286 106 19MB
English Pages 474 [473] Year 2020
✷
❚♦ t❤❡ st✉❞❡♥t✳✳✳
❚♦ t❤❡ st✉❞❡♥t ▼❛t❤❡♠❛t✐❝s ✐s ❛ s❝✐❡♥❝❡✳ ❏✉st ❛s t❤❡ r❡st ♦❢ t❤❡ s❝✐❡♥t✐sts✱ ♠❛t❤❡♠❛t✐❝✐❛♥s ❛r❡ tr②✐♥❣ t♦ ✉♥❞❡rst❛♥❞ ❤♦✇ t❤❡ ❯♥✐✈❡rs❡ ♦♣❡r❛t❡s ❛♥❞ ❞✐s❝♦✈❡r ✐ts ❧❛✇s✳
❲❤❡♥ s✉❝❝❡ss❢✉❧✱ t❤❡② ✇r✐t❡ t❤❡s❡ ❧❛✇s ❛s s❤♦rt st❛t❡♠❡♥ts
❝❛❧❧❡❞ ✏t❤❡♦r❡♠s✑✳ ■♥ ♦r❞❡r t♦ ♣r❡s❡♥t t❤❡s❡ ❧❛✇s ❝♦♥❝❧✉s✐✈❡❧② ❛♥❞ ♣r❡❝✐s❡❧②✱ ❛ ❞✐❝t✐♦♥❛r② ♦❢ t❤❡ ♥❡✇ ❝♦♥❝❡♣ts ✐s ❛❧s♦ ❞❡✈❡❧♦♣❡❞❀ ✐ts ❡♥tr✐❡s ❛r❡ ❝❛❧❧❡❞ ✏❞❡✜♥✐t✐♦♥s✑✳ ❚❤❡s❡ t✇♦ ♠❛❦❡ ✉♣ t❤❡ ♠♦st ✐♠♣♦rt❛♥t ♣❛rt ♦❢ ❛♥② ♠❛t❤❡♠❛t✐❝s ❜♦♦❦✳ ❚❤✐s ✐s ❤♦✇ ❞❡✜♥✐t✐♦♥s✱ t❤❡♦r❡♠s✱ ❛♥❞ s♦♠❡ ♦t❤❡r ✐t❡♠s ❛r❡ ✉s❡❞ ❛s ❜✉✐❧❞✐♥❣ ❜❧♦❝❦s ♦❢ t❤❡ s❝✐❡♥t✐✜❝ t❤❡♦r② ✇❡ ♣r❡s❡♥t ✐♥ t❤✐s t❡①t✳ ❊✈❡r② ♥❡✇ ❝♦♥❝❡♣t ✐s ✐♥tr♦❞✉❝❡❞ ✇✐t❤ ✉t♠♦st s♣❡❝✐✜❝✐t②✳
❉❡✜♥✐t✐♦♥ ✵✳✵✳✶✿ sq✉❛r❡ r♦♦t ❙✉♣♣♦s❡
x✱
a
✐s ❛ ♣♦s✐t✐✈❡ ♥✉♠❜❡r✳ ❚❤❡♥ t❤❡ sq✉❛r❡ r♦♦t ♦❢ x2 = a✳
a
✐s ❛ ♣♦s✐t✐✈❡ ♥✉♠❜❡r
s✉❝❤ t❤❛t
❚❤❡ t❡r♠ ❜❡✐♥❣ ✐♥tr♦❞✉❝❡❞ ✐s ❣✐✈❡♥ ✐♥ ✐t❛❧✐❝s✳ ❚❤❡ ❞❡✜♥✐t✐♦♥s ❛r❡ t❤❡♥ ❝♦♥st❛♥t❧② r❡❢❡rr❡❞ t♦ t❤r♦✉❣❤♦✉t t❤❡ t❡①t✳ ◆❡✇ s②♠❜♦❧✐s♠ ♠❛② ❛❧s♦ ❜❡ ✐♥tr♦❞✉❝❡❞✳
❙q✉❛r❡ r♦♦t √
a
❈♦♥s❡q✉❡♥t❧②✱ t❤❡ ♥♦t❛t✐♦♥ ✐s ❢r❡❡❧② ✉s❡❞ t❤r♦✉❣❤♦✉t t❤❡ t❡①t✳ ❲❡ ♠❛② ❝♦♥s✐❞❡r ❛ s♣❡❝✐✜❝ ✐♥st❛♥❝❡ ♦❢ ❛ ♥❡✇ ❝♦♥❝❡♣t ❡✐t❤❡r ❜❡❢♦r❡ ♦r ❛❢t❡r ✐t ✐s ❡①♣❧✐❝✐t❧② ❞❡✜♥❡❞✳
❊①❛♠♣❧❡ ✵✳✵✳✷✿ ❧❡♥❣t❤ ♦❢ ❞✐❛❣♦♥❛❧ ❲❤❛t ✐s t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❞✐❛❣♦♥❛❧ ♦❢ ❛
1 × 1 sq✉❛r❡❄ ❚❤❡ sq✉❛r❡ ✐s ♠❛❞❡ ♦❢ t✇♦ r✐❣❤t tr✐❛♥❣❧❡s ❛♥❞ t❤❡ a✳ ❚❤❡♥✱ ❜② t❤❡ P②t❤❛❣♦r❡❛♥ ❚❤❡♦r❡♠ ✱ t❤❡ sq✉❛r❡ ♦❢
❞✐❛❣♦♥❛❧ ✐s t❤❡✐r s❤❛r❡❞ ❤②♣♦t❡♥✉s❡✳ ▲❡t✬s ❝❛❧❧ ✐t a ✐s 12 + 12 = 2✳ ❈♦♥s❡q✉❡♥t❧②✱ ✇❡ ❤❛✈❡✿
a2 = 2 . ❲❡ ✐♠♠❡❞✐❛t❡❧② s❡❡ t❤❡ ♥❡❡❞ ❢♦r t❤❡ sq✉❛r❡ r♦♦t✦ ❚❤❡ ❧❡♥❣t❤ ✐s✱ t❤❡r❡❢♦r❡✱
a=
√
2✳
❨♦✉ ❝❛♥ s❦✐♣ s♦♠❡ ♦❢ t❤❡ ❡①❛♠♣❧❡s ✇✐t❤♦✉t ✈✐♦❧❛t✐♥❣ t❤❡ ✢♦✇ ♦❢ ✐❞❡❛s✱ ❛t ②♦✉r ♦✇♥ r✐s❦✳ ❆❧❧ ♥❡✇ ♠❛t❡r✐❛❧ ✐s ❢♦❧❧♦✇❡❞ ❜② ❛ ❢❡✇ ❧✐tt❧❡ t❛s❦s✱ ♦r q✉❡st✐♦♥s✱ ❧✐❦❡ t❤✐s✳
❊①❡r❝✐s❡ ✵✳✵✳✸ ❋✐♥❞ t❤❡ ❤❡✐❣❤t ♦❢ ❛♥ ❡q✉✐❧❛t❡r❛❧ tr✐❛♥❣❧❡ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ s✐❞❡ ♦❢ ✇❤✐❝❤ ✐s
1✳
❚❤❡ ❡①❡r❝✐s❡s ❛r❡ t♦ ❜❡ ❛tt❡♠♣t❡❞ ✭♦r ❛t ❧❡❛st ❝♦♥s✐❞❡r❡❞✮ ✐♠♠❡❞✐❛t❡❧②✳ ▼♦st ♦❢ t❤❡ ✐♥✲t❡①t ❡①❡r❝✐s❡s ❛r❡ ♥♦t ❡❧❛❜♦r❛t❡✳
❚❤❡② ❛r❡♥✬t✱ ❤♦✇❡✈❡r✱ ❡♥t✐r❡❧② r♦✉t✐♥❡ ❛s t❤❡② r❡q✉✐r❡
✉♥❞❡rst❛♥❞✐♥❣ ♦❢✱ ❛t ❧❡❛st✱ t❤❡ ❝♦♥❝❡♣ts t❤❛t ❤❛✈❡ ❥✉st ❜❡❡♥ ✐♥tr♦❞✉❝❡❞✳ ❆❞❞✐t✐♦♥❛❧ ❡①❡r❝✐s❡ s❡ts ❛r❡ ♣❧❛❝❡❞ ✐♥ t❤❡ ❛♣♣❡♥❞✐① ❛s ✇❡❧❧ ❛s ❛t t❤❡ ❜♦♦❦✬s ✇❡❜s✐t❡✿ ❝❛❧❝✉❧✉s✶✷✸✳❝♦♠✳ ❉♦ ♥♦t st❛rt ②♦✉r st✉❞② ✇✐t❤ t❤❡ ❡①❡r❝✐s❡s✦ ❑❡❡♣ ✐♥ ♠✐♥❞ t❤❛t t❤❡ ❡①❡r❝✐s❡s ❛r❡ ♠❡❛♥t t♦ t❡st ✕ ✐♥❞✐r❡❝t❧② ❛♥❞ ✐♠♣❡r❢❡❝t❧② ✕ ❤♦✇ ✇❡❧❧ t❤❡ ❝♦♥❝❡♣ts ❤❛✈❡ ❜❡❡♥ ❧❡❛r♥❡❞✳ ❚❤❡r❡ ❛r❡ s♦♠❡t✐♠❡s ✇♦r❞s ♦❢ ❝❛✉t✐♦♥ ❛❜♦✉t ❝♦♠♠♦♥ ♠✐st❛❦❡s ♠❛❞❡ ❜② t❤❡ st✉❞❡♥ts✳
❚♦ t❤❡ st✉❞❡♥t✳✳✳
✸
❲❛r♥✐♥❣✦ 2 √ (−1) = 1✱ 1✱ 1 = 1✳
■♥ s♣✐t❡ ♦❢ t❤❡ ❢❛❝t t❤❛t ♦♥❡ sq✉❛r❡ r♦♦t ♦❢
t❤❡r❡ ✐s ♦♥❧②
❚❤❡ ♠♦st ✐♠♣♦rt❛♥t ❢❛❝ts ❛❜♦✉t t❤❡ ♥❡✇ ❝♦♥❝❡♣ts ❛r❡ ♣✉t ❢♦r✇❛r❞ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ♠❛♥♥❡r✳
❚❤❡♦r❡♠ ✵✳✵✳✹✿ Pr♦❞✉❝t ♦❢ ❘♦♦ts ❋♦r ❛♥② t✇♦ ♣♦s✐t✐✈❡ ♥✉♠❜❡rs
a
b✱
❛♥❞
√
a·
√
✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐❞❡♥t✐t②✿
b=
√
a·b
❚❤❡ t❤❡♦r❡♠s ❛r❡ ❝♦♥st❛♥t❧② r❡❢❡rr❡❞ t♦ t❤r♦✉❣❤♦✉t t❤❡ t❡①t✳ ❆s ②♦✉ ❝❛♥ s❡❡✱ t❤❡♦r❡♠s ♠❛② ❝♦♥t❛✐♥ ❢♦r♠✉❧❛s❀ ❛ t❤❡♦r❡♠ s✉♣♣❧✐❡s ❧✐♠✐t❛t✐♦♥s ♦♥ t❤❡ ❛♣♣❧✐❝❛❜✐❧✐t② ♦❢ t❤❡ ❢♦r♠✉❧❛ ✐t ❝♦♥t❛✐♥s✳
❋✉rt❤❡r♠♦r❡✱ ❡✈❡r② ❢♦r♠✉❧❛ ✐s ❛ ♣❛rt ♦❢ ❛ t❤❡♦r❡♠✱ ❛♥❞ ✉s✐♥❣ t❤❡ ❢♦r♠❡r ✇✐t❤♦✉t
❦♥♦✇✐♥❣ t❤❡ ❧❛tt❡r ✐s ♣❡r✐❧♦✉s✳ ❚❤❡r❡ ✐s ♥♦ ♥❡❡❞ t♦ ♠❡♠♦r✐③❡ ❞❡✜♥✐t✐♦♥s ♦r t❤❡♦r❡♠s ✭❛♥❞ ❢♦r♠✉❧❛s✮✱ ✐♥✐t✐❛❧❧②✳ ❲✐t❤ ❡♥♦✉❣❤ t✐♠❡ s♣❡♥t ✇✐t❤ t❤❡ ♠❛t❡r✐❛❧✱ t❤❡ ♠❛✐♥ ♦♥❡s ✇✐❧❧ ❡✈❡♥t✉❛❧❧② ❜❡❝♦♠❡ ❢❛♠✐❧✐❛r ❛s t❤❡② ❝♦♥t✐♥✉❡ t♦ r❡❛♣♣❡❛r ✐♥ t❤❡ t❡①t✳ ❲❛t❝❤ ❢♦r ✇♦r❞s ✏✐♠♣♦rt❛♥t✑✱ ✏❝r✉❝✐❛❧✑✱ ❡t❝✳ ❚❤♦s❡ ♥❡✇ ❝♦♥❝❡♣ts t❤❛t ❞♦ ♥♦t r❡❛♣♣❡❛r ✐♥ t❤✐s t❡①t ❛r❡ ❧✐❦❡❧② t♦ ❜❡ s❡❡♥ ✐♥ t❤❡ ♥❡①t ♠❛t❤❡♠❛t✐❝s ❜♦♦❦ t❤❛t ②♦✉ r❡❛❞✳ ❨♦✉ ♥❡❡❞ t♦✱ ❤♦✇❡✈❡r✱ ❜❡ ❛✇❛r❡ ♦❢ ❛❧❧ ♦❢ t❤❡ ❞❡✜♥✐t✐♦♥s ❛♥❞ t❤❡♦r❡♠s ❛♥❞ ❜❡ ❛❜❧❡ t♦ ✜♥❞ t❤❡ r✐❣❤t ♦♥❡ ✇❤❡♥ ♥❡❝❡ss❛r②✳ ❖❢t❡♥✱ ❜✉t ♥♦t ❛❧✇❛②s✱ ❛ t❤❡♦r❡♠ ✐s ❢♦❧❧♦✇❡❞ ❜② ❛ t❤♦r♦✉❣❤ ❛r❣✉♠❡♥t ❛s ❛ ❥✉st✐✜❝❛t✐♦♥✳
Pr♦♦❢✳ ❙✉♣♣♦s❡
A=
√
a
❛♥❞
B=
√
b✳
❚❤❡♥✱ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❞❡✜♥✐t✐♦♥✱ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
a = A2
❛♥❞
b = B2 .
❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡✿
❍❡♥❝❡✱
√
a · b = A2 · B 2 = A · A · B · B = (A · B) · (A · B) = (AB)2 . ab = A · B ✱
❛❣❛✐♥ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❞❡✜♥✐t✐♦♥✳
❙♦♠❡ ♣r♦♦❢s ❝❛♥ ❜❡ s❦✐♣♣❡❞ ❛t ✜rst r❡❛❞✐♥❣✳ ■ts ❤✐❣❤❧② ❞❡t❛✐❧❡❞ ❡①♣♦s✐t✐♦♥ ♠❛❦❡s t❤❡ ❜♦♦❦ ❛ ❣♦♦❞ ❝❤♦✐❝❡ ❢♦r s❡❧❢✲st✉❞②✳ ■❢ t❤✐s ✐s ②♦✉r ❝❛s❡✱ t❤❡s❡ ❛r❡ ♠② s✉❣❣❡st✐♦♥s✳ ❲❤✐❧❡ r❡❛❞✐♥❣ t❤❡ ❜♦♦❦✱ tr② t♦ ♠❛❦❡ s✉r❡ t❤❛t ②♦✉ ✉♥❞❡rst❛♥❞ ♥❡✇ ❝♦♥❝❡♣ts ❛♥❞ ✐❞❡❛s✳ ❤♦✇❡✈❡r✱ t❤❛t s♦♠❡ ❛r❡ ♠♦r❡ ✐♠♣♦rt❛♥t t❤❛t ♦t❤❡rs❀ t❤❡② ❛r❡ ♠❛r❦❡❞ ❛❝❝♦r❞✐♥❣❧②✳
❑❡❡♣ ✐♥ ♠✐♥❞✱
❈♦♠❡ ❜❛❝❦ ✭♦r ❥✉♠♣
❢♦r✇❛r❞✮ ❛s ♥❡❡❞❡❞✳ ❈♦♥t❡♠♣❧❛t❡✳ ❋✐♥❞ ♦t❤❡r s♦✉r❝❡s ✐❢ ♥❡❝❡ss❛r②✳ ❨♦✉ s❤♦✉❧❞ ♥♦t t✉r♥ t♦ t❤❡ ❡①❡r❝✐s❡ s❡ts ✉♥t✐❧ ②♦✉ ❤❛✈❡ ❜❡❝♦♠❡ ❝♦♠❢♦rt❛❜❧❡ ✇✐t❤ t❤❡ ♠❛t❡r✐❛❧✳ ❲❤❛t t♦ ❞♦ ❛❜♦✉t ❡①❡r❝✐s❡s ✇❤❡♥ s♦❧✉t✐♦♥s ❛r❡♥✬t ♣r♦✈✐❞❡❞❄ ❋✐rst✱ ✉s❡ t❤❡ ❡①❛♠♣❧❡s✳ ▼❛♥② ♦❢ t❤❡♠ ❝♦♥t❛✐♥ ❛ ♣r♦❜❧❡♠ ✕ ✇✐t❤ ❛ s♦❧✉t✐♦♥✳ ❚r② t♦ s♦❧✈❡ t❤❡ ♣r♦❜❧❡♠ ✕ ❜❡❢♦r❡ ♦r ❛❢t❡r r❡❛❞✐♥❣ t❤❡ s♦❧✉t✐♦♥✳ ❨♦✉ ❝❛♥ ❛❧s♦ ✜♥❞ ❡①❡r❝✐s❡s ♦♥❧✐♥❡ ♦r ♠❛❦❡ ✉♣ ②♦✉r ♦✇♥ ♣r♦❜❧❡♠s ❛♥❞ s♦❧✈❡ t❤❡♠✦ ■ str♦♥❣❧② s✉❣❣❡st t❤❛t ②♦✉r s♦❧✉t✐♦♥ s❤♦✉❧❞ ❜❡ t❤♦r♦✉❣❤❧② ✇r✐tt❡♥✳ ❨♦✉ s❤♦✉❧❞ ✇r✐t❡ ✐♥ ❝♦♠♣❧❡t❡ s❡♥t❡♥❝❡s✱ ✐♥❝❧✉❞✐♥❣ ❛❧❧ t❤❡ ❛❧❣❡❜r❛✳ ❋♦r ❡①❛♠♣❧❡✱ ②♦✉ s❤♦✉❧❞ ❛♣♣r❡❝✐❛t❡ t❤❡ ❞✐✛❡r❡♥❝❡ ❜❡t✇❡❡♥ t❤❡s❡ t✇♦✿
❲r♦♥❣✿
1+1 2
❘✐❣❤t✿
1+1 =2
✹
❚♦ t❤❡ st✉❞❡♥t✳✳✳
❚❤❡ ❧❛tt❡r r❡❛❞s ✏♦♥❡ ❛❞❞❡❞ t♦ ♦♥❡ ✐s t✇♦✑✱ ✇❤✐❧❡ t❤❡ ❢♦r♠❡r ❝❛♥♥♦t ❜❡ r❡❛❞✳ ❨♦✉ s❤♦✉❧❞ ❛❧s♦ ❥✉st✐❢② ❛❧❧ ②♦✉r st❡♣s ❛♥❞ ❝♦♥❝❧✉s✐♦♥s✱ ✐♥❝❧✉❞✐♥❣ ❛❧❧ t❤❡ ❛❧❣❡❜r❛✳ ❋♦r ❡①❛♠♣❧❡✱ ②♦✉ s❤♦✉❧❞ ❛♣♣r❡❝✐❛t❡ t❤❡ ❞✐✛❡r❡♥❝❡ ❜❡t✇❡❡♥ t❤❡s❡ t✇♦✿ ❲r♦♥❣✿
2x = 4 x=2
❘✐❣❤t✿
2x = 4 ; x = 2.
t❤❡r❡❢♦r❡✱
❚❤❡ st❛♥❞❛r❞s ♦❢ t❤♦r♦✉❣❤♥❡ss ❛r❡ ♣r♦✈✐❞❡❞ ❜② t❤❡ ❡①❛♠♣❧❡s ✐♥ t❤❡ ❜♦♦❦✳ ◆❡①t✱ ②♦✉r s♦❧✉t✐♦♥ s❤♦✉❧❞ ❜❡ t❤♦r♦✉❣❤❧② r❡❛❞✳ ❚❤✐s ✐s t❤❡ t✐♠❡ ❢♦r s❡❧❢✲❝r✐t✐❝✐s♠✿ ▲♦♦❦ ❢♦r ❡rr♦rs ❛♥❞ ✇❡❛❦ s♣♦ts✳ ■t s❤♦✉❧❞ ❜❡ r❡✲r❡❛❞ ❛♥❞ t❤❡♥ r❡✇r✐tt❡♥✳ ❖♥❝❡ ②♦✉ ❛r❡ ❝♦♥✈✐♥❝❡❞ t❤❛t t❤❡ s♦❧✉t✐♦♥ ✐s ❝♦rr❡❝t ❛♥❞ t❤❡ ♣r❡s❡♥t❛t✐♦♥ ✐s s♦❧✐❞✱ ②♦✉ ♠❛② s❤♦✇ ✐t t♦ ❛ ❦♥♦✇❧❡❞❣❡❛❜❧❡ ♣❡rs♦♥ ❢♦r ❛ ♦♥❝❡✲♦✈❡r✳ ◆❡①t✱ ②♦✉ ♠❛② t✉r♥ t♦ ♠♦❞❡❧✐♥❣ ♣r♦❥❡❝ts✳ ❙♣r❡❛❞s❤❡❡ts ✭▼✐❝r♦s♦❢t ❊①❝❡❧ ♦r s✐♠✐❧❛r✮ ❛r❡ ❝❤♦s❡♥ t♦ ❜❡ ✉s❡❞ ❢♦r ❣r❛♣❤✐♥❣ ❛♥❞ ♠♦❞❡❧✐♥❣✳ ❖♥❡ ❝❛♥ ❛❝❤✐❡✈❡ ❛s ❣♦♦❞ r❡s✉❧ts ✇✐t❤ ♣❛❝❦❛❣❡s s♣❡❝✐✜❝❛❧❧② ❞❡s✐❣♥❡❞ ❢♦r t❤❡s❡ ♣✉r♣♦s❡s✱ ❜✉t s♣r❡❛❞s❤❡❡ts ♣r♦✈✐❞❡ ❛ t♦♦❧ ✇✐t❤ ❛ ✇✐❞❡r s❝♦♣❡ ♦❢ ❛♣♣❧✐❝❛t✐♦♥s✳ ♦♣t✐♦♥✳ ●♦♦❞ ❧✉❝❦✦ ❏✉♥❡ ✷✸✱ ✷✵✷✵
Pr♦❣r❛♠♠✐♥❣ ✐s ❛♥♦t❤❡r
❚♦ t❤❡ t❡❛❝❤❡r
✺
❚♦ t❤❡ t❡❛❝❤❡r ❚❤❡ ❜✉❧❦ ♦❢ t❤❡ ♠❛t❡r✐❛❧ ✐♥ t❤❡ ❜♦♦❦ ❝♦♠❡s ❢r♦♠ ♠② ❧❡❝t✉r❡ ♥♦t❡s✳ ❚❤❡r❡ ✐s ❧✐tt❧❡ ❡♠♣❤❛s✐s ♦♥ ❝❧♦s❡❞✲❢♦r♠ ❝♦♠♣✉t❛t✐♦♥s ❛♥❞ ❛❧❣❡❜r❛✐❝ ♠❛♥✐♣✉❧❛t✐♦♥s✳ ■ ❞♦ t❤✐♥❦ t❤❛t ❛ ♣❡rs♦♥ ✇❤♦ ❤❛s ♥❡✈❡r ✐♥t❡❣r❛t❡❞ ❜② ❤❛♥❞ ✭♦r ❞✐✛❡r❡♥t✐❛t❡❞✱ ♦r ❛♣♣❧✐❡❞ t❤❡ q✉❛❞r❛t✐❝ ❢♦r♠✉❧❛✱ ❡t❝✳✮ ❝❛♥♥♦t ♣♦ss✐❜❧② ✉♥❞❡rst❛♥❞ ✐♥t❡❣r❛t✐♦♥ ✭♦r ❞✐✛❡r❡♥t✐❛t✐♦♥✱ ♦r q✉❛❞r❛t✐❝ ❢✉♥❝t✐♦♥s✱ ❡t❝✳✮✳ ❍♦✇❡✈❡r✱ ❛ ❧❛r❣❡ ♣r♦♣♦rt✐♦♥ ♦❢ t✐♠❡ ❛♥❞ ❡✛♦rt ❝❛♥ ❛♥❞ s❤♦✉❧❞ ❜❡ ❞✐r❡❝t❡❞ t♦✇❛r❞✿
•
✉♥❞❡rst❛♥❞✐♥❣ ♦❢ t❤❡ ❝♦♥❝❡♣ts ❛♥❞
•
♠♦❞❡❧✐♥❣ ✐♥ r❡❛❧✐st✐❝ s❡tt✐♥❣s✳
❚❤❡ ❝❤❛❧❧❡♥❣❡ ♦❢ t❤✐s ❛♣♣r♦❛❝❤ ✐s t❤❛t ✐t r❡q✉✐r❡s ♠♦r❡ ❛❜str❛❝t✐♦♥ r❛t❤❡r t❤❛♥ ❧❡ss✳ ❱✐s✉❛❧✐③❛t✐♦♥ ✐s t❤❡ ♠❛✐♥ t♦♦❧ ✉s❡❞ t♦ ❞❡❛❧ ✇✐t❤ t❤✐s ❝❤❛❧❧❡♥❣❡✳ ■❧❧✉str❛t✐♦♥s ❛r❡ ♣r♦✈✐❞❡❞ ❢♦r ❡✈❡r② ❝♦♥❝❡♣t✱ ❜✐❣ ♦r s♠❛❧❧✳ ❚❤❡ ♣✐❝t✉r❡s t❤❛t ❝♦♠❡ ♦✉t ❛r❡ s♦♠❡t✐♠❡s ✈❡r② ♣r❡❝✐s❡ ❜✉t s♦♠❡t✐♠❡s s❡r✈❡ ❛s ♠❡r❡ ♠❡t❛♣❤♦rs ❢♦r t❤❡ ❝♦♥❝❡♣ts t❤❡② ✐❧❧✉str❛t❡✳ ❚❤❡ ❤♦♣❡ ✐s t❤❛t t❤❡② ✇✐❧❧ s❡r✈❡ ❛s ✈✐s✉❛❧ ✏❛♥❝❤♦rs✑ ✐♥ ❛❞❞✐t✐♦♥ t♦ t❤❡ ✇♦r❞s ❛♥❞ ❢♦r♠✉❧❛s✳ ■t ✐s ✉♥❧✐❦❡❧② t❤❛t ❛ ♣❡rs♦♥ ✇❤♦ ❤❛s ♥❡✈❡r ♣❧♦tt❡❞ t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❜② ❤❛♥❞ ❝❛♥ ✉♥❞❡rst❛♥❞ ❣r❛♣❤s ♦r ❢✉♥❝t✐♦♥s✳ ❍♦✇❡✈❡r✱ ✇❤❛t ✐❢ ✇❡ ✇❛♥t t♦ ♣❧♦t ♠♦r❡ t❤❛♥ ❥✉st ❛ ❢❡✇ ♣♦✐♥ts ✐♥ ♦r❞❡r t♦ ✈✐s✉❛❧✐③❡ ❝✉r✈❡s✱ s✉r❢❛❝❡s✱ ✈❡❝t♦r ✜❡❧❞s✱ ❡t❝✳❄
❙♣r❡❛❞s❤❡❡ts ✇❡r❡ ❝❤♦s❡♥ ♦✈❡r ❣r❛♣❤✐❝ ❝❛❧❝✉❧❛t♦rs ❢♦r ✈✐s✉❛❧✐③❛t✐♦♥ ♣✉r♣♦s❡s
❜❡❝❛✉s❡ t❤❡② r❡♣r❡s❡♥t t❤❡ s❤♦rt❡st st❡♣ ❛✇❛② ❢r♦♠ ♣❡♥ ❛♥❞ ♣❛♣❡r✳
■♥❞❡❡❞✱ t❤❡ ❞❛t❛ ✐s ♣❧♦tt❡❞ ✐♥ t❤❡
s✐♠♣❧❡st ♠❛♥♥❡r ♣♦ss✐❜❧❡✿ ♦♥❡ ❝❡❧❧ ✲ ♦♥❡ ♥✉♠❜❡r ✲ ♦♥❡ ♣♦✐♥t ♦♥ t❤❡ ❣r❛♣❤✳ ❋♦r ♠♦r❡ ❛❞✈❛♥❝❡❞ t❛s❦s s✉❝❤ ❛s ♠♦❞❡❧✐♥❣✱ s♣r❡❛❞s❤❡❡ts ✇❡r❡ ❝❤♦s❡♥ ♦✈❡r ♦t❤❡r s♦❢t✇❛r❡ ❛♥❞ ♣r♦❣r❛♠♠✐♥❣ ♦♣t✐♦♥s ❢♦r t❤❡✐r ✇✐❞❡ ❛✈❛✐❧❛❜✐❧✐t② ❛♥❞✱ ❛❜♦✈❡ ❛❧❧✱ t❤❡✐r s✐♠♣❧✐❝✐t②✳ ◆✐♥❡ ♦✉t ♦❢ t❡♥✱ t❤❡ s♣r❡❛❞s❤❡❡t s❤♦✇♥ ✇❛s ✐♥✐t✐❛❧❧② ❝r❡❛t❡❞ ❢r♦♠ s❝r❛t❝❤ ✐♥ ❢r♦♥t ♦❢ t❤❡ st✉❞❡♥ts ✇❤♦ ✇❡r❡ ❧❛t❡r ❛❜❧❡ t♦ ❢♦❧❧♦✇ ♠② ❢♦♦tst❡♣s ❛♥❞ ❝r❡❛t❡ t❤❡✐r ♦✇♥✳ ❆❜♦✉t t❤❡ t❡sts✳ ❚❤❡ ❜♦♦❦ ✐s♥✬t ❞❡s✐❣♥❡❞ t♦ ♣r❡♣❛r❡ t❤❡ st✉❞❡♥t ❢♦r s♦♠❡ ♣r❡❡①✐st✐♥❣ ❡①❛♠❀ ♦♥ t❤❡ ❝♦♥tr❛r②✱ ❛ss✐❣♥♠❡♥ts s❤♦✉❧❞ ❜❡ ❜❛s❡❞ ♦♥ ✇❤❛t ❤❛s ❜❡❡♥ ❧❡❛r♥❡❞✳ ❚❤❡ st✉❞❡♥ts✬ ✉♥❞❡rst❛♥❞✐♥❣ ♦❢ t❤❡ ❝♦♥❝❡♣ts ♥❡❡❞s t♦ ❜❡ t❡st❡❞ ❜✉t✱ ♠♦st ♦❢ t❤❡ t✐♠❡✱ t❤✐s ❝❛♥ ❜❡ ❞♦♥❡ ♦♥❧② ✐♥❞✐r❡❝t❧②✳ ❚❤❡r❡❢♦r❡✱ ❛ ❝❡rt❛✐♥ s❤❛r❡ ♦❢ r♦✉t✐♥❡✱ ♠❡❝❤❛♥✐❝❛❧ ♣r♦❜❧❡♠s ✐s ✐♥❡✈✐t❛❜❧❡✳ ◆♦♥❡t❤❡❧❡ss✱ ♥♦ t♦♣✐❝ ❞❡s❡r✈❡s ♠♦r❡ ❛tt❡♥t✐♦♥ ❥✉st ❜❡❝❛✉s❡ ✐t✬s ❧✐❦❡❧② t♦ ❜❡ ♦♥ t❤❡ t❡st✳ ■❢ ❛t ❛❧❧ ♣♦ss✐❜❧❡✱ ❞♦♥✬t ♠❛❦❡ t❤❡ st✉❞❡♥ts ♠❡♠♦r✐③❡ ❢♦r♠✉❧❛s✳ ■♥ t❤❡ ♦r❞❡r ♦❢ t♦♣✐❝s✱ t❤❡ ♠❛✐♥ ❞✐✛❡r❡♥❝❡ ❢r♦♠ ❛ t②♣✐❝❛❧ ❝❛❧❝✉❧✉s t❡①t❜♦♦❦ ✐s t❤❛t s❡q✉❡♥❝❡s ❝♦♠❡ ❜❡❢♦r❡ ❡✈❡r②t❤✐♥❣ ❡❧s❡✳ ❚❤❡ r❡❛s♦♥s ❛r❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
•
❙❡q✉❡♥❝❡s ❛r❡ t❤❡ s✐♠♣❧❡st ❦✐♥❞ ♦❢ ❢✉♥❝t✐♦♥s✳
•
▲✐♠✐ts ♦❢ s❡q✉❡♥❝❡s ❛r❡ s✐♠♣❧❡r t❤❛♥ ❧✐♠✐ts ♦❢ ❣❡♥❡r❛❧ ❢✉♥❝t✐♦♥s ✭✐♥❝❧✉❞✐♥❣ t❤❡ ♦♥❡s ❛t ✐♥✜♥✐t②✮✳
•
❚❤❡ s✐❣♠❛ ♥♦t❛t✐♦♥✱ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♠❛❦❡ ♠♦r❡ s❡♥s❡ t♦ ❛ st✉❞❡♥t ✇✐t❤
•
❆ q✉✐❝❦ tr❛♥s✐t✐♦♥ ❢r♦♠ s❡q✉❡♥❝❡s t♦ s❡r✐❡s ♦❢t❡♥ ❧❡❛❞s t♦ ❝♦♥❢✉s✐♦♥ ❜❡t✇❡❡♥ t❤❡ t✇♦✳
•
❙❡q✉❡♥❝❡s ❛r❡ ♥❡❡❞❡❞ ❢♦r ♠♦❞❡❧✐♥❣✱ ✇❤✐❝❤ s❤♦✉❧❞ st❛rt ❛s ❡❛r❧② ❛s ♣♦ss✐❜❧❡✳
❛ s♦❧✐❞ ❜❛❝❦❣r♦✉♥❞ ✐♥ s❡q✉❡♥❝❡s✳
❋r♦♠ t❤❡ ❞✐s❝r❡t❡ t♦ t❤❡ ❝♦♥t✐♥✉♦✉s
✻
❋r♦♠ t❤❡ ❞✐s❝r❡t❡ t♦ t❤❡ ❝♦♥t✐♥✉♦✉s ■t✬s ♥♦ s❡❝r❡t t❤❛t ❛ ✈❛st ♠❛❥♦r✐t② ♦❢ ❝❛❧❝✉❧✉s st✉❞❡♥ts ✇✐❧❧ ♥❡✈❡r ✉s❡ ✇❤❛t t❤❡② ❤❛✈❡ ❧❡❛r♥❡❞✳ P♦♦r ❝❛r❡❡r ❝❤♦✐❝❡s ❛s✐❞❡✱ ❛ ❢♦r♠❡r ❝❛❧❝✉❧✉s st✉❞❡♥t ✐s ♦❢t❡♥ ✉♥❛❜❧❡ t♦ r❡❝♦❣♥✐③❡ t❤❡ ♠❛t❤❡♠❛t✐❝s t❤❛t ✐s s✉♣♣♦s❡❞ t♦ s✉rr♦✉♥❞ ❤✐♠✳ ❲❤② ❞♦❡s t❤✐s ❤❛♣♣❡♥❄ ❈❛❧❝✉❧✉s ✐s t❤❡ s❝✐❡♥❝❡ ♦❢ ❝❤❛♥❣❡✳ ❋r♦♠ t❤❡ ✈❡r② ❜❡❣✐♥♥✐♥❣✱ ✐ts ♣❡❝✉❧✐❛r ❝❤❛❧❧❡♥❣❡ ❤❛s ❜❡❡♥ t♦ st✉❞② ❛♥❞
❝♦♥t✐♥✉♦✉s ❝❤❛♥❣❡✿ ❝✉r✈❡s ❛♥❞ ♠♦t✐♦♥ ❛❧♦♥❣ ❝✉r✈❡s✳ ❢♦r♠✉❧❛s✳ ❙❦✐❧❧❢✉❧ ♠❛♥✐♣✉❧❛t✐♦♥ ♦❢ t❤♦s❡ ❢♦r♠✉❧❛s ✐s ✇❤❛t
♠❡❛s✉r❡
❚❤❡s❡ ❝✉r✈❡s ❛♥❞ t❤✐s ♠♦t✐♦♥ ❛r❡ r❡♣r❡s❡♥t❡❞
❜②
s♦❧✈❡s ❝❛❧❝✉❧✉s ♣r♦❜❧❡♠s✳ ❋♦r ♦✈❡r ✸✵✵ ②❡❛rs✱
t❤✐s ❛♣♣r♦❛❝❤ ❤❛s ❜❡❡♥ ❡①tr❡♠❡❧② s✉❝❝❡ss❢✉❧ ✐♥ s❝✐❡♥❝❡s ❛♥❞ ❡♥❣✐♥❡❡r✐♥❣✳
❚❤❡ s✉❝❝❡ss❡s ❛r❡ ✇❡❧❧✲❦♥♦✇♥✿
♣r♦❥❡❝t✐❧❡ ♠♦t✐♦♥✱ ♣❧❛♥❡t❛r② ♠♦t✐♦♥✱ ✢♦✇ ♦❢ ❧✐q✉✐❞s✱ ❤❡❛t tr❛♥s❢❡r✱ ✇❛✈❡ ♣r♦♣❛❣❛t✐♦♥✱ ❡t❝✳ ❚❡❛❝❤✐♥❣ ❝❛❧❝✉❧✉s ❢♦❧❧♦✇s t❤✐s ❛♣♣r♦❛❝❤✿ ❆♥ ♦✈❡r✇❤❡❧♠✐♥❣ ♠❛❥♦r✐t② ♦❢ ✇❤❛t t❤❡ st✉❞❡♥t ❞♦❡s ✐s ♠❛♥✐♣✉❧❛t✐♦♥ ♦❢ ❢♦r♠✉❧❛s ♦♥ ❛ ♣✐❡❝❡ ♦❢ ♣❛♣❡r✳ ❇✉t t❤✐s ♠❡❛♥s t❤❛t ❛❧❧ t❤❡ ♣r♦❜❧❡♠s t❤❡ st✉❞❡♥t ❢❛❝❡s ✇❡r❡ ✭♦r ❝♦✉❧❞ ❤❛✈❡ ❜❡❡♥✮ s♦❧✈❡❞ ✐♥ t❤❡ ✶✽t❤ ♦r ✶✾t❤ ❝❡♥t✉r✐❡s✦ ❚❤✐s ✐s♥✬t ❣♦♦❞ ❡♥♦✉❣❤ ❛♥②♠♦r❡✳ ❲❤❛t ❤❛s ❝❤❛♥❣❡❞ s✐♥❝❡ t❤❡♥❄ ❚❤❡ ❝♦♠♣✉t❡rs ❤❛✈❡ ❛♣♣❡❛r❡❞✱ ♦❢ ❝♦✉rs❡✱ ❛♥❞ ❝♦♠♣✉t❡rs ❞♦♥✬t ♠❛♥✐♣✉❧❛t❡ ❢♦r♠✉❧❛s✳
❚❤❡② ❞♦♥✬t ❤❡❧♣ ✇✐t❤ s♦❧✈✐♥❣ ✕ ✐♥ t❤❡ tr❛❞✐t✐♦♥❛❧ s❡♥s❡ ♦❢
t❤❡ ✇♦r❞ ✕ t❤♦s❡ ♣r♦❜❧❡♠s ❢r♦♠ t❤❡ ♣❛st ❝❡♥t✉r✐❡s✳
✐♥❝r❡♠❡♥t❛❧
■♥st❡❛❞ ♦❢
❝♦♥t✐♥✉♦✉s✱
❝♦♠♣✉t❡rs ❡①❝❡❧ ❛t ❤❛♥❞❧✐♥❣
♣r♦❝❡ss❡s✱ ❛♥❞ ✐♥st❡❛❞ ♦❢ ❢♦r♠✉❧❛s t❤❡② ❛r❡ ❣r❡❛t ❛t ♠❛♥❛❣✐♥❣ ❞✐s❝r❡t❡ ✭❞✐❣✐t❛❧✮ ❞❛t❛✳ ❚♦ ✉t✐❧✐③❡
t❤❡s❡ ❛❞✈❛♥t❛❣❡s✱ s❝✐❡♥t✐sts ✏❞✐s❝r❡t✐③❡✑ t❤❡ r❡s✉❧ts ♦❢ ❝❛❧❝✉❧✉s ❛♥❞ ❝r❡❛t❡ ❛❧❣♦r✐t❤♠s t❤❛t ♠❛♥✐♣✉❧❛t❡ t❤❡ ❞✐❣✐t❛❧ ❞❛t❛✳
❚❤❡ s♦❧✉t✐♦♥s ❛r❡ ❛♣♣r♦①✐♠❛t❡ ❜✉t t❤❡ ❛♣♣❧✐❝❛❜✐❧✐t② ✐s ✉♥❧✐♠✐t❡❞✳
❙✐♥❝❡ t❤❡ ✷✵t❤ ❝❡♥t✉r②✱
t❤✐s ❛♣♣r♦❛❝❤ ❤❛s ❜❡❡♥ ❡①tr❡♠❡❧② s✉❝❝❡ss❢✉❧ ✐♥ s❝✐❡♥❝❡s ❛♥❞ ❡♥❣✐♥❡❡r✐♥❣✿ ❛❡r♦❞②♥❛♠✐❝s ✭❛✐r♣❧❛♥❡ ❛♥❞ ❝❛r ❞❡s✐❣♥✮✱ s♦✉♥❞ ❛♥❞ ✐♠❛❣❡ ♣r♦❝❡ss✐♥❣✱ s♣❛❝❡ ❡①♣❧♦r❛t✐♦♥✱ str✉❝t✉r❡ ♦❢ t❤❡ ❛t♦♠ ❛♥❞ t❤❡ ✉♥✐✈❡rs❡✱ ❡t❝✳ ❚❤❡ ❛♣♣r♦❛❝❤ ✐s ❛❧s♦ ❝✐r❝✉✐t♦✉s✿ ❊✈❡r② ❝♦♥❝❡♣t ✐♥ ❝❛❧❝✉❧✉s
st❛rts
✕ ♦❢t❡♥ ✐♠♣❧✐❝✐t❧② ✕ ❛s ❛ ❞✐s❝r❡t❡ ❛♣♣r♦①✐♠❛t✐♦♥
♦❢ ❛ ❝♦♥t✐♥✉♦✉s ♣❤❡♥♦♠❡♥♦♥✦
❈❛❧❝✉❧✉s ✐s t❤❡ s❝✐❡♥❝❡ ♦❢ ❝❤❛♥❣❡✱
❜♦t❤
✐♥❝r❡♠❡♥t❛❧ ❛♥❞ ❝♦♥t✐♥✉♦✉s✳ ❚❤❡ ❢♦r♠❡r ♣❛rt ✕ t❤❡ s♦✲❝❛❧❧❡❞ ❞✐s❝r❡t❡
❝❛❧❝✉❧✉s ✕ ♠❛② ❜❡ s❡❡♥ ❛s t❤❡ st✉❞② ♦❢ ✐♥❝r❡♠❡♥t❛❧ ♣❤❡♥♦♠❡♥❛ ❛♥❞ t❤❡ q✉❛♥t✐t✐❡s
✐♥❞✐✈✐s✐❜❧❡
❜② t❤❡✐r
✈❡r② ♥❛t✉r❡✿ ♣❡♦♣❧❡✱ ❛♥✐♠❛❧s✱ ❛♥❞ ♦t❤❡r ♦r❣❛♥✐s♠s✱ ♠♦♠❡♥ts ♦❢ t✐♠❡✱ ❧♦❝❛t✐♦♥s ♦❢ s♣❛❝❡✱ ♣❛rt✐❝❧❡s✱ s♦♠❡ ❝♦♠♠♦❞✐t✐❡s✱ ❞✐❣✐t❛❧ ✐♠❛❣❡s ❛♥❞ ♦t❤❡r ♠❛♥✲♠❛❞❡ ❞❛t❛✱ ❡t❝✳ ❲✐t❤ t❤❡ ❤❡❧♣ ♦❢ t❤❡ ❝❛❧❝✉❧✉s ♠❛❝❤✐♥❡r② ❝❛❧❧❡❞ ✏❧✐♠✐ts✑✱ ✇❡ ✐♥✈❛r✐❛❜❧② ❝❤♦♦s❡ t♦ tr❛♥s✐t✐♦♥ t♦ t❤❡ ❝♦♥t✐♥✉♦✉s ♣❛rt ♦❢ ❝❛❧❝✉❧✉s✱ ❡s♣❡❝✐❛❧❧② ✇❤❡♥ ✇❡ ❢❛❝❡ ❝♦♥t✐♥✉♦✉s ♣❤❡♥♦♠❡♥❛ ❛♥❞ t❤❡ q✉❛♥t✐t✐❡s
✐♥✜♥✐t❡❧② ❞✐✈✐s✐❜❧❡
❡✐t❤❡r ❜② t❤❡✐r ♥❛t✉r❡ ♦r ❜② ❛ss✉♠♣t✐♦♥✿ t✐♠❡✱
s♣❛❝❡✱ ♠❛ss✱ t❡♠♣❡r❛t✉r❡✱ ♠♦♥❡②✱ s♦♠❡ ❝♦♠♠♦❞✐t✐❡s✱ ❡t❝✳ ❈❛❧❝✉❧✉s ♣r♦❞✉❝❡s ❞❡✜♥✐t✐✈❡ r❡s✉❧ts ❛♥❞ ❛❜s♦❧✉t❡ ❛❝❝✉r❛❝② ✕ ❜✉t ♦♥❧② ❢♦r ♣r♦❜❧❡♠s ❛♠❡♥❛❜❧❡ t♦ ✐ts ♠❡t❤♦❞s✦ ■♥ t❤❡ ❝❧❛ssr♦♦♠✱ t❤❡ ♣r♦❜❧❡♠s ❛r❡ s✐♠♣❧✐✜❡❞ ✉♥t✐❧ t❤❡② ❜❡❝♦♠❡ ♠❛♥❛❣❡❛❜❧❡❀ ♦t❤❡r✇✐s❡✱ ✇❡ ❝✐r❝❧❡ ❜❛❝❦ t♦ t❤❡ ❞✐s❝r❡t❡ ♠❡t❤♦❞s ✐♥ s❡❛r❝❤ ♦❢ ❛♣♣r♦①✐♠❛t✐♦♥s✳ ❲✐t❤✐♥ ❛ t②♣✐❝❛❧ ❝❛❧❝✉❧✉s ❝♦✉rs❡✱ t❤❡ st✉❞❡♥t s✐♠♣❧② ♥❡✈❡r ❣❡ts t♦ ❝♦♠♣❧❡t❡ t❤❡ ✏❝✐r❝❧❡✑✦
▲❛t❡r ♦♥✱ t❤❡
❣r❛❞✉❛t❡ ✐s ❧✐❦❡❧② t♦ t❤✐♥❦ ♦❢ ❝❛❧❝✉❧✉s ♦♥❧② ✇❤❡♥ ❤❡ s❡❡s ❢♦r♠✉❧❛s ❛♥❞ r❛r❡❧② ✇❤❡♥ ❤❡ s❡❡s ♥✉♠❡r✐❝❛❧ ❞❛t❛✳ ■♥ t❤✐s ❜♦♦❦✱ ❡✈❡r② ❝♦♥❝❡♣t ♦❢ ❝❛❧❝✉❧✉s ✐s ✜rst ✐♥tr♦❞✉❝❡❞ ✐♥ ✐ts ❞✐s❝r❡t❡✱ ✏♣r❡✲❧✐♠✐t✑✱ ✐♥❝❛r♥❛t✐♦♥ ✕ ❡❧s❡✇❤❡r❡ t②♣✐❝❛❧❧② ❤✐❞❞❡♥ ✐♥s✐❞❡ ♣r♦♦❢s ✕ ❛♥❞ t❤❡♥ ✉s❡❞ ❢♦r ♠♦❞❡❧✐♥❣ ❛♥❞ ❛♣♣❧✐❝❛t✐♦♥s ✇❡❧❧ ❜❡❢♦r❡ ✐ts ❝♦♥t✐♥✉♦✉s ❝♦✉♥t❡r♣❛rt ❡♠❡r❣❡s✳ ❚❤❡ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❢♦r♠❡r ❛r❡ ❞✐s❝♦✈❡r❡❞ ✜rst ❛♥❞ t❤❡♥ t❤❡ ♠❛t❝❤✐♥❣ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❧❛tt❡r ❛r❡ ❢♦✉♥❞ ❜② ♠❛❦✐♥❣ t❤❡ ✐♥❝r❡♠❡♥t s♠❛❧❧❡r ❛♥❞ s♠❛❧❧❡r✱ ❛t t❤❡ ❞✐s❝r❡t❡ ❝❛❧❝✉❧✉s
∆x→0
−−−−−−−−−−→
❧✐♠✐t ✿
❝♦♥t✐♥✉♦✉s ❝❛❧❝✉❧✉s
❚❤❡ ✈♦❧✉♠❡ ❛♥❞ ❝❤❛♣t❡r r❡❢❡r❡♥❝❡s ❢♦r ❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞
✼
❚❤❡ ✈♦❧✉♠❡ ❛♥❞ ❝❤❛♣t❡r r❡❢❡r❡♥❝❡s ❢♦r ❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞ ❚❤✐s ❜♦♦❦ ✐s ❛ ♣❛rt ♦❢ t❤❡ s❡r✐❡s ❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞✳ ❚❤❡ s❡r✐❡s ❝♦✈❡rs t❤❡ st❛♥❞❛r❞ ♠❛t❡r✐❛❧ ♦❢ t❤❡ ✉♥❞❡r✲ ❣r❛❞✉❛t❡ ❝❛❧❝✉❧✉s ✇✐t❤ ❛ s✉❜st❛♥t✐❛❧ r❡✈✐❡✇ ♦❢ ♣r❡❝❛❧❝✉❧✉s ❛♥❞ ❛ ♣r❡✈✐❡✇ ♦❢ ❡❧❡♠❡♥t❛r② ♦r❞✐♥❛r② ❛♥❞ ♣❛rt✐❛❧ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✳ ❇❡❧♦✇ ✐s t❤❡ ❧✐st ♦❢ t❤❡ ❜♦♦❦s ♦❢ t❤❡ s❡r✐❡s✱ t❤❡✐r ❝❤❛♣t❡rs✱ ❛♥❞ t❤❡ ✇❛② t❤❡ ♣r❡s❡♥t ❜♦♦❦ ✭♣❛r❡♥t❤❡t✐❝❛❧❧②✮ r❡❢❡r❡♥❝❡s t❤❡♠✳
✶ P❈✲✶ ✶ P❈✲✷ ✶ P❈✲✸ ✶ P❈✲✹ ✶ P❈✲✺
✷ ❉❈✲✶ ✷ ❉❈✲✷ ✷ ❉❈✲✸ ✷ ❉❈✲✹ ✷ ❉❈✲✺ ✷ ❉❈✲✻
❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞✳ ❱♦❧✉♠❡ ✹✿ ❈❛❧❝✉❧✉s ✐♥ ❍✐❣❤❡r ❉✐♠❡♥s✐♦♥s
❋✉♥❝t✐♦♥s ✐♥ ♠✉❧t✐❞✐♠❡♥s✐♦♥❛❧ s♣❛❝❡s P❛r❛♠❡tr✐❝ ❝✉r✈❡s ❋✉♥❝t✐♦♥s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ❚❤❡ ❣r❛❞✐❡♥t ❚❤❡ ✐♥t❡❣r❛❧ ❱❡❝t♦r ✜❡❧❞s
✺ ❉❊✲✶ ✺ ❉❊✲✷ ✺ ❉❊✲✸ ✺ ❉❊✲✹ ✺ ❉❊✲✺
❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞✳ ❱♦❧✉♠❡ ✸✿ ■♥t❡❣r❛❧ ❈❛❧❝✉❧✉s
❚❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ■♥t❡❣r❛t✐♦♥ ❲❤❛t ✇❡ ❝❛♥ s♦ ✇✐t❤ ✐♥t❡❣r❛❧ ❝❛❧❝✉❧✉s ❙❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ❙❡r✐❡s
✹ ❍❉✲✶ ✹ ❍❉✲✷ ✹ ❍❉✲✸ ✹ ❍❉✲✹ ✹ ❍❉✲✺ ✹ ❍❉✲✻
❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞✳ ❱♦❧✉♠❡ ✷✿ ❉✐✛❡r❡♥t✐❛❧ ❈❛❧❝✉❧✉s
▲✐♠✐ts ♦❢ s❡q✉❡♥❝❡s ▲✐♠✐ts ❛♥❞ ❝♦♥t✐♥✉✐t② ❚❤❡ ❞❡r✐✈❛t✐✈❡ ❉✐✛❡r❡♥t✐❛t✐♦♥ ❚❤❡ ♠❛✐♥ t❤❡♦r❡♠s ♦❢ ❞✐✛❡r❡♥t✐❛❧ ❝❛❧❝✉❧✉s ❲❤❛t ✇❡ ❝❛♥ ❞♦ ✇✐t❤ ❝❛❧❝✉❧✉s
✸ ■❈✲✶ ✸ ■❈✲✷ ✸ ■❈✲✸ ✸ ■❈✲✹ ✸ ■❈✲✺
❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞✳ ❱♦❧✉♠❡ ✶✿ Pr❡❝❛❧❝✉❧✉s
❈❛❧❝✉❧✉s ♦❢ s❡q✉❡♥❝❡s ❙❡ts ❛♥❞ ❢✉♥❝t✐♦♥s ❈♦♠♣♦s✐t✐♦♥s ♦❢ ❢✉♥❝t✐♦♥s ❈❧❛ss❡s ♦❢ ❢✉♥❝t✐♦♥s ❆❧❣❡❜r❛ ❛♥❞ ❣❡♦♠❡tr②
❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞✳ ❱♦❧✉♠❡ ✺✿ ❉✐✛❡r❡♥t✐❛❧ ❊q✉❛t✐♦♥s
❖r❞✐♥❛r② ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s ❱❡❝t♦r ❛♥❞ ❝♦♠♣❧❡① ✈❛r✐❛❜❧❡s ❙②st❡♠s ♦❢ ❖❉❊s ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ❖❉❊s P❛rt✐❛❧ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s
❊❛❝❤ ✈♦❧✉♠❡ ❝❛♥ ❜❡ r❡❛❞ ✐♥❞❡♣❡♥❞❡♥t❧②✳
❚❤❡ ✈♦❧✉♠❡ ❛♥❞ ❝❤❛♣t❡r r❡❢❡r❡♥❝❡s ❢♦r ❈❛❧❝✉❧✉s ■❧❧✉str❛t❡❞
✽
❆ ♣♦ss✐❜❧❡ s❡q✉❡♥❝❡ ♦❢ ❝❤❛♣t❡rs ✐s ♣r❡s❡♥t❡❞ ❜❡❧♦✇✳ ❆♥ ❛rr♦✇ ❢r♦♠ ❆ t♦ ❇ ♠❡❛♥s t❤❛t ❝❤❛♣t❡r ❇ s❤♦✉❧❞♥✬t ❜❡ r❡❛❞ ❜❡❢♦r❡ ❝❤❛♣t❡r ❆✳
❆❜♦✉t t❤❡ ❛✉t❤♦r
❆❜♦✉t t❤❡ ❛✉t❤♦r P❡t❡r ❙❛✈❡❧✐❡✈ ✐s ❛ ♣r♦❢❡ss♦r ♦❢ ♠❛t❤❡♠❛t✐❝s ❛t ▼❛rs❤❛❧❧ ❯♥✐✈❡rs✐t②✱ ❍✉♥t✲ ✐♥❣t♦♥✱ ❲❡st ❱✐r❣✐♥✐❛✱ ❯❙❆✳ ❆❢t❡r ❛ P❤✳❉✳ ❢r♦♠ t❤❡ ❯♥✐✈❡rs✐t② ♦❢ ■❧❧✐♥♦✐s ❛t ❯r❜❛♥❛✲❈❤❛♠♣❛✐❣♥✱ ❤❡ ❞❡✈♦t❡❞ t❤❡ ♥❡①t ✷✵ ②❡❛rs t♦ t❡❛❝❤✐♥❣ ♠❛t❤❡♠❛t✐❝s✳ P❡t❡r ✐s t❤❡ ❛✉t❤♦r ♦❢ ❛ ❣r❛❞✉❛t❡ t❡①t❜♦♦❦ ❚♦♣♦❧♦❣② ■❧❧✉str❛t❡❞ ♣✉❜❧✐s❤❡❞ ✐♥ ✷✵✶✻✳ ❍❡ ❤❛s ❛❧s♦ ❜❡❡♥ ✐♥✈♦❧✈❡❞ ✐♥ r❡s❡❛r❝❤ ✐♥ ❛❧❣❡❜r❛✐❝ t♦♣♦❧♦❣② ❛♥❞ s❡✈❡r❛❧ ♦t❤❡r ✜❡❧❞s✳ ❍✐s ♥♦♥✲❛❝❛❞❡♠✐❝ ♣r♦❥❡❝ts ❤❛✈❡ ❜❡❡♥✿ ❞✐❣✐t❛❧ ✐♠❛❣❡ ❛♥❛❧②s✐s✱ ❛✉t♦♠❛t❡❞ ✜♥❣❡r♣r✐♥t ✐❞❡♥t✐✜❝❛t✐♦♥✱ ❛♥❞ ✐♠❛❣❡ ♠❛t❝❤✐♥❣ ❢♦r ♠✐s✲ s✐❧❡ ♥❛✈✐❣❛t✐♦♥✴❣✉✐❞❛♥❝❡✳
✾
❈♦♥t❡♥ts Pr❡❢❛❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷
❈❤❛♣t❡r ✶✿ ❚❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷
✶✳✶ ❚❤❡ ❆r❡❛ Pr♦❜❧❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✷ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✸ ❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✹ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✺ ❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✻ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✳ ✳ ✳ ✶✳✼ Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ✳ ✶✳✽ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✾ ❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✵ ❋r❡❡ ❢❛❧❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✷ ✶✽ ✸✸ ✹✸ ✹✾ ✺✺ ✻✺ ✼✹ ✽✹ ✾✵
❈❤❛♣t❡r ✷✿ ■♥t❡❣r❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾✻
✷✳✶ Pr♦♣❡rt✐❡s ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷ ■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t② ✷✳✸ ■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ✳ ✳ ✳ ✳ ✷✳✹ ▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺ ■♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✿ ❝♦♠♣♦s✐t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✻ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✼ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✽ ❚r✐❣♦♥♦♠❡tr✐❝ s✉❜st✐t✉t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✾ ■♥t❡❣r❛t✐♦♥ ❜② ♣❛rts✿ ♣r♦❞✉❝ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✶✵ ❆♣♣r♦❛❝❤❡s t♦ ✐♥t❡❣r❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✶✶ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✷✳✶✷ Pr♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ❛♥❞ ✐♠♣r♦♣❡r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ✳ ✳ ✷✳✶✸ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✶✽✵ ✳ ✶✽✵ ✳ ✶✽✽ ✳ ✶✾✷ ✳ ✷✵✶ ✳ ✷✵✹ ✳ ✷✵✽ ✳ ✷✶✺ ✳ ✷✶✾ ✳ ✷✸✵ ✳ ✷✸✻ ✳ ✷✹✹ ✳ ✷✺✶
❈❤❛♣t❡r ✸✿ ❲❤❛t ✇❡ ❝❛♥ ❞♦ ✇✐t❤ ✐♥t❡❣r❛❧ ❝❛❧❝✉❧✉s
✸✳✶ ❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✷ ❚❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✸ ❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✹ ❚❤❡ r❛❞✐❛❧ ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✺ ❚❤❡ ✢♦✇ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ✢✉① ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✻ ❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✼ ❚❤❡ t♦t❛❧ ❛♥❞ t❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✸✳✽ ◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✾ ▲❡♥❣t❤s ♦❢ ❝✉r✈❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✶✵ ❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡ ✳ ✸✳✶✶ ❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s ✳ ✳ ✸✳✶✷ ❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾✻ ✶✵✶ ✶✵✾ ✶✷✶ ✶✷✽ ✶✸✸ ✶✸✽ ✶✹✷ ✶✹✼ ✶✺✶ ✶✺✸ ✶✻✺ ✶✼✵
❈❤❛♣t❡r ✹✿ ❙❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✺✽
✹✳✶ ❆ ❜❛❧❧ ✐s t❤r♦✇♥✳✳✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✺✽ ✹✳✷ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✻✹ ✹✳✸ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✼✹
❈♦♥t❡♥ts
✶✶
✹✳✹ ■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ✳ ✳ ✳ ✳ ✳ ✹✳✺ ❚❤❡ ❝❡♥tr♦✐❞ ♦❢ ❛ ✢❛t ♦❜❥❡❝t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✻ ❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✼ ❱❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✽ ❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✾ ❚❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C ✐s t❤❡ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡ R2 ✳ ✳ ✳ ✹✳✶✵ ▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿ C ✐s♥✬t ❥✉st R2 ✹✳✶✶ ❉✐s❝r❡t❡ ❢♦r♠s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✶✷ ❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✽✺ ✷✾✸ ✷✾✼ ✸✵✼ ✸✶✷ ✸✶✾ ✸✷✸ ✸✷✽ ✸✸✼
❈❤❛♣t❡r ✺✿ ❙❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✹✹
✺✳✶ ❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s ✺✳✷ ❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✸ ❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✹ ■♥✜♥✐t❡ s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✺ ▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✻ ❋r♦♠ ✜♥✐t❡ s✉♠s ✈✐❛ ❧✐♠✐ts t♦ s❡r✐❡s ✳ ✳ ✳ ✺✳✼ ❉✐✈❡r❣❡♥❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✽ ❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s ✳ ✳ ✳ ✳ ✳ ✺✳✾ ❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✶✵ ❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✶✶ ❚❤❡ ❘❛t✐♦ ❚❡st ❛♥❞ t❤❡ ❘♦♦t ❚❡st ✳ ✳ ✳ ✺✳✶✷ P♦✇❡r s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✶✸ ❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✹✹ ✸✺✷ ✸✻✷ ✸✻✽ ✸✼✺ ✸✽✹ ✸✾✷ ✸✾✺ ✹✵✷ ✹✵✽ ✹✶✺ ✹✷✶ ✹✷✽
❊①❡r❝✐s❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶ ❊①❡r❝✐s❡s✿ ❇❛❝❦❣r♦✉♥❞ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ ❊①❡r❝✐s❡s✿ ▲✐♠✐ts ❛♥❞ ❝♦♥t✐♥✉✐t② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ❊①❡r❝✐s❡s✿ ❉❡r✐✈❛t✐✈❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ❊①❡r❝✐s❡s✿ ▼♦❞❡❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ❊①❡r❝✐s❡s✿ ■♥❢♦r♠❛t✐♦♥ ❢r♦♠ t❤❡ ❞❡r✐✈❛t✐✈❡s ✳ ✻ ❊①❡r❝✐s❡s✿ ❈♦♠♣✉t✐♥❣ ❞❡r✐✈❛t✐✈❡s ✳ ✳ ✳ ✳ ✳ ✳ ✼ ❊①❡r❝✐s❡s✿ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽ ❊①❡r❝✐s❡s✿ ■♥t❡❣r❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ❊①❡r❝✐s❡s✿ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✶✵ ❊①❡r❝✐s❡s✿ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ r❡❧❛t❡❞ ✳ ✶✶ ❊①❡r❝✐s❡s✿ ❙❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ❊①❡r❝✐s❡s✿ ❙❡q✉❡♥❝❡s ❛♥❞ s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ❊①❡r❝✐s❡s✿ P♦✇❡r s❡r✐❡s ❛♥❞ ❛♣♣r♦①✐♠❛t✐♦♥s
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✹✹✶ ✳ ✹✹✶ ✳ ✹✹✻ ✳ ✹✹✽ ✳ ✹✺✶ ✳ ✹✺✸ ✳ ✹✺✹ ✳ ✹✺✺ ✳ ✹✺✼ ✳ ✹✺✾ ✳ ✹✻✶ ✳ ✹✻✹ ✳ ✹✻✻ ✳ ✹✻✽
■♥❞❡① ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✼✷
❈❤❛♣t❡r ✶✿ ❚❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
❈♦♥t❡♥ts
✶✳✶ ❚❤❡ ❆r❡❛ Pr♦❜❧❡♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✷ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✸ ❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✹ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✺ ❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✻ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✳ ✳ ✳ ✶✳✼ Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ✶✳✽ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞ ✳ ✳ ✳ ✳ ✳ ✶✳✾ ❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✳✶✵ ❋r❡❡ ❢❛❧❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✷ ✶✽ ✸✸ ✹✸ ✹✾ ✺✺ ✻✺ ✼✹ ✽✹ ✾✵
✶✳✶✳ ❚❤❡ ❆r❡❛ Pr♦❜❧❡♠
❚❤❡r❡ ❛r❡ t✇♦ ♠❛✐♥ ✇❛②s t♦ ❡♥t❡r ❝❛❧❝✉❧✉s✿ • ❙t✉❞② ♦❢ ♠♦t✐♦♥✿ ❜❛❝❦ ❛♥❞ ❢♦rt❤ ❜❡t✇❡❡♥ ♣♦s✐t✐♦♥s ❛♥❞ ✈❡❧♦❝✐t✐❡s✳
• ❙t✉❞② ♦❢ ❝✉r✈❡❞ s❤❛♣❡s✿ ❜❛❝❦ ❛♥❞ ❢♦rt❤ ❜❡t✇❡❡♥ t❛♥❣❡♥ts ❛♥❞✳✳✳ ✇❤❛t❄ ❚❤❡ ❛r❡❛s✳
❲❡ ❦♥♦✇ t❤❛t t❤❡ ❛r❡❛ ♦❢ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s r ✐s s✉♣♣♦s❡❞ t♦ ❜❡ A = πr2 ✳ ❊①❛♠♣❧❡ ✶✳✶✳✶✿ ❛r❡❛ ♦❢ ❝✐r❝❧❡
▲❡t✬s r❡✈✐❡✇ ❤♦✇ ✇❡ ❝❛♥ ❝♦♥✜r♠ t❤❡ ❢♦r♠✉❧❛ ✇✐t❤ ♥♦t❤✐♥❣ ❜✉t ❛ s♣r❡❛❞s❤❡❡t✳ ❋✐rst✱ ✇❡ ♣❧♦t t❤❡ ❣r❛♣❤ y=
√
1 − x2 ,
❜② ❧❡tt✐♥❣ t❤❡ ✈❛❧✉❡s ♦❢ x r✉♥ ❢r♦♠ −1 t♦ 1 ❡✈❡r② h = .1 ❛♥❞ ✜♥❞✐♥❣ t❤❡ ✈❛❧✉❡s ♦❢ y ✇✐t❤ t❤❡ s♣r❡❛❞s❤❡❡t ❢♦r♠✉❧❛✿ ❂❙◗❘❚✭✶✲❘❈❬✲✷❪✂ ✷✮
❲❡ ♣❧♦t t❤❡s❡ 20 ♣♦✐♥ts❀ t❤❡ r❡s✉❧t ✐s ❛ ❤❛❧❢✲❝✐r❝❧❡✿
✶✳✶✳
❚❤❡ ❆r❡❛ Pr♦❜❧❡♠
✶✸
❲❡ ♥❡①t ❝♦✈❡r✱ ❛s ❜❡st ✇❡ ❝❛♥✱ t❤✐s ❤❛❧❢✲❝✐r❝❧❡ ✇✐t❤ ✈❡rt✐❝❛❧ ❜❛rs t❤❛t st❛♥❞ ♦♥ t❤❡ ✐♥t❡r✈❛❧
[−1, 1]✳
❲❡
r❡✲✉s❡ t❤❡ ❞❛t❛✿
• •
❚❤❡ ❜❛s❡s ♦❢ t❤❡ ❜❛rs ❛r❡ ♦✉r ✐♥t❡r✈❛❧s ✐♥ t❤❡ ❚❤❡ ❤❡✐❣❤ts ❛r❡ t❤❡ ✈❛❧✉❡s ♦❢
x✲❛①✐s✳
y✳
❚♦ s❡❡ t❤❡ ❜❛rs✱ ✇❡ s✐♠♣❧② ❝❤❛♥❣❡ t❤❡ t②♣❡ ♦❢ t❤❡ ❝❤❛rt ♣❧♦tt❡❞ ❜② t❤❡ s♣r❡❛❞s❤❡❡t✿
◆❡①t✱ t❤❡ ❛r❡❛ ♦❢ t❤❡ ❝✐r❝❧❡ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ ❞♦ t❤❡ ✇♦r❦ ❢♦r ✉s✿
• •
s✉♠ ♦❢ t❤❡ ❛r❡❛s ♦❢ t❤❡ ❜❛rs✳ ❚♦ ❧❡t t❤❡ s♣r❡❛❞s❤❡❡t
▼✉❧t✐♣❧② t❤❡ ❤❡✐❣❤ts ❜② t❤❡ ✭❝♦♥st❛♥t✮ ✇✐❞t❤s ✐♥ t❤❡ ♥❡①t ❝♦❧✉♠♥✳ ❆❞❞ t❤❡♠ ✉♣ ❛t t❤❡ t♦♣ ❝❡❧❧ ✭②❡❧❧♦✇✮✳
❲❡ ✉s❡ t❤❡ ❢♦r♠✉❧❛s ❢♦r
❛r❡❛s ✿
❂❘❈❬✲✶❪✯✭❘❈❬✲✷❪✲❘❬✲✶❪❈❬✲✷❪✮ ❚❤❡ r❡s✉❧t ♣r♦❞✉❝❡❞ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿ ❆♣♣r♦①✐♠❛t❡ ❛r❡❛ ♦❢ t❤❡ s❡♠✐❝✐r❝❧❡
= 1.552 .
■t ✐s ❝❧♦s❡ t♦ t❤❡ t❤❡♦r❡t✐❝❛❧ r❡s✉❧t ♦❜t❛✐♥❡❞ ❧❛t❡r ✐♥ t❤✐s ❝❤❛♣t❡r✿ ❊①❛❝t ❛r❡❛ ♦❢ t❤❡ s❡♠✐❝✐r❝❧❡
= π/2 ≈ 1.571 .
A ✐s t❤❡ s✉♠ ♦❢ t❤❡ s❡q✉❡♥❝❡✿ p an = 1 − x2n · 0.1, ✇❤❡r❡ xn = −1.0 , −0.9 , −0.8 , ... , 0.8 , 0.9 , 1.0 .
■♥ s✉♠♠❛r②✱ t❤❡ ❛r❡❛
■♥ ♦t❤❡r ✇♦r❞s✿
A=
20 X n=1
0.1 ·
p 1 − x2n .
✶✳✶✳
❚❤❡ ❆r❡❛ Pr♦❜❧❡♠
✶✹
❚❤❡r❡ ✐s ♠♦r❡✦ ❚❤❡ ❛♣♣r♦❛❝❤ ✇❡ ❤❛✈❡ ✉s❡❞ ♠❛♥② t✐♠❡s ✐♥ ❝❛❧❝✉❧✉s ✭❈❤❛♣t❡r ✷❉❈✲✸✮ ✐s t♦ ✐♠♣r♦✈❡ ♦✉r ❛♣♣r♦①✐♠❛t✐♦♥ ❜② ♠❛❦✐♥❣ t❤❡ ✐♥t❡r✈❛❧s s♠❛❧❧❡r ❛♥❞ s♠❛❧❧❡r✳ ❘❡❞♦✐♥❣ t❤❡ ❝♦♠♣✉t❛t✐♦♥ ✇✐t❤ 40 ✐♥t❡r✈❛❧s ❣✐✈❡s ❛ ❜❡tt❡r ❛♣♣r♦①✐♠❛t✐♦♥✱ 1.564✿
❚❤❡ q✉❛❧✐t② ♦❢ ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ✐s s❡❡♥ ❛s t❤❡ s✐③❡ ♦❢ t❤❡ ♣❛rts ♦❢ t❤❡ ❜❛rs st✐❝❦✐♥❣ ♦✉t ♦❢ t❤❡ ❝✐r❝❧❡ ❛s ✇❡❧❧ ❛s t❤❡ ♣❛rts ♦❢ t❤❡ ✐♥s✐❞❡ ♦❢ t❤❡ ❝✐r❝❧❡ ♥♦t ❝♦✈❡r❡❞ ❜② t❤❡ ❜❛rs✿
◆♦t❤✐♥❣ st♦♣s ✉s ❢r♦♠ ✐♠♣r♦✈✐♥❣ t❤✐s ❛♣♣r♦①✐♠❛t✐♦♥ ❢✉rt❤❡r ❛♥❞ ❢✉rt❤❡r ✇✐t❤ ❧❛r❣❡r ❛♥❞ ❧❛r❣❡r ✈❛❧✉❡s ♦❢ n✳ ❊①❡r❝✐s❡ ✶✳✶✳✷
❆♣♣r♦①✐♠❛t❡ t❤❡ ❛r❡❛ ♦❢ t❤❡ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s 1 ✇✐t❤✐♥ 0.0001✳ ❲❡ ❤❛✈❡ s❤♦✇❡❞ t❤❛t ✐♥❞❡❡❞ t❤❡ ❛r❡❛ ♦❢ t❤❡ ❝✐r❝❧❡ ✐s ❝❧♦s❡ t♦ ✇❤❛t✬s ❡①♣❡❝t❡❞✳ ❇✉t t❤❡ r❡❛❧ q✉❡st✐♦♥ ✐s✿ ◮ ❲❤❛t
✐s t❤❡ ❛r❡❛❄
❉♦ ✇❡ ❡✈❡♥ ✉♥❞❡rst❛♥❞ ✇❤❛t ✐t ✐s❄ ❲❛r♥✐♥❣✦ ❚❤❡ ❛r❡❛ ✐s ❛ ♥✉♠❜❡r✳
❚❤❡ ✐♥t✉✐t✐♦♥ ✐s t♦ s♣❡❛❦ ♦❢ t❤❡ ❛♠♦✉♥t ♦❢ ♠❛t❡r✐❛❧ ❤❡❧❞ ❜② t❤❡ ❝✉r✈❡✳ ❋♦r ❡①❛♠♣❧❡✱ ✇❡ ✜❧❧ ❛ s❡♠✐❝✐r❝✉❧❛r ❜✉❝❦❡t ✇✐t❤ ✇❛t❡r ❛♥❞ t❤❡ ♣♦✉r ✐t ✐♥t♦ ❛ r❡❝t❛♥❣✉❧❛r ♦♥❡ s♦ t❤❛t ✇❡ ❝❛♥ ♠❡❛s✉r❡ t❤❡ ❝♦♥t❡♥ts✿
✶✳✶✳
❚❤❡ ❆r❡❛ Pr♦❜❧❡♠
✶✺
❊①❡r❝✐s❡ ✶✳✶✳✸
❈♦♥✜r♠ t❤❛t t❤❡ s❡♠✐❝✐r❝✉❧❛r ❜✉❝❦❡t ❛♥❞ t❤❡ r❡❝t❛♥❣✉❧❛r ♦♥❡ ❝♦♥t❛✐♥ t❤❡ s❛♠❡ ❛♠♦✉♥t ♦❢ ✇❛t❡r✳
❍♦✇ ❞♦ ✇❡ ♠❛❦❡ ♠❛t❤❡♠❛t✐❝❛❧ s❡♥s❡ ♦❢ t❤✐s❄ ❖♥❡ t❤✐♥❣ ✇❡ ❞♦ ❦♥♦✇✳ ❚❤❡ ❛r❡❛ ♦❢ ❛ r❡❝t❛♥❣❧❡
a×b
✐s
ab✳
❋✉rt❤❡r♠♦r❡✱ ❛♥② r✐❣❤t tr✐❛♥❣❧❡ ✐s s✐♠♣❧② ❛ ❤❛❧❢ ♦❢ ❛ ❞✐❛❣♦♥❛❧❧② ❝✉t r❡❝t❛♥❣❧❡✿
❲❡ ❝❛♥ ❛❧s♦ ❝✉t ❛♥② tr✐❛♥❣❧❡ ✐♥t♦ ❛ ♣❛✐r ♦❢ r✐❣❤t tr✐❛♥❣❧❡s✿
❋✐♥❛❧❧②✱ ❛♥② ♣♦❧②❣♦♥ ❝❛♥ ❜❡ ❝✉t ✐♥t♦ tr✐❛♥❣❧❡s✿
❙♦✱ ✇❡ ❝❛♥ ✜♥❞ ✕ ❛♥❞ ✇❡ ✉♥❞❡rst❛♥❞ ✕ t❤❡ ❛r❡❛s ♦❢ ❛❧❧ ♣♦❧②❣♦♥s✳ ❚❤❡② ❛r❡ ❣❡♦♠❡tr✐❝ ♦❜❥❡❝ts ✇✐t❤
str❛✐❣❤t
❡❞❣❡s✳ ❇✉t ✇❤❛t ❛r❡ t❤❡
❛r❡❛s ♦❢ ❝✉r✈❡❞ ♦❜❥❡❝ts❄
❊①❛♠♣❧❡ ✶✳✶✳✹✿ ❝✐r❝❧❡
▲❡t✬s r❡✈✐❡✇ t❤❡ ❛♥❝✐❡♥t ●r❡❡❦s✬ ❛♣♣r♦❛❝❤ t♦ ✉♥❞❡rst❛♥❞✐♥❣ ❛♥❞ ❝♦♠♣✉t✐♥❣ t❤❡ ❛r❡❛ ♦❢ ❛ ❝✐r❝❧❡✳ ❚❤❡② ❛♣♣r♦①✐♠❛t❡❞ t❤❡ ❝✐r❝❧❡ ✇✐t❤ r❡❣✉❧❛r ♣♦❧②❣♦♥s✿ ❡q✉❛❧ s✐❞❡s ❛♥❞ ❛♥❣❧❡s✳ ❲❡ ♣✉t s✉❝❤ ♣♦❧②❣♦♥s ❛r♦✉♥❞ t❤❡ ❝✐r❝❧❡ s♦ t❤❛t ✐t t♦✉❝❤❡s t❤❡♠ ❢r♦♠ t❤❡ ✐♥s✐❞❡ ✭✏❝✐r❝✉♠s❝r✐❜✐♥❣✑ ♣♦❧②❣♦♥s✮✿
❚❤❡ ❆r❡❛ Pr♦❜❧❡♠
✶✳✶✳
❋♦r ❡❛❝❤
✶✻
n = 3, 4, 5, 6, ...✱
t❤❡ ❢♦❧❧♦✇✐♥❣ ✐s ❝❛rr✐❡❞ ♦✉t✳ ❲❡ s♣❧✐t ❡❛❝❤ s✉❝❤ ♣♦❧②❣♦♥ ✇✐t❤
n
s✐❞❡s ✐♥t♦
2n
r✐❣❤t tr✐❛♥❣❧❡s ❛♥❞ ❝♦♠♣✉t❡ t❤❡✐r ❞✐♠❡♥s✐♦♥s✿
❲❡ t❤✐♥❦ ♦❢ ✐s
2π ✱
π
❤❡r❡ ❛s t❤❡ ❛♥❣❧❡ ♠❡❛s✉r❡ ✭♣♦ss✐❜❧② ✉♥❦♥♦✇♥✮ ♦❢ ❛ ❤❛❧❢ ♦❢ t❤❡ ❢✉❧❧ t✉r♥✳ ❚❤❡ ❢✉❧❧ t✉r♥
❛♥❞ ✐t ✐s ❝✉t ✐♥t♦
2n
❛♥❣❧❡s✿
αn =
2π π = . 2n n
❚❤❡ s✐❞❡ t❤❛t t♦✉❝❤❡s t❤❡ ❝✐r❝❧❡ ✐s ✐ts r❛❞✐✉s ❛♥❞ t❤❡ ♦♣♣♦s✐t❡ s✐❞❡ ✐s
r tan πn ✳
❚❤❡r❡❢♦r❡✱ t❤❡ ❛r❡❛ ♦❢
t❤❡ tr✐❛♥❣❧❡ ✐s
r2 1 π an = · r · r tan n = tan πn . 2 2 ❲❡ ❦♥♦✇ ♥♦✇ t❤❡ ❛r❡❛ ♦❢ t❤❡ ✇❤♦❧❡ ♣♦❧②❣♦♥✿
An = an · 2n =
r2 tan πn · 2n . 2
❲❡ ❝❛♥ ❡①❛♠✐♥❡ t❤❡ ❞❛t❛✿
n 3 4 5 6 7 8 9 10 11 12 13 14 15 ... An 5.196 4.000 3.633 3.464 3.371 3.314 3.276 3.249 3.230 3.215 3.204 3.195 3.188 ... ❚❤❡ ♥✉♠❜❡rs s❡❡♠ t♦
■♥❞❡❡❞✱ t❤❡ s❡q✉❡♥❝❡
♠❡❛♥✐♥❣
❝♦♥✈❡r❣❡ An
✦
✐s ❜♦t❤ ♠♦♥♦t♦♥❡ ❛♥❞ ❜♦✉♥❞❡❞ ❛♥❞✱ t❤❡r❡❢♦r❡✱ ❝♦♥✈❡r❣❡♥t✳
♦❢ t❤❡ ❛r❡❛ ✭❛♥❞ ♦❢
π ✮✳
■ts ❧✐♠✐t ✐s t❤❡
✶✳✶✳ ❚❤❡ ❆r❡❛ Pr♦❜❧❡♠
✶✼
▲❡t✬s ❝♦♠♣✉t❡ t❤❡ ❧✐♠✐t✿
r2 tan πn · 2n 2 sin π 1 = πr2 · π n · cos πn n
An =
|| πr2
↓
↓
·1
❲❡ r❡❛rr❛♥❣❡ t❤❡ t❡r♠s ✐♥ ♦r❞❡r t♦ ✉s❡✳✳✳
❛s
n→∞
♦♥❡ ♦❢ t❤❡ ❢❛♠♦✉s tr✐❣ ❧✐♠✐ts ✭❈❤❛♣t❡r ✷❉❈✲✶).
