358 77 2MB
English Pages 26 Year 2020-21
ENGINEERING MATHEMATICS FORMULAS & SHORT NOTES HANDBOOK
Vector Algebra 2
If i, j, k are orthonormal vectors and A = A x i + A y j + A z k then | A| = A2x + A2y + A2z . [Orthonormal vectors ≡ orthogonal unit vectors.]
Scalar product A · B = | A| | B| cos θ
where θ is the angle between the vectors
Bx = A x Bx + A y B y + A z Bz = [ A x A y A z ] B y Bz
Scalar multiplication is commutative: A · B = B · A.
Equation of a line A point r ≡ ( x, y, z) lies on a line passing through a point a and parallel to vector b if r = a + λb
with λ a real number.
Page 1 of 24
Equation of a plane A point r ≡ ( x, y, z) is on a plane if either
(a) r · b d = |d|, where d is the normal from the origin to the plane, or y z x (b) + + = 1 where X, Y, Z are the intercepts on the axes. X Y Z
Vector product A × B = n | A| | B| sin θ, where θ is the angle between the vectors and n is a unit vector normal to the plane containing A and B in the direction for which A, B, n form a right-handed set of axes.
A × B in determinant form i j k Ax A y Az Bx B y Bz
A × B in matrix form 0 − Az A y Bx Az 0 − Ax By − A y Ax 0 Bz
Vector multiplication is not commutative: A × B = − B × A.
Scalar triple product Ax A × B · C = A · B × C = Bx Cx
Ay By Cy
Vector triple product
A z Bz = − A × C · B, Cz
A × ( B × C ) = ( A · C ) B − ( A · B)C,
etc.
( A × B) × C = ( A · C ) B − ( B · C ) A
Non-orthogonal basis A = A1 e1 + A2 e2 + A3 e3 A1 = 0 · A
where 0 =
Similarly for A2 and A3 .
e2 × e3 e1 · (e2 × e3 )
Summation convention a
= ai ei
a·b
= ai bi
implies summation over i = 1 . . . 3 where ε123 = 1;
( a × b)i = εi jk a j bk εi jkεklm = δil δ jm − δimδ jl
Page 2 of 24
εi jk = −εik j
Matrix Algebra Unit matrices The unit matrix I of order n is a square matrix with all diagonal elements equal to one and all off-diagonal elements zero, i.e., ( I ) i j = δi j . If A is a square matrix of order n, then AI = I A = A. Also I = I −1 . I is sometimes written as In if the order needs to be stated explicitly.
Products If A is a (n × l ) matrix and B is a (l × m) then the product AB is defined by l
∑ Aik Bk j
( AB)i j =
k=1
In general AB 6= BA.
Transpose matrices If A is a matrix, then transpose matrix A T is such that ( A T )i j = ( A) ji .
Inverse matrices If A is a square matrix with non-zero determinant, then its inverse A −1 is such that AA−1 = A−1 A = I.
( A−1 )i j =
transpose of cofactor of A i j | A|
where the cofactor of A i j is (−1)i+ j times the determinant of the matrix A with the j-th row and i-th column deleted.
Determinants If A is a square matrix then the determinant of A, | A| (≡ det A) is defined by
| A| =
∑
i jk... A1i A2 j A3k . . .
i, j,k,...
where the number of the suffixes is equal to the order of the matrix.
2×2 matrices If A =
a c
b d
then,
| A| = ad − bc
AT =
a b
c d
A−1 =
1 | A|
d −c
−b a
Product rules ( AB . . . N ) T = N T . . . B T A T ( AB . . . N )−1 = N −1 . . . B−1 A−1
(if individual inverses exist)
| AB . . . N | = | A| | B| . . . | N |
(if individual matrices are square)
Orthogonal matrices An orthogonal matrix Q is a square matrix whose columns q i form a set of orthonormal vectors. For any orthogonal matrix Q, Q−1 = Q T ,
| Q| = ±1,
Q T is also orthogonal.
Page 3 of 24
Solving sets of linear simultaneous equations If A is square then Ax = b has a unique solution x = A −1 b if A−1 exists, i.e., if | A| 6= 0.
If A is square then Ax = 0 has a non-trivial solution if and only if | A| = 0. An over-constrained set of equations Ax = b is one in which A has m rows and n columns, where m (the number of equations) is greater than n (the number of variables). The best solution x (in the sense that it minimizes the error | Ax − b|) is the solution of the n equations A T Ax = A T b. If the columns of A are orthonormal vectors then x = A T b.
Hermitian matrices The Hermitian conjugate of A is A † = ( A∗ ) T , where A∗ is a matrix each of whose components is the complex conjugate of the corresponding components of A. If A = A † then A is called a Hermitian matrix.
Eigenvalues and eigenvectors The n eigenvalues λ i and eigenvectors u i of an n × n matrix A are the solutions of the equation Au = λ u. The eigenvalues are the zeros of the polynomial of degree n, Pn (λ ) = | A − λ I |. If A is Hermitian then the eigenvalues λi are real and the eigenvectors u i are mutually orthogonal. | A − λ I | = 0 is called the characteristic equation of the matrix A. Tr A = ∑ λi , i
also | A| =
∏ λi . i
If S is a symmetric matrix, Λ is the diagonal matrix whose diagonal elements are the eigenvalues of S, and U is the matrix whose columns are the normalized eigenvectors of A, then U T SU = Λ
and
S = UΛU T.
If x is an approximation to an eigenvector of A then x T Ax/( x T x) (Rayleigh’s quotient) is an approximation to the corresponding eigenvalue.
