Electromagnetic Fields: For Anna University [0 ed] 9789332509719, 9332509719

Electromagnetic Fields: For Anna University is an ideal textbook for the single-semester course on electromagnetic field

220 90 35MB

English Pages 503 Year 2011

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Cover......Page 1
Preface......Page 8
Acknowledgements......Page 10
Contents......Page 12
Introduction......Page 22
Applications of Electromagnetic Field Theory......Page 23
Differences between Circuit Theory and Electromagnetic Field Theory......Page 25
Notation of Scalar Parameters......Page 26
Notation of Vector Parameters......Page 29
Large Value Representation......Page 31
Some Great Contributors to Electromagnetic Field Theory......Page 32
Chapter 1: Mathematical Preliminaries......Page 34
1.1 Fundamentals of Scalars and Vectors......Page 35
Cartesian Coordinate System......Page 36
Cylindrical Coordinate Systeym......Page 37
Spherical Coordinate System......Page 39
Example and Features of Divergence......Page 43
1.6 Curl of a Vector......Page 44
1.7 Laplacian Operator......Page 46
1.8 Dirac Delta......Page 47
1.9 Decibel and Neper Concepts......Page 48
Properties of Complex Numbers......Page 49
1.11 Logarithmic Series and Identities......Page 50
1.13 Cubic Equations......Page 51
1.14 Determinants......Page 52
Minor of a Determinant......Page 53
Types of Matrices......Page 54
Properties of Matrices......Page 55
1.17 Permutations......Page 57
1.19 Basic Series......Page 58
1.21 Sine and Cosine Series......Page 59
1.23 Hyperbolic Functions......Page 60
1.24 Sine, Cosine, Tan and Cot Functions......Page 61
Gamma function......Page 63
Bessel function......Page 64
Fresnel integral......Page 66
1.26 Partial Derivative......Page 67
1.27 Some Differentiation Formulae......Page 68
1.28 Some Useful Integration Formulae......Page 70
1.29 Radian and Steradian......Page 72
1.30 Integral Theorems......Page 73
Points/Formulae to Remember......Page 74
Solved Problems......Page 75
Objective Questions......Page 83
Exercise Problems......Page 87
Chapter 2: Electrostatic Fields......Page 88
2.2 Applications of Electrostatic Fields......Page 89
Properties and Functions of Charges......Page 90
2.4 Coulomb's Law......Page 92
2.7 Electric Field Strength due to Point Charge......Page 98
2.8 Salient Features of Electric Intensity......Page 99
2.9 Electric Field due to Line Charge Density......Page 103
2.10 Electric Field Strength due to Infinite Line Charge......Page 106
2.11 Field due to Surface Charge Density, ρs(C/m2)......Page 113
2.12 Field due to Volume Charge Density, ρv (C/m3)......Page 118
2.13 Potential......Page 122
2.14 Potential at a Point......Page 123
2.15 Potential Difference......Page 126
2.16 Salient Features of Potential Difference......Page 127
2.18 Salient Features of Potential Gradient......Page 128
2.20 Potential due to Electric Dipole......Page 129
2.21 Electric Field due to Dipole......Page 133
2.22 Electric Flux......Page 134
2.23 Salient Features of Electric Flux......Page 135
2.24 Faraday's Experiment to Define Flux......Page 136
2.26 Salient Features of Electric Flux Density, D......Page 137
2.27 Gauss's Law and Applications......Page 139
2.28 Proof of Gauss's Law (on Arbitrary Surface)......Page 141
2.29 Gauss's Law in Point Form......Page 142
2.30 Divergence of a Vector, Electric Flux Density......Page 145
2.33 Salient Features of Gauss's Law......Page 146
2.34 Poisson's and Laplace's Equations......Page 147
2.35 Applications of Poisson's and Laplace's Equations......Page 148
2.36 Uniqueness Theorem......Page 149
2.38 Proof of Boundary Conditions......Page 154
2.40 Properties of Conductors......Page 157
2.41 Electric Current......Page 158
2.42 Current Densities......Page 159
2.43 Equation of Continuity......Page 160
2.44 Relaxation Time (Ty)......Page 161
2.45 Relation between Current Density and Volume Charge Density......Page 162
Diekectrics in Electric Field......Page 164
2.49 Polarisation, P......Page 166
2.50 Capacitance of Different Configurations......Page 170
2.51 Energy Stored in an Electrostatic Field......Page 180
2.52 Energy in a Capacitor......Page 183
Points/Formulae to Remember......Page 185
Objective Questions......Page 188
Answers......Page 191
Multiple Choice Questions......Page 192
Answers......Page 197
Exercise Problems......Page 198
Chapter 3: Steady Magnetic Fields......Page 200
3.3 Fundamentals of Steady Magnetic Fields......Page 201
3.4 Faraday's Law of Induction......Page 202
3.5 Magnetic Flux Density, B (wb/m2)......Page 203
3.7 Field due to Infinitely Long Current Element......Page 206
3.8 Field due to a Finite Current Element......Page 208
3.9 Ampere's Work Law or Ampere's Circuit Law......Page 210
3.10 Differential Form of Ampere's Circuit Law......Page 212
3.11 Stoke's Theorem......Page 218
3.12 Force on a Moving Charge due to Electric and Magnetic Fields......Page 219
3.14 Force on a Current Element in a Magnetic Field......Page 221
3.15 Ampere's Force Law......Page 222
3.16 Boundary Conditions on H and B......Page 224
Characteristics of Scalar Magnetic Potential (Vm)......Page 227
3.18 Vector Magnetic Potential......Page 228
Characteristics of Vector Magnetic Potential......Page 229
3.19 Force and Torque on a Loop or Coil......Page 230
Diamagnetic Materials......Page 232
Ferromagnetic Materials......Page 233
3.21 Magnetisation in Materials......Page 234
Magnetic Dipole Moment, m......Page 235
3.22 Inductance......Page 238
Toroid......Page 239
Solenoid......Page 240
Parallel Conductors of Radius, a......Page 241
3.24 Energy Density in a Magnetic Field......Page 243
3.25 Energy Stored in an Inductor......Page 245
3.26 Expression for Inductance, L, in Terms of Fundamental Parameters......Page 246
Coefficient of Coupling......Page 248
3.28 Comparison between Electric and Magnetic Fields/Circuits/Parameters......Page 249
Points/Formulae to Remember......Page 252
Objective Questions......Page 255
Answers......Page 257
Multiple Choice Questions......Page 258
Answers......Page 259
Exercise Problems......Page 260
Chapter 4: Maxwell's Equations......Page 262
4.1 Introduction......Page 263
4.2 Equation of Continuity for Time Varying Fields......Page 264
4.3 Maxwell's Equations for Time Varying Fields......Page 265
4.4 Meaning of Maxwell's Equations......Page 266
4.5 Conversion of Differential Form of Maxwell's Equation to Integral Form......Page 267
4.6 Maxwell's Equations for Static Fields......Page 268
4.9 Maxwell's Equations for Static Fields in Free Space......Page 269
4.10 Proof of Maxwell's Equations......Page 270
4.11 Sinusoidal Time Varying Field......Page 272
4.12 Maxwell's Equations in Phasor Form......Page 273
4.14 Types of Media......Page 274
4.15 Summary of Maxwell's Equations for Different Cases......Page 284
4.17 Proof of Boundary Conditions on E, D, H and B......Page 285
4.19 Boundary Conditions in Vector Form......Page 289
4.20 Time Varying Potentials......Page 291
4.21 Retarded Potentials......Page 292
4.22 Maxwell's Equations Approach to Relate Potentials, Fields and Their Sources......Page 293
4.24 Lorentz Gauge Condition......Page 294
Points/Formulae to Remember......Page 297
Objective Questions......Page 299
Answers......Page 300
Multiple Choice Questions......Page 301
Answers......Page 303
Exercise Problems......Page 304
Chapter 5 Electromagnetic Fields and Waves......Page 306
5.3 Wave Equations in Free Space......Page 307
5.4 Wave Equations for a Conducting Medium......Page 308
5.5 Uniform Plane Wave Equation......Page 309
5.6 General Solution of Uniform Plane Wave Equation......Page 312
5.7 Relation between E and H in Uniform Plane Wave......Page 313
5.9 Wave Equations in Phasor Form......Page 316
5.10 Wave Propagation in Lossless Medium......Page 317
5.11 Propagation Characteristics of EM Waves in Free Space......Page 318
5.12 Propagation Characteristics of EM Waves in Conducting Medium......Page 322
5.13 Summary of Propagation Characteristics of EM Waves in a Conducting Medium......Page 325
5.15 Wave Propagation Characteristics in Good Dielectrics......Page 328
5.16 Summary of the Propagation Characteristics of EM Waves in Good Dielectrics......Page 330
5.17 Wave Propagation Characteristics in Good Conductors......Page 331
5.19 Depth of Penetration, (m)......Page 332
Linear Polarisation......Page 334
Elliptical Polarisation......Page 335
5.22 Direction Cosines of a Vector Field......Page 336
5.23 Wave on a Perfect Conductor-Normal Incidence......Page 340
5.24 Waves on Dielectric-Normal Incidence......Page 342
Parallel Polarisation......Page 345
Parallel Polarisation......Page 346
Perpendicular Polarisation......Page 350
Parallel Polarisation......Page 351
Perpendicular Polarisation......Page 354
5.28 Brewster Angle......Page 355
5.29 Total Internal Reflection......Page 356
5.30 Surface Impedance......Page 357
5.31 Poynting Vector and Flow of Power......Page 359
5.32 Complex Poynting Vector......Page 363
Points/Formulae to Remember......Page 365
Objective Questions......Page 367
Answers......Page 368
Multiple Choice Questions......Page 369
Answers......Page 371
Exercise Problems......Page 372
Chapter 6: Guided Waves......Page 374
6.3 Derivation of Field Equations between Parallel Palates and Propagation Parameters......Page 375
6.4 Field Components for TE Waves (Ez = 0)......Page 379
6.5 Field Components of TM Waves (Hz = 0)......Page 381
6.6 Propagation Parameters of TE and TM Waves......Page 383
6.7 Guide Wavelength......Page 384
6.8 Transverse Electromagnetic Wave (TEM Wave)......Page 386
6.9 Velocities of Propagation......Page 387
6.10 Attenuation in Parallel Plate Guides......Page 388
6.11 Wave Impedances......Page 389
6.13 Derivation of Field Equations in Rectangular Hollow Waveguides......Page 392
Transverse Magnetic (TM) Waves in Rectangular Waveguide......Page 396
Transverse Electric Waves......Page 400
6.14 Propagation Parameters of TE and TM Waves in Rentangular Waveguides......Page 403
6.15 TEM Wave does not Exist in Hollow Waveguides......Page 407
6.16 Excitation Methods for Defferent TE and TM Waves/Modes......Page 409
6.18 Wave Impedance in Waveguide......Page 410
Power Dessipation in a Lossy Waveguide......Page 411
6.20 Waveguide Resonators......Page 415
TM Mode (Hz = 0)......Page 416
Degenerate Mode......Page 417
6.21 Salient Features of Cavity Resonators......Page 418
6.22 Circular Waveguides......Page 422
6.23 Salient Features of Circular Waveguides......Page 423
Points/Formulate to Remember......Page 427
Objective Questions......Page 429
Answers......Page 432
Multiple Choice Questions......Page 433
Answers......Page 435
Exercise Problems......Page 436
Chapter 7: Transmission Lines......Page 438
7.2 Types of Transmission Lines......Page 439
7.4 Equivalent Circuit of a Pair of Transmission Lines......Page 441
7.5 Primary Constants......Page 442
7.6 Transmission Line Equations......Page 445
7.7 Input Impedance of a Transmission Line......Page 447
7.8 Secondary Constants......Page 449
7.9 Lossless Transmission Lines......Page 450
7.10 Distortionless Line......Page 451
7.11 Phase and Group Velocities......Page 453
7.13 Input Impedance of Lossless Transmission Line......Page 454
7.14 RF Lines......Page 456
7.15 Relation between Reflection Coefficient, Load and Characteristic Impedances......Page 457
7.16 Relation between Reflection Coefficient and Voltage Standing Wave Ratio (VSWR)......Page 458
7.17 Lines of Different Length......Page 459
Copper Loss......Page 461
Radiation Losses......Page 462
Construction of Smith Chart......Page 474
Application of Smith Chart......Page 476
Dedign of Single Stub Matching......Page 477
7.21 Double Stubs......Page 484
Design Methodology......Page 485
Points/Formulae to Remember......Page 487
Objective Questions......Page 490
Answers......Page 492
Multiple Choice Questions......Page 494
Answers......Page 496
Exercise Problems......Page 497
Model Question Paper I......Page 498
Model Question Paper II......Page 500
Solutions to Model Question Paper I......Page 502
Solurions to Model Questions Paper II......Page 503
Recommend Papers