·1
= πr2 . ■♥ ♦r❞❡r t♦ ❢✉❧❧② ❥✉st✐❢② t❤❡ r❡s✉❧t✱ t❤❡ ●r❡❡❦s ❛❧s♦ ♣✉t s✉❝❤ ♣♦❧②❣♦♥s ❛r♦✉♥❞ t❤❡ ❝✐r❝❧❡ s♦ t❤❛t ✐t t♦✉❝❤❡s t❤❡♠ ❢r♦♠ t❤❡ ♦✉ts✐❞❡ ✭✏✐♥s❝r✐❜✐♥❣✑ ♣♦❧②❣♦♥s✮✳ ❯♥❢♦rt✉♥❛t❡❧②✱ t❤❡ ♠❡t❤♦❞s ❝❛♥♥♦t ❜❡ ❡❛s✐❧② ❛♣♣❧✐❡❞ t♦✱ s❛②✱ ♣❛r❛❜♦❧❛s✳ ❚❤❛t ✐s ✇❤② ✇❡ ✇✐❧❧ s❡❡❦ ❛ ♠♦r❡ ❣❡♥❡r❛❧ ❛♣♣r♦❛❝❤✳
❊①❡r❝✐s❡ ✶✳✶✳✺
❊①♣❧❛✐♥ ✐♥ ❞❡t❛✐❧ ✇❤②
An
❝♦♥✈❡r❣❡s✳
❊①❡r❝✐s❡ ✶✳✶✳✻
❊①♣❧❛✐♥ t❤❡ ♦t❤❡r ❧✐♠✐t ✐♥ ♦✉r ❝♦♠♣✉t❛t✐♦♥✳
❊①❡r❝✐s❡ ✶✳✶✳✼
❈❛rr② ♦✉t t❤✐s ❝♦♥str✉❝t✐♦♥ ❢♦r t❤❡ ✐♥s❝r✐❜❡❞ ♣♦❧②❣♦♥s✳
▲❡t✬s ❝♦♠♣❛r❡ t❤❡s❡ t✇♦ s❡❡♠✐♥❣❧② ✉♥r❡❧❛t❡❞ ♣r♦❜❧❡♠s ❛♥❞ ❤♦✇ t❤❡② ❛r❡ s♦❧✈❡❞✿ ❚❤❡ ❚❛♥❣❡♥t Pr♦❜❧❡♠
❚❤❡ ❆r❡❛ Pr♦❜❧❡♠
●❡♦♠❡tr②✿ ❋♦r ❛ ❣✐✈❡♥ ❝✉r✈❡✱ ✜♥❞ t❤❡ ❢♦❧❧♦✇✐♥❣✿
t❤❡ ❧✐♥❡ t♦✉❝❤✐♥❣ t❤❡ ❝✉r✈❡ ❛t ❛ ♣♦✐♥t
t❤❡ ❛r❡❛ ❡♥❝❧♦s❡❞ ❜② t❤❡ ❝✉r✈❡
❚❤❡ ♣r♦❜❧❡♠s ❛r❡ ❡❛s② ✇❤❡♥ t❤❡r❡ ✐s ♥♦ ❛❝t✉❛❧ ❝✉r✈✐♥❣✿ str❛✐❣❤t ❧✐♥❡s✳ ❋✉rt❤❡r♠♦r❡✱ ✇❡ ❤❛✈❡ s♦❧✈❡❞ t❤❡s❡ ♣r♦❜❧❡♠s ❢♦r ❛ s♣❡❝✐✜❝ ❝✉r✈❡✿ t❤❡ ❝✐r❝❧❡✳ ❚❤❡ ❢✉rt❤❡r ♣r♦❣r❡ss ❞❡♣❡♥❞s ♦♥ t❤❡ ❞❡✈❡❧♦♣♠❡♥t ♦❢ ❛❧❣❡❜r❛✱ t❤❡ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡ s②st❡♠✱ ❛♥❞ t❤❡ ✐❞❡❛ ♦❢ ❢✉♥❝t✐♦♥ ✭❈❤❛♣t❡rs ✶P❈✲✷✱ ✶P❈✲✸✱ ❛♥❞ ✶P❈✲✹✮✳
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✶✽
▼♦t✐♦♥✿ ❚❤❡ t✇♦ ♣r♦❜❧❡♠s ❛r❡ ✐♥t❡r♣r❡t❡❞ ❛s ❢♦❧❧♦✇s✿ ❚❤❡ s❧♦♣❡ ♦❢ t❤❡ t❛♥❣❡♥t ❚❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ✈❡❧♦❝✐t② ❢✉♥❝t✐♦♥ t♦ t❤❡ ♣♦s✐t✐♦♥ ❢✉♥❝t✐♦♥ ✐s t❤❡ ✈❡❧♦❝✐t② ❛t t❤❛t ♠♦♠❡♥t✳ ✐s t❤❡ ❞✐s♣❧❛❝❡♠❡♥t✳ ❚❤❡ ❢✉rt❤❡r ❞❡✈❡❧♦♣♠❡♥t ✉t✐❧✐③❡s ❞✐✈✐❞✐♥❣ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✐♥t♦ s♠❛❧❧❡r ♣✐❡❝❡s✱ ∆x ❧♦♥❣✱ s❛♠♣❧✐♥❣ t❤❡ ❢✉♥❝t✐♦♥✱ ❛♥❞ ❛♣♣r♦①✐♠❛t✐♥❣ t❤❡ ❢✉♥❝t✐♦♥ ❜② ♠❡❛♥s ♦❢ str❛✐❣❤t ❧✐♥❡s✳
❋♦r ♠❛♥② ♣r❛❝t✐❝❛❧ ❛♣♣❧✐❝❛t✐♦♥s✱ t❤✐s st❛❣❡ ✐s s✉✣❝✐❡♥t✳ ■♥ ✐❞❡❛❧✐③❡❞ s✐t✉❛t✐♦♥s✱ ✇❡ ❝❛♥ ❞♦ ♠♦r❡✳
❈❛❧❝✉❧✉s✿ ❚❤❡ ❧✐♠✐ts ♦❢ t❤❡s❡ ❛♣♣r♦①✐♠❛t✐♦♥s✱ ❛s ∆x → 0✱ ❛r❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿ t❤❡ ❞❡r✐✈❛t✐✈❡
t❤❡ ✐♥t❡❣r❛❧
■♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✇✐❧❧ ♣✉rs✉❡ t❤❡ ♣❧❛♥ ❢♦r t❤❡ ❧❛tt❡r ♣r♦❜❧❡♠ ❛s ♦✉t❧✐♥❡❞ ✐♥ t❤❡ r✐❣❤t ❝♦❧✉♠♥✳
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s ❲❡ t✉r♥ t♦ ♠♦t✐♦♥ ♥♦✇✳ ❖✉r st❛rt✐♥❣ ♣♦✐♥t ✐s t❤❡ ❢♦r♠✉❧❛✿ ❞✐st❛♥❝❡ = s♣❡❡❞ × t✐♠❡ ❘❡❝❛❧❧ t✇♦ ❢❛♠✐❧✐❛r ♣r♦❜❧❡♠s ✭❈❤❛♣t❡r ✷❉❈✲✶✮✳
Pr♦❜❧❡♠✿ ■♠❛❣✐♥❡ t❤❛t ♦✉r s♣❡❡❞♦♠❡t❡r ✐s ❜r♦❦❡♥ ❛♥❞ ✇❡ ♥❡❡❞ t♦ ✜♥❞ ❛ ✇❛② t♦ ❡st✐♠❛t❡ ❤♦✇ ❢❛st ✇❡ ❛r❡ ❞r✐✈✐♥❣✳
✶✳✷✳
❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
❲❡ ❧♦♦❦ ❛t t❤❡ ♦❞♦♠❡t❡r
✶✾
s❡✈❡r❛❧ t✐♠❡s ❞✉r✐♥❣ t❤❡ tr✐♣ ❛♥❞ r❡❝♦r❞ t❤❡ ♠✐❧❡❛❣❡ ♦♥ ❛ ♣✐❡❝❡ ♦❢ ♣❛♣❡r✿
✶✳ ✐♥✐t✐❛❧ r❡❛❞✐♥❣✿ 10, 000 ♠✐❧❡s ✷✳ ❛❢t❡r t❤❡ ✜rst ❤♦✉r✿ 10, 055 ♠✐❧❡s ✸✳ ❛❢t❡r t❤❡ s❡❝♦♥❞ ❤♦✉r✿ 10, 095 ♠✐❧❡s ✹✳ ❛❢t❡r t❤❡ t❤✐r❞ ❤♦✉r✿ 10, 155 ♠✐❧❡s ✺✳ ❡t❝✳ ❚❤❛t✬s ❛ s❡q✉❡♥❝❡✳ ❲❡ ♥♦✇ ✉s❡ t❤❡
❞✐✛❡r❡♥❝❡ ♦❢ t❤❡ s❡q✉❡♥❝❡ t♦ s♦❧✈❡ t❤❡ ♣r♦❜❧❡♠✿
✶✳ ❞✐st❛♥❝❡ ❝♦✈❡r❡❞ ❞✉r✐♥❣ t❤❡ ✜rst ❤♦✉r✿ 10, 055 − 10, 000 = 55 ♠✐❧❡s
✷✳ ❞✐st❛♥❝❡ ❝♦✈❡r❡❞ ❞✉r✐♥❣ t❤❡ s❡❝♦♥❞ ❤♦✉r✿ 10, 095 − 10, 055 = 40 ♠✐❧❡s ✸✳ ❞✐st❛♥❝❡ ❝♦✈❡r❡❞ ❞✉r✐♥❣ t❤❡ t❤✐r❞ ❤♦✉r✿ 10, 155 − 10, 095 = 60 ♠✐❧❡s
✹✳ ❡t❝✳
❚❤❛t✬s ❛♥♦t❤❡r s❡q✉❡♥❝❡✳ ❲❡ s❡❡ ❜❡❧♦✇ ❤♦✇ t❤❡s❡ ♥❡✇ ♥✉♠❜❡rs ❛♣♣❡❛r ❛s t❤❡ ❤❡✐❣❤ts ♦❢ t❤❡ st❡♣s ♦❢ ♦✉r ❧❛st ♣❧♦t ✭t♦♣✮✿
❆s ②♦✉ ❝❛♥ s❡❡✱ ✇❡ ✐❧❧✉str❛t❡ t❤❡ ♥❡✇ ❞❛t❛ ✐♥ s✉❝❤ ❛ ✇❛② ❛s t♦ s✉❣❣❡st t❤❛t t❤❡ s♣❡❡❞ r❡♠❛✐♥s ❞✉r✐♥❣ ❡❛❝❤ ♦❢ t❤❡s❡ ❤♦✉r✲❧♦♥❣ ♣❡r✐♦❞s✳
❝♦♥st❛♥t
■♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✇✐❧❧ ❝♦♥❝❡♥tr❛t❡ ♦♥ t❤❡ ✢✐♣ s✐❞❡ ♦❢ t❤❡ ❧❛st ♣r♦❜❧❡♠✳
Pr♦❜❧❡♠✿ ■♠❛❣✐♥❡ t❤❛t ✐t ✐s t❤❡ ♦❞♦♠❡t❡r t❤❛t ✐s ❜r♦❦❡♥ ❛♥❞ ✜♥❞ ❛ ✇❛② t♦ ❡st✐♠❛t❡ ❤♦✇ ❢❛r ✇❡ ✇✐❧❧ ❤❛✈❡ ❣♦♥❡✳
❖❢ ❝♦✉rs❡✱ ✇❡ ❧♦♦❦ ❛t t❤❡ s♣❡❡❞♦♠❡t❡r r❡❛❞✐♥❣s ♦♥ ❛ ♣✐❡❝❡ ♦❢ ♣❛♣❡r✿
s❡✈❡r❛❧ t✐♠❡s ✕ s❛②✱ ❡✈❡r② ❤♦✉r ✕ ❞✉r✐♥❣ t❤❡ tr✐♣ ❛♥❞ r❡❝♦r❞ ✐ts
✶✳ ❞✉r✐♥❣ t❤❡ ✜rst ❤♦✉r✿ 35 ♠✐❧❡s ❛♥ ❤♦✉r ✷✳ ❞✉r✐♥❣ t❤❡ s❡❝♦♥❞ ❤♦✉r✿ 65 ♠✐❧❡s ❛♥ ❤♦✉r ✸✳ ❞✉r✐♥❣ t❤❡ t❤✐r❞ ❤♦✉r✿ 50 ♠✐❧❡s ❛♥ ❤♦✉r ✹✳ ❡t❝✳ ❚❤❛t✬s ❛ s❡q✉❡♥❝❡✳ ❲❤❛t ❞♦❡s t❤✐s t❡❧❧ ✉s ❛❜♦✉t ♦✉r ❧♦❝❛t✐♦♥❄ ◆♦t❤✐♥❣✱ ✇✐t❤♦✉t ❛❧❣❡❜r❛✦ ❋♦rt✉♥❛t❡❧②✱ ✇❡ ❝❛♥ ❥✉st ✉s❡ t❤❡ s❛♠❡ ❢♦r♠✉❧❛ ❛s ❜❡❢♦r❡✳ ■♥ ❝♦♥tr❛st t♦ t❤❡ ❢♦r♠❡r ♣r♦❜❧❡♠✱ ✇❡ ♥❡❡❞ ❛♥♦t❤❡r ❜✐t ♦❢ ✐♥❢♦r♠❛t✐♦♥✳ ❲❡ ♠✉st ❦♥♦✇ t❤❡ st❛rt✐♥❣ ♣♦✐♥t ♦❢ ♦✉r tr✐♣✱ s❛②✱ t❤❡ 100✲♠✐❧❡ ♠❛r❦✳ ❚❤❡ t✐♠❡ ✐♥t❡r✈❛❧ ✇❛s ❝❤♦s❡♥ t♦ ❜❡ 1 ❤♦✉r s♦ t❤❛t ✇❡ ♥❡❡❞ ♦♥❧② t♦ ❛❞❞✱ ❛♥❞ ❦❡❡♣ ❛❞❞✐♥❣✱ t❤❡ s♣❡❡❞ ❛t ✇❤✐❝❤ ✕ ✇❡ ❛ss✉♠❡ ✕ ✇❡ ❞r♦✈❡ ❞✉r✐♥❣ ❡❛❝❤ ♦❢ t❤❡s❡ ♦♥❡✲❤♦✉r ♣❡r✐♦❞s✿ ✶✳ t❤❡ ✐♥✐t✐❛❧ ❧♦❝❛t✐♦♥✿ 100✲♠✐❧❡ ♠❛r❦ ✷✳ t❤❡ ❧♦❝❛t✐♦♥ ❛❢t❡r t❤❡ ✜rst ❤♦✉r✿ 100 + 35 = 135✲♠✐❧❡ ♠❛r❦ ✸✳ t❤❡ ❧♦❝❛t✐♦♥ ❛❢t❡r t❤❡ s❡❝♦♥❞ ❤♦✉r✿ 135 + 65 = 200✲♠✐❧❡ ♠❛r❦ ✹✳ t❤❡ ❧♦❝❛t✐♦♥ ❛❢t❡r t❤❡ t❤✐r❞ ❤♦✉r✿ 200 + 50 = 250✲♠✐❧❡ ♠❛r❦
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✵
✺✳ ❡t❝✳ ❚❤❛t✬s ❛♥♦t❤❡r s❡q✉❡♥❝❡✳ ■t ✐s ❝❛❧❧❡❞ t❤❡ s✉♠ ♦❢ t❤❡ s❡q✉❡♥❝❡✳ ■♥ ♦r❞❡r t♦ ✐❧❧✉str❛t❡ t❤✐s ❛❧❣❡❜r❛✱ ✇❡ ✉s❡ t❤❡ s♣❡❡❞s ❛s t❤❡ ❤❡✐❣❤ts ♦❢ t❤❡ ❝♦♥s❡❝✉t✐✈❡ st❡♣s ♦❢ t❤❡ st❛✐r❝❛s❡✿
❚❤❡♥ t❤❡ ♥❡✇ ♥✉♠❜❡rs s❤♦✇ ❤♦✇ ❤✐❣❤ ✇❡ ❤❛✈❡ t♦ ❝❧✐♠❜ ✐♥ ♦✉r ❧❛st ♣❧♦t✳ ❚❤❡ ♣r♦❜❧❡♠ ✐s s♦❧✈❡❞✦ ❲❡ ❤❛✈❡ ❡st❛❜❧✐s❤❡❞ t❤❛t ✇❡ ❤❛✈❡ ♣r♦❣r❡ss❡❞ t❤r♦✉❣❤ t❤❡ r♦✉❣❤❧② 135✲✱ 200✲✱ ❛♥❞ 250✲♠✐❧❡ ♠❛r❦s ❞✉r✐♥❣ t❤✐s t✐♠❡✳ ■♥ s✉♠♠❛r②✱ ✇❤❡♥ t❤❡ ✐♥t❡r✈❛❧s ♦❢ t✐♠❡ ❛r❡ ✉♥✐ts✱ ✇❡ ❝❛♥ ❣♦ ❢r♦♠ ❧♦❝❛t✐♦♥s t♦ ✈❡❧♦❝✐t✐❡s ❛♥❞ ❜❛❝❦ ✇✐t❤ t❤❡ t✇♦ s✐♠♣❧❡ ♦♣❡r❛t✐♦♥s✿
❚❤✐s ✐s t❤❡ s✉♠♠❛r②✿ ✶✳ ■❢ ❡❛❝❤ t❡r♠ ♦❢ ❛ s❡q✉❡♥❝❡ r❡♣r❡s❡♥ts ❛ ❧♦❝❛t✐♦♥✱ t❤❡ ♣❛✐r✇✐s❡ ❞✐✛❡r❡♥❝❡s ✇✐❧❧ ❣✐✈❡ ②♦✉ t❤❡ ✈❡❧♦❝✐t✐❡s✳ ❆ ❜r♦❦❡♥ s♣❡❡❞♦♠❡t❡r ✐s s✉❜st✐t✉t❡❞ ✇✐t❤ ❛♥ ♦❞♦♠❡t❡r ❛♥❞ ❛ ✇❛t❝❤✳ ❚❤✐s st✉❞② ✐s ❛♣♣❡❛r❡❞ ✐♥ ❱♦❧✉♠❡ ✷✱ ❈❤❛♣t❡r ✷❉❈✲✸✳ ✷✳ ■❢ ❡❛❝❤ t❡r♠ ♦❢ ❛ s❡q✉❡♥❝❡ r❡♣r❡s❡♥ts ❛ ✈❡❧♦❝✐t②✱ t❤❡✐r s✉♠ ✉♣ t♦ t❤❛t ♣♦✐♥t ✇✐❧❧ ❣✐✈❡ ②♦✉ t❤❡ ❧♦❝❛t✐♦♥✳ ❆ ❜r♦❦❡♥ ♦❞♦♠❡t❡r ✐s s✉❜st✐t✉t❡❞ ✇✐t❤ ❛ s♣❡❡❞♦♠❡t❡r ❛♥❞ ❛ ✇❛t❝❤✳ ❚❤✐s st✉❞② ✇✐❧❧ ❛♣♣❡❛r ✐♥ t❤✐s ❝❤❛♣t❡r✳ ■♥ t❤❡ ❛❜str❛❝t✱ t❤❡ ♣❛✐r✇✐s❡ ❞✐✛❡r❡♥❝❡s r❡♣r❡s❡♥t t❤❡ ❝❤❛♥❣❡ ✇✐t❤✐♥ t❤❡ s❡q✉❡♥❝❡✱ ❢r♦♠ ❡❛❝❤ ♦❢ ✐ts t❡r♠s t♦ t❤❡ ♥❡①t✿
❉❡✜♥✐t✐♦♥ ✶✳✷✳✶✿ s❡q✉❡♥❝❡ ♦❢ ❞✐✛❡r❡♥❝❡s ❋♦r ❛ s❡q✉❡♥❝❡ an ✱ ✐ts s❡q✉❡♥❝❡ ♦❢ ❞✐✛❡r❡♥❝❡s✱ ♦r s✐♠♣❧② t❤❡ ❞✐✛❡r❡♥❝❡✱ ✐s ❛ ♥❡✇ s❡q✉❡♥❝❡✱ s❛② dn ✱ ❞❡✜♥❡❞ ❢♦r ❡❛❝❤ n ❜② t❤❡ ❢♦❧❧♦✇✐♥❣✿ dn = an+1 − an .
■t ✐s ❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿ ∆an = an+1 − an
■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ st❛rt ♦♥ t❤❡ ♣❛t❤ ♦❢ ❞❡✈❡❧♦♣♠❡♥t ♦❢ ❛♥ ✐❞❡❛ t❤❛t ❝✉❧♠✐♥❛t❡s ✇✐t❤ t❤❡ s❡❝♦♥❞ ❢✉♥❞❛♠❡♥t❛❧ ❝♦♥❝❡♣t ♦❢ ❝❛❧❝✉❧✉s t♦ ❜❡ s❡❡♥ ❧❛t❡r ✐♥ t❤✐s ❝❤❛♣t❡r✳
✶✳✷✳
❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✶
❚❤❡ s✉♠ r❡♣r❡s❡♥ts t❤❡ t♦t❛❧✐t② ♦❢ t❤❡ ✏❜❡❣✐♥♥✐♥❣✑ ♦❢ ❛ s❡q✉❡♥❝❡✱ ❢♦✉♥❞ ❜② ❛❞❞✐♥❣ ❡❛❝❤ ♦❢ ✐ts t❡r♠s t♦ t❤❡ ♥❡①t✱ ✉♣ t♦ t❤❛t ♣♦✐♥t✳
❊①❛♠♣❧❡ ✶✳✷✳✷✿ s❡q✉❡♥❝❡s ❣✐✈❡♥ ❜② ❧✐sts ❲❡ ❥✉st ❛❞❞ t❤❡ ❝✉rr❡♥t t❡r♠ t♦ ✇❤❛t ✇❡ ❤❛✈❡ ❛❝❝✉♠✉❧❛t❡❞ s♦ ❢❛r✿ s❡q✉❡♥❝❡✿ s✉♠s✿
♥❡✇ s❡q✉❡♥❝❡✿
2 4 7 1 −1 ↓ ↓ ↓ ↓ ↓ 2 2 + 4 = 6 6 + 7 = 13 13 + 1 = 14 14 + (−1) = 13 ↓ ↓ ↓ ↓ ↓ 2 6 13 14 13
... ...
... ...
❲❡ ❤❛✈❡ ❛ ♥❡✇ ❧✐st✦
❊①❛♠♣❧❡ ✶✳✷✳✸✿ s❡q✉❡♥❝❡s ❣✐✈❡♥ ❜② ❣r❛♣❤s ❲❡ tr❡❛t t❤❡ ❣r❛♣❤ ♦❢ ❛ s❡q✉❡♥❝❡ ❛s ✐❢ ♠❛❞❡ ♦❢ ❜❛rs ❛♥❞ t❤❡♥ ❥✉st st❛❝❦ ✉♣ t❤❡s❡ ❜❛rs ♦♥ t♦♣ ♦❢ ❡❛❝❤ ♦t❤❡r ♦♥❡ ❜② ♦♥❡✿
❚❤❡s❡ st❛❝❦❡❞ ❜❛rs ✕ ♦r r❛t❤❡r t❤❡ ♣r♦❝❡ss ♦❢ st❛❝❦✐♥❣ ✕ ♠❛❦❡ ❛ ♥❡✇ s❡q✉❡♥❝❡✳
❉❡✜♥✐t✐♦♥ ✶✳✷✳✹✿ s❡q✉❡♥❝❡ ♦❢ s✉♠s an ✱ ✐ts s❡q✉❡♥❝❡ ♦❢ s✉♠s✱ ♦r s✐♠♣❧② t❤❡ s✉♠✱ ✐s ❛ ♥❡✇ s❡q✉❡♥❝❡ sn ❞❡♥♦t❡❞ ❢♦r ❡❛❝❤ n ≥ m ✇✐t❤✐♥ t❤❡ ❞♦♠❛✐♥ ♦❢ an ❜② t❤❡ ❢♦❧❧♦✇✐♥❣
❋♦r ❛ s❡q✉❡♥❝❡ ❞❡✜♥❡❞ ❛♥❞
✭r❡❝✉rs✐✈❡✮ ❢♦r♠✉❧❛✿
sm = 0,
sn+1 = sn + an+1
■♥ ♦t❤❡r ✇♦r❞s✱
sn = am + am+1 + ... + an
❚❤❡ ❢♦❧❧♦✇✐♥❣ ✐s ❛♥ ❛❜❜r❡✈✐❛t❡❞ ✇❛② t♦ ♣r❡s❡♥t s✉♠♠❛t✐♦♥ ♦❢ ❛ s❡q✉❡♥❝❡✳
❙✐❣♠❛ ♥♦t❛t✐♦♥ ❢♦r s✉♠♠❛t✐♦♥ sn = am + am+1 + ... + an =
n X
ak
k=m
❲❛r♥✐♥❣✦ ❯s✐♥❣ ❡✐t❤❡r ✏✳✳✳✑ ❛♥❞ ✏
X
✑ ♠✐❣❤t ♦❜s❝✉r❡ t❤❡ r❡✲
❝✉rs✐✈❡ ♥❛t✉r❡ ♦❢ t❤❡ ❝♦♠♣✉t❛t✐♦♥✳
✶✳✷✳
❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✷
▲❡t✬s t❛❦❡ ❛ ❝❧♦s❡r ❧♦♦❦ ❛t t❤❡ ♥❡✇ ♥♦t❛t✐♦♥✳ ❚❤❡ ✜rst ❝❤♦✐❝❡ ♦❢ ❤♦✇ t♦ r❡♣r❡s❡♥t t❤❡ s✉♠ ♦❢ ❛ s❡❣♠❡♥t ✕ ❢r♦♠
m
t♦
n
✕ ♦❢ ❛ s❡q✉❡♥❝❡
an
✐s t❤✐s✿
+am+1 +... | {z }
am |{z}
st❡♣ 1
+a +... |{z}k
st❡♣ k
st❡♣ 2
+a |{z}n
st❡♣ n−m
❚❤✐s ♥♦t❛t✐♦♥ r❡✢❡❝ts t❤❡ r❡❝✉rs✐✈❡ ♥❛t✉r❡ ♦❢ t❤❡ ♣r♦❝❡ss ❜✉t ✐t ❝❛♥ ❛❧s♦ ❜❡ r❡♣❡t✐t✐✈❡ ❛♥❞ ❝✉♠❜❡rs♦♠❡✳ ❚❤❡ ♥❡✇ ♥♦t❛t✐♦♥ ✐s ♠❡❛♥t t♦ ♠❛❦❡ ✐t ♠♦r❡ ❝♦♠♣❛❝t✳ ❚❤❡ ✐❞❡❛ ✐s t♦ ✐♥tr♦❞✉❝❡ ❛♥ ✏✐♥t❡r♥❛❧ ✈❛r✐❛❜❧❡✑
k
❛s ❢♦❧❧♦✇s✿
❙✐❣♠❛ ♥♦t❛t✐♦♥ ❜❡❣✐♥♥✐♥❣
3 X k=0
k 2 + k = 20
❛♥❞ ❡♥❞ ✈❛❧✉❡s ❢♦r
↓ 3 X
−→
k2 + k
k=0
↑
k
= 20
❛ s♣❡❝✐✜❝ s❡q✉❡♥❝❡ ♦❢
k
↑
❛ s♣❡❝✐✜❝ ♥✉♠❜❡r
❲❛r♥✐♥❣✦ ■t ✇♦✉❧❞ ❛❧s♦ ♠❛❦❡ s❡♥s❡ t♦ ❤❛✈❡ ✏ k
= 3✑
❛❜♦✈❡ t❤❡
s✐❣♠❛✿
k=3 X k=0
❍❡r❡ t❤❡ ●r❡❡❦ ❧❡tt❡r
Σ
k2 + k .
st❛♥❞s ❢♦r t❤❡ ❧❡tt❡r ❙ ♠❡❛♥✐♥❣ ✏s✉♠✑✳
❊①❛♠♣❧❡ ✶✳✷✳✺✿ ❡①♣❛♥❞✐♥❣ ❢r♦♠ s✐❣♠❛ ♥♦t❛t✐♦♥ ❚❤❡ ❝♦♠♣✉t❛t✐♦♥ ❛❜♦✈❡ ✐s ❡①♣❛♥❞❡❞ ❤❡r❡✿
k k2 + k 3 X
2
k +k =
k=0
0 02 + 0 = 0
+
1 12 + 1 = 2
+
2
2 2 +2 =6
+
3 32 + 3 = 12 = 20
❊①❡r❝✐s❡ ✶✳✷✳✻✿ ❝♦♥tr❛❝t✐♥❣ t♦ s✐❣♠❛ ♥♦t❛t✐♦♥ ❍♦✇ ✇✐❧❧ t❤❡ s✉♠ ❝❤❛♥❣❡ ✐❢ ✇❡ r❡♣❧❛❝❡ ✇✐t❤
k=0
✇✐t❤
k = 1✱
♦r
4❄
k = −1❄
❲❤❛t ✐❢ ✇❡ r❡♣❧❛❝❡
3
❛t t❤❡ t♦♣
❊①❛♠♣❧❡ ✶✳✷✳✼✿ ❝♦♥tr❛❝t✐♥❣ s✉♠♠❛t✐♦♥ ❚❤✐s ✐s ❤♦✇ ✇❡
❝♦♥tr❛❝t
t❤❡ s✉♠♠❛t✐♦♥✿
12 + 22 + 32 + ... + 172 =
17 X
k2 .
k=1
❚❤✐s ✐s ♦♥❧② ♣♦ss✐❜❧❡ ✐❢ ✇❡ ✜♥❞ t❤❡ ❆♥❞ t❤✐s ✐s ❤♦✇ ✇❡
❡①♣❛♥❞
nt❤✲t❡r♠
❢♦r♠✉❧❛ ❢♦r t❤❡ s❡q✉❡♥❝❡❀ ✐♥ t❤✐s ❝❛s❡✱
ak = k 2 ✳
❜❛❝❦ ❢r♦♠ t❤✐s ❝♦♠♣❛❝t ♥♦t❛t✐♦♥✱ ❜② ♣❧✉❣❣✐♥❣ t❤❡ ✈❛❧✉❡s ♦❢
k = 1, 2, ..., 17
✶✳✷✳
❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✸
✐♥t♦ t❤❡ ❢♦r♠✉❧❛✿
17 X k=1
172 . 32 +... + |{z} 22 + |{z} k 2 = |{z} 12 + |{z} k=2
k=1
k=17
k=3
❙✐♠✐❧❛r❧②✱ ✇❡ ❤❛✈❡✿
10
X 1 1 1 1 1 . 1 + + 2 + 3 + ... + 10 = k 2 2 2 2 2 k=0 ❊①❡r❝✐s❡ ✶✳✷✳✽
❈♦♥✜r♠ t❤❛t ✇❡ ❝❛♥ st❛rt ❛t ❛♥② ♦t❤❡r ✐♥✐t✐❛❧ ✐♥❞❡① ✐❢ ✇❡ ❥✉st ♠♦❞✐❢② t❤❡ ❢♦r♠✉❧❛✿
?
1+
?
X 1 X 1 1 1 1 1 = = ... + 2 + 3 + ... + 10 = k−1 k−2 2 2 2 2 2 2 k=? k=?
❊①❡r❝✐s❡ ✶✳✷✳✾
❈♦♥tr❛❝t t❤✐s s✉♠♠❛t✐♦♥✿
1+
1 1 1 + + =? 3 9 27
❊①❡r❝✐s❡ ✶✳✷✳✶✵
❊①♣❛♥❞ t❤✐s s✉♠♠❛t✐♦♥✿
4 X
(k/2) = ?
k=0
❊①❡r❝✐s❡ ✶✳✷✳✶✶
❘❡✇r✐t❡ ✉s✐♥❣ t❤❡ s✐❣♠❛ ♥♦t❛t✐♦♥✿ ✶✳ ✷✳ ✸✳ ✹✳ ✺✳ ✻✳ ✼✳
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 0.9 + 0.99 + 0.999 + 0.9999 1/2 − 1/4 + 1/8 − 1/16 1 + 1/2 + 1/3 + 1/4 + ... + 1/n 1 + 1/2 + 1/4 + 1/8 2 + 3 + 5 + 7 + 11 + 13 + 17 1 − 4 + 9 − 16 + 25
❚❤❡ ♥♦t❛t✐♦♥ ❛♣♣❧✐❡s t♦ ❛❧❧ s❡q✉❡♥❝❡s✱ ❜♦t❤ ✜♥✐t❡ ❛♥❞ ✐♥✜♥✐t❡✳ ❋♦r ✐♥✜♥✐t❡ s❡q✉❡♥❝❡s✱ r❡❝♦❣♥✐③❡❞ ❜② ✏✳✳✳✑ ❛t t❤❡ ❡♥❞✱ t❤❡ s✉♠ s❡q✉❡♥❝❡ ✐s ❛❧s♦ ❝❛❧❧❡❞ ✏♣❛rt✐❛❧ s✉♠s✑ ❛s ✇❡❧❧ ❛s ✏s❡r✐❡s✑ ✭t♦ ❜❡ ❞✐s❝✉ss❡❞ ✐♥ ❈❤❛♣t❡r ✹✮✳ ❚❤✐s ✐s t❤❡ r❡❝✉rs✐✈❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s r❡✲✇r✐tt❡♥ ✇✐t❤ t❤❡ s✐❣♠❛ ♥♦t❛t✐♦♥✿
✶✳✷✳
❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✹
❙❡q✉❡♥❝❡ ♦❢ s✉♠s
❛ s❡q✉❡♥❝❡✿
✐ts s✉♠s✿
t❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s✿
t❤❡ s✐❣♠❛ ♥♦t❛t✐♦♥✿
a1 ↓ a1 a1
a2 ↓
a3 ↓
+ a2 =
↓ s1 || 1 X ak
s2 s2
+ a3 =
↓ s2 || 2 X ak
k=1
a4 ↓ s3 s3 ↓ s3 || 3 X ak
k=1
k=1
+ a4 =
... ...
s4 s4 ↓ s4 || 4 X ak
... ... ... ... ... ...
k=1
❊①❛♠♣❧❡ ✶✳✷✳✶✷✿ s✉♠s ❛r❡ ❞✐s♣❧❛❝❡♠❡♥ts ❲❡ ❝❛♥ ✉s❡ ❝♦♠♣✉t❡rs t♦ s♣❡❡❞ ✉♣ t❤❡s❡ ❝♦♠♣✉t❛t✐♦♥s✳
❋♦r ❡①❛♠♣❧❡✱ ♦♥❡ ♠❛② ❤❛✈❡ ❜❡❡♥ r❡❝♦r❞✐♥❣
♦♥❡✬s ✈❡❧♦❝✐t✐❡s ❛♥❞ ♥♦✇ ❧♦♦❦✐♥❣ ❢♦r t❤❡ ❧♦❝❛t✐♦♥✳ ❚❤✐s ✐s ❛ ❢♦r♠✉❧❛ ❢♦r ❛ s♣r❡❛❞s❤❡❡t ✭t❤❡ ❧♦❝❛t✐♦♥s✮✿
❂❘❬✲✶❪❈✰❘❈❬✲✶❪ ❲❤❡t❤❡r t❤❡ s❡q✉❡♥❝❡ ❝♦♠❡s ❢r♦♠ ❛ ❢♦r♠✉❧❛ ♦r ✐t✬s ❥✉st ❛ ❧✐st ♦❢ ♥✉♠❜❡rs✱ t❤❡ ❢♦r♠✉❧❛ ❛♣♣❧✐❡s✿
❆s ❛ r❡s✉❧t✱ ❛ ❝✉r✈❡ ❤❛s ♣r♦❞✉❝❡❞ ❛ ♥❡✇ ❝✉r✈❡✿
❊①❛♠♣❧❡ ✶✳✷✳✶✸✿ t❤r❡❡ r✉♥♥❡rs✱ ❝♦♥t✐♥✉❡❞ ❚❤❡ ❣r❛♣❤ s❤♦✇s t❤❡ ✈❡❧♦❝✐t✐❡s ♦❢ t❤r❡❡ r✉♥♥❡rs ✐♥ t❡r♠s ♦❢ t✐♠❡✱
n✿
✶✳✷✳
❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
■t✬s ❡❛s② t♦ ❞❡s❝r✐❜❡
• A • B • C ❇✉t
❤♦✇
✷✺
t❤❡② ❛r❡ ♠♦✈✐♥❣✿
st❛rts ❢❛st ❛♥❞ t❤❡♥ s❧♦✇s ❞♦✇♥✳ ♠❛✐♥t❛✐♥s t❤❡ s❛♠❡ s♣❡❡❞✳ st❛rts ❧❛t❡ ❛♥❞ t❤❡♥ r✉♥s ❢❛st✳
✇❤❡r❡
❛r❡ t❤❡②✱ ❛t ❡✈❡r② ♠♦♠❡♥t❄
B ❛♥❞ A ✇♦✉❧❞ r❡q✉✐r❡ ♠♦r❡ s✉❜t❧❡ ❛♥❛❧②s✐s✳
❆ s✐♠♣❧❡ ❡①❛♠✐♥❛t✐♦♥ ♦❢ t❤❡ ✜rst ❣r❛♣❤ s❤♦✇s t❤❛t
C ✇✐❧❧ ❛rr✐✈❡ ❛t t❤❡ ✜♥✐s❤ ❧✐♥❡ ❛t t❤❡ s❛♠❡ t✐♠❡✳
❚♦ s❛② t❤❛t ❛❜♦✉t
❚❤❡r❡ ❛r❡ s❡✈❡r❛❧ ♣♦ss✐❜❧❡ ❛♥s✇❡rs✿
❲❤✐❝❤ ♦♥❡ ✐s t❤❡ r✐❣❤t ♦♥❡ ❞❡♣❡♥❞s ♦♥ t❤❡ st❛rt✐♥❣ ♣♦✐♥t✳ ❋✉rt❤❡r♠♦r❡✱ ✐❢ t❤❡ r❡q✉✐r❡♠❡♥t t❤❛t t❤❡② ❛❧❧ st❛rt ❛t t❤❡ s❛♠❡ ❧♦❝❛t✐♦♥ ✐s ❧✐❢t❡❞✱ t❤❡ r❡s✉❧t ✇✐❧❧ ❜❡ ❞✐✛❡r❡♥t✱ ❢♦r ❡①❛♠♣❧❡✿
❊①❡r❝✐s❡ ✶✳✷✳✶✹
❙✉❣❣❡st ♦t❤❡r ❣r❛♣❤s t❤❛t ♠❛t❝❤ t❤❡ ❞❡s❝r✐♣t✐♦♥ ❛❜♦✈❡✳
❊①❡r❝✐s❡ ✶✳✷✳✶✺
P❧♦t t❤❡ ❧♦❝❛t✐♦♥ ❛♥❞ t❤❡ ✈❡❧♦❝✐t② ❢♦r t❤❡ ❢♦❧❧♦✇✐♥❣ tr✐♣✿ ✏■ ❞r♦✈❡ s❧♦✇❧②✱ ❣r❛❞✉❛❧❧② s♣❡❞ ✉♣✱ st♦♣♣❡❞ ❢♦r ❛ ✈❡r② s❤♦rt ♠♦♠❡♥t❀ st❛rt❡❞ ❛❣❛✐♥ ❜✉t ✐♥ t❤❡ ♦♣♣♦s✐t❡ ❞✐r❡❝t✐♦♥✱ q✉✐❝❦❧② ❛❝❝❡❧❡r❛t❡❞✱ ❛♥❞ ❢r♦♠ t❤❛t ♣♦✐♥t ♠❛✐♥t❛✐♥❡❞ t❤❡ s♣❡❡❞✳✑ ▼❛❦❡ ✉♣ ②♦✉r ♦✇♥ st♦r② ❛♥❞ r❡♣❡❛t t❤❡ t❛s❦✳
❊①❡r❝✐s❡ ✶✳✷✳✶✻
❉r❛✇ ❛ ❝✉r✈❡ ♦♥ ❛ ♣✐❡❝❡ ♦❢ ♣❛♣❡r✱ ✐♠❛❣✐♥❡ t❤❛t ✐t r❡♣r❡s❡♥ts ②♦✉r ✈❡❧♦❝✐t②✱ ❛♥❞ t❤❡♥ s❦❡t❝❤ ✇❤❛t ②♦✉r ❧♦❝❛t✐♦♥s ✇♦✉❧❞ ❧♦♦❦ ❧✐❦❡✳ ❘❡♣❡❛t✳
❍♦✇ ❞♦ ✇❡ ❞❡❛❧ ✇✐t❤ ♠♦t✐♦♥ ✇❤❡♥ t❤❡ t✐♠❡ ♠♦♠❡♥ts ❛r❡♥✬t ✐♥t❡❣❡rs❄ ❲❤❛t ✐s t❤❡ ❙✉♣♣♦s❡
• xn
✐s t❤❡ s❡q✉❡♥❝❡ ♦❢ ♠♦♠❡♥ts ♦❢ t✐♠❡✱ ❛♥❞
• vn
✐s t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ s❡q✉❡♥❝❡ ♦❢ ✈❡❧♦❝✐t✐❡s✳
❚❤❡② ❛r❡ ✐❧❧✉str❛t❡❞ ❛s ❢♦❧❧♦✇s✿
❞✐s♣❧❛❝❡♠❡♥t
t❤❡♥❄
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✻
❚❤❡ ✈❡❧♦❝✐t✐❡s ❛r❡ t❤❡ ❤❡✐❣❤ts ♦❢ t❤❡ r❡❝t❛♥❣❧❡s✳ ❚❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ ✐♥t❡r✈❛❧s ❛r❡ t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ ❜❛s❡s ♦❢ t❤❡ r❡❝t❛♥❣❧❡s✿ ∆xn = xn − xn−1 .
❆s ✇❡ ❦♥♦✇✱ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ❞✉r✐♥❣ t❤❡ t✐♠❡ ✐♥t❡r✈❛❧ [xn−1 , xn ] ✐s t❤❡ ♣r♦❞✉❝t ♦❢ vn ❛♥❞ t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ xn ✿ ❞✐s♣❧❛❝❡♠❡♥t = vn · ∆xn . ❚❤❡♥ t❤❡ ❞✐s♣❧❛❝❡♠❡♥ts ❢♦r♠ ❛ s❡q✉❡♥❝❡✿ ❞✐s♣❧❛❝❡♠❡♥ts✿ v1 · ∆x1 , v2 · ∆x2 , ..., vn · ∆xn , ...
❚❤❡♥ t❤❡ t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t ❞✉r✐♥❣ t❤❡ t✐♠❡ ✐♥t❡r✈❛❧ [x0 , xn ] ✐s t❤❡ s✉♠ ♦❢ t❤✐s s❡q✉❡♥❝❡✿ t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t = v1 · ∆x1 + v2 · ∆x2 + ... + vn · ∆xn =
n X k=1
vk · ∆xk .
❲✐t❤ t❤✐s ✐❞❡❛✱ ✇❡ st❛rt t♦ ❞❡✈❡❧♦♣ t❤❡ ♠❛t❤❡♠❛t✐❝s ♦❢ t❤❡ ❜❛❝❦✲❛♥❞✲❢♦rt❤ ✐♥t❡r❛❝t✐♦♥ ✇✐t❤✐♥ t❤❡s❡ t✇♦ ♣❛✐rs✿ • ♣♦s✐t✐♦♥s ❛♥❞ ✈❡❧♦❝✐t✐❡s • t❛♥❣❡♥ts ❛♥❞ ❛r❡❛s
❚❤❡ ❣❡♥❡r❛❧ s❡t✉♣ ❢♦❧❧♦✇s✳ ❚❤❡r❡ ✇✐❧❧ ❜❡ ♥♦ r❡str✐❝t✐♦♥s ✇❤❛ts♦❡✈❡r ♦♥ t❤❡ s❡❣♠❡♥ts ♦r t❤❡ s❛♠♣❧❡ ♣♦✐♥ts ✐♥ t❤✐s ❝♦♥str✉❝t✐♦♥✳ ❋✐rst✱ ✇❡ ♥❡❡❞ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ [a, b]✳ ❲❡ ❝❤♦♦s❡ ❛ ♥❛t✉r❛❧ ♥✉♠❜❡r n ❛♥❞ t❤❡♥ ♣❧❛❝❡ n + 1 ♣♦✐♥ts ♦♥ t❤❡ ✐♥t❡r✈❛❧✿ ■t✬s ❛♥ ✐♥❝r❡❛s✐♥❣ s❡q✉❡♥❝❡ xi ✿
a = x0 ≤ x1 ≤ x2 ≤ ... ≤ xn−1 ≤ xn = b .
❆s ❛ r❡s✉❧t✱ t❤❡ ✐♥t❡r✈❛❧ ✐s ♣❛rt✐t✐♦♥❡❞ ✐♥t♦ n s♠❛❧❧❡r ✐♥t❡r✈❛❧s ♦❢ ♣♦ss✐❜❧② ❞✐✛❡r❡♥t ❧❡♥❣t❤s✿ [x0 , x1 ], [x1 , x2 ], ..., [xn−1 , xn ] .
❉❡✜♥✐t✐♦♥ ✶✳✷✳✶✼✿ ♣❛rt✐t✐♦♥ ♦❢ ✐♥t❡r✈❛❧ ❆ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ [a, b] ✐s ✐ts r❡♣r❡s❡♥t❛t✐♦♥ ❛s t❤❡ ✉♥✐♦♥ ♦❢ ✐♥t❡r✈❛❧s t❤❛t ✐♥t❡rs❡❝t ♦♥❧② ❛t t❤❡ ❡♥❞✲♣♦✐♥ts✿ [a, b] = [x0 , x1 ] ∪ [x1 , x2 ] ∪ ... ∪ [xn−1 , xn ] .
❚❤❡s❡ ❡♥❞✲♣♦✐♥ts ✇✐❧❧ ❜❡ ❝❛❧❧❡❞ t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✳ ❚❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t❤✐s s❡q✉❡♥❝❡ ❣✐✈❡s ✉s t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡s❡ ✐♥t❡r✈❛❧s✳
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✼
❉❡✜♥✐t✐♦♥ ✶✳✷✳✶✽✿ ✐♥❝r❡♠❡♥ts ♦❢ ♣❛rt✐t✐♦♥ ❚❤❡ ✐♥❝r❡♠❡♥ts ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛r❡ ❣✐✈❡♥ ❜②✿ ∆xi = xi − xi−1 , i = 1, 2, ..., n .
■♥ ❛❞❞✐t✐♦♥ t♦ t❤❡ ♥♦❞❡s✱ t❤❡ ♣r✐♠❛r② ♥♦❞❡s✱ ✇❡ ♠❛② ❛❧s♦ ❜❡ ❣✐✈❡♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ✐♥ ❡❛❝❤ ✐♥t❡r✈❛❧ ♦❢ t❤❡ ♣❛rt✐t✐♦♥✿ c1 ✐♥ [x0 , x1 ], c2 ✐♥ [x1 , x2 ], ..., cn ✐♥ [xn−1 , xn ] .
■♥ s✉♠♠❛r②✿
❉❡✜♥✐t✐♦♥ ✶✳✷✳✶✾✿ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢ ✐♥t❡r✈❛❧ ❆♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥✱ ♦r s✐♠♣❧② ❛ ♣❛rt✐t✐♦♥✱ ♦❢ ❛♥ ✐♥t❡r✈❛❧ [a, b] ❝♦♥s✐sts ♦❢ t✇♦ s❡q✉❡♥❝❡s✿ ✶✳ ♣r✐♠❛r② ♥♦❞❡s a = x0 , x1 , x2 , ..., xn−1 , xn = b ❀ ✷✳ s❡❝♦♥❞❛r② ♥♦❞❡s c1 , c2 , c3 , ..., cn−1 , cn ❀ t❤❛t s❛t✐s❢② t❤❡s❡ ✐♥❡q✉❛❧✐t✐❡s✿ x0 ≤ c1 ≤ x1 ≤ c2 ≤ x2 ≤ ... ≤ xn−1 ≤ cn ≤ xn .
❲❛r♥✐♥❣✦ ❲❡ ❝❛♥ ❝❤♦s❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❢r♦♠ t❤❡ ❧✐st ♦❢ ♣r✐✲ ♠❛r② ♥♦❞❡s ❜❡❝❛✉s❡ t❤❡ ✐♥❡q✉❛❧✐t✐❡s ❛r❡ ♥♦♥✲str✐❝t✳
❚❤❡ ❝♦♥str✉❝t✐♦♥ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡s ♦❢ ❛ ❢✉♥❝t✐♦♥ ✭✐✳❡✳✱ t❤❡ r✐s❡s✮ ✐s ♦✉t❧✐♥❡❞ ❜❡❧♦✇✿
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✽
❚❤❡s❡ ❛r❡ t❤❡ st❛❣❡s t❤❛t ✇❡ s❡❡ ❤❡r❡✿ ✶✳ ❛ ❢✉♥❝t✐♦♥ ✷✳ ❛ ♣❛rt✐t✐♦♥ ❛♥❞ ✐ts ♣r✐♠❛r② ♥♦❞❡s ✸✳ s❛♠♣❧✐♥❣ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ✹✳ r❡♠♦✈✐♥❣ t❤❡ r❡st ♦❢ t❤❡ ❣r❛♣❤ ✺✳ ♣❧♦tt✐♥❣ t❤❡ ❞✐✛❡r❡♥❝❡s ✭r✐s❡s✮ ✻✳ ♣❧❛❝✐♥❣ t❤❡s❡ ❞✐✛❡r❡♥❝❡s ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❚❤❡ r❡s✉❧t ✐s ❛ ♥❡✇ ❢✉♥❝t✐♦♥✳ ■t ✐s ❞❡✜♥❡❞ ❛❧❣❡❜r❛✐❝❛❧❧② ❛s ❢♦❧❧♦✇s✿
❉❡✜♥✐t✐♦♥ ✶✳✷✳✷✵✿ ❞✐✛❡r❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥ ❙✉♣♣♦s❡ y = f (x) ✐s ❞❡✜♥❡❞ ❛t t❤❡ ♥♦❞❡s xk , k = 0, 1, 2, ..., n✱ ♦❢ ❛ ♣❛rt✐t✐♦♥✳ ❚❤❡♥ t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ f ✐s ❛ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ♦♥ ❡❛❝❤ ✐♥t❡r✈❛❧ ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛♥❞✱ ❝♦rr❡s♣♦♥❞✐♥❣❧②✱ ❛t ❡✈❡r② s❡❝♦♥❞❛r② ♥♦❞❡ ♦❢ t❤❡ ♣❛rt✐t✐♦♥✱ ❛♥❞ ❞❡♥♦t❡❞✱ ❛s ❢♦❧❧♦✇s✿ ∆ f [x
k−1 ,xk ]
= ∆f (ck ) = f (xk+1 ) − f (xk )
▲❡t✬s r❡♠❡♠❜❡r t❤❛t ❤❡r❡ t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥ f ✐s ❡✈❛❧✉❛t❡❞ ♦✈❡r t❤❡ ✐♥t❡r✈❛❧✱ [xk−1 , xk ]✱ ✇❤✐❧❡ t❤❡ ♥❡✇ ❢✉♥❝t✐♦♥ ∆f ✐s ❞❡✜♥❡❞ ❛t ck ✿ ∆ f [x
k−1 ,xk ]
= ∆f (ck ) .
❲❡ ❝❛♥ ❛❧s♦ ✉s❡ ♣❛r❡♥t❤❡s❡s t♦ s❡♣❛r❛t❡ ❢✉♥❝t✐♦♥s ❢r♦♠ t❤❡✐r ✐♥♣✉ts ✇❤❡♥ ✐t✬s ♥♦t ❝✉♠❜❡rs♦♠❡✿ ∆ f [x
k−1 ,xk ]
❚❤❡ ❞✐✛❡r❡♥❝❡ ✐s ❝♦♠♣✉t❡❞ ♦♥❡ s❡❣♠❡♥t ❛t ❛ t✐♠❡✿
= (∆f )(ck ) .
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✷✾
◆♦✇ ✇❡ ❣♦ ✐♥ t❤❡ ♦♣♣♦s✐t❡ ❞✐r❡❝t✐♦♥✿ ❢r♦♠ ✈❡❧♦❝✐t✐❡s t♦ ♣♦s✐t✐♦♥s ❛♥❞ ❢r♦♠ ❛r❡❛s t♦ t❛♥❣❡♥ts✳ ❚❤❡ ❝♦♥str✉❝t✐♦♥ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡s ♦❢ ❛ ❢✉♥❝t✐♦♥ ✭✐✳❡✳✱ t❤❡ r✐s❡s✮ ✐s ♦✉t❧✐♥❡❞ ❜❡❧♦✇✿
❚❤❡s❡ ❛r❡ t❤❡ st❛❣❡s t❤❛t ✇❡ s❡❡ ❤❡r❡✿ ✶✳ ❛ ❢✉♥❝t✐♦♥ ✷✳ ❛ ♣❛rt✐t✐♦♥ ❛♥❞ ✐ts s❡❝♦♥❞❛r② ♥♦❞❡s ✸✳ s❛♠♣❧✐♥❣ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ✹✳ r❡♠♦✈✐♥❣ t❤❡ r❡st ♦❢ t❤❡ ❣r❛♣❤ ✺✳ ♣✉tt✐♥❣ t❤❡s❡ ✈❛❧✉❡s ♦♥ t♦♣ ♦❢ ❡❛❝❤ ♦t❤❡r ✻✳ ♣❧❛❝✐♥❣ t❤❡s❡ s✉♠s ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ❚❤❡ r❡s✉❧t ✐s ❛ ♥❡✇ ❢✉♥❝t✐♦♥✳ ■t ✐s ❞❡✜♥❡❞ ❛❧❣❡❜r❛✐❝❛❧❧② ❛s ❢♦❧❧♦✇s✿
❉❡✜♥✐t✐♦♥ ✶✳✷✳✷✶✿ s✉♠ ♦❢ ❢✉♥❝t✐♦♥ ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ g ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ♦❢ ❛♥ ✐♥t❡r✈❛❧ [a, b]✳ ❚❤❡ s✉♠ ♦❢ g ✐s t❤❡ ❢✉♥❝t✐♦♥ h ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s ❛s t❤❡ s✉♠ ♦❢ t❤❡ s❡q✉❡♥❝❡✿ g(c1 ), g(c2 ), ..., g(ck ), ...
■♥ ♦t❤❡r ✇♦r❞s✱ ✐t ✐s ❞❡✜♥❡❞ ✭r❡❝✉rs✐✈❡❧②✮✿ h(x0 ) = 0,
h(xm ) = h(xm−1 ) + g(cm ), m > 0
✶✳✷✳
❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✸✵
■t ✐s ❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿
Σ g [a,c ] = Σg (xk ) k
❲❡ ❛❧s♦ ❤❛✈❡✿
h(xm ) = g(c1 ) + g(c2 ) + ... + g(cm ) . ■♥ ♦t❤❡r ✇♦r❞s✱ t❤✐s ✐s ❛♥ ❛❜❜r❡✈✐❛t✐♦♥ ♦❢ t❤❡
s✐❣♠❛ ♥♦t❛t✐♦♥
✭✇❤✐❝❤ ✐s ❛❧s♦ ❛♥ ❛❜❜r❡✈✐❛t✐♦♥✮✿
g(c1 ) + g(c2 ) + ... + g(cm ) =
m X
g(ci ) .
i=1
❍❡r❡ t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥ ❛t
g
✐s ❡✈❛❧✉❛t❡❞ ♦✈❡r t❤❡ ✐♥t❡r✈❛❧✱
xk ✿
[a, ck ]✱
✇❤✐❧❡ t❤❡ ♥❡✇ ❢✉♥❝t✐♦♥
h = Σg
✐s ❞❡✜♥❡❞
Σ g [a,c ] = Σg (xk ) . k
❲❡ ❝❛♥ ❛❧s♦ ✉s❡ ♣❛r❡♥t❤❡s❡s t♦ s❡♣❛r❛t❡ ❢✉♥❝t✐♦♥s ❢r♦♠ t❤❡✐r ✐♥♣✉ts ✇❤❡♥ ✐t✬s ♥♦t ❝✉♠❜❡rs♦♠❡✿
Σ g [a,c ] = (Σg)(xk ) . k
❚❤❡ s✉♠ ✐s ❝♦♠♣✉t❡❞ r❡❝✉rs✐✈❡❧② ♦♥❡ s❡❣♠❡♥t ❛t ❛ t✐♠❡✿
■♥ t❤✐s ❝♦♥t❡①t✱ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❛r❡ ❛❧s♦ ❦♥♦✇♥ ❛s t❤❡
s❛♠♣❧❡ ♣♦✐♥ts✳
■♥ t❤❡ ❡①❛♠♣❧❡s✱ ✇❡ ❝❤♦s❡ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ✐♥ ❛ ❝♦♥s✐st❡♥t ✇❛②✳ ❋✐rst ✇❡ ❝❤♦♦s❡ t♦ ❤❛✈❡ ❡q✉❛❧ ✐♥❝r❡♠❡♥ts✿
h = ∆x =
b−a . n
❋✉rt❤❡r♠♦r❡✱ t❤❡r❡ ❛r❡ t❤r❡❡ ♠❛✐♥ ✏s❝❤❡♠❡s✑ ❢♦r ❝❤♦♦s✐♥❣ s❡❝♦♥❞❛r② ♥♦❞❡s✳ ❖♥❡ ✐s s❡❡♥ ❛❜♦✈❡✿ ❚❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❛r❡ ♣❧❛❝❡❞ ❛t t❤❡ ❡♥❞ ♦❢ ❡❛❝❤ ✐♥t❡r✈❛❧✳ ■t ✐s ❝❛❧❧❡❞ t❤❡
•
Pr✐♠❛r② ♥♦❞❡s✿
•
❙❡❝♦♥❞❛r② ♥♦❞❡s✿
❚❤✐s ✐s t❤❡
x = a, a + h, a + 2h, ... c = a + h, a + 2h, ...
❧❡❢t✲❡♥❞ s❝❤❡♠❡ ✿
•
Pr✐♠❛r② ♥♦❞❡s✿
•
❙❡❝♦♥❞❛r② ♥♦❞❡s✿
x = a, a + h, a + 2h, ... c = a, a + h, ...
❆♥♦t❤❡r ❝♦♥✈❡♥✐❡♥t ❝❤♦✐❝❡ ✐s t❤❡
•
Pr✐♠❛r② ♥♦❞❡s✿
•
❙❡❝♦♥❞❛r② ♥♦❞❡s✿
♠✐❞✲♣♦✐♥t s❝❤❡♠❡ ✿
x = a, a + h, a + 2h, ... c = a + h/2, a + 3h/2, ...
❚❤❡② ❛r❡ ✐❧❧✉str❛t❡❞ ❜❡❧♦✇✿
r✐❣❤t✲❡♥❞ s❝❤❡♠❡ ✿
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s
✸✶
❇❡❧♦✇ ✐s t❤❡ s✉♠♠❛r② ♦❢ ♦✉r ❜❛❝❦✲❛♥❞✲❢♦rt❤ ❝♦♥str✉❝t✐♦♥✿
◆♦✇✱ ❡✈❡♥ ✐❢ t❤❡ ♣❡rs♦♥ ❞✐❞♥✬t s♣❡♥❞ ❛♥② t✐♠❡ ❞r✐✈✐♥❣✱ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t st✐❧❧ ♠❛❦❡s s❡♥s❡✳ ■t✬s ③❡r♦✦ ❲❡ ❡①t❡♥❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ t♦ ✐♥❝❧✉❞❡ ③❡r♦ ✐♥❝r❡♠❡♥ts✿
❉❡✜♥✐t✐♦♥ ✶✳✷✳✷✷✿ ❞✐✛❡r❡♥❝❡ ♦✈❡r ③❡r♦✲❧❡♥❣t❤ ✐♥t❡r✈❛❧ ❲❤❡♥ t❤❡ ✐♥❝r❡♠❡♥t ♦❢ x ✐s ③❡r♦✿ ∆xk = xk − xk−1 = 0,
t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ g ♦✈❡r t❤✐s s❡❣♠❡♥t ✐s ❞❡✜♥❡❞ t♦ ❜❡ ③❡r♦✿ ∆ g [x
k ,xk ]
=0
❲❡ ❡①t❡♥❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ s✉♠ t♦ ✐♥❝❧✉❞❡ ✐♥t❡r✈❛❧s ♦❢ ③❡r♦ ❧❡♥❣t❤✳
❉❡✜♥✐t✐♦♥ ✶✳✷✳✷✸✿ s✉♠ ♦✈❡r ③❡r♦✲❧❡♥❣t❤ ✐♥t❡r✈❛❧ ❚❤❡ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥ g ♦✈❡r ❛♥ ✐♥t❡r✈❛❧ [a, a] ✐s ❞❡✜♥❡❞ t♦ ❜❡ ③❡r♦✿ Σ g [a,a] = 0
❚♦ ❝❛♣✐t❛❧✐③❡ ♦♥ t❤✐s ✐❞❡❛ ❡✈❡♥ ❢✉rt❤❡r✱ ✇❡ ❡①t❡♥❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ ❛♥❞ t❤❡ s✉♠ t♦ ❛❧❧ ♦r✐❡♥t❡❞ s❡❣♠❡♥ts✿
✶✳✷✳ ❉✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s • a • b
✸✷
b ❚❤❡ ✐♥t❡r✈❛❧ [a, b] ✐s ♣♦s✐t✐✈❡❧② ♦r✐❡♥t❡❞ ✇❤❡♥ a < b✳ a ❚❤❡ ✐♥t❡r✈❛❧ [a, b] ✐s ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✇❤❡♥ a > b✳
■♥ t❤❡ ❧❛tt❡r ❝❛s❡✱ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ✐♥t❡r✈❛❧ ✐s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ a t♦ b✱ ✐✳❡✳✱ b − a✱ ✇❤✐❝❤ ✐s ♥❡❣❛t✐✈❡✦
❉❡✜♥✐t✐♦♥ ✶✳✷✳✷✹✿ ❞✐✛❡r❡♥❝❡ ♦✈❡r ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧
❚❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ f ♦✈❡r ❛ ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧ [xk , xk−1 ], xk−1 < xk ✱ ♦❢ ❛ ♣❛rt✐t✐♦♥ ✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡ ♥❡❣❛t✐✈❡ ♦❢ t❤❡ ❞✐❢✲ ❢❡r❡♥❝❡ ♦✈❡r [xk−1 , xk ]✿ ∆ f [x
k ,xk−1 ]
= −∆ f [x
k−1 ,xk ]
❉❡✜♥✐t✐♦♥ ✶✳✷✳✷✺✿ s✉♠ ♦✈❡r ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧ ❚❤❡ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥ g ♦✈❡r ❛ ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧ [b, a], a < b✱ ♦✈❡r ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ♦❢ [a, b]✱ ✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡ ♥❡❣❛t✐✈❡ ♦❢ t❤❡ s✉♠ ♦✈❡r P ✿ Σ g [b,a] = −Σ g [a,b]
❲❛r♥✐♥❣✦ ■♥ ❛♥t✐❝✐♣❛t✐♦♥ ♦❢ ❤✐❣❤❡r ❞✐♠❡♥s✐♦♥❛❧ ❝❛❧❝✉❧✉s✱ ❛♥ ♦r✐❡♥t❡❞ s❡❣♠❡♥t ✐s
♥♦t
❛ ✈❡❝t♦r✳
❲❡ ❝❛♥ ❛❧s♦ t❤✐♥❦ ♦❢ ✢✐♣♣✐♥❣ ❛♥ ✐♥t❡r✈❛❧ ❛s ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❜② −1✳ ■❢ I st❛♥❞s ❢♦r s✉❝❤ ❛♥ ✐♥t❡r✈❛❧✱ ✇❡ ❤❛✈❡✿ X −I
f =−
X
f.
I
❲❡ ♥❡①t ❝♦♥s✐❞❡r t❤❡ s✐♠♣❧❡st ❝❛s❡✳
❚❤❡♦r❡♠ ✶✳✷✳✷✻✿ ❙✉♠ ♦❢ ❈♦♥st❛♥t ❋✉♥❝t✐♦♥ g ✐s ❝♦♥st❛♥t ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ [a, b]✱ ✐✳❡✳✱ g(ci ) = p i = 1, 2, ..., n ❛♥❞ s♦♠❡ r❡❛❧ ♥✉♠❜❡r p✳ ❚❤❡♥
❙✉♣♣♦s❡ ❢♦r ❛❧❧
Σg [a,b] = p · n
❚❤✐♥❣s ❛r❡ ♣❛✐r❡❞ ✉♣✿
❉✐✛❡r❡♥t✐❛❧ ❝❛❧❝✉❧✉s
■♥t❡❣r❛❧ ❝❛❧❝✉❧✉s
f ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s
g ❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s
✶✳ ❞✐✛❡r❡♥❝❡✱ ∆f
✶✳ s✉♠✱ Σg
❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s ∆f (ck ) = f (xk ) − f (xk−1 )
Σg (xk ) = g(c1 ) + ... + g(ck )
✷✳
✷✳
✶✳✸✳ ❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
✸✸
❲❡ ❝♦♥t✐♥✉❡ ✇✐t❤ t❤✐s t❛❜❧❡ ❜❡❧♦✇✳
✶✳✸✳ ❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
▲❡t✬s ❣❡♥❡r❛❧✐③❡ t❤❡ ❡①❛♠♣❧❡s ❢r♦♠ t❤❡ ❧❛st s❡❝t✐♦♥✳ ❊①❛♠♣❧❡ ✶✳✸✳✶✿ s❛♠♣❧✐♥❣ ❧♦❝❛t✐♦♥
❋✐rst✱ ✇❡ ❝♦♥s✐❞❡r t❤❡ tr✐♣ ✇✐t❤ ❛ ❜r♦❦❡♥ s♣❡❡❞♦♠❡t❡r✳ ❲❡ ❤❛✈❡ ❛ t✐♠❡ ✐♥t❡r✈❛❧
[a, b]✳
■♥ ♦r❞❡r t♦ ❡st✐♠❛t❡ ♦✉r s♣❡❡❞✱ ✇❡ ❞❡❝✐❞❡ t♦ ❧♦♦❦ ❛t t❤❡ ♦❞♦♠❡t❡r s❡✈❡r❛❧
t✐♠❡s ❞✉r✐♥❣ t❤❡ tr✐♣✱ ✐♥❝❧✉❞✐♥❣ t❤❡ ✈❡r② ❜❡❣✐♥♥✐♥❣ ❛♥❞ t❤❡ ✈❡r② ❡♥❞ ♦❢ ✐t✳ ❖t❤❡r✇✐s❡✱ t❤❡ ♠♦♠❡♥ts ♦❢ t✐♠❡ ♠❛② ❜❡ ❛r❜✐tr❛r②✿
a = x0 , x1 , x2 , ..., xn−1 , xn = b . ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡ ❛ ♣❛rt✐t✐♦♥ ♦❢ ✐s ❛ ❢✉♥❝t✐♦♥
p
[a, b]✱
❛♥❞ t❤❡ ♣❧❛♥ ✐s t♦ s❛♠♣❧❡ t❤❡ ❧♦❝❛t✐♦♥✳
❚❤❡ ❧♦❝❛t✐♦♥
❞❡✜♥❡❞ ♦♥ t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✱ ❜✉t ♥♦✇ ♦♥❧② ✐ts ✈❛❧✉❡s ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡
♣❛rt✐t✐♦♥ ❛r❡ r❡❝♦r❞❡❞✳
❲❡ ❝♦♠♣✉t❡ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ t❤✐s s❡q✉❡♥❝❡ ♣r♦❞✉❝✐♥❣ t❤❡ ❛✈❡r❛❣❡
✈❡❧♦❝✐t②✳ ❊✈❡♥ t❤♦✉❣❤ t❤❡ ✈❡❧♦❝✐t② ✐s ❛ ❢✉♥❝t✐♦♥
v
❞❡✜♥❡❞ ♦♥ t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✱ ✇❡ ❤❛✈❡ ♥♦✇ ♦♥❧② ✐ts
❛♣♣r♦①✐♠❛t✐♦♥s ❛ss✐❣♥❡❞ t♦ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✳
❊①❛♠♣❧❡ ✶✳✸✳✷✿ s❛♠♣❧✐♥❣ ✈❡❧♦❝✐t②
❖♥ t❤❡ ✢✐♣ s✐❞❡✱ ✇❡ ❝♦♥s✐❞❡r t❤❡ tr✐♣ ✇✐t❤ ❛ ❜r♦❦❡♥ ♦❞♦♠❡t❡r✳ ❲❡ st✐❧❧ ❤❛✈❡ ❛ t✐♠❡ ✐♥t❡r✈❛❧
[a, b]✳
❲❡ s♣❧✐t
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡ ❛ ♣❛rt✐t✐♦♥ ♦❢
[a, b]
[a, b]✱
✐♥t♦ s♠❛❧❧❡r t✐♠❡ ✐♥t❡r✈❛❧s ✐♥ ❛♥ ❛r❜✐tr❛r② ♠❛♥♥❡r✳
❛♥❞ t❤❡ ♣❧❛♥ ✐s t♦ s❛♠♣❧❡ t❤❡ ✈❡❧♦❝✐t②✳ ❉✉r✐♥❣ ❡❛❝❤ ♦❢
t❤❡♠ ✇❡ ❧♦♦❦❡❞ ❛t t❤❡ s♣❡❡❞♦♠❡t❡r ✇✐t❤ t❤❡ ❡①❛❝t ♠♦♠❡♥ts✿
c1 , c2 , c3 , ..., cn−1 , cn . ❚❤❡② ❛r❡ ❥✉st ❛ ♠❛tt❡r ♦❢ ❜♦♦❦❦❡❡♣✐♥❣✳ ❚❤❡ ✈❡❧♦❝✐t② ✐s ❛ ❢✉♥❝t✐♦♥
v
❞❡✜♥❡❞ ♦♥ t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✱
❜✉t ♥♦✇ ♦♥❧② ✐ts ✈❛❧✉❡s ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛r❡ r❡❝♦r❞❡❞✳
❲❡ ♠✉❧t✐♣❧② t❤❡
✈❡❧♦❝✐t② ❜② t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❝✉rr❡♥t t✐♠❡ ✐♥t❡r✈❛❧ ♣r♦❞✉❝✐♥❣ t❤❡ ❛♣♣r♦①✐♠❛t❡ ❞✐s♣❧❛❝❡♠❡♥t✳ ❚❤❡♥ ✇❡ ❛❞❞ t❤❡♠ t♦❣❡t❤❡r ✭t❤❡ ✏❘✐❡♠❛♥♥ s✉♠✑✮✳ ❊✈❡♥ t❤♦✉❣❤ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ✐s ❛ ❢✉♥❝t✐♦♥
p
❞❡✜♥❡❞ ♦♥
t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✱ ✇❡ ❤❛✈❡ ♥♦✇ ♦♥❧② ✐ts ❛♣♣r♦①✐♠❛t✐♦♥s ❛ss✐❣♥❡❞ t♦ t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✳ ❚❤✐s ✐s ❛♥ ❡①❛♠♣❧❡ ♦❢ s✉❝❤ ❛ ❝♦♠♣✉t❛t✐♦♥✿
t✐♠❡ ✐♥t❡r✈❛❧s ✭❤♦✉rs✮✿ t✐♠❡ ✭❤♦✉rs✮✿ ✈❡❧♦❝✐t② ✭♠✐❧❡s✴❤♦✉r✮✿ ❞✐s♣❧❛❝❡♠❡♥t ✭♠✐❧❡s✮✿
t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t ✭♠✐❧❡s✮✿
[0, 2]
[2, 4]
[4, 6]
[6, 8]
c1 = 1
c2 = 4
c3 = 5
c4 = 6
60
100
−80
−80
60 · 2
100 · 2
−80 · 2
−80 · 2
= 120
= 200
= −160
= −160
120 120 + 200 340 − 160 180 − 160 = 120
= 340
= 180
= 20
✶✳✸✳ ❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
✸✹
❲❡ ❤❛✈❡ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ❛s ❛ ❢✉♥❝t✐♦♥ p ♦❢ t✐♠❡ ❜✉t ✇❡ ❝❛♥ ❛❧s♦ ❛ss✐❣♥ t❤❡s❡ ♥✉♠❜❡rs t♦ t❤❡ ♣r✐♠❛r② ♥♦❞❡s✿ t✐♠❡ ✭❤♦✉rs✮✿ x0 = 0 x1 = 2 x2 = 4 x3 = 6 x4 = 8 t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t ✭♠✐❧❡s✮✿
0
120
340
180
20
❖❢ ❝♦✉rs❡✱ ✐❢ ✇❡ ♥❡❡❞ t❤❡ ❧♦❝❛t✐♦♥✱ ✇❡ ♥❡❡❞ ♦✉r ✐♥✐t✐❛❧ ❧♦❝❛t✐♦♥ ✜rst✱ ✐✳❡✳✱ t❤❡ ✈❛❧✉❡ ♦❢ p(a)✱ ✐♥ ♦r❞❡r t♦ st❛rt t❤❡ ❝♦♠♣✉t❛t✐♦♥❀ ✇❡ ❛ss✉♠❡❞ ✐t t♦ ❜❡ 0 ❛❜♦✈❡✳ ■❢ ✐t✬s 10✱ ✇❡ ❤❛✈❡✿ t✐♠❡ ✭❤♦✉rs✮✿
x0 = 0 x1 = 2 x2 = 4 x3 = 6 x4 = 8
t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t ✭♠✐❧❡s✮✿
10
130
350
190
30
❊①❡r❝✐s❡ ✶✳✸✳✸ ❲❤❛t ✐s t❤❡ ❛♣♣r♦①✐♠❛t❡ ❞✐s♣❧❛❝❡♠❡♥t ✐❢ t❤❡ ✐♥✐t✐❛❧ ♣♦s✐t✐♦♥ ✇❛s −50❄ ❲❤❛t ✐s t❤❡ ❛♣♣r♦①✐♠❛t❡ ❞✐s♣❧❛❝❡♠❡♥t ✐❢ t❤❡ ♣♦s✐t✐♦♥ ❛t t✐♠❡ 2 ✇❛s 20❄
❊①❡r❝✐s❡ ✶✳✸✳✹ ❈♦♠♣✉t❡ t❤❡ ❛♣♣r♦①✐♠❛t❡ ❞✐s♣❧❛❝❡♠❡♥t ❢♦r t❤❡ s❛♠❡ s❛♠♣❧✐♥❣ ❞❛t❛ ❛s ✐♥ t❤❡ ❡①❛♠♣❧❡ ❜✉t ❢♦r ❛ ❞✐✛❡r❡♥t ✭✉♥❡q✉❛❧✮ ♣❛rt✐t✐♦♥✿ t✐♠❡ ✐♥t❡r✈❛❧s ✭❤♦✉rs✮✿
[0, 1] [1, 4] [4, 5] [5, 8]
❙♦✱ ✐♥ ❝♦♠♣❛r✐s♦♥ t♦ t❤❡ ❧❛st s❡❝t✐♦♥✱ t❤❡ ♥❡✇ st❡♣ ✐s t❤❡ ❞✐✈✐s✐♦♥ ♦r ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❜② t❤❡ t✐♠❡ ✐♥❝r❡♠❡♥t ∆x✿
▲❡t✬s ♣r♦✈✐❞❡ ♣r❡❝✐s❡ ❞❡✜♥✐t✐♦♥s✳ ❏✉st ❛s ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✱ t❤❡r❡ ✇✐❧❧ ❜❡ ♥♦ r❡str✐❝t✐♦♥s ✇❤❛ts♦❡✈❡r ♦♥ t❤❡ ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✳
❉❡✜♥✐t✐♦♥ ✶✳✸✳✺✿ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ ❢✉♥❝t✐♦♥ ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ y = f (x) ✐s ❞❡✜♥❡❞ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s xk , k = 0, 1, 2, ..., n✱ ♦❢ ❛ ♣❛rt✐t✐♦♥✳ ❚❤❡♥ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ f ✐s ❛ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❛t t❤❡
✶✳✸✳
✸✺
❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
s❡❝♦♥❞❛r② ♥♦❞❡s ck , k = 1, 2, ..., n ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛s t❤❡ ❢♦❧❧♦✇✐♥❣ ❢r❛❝t✐♦♥✿
∆f f (xk+1 ) − f (xk ) f (xk + ∆xk ) − f (xk ) (ck ) = = ∆x xk+1 − xk ∆xk ■t ✐s t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ f ❞✐✈✐❞❡❞ ❜② ∆xk ✳ ■t ✐s t❤❡ r❡❧❛t✐✈❡ ❝❤❛♥❣❡ ✕ t❤❡
r❛t❡
♦❢ ❝❤❛♥❣❡ ✕ ♦❢ t❤❡ t✇♦ s❡q✉❡♥❝❡s✳
▲❡t✬s r❡♠❡♠❜❡r t❤❛t ❤❡r❡ t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥ f ✐s ❡✈❛❧✉❛t❡❞ ♦✈❡r t❤❡ ✐♥t❡r✈❛❧✱ [xk−1 , xk ]✱ ✇❤✐❧❡ t❤❡ ♥❡✇ ❢✉♥❝t✐♦♥ ∆f ✐s ❞❡✜♥❡❞ ❛t ck ✿ ∆ ∆f f [x ,x ] = (ck ) . k−1 k ∆x ∆x ❲❡ ❝❛♥ ❛❧s♦ ✉s❡ ♣❛r❡♥t❤❡s❡s t♦ s❡♣❛r❛t❡ ❢✉♥❝t✐♦♥s ❢r♦♠ t❤❡✐r ✐♥♣✉ts ✇❤❡♥ ✐t✬s ♥♦t ❝✉♠❜❡rs♦♠❡✿ ∆f ∆ f [x ,x ] = (ck ) . k−1 k ∆x ∆x
❲❤❡r❡ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥ ✇❡ ❧♦♦❦❡❞ ❢♦r t❤❡ r✐s❡s✱ ✇❡ ✜♥❞ t❤❡ s❧♦♣❡s ♥♦✇✳ ❖♥ t❤❡ ❣r❛♣❤✱ ✇❡ ❝❛♥ s❡❡ ❤♦✇ ❡❛❝❤ ❝♦♥s❡❝✉t✐✈❡ ♣❛✐r ♦❢ ♣♦✐♥ts ♣r♦❞✉❝❡s ❛ ❧✐♥❡ s❡❣♠❡♥t ❛♥❞ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ✐s t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❧✐♥❡ ❝♦♥♥❡❝t✐♥❣ t❤❡♠✿
◆♦✇ ✐♥ r❡✈❡rs❡✳ ❚❤❡ ❡①❛♠♣❧❡ ♦❢ ❞✐s♣❧❛❝❡♠❡♥t ✐s ❛♥ ❡s♣❡❝✐❛❧❧② ✐♠♣♦rt❛♥t ❝❛s❡ ♦❢ t❤❡ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❝♦♠♣✉t❡❞ ❢r♦♠ ❛♥♦t❤❡r ♦♥❡ ❛s ❢♦❧❧♦✇s✿ g(ck ) = f (ck )∆xk . ❚❤❡ ❝♦♥str✉❝t✐♦♥ ✐s t❤❡ s❛♠❡ ❛s ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✱ ❜✉t t❤❡ ✐♥❝r❡♠❡♥ts ♦❢ x ♠❛❦❡ t❤❡✐r ❛♣♣❡❛r❛♥❝❡✿
❚❤❡s❡ ❛r❡ ♦✉r t✇♦ ✐♥t❡r♣r❡t❛t✐♦♥s ♦❢ t❤❡ s❛♠❡ ❝♦♥str✉❝t✐♦♥✿ ♠♦t✐♦♥
❣❡♦♠❡tr②
∆xk
t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ k t❤ t✐♠❡ ✐♥t❡r✈❛❧
t❤❡ ✇✐❞t❤ ♦❢ t❤❡ k t❤ r❡❝t❛♥❣❧❡
f (ck )
t❤❡ ✈❡❧♦❝✐t② ❞✉r✐♥❣ t❤❡ k t❤ t✐♠❡ ✐♥t❡r✈❛❧
t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ k t❤ r❡❝t❛♥❣❧❡
g(ck ) = f (ck )∆xk
t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ❞✉r✐♥❣ t❤❡ k t❤ t✐♠❡ ✐♥t❡r✈❛❧
t❤❡ ❛r❡❛ ♦❢ t❤❡ k t❤ r❡❝t❛♥❣❧❡
✶✳✸✳
✸✻
❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
❲❛r♥✐♥❣✦ ❊✈❡♥ t❤♦✉❣❤ ✇❡ ♦❢t❡♥ s❛② t❤❛t ❡❛❝❤ s✉❝❤ t❡r♠ ✐s t❤❡ ✏❛r❡❛✑ ♦❢ t❤❡ r❡❝t❛♥❣❧❡✱ t❤✐s q✉❛♥t✐t② ✐s tr✉❧② t❤❡ ❛r❡❛ ♦♥❧② ✐❢ t❤❡ ✉♥✐t ♦❢ ❜♦t❤ t❤❡
y ✲❛①✐s
x✲
❛♥❞ t❤❡
✐s t❤❛t ♦❢ ❧❡♥❣t❤✳
❲❡ ❞❡✜♥❡ ❛ s♣❡❝✐❛❧ ❦✐♥❞ ♦❢ s✉♠✳
❉❡✜♥✐t✐♦♥ ✶✳✸✳✻✿ ❘✐❡♠❛♥♥ s✉♠ ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ f ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ♦❢ ❛♥ ✐♥t❡r✈❛❧ [a, b]✳ ❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ f ✐s t❤❡ ❢✉♥❝t✐♦♥ h ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s ❛s t❤❡ s✉♠ ♦❢ t❤❡ s❡q✉❡♥❝❡✿ f (c1 )∆x1 , f (c2 )∆x2 , ..., f (cn )∆xn .
■♥ ♦t❤❡r ✇♦r❞s✱ ✐t ✐s t❤❡ ❢♦❧❧♦✇✐♥❣ s❡q✉❡♥❝❡ ❞❡✜♥❡❞ r❡❝✉rs✐✈❡❧②✿ h(x0 ) = 0,
h(xk ) = h(xk−1 ) + f (ck )∆xk , k = 1, 2, ..., n .
■t ✐s ❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿ Σ f · ∆x [a,c ] = Σf · ∆x (xk ) = f (c1 )∆x1 + f (c2 )∆x2 + ... + f (ck )∆xk k
■♥ s✐❣♠❛ ♥♦t❛t✐♦♥✱ ✐t ✐s✿
k X
f (ci )∆xi .
i=1
❍❡r❡ t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥ f ✐s ❡✈❛❧✉❛t❡❞ ♦✈❡r t❤❡ ✐♥t❡r✈❛❧✱ [a, ck ]✱ ✇❤✐❧❡ t❤❡ ♥❡✇ ❢✉♥❝t✐♦♥ h = Σf · ∆x ✐s ❞❡✜♥❡❞ ❛t xk ✿ Σ f · ∆x [a,c ] = Σf · ∆x (xk ) . k
❲❡ ❝❛♥ ❛❧s♦ ✉s❡ ♣❛r❡♥t❤❡s❡s t♦ s❡♣❛r❛t❡ ❢✉♥❝t✐♦♥s ❢r♦♠ t❤❡✐r ✐♥♣✉ts ✇❤❡♥ ✐t✬s ♥♦t ❝✉♠❜❡rs♦♠❡✿ Σ f · ∆x [a,c ] = (Σf · ∆x)(xk ) . k
❆t ✜rst ✇❡ ✇✐❧❧ ❝♦♥❝❡♥tr❛t❡ ♦♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦✈❡r t❤❡ ✇❤♦❧❡
✳
✐♥t❡r✈❛❧
▲❡t✬s ❝♦♥s✐❞❡r s♦♠❡ s♣❡❝✐✜❝ ❡①❛♠♣❧❡s ♦❢ ❘✐❡♠❛♥♥ s✉♠s✳ ❲❡ ❛ss✉♠❡ ❛❣❛✐♥ t❤❛t t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ ✐♥t❡r✈❛❧s ❛r❡ ❡q✉❛❧✿ ∆xi = ∆x = (b − a)/n .
