = m◊ ◊ t dy
686
Fundamentals of Fluid Mechanics
9LVFRXVIRUFHRUGUDJIRUFH t ¥VXUIDFHDUHD Fd = m
7RUTXHT Fd ¥UDGLXV Fd ¥ R =
RU
pR ◊ N ¥pR◊ hZKHUHh KHLJKWRIOLTXLG ◊ t
mp R ◊ R ◊ h ◊ N ◊ t
m = T◊
◊ t p R R ◊ h N
$VPDOODLUEXEEOHRIGLDPHWHUPPULVHVZLWKVWHDG\VWDWHYHORFLW\RIPVWKURXJK DQRLO)LQGWKHYLVFRVLW\RIWKHRLOLI6*RIWKHRLOLV ,IZHQHJOHFWWKHZHLJKWRIEXEEOHWKHEXEEOHKDVWZRIRUFHVLQHTXLOLEULXPZKHQYHORFLW\ LVVWHDG\
'UDJIRUFH ERX\DQWIRUFH pmu◊d =
RU
m=
= RU 1RZ
6LQFHRe <
rg ◊ d u ¥ ¥ ¥ ¥ - ¥
m ¥±1VP Re = =
pd ◊r ¥ g 6
rud m ¥ ¥ ¥ ¥ - ¥ -
¥±
7KH6WRNHV¶ODZLVYDOLG $VPDOOVSKHUHLVXVHGIRUPHDVXULQJWKHYLVFRVLW\RIDQRLO,IVSKHUH6* KDV FPGLDPHWHUDQGIDOOVZLWKFRQVWDQWYHORFLW\RIPVWKURXJKWKHRLO6* ¿QGWKHYLVFRVLW\RIWKHRLO
Laminar Flow
gd r s – r L u
m=
¥ ¥ ¥ - ¥ ¥
= RU 1RZ
687
m 1VP rud m
Re =
¥ ¥ ¥ ¥ -
=
ReKHQFH6WRNHV¶ODZLVDSSOLFDEOH ,Q D URWDWLQJ F\OLQGHU YLVFRPHWHU WKH UDGLXV RI WKH RXWHU DQG LQQHU F\OLQGHUV DUH DQGPP7KHUSPRIWKHRXWHUF\OLQGHULV7KHKHLJKWRIOLTXLGLVPP7KH WRUVLRQDOVSULQJGLDOLQGLFDWHVWRUTXHDV¥ 10±1P)LQGYLVFRVLW\ m = T◊
=
p ¥
R
◊ t ¥ R ¥ h ¥ N
¥ - ¥ ¥ ¥ - p ¥ ¥ ¥ ¥
¥– 61VP $RLORI6* LVWREHPHDVXUHGE\WKHFDSLOODU\WXEHPHWKRG7KHWXEHKDVGLDPHWHU RI PP DQG SUHVVXUH GURS RI P RI ZDWHU EHWZHHQ WZR SRLQWV P DSDUW 7KH ZHLJKWRIZDWHUFROOHFWHGLQPHDVXULQJWDQNLV1LQVHFRQGV)LQGYLVFRVLW\ RIWKHRLO :HLJKWRIRLOFROOHFWHG 'LVFKDUJH Q = WLPH ¥ r ¥ g = 1RZYLVFRVLW\LVJLYHQE\ m=
¥ ¥ ¥
¥± mV pr gh d ◊ Q ◊ L
688
Fundamentals of Fluid Mechanics
=
p ¥ ¥ ¥ ¥ ¥ ¥ ¥ - ¥
¥±1VP 1VP
:KDWLVDQRUL¿FHW\SHYLVFRPHWHU" ,Q WKLV PHWKRG WKH WLPH WDNHQ E\ D FHUWDLQ TXDQWLW\ RI OLTXLG ZKRVH YLVFRVLW\ LV WR EH GHWHUPLQHGLVPDGHWRÀRZWKURXJKDVKRUWFDSLOODU\WXEH7KHFRH൶FLHQWRIYLVFRVLW\LV WKHQFDOFXODWHGE\FRPSDULQJWKLVWLPHZLWKWKHWLPHRIRWKHUOLTXLGZKRVHYLVFRVLW\LVNQRZQ
Liquid
Bath at constant temp. Capillary tube Measuring cylinder Saybolt viscometer
6D\EROW YLVFRPHWHU LV EDVHG RQ WKH RUL¿FH W\SH YLVFRPHWHU 7KH WLPH WDNHQ E\ FF RI OLTXLGWRÀRZWKURXJKFDSLOODU\WXEHLVPHDVXUHG)URPWKHWLPHPHDVXUHPHQWWKHNLQHPDWLF YLVFRVLW\LVIRXQGRXWIURPWKHUHODWLRQ v $W–
B ZKHUH t WLPHDQGADQGBDUHFRQVWDQWV t
'HULYHDQH[SUHVVLRQIRUWKHYHORFLW\RIODPLQDUIORZWKURXJKDQRSHQFKDQQHO ,QRSHQFKDQQHOWKHXSSHUVXUIDFHRIWKHOLTXLGLVH[SRVHGWRWKHDWPRVSKHUH+HQFHWKH Ê - ∂P ˆ SUHVVXUH DW HYHU\ VHFWLRQ RI FKDQQHO LV VDPH DQG QR SUHVVXUH JUDGLHQW Á FDQ EH Ë ∂x ˜¯ ∂z maiQWDLQHGIRUÀRZWRWDNHSODFH7KHUHIRUHWKHEHGRIWKHFKDQQHOLVPDGHVORSLQJ ÊÁ ˆ˜ Ë ∂x ¯ VRWKDWWKHKHDGORVVGXHWRÀRZRQDFFRXQWRIYLVFRXVÀRZFDQEHJLYHQWRÀRZE\WKH JUDYLW\IRUFHE\VORSLQJWKHEHG
Laminar Flow
7KHSUHVVXUHJUDGLHQWLQWKHGLUHFWLRQRIÀRZ ∂t ∂P = ∂y ∂x DQG
t=m
∂u ∂y
∂P =m∂ u ∂x ∂y
\
$VZDWHULVÀRZLQJGXHWRWKHVORSHRIEHGLH ∂ z ∂x ∂z ∂P = rg ∂x ∂x
\
\
m
∂ u = rg ∂z ∂y ∂x
2QLQWHJUDWLRQZHJHW ∂u rg = ∂y m %XW
Ê ∂z ˆ ÁË ˜¯ y + c ∂x
∂u DWVXUIDFHRIZDWHULQFKDQQHOZKHUHy = D 'HSWKRIFKDQQHO ∂y c =
\
- rg m
Ê ∂z ˆ ÁË ˜¯ D ∂x
r g Ê - ∂z ˆ ∂u = Á ˜ D – y m Ë ∂x ¯ ∂y
\ ,QWHJUDWLQJDJDLQZHJHW u=
r g Ê - ∂z ˆ Á ˜ m Ë ∂x ¯
Ê y ˆ ∂ y ÁË ˜ + c z ¯
689
690
Fundamentals of Fluid Mechanics
1RZu LIy DQGKHQFHc r g Ê - ∂z ˆ Ê y ˆ ÁË Dy - ˜¯ Á ˜ m Ë ∂x ¯
u=
7KHDERYHLVWKHYHORFLW\GLVWULEXWLRQHTXDWLRQRIWKHÀRZWKURXJKWKHRSHQFKDQQHO 'HULYHDQH[SUHVVLRQIRUWKHGLVFKDUJHWKURXJKRSHQFKDQQHO 7KHGLVFKDUJHSHUXQLWZLGWKRIWKHFKDQQHO dQ YHORFLW\¥DUHD u ¥dy ¥ Q=
\
=
Ú
D
Ú
D
udy rg Ê ∂zˆ Ê y ˆ ÁË - ˜¯ ÁË Dy - ˜¯ m ∂x
r g Ê - ∂zˆ Á ˜ = m Ë ∂x ¯
È Dy y ˘ - ˙ Í ˚ Î
D
=
r g È - ∂ z ˘ D m ÍÎ ∂ x ˙˚
'HULYHDQH[SUHVVLRQIRUDYHUDJHYHORFLW\RIIORZLQRSHQFKDQQHO Q = u ◊ D ◊ +HUHZLGWKLVXQLWOHQJWK r g Ê ∂ z ˆ D u = Q = ¥ Á- ˜ m Ë ∂ x¯ D D =
r g Ê ∂ z ˆ D Á- ˜ m Ë ∂ x¯
'HULYHDQH[SUHVVLRQIRUKHDGORVVLQRSHQFKDQQHO +HDGORVVLQRSHQFKDQQHO z – z =
- ∂z ◊L ∂x
ZKHUHL KHDGGURSEHWZHHQWZRVHFWLRQV HL = %XW
u =
- ∂z ◊L ∂x r g Ê - ∂ zˆ D Á ˜ m Ë ∂x ¯
Laminar Flow
DQG
\
691
u m - ∂z = r gD ∂x
H L=
u m◊ L r gD
11.17 QUESTIONS FROM COMPETITIVE EXAMINATIONS )RUODPLQDUIORZWKURXJKDORQJSLSHWKHSUHVVXUHGURSSHUXQLWOHQJWKLQFUHDVHV (a) In linear proportion to the cross-sectional area (b) In proportion to the diameter of the pipe (c) In inverse proportion to the cross-sectional area G ,QLQYHUVHSURSRUWLRQWRWKHVTXDUHRIFURVVVHFWLRQDODUHD *$7(
◊m◊ Q DP = l pD ן
D
ן
A
2SWLRQG LVFRUUHFW $IORZWKURXJKDSLSHWKHWUDQVLWLRQIURPODPLQDUWRWXUEXOHQWIORZGRHVQRWGHSHQG on (a) Velocity of the fluid (b) Density of the fluid F 'LDPHWHURIWKHSLSH G /HQJWKRIWKHSLSH *$7( )OXLGÀRZGHSHQGVXSRQ5H\QROGVQXPEHU Re =
r◊VD m
7KHÀRZGRHVQRWGHSHQGRQOHQJWK 2SWLRQG LVFRUUHFW The lower critical Reynolds number for a pipe flow is D 'L൵HUHQWIRUGL൵HUHQWIOXLGV (b) The Reynolds number at which the laminar flow changes to turbulent flow F 0RUHWKDQ G 7KHOHDVW5H\QROGVQXPEHUHYHUREWDLQHGIRUODPLQDUIORZ ,$6 2SWLRQE LVFRUUHFW
692
Fundamentals of Fluid Mechanics
Which one of the following is the characteristic of a fully developed laminar flow? (a) The pressure drop in the flow direction is zero. E 7KHYHORFLW\SUR¿OHFKDQJHVXQLIRUPO\LQWKHIORZGLUHFWLRQ F 7KHYHORFLW\SUR¿OHGRHVQRWFKDQJHLQWKHIORZGLUHFWLRQ (d) The Reynolds number for the flow is critical (IAS 2004) Option (c) is correct The velocity distribution in laminar flow through a circular pipe follows the (a) Linear law (b) Parabolic law (c) Cubic power law (d) Logarithmic law (IAS 1996) ,QODPLQDUÀRZZHKDYH V= -
1 ∂P 2 ◊ (R - r 2 ) 4m ∂x
È Ê r ˆ2˘ m = max Í1 - Á ˜ ˙ ÍÎ Ë R ¯ ˙˚ It shows that variation of velocity u as per distance r from centre, i.e., u ןr2 which is a parabolic curve Option (b) is correct.
Ê dP ˆ ˜ in the flow direction is ∂x ¯
)RUIORZWKURXJKKRUL]RQWDOSLSHWKHSUHVVXUHJUDGLHQW Á Ë (a) + ve (c) zero Option (d) is correct.
(b) 1 (d) – ve
(IAS 1995)
:KDW LV WKH GLVFKDUJH IRU ODPLQDU IORZ WKURXJK D SLSH RI GLDPHWHU PP KDYLQJ centre line velocity of 1.5 m/s? (a) (c)
3p 3 m /s 50 3p m3 /s 5000 Q $UHDî$YHUDJHYHORFLW\
(b)
3p m3 /s 2500
(d)
3p m3 /s
2
Option (d) is correct.
=
p Ê 40 ˆ Ê 1.5 ˆ ¥ ¥Á ˜ Ë 2¯ 4 ÁË 1000 ˜¯
=
3p m3 /s
(IAS 1995)
Laminar Flow
693
The minimum value of friction factor f that can occur in laminar flow through a circular pipe is D E F G ,$6
)ULFWLRQIDFWRUf iV 4ήf =
= 5H\QROGV QXPEHU
2SWLRQE LVFRUUHFW
7KHGUDJFRH൶FLHQWIRUODPLQDUIORZYDULHVZLWK5H\QROGVQXPEHURe) is (b) Re (a) Re –1 (c) Re (d) Re± ,$6 7KHFRH൶FLHQWRIIULFWLRQLV f=
or f ןRe–1 RH
2SWLRQF LVFRUUHFW Which one of the following statements is correct? +\GURG\QDPLFHQWUDQFHOHQJWKIRU (a) Laminar flow is greater than the turbulent flow (b) Turbulent flow is greater than that for laminar flow (c) Laminar flow is equal to that for turbulent flow G $JLYHQIORZFDQEHGHWHUPLQHGRQO\LIWKH3UDQGWOQXPEHULVNQRZQ ,(6 2SWLRQD LVFRUUHFW ,QIXOO\GHYHORSHGODPLQDUIORZLQFXUFXODUSLSHWKHKHDGORVVGXHWRIULFWLRQLVGLUHFWO\ proportion to mean velocity D 7UXH E )DOVH F ,QVX൶FLHQWGDWD G 1RQHRIWKHDERYH *$7( 7KHIULFWLRQKHDGhfLV ◊m ◊ u ◊ L hf = r◊ gD
or hf ןu 2SWLRQD LVFRUUHFW 7KHYHORFLW\SUR¿OHLQIXOO\GHYHORSHGODPLQDUIORZLQDSLSHRIGLDPHWHUD is given by Ê r 2 ˆ u = uo Á 1 - 2 ˜ D ¯ Ë
694
Fundamentals of Fluid Mechanics
where r isUDGLDOGLVWDQFHIURPWKHFHQWUH,IWKHYLVFRVLW\RIWKHIOXLGLVȝWKHSUHVVXUH drop across length L of the pipe is
(a)
m ◊ uo L D2
(b)
m ◊ uo L D2
(c)
m ◊ uo L D2
(d)
16m ◊ uo 2 D2
7KHSUHVVXUHGURS P =
(GATE 2006)
- ◊m ◊ L ◊ uo D
2SWLRQG LVFRUUHFW 7KH YHORFLW\ SUR¿OH RI D IXOO\ GHYHORSHG ODPLQDU IORZ LQ D VWUDLJKW FLUFXODU SLSH DV VKRZQLQWKH¿JXUHLVJLYHQE\WKHH[SUHVVLRQ u(r)
r
R x
ur
ZKHUH
R ◊m
Ê dP ˆ ÁË dx ˜¯
Ê r ˆ ÁË R ˜¯
dP LVDFRQVWDQW7KHDYHUDJHYHORFLW\RIÀXLGLQWKHSLSHLV ∂x
(a)
R 2 Ê dP ˆ m ÁË dx ˜¯
(c)
-
R 2 Ê dP ˆ m ÁË dx ˜¯
(b)
- R 2 Ê dP ˆ 2m ÁË dx ˜¯
(d)
- R 2 Ê dP ˆ m ÁË dx ˜¯
*$7(
2SWLRQD LVFRUUHFW A fully developed laminar viscous flow through a circular tube has the ratio of maximum velocity to average velocity as D E F G *$7(,(6 2SWLRQF LVFRUUHFW
Laminar Flow
695
Which one of the following statements is correct for a fully developed pipe flow? (a) Pressure gradient balances the wall shear stress only and has a constant value (b) Pressure gradient is greater than the wall shear stress F 7KHYHORFLW\SUR¿OHLVFKDQJLQJFRQWLQXRXVO\ G ,QHUWLDIRUFHEDODQFHVWKHZDOOVKHDUVWUHVV ,(6 2SWLRQD LVFRUUHFW Which one of the following is correct? In a fully developed region of the pipe flow D 7KHYHORFLW\SUR¿OHFRQWLQXRXVO\FKDQJHIURPOLQHDUWRSDUDEROLFVKDSH (b) The pressure gradient remains constant in the downstream direction (c) The pressure gradient continuously changes exceeding the wall shear stress in the downstream direction G 7KHSLSHLVQRWUXQQLQJIXOO ,(6 2SWLRQE LVFRUUHFW ,QDVWHDG\IORZRIDQRLOLQDIXOO\GHYHORSHGODPLQDUUHJLPHWKHVKHDUVWUHVVLV (a) Constant across the pipe E 0D[LPXP DW WKH FHQWUH DQG GHFUHDVHV SDUDEROLFDOO\ IRUZDUGV WKH SLSH ZDOO ERXQGDU\ F =HURDWWKHERXQGDU\DQGLQFUHDVHVOLQHDUO\WRZDUGVWKHFHQWUH G =HURDWWKHFHQWUHDQGLQFUHDVHVWRZDUGVWKHSLSHZDOO ,(6 7KHVKHDUVWUHVVLQWKHÀRZ ∂P r ◊ W = ∂x
ZKHUHrLVWKHUDGLDOGLVWDQFHIURPWKHFHQWUH6KHDUVWUHVVLV]HURZKHQr DQGPD[LPXP ZKHQr = R 2SWLRQG LVFRUUHFW The pressure drop for a relatively low Reynolds number flow in a 600 mm diameter DQGPORQJSLSHOLQHLVN3D:KDWLVWKHZDOOVKHDUVWUHVV" D E 3D F 3D G 3D ,(6 7KHSUHVVXUHGURSSHUXQLWOHQJWK ΔP L
± dP dx
7KHVKHDUVWUHVVDWZDOO t = −
2SWLRQE LVFRUUHFW
î
Pa m
dp R × = × dx z 3D
696
Fundamentals of Fluid Mechanics
$PPGLDPHWHUDQGPORQJVWUDLJKWXQLIRUPSLSHFDUULHVDVWHDG\IORZRIZDWHU YLVFRVLW\FHQWLSRLVHV DWWKHUDWHRIOLWUHSHUPLQXWH:KDWLVWKHDSSUR[LPDWH value of the shear stress on the internal wall of the pipe? E G\QHFP2 D G\QHFP2 F G\QHFP2 G G\QHFP2 ,(6
7KHSUHVVXUHGURS ∂P ∂x
=
DP m ◊Q = ◊ pD L
Ê ˆ Ê ˆ ¥ Á ¥ Ë ˜¯ ÁË ˜¯ = = p ¥
R 7KHVKHDUVWUHVVDWZDOO ÊÁ r = ˆ˜ Ë ¯ W o= -
∂P R G\QH ¥ = ¥ = ∂x FP
2SWLRQE LVFRUUHFW 7KHSUHVVXUHGURSLQDPPGLDPHWHUKRUL]RQWDOSLSHLVN3DRYHUDOHQJWKRI P7KHVKHDUDWWKHSLSHZDOOLV D N3D E N3D F N3D G N3D ,(6 TKHSUHVVXUHJUDGLHQW DP dP ¥ = = = 3D dx L
7KHVKHDUVWUHVVDWZDOO Wo =
dP R ¥ = ¥ dx
3D N3D 2SWLRQE LVFRUUHFW /DPLQDU GHYHORSHG IORZ DW DQ DYHUDJH YHORFLW\ RI PV RFFXUV LQ D SLSH RI FP UDGLXV7KHYHORFLW\DWFPUDGLXVLV D PV E PV F PV G PV ,(6 uPD[ î u î PV
7KHYHORFLW\
È Ê rˆ u = uPD[ Í - Á ˜ ÍÎ Ë R ¯
˘ ˙ ˙˚
Laminar Flow
697
È Ê ˆ˘ = Í - Á ˜ ˙ ÍÎ Ë ¯ ˙˚ = ¥
= PV
2SWLRQD LVFRUUHFW
7KHSRZHUFRQVXPHGSHUXQLWOHQJWKLQODPLQDUIORZIRUWKHVDPHGLVFKDUJHYDULHVDV DnZKHUHDLVWKHGLDPHWHURIWKHSLSH:KDWLVWKHYDOXHRIn? (a) 1
(b) – 1
(c) ±
G ±
2
2 ,(6
3RZHU DP ◊m ◊ Q = μ /HQJWK L pD
2SWLRQG LVFRUUHFW
,QDODPLQDUIORZWKURXJKDSLSHRIGLDPHWHUDWKHWRWDOGLVFKDUJHQ is expressed as dp ȝLVWKHG\QDPLFYLVFRVLW\RIIOXLGDQG is the pressure gradient) dx (a)
(c)
- pD Ê ∂p ˆ Á ˜ ◊m Ë ∂x ¯ - pd Ê ∂p ˆ m ÁË ∂x ˜¯
(b)
- pD Ê ∂p ˆ m ÁË ∂x ˜¯
(d)
- pD Ê ∂p ˆ 16 m ÁË ∂x ˜¯
,(6
2SWLRQD LVFRUUHFW A fully developed laminar viscous flow through a circular tube has the ratio of maximum velocity to average velocity as D E F G *$7(,(6 2SWLRQF LVFRUUHFW 9HORFLW\IRUIORZWKURXJKDSLSHPHDVXUHGDWWKHFHQWUHLVIRXQGWREHPV5H\QROGV QXPEHULVDURXQG:KDWLVWKHDYHUDJHYHORFLW\LQWKHSLSH" D PV E PV F PV G PV ,(6 $V5H KHQFHÀRZLVODPLQDUZKLFKJLYHV uav =
uPD[
698
Fundamentals of Fluid Mechanics
=
= PV
2SWLRQF LVFRUUHFW $ SLSH IULFWLRQ WHVW VKRZV WKDW RYHU WKH UDQJH RI VSHHGV XVHG IRU WKH WHVW WKH QRQ dimensional friction factor f YDULHV LQYHUVHO\ ZLWK 5H\QROGV QXPEHU )URP WKLV RQH can conclude that the D )OXLGPXVWEHFRPSUHVVLEOH E )OXLGPXVWEHLGHDO (c) Pipe must be smooth G )ORZPXVWEHODPLQDU ,(6 LVDSSOLFDEOHIRUODPLQDUÀRZ 7KHIRUPXODDERXWFRH൶FLHQWRIIULFWLRQf = Re 2SWLRQG LVFRUUHFW $SLSHRIFPGLDPHWHUDQGNPOHQJWKWUDQVSRUWVRLOIURPDWDQNHUWRWKHVKRUH ZLWKYHORFLW\RIPV7KHIORZLVODPLQDU,IYLVFRVLW\ȝ 1PV2WKHQSRZHU required for the flow would be D N: E N: F N: G N: ,(6
3RZHU=
◊ u ◊m ◊ L ¥ Q = N: D
2SWLRQF LVFRUUHFW 7KHVKHDUVWUHVVGHYHORSHGLQWKHOXEULFDWLQJRLORIYLVFRVLW\SRLVH¿OOHGEHWZHHQ WZRSDUDOOHOSODWHVFPDSDUWDQGPRYLQJZLWKUHODWLYHYHORFLW\RIPVLV (a) 20
N m2
(c) 2
E
N m2
G
6KHDUVWUHVVLV W = m ◊
N m2
N m2
(IES 2001)
du = ¥ = 1P dy
2SWLRQE LVFRUUHFW )RUODPLQDUIORZWKURXJKDURXQGSLSHWKHVKHDUVWUHVV (a) Remains constant over the cross section (b) Varies linearly with the radial distance F 0XVWEH]HURDWDOOSRLQWV G 9DULHVSDUDEROLFZLWKUDGLDOGLVWDQFH 2SWLRQE LVFRUUHFW
,(6
Laminar Flow
699
Which one of the following statements a not correct in the context of laminar flow through a pipeline? D 6KHDUVWUHVVLV]HURDWWKHFHQWUHDQGYDULHVOLQHDUO\ZLWKWKHUDGLXVRIWKHSLSH (b) Head loss is proportional to the square of the average flow velocity (c) The friction factor varies inversely with Reynolds number G 1RGLVSHUVLRQRIGLHLQMHFWHGLQWRDIORZVWUHDP ,(6 2SWLRQE LVFRUUHFW Laminar flow between closely spaced parallel plates is governed by the consideration of which one of the following pair of forces? (a) Pressure and inertial forces (b) Gravity and inertial forces (c) Viscous and inertial forces G 3UHVVXUHDQGYLVFRXVIRUFHV ,(6 2SWLRQF LVFRUUHFW )ORZ WDNHV SODFH DQG LW KDV 5H\QROGV QXPEHU RI LQ WZR GL൵HUHQW SLSHV ZLWK UHODWLYHURXJKQHVVRIDQG7KHIULFWLRQIDFWRU D :LOOEHKLJKHULQWKHFDVHRISLSHZLWKUHODWLYHURXJKQHVV E :LOOEHKLJKHULQWKHFDVHRISLSHKDYLQJUHODWLYHURXJKQHVVRI (c) Will be same in both the pipes (d) In the two pipes cannot be compared on the basis of data given (IES 2000)
ZKLFKLVQRWGHSHQGHQWRQWKHURXJKQHVVRI 7KHÀRZLVODPLQDUDVRe DQGf = Re SLSH
2SWLRQF LVFRUUHFW
Chapter
12
TURBULENT FLOW
KEYWORDS AND TOPICS
CRITICAL VELOCITY INSTANTANEOUS VELOCITY MAGNITUDE OF TURBULENCE INTENSITY OF TURBULENCE SCALE OF TURBULENCE EDDY VISCOSITY TURBULENCE SHEAR STRESS MIXING LENGTH CONCEPT SIMILARITY CONCEPT VELOCITY DISTRIBUTION IN PIPE MAXIMUM VELOCITY OF FLOW AVERAGE VELOCITY OF FLOW
SHEAR VELOCITY
SMOOTH BOUNDARY ROUGH BOUNDARY ROUGHNESS REYNOLDS NUMBER FRICTION FACTOR DARCY’S EQUATION HEAD LOSS RELATIVE ROUGHNESS EQUIVALENT SAND GRAIN ROUGHNESS POWER LAW LAMINAR SUBLAYER MOODY’S DIAGRAM HOTWIRE ANEMOMETER
LASER DOPPLER ANEMOMETER
12.1 INTRODUCTION /DPLQDUÀRZRFFXUVDWORZYHORFLW\ZKHQÀXLGÀRZVLQDSLSH7KHODPLQDUÀRZWDNHVSODFH LQ SDUDOOHO OD\HUV RU ODPLQDH ZKLFK DUH FRQFHQWULF F\OLQGULFDO VKHHWV LQ SLSH ÀRZ ,I ÀRZ KDV 5H\QROGV QXPEHU JUHDWHU WKDQ WKHQ WKH ÀRZ LQ SLSH LV QR ORQJHU LQ SDUDOOHO OD\HUV DQG LW LV VDLG WR EH D WXUEXOHQW ÀRZ7KH 5H\QROGV QXPEHU LV WKH UDWLR RI LQHUWLDO IRUFH WR YLVFRXV IRUFH7KHYLVFRXVIRUFHWHQGVWRPDNHWKHPRWLRQRIWKHÀXLGLQSDUDOOHOOD\HUVZKLOHLQHUWLDO IRUFHWHQGVWRGL൵XVHWKHÀXLGSDUWLFOHV7KHÀXLGSDUWLFOHVDUHLQWKHH[WUHPHVWDWHRIGLVRUGHU LQWXUEXOHQWÀRZDQGWKH\GRQRWPRYHLQOD\HUV7KH\PRYHLQKDSKD]DUGPDQQHUDQGSURGXFH ODUJHVFDOH HGGLHV UHVXOWLQJ LQ FRPSOHWH PL[LQJ RI WKH ÀXLG7KH SUHVVXUH DQG YHORFLW\ RI WKH ÀRZGRQRWUHPDLQFRQVWDQWZLWKWLPHDQGWKH\ÀXFWXDWHLQLUUHJXODUZD\'XHWRÀXFWXDWLRQVLQ YHORFLW\LWLVLPSRVVLEOHWRGHYHORSDQ\WKHRU\IRUWKHDQDO\VLVRIWXUEXOHQWÀRZ7KHDQDO\VLV KDV WR EH WKHUHIRUH EDVHG RQ IRUPXODH GHULYHG RQ WKH EDVLV RI H[SHULPHQWDO UHVXOWV 'XH WR KDSKD]DUGPRYHPHQWRIÀXLGSDUWLFOHVLQWXUEXOHQWÀRZWKHYHORFLW\GLVWULEXWLRQLVPRUHXQLIRUP
Turbulent Flow
701
LQ WXUEXOHQW ÀRZ DV FRPSDUHG WR ODPLQDU ÀRZ +RZHYHU WKH YHORFLW\ JUDGLHQW QHDU WKH SLSH ZDOO LV YHU\ ODUJH LQ WXUEXOHQW ÀRZ UHVXOWLQJ LQ KLJK VKHDU VWUHVV DW WKH ZDOO RI WKH SLSH7KH YHORFLW\GLVWULEXWLRQLVSDUDERORLGLQODPLQDUÀRZZKLOHLWREH\VSRZHUODZDQGORJDULWKPLFODZ LQWXUEXOHQWÀRZ
12.2 TURBULENT FLOW What is turbulent flow? Compare velocity distribution in laminar and turbulent flows in a pipe. $ÀXLGÀRZDVLQSLSHVKDYLQJ5H\QROGVQXPEHUJUHDWHUWKDQLVVDLGWREHDWXUEXOHQW ÀRZ7KHÀXLGSDUWLFOHVDUHLQWKHH[WUHPHVWDWHRIGLVRUGHULQWXUEXOHQWÀRZDQGWKH\GR QRWÀRZLQOD\HUV7KH\PRYHLQKDSKD]DUGPDQQHUDQGSURGXFHODUJHVFDOHHGGLHVUHVXOWLQJ FRPSOHWHPL[LQJRIWKHÀXLG7KHSUHVVXUHDQGYHORFLW\RIWKHÀRZGRQRWUHPDLQFRQVWDQW ZLWKWLPHEXWWKH\ÀXFWXDWHLQLUUHJXODUZD\'XHWRÀXFWXDWLRQVLQYHORFLW\LWLVLPSRVVLEOH WRGHYHORSDQ\WKHRU\IRUWKHDQDO\VLVRIWXUEXOHQWÀRZ7KHDQDO\VLVLVWKHUHIRUHFRPSOHWHO\ EDVHGRQIRUPXODHGHULYHGRQWKHEDVLVRIH[SHULPHQWDOUHVXOWV 7KHYHORFLW\GLVWULEXWLRQLQODPLQDUDQGWXUEXOHQWÀRZVDUHDVVKRZQLQWKH¿JXUH7KH YHORFLW\ GLVWULEXWLRQ LV PRUH XQLIRUP LQ WXUEXOHQW ÀRZ DV FRPSDUHG WR D ODPLQDU ÀRZ +RZHYHUWKHYHORFLW\JUDGLHQWLQWXUEXOHQWÀRZQHDUWKHSLSHZDOOLVYHU\ODUJHUHVXOWLQJ KLJKVKHDUVWUHVVDWWKHZDOORIWKHSLSH7KHÀDWQHVVRIYHORFLW\GLVWULEXWLRQFXUYHVOLJKW YDULDWLRQLQYHORFLW\ DZD\IURPWKHZDOOKDVUHVXOWHGGXHWRWKHPL[LQJRIÀXLGOD\HUVDQG H[FKDQJHRIPRPHQWXPEHWZHHQWKHOD\HUVDWPDFURVFRSLFOHYHO,QODPLQDUÀRZWKHUDWLR RIWKHDYHUDJHYHORFLW\WRWKHPD[LPXPLVZKLOHLQWXUEXOHQWÀRZLWLVJUHDWHUWKDQ DQGLWPD\LQFUHDVHXSWR7KHYHORFLW\GLVWULEXWLRQLVSDUDERORLGLQODPLQDUÀRZZKLOH LWREH\VSRZHUODZDQGORJDULWKPLFODZLQWXUEXOHQWÀRZ Turbulent
Flow
Laminar
Velocity Distribution in Laminar and Turbulent Flow
What is dominant in laminar flow? 7KHYLVFRVLW\RIWKHÀXLGLVGRPLQDQWLQODPLQDUÀRZGXHWRZKLFKLWLVDEOHWRVXSSUHVV DQ\WHQGHQF\WRWXUEXOHQWFRQGLWLRQV What is critical velocity? 7KH FULWLFDO YHORFLW\ LV WKH YHORFLW\ EHORZ ZKLFK DOO WXUEXOHQFH LV GDPSHG RXW E\ WKH YLVFRVLW\RIWKHÀXLG,WLVIRXQGWKDWWKHSRVVLEOHXSSHUOLPLWRIODPLQDUÀRZLVUHSUHVHQWHG E\D5H\QROGVQXPEHURIDERXW
702
Fundamentals of Fluid Mechanics
:KDWDUHIDFWRUVWKDWFDQFKDQJHDODPLQDUIORZLQWRDWXUEXOHQWIORZ" $ODPLQDUÀRZFKDQJHVWRWXUEXOHQWÀRZZKHQWKHIROORZLQJFKDQJHVDUHPDGH YHORFLW\LVLQFUHDVHG GLDPHWHURIDSLSHLVLQFUHDVHG WKHYLVFRVLW\RIÀXLGLVGHFUHDVHG 5H\QROGV ZDV ¿UVW WR GHPRQVWUDWH WKDW WKH WUDQVLWLRQ IURP ODPLQDU ÀRZ WR WXUEXOHQW ÀRZ GHSHQGVQRWRQO\RQWKHPHDQYHORFLW\RIWKHÀRZEXWDOVRRQGLDPHWHUGHQVLW\DQGYLVFRVLW\ rVD rVD E\WKHHTXDWLRQ 7KHH[SUHVVLRQ LVDGLPHQVLRQOHVVTXDQWLW\DQGWKLVQXPEHU m m iV FDOOHG 5H\QROGV QXPEHU R e ,Q FDVH RI FLUFXODU SLSH WKH ODPLQDU ÀRZ H[LVWV XS WR R eDQGWXUEXOHQWÀRZH[LVWVZKHQR e! 7KHWUDQVLWLRQSKDVHH[LVWVZKHQR eLVLQEHWZHHQDQG Describe the mechanism of a transition from laminar to turbulent? /DPLQDUÀRZEHFRPHVXQVWDEOHDQGWXUEXOHQWDVYHORFLW\RIÀRZLQFUHDVHV7XUEXOHQFHLV QRWKLQJEXWGLVRUGHUO\DQGLUUHJXODUÀXFWXDWLQJPRWLRQ,QODPLQDUÀRZWKHVKHDUIRUFHGXH WRYLVFRVLW\LVDEOHWRNHHSWKHÀRZLQDQRUGHUO\PDQQHULQOD\HUVZLWKHDFKOD\HUVOLGLQJ RYHURWKHUDGMDFHQWOD\HU$VWKHYHORFLWLHVLQODPLQDUÀRZVDUHFRPSDUDWLYHO\VPDOOZKLFK DFFRXQW IRU VPDOO LQHUWLD IRUFHV DQG GRPLQDWLQJ YLVFRXV IRUFHV$W KLJKHU YHORFLWLHV WKH LQHUWLDIRUFHVLQFUHDVHLQPDJQLWXGHDQGWKH\VWDUWGRPLQDWLQJRYHUWKHYLVFRXVIRUFHVDQG DVWDWHUHDFKHVZKHQRUGHUO\PRWLRQEUHDNVGRZQDQGWXUEXOHQFHVWDUWVRFFXUULQJ,WLVDOVR QRWLFHGWKDWDERXQGDU\OD\HULVODPLQDUDVWKHÀRZVWDUWVDWWKHOHDGLQJHGJHRIDVXUIDFHDQG LWVWDUWVJURZLQJ7KHERXQGDU\OD\HUWHQGVWREHXQVWDEOHDVLWJURZVDQGSDVVHVWKURXJKD UHJLRQRIWUDQVLWLRQEHIRUHEHFRPLQJWXUEXOHQW,WLVDOVRQRWLFHGWKDWDWXUEXOHQWERXQGDU\ OD\HUKDVWKLQ]RQHLQWKHYLFLQLW\RIWKHZDOOVZKLFKLVFDOOHGODPLQDUVXEOD\HULQZKLFKÀRZ LVODPLQDU2XWVLGHWKLVVXEOD\HUWKHUHDUH]RQHVRIWUDQVLWLRQDQGWXUEXOHQFH)RUH[DPSOH WKHVPRNHHPDQDWLQJIURPDFLJDUHWWHLVLQLWLDOO\ODPLQDUDQGXOWLPDWHO\LWLVWXUEXOHQWDIWHU SDVVLQJWKURXJKWUDQVLWLRQVWDWH7KLVVKRZVWKDWYHORFLW\RIVPRNHLVVPDOOLQLWLDOO\DQGWKH YHORFLW\RIVPRNHLQFUHDVHVDVLWULVHV7KHYHORFLW\RIVPRNHRQULVHEHFRPHVFULWLFDODQG ODWHUYHORFLW\LVVRODUJHWKDWWXUEXOHQFHVHWVLQWKHVPRNHDVVKRZQLQWKH¿JXUH
Turbulent Flow
703
Describe the mechanism of formation of vortices. ,IWZRVWUHDPVZLWKXQHTXDOYHORFLWLHVMRLQHDFKRWKHUWKLVSKHQRPHQRQPD\EHUHSUHVHQWHG E\FRQVLGHULQJDVXUIDFHRIGLVFRQWLQXLW\ZLWKVWUHDPVRIYHORFLW\VLQRSSRVLWHGLUHFWLRQVRQ HLWKHUVLGHRILW,IDVOLJKWGLVWXUEDQFHLVPDGHWRWKHVXUIDFHRIGLVFRQWLQXLW\WKHVWUHDPOLQHV DERYHDQGEHORZZLOOFRQYHUJHDWVRPHSRLQWVDQGGLYHUJHDWRWKHUSRLQWV7KHYHORFLWLHV DWFRQYHUJLQJSRLQWVDUHJUHDWHUSHDN DQGGLYHUJLQJSRLQWVDUHORZHUYDOOH\ 3HDNVDQG YDOOH\VGLVWXUEWKHVXUIDFHIXUWKHUUHVXOWLQJLQWKHIRUPDWLRQRIYRUWLFHV Streamline V V V V
S
D
Surface of discontinuity
Streamline Stream Lines and Surface of Discontinuity
D
S
Slight disturbance of surface of discontinuity
D
S
Higher disturbance of surface of discontinuity
Vortices Formation
7UDQVLWLRQRIODPLQDUÀRZWRWXUEXOHQWÀRZVWDUWVZLWKDSSHDUDQFHRIVSRWVRIWXUEXOHQFH LQWKHODPLQDUÀRZ7KHVHVSRWVHQFRXUDJHWKHIRUPDWLRQRIPRUHVSRWVRIWXUEXOHQFHLQWKH ÀRZZKLFKFKDQJHWKHVWUXFWXUHRIÀRZIURPODPLQDUWRWXUEXOHQFH What is the result of turbulence? Is it desirable to promote turbulence in the flow? 7XUEXOHQFHUHVXOWVLQVLJQL¿FDQWLQFUHDVHRIPDVVHQHUJ\DQGPRPHQWXPWUDQVIHUEHWZHHQ GL൵HUHQWSDUWVRIÀXLGÀRZV,WLVGHVLUDEOHWRSURPRWHPL[LQJRIGL൵HUHQWSDUWVRIÀXLGÀRZ VR WKDW KHDW WUDQVIHU FRH൶FLHQW FDQ EH LPSURYHG ,Q HQJLQHHULQJ DSSOLFDWLRQV FRQGHQVHUV DQG HYDSRUDWRUV DUH GHVLJQHG WR UHPRYH KHDW LQ DQ H൶FLHQW ZD\ E\ WKH ÀXLG ÀRZ ZLWK OHDVWSRVVLEOHVL]HV7XUEXOHQFHÀRZVPXVWWDNHSODFHWKURXJKZDWHUWXEHVLQWKHERLOHUIRU H൶FLHQWJHQHUDWLRQRIVWUHDP7KHWXUEXOHQFHLQFUHDVHVPL[LQJDQGUHGXFHVGUDJ,QQDWXUH
704
Fundamentals of Fluid Mechanics
WXUEXOHQFHPDLQWDLQVXQLIRUPLW\RIWHPSHUDWXUH7XUEXOHQFHEDODQFHVSUHVVXUHGL൵HUHQFHV EHWZHHQGL൵HUHQWORFDWLRQVRQWKHHDUWK7XUEXOHQFHHQDEOHVULYHUVWRWUDQVSRUWZDVWHIURP WKHSODLQVWRWKHVHD7XUEXOHQFHGLVSODFHVRXUH[KDOHGGHR[\JHQDWHGDLUTXLFNO\ZLWKIUHVK R[\JHQDWHGDLUVRWKDWZHFDQLQKDOHDQGVXUYLYH Compare the energy dissipation of laminar and turbulent flow. 7XUEXOHQFHLVDFFRPSDQLHGE\ODUJHHQHUJ\GLVVLSDWLRQDVFRPSDUHGWRODPLQDUÀRZ7KH WXUEXOHQFHPRWLRQLVFKDUDFWHUL]HGE\HGGLHVRIGL൵HUHQWVL]HVDQGZDYHQXPEHUV/DUJHU HGGLHVKDYHVPDOOHUZDYHQXPEHUV(QHUJ\GLVVLSDWLRQSURFHHGVZKHQNLQHWLFHQHUJ\RIWKH ÀRZ LV SDVVHG RQ IURP KLJKHU HGGLHV DUHD WR DUHD KDYLQJ VPDOOHU HGGLHV DQG WKHQ ¿QDOO\ IURPVPDOOHUHGGLHVWRDUHDKDYLQJODPLQDUÀRZLQWKHODPLQDUVXEOD\HUQHDUWKHZDOOV
12.3 INSTANTANEOUS VELOCITY Explain (1) instantaneous velocity, (2) magnitude of turbulence, (3) intensity of turbulence, and (4) scale of turbulence.