Commutators [ A, B] [ A, B] [ A, B]†
≡ AB − BA = −[ B, A]
= [ B† , A† ]
[ A + B, C ] = [ A, C ] + [ B, C ] [ AB, C ]
= A[ B, C ] + [ A, C ] B
[ A, [ B, C ]] + [ B, [C, A]] + [C, [ A, B]] = 0
Hermitian algebra b† = (b∗1 , b∗2 , . . .) Matrix form Hermiticity
b∗ · A · c = ( A · b)∗ · c
Eigenvalues, λ real
Au i = λ(i) ui
Orthogonality Completeness
Operator form Z
ψ∗ Oφ =
Bra-ket form
(Oψ)∗φ
ui · u j = 0 b = ∑ ui (ui · b)
φ = ∑ ψi
ψ∗i ψ j = 0
i
Z
ψ∗i φ
hψ|O|φi O |i i = λ i | i i
Oψi = λ(i)ψi Z
i
Z
hi | j i = 0 φ = ∑ |i i hi |φi i
Rayleigh–Ritz Lowest eigenvalue
b∗ · A · b λ0 ≤ b∗ · b
Z
λ0 ≤ Z
Page 4 of 24
ψ∗ Oψ ∗
ψ ψ
hψ|O|ψi hψ|ψi
(i 6 = j )
Pauli spin matrices σx =
0 1
1 , 0
σ xσ y = iσ z ,
σy =
0 i
σ yσ z = iσ x ,
−i , 0
σz =
σ zσ x = iσ y ,
1 0
0 −1
σ xσ x = σ yσ y = σ zσ z = I
Vector Calculus Notation φ is a scalar function of a set of position coordinates. In Cartesian coordinates φ = φ( x, y, z); in cylindrical polar coordinates φ = φ(ρ, ϕ, z); in spherical polar coordinates φ = φ(r, θ , ϕ); in cases with radial symmetry φ = φ(r). A is a vector function whose components are scalar functions of the position coordinates: in Cartesian coordinates A = iA x + jA y + kA z , where A x , A y , A z are independent functions of x, y, z. ∂ ∂x ∂ ∂ ∂ ∂ + j +k ≡ In Cartesian coordinates ∇ (‘del’) ≡ i ∂y ∂x ∂y ∂z ∂ ∂z
grad φ = ∇φ,
div A = ∇ · A,
curl A = ∇ × A
Identities grad(φ1 + φ2 ) ≡ grad φ1 + grad φ2
grad(φ1φ2 ) ≡ φ1 grad φ2 + φ2 grad φ1
curl( A + A ) ≡ curl A1 + curl A2
div(φ A) ≡ φ div A + (grad φ) · A,
div( A1 + A2 ) ≡ div A1 + div A2
curl(φ A) ≡ φ curl A + (grad φ) × A
div( A1 × A2 ) ≡ A2 · curl A1 − A1 · curl A2
curl( A1 × A2 ) ≡ A1 div A2 − A2 div A1 + ( A2 · grad) A1 − ( A1 · grad) A2 div(curl A) ≡ 0,
curl(grad φ) ≡ 0
curl(curl A) ≡ grad(div A) − div(grad A) ≡ grad(div A) − ∇ 2 A grad( A1 · A2 ) ≡ A1 × (curl A2 ) + ( A1 · grad) A2 + A2 × (curl A1 ) + ( A2 · grad) A1
Page 5 of 24
Grad, Div, Curl and the Laplacian Cartesian Coordinates
Conversion to Cartesian Coordinates
Cylindrical Coordinates
x = ρ cos ϕ
Vector A
Axi + A y j + Az k
Gradient ∇φ
∂φ ∂φ ∂φ i+ j+ k ∂x ∂y ∂z
Divergence
∇·A
y = ρ sin ϕ
1 ∂φ ∂φ ∂φ b+ b+ b ρ ϕ z ∂ρ ρ ∂ϕ ∂z
i j k ∂ ∂ ∂ ∂x ∂y ∂z Ax A y Az
1 1 ρ b b b ϕ z ρ ρ ∂ ∂ ∂ ∂ρ ∂ϕ ∂z Aρ ρ Aϕ A z
∂ 2φ ∂2φ ∂2φ + 2 + 2 2 ∂x ∂y ∂z
∇2φ
b + Aϕϕ b Arbr + Aθθ
b + Aϕϕ b + Azb Aρ ρ z
1 ∂Aϕ ∂A z 1 ∂(ρ Aρ ) + + ρ ∂ρ ρ ∂ϕ ∂z
Laplacian
x = r cos ϕ sin θ y = r sin ϕ sin θ z = r cos θ
z=z
∂A y ∂A z ∂A x + + ∂x ∂y ∂z
Curl ∇ × A
Spherical Coordinates
1 ∂ ρ ∂ρ
1 ∂φ 1 ∂φ b ∂φ b br + θ+ ϕ ∂r r ∂θ r sin θ ∂ϕ
1 ∂Aθ sin θ 1 ∂ (r 2 Ar ) + 2 ∂r r sin θ ∂θ r 1 ∂Aϕ + r sin θ ∂ϕ 1 1 b 1 b 2 br θ ϕ r sin θ r sin θ r ∂ ∂ ∂ ∂r ∂θ ∂ϕ Ar rAθ rAϕ sin θ 1 1 ∂ ∂ ∂φ 2 ∂φ r + 2 sin θ ∂r ∂θ r2 ∂r r sin θ ∂θ
∂φ 1 ∂2φ ∂ 2φ ρ + 2 2+ 2 ∂ρ ρ ∂ϕ ∂z
+
Transformation of integrals L = the distance along some curve ‘C’ in space and is measured from some fixed point. S = a surface area
τ = a volume contained by a specified surface bt = the unit tangent to C at the point P b n = the unit outward pointing normal A = some vector function
dL = the vector element of curve (= bt dL)
dS = the vector element of surface (= b n dS) Z
Then
C
A · bt dL =
and when A = ∇φ Z
C
Z
Z
(∇φ) · dL =
C
C
A · dL
dφ
Gauss’s Theorem (Divergence Theorem) When S defines a closed region having a volume τ
also
Z
(∇ · A) dτ =
Z
(∇φ) dτ =
τ
τ
Z
Z
S
S
(A · b n) dS =
φ dS
Z
S
A · dS Z
τ
(∇ × A) dτ =
Page 6 of 24
Z
S
(b n × A) dS
∂ 2φ 1 2 r sin θ ∂ϕ2 2
Stokes’s Theorem When C is closed and bounds the open surface S, Z
also Z
S
S
(∇ × A) · dS =
Z
C
(b n × ∇φ) dS =
Z
C
A · dL
φ dL
Green’s Theorem Z
ψ∇φ · dS =
S
=
Z
∇ · (ψ∇φ) dτ
Zτ τ
Green’s Second Theorem Z
τ
ψ∇2φ + (∇ψ) · (∇φ) dτ
(ψ∇2φ − φ∇2 ψ) dτ =
Z
S
[ψ(∇φ) − φ(∇ψ)] · dS
Complex Variables Complex numbers The complex number z = x + iy = r(cos θ + i sin θ ) = r ei(θ +2nπ), where i2 = −1 and n is an arbitrary integer. The real quantity r is the modulus of z and the angle θ is the argument of z. The complex conjugate of z is z ∗ = x − iy = 2 r(cos θ − i sin θ ) = r e−iθ ; zz∗ = | z| = x2 + y2
De Moivre’s theorem (cos θ + i sin θ )n = einθ = cos nθ + i sin nθ
Power series for complex variables. ez
z3 3! z2 cos z =1− 2! z2 ln(1 + z) = z − 2
sin z
z2 zn + ···+ + ··· 2! n! z5 + −··· 5! z4 + − ··· 4! z3 + −··· 3
=1+z+ =z−
convergent for all finite z convergent for all finite z convergent for all finite z principal value of ln (1 + z)
This last series converges both on and within the circle | z| = 1 except at the point z = −1.
