213 31 6MB
German Pages 142 [156] Year 1926
DIE WELT DER ATOME ZEHN GEMEINVERSTÄNDLICHE VORTRÄGE VON
ARTHUR HAAS DR. PHIL. A.O. PROFESSOR FÜR PHYSIK AN DER UNIVERSITÄT WIEN
M I T 37 F I G U R E N IM T E X T UND AUF DREI TAFELN
Y Q, BERLIN UND LEIPZIG
WALTER DE GRUYTER & CO. VORMALS G.J. GÖSCHEN'SCHE VERLAGSHANDLUNG . J.GUTTENTAG, VERLAGSBUCH. HANDLUNG · GEORG REIMER · KARL J. TRÜBNER . VEIT & COMP.
1926
Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten Copyright
by WALTER
DE
GRUYTER & CQ.,
Berlin
Druclc von Metzger
Μ t) Ρ
ΟΟ U)
ν) Co Η ρ
ω
Ο to
ο
Ν Μ
2 σ*
03
& α W ce «+ C
OJ
co > in
Οι
VI
2
9 ο. Λ Η
cn t/3
CO Λ
rt
Ol
Co
0 ο Ρ
Οι
CO
Οι
W Οι
00 Ο
to
u>
vj Ο
öJ
0 Η
01
Μ
4^ cn
tO
•ο Οι ν ft
00
Τ3 (1) •ι Η»· Ο ΡΗ--*
φ.
VI
4k
00 Ο}
Od
10 u>
er
•ϋ ο
CO •ο
οΛ
w
φ00 .
ϋ Ρ ίο
Ol
10 10 Η
4Οι ο αϊ Π
σ
W α>
a
Ο Ρ ο
10
φ hd & Οι 4»· ι*!
OJ Η
Μ Οο
>
Μ Ο
to
(Β
Ä CS
Η Ρ α4 α> Η-' I—' α>
DIE
GRUNDSTOFFE
73
d i s c h e S y s t e m der E l e m e n t e bezeichnet. In ihm unterscheidet man zweckmäßig- a c h t G r u p p e n mit j e z w e i U n t e r g r u p p e n ; doch sind natürlich erst von der vierten Periode an b e i d e Untergruppen vertreten. Die Untergruppe V i l l a weist nicht einzelne Elemente auf, sondern vereinigt stets je drei Elemente zu einer sogenännten T r i a d e . Die Glieder einer Triade zeigen wiederum untereinander eine weitgehende Ähnlichkeit, wie beispielsweise die drei „Platinmetalle" Osmium, Iridium und Platin. Eine merkwürdige Sonderstellung nimmt in der sechsten Periode eine f ü n f z e h n E l e m e n t e umfassende Gruppe ein, die in dieser Periode den Platz der Vertikalreihe IIIa erfüllt; es sind dies die sogenännten s e l t e n e n E r d e n , die untereinander im chemischen und physikalischen Verhalten ziemlich übereinstimmen und die auch gewöhnlich miteinander vermengt vorkommen. Die chemische Periodizität wurde übrigens bereits im Jahre 1869 von M E N D E L E J E F F und gleichzeitig auch von Lothar M E Y E R entdeckt, allerdings nur an einer noch recht unvollständigen und lückenhaften Reihe, die die beiden Forscher bloß nach steigenden Atomgewichten zu bilden vermochten, und in der eine eindeutige Numerierung der Grundstoffe selbstverständlich noch nicht möglich war. Vielfach hat die chemische Periodizität auch zu der Entdeckung neuer Elemente geführt, deren Eigenschaften eben auf Grund des periodischen Systems vorausgesagt werden konnten. Dies war schon bald nach der Aufstellung des Systems bei Gallium und Germanium, den selteneren Homologen von Aluminium und Silicium, der Fall. 1922 wurde das H a f n i u m als Homolog des Zirkons entdeckt, 1925 die beiden höheren und viel selteneren Homologen des Mangans, die die Namen M a s u r i u m und R h e n i u m erhielten, 1926 als seltene Erde das I l l i n i u m . Aus dem periodischen System folgt auch, daß von den beiden noch unbekannten Elementen Nr. 85 ein Halogen und Nr. 87 ein Alkalimetall sein müssen Die atom-
Vom atomphysikalischen Standpunkt sind nun offenbar Physika-
lisch € Dcu·
diejenigen Eigenschaften der Atome, die ihr chemisches tung der Verhalten bestimmen, als p e r i p h e r e E i g e n s c h a f t e n zu Periodizität
SECHSTER
VORTRAG.
DIE
GRUNDSTOFFE
deuten. Denn das Entstehen einer chemischen Verbindung wird von den Chemikern als eine Aneinanderlagerung einander anziehender Atome aufgefaßt. Andererseits ist aber, wie schon öfter erwähnt wurde, im neutralen Atomzustand die Zahl der den Kern umgebenden Elektronen, der „Planetenelektronen" der Ordnungszahl gleich. Aus der Periodizität der Grundstoffe müssen wir also wohl schließen, daß die den Kern umgebenden Elektronen verschiedene G r u p p e n bilden, von denen eine als die innerste, eine als die periphere anzusehen ist, während die anderen dazwischen liegen. Die periphere muß offenbar bei Elementen derselben Vertikalreihe eine ä h n l i c h e S t r u k t u r aufweisen, während andererseits von der Erreichung gewisser Kernladungszahlen an wohl auch die Entwicklung der einzelnen inneren Gruppen als a b g e s c h l o s s e n angesehen werden darf. Das Auftreten der merkwürdigen Zahlen 8, 18 und 32 in dem periodischen System läßt es aber jedenfalls vermuten, daß eine nicht bloß g e o m e t r i s c h e , sondern auch a r i t h m e t i s c h e Harmonie den Aufbau der winzigen P l a n e t e n s y s t e m e beherrscht, die die Kerne der Atome umgeben.