❊①❛♠♣❧❡ ✶✳✸✳✼✿ x2 ▲❡t f (x) = x2 ♦✈❡r t❤❡ ✐♥t❡r✈❛❧ [0, 1] ✇✐t❤ n = 4✳ ❚❤❡♥ ∆x = 1/4 ❛♥❞ t❤❡ ✐♥t❡r✈❛❧ ✐s s✉❜❞✐✈✐❞❡❞ ❛s ❜❡❢♦r❡ ❛♥❞ ✇❡ ❤❛✈❡ ✜✈❡ ✈❛❧✉❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥ t♦
✶✳✸✳
✸✼
❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
✇♦r❦ ✇✐t❤✿ •
−−
|
−−
|
−−
|
−−
•
♣❛rt✐t✐♦♥✿ x =
0
1/4
1/2
3/4
1
✈❛❧✉❡s✿ x2 =
0
1/16
1/4
9/16
1
❧❡❢t✲❡♥❞ ❘❙ = 0 · 1/4
+
r✐❣❤t✲❡♥❞ ❘❙ =
1/16 · 1/4
+
1/4 · 1/4
+
9/16 · 1/4
1/16 · 1/4
+
1/4 · 1/4
+
9/16 · 1/4
≈ 0.22 +
1 · 1/4 ≈ 0.47
❚❤❡ s✐♠♣❧❡st ❝❤♦✐❝❡s ❢♦r t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❛r❡ t❤❡ ❧❡❢t✲❡♥❞ ♦r t❤❡ r✐❣❤t✲❡♥❞ ♣♦✐♥ts ♦❢ t❤❡ ✐♥t❡r✈❛❧s✳ ❚❤✐s ❢✉❧❧② ❛❧❣❡❜r❛✐❝ ❝♦♥str✉❝t✐♦♥ ❝❛♥ ❜❡ ✈✐s✉❛❧✐③❡❞✿
❊①❡r❝✐s❡ ✶✳✸✳✽
❲❤❛t ✐s ②♦✉r ❜❡st ❡st✐♠❛t❡ ♦❢ t❤❡ ❝✉r✈❡❞ ❛r❡❛ ❜❛s❡❞ ♦♥ t❤❡ ❞❛t❛ ♣r♦✈✐❞❡❞❄ ❊①❡r❝✐s❡ ✶✳✸✳✾
❘❡♣❡❛t t❤❡ ❝♦♠♣✉t❛t✐♦♥s ❢♦r ✭❛✮ ♥❂✽✱ ✭❜✮ [a, b] = [−1, 0]✱ ✭❝✮ f (x) = x3 ✳ ❚❤✐s ✐s t❤❡ ❧❡❢t✲❡♥❞ ♣❛rt✐t✐♦♥✿ a = x0
x1
x2 ... xn−1
a = c1
c2
c3
...
xn = b ◦
cn
♣r✐♠❛r② ♥♦❞❡s s❡❝♦♥❞❛r② ♥♦❞❡s
❚❤❡ t❛❜❧❡ s❤♦✇s t❤❡ nt❤ ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠ ❛♥❞ t❤❡ nt❤ r✐❣❤t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥ f ♦♥ [a, b]✿ i 0 [xi , xi+1 ] |
−−
xi a f (x) f (x0 )
❧❡❢t✲❡♥❞ ❘❙ = f (x0 ) · ∆x
+
r✐❣❤t✲❡♥❞ ❘❙ =
1
...
n−1
|
− ... −
|
a + ∆x
...
a + (n − 1) ∆x
f (x1 )
...
f (xn−1 )
f (x1 ) · ∆x + ... +
f (xn−1 ) · ∆x
f (x1 ) · ∆x + ... +
f (xn−1 ) · ∆x
❚❤❡ ❢♦r♠✉❧❛ ❢♦r s✉❝❤ ❛ s❡q✉❡♥❝❡ ♦❢ s❡❝♦♥❞❛r② ♥♦❞❡s ✐s t❤❡ s❛♠❡ ❢♦r ❜♦t❤✿ ci = a + i ∆x ,
❜✉t t❤❡ ✐♥❞✐❝❡s r✉♥ ♦✈❡r ❞✐✛❡r❡♥t s❡ts✿
n −−
| b f (xn )
+
f (xn ) · ∆x
✶✳✸✳
✸✽
❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
• i = 0, 1, 2, ..., n − 1 ❢♦r t❤❡ ❧❡❢t✲❡♥❞ ♣♦✐♥ts❀
• i = 1, 2, ..., n ❢♦r t❤❡ r✐❣❤t✲❡♥❞ ♣♦✐♥ts✳
❚❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❝❛♥ ❛❧s♦ ❜❡ ❝❤♦s❡♥ t♦ ❜❡ t❤❡ ♠✐❞✲♣♦✐♥ts ♦❢ t❤❡ ✐♥t❡r✈❛❧s✿ i 0 [xi , xi+1 ] | ci f (x)
♠✐❞✲♣♦✐♥t ❘❙ =
1 −·−
|
−·−
2
...
|
− ...
a + 21 ∆x
a + 32 ∆x
...
f (c0 )
f (c1 )
...
f (c1 ) · ∆x + f (c2 ) · ∆x +
n−1 −
|
n −·− a+
2n−1 2
| ∆x
f (cn )
...
+
f (cn ) · ∆x
❚❤❡ ✐❧❧✉str❛t✐♦♥ s❤♦✇s t❤❡ nt❤ ♠✐❞✲♣♦✐♥t ❘✐❡♠❛♥♥ s✉♠ ♦❢ f ♦♥ [a, b]✿
❚❤❡ s✐♥❣❧❡ ❢♦r♠✉❧❛ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ♠✐❞✲♣♦✐♥ts ✐s ci = a + i +
1 2
∆x, i = 0, 1, 2, ..., n − 1 .
❊①❛♠♣❧❡ ✶✳✸✳✶✵✿ ♥❡❣❛t✐✈❡ ❛r❡❛
❲❤❡♥ t❤❡ r❡❣✐♦♥ ❧✐❡s ✇✐t❤✐♥ t❤❡ ❊✉❝❧✐❞❡❛♥ ♣❧❛♥❡✱ t❤❡ it❤ t❡r♠ ✐♥ ❛❧❧ t❤r❡❡ ❘✐❡♠❛♥♥ s✉♠s ✐s✿ ✇✐❞t❤ ♦❢ r❡❝t❛♥❣❧❡
t❤❡ ❛r❡❛ ♦❢ it❤ r❡❝t❛♥❣❧❡ =
f (ci ) | {z }
❤❡✐❣❤t ♦❢ r❡❝t❛♥❣❧❡
×
z}|{ ∆xi
❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ✐s t❤❡ t♦t❛❧ ❛r❡❛ ♦❢ t❤❡ r❡❝t❛♥❣❧❡s✳ ❇✉t ✇❤❛t ✐❢ t❤❡ ✈❛❧✉❡s ♦❢ f ❛r❡ ♥❡❣❛t✐✈❡✱ f (ci ) < 0?
◆♦t❤✐♥❣ ✐♥ t❤❡ ❞❡✜♥✐t✐♦♥ ♣r❡✈❡♥ts t❤❛t✿
✶✳✸✳ ❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
❲❤❛t ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ ❡❛❝❤ t❡r♠
f (ci ) ∆x
f (ci ) ∆x
✸✾
t❤❡♥❄ ❏✉st ✐♠❛❣✐♥❡ ❛❣❛✐♥ t❤❛t
f
✐s t❤❡ ✈❡❧♦❝✐t②✳ ❚❤❡♥
✐s st✐❧❧ ❞✐st❛♥❝❡ ✏❝♦✈❡r❡❞✑ ❜✉t ✇✐t❤ t❤❡ ♥❡❣❛t✐✈❡ s♣❡❡❞✱ ✇❤✐❝❤ ♠❡❛♥s t❤❛t ②♦✉ ❛r❡ ♠♦✈✐♥❣ ✐♥
t❤❡ ♦♣♣♦s✐t❡ ❞✐r❡❝t✐♦♥✦ ❚❤❡♥ ②♦✉r ❞✐s♣❧❛❝❡♠❡♥t ✐s ♥❡❣❛t✐✈❡✳ ❆s ❢♦r t❤❡ ❛r❡❛ ♠❡t❛♣❤♦r✱ s✐♥❝❡ t❤❡ ♠❡❛♥✐♥❣ ✐s ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ ♠❡❛♥✐♥❣ ♦❢
∆x > 0✱
f (ci )✿
❲❡ ❢♦❧❧♦✇ ✉♣ t♦ t❤❡ ❧❛st s❡❝t✐♦♥ ❛♥❞ ❡①t❡♥❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠ t♦ ✐♥❝❧✉❞❡ ✐♥t❡r✈❛❧s ♦❢ ③❡r♦ ❧❡♥❣t❤✳
❉❡✜♥✐t✐♦♥ ✶✳✸✳✶✶✿ ❘✐❡♠❛♥♥ s✉♠ ♦✈❡r ③❡r♦✲❧❡♥❣t❤ ✐♥t❡r✈❛❧ ❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥
f
♦✈❡r ❛♥ ✐♥t❡r✈❛❧
[a, a]
✐s ❞❡✜♥❡❞ t♦ ❜❡ ③❡r♦✿
Σ f · ∆x [a,a] = 0
❉❡✜♥✐t✐♦♥ ✶✳✸✳✶✷✿ ❘✐❡♠❛♥♥ s✉♠ ♦✈❡r ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧ f ♦✈❡r ❛ ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧ [b, a], a ≤ b✱ P ♦❢ [a, b]✱ ✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡ ♥❡❣❛t✐✈❡ ♦❢ t❤❡
❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦✈❡r ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ❘✐❡♠❛♥♥ s✉♠ ♦✈❡r
P✿ Σ f · ∆x [b,a] = −Σ f · ∆x [a,b]
❊①❛♠♣❧❡ ✶✳✸✳✶✸✿ ♥❡❣❛t✐✈❡ ✇✐❞t❤ ❲❤❡♥ t❤❡ r❡❣✐♦♥ ❧✐❡s ✇✐t❤✐♥ t❤❡ ❊✉❝❧✐❞❡❛♥ ♣❧❛♥❡✱ t❤❡ ✇✐❞t❤ ♦❢ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ r❡❝t❛♥❣❧❡ ✐♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ✐s ❛❧s♦ ♥❡❣❛t✐✈❡✱ ❛♥❞ s♦ ✐s ✐ts ❛r❡❛ ✇❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ ✐s ♣♦s✐t✐✈❡✿
✶✳✸✳
✹✵
❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
❚❤❡ ♥♦t✐♦♥ ♦❢ ❛ ♥❡❣❛t✐✈❡ ❛r❡❛ ✐s ❥✉st✐✜❡❞ ❜② t❤❡ ❢❛❝t t❤❛t t❤❡ r❡❝t❛♥❣❧❡ ✐s ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞✳✳✳ ❚❤❡ ♠♦t✐♦♥ ♠❡t❛♣❤♦r ♠✐❣❤t ❡①♣❧❛✐♥ ✐t ❜❡tt❡r t❤♦✉❣❤✳ ■t ✐s ❛s ✐❢ t✐♠❡ ✐s r❡✈❡rs❡❞ ✭♦r ❛ ✈✐❞❡♦t❛♣❡ ❣♦❡s ❜❛❝❦✇❛r❞✮✱ s♦ t❤❛t t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ ♠♦t✐♦♥ ✐s ♦♣♣♦s✐t❡✱ ❛♥❞ ❛❧❧ ❣❛✐♥s ❛r❡ r❡✈❡rs❡❞✿
❲❡ ♥❡①t ❝♦♥s✐❞❡r t❤❡ s✐♠♣❧❡st ❝❛s❡ ♦❢ ❛ ❘✐❡♠❛♥♥ s✉♠✳ ❚❤❡♦r❡♠ ✶✳✸✳✶✹✿ ❘✐❡♠❛♥♥ ❙✉♠ ♦❢ ❈♦♥st❛♥t ❋✉♥❝t✐♦♥
f ✐s ❝♦♥st❛♥t ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ [a, b]✱ ✐✳❡✳✱ f (ci ) = p i = 1, 2, ..., n ❛♥❞ s♦♠❡ r❡❛❧ ♥✉♠❜❡r p✳ ❚❤❡♥
❙✉♣♣♦s❡ ❢♦r ❛❧❧
Σ f · ∆x [a,b] = p(b − a) Pr♦♦❢✳
❙✐♥❝❡ f (ci ) = p ❢♦r ❛❧❧ i✱ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ✐s ❡q✉❛❧ t♦✿ Σf · ∆x = f (c1 ) ∆x1 + f (c2 ) ∆x2 + ... + f (cn ) ∆xn = p ∆x1 + p ∆x2 + ... + p ∆xn = p ∆x1 + ∆x2 + ... + ∆xn = p (x1 − x0 ) + (x2 − x1 ) + (x3 − x2 ) + ... + (xn − xn−1 ) = p(b − a) .
❖♥❝❡ ✇❡ ③♦♦♠❡❞ ♦✉t✱ ✇❡ r❡❝♦❣♥✐③❡ t❤❛t t❤❡ ❘✐❡♠❛♥♥ s✉♠ r❡♣r❡s❡♥ts t❤❡ r❡❝t❛♥❣❧❡ ✇✐t❤ ✇✐❞t❤ b − a ❛♥❞ ❤❡✐❣❤t p✿
✶✳✸✳ ❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
❊①❝❡♣t✱ ✐t ✐s ♥❡❣❛t✐✈❡ ✇❤❡♥
p
✹✶
✐s ♥❡❣❛t✐✈❡✳
❊①❛♠♣❧❡ ✶✳✸✳✶✺✿ ❘✐❡♠❛♥♥ s✉♠s ❛r❡ ❢✉♥❝t✐♦♥s ▲❡t✬s ❝♦♥s✐❞❡r ❛❧❧ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦❢ ♦❢
❲❡ ❝❤♦♦s❡ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥t❡r✈❛❧s t♦ ❜❡
f (x) = x2
n=4
♦✈❡r
[0, 1]✿
✇✐t❤ ❡q✉❛❧ ✐♥t❡r✈❛❧s ♦❢ ❧❡♥❣t❤
h = 1/4✱
❛♥❞ ✇❡ ❝❤♦♦s❡✱
❛s t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✱ t❤❡ ❧❡❢t✲❡♥❞ ♦r t❤❡ r✐❣❤t✲❡♥❞ ♦❢ ❡❛❝❤ ✐♥t❡r✈❛❧✿
❆t t❤♦s❡ ♣♦✐♥ts✱ t❤❡ ❢✉♥❝t✐♦♥ ✐s ❡✈❛❧✉❛t❡❞✳ ❚❤✐s ✐s t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠
•
−−
|
−−
|
−− |
−− •
x
0
1/4
1/2
3/4
1
x2
0
1/16
1/4
9/16
1
L4 0 · 1/4
+
1/16 · 1/4
+
1/4 · 1/4 +
9/16 · 1/4
Σ [0,0] 0 · 1/4
❲❡✱
≈ 0.22 =0
Σ [0,1/4] 0 · 1/4
+
1/16 · 1/4
Σ [0,1/2] 0 · 1/4
+
1/16 · 1/4
+
1/4 · 1/4
Σ [0,3/4] 0 · 1/4
+
1/16 · 1/4
+
1/4 · 1/4 +
❢✉rt❤❡r♠♦r❡✱
L4 ✿
≈ 0.04 ≈ 0.10 9/16 · 1/4
r❡❛❧✐③❡ t❤❛t ✇❡ ❛r❡ ❝♦♠♣✉t✐♥❣ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❢✉♥❝t✐♦♥
♣❛rt✐t✐♦♥✳ ■ts ❢♦✉r ✈❛❧✉❡s ❛r❡ s❤♦✇♥ ✐♥ ❜♦tt♦♠ ♦❢ t❤❡ t❛❜❧❡✳
❲❡ ❝❛♥ ❛❧s♦ ❝❤♦♦s❡ t❤❡ ♠✐❞✲♣♦✐♥ts ❛s t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✿
≈ 0.22 ❢♦r t❤✐s ❛✉❣♠❡♥t❡❞
✶✳✸✳
✹✷
❚❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t❤❡ ❘✐❡♠❛♥♥ s✉♠
❚❤✐s ✐s t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ ♠✐❞✲♣♦✐♥t ❘✐❡♠❛♥♥ s✉♠ M4 ❢♦r t❤❡ s❛♠❡ ✐♥t❡❣r❛❧✿ • x f (x) = x2 M4
−−
|
−−
|
−−
1/8
3/8
5/8
(1/8)2
(3/8)2
(5/8)2
|
−−
•
7/8 (7/8)2
(1/8)2 · 1/4 + (3/8)2 · 1/4 + (5/8)2 · 1/4 + (7/8)2 · 1/4 = 0.328125
Σ [0,1/8]
(1/8)2 · 1/4
≈ 0.004
Σ [0,3/8]
(1/8)2 · 1/4 + (3/8)2 · 1/4
≈ 0.040
Σ [0,5/8]
(1/8)2 · 1/4 + (3/8)2 · 1/4 + (5/8)2 · 1/4
≈ 0.230
Σ [0,7/8]
(1/8)2 · 1/4 + (3/8)2 · 1/4 + (5/8)2 · 1/4 + (7/8)2 · 1/4 ≈ 0.328
■t ✐s ♠✉❝❤ ❝❧♦s❡r t❤❛♥ L4 t♦ t❤❡ tr✉❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧✱ 1/3✳ ❍❡r❡ ✐s t❤❡ s✉♠♠❛r② ♦❢ t❤❡ ❞❡✈❡❧♦♣♠❡♥t ✉♣ t♦ t❤✐s ♣♦✐♥t✿
❉✐✛❡r❡♥t✐❛❧ ❝❛❧❝✉❧✉s
■♥t❡❣r❛❧ ❝❛❧❝✉❧✉s
f ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s
g ❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s
✶✳ ❞✐✛❡r❡♥❝❡✱ ∆f
✶✳ s✉♠✱ Σg
❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s ∆f (ck ) = f (xk ) − f (xk−1 )
Σg (xk ) = g(c1 ) + ... + g(ck )
❞✐✈✐❞❡❞ ❜② ∆x
∆x ✐s ❢❛❝t♦r❡❞ ✐♥ ❡❛❝❤ t❡r♠
✷✳ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✱
∆f ∆x
✷✳ ❘✐❡♠❛♥♥ s✉♠✱ Σf · ∆x
❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s ∆f f (xk ) − f (xk−1 ) (ck ) = ∆x ∆x
Σf · ∆x (xk ) = f (c1 )∆x + ... + f (ck )∆x
✸✳
✸✳
❚❤❡ t✇♦ ❝♦❧✉♠♥s ❛r❡ ❝♦♥str✉❝t❡❞ ✐♥❞❡♣❡♥❞❡♥t❧② ❜✉t ❝❛♥ ❡❛s✐❧② ❜❡ ❧✐♥❦❡❞ t♦❣❡t❤❡r✳
✶✳✹✳
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s
✹✸
✶✳✹✳ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s
❆s ✇❡ ❦♥♦✇✱ ❛❞❞✐t✐♦♥ ❛♥❞ s✉❜tr❛❝t✐♦♥ ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r✳ ❘❡♣❡❛t❡❞ ❛❞❞✐t✐♦♥ ❛♥❞ s✉❜tr❛❝t✐♦♥ ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r✱ t♦♦✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ s✉♠ ❛♥❞ t❤❡ ❞✐✛❡r❡♥❝❡ ✕ ❛s ♦♣❡r❛t✐♦♥s ♦♥ s❡q✉❡♥❝❡s ✕ ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r✳ ❲❡ ✐❧❧✉str❛t❡ t❤✐s ✐❞❡❛ ✇✐t❤ t❤❡ ❢♦❧❧♦✇✐♥❣✿
❆s ②♦✉ ❝❛♥ s❡❡✱ t❤❡ s✉♠ st❛❝❦s ✉♣ t❤❡ t❡r♠s ♦❢ t❤❡ s❡q✉❡♥❝❡ ♦♥ t♦♣ ♦❢ ❡❛❝❤ ♦t❤❡r ✇❤✐❧❡ t❤❡ ❞✐✛❡r❡♥❝❡ t❛❦❡s t❤✐s ❜❛❝❦ ❞♦✇♥✳ ❲❤❛t ❞♦ t❤❡ s✉♠ ❛♥❞ t❤❡ ❞✐✛❡r❡♥❝❡ ❤❛✈❡ t♦ ❞♦ ✇✐t❤ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts❄ ❏✉st ♣❧✉❣ ✐♥ ∆xk = 1 ❛♥❞ ②♦✉ ❣❡t t❤❡ ❢♦r♠❡r ❢r♦♠ t❤❡ ❧❛tt❡r✱ r❡s♣❡❝t✐✈❡❧②✳ ❚❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts ✐s ❢✉♥❞❛♠❡♥t❛❧✳ ❊①❛♠♣❧❡ ✶✳✹✳✶✿ ❝❛♥❝❡❧❧❛t✐♦♥
❲❡ ❦♥♦✇ ❤♦✇ t♦ ❣❡t t❤❡ ✈❡❧♦❝✐t② ❢r♦♠ t❤❡ ❧♦❝❛t✐♦♥ ✕ ❛♥❞ t❤❡ ❧♦❝❛t✐♦♥ ❢r♦♠ t❤❡ ✈❡❧♦❝✐t②✳ ❖❢ ❝♦✉rs❡✱ ❡①❡❝✉t✐♥❣ t❤❡s❡ t✇♦ ♦♣❡r❛t✐♦♥s ❝♦♥s❡❝✉t✐✈❡❧② s❤♦✉❧❞ ❜r✐♥❣ ✉s ❜❛❝❦ ✇❤❡r❡ ✇❡ st❛rt❡❞✳ ❲❡ ♥♦✇ t❛❦❡ ❛♥♦t❤❡r ❧♦♦❦ ❛t t❤❡ s♣❡❡❞♦♠❡t❡r ✕ ♣r❡s❡♥t❡❞ ❡❛r❧✐❡r✳
t✇♦ ❝♦♠♣✉t❛t✐♦♥s ❛❜♦✉t ♠♦t✐♦♥ ✕ ❛ ❜r♦❦❡♥ ♦❞♦♠❡t❡r ❛♥❞ ❛ ❜r♦❦❡♥
❋✐rst✱ ❜❡❧♦✇ ✇❡ s❡❡ ❤♦✇ t❤❡ ✈❡❧♦❝✐t✐❡s ❛r❡ ✉s❡❞ t♦ ❛❝q✉✐r❡ t❤❡ ❞✐s♣❧❛❝❡♠❡♥ts ✈✐❛ t❤❡ s✉♠s✱ ❜✉t ✇❡ ❛❧s♦ ❞✐s❝♦✈❡r t❤❛t ✇❡ ❝❛♥ ❣❡t t❤❡ ❢♦r♠❡r ❢r♦♠ t❤❡ ❧❛tt❡r ✈✐❛ t❤❡ ❞✐✛❡r❡♥❝❡s✿
✶✳✹✳
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s
✹✹
❙❡❝♦♥❞✱ ❜❡❧♦✇ ✇❡ s❡❡ ❤♦✇ t❤❡ ♣♦s✐t✐♦♥s ❛r❡ ✉s❡❞ t♦ ❛❝q✉✐r❡ t❤❡ ✈❡❧♦❝✐t✐❡s ✈✐❛ t❤❡ ❞✐✛❡r❡♥❝❡s✱ ❜✉t ✇❡ ❛❧s♦ ❞✐s❝♦✈❡r t❤❛t ✇❡ ❝❛♥ ❣❡t t❤❡ ❢♦r♠❡r ❢r♦♠ t❤❡ ❧❛tt❡r ✈✐❛ t❤❡ s✉♠s✿
❲❡ ❦♥❡✇ t❤✐s ✇♦✉❧❞ ❤❛♣♣❡♥✿ ❆❢t❡r ❛❧❧✱ t❤❡ ♣♦s✐t✐♦♥ ❛♥❞ t❤❡ ✈❡❧♦❝✐t② ❛r❡♥✬t r❡❛❧❧② ❞❡r✐✈❡❞ ❢r♦♠ ❡❛❝❤ ♦t❤❡r ❜✉t ❝♦✲❡①✐sts ❛s t✇♦ ❛ttr✐❜✉t❡s ♦❢ t❤❡ s❛♠❡ ♠♦t✐♦♥✳ ❙✉♣♣♦s❡ ♦♥❝❡ ❛❣❛✐♥ t❤❛t ✇❡ ❤❛✈❡ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ♦❢ ❛♥ ✐♥t❡r✈❛❧ [a, b] ✇✐t❤ n ✐♥t❡r✈❛❧s ❛♥❞ • t❤❡ ♣r✐♠❛r② ♥♦❞❡s✿ xk , k = 0, 1, ..., n
• t❤❡ ✐♥❝r❡♠❡♥ts✿ ∆xk = xk − xk−1 , i = 1, 2, ..., n
• t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✿ ck , i = 1, 2, ..., n ✐♥ [xk−1 , xk ]
❚❤❡r❡ ❛r❡ t✇♦ ♣❛rts✿ ✶✳
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ❢✉♥❝t✐♦♥ g ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ck ✳ ❲❡ ❝♦♠♣✉t❡ ✐ts s✉♠ ✇✐t❤ ❛ ✈❛r✐❛❜❧❡ r✐❣❤t ❡♥❞✱ xk ✳ ❲❡ ❛ss✐❣♥ t❤❡s❡ ✈❛❧✉❡s t♦ t❤❡s❡ ♣r✐♠❛r② ♥♦❞❡s✳ ❚❤✐s ❞❡✜♥❡s ❛ ♥❡✇ ❢✉♥❝t✐♦♥✱
❙✉♠✿
✶✳✹✳
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s
✹✺
G✱ ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s✳ ❚❤❡ ♥❡✇ ❢✉♥❝t✐♦♥ ❝❛♥ ❜❡ ✇r✐tt❡♥ ❡①♣❧✐❝✐t❧②✿ G(xk ) = Σg (xk ) = g(c1 ) + g(c2 ) + ... + g(ck ) , ♦r ❝♦♠♣✉t❡❞ r❡❝✉rs✐✈❡❧②✿
G(xk ) = G(xk−1 ) + g(ck ) . ✷✳
❉✐✛❡r❡♥❝❡✿
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ❢✉♥❝t✐♦♥ F ❞❡✜♥❡❞ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✳ ❏✉st ❛s ❛❧✇❛②s✱ ✐ts ❞✐✛❡r❡♥❝❡ ✐s ❝♦♠♣✉t❡❞ ♦✈❡r ❡❛❝❤ ✐♥t❡r✈❛❧ [xk−1 , xk ] ♦❢ t❤❡ ♣❛rt✐t✐♦♥✱ ❛s ❢♦❧❧♦✇s✿
F (xk ) − F (xk−1 ), k = 1, 2..., n . ❲❡ t❤❡♥ ❤❛✈❡ ❛ ♥✉♠❜❡r ✕ r❡♣r❡s❡♥t✐♥❣ t❤❡ r✐s❡ ✕ ❢♦r ❡❛❝❤ k ✳ ❚❤✐s ❞❡✜♥❡s ❛ ♥❡✇ ❢✉♥❝t✐♦♥✱ f ✱ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✳ ❚❤❡ ♥❡✇ ❢✉♥❝t✐♦♥ ✐s ❝♦♠♣✉t❡❞ ❜② ❛♥ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛✿
f (ck ) = F (xk ) − F (xk−1 ) . ❚❤❡ ✜rst q✉❡st✐♦♥ ✇❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ❛♥s✇❡r ✐s✿
◮
❲❤❛t ✐s t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t❤❡ s✉♠ ❄
❲❡ ❤❛✈❡ g ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛♥❞ ✐ts s✉♠ G ❞❡✜♥❡❞ r❡❝✉rs✐✈❡❧② ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s✿ G(xk ) = G(xk−1 ) + g(ck ) . ❆❧s♦✱ t❤❡ ❞✐✛❡r❡♥❝❡ f ♦❢ G ✐s ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❜②✿
f (ck ) = G(xk ) − G(xk−1 ) . ❲❡
s✉❜st✐t✉t❡ t❤❡ ❧❛tt❡r ✐♥t♦ t❤❡ ❢♦r♠❡r✿ f (ck ) = G(xk ) − G(xk−1 ) = g(ck ) .
❙♦✱ t❤❡ ❛♥s✇❡r ✐s✱
t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥✳
❚❤❡ r❡s✉❧t t❛❦❡s t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♠♣❛❝t ❢♦r♠✿
❚❤❡♦r❡♠ ✶✳✹✳✷✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❉✐s❝r❡t❡ ❈❛❧❝✉❧✉s ■ ✶✳ ❚❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t❤❡ s✉♠ ♦❢ g ✐s g ✿ ∆ (Σg) = g
✷✳ ❚❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ g ✐s g ✿ ∆ (Σg · ∆x) =g ∆x ❚❤❡ t✇♦ ♦♣❡r❛t✐♦♥s
❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r✦
Pr♦♦❢✳ ❋♦r t❤❡ s❡❝♦♥❞ ♣❛rt✱ ✇❡ ♥❡❡❞ ❛ s❧✐❣❤t ♠♦❞✐✜❝❛t✐♦♥ ♦❢ t❤❡ ❛❜♦✈❡ ❛r❣✉♠❡♥t✳ ❲❡ ❤❛✈❡ g ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛♥❞ ✐ts ✭✈❛r✐❛❜❧❡✲❡♥❞✮ ❘✐❡♠❛♥♥ s✉♠ G ❞❡✜♥❡❞ r❡❝✉rs✐✈❡❧② ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s✿ G(xk ) = G(xk−1 ) + g(ck ) ∆xk .
✶✳✹✳ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s
✹✻
❆❧s♦✱ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t f ♦❢ G ✐s ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❜②✿ f (ck ) =
G(xk ) − G(xk−1 ) . ∆xk
❲❡ s✉❜st✐t✉t❡ t❤❡ ❧❛tt❡r ✐♥t♦ t❤❡ ❢♦r♠❡r✿ G(xk ) − G(xk−1 ) ∆xk g(ck ) ∆xk = ∆xk
f (ck ) =
= g(ck ) .
❚❤❡ s❡❝♦♥❞ q✉❡st✐♦♥ ✇❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ❛♥s✇❡r ✐s✿ ◮
❲❤❛t ✐s t❤❡ s✉♠ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ ❄
❲❡ ❤❛✈❡ F ❞❡✜♥❡❞ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛♥❞ ✐ts ❞✐✛❡r❡♥❝❡ f ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✿ f (ck ) = F (xk ) − F (xk−1 ) .
❆❧s♦✱ t❤❡ s✉♠ G ♦❢ f ✐s ❞❡✜♥❡❞ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ❜②✿ G(xk ) = G(xk−1 ) + f (ck ) .
❲❡ s✉❜st✐t✉t❡ t❤❡ ❢♦r♠❡r ✐♥t♦ t❤❡ ❧❛tt❡r✿ G(xk ) − G(xk−1 ) = f (ck ) = F (xk ) − F (xk−1 ) .
❋✉rt❤❡r♠♦r❡✱ G(xk ) − G(x0 ) = G(xk ) − G(xk−1 ) + G(xk−1 ) − G(xk−2 ) + ... + G(x1 ) − G(x0 ) = F (xk ) − F (xk−1 ) + F (xk−1 ) − F (xk−2 ) + ... + F (x1 ) − F (x0 ) = F (xk ) − F (x0 ) .
❙♦✱ t❤❡ ❛♥s✇❡r ✐s✱ t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥ ♣❧✉s ❛ ❝♦♥st❛♥t✳ ❚❤❡♦r❡♠ ✶✳✹✳✸✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❉✐s❝r❡t❡ ❈❛❧❝✉❧✉s ■■
✶✳ ❚❤❡ s✉♠ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ F ✐s F + C ✱ ✇❤❡r❡ C ✐s ❛ ❝♦♥st❛♥t✿ Σ (∆F ) = F + C
✷✳ ❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ F ✐s F + C ✱ ✇❤❡r❡ C ✐s ❛ ❝♦♥st❛♥t✿ Σ
∆F ∆x
∆x = F + C
Pr♦♦❢✳
❋♦r t❤❡ s❡❝♦♥❞ ♣❛rt✱ ✇❡ ♥❡❡❞ ❛ s❧✐❣❤t ♠♦❞✐✜❝❛t✐♦♥ ♦❢ t❤❡ ❛❜♦✈❡ ❛r❣✉♠❡♥t✳ ❲❡ ❤❛✈❡ F ❞❡✜♥❡❞ ❛t t❤❡
✶✳✹✳
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s
✹✼
♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛♥❞ ✐ts ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t f ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✿
f (ck ) =
F (xk ) − F (xk−1 ) . ∆xk
❆❧s♦✱ t❤❡ ❘✐❡♠❛♥♥ s✉♠ G ♦❢ f ✐s ❞❡✜♥❡❞ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ❜②✿
G(xk ) = G(xk−1 ) + f (ck ) ∆xk . ❲❡ s✉❜st✐t✉t❡ t❤❡ ❢♦r♠❡r ✐♥t♦ t❤❡ ❧❛tt❡r✿
G(xk ) − G(xk−1 ) = f (ck ) ∆xk =
F (xk ) − F (xk−1 ) ∆xk ∆xk
= F (xk ) − F (xk−1 ) . ❋✉rt❤❡r♠♦r❡✱
G(xk ) − G(x0 ) = G(xk ) − G(xk−1 ) + G(xk−1 ) − G(xk−2 ) + ... + G(x1 ) − G(x0 ) = F (xk ) − F (xk−1 ) + F (xk−1 ) − F (xk−2 ) + ... + F (x1 ) − F (x0 ) = F (xk ) − F (x0 ) .
❚❤❡ t✇♦ ♦♣❡r❛t✐♦♥s ✕ ❛❧♠♦st ✕ ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r✱ ❛❣❛✐♥✦ ❚❤❡② ❞♦♥✬t ❝❛♥❝❡❧ ❢✉❧❧② ❜❡❝❛✉s❡ ❞✐✛❡r❡♥t✐❛t✐♦♥ ✐s♥✬t ❛ ♦♥❡✲t♦✲♦♥❡ ❢✉♥❝t✐♦♥✳ ■♥ s✉♠♠❛r②✱ t❤❡s❡ ❛r❡ t❤❡ ♦♣❡r❛t✐♦♥s ✐♥✈♦❧✈❡❞✿ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✱
∆f : → ∆x
s✉❜tr❛❝t✐♦♥
→
❞✐✈✐s✐♦♥
↓ ❘✐❡♠❛♥♥ s✉♠s✱ Σg · ∆x : ←
❛❞❞✐t✐♦♥
←
♠✉❧t✐♣❧✐❝❛t✐♦♥
❲❡ ❝❛rr② ♦✉t t❤❡s❡ ❢♦✉r ♦♣❡r❛t✐♦♥s ❝♦♥s❡❝✉t✐✈❡❧②✳ ❚❤❡ ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❛♥❞ ❞✐✈✐s✐♦♥ ❜② ∆x ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r ✜rst✿ ❞✐✛❡r❡♥❝❡✱ ∆f : →
s✉❜tr❛❝t✐♦♥
↓ ❚❤❛t✬s ❛♥♦t❤❡r ❝❛♥❝❡❧❧❛t✐♦♥✦
s✉♠✱ Σg : ←
❛❞❞✐t✐♦♥
❊①❛♠♣❧❡ ✶✳✹✳✹✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ✇✐t❤ s♣r❡❛❞s❤❡❡t
❋♦r ❝♦♠♣❧❡① ❞❛t❛✱ ✇❡ ✉s❡ ❛ s♣r❡❛❞s❤❡❡t ✇✐t❤ t❤❡ ❢♦r♠✉❧❛s ♣r❡s❡♥t❡❞ ✐♥ ❈❤❛♣t❡rs ✷❉❈✲✷ ❛♥❞ ✷❉❈✲✸✳ ❋r♦♠ ❛ ❢✉♥❝t✐♦♥ t♦ ✐ts ❘✐❡♠❛♥♥ s✉♠✿
❂❘❬✲✶❪❈✰❘❈❬✲✶❪✯❘✶❈✷ ❋r♦♠ ❛ ❢✉♥❝t✐♦♥ t♦ ✐ts ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✿
❂✭❘❈❬✲✶❪✲❘❬✲✶❪❈❬✲✶❪✮✴❘✶❈✷ ❲❤❛t ✐❢ ✇❡ ❡①❡❝✉t❡ t❤❡ t✇♦ ❝♦♠♣✉t❛t✐♦♥s ❝♦♥s❡❝✉t✐✈❡❧②❄
✶✳✹✳
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s
■♥ t❤✐s ♦r❞❡r ✜rst✱ ❢r♦♠ ❛ ❢✉♥❝t✐♦♥ t♦ ✐ts ❘✐❡♠❛♥♥ s✉♠ t♦ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ t❤❡ ❧❛tt❡r✿
■t✬s t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥✦ ◆♦✇ ✐♥ t❤❡ ♦♣♣♦s✐t❡ ♦r❞❡r✱ ❢r♦♠ ❛ ❢✉♥❝t✐♦♥ t♦ ✐ts ❘✐❡♠❛♥♥ s✉♠ t♦ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ t❤❡ ❧❛tt❡r✿
■t✬s t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ s❤✐❢t❡❞ ❞♦✇♥✦
✹✽
✶✳✺✳
❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts
✹✾
✶✳✺✳ ❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts
❊①❛♠♣❧❡ ✶✳✺✳✶✿ ❡st✐♠❛t❡ ❛r❡❛s
▲❡t✬s ❡st✐♠❛t❡ ✕ ✐♥ s❡✈❡r❛❧ ✇❛②s ✕ t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ ✐♥t❡r✈❛❧
y = f (x) = x2
t❤❛t ❧✐❡s ❛❜♦✈❡ t❤❡
[0, 1]✳
❆s ❜❡❢♦r❡✱ ✇❡ ✇✐❧❧ ▲❡t✬s st❛rt ✇✐t❤
f (1) = 12 = 1✱
s❛♠♣❧❡ ♦✉r ❢✉♥❝t✐♦♥ ❛t s❡✈❡r❛❧ ✈❛❧✉❡s ♦❢ x✱ ❛ t♦t❛❧ ♦❢ n ♦❢ t✐♠❡s✳
n = 1
❛♥❞ ♣✐❝❦ t❤❡
t❤❡ ❛r❡❛ ✐s
1✱
r✐❣❤t ❡♥❞
♦❢ t❤❡ ✐♥t❡r✈❛❧ ❛s t❤❡ ♦♥❧② s❡❝♦♥❞❛r② ♥♦❞❡✳
❍❡r❡✱
t❤❡ ✇❤♦❧❡ sq✉❛r❡✳ ❲❡ r❡❝♦r❞ t❤✐s r❡s✉❧t ❛s ❢♦❧❧♦✇s✿
R1 = 1 , ✇❤❡r❡
R
st❛♥❞s ❢♦r ✏r✐❣❤t✑✳
■♥ t❤❡ ♠❡❛♥t✐♠❡✱ ✐❢ ✇❡ ❝❤♦♦s❡ t❤❡
❧❡❢t
❡♥❞✱ ✇❡ ❤❛✈❡
f (1) = 02 = 0✱
s♦ t❤❡ ❛r❡❛ ✐s
r❡s✉❧t ❛s ❢♦❧❧♦✇s✿
L1 = 0 , ✇❤❡r❡
L
◆❡①t✱
n = 2✳
st❛♥❞s ❢♦r ✏❧❡❢t✑✳ ❚❤❡♥
∆x = 1/2
❛♥❞ t❤❡ ✐♥t❡r✈❛❧ ✐s s✉❜❞✐✈✐❞❡❞ ❛s ❢♦❧❧♦✇s✿
•
−−−
|
x
0
1/2
f (x) = x2
0
1/4
L2 0 · 1/2 R2
+
−−−
• 1
1/4 · 1/2 1/4 · 1/2
= 1/8 +
1 · 1/2
= 5/8
0✳
❲❡ r❡❝♦r❞ t❤✐s
✶✳✺✳
❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts
✺✵
◆♦t❡ t❤❛t t❤❡s❡ t✇♦ q✉❛♥t✐t✐❡s ✉♥❞❡r❡st✐♠❛t❡ ❛♥❞ ♦✈❡r❡st✐♠❛t❡ t❤❡ ❛r❡❛✱ r❡s♣❡❝t✐✈❡❧②✳ ◆♦✇✱ n = 4✳ ❚❤❡♥ ∆x = 1/4 ❛♥❞ t❤❡ ✐♥t❡r✈❛❧ ✐s s✉❜❞✐✈✐❞❡❞ ❛s ❢♦❧❧♦✇s✿ •
−−
|
−−
|
−−
|
−−
•
x
0
1/4
1/2
3/4
1
x2
0
1/16
1/4
9/16
1
L4 0 · 1/4 R4
+
1/16 · 1/4
+
1/4 · 1/4
+
9/16 · 1/4
1/16 · 1/4
+
1/4 · 1/4
+
9/16 · 1/4
≈ 0.22 +
1 · 1/4 ≈ 0.47
◆♦t❡ t❤❛t t❤❡s❡ t✇♦ q✉❛♥t✐t✐❡s ✉♥❞❡r❡st✐♠❛t❡ ❛♥❞ ♦✈❡r❡st✐♠❛t❡ t❤❡ ❛r❡❛✱ r❡s♣❡❝t✐✈❡❧②✳ ❚❤✐s ✐s ❤♦✇ t❤❡ ❛❧❣❡❜r❛✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ❝♦♠♣✉t❛t✐♦♥ ✐♥ t❤❡ t❛❜❧❡✿ 1 1 1 1 1 9 1 · + · + · + ·1 4 16 4 4 4 16 4 4 9 16 1 1 + + + = 4 16 16 16 16 1 30 = 4 16
R4 =
≈ 0.47 .
❲❡ ❝♦♥t✐♥✉❡ ✇✐t❤ ❧❛r❣❡r ❛♥❞ ❧❛r❣❡r ✈❛❧✉❡s ♦❢ n✳ ❲❡ ❡♥❞ ✉♣ ✇✐t❤ ❛ s❡q✉❡♥❝❡ ♦❢ ♥✉♠❜❡rs✳ ❚❤❡♥ t❤❡ ❧✐♠✐t ♦❢ t❤✐s s❡q✉❡♥❝❡ ✐s ♠❡❛♥t t♦ ♣r♦❞✉❝❡ t❤❡ ❛r❡❛ ♦❢ t❤✐s ❝✉r✈❡❞ ✜❣✉r❡✳ ❚❤❡s❡ ❡①♣r❡ss✐♦♥s ❛r❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳ ❚❤✐s ❤♦✇ ✐t ✇♦r❦s✿
❛♣♣r♦①✐♠❛t❡ t❤❡ ❡①❛❝t ❛r❡❛✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✐s t❤❡ ❡①❛❝t ❛r❡❛✳
• ❚❤❡ ❘✐❡♠❛♥♥ s✉♠s •
✶✳✺✳
❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts
✺✶
❊①❛♠♣❧❡ ✶✳✺✳✷✿ ♠✐❞✲♣♦✐♥ts ❚❤❡r❡ ❛r❡ ♦t❤❡r ❘✐❡♠❛♥♥ s✉♠s ✐❢ ✇❡ ❝❤♦♦s❡ ♦t❤❡r s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ t❤❡ ✐♥t❡r✈❛❧s✱ s✉❝❤ ❛s ♠✐❞✲♣♦✐♥ts❀ 2 ✐t ✐s ❞❡♥♦t❡❞ ❜② Mn ✳ ▲❡t✬s ❛❣❛✐♥ ❡st✐♠❛t❡ t❤❡ ❛r❡❛ ✉♥❞❡r y = x ✇✐t❤ n = 4✳ ❙✐♥❝❡ L4 ❛♥❞ R4 ✉♥✲ ❞❡r❡st✐♠❛t❡ ♦r ♦✈❡r❡st✐♠❛t❡ t❤❡ ❛r❡❛ r❡s♣❡❝t✐✈❡❧②✱ ♦♥❡ ♠✐❣❤t ❡①♣❡❝t t❤❛t ❚❤❡ ✈❛❧✉❡ ♦❢
∆x
✐s st✐❧❧
• x f (x) = x2 M4
M4
✇✐❧❧ ❜❡ ❝❧♦s❡r t♦ t❤❡ tr✉t❤✳
1/4✿ −−
|
−−
|
−−
|
−−
1/8
3/8
5/8
7/8
(1/8)2
(3/8)2
(5/8)2
(7/8)2
•
(1/8)2 · 1/4 + (3/8)2 · 1/4 + (5/8)2 · 1/4 + (7/8)2 · 1/4 ≈ 0.328
❊①❡r❝✐s❡ ✶✳✺✳✸ ❋✐♥✐s❤ t❤❡ s❡♥t❡♥❝❡ ✏ Ln ❛♥❞
Rn
✇✐❧❧ ❝♦♥t✐♥✉❡ t♦ ✉♥❞❡r❡st✐♠❛t❡ ❛♥❞ ♦✈❡r❡st✐♠❛t❡ t❤❡ ❛r❡❛ ♥♦ ♠❛tt❡r
❤♦✇ ♠❛♥② ✐♥t❡r✈❛❧s ✇❡ ❤❛✈❡ ❜❡❝❛✉s❡
f
✐s✳✳✳✑
❊①❡r❝✐s❡ ✶✳✺✳✹ ❋✐♥✐s❤ t❤❡ s❡♥t❡♥❝❡ ✏ Mn ✇✐❧❧ ❝♦♥t✐♥✉❡ t♦ ✉♥❞❡r❡st✐♠❛t❡ t❤❡ ❛r❡❛ ♥♦ ♠❛tt❡r ❤♦✇ ♠❛♥② ✐♥t❡r✈❛❧s ✇❡ ❤❛✈❡ ❜❡❝❛✉s❡
f
✐s✳✳✳✑
❊①❛♠♣❧❡ ✶✳✺✳✺✿ ❛r❡❛ ♦❢ tr✐❛♥❣❧❡ ▲❡t✬s t❡st t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❛♣♣r♦❛❝❤ t♦ ❝♦♠♣✉t✐♥❣ ❛r❡❛s t♦ ❛♥♦t❤❡r ❢❛♠✐❧✐❛r r❡❣✐♦♥✱ ❛ tr✐❛♥❣❧❡✳ ❙✉♣✲ ♣♦s❡
f (x) = x . ❲❤❛t ✐s t❤❡ ❛r❡❛ ✉♥❞❡r ✐ts ❣r❛♣❤ ❢r♦♠
x=0
t♦
x = 1❄
❲❡ st❛rt ✇✐t❤ ❛ ❧❡❢t✲❡♥❞ ♣❛rt✐t✐♦♥ ❛♥❞ t❤❡s❡ s❡❝♦♥❞❛r② ♥♦❞❡s✿
0
1 n
2 n
0 = c1
c2
c3 ...
❲❡ ♥❡①t ♣❧♦t t❤✐s ❝❤❛rt ❢♦r
n = 2 , 4 , 8 , 16 , 80
...
n−1 n
1
cn
◦
t♦ ✈✐s✉❛❧✐③❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿
✶✳✺✳ ❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts
✺✷
❚❤❡ ❧❛st ♦♥❡ ❤❛s ✈✐rt✉❛❧❧② ♥♦ ❣❛♣s✳ ❲❡ ❧❡t t❤❡ s♣r❡❛❞s❤❡❡t t♦ ✜♥❞ t❤❡ t♦t❛❧ ❛r❡❛s ✭❝♦r♥❡rs✮✿ n
2
∆x 1/2
4
8
16
80
... n
1/4
1/8
1/16
1/80
... 1/n
Dn 0.250 0.375 0.438 0.469 0.494 ... ?
❚❤❡ ♥✉♠❜❡rs s❡❡♠ t♦ ❛♣♣r♦❛❝❤ 0.5 ❛s ❡①♣❡❝t❡❞✳ ❚♦ ✜♥❞ t❤❡ ❢✉❧❧ tr✉t❤✱ ✇❡ ✇✐❧❧ ♥❡❡❞ t❤❡ ❧✐♠✐t ♦❢ t❤✐s s❡q✉❡♥❝❡✦ ❋♦r ❛♥ ❛r❜✐tr❛r② n✱ t❤❡ t♦t❛❧ ❛r❡❛ ✐s ♦♥❧② ✇r✐tt❡♥ r❡❝✉rs✐✈❡❧②✳ ▲❡t✬s tr② t♦ s✐♠♣❧✐❢② ✭f (x) = x✮✿ Dn
= = =
❙✉❜st✐t✉t❡✳
f (c1 ) · ∆x + f (c2 ) · ∆x + ... + f (cn ) · ∆x 1 1 · n n
+
1
+
2 1 · n n
+ ... +
2
+ ... +
n−1 1 · n n (n − 1)
❋❛❝t♦r ✐t✳
·
1 . n2
❍♦✇ ❞♦ ✇❡ ✜♥❞ t❤✐s ❧✐♠✐t❄ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ s✉♠ ✐♥ ♣❛r❡♥t❤❡s❡s ✐s ✐♥✜♥✐t❡ ❛♥❞ s♦ ✐s t❤❛t ♦❢ n2 ✳ ❲❡ ❤❛✈❡ ❛♥ ✐♥❞❡t❡r♠✐♥❛t❡ ❡①♣r❡ss✐♦♥✿ ∞ · 0✳ ❏✉st ❛s ❜❡❢♦r❡✱ t❤❡ ♦♥❧② ✇❛② t♦ r❡s♦❧✈❡ ✐t ✐s ❛❧❣❡❜r❛✳ ❲❡ ♥❡❡❞ t♦ ✜♥❞ ❛♥ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛ ❢♦r t❤❡ s✉♠✳ ❋♦rt✉♥❛t❡❧②✱ t❤❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❡①♣r❡ss✐♦♥ ✐♥ ♣❛r❡♥t❤❡s❡s ✐s ❦♥♦✇♥ ✭❈❤❛♣t❡r ✶P❈✲✶✮ ❛s t❤❡ s✉♠ ♦❢ ❛♥ ❛r✐t❤♠❡t✐❝ ♣r♦❣r❡ss✐♦♥✿ n(n − 1) . 2 ❚❤❡r❡❢♦r❡✱ t❤❡ t♦t❛❧ ❛r❡❛ ♦❢ t❤❡ ❜❛rs ✐s t❤❡ ❢♦❧❧♦✇✐♥❣ ❧✐♠✐t ❛s n → ∞✿ 1 + 2 + ... + (n − 1) =
Dn =
n(n − 1) 1 1 n2 − n 1 = → , 2 2 2 n 2 n 2
❛❝❝♦r❞✐♥❣ t♦ t❤❡ t❤❡♦r❡♠ ▲✐♠✐ts ♦❢ ❘❛t✐♦♥❛❧ ❋✉♥❝t✐♦♥s ✭❈❤❛♣t❡r ✷❉❈✲✷✮✳ ❚❤❡ r❡s✉❧t ♠❛t❝❤❡s ✇❤❛t ✇❡ ❦♥♦✇ ❢r♦♠ ❣❡♦♠❡tr②✳ ■t s❤♦✉❧❞ ❜❡ ❝❧❡❛r t❤❛t ✇❡ ✇♦✉❧❞♥✬t ❜❡ ❛❜❧❡ t♦ ❛♣♣❧② t❤❡ r✉❧❡s ❛♥❞ ♠❡t❤♦❞s ♦❢ ❝♦♠♣✉t✐♥❣ ❧✐♠✐ts ✇✐t❤♦✉t t❤✐s s✐♠♣❧✐✜❝❛t✐♦♥ st❡♣✳ ❯♥❧✐❦❡ ♠♦st s❡q✉❡♥❝❡s ✇❡ s❛✇ ✐♥ ❞✐✛❡r❡♥t✐❛❧ ❝❛❧❝✉❧✉s ✭❱♦❧✉♠❡ ✷✱ ❈❤❛♣t❡r ✷❉❈✲✶✮✱ t❤❡ ❡①♣r❡ss✐♦♥ ❢♦r t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❤❛s n t❡r♠s✳ ❚❤✐s ♠❡❛♥s t❤❛t ✇❡ ❞♦ ♥♦t ❤❛✈❡ ❛ ❞✐r❡❝t✱ ♦r ❡①♣❧✐❝✐t✱ ❢♦r♠✉❧❛ ❢♦r t❤❡ nt❤ t❡r♠ ♦❢ t❤✐s s❡q✉❡♥❝❡✳ ❈♦♥✈❡rt✐♥❣ t❤❡ ❢♦r♠❡r ✐♥t♦ t❤❡ ❧❛tt❡r r❡q✉✐r❡s s♦♠❡ ❝❤❛❧❧❡♥❣✐♥❣ ❛❧❣❡❜r❛✳ ❆ ❢❡✇ s✉❝❤ ❢♦r♠✉❧❛s ❛r❡ ❦♥♦✇♥✳ ❚❤❡♦r❡♠ ✶✳✺✳✻✿ ❋♦r♠✉❧❛s ❢♦r ❋✐♥✐t❡ ❙✉♠s ❚❤❡ s✉♠s ♦❢
m
❝♦♥s❡❝✉t✐✈❡ ♥✉♠❜❡rs✱ t❤❡✐r sq✉❛r❡s✱ ❛♥❞ t❤❡✐r ❝✉❜❡s ❛r❡ t❤❡
✶✳✺✳
✺✸
❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts
❢♦❧❧♦✇✐♥❣✿
m X
k
=
k=1
m X
m(m + 1)(2m + 1) m3 m2 m = + + 6 3 2 6 2 3 4 m m2 m m(m + 1) + + = = 2 4 2 4
k2 =
k=1
m X
m(m + 1) 2
k3
k=1
Pr♦♦❢✳
❚❤❡ ✜rst ♦♥❡ ✐s ♣r♦✈❡♥ ✐♥ ❈❤❛♣t❡r ✶P❈✲✶✳ ❊①❛♠♣❧❡ ✶✳✺✳✼✿ ❛r❡❛ ✉♥❞❡r ♣❛r❛❜♦❧❛
❙✉♣♣♦s❡ ✇❡ ❛r❡ ❢♦❧❧♦✇✐♥❣ ❛ ❧❛♥❞✐♥❣ ♠♦❞✉❧❡ ♦♥ ✐ts tr✐♣ t♦ t❤❡ ♠♦♦♥✳ ❚❤❡ ✈❡r② ❧❛st ♣❛rt ♦❢ t❤❡ tr✐♣ ✐s ✈❡r② ❝❧♦s❡ t♦ t❤❡ s✉r❢❛❝❡ ❛♥❞ ✐t ✐s s✉♣♣♦s❡❞ t♦ ❝♦✈❡r 2/3 ♦❢ ❛ ♠✐❧❡ ✐♥ ♦♥❡ ♠✐♥✉t❡✳ ❈♦♥s✐❞✲ ❡r✐♥❣ t❤❛t t❤❡r❡ ✐s ♥♦ ✇❛② t♦ ♠❡❛s✉r❡ ❛❧t✐t✉❞❡ ❛❜♦✈❡ t❤❡ s✉r❢❛❝❡✱ ❤♦✇ ✇♦✉❧❞ ✇❡ ❦♥♦✇ t❤❛t ✐t ❤❛s ❧❛♥❞❡❞❄ Pr♦❜❧❡♠✿
❚❤✐s ✐s ✇❤❛t ✇❡ ❞♦ ❦♥♦✇✿
❚❤❡ ✈❡❧♦❝✐t②✱ ❛t ❛❧❧ t✐♠❡s✿
❲❡ ❛♣♣r♦❛❝❤ t❤❡ ♣r♦❜❧❡♠ ❜② ♣r❡❞✐❝t✐♥❣ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ❡✈❡r②✿ • 1 ♠✐♥✉t❡✱ ♦r • 1/2 ♠✐♥✉t❡✱ ♦r • 1/4 ♠✐♥✉t❡✱ ♦r • ❡t❝✳✱ ❜② ✉s✐♥❣ t❤❡ s♣❡❡❞ r❡❝♦r❞❡❞ ❛t t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ ❡❛❝❤ ♦❢ t❤❡s❡ ✐♥t❡r✈❛❧s✿
❙♦❧✉t✐♦♥✿
♣r♦❥❡❝t❡❞ ❞✐s♣❧❛❝❡♠❡♥t = ✐♥✐t✐❛❧ ✈❡❧♦❝✐t② · t✐♠❡ ♣❛ss❡❞. ❲❡ ❤❛✈❡ ❛❧r❡❛❞② ♣❧♦tt❡❞ t❤❡ ✈❡❧♦❝✐t② ❛♥❞ ♥♦✇ ✇❡ ❛r❡ ❛❧s♦ t♦ ✈✐s✉❛❧✐③❡ t❤❡ ♣r♦❥❡❝t❡❞ ❞✐s♣❧❛❝❡♠❡♥t✳ ■t ✐s ❛ ♣❧♦t ♦❢ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ ❜✉t ♣r❡s❡♥t❡❞ ❛s ❛ ❞✐✛❡r❡♥t ❦✐♥❞ ♦❢ ♣❧♦t✱ ❛ ❜❛r ❝❤❛rt✿
❲❡ ♣❧♦t t❤✐s ❝❤❛rt ❢♦r ❞✐✛❡r❡♥t ♥✉♠❜❡r ♦❢ t✐♠❡ ✐♥t❡r✈❛❧s✱ n✱ ❛♥❞ ❞✐✛❡r❡♥t ❝❤♦✐❝❡s ♦❢ t❤❡✐r ❧❡♥❣t❤s✱ ∆x = 1/n✳ ❲❡ ❛❧s♦ ❧❡t t❤❡ s♣r❡❛❞s❤❡❡t ❛❞❞ t❤❡s❡ ♥✉♠❜❡rs t♦ ♣r♦❞✉❝❡ t❤❡ t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t✱ Dn ✱
✶✳✺✳
❍♦✇ t♦ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts
✺✹
♦✈❡r t❤❡ ✇❤♦❧❡ ♦♥❡✲♠✐♥✉t❡ ✐♥t❡r✈❛❧✳ ❚❤✐s ✐s t❤❡ ❞❛t❛✿ n
2
∆x 1/2
4
8
16
80
1/4
1/8
1/16
1/80
Dn 0.869 0.778 0.725 0.697 0.673
❚❤❡ ❞❛t❛ s✉❣❣❡sts t❤❛t t❤❡ ❝r❛❢t ❤❛s ❧❛♥❞❡❞ ❛s t❤❡ ❡st✐♠❛t❡❞ ❞✐s♣❧❛❝❡♠❡♥t s❡❡♠s t♦ ❜❡ ❝❧♦s❡ t♦ 2/3 ♠✐❧❡s✳ ❍♦✇ ❝❧♦s❡ ❛r❡ ✇❡ t♦ t❤✐s ❞✐st❛♥❝❡❄ ❆s t❤✐s q✉❡st✐♦♥ ♠❡❛♥s ❞✐✛❡r❡♥t t❤✐♥❣s t♦ ❞✐✛❡r❡♥t ♣❡♦♣❧❡✱ ❧❡t✬s tr② t♦ ✜♥❞ ❛ r✉❧❡ ❢♦r ❛♥s✇❡r✐♥❣ ✐t✿ ❋✐♥❞ t❤❡ ♣r♦❥❡❝t❡❞ ❞✐s♣❧❛❝❡♠❡♥t Dn ❛s ✐t ❞❡♣❡♥❞s ♦♥ n✳ ❋✐rst✱ t❤❡ ❧❡♥❣t❤ ♦❢ ❡❛❝❤ t✐♠❡ ✐♥t❡r✈❛❧ ✐s✿ ∆x =
❛♥❞ t❤❡ ♠♦♠❡♥ts ♦❢ t✐♠❡ ❢♦r s❛♠♣❧✐♥❣ ❛r❡✿ x1 = 0, x2 =
1 , n
3 n−1 2 , x3 = , ..., xn = . n n n
❋✉rt❤❡r♠♦r❡✱ ✇❡ ♥❡❡❞ ❡①❛❝t✱ ❝♦♠♣❧❡t❡ ❞❛t❛ ❛❜♦✉t t❤❡ ✈❡❧♦❝✐t②✳ ❙✉♣♣♦s❡ t❤❡ ✈❡❧♦❝✐t② y ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t✐♠❡✱ x✱ ✐s ❣✐✈❡♥ ❜② t❤✐s✱ ❡①❛❝t ❢♦r♠✉❧❛✿ y = f (x) = 1 − x2 .
❚❤❡♥✱ t❤❡ t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t ✐s Dn = = = 1− = 1−
f (x1 ) · ∆x + 2 ! 1 1 + · 1− n n 12 + n2 12
f (x2 ) · ∆x + ... + 2 ! 2 1 1− + ... + · n n 22 + ... + n2 22
+
+ ... +
f (xn ) · ∆x 2 ! n−1 1 1− · n n 1 (n − 1)2 · 2 n n 1 · 3. (n − 1)2 n
❲❡ ❛r❡ ✐♥ t❤❡ s❛♠❡ ♣❧❛❝❡ ❛s ✐♥ t❤❡ ❧❛st ❡①❛♠♣❧❡✿ ❚❤❡ s❡q✉❡♥❝❡ ♦❢ ✐♠♣r♦✈✐♥❣ ❛♣♣r♦①✐♠❛t✐♦♥s ✐s t❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s ♦❢ ❛ ❝❡rt❛✐♥ s❡q✉❡♥❝❡✳ ❆♥❞✱ ♦♥❝❡ ❛❣❛✐♥✱ t❤❡ r❡❝✉rs✐✈❡ ❡①♣r❡ss✐♦♥ ♠✉st ❜❡ ❝♦♥✈❡rt❡❞ t♦ ❛♥ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛ ✐♥ ♦r❞❡r t♦ ❛♣♣❧② t❤❡ ♠❡t❤♦❞s ♦❢ ❝♦♠♣✉t✐♥❣ ❧✐♠✐ts t❤❛t ✇❡ ❦♥♦✇✳ ▲❡t✬s s✐♠♣❧✐❢② ✐t ✉s✐♥❣ t❤❡ ❧❛st t❤❡♦r❡♠✿ 12 + 22 + ... + (n − 1)2 =
❚❤❡r❡❢♦r❡✱ Dn
(n − 1)3 (n − 1)2 n − 1 + + . 3 2 6
(n − 1)3 (n − 1)2 n − 1 =1− + + 3 2 6 2 3 (n − 1) n−1 (n − 1) − − . =1− 3 3 3n 2n 6n3
1 n3
❲✐t❤ t❤✐s ❢♦r♠✉❧❛✱ ✇❡ ❝❛♥ ✐♠♣r♦✈❡ t❤❡ ❛❝❝✉r❛❝② ♦❢ ♦✉r ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t t♦ ❛♥② ❞❡❣r❡❡ ✇❡ ❞❡s✐r❡ ❜② ❝❤♦♦s✐♥❣ ❧❛r❣❡r ❛♥❞ ❧❛r❣❡r ✈❛❧✉❡s ♦❢ n✳
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✺✺
◆❡①t✱ ✇❤❛t ✐s t❤❡ ❡①❛❝t ❞✐s♣❧❛❝❡♠❡♥t D❄ ■t ✐s t❤❡ ❧✐♠✐t ♦❢ t❤❡ s❡q✉❡♥❝❡ Dn ✳ ❲❡ ❛♣♣❧② t❤❡ t❤❡♦r❡♠ ▲✐♠✐ts ♦❢ ❘❛t✐♦♥❛❧ ❋✉♥❝t✐♦♥s ✭❈❤❛♣t❡r ✷❉❈✲✶✮✮ ❛♥❞ ❝♦♠♣❛r❡ t❤❡ ❧❡❛❞✐♥❣ t❡r♠s ♦❢ t❤❡ t✇♦ ❢r❛❝t✐♦♥s✿ Dn → 1 −
2 1 −0−0= . 3 3
❊①❡r❝✐s❡ ✶✳✺✳✽
❘❡❞♦ t❤❡ ❡①❛♠♣❧❡ ❢♦r f (x) = x2 ✳ ❊①❡r❝✐s❡ ✶✳✺✳✾
❯s❡ t❤❡ ❧❛st ❢♦r♠✉❧❛ ✐♥ t❤❡ t❤❡♦r❡♠ t♦ ✜♥❞ t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ y = x3 ✳ ■♥ ♦r❞❡r t♦ ❡s❝❛♣❡ t❤❡ ♥❡❡❞ ❢♦r t❤❡♦r❡♠s ❧✐❦❡ t❤❡ ♦♥❡ ❛❜♦✈❡✱ ✇❡ ✇✐❧❧ ♥❡❡❞ t♦ ❞❡✈❡❧♦♣ ❛ ✇♦r❦✲❛r♦✉♥❞✳ ❆♥ ✐♥❞✐r❡❝t ❛♣♣r♦❛❝❤ ✇✐❧❧ ♣r♦✈❡ ♠♦r❡ ❡✛❡❝t✐✈❡✳
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
❲❡ ✐♠♣r♦✈❡ ♦✉r ❛♣♣r♦①✐♠❛t✐♦♥s t♦ ♣r♦❞✉❝❡ ❜❡tt❡r ❛♥❞ ❡st✐♠❛t❡s ♦❢ t❤❡ ❛r❡❛s ♦r ❞✐s♣❧❛❝❡♠❡♥ts ❜② ♠❛❦✐♥❣ t❤❡ ♣❛rt✐t✐♦♥ ✜♥❡r ❛♥❞ ✜♥❡r✳ ❲❡ t❤❡♥ ❝♦♥s✐❞❡r t❤❡ ❧✐♠✐t ♦❢ t❤✐s ♣r♦❝❡ss✳ ❲❡ ❛r❡✱ ✐♥ ❢❛❝t✱ ❢♦❧❧♦✇✐♥❣ t❤❡ r♦✉t❡ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✿ s❛♠♣❧✐♥❣
s❛♠♣❧✐♥❣
s❡q✉❡♥❝❡ ←−−−−−−−− ❢✉♥❝t✐♦♥ ♦♥ [a, b]
s❡q✉❡♥❝❡ ←−−−−−−−− ❢✉♥❝t✐♦♥ ♦♥ [a, b]
s❡q✉❡♥❝❡ −−−∆x→0 −−−−−→ ❢✉♥❝t✐♦♥ ♦♥ [a, b]
s❡q✉❡♥❝❡ −−−∆x→0 −−−−−→ ❢✉♥❝t✐♦♥ ♦♥ [a, b]
❞❡r✐✈❛t✐✈❡ y
❉◗ y
✐♥t❡❣r❛❧ y
❘❙ y
▲❡t✬s r❡✈✐❡✇ t❤❡ s❡t✉♣✳ ❙✉♣♣♦s❡ t❤✐s t✐♠❡ t❤❛t ❛ ❢✉♥❝t✐♦♥ f ✐s ❞❡✜♥❡❞ ❛t ❛❧❧ ♣♦✐♥ts ♦❢ ✐♥t❡r✈❛❧ [a, b]✳ ❲❡ ❛r❡ ❛❧s♦ ❝♦♥s✐❞❡r✐♥❣ ❛❧❧ ♣♦ss✐❜❧❡ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥s P ♦❢ [a, b]✿ a = x0 ≤ c1 ≤ x1 ≤ c2 ≤ x2 ≤ . . . < xn−1 ≤ c1 ≤ xn = b .
❚❤❡♥ ❡❛❝❤ s✉❝❤ ♣❛rt✐t✐♦♥ ✇✐❧❧ ♣r♦❞✉❝❡ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ t❤❡ ❢✉♥❝t✐♦♥✿ f (ck+1 ) − f (ck ) ∆f = , ∆x ∆xk
❛♥❞ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✿ Σf · ∆x = f (c1 ) ∆x1 + f (c2 ) ∆x2 + ... + f (cn ) ∆xn =
✇❤❡r❡
n X
f (ci ) ∆xi ,
i=1
∆xi = xi − xi−1 .
◆♦✇✱ ✐♥ ♦r❞❡r t♦ ✐♠♣r♦✈❡ t❤❡s❡ ❛♣♣r♦①✐♠❛t✐♦♥s✱ ✇❡ r❡✜♥❡ t❤❡ ♣❛rt✐t✐♦♥✿ ❚❤❡r❡ ✇✐❧❧ ❜❡ ♠♦r❡ ✐♥t❡r✈❛❧s ❛♥❞ t❤❡② ❛r❡ s♠❛❧❧❡r✳ ❲❡ ❦❡❡♣ r❡✜♥✐♥❣✳ ❚❤❡ r❡s✉❧t ✐s ❛ s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐t✐♦♥s✱ Pn ✳ ❍❡r❡ ✐s ❛♥ ❡①❛♠♣❧❡ ♦❢ ❛ t②♣✐❝❛❧ s❡q✉❡♥❝❡ ♦❢ r❡✜♥✐♥❣ ♣❛rt✐t✐♦♥s✳ ❲❡ s✐♠♣❧② ❝✉t ❡✈❡r② ✐♥t❡r✈❛❧ ✐♥ ❤❛❧❢ ❡✈❡r② t✐♠❡ ✭❧❡❢t✮ ❛❣❛✐♥ ❛♥❞ ❛❣❛✐♥✿
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✺✻
❚❤❡ ❧❡❢t ❡♥❞s ❛r❡ ❝❤♦s❡♥ ❛s s❡❝♦♥❞❛r② ♥♦❞❡s t♦ s❛♠♣❧❡ t❤❡ ❢✉♥❝t✐♦♥ ✭r✐❣❤t✮✳ ❚❤❡ r❡s✉❧t ✐s ✇❤❛t ✇❡ ❝❛♥ t❤✐♥❦ ♦❢ ❛s ❛ ♥❡✇ ❢✉♥❝t✐♦♥ fn ✳ ❊①❛♠♣❧❡ ✶✳✻✳✶✿
sin x
▲❡t✬s ❝♦♥s✐❞❡r f (x) = sin x .
❋♦r ❡❛❝❤ n = 2, 3, 4, ...✱ t❤❡ ✐♥❝r❡♠❡♥t ✐s ❢♦✉♥❞✱ ∆x = (b − a)/n✱ ❛♥❞ ✇❡ ❤❛✈❡ n s❡❣♠❡♥ts ✐♥ ♦✉r ♣❛rt✐t✐♦♥ ♦❢ t❤❡ ✐♥t❡r✈❛❧✳ ❖♥ ❡❛❝❤ ♦❢ ✐ts s❡❣♠❡♥ts✱ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ✐s ❝♦♠♣✉t❡❞✱ t❤❡ ✈❛❧✉❡ ✐s r❡❝♦r❞❡❞ ❛s t❤❡ ✈❛❧✉❡ ♦❢ ❛ ♥❡✇ ❢✉♥❝t✐♦♥✱ ❛♥❞ t❤❡ r❡s✉❧t ✐s ♣❧♦tt❡❞ ✐♥ t❤❡ ❜♦tt♦♠ r♦✇✿
❲❡ ❢❛❝❡ ❛ s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s✳ ■ts ❧✐♠✐t ✐s t❤❡ ❞❡r✐✈❛t✐✈❡✳ ❙✐♠✐❧❛r❧② t❤❡ ❘✐❡♠❛♥♥ s✉♠ ✐s ❝♦♠♣✉t❡❞✱ t❤❡ ✈❛❧✉❡ ✐s r❡❝♦r❞❡❞ ❛s t❤❡ ✈❛❧✉❡ ♦❢ ❛ ♥❡✇ ❢✉♥❝t✐♦♥✱ ❛♥❞ t❤❡ r❡s✉❧t ✐s ♣❧♦tt❡❞ ✐♥ t❤❡ ❜♦tt♦♠ r♦✇✿
❲❡ ❢❛❝❡ ❛ s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s ❛❣❛✐♥✳ ❲❤❛t ✐s ✐ts ❧✐♠✐t❄ ❖✉r s❛♠♣❧✐♥❣ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✐s ❣❡tt✐♥❣ ❞❡♥s❡r ❛♥❞ ❞❡♥s❡r✳ ■♥ t❤❡ ♠❡❛♥t✐♠❡✱ t❤❡ ♣♦✐♥ts t❤❛t ♠❛❦❡ ✉♣ t❤❡ ❣r❛♣❤s ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts ❛♥❞ t❤♦s❡ t❤❛t ♠❛❦❡ ✉♣ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛r❡ ❣❡tt✐♥❣ ❝❧♦s❡r ❛♥❞ ❝❧♦s❡r t♦❣❡t❤❡r✳ ❲❤❛t ✐s ❛t t❤❡ ❡♥❞ ♦❢ t❤✐s ♣r♦❝❡ss❄ ❆ ♥❡✇ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ♦♥ t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✦ ❋♦r s✐♠♣❧✐❝✐t②✱ ❜❡❧♦✇ ✇❡ ❝♦♥s✐❞❡r t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦♥ ❛ ✜①❡❞ ✐♥t❡r✈❛❧✳ ❲❡ ✇✐❧❧ ❜❡ ✉s✐♥❣ [a, b] ✐♥st❡❛❞ ♦❢ ❛❧❧
✶✳✻✳
❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
♦❢ t❤❡s❡✿
✺✼
[a, xk ]✳
❚❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦✈❡r
[a, b]
♦❢ t❤❡ ❢✉♥❝t✐♦♥s
fn
❛❝q✉✐r❡❞ ❢r♦♠ s❛♠♣❧✐♥❣✱
Sn = Σfn ∆x , ❢♦r♠ ❛
♥✉♠❡r✐❝❛❧ s❡q✉❡♥❝❡✱ Sn ✳ n → ∞✿
❆s ✇❡ ❤❛✈❡ s❡❡♥✱ t❤✐s s❡q✉❡♥❝❡ ♠❛② ❝♦♥✈❡r❣❡ ❛s
❚❤❡ ❧✐♠✐t ♦❢ t❤✐s s❡q✉❡♥❝❡✱
lim Sn = S ✱
n→∞
✐s ✇❤❛t ✇❡ ❛r❡ ❛❢t❡r✳
❍♦✇❡✈❡r✱ t❤❡r❡ ❛r❡ ❧❡❢t✲❡♥❞✱ r✐❣❤t✲❡♥❞✱ ♠✐❞✲♣♦✐♥t ♣❛rt✐t✐♦♥s✱ ♣❛rt✐t✐♦♥s ✇✐t❤ ✉♥❡q✉❛❧ ✐♥❝r❡♠❡♥ts✱ ❛♥❞ ✐♥✲ ✜♥✐t❡❧② ♠❛♥② ♦t❤❡r s❡q✉❡♥❝❡s ♦❢ ♣❛rt✐t✐♦♥s✳ ❏✉st ❛s ♦♥❡ ❝❛♥ ❛♣♣r♦①✐♠❛t❡ ❛ ❝✐r❝❧❡ ✇✐t❤ ♥♦♥✲r❡❣✉❧❛r ♣♦❧②❣♦♥s✦ ❲❡✱ t❤❡r❡❢♦r❡✱ ♥❡❡❞ t♦ ❝♦♥s✐❞❡r
❛❧❧
♦❢ t❤❡♠ ❛♥❞ r❡q✉✐r❡ t❤❛t
Ln
Mn
♦❢ t❤❡♠ ♣r♦❞✉❝❡ t❤❡ s❛♠❡ ♥✉♠❜❡r✿
Rn
ց
↓
ւ
Sn →
S
←
ր
↑
տ
?
❛❧❧
?
?
?
❚❤❡ ♦♥❧② r❡str✐❝t✐♦♥ ✐s t❤❛t ❡❛❝❤ ♦❢ t❤❡s❡ s❡q✉❡♥❝❡s ♦❢ ♣❛rt✐t✐♦♥s ❤❛✈❡ t♦ ❜❡ ❝❤♦s❡♥ ✐♥ s✉❝❤ ❛ ✇❛② t❤❛t
∆xi → 0
❛s
n → ∞.
❚♦ ♠❛❦❡ s❡♥s❡ ♦❢ t❤✐s✱ ✇❡ ❞❡✜♥❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
❉❡✜♥✐t✐♦♥ ✶✳✻✳✷✿ ♠❡s❤ ♦❢ ♣❛rt✐t✐♦♥ ❚❤❡
♠❡s❤ ♦❢ ❛ ♣❛rt✐t✐♦♥ P
✐s t❤❡ ♠❛①✐♠❛❧ ✈❛❧✉❡ ♦❢ ✐ts ✐♥❝r❡♠❡♥t✿
|P | = max ∆xi . i
■t ✐s ❛ ♠❡❛s✉r❡ ♦❢ t❤❡ ❞❡❣r❡❡ ♦❢ ✏r❡✜♥❡♠❡♥t✑ ♦❢
P✳
❲❤❡♥❡✈❡r ✐t ❣♦❡s t♦
0✱
❛❧❧ ✐♥❝r❡♠❡♥ts ❣♦ t♦
0
t♦♦✳ ❲❡
✉s❡ ✐t ❛s ❢♦❧❧♦✇s✿
❉❡✜♥✐t✐♦♥ ✶✳✻✳✸✿ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ❚❤❡
❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✱ ♦r t❤❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧✱ ♦❢ ❛ ❢✉♥❝t✐♦♥ f
✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡ ❧✐♠✐t ♣❛rt✐t✐♦♥s
Pn
I
♦❢ ❛ s❡q✉❡♥❝❡ ♦❢ ✐ts ❘✐❡♠❛♥♥ s✉♠s
✇✐t❤ t❤❡✐r ♠❡s❤ ❛♣♣r♦❛❝❤✐♥❣
Sn → I,
0
♣r♦✈✐❞❡❞
❛s
n → ∞❀
♦✈❡r ✐♥t❡r✈❛❧
Sn
[a, b]
♦✈❡r ❛✉❣♠❡♥t❡❞
✐✳❡✳✱
|Pn | → 0 ,
✇❤❡♥ ❛❧❧ t❤❡s❡ ❧✐♠✐ts ❛r❡ ❡q✉❛❧ t♦ ❡❛❝❤ ♦t❤❡r✳ ❲❤❡♥ t❤✐s ❧✐♠✐t ✐s ❛ ♥✉♠❜❡r✱
✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ ♦✈❡r [a, b]✳ ❲❤❡♥ ✭♦r −∞✮✱ ✇❡ s❛② t❤❛t t❤❡ ✐♥t❡❣r❛❧ ✐s ✐♥✜♥✐t❡✳
❝❛❧❧❡❞ ❛♥
❚❤❡ ♥♦t❛t✐♦♥ ✐s s✐♠✐❧❛r t♦ t❤❛t ❢♦r ❛♥t✐✲❞❡r✐✈❛t✐✈❡s✿
❛❧❧ t❤❡s❡ ❧✐♠✐ts ❛r❡ ❡q✉❛❧ t♦
f ✐s +∞
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✺✽
■♥t❡❣r❛❧
Z
b
f dx a
■t r❡❛❞s ✏t❤❡ ✐♥t❡❣r❛❧ ♦❢
a
f
❢r♦♠
b✑✳
t♦
❆❜❜r❡✈✐❛t❡❞✱ t❤❡ ❞❡✜♥✐t✐♦♥ ✐s ✇r✐tt❡♥ ❛s ❢♦❧❧♦✇s✿
Z ✇❤❡r❡
fn
✐s
f
s❛♠♣❧❡❞ ♦✈❡r t❤❡ ♣❛rt✐t✐♦♥
b
f dx = lim Σfn ∆x , a
n→∞
Pn ✳
■♥ t❤❡ ✐♥✜♥✐t❡ ❝❛s❡✱ ✇❡ s✐♠♣❧② ✇r✐t❡ ✭❥✉st ❛s ✇✐t❤ ♦t❤❡r ❧✐♠✐ts✮✿
Z
b a
f dx = +∞ (♦r − ∞) .