z3 z5 + −··· 3 5 This last series converges both on and within the circle | z| = 1 except at the points z = ±i. tan−1 z
=z−
n(n − 1) 2 n(n − 1)(n − 2) 3 z + z + ··· 2! 3! This last series converges both on and within the circle | z| = 1 except at the point z = −1.
(1 + z)n = 1 + nz +
Page 7 of 24
Trigonometric Formulae cos2 A + sin 2 A = 1
sec2 A − tan2 A = 1
cos 2A = cos 2 A − sin 2 A
sin 2A = 2 sin A cos A
cosec2 A − cot2 A = 1 2 tan A tan 2A = . 1 − tan2 A
sin ( A ± B) = sin A cos B ± cos A sin B
cos A cos B =
cos( A + B) + cos( A − B) 2
cos( A ± B) = cos A cos B ∓ sin A sin B
sin A sin B =
cos( A − B) − cos( A + B) 2
sin A cos B =
sin( A + B) + sin ( A − B) 2
tan( A ± B) =
tan A ± tan B 1 ∓ tan A tan B
sin A + sin B = 2 sin
A+B A−B cos 2 2
cos2 A =
1 + cos 2A 2
sin A − sin B = 2 cos
A+B A−B sin 2 2
sin 2 A =
1 − cos 2A 2
cos A + cos B = 2 cos
A+B A−B cos 2 2
cos3 A =
3 cos A + cos 3A 4
sin 3 A =
3 sin A − sin 3A 4
cos A − cos B = −2 sin
A−B A+B sin 2 2
Relations between sides and angles of any plane triangle In a plane triangle with angles A, B, and C and sides opposite a, b, and c respectively, a b c = = = diameter of circumscribed circle. sin A sin B sin C a2 = b2 + c2 − 2bc cos A a = b cos C + c cos B
b2 + c2 − a2 2bc a−b C A−B = cot tan 2 a+b 2 q 1 1 1 area = ab sin C = bc sin A = ca sin B = s(s − a)(s − b)(s − c), 2 2 2 cos A =
where s =
Relations between sides and angles of any spherical triangle In a spherical triangle with angles A, B, and C and sides opposite a, b, and c respectively, sin a sin b sin c = = sin A sin B sin C cos a = cos b cos c + sin b sin c cos A cos A = − cos B cos C + sin B sin C cos a
Page 8 of 24
1 ( a + b + c) 2
Hyperbolic Functions x2 x4 1 x ( e + e− x ) = 1 + + + ··· 2 2! 4! 1 x3 x5 sinh x = ( ex − e− x ) = x + + + ··· 2 3! 5!