Velocity
u¢ ut u
ut Time (t)
Variation of Velocity at a Point
7KHWXUEXOHQWÀRZKDVLUUHJXODUDQGUDQGRPQDWXUHRIWKHPRYHPHQWRIÀXLGSDUWLFOHV$W DQ\SRLQWRIREVHUYDWLRQLQDWXUEXOHQWÀRZWKHYHORFLW\DQGSUHVVXUHÀXFWXDWHZLWKWLPH DERXWDPHDQYDOXH7KHW\SLFDOYDULDWLRQRIWKHYHORFLW\FRPSRQHQWLQx-direction at a point LQWXUEXOHQWÀRZLVVKRZQLQWKH¿JXUH7KHLQVWDQWDQHRXVYHORFLW\u t PHDQYHORFLW\ u DQGÀXFWXDWLQJFRPSRQHQWu¢) can be related as ut = u ± u¢
6LPLODUO\ vt = v ± v¢ in y-direction wt = w ± w¢ in z-direction and
pt = P ± P¢ for pressure
$VSHUWKHGH¿QLWLRQRIDYHUDJHYHORFLWLHVZHFDQZULWHIRUDODUJHLQWHUYDORIWLPHT ): u′ =
1 T
Ú
T
0
ut dt
Turbulent Flow
v′ = T
Ú
w′ =
T
Ú
p′ =
T
T
T
Ú
705
T
vt dt wt dt pt dt
,QFDVHZHZRUNRXWWKHDYHUDJHVRIÀXFWXDWLQJFRPSRQHQWVZHJHW u′ =
T
Ú
v′ =
T
Ú
w′ = T
Ú
p′ = T
Ú
T
T
T
T
u¢d t v¢dt w¢dt p¢dt
6LQFHWKHPHDQYDOXHRIÀXFWXDWLQJFRPSRQHQWLV]HURZHKDYHWR¿QGWKHURRWPHDQVTXDUH YDOXHRIWKHÀXFWXDWLQJFRPSRQHQWVLH u¢ v¢ w¢ DQG
p¢ VRWKDWSRVLWLYH
anGQHJDWLYHÀXFWXDWLQJFRPSRQHQWVRQVTXDULQJFDQDGGXSLQVWHDGRIFDQFHOOLQJDQGJLYHQ PHDQYDOXHDV]HUR 7KHPDJQLWXGHRIWXUEXOHQFHLVWKHDULWKPHWLFPHDQRIURRWPHDQVTXDUHYDOXHRIWXUEXOHQW ÀXFWXDWLRQVLQWKUHHGLUHFWLRQV
0DJQLWXGHRIWXUEXOHQFH =
u ¢ + v¢ + w¢
,QFDVH V LVWLPHDYHUDJHUHVXOWDQWYHORFLW\DWDQ\SRLQWWKHQZHGH¿QH
,QWHQVLW\RIWXUEXOHQFH
u ¢ + v¢ + w¢ V
,QFDVHWKHÀRZLVRQHGLPHQVLRQDOWKH V = u DQGZHFDQZULWH
,QWHQVLW\RIWXUEXOHQFH
u ¢ + v¢ + w¢ u
706
Fundamentals of Fluid Mechanics
7KHDYHUDJHVL]HRIWKHHGG\LVDOVRQHFHVVDU\LQDGGLWLRQWRWKHLQWHQVLW\RIWXUEXOHQFHWR GHVFULEHWKHWXUEXOHQFHIXOO\7KHDYHUDJHVL]HRIWKHHGG\FDQEHREWDLQHGIURPWKHFXUYH RIYHORFLW\YDULDWLRQZLWKWLPH)URPWKHFXUYHWKHDYHUDJHWLPHRILQWHUYDODWZKLFKWKH FXUYHFURVVHVWKHPHDQYDOXHOLQH u LVIRXQGRXWDQGWKLVLVPXOWLSOLHGZLWKWKHURRWVTXDUH YaOXHRIWKHÀXFWXDWLQJÀRZFRPSRQHQW7KHVL]HRIHGG\LVFDOOHGWKHVFDOHRIWXUEXOHQFH (QHUJ\GLVVLSDWLRQLQWKHÀRZLVJUHDWHUZKHQWKHHGG\LVVPDOOLHWKHWXUEXOHQFHLVLQ ¿QHVFDOH+RZHYHULQ¿QHVFDOHWXUEXOHQFHWKHLQWHQVLW\RIWXUEXOHQFHLVKLJK How is shear stress in turbulent flow expressed. 6FLHQWLVW - %RXVL GHYHORSHG H[SUHVVLRQ IRU WKH WXUEXOHQW VKHDU VWUHVV 7KLV H[SUHVVLRQ LV VLPLODUWR1HZWRQ¶VODZRIYLVFRVLW\DQGH[SUHVVHGDV t=h
du dy
ZKHUH u LVWKHDYHUDJHYHORFLW\DWDGLVWDQFHyLH
du LVWKHYHORFLW\JUDGLHQWIURPWKH dy
ERXQGDU\DQGhLVWXUEXOHQWFRH൶FLHQWRIPL[LQJDQGLWLVFDOOHGHGG\YLVFRVLW\
12.4 EDDY VISCOSITY What do you understand from the eddy viscosity? What is total shear stress in a turbulent flow? (GG\YLVFRVLW\LVDSURSHUW\ZKLFKLVLQGHSHQGHQWRIWKHÀXLGSURSHUWLHVH[FHSWRIGHQVLW\ DQG LW GHSHQGV XSRQ WKH FKDUDFWHULVWLFV RI ÀRZ VSHFLDOO\ WKH WXUEXOHQFH RI WKH ÀRZ 7KH PDJQLWXGHRIHGG\YLVFRVLW\LV]HURIRUODPLQDUÀRZDQGLWFDQLQFUHDVHWRVHYHUDOWKRXVDQG WLPHV RI WKH FRH൶FLHQW RI YLVFRVLW\ m GHSHQGLQJ RQ WKH WXUEXOHQFH LQ WKH ÀRZ +HQFH HGG\YLVFRVLW\LVQRWFRQVWDQWIRUDQ\ÀXLGDVWXUEXOHQFHYDULHVIURPSRLQWWRSRLQWLQWKH ÀRZRIWKHÀXLG 7KHWRWDOVKHDUVWUHVVLQDÀRZLVWKHVXPRIYLVFRXVVKHDUVWUHVVDQGWXUEXOHQWVKHDUVWUHVV 7RWDOVKHDUVWUHVV YLVFRXVVKHDUVWUHVVWXUEXOHQWVKHDUVWUHVV t=m
du du h dy dy
7KHPDJQLWXGHRI¿UVWWHUPLVYHU\VPDOOWRVHFRQGWHUPLQDWXUEXOHQWÀRZ What is kinematic eddy viscosity? 7KH UDWLR RI HGG\ YLVFRVLW\ h WR PDVV GHQVLW\ r RI WKH ÀXLG LV FDOOHG NLQHPDWLF HGG\ YLVFRVLW\7KHNLQHPDWLFHGG\YLVFRVLW\ e=
h (GG\YLVFRVLW\ = 0DVVGHQVLW\ r
Turbulent Flow
707
:K\WKHFRQFHSWRIHGG\YLVFRVLW\KDVQRWEHHQXVHGPXFKLQHQJLQHHULQJDSSOLFDWLRQV" ,W LV QRW SRVVLEOH WR H[SUHVV WKH YDULDWLRQ RI HGG\ YLVFRVLW\ h ZLWK RWKHU SURSHUWLHV RI WXUEXOHQFH7KLVLVWKHUHDVRQZK\WKHFRQFHSWRIHGG\YLVFRVLW\KDVQRWIRXQGPXFKIDYRXU LQHQJLQHHULQJDSSOLFDWLRQV
12.5 TURBULENCE SHEAR STRESS What is the Reynolds expression for turbulence shear stress? ,WZDVVKRZQE\5H\QROGVWKDWWKHUHLVDQH[FKDQJHRIWUDQVYHUVHPRPHQWXPGXHWRYHORFLW\ ÀXFWXDWLRQVEHWZHHQDGMDFHQWOD\HUVZKLFKGHYHORSHDWDQJHQWLDOVKHDUIRUFHEHWZHHQWKH DGMDFHQW OD\HUV +H GHYHORSHG DQ H[SUHVVLRQ IRU WKH WXUEXOHQW VKHDU VWUHVV EHWZHHQ WKH DGMDFHQW OD\HUV ZKLFK LV H[SUHVVHG DV t = r u¢v¢ ZKHUH r GHQVLW\ DQG u¢ & v¢ DUH WKH ÀXFWXDWLQJFRPSRQHQWVRIYHORFLW\LQxDQGyGLUHFWLRQVGXHWRWXUEXOHQFH y
u¢ = l
Layer 1 (u + u¢ ) l
Layer 2 (u)
du dy
v¢ Slope =
du dy
x Momentum Exchange between Layers of Fluid
&RQVLGHUWZROD\HUVLHOD\HUDQGOD\HUDWGLVWDQFHl DQGu¢DQGv¢DUHWKHÀXFWXDWLQJ FRPSRQHQWV LQ x DQG y GLUHFWLRQ 1RZ PDVV RI ÀXLG WUDQVIHUUHG WR OD\HU IURP OD\HU WKURXJKDSHUSHQGLFXODUDUHDDALVr v¢D$7KLVPDVVRIÀXLGKDVPRPHQWXPRIr v¢DA u DQGRQWUDQVSRUWDWLRQWROD\HUIURPOD\HULWDFTXLUHVDVQHZPRPHQWXPrv¢DA u u¢ +HQFHFKDQJHRIPRPHQWXPLVrv¢D Au¢ZKLFKJLYHVULVHWRVKHDUVWUHVVtZKLFKFDQEH H[SUHVVHGDV t=
r ◊ v¢ ◊ D A ◊ u ¢ = r u¢ v¢ DA
7KHDERYHLVNQRZQDV5H\QROGVVKHDUVWUHVVHTXDWLRQIRUWXUEXOHQWÀRZ7KHVKHDUVWUHVV YDULHV DV WKH ÀXFWXDWLQJ FRPSRQHQWV RI YHORFLW\ RI WXUEXOHQW ÀRZ$V XVXDOO\ ZKHQ WLPH DYHUDJHYDOXHRIVKHDUVWUHVVLVFRQVLGHUHGWKHHTXDWLRQFDQEHH[SUHVVHGDV t = r u ¢ v¢
12.6 MIXING LENGTH CONCEPT ([SODLQWKHFRQFHSWRIPL[LQJOHQJWKLQWURGXFHGE\3UDQGWODQGVWDWHWKHUHODWLRQVKLS WKDWH[LVWVEHWZHHQWKHWXUEXOHQWVKHDUVWUHVVDQGWKHPL[LQJOHQJWK (UPTU 2001-2) Or
708
Fundamentals of Fluid Mechanics
'HULYHDQH[SUHVVLRQIRUVKHDUVWUHVVRQWKHEDVLVRI3UDQGWO¶VPL[LQJOHQJWKWKHRU\ (UPTU 2006-7) 7KH3UDQGWO¶VPL[LQJOHQJWKWKHRU\VWDWHVWKDWWKHPL[LQJOHQJWKl LVWKHGLVWDQFHEHWZHHQ WKH WZR DGMDFHQW OD\HUV LQ WUDQVYHUVH GLUHFWLRQ VXFK WKDW WKH OXPSV RI ÀXLG SDUWLFOHV FDQ PRYHIURPRQHOD\HUWRDQRWKHUOD\HULQVXFKDZD\WKDWWKHPRPHQWXPRIWKHSDUWLFOHVLQ xGLUHFWLRQUHPDLQVVDPH 3UDQGWODVVXPHGWKDWYHORFLW\ÀXFWXDWLRQVLQx-DQGyGLUHFWLRQVDUHUHODWHGWRWKHPL[LQJ OHQJWKDVH[SUHVVHGEHORZ
6LPLODUO\
\
u¢ = l
du ZKHUH l PL[LQJOHQJWK dy
v¢ = l
du dy
Ê du ˆ u ¢ v¢ = l Á Ë d y ˜¯
ZKHUH u ¢ v¢ LVWLPHDYHUDJHÀXFWXDWLRQV
$VSHU5H\QROGVVKHDUVWUHVVHTXDWLRQIRUWXUEXOHQFHÀRZ t = r u ¢ v¢
1RZXVHUHODWLRQ
Ê du ˆ u ¢ v¢ = l Á d y ˜ Ë ¯
:HJHW
Ê du ˆ t = rl Á Ë d y ˜¯
7KH PL[LQJ OHQJWK l LV DQDORJXV WR WKH PHDQ IUHH SDWK LQ WKH NLQHWLF WKHRU\ RI JDVHV +RZHYHU WKHUH LV D YDVW GL൵HUHQFH EHWZHHQ WKH WZR DV PHDQ IUHH SDWK UHODWHV WR WKH PLFURVFRSLFOHYHOZKLOHPL[LQJOHQJWKUHODWHVWRPDFURVFRSLFPRWLRQRIÀXLGSDUWLFOHV )LQGWKHH[SUHVVLRQRIHGG\YLVFRVLW\LQWHUPVRIPL[LQJOHQJWK:K\3UDQGWO¶VPL[LQJ OHQJWKWKHRU\LVXVHIXOLQWKHDQDO\VLVRIWXUEXOHQWIORZ" )RUWXUEXOHQWÀRZVKHDUVWUHVV
Ê du ˆ t = rl Á Ë d y ˜¯
L
$VSHU%RXVVLQHVT¶VHTXDWLRQVKHDUVWUHVVLQWXUEXOHQWÀRZ Ê du ˆ t = hÁ Ë d y ˜¯
LL
Turbulent Flow
709
&RPSDULQJHTQVL DQGLL ZHKDYH Ê du ˆ h = r l Á Ë d y ˜¯ 7KHDERYHHTXDWLRQLQGLFDWHVWKDWPL[LQJOHQJWKl LVDIXQFWLRQRIyLHGLVWDQFHRIWKH SRLQWXQGHUREVHUYDWLRQIURPWKHERXQGDU\RUZDOO3UDQGWOVWXGLHGWKHWXUEXOHQWÀRZLQD FLUFOHDQGJDYHWKHH[SUHVVLRQIRUWKHPL[LQJOHQJWKDV l = ky ZKHUHkLVDXQLYHUVDOFRQVWDQWkLVDOVRNQRZQDV.DUPDQFRQVWDQWDQGLWVYDOXHLV +RZ GRHV WKH PL[LQJ OHQJWK YDU\ ZLWK GLVWDQFH IURP WKH ZDOO LQ D WXUEXOHQW IORZ" 6KRZLWE\DVNHWFKZK\3UDQGWO¶VPL[LQJOHQJWKLVSUHIHUUHG" 7KH PL[LQJ OHQJWK YDULHV ZLWK WKH GLVWDQFH IURP WKH ZDOO LQ D WXUEXOHQFH ÀRZ DV SHU H[SUHVVLRQ l = ky
ZKHUHkLVVRPHFRQVWDQWZKRVHYDOXHKDVWREHGHWHUPLQHGIURPWKHH[SHULPHQWGDWD)RU UHJLRQVYHU\FORVHWRWKHZDOOVWKHYDOXHRIk l = 0.4 y 0.16
r0 = radius of pipe
l r0 1 y r0
Variation of Mixing Length w.r.t. Distance from Wall
3UDQGWO¶VPL[LQJOHQJWKWKHRU\LVSUHIHUUHGIRUWKHDQDO\VLVRIWXUEXOHQWÀRZDVWKLVWKHRU\ LVVLPSOHWRDSSO\
12.7 SIMILARITY CONCEPT What is von Karman similarity concept? What is the limitation of Prandtl’s concept and Karman concept? YRQ .DUPDQ H[WHQGHG WKH 3UDQGWO PRPHQWXP WKHRU\ E\ HVWDEOLVKLQJ WKH GHSHQGHQFH RI PL[LQJOHQJWKLQWKHWXUEXOHQFHÀRZRQWKHGLVWULEXWLRQRIDYHUDJHYHORFLW\$FFRUGLQJWR KLP WKH PL[LQJ OHQJWK LV WKH UDWLR RI WKH ¿UVW GHULYDWLYH RI PHDQ YHORFLW\ WR WKH VHFRQG GHULYDWLYHRIPHDQYHORFLW\
710
Fundamentals of Fluid Mechanics
du dy 0L[LQJOHQJWK l = k d u d y
%XWVKHDUVWUHVVt = r l
t = rk
\
du dy Ê du ˆ ÁË d y ˜¯
Ê d u ˆ Á d y ˜ Ë ¯
7KHDERYHUHODWLRQUHODWHVVKHDUVWUHVVWRWKHPHDQYHORFLW\JUDGLHQWLQWXUEXOHQWÀRZ Limitation: 1HLWKHU3UDQGWO¶VFRQFHSWQRU.DUPDQ¶VFRQFHSWLVYDOLGLQ¿QGLQJRXWVKHDU VWUHVVHVDWWKHSLSHFHQWUHOLQHDVDWWKHSLSHFHQWUHOLQHWKHWUDQVYHUVHPRPHQWXPWUDQVSRUW LV]HUR%RWKWKHFRQFHSWVDUHDOVRQRWYDOLGDWWKHSLSHZDOOVDVWKHVXEOD\HUDWWKHZDOOV KDVODPLQDUÀRZ $WXUEXOHQWIORZRIZDWHULQDSLSHRIPGLDPHWHUKDVYHORFLW\SUR¿OHDVXQGHU 1 u = 4 + ORJ e y 4 Shear stress at a point 0.1 m from the wall is measured as 1.2 N/m2. Find (1) turbulence viscosity h PL[LQJOHQJWKDQG WXUEXOHQFHFRQVWDQWk. u ORJ e y du = y dy
\
$OVR
- d u = y dy
1RZDSSO\%RXVVLQHVTUHODWLRQIURVKHDUVWUHVVZHKDYH t=h
du dy
h ¥
¥
h ¥¥ 1VP
Turbulent Flow
1RZDSSO\3UDQGWO¶VPL[LQJOHQJWKFRQFHSWZHJHW Ê du ˆ t = r l Á ˜ Ë dy¯
Ê ˆ ¥ ¥ l Á Ë ¥ ˜¯
RU
¥ ¥
l =
¥ =
=
l ¥± l P
$VSHU3UDQGWO¶VPL[LQJOHQJWKFRQFHSWZHKDYH L = ky
RU
k=
l = y
8VLQJYRQ.DUPDQ¶VVLPLODULW\FRQFHSW
t = r k
Ê du ˆ ÁË d y ˜¯
Ê d u ˆ Á d y ˜ Ë ¯
¥ ¥ k
RU
k =
Ê ˆ ÁË y ˜¯
Ê ˆ ÁË y ˜¯
¥ ¥±
k
711
712
Fundamentals of Fluid Mechanics
12.8 VELOCITY DISTRIBUTION 'HULYHDQH[SUHVVLRQIRU3UDQGWO¶VYHORFLW\GLVWULEXWLRQLQWXUEXOHQWIORZLQSLSHV Or What is velocity defect? Derive an expression for velocity defect in pipes. (UPTU 2004-5) 3UDQGWO DVVXPHG WKDW PL[LQJ OHQJWK QHDU WKH ZDOO GHSHQGV XSRQ WKH GLVWDQFH RI WKH SRLQW IURPWKHZDOO+HQFHZHKDYH l = ky
ZKHUHk .DUPDQFRQVWDQW
7KHVKHDUVWUHVVLQWXUEXOHQFHÀRZ Ê du ˆ t = rl Á ˜ Ë dy¯
UN\ Ê du ˆ ÁË d y ˜¯
Ê du ˆ ÁË d y ˜¯
RU
\
=
t r k y t r
du = ky dy
Rr
BXW
t VKHDUYHORFLW\ u r du u = dy ky
Rr
du =
Rr
Ú du =
RU
u=
u dy ky u k
Ú
dy y
u ORJyc ZKHUHc FRQVWDQW k
Turbulent Flow
713
$SSO\ERXQGDU\FRQGLWLRQWKDWYHORFLW\LVPD[LPXPDWWKHFHQWUHOLQHRISLSHZHKDYH y = Ru = uPD[ ZKHUHR UDGLXVRISLSH uPD[ =
\
C = uPD[ –
\
u=
\
u = uPD[
u u ORJyuPD[ – ORJ e R k k u ORJ e y±ORJe R k
k
y R 7KH DERYH HTXDWLRQ LV FDOOHG 3UDQGWO¶V HTXaWLRQ IRU XQLYHUVDO YHORFLW\ GLVWULEXWLRQ LQ WXUEXOHQFHÀRZ,WLVYDOLGIRUERWKVPRRWKDQGURXJKSLSHV 7KHDERYHHTXDWLRQFDQDOVREHZULWWHQLQORJDULWKPEDVHDVXQGHU u = uPD[u ORJ e
7KHQ
u ORJ e R k
\
,IZHWDNH
u ORJ e RC k
u - uPD[ ORJ e y u R ¥ORJ y R ORJ y R
RU
uPD[ - u R ORJ 6LQFHR > y y u
7KHWHUPuPD[ – u LVFDOOHGYHORFLW\GHIHFW
12.9 SMOOTH AND ROUGH BOUNDARY 'LVWLQJXLVKEHWZHHQK\GURG\QDPLFDOVPRRWKDQGURXJKERXQGDULHV S Laminar sublayer
∂ d¢
∂
∂
∂
k Smooth boundary (d¢ > k)
Turbulent boundary layer
S
Turbulent boundary layer Eddies
Eddies Laminar sublayer
k d¢ Rough boundary (d¢ < k)
714
Fundamentals of Fluid Mechanics
Hydrodynamically Smooth Boundary7KHVPRRWKERXQGDU\KDVWKHDYHUDJHGHSWKRIVXUIDFH LUUHJXODULW\k OHVVWKDQWKHGHSWKRIODPLQDUVXEOD\HURIWKHVXUIDFH7KHHGG\VZKLFKDUH IRUPHGLQWKHWXUEXOHQWERXQGDU\OD\HURXWVLGHRIWKHODPLQDUVXEOD\HUWU\WRSHQHWUDWHWKH ODPLQDUVXEOD\HUEXWWKH\FDQQRWUHDFKWRWKHVXUIDFHLUUHJXODULWLHVGXHWRJUHDWHUGHSWKRI WKHODPLQDUVXEOD\HU+HQFHVPRRWKERXQGDU\KDV
D
k DVSHU1LNXUDGVH¶VH[SHULPHQW d
E
u k r DVSHU5H\QROGVURXJKQHVVQXPEHU m
Hydrodynamically Rough Boundary7KHURXJKERXQGDU\KDVWKHDYHUDJHGHSWKRIVXUIDFH LUUHJXODULW\ k JUHDWHU WKDQ WKH GHSWK RI ODPLQDU VXEOD\HU 7KH HGGLHV ZKLFK DUH IRUPHG RXWVLGH RI ODPLQDU VXEOD\HU LQ WKH WXUEXOHQW ERXQGDU\ OD\HU FDQ SHQHWUDWH LQ WKH ODPLQDU VXEOD\HURIWKHVXUIDFH+HQFHURXJKERXQGDU\KDV D k !DVSHU1LNXUDGVH¶VH[SHULPHQW d E
u k r !DVSHU5H\QROGVURXJKQHVVQXPEHU m
Note: 7KHWUDQVLWLRQERXQGDU\EHWZHHQVPRRWKDQGURXJKERXQGDU\KDV D
4000
1RZ
f=
\
hf =
¥± Re ¥ - ¥ ¥ ¥ ¥
P
Flow Through Pipes and Compressibility Effects
829
&KHQ]\¶VIRUPXOD V = c mi c
*LYHQ
m= =
4
¥ ¥ i
RU
$UHD d pd = = SHULPHWHU 4 4 ¥ pd
i=
¥
hf = i ¥ L ¥ P
,QDPPGLDPHWHUSLSHOLQHDQRLORI6*LVIORZLQJDWWKHUDWHRIPV$ VXGGHQH[SDQVLRQWDNHVSODFHLQWKHVHFRQGSLSHOLQHRIVXFKDGLDPHWHUWKDWPD[LPXP SUHVVXUHULVHLVREWDLQHG)LQGL ORVVRIHQHUJ\LQVXGGHQH[SDQVLRQDQGLL GL൵HUHQWLDO JDXJHOHQJWKLQGLFDWHGE\DQRLOPHUFXU\PDQRPHWHUFRQQHFWHGEHWZHHQWZRSLSHV (UPSC) Q P V V =
\
%\%HUQRXOOL¶VHTXDWLRQ
Q = p A ¥ 4
PV
P P V V + + Z = + + Z + he rg rg g g È ˘ P – P = DP = rg Í V - V - h ˙ e Î g g ˚
\
$V
Z = Z DQGhe = V - V g
830
Fundamentals of Fluid Mechanics
È V V V - V ˘ DP = rg Í - - ˙ g Î g g ˚
RU
DP = rg V g
1RZ
RU
AV = AV V Ê ˆ = D ÁË D ˜¯ V
RU
DP = rV
\
= rV
È Ê Ê D ˆ ˆ ˘ Ê ˆ D Í - Á - Á ˜ ˜ ˙ Í ÁË D ˜¯ ÁË Ë D ¯ ˜¯ ˙ ÍÎ ˙˚ È Ê D ˆ Ê D ˆ ˘ Í - Á ˜ ˙ Ë D ¯ ˙˚ ÍÎ ÁË D ˜¯
D = D
\
D =
\
∂DP =0 Ê D ˆ ∂Á ˜ Ë D ¯
)RUPD[SUHVVXUHULVH
RU
È Ê Ê V ˆ ˆ ˘ Ê ˆ V Í - - Á - ˜ ˙ Á ˜ Í Á ˜ ˙ Î Ë V ¯ Ë Ë V ¯ ¯ ˚
D =
¥
P V =
Q = p ¥ A 4
PV DQG V ¥ V PV
1RZORVVRIKHDG
he =
- ] V - V = [ g ¥
PRIRLO
Flow Through Pipes and Compressibility Effects
831
P - P V - V = – he rg g
1RZ
=
- ± g
± ,IhLVUHDGLQJRIPDQRPHWHUWKHQ ÈS ˘ P - P = h Í +J - ˙ rg Î 6RLO ˚ È ˘ - ˙ h h Í Î ˚
RU
h=
P
PP
7ZR VLPLODU SLSHV RI WKH VDPH GLDPHWHU RI OHQJWKV l and l2 are placed in parallel. &DOFXODWHWKHHTXLYDOHQWOHQJWKRIVLQJOHSLSHRIVDPHGLDPHWHU:KDWVKRXOGEHWKH HTXLYDOHQWOHQJWKLIWKHWZRSLSHVDUHHTXDOLQOHQJWK" 1 q1
q
\ 1RZ \
2
'LVFKDUJH Q = Q + Q
DQG
q
q2
hf = hf = hf KHDGORVVUHPDLQVVDPH
f LQ
¥ d
=
f LQ ¥ d
d = d Q = Q
L L
,IWKHHTXLYDOHQWOHQJWKRIWKHSLSHOLQH Le
832
Fundamentals of Fluid Mechanics
\ Now,
hf =
f Leq 2 12.1 ◊ d 5
Le Q 2 = L1Q12 = L2Q 22 Q = Q1 + Q2 = Q1 + Q1
\
Q
Q1 =
L1 L2
1+
But,
Q1 = Q
There,
Le = L1
or
when
Le =
L1 L2
Le L1 1 1+
L1 L2 L1
Ê Á1 + Ë
L1 ˆ L2 ˜¯
2
L1 = L2 = L Le =
L (2) 2
= 0.25 L The pipes of the same material and of equal lengths are used for connecting an overhead tank which supplies 85 ¥ 10 –3 m3/s of water. If diameter of pipes are 30 and FPUHVSHFWLYHO\¿QGWKHUDWLRRIKHDGORVVHVLISLSHVDUHFRQQHFWHGLQVHULHVDQGDUH parallel. Neglect minor losses. Series. Length of each pipe line = L and Q remains same hf =
f ¥ L ¥ Q2 12 ¥ d 5
hf =
f ¥ L ¥ (85 ¥ 10-3 ) 2 f ¥ L ¥ (85 ¥ 10-3 ) 2 + 12 ¥ (0.3)5 12 ¥ (0.15)5
Flow Through Pipes and Compressibility Effects
=
833
fL
¥
fL
Parallel Q = Q + Q hl =
f L Q f L Q ◊ = ◊ d d
fL Q f L Q ◊ = ◊
Q Q
\
¥ ± = Q + Q
%XW RU RU DQG \
QQ ¥ ± ¥ - ¥ ±PV
Q =
Q ¥¥ ± ¥±PV hf = hf = hf = =
¥ - fL ×
fL ◊
5DWLRRIVHULHVWRSDUDOOHOKHDGORVV fL ¥ = fL ¥
$ VXGGHQ HQODUJHPHQW RI ZDWHU PDLQV LV IURP WR FP GLDPHWHU 7KH K\GUDXOLF JUDGLHQWULVHVE\FP(VWLPDWHWKHUDWHRIIORZLQWKHSLSHOLQH 8378
ÊP ˆ Ê P ˆ +\GUDXOLFJUDGLHQW Á + Z ˜ – Á + Z ˜ Ë rg ¯ Ë rg ¯ ¥ ±P
834
Fundamentals of Fluid Mechanics
1RZXVLQJFRQWLQXLW\HTXDWLRQDWHQODUJHPHQWZHJHW A V = AV
RU
p p ¥ V = ¥ V 4 4 V = 4V he =
V - V V - V V = = g g g
1RZDVSHU%HUQRXOOL¶VHTXDWLRQZHKDYH P P V + + Z = + V + Z + he rg rg g g
V V Ê P ˆ Ê P ˆ + Z – = – – he ˜ ÁË r g ÁË r g + Z ˜¯ g g ¯
¥
±
V - V V = – g g =
RU
V =
V g g ¥
'LVFKDUJHQ = AV =
p ¥ ¥ 4
¥ ±PV
:KDWZDWHUOHYHOHVKRXOGEHPDLQWDLQHGLQWKHZDWHUWDQNVRWKDWWKHGLVFKDUJHRI 0.5 ¥ ±PVFDQEHREWDLQHGIURPWKHSLSHDWWDFKHGDWWKHVLGHRIWKHWDQNRIOHQJWK PDQGGLDPHWHUPP$VVXPHf = 0.02
H d = 25 mm f
L = 25 m
Flow Through Pipes and Compressibility Effects
835
Q ¥ ± Q = AV $UHD¥9HORFLW\ ¥ -
V=
\
p¥
4
PV
V f Lq H = hL KHDGORVV g ¥ d =
¥ ¥ ¥ ¥ - + ¥ ¥
P
:DWHUOHYHOWREHPDLQWDLQHG H P
10 m
:DWHU OHYHO LQ D UHVHUYRLU LV P DERYH WKH RXWOHW :DWHU LV GLVFKDUJHG WKURXJK D FRPSRXQGSLSHFRQVLVWLQJRIPORQJSLSHVHJPHQWRIPGLDPHWHUDQGPVHJPHQW RI PP GLDPHWHU %RWK VHJPHQWV DUH KRUL]RQWDO DQG f YDOXHV DUH DQG UHVSHFWLYHO\)LQG GLVFKDUJHDQG GLVFKDUJHZKHQPLQRUORVVHVDUHQHJOHFWHG
L1 = 30 m
L2 = 15 m
$VSHUFRQWLQXLW\HTXDWLRQZHKDYH AV = A V V =
4 ¥ p d 4 ¥ p d
¥ V
Ê ˆ V = Á V Ë ˜¯ RU
V V H = hL + hL
836
Fundamentals of Fluid Mechanics
0DMRUORVVLVIULFWLRQORVVLQERWKSLSHV hf =
=
f ¥ L V f ¥ L V + ◊ g ◊ d ◊ g ◊ d ¥ ¥ V ¥ ¥ V + ¥ ¥ ¥ ¥
= VV V 0LQRUORVV KHDGORVVDWHQWUDQFHKHDGORVVGXHWRVXGGHQH[SDQVLRQ
V V - V + g g
=
V V - V + g g
=
+ V g
V
7RWDOKHDGORVV KHDGDYDLODEOHLQZDWHUWDQN
7RWDOKHDGORVV PDMRUORVVPLQRUORVV V V V
V =
RU \ \
V = PV 'LVFKDUJHQ = AV =
p ¥ ¥ 4
¥±PV
,QFDVHPLQRUORVVHVDUHQHJOHFWHGWKHQ RU 1RZ
+HDGDYDLODEOH KHDGORVVGXHWRIULFWLRQRQO\ V V PV GLVFKDUJHQ = AV
Flow Through Pipes and Compressibility Effects
=
837
p ¥ ¥ 4
¥ ± PV
:DWHU LQ D WDQN LV PDLQWDLQHG DW FRQVWDQW KHDG RI P :DWHU LV GLVFKDUJHG WKURXJK D KRUL]RQWDO SLSH P ORQJ DQG PP LQ GLDPHWHU 7KHUH LV D YDOYH DW WKH HQG RI WKH SLSH WR FRQWURO WKH GLVFKDUJH :KHQ YDOYH LV KDOI RSHQ GLVFKDUJH LV ¥±PV)LQGWKHYDOXHRIORVVFRHIILFLHQWRIWKHYDOYHLIf = 0.026.
