126 4 21MB
English Pages 272 [267] Year 2016
A N N A L S OF M A T H E M A T IC S STUDIES Number 21
ANNALS O F M ATHEM ATICS STUDIES E dited by Marston Morse and Emil Artin 7. F inite Dimensional Vector Spaces, by
Paul
R.
H a lm o s
11.
Introduction to N onlinear Mechanics, by N.
14.
Lectures on Differential Equations, by
15.
Topological M ethods in the Theory of Functions of a Complex Variable,
by
K r y lo ff
and N.
B o g o liu b o ff
S o lo m o n L e f s c h e t z
M a r sto n M o rse
16. Transcendental Numbers, by
C a r l L u d w ig S ie g e l
17.
Probleme General de la Stabilite du Mouvement, by M. A.
18.
A Unified Theory of Special Functions, by C. A.
19.
Fourier Transforms, by S.
20.
Contributions to the Theory of Nonlinear Oscillations, S. L e f s c h e t z
21.
Functional Operators, Vol. I, by
22.
Functional Operators, Vol. II, by
23.
Existence
Theorem s in
B ochner
Partial
and
L ia p o u n o ff
T r u e s d e ll
K. C h a n d r a se k h a r a n
John von
edited
by
N eum ann
John von N eu m ann
Differential Equations,
by D o r o t h y
B e r n s t e in 24.
Contributions to the Theory of Games, edited by A. W .
25. Contributions to Fourier Analysis, by S. M. M o r s e , W . T r a n s u e , and A. Z y g m u n d
B ochner,
T ucker
A. P.
C a ld e r o n ,
FUNCTIONAL OPERATORS BY J O H N V O N
NEUMANN
Volume I: Measures and Integrals
PRINCETON PRINCETON
U N I V E R S I T Y PRESS
1950
C O P Y R I G H T , 1 9 5 0 , B Y P R I N C E T O N U N I V E R S I T Y PR ESS LONDON!
GEOFFREY
CUMBERLEGE,
O X F O R D U N I V E R S I T Y PRESS
P R I N T E D IN T H E U N I T E D S T A T E S O F A M E R I C A
F 0 REffORD
The lectures on "Operator Theory", of which the present volume constitutes the first part, were given in the academic years 1933-34 and 1934-35, at the Institute for Advanced Study,
The notes were prepared in these years
by Dr, Robert S. Martin and Dr. Charles C. Torrance, respectively.
They
were multigraphed and distributed by the Institute for Advanced Study short ly thereafter, but the original edition has been completely exhausted for several years.
The interest in these lecture notes appears to have been
continuing, and therefore a new edition is now being brought out0
The pre
sent volume comprises Chapters I - XI, dealing with preliminaries, namely, with the theory of Measures and Integrals.
The second volume, on Operator
Theory proper, will be'published subsequently.
The present edition is
identical with the original one, except that typographical errors have been corrected and some notations and references have been elaborated.
I would
like to express my warmest thanks to Dr. H. H. Goldstine, for his advice on this edition, and also for having most obligingly undertaken the exacting task of proof-reading the typescript.
JOHN VON NEUMANN
The Institute for Advanced Study Princeton, New Jersey November 1949.
FUtJCTIOHAL OPERATORS
CHAPTER I .
POINT SET THEORY The p o i n t s P o f t h e sp a c e u n d e r c o n s i d e r a t i o n a r e o r d e r e d s e t s o f n r e a l num bers (x_ , • . . 3x ) : x . i s c a l l e d t h e i 1 n i
th
c o o rd in a te of th e p o in t .
r
D e f i n i t i o n 1 . 1 : The d i s t a n c e b e tw e e n tw o p o i n t s ( x 1 , . . . ,x ) a n d -n r ^ - — 1 n — ( y if - .y .)
is
i/
£ i
N
.
D e f i n i t i o n 1 . 2 : An open i n t e r v a l I i s d e te r m in e d b y tw o s e t s o f num b e rs X
an d Yv ( v =s l , . . . , n ;
( x ^ ,...,x ^ )
Xy < Y^ f o r e a c h y ) an d c o n s i s t s o f a l l p o i n t s
s a t i s f y i n g t h e c o n d i t i o n Xy
• • • ^
a n y c o n d e n s a tio n p o i n t o f t h e c lo s e d i n t e r v a l I :
X ^ = x_y = Yv ( ”V = l , . . . , n ) , € Xv an d Y^ t h e l a r g e s t i n t e g e r < Yv . number o f i n t e g e r s i n t h e i n t e r v a l Xv = x v = Yv i s (Yv - Xv + 1 ) .
The
H ence
th e num ber o f i n t e g r a l p o i n t s i n I i s n
(2)
H = TT 1
But x v < x Y x v + 1,
(Y - Xy + 1).
V=1
Tv - 1 5 Yv < Yv , Yv- x v - 1 5 Yv -
+ 1 < Yv - x v + 1.
H ence, b y (2 ) n
n
1) .
(3) TT (Yv- XV“ 1) = NT< TT (Y - xv+ V =1
V=1
S im ila rly ,
(4) By ( 1 ) ,
TT (4 i} - xv ')- 1) 5 11 (i) < TT
V=1
+ —
+
p -* (S g ),
K even
pi*(Sg~
K odd
“ P-*(sr+2^ “ ^*0T) < °o«
Hence t h e tw o s e r i e s w i t h p o s i t i v e te r m s
B ut
’ 0r
III.
MEASURE
17
p * (S 3- S1 ) + Ji*(S5- S g ) + . . .
,
F * ( S 2 ) + p*(s4- S2) + . . . , t o g e t h e r w i t h t h e i r sum
(s)
p K i y r - ly s r) + jll* ( m3 r - n y O + . . *
,
8j*e c o n v e r g e n t , s i n c e , b y ( 2 ) , t h e p a r t i a l sums o f e a c h o f t h e s e r i e s a r e By t a k i n g K s u f f i c i e n t l y l a r g e t h e re m a in d e r R_ 1 o f ( 3 ) c a n be — K—i
bounded.
made l e s s t h a n € , w h ere
i s t h e s e r i e s ( 3 ) w i t h t h e f i r s t i te rm s o m itte d *
B ut
0S - M p = ( l l ^ p - M p ) ♦ ( i p p - M ^ p ) + . . . . By T heorem 2 * 6 ,
(4 )
- M p) =
S in c e jtfcl =
- M p) +
+ [jzfo - Mg(jzfR)]* ^
- l ^ +p )
=
< € *
f o l lo w s b y T heorem 2*6 t h a t
H* ( $ 0 5 n+tM p/Zfe)] +
= ju^l/LgR) +
M p /fa )] =
- MgJ)
°»
5y Theo-
rem 2*7,
(l)
+ ( rr - jzfo) ] = ^ O y i )
Since H D [M^H + (H - JZ&0], H
+ ja*(if - jzfc).
follows by (l) that
ju*(ll) = p *(11^11) + ju*(h - jZih)•
The theorem follows from the preceding lemma when K. becomes infinite. THEOREM 3.3 i Proof;
If M is measurable, then -M is also.
M is measurable if ju*(i:i) = p*(MU) + p*[(-M.)H] for every H.
But this relation remains unchanged if M is replaced by -M, since ~(~M) = M. THEOREM 3.4: Any closed set is measurably. Proof:
This follows directly from Theorems 3.2, 1.2, and 3.3.
THEOREM 5.5: If Pr oof ;
S inc e
(1)
are measurable, then
+ M 0 is also.
is mo s.sur ab 1e ,
|U*(K) -
where N is any set.
(2.)
and
Since
^ ( M p : ) +^*[(-1^)1)],
is measurable,
^[(-M-gU] = fa*[M2 (- M ^ N ] + >i*[ (-M2 )(-M1 )N],
But
(S)
(-I/p (-Mg) = -(M1+ Mg).
By (1), (2), and (5),
(4)
Again, since
p* (K ) =
is measurable,
+ fi*[M g(-M pN] + p.*[ I - ( 1 ^ + Mg) } N] .
III.
(5 )
H (1 V
MEASURE
=
V
19
H] + F * [ ( - V ( M1 + V
K] =
= ^ ( l ^ N ) + p.*[ ( -M1 )MgN ] .
The th e o r e m f o l lo w s b y s u b s t i t u t i o n o f ( 5 ) i n ( 4 ) . THEOREM 3 .6 g I f P ro o f: a b le .
an d Mg a r e m e a s u ra b l e , t h e n M^Mg i s a l s o .
By Theorem s 3 .3 an d 3 . 5 , “M^,
B ut -M j+ (-M g) i s -(M ^M g).
“^ i + ( “^ g ) a r e m e a s u r
Hence M^Mg i s m e a s u r a b le .
Theorem s 3 .5 a n d 3 .6 may be e x te n d e d im m e d ia te ly t o a n y f i n i t e num b e r o f m e a s u ra b le s e t s . THEOREM 3 . 7 : I f P ro o f: Lemma 1 :
an d Mg a r e m e a s u r a b le , t h e n
M-^Mg i s s im p ly M ^(-M g).
a Mg c
If
p o i n t s e t s w i t h sum M, th e n
1 P ro o f:
M^Mg in a l s o .
...
i s a n i n c r e a s i n g se q u e n c e _of m e a s u ra b le
li m p * (M y i) = ju*(MH), w h e re H i s a n y s e t . K-^oo
I f p*(MgN) i s i n f i n i t e f o r an y k , t h e n i t i s i n f i n i t e f o r a l l
l a r g e r k an d t h e lemma i s t r i v i a l .
H ence i t i s n e c e s s a r y t o p ro v e o n ly t h e
c a s e w h ere p*(M^!T) i s f i n i t e f o r a l l K , MIT i s t h e sum o f a l l th e s e t s M^N, i t
S in c e
c MgN c
• • • c MIT a n d s i n c e
is p o s s ib le to w rite
m = FLjH + (MgIT - M^IT) + (MgN - MgIT) + . . .
.
By T heorem 2 . 6 ,
(1) Sdnce
|U*(MH) 5
- J^N) + . . . .
^ i s m e a s u r a b le ,
= ^ ( u^
n)
+ |i* ( iy r -
20
III.
MEASURE
so t h a t
(2.)
p * ( Mg.1T) - p ^ M ^ H ) = p*(MgN - M ^ N ) ,
p ^ M ^ H ) b e in g f i n i t e .
By ( 2 ) t h e sum o f K te r m s o f ( l ) i s p ^M ^H ) « p*(MM). s e r i e s ( 1 ) i s t h e l i m i t o f t h e sum o f K te r m s , i . e . , ~ B u t, b y ( l ) , S = p*(M N). C o ro lla ry ;
Hence S =
The sum S o f t h e e n t i r e S =
li m p*(M_JT) = p*(M \f). K -* qo
li m p*(M^H) = p*(M N). K-xoo
I f i n Lemma 1 t h e s e t N be t a k e n a s M, t h e n lim p*(M _) -
« p * (M ). Lemma 2 : I f
3 Mg D
s e t s w i t h p r o d u c t M, t h e n
.
-
...
i s a d e c r e a s in g se q u e n c e o f m e a s u ra b le p o i n t
lim p*(M -N) = p*(M H), w h e re H i s a n y s e t w i t h f i K -
n i t e o u t e r m e a s u re . P ro o f:
(1 )
S in c e
I t I s e v i d e n t t h a t -M^ c
lim K- sKX)
- M gC . . .
• By Lemma 1 ,
= ju*[ (-M )N ].
i s m e a s u r a b le ,
]i* (E ) = p . * ( M + |li* [(-1 ^.)W ], so t h a t p* (H ) =
(&)
a
lim p*(M_H) + lim p * [(-M )H] K -x » K-xoo lim K-iw»
=
by (1 )
+ ju*[(-M )H ] -
+ p * [( -M )R ],
s in c e
3M U .
Hence M i s m e a s u ra b le an d
(3 )
p * (N )
“
ju*(MW)
+
p .* [
(-M )N ].
The le m m a .fo llo w s b y c o m p a riso n o f ( 2 ) a n d ( 3 ) , a n d t h e f a c t t h a t p * (N ) i s f i n i t e .
III.
MEASURE
21
C o r o l l a r y : I f i n Lemma 2 some p*(M ^) i s f i n i t e , t h e n N c a n b e t a k e n as th i s
---------
and
lim p*(M ^) = m (M ).
The f o l lo w in g th e o r e m was p ro v e d i n c i d e n t a l l y i n t h e p r o o f o f Lemma 2 : THEOREM 5 . 8 ;
• • * . ! £ . & d e c r e a s in g se q u e n c e o f m e a s u ra b le
p o in t s e t s w i t h p r o d u c t M, t h e n M i s m e a s u r a b l e .
!EL i n c r e a s i n g se q u e n c e o f m e a s u ra b le
THEOREM 3 . 9 : I f l l ^ c M ^c
p o i n t s e t s w i t h sum M, t h e n M ^is_ m e a s u r a b le . P ro o fs
S in c e
i s m e a s u r a b le ,
« jjL*(MgN) + ja*[(~M g.)N ].
The
th e o re m f o l lo w s im m e d ia te ly fro m t h e p r e c e d i n g lemmas w hen jK becom es i n f i n i t e . THEOREM 5 . 1 0 s I f m e a s u ra b le s e t s , t h e n P ro o f:
Ng, • • • i £ . f i n i t e £ £ i n f i n i t e
se q u e n c e o f
t h e sum o f th o s e s e t s i s m e a s u r a b le .
