Chemical Engineering Computation with MATLAB [2 ed.] 2020043323, 2020043324, 9780367547820, 9780367547844, 9781003090601


863 243 26MB

English Pages [849] Year 2020

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
Cover
Half Title
Title Page
Copyright Page
Contents
Preface
Acknowledgments
Author
1. Introduction to MATLABⓇ
1.1. Starting MATLAB
1.1.1. Entering Commands in the Command Window
1.1.2. help Command
1.1.3. Exiting MATLAB
1.2. Operations and Assignment of Variables
1.2.1. Errors in Input
1.2.2. Aborting Calculations
1.3. Vectors and Matrices
1.3.1. Vectors
1.3.2. Matrices
1.3.3. Complex Number
1.3.4. Suppression of Screen Output
1.4. Numerical Expressions
1.5. Managing Variables
1.5.1. clear Command
1.5.2. Computational Limitations and Constants
1.5.3. "whos" Command
1.6. Symbolic Operations
1.6.1. Creation of Symbolic Variables
1.6.2. Substitution in Symbolic Equations
1.7. Code Files
1.7.1. Script Code Files
1.7.2. Adding Comments
1.7.3. Function Code Files
1.8. Functions
1.8.1. Built-In Functions
1.8.2. User-Defined Functions
1.9. Loops
1.9.1. If Statement
1.9.2. For Loop
1.10. Graphics
1.10.1. Plotting with ezplot
1.10.2. Modifying Graphs
1.10.3. Graphing with plot
1.10.4. Plotting Multiple Curves
1.10.5. Three-Dimensional Plots
1.11. Ordinary Differential Equations
1.12. Code File Examples
1.12.1. Population Growth Model
1.12.2. Random Fibonacci Sequence
1.12.3. Generation of a 3D Object
1.13. Simulink®
1.13.1. Simulink Blocks
1.13.2. Creation of a Simple Simulink Model
Bibliography
2. Numerical Methods with MATLABⓇ
2.1. Linear Systems
2.1.1. Gauss Elimination Method
2.1.2. Gauss-Seidel Method
2.1.3. Conjugate Gradient Method
2.1.4. Use of MATLAB Built-In Functions
2.2. Nonlinear Equations
2.2.1. Polynomial Equations
2.2.2. Zeros of Nonlinear Equations
2.2.2.1. Bisection Method
2.2.2.2. False Position Method
2.2.2.3. Newton-Raphson Method
2.2.2.4. Secant Method
2.2.2.5. Muller Method
2.2.3. Solution of Nonlinear Equations of Several Variables
2.2.3.1. Newton-Raphson Method
2.2.3.2. Secant Method
2.2.3.3. Fixed-Point Iteration Method for Nonlinear Systems
2.2.4. Use of MATLAB Built-In Functions
2.3. Regression Analysis
2.3.1. Introduction to Statistics
2.3.1.1. Elementary Statistics
2.3.1.2. Probability Distribution
2.3.2. Generation of Random Numbers
2.3.3. Linear Regression Analysis
2.3.4. Polynomial Regression Analysis
2.3.4.1. Data Fitting by Least-Squares Method
2.3.4.2. Use of MATLAB Built-In Functions
2.3.5. Transformation of Nonlinear Functions to Linear Functions
2.4. Interpolation
2.4.1. Polynomial Interpolation
2.4.2. Lagrange Method
2.4.3. Newton Method
2.4.4. Cubic Splines
2.4.5. Use of MATLAB Built-In Functions
2.4.5.1. Polynomial and Cubic Spline Regression
2.4.5.2. Interpolation in One Dimension
2.4.5.3. Interpolation in Multiple Dimensions
2.5. Differentiation and Integration
2.5.1. Differentiation
2.5.2. Integration
2.5.2.1. Definite Integrals
2.5.2.2. Multiple Integrals
2.6. Ordinary Differential Equations
2.6.1. Initial-Value Problems
2.6.1.1. Explicit Euler Method
2.6.1.2. Implicit Euler Method