Dia = 100 mm f
4m
L = 100 m
V=
¥ - ¥ Q = PV A p ¥
7RWDOKHDGORVV PDMRUORVVHVPLQRUORVVHV /RVVGXHWRIULFWLRQORVVDWHQWUDQFHORVVDWYDOYH 7RWDOKHDGDYDLODEOHDWWDQN WRWDOKHDGORVVLQSLSHOLQH 4=
=
Ê V Vˆ f ¥ L ¥V +k + Á ZKHUHK ORVVFRH൶FLHQWRIYDOYH g g ˜¯ Ë ◊ g ◊d Ê ¥ k ˆ ¥ ¥ + + Á ¥ ¥ ¥ ˜¯ Ë ¥
K K RU K :DWHUIORZVWKURXJKDSLSHRIPPLQGLDPHWHUZLWKGLVFKDUJHHTXDOWR¥ ± PV7KH SLSHOLQH FRQVLVWV RI VWUDLJKW OHQJWK RI P RQH YDOYH K RQH HOERZ (K = 2) and one T outlet (K :KDWLVWKHHTXLYDOHQWOHQJWKRIWKHSLSHOLQH")LQG also total loss of head if f = 0.02. Q ¥±PV AV = Q ZKHUH A DUHDV YHORFLW\ RU
V=
¥ - ¥ PV p ¥
838
Fundamentals of Fluid Mechanics
RU
0DMRUORVV IULFWLRQORVV hf =
hf =
¥ ¥ P ¥ ¥
0LQRUORVVHV ORVVHVGXHWR¿WWLQJV hm = K + K + K
=
f LV gd
V g
+ + ¥ ¥
P 7RWDOORVVRIKHDG hf + hm P 1RZHTXLYDOHQWOHQJWKIRUPLQRUORVVHV le = =
Kd f + +
P 7RWDOHTXLYDOHQWOHQJWKRIWKHSLSHOLQH LHTY = L + le P
)LQGWKHGLDPHWHURIDXQLIRUPSLSHWRUHSODFHDFRPSRXQGSLSHKDYLQJWKUHHVHJPHQWV RIPPDQGPRIFPFPDQGFPGLDPHWHUVUHVSHFWLYHO\7RWDO OHQJWKRISLSHLVVDPHDVWKDWRIFRPSRXQGSLSHOLQH L + L + L d
=
L d
+
L d
+
L d
+ + = + + d
Flow Through Pipes and Compressibility Effects
839
d RU
Ê ˆ d= Á Ë ˜¯
P
)RUWKHGLVWULEXWLRQPDLQVRIDWRZQZDWHUVXSSO\DFPPDLQLVUHTXLUHG$VSLSHV DERYHFPGLDPHWHUDUHQRWDYDLODEOHLWLVGHFLGHGWROD\WZRSDUDOOHOPDLQVRIVDPH GLDPHWHU)LQGWKHGLDPHWHURIWKHSDUDOOHOPDLQV 3XQMDE8QLYHUVLW\ hf = 1RZ
Q = Q + Q QDVQ = Q
Q =
RU
f ¥ ¥ Q = ¥ d
\
RU
d =
=
RU
f ¥ L ¥ Q ¥ d
d =
Q Ê Qˆ f ¥¥ Á ˜ Ë ¯
¥ d ¥ d 4 ¥ 4 =
FP
+HQFHQHDUHVWVWDQGDUGGLDPHWHULVFP7ZRFPGLDPHWHUSLSHVDUHWREHODLG $VSHFLDOSLSHRIGLDPHWHUd carrying discharge QDWXSVWUHDPLVDUUDQJHGWRGLVFKDUJH qSHUXQLWOHQJWKXQLIRUPO\DORQJLWVOHQJWK'HULYHDQH[SUHVVLRQIRUKHDGORVVRYHUD length L and head loss for entire length.
840
Fundamentals of Fluid Mechanics q
q
q
q
q
Q d x
dx
7KHUHLVIDOORIGLVFKDUJHµq¶SHUXQLWOHQJWK,IQLVWKHLQLWLDOÀRZLQWKHSLSHWKHQUHPDLQLQJ GLVFKDUJHDIWHUaGLVWDQFHx Qx = Q – q ◊x
6XSSRVHWKLVGLVFKDUJHUHPDLQVIRUGLVWDQFHdxWKHQKHDGORVVLQWKLVVPDOOOHQJWK dh f =
f ⋅ dx ⋅ Q − q x d
%\LQWHJUDWLQJZHFDQ¿QGKHDGORVVIRUFRPSOHWHOHQJWKL
Ú dhf = Ú
L
0
hf =
=
f Q – qx dx d
f ¥ d
L
È x q x ˘ ◊Q + ÍQ ◊ x - ◊ q ˙ ˚0 Î
f Q L È q L q ˘ - L˙ Í + ◊ d Î Q Q ˚
7KHÀRZNHHSVRQGLVFKDUJLQJqSHUXQLWOHQJWKWLOOLWEHFRPHV]HURDIWHUOHQJWKL PLQ Q = q ¥ lPLQRU
hf =
=
q = Q LPLQ
f LPLQ ¥ Q Ê ˆ ÁË + - ˜¯ ◊ d f ¥ Q ◊ d ◊ q
Flow Through Pipes and Compressibility Effects
841
14.12 PIPE NETWORKING :KDWLVSLSHQHWZRUNLQJ":KDWDUHWKHFRQGLWLRQVWREHVDWLV¿HGE\WKHSLSHQHWZRUN" C
D H E
B
A
F
G
Networking
$ JURXS RI SLSHV LQWHUFRQQHFWHG DQG IRUPLQJ VHYHUDO FLUFXLWV RU ORRSV LV FDOOHG D SLSH QHWZRUN 1HWZRUNLQJ LV D FRPPRQ PHWKRG LQ ZDWHU GLVWULEXWLRQ V\VWHP DGRSWHG E\ WKH PXQLFLSDOLWLHVRIWKHFLWLHV ,QQHWZRUNLQJRISLSHVIROORZLQJFRQGLWLRQVDUHDOZD\VVDWLV¿HG Continuity equation. $WHDFKMXQFWLRQRISLSHVWRWDOLQÀRZLVHTXDOWRRXWÀRZDVSHU WKHSULQFLSOHRIFRQWLQXLW\ Energy equation. 7KHORVVRIKHDGGXHWRÀRZLQHDFKORRSLQFORFNZLVHGLUHFWLRQPXVW EHHTXDOWRWKHORVVRIKHDGGXHWRÀRZLQDQWLFORFNZLVHGLUHFWLRQ,QWKH¿JXUHWKHKHDG ORVVLQWKHFORFNZLVHÀRZIURPAWREPXVWEHHTXDOWRWKHKHDGORVVLQDQWLFORFNZLVH IURPAFE,QRWKHUZRUGVWKHDOJHEUDLFVXPRIKHDGORVVHVLQDQ\FORVHGFLUFXLWZLWKLQ WKHQHWZRUNPXVWEH]HUR Darcy’s equation. 7KH KHDG ORVV LQ HDFK SLSH RI WKH QHWZRUN IRU VLPSOLFLW\ FDQ EH H[SUHVVHG DV hf = r Q ZKHUH r =
fL 7KH ÀRZ LQ HDFK SLSH PXVW VDWLVI\ WKH ¥ d
UHODWLRQEHWZHHQWKHKHDGORVVDQGGLVFKDUJHDWDOOWLPHV 'HVFULEHWKH+DUG\FURVVPHWKRGIRUVROYLQJSLSHQHWZRUNSUREOHPV 7KHSLSHQHWZRUNSUREOHPVDUHGL൶FXOWWRVROYHDQDO\WLFDOO\+HQFHWKHPHWKRGRIVXFFHVVLYH DSSUR[LPDWLRQLVXVHGZKLFKLVFRPPRQO\NQRZQDV+DUG\FURVVPHWKRG)ROORZLQJVWHSV DUHXVHGLQWKLVPHWKRG D WULDO GLVWULEXWLRQ RI ÀRZ LV PDGH IRU WKH QHWZRUN LQ VXFK D ZD\ WKDW WKH FRQWLQXLW\ HTXDWLRQLVDOZD\VVDWLV¿HGDWHDFKMXQFWLRQRUQRGH KHDGORVVZLWKWULDOGLVWULEXWLRQRIÀRZIRUHDFKSLSHLQQHWZRUNLVIRXQGRXW+HDGORVV LQHDFKSLSHLVhf = kQ ZKHUHk =
fL ◊ d
DSSO\WKHFRQGLWLRQDQGVHHZKHWKHUWKHVXPRIKHDGORVVHVLQHDFKORRSLV]HURLH Â h f = Â kQ
842
Fundamentals of Fluid Mechanics
,QFDVHVXPRIKHDGORVVHVLQDORRSLVQRW]HURFKDQJHWKHYDOXHRIWKHÀRZVRWKDW WKHVXPRIKHDGORVVRIÀRZPD\EHFRPH]HUR 1HZÀRZLVQ = Q0 + DQDQGÂhf = ÂKQ0 + DQ = 0DQGDQ =
 KQ  KQ
7KHDERYHSURFHGXUHKDVWREHUHSHDWHGWLOOZHJHWÂhf )LQG WKH GLVFKDUJH LQ HDFK SLSH RI WKH QHWZRUN DV VKRZQ LQ WKH ¿JXUH7KH YDOXH RI kIRUHDFKSLSHLVDOVRVKRZQ7KHGLVFKDUJHIURPWKHQRGHVLVDOVRVKRZQQA = –20 ¥±, QD ¥ ±, Qc = – 40 ¥ ± and QB = 45 ¥±PV A
20
k=7
D 15
k=8
k=6
k=6
k=4
45
B
40
C
Guidance.+DUG\FURVVPHWKRGLVWREHXVHG7DNHORRSABCDQWLFORFNZLVHDQGCDAORRS FORFNZLVH$VVXPHÀRZLQHDFKSLSHRIWKHORRS)LQGhf = KQ IRUHDFKSLSH7KHYDOXH RI hf LV SRVLWLYH LQ WKH GLUHFWLRQ RI DVVXPHG ÀRZ DQG QHJDWLYH LQ RSSRVLWH GLUHFWLRQ7KH YDOXHRIÂhfRIWKHORRSLVZRUNHGRXW,QFDVHÂhfLV]HURWKHDVVXPHGYDOXHVRIÀRZLQ HDFKSLSHLVFRUUHFWRWKHUZLVH¿QGFKDQJHLQÀRZDQZKLFKLVJLYHQE\=
 KQ  KQ
:H DVVXPH WKH ÀRZ LQ HDFK SLSH RI WKH ORRSV VXFK WKDW WKH ÂQ DW HDFK QRGH 7KH DVVXPHGÀRZLQHDFKSLSHLVDVVKRZQLQWKH¿JXUH 10
A
20
5
15
45
D
B
15
5
C
30
40
First trial Loop ABC
Loop CDA
K
Q
hf = KQ2
2KQ
Pipe
K
AB
6
15
–1350
180
CD
6
5
150
60
BC
4
30
3600
240
DA
7
10
700
140
CA
8
5
–200
80
AC
7
5
 = 2050
 = 500
Pipe
DQ =
- 2050 500
= –4
Q
hf = KQ2
2KQ
200
80
 = 750
 = 280
DQ = –
750 280
ª –3
Flow Through Pipes and Compressibility Effects
843
Second Trial 7KHFRUUHFWHGÀRZLHQ ± DQLQHDFKSLSHRIWKHQHWZRUNLVDVVKRZQLQWKH¿JXUH 10 – 3 = 7
A
20
6
15 + 4 = 19
45
D
B
5+3=8
C
30 – 4 = 26
Loop ABC Pipe
K
15
40
Loop CDA
Q
KQ2
2KQ
Pipe
K
Q
KQ2
2KQ
AB
6
19
–2166
238
CD
6
8
–384
96
BC
4
25
2704
208
DA
7
7
343
98
CA
8
6
–288
96
AC
8
6
286
96
 = 250
 = 532
 = –1247
 = 290
= – 0.5
DQ =
250
DQ =
532
- 247 290
= –1
Third Trial. 7KHFRUUHFWHGÀRZLHQ ± DQLQHDFKSLSHRIWKHQHWZRUNLVVKRZQLQWKH ¿JXUHEHORZ 7+1=8
A
20
6 – 0.5 = 5.5
19 + 0.5 = 19.5 45
D
B
26 – 0.5 = 25.5
8+1=9
C
Loop ABC Pipe
K
15
40
Loop CDA
Q
KQ2
2KQ
Pipe
K
Q
KQ2
2KQ
AB
6
19.5
–2281.5
254
CD
6
9
–486
108
BC
4
25.5
2601
204
DA
7
8
202
84
CA
8
55
–242
88
AC
8
5.5
 = 77.5
 = 526
DQ =
- 72.5 526
= – 0.15
242
88
Â= 8
 = 280
DQ =
-8 280
= – 0.03
844
Fundamentals of Fluid Mechanics
7KH¿QDOÀRZLQHDFKSLSHLQWKHQHWZRUN 20
5.97
A
5.35
19.65
45
D
B
25.35
15
9.03
40
C
14.13 SYPHON :KDWLVDV\SKRQ":KHUHLVLWXVHG"([SODLQLWVDFWLRQ'HULYHDQH[SUHVVLRQIRUWKH length of its inlet leg. 8378 6\SKRQLVDQDUUDQJHPHQWRISLSHV\VWHPE\ZKLFKZDWHUFDQEHPDGHWRUXQXSWKHKLOO XWLOL]LQJWKHIRUFHRIDWPRVSKHULFSUHVVXUH,WLVDEHQWSLSHFRQQHFWLQJWZRZDWHUVXUIDFHV DWGL൵HUHQWOHYHOVDQGVHSDUDWHGE\KLJKJURXQGRYHUZKLFKWKHSLSHLVODLGDVVKRZQLQWKH ¿JXUH7KHZDWHUZLOOÀRZIURPKLJKZDWHUOHYHOVXUIDFHVXUIDFHA WRWKHORZHUZDWHUOHYHO VXUIDFHVXUIDFHB HYHQZKHQDQREVWUXFWLRQLQZD\RIVXPPLWCLVSUHVHQW7KHSUHVVXUH DWSRLQWCLQSLSHLVOHVVWKDQDWPRVSKHULFSUHVVXUHDVLWOLHVDWDOHYHOZKLFKLVDERYHWKH IUHHVXUIDFHRIWKHZDWHUDWSRLQWA6LQFHDWPRVSKHULFSUHVVXUHLVHTXDOWRPRIZDWHU WKHSUHVVXUHDWCFDQEHWKHRUHWLFDOO\UHGXFHGWR±PRIZDWHUEXWLWLVOLPLWHGWR± PRIZDWHUWRDYRLGDLUDQGGLVVROYHGJDVHVVHSDUDWLQJIURPWKHZDWHUDQGJHWWLQJFROOHFWHG DWSRLQWCVXPPLW RIWKHSLSHOLQHZKLFKDUHOLNHO\WRREVWUXFWOLQHÀRZRIWKHZDWHU7KH LQOHWOHJLVLQIDFWWKHSLSHOLQHIURPWKHUHVHUYRLUAWRVXPPLWCDQGWKHRXWOHWOHJLVWKH SLSHIURPVXPPLWCWRUHVHUYRLUB C
Summit
A TEL
HGL B
Obstruction like hill
Syphon
6\SKRQFDQEHXVHGIRU
7RWDNHZDWHUIURPRQHUHVHUYRLUWRDQRWKHUUHVHUYRLUORFDWHGDWORZHUOHYHOEXWZKHQ WKH\DUHVHSDUDWHGE\KLJKREVWDFOHOLNHKLOORUULGJH 7R GUDZ RXW ZDWHU IURP D FKDQQHO ZLWKRXW DQ\ RXWOHW WR ORZHU JURXQG DV VKRZQ EHORZ
Flow Through Pipes and Compressibility Effects
845
Syphon Low ground Channel
Flow
Drawing Out Water from a Channel
7RGUDZRXWZDWHUIURPDWDQNKDYLQJQRRXWOHWDVVKRZQEHORZ
Flow Drawing Out Water from a Tank
7RFRQQHFWWZRRSHQFDQDOVE\LQYHUWHGV\SKRQDVVKRZQEHORZ HGL
Syphon
Obstacle like big ditch
Inverted Syphon Connecting Two Channels
Principle of working 1HJDWLYHSUHVVXUHLVFUHDWHGDWVXPPLWCRIWKHV\SKRQVRWKDWZDWHUFDQEHSXVKHGWRZDUGV WKHVXPPLWE\WKHDWPRVSKHULFSUHVVXUHDFWLQJRQWKHIUHHVXUIDFHRIWKHZDWHU7KHÀRZ LQWKHV\SKRQLVPDLQWDLQHGWLOOWKHQHJDWLYHSUHVVXUHUHPDLQVDWVXPPLWC7KHÀRZDQG YHORFLW\RIWKHÀRZZKHQVWDUWHGLQWKHV\SKRQGHSHQGVRQWKHGL൵HUHQFHRIZDWHUOHYHODW SRLQW¶VADQGB,WGRHVQRWGHSHQGRQWKHOHYHORICRIWKHV\SKRQWLOOQHJDWLYHSUHVVXUHLV PDLQWDLQHGDWSRLQWC2QDSSO\LQJ%HUQRXOOL¶VHTXDWLRQEHWZHHQSRLQWVADQGBZHJHW PA P V V + A + ZA = B + B + ZBORVVHV r◊ g r◊ g g g $V
P PA = B DQG VA = VBZHKDYH r◊ g r◊g ZA – ZB ORVVHV
846
Fundamentals of Fluid Mechanics
+HDGORVV ORVVRIKHDGDWHQWU\ORVVRIKHDG
GXHWRIULFWLRQORVVRIKHDGDWWKHH[LW
V V f LV + + g g g ◊ d
1RZDSSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQSRLQW¶VADQGCZHKDYH P V PA V + A + ZA = C + C + ZCORVVHV g r◊ g r◊ g g PA VA VC = V \
ZC – ZA = –
PC Ê V f LACV ˆ – VC – Á + rg ◊ g ◊ d ˜¯ g Ë g
= – hC PC V Ê f LAC ˆ = hC + + rg g ÁË d ˜¯ Inlet leg and outlet leg $SSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQSRLQWVA DQGC PA P V + A + ZA = C + VC + ZC + hf rg rg g g
PA = Pa DWPRVSKHULFSUHVVXUH PC DEVROXWH]HURSUHVVXUH VA = 0 VC = V LQOHWYHORFLW\WRV\SKRQ hf =
f l V ZKHUHl LQOHWOHQJWK ◊ g ◊d
Pa f l V V + 0 + ZA = 0 + + ZC + rg ◊ g ◊d g RU
V =
gd È Pa ˘ - ( Z C - Z A )˙ f ◊ l ÍÎ rg ˚
L
Flow Through Pipes and Compressibility Effects
847
1RZDSSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQSRLQWCDQGB PC V V P + C + ZC = B + B + ZB + h f rg g g rg
PC VB VC = VPB = Pa DWPRVSKHULFSUHVVXUHDQGhf = P V f V L + ZC = a + 0 + ZB + rg g ◊ g ◊d
0+
RU
f ◊ V L g ◊ d
V =
◊ g ◊d f ◊ L
Pa ˘ È Í Z C - Z B - r g ˙ Î ˚
LL
1RZ WKH YHORFLW\ V PXVW EH HTXDO WR RU JUHDWHU WKDQ V VR WKDW QHJDWLYH SUHVVXUH LV PDLQWDLQHGDWVXPPLWCZLWKRXWOHWOHJÀRZLQJDOZD\VIXOO V ≥ V È Pa ˘ Í r g - ZC - Z A ˙ L Î ˚ £ P È L a ˘ Í Z C - Z B - r g ˙ Î ˚
RU
7KHGL൵HUHQFHLQWKHZDWHUVXUIDFHOHYHOVRIWZRUHVHUYRLUVZKLFKDUHFRQQHFWHGE\D V\SKRQLVP7KHOHQJWKRIWKHV\SKRQLVPDQGLWVGLDPHWHUFP$VVXPLQJ f GHWHUPLQHWKHGLVFKDUJHZKHQWKHV\SKRQLVUXQQLQJIXOO,IWKHYHUWH[RIWKH SLSHOLQHLVPDERYHWKHVXUIDFHOHYHORIWKHXSSHUUHVHUYRLUGHWHUPLQHWKHPD[LPXP length of the inlet leg for the pipe to run full. Neglect all losses other than that of friction. 3RRQD8QLYHUVLW\ C A
5m
H=8m B
H =
RU
V=
V V + fL ◊ ZKHUH H = 8 g d g
gH fl + d
848
Fundamentals of Fluid Mechanics
=
2 ¥ 9.81 ¥ 8 0.02 ¥ 500 1.5 + 0.3
= 1.945 m/s Discharge, Q = A◊V =
p ◊ (0.3)2 ¥ 1.945 4
= 0.1374 m3/s Inlet leg
But,
Pa - (ZC - Z A) L1 g £ P L2 (ZC - Z B ) - a r◊g Pa = atmospheric pressure head r◊ g = 10.3 m
\
10.3 - 5 L1 £ (5 + 8) - 10.3 L2 5.3 L1 £ 2.7 L2
But,
L2 = L – L1
\
L1 5.3 £ 2.7 L - L1
or
L - L1 2.7 ≥ 5.3 L1
or
L £ 0.51 + 1 L1
or
L1 ≥
or
L1 £ 39.7 m
600 1.51
Flow Through Pipes and Compressibility Effects
849
$V\SKRQRIGLDPHWHUPPFRQQHFWVWZRUHVHUYRLUVKDYLQJDGL൵HUHQFHRIHOHYDWLRQ RIZDWHUVXUIDFHDVP7KHWRWDOOHQJWKRIV\SKRQLVPDQGWKHVXPPLWLVP DERYHWKHZDWHUOHYHOLQWKHXSSHUUHVHUYRLU,IVHSDUDWLRQWDNHVSODFHDWPRIZDWHU DEVROXWH¿QGPD[LPXPYDOXHRILQOHWOHJ$VVXPHf DQGDWPRVSKHULFSUHVVXUH KHDG RIZDWHU 1RZGL൵HUHQFHRIZDWHUOHYHOEHWZHHQWZRUHVHUYRLUVLVP f LV ◊ g ◊d
H = hf =
RU
V =
= RU
g ◊ d ◊ f ◊L ¥ ¥ ¥ ¥
V PV
1RZDSSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQWKHXSSHUUHVHUYRLUA DQGVXPPLWC PA P V V + A + Za = C + B + ZCORVVHV rg rg g g
\
hf ±
± ¥
P
%XW
hf =
RU
L =
=
V PDMRUORVVHVh f g
f ¥ L ¥ V ◊ g ◊d ◊ g ◊ d ◊ hf f ¥V ¥ ¥ ¥ ¥
P
\+HQFHPD[LPXPLQOHWOHJRIWKHV\SKRQ P
850
Fundamentals of Fluid Mechanics
14.14 POWER TRANSMITTED BY A FLOW )LQGDQH[SUHVVLRQIRUSRZHUWUDQVPLWWHGE\DIORZWKURXJKDSLSHOLQH$OVR¿QGWKH H൶FLHQF\RISRZHUWUDQVPLWWHG
H
L
,QWKHWKFHQWXU\WKHUHZDVQRNQRZOHGJHDERXWHOHFWULFSRZHURULWVWUDQVPLVVLRQDVLWLV XVHGQRZDGD\V+HQFHWKHÀRZRIZDWHUXQGHUSUHVVXUHLQDSLSHOLQHZDVXVHGIRUSRZHU WUDQVPLVVLRQ,IHLVWKHWRWDOKHDGRIVXSSO\DWWKHHQWUDQFHRIWKHSLSHDQGhf LVWKHPDMRU ORVVGXHWRIULFWLRQWKHQWKHKHDGDYDLODEOHDWWKHRXWOHWRISLSHLVH – hf QHJOHFWLQJPLQRU ORVVHV hf =
f LV g ◊ d
1RZZHLJKWRIZDWHUÀRZLQJWKRXJKWWKHSLSHOLQH W = r ◊g◊
pd ¥V 4
+HQFHSRZHUWUDQVPLWWHGDWRXWOHWRIWKHSLSHOLQH
p Ê ˆ Ê f LV ˆ 3RZHUP = Á rg ¥ d ¥ V ˜ Á H Ë ¯ Ë 4 gd ˜¯
(৽FLHQF\(൶FLHQF\LVWKHUDWLRRISRZHUDYDLODEOHDWWKHRXWOHWRIWKHSLSHOLQHWRWKHSRZHU VXSSOLHGDWWKHLQOHWRIWKHSLSHOLQH h=
=
:HLJKWRIZDWHU ◊ H - h f :HLJKWRIZDWHU ◊ H H - hf H
'HULYH WKH H[SUHVVLRQ IRU PD[LPXP SRZHU WUDQVPLWWHG DQG PD[LPXP H൶FLHQF\ RI SRZHUWUDQVPLWWHGE\DIORZLQDSLSHOLQH (UPTU 2004-5)
Flow Through Pipes and Compressibility Effects
851
2ˆ 2 Ê ˆ Ê Power transmitted, P = Á rg ¥ p d ◊ V ˜ H - f LV Ë ¯ ÁË 2 gd ˜¯ 4
Since power transmitted depends on the velocity, the maximum power transmitted will be when
dP =0 dV dP d È rg p d 4 = Í dV dV ÍÎ 4
or
H–
Ê f LV 3 ˆ ˘ HV ˙ =0 ÁË 2 ◊ g ◊ d ˜¯ ˙˚
3 f LV 2 =0 2◊ g ◊d
or
H=
3 f LV 2 2 gd
= 3 hf Hence, for maximum power transmitted, the friction loss (hf) is one-third of the head available. Now,
h=
H - hf H
For maximum power transmitted, hf = \
H 3
0D[LPXPH൶FLHQF\ h max =
H-
H 3
H =
2 = 66.67 % 3
The pressure at the inlet of pipe is 7 ¥ 103 kN/m2 and pressure drop is 700 kN/m2. The SLSHOLQHLVNPORQJ,IN:LVWREHWUDQVPLWWHGRYHUWKLVOLQH¿QGWKHGLDPHWHU (UPSC) RIWKHSLSHDQGH൶FLHQF\RIWUDQVPLVVLRQ7DNHf = 0.024 hf =
700 ¥ 103 700 ¥ 103 = = 71.35 m 1 ¥ 103 ¥ 9.81 r¥ g
H=
7000 ¥ 103 7000 ¥ 103 = = 713.5 m 103 ¥ 9.81 r¥ g
852
Fundamentals of Fluid Mechanics
h=
H - hf H
=
-
RU 3RZHUWUDQVPLWWHG rgQH – hf ¥ ¥¥ Q±
Q=
RU
¥ ¥ ¥
PV
RU
RU
hf =
f LQ ¥ d
d =
¥ ¥ ¥ ¥
¥± d FP
14.15 WATER HAMMER :KDWLVPHDQWE\ZDWHUKDPPHU":KDWDOORZDQFHLVXVXDOO\PDGHIRUWKLVLQSHQVWRFN GHVLJQ" $OODKDEDG8QLYHUVLW\8378 Or ([SODLQ WKH SKHQRPHQRQ RI ZDWHU KDPPHU 2EWDLQ DQ H[SUHVVLRQ IRU WKH ULVH RI SUHVVXUH ZKHQ WKH IORZLQJ ZDWHU LQ D SLSH LV EURXJKW WR UHVW E\ FORVLQJ WKH YDOYH JUDGXDOO\ 8378DQG8378 Or What is a surge tank? Or :ULWHQRWHRQVXUJHWDQN 8378 Or :ULWHDVKRUWQRWHRQZDWHUKDPPHU 8378 :DWHU KDPPHU LV D SKHQRPHQRQ ZKLFK LV FDXVHG LQ D SLSHOLQH ZKHQ WKH ÀRZLQJ ÀXLG H[SHULHQFHVDVXGGHQUHGXFWLRQRIYHORFLW\GXHWRWKHFORVLQJRIWKHYDOYHDEUXSWO\6LQFHRQ FORVLQJRIYDOYHWKHPRPHQWXPRIWKHPRYLQJÀXLGLVVXGGHQO\FKHFNHGUHVXOWLQJLQWRWKH IRUPDWLRQRIDVHULHVRISUHVVXUHSXOVDWLRQVDERYHDQGEHORZWKHQRUPDOZRUNLQJSUHVVXUH 7KH VXGGHQ ULVH LQ SUHVVXUH LV FDOOHG ZDWHU KDPPHU7KH SUHVVXUH SXOVDWLRQV FUHDWH QRLVH ZKLFKLVFDOOHGNQRFNLQJ,IKDPPHUEORZLVH[FHVVLYHWKHSLSHOLQHRUSHQVWRFNPD\EXUVW
Flow Through Pipes and Compressibility Effects
853
$VLWLVXQHFRQRPLFDOWRGHVLJQSLSHRUSLSHOLQHWRVWDQGKLJKSUHVVXUHRIZDWHUKDPPHUVDIHW\ GHYLFHVDUHXVHGWRRYHUFRPHWKLVSUREOHP:DWHUKDPPHUUHVXOWVGXHWRXQVWHDG\ÀRZ 8QVWHDG\ ÀRZ :KHQ D YDOYH LV FORVHG WKH NLQHWLF HQHUJ\ RI WKH ÀXLG LV FRQYHUWHG LQWR D ULVH RI SUHVVXUH$ VXGGHQ SUHVVXUH SXOVH LV IRUPHG DW WKH YDOYH DQG WKLV SXOVH WUDYHOV EDFNZDUGVDVUHÀHFWHGSXOVHDWWKHVSHHGRIVRXQG Magnitude of pressure rise. ,Q D VORZ FORVLQJ RI WKH YDOYH WKH ZKROH PDVV RI ÀXLG LQ SLSHOLQHLVGHFHOHUDWHGDQGLQHUWLDSUHVVXUH dP =
r A ¥ L d u ◊ dT A
ZKHUH A DUHDL OHQJWK = r ◊L◊
du GHFHOHUDWLRQ dT
du dT
+RZHYHUGXULQJVXGGHQO\FORVLQJRIYDOYHWKHLQHUWLDSUHVVXUHGHSHQGVRQWKHYHORFLW\RI ÀXLGDQGYHORFLW\RIVRXQGZDYHLQWKHÀXLG dP r◊u dP = u ◊ rK
K r
ZKHUH
K YHORFLW\RIVRXQG r
ZKHUH K EXONPRGXOXV
7KHDERYHHTXDWLRQLVDSSOLFDEOHLQULJLGSLSHV Surge tank $VXUJHWDQNLVDVWRUDJHUHVHUYRLURQDORQJSLSHOLQHRUSHQVWRFNRIWXUELQHVRWKDWWRUHFHLYH ZDWHURQVXGGHQO\VWRSSDJHRIZDWHURQFORVLQJRIWKHYDOYH6XUJHWDQNKHOSVLQUHOLHYLQJ WKHSLSHOLQHRIH[FHVVLYHSUHVVXUHSURGXFHGGXHWRYDOYHFORVLQJWKHUHE\HOLPLQDWLQJZDWHU KDPPHUH൵HFWE\DGPLWWLQJDODUJHPDVVRIZDWHULQLW6XUJHWDQNDOVRKHOSVLQVXSSO\LQJ DGGLWLRQDOZDWHUZKHQWKHYDOYHLVRSHQHGVRDVWRPHHWWKHLQLWLDOODUJHZDWHUUHTXLUHPHQW RI WKH WXUELQH WR VWDUW 6XUJH WDQNV DUH DOVR XVHG LQ ODUJH SXPSLQJ SODQWV WR FRQWURO WKH SUHVVXUHYDULDWLRQVUHVXOWLQJIURPUDSLGFKDQJHVLQWKHÀXLGÀRZ Surge tank
Penstock Turbine
Surge Tank
854
Fundamentals of Fluid Mechanics
7KHVXUJHWDQNFDQEH VLPSOHVXUJHWDQN LQFOLQHGVXUJHWDQN H[SDQVLRQFKDPEHU DQGJDOOHU\W\SHVXUJHWDQN UHVWULFWHGRUL¿FHVXUJHWDQNDQG GL൵HUHQWLDOVXUJHWDQN $ ZDWHU PDLQV RI FRQFUHWH SLSH NP ORQJ DQG FP LQ GLDPHWHU GLVFKDUJHV LQWR D UHVHUYRLU DW WKH UDWH RI PLOOLRQ OLWUHV SHU GD\ ,I WKLV OLQH LV JUDGXDOO\ FORVHG E\ RSHUDWLQJDYDOYHDWWKHUHVHUYRLUHQGLQVHFSURYHWKDWWKHUHLVULVNRISLSHEXUVW 7HVWSUHVVXUHRIFRQFUHWHSLSHLVP 3RRQD8QLYHUVLW\ Q ¥OLWUHVGD\ =
¥ ¥ - PV ¥
Q = p ¥ PV V= A 4 3UHVVXUHULVHZKHQYDOYHLVJUDGXDOO\FORVHG dP = r◊ L◊
h= \
L dV dV RUSUHVVXUHKHDG h = ◊ g dt dt
dP ¥ ¥ ¥ rg
P!P
h!WHVWSUHVVXUHRIFRQFUHWHSLSH +HQFHSLSHZLOOEXUVW :KDWLVWKHIXQFWLRQRIDSXPSLQDSLSHOLQH" :KHQ ZDWHU KDV WR EH WDNHQ IURP D ORZHU OHYHO UHVHUYRLU WR D KLJKHU OHYHO UHVHUYRLU LW LV LPSRVVLEOHZLWKRXWWKHKHOSRIDSXPS3XPSLVXVHGWROLIWZDWHU,WVXSSOLHVWKHUHTXLUHG KHDG ZKLFK LQFOXGHV VXFWLRQ KHDG VWDWLF KHDG DQG ORVVHV LQ SLSHOLQH7RWDO KHDG VXSSOLHG E\DSXPS HP = HVXFWLRQ + HVWDWLF + hf
14.16 TIME TO EMPTY A TANK 'HULYH DQ H[SUHVVLRQ IRU WLPH WR HPSW\ D WDQN IURP OHYHO H to H2 through a pipe discharging in open. &RQVLGHUDWDQNZLWKZDWHUZKLFKLVWREHHPSWLHGE\PHDQVRIDSLSH¿WWHGDWLWVERWWRP 7KHSLSHGLVFKDUJHVIUHHLQRSHQ$VVXPHADQGaDUHFURVVVHFWLRQDODUHDVRIWDQNDQGSLSH UHVSHFWLYHO\&RQVLGHUZDWHUOD\HUDWDKHLJKWhDQGOHYHOIDOOVE\dhLQWLPHdT –A◊dh = a ◊V ◊dT
L
Flow Through Pipes and Compressibility Effects
855
dh H1
h
H2
l
Datum line Time of Emptying a Tank
$OVRWRWDOKHDGh V g
h=
RU
f lˆ Ê ÁË + ˜¯ d
gh f ◊l + d
V=
6XEVWLWXWLQJWKHYDOXHRIVLQHTQL –A ◊dh = a
RU
RU
gh ◊dT fl + d
A dT = – a
T=–
A a
A = a
f ◊l d ¥ h– dh g
+
f ◊l d g
+
Ú
H
H
h± dh
f ◊l d H – H g
+
'HULYHDQH[SUHVVLRQIRUWLPHIRUORZHULQJRIOHYHORIWZRUHVHUYRLUVIURPOHYHOH to H2ZKHQIORZLVPDGHWKURXJKDSLSHEHWZHHQWKHWZRUHVHUYRLUV
856
Fundamentals of Fluid Mechanics dh
A1
h dh ¥
A1 A2
A2
l
Two Reservoirs having Flow through a Pipe
&RQVLGHUWZRUHVHUYRLUVFRQQHFWHGWRJHWKHUE\DSLSHRIOHQJWKlDQGGLDPHWHUd7KHFURVV VHFWLRQDODUHDVRIWKHUHVHUYRLUVDUHADQGAUHVSHFWLYHO\/HWEHWKHGL൵HUHQFHRIOHYHOV LQWZRUHVHUYRLUVDQGdhLVIDOORIOHYHOLQXSSHUUHVHUYRLULQWLPHdT7KHOHYHORIORZHU UHVHUYRLUULVHVE\dh
A /HWaEHFURVVVHFWLRQDODUHDRIWKHSLSH A
+RZHYHUZKHQOHYHOLQWKHXSSHUUHVHUYRLUIDOOVWKHOHYHORIORZHUUHVHUYRLUULVHV7KHQHW GL൵HUHQFHRIKHDGdH A dH = dh – dH ◊ A
RU
NRZ
RU
dh A dH = + ±AdH = aV◊dT V=
– A dH = a
RU
gh f ◊L + d gh ◊ dT f ◊L + d
A dT = – a
f ◊L d ◊ dH gh
+
Flow Through Pipes and Compressibility Effects
A dT = – 1 a
1.5 + 2g
fl d ◊
dh
Ê A1 ˆ ÁË1 + A ˜¯ 2 f ◊l d 2g
1.5 +
A1 A2 T= a ( A1 + A2 )
1.5 +
2 A1 A2 = a ( A1 + A2 ) where,
h -1/2
857
2g
Ú
H2
H1
h–1/2 dh
fl d ◊ (H 1/2 – H 1/2) 1 2
H1 LQLWLDOGL൵HUHQFHRIOHYHOVEHWZHHQWZRUHVHUYRLUV H2 GL൵HUHQFHRIOHYHOVDIWHUWLPHT.