Form t h e p a r t i a l sums 3^= M^+ M^+ . . .
+ M^..
Then S ^ c S ^C S ^ r . . . ,
t h e sum o f t h e S ^ i s t h e sum o f t h e M^, a n d T heorem 3 .9 a p p l i e s t o t h e S^.. THEOREM 5 . 1 1 : I f M^, M g,. . .
i s any f i n i t e
or i n f i n i t e
se q u e n c e o f
m e a s u ra b le s e t s , t h e n t h e p r o d u c t o f t h e s e s e t s i s m e a s u r a b l e . P ro o f;
T h is f o l lo w s fro m T heorem 3 .8 when a p p l i e d t o t h e p a r t i a l
p r o d u c t s o f t h e M^.. Theorem s 3 . 2 ,
3 . 4 , 3 .1 0 an d 3 .1 1 show t h a t a n y B o re l s e t i s m e a s u r a b le .
THEOREM 3 . 1 2 :
If
P ro o f:
jji*(M)
= 0 , t h e n M dn m e a s u ra b le w i t h m e a su re z e r o .
F o r a n y s e t H, p*(MH) = jjl*(M) = 0 a n d p * [(-M )H ] = . p * (N ), h e n c e
jn*(MH) + ju*[(-M )N ] = jx* (H ), a n d t h i s i s a l l t h a t r e q u i r e s p r o o f . THEOREM 3 . 1 3 : I f M o r N is_ m e a s u ra b le an d p.* (M l) _is f i n i t e , t h e n p*(M + N) = ju*(M) + ji*(N ) - ji*(MN). P ro o f:
S uppose M m e a s u r a b le .
Then j i *(N ) - ji*(MN) +
p*(MH) i s f i n i t e t h i s c a n b e w r i t t e n
(1 )
ji*(JST — MB) = >i*(N) - jz * ( M ) .
MR).
S in c e
III.
22
MEASURE
A g ain sin e© M i s m e a s u r a b le ,
( 2.)
}i*(M + N) = p*[(M + N) M] + p*[(M + U) -
(M + N)M] «
= p*(M ) + p*(N - MN).
S u b s titu tio n of
( 1 ) i n ( 2 ) g iv e s t h e r e s u l t s t a t e d .
THEOREM 3 . 1 4 : I f M^, Mg, • • • in _a f i n i t e o r i n f i n i t e se q u e n c e o f m e a s u ra b le p o i n t s e t s su c h t h a t no two o f th e m hav e a common p o i n t , th e n Mg+ . . . ) P ro o f: i f th e
=
+
+ ...
.
T h is i s a g e n e r a l i z a t i o n o f T heorem
se q u e n c e i s f i n i t e .
3 .1 a n d o b v io u s ly h o ld s
I f t h e se q u e n c e i s i n f i n i t e i t i s n e c e s s a r y
t o n o te t h a t b o th p*(M^+ M^+ . . . )
and
+ p*(M g) + . . .
m e r e ly
a re re p re s e n ta b le
THEOREM 3 . 1 5 : The o u te r m e a su re p * (U ) o f an y s e t M may be d e f i n e d a s t h e g r e a t e s t lo w e r b o u n d o f t h e m e a s u re s ju(N) o f t h o s e e le m e n ts I o f a c e r t a i n s e t S o f m e a s u ra b le s e t s w h ic h c o n t a i n M.
H e re in S may be a n y s e t o f
m e a s u ra b le s e t s , p r o v id e d o n ly t h a t i t i n c l u d e s a l l op en s e t s ;
in p a r t i c u l a r ,
S may be t h e s e t o f B o re l s e t s . P ro o f:
S in c e S c o n t a i n s t h e s e t o f o pen s e t s
c o n t a i n i n g M, i t c o n -
t a i n s t h e sums o f se q u e n c e s o f open i n t e r v a l s c o v e r in g M. m e a su re i s n o t i n c r e a s e d . one o f t h e s e t s N i s i t s
Hence t h e o u te r
N e i t h e r i s i t d e c r e a s e d , f o r t h e m e a s u re o f a n y o u t e r m e a s u re , an d i t s
o u t e r m e a su re may be a p p r o x i
m ated t o an y d e s i r e d a c c u r a c y b y t h e sum o f t h e v o lu m es o f a se q u e n c e o f o pen i n t e r v a l s w h ic h c o v e r N. THEOREM 3 .1 .6 : s e t o f ty p e P ro o f:
Any m e a s u ra b le s e t M c a n be r e p r e s e n t e d a s a B o re l
m inus a s e t o f m e a su re z e ro * C o n s id e r t h e c a s e w h ere M i s a b o u n d ed m e a s u ra b le s e t .
T h ere
III.
e x i s t s a n open s e t
MEASURE
23
3 M s u c h t h a t p . ( ^ ) < p*(M ) + ~ - }i(M) + i
.
L et
oo m - t t j&.m i= l 1
M i s a B o re l s e t o f ty p e /zf
ju(M) = p (M ). But M =
an d i s m e a s u r a b l e .
B ut M c: jzf an d p.(M) 5
M + (M- M ).
< ja(M) + ~ .
M 3 M.
T h e r e f o r e ja(M) = jlx(M )•
By T heorem 3 . 1 , jji(M) = p(M ) + ji(M ~ M ).
p.(M - M) b OoThe th e o r e m f o l lo w s fro m t h e v id in g t h a t M i s bounded.
Hence
Hence
f a c t t h a t M = M ~ (M - M ), p r o
The c a s e w h ere M i s n o t b o u n d ed w i l l b e t a k e n up
im m e d ia te ly a f t e r t h e p r o o f o f THEOREM 3 . 1 7 : Any m e a s u ra b le s e t M c a n be r e p r e s e n t e d a s t h e sum o f a B o re l s e t o f ty p e P ro o f:
an d a s e t o f m e a su re z e r o .
L e t M be a
b o u n d ed m e a s u ra b le s e t a n d l e t I b e a f i n i t e
i n t e r v a l c o n t a i n i n g M.I~M i s m e a s u ra b le a n d , b y bound ed
s e t s ) , I-M «
m e asu re
z e r o . Hence M = I - ( M - Z )
T heorem 3 .1 6 (p r o v e d f o r
M-Z, w here M i s a B o re l s e t o f ty p e
-M i s a B o re l s e t o f ty p e
c lo s e d
= ( l ) ( - M ) + IZ*
an d Z a s e t o f
S in c e I i s c l o s e d
( l ) ( - M ) i s a l s o a B o re l s e t o f ty p e C *
and S in c e
IZ i s a s e t o f m e a su re z e r o , t h e th e o re m i s p ro v e d f o r t h e c a s e w h ere M i s bounded.
I f M i s n o t b o u n d ed , l e t 1^ be t h e c lo s e d i n t e r v a l -N 5 x v = N.
M = MI^+
+ •••
m easu re.b le so t h a t , b y i s a B o re l s e t o f t y p e M = (B^+ C
cr
and (Z n+ Zn+ . . . ) ' I B
E ach o f t h e s e summands i s b o u n d ed a n d
th e c a s e j u s t p ro v e d , M( I - l rr _ ) = B„+ Z _ , w h e re B__ Jl K -l K. ii K an d Z i s a s e t o f m e a su re z e ro * ^ 2+ • • • ) •
o ..) +
•
Hence
B ut (B^+ Bg+ • • • ) i s a B o re l s e t o f ty p e
i s a s e t o f m ea su re z e ro *
Thus t h e th e o r e m h o ld s f o r
an y m e a s u ra b le s e t M. I t re m a in s t o c o m p le te t h e p r o o f o f Theorem 3 .1 6 . th e o r e m i s n o t b o u n d e d .
By T heorem 3 .1 7 , i t
Then M = ( - C ^ ( - Z ) = ( mm^ (T) "* (-C )Z i s a s e t o f m e a su re z e r o .
S u p p o se M o f t h a t
i s p o s s i b l e t o w r i t e -M = a B o re l s e t o f ty p e
Z. and
IV .
24
in n er
MEASURE
CHAPTER IV . INNER MEASURE D e f i n i t i o n 4 . 1 ; The in n e r m e a s u re , yi (M ), of_ a_ p o i n t s e t M is_ t h 8_ l e a s t u p p e r b ound o f t h e m e a s u re s o f a l l m e a s u ra b le s e t s N c o n ta i n e d i n M. THEOREM 4 . 1 :
F o r an y s e t M, p +(M) = p * (M ), a n d i f M i £ m e a s u r a b le ,
p*(M ) « jx*(M) = r (M )» P ro o f:
The f i r s t p a r t o f t h e th e o r e m i s o b v io u s a n d t h e se c o n d p a r t
f o l lo w s fro m t h e f a c t t h a t i n D e f i n i t i o n 4 .1 one o f t h e s e t s N may be M i t s e l f . THEOREM 4 . 2 : ^ ( M ) in t h e l e a s t u p p e r b o u n d o f t h e m e a s u re s o f a l l t h e c lo s e d s e t s c o n ta i n e d i n M. P ro o f :
T h e re e x i s t s a m e a s u ra b le s e t N c o n ta i n e d i n M s u c h t h a t
M) - t .
ju(N) >
I t i s shown i n th e p r o o f o f Theorem 3 .1 7 t h a t t h e r e i s a
c lo s e d s e t N 1 c o n ta in e d i n N su c h t h a t bound o f ^ ( N 1 ) i s n o t l e s s t h a n ^ ( M ) .
) > ji(N ) - £ •
Hence t h e l e a s t u p p e r
The th e o re m f o l lo w s fro m D e f i n i t i o n 4 . 1 .
In T heorem 4 .2 t h e s e t o f a l l c lo s e d s e t s may be r e p l a c e d by a n y s e t S o f m e a s u ra b le s e t s , p r o v i d in g S in c l u d e s t h e s e t o f a l l c l o s e d s e t s 0
In
p a r t i c u l a r , S m ig h t be t h e s e t o f B o re l s e t s . THEOREM 4 . 3 : I f M is_ an y p o i n t
s e t f o r w h ic h p*(M ) i s f i n i t e
and i f
p.^(M) = p * (M ), t h e n M i s m e a s u r a b le . P ro o f:
T h e re e x i s t an open s e t jzf 3 M an d a c lo s e d s e t C C M s u c h
1
1
oo
that p(/zfK) < p*(M) + - and ^(C^) > p+(M) - j.
If ^ = TT
oo
and if Cff= 5 I Cg,
K=1 t h e n jzf 3 M 3 C • TT
O'
3 C^.,
V-itf-p)
H ence u ( ^ _ ) = p*(M ) a n d u .(M ) = u(C ) . Tt
< P*UO + ^ an(i
“ P * (M) 821(1 P ( C
P * (Iv0 ~
0"
K—1 S in c e $
TT
C
f!
K
and
S in c e k may becom e i n f i n i t e ,
B ut P * (M) = P * W , so t h a t )x(f6r ) =
A l l t h e s e num bers a r e f i n i t e b e c a u s e p*(M ) i s f i n i t e .
S in c e
IV .
t h e n , b y T heorem 3 , 1 , p ( ^ T ) = p ( ^ )
IM ER MEASURE
+ F-O^r" cff)s so t h a t
cff) = 0 .
(M - CCT) c ( j ^ - C ^J, p * ( H - C^) 5 m e a s u ra b le w i t h m e a su re z e r o .
25
~ °*
A g a in ,
3y Theorem 3 . 1 2 , (M - C^) i s
S in c e M = C + (M - C ^ ), M i s t h e sum o f tw o
m e a s u ra b le s e t s an d h e n c e i s m e a s u r a b le . THEOREM 4 . 4 ; P ro o f:
I f MK = 0 , p ^ M ) + p ^ N ) 5 ^ ( m + J l).
I f P a n d Q a r e a n y tw o m e a s u ra b le s e t s c o n ta i n e d i n M a n d N
r e s p e c t i v e l y , t h e n , b y T heorem 3 . 1 , p.(P) + ju(Q) = ji (P + Q) « /^ (M + N ).
The
th e o r e m f o l lo w s fr o m t h e f a c t t h a t /^ ( M ) a n d ^ ( N ) a r e t h e l e a s t u p p e r b o u n d s o f p ( p ) an d ju (Q ). THEOREM 4 . 5 : I f M^, M^,, . . . h av e a common p o i n t , t h e n
is_ a n y se q u e n c e o f s e t s s u c h t h a t no tw o
M^+ M^+ • • • ) =
+ ...
.
The p r o o f i s o m i tt e d . P ro p e r tie s I ,
I I , an d IV o f o u t e r m e asu re o b v io u s ly h o ld f o r in n e r
m e a su re an d P r o p e r ty I I I i s t h e a n a lo g u e o f T heorem 4 . 5 .
(N o te , h o w e v e r, t h a t
t h e s e p r o p e r t i e s c o u ld n o t b e u s e d a s a s t a r t i n g p o i n t f o r t h e t h e o r y o f mea s u r e i n w h ic h one b e g a n w i t h
i n s t e a d o f p * m The 5 o f
i s le s s a p p ro p ri
a t e f o r s u c h a p u rp o s e th a n t h e = o f ji* . THEOREM 4 . 6 ; I f MtJ = 0 , t h e n ( I ) p +(M + U) = p + (M) + p * (N ) = p*(M + N ), a n d ( 2 ) p ^ M + H) = p * (K ) + p ^ K ) = p*(M + II ). P ro o f:
I t i s s u f f i c i e n t t o p ro v e p a r t ( l ) .
s e t c o n ta i n e d i n M.