SIEBENTER
VOR TRAG
DAS ATOM A L S P L A N E T E N S Y S T E M Die Frage, wie sich in den Atomen der verschiedenen Das Grundstoffe die E l e k t r o n e n um den K e r n g r u p p i e r e n , Plderem stellt ein für die Physik wie für die Chemie gleich bedeu- gr'uppierung tungsvolles Problem dar. Eine vollständige Beantwortung dieser Frage ist bisher allerdings nicht möglich gewesen; aber viele hierfür wertvolle Erkenntnisse wurden durch die Erforschung der R ö n t g e n s p e k t r e n und der optischen S p e k t r e n in Verbindung mit den Erscheinungen der chemischen P e r i o d i z i t ä t gewonnen. Schon bald nach der Entdeckung der Röntgenspektren Die x-serie haben die Physiker erkannt, daß auch für diese Spektren, ebenso wie für die optischen, bestimmte Q u a n t e n b e z i e h u n g e n erfüllt sind. Besonders deutlich zeigte sich dies bei der kürzest welligen (also, wie man in der Röntgentechnik sagt, härtesten) Röntgenserie, der sogenannten K - Serie. In ihr fallen durch besondere Intensität zwei Linien auf, von denen die längerwellige und stärkere als die X a -Linie bezeichnet wird, während die andere, kürzerwellige die Kß-Linie genannt wird (vgl. die frühere Fig. 29). Die Ka-Linie zeigt nun eine nahe Verwandtschaft zu Die der ultravioletten W a s s e r s t off Ii nie, die durch einen Über- Fredeurenz gang zwischen dem zwei-und dem e i n q u a n t i g e n Z u s t a n d Aa-Lime entsteht und die daher eine Frequenz von drei V i e r t e l n der RYDBERGschen K o n s t a n t e n (3/4 R) aufweist. In dem Spektrum des i o n i s i e r t e n H e l i u m s hat (wie schon im fünften Vortrag erwähnt wurde) die Linie, die durch Übergang aus der zweiquantigen in die einquantige Bahn
76
SIEBENTER
VORTRAG
entsteht, eine v i e r m a l so g r o ß e F r e q u e n z (also 3 R), da die Kernladungszahl des Heliums z w e i beträgt. Würde (was bisher experimentell allerdings nicht gelungen ist) ein Atom eines beliebigen Grundstoffs von der Ordnungszahl ζ dadurch W a s s e r s t o f f ä h n l i c h gemacht, daß ihm alle Planetenelektronen bis auf eines entrissen würden, so müßte somit in dem Spektrum eines solchen Atoms die Linie, die durch Übergang aus dem zwei- in den einquantigen Zustand entsteht, die Frequenz 3/λ X ^ X -s2 haben. In der Tat ergeben nun bei den verschiedenen Elementen die Wellenlängenmessungen für die Frequenz der j^-Linie einen Ausdruck, der mit dem angegebenen nahezu übereinstimmt. Nur insoferne besteht ein kleiner Unterschied, als man sich die O r d n u n g s z a h l des betreffenden Elements noch um eine K o n s t a n t e v e r m i n d e r t denken muß, die für alle Grundstoffe fast denselben Wert von ungefähr 1,6 hat (die Ordnungszahl ζ wäre also in dem vorhin angegebenen Ausdruck durch eine andere Zahl ζ zu ersetzen, die um 1,6 kleiner ist). Die Abschirmung
Aus dieser Gesetzmäßigkeit erkennen wir, daß die d u r c h einen Übergang eines Elektrons a u s e i n e r z w e i q u a n t i g e n in eine e i n q u a n t i g e B a h n entsteht. Weiterhin müssen wir aber auch aus der Geringfügigkeit des an der Kernladungszahl vorzunehmenden Abzuges (1,6) folgern, daß sich der Übergang des Elektrons in ziemlicher N ä h e des K e r n s , also in der z e n t r a l e n Region des Atoms vollzieht. Im allgemeinen wirkt nämlich der Kern auf ein Planetenelektron nicht mit seiner vollen Ladung, sondern ein Teil hiervon erscheint durch diejenigen Elektronen „ a b g e s c h i r m t " , die sich z w i s c h e n dem Planetenelektron und dem Kern befinden. Der abgeschirmte Teil der Ladung ergibt sich, indem das elektrische Elementarquantum mit einer Konstanten multipliziert wird, die eben für die Entstehung der ii„-Linie etwa 1,6 beträgt und die für alle Grundstoffe nahezu gleich ist. Diese Übereinstimmung der geringen Abschirmungskonstante führt endlirfi zu dem Schlüsse, daß die i n n e r s t e und wohl auch die z w e i t i n n e r s t e E l e k t r o n e n g r u p p e bei allen Grund-
DAS
ATOM ALS
PLANETENSYSTEM
Stoffen g l e i c h b e s c h a f f e n sind (woferne von Grundstoffen mit ganz niedriger Ordnungszahl abgesehen wird). Aus den Wellenlängenmessungen und dem MOSELEYDIE sehen Gesetz ergab sich auch leicht die q u a n t e n t he ο-theoretische r e t i s c h e D e u t u n g der anderen R ö n t g e n l i n i e n . Wie Dederung in der Formel für die Frequenz der Ka-Linie der Faktor 3/i vorkommt (d. i. x/i — 1U), so ist die Kß-Linie durch den Faktor 8/g (d. i. Vi V9) charakterisiert, die stärkste Linie der L-Serie, die La-Linie, durch den Faktor 5/36 (d. i. V4 — V9). Es kann also gar keinem Zweifel unterliegen, daß die -Linie durch Übergang aus einem drei- in einen einquantigen, die L a -Linie durch Übergang aus einem dreiin einen zweiquantigen Zustand entsteht. Für die L-Serie erweist sich indessen die Abschirmungskonstante als größer (etwa 3,5); auch ist sie nicht bei allen Grundstoffen gleich groß. Ganz allgemein entstehen alle Linien der K - S e r i e durch Übergänge, für die der e i n q u a n t i g e , alle Linien der L-Serie durch Übergänge, für die ein z w e i q u a n t i g e r Zustand den E n d z u s t a n d darstellt. Für die Linien der ,.weichen" M - S e r i e ist der Endzustand d r e i q u a n t i g anzunehmen, und für die der ganz besonders langwelligen und daher auch nur bei den höchsten Grundstoffen festgestellten N- S e r i e v i e r q ü a n t i g . Wenn nun, wie die Frequenzen der Ka-lÄn\e erkennen Die lassen, für einen Übergang aus einer zweiquantigen in eine gruppen einquantige Bahn die Kernladung fast in ihrer vollen Stärke wirksam ist, dann muß sich jedenfalls die weitaus überwiegende Mehrheit der Planetenelektronen auch im normalen Zustand des Atoms in h ö h e r q u a n t i g e n B a h n e n bewegen. Unter den Planetenelektronen sind somit G r u p p e n v o n v e r s c h i e d e n e r Q u a n t e n z a h l zu unterscheiden: eine i n n e r s t e Gruppe, die als die K~Gruppe bezeichnet wird und deren Elektronen e i n q u a n t i g e B a h n e n beschreiben; eine zweitinnerste L-Gruppe, dadurch gekennzeichnet, daß die ihr angehörigen Elektronen in z w e i q u a n t i g e n B a h n e n um deji Kern laufen; eine dreiquantige M-Gruppe, eine vierquantige N-Gruppe, eine fünfquantige 0~Gruppe, eine sechsquantige P-Gruppe, und so fort.