❙♦✱ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✐s t❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✐♥ t❤✐s s♣❡❝✐❛❧ s❡♥s❡✳ ❇♦t❤ ❝❛♥ ❜❡ s❡❡♥ ❛s t❤❡ ❛r❡❛s ✉♥❞❡r ❝❡rt❛✐♥ ❣r❛♣❤s✿
❚❤❡ s②♠❜♦❧ ✏
Z
✭❛s ❞♦❡s ❧❡tt❡r
✑ ✐s ❝❛❧❧❡❞ t❤❡ ✐♥t❡❣r❛❧ s✐❣♥✳ ■t ❧♦♦❦s ❧✐❦❡ ❛ str❡t❝❤❡❞ ❧❡tt❡r ❙✱ ✇❤✐❝❤ st❛♥❞s ❢♦r ✏s✉♠♠❛t✐♦♥✑
Σ✮✿
❚❤❡ ♥♦t❛t✐♦♥ ✐s s✐♠✐❧❛r✱ ❜❡❝❛✉s❡ ✐t ✐s r❡❧❛t❡❞✱ t♦ t❤❛t ❢♦r ❘✐❡♠❛♥♥ s✉♠s ✭✐t ✐s ❛❧s♦ s✐♠✐❧❛r✱ ❜❡❝❛✉s❡ ✐t ✐s r❡❧❛t❡❞✱ t♦ t❤❛t ❢♦r ❛♥t✐❞❡r✐✈❛t✐✈❡s✮✳ ❚❤✐s ✐s ❤♦✇ t❤❡ ♥♦t❛t✐♦♥ ✐s ❞❡❝♦♥str✉❝t❡❞✿
✶✳✻✳
❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✺✾
❘✐❡♠❛♥♥ s✉♠ ❧❡❢t
❛♥❞ r✐❣❤t ❜♦✉♥❞s ❢♦r
x
↓ 1
"
Z
❞♦♠❛✐♥
−1
3x
3
+ sin x
dx = 0
↑
↑
❧❡❢t ❛♥❞ ❲❡ r❡❢❡r t♦
a
❛♥❞
b
↑
r✐❣❤t ❜r❛❝❦❡ts
❛ s♣❡❝✐✜❝ ♥✉♠❜❡r
❛s t❤❡ ✏❧♦✇❡r ❜♦✉♥❞✑ ❛♥❞ t❤❡ ✏✉♣♣❡r ❜♦✉♥❞✑ ♦❢ t❤❡ ✐♥t❡❣r❛❧✱ ✇❤✐❧❡
✏✐♥t❡❣r❛♥❞✑✳ ❚❤❡ ✐♥t❡r✈❛❧
[a, b]
f
✐s t❤❡
✐s r❡❢❡rr❡❞ t♦ ❛s t❤❡ ✏❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥✑✳
❈♦♠♣❛r❡ t♦ t❤❡ s✐❣♠❛ ♥♦t❛t✐♦♥✿
❧❡❢t
❛♥❞ r✐❣❤t ❜♦✉♥❞s ❢♦r
k
↓ "
10
❞♦♠❛✐♥
k=0
X
3k
3
+ sin k
↑
= 9076.411188
↑
❧❡❢t ❛♥❞
↑
r✐❣❤t ❜r❛❝❦❡ts
❛ s♣❡❝✐✜❝ ♥✉♠❜❡r
❊✐t❤❡r t❤❡ ✐♥t❡❣r❛❧ s✐❣♥ ♦r t❤❡ s✐❣♠❛ s✐❣♥ ❞❡s✐❣♥❛t❡s ❛ ❝❡rt❛✐♥ ❢✉♥❝t✐♦♥ t❤❛t t❛❦❡s ❛ ❢✉♥❝t✐♦♥ ✕ ♦❢
x
♦r
k
✕
❛s ✐ts ✐♥♣✉t✳ ❚❤❡ ♦✉t♣✉t ✐s ❛ ♥✉♠❜❡r✳
❲❛r♥✐♥❣✦
a ❛♥❞ b ❛r❡♥✬t ❥✉st ❧♦✇❡r ❛♥❞ ✉♣♣❡r ✐♥t❡r✈❛❧ [a, b] ❜✉t ✐ts ♠✐♥✐♠✉♠ ❛♥❞
❚❤❡s❡ ✏❜♦✉♥❞s✑ ❜♦✉♥❞s ♦❢ t❤❡
♠❛①✐♠✉♠✳ ■t ✐s ❛❧s♦ ✈❡r② ❝♦♠♠♦♥ t♦ ✉s❡ ✏❧✐♠✐ts✑ ✐♥st❡❛❞ ♦❢ ✏❜♦✉♥❞s✑✳
❊①❡r❝✐s❡ ✶✳✻✳✹ ❲❤❛t ❞♦ t❤♦s❡ ✏❜♦✉♥❞s✑ ❤❛✈❡ t♦ ❞♦ ✇✐t❤ t❤❡ ✇♦r❞ ✏❜♦✉♥❞❛r②✑❄
❲❤✐❧❡
dx
s❡❡♠s t♦ ❜❡ ♥♦t❤✐♥❣ ❜✉t ❛ ✏❜♦♦❦❡♥❞✑ ✐♥ t❤❡ ❛❜♦✈❡ ♥♦t❛t✐♦♥✱ ❧❡t✬s ♥♦t ❢♦r❣❡t t❤❛t t❤✐s ✐s t❤❡
❞✐✛❡r❡♥t✐❛❧ ✭❈❤❛♣t❡r ✷❉❈✲✸✮✳ ❆♥ ❛❧t❡r♥❛t✐✈❡ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ f (x) · dx ✭❈❤❛♣t❡r ✹✮✿
♥♦t❛t✐♦♥ r❡✢❡❝ts t❤❡ ❢❛❝t t❤❛t t❤❡ ✐♥t❡❣r❛❧ ✐s ❞❡t❡r♠✐♥❡❞ ❜②
❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
Z
f dx [a,b]
❙♦✱ t❤✐s ✐s ❛ ❢✉♥❝t✐♦♥ ❝r❡❛t❡❞ ❜② t❤❡ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ❛♥❞ ✐ts ✐♥♣✉ts ❛r❡ ✐♥t❡r✈❛❧s✳ ❚♦ ❡♠♣❤❛s✐③❡ t❤❡ ❧❛tt❡r ♣♦✐♥t✱ ✇❡ ♠♦✈❡ t❤❡
❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥ [a, b] t♦ t❤❡ s✉❜s❝r✐♣t✳
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✻✵
❚❤✐s ✐s ❤♦✇ t❤❡ ♥♦t❛t✐♦♥ ✐s ❞❡❝♦♥str✉❝t❡❞✿ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✏❡✈❛❧✉❛t❡✑
✐♥♣✉t
↓ Z
→
[−1, 1]
3x3 + sin x dx = 0 | {z } ↑
↑
❞✐✛❡r❡♥t✐❛❧ ❢♦r♠
♦✉t♣✉t
❚❤✐s tr❛♥s✐t✐♦♥ ❜❡❝♦♠❡s ✐♥❡✈✐t❛❜❧❡ ✐♥ ❤✐❣❤❡r ❞✐♠❡♥s✐♦♥s ✭❱♦❧✉♠❡ ✹✮✳ ❲❤❡♥ ✇❡ s♣❡❛❦ ♦❢ t❤❡ ❛r❡❛✱ ✇❡ ❤❛✈❡ ✭✇✐t❤
Z
n
b
f dx | {z } a
t❤❡ ❡①❛❝t ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ❊①❛♠♣❧❡ ✶✳✻✳✺✿ ♥❡❣❛t✐✈❡ ❛r❡❛❄
k ✮✿ n X f (ci ) ∆xi . = lim
❞❡♣❡♥❞❡♥t ♦♥
❏✉st ❛s ✇✐t❤ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✇❤❡♥ t❤❡ ✈❛❧✉❡s ♦❢
k→∞
i=1
|
{z
}
❛r❡❛s ♦❢ t❤❡ ❜❛rs
f
❛r❡ ♥❡❣❛t✐✈❡✱ s♦ ✐s t❤❡ ✏❛r❡❛✑ ✉♥❞❡r ✐ts ❣r❛♣❤✿
❚❤✐s ❞❡♠♦♥str❛t❡s ❛ ❞r❛✇❜❛❝❦ ♦❢ t❤❡ ✐♥t❡r♣r❡t❛t✐♦♥ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ❛s t❤❡ ❛r❡❛ ✐♥ ❝♦♥tr❛st t♦ t❤❡ ✐♥t❡r♣r❡t❛t✐♦♥ ❛s t❤❡ ❞✐s♣❧❛❝❡♠❡♥t✳
▲❡t✬s ✈❡r✐❢② t❤❛t t❤❡ ❞❡✜♥✐t✐♦♥ ♠❛❦❡s s❡♥s❡ ❢♦r t❤❡ s✐♠♣❧❡st ❢✉♥❝t✐♦♥✳ ❚❤❡♦r❡♠ ✶✳✻✳✻✿ ■♥t❡❣r❛❧ ♦❢ ❈♦♥st❛♥t ❋✉♥❝t✐♦♥ ❙✉♣♣♦s❡ ♥✉♠❜❡r
f ✐s ❝♦♥st❛♥t ♦♥ [a, b]✱ ✐✳❡✳✱ f (x) = c ❢♦r ❛❧❧ x c✳ ❚❤❡♥ f ✐s ✐♥t❡❣r❛❜❧❡ ♦♥ [a, b] ❛♥❞ ✇❡ ❤❛✈❡✿ Z
b a
f dx = c(b − a)
Pr♦♦❢✳
❋r♦♠ t❤❡ ❈♦♥st❛♥t ❋✉♥❝t✐♦♥ ❘✉❧❡ ❢♦r ❘✐❡♠❛♥♥ ❙✉♠s✱ ✇❡ ❦♥♦✇✿
Σ[a,b] fk ∆x = c(b − a) . ❙✐♥❝❡ t❤✐s ❡①♣r❡ss✐♦♥ ❞♦❡s♥✬t ❞❡♣❡♥❞ ♦♥
k✱
t❤❡ ❝♦♥❝❧✉s✐♦♥ ❢♦❧❧♦✇s✳
✐♥
[a, b]
❛♥❞ s♦♠❡ r❡❛❧
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✻✶
❖❢ ❝♦✉rs❡✱ ✇❡ ❤❛✈❡ r❡❝♦✈❡r❡❞ t❤❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❛r❡❛ ♦❢ ❛ r❡❝t❛♥❣❧❡✿ ❛r❡❛ ❊①❝❡♣t✱ t❤✐s ❛r❡❛ ✐s ♥❡❣❛t✐✈❡ ✇❤❡♥
c
=
❤❡✐❣❤t
·
✇✐❞t❤ .
✐s ♥❡❣❛t✐✈❡✳
❊✈❡♥ t❤♦✉❣❤ t❤❡ ❛♥s✇❡r t♦ t❤❡ q✉❡st✐♦♥ ✏❍♦✇ ❞♦ ✇❡ ❞♦ ✐t❄✑ ✐s st✐❧❧ t♦ ❝♦♠❡✱ ✇❡ ❛s❦ ✏■s ✐t ❛❧✇❛②s ♣♦ss✐❜❧❡❄✑ ❙♦♠❡ ❧✐♠✐ts ❞♦♥✬t ❡①✐st✳ ❚❤❡♥✱ ❛s ❛ ❧✐♠✐t✱ t❤❡ ✐♥t❡❣r❛❧ ♠✐❣❤t ♥♦t ❡①✐st ❡✐t❤❡r✳ ■♥ ❝♦♥tr❛st t♦ ❞✐✛❡r❡♥t✐❛❜✐❧✐t②✱ ✇❡ ❝❛♥✬t t❡❧❧ ❜② ❥✉st ❧♦♦❦✐♥❣ ❛t t❤❡ ❣r❛♣❤✳
❊①❛♠♣❧❡ ✶✳✻✳✼✿ ✐♥✜♥✐t❡ ❛r❡❛ ❍❡r❡ ✐s ❛ s✐♠♣❧❡ ❡①❛♠♣❧❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♥♦♥✲✐♥t❡❣r❛❜❧❡ ♦✈❡r
1 f (x) = x2 0
■t s✉✣❝❡s t♦ ❧♦♦❦ ❛t t❤❡ ✜rst t❡r♠ ♦❢ t❤❡
nt❤
[0, 1]✿
✐❢
x > 0,
✐❢
x = 0.
r✐❣❤t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠s✿
❚❤✐s ❜❛r ✐s ❣❡tt✐♥❣ t❛❧❧❡r ❛♥❞ t❤✐♥♥❡r ❛t t❤❡ s❛♠❡ t✐♠❡✳ ❲❤❛t ❛❜♦✉t ✐ts ❛r❡❛❄ ❲❡ ❝♦♠♣✉t❡✿
1 1 1 1 · =n→∞ = f (x1 ) ∆x = f 2 n n 1/n n
❛s
n → ∞.
■t t✉r♥s ♦✉t t❤✐s ❜❛r ✐s ❣❡tt✐♥❣ t❛❧❧❡r ❢❛st❡r t❤❛♥ ✐t ✐s ❣❡tt✐♥❣ t❤✐♥♥❡r✦ ❚❤❡♦r❡♠ ❢♦r ❉✐✈❡r❣❡♥❝❡ ✭❈❤❛♣t❡r ✷❉❈✲✶✮✱ ✐t ❢♦❧❧♦✇s t❤❛t
Rn → ∞ ❚❤❡r❡❢♦r❡✱
Z
❊①❡r❝✐s❡ ✶✳✻✳✽ ❈♦♥s✐❞❡r t❤✐s ❝♦♥str✉❝t✐♦♥ ❢♦r
1 1 ❛♥❞ 3 ✳ x x
❛s
n → ∞.
1
f dx = +∞ . 0
❚❤❡♥✱ ❢r♦♠ t❤❡ P✉s❤ ❖✉t
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✻✷
❊①❛♠♣❧❡ ✶✳✻✳✾✿ ❉✐r✐❝❤❧❡t ❢✉♥❝t✐♦♥
❚❤❡ ❉✐r✐❝❤❧❡t ❢✉♥❝t✐♦♥ ✐s ❛❧s♦ ♥♦♥✲✐♥t❡❣r❛❜❧❡✿
IQ (x) =
(
1 0
✐❢ ✐❢
x x
✐s ❛ r❛t✐♦♥❛❧ ♥✉♠❜❡r, ✐s ❛♥ ✐rr❛t✐♦♥❛❧ ♥✉♠❜❡r.
❚♦ ♣r♦✈❡ t❤✐s✱ ✇❡ ❝♦♥s✐❞❡r t✇♦ ❞✐✛❡r❡♥t s❡q✉❡♥❝❡s ♦❢ ♣❛rt✐t✐♦♥s✿
• •
■❢ ✇❡ ❝❤♦♦s❡ ❛❧❧ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ♣❛rt✐t✐♦♥s s✉♠s ✇✐❧❧ ❜❡ ❡q✉❛❧ t♦
1❀
Pn
0❀
t❤❡r❡❢♦r❡✱ t❤❡ ❧✐♠✐t ✐s
b − a✳
Qn t♦ ❜❡ ✐rr❛t✐♦♥❛❧✱ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❘✐❡♠❛♥♥ ❛❧s♦ ❡q✉❛❧ t♦ 0✳
■❢ ✇❡ ❝❤♦♦s❡ ❛❧❧ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ♣❛rt✐t✐♦♥s s✉♠s ✇✐❧❧ ❜❡ ❡q✉❛❧ t♦
t♦ ❜❡ r❛t✐♦♥❛❧✱ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❘✐❡♠❛♥♥
t❤❡r❡❢♦r❡✱ t❤❡ ❧✐♠✐t ✇✐❧❧ ❜❡ ❡q✉❛❧ t♦
❚❤❡ ♠✐s♠❛t❝❤ ❜❡t✇❡❡♥ t❤❡ ❧✐♠✐ts ♦❢ ❘✐❡♠❛♥♥ s✉♠s ♣r♦✈❡s t❤❛t t❤❡ ❢✉♥❝t✐♦♥ ✐s ♥♦t ✐♥t❡❣r❛❜❧❡✳
❚❤❡ ❢♦❧❧♦✇✐♥❣ r❡s✉❧t ♣r♦✈❡s t❤❛t ♦✉r ❞❡✜♥✐t✐♦♥ ♠❛❦❡s s❡♥s❡ ❢♦r ❛ ❧❛r❣❡ ❝❧❛ss ♦❢ ❢✉♥❝t✐♦♥s✳ ❚❤❡♦r❡♠ ✶✳✻✳✶✵✿ ■♥t❡❣r❛❜✐❧✐t② ♦❢ ❈♦♥t✐♥✉♦✉s ❋✉♥❝t✐♦♥s ❆❧❧ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥s ♦♥
[a, b]
❛r❡ ✐♥t❡❣r❛❜❧❡ ♦♥
[a, b]✳
❲❡ ❛❝❝❡♣t ✐t ✇✐t❤♦✉t ♣r♦♦❢✳ ❚❤❡ ❝♦♥✈❡rs❡ ✐s♥✬t tr✉❡ ❜❡❝❛✉s❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❊①❛♠♣❧❡ ✶✳✻✳✶✶✿ s✐❣♥ ❢✉♥❝t✐♦♥
❚❤❡ s✐❣♥ ❢✉♥❝t✐♦♥✱
f (x) = sign(x)✱
❤❛s ❛ ✈❡r② s✐♠♣❧❡ ❣r❛♣❤ ❛♥❞✱ ✐t ❛♣♣❡❛rs✱ t❤❡ ❛r❡❛ ✉♥❞❡r ✐t ✇♦✉❧❞
✏♠❛❦❡ s❡♥s❡✑✿
■♥❞❡❡❞✱ t❤✐s ❢✉♥❝t✐♦♥ ✐s ✐♥t❡❣r❛❜❧❡ ♦✈❡r ❛♥② ✐♥t❡r✈❛❧ ❚❤❡r❡ ❛r❡ t✇♦ ❝❛s❡s✳ ❲❤❡♥
b≤0
♦r
a ≥ 0✱
[a, b]✳
t❤❡ ❢✉♥❝t✐♦♥ ✐s s✐♠♣❧② ❝♦♥st❛♥t ♦♥ t❤✐s ✐♥t❡r✈❛❧✳ ❲❤❡♥
a < 0 < b✱ ❛❧❧ t❡r♠s ♦❢ ❛❧❧ ❘✐❡♠❛♥♥ s✉♠s ❛r❡ −1 · ∆xi ✱ ♦r 1 · ∆xi ✱ ♦r 0 ✭❛t ♠♦st t✇♦✮✳ ▲❡t✬s s✉♣♣♦s❡ 0 ✐s♥✬t ❛ ♥♦❞❡ ♦❢ ❛♥② ♦❢ t❤❡ ♣❛rt✐t✐♦♥s Pk ❛♥❞✱ ✐♥ ❢❛❝t✱ ✐t ✐s ♦♥❡ ♦❢ ✐ts s❡❝♦♥❞❛r② ♥♦❞❡s✱ 0 = cm ✳
t❤❛t
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
❚❤❡♥
Σf · ∆x =
m−1 X
(−1) · ∆xi +0 · ∆xm
i=1 m−1 X
=−
✻✸
∆xi
+
i=1
∆xi
+(b − xm+1 ) −xm − xm+1 .
=a+b |Pk | → 0✱
i=m+1 n X
1 · ∆xi
i=m+1
= −(xm − a)
❚❤❡♥✱ ❛s
n X
+
✇❡ ❤❛✈❡✿
xm → 0
❚❤❡r❡❢♦r❡✱ t❤❡ ❡q✉❛t✐♦♥✬s ❧✐♠✐t ✐s✿
Z
❛♥❞
xm+1 → 0 .
b
f dx = a + b . a
❊①❡r❝✐s❡ ✶✳✻✳✶✷ ❈♦♥s✐❞❡r t❤❡ ♠✐ss✐♥❣ ❝❛s❡s ✐♥ t❤❡ ❛❜♦✈❡ ♣r♦♦❢✳
❚❤❡s❡ ❛r❡ t❤❡ ♠❛✐♥ ❝❧❛ss❡s ♦❢ ❢✉♥❝t✐♦♥ ✇❡ ❤❛✈❡ s❡❡♥ ❛♥❞ t❤❡✐r r❡❧❛t✐♦♥s✿
❚❤❡② ❛r❡ s✉❜s❡ts ♦❢ ❡❛❝❤ ♦t❤❡r✦ ❲❡ ❛❝❝❡♣t t❤❡ ❢♦❧❧♦✇✐♥❣ r❡s✉❧t ✇✐t❤♦✉t ♣r♦♦❢✳
❚❤❡♦r❡♠ ✶✳✻✳✶✸✿ ■♥t❡❣r❛❜✐❧✐t② ♦❢ ❘❡str✐❝t✐♦♥
f ✐s ✐♥t❡❣r❛❜❧❡ A < B ≤ b✳ ■❢
♦✈❡r
[a, b]✱
t❤❡♥ ✐t ✐s ❛❧s♦ ✐♥t❡❣r❛❜❧❡ ♦✈❡r ❛♥②
[A, B]
✇✐t❤
a≤
❏✉st ❛s ❜❡❢♦r❡✱ ✇❡ ♦❜s❡r✈❡ t❤❛t ❡✈❡♥ ✐❢ t❤❡ ♣❡rs♦♥ ❞✐❞♥✬t s♣❡♥❞ ❛♥② t✐♠❡ ❞r✐✈✐♥❣✱ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t st✐❧❧ ♠❛❦❡s s❡♥s❡❀ ✐t✬s ③❡r♦✳
❚❤❡♦r❡♠ ✶✳✻✳✶✹✿ ■♥t❡❣r❛❧ ❖✈❡r ❩❡r♦✲❧❡♥❣t❤ ■♥t❡r✈❛❧ ❚❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♦❢ ❛ ❢✉♥❝t✐♦♥
f
♦✈❡r ❛ ✏③❡r♦✲❧❡♥❣t❤✑ ✐♥t❡r✈❛❧
t♦ ③❡r♦✿
Z ❆♥❞ t❤❡ ❛r❡❛ ♦❢ ❛ r❡❣✐♦♥ ♦♥❡✲♣♦✐♥t t❤✐❝❦ ✐s ③❡r♦✱ t♦♦✳
a
f dx = 0 a
[a, a]✱ ✐s ❡q✉❛❧
✶✳✻✳ ❚❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✻✹
❊①❡r❝✐s❡ ✶✳✻✳✶✺
Pr♦✈❡ t❤❡ t❤❡♦r❡♠✳
■♥ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♥♦t❛t✐♦♥✱ t❤✐s ✐♥t❡❣r❛❧ ✇✐t❤ ❡q✉❛❧ ❜♦✉♥❞s ❤❛s ❛ ❝❧❡❛r❡r ♠❡❛♥✐♥❣✿
Z
f dx = 0 {a}
❚❤❡ ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧s ❛r❡ ❛❧s♦ ✐♥❝❧✉❞❡❞✳
❲❡ ♦♥❝❡ ❛❣❛✐♥ ✉t✐❧✐③❡ t❤❡ ✐❞❡❛ ♦❢ ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧s ❛♥❞ ♦r✐❡♥t❡❞ r❡❝t❛♥❣❧❡s✳ ❚❤❡♦r❡♠ ✶✳✻✳✶✻✿ ■♥t❡❣r❛❧ ❖✈❡r ◆❡❣❛t✐✈❡❧② ❖r✐❡♥t❡❞ ■♥t❡r✈❛❧ ❚❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♦❢ ❛ ❢✉♥❝t✐♦♥
a
f
♦✈❡r ❛ ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧
✐s ❡q✉❛❧ t♦ t❤❡ ♥❡❣❛t✐✈❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ♦✈❡r
Z
a b
f dx = −
Z
[b, a], b >
[a, b]✿
b
f dx a
❊①❡r❝✐s❡ ✶✳✻✳✶✼
Pr♦✈❡ t❤❡ t❤❡♦r❡♠✳
■♥ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♥♦t❛t✐♦♥✱ t❤✐s ✏✢✐♣♣✐♥❣✑ ♦❢ t❤❡ ❜♦✉♥❞s ♦❢ ✐♥t❡❣r❛❧ ❤❛s ❛ ♠♦r❡ ♣r❡❝✐s❡ ♠❡❛♥✐♥❣✳ ❲❡ t❤✐♥❦ ♦❢ t❤❡ ♥❡❣❛t✐✈❡❧② ♦r✐❡♥t❡❞ ✐♥t❡r✈❛❧ ❛s t❤❡ ♥❡❣❛t✐✈❡ ♦❢ t❤❡ ♦r✐❣✐♥❛❧✿
[b, a] = −[a, b] . ❚❤❡♥ t❤❡ ❢♦r♠✉❧❛ t❛❦❡s t❤❡ ❢♦❧❧♦✇✐♥❣ ❢♦r♠✿
Z
−[a,b]
f dx = −
Z
f dx [a,b]
❊①❛♠♣❧❡ ✶✳✻✳✶✽✿ ❛r❡❛ ✈s✳ ✐♥t❡❣r❛❧
❚❤✉s✱ ✇❡ ❤❛✈❡ ❡①♣❧❛✐♥❡❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❛r❡❛ ♦❢ ❛ ❝✉r✈❡❞ r❡❣✐♦♥✿ ■t ✐s ❛♥ ✐♥t❡❣r❛❧✳ ❈♦♥✈❡rs❡❧②✱ ✐s t❤❡ ✐♥t❡❣r❛❧ ❛♥ ❛r❡❛❄ ❨❡s✱ ✐♥ ❛ s❡♥s❡✳ ■t ❞❡♣❡♥❞s ♦♥ t❤❡ ✉♥✐ts ♦❢ t❤❡ ✈❛r✐❛❜❧❡s✳ ❋♦r ❡①❛♠♣❧❡✱ ✇❤❡♥ ❜♦t❤
x
❛♥❞
y
❛r❡ ♠❡❛s✉r❡❞ ✐♥ ❢❡❡t✱ t❤❡ ✐♥t❡❣r❛❧ ✐s ✐♥❞❡❡❞ t❤❡ ❛r❡❛ ✐♥ t❤❡ ✉s✉❛❧ s❡♥s❡❀ ✐t ✐s ♠❡❛s✉r❡❞ ✐♥
sq✉❛r❡ ❢❡❡t✳ ❍♦✇❡✈❡r✱ ✇❤❛t ✐❢ ❛♥❞
y
x
❛♥❞
y
❛r❡ s♦♠❡t❤✐♥❣ ❡❧s❡❄ ❲❡ ❤❛✈❡ ❛❧r❡❛❞② s❡❡♥ t❤❛t
x
♠❛② ❜❡ t✐♠❡
t❤❡ ✈❡❧♦❝✐t②❀ t❤❡② ❛r❡ ♠❡❛s✉r❡❞ ✐♥ s❡❝♦♥❞s ❛♥❞ ❢❡❡t ♣❡r s❡❝♦♥❞ r❡s♣❡❝t✐✈❡❧②✳ ❚❤❡♥ t❤❡ ✐♥t❡❣r❛❧
✐s ♠❡❛s✉r❡❞ ✐♥ s❡❝♦♥❞s
·
❢❡❡t ♣❡r s❡❝♦♥❞✱ ✐✳❡✳✱ ❢❡❡t✳ ❚❤❛t ❝❛♥✬t ❜❡ ❛r❡❛✳✳✳ ■♥ ❢❛❝t✱ ❜♦t❤
q✉❛♥t✐t✐❡s ♦❢ ❛r❜✐tr❛r② ♥❛t✉r❡❀ t❤❡♥ t❤❡ ✉♥✐ts ♦❢ t❤❡ ✐♥t❡❣r❛❧ ♠✐❣❤t ❜❡✿ ♣♦✉♥❞ ❚❤❡♥ t❤❡ ✐♥t❡❣r❛❧ ✐s ❞❡s❝r✐❜❡❞ ❛s ✏t❤❡ t♦t❛❧ ✈❛❧✉❡✑ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳
❍❡r❡ ✐s t❤❡ s✉♠♠❛r② ♦❢ t❤❡ ❞❡✈❡❧♦♣♠❡♥t ♦❢ ❝❛❧❝✉❧✉s ✉♣ t♦ t❤✐s ♣♦✐♥t✿
·
x
❛♥❞
y
♠❛② ❜❡
❞❡❣r❡❡✱ ♠❛♥✲❤♦✉r✱ ❡t❝✳
✶✳✼✳
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✻✺
❉✐✛❡r❡♥t✐❛❧ ❝❛❧❝✉❧✉s
■♥t❡❣r❛❧ ❝❛❧❝✉❧✉s
f ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s
g ❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s
✶✳ ❞✐✛❡r❡♥❝❡✱ ∆f
✶✳ s✉♠✱ Σg
❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s
❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s
∆f (ck ) = f (xk ) − f (xk−1 )
Σg (xk ) = g(c1 ) + ... + g(ck )
❞✐✈✐❞❡ ❜② ∆x
∆x ✐s ❢❛❝t♦r❡❞ ✐♥ ❡❛❝❤ t❡r♠
✷✳ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✱
∆f ∆x
✷✳ ❘✐❡♠❛♥♥ s✉♠✱ Σg · ∆x
❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s
❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s
∆f f (xk − f (xk−1 ) (ck ) = ∆x ∆x
Σg · ∆x (xk ) = g(c1 )∆x + ... + g(ck )∆x
∆x → 0
∆x → 0
df ✸✳ ❞❡r✐✈❛t✐✈❡✱ dx ❞❡✜♥❡❞ ♦♥ t❤❡ ✐♥t❡r✈❛❧
✸✳ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✱
Z
g dx
❞❡✜♥❡❞ ♦♥ t❤❡ ✐♥t❡r✈❛❧
❚❤❡ t✇♦ ❝♦❧✉♠♥s ❛r❡ ❝♦♥str✉❝t❡❞ ✐♥❞❡♣❡♥❞❡♥t❧②✳ ❘♦✇s ✶ ❛♥❞ ✷ ❛r❡ ❧✐♥❦❡❞ t♦❣❡t❤❡r ❜② t❤❡ ❞✐s❝r❡t❡ ✈❡rs✐♦♥ ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✳ ❘♦✇ ✸ ✇✐❧❧ ❜❡ ❧✐♥❦❡❞ t♦❣❡t❤❡r ❜② ✐ts ✜♥❛❧ ✈❡rs✐♦♥✳
✶✳✼✳ Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡✲ ❣r❛❧s
❲❡ ❣♦ ❜❛❝❦ t♦ t❤❡ ❞❡✜♥✐t✐♦♥s ✐♥ ♦r❞❡r t♦ ❝♦♥✜r♠ t❤❛t ♦✉r t❤❡♦r② ♠❛❦❡s s❡♥s❡ ❜② ♠❛t❝❤✐♥❣ t❤❡ ♣❡r❝❡✐✈❡❞ ✐❞❡❛s ♦❢ ❤♦✇ t❤❡s❡ ❝♦♥❝❡♣ts ❛r❡ s✉♣♣♦s❡❞ t♦ ♦♣❡r❛t❡ ✐♥ r❡❛❧ ✕ t❤♦✉❣❤ ✐❞❡❛❧✐③❡❞ ✕ ❧✐❢❡✳ ❚❤❡ ♠❛✐♥ ❛r❡❛s ❛r❡✱ ❛s ❜❡❢♦r❡✱ ♠♦t✐♦♥ ❛♥❞ ❣❡♦♠❡tr②✳ ❚❤❡ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❝♦♠❡ ❢r♦♠ ♣✉r❡ ❛❧❣❡❜r❛✳ ❲❤❛t✬s ❧❡❢t✱ t❤❡♥✱ ✐s t♦ ♠❛❦❡ s✉r❡ t❤❛t t❤♦s❡ r❡❧❛t✐♦♥s ❛r❡ ♣r❡s❡r✈❡❞ ✉♥❞❡r t❤❡ ❧✐♠✐t t♦ ♣r♦❞✉❝❡ t❤❡ ♠❛t❝❤✐♥❣ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s✳ ❚❤❡ ✐♥t❡❣r❛❧ ❢♦❧❧♦✇s t❤❡ ❘✐❡♠❛♥♥ s✉♠✱ ❡✈❡r② t✐♠❡✿
❚❤❡ ❢♦r♠✉❧❛ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ✐s✿
Σf · ∆x = f (c1 ) ∆x1 + f (c2 ) ∆x2 + ... + f (cn ) ∆xn ,
✶✳✼✳
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✻✻
✇❤❡r❡ t❤❡ ♣♦✐♥ts
a = x0 ≤ c1 ≤ x1 ≤ c2 ≤ x2 ≤ ... ≤ cn ≤ xn = b ♠❛❦❡ ✉♣ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢ ❚❤❡ ❘✐❡♠❛♥♥ s✉♠ r❡♠❛✐♥s ❥✉st ❛
[a, b]✳
s✉♠✳ ❲❡✱ t❤❡r❡❢♦r❡✱ ❝❛♥ ✉s❡ s♦♠❡ ♦❢ t❤❡ ✈❡r② ❡❧❡♠❡♥t❛r② ❛❧❣❡❜r❛✐❝ ❢❛❝ts✳
❲❤✐❧❡ ❛❞❞✐♥❣✱ ✇❡ ❝❛♥ r❡✲❣r♦✉♣ t❤❡ t❡r♠s ❢r❡❡❧②❀ ✐♥ ♣❛rt✐❝✉❧❛r✱ ✇❡ ❝❛♥ r❡♠♦✈❡ t❤❡ ♣❛r❡♥t❤❡s❡s✿
(a + b) + c = a + (b + c) = a + b + c . ❋♦r s✉♠s✱ ✇❡ ❤❛✈❡✿
(u1 + u2 + ... + un ) + (v1 + v2 + ... + vm ) = u1 + u2 + ... + un + v1 + v2 + ... + vm . ❚❤❡ st❛t❡♠❡♥t ✐s ❛❜♦✉t t❤❡ ❢❛❝t t❤❛t ✇❤❡♥ ❛❞❞✐♥❣✱ ✇❡ ❝❛♥ ❝❤❛♥❣❡ t❤❡ ♦r❞❡r ♦❢ t❡r♠s ❢r❡❡❧②❀ t❤✐s ✐s ❝❛❧❧❡❞ t❤❡
❆ss♦❝✐❛t✐✈✐t② Pr♦♣❡rt② ♦❢ ❛❞❞✐t✐♦♥✳ ❚❤✐s ✐s ❛❧s♦ t❤❡ ❆❞❞✐t✐✈✐t② ❘✉❧❡ ❢♦r ❙✉♠s ✭s❡❡♥ ✐♥ ❱♦❧✉♠❡ ✶✱ ❈❤❛♣t❡r
✶P❈✲✶✮✳ ◆♦t ♠✉❝❤ t♦ ❝❤❛♥❣❡ ✇❤❡♥ ✇❡ ❝♦♥s✐❞❡r t❤❡ s✉♠s ♦❢ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦♥ ❛ ♣❛rt✐t✐♦♥✳ ■❢ ✇❡ ❤❛✈❡ ♣❛rt✐t✐♦♥s ♦❢ t✇♦ ❛❞❥❛❝❡♥t ✐♥t❡r✈❛❧s✱ ✇❡ ❝❛♥ ❥✉st ❝♦♥t✐♥✉❡ t♦ ❛❞❞ t❡r♠s✱ t❤✉s ❝r❡❛t✐♥❣ ❛ ✏❧♦♥❣❡r✑ s✉♠✿
❖r ✇❡ t❤✐♥❦ ♦❢ t❤❡s❡ ❛s ❛r❡❛s✳ ❚❤❡ ❛❧❣❡❜r❛ ✐s ❛s ❢♦❧❧♦✇s✿ ❚❤❡♦r❡♠ ✶✳✼✳✶✿ ❆❞❞✐t✐✈✐t② ♦❢ ❙✉♠s ❚❤❡ s✉♠ ♦❢ t❤❡ s✉♠s ♦✈❡r t✇♦ ❝♦♥s❡❝✉t✐✈❡ ♣❛rts ♦❢ ❛♥ ✐♥t❡r✈❛❧ ✐s t❤❡ s✉♠ ♦✈❡r t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✳
■♥ ♦t❤❡r ✇♦r❞s✱ ❢♦r ❛♥② ❢✉♥❝t✐♦♥ ♦❢ ✐♥t❡r✈❛❧s
[a, b]
❛♥❞
[b, c]✱
f
❛♥❞ ❢♦r ❛♥② ❢✉♥❝t✐♦♥
f
❛♥❞ ❢♦r ❛♥② ♣❛rt✐t✐♦♥s
✇❡ ❤❛✈❡✿
Σg [a,b] + Σg [b,c] = Σg [a,c]
❲❤❛t ✐❢ t❤❡s❡ s✉♠s ❛r❡
❘✐❡♠❛♥♥ s✉♠s❄ ◆♦t ♠✉❝❤ ❝❤❛♥❣❡s✿
❚❤❡♦r❡♠ ✶✳✼✳✷✿ ❆❞❞✐t✐✈✐t② ♦❢ ❘✐❡♠❛♥♥ ❙✉♠s ❚❤❡ s✉♠ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦✈❡r t✇♦ ❝♦♥s❡❝✉t✐✈❡ ♣❛rts ♦❢ ❛♥ ✐♥t❡r✈❛❧ ✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦✈❡r t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✳
■♥ ♦t❤❡r ✇♦r❞s✱ ❢♦r ❛♥② ❢✉♥❝t✐♦♥
[b, c]✱
f
❛♥❞ ❢♦r ❛♥② ♣❛rt✐t✐♦♥s ♦❢ ✐♥t❡r✈❛❧s
✇❡ ❤❛✈❡✿
Σf · ∆x [a,b] + Σf · ∆x [b,c] = Σf ∆x [a,c]
[a, b]
❛♥❞
✶✳✼✳
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✻✼
Pr♦♦❢✳
❙✉♣♣♦s❡ t❤❡ t✇♦ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥s✱ P ❛♥❞ Q✱ ❛r❡ ❣✐✈❡♥ ❜②✿ P :
a = x0 ≤ c1 ≤ x1 ≤ c2 ≤ x2 ≤ ... ≤ cn ≤ xn = b
Q:
b = y0 ≤ d1 ≤ y1 ≤ d2 ≤ y2 ≤ ... ≤ dm ≤ xm = c
❲❡ r❡♥❛♠❡ t❤❡ ✐t❡♠s ♦♥ t❤❡ ❧❛tt❡r ❧✐st ❛♥❞ ❢♦r♠ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢ [a, c]✿ P ∪ Q : a = x0 ≤ c1 ≤ x1 ≤ c2 ≤ ... ≤ cn ≤ xn ≤ cn+1 ≤ xn+1 ≤ cn+2 ≤ xn+2 ≤ ... ≤ cn+m ≤ xn+m = c
❆♣♣❧②✐♥❣ t❤❡ ❞❡✜♥✐t✐♦♥ t♦ t❤❡ ✐♥t❡r✈❛❧s [a, b] ❛♥❞ [b, c] ❛♥❞ t❤❡♥ t♦ [a, c]✱ ✇❡ ❤❛✈❡✿ Σf · ∆x [a,b] + Σf · ∆x [b,c] = (f (c1 ) + f (c2 ) + ... + f (cn ))
+ (f (cn+1 ) + f (cn+2 ) + ... + f (cn+m )) = Σf ∆x [a,c] .
❚♦ ✉s❡ t❤❡ ❛r❡❛ ♠❡t❛♣❤♦r✱ ✐♠❛❣✐♥❡ t❤❛t ✇❡ ❤❛✈❡ ③♦♦♠❡❞ ♦✉t ♦❢ t❤❡ ♣✐❝t✉r❡ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿
❚❤❡ r❡s✉❧t ✐s ❡q✉❛❧❧② ❛♣♣❧✐❝❛❜❧❡ t♦ t❤❡ ✐♥t❡❣r❛❧s❀ t❤❡ ❢♦r♠✉❧❛ ✐♥ t❤❡ t❤❡♦r❡♠ ❛❞❞s t❤❡ ❛r❡❛s ♦❢ t❤❡s❡ t✇♦ ❛❞❥❛❝❡♥t r❡❣✐♦♥s✿ ❚❤❡♦r❡♠ ✶✳✼✳✸✿ ❆❞❞✐t✐✈✐t② ♦❢ ■♥t❡❣r❛❧ ❚❤❡ s✉♠ ♦❢ t❤❡ ✐♥t❡❣r❛❧s ♦✈❡r t✇♦ ❝♦♥s❡❝✉t✐✈❡ ♣❛rts ♦❢ ❛♥ ✐♥t❡r✈❛❧ ✐s t❤❡ ✐♥t❡❣r❛❧ ♦✈❡r t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✳
■♥ ♦t❤❡r ✇♦r❞s✱ ❢♦r ❛♥② ❢✉♥❝t✐♦♥ ✐♥t❡❣r❛❜❧❡
[a, c]✱
f
✐♥t❡❣r❛❜❧❡ ♦✈❡r
[a, b]
❛♥❞ ♦✈❡r
[b, c]
✐s ❛❧s♦
❛♥❞ ✇❡ ❤❛✈❡✿
Z
b
f dx + a
Z
c
f dx = b
Z
c
f dx a
Pr♦♦❢✳
❚❤❡ ✐♥t❡❣r❛❜✐❧✐t② ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❧❛st t❤❡♦r❡♠ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✳ ❚♦ ♣r♦✈❡ t❤❡ ❢♦r♠✉❧❛✱ ✇❡ st❛rt ✇✐t❤ t❤✐s ❢❛❝t ❛❜♦✉t t❤❡ ♠❡s❤ ♦❢ ♣❛rt✐t✐♦♥s✿ |P ∪ Q| = max{|P |, |Q|} .
✶✳✼✳
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✻✽
❖♥❝❡ ✇❡ ♠♦✈❡ t♦ s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐t✐♦♥s✱ t❤✐s ❢❛❝t ✐♠♣❧✐❡s t❤❡ ❢♦❧❧♦✇✐♥❣✿
|Pk ∪ Qk | → 0 ⇐⇒ |Pk | → 0
❛♥❞
|Qk | → 0 .
◆❡①t✱ ✇❡ t❛❦❡ t❤❡ ❢♦r♠✉❧❛ ✐♥ ♣❛rt ✭❆✮✱ t❤❡ ❆❞❞✐t✐✈✐t② ♦❢ ❘✐❡♠❛♥♥ s✉♠s✱ t❛❦❡ t❤❡ ❧✐♠✐t ✇✐t❤ ❛♥❞ ✉s❡ t❤❡
❙✉♠ ❘✉❧❡ ❢♦r ▲✐♠✐ts ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✶✳
k→∞
❆s ②♦✉ ❝❛♥ s❡❡✱ t❤❡ ✇♦r❞ ✏❛❞❞✐t✐✈✐t②✑ ✐♥ t❤❡ ♥❛♠❡ ♦❢ t❤❡ t❤❡♦r❡♠ ❞♦❡s♥✬t r❡❢❡r t♦ ❛❞❞✐♥❣ t❤❡ t❡r♠s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❜✉t t♦
❛❞❞✐♥❣ t❤❡ ❞♦♠❛✐♥s ♦❢ ✐♥t❡❣r❛t✐♦♥✱ ✐✳❡✳✱ t❤❡ ✉♥✐♦♥ ♦❢ t❤❡ t✇♦ ✐♥t❡r✈❛❧s✳
❚❤❡ ✐❞❡❛
❜❡❝♦♠❡s ❡s♣❡❝✐❛❧❧② ✈✐✈✐❞ ✇❤❡♥ t❤❡ ❢♦r♠✉❧❛ ✐s ✇r✐tt❡♥ ✐♥ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♥♦t❛t✐♦♥✿
Z
f dx + [a,b]
+
♦r❛♥❣❡
Z
f dx = [b,c]
=
❣r❡❡♥
Z
f dx [a,b]∪[b,c]
❜❧✉❡
❚❤❡ ✐♥t❡r✈❛❧ ❜❡❝♦♠❡s t❤❡ ✐♥♣✉t ✈❛r✐❛❜❧❡✱ s✉❜❥❡❝t t♦ s♦♠❡ ❛❧❣❡❜r❛✳ ❊①❡r❝✐s❡ ✶✳✼✳✹
❋✐♥✐s❤ t❤❡ ❢♦r♠✉❧❛✿
❋♦r t❤❡
Z
f dx + [a,b]
Z
f dx = ... [c,d]
♠♦t✐♦♥ ♠❡t❛♣❤♦r✱ ✇❡ ❤❛✈❡✿
❞✐st❛♥❝❡ ❝♦✈❡r❡❞ ❞✉r✐♥❣ t❤❡ ✶st ❤♦✉r
+
❞✐st❛♥❝❡ ❝♦✈❡r❡❞ ❞✉r✐♥❣ t❤❡ ✷♥❞ ❤♦✉r
=
❞✐st❛♥❝❡ ❞✉r✐♥❣ t❤❡ t✇♦ ❤♦✉rs
❚❤❡ ❢♦❧❧♦✇✐♥❣ ✐s ❛♥ ✐♠♣♦rt❛♥t ❝♦r♦❧❧❛r②✳ ❲❡ ❛❧s♦ ❛❝❝❡♣t ✐t ✇✐t❤♦✉t ♣r♦♦❢ t❤❡ ❝♦r♦❧❧❛r② ❜❡❧♦✇✳ ❚❤❡♦r❡♠ ✶✳✼✳✺✿ ■♥t❡❣r❛❜✐❧✐t② ♦❢ P✐❡❝❡✇✐s❡ ❈♦♥t✐♥✉♦✉s ❋✉♥❝t✐♦♥s
❆❧❧ ♣✐❡❝❡✇✐s❡ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥s ✭✐✳❡✳✱ ❝♦♥t✐♥✉♦✉s ♦♥ ❛❧❧ ❜✉t ❛ ✜♥✐t❡ ♥✉♠❜❡r ♦❢ ♣♦✐♥ts ✇✐t❤ ♦♥❧② ❥✉♠♣ ❞✐s❝♦♥t✐♥✉✐t✐❡s✮ ♦♥ [a, b] ❛r❡ ✐♥t❡❣r❛❜❧❡ ♦♥ [a, b]✳ Pr♦♦❢✳
■t ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ✐♥t❡❣r❛❜✐❧✐t② ♦❢ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥s ✭❧❛st s❡❝t✐♦♥✮ ❛♥❞ t❤❡
❆❞❞✐t✐✈✐t② ❘✉❧❡✳
■♥ ♣❛rt✐❝✉❧❛r✱ ❛❧❧ st❡♣✲❢✉♥❝t✐♦♥s ❛r❡ ✐♥t❡❣r❛❜❧❡✳ ❆❢t❡r ❛❧❧✱ t❤❡② ❡✈❡♥ ❧♦♦❦ ❧✐❦❡ ❘✐❡♠❛♥♥ s✉♠s✿
✶✳✼✳
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✻✾
❆s ②♦✉ ❝❛♥ s❡❡✱ t❤❡ ♣r♦♣❡rt✐❡s ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ❢♦❧❧♦✇ ❢r♦♠ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✕ ✈✐❛ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ r✉❧❡s ♦❢ ❧✐♠✐ts✳ ❚❤❡ ❣r❛♣❤✐❝❛❧ ✐♥t❡r♣r❡t❛t✐♦♥s ♦❢ t❤❡ t✇♦ ♣r♦♣❡rt✐❡s ❛r❡ ❛❧s♦ t❤❡ s❛♠❡❀ ✇❡ ❥✉st ③♦♦♠ ♦✉t✳
n
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ t❤❡ r✐❣❤t✲❡♥❞ s✉♠❀ t❤❡r❡ ❛r❡
✐♥t❡r✈❛❧s ♦❢ ❡q✉❛❧ ❧❡♥❣t❤✱
∆xi = h = ❜❡t✇❡❡♥
a
❛♥❞
b
b−a , n
❛♥❞ t❤❡s❡ ❛r❡ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✿
ci = a, a + h, ... , b − h . ❆ ♣r♦♦❢ ❢♦r ❧❡❢t✲❡♥❞ s✉♠ ❛♥❞ ♠✐❞✲♣♦✐♥ts s✉♠s ✇♦✉❧❞ ❜❡ ✈✐rt✉❛❧❧② ✐❞❡♥t✐❝❛❧✳ ❇❡❧♦✇✱ ✇❡ ✇✐❧❧ ❜❡ r❡✈✐❡✇✐♥❣ s♦♠❡ ❢❛❝ts ❛❜♦✉t
s✉♠s ♣r❡s❡♥t❡❞ ✐♥ ❈❤❛♣t❡r ✶P❈✲✶ ❛♥❞ t❤❡♥ ❛♣♣❧②✐♥❣ t❤❡♠ t♦
t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♣r♦❞✉❝✐♥❣✱ ✈✐❛ ❧✐♠✐ts✱ r❡s✉❧ts ❛❜♦✉t t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s✳ ❈❛♥ ✇❡ ❝♦♠♣❛r❡ t❤❡ ✈❛❧✉❡s ♦❢ t✇♦ ❘✐❡♠❛♥♥ s✉♠s❄ ❈♦♥s✐❞❡r t❤✐s s✐♠♣❧❡ ❛❧❣❡❜r❛✿
≤ U
u
≤ V
v
u+v ≤ U +V ❲❡ ❝❛♥ ❦❡❡♣ ❛❞❞✐♥❣ t❡r♠s✿
up ≤ Up , up+1 ≤ Up+1 ✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
uq ≤ Uq up + ... + uq ≤ Up + ... + Uq q q X X un ≤ Un n=p
❚❤❛t✬s t❤❡
n=p
❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙✉♠s ✭s❡❡♥ ✐♥ ❱♦❧✉♠❡ ✶✱ ❈❤❛♣t❡r ✶P❈✲✶✮✳
❋♦r ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦✈❡r ♣❛rt✐t✐♦♥s✱ ✐❢ ♦♥❡ ❢✉♥❝t✐♦♥ ✏❞♦♠✐♥❛t❡s✑ ❛♥♦t❤❡r✱ t❤❡♥ s♦ ❞♦❡s ✐ts s✉♠✱ ❘✐❡♠❛♥♥ s✉♠✱ ❛♥❞ ❧❛t❡r t❤❡ ✐♥t❡❣r❛❧✿
✶✳✼✳
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✼✵
❲❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿ ❚❤❡♦r❡♠ ✶✳✼✳✻✿ ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙✉♠s ❚❤❡ s✉♠ ♦❢ ❛ s♠❛❧❧❡r ❢✉♥❝t✐♦♥ ✐s s♠❛❧❧❡r✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢
[a, b]✱
f
❛♥❞
g
❛r❡ ❢✉♥❝t✐♦♥s✱ t❤❡♥ ❢♦r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧
✇❡ ❤❛✈❡✿
f (x) ≥ g(x)
♦♥
[a, b] =⇒ Σf ≥ Σg
✇❤❡r❡ t❤❡ s✉♠♠❛t✐♦♥s ❛r❡ ♦✈❡r ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢
[a, b]✳
❲❤❛t ✐❢ t❤❡s❡ s✉♠s ❛r❡ ❘✐❡♠❛♥♥ s✉♠s❄ ❚❤❡♦r❡♠ ✶✳✼✳✼✿ ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❘✐❡♠❛♥♥ ❙✉♠s ❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ s♠❛❧❧❡r ❢✉♥❝t✐♦♥ ✐s s♠❛❧❧❡r✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢
[a, b]✱
f
❛♥❞
g
❛r❡ ❢✉♥❝t✐♦♥s✱ t❤❡♥ ❢♦r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧
✇❡ ❤❛✈❡✿
f (x) ≥ g(x)
♦♥
[a, b] =⇒ Σf · ∆x ≥ Σg · ∆x
✇❤❡r❡ t❤❡ s✉♠♠❛t✐♦♥s ❛r❡ ♦✈❡r ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢
[a, b]✳
Pr♦♦❢✳
❆♣♣❧②✐♥❣ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠ t♦ t❤❡ ❢✉♥❝t✐♦♥ f ❛♥❞ t❤❡♥ t♦ g ✱ ✇❡ ❤❛✈❡✿ Σf · ∆x (b) = f (a) + f (a + h) + f (a + 2h) + ... + f (b − h) ≥ g(a) + g(a + h) + g(a + 2h) + ... + g(b − h)
= Σg · ∆x (b) .
■❢ ✇❡ ③♦♦♠ ♦✉t✱ ✇❡ s❡❡ t❤❛t t❤❡ ❧❛r❣❡r ❢✉♥❝t✐♦♥ ❛❧✇❛②s ❝♦♥t❛✐♥s ❛ ❧❛r❣❡r ❛r❡❛ ✉♥❞❡r ✐ts ❣r❛♣❤✿
✶✳✼✳
✼✶
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
❙♦✱ ✇❡ t❛❦❡ t❤❡ ❧✐♠✐t ♦❢ t❤✐s ✐♥❡q✉❛❧✐t② ❛s ∆x → 0✿ ❚❤❡♦r❡♠ ✶✳✼✳✽✿ ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❘✐❡♠❛♥♥ ■♥t❡❣r❛❧s ❚❤❡ ✐♥t❡❣r❛❧ ♦❢ ❛ s♠❛❧❧❡r ❢✉♥❝t✐♦♥ ✐s s♠❛❧❧❡r✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢
f
❛♥❞
g
❛r❡ ❢✉♥❝t✐♦♥s✱ t❤❡♥ ❢♦r ❛♥②
f (x) ≥ g(x) ♣r♦✈✐❞❡❞
f
❛♥❞
g
♦♥
[a, b] =⇒
❛r❡ ✐♥t❡❣r❛❜❧❡ ♦✈❡r
Z
a, b
✇✐t❤
Z
g dx
b a
f dx ≥
a < b✱
✇❡ ❤❛✈❡✿
b a
[a, b]✳
Pr♦♦❢✳
◆♦✇ t❛❦❡ t❤❡ ❧✐♠✐t ✇✐t❤ n → ∞ ❛♥❞ ✉s❡ t❤❡ ❈♦♠♣❛r✐s♦♥
❘✉❧❡ ❢♦r ▲✐♠✐ts
❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✶✳
❊①❛♠♣❧❡ ✶✳✼✳✾✿ ❝♦♠♣❛r✐s♦♥ ♦❢ ♥❡❣❛t✐✈❡ ✐♥t❡❣r❛❧s
❯♥❢♦rt✉♥❛t❡❧②✱ t❤❡ ❛r❡❛ ✐♥t❡r♣r❡t❛t✐♦♥ ♦❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✇✐❧❧ ♠❛t❝❤ ♦✉r ✐♥t✉✐t✐♦♥ ♦♥❧② ❢♦r ❛s ❧♦♥❣ ❛s t❤❡ ❛r❡❛s ❛r❡ ♣♦s✐t✐✈❡✳ ❚❤❡ r❡❛s♦♥ ✐s t❤❛t ✇❡ ♠❡❛s✉r❡ t❤❡ ❛r❡❛s ❢r♦♠ t❤❡ x✲❛①✐s t♦ t❤❡ ❣r❛♣❤✳ ❚❤❛t ✐s ✇❤② ✇❤❡♥ t❤❡ ❢✉♥❝t✐♦♥s ❛r❡ ♥❡❣❛t✐✈❡✱ t❤❡ ❛r❡❛s ❛r❡ ♥❡❣❛t✐✈❡ t♦♦✳ ❚❤❡ ❝♦♠♣❛r✐s♦♥ t❤❡♥ ❛♣♣❡❛rs t♦ ❜❡ ✇r♦♥❣✿
❇✉t t❤❡ ❝♦♠♣❛r✐s♦♥ ❤❛s♥✬t ❜❡❡♥ ✢✐♣♣❡❞✦ ❚❤❡r❡ ♠❛② ❜❡ ❛ s✐♠✐❧❛r ❝♦♥✢✐❝t ❢♦r t❤❡ ✐♥t❡r♣r❡t❛t✐♦♥ ♦❢ t❤✐s r❡s✉❧t ✐♥ t❡r♠s ♦❢ ♠♦t✐♦♥✳ ❚❤✐s s✐♠♣❧❡ ✐♥t❡r♣r❡t❛t✐♦♥ ❢❛✐❧s ❜❡❝❛✉s❡ ✐t ❞♦❡s♥✬t t❛❦❡ ✐♥t♦ ❛❝❝♦✉♥t t❤❡ ❞✐r❡❝t✐♦♥s✿ ❚❤❡ ❢❛st❡r ❝♦✈❡rs t❤❡ ❧♦♥❣❡r ❞✐st❛♥❝❡✳ ❇❡tt❡r st✐❧❧✿ ❚❤❡ ❢❛st❡r ②♦✉ ❣♦ ✐♥ ❛ ♣❛rt✐❝✉❧❛r ❞✐r❡❝t✐♦♥✱ t❤❡ ❢❛rt❤❡r ②♦✉ ♣r♦❣r❡ss✳ ❊①❡r❝✐s❡ ✶✳✼✳✶✵
Pr♦✈❡ t❤❡ r❡st ♦❢ t❤❡ t❤❡♦r❡♠✳
✶✳✼✳
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✼✷
❊①❡r❝✐s❡ ✶✳✼✳✶✶
▼♦❞✐❢② t❤❡ ♣r♦♦❢ ❢♦r✿ ✭❛✮ ❧❡❢t✲❡♥❞✱ ✭❜✮ ♠✐❞✲♣♦✐♥t✱ ❛♥❞ ✭❝✮ ❣❡♥❡r❛❧ ❘✐❡♠❛♥♥ s✉♠s✳ ❊①❡r❝✐s❡ ✶✳✼✳✶✷
❲❤❛t ❤❛♣♣❡♥s ✇❤❡♥ a > b❄ ❘❡❧❛t❡❞ r❡s✉❧ts ❛r❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿ ❚❤❡♦r❡♠ ✶✳✼✳✶✸✿ ❙tr✐❝t ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙✉♠s ❚❤❡ s✉♠ ♦❢ ❛ str✐❝t❧② s♠❛❧❧❡r ❢✉♥❝t✐♦♥ ✐s str✐❝t❧② s♠❛❧❧❡r✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢
[a, b]
✇✐t❤
a < b✱
f
❛♥❞
g
❛r❡ ❢✉♥❝t✐♦♥s✱ t❤❡♥ ❢♦r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧
✇❡ ❤❛✈❡✿
f (x) < g(x)
♦♥
[a, b] =⇒ Σf < Σg
✇❤❡r❡ t❤❡ s✉♠♠❛t✐♦♥s ❛r❡ ♦✈❡r ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢
[a, b]✳
❚❤❡♦r❡♠ ✶✳✼✳✶✹✿ ❙tr✐❝t ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❘✐❡♠❛♥♥ ❙✉♠s ❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ str✐❝t❧② s♠❛❧❧❡r ❢✉♥❝t✐♦♥ ✐s str✐❝t❧② s♠❛❧❧❡r✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢
[a, b]
✇✐t❤
a < b✱
f
❛♥❞
g
❛r❡ ❢✉♥❝t✐♦♥s✱ t❤❡♥ ❢♦r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧
✇❡ ❤❛✈❡✿
f (x) < g(x)
♦♥
[a, b] =⇒ Σf · ∆x < Σg · ∆x
✇❤❡r❡ t❤❡ s✉♠♠❛t✐♦♥s ❛r❡ ♦✈❡r ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢
[a, b]✳
❊①❡r❝✐s❡ ✶✳✼✳✶✺
❙t❛t❡ ❛♥❞ ♣r♦✈❡ t❤❡ ❙tr✐❝t ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ✐♥t❡❣r❛❧s✳ ❍✐♥t✿ ❚❤❡r❡ ✐s ♥♦ ❙tr✐❝t ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❧✐♠✐ts✳ ❲❤❛t ✐❢ ✇❡ ❦♥♦✇ ♦♥❧② ❛ ♣r✐♦r✐ ❜♦✉♥❞s ♦❢ t❤❡ ❢✉♥❝t✐♦♥❄ ❙✉♣♣♦s❡ t❤❡ r❛♥❣❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ f ❧✐❡s ✇✐t❤✐♥ t❤❡ ✐♥t❡r✈❛❧ [m, M ]✳ ❚❤❡♥ ✐ts ❣r❛♣❤ ❧✐❡s ❜❡t✇❡❡♥ t❤❡ ❤♦r✐③♦♥t❛❧ ❧✐♥❡s y = m ❛♥❞ y = M ✱ ✇✐t❤ m < M ✳
❚❤❡♥✱ ✇❤❛t ❝❛♥ ✇❡ s❛② ❛❜♦✉t t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ f ❄ ❲❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ✜♥❞ ❛♥ ❡st✐♠❛t❡ ❢♦r t❤❡ ❛r❡❛ ♦❢ t❤❡ ♦r❛♥❣❡ r❡❣✐♦♥ ✐♥ t❡r♠s ♦❢ a✱ b✱ m✱ M ✳ ❇❡❧♦✇✱ t❤❡ ②❡❧❧♦✇ r❡❣✐♦♥ ♦♥ t❤❡ ❧❡❢t ✐s ❧❡ss t❤❛♥ t❤❡ ♦r❛♥❣❡ ❛r❡❛✳ ❖♥ t❤❡ r✐❣❤t✱ t❤❡ ❣r❡❡♥ ❛r❡❛ ✐s ❧❛r❣❡r✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡s❡ t✇♦ r❡❣✐♦♥s ❛r❡ r❡❝t❛♥❣❧❡s ❛♥❞ t❤❡✐r ❛r❡❛s ❛r❡ ❡❛s② t♦ ❝♦♠♣✉t❡✳ ❲❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥❝❧✉s✐♦♥s✿ t❤❡ s♠❛❧❧❡r r❡❝t❛♥❣❧❡ ⊂ t❤❡ r❡❣✐♦♥ ✉♥❞❡r t❤❡ ❣r❛♣❤ ⊂ t❤❡ ❧❛r❣❡r r❡❝t❛♥❣❧❡ .
✶✳✼✳
Pr♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✼✸
❚❤❡② ♣r♦✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥❡q✉❛❧✐t✐❡s✿ t❤❡ ❛r❡❛ ♦❢ t❤❡ s♠❛❧❧❡r r❡❝t❛♥❣❧❡
≤
t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤
≤
t❤❡ ❛r❡❛ ♦❢ t❤❡ ❧❛r❣❡r r❡❝t❛♥❣❧❡ .
❋♦r t❤❡ ❣❡♥❡r❛❧ ❝❛s❡✱ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿ ❚❤❡♦r❡♠ ✶✳✼✳✶✻✿ ❇♦✉♥❞s ❢♦r ❘✐❡♠❛♥♥ ❙✉♠s ❙✉♣♣♦s❡
f
✐s ❛ ❢✉♥❝t✐♦♥ ❛♥❞ t❤❛t ❢♦r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧
[a, b]✱
✇❡ ❤❛✈❡✿
m ≤ f (x) ≤ M , ❢♦r ❛❧❧
x
✇✐t❤
a ≤ x ≤ b✳
❚❤❡♥✱ ✇❡ ❤❛✈❡✿
m(b − a) ≤ Σf · ∆x ≤ M (b − a) ✇❤❡r❡ t❤❡ s✉♠♠❛t✐♦♥ ✐s ♦✈❡r ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢
[a, b]✳
Pr♦♦❢✳
❋♦r ❡✐t❤❡r t❤✐s ✐♥❡q✉❛❧✐t✐❡s ❛♥❞ t❤❡ ♦♥❡ ✐♥ t❤❡ ♥❡①t t❤❡♦r❡♠✱ ✇❡ ❛♣♣❧② t❤❡ ❢r♦♠ t❤❡ ❧❛st s❡❝t✐♦♥ ❛♥❞ t❤❡ t❤❡
❈♦♠♣❛r✐s♦♥ ❚❤❡♦r❡♠
❇♦✉♥❞s ❘✉❧❡ ❢♦r ▲✐♠✐ts ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✶✳
❈♦♥st❛♥t ❋✉♥❝t✐♦♥ ❘✉❧❡
❛❜♦✈❡✳ ◆♦✇ t❛❦❡ t❤❡ ❧✐♠✐t ✇✐t❤
k→∞
❛♥❞ ✉s❡
◆♦✇ ✇❡ t❛❦❡ t❤❡ ❧✐♠✐t✳ ❚❤❡♦r❡♠ ✶✳✼✳✶✼✿ ❇♦✉♥❞s ❢♦r ■♥t❡❣r❛❧s ❙✉♣♣♦s❡
f
✐s ❛ ❢✉♥❝t✐♦♥ ❛♥❞ t❤❛t ❢♦r ❛♥②
a, b
✇✐t❤
a < b✱
✇❡ ❤❛✈❡✿
m ≤ f (x) ≤ M , ❢♦r ❛❧❧
x
✇✐t❤
a ≤ x ≤ b✳
■❢
f
✐s ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ ♦✈❡r
m(b − a) ≤
Z
[a, b]✱
t❤❡♥ ✇❡ ❤❛✈❡✿
b a
f dx ≤ M (b − a)
■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ❜♦✉♥❞s ❢♦r ❛ ❢✉♥❝t✐♦♥ ❝r❡❛t❡ ❜♦✉♥❞s ❢♦r t❤❡ ✐♥t❡❣r❛❧✳ ❊①❡r❝✐s❡ ✶✳✼✳✶✽
❙t❛t❡ ❛♥❞ ♣r♦✈❡ t❤❡ ❙tr✐❝t ❇♦✉♥❞s ❢♦r ■♥t❡❣r❛❧s✳ ❊①❛♠♣❧❡ ✶✳✼✳✶✾✿ ❛ ♣r✐♦r✐ ❡st✐♠❛t❡s
❲❡ ❦♥♦✇✱
❛ ♣r✐♦r✐✱ t❤❛t t❤❡ ✈❛❧✉❡s ♦❢ s✉❝❤ ❛ tr✐❣♦♥♦♠❡tr✐❝ ❢✉♥❝t✐♦♥ ❛s sin ✭❛♥❞ cos✮ ❧✐❡ ✇✐t❤✐♥ [−1, 1]✳
❚❤❡♥✱ ✇❡ ❤❛✈❡✿
−1 ≤ −1(b − a) ≤
sin x Z
b a
≤ 1
❢♦r ❛❧❧
x
=⇒
sin x dx ≤ 1(b − a)
❙♦✱ ❡✈❡♥ t❤♦✉❣❤ ❛❧❧ ✇❡ ❦♥♦✇ ❛❜♦✉t t❤❡ ❢✉♥❝t✐♦♥ ✐s ❥✉st t❤❡s❡ t✇♦✱ ✈❡r② ❝r✉❞❡✱ ❡st✐♠❛t❡s✱ ✇❡ t❤❛t t❤❡ ✐♥t❡❣r❛❧ ✇✐❧❧ ❧✐❡ ✇✐t❤✐♥ t❤❡ ✐♥t❡r✈❛❧
[a − b, b − a]✳
❣✉❛r❛♥t❡❡
✶✳✽✳
✼✹
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
✶✳✽✳ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
❙♦ ❢❛r✱ ✇❡ ❤❛✈❡ ❧❡❛r♥❡❞ t❤❡ ❢♦❧❧♦✇✐♥❣✿ ◮ ❚❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ✉♥❞♦ t❤❡ ❡✛❡❝t ♦❢ ❡❛❝❤ ♦t❤❡r✳
❚❤❡ s✐♠♣❧❡ r❡❛s♦♥ ✐s t❤❛t t❤❡ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥ t❤❡② ❛r❡ ❝r❡❛t❡❞ ❜② ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r ♦♥❡ ❜② ♦♥❡✳ ◆♦✇✱ s✐♥❝❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ❛r❡ t❤❡ r❡❛s♦♥ t❤❛t t❤❡② ❤❛✈❡ t❤❡ s❛♠❡ r❡❧❛t✐♦♥✿
❧✐♠✐ts
♦❢ t❤❡s❡ t✇♦ r❡s♣❡❝t✐✈❡❧②✱ ✐t st❛♥❞s t♦
◮ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✉♥❞♦ t❤❡ ❡✛❡❝t ♦❢ ❡❛❝❤ ♦t❤❡r✳
❇❡❧♦✇✱ t❤❡ ❢✉♥❝t✐♦♥ ✐s s❛♠♣❧❡❞ t♦ ♣r♦❞✉❝❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✇❤✐❝❤ ✉♥❞❡r t❤❡ ❧✐♠✐t ♣r♦❞✉❝❡ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ t♦ ❜❡ ❞✐✛❡r❡♥t✐❛t❡❞✿
❲✐❧❧ ✇❡ ♠❛❦❡ t❤❡ ❢✉❧❧ ❝✐r❝❧❡❄ ❙♦✱ ✇❤❛t ❞♦❡s t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ❤❛✈❡ t♦ ❞♦ ✇✐t❤ ❛♥t✐❞❡r✐✈❛t✐✈❡s❄ ❙❛♠❡ ❛s ✇❤❛t t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❞♦❡s✦ ❊①❛♠♣❧❡ ✶✳✽✳✶✿ ♣♦s✐t✐♦♥s ❛♥❞ ✈❡❧♦❝✐t✐❡s
❲❡ ❛❧r❡❛❞② ❦♥♦✇ t❤❡ ❛♥s✇❡r✱ ❢♦r t❤❡ ♠♦t✐♦♥ ♠❡t❛♣❤♦r✳ ■❢ y = f (x) ✐s t❤❡ ✈❡❧♦❝✐t② ❛♥❞ x ✐s t❤❡ t✐♠❡✱ t❤❡♥ ✇❡ ❤❛✈❡✿ • ❖♥❡ ♦❢ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡s ✐s t❤❡ ♣♦s✐t✐♦♥ ❢✉♥❝t✐♦♥✱ F (x)✳ • ❚❤❡ ✐♥t❡❣r❛❧ ✐s t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ❞✉r✐♥❣ [a, b]✱
Zb
f dx✳
a
■❢ ✇❡ ❦♥♦✇ t❤❡ ♣♦s✐t✐♦♥ ❛t ❛❧❧ t✐♠❡s✱ ✇❡ ❝❛♥ ❝❡rt❛✐♥❧② ❝♦♠♣✉t❡ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ❛t ❛♥② ♠♦♠❡♥t✿ F (b) |{z}
❝✉rr❡♥t ♣♦s✐t✐♦♥
−
F (a) | {z }
✐♥✐t✐❛❧ ♣♦s✐t✐♦♥
❈♦♥✈❡rs❡❧②✱ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ✐s ❢♦✉♥❞ ❢♦r ❛♥② x > a ❛s
Zx
f dx✳ ❆❢t❡r ❛❧❧✱ t❤❡ t✇♦ ❛r❡ ❛ttr✐❜✉t❡s ♦❢ t❤❡
a
s❛♠❡ ♠♦t✐♦♥✱ ♥♦ ♠❛tt❡r ❤♦✇ t❤❡② ❛r❡ ❝♦♠♣✉t❡❞❀ t❤❡② ❝♦✲❡①✐st✳ ❊①❛♠♣❧❡ ✶✳✽✳✷✿ ❛r❡❛s ❛♥❞ t❛♥❣❡♥ts
◆♦✇✱ ✇❤❛t ❛❜♦✉t t❤❡ ❛r❡❛ ♠❡t❛♣❤♦r❄ ■t✬s ♥♦t tr❛♥s♣❛r❡♥t✳
✶✳✽✳
✼✺
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
❆♥❛❧♦❣♦✉s t♦ ✇❤❛t ✇❡ ❞✐❞ ❛❜♦✈❡ ❢♦r t❤❡ ❘✐❡♠❛♥♥ s✉♠✱ ✇❡ ❞❡✜♥❡ t❤❡ ❛r❡❛
A(x) =
❢✉♥❝t✐♦♥
♦❢ f t♦ ❜❡✿
✈❛r✐❡s z}|{ Zx
f (t) dt = ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦✈❡r [a, x] .
a
❚❤✐s ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ❤❛s ❛ ✈❛r✐❛❜❧❡ ❜❡②♦♥❞✳
✳ ■t✬s ❛❧s♦ ✐❧❧✉str❛t❡❞ ❜❡❧♦✇✿ x r✉♥s ❢r♦♠ a t♦ b ❛♥❞
✉♣♣❡r ❜♦✉♥❞
❲❡ ❝❛♥ s❡❡ ❤♦✇✱ ✇❤❡r❡✈❡r f ❤❛s ♣♦s✐t✐✈❡ ✈❛❧✉❡s✱ ❡✈❡r② ✐♥❝r❡❛s❡ ♦❢ x > a ❛❞❞s ❛ s❧✐❝❡ t♦ t❤❡ ❛r❡❛ ✭❧❡ss ✐♥ t❤❡ ♠✐❞❞❧❡✮ ❝❛✉s✐♥❣ A t♦ ✐♥❝r❡❛s❡ ✭s❧♦✇❡r ✐♥ t❤❡ ♠✐❞❞❧❡✮✳ ▼♦r❡♦✈❡r✱ ✇❤❡r❡✈❡r f ❤❛s ♥❡❣❛t✐✈❡ ✈❛❧✉❡s✱ t❤✐s s❧✐❝❡ ✇✐❧❧ ❤❛✈❡ ❛ ♥❡❣❛t✐✈❡ ❛r❡❛✱ t❤❡r❡❜② ❝❛✉s✐♥❣ A t♦ ❞❡❝r❡❛s❡✳ ❚❤❛t✬s ❛ ❜❡❤❛✈✐♦r ♦❢ ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ f ✦ ▲❡t✬s ❝♦♥s✐❞❡r ✐ts ❞❡r✐✈❛t✐✈❡✱ A′ ✳ ❋✐rst✱ ✐t✬s t❤❡ s❧♦♣❡✿
❲❡ ❣♦ ❛❧❧ t❤❡ ✇❛② ❜❛❝❦ t♦ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡✿ A(x + h) − A(x) h→0 h Z x+h Z x 1 = lim f dt f dt − h→0 h a a Z 1 x+h f dx . ❆❝❝♦r❞✐♥❣ t♦ t❤❡ ❆❞❞✐t✐✈✐t② ❘✉❧❡✳ = lim h→0 h x
A′ (x) = lim
❚❤❡ ❧❛st ✈❛❧✉❡ ✐s ✐❧❧✉str❛t❡❞ ♦♥ t❤❡ r✐❣❤t✿
✶✳✽✳ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
✼✻
❲❡ ❛r❡ ❧❡❢t ✇✐t❤ ❛ s❧✐❝❡ ♦❢ t❤❡ ❛r❡❛ ❛❜♦✈❡ t❤❡ s❡❣♠❡♥t
[x, x + h]❀
✐t ❧♦♦❦s ❧✐❦❡ ❛ tr❛♣❡③♦✐❞ ✇❤❡♥
h
✐s
s♠❛❧❧✳ ❲❤❛t ❤❛♣♣❡♥s t♦ t❤✐s ❧✐♠✐t❄ ▲❡t✬s ♠❛❦❡
h
s♠❛❧❧✳ ❚❤❡ ✏tr❛♣❡③♦✐❞✑ ✇✐❧❧ ❜❡ t❤✐♥♥❡r ❛♥❞ t❤✐♥♥❡r ❛♥❞ ✐ts t♦♣ ❡❞❣❡ ✇✐❧❧ ❧♦♦❦ ♠♦r❡ ❛♥❞
♠♦r❡ str❛✐❣❤t✱ ❛ss✉♠✐♥❣
f
✐s ❝♦♥t✐♥✉♦✉s✳ ❲❡ ❦♥♦✇ t❤❛t t❤❡ ❛r❡❛ ♦❢ ❛ tr❛♣❡③♦✐❞ ✐s t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡
♠✐❞✲❧✐♥❡ t✐♠❡s t❤❡ ❤❡✐❣❤t✳ ❚❤❡♥ ✇❡ ❤❛✈❡✿ ❛r❡❛ ♦❢ tr❛♣❡③♦✐❞ ✇✐❞t❤
=
❤❡✐❣❤t ✐♥ t❤❡ ♠✐❞❞❧❡ .
■t ❢♦❧❧♦✇s t❤❛t ✐ts ❤❡✐❣❤t ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜②
R x+h x
❚❤✐s ♦✉t❝♦♠❡ s✉❣❣❡sts t❤❛t
A′ = f ✳
f dx . h
❍♦✇❡✈❡r✱ ♣r♦✈✐♥❣ t❤❛t t❤❡ ❧✐♠✐t ❡①✐sts ✇♦✉❧❞ r❡q✉✐r❡ ❛ s✉❜t❧❡r
❛r❣✉♠❡♥t✳
❊①❡r❝✐s❡ ✶✳✽✳✸
❙❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❛r❡❛ ❢✉♥❝t✐♦♥ ♦❢ ❢✉♥❝t✐♦♥
f
♣❧♦tt❡❞ ❜❡❧♦✇ ❢♦r
a = 1✿
❊①❡r❝✐s❡ ✶✳✽✳✹
❙✉♣♣♦s❡ t❤❡ ❢✉♥❝t✐♦♥ ♣❧♦tt❡❞ ❛❜♦✈❡ ✐s t❤❡ ❛r❡❛ ❢✉♥❝t✐♦♥ ♦❢ s♦♠❡ ❢✉♥❝t✐♦♥✳ ❙❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢ t❤❛t ❢✉♥❝t✐♦♥✳ ❊①❡r❝✐s❡ ✶✳✽✳✺
Pr♦✈❡ t❤❛t t❤❡ ❛r❡❛ ❢✉♥❝t✐♦♥ ✐s ❝♦♥t✐♥✉♦✉s✳
✶✳✽✳
✼✼
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
❊①❡r❝✐s❡ ✶✳✽✳✻
❋✐♥✐s❤ t❤❡ ♣r♦♦❢ ❜② ✉s✐♥❣ t❤❡ ❙q✉❡❡③❡
❚❤❡♦r❡♠
f (x) ≤
❢♦r✿
A(x + h) − A(x) ≤ f (x + h) . h
❊①❛♠♣❧❡ ✶✳✽✳✼✿ tr✐❛♥❣❧❡
▲❡t✬s ❝♦♥✜r♠ t❤❡ ✐❞❡❛ ✇✐t❤ ❛ ❢❛♠✐❧✐❛r s❤❛♣❡✳ ❈♦♥s✐❞❡r f (x) = 2x .
▲❡t✬s ❝♦♠♣✉t❡ t❤❡ ❛r❡❛ ❢✉♥❝t✐♦♥✳
❲❡ ❤❛✈❡✿ A(x) =
Z
x
2x dx 0
= ❛r❡❛ ♦❢ tr✐❛♥❣❧❡ ✇✐t❤ ❜❛s❡ [0, x] 1 ✇✐❞t❤ · ❤❡✐❣❤t 2 1 = x · 2x 2 =
= x2 .
❲❤❛t✬s t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ f (x) = 2x ❛♥❞ A(x) = x2 ❄ ❲❡ ❦♥♦✇ t❤❡ ❛♥s✇❡r✿ x2
s♦ f ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ f ✦
′
= 2x ,
❚❤✐s ✐❞❡❛ ❛♣♣❧✐❡s t♦ ❛❧❧ ❢✉♥❝t✐♦♥s✳ ❚❤❡♦r❡♠ ✶✳✽✳✽✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ■
●✐✈❡♥ ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ f ♦♥ [a, b]✱ t❤❡ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❜② F (x) =
Z
x
f dx a
✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ f ♦♥ (a, b)❀ ✐✳❡✱ F′ = f .
✶✳✽✳
✼✽
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
❚❤✉s✱ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❝❛♥❝❡❧s t❤❡ ❡✛❡❝t ♦❢ t❤❡ ✭✈❛r✐❛❜❧❡✲❡♥❞✮ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✿ F ′ = f ✳ ❊①❡r❝✐s❡ ✶✳✽✳✾
❋✐♥❞ ❛ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ✇✐t❤ F (a) = 1✳ ❊①❡r❝✐s❡ ✶✳✽✳✶✵
❋✐♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢
Z
b
f dx✳
x
❇✉t t❤✐s ✐s ♦♥❧② ❛ ❤❛❧❢✦ ◆❡①t✱ ✇❡ s❡❡ ❤♦✇ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ❝❛♥❝❡❧s ✕ ✉♣ t♦ ❛ ❝♦♥st❛♥t ✕ t❤❡ ❡✛❡❝t ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❚❤❡♦r❡♠ ✶✳✽✳✶✶✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ■■ ✭◆❡✇t♦♥✲ ▲❡✐❜♥✐③ ❋♦r♠✉❧❛✮ ❋♦r ❛♥② ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥
f Z
♦♥
[a, b]
❛♥❞ ❛♥② ♦❢ ✐ts ❛♥t✐❞❡r✐✈❛t✐✈❡s
F✱
✇❡ ❤❛✈❡
b a
f dx = F (b) − F (a)
Pr♦♦❢✳
❲❡ st❛rt ✇✐t❤ ❛ ♣❛rt✐t✐♦♥ P ♦❢ ✐♥t❡r✈❛❧ [a, b] ✇✐t❤ n ✐♥t❡r✈❛❧s✳ ❚❤❡ ♥♦❞❡s xi , i = 0, 1, ..., n, ❝❛♥ ❜❡ ❛r❜✐✲ tr❛r②❀ ✇❡ ❝❛♥ ❡✈❡♥ ❝❤♦♦s❡ ❡q✉❛❧ ❧❡♥❣t❤s ❢♦r t❤❡ ✐♥t❡r✈❛❧s✿ ∆xi = xi − xi−1 = (b − a)/n, i = 1, 2, ..., n✳ ❚❤❡r❡ ❛r❡ ♥♦ s❡❝♦♥❞❛r② ♥♦❞❡s ②❡t❀ t❤❡✐r ❝❤♦✐❝❡ ✇✐❧❧ ❜❡ ❞✐❝t❛t❡❞ ❜② F ✳ ❚❤✐s ✐s ❤♦✇ ❡❛❝❤ ♦❢ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ci , i = 1, 2, ..., n, ✐s ❝❤♦s❡♥✿
▲❡t✬s t❛❦❡ ♦♥❡ ✐♥t❡r✈❛❧ [xi−1 , xi ] ❛♥❞ ✇❡ ❛♣♣❧② t❤❡ ▼❡❛♥ ❱❛❧✉❡ ✐♥t❡r✈❛❧ s✉❝❤ t❤❛t F (xi ) − F (xi−1 ) = F ′ (ci ) . xi − xi−1
❚❤❡♦r❡♠
t♦ F ✿ ❚❤❡r❡ ✐s ❛ ci ✐♥ t❤❡
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ✜♥❞ ❛ ♣♦✐♥t ✇✐t❤✐♥ ❡❛❝❤ ✐♥t❡r✈❛❧ t❤❛t ❤❛s t❤❡ s❧♦♣❡ ♦❢ ✐ts t❛♥❣❡♥t ❧✐♥❡ ❡q✉❛❧ t♦ t❤❡ s❧♦♣❡ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡ ♦✈❡r t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧ [xi−1 , xi ]✿
✶✳✽✳
✼✾
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
❲❡ ♠♦❞✐❢② t❤❡ ❢♦r♠✉❧❛✿
F (xi ) − F (xi−1 ) = f (ci ) ∆x . ❍❡r❡ ✇❡ ❤❛✈❡✿
• •
❚❤❡
[xi−1 , xi ]✳ ❚❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ✐s t❤❡ ❡❧❡♠❡♥t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ f ♦✈❡r [xi−1 , xi ]✳ ♥❡①t st❡♣ ✐s t♦ ❡①♣r❡ss t❤❡ t♦t❛❧ ♥❡t ❝❤❛♥❣❡ ♦❢ F ♦✈❡r t❤❡ ✐♥t❡r✈❛❧ [a, b] ❛s t❤❡ ❚❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ✐s t❤❡
♥❡t ❝❤❛♥❣❡
✭t❤❡ r✐s❡✮ ♦❢
F
♦✈❡r t❤❡ ✐♥t❡r✈❛❧
s✉♠ ♦❢ t❤❡ ♥❡t
❝❤❛♥❣❡s ♦✈❡r t❤❡ ✐♥t❡r✈❛❧s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✿
❲❡ ♥♦✇ ❝♦♥✈❡rt t❤♦s❡ ♥❡t ❝❤❛♥❣❡s ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❛❜♦✈❡ ❢♦r♠✉❧❛✿
F (b) − F (a) = F (xn )
=
−F (x0 ) ❚❤❡ ❧❛st ❡①♣r❡ss✐♦♥ ✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢
f✱
F (xn ) − F (xn−1 )
=
f (cn ) ∆x
+F (xn−1 ) − F (xn−2 )
+f (cn−1 ) ∆x
+...
+...
+F (xi+1 ) − F (xi )
+f (ci ) ∆x
+...
+...
+F (x1 ) − F (x0 )
+f (c1 ) ∆x .
❛♥❞ s✐♥❝❡
∆x → 0✳ ❊①❡r❝✐s❡ ✶✳✽✳✶✷
❯s❡ t❤❡ s✐❣♠❛ ♥♦t❛t✐♦♥ t♦ r❡✲✇r✐t❡ t❤❡ ❧❛st ❝♦♠♣✉t❛t✐♦♥✳
f
✐s ✐♥t❡❣r❛❜❧❡✱ ✐t ❝♦♥✈❡r❣❡s t♦
Z
b
f dx a
❛s
✶✳✽✳
✽✵
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
❊①❡r❝✐s❡ ✶✳✽✳✶✸
Pr♦✈✐❞❡ t❤❡ ❞❡t❛✐❧s ❢♦r t❤❡ ❢♦❧❧♦✇✐♥❣ ❞❡r✐✈❛t✐♦♥ ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ■ ❢r♦♠ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ■■ ✭◆▲❋✮✿ d dx
Z
x
f dx a
=
d (F (x) − F (a)) = F ′ (x) = f (x) . dx ❲❛r♥✐♥❣✦ ❙✐♥❝❡ t❤❡ t❤❡♦r❡♠ ❛♣♣❧✐❡s t♦
❛❧❧
❛♥t✐❞❡r✐✈❛t✐✈❡s✱ ✇❡
❝❛♥ ♦♠✐t ✏ +C ✑✳
❊①❛♠♣❧❡ ✶✳✽✳✶✹✿ ♣❛r❛❜♦❧❛
▲❡t✬s ❝♦♠♣✉t❡ t❤❡ ❛r❡❛ ✉♥❞❡r y = x2 ❢r♦♠ 0 t♦ 1✿
❲❡ ❞✐❞ ❛ s✐♠✐❧❛r ♦♥❡ t❤❡ ❤❛r❞ ✇❛②✱ ✈✐❛ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✇❤✐❝❤ r❡q✉✐r❡❞ ❛ ❢♦r♠✉❧❛ ❢♦r 1 + 2 + ... + n✳ ▲❡t✬s t❡st t❤❡ ❢♦r♠✉❧❛✳ ❲❡ ♥❡❡❞ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ f (x) = x2 ✳ ❇② ❝♦♠♣✉t❡❞ ❜❡❢♦r❡✿
r❡❝❛❧❧✐♥❣
t❤❡ ❞❡r✐✈❛t✐✈❡ ✇❡
(x3 )′ = 3x2 .