Electromagnetic Fields: For Anna University [0 ed]
 9789332509719, 9332509719

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

(OHFWURPDJQHWLF )LHOGV

(OHFWURPDJQHWLF )LHOGV

This page is intentionally left blank.

(OHFWURPDJQHWLF)LHOGV

* 6 1 5DMX 0(3K' ,,7.*3 ),(),(7( 'HSDUWPHQW RI (OHFWURQLFV DQG &RPPXQLFDWLRQV (QJLQHHULQJ &ROOHJH RI (QJLQHHULQJ $QGKUD 8QLYHUVLW\ 9LVDNKDSDWQDP ,QGLD

3($5621 &KHQQDL Æ'HOKL Æ&KDQGLJDUK

&RS\ULJKW‹'RUOLQJ.LQGHUVOH\ ,QGLD 3YW/WG /LFHQVHHVRI3HDUVRQ(GXFDWLRQLQ6RXWK$VLD 1RSDUWRIWKLVH%RRNPD\EHXVHGRUUHSURGXFHGLQDQ\PDQQHUZKDWVRHYHUZLWKRXWWKH SXEOLVKHU·VSULRUZULWWHQFRQVHQW 7KLVH%RRNPD\RUPD\QRWLQFOXGHDOODVVHWVWKDWZHUHSDUWRIWKHSULQWYHUVLRQ7KH SXEOLVKHUUHVHUYHVWKHULJKWWRUHPRYHDQ\PDWHULDOSUHVHQWLQWKLVH%RRNDWDQ\WLPH ,6%1 H,6%19789332509719 +HDG2IILFH$ $ 6HFWRU.QRZOHGJH%RXOHYDUGWK)ORRU12,'$,QGLD 5HJLVWHUHG2IILFH/RFDO6KRSSLQJ&HQWUH3DQFKVKHHO3DUN1HZ'HOKL,QGLD

‘ P\EURWKHU

3URI .ULVKQDP 5DMX >06F 0DWK3K\VLFV  3K'@ D PDQ R IDFDGHPLF H[FHOOHQFH ZLWK LPSHFFDEOH FKDUDFWHU DQGDJUHDWDGPLQLVWUDWRU ZKRKDV PDGH PH ZKDW ,DP WRGD\

This page is intentionally left blank.