2.6.1.3. Heun Method
2.6.1.4. Runge-Kutta Methods
2.6.1.5. nth-Order ODE
2.6.1.6. Use of MATLAB Built-In Functions
2.6.2. Boundary-Value Problems
2.6.3. Differential Algebraic Equations (DAEs)
2.7. Partial Differential Equations
2.7.1. Classification of Partial Differential Equations
2.7.1.1. Classification by Order
2.7.1.2. Classification by Linearity
2.7.1.3. Classification of Linear 2nd-Order Partial Differential Equations
2.7.1.4. Classification by Initial and Boundary Conditions
2.7.2. Solution of Partial Differential Equations by Finite Difference Methods
2.7.2.1. Parabolic PDE
2.7.2.2. Hyperbolic PDE
2.7.2.3. Elliptic PDE
2.7.3. Method of Lines
2.7.4. Use of the MATLAB Built-In Function pdepe
2.8. Historical Development of Process Engineering Software
Problems
Linear Systems
Nonlinear Equations
Regression Analysis
Interpolation
Differentiation and Integration
Ordinary Differential Equations
Partial Differential Equations
References
3. Physical Properties
3.1. Water and Steam
3.1.1. Division of Pressure-Temperature Range
3.1.2. Property Equations
3.1.2.1. Parameters and Auxiliary Equations
3.1.2.2. Basic Equation for Region 1
3.1.2.3. Basic Equation for Region 2
3.1.2.4. Basic Equation for Region 3
3.1.2.5. Basic Equation for Region 4
3.1.2.6. Basic Equations for Region 5
3.1.3. Properties of Saturated Steam
3.1.4. Calculation of H2O Properties by MATLAB Programs
3.1.4.1. Properties of H2O
3.1.4.2. Properties of Saturated H2O
3.2. Humidity
3.2.1. Relative Humidity
3.2.2. Absolute Humidity
3.3. Density of Saturated Liquids
3.3.1. Yaws Correlation
3.3.2. COSTALD Method
3.3.3. Gunn-Yamada Method7
3.4. Viscosity
3.4.1. Viscosity of Liquids
3.4.2. Viscosity of Gases
3.5. Heat Capacity
3.5.1. Heat Capacity of Liquids
3.5.1.1. Polynomial Correlation
3.5.1.2. Rowlinson-Bondi Method
3.5.2. Heat Capacity of Gases
3.6. Thermal Conductivity
3.6.1. Thermal Conductivity of Liquids
3.6.2. Thermal Conductivity of Gases
3.7. Surface Tension
3.7.1. Surface Tension of Liquids
3.7.2. Surface Tension by Correlations
3.8. Vapor Pressure
3.8.1. Antoine Equation
3.8.2. Extended Antoine Equation
3.8.3. Wagner Equation
3.8.4. Hoffmann-Florin Equation
3.8.5. Rarey-Moller Equation
3.8.6. Vapor Pressure Estimation by Correlations
3.9. Enthalpy of Vaporization
3.9.1. Watson Equation
3.9.2. Pitzer Correlation
3.9.3. Clausius-Clapeyron Equation
3.10. Heat of Formation for Ideal Gases
3.11. Gibbs Free Energy
3.12. Diffusion Coefficients
3.12.1. Liquid-Phase Diffusion Coefficients
3.12.2. Gas-Phase Diffusion Coefficients
3.13. Compressibility Factor of Natural Gases
Problems
References
4. Thermodynamics
4.1. Equation of State
4.1.1. Virial State Equation
4.1.2. Lee-Kesler Equation
4.1.3. Cubic Equations of State
4.1.4. Thermodynamic State Models
4.2. Thermodynamic Properties of Fluids
4.2.1. Enthalpy Change
4.2.2. Departure Function
4.2.2.1. Departure Function from the Virial Equation of State
4.2.2.2. Departure Function from the VDW (van der Waals) Equation of State
4.2.2.3. Departure Function from the RK (Redlich-Kwong) Equation of State
