148 103 10MB
English Pages 165 [180] Year 2016
Annals of Mathematics Studies Number 58
ANNALS OF MATHEMATICS STUDIES Edited by Robert C. Gunning, John C. Moore, and Marston Morse 1. Algebraic Theory of Numbers, by
H erm ann W
3. Consistency of the Continuum Hypothesis, by 11. Introduction to Nonlinear Mechanics, by N.
eyl
Ku r t G od el
Krylo ff
and N.
B o g o l iu b o f f
20.
Contributions to the Theory of Nonlinear Oscillations, Vol. I, edited bu S.
21.
Functional Operators, Vol. 1, by
J ohn
L
efsc h etz
Neum an n
von
24. Contributions to the Theory of Games, Vol. I, edited by H. W. 25. Contributions to Fourier Analysis, edited by A. A. P. C a l d e r o n , and S. B o c h n e r
and A. W.
Kuhn
W.
Zyg m u n d ,
28. Contributions to
the Theory of Games, Vol. II, edited by H. W.
30. Contributions to
the Theory of Riemann Surfaces, edited by L.
T ra n sue,
Kuhn
M
o rse,
et al.
Contributions to the Theory of Partial Differential Equations, edited by L. n e r , and F. J o h n
34.
Automata Studies, edited by C. E.
and J.
T u ck er
and A.W.T u c k e r
Ah lfo r s
33.
Sh a n n o n
M.
B e r s ,S. B o c h
M cC arthy
38. Linear Inequalities and Related Systems, edited by H. W.
and A. W.
Kuhn
39. Contributions to the Theory of Games, Vol. Ill, edited by M. and P . W o l f e 40. Contributions to the Theory of Games, Vol. IV, edited by R.
T u ck er
D resh er, A .
D uncan L
uce
W.
T u ck er
and A. W.
T u ck er
41. Contributions to the Theory of Nonlinear Oscillations, Vol. IV, edited by S. 42. Lectures on Fourier Integrals, by S.
43. Ramification Theoretic Methods in Algebraic Geometry, by S. 44. Stationary Processes and Prediction Theory, by
46. Seminar on Transformation Groups, by A. Sm
H. F
u rsten berg
B o rel
J.
N. E .
51. Morse Theory, by J. W . M i l n o r 59, Advanpps in Gamp Theorv. edited bu M.
St e en r o d ,
T oda
written and revised by
53. Flows on Homogeneous Spaces, by L.
D r e s h e r . L. S h a p le y .
A u sla n d er,
54. Elementary Differential Topology, by J. R. 55. Degrees of Unsolvability, by
G.
E.
a
G u n n in g
D. B.
p s t e in
56. Knot Groups, by L. P.
L
et al.
49. Composition Methods in Homotopy Groups of Spheres, by H. 50. Cohomology Operations, lectures by
C e s a r i,
u llya n
48. Lectures on Modular Forms, by R. C.
E
efsc h etz
A bhyankar
45. Contributions to the Theory of Nonlinear Oscillations, Vol. V, edited by L. S a l l e , and S. L e f s c h e t z 47. Theory of Formal Systems, bu R.
L
B o ch n er
L.
Green ,
F.
and A. W . H
ahn,
et al.
M u n kres
Sa cks
N e u w ir t h
57. Seminar on the Atiyah-Singer Index Theorem, by R. S. P a l a i s 58. Continuous Model Theory, by C. C. C h a n g and H. J. K e i s l e r 59. Lectures on Curves on an Algebraic Surface, by D a v id M u m f o r d 60. Topology Seminar, Wisconsin, 1965, edited by R. H. B in g and R. J.
T ucker
B ean
A.
CONTINUOUS MODEL THEORY BY
Chen Chung Chang AND
H. Jerome Keisler
PRINCETON, NEW JERSEY PRINCETON UNIVERSITY PRESS
1966
COPYRIGHT © 1966, BY PRINCETON UNIVERSITY PRESS ALL RIGHTS RESERVED L. C. CARD: 66-17698
PRINTED IN THE UNITED STATES OF AMERICA
To M arjorie and Lois
PREFACE
This monograph contains a study o f th e o rie s o f models w ith tru th valu es in compact H ausdorff spaces
X.
This
c o lle c t io n o f re s u lts
might be c a lle d a theory o f model th e o rie s . I t i s w e ll known to those w ith in te r e s t s in the two-valued model theory that there has been a tremendous development in the f i e l d in the past f i f t e e n years.