35()$&( (OHFWURPDJQHWLF )LHOGV LV D FRUH VXEMHFW IRU DOO WKH VWXGHQWV RI %(%7HFK LQ (OHFWURQLFV DQG &RPPXQLFDWLRQ (QJLQHHULQJ (OHFWURQLFV (QJLQHHULQJ (OHFWULFDO (QJLQHHULQJ (OHFWURQLF ,QVWUXPHQWDWLRQ (QJLQHHULQJ 06F (OHFWURQLFV  06F $SSOLHG 3K\VLFV  $0,(7( $0,( DQG RWKHU FRXUVHV WKURXJKRXW WKH ZRUOG (0) WKHRU\ LV HVVHQWLDO IRU WKH GHVLJQ DQG DQDO\VLV RI DOO FRPPXQLFDWLRQ DQG UDGDU V\VWHPV 0RUHRYHU LW KDV QXPHURXV DSSOLFDWLRQV LQ DOO ILHOGV RI OLIH ,W LV D XQLYHUVDO WKHRU\ DQG KDV PDQ\ DGYDQWDJHV RYHU WKH FLUFXLW WKHRU\ ZKLFK KDV OLPLWHG DSSOLFDWLRQV ,W LV DOVR XVHIXO LQ ELRPHGLFDO HQJLQHHULQJ LQ FRQQHFWLRQZLWK UDGLDWLRQ WKHUDS\ ,W LV H[WUHPHO\ XVHIXO WR LQWHUSUHW HOHFWURPDJQHWLF LQWHUIHUHQFH LQ WKH V\VWHPV IRU FRPSDWLELOLW\ VWXGLHV 7KH EHKDYLRXU RI HOHFWURPDJQHWLF ZDYHV EHWZHHQ WKH WUDQVPLWWHU DQG UHFHLYHU FDQ EH XQGHUVWRRG RQO\ ZLWK WKH FRQFHSWV RI WKH HOHFWURPDJQHWLF ILHOG (0)  WKHRU\ , KDYH EHHQ WHDFKLQJ WKLV LPSRUWDQW VXEMHFW IRU VHYHUDO \HDUV UHIHUULQJ WR ERRNV ZULWWHQE\VHYHUDOH[SHUWVOLNH.UDXV-RUGDQ+D\W.UH\V]LJDQG1DUD\DQD5DR+RZHYHU WKH JHQHUDO EHOLHI LV WKDW QR VLQJOH ERRN DYDLODEOH FDWHUV WR WKH QHHGV RI D FRPSOHWH FRXUVH UHTXLUHG IRUXQGHUJUDGXDWH DQG SRVW JUDGXDWH SURJUDPPHV ,QYLHZ RI WKLV DQ DWWHPSWLVEHLQJ PDGH WREULQJ RXW D VLPSOLILHGERRN RQWKH VXEMHFW RI(OHFWURPDJQHWLF )LHOGV ,KRSHWKDWWKLVERRNZLOOEHH[WUHPHO\XVHIXOIRU VWXGHQWV WHDFKHUVSURIHVVLRQDOV HQJLQHHUV WHFKQLFLDQV GHVLJQHUV DQG DOVR IRU VKRUWWHUP FRXUVH RUJDQLVHUV $Q\ VXJJHVWLRQV WR LPSURYH WKH ERRN ZLOO EH ZHOFRPH *  6  1 

5 DM X

This page is intentionally left blank.

$&.12:/('*(0(176 ,DPJUDWHIXOWRP\JXUXV3URI %1 'DVDQG3URI$MR\&KDNUDERUW\RI,,7.KDUDJSXU ZKR WDXJKW PH IXQGDPHQWDOV RI$SSOLHG (OHFWURPDJQHWLFV ,WKDQNDOOP\FROOHDJXHV3URI 0DGKXVXGKDQ5DR3URI 9HQNDWD5DR3URI 9HHQD .XPDUL'U+DUL%DEX3URI5DMD5DMHVZDUL3URI6DW\DQDUD\DQD5HGG\'U0DOOLNDUMXQD 5DR 0UV 6DQWD .XPDUL 'U *RSDOD 5DR 0U 6DPSDWK .XPDU DQG 'U 3DQGXUDQJD 5HGG\ IRU WKHLU FRRSHUDWLRQ WKURXJKRXW ,W LV D SULYLOHJH WR FRQYH\ P\ JUDWLWXGH ZLWK ZDUP UHJDUGV DQG UHVSHFWV WR 6UL.5DJKX &KDLUPDQ 5DJKX (QJLQHHULQJ &ROOHJH DQG 6UL 6966 5DPD &KDQGUD 5DMX IRUPHU3) &RPPLVVLRQHU DQG'LUHFWRU 5DJKX (QJLQHHULQJ&ROOHJH IRUWKHLUNLQG DSSUHFLDWLRQRIP\HIIRUWVLQWHDFKLQJDQGUHVHDUFKDQGIRUJLYLQJPHXQPDWFKHGVXSSRUW LQDOOP\DFDGHPLFHQGHDYRUV , DOVRWKDQN6UL19 5DPD5DMX IRUH[WHQGLQJVXSSRUWLQ P\ DFDGHPLF DQG SURIHVVLRQDO HIIRUWV , DP PRVW JUDWHIXO WR 3URI .& 5HGG\ D UHQRZQHG HFRQRPLVW DQG &KDLUPDQ &RXQFLO IRU +LJKHU (GXFDWLRQ *RYHUQPHQW RI $QGKUD 3UDGHVK IRU UHOHDVLQJ WKH ,QWHUQDWLRQDO HGLWLRQ RI WKH ERRN RQ $QWHQQDV DQG :DYH 3URSDJDWLRQ DQG IRU KLV NLQG DSSUHFLDWLRQ RI WKH ERRN , FRQYH\ P\ JUDWLWXGH WR 3URI 0[ VLQ  FRV E  $\ VLQ  VLQ G!  $ FRV   ] $Y  FRV  FRV G!  $\ FRV   VLQ G!   $ VLQ   ; = $ [ VLQ _   $\ FRV  @ 7KH GRW SURGXFWV RI D[ D\ DQG D] ZLWK DU D DQG DA DUH JLYHQ E\ D[  DU  VLQ  FRV _  D[  D  FRV  FRV _

D[ DA    VLQ A D\  DU  VLQ  VLQ   D\  D  FRV  VLQ _

DU DL!  FRV A D] DU  FRV  D] DH    VLQ  D=  D S   +HUH

$U  $[ VLQ  FRV _   $ VLQ  VLQ _   $] FRV  $H  $[ FRV  FRV _   $ FRV  VLQ _!  $] VLQ  $A    $[ VLQ _   $\ FRV †

0$7+(0$7,&$/ 35(/,0,1$5,(6



7KH SRLQW$ [ \ ]   $ S ]   $ U  !  LQ &DUWHVLDQ F\OLQGULFDO DQG VSKHULFDO FRRUGLQDWH V\VWHPV LV VKRZQ LQ D VLQJOH )LJ  WR XQGHUVWDQG WKH FRQFHSW DW D JODQFH

Table 1.1

&RRUGLQDWH V\VWHP &DUWHVLDQ

'LIIHUHQWLDO 4XDQWLWLHV LQ 'LIIHUHQW &RRUGLQDWHV

G/

G6

GY

G[ a [  G\  a  G] a -  \ ]

G[G\  D RU G\G] D

G[G\G]

&\OLQGULFDO

GS  DS  S GLV   G] a ]

6SKHULFDO

GU DU  U G4 aA   U VLQ  GG  D [

RU G]G[ a

\

SGSG _  a^ RU SG!G] a RU GSG] a x

S GS G _  G]

U GU G a x RU U VLQ  GU GE aA RU U VLQ  G G _  a



U VLQ   GU G G _

5HODWLRQV EHWZHHQ WKH SRODU FRRUGLQDWHV S _  DQG &DUWHVLDQ FRRUGLQDWHV [ \  DUH [  S FRV _! \  S VLQ _! 3 A[\ _! WDQ 

9[

GRFG\ ² S  GSGL^



(/(&7520$*1(7,& ),(/'6

P L   '(/ 9  23(5$725 'HILQLWLRQ 7KH GHO RU QDEOD LV NQRZQ DV GLIIHUHQWLDO YHFWRU RSHUDWRU DQG LV GHILQHG DV 9 DU³ Dų D³ G[ G\

G] 'HO KDV XQLWV RI PHWUH P 'HO LV RSHUDWHG LQ WKUHH ZD\V

 *5$',(17 2) $ 6&$/$5 9 99 *UDGLHQW RI D VFDODU LV D YHFWRU DQG LV GHILQHG DV G9 G9 G9 :  ³ [K DÅKD] R[ G\  G] ([DPSOHV DUH JUDGLHQW RI WHPSHUDWXUH JUDGLHQW RIHOHFWULF SRWHQWLDO DQG VR RQ ,W JLYHV WKH PD[LPXP VSDFH UDWH RIFKDQJH RIWKH VFDODU 7KH VFDODU FDQEH WHPSHUDWXUH SRWHQWLDO DQG VR RQ