4.2.2.4. Departure Function from the SRK (Soave-Redlich-Kwong) Equation of State
4.2.2.5. Departure Function from the PR (Peng-Robinson) Equation of State
4.2.3. Enthalpy of Mixture
4.3. Fugacity Coefficient
4.3.1. Fugacity Coefficients of Pure Species
4.3.2. Fugacity Coefficient of a Species in a Mixture
4.3.2.1. Fugacity Coefficient from the Virial Equation of State
4.3.2.2. Fugacity Coefficient from the Cubic Equations of State
4.3.2.3. Fugacity Coefficient from the van der Waals Equation of State
4.4. Activity Coefficient
4.4.1. Activity Coefficient Models
4.4.1.1. Wilson equation
4.4.1.2. van Laar equation
4.4.2. Activity Coefficients by the Group Contribution Method
4.4.2.1. UNIQUAC Method
4.4.2.2. UNIFAC Method
4.5. Vapor-Liquid Equilibrium
4.5.1. Vapor-Liquid Equilibrium by Raoult's Law
4.5.2. Vapor-Liquid Equilibrium by Modified Raoult's Law
4.5.2.1. Dew Point and Bubble Point Calculations
4.5.2.2. Flash Calculation by the Modified Raoult's Law
4.5.3. Vapor-Liquid Equilibrium Using Ratio of Fugacity Coefficients
4.5.3.1. Dew Point and Bubble Point Calculations38
4.5.3.2. Flash Calculations Using Fugacity Coefficients
4.6. Vapor-Liquid-Liquid Equilibrium
Problems
References
5. Fluid Mechanics
5.1. Laminar Flow
5.1.1. Reynolds Number
5.1.2. Flow in a Horizontal Pipe
5.1.3. Laminar Flow in a Horizontal Annulus
5.1.4. Vertical Laminar Flow of a Falling Film
5.1.5. Falling Particles
5.2. Friction Factor
5.3. Flow of Fluids in Pipes
5.3.1. Friction Loss
5.3.2. Equivalent Length of Various Fittings and Valves
5.3.3. Excess Head Loss
5.3.4. Pipe Reduction and Enlargement
5.3.5. Overall Pressure Drop
5.3.6. Pipeline Network
5.4. Flow through a Tank
5.4.1. Open Tank
5.4.2. Enclosed Tank
5.5. Flow Measurement: Orifice and Venturi Meter
5.6. Flow of Non-Newtonian Fluids
5.6.1. Velocity Profile
5.6.2. Reynolds Number
5.6.3. Friction Factor
5.7. Compressible Fluid Flow in Pipes
5.7.1. Critical Flow and the Mach Number
5.7.2. Compressible Isothermal Flow
5.7.3. Choked Flow
5.8. Two-Phase Flow in Pipes
5.8.1. Flow Patterns
5.8.2. Pressure Drop
5.8.3. Corrosion and Erosion
5.8.4. Vapor-Liquid Two-Phase Vertical Downflow
5.8.5. Pressure Drop in Flashing Steam Condensate Flow
5.9. Flow through Packed Beds
Problems
References
6. Chemical Reaction Engineering
6.1. Characteristics of Reaction Rates
6.1.1. Estimation of Reaction Rate Constant and Reaction Order
6.1.2. Reaction Equilibrium
6.1.3. Reaction Conversion
6.1.4. Series Reactions
6.2. Continuous-Stirred Tank Reactors (CSTRs)
6.2.1. Concentration Changes with Time
6.2.2. Nonisothermal Reaction
6.2.3. Multiple Reactions in a CSTR
6.3. Batch Reactors
6.3.1. Estimation of Batch Reaction Parameters
6.3.2. Semibatch Reactors
6.4. Plug-Flow Reactors
6.4.1. Isothermal Plug-Flow Reactor
6.4.2. Nonisothermal Plug-Flow Reactor
6.4.3. Adiabatic Reaction in a Plug-Flow Reactor
6.5. Catalytic Reactors
6.5.1. Characteristics of Catalytic Reaction
6.5.2. Diffusion and Reaction in a Catalyst Pellet
6.5.3. Catalytic Reactions in a Packed-Bed Reactor
6.5.4. Packed-Bed Reactor with Axial Mixing
6.5.5. Oxidation of SO2 in a Packed-Bed Reactor