L e t P be a n y m e a s u ra b le
By Theorem 3 . 1 , ^.(P ) + ju*(N) = jx*(P + N) = p*(M + N ).
S in c e p ^ M ) i s t h e l e a s t u p p e r bou n d o f p ( P ) , ^ ( M ) + p * (N ) = yu*(M + N ). A g a in , l e t P be an y m e a s u ra b le s e t c o n ta i n e d i n M + N, l e t B be a n y m e a s u ra b le s e t c o n t a i n i n g N, a n d l e t A = P - PB. T heorem 3 . 7 , A i s m e a s u r a b le .
H ence p (A ) = p ^ (M ).
S in c e AB = 0 , A C M.
By
S in c e P C (A + B ), t h e n ,
by T heorem 3 . 1 , p ( P ) 5 p (A + B) = p (A ) + p ( E ) 5 p*(M ) + p ( B ) .
S in c e p ^ M + II)
26
IV .
IBRER MEASURE
i s t h e l e a s t u p p e r bound o f p ( P ) an d p*(l'T) t h e g r e a t e s t lo w e r b o u n d o f p ( B ) , + N) = fi^ M ) + p * (U ). THEOREM 4 . 7 ; I f M i s a sejfc o f f i n i t e
o u t e r m easu re, a n d i f N _is an y s e t
c o n ta i n in g M a n d h a v in g a f i n i t e m e a s u re , t h e n p + (M) = p (H ) - ^i*(N - M ). P ro o f;
I f t h e s e t (M + II) o f T heorem 4 .6 i s m e a s u ra b le w i t h f i n i t e
m e a s u re , t h e n p ^ M ) + p * (ll) = p(M + h ) , w h e re MD = 0* p (M)
= p(M + 11) - p * ( l l ) .
S in c e pi*(ll) i s f i n i t e ,
M + 11 may be r e g a r d e d a s t h e s e t h o f t h e th e o re m *
D e f i n i t i o n 4 . 2 ; I f M _is a n y p o i n t s e t f o r w h ic h p*(M ) _is f i n i t e , yi*(M) - p.+(M) i s a m e asu re o f t h e n o n - m e a s u r a b i l i t y o f M an d i s
th e n
c a lle d th e non
m e a s u re , v ( M ) , o f M. I t f o l lo w s fro m T heorem 4 .1 t h a t V(M) = 0 an d fr o m T heorem 4 .3 t h a t , i f *v(M) = 0 , M i s m e a s u r a b le . THEOREM 4 . 8 : I f MN = 0 , t h e n (1 )
-v(M) + V(N) = -v(M + U ),
( 2 ) v(M + TIT) + v(M ) = v ( K) , and ( 3 ) v(M + N) + v ( t l) = P ro o f s
P a r t ( l ) f o l lo w s im m e d ia te ly fro m Theorem s 2 .6 a n d 4 . 4 .
T heorem 4 . 6 , p ^ M ) + p * (ll) = p*(M + N) a n d p*(M) + (2)
= F * (M + N ).
By P a rt
f o l lo w s fro m t h e s e r e l a t i o n s a n d p a r t ( 3 ) i s a n a lo g o u s t o p a r t ( 2 ) . The r e l a t i o n s i n T heorem 4*8 a r e a n a lo g o u s t o t h e t r i a n g u l a r la w o f
d is ta n c e s .
V.
INVARIANCE OF MEASURE UNDER TRANSFORMATIONS
CHAPTER
27
V.
INVARIANCE OF MEASURE UNDER.TRANSFORMATIONS O nly o n e - t o - o n e t r a n s f o r m a t i o n s w i t h a n i n v e r s e a r e c o n s i d e r e d h e re * D e f i n i t i o n , 5 # 1 : A t r a n s f o r m a t i o n i s c a l l e d m easur e - p r e s e r v i n g i f i t le a v e s o u t e r an d i n n e r m e a su re i n v a r i a n t a n d p r e s e r v e s m e a s u r a b i l i t y . I t i s o b v io u s t h a t m e a su re i t s e l f i s a l s o i n v a r i a n t u n d e r a m ea su re p r e s e r v i n g tr a n s f o r m a t io n * THEOREM 5 * 1 : I f a t r a n f o r m a t i o n T le a v e s o u t e r m e a su re i n v a r i a n t , t h e n T i s m e asu re p r e s e r v in g * P ro o f:
I f M i s a m e a s u ra b le s e t an d N an a r b i t r a r y s e t , th e n
p* (N ) = p*(MN) + p*(N - MN)# o f N, t h e n ju*(N f ) = u n d e r T#
I f Mf i s t h e t r a n s f o r m o f M u n d e r T an d N! t h a t
) + ju*(N ?- M*Nf ) s i n c e o u t e r m e a su re i s i n v a r i a n t
B ut NT may b e r e g a r d e d a s a r b i t r a r y .
]u(M) = p(M ! ) .
H ence M1 i s m e a s u ra b le a n d
I t f o l lo w s fro m D e f i n i t i o n 4*1 t h a t i n n e r m e a su re i s a l s o i n
v a r i a n t u n d e r T* I t is a ls o *
o b v io u s t h a t i f T i s m e a su re p r e s e r v i n g , t h e i n v e r s e o f T i s
L ik e w is e t h e p r o d u c t o f tw o m e a su re p r e s e r v i n g t r a n s f o r m a t i o n s i s mea
su re p re s e rv in g . THEOREM 5 * 2 : I f T i s a t r a n s f o r m a t i o n s u c h t h a t p ( l ) = p * ( l ! ) a n d p . ( j T) = p * ( J ) j w h ere I i s an y i n t e r v a l w i t h t r a n s f o r m I 1 a n d J 1 a n y i n t e r v a l w i t h i n v e r s e - t r a n s f o r m J , t h e n T i s m e a su re p r e s e r v in g * P ro o f: o pen i n t e r v a l s j
S u p p o se M t o b e an y p o i n t s e t .
T h e re e x i s t s a se q u e n c e o f
i ^ , * . , c o v e r in g M s u c h t h a t p ( l ^ ) + p ( l g ) + y u ( l3 ) + . . . = p * (M )+ £ *
Mf i s c o v e re d b y I£ + I£ + I£+ *•* an d ji*(M f ) = ] u * ( l|+ I £ + . * * ) = p * ( l £ ) + + ^ (Ig )
+ ••• " ^ (Iq ) +
+
+ •••
“ JU*(M) + 6 #
I t may b e shovm i n
28
V.
INVARIANCE OF MEASURE UNDER TRANSFORMATIONS
a s i m i l a r way t h a t ji* ( M) = p*(M T) + £ •
lie n e e ji*(M) =
)•
The th e o r e m
f o l lo w s fro m Theorem 5 * 1 . I t i s o b v io u s ly p o s s i b l e t o r e s t r i c t t h e i n t e r v a l s I an d J 1 o f T heorem 5*2 t o r a t i o n a l c u b e s w ith o u t l o s s o f g e n e r a l i t y * The re m a in d e r o f t h i s c h a p te r i s d e v o te d t o sh o w in g t h a t t h e g e n e r a l l i n e a r u n im o d u la r t r a n s f o r m a t i o n i s m e a su re p r e s e r v in g *
T h is w i l l be e f f e c t e d
by r e s o l v i n g s u c h a t r a n s f o r m a t i o n i n t o a p r o d u c t o f m e a s u re p r e s e r v i n g t r a n s f e r n a t i o n s o f t h e ty p e s o c c u r r in g i n t h e f o l l o w i n g
11
The tr a n s f o r m a t i o n s M
Lemma? I
X v
+
/ X .
I I
x
=
1
/ .=
1 ,
n ) ,
iy
1
x r
/
/ e x . ,
I I I
I V
( V =
b v
x i
=
/ X .
=
1
1
X .
x
.=
± X
. ,
X XV
=
X V
( v
a
+
1
c x
.,,
x ^
-
x v
( v
/
i )
y
a r e m e a s u re p r e s e r v in g * P ro o f ?
The p r o o f s o f p a r t s
I - I I I a re t r i v i a l .
IV , l e t I b e t h e i n t e r v a l X ^
0 f o r e v e r y K
s e ts
su ch t h a t
is a
p o i n t c o n ta in e d i n
an y i n f i n i t e
se q u e n c e S o f m easur a b l e
an d su c h t h a t y*
Mk ) < OO, i f
F
s u b s e t o f S , and i f N i s t h e s e t o f a l l
p o i n t s P , t h e n N is_ m e a s u ra b le an d ju(N) = G •
(T h is i s known a s t h e A r z e la -
-Y oung th e o r e m .) P ro o f:
L et
R
N_+ N R
R+i
_+ . . .
an d 3 .1 1 , Sg an d N a r e m e a s u r a b le .
•
oo Then N =* T T S~. _ _ R —J.
B ut
...
By t h e c o r o l l a r y o f Lemma 2 o f C h a p te r I I I , ^j.(N) =
R
By T heorem 3 .1 0
an d ^ ( S g ) =
® ^ •
lim |i(S ^ .) = t . K—x x)
THEOREM 6 . 2 : in g M,if_ Cg.(P) is_ (V = 1 , . , . , n )
I f M i s a m e a s u ra b le s e t , i f jzf i s a n o p en s e t c o n t a i n Sg sK a n i n f i n i t e se q u e n c e o f c u b e s Xv — g - < x ^ < Xv +
w i t h c e n t e r P : ( X ^ ,. . . ,X ^ ) su c h t h a t
i s a d e c r e a s in g s e q u en c e
w ith l i m i t z e r o , i f su c h ia se q u e n c e o f c u b e s i s a s s o c i a t e d w ith e a c h p o i n t P 6 M,
a n d i f w ith e a c h cube C _ (P ), P £ M, t h e r e i s a s s o c i a t e d a c lo s e d 1—
N g(P) c: C ^(P) su c h t h a t
- - ———-
------ — ------------------
R
p y p)]
— — ----------
set
------—
> = G > 0 f o r e v e ry k and P , t h e n t h e r e e x i s t s
> [ ck ( p )] a s e q u e n c e S : N^ ( P ^ ) , N^ ( P ^ ) ,
...
t h e s e t s o f S h av e a common p o i n t ,
o £ th e s e t s N ^(P ) su c h t h a t ( l ) no_ tw o o f ( 2 ) e a c h s e t o f S i s c o n ta i n e d i n p $ an d ( 3 )
cc h i= l
(q ) i
c o v e rs M e x c e p t f o r
s e t o f m e a s u re z e r o . (T h is i s known a s t h e
1
V i t a l i c o v e r in g th e o r e m . ) P ro o f: triv ia l. an d
I t may be assum ed t h a t ^i(M) > 0 , f o r o th e r w is e t h e th e o re m i s
Suppose t h a t M i s b o u n d e d .
L e t J2f* be a n op en s e t su c h t h a t M e j r f 'c j6
V I.
(1 )
COVERING THEOREMS
35
jiOrf*- M) = -=-=■ 4*3 F or each P 6 M th e r e i s a s m a lle s t su b
(S u c h a s e t ft' o b v io u s ly e x i s t s . )
s c r i p t K ,^v s u c h t h a t CTr (P ) c / ' . (P ) (P )
T “~ CL (P ) c o v e rs M. K(P )
By T heorem 1 .1 0 ,
a se q u e n c e T o f t h e c u b e s 0
(P ) c o v e rs M. S u p p o se T t o be s e l e c t e d so t h a t K( P ) no two cu b e s i n i t h av e t h e same c e n t e r . L e t T be o r d e r e d so t h a t t h e ed g e s of i t s
e le m e n ts fo rm a m o n o t o n ic a l ly d e c r e a s in g se q u e n c e a n d t h e n l e t t h e
c u b e s i n T b e re n u m b e re d G / - o \ ( P ^ ) * w h ere C r
o f CL
/
L et J
(P ^ ).
}
C / \ ( P ^ ^ ) b e d e n o te d b y H
M~mZI i s a d eHence t h e r e
o f p s u f f i c i e n t l y l a r g e so t h a t ji(M -M $Z , J < 6 , w h ere 6
e x i s t s a v a lu e
i s an a r b i t r a r y p o s i t i v e n u m b er.
- i < fl( M S ^ , ) S
Some o f t h e cu b e s C , , \ ( P ^ ) , K V
w e e d in g -o u t p r o c e s s . as fo llo w s :
.
00 j ] (M-mZT ) ~ 0, an d lim u (M -m F ) - 0. p=l P K-»oo r
c re a s in g seq u en ce,
ji(M )
is w ritte n in s te a d
k
’
Then
p [c ^ ( 1 ) ;p ( 1 ) )]
...,
+ ...