78
SIEBENTER
VORTRAG
Der Die Röntgenlinien treten n u r als E m i s s i o n s l i n i e n aufwand auf. Hierin zeigt sich ein wesentlicher Unterschied gegenErzeügung über dem Spektrum des Wasserstoffs und den optischen Röntgen- Spektren überhaupt. Ein weiterer fundamentaler UnterIinie schied besteht auch hinsichtlich des E n e r g i e a u f w a n d e s , der zu der E r z e u g u n g e i n e r S p e k t r a l l i n i e z u m i n d e s t erforderlich ist. Bei den optischen Emissionsspektren ist diese Energie gleich einem L i c h t q u a n t von der Frequenz der hervorzurufenden Linie. Sie ist einfach gleich dem Energieunterschied der beiden Bahnen, zwischen denen der Übergang erfolgt., der die Spektrallinie erzeugt. -Bei den Röntgenlinien erweist sich die pro Atom aufzuwendende Energie stets als g r ö ß e r , und zwar zeigt es sich, daß sie einzig und allein davon abhängt, welche Bahn für die hervorzurufende Linie die E n d b a h n des Übergangs darstellt. Die aufzuwendende Energie ergibt sich nämlich ebenso groß wie die A r b e i t , die erforderlich ist, um ein Elektron aus dieser Bahn v ö l l i g a u s d e m A t o m zu e n t f e r n e n . Die Aus dieser wichtigen Erfahrungstatsache zog zuerst Entstehung B o s s e l den Schluß, daß der Emission eines RöntgenR n irnien ~ lichtquants stets die völlige L o s l ö s u n g eines Elektrons aus dem Atom zeitlich v o r a n g e h e n muß. In der Elektronengruppe, der das Elektron entrissen wurde, wird hierdurch ein. P l a t z f r e i . Die leer gewordene Stelle kann nun durch ein a n d e r e s Elektron eingenommen werden, das bis dahin einer höherquantigen Elektronengruppe angehört hatte. Indem es den B a h n w e c h s e l von der höheren zu der niederen Quantenzahl vollzieht, macht es einen bestimmten E n e r g i e b e t r a g f r e i ; dieser verwandelt sich nun in ein L i c h t q u a n t , das wegen des verhältnismäßig sehr großen frei werdenden Energiebetrags auch eine h o h e F r e q u e n z aufweist, wie sie eben für die R ö n t g e n s t r a h l e n charakteristisch ist. Die Ebenso wie bei den optischen Spektren ist auch bei R n n t°e rme " den Röntgenspektren eine T e r m d a r S t e l l u n g mögliche Die Mannigfaltigkeit der festgestellten Röntgenlinien läßjt sich auf eine geringere Mannigfaltigkeit von R ö n t g e n t e r m e n derart zurückführen, daß die F r e q u e n z e n der
DAS
ATOM ALS
PLANETENSYSTEM
79
einzelnen Linien den D i f f e r e n z e n je zweier T e r m e sind.
In
grober
Termen
ja
Annäherung
bereits
aus
der
folgt
die
vorhin
gleich
Darstellbarkeit
angegebenen
theoretischen D e u t u n g der R ö n t g e n s p e k t r e n .
in
quanten-
Deren g e n a u e
E r f o r s c h u n g f ü h r t e aber b a l d z u der E r k e n n t n i s ,
daß
bei
den verschieden quantigen Z u s t ä n d e n im allgemeinen wiederum mehrere
Modifikationen
angenommen
werden
müssen.
E s zeigte sich, d a ß es zwar stets nur einen einzigen i i - T e r m , hingegen
beispielsweise
drei
L-
verschiedene
und
fünf
verschiedene M - T e r m e gibt. D i e G e s a m t z a h l der R ö n t g e n t e r m e eines A t o m s h ä n g t , wie
die
Erfahrung
O r d n u n g s z a h l ab. größten.
Bei
zeigt,
von
der
Höhe
den
auf
die
Emanation
und drei P - T e r m e .
solchen
G r u n d s t o f f s ist
gegeben. bolisch
Die (vgl.
die
niveaus.
Die
Röntgenlinien
schematisch
analoge
oder,
wie
dar,
die
Linien
frühere man
vertikalen
N i v e a u s ergeben.
fünf M-,
sich
als
sagt,
Fig. 31
stellen
die
N-,
wiedersym-
einzelnen
die
die
hn,en
eines
repräsentieren
F i g . 21)
auch
Pfeile
in
Röntgen-
Grund-
sieben
Das R ö n t g e n s p e k t r u m
horizontalen
Röntgenterme
chemischen
folgenden
s t o f f e n findet m a n einen i^-Term, drei L-, fünf 0-
der
B e i den höchsten E l e m e n t e n ist sie a m
Das
Röntgen-
beobachteten
Kombinationen
je
zweier
D i e Linien sind nach ihrer Zugehörigkeit
z u d e n einzelnen S e r i e n geordnet und innerhalb der Serien wieder in U n t e r g r u p p e n geteilt, die durch d a s s e l b e niveau
charakterisiert
sichtlich,
daß
sind.
keineswegs
Aus dem
alle
S c h e m a ist es er-
denkbaren
zwischen den T e r m e n auftreten.
End-
Kombinationen
E s ließ sich (worauf
hier
aber nicht näher eingegangen werden kann) ein verhältnismäßig
einfaches
,,Auswahlprinzip"
Übereinstimmung
mit
der
Kombinationen
richtig
aufstellen,
Beobachtung
die
das
in
zulässigen
angibt.