W hile the r e s u lts which led to th is development
range over a reasonably wide spectrum, there has been a d is c e rn ib le c e n tra l theme among them.
This theme concerns the determ ination o f the exact r e l a
tion sh ip between the a lg e b ra ic p ro p e rtie s that a cla ss es and pu rely s y n ta c tic a l d es crip tio n s o f sets by which
K
low ing type:
may be ch a ra cterized . fo r a cla ss
K
A
the compactness theorem.
o f models possess
o f f i r s t - o r d e r sentences
Thus many o f the r e s u lts are o f the f o l
to be closed under c e r ta in a lg e b ra ic r e la tio n s
i t is necessary and s u ffic ie n t that the sentences o f to those o f a c e rta in form.
K
may be r e s t r ic t e d
A
A b a sic t o o l needed fo r a l l o f these r e s u lts i s
More r e c e n tly , a uniform method o f p ro o f
fo r these
re s u lts has been given in terms o f s p e c ia l models. In th is monograph we have c a rrie d out a study culm inating in s ev era l r e s u lts along th is theme fo r cla sses ated w ith a space models in
X
X
to be a non-empty set R
in to
In the case that
X = Co, 1 ),
w i l l turn out to be the ordinary two-valued models.
g e n e r a lly , in case
of
o f tru th va lu es.
3Vf o f models which are a s s o c i
X.
i s an a r b itr a r y s e t, a model R
and a sequence
A
in
o f fu n ction s mapping n -tu ples
I f we assume, however, that
compact Hausdorff top olo gy, then w ith continuous fu n ction s on r o le o f connectives and w ith continuous set fu n ction s on v ii
More
i s understood
As can be expected, not too much can be done i f
not carry any a d d itio n a l stru ctu re.
the
X
X
X
does
X
has a
p la y in g the
p la y in g the r o le
PREFACE
viii o f q u a n t if ie r s , we can
f i r s t d e fin e a s e t
the n o tio n s o f a model
A
E o f sen ten ces.
&K and o f
in
a sen ten ce
Once we have
q>
i n E,
we can p r o
ceed t o in tro d u c e and study the s a t i s f a c t i o n fu n c tio n which a s s ig n s a tr u th v a lu e
cp[ A ]
in
X
t o each p a ir
g iv e s r i s e to a fu n c tio n then c o n s id e r
[
]
[A ]
cp, A.
in
XE
The tr u th v a lu e d e fin e d by
[
]
i t s e l f as a fu n c tio n mapping
induces a n a tu r a l to p o lo g y on
to p o lo g y on
n a t u r a lly
[ A ] (cp) = cpCA]. in t o
the u su al p rod u ct to p o lo g y coming from the to p o lo g y on t io n
s“ (X) = {Y :
Y C
X
and |X-Y| < a )
H
Y
H
b e lo n g in g to
i s denoted by G
and
i s a s e t and H
H [x ]
t o fu n c tio n s
(...
x ...)
in t o
(...
f,
g.
f
A fu n c tio n
If
f
and
(HH,
G c H;
r e s p e c tiv e ly .
se e , f o r exam ple,
x e Y)
H [(x )]
x H y
when
. x
and no con
< x , y > e H.
fo r
f
w ith domain f:
X
i s denoted by
b y X . Thus
Y )f(y ).
nj_ej Y^,
th e e x p re s s io n s
co n sid ered as X
w ith
f € X
which maps each X
and
and
f:
Y -► X
< x >
n ote the s e t o f fu n c tio n s
w ith
f e X05
x € X
i s any s e t , Y1
to the
X
same
F or a f i n i t e C a rte s ia n power, we
In p a r t ic u la r , i f
x.
Y
have the
X x X x . . . x X n -tim e s , so the elem ents
ord ered n - tu p le s . and
X
and the C a rte s ia n power o f Y
Y
The e x p re s s io n (x.x e X)
X -► Y.
The C a rte s ia n prod u ct o f s e ts
meanings and may be used in te rc h a n g e a b ly . Xn
and range in clu d ed in
i s a fu n c tio n w ith domain
TY = ( X y c X H
Y
That i s ,
by
The domain and range
and the r e l a t i v e p ro d u ct,
f o r some
fo r
We sometimes w r it e
x ...).
i € I
w ith
H
s h a ll den ote the fu n c tio n w ith domain
we d e fin e
X1
X.
as s e ts o f ord ered
i s a r e l a t i o n , we l e t
sometimes g r a p h ic a lly p re s e n te d as
id e n t ify
.