A reservoir 930 m2LV¿OOHGZLWKZDWHUWRDGHSWKRIP$FPGLDPHWHUKRUL]RQWDO SLSHPORQJLV¿WWHGDVLWVERWWRP+RZORQJZLOOLWWDNHWRORZHUWKHOHYHORIZDWHU LQWKHUHVHUYRLUIURPWRPWKURXJKWKHSLSH"$VVXPHf 'HOKL8QLYHUVLW\ 2A T= a
=
f ◊l d (H11/2 – H21/2) 2g
1.5 +
2 ¥ 930
0.03 ¥ 450 0.15 (151/2 – 121/2) 2 ¥ 9.81
1.5 +
p ¥ (0.15) 2 4
VHF KRXUV 7ZR UHVHUYRLUV A DQG B DUH FRQQHFWHG E\ D SLSH FP GLDPHWHU DQG P ORQJ ZKRVHFRH൶FLHQWRIIULFWLRQLV7KHVXUIDFHDUHDVRI ADQGBDUHDQG m2 UHVSHFWLYHO\ )LQG WKH WLPH WDNHQ WR ORZHU WKH OHYHO RI XSSHU UHVHUYRLU E\ FP ,IWKHRULJLQDOGL൵HUHQFHRIOHYHOVZDVP$VVXPHFRQVWDQWDUHDVDQGQHJOHFWORVVHV $0,0HFK(QJJ RWKHUWKDQSLSHIULFWLRQ ,QLWLDOOHYHOGL൵HUHQFHEHWZHHQWZRUHVHUYRLU H1 P
,IWKHZDWHUOHYHOLQWKHXSSHUUHVHUYRLUIDOOVE\PWKHQOHYHOLQWKHORZHUUHVHUYRLUULVHV E\
858
Fundamentals of Fluid Mechanics
A A
¥
¥
P
)LQDOOHYHOGL൵HUHQFHEHWZHHQWKHUHVHUYRLUV H ± ± P 1RZWLPHUHTXLUHGWRORZHUWKHOHYHOIRUHWRH
T=
A A ◊ A + A ◊ a
f ◊L d ◊ H – H g
+
¥ ¥ = p + ¥ ¥ 4
¥ ¥± ¥
+
VHFV +UPLQVHF
:KDW LV D EUDQFKHG SLSH" :KDW DUH HTXDWLRQV DYDLODEOH WR VROYH SUREOHPV DERXW D branched pipe? :KHQWKUHHRUPRUHUHVHUYRLUVDUHFRQQHFWHGE\PHDQVRISLSHVZKLFKDUHPHHWLQJDWRQH MXQFWLRQWKHQWKHSLSHOLQHLVFDOOHGDEUDQFKHGSLSHDVVKRZQEHORZ
B
A
ZB
ZA D ZD
C
ZC Datum line
7KUHH UHVHUYRLUV A B DQG C DUH FRQQHFWHG WKURXJK SLSHV DW MXQFWLRQ D 7KH ÀRZ IURP UHVHUYRLUVADQGBLVWDNLQJSODFHWRZDUGVMXQFWLRQDZKLOHÀRZWRUHVHUYRLUVCLVWDNLQJ SODFHIURPWKHMXQFWLRQD
Flow Through Pipes and Compressibility Effects
859
)ROORZLQJIRXUHTXDWLRQVFDQEHREWDLQHG %HUQRXOOL¶VHTXDWLRQEHWZHHQADQGD ZA = ZD +
PD hf AD rg
%HUQRXOOL¶VHTXDWLRQEHWZHHQBDQGD ZB = ZD +
PD hf BD rg
%HUQRXOOL¶VHTXDWLRQEHWZHHQDDQGC ZD +
PD = ZChf DC rg
&RQWLQXLW\HTXDWLRQDWMXQFWLRQD QAD + QBD = QDC ,WLVSRVVLEOHWRVROYHWKHSUREOHPVDERXWEUDQFKHGSLSHZLWKWKHDERYHIRXUHTXDWLRQV 7KUHHUHVHUYRLUVA, B, and CDUHFRQQHFWHGE\DSLSHV\VWHPDVVKRZQEHORZ)LQGWKH GLVFKDUJH IURP RU LQWR UHVHUYRLU B and C LI WKH UDWLR RI IORZ IURP UHVHUYRLU A is 60 OLWUHVVHF)LQGWKHKHLJKWRIOHYHOLQWKHUHVHUYRLUC. Take f IRUSLSHV\VWHP l1 = 1200 m d1 = 30 cm
l2 = 600 m d2 = 20 cm
A QA = 60 litres/s B
40 m
D 38 m l3 = 800 m d3 = 30 cm
Datum line
$SSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQADQGDZHJHW ZA = ZD +
PD hf AD rg
C
860
Fundamentals of Fluid Mechanics
40 = ZD +
ZD +
f LQA PD + ¥ d rg
¥ ¥ PD = 40 – rg ¥ P
1RZDSSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQBDQGDZHJHW Ê P ˆ f L QB ZB = Á Z D + D ˜ + rg ¯ Ë ¥ d
¥ ¥ QB ¥
RU
QB =
RU
QB ¥ ±PV
1RZDSSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQDDQGC Ê PD ˆ ÁË Z D + rg ˜¯ = ZChf DC ZC +
%XW \
¥ ¥ QC ¥
QC = QA + QB PV
ZC +
¥ ¥ ¥
= ZC RU
ZC ± P
7KHFPGLDPHWHUSLSHPORQJLVFRQQHFWHGZLWKDUHVHUYRLUZKRVHVXUIDFHLV PDERYHWKHGLVFKDUJLQJHQGRIWKHSLSH,IIRUWKHODVWPDVHFRQGSLSHRIWKH VDPHGLDPHWHULVODLGEHVLGHWKH¿UVWDQGFRQQHFWHGWRLWZKDWVKRXOGEHWKHLQFUHDVH in the discharge? Take f = 0.02. (UPTU 2005-6)
Flow Through Pipes and Compressibility Effects
l = 1170 m
d = 30 cm l = 2340
72 m
Case 2
Case 1
Case
V f ◊ L˘ È ¥ Í + d ˙˚ g Î
¥ ¥ ¥ = V = +
V ªPV Q = AV = p ¥ ¥ PV 4
Case1HJOHFWWKHPLQRUORVV1RZSDUDOOHOSLSHLVIRUWKHKDOIOHQJWK 7KHIULFWLRQORVV
hf =
=
RU
Q =
f L Q + ◊ d
Ê Q ˆ Á ˜ Ë ¯
¥ d
f L È Q ˘ ¥ Q + ˙ ¥ d ÍÎ 4 ˚ f ¥ Q
¥
¥ 8
¥ ¥ ¥ - ¥ ¥ ¥
¥–4 Q ¥ ±
Ê Lˆ f ◊Á ˜ Ë ¯
PV
ZKHUHQ ÀRZ
861
862
Fundamentals of Fluid Mechanics
1RZ
Q – Q ±
3HUFHQWDJHLQFUHDVH
=
Q - Q Q ¥
,Q D SLSH RI PP GLDPHWHU DQG P OHQJWK SURYLGHG ZLWK D YDOYH DW LWV HQG ZDWHULVIORZLQJZLWKDYHORFLW\RIPV$VVXPLQJYHORFLW\RISUHVVXUHZDYHHTXDO WRPV¿QG L 5LVHLQSUHVVXUHLIWKHYDOYHLVFORVHGLQVHFRQGVVHFRQGVDQGVHFRQGV LL 7KH ULVH LQ SUHVVXUH LI WKH YDOYH LV FORVHG LQ VHFRQGV$VVXPH WKH SLSH WR EH D ULJLGRQHDQGEXONPRGXOXVRIZDWHULVWREHWDNHQDV1P2. (UPTU 2006-7) du 3UHVVXUHULVHdP = rL dT
¥ ¥¥
¥ ¥
dT
dT
dTLVWLPHIRUFORVLQJYDOYH+HQFHZHKDYHGL൵HUHQWYDOXHVRISUHVVXUHULVHIRUGL൵HUHQW WLPHdT
VHFRQGVWKHQSUHVVXUHULVH ¥ ¥
dT VHFRQGVWKHQdP N1 P dT VHFRQGVWKHQdP
N1 P
N1 P
Flow Through Pipes and Compressibility Effects
863
'XULQJVXGGHQFORVLQJRIWKHYDOYHWKHSUHVVXUHULVH dP = rU
K r
= U Kr ¥ ¥ ¥
¥
¥¥
N1P
PPPDLQVSLSHVDUHUHTXLUHGIRUGLVWULEXWLRQRIZDWHULQDFLW\6LQFHSLSHVRYHU PPGLDPHWHUDUHQRWDYDLODEOHLWLVGHFLGHGWRSURYLGHWZRSDUDOOHOPDLQVRIVDPH GLDPHWHU'HWHUPLQHWKHGLDPHWHURIWKHSDUDOOHOPDLQV (UPTU 2004-5) hf =
f ◊ L ◊ q ¥ d
/RVVRIKHDGIRUd PPSLSHIRUÀRZ Q hf =
f ◊ L ◊ Q ¥
/RVVRIKHDGIRUWZRSDUDOOHOSLSHVKDYLQJGLDPHWHU dDQGÀRZ hf =
f ◊ L ◊ Q >7KHORVVLQRQHSLSHLVWREHWDNHQ@ ¥ d ¥
1RZORVVRIKHDGLVVDPHhf = hf f ◊ L ◊ Q f ◊ L ◊ Q = ¥ ¥ d ¥ RU
Q
d ¥
¥¥±
¥± d P ªFP
864
Fundamentals of Fluid Mechanics
$V\SKRQRIGLDPHWHUPPFRQQHFWVWZRUHVHUYRLUVKDYLQJDGL൵HUHQFHRIZDWHUOHYHO RIP7KHWRWDOOHQJWKRIWKHV\SKRQLVPPDQGWKHVXPPLWLVPDERYHWKH ZDWHUOHYHOLQWKHXSSHUUHVHUYRLU,IVHSDUDWLRQWDNHVSODFHDWPRIZDWHUDEVROXWH ¿QGWKHPD[LPXPOHQJWKRIV\SKRQIURPWKHXSSHUUHVHUYRLUWRWKHVXPPLW7DNHYDOXH of f DQGDWPRVSKHULFSUHVVXUH PRIZDWHU 8378 PC r.g = 2.3 d = 200 4m
PA = 10.3 rg
A
15 m B
hf
RU
V =
f ◊ L ◊V ¥ ¥ V = g ◊ d ¥ ¥
¥ ¥ ¥ ¥
V PV
$SSO\%HUQRXOOL¶VHTXDWLRQEHWZHHQA & CWDNLQJGDWXPDVIUHHVXUIDFHLQWDQNA PA P V V + A + Za = C + B + ZCORVVHVhf rg rg g g
g
V f ◊ L ¥ V +4+ g ◊ g ◊
È ¥ L ˘ Í + ˙ Î ˚
L
L L =
P
:KDWDUHWKHIRUFHVSUHGRPLQDQWLQXQVWHDG\IORZSKHQRPHQRQ"+RZGRHVWUDQVPLVVLRQ RISUHVVXUHZDYHVWDNHSODFHLQSLSHV"
Flow Through Pipes and Compressibility Effects
865
,QXQVWHDG\ÀRZSKHQRPHQRQWKHFKDQJHLQYHORFLW\RFFXUVUDSLGO\LIWKHÀRZDQGHODVWLF IRUFHVDUHSUHGRPLQDQW 'XHWRWKHHODVWLFLW\RIWKHÀXLGDQGODFNRIWRWDOULJLGLW\RIWKHVROLGSLSHERXQGDULHV FKDQJHV LQ SUHVVXUH GR QRW WDNH SODFH LQVWDQWDQHRXVO\ WKURXJKRXW WKH ÀXLG +HQFH WUDQVPLVVLRQRISUHVVXUHFKDQJHVWDNHVSODFHDVZDYHRUVXUJHV :KDWKDSSHQVZKHQYHORFLW\RIDIOXLGFKDQJHV"([SODLQWKLVZLWKJUDGXDOFORVLQJRI DYDOYHLQDULJLGSLSH 7KHZDWHULVÀRZLQJZLWKXQLIRUPYHORFLW\MXVWEHIRUHFORVLQJRIWKHYDOYH,IWKHYDOYHLV VXGGHQO\FORVHGWKHÀXLGLPPHGLDWHO\QH[WWRWKHYDOYHLVVWRSSHG$VDUHVXOWRIWKLVWKH ÀXLG QH[W WR WKH YDOYH LV FRPSUHVVHG VOLJKWO\ DQG LWV SUHVVXUH LV LQFUHDVHG +RZHYHU WKH SLSHH[SDQGVVOLJKWO\DVDUHVXOWRIWKHULVHLQSUHVVXUHRIWKHÀXLG(DFKHOHPHQWRIÀXLG FROXPQWKXVVWRSVWKHDGMDFHQWHOHPHQWXQWLODOOÀXLGHOHPHQWVLQSLSHDUHEURXJKWWRUHVW$ FKDQJHRIYHORFLW\DWDSDUWLFXODUSRLQWLQDÀXLGDOZD\VJLYHVULVHWRDFKDQJHRISUHVVXUH ZKLFKLVFDOOHGZDWHUKDPPHULQSLSHOLQH :KDWDUHWKHYHORFLW\RISUHVVXUHZDYHVLQULJLGDQGHODVWLFSLSHV" 7KHYHORFLW\RISUHVVXUHZDYHVLQULJLGSLSHVGHSHQGVRQWKHEXONPRGXOXVK DQGGHQVLW\ r RIWKHÀXLG K 9HORFLW\RISUHVVXUHZDYH r 7KHYHORFLW\RISUHVVXUHZDYHVLQHODVWLFSLSHVDOVRGHSHQGVRQGLDPHWHUd WKLFNQHVVt DQGPRGXOXVRIHODVWLFLW\E RIWKHSLSH
9HORFLW\RISUHVVXUHZDYH
K È ˘ d K˙ r Í Í + ◊ ˙ t E˚ Î
'HULYH H[SUHVVLRQV IRU WKH ULVH RI SUHVVXUH ZKHQ YDOYH LV JUDGXDOO\ FORVHG DQG (2) suddenly closed in rigid pipe. What is pressure rise in elastic pipe during sudden FORVLQJRIYDOYH Case3UHVVXUHULVHVGXHWRGHFHOHUDWLRQRIÀXLG+HQFHLIdPLVSUHVVXUHULVHWKHQ dP ¥DUHD PDVV¥GHFHOHUDWLRQ dP =
r ¥ A ¥ L du dT A
= rL
du dT
Case:KHQWKHYDOYHLVVXGGHQO\FORVHGWKHULVHRISUHVVXUHdP GHSHQGVRQWKHYHORFLW\ RIÀXLGDQGYHORFLW\RIVHFRQGZDYHLQWKHÀXLG
866
Fundamentals of Fluid Mechanics
K r
dP = r◊u
Case,QHODVWLFSLSHVWKHSUHVVXUHULVHGXULQJVXGGHQFORVLQJRIDYDOYH r
P=U
dˆ Ê ÁË + ˜¯ K Et
7KUHH LGHQWLFDO SLSHV RI OHQJWK l GLDPHWHU d and friction factor f are connected in SDUDOOHOEHWZHHQWZRUHVHUYRLUV:KDWLVWKHVL]HRIDSLSHRIOHQJWKlDQGRIWKHVDPH friction factor fHTXLYDOHQWWRWKHDERYHSLSHV" D d E d F d G d (IES 2009) Q/3 Q/3
Q
Q
Q/3
f ◊ L ◊V gd
)ULFWLRQKHDG
hf =
BXW
Q = AV
RU
Q V = pd 4
\
hf =
f ◊ L ◊ Q ◊ d
/RVVRIIULFWLRQKHDGLQWKUHHSLSHV /RVVRIIULFWLRQKHDGLQWKHHTXLYDOHQWSLSH
\
Ê Qˆ f ◊L◊Á ˜ Ë ¯ ◊ ¥ d
=
f ◊ L ◊ Q ◊ ¥ d e
RU 2SWLRQD LVFRUUHFW
de = ¥ d d
Flow Through Pipes and Compressibility Effects
867
$FRPSRXQGSLSHOLQHFRQVLVWVRIWZRSLHFHVRILGHQWLFDOSLSHV7KHHTXLYDOHQWOHQJWKRI VDPHGLDPHWHUDQGVDPHIULFWLRQIDFWRUIRUWKHFRPSRXQGSLSHOLQHLVL when pipes are connected in series and is L2ZKHQFRQQHFWHGLQSDUDOOHO:KDWLVWKHUDWLRRIHTXLYDOHQW length
L ? L
D F ,QVHULHVFRQQHFWLRQ
E G
,(6
L = l + l = l d d d d L l
\ ,QSDUDOOHOFRQQHFWLRQ
f ◊ L ◊ Q
=
◊ d
L =
\
Ê Qˆ f ◊lÁ ˜ Ë ¯
◊ d l 4
l 8 L = = l L 4
\
2SWLRQE LVFRUUHFW $V\SKRQGUDZVZDWHUIURPDUHVHUYRLUDQGGLVFKDUJHVLWDWWKHDWPRVSKHULFSUHVVXUH $VVXPLQJLGHDOIOXLGDQGWKHUHVHUYRLULVODUJHWKHYHORFLW\DWSRLQWP in the syphon tube is P h1
1 h2
2
(a)
2 gh
(b)
2 gh2
(c)
2 g ( h - h)
(d)
2 g ( h + h2 )
*$7(
868
Fundamentals of Fluid Mechanics
$SSO\LQJ%HUQRXOOL¶VWKHRUHPEHWZHHQSRLQWV DQG ZHKDYH P P V V + + Z = + + Z r◊ g r◊ g g g RU
PDWP P V h – h DWP + + 0 r◊ g r◊ g g
RU
V =
BXW
VP = V
\
VP =
g h - h
g h - h
2SWLRQF LVFRUUHFW )RUPD[LPXPWUDQVPLVVLRQRISRZHUWKURXJKDSLSHOLQHZLWKWRWDOKHDGH, the head lost due to friction hfLVJLYHQE\
D ¥ H
(b)
H
H 2
(d)
2H
(c)
(,(6 V hf H
3RZHUWUDQVPLWWHGE\WKHSLSHLV P = r ◊ g ◊ Qh – hf f ◊ L ◊V gd
%XW
hf =
\
Ê f LV ˆ P = r◊g◊QÁ H gd ˜¯ Ë Ê f LV ˆ = r ◊ g ¥ AV Á H gd ˜¯ Ë
Flow Through Pipes and Compressibility Effects
869
Ê f LV ˆ = r ◊ g ◊ A ◊ Á H ◊V gd ˜¯ Ë )RUPD[LPXPSRZHU
\
RU
∂P =0 ∂V ∂P = 0 = rgA ∂V H=
Ê f LV ˆ H Á gd ˜¯ Ë
f LV gd
hf RU
hf =
H
2SWLRQE LVFRUUHFW 7ZRSLSHOLQHVRIHTXDOOHQJWKDQGZLWKGLDPHWHUVRIFPDQGFPDUHLQSDUDOOHO DQGFRQQHFWWZRUHVHUYRLUV7KHGL൵HUHQFHLQZDWHUOHYHOVLQWKHUHVHUYRLUVLVP,I IULFWLRQLVDVVXPHGWREHHTXDOWKHUDWLRRIWKHGLVFKDUJHGXHWRWKHODUJHUGLDPHWHU SLSHWRWKHVPDOOHUGLDPHWHUSLSHLVQHDUO\ D E F G ,(6 hf = \
1RZ
V μ
Q Q
f LV FRQVWDQW gd d
pd ¥ d AV = = 4 A V pd ¥ d 4 =
d d
Ê ˆ = Á ˜ Ë ¯
2SWLRQE LVFRUUHFW 7KHSUHVVXUHGURSLQPPGLDPHWHUKRUL]RQWDOSLSHLVN3DRYHUDOHQJWKRI P7KHVKHDUVWUHVVDWWKHSLSHZDOOLV
870
Fundamentals of Fluid Mechanics
D N3D (c) 0.50 kPa 7KHVKHDUVWUHVV
E N3D (d) 25 kPa t= -
,(6
r Ê ∂P ˆ ÁË ∂x ˜¯
r = R PP ¥ ±P
NRZDW
∂P = - ¥ ±¥± ∂x
DQG
t=
\
=
¥± ¥¥ 3D
N3D 2SWLRQE LVFRUUHFW 7KHYHORFLWLHVDQGFRUUHVSRQGLQJIORZDUHDVRIEUDQFKHVODEHOOHG DQG IRUDSLSHV\VWHPVKRZQEHORZDUHJLYHQLQWKHIROORZLQJWDEOH 1
2 5
4
3
Pipe Label 1
Velocity
Area
(1)
5 cm/s
4 sq. m
(2)
6 cm/s
5 sq. m
(3)
V3 cm/s
2 sq. m
(4)
4 cm/s
10 sq. m
(5)
V5 cm/s
8 sq. m
7KHYHORFLW\V5 would be D FPV F FPV
E FPV G FPV Q + Q = Q4
RU
AV + AV = A4V4
,(6
Flow Through Pipes and Compressibility Effects
871
4 ¥¥ V = 4 ¥ V = PV 8 2SWLRQD LVFRUUHFW $SLSHLVFRQQHFWHGLQVHULHVWRDQRWKHUSLSHZKRVHGLDPHWHULVWZLFHDQGOHQJWKLV WLPHVWKDWRIWKH¿UVWSLSH7KHUDWLRRIIULFWLRQDOKHDGORVVHVIRUWKH¿UVWSLSHWRWKRVH IRUWKHVHFRQGSLSHERWKWKHSLSHVKDYHWKHVDPHIULFWLRQDOFRQVWDQW LV (a) 8 (b) 4 F G ,(6 f ◊ L ◊ Q hf = d f ◊ L ◊ Q d 5 = f ◊ L ◊ Q ¥ d
hf hf
2SWLRQG LVFRUUHFW 7KH SLSH FURVV VHFWLRQ DQG IOXLG IORZ UDWHV DUH DV VKRZQ 7KH YHORFLW\ LQ WKH SLSH labelled (A) is 2 l/s
70 sq. cm
30 sq. cm 5 l/s
9 l/s 40 sq. cm
A 6 l/s
D PV F PV
E PV G PV VA =
,(6
¥ - QA = ¥ - AA
PV 2SWLRQD LVFRUUHFW 7KHHTXLYDOHQWOHQJWKRIWKHVWHSSHGSLSHOLQHVKRZQEHORZFDQEHH[SUHVVHGLQWHUPV RIGLDPHWHUD as
D
D/2
2D
L
L
4L
872
Fundamentals of Fluid Mechanics
(a) 5.25L F
(b) 9.5L
L
G
L 8
,(6
hfe = hf + hf + hf f ◊ Le ◊ Q ¥ D Le
RU
D
=
f ◊ L ◊ Q + ¥ D
=
L L L + + 8 D D D
f ◊ L ◊ Q Ê Dˆ ¥ Á ˜ Ë ¯
+
f ◊ 4L ◊ Q ¥ D
ˆ Ê Le = L Á + + ˜ Ë 8¯
RU
L 8 2SWLRQG LVFRUUHFW $PDLQVSLSHGLYLGHVLQWRWZRSDUDOOHOSLSHVZKLFKDJDLQIRUPRQHSLSH7KHOHQJWKDQG GLDPHWHURIWKH¿UVWSDUDOOHOSLSHDUHPDQGPUHVSHFWLYHO\ZKLOHWKHOHQJWK DQGGLDPHWHURIWKHVHFRQGSDUDOOHOSLSHDUHPDQGP)LQGWKHUDWHRIIORZ LQHDFKSDUDOOHOSLSHLIWRWDOIORZLQWKHPDLQVLVPV7KHFRH൶FLHQWRIIULFWLRQ IRUHDFKSDUDOOHOSLSHLVVDPHDQGHTXDOWR (UPTU 2006-7) Q1 u
Q2
+HDGORVVLQHDFKSLSHOLQHKDVWREHVDPHZLWKÀRZRIQDQGQ hf = hf f ◊ L ◊ Q ◊ ¥ d \ RU NRZ
=
f ◊ L ◊ Q ◊ ¥ d
Q = Q
Q Q Q = Q + Q Q + Q
Flow Through Pipes and Compressibility Effects
873
Q PV
RU
Q ¥ PV 7KHWRWDOIORZLQWKUHHSDUDOOHOSLSHV\VWHPVLVPV7KHSLSHGLDPHWHUVDQGOHQJWKV of three pipes are: d PL Pd2 PL2 Pd PL P)LQGWKHGLVFKDUJHLQWKHWKUHHSLSHV 8378 Q1 Q
Q2 Q3
7KHÀRZVZLOODGMXVWWRJLYHVDPHIULFWLRQKHDG \ hf = hf = hf f ◊ L ◊ Q ¥ d RU
=
f ◊ L ◊ Q ¥ d
¥ Q
=
=
f ◊ L ◊ Q ¥ d
800 ¥ Q
=
¥ Q
RUQ Q Q RU
Q Q Q
RU
Q Q Q
\
Q Q
DQG
Q Q
1RZ
Q = Q + Q + Q 4 = QQQ = Q 4 PV
\
Q =
\
Q ¥ PV Q ¥ PV
$SLSHKDYLQJFPGLDPHWHUDWVHFWLRQDQGFPGLDPHWHUDWVHFWLRQFDUULHVRLO RI6*DWWKHUDWHRIOLWUHVV6HFWLRQLVDWHOHYDWLRQRIPDERYHVHFWLRQ ,ISUHVVXUHRIWKHRLODWVHFWLRQDQGVHFWLRQDUHN3DDQGN3DUHVSHFWLYHO\ GHWHUPLQHWKHGLUHFWLRQRIIORZDQGORVVRIKHDGEHWZHHQWZRVHFWLRQV (UPTU 2008-9)
874
Fundamentals of Fluid Mechanics 2 d2 = 50 cm 1
d1 = 20 cm
Q
p1 = 100 kPa
Q
z2 = 4 m
z1 = 0
)ORZ V =
\
p2 = 60 kPa
Q = AV = AV Q ¥ - = A p ¥ 4 PV Q ¥ - = A p ¥ 4
DQG
V =
RU
V PV
7RWDOKHDGDWVHFWLRQ =
r rg
+
¥ V + Z = + +0 ¥ ¥ g ¥
P 7RWDOKHDGDWVHFWLRQ =
r V ¥ + + Z = + +4 rg ¥ g ¥
P
7RWDOKHDGORVV ±ªP $VVHFWLRQKDVPRUHKHDGWKDQVHFWLRQKHQFHÀRZLVIURPVHFWLRQWRVHFWLRQ )LQG WKH ORVV RI KHDG GXH WR IULFWLRQ DQG SRZHU UHTXLUHG WR SXPS DQ RLO RI 6* DQGDEVROXWHYLVFRVLW\SRLVHWKURXJKDFPGLDPHWHUDQGNPORQJSLSHODLGDW DVORSHRILQ7KHUDWHRIIORZRIRLOLVPV (UPTU 2008-9) m SRLVH 1VP A=
p p d = ¥ P 4 4
Flow Through Pipes and Compressibility Effects
V=
Q = PV A
hf =
f ◊ L ◊V WDNHf ◊ g ◊d =
Z – Z =
1RZ
¥ ¥ ¥ ¥ ¥
P ¥¥
\
7RWDOKHDGh Z – Z hf
875
P
3RZHUUHTXLUHG r ◊ g ◊ Q ◊ h
P
¥ ¥¥¥
N:
14.17 QUESTIONS FROM COMPETITIVE EXAMINATIONS 7KHORVVRIKHDGLQDSLSHRIFHUWDLQOHQJWKFDUU\LQJDUDWHRIIORZQ is found to be H. ,IDSLSHRIWZLFHWKHGLDPHWHUEXWRIVDPHOHQJWKLVWRFDUU\DIORZUDWHRIQ, then the head loss will be (a) H
(c)
H 4
H =
◊ f ◊ LQ gp D
H =
◊ f ◊ L ◊ Q H = H= g ◊ p ◊ D 8
OSWLRQG LVFRUUHFW
(b)
H 2
(d)
H 8
,$6
876
Fundamentals of Fluid Mechanics
7KHFRH൶FLHQWRIIULFWLRQfLQWHUPVRIVKHDUVWUHVVt0LVJLYHQE\
(a)
f =
(c)
f =
(b) f =
t 0
(d) f =
rV
t0 rV rV t0
,$6
2SWLRQF LVFRUUHFW 7ZR LGHQWLFDO SLSHV RI OHQJWK L GLDPHWHU d and friction factor f are connected in SDUDOOHOEHWZHHQWZRSRLQWV)RUWKHVDPHWRWDOYROXPHIORZUDWHZLWKWKHSLSHRIVDPH GLDPHWHUdDQGVDPHIULFWLRQIDFWRUf, the single length of the pipe will be (a)
(c)
r ◊V ◊t0
L 2
L
(b)
(d)
2◊L
2 L 4
,$6
)RUVLQJOHSLSH hs =
◊ f ◊ Ls Q g p D
HHDGORVVZKHQWZRSLSHVDUHLQSDUDOOHOUHVXOWLQJÀRZ
L
Q LQHDFKSLSH
Ê Qˆ ◊ f ◊ L ◊ Á ˜ Ë ¯ hp = gp D
LL
hs L = ¥ s = hP L RU
= Ls =
L 4
2SWLRQG LVFRUUHFW 7KHHQHUJ\ORVVEHWZHHQVHFWLRQ¶VDQGRIWKHSLSHVKRZQLQWKHJLYHQ¿JXUHLV D NJP E NJP F NJP G NJP ,$6
Flow Through Pipes and Compressibility Effects
877
1 2 2
P1 = 3.5 kg/cm
2
P2 = 3.4 kg/cm
V1 = 0.6 m/s Water
d2 = 5 cm d1 = 10 cm
(QHUJ\ORVVE – E =
P - P V - V + rg g
AVSHUFRQWLQXLW\AV = AV 0î × V RU
V
PV
E – E =
- ¥ ¥ - + ¥ ¥
=NJP 2SWLRQF LVFRUUHFW 7KHKHDGORVVLQWXUEXOHQWIORZLQSLSHYDULHV D 'LUHFWO\DVWKHYHORFLW\ E ,QYHUVHO\DVWKHVTXDUHRIYHORFLW\ F ,QYHUVHO\DVWKHVTXDUHRIGLDPHWHU G 'LUHFWO\DVWKHVTXDUHRIWKHYHORFLW\ h =
,$6,(6
4 ◊ f ◊ L ◊V RUh μ V D◊◊ g
OSWLRQG LVFRUUHFW 7KHIULFWLRQDOKHDGORVVLQDWXUEXOHQWIORZWKURXJKDSLSHYDULHV D 'LUHFWO\DVWKHDYHUDJHYHORFLW\ E 'LUHFWO\DVWKHVTXDUHRIWKHDYHUDJHYHORFLW\ F ,QYHUVHO\DVWKHVTXDUHRIWKHDYHUDJHYHORFLW\ G ,QYHUVHO\DVWKHVTXDUHRIWKHLQWHUQDOGLDPHWHURIWKHSLSH 2SWLRQE LVFRUUHFW
,(6
878
Fundamentals of Fluid Mechanics
+RZGRHVWKHKHDGORVVLQWXUEXOHQWIORZLQSLSHYDU\" D 'LUHFWO\DVYHORFLW\ E ,QYHUVHO\DVVTXDUHRIYHORFLW\ F $SSUR[LPDWHO\DVVTXDUHRIYHORFLW\ G ,QYHUVHO\DVYHORFLW\ ,(6 2SWLRQF LVFRUUHFW 7KHYDOXHRIIULFWLRQIDFWRULVPLVMXGJHGE\LQXVLQJ'DUF\:HLVKEDFKHTXDWLRQ The resulting error in the discharge will be D E ± F ± G ,(6 hf =
◊ f ◊ L ◊ Q g p D
Q ן
RU
f
ORJQ μ±ORJf
RU
- df dQ ¥ = f Q
RU
= -
¥ = -
OSWLRQF LVFRUUHFW $SLSHOLQHFRQQHFWLQJWZRUHVHUYRLUVKDVLWVGLDPHWHUUHGXFHGE\GXHWRGHSRVLWLRQ RI FKHPLFDOV )RU D JLYHQ KHDG GL൵HUHQFH LQ WKH UHVHUYRLUV ZLWK XQDOWHUHG IULFWLRQ factor, this would cause a reduction in discharge of D E F G ,(6 hf =
◊ f ◊ L ◊ Q g D
Q μ D
ÊQ ˆ ÊD ˆ Ê D ˆ Ê ˆ RU Á ˜ = Á ˜ = Á =Á ˜ Ë D ˜¯ Ë ¯ Ë Q ¯ Ë D ¯ RU OSWLRQD LVFRUUHFW
-
Q ± Q
Flow Through Pipes and Compressibility Effects
879
7KHSUHVVXUHGURSLQDSLSHIORZLVGLUHFWO\SURSRUWLRQDOWRWKHPHDQYHORFLW\,WFDQ be deduced that the D )ORZLVODPLQDU E )ORZLVWXUEXOHQW F 3LSHLVVPRRWK G 3LSHLVURXJK ,(6 2SWLRQD LVFRUUHFW :DWHU DW & LV IORZLQJ WKURXJK D NP ORQJ *, SLSH RI PP GLDPHWHU DW WKH UDWHRIPV,IYDOXHRI'DUF\IULFWLRQIDFWRUIRUWKLVSLSHLVDQGGHQVLW\RI ZDWHULVNJPWKHSXPSLQJSRZHULQN: UHTXLUHGWRPDLQWDLQWKHIORZLV D E F G *$7( hf =
=
8 f d LQ f Q = p gD ◊ g ◊ p D ¥ ¥ ¥ = p ¥ ¥
3RZHU rgQ Âhf îîî
ൌͳǤͶî3 2SWLRQE LVFRUUHFW 7KHK\GUDXOLFPHDQVGHSWKZKHUHA = area and P ZHWWHGSHULPHWHU LVJLYHQE\ (a) P A (c)
A P
2 (b) P A
(d)
A P
(IES 2002)
OSWLRQF LVFRUUHFW :KDWLVK\GUDXOLFGLDPHWHUXVHGLQSODFHRIGLDPHWHUIRUQRQFLUFXODUGXFWVHTXDOWR (a) A m (c)
A 4m
(b)
4A m
(d)
4m A
where, A = area of flow and m SHULPHWHU 2SWLRQE LVFRUUHFW
,(6
:KLFKRQHRIWKHIROORZLQJLVWKHFRUUHFWH[SUHVVLRQIRUWKHDUHDRIIORZIRUDFLUFXODU channel? (where, q = half the angle subtended by water surface at the centre, and R = radius of circular channel)
880
Fundamentals of Fluid Mechanics
sin 2q ˆ (a) R 2 ÊÁ 2q ˜ Ë 2 ¯
sin 2q ˆ (b) R 2 ÊÁ q ˜ Ë 2 ¯
(c) R2 (2q – sin 2q) (d) 2R2(q – sin 2 q) (IES 2004) 2SWLRQE LVFRUUHFW )RUDFLUFXODUFKDQQHOWKHZHWWHGSHULPHWHUZKHUHR = radius of circular channel, q KDOIWKHDQJOHVXEWHQGHGE\WKHZDWHUVXUIDFHDWWKHFHQWUH LVJLYHQE\ (a) R ◊ q 2
E RÂq
(c) 2RÂq (d) RÂq ,(6 2SWLRQF LVFRUUHFW :KLFKRQHRIWKHIROORZLQJVWDWHPHQWVLVFRUUHFW" D +\GUDXOLFJUDGHOLQHDQGHQHUJ\JUDGHOLQHDUHWKHVDPHLQIOXLGSUREOHPV E (QHUJ\JUDGHOLQHOLHVDERYHWKHK\GUDXOLFJUDGHOLQHDQGLVDOZD\VSDUDOOHOWRLW F ( QHUJ\JUDGHOLQHOLHVDERYHWKHK\GUDXOLFJUDGHOLQHDQGWKH\DUHVHSDUDWHGIURP HDFKRWKHUE\DYHUWLFDOGLVWDQFHHTXDOWRWKHYHORFLW\KHDG G 7 KH K\GUDXOLF JUDGH OLQH VORSHV XSZDUGV PHHWLQJ WKH HQHUJ\ JUDGH DW WKH H[LWIORZ ,(6 2SWLRQF LVFRUUHFW If energy grade and hydraulic grade lines are drawn for flow through an inclined SLSHOLQHWKHIROORZLQJTXDQWLWLHVFDQEHGLUHFWO\REVHUYHG 6WDWLFKHDG )ULFWLRQKHDG 'DWXPKHDG 9HORFLW\KHDG 6WDUWLQJIURPWKHDUELWUDU\GDWXPOLQHWKHDERYHW\SHVRIKHDGVZLOOEH D E F G ,(6 2SWLRQG LVFRUUHFW Point A of head HA LV DW D KLJKHU HOHYDWLRQ WKDQ SRLQW B of head HB. The head loss between these points is HL. The flow will take place. D $OZD\VIURPA to B E )URPA to B if HAHL = HB F )URPB to A if HAHL = HB G )URPB to A if HBHL = HA ,(6 :DWHUIURPORZHUSRLQWBWRKLJKHUSRLQWAFDQÀRZRQO\ZKHQWKHUHLVVX൶FLHQWKHDGHB DWBWRRYHUFRPHKHDGDQGORVVHVDWSRLQWA 2SWLRQF LVFRUUHFW 7KH HQHUJ\ JUDGH OLQH (*/ IRU VWHDG\ IORZ LQ D XQLIRUP GLDPHWHU SLSH LV VKRZQ EHORZ:KHQRIWKHIROORZLQJLWHPVLVFRQWDLQHGLQWKHER[
Flow Through Pipes and Compressibility Effects
881
EGL EGL
Box
D 3XPS
E WXUELQH
F 3DUWLDOO\FORVHGYDOYH G $QDEUXSWH[SDQVLRQ ,(6 2SWLRQD LVFRUUHFW $ FP GLDPHWHU VWUDLJKW SLSH LV ODLG DW D XQLIRUP GRZQJUDGH DQG IORZ UDWH LV PDLQWDLQHGVXFKWKDWYHORFLW\KHDGLQWKHSLSHLVP,IWKHSUHVVXUHLQWKHSLSHLV REVHUYHGWREHXQLIRUPDORQJWKHOHQJWKZKHQWKHGRZQVORSHRIWKHSLSHLVLQ what is the friction factor for the pipe? D E (c) 0.042 (d) 0.050 (IES 2006) hf =
hf L
=
f ◊ L ◊V f ◊L = g ◊ D D
ÊV ˆ f ◊ L Á g ˜ = D ◊ Ë ¯
f ¥ f ¥ = = D f =
RU
= ¥
OSWLRQE LVFRUUHFW 7ZRSLSHOLQHVRIHTXDOOHQJWKDQGZLWKGLDPHWHUVRIFPDQGFPDUHLQSDUDOOHO DQGFRQQHFWWZRUHVHUYRLUV7KHGL൵HUHQFHLQZDWHUOHYHOVLQWKHUHVHUYRLUVLVP,I WKHIULFWLRQLVDVVXPHGWREHHTXDOWKHUDWLRRIWKHGLVFKDUJHGXHWRODUJHUGLDPHWHU SLSHWRWKDWRIWKHVPDOOHUGLDPHWHUSLSHLVQHDUO\ D E F G ,(6 h =
RU OSWLRQE LVFRUUHFW
Q Q
f LQ fL Q = g p D g p D
Ê ˆ = Á ˜ Ë ¯
882
Fundamentals of Fluid Mechanics
$SLSHLVFRQQHFWHGLQVHULHVDQRWKHUWRSLSHZKRVHGLDPHWHULVWZLFHDQGOHQJWKLV WLPHVWKDWRIWKH¿UVWSLSH7KHUDWLRRIIULFWLRQDOKHDGORVVHVIRUWKH¿UVWSLSHWRWKRVH IRUWKHVHFRQGSLSHLVERWKWKHSLSHVKDYHWKHVDPHIULFWLRQDOFRQVWDQW (a) 8 (b) 4 F G ,(6 h =
h h
◊ f ◊ L Q f ◊ L Q h = g ◊ p ◊ D gp ◊ D
ÊL ˆÊD ˆ = Á ˜ Á ˜ Ë L ¯ Ë D ¯
Ê ˆ = Á ˜ = Ë ¯ OSWLRQG LVFRUUHFW 7KHHTXLYDOHQWOHQJWKRIVWHSSHGSLSHOLQHVKRZQLQ¿JXUHFDQEHH[SUHVVHGLQWHUPV RIGLDPHWHUD as
D
D/2
L
L
2D
4L
(a) 5.25 L (c)
(b) 9.5 L
L
(d) L 8
Le D
=
=
L L 4L + + D D Ê Dˆ ÁË ˜¯ L D
ˆ L Ê ÁË + + ˜¯ = D
Ê ÁË +
ˆ ˜ 8¯
OSWLRQG LVFRUUHFW Three identical pipes of length l GLDPHWHU d and friction factor f are connected in SDUDOOHOEHWZHHQWZRUHVHUYRLUV:KDWLVWKHVL]HRIDSLSHRIOHQJWKlDQGRIWKHVDPH friction factor fHTXLYDOHQWWRWKHDERYHSLSH"
Flow Through Pipes and Compressibility Effects
D d F dG
883
E d ,(6
TKHORVVLQWKUHHSLSHVh =
TKHORVVLQVLQJOHSLSH h =
h
$V
Ê Qˆ ◊ f ◊ L Á ˜ Ë ¯
g ◊ p ◊ d ◊ f ◊ LQ g ◊ p ◊ D Q Q = h = d D
D =d d 2SWLRQD LVFRUUHFW $ SLSH IORZ V\VWHP ZLWK IORZ GLUHFWLRQ LV VKRZQ LQ ¿JXUH7KH IROORZLQJ WDEOH JLYHV WKHYHORFLWLHVDQGWKHFRUUHVSRQGLQJDUHDV Pipe No.