valid for all x
cosh x =
valid for all x
cosh ix = cos x
cos ix = cosh x
sinh ix = i sin x sinh x tanh x = cosh x cosh x coth x = sinh x
sin ix = i sinh x 1 sech x = cosh x 1 cosech x = sinh x
cosh 2 x − sinh 2 x = 1
For large positive x: cosh x ≈ sinh x →
ex 2
tanh x → 1
For large negative x: cosh x ≈ − sinh x →
e− x 2
tanh x → −1
Relations of the functions sinh x
= − sinh (− x)
sech x
cosh x
= cosh (− x)
cosech x = − cosech(− x)
tanh x
= − tanh(− x)
coth x
sinh x =
tanh x
2 tanh ( x/2) 2
1 − tanh ( x/2)
=
q
q
2
=q
tanh x 1 − tanh2 x
1 − sech x
cosh x =
sech x
= sech(− x)
= − coth (− x) 1 + tanh2 ( x/2) 2
1 − tanh ( x/2)
=
cosech 2 x + 1 r cosh x − 1 sinh ( x/2) = 2 cosh x − 1 sinh x tanh( x/2) = = sinh x cosh x + 1
cosech x =
sinh (2x) = 2 sinh x cosh x
tanh(2x) =
coth x
=
q
q
1 − tanh2 x
= q
coth 2 x − 1 r cosh x + 1 cosh ( x/2) = 2
2 tanh x 1 + tanh 2 x
cosh (2x) = cosh 2 x + sinh 2 x = 2 cosh2 x − 1 = 1 + 2 sinh 2 x sinh (3x) = 3 sinh x + 4 sinh 3 x tanh(3x) =
3 tanh x + tanh3 x
cosh 3x = 4 cosh 3 x − 3 cosh x
1 + 3 tanh2 x
Page 9 of 24
1 1 − tanh2 x
sinh ( x ± y) = sinh x cosh y ± cosh x sinh y cosh( x ± y) = cosh x cosh y ± sinh x sinh y tanh( x ± y) =
tanh x ± tanh y 1 ± tanh x tanh y
1 sinh x + sinh y = 2 sinh ( x + y) cosh 2 1 sinh x − sinh y = 2 cosh ( x + y) sinh 2 sinh x ± cosh x = tanh x ± tanh y =
1 ( x − y) 2 1 ( x − y) 2
1 ± tanh ( x/2) = e± x 1 ∓ tanh( x/2) sinh ( x ± y) cosh x cosh y
coth x ± coth y = ±
Inverse functions
sinh ( x ± y) sinh x sinh y
! x2 + a2 sinh a ! p x + x2 − a2 −1 x cosh = ln a a 1 a+x −1 x tanh = ln a 2 a−x x 1 x +a −1 coth = ln a 2 x−a s 2 x a a sech−1 = ln + − 1 a x x2 s 2 a a x + 1 cosech−1 = ln + a x x2 −1
x = ln a
1 1 cosh x + cosh y = 2 cosh ( x + y) cosh ( x − y) 2 2 1 1 cosh x − cosh y = 2 sinh ( x + y) sinh ( x − y) 2 2
x+
p
for −∞ < x < ∞ for x ≥ a for x2 < a2 for x2 > a2 for 0 < x ≤ a for x 6= 0
Limits nc xn → 0 as n → ∞ if | x| < 1 (any fixed c) xn /n! → 0 as n → ∞ (any fixed x)
(1 + x/n)n → ex as n → ∞, x ln x → 0 as x → 0 If f ( a) = g( a) = 0
12
then
lim
x→ a
f 0 ( a) f ( x) = 0 g( x) g ( a)
(l’Hopital’s ˆ rule)
Page 10 of 24
Differentiation (uv)0 = u0 v + uv0 ,
u 0 v
=
u0 v − uv0 v2
(uv)(n) = u(n) v + nu(n−1) v(1) + · · · + n Cr u(n−r) v(r) + · · · + uv(n) n! n n = where Cr ≡ r!(n − r)! r d (sin x) = cos x dx d (cos x) = − sin x dx d (tan x) = sec2 x dx d (sec x) = sec x tan x dx d (cot x) = − cosec2 x dx d (cosec x) = − cosec x cot x dx
d (sinh x) dx d (cosh x) dx d (tanh x) dx d (sech x) dx d (coth x) dx d (cosech x) dx
Leibniz Theorem
= cosh x = sinh x = sech2 x = − sech x tanh x = − cosech2 x = − cosech x coth x
Integration Standard forms Z
xn dx =
1 dx x Z eax dx Z
Z Z Z Z Z Z Z Z Z Z
xn+1 +c n+1
= ln x + c
for n 6= −1 Z
ln x dx = x(ln x − 1) + c 1 x ax ax x e dx = e − 2 +c a a
1 ax e +c a x2 1 x ln x dx = ln x − +c 2 2 x 1 1 dx = tan−1 +c 2 2 a a a +x a+x 1 1 1 −1 x tanh ln dx = + c = +c a a 2a a−x a2 − x2 1 1 1 x−a −1 x dx = − coth +c= +c ln a a 2a x+a x2 − a2 x −1 1 dx = +c 2(n − 1) ( x2 ± a2 )n−1 ( x2 ± a2 )n x 1 dx = ln( x2 ± a2 ) + c 2 x2 ± a2 x 1 p dx = sin−1 +c a a2 − x2 p 1 p dx = ln x + x2 ± a2 + c x2 ± a2 p x p dx = x2 ± a2 + c x2 ± a2 x i p 1h p 2 a2 − x2 dx = x a − x2 + a2 sin −1 +c 2 a
=
Z
Page 11 of 24
for x2 < a2 for x2 > a2 for n 6= 1
Z Z
∞ 0
1 dx = π cosec pπ (1 + x) x p
∞
2
cos( x ) dx =
0
Z
∞ 0
for p < 1
1 sin ( x ) dx = 2 2
r
π 2
√ exp(− x2 /2σ 2 ) dx = σ 2π −∞ √ Z ∞ 1 × 3 × 5 × · · · (n − 1)σ n+1 2π n 2 2 x exp(− x /2σ ) dx = −∞ 0
Z
Z
Z Z Z Z Z
∞
sin x dx
cos x dx tan x dx
cot x dx
for n ≥ 1 and odd
Z
sinh x dx
= cosh x + c
= sin x + c
Z
cosh x dx
= sinh x + c
= − ln(cos x) + c
Z
tanh x dx
= ln(cosh x) + c
Z
cosech x dx = ln [tanh( x/2)] + c
= ln(sec x + tan x) + c
Z
sech x dx
= 2 tan−1 ( ex ) + c
= ln(sin x) + c
Z
coth x dx
= ln(sinh x) + c
= − cos x + c
cosec x dx = ln(cosec x − cot x) + c sec x dx
for n ≥ 2 and even
sin (m + n) x sin (m − n) x − +c 2(m − n) 2(m + n) Z sin (m + n) x sin (m − n) x + +c cos mx cos nx dx = 2(m − n) 2(m + n) Z
sin mx sin nx dx =
if m2 6= n2 if m2 6= n2
Standard substitutions If the integrand is a function of: p ( a2 − x2 ) or a2 − x2 p ( x2 + a2 ) or x2 + a2 p ( x2 − a2 ) or x2 − a2
substitute: x = a sin θ or x = a cos θ x = a tan θ or x = a sinh θ x = a sec θ or x = a cosh θ
If the integrand is a rational function of sin x or cos x or both, substitute t = tan( x/2) and use the results: sin x =
2t 1 + t2
cos x =
1 − t2 1 + t2
If the integrand is of the form: Z Z
dx p ( ax + b) px + q
dx q ( ax + b) px2 + qx + r
dx =
2 dt . 1 + t2
substitute: px + q = u2
ax + b =
1 . u
Page 12 of 24
Integration by parts Z
b a
b Z b u dv = uv − v du a a
Differentiation of an integral If f ( x, α ) is a function of x containing a parameter α and the limits of integration a and b are functions of α then Z b(α )
d dα
a (α )
f ( x, α ) dx = f (b, α )
db da − f ( a, α ) + dα dα
Z b(α ) ∂
f ( x, α ) dx.