 ',9(5*(1&( 2) $ 9(&725 $ 9$ 'LYHUJHQFH RI D YHFWRU LV D VFDODU DQG LV GHILQHG DV B   L  G$U G$Y G$ 9 $ GLY$  G[ G\ G] 'LYHUJHQFHPHDQVWKHVSUHDGLQJ RUGLYHUJLQJRID TXDQWLW\IURPDSRLQW ,W LV DSSOLFDEOHWRYHFWRUVRQO\ 7KHGLYHUJHQFHRIDYHFWRULQGLFDWHVWKHQHWIORZRI TXDQWLWLHVOLNHJDVIOXLGYDSRXUHOHFWULFDQGPDJQHWLFIOX[OLQHV,QRWKHUZRUGV LW LV D PHDVXUH RI WKH GLIIHUHQFH EHWZHHQ RXWIORZ DQG LQIORZ 7KH GLYHUJHQFH RI D YHFWRU LV SRVLWLYH LI WKH QHW IORZ LV RXWZDUG ,W LV QHJDWLYH LI WKH QHW IORZ LV LQZDUG 7KH IOXLG LV VDLG WR EH LQFRPSUHVVLEOH LI WKH GLYHUJHQFH LV ]HUR WKDW LV 9  $   LV WKH FRQGLWLRQ RI LQFRPSUHVVLELOLW\

([DPSOHV DQG )HDWXUHV RI 'LYHUJHQFH  /HDNLQJ DLU IURP D EDOORRQ \LHOGV SRVLWLYH GLYHUJHQFH  5XVKLQJ RI DLU LQWR WKH GUXP XQGHU WKH FDUULDJH RI D WUDLQ \LHOGV QHJDWLYH GLYHUJHQFH

0$7+(0$7,&$/ 35(/,0,1$5,(6



'LYHUJHQFHRIZDWHURURLOLVDOPRVW]HURDQGKHQFHWKH\DUHLQFRPSUHVVLEOH 'LYHUJHQFH RI HOHFWULF IOX[ GHQVLW\ LV HTXDO WR YROXPH FKDUJH GHQVLW\ RU

9  '  S

'LYHUJHQFH RI PDJQHWLF IOX[ GHQVLW\ LV HTXDO WR ]HUR RU

9  %  

'LYHUJHQFH RI JUDGLHQW RI VFDODU HOHFWULF SRWHQWLDO LV HTXDO WR WKH ODSODFLDQ RI WKH VFDODU RU

Y  YY Y Y

 &85/ 2) $ 9(&725 9 [ $ &XUO RI D YHFWRU LV D YHFWRU DQG LV GHILQHG DV

&XUO $

 9 [  $

´-& \ G G G[ G\ G] $  $\ $]

L

63

 G  G a  G  G a  G  G a D ³ $ $Å F/9 ³ $  $] 6/]\ ³ $  $ G\ G] \ BG] G[ ,W LV D PHDVXUH RI WKH WHQGHQF\ RI D YHFWRU TXDQWLW\ WR URWDWH RU WZLVW RU FXUO ,Q RWKHUZRUGV WKH UDWH RIURWDWLRQ RU DQJXODUYHORFLW\ DW D SRLQWLV WKH PHDVXUH RI FXUO $V WKH FXUO RI D YHFWRU UHSUHVHQWV URWDWLRQ LW LV DOVR ZULWWHQ DV FXUO $  URW $  9 [ $ ,W PD\EH QRWHG WKDW FXUO JUDGLHQW RI D VFDODU  9 [ 99  LV ]HUR 7KLV PHDQV WKDW WKH JUDGLHQW RI ILHOGV LV LUURWDWLRQDO $OVR GLY FXUO   ([DPSOHV ‡ :KHQDOHDIIORDWVLQVHDZDWHUDQGLWVURWDWLRQLVDERXWWKH]D[LV FXUO RIYHORFLW\9LVLQWKH]GLUHFWLRQ:KHQ 9 [ 9  LVSRVLWLYHLWUHSUHVHQWV URWDWLRQ IURP [ WR\ ‡ )RU D URWDWLQJ ULJLG ERG\ WKH FXUO RIYHORFLW\ LV LQ WKH GLUHFWLRQ RIWKH D[LV RI URWDWLRQ ,WV PDJQLWXGH LV HTXDO WR WZLFH WKH DQJXODU VSHHG RI URWDWLRQ ,Q &DUWHVLDQ FRRUGLQDWHV G9 G9 G9  D-J + D% LV D YHFWRU 99 ³³ D[+ R[ G\  G]



(/(&7520$*1(7,& ),(/'6

9$ 9[$

G$U

G$\

TD

G[

G\

G]

D N - 9 . G\ G] \

LV D VFDODU G$[ G$] ³  ODW Y G] G[  \

TD

G[

G\ -

D LV D YHFWRU

,Q F\OLQGULFDO FRRUGLQDWHV 99

G9  G9 G9 DS   ³ DA ³ D] LV D YHFWRU RS S S G]

  S$  L $=  9$   W W  ³³  LV D VFDODU GS S GI\ G]  $ S  M!

9[$

G]

D S

G]

 S$A BD$S  D ³ GS S  M 3

LV D YHFWRU ,Q VSKHULFDO FRRUGLQDWHV ň 7 D\ LD \ G9 D LV D YHFWRU 9\ ³M+ T+  DU U D UVLQ ƒβŒγ

G  6$        VLQ$ ³³   LV D VFDODU 9$ ³ ³ U   UVLQ%  UVLQ  _ U 9[$

HV

G$U G U ?  U UVLQ ƒβŒγ

UVLQ

 G$U ³ U$ U DU Ȍ ƒ‘

9HFWRU LGHQWLWLHV %  % %  % %  & %  & & [% '  %  & '  % [ & ' % [ & ' [ % [ & 

 % %  &  %  &  %  ³% [ &  '  &   %  &  ' [ &   % [ &  % & [ ' & ' [ %   '  &  %   '  % &

( [ %   & [ '   (  % [ & [ '

D LV D YHFWRU

0$7+(0$7,&$/ 35(/,0,1$5,(6   (  &  %  '    (  '  %  & ( [ %  [ & [ '   ( [ %  ' &   ( [ %  & '

Y Y YPY   YYY  \YYP P 9  9 ; &    9

;

99  

  Y Y  9 9Q  9   YYP 9  &   %

9  &   9  % 

9 [ &   %

9 [ &   9 [ %

9  92  F   Y Y   Z   F 9

9&   99 [ &  :  [ &

;

9 &  %   &  9 %  %  9 &  & ; 9 ; %   % ; 9 ; &  9 &[% 9

;

%9[&&9[%

& ; %   & 9 %    % 9 &   % 9 &   &9  %

9 [ 9 [ &  9 9  &    9& M &G/  _ 9[ & GV /

V

MFGV  M 9& GR 6

9

M· DÅ[& GV   _ 9[& GY V X FA9GV  M9 Y G Y 6 8 FA9G/   M D Q[9XGV /

V

O O O O   /$3/$&,$1 23(5$725 9  ,W LV GHILQHG DV 9 9 ,WV XQLW LV ³M ‡ ,W LV D VFDODU GLIIHUHQWLDO RSHUDWRU ,W LV P RSHUDWHG RQ D VFDODU DV ZHOO DV D YHFWRU

 (/(&7520$*1(7,& ),(/'6

 ̴ ƒ

9

ƒ

ƒ

 7A 7A 7 G[ G\ G]

 /DSODFLDQ RI D VFDODU HOHFWULF SRWHQWLDO 9 9  LV D VFDODU /DSODFLDQ RI DQ HOHFWULF ILHOG 9 (  LV D YHFWRU /DSODFLDQ RI D VFDODU DQG D YHFWRU LQ GLIIHUHQW FRRUGLQDWH V\VWHPV  G9 G9 G9 9 9  ³ ͖aK ͖aK ͚a &DUWHVLDQ G[ G\ G]   G 9)   3 S