Area (cm)3
Velocity (cm/s)
(1)
50
10
(2)
50
V2
(3)
80
5
(4)
70
5 4
1 2
7KHYDOXHRIV2 is D FPV F FPV $VSHUÀRZ±Q + Q = Q + Q4 îîV îî RUV PV 2SWLRQE LVFRUUHFW
3
E FPV G FPV
,(6
884
Fundamentals of Fluid Mechanics
7KHSLSHFURVVVHFWLRQVDQGIOXLGIORZUDWHVDUHVKRZQEHORZ7KHYHORFLW\LQWKHSLSH A is 2 l/s 30 cm
5 l/s
40 cm
2
2
70 cm
2
9 l/s
40 cm
6 l/s
2
A
D PV F PV
E PV G PV VA =
,(6
QA ¥ = FPV 40 AA
=PV 2SWLRQF LVFRUUHFW 7KHYHORFLWLHVDQGFRUUHVSRQGLQJIORZDUHDVRIWKHEUDQFKHVODEHOOHG DQG IRUDSLSHV\VWHPVKRZQEHORZDUHJLYHQLQWKHIROORZLQJWDEOHV Pipe labelled
Velocity
Area
1
5 cm/s
4 sq cm2
2
6 cm/s
5 sq cm2
3
V3 cm/s
2 sq cm2
4
4 cm/s
10 sq cm2
5
V5 cm/s
8 sq cm2
1 5
2 3
4
7KHYHORFLW\V5 would be D FPV F FPV
Q + Q = Q4 î 4 + V × 8 î V FPV
2SWLRQD LVFRUUHFW
E FPV G FPV
,(6
Flow Through Pipes and Compressibility Effects
885
$FRPSRXQGSLSHOLQHFRQVLVWVRIWZRSLHFHVRILGHQWLFDOSLSHV7KHHTXLYDOHQWOHQJWKRI VDPHGLDPHWHUDQGVDPHIULFWLRQIDFWRUIRUWKHFRPSRXQGSLSHOLQHLVL, when pipes are connected in series, and is L2ZKHQFRQQHFWHGLQSDUDOOHO:KDWLVWKHUDWLRRIHTXLYDOHQW L lengths, ? L2
D F
E G
(IES 2006)
,QVHULHV
L D RU ,QSDUDOOHO
L L L + = D D D
L L
L Q RU
=
Ê Qˆ = L¥Á ˜ Ë ¯
L =
L L
=
L 4 L = L 4
OSWLRQE LVFRUUHFW $SLSHOLQHLVVDLGWREHHTXLYDOHQWWRDQRWKHULILQERWK D /HQJWKDQGGLVFKDUJHDUHWKHVDPH E 9HORFLW\DQGGLVFKDUJHDUHWKHVDPH F 'LVFKDUJHDQGIULFWLRQKHDGORVVDUHWKHVDPH G /HQJWKDQGGLDPHWHUDUHWKHVDPH 7KHFRQGLWLRQIRUHTXLYDOHQWSLSHOLQHLV
LHTY D
=
,$6
L L + D D
OSWLRQF LVFRUUHFW $VWHSSHGSLSHOLQHZLWKIRXUGL൵HUHQWFURVVVHFWLRQVGLVFKDUJHZDWHUDWWKHUDWHRI OLWUHVV0DWFK/LVW,$UHDVRISLSHLQVTFP ZLWK/LVW,,9HORFLW\RIZDWHULQFPV DQGVHOHFWWKHFRUUHFWDQVZHUXVLQJWKHFRGHVJLYHQEHORZWKHOLVWV
886
Fundamentals of Fluid Mechanics
/LVW, D E F G Codes (a) (b) (c) (d)
A 5 1 1 3
B 1 5 5 2
/LVW,, 5. 20 C D 2 3 2 3 3 4 5 1 (IAS 2001)
7KHFRQWLQXLW\HTXDWLRQLV A V = A V = A V = A 4 V 4
î î î î
$ % & ' 2SWLRQE LVFRUUHFW :KLFKRQHRIWKHIROORZLQJH[SUHVVHVWKHK\GUDXOLFGLDPHWHUIRUDUHFWDQJXODUSLSHRI width b and height a? (a)
ab 2 a + b
(b)
ab a + b
(c)
2ab a + b
(d)
a + b 296
H\GUDXOLFGLDPHWHU
=
(IAS 2007)
4A P ¥ ab ab = a + b a + b
OSWLRQF LVFRUUHFW A branched pipeline carries water as shown below. The cross-sectional areas of the SLSHOLQHV KDYH EHHQ LQGLFDWHG 7KH FRUUHFW VHTXHQFH RI WKH GHFUHDVLQJ RUGHU RI WKH PDJQLWXGHRIGLVFKDUJHIRUIRXUVHFWLRQVLV
D
E
F
G ,$6
Flow Through Pipes and Compressibility Effects
887
1
5A
2A 2
2A 4 3A
A = Area station 2A
3
7KHGLVFKDUJHZLOOUHGXFHRQD ODUJHDUHDVHFWLRQDQGE ODUJHLQFOLQDWLRQRIVHFWLRQ 2SWLRQG LVFRUUHFW 3LSH EUDQFKHV WR WKUHH SLSHV DV VKRZQ LQ WKH ¿JXUH7KH DUHDV DQG FRUUHVSRQGLQJ YHORFLWLHVDUHDVJLYHQLQWKHWDEOH 2 1 3 4
Pipe
Velocity (cm/s)
Area (cm2)
1
50
20
2
V2
10
3
30
15
4
20
10
7KHYDOXHRIV2LQFPVZLOOEH D E F G ,$6 Q = Q + Q + Q4 î Vîîî RU V FPV 2SWLRQG LVFRUUHFW )RUPD[LPXPWUDQVPLVVLRQRISRZHUWKURXJKDSLSHOLQHZLWKWRWDOKHDGH, the head due to friction hfLVJLYHQE\ H D H (b) H 2 (c) (d) ,$6,(6 ◊H 2
888
Fundamentals of Fluid Mechanics
Ê pd ˆ Ê f ◊ L ◊V ˆ ◊V Á H PRZHUWUDQVPLWWHGP = r ◊ g Á ˜ gd ˜¯ Ë ¯ Ë )RUPD[LPXPSRZHUWUDQVPLVVLRQ dP dV
dP dV
RU
=
d dV
È Ê pd f ◊ L ◊V ˆ ˘ ◊V Á H Ír ◊ g ˙=0 gd ˜¯ ˙˚ Ë ÍÎ
H =
◊ f ◊ L ◊V = ◊ hf gd
hf =
H
OSWLRQE LVFRUUHFW :KDWZLOOEHWKHPD[LPXPH൶FLHQF\RIWKHSLSHOLQHLIRQHWKLUGRIWKHDYDLODEOHKHDG LQIORZWKURXJKWKHSLSHOLQHLVFRQVXPHGE\IULFWLRQ"
D F
E G h =
,$6
H - hf H
)RUPD[LPXPhhf = H h =
H - H = ¥ = H
OSWLRQF LVFRUUHFW ,QDSLSHIORZWKHKHDGORVVGXHWRIULFWLRQLVP,IWKHSRZHUWUDQVPLWWHGWKURXJK WKHSLSHKDVWREHPD[LPXPWKHQWKHWRWDOKHDGDWWKHLQOHWRIWKHSLSHZLOOKDYHWR EHPDLQWDLQHGDV D P E P F P G P ,$6 h=
H - hf H
LVPD[LPXPZKHQhf =
H hf î P
2SWLRQG LVFRUUHFW
H
Flow Through Pipes and Compressibility Effects
889
Ê V - V ˆ Assertion (A):,QSLSHIORZWKHORVVRIKHDGGXULQJJUDGXDOH[SDQVLRQLVJLYHQE\ ÁË 2 g ˜¯
2
Reason (R): ,Q SLSH IORZ WKH ORVV RI KHDG GXULQJ JUDGXDO H[SDQVLRQ LV JLYHQ E\
Ú
rV 2 dL D ◊ 2g
D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ (c) A is true but R is false. G $LVIDOVHEXW5LVWUXH 2SWLRQE LVFRUUHFW
,(6
Assertion (A): 1DWXUHRIIOXLGIORZLQJLQDSLSHGRHVQRWGHSHQGHQWLUHO\RQDYHUDJH YHORFLW\EXWLWLVDFWXDOO\DIXQFWLRQRIWKH5H\QROGVQXPEHU Reason (R): 5H\QROGV QXPEHU GHSHQGV QRW RQO\ RQ DYHUDJH YHORFLW\ EXW DOVR RQ WKH GLDPHWHURIWKHSLSHDQGNLQHPDWLFYLVFRVLW\RIWKHIOXLG D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ (c) A is true but R is false G $LVIDOVHEXW5LVWUXH ,(6 2SWLRQD LVFRUUHFW :DWHUKDPPHULQSLSHVWDNHVSODFHZKHQ D )OXLGLVIORZLQJZLWKKLJKYHORFLW\ (b) Fluid is flowing with high pressure F )ORZLQJIOXLGLVEURXJKWWRUHVWE\JUDGXDOO\FORVLQJDYDOYH G )ORZLQJIOXLGLVVXGGHQO\EURXJKWWRUHVWE\FORVLQJDYDOYH 2SWLRQG LVFRUUHFW
,(6
9HORFLW\RISUHVVXUHZDYHGXHWRSUHVVXUHGLVWXUEDQFHVLPSRVHGLQDOLTXLGLVHTXDOWR (a)
Ê Eˆ ÁË r ˜¯
(c) (rE)
(b) (EÂr)
Ê ˆ (d) ÁË r ◊ E ˜¯
,(6
OSWLRQD LVFRUUHFW :KLFKSKHQRPHQRQZLOORFFXUZKHQWKHYDOYHDWWKHGLVFKDUJHHQGRIDSLSHFRQQHFWHG WRDUHVHUYRLULVVXGGHQO\FORVHG"
890
Fundamentals of Fluid Mechanics
D &DYLWDWLRQ E (URVLRQ F +DPPHULQJ G 6XUJLQJ ,(6 2SWLRQF LVFRUUHFW :KLFKRQHRIWKHIROORZLQJVWDWHPHQWVUHODWHGWRH[SUHVVLRQrÂVc ? D 3UHVVXUHULVHLQDGXFWGXHWRQRUPDOFORVXUHRIYDOYHLQWKHGXFW E 3UHVVXUHULVHLQDGXFWGXHWRDEUXSWFORVXUHRIYDOYHLQWKHGXFW F 3UHVVXUHULVHLQDGXFWGXHWRVORZRSHQLQJRIYDOYHLQWKHGXFW G 3UHVVXUHULVHLQDGXFWGXHWRSURSDJDWLRQRIVXSHUVRQLFZDYHWKURXJKWKHGXFW (IES 2009) 2SWLRQG LVFRUUHFW Assertion (A): +HDGORVVIRUVXGGHQH[SDQVLRQLVPRUHWKDQWKHKHDGORVVIRUDVXGGHQ FRQWUDFWLRQIRUWKHVDPHGLDPHWHUUDWLR Reason (R): +HDGORVVYDULHVDVWKHVTXDUHRIWKHXSVWUHDPDQGGRZQVWUHDPYHORFLWLHV LQWKHSLSH¿WWHGZLWKVXGGHQH[SDQVLRQRUVXGGHQFRQWUDFWLRQ D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ (c) A is true but R is false. G $LVIDOVHEXW5LVWUXH ,$6 2SWLRQF LVFRUUHFW :DWHU IORZV WKURXJK D VPRRWK FLUFXODU SLSH RI GLDPHWHU D and length L because of DSUHVVXUHGL൵HUHQFHDPDFURVVWKHOHQJWK7KHYROXPHIORZUDWHLVQ and the flow is WXUEXOHQWZLWK5H\QROGVQXPEHU5,ISUHVVXUHGL൵HUHQFHLVLQFUHDVHGWRāDP, the YROXPHIORZUDWHZLOOEH (a) 2Q E OLWWOHPRUHQ (c) little less 2Q (d) 4Q ,(6) οP =
◊ m ◊ VL RUV μ DPRUQ μ DP D DP Q = = D P 4 Q
OSWLRQG LVFRUUHFW ,QWKHOD\RXWRISLSLQJDVVKRZQEHORZZKDWLVWKHYHORFLW\LQPPGLDPHWHUSLSH" /s
V2
=
5 2.
m
D2 = 300 mm
V1 = 3 m/s D1 = 450 mm D3 = 200 mm
Flow Through Pipes and Compressibility Effects
D PV F PV Q
RU
E PV G PV = Q + Q RU VA = VA + VA
891
,(6
î î00 + Vî
RU V PV 2SWLRQG LVFRUUHFW $WXEHLVXVHGDVVKRZQEHORZ DVDVLSKRQWRGLVFKDUJHDQRLORI6*IURPDODUJH RSHQYHVVHOLQWRDGUDLQDWDWPRVSKHULFSUHVVXUH7KHYHORFLW\RIRLOWKURXJKWKHVLSKRQ will be B 1.5 m 1.5 m A C
D PV F PV
4m
E PV G PV V =
,(6
g + = P V
2SWLRQG LVFRUUHFW ,QIORZWKURXJKDSLSHWKHWUDQVLWLRQIURPODPLQDUWRWXUEXOHQWIORZGRHVQRWGHSHQG on (a) density of fluid (b) length of pipe F GLDPHWHURISLSH G YHORFLW\RIWKHIOXLG ,(6 2SWLRQF LVFRUUHFW $PGLDPHWHUSLSHNPORQJWUDQVSRUWRLODWDIORZUDWHRIPV&DOFXODWH WKHSRZHUUHTXLUHGWRPDLQWDLQWKHIORZLIG\QDPLFYLVFRVLW\DQGGHQVLW\RIRLOLV 3DDQGNJPUHVSHFWLYHO\ D N: E N: F N: G N: ,(6 V =
5H
¥ Q = = P V pd p ¥ 4 r ◊ V ◊ d ¥ ¥ = = < m
892
Fundamentals of Fluid Mechanics
f =
= = h f Re
=
fLV ¥ ¥ ¥ = gd ¥ ¥
hf PRIRLO3RZHU r × g × Q × hf îîî N: 2SWLRQD LVFRUUHFW
:DWHU IORZV WKURXJK D YHUWLFDO FRQWUDFWLRQ IURP SLSH RI GLDPHWHU d to another of d GLDPHWHU ,QOHWYHlocit\DWLQOHWRIFRQWUDFWLRQLVPVDQGSUHVVXUHN1P2. If 2 height of coQWUDFWLRQPHDVXUHVPWKHSUHVVXUHDWH[LWRIFRQWUDFWLRQZLOOEHQHDUO\ to E N1P D N1P2 2 G N1P2 ,(6 F N1P HHDGORVV=
V + g
Ê ¥ ˆ = Á + PRIZDWHU Ë ¥ ˜¯ PUHVVXUHORVV îr × g N1P PUHVVXUHDWH[LW ± N1P 2SWLRQG LVFRUUHFW
Chapter
15
IDEAL FLUID FLOW
KEYWORDS AND TOPICS
IDEAL FLUID FLOW UNIFORM FLOW SOURCE FLOW SINK FLOW VORTEX FLOW DOUBLET FLOW
SUPERPOSITION OF FLOWS
STREAM FUNCTION EQUIPOTENTIAL FUNCTION SOURCE STRENGTH HALF BODY PROFILE DIVIDING STREAM LINE MAGNUS EFFECT
TORNADO
15.1 INTRODUCTION ,GHDO ÀXLG LV D ÀXLG ZKLFK KDV QR YLVFRVLW\ DQG LW LV DOVR LQFRPSUHVVLEOH7KHUH LV QR ÀXLG LQ QDWXUH ZKLFK IXOO\ EHKDYHV DV DQ LGHDO ÀXLG +RZHYHU ZDWHU DQG DLU PD\ EH FRQVLGHUHG LGHDO ÀXLGVXQGHUFHUWDLQFRQGLWLRQV$QLGHDOÀXLGLVWKHUHIRUHDQDSSUR[LPDWHGÀRZLQZKLFKGHQVLW\ UHPDLQVFRQVWDQWDQGLWKDVQHJOLJLEOHYLVFRVLW\H൵HFW,QDQLGHDOÀXLGDOOÀXLGSDUWLFOHVPRYH ZLWKVDPHYHORFLW\DQGQRVKHDUIRUFHDFWVEHWZHHQWKHÀXLG$QLGHDOÀXLGLVDQLPDJLQDU\ÀXLG ZKLFK LV FRQFHLYHG WR VLPSOLI\ WKH HTXDWLRQ RI ÀXLG PRWLRQ LQ RUGHU WR DQDO\VH LWV EHKDYLRXU 7KHLGHDOÀXLGÀRZFDQEHL XQLIRUPÀRZLL VRXUFHRUVLQNÀRZLLL YRUWH[ÀRZDQGLY GRXEOHWÀRZ
15.2 IDEAL FLUID FLOW What is an ideal fluid flow? Which fluids may be considered ideal fluids? $QLGHDOÀXLGLVDÀXLGZKLFKKDVQRYLVFRVLW\DQGLWLVDOVRLQFRPSUHVVLEOH7KHUHLVQR ÀXLG LQ QDWXUH ZKLFK LV IXOO\ LGHDO :DWHU DQG DLU PD\ EH FRQVLGHUHG LGHDO ÀXLGV XQGHU FHUWDLQ FRQGLWLRQV$Q LGHDO ÀXLG LV WKHUHIRUH DQ DSSUR[LPDWLRQ RI ÀRZ ZKHUH GHQVLW\ LV DVVXPHGWREHFRQVWDQWDQGYLVFRVLW\H൵HFWVDUHQHJOLJLEOH6LQFHVKHDUVWUHVVRFFXUVGXH
Ê du ˆ WRYLVFRVLW\RIWKHÀXLGDVSHU1HZWRQ¶VODZRIYLVFRVLW\ Á T = m ˜ LWIROORZVWKDWWKHUH dy ¯ Ë
894
Fundamentals of Fluid Mechanics
FaQQRWEHVKHDUVWUHVVLQDQLGHDOÀRZLQWKHDEVHQFHRIWKHYLVFRVLW\+HQFHWKHUHLVQR VKHDUIRUFHDFWLQJEHWZHHQWKHÀXLGDQGWKHFRQ¿QLQJERXQGDU\VXUIDFHZKHWKHUWKHÀXLG LV ÀRZLQJ RU VWDWLRQDU\ QHDU WKH ERXQGDU\ VXUIDFH ,Q LGHDO ÀRZ DOO ÀXLG SDUWLFOHV PRYH ZLWKVDPHYHORFLW\DQGQRYHORFLW\JUDGLHQWH[LVWVLQWKHXQLIRUPÀRZ$QLGHDOÀXLGLVDQ LPDJLQDU\ÀXLGZKLFKLVFRQFHLYHGWRVLPSOLI\WKHHTXDWLRQVRIÀXLGPRWLRQDQGWRDQDO\VH LWVEHKDYLRXU :KDWDUHGL൵HUHQWW\SHVRILGHDOIOXLGIORZV" $Q LGHDO ÀXLG ÀRZ FDQ EH VWHDG\ RU XQVWHDG\ ,Q VWHDG\ ÀRZ WKH YHORFLW\ DW DQ\ SRLQW UHPDLQVFRQVWDQW,QXQVWHDG\ÀRZWKHYHORFLW\DWDQ\SRLQWLVYDULDEOH $QLGHDOÀXLGÀRZFDQEHXQLIRUPRUQRQXQLIRUP,QXQLIRUPÀRZWKHYHORFLW\LVFRQVWDQW DFURVVWKHFURVVVHFWLRQRIWKHÀRZ,QDQXQLIRUPÀRZWKHYHORFLW\LVYDULDEOHDFURVVWKH FURVVVHFWLRQRIWKHÀRZDVVKRZQEHORZ
Uniform Flow
Non-Uniform Flow
:KDWLVWKHLPSRUWDQFHRIVWXG\LQJLGHDOIOXLGIORZ" 7KHUHDUHYDULRXVW\SHVRIÀRZVHQFRXQWHUHGLQGL൵HUHQWHQJLQHHULQJDSSOLFDWLRQVVXFKDVÀRZ WKURXJK ÀXLGPDFKLQHV FRQ¿QHGSDVVDJHVDQG FRQWUROV\VWHP)ORZLVJHQHUDOO\ FRPSOH[GXHWRYDULRXVSKHQRPHQDRFFXUULQJVXFKDV ERXQGDU\OD\HU VHSDUDWLRQDQG UHFLUFXODWLRQ,GHDOÀXLGFRQFHSWLVKHOSIXOIRU DQDO\VLVRIFRPSOH[ÀXLGÀRZVZLWK DSSUR[LPDWLRQIROORZHGXSZLWKPXOWLSOLFDWLRQRIDIDFWRURIVDIHW\ SURYLGLQJJRRG¿UVW DSSUR[LPDWLRQIRUFRPSXWDWLRQDOWHFKQLTXHWRVROYHWKHFRPSOH[ÀXLGPRWLRQVDVWKHÀRZ DZD\ IURP WKH VROLG ERXQGDULHV LV OLNH DQ LGHDO ÀRZ 7KHUHIRUH ÀRZ DURXQG VXEPHUJHG ERGLHVLVVWXGLHGWKURXJKFRQIRUPDOWUDQVIRUPDWLRQRIVLPSOHLGHDOÀRZ)RUH[DPSOHWKH OLIWGXHWRÀRZIRUDQDV\PPHWULFDHURIRLOLVVWXGLHGE\WKHFRQIRUPDOWUDQVIRUPDWLRQRIÀRZ DURXQGDURWDWLQJFLUFXODUF\OLQGHU+HQFHVLPSOHWHFKQLTXHRILGHDOÀXLGÀRZDQDO\VLVKDV FRQVLGHUDEOHLPSRUWDQFHLQDQDO\VLVRIFRPSOH[ÀRZLQHQJLQHHULQJDSSOLFDWLRQV ,Q DQ LGHDO IOXLG IORZ ZKDW DUH WKH YDULRXV LPSRUWDQW VLPSOH IORZV RI LUURWDWLRQDO QDWXUH":KDWDUHGL൵HUHQWVXSHUSRVLWLRQVRIWKHVHHOHPHQWDU\IORZSDWWHUQV
7KHHOHPHQWDU\ÀRZSDWWHUQVDUHSRVVLEOHLQLGHDOÀXLGÀRZDUH
8QLIRUPÀRZ
6RXUFHRUVLQNÀRZ
Ideal Fluid Flow
9RUWH[
'RXEOHW
895
)ROORZLQJ VXSHUSRVLWLRQV DUH SRVVLEOH LQ DQ LGHDO ÀXLG ÀRZ E\ FRPELQLQJ WZR RU PRUH VLPSOHÀRZSDWWHUQV
6RXUFHDQGVLQN
8QLIRUPÀRZDQGVLQN
'RXEOHWDQGXQLIRUPÀRZ
'RXEOHWXQLIRUPÀRZDQGYRUWH[
15.3 UNIFORM FLOW )LQGWKHGLUHFWLRQRIVWUHDPOLQHVDQGHTXLSRWHQWLDOOLQHVLQXQLIRUPIORZZKHQXQLIRUP IORZLVDORQJ xD[LV yD[LVDQG DQDQJOHWRxD[LV Case 8QLIRUPÀRZDORQJxD[LVZLWKFRQVWDQWYHORFLW\u \
u=U=
∂y ∂f = ∂y ∂x
v=0=
- ∂y ∂f = ∂x ∂y
\ y = Uy DQG f = Ux +HQFHVWUHDPOLQHVDUHSDUDOOHOWRxD[LVDQGHTXLSRWHQWLDOOLQHVDUHSDUDOOHOWRyD[LV y
f=c y=c
x Stream Lines and Equipotential Lines in Uniform Flow (u = U)
Case 8QLIRUPÀRZSDUDOOHOWRyD[LVLHu DQGv = U u=0=
∂y ∂f = ∂y ∂x
v=U=– \
∂f ∂y = ∂y ∂x
y = –Ux DQG f = Uy
896
Fundamentals of Fluid Mechanics
+HQFHVWUHDPOLQHVDUHSDUDOOHOWRyD[LVDQGHTXLSRWHQWLDOOLQHVDUHSDUDOOHOWRxD[LV y
f=C
x y=C Stream Lines and Equipotential Lines in Uniform Flow (u = U)
Case $XQLIRUPÀRZLQFOLQHGDWDQJOHa WRxD[LV6XFKÀRZFDQEHFRQVLGHUHGWRÀRZ DWYHORFLW\UFRVaLQxGLUHFWLRQDQGUVLQaLQyGLUHFWLRQ,QFDVHF\OLQGULFDOFRRUGLQDWHV DUHXVHGWKHQx = rFRVq DQGy = rVLQq y = U rVLQq – a
\ DQG
f = U rFRVq – a
f=C
y
y=C
(q – a)
a
U q x
6WUHDPOLQHVDQGHTXLSRWHQWLDOOLQHVLQXQLIRUPIORZu = U cos a & v = U sin a
15.4 SOURCE FLOW :KDWLVDVRXUFHIORZ":KDWLVWKHVRXUFHVWUHQJWK")LQGWKHGLUHFWLRQRIVWUHDPOLQHV DQGHTXLSRWHQWLDOOLQHVLQDVRXUFH Source: ,QWZRGLPHQVLRQDOÀRZDVRXUFHLVDSRLQWIURPZKLFKÀXLGGLVFKDUJHVUDGLDOO\ RXWZDUGVLQDOOGLUHFWLRQV $ SRLQW VRXUFH LV SODQH VRXUFH WZRGLPHQVLRQDO $ OLQH VRXUFH DV FRPSDUHG WR D SODQH VRXUFHLVWKUHHGLPHQVLRQDO,QIDFWDFURVVVHFWLRQRIDOLQHVRXUFHLVDSODQHSRLQWVRXUFH 7KHSRLQWVRXUFHUHPDLQVDWWKHRULJLQODQGÀXLGÀRZVUDGLDOO\RXWZDUGVIURPWKHVRXUFH 7KHUDGLDOYHORFLW\ur RIWKHÀRZDWDGLVWDQFHµr¶IURPWKHRULJLQLVJLYHQE\
Ideal Fluid Flow
ur = RU
k=
897
q k = ZKHUHq GLVFKDUJHSHUXQLWOHQJWKDQGk VRXUFHVWUHQJWK p r r q p
Source strength (k) 7KHVRXUFHVWUHQJWKLVDPHDVXUHRIWKHUDGLDOYHORFLW\DWXQLWUDGLXV ,WLVGH¿QHGDVYROXPHÀRZSHUXQLWGHSWK ÊÁ k = q ˆ˜ Ë p ¯ ur =
r WKHQ ur = k
ZKHQ 6WUHDPIXQFWLRQIRUVRXUFHÀRZ
%XW
k r
ur =
∂y - ∂y DQG uq = r ∂q ∂q
ur =
q p r
q ∂y = p r r ∂q RU
RU
%XW
∂y =
q ∂q p
q q + C p y ZKHQ q KHQFHC = 0 qq y= p y=
\
7KHVWUHDPIXQFWLRQLVDIXQFWLRQRIDQJOHq y Streamlines y1
y2
y3
y4
q
O
x
y5
y6
y7
y8
Streamlines in Source Flow
898
Fundamentals of Fluid Mechanics
(TXLSRWHQWLDOIXQFWLRQRIVRXUFHÀRZ
\ RU
ur =
∂f ∂f DQG uq = ∂r r ∂q
ur =
q ∂f = p r ∂r
∂f =
q ◊ ∂r p r
Ú ∂f = f=
q p
Ú
∂r r
q ORJr p
+HQFHHTXLSRWHQWLDOIXQFWLRQLVWKHIXQFWLRQRIrWKHGLVWDQFHIURPWKHVRXUFHRULJLQ
O f=C
Equipotential Lines in the Source Flow
'HULYHDQH[SUHVVLRQRISUHVVXUHGLVWULEXWLRQLQVRXUFHIORZ :HFRQVLGHUWZRSRLQWVLQWKHVRXUFHÀRZWRGHULYHDQH[SUHVVLRQRISUHVVXUHGLVWULEXWLRQ LQVRXUFHÀRZ)LUVWSRLQWDWr DQGRWKHUSRLQWDWODUJHGLVWDQFHDZD\IURPWKHVRXUFH ZKHUHUDGLDOYHORFLW\ur 1RZDSSO\%HUQRXOOL¶VHTXDWLRQ
P u u P + + z = + + z rg g g rg 1RZDVÀRZLVLQRQHSODQHKHQFHz = zP = P,LHSUHVVXUHDWSRLQWr DQGu = ur P = P0LHSUHVVXUHDWODUJHGLVWDQFHIURPVRXUFHZKHUHu = ur = 0
P - P0 u =– r rg g \
P – P0 =
- rur
Ideal Fluid Flow
1RZ
ur =
q p r
P – P0 = –
\
899
=–
rÊ q ˆ Á ˜ Ë p r ¯
r q 8p r
+HQFH WKH SUHVVXUH LQFUHDVHV LQYHUVHO\ SURSRUWLRQDO WR WKH VTXDUH RI WKH UDGLXV IURP WKH VRXUFH Pressure P0 at large r Radial velocity
Radial
(P – P0)
velocity = ur P0 at r = 1 O Source
r
15.5 SINK FLOW :KDWLVDVLQNIORZ":KDWLVWKHSUHVVXUHYDULDWLRQLQDVLQNIORZ" Or 'LVWLQJXLVKZLWKQHDWVNHWFKHVEHWZHHQVRXUFHIORZDQGVLQNIORZ
8378 $VLQNLVDVRXUFHZLWKDQHJDWLYHVWUHQJWK)OXLGÀRZVUDGLDOO\LQZDUGVLQDSODQHWRZDUGV DSRLQWZKHUHWKHÀXLGGLVDSSHDUVDWDFRQVWDQWUDWH)RUDVLQNÀRZ ur =
ZKHUHk =
-q = kr p r
-q VLQNVWUHQJWK p
7KHSUHVVXUHYDULDWLRQLQDSODQHVLQNÀRZLVJLYHQE\WKHVDPHH[SUHVVLRQDVDSSOLFDEOH LQWKHVRXUFHÀRZ P – P0 =
- r q - rk = 8p r r
900
Fundamentals of Fluid Mechanics
y=C
f=C
A Sink Flow
15.6 VORTEX FLOW :KDW LV D IUHH YRUWH[ IORZ" :KDW DUH WKH YDOXHV RI VWUHDP IXQFWLRQ DQG SRWHQWLDO function in a free vortex flow? $IUHHYRUWH[ÀRZLVDSXUHO\FLUFXODWRU\ÀRZVXFKWKDWWKHFHQWUHRIWKHYRUWH[LVVLQJXODU SRLQW ZLWK D FLUFXODWLRQ G$ IUHH YRUWH[ LV DQ LUURWDWLRQDO ÀRZ DW DOO SRLQWV H[FHSW DW WKH VLQJXODUSRLQW$WDQ\UDGLXVrIURPWKHFHQWUHWKHWDQJHQWLDOYHORFLW\µuq¶LVJLYHQE\ G pr uq RU
uq =
G C = p r r
+HQFHCLVYRUWH[VWUHQJWKZKLFKLVJLYHQE\
1RZ DQG
G p
uq =
∂y ∂f = ∂r r ∂q
ur =
∂y ∂f = =0 r ∂q ∂r
- ∂y C = uq = ∂r r
\
y = – CORJr =
RU DQG
C=
∂f C = uq = r ∂q r
-G ORJr p
Ideal Fluid Flow
RU
f = Cq =
901
G q p
$Vy = –CORJrKHQFHVWUHDPOLQHVDUHFRQVWDQWUDGLXVr OLQHVZKLFKDUHFRQFHQWULFFLUFOHV $QGf = CqKHQFHHTXLSRWHQWLDOOLQHVDUHUDGLDOOLQHVGUDZQIURPWKHFHQWUH f Streamlines
Equipotential lines