∂α
a (α )
Special case, d dx
Z
x a
f ( y) dy = f ( x).
Dirac δ-‘function’ 1 δ (t − τ ) = 2π
Z
∞
−∞
exp[iω(t − τ )] dω.
If f (t) is an arbitrary function of t then
δ (t) = 0 if t 6= 0, also
Z
∞
−∞
Z
∞
−∞
δ (t − τ ) f (t) dt = f (τ ).
δ (t) dt = 1
Reduction formulae Factorials n! = n(n − 1)(n − 2) . . . 1,
0! = 1.
Stirling’s formula for large n: For any p > −1,
Z
∞ 0
For any p, q > −1,
Z
x p e− x dx = p 1
0
ln(n!) ≈ n ln n − n. Z
∞
0
x p (1 − x)q dx =
x p−1 e− x dx = p!.
(− 1/2)! =
√
π,
( 1/2)! =
√ π/ , 2
p!q! . ( p + q + 1)!
Trigonometrical If m, n are integers, m − 1 π/ 2 n − 1 π/ 2 sin m−2 θ cosn θ dθ = sin m θ cosn−2 θ dθ m+n 0 m+n 0 0 and can therefore be reduced eventually to one of the following integrals Z π/ 2
sin m θ cos n θ dθ =
Z π/ 2
sin θ cos θ dθ =
0
1 , 2
Z
Z
Z π/ 2 0
sin θ dθ = 1,
Z π/ 2 0
cos θ dθ = 1,
Z π/ 2 0
Other If In =
Z
∞ 0
xn exp(−α x2 ) dx
then
In =
(n − 1) In − 2 , 2α
I0 =
Page 13 of 24
1 2
r
π , α
I1 =
1 . 2α
dθ =
π . 2
etc.
Differential Equations Diffusion (conduction) equation ∂ψ = κ ∇2ψ ∂t
Wave equation ∇2ψ =
1 ∂2ψ c2 ∂t2
Legendre’s equation (1 − x2 )
dy d2 y − 2x + l (l + 1) y = 0, dx2 dx
1 solutions of which are Legendre polynomials Pl ( x), where Pl ( x) = l 2 l! 1 2 P0 ( x) = 1, P1 ( x) = x, P2 ( x) = (3x − 1) etc. 2 Recursion relation Pl ( x) =
1 [(2l − 1) xPl −1 ( x) − (l − 1) Pl −2( x)] l
Orthogonality Z
1
−1
Pl ( x) Pl 0 ( x) dx =
2 δll 0 2l + 1
Bessel’s equation x2
d2 y dy +x + ( x2 − m2 ) y = 0, dx2 dx
solutions of which are Bessel functions Jm ( x) of order m. Series form of Bessel functions of the first kind
(−1)k ( x/2)m+2k k!(m + k)! k=0 ∞
Jm ( x ) =
∑
(integer m).
The same general form holds for non-integer m > 0.
Page 14 of 24
d dx
l
l x2 − 1 , Rodrigues’ formula so
Laplace’s equation ∇2 u = 0
If expressed in two-dimensional polar coordinates (see section 4), a solution is u(ρ, ϕ) = Aρn + Bρ−n C exp(inϕ) + D exp(−inϕ)
where A, B, C, D are constants and n is a real integer.
If expressed in three-dimensional polar coordinates (see section 4) a solution is u(r, θ , ϕ) = Arl + Br−(l +1) Plm C sin mϕ + D cos mϕ where l and m are integers with l ≥ |m| ≥ 0; A, B, C, D are constants; | m | d Plm (cos θ ) = sin|m| θ Pl (cos θ ) d(cos θ )
is the associated Legendre polynomial. Pl0 (1) = 1.
If expressed in cylindrical polar coordinates (see section 4), a solution is u(ρ, ϕ, z) = Jm (nρ) A cos mϕ + B sin mϕ C exp(nz) + D exp(−nz)
where m and n are integers; A, B, C, D are constants.
Spherical harmonics The normalized solutions Ylm (θ , ϕ) of the equation 1 ∂ ∂ ∂2 1 sin θ + Ylm + l (l + 1)Ylm = 0 sin θ ∂θ ∂θ sin2 θ ∂ϕ2 are called spherical harmonics, and have values given by s m 2l + 1 (l − |m|)! m for m ≥ 0 m imϕ Yl (θ , ϕ) = × (−1) Pl (cos θ ) e 4π (l + |m|)! 1 for m < 0 r r r 1 3 3 0 ±1 0 i.e., Y0 = , Y1 = cos θ, Y1 = ∓ sin θ e±iϕ , etc. 4π 4π 8π Orthogonality Z
Yl∗m Ylm0 dΩ = δll 0 δmm0 0
4π
Calculus of Variations The condition for I =
Z
b a
F ( y, y0, x) dx to have a stationary value is
Euler–Lagrange equation.
Page 15 of 24
∂F d = ∂y dx
dy ∂F 0 . This is the 0 , where y = dx ∂y
Functions of Several Variables ∂φ implies differentiation with respect to x keeping y, z, . . . constant. ∂x ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ dφ = dx + dy + dz + · · · and δφ ≈ δx + δy + δz + · · · ∂x ∂y ∂z ∂x ∂y ∂z ∂φ ∂φ ∂φ is also written as when the variables kept where x, y, z, . . . are independent variables. or ∂x ∂x ∂x
If φ = f ( x, y, z, . . .) then
y,...
constant need to be stated explicitly. If φ is a well-behaved function then
If φ = f ( x, y), ∂φ 1 = , ∂x ∂x y ∂φ y
∂φ ∂x
y,...