✭♦r ✉s✐♥❣ t❤❡ P♦✇❡r
❋♦r♠✉❧❛
❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✺✮✱ ✇❡ ✜♥❞ ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡✿ F (x) =
❚❤❡♥✱ ❜② ◆▲❋✱ ✇❡ ❤❛✈❡✿ ❚❤❡ r❡s✉❧t ✐s ♣❧❛✉s✐❜❧❡✿
Z
x3 . 3
1 0
x2 dx = F (1) − F (0) =
13 03 1 − = . 3 3 3
❚❤❡ ❝♦♠♣✉t❛t✐♦♥ ❤❛s ❛❧s♦ s❤♦✇♥ t❤❛t ✐❢ ✇❡ ✐♥❝r❡❛s❡ t❤❡ s♣❡❡❞ ❢r♦♠ 0 t♦ 1 q✉❛❞r❛t✐❝❛❧❧② ♦✈❡r t❤❡ ✐♥t❡r✈❛❧ ♦❢ t✐♠❡ [0, 1]✱ t❤❡♥ t❤❡ ❞✐st❛♥❝❡ ❝♦✈❡r❡❞ ✐s 1/3✳
✶✳✽✳
✽✶
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
❚❤❡ P❛rt ■ s✉♣♣❧✐❡s ✉s ✇✐t❤ ❛ s♣❡❝✐❛❧ ❝❤♦✐❝❡ ♦❢ ❛♥t✐❞❡r✐✈❛t✐✈❡ ✕ t❤❡ ♦♥❡ t❤❛t s❛t✐s✜❡s F (a) = 0✳ ❚❤❡ r❡st✱ ❛❝❝♦r❞✐♥❣ t♦ P❛rt ■■✱ ❛r❡ ❛❝q✉✐r❡❞ ❜② ✈❡rt✐❝❛❧ s❤✐❢ts✿ G = F + C ✭s❡❡♥ ✐♥ ❱♦❧✉♠❡ ✷✱ ❈❤❛♣t❡r ✷❉❈✲✹✮✳ ❚❤❡ ✐❞❡❛ ✐s t❤❛t ✐❢ t❤❡ ❝❡✐❧✐♥❣ ❛♥❞ t❤❡ ✢♦♦r ♦❢ ❛ t✉♥♥❡❧ ❛r❡ ❡q✉❛❧ ❛t ❡✈❡r② ♣♦✐♥t✱ ✐ts ❤❡✐❣❤t ✐s ❝♦♥st❛♥t✿
❘❡❝❛❧❧ t❤❡
s✉❜st✐t✉t✐♦♥ ♥♦t❛t✐♦♥
✿
F (x)
= F (a) . x=a
■♥ ✐ts s♣✐r✐t✱ ✇❡ ✐♥tr♦❞✉❝❡ ❛ ♥❡✇ ♥♦t❛t✐♦♥ ❢♦r t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ♦❢ t❤❡ ❢♦r♠✉❧❛✳ ■t ✐s s✐♠♣❧② t✇♦ s✉❜st✐t✉t✐♦♥s s✉❜tr❛❝t❡❞✿
❙✉❜st✐t✉t✐♦♥ ♥♦t❛t✐♦♥ ❢♦r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ Z
b a
x=b b = F (b) − F (a) f dx = F (x) = F (x) x=a
a
❆s ②♦✉ ❝❛♥ s❡❡✱ t❤❡ ❜♦✉♥❞s ♦❢ ✐♥t❡❣r❛t✐♦♥ ❥✉st ❥✉♠♣ ♦✈❡r ❛♥❞ ❛r❡ ❦❡♣t ❢♦r r❡❢❡r❡♥❝❡✳ ❚❤✐s ✐s ❤♦✇ ✇❡ ❝❛♥ r❡❝♦r❞ t❤❡ ❛❜♦✈❡ ❝♦♠♣✉t❛t✐♦♥✿ 1 Z 1 3 x x2 dx = . 3 0 0
❈♦♠♣✉t❛t✐♦♥s ♦❢ ❛r❡❛s ❜❡❝♦♠❡ ❡❛s② ✕ ❛s ❧♦♥❣ ❛s ✇❡ ❤❛✈❡ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✐♥✈♦❧✈❡❞✳
❊①❛♠♣❧❡ ✶✳✽✳✶✺✿ ❡①♣♦♥❡♥t ❈♦♠♣✉t❡ t❤❡ ❛r❡❛ ✉♥❞❡r y = ex ❢r♦♠ 0 t♦ 1✿
❇②
✱ ✇❡ ❤❛✈❡✿
◆▲❋
Z
1 0
1 x x e dx = e = e1 − e0 = e − 1 . 0
✶✳✽✳
✽✷
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
❊①❛♠♣❧❡ ✶✳✽✳✶✻✿ ❝♦s✐♥❡
❈♦♠♣✉t❡ t❤❡ ❛r❡❛ ✉♥❞❡r y = cos x ❢r♦♠ 0 t♦ π/2✿
❇②
✱ ✇❡ ❤❛✈❡✿
◆▲❋
Z ❊①❛♠♣❧❡ ✶✳✽✳✶✼✿ ❝✐r❝❧❡
π 2
0
π 2 π cos x dx = sin x = sin − sin 0 = 1 − 0 = 1 . 2 0
❲❤❛t ✐s t❤❡ ❛r❡❛ ♦❢ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s R❄ ❊✈❡♥ t❤♦✉❣❤ ❡✈❡r②♦♥❡ ❦♥♦✇s t❤❡ ❛♥s✇❡r✱ t❤✐s ✐s t❤❡ t✐♠❡ t♦ t❤❡ ❢♦r♠✉❧❛✳ ❲❡ ❛❧s♦ ❣❛✈❡ ❛♥ ❛♣♣r♦①✐♠❛t❡ ❛♥s✇❡r ❛t t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ t❤✐s ❝❤❛♣t❡r✳
♣r♦✈❡
❲❡ ✜rst ♣✉t t❤❡ ❝❡♥t❡r ♦❢ t❤❡ ❝✐r❝❧❡ ❛t t❤❡ ♦r✐❣✐♥ ♦❢ t❤❡ xy ✲♣❧❛♥❡✿
■♥ ♦r❞❡r t♦ ✜♥❞ ✐ts ❛r❡❛✱ ✇❡ r❡♣r❡s❡♥t t❤❡
f (x) =
✉♣♣❡r ❤❛❧❢
√
♦❢ t❤❡ ❝✐r❝❧❡ ❛s t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢
R2 − x2 , −R ≤ x ≤ R .
❚❤❡♥✱
1 ❆r❡❛ = 2
Z
R −R
√
R2 − x2 dx .
❲❤❛t✬s t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ t❤✐s ❢✉♥❝t✐♦♥❄ ❯♥❢♦rt✉♥❛t❡❧②✱ ✇❡ ❞♦♥✬t ❦♥♦✇❀ ✐t✬s ♥♦t ♦♥ ♦✉r ✕ ✈❡r② s❤♦rt ✕ ❧✐st✳ ❲❤❡♥ t❤✐s ❤❛♣♣❡♥s✱ ✇❡ ❛❧✇❛②s ❞♦ t❤❡ s❛♠❡ t❤✐♥❣✿ ❲❡ ❣♦ t♦ t❤❡ ❜❛❝❦ ♦❢ t❤❡ ❜♦♦❦ t♦ ✜♥❞ ❛ ❧♦♥❣❡r ❧✐st✳ ❚❤✐s t❛❜❧❡ ❝♦♥t❛✐♥s t❤❡ r❡❧❡✈❛♥t ❢♦r♠✉❧❛✿ Z √ u√ 2 a2 u a2 − u2 dx = a − u2 + sin−1 + C . 2 2 a ◆♦✇✱ ❡✈❡♥ t❤♦✉❣❤ ✇❡ ❣❡t t❤❡ ✐♥t❡❣r❛t✐♦♥ ❢♦r♠✉❧❛ ❢r♦♠ ❡❧s❡✇❤❡r❡✱ ♦♥❝❡ ✇❡ ❤❛✈❡ ✐t✱ ✇❡ ❝❛♥ ❝❡rt❛✐♥❧② ♣r♦✈❡ ✐t ✕ ❜② ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❲❡ ❦♥♦✇ t❤❡s❡ t✇♦ ❞❡r✐✈❛t✐✈❡s ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✹✿
√
a2 − u2
′
= −√
u ❛♥❞ a2 − u2
sin−1 y
′
1 =p . 1 − y2
✶✳✽✳ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❝♦♥t✐♥✉❡❞
✽✸
❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡✿
a2 u√ 2 u a − u2 + sin−1 2 2 a
′
1√ 2 a − u2 − 2 1√ 2 a − u2 + = 2 √ = a2 − u 2 . =
u a2 u 1 √ + √ 2 2 2 2 a −u 2 a − u2 1 a2 − u2 √ 2 a2 − u2
❈♦♥✜r♠❡❞✦ ❲❡ r❡♣❧❛❝❡
a
✇✐t❤
1 ❆r❡❛ 2
R
=
❛♥❞
Z
R −R
u
√
✇✐t❤
x
✐♥ t❤❡ ❛❜♦✈❡ ❢♦r♠✉❧❛ ❛♥❞ ❛♣♣❧② t❤❡ ◆❡✇t♦♥✲▲❡✐❜♥✐③ ❢♦r♠✉❧❛ ✿
R2 − x2 dx
R 2 x x√ 2 R sin−1 = R − x2 + 2 2 R −R 2 2 √ √ R R R R −R −R −1 −1 R2 − R2 + R2 − R2 + = − sin sin 2 2 R 2 2 R 2 R sin−1 (1) + 0 − 0 − sin−1 (−1) = 2 R2 = (π/2 − (−π/2)) 2 R2 . =π 2
❲❡ ❤❛✈❡ ❝♦♥✜r♠❡❞ t❤❡ ❢♦r♠✉❧❛✦ ❈♦♥✈❡rs❡❧②✱ ✇❡ ❝❛♥ ✉s❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ❛r❡❛ ♦❢ t❤❡ ✉♥✐t ❝✐r❝❧❡ ❛s ❛ ✇❛② t♦ ✜♥❞ ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ t❤❡ ✈❛❧✉❡ ♦❢
π✳
❲❤❛t ✐❢ ✇❡ ❝❛♥✬t ✜♥❞ ❛♥ ✐♥t❡❣r❛t✐♦♥ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❢✉♥❝t✐♦♥ ✐♥ q✉❡st✐♦♥❄ ❚❤❡r❡ ❛r❡ ❛❧✇❛②s ❧❛r❣❡r ❧✐sts✱ ❜✉t ✐t✬s ♣♦ss✐❜❧❡ t❤❛t ♥♦ ❜♦♦❦ ❝♦♥t❛✐♥s t❤❡ ❢✉♥❝t✐♦♥ ②♦✉ ♥❡❡❞✳ ■♥ ❢❛❝t✱ ✇❡ ♠❛② ❤❛✈❡ t♦ ✐♥tr♦❞✉❝❡ ♥❡✇ ❢✉♥❝t✐♦♥s s✉❝❤ ❛s ✐♥ t❤❡ ❝❛s❡ ♦❢ t❤❡ ●❛✉ss ❡rr♦r ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❛s t❤❡ ✐♥t❡❣r❛❧✿
2 erf(x) = √ π
Z
2
e−x dx .
❚❤✐s ❢✉♥❝t✐♦♥ ✐s ✐♠♣♦rt❛♥t ❛s ✐t r❡♣r❡s❡♥ts ❛ ❞✐str✐❜✉t✐♦♥ ♦❢ ♣r♦❜❛❜✐❧✐t✐❡s ♦❢ s♦♠❡ ❝♦♠♠♦♥ q✉❛♥t✐t✐❡s ✭❤❡✐❣❤ts✱ ✇❡✐❣❤ts✱ ■◗s✱ ❡t❝✳✮ ❛r♦✉♥❞ t❤❡ ❛✈❡r❛❣❡✿
❊✈❡♥ ✐❢ ✇❡ ❦❡❡♣ ❛❞❞✐♥❣ t❤❡s❡ ♥❡✇ ❢✉♥❝t✐♦♥s t♦ t❤❡ ❧✐st ♦❢ ✏❢❛♠✐❧✐❛r✑ ❢✉♥❝t✐♦♥s✱ t❤❡r❡ ✇✐❧❧ ❛❧✇❛②s r❡♠❛✐♥ ✐♥t❡❣r❛❧s ♥♦t ♦♥ t❤❡ ❧✐st✳ ■♥ ❝♦♥tr❛st t♦ ❞✐✛❡r❡♥t✐❛t✐♦♥✱ ❛♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ✇✐❧❧ ♦❢t❡♥ t❛❦❡ ✉s ♦✉ts✐❞❡ ♦❢ t❤❡ r❡❛❧♠ ♦❢ ❡❧❡♠❡♥t❛r② ❢✉♥❝t✐♦♥s ✭r✐❣❤t✮✿
✶✳✾✳
❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥
✽✹
✶✳✾✳ ❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥
❘❡❝❛❧❧ t❤❡ ♣r♦❝❡❞✉r❡ ❢♦r ❝♦♠♣✉t✐♥❣ t❤❡ ❞❡r✐✈❛t✐✈❡✿ s❛♠♣❧✐♥❣
s❡q✉❡♥❝❡ ←−−−−−−−− ❢✉♥❝t✐♦♥ ♦♥ [a, b] ❉◗ y
❞❡r✐✈❛t✐✈❡ y
s❡q✉❡♥❝❡ −−−∆x→0 −−−−−→ ❢✉♥❝t✐♦♥ ♦♥ [a, b]
❚❤❡ ♦♥❡ ❢♦r t❤❡ ✐♥t❡❣r❛❧ ❤❛s ❛ ✈❡r② s✐♠✐❧❛r r❡♣r❡s❡♥t❛t✐♦♥✿ s❛♠♣❧✐♥❣
s❡q✉❡♥❝❡ ←−−−−−−−− ❢✉♥❝t✐♦♥ ♦♥ [a, b] ❘❙ y
✐♥t❡❣r❛❧ y
s❡q✉❡♥❝❡ −−−∆x→0 −−−−−→ ❢✉♥❝t✐♦♥ ♦♥ [a, b]
❇❡❝❛✉s❡ ♦❢ t❤❡ r❡❝✉rs✐✈❡ ♥❛t✉r❡ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ❤♦✇❡✈❡r✱ t❤❡ ❝♦♠♣✉t❛t✐♦♥s ❛r❡ ❜② ❢❛r ♠♦r❡ ❝♦♠♣❧❡① ♦r ❡✈❡♥ ✐♠♣♦ss✐❜❧❡✳ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ✇✐❧❧ ❣✐✈❡ t❤❡ ❛♥s✇❡r ✐❢ ✇❡ ❝❛♥ ❡①❡❝✉t❡ t❤❡ ❛♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ r❡q✉✐r❡❞✳ ❊①❛♠♣❧❡ ✶✳✾✳✶✿
x
❋✐♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ f (x) = x .
❲❡ r✉♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✜rst✿
❚❤❡ ❛♥s✇❡r ❛♣♣❡❛r t♦ ❜❡ q✉❛❞r❛t✐❝✳ ❇✉t (ax2 + bx + c)′ = 2ax + b .
✶✳✾✳
❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥
■t ✇♦r❦s ✐❢ ✇❡ ❝❤♦♦s❡✿
❊①❛♠♣❧❡ ✶✳✾✳✷✿
✽✺
a = 1/2
❛♥❞
b = 0✳ ❲❡ ❝♦♥❝❧✉❞❡✿ Z 1 x dx = x2 + C . 2
x2
❋✐♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢
f (x) = x2 . ❲❡ r✉♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✜rst✿
▼✐❣❤t ✐t ❜❡ ❝✉❜✐❝❄ ▲❡t✬s tr②✿
(ax3 + bx2 + cx + d)′ = 3ax2 + 2bx + c . ■t ✇♦r❦s ✐❢ ✇❡ ❝❤♦♦s❡✿
a = 1/3✱ b = 0✱
❛♥❞
Z
c = 0✳
❲❡ ❝♦♥❝❧✉❞❡✿
1 x2 dx = x3 + C . 3
❖❢ ❝♦✉rs❡✱ ✇❡ ❝❛♥ ❥✉st ✏r❡✈❡rs❡✑ t❤❡ P♦✇❡r ❋♦r♠✉❧❛✿
Z ❊①❛♠♣❧❡ ✶✳✾✳✸✿
sin x
❛♥❞
xn dx =
1 xn+1 + C n+1
cos x
❋✐♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢
f (x) = sin x . ❲❡ r✉♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✜rst✿
■t ❧♦♦❦s ❧✐❦❡
cos x + 1✳
■♥❞❡❡❞✿
(cos x)′ = sin x .
✶✳✾✳
❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥
✽✻
❋✐♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢
f (x) = cos x . ❲❡ r✉♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✜rst✿
■t ❧♦♦❦s ❧✐❦❡ t❤❡ ♥❡❣❛t✐✈❡ s✐♥❡✳ ■♥❞❡❡❞✿
(sin x)′ = cos x . ❖❢ ❝♦✉rs❡✱ ✇❡ ❝❛♥ ❥✉st ✏r❡✈❡rs❡✑ ❛ ❝♦✉♣❧❡ ♦❢ ❢❛♠✐❧✐❛r ❢♦r♠✉❧❛s✿
Z ❊①❛♠♣❧❡ ✶✳✾✳✹✿
sin x dx = cos x + C
Z
cos x dx = − sin x + C
ex
❋✐♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢
f (x) = ex . ❲❡ r✉♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✜rst✿
■t ❛❧s♦ ❧♦♦❦s ❡①♣♦♥❡♥t✐❛❧✳ ❲❡ ❝♦♥❝❧✉❞❡✿
Z
ex dx = ex + C .
❲❡ ✏r❡✈❡rs❡✑ ❛ ❢❛♠✐❧✐❛r ❢♦r♠✉❧❛ ❢♦r ❞✐✛❡r❡♥t✐❛t✐♦♥✿
Z
ex dx = ex + C
▲❡t✬s r❡✈✐❡✇ t❤❡ ♠❛✐♥ ✐❞❡❛s ♦❢ ❛♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥✳
✶✳✾✳
❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥
✽✼
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ❢✉♥❝t✐♦♥ y = g(x) ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✱ c✱ ♦❢ ❛ ♣❛rt✐t✐♦♥✳ ❍♦✇ ❞♦ ✇❡ ✜♥❞ ❛ ❢✉♥❝t✐♦♥ y = f (x) ❞❡✜♥❡❞ ❛t t❤❡ ♥♦❞❡s✱ x✱ ♦❢ t❤❡ ♣❛rt✐t✐♦♥ s♦ t❤❛t g ✐s ✐ts ❞✐✛❡r❡♥❝❡ ✿
∆f (c) = g(c)? ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❢❛❝❡ ❛♥ ❡q✉❛t✐♦♥✿ ❙♦❧✈❡ ❢♦r f : ∆f = g ❙♦❧✈✐♥❣ t❤✐s ❡q✉❛t✐♦♥ ✐s♥✬t ❤❛r❞✳ ❙✉♣♣♦s❡ t❤✐s ❢✉♥❝t✐♦♥ g ✐s ❦♥♦✇♥ ❜✉t f ✐s♥✬t✱ ❡①❝❡♣t ❢♦r ♦♥❡ ✭✐♥✐t✐❛❧✮ ✈❛❧✉❡✿ y0 = f (a) = f (x0 )✳ ❚❤❡♥ ✇❡ ❤❛✈❡✿
f (xk+1 ) = f (xk ) + g(ck ) ❚❤✐s ❢♦r♠✉❧❛ ✐s
r❡❝✉rs✐✈❡ ✿ ❲❡ ♥❡❡❞ t♦ ❦♥♦✇ t❤❡ ❧❛st ✈❛❧✉❡ ♦❢ f ✐♥ ♦r❞❡r t♦ ✜♥❞ t❤❡ ♥❡①t✳
◆♦✇✱ t❤❡ ❞✐✛❡r❡♥❝❡ s✉❜tr❛❝t✐♦♥✿
q✉♦t✐❡♥t✳ ■♥ ❝♦♠♣❛r✐s♦♥✱ t❤❡r❡ ✐s ❛♥♦t❤❡r ♦♣❡r❛t✐♦♥ ✕ ❞✐✈✐s✐♦♥ ✭❜② ∆x✮ ✕ ❢♦❧❧♦✇✐♥❣ t❤❡
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ❢✉♥❝t✐♦♥ y = v(x) ✭✇❤✐❝❤ ❝♦✉❧❞ ❜❡ t❤❡ ✈❡❧♦❝✐t②✮ ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✱ c✱ ♦❢ ❛ ♣❛rt✐t✐♦♥✳ ❍♦✇ ❞♦ ✇❡ ✜♥❞ ❛ ❢✉♥❝t✐♦♥ y = p(x) ✭✇❤✐❝❤ ❝♦✉❧❞ ❜❡ t❤❡ ♣♦s✐t✐♦♥✮ ❞❡✜♥❡❞ ❛t t❤❡ ♥♦❞❡s✱ x✱ ♦❢ t❤❡ ♣❛rt✐t✐♦♥ s♦ t❤❛t v ✐s ✐ts ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✿
∆p (c) = v(c)? ∆x ■♥ ♦t❤❡r ✇♦r❞s✱ t❤✐s ✐s t❤❡ ❡q✉❛t✐♦♥ ✇❡ ❢❛❝❡✿ ❙♦❧✈❡ ❢♦r p :
∆p =v ∆x
❲❡ ❥✉st ❢♦❧❧♦✇ ❡①❛❝t❧② t❤❡ ♣r♦❝❡ss ❛❜♦✈❡✳ ❙✉♣♣♦s❡ t❤✐s ❢✉♥❝t✐♦♥ v ✐s ❦♥♦✇♥ ❜✉t p ✐s♥✬t✱ ❡①❝❡♣t ❢♦r ♦♥❡ ✭✐♥✐t✐❛❧✮ ✈❛❧✉❡✿ y0 = p(a) = p(x0 )✳ ❚❤❡♥ ✇❡ ❤❛✈❡✿
p(xk+1 ) = p(xk ) + v(ck )∆xk ◆♦✇✱ t❤❡
❞❡r✐✈❛t✐✈❡✳ ❲❡ ♥❡❡❞ t♦ ✜♥❞ t❤❡ ❢✉♥❝t✐♦♥ ❢r♦♠ ✐ts ❞❡r✐✈❛t✐✈❡✿
✶✳✾✳
❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥
✽✽
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ❢✉♥❝t✐♦♥ ✜♥❞ ❛ ❢✉♥❝t✐♦♥ ❡❛❝❤
y = p(x)
y = v(x)
✭✇❤✐❝❤ ❝♦✉❧❞ ❜❡ t❤❡ ✈❡❧♦❝✐t②✮ ❞❡✜♥❡❞ ♦♥ ❛♥ ♦♣❡♥ ✐♥t❡r✈❛❧✳ ❍♦✇ ❞♦ ✇❡
✭✇❤✐❝❤ ❝♦✉❧❞ ❜❡ t❤❡ ♣♦s✐t✐♦♥✮ ❞❡✜♥❡❞ ♦♥ t❤✐s ✐♥t❡r✈❛❧ s♦ t❤❛t
x✿
v
✐s ✐ts ❞❡r✐✈❛t✐✈❡ ❢♦r
dp (x) = v(x)? dx
■♥ ♦t❤❡r ✇♦r❞s✱ t❤✐s ✐s t❤❡ ❡q✉❛t✐♦♥ ✇❡ ❢❛❝❡✿
❙♦❧✈❡ ❢♦r
dp =v dx
p:
❚❤✐s ❡q✉❛t✐♦♥ ✐s♥✬t ❛s ❡❛s② t♦ s♦❧✈❡ ❛s t❤❡ ❧❛st✳ ❚❤❡ s♦❧✉t✐♦♥ ❢♦r t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ✇❛s ❜✉✐❧t ❜② ❧✐♥❦✐♥❣
n
♣✐❡❝❡s t♦❣❡t❤❡r✳ ❇❡❝❛✉s❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ✐s ❛ ❧✐♠✐t✱ ✐t✬s ❛s ✐❢ ✇❡ ✇❡r❡ t♦ ❧✐♥❦ t♦❣❡t❤❡r ✐♥✜♥✐t❡❧② ♠❛♥② ✐♥✜♥✐t❡❧② s♠❛❧❧ ♣✐❡❝❡s✦ ❚❤❡r❡ ✐s ♥♦ s✐♠♣❧❡✱ ❡✈❡♥ r❡❝✉rs✐✈❡✱ ❢♦r♠✉❧❛✳ ❋♦r ❡①❛♠♣❧❡✱ t❤❡ s♦❧✉t✐♦♥ t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ ❡q✉❛t✐♦♥ ❝❛♥♥♦t ❜❡ ✏♠❛❞❡✑ ❢r♦♠ t❤❡ ❢✉♥❝t✐♦♥s ✇❡ ❛r❡ ❢❛♠✐❧✐❛r ✇✐t❤✿
dp 2 = ex . dx ❚❤❡s❡ t❤r❡❡ ♣r♦❜❧❡♠s ❛r❡ s✐♠✐❧❛r t♦ t❤❛t ♦❢ ✜♥❞✐♥❣ t❤❡
✐♥✈❡rs❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✳
❛♣♣❡❛r ✐♥ ❛❧❣❡❜r❛❀ t❤❡② ❝♦♠❡ ❢r♦♠ s♦❧✈✐♥❣ ❡q✉❛t✐♦♥s✱ ❢♦r
❚❤✐s ✐s ❤♦✇ ✐♥✈❡rs❡ ❢✉♥❝t✐♦♥s
x✿
x2
= 4 =⇒ x = 2
✈✐❛
√
2x
= 8 =⇒ x = 3
✈✐❛
log2 ( )
sin x = 0 =⇒ x = 0
✈✐❛
sin−1 ( )
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❤❛t ❞♦ ✇❡ ❞♦ ✐❢ ✇❡ ❦♥♦✇ t❤❡ ♦✉t♣✉t ♦❢ ❛ ❢✉♥❝t✐♦♥ ❛♥❞ ✇❛♥t t♦ ❦♥♦✇ t❤❡ ✐♥♣✉t❄ ■♥✐t✐❛❧❧②✱ ✇❡ ❝❛♥ ♦♥❧②
r❡❝♦❧❧❡❝t
❛ ♣❛st ❡①♣❡r✐❡♥❝❡ ✇✐t❤ ❛ ❢✉♥❝t✐♦♥✦ ❋♦r ❛ r❡♣❡❛t❡❞ ✉s❡✱ ✇❡ ❞❡✈❡❧♦♣ t❤❡
✐♥✈❡rs❡
♦❢ t❤❡
❢✉♥❝t✐♦♥✳ ❙✐♠✐❧❛r❧②✱ ✇❤❛t ❞♦ ✇❡ ❞♦ ✐❢ ✇❡ ❦♥♦✇ t❤❡ r❡s✉❧t ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞ ✇❛♥t t♦ ❦♥♦✇ ✇❤❡r❡ ✐t ❝❛♠❡ ❢r♦♠❄ ■♥✐t✐❛❧❧②✱ ✇❡ ❝❛♥ ♦♥❧②
r❡❝♦❧❧❡❝t
❛ ♣❛st ❡①♣❡r✐❡♥❝❡ ✇✐t❤ ❞✐✛❡r❡♥t✐❛t✐♦♥✿
f ′ = 2x
=⇒ f = x2
f ′ = cos x =⇒ f = sin x f ′ = ex ❋♦r ❛ r❡♣❡❛t❡❞ ✉s❡✱ ✇❡ ✇✐❧❧ ♥❡❡❞ t♦ ❞❡✈❡❧♦♣ t❤❡
=⇒ f = ex
✐♥✈❡rs❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳
❲❡ ✐❧❧✉str❛t❡ t❤❡ ✐❞❡❛ ♦❢ ❛♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ✇✐t❤ ❛ ❞✐❛❣r❛♠✿
x2 → 2x →
d dx −1 d dx
→ 2x → x2
✶✳✾✳
❇❛s✐❝ ✐♥t❡❣r❛t✐♦♥
✽✾
❖❢ ❝♦✉rs❡✱ t❤❡r❡ ❛r❡ ♠♦r❡ s♦❧✉t✐♦♥s✿
x2 + 1 ր ...
2x → x2 ց ...
x2 − 1
❆s ❛ ❢✉♥❝t✐♦♥✱ ❛ ❢✉♥❝t✐♦♥ ♦❢ ❢✉♥❝t✐♦♥s✱
d ✐s♥✬t ♦♥❡✲t♦✲♦♥❡✳ ❲❡ ✉s❡ ✏❛♥✑ ❜❡❝❛✉s❡ t❤❡r❡ ❛r❡ ♠❛♥② ❛♥t✐❞❡r✐✈❛t✐✈❡s dx
❢♦r ❡❛❝❤ ❢✉♥❝t✐♦♥✳ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ✐s t❤❡ ❝✉❧♠✐♥❛t✐♦♥ ♦❢ ♦✉r st✉❞② ♦❢ ❝❛❧❝✉❧✉s✱ s♦ ❢❛r✳ ❚❤❡ ♠✐❧❡st♦♥❡s ♦❢ t❤✐s st✉❞② ✉♣ t♦ t❤✐s ♣♦✐♥t ❛r❡ ♦✉t❧✐♥❡❞ ❜❡❧♦✇✿ ❚❤❡ ❚❛♥❣❡♥t Pr♦❜❧❡♠
❚❤❡ ❆r❡❛ Pr♦❜❧❡♠
❆♣♣r♦①✐♠❛t✐♦♥s✿ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t
∆F ∆x
t❤❡ ❘✐❡♠❛♥♥ s✉♠
Σf · ∆x
t❤❡ s❧♦♣❡s ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡s ♦♥ t❤❡ ❣r❛♣❤ ♦❢
y = F (x)
t❤❡ t♦t❛❧ ❛r❡❛ ♦❢ t❤❡ r❡❝t❛♥❣❧❡s ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢
❲✐t❤ ✈❛r✐❛❜❧❡ ❧♦❝❛t✐♦♥s✱ t❤❡ ❧✐♠✐ts ♦❢ t❤❡s❡ ❛♣♣r♦①✐♠❛t✐♦♥s✱ ❛s
t❤❡ ❞❡r✐✈❛t✐✈❡ ❢✉♥❝t✐♦♥
∆x → 0✱
y = f (x)
❛r❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
t❤❡ ✐♥❞❡✜♥✐t❡ ✐♥t❡❣r❛❧
✶✳✶✵✳ ❋r❡❡ ❢❛❧❧
✾✵
❆❝❝♦r❞✐♥❣ t♦ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠s✱ t❤❡ ♦♣❡r❛t✐♦♥s ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞ ✐♥t❡❣r❛t✐♦♥ ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r✿ ❋❚❈■✿ f → ❋❚❈■■✿ F →
Z
dx d dx
d dx
→ F → → f
→
Z
dx
→
f
→ F +C
❲❛r♥✐♥❣✦ ■♥t❡❣r❛t✐♦♥ ✐s ❛ tr✉❡ ❢✉♥❝t✐♦♥ ♦♥❧② ✇❤❡♥ ❛♥ ❡①tr❛ ❝♦♥❞✐t✐♦♥✱ s✉❝❤ ❛s
F (a) = 0✱
✐s ✐♠♣♦s❡❞✳
✶✳✶✵✳ ❋r❡❡ ❢❛❧❧
❊①❛♠♣❧❡ ✶✳✶✵✳✶✿ ♠♦✈✐♥❣ ❜❛❧❧
▲❡t✬s r❡✈✐❡✇ ❛♥ ❡①❛♠♣❧❡ ❢r♦♠ ❱♦❧✉♠❡ ✷✳ ❚❤❡ ✈❡❧♦❝✐t② ♦❢ ❛ ❜❛❧❧ t❤r♦✇♥ ✉♣ ✐♥ t❤❡ ❛✐r ✐s ❝♦♥st❛♥t❧② ❝❤❛♥❣❡❞ ❜② t❤❡ ❣r❛✈✐t②✳ ■♠❛❣✐♥❡ t❤❛t ✇❡ ❤❛✈❡ t❤✐s ❡①♣❡r✐♠❡♥t❛❧ ❞❛t❛ ♦❢ t❤❡ ❤❡✐❣❤ts ♦❢ ❛ ♣✐♥❣✲♣♦♥❣ ❜❛❧❧ ❢❛❧❧✐♥❣ ❞♦✇♥ r❡❝♦r❞❡❞ ❛❜♦✉t ❡✈❡r② 0.1 s❡❝♦♥❞✱ ♠❡❛s✉r❡❞ ✐♥ ✐♥❝❤❡s✿
❲❡ ♣❧♦t t❤❡ ❧♦❝❛t✐♦♥ s❡q✉❡♥❝❡✱ pn ✭r❡❞✮✳ ❲❡ t❤❡♥ ❝♦♠♣✉t❡ t❤❡ t❤❡ ✈❡❧♦❝✐t②✱ vn ✭❣r❡❡♥✮✿
❲❡ ❝♦♠♣✉t❡ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥✱ an ✭❜❧✉❡✮✱ t♦♦✳ ■t ❛♣♣❡❛rs ❝♦♥st❛♥t✳ ▲❡t✬s ❛❝❝❡♣t t❤❡ ♣r❡♠✐s❡ ✇❡✬✈❡ ♣✉t ❢♦r✇❛r❞✿
✶✳✶✵✳
✾✶
❋r❡❡ ❢❛❧❧
◮
✳
❚❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ♦❢ ❢r❡❡ ❢❛❧❧ ✐s ❝♦♥st❛♥t
❚❤❡♥ ✇❡ ❝❛♥ tr② t♦ ♣r❡❞✐❝t t❤❡ ❜❡❤❛✈✐♦r ♦❢ ❛♥ ♦❜❥❡❝t t❤r♦✇♥ ✐♥ t❤❡ ❛✐r ✕ ❢r♦♠ ❛♥② ✐♥✐t✐❛❧ ❤❡✐❣❤t ❛♥❞ ✇✐t❤ ❛♥② ✐♥✐t✐❛❧ ✈❡❧♦❝✐t②✿
◮ ❲❡ ✉s❡ ♦✉r ❦♥♦✇❧❡❞❣❡ ♦❢ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ t♦ ❞❡r✐✈❡ t❤❡ ✈❡❧♦❝✐t②✱ ❛♥❞ t❤❡♥ ❞❡r✐✈❡ t❤❡ ♣♦s✐t✐♦♥ ♦❢ t❤❡ ♦❜❥❡❝t ✐♥ t✐♠❡✳ ❲❡ ♣❧♦t t❤❡ ♣♦s✐t✐♦♥ ❛❣❛✐♥st t✐♠❡✿
❲❡ ✉s❡❞ t❤❡s❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ❢♦r♠✉❧❛s t♦ ✜♥❞ t❤❡ ✈❡❧♦❝✐t② ❢r♦♠ t❤❡ ♣♦s✐t✐♦♥ ❛♥❞ t❤❡♥ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ❢r♦♠ t❤❡ ✈❡❧♦❝✐t②✿
∆v pn+1 − pn vn+1 − vn ∆p ❉◗ −−−−−→ an = = = ∆t h ∆t h ❍❡r❡ h ✐s t❤❡ ✐♥❝r❡♠❡♥t ♦❢ t✐♠❡✳ ❚❤❡ ❞❡♣❡♥❞❡♥❝❡ ♦❢ t❤❡ ✈❡❧♦❝✐t② ♦♥ t❤❡ ♣♦s✐t✐♦♥ ❛♥❞ ♦❢ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ♦♥ t❤❡ ✈❡❧♦❝✐t② ✐s✱ ♦❢ ❝♦✉rs❡✱ ✐❞❡♥t✐❝❛❧✳
❉◗
pn −−−−−→ vn =
❚♦ ❝r❡❛t❡ ❢♦r♠✉❧❛s ❢♦r ❛ s✐♠✉❧❛t✐♦♥ ♦❢ ❢r❡❡ ❢❛❧❧✱ t❤❡ ❞❡r✐✈❛t✐♦♥ ❣♦❡s ✐♥ t❤❡ ♦♣♣♦s✐t❡ ❞✐r❡❝t✐♦♥✿
• t❤❡ ✈❡❧♦❝✐t② ❢r♦♠ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥✱ ❛♥❞ t❤❡♥ • t❤❡ ❧♦❝❛t✐♦♥ ❢r♦♠ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥✳
❚❤❡ t✇♦ ❢♦r♠✉❧❛s ❛❜♦✈❡ ❛r❡ s♦❧✈❡❞ ❛s ❡q✉❛t✐♦♥s ❢♦r pn+1 ❛♥❞ vn+1 r❡s♣❡❝t✐✈❡❧②✿
pn+1 − pn =⇒ pn+1 = pn + hvn h vn+1 − vn an = =⇒ vn+1 = vn + han h ❚❤❡ ❞❡♣❡♥❞❡♥❝❡ ♦❢ t❤❡ ✈❡❧♦❝✐t② ♦♥ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ❛♥❞ ♦❢ t❤❡ ♣♦s✐t✐♦♥ ♦♥ t❤❡ ✈❡❧♦❝✐t② ✐s✱ ♦❢ ❝♦✉rs❡✱ ✐❞❡♥t✐❝❛❧✳ vn =
❲❛r♥✐♥❣✦ ❯♥❧✐❦❡ t❤❡ ❢♦r♠❡r✱ t❤❡s❡ ❛r❡
r❡❝✉rs✐✈❡
s❡q✉❡♥❝❡s✳
❊①❛♠♣❧❡ ✶✳✶✵✳✷✿ ❢r❡❡ ❢❛❧❧
◮ Pr♦❜❧❡♠✿ ❋r♦♠ ❛ 100✲❢♦♦t ❜✉✐❧❞✐♥❣✱ ❛ ❜❛❧❧ ✐s t❤r♦✇♥ ✉♣ ❛t 50 ❢❡❡t ♣❡r s❡❝♦♥❞ ✐♥ s✉❝❤ ❛ ✇❛② t❤❛t ✐t ❢❛❧❧s ♦♥ t❤❡ ❣r♦✉♥❞✳ ❍♦✇ ❤✐❣❤ ✇✐❧❧ t❤❡ ❜❛❧❧ ❣♦❄ ❲❡ ✉s❡ t❤❡ s❛♠❡ s♣r❡❛❞s❤❡❡t ❢♦r♠✉❧❛ ❢♦r t❤❡ ✈❡❧♦❝✐t② ❛♥❞ ♣♦s✐t✐♦♥✿
❂❘❬✲✶❪❈✰❘❬✲✶❪❈❬✲✶❪✯❘✷❈✶ ◆♦✇ ✐♥ t❤❡ s♣❡❝✐✜❝ ❝❛s❡ ♦❢ ❢r❡❡ ❢❛❧❧✱ t❤❡r❡ ✐s ❥✉st ♦♥❡ ❢♦r❝❡✱ t❤❡ ❣r❛✈✐t②✱ ❛♥❞ t❤❡ ✈❡rt✐❝❛❧ ❛❝❝❡❧❡r❛t✐♦♥ ✐s ❦♥♦✇♥ ✭❢r♦♠ ❛ ♣❤②s✐❝s t❡①t❜♦♦❦✮ t♦ ❜❡ a = −g ✱ ✇❤❡r❡ g ✐s t❤❡ ❣r❛✈✐t❛t✐♦♥❛❧ ❝♦♥st❛♥t✿
g = 32 ❢t/s❡❝2 .
✶✳✶✵✳ ❋r❡❡ ❢❛❧❧
✾✷
◆❡①t✱ ✇❡ ❛❝q✉✐r❡ t❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥s✿ • ❚❤❡ ✐♥✐t✐❛❧ ❧♦❝❛t✐♦♥ ✐s ❣✐✈❡♥ ❜②✿ p0 = 100✳ • ❚❤❡ ✐♥✐t✐❛❧ ✈❡❧♦❝✐t② ✐s ❣✐✈❡♥ ❜②✿ v0 = 50✳ ❲❡ ✉s❡ t❤❡ ❢♦r♠✉❧❛s t♦ ❡✈❛❧✉❛t❡ t❤❡ ❧♦❝❛t✐♦♥ ❡✈❡r② h = 0.20 s❡❝♦♥❞✳ ❚❤✐s ✐s ✇❤❛t t❤❡ ❣r❛♣❤s ❧♦♦❦ ❧✐❦❡✿
❇② s✐♠♣❧② ❡①❛♠✐♥✐♥❣ t❤❡ ❞❛t❛✱ ✇❡ ❝❛♥ s♦❧✈❡ ✈❛r✐♦✉s ♣r♦❜❧❡♠s ❛❜♦✉t t❤✐s ❡①♣❡r✐♠❡♥t✿ ✶✳ ❚♦ ✜♥❞ t❤❡ ❤✐❣❤❡st ❡❧❡✈❛t✐♦♥✱ ✇❡ ❧♦♦❦ ❛t t❤❡ r♦✇ ✇✐t❤ p✳ ❚❤❡ ❧❛r❣❡st ✈❛❧✉❡ s❡❡♠s t♦ ❜❡ ❝❧♦s❡ t♦ y = 144 ❢❡❡t✳ ✷✳ ❚♦ ✜♥❞ ✇❤❡♥ t❤❡ ❜❛❧❧ ❤✐ts t❤❡ ❣r♦✉♥❞✱ ✇❡ s❝r♦❧❧ ❞♦✇♥ t♦ ✜♥❞ t❤❡ r♦✇ ✇✐t❤ p ❝❧♦s❡ t♦ 0✳ ■t ❤❛♣♣❡♥s s♦♠❡t✐♠❡ ❝❧♦s❡ t♦ t = 4.7 s❡❝♦♥❞s✳ ✸✳ ❚♦ ✜♥❞ ❤♦✇ ❢❛st t❤❡ ❜❛❧❧ ❤✐ts t❤❡ ❣r♦✉♥❞✱ ✇❡ s❝r♦❧❧ ❞♦✇♥ ❛❣❛✐♥ t♦ ✜♥❞ t❤❡ r♦✇ ✇✐t❤ p ❝❧♦s❡ t♦ 0 ❛♥❞ ❧♦♦❦ ✉♣ t❤❡ ✈❛❧✉❡ ♦❢ v ✳ ■t ✐s ❝❧♦s❡ t♦ v = 200 ❢❡❡t ♣❡r s❡❝♦♥❞✳ ❖❢ ❝♦✉rs❡✱ ✇❡ ❝❛♥ ❞❡❝r❡❛s❡ t❤❡ t✐♠❡ ✐♥❝r❡♠❡♥t h = ∆x ❛♥❞ ❣❡t ♠♦r❡ ❛❝❝✉r❛t❡ ❛♥s✇❡rs✳ ❲✐t❤ ♦✉r ❢r❡❡ ❢❛❧❧ s♣r❡❛❞s❤❡❡t✱ ✇❡ ❝❛♥ ❛s❦ ❛♥❞ ❛♥s✇❡r ❛ ✈❛r✐❡t② ♦❢ ♦t❤❡r q✉❡st✐♦♥s ❛❜♦✉t s✉❝❤ ♠♦t✐♦♥ ✭❤♦✇ ❤❛r❞ ✐t ❤✐ts t❤❡ ❣r♦✉♥❞✱ ❡t❝✳✮✳ ❍♦✇❡✈❡r✱ ✇❡ ❝❛♥ ♦♥❧② ❞♦ ♦♥❡ ❡①❛♠♣❧❡ ❛t ❛ t✐♠❡✦ ❚❤❡ ❝♦♥❝❧✉s✐♦♥s ✇❡ ❞r❛✇ ❛r❡ s♣❡❝✐✜❝ t♦ t❤❡s❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥s✳ ❚❤❡② ❛r❡ ❛❧s♦ s♣❡❝✐✜❝ t♦ t❤❡ ♠❛❣♥✐t✉❞❡ ♦❢ t❤❡ ❣r❛✈✐t②✱ ❛♥❞ ✇♦✉❧❞ ❜❡ ❞✐✛❡r❡♥t ♦♥ ▼❛rs✳ ❆♥❞ s♦ ♦♥✳ ❚❤❡ r❡s✉❧ts ❛r❡ ❛❧s♦ ❞❡♣❡♥❞❡♥t ♦♥ ♦✉r ❝❤♦✐❝❡ ♦❢ t❤❡ ✐♥❝r❡♠❡♥t h = ∆x✳ ❚❤✐s ✐s ✇❤② ✇❡ ♥♦✇ ♣r♦❝❡❡❞ t♦ t❤❡ ❝♦♥t✐♥✉♦✉s ❝❛s❡ ❛♥❞ t❛❦❡ t❤❡ ❧✐♠✐t✿ h = ∆x → 0 .
❚❤✐s t✐♠❡✱ ✐♥st❡❛❞ ♦❢ s❡q✉❡♥❝❡s✱ ✇❡ ❤❛✈❡ t❤❡s❡ ❢✉♥❝t✐♦♥s ♦❢ t✐♠❡ ✿ ✶✳ p ✐s t❤❡ ❤❡✐❣❤t✱ t❤❡ ✈❡rt✐❝❛❧ ❧♦❝❛t✐♦♥✳ ✷✳ v ✐s t❤❡ ✈❡rt✐❝❛❧ ✈❡❧♦❝✐t②✳ ✸✳ a ✐s t❤❡ ✈❡rt✐❝❛❧ ❛❝❝❡❧❡r❛t✐♦♥✳ ❲❡ ❤❛✈❡ ✜rst✿
v = p′ , a = v ′ ,
✶✳✶✵✳
✾✸
❋r❡❡ ❢❛❧❧
❛♥❞✱ ❛❝❝♦r❞✐♥❣❧②✱ p=
Z
v dx, v =
Z
a dx .
◆♦✇ t❤❡ s♣❡❝✐✜❝ ❝❛s❡ ♦❢ ❢r❡❡ ❢❛❧❧✿ a = −g .
❲❡ ❦♥♦✇ t❤❛t✿ ✶✳ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧ ✐s ❧✐♥❡❛r✳ ✷✳ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❧✐♥❡❛r ♣♦❧②♥♦♠✐❛❧ ✐s ❝♦♥st❛♥t✳ ❆♥❞✱ ❝♦♥✈❡rs❡❧②✿ ✶✳ ❚❤❡ ♦♥❧② ❢✉♥❝t✐♦♥ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ✇❤✐❝❤ ✐s ❧✐♥❡❛r ✐s ❛ q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧✳ ✷✳ ❚❤❡ ♦♥❧② ❢✉♥❝t✐♦♥ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ✇❤✐❝❤ ✐s ❝♦♥st❛♥t ✐s ❛ ❧✐♥❡❛r ♣♦❧②♥♦♠✐❛❧✳ ❋r♦♠ t❤❡ ❧❛tt❡r t✇♦✱ ✇❡ ❞❡r✐✈❡✿ a = a(t) ✐s ❝♦♥st❛♥t =⇒ v = v(t) ✐s ❧✐♥❡❛r =⇒ p = p(t) ✐s q✉❛❞r❛t✐❝✳
▼♦r❡ ♣r❡❝✐s❡❧②✱ ✇❡ ❤❛✈❡✿ = At2 + Bt + C
1. p(t)
2. v(t) = p′ (t) = 2At + B 3. a(t) = v ′ (t) = 2A
❲❤❛t ♠❛❦❡s t❤❡s❡ ❝♦❡✣❝✐❡♥ts✱ A✱ B ✱ ❛♥❞ C ✱ s♣❡❝✐✜❝ ❛r❡ t❤❡ ✐♥✐t✐❛❧
❝♦♥❞✐t✐♦♥s
❛♥❞ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥✿
✶✳ p0 ✐s t❤❡ ✐♥✐t✐❛❧ ❤❡✐❣❤t✱ p0 = p(0)✳ ✷✳ v0 ✐s t❤❡ ✐♥✐t✐❛❧ ✈❡rt✐❝❛❧ ❝♦♠♣♦♥❡♥t ♦❢ ✈❡❧♦❝✐t②✱ v0 = v(0)✳ ✸✳ −g ✐s t❤❡ ❛❝❝❡❧❡r❛t✐♦♥✱ −g = a(t)✳
❲❡ ✉s❡ t❤❡ t❤✐r❞ ✐t❡♠✿
❲❡ ✉s❡ t❤❡ s❡❝♦♥❞ ✐t❡♠✿ ❲❡ ✉s❡ t❤❡ ✜rst ✐t❡♠✿
g 2A = −g =⇒ A = − . 2 2At + B
t=0
At2 + Bt + C
= B = v0 .
t=0
= C = p0 .
❚❤❡♥✱ ♦✉r ♠♦❞❡❧ ♦❢ ♠♦t✐♦♥ t❛❦❡s ✐ts ✜♥❛❧ ❢♦r♠✿
1 1. p(t) = p0 +v0 t − gt2 2 2. v(t) = v0 −gt 3. a(t) =
−g
❚❤❡ ♣r♦❜❧❡♠ ✐s s♦❧✈❡❞ ✇✐t❤ ❛❜s♦❧✉t❡ ❛❝❝✉r❛❝②✦ ❊①❛♠♣❧❡ ✶✳✶✵✳✸✿ ❢r❡❡ ❢❛❧❧
❋r♦♠ ❛ 100✲❢♦♦t ❜✉✐❧❞✐♥❣✱ ❛ ❜❛❧❧ ✐s t❤r♦✇♥ ✉♣ ❛t 50 ❢❡❡t ♣❡r s❡❝♦♥❞ ✐♥ s✉❝❤ ❛ ✇❛② t❤❛t ✐t ❢❛❧❧s ♦♥ t❤❡ ❣r♦✉♥❞✳ ❍♦✇ ❤✐❣❤ ✇✐❧❧ t❤❡ ❜❛❧❧ ❣♦❄
◮
Pr♦❜❧❡♠✿
✶✳✶✵✳ ❋r❡❡ ❢❛❧❧
✾✹
❲❡ ❤❛✈❡✿ p0 = 100, v0 = 50 .
❖✉r ❡q✉❛t✐♦♥ ❜❡❝♦♠❡s✿ p = 100 +50t −16t2 .
■♥ ❝♦♥tr❛st t♦ t❤❡ ❞✐s❝r❡t❡ ❝❛s❡✱ t❤❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ♣♦s✐t✐♦♥ ✐s♥✬t r❡❝✉rs✐✈❡ ❜✉t ❞✐r❡❝t ❛♥❞ ❡①♣❧✐❝✐t✦ ❇❡❢♦r❡ ✇❡ ✉t✐❧✐③❡ t❤❡ ❡①♣❧✐❝✐t ❛❧❣❡❜r❛✐❝ r❡♣r❡s❡♥t❛t✐♦♥✱ ✇❡ ✈✐s✉❛❧✐③❡ t❤❡ r❡s✉❧ts ❜② ♣❧♦tt✐♥❣ t❤❡ ❣r❛♣❤ ♦❢ t❤✐s ❢✉♥❝t✐♦♥ ♥❡①t t♦ t❤❡ ♦♥❡ ♦❜t❛✐♥❡❞ r❡❝✉rs✐✈❡❧②✿
❚❤❡ ❧❛tt❡r ✐s ❛ s❛♠♣❧✐♥❣ ♦❢ t❤❡ ❡①❛❝t s♦❧✉t✐♦♥✳ ❏✉st ❛s ✐♥ t❤❡ ❧❛st ❡①❛♠♣❧❡✱ ✇❡ ❝❛♥ ✉s❡ t❤✐s ♣❧♦t t♦ s♦❧✈❡ ❛ ✈❛r✐❡t② ♦❢ ♣r♦❜❧❡♠s ❛❜♦✉t t❤✐s ♠♦t✐♦♥✳ ▲❡t✬s r❡✈✐s✐t t❤❡ t✇♦ ♣r♦❜❧❡♠s ❛❜♦✉t t❤✐s s♣❡❝✐✜❝ t❤r♦✇ ✇❡ s♦❧✈❡❞ ♥✉♠❡r✐❝❛❧❧②✳ ❚❤❡② ❛r❡ s♦❧✈❡❞ t❤❡ s❛♠❡ ✇❛②✿ ✶✳ ❚♦ ✜♥❞ t❤❡ ❤✐❣❤❡st ❡❧❡✈❛t✐♦♥✱ ✇❡ ❧♦♦❦ ❛t t❤❡ r♦✇ ✇✐t❤ p✳ ❚❤❡ ❧❛r❣❡st ✈❛❧✉❡ s❡❡♠s t♦ ❜❡ ❝❧♦s❡ t♦ y = 139 ❢❡❡t✳ ✷✳ ❚♦ ✜♥❞ ✇❤❡♥ t❤❡ ❜❛❧❧ ❤✐ts t❤❡ ❣r♦✉♥❞✱ ✇❡ s❝r♦❧❧ ❞♦✇♥ t♦ ✜♥❞ t❤❡ r♦✇ ✇✐t❤ p ❝❧♦s❡ t♦ 0✳ ■t ❤❛♣♣❡♥s s♦♠❡t✐♠❡ ❝❧♦s❡ t♦ t = 4.5 s❡❝♦♥❞s✳ ❚❤❡s❡ ❛r❡ ❛♣♣r♦①✐♠❛t❡ s♦❧✉t✐♦♥s ❛s t❤❡② ❝♦♠❡ ❢r♦♠ ❛ s❛♠♣❧❡❞ ❢✉♥❝t✐♦♥✳ ❚❤❡ ❢♦r♠✉❧❛✱ ❤♦✇❡✈❡r✱ ❣✐✈❡s ✉s ❛ ✇❛② t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥s ✇✐t❤ ❛❜s♦❧✉t❡ ❛❝❝✉r❛❝②✳ ❲❡ ❝❛♥ ❡✈❡♥ ❛✈♦✐❞ ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❋♦r t❤❡ ✜rst ♣r♦❜❧❡♠✱ ✇❡ r❡❛❧✐③❡ t❤❛t p = −16t2 + 50t + 100 ✐s ❛ ♣❛r❛❜♦❧❛✦ ❆♥❞ t❤❡ ✈❡rt❡① ♦❢ y = ax2 + bx + c ✐s ❛t x = −b/a ✭❱♦❧✉♠❡ ✶✱ ❈❤❛♣t❡r ✶P❈✲✹✮✳ ❚❤❡r❡❢♦r❡✱ t❤❡ ❤✐❣❤❡st ♣♦✐♥t ✐s r❡❛❝❤❡❞ ❛t t✐♠❡ t = −50/(−2 · 16) = 1.5625 .
❚❤❡♥✱ t❤❡ ❤✐❣❤❡st ❡❧❡✈❛t✐♦♥ ✐s
p = 100 + 50 · 1.5625 − 16 · 1.56252 = 139.0625 .
❚❤❡ r❡s✉❧t ♠❛t❝❤❡s ♦✉r ❡st✐♠❛t❡✦ ❋♦r t❤❡ s❡❝♦♥❞ ♣r♦❜❧❡♠✱ t❤❡ ❛❧t✐t✉❞❡ ❛t t❤❡ ❡♥❞ ✐s 0✱ s♦ t♦ ✜♥❞ ✇❤❡♥ ✐t ❤❛♣♣❡♥❡❞✱ ✇❡ s❡t p = 0✱ ♦r −16t2 + 50t + 100 = 0 ,
❛♥❞ s♦❧✈❡ ❢♦r t✳ ❆❝❝♦r❞✐♥❣ t♦ t❤❡ ◗✉❛❞r❛t✐❝ ❋♦r♠✉❧❛ ✭s❡❡♥ ✐♥ ❱♦❧✉♠❡ ✶✱ ❈❤❛♣t❡r ✶P❈✲✹✮✱ ✇❡ ❤❛✈❡✿ t=
❚❤❡ r❡s✉❧t ♠❛t❝❤❡s ♦✉r ❡st✐♠❛t❡✦
−50 −
p
502 − 4(−16)100 ≈ 4.5106 . 2 · (−16)
✶✳✶✵✳ ❋r❡❡ ❢❛❧❧
✾✺
❊①❡r❝✐s❡ ✶✳✶✵✳✹
❲❤❛t ❤❛♣♣❡♥❡❞ t♦ ±❄ ❊①❡r❝✐s❡ ✶✳✶✵✳✺
❍♦✇ ❤✐❣❤ ❞♦❡s t❤❡ ♣r♦❥❡❝t✐❧❡ ❣♦ ✐♥ t❤❡ ❛❜♦✈❡ ❡①❛♠♣❧❡❄ ❊①❡r❝✐s❡ ✶✳✶✵✳✻
❯s✐♥❣ t❤❡ ❛❜♦✈❡ ❡①❛♠♣❧❡✱ ❤♦✇ ❧♦♥❣ ✇✐❧❧ ✐t t❛❦❡ ❢♦r t❤❡ ♣r♦❥❡❝t✐❧❡ t♦ r❡❛❝❤ t❤❡ ❣r♦✉♥❞ ✐❢ ✜r❡❞ ❞♦✇♥ ❄ ❊①❡r❝✐s❡ ✶✳✶✵✳✼
❯s❡ t❤❡ ❛❜♦✈❡ ♠♦❞❡❧ t♦ ❞❡t❡r♠✐♥❡ ❤♦✇ ❧♦♥❣ ✐t ✇✐❧❧ t❛❦❡ ❢♦r ❛♥ ♦❜❥❡❝t t♦ r❡❛❝❤ t❤❡ ❣r♦✉♥❞ ✐❢ ✐t ✐s ❞r♦♣♣❡❞✳ ▼❛❦❡ ✉♣ ②♦✉r ♦✇♥ q✉❡st✐♦♥s ❛❜♦✉t t❤❡ s✐t✉❛t✐♦♥ ❛♥❞ ❛♥s✇❡r t❤❡♠✳ ❘❡♣❡❛t✳ ❲✐t❤ ♦✉r s✐♠♣❧❡ ♠♦❞❡❧ ♦❢ ♠♦t✐♦♥✱ ❛❧❧ ♣♦ss✐❜❧❡ s❝❡♥❛r✐♦s ❤❛✈❡ ❜❡❡♥ ❢♦✉♥❞ ✐♥ t❤❡ ❢♦r♠ ♦❢ ❛♥ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛✦ ❲❡ ❝❛♥✬t ❡①♣❡❝t t♦ ❛✈♦✐❞ ❛♣♣r♦①✐♠❛t✐♦♥s t❤♦✉❣❤✿ ✶✳ ❚❤❡r❡ ♠❛② ❜❡ ♥♦ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛ ❢♦r t❤❡ ✈❡❧♦❝✐t②✱ ❛♥❞ t❤❡ ♣♦s✐t✐♦♥✱ ✇❤❡♥ t❤❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❛❝❝❡❧❡r✲ ❛t✐♦♥ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t✐♠❡ ✐s ❝♦♠♣❧❡① ❡♥♦✉❣❤✳ ❲❡ ❤❛✈❡ t♦ ❣♦ ❜❛❝❦ t♦ ♦✉r ❞✐s❝r❡t❡ ♠♦❞❡❧✳ ✷✳ ❊✈❡♥ ✇❤❡♥ t❤❡r❡ ❛r❡ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛s ❢♦r t❤❡ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ♣♦s✐t✐♦♥✱ t❤❡ ❡q✉❛t✐♦♥ ♠❛② ❤❛✈❡ ♥♦ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛ ❢♦r t❤❡ s♦❧✉t✐♦♥ ✭t❤❡ t✐♠❡ ✐♥ ✢✐❣❤t✮ ✇❤❡♥ t❤❡ ❢♦r♠❡r ✐s t♦♦ ❝♦♠♣❧❡①✳ ❲❡ ❤❛✈❡ t♦ s❡❡❦ ❛♥ ❛♣♣r♦①✐♠❛t❡ s♦❧✉t✐♦♥✳ ✸✳ ❊✈❡♥ ✐♥ ♦✉r ❡①♣❧✐❝✐t ❢♦r♠✉❧❛ ❢♦r t❤❡ t✐♠❡ ✐♥ ✢✐❣❤t ✐♥ t❤❡ ❧❛st ❡①❛♠♣❧❡✱ t❤❡ sq✉❛r❡ r♦♦t ✇✐❧❧ st✐❧❧ ❤❛✈❡ t♦ ❜❡ ❛♣♣r♦①✐♠❛t❡❞✳
❈❤❛♣t❡r ✷✿ ■♥t❡❣r❛t✐♦♥
❈♦♥t❡♥ts
✷✳✶ Pr♦♣❡rt✐❡s ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✷ ■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t② ✷✳✸ ■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ✳ ✳ ✳ ✳ ✳ ✷✳✹ ▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✺ ■♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✿ ❝♦♠♣♦s✐t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✻ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✼ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✽ ❚r✐❣♦♥♦♠❡tr✐❝ s✉❜st✐t✉t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✾ ■♥t❡❣r❛t✐♦♥ ❜② ♣❛rts✿ ♣r♦❞✉❝ts ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✶✵ ❆♣♣r♦❛❝❤❡s t♦ ✐♥t❡❣r❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷✳✶✶ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✷✳✶✷ Pr♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ❛♥❞ ✐♠♣r♦♣❡r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✷✳✶✸ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✾✻ ✶✵✶ ✶✵✾ ✶✷✶ ✶✷✽ ✶✸✸ ✶✸✽ ✶✹✷ ✶✹✼ ✶✺✶ ✶✺✸ ✶✻✺ ✶✼✵
✷✳✶✳ Pr♦♣❡rt✐❡s ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
❈♦♥s✐❞❡r t❤✐s
◮
♦❜✈✐♦✉s
st❛t❡♠❡♥t ❛❜♦✉t ♠♦t✐♦♥✿
✏■❢ ♠② s♣❡❡❞ ✐s ③❡r♦✱ ■ ❛♠ st❛♥❞✐♥❣ st✐❧❧ ✭❛♥❞ ✈✐❝❡ ✈❡rs❛✮✳✑
Pr♦✈✐♥❣ t❤❡ ♠❛t❤❡♠❛t✐❝❛❧ ✈❡rs✐♦♥ ♦❢ t❤✐s st❛t❡♠❡♥t ✇✐❧❧ ❝♦♥✜r♠ t❤❛t ♦✉r t❤❡♦r② ♠❛t❝❤❡s t❤❡ r❡❛❧✐t② ❛♥❞ t❤❡ ❝♦♠♠♦♥ s❡♥s❡✳ ❲❡ ❞✐❞ t❤✐s ✐♥ ❱♦❧✉♠❡ ✷✳ ❆s ❛ r❡✈✐❡✇✱ ✇❡ ✇✐❧❧ ❣♦ t❤r♦✉❣❤ t❤❡s❡ t❤r❡❡ st❛❣❡s ❛❣❛✐♥✿ ✶✳ t❤❡ ❞✐✛❡r❡♥❝❡ ✷✳ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ✸✳ t❤❡ ❞❡r✐✈❛t✐✈❡ ❚❤✐s t✐♠❡✱ ✇❡ ✇✐❧❧ ❛❝❝♦♠♣❛♥② ❡❛❝❤ ♦❢ t❤♦s❡ st❛t❡♠❡♥ts ✇✐t❤ ✐ts ❡q✉✐✈❛❧❡♥t ✐♥ t❡r♠s ♦❢✱ r❡s♣❡❝t✐✈❡❧②✿ ✶✳ t❤❡ s✉♠ ✷✳ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ✸✳ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
❚❤❡♦r❡♠ ✷✳✶✳✶✿ ❈♦♥st❛♥❝② ✈s✳ ❩❡r♦ ❉✐✛❡r❡♥❝❡ ❆ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ ❤❛s ❛ ③❡r♦ ❞✐✛❡r❡♥❝❡ ✭❢♦r ❛❧❧ s❡❝♦♥❞❛r② ♥♦❞❡s ✐♥ t❤❡ ♣❛rt✐t✐♦♥✮ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s ❝♦♥st❛♥t✳
✷✳✶✳
Pr♦♣❡rt✐❡s ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✾✼
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ ∆F = 0 ⇐⇒ F = ❝♦♥st❛♥t.
❈♦r♦❧❧❛r② ✷✳✶✳✷✿ ❩❡r♦ ❋✉♥❝t✐♦♥ ✈s✳ ❈♦♥st❛♥t ❙✉♠ ❆ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ ❤❛s ❛ ❝♦♥st❛♥t s✉♠ ✭♦✈❡r ❛❧❧ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✮ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s ③❡r♦✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ k = 0 ⇐⇒ Σk = ❝♦♥st❛♥t. ❲❡ ❝❛♥ t❤✐♥❦ ♦❢
F
❛s t❤❡ ✐♥❝r❡♠❡♥t❛❧ ♣♦s✐t✐♦♥ ❛♥❞
k
❛s t❤❡ ❞✐s♣❧❛❝❡♠❡♥t✳
❊①❡r❝✐s❡ ✷✳✶✳✸ ❉❡r✐✈❡ t❤❡ ❧❛tt❡r r❡s✉❧t ❢r♦♠ t❤❡ ❢♦r♠❡r✳ ◆❡①t✱ ✇❡ ❞✐✈✐❞❡
∆x
♦r ❢❛❝t♦r ♦✉t
∆x
✭✐✳❡✳✱
k = f ∆x✮✿
❚❤❡♦r❡♠ ✷✳✶✳✹✿ ❈♦♥st❛♥❝② ✈s✳ ❩❡r♦ ❉✐✛❡r❡♥❝❡ ◗✉♦t✐❡♥t ❆ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ ❤❛s ❛ ③❡r♦ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ✭❢♦r ❛❧❧ s❡❝♦♥❞❛r② ♥♦❞❡s ✐♥ t❤❡ ♣❛rt✐t✐♦♥✮ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s ❝♦♥st❛♥t✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ ∆F = 0 ⇐⇒ F = ❝♦♥st❛♥t . ∆x
❈♦r♦❧❧❛r② ✷✳✶✳✺✿ ❩❡r♦ ❋✉♥❝t✐♦♥ ✈s✳ ❈♦♥st❛♥t ❘✐❡♠❛♥♥ ❙✉♠ ❆ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ ❤❛s ❛ ❝♦♥st❛♥t ❘✐❡♠❛♥♥ s✉♠ ✭♦✈❡r ❛❧❧ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✮ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s ③❡r♦✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ f = 0 ⇐⇒ Σf · ∆x = ❝♦♥st❛♥t. ❲❡ ❝❛♥ t❤✐♥❦ ♦❢
F
❛s t❤❡ ✐♥❝r❡♠❡♥t❛❧ ♣♦s✐t✐♦♥ ❛♥❞
f
❛s t❤❡ ✈❡❧♦❝✐t②✳
❊①❡r❝✐s❡ ✷✳✶✳✻ ❉❡r✐✈❡ t❤❡ ❧❛tt❡r r❡s✉❧t ❢r♦♠ t❤❡ ❢♦r♠❡r✳ ◆❡①t✱ ✇❡ ♠❛❦❡
∆x → 0✿
❚❤❡♦r❡♠ ✷✳✶✳✼✿ ❈♦♥st❛♥❝② ✈s✳ ❩❡r♦ ❉❡r✐✈❛t✐✈❡ ❆ ❞✐✛❡r❡♥t✐❛❜❧❡ ♦♥ ❛♥ ✐♥t❡r✈❛❧ ❢✉♥❝t✐♦♥ ❤❛s ❛ ③❡r♦ ❞❡r✐✈❛t✐✈❡ ♦✈❡r t❤❡ ✐♥t❡r✈❛❧ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s ❝♦♥st❛♥t✳
✷✳✶✳
Pr♦♣❡rt✐❡s ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✾✽
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ dF = 0 ⇐⇒ F = ❝♦♥st❛♥t. dx ❈♦r♦❧❧❛r② ✷✳✶✳✽✿ ❩❡r♦ ❋✉♥❝t✐♦♥ ✈s✳ ❈♦♥st❛♥t ❘✐❡♠❛♥♥ ■♥t❡❣r❛❧
❆♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ♦♥ ❛♥ ✐♥t❡r✈❛❧ ❤❛s ❛ ❝♦♥st❛♥t ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s ③❡r♦✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ f = 0 ⇐⇒ ❲❡ ❝❛♥ t❤✐♥❦ ♦❢
F
Z
x
f dx = ❝♦♥st❛♥t.
a
❛s t❤❡ ❝♦♥t✐♥✉♦✉s❧② ❝❤❛♥❣✐♥❣ ♣♦s✐t✐♦♥ ❛♥❞
f
❛s t❤❡ ✐♥st❛♥t❛♥❡♦✉s ✈❡❧♦❝✐t②✳
❊①❡r❝✐s❡ ✷✳✶✳✾
❉❡r✐✈❡ t❤❡ ❧❛tt❡r r❡s✉❧t ❢r♦♠ t❤❡ ❢♦r♠❡r✳
❙✉♣♣♦s❡ ♥♦✇ t❤❛t t❤❡r❡ ❛r❡
t✇♦ r✉♥♥❡rs r✉♥♥✐♥❣ ✇✐t❤ t❤❡ s❛♠❡ s♣❡❡❞❀ ✇❤❛t ❝❛♥ ✇❡ s❛② ❛❜♦✉t t❤❡✐r ♠✉t✉❛❧
❧♦❝❛t✐♦♥s❄ ❚❤❡② ❛r❡ ♥♦t✱ ♦❢ ❝♦✉rs❡✱ st❛♥❞✐♥❣ st✐❧❧✱ ❜✉t t❤❡②
❛r❡
st✐❧❧ r❡❧❛t✐✈❡ t♦ ❡❛❝❤ ♦t❤❡r✦
❲❡ ❤❛✈❡ ❛ s❧✐❣❤t❧② ❧❡ss
♦❜✈✐♦✉s ❢❛❝t ❛❜♦✉t ♠♦t✐♦♥✿
◮
✏■❢ t✇♦ r✉♥♥❡rs r✉♥ ✇✐t❤ t❤❡ s❛♠❡ s♣❡❡❞✱ t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ t❤❡♠ ❞♦❡s♥✬t ❝❤❛♥❣❡ ✭❛♥❞ ✈✐❝❡
✈❡rs❛✮✑✳ ■t✬s ❛s ✐❢ t❤❡② ❛r❡ ❤♦❧❞✐♥❣ t❤❡ t✇♦ ❡♥❞s ♦❢ ❛ ♣♦❧❡ ✇✐t❤♦✉t ♣✉❧❧✐♥❣ ♦r ♣✉s❤✐♥❣✿
❚❤❡ ❢❛❝t r❡♠❛✐♥s ✈❛❧✐❞ ❡✈❡♥ ✐❢ t❤❡② s♣❡❡❞ ✉♣ ❛♥❞ s❧♦✇ ❞♦✇♥ ❛❧❧ t❤❡ t✐♠❡✳ ❚❤❡② ♠♦✈❡ ❛s ✐❢ ❛ s✐♥❣❧❡ ❜♦❞②✿
❖♥❝❡ ❛❣❛✐♥✱ ❢♦r ❢✉♥❝t✐♦♥s
y = F (x)
❛♥❞
y = G(x)
r❡♣r❡s❡♥t✐♥❣ t❤❡✐r ♣♦s✐t✐♦♥s✱ ✇❡ ❝❛♥ r❡st❛t❡ t❤✐s ✐❞❡❛
♠❛t❤❡♠❛t✐❝❛❧❧② ✐♥ ♦r❞❡r t♦ ❝♦♥✜r♠ t❤❛t ♦✉r t❤❡♦r② ♠❛❦❡s s❡♥s❡✳ ❲❡ ❢♦❧❧♦✇ t❤❡ s❛♠❡ t❤r❡❡ st❛❣❡s st❛rt✐♥❣ ✇✐t❤ t❤❡ ❞✐✛❡r❡♥❝❡s✿
✷✳✶✳
Pr♦♣❡rt✐❡s ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✾✾
❚❤❡♦r❡♠ ✷✳✶✳✶✵✿ ❆♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ❢♦r ❉✐✛❡r❡♥❝❡s ❚✇♦ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ ❤❛✈❡ t❤❡ s❛♠❡ ❞✐✛❡r❡♥❝❡s ✭❢♦r ❛❧❧ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✮ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ t✇♦ ❞✐✛❡r ❜② ❛ ❝♦♥st❛♥t✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ ∆F = ∆G ⇐⇒ F − G = ❝♦♥st❛♥t.
❈♦r♦❧❧❛r② ✷✳✶✳✶✶✿ ❉✐✛❡r❡♥t✐❛t✐♦♥ ❢♦r ❙✉♠s ❚✇♦ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ ❛r❡ ❡q✉❛❧ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ s✉♠s ♦❢ t❤❡ t✇♦ ❞✐✛❡r ❜② ❛ ❝♦♥st❛♥t ✭♦♥ ❛❧❧ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✮✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ f = g ⇐⇒ Σf − Σg = ❝♦♥st❛♥t. ❲❡ ❝❛♥ t❤✐♥❦ ♦❢
F
❛♥❞
G
❛s t❤❡ ✐♥❝r❡♠❡♥t❛❧ ♣♦s✐t✐♦♥s ❛♥❞
f
❛♥❞
g
❛s t❤❡ ❞✐s♣❧❛❝❡♠❡♥ts✳
❊①❡r❝✐s❡ ✷✳✶✳✶✷ ❉❡r✐✈❡ t❤❡ ❧❛tt❡r r❡s✉❧t ❢r♦♠ t❤❡ ❢♦r♠❡r✳
◆❡①t✱ ✇❡ ❞✐✈✐❞❡
∆x
♦r ❢❛❝t♦r ♦✉t
∆x✿
❚❤❡♦r❡♠ ✷✳✶✳✶✸✿ ❆♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ❢♦r ❉✐✛❡r❡♥t ◗✉♦t✐❡♥ts ❚✇♦ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ❛t t❤❡ ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ ❤❛✈❡ t❤❡ s❛♠❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ t✇♦ ❞✐✛❡r ❜② ❛ ❝♦♥st❛♥t✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ ∆G ∆F = ⇐⇒ F − G = ❝♦♥st❛♥t. ∆x ∆x
❈♦r♦❧❧❛r② ✷✳✶✳✶✹✿ ❉✐✛❡r❡♥t✐❛t✐♦♥ ❢♦r ❘✐❡♠❛♥♥ ❙✉♠s ❚✇♦ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ ❛r❡ ❡q✉❛❧ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦❢ t❤❡ t✇♦ ❞✐✛❡r ❜② ❛ ❝♦♥st❛♥t ✭♦♥ ❛❧❧ ♣r✐♠❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✮✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ f = g ⇐⇒ Σf · ∆x − Σg · ∆x = ❝♦♥st❛♥t. ❲❡ ❝❛♥ t❤✐♥❦ ♦❢
F
❛♥❞
G
❛s t❤❡ ✐♥❝r❡♠❡♥t❛❧ ♣♦s✐t✐♦♥s ❛♥❞
❊①❡r❝✐s❡ ✷✳✶✳✶✺ ❉❡r✐✈❡ t❤❡ ❧❛tt❡r r❡s✉❧t ❢r♦♠ t❤❡ ❢♦r♠❡r✳
◆❡①t✱ ✇❡ ♠❛❦❡
∆x → 0✿
f
❛♥❞
g
❛s t❤❡ ✈❡❧♦❝✐t✐❡s✳
✷✳✶✳
Pr♦♣❡rt✐❡s ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s
✶✵✵
❚❤❡♦r❡♠ ✷✳✶✳✶✻✿ ❆♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ❢♦r ❉❡r✐✈❛t✐✈❡s ❚✇♦ ❢✉♥❝t✐♦♥s ❞✐✛❡r❡♥t✐❛❜❧❡ ♦♥ ❛♥ ✐♥t❡r✈❛❧ ❤❛✈❡ t❤❡ s❛♠❡ ❞❡r✐✈❛t✐✈❡ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ t✇♦ ❞✐✛❡r ❜② ❛ ❝♦♥st❛♥t✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ d d F = G ⇐⇒ F − G = ❝♦♥st❛♥t. dx dx
❈♦r♦❧❧❛r② ✷✳✶✳✶✼✿ ❉✐✛❡r❡♥t✐❛t✐♦♥ ❢♦r ■♥t❡❣r❛❧s ❚✇♦ ❢✉♥❝t✐♦♥s ✐♥t❡❣r❛❜❧❡ ♦♥ ❛♥ ✐♥t❡r✈❛❧ ❤❛✈❡ t❤❡ s❛♠❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ♦❢ t❤❡ t✇♦ ❞✐✛❡r ❜② ❛ ❝♦♥st❛♥t✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ f = g ⇐⇒
Z
x a
f dx −
Z
x
g dx = ❝♦♥st❛♥t.
a
❲❡ ❝❛♥ t❤✐♥❦ ♦❢ F ❛♥❞ G ❛s t❤❡ ❝♦♥t✐♥✉♦✉s❧② ❝❤❛♥❣✐♥❣ ♣♦s✐t✐♦♥s ❛♥❞ f ❛♥❞ g ❛s t❤❡ ✐♥st❛♥t❛♥❡♦✉s ✈❡❧♦❝✐t✐❡s✳
❊①❡r❝✐s❡ ✷✳✶✳✶✽ ❉❡r✐✈❡ t❤❡ ❧❛tt❡r r❡s✉❧t ❢r♦♠ t❤❡ ❢♦r♠❡r✳ ■♥ ❛❞❞✐t✐♦♥ t♦ t❤❡ ♠♦t✐♦♥ ✐♥t❡r♣r❡t❛t✐♦♥✱ t❤❡r❡ ✐s ❛❧s♦ ♦♥❡ ✐♥ t❡r♠s ♦❢ ❣❡♦♠❡tr②✳ ❚❤❡ ❧❛st t❤❡♦r❡♠ s❛②s✿ ◮ ■❢ t❤❡ ❣r❛♣❤s ♦❢ y = F (x) ❛♥❞ y = G(x) ❤❛✈❡ ♣❛r❛❧❧❡❧ t❛♥❣❡♥t ❧✐♥❡s ❢♦r ❡✈❡r② ✈❛❧✉❡ ♦❢ x✱ t❤❡♥ t❤❡ ❣r❛♣❤ ♦❢ F ✐s ❛ ✈❡rt✐❝❛❧ s❤✐❢t ♦❢ t❤❡ ❣r❛♣❤ ♦❢ G ✭❛♥❞ ✈✐❝❡ ✈❡rs❛✮✳
❲❡ ❝❛♥ ✉♥❞❡rst❛♥❞ t❤✐s ✐❞❡❛ ✐❢ ✇❡ ✐♠❛❣✐♥❡ ❛ t✉♥♥❡❧ ❛♥❞ ❛ ♣❡rs♦♥ ✇❤♦s❡ ❤❡❛❞ ✐s t♦✉❝❤✐♥❣ t❤❡ ❝❡✐❧✐♥❣✳ ■❢ t❤❡ ❝❡✐❧✐♥❣ ✐s s❧♦♣❡❞ ❞♦✇♥✱ s❤♦✉❧❞ ❤❡ ❜❡ ❝♦♥❝❡r♥❡❞ ❛❜♦✉t ❤✐tt✐♥❣ ❤✐s ❤❡❛❞❄ ◆♦t ✐❢ t❤❡ ✢♦♦r ✐s s❧♦♣❡❞ ❞♦✇♥ ❛s ♠✉❝❤✿
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢ t❤❡ s❧♦♣❡ ♦❢ t❤❡ t✉♥♥❡❧✬s t♦♣ ✐s ❡q✉❛❧ t♦ t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❜♦tt♦♠ ❛t ❡✈❡r② ❧♦❝❛t✐♦♥✱ t❤❡♥ t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ t✉♥♥❡❧ r❡♠❛✐♥s t❤❡ s❛♠❡ t❤r♦✉❣❤♦✉t ✐ts ❧❡♥❣t❤✳
✷✳✷✳ ■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t②
✶✵✶
❇❛s❡❞ ♦♥ t❤❡ t❤❡♦r❡♠✱ ✇❡ ❝❛♥ ♥♦✇ ✉♣❞❛t❡ t❤✐s ❧✐st ♦❢ s✐♠♣❧❡ ❜✉t ✐♠♣♦rt❛♥t ❢❛❝ts✿ ✐♥❢♦ ❛❜♦✉t F
✐♥❢♦ ❛❜♦✉t F
′
F ✐s ❝♦♥st❛♥t✳
⇐⇒ F ✐s ③❡r♦✳
F ✐s ❧✐♥❡❛r✳
⇐⇒ F ✐s ❝♦♥st❛♥t✳
′ ′
F ✐s q✉❛❞r❛t✐❝✳ ⇐⇒ F ✐s ❧✐♥❡❛r✳ ′
✐♥❢♦ ❛❜♦✉t
Z
✐♥❢♦ ❛❜♦✉t f
f dx
Z
f dx ✐s ❝♦♥st❛♥t✳
⇐⇒ f ✐s ③❡r♦✳
f dx ✐s ❧✐♥❡❛r✳
⇐⇒ f ✐s ❝♦♥st❛♥t✳
Z
f dx ✐s q✉❛❞r❛t✐❝✳ ⇐⇒ f ✐s ❧✐♥❡❛r✳
Z
❲❡ ✉s❡ t❤❡ ❧❛st t✇♦ ❢❛❝ts t♦ ❥✉st✐❢② ♦✉r ❛♥❛❧②s✐s ♦❢ ❢r❡❡ ✢✐❣❤t ✿ ❋✉♥❝t✐♦♥s ♦❢ t✐♠❡ ❚❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ✐s ❝♦♥st❛♥t✳ =⇒ ❚❤❡ ✈❡❧♦❝✐t② ✐s ❧✐♥❡❛r✳ =⇒ ❚❤❡ ❧♦❝❛t✐♦♥ ✐s q✉❛❞r❛t✐❝✳ ❆♥♦t❤❡r ✐♠♣♦rt❛♥t ❝♦♥❝❧✉s✐♦♥ ✐s t❤❛t t❤❡r❡ ❛r❡ ✐♥✜♥✐t❡❧② ♠❛♥② ❢✉♥❝t✐♦♥s ✇✐t❤ t❤❡ s❛♠❡ ❞❡r✐✈❛t✐✈❡ F ′ = f ✳ ❚❤❡✐r ❣r❛♣❤s ❛r❡ ❡❛s② t♦ ♣❧♦t ❜❡❝❛✉s❡ t❤❡② ❞✐✛❡r ❜② ❛ ✈❡rt✐❝❛❧ s❤✐❢t✿
❙♦✱ ❡✈❡♥ ✐❢ ✇❡ ❝❛♥ r❡❝♦✈❡r t❤❡ ❢✉♥❝t✐♦♥ F ❢r♦♠ ✐ts ❞❡r✐✈❛t✐✈❡ F ′ ✱ t❤❡r❡ ❛r❡ ♠❛♥② ♦t❤❡rs ✇✐t❤ t❤❡ s❛♠❡ ❞❡r✐✈❛t✐✈❡✱ s✉❝❤ ❛s G = F + C ❢♦r ❛♥② ❝♦♥st❛♥t r❡❛❧ ♥✉♠❜❡r C ✳ ❆r❡ t❤❡r❡ ♦t❤❡rs❄ ◆♦t ❛❝❝♦r❞✐♥❣ t♦ t❤❡ t❤❡♦r❡♠✳ ❲❛r♥✐♥❣✦ ■t✬s ♦♥❧② tr✉❡ ✇❤❡♥ t❤❡ ❞♦♠❛✐♥ ✐s ❛♥ ✐♥t❡r✈❛❧✳
✷✳✷✳ ■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✲ ✐t②
■♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✇✐❧❧ ❜❡ t❛❦✐♥❣ ❛ ❜r♦❛❞❡r ❧♦♦❦ ❛t ❤♦✇ ✇❡ ❝♦♠♣✉t❡ t❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥✳ ❋♦r t❤❡ ♣r♦❝❡❞✉r❡ ❞❡s❝r✐❜❡❞ ✐♥ t❤❡ ❞❡✜♥✐t✐♦♥ ✭❧❡❢t✮✱ ✇❡ ♥♦✇ ❤❛✈❡ s❡✈❡r❛❧ s❤♦rt❝✉ts ✭r✐❣❤t✮✿ s❛♠♣❧✐♥❣
s❡q✉❡♥❝❡ ←−−−−−−−− ❢✉♥❝t✐♦♥ ♦♥ ✐♥t❡r✈❛❧ ❘❙ y
R y
s❡q✉❡♥❝❡ −−−∆x→0 −−−−−→ ❢✉♥❝t✐♦♥ ♦♥ ✐♥t❡r✈❛❧
xn R y
1 xn+1 n+1
ex R y
ex
sin x R y
− cos x
cos x R y sin x
✷✳✷✳
■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t②
✶✵✷
▲❡t✬s r❡✈✐❡✇ t❤❡ ❞❡t❛✐❧s✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ♣❛rt✐t✐♦♥ ♦❢ ✐♥t❡r✈❛❧ [a, b]✳ ❚❤❡s❡ ❛r❡ t❤❡ ♣r✐♠❛r② ♥♦❞❡s✿ a = x0 , ..., xn = b .