C , ,\( P ^ ^ ) r
f
i
+ p [ y f t t ) (p ( P p ) ] .
a re to be d is c a rd e d by a
1
The cu b es r e t a i n e d , c a l l e d t h e s u r v i v o r s , a r e d e te r m in e d
C
i s a s u r v iv o r and C ^ j ( P ^ )
i s a s u r v i v o r i f an d
o n ly i f i t h a s no p o i n t i n common w i t h a n y p r e c e d i n g s u r v i v o r . v i v o r s b e re n u m b e re d CL ( P . ) , • JIt 1
1
CL R
(P
L et th e s u r
) , w h ere t h e lo w e re d i n d i c e s a r e
Pi
t o be d i s t i n g u i s h e d fr o m t h e r a i s e d i n d i c e s i n t h e p r e c e d i n g e n u m e r a tio n . ( a ) Ho tw o s u r v i v o r s h a v e a common p o i n t ,
( b ) E ach s u r v i v o r i s c o n ta i n e d
.j . $ 3n f o r i f t h e e d g e s o f t h e s u r v i v o r s b e t r i p l e d ( w i t h a m u l t i p l i c a t i o n o f volum e in ^ .
by ^
( c ) By ( 2 ) , t h e t o t a l volum e o f t h e s u r v i v o r s i s
g r e a te r th a n
) w ith o u t d is p la c e m e n t o f t h e c e n t e r s , t h e e x p a n d e d s u r v i v o r s c o v e r t h e
34
V I.
COVERING THEOREMS
o r i g i n a l s e t o.C cu b es C K
v=
^ i s t a k e n t o be
t h e n t h e t o t a l volum e o f t h e s u r v i v o r s i s g r e a t e r t h a n — -n- J*(M). 2*3 N
K1
(P _ ),
ji ( m ) ,
L et
N (P ) be t h e s e t s N (P ) a s s o c i a t e d w i t h t h e s u r v i v o r s . KP l P i K(P )
1
T h ese s e t s a r e t h e f i r s t
s e t s o f t h e se q u e n c e S o f t h e th e o r e m .
v i o u s l y s a t i s f y c o n d i t i o n s ( 1 ) an d ( 2 ) .
A lth o u g h t h e y do n o t s a t i s f y co n
d i t i o n ( 3 ) , y e t t h e i r t o t a l m e a su re i s g r e a t e r t h a n L et H
= If
(P ) + . . .
+ Nk
1
They ob
(P
).
—
‘
By ( 1 ) , ( 3 ) , and ( 4 ) ,
p(M -M E jj) = JJ-(M) - Ja( E j j ) ♦ p ( / ' ~ M)
< p(M ) - -£--=■ 2*3
p(M) +
• p(M) 4*3
= (1 - - £ — ) p(M ) 4*3 = 9 p (M ).
L et
0 be a n y num ber
se q u e n c e S f :
it,
in th e
(P n) , • -L
i n t e r v a l 0 < 0 < 1 su c h t h a t t h e r e e x i s t s a f i n i t e 1SL. (P ) o f t h e s e t s NTr(P ) s u c h t h a t ( 1 ) no tw o Jl p Ji
of
P t h e s e t s o f £>* h av e a common p o i n t , (S')
= 0 jx( M), w h ere
( 2 ) e a c h s e t o f S 1 i s c o n ta i n e d i n ft9 and (P ^ ) + •
i e x i s t s , f o r 0 may be 0 .
(p )•
S u ch a num ber 0
f p
i s m e a s u ra b le a n d c o n ta i n s no p o i n t o f
V I.
COVERING THEOREMS
0Pe n arLC* c o n ta i n s no p o i n t o f
ft
a b o v e , t h e r e e x i s t s a s e t T: N^
By a n a rg u m e n t s i m i l a r t o t h a t
(P +^ ) , ♦•, N^. (P ^ J o f t h e s e t s N^.(P) su c h
p+1
a ] an d S p [ f ( P ) = a ] a r e m e a s u ra b le f o r
For le t a ^ a ^ ,
b e a s e q u e n c e o f t h e num bers a. o f t h e t h e o
rem a p p ro a c h in g a g iv e n num ber a a s a l i m i t fro m a b o v e 0
Then a l l t h e s e t s
S p [ f ( P ) > a ] a r e m e a s u r a b le , a s i s a l s o t h e i r sum w h ic h i s sim p ly S p [ f ( P ) > a ] ; t h e c o m p le m e n ta ry s e t , S p [ f ( P ) = a ] i s l i k e w i s e m e a s u r a b le . L e t a a n d b be tw o num bers s u c h t h a t a < b ,
By T heorem s 5 ,3 an d 3 ,6 t h e s e t
S p [ a < f ( P ) = b ] i s m e a s u ra b le s i n c e i t i s t h e common p a r t o f Sp [ f ( P ) > a ] an d S p [f(P ) = b ] .
L et
( x .., , • » , x ) t v 1* 9 n' of p o in ts (x 1,
oo
^ ^ n ( ^ ) ^v p 3
th e n
^Tp P r o v i d e d t h a t a t l e a s t
t h e f u n c t i o n s f Q(P ) is_ sum mable. The p r o o f i s a n a l o g o u s t o t h a t o f
th e p re c e d in g theorem .
THEOREM 8 . 7 : I f ' f ^ ( P ) , f g ( P ) ,
i s any sequence of m easurable n on-
...
- n e g q t i v e f u n c t i o n s w i t h a. l i m i t f u n c t i o n f ( P ) a n d i f t h e r e e x i s t s a summable f u n c t i o n g ( P ) s u c h t h a t ** ( P ) * g ( P ) ? or a l l n , t h e n f ( P ) is_ m e a s u r a b l e and lim f f n -xx)
( P ) dvp -
P roof:
^ f ( P ) dv .
Let
F
^(P) m^kv J
= minimum o f f ( P ) , f
.-.(P ), mv /9 m+1 J9
$ f m+k( P )1,
F ( P ) “ g r e a t e s t lo w e r bound o f f ( P ) , f m+1 ( P ) , . . .
50
V III.
Tt f o l l o w s t h a t F_ ( P ) = F x m ,lx 7
LEBESGUE INTEGRAL
0( P ) = . . . an d t h a t F ( P ) a p p r o a c h e s F ( P ) fr o m m , 2x 7 m ,k 7 m 7
above a s k - > o o .
S im il a r l y , F^(P ) = F^(P) = . . .
b elow a s m-xoo *
A ll th e s e fu n c tio n s a re o b v io u sly m easu rab le.
la tio n s f and a l l =
=
n-m . H ence, by Theorem 8 . 6 , i f
lim [ F ( P ) dv - C l i m F ( P ) dv d m ,k P J, m ,k 7 P k~>oo 7 k-xo ^
lim in f n -xo
F o r any n r e
(P ) = F V( P ) and C f ( P ) dv_. = f p V( P ) dv_ h o l d f o r a l l m = n nv 7 m ,k' 7 i n P 1 m ,kv 7 P
k
lim in f n~>oo
an d F ^ P ) a p p r o a c h e s f ( p ) fr o m
^v p ”
y n (P ) dvp ?
^
n = m,
= f F ( P ) dv _ . 0 in 7 P
^v p ^ o r e a c -^ m*
l i m £ Fm( P ) dvp = J l i m m-^oo m-xoo
I t f o l l o w s by a s i m i l a r a rg u m e n t t h a t l i m i n f n-xoo = ^ (g (P ) - f ( P ) ) ^v p*
l i m i n f [ $ g ( P ) dvp n~>oo
Hence
H ence, by Theorem 8 . 5 ,
F j P ) dvp -
^ (g(?) ~
£ f ( P ) dT p .
( P ) ) dVp *
®ut the l e f t side of t h is in e q u a lity is
£ f*n ( P ) dvp ] =
Hence l i m s u p ^ f ^ ( P ) dvp ^ ^ f ( P ) dv p0 n-xoo
= l i m i n f ^ t n ( P ) dvp*
£ t n (P ) dvp =
Hence
n-xoo
£ g ( P ) dvp - l i m su p n-xoo
£ ^(P )
dvp .
T h e r e f o r e l i m su p ^ t n ( P ) dvp = n -x io
l i m £ f (P ) dvp e x i s t s an d e q u a l s § f ( P ) dvp . n -x o o n
D e f i n i t i o n 8 . 5 ; I f f ( P ) i s a n o n - n e g a t i v e f u n c t i o n w h ic h assu m es o n l y th e v a lu e s 0, v ^ , . . . ,
v ^ , i f S^. i s t h e s e t o f p o i n t s P a t w h ic h f ( P ) =* v^., K and i f jd(S^ ) e x i s t s and i s f i n i t e f o r e a c h v ^ , t h e n f ( P ) i s c a l l e d a f i n i t e l y E v alu ed f u n c tio n . THECREM 8 . 8 : I f f ( P ) i s a f i n i t e l y v a l u e d f u n c t i o n , t h e n i n t h e n o -
t a t io n of D e f i n i t i o n 8 .5 ,
^ f ( P ) dvp =
v ) . The sum of tw o f i n i t e l y K=1 ^ K v a l u e d f u n c t i o n s i s f i n i t e l y v a l u e d an d t h e i n t e g r a l o f t h e i r sum e x i s t s and e q u a l s t h e sum o f t h e i r i n t e g r a l s . The p r o o f o f t h i s t h e o r e m i s a p p a r e n t .
V III.
LEBESGUE INTEGRAL
51
THEOREM 8 . 9 : E v e ry r e a l n o n - n e g a t i v e m e a s u r a b l e f u n c t i o n f ( P ) i_s_ t h e l i m i t o f a_ s e q u e n c e f ^ ( P ) , f ^ ( P ) ,
• • • £ £ . f i f ti ^ e ly v alued f u n c t i o n s .
q u en ce c a n be c h o s e n i n s u c h a, manner t h a t 0 = f P )
T h is s e
= f^(P ) = • •. = f(P )
everyw here. P roof:
Let
be t h e c l o s e d cube i n R^ w i t h edge N and c e n t e r a t t h e
o r i g i n , w h ere N i s a p o s i t i v e i n t e g e r . then th e re e x is ts a p o sitiv e in te g e r
I f P i s a p o in t such t h a t f ( P ) < 2^, V = "V ( p ) s u c h t h a t
5!— 2
5 f(p ) < —
Z
Let
f (P ) = J
j £ L . 3* 0
if P £ v
an d f ( P ) < 2N ,
* f o r a l l o th e r P.
f ^ ( P ) i s f i n i t e l y v a l u e d an d i s m e a s u r a b l e , ^ ( P ) i n N, a n d
m o n o to n ically in c r e a s in g
lim f (P ) - f ( P ) . N->oo
THEOREM 8 . 1 0 : I f f ( P ) and g ( P ) a r e r e a l n o n - n e g a t i v e m e a s u r a b l e f u n c t i o n s , t h e n f (P ) + g ( P ) is_ a l s o me a s u r a b l e , an d £ [ f ( P ) + g ( P ) ] dvp = =
J f ( P ) dvp + $ g ( P ) dvp . Proof:
T h is i s o b v i o u s l y t r u e f o r f i n i t e l y v a l u e d f u n c t i o n s , an d i t
f o l l o w s f r o m Theorem 8 . 9 t h a t t h i s i s t r u e f o r a l l f u n c t i o n s . THEOREM 8 . 1 1 ;
I f f ^ P ) - f g ( P ) » g ^ P ) - g 2 (P )» t h e n
,[ ^ ( P ) dvp- J f 2 ( P ) dYp = - £ g l ( P ) dvp - ^ g 2 ( P ) dvp , p r o v i d i n g t h a t f ^ ( P ) , f 2 (P )» g - ^ P ) . an d g g ( P ) a r e n o n - n e g a t i v e . P roof:
The th e o r e m f o l l o w s i m m e d i a t e l y f r o m Theorem 8 . 1 0 upon t r a n s
posing te rm s. T heorem 8 . 1 0 s t a t e s t h a t P o s t u l a t e 2 i n D e f i n i t i o n 8 . 1 i s s a t i s f i e d by t h e i n t e g r a l o f D e f i n i t i o n 8 . 2 .
I t is app aren t t h a t th e o th er p o s tu la te s
a r e a l s o s a t i s f i e d by t h i s i n t e g r a l when f ( P ) i s r e a l a n d = 0.
.