 G9 G9 ʄ   A 7 7 7  &\OLQGULFDO  G] G3M S  _ 

DYA

 WW   G I   G9   G I   D G Y W  G9 99 ³U ³ UO ³  ³ ³  VLQH³   U GU ? GU- UVLQ*  A - UVLQ G† 6SKHULFDO



ƒƒ  ƒƒ  ƒ͖ ̰ 

Ǥ

9 $ ³ ͖aK ͖aK ͖´ &DUWHVLDQ G[ G\ G] $[D[$ M $ [D[$\DÅ$   \D\ $]D] ³ Á ]Á ] \ Á ]]D] Á]

G A



$  D \ A ] D ]

O O O O   ',5$& '(/7$ 7KH SURSHUWLHV RI 'LUDF 'HOWD DUH  I   I4   RR  

LI W  W4DQG RWKHUZLVH

'LUHFW 'HOWD LV XVHG WR UHSUHVHQW YHU\ VKRUW SXOVH RI KLJK DPSOLWXGH 6RPHWLPHV LW LV DOVR FDOOHG XQLW LPSXOVH IXQFWLRQ $W W   LW LV UHSUHVHQWHG E\  W $W W  W4 LW LV UHSUHVHQWHG E\  W   W4 _  W  W   GW  R 'LUDF 'HOWD LV VKRZQ LQ )LJ 

0$7+(0$7,&$/ 35(/,0,1$5,(6 

Fig. 1.5

'LUDF 'HOWD

 '(&,%(/ $1' 1(3(5 &21&(376 'HFLEHO G%  LV GHILQHG DV WHQ WLPHV WKH FRPPRQ ORJDULWKP RI WKH SRZHU UDWLR WKDW LV  G% RJ ,I3 DQG 3DUH LQSXW DQG RXWSXWSRZHUV UHVSHFWLYHO\ RIDQ HOHFWULF FLUFXLW WKHQG%LVQHJDWLYHLI3! 3Y 7KLV LQGLFDWHVSRZHUORVV ,I3 ! 3G%LVSRVLWLYH DQG WKLV LQGLFDWHV SRZHU JDLQ 'HFLEHOKDVQRGLPHQVLRQVDQGLWLVXVHGWRH[SUHVVWKHUDWLRRIWZRSRZHUV YROWDJHV FXUUHQWV RU VRXQG LQWHQVLWLHV 2QH %HO %  LV HTXDO WR WHQ GHFLEHOV

 (/(&7520$*1(7,& ),(/'6 :KHQ LQSXW DQG RXWSXW FXUUHQWV DQG YROWDJHV DUH NQRZQ ZH KDYH  G%  ORJ ?98  ORJ O O . KM 1HSHU 13  ,W KDV QR GLPHQVLRQV DQG LV XVHG WR H[SUHVV WKH UDWLR RI SRZHUV LQ FRPPXQLFDWLRQV $ 1HSHU LV GHILQHG DV WKH QDWXUDO ORJDULWKP RI WKH VTXDUH URRW RI WKH SRZHU UDWLR WKDW LV  1 S ORJHS U

9

M ORJH

YSL\

,Q WHUPV RI LQSXW DQG RXWSXW FXUUHQWV RU YROWDJHV LW LV JLYHQ E\ I , ?  1S ORJH  RUORJ ?KM

Y

DQG  1S   G%

P L   &203/(; 180%(56 %\ GHILQLWLRQ D FRPSOH[ QXPEHU LV DQ RUGHUHG SDLU UHSUHVHQWHG E\ $  [ \ ZKHUH [ LV WKH UHDO SDUW DQG \ LV WKH LPDJLQDU\ SDUW RI $ +HQFH LW LV DOVR UHSUHVHQWHG DV $  [ M\ +HUH M 9 7    LV FDOOHG LPDJLQDU\ XQLW

3URSHUWLHV RI &RPSOH[ 1XPEHUV  7ZR FRPSOH[ QXPEHUV DUH HTXDO LI WKHLU UHDO SDUWV DUH HTXDO DQG WKHLU LPDJLQDU\ SDUWV DUH DOVR HTXDO  ,I$  [ M\Y $  [ M\ WKH VXP RI WZR FRPSOH[ QXPEHUV $ DQG $ LV JLYHQ E\ $  $  $  [  [   M \  \  6XEWUDFWLRQ RI$ IURP $ LV JLYHQ E\ %  $A ³$  [A ³ [   ʄM &IL ³9W

0$7+(0$7,&$/ 35(/,0,1$5,(6  7KH SURGXFW RI $ DQG $ LV F   $L$L  [L  LYG [ 

ί š‹š͚ Ϊ ‹ š‹› Ϊ ‹š͚‹ Ǧ  š›  O ; a 9O9O   M ;9  ;9L 7KH GLYLVLRQ RI $ E\ $ LV JLYHQ E\ S

$\ $

[ M\ [M\

0XOWLSO\LQJ QXPHUDWRU DQG GHQRPLQDWRU E\ [   M\  ZH JHW

' $ L9L  [ M\  $  [M\L  [ a P [[ [ \[\\\

6R

'

͖  ͕͖ ;L[\M\  [\[ \ [\

 /2*$5,7+0,& 6(5,(6 $1' ,'(17,7,(6 [ [A ; ORJ [   ; ³      7KLV VHULHV FRQYHUJHV IRU     [   ,W GLYHUJHV IRU [   

 ORJ O[  9

   ; ; ;

B 7 7 B 7 

ORJD [\   ORJIO[ORJIO\ ORJIO[ OR J IO\

 v Lï J ê \

ORJD [Q 

QORJIO[

OR J M[ µ 

 OR J D[

 (/(&7520$*1(7,& ),(/'6 ORJD [ ORJE [ORJDE aORJE[ORJMD ORJ[ ORJ[ORJ ORJ[ ORJ[ ORJ[ORJH ORJ[

 48$'5$7,& (48$7,216 $ TXDGUDWLF HTXDWLRQ LV UHSUHVHQWHG E\ D[  E[  F   ZKHUH D E DQG F DUH FRQVWDQWV ,WV URRWV DUH JLYHQE\ ;

E \ MA $ DF D

DQG

[ ³

E A E ADF D

7KHURRWVPD\EHUHDORULPDJLQDU\DQGPD\EHHTXDORUXQHTXDOGHSHQGLQJ RQ ZKHWKHU WKH TXDQWLW\ E   DF  LV SRVLWLYH ]HUR RU QHJDWLYH

P L   &8%,& (48$7,216 ,W LV JLYHQ E\ I [   [  D[  E[  F   %\ VXEVWLWXWLQJ \  ³ IRU [ [  EHFRPHV Y \  G\  H   +HUH

G  ³ ED  DQG  H A  D DEF

,I

$

G  LLB BLBBB  9  

   9

-

_

DQG

0$7+(0$7,&$/ 35(/,0,1$5,(6 

H

%

H ? /

B

 WKHQ

WKH WKUHH YDOXHV RI \ DUH ͕  ?  !

$% $ %     K ³³ ³ DQG  

͕

› ί Ǧ

,I

  \

$% $ %  

 WKH WULJRQRPHWULF VROXWLRQLV IRXQGE\HYDOXDWLQJ WKH FXEH

URRWV RI FRPSOH[ TXDQWLWLHV 7KHQ WKH DQJOH _  LV HYDOXDWHG IURP H

&26 _!



G ` 

Y \

7KH YDOXHV RI \ ZLOO EH 



G!