∂2φ ∂ 2φ = etc. ∂x ∂y ∂y ∂x
y
∂x ∂y
φ
∂y ∂φ
x
= −1.
Taylor series for two variables If φ( x, y) is well-behaved in the vicinity of x = a, y = b then it has a Taylor series 2 2 ∂φ ∂2φ ∂φ 1 2∂ φ 2∂ φ +··· φ( x, y) = φ( a + u, b + v) = φ( a, b) + u u + 2uv +v + +v ∂x ∂y 2! ∂x ∂y ∂x2 ∂y2
where x = a + u, y = b + v and the differential coefficients are evaluated at x = a,
y=b
Stationary points ∂2φ ∂2φ ∂φ ∂φ ∂2φ = = = 0. Unless 2 = = 0, the following 2 ∂x ∂y ∂x ∂y ∂x ∂y conditions determine whether it is a minimum, a maximum or a saddle point. ∂2φ ∂2φ > 0, or > 0, 2 2 Minimum: ∂2φ ∂2φ ∂φ ∂x2 ∂y2 and > 2 2 2 2 ∂x ∂y ∂φ ∂φ ∂x ∂y Maximum: < 0, or < 0, 2 2 ∂x ∂y 2 ∂2φ ∂2φ ∂2φ Saddle point: < ∂x ∂y ∂x2 ∂y2
A function φ = f ( x, y) has a stationary point when
If
∂2φ ∂2φ ∂2φ = = = 0 the character of the turning point is determined by the next higher derivative. ∂x ∂y ∂x2 ∂y2
Changing variables: the chain rule If φ = f ( x, y, . . .) and the variables x, y, . . . are functions of independent variables u, v, . . . then ∂φ ∂φ ∂x ∂φ ∂y = + + ··· ∂u ∂x ∂u ∂y ∂u ∂φ ∂x ∂φ ∂y ∂φ = + + ··· ∂v ∂x ∂v ∂y ∂v etc.
Page 16 of 24
Changing variables in surface and volume integrals – Jacobians If an area A in the x, y plane maps into an area A 0 in the u, v plane then ∂x ∂x Z Z ∂u ∂v f ( x, y) dx dy = f (u, v) J du dv where J = A A0 ∂y ∂y ∂u ∂v ∂( x, y) The Jacobian J is also written as . The corresponding formula for volume integrals is ∂(u, v) ∂x ∂x ∂x ∂u ∂v ∂w Z Z ∂y ∂y ∂y f ( x, y, z) dx dy dz = f (u, v, w) J du dv dw where now J = V V0 ∂u ∂v ∂w ∂z ∂z ∂z ∂u ∂v ∂w
Fourier Series and Transforms Fourier series If y( x) is a function defined in the range −π ≤ x ≤ π then y( x) ≈ c0 +
M
∑
cm cos mx +
m=1
M0
∑
sm sin mx
m=1
where the coefficients are Z π 1 y( x) dx c0 = 2π −π Z π 1 cm = y( x) cos mx dx π −π Z π 1 sm = y( x) sin mx dx π −π
(m = 1, . . . , M) (m = 1, . . . , M 0 )
with convergence to y( x) as M, M 0 → ∞ for all points where y( x) is continuous.
Fourier series for other ranges Variable t, range 0 ≤ t ≤ T, (i.e., a periodic function of time with period T, frequency ω = 2π/ T). y(t) ≈ c0 + ∑ cm cos mωt + ∑ sm sin mωt
where
ω T ω T ω T y(t) dt, cm = y(t) cos mωt dt, sm = y(t) sin mωt dt. 2π 0 π 0 π 0 Variable x, range 0 ≤ x ≤ L, 2mπx 2mπx y( x) ≈ c0 + ∑ cm cos + ∑ sm sin L L where Z Z Z 2 L 1 L 2 L 2mπx 2mπx dx, sm = dx. c0 = y( x) dx, cm = y( x) cos y( x) sin L 0 L 0 L L 0 L c0 =
Z
Z
Z
Page 17 of 24
Fourier series for odd and even functions If y( x) is an odd (anti-symmetric) function [i.e., y(− x) = − y( x)] defined in the range −π ≤ x ≤ π, then only Z 2 π sines are required in the Fourier series and s m = y( x) sin mx dx. If, in addition, y( x) is symmetric about π 0 Z 4 π/ 2 y( x) sin mx dx (for m odd). If x = π/2, then the coefficients s m are given by sm = 0 (for m even), s m = π 0 y( x) is an even (symmetric) function [i.e., y(− x) = y( x)] defined in the range −π ≤ x ≤ π, then only constant Z Z 2 π 1 π y( x) dx, cm = y( x) cos mx dx. If, in and cosine terms are required in the Fourier series and c 0 = π 0 π 0 π addition, y( x) is anti-symmetric about x = , then c0 = 0 and the coefficients c m are given by cm = 0 (for m even), 2 Z 4 π/ 2 cm = y( x) cos mx dx (for m odd). π 0 [These results also apply to Fourier series with more general ranges provided appropriate changes are made to the limits of integration.]
Complex form of Fourier series If y( x) is a function defined in the range −π ≤ x ≤ π then M
∑
y( x) ≈
−M
Cm eimx ,
Cm =
1 2π
Z
π
y( x) e−imx dx
−π
with m taking all integer values in the range ± M. This approximation converges to y( x) as M → ∞ under the same conditions as the real form. For other ranges the formulae are: Variable t, range 0 ≤ t ≤ T, frequency ω = 2π/ T, ∞
y(t) =
∑ Cm e
imω t
−∞
,
ω Cm = 2π
Variable x0 , range 0 ≤ x0 ≤ L, ∞
0
y( x ) =
∑ Cm e
i2mπx0 / L
,
−∞
Z
T
0
1 Cm = L
y(t) e−imωt dt.