V e r f o l g t m a n die G r u n d s t o f f reihe v o n der E m a n a t i o n (Ordnungszahl 86) bis h i n a b zu dem K r y p t o n zahl 36), so bleibt z w a r die Z a h l der K-, ungeändert, Niveaus
hingegen
zahlreiche
enthaltenen
kommen
in W e g f a l l .
Niveaus
fehlen
den
von Von
Lden
..Die
(Ordnungs- niveausder
u n d M-Niveaus höherquantigen
den in der F i g . 3 1
Grundstoffen,
die
dem
Edelgase
SIEBENTER
8o
VORTRAG
X e n o n (Ordnungszahl 54) benachbart sind, diejenigen, die in der Figur durch kurze vertikale Striche (am linken Rande) gekennzeichnet sind. Für die dem K r y p t o n benachbarten Elemente fallen überdies auch die Niveaus weg, die in der Figur durch einen vertikalen Doppelstrich charakterisiert Ρ
ar +n,+l'-l· V +-
Om l-IL ΙΓ/4-
4wr + w fN Ν, νότα i— Ν nr.nrTsche durch die man das praktische Atomgewicht eines Elements dividieren muß, um das absolute Gewicht eines Atoms dieses Grundstoffs in Grammen zu erhalten. Da das Atomgewicht des Wasserstoffs 1,008 beträgt, hängen die LoscHMiDTsche Zahl (L) und die Masse des Wasserstoffatoms m JJ durch die Beziehung zusammen: L = 1,008 Die LoscHMiDTsche Zahl beträgt 6,062 · io 2 3 . Sie wird so zu Ehren des Wiener Physikers LOSCHMTDT benannt, der im Jahre 1865 zuerst die Größe der Atome ungefähr der Größenordnung nach zu ermitteln vermochte, und zwar auf Grund von gastheoretischen Überlegungen. Die Als Einheiten der Wellenlänge werden gewöhnlich benutzt: in der skoplschen ^ t i ^ h e n Spektroskopie die ÄNGSTRÖM-Einheit (1..-E.); in der RöntgenEinheiten Spektroskopie die X-Einheit (X-E.); in der Spektroskopie des Ultraroten das μ. Es ist 1 Ä.-E. = i o - 8 cm ;
1 X-E. = i o - 1 1 cm ;
1 μ = i o - 4 cm .
ERGÄNZENDE
ANMERKUNGEN
125
D a s E r g ist definiert als die A r b e i t , die eine K r a f t v o n 1 D y n e Das Erg auf einem W e g e v o n 1 c m verrichtet. D i e W ä r m e m e n g e , die erforderlich ist, u m 1 G r a m m W a s s e r u m 1 Celsiusgrad zu erwärmen, wird als K a l o r i e bezeichnet. I h r entspricht eine A r b e i t v o n 42 Millionen E r g . D i e B e z i e h u n g , die die RYDBERGSche K o n s t a n t e (i?) mit d e m Die atomelektrischen E l e m e n t a r q u a n t u m (e), der Elektronenmasse (w) u n d d e m ^jj^jj" elementaren W i r k u n g s q u a n t u m (h) v e r k n ü p f t , h a t die F o r m Deutung _ K
, . 2 π ' e* m ^3
der R V D BEscschen Konstanten
(Es sei hierbei der Hinweis darauf gestattet, d a ß diese F o r m e l bereits drei J a h r e v o r BOHR v o n d e m Verfasser dieses B u c h e s abgeleitet und in den Sitzungsberichten der W i e n e r A k a d e m i e , A b t . I I a , 1910, S. 1 1 9 — 1 4 4 , dortige Gleichung 67, veröffentlicht wurde, allerdings mit einem abweichenden Zahlenfaktor, d a die B e t r a c h t u n g e n nicht auf d a s d a m a l s noch u n b e k a n n t e RUTHERFORD sehe, sondern auf das ältere, sogenannte THOMSON sehe A t o m m o d e l l gegründet waren.) D i e F o r m e l , die nach der R e l a t i v i t ä t s t h e o r i e die A b h ä n g i g k e i t Die relader M a s s e v o n der G e s c h w i n d i g k e i t angibt, h a t folgende G e s t a l t : * Massen^ m =
mn
/
formel
ν 1
w o b e i m die Masse, m 0 die Ruhemasse, ν die Geschwindigkeit der B e w e g u n g und c die Lichtgeschwindigkeit bedeuten. W i r d mit Α die sogenannte Z e r f a l l s k o n s t a n t e eines Radioelements Halbwertsbezeichnet, die es angibt, welcher B r u c h t e i l der vorhandenen Menge in z^aUs^ der Zeiteinheit zerfällt, so ergibt sich die Halbwertszeit, auf diese Zeit- konstante einheit (also ζ. B . T a g oder Jahr) bezogen, n a c h der B e z i e h u n g log n a t 2 T==
λ
Der natürliche L o g a r i t h m u s v o n 2 ist 0,693. · · · F ü r den Fall, d a ß sich zwischen M u t t e r s u b s t a n z und T o c h t e r s u b s t a n z „ r a d i o a k t i v e s G l e i c h g e w i c h t " eingestellt hat, gilt die Beziehung, d a ß sich die vorhandenen Mengen beider S t o f f e u m g e k e h r t wie deren Zerfallskonstanten, also ebenso wie deren Halbwertszeiten, verhalten. V o n Substanzen, die miteinander i m radioa k t i v e n Gleichgewicht stehen, zerfallen in derselben Z e i t stets gleich viel A t o m e . I m folgenden seien z u m Schlüsse die v i e r u n i v e r s e l l e n K o n s t a n t e n d e r A t o m p h y s i k zusammengestellt: Elektrisches Elementar quantum Masse des W a s s e r s t o f f a t o m s Masse des E l e k t r o n s Elementares Wirkungsquantum
4,774· ί ο - 1 0 1,66· i o - 2 4 9,00*10" 2 8 6,545· i o - 2 7
pje unj_ verseilen
Konstanten
elektrostat. Einheiten, der AtomGramm. Physik Gramm. E r g χ Sekunden.