Free Vortex Flow Pattern
)LQGWKHYHORFLW\DQGSUHVVXUHYDULDWLRQLQDIUHHYRUWH[IORZ $IUHHYRUWH[ÀRZLVDFLUFXODWRU\ÀRZZKLFKLVJLYHQE\ uq ¥ r = C &RQVWDQW +HQFHYHORFLW\YDULHVLQYHUVHO\SURSRUWLRQDOWRWKHGLVWDQFHIURPWKHFHQWUHLHr. Pressure variation 7KHSUHVVXUHYDULDWLRQLQDIUHHYRUWH[ÀRZLVJRYHUQHGE\%HUQRXOOL¶VHTXDWLRQ
P P u u + + z = + + z rg rg g g z = zDVÀRZLVLQDSODQHP = P0WKHUHIHUHQFHSUHVVXUHDWDODUJHGLVWDQFHP = PDWr u = uq DQGu = uqDWr P – P0 =
- r uq - r c = r
7KH DERYH HTXDWLRQ VKRZV WKDW SUHVVXUH LQFUHDVHV LQYHUVHO\ SURSRUWLRQDO WR WKH VTXDUH RI WKHUDGLDOGLVWDQFHIURPWKHFHQWUHRIWKHIUHHYRUWH[
Fundamentals of Fluid Mechanics Velocity
uq
P0
Pressure
(P – P0)
902
r
Centre
Velocity and Pressure Variation in a Free Vortex
:KDWDUHVXSHULPSRVHGIORZSDWWHUQV":K\DUHWKH\UHTXLUHG"
6XSHULPSRVHG ÀRZ SDWWHUQV DUH REWDLQHG E\ FRPELQLQJ VLPSOH LGHDO ÀRZ SDWWHUQV OLNH XQLIRUP VRXUFH VLQN DQG IUHH YRUWH[ ÀRZV 7KH UHVXOWLQJ ÀRZV ZLOO EH LUURWDWLRQDO DQG LGHDO 7KH SUHVVXUH GLVWULEXWLRQ FDQ EH REWDLQHG E\ DSSO\LQJ %HUQRXOOL¶V HTXDWLRQ WR WKH VXSHUSRVLWLRQÀRZV
,W LV QHFHVVDU\ WR REWDLQ ÀRZV FORVHO\ UHVHPEOLQJ ÀRZV DURXQG VROLG ERGLHV E\ SURSHUO\ FRPELQLQJRUVXSHUSRVLWLRQLQJEDVLFLGHDOÀRZV6LQFHEDVLFLGHDOÀRZVDUHWZRGLPHQVLRQDO KHQFHVXSHULPSRVHGÀRZVDUHDOVRWZRGLPHQVLRQDO
:KDWLVWKHIORZSDWWHUQRQVXSHUSRVLWLRQRIDVRXUFHVLQNSDLU"
$FRPELQDWLRQRIDVRXUFHRIVWUHQJWKkDQGDVLQNRIVWUHQJWK± kLVSODFHGDWDGLVWDQFH DSDUWUHVXOWVLQWRWKHIRUPDWLRQRIDÀRZQHWZKHUHVWUHDPOLQHVDUHFLUFXODUDUFVDVVKRZQLQ WKH¿JXUH
S
S
Combination: Source and Sink
6WUHDPIXQFWLRQy = k q – q (TXLSRWHQWLDOIXQFWLRQf = kORJr – kORJr = kORJ
r r
Ideal Fluid Flow
903
15.7 DOUBLET FLOW :KDWLVDGRXEOHW" 7KHÀRZSDWWHUQGXHWRGRXEOHWLVREWDLQHGZKHQDVRXUFHDQGDVLQNRIHTXDOVWUHQJWKk DSSURDFKWRZDUGVRQHDQRWKHULQVXFKDZD\WKDWWKHLUVWUHQJWKLQFUHDVHVZKHQWKHGLVWDQFH EHWZHHQWKHPDSSURDFKHVWR]HURDVJLYHQXQGHU k=
q p
q q ¥ ds Æ m DV OLPLW ds Æ ZKHUH k = = 6WUHQJWK RI VRXUFHVLQN ds GLVWDQFH p p EeWZHHQVRXUFH VLQNDQGm VWUHQJWKRIGRXEOHW
6WUHDPIXQFWLRQy =
(TXLSRWHQWLDOIXQFWLRQf =
- m VLQ q r m VLQ q r
Doublet
15.8 SUPERPOSITION OF FLOW :KDWLVWKHIORZSDWWHUQREWDLQHGRQWKHVXSHUSRVLWLRQRIDXQLIRUPÀRZDQGDVRXUFH ÀRZ" :KHQDVRXUFHRIVWUHQJWKkLVSODFHGDWWKHRULJLQO DWxD[LVLQWKHXQLIRUPÀRZZKLFK H[WHQGVWRLQ¿QLWHGLVWDQFHRQERWKWKHVLGHVRIWKHxD[LV7KHVWDJQDWLRQRFFXUVDWSRLQW SZKLFKLVNQRZQDVVWDJQDWLRQSRLQWIRUWKHFHQWUDOVWUHDPOLQHRIWKHXQLIRUPÀRZDORQJ xD[LV7KHRWKHUVWUHDPOLQHVRIXQLIRUPÀRZDUHGHÀHFWHGIURPxD[LV7KHÀRZSDWWHUQLV VLPLODUWRWKHÀRZREWDLQHGZKHQXQLIRUPÀRZHQFRXQWHUVDVROLGERG\7KHÀRZSUR¿OH VRIRUPHGLVNQRZQDVKDOIERG\6XFKW\SHRIÀRZSDWWHUQLVREWDLQHGZKHQZDWHUÀRZV DURXQGDURXQGQRVHGEULGJHSLHU
904
Fundamentals of Fluid Mechanics
u
U =
+
Uniform
S
O
Source
Uniform Flow and a Source
9HORFLW\FRPSRQHQWVDQ\ZKHUHLQWKHÀRZDUHJLYHQE\ ur = UFRVq +
q p r
uq = –UVLQq 7KHVWDJQDWLRQSRLQWSLVJLYHQE\
Ê -q ˆ ˜ ÁË pU ¯ :KDWLVWKHIORZSDWWHUQREWDLQHGE\WKHVXSHUSRVLWLRQRIDVRXUFHDQGVLQNSDLULQD uniform flow? y
U
U
y=0
S1
S2
x
a Source and Sink Pair in Uniform Flow
7KHVXSHUSRVLWLRQRIDXQLIRUPÀRZRQDSDLURIVRXUFHDQGVLQNÀRZUHVXOWVLQWRDÀRZ SDWWHUQLQZKLFKWKHGLYLGLQJVWUHDPOLQHIRUPVWKHSUR¿OHRIDIXOO\VWUHDPOLQHGERG\7KH ÀRZRXWVLGHLWFRUUHVSRQGVWRWKHÀRZRYHUWKHVWUHDPOLQHGERG\7KHVKDSHRIVWUHDPOLQHG ERG\FDQEH DQRYDO DVWUDLJKWOLQHLIVWUHQJWKRIVRXUFHDQGVLQNLV]HURDQG D FLUFOHZKHQVRXUFHDQGVLQNDUHEURXJKWFORVHULQWKHIRUPRIDGRXEOHW
Ideal Fluid Flow
905
:KDWLVWKHIORZSDWWHUQREWDLQHGLIDGRXEOHWLVVXSHUSRVLWLRQHGLQDXQLIRUPIORZ" :KHQDGRXEOHWLVSODFHGLQDXQLIRUPÀRZZHJHWDÀRZSDWWHUQVLPLODUWRWKHÀRZSDWWHUQ SDVWDFLUFXODUF\OLQGHU7KHVKDSHRIWKHVWUHDPOLQHGERG\LVFLUFXODU
U
U
Doublet in Uniform Flow
:KDWLVWKHIORZSDWWHUQREWDLQHGLIDGRXEOHWDQGDIUHHYRUWH[DUHSODFHGLQXQLIRUP flow? :KHQ D GRXEOHW LV SODFHG LQ D XQLIRUP ÀRZ ZH JHW GLYLGLQJ VWUHDPOLQH LQ WKH VKDSH RI D FLUFOHDQGÀRZSDWWHUQLVVHHQWREHVLPLODUWRWKHÀRZDURXQGDFLUFXODUF\OLQGHU1RZLI FLUFXODWLRQLQWKHIRUPRIIUHHYRUWH[LVLQWURGXFHGDURXQGWKHF\OLQGHUWKHQWKHF\OLQGHUZLOO EHVXEMHFWHGWRDIRUFHDWULJKWDQJOHVWRWKHGLUHFWLRQRIXQLIRUPÀRZ7KLVH൵HFWLVNQRZQ DVWKHPDJQXVH൵HFW7KHÀRZSDWWHUQEHFRPHVDV\PPHWULFDODERXWxD[LVGXHWRWKLVIRUFH 7KHH[WHQWRIDV\PPHWU\LVUHODWHGWRWKHWUDQVYHUVHIRUFHDFWLQJRQWKHGLYLGLQJVWUHDPOLQH
+
= S1
Uniform Flow Around Cylinder
Circulation
S2
Magnus Effect
Flow Around a Cylinder
:KDWLVWKHIORZSDWWHUQREWDLQHGE\VXSHULPSRVLQJDIUHHYRUWH[RQDVLQNIORZ" 7KHÀRZSDWWHUQREWDLQHGE\VXSHULPSRVLQJDIUHHYRUWH[RQDVLQNÀRZZHJHWDVSLUDO ÀRZSDWWHUQZKLFKLVVLPLODUWRWKHÀRZSDWWHUQRIDVWDWLRQDU\WRUQDGR7KHWRUQDGRDSSHDUV WREHKDYLQJRQO\FLUFXODWRU\ÀRZEXWLWDOVRVXFNVPDWHULDOERGLHVWRZDUGVLWVFHQWUHGXH WRWKHSUHVHQFHRIDVLQNÀRZ
906
Fundamentals of Fluid Mechanics
Vortex and Sink Flows
15.9 PLOTTING STREAMLINES 3ORWWKHVWUHDPOLQHVIRUXQLIRUPIORZKDYLQJYHORFLW\PVSDUDOOHOWRWKHSRVLWLYHx GLUHFWLRQ y=U¥y 1RZ U PV \ y y y y = 0 y y y y y y y 0.3 0.1 0.2
y=3 y=2 y=1
0
y=0
x
3ORWWKHVWUHDPOLQHVIRUXQLIRUPIORZKDYLQJYHORFLW\RIPVSDUDOOHOWRSRVLWLYHyD[LV y = –Ux y = –x DVU PV x y = 0 x y ± x y ± x y ± y = –1 y = –2 y = –3
y
x 0
1
2
3
Ideal Fluid Flow
907
,IDVRXUFHKDVVRXUFHVWUHQJWKRIPV¿QGWKHYHORFLW\RIIORZDWr DQGP 6WUHQJWKRIVRXUFH q PV
ur =
q = p r p r
ZKHQ
r P ur =
PV 4p
ZKHQ
r P ur =
PV p
$ VRXUFH IORZ KDV VWUHQJWK RI PV 7KH SUHVVXUH DW GLVWDQFH r P LV N1P)LQG SUHVVXUHDWr PDQG VWUHDPIXQFWLRQDWDQJOH u r =
q p r
=
DVq PV r P p ¥
=
PV ¥ p
ur =
DV r p ¥
PV 1RZDSSO\%HUQRXOOL¶VHTXDWLRQ
ur ur P P + = + g rg rg g ¥ P + = + rg ¥ ¥ ¥ ¥ RU
P =¥ +
¥ ±
>± @N1
N1
N1
6WUHDPIXQFWLRQy =
q ¥q p
908
Fundamentals of Fluid Mechanics
=
¥ ¥p ¥p
=
PV
15.10 QUESTIONS FROM COMPETITIVE EXAMINATIONS (OHPHQWDU\IORZSDWWHUQLVSRVVLEOHLQLGHDOIOXLGIORZE\ 8QLIRUPÀRZ 6RXUFHRUVLQNÀRZ 9RUWH[ 'RXEOHW The correct answer is D E F G 2SWLRQG LVFRUUHFW 6XSHUSRVLWLRQLVSRVVLEOHLQLGHDOIOXLGIORZE\FRPELQLQJ 6RXUFHDQGVLQN 8QLIRUPÀRZDQGVLQN 'RXEOHWDQGXQLIRUPÀRZDQGYRUWH[ The correct answer is D DQG E DQG F DQG G DQG 2SWLRQD LVFRUUHFW $GRXEOHWLVREWDLQHGE\VXSHUSRVLWLRQRIIROORZLQJHOHPHQWDU\IORZV 6RXUFHDQGVLQNRIHTXDOVWUHQJWK 6RXUFHDQGYRUWH[ 6LQNDQGYRUWH[ 8QLIRUPIORZDQGYRUWH[ The correct answer is D RQO\ E RQO\ F RQO\ G RQO\ 2SWLRQF LVFRUUHFW 7KHIORZLQZKLFKWKHYHORFLW\YHFWRULVLGHQWLFDOLQPDJQLWXGHDQGGLUHFWLRQDWHYHU\ SRLQWIRUDQ\JLYHQLQVWDQWLVNQRZQDV D 2QHGLPHQVLRQDOIORZ E 6WHDG\IORZ F 8QLIRUPIORZ G 6WUHDPOLQHIORZ 2SWLRQF LVFRUUHFW
Ideal Fluid Flow
7KHIORZLQZKLFKFRQGLWLRQVGRQRWFKDQJHZLWKWLPHDWDQ\SRLQWLVNQRZQDV D 2QHGLPHQVLRQDOIORZ E 6WUHDPOLQHIORZ F 8QLIRUPIORZ G 6WHDG\IORZ 2SWLRQG LVFRUUHFW 7KHIORZZKLFKQHJOHFWVFKDQJHVLQDWUDQVYHUVHGLUHFWLRQLVNQRZQDV D 2QHGLPHQVLRQDOIORZ E 8QLIRUPIORZ F 6WHDG\IORZ G 6WUHDPOLQHIORZ 2SWLRQD LVFRUUHFW An ideal flow of any fluid must satisfy D 3DVFDO¶VODZ E 1HZWRQ¶VODZRIYLVFRVLW\ F %HUQRXOOL¶VWKHRUHP G &RQWLQXLW\HTXDWLRQ 2SWLRQG LVFRUUHFW 6LPXODWLRQRIIORZRYHUKDOIERG\RURYDOFDQEHREWDLQHGE\VXSHUSRVLWLRQRI D &RPELQHXQLIRUPIORZDQGVRXUFHVLQNIORZ E &RPELQHXQLIRUPIORZDQGGRXEOHWIORZ F &RPELQHXQLIRUPIORZDQGYRUWH[ G &RPELQHGRXEOHWDQGYRUWH[ 2SWLRQD LVFRUUHFW Simulation of flow over a cylinder can be obtained by D &RPELQLQJXQLIRUPIORZDQGVRXUFHVLQNIORZ E &RPELQLQJXQLIRUPIORZDQGGRXEOHWIORZ F &RPELQLQJXQLIRUPIORZDQGYRUWH[ G &RPELQLQJGRXEOHWDQGYRUWH[ 2SWLRQE LVFRUUHFW
909
Chapter
16
FLOW PAST SUBMERGED BODIES
KEYWORDS AND TOPICS
SUBMERGED BODIES DRAG LIFT DRAG COEFFICIENT LIFT COEFFICIENT SKIN FRICTION DRAG PRESSURE DRAG WAVE DRAG INDUCED DRAG COMPRESSIBILITY DRAG
STREAMLINED BODY BLUFF BODY STOKES’ LAW MAGNUS EFFECT KUTTA JOUKOWSKY EQUATION KARMAM VORTEX TRAIL AEROFOIL CHORD ANGLE OF ATTACK SPAN
16.1 INTRODUCTION 7KHUHVLVWDQFHGXHWRDERG\PRYLQJWKURXJKDODUJHPDVVRIVWDWLRQDU\ÀXLGRUUHVLVWDQFHGXHWR DÀXLGÀRZLQJDURXQGDVWDWLRQDU\VXEPHUJHGERG\KDVJUHDWWHFKQLFDOLPSRUWDQFHLQWKH¿HOGRI K\GURG\QDPLFVDQGDHURG\QDPLFV$HURSODQHVDQGDXWRPRELOHVDUHERGLHVZKLFKPRYHLQDOPRVW VWDWLRQDU\DLU6LPLODUO\VXEPDULQHVDQGVKLSVDUHERGLHVZKLFKPRYHLQDOPRVWVWDWLRQDU\ZDWHU +RZHYHUEXLOGLQJVDQGFKLPQH\VDUHVWDWLRQDU\ERGLHVZKLFKDUHVXEMHFWHGWRZLQG7KHIRUFH H[HUWHGRQWKHERG\RUÀXLGUHVXOWVIURPWKHUHODWLYHPRWLRQEHWZHHQWKHLPPHUVHGERG\DQGLWV VXUURXQGLQJÀXLG7KHIRUFHH[HUWHGE\WKHÀXLGRQWKHPRYLQJERG\FDQEHPDGHWRLQFOLQHWR WKHGLUHFWLRQRIPRWLRQ+HQFHWKLVIRUFHKDVDFRPSRQHQWLQWKHGLUHFWLRQRIPRWLRQDVZHOODV DQRWKHUFRPSRQHQWSHUSHQGLFXODUWRWKHGLUHFWLRQRIPRWLRQ7KHFRPSRQHQWRIWKHIRUFHLQWKH GLUHFWLRQRIPRWLRQLVFDOOHGWKHGUDJIRUFHDQGWKHFRPSRQHQWSHUSHQGLFXODUWRWKHGLUHFWLRQRI motion is called lift force.
16.2 SUBMERGED BODIES What happens when bodies move through static fluid or when static bodies are subjected to fluid flow?
Flow Past Submerged Bodies
911
$HURSODQHV DQG DXWRPRELOHV DUH ERGLHV ZKLFK PRYH LQ DOPRVW VWDWLRQDU\ DLU 6LPLODUO\ VXEPDULQHVDQGVKLSVDUHERGLHVZKLFKPRYHLQDOPRVWVWDWLRQDU\ZDWHU+RZHYHUEXLOGLQJV DQGFKLPQH\VDUHVWDWLRQDU\ERGLHVZKLFKDUHVXEMHFWHGWRZLQGPRYLQJÀXLGV 7KHUHDUH LQVWDQFHV ZKHQ ERWK ÀXLG DQG ERG\ DUH PRYLQJ ,Q DOO FDVHV WKHUH LV D UHODWLYH YHORFLW\ EHWZHHQWKHERG\DQGWKHÀXLG)URPWKHDQDO\VLVSRLQWRIYLHZLWLVDOZD\VFRQVLGHUHGWKDW ERG\LVDWUHVWDQGWKHÀXLGLVPRYLQJZLWKWKHUHODWLYHYHORFLW\7KHERG\R൵HUVUHVLVWDQFHWR WKHÀXLGÀRZZKLFKLVHTXDOLQPDJQLWXGHEXWRSSRVLWHWRWKHGLUHFWLRQWRWKHIRUFHH[HUWHG E\WKHÀXLGRQWKHERG\
16.3 DRAG AND LIFT FORCE 'H¿QHGUDJIRUFHDQGOLIWIRUFHDFWLQJRQDERG\VXEPHUJHGLQIORZLQJIOXLG :KHQ D ERG\ LV SODFHG LQ WKH XQLIRUP ÀRZ DV VKRZQ LQ ¿JXUH EHORZ WKHQ WKHUH DUH WZR IRUFHVDFWLQJRQWKHERG\YL] SUHVVXUHIRUFHDFWLQJQRUPDOWRWKHVXUIDFHRIWKHERG\ DQG VKHDUIRUFHDFWLQJDORQJWKHVXUIDFHRIWKHERG\7KHSUHVVXUHIRUFHDQGVKHDUIRUFH FDQEHFRPELQHGWRJLYHWRWDOIRUFHH[HUWHGE\WKHÀXLGRQWKHERG\ZKLFKFDQEHUHVROYHG LQWKHGLUHFWLRQSDUDOOHOWRWKHPRWLRQRIWKHÀXLGDQGSHUSHQGLFXODUWRWKHGLUHFWLRQRIWKH PRWLRQRIWKHÀXLG Left
Pressure force Uniform flow (U)
Total force exerted by fluid (F)
(FL)
90°
q q
Drag (FD)
Shear force
Drag. 7KHFRPSRQHQWRIWKHWRWDOIRUFHLQWKHGLUHFWLRQSDUDOOHOWRWKHGLUHFWLRQRIPRWLRQ LVFDOOHGGUDJ'UDJDOZD\VRSSRVHVWKHUHODWLYHPRWLRQEHWZHHQWKHERG\DQGWKHÀXLG Drag = FD = CD ¥
rUA
= F cos q
ZKHUH CD GUDJ FRH൶FLHQW U YHORFLW\ RI XQLIRUP ÀRZ A SURMHFWHG DUHD RI ERG\ SHUSHQGLFXODUWRWKHGLUHFWLRQRIÀRZDQGr GHQVLW\RIÀXLG Lift 7KHFRPSRQHQWRIWKHWRWDOIRUFHLQWKHGLUHFWLRQRIPRWLRQRIWKHÀXLGLVNQRZVDV lift. As the name suggests, this force tries to lift the body Lift = FL = CL ¥ ZKHUHCL OLIWFRH൶FLHQW
rU A = F sin q
912
Fundamentals of Fluid Mechanics
16.4 FRICTION PRESSURE AND SHEAR DRAG 'HULYHH[SUHVVLRQIRU IULFWLRQGUDJ SUHVVXUHGUDJ WRWDOGUDJDQG OLIW Or 'L൵HUHQWLDWHEHWZHHQSUHVVXUHGUDJDQGVKHDUGUDJ 8378 FL P. dA P. dA
P. dA. cos q
U q
to
P. dA. sin q
dA
FD to dA
to dA sin q q to dA cos q
&RQVLGHU D ERG\ LV KHOG VWDWLRQDU\ LQ WKH XQLIRUP ÀXLG ÀRZ KDYLQJ YHORFLW\ RI U ,I ZH consider a small area dARQWKHVXUIDFHWKHQIRUFHVDFWLQJRQWKLVDUHDDUH SUHVVXUHIRUFH P◊dA DFWLQJ LQ WKH GLUHFWLRQ SHUSHQGLFXODU WR WKH VXUIDFH DQG VKHDU IRUFH t ◊dA acting along the surface. Friction Drag. 7KLV LV DOVR FDOOHG VNLQ GUDJ )ULFWLRQ GUDJ LV WKH VXP RI FRPSRQHQWV RI VKHDUIRUFHVLQWKHGLUHFWLRQRIÀXLGÀRZDFWLQJRQWKHFRPSOHWHVXUIDFHRIWKHERG\ FDF =
Ú
A
t ◊dA ◊cos q
Pressure Drag. 7KHVXPRIFRPSRQHQWVRISUHVVXUHIRUFHVLQWKHGLUHFWLRQRIWKHÀXLGÀRZ IRUWKHFRPSOHWHVXUIDFHRIWKHERG\LVFDOOHGSUHVVXUHGUDJ,WLVDOVRFDOOHGIRUPGUDJ FDP =
Ú
A
P◊dA ◊sin q
Total Drag. 7KHVXPRIIULFWLRQGUDJDQGSUHVVXUHGUDJRQDERG\LVFDOOHGWRWDOGUDJ FD = FDF + FDP Lift. 7KHOLIWRQDERG\SODFHGLQÀXLGÀRZLVJLYHQE\WKHVXPPDWLRQRIWKHFRPSRQHQWV RISUHVVXUHIRUFHVDQGVKHDUIRUFHVDFWLQJRQWKHERG\LQWKHGLUHFWLRQSHUSHQGLFXODUWRWKH ÀXLGÀRZ FL =
Ú
A
P ◊dA ◊cos q +
Ú t ◊ dA◊sin q
+RZGRHVV\PPHWU\RIWKHERG\D൵HFWGUDJDQGOLIW" :KHQDERG\KDVDQD[LVRIV\PPHWU\DQGIUHHVWHDPDSSURDFKHVWKHERG\DORQJWKLVD[LV WKHIRUFHWKDWDFWVRQWKHERG\LVZKROO\GUDJIRUFHDFWLQJDORQJWKHVWUHDP Total Force, F = FD + FL While When
FD = F cos q & FL = F sin q q = 0, FL = 0 and F = FD
Flow Past Submerged Bodies
7KH SURGXFWLRQ RI OLIW UHTXLUHV DV\PPHWU\ RI ÀRZ DERXW WKH GLUHFWLRQ RI WKH IUHH VWUHDP +HQFH ZKHQ q π WKHQ ERWK GUDJ FD = F cos q DQG OLIW FL = F sin q DUH SURGXFHG under all circumstances. It is clear from the above. ,WLVSRVVLEOHWRFUHDWHGUDJZLWKRXWOLIWE\NHHSLQJq = 0. ,W LV LPSRVVLEOH WR FUHDWH OLIW ZLWKRXW GUDJ ,I q π 0, both F cos q and F sin q have GH¿QLWHYDOXHV Total force (F)
Lift (L)
Drag
q
q
Drag (D)
Lift & drag (q π 0)
Drag only (q = 0)
913
$SODWHNHSWLQWKHÀRZSHUSHQGLFXODUWRGLUHFWLRQRIÀRZZLOOKDYHGUDJRQO\DVVKRZQLQ WKH¿JXUH7RWDOIRUFHDFWLQJRQDQDHURSODQHLVFZKLFKKDVFRPSRQHQWVDORQJDQGQRUPDO WRWKHVXUIDFHRIWKHERG\ZKLFKDUHGUDJD and lift LUHVSHFWLYHO\
16.5 COEFFICIENT OF DRAG AND LIFT 'H¿QHFRH൶FLHQWRIGUDJDQGFRH൶FLHQWRIOLIW2QZKDWIDFWRUVZLOOWKHVHFRH൶FLHQWV GHSHQG" 8378 7KHFRH൶FLHQWVDUHGH¿QHGDVWKHUDWLRVRIFRUUHVSRQGLQJIRUFHVWRG\QDPLFIRUFHVRQWKH SURMHFWHGDUHDV 7KHFRH൶FLHQWRIGUDJCD LVGH¿QHGDVWKHUDWLRRIGUDJWRG\QDPLFIRUFHRQWKHSURMHFWHG area. CD =
FD rU A
ZKHUH FD = drag, U = free stream velocity, and A SURMHFWHGDUHD
7KHFRH൶FLHQWRIOLIWCL LVGH¿QHGDVWKHUDWLRRIOLIWWRWKHG\QDPLFIRUFHRQWKHSURMHFWHG area. CL =
FL rU A
7KHUDWLRRIFRH൶FLHQWRIGUDJWRWKHFRH൶FLHQWRIOLIWLVVDPHDVWKDWRIWKHUDWLRRIWKHOLIW to the drag.
914
Fundamentals of Fluid Mechanics
CD FL = CL FD 7KHFRH൶FLHQWVDUHIXQFWLRQVRI5H\QROGVQXPEHUDQGFKDUDFWHULVWLFDUHDRIWKHERG\A )LQGWKHSURMHFWHGDUHDVRI FLUFXODUF\OLQGHU VSKHUH DHURIRLODQG IODW SODWH Case &LUFXODUF\OLQGHUZLWKGLDPHWHUd and length l. l U
d d
3URMHFWHGDUHD d ◊l
Case6SKHUHZLWKGLDPHWHUd
3URMHFWed area =
pd 4
U
Case 3. Aerofoil of chord c VSDQs Spa
n=
U
S
c
3URMHFWHGDUHD s ¥ c
Case 4. Plate having length lDQGZLGWKb b
b U
l
l
3URMHFWHGDUH l ¥ b
Flow Past Submerged Bodies
915
([SODLQWKHGL൵HUHQWUHJLRQVRIDIOXLGIORZSDVWDERG\&ODVVLI\GUDJRQWKHEDVLVRI GL൵HUHQWRULJLQV
a
b
c
d
Flow Past a Bridge Pier: Different Regions of Fluid Flow
&RQVLGHUZDWHUÀRZLQJSDVWDEULGJHSLHUDVVKRZQLQWKH¿JXUH7KHÀRZFDQEHGLYLGHG LQWRIRXUUHJLRQVWRXQGHUVWDQGWKHÀRZ Region ‘a¶7KHUHLVGLYHUJHQFHRIVWUHDPOLQHVZKLFKOHDGVWRGHFUHDVHLQYHORFLW\RI WKHÀRZ2FFXUUHQFHRIDVWDJQDWLRQSRLQWXSVWUHDPRIWKHERG\ZKLFKGLYLGHVWKHÀRZ LQWRWZRVWUHDPV Region ‘b¶%RXQGDU\ODPLQDUÀRZFRQVLVWLQJRIODPLQDUDQGWXUEXOHQWÀRZLVWDNLQJ SODFH Region ‘c¶7KHUHLVDVHSDUDWLRQRIERXQGDU\OD\HUGXHWRSRVLWLYHSUHVVXUHJUDGLHQW resulting in surface discontinuity and formation of vortices. Region ‘d¶7KHUHLVVKHGGLQJRIYRUWLFHVWRFRQVWLWXWHWKHZDNH 'UDJFDQEHFODVVL¿HGRQWKHEDVLVRIGL൵HUHQWRULJLQVDVGHVFULEHGEHORZ Skin friction drag. This drag results from the formation of the boundary layer and VKHDUVWUHVVHVDWWKHVXUIDFHRIWKHERG\LQWKHÀXLGÀRZLQWKHUHJLRQµb’. Form drag )RUPDWLRQ RI HGGLHV DQG ZDNH LQ WKH UHJLRQ d UHVXOWV LQWR UHVLVWDQFH ZKLFKLVFDOOHGIRUPGUDJ7KHPDJQLWXGHRIIRUPGUDJPD\IDUH[FHHGWKHVNLQIULFWLRQ GUDJDQGLWGHSHQGVRQWKHIRUPRUVKDSHRIWKHERG\ 3. Wave drag. :KHQ D ERG\ LV SDUWO\ VXEPHUJHG LQ D OLTXLG WKH ÀRZ LQGXFHV WKH IRUPDWLRQRIJUDYLWDWLRQDOZDYHVUHVXOWLQJLQWRZDYHGUDJ:KHQDVXEPHUJHGERG\ WUDYHOV DW WUDQVRQLF RU VXSHUVRQLF VSHHGV WKH FRPSUHVVLELOLW\ H൵HFW DOVR JLYHV ULVH WR ZDYHGUDJ 4. Induced drag. 7KLVLVWKHGUDJUHVXOWLQJGXHWRWKUHHGLPHQVLRQDOQDWXUHRIÀXLGÀRZ DQG¿QLWHVL]HRIWKHERG\,WLVPDLQO\LQGXFHGE\WKHLQGXFHGFRPSRQHQWRIYHORFLW\ DQGYRUWLFLW\GLVWULEXWLRQDORQJWKHVSDQRIWKHERG\,WLVOLIWGHSHQGHQW 5. Compressibility drag. ,WDULVHVGXHWRFKDQJHVLQGHQVLWLHVDVWKHÀRZSURFHHGV 6. Gravitational wave drag. ,W LV H[SHULHQFHG E\ D ERG\ ZKHQ LW LV WRZHG LQ D IUHH VXUIDFHÀRZRUZKHQDERG\LVSODFHGDWLQWHUIDFHRIDLUDQGOLTXLG,QVXFKVLWXDWLRQV WKHJUDYLWDWLRQDOIRUFHVDOPRVWKDYHVDPHPDJQLWXGHDVLQHUWLDIRUFHVUHVXOWLQJLQÀRZ SDWWHUQFRQVLGHUDEO\LQÀXHQFHGE\WKHIRUPDWLRQRIJUDYLWDWLRQDOZDYHV
916
Fundamentals of Fluid Mechanics
'L൵HUHQWLDWHEHWZHHQVWUHDPOLQHERG\DQGEOX൵ERG\ Streamline body
8378 %OXႇERG\
1.