Fu n ction s a re d e fin e d as s p e c ia l b in a ry r e l a t io n s in the u su al u Thus, th e n o ta tio n s £2 f, (ftf, f , f o g , and f [ X ] may be a p p lie d
manner.
w ith
H
y >€ H
I t w i l l be con ven ien t t o w r it e
or power,
,
X a re d e fin e d
w i l l be denoted by £2H
H [Y ] = ( y : < x ,
Y
a set
x, y
or com p o sitio n , o f two r e la t io n s
is
,
( 0}
and |Y| < cc)
The con verse o f a r e l a t i o n
fu s io n can r e s u l t .
X
o f a (b in a r y ) r e l a t i o n
If
,
Y C
o f elem ents
K e lle y [ I 9 5 5 ] .
Y C X)
= {Y :
B in a ry r e la t io n s o v e r p a ir s
The c a r d in a lit y ,
We l e t
X* = S(X) Sa (X)
c a r d i
n = 1,
The s p e c ia l n o ta tio n such th a t
f
X°°
o f Xn
may be
then wei d e n t i f y i s used to d e
i s e v e n t u a lly co n sta n t.
D-PRODUCTS X°° = { f € X05:
f o r some
An enumeration o f a s e t whose range i s
1 .2 .
X
n,
fo r a l l
m > n)
i s a fu n c tio n whose domain i s an o r d in a l and
D -p rod u cts is
a filte r
s a id t o he
(i)
D C S ( I ) and
(ii)
t io n o f f i l t e r , A filte r I
D
and f i l t e r s
over
- X € D.
I
then
X
Y€ D
;
n Ye D
o ft e n dropped from the d e f i n i
flD € D.
fo r every
X C I,
X e D
e ith e r
a re a ls o known as u l t r a f i l t e r s .
A filte r
We assume th e r e a d e r i s f a m ilia r w ith the
elem en ta ry p r o p e r t ie s o f u l t r a f i l t e r s .
For in s ta n c e , he should know th a t
u l t r a f i l t e r s e x i s t o v e r any non-empty s e t S (I)
is
then
in the above sense a re c a lle d p ro p er f i l t e r s .
c a lle d maximal i f
is
;
X C Y,
D ^ S (I)
Maximal f i l t e r s
is p rin cipa l i f
and
whenever X, Y € D,
In the l i t e r a t u r e th e c o n d itio n
o v e r th e s e t I i f :
0 ^ D ^ S (I)
whenever X € D
(iii)
D
= f(m )
X.
D
or
f(n )
3
I.
In f a c t ,
any subset
E
w hich has the f i n i t e i n t e r s e c t io n p r o p e r ty (t h a t i s , no f i n i t e
s e c tio n o f
elem en ts o f
filte r
o v e r the s e t
D
E
i s empty) S^d)
in t e r
can be exten ded to an u l t r a f i l t e r . s a id t o be r e g u l a r i f
is
of
fo r every
A
j € I,
we have { i e S J I) : j e i ) The
phrase " r e g u la r f i l t e r
the
form
S ^ I).
over
j"
e D
.
i s m ea n in gfu l
o n ly when
J
i s as e t o f
Q u ite o b v io u s ly , r e g u la r f i l t e r s e x i s t o v e r any s e t
S (I)
because th e fa m ily o f s e ts {{i has th e f i n i t e
€ S J I)
: j e i)
: j e 1}
i n t e r s e c t io n p r o p e r ty .
I n the f o llo w in g s e r ie s o f e x e r c is e s we m ention some o th er s p e c ia l kinds o f u l t r a f i l t e r s w hich have a r is e n in th e l i t e r a t u r e and which, l i k e r e g u la r u l t r a f i l t e r s , EXERCISE 1A. filte r
o ver
S (I)
is
If
I
is
fin ite ,
the p r in c ip a l f i l t e r
EXERCISE 1B*.
re g u la r i f
a re o f i n t e r e s t when
L e t us
th e re i s a fu n c tio n
f:
D -p rod u cts are s tu d ie d .
then th e o n ly r e g u la r u l t r a g en era ted by
c a l l an u l t r a f i l t e r I -►S ^ I )
(I). D
over
such th a t f o r a l l
I
weakly j e I,
k
TOPOLOGICAL PRELIMINARIES f[{i (a )
e Sm( I )
: j e i ) 3 e D
E very r e g u la r u l t r a f i l t e r o v e r a s e t
S^J)
i s w eakly
r e g u la r . (b )
An u l t r a f i l t e r th ere e x is t s
D
o ver a s e t
E CD
(a )
i s w eakly
such th a t
s e c tio n o f any i n f i n i t e EXERCISE 1C.
