Functions of One Complex Variable I [2 ed.] 0387903283, 9780387903286

Presents a basic introduction to complex analysis.

299 78 5MB

English Pages 334 Year 1995

Report DMCA / Copyright

DOWNLOAD DJVU FILE

Table of contents :
PREFACE
PREFACE FOR THE SECOND EDITION
TABLE OF CONTENTS
I The Complex Number System
1. The real numbers
2. The field of complex numbers
3. The complex plane
4. Polar representation and roots of complex numbers
5. Lines and half planes in the complex plane
6. The extended plane and its spherical representation
II Metric Spaces and the Topology of C
1. Definition and examples of metric spaces
2. Connectedness
3. Sequences and completeness
4. Compactness
5. Continuity
6. Uniform convergence
III Elementary Properties and Examples of Analytic Functions
1. Power series
2. Analytic functions
3. Analytic functions as mappings, Mobius transformations
IV Complex Integration
1. Riemann-Stieltjes integrals
2. Power series representation of analytic functions
3. Zeros of an analytic function
4. The index of a closed curve
5. Cauchy's Theorem and Integral Formula
6. The homotopic version of Cauchy's Theorem and simple connectivity
7. Counting zeros; the Open Mapping Theorem
8. Goursat's Theorem
V Singularities
1. Classification of singularities
2. Residues
3. The Argument Principle
VI The Maximum Modulus Theorem
1. The Maximum Principle
2. Schwarz's Lemma
3. Convex functions and Hadamard's Three Circles Theorem
4. Phragmen-Lindelof Theorem
VII Compactness and Convergence in the Space of Analytic Functions
1. The space of continuous functions C(G,Ω)
2. Spaces of analytic functions
3. Spaces of meromorphic functions
4. The Riemann Mapping Theorem
5. Weierstrass Factorization Theorem
6. Factorization of the sine function
7. The gamma function
8. The Riemann zeta function
VIII Runge's Theorem
1. Runge's Theorem
2. Simple connectedness
3. Mittag-Leffler's Theorem
IX Analytic Continuation and Riemann Surfaces
1. Schwarz Reflection Principle
2. Analytic Continuation Along A Path
3. Mondromy Theorem
4. Topological Spaces and Neighborhood Systems
5: The Sheaf of Germs of Analytic Functions on an Open Set
6. Analytic Manifolds
7. Covering spaces
X Harmonic Functions
1. Basic Properties of harmonic functions
2. Harmonic functions on a disk
3. Subharmonic and superharmonic functions
4. The Dirichlet Problem
5. Green's Functions
XI Entire Functions
1. Jensen's Formula
2. The genus and order of an entire function
3. Hadamard Factorization Theorem
XII The Range of an Analytic Function
1. Bloch's Theorem
2. The Little Picard Theorem
3. Schottky's Theorem
4. The Great Picard Theorem
Appendix A: Calculus for Complex Valued Functions on an Interval
Appendix B: Suggestions for Further Study and Bibliographical Notes
References
Index
List of Symbols

Functions of One Complex Variable I [2 ed.]
 0387903283, 9780387903286

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up