CHRONOLOGISCHE
126
CHRONOLOGISCHE Um
ÜBERSICHT
ÜBERSICHT
v. Chr. D E M O K R I T begründet die philosophische Atomistik. entdeckt den Dualismus der Elektrizität. 1808 D ALTON entdeckt das Gesetz der konstanten Gewichts Verhältnisse. 18 π Gesetz von A V O G A D R O . 1812 B E R Z E L I U S führt die chemischen Erscheinungen auf elektrische zurück. 1814 Entdeckung der F R A U N H O F E R sehen Linien. 1833 F A R A D A Y entdeckt die Grundgesetze der Elektrolyse. I860 K I R C H H O F F und B U N S E N begründen die Spektralanalyse. 1869 M E N D E L E J E F F und Lothar M E Y E R entdecken die chemische Periodizität. 1885 Spektroskopische Formel von B A L M E R . 1895 Entdeckung der Röntgenstrahlen. 1896 Entdeckung der Radioaktivität durch B E C Q U E R E L . 1898 Entdeckung des Radiums durch P. und M. C U R I E . 1900 P L A N C K begründet die Quantentheorie. 1900 Entdeckung der Emanationen. 1902 R U T H E R F O R D und S O D D Y begründen die Zerfallstheorie. 1905 EINSTEIN entdeckt die Masse der Energie. 1905 B A R K L A entdeckt die Eigenstrahlung. 1911 R U T H E R F O R D begründet die Vorstellung des Kernatoms. 1912 L A U E entdeckt die Beugung der Röntgenstrahlen durch die Kristalle. 1913 B O H R begründet die Quantentheorie des Atoms und der Spektren. 1913 M O S E L E Y begründet die Röntgenspektroskopie. 1915 SOMMERFELD vervollkomnet die Quantentheorie durch die Einführung der Nebenquantenzahl. 1919 A S T O N begründet die Massenspektroskopie. 1919 R U T H E R F O R D gelingt -zuerst die künstliche Zertrümmerung von Grundstoffen. 1922 B O H R begründet die Elektronentheorie der chemischen Periodizität. 1733
400
DUFAY
NAMENVERZEICHNIS ANGSTROEM ASTON
124.
HEVESY
18.
69,
HITTORF
AVOGADRO
83.
12.
92. KIRCHHOFF
BALMER
41.
BARKLA
61.
KIRSCH
KOLHÖRSTER
BECQUEREL
104.
BERZELIUS
23.
49,
BOWEN BOYLE
KOSSEL
35.
78.
91.
BLACKETT BOHR
39.
23.
LAUE
53,
81.
32.
LOSCHMIDT
124.
88. 92,
98.
MARSDEN
22.
BRAGG,
W. H.
93.
MAXWELL
31.
BRAGG,
W. L.
93.
MENDELEJEFF
BRÖNSTED
69.
MEYER,
L.
73.
73.
BROWN
IOI.
MILLIKAN
8, 9,
BUNSEN
39.
MOSELEY
61.
CHADWICK COSTER
20,
23,
83.
COULOMB
65
NEWTON
M.
104.
CURIE,
P.
104.
PLANCK
35,
PLATON
2,
DUFAY
3.
5.
EINSTEIN FARADAY
123.
97, 4,
GAY-LUSSAC
HERTZ
120. 7.
26.
FRAUNHOFER
HERAKLIT 31.
23. 36.
III. III.
RUTHERFORD 1 7 , 2 2 , 2 3 , 1 0 9 , 1 1 0 , 1 1 1 .
EDDINGTON
FIZEAU
ROYDS
38.
12.
RAMSAY
I.
88.
I.
PROUT DEMOKRIT
29,
PETTERSSON
124.
CURIE,
DALTON
28,
35,
40. 92.
123.
RYDBERG
43.
SIEGBAHN
64.
SODDY
110,
69,
SOMMERFELD STARK
57.
STOKES
89.
STONER
84.
WILSON YOUNG
15. 28.
54.
III.
SACHVERZEICHNIS Abschirmung 76. Absorptionslinien 40. Aktiniumreihe 114, 116. Aktivität, ehem. 85. Alkalimetalle 70. Alphastrahlen 105. Alphateilchen 10, 11, 21, 111. Alter der Mineralien 118. Anode 6. Anregungsenergie 46. Arbeit 35. Atomgewicht 3, 4. — , absol. II. Atomkerne 16. Auswahlregeln 43, 79.
Einatomige Grundstoffe 93. Elektrizität 4. Elektrolyse 6. Elektrometer 5. Elektronen 15. Elektronenstöße 46. Elektrostatische Einheit 5, 124. Element 2. Elementarquantum 7, 9. Ellipsenbahnen 54, 56. Emanation 109. Energie 35. Energieelemente 35. Erden, seltene 75, 82. Erg 36, 125.
BALMER-Serie 42.
Farbenringe 29. Feinstruktur 53. Feld, elektr. 24. Feldstärke 25. Fixsterne, Lebensdauer 122. Flammenleitung 100. Fluoreszenz 88, 89, 101. F R A U N H O F E R sehe Linien 40, 41. Frequenz 25. Funkenspektren 87, 88.
Bandenspektrum 96. Beta-Strahlen 106. Beugungsgitter 32. Blei, Atomgewicht 69, 70. Bleibildüng 118. Bogenspektren 87. B R O W N sehe Bewegung 102. Cer 82. Chemilumineszenz 97. Chlor, Atomgewicht 19. Chlorophyll 88. C O U L O M B sches Gesetz 124. Diamant 93. Diffuse Nebenserie 86. Dissoziation 95. Dualismus, elektr. 5. Dubletts 87. Dyne 124.
Gamma-Strahlen 34, 97; 108. Gasdruck 98. Gastheorie, kinet. 98. Gewichtsverhältnisse, konst. 2. Golderzeugung 119. Goldkern 103. Grundstoff 2. Grundterm 47, 90. Grundzustand 45.
Edelgasatome 81. Edelgase 70. Eigenenergie 120. Eigenstrahlung 60, 61.
H-Strahlen 22. Hafnium 73, 83. Halbwertszeit 110. Halogene 70.
SACHVERZEICHNIS
129
Hauptserie 86. Heliumatom 52. Haliumbildung m . Heliumspektrum 52 ff. Heliumsynthese 120. Heteropolare Bindung 91. Homöopolare Bindung 91.