I
|E| = |l|
subset o f
E
r e g u la r i f f and the i n t e r
i s empty.
E very u l t r a f i l t e r o ver a f i n i t e
set is
w eakly r e g u la r . (b )
An u l t r a f i l t e r
D
r e g u la r i f f i t EXERCISE 1D. if
uniform
fin it e
|X| = |l|
o ver a cou n tab le s e t
i s w eakly
i s n o n - p r in c ip a l.
An u l t r a f i l t e r
fo r a l l
I
X € D.
D
D
over a set
I
is
i s u niform i f f
s a id to be
S ^ tl)
s e t w ith more than one elem ent has no u n iform u l t r a f i l t e r s
However, e v e r y w eakly r e g u la r u l t r a f i l t e r over an i n f i n i t e
set
CD.
A
over i t .
I
i s u n i
form . EXERCISE 1E. over
J,
and
le t
Dj
L e t I = U j£ j
Ij,
le t
be an u l t r a f i l t e r o ver
E
Ij
be an u l t r a f i l t e r f o r each
j e J.
Then
the s e t D = {X C I i s an u l t r a f i l t e r o v e r
: {j
e J : X n I
e D .) J
e E}
J
I.
We s h a ll now g iv e the d e f i n i t i o n o f a D -p rod u ct. non-empty s e t , Let
D a filte r
R* =
le n t t o
Ri . g)
if
F or
(i:
over
f,
f(i)
I,
g € R’ ,
= g (i)} e
always used r e l a t i v e to some f i l t e r v e r i f y th a t
~
f ~ = { g € R ': (X i € I ) R ±
we say th a t
f ~ g
(re a d
D
g iv e n by c o n te x t. R '.
F or
be a i eI.
f i s e q u iv a
D. We remark th a t the symbol
~
is
I t i s ea sy to f e R!,
le t
We then d e fin e the D-product o f the fu n c tio n
by D-prod XiR± = { T :
S ince
I
and R^ a non-empty s e t f o r each
i s an e q u iv a le n c e r e l a t i o n o v e r f ~ g }.
Let
I
is
determ ined by
D,
stead o f
xi
€ I
same s e t
R,
the D -product o f
in our above
i s denoted by D-prod R.
f € R '}
th e re i s
no co n fu sio n in w r it in g
n o ta tio n .
If
each
( x i € I )R
is
c a lle d the D-power o f
Xi
in
R^c o in c id e s w ith the R
and
D-PRODUCTS
5
In the l i t e r a t u r e , D -produ cts a re c a lle d reduced d i r e c t p ro d u cts, or reduced p ro d u c ts , and D-powers a re c a lle d reduced ( d i r e c t ) case
D
pow ers.
In
i s an u l t r a f i l t e r , D -p rod u cts a re c a lle d u ltr a p r o d u c ts , o r prim e
(red u ced d i r e c t )
p ro d u c ts , and D-powers a re c a lle d u ltra p o w e rs , or prim e
(red u ced d i r e c t )
pow ers.
There i s a la r g e c o l l e c t i o n o f theorem s, and even
some open problem s, con cern in g the c a r d i n a l i t y o f D -p rod u cts. o n ly two v e r y weak r e s u lt s w hich we s h a ll need l a t e r on.
We s h a ll p ro ve
However, a number
o f o th e r r e s u lt s in t h is d i r e c t i o n w i l l be in d ic a t e d i n the s e r ie s o f e x e r c is e s a t th e end o f t h is s e c t io n . LEMMA 1 .2 .1 .
F or any f i l t e r
any non-empty s e t PROOF.
R,
r € R
in t o the e q u iv a le n c e
{r },
i s a o n e -to -o n e fu n c tio n on R
w hich maps
Then
|D-prodR| > |l|.
R
i s an i n f i n i t e
s e t,
and D i s a r e g u la r u l t r a f i l t e r o ver
We may assume th a t co n ta in s
range
in t o D -prod R.
Suppose th a t
= I,
R
and
c la s s o f the con sta n t fu n c tio n w ith
S^tJ)
may a ls o assume th a t
I
|R| < |D-prod R |.
each
PROOF.
over a se t
f = (\ r t R ) ( ( \ i e I ) r ) ~ ,
The fu n c tio n
LEMMA 1 .2 .2 .
D
|l| > cd,
an i n f i n i t e
so
th a t
I.
|l| = |J|.