Z
L 0
y( x0 ) e−i2mπx / L dx0 . 0
Discrete Fourier series If y( x) is a function defined in the range −π ≤ x ≤ π which is sampled in the 2N equally spaced points x n = nx/ N [n = −( N − 1) . . . N ], then y( xn ) = c0 + c1 cos xn + c2 cos 2xn + · · · + c N −1 cos( N − 1) xn + c N cos Nxn
+ s1 sin xn + s2 sin 2xn + · · · + s N −1 sin ( N − 1) xn + s N sin Nxn
where the coefficients are 1 y( xn ) c0 = 2N ∑ 1 cm = y( xn ) cos mxn N∑ 1 cN = y( xn ) cos Nxn 2N ∑ 1 sm = y( xn ) sin mxn N∑ 1 y( xn ) sin Nxn sN = 2N ∑ each summation being over the 2N sampling points x n .
Page 18 of 24
(m = 1, . . . , N − 1)
(m = 1, . . . , N − 1)
Fourier transforms If y( x) is a function defined in the range −∞ ≤ x ≤ ∞ then the Fourier transform b y(ω) is defined by the equations Z ∞ Z ∞ 1 b by(ω) = y(ω) eiωt dω, y(t) e−iωt dt. y(t) = 2π −∞ −∞ If ω is replaced by 2π f , where f is the frequency, this relationship becomes y(t) =
Z
∞
−∞
by( f ) ei2π f t d f ,
by( f ) =
Z
∞
−∞
y(t) e−i2π f t dt.
If y(t) is symmetric about t = 0 then Z Z ∞ 1 ∞ by(ω) cos ωt dω, by(ω) = 2 y(t) = y(t) cos ωt dt. π 0 0 If y(t) is anti-symmetric about t = 0 then Z Z ∞ 1 ∞ by(ω) sin ωt dω, by(ω) = 2 y(t) sin ωt dt. y(t) = π 0 0
Specific cases
y(t) = a, = 0,
|t| ≤ τ |t| > τ
y(t) = a(1 − |t|/τ ), = 0,
y(t) = exp(−t2 /t20 )
y(t) = f (t) eiω0 t
by(ω) = 2a
(‘Top Hat’),
|t| ≤ τ |t| > τ
(‘Saw-tooth’),
∑
m =− ∞
where
(modulated function),
by(ω) = bf (ω − ω0 ) ∞
δ (t − mτ ) (sampling function)
by(ω) =
Page 19 of 24
sinc( x) =
2a 2 ωτ ( 1 − cos ωτ ) = a τ sinc 2 ω2 τ
√ by(ω) = t0 π exp −ω2 t20 /4
(Gaussian),
∞
y(t) =
by(ω) =
sin ωτ ≡ 2aτ sinc (ωτ ) ω
∑
n =− ∞
δ (ω − 2πn/τ )
sin ( x) x
Convolution theorem If z(t) =
Z
∞
−∞
x(τ ) y(t − τ ) dτ =
Z
∞
−∞
x(t − τ ) y(τ ) dτ
≡ x(t) ∗ y(t) then
Conversely, xcy = b x ∗ by.
bz (ω) = b x(ω) by(ω).
Parseval’s theorem Z
∞
−∞
y∗ (t) y(t) dt =
1 2π
Z
∞
−∞
by∗ (ω) by(ω) dω
(if b y is normalised as on page 21)
Fourier transforms in two dimensions b (k) = V
=
Z
V (r ) e−ik·r d2 r
Z
∞ 0
2πrV (r) J0 (kr) dr
if azimuthally symmetric Examples
Fourier transforms in three dimensions b (k) = V
Z
V (r )
V (r ) e−ik·r d3 r
4π ∞ = V (r) r sin kr dr k 0 Z 1 b (k) eik·r d3 k V (r ) = V (2π)3 Z
if spherically symmetric
1 4πr e− λ r 4πr ∇V (r )
∇ 2 V (r )
Page 20 of 24
b (k) V
1 k2 1 2 k + λ2 b (k) ikV b (k) −k2 V
Laplace Transforms If y(t) is a function defined for t ≥ 0, the Laplace transform y(s) is defined by the equation y(s) = L{ y(t)} =
Z
∞
0
e−st y(t) dt
Function y(t) (t > 0)
Transform y(s)
δ (t)
1
Delta function
θ (t)
1 s
Unit step function
n! sn+1 r 1 π 2 s3 r π s
tn 1
t /2 1
t− /2
1 (s + a)
e− at sin ωt
(s2
s (s2 + ω2 ) ω (s2 − ω2 ) s (s2 − ω2 )
cos ωt sinh ωt cosh ωt e− at y(t)
y( s + a )
e − sτ y ( s )
y(t − τ ) θ (t − τ ) ty(t)
−
dy dt dn y dtn Z Z Z
t 0 t 0
t 0
y(τ ) dτ
x(τ ) y(t − τ ) dτ x(t − τ ) y(τ ) dτ
ω + ω2
dy ds
s y( s ) − y ( 0 ) n
s y( s ) − s
n−1
y(0) − s
n−2
dy dt
dn−1 y ···− dtn−1 0
0
y( s ) s
x ( s ) y( s )
[Note that if y(t) = 0 for t < 0 then the Fourier transform of y(t) is by(ω) = y(iω).]
Page 21 of 24
Convolution theorem
Numerical Analysis Finding the zeros of equations If the equation is y = f ( x) and x n is an approximation to the root then either f ( xn ) . xn+1 = xn − 0 f ( xn ) xn − xn−1 or, xn+1 = xn − f ( xn ) f ( xn ) − f ( xn−1 )
(Newton) (Linear interpolation)
are, in general, better approximations.