❚❤❡s❡ ❛r❡ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✿ c1 , ..., cn .
❚❤❡② s❛t✐s❢②✿ xk ≤ ck ≤ xk+1 .
❲❡ st❛rt ✇✐t❤ ❛ ❢✉♥❝t✐♦♥ g ❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✳ ■t ✐s s✐♠♣❧② ❛ s❡q✉❡♥❝❡ ♦❢ ♥✉♠❜❡rs✳ ❍❡r❡ ✐s ✐ts s✉♠ ✿ m Σg(xk ) =
X
g(ck ) .
k=1
■t ✐s ❛❧s♦ ❞❡✜♥❡❞ ♦♥ t❤❡ ♣❛rt✐t✐♦♥✳ ❖♥ t❤❡ ♦♥❡ ❤❛♥❞✱ ✐t ✐s s✐♠♣❧② ❛ s❡q✉❡♥❝❡ ♦❢ ♥✉♠❜❡rs✳ ❖♥ t❤❡ ♦t❤❡r✱ ✐t✬s ❛ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ♦♥ t❤❡ ♣r✐♠❛r② ♥♦❞❡s✳ ❲❤❛t t❤✐s ♠❡❛♥s ✐s t❤❛t t❤✐s ♣r♦❝❡❞✉r❡ ✐s ❛ s♣❡❝✐❛❧ ❦✐♥❞ ♦❢ ❢✉♥❝t✐♦♥✱ ❛ ❢✉♥❝t✐♦♥ ♦❢ ❢✉♥❝t✐♦♥s✿ ❢✉♥❝t✐♦♥ →
→ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥✱ s❡q✉❡♥❝❡
Σ
◆♦✇ ✇❡ ❤❛✈❡ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥ f ❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✳ ❚♦ ✜♥❞ t❤❡ ❘✐❡♠❛♥♥ s✉♠ Σ ♦❢ f ✱ ✇❡ ❥✉st ❛♣♣❧② t❤❡ s✉♠ ❝♦♥str✉❝t✐♦♥ t♦ f ✇✐t❤ ✐ts ✈❛❧✉❡s ♠✉❧t✐♣❧✐❡❞ ❜② ∆x = xk+1 − xk ✳ ❲❡ ❤❛✈❡ ❝r❡❛t❡❞ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥ ♦❢ ❢✉♥❝t✐♦♥s✿ ❢✉♥❝t✐♦♥ →
→ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥✱ s❡q✉❡♥❝❡
Σ · ∆x
◆❡①t✱ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✐s ❞❡✜♥❡❞ ❛s ❛ ❧✐♠✐t✳ ■t ✐s t❤❡ ❧✐♠✐t ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦❢ f ❢ ♦✈❡r ❛❧❧ ♣❛rt✐t✐♦♥s ♦❢ t❤❡ ✐♥t❡r✈❛❧✳ ❚❤✐s ♣r♦❝❡ss ❝r❡❛t❡s ❛ s♣❡❝✐❛❧ ❦✐♥❞ ♦❢ ❢✉♥❝t✐♦♥ t♦♦✱ ❛❧s♦ ❛ ❢✉♥❝t✐♦♥ ♦❢ ❢✉♥❝t✐♦♥s✿ ❢✉♥❝t✐♦♥ →
Z
dx
→ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥
❆s ❛ r❡♠✐♥❞❡r✱ t❤❡ ♠♦t✐♦♥ ❛♥❛❧♦❣② ❢♦r t❤❡s❡ t❤r❡❡ ♦♣❡r❛t✐♦♥s ✐s ❛s ❢♦❧❧♦✇s✿ ✈❡❧♦❝✐t②
s❛♠♣❧✐♥❣ y
s❛♠♣❧❡❞ ✈❡❧♦❝✐t② ·∆ y
s❛♠♣❧❡❞ ❞✐s♣❧❛❝❡♠❡♥ts P y
s❛♠♣❧❡❞ t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t ∆x→0 y
t♦t❛❧ ❞✐s♣❧❛❝❡♠❡♥t
❲❡ ♥❡❡❞ t♦ ✉♥❞❡rst❛♥❞ ❤♦✇ t❤❡s❡ t❤r❡❡ ❢✉♥❝t✐♦♥s ♦♣❡r❛t❡✳ ❲❡ ❝♦♥s✐❞❡r t❤❡ ❛❧❣❡❜r❛✐❝ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ s✉♠s✱ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s✳ ■♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ✇❡ ❝❛♥ ♣r❡❞✐❝t t❤❛t t❤❡② ✇✐❧❧ ♠❛t❝❤ t❤❡ ❛❧❣❡❜r❛✐❝ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡s✱ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts✱ ❛♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡s✳
✷✳✷✳
■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t②
✶✵✸
❋✉rt❤❡r♠♦r❡✱ t❤❡ ❧❛st ✐t❡♠ ♦♥ ❡✐t❤❡r ❧✐st ❝♦♠❡s ❢r♦♠ t❤❡ ❛❧❣❡❜r❛✐❝ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❧✐♠✐ts✳ ■♥ ❢❛❝t✱ t❤❡ ✐❞❡❛s ♦❢ ✇❤❛t s❤♦rt❝✉ts t♦ ❧♦♦❦ ❢♦r ❝♦♠❡ ❢r♦♠ t❤♦s❡ ❢♦r ❧✐♠✐ts ✿ t❤❡ ❙✉♠ ❘✉❧❡✱ t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡✱ ❡t❝✳ ❚❤❡ q✉❡st✐♦♥ ✇❡ ✇✐❧❧ ❜❡ ❛s❦✐♥❣ ✐s✿ ◮ ❲❤❛t ❤❛♣♣❡♥s t♦ t❤❡ ♦✉t♣✉t ❢✉♥❝t✐♦♥ ♦❢ ✐♥t❡❣r❛t✐♦♥ ❛s ✇❡ ♣❡r❢♦r♠ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s ✇✐t❤
t❤❡ ✐♥♣✉t ❢✉♥❝t✐♦♥s❄
❚❤❡r❡ ❛r❡ ❛ ❢❡✇ s❤♦rt❝✉t ♣r♦♣❡rt✐❡s✳ ▲❡t✬s t❛❦❡ ❛♥♦t❤❡r ❧♦♦❦ ❛t t❤✐s ❡❧❡♠❡♥t❛r② st❛t❡♠❡♥t ❛❜♦✉t ♠♦t✐♦♥ ✿ ◮ ■❋ t✇♦ r✉♥♥❡rs ❛r❡ r✉♥♥✐♥❣ ❛✇❛② ❢r♦♠ ❛ ♣♦st✱ ❚❍❊◆ t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ t❤❡♠ ✐s t❤❡ s❛♠❡
❛s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ♣♦st ♦❢ ❛ t❤✐r❞ ♣❡rs♦♥ r✉♥♥✐♥❣ ❢♦r t❤❡ ❜♦t❤ ♦❢ t❤❡♠ ✇✐t❤ t❤❡ ❝♦♠❜✐♥❡❞ s♣❡❡❞✳
❲❤❡♥ t✇♦ ❢✉♥❝t✐♦♥s ❛r❡ ❛❞❞❡❞✱ ✇❤❛t ❤❛♣♣❡♥s t♦ t❤❡✐r s✉♠s❄ ❚❤✐s s✐♠♣❧❡ ❛❧❣❡❜r❛✱ t❤❡ ❆ss♦❝✐❛t✐✈❡
✱ t❡❧❧s t❤❡ ✇❤♦❧❡ st♦r②✿
Pr♦♣❡rt②
u
+ U
v
+ V
+ = (u + v) + (U + V )
❚❤❡ r✉❧❡ ❛♣♣❧✐❡s ❡✈❡♥ ✐❢ ✇❡ ❤❛✈❡ ♠♦r❡ t❤❛♥ ❥✉st t✇♦ t❡r♠s❀ ✐t✬s ❥✉st r❡✲❛rr❛♥❣✐♥❣ t❤❡ t❡r♠s✿ up + Up up+1 + Up+1
✳✳ ✳
✳✳ ✳
✳✳ ✳
uq + Uq up + ... + uq + Up + ... + Uq = (up + Up )+ ... +(uq + Uq ) q X (un + Un ) = n=p
❚❤❛t✬s t❤❡ ♣❛rt✐t✐♦♥s✿
❙✉♠ ❘✉❧❡ ❢♦r ❙✉♠s ♦❢ ❙❡q✉❡♥❝❡s
✭❈❤❛♣t❡r ✶P❈✲✶✮✳ ❲❡ r❡st❛t❡ ✐t ❢♦r ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦♥
❚❤❡♦r❡♠ ✷✳✷✳✶✿ ❙✉♠ ❘✉❧❡ ❢♦r ❙✉♠s ❋♦r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧✱ t❤❡ s✉♠ ♦❢ t❤❡ s✉♠ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ✐s t❤❡ s✉♠ ♦❢ t❤❡ s✉♠s ♦❢ t❤❡ ❢✉♥❝t✐♦♥s✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿
Σ (f + g) = Σf + Σg
❋♦r t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ t❤❡ ✐♥t❡r♣r❡t❛t✐♦♥ ✐s ❛❧s♦ s✐♠♣❧❡❀ t❤❡ ♣✐❝t✉r❡ ❜❡❧♦✇ ✐❧❧✉str❛t❡s ❤♦✇ ❛❞❞✐♥❣ t✇♦ ❢✉♥❝t✐♦♥s ❝❛✉s❡s ❛❞❞✐♥❣ t❤❡ ❛r❡❛s ✉♥❞❡r t❤❡✐r ❣r❛♣❤s✿
✷✳✷✳
■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t②
✶✵✹
❚❤❡♦r❡♠ ✷✳✷✳✷✿ ❙✉♠ ❘✉❧❡ ❢♦r ❘✐❡♠❛♥♥ ❙✉♠s ❋♦r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧✱ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ s✉♠ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ✐s t❤❡ s✉♠ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦❢ t❤❡ ❢✉♥❝t✐♦♥s✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿
Σ (f + g) · ∆x = Σf · ∆x + Σg · ∆x Pr♦♦❢✳
❆♣♣❧②✐♥❣ t❤❡ ❞❡✜♥✐t✐♦♥ t♦ t❤❡ ❢✉♥❝t✐♦♥ f + g ✱ ✇❡ ❤❛✈❡✿ Σ f + g · ∆x = f (a) + g(a) + f (a + h) + g(a + h) + ... + f (x − h) + g(x − h) · ∆x = f (a) + f (a + h) + f (a + 2h) + ... + f (x − h) + f (x) · ∆x + g(a) + g(a + h) + g(a + 2h) + ... + g(x − h) + g(x) · ∆x = Σf · ∆x (b) + Σg · ∆x .
■t ✐s ❛s ✐❢ ♦♥❡ ♠❛❦❡s t✇♦ ❝♦♥s❡❝✉t✐✈❡ ❞r♦♣s ✐♥ ❛ ❣❛♠❡ ♦❢ ❚❡tr✐s✿
◆♦✇ ∆x → 0 ✐♥ t❤❡s❡ ❘✐❡♠❛♥♥ s✉♠s✿
✷✳✷✳ ■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t②
✶✵✺
❚❤❡♦r❡♠ ✷✳✷✳✸✿ ❙✉♠ ❘✉❧❡ ❢♦r ■♥t❡❣r❛❧s ❚❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ s✉♠ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ✐s t❤❡ s✉♠ ♦❢ t❤❡ ✐♥t❡❣r❛❧s ♦❢ t❤❡ ❢✉♥❝t✐♦♥s✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢
f
❛♥❞
g
❛r❡ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥s ♦✈❡r
[a, b]✱
t❤❡♥ s♦ ✐s
f +g
❛♥❞ ✇❡ ❤❛✈❡✿
Z
x
(f + g) dx = a
Z
x
f dx + a
Z
x
g dx a
Pr♦♦❢✳ ❲❡ ✉s❡ t❤❡ ❙✉♠ ❘✉❧❡ ❢♦r ▲✐♠✐ts ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✶✳
❙♦✱
∆✬s
❜❡❝♦♠❡
d✬s✦
❚❤❡ ♣✐❝t✉r❡ ❜❡❧♦✇ ✐❧❧✉str❛t❡s ✇❤❛t ❤❛♣♣❡♥s ✇❤❡♥ t❤❡ ❜♦tt♦♠ ❞r♦♣s ❢r♦♠ ❛ ❜✉❝❦❡t ♦❢ s❛♥❞ ❛♥❞ ✐t ❢❛❧❧s ♦♥ ❛ ✉♥❡✈❡♥ s✉r❢❛❝❡✿
❚❤❡ ❧❛st t✇♦ t❤❡♦r❡♠s ❞❡♠♦♥str❛t❡ t❤❛t t❤✐s ✐s tr✉❡ ✇❤❡t❤❡r t❤❡ s✉r❢❛❝❡ ✐s st❛✐r❝❛s❡✲❧✐❦❡ ♦r ❝✉r✈❡❞✳
❊①❡r❝✐s❡ ✷✳✷✳✹ ▼♦❞✐❢② t❤❡ ♣r♦♦❢ ❢♦r✿ ✭❛✮ ❧❡❢t✲❡♥❞✱ ✭❜✮ ♠✐❞✲♣♦✐♥t✱ ❛♥❞ ✭❝✮ ❣❡♥❡r❛❧ ❘✐❡♠❛♥♥ s✉♠s✳
❈♦♠♣✉t❛t✐♦♥❛❧❧②✱ ✇❡ ❤❛✈❡ t❤❡ s❛♠❡ ✐❞❡❛ ❛s t❤❡ ♦♥❡ ❢♦r t❤❡ ❞❡r✐✈❛t✐✈❡s✿ ❚❤❡ ✐♥t❡❣r❛❧ ✐s s♣❧✐t ✐♥ ❤❛❧❢✳ ❊✐t❤❡r ♦❢ t❤❡ ❧❛st t✇♦ t❤❡♦r❡♠s ❝❛♥ ❛❧s♦ ❜❡ ❞❡♠♦♥str❛t❡❞ ✇✐t❤ t❤❡ s♣r❡❛❞s❤❡❡t✿
❚❤❡ s❛♠❡ ♣r♦♦❢ ❛♣♣❧✐❡s t♦ s✉❜tr❛❝t✐♦♥ ♦❢ t❤❡ s✉♠s✳
✷✳✷✳
■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t②
✶✵✻
❊①❡r❝✐s❡ ✷✳✷✳✺
❙t❛t❡ t❤❡ ❉✐✛❡r❡♥❝❡ ❘✉❧❡✳ ◆❡①t✱ ✇❤❡♥ ❛ ❢✉♥❝t✐♦♥ ✐s ♠✉❧t✐♣❧✐❡❞ ❜② ❛ ❝♦♥st❛♥t✱ ✇❤❛t ❤❛♣♣❡♥s t♦ ✐ts s✉♠s❄ ❚❤✐s s✐♠♣❧❡ ❛❧❣❡❜r❛✱ t❤❡ ❉✐str✐❜✉t✐✈❡
✱ t❡❧❧s t❤❡ ✇❤♦❧❡ st♦r②✿
Pr♦♣❡rt②
c·( u
=
+ U)
cu + cU
❚❤❡ r✉❧❡ ❛♣♣❧✐❡s ❡✈❡♥ ✐❢ ✇❡ ❤❛✈❡ ♠♦r❡ t❤❛♥ ❥✉st t✇♦ t❡r♠s❀ ✐t✬s ❥✉st ❢❛❝t♦r✐♥❣ ✿ c · up
c · up+1
✳✳ ✳✳ ✳✳ ✳ ✳ ✳
c · uq
c · (up + ... + uq ) q X =c · un n=p
❚❤❛t✬s t❤❡ ❈♦♥st❛♥t ♦♥ ♣❛rt✐t✐♦♥s✿
▼✉❧t✐♣❧❡ ❢♦r ❙✉♠s
❢♦r s❡q✉❡♥❝❡s ✭❈❤❛♣t❡r ✶P❈✲✶✮✳ ❲❡ r❡st❛t❡ ✐t ❢♦r ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞
❚❤❡♦r❡♠ ✷✳✷✳✻✿ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ❙✉♠s ❋♦r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧✱ t❤❡ s✉♠ ♦❢ ❛ ♠✉❧t✐♣❧❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✐s t❤❡ ♠✉❧t✐♣❧❡ ♦❢ ✐ts s✉♠✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿
Σ(cf ) = c (Σf )
❋♦r t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ t❤❡ ✐♥t❡r♣r❡t❛t✐♦♥ ✐s ❛❧s♦ s✐♠♣❧❡❀ t❤❡ ♣✐❝t✉r❡ ❜❡❧♦✇ ✐❧❧✉str❛t❡s t❤❡ ✐❞❡❛ ♦❢ ♠✉❧t✐♣❧✐✲ ❝❛t✐♦♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✱ ✈✐③✳ ♠✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ t❤❡ ❛r❡❛ ✉♥❞❡r ✐ts ❣r❛♣❤✿
✷✳✷✳
✶✵✼
■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t②
❚❤❡♦r❡♠ ✷✳✷✳✼✿ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ❘✐❡♠❛♥♥ ❙✉♠s ❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ♠✉❧t✐♣❧❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✐s t❤❡ ♠✉❧t✐♣❧❡ ♦❢ ✐ts ❘✐❡♠❛♥♥ s✉♠✳
■♥ ♦t❤❡r ✇♦r❞s✱ ❢♦r ❛♥② r❡❛❧
c
✇❡ ❤❛✈❡✿
Σ(cf ) · ∆x = c (Σf · ∆x) Pr♦♦❢✳
❆♣♣❧②✐♥❣ t❤❡ ❞❡✜♥✐t✐♦♥ t♦ t❤❡ ❢✉♥❝t✐♦♥ f ✱ ✇❡ ❤❛✈❡✿ Σ(cf )∆x = cf (a) + cf (a + h) + cf (a + 2h) + ... + cf (x − h) = c (f (a) + f (a + h) + f (a + 2h) + ... + f (x − h))
= c Σf · ∆x .
■t ✐s ❛s ✐❢ ♦♥❡ ✐s ♠❛❦❡s s❡✈❡r❛❧ ✐❞❡♥t✐❝❛❧ ❞r♦♣s ✐♥ ❛ ❣❛♠❡ ♦❢ ❚❡tr✐s✿
◆♦✇ ∆x → 0 ✐♥ t❤❡s❡ ❘✐❡♠❛♥♥ s✉♠s✿ ❚❤❡♦r❡♠ ✷✳✷✳✽✿ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ■♥t❡❣r❛❧s ❚❤❡ ✐♥t❡❣r❛❧ ♦❢ ❛ ♠✉❧t✐♣❧❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✐s t❤❡ ♠✉❧t✐♣❧❡ ♦❢ ✐ts ✐♥t❡❣r❛❧✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢ r❡❛❧
c✱
f
✐s ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ ♦✈❡r
[a, b]✱
❛♥❞ ✇❡ ❤❛✈❡✿
Z
x
(cf ) dx = c a
Z
t❤❡♥ s♦ ✐s
c·f
❢♦r ❛♥②
x
f dx a
Pr♦♦❢✳
❲❡ ✉s❡ t❤❡
❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ▲✐♠✐ts
❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✶✳
❆♥❞ ∆✬s ❜❡❝♦♠❡ d✬s ❛❣❛✐♥✳ ❈♦♠♣✉t❛t✐♦♥❛❧❧②✱ ✇❡ ❤❛✈❡ t❤❡ s❛♠❡ ✐❞❡❛ ❛s t❤❡ ♦♥❡ ❢♦r t❤❡ ❞❡r✐✈❛t✐✈❡s✿ ♦✉t ♦❢ t❤❡ ✐♥t❡❣r❛❧✳
❚❤❡ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡ ✐s ❢❛❝t♦r❡❞
❚❤❡ ♣✐❝t✉r❡ ❜❡❧♦✇ ✐❧❧✉str❛t❡s t❤❡ ✐❞❡❛ t❤❛t tr✐♣❧✐♥❣ t❤❡ ❤❡✐❣❤t ♦❢ ❛ r♦❛❞ ✇✐❧❧ ♥❡❡❞ tr✐♣❧✐♥❣ t❤❡ ❛♠♦✉♥t ♦❢ s♦✐❧ ✉♥❞❡r ✐t✿
✷✳✷✳ ■♥t❡❣r❛t✐♦♥ ♦✈❡r ❛❞❞✐t✐♦♥ ❛♥❞ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿ ❧✐♥❡❛r✐t②
✶✵✽
❚❤❡ t✇♦ ❧❛st t❤❡♦r❡♠s ❞❡♠♦♥str❛t❡ t❤❛t t❤✐s ✐s tr✉❡ ✇❤❡t❤❡r t❤❡ s✉r❢❛❝❡ ✐s st❛✐r❝❛s❡✲❧✐❦❡ ♦r ❝✉r✈❡❞✳ ❋♦r t❤❡ ♠♦t✐♦♥ ♠❡t❛♣❤♦r✱ ✐❢ ②♦✉r ✈❡❧♦❝✐t② ✐s tr✐♣❧❡❞✱ t❤❡♥ s♦ ✐s t❤❡ ❞✐st❛♥❝❡ ②♦✉ ❤❛✈❡ ❝♦✈❡r❡❞ ♦✈❡r t❤❡ s❛♠❡ ♣❡r✐♦❞ ♦❢ t✐♠❡✳ ❊✐t❤❡r ♦❢ t❤❡ t✇♦ ❧❛st t❤❡♦r❡♠s ❝❛♥ ❜❡ ❞❡♠♦♥str❛t❡❞ ✇✐t❤ t❤❡ s♣r❡❛❞s❤❡❡t✿
❊①❡r❝✐s❡ ✷✳✷✳✾
▼♦❞✐❢② t❤❡ ♣r♦♦❢ ❢♦r✿ ✭❛✮ ❧❡❢t✲❡♥❞✱ ✭❜✮ ♠✐❞✲♣♦✐♥t✱ ❛♥❞ ✭❝✮ ❣❡♥❡r❛❧ ❘✐❡♠❛♥♥ s✉♠s✳
❚❤❡s❡ t✇♦ ♦♣❡r❛t✐♦♥s ❝❛♥ ❜❡ ❝♦♠❜✐♥❡❞ ✐♥t♦ ♦♥❡ ♣r♦❞✉❝✐♥❣ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥s ✿
αx + βy , ✇❤❡r❡
α, β
❛r❡ t✇♦ ❝♦♥st❛♥t ♥✉♠❜❡rs✳ ❚❤❡ ✐❞❡❛ ❛♣♣❧✐❡s t♦ ❢✉♥❝t✐♦♥s❀ ❢♦r ❡①❛♠♣❧❡✱ t❤✐s ✐s t❤❡ ❛✈❡r❛❣❡ ♦❢ t✇♦
❢✉♥❝t✐♦♥s ✭❧❡❢t✮✿
❲❡ ❛❧s♦ ♥♦t✐❝❡ ✇❤❛t ❤❛♣♣❡♥s t♦ t❤❡✐r ✐♥t❡❣r❛❧s ✭r✐❣❤t✮✿
◮
❚❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ ❛✈❡r❛❣❡ ✐s t❤❡ ❛✈❡r❛❣❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧s✳
❚❤❡ q✉❡st✐♦♥ ❜❡❝♦♠❡s✿ ❲❤❛t ❤❛♣♣❡♥s t♦ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ❢✉♥❝t✐♦♥s ✉♥❞❡r ✐♥t❡❣r❛t✐♦♥❄ ❘❡❝❛❧❧ t❤❛t ❛ ❢✉♥❝t✐♦♥
F
✐s ❧✐♥❡❛r ✐❢ ✐t ✏♣r❡s❡r✈❡s✑ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥s✿
αx + βy →
F
→ αF (x) + βF (y)
❲✐t❤ t❤✐s ✐❞❡❛✱ t❤❡s❡ t✇♦ ❢♦r♠✉❧❛s ❝❛♥ ❜❡ ❝♦♠❜✐♥❡❞ ✐♥t♦ ♦♥❡✳ ❚❤❡ s✉♠✱ t❤❡ ❘✐❡♠❛♥♥ s✉♠✱ ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ❛r❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥s ♦❢ ❢✉♥❝t✐♦♥s✳ ❆ ♣r❡❝✐s❡ ✈❡rs✐♦♥ ✐s ❜❡❧♦✇✿
✷✳✸✳ ■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✵✾
❚❤❡♦r❡♠ ✷✳✷✳✶✵✿ ▲✐♥❡❛r✐t② ♦❢ ■♥t❡❣r❛t✐♦♥ ❚❤❡ s✉♠✱ t❤❡ ❘✐❡♠❛♥♥ s✉♠✱ ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♦❢ ❛ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ✐s t❤❡ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥ ♦❢ t❤❡✐r s✉♠s✱ ❘✐❡♠❛♥♥ s✉♠s✱ ❛♥❞ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s✱ r❡s♣❡❝t✐✈❡❧②✱ ✇❤❡♥❡✈❡r t❤❡② ❡①✐st✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿
Σ(αf + βg)
= αΣf
+βΣg
Σ(αf + βg) · ∆x = αΣf · ∆x +βΣg · ∆x Z x Z x Z x g dx f dx +β (αf + βg) dx = α a
a
a
❚❤❡ ❧❛st ❢♦r♠✉❧❛ ✐s ✐❧❧✉str❛t❡❞ ✇✐t❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ❞✐❛❣r❛♠✿ αf + βg →
Z
→ α
Z
f dx + β
Z
g dx
❆s ✇❡ s❡❡✱ t❤❡ ✐♥t❡❣r❛❧ ❢♦❧❧♦✇s t❤❡ ❘✐❡♠❛♥♥ s✉♠✱ ❡✈❡r② t✐♠❡✿
■♥ s✉♠♠❛r②✱ ✇❡ t❛❦❡ t❤❡ s❤♦rt❝✉t ✐♥ ♦✉r ❞✐❛❣r❛♠ ♦♥ ♠❛♥② ♦❝❝❛s✐♦♥s ❛♥❞ ✐❣♥♦r❡ t❤❡ r❡st✿ s❛♠♣❧✐♥❣
s❡q✉❡♥❝❡ ←−−−−−−−− ❢✉♥❝t✐♦♥ ♦♥ [a, b] ❘❙ y
✐♥t❡❣r❛❧ y
s❡q✉❡♥❝❡ −−−−−−−−→ ❢✉♥❝t✐♦♥ ♦♥ [a, b] ∆x→0
−→
Z
f R y
f dx
❲❛r♥✐♥❣✦ ❚❤❡s❡ r✉❧❡s ❝❛♥ ❜❡ ❛❝q✉✐r❡❞ ✈✐❛ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✳
✷✳✸✳ ■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
▲❡t✬s r❡✈✐❡✇ ✇❤❛t ✇❡ ❦♥♦✇ ❛❜♦✉t ❛♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥✳
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✶✵
❉❡✜♥✐t✐♦♥ ✷✳✸✳✶✿ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦♥ ♣❛rt✐t✐♦♥ f
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ ✐♥t❡r✈❛❧
I✳
✐s ❞❡✜♥❡❞ ♦♥ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥
❚❤❡♥ ❛ ❢✉♥❝t✐♦♥
F
❞❡✜♥❡❞ ♦♥ t❤❡ ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ t❤❛t s❛t✐s✜❡s
t❤❡ ❡q✉❛t✐♦♥✿
∆F (c) = f (c) ∆x ❢♦r ❡✈❡r② s❡❝♦♥❞❛r② ♥♦❞❡
c✱
✐s ❝❛❧❧❡❞ ❛♥
❛♥t✐❞❡r✐✈❛t✐✈❡
♦❢
f✳
■♥ ❱♦❧✉♠❡ ✶✱ ✇❡ ❢♦✉♥❞ ❛ r❡❝✉rs✐✈❡ s♦❧✉t✐♦♥ ♦❢ t❤✐s ❡q✉❛t✐♦♥ ❜② s♦❧✈✐♥❣ ✐t ❢♦r t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ❛s ✐♥ t❤❡ ❝❛s❡ ♦❢ ❛❝q✉✐r✐♥❣ t❤❡ ♣♦s✐t✐♦♥ ❢r♦♠ t❤❡ ✈❡❧♦❝✐t②✿
pn+1 − pn =⇒ pn+1 = pn + vn ∆t . ∆t
vn = ■t✬s ♣✉r❡ ❛❧❣❡❜r❛✦
❚❤❡ ❝♦♥t✐♥✉♦✉s ❝❛s❡ ✐s ❜② ❢❛r ♠♦r❡ ❝♦♠♣❧❡①✿
❉❡✜♥✐t✐♦♥ ✷✳✸✳✷✿ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦♥ ✐♥t❡r✈❛❧ f
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥
F
❞❡✜♥❡❞ ♦♥
I
✐s ❞❡✜♥❡❞ ♦♥ ❛♥ ✐♥t❡r✈❛❧
I✳
❚❤❡♥ ❛ ❞✐✛❡r❡♥t✐❛❜❧❡ ❢✉♥❝t✐♦♥
t❤❛t s❛t✐s✜❡s t❤❡ ❡q✉❛t✐♦♥✿
dF (x) = f (x) dx ❢♦r ❡✈❡r②
x✱
✐s ❝❛❧❧❡❞ ❛♥
❛♥t✐❞❡r✐✈❛t✐✈❡
♦❢
f✳
❲❡ ✉s❡ ✏❛♥✑ ❜❡❝❛✉s❡ t❤❡r❡ ♠❛② ❜❡ ♠❛♥② ❛♥t✐❞❡r✐✈❛t✐✈❡s ❢♦r ❡❛❝❤ ❢✉♥❝t✐♦♥✳ ❲❡ ❝❛♥ t❤✐♥❦ ♦❢ t❤❡ ❞❡✜♥✐t✐♦♥ ❛s ❛♥
●✐✈❡♥
❡q✉❛t✐♦♥✱ ❛♥ ❡q✉❛t✐♦♥ ❢♦r ❢✉♥❝t✐♦♥s✿ f,
s♦❧✈❡ ❢♦r
F
●✐✈❡♥
∆F =f ∆x
❚❤✐s ❡q✉❛t✐♦♥ ❤❛s ✐♥✜♥✐t❡❧② ♠❛♥② s♦❧✉t✐♦♥s ✇❤❡♥
❞✐✛❡r❡♥t✐❛t✐♦♥ ❚❤❡♦r❡♠✱ ✐❢ F
f,
s♦❧✈❡ ❢♦r
F
dF =f dx
f
✐s ✐♥t❡❣r❛❜❧❡✳
❋✉rt❤❡r♠♦r❡✱ ❛❝❝♦r❞✐♥❣ t♦ t❤❡
✐s ♦♥❡ ♦❢ ✐ts ❛♥t✐❞❡r✐✈❛t✐✈❡s✱ t❤❡♥ t❤❡ s❡t ♦❢ ❛❧❧ ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢
{F + C : C
r❡❛❧
f
❆♥t✐✲
✐s
}.
❚❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ❛r❡ ❧✐♥❦❡❞ t♦ ❛♥t✐❞❡r✐✈❛t✐✈❡s ❜② t❤❡ ❢♦❧❧♦✇✐♥❣✿
❚❤❡♦r❡♠ ✷✳✸✳✸✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ■ ❛♥❞ ■■ ■ ❋♦r ❛♥② ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ f ♦♥ [a, b]✱ t❤❡ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❜② F (x) =
Z
x
f dx a
✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ f ✳ ■■ ❋♦r ❛♥② ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ f ♦♥ [a, b] ❛♥❞ ❛♥② ♦❢ ✐ts ❛♥t✐❞❡r✐✈❛t✐✈❡s F ✱ ✇❡
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ❤❛✈❡
✶✶✶
Z
b a
f dx = F (b) − F (a) .
❲❤② t✇♦ ♣❛rts❄ ❇❡❝❛✉s❡ ✇❡ ❞❡❛❧ ✇✐t❤ t✇♦ ♦♣❡r❛t✐♦♥s ♦❢ ❝❛❧❝❧✉❧✉s ✕ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞ ✐♥t❡❣r❛t✐♦♥ ✕ ❛♥❞ ✇❡ ❝❛♥ ❝♦♠♣♦s❡ t❤❡♠ ✐♥ t✇♦ ✇❛②s✳ ❆❝❝♦r❞✐♥❣ t♦ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠✱ t❤❡ ♦♣❡r❛t✐♦♥s ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞ ✐♥t❡❣r❛t✐♦♥ ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r ❛s ❢♦❧❧♦✇s✿ ❋❚❈■✿
f
→
Z
❋❚❈■■✿ F →
d dx
→ F →
dx d dx
→ f
→
Z
dx
→
f
→ F +C
❚❤❡ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ❛r❡ ♣r♦✈❡♥ ❢r♦♠ s❝r❛t❝❤ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✳ ■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ ❛❝q✉✐r❡ t❤❡ s❛♠❡ r❡s✉❧ts ❜② ❛♣♣❧②✐♥❣ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ t♦ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ t❤❡♦r❡♠s ❛❜♦✉t t❤❡ ❞❡r✐✈❛t✐✈❡s ✭❱♦❧✉♠❡ ✷✮✳ ❲❡ st❛rt ♦✈❡r✳ ❲❡ ❝❛♥ r❡st❛t❡ t❤❡
❆♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ❚❤❡♦r❡♠ ❛s ❢♦❧❧♦✇s✿ ❈♦r♦❧❧❛r② ✷✳✸✳✹✿ ❙❡t ♦❢ ❆♥t✐❞❡r✐✈❛t✐✈❡s
❙✉♣♣♦s❡ F ✐s ❛♥② ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ f ❞❡✜♥❡❞ ♦♥ ❛♥ ✐♥t❡r✈❛❧✳ ❚❤❡♥ t❤❡ s❡t ♦❢ ❛❧❧ ♦❢ ✐ts ❛♥t✐❞❡r✐✈❛t✐✈❡s ✐s {F + C : C r❡❛❧ } . ❆s ✐t ✐s ♦❢t❡♥ t❤❡ ❝❛s❡ ✇✐t❤ ❡q✉❛t✐♦♥s✱ t❤❡r❡ s❡❡♠s t♦ ❜❡ ♠❛♥② ✭✐♥✜♥✐t❡❧② ♠❛♥②✮ s♦❧✉t✐♦♥s✳ ❇✉t ❛ ✈❡r② ✐♠♣♦rt❛♥t ❝♦♥❝❧✉s✐♦♥ ✐s t❤❛t ✐t s✉✣❝❡s t♦ ✜♥❞ ❥✉st ♦♥❡ ❛♥t✐✲❞❡r✐✈❛t✐✈❡✦ ❲❛r♥✐♥❣✦
❚❤❡ ❢♦r♠✉❧❛ F + C ✇♦r❦s ♦♥❧② ✇❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ ✐s ❞❡✜♥❡❞ ♦♥ ❛♥ ✐♥t❡r✈❛❧✳ ❚❤✐s ✐s ✇❤❛t t❤✐s s❡t ♦❢ ❢✉♥❝t✐♦♥s ✇♦✉❧❞ ❧♦♦❦ ❧✐❦❡✿
❚❤✐s ✐s t❤❡ s♦❧✉t✐♦♥ s❡t ♦❢ t❤❡ ❡q✉❛t✐♦♥ ❛♥❞ ✐t ♠❛② ❜❡ ❝❛❧❧❡❞ ❊①❡r❝✐s❡ ✷✳✸✳✺✿
x3
❋✐♥❞ ❛❧❧ F t❤❛t s❛t✐s❢② t❤❡ ❡q✉❛t✐♦♥✿
F ′ (x) = x3 .
t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡✳
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✶✷
❊①❡r❝✐s❡ ✷✳✸✳✻
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥
f
✐s ❞❡✜♥❡❞ ♦♥ ❛♥ ♦♣❡♥ ✐♥t❡r✈❛❧
✶✳ ❚❤❡ ❣r❛♣❤s ♦❢ t✇♦ ❞✐✛❡r❡♥t ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢ ✷✳ ❋♦r ❡✈❡r② ♣♦✐♥t
(x, y)
✇✐t❤
x
✇✐t❤✐♥
I✱
I ✳ Pr♦✈❡ t❤❛t t❤❡ f ♥❡✈❡r ✐♥t❡rs❡❝t✳
❢♦❧❧♦✇✐♥❣✿
t❤❡r❡ ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢
f
t❤❡ ❣r❛♣❤ ♦❢ ✇❤✐❝❤ ♣❛ss❡s
t❤r♦✉❣❤ ✐t✳
❚❤❡ ♣r♦❜❧❡♠ t❤❡♥ ❜❡❝♦♠❡s t❤❡ ♦♥❡ ♦❢ ✜♥❞✐♥❣ ❛ s✐♥❣❧❡ ❢✉♥❝t✐♦♥
•
❢r♦♠ ✐ts ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t
•
❢r♦♠ ✐ts ❞❡r✐✈❛t✐✈❡
F✱
❡✐t❤❡r
∆F ✱ ♦r ∆x
dF ✳ dx
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ r❡❝♦♥str✉❝t t❤❡ ❢✉♥❝t✐♦♥ ❢r♦♠ ❛ ✏✜❡❧❞ ♦❢ s❧♦♣❡s✑✿
❖♥❡ ❝❛♥ ✐♠❛❣✐♥❡ ❛ ✢♦✇✐♥❣ ❧✐q✉✐❞ ✇✐t❤ ✐ts ❞✐r❡❝t✐♦♥ ❦♥♦✇♥ ❛t ❡✈❡r② ❧♦❝❛t✐♦♥✳ ❍♦✇ ❞♦ ✇❡ ✜♥❞ t❤❡ ♣❛t❤ ♦❢ ❛ ♣❛rt✐❝✉❧❛r ♣❛rt✐❝❧❡❄ ❞✐✛❡r❡♥t✐❛t✐♦♥ ♦r
❚❤❡ ♣r♦❝❡ss ♦❢ r❡❝♦♥str✉❝t✐♥❣ ❛ ❢✉♥❝t✐♦♥✱
✐♥t❡❣r❛t✐♦♥✳
F✱
❢r♦♠ ✐ts ❞❡r✐✈❛t✐✈❡✱
f✱
✐s ❝❛❧❧❡❞ ❛♥t✐✲
❚❤❡ ✐♥t❡❣r❛t✐♦♥ ♣r♦❜❧❡♠ ❤❛s ❜❡❡♥ s♦❧✈❡❞ ♦♥ s❡✈❡r❛❧ ♦❝❝❛s✐♦♥s ❢♦r t❤❡ ❢♦r♠❡r✱ ❞✐s❝r❡t❡ ❝❛s❡ ✕ ✈❡❧♦❝✐t② ❢r♦♠ ❛❝❝❡❧❡r❛t✐♦♥ ❛♥❞ ❧♦❝❛t✐♦♥ ❢r♦♠ ✈❡❧♦❝✐t② ✕ ✈✐❛ t❤❡s❡ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛s✿
F (xn+1 ) = F (xn ) + f (cn )∆xn . ❋♦r ❡❛❝❤ ❧♦❝❛t✐♦♥✱ ✇❡ ❧♦♦❦ ✉♣ t❤❡ ✈❡❧♦❝✐t②✱ ✜♥❞ t❤❡ ♥❡①t ❧♦❝❛t✐♦♥✱ ❛♥❞ r❡♣❡❛t✿
■❢ t❤❡ ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❛r❡ ❝❧♦s❡ ❡♥♦✉❣❤ t♦ ❡❛❝❤ ♦t❤❡r✱ t❤❡s❡ ♣♦✐♥ts ❢♦r♠ ❝✉r✈❡s✿
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✶✸
❋♦r t❤❡ ❧❛tt❡r✱ ❝♦♥t✐♥✉♦✉s ❝❛s❡✱ t❤✐s ✐s ❛ ❝❤❛❧❧❡♥❣✐♥❣ ♣r♦❜❧❡♠✿ ❍♦✇ ❞♦❡s ♦♥❡ ♣❧♦t ❛ ❝✉r✈❡ t❤❛t ❢♦❧❧♦✇s t❤❡s❡ ✕ ✐♥✜♥✐t❡❧② ♠❛♥② ✕ t❛♥❣❡♥ts❄ ❚♦ ❜❡❣✐♥ ✇✐t❤✱ ✇❡ ❥✉st tr② t♦ r❡✈❡rs❡ ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❲❡ ✇✐❧❧ tr② t♦ ❝♦♥str✉❝t ❛ t❤❡♦r② ♦❢ ❛♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ t❤❛t ♠❛t❝❤❡s ✕ t♦ t❤❡ ❞❡❣r❡❡ ♣♦ss✐❜❧❡ ✕ t❤❛t ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❍❡r❡ ✐s ❛ s❤♦rt
❧✐st ♦❢ ❞❡r✐✈❛t✐✈❡s ♦❢ ❢✉♥❝t✐♦♥s ✭❢♦r ❛❧❧ x ❢♦r ✇❤✐❝❤ t❤❡ ❢✉♥❝t✐♦♥ ✐s ❞✐✛❡r❡♥t✐❛❜❧❡✮✿ ❢✉♥❝t✐♦♥ −→ ❞❡r✐✈❛t✐✈❡
xr
ex
rxr−1 1 x ex
sin x
cos x
cos x
− sin x
ln x
❛♥t✐❞❡r✐✈❛t✐✈❡ ←− ❢✉♥❝t✐♦♥ ❚♦ ✜♥❞ ❛♥t✐❞❡r✐✈❛t✐✈❡s✱ ✐✳❡✳✱ ✐♥t❡❣r❛❧s✱ r❡✈❡rs❡ t❤❡ ♦r❞❡r✿
◮ ❘❡❛❞ ❡❛❝❤ ❧✐♥❡ ❢r♦♠ r✐❣❤t t♦ ❧❡❢t✦ ❊①❛♠♣❧❡ ✷✳✸✳✼✿
sin
❛♥❞
cos
❲❤❛t ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ cos x❄ ❲❡ ♥❡❡❞ t♦ s♦❧✈❡ ❢♦r F ✿
F ′ (x) = cos x . ❏✉st ✜♥❞ cos x ✐♥ t❤❡ r✐❣❤t ❝♦❧✉♠♥ ♦❢ t❤❡ t❛❜❧❡✳ ❚❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❢✉♥❝t✐♦♥ ♦♥ t❤❡ ❧❡❢t ✐s sin x✳ ❚❤❛t✬s t❤❡ ❛♥s✇❡r✿ F (x) = sin x✦ ❲❤❛t ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ sin x❄ ❙♦❧✈❡✿
F ′ (x) = sin x . ❏✉st ✜♥❞ sin x ✐♥ t❤❡ r✐❣❤t ❝♦❧✉♠♥✳ ■t✬s ♥♦t t❤❡r❡✳✳✳ ❜✉t − sin x ✐s✦ ❚❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❢✉♥❝t✐♦♥ ♦♥ t❤❡ ❧❡❢t ✐s cos x✳ ❚❤❡♥ ✭❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡✮ t❤❡ s♦❧✉t✐♦♥ ♠✉st ❜❡ − sin x✳ ■t✬s t❤❛t s✐♠♣❧❡✦ ❲❡ ♠❛② ♥❡❡❞ s♦♠❡ t✇❡❛❦✐♥❣ t♦ ♠❛❦❡ t❤❡ ❢♦r♠✉❧❛s ❛❜♦✉t t♦ ❡♠❡r❣❡ ❛s ❡❛s② t♦ ❛♣♣❧② ❛s t❤❡ ♦r✐❣✐♥❛❧ ♦♥❡s✳ ❊①❛♠♣❧❡ ✷✳✸✳✽✿ ♣♦✇❡r ❢♦r♠✉❧❛
❋♦r ❡①❛♠♣❧❡✱ ❧❡t✬s ✜♥❞ ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢ xn ✳ ❯s❡ t❤❡ P♦✇❡r ❞✐✈✐❞❡ ❜② r✱ ❛♥❞ ❛♣♣❧② t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ✿ r ′
(x ) = rx
r−1
❋♦r♠✉❧❛ ❢♦r ❞✐✛❡r❡♥t✐❛t✐♦♥ ✭t❤❡ ✜rst r♦✇✮✱
1 =⇒ (xr )′ = xr−1 =⇒ r
❲❡ t❤❡♥ s✐♠♣❧✐❢② t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ❜② s❡tt✐♥❣ r − 1 = s✿ ′ 1 s+1 x = xs . s+1
1 r x r
′
= xr−1 .
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✶✹
❲❡ ♠❛❦❡ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ t❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ❛♥❞ ✇❡ ❤❛✈❡ t❤❡
P♦✇❡r ❋♦r♠✉❧❛ ❢♦r ❛♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❲❡
❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿ ❆♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ ❇✉t ✇❤❛t ✐❢
s = −1❄
xs
✐s
1 xs+1 ✱ ♣r♦✈✐❞❡❞ s+1
s 6= −1✳
❚❤❡♥ ✇❡ r❡❛❞ t❤❡ ❛♥s✇❡r ❢r♦♠ t❤❡ ♥❡①t ❧✐♥❡ ✐♥ t❤❡ t❛❜❧❡✿ ❆♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢
x−1
✐s
ln |x|✳
1 ❧♦✇❡r✑ ❤❛s ❛♥ ❡①❝❡♣t✐♦♥✱ 0✲♣♦✇❡r✱ ❛♥❞ t❤❡ r✉❧❡ t❤❛t ✏t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ♣♦✇❡r ❢✉♥❝t✐♦♥ ✐s ❛ ♣♦✇❡r ❢✉♥❝t✐♦♥ ♦❢ ❞❡❣r❡❡ 1 ❤✐❣❤❡r✑
❙♦✱ t❤❡ r✉❧❡ t❤❛t ✏t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ♣♦✇❡r ❢✉♥❝t✐♦♥ ✐s ❛ ♣♦✇❡r ❢✉♥❝t✐♦♥ ♦❢ ❞❡❣r❡❡ t❤❡
❤❛s ❛♥ ❡①❝❡♣t✐♦♥ t♦♦✳ ❚❛❦✐♥❣ t❤❡ r❡st ♦❢ t❤❡s❡ r♦✇s✱ ✇❡ ❤❛✈❡ ❛
❧✐st ♦❢ ✐♥t❡❣r❛❧s ♦❢ ❢✉♥❝t✐♦♥s✱ ♦♥ ♦♣❡♥ ✐♥t❡r✈❛❧s✿
❢✉♥❝t✐♦♥
−→
❛♥t✐❞❡r✐✈❛t✐✈❡✴✐♥t❡❣r❛❧
xs 1 x
ln |x|
ex
ex
1 xs+1 , s+1
sin x
− cos x
cos x
sin x
❞❡r✐✈❛t✐✈❡
←−
s 6= −1
❢✉♥❝t✐♦♥
❊①❛♠♣❧❡ ✷✳✸✳✾✿ ❞♦♠❛✐♥s
❊❛❝❤ ❢♦r♠✉❧❛ ✐s ♦♥❧② ✈❛❧✐❞ ♦♥ ❛♥ ♦♣❡♥ ✐♥t❡r✈❛❧ ♦♥ ✇❤✐❝❤ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ✐s ❞❡✜♥❡❞✳ ❋♦r ❡①❛♠♣❧❡✱ ✇❡ ✐♥t❡r♣r❡t t❤❡ s❡❝♦♥❞ r♦✇ ❛s ❢♦❧❧♦✇s✿ • ln(x) ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ x1 ♦♥ t❤❡ ✐♥t❡r✈❛❧ (0, +∞)✱ ❛♥❞ • ln(−x) ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ x1 ♦♥ t❤❡ ✐♥t❡r✈❛❧ (−∞, 0)✳
r✉❧❡s ♦❢ ✐♥t❡❣r❛t✐♦♥✳ ❙✉♠ ❘✉❧❡ ❢♦r ❉❡r✐✈❛t✐✈❡s
◆❡①t✱ ✇❡ ✇✐❧❧ ♥❡❡❞ t❤❡ ❋✐rst✱ ❝♦♥s✐❞❡r t❤❡
✭❱♦❧✉♠❡ ✷✮✿
❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ s✉♠ ✐s t❤❡ s✉♠ ♦❢ t❤❡
❞❡r✐✈❛t✐✈❡s❀ ✐✳❡✳✱
(f + g)′ = f ′ + g ′ . ▲❡t✬s r❡❛❞ t❤❛t ❢♦r♠✉❧❛ ❢r♦♠ r✐❣❤t t♦ ❧❡❢t✿ ❚❤❡♦r❡♠ ✷✳✸✳✶✵✿ ❙✉♠ ❘✉❧❡ ❢♦r ■♥t❡❣r❛❧s ❆♥ ✐♥t❡❣r❛❧ ♦❢ t❤❡ s✉♠ ✐s t❤❡ s✉♠ ♦❢ t❤❡ ✐♥t❡❣r❛❧s✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ ■❢
F
✐s t❤❡ ✐♥t❡❣r❛❧ ♦❢
f
G
✐s t❤❡ ✐♥t❡❣r❛❧ ♦❢
g✱
t❤❡♥
F +G
✐s t❤❡ ✐♥t❡❣r❛❧ ♦❢
f + g✳
❛♥❞
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✶✺
Pr♦♦❢✳
❲❡ ❛♣♣❧② t❤❡
❙✉♠ ❘✉❧❡ ❢♦r ❉❡r✐✈❛t✐✈❡s t♦ ❝♦♥✜r♠✿ (F (x) + G(x))′ = F ′ (x) + G′ (x) = f (x) + g(x) .
❊①❡r❝✐s❡ ✷✳✸✳✶✶
❲❤❛t ❛❜♦✉t t❤❡ ❝♦♥✈❡rs❡❄ ❊①❛♠♣❧❡ ✷✳✸✳✶✷✿ s✉♠s
❙♦❧✈❡ ❢♦r F ✿
F ′ (x) = x2 + sin x .
❚❤❡ ❡q✉❛t✐♦♥ ✐s s♦❧✈❡❞ ❜② s♦❧✈✐♥❣ t❤❡ ❢♦❧❧♦✇✐♥❣ t✇♦ ❡q✉❛t✐♦♥s✿ ❢♦r G : G′ (x) = x2 ❛♥❞ ❢♦r H : H ′ (x) = sin x . ❚❤❡ s♦❧✉t✐♦♥s ❛r❡ ❢♦✉♥❞ ✐♥ t❤❡ t❛❜❧❡✿ 1 G(x) = x3 ❛♥❞ H(x) = − cos x . 3
❆❝❝♦r❞✐♥❣ t♦ t❤❡ t❤❡♦r❡♠✱ ✇❡ ❤❛✈❡ t❤❡ ❛♥s✇❡r ♦♥ (−∞, +∞)✿ 1 F (x) = x3 − cos x + C . 3 ❊①❡r❝✐s❡ ✷✳✸✳✶✸
❯s✐♥❣ t❤✐s r✉❧❡✱ ✜♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ ln x2 ✳ ❈♦♠♣❛r❡✿ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ s✉♠ ✐s t❤❡ s✉♠ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡s✳ ❚❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ s✉♠ ✐s t❤❡ s✉♠ ♦❢ t❤❡ ✐♥t❡❣r❛❧s✳ ❙✐♠✐❧❛r❧②✱ ❝♦♥s✐❞❡r t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ t❤❡ ♠✉❧t✐♣❧❡ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡❀ ✐✳❡✳✱
❘✉❧❡ ❢♦r ❉❡r✐✈❛t✐✈❡s
✭❱♦❧✉♠❡ ✷✮✿ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ♠✉❧t✐♣❧❡ ✐s
(cf )′ = cf ′ .
▲❡t✬s r❡❛❞ t❤❛t ❢♦r♠✉❧❛ ❢r♦♠ r✐❣❤t t♦ ❧❡❢t✿ ❚❤❡♦r❡♠ ✷✳✸✳✶✹✿ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ■♥t❡❣r❛❧s ❚❤❡ ✐♥t❡❣r❛❧ ♦❢ ❛ ♠✉❧t✐♣❧❡ ✐s t❤❡ ♠✉❧t✐♣❧❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ ■❢
F c
✐s t❤❡ ✐♥t❡❣r❛❧ ♦❢
f
✐s ❛ ❝♦♥st❛♥t✱
t❤❡♥
cF
✐s t❤❡ ✐♥t❡❣r❛❧ ♦❢
cf ✳
❛♥❞
✷✳✸✳ ■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✶✻
Pr♦♦❢✳
❲❡ ❛♣♣❧② t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ❉❡r✐✈❛t✐✈❡s ✿ (cF (x))′ = cF ′ (x) = cf (x) . ❊①❡r❝✐s❡ ✷✳✸✳✶✺
❲❤❛t ❛❜♦✉t t❤❡ ❝♦♥✈❡rs❡❄ ❊①❛♠♣❧❡ ✷✳✸✳✶✻✿ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡s
❙♦❧✈❡ ❢♦r F ✿
F ′ (x) = 3 sin x .
❲❡ s♦❧✈❡ t❤❡ ❡q✉❛t✐♦♥ ❜② s♦❧✈✐♥❣ t❤❡ ❢♦❧❧♦✇✐♥❣ ❡q✉❛t✐♦♥✿ ❢♦r G : G′ (x) = sin x . ❚❤❡ s♦❧✉t✐♦♥ ✐s ❢♦✉♥❞ ✐♥ t❤❡ t❛❜❧❡✿ G(x) = − cos x .
❆❝❝♦r❞✐♥❣ t♦ t❤❡ t❤❡♦r❡♠✱ ✇❡ ❤❛✈❡ ❛♥ ❛♥s✇❡r ♦♥ (−∞, +∞)✿ F (x) = 3(− cos x) + C . ❊①❡r❝✐s❡ ✷✳✸✳✶✼
❯s✐♥❣ t❤✐s r✉❧❡✱ ✜♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ ex+3 ✳ ❈♦♠♣❛r❡✿ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡ ✐s t❤❡ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡✳ ❚❤❡ ✐♥t❡❣r❛❧ ♦❢ ❛ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡ ✐s t❤❡ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧✳ ❆s ✇❡ ❦♥♦✇ ❢r♦♠ t❤❡ ❆♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ❚❤❡♦r❡♠✱ ❡✈❡r② ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❝♦♠❡s ✇✐t❤ ✐♥✜♥✐t❡❧② ♠❛♥② ♦t❤❡rs✿ F → F + C ❢♦r ❡✈❡r② r❡❛❧ C , ♦♥ ❡✈❡r② ♦♣❡♥ ✐♥t❡r✈❛❧✳ ❚♦❣❡t❤❡r t❤❡② ❢♦r♠ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦r t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳ ❊①❛♠♣❧❡ ✷✳✸✳✶✽✿ ❢r❡❡ ❢❛❧❧
❲❡ ❝❛♥ ♠❛❦❡ ♦✉r ❛♥❛❧②s✐s ♦❢ ❢r❡❡ ❢❛❧❧ ♠♦r❡ s♣❡❝✐✜❝✿ ❋✉♥❝t✐♦♥s ♦❢ t✐♠❡ ❚❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ✐s ❝♦♥st❛♥t✳ a = −g ❚❤❡ ✈❡❧♦❝✐t② ✐s ❧✐♥❡❛r✳
v = −gt + C
❚❤❡ ❧♦❝❛t✐♦♥ ✐s q✉❛❞r❛t✐❝✳ p = −gt2 /2 + Ct + K ❚❤❡ ❝♦♥st❛♥ts C ❛♥❞ K ❝♦✈❡r ❛❧❧ ♣♦ss✐❜❧❡ tr✐♣s ♦❢ t❤❡ ❜❛❧❧✳
=⇒ =⇒
✷✳✸✳
✶✶✼
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
❚❤✐s ✐s ❤♦✇ ✇❡ r❡✇r✐t❡ t❤❡ ❛❜♦✈❡ ❧✐st✿ Z
xs dx =
Z
Z
Z
1 s+1 x +C, s+1
❢♦r s 6= −1
1 dx = ln x + C x Z ex dx = ex + C sin x dx = − cos x + C cos x dx = sin x + C
❲❡ r❡st❛t❡ t❤❡ r✉❧❡s t♦♦✳ ❙✉♠ ❘✉❧❡✿
Z
(f + g) dx =
Z
f dx +
Z
g dx
❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡✿
Z
(cf ) dx = c
Z
f dx
❊①❡r❝✐s❡ ✷✳✸✳✶✾
❙t❛t❡ t❤❡ ▲✐♥❡❛r ❈♦♠♣♦s✐t✐♦♥ ❘✉❧❡ ❢♦r ✐♥t❡❣r❛❧s✳ ❲✐t❤ t❤❡s❡ r✉❧❡s✱ ✇❤❡♥ ❛♣♣❧✐❝❛❜❧❡✱ ✐♥t❡❣r❛t✐♦♥ ✐s ✈❡r② s✐♠✐❧❛r t♦ ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❊①❛♠♣❧❡ ✷✳✸✳✷✵✿ r✉❧❡s ♦❢ ✐♥t❡❣r❛t✐♦♥
❋✐♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢
3x2 + 5ex + cos x .
❖♥❡ ❝❛♥ ✐♠❛❣✐♥❡ ✇❤❛t ❤❡✬❞ ❞♦ t♦ ❞✐✛❡r❡♥t✐❛t❡ ❛♥❞ t❤❡♥ ❢♦❧❧♦✇ t❤❡ s❛♠❡ st❡♣s ❜✉t ✇✐t❤ t❤❡ ✐♥t❡❣r❛t✐♦♥ ❢♦r♠✉❧❛s ❛♥❞ r✉❧❡s ✉s❡❞ ✐♥st❡❛❞✳ ❉✐✛❡r❡♥t✐❛t✐♦♥✿
(3x2 + 5ex + cos x)′ = (3x2 )′ + 5(ex )′ + (3 sin x)′ ❙❘ = 3(x2 )′ + 5(ex )′ + 3(sin x)′ = 3 · 6x + 5ex + 3 cos x .
❈▼❘ ❚❛❜❧❡
■♥t❡❣r❛t✐♦♥✿ Z
2
x
′
Z
Z
Z
(3x ) dx + 5(e ) dx + (3 sin x)dx ❙❘ Z Z Z 2 x = 3 (x ) dx + 5 (e ) dx + 3 (sin x)dx ❈▼❘
(3x + 5e + cos x) dx =
2
x
= 3 · x3 /3 + 5ex + 3(− cos x) + C .
❚❛❜❧❡
❏✉st ❛s ✇❤❡♥ s♦❧✈✐♥❣ ❡q✉❛t✐♦♥s✱ ✇❡ ❝❛♥ ❡❛s✐❧② ❝♦♥✜r♠ t❤❛t ♦✉r ❝♦♠♣✉t❛t✐♦♥s ❛r❡ ❝♦rr❡❝t✱ ❜② s✉❜st✐t✉✲
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
t✐♦♥✳ ■♥ t❤✐s ❝❛s❡✱ ✇❡
✶✶✽
❞✐✛❡r❡♥t✐❛t❡ t❤❡ ✐♥t❡❣r❛❧ ✿ (x3 + 5ex + 3 sin x)′ = (x3 )′ + 5(ex )′ + (3 sin x)′ = 3x2 + 5ex + 3 cos x .
❚❤✐s ✐s t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥✦ ❚❤❡ ❛♥s✇❡r ❝❤❡❝❦s ♦✉t✳
❊①❡r❝✐s❡ ✷✳✸✳✷✶
❋✐♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢
5e3x+2 − ee ✳
❇❡❧♦✇✱ ✇❡ ❤❛✈❡ t❤❡s❡ t✇♦ ❞✐❛❣r❛♠s t♦ ✐❧❧✉str❛t❡ t❤❡ ✐♥t❡r❛❝t✐♦♥ ♦❢ ✐♥t❡❣r❛❧s ✇✐t❤ ❛❧❣❡❜r❛✿
f, g + y
R
←−−−− R
′
f ,g + y
R
′
f ←−−−− ·c y
f + g ←−−−− f ′ + g ′
cf
R
←−−−−
f′ ·c y
cf ′
❚❤❡ ❛rr♦✇s ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛r❡ r❡✈❡rs❡❞✦ ❲❡ st❛rt ✇✐t❤ ❛ ♣❛✐r ♦❢ ❢✉♥❝t✐♦♥s ❛t t♦♣ r✐❣❤t✱ t❤❡♥ ✇❡ ♣r♦❝❡❡❞ ✐♥ t✇♦ ✇❛②s✿
•
▲❡❢t✿ ✐♥t❡❣r❛t❡ t❤❡♠✳ ❚❤❡♥ ❞♦✇♥✿ ❛❞❞ t❤❡ r❡s✉❧ts✳
•
❉♦✇♥✿ ❛❞❞ t❤❡♠✳ ❚❤❡♥ ❧❡❢t✿ ✐♥t❡❣r❛t❡ t❤❡ r❡s✉❧ts✳
❚❤❡ r❡s✉❧t ✐s t❤❡ s❛♠❡✦ ❙♦ ❢❛r✱ t❤✐s ✐s ✈❡r② s✐♠✐❧❛r t♦ ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❚❤❡ str❛t❡❣② ✐s t❤❡ s❛♠❡✿ ❞✐✈✐❞❡ ❛♥❞ ❝♦♥❝✉r✳ ❙♣❧✐t ❛❞❞✐t✐♦♥ ✇✐t❤ t❤❡ ❙✉♠ ❘✉❧❡✱ t❤❡♥ ❢❛❝t♦r ♦✉t t❤❡ ❝♦❡✣❝✐❡♥ts ✇✐t❤ t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡✱ t❤❡♥ ❛♣♣❧② t❤❡ t❛❜❧❡ r❡s✉❧ts t♦ t❤❡s❡ ♣✐❡❝❡s✳ ❯♥❢♦rt✉♥❛t❡❧②✱ t❤✐s ✐s ✇❤❡r❡ t❤❡ s✐♠✐❧❛r✐t✐❡s st♦♣✳ ❚❤❡r❡ ✐s ♥♦ ❛♥❛❧♦❣ ♦❢ t❤❡ Pr♦❞✉❝t ❘✉❧❡ ❢♦r t❤❡ ❉❡r✐✈❛t✐✈❡s✿ ❚❤❡
❚❤❡
❞❡r✐✈❛t✐✈❡
✐♥t❡❣r❛❧
♦❢ t❤❡ ♣r♦❞✉❝t ♦❢ t✇♦ ❢✉♥❝t✐♦♥s
❝❛♥
❜❡ ❡①♣r❡ss❡❞ ✐♥ t❡r♠s ♦❢ t❤❡✐r
❞❡r✐✈❛t✐✈❡s
♦❢ t❤❡ ♣r♦❞✉❝t ♦❢ t✇♦ ❢✉♥❝t✐♦♥s
❝❛♥♥♦t
❜❡ ❡①♣r❡ss❡❞ ✐♥ t❡r♠s ♦❢ t❤❡✐r
✐♥t❡❣r❛❧s
❛♥❞ t❤❡ ❢✉♥❝t✐♦♥s t❤❡♠s❡❧✈❡s✳
❛♥❞ t❤❡ ❢✉♥❝t✐♦♥s t❤❡♠s❡❧✈❡s✳
❙✐♠✐❧❛r❧② t❤❡r❡ ✐s ♥♦ ◗✉♦t✐❡♥t ❘✉❧❡✱ ♥♦r t❤❡ ❈❤❛✐♥ ❘✉❧❡✱ ❢♦r ✐♥t❡❣r❛t✐♦♥✳ ❚❤✐s ❞✐✛❡r❡♥❝❡ ❤❛s ♣r♦❢♦✉♥❞ ❝♦♥s❡q✉❡♥❝❡s✳ ❲❡ ❝❛♥ st❛rt ✇✐t❤ ❥✉st t❤❡s❡ ❢✉♥❝t✐♦♥s✿
xs , sin x, ex . ❚❤❡♥ ✕ ❜② ❛♣♣❧②✐♥❣ t❤❡ ❢♦✉r ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s✱ ❝♦♠♣♦s✐t✐♦♥✱ ❛♥❞ ✐♥✈❡rt✐♥❣ ✕ ✇❡ ❝❛♥ ❝♦♥str✉❝t ❛ ❣r❡❛t ✈❛r✐❡t② ♦❢ ❢✉♥❝t✐♦♥s✳ ▲❡t✬s ❝❛❧❧ t❤❡♠ ✏❡❧❡♠❡♥t❛r② ❢✉♥❝t✐♦♥s✑✳ ❇❡❝❛✉s❡ ♦❢ t❤❡ ✇❛② t❤❡② ❛r❡ ❝♦♥str✉❝t❡❞✱
❛❧❧
♦❢
t❤❡♠ ❝❛♥ ❜❡ ❡❛s✐❧② ❞✐✛❡r❡♥t✐❛t❡❞ ✇✐t❤ t❤❡ r✉❧❡s ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥✱ t❤✉s ♣r♦❞✉❝✐♥❣ ♦t❤❡r ❡❧❡♠❡♥t❛r② ❢✉♥❝t✐♦♥s ✭❧❡❢t✮✿
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✶✾
❍♦✇❡✈❡r✱ ❝♦♥tr❛r② t♦ ✇❤❛t t❤❡ ❛❜♦✈❡ ❧✐st ♠✐❣❤t s✉❣❣❡st✱ ✐♥t❡❣r❛t✐♦♥ ✇✐❧❧ ♦❢t❡♥ t❛❦❡ ✉s ♦✉ts✐❞❡ ♦❢ t❤❡ r❡❛❧♠ ♦❢ ❡❧❡♠❡♥t❛r② ❢✉♥❝t✐♦♥s ✭r✐❣❤t✮✳ ❋♦r ❡①❛♠♣❧❡✱ ❛ ♥❡✇ ❢✉♥❝t✐♦♥✱ ❝❛❧❧❡❞ t❤❡ ❢♦r t❤✐s ✐♠♣♦rt❛♥t ✐♥t❡❣r❛❧✿
2 erf(x) = √ π
❚❤❡ r❡s✉❧t ✇✐❧❧ ❜❡ t❤❡ s❛♠❡ ✐❢ ✇❡
❡①❝❧✉❞❡
2
e−x dx .
❢r♦♠ t❤❡ ✏❡❧❡♠❡♥t❛r② ❢✉♥❝t✐♦♥s✑ ❡✐t❤❡r t❤❡ tr✐❣♦♥♦♠❡tr✐❝ ❢✉♥❝t✐♦♥s
♦r t❤❡ ❡①♣♦♥❡♥t✳ ❚❤❡ r❡s✉❧t ✇✐❧❧ ❜❡ t❤❡ s❛♠❡ ✐❢ ✇❡ ❲✐t❤ t❤❡ ❤❡❧♣ ♦❢ t❤❡
Z
●❛✉ss ❡rr♦r ❢✉♥❝t✐♦♥✱ ♠✉st ❜❡ ❝r❡❛t❡❞
✐♥❝❧✉❞❡
❆♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ❚❤❡♦r❡♠✱
♠♦r❡ ❢✉♥❝t✐♦♥s t♦ t❤❡ ❧✐st✳
✇❡ ❝❛♥ ❝❧❛✐♠ t❤❛t ✇❡ ❤❛✈❡ ❢♦✉♥❞
♦❢ t❤❡s❡ ❢✉♥❝t✐♦♥s ♦♥ ♦✉r ❧✐st✱ ♦✈❡r ♦♣❡♥ ✐♥t❡r✈❛❧s ✇✐t❤✐♥ t❤❡ ❞♦♠❛✐♥s ♦❢ ✐♥t❡❣r❛❧✱ ✐✳❡✳✱
❛❧❧ t❤❡
❛♥t✐❞❡r✐✈❛t✐✈❡s ✐♥t❡❣r❛❧ ♦❢ t❤❡
❝♦rr❡s♣♦♥❞✐♥❣ ❢✉♥❝t✐♦♥✿
❉❡✜♥✐t✐♦♥ ✷✳✸✳✷✷✿ ❣❡♥❡r❛❧ ❛♥t✐❞❡r✐✈❛t✐✈❡ ❛♥❞ ✐♥❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ❋♦r ❛ ❣✐✈❡♥ ❢✉♥❝t✐♦♥
♦✈❡r ♦♣❡♥ ✐♥t❡r✈❛❧ I
f✱
t❤❡ ❣❡♥❡r❛❧ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦r t❤❡ ✐♥❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ♦❢ f
✐s ❞❡✜♥❡❞ ❜②✿
Z
f dx = F (x) + C ,
I ✱ ✐✳❡✳✱ F ′ = f ✱ ✉♥❞❡rst♦♦❞ ❛s t❤❡ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❛❧❧ s✉❝❤ ❢✉♥❝t✐♦♥s ♦✈❡r ❛❧❧ ♣♦ss✐❜❧❡ r❡❛❧ ♥✉♠❜❡rs C ✳ ❚❤✐s ❝♦❧❧❡❝t✐♦♥ ✐s ❛❧s♦ ❝❛❧❧❡❞ t❤❡ ✐♥❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ♦❢ f ✳ ✇❤❡r❡
F
✐s ❛♥② ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢
f
♦♥
❊①❛♠♣❧❡ ✷✳✸✳✷✸✿ ❤♦✇ ♠❛♥② ❛♥t✐❞❡r✐✈❛t✐✈❡s❄ ❚❤❡r❡ ❛r❡ ✐♥✜♥✐t❡❧② ♠❛♥② ❛♥t✐❞❡r✐✈❛t✐✈❡s✱ ❜✉t t❤❡r❡ ✐s ♠♦r❡ t♦ ✐t✳ ▲❡t✬s t❛❦❡ ❛ ♠♦r❡ ❝❛r❡❢✉❧ ❧♦♦❦ ❛t ♦♥❡ ❧✐♥❡ ♦♥ t❤❡ ❧✐st✿
Z
1 ❄❄❄ dx === ln |x| + C, x
x 6= 0 .
❚❤✐s ❢♦r♠✉❧❛ ✐s ✐♥t❡♥❞❡❞ t♦ ♠❡❛♥ t❤❡ ❢♦❧❧♦✇✐♥❣✿ ✶✳ ❲❡ ❤❛✈❡ ❝❛♣t✉r❡❞ ✐♥✜♥✐t❡❧② ♠❛♥② ✕ ♦♥❡ ❢♦r ❡❛❝❤ r❡❛❧ ♥✉♠❜❡r
❛❧❧ ♦❢ t❤❡♠✳ ❆♥t✐✲❞✐✛❡r❡♥t✐❛t✐♦♥ ❚❤❡♦r❡♠
C
✕ ❛♥t✐❞❡r✐✈❛t✐✈❡s✳
✷✳ ❲❡ ❤❛✈❡ ❝❛♣t✉r❡❞ ❍♦✇❡✈❡r✱ t❤❡ ❞♦♠❛✐♥ ♦❢
❛♣♣❧✐❡s ♦♥❧② t♦
1/x ❝♦♥s✐sts ♦❢ t✇♦ r❛②s (−∞, 0) ❛♥❞ (0, +∞)✳
▼❡❛♥✇❤✐❧❡✱ t❤❡
❆s ❛ r❡s✉❧t✱ ✇❡ s♦❧✈❡ t❤✐s ♣r♦❜❧❡♠
♦♥ ❡✐t❤❡r ♦❢ t❤❡ t✇♦ ✐♥t❡r✈❛❧s✳ ❚❤❡♥ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢
• ln(−x) + C ♦♥ (−∞, 0)✱ • ln(x) + C ♦♥ (0, +∞)✳
♦♥❡ ✐♥t❡r✈❛❧ ❛t ❛ t✐♠❡✳
1/x
s❡♣❛r❛t❡❧②
❛r❡✿
❛♥❞
❇✉t ✐❢ ♥♦✇ ✇❡ ✇❡r❡ t♦ ❝♦♠❜✐♥❡ ❡❛❝❤ ♦❢ t❤❡s❡ ♣❛✐rs ♦❢ ❢✉♥❝t✐♦♥s ✐♥t♦ ♦♥❡✱
F ✱ ❞❡✜♥❡❞ ♦♥ (−∞, 0)∪(0, +∞)✱
✇❡ ✇♦✉❧❞ r❡❛❧✐③❡ t❤❛t✱ ❡✈❡r② t✐♠❡✱ t❤❡ t✇♦ ❝♦♥st❛♥ts ♠✐❣❤t ❜❡ ❞✐✛❡r❡♥t✳ ❆❢t❡r ❛❧❧✱ t❤❡② ❤❛✈❡ ♥♦t❤✐♥❣ t♦ ❞♦ ✇✐t❤ ❡❛❝❤ ♦t❤❡r✦ ❲❡ ✐❧❧✉str❛t❡ t❤❡ ✇r♦♥❣ ✭✐♥❝♦♠♣❧❡t❡✮ ❛♥s✇❡r ♦♥ t❤❡ ❧❡❢t✱ ❛♥❞ t❤❡ ❝♦rr❡❝t ♦♥❡ ♦♥ t❤❡ r✐❣❤t✿
✷✳✸✳
■♥t❡❣r❛t✐♦♥ ✐♥ ❧✐❣❤t ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠
✶✷✵
❚❤❡ ✐♠❛❣❡ ♦♥ t❤❡ ❧❡❢t✱ ❛s ✇❡❧❧ ❛s t❤❡ ❢♦r♠✉❧❛ ✇❡ st❛rt❡❞ ✇✐t❤✱ ♠✐❣❤t s✉❣❣❡st t❤❛t ❛❧❧ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✬s ❛♥t✐❞❡r✐✈❛t✐✈❡s ❛r❡ ❡✈❡♥ ❢✉♥❝t✐♦♥s✳ ❚❤❡ ✐♠❛❣❡ ♦♥ t❤❡ r✐❣❤t s❤♦✇s ❛ s✐♥❣❧❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ✭✐♥ r❡❞✮ ❜✉t ✐ts t✇♦ ❜r❛♥❝❤❡s ❞♦♥✬t ❤❛✈❡ t♦ ♠❛t❝❤✦ ❆❧❣❡❜r❛✐❝❛❧❧②✱ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢
1 ✕ ♦♥ t❤❡ ✇❤♦❧❡ ❞♦♠❛✐♥ ✕ ✐s ❣✐✈❡♥ ❜② t❤✐s ♣✐❡❝❡✇✐s❡✲❞❡✜♥❡❞ x
❢✉♥❝t✐♦♥✿
F (x) = ■t ❤❛s
(
ln(−x) + C ln(x) + K
t✇♦ ♣❛r❛♠❡t❡rs ✐♥st❡❛❞ ♦❢ t❤❡ ✉s✉❛❧ ♦♥❡✳
❢♦r ❢♦r
x x
✐♥ ✐♥
(−∞, 0), (0, +∞).
❚❤❡ ♥✉♠❜❡r ♠❛t❝❤❡s t❤❡ ♥✉♠❜❡r ♦❢ t❤❡ ✏❝♦♠♣♦♥❡♥ts✑
♦❢ t❤❡ ❞♦♠❛✐♥✳
❊①❡r❝✐s❡ ✷✳✸✳✷✹ ❱❡r✐❢② t❤❛t t❤✐s ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢
1/x✳
❊①❡r❝✐s❡ ✷✳✸✳✷✺ ■♥ ❛ s✐♠✐❧❛r ❢❛s❤✐♦♥✱ ❡①❛♠✐♥❡ t❤❡ P♦✇❡r ❋♦r♠✉❧❛ ❛❜♦✈❡ ❢♦r
s < −1✳
❊①❛♠♣❧❡ ✷✳✸✳✷✻✿ ✜♥❞ ❣r❛♣❤s ❚❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦♥ ♦✉r ❧✐st ✇❡r❡ ❞✐s❝♦✈❡r❡❞ ❜② r❡❛❞✐♥❣ t❤❡ r❡s✉❧ts ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❜❛❝❦✇❛r❞s✳ ❲❡ ❝❛♥ ❞♦ t❤❡ s❛♠❡ ❢♦r ❣r❛♣❤s✳ ❇❡❧♦✇✱ t❤❡ ❞❡r✐✈❛t✐✈❡✬s ❣r❛♣❤ ✭❣r❡❡♥✮ ✇❛s ❢♦✉♥❞ ❢r♦♠ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✭r❡❞✮ ❜② ❧♦♦❦✐♥❣ ❛t t❤❡ ′ ′ ′ ♠♦♥♦t♦♥✐❝ ❜❡❤❛✈✐♦r ♦❢ f ✭❡✐t❤❡r f > 0 ♦r f < 0✱ ❛♥❞ ❧♦❝❛❧ ❡①tr❡♠❡ ♣♦✐♥ts✿ f = 0✮✿
■♥ s✉♠♠❛r②✱ ✇❡ ❧♦♦❦ ❛t ■♥ r❡✈❡rs❡✱ ✇❡ ❧♦♦❦ ❛t
ց, ր
+, −
♦❢
♦❢
f′
f
t♦ ✜♥❞
t♦ ✜♥❞
❍❡r❡ ✐s ❛♥ ❡①❛♠♣❧❡ ♦❢ ❤♦✇ t❤❡ ❣r❛♣❤ ♦❢
+, −
ց, ր
f
♦❢
♦❢
f ′✳
f✳
✐s ❢♦✉♥❞ ❢r♦♠ t❤❡ ❣r❛♣❤ ♦❢ ✐ts ❞❡r✐✈❛t✐✈❡✿
✷✳✹✳ ▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧
✶✷✶
❚♦ s❤♦✇ t❤❡ ❝♦♠♣❧❡t❡ ❛♥s✇❡r✱ ✇❡ ❤❛✈❡ t♦ s❤♦✇ ♠✉❧t✐♣❧❡ ❛♥t✐❞❡r✐✈❛t✐✈❡s✿
❲❤❡♥ t❤❡ ✐♥✐t✐❛❧ ✭♦r ✜♥❛❧✱ ♦r ♠✐❞✲✢✐❣❤t✮ st❛t❡ ✐s ❦♥♦✇♥✱ ✇❡ ♣✐❝❦ ❛ s♣❡❝✐✜❝ ❝✉r✈❡ ❢r♦♠ t❤✐s s❡t✳ ❊①❡r❝✐s❡ ✷✳✸✳✷✼
❋✐♥❞ t❤❡ ✐♥✢❡❝t✐♦♥ ♣♦✐♥ts✳
✷✳✹✳ ▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧
◆✉♠❡r♦✉s q✉❛♥t✐t✐❡s ❛r❡ ❞❡✜♥❡❞ ✈✐❛ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ ❛r❡❛s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts ❛s ♣r❡s❡♥t❡❞ ✐♥ ❈❤❛♣t❡r ✶❀ ❛♥❞ ✇❡✐❣❤ts✱ ✈♦❧✉♠❡s✱ ❧❡♥❣t❤s✱ ✢✉①❡s✱ ✇♦r❦✱ ❛♥❞ ♠❛♥② ♠♦r❡ t♦ ❜❡ ♣r❡s❡♥t❡❞ ✐♥ ❈❤❛♣t❡r ✸✳ ❚❤❡ ❧❛tt❡r ♣❛rt ♦❢ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ❛❧❧♦✇s ✉s t♦ ❝♦♠♣✉t❡ ❛♥②t❤✐♥❣ ❞❡✜♥❡❞ t❤✐s ✇❛② ❜② ♠❡❛♥s ♦❢ ❛ s✐♠♣❧❡ s✉❜st✐t✉t✐♦♥ ✕ ❛s ❧♦♥❣ ❛s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ❝❛♥ ❜❡ ❢♦✉♥❞✦ ❲❡ ✇✐❧❧ r❡❢❡r t♦ t❤❡♠ ❛s ✐♥❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ♦r s✐♠♣❧② ✐♥t❡❣r❛❧s✳
❍♦✇ ❞♦ ✇❡ ✜♥❞ ✐♥t❡❣r❛❧s❄ ❚❤✐s ✐s t❤❡ s✉❜❥❡❝t ♦❢ t❤❡ ♣r❡s❡♥t ❝❤❛♣t❡r✳ ■♥ t❤❡ ❧❛st s❡❝t✐♦♥✱ ✇❡ s❛✇ s♦♠❡ ❢❛❝ts ❛❜♦✉t ✐♥t❡❣r❛❧s ❛s t❤❡② ❛r❡ ♠❛t❝❤❡❞ ❛❣❛✐♥st t❤♦s❡ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡s✳ ■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ ✇✐❧❧ ❢✉rt❤❡r ❡①❛♠✐♥❡ ❛♥♦t❤❡r s✉❝❤ ❢❛❝t✱ t❤❡ ▲✐♥❡❛r ❈♦♠♣♦s✐t✐♦♥ ❘✉❧❡✳ ❚❤❡ ✈❛r✐❛❜❧❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥s ✇❡ ❛r❡ ❝♦♥s✐❞❡r✐♥❣ ❛r❡ q✉❛♥t✐t✐❡s ✇❡ ♠❡❡t ✐♥ ❡✈❡r②❞❛② ❧✐❢❡✳ ❋r❡q✉❡♥t❧②✱ t❤❡r❡ ❛r❡ ♠✉❧t✐♣❧❡ ✇❛②s t♦ ♠❡❛s✉r❡ t❤❡s❡ q✉❛♥t✐t✐❡s✿
• ❧❡♥❣t❤ ❛♥❞ ❞✐st❛♥❝❡✿ ✐♥❝❤❡s✱ ♠✐❧❡s✱ ♠❡t❡rs✱ ❦✐❧♦♠❡t❡rs✱ ✳✳✳✱ ❧✐❣❤t ②❡❛rs
✷✳✹✳ ▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧
✶✷✷
• ❛r❡❛✿ sq✉❛r❡ ✐♥❝❤❡s✱ sq✉❛r❡ ♠✐❧❡s✱ ✳✳✳✱ ❛❝r❡s
• ✈♦❧✉♠❡✿ ❝✉❜✐❝ ✐♥❝❤❡s✱ ❝✉❜✐❝ ♠✐❧❡s✱ ✳✳✳✱ ❧✐t❡rs✱ ❣❛❧❧♦♥s • t✐♠❡✿ ♠✐♥✉t❡s✱ s❡❝♦♥❞s✱ ❤♦✉rs✱ ✳✳✳✱ ②❡❛rs
• ✇❡✐❣❤t✿ ♣♦✉♥❞s✱ ❣r❛♠s✱ ❦✐❧♦❣r❛♠s✱ ❦❛r❛ts
• t❡♠♣❡r❛t✉r❡✿ ❞❡❣r❡❡s ♦❢ ❈❡❧s✐✉s✱ ♦❢ ❋❛❤r❡♥❤❡✐t • ♠♦♥❡②✿ ❞♦❧❧❛rs✱ ❡✉r♦s✱ ♣♦✉♥❞s✱ ②❡♥ • ❡t❝✳
❚❤❡ ❝♦♥✈❡rs✐♦♥ ❢♦r♠✉❧❛s ❢♦r t❤❡s❡ ✉♥✐ts ❛r❡ s❡❡♥ ✐♥ ♠❛t❤❡♠❛t✐❝s ❛s ❝❤❛♥❣❡s ♦❢ ✈❛r✐❛❜❧❡s✳ ❆❧♠♦st ❛❧❧ ❝♦♥✈❡rs✐♦♥ ❢♦r♠✉❧❛s ❛r❡ ❥✉st ♠✉❧t✐♣❧✐❝❛t✐♦♥s✱ s✉❝❤ ❛s t❤✐s ♦♥❡✿ # ♦❢ ♠❡t❡rs = # ♦❢ ❦✐❧♦♠❡t❡rs · 1000 . ❲❛r♥✐♥❣✦ ❲❡ ❞♦♥✬t ❝♦♥✈❡rt ✏♣♦✉♥❞s t♦ ❦✐❧♦s✑✱ ✇❡ ❝♦♥✈❡rt t❤❡
♥✉♠❜❡r ♦❢
♣♦✉♥❞s t♦ t❤❡
♥✉♠❜❡r ♦❢
❦✐❧♦s✳
▲❡t✬s ❝♦♥s✐❞❡r ♠♦t✐♦♥ ❛s ❛♥ ❡①❛♠♣❧❡✿ • ■❢ t❤❡ ❞✐st❛♥❝❡ ✐s ♠❡❛s✉r❡❞ ✐♥
♠✐♥✉t❡✳
✐♥❝❤❡s ❛♥❞ t✐♠❡ ✐♥ ♠✐♥✉t❡s✱ t❤❡ ✈❡❧♦❝✐t② ✐s ♠❡❛s✉r❡❞ ✐♥ ✐♥❝❤❡s ♣❡r
❢❡❡t✱ t❤❡ ✈❡❧♦❝✐t② ✐s ♥♦✇ ♠❡❛s✉r❡❞ ✐♥ ❢❡❡t ♣❡r ♠✐♥✉t❡✳ • ❇✉t ✐❢ t❤❡ t✐♠❡ ✐s ♠❡❛s✉r❡❞ ✐♥ s❡❝♦♥❞s✱ t❤❡ ✈❡❧♦❝✐t② ✐s ♠❡❛s✉r❡❞ ✐♥ ✐♥❝❤❡s ♣❡r s❡❝♦♥❞✳ • ◆♦✇✱ ✐❢ t❤❡ ❞✐st❛♥❝❡ ✐s ♠❡❛s✉r❡❞ ✐♥
❲❡ ❛r❡ ❞❡❛❧✐♥❣ ✇✐t❤ t❤❡ s❛♠❡ ♠♦t✐♦♥ ❥✉st ♠❡❛s✉r❡❞ ✐♥ ❞✐✛❡r❡♥t ✉♥✐ts ❛♥❞✱ t❤❡r❡❢♦r❡✱ ❞✐✛❡r❡♥t ❢✉♥❝t✐♦♥s✳ ❍♦✇ ❞♦ ✇❡ tr❛♥s✐t✐♦♥ ❜❡t✇❡❡♥ t❤❡ t❤r❡❡ ❢✉♥❝t✐♦♥s❄ ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ y = f (x)
❡st❛❜❧✐s❤❡s ❛ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t✇♦ q✉❛♥t✐t✐❡s x ❛♥❞ y ✿ f
x −−−−→ y
◆♦✇✱ ❡✐t❤❡r ♦♥❡ ♠❛② ❜❡ r❡♣❧❛❝❡❞ ✇✐t❤ ❛ ♥❡✇ ✈❛r✐❛❜❧❡ ✭♦r ❛ ♥❡✇ ✉♥✐t✮✳ ▲❡t✬s ❝❛❧❧ t❤❡♠ t ❛♥❞ z r❡s♣❡❝t✐✈❡❧② ❛♥❞ s✉♣♣♦s❡ t❤❡s❡ r❡♣❧❛❝❡♠❡♥ts✱ ✐✳❡✳✱ s✉❜st✐t✉t✐♦♥s✱ ❛r❡ ❣✐✈❡♥ ❜② s♦♠❡ ❢✉♥❝t✐♦♥s✿ • ❈❛s❡ ✶✿ x = g(t) ❛♥❞ y = k(t) = f (g(t))
• ❈❛s❡ ✷✿ z = h(y) ❛♥❞ z = k(x) = h(f (x))
❚❤❡s❡ s✉❜st✐t✉t✐♦♥s ❝r❡❛t❡ ♥❡✇ r❡❧❛t✐♦♥s ❜❡t✇❡❡♥ t❤❡ ✈❛r✐❛❜❧❡s✿ g
f
❈❛s❡ ✶ : t −−−−→ x −−−−→ y f h ❈❛s❡ ✷ : x −−−−→ y −−−−→ z ❚❤❡ t✇♦ ❝❛s❡s ❛r❡ s❤♦✇♥ ✐♥ t❤❡ ♣✐❝t✉r❡ ❜❡❧♦✇✿
✷✳✹✳
▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧
❲❡ ✇✐❧❧ ❛ss✉♠❡ t❤❛t t❤❡s❡ ❢✉♥❝t✐♦♥s
g
✶✷✸
❛♥❞
h
❛r❡
❧✐♥❡❛r✳
❈❛s❡ ✶ ❚❤❡ ❝❤❛♥❣❡ ♦❢ ✉♥✐ts ✐s
x = g(t) = mt + b . ❘❡✲s❝❛❧✐♥❣ t❤❡ ❤♦r✐③♦♥t❛❧ ❛①✐s r❡q✉✐r❡s ❛♥ ❛❞❥✉st♠❡♥t ♦❢ t❤❡ ✐♥t❡❣r❛❧ ✐❢ ✐t ✐s s❡❡♥ ❛s t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤✿
❆❜♦✈❡✱ t❤❡
x✲❛①✐s
✐s s❤r✉♥❦ ❜② ❛ ❢❛❝t♦r ♦❢
❤❛✈❡ ♠✉❧t✐♣❧✐❡❞ ❜②
2
t♦ ❣❡t ♦♥❡ ❢♦r
2✱
✐✳❡✳✱
x = t/2✳
❚❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧ ♦✈❡r ❛♥② ✐♥t❡r✈❛❧ ✐♥
t✳
❚❤❡♦r❡♠ ✷✳✹✳✶✿ ▲✐♥❡❛r ❈♦♠♣♦s✐t✐♦♥ ❘✉❧❡ ■ ❋♦r ❛♥② ♥✉♠❜❡rs
m 6= 0 Z
❛♥❞
b
❛♥❞ ❛♥② ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥
1 f (mt + b) dt = m
Z
f (x) dx
x=mt+b
f✱
✇❡ ❤❛✈❡✿
x
✇✐❧❧
✷✳✹✳ ▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧
✶✷✹
Pr♦♦❢✳
❲❡ t❛❦❡✿ F (x) =
Z
f (x) dx .