› ί͖  , FRV³ Y -



\ 

M  FRVIAƒ _  DQG

\ 

_FRVI³&3 ,

P L   '(7(50,1$176 $ TXDQWLW\

LV GHILQHG DV D GHWHUPLQDQW



(/(&7520$*1(7,& ),(/'6 ,W LV VDLG WR EH D VHFRQG RUGHU GHWHUPLQDQW ,WV YDOXH LV JLYHQ E\ DO

D 

B

W

W

 D E  D E

([DPSOH 7KH YDOXH RI D GHWHUPLQDQW    

LV O [    [       O

̰͖ 

6LPLODUO\

/ A A LV FDOOHG D GHWHUPLQDQW RI WKH WKLUG RUGHU & F F

([DPSOH 7KH YDOXH RI D WKLUG RUGHU GHWHUPLQDQW

                   

O[

     

   [

        [      

        

$SSOLFDWLRQ RI 'HWHUPLQDQWV 7KH\ DUH ZLGHO\ XVHG LQ VROYLQJ VLPXOWDQHRXV HTXDWLRQV DQG DUH DOVR XVHIXO LQ GHYHORSLQJ WKH WKHRU\ RI PDWULFHV

0LQRU RI D 'HWHUPLQDQW ,Q D GHWHUPLQDQW

DL

͖͂

K &O

A  WKH PLQRU RI ER LV JLYHQ E\ & F

PLQRU RI F LV JLYHQ E\

IO

͖͂ &O 

DQG WKH

F

DL E? E

WKDW LV WKH PLQRU RI DQ HOHPHQW LQ D GHWHUPLQDQW LV D GHWHUPLQDQW REWDLQHG E\ GHOHWLQJ WKH URZ DQG WKH FROXPQ ZKLFK LQWHUVHFW DW WKDW HOHPHQW 7KH&RIDFWRU 7KHFRIDFWRURIDQHOHPHQWLQDGHWHUPLQDQWLVLWVPLQRUZLWK DVXLWDEOHVLJQ7KHVLJQ LQWKH]WK URZ DQG WK FROXPQ LV JLYHQE\ O O. 7KHQ WKH FRIDFWRU …/ RI Ea LV    [ PLQRU RI EY E

a

͖͂ &O

F

0$7+(0$7,&$/ 35(/,0,1$5,(6



3URSHUWLHV RI 'HWHUPLQDQWV 9DOXH RI WKH GHWHUPLQDQW UHPDLQV WKH VDPH DIWHU FKDQJLQJ LWV URZV LQWR FROXPQV DQG FROXPQV LQWR URZV  9DOXH RIWKH GHWHUPLQDQWUHPDLQV WKH VDPHLIDQ\ WZRURZV RUFROXPQV DUH LQWHUFKDQJHG EXW WKH VLJQ FKDQJHV  ,I WZR URZV RU FROXPQV DUH LGHQWLFDO WKH YDOXH RI WKH GHWHUPLQDQW LV ]HUR  ,IHDFKHOHPHQWRIDURZRUFROXPQLVPXOWLSOLHGE\DIDFWRUWKHGHWHUPLQDQW LV PXOWLSOLHG E\ WKH VDPH IDFWRU  ,IHDFKHOHPHQWRIDURZFRQVLVWVRIQWHUPVWKHGHWHUPLQDQWFDQEHH[SUHVVHG DV WKH VXP RI Q GHWHUPLQDQWV  :KHQHTXLPXOWLSOHV RIWKH FRUUHVSRQGLQJHOHPHQWV RIRQHRUPRUHSDUDOOHO OLQHVDUHDGGHGWRHDFKHOHPHQWRIDOLQHWKHGHWHUPLQDQWYDOXHUHPDLQVWKH VDPH

 0$75,&(6 $PDWUL[LVGHILQHGDVDUHFWDQJXODUDUUD\RIQXPEHUVRUIXQFWLRQVHQFORVHGLQ EUDFNHWV7KHVHQXPEHUVRUIXQFWLRQVDUHNQRZQDVWKHHOHPHQWVRIWKHPDWUL[



 

 

 >D E F@

D E F G

aSa[ W

U

 L



 

;  WR

U



([DPSOHV

LV D PDWUL[ FRQWDLQLQJ WZR URZV DQG RQH FROXPQ

6LPLODUO\

  ´ LV D PDWUL[ FRQWDLQLQJ WZR URZV DQG WKUHH FROXPQV   

+HUH D URZ PHDQV D KRUL]RQWDO OLQH DQG D FROXPQ PHDQV D YHUWLFDO OLQH

$SSOLFDWLRQV RI 0DWULFHV 0DWULFHVDUHZLGHO\XVHGWRVROYHOLQHDUV\VWHPVRIHTXDWLRQV 7KH\RIWHQDSSHDU DVPRGHOVRIGLIIHUHQWSUREOHPV )RUH[DPSOHLQHOHFWULFDOFLUFXLWVDQGQXPHULFDO PHWKRGV WKH\ DUH XVHG IRU VROYLQJ GLIIHUHQWLDO HTXDWLRQV

7\SHV RI 0DWULFHV  5RZ 0DWUL[³([DPSOH >  @



(/(&7520$*1(7,& ),(/'6

&ROXPQ 0DWUL[³([DPSOH

    

6TXDUH 0DWUL[³([DPSOH

  O

'LDJRQDO 0DWUL[³([DPSOH

8QLW 0DWUL[³([DPSOH

    

  R

R

 DQG       

       

 

  

1XOO 0DWUL[³([DPSOH

  2 

  

6\PPHWULF 0DWUL[³([DPSOH

        

 

6NHZ 6\PPHWULF 0DWUL[³([DPSOH





  



   



  W 8SSHU 7ULDQJXODU 0DWUL[³([DPSOH .   

 9   O ?   ¶S

/RZHU 7ULDQJXODU 0DWUL[³([DPSOH

 ? S   

3URSHUWLHV RI 0DWULFHV 7ZR PDWULFHV$ DQG % DUH HTXDO LIDQG RQO\ LI WKH\ DUH RI WKH VDPH RUGHU DQG HDFK HOHPHQW RI$ LV HTXDO WR WKH FRUUHVSRQGLQJ HOHPHQW RI %  7KH VXP RI$ DQG % H[LVWV RQO\ ZKHQ WKH\ DUH RI WKH VDPH RUGHU

0$7+(0$7,&$/ 35(/,0,1$5,(6  7KH GLIIHUHQFH RI $ DQG % H[LVWV RQO\ ZKHQ WKH\ DUH RI WKH VDPH RUGHU &? GA %  &O G D EB B& G  ©L K

,I $

8\&\

WA BDF EGB EL  DLa FL X F E ʄG _a 3 ~ c 3 K a ʄGB

,,



$  %

E\G\

$GGLWLRQ RI PDWULFHV LV FRPPXWDWLYH WKDW LV $  %  %  $ $GGLWLRQ DQG VXEWUDFWLRQ RI PDWULFHV DUH DVVRFLDWLYH WKDW LV $  %    &  $  %   &  %  $   & 7KHPXOWLSOLFDWLRQRIDPDWUL[$E\ D VFDODU .JLYHV D PDWUL[HDFKHOHPHQW RIZKLFK LV .WLPHV WKH FRUUHVSRQGLQJ HOHPHQWV RI$ 7KH GLVWULEXWLYH ODZ LV YDOLG IRU VXFK D SURGXFW WKDW LV . $  %   .$  .%  $OO WKH ODZV RI RUGLQDU\ DOJHEUD KROG JRRG IRU WKH DGGLWLRQ RU VXEWUDFWLRQ RI PDWULFHV DQG WKHLU PXOWLSOLFDWLRQE\ VFDODUV  7ZR PDWULFHV FDQ EH PXOWLSOLHG RQO\ ZKHQ WKH QXPEHU RI FROXPQV LQ WKH ILUVWLVHTXDOWRWKHQXPEHURIURZVLQWKH VHFRQG 6XFKPDWULFHVDUHVDLGWR EH FRQIRUPDEOH $%  %$ 6RPHWLPHV LI$% H[LVWV %$ PD\ QRW H[LVW DW DOO  ,$  $,  $ LI$ LV D VTXDUH PDWUL[ ZKLFK KDV WKH VDPH RUGHU DV WKDW RI ,  2$  $2   ZKHUH 2 LV D QXOO PDWUL[  ,I$%   LW GRHV QRW PHDQ WKDW $ RU % LV D QXOO PDWUL[  0XOWLSOLFDWLRQRIPDWULFHVLVDVVRFLDWLYHWKDWLV $%  & $ %& SURYLGHG$ % DUH FRQIRUPDEOH IRU WKH SURGXFW $% DQG % & DUH FRQIRUPDEOH IRU WKH SURGXFW %&  0XOWLSOLFDWLRQ RI PDWULFHV LV GLVWULEXWLYH WKDW LV $ %  &  $% $& SURYLGHG $ % DUH FRQIRUPDEOH IRU$% DQG $ & DUH FRQIRUPDEOH IRU $&  ,I$ LV D VTXDUH PDWUL[ WKHQ $  $   $