Its surface coincides with the streamlines RIWKHÀRZ
1.
Its surface does not coincide with the VWUHDPOLQHVRIWKHÀRZ
2.
7KHÀRZGRHVQRWVHSDUDWHXQWLOQHDU trailing edge of the body. Hence, wake formation zone at trailing edge is very small.
2.
$ YHU\ ZLGH ZDNH LV GHYHORSHG RQ WKH down-stream of the bluff body. The SUHVVXUHDWGRZQVWUHDPIDOOVUHVXOWLQJLQ ODUJH SUHVVXUH GLႇHUHQFH IURP XSVWUHDP to downstream.
3.
3.
Wake
Wake
Aerofoil: stream line body (small wake)
Circular disc : (large wake) 4.
6PDOOSUHVVXUHGUDJUHVXOWVDQGGUDJ is mainly due to friction only.
4.
3UHVVXUHGUDJLVODUJHDVFRPSDUHG to friction drag.
5.
$HURSODQHVVXEPDULQHVDQGVSDFHVKLS are streamline bodies.
5.
Tall buildings, chimneys and advertising ERDUGVDUHEOXႇERGLHV
16.6 STOKES’ LAW CONCERNING SKIN AND PRESSURE DRAG ([SODLQ6WRNHV¶ODZFRQFHUQLQJVNLQDQGSUHVVXUHGUDJIRUFHVIRUDVSKHUHPRYLQJLQ IOXLG:KDWLVWKHYDOXHRIFRH൶FLHQWRIGUDJDFFRUGLQJWRWKH6WRNHV¶ODZ"
8378 :KHQ WKH YHORFLW\ RI ÀRZ LV YHU\ VPDOO 5H\QROGV QXPEHU OHVV WKDQ WKHQ YLVFRXV IRUFHVDUHPRUHSUHGRPLQDQWWKDQLQHUWLDIRUFHV6WRNHVDQDO\VHGWKHÀRZDURXQGDVSKHUH DQGJDYHDUHODWLRQIRUGUDJDFWLQJRQWKHVSKHUHZKLOHLWLVPRYLQJZLWKFRQVWDQWYHORFLW\ WHUPLQDOYHORFLW\ LQWKHÀXLG7KHWRWDOGUDJ ZKHUHm = viscosity,
FD = 3pmDU D GLDPHWHURIVSKHUHDQGU = terminal velocity.
Stokes’ Law: 6WRNHVIXUWKHUGLYLGHGWKHWRWDOGUDJLQWZRSDUWVGHFLGLQJWZRWKLUGVGUDJ LVFRQWULEXWHGE\VNLQIULFWLRQDQGRQHWKLUGE\SUHVVXUH7KLVGLYLVLRQRIWKHWRWDOGUDJLV NQRZQDV6WRNHV¶ODZ+HQFHDFFRUGLQJWR6WRNHV¶ODZZHKDYH
6NLQIULFWLRQGUDJ FDF = 3UHVVXUHGUDJFDP =
FD p mDU 3
FD = pmDU 3
Flow Past Submerged Bodies
917
&RH৽FLHQWRIGUDJCD $VSHU6WRNHV¶ODZWRWDOGUDJ FD = 3pmDU
L
$VSHUGH¿QLWLRQRIFRH൶FLHQWRIGUDJCD, the total drag, FD = CD ¥
rU ¥ A
LL
pd = CD ¥ rU ¥ 4 (TXDWLQJHTQVL DQGLL 3pmDU = CD ¥
CD =
\
=
p rU ¥ ◊ D 4
m r ◊U ◊ D Re
:KDW DUH WKH YDOXHV RI FRH൶FLHQW RI GUDJ IRU VSKHUH LQ WKH IOXLG IORZ ZLWK KLJKHU 5H\QROGVQXPEHUV"
Reynolds numbers between 0.2 and 5 7KH6WRNHV¶ODZZDVLPSURYHGRYHURFHDQE\LQFUHDVLQJLQHUWLDIRUFHVLQWKHÀXLGÀRZV ZKLFKKDYH5H\QROGVQXPEHUVEHWZHHQDQG CD =
£ Re £ CD = 0.4
3.
£ Re £ CD = 0.5
4.
Re > 4 CD
Re
3 ˘ È Í + R ˙ e˚ Î
:KDWLVWHUPLQDOYHORFLW\" :KHQDERG\IDOOVIURPUHVWLQWRDÀXLGWKHERG\VWDUWVDFFHOHUDWLQJLQWKHÀXLGGXHWRWKH gravitational force. The drag on the body increases as its velocity increases. At one stage, WKHVXPRIGUDJDQGEXR\DQWIRUFHDFWLQJXSZDUGVRQWKHERG\EHFRPHVHTXDOWRWKHZHLJKW
918
Fundamentals of Fluid Mechanics
RIWKHERG\DFWLQJGRZQZDUGVDQGWKHQHWIRUFHDFWLQJRQWKHERG\EHFRPHV]HUR7KHERG\ LQ WKLV FRQGLWLRQ GRHV QRW DFFHOHUDWH DQ\ PRUH ZKLOH PRYLQJ GRZQ LQ WKH ÀXLG ,W VWDUWV PRYLQJGRZQZLWKDFRQVWDQWYHORFLW\ZKLFKLVFDOOHGWHUPLQDOYHORFLW\ :KDWDUHWKHYDOXHVRIFRH൶FLHQWRIGUDJIRUDORQJF\OLQGHUSODFHGLQIOXLGIORZZLWK YDU\LQJ5H\QROGVQXPEHU" 7KHÀRZDURXQGDORQJF\OLQGHULVVLPLODUWRWKHÀRZDURXQGDVSKHUH7KHSORWRICD versus R e IRU WKH F\OLQGHU ORRNV VRPHZKDW VLPLODU WR WKDW IRU D VSKHUH H[FHSW IRU WKH QXPHULFDO values. The value of CDLV Reynolds number 7KHGUDJIRUFHLVSURSRUWLRQDOWRYHORFLW\RIÀRZLQVXFKÀRZV KHQFHFRH൶FLHQWRIGUDJLVLQYHUVHO\SURSRUWLRQWR5H\QROGVQXPEHU FD μ u and CD μ
Re
< R e < 7KHFRH൶FLHQWRIGUDJGHFUHDVHVZLWKLQFUHDVLQJ5H\QROGVQXPEHUCD reaches to a minimum value of 0.95 at Re < R e < 3 ¥ 47KHFRH൶FLHQWRIGUDJLQFUHDVHVDQGLWDWWDLQVWKHPD[LPXPYDOXH RIDWRe = 3 ¥4. ¥ 4 < R e < 3 ¥ 105.7KHFRH൶FLHQWRIGUDJGHFUHDVHVDQGLWEHFRPHVHTXDOWR at Re = 3 ¥5. ¥ 5 < R e < 3 ¥ 6. CD increases and it attains the value of 0.7. 7KHFKDQJHRIWKHFRH൶FLHQWRIGUDJCD ZLWKLQFUHDVLQJ5H\QROGVQXPEHULVGXHWR ÀRZVHSDUDWLRQDQG HGGLHVIRUPDWLRQ Vortex S1
S2
Re < 1 No separation
2 < Re Separation at S1 & S2
Re > 90 Vortex shed off
16.7 CIRCULATION IN FREE VORTEX 'H¿QHFLUFXODWLRQ+RZLVLWGHWHUPLQHG"2QZKDWIDFWRUVZLOOLWGHSHQG":KDWLVWKH YDOXHRIFLUFXODWLRQLQIUHHYRUWH[" &LUFXODWLRQLVGH¿QHGDVOLQHLQWHJUDORIYHORFLW\DURXQGDFORVHGSDWK &RQVLGHUDWZRGLPHQVLRQDOVWHDG\ÀXLGÀRZZLWKYHORFLW\uPDNLQJDQJOHq to an element dL DVVKRZQLQWKH¿JXUH7KHu cos qLVWKHYHORFLW\FRPSRQHQWWDQJHQWLDOO\WRWKHHOHPHQW dL. The circulation around the closed curve around the element dL,
Flow Past Submerged Bodies
dl
U
919
q
G=
³ U cos q dL
The circulation depends on (1) tangential velocity or vorticity, and (2) contour area in x and y plane. r
uq =
G 2pr
Circulation for a Free Vortex
,QFDVHRIIUHHYRUWH[ÀRZZHKDYHuq ¥ r = constant. Hence, the circulation, G=
³ U ◊ dL q
or
= Uq ¥ 2p r = 2p (Uq ¥ r) G = Constant
and
uq =
G 2p r
7KLV VKRZV WKDW WKH YDOXH RI FLUFXODWLRQ IRU IUHH YRUWH[ LV LQGHSHQGHQW RI WKH VL]H RI WKH enclosed path and also circulation is constant.
16.8 MAGNUS EFFECT 6WDWHPDJQXVH൵HFW
Or 6KRZ WKH IORZ SDWWHUQ ZKHQ D FLUFXODU F\OLQGHU LV VXEMHFWHG WR D FRPELQDWLRQ RI XQLIRUPIORZDQGDFLUFXODWRU\IORZ 0DJQXVKDGVKRZQWKDWLIDFLUFXODUF\OLQGHULVSODFHGLQDXQLIRUPÀRZDQGLWLVURWDWHG then a lift force or a transverse force is produced on the cylinder. The reason for this is WKDW WKH URWDWLRQ RI WKH F\OLQGHU GLVWXUEV WKH V\PPHWULFDO ÀRZ SDWWHUQ H[LVWLQJ GXULQJ WKH SUHVHQFHRIRQO\XQLIRUPÀRZUHVXOWLQJLQDQDV\PPHWULFDOÀRZ SDWWHUQRQWKHF\OLQGHU 7KH YHORFLW\ DQG SUHVVXUH GLVWULEXWLRQ RQ WKH F\OLQGHU EHFRPH DV\PPHWULFDO DW WKH XSSHU
920
Fundamentals of Fluid Mechanics
DQGWKHORZHUVLGHRIWKHF\OLQGHUDVVKRZQ2QWRSVLGHVWUHDPOLQHVDUHFORVHULQGLFDWLQJ KLJKHUYHORFLWLHVDQGKHQFHORZHUSUHVVXUH2QWKHORZHUVLGHWKHVWUHDPOLQHVDUHIXUWKHU DSDUWLQGLFDWLQJORZHUYHORFLWLHVDQGKLJKHUSUHVVXUH7KHF\OLQGHUH[SHULHQFHVDQXSZDUG IRUFHRUOLIW,WLVSRVVLEOHWRREWDLQOLIWIRUFHZKHQZHVLPSOLI\WKHDQDO\VLVE\DVVXPLQJ WKHÀXLGÀRZDVLGHDOÀXLGÀRZ:HZLOOJHWWKHVDPHÀRZSDWWHUQZKHQDF\OLQGHULVNHSW VWDWLRQDU\DQGLWLVVXEMHFWHGWRDFRPELQDWLRQRIXQLIRUPDQGYRUWH[ÀRZLQVWHDGRIURWDWLQJ WKHF\OLQGHULQWKHXQLIRUPÀRZ FL US U +
=
q S1
Uniform Flow
Circulator Fow
S2
Magnus Effect (Lift Generation)
Magnus Effect
The velocity at the surface of the cylinder, us U sin q +
G pR
$WVWDJQDWLRQSRLQWus = 0 Hence,
or
U sin q = –
sin q =
G pR
G 4 pU R
qFDQWDNHYDOXH LQEHWZHHQWR In case q WKHQ or
VLQ ±
G ± 4 pU R
G = 4pUR
'HULYH DQ H[SUHVVLRQ IRU OLIW IRUFH DFWLQJ RQ WKH URWDWLQJ F\OLQGHU SODFHG LQ XQLIRUP flowing fluid? &RQVLGHUDF\OLQGHUURWDWLQJLQDXQLIRUPÀRZ¿HOG7DNHDVPDOOOHQJWKRIHOHPHQWRQWKH VXUIDFHRIWKHF\OLQGHU$SSO\%HUQRXOOL¶VHTXDWLRQDWWZRSRLQWVRQHDWWKHVXUIDFHRIWKH
Flow Past Submerged Bodies
921
R
PS
dq
q q
F\OLQGHUDQGRWKHURQHDWYHU\ODUJHGLVWDQFHDZD\IURPWKHF\OLQGHUPs and UsDUHSUHVVXUH DQGYHORFLW\DWVXUIDFHZKLFKP and UDUHSUHVVXUHDQGYHORFLW\DWIDUGLVWDQFHSRLQW
P U Ps U + s + ZS = + +Z rg g g rg Z = ZsDVÀRZLVWDNLQJSODFHLQDSODQH
P Ps = + [U – US] rg g rg But,
G = velocity at surface of the cylinder pR
Us U sin q +
P È Ê Ps G ˆ ˘ ÍU - Á U VLQ q + ˙ = + rg g ÍÎ rg pR ˜¯ ˙˚ Ë
or
=
P + rg g
Ps = P +
È 4sin q G ˘ G ÍU - 4U sin q - ˙ pR ˚ 4p R Î
4sin q G ˘ G rU È Í - VLQ q - ˙ pU R ˚ 4p R U Î
7KHOLIWDFWLQJRQWKHHOHPHQWDODUHDZKHQPsLVWKHSUHVVXUHDFWLQJRQWKHVXUIDFH FL = –
Ú
=–
Ú
=
p
0 p
0
Ú
p
0
Ps ¥ sin q ¥ dA PS ¥ sin q ¥ R ◊dq ◊L
È rU ÍP + ÍÎ
as dA = R ◊dq ◊L
Ê G 4sin q G ˆ ˘ VLQ q ˙ R ◊L◊sin q dq Á pU R ˜¯ ˙˚ 4 pU R Ë
922
Fundamentals of Fluid Mechanics
=–
+
+
But \
Ú
p
0
Ú
p
Psin q ◊RLdq –
0
Ú
p
usin3 q RLdq ◊
0
Ú
0
rU sin q ◊ R◊L◊dq g
rU + g
Ú
p
0
r U G RL sin q dq p U R
rU 4sin q ◊ G ◊ ◊R◊L ◊dq pU R
p
0
sin q dq =
Ú
p
Ú
p
0
sin3 qdq = 0 FL = R◊L◊
Ú
p
0
rgU sin q ◊ ◊G◊dq pg UR p
L rU G Ê q sin q ˆ = ˜¯ 0 p ÁË
=
L ◊ r ◊UG ¥p p
= L ◊r◊UG 7KHDERYHHTXDWLRQLVNQRZQDV.XWWD-RXNRZVN\HTXDWLRQ
16.9 KARMAN VORTEX TRAIL :KDWLV.DUPDQYRUWH[WUDLO" :KHQDF\OLQGHULVVXEMHFWHGWRDXQLIRUPÀRZDWORZ5H\QROGVQXPEHUR e WKHÀRZ GRHV QRW VHSDUDWH IURP WKH F\OLQGHU$ERYH Re VHSDUDWLRQ DQG HGG\ IRUPDWLRQ VWDUWV WDNLQJ SODFH :KHQ 5H\QROGV QXPEHU H[FHHGV DERYH WZR YRUWLFHV DUH IRUPHG DW WKH SRLQWV RI VHSDUDWLRQ7KH YRUWLFHV URWDWH LQ RSSRVLWH GLUHFWLRQV DQG WKH\ HORQJDWH WR VXFK DQH[WHQWWKDWWKH\EHFRPHXQVWDEOHWKHUHE\EUHDNLQJR൵IURPWKHVXUIDFHRIWKHF\OLQGHU 7KLVSURFHVVRIIRUPDWLRQRIYRUWLFHVDQGWKHLUVKHGGLQJDZD\IURPWKHF\OLQGHUFRQWLQXHV +HQFHWKHUHDUHWZRURZVRIYRUWLFHVVHSDUDWLQJIURPWKHF\OLQGHUDUHIRUPHGZKLFKVWDUW PRYLQJGRZQVWUHDPZLWKVPDOOYHORFLW\7KHVHWUDLOVRIYRUWLFHVDUHFRPPRQO\NQRZQDV “Karman vortex trails”.
Flow Past Submerged Bodies
923
Separation Starts at Re > 2
a l Karman Vortex Trails
'XULQJVWDEOHFRQGLWLRQVRIVKHGGLQJYRUWLFHV.DUPDQIRXQGWKDW
a l
9RUWH[WUDLOPRYHVGRZQZDUGZLWKDYHORFLW\RIutZKLFKLV ut =
0.355 G ZKHUHG is the circulation around the vortex. a
WKHIUHTXHQF\RIYRUWH[VKHGGLQJ f or
U D
Ê ˆ ÁË ˜ ZKHUHD = diameter of cylinder Re ¯
fD Ê ˆ Á ˜ Ë U Re ¯
fD LVNQRZQDV6WURXKDOQXPEHU$V5H\QROGVQXPEHUYDULHVIURPWR4, Strouhal U nuPEHUYDULHVIURPWRIRUDF\OLQGHU
16.10 AEROFOIL What is an aerofoil? What is its purpose? $QDHURIRLOLVDVWUHDPOLQHGERG\GHVLJQHGLQVXFKDZD\WKDWDVHSDUDWLRQLIRFFXUVLWVKRXOG EHQHDUWKHWUDLOLQJHGJHRIWKHDHURIRLO$VVPDOOZDNHLVDOORZHGWREHSURGXFHGZKLFK UHVXOWVLQWRDVPDOOSUHVVXUHGUDJDFWLQJRQWKHDHURIRLO(YHQZKHQÀRZKDVKLJK5H\QROGV QXPEHUSUHVVXUHGUDJLVYHU\VPDOOEXWWKHVNLQIULFWLRQGUDJLVODUJH7KHUHVXOWLQJIRUFHRQ WKHDHURIRLOGXHWRVPDOOSUHVVXUHGUDJDORQJWKHÀRZDQGODUJHIULFWLRQGUDJSHUSHQGLFXODU WRWKHGLUHFWLRQRIÀRZLVDOVRDFWLQJQHDUO\SHUSHQGLFXODUWRÀRZ$ODUJHOLIWLVREWDLQHG from an aerofoil.
924
Fundamentals of Fluid Mechanics Lift Resulting force
Drag
Force on an Aerofoil
([SODLQ FKRUGOLQHDQGFKRUG DQJOHRIDWWDFN FKDPEHU SUR¿OH FHQWUH OLQH DVSHFWUDWLRIRUDQDHURIRLODQG VWDOO Mean camber line Upper camber line
Leading edge Chord
Flow Angle of attack (a)
Trailing edge
an
Sp Lower camber line Line and Chord
Chord line and chord : &KRUG OLQH LV DQ LPDJLQDU\ OLQH ZKLFK FDQ EH GUDZQ IURP leading edge to the trailing edge of a cross section of an aerofoil. The length of the line is called chord of the aerofoil. Angle of Attack. 7KH DFXWH DQJOH EHWZHHQ WKH FKRUG OLQH RI WKH DHURIRLO DQG WKH GLUHFWLRQRIWKHÀRZ Camber. Camber is the curvature of the aerofoil from the leading edge to trailing edge. 7KHFDPEHUFDQEH XSSHUFDPEHU ORZHUFDPEHUDQG PHDQFDPEHUZKLFKLV WKHPHDQOLQHWKDWLVHTXLGLVWDQFHIURPWKHXSSHUDQGORZHUVXUIDFHV,QWKHFDVHRID V\PPHWULFDODHURIRLOWKHSUR¿OHFHQWUHOLQHFRQFLGHVZLWKWKHFKRUGOLQH 3UR¿OH&HQWUH/LQH 7KHLPDJLQDU\OLQHMRLQLQJWKHPLGSRLQWVRIWKHSUR¿OHVWDUWLQJ IURPOHDGLQJHGJHWRH[LWDWWKHWUDLOLQJHGJHLVFDOOHGDSUR¿OHFHQWUHOLQH Aspect Ratio. ,WLVWKHUDWLRRIVSDQRIWKHDHURIRLOl WRWKHOHQJWKRIPHDQFKRUGc AsSHFWUatio =
VSDQ l = mean chord c
Stall. :KHQ WKH DQJOH RI DWWDFN RI DQ DHURIRLO LV JUHDWHU WKDQ WKH DQJOH RI DWWDFN IRU PD[LPXP OLIW WKH DHURIRLO LV VDLG WR EH RSHUDWLQJ LQ WKH VWDOO FRQGLWLRQ$W VWDOO FRQGLWLRQWKHÀRZVHSDUDWHVIURPWKHDHURIRLODQGHGGLHVDUHIRUPHGWKHUHE\WKHGUDJ FRH൶FLHQWLQFUHDVHVFRQVLGHUDEO\
Flow Past Submerged Bodies
925
'UDZDQGH[SODLQWKHIORZDURXQGDQDHURIRLOZKHQVXEMHFWHGWR XQLIRUPIORZ FLUFXODWRU\IORZDQG FRPELQDWLRQRIXQLIRUPDQGFLUFXODWRU\IORZV6WDWHKRZ WKHVWDJQDWLRQSRLQWVYDU\
S1
S2
Aerofoil in Uniform Flow
Aerofoil in Circulatory Flow
S1 S2
Aerofoil in Combined Uniform and Vortex Flow
7KHDERYH¿JXUHVKRZVXQLIRUPÀRZDURXQGDQDLUÀRZ7ZRVWDJQDWLRQSRLQWVDUHIRUPHG XQGHU LUURWDWLRQDO ÀRZ FRQGLWLRQV S LV WKH VWDJQDWLRQ SRLQW IRUPHG DW WKH OHDGLQJ HGJH of the aeirofoil and S LV WKH VWDJQDWLRQ SRLQW IRUPHG DW WKH XSSHU VXUIDFH RI WKH DHURIRLO EHIRUHWKHWUDLOLQJHGJH7KHÀRZRQWKHXSSHUVXUIDFHRIWKHDHURIRLOLVXQVWDEOHQHDUWKH WUDLOLQJHGJHDVLQWKLVUHJLRQWKHÀRZLVWDNLQJSODFHDJDLQVWSRVLWLYHRUDGYHUVHSUHVVXUH JUDGLHQW FRQGLWLRQV ZKLFK HQFRXUDJH WKH VHSDUDWLRQ RI WKH ÀRZ IURP WKH VXUIDFH RI WKH aerofoil. Hence, stagnation S WDNHV SODFH EHIRUH WKH WUDLOLQJ HGJH ZKLFK PRYHV WR WKH
926
Fundamentals of Fluid Mechanics
trailing HGJHDVWKHYHORFLW\RIÀRZLQFUHDVHV2QIXUWKHULQFUHDVHRIYHORFLW\LWJLYHVULVH WR WKH IRUPDWLRQ RI YRUWLFHV 7KH YRUWLFHV FUHDWH FLUFXODWLRQ DURXQG WKH DHURIRLO DQG ÀRZ SDWWHUQDURXQGWKHDHURIRLOEHFRPHVVLPLODUWRZKDWLVREWDLQHGZKHQDHURIRLOLVVXEMHFWHG WRFRPELQHGÀRZRIXQLIRUPDQGYRUWH[ÀRZ7KHUHDUVWDJQDWLRQSRLQWS2LVQRZDWWUDLOLQJ HGJH7KHUHLVGLVWRUWLRQRIWKHÀRZSDWWHUQDERXWWKHDHURIRLOZLWKVWUHDPOLQHVDUHFORVHURQ WKHXSSHUVXUIDFHDQGVWUHDPOLQHVDUHZLGHVSDFHGDWORZHUVXUIDFH+HQFHWKHÀRZSDWWHUQ LVDV\PPHWULFDODERXWWKHFHQWUDOD[LVDQGDHURIRLOLVQRZVXEMHFWHGWRDOLIWIRUFH
16.11 AEROPLANE IN EQUILIBRIUM 'H¿QH DHURSODQH :KHQ ZLOO LW EH VDLG WR EH LQ HTXLOLEULXP" 'HULYH H[SUHVVLRQ IRU YHORFLW\DQGSURSXOVLRQSRZHU Lift
Propulsion Drag
or thrust
Weight Equilibrium of aeroplane
$Q DHURSODQH LV D À\LQJ PDFKLQH ZKLFK LV DOWKRXJK KHDYLHU WKDQ DLU EXW LW LV VXSSRUWHG E\WKHOLIWSURYLGHGE\WKHÀRZRIDLURQLWVZLQJVKDYLQJWKHVKDSHRIDQDHURIRLO:KHQ DHURSODQHLVLQVWHDG\OHYHOÀLJKWLWLVLQHTXLOLEULXPDVVKRZQLQWKH¿JXUH,QHTXLOLEULXP OLIWIRUFHVDUHHTXDOWRWKHZHLJKWRIWKHDHURSODQHDQGGUDJIRUFHPXVWEHRYHUFRPHE\WKH WKUXVWRUSURSXOVLRQSURYLGHGE\WKHHQJLQHMHWHQJLQHRIWKHDHURSODQH Lift = CL ¥
1 rU 2 ¥ A 2
%XWGXULQJHTXLOLEULXPZHLJKW /LIW \ \
1 rU 2 ¥ A 2 Velocity of plane = Velocity of air = u W = CL ¥
U=
ÊW ˆ 2 ÁË ˜¯ A r ◊ CL
3RZHUUHTXLUHGIRUSURSXOVLRQ P = FD ¥ A 3 = CD ¥ rU ¥ A 2
Flow Past Submerged Bodies
927
([SODLQWKHYDULDWLRQRIWKHFRH൶FLHQWRIOLIWDQGWKHFRH൶FLHQWRIGUDJZLWKWKHDQJOH RIDWWDFNGXULQJWKHIORZRYHUDQDHURIRLO Stall point CL CD
CD
CL
Angle of attack (a)
$VWKHDQJOHRIDWWDFNLQFUHDVHVOLIWIRUFHVLQFUHDVHDQGOLIWFRH൶FLHQWUHDFKHVPD[LPXP $IWHUWKLVWKHOLIWFRH൶FLHQWGHFUHDVHVZLWKKLJKHUYDOXHVRIWKHDQJOHRIDWWDFN7KHDHURIRLO LVWKHQVDLGWRVWDOOZKHQCLVWDUWVGHFUHDVLQJ7KHPD[LPXPSRLQWRQOLIWFRH൶FLHQWFXUYH LVNQRZQDVWKHVWDOOLQJSRLQW7KHUHDVRQIRUGHFUHDVHLQWKHOLIWFRH൶FLHQWLVGXHWRWKH VHSDUDWLRQ RI WKH ÀRZ RQ WKH DHURIRLO 6LPLODUO\ GUDJ FRH൶FLHQW IULVWLO\ GHFUHDVHV ZLWK LQFUHDVH RI DQJOH RI DWWDFN DQG ODWHU LV LQFUHDVHV UDSLGO\ GXHWR VHSDUDWLRQ RI ÀRZ RQ WKH aerofoil. $IODWSODWHRIVL]H¥PLVVXEPHUJHGLQZDWHUIORZLQJZLWKYHORFLW\RIPV)LQG drag and lift if CD DQGCL
$UHDRISODWH¥ 3 = 6 m
rU ¥ A
FD = CD ¥
FD = 0.04 ¥
= 0.04 ¥ 75 ¥3 N1 FL = C L ¥
¥¥3 ¥ ¥ 6
¥ rU ¥ A
¥
¥¥3 ¥ 5 ¥ 6
N1
2QDIODWSODWHRIVL]H¥PZLQGLVSDVVHGZLWKVSHHGRIPV7KHFRH൶FLHQWRI GUDJDQGOLIWDUHDQGUHVSHFWLYHO\)LQG OLIWIRUFH GUDJIRUFH UHVXOWDQW IRUFHDQG SRZHUH[HUWHGE\WKHDLUVWUHDP$VVXPHDLUGHQVLW\ NJP
928
Fundamentals of Fluid Mechanics
A ¥ P FL = CL ¥ rU ¥ A = 0.9 ¥
¥¥ ¥ 4
1 FD = CD ¥
rU ¥ A ¥¥ ¥ 4
¥
1 F= =
+
¥ 4 + ¥ 4
1 tan q =
or 3RZHUH[HUWHGE\DLU
FL + FD =
FL = FD
= 4.5 q
P = FD ¥ U ¥
N:
$FDUKDVIURQWDOSURMHFWHGDUHDRIP,WWUDYHOVDWWKHVSHHGRINPSK,ICD ¿QG SRZHUUHTXLUHGIRUWKHFDUWRRYHUFRPHZLQGUHVLVWDQFHDQG VSHHGSRVVLEOH in case CDLVUHGXFHGWR$VVXPHDLUGHQVLW\ NJP Case U NPSK FD = CD ¥ = 0.4 ¥
¥ 3 =PV 3600
rU ¥ A ¥¥ ¥
1
Flow Past Submerged Bodies
929
7KHSRZHUUHTXLUHGWRRYHUFRPHGUDJ 3RZHU FD ¥ U ¥ N:
Case
CD = 0.3 3RZHUUHPDLQVVDPH N: P = FD ¥ U 3¥3 = CD ¥
U3 =
or
¥ 3 ¥ ¥ ¥ ¥
¥3
or
rU ¥ A ¥ U
U PV
$ PDQ ZHLJKLQJ 1 GHVFHQGV WR WKH JURXQG IURP DQ DHURSODQH XVLQJ SDUDFKXWH 7KHSDUDFKXWHLVKHPLVSKHULFDOZLWKGLDPHWHURIP)LQGWKHYHORFLW\RIGHVFHQGRI WKHSDUDFKXWH$VVXPHCD DQGrair NJP Diameter = 2 m FD
800 N
3URMHFWHGDUHDRISDUachute =
A=
p ¥ d 4 p ¥ P 4
FD 1
930
Fundamentals of Fluid Mechanics
FD = CD ¥ ¥ r ¥ U ¥ A
¥ U =
or or
¥¥ U ¥
¥ ¥ ¥
U PV
$PDQLVGHVFHQGLQJZLWKXQLIRUPYHORFLW\ PVZLWKWKHKHOSRIDSDUDFKXWHZKLFK KDVKHPLVSKHULFDOVKDSHZLWKGLDPHWHURIP)LQGWKHZHLJKWRIWKHPDQLIWKHZHLJKW RIWKHSDUDFKXWHLV1$VVXPHCD DQGGHQVLW\RUDLU NJP
3URMHFWHGDUHDA =
p ¥ d p ¥ 3 = = 7.065 m 4 4
FD = CD ¥ = 0.5 ¥
rU ¥ A ¥¥ ¥ 7.065
1 FD :HLJKWRIPDQ:HLJKWRISDUDFKXWH
\
:HLJKWRIPDQ ±
1 7KHWRWDOZHLJKWWREHFDUULHGE\DSDUDFKXWHLV1DWFRQVWDQWVSHHGRIGHVFHQG RIPV7KHVKDSHRISDUDFKXWHLVKHPLVSKHULFDO,ICd DQGDLUGHQVLW\ NJP¿QGWKHGLDPHWHURISDUDFKXWH Here FD = W FD = CD ¥
¥
or
A=
r ¥ U ¥ A ¥¥ ¥ A
¥ ¥ ¥
P
Flow Past Submerged Bodies
NRZ
931
p ¥ d 4 d =
or
¥ P p
d = 3.57 m $ VSKHUH KDYLQJ GLDPHWHU RI PP DQG UHODWLYH GHQVLW\ RI LV VXVSHQGHG LQ D XQLIRUPVWUHDPRIDLUZLWKWKHKHOSRIDVWULQJ$LUIORZKDVYHORFLW\RIPV)LQG LQFOLQDWLRQRIVWULQJZLWKYHUWLFDODQG WHQVLRQLQWKH VWULQJ$VVXPHCD DQGDLUGHQVLW\ NJP q T
FD
U
W
Weight, W = =
3 pd ¥ r 6 ¥ p ¥ 3 ¥ 3 ¥3 6
1 FD = CD ¥ A=
¥ rU ¥ A
p p ¥ d = ¥ 4 4
¥–3 m
FD = 0.5 ¥
\ $SSO\LQJ/DPL¶VWKHRUHP
¥¥ ¥¥–3
1
T W FD = = sin 90 VLQ + q VLQ - q
932
Fundamentals of Fluid Mechanics
T=
or
tan q =
= cos q sin q
q and
T=
1 sin 67.79
$NLWHZHLJKLQJNJDQGKDYLQJDQH൵HFWLYHDUHDRIPDVVXPHVDQDQJOHRI WRWKHKRUL]RQWDO7KHFKRUGDWWDFKHGWRLWPDNHVDQDQJOHRIWRWKHKRUL]RQWDO7KH SXOORQWKHFKRUGGXULQJDZLQGRINPSKLVNJ'HWHUPLQHWKHFRUUHVSRQGLQJ FRH൶FLHQWRIOLIWDQGGUDJ'HQVLW\RIDLULVNJP 8378 FL
U 15°
FD
45°
T = 2.6 kg
A = P, U =
W = 0.25 kg
¥ 3 PV 3600
T ¥ 1 W ¥ 1 FD = T cos 45
FRV 1 FL = T sin 45 + W
VLQ
1 CD =
FD
rU A
=
¥ ¥ ¥
Flow Past Submerged Bodies
CL =
933
FL = rU A ¥ ¥ ¥
= 0.466 $NLWHLVZHLJKLQJ1VRDUVDWDQDQJOHWRWKHKRUL]RQWDO7KHVWULQJRIWKHNLWH PDNHV WR WKH KRUL]RQWDO DQG LW KDV WHQVLRQ RI 1 )LQG WKH UDWLR RI OLIW WR GUDJ DFWLQJRQWKHUDWH FD = T cos 30 = 5 cos 30 = 4.33 N FL = T sin 30 + W =5¥
\
FL FD
+ 0.5
=3N 3 = = 0.69 4.33 FL
FD 30° T = 25 N W=6N
$ NLWH RI GLPHQVLRQ ¥ P DQG ZHLJKLQJ 1 DVVXPHV DQ DQJOH RI WR WKH KRUL]RQWDODQGWKHVWULQJDWWDFKHGWRWKHNLWHPDNHVDQDQJOHRIWRWKHKRUL]RQWDO 7KH SXOL LQ WKH VWULQJ LV 1 ZKHQ WKH ZLQG LV EORZLQJ DW NPSK )LQG WKH OLIW DQG GUDJ IRUFHV DQG FRUUHVSRQGLQJ OLIW DQG GUDJ FRH൶FLHQWV 7KH GHQVLW\ RI DLU LV 8378 NJP A = 0.7 ¥ 0.7 = 0.49 m U=
¥ 3 PV 3600 FL
FD 45° T = 25 N W=6N
934
Fundamentals of Fluid Mechanics
'XULQJHTXLOLEULXPRIWKHNLWHZHKDYH FD = TFRV FRV 1 FL = T sin 45 + W 1 1RZ
CD =
=
FD rU A ¥ ¥ ¥
CL =
=
FL rU A ¥ ¥ ¥
$SDVVHQJHUVKLSRIPOHQJWKDQGPGUDIWLVVDLOLQJDWNPSK'HWHUPLQH WRWDOIULFWLRQGUDJDQG WKHSRZHUUHTXLUHGWRRYHUFRPHWKHUHVLVWDQFH$VVXPHWKH VKLSVXUIDFHWRDFWDVDIODWSODWH 8378 3 U = ¥ PV 3600
)RUÀDWSODWH \
rVHDZDWHU NJP3 CD = 0.7 and CL FD = CD ¥ = 0.7 ¥
rU ◊A ¥¥ ¥¥
¥3N1 FL = CL ¥
rU ¥ A
Flow Past Submerged Bodies
¥¥ ¥
¥
¥3N1 F= =
935
FD + FL ¥ + ¥
¥3N1
3RZHUUHTXLUHG F ¥ U ¥6 ¥ ¥4N:
$F\OLQGHUURWDWHVDWUSPDERXWLWVD[LVZKLFKLVSHUSHQGLFXODUWRWKHVWUHDPRI ZDWHUIORZLQJDWDYHORFLW\RIPV7KHF\OLQGHULVPGLDPHWHUDQGPORQJ)LQG FLUFXODWLRQ OLIWIRUFHSHUXQLWOHQJWKDQG SRVLWLRQRIVWDJQDWLRQSRLQW uq = =
pDN 60 p ¥ ¥ PV 60
Circulation G p Ruq ¥ p ¥¥ PV
Lift
FL = L◊r◊U ¥ G ¥¥3 ¥¥ = 47.3 ¥6 N
$WVWDJQDWLRQSRLQWZHKDYH VLQq +
or
sin q = –
or
uq =0 U ¥
± ± VLQ q VLQ DQGVLQ± DQG
936
Fundamentals of Fluid Mechanics
$QDHURSODQHKDVZLQJDUHD PDQGZLQJVSDQ P,WZHLJKVN1,IWKH DHURSODQH LV IO\LQJ DW VSHHG RI NPK DQG DLU GHQVLW\ LV NJP )LQG WKH FLUFXODWLRQDURXQGWKHZLQJ GUDJRQWKHZLQJDQG SRZHUUHTXLUHG A = 30 m U= 1RZ
or
360 ¥3 PV 3600
FL = W ¥3 = CL ¥
CL =
¥ rU ¥ A
¥ 3 ¥ ¥ ¥
For CL IURPFODUNyZLQJGLDJUDP CD ª 0.05 \
FD = CD ¥
rU ◊A
= 0.05 ¥
¥¥4 ¥ 30
N1 3RZHU FD ¥ U = 9 ¥3 ¥ N:
Circulation is given by FL = r◊U ◊G◊ L =
¥ 3 ¥ ¥
PV
$ PHWDOOLF FKLPQH\ RQ D KRXVH LV P KLJK DQG KDV RXWHU DQG LQQHU GLDPHWHU DV DQGPUHVSHFWLYHO\,IWKHZLQGYHORFLW\LVNPK¿QGWKHGUDJRQWKHFKLPQH\ $VVXPHGHQVLW\RIDLU NJP and CD
Flow Past Submerged Bodies
937
0.4
U
2m
A = h ¥ D ¥ P 3 U = 60NPSK ¥ PV 3600
FD = CD ¥
¥
rU ¥ A ¥¥ ¥
1 $WUXFNKDYLQJDSURMHFWHGDUHDRIPUXQQLQJDWNPKKDVWRWDOUHVLVWDQFH 12IWKLVLVGXHWRUROOLQJIULFWLRQDQGGXHWRVXUIDFHIULFWLRQ7KHUHVWLV GXHWRIRUPGUDJ)LQGFRH൶FLHQWRIGUDJ7DNHr NJPIRUDLU $0,( U NPSK=