❲❡ ❛♣♣❧② t❤❡ ❈❤❛✐♥ ❘✉❧❡ ❛♥❞ t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ❉✐✛❡r❡♥t✐❛t✐♦♥ ✿ d dt
1 F (mt + b) m
=
1 d 1 (F (mt + b)) = mF ′ (mt + b) = F ′ (mt + b) = f (mt + b) . m dt m
❊①❛♠♣❧❡ ✷✳✹✳✷✿ t✐♠❡ s❤✐❢t
❙✉♣♣♦s❡ x ✐s t❤❡ t✐♠❡✱ ❛♥❞ s✉♣♣♦s❡ ✇❡ ❝❤❛♥❣❡ t❤❡ ♠♦♠❡♥t ❢r♦♠ ✇❤✐❝❤ ✇❡ st❛rt ♠❡❛s✉r✐♥❣ t✐♠❡✳ ❚❤❡♥ ✇❡ ❤❛✈❡✿ Z Z x = t + t0 =⇒
k(x) dx =
f (t + t0 ) dt .
❊①❛♠♣❧❡ ✷✳✹✳✸✿ s❡❝♦♥❞s t♦ ♠✐♥✉t❡s
❙✉♣♣♦s❡ x ✐s t❤❡ t✐♠❡ ❛♥❞ y ✐s t❤❡ ❧♦❝❛t✐♦♥✳ ■❢ x ✐s ♠❡❛s✉r❡❞ ✐♥ s❡❝♦♥❞s✱ t❤❡♥ s✇✐t❝❤✐♥❣ t♦ t✐♠❡ t ♠❡❛s✉r❡❞ ✐♥ ♠✐♥✉t❡s ✇✐❧❧ r❡q✉✐r❡ ❛ ❢✉♥❝t✐♦♥✿ x = g(t) = 60t .
❲❡ ❦♥♦✇ ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✹ t❤❛t t❤❡ ❣r❛♣❤s ♦❢ t❤❡ q✉❛♥t✐t✐❡s ❞❡s❝r✐❜✐♥❣ ♠♦t✐♦♥ ❛r❡ s✐♠♣❧② r❡✲s❝❛❧❡❞ ✈❡rs✐♦♥s ♦❢ t❤❡ ♦❧❞ ♦♥❡s✳ ▲❡t✬s r❡❝❛st t❤✐s st❛t❡♠❡♥t ✐♥ t❤❡ ✐♥t❡❣r❛❧ ❢♦r♠✳ • ❙✉♣♣♦s❡ y = q(t) ❛♥❞ y = p(x) ❛r❡ t❤❡ ❧♦❝❛t✐♦♥ ❛s ❢✉♥❝t✐♦♥s ♦❢ ♠✐♥✉t❡s ❛♥❞ s❡❝♦♥❞s r❡s♣❡❝t✐✈❡❧②✳ ❚❤❡♥ q(t) = p(60t) . ′ • ❙✉♣♣♦s❡ v(t) = q ′ (t) ❛♥❞ Z e(x) = p (x)Z❛r❡ t❤❡ ✈❡❧♦❝✐t✐❡s ❛s ❢✉♥❝t✐♦♥s ♦❢ ♠✐♥✉t❡s ❛♥❞ s❡❝♦♥❞s r❡s♣❡❝t✐✈❡❧②✳ ❚❤❡r❡❢♦r❡✱ v dt = q ❛♥❞ e dx = p✳ ❲❡ s✉❜st✐t✉t❡ t❤❡s❡ ✐♥t♦ t❤❡ ❛❜♦✈❡ ❡q✉❛t✐♦♥✿
Z
v dt =
❊①❡r❝✐s❡ ✷✳✹✳✹
Z
e dx
. x=60t
❊①♣r❡ss t❤❡ ❧♦❝❛t✐♦♥ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ♠✐♥✉t❡s ✐♥ t❡r♠s ♦❢ t❤❡ ✈❡❧♦❝✐t② ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ s❡❝♦♥❞s✳ ❊①❛♠♣❧❡ ✷✳✹✳✺✿ ❝♦♠♣❛r❡ t♦ ❈❤❛✐♥ ❘✉❧❡
▲❡t✬s ✜♥❞ ❜♦t❤ t❤❡ ❞❡r✐✈❛t✐✈❡ ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢✉♥❝t✐♦♥✿ k(t) = sin(3t − 1) .
❆❢t❡r ❛❧❧✱ t❤❡ ♠❛✐♥ ❝❤❛❧❧❡♥❣❡ ♠✐❣❤t ❜❡ t❤❡ ❞❡❝♦♠♣♦s✐t✐♦♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✿ t 7→ 3t − 1 = x 7→ sin x = z
❍❡r❡✱ x ✐s t❤❡ ♥❡✇ ✈❛r✐❛❜❧❡ t❤❛t ✇❡ ❤❛✈❡ ♠❛❞❡ ✉♣✳ ❚❤❡ ❞❡r✐✈❛t✐✈❡✿
d d d sin(3t − 1) = 3 sin x k(t) = = 3 cos x = 3 cos(3t − 1) . dt dt dx x=3t−1 x=3t−1
❚❤❡ ✐♥t❡❣r❛❧✿ Z
1 k(t) dt = 3
Z
sin(x) dx
x=3t−1
1 1 + C = − cos(3t − 1) + C . = (− cos(x)) 3 3 x=3t−1
✷✳✹✳
▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧
✶✷✺
❈❛s❡ ✷ ❚❤❡ ❝❤❛♥❣❡ ♦❢ ✉♥✐ts ✐s
z = h(y) = my + b . ❘❡✲s❝❛❧✐♥❣ t❤❡ ❤♦r✐③♦♥t❛❧ ❛①✐s r❡q✉✐r❡s ❛♥ ❛❞❥✉st♠❡♥t ♦❢ t❤❡ ✐♥t❡❣r❛❧✿
❆❜♦✈❡✱ t❤❡ ♠✉❧t✐♣❧✐❡❞
y ✲❛①✐s ✐s s❤r✉♥❦ ❜② ❛ ❢❛❝t♦r ♦❢ 2✱ ✐✳❡✳✱ z = y/2✳ ❜② 2 t♦ ❣❡t ♦♥❡ ❢♦r z ✳
❚❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧ ✇✐t❤ r❡s♣❡❝t t♦
y
✇✐❧❧ ❤❛✈❡
❚❤❡♦r❡♠ ✷✳✹✳✻✿ ▲✐♥❡❛r ❈♦♠♣♦s✐t✐♦♥ ❘✉❧❡ ■■ ❋♦r ❛♥② ♥✉♠❜❡rs
m
❛♥❞
Z
b
❛♥❞ ❛♥② ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥
mf (x) + b dx = m
Z
f✱
✇❡ ❤❛✈❡✿
f dx + bx
❚❤❡ r❡s✉❧t ✐s ❥✉st ❛♥ ✐♥st❛♥❝❡ ♦❢ t❤❡ ▲✐♥❡❛r✐t② ❘✉❧❡✳
❊①❛♠♣❧❡ ✷✳✹✳✼✿ s♣❛❝❡ s❤✐❢t ❛♥❞ ✢✐♣ ■❢
y
✐s t❤❡ ❧♦❝❛t✐♦♥ ❛♥❞ ✇❡ ❝❤❛♥❣❡ t❤❡ ♣❧❛❝❡ ❢r♦♠ ✇❤✐❝❤ ✇❡ st❛rt ♠❡❛s✉r✐♥❣✱ ✇❡ ❤❛✈❡✿
z = h(x) = y + y0 =⇒ ■❢ ✇❡ ❝❤❛♥❣❡ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡
x✲❛①✐s✱
Z
k dx =
Z
f dx + y0 x .
✇❡ ❤❛✈❡✿
z = h(x) = −y =⇒
Z
k dx = −
Z
f dx .
❊①❛♠♣❧❡ ✷✳✹✳✽✿ ♠✐❧❡s t♦ ❦✐❧♦♠❡t❡rs ❙✉♣♣♦s❡
x
✐s t❤❡ t✐♠❡ ❛♥❞
y
✐s t❤❡ ❧♦❝❛t✐♦♥✱ t❤❡♥ ❢✉♥❝t✐♦♥
h
♠❛② r❡♣r❡s❡♥t t❤❡ ❝❤❛♥❣❡ ♦❢ ✉♥✐ts ♦❢
❧❡♥❣t❤✱ s✉❝❤ ❛s ❢r♦♠ ♠✐❧❡s t♦ ❦✐❧♦♠❡t❡rs✿
z = h(y) = 1.6y . ❆s ✇❡ ❦♥♦✇✱ t❤❡ q✉❛♥t✐t✐❡s ❞❡s❝r✐❜✐♥❣ ♠♦t✐♦♥ ❛r❡ s✐♠♣❧② r❡♣❧❛❝❡❞ ✇✐t❤ t❤❡✐r
♠✉❧t✐♣❧❡s✳
❚❤❡ ♥❡✇ ❣r❛♣❤s
❛r❡ t❤❡ ✈❡rt✐❝❛❧❧② str❡t❝❤❡❞ ✈❡rs✐♦♥s ♦❢ t❤❡ ♦❧❞ ♦♥❡s✳ ▲❡t✬s r❡❝❛st t❤✐s st❛t❡♠❡♥t ✐♥ t❤❡ ✐♥t❡❣r❛❧ ❢♦r♠✿
•
■❢
a
✐s t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ ♠✐❧❡s✱ t❤❡♥ t❤❡ ✈❡❧♦❝✐t② ✇✐t❤ r❡s♣❡❝t t♦ ❦✐❧♦♠❡t❡rs ✐s
1 1.6
Z
a dx .
✷✳✹✳
▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧ •
■❢
v
✶✷✻
✐s t❤❡ ✈❡❧♦❝✐t② ✇✐t❤ r❡s♣❡❝t t♦ ♠✐❧❡s✱ t❤❡♥ t❤❡ ❧♦❝❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ ❦✐❧♦♠❡t❡rs ✐s
1 1.6
Z
v dx .
❊①❡r❝✐s❡ ✷✳✹✳✾
■❢
a
✐s t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ ♠✐❧❡s✱ t❤❡♥ ✇❤❛t ✐s t❤❡ ♣♦s✐t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ ❦✐❧♦♠❡t❡rs❄
❊①❡r❝✐s❡ ✷✳✹✳✶✵
Pr♦✈❡ t❤❡ ❛❜♦✈❡ ❢♦r♠✉❧❛s✳ ❊①❛♠♣❧❡ ✷✳✹✳✶✶✿ t✐♠❡ ❛♥❞ t❡♠♣❡r❛t✉r❡
❚❤✐s ✐s ❤♦✇
f
❜♦t❤ ❝❛s❡s ❝❛♥ ❛♣♣❡❛r✳
❘❡❝❛❧❧ t❤❡ ❡①❛♠♣❧❡ ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✹ ✇❤❡♥ ✇❡ ❤❛✈❡ ❛ ❢✉♥❝t✐♦♥
t❤❛t r❡❝♦r❞s t❤❡ t❡♠♣❡r❛t✉r❡ ✭✐♥ ❋❛❤r❡♥❤❡✐t✮ ❛s ❛ ❢✉♥❝t✐♦♥
❛♥♦t❤❡r t❤❛t r❡❝♦r❞s t❤❡ t❡♠♣❡r❛t✉r❡ ✐♥ ❈❡❧s✐✉s ❛s ❛ ❢✉♥❝t✐♦♥
• • • •
g
f
♦❢ t✐♠❡ ✭✐♥ ♠✐♥✉t❡s✮ r❡♣❧❛❝❡❞ ✇✐t❤
♦❢ t✐♠❡ ✐♥ s❡❝♦♥❞s✿
s t✐♠❡ ✐♥ s❡❝♦♥❞s❀ m t✐♠❡ ✐♥ ♠✐♥✉t❡s❀ F t❡♠♣❡r❛t✉r❡ ✐♥ ❋❛❤r❡♥❤❡✐t❀ C t❡♠♣❡r❛t✉r❡ ✐♥ ❈❡❧s✐✉s✳
❚❤❡ ❝♦♥✈❡rs✐♦♥ ❢♦r♠✉❧❛s ❛r❡✿
m = s/60 , ❛♥❞
C = (F − 32)/1.8 . ❚❤❡s❡ ❛r❡ t❤❡ r❡❧❛t✐♦♥s ❜❡t✇❡❡♥ t❤❡ ❢♦✉r q✉❛♥t✐t✐❡s✿ s/60
❆♥❞ t❤✐s ✐s t❤❡ ♥❡✇ ❢✉♥❝t✐♦♥✿
❚❤❡♥✱ ✇❡ ❤❛✈❡✿
❜② t❤❡
Z
(F −32)/1.8
f
s −−−−−−→ m −−−−→ F −−−−−−−−−−→ C
g:
F = k(s) = f (s/60) − 32 /1.8 . (f (s/60) − 32)/1.8 ds Z Z = f (s/60)/1.8 ds − 32/1.8 ds Z 1 f (s/60) ds − 32/1.8s = 1.8 Z 60 = − 32/1.8s , f dm 1.8
k ds =
▲✐♥❡❛r ❈♦♠♣♦s✐t✐♦♥ ❘✉❧❡✳
Z
m=s/60
❊①❡r❝✐s❡ ✷✳✹✳✶✷
Pr♦✈✐❞❡ ❛ s✐♠✐❧❛r ❛♥❛❧②s✐s ❢♦r t❤❡ s✐③❡s ♦❢ s❤♦❡s ❛♥❞ ❝❧♦t❤✐♥❣✳ ❊①❛♠♣❧❡ ✷✳✹✳✶✸✿ ❞❡❣r❡❡s t♦ r❛❞✐❛♥s
❚❤❡ ❝♦♥✈❡rs✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ❞❡❣r❡❡s
y
t♦ t❤❡ ♥✉♠❜❡r ♦❢ r❛❞✐❛♥s
x=
π y. 180
x
✐s✿
✷✳✹✳
✶✷✼
▲✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧
❚❤❡♥✱ ❢♦r ❛♥② ❢✉♥❝t✐♦♥ z = f (x)✱ ✇❡ ❤❛✈❡✿ Z
Z π 180 f y dy = f dx 180 π
. π y x= 180
❇❡❝❛✉s❡ ♦❢ t❤❡ ❡①tr❛ ❝♦❡✣❝✐❡♥t✱ t❤❡ tr✐❣♦♥♦♠❡tr✐❝ ✐♥t❡❣r❛t✐♦♥ ❢♦r♠✉❧❛s✱ s✉❝❤ ❛s Z
sin x dx = − cos x + C ,
❞♦♥✬t ❤♦❧❞ ❢♦r ❞❡❣r❡❡s✳ ■♥❞❡❡❞✱ ✐❢ ✇❡ ❞❡♥♦t❡ s✐♥❡ ❛♥❞ ❝♦s✐♥❡ ❢♦r ❞❡❣r❡❡s ❜② sind y ❛♥❞ cosd y r❡s♣❡❝t✐✈❡❧②✱ ✇❡ ❤❛✈❡ t✇♦ ❡♥t✐r❡❧② ♥❡✇ ❢✉♥❝t✐♦♥s✿
❚❤❡r❡❢♦r❡✱
π π sind y = sin y ❛♥❞ cosd y = cos y . 180 180 Z
sin x dx π x= 180 y 180 = cos x +C π π
180 sind y dy = π
Z
x= 180 y
180 cosd y + C . = π
❚❤❡ ❢♦r♠✉❧❛ ❥✉st ❞♦❡s♥✬t ❧♦♦❦ ❛s ♥✐❝❡✦ ❊①❛♠♣❧❡ ✷✳✹✳✶✹✿ ❧♦❣❛r✐t❤♠✐❝ s❝❛❧❡
❚❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦♥✲❧✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✉♥✐ts ✐s ❝❛❧❧❡❞ ❛ ❧♦❣❛r✐t❤♠✐❝
s❝❛❧❡ ✿
x = g(t) = 10t .
❚❤❡♥✱ ❢♦r ❛ ❢✉♥❝t✐♦♥ y = f (x)✱ s✉♣♣♦s❡ F ✐s ✐ts ❛♥t✐❞❡r✐✈❛t✐✈❡✳ ❍♦✇ ❞♦ ✇❡✱ ❛s ✇❡ ❞✐❞ ❛❜♦✈❡✱ ❡①♣r❡ss ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢ y = f (10t ) ✐♥ t❡r♠s ♦❢ F ❄ ❲❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ❤❛✈❡ ❛ ❢♦r♠✉❧❛✿ Z
f (10t ) dt = ...
❲❡ ♣r♦❝❡❡❞ ❛s ❜❡❢♦r❡✱ ❜② t❤❡ ❈❤❛✐♥ ❘✉❧❡✿
❚❤❡r❡❢♦r❡✱
d(F ◦ g) dF = dt dx t
x=10t
F (10 ) =
❛♥❞✱ ❢✉rt❤❡r✱
Z
Z
· 10t
′
= f (10t )10t ln 10 .
f (10t ) · 10t ln 10 dt ,
f (10t ) · 10t dt =
1 F (10t ) . ln 10
❯♥❢♦rt✉♥❛t❡❧②✱ t❤❡ ♣r❡s❡♥❝❡ ♦❢ t❤❡ ❢❛❝t♦r 10t ✐♥s✐❞❡ t❤❡ ✐♥t❡❣r❛❧ s❡❡♠s t♦ ♥♦t ❛❧❧♦✇ ✉s t♦ ✜♥✐s❤ t❤❡ ❥♦❜ ❛♥❞ ❡①♣r❡ss ❞✐r❡❝t❧② t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ y = f (10t ) ✐♥ t❡r♠s ♦❢ F ✳ ❲❡ ✇✐❧❧ ♥❡❡❞ ❢✉rt❤❡r ❛♥❛❧②s✐s✳✳✳
✷✳✺✳ ■♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✿ ❝♦♠♣♦s✐t✐♦♥s
✶✷✽
✷✳✺✳ ■♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✿ ❝♦♠♣♦s✐t✐♦♥s
❚❤❡ ❧✐♥❡❛r s✉❜st✐t✉t✐♦♥ ❢♦r♠✉❧❛ ❝♦♥t❛✐♥s t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ✜rst✱ ❧✐♥❡❛r ❢✉♥❝t✐♦♥✿
Z
1 f (mx + b) dx = m (mx + b)′
Z
=m
f (u) du
u=mx+b
❇❡❝❛✉s❡ t❤✐s ❞❡r✐✈❛t✐✈❡ ✐s ❥✉st ❛ ♥✉♠❜❡r✱ ✐t ❝❛♥ ❜❡ ❢❛❝t♦r❡❞ ✐♥t♦ t❤❡ ✐♥t❡❣r❛❧ ❛s ✐t ✐s ♠♦✈❡❞ t♦ t❤❡ ♦t❤❡r s✐❞❡✿
(sin(3x − 1))′ = cos(3x − 1) · (3x − 1)′ = cos(3x − 1) · 3 ′ 1 sin(3x − 1) = cos(3x − 1) 3 Z 1 sin(3x − 1) = cos(3x − 1) dx 3
=⇒ =⇒ ❙♦✱ ♦✉r ❢♦r♠✉❧❛ ✐s✱ ✐♥ tr✉t❤✱ t❤❡ ❢♦❧❧♦✇✐♥❣✿
Z
′
f (mx + b) · (mx + b) dx =
Z
f (u) du
u=mx+b
◆♦✇✱ ❤♦✇ ❞♦ ✇❡ ✐♥t❡❣r❛t❡ ❢✉♥❝t✐♦♥s ✇✐t❤ ❝♦♠♣♦s✐t✐♦♥s ❛♥❞ ♥♦t ❥✉st ❧✐♥❡❛r ♦♥❡s❄ ❏✉st ❛s ✇✐t❤ ♦t❤❡r ✐♥t❡❣r❛t✐♦♥ ❢♦r♠✉❧❛s ✇❡✱ ❛❣❛✐♥✱ tr② t♦ ✏r❡✈❡rs❡✑ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ▲❡t✬s t❛❦❡
sin(x2 )✳
■t ✐s ❡❛s② t♦ ❞✐✛❡r❡♥t✐❛t❡ ❜② t❤❡ ❈❤❛✐♥ ❘✉❧❡ ✿
′ sin(x2 ) = cos(x2 ) · 2x .
❲❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ❤❛✈❡ ❛ s✐♠✐❧❛r ❢♦r♠✉❧❛ ❢♦r t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤✐s ❢✉♥❝t✐♦♥✿
Z
sin(x2 ) dx =?
2 ❇✉t ✇❡ ❞♦♥✬t r❡❝♦❣♥✐③❡ sin(x ) ❛s t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛♥② ❢✉♥❝t✐♦♥ ✇❡ ❦♥♦✇✳✳✳ ❈❛♥ ✇❡ s❡❡ ✇❤②❄ ■t✬s t❤❡ ❡①tr❛ ′ ❢❛❝t♦r g ✇❡ ❣❡t ❡✈❡r② t✐♠❡ ✇❡ ❛♣♣❧② t❤❡ ❈❤❛✐♥ ❘✉❧❡ t♦ ❞✐✛❡r❡♥t✐❛t❡ f ◦ g ✳ ◆♦✇✱ ✇❡ ❞♦ r❡❝♦❣♥✐③❡
cos(x2 ) · 2x
❢r♦♠ t✇♦ ❧✐♥❡s ❛❜♦✈❡✦ ❚❤❡♥✱
Z
▼♦r❡ ❡①❛♠♣❧❡s❄ ❍❡r❡ t❤❡② ❛r❡✿
Z
cos(x2 ) 2x dx = sin(x2 ) + C .
2
2
sin(x ) 2x dx = − cos(x ) + C,
Z
2
2
ex 2x dx = ex + C .
❲❤❛t ❞♦ t❤❡ t❤r❡❡ ❡①❛♠♣❧❡s ❤❛✈❡ ✐♥ ❝♦♠♠♦♥❄ ❲❡ s❡❡ ❛ ♣❛tt❡r♥✿
Z
Z
Z
Z
cos (x2 ) ·2x dx =
sin (x2 )
sin (x2 ) ·2x dx = − cos (x2 ) e
(x2 )
·2x dx =
? (x2 ) ·2x dx =
e
(x2 )
? (x2 )
✷✳✺✳
✶✷✾
■♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✿ ❝♦♠♣♦s✐t✐♦♥s
❊✈❡r②t❤✐♥❣ ✐s t❤❡ s❛♠❡ ❡①❝❡♣t ✇❤❛t❡✈❡r ✐s ❜❡❤✐♥❞ t❤❡s❡ q✉❡st✐♦♥ ♠❛r❦s✳ ❲❡ ❦♥♦✇ ✇❤❛t ✐s ♠✐ss✐♥❣ ❛♥❞ ✇❡ r❡✇r✐t❡✿ Z
f (x2 ) · 2x dx = F (x2 ) + C ✇✐t❤ F ′ = f
■♥ ♦t❤❡r ✇♦r❞s✱ F ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ f ✳ ❙♦✱ t♦ ✐♥t❡❣r❛t❡ t❤❡s❡✱ ✇❡ ♥❡❡❞ t♦ s♦❧✈❡ t❤✐s ♣r♦❜❧❡♠✿ ◮ ●✐✈❡♥ f ✱ ✜♥❞ F ✇✐t❤ F ′ = f ✳
❚❤✐s ✐s✱ ♦❢ ❝♦✉rs❡✱ ❛❧s♦ ❛♥ ❞❡❝♦♠♣♦s❡✿
✱ ❜✉t ♥♦t ✇✐t❤ r❡s♣❡❝t t♦ x✦ ❲❤❛t ✐s t❤✐s ✈❛r✐❛❜❧❡❄ ▲❡t✬s
✐♥t❡❣r❛t✐♦♥ ♣r♦❜❧❡♠
x 7→ x2 = u 7→ f (u) = z
❙♦✱ ❜♦t❤ f ❛♥❞ F ❛r❡ ❢✉♥❝t✐♦♥s ♦❢ s♦♠❡ u✱ ❛♥ ✐♥t❡r♠❡❞✐❛t❡ ✈❛r✐❛❜❧❡✱ t❤❛t ✇❡✬✈❡ ♠❛❞❡ ✉♣✳ ❚❤❡♥✱ t♦ ✜♥❞ F ✱ ✇❡ ✐♥t❡❣r❛t❡ f ✇✐t❤ r❡s♣❡❝t t♦ u✿ F (u) =
❚❤✐s ✐s ❛ ❝❤❛♥❣❡
♦❢ ✈❛r✐❛❜❧❡s
✦
❊①❛♠♣❧❡ ✷✳✺✳✶✿ ❝♦♠♣♦s✐t✐♦♥ ✇✐t❤
❊✈❛❧✉❛t❡✿
Z
f (u) du
x2 Z
√ 3 x2 ·2x dx = ? |{z}
❞❡❝♦♠♣♦s❡
❚❤❡ ❦❡② st❡♣ ✐s t♦ ❜r❡❛❦ t❤❡ ❝♦♠♣♦s✐t✐♦♥ ❛♣❛rt✱ t♦ ✜♥❞ u, f, F ✳ ❙♦✱ u = x2 , f (u) = u1/3 ✳ ❚❤❡♥✱ F (u) =
Z
√ 3
u du =
Z
1
3 4 u 3 +1 + C = u3 + C . u du == 1 4 +1 3 1 3
PF
❊✈❡♥ t❤♦✉❣❤ ✐♥t❡❣r❛t✐♦♥ ✐s ✜♥✐s❤❡❞✱ t❤✐s ✐s♥✬t t❤❡ ❛♥s✇❡r ❜❡❝❛✉s❡ ✐t ❤❛s t♦ ❜❡ ❛ ❢✉♥❝t✐♦♥ ♦❢ x✦ ❲❡ ♥❡❡❞ t♦ s✉❜st✐t✉t❡ u = x2 ❜❛❝❦ ✐♥t♦ t❤✐s ❢✉♥❝t✐♦♥✿ F (x2 ) =
3 2 34 x +C. 4
❋♦r ❛ ♠♦r❡ ❣❡♥❡r❛❧ ❛♥❛❧②s✐s✱ ✇❡ r❡♣❧❛❝❡ x2 ✇✐t❤ g(x)✳ ❲❡ ❛r❡ ♣r❡♣❛r❡❞ t♦ ✐♥t❡❣r❛t❡ t❤✐s ✭❛♥❞ ♥♦t❤✐♥❣ ❡❧s❡✮✿ Z
f (g(x)) · g ′ (x) dx .
❚❤❡ ❛♥s✇❡r ✐s F (g(x))✱ ✇❤❡r❡ F ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ f ✿ F′ = f . ❚❤❡♦r❡♠ ✷✳✺✳✷✿ ■♥t❡❣r❛t✐♦♥ ❜② ❙✉❜st✐t✉t✐♦♥
●✐✈❡♥ ❛ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥ f ❛♥❞ ❛ ❞✐✛❡r❡♥t✐❛❜❧❡ ❢✉♥❝t✐♦♥ g ✱ ✇❡ ❤❛✈❡✿ Z
f (g(x)) · g ′ (x) dx = F (g(x)) + C
✷✳✺✳ ■♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✿ ❝♦♠♣♦s✐t✐♦♥s
✇❤❡r❡
F
✶✸✵
✐s ❛♥② ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢
f✿
F (u) =
Z
f (u) du
Pr♦♦❢✳
CR
(F (g(x)))′
== F ′ (g(x) · g ′ (x) = f (g(x))g ′ (x) .
❈♦♥❝❧✉s✐♦♥✿ ✇❡ ❝❛♥ ✐♥t❡❣r❛t❡ ❝♦♠♣♦s✐t✐♦♥s ✇❤❡♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐s s❛t✐s✜❡❞✿
◮
❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ✏✐♥s✐❞❡✑ ❢✉♥❝t✐♦♥ ✐s ♣r❡s❡♥t ❛s ❛ ❢❛❝t♦r✳
■♥ ♦t❤❡r ✇♦r❞s✱ ❛s ❛ ♣r❡r❡q✉✐s✐t❡✱ ✇❡ ♥❡❡❞ t♦ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
Z
f(
g(x) |{z}
)·
✏✐♥s✐❞❡✑ ❢✉♥❝t✐♦♥
❊①❛♠♣❧❡ ✷✳✺✳✸✿ ❛♣♣❧✐❝❛t✐♦♥ ♦❢ t❤❡♦r❡♠
❊✈❛❧✉❛t❡
Z √
g ′ (x) | {z }
dx
✐ts ❞❡r✐✈❛t✐✈❡
x3 + 1 · 3x2 dx .
❖❜s❡r✈❡ ✜rst t❤❛t t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✐♥s✐❞❡ ✐s ♣r❡s❡♥t✿
(x3 + 1)′ = 3x2 . ❙♦✱ t❤❡ t❤❡♦r❡♠ s❤♦✉❧❞ ✇♦r❦✿ ❞❡❝♦♠♣♦s✐t✐♦♥✿
f (u) =
√
✐♥t❡❣r❛t✐♦♥✿
u
=⇒ F (u) =
u = g(x) = x3 + 1 ❜❛❝❦✲s✉❜st✐t✉t✐♦♥✿
Z
1 2 3 u 2 du = u 2 + C 3
=⇒ g ′ (x) = 3x2 3 2 F (g(x)) = (x3 + 1) 2 + C 3
◆♦t❡ ❤♦✇ ✇❡ ❝♦♥✈❡rt❡❞ t❤❡ ♦r✐❣✐♥❛❧ ✐♥t❡❣r❛❧ t♦ ❛ s✐♠♣❧❡r ♦♥❡✱ ✇✐t❤ r❡s♣❡❝t t♦
u✳
❊①❛♠♣❧❡ ✷✳✺✳✹✿ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥
❊✈❛❧✉❛t❡
❏✉st ♥♦t✐❝❡ t❤❛t
(x3 + 1)′ = 3x2 ✱
♥♦t
Z √ x2 ✳
x3 + 1 · x2 dx =? ❚❤❡ ❝♦♥❞✐t✐♦♥ ❞♦❡s♥✬t s❡❡♠ t♦ ❜❡ s❛t✐s✜❡❞ ❛♥②♠♦r❡✳✳✳
❍♦✇❡✈❡r✱ t❤✐s ❢✉♥❝t✐♦♥ ✐s ❥✉st ❛ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡ ♦❢ t❤❡ ♦♥❡ ✐♥ t❤❡ ❧❛st ❡①❛♠♣❧❡ ❛♥❞ s♦✱ t❤❡r❡❢♦r❡✱ ✐s t❤❡ ✐♥t❡❣r❛❧✳ ❲❡ ✇✐❧❧ ✐❣♥♦r❡ t❤✐s s❤♦rt❝✉t t❤♦✉❣❤✳ ❲❡✬❧❧ tr② t♦ ❛♣♣❧② t❤❡ ■♥t❡❣r❛t✐♦♥ ❜② ❙✉❜st✐t✉t✐♦♥ ❢♦r♠✉❧❛ ❛♥②✇❛②✿
= x3 + 1
✜rst s✉❜st✐t✉t✐♦♥✿
u
s❡❝♦♥❞ s✉❜st✐t✉t✐♦♥✿
u′ = 3x2
)
✇❡ ❝♦♥✈❡rt t❤❡ ✐♥t❡❣r❛❧ ✇✐t❤ r❡s♣❡❝t t♦ t♦ ❛ ♥❡✇ ♦♥❡ ✇✐t❤ r❡s♣❡❝t t♦
❚❤❡ ❤♦♣❡ ✐s t❤❛t t❤❡ ♥❡✇ ✐♥t❡❣r❛❧ ✇✐❧❧ ❜❡ s✐♠♣❧❡r t❤❛♥ t❤❡ ♦r✐❣✐♥❛❧✳
u
x
✷✳✺✳
✶✸✶
■♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✿ ❝♦♠♣♦s✐t✐♦♥s
❲❡ ❛❧r❡❛❞② ❤❛✈❡ ❛❧❧ ✇❡ ♥❡❡❞ ❤❡r❡✳ ❲❡ ❜r❡❛❦ ✇❤❛t✬s ✐♥s✐❞❡ t❤❡ ✐♥t❡❣r❛❧ ❛♣❛rt ❜✉t ♥♦t ✐♥ t❤❡ ♦❜✈✐♦✉s ✇❛②✿ √
x3 + 1 =
√
1 x2 = u′ . 3
u,
◆♦✇ ✇❡ ❞❡❛❧ ✇✐t❤ t❤❡ ✐♥t❡❣r❛❧ ✐ts❡❧❢✳ Z √ x3 + 1 x2 dx | {z }
=
u ✐♥s✐❞❡
Z
1 = 3 1 PF == 3 1 = 3
❆♥s✇❡r✿
Z √
√ Z
u·
1 du 3
❆ ♥❡✇ ✐♥t❡❣r❛❧✳
1
u 2 du
2 3 ■♥t❡❣r❛t✐♦♥ ✜♥✐s❤❡❞✳ u2 + C 3 3 2 3 (x + 1) 2 + C ❇❛❝❦✲s✉❜st✐t✉t✐♦♥ u = x3 + 1 . 3
3 2 x3 + 1 x2 dx = (x3 + 1) 2 + C . 9
❊①❡r❝✐s❡ ✷✳✺✳✺
❊✈❛❧✉❛t❡
Z √
x3 + 1 x2 dx .
Z √
x4 + 1 x3 dx .
❊①❡r❝✐s❡ ✷✳✺✳✻
❊✈❛❧✉❛t❡
❲❡ ❝❛♥ r❡✲✇r✐t❡ ♦✉r t❤❡♦r❡♠ ❛s ❛ s✐♥❣❧❡ ❢♦r♠✉❧❛ ❛s ❢♦❧❧♦✇s✿ Z
f (g(x)) · g ′ (x) dx =
Z
f (u) du
u=g(x)
■♥ t❤✐s ✈❡rs✐♦♥✱ t❤❡r❡ ✐s ♥♦ ❝♦♥❢✉s✐♦♥ ❛❜♦✉t ✇❤❡t❤❡r t❤❡ ✐♥t❡❣r❛t✐♦♥ ✐♥ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ❤❛s ❜❡❡♥ ❝❛rr✐❡❞ ♦✉t✳ ❚❤❡ s✐♠♣❧❡st ❦✐♥❞ ♦❢ ✐♥t❡❣r❛❧ ❢♦r ✇❤✐❝❤ t❤✐s ❛♣♣r♦❛❝❤ ❛❧✇❛②s ✇♦r❦s ✐♥✈♦❧✈❡s ❛ ❧✐♥❡❛r ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s✳ ■❢ g(x) = mx + b, m 6= 0 ,
♦✉r ❢♦r♠✉❧❛ ❜❡❝♦♠❡s✿
Z
f (mx + b) · m dx =
❲❡ ❝♦♥s❡q✉❡♥t❧② r❡❝♦✈❡r t❤❡ ❢❛♠✐❧✐❛r ▲✐♥❡❛r Z
Z
f (u) du
❈♦♠♣♦s✐t✐♦♥ ❘✉❧❡
1 f (mx + b) dx = m
Z
. u=mx+b
✿
f (u) du
. u=mx+b
✷✳✺✳ ■♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✿ ❝♦♠♣♦s✐t✐♦♥s
✶✸✷
❊①❛♠♣❧❡ ✷✳✺✳✼✿ ♦♥❡✲❧✐♥❡ ✐♥t❡❣r❛t✐♦♥ ❊✈❛❧✉❛t❡✿
Z
1 e3x dx = 3
eu du
Z
1 u = e + C 3
u=3x
❊①❛♠♣❧❡ ✷✳✺✳✽✿ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ❊✈❛❧✉❛t❡✿
▲❡t✬s ❜r❡❛❦ ❞♦✇♥ t❤❡ ❝♦♠♣♦s✐t✐♦♥✱
sin(ex )✿
Z
u=3x
1 = e3x + C . 3
ex sin(ex ) dx .
u = ex ,
y = sin u .
❋✉rt❤❡r♠♦r❡✱
u′ = e x . ❯s❡ t❤❡s❡ t✇♦✿
Z
x
x
e sin(e ) dx =
Z
sin u du
= − cos u + C
❊✈❛❧✉❛t❡✳ ❙✉❜st✐t✉t❡✳
= cos ex + C . ❊①❡r❝✐s❡ ✷✳✺✳✾ ❊✈❛❧✉❛t❡✿
Z √
sin x · cos x dx .
❊①❡r❝✐s❡ ✷✳✺✳✶✵ ❊✈❛❧✉❛t❡✿
Z
ee
x +x
dx .
❊①❛♠♣❧❡ ✷✳✺✳✶✶✿ ♥♦ ❝♦♠♣♦s✐t✐♦♥
Z
tan x dx =
❲❤❛t✱ ♥♦ ❝♦♠♣♦s✐t✐♦♥❄✦
Z
sin x dx Z cos x 1 dx = sin x · cos x Z = sin x (cos x)−1 dx Z = − (cos x)′ (cos x)−1 dx Z = − (u)−1 du =
❚❤❡r❡ ✐s ❛ ❞✐✈✐s✐♦♥ t❤♦✉❣❤✳
■t✬s ❛ ♠✉❧t✐♣❧✐❝❛t✐♦♥✱ ✐♥ ❢❛❝t✳
❙♦✱ t❤❡r❡ ✐s ❛ ❝♦♠♣♦s✐t✐♦♥ ❛❢t❡r ❛❧❧✦
❆♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ✐♥s✐❞❡ ❢✉♥❝t✐♦♥ ✐s ♣r❡s❡♥t✳
❚❤❡ ❢♦r♠✉❧❛ ❛♣♣❧✐❡s ✇✐t❤
= − ln u + C
❲❡ ✐♥t❡❣r❛t❡✳
= − ln cos x + C .
❲❡ ❜❛❝❦✲s✉❜st✐t✉t❡✳
u = cos x.
✷✳✻✳ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧s
✶✸✸ ❲❛r♥✐♥❣✦ ❲❡ ♠❛❦❡ s✉r❡ t❤❛t t❤❡ ✐♥t❡❣r❛❧s t❤❛t ✇❡ ❢❛❝❡
❝❛♥
❜❡ ❡✈❛❧✉❛t❡❞ ✇✐t❤ t❤✐s ♠❡t❤♦❞✳
✷✳✻✳ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧s
❊①❛♠♣❧❡ ✷✳✻✳✶✿ ❢❛✐❧✉r❡ ❛❢t❡r s✉❜st✐t✉t✐♦♥
▲❡t✬s t❛❦❡ ❛♥♦t❤❡r ❧♦♦❦ ❛t t❤✐s ✐♥t❡❣r❛❧✿ Z
1 xe dx = 2 x2
Z
2
eu du = eu + C = ex + C .
■t ✇♦r❦s s♦ ✇❡❧❧✦ ❈❤❛♥❣✐♥❣ t❤❡ ♣♦✇❡r✱ x t♦ x2 ✱ r✉✐♥s t❤✐s ♥✐❝❡ ❛rr❛♥❣❡♠❡♥t✿ Z
2 x2
x e dx =
Z
ueu dx = ... ♥♦✇ ✇❤❛t❄
■♥ ❢❛❝t✱ ♥♦ ♣♦✇❡r ♦❢ x ♦t❤❡r t❤❛♥ 1 ✇✐❧❧ ❛❧❧♦✇ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❢♦r♠✉❧❛✿ Z
Z
3 x2
x e dx = ?
4 x2
x e dx = ?
Z
x
Z
1/2 x2
e dx = ?
2
xπ ex dx = ?
❲❛r♥✐♥❣✦ ❉♦ ♥♦t r❡♣❧❛❝❡
x
✐♥
dx
✇✐t❤
u✱ dx 6= du✦
❲❡ st✐❧❧ ✇♦✉❧❞ ❧✐❦❡ t♦ ❜❡ ❛❜❧❡ t♦ ❝♦♥✈❡rt ❛♥ ✐♥t❡❣r❛❧ t♦ ❛ ♥❡✇ ✈❛r✐❛❜❧❡✳ ■t ✐s ❛❧✇❛②s ♣♦ss✐❜❧❡✦ ❚❤❡ ❝❤❛❧❧❡♥❣❡ ✐s ✇❤❛t t♦ ❞♦ ✇✐t❤ dx✳ ❲❡ ❤❛✈❡ t♦ ❧♦♦❦ ❛t t❤❡ ✐♥t❡❣r❛❧ ❞✐✛❡r❡♥t❧②✳ ❲❤❛t ❡①❛❝t❧② ❞♦ ✇❡ ✐♥t❡❣r❛t❡❄ ■♥ t❤❡ ✐♥t❡❣r❛❧✱ Z
k(x) dx ,
Z
✐t ❤❛s ❜❡❡♥ ❛ ❢✉♥❝t✐♦♥✱ k(x)✱ ✇❤✐❧❡ ❛♥❞ dx s❡r✈❡ ❛s ♠❡r❡ ❜r❛❝❦❡ts✳ ❚❤✐s ❞♦❡s♥✬t ✇♦r❦ ❛♥②♠♦r❡✦ ❲❡ ♥❡❡❞ t♦ ♠❛❦❡ s❡♥s❡ ♦❢ dx✳ ❙✐❣♥✐✜❝❛♥t❧②✱ ✇❡ s✇✐t❝❤ ❢r♦♠ ❛ ❢✉♥❝t✐♦♥ t♦ ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠✱ k(x) · dx✳ ❆s ♣r❡s❡♥t❡❞ ✐♥ ❈❤❛♣t❡r ✷❉❈✲✹✱ t❤❡ ❢♦r♠ ❝♦♠❡s ❢r♦♠ t❤❡ ❢♦❧❧♦✇✐♥❣✿ y = f (x) ❛t x = a =⇒
❛♥❞✱ ❢✉rt❤❡r♠♦r❡✱
dy = f ′ (a) , dx
=⇒ dy = f ′ (a) · dx .
❚❤✐s ✐s ❛ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ t✇♦ ❡①tr❛ ✈❛r✐❛❜❧❡s✱ ♥♦t❤✐♥❣ ❜✉t ♥✉♠❜❡rs✱ ♦♥❝❡ t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ♦❧❞ ♦♥❡s ❤❛s ❜❡❡♥ s♣❡❝✐✜❡❞✿
✷✳✻✳
❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧s
■♥ t❤❡ ❣r❛♣❤✱
y
dx
✐s t❤❡ r✉♥ ❛♥❞
dy
✶✸✹
✐s t❤❡ r✐s❡ ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡✳ ❚❤❡② ❛r❡ ❝❛❧❧❡❞ t❤❡
❞✐✛❡r❡♥t✐❛❧s
♦❢
x
❛♥❞
r❡s♣❡❝t✐✈❡❧②✳ ❚❤❡ ❞❡♣❡♥❞❡♥❝❡ ❜❡t✇❡❡♥ t❤❡♠ ✈❛r✐❡s ❢r♦♠ ❧♦❝❛t✐♦♥ t♦ ❧♦❝❛t✐♦♥✳ ❚❤✐s ✐s ❢✉rt❤❡r ❞✐s❝✉ss❡❞ ✐♥
❈❤❛♣t❡r ✹✳ ❇❛❝❦ t♦ ✐♥t❡❣r❛t✐♦♥✳ ❙♦✱
dx
✐s t❤❡ ❞✐✛❡r❡♥t✐❛❧ ♦❢
x✱
❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✳
✇❤✐❝❤ ✐s ❛ ✈❛r✐❛❜❧❡ s❡♣❛r❛t❡ ❢r♦♠✱ ❜✉t r❡❧❛t❡❞ t♦✱
x✳
❚❤❡♥✱
f ′ (x) · dx
✐s ❥✉st
❚❤❡ ❞❡♣❡♥❞❡♥❝❡ ♦❢ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦♥ t❤❡ s❡❝♦♥❞ ✈❛r✐❛❜❧❡ ✐s ❡s♣❡❝✐❛❧❧②
s✐♠♣❧❡❀ ✐t✬s ❛ ♠✉❧t✐♣❧❡✳ ◆♦✇ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✳ ❚❤❡ ❞✐✛❡r❡♥t✐❛❧ ❢r♦♠
x
t♦
u
❛♥❞
du
u ✐s ❛ ✈❛r✐❛❜❧❡ s❡♣❛r❛t❡ ❢r♦♠ dx t♦ du✳ ❍❛♥❞❧✐♥❣ t❤❡ ♦❢
❢r♦♠✱ ❜✉t r❡❧❛t❡❞ t♦✱
u✳
❙♦✱ ❝❤❛♥❣✐♥❣ ✈❛r✐❛❜❧❡s ♠❡❛♥s ❣♦✐♥❣
❞✐✛❡r❡♥t✐❛❧s ✐s ❛ s❡♣❛r❛t❡ st❡♣ ✐♥ t❤❡ ♣r♦❝❡ss ♦❢ ❝❤❛♥❣✐♥❣ t❤❡
✈❛r✐❛❜❧❡✳ ❘❡❝❛❧❧ ❤♦✇ t❤❡
❈❤❛✐♥ ❘✉❧❡✱ ✐♥ t❤❡ ▲❡✐❜♥✐③ ♥♦t❛t✐♦♥✱ ✐s ✐♥t❡r♣r❡t❡❞ ❛s✱ ❛♥❞ ✐t ✐s✱ ❛ ✏❝❛♥❝❡❧❧❛t✐♦♥✑
♦❢
du
✭✇❤❡♥
✐t✬s ♥♦t ③❡r♦✮✿
dy 6 du dy = dx 6 du dx ❆ s✐♠✐❧❛r ✐❞❡❛ ❛♣♣❧✐❡s t♦ ✐♥t❡❣r❛❧s✳ ❲❡ t❛❦❡ t❤❡ ❢♦r♠✉❧❛ ♦❢ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥ ❛♥❞ s✇✐t❝❤ t♦ t❤❡ ▲❡✐❜♥✐③ ♥♦t❛t✐♦♥✱ s✉❜❥❡❝t t♦ t❤❡ s✉❜st✐t✉t✐♦♥✿
Z ❛♥❞
◆♦t❡ ❤♦✇
dx
f (g(x)) · g ′ (x) dx = Z
Z
du f (u) · 6 dx = 6 dx
Z
f (u) du
✏❝❛♥❝❡❧s✑✱ t✉r♥✐♥❣ t❤❡ ✐♥t❡❣r❛❧ ✇✐t❤ r❡s♣❡❝t t♦
u=g(x)
f (u) du . x
t♦ ♦♥❡ ✇✐t❤ r❡s♣❡❝t t♦
u✳
❲❡ t❛❦❡ t❤✐s ✐❞❡❛
♦♥❡ st❡♣ ❢✉rt❤❡r✳
❈♦r♦❧❧❛r② ✷✳✻✳✷✿ ❈❤❛♥❣❡ ♦❢ ❱❛r✐❛❜❧❡s ♦❢ ❉✐✛❡r❡♥t✐❛❧ ❋♦r♠ ❯♥❞❡r ❛ s✉❜st✐t✉t✐♦♥
u = g(x)
✐♥ ❛♥ ✐♥t❡❣r❛❧✱ ✇❡ ❛❧s♦ s✉❜st✐t✉t❡✿
du = g ′ dx
❚❤✐s ❢♦r♠✉❧❛ ✐s ✉s❡❞ ✕ ✐♥ ❛❞❞✐t✐♦♥ t♦
u = g(x)
✕ ✐♥ ♦r❞❡r t♦ ❝♦♠♣❧❡t❡ t❤❡ s✉❜st✐t✉t✐♦♥✳
❊①❛♠♣❧❡ ✷✳✻✳✸✿ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐s t❤❡ ❣♦❛❧ ▲❡t✬s ❛♣♣❧② t❤❡ ❢♦r♠✉❧❛ t♦ t❤❡ ❡①❛♠♣❧❡ ❢r♦♠ t❤❡ ❧❛st s❡❝t✐♦♥✿
Z
ex sin(ex ) dx .
✷✳✻✳
❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧s
✶✸✺
❲❡ st❛rt ✇✐t❤ ❛ s✉❜st✐t✉t✐♦♥ t❤✐s t✐♠❡✿ u = ex =⇒ du = ex dx =⇒ dx =
du ex
❙✉❜st✐t✉t❡ ❜♦t❤ t❤❡ ✜rst ❛♥❞ t❤❡ ❧❛st ♦❢ t❤❡s❡ ✐♥t♦ t❤❡ ✐♥t❡❣r❛❧✿ Z
x
x
e sin(e ) dx = =
Z
Z
ex sin ex
du ❲❡ s✉❜st✐t✉t❡ t❤❡ ❧❛st ❛♥❞ ❝❛♥❝❡❧✳ ex
❲❡ s✉❜st✐t✉t❡ t❤❡ ✜rst✱ ❛♥❞ t❤❡ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐s ❝♦♠♣❧❡t❡✦
sin u du
❚❤❡ r❡st ✐s ❛ ❜♦♥✉s✳
= − cos u + C x
= − cos e + C .
❲✐t❤ t❤❡ ❢♦r♠✉❧❛✱ ✇❡ ❝❛♥ ❝❤❛♥❣❡ ✈❛r✐❛❜❧❡s ✐♥ ❛♥② ✐♥t❡❣r❛❧✱ ❡✈❡♥ t❤❡ ❦✐♥❞ t❤❛t✬s ♥♦t s✉❜❥❡❝t t♦ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✳ ❊①❛♠♣❧❡ ✷✳✻✳✹✿ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ♦♥❧②
▲❡t✬s ❡✈❛❧✉❛t❡✿
Z
2
x2 ex dx = ?
❚❤❡ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐s t❤❡ s❛♠❡ ❛s ❜❡❢♦r❡ ✭x ≥ 0✮✿ u = x2 =⇒ du = 2x dx =⇒ dx =
du 2x
❍♦✇❡✈❡r✱ ❛♥t✐❝✐♣❛t✐♥❣ t❤❛t t❤❡ ❝❛♥❝❡❧❧❛t✐♦♥ ♠✐❣❤t ♥♦t ❜❡ ❛s ❡❛s② ❛s ❧❛st t✐♠❡✱ ✇❡ ❛❧s♦ ✜♥❞ t❤❡ ✐♥✈❡rs❡ s✉❜st✐t✉t✐♦♥ ✭❧✐t❡r❛❧❧② t❤❡ ✐♥✈❡rs❡ ♦❢ t❤❡ s✉❜st✐t✉t✐♦♥ ❢✉♥❝t✐♦♥✮✿ u = x2 =⇒ x =
❲❡ ❤❛✈❡ t❤r❡❡ s✉❜st✐t✉t✐♦♥s✿ ✶✳ x2 = u du ✷✳ dx = √2x ✸✳ x = u ❙✉❜st✐t✉t❡✿
Z
2 x2
x e dx =
Z
Z
√
u.
x2 eu dx
★✶
du ★✷ 2x Z √ 2 u du = u e √ ★✸ 2 u Z 1 √ u = ue du . 2 =
x2 e u
❊✈❡♥ t❤♦✉❣❤ t❤❡ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ❤❛s♥✬t ♠❛❞❡ t❤❡ ✐♥t❡❣r❛❧ ❡❛s✐❡r t♦ ✐♥t❡❣r❛t❡✱ t❤❡ ❝♦♥✈❡rs✐♦♥ ✐s ❝♦♠♣❧❡t❡✦ ❲❡ ❝❛♥ ❤❛✈❡
❛♥② s✉❜st✐t✉t✐♦♥ ✐♥ ❛♥② ✐♥t❡❣r❛❧✳
❊①❛♠♣❧❡ ✷✳✻✳✺✿ ❜❛❞ s✉❜st✐t✉t✐♦♥
▲❡t✬s ♣✐❝❦ ❛ ✇r♦♥❣ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ t❤❡ ❢❛♠✐❧✐❛r ✐♥t❡❣r❛❧✿ Z
2
xex dx = ?
✷✳✻✳
❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧s
✶✸✻
❚❤❡ ❢♦❧❧♦✇✐♥❣ s✉❜st✐t✉t✐♦♥ ✐s ❝❤♦s❡♥ ❡✈❡♥ t❤♦✉❣❤ ✇❡ ❞♦♥✬t ❛♥t✐❝✐♣❛t❡ t❤❛t ✐t ✇✐❧❧ s✐♠♣❧✐❢② t❤❡ ✐♥t❡❣r❛❧✿
#1. u = x3 . ❚❤❡ ❞✐✛❡r❡♥t✐❛❧ ✐s ❢♦✉♥❞✿
#2. u = x3 =⇒ du = 3x2 dx =⇒ dx =
du . 3x2
❚❤❡ ✐♥✈❡rs❡ s✉❜st✐t✉t✐♦♥ ✐s ❢♦✉♥❞✿
#3. x = u1/3 . ❙✉❜st✐t✉t❡✿
Z
x2
xe dx = =
Z
xe(u xeu
1/3 )2
2/3
Z
dx
★✸
du 3x2
★✷
du 2/3 u1/3 eu 2 3 (u1/3 ) Z 1 2/3 = u−1/3 eu du . 3 =
❖✉r ❝❤♦✐❝❡ ♦❢ ❛ ♥❡✇ ✈❛r✐❛❜❧❡ ✇❛s ✉♥✇✐s❡✳
Z
★✸
❊①❡r❝✐s❡ ✷✳✻✳✻
❈❛rr② ♦✉t t❤❡ s✉❜st✐t✉t✐♦♥
u = x4
✐♥ t❤❡ ❛❜♦✈❡ ✐♥t❡❣r❛❧✳
❊①❡r❝✐s❡ ✷✳✻✳✼
❈❛rr② ♦✉t t❤❡ s✉❜st✐t✉t✐♦♥
u=x
✐♥ t❤❡ ❛❜♦✈❡ ✐♥t❡❣r❛❧✳
❊①❡r❝✐s❡ ✷✳✻✳✽
▼❛❦❡ ✉♣ ②♦✉r ♦✇♥ ✐♥t❡❣r❛❧ ❛♥❞ ❝❛rr② ♦✉t t❤❡ s✉❜st✐t✉t✐♦♥
u = x2 ✳
❘❡♣❡❛t✳
❊①❛♠♣❧❡ ✷✳✻✳✾✿ ❝❧✉❡ ❢♦r ♥❡✇ ✈❛r✐❛❜❧❡
■❢ ✇❡ ❤♦♣❡ t♦ s✐♠♣❧✐❢② t❤❡ ✐♥t❡❣r❛❧ ❜② s✉❜st✐t✉t✐♦♥✱ t❤❡ ♥❡✇ ✈❛r✐❛❜❧❡ s❤♦✉❧❞ ❜❡ ❡q✉❛❧ t♦ t❤❡ ✏✐♥s✐❞❡✑ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ❝♦♠♣♦s✐t✐♦♥✳ ❋♦r ❡①❛♠♣❧❡✱ ❝♦♥s✐❞❡r✿
Z ❲❡ ❝❤♦♦s❡
u = x + 1✳ Z
√
❚❤❡♥✱
du = dx✳
√
x + 1 · x dx .
❚❤❡r❡❢♦r❡✱
Z
u1/2 (u − 1) du Z Z 1/2 = u u du + u1/2 (−1) du Z Z 3/2 = u u du − u1/2 du
x + 1 · x dx =
2 2 = u5/2 − u3/2 + C 5 3 2 2 = (x + 1)5/2 − (x + 1)3/2 + C . 5 3
■s ✐t ❛♥② ❜❡tt❡r❄
❨❡s✦
✷✳✻✳
❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ✐♥t❡❣r❛❧s
✶✸✼
❊①❛♠♣❧❡ ✷✳✻✳✶✵✿ ❧♦❣❛r✐t❤♠✐❝ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s
▲❡t✬s r❡✈✐s✐t t❤❡ ✐ss✉❡ ♦❢ ❝♦♥✈❡rt✐♥❣ ✉♥✐ts t♦ ❛ ❧♦❣❛r✐t❤♠✐❝
s❝❛❧❡ ✿
x = 10t .
❚❤❡♥✱ dx = 10t ln 10 dt =⇒ dt =
❙✉❜st✐t✉t❡ ✐♥t♦ t❤❡ ✐♥t❡❣r❛❧ ❛♥❞ s✐♠♣❧✐❢②✿ Z
t
f (10 ) dt =
Z
dx . ln 10
10t
1 dx = f (x) t 10 ln 10 ln 10
Z
1 f (x) dx . x
❲❡ ❤❛✈❡ ❡①♣r❡ss❡❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ y = f (10t ) ❛s ❛♥ ✐♥t❡❣r❛❧ ✇✐t❤ r❡s♣❡❝t t♦ x✳ ❚❤✐s ✐s t❤❡ s✉♠♠❛r② ♦❢ ✇❤❛t ✐s ❣♦✐♥❣ ♦♥✳ ❲❡ st❛rt ✇✐t❤ ❛ ❢❛♠✐❧✐❛r ❞✐❛❣r❛♠ ❢♦r t❤❡ ❈❤❛✐♥ ❘✉❧❡ ♦❢ ❞✐✛❡r❡♥✲ t✐❛t✐♦♥✿ d
F (g(x)) −−−dx −−−→ u=g(x) y
s✉❜st✐t✉t✐♦♥
d
−−−du −−−→
F (u)
F ′ (g(x))g ′ (x) x ❈❘ ✇✐t❤ u=g(x) F ′ (u)
◆♦✇ ✇❡ r❡♠❛❦❡ t❤❡ ❞✐❛❣r❛♠ ✐♥t♦ ♦♥❡ ❛❜♦✉t ✐♥t❡❣r❛t✐♦♥ ❜② r❡✈❡rs✐♥❣ t❤❡ ❤♦r✐③♦♥t❛❧ ❛rr♦✇s✿ R
dx
R
du
R
dx
R
du
F (g(x)) ←−−−−−−− u=g(x) y
s✉❜st✐t✉t✐♦♥
F (u)
←−−−−−−−
F ′ (g(x))g ′ (x) x ❈❘ ✇✐t❤ u=g(x) F ′ (u)
❲❡ r❡✲♥❛♠❡ t❤❡ ❢✉♥❝t✐♦♥ ❢♦r ❝♦♥✈❡♥✐❡♥❝❡✿ F (g(x)) ←−−−−−−− x u=g(x)
s✉❜st✐t✉t✐♦♥
F (u)
←−−−−−−−
f (g(x))g ′ (x) x ❈❘ ✇✐t❤ u=g(x) f (u)
❚❤✉s t❤❡ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ♠❡t❤♦❞ ♦❢ ✐♥t❡❣r❛t✐♦♥ ❣✐✈❡s ✉s ❛♥ ❛❧t❡r♥❛t✐✈❡ ✇❛② ♦❢ ❣❡tt✐♥❣ ❢r♦♠ t♦♣ r✐❣❤t t♦ t♦♣ ❧❡❢t ✭✐♥t❡❣r❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ x✮✳ ❲❡ t❛❦❡ ❛ ❞❡t♦✉r ❜② ❢♦❧❧♦✇✐♥❣ t❤❡ ❝❧♦❝❦✇✐s❡ ♣❛t❤ ❛r♦✉♥❞ t❤❡ sq✉❛r❡✿ ✶✳ t❤❡ ❈❤❛✐♥ ❘✉❧❡ ❢♦r♠✉❧❛ ✐♥ r❡✈❡rs❡ ✷✳ ✐♥t❡❣r❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ u ✸✳ ❜❛❝❦✲s✉❜st✐t✉t✐♦♥ ❊①❛♠♣❧❡ ✷✳✻✳✶✶✿ s✉❜st✐t✉t✐♦♥ ✇✐t❤ ❞✐❛❣r❛♠
❚❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ ✐♥t❡❣r❛❧ Z
cos(x2 ) 2x dx = sin(x2 ) + C
✷✳✼✳ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s
✶✸✽
✐s ✐❧❧✉str❛t❡❞ ❜❡❧♦✇✿ R
2
dx= ?
sin(x ) ←−−−−−−−−− x u=x2
s✉❜st✐t✉t✐♦♥
R
du
←−−−−−−−
sin(u)
cos(x2 ) 2x x ❈❘ ✇✐t❤ u=x2
cos(u)
❊①❡r❝✐s❡ ✷✳✻✳✶✷
❊①❡❝✉t❡ t❤❡ s✉❜st✐t✉t✐♦♥ u = ex ❢♦r t❤❡ ✐♥t❡❣r❛❧ ✭❞♦♥✬t ❡✈❛❧✉❛t❡ t❤❡ r❡s✉❧t✐♥❣ ✐♥t❡❣r❛❧✮✿ Z
sin(1 + ex ) dx .
✷✳✼✳ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ❆t t❤❡ ♥❡①t st❛❣❡✱ ✇❡ ❛rr✐✈❡ ❛t t❤❡ ❢♦❧❧♦✇✐♥❣ q✉❡st✐♦♥✿ ◮ ❲❤❛t ❤❛♣♣❡♥s ✇❤❡♥ ✇❡ ✉s❡ s✉❜st✐t✉t✐♦♥ t♦ ❡✈❛❧✉❛t❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s❄
❋✐rst✱ ♥♦t❤✐♥❣ ❤❛s t♦ ❝❤❛♥❣❡✳ ❆❢t❡r ❛❧❧✱ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❛❧❧ ✇❡ ♥❡❡❞ ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡✳ ❙♦✱ t♦ ✜♥❞ t❤❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ Z
b
f (g(x))g ′ (x) dx , a
✜♥❞ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✐♥❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ✜rst✱ ❛s ✇❡ ❞✐❞ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✱ H(x) =
Z
f (g(x))g ′ (x) dx ,
✐❢ ♣♦ss✐❜❧❡✳ ■❢ ✐t ✐s✱ t❤❡♥ t❤❡ ❧❛st st❡♣ ✐s ❛s s✐♠♣❧❡ ❛s ✐t ❣❡ts✿ Z
b a
f (g(x))g ′ (x) dx = H(b) − H(a) .
❊①❛♠♣❧❡ ✷✳✼✳✶✿ ✉s✐♥❣ ❋❚❈ ❢♦r ♦❧❞ ✈❛r✐❛❜❧❡
▲❡t✬s ❡✈❛❧✉❛t❡✿
Z
1
ex sin(ex ) dx . 0
❲❡ ❤❛✈❡ ❛❧r❡❛❞② ❢♦✉♥❞ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✿ Z
❚❤❡r❡❢♦r❡✱ ❉♦♥❡✦ ❆ ❜❡tt❡r q✉❡st✐♦♥ ✐s✿
Z
ex sin(ex ) dx = − cos ex + C .
1 0
ex sin(ex ) dx = − cos e1 − (− cos e0 ) = − cos e + cos 1 .
✷✳✼✳ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s
✶✸✾
◮ ❲❤❛t ❤❛♣♣❡♥s t♦ t❤❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ✉♥❞❡r ❛ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s✱ ✐♥ ❛❞❞✐t✐♦♥ t♦ t❤❡ s✉❜st✐✲
t✉t✐♦♥s ♣r❡s❡♥t❡❞ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥❄
❚❤❡ s✉❜st✐t✉t✐♦♥ ✐s ❥✉st ❛ tr❛♥s❢♦r♠❛t✐♦♥ ♦❢ t❤❡ x✲❛①✐s✳ ■t✱ t❤❡r❡❢♦r❡✱ s❤r✐♥❦s✴str❡t❝❤❡s t❤❡ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥ ✿
❙♦✱ ✇❡ ❤❛✈❡ t♦ tr❛❝❦✱ t❤❡ ❡♥❞✲♣♦✐♥ts ♦❢ t❤❡ ❞♦♠❛✐♥✱ ✐✳❡✳✱ t❤❡ ❜♦✉♥❞s ♦❢ t❤❡ ✐♥t❡❣r❛❧✱ ✉♥❞❡r ♦✉r tr❛♥s❢♦r♠❛t✐♦♥✳ ❊①❛♠♣❧❡ ✷✳✼✳✷✿ ✉s✐♥❣ ❋❚❈ ❢♦r ♥❡✇ ✈❛r✐❛❜❧❡
▲❡t✬s t❛❦❡ ❛ ❝❧♦s❡r ❧♦♦❦ ❛t t❤❡ ❝♦♠♣✉t❛t✐♦♥ ✐♥ t❤❡ ❧❛st ❡①❛♠♣❧❡✿ Z
Z
ex sin(ex ) dx 1 0
= − cos u + C
= − cos ex + C
ex sin(ex ) dx = − cos e1 − (− cos e0 ) = − cos e + cos 1
■t ✐s ❞♦♥❡ ✈✐❛ t❤❡ s✉❜st✐t✉t✐♦♥ u = ex ✳ ❲❡ r❡❛❧✐③❡ t❤❛t ✇❡ ❝♦✉❧❞ ❤❛✈❡ ❥✉♠♣❡❞ ❢r♦♠ − cos u + C t♦ − cos e + cos 1 ❜② ♦♠✐tt✐♥❣ t❤❡ ❜❛❝❦✲s✉❜st✐t✉t✐♦♥ st❡♣ ✐♥ t❤❡ ✉♣♣❡r r✐❣❤t ❝♦r♥❡r✦ ■♥❞❡❡❞✿ e cos u = − cos e + cos 1 . 1
❲❡ ❥✉st ♥❡❡❞ t♦ s❡❡ t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ❜♦✉♥❞s ♦❢ t❤❡ t✇♦ ✐♥t❡❣r❛❧s✱ ✇✐t❤ r❡s♣❡❝t t♦ x ❛♥❞ u✿ x = 0 7→ u = e0 = 1 x = 1 7→ u = e1 = e
❚❤❡ ❜❛❝❦✲s✉❜st✐t✉t✐♦♥ ❜❡❝♦♠❡s r❡❞✉♥❞❛♥t✳ ❙♦✱ ✉♥❞❡r t❤❡ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡ u = g(x)✱ t❤❡ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥ ❝❤❛♥❣❡s ❢r♦♠ • [a, b] ❢♦r x t♦
• [g(a), g(b)] ❢♦r u✳
❊✈❡♥ t❤♦✉❣❤t t❤❡ str❡t❝❤✴s❤r✐♥❦ ♠✐❣❤t ❜❡ ♥♦♥✲✉♥✐❢♦r♠✱ ✇❡ ♦♥❧② ❝❛r❡ ❛❜♦✉t t❤❡ ❡♥❞✲♣♦✐♥ts✳ ❊①❛♠♣❧❡ ✷✳✼✳✸✿ ♥♦ ❜❛❝❦✲s✉❜st✐t✉t✐♦♥
❋✐♥❞ t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ y = x2 cos x3 ❢r♦♠ 0 t♦ 2✳ ❲❡ ❤❛✈❡✿ ❆r❡❛ =
Z
2
x2 cos x3 dx . 0
❙✉❜st✐t✉t✐♦♥ ✜rst✿ u = x3 =⇒ du = 3x2 dx =⇒ dx =
du . 3x2
✷✳✼✳ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ❚❤❡♥✱
Z
2
✶✹✵
3
x cos x dx =
Z
du 1 x cos u 2 = 3x 3 2
Z
cos u du .
◆♦✇✱ ✇❤❛t ✇♦✉❧❞ t❤✐s ❝♦♠♣✉t❛t✐♦♥ ❧♦♦❦ ❧✐❦❡ ❢♦r t❤❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧❄ ▲❡t✬s ♠❛❦❡ ✐t ❝❧❡❛r ✇❤❛t ✈❛r✐❛❜❧❡s ✇❡ ❛r❡ r❡❢❡rr✐♥❣ t♦✿ Z
x=2 2
3
x cos x dx = x=0
Z
x=2
du 1 x cos u 2 = 3x 3 2
x=0
Z
x=2
cos u du . x=0
❲❡ ❤❛✈❡ ♠✐s♠❛t❝❤❡❞ ✈❛r✐❛❜❧❡s✦ ■♥ ♦r❞❡r t♦ ✜① t❤❛t✱ ✇❡ ✜♥❞ t❤❡ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥ ❜② ✜♥❞✐♥❣ t❤❡ ❜♦✉♥❞s ❢♦r u ❢r♦♠ t❤❡ ❝♦rr❡✲ s♣♦♥❞✐♥❣ ❜♦✉♥❞s ❢♦r x✿ x = 0 7→ u = 03 = 0
x = 2 7→ u = 23 = 8
❙♦✱ [0, 2] ❢♦r x ❜❡❝♦♠❡s [0, 8] ❢♦r u✳ ❚❤❡♥✱ Z
x=2
1 x cos x dx = 3 2
x=0
3
Z
x=2 x=0
1 cos u du = 3
Z
u=8
cos u du . u=0
❚❤❡ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ t❤❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ✐s ❝♦♠♣❧❡t❡✳ ❲❡ ❞♦♥✬t ❤❛✈❡ t♦ ❣♦ ❜❛❝❦ t♦ x ✐♥ ♦r❞❡r t♦ ✜♥✐s❤ t❤❡ ❝♦♠♣✉t❛t✐♦♥✿ ❆r❡❛ =
1 3
Z
u=8 u=0
u=8 FTC cos u du ==== sin u = sin 8 − sin 0 = sin 8 . u=0
■♥ s✉♠♠❛r②✱ ✇❡ s❤♦✇❡❞ t❤❛t t❤❡ ❛r❡❛s ♦❢ t❤❡s❡ t✇♦ r❡❣✐♦♥s ✉♥❞❡r t❤❡s❡ ❣r❛♣❤s✱ y = x2 cos x3 ❛♥❞ y =
1 cos u , 3
❛r❡ ❡q✉❛❧ ❛♥❞ t❤❡♥ ❢♦✉♥❞ t❤❡ ❧❛tt❡r ♦♥❡✿
❚❤✐s ✐s t❤❡ s✉♠♠❛r②✿
❈♦r♦❧❧❛r② ✷✳✼✳✹✿ ❉❡✜♥✐t❡ ■♥t❡❣r❛t✐♦♥ ❜② ❙✉❜st✐t✉t✐♦♥ ❯♥❞❡r ❛ s✉❜st✐t✉t✐♦♥ u = g(x) ✐♥ ❛ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧✱ ✇❡ ❤❛✈❡✿ Z
b
g(b) = F (g(b)) − F (g(a)) , f (g(x)) · g (x) dx = F (u) ′
a
g(a)
✷✳✼✳ ❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s
✇❤❡r❡
F
✶✹✶
✐s ❛♥② ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢
f✳
Pr♦♦❢✳
❘❡❝❛❧❧ t❤❡ ❢♦r♠✉❧❛ ♦❢ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥ ✿ Z Z ′ f (g(x)) · g (x) dx = f (u) du
= F (g(x)) . u=g(x)
❚❤❡ ❢♦r♠✉❧❛ ✐♥ t❤❡ t❤❡♦r❡♠ ❢♦❧❧♦✇s ♥♦✇ ❢r♦♠ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✳
❊①❛♠♣❧❡ ✷✳✼✳✺✿ ♥♦ ❜❛❝❦✲s✉❜st✐t✉t✐♦♥
▲❡t✬s ❝❛rr② ♦✉t ❛ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❛ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ✇✐t❤♦✉t ❜❛❝❦✲s✉❜st✐t✉t✐♦♥✳ ❈♦♥s✐❞❡r Z π cos2 x sin x dx . 0
❚❤❡ ✐♥✐t✐❛❧ ♣❛rt ✕ ❝❤♦♦s✐♥❣ ❛ s✉❜st✐t✉t✐♦♥ ✕ r❡♠❛✐♥s t❤❡ s❛♠❡✳ ❲❡ ♥♦t✐❝❡ ❛ ❝♦♠♣♦s✐t✐♦♥ ❛♥❞ ❝❤♦♦s❡ t❤❡ ❢✉♥❝t✐♦♥ ♦♥ t❤❡ ✐♥s✐❞❡ t♦ ❜❡ t❤❡ s✉❜st✐t✉t✐♦♥ ❢✉♥❝t✐♦♥ ❢♦r t❤❡ ♥❡✇ ✈❛r✐❛❜❧❡✿
cos2 x = (cos x)2 =⇒ u = cos x . ❚❤❡ s❡❝♦♥❞ st❡♣ ✐s t♦ ✜♥❞ t❤❡ r❡st ♦❢ t❤❡ s✉❜st✐t✉t✐♦♥✿
u = cos x =⇒ du = − sin x dx =⇒ dx = ❚❤❡ ♥❡①t st❡♣ ✐s t♦ ✜♥❞ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❜♦✉♥❞s ❢♦r u✿
du − sin x
x = π =⇒ u = cos π = −1 x = 0 =⇒ u = cos 0 = 1
❲❡ ❝♦♥✈❡rt t❤❡ ✐♥t❡❣r❛❧ t♦ u ♥♦✇ ❛♥❞ t❤❡♥ ❡✈❛❧✉❛t❡ ✐t✿
Z
π 2
cos x sin x dx = 0
= =
Z
π
(cos x)2 sin x dx
Z0 −1
Z1 −1 1
Z
(u)2 sin x (u)2 −1
du −1
du − sin x
u2 du =− Z 11 u2 du = −1 u=1 1 3 = u 3 u=−1
1 3 1 − (−1)2 3 2 = . 3 =
❚❤✐s ✐s ✇❤❛t ❤❛♣♣❡♥s t♦ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥ ✇❤❡♥ ✇❡ ♣r♦❝❡❡❞ t♦ ❞❡✜♥✐t❡ ✐♥t❡❣r❛t✐♦♥✳ ❚❤❡ ❡①tr❛ st❡♣
✷✳✽✳
❚r✐❣♦♥♦♠❡tr✐❝ s✉❜st✐t✉t✐♦♥s
✶✹✷
✐s t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✱ ❢♦r ❡✐t❤❡r ✈❛r✐❛❜❧❡✿ R
s✉❜st✐t✉t✐♦♥
❋❚❈ F (g(x)) −−−−−−−→ I u=g(x) || y ❋❚❈ F (u) −−−−−−−→ I
dx
f (g(x))g ′ (x) −−−−−−→ x ❈❘ R
du
−−−−−−→
f (u)
s❛♠❡✦
❚❤✉s✱ t❤❡ r❡s✉❧t ♦❢ ❞❡✜♥✐t❡ ✐♥t❡❣r❛t✐♦♥ ✕ ❛ ♥✉♠❜❡r ✕ ✐s t❤❡ s❛♠❡ ♥♦ ♠❛tt❡r ✇❤❛t ✈❛r✐❛❜❧❡ ✇❡ ❝❤♦♦s❡✳ ❍❡r❡✬s ❛ ♠♦r❡ ❡①♣❧✐❝✐t ✇❛② t♦ ✇r✐t❡ ♦✉r ❢♦r♠✉❧❛✿
Z
x=b ′
x=a
f (g(x)) · g (x) dx =
Z
u=g(b)
f (u) du u=g(a)
❚❤✐s ✐s t❤❡ ❢♦r♠✉❧❛ ♦❢ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐♥ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ✇r✐tt❡♥ ✐♥ t❤❡ ▲❡✐❜♥✐③ ♥♦t❛t✐♦♥✿
Z
b a
du f (u) · dx = dx
Z
u(b)
f (u) du u(a)
✉♥❞❡r ❛ s✉❜st✐t✉t✐♦♥ u = u(x)✳ ❊①❡r❝✐s❡ ✷✳✼✳✻
❊①❡❝✉t❡ t❤❡ s✉❜st✐t✉t✐♦♥ u = ex ❢♦r t❤❡ ✐♥t❡❣r❛❧ ✭❞♦♥✬t ❡✈❛❧✉❛t❡ t❤❡ r❡s✉❧t✐♥❣ ✐♥t❡❣r❛❧✮✿
Z
2 1
cos(1 − ex ) dx .
✷✳✽✳ ❚r✐❣♦♥♦♠❡tr✐❝ s✉❜st✐t✉t✐♦♥s
❇❛❝❦ t♦ ✐♥❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s✳✳✳ ❲❤✐❝❤ s✉❜st✐t✉t✐♦♥ t♦ ❝❤♦♦s❡ ♠✐❣❤t ♥♦t ❜❡ ❛❧✇❛②s ♦❜✈✐♦✉s✱ ❛♥❞ ✇❤❡♥ ✐t ✐s✱ ✐t ♠✐❣❤t ❧❡❛❞ t♦ ❛♥ ✐♥t❡❣r❛❧ t❤❛t ✐s♥✬t ❛♥② s✐♠♣❧❡r t❤❛t t❤❡ ♦r✐❣✐♥❛❧✳ ❚❤❡ ❧❛tt❡r ♣r♦❜❧❡♠ ✐s ❡s♣❡❝✐❛❧❧② ❝♦♠♠♦♥✳ ❈♦♥s✐❞❡r t❤❡ ❢❛♠✐❧✐❛r ✐♥t❡❣r❛❧✿ Z 1 ??? ??? eu du 2 2 տ u=ex ↑ ր u=x Z Z 1 2/3 x2 xe dx ??? ←u=sin x u−1/3 eu du u=x3 → 3
ւu=cos x
???
↓
???
u=x4
ց
1 4
Z
u−1/2 eu
1/2
du
❊✈❡♥ t❤♦✉❣❤ t❤❡ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ❤❛s ❜❡❡♥ ❝❛rr✐❡❞ ♦✉t ❝♦rr❡❝t❧②✱ ✐t ♠✐❣❤t st✐❧❧ ❜❡ ❛ ❞❡❛❞ ❡♥❞✦ ❊①❡r❝✐s❡ ✷✳✽✳✶
❈❛rr② ♦✉t t❤❡s❡ s✉❜st✐t✉t✐♦♥s✳
✷✳✽✳
❚r✐❣♦♥♦♠❡tr✐❝ s✉❜st✐t✉t✐♦♥s
✶✹✸
❙♦♠❡t✐♠❡s ✇❡ ❤❛✈❡ t♦ ❝♦♠❡ ✉♣ ✇✐t❤ ❡♥t✐r❡❧② ♥❡✇ ✐❞❡❛s✳✳✳ ▲❡t✬s r❡✈✐s✐t t❤❡ q✉❡st✐♦♥ ❛❞❞r❡ss❡❞ ✐♥ t❤❡ ❧❛st ❝❤❛♣t❡r✱ ✇❤❛t ❆r❡❛ = 2
Z
√
R −R
✐s t❤❡ ❛r❡❛ ♦❢ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s R❄
R2 − x2 dx = πR2 .