Numerical integration of differential equations If
dy = f ( x, y) then dx yn+1 = yn + h f ( xn , yn ) where h = xn+1 − xn
(Euler method)
y∗n+1 = yn + h f ( xn , yn ) h[ f ( xn , yn ) + f ( xn+1 , y∗n+1 )] yn+1 = yn + 2
Putting then
(improved Euler method)
Central difference notation If y( x) is tabulated at equal intervals of x, where h is the interval, then δy n+1/2 = yn+1 − yn and δ2 yn = δyn+1/2 − δyn−1/2
Approximating to derivatives
dy dx
d2 y dx2
n
≈ n
≈
δy 1 + δyn− 1/2 yn+1 − yn yn − yn−1 ≈ ≈ n+ /2 h h 2h
where h = xn+1 − xn
δ2 y n yn+1 − 2yn + yn−1 = h2 h2
Interpolation: Everett’s formula y( x) = y( x0 + θ h) ≈ θ y0 + θ y1 +
1 1 2 θ (θ − 1)δ2 y0 + θ (θ 2 − 1)δ2 y1 + · · · 3! 3!
where θ is the fraction of the interval h (= x n+1 − xn ) between the sampling points and θ = 1 − θ. The first two terms represent linear interpolation.
Numerical evaluation of definite integrals Trapezoidal rule The interval of integration is divided into n equal sub-intervals, each of width h; then Z b 1 1 f ( x) dx ≈ h c f ( a) + f ( x1 ) + · · · + f ( x j ) + · · · + f (b) 2 2 a where h = (b − a)/n and x j = a + jh. Simpson’s rule The interval of integration is divided into an even number (say 2n) of equal sub-intervals, each of width h = (b − a)/2n; then Z b h f ( a) + 4 f ( x1 ) + 2 f ( x2 ) + 4 f ( x3 ) + · · · + 2 f ( x2n−2 ) + 4 f ( x2n−1 ) + f (b) f ( x) dx ≈ 3 a
Page 22 of 24
Gauss’s integration formulae These have the general form For n = 2 : For n = 3 :
xi = ±0·5773;
Z
1
−1
n
y( x) dx ≈ ∑ ci y( xi ) 1
c i = 1, 1 (exact for any cubic).
xi = −0·7746, 0·0, 0·7746;
c i = 0·555, 0·888, 0·555 (exact for any quintic).
Treatment of Random Errors Sample mean
x=
1 ( x1 + x2 + · · · xn ) n
Residual:
d=x−x 1 Standard deviation of sample: s = √ (d21 + d22 + · · · d2n )1/2 n 1 Standard deviation of distribution: σ ≈ √ (d21 + d22 + · · · d2n )1/2 n−1 σ 1 σm = √ = q (d21 + d22 + · · · d2n )1/2 Standard deviation of mean: n n ( n − 1)
Result of n measurements is quoted as x ± σ m .
=q
1
n ( n − 1)
∑
x2i
1 − n
∑ xi
2
1 / 2
Range method A quick but crude method of estimating σ is to find the range r of a set of n readings, i.e., the difference between the largest and smallest values, then r σ≈ √ . n This is usually adequate for n less than about 12.
Combination of errors If Z = Z ( A, B, . . .) (with A, B, etc. independent) then 2 2 ∂Z ∂Z σA + σB + · · · (σ Z )2 = ∂A ∂B
So if (i)
Z = A ± B ± C,
(ii)
Z = AB or A/ B,
(iii)
Z = Am ,
(iv)
Z = ln A,
(v)
Z = exp A,
(σ Z )2 = (σ A )2 + (σ B )2 + (σC )2 σ 2 σ 2 σ 2 Z B A = + Z A B σZ σ =m A Z A σA σZ = A σZ = σA Z
Page 23 of 24
Statistics Mean and Variance A random variable X has a distribution over some subset x of the real numbers. When the distribution of X is discrete, the probability that X = x i is Pi . When the distribution is continuous, the probability that X lies in an interval δx is f ( x)δx, where f ( x) is the probability density function. Mean µ = E( X ) = ∑ Pi xi or
Z
x f ( x) dx.
Variance σ 2 = V ( X ) = E[( X − µ )2 ] =
∑ Pi (xi − µ )2 or
Z
( x − µ )2 f ( x) dx.
Probability distributions Error function: Binomial: Poisson: Normal:
x 2 2 e− y dy erf( x) = √ π 0 n x n− x f ( x) = p q where q = (1 − p), x
Z
µ = np, σ 2 = npq, p < 1.
µ x −µ e , and σ 2 = µ x! 1 ( x − µ )2 f ( x) = √ exp − 2σ 2 σ 2π f ( x) =
Weighted sums of random variables If W = aX + bY then E(W ) = aE( X ) + bE(Y ). If X and Y are independent then V (W ) = a 2 V ( X ) + b2 V (Y ).
Statistics of a data sample x 1 , . . . , xn 1 n
Sample mean x =
∑ xi
1 Sample variance s = n 2
∑( x i − x )
2
=
1 x2 n∑ i
− x2 = E( x2 ) − [E( x)]2
Regression (least squares fitting) To fit a straight line by least squares to n pairs of points ( x i , yi ), model the observations by y i = α + β( xi − x) + i , where the i are independent samples of a random variable with zero mean and variance σ 2 . Sample statistics: s 2x =
1 n
∑( x i − x ) 2 ,
s2xy
s2y =
1 n
∑ ( y i − y) 2 ,
s2xy =
1 n
∑(xi − x)( yi − y).
n (residual variance), n−2 s4 1 b ( xi − x)}2 = s2 − xy . b −β where residual variance = ∑{ yi − α y n s2x
b= b = y, β Estimators: α
s2x
b ( x − x); σb 2 = b+β ; E(Y at x) = α
b2 σb 2 b are σ b and β Estimates for the variances of α and 2 . n ns x b=r= Correlation coefficient: ρ
s2xy
sx s y
.
Page 24 of 24