We
sequence
a0> a 1' a 2> * *•> am> o f d i s t i n c t elem en ts, and th a t For each
j e J
and
fjd )
Thus, f o r each Since
D
i € I,
=
{
i
if
j
am
if
j
i, is
the m -th elem ent in th e o r d e r in g induced on i . bj =
= {i
€ I :j 1, j 2 € i ) € D
we have f .
(i)
^ f. ( i ) .
J-l
(i: and
b. ^ b. . J1 J2
Suppose
the s e t
e I ’,
in somefa s h io n .
we d e fin e
f^ e R1 . L e t
I 1 Wow, whenever
has been sim p ly o rd ered
aQ
j € J,
i s r e g u la r ,
J
f, (i) J1
^ f. (i)) J2
T h is p ro v e s th e lemma.
J2
€ D
Hence ,
th a t
j 1 ^ j 2.
6
TOPOLOGICAL PRELIMINARIES EXERCISE 1F.
R
or
I
is
fin ite ,
|D-prod R | = |R |. ir 1 i
Suppose
D
i s an u l t r a f i l t e r o v e r
then |D-prod R| = |R|.
If
D
If
I.
D i s p r in c ip a l,
i s any u l t r a f i l t e r o v e r
I,
then
I f e it h e r then
|D-prod R|
|l|.
a u n iform u l t r a f i l t e r o v e r an i n f i n i t e
H in t: g iv e n a sequence o f
c o n s tru c t a new fu n c tio n
g: I
I
|l|
fu n c tio n s
which i s n ot e q u iv a le n t to
any o f them. EXERCISE 1H*. th a t If
|D-prod R| > R
|l|.
i s an i n f i n i t e
J,
then
Indeed one can p rove the f o llo w in g s tro n g e r r e s u lt :
s e t and
|D-prodR|
g (j) ^ h (j)
and
afu n c tio n
f
T
f*
on
onto
D-prod R
on T
R
onto
if
(R )
,
and
R01
then
f*
is
in such a way th a t, when
|D-prodR|
in turn induces a fu n c tio n
and
D
is
R
set I
= |D -prodR |“ .
f"
on
co u n ta b le.
sequence o f members o f
sa id to be oountably incom such th a t
n E 4 D.
i s cou n ta b ly in c o m p le te .
Any No
cou n tab ly in c o m p le te . If
D
i s a cou n tab ly in co m p lete u l t r a f i l t e r
i s an i n f i n i t e
s e t,
then
i s a cou n ta b ly com plete u l t r a f i l t e r and S
E -prod S
Ex. IB;
induces in a n a tu r a l way a fu n c tio n
An u l t r a f i l t e r
EXERCISE 1K*.
E
onto
f : J -* be as i n
g '( i ) ^ h '( i ) .
|R| = |R|“ ,
on an i n f i n i t e
p r in c ip a l u l t r a f i l t e r i s
If
we have
If R
g ' e R^
a cou n table subset E C D
w eakly r e g u la r f i l t e r
I,
a fu n c tio n
le t
(D -prod R )a .
th e re e x is t s
o ver a s e t
H in t:
qj
EXERCISE 1J.
p le te
i s a w eakly r e g u la r u l t r a f i l t e r o v e r a s e t
j e f(i),
EXERCISE 11*. H in t:
D
= |RJ |.
g e R^
a s s o c ia te w ith each ever
Under the same hypotheses as in 1 . 2 . 2 , p rove
H in t: D
|D-prod R| = |D-prod R|^. is
co u n ta b le, then
show th a t th e re i s a cou n tab ly d e c re a s in g
whose in t e r s e c t io n i s empty, and then argue as
in E x e r c is e 11.
1 .3 .
Compact H a u sd o rff spaces We assume th a t the re a d e r i s f a m i l i a r w ith a l l o f the elem en tary
p a r ts o f K e lle y [1 9 5 5 ], p a r t i c u l a r l y w ith ch a p ters one through f i v e . s h a ll fo llo w
We
the t o p o lo g ic a l n o ta tio n o f th a t book, and where we d i f f e r from
COMPACT HAUSDORFF SPACES it
7
o r where we in tro d u c e new n o tio n s , we s h a ll so in d ic a t e a t the a p p r o p r i
a te p la c e s . Let ef.
Let
e?0
X
be a compact H a u sd o rff t o p o lo g ic a l space w ith to p o lo g y
be an open b a s is f o r
We s h a ll i d e n t i f y
X
c?; f o r con ven ien ce, we assume (X , S )
w ith the p a ir
h e ld f i x e d throughout the monograph. open s e ts o f
X;
n o te open s e t s .
the l e t t e r s
c?q
Y
of
X
X
compact and H a u s d o rff.