Resistance due to rolling =
¥ 1
Resistance due to surface friction =
¥ 1
+HQFHGUDJ ± 1 FD = CD ¥
or
¥ 3 PV 3600
CD ¥ CD = 0.934
rU ¥ A ¥¥ ¥ 6.5
938
Fundamentals of Fluid Mechanics
$VDQDSSOLFDWLRQRI0DJQXVH൵HFWDVKLSLVEXLOWKDYLQJWZRYHUWLFDOURWRUVPKLJK DQGPLQGLDPHWHU7KHURWRUVDUHVSXQDWUSP2QDGD\ZKHQWKHDLUWHPSHUDWXUH LV&DQGUHODWLYHPRWLRQRIWKHDLUWRVKLSUHVXOWVLQNPKZLQG&DOFXODWHWKHIRUFH HPLWWHGE\WKHVSLQQLQJURWRUVRQWKHVKLS7DNHr NJPIRUDLU ,,70DGUDV FD in horizontal plane
U
U NPK = uq =
¥ 3 PV 3600
pDN p ¥ ¥ = PV 60 60
Circulation generated by rotation of each cylinder, G p Ruq p ¥
3 ¥
PV
+RUL]RQWDOOLIWRUWUDQVYHUVHIRUFHSHUSHQGLFXODUWRÀRZ
FL = rLU G ¥¥¥ N1
7RWDOWUDQVYHUVHIRUFHE\WZRURWRUV = 69.4 ¥ N1 $FLUFXODUGLVFPLQGLDPHWHULVKHOGQRUPDOWRDPVZLQGRIGHQVLW\NJP :KDWIRUFHLVUHTXLUHGWRKROGLWDWUHVW"$VVXPHFRH൶FLHQWRIGUDJRIGLVF $0,( FD = CD ¥ rU ¥ A
p ¥ 3 ¥¥ ¥ 4
¥
N1
Flow Past Submerged Bodies
939
)LQGWKHGL൵HUHQFHLQGUDJIRUFHH[HUWHGRQDIODWSODWHRIVL]H¥PZKHQWKHSODWH LVPRYLQJDWVSHHGRIPVQRUPDOWRLWVSODQHLQL ZDWHUDQGLL DLURIGHQVLW\ NJP$VVXPHCD Case3ODWHLQZDWHU FD = CD ¥
¥ rU ¥ A ¥¥3 ¥ 4 ¥ 9
¥
N1
Case3ODWHLQDLU FD ¥
¥¥ 4 ¥ 9
1
± 1 N1
'L൵HUHQFHLQGUDJIRUFH
7KHDLULVIORZLQJRYHUDF\OLQGHURIGLDPHWHUPPDQGLQ¿QLWHOHQJWKZLWKDYHORFLW\ RI PV )LQG WKH WRWDO GUDJ VKHDU GUDJ DQG SUHVVXUH GUDJ RQ P OHQJWK RI WKH F\OLQGHULIWRWDOGUDJFRH൶FLHQWLVHTXDOWRDQGVKHDUGUDJFRH൶FLHQWHTXDOWR 7DNHGHQVLW\ NJPRIDLU Total drag force, FD = CD ¥
rU ¥ A ¥¥ ¥¥
¥
¥ –4 N
Drag due to shear, FDS = CDS ¥
rU ¥ A ¥ ¥ 0.05
¥¥
¥ –4 N
940
Fundamentals of Fluid Mechanics
1RZZHNQRZ \
FD = FDS + FDP FDP = FD – FDS ¥ –4 ¥ –4 = 4.05 ¥ –4 N
'HWHUPLQH WKH YHORFLW\ RI IDOO RI UDLQ GURSV RI D ¥ ± FP GLDPHWHU GHQVLW\ ¥ ±JPFPDQGNLQHPDWLFYLVFRVLW\FPV $0,( \
r ¥3JPFP3 & v FPV m = r ¥ v ¥3 ¥
¥ –4
gm cm ◊ s
¥ –5
NJ ms
Weight of rDLQGURS =
= 1RZ or
p ¥¥ –5 ¥¥ 6
¥ ± N W = FD ¥± = 3pmDU
¥ - U= ¥ p ¥ ¥ -4 ¥ ¥ -5 =
p ¥ D3 ¥ r ¥ g 6
¥ p ¥
¥–3PV
1RZFKHFN5H\QROGVQXPEHUIRUXVLQJ6WRNHV¶HTXDWLRQ Re =
rUD ¥ -3 ¥ ¥ -4 UD = = m v ¥ -4
Flow Past Submerged Bodies
941
$NLWHP¥PDQGZHLJKLQJ1LVPDLQWDLQHGLQDLUDWDQDQJOHRIWRWKH KRUL]RQWDO7KHVWULQJDWWDFKHGWRWKHNLWHPDNHVDQDQJOHWRWKHKRUL]RQWDODQGDW WKLVSRVLWLRQWKHYDOXHVRIFRH൶FLHQWRIGUDJDQGOLIWDUHDQGUHVSHFWLYHO\)LQG WKHVSHHGRIWKHZLQGWHQVLRQLQWKHVWULQJ7DNHGHQVLW\RIDLU NJP 8378 q° 45
10
°
Projected Area
3URMHFWHGDUHD
$ ¥ = 0.64 m
,QHTXLOLEULXPWKHUHDUHIRXUIRUFHVZKLFKDUHDFWLQJYL]P, W, FL and FD . SFy = 0, or
RU
CL ¥
¥
FL = P sin45 + 4
P r ◊ A ◊ u = +4
¥¥ 0.64 u = 0.707 P + 4 0.3 u = 0.707 P
or
L
SFx = 0, FD = Pcos45 or
or
or
CD ¥
0.6 ¥
P r ◊ A ◊ u =
P ¥¥ 0.64 ¥ u = u =
)URPHTQVL DQGLL ZHKDYH P or P and u u or u
P ( ¥ ¥ ) P
P + 4 1 P ¥ PV
LL
942
Fundamentals of Fluid Mechanics
16.12 QUESTIONS FROM COMPETITIVE EXAMINATIONS r When pressure drag over a body is large as compared to the friction drag, then the shape of the body is that of D $QDHURIRLO E $VWUHDPOLQHGERG\ F $WZRGLPHQVLRQDOERG\ G $EOX൵ERG\ ,(6 2SWLRQG LVFRUUHFW Assertion (A): $ ERG\ ZLWK ODUJH FXUYDWXUH FDXVHV D ODUJHU SUHVVXUH GUDJ DQG WKHUHIRUH larger resistance to motion. Reason (R): /DUJHFXUYDWXUHGLYHUJHVWKHVWUHDPOLQHVGHFUHDVHVWKHYHORFLW\UHVXOWLQJ in the increase in pressure and development of adverse pressure gradient leading to UHYHUVHIORZQHDUWKHERXQGDU\ D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,$6 2SWLRQD LVFRUUHFW :KHQHYHU D SODWH LV LPPHUVHG DW DQ DQJOH ZLWK WKH GLUHFWLRQ RI IORZ RI OLTXLG LW LV VXEMHFWHGWRVRPHSUHVVXUH:KDWLVWKHFRPSRQHQWRIWKLVSUHVVXUHLQWKHGLUHFWLRQRI IORZRIOLTXLGNQRZQDV D 6WUHDPOLQHSUHVVXUH E /LIW F 'UDJ G %XONPRGXOXV ,(6 2SWLRQF LVFRUUHFW 7KHGUDJIRUFHH[HUWHGE\DIOXLGRQDERG\LPPHUVHGLQDIOXLGLVGXHWR D 3UHVVXUHDQGYLVFRXVIRUFHV E 3UHVVXUHDQGJUDYLW\IRUFHV F 3UHVVXUHDQGVXUIDFHWHQVLRQIRUFHV G 9LVFRXVDQGJUDYLW\IRUFHV ,(6 2SWLRQD LVFRUUHFW :KLFKRQHRIWKHIROORZLQJLVWUXHRIIORZDURXQGDVXEPHUJHGERG\" D )RUVXEVRQLFQRQYLVFRXVIORZWKHGUDJLV]HUR E )RU VXSHUVRQLF IORZ WKH GUDJ FRH൶FLHQW LV GHSHQGHQW HTXDOO\ RQ 0DFK QXPEHU DQG5H\QROGVQXPEHU F 7KHOLIWDQGGUDJFRH൶FLHQWVRIDQDHURIRLODUHLQGHSHQGHQWRI5H\QROGVQXPEHU G )RULQFRPSUHVVLEOHIORZDURXQGDQDHURIRLOWKHSUR¿OHGUDJLVWKHVXPRIIRUP GUDJDQGVNLQIULFWLRQGUDJ ,(6 Option (d) is correct. Assertion (A) ,QIORZRYHULPPHUVHGERG\SUHVVXUHDQGVKHDUIRUFHVDFWRQWKHERG\ Reason (R): 'UDJFDQEHFUHDWHGZLWKRXWOLIW/LIWFDQQRWEHFUHDWHGZLWKRXWGUDJ
Flow Past Submerged Bodies
943
D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVWKHFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWWKHFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVWUXH ,$6 2SWLRQE LVWUXH 0DJQXVH൵HFWLVGH¿QHGDV D 7KHJHQHUDWLRQRIOLIWSHUXQLWGUDJIRUFH E 7KHFLUFXODWLRQLQGXFHGLQDQDLUFUDIWZLQJ F 7KHVHSDUDWLRQRIERXQGDU\OD\HUQHDUWKHWUDLOLQJHGJHRIDVOHQGHUERG\ G 7KHJHQHUDWLRQRIOLIWRQDURWDWLQJF\OLQGHULQDXQLIRUPÀRZ ,$6 2SWLRQG LVFRUUHFW $QDXWRPRELOHPRYLQJDWDYHORFLW\RINPSKLVH[SHULHQFLQJDZLQGUHVLVWDQFHRI N1 ,I WKH DXWRPRELOH LV PRYLQJ DW D YHORFLW\ RI NPSK WKH SRZHU UHTXLUHG WR overcome the resistance is D N: E N: F N: G N: ,(6 Power = Drag force × Speed = FD × V = CD ¥
P Ê V ˆ = P ÁË V ˜¯
3
rV ¥ A ¥ V = const ¥ V 3 3
Ê 50 ˆ oԙP2 = Á ˜ ¥ P Ë 40 ¯ 3
or
Ê ¥ 3 ˆ Ê ˆ Ê ˆ P2 = FD ¥ V ¥ Á ˜ = ¥ Á ¥Á ˜ Ë 4¯ Ë 3600 ˜¯ Ë 4 ¯
3
= 43.4 kW 2SWLRQD LVFRUUHFW :KLFKRQHRIWKHIROORZLQJFDXVHVOLIWRQDQLPPHUVHGERG\LQDIOXLGVWUHDP" D %XR\DQWIRUFH E 5HVXOWDQWIOXLGIRUFHRQWKHERG\ F '\QDPLF IOXLG IRUFH FRPSRQHQW H[HUWHG RQ WKH ERG\ SDUDOOHO WR WKH DSSURDFK YHORFLW\ G '\QDPLFIOXLGIRUFHFRPSRQHQWH[HUWHGRQWKHERG\SHUSHQGLFXODUWRWKHDSSURDFK YHORFLW\ ,(6 2SWLRQG LVFRUUHFW
944
Fundamentals of Fluid Mechanics
,PSURYHG VWUHDPLQJ SURGXFHV UHGXFWLRQ LQ WKH GUDJ FRH൶FLHQW RI D WRUSHGR :KHQ LW LV PRYLQJ IXOO\ VXEPHUJHG DQG DVVXPLQJ WKH GULYLQJ SRZHU WR UHPDLQ WKH VDPHWKHLQFUHDVHLQVSHHGLV D E F G ,(6 Power = FD ¥ Velocity = CD ¥
rV ¥ A ¥V Z
3
or
P1 ןCD V
and
P2 ןCD ¥ V
If
P 1 = P 2,
3
CD ¥ V3 = CD V3 CD
\
V3 =
or
V2 = 1.10 V1
CD
¥ V3 =
¥ V3 75
2SWLRQD LVFRUUHFW Which one of the following is correct? ,QWKHIORZSRVWEOX൵ERGLHV D 3UHVVXUHGUDJLVVPDOOHUWKDQIULFWLRQGUDJ E )ULFWLRQGUDJRFFXSLHVWKHPDMRUSDUWRIWRWDOGUDJ F 3UHVVXUHGUDJRFFXSLHVWKHPDMRUSDUWRIWRWDOGUDJ G 3UHVVXUHGUDJLVOHVVWKDQWKDWRIVWUHDPOLQHGERG\ ,(6 2SWLRQF LVFRUUHFW $SDUDFKXWLVWKDVPDVVRINJDQGDSURMHFWHGIURQWDODUHDRIPLQIUHHIDOO 7KHGUDJFRH൶FLHQWEDVHGRQIURQWDODUHDLVIRXQGWREH,IWKHDLUGHQVLW\LV NJPWKHWHUPLQDOYHORFLW\RIWKHSDUDFKXWLVWZLOOEH D PV E PV F PV G PV ,(6
rV ¥ A = Weight = mg FD = C D ¥
Flow Past Submerged Bodies
or
V =
945
mg ¥ ¥ = CD ¥ r ¥ A ¥ ¥
= 78.3 m/s 2SWLRQE LVFRUUHFW $FLUFXODUF\OLQGHURIPPGLDPHWHULVURWDWHGDEXWLWVD[LVLQDVWUHDPRIZDWHU KDYLQJDXQLIRUPYHORFLW\RIPV:KHQERWKWKHVWDJQDWLRQSRLQWVFRLQFLGHWKHOLIW IRUFHH[SHULHQFHGE\WKHF\OLQGHULV
D
F
N1 m
E
N1 m
N1 m
G
N1 m
,(6
For single stagnation point, the circulation is G = 4pVR = 4p ¥ 4 ¥
Lift force
FL
0.400
= 10.05 m2/s =P∙L∙V∙G = 1000 × L ∙ 4 ∙ 10.05
N1 FL = m L
or
2SWLRQG LVFRUUHFW 0DWFK/LVW,ZLWK/LVW,,DQGVHOHFWWKHFRUUHFWDQVZHU /LVW, /LVW,, D 6WRNHV¶ODZ 6WURXEDOQXPEHU E %OX൵ERG\ &UHHSLQJPRWLRQ F 6WUHDPOLQHERG\ 3UHVVXUHGUDJ G .DUPDQYRUWH[VKHGGLQJ 6NLQIULFWLRQGUDJ
Codes A B (a) 2 3 (b) 3 2 (c) 2 3 (d) 3 2 2SWLRQF LVFRUUHFW
C 1 4 4 1
D 4 1 1 4
(IES 2001)
946
Fundamentals of Fluid Mechanics
)RU VROLG VSKHUH IDOOLQJ YHUWLFDOO\ GRZQZDUGV XQGHU JUDYLW\ LQ D YLVFRXV IOXLG WKH WHUPLQDOYHORFLW\V varies with diameter D of the sphere as D V μ D for all diameters E V μ D for all diameters F V μ D for large D and V μ D for small D ,(6 G V μ D for large D and V μ D for small D 2SWLRQE LVFRUUHFW 0DWFK/LVW,W\SHRIIORZ ZLWK/LVW,,EDVLFLGHDOIORZV DQGVHOHFWWKHFRUUHFWDQVZHU
List-I D )ORZRYHUDVWDWLRQDU\F\OLQGHU E )ORZRYHUDKDOI5DQNLQHERG\RYDO F )ORZRYHUDURWDWLQJERG\ G )ORZRYHUD5DQNLQH Codes A B C D (a) 1 4 3 2 (b) 2 4 3 1 (c) 1 3 4 2 (d) 2 3 4 1 Option (d) is correct.
List-II 6RXUFHVLQNXQLIRUPIORZ 'RXEOHWXQLIRUPIORZ 6RXUFHXQLIRUPIORZ 'RXEOHWIUHHYHUWH[XQLIRUPIORZ
(IES 2001, IAS 2003)
$F\OLQGULFDOREMHFWLVURWDWHGZLWKFRQVWDQWDQJXODUYHORFLW\DERXWLWVV\PPHWU\D[LVLQ DXQLIRUPIORZ¿HOGRIDQLGHDOIOXLGSURGXFLQJVWUHDPOLQHVDVVKRZQEHORZ$WZKLFK SRLQWV LVWKHSUHVVXUHRQWKHF\OLQGHUVXUIDFHPD[LPXP"
2
3
4
1
D 2QO\DWSRLQW F $WSRLQWVDQG 2SWLRQG LVFRUUHFW
E 2QO\DWSRLQW G $WSRLQWVDQG
,(6
Flow Past Submerged Bodies
947
Assertion (A): $LUFUDIW ZLQJV DUH VORWWHG WR FRQWURO VHSDUDWLRQ RI ERXQGDU\ OD\HU VSHFLDOO\DWODUJHDQJOHVRIDWWDFN Reason (R): 7KLVKHOSVWRLQFUHDVHWKHOLIWDQGWKHDLUFUDIWFDQWDNHR൵IURPDQGODQG RQVKRUWUXQ D %RWK$DQG5DUHLQGLYLGXDOO\WUXHDQG5LVFRUUHFWH[SODQDWLRQRI$ E %RWK$DQG5DUHLQGLYLGXDOO\WUXHEXW5LVQRWFRUUHFWH[SODQDWLRQRI$ F $LVWUXHEXW5LVIDOVH G $LVIDOVHEXW5LVFRUUHFW ,(6 2SWLRQF LVFRUUHFW &RQVLGHUWKHIROORZLQJVWDWHPHQWV 7KHFDXVHRIVWDOOLQJRIDQDHURIRLOLVWKHERXQGDU\OD\HUVHSDUDWLRQDQGIRUPDWLRQ RILQFUHDVHG]RQHRIZDNH $QDHURIRLOVKRXOGKDYHDURXQGHGQRVHLQVXSHUVRQLFIORZWRSUHYHQWIRUPDWLRQ RIQHZVKRFN :KHQDQDHURIRLORSHUDWHVDWDQJOHRILQFLGHQFHJUHDWHUWKDQWKDWRIVWDOOLQJWKH lift decreases and drag increases $URXJKEDOOZKHQDWFHUWDLQVSHHGVFDQDWWDLQORQJHUUDQJHGXHWRUHGXFWLRQRI OLIWDVWKHURXJKQHVVLQGXFHVHDUO\VHSDUDWLRQ :KLFKRIWKHIROORZLQJVWDWHPHQWVDUHFRUUHFW D DQG E DQG F DQG G DQG ,(6 2SWLRQG LVFRUUHFW &RQVLGHUWKHIROORZLQJVWDWHPHQWV 7KH SKHQRPHQRQ RI OLIW SURGXFHG E\ LPSRVLQJ FLUFXODWLRQ RYHU D GRXEOHW LQ D XQLIRUPIORZLVNQRZQDV0DJQXVH൵HFW 7KHSDWKGHYLDWLRQRIFULFNHWEDOOIURPLWVRULJLQDOWUDMHFWRU\LVGXHWRWKH0DJQXV H൵HFW :KLFKRIWKHVWDWHPHQWVJLYHQDERYHLVDUHFRUUHFW" D RQO\ E RQO\ F %RWKDQG G 1HLWKHUQRU ,(6 2SWLRQF LVFRUUHFW
INDEX
A Acceleration on inclined plane 307 Acceleration vector 425 Adhesion 45 Aerofoil 923 Aeroplane in equilibrium 926 Aerostatic law 79, 82 $൷X[ Angular momentum 590 Anicut 548 Aquaduct 548 Archimedes’ principle 234 Atmospheric pressure 83 $YHUDJHFRH൶FLHQWRIGUDJ Average velocity 642, 720 $[LDOGHSWKRIZDWHU
B Backwater curve 548 Bend, forces on 594 Bernoulli’s equation 490, 492, 637 %LQJKDPSODVWLFV %OX൵ERG\ Boundary layer concept of 746 growth of 749 separation of 764 %RXQGDU\OD\HUWKLFNQHVV Bourdon tube gauge 85 Broad crested weir 528 Buckingham’s theorem 338
Bulk modulus of elasticity 42 Buoyancy 233 applications of 236 Buoyant force 233
C &DSLOODU\IDOO &DSLOODU\ULVH Capillary tube method 684 Cavitation 44 Centre of buoyancy 235 &HQWUHRISUHVVXUH &KHQ]\¶VIRUPXOD &LUFXODWLRQ &RH൶FLHQWRIFRPSUHVVLELOLW\ &RH൶FLHQWRIFRQWUDFWLRQ &RH൶FLHQWRIGLVFKDUJH &RH൶FLHQWRIGUDJ &RH൶FLHQWRIOLIW &RH൶FLHQWRIYHORFLW\ Cohesion 45 &RPSUHVVLELOLW\ &RPSUHVVLEOHÀRZ Conservation of mass, principle of 406 Continuity equation in three-dimensional Cartesian coordinates 407 &RQWLQXLW\RIÀRZHTXDWLRQRI &RQWLQXXP Control volume, concept of 487 Convergent divergent mouthpiece 506 Convergent mouthpiece 506
950
Index
&RXHWWHÀRZ &ULWLFDOYHORFLW\ &\OLQGULFDOH[WHUQDOPRXWKSLHFH
D D’Alembert’s principle 302 'DPVWDELOLW\RI Darcy’s equation 645, 673 for friction loss 722 Dashpot 680 'L൵HUHQWLDOPDQRPHWHUV 'LODWDQWÀXLG Dimensional analysis 332 by Rayleigh’s method 337, 339 methods of 337 Dimensional homogeneity 335 applications of 336 'LPHQVLRQOHVVQXPEHUV Dimensions 332 'LVSODFHPHQWWKLFNQHVV Distorted model 377 'RXEOHWÀRZ 'UDJIRUFH Drowned weir 529 Dynamic equilibrium 300 '\QDPLFVLPLODULW\ Dynamic viscosity 24 Dynamics, fundamental principle of 579
E Eddy viscosity 706 Elastic force 365 Electrical analogy method 424 End contraction 527 Energy gradient 822 Energy thickness 754 Equation of continuity 406 (TXDWLRQRIVWUHDPOLQH Equivalent pipe 826 Equivalent sand grain roughness 725 Euler’s equation of motion 490 Euler’s model law 369 Euler’s number 336, 344
Evaporation 43 ([SHULPHQWDOPRGHOWHVWLQJ
F Falling sphere viscometer 683 Filament line 400 Floatation 235 principle of 236 Floating, stability of 237 Flow in inclined pipe 663 LQFOLQHGSODWHV )ORZQHW uses and limitations of 424 )ORZQR]]OH Flow of electricity 423 )ORZRIÀXLGV Flow power transmitted by 850 superposition of 903 )OXLGG\QDPLFV )OXLGÀRZ )OXLGNLQHPDWLFV Fluid kinetics 6 Fluid mechanics 5 applications of 6 LPSRUWDQFHRI Fluid motion 396 Eulerian method of 397 Langrangian method of 396 Fluid particles displacements of 400 LUURWDWLRQDOÀRZV YRUWLFLW\RI )OXLGVWDWLF Fluidization 674 Fluids 4, 5 behaviour of 23 characteristics of 4 physical properties 62 SURSHUWLHVRI W\SHVRI YLVFRVLW\RI
Index
FRUFHGYRUWH[ÀRZ )UHHOLTXLGMHW )UHHYRUWH[ÀRZ )UHHYRUWH[FLUFXODWLRQLQ )ULFWLRQIDFWRU )ULFWLRQKHDGORVV Froude’s model law 367 Froude’s number 343 Fundamental dimensions 334 )XQGDPHQWDOHTXDWLRQRIÀRZ
G *DVHV *HRPHWULFVLPLODULW\ Gravity force 365
H
Inertia force 363 Instantaneous velocity 704 Inverted U-tube manometer 90
J -HWWUDMHFWRU\ Journal bearing 674
K Karman similarity concept 709 .DUPDQYRUWH[WUDLO Kinematic eddy viscosity 706 .LQHPDWLFVLPLODULW\ Kinematic viscosity 24 Kinematics 486 Kinetic energy 486 Kinetic energy correction factor 659
Hagen poiseuille formula 644 +DUG\FURVVPHWKRG Horizontal acceleration 303 +RUL]RQWDOSLSHVÀRZLQ +RUL]RQWDOWUDQVODWLRQDODFFHOHUDWLRQ Hot wire anemometer 726 +\GUDXOLFFRH¿FLHQWV Hydraulic gradient line 822 +\GUDXOLFUDGLXV Hydraulic similitude 360 Hydraulics 6 +\GURG\QDPLFDOO\URXJKERXQGDU\ +\GURG\QDPLFDOO\VPRRWKERXQGDU\ Hydrometer 237 +\GURVWDWLFODZ +\GURVWDWLFSDUDGR[
L
I
Mach’s model law 370 Mach’s number 344 0DJQXVH൵HFW Major energy loss 809 Manometers 84, 87 Manometery 84 Masonry dam 205 Matter, states of 2
,GHDOÀXLGÀRZ ,GHDOÀXLGV ,GHDOSODVWLFÀXLGV ,PDJLQDU\IUHHVXUIDFH ,PPHUVHGERGLHVVWDELOLW\FRQGLWLRQIRU Inclined single column micrometer 89 IncompressibleÀRZV
Laminar boundary, characteristics of 749 /DPLQDUÀRZ Laminar sublayer 750 /DPLQDUVXEOD\HUWKLFNQHVV Laminar, parameters of 764 /DSODFHHTXDWLRQ IRUWKHYHORFLW\SRWHQWLDO Laser doppler anemometer 726 /LIWIRUFH Linear momentum 589 /LQHVRIÀRZ /LTXLGV /RFDOFRH൶FLHQWRIGUDJ Lock gate 204
M
951
952
Index
Mechanical gauges 85 Mercury barometer 84 Metacentre 240 Metacentric height 240 Micromanometer 92 Micrometers 88 Minor energy loss 809 0L[LQJOHQJWKFRQFHSW Model 358 Model analysis 359 Moment of momentum 589 Momentum equation, applications of 580 Momentum principle 579 Momentum thickness 753 Moody’s diagram 725 Mouthpiece 505, 507
N Navier-Stokes equations 489 Neutral equilibrium 239 1HZWRQ¶VHTXDWLRQRIYLVFRVLW\ 1HZWRQ¶VODZRIYLVFRVLW\ 1HZWRQLDQÀXLGV 1RQ1HZWRQLDQÀXLGV 1RQXQLIRUPÀRZ Notch 520
O Oil bearings 674 2QHGLPHQVLRQDOÀRZ 2SHQVSLOOZD\ 2UL¿FH 2UL¿FHPHWHU 2UL¿FHW\SHYLVFRPHWHU Overhead water tanks 205
P 3DUDOOHOSODWHVÀRZLQ Pascal’s law 80 Path line 398 S theorem 339 Piezometer 86
3LH]RPHWULFVXUIDFH Pipe 809 3LSHQHWZRUNLQJ Pipeline 809 Pitot static 495 Pitot tube 493 3ODVWLFÀXLGV Pneumatics 6 Poise 24 Potential energy 486 Potential function 420 Potential line 400 Prandtl’s concept 709 3UDQGWO¶VYHORFLW\GLVWULEXWLRQ 3UHVVXUHGLDJUDP 3UHVVXUHGUDJ Pressure energy 487 Pressure force 364 Pressure measuring devices 85 Pressure on LQFOLQHGVXUIDFH SODQHVXUIDFH Pressure tube 86 Primary quantities 334 Prototype 359 3VHXGRSODVWLFÀXLGV
R Radial acceleration 309 5DGLDOÀRZ Raised weirs 548 5DWHRIÀRZ 5HDOÀXLGV 5HFWLOLQHDUÀRZ Repeating variables 338 5H\QROGVH[SHULPHQW Reynolds model law 366 Reynolds number 336, 342, 638 Reynolds transport theorem 488 5RWDU\PRWLRQ Rotating cylinder method 685
Index
Rotation FRQGLWLRQVIRU VWUHDPIXQFWLRQIRU YRUWLFLW\RI Rotational acceleration 302 5RWDWLRQDOÀRZ 5RWRPHWHU 5RXJKERXQGDU\ Running free Borda mouthpiece 507 Running full Borda mouthpiece 507
Streamline 398 6WUHDPOLQHERG\ Submerged body, equilibrium for 238 Submerged weir 529 Surface tension 46 cause of 47 Surface tension force 365 Surge tank 852 Syphon 844 6\SKRQVSLOOZD\
S
T
Secondary dimensions 334 Sensitive manometers 88 Shape factor 754 6KHDUGUDJ 6KHDUWKLFNHQLQJÀXLGV Short tube 505 Short tube mouthpiece 506 Similarity laws 366 6LPSOHPDQRPHWHU 6LQNÀRZ 6NLQDQGSUHVVXUHGUDJ 6PRRWKERXQGDU\ Solid 5 6RXUFHÀRZ 6SLOORXW 6SLOOZD\ Sprinkler, torque acting on 603 Stability condition for equilibrium of 240 ÀRDWLQJERGLHV rolling of 244 Stable equilibrium 238 Static body 300 6WHDG\ÀRZ 6WRNHV¶ODZ 6WUHDPIXQFWLRQ PDWKHPDWLFDOFRQFHSWRI SURSHUWLHVRI Stream tube 399
953
7KL[RWURSKLFSODVWLF 7KUHHGLPHQVLRQDOÀRZ Total energy line 822 7RWDOSUHVVXUH 7UDQVODWLRQDODFFHOHUDWLRQ Trapezoidal weir 528 Triangular notch 526 7XUEXOHQFHVKHDUVWUHVV5H\QROGVH[SUHVVLRQIRU Turbulent boundary, parameters of 764 7XUEXOHQWÀRZ Two piezometer tubes method 89 7ZRGLPHQVLRQDOÀRZ
U 8QLIRUPÀRZ Unstable equilibrium 239 8QVWHDG\ÀRZ 8WXEHGL൵HUHQWLDOPDQRPHWHU U-tube manometer 87
V 9DQH Vapour pressure 44 9HORFLW\SRWHQWLDO Velocity vector 425 Vena contracta 497 9HQWXULPHWHU Vertical acceleration 305 Vertical single column micrometer 89
954
Index
Viscosity determination of 57 H൵HFWVRIWHPSHUDWXUHDQGSUHVVXUHRQ measurement of 682 9LVFRXVÀRZWKHRU\ Viscous force 364 Von Karman momentum equation 757 9RUWH[ÀRZ 9RUWH[PRWLRQ Vortices, formation of 703
W Water hammer 852 Weber’s model law 370 Weber’s number 336, 343 Weir 520 applications of 548 Wind tunnel testing 359
Fundamentals of Fluid Mechanics
Fundamentals of Fundamentals of
G.S. Sawhney has served as Professor and Head, Department of Mechanical Engineering, GNIT Greater Noida. Earlier, he was at Lord Krishna College of Engineering, Ghaziabad in the same capacity. Prior to joining teaching, he had served for 28 years in the Corps of Engineers and for 10 years in industry. ? Biomedical Electronics and Instrumentation ? Fluid Machinery Made Easy ? Fundamentals of Computer Aided Manufacturing ? Fundamentals of Biomedical Engineering Made Easy ? Heat and Mass Transfer ? Manufacturing Science (Volume-I, II) ? Materials Science and Engineering ? Mechanical Experiments and Workshop Practice ? Project Management Made Easy
Third Edition
Fluid Mechanics
Written for the second-year engineering students of undergraduate level, this well-set-up textbook explains the fundamentals of Fluid Mechanics. Written in the question-answer form, the book is precise and easy to understand. The book presents an exhaustive coverage of the theory, definitions, formulae and examples which are well supported by diagrams (wherever necessary) and problems in order to make the underlying principles more comprehensive. In the present third edition, the book has been thoroughly revised and enlarged. Modification to every chapter has been carried out on the basis of the suggestions received and new developments in this area. Additional typical problems based on the examination papers of various technical universities have been included with solutions for easy understanding by the students. Objective questions of competitive examinations of GATE, IES and IAS have also been included with solutions and explanations at the end of each chapter.
TM
Fluid Mechanics Third Edition
G.S. Sawhney
G.S. Sawhney
978-93-90455-20-1
Distributed by: 9 789390 455201
TM