Nebenserien 86. Niederschlag, radioakt. 115. Normalzustand 45. Nullpunkt, absol. 98.
Illinium 73. Ionen 6. Ionisierung der L u f t 108. lonisierungsenergie 47. Ionium 1x5. Isotopie 19, 66—69,
P a c k e f f e k t 121. Pechblende 104. Perioden, ehem. 71. Periphere Elektronen 86. Photochemie 96, 97. Photographie 97. Polonium 116. Positive Strahlen 18. Proportionen, multiple 3. Protonen 17. — , Vernichtung 123.
K a - L i n i e 75. K - Serie 61. Kalorie 125. Kathode 6. Kathodenstrahlen 12. Kernelektronen 21. Kernladungszahl 20. Kernphysik 103. Kernradius χ 03. Kilogrammeter 36. Kosmische Strahlen 35. Kristalle 32, 93, 94. L - S e r i e 61. Ladung, spezif. 14. Lanthan 82. LAUE-Photogramme 32. Licht 24. Lichtelektrischer E f f e k t 37. Lichtgeschwindigkeit 28. Lichtquanten 37. LoscHMiDTSche Zahl 124. M-Serie 61. Magnetische Spektren 107. Masse d. Energie 120. — , elektromagnet. 103. — , Veränderlichkeit 107, 125. Massenspektrogramme 18—20. Masurium 73. Materiebegriff 123. Molekel 3. Molekelbildung 91. Molekularspektren 95. N-Serie 61. Nebenquantenzahl 54. HAAS,
D i e Welt der Atome.
Optische Spektren 86. Ozon 93.
Quantelung 50. Quantenzahl 49. Quecksilber, Atomgewicht 69. Quecksilberspektrum 43. Radioaktivität 109. Radioelemente 112. Radiowellen 31. Radium 104. Reibung, innere 100. Reichweite 22, 105. Reihe, natürl. 60—66. Reinelemente 68. Relativistische Aufspaltung 56. Resonanzlinie 47. Resonanzstrahlung 89. Rhenium 73. Röntgenniveaus 79, 80. Röntgenspektren 61 ff. Röntgenstrahlen 32. Röntgenterme 78. .Roßkastanie 88. Rotationsschwingungsspektrum 96. Rotationsspektrum 95. RYDBERGsche Konstante 43, 44, 51, 125· Sauerstoff-Isotop 120. Scharfe Nebenserie 86. Schwingungsdauer 25. Schwingungszahl 25. Sensibilisierung 97.
9
130
SACHVERZEICHNIS
Serien 41. Sonne, Massenverlust 121. Sonnenspektrum 40. Spektralanalyse 39. Spektralterme 42. Spektrum 38 ff. STARK-Effekt 57—59. Steinsalzkristall 32, 33. Stickstoff, Zertrümmerung 23. Stickstoffmolekel 96. Stromleiter 5, 6. Stromstärke 5, 6. Szintillationen 10, 110. Temperatur 98. Temperaturleuchten 100. Ter me 42. Thoriumreihe 117. Triaden 73. Tripletts 87. Ultrarot 30, 31. Ultraviolett 30, 32.
Umwandlungsgesetz 109. Uran 104. Uranreihe 115. Valenz 85. Verweilzeit 101. Violettverschiebung 53. Wasserdampf, Spektrum 95. Wasserstoffbildung 117. Wasserstoffkerne 17. Weglänge, freie 100. Wellen, elektrische 24—26. Wellenberg 25. Wellenlänge 25. Wellental 25. Wirkungsquantum, elem. 36. Zahnrad, rotierendes 26. Zerfallskonstante 125. Zerfallstheorie 110. Zusammenstöße, molek. 100, Zweiatomige Grundstoffe 93.
Walter de Gruyter & Co.
Berlin W 1 0 und Leipzig
P o s t s c h e c k k o n t o : j f ^ f I i Berlin NW 7 Nr. 59533
VGJ
ARTHUR HAAS EINFÜHRUNG IN DIE THEORETISCHE PHYSIK mit besonderer Berücksichtigung ihrer modernen Probleme völlig
D r i t t e und v i e r t e , u m g e a r b e i t e t e und v e r m e h r t e
Auflage
I. BAND mit 58 Abbildungen im Text 1923. Groß-Oktav. X , 307 Seiten Geh. Rm. 7.50, geb. Rm. 9 . — II. BAND mit 72 Abbildungen im Text und auf zwei Tafeln 1924. Groß-Oktav. VIII, 379 Seiten Geh. Rm. 8.50, geb. Rm. 1 0 . — Englische
Übersetzung von T. Verschoyle bei Constable Sf Co., London, D. Van Nostrand Co., New York, 1^24/2^.
und
„Eine dankbare Aufgabe hat in dem Verfasser einen g l ä n z e n d e n B e a r b e i t e r gefunden. Dem v o r t r e f f l i c h e n u n d p a c k e n d e n B u c h ist die wohlverdiente weiteste Verbreitung zu wünschen." Die Naturwissenschaften. ,,Es gibt n u r d i e s e i n e W e r k , welches den Lernenden in die theoretische Physik so weit einzuführen vermag, daß er ihrer wissenschaftlichen Grundlagen und Methoden Herr wird und zum Studium tiefergehender Werke vorbereitet ist." Zeitschrift für physikalische Chemie. ,.Haas ist ein M e i s t e r d e r w i s s e n s c h a f t l i c h e n D a r s t e l l u n g . E r versteht es, das Wesentliche in den Gedankengängen vorzüglich herauszuarbeiten." Zeitschrift für technische Physik. ,,Der k l a r e , n ü c h t e r n e G e d a n k e n g a n g und der d u r c h s i c h t i g e A u f b a u machen das Werk zu einem leicht lesbaren und gewähren durch Leichtigkeit und Schönheit der überlegenen Gedankenführung einen w a h r e n G e n u ß . Dies Werk ist zurzeit das einzige, welches in gleicher Vollständigkeit in die Gedankenwelt der neueren Physik einführt." Zeitschrift für den mathem. u. naturwiss. Unterricht. „Unter den Büchern, die auf das naturwissenschaftliche Denken ihrer Zeit einen s t ä n d i g w a c h s e n d e n E i n f l u ß ausüben, nimmt die Einführimg in die theoretische Physik von A. Haas einen hervorragenden Platz ein . . Die große Verbreitung, die das Buch gefunden hat, und noch mehr der Widerhall, (Fortsetzung siehe nächste Seite).