52
V IIIo
LEBESGUE INTEGRAL
I f two s u c h f u n c t i o n s a r e i d e n t i c a l e x c e p t o v e r a s e t o f m e a s u r e ' z e r o , t h e n i t i s o b v io u s t h a t t h e i r i n t e g r a l s a r e e q u a l*
Hence i t i s p o s s i b l e t o
g e n e r a l i z e Theorem 8*7 as f o l l o w s ; THEOREM 8 *1 2 s I f f ^ ( P ) , f ^ ( P ) ,
• • * _is si s e q u e n c e o f m e a s u r a b l e n o n
n e g a t i v e f u n c t i o n s w h ic h a p p r o a c h a l i m i t f u n c t i o n f ( P ) e x c e p t o v e r £i s e t o f m e a s u re z e r o and i f t h e r e e x i s t s a_ summable f u n c t i o n g ( P ) s u c h t h a t e a c h f n ( p ) 5 s ( p ) e x c e p t f o r a s e t o f m e a s u re z e r o , t h e n f ( P ) i s m e a s u r a b l e a n d lim n->oo
5 f n(P) dTP “ I f ^ Proofs
and Theorem 8 . 7
dTP*
The t h e o r e m f o l l o w s i m m e d i a t e l y fr o m t h e when t h e v a l u e s o f e a c h f n ( P ) , f ( P ) , and
p r e c e d i n g comment g(P ) a re changed t o
z e r o o v e r a l l t h e s e t s o f m e a s u re z e r o m e n t i o n e d i n ifche th e o r e m , D e f i n i t i o n 8 . 4-s L e t f ( P ) _be any r e a l - v a l u e d f u n c t i o n an d l e t f ( P ) = = f ^ ( P ) - f ^ ( P ) , w h ere f ^ ( P ) a nd f ^ ( P ) a r e r e a l an d n o n - n e g a t i v e *
I f such
a p a i r o f f u n c t i o n s f ^ ( p ) a n d f ^ ( P ) e x i s t w h ic h a r e sum mable, t h e n f ( P ) i s c a l l e d sum mable| i f s u c h a p a i r o f f u n c t i o n s e x i s t w h ic h a r e m e a s u r a b l e , t h e n f ( P ) i s c a l l e d m e a s u r a b l e a n d ^ f ( P ) dVp i s t a k e n t o be ^ f ^ ( P ) dVp- J f ,,(p )d V p . I t f o l l o w s fr o m Theorem 8 . 1 0 t h a t t h e v a l u e o f £ f ( P ) dVp i s i n d e p e n
80 ^ onS as
d e n t o f t h e manner i n w h ic h f ( P ) i s r e s o l v e d i n t o P-^(P) andth e d iffe re n c e
^ f ^ ( p ) dVp -
j £ g ( P ) dvp ^ a s s e n s e .
L e t f ( P ) be an y r e a l - v a l u e d f u n c t i o n an d l e t
f f ( p ) i f f (p) 5 o, f?(P) =
a ] i s o b v i o u s l y Rn i f a < 0 , a n d
I f a = 0 , t h e c o n d i t i o n m a x [ f ^ ( P ) - f ^ ( P ) , Q] > a
i s e q u i v a l e n t t o t h e c o n d i t i o n f ^ ( P ) - f ^ ( P ) > a , t h a t i s , t o .th e c o n d i t i o n f
( P ) > f 2( P ) + a .
But S p t f - ^ P ) > f 2 (P ) + a ] = YL Sp [ f 1 ( P ) > p > f g (P )+ a ] , p ra tio n a l
an d Sp [ f 1 (P ) > p > f 2 ( p ) + a ] = Sp [ f ;L(P ) > p ] .
Sp [ f 2 ( P ) < p - a ] .
two s e t s i n t h i s p r o d u c t a r e m e a s u r a b l e , f ° ( P ) i s m e a s u r a b l e ; f shown t o be m e a s u r a b l e i n a s i m i l a r way.
S in ce th e may b e
That t h e c o n d i t i o n o f su m m ab ility
i s n e c e s s a r y f o l l o w s f r o m t h e f a c t t h a t f ° ( P ) = f ^ ( P ) a n d f 2(P ) = f ^ ( P ) . THEOREM 8 . 1 4 ; A n e c e s s a r y an d s u f f i c i e n t c o n d i t i o n t h a t a r e a l - v a l u e d f u n c t i o n f (P ) be^ m e a s u r a b l e i s t h a t t h e s e t s S p [ f ( P ) > a ] be_ m e a s u r a b l e f o r an e v e r y w h e r e d e n se s e t o f v a l u e s o f a . P roof:
( C f . Theorem 8 . 3 ) .
The f a c t t h a t S p [ f ( P ) > a ] i s m e a s u r a b l e f o r a l l r e a l a i f
m e a s u r a b l e f o r an e v e ry w h e re d e n s e s e t o f v a l u e s o f a f o l l o w s a s i n t h e p r o o f o f Theorem 8 . 3 .
S in c e Sp [ f ° ( P ) > a ] i s
i f -a < 0 an d Sp [ f ° ( P ) > a ] =
~ S p [ f ( P ) > a ] i f a « o , a nd s i n c e s i m i l a r r e l a t i o n s h o l d f o r f g ( P ) , i t f o l l o w s by Theorems 8 C3 and 8 .1 2 t h a t t h e c o n d i t i o n i s s u f f i c i e n t .
S i n c e Sp [ f ( P ) > a ] =
= Sp [ f ° ( P ) > a ] i f a « 0 a n d Sp [ f ( P ) > a ] = Sp [ f ° ( P ) < - a ] i f a < 0, i t f o l l o w s b y Theorem 8 . 1 2 and 8 . 2 t h a t t h e c o n d i t i o n i s n e c e s s a r y . C o r o l l a r y : I n Theorem 8 . 1 3 t h e c o n d i t i o n f ( P ) > a may be r e p l a c e d by any of th e c o n d itio n s = a , < a , = a . Proof: 8 .3 .
T h is may be p r o v e d i n t h e same way a s t h e C o r o l l a r y o f Theorem
54
LEBESGUE INTEGRAL
VIII.
THEOREM 8 . 1 5 : A n e c e s s a r y an d s u f f i c i e n t c o n d i t i o n t h a t t h e m e a s u r a b l e f u n c t i o n f ( P ) be summable i s t h a t | f ( P ) | b £ sum mable. P roof:
T h is f o l l o w s i m m e d i a t e l y f r o m t h e r e s o l u t i o n ! f ( P ) | "
= f°(P ) + f°(P ). I t i s r e a d i l y s e e n t h a t P o s t u l a t e s 1-5 a r e s a t i s f i e d by t h e i n t e g r a l o f D e f i n i t i o n 8 . 4 and t h a t Theorem 8 .1 2 g e n e r a l i z e s t o s e q u e n c e s o f r e a l - v a lu e d f u n c t i o n s when t h e c o n d i t i o n u n (p)i
“ g ( P ) i s r e p l a c e d by t h e c o n d i t i o n
= g (p). D e f i n i t i o n 8 . 5 : I f f ( P ) = g ( P ) + i h ( P ) , w h e re g ( P ) an d h ( P ) a r e r e a l
v alu ed f u n c t io n s , th e n
^ f ( P ) dvp i s t a k e n t o be
^ g ( P ) dvp + i ^ h ( P ) dvp .
Thus f ( P ) i s m e a s u r a b l e (sum m able) i f g ( P ) an d h ( P ) a r e b o t h m e a s u r a b l e ( summ able). L e t f^ C P ) -
C t (P ) f o r P I M, “S Lo f o r P e. -M,
w here f ( P ) i s an y complex f u n c t i o n
an d M i s a n y m e a s u r a b l e p o i n t s e t . D e f i n i t i o n 8. 6 :
^ f ( P ) dvp i s t a k e n t o "where M i s a s d e f i n e d i n t h e p r e c e d i n g p a r a g r a p h an d £ f ^ ( P ) dvp i s t h e i n t e g r a l o f D e fin itio n 8 .5 . THEOREM 8 . 1 6 : ^ f ( P ) dv
h a s t h e f o l l o w i n g p r o p e r t i e s , w h e re M i s a
m e a s u r a b l e p o i n t s e t , f ( P ) i s a m e a s u r a b l e complex f u n c t i o n , and j[mf ( P ) d v p^ :-----------------------------------^He i n t e g r a l o f D e f i n i t i o n 8 . 6 *
1) [ c f ( P ) dv M
= c f f ( P ) dv , w h e re c i s an y c o n s t a n t . M
2 ) £ W P ) + g (P )] dv M S) y 1 dv M 4 ) [ f (P ) M
= ^ f ( P ) dv + $ g (P ) dv M r M
.
= p(M ).
= 0 i f f ( P ) i s r e a l and = o f o r a l l F i n M.
V III.
5)
$ t-
LEBESGUE INTEGRAL
f (TP) dvp = j g j
55
J f ( P ) dvp , w h e re T i n an y l i n e a r
R m)
m
t r a n s f o r m a t i o n o f d e t e r m i n a n t D.
6)
I f f ( P ) = g ( P ) + i h ( P ) , f ( P ) i £ m e a s u r a b l e when a n d o n l y when S p [ g ( P ) > a ] and S p [ h ( P ) > a ] a r e m e a s u r a b l e f o r a l l r e a l a , and f ( P ) i s summable when and o n l y w h e n |f ( P ) |
7)
J f ( P ) dtr M
+
f ( P ) dY K
8)
I f f ( P ) i s m e a s u r a b l e and i f M.M. i j = 0 for i / in g statem en ts
=
J f ( P ) dY M+N
i n t h i s c a s e we haYe
j , th en th e fo llo w -
...
when and o n l y
1 ^(P ) I
f ( p ) dvp= i
If f^ (P ), f^(P ),
i f MN = 0 .
h o l d ; f ( P ) is_ summable o v e r
when i t is_ summable o v e r e a c h ML a n d
9)
i s sum mable.
< 00 » an a . or < b . , b . ) = 0a c c o r d i n g a s x . J = a. or = b . , r e s p e c t i v e l y , th u s / < a . or > b . . L. i i
V III.
LEBESGUE INTEGRAL
57
f+°°l f1]
l i m N (a . - x . ) ( x . - b . ) « 4 0 f i n t h e s e c a s e s r e s p e c t i v e l y , an d l i m f ( u ) - 4 0 L N«*oo i i i i | q\ C+oo"\ a c c o rd in g as lim u = 0 V. ) Each g ^ ( x ^ , . • . , x^) i s a n a l y t i c a l i n x^,. . . , x^ l ~ o o j
n
n
and t h e r e f o r e t h e l i m i t o f a se q u e n c e o f p o l y n o m i a l s 0 o f Cg o f 8 . 7 c (o n e c o u l d e v e n r e p l a c e F i n a l l y i t i s o b v io u s t h a t
Thus
of 8.7b i s p a r t
by C^, b u t t h i s i s u n i m p o r t a n t t o u s ) . of 8.7c i s p a r t of
I t o u g h t t o be m e n t i o n e d t h a t t h e c l a s s e s c o n t i n u e d b eyo nd t h e f i n i t e num bers m = 1 , 2 ,
of 8 .7 a .
o f B a i r e f u n c t i o n s c a n be
. 0 t o a l l elem ents of th e
so -
c a l l e d **Cantor*s s e c o n d c l a s s o f o r d i n a l numbers*1, b u t i t i s n o t d e s i r a b l e t o go i n t o t h e d e t a i l s o f t h i s p r o b l e m h e r e . THEOREM 8 . 1 7 : - — —----------- — g (x_ , °m 1
f ( x 15 • • • , x ) and v J. nr
g (x , • • . , x ) , 1 * rr
x ) a r e B a i r e f u n c t i o n s , t h e n h(x_. , 1 n / -— • — — —------------- - -------
- f(g ^(x ^,
•..,
P roof: i.e ., J
If —
x ^),
...
, g^(x^,
t h a t i t is c o n tin u o u s.
,
9
x ) = n
i s a ls o a B aire f u n c t i o n 0
. • • , xn ) )
C onsider D e f i n i t i o n 8 .7 a .
•..,
...
Assume f i r s t t h a t f b e l o n g s t o C^,
Then t h e
t h e o r e m i s o b v io u s f o r , • • • , gi n
°1
io O o, f o r c o n t i n u o u s f u n c t i o n s , and i t f o l l o w s by
in d u c tio n fo r g^,
i n an y o t h e r c l a s s e s C .
i n C^ an d a r b i t r a r y
g^,
...,
g^.
ry S l,
Thus i t i s p r o v e d f o r f
An o b v io u s i n d u c t i o n e x t e n d s i t t o f i n an y c l a s s
and a r b i t r a -
g^. Hence i t i s p o s s i b l e t o c h o o s e any c o n t i n u o u s f u n c t i o n
f(x^,
1
• • . , g^
...,
xn ) , ? or i n s t a n c e , max ( x ^ ,
ly n o m ia l; or a g a in th e B aire f u n c t io n f ^ ( x ) fr o m a B a i r e f u n c t i o n g ( x n , . . . . . f H( g ( x . ,
. . . . x ))
0
fo r
• . . , x ^ ) , min ( x ^ ,
fx
~ |q
i f J K ! == N o th erw ise *
x ) a n o th e r B aire f u n c t io n i f l g ( x 1 , . . . , Xn) | ^ H o th erw ise.
• . . , x ^ ) or anypo"thus o b t a i n i n g
g,T(x_ ,
x ) ~
,
THEOREM 8 . 1 8 ; I f f o r t h e r e a l B a i r e f u n c t i o n s f ^ P ) , f J P ) ,
• ••,
V III.
58
LEBESGUE INTEGRAL
f*m( P ) ex3-s 'bs e ^ Q ry w ^ e re , t h e n t h i s l i m i t i s a B a i r e f u n c t i o n 'above'' T h is l i m i t c e r t a i n l y e x i s t s i f f - ^ ( p ) , f ^ ( p ) ,
...
a r e u n i f o r m l y bounded b elo w V
Proof;
I t i s s u f f i c i e n t t o c o n s i d e r l i m i n f f ( P ) • T h is l i m i t c a n mv J m-^-oo be e x p r e s s e d by u s i n g o n l y t h e o p e r a t i o n s "m in" ( f o r a f i n i t e number o f f u n c t i o n s ) an d “ l i m ” ( f o r e v e ry w h e re c o n v e r g e n t s e q u e n c e s ) a s c a n be s e e n i n t h e b e g i n n i n g o f t h e p r o o f o f Theorem 8 . 7 .