1-24

ELECTROMAGNETIC FIELDS

 7KH PDWUL[ REWDLQHG IURP D JLYHQ PDWUL[ $ E\ LQWHUFKDQJLQJ URZV DQG FROXPQV LV FDOOHG 7UDQVSRVH RI$ GHQRWHG E\ $   )RU D V\PPHWULF PDWUL[ $  $  $%   % $

 $GMRLQW RI D PDWUL[ $ LV WKH WUDQVSRVHG PDWUL[ RI FRIDFWRUV RI$  ,I$LVDQ\PDWUL[WKHQDPDWUL[%LILWH[LVWVVXFKWKDW$%  %$ -LV FDOOHG WKH ,QYHUVH RI $ %RWK WKH PDWUL[ DQG LWV LQYHUVH PXVW EH QRQVLQJXODU ,QYHUVH RI D PDWUL[ $ LV GHQRWHG E\ $ VR WKDW $  $  $ $  , $OVR

$ 

$GM$

7 7

 ,QYHUVH RI D PDWUL[ LV XQLTXH  $%   %B$  $PDWUL[ LV VDLG WREH RIUDQN U ZKHQ LW KDV DW OHDVW RQH QRQ]HUR PLQRU RI RUGHU U DQG HYHU\ PLQRU RI RUGHU KLJKHU WKDQ U YDQLVKHV ,W PHDQV WKDW WKH UDQN RI D PDWUL[ LV WKH ODUJHVW RUGHU RI DQ\ QRQYDQLVKLQJ PLQRU RI WKH PDWUL[

P L   )$&725,$/ )DFWRULDO RI Q LV GHILQHG DV WKH SURGXFW RI WKH ILUVW Q QDWXUDO QXPEHUV )DFWRULDO RI Q LV UHSUHVHQWHG E\ Q RU =Q )DFWRULDO RI Q Q ? , [  [  [  [Q 8VLQJ 6WLUOLQJ V DSSUR[LPDWLRQ Q? LV HYDOXDWHG IURP O Q  HaQQQ , Q Q I    

O O O O   3(5087$7,216 3HUPXWDWLRQV DUH GHILQHG DV GLIIHUHQW SRVVLEOH DUUDQJHPHQWV ZKLFK FDQ EH IRUPHG ZLWK D JLYHQ QXPEHU RI LWHPV WDNLQJ VRPH RU DOO RI WKHP DW D WLPH 7KHQXPEHU RISHUPXWDWLRQV RIQ GLIIHUHQWWKLQJV WDNHQU DW D WLPH LV JLYHQ XI E\ QS DQG QSU    U Q UM

MATHEMATICAL PRELIMINARIES

1-25

,I S T U W\SHV RI HOHPHQWV H[LVW DPRQJ Q HOHPHQWV WKHQ WKH QXPEHU RI SHUPXWDWLRQV DUH JLYHQ E\ Q? S?  T?  U    Q S  T  U 7KH QXPEHU RISHUPXWDWLRQV RIQ GLIIHUHQW WKLQJV WDNHQ DOO DW D WLPH LV QSQ

 &20%,1$7,216 &RPELQDWLRQV DUH GHILQHG DV WKH QXPEHU RI SRVVLEOH JURXSV ZKLFK FDQ EH IRUPHG E\ WDNLQJ VRPH RU DOO WKH QXPEHU RI WKLQJV DW D WLPH LUUHVSHFWLYH RI WKH RUGHU 7KH QXPEHU RI FRPELQDWLRQV RU JURXSV RIQ GLIIHUHQW HOHPHQWV WDNHQ U DW D WLPH LV JLYHQ E\ QFU ZKHUH

IW

Q&U

U

U IW³ U 

IW & U Q&U Q&UB[

Q&[ IW&

WL&IL 

³

 %$6,& 6(5,(6 %LQRPLDO 6HULHV 7KHVH DUH JLYHQ E\

D“E I  D“ Pa E 



E “ µ µ a ! µ a ! DaE   “ L U        U !QA \

U

+HUH WKH ODVW WHUP VKRZQ LV WKH U  O WK WHUP ,IIW LVDSRVLWLYHLQWHJHUWKH VHULHV LV ILQLWH DQG WKH ODVWWHUPLV EQ ,IQ LV OHVV WKDQ XQLW\ WKH VHULHV LV LQILQLWH DQG FRQYHUJHV RQO\ ZKHQ E  D )RU DQ\ YDOXH RI IW DQG FRQYHUJHQW ZKHQ [ LV OHVV WKDQ XQLW\ ZH KDYH “

[

A  “ Å

[

  µ  



[

 “ µ a   



[

 

Q Q  O  Z    IW  



“



ELECTROMAGNETIC FIELDS

&O“ DU 

O 7Q[ A

A



A

7 µ   !   [  



Q  I W    Z  Q   A _ 

  ; 

  ;  ;

[  [   ; 

“[ \]  D [ [\ D\[D @ ?[&P ÅA 9'

';



[



G'

G'



G]

[ [ %XW

SX YROXPHFKDUJHGHQVLW\ 9'

SX    DQGSX   Q&P

 32,6621 6 $1' /$3/$&( 6 (48$7,216 3RLVVRQ V HTXDWLRQ

9]9  B 3 Y

/DSODFH V HTXDWLRQ

99 

3URRI

7KH SRLQW IRUP RI *DXVV V ODZ LV 9'

%XW

SX

' H(

DQG

(  99 9' 9 H( 9 H  :  S'

RU

9  9

ZKHUH 9 LV D VFDODU RSHUDWRU

3



X

9P \

>DV9 9  9 @

J

DQG LV FDOOHG /DSODFH V RSHUDWRU

D D D G[Wµ Wµ 6]7

9 ³

,Q WKH UHJLRQV ZKHUH SX  3RLVVRQ V HTXDWLRQ EHFRPHV 9 9   /DSODFH V HTXDWLRQ LQ RQH GLPHQVLRQDO IRUP LV JLYHQ E\ D Y 9 9  G[

ϋ



ELECTROSTATIC FIELDS

2-61

,WV VROXWLRQ LV LQ WKH IRUP RI 9  P [ D

/DSODFH V HTXDWLRQ LQ WZR GLPHQVLRQDO IRUP LV JLYHQ E\ 

Y

I

G 9 

G 9 

G[

G\

+  



,WV VROXWLRQ LV JLYHQ E\

V(*,y)

MYG/ FLUFOH

ZKHUH U LV WKH UDGLXV RI D FLUFOH DERXW D SRLQW [ \  /DSODFH V HTXDWLRQ LQ WKUHH GLPHQVLRQDO IRUP LV JLYHQ E\ 9 )

G 9 

G 9 

G 9

G[

G\

G]

7KHYDOXH RI 9 DWSRLQW S LV WKH DYHUDJH YDOXH RI 9 RYHU D VSKHULFDO VXUIDFH RI UDGLXV U FHQWHUHG DW S DQG LW LV JLYHQ E\

WWAU - YGV

9 S

3RLVVRQ V HTXDWLRQ LQ GLIIHUHQW FRRUGLQDWHV

Y ] ) &DUW

9  9 F\

9 9 VSK

G 9 

G 9 

G 9

GN

G\

G]

OG B  a ³

G9B

3  S

GS

- BGB U  GU

GS



3X

 G 9  G 9

ʄ S G† G]



D\

U VLQ 

VLQ

9B  



G 9

U VLQ  G†

 $33/,&$7,216 2) 32,6621 6 $1' /$3/$&( 6 (48$7,216  7KH\DUH XVHIXO LQGHWHUPLQLQJ VXUIDFH FKDUJH GHQVLWLHV DQG HOHFWULF ILHOG LQ WKH UHJLRQV RI LQWHUHVW  7KH\FDQEHXVHGWRILQGWKHFDSDFLWDQFHRIGLIIHUHQWVWUXFWXUHVE\DSSURSULDWH DSSOLFDWLRQ RI ERXQGDU\ FRQGLWLRQV