Walter de Gruyter & Co. Postscheckkonto:
Berlin W10 und Leipzig Berlin NW 7 Nr. 59533
ARTHUR HAAS, EINFÜHRUNG IN DIE THEOR. PHYSIK den es weit über die Kreise der Physiker und Chemiker wach rief, beweisen,, daß hier etwas Besonderes vorliegt Haas verleiht dem von der modernen Atomforschung und Relativitätstheorie geschaffenen System zum ersten Male Worte, die unabhängig von den Symbolen der Wissenschaft allgemein verstanden werden können Die Darstellung ist als ein K u n s t w e r k zu bezeichnen, wie man es in Verbindung mit dem scheinbar toten Stoffe nicht für möglich gehalten hätte Die hier vollbrachte Leistung muß man geradezu b e w u n d e r n . " Die Erde. ,,It is scarcely going too far to say that H e a v e n m u s t h a v e s e n t Professor Haas in answer to many prayers, for in the present work he has solved the formidable problem of teaching us the whole of the principles of mathematical physics by a wonderful combination of rigorous science and rare art. — The whole structure of physical theory is built up piece by piece, with an exposition so sequent and c r y s t a l c l e a r that we can pass through and understand the great luminous building without painful effort. — In the arrangement and division of the subjcct-matter, the author has shown himself to be not only a w i s e a n d e x p e r i e n c e d t e a c h e r , but also a t r u e p h i l o s o p h e r . Professor JIaas has done an immense service for all students of science, and the appearance of his book is an e v e n t of f i r s t - c l a s s importance ..." Prof. F.. G. Donnan von der Universität London, F. R. S., im Geleitwort zur englischen Ausgabe. „The text reads more l i k e a n o v e l than a mathematical treatise." Physical Review. ,.The work is u n i q u e in presenting in didactic form the whole structure of physical theory as it exists to-day." Journal of the Franklin-Institute. „Prof. Haas's book deserves to take its place side by side with Nernst's Theoretical Chemistry on the bookshelf of every physical chemist." Chemistry and Industry. „Prof. Haas has the happy gift of being able to c o n d e n s e a large amount of material in c o n c i s e yet readable form. His work is one which can be thoroughly recommended to and should be read by every serious student of science." Philosophical Magazine. ,,Ιη the second volume of his Treatise on Theoretical Physics Prof. Arthur Haas maintains the same h i g h s t a n d a r d as in the first volume. The author ' has w o n d e r f u l s k i l l in summarising the results of recent investigations, and a sound instinct for the really important parts of his subjects." Nature. ,Un capolavoro classico di arte scientifica descrittiva." Bollettino delle opere scientifiche.
Walter de Gruyter & Co. Postscheckkonto:
Berlin W 10 und Leipzig Berlin NW 7 Nr. 59533
ARTHUR HAAS ATOMTHEORIE in e l e m e n t a r e r
Darstellung
Mit 56 Figuren im Text und auf 2 Tafeln 1924. Gr.-Okt. VIII, 204 Seiten. Geh. Rm. 5.40, geb. Rm. 6.80 Englische
Übersetzung
von T. Verschoyle
bei Constable & Co., London
1926
„Referent ist überzeugt, daß eine elementare Darstellung der Atomphysik nicht besser und sorgfältiger geschrieben werden kann, als es hier geschehen ist". Prof. Sommerfeld in der Deutschen Literaturzeitung. „Dem Verfasser ist der Versuch glängend gelungen, dem Nichtphysiker den ganzen Komplex der modernen Atomphysik ohne Zuhilfenahme der höheren Mathematik verständlich zu machen." Pharmazeutische Monatshefte. ,,Dr. Haas is a g i f t e d e x p o n e n t , with a particular talent for compression . . . The general exposition is e x c e l l e n t The book has many great merits: it is o r i g i n a l in selection and arrangement of matter, concise in expression, includes very recent work, and is written with a knowledge and appreciation which are abundantly evident." Nature.
DAS NATURBILD DER NEUEN PHYSIK Zweite,
wesentlich v e r m e h r t e und verbesserte
Auflage
Mit 17 Figuren im Text und auf 2 Tafeln 1923. Oktav. V, 160 Seiten. Geh. Rm. 5 . - , geb. Rm. 6.— Englische
Übersetzung
bei Methuen & Co.,
von Universitäts professor London
Russische Schwedische
und Dutton,
New
R. W. Laws
on ,
York;
2. Aufl.
Übersetzung bei Grshebin,
Übersetzung
1923,
Sheffield, 1924
Moskau
bei P. A. Norstedt & Söner,
Stockholm
1925
„Dieses Buch ist ein M u s t e r p o p u l ä r e r D a r s t e l l u n g . " Die Naturwissensch. ; ,Das Buch liest sich wie ein s p a n n e n d e r R o m a n . " Ars medici. „Haas besitzt im höchsten Grade die Fähigkeit, selbst schwierige physikalische Kapitel anschaulich darzus teilen. DieVor träge zeichnen sich sowohl durch die Κ1 a rh e i t d e r D a r s t e l l u n g wie durch die S c h ö n h e i t d e s S t i l s aus. Wer durch solche Werke für die Schönheiten der Physik nicht begeistert wird, der ist für die exakten Naturwissenschaften überhaupt nicht zu haben." Die neue Zeit. „Das Buch dürfte zurZeit die b e s t e allgemeinverständliche Darstellung der neueren Entwicklung der Physik enthalten." Zeitschrift für den math, und naturwiss. Unterricht. „Das Werk ist schlechthin m u s t e r g ü l t i g und sicher eine der b e s t e n p o p u l ä r e n D a r s t e l l u n g e n , die wir besitzen, vielleicht die beste überhaupt . Der Verfasser ist ein M e i s t e r in d e r B e h e r r s c h u n g d e r S p r a c h e u n d der D a r s t e l l u n g , und so liest man das Buch mit größtem Genuß." Die Neue Erziehung.
Walter de Gruyter & Co.