T h i s , t o g e t h e r w i t h t h e r e m a rk s p r e
c e d i n g t h e t h e o r e m , c o m p l e te s t h e p r o o f e THEOREM 8 . 1 9 : I f f ^ ( p ) , f ^ ( P ) ,
...
i s a sequence o f B aire f u n c t i o n s ,
t h e r e e x i s t s a n o t h e r B a i r e f u n c t i o n f ( P ) s u c h t h a t , w h e n e v e r l i m f w(P ) e x i s t s , ~ m-^oo th is lim it is f(P ). P roof;
I t may be assum ed t h a t f ^ ( P ) , f ^ ( P ) ,
. o. a r e a l l r e a l , a s
o t h e r w i s e t h e r e a l an d i m a g i n a r y p a r t s c o u l d be c o n s i d e r e d s e p a r a t e l y .
o th erw ise. =
Let
m -sK X)
l i m f ( P ) , t h e n f ( P ) m e e ts t h e r e q u i r e m e n t s o f t h e t h e o r e m 0 N-^oo A f t e r t h e s e g e n e r a l th e o r e m s on B a i r e f u n c t i o n s , i t i s d e s i r a b l e t o i n
v e s t i g a t e t h e c o n n e c t i o n b e tw e e n m e a s u r a b l e an d B a i r e f u n c t i o n s . THEOREM 8 . 2 0 ; E v e ry B a i r e f u n c t i o n f ( P ) jls m e a s u r a b l e . P roof;
T h is i s o b v io u s f o r t h e c l a s s
( u s i n g D e f i n i t i o n 8 . 7 b ) , an d
i t f o l l o w s b y i n d u c t i o n (b y Theorem 8 . 7 ) f o r a l l c l a s s e s C^. THEOREM 8 . 2 1 ; A f u n c t i o n f ( P ) i s m e a s u r a b l e when and o n l y when i t i s e v e ry w h e re e q u a l t o a B a i r e f u n c t i o n e x c e p t o v e r a s e t o f p o i n t s P o f m e a s u re zero. Proof;
That th e c o n d it io n i s s u f f i c i e n t f o r t h e m e a s u r a b i l i t y of
f*(p) f o l l o w s f r o m Theorem 8 . 2 0 .
T h e r e f o r e o n ly t h e n e c e s s i t y o f t h e c o n d i t i o n
V III.
m u st be proved©
LEBESGUE INTEGRAL
Suppose t h a t f ( P ) i s m easu ra b le©
59
f ( P ) may be assum ed r e a l ,
a s o t h e r w i s e t h e r e a l and i m a g i n a r y p a r t s c o u l d be c o n s i d e r e d s e p a r a t e l y © I t may e v e n be ass u m e d n o n - n e g a t i v e , a s o t h e r w i s e i t i s t h e d i f f e r e n c e o f tw o s u c h f u n c t i o n s ( f ° ( P ) and f ° ( p ) , D e f i n i t i o n 8 . 4 ) .
By D e f i n i t i o n 8 . 3 a n d Theo
rem 8 . 9 , f ( P ) i s t h e J i m i t o f a s e q u e n c e o f f i n i t e l y v a l u e d f u n c t i o n s , so t h a t , by Theorem 8 . 1 9 , i t i s s u f f i c i e n t t o assum e t h a t f ( P ) i s o f t h e f o r m f 1 i f P t M, v 1 (P) + . . . + v 1 ( P ) , w h e re 1M( P ) 58 *< an d w h ere e a c h s e t M. 1M 1 n M (O ifP i-U , i s m e a s u r a b l e an d o f f i n i t e m e a s u r e .
But s u c h a f u n c t i o n i s a B a i r e f u n c t i o n
i f an y f u n c t i o n f ( P ) - 1,_(P ), w h ere M i s o f f i n i t e m e a s u r e , i s a B a i r e f u n c tion ©
By Theorem 3 . 1 7 , M i s a B o r e l s e t o f t y p e
e x c e p t f o r a s e t o f mea
s u r e z e r o , so t h a t i t i s s u f f i c i e n t t o c o n s i d e r t h e c a s e w h ere M i s a s e t o f th e ty p e
© B u t, i n t h i s e v e n t , f ( P ) i s o b v i o u s l y a B a i r e f u n c t i o n . D e f i n i t i o n 8. 8 : A s e q u e n c e f ^ ( P ) , f g ( P ) ,
approach a l i m i t f u n c tio n f ( P ) u n ifo rm ly i f , number
5,
...
of fu n c tio n s is s a id to
c o r r e s p o n d i n g t o an y p o s i t i v e
t h e r e e x i s t s an i n t e g e r N such t h a t I f ^ ( P ) - f ( P ) | = 6 f o r a l l P
a n d f o r a l l n = N.
A sequence of f u n c t io n s i s s a i d t o a p p ro ach a l i m i t f u n c
t i o n e s s e n t i a l l y u n i f o r m l y i f , f o r e v e r y £ > 0, t h e r e e x i s t s a s e t o f m e a s u re < t
such t h a t over i t s
co m p le m e n ta ry s e t t h e a p p r o a c h i s u n i f o r m .
THEOREM 8 . 2 2 ; I f f ^ ( p ) , f ^ ( p ) , • . • is^ a s e q u e n c e S o f f u n c t i o n s sumraable o v e r a p o i n t s e t M o f f i n i t e m e a s u r e , an d i f S h a s si l i m i t f u n c t i o n f ( P ) , t h e n t h e a p p r o a c h o f S t o f ( P ) is_ e s s e n t i a l l y u n i f o r m. Proof:
C o r r e s p o n d i n g t o an y 6 > 0 l e t N^ g be t h e s e t o f p o i n t s P oo
such t h a t l f n (P ) - f ( P ) | > 6. n
I t fo llo w s t h a t
n=n
f o r a ny f i x e d p o i n t P, I f ( P ) - f ( P ) | < 6 n
oo
TT o
£=0
MNn n g = 0 sin ce, no
fo r a l l s u f f ic ie n tly larg e n.
oo But X T ML *(. A o A=o n0
Y 1 MN o
c => . . .
n 0+J-+^ » u
.
E ach N
r is m easurable sin c e
60
V III.
each f . ( P ) i s m easurable*
H ence, by t h e C o r o l l a r y o f Lemma 2 o f C h a p te r I I I ,
1
f o r 6 > 0 an d
LEBESGUE INTEGRAL
> 0 t h e r e e x i s t s a v a l u e n 1 o f n s u c h t h a t ju[ V~~
L e t 6 hav e t h e s e q u e n c e o f v a l u e s 1, l / 2 , l / 3 , —, JL.,
...
| if
• • • and l e t
00
< ~
have t h e v a lu e s
i s t h e i n t e g e r n T c o r r e s p o n d i n g t o 8 = ~ an d
^ ^ ^°° < th en u [ > _ m da] = r i= Q V ^ k 2
VC3C> r 00 a-nd u [ ^ Z zZ T MN . /? J ' k = l JL~ 0 V ^ k
< = u (E ) = £ r
,
^ Hence t h e
.
s e q u e n c e f ^ ( P ) a p p r o a c h e s f ( P ) u n i f o r m l y o v e r t h e p o i n t s e t M - E. THEOREM 8 * 2 5 ? I f f ( P ) i s d e f i n e d a n d m e a s u r a b l e over_ a s e t M, t h e n i t i s p o s s ib le t o e x c lu d e from M a s e t ^
o f a r b i t r a r i l y s m a l l p o s i t i v e m e a s u re
so t h a t , when f ( P ) i s d e f i n e d o v e r o n l y
ous^ o v e r
, f ( P ) i s everyw here c o n tin u
.
P ro o f ?
Suppose t h a t M i s o f f i n i t e m e a s u r e .
By Theorem 8 . 2 1 i t i s
s u f f i c i e n t t o c o n s i d e r t h e c a s e w h ere f ( P ) i s a B a i r e f u n c t i o n o f some c l a s s Cmo
I f f ( P ) i s o f c l a s s C^, t h e n t h e t h e o r e m i s a p p a r e n t .
rem p r o v e d f o r B a i r e f u n c t i o n s o f c l a s s C^. f(?)
If f(P )
S u p po se t h e t h e o
i s of c la s s
th en
i s t h e l i m i t of a s e q u e n c e S o f f u n c t i o n s f ^ ( P ) o f c l a s s C^.
s i s , f ^ ( P ) i s c o n t i n u o u s o v e r M-IL, w h e re
.
By h y p o t h e
By Theorem 8 . 2 2 ,
t h e f u n c t i o n s f ^ ( P ) a p p r o a c h f ( P ) u n i f o r m l y o v e r M-E, w h e re ja(E ) = ~ .
Hence
oo th e fu n c tio n s
f . ( P ) a re c o n tin u o u s i
o v e r t h e s e t M-T, w h ere T = E + / 5 7~T
1=1
a n d w here j i( T) = £. , an d S a p p r o a c h e s f ( P ) u n i f o r m l y o v e r M-T. c o n t i n u o u s o v e r M-To
I f M i s of i n f i n i t e m easure, th e
c o n s i d e r i n g t h e p a r t 'M^ o f M l y i n g i n t h e cube -N = c o n s tru c tin g th e e x c e p tio n a l s e t p u t t i n g M.= m} + M? + • . . , r i i I t Is th e preceding
f o r N = 1 , 2., . . . ,
an d r e p l a c i n g E by YU N=1
d e sira b le to ex h ib it
M. i
Thus f ( P ) i s
o o f i s o b t a i n e d by = N, i = 1 ,
...,
n,
*
w h ere w h ere u ( E ^ ) =
2n + i
a m easurable f u n c t io n f ( P ) such t h a t £
t h e o r e m c a n n o t be z e r o 0
. in
L e t f ( P ) be I^ (p ), w h e re M i s a m e a s u r -
VIII.
able set defined as follows:
LEBESGUE INTEGRAL
let all rational open intervals a < x < b be
ordered into a sequence 1^, 1^, ... • Jg, ... ^2V-1
in such a manner that
Define a sequence of intervals 5 ~ Ji(j^ ^ ) for every A and such that
XV ^ or every v °
J2V are
Consider those points x which belong to
only a finite positive number of the intervals there is
a last interval
tion of x.
61
•
For each such point x
which contains x and its index
A = A(x) is a func
Let M be the set of all such points x for which Ais even, and let QO
N be the
set of all such points x for which
A is odd.
CO
Let K = J A A
CO
TheV
(KA ) ^ ( J A ) - p j A ( I l J A + i )] ? y j A ) - 2 Z ^ ( J A + i ) =
?
)(1 - I - 1 - ...) = i)a(JA ).
ju (J
J. (V ~ J .) i=l A +1
Since M = Kg+ K4+ ... and N = Kx+ K g+ ...
it follows that M and N are measurable.
Furthermore 1 , 3 V
, and I,, 3 2V v
n. 2V-1
so that in every interval there is a part of M and a part of N and each such part is measurable and of positive measure.
Hence in every
interval f(P)
assumes both of the values 0 and 1 over sets of positive measure, and £
must
be positive. Definition 8.9: If for each £ > 0 and each 9, 0 < 9 < 1, there exists a 5 > 0 such that, for every cube C: x^°~ < x_^ < x^°^+ ~ with edge a < 6 ,
(i = 1, ..., n)
the set of points P in C for which |f(P°) - f(P)l = 6
is
of measure = 0an , then f(P) is called approximately continuous at P°. THEOREM 8.24. If f(P) is defined and measurable over a set M, then f(P) is approximately continuous over M except for at most a set of measure zero. Proof:
Let
be the complex plane so that, for any point P, f(P) £ R^
Let all rational intervals in R^ be ordered in a sequence 1^, I , .. . .
In
the notation of Theorem 8.3, each set
By
= Sp[f(P) 2. 1^] is measurable.
Theorem 6.5, for every point P, except for a set Z of measure zero, it follows that all SV containing P have unit density at P.
Let P be a fixed point in
62
V III.
R b u t n o t i n Z. n
LEBESGUE INTEGRAL
L e t C be t h e c i r c l e i n R0 w i t h c e n t e r f ( P ) an d r a d i u s £ . Z
In sid e C th e r e e x is ts a square 1^ c o n ta in in g f ( P ) . set S
S in ce th e c o rre sp o n d in g
i s of u n i t d e n s i ty , t h e c o n d itio n f o r approxim ate c o n t i n u i t y a t P is
sa tisfie d .
IX .
MONOTONIC FUNCTIONS
63
CHAPTER IX. MONOTONIC FUNCTIONS D e f i n i t i o n 9 . 1 ; In th e space d e f i n e d o v e r an y f i n i t e
o £ r e a l n u m b e r s , l e t f ( x ) be_ r e a l an d
or i n f i n i t e i n t e r v a l 0 f ( x ) is c a lle d
i n c r e a s i n g i f f ( b ) > f ( a ) whenever b > a , d e c r e a s in g i f f ( b ) < f ( a ) w henever b > a , m o n o to n ic a lly i n c r e a s i n g i f f ( b ) » f ( a ) whenever b > a , m o n o to n ic a lly d e c re a s in g i f f ( b ) 5 f ( a ) w henever b > a . I t i s a p p a r e n t t h a t t h e t h i r d c l a s s i n c l u d e s t h e f i r s t an d t h a t t h e f o u r t h in c lu d e a th e second; i f f ( x ) i s in th e f o u r t h c l a s s , - f ( x ) is in th e th ird .