6.5.6. Straight-Through Transport Reactor
6.5.7. Steady-State Nonisothermal Reactions
6.6. Cracking and Polymerization
6.6.1. Cracking Reaction
6.6.2. Polymerization of Methyl Methacrylate (MMA)
6.7. Microreactors
6.8. Membrane Reactors
6.9. Biochemical Reaction: Cell Growth Models
Problems
References
7. Mass Transfer
7.1. Diffusion
7.1.1. One-Dimensional Diffusion
7.1.2. Multi-Component Diffusion in Gases
7.1.3. Diffusion from a Sphere
7.1.4. Mass Transfer Coefficient
7.1.5. Diffusion in Isothermal Catalyst Particles
7.1.6. Unsteady-State Diffusion in a One-Dimensional Slab
7.1.7. Diffusion in a Falling Laminar Film
7.2. Evaporation
7.2.1. Single-Effect Evaporators
7.2.2. Vaporizers
7.2.3. Multiple-Effect Evaporators
7.3. Absorption
7.3.1. Absorption by Tray Column
7.3.2. Momentum and Mass Transfer in the Absorption Column
7.3.3. Packed-Bed Absorber
7.3.3.1. Packed-Bed Column Diameter
7.3.3.2. Packed-Bed Column Height
7.4. Binary Distillation
7.4.1. McCabe-Thiele Method
7.4.2. Ideal Binary Distillation
7.5. Multi-Component Distillation: Shortcut Calculation
7.5.1. Fenske-Underwood-Gilliland Method
7.5.1.1. Fenske Equation: The Minimum Number of Stages
7.5.1.2. Underwood Equation: The Minimum Reflux
7.5.1.3. Gilliland's Correlation
7.5.1.4. Feed Stage Location
7.5.1.5. Determination of the Number of Stages by the Smoker Equation
7.6. Rigorous Steady-State Distillation Calculations
7.6.1. Equilibrium Stage
7.6.2. Rigorous Distillation Model: MESH Equations
7.6.3. Tridiagonal Matrix Method
7.6.4. Bubble Point (BP) Method
7.7. Differential Distillation
7.8. Filtration
7.9. Membrane Separation
7.9.1. Complete-Mixing Model for Gas Separation
7.9.2. Cross-Flow Model for Gas Separation
Problems
References
8. Heat Transfer
8.1. One-Dimensional Heat Transfer
8.1.1. Heat Transfer in a One-Dimensional Slab
8.1.2. Heat Transfer through Multilayers of Slabs and Cylinders
8.1.3. Heat Transfer in a Wire
8.1.4. Heat Loss through Pipe Flanges
8.1.5. Heat Transfer in a Laminar Flow through a Cylinder
8.2. Multidimensional Heat Conduction
8.2.1. Unsteady-State Heat Conduction
8.2.2. Method of Lines
8.2.3. Steady-State Heat Conduction
8.3. Heat Exchangers
8.3.1. Log-Mean Temperature Difference
8.3.2. Simplified Heat Exchanger Calculation,
8.3.2.1. Heat Duty
8.3.2.2. Overall Heat Transfer Coefficient
8.3.2.3. Tube-Side Heat Transfer Coefficient
8.3.2.4. Shell-Side Heat Transfer Coefficient
8.3.2.5. Pressure Drop in the Tube Side
8.3.2.6. Pressure Drop in the Shell Side
8.3.3. Rigorous Heat Exchanger Calculation
8.3.3.1. Tube-Side Heat Transfer Coefficient
8.3.3.2. Shell-Side Heat Transfer Coefficient
8.3.3.3. Pressure Drop in the Tube Side
8.3.3.4. Pressure Drop in the Shell Side
8.3.3.5. Heat Exchanger Calculation Procedure
8.3.4. Double-Pipe Heat Exchanger
Problems
References
9. Process Control
9.1. Laplace Transform and Transfer Function
9.1.1. Laplace Transform and Inverse Laplace Transform
9.1.2. Partial Fraction Expansion
9.1.3. Representation of the Transfer Function
9.2. Block Diagrams
9.3. State-Space Representation
9.4. Process Dynamics
9.4.1. Dynamics of 1st-Order Processes