Berlin W 10 und Leipzig
Postscheckkonto:
WEITERE
WERKE
Berlin NW 7 Nr. 59533
VON ARTHUR
HAAS
VEKTOR ANALYSIS in ihren Grundzügen und wichtigsten physikalischen Anwendungen 1922. Mit 37 Abb. im Text. Groß-Oktav. VI, 149 Seiten Geheftet Rm. 4.—, gebunden Rm. 4.80 „Das Buch ist fast eine kleine theoretische Physik in der Rocktasche, in der A. Haas die oft an ihm b e w u n d e r t e K u n s t l e i c h t v e r s t ä n d l i c h e r D a r s t e l l u n g glänzend getätigt hat." Zeitschrift f. physikal. Chemie. „Wir finden sorgfältige Auswahl des für den Physiker Notwendigen, klare und übersichtliche und dabei stets straffe und kurze Darstellungsweise, Veranschaulichung der gewonnenen mathematischen Beziehungen an einem geeigneten physikalischen Stoff unter scharfer Trennung des rein mathematischen Gehaltes von physikalischen Erkenntnissen." Physikalische Zeitschrift.
DIE GRUNDGLEICHUNGEN DER MECHANIK Dargestellt auf Grund der geschichtlichen Entwicklung 1914. Mit 45 Abbildungen im Text. Groß-Oktav. VI, 216 Seiten Geheftet Rm. 7.50, gebunden R m . 8.50. „Man muß den Gedanken (der dem Buche zugrunde liegt) als außerordentlich glücklich bezeichnen, und er ist mit einer musterhaften Sorgfalt durchgeführt, die die Lektüre des Buches auch dem zu einem hohen Genuß macht, der es nicht als Lernender liest. Ein schönes, klares und ansprechend geschriebenes Buch, das man ganz besonders jedem Physiker ohne Einschränkung empfehlen darf." Physikalische Zeitschrift. „Das Buch zeichnet sich durch Einfachheit und Klarheit der Darstellung und Lebhaftigkeit des Stiles vorteilhaft aus." Chemiker-Zeitung.
DER GEIST DES HELLENENTUMS IN DER MODERNEN PHYSIK Antrittsvorlesung. Griechische
1914. Groß-Oktav. Rm. 1.20
Übersetzung von Ant.
Ph.
Chalas,
32 Seiten
Athen
19,22
„Das kleine, aber ausgezeichnete Schriftchen ist nur mit lebhaftester Genugtuung zu begrüßen und Philosophen wie Physikern und Naturforschern überhaupt auf das wärmste zu empfehlen." Kantstudien.
Walter de Gruyter & Co.
Berlin W 10 und Leipzig
Postscheckkonto:
DIE
Berlin NW 7 Nr. 59533
PHYSIK Yon
Dr. Leo Graetz
o. ö. Professor der Physik an der Universität München
Mit 395 teils farbigen Abbildungen im T e x t und 12 farbigen und schwarzen Tafeln Zweite, verbesserte und vermehrte Auflage 1923. Groß-Oktav. X I I , 582 Seiten R m . 10.—, in Ganzl. geb. U m . 12.50 *
Wer das längst bekannte Graetz'sche Buch über die Elektrizität gelesen hat, der weiß, was er von einem Werk von Graetz erwarten darf: Nicht nur Wissenschaftlichkeit und vollendete Klarheit, sondern auch bildhafte Anschaulichkeit und lebendige Darstellung und damit größtmögliche Allgemeinverständlichkeit. Zahlreiche gute, ζ. T. eigens für den vorliegenden Zweck entworfene bildliche Darstellungen unterstützen die Ausführungen des Textes in hohem Maße. Es ist ein Buch, das einem breiten Leserkreis nur bestens empfohlen werden kann. Natur und Technik. Es gibt in der deutschen wissenschaftlichen Literatur wohl kein zweites Werk, das in so elementarer Weise selbst schwierigste Kapitel der Physik bringt und jedem Leser verständlich macht. Diese Darstellungsart des Verfassers ist eine Kunst, die er, wie es scheint, ganz allein besitzt. Pharmazeutische Monatshefte.
Walter de Gruyter & Co.
Berlin W 10 und Leipzig Berlin NW 7 Nr. 59533
Postscheckkonto:
Natur und Mensch Die Naturwissenschaften und ihre Anwendungen Dr. C. W. Schmidt
Herausgegeben von
4 B ä n d e in L e x i k o n f o r m a t , zirka 2000 Seiten Kunstdruckpapier mit etwa 1300 Abbildungen und 120 ein- und mehrfarbigen Tafeln * Erster
Band:
W e l t r a u m und E r d e Von
Dr. Η. H. Kritzinger und Dr. C. W. Schmidt XII, 494 Seiten mit 409 Abbildungen und 30 Tafeln In Ganzleinen Rm. 32.—, in Halbleder Rm. 36.— In Vorbereitung: Zweiter Band: D a s L e b e n / Dritter Band: D e r M e n s c h / Vierter Band: A n g e w a n d t e N a t u r w i s s e n s c h a f t e n . Von diesem großgedachten Kompendium der gesamten Naturkunde liegt der erste Band vor. Schon rein äußerlich ein Meisterwerk der Buchdruckkunst, das man mit Freude und ästhetischem Genuß in die Hand nimmt. Wir kennen kein zweites naturwissenschaftliches Buch, das mit soviel feinem Geschmack und soviel Liebe ausgestattet worden wäre. Papier, Druck, Einband, alles hervorragend schön; die zahlreichen Bilder aber sind eine Auswahl des Besten, was naturkundliche Illustrationstechnik zur Stunde hervorbringt. Es genügt wohl, wenn wir sagen: Es ist eine Arbeit aus einem Guß. Wort und Bild ergänzen sich in glücklicher Harmonie zu einer anschaulichcn und einprägsamen Geophysik und Geologie. „Natur und Mensch" will dem Gebildeten an Hand leitender Ideen helfen, seine Weltanschauung zu klären und zu festigen. Sie zu vertiefen, dazu kann vorliegendes Werk mithelfen. Das Werk kann jedem strebsamen Menschen empfohlen werden. N a t u r u n d K u l t u r .
* Ein ausführlicher illustrierter Prospekt steht durch jede Buchhandlung oder direkt vom Verlage kostenlos zur Verfügung