Hence i t i s s u f f i c i e n t t o c o n s i d e r o n l y m o n o t o n i c a l l y i n c r e a s i n g ( m . i . )
f u n c t io n s in d ev elo p in g t h e p r o p e r t i e s of th e s e v a rio u s ty p e s of f u n c t io n s . D e f i n i t i o n 9 . 2 : I f f ( x ) i s m . i . , t h e n t h e l e a s t u p p e r bound o f f ( x )
fo r x < x q i s denoted by f (x q) and th e g r e a te s t lower bound o f f ( x ) fo r x > x
i s d e n o te d by f , ( x ) . + o'
o ____________ 1
THEOREM 9 . 1 : I f f ( x ) is_ m . i . , t h e n
lim f ( x ) = x~*x < 0
and
lim f ( x ) = f (x ) . ' 7 +v o x~>x > o P r o o f : T h e re e x i s t s a number x n < x 1
o
such t h a t f (x n ) > f ( x ) ~ F ' 1' o' Q
Hence, f o r a l l x s u c h t h a t x^ < x < x ^ , f ( x q ) - £ c f ( x ) = f
•
( x ^ ) , and t h e
f i r s t p a r t o f t h e t h e o r e m i s im m e d i a te ; t h e s e c o n d p a r t may be t r e a t e d a n a lo g o u sly . THEOREM 9 . £ i I f f ( x ) is_ m . ^ . an d _if x q < x ^ , t h e n f + ( x Q) = f Proof:
L e t x^ be s u c h t h a t x q< x^< x^.
f +(xo) S f ( x 2) 5 f _ ( Xl).
(x^).
Then, by D e f i n i t i o n 9 . 2 ,
64
IX .
MOHOTOHIC FUNCTIONS
9 . 3 ; ___ I f f (' x )J ____ i s __ m . i . ,5 ______ t h e n f —(x o ) = f ( x o ) 5 f + ( x o ) . _THEOREM _ _ _ _ _____ The p r o o f i s t r i v i a l . D e f i n i t i o n 9 . 3 : I f f ( x ) i s m. i „, t h e d i f f e r e n c e f +( xq ) - f ( XQ) i s c a lle d th e o s c i ll a ti o n ,
osc f ( x q ) , of f ( x ) a t x ^ .
I t f o l l o w s fro m Theorem 9 .3 t h a t o sc f ( x q ) = 0 .
I t is apparent th a t
o sc f ( x ^ ) ~ 0 when an d o n l y when f ( x ) i s c o n t i n u o u s a t Xq . THEOREM 9 . 4 : I f f ( x ) is_ m .i_ ., t h e n t h e number o f p o i n t s a t w h ic h i t i s d i s c o n t i n u o u s i s a t m ost c o u n t a b l e . P roof:
!y Theorem 9 . 2 , f o r x ^ / x^ t h e i n t e r v a l s f ( XQ) = y = f +( x q )
a n d f (x ) = y S f + ( x ^ ) a r e n o n - o v e r l a p p i n g e x c e p t p o s s i b l y f o r a common end p o in t.
The i n t e r v a l -oo < y < +oo can be d i v i d e d up i n t o o n l y a c o u n t a b l e
number of n o n - o v e r l a p p i n g i n t e r v a l s of l e n g t h = fc. > 0 .
Hence t h e number o f
p o i n t s a t w h ic h o sc f ( x ) = £ > 0
I f £ is g iven th e v a
lu es l / 2 ,
l/ b , l/4 ,
...
i s a t most c o u n t a b l e .
, th e o s c i l l a t i o n of f ( x ) a t each p o in t of d is c o n
t i n u i t y is g r e a t e r th a n a lm o st a l l of th e s e v a lu e s of £ •
Hence t h e number
o f p o i n t s o f d i s c o n t i n u i t y i s a t m ost c o u h t a b l e . THEOREM 9 . 5 s
I f f ( x ) i s m . i . , t h e s e t of p o i n t s o f d i s c o n t i n u i t y of
f ( x ) may be e v e ry w h e re d e n se o v e r R ^• P roof:
By Theorems 1 .8 and 1 . 9 t h e s e t o f r a t i o n a l p o i n t s i n R^ i s
e v e ry w h e re d e n se i n R^ and may be o r d e r e d i n a s e q u e n c e S : x ^ , x ^ , x be a p o i n t o f R_. and l e t x , x , r 1 n n *
1
1
Then f ( x ) = ——- + — + . . . 2n1 2n 2p o in t o f R^.
±
be t h e e l e m e n t s o f S l e s s t h a n x .
6
i s m . i . an d i s d i s c o n t i n u o u s a t e a c h r a t i o n a l
D e f i n i t i o n 9 . 4 : I f f ( x ) and g ( x ) a r e m . i , and i f t h e c o n d i t i o n s f ( x q ) - g ( x q ) an d f + ( XQ) = g+( x Q) h o l d a t e v e r y p o i n t x q , t h e n f ( x ) an d g(x) are c a lle d e q u iv a le n t.
Let
IX .
MONOTONIC FUNCTIONS
65
THEOREM 9 . 6 : I f f ( x ) an d g ( x ) a r e m. i_., & n e c e s s a r y and s u f f i c i e n t c o n -
(f(xb) < (f (x2^)
d i t i o n t h a t f _an_d g be e q u i v a l e n t i s t h a t J| gand ( x ^ jI = j/ and ^ j V w h e n e v e r x 1< x 9 .
Proof:
The c o n d i t i o n i s n e c e s s a r y , f o r f ( x ^ ) == f ( x ^ ) - g ( x ^ ) = g ( x ^ ) .
S i m i l a r l y , g ( x 1 ) 5 g „ ( x 2 ) = f_^(x2 ) = f ( x 2 ) . and g ( x ^ ) 5 g ( x g ) . ber. f
For a l l x
g ( x Q) , w here g ( x ) = f + ( x ) - Cx.
---> c,
Theorems 9 .1 6 and 9 .1 7 a p p l y 0 x q i s i n tbs
i n t e r v a l s a^
x < b .
s e t jzf,
th a t is ,
i n one o f t h e
By Theorem 9 . 1 7 , p a r t 2 ) , t h e sum o f a l l s u c h i n t e r v a l s
may be made a r b i t r a r i l y s m a l l by t a k i n g C s u f f i c i e n t l y l a r g e .
T h is c o m p l e te s
th e p roof of 1 ). P roof of 3 ):
S uppose D ^ f ( x Q) < C < D < D * f ( x Q) .
Then t h e r e e x i s t s
< C; t h e r e f o r e £i~jLx, ) (,.x_q.) < q x* - x o o ( x q b e i n g a p o i n t o f c o n t i n u i t y ) so t h a t f +( x ^ ) - Cx q< f + ( x * ) - Cx’ . L e t
p o in t
x ’ < x f o r w h ic h
o
x1 - x
a
IX .
Y q- - x o
and l e t y* « - x » .
MONOTONIC FUNCTIONS
73
Then y* > y Q and. f +( - y Q) + CyQ > f +( - y f ) + Cyr . f(x” )- fix ) f o r w h ic h — — r------- i-JU- > D, so t h a t o
A gain, t h e r e e x i s t s a p o in t x n > x
c u ssio n
" > D an(* ) ” Dx c f + (x ” ) “ Dx” . ( i n t h e p r e c e d i n g d i s o x f an d x ” c a n be a r b i t r a r i l y c l o s e t o x q *) By Theorem 9 . 3 7 , p a r t 4 ) ,
w h e re A
- C, i f y^ = ~x^ i s r e g a r d e d a s l y i n g i n some i n t e r v a l
I s a f < y < b 1,
then y
l i e s i n one o f t h e i n t e r v a l s a < y < b an d *5 [ f (~ a ) ~ f , ( - b )] = n J n z— n n/ n = C ( b f - a * ) 0 S uppose y ^ l i e s i n t h e i n t e r v a l a ^ f < y < b ^ , • Then
°o
By Theorem 9 . 1 7 , p a r t 2 ) . w h ere A = D, i t f o l l o w s t h a t x
~b .< x < - a , . ni o n’
J
* *
l i e s i n one of t h e i n t e r v a l s “ i
[ f - ( _ a n ' > “ f +( - b n- 3*
**
9
-b t < x oo
>
,
9
+ w .(x ) +
y
n-.
(x ),
*9
1
(x), n0
3
...
such t h a t ...
•
co
w (x) = pV+1 H p i
w ( x )° ^
S i n c e t h e r i g h t member
e q u a t i o n i s d i f f e r e n t i a b l e o v e r a = x = b ex -
i s bounded, each term i n t h i s
c e p t f o r a s e t o f m e a s u re z e r o c w (x ) - w (y) no tL— = H I x - y p !
S in c e
2
L e t t h i s s u b s e q u e n c e be d e n o t e d b y w ^ ( x ) , w ^ ( x ) ,
oo Then w ( x ) + . . . 1
4^ ( x ) ,
x - y
l o s s o f g e n e r a l i t y i n a s s u m in g t h a t v+'n ( a ) = 0 f o r a l l n .
p vp ( b ) i s f i n i t e - . i= l i
...
>
- 0 and 4^n ( y ) ~ 4 ^ ^
ip ( b ) = 0, t h e r e e x i s t s a s u b s e q u e n c e In
oo + H p i
,
>
x - y
T h ere i s no
n y
f (*f)
WqCx) - w1 ( y ) Then ----------------------- + . . . x - y
w (x) - w (y) E ll x - y
wv (x ) " + ------------------------ + x - y
an d th e sum o f th e f i r s t V terms
i s n o t g r e a t e r t h a n t h e r i g h t member o f t h i s e q u a t i o n .
L e t y b e c o n s t a n t an d
l e t x approach y .
The l i m i t of t h e r i g h t member e x i s t s ( e x c e p t o v e r a s e t Gf oo m e a s u re z e r o ) and i s i n d e p e n d e n t o f V • Hence H w ' ( y ) i s bo u nd ed an d c o n p=i p v e r g e n t ( e x c e p t ov er a s e t o f m e a s u re z e r o ) a n d l i m w T( y ) = 0. u-^oo ^ THEOREM 9.].Ss
_
I f f ( x ) i s r e a l and summable o v e r a = x. = b an d i f
T ( x ) - ^ ^ f ( y ) d y , t h e n 1) 9 ( x ) i s c o n t i n u o u s and o f b . _v 0, 2)Cp ( x ) i s d i f f e r e n tia b le
o v e r a = x = b e x c e p t f o r a s e t o f m e a s u re z e r o . , an d 3 ) ' f ’ ( x ) = f ( x )
e x c e p t o v e r a s e t o f m e a s u re z e r o . P roof:
I t i s s u f f i c i e n t t o c o n s i d e r t h e c a s e w here f ( x ) 5 0, f o r any
IX .
r e a l fu n c tio n f ( x ) -
MONOTONIC FUNCTIONS
~1
— 1----- . e a c h o f t h e s e f r a c t i o n s
2
i s a lw a y s
= o , an d i t
75
2.
i s e v id e n tt h a t t h e th eo rem
b e tw e e n tw o n o n - n e g a t i v e f u n c t i o n s .
Since f ( x )
ex ten d s t o t h e d if f e r e n c e (x) is m .i. ;
= 0,
* f( x ) i s o f b . v . a n d , by Theorem 9 . 1 8 , p a r t Z) o b t a i n s . a sequence of v a lu e s of x w ith l i m i t x*. x
. . . be
L e t f^_(y) = ^ o ^ e l s e w h e r e "
~ x ~
S i n c e | f x ( y ) | = | f ( y ) | f o r a l l x , an d s i n c e
t ( y ) , Theorem 8 .1 6 i s a p p l i c a b l e and i t f o l l o w s t h a t
l i m *f(x ) =* ^ (x * ) , so t h a t p a r t 1 ) o b t a i n s . n~sKX) I f f ( x ) i s n o t bounded, l e t f (x ) = i K J 9 N y (0 x ‘V * )
Let x^, x ^ ,
b
Then f ( x ) = ^ f ( y ) d y = £ ** ( y ) d y . a a li m f (y) = f n-H)o n
th e re fo re
“ S f N^ y ) dy i s a
I t r e m a in s t o p ro v e p a r t 3 ) .
, f ( x ) > N,
^ N + l ^ X^ “ ^ N ^
N = 1, 2,
9
i s m#io> an d
...
.
Then
l i m " V X^ = ^ N-xx> .
x )*
The p r e c e d i n g lemma shows t h a t i t i s s u f f i c i e n t t o c o n s i d e r f ^ ( x ) , t h a t i s , bounded f u n c t i o n s . a = 2 Ih | •
In D e f i n i t i o n 8 .9 l e t 6 = 1 - 8 .
, make | h |
0 and h < 0 ) , and l e t N^ be t h e
complement of
¥ ( x +h)~ f ( x ) x +h -------------- — - f ( x 0 ) = r j f(x )d x -f(x h
in th is in te r v a l.