9.4.2. Dynamics of 2nd-Order Processes
9.4.3. Dynamics of Complex Processes
9.4.3.1. Higher-Order Processes
9.4.3.2. Lead/Lag
9.4.3.3. Time Delay
9.5. Dynamics of Feedback Control Loops
9.5.1. Simple Feedback Control Loops
9.5.1.1. Servo Problem
9.5.1.2. Regulator Problem
9.5.2. Control of a Continuous-Stirred Tank Heater
9.6. Stability of Feedback Control Systems
9.7. Frequency Response Analysis
9.7.1. Bode Diagram
9.7.2. Nyquist Diagram
9.7.3. Nichols Chart
9.7.4. Gain and Phase Margins
Problems
References
10. Optimization
10.1. Unconstrained Optimization
10.1.1. Fibonacci Method
10.1.2. Golden Section Method
10.1.3. Brent's Quadratic Fit Method
10.1.4. Shubert-Piyavskii Method
10.1.5. Steepest Descent Method
10.1.6. Newton's Method
10.1.7. Conjugate Gradient Method
10.1.8. Quasi-Newton Method
10.2. Linear Programming
10.2.1. Formulation of Linear Programming Problems
10.2.2. Simplex Method
10.2.3. Two-Phase Simplex Method
10.2.4. Interior Point Method
10.3. Constrained Optimization
10.3.1. Rosen's Gradient Projection Method
10.3.2. Zoutendijk's Feasible Direction Method
10.3.3. Generalized Reduced Gradient (GRG) Method
10.3.4. Sequential Quadratic Programming (SQP) Method
10.4 Direct Search Methods
10.4.1. Cyclic Coordinate Method
10.4.2. Hooke-Jeeves Pattern Search Method
10.4.3. Rosenbrock's Method
10.4.4. Nelder-Mead's Simplex Method
10.4.5. Simulated Annealing (SA) Method
10.4.6. Genetic Algorithm (GA)
10.5. Mixed-Integer Programming
10.5.1. Zero-One Programming Method
10.5.2 Branch-and-Bound Method
10.6. Use of MATLAB Built-In Functions
10.6.1. Unconstrained Optimization
10.6.1.1. fminsearch
10.6.1.2. fminunc
10.6.1.3. fminbnd
10.6.1.4. lsqnonlin
10.6.2. Constrained Optimization
10.6.2.1. lsqlin
10.6.2.2. fmincon
10.6.2.3. fminimax
10.6.2.4. quadprog
10.6.3. Linear and Mixed-Integer Programming Problems
10.6.3.1. linprog
10.6.3.2. intlinprog
Problems
References
11. Computational Intelligence
11.1. Fuzzy Systems
11.1.1. Membership Functions
11.1.2. Fuzzy Arithmetic Operations
11.1.3. Defuzzification
11.1.4. Fuzzy Inference Systems
11.1.4.1. Mamdani Fuzz Inference System (FIS) Objects
11.1.4.2. Creation of an FIS Object Using the mamfis Function
11.1.4.3. Creation of an FIS Object Using the genfis Function
11.1.4.4. Creation of an FIS Object Using Fuzzy Logic Designer
11.2. Artificial Neural Networks
11.2.1. Neural Network Models
11.2.2. Function Fitting Neural Networks
11.2.2.1. Construction and Training of a Function Fitting Network
11.2.2.2. Creation and Training of a Feed-forward Network
11.2.2.3. Creation and Training of a Cascade Network
11.2.3. Regression Fitting
11.2.3.1. Regression Models
11.2.3.2. Data Fitting
11.3. Support Vector Machines
11.3.1. Fundamentals of Support Vector Machines
11.3.2. Creation of Regression Models Using fitrsvm
11.3.3. Creation of Regression Models Using fitrlinear
Problems
References
Index

Chemical Engineering Computation with MATLAB [2 ed.]
 2020043323, 2020043324, 9780367547820, 9780367547844, 9781003090601

  • 0 0 1
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Recommend Papers