C (Y ,
Z)
pact
and
Z
is
sometimes w ith s u b s c r ip ts ,
Y.
F or each
n
continuous fu n c tio n s o f f i n i t e l y v a lu e s in
le t
Y
Y
many v a r ia b le s
and
denote the
Each
Y
and If
is
Xn Z,
is le t
Y
i s com
c lo s e d
i s a c lo s e d s e t o f
C = Un € Xn) (x m) 2)
Xn
if
t io n ( \z e Xm) g ( f 1 ( z ) ,
X
[19553*
the c lo s u r e o f &
1]
pages 115
end
under composition
the m -th p r o je c t io n fu n c tio n
b e lo n g s to
. .., fR
. ..,
con tin u ou s.
SF C C,
m < n,
fn( z ))
We alw ays have fu n c tio n s i s
f : Y -*■ [0 ,
is
f f 3 £F such th a t:
onto f 1,
(S ee K e lle y
are d i s j o i n t
U, V
the u n it i n t e r v a l on the r e a l l i n e . )
Whenever on
i s a normal space and
and f[ V ] = { 1 } .
G iven a subset
ff it s e lf.
Xn
Z.
then e v e r y member o f C°(Y, Z)
(?n = C(Xn , X ) , and l e t
le t
s h a ll de
The c lo s u re
w ith th e u su al prod u ct to p o lo g y .
sense th a t th e image o f each c lo s e d s e t o f each
n
continuous fu n c tio n s f :
H a u s d o rff,
g?q are
the c o l l e c t i o n o f a l l
F or a r b it r a r y t o p o lo g ic a l spaces
be the s e t o f a l l
and
a re r e f e r r e d to as b a s ic open s e t s
i s denoted by
n - f o l d prod u ct space o f
is
X
a re c a lle d b a s ic c lo s e d s e t s .
complements o f elem en ts o f o f a subset
S
Thus,
U, V , W,
Elem ents o f
and assume th a t
X e
ff C
e f f n Cm
(\ < x 1 ,
...
ffi andg e & r\ ?n ,
b e lo n g s to
then
the fu n c
ff.
C, th a t i s , a com p osition o f continuous
M oreover, the c lo s u r e o f
Q’ under com p osition i s
8
TOPOLOGICAL PRELIMINARIES
We l e t 1) open in e f * ;
be the le a s t top ology on the set
Whenever
V
i s open in
X, the set
U
i s open in
X,
whenever
such th at:
{Y € X*: Y C V)
the set
is
{Y € X*: Y n U / 0)
gF*.
When we speak o f the to p o lo g ic a l space (X *, ef*) .
X*
and 2)
i s open in
e?*
An open basis fo r the space
X*
X*,
we mean the space
i s the fa m ily
g?q*
o f a l l sets
o f the form {Y € X* : Y CV1 where
V1, . . . , V"n e
example, i f
The
Y e X*, then
neighborhoods; indeed, does. of
X,
U. . . U VR
and
On the other hand, i f
X* i s in gen era l not H ausdorff.
Y
Y
and
Z
X*
of
(?(X*, X)
Y € X*.We d efin e
i f and only i f
Thus i f we r e s t r i c t
we have a Hausdorff space.
X*
i s compact.
i s closed and,
Since
X
i s H ausdorff,
fur-thermore, f ( Y )
=f ( Y )
We s h a ll now prove an easy lim it theorem fo r the space
if that
U = {Z
L et
Z1, Z2 e Y,
Y e X**
Then
closu re o f
Y
PROOF. L et
U Y e U e c?q*;
ym e Zm fo r each Z1 U. . .U Zn C Z.
Z e U n Y,
where Y
such is
the
X*. we must show that
fo r m < n.
m < n.
and
Z n Vm ^ 0
Choose sets
U n Y ^ 0.
fo r m < n)
Z1, . . . ,
By hypothesis, there i s a set
Then we have
Z n Vm ^ 0
fo r
Z C LfY C V1 U ...U V Hence
Z^ € Y
V 1, . . . , Vn e ^^ such that
e X* : Z C V1 U ...U V
Let ym e U Y n Vm
U Y e Y,
in the space
X*.
have the p rop erty th a t,
then there i s a set
Z1 U Z2 C Z^.
Choose b a sic open sets
As we
2 =