2-62

ELECTROMAGNETIC FIELDS

 81,48(1(66 7+(25(0 ,W VWDWHV WKDW HLWKHU 3RLVVRQ V RU /DSODFH V HTXDWLRQ KDV RQO\ RQH VROXWLRQ 3URRI

$VVXPH WKDW

DQG 9 DUH WKH VROXWLRQV RI /DSODFH V HTXDWLRQ

DQG 9OE DQG 9K DUH WKH SRWHQWLDOV RQ WKH ERXQGDULHV %\ K\SRWKHVLV 9  9 

DQG

9 9  9  9  9   

$V 9OE DQG 9E DUH WKH YDOXHV RQ WKH ERXQGDU\ ZH KDYH Y Z

RU

9O E  9 E

9 E 9 E



&RQVLGHU D YHFWRU LGHQWLW\ QDPHO\ 9 L_$  L_ 9$ $9L_ ZKHUH Y_ LV D VFDODU DQG $ LV D YHFWRU TXDQWLW\ 7KLV LV YDOLG IRU DQ\ VFDODU ??L DQG DQ\ YHFWRU $ ,QWKHSUHVHQWFDVHOHW

9  9   $ 9 9L  9  7KHQWKHDERYHLGHQWLWLHV

EHFRPH 9  9 L9  9  9 L  9   9   9  99 9U  9  9 9 O  9   9 9 O  9   7DNH YROXPH LQWHJUDO RQ ERWK VLGHV

M\  \ LY  Y Y Y  GR  - 9L 9 99 I D  9 GY _9 9L 9 9 9L 9 GY 9

9

$SSO\LQJ GLYHUJHQFH WKHRUHP WR WKH OHIW KDQG VLGH YROXPH LQWHJUDO LV UHSODFHG E\ VXUIDFH LQWHJUDO WKDW LV - 9>ID   \ 9 9L 9 @UIX - 9L 9 9I D  9 GV 9

V

%XW RQ WKH ERXQGDU\ WKLV EHFRPHV

-Y> YLY Y YD 9  @GY

 M Y OE  Y E Y Y OE  Y E GV

ELECTROSTATIC FIELDS

2-63

5LJKW KDQG VLGH LV ]HUR EHFDXVH 9OE 9 E %\ K\SRWKHVLV ^ I D  9  v .[v fa  9  ? G R ? I D  9  9  > I D  9  @G[!  9

9

6R WKH UHPDLQLQJ LQWHJUDO LV _>9I D  9 I G Y   9

7KLV LV SRVVLEOH LI  ,QWHJUDQG LV ]HUR  ,QWHJUDQG LV SRVLWLYH LQ VRPH UHJLRQ DQG QHJDWLYH LQ VRPH RWKHU UHJLRQ 7KH VHFRQG FRQGLWLRQ FDQQRW EH WUXH DV LW LV D VTXDUH WHUP 6R WKH LQWHJUDQG LV ]HUR WKDW LV

>9 ID  O @  RU 9 ID   9   

,IWKH JUDGLHQWRID VFDODULV ]HURHYHU\ZKHUH WKHQ 9M  9  FDQQRWFKDQJH ZLWK DQ\ FRRUGLQDWH +HQFH 9M  9   FRQVWDQW 7KH FRQVWDQW LV HDVLO\ HYDOXDWHG E\ FRQVLGHULQJ D SRLQW RQ WKH ERXQGDU\ +HUH 9  9  9  E  9  E  WKDW LV

9[ 9

+HQFH SURYHG

3UREOHP  &RQVLGHU FRQFHQWULF VSKHULFDO VKHOOV LQ IUHH VSDFH LQZKLFK 9  YROWV DW U   FP DQG 9    YROWV DW U   FP )LQG ( DQG ' 6ROXWLRQ HTXDWLRQ

+HUH 9 LV DIXQFWLRQRIRQO\ UDQGQRW  DQG _  7KHQ/DSODFH V

,QWHJUDWLQJ WZLFH ZH JHW 9

 ³% U

7KH ERXQGDU\ FRQGLWLRQV DUH 9  9DWU FP P DQG 9  9DWU FP  P

WKDW LV

³A ³ % 

 DQG

2-64

ELECTROMAGNETIC FIELDS

³ % 



$   YROWP % 9 9  ³ YROW

6R

U

9

(  :  ³ ³ DU

%XW

U

U

 ( ³  D U9 P 

RU

'  *Q ( 

;

 ; ,2DÅ

B    '  M³ DU3&P

RU 3UREOHP 

7KHUH H[LVWV D SRWHQWLDO RI 9  9 RQ D FRQGXFWRU DW

P DQG 9    9 DW U   P $ GLHOHFWULF PDWHULDO ZKRVH H U  H[LVWV EHWZHHQWKHFRQGXFWRUV'HWHUPLQHWKHVXUIDFHFKDUJHGHQVLWLHVRQWKHFRQGXFWRUV 6ROXWLRQ

$V 9 LV D IXQFWLRQ RI RQO\ U /DSODFH V HTXDWLRQ LV JLYHQ E\ - B  GB U  GU

A  GU



,QWHJUDWLQJ WZLFH ZH JHW 9

U

 ³%

$  DQG % FDQ EH IRXQG E\ WKH XVH RIERXQGDU\ FRQGLWLRQV -A

WKDW LV

 $



% %

   

6ROYLQJ ZH JHW $  [O 9P % 

DQG

9 

%XW

(



9 9

ELECTROSTATIC FIELDS

 GU

( 



2-65

 D

D 9P

' H(  HH U (

DQG

[ O  ´[[



RU 2Q WKH FRQGXFWRU VXUIDFHV ' Q SV VXUIDFHGHQVLW\

$W

U  P

SV [ ,2 &P RU

3V

$W

U P 3 V

RU

Q& P

3V



  

[  ´ [  

³³Q&P

3UREOHP ,QZKDWPDQQHUGRHV SHUPLWWLYLW\YDU\WR VDWLVI\/DSODFH V HTXDWLRQ LQ D QRQKRPRJHQHRXV FKDUJHIUHH VSDFH" 6ROXWLRQ

)RU FKDUJHIUHH VSDFH 3X

9 ' 

 

9 H (  

>DV' H(@

9   H 9 9  

>DV(  99@

9  H 9 9 



,I J YDULHV VSDWLDOO\ WKHQ 9  H :  9 9 9 H  9  9  $V

9 9



9 9  9 H 





ELECTROMAGNETIC FIELDS

7KLVLVWUXHRQO\ZKHQ 9, DQG 9H DUHSHUSHQGLFXODUWRHDFKRWKHU +HQFH SHUPLWWLYLW\ VKRXOG YDU\ VR WKDW LWV JUDGLHQW LV SHUSHQGLFXODU WR WKH HOHFWULF ILHOG 3UREOHP ,IDSRWHQWLDO 9   [  \]$ \  ] D  ILQG $  VRWKDW/DSODFH V HTXDWLRQ LV VDWLVILHG E ZLWK WKHYDOXH RI $  GHWHUPLQH HOHFWULF ILHOG DW     6ROXWLRQ

D  /DSODFH V HTXDWLRQ LV

YY R G9 

RU



G[

G9 

G9

G\

G]]

ʄ+  ³Eʄ D   

$V

9  [ \]$ \  ]

7KH DERYH HTXDWLRQ EHFRPHV \]$\] 

6R E :LWK

 $



,

 

9

%XW



, 

\

=

a



\ 

=

(  : G9  G[

G9

GY

DU + 6/W + © G\

G]

>  \ ] . 

D \ 



 

[\   \ 

[\]D[  [  ]  \  ] D Y  >  [\  _ \  _  D]

(      > [[  @D[ >[     [  @D\ >  ³[ @ D] ( D[D\ D] 9P

ELECTROSTATIC FIELDS

2-67

 %281'$5