) = -($
xo
2
Then
f(x )d x + $ M1
f(x )d x )-f(x N1
= — [C [ f ( x ) - f ( x )J d x + f [ f ( x ) - f ( x ) ] d x ] . & x/t O O M1 N1
B ecause o f t h e a p p r o x i m a t e c o n -
t i n u i t y of f ( x ) , th e f i r s t i n t e g r a l is =
•
= 2 A ( a h ) , w here A i s a
bound o f f ( x ) . Hence
The s e c o n d i n t e g r a l i s th e e n t i r e e x p re ssio n
is
= (4A+l)£. , and p a r t 3) i s im m e d i a te . , If
f(x )
i s m . i . and i f f ( x ) = f ^ x )
(w here i t e x i s t s ) , t h e a s s e r t i o n
)=
76
IX .
MONOTONIC FUNCTIONS
x t h a t J f ( y ) d y = 'f(x ) i s o b v io u s ly f a l s e b ecause a * f( x ) n e e d n o t be c o n t i n u o u s . I t w i l l be shown t i o n i s g e n e r a l ly f a l s e even i f
x j* f ( y ) d y i s c o n t i n u o u s , w h i l e a in th e sequel th a t th i s a s s e r
Y (x ) i s m .i . and c o n tin u o u s .
L e t f ( x ) be summable, un bo u n d ed , an d n o n - n e g a t i v e o v e r a = x = b ; l e t lim { f ( x ) d x = f f ( x ) d x 0 Hence t h e r e ,T J Nv ' J N—3«oo a a b b e x i s t s a n Nq s u f f i c i e n t l y l a r g e su c h t h a t § f (x)dx = £ f ( x ) d x - t • , a o a
f ._ ( x ) « N 10 ^
^ ~ w* i f f ( x ) > N. v '
l^ en
b
t
Thus
= J [ f ( x ) - f ^ ( x ) ] d x = £ f ( x ) d x ? o , w here S = Sx [ f ( x ) > Nq ] . a o S
T h is
proves THEOREM 9 . 2 0 ;
I f f ( x ) i s summable, u n b o u n d e d , an d n o n - n e g a t i v e o v e r
a 5 x = b , th e n i t i s p o s s i b l e t o i n t e g r a t e i t over such a s e t S i n t h i s i n te rv a l th a t it s
i n t e g r a l i s a r b i t r a r i l y s m a l l w h i l e f ( x ) i s b ou n d ed i n t h e s e t
co m p le m e n ta ry t o S. D e fin itio n 9 .9 ? A fu n c tio n f ( x ) said
t
to
d e f i n e d o v e r an i n t e r v a l a = x = b is^
be a b s o l u t e l y c o n tin u o u s o v er a= x = b i f , c o r r e s p o n d in g t o
each
> 0, t h e r e e x i s t s a 6 > 0 s u c h t h a t w h e n e v e r y ( b . - a . ) < 0 , w h e re
N ], w h ere a = x = b .
Then, by
Theorem 9 . 2 0 t h e r e e x i s t s a s u f f i c i e n t l y l a r g e N s u c h t h a t £ f ( x ) d x < -■ 0 M be an y s u b s e t o f t h e i n t e r v a l a = x = b o f m e a s u re < Then
f f (x )d x = C f (x )d x + f f ( x ) d x < n6 + % » M Mx MS
th en J f(x )d x < £ . M
If
60 6 is
Let
Le
M - MS.
t a k e n t o be -~rr ,
Now l e t M be t h e sum o f a l l i n t e r v a l s a . S' x = b . , w h ere
n = a = b = b , and w h ere u(M) = X I ( b . - a . ) < 6 . Then n n. 9 rv ' r “: i i i= l n b. a. n I f ( x ) d x = X I [ [ Xf ( x ) d x - § Xf ( x ) d x ] = X I [ ' f ( b . ) - 4*( a . ) ] . T h ere e x i s t s a M i= l a a i= l 1 1
a * a .= b . » 1 1
...
6 > 0 such t h a t t h i s l a s t sum i s alw ay s < £ . S i n c e * f(x ) i s m . i . , t h i s l a s t n sum = H l ' f ( b J - Y ( a . ) | and f ( x ) i s a b s o l u t e l y c o n t i n u o u s . i= l 1 1 THEOREM 9 . 2 2 ? I f
* f ( x ) is_ m . i . a n d a b s o l u t e l y c o n t i n u o u s , t h e n t h e
t r a n s f o r m a t i o n x ’ = ' f ( x ) maps s e t s of m e a s u re z e r o on s e t s o f m e a s u re z e r o . P roof:
L e t M be a s e t o f m e a s u re z e r o i n R^ and l e t N be i t s image
under th e tr a n s f o r m a tio n x 1 = ^f(x).
L e t M be c o v e r e d by a s e q u e n c e o f n o n oo o v e r l a p p i n g i n t e r v a l s I 1 , I 9 , . . . su c h t h a t y If I. is th e in 1 Cn , t u ( l 1. ) < 1 1=1 t e r v a l a^= x = b ^ , t h e n can b e t a k e n s u f f i c i e n t l y s m a l l so t h a t
6
/ ~fyfb ) ) ] < £ b e c a u s e o f t h e a b s o l u t e c o n t i n u i t y o f vf ( x )° (The a b i= l n s o l u t e c o n t i n u i t y g iv e s t h i s d i r e c t l y o n ly f o r V , b u t n may be a l l o w e d t o i= l become i n f i n i t e . )
But t h e s e t o f i n t e r v a l s
LP (a ^ ) ® 1 *
^ ^ i^
GOV0rs
Hence ja*(N) < t $ t h a t i s , ^i(N) = 0 . I t i s d e s i r a b l e t o show t h a t t h e c o n d i t i o n o f c o n t i n u i t y a l o n e i s i n -
IX .
78
MONOTONIC FUNCTIONS
s u f f i c i e n t in t h e p re c e d in g theorem .
T h i s w i l l b e done by e x h i b i t i n g a m . i .
c o n t i n u o u s f u n c t i o n w h i c h d o e s n o t map a s e t o f m e a s u r e z e r o on a s e t o f mea sure zero.
Let
( x ) be d e f i n e d o v e r t h e i n t e r v a l 0 = x = 1 a s f o l l o w s :
be t h e p o i n t x = ^ and l e t
be t h e p o i n t
i n t e r v a l of 0 = x 5 1 w ith c e n te r be a s u b i n t e r v a l o f 0 =
f ( x ) 5 1 w ith ce n te r
L e t P-j.^1 ^ e a s u b
( x ) = -g-.
0
c ] i s m ea su ra b le (c any r e a l num ber), w h ile th e m ea-
0
y
s u r a b i l i t y o f f ( < f ( x ) ) means t h a t e v e r y s e t M£ = S ^ ffC ^ fC x )) > c ] i s m easu r-
IX .
82
a b le 0
MONOTONIC FUNCTIONS
But M i s a p e r f e c t l y a r b i t r a r y m e a s u r a b l e s e t , and M* i s i t s c c
d e r t h e t r a n s f o r m a t i o n x = U7 ^ ( y ) °
image u n -
Thus t h e c o n d i t i o n i s r e a l l y c o n d i t i o n 4)
i n Theorem 9 . 2 7 , and i s e q u i v a l e n t t o a b s o l u t e c o n t i n u i t y . THEOREM 9 . 2 9 ; f ( g ( x ) ) is_ me a s u r a b l e when g ( x ) is_ m e a s u r a b l e and f ( y ) i s a B aire f u n c t i o n . Proof;
T h is f o l l o w s i m m e d i a t e l y fro m D e f i n i t i o n 8 . 7 c , Theorem 8 . 1 6 ,
an d t h e f a c t t h a t t h e p r o d u c t o f two m e a s u r a b l e f u n c t i o n s i s m e a s u r a b l e .
S ec. 1.
X.
GENERAL MEASURE FUNCTIONS AND OUTER MEASURE
83
CHAPTER X
GENERAL MEASURE FUNCTIONS AND OUTER MEASURES
§1,
E l e m e n t a r y p r o p e r t i e s o f m e a s u re f u n c t i o n s I n t h i s s e c t i o n we s h a l l d e a l w i t h c e r t a i n c o l l e c t i o n s o f p o i n t s e t s ,
w h ic h c o l l e c t i o n s we s h a l l d i s t i n g u i s h v a r i o u s l y a s h a l f - r i n g s , r i n g s , r e s t r ic t e d B o rel-rin g s, B o re l-rin g s0
These a r e g e n e r a l i z a t i o n s of c e r t a i n e l e
m e n t a r y c o l l e c t i o n s o f s e t s w h ic h p l a y an i m p o r t a n t p a r t i n t h e t r e a t m e n t of t h e L ebesgu e m e a s u re and o f t h e more g e n e r a l a d d i t i v e f u n c t i o n s o f p o i n t s e t s i n a E u c l i d e a n space,.
An i n s t a n c e o f w hat we s h a l l c a l l a h a l f - r i n g i s t h e
s e t o f a l l h a l f open i n t e r v a l s i n t h e E u c l i d e a n s p a c e „
The s e t o f a l l f i n i t e
sums o f h a l f open i n t e r v a l s i s an i n s t a n c e o f w h at we s h a l l c a l l a r i n g ; t h e s e t o f a l l b ou nd ed B o r e l s e t s an i n s t a n c e o f a r e s t r i c t e d B o r e l - r i n g ; t h e s e t o f a l l B o r e l s e t s a n i n s t a n c e o f a B o r e l - r i n g 0 We s h a l l be i n t e r e s t e d i n g e n e r a l i z i n g o n l y t h o s e p r o p e r t i e s of t h e s e e l e m e n t a r y c o l l e c t i o n s w h ic h make i t p o s s i b l e t o d e f i n e a d d i t i v e f u n c t i o n s o f p o i n t s e t s o v e r th e m . p r o p e r t i e s , as i t t u r n s o u t , a r e n o n - t o p o l o g i c a l o
These
Hence t h e t o p o l o g y o f t h e
s p a c e i n w h ic h t h e p o i n t s e t s l i e - e v en i f i t e x i s t s - i s i r r e l e v a n t .
Some
u s e o f t o p o l o g y w i l l be made i n s e c t i o n 5 when i n t r o d u c i n g t h e g e n e r a l n o t i o n of S tie ltJe s-R a d o n -L e b e s g u e m easure.
The c o n s i d e r a t i o n s n e e d e d f o r t h i s
p o s e e x t e n d f r o m D e f i n i t i o n 1 .1 5 t o Theorem 1 . 1 8 .
pur
L eb esgu e m e a s u re i t s e l f
c a n be d i s c u s s e d w i t h o u t any u se o f t o p o l o g y , c f . § 5 . L e t S be an a r b i t r a r y c l a s s o r s p a c e , f i x e d f o r t h e e n t i r e d i s c u s s i o n l e t ^ * ( S ) be t h e power s e t o f S, i . e . , t h e t o t a l i t y o f s u b s e t s o f S. D e f i n i t i o n 1 0 . 1 . 1 . A c o l l e c t i o n of s e t s $
C ^ ( S ) i s c a ll e d a B o rel-
X.
84
S e c .l.
GENERAL MEASURE FUNCTIONS AND OUTER MEASURES
r in g w h ere; (a i )
If
)
o f a se q u en ce { M^J b e lo n g s t o /tL, th e n so d o es T*M^. i
each s e t
I f ea ch s e t M^ o f a seq u en ce [ M^] b e lo n g s t o
, th e n so d oes | | M_^.
^
-
('y^)
M and N b e lo n g t o 9L, th e n so does M - MN.
If
D e fin itio n 1 0 .1 .2 . A c o lle c t io n of s e t s
is c a lle d a r e
s t r i c t e d B o r e l- r in g when (ctg)
If
M and N b e lo n g t o /d ls th e n so d oes M + N -
(P g )
If
ea ch s e t
('Yg)
If
M and N b e lo n g t o /?&s th e n so does M - IfN .
o f a seq u en ce I M^j b e lo n g s t o th e n so d o e s . 11 Mi • i
N ote t h a t fa g ) i s w eaker th a n o fa f i x e d N €
s u b s e ts a f f ir m
£ ^
However, i f a l l o f a seq u en ce
, t h a t i s i f M^ €
c N £
a re
th e n we can
on th e b a s i s o f (P g )j ^ 2 ^ a ^*o n e* owing t o
^
i
M^=» N-1
J (N-M^
i
D e fin itio n 1 0 .1 .5 .
A c o lle c tio n of s e ts
ft c ^ ( s )
i s c a l l e d a_ r in g
when: (d ^ )
If
Mand N b e lo n g t o % , th e n so does M + N.
(P g )
If
Mand N b e lo n g t o ^ , th e n so does MN .
('Yg)
If
Mand N b e lo n g t o Wen o te t h a t in
m. -
i
T h is i s a co n seq u en ce o f th e i d e n t i t y
T T V
Z ( E mi " Mi ) j i D e f i n i t i o n 1 0 . 1 . 4 . L et '¥ (
A set M 6 and ( 2 )
MN.
D e f i n i t i o n s 1 0 .1 .1 and 1 0 .1 .3 t h e c o n d it io n (P-^), (p ^ )
r e s p e c t i v e l y a re s u p e r f lu o u s , = I
th e n so does M -
i s s a id
N- M£
c
S ) ) be any c o l l e c t i o n o f s e t s .
t o b e ” im m e d ia te ly b elo w ” a s e t N € '(T* i f :
. T h is r e l a t i o n i s
i t i s d en o ted by M