❚♦ ♣r♦✈❡ t❤❡ ❢♦r♠✉❧❛✱ ✇❡ ♥❡❡❞ t♦ ✐♥t❡❣r❛t❡ t❤✐s✿ Z √
R2 − x2 dx .
❍♦✇❄ ❚❤❡r❡ ✐s ❛ ❝♦♠♣♦s✐t✐♦♥✳✳✳ ▲❡t✬s tr② s✉❜st✐t✉t✐♦♥✦ ❚❤❡ ♦❜✈✐♦✉s ❝❤♦✐❝❡ ✐s✿ u = R2 − x2 =⇒ du = −2x dx .
❙✉❜st✐t✉t❡✿
Z √
R2 − x2 dx =
Z
√
du u = −2x
Z
√
du 1 √ u =− 2 2 −2 R − u
Z r
R2
u du . −u
❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✐s ❝♦♠♣❧❡t❡❞ ❜✉t✱ ✉♥❢♦rt✉♥❛t❡❧②✱ t❤❡ ♥❡✇ ✐♥t❡❣r❛❧ ✐s ♥♦ s✐♠♣❧❡r t❤❛♥ t❤❡ ♦r✐❣✐♥❛❧✦ ▲❡t✬s t❛❦❡ ❛♥♦t❤❡r ❧♦♦❦ ❛t t❤❡ ✐♥t❡❣r❛♥❞✿ y=
√
R 2 − x2 .
❲❤❛t ✐s ✐ts ❣r❛♣❤❄ ■t ✐s ✉♣♣❡r ❤❛❧❢ ♦❢ t❤❡ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s R ❣✐✈❡♥ ❞✐r❡❝t❧② ✭❡①♣❧✐❝✐t❧②✮ ❛s t❤❡ ❣r❛♣❤ ♦❢ t❤✐s ❢✉♥❝t✐♦♥✳ ❚❤❡ ❝✐r❝❧❡ ✐s ❛❧s♦ ❣✐✈❡♥ ❜② ❛ r❡❧❛t✐♦♥ ✭✐♠♣❧✐❝✐t❧②✮ ❜② x2 + y 2 = R2 . ❚❤❡r❡ ♠❛② ❜❡ ❛ t❤✐r❞ ♣♦ss✐❜✐❧✐t②✱ ✐❢ ✇❡ ❥✉st ✜♥❞ ❛ ❜❡tt❡r ✈❛r✐❛❜❧❡✳✳✳ ❖♥ t❤❡ ❧❡❢t✱ ✇❡ ✐♥t❡r♣r❡t t❤❡ ❣r❛♣❤ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ❝✐r❝❧❡ ✈✐s✉❛❧✐③❡❞ ❛s ♠♦t✐♦♥ ✿ t✐♠❡ ♦♥ t❤❡ x✲❛①✐s ❛♥❞ ❧♦❝❛t✐♦♥ ♦♥ t❤❡ y ✲❛①✐s✳ ❆s ❛ r❡s✉❧t✱ t❤❡ ❞♦ts ❛♣♣❡❛r ❛t ❡q✉❛❧ ✐♥t❡r✈❛❧s ♦❢ t✐♠❡✱ ✐✳❡✳✱ ❤♦r✐③♦♥t❛❧❧②✿
❲❤❛t ✇❡ ❝❛♥ s❡❡ ✐s ❤♦✇ ♠♦t✐♦♥ st❛rts ❢❛st✱ t❤❡♥ s❧♦✇s ❞♦✇♥ t♦ ❛❧♠♦st ③❡r♦ ✐♥ t❤❡ ♠✐❞❞❧❡✱ ❛♥❞ t❤❡♥ ❛❝❝❡❧❡r❛t❡s ❛❣❛✐♥✳ ❇✉t ✇❤❛t ✐❢ ✇❡ ❝♦♥s✐❞❡r ✐♥st❡❛❞ ❛ s✐♠♣❧❡ r♦t❛t✐♦♥ ♦♥ t❤❡ ♣❧❛♥❡❄ ❙✉❝❤ ❛ r♦t❛t✐♦♥ ✇♦✉❧❞
✷✳✽✳ ❚r✐❣♦♥♦♠❡tr✐❝ s✉❜st✐t✉t✐♦♥s
✶✹✹
♣r♦❣r❡ss t❤r♦✉❣❤ t❤❡ ❛♥❣❧❡s ❛t ❛ ❝♦♥st❛♥t r❛t❡✱ s❤♦✇♥ ♦♥ r✐❣❤t✳ ❙♦✱ ♠❛②❜❡ t❤❡ ❛♥❣❧❡✱ s❛② t✱ s❤♦✉❧❞ ❜❡ ♦✉r ♥❡✇ ✈❛r✐❛❜❧❡❄ ❚❤❡♥✱ t❤❡ ❢♦r♠✉❧❛s ❢♦r x ❛♥❞ y ❝♦♠❡ ❢r♦♠ t❤❡ ❜❛s✐❝ tr✐❣♦♥♦♠❡tr②✿ (
x = R cos t , y = R sin t .
❚❤❡ r♦t❛t✐♦♥ ✐s ❝♦✉♥t❡r❝❧♦❝❦✇✐s❡ st❛rt✐♥❣ ❢r♦♠ (R, 0) ❛♥❞ t r✉♥s ❢r♦♠ 0 t♦ π ✳ ❆ ♥❡✇ ✈❛r✐❛❜❧❡ ❤❛s ❛♣♣❡❛r❡❞ ♥❛t✉r❛❧❧②✿ x = R cos t
❚❤✐s ✐s ♦✉r s✉❜st✐t✉t✐♦♥✳ ❚❤❡ ♠❛✐♥ ❞✐✛❡r❡♥❝❡ ❢r♦♠ ♣r❡✈✐♦✉s ❡①❛♠♣❧❡s ♦❢ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥ ✐s t❤❛t ✐♥st❡❛❞ ♦❢ t❤❡ ♦❧❞ ✈❛r✐❛❜❧❡ ❣✐✈❡♥ ✐♥ t❡r♠s ♦❢ t❤❡ ♥❡✇✱ ❛s ✐♥✿ u = x2 ,
❤❡r❡✱ t❤❡ ♥❡✇ ✈❛r✐❛❜❧❡ ✐s ❣✐✈❡♥ ✐♥ t❡r♠s ♦❢ t❤❡ ♦❧❞✳ ❚❤✐s ✐s ✇❤② s✉❝❤ ❛ ❢♦r♠✉❧❛ ✐s ♦❢t❡♥ ❝❛❧❧❡❞ ❛♥ ✐♥✈❡rs❡ s✉❜st✐t✉t✐♦♥✳ ◆♦ ♠❛tt❡r✦ ❲❡ ❤❛✈❡✿ t = cos−1 (x/R) ,
✇✐t❤ −π/2 ≤ t ≤ π/2 .
■♥ ❢❛❝t✱ t♦ ❝❛rr② ♦✉t t❤✐s ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s✱ ❛❧❧ ✇❡ ♥❡❡❞ ✐s t❤✐s✿ dx = −R sin t dt .
❲❡ s✉❜st✐t✉t❡ ❜✉t✱ ✐♥ ♦r❞❡r t♦ s✐♠♣❧✐❢②✱ ✇❡✬❧❧ ❛❧s♦ ♥❡❡❞ t❤❡ P②t❤❛❣♦r❡❛♥ ❚❤❡♦r❡♠ ✭❱♦❧✉♠❡ ✶✮✿ sin2 t + cos2 t = 1 .
❚❤❡♥✱ ✇❡ ✜♥❞ ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ✇✐t❤ r❡s♣❡❝t t♦ t ❛s ❢♦❧❧♦✇s✿ Z √
R2
−
x2
dx =
Z √
Z
R2 − cos2 t · (−R sin t dt) ❯s❡ P❚✳
R sin t · (−R sin t dt) Z 2 = −R sin2 t dt Z 1 − cos 2t 2 = −R dt 2 Z Z R2 dt − cos 2t dt =− 2 1 R2 t − sin 2t . =− 2 2 =
❈❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s ✜♥✐s❤❡❞✳ ❆ tr✐❣ ❢♦r♠✉❧❛ ♥❡①t✳
✷✳✽✳
❚r✐❣♦♥♦♠❡tr✐❝ s✉❜st✐t✉t✐♦♥s
✶✹✺
■♥t❡❣r❛t✐♦♥ ✐s ✜♥✐s❤❡❞✳ ❲❡ ✇♦♥✬t ❞♦ ❜❛❝❦✲s✉❜st✐t✉t✐♦♥ ❜❡❝❛✉s❡ ♦✉r ✐♥t❡r❡st ✐s ❛ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧✳ ❲❡ ♦♥❧② ♥❡❡❞ t♦ ❦♥♦✇ t❤❡ ❜♦✉♥❞s ❢♦r t❤❡ ♥❡✇ ✈❛r✐❛❜❧❡✳
❲❡ ✜♥❞ t❤❡♠ ❢r♦♠ t❤❡ ♣✐❝t✉r❡ ❛❜♦✈❡✳ ❖r ❢r♦♠ ❛❧❣❡❜r❛✿ x = −R =⇒ t = π ❛♥❞ x = R =⇒ t = 0
❙✉❜st✐t✉t❡✿
❆r❡❛ ♦❢ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s R = 2 ·
Z
x=R
√
x=−R 2
R2 − x2 dx t=0 1 t − sin 2t 2
R 2 t=π 1 1 2 = −R 0 − sin(2 · 0) − (π + sin 2π) 2 2
= −2 ·
= πR2 . ❊①❡r❝✐s❡ ✷✳✽✳✷
▼♦❞✐❢② t❤❡ ♣r♦♦❢ ❢♦r t❤❡ s✉❜st✐t✉t✐♦♥ x = R sin t✳ ❊①❛♠♣❧❡ ✷✳✽✳✸✿ ❞✐r❡❝t ♦r ✐♥✈❡rs❡
❘❡❝❛❧❧ ❤♦✇ ✇❡ ❡✈❛❧✉❛t❡❞ t❤❡ ✐♥t❡❣r❛❧✿
Z
2
x2 ex dx = ?
❚❤❡ s✉❜st✐t✉t✐♦♥ ✇❛s ❝❤♦s❡♥ t♦ ❜❡ u = x2 ❢r♦♠ ✇❤✐❝❤ ✇❡ ❞❡r✐✈❡❞ t❤❡ ♦t❤❡r t✇♦ ✐t❡♠s✿ 1. x2 = u du 2. dx = 2x √ 3. x = u
−→
√
u du 2. dx = √ 2 u 1. x
=
3. x2 = u
❍♦✇❡✈❡r✱ ✇❡ ❝♦✉❧❞ ❤❛✈❡ st❛rt❡❞ ✇✐t❤ ★✸ ✭t❤❡ ✐♥✈❡rs❡✮ ✇✐t❤ t❤❡ s❛♠❡ r❡s✉❧t✦ ❚❤❡ str❛t❡❣② ✐s s✉♠♠❛r✐③❡❞ ❜❡❧♦✇ ✇✐t❤ t✇♦ ❡①tr❛ ♦♣t✐♦♥s✿ ❚r✐❣♦♥♦♠❡tr✐❝ ❙✉❜st✐t✉t✐♦♥s
❙✉♣♣♦s❡ a > 0✳ ❚❤❡♥✿ √ • ❲❤❡♥ t❤❡ ✐♥t❡❣r❛♥❞ ❝♦♥t❛✐♥s a2 − x2 ✱ ♦r s♦♠❡t✐♠❡s a2 − x2 ✱ ✉s❡ t❤❡ s✉❜st✐t✉t✐♦♥✿ x = a sin t ♦r x = a cos t .
✷✳✽✳
❚r✐❣♦♥♦♠❡tr✐❝ s✉❜st✐t✉t✐♦♥s
✶✹✻
• ❲❤❡♥ t❤❡ ✐♥t❡❣r❛♥❞ ❝♦♥t❛✐♥s
√
a2 + x2 ✱ ♦r s♦♠❡t✐♠❡s a2 + x2 ✱ ✉s❡ t❤❡ s✉❜st✐t✉t✐♦♥✿ x = a tan t .
• ❲❤❡♥ t❤❡ ✐♥t❡❣r❛♥❞ ❝♦♥t❛✐♥s
√
x2 − a2 ✭♥♦t❡ t❤❡ s✐❣♥✮✱ ♦r s♦♠❡t✐♠❡s x2 − a2 ✱ ✉s❡ t❤❡ s✉❜st✐t✉t✐♦♥✿ x = a sec t .
❲❛r♥✐♥❣✦ ❚❤✐s ✐s ♥♦t ❛ t❤❡♦r❡♠ ❛♥❞ ✐t ❞♦❡s♥✬t ❣✉❛r❛♥t❡❡ s✉❝✲ ❝❡ss✳
❊①❛♠♣❧❡ ✷✳✽✳✹✿ s✐♠♣❧✐✜❝❛t✐♦♥ ▲❡t✬s s✐♠♣❧✐❢② t❤✐s✿
Z
❚❤❡ ❡①♣r❡ss✐♦♥ ♠❛t❝❤❡s ♦♣t✐♦♥ ✭✶✮✿
(4 − x2 )3/2 dx . a2
− x2
4 =⇒ a = 2
− x2
❚❤❡r❡❢♦r❡✱ ✇❡ tr②✿ x = 2 sin t .
❚❤❡♥✱ dx = 2 cos t dt .
❚❤✐s ✐s ♦✉r ❦❡② s✐♠♣❧✐✜❝❛t✐♦♥✿ 4 − x2 = 4 − (2 sin t)2 = 4 − 4 sin2 t = 4(1 − sin2 t) = 4 cos2 t .
❙✉❜st✐t✉t❡✿
Z
3 3/2
(4 − x )
dx =
Z
2
(4 cos t)
3/2
(2 cos t dt) = 16
❊①❡r❝✐s❡ ✷✳✽✳✺ ❊✈❛❧✉❛t❡ t❤✐s ✐♥t❡❣r❛❧✿
Z
1 dx . 1 + x2
❊①❡r❝✐s❡ ✷✳✽✳✻ ❊✈❛❧✉❛t❡ t❤✐s ✐♥t❡❣r❛❧✿
Z √
x2 − 1 dx .
Z
cos4 t dt .
✷✳✾✳ ■♥t❡❣r❛t✐♦♥ ❜② ♣❛rts✿ ♣r♦❞✉❝ts
✶✹✼
✷✳✾✳ ■♥t❡❣r❛t✐♦♥ ❜② ♣❛rts✿ ♣r♦❞✉❝ts
❚❤❡ Pr♦❞✉❝t ❘✉❧❡ ❢♦r ❉❡r✐✈❛t✐✈❡s ❡①♣r❡ss❡s t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ♣r♦❞✉❝t ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ✐♥ t❡r♠s ♦❢ t❤❡✐r ❞❡r✐✈❛t✐✈❡s ✭❛♥❞ t❤❡ ❢✉♥❝t✐♦♥s t❤❡♠s❡❧✈❡s✮✿
(f · g)′ = f ′ · g + f · g ′ . ❚❤❡r❡ ✐s ♥♦ ✏Pr♦❞✉❝t ❘✉❧❡ ❢♦r ✐♥t❡❣r❛❧s✑ t❤❛t ✇♦✉❧❞ ❡①♣r❡ss t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ ♣r♦❞✉❝t ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ✐♥ t❡r♠s ♦❢ t❤❡✐r ✐♥t❡❣r❛❧s ✭❛♥❞ t❤❡ ❢✉♥❝t✐♦♥s t❤❡♠s❡❧✈❡s✮✿
Z
(f · g) dx = ?
▲❡t✬s ♥♦♥❡t❤❡❧❡ss tr② t♦ ❣❡t ✇❤❛t❡✈❡r ✇❡ ❝❛♥ ❢r♦♠ P❘✳ ❲❡ ✐♥t❡❣r❛t❡ ✐t✿
Z
′
(f · g) dx =
f ·g
Z
Z
(f ′ · g + f · g ′ ) dx
❲❡ ✉s❡ ❋❚❈✳
(f ′ · g + f · g ′ ) dx Z Z ′ = f · g dx + f · g ′ dx . =
◆♦✇✱ t❤❡s❡ t✇♦ ✐♥t❡❣r❛❧s ❛r❡ ✈❡r② s✐♠✐❧❛r ❛♥❞ ❡✐t❤❡r ♦❢ t❤❡♠ ♠❛② ❜❡ s❡❡♥ ❛s t❤❡ ✐♥t❡❣r❛❧ ♦❢ ❛ ❝❡rt❛✐♥ ♣r♦❞✉❝t✳ ❲❡ ❞❡r✐✈❡ s♦♠❡t❤✐♥❣ ✉s❡❢✉❧ ❢r♦♠ t❤✐s✿ ❚❤❡♦r❡♠ ✷✳✾✳✶✿ ■♥t❡❣r❛t✐♦♥ ❜② P❛rts ❋♦r t✇♦ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥s
Z
f
❛♥❞
g✱
✇❡ ❤❛✈❡✿
′
f · g dx = f · g −
Z
f ′ · g dx
❲❡ ❝❛♥ ❛❧s♦ ✉s❡ t❤❡ s✉❜st✐t✉t✐♦♥ ❢♦r♠✉❧❛✱
dh = h′ (x) dx . ❚♦ ♦❜t❛✐♥ ❛ ♠♦r❡ ❝♦♠♣❛❝t ✈❡rs✐♦♥✿ ❈♦r♦❧❧❛r② ✷✳✾✳✷✿ ■♥t❡❣r❛t✐♦♥ ❜② P❛rts ❋♦r t✇♦ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥s
f Z
❛♥❞
g✱
✇❡ ❤❛✈❡
f dg = f g −
Z
g df
❚❤❡ ❢♦r♠✉❧❛ ✐s tr❛❞✐t✐♦♥❛❧❧② r❡st❛t❡❞ ✇✐t❤ t❤❡s❡✱ ❝❤❛♥❣❡❞✱ ♥❛♠❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥s ♦r ✈❛r✐❛❜❧❡s✿
Z
udv = uv −
Z
vdu
❲❤❡♥ ✇❡ ❛r❡ t♦ ❞❡❝✐❞❡ ✇❤✐❝❤ t❡❝❤♥✐q✉❡ ♦❢ ✐♥t❡❣r❛t✐♦♥ t♦ ✉s❡✱ ✇❡ r❡❝♦❣♥✐③❡ t❤❛t ❢♦r ✐♥t❡❣r❛t✐♦♥ ❜② ♣❛rt ✇❡ ❤❛✈❡ t♦ s❡❡ ✐♥ t❤❡ ✐♥t❡❣r❛♥❞✿
✷✳✾✳
✶✹✽
■♥t❡❣r❛t✐♦♥ ❜② ♣❛rts✿ ♣r♦❞✉❝ts
• ❛ ♠✉❧t✐♣❧✐❝❛t✐♦♥✱ ❜✉t • ♥♦ ❝♦♠♣♦s✐t✐♦♥✳
❚❤❡♥✿
• ❚❤❡ ❛♣♣r♦❛❝❤ ✇♦♥✬t ✇♦r❦ ❢♦r
❜✉t ✇❡ ❤❛✈❡ s✉❜st✐t✉t✐♦♥ ❢♦r t❤❛t✳ • ◆♦r ❢♦r
❜✉t ✇❡ ❝❛♥ ❧♦♦❦ ✐t ✉♣✳ • ❚❤❡ ❛♣♣r♦❛❝❤
♠✐❣❤t
✇♦r❦ ❢♦r
Z
xex dx ,
Z
ex dx ,
Z
xex dx .
2
2
❊①❛♠♣❧❡ ✷✳✾✳✸✿ s♣❧✐t ✐♥t❡❣r❛♥❞
■❢ ✇❡ ❛r❡ t♦ ✐♥t❡❣r❛t❡ t❤✐s✱ ✇❡ ♥❡❡❞ t♦ ♠❛t❝❤ ✐t ✇✐t❤ t❤❡ ✐♥t❡❣r❛❧ ✐♥ t❤❡ ❢♦r♠✉❧❛✳ ❚❤❡s❡ t✇♦ ♠✉st ❜❡ ❡q✉❛❧✿ Z u dv
Z
x · ex dx.
❯♥❢♦rt✉♥❛t❡❧②✱ t❤❡r❡ ❛r❡ ❛t ❧❡❛st t✇♦ ✇❛②s t♦ ♠❛t❝❤ t❤❡♠✿ • ✭❛✮ u = ex , dv = x dx✱ ❛♥❞ • ✭❜✮ u = x, dv = ex dx✳ ❲❡✬❧❧ ❤❛✈❡ t♦ ❞♦ ❜♦t❤✳ ✭❛✮ ❚♦ ✉s❡ t❤❡ ❢♦r♠✉❧❛✱ ✇❡ ♥❡❡❞ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ u ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ v ✿ u = ex
=⇒ du = ex dx Z x2 dv = x dx =⇒ v = x dx = 2
■♥t❡❣r❛t✐♥❣ t♦ ✜♥❞ v ✐s t❤❡ ✜rst ♣❛rt ♦❢ ✐♥t❡❣r❛t✐♦♥✳ ❚❤❡ s❡❝♦♥❞ ♣❛rt ✐s t❤❡ ♦♥❡ ✐♥ t❤❡ ❢♦r♠✉❧❛✿ Z
udv = uv −
Z
x2 − vdu = e · 2 x
Z
x2 x · e dx . 2
❯♥❢♦rt✉♥❛t❡❧②✱ ✇❡ ❞✐s❝♦✈❡r t❤❛t t❤❡ ♥❡✇ ✐♥t❡❣r❛❧ ❧♦♦❦s ❡✈❡♥ ❝♦♠♣❧❡① t❤❛♥ t❤❡ ♦r✐❣✐♥❛❧✦ ■♥❞❡❡❞✱ t❤❡ ♣♦✇❡r ♦❢ x ✇❡♥t ✉♣✳ ❇❡❢♦r❡ ❛tt❡♠♣t✐♥❣ ♦t❤❡r t❡❝❤♥✐q✉❡s✱ ❧❡t✬s tr② t♦ r❡✈❡rs❡ t❤❡ ❝❤♦✐❝❡ ♦❢ u ❛♥❞ v ✳ ✭❜✮ ❖♥❝❡ ❛❣❛✐♥✱ ✇❡ ♥❡❡❞ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ u ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ v ✿ u=x
=⇒ du =Zdx dv = ex dx =⇒ v = ex dx = ex
❲❡ s✉❜st✐t✉t❡ t❤❡s❡ ✐♥t♦ t❤❡ ❢♦r♠✉❧❛✿ Z
udv = uv −
Z
x
vdu = x · e −
Z
ex dx .
❲❡ ♣❛✉s❡ ❤❡r❡ t♦ st♦♣ ❛♥❞ ❛♣♣r❡❝✐❛t❡ t❤❡ ❢❛❝t t❤❛t t❤❡ ♥❡✇ ✐♥t❡❣r❛❧ ✐s s♦ ❧❡ss ❝♦♠♣❧❡① t❤❛♥ t❤❡ ♦r✐❣✐♥❛❧✦ ❚❤❛t✬s ❜❡❝❛✉s❡ t❤❡ ♣♦✇❡r ♦❢ x ✇❡♥t ❞♦✇♥✳ ❲❡ ✜♥✐s❤ t❤❡ ❝♦♠♣✉t❛t✐♦♥✿ Z
x
x
xe dx = x · e −
Z
ex dx = xex − ex + C .
✷✳✾✳
✶✹✾
■♥t❡❣r❛t✐♦♥ ❜② ♣❛rts✿ ♣r♦❞✉❝ts
❚❤❡ ❧❡ss♦♥ s❡❡♠s t♦ ❜❡✿ • ❈❤♦♦s❡ ❢♦r u t❤❡ ♣❛rt ♦❢ t❤❡ ✐♥t❡❣r❛♥❞ t❤❛t ✇✐❧❧ ❜❡ s✐♠♣❧✐✜❡❞ ❜② ❞✐✛❡r❡♥t✐❛t✐♦♥✳
• ❈❤♦♦s❡ ❢♦r dv t❤❡ ♣❛rt ♦❢ t❤❡ ✐♥t❡❣r❛♥❞ t❤❛t ✇✐❧❧ ❜❡ s✐♠♣❧✐✜❡❞ ❜② ✐♥t❡❣r❛t✐♦♥✱ ♦r ❛t ❧❡❛st ✇✐❧❧ r❡♠❛✐♥
❛s s✐♠♣❧❡✳
❊①❛♠♣❧❡ ✷✳✾✳✹✿ s♣❧✐t ✐♥t❡❣r❛♥❞
■♥t❡❣r❛t❡✿
Z
x2 ex dx .
❖♥❝❡ ❛❣❛✐♥✱ t❤❡r❡ ❛r❡ ✭❛t ❧❡❛st✮ t✇♦ ✇❛②s t♦ ❝❤♦♦s❡ u ❛♥❞ dv ✿ • ✭❛✮ u = ex , dv = x2 dx✱ ❛♥❞ • ✭❜✮ u = x2 , dv = ex dx✳ ❲❡✬❧❧ tr② ❜♦t❤✳ ✭❛✮ ❲❡ ✜♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ u ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ v ✿ u = ex
=⇒ du = ex dx Z x3 2 dv = x dx =⇒ v = x2 dx = 3
❊✈❡♥ t❤♦✉❣❤ du ✐s ❥✉st ❛s s✐♠♣❧❡ ❛s u✱ ✐♥t❡❣r❛t✐♦♥ ♦❢ dv ❤❛s ♠❛❞❡ t❤✐♥❣s ✇♦rs❡✳ ■♥❞❡❡❞✱ ✇❡ ❤❛✈❡✿ Z
udv = uv −
Z
x3 vdu = e · − 3 x
Z
x3 x · e dx . 3
■t✬s ♥♦t s✐♠♣❧❡r ❛s t❤❡ ♣♦✇❡r ♦❢ x ❣♦❡s ✉♣✦ ❲❡ r❡✈❡rs❡ t❤❡ ❝❤♦✐❝❡ ♦❢ u ❛♥❞ v ✳ ✭❜✮ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ u ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ♦❢ v ✿ u = x2
=⇒ du =Z2x dx dv = ex dx =⇒ v = ex dx = ex
❍❡r❡ dv ✐s s✐♠♣❧❡r t❤❛♥ u❀ t❤❛t✬s ❛ ❣♦♦❞ s✐❣♥✳ ❲❡ s✉❜st✐t✉t❡ t❤❡s❡ ✐♥t♦ t❤❡ ❢♦r♠✉❧❛✿ Z
udv = uv −
Z
2
x
vdu = x · e −
Z
ex · 2x dx .
❆❣❛✐♥✱ ✇❡ ♣❛✉s❡ t♦ ❛♣♣r❡❝✐❛t❡ t❤❡ ❢❛❝t t❤❛t t❤❡ ✐♥t❡❣r❛t✐♦♥ t❛s❦ ❤❛s ❜❡❡♥ s✐♠♣❧✐✜❡❞✦ ❚❤❛t✬s ❜❡❝❛✉s❡ t❤❡ ♣♦✇❡r ♦❢ x ✇❡♥t ❞♦✇♥✳ ❲❡ ✜♥✐s❤ t❤❡ ❝♦♠♣✉t❛t✐♦♥ ✉s✐♥❣ t❤❡ ■♥t❡❣r❛t✐♦♥ ❜② P❛rts ❢♦r♠✉❧❛ ❛♥❞ t❤❡ r❡s✉❧t ♦❢ t❤❡ ❧❛st ❡①❛♠♣❧❡✿ Z
2 x
2
x
x e dx = x · e −
Z
ex 2x dx = x2 ex − 2xex + 2ex + C .
❚❤❡ ❧❡ss♦♥ ✐s t❤❛t ✐♥t❡❣r❛t✐♦♥ ❜② ♣❛rts ♠✐❣❤t ❜r✐♥❣ s✐♠♣❧✐✜❝❛t✐♦♥ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ❛♥❞ ♠✐❣❤t r❡q✉✐r❡ ❛♥♦t❤❡r ❛♣♣❧✐❝❛t✐♦♥ ♦❢ ✐♥t❡❣r❛t✐♦♥ ❜② ♣❛rts✳ ❊①❡r❝✐s❡ ✷✳✾✳✺
❆♣♣❧② t❤❡ ❢♦r♠✉❧❛ ❢♦✉♥❞ ✐♥ t❤✐s ❡①❛♠♣❧❡ t♦ t❤❡ ♣r❡✈✐♦✉s ❡①❛♠♣❧❡✱ ♣❛rt ✭❛✮✳ ❊①❡r❝✐s❡ ✷✳✾✳✻
■♥ t❤❡ ❧❛st ❡①❛♠♣❧❡✱ tr② t❤✐s ❞❡❝♦♠♣♦s✐t✐♦♥ ♦❢ t❤❡ ✐♥t❡❣r❛♥❞✿ u = x, dv = xex ✳
✷✳✾✳ ■♥t❡❣r❛t✐♦♥ ❜② ♣❛rts✿ ♣r♦❞✉❝ts
✶✺✵
❊①❛♠♣❧❡ ✷✳✾✳✼✿ r❡❝✉rs✐♦♥ ■♥t❡❣r❛t❡✿
Z
u
❚❤❡r❡ ❛r❡ t✇♦ ✇❛②s t♦ s♣❧✐t t❤❡ ✐♥t❡❣r❛♥❞✱ ✇✐❧❧ r❡❞✉❝❡ t❤❡ ♣♦✇❡r
x✱
✐❢ ✇❡ ❝❤♦♦s❡
u=x
x3 sin x dx .
3
❛♥❞
dv ✱
❜✉t ✇❡ ❛❧r❡❛❞② ❦♥♦✇ t❤❛t ✐♥t❡❣r❛t✐♦♥ ❜② ♣❛rt
✳ ❲❡ ❛r❡ ❧❡❢t ✇✐t❤
dv = sin x✳
❚❤❡♥
u = x3
=⇒ du =Z3x2 dx dv = sin x dx =⇒ v = sin x dx = − cos x
❇② ♣❛rts✿
Z
3
x sin x dx = uv −
Z
3
vdu = −x cos x −
Z
3x2 · sin x dx .
❚❤❡ ❧❛st ✐♥t❡❣r❛❧ ✐s ❛❧♠♦st ✐❞❡♥t✐❝❛❧ t♦ t❤❡ ♦r✐❣✐♥❛❧ ❜✉t t❤❡ ♣♦✇❡r ♦❢
x
✐s ❞♦✇♥ ❜②
1✳
❊①❡r❝✐s❡ ✷✳✾✳✽ ❋✐♥✐s❤ t❤❡ ❝♦♠♣✉t❛t✐♦♥ ❜② ✐♥t❡❣r❛t✐♥❣ ❜② ♣❛rts t✇♦ ♠♦r❡ t✐♠❡s✳
❊①❛♠♣❧❡ ✷✳✾✳✾✿ ❝❛♥✬t s♣❧✐t ■♥t❡❣r❛t❡✿
Z
cos−1 x dx .
❚❤❡r❡ s❡❡♠s t♦ ❜❡ ♥♦t❤✐♥❣ t♦ s♣❧✐t ✐♥ t❤❡ ✐♥t❡❣r❛♥❞✦✳✳ ❚❤❡r❡ ✐s✿
1 dx u = cos−1 x =⇒ du = − √ 1 − x2 Z dv = dx =⇒ v = dx = x ❇② ♣❛rts✿
Z
cos
−1
x dx = uv −
Z
vdu Z
1 = cos x · x − x − √ 1 − x2 Z x dx = x cos−1 x + √ 1 − x2 Z 1 dz = x cos−1 x + √ z −2 1 = x cos−1 x − z −1/2 dz 2 1 z 1/2 −1 = x cos x − +C 2 1/2 √ = x cos−1 x − 1 − x2 + C. −1
dx
❊①❡r❝✐s❡ ✷✳✾✳✶✵ ❆♣♣❧② t❤❡ ■♥t❡❣r❛t✐♦♥ ❜② P❛rts ❢♦r♠✉❧❛ t♦ t❤❡ ✐♥t❡❣r❛❧✱
Z
xex dx ,
❉♦♥❡ ✇✐t❤ ♣❛rts✳
❇② s✉❜st✐t✉t✐♦♥✿
z = 1 − x2 ⇒ dz = −2xdx
❇❛❝❦✲s✉❜st✐t✉t✐♦♥✳
✷✳✶✵✳
❆♣♣r♦❛❝❤❡s t♦ ✐♥t❡❣r❛t✐♦♥
✶✺✶
✇✐t❤ t❤❡s❡ t✇♦ ❝❤♦✐❝❡s ♦❢ t❤❡ ✏♣❛rts✑✿ • ✭❛✮ x ❛♥❞ ex dx✱ • ✭❜✮ ex ❛♥❞ x dx✳
✷✳✶✵✳ ❆♣♣r♦❛❝❤❡s t♦ ✐♥t❡❣r❛t✐♦♥
▲❡t✬s s✉♠♠❛r✐③❡ ✇❤❛t ✇❡ ❦♥♦✇ ❛❜♦✉t ✐♥t❡❣r❛t✐♦♥ ❛♥❞ ❝♦♠♣❛r❡ ✐t t♦ ✇❤❛t ✇❡ ❦♥♦✇ ❛❜♦✉t ❞✐✛❡r❡♥t✐❛t✐♦♥✳ ❋✐rst✱ t❤❡ s✐♠✐❧❛r✐t✐❡s✳ ❏✉st ❛s t❤❡r❡ ✐s ❛ ❧✐st ♦❢ ❡❧❡♠❡♥t❛r② ❞❡r✐✈❛t✐✈❡s✱ ✇❡ ❤❛✈❡ ❛ ❧✐st ♦❢ ❡❧❡♠❡♥t❛r② ✐♥t❡❣r❛❧s✳ ■♥ ❢❛❝t✱ t❤❡ ❧❛tt❡r ❝♦♠❡s ❢r♦♠ t❤❡ ❢♦r♠❡r✳ ❍❡r❡ t❤❡② ❛r❡✿
s ′
(x ) = sx
Z
s−1
xs dx =
Z
1 x
1 s+1 x + C, s+1
❢♦r
s 6= −1
1 dx = ln x + C x Z x ′ x (e ) = e ex dx = ex + C Z ′ (sin x) = cos x cos x dx = sin x + C Z (cos x)′ = − sin x sin x dx = − cos x + C (ln x)′ =
■t✬s ❥✉st ❛ s❤♦rt ❧✐st ♦❢ ✐♥t❡❣r❛❧ ❢♦r♠✉❧❛s ❢♦r s♣❡❝✐✜❝ ❢✉♥❝t✐♦♥s✳ ❙♦✱ ❣✐✈❡♥ ❛ ❢✉♥❝t✐♦♥✱ ✇❡ ✜♥❞ ✐t ♦♥ t❤❡ ❧✐st ❛♥❞✱ ❛✉t♦♠❛t✐❝❛❧❧②✱ ✐ts ✐♥t❡❣r❛❧✱ ❥✉st ❧✐❦❡ ✇✐t❤ t❤❡ ❞❡r✐✈❛t✐✈❡s✳ ■♥ ❡✐t❤❡r ❝❛s❡✱ t❤❡ ❧✐st ✐s ✈❡r② s❤♦rt✦ ❚❤❡r❡ ❛r❡ ❞✐✛❡r❡♥❝❡s ❛❧r❡❛❞② ❜❡t✇❡❡♥ t❤❡ t✇♦✳ ❚❤❡ ♣r❡s❡♥❝❡ ♦❢ ✏ +C ✑ ✐♥ ❡❛❝❤ ✐♥t❡❣r❛❧ ✐♥❞✐❝❛t❡s t❤❛t t❤❡ ❛♥s✇❡r ❝♦♥t❛✐♥s ✐♥✜♥✐t❡❧② ♠❛♥② ❢✉♥❝t✐♦♥s✳ ❆❧s♦✱ t❤❡ ❢♦r♠✉❧❛s ❢♦r ✐♥t❡❣r❛❧s ♦♥❧② r❡♠❛✐♥ ✈❛❧✐❞ ✇❤❡♥ ❧✐♠✐t❡❞ t♦
✐♥t❡r✈❛❧s✳
❏✉st ❛s t❤❡r❡ ❛r❡ ❛❧❣❡❜r❛✐❝ r✉❧❡s ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥✱ t❤❡r❡ ❛r❡ ❛❧❣❡❜r❛✐❝ r✉❧❡s ♦❢ ✐♥t❡❣r❛t✐♦♥✳ ❚❤❡ ❧❛tt❡r ❝♦♠❡s✱ ✐♥ ♣❛rt✱ ❢r♦♠ t❤❡ ❢♦r♠❡r✳
❙❘ ❈▼❘ ▲❈❘
′
′
(f + g) = f + g
′
Z
Z
Z
(f + g) dx = f dx + g dx Z Z ′ ′ (cf ) = cf (cf ) dx = c f dx Z Z 1 ′ ′ f (t) dt (f (mx + b)) = mf (mx + b) f (mx + b) dx = m t=mx+b
❚❤❡ ✇❛② ✇❡ ❛♣♣❧② t❤❡s❡ r✉❧❡s ✐s ✈❡r② s✐♠✐❧❛r t♦ t❤❡ ♦♥❡ ❢♦r ❞❡r✐✈❛t✐✈❡s✿
•
❲❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ t♦ ❜❡ ✐♥t❡❣r❛t❡❞ ✐s t❤❡ s✉♠ ♦❢ t✇♦ ✭❥✉st ❛s ✇❤❡♥ ✐t ✇❛s t♦ ❜❡ ❞✐✛❡r❡♥t✐❛t❡❞✮✱ ✇❡
•
❲❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ t♦ ❜❡ ✐♥t❡❣r❛t❡❞ ✐s ❛ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡ ♦❢ ❛♥♦t❤❡r ✭❥✉st ❛s ✇❤❡♥ ✐t ✇❛s t♦ ❜❡
s♣❧✐t t❤❡ ✐♥t❡❣r❛❧ ✐♥t♦ t✇♦ ❛♥❞ t❤❡♥ ❞❡❛❧ ✇✐t❤ ❡✐t❤❡r ✭s✐♠♣❧❡r✮ ✐♥t❡❣r❛❧ s❡♣❛r❛t❡❧②✳
❞✐✛❡r❡♥t✐❛t❡❞✮✱ ✇❡ ❢❛❝t♦r ✐t ♦✉t ❛♥❞ t❤❡♥ ❞❡❛❧ ✇✐t❤ t❤❡ r❡♠❛✐♥✐♥❣ ✭s✐♠♣❧❡r✮ ✐♥t❡❣r❛❧✳
✷✳✶✵✳
✶✺✷
❆♣♣r♦❛❝❤❡s t♦ ✐♥t❡❣r❛t✐♦♥
❚❤❡ s✐♠✐❧❛r✐t✐❡s st♦♣ ❤❡r❡✦ ❲❤❛t ❛❜♦✉t t❤❡ Pr♦❞✉❝t
❘✉❧❡
❢♦r ✐♥t❡❣r❛t✐♦♥❄ ❚❤❡r❡ ✐s ♥♦♥❡ ✐♥ t❤❡ ❛❜♦✈❡ s❡♥s❡✳
◮ ❲❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ t♦ ❜❡ ✐♥t❡❣r❛t❡❞ ✐s t❤❡ ♣r♦❞✉❝t ♦❢ t✇♦ ✭✉♥❧✐❦❡ ✇❤❡♥ ✐t ✇❛s t♦ ❜❡ ❞✐✛❡r❡♥✲
t✐❛t❡❞✮✱ ✇❡ ❝❛♥✬t s♣❧✐t t❤❡ ✐♥t❡❣r❛❧ ✐♥t♦ t✇♦ ❛♥❞ t❤❡♥ ❞❡❛❧ ✇✐t❤ ❡✐t❤❡r ✐♥t❡❣r❛❧ s❡♣❛r❛t❡❧②✳
❚❤❡ r❡❛s♦♥ ✐s t❤❛t t❤❡ Pr♦❞✉❝t ❘✉❧❡ ❢♦r ❞✐✛❡r❡♥t✐❛t✐♦♥ ❝❛♥✬t ❜❡ ❡❛s✐❧② r❡✈❡rs❡❞✳✳✳ ✉♥❧❡ss ♦♥❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥s ✐s✱ ✐♥ ❢❛❝t✱ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ t❤❛t ✇❡ ❦♥♦✇ ♦r ❝❛♥ ✜♥❞✳ ❚❤❛t✬s t❤❡ ■♥t❡❣r❛t✐♦♥ ❜② P❛rts ❢♦r♠✉❧❛✿ Z
′
f g dx = f g −
Z
gf ′ dx
❆♥❞ ✇❤❛t ❛❜♦✉t t❤❡ ◗✉♦t✐❡♥t ❘✉❧❡ ❢♦r ✐♥t❡❣r❛t✐♦♥❄ ❚❤❡r❡ ✐s ♥♦♥❡✱ ✉♥❧❡ss ②♦✉ ❛r❡ ✇✐❧❧✐♥❣ t♦ ✐♥t❡r♣r❡t ❞✐✈✐s✐♦♥ ❛s ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❜② t❤❡ r❡❝✐♣r♦❝❛❧✳ ◆♦✇✱ ✇❤❛t ❛❜♦✉t t❤❡ ❈❤❛✐♥
❘✉❧❡
❄ ❙❛♠❡ ♣r♦❜❧❡♠ ❛s ✇✐t❤ t❤❡ ♣r♦❞✉❝ts✿
◮ ❲❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ t♦ ❜❡ ✐♥t❡❣r❛t❡❞ ✐s t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦ ✭✉♥❧✐❦❡ ✇❤❡♥ ✐t ✇❛s t♦ ❜❡
❞✐✛❡r❡♥t✐❛t❡❞✮✱ ✇❡ ❝❛♥✬t s♣❧✐t t❤❡ ✐♥t❡❣r❛❧ ✐♥t♦ t✇♦ ❛♥❞ t❤❡♥ ❞❡❛❧ ✇✐t❤ ❡✐t❤❡r ✐♥t❡❣r❛❧ s❡♣❛r❛t❡❧②✳ ❚❤❡ r❡❛s♦♥ ✐s t❤❛t t❤❡ ❈❤❛✐♥ ❘✉❧❡ ❢♦r ❞✐✛❡r❡♥t✐❛t✐♦♥ ❝❛♥✬t ❜❡ ❡❛s✐❧② r❡✈❡rs❡❞✳✳✳ ✉♥❧❡ss t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ♦♥ t❤❡ ✐♥s✐❞❡ ✐s✱ ✐♥ ❢❛❝t✱ ♣r❡s❡♥t ❛s ❛ ❢❛❝t♦r✳ ❚❤❛t✬s t❤❡ ■♥t❡❣r❛t✐♦♥ ❜② ❙✉❜st✐t✉t✐♦♥ ❢♦r♠✉❧❛✿ Z
′
(f ◦ g) · g dx =
Z
f du
❊①❛♠♣❧❡ ✷✳✶✵✳✶✿ r♦✉t✐♥❡
❈♦♠♣✉t❡✿
Z
■❣♥♦r❡ t❤❡ ❜♦✉♥❞s ❛t ✜rst✿ Z
3
1 0
x
x3 + 3ex − sin x dx . SR
x + 3e − sin x dx ==== CMR
====
Z
Z
3
x dx +
Z
x
Z
3e dx + sin x dx Z Z 3 x x dx + 3 e dx + sin x dx
x4 + 3 · ex − (− cos x) + C 4 1 4 simplify ==== x + 3ex + cos x + C . 4
formulas
====
❚❤❛t✬s t❤❡ ❤❛r❞ ♣❛rt✱ ✜♥❞✐♥❣ ❛♥t✐❞❡r✐✈❛t✐✈❡s✳ ◆♦✇ t❤❡ ❡❛s② ♣❛rt✿ Z
1 3
0
x
x + 3e − sin x dx
FTC
==== substitute
====
====
1 1 4 x x + 3e + cos x 4 0 1 4 1 4 1 0 1 + 3e + cos 1 + 0 + 3e + cos 0 4 4 1 + 3e + cos 1 − 0 − 3 − 1 . 4
❚❤❡ ❤❛r❞ ♣❛rt ✐s ❡❛s② ✇❤❡♥ t❤❡r❡ ✐s ♥♦ ♠✉❧t✐♣❧✐❝❛t✐♦♥✱ ❞✐✈✐s✐♦♥✱ ♦r ❝♦♠♣♦s✐t✐♦♥ ♦❢ ❢✉♥❝t✐♦♥s✳
✷✳✶✶✳
❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✺✸
❲❛r♥✐♥❣✦ ❚❤❡ ♠♦st ✐♠♣♦rt❛♥t ❛♣♣r♦❛❝❤ t♦ ✐♥t❡❣r❛t✐♦♥ ✐s ✉s✲ ✐♥❣ t❤❡ t❛❜❧❡ ♦❢ ✐♥t❡❣r❛❧s✦
❚❤❡ ♠❛✐♥ ❞✐✛❡r❡♥❝❡ ✐s t❤❛t
❞✐✛❡r❡♥t✐❛t✐♦♥ ♥❡✈❡r ❢❛✐❧s
❜✉t ✐♥t❡❣r❛t✐♦♥ ♠❛② ❢❛✐❧ ✐♥ t❤❡ s❡♥s❡ t❤❛t t❤❡ ✐♥t❡❣r❛❧
♠✐❣❤t t✉r♥ ♦✉t t♦ ❜❡ ❛ ❢✉♥❝t✐♦♥ ✇❡ ❤❛✈❡ ♥❡✈❡r s❡❡♥ ❜❡❢♦r❡ ♦r ❡✈❡♥ ❛ ❢✉♥❝t✐♦♥ t❤❛t ♥♦✲♦♥❡ ❤❛s s❡❡♥ ❜❡❢♦r❡✦
❊①❛♠♣❧❡ ✷✳✶✵✳✷✿ ❞❡✜♥❡ ❢✉♥❝t✐♦♥s ❛s ✐♥t❡❣r❛❧s ❲❡ ❝❛♥ ✉s❡ t❤✐s ✐❞❡❛ t♦ r❡✲❞✐s❝♦✈❡r ✏❢❛♠✐❧✐❛r✑ ❢✉♥❝t✐♦♥s ✕ st❛rt✐♥❣ ❛t t❤❡ ♦t❤❡r ❡♥❞✳ ❋♦r ❡①❛♠♣❧❡✱ ✐♥t❡❣r❛t✐♥❣ t❤✐s r❛t✐♦♥❛❧ ❢✉♥❝t✐♦♥ ♣r♦❞✉❝❡s t❤❡ ❧♦❣❛r✐t❤♠✿
1 t
Z
❧❡❛❞✐♥❣ t♦
x 1
1 dt = ln x . t
❲❡ ❤❛✈❡ t❤✉s ❞❡✜♥❡❞ t❤❡ ❧♦❣❛r✐t❤♠ ✇✐t❤♦✉t r❡❢❡r❡♥❝❡ t♦ t❤❡ ✐♥✈❡rs❡ ♦❢ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥✳ ❆❧s♦✱ ✐♥t❡❣r❛t✐♥❣ t❤✐s ❛❧❣❡❜r❛✐❝ ❢✉♥❝t✐♦♥ ♣r♦❞✉❝❡s t❤❡ ❛r❝s✐♥❡✿
1 √ 1 − t2
❧❡❛❞✐♥❣ t♦
Z
x 0
√
1 dt = sin−1 x . 2 1−t
❲❡ ❤❛✈❡ ❞❡✜♥❡❞ t❤❡ ❛r❝s✐♥❡ ✇✐t❤♦✉t r❡❢❡r❡♥❝❡ t♦ t❤❡ ✐♥✈❡rs❡ ♦❢ t❤❡ s✐♥❡✳
✷✳✶✶✳ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ❲❡ ❝❛♥ ♦♥❧② ❝♦♠♣✉t❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ♦✈❡r
❜♦✉♥❞❡❞
✐♥t❡r✈❛❧s s✉❝❤ ❛s
[a, b]✳
❊①❛♠♣❧❡ ✷✳✶✶✳✶✿ ✇❤❛t ❤❛♣♣❡♥s t♦ ❛♥t✐❞❡r✐✈❛t✐✈❡ ❈♦♥s✐❞❡r ❛❣❛✐♥ t❤✐s ❞❡❝❡♣t✐✈❡ ❢♦r♠✉❧❛✿
Z
1 ??? dx ==== ln |x| + C, x 6= 0 . x
t❤❡ t✇♦ ✐♥t❡r✈❛❧s
❚❤❡ ❢♦r♠✉❧❛ ✐s ❢❛❧s❡ ❛s st❛t❡❞✦ ■t ❤♦❧❞s ♦♥❧② ♦♥ ❡✐t❤❡r ♦❢ ✱ s❡♣❛r❛t❡❧②✱ ♦❢ t❤❡ ❞♦♠❛✐♥ 1 ♦❢ ✱ ✐✳❡✳✱ (−∞, 0) ❛♥❞ (0, ∞)✱ ❜✉t ♥♦t ♦♥ t❤❡ s❡t (−∞, 0) ∪ (0, ∞)✳ ❚❤✐s ♠❡❛♥s t❤❛t C ❝❛♥ ✈❛r② ❢r♦♠ x t❤❡ ♦♥❡ t♦ t❤❡ ♦t❤❡r✦ ■♥ ❢❛❝t✱ t❤✐s ✐s t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡✿
F (x) =
(
ln |x| + C ln |x| + K
❢♦r ❢♦r
x < 0, x > 0.
■t ✐s ❡✈❡♥ ♠♦r❡ ❞❛♥❣❡r♦✉s t♦ ✐❣♥♦r❡ t❤❡ ❣❛♣ ✐♥ t❤❡ ❞♦♠❛✐♥ ✇❤❡♥ ✇❡ ❞❡❛❧ ✇✐t❤ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s✳ ❋♦r ❡①❛♠♣❧❡✱ ♦♥❡ ♠✐❣❤t ♣r♦❞✉❝❡ t❤✐s ❢r♦♠ t❤❡ ❢♦r♠✉❧❛✿
Z
1 −1
1 1 ??? dx ==== ln |x| = ln 1 − ln | − 1| = 0 . x −1
❚❤✐s ✐s ✉♥tr✉❡ ❜❡❝❛✉s❡ t❤❡ ✐♥t❡❣r❛❧ ✐s ✐♥❞❡t❡r♠✐♥❛t❡ ❛s ❛ ❧✐♠✐t✳ ■♥❞❡❡❞✱ s✐♠♣❧② ❜❡❝❛✉s❡ ✐t✬s ✉♥❞❡✜♥❡❞ ❛t
x = 0✳
f
✐s ♥♦t ✐♥t❡❣r❛❜❧❡ ♦♥
[−1, 1]
❋✉rt❤❡r♠♦r❡✱ ❡✈❡♥ t❤♦✉❣❤ t❤❡ ♣♦s✐t✐✈❡ ❛♥❞ t❤❡ ♥❡❣❛t✐✈❡ ❛r❡❛s
s❡❡♠ t♦ ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r✱ t❤✐s ✐s ❢❛❧s❡ ❜❡❝❛✉s❡ ❜♦t❤ ❛r❡✱ ✐♥ ❢❛❝t✱
✐♥✜♥✐t❡ ✿
✷✳✶✶✳
❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✺✹
❲❡ s❤♦✉❧❞♥✬t ❜❡❝❛s✉❛❧ ❛❜♦✉t ❞♦✐♥❣ ❛❧❣❡❜r❛ ✇✐t❤ ✐♥✜♥✐t✐❡s ✭❱♦❧✉♠❡ ✷✮✿
???
∞ − ∞ ==== 0 .
❊①❡r❝✐s❡ ✷✳✶✶✳✷ ❙❤♦✇ t❤❛t t❤❡ ❢✉♥❝t✐♦♥ ✐♥ t❤❡ ❡①❛♠♣❧❡ ✇♦♥✬t ❜❡❝♦♠❡ ✐♥t❡❣r❛❜❧❡ ✇❤❛t❡✈❡r ♥✉♠❜❡r ✇❡ ❛ss✐❣♥ t♦
❲❡ ✇✐❧❧ ♥❡①t tr② t♦ ✉♥❞❡rst❛♥❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❛r❡❛ ♦❢ ❛♥ ✐♥✜♥✐t❡ ♦r✱ ❜❡tt❡r✱
✉♥❜♦✉♥❞❡❞
x = 0✳
r❡❣✐♦♥✳
❊①❛♠♣❧❡ ✷✳✶✶✳✸✿ ✐♥✜♥✐t❡ ❜♦tt❧❡ ❚❤❡ ❛r❡❛ ♦❢ ❛♥ ✏✐♥✜♥✐t❡ r❡❝t❛♥❣❧❡✑✱ ❧✐❦❡ t❤❡ ♦♥❡ ❜❡❧♦✇✱ ♠✉st ❜❡ ✐♥✜♥✐t❡✿
❲❤② ♦r ✐♥ ✇❤❛t s❡♥s❡❄ ❚❤✐s r❡❣✐♦♥ ❝♦♥t❛✐♥s ❛ ❣r♦✇✐♥❣ s❡q✉❡♥❝❡ ♦❢ ✭r❡❛❧✱ ✜♥✐t❡✮ r❡❝t❛♥❣❧❡s t❤❡ ❛r❡❛s ♦❢ ✇❤✐❝❤ ❣r♦✇ t♦ ✐♥✜♥✐t②✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✐t ✇♦✉❧❞ t❛❦❡ ❛♥ ✐♥✜♥✐t❡ ❛♠♦✉♥t ♦❢ ✇❛t❡r t♦ ✜❧❧ s✉❝❤ ❛ ❜♦tt❧❡✳
❲❡ ❤❛✈❡ ❝♦♠❡ t♦ ✉♥❞❡rst❛♥❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❛r❡❛s ♦❢ ✭s♦♠❡✮ ❜♦✉♥❞❡❞ r❡❣✐♦♥s✳ ❚❤✐s ✇✐❧❧ ❜❡ ♦✉r ❛♣♣r♦❛❝❤✿
•
✏❊①❤❛✉st✑ ❛♥ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥ ✇✐t❤ ❛ s❡q✉❡♥❝❡ ♦❢ ❜♦✉♥❞❡❞ r❡❣✐♦♥s✳
•
❋✐♥❞ t❤❡✐r ❛r❡❛s✳
•
❊①❛♠✐♥❡ t❤❡
❧✐♠✐t
♦❢ t❤❡s❡ ❛r❡❛s✳
■t✬s ♥♦ ❞✐✛❡r❡♥t✱ ✐♥ ♣r✐♥❝✐♣❧❡✱ ❢r♦♠ ❡①❤❛✉st✐♥❣ ❛ ❝✐r❝❧❡ ✇✐t❤ ♣♦❧②❣♦♥s✳ ❲❡ ✇✐❧❧ r❡str✐❝t ♦✉r ❛tt❡♥t✐♦♥ t♦ r❡❣✐♦♥s✿ ✶✳ ✉♥❜♦✉♥❞❡❞ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡
x✲❛①✐s
✭✐♥✜♥✐t❡❧② ✇✐❞❡✮✱ ❛♥❞
✷✳ ✉♥❜♦✉♥❞❡❞ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡
y ✲❛①✐s
✭✐♥✜♥✐t❡❧② t❛❧❧✮✳
❆s ✇❡ ♦♥❧② ❞❡❛❧ ✇✐t❤ r❡❣✐♦♥s ❞❡t❡r♠✐♥❡❞ ❜② ❣r❛♣❤s ♦❢ ❢✉♥❝t✐♦♥s✱ ✶✳ t❤❡ ❢♦r♠❡r ❝❛s❡ ✐s ❛❜♦✉t ❢✉♥❝t✐♦♥s ✇✐t❤
✉♥❜♦✉♥❞❡❞ ❞♦♠❛✐♥s
♦r✱ ❜❡tt❡r✱ ✉♥❜♦✉♥❞❡❞ ❞♦♠❛✐♥s ♦❢ ✐♥t❡✲
❣r❛t✐♦♥✱ ❛♥❞ ✷✳ t❤❡ ❧❛tt❡r ❛❜♦✉t ❢✉♥❝t✐♦♥s ✇✐t❤
✉♥❜♦✉♥❞❡❞ r❛♥❣❡s
✭✐✳❡✳✱ ✉♥❜♦✉♥❞❡❞ ❢✉♥❝t✐♦♥s✮✳
❊✈❡♥ t❤♦✉❣❤ t❤❡s❡ t✇♦ ❝❧❛ss❡s ♦❢ ❢✉♥❝t✐♦♥s ❛r❡ ✈❡r② ❞✐✛❡r❡♥t✱ t❤❡ ✐ss✉❡ ✐s t❤❡ s❛♠❡✳ ❋♦r ❡①❛♠♣❧❡✱ ❞❡✜♥❡s t✇♦
✐❞❡♥t✐❝❛❧
✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥s✿
y = 1/x
✷✳✶✶✳ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✺✺
❲❡ st❛rt ✇✐t❤ t❤❡ ❢♦r♠❡r ❝❛s❡✿ ❛♥ ✉♥❜♦✉♥❞❡❞ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥✳ ❊①❛♠♣❧❡ ✷✳✶✶✳✹✿ ❝♦♥st❛♥t
❈♦♥s✐❞❡r ❛ ❝♦♥st❛♥t ❢✉♥❝t✐♦♥✱
f (x) = k ♦♥ [a, ∞), k > 0 .
❚❤❡♥✱ t❤❡ ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥ ❛❜♦✈❡ t❤❡ ✐♥t❡r✈❛❧ [a, b] ✇✐t❤ b > a ✭❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ❢r♦♠ a t♦ b✮ ✐s ❡q✉❛❧ t♦ (b − a)k ✳ ❋✉rt❤❡r♠♦r❡✱ ❆r❡❛ = (b − a)k → +∞ ❛s b → +∞ .
❚❤❡r❡❢♦r❡✱ t❤❡ ❛r❡❛ ♦❢ t❤❡ ✐♥✜♥✐t❡ str✐♣ ✐s ✐♥✜♥✐t❡✱ ❛s ❡①♣❡❝t❡❞✳ ❊①❛♠♣❧❡ ✷✳✶✶✳✺✿ r❡❝✐♣r♦❝❛❧
❈♦♥s✐❞❡r ❛❣❛✐♥
f (x) = 1/x ♦♥ [1, ∞) .
❚❤❡ ❛r❡❛ ✉♥❞❡r t❤✐s ❣r❛♣❤ ♦✈❡r t❤✐s r❛② ✐♥ t❤❡ x✲❛①✐s ✐s s❤♦✇♥ ❛❜♦✈❡✳ ❚❤✐s ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥ ✐s ❡①❤❛✉st❡❞ ❜② ❜♦✉♥❞❡❞ ♦♥❡s✳ ❍♦✇❄ ❚❤❡ ♦❜✈✐♦✉s ❛♣♣r♦❛❝❤ ✐s t♦ ✉s❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✳ ❚❤❡ ❝❤❛❧❧❡♥❣❡ ✐s t❤❛t ♦♥❡ ❤❛s t♦ ❜♦t❤ ♠❛❦❡ t❤❡ r❡❝t❛♥❣❧❡s t❤✐♥♥❡r ❛♥❞ t❤✐♥♥❡r ✭❛s ❜❡❢♦r❡✮ ❛♥❞ ♠❛❦❡ t❤❡ r✐❣❤t ❡♥❞ ♦❢ t❤❡ ✐♥t❡r✈❛❧ ❡①t❡♥❞ ♠♦r❡ ❛♥❞ ♠♦r❡ t♦ t❤❡ r✐❣❤t✳
✭◆♦t❡ t❤❛t ✇❤❡♥ h = 1✱ t❤✐s s✉♠ ✐s ❝❛❧❧❡❞ ❛ s❡r✐❡s t♦ ❜❡ ❞✐s❝✉ss❡❞ ✐♥ ❈❤❛♣t❡r ✺✳✮
✷✳✶✶✳
❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✺✻
❆♥ ❛❧t❡r♥❛t✐✈❡ ❛♣♣r♦❛❝❤ ✐s t♦ r❡❧② ♦♥ ✇❤❛t ✇❡ ❛❧r❡❛❞② ❦♥♦✇ ❛❜♦✉t ❛r❡❛s ✉♥❞❡r t❤❡ ❣r❛♣❤s ✇❤❡♥ t❤❡ ✐♥t❡r✈❛❧ ✐s ❜♦✉♥❞❡❞✳ ❚❤❡ ✉♥❞❡r❧②✐♥❣ r❛② ♦❢ t❤✐s r❡❣✐♦♥ ✐s ❡①❤❛✉st❡❞ ✇✐t❤ ❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧s✳ ❚❤❡② ❛❧❧ ❤❛✈❡ t❤❡ s❛♠❡ ❧❡❢t ❜♦✉♥❞✱
1✱
b✱
❜✉t t❤❡ r✐❣❤t ❜♦✉♥❞✱
[1, b] ❚❤❡♥✱
Z
b 1
✐s ❛♣♣r♦❛❝❤✐♥❣ ✐♥✜♥✐t②✿
[1, +∞)
❧❡❛❞✐♥❣ t♦
1 dx = ln b − ln 1 x →∞
❛s
❛s
b → +∞ .
b → +∞ .
❚❤❡ ❛r❡❛ ♦❢ t❤❡ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥ ✐s ✐♥✜♥✐t❡✳
■♥✐t✐❛❧❧②✱ ✇❡ ✇✐❧❧ ❝♦♥❝❡♥tr❛t❡ ♦♥
r❛②s
❛s t❤❡ ❞♦♠❛✐♥s✿
(−∞, b] ❚❤❡ r❛②s ✇✐❧❧ ❤❛✈❡ t♦ ❜❡ ✏❡①❤❛✉st❡❞✑ ✇✐t❤
❛♥❞
[a, +∞) .
❝❧♦s❡❞ ❛♥❞ ❜♦✉♥❞❡❞
✐♥t❡r✈❛❧s✱ ♦♥ ❡❛❝❤ ♦❢ ✇❤✐❝❤ ✇❡ ❢❛❝❡ t❤❡ ✉s✉❛❧
❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s✳ ❊①❛♠♣❧❡ ✷✳✶✶✳✻✿ ♠♦r❡ r❡❝✐♣r♦❝❛❧ ♣♦✇❡rs
❲❡ ❞✐s❝♦✈❡r❡❞ t❤❛t t❤❡ ❜❛♥❞ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢
y = 1/x
✐s ♥❛rr♦✇✐♥❣ ❞♦✇♥ ❜✉t ♥♦t ❢❛st ❡♥♦✉❣❤ t♦
❛✈♦✐❞ ❣r♦✇✐♥❣ ✐ts ❛r❡❛ t♦ ✐♥✜♥✐t②✳ ❆ ❢✉♥❝t✐♦♥ ✇✐t❤ ❛ ♥❛rr♦✇❡r str✐♣ ✇♦♥✬t ♥❡❝❡ss❛r✐❧② ❛✈♦✐❞ ❤❛✈✐♥❣ ❛♥
y = 1/(3x)✳ ■♥st❡❛❞✱ ❧❡t✬s tr②✱ ✐♥ ❝♦♥tr❛st✱ ❛ ❢✉♥❝t✐♦♥ t❤❛t ✐s ❞❡❝r❡❛s✐♥❣ ♠✉❝❤ ❢❛st❡r✳ y = 1/x2 ❄ ❲❡ ❤❛✈❡✿ Z b 1 1 dx = − +1 2 b 1 x →1 ❛s b → +∞ .
✐♥✜♥✐t❡ ❛r❡❛✿ ❛❜♦✉t
❙♦✱
1
❍♦✇
✐s t❤❡ ❛r❡❛ ♦❢ t❤❡ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥✳ ■t✬s ✜♥✐t❡✦
♠♦t✐♦♥
■♥ ❛❞❞✐t✐♦♥ t♦ t❤❡ ❛r❡❛s✱ ✐♥t❡❣r❛❧s ❝❛♥ ❛❧s♦ ❜❡ ❡①♣❧❛✐♥❡❞ ✐♥ t❡r♠s ♦❢ ✳ ■❢ ♦✉r ✈❡❧♦❝✐t② ✐s ♣♦s✐t✐✈❡ 2 ❜✉t ❞❡❝❧✐♥✐♥❣ ❛s 1/x ✱ ✇❤❡r❡ x ✐s t✐♠❡✱ t❤❡ ❞✐st❛♥❝❡ ✇❡ ✇✐❧❧ ❝♦✈❡r ♦✈❡r ❛♥ ✐♥✜♥✐t❡ ♣❡r✐♦❞ ♦❢ t✐♠❡ ✇✐❧❧ ♥♦t ❜❡ ✐♥✜♥✐t❡✦ ❊①❛♠♣❧❡ ✷✳✶✶✳✼✿ ❡①♣♦♥❡♥t✐❛❧
❲❤❛t ❢✉♥❝t✐♦♥ ❞❡❝r❡❛s❡s ❢❛st❡r t❤❛♥ ❛❧❧
1/xn , n = 1, 2, 3, ...❄ f (x) = e−x
♦♥
■t✬s t❤❡
❡①♣♦♥❡♥t✐❛❧ ❞❡❝❛② ❢✉♥❝t✐♦♥ ✿
[1, ∞) .
❆❣❛✐♥✱ t❤❡ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥ ✉♥❞❡r t❤✐s ❣r❛♣❤ ❛❜♦✈❡ t❤✐s r❛② ✐s ❡①❤❛✉st❡❞ ❜② ❡①❤❛✉st✐♥❣ t❤❡ ✉♥❞❡r❧②✐♥❣ r❛② ✇✐t❤ t❤❡ ❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧s✿
[1, b]
❧❡❛❞✐♥❣ t♦
[1, +∞)
❛s
b → +∞ .
✷✳✶✶✳
❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
❚❤❡♥✱ t♦t❛❧ ❛r❡❛
= lim
b→+∞
✶✺✼
Z
b
e−x dx 1
= lim (−e−b − (−e−1 )) b→+∞
= ❚❤❡ ♠❛✐♥ ❞✐s❝♦✈❡r② ✐s t❤❛t
1 . e
t❤❡ ❛r❡❛ ♦❢ ❛♥ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥ ❞♦❡s♥✬t ❤❛✈❡ t♦ ❜❡ ❜❡ ✐♥✜♥✐t❡ ✦
❊①❡r❝✐s❡ ✷✳✶✶✳✽ ❋✐♥❞ t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤s ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ♦✈❡r 1 ✶✳ y = 2 x 1 ✷✳ y = √ x
[1, ∞)✿
❊①❛♠♣❧❡ ✷✳✶✶✳✾✿ s✐♥✉s♦✐❞ ❲❤❛t ✐❢ t❤❡ ❢✉♥❝t✐♦♥ ✐s♥✬t ❛❧❧ ♣♦s✐t✐✈❡❄ ❲❤❛t ✐s t❤❡ ❛r❡❛ ✕ ♦✈❡r t❤❡ ♣♦s✐t✐✈❡ ♥✉♠❜❡rs ✕ ✉♥❞❡r ❛ s✐♥✉s♦✐❞❄
❚❤❡ ❛♥❛❧②s✐s ✐s ✐❞❡♥t✐❝❛❧✿
t♦t❛❧ ❛r❡❛
= lim
b→+∞
Z
b 0
cos x dx = lim (sin b − sin 0) b→+∞
❉◆❊
.
❚❤❡ ❧✐♠✐t ❞♦❡s♥✬t ❡①✐st ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡r❡ ✐s ♥♦ ❛r❡❛✳
❲❛r♥✐♥❣✦ ✏◆♦ ❛r❡❛✑ ✐s♥✬t t❤❡ s❛♠❡ ❛s ✏③❡r♦ ❛r❡❛✑✳
❏✉st ❛s ✇✐t❤ ❛❧❧ ❧✐♠✐ts✱ t❤❡r❡ ❛r❡ t❤r❡❡ ♣♦ss✐❜❧❡ ♦✉t❝♦♠❡s✿ ❚❤✐s ♠❛② ❜❡ ❛ ♥✉♠❜❡r✱ ♦r ✐t ♠❛② ❜❡ ✐♥✜♥✐t❡✱ ♦r ✐t ♠❛② ❜❡ ✉♥❞❡✜♥❡❞✳ ❚❤✐s ✐s t❤❡ s✉♠♠❛r②✳ ❲❡ ✏❡①❤❛✉st✑ t❤❡ ✉♥❜♦✉♥❞❡❞ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥✱
(−∞, b]
♦r
[a, ∞)✱
✇✐t❤ ❜♦✉♥❞❡❞ ♦♥❡s✳ ■❢ t❤❡ ❢✉♥❝t✐♦♥
✐s ✐♥t❡❣r❛❜❧❡ ♦♥ t❤❡s❡ ❝❧♦s❡❞ ❛♥❞ ❜♦✉♥❞❡❞ ❞♦♠❛✐♥s✱ ✇❡ t❤❡♥ ✏❡①❤❛✉st✑ ❛ ♣♦ss✐❜❧② ✐♥✜♥✐t❡ ❛r❡❛ ♦❢ ♦✈❡r t❤✐s ❞♦♠❛✐♥ ✇✐t❤ ✜♥✐t❡ ♦♥❡s✿
✷✳✶✶✳ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✺✽
■❢ t❤❡ ❧✐♠✐t ♦❢ t❤✐s ✐♥t❡❣r❛❧ ❡①✐sts✱ ✐t ✐s ❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿ ■♥t❡❣r❛❧ ♦✈❡r r❛②
Z
❛♥❞
b
f (t) dt = lim
a→−∞
−∞
Z
∞
f (t) dt = lim
b→+∞
a
Z Z
b
f (t) dt a b
f (t) dt a
❚❤❡s❡ ❧✐♠✐ts✱ ♦❢ ❝♦✉rs❡✱ ❝❛♥ ❜❡ ✐♥✜♥✐t❡✳ ❲❛r♥✐♥❣✦ ❊✈❡♥ t❤♦✉❣❤ t❤❡ ♥♦t❛t✐♦♥ s✉❣❣❡sts t❤❛t t❤❡ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥ ✐s t❤❡ ✇❤♦❧❡ r❛②✱ t❤✐s ✐s ♥♦t❤✐♥❣ ❜✉t ❛♥ ❛❜❜r❡✈✐❛t✐♦♥ ❢♦r t❤❡ ❧✐♠✐t ♦♥ t❤❡ r✐❣❤t✳
❲❡ ❛❧s♦ ❞❡✜♥❡ t❤❡ ✐♥t❡❣r❛❧ ♦✈❡r t❤❡ ✇❤♦❧❡ r❡❛❧ ❧✐♥❡ (−∞, ∞) ✐♥ t❡r♠s ♦❢ t❤❡ ♦♥❡s ♦✈❡r r❛②s✱ ❛s t❤❡ s✉♠ ♦❢ t✇♦ ❝♦rr❡s♣♦♥❞✐♥❣ ✐♥t❡❣r❛❧s ✭❧✐♠✐ts✮ ✇✐t❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥✿ ■♥t❡❣r❛❧ ♦✈❡r ❧✐♥❡
Z
∞
f (t) dt =
−∞
Z
0
f (t) dt + −∞
Z
∞
f (t) dt
0
■♥ t❤❡ ❝❛s❡ ♦❢ ✐♥✜♥✐t❡ ❧✐♠✐ts✱ ✇❡ ✉t✐❧✐③❡ t❤❡ ❛❧❣❡❜r❛ ♦❢ ✐♥✜♥✐t✐❡s ❛s s❤♦rt❝✉ts ✭❱♦❧✉♠❡ ✷✮✿ ( ♥✉♠❜❡r ) + (+∞) = +∞ ( ♥✉♠❜❡r ) + (−∞) = −∞ (+∞)
+ (+∞) = +∞
(−∞)
+ (−∞) = −∞
✷✳✶✶✳ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✺✾
❊①❛♠♣❧❡ ✷✳✶✶✳✶✵✿ ❡①♣♦♥❡♥t✐❛❧ ▲❡t✬s ❝♦♠♣✉t❡ t❤❡ ✐♥t❡❣r❛❧✱ Z
+∞
Z
Z
0
∞
ex dx e dx + 0 −∞ Z Z b 0 x ex dx e dx + lim = lim
x
e dx = −∞
x
a→−∞
b→+∞
a
0
= lim (1 − ea ) + lim (eb − 1) dx . a→−∞
b→+∞
❚❤❡ ✜rst ❧✐♠✐t ✐s 1 ❜✉t t❤❡ s❡❝♦♥❞ ❧✐♠✐t ✐s ✐♥✜♥✐t❡❀ t❤❡r❡❢♦r❡✱ ♦✉r ✐♥t❡❣r❛❧ ✐s ✐♥✜♥✐t❡✳
❊①❡r❝✐s❡ ✷✳✶✶✳✶✶ ❙❤♦✇ t❤❛t r❡♣❧❛❝✐♥❣ 0 ✐♥ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ♦✈❡r (−∞, +∞) ✇✐t❤ ❛♥② r❡❛❧ c ✇✐❧❧ ♣r♦❞✉❝❡ t❤❡ s❛♠❡ r❡s✉❧t✳
❊①❡r❝✐s❡ ✷✳✶✶✳✶✷ ❙❤♦✇ t❤❛t r❡♣❧❛❝✐♥❣ t❤❡ ❧❛st ❞❡✜♥✐t✐♦♥ ✇✐t❤ Z
∞
❄
f (t) dt == lim
−∞
R→∞
Z
R
f (t) dt , −R
✇♦♥✬t ❛❧✇❛②s ♣r♦❞✉❝❡ t❤❡ s❛♠❡ r❡s✉❧t✳
❉❡✜♥✐t✐♦♥ ✷✳✶✶✳✶✸✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ♦♥ ✐♥✜♥✐t❡ ✐♥t❡r✈❛❧s ❚❤❡ ❧✐♠✐ts ♦❢ t❤❡ ✐♥t❡❣r❛❧s ❛❜♦✈❡ ❛r❡ ❝❛❧❧❡❞ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s✳ ❲❤❡♥ s✉❝❤ ❛ ❧✐♠✐t ❡①✐sts✱ ♦r t❤❡ t✇♦ ❧✐♠✐ts ✐♥ t❤❡ ❧❛st ❝❛s❡ ❡①✐st✱ ✇❡ s❛② t❤❛t t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧ ❝♦♥✈❡r❣❡s ❛♥❞ t❤❡ ❢✉♥❝t✐♦♥ ✐s ✐♥t❡❣r❛❜❧❡ ❀ ♦t❤❡r✇✐s❡ ✐t ❞✐✈❡r❣❡s✳ ❚❤❡ ❧❛tt❡r t❡r♠✐♥♦❧♦❣② ✐s ❜♦rr♦✇❡❞ ❢r♦♠ ❧✐♠✐ts ❛♥❞ ✐t ✇✐❧❧ ❜❡ ✉s❡❞ ❛❣❛✐♥ ✐♥ ❈❤❛♣t❡r ✺✳
❊①❛♠♣❧❡ ✷✳✶✶✳✶✹✿ ❜❡❧❧ ❝✉r✈❡ ❚❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ♦✈❡r (−∞, ∞) ❢♦❧❧♦✇s t❤❡ ❛❞❞✐t✐✈✐t② ♦❢ t❤❡ ✐♥t❡❣r❛❧ t❤❛t ❝♦♠❡s ❢r♦♠ t❤❡ ✐❞❡❛ ♦❢ ❛❞❞✐t✐✈✐t② ♦❢ t❤❡ ❛r❡❛s✳ ❋♦r ❡①❛♠♣❧❡✱ t❤✐s ✐s ✇❤❛t s✉❝❤ ❛♥ ✐♥t❡❣r❛❧ ❧♦♦❦s ❧✐❦❡✿
❚❤❡ ❢✉♥❝t✐♦♥ ✐s e−x ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ✐s ❦♥♦✇♥ t♦ ❜❡ ❝♦♥✈❡r❣❡♥t✳ 2
❙♦♠❡ ✐♥t❡❣r❛❧s s❤♦✉❧❞ ❜❡ ❝♦♠♣✉t❡❞ ❛❤❡❛❞ ♦❢ t✐♠❡✳
✷✳✶✶✳ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✻✵
❚❤❡♦r❡♠ ✷✳✶✶✳✶✺✿ ■♠♣r♦♣❡r ■♥t❡❣r❛❧s ♦❢ ❘❡❝✐♣r♦❝❛❧s ■ ❋♦r ❛♥②
a > 0✱
✇❡ ❤❛✈❡
Z
∞ a
Pr♦♦❢✳
1−p a 1 dx = p − 1 xp ∞
✇❤❡♥
p > 1,
✇❤❡♥
0 < p ≤ 1.
❋♦r p 6= 1✱ ✇❡ ❤❛✈❡✿ Z
∞ a
1 dx = lim b→∞ xp = lim
b→∞
Z
b
Za
1 dx xp
❆❝❝♦r❞✐♥❣ t♦ ❞❡✜♥✐t✐♦♥✳
x−p dx
❯s❡ P❋ ♥❡①t✳
b
a
b 1 x−p+1 = lim b→∞ −p + 1
a
1 = lim b−p+1 − a−p+1 −p + 1 b→∞ 1 −p+1 −p+1 lim b −a . = −p + 1 b→∞
❚❤❡ r❡♠❛✐♥✐♥❣ ❧✐♠✐t ✐s 0 ✇❤❡♥ −p + 1 < 0✱ ❛♥❞ ✐t ✐s ✐♥✜♥✐t❡ ✇❤❡♥ −p + 1 > 0✳
❊①❡r❝✐s❡ ✷✳✶✶✳✶✻ ❋✐♥✐s❤ t❤❡ ♣r♦♦❢✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ✐♥t❡❣r❛❧ • ❝♦♥✈❡r❣❡s ✇❤❡♥ p > 1✱
• ❞✐✈❡r❣❡s ✇❤❡♥ 0 < p ≤ 1✳
◆♦✇✱ t❤❡ ❧❛tt❡r ❝❛s❡✿ ✉♥❜♦✉♥❞❡❞ ❢✉♥❝t✐♦♥s ❛♥❞ ❜♦✉♥❞❡❞ ❞♦♠❛✐♥s ♦❢ ✐♥t❡❣r❛t✐♦♥✳
❊①❛♠♣❧❡ ✷✳✶✶✳✶✼✿ ✐♥✜♥✐t❡ ❛r❡❛ ❈♦♥s✐❞❡r
1 ♦♥ [0, 1) . 1−x ❚❤❡ ❛r❡❛ ✉♥❞❡r t❤✐s ❣r❛♣❤ ♦✈❡r t❤✐s ❤❛❧❢✲♦♣❡♥ ✐♥t❡r✈❛❧ ✐♥ t❤❡ x✲❛①✐s ✐s s❤♦✇♥ ❜❡❧♦✇✿ f (x) =
❍♦✇ ❞♦ ✇❡ ✉♥❞❡rst❛♥❞ t❤❡ ❛r❡❛ ✉♥❞❡r t❤✐s ❣r❛♣❤ ♦✈❡r t❤✐s ✐♥t❡r✈❛❧❄ ❲❡ ❝❛♥ ✉s❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ❡①❛❝t❧② ❛s ❛❧✇❛②s✱ ❛s ❧♦♥❣ ❛s 1 ✐s ♥♦t ❛♠♦♥❣ ✐ts s❛♠♣❧❡ ♣♦✐♥ts ✿
✷✳✶✶✳
❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✻✶
❆❧t❡r♥❛t✐✈❡❧②✱ ✇❡ t❛❦❡ ❛ ❤✐♥t ❢r♦♠ t❤❡ ❛♥❛❧②s✐s ♦❢ ❝❛s❡ ✶✿ ❚❤✐s ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥ ✐s ❡①❤❛✉st❡❞ ❜② ❜♦✉♥❞❡❞ ♦♥❡s✳ ❍♦✇❄ ❚❤❡ ✉♥❞❡r❧②✐♥❣ ✐♥t❡r✈❛❧ ✐s ❡①❤❛✉st❡❞ ✇✐t❤ ❝❧♦s❡❞ ✐♥t❡r✈❛❧s✳ ❚❤❡② ❛❧❧ ❤❛✈❡ t❤❡ s❛♠❡ ❧❡❢t ❜♦✉♥❞✱
a✱
❜✉t t❤❡ r✐❣❤t ❜♦✉♥❞✱
[0, b] ❚❤❡♥✱
Z
b 0
b✱
✐s ❛♣♣r♦❛❝❤✐♥❣
❧❡❛❞✐♥❣ t♦
[0, 1)
1✿
❛s
b → 1.
1 dx = − ln(1 − b) − ln 1 1−x →∞
❛s
b → 1,
✇❤✐❝❤ ✐s t❤❡♥ t❤❡ ❛r❡❛ ♦❢ t❤❡ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥✳
❚❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ s✐♠♣❧② ❞♦❡s♥✬t ❛♣♣❧② t♦ ❛ ❢✉♥❝t✐♦♥ ✉♥❞❡✜♥❡❞ ❛t ♦♥❡ ♦❢ t❤❡ ❡♥❞s ♦❢ t❤❡ ✐♥t❡r✈❛❧✳ ■♥st❡❛❞✱ ✇❡ ❝♦♥s✐❞❡r ❛ ■♥✐t✐❛❧❧②✱ ✇❡ ✇✐❧❧ ❝♦♥❝❡♥tr❛t❡ ♦♥
r❡str✐❝t✐♦♥
♦❢ t❤❡ ❢✉♥❝t✐♦♥ t♦ ❛ s♠❛❧❧❡r✱ ❜✉t ❝❧♦s❡❞✱ ✐♥t❡r✈❛❧✳
❤❛❧❢✲♦♣❡♥ ✐♥t❡r✈❛❧s ✿ (c, b]
❛♥❞
[a, c) .
❆s ②♦✉ s❡❡✱ t❤❡ ❛♥❛❧②s✐s ✐s ✈❡r② s✐♠✐❧❛r t♦ t❤❡ ❢♦r♠❡r ❝❛s❡✱ ✇✐t❤ t❤✐s s✉❜st✐t✉t✐♦♥✿
[a, ∞) −→ [a, c) . ❏✉st ❛s t❤❡ ❢♦r♠❡r✱ t❤❡ ❧❛tt❡r ✇✐❧❧ ❤❛✈❡ t♦ ❜❡ ✏❡①❤❛✉st❡❞✑ ✇✐t❤
❝❧♦s❡❞ ❛♥❞ ❜♦✉♥❞❡❞
✐♥t❡r✈❛❧s✳
❊①❛♠♣❧❡ ✷✳✶✶✳✶✽✿ ✜♥✐t❡ ❛r❡❛ ▲❡t✬s ❝♦♥s✐❞❡r
f (x) = √
1 1−x
♦♥
[0, 1) .
❊✈❡♥ t❤♦✉❣❤ t❤❡✐r ❣r❛♣❤s ❧♦♦❦ ❛❧♠♦st ✐❞❡♥t✐❝❛❧✱ t❤✐s ♦♥❡ ✐♥❝r❡❛s❡s s❧♦✇❡r t❤❛♥ t❤❡ ❧❛st ♦♥❡✳ ❆❣❛✐♥✱ t❤❡ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥ ✉♥❞❡r t❤✐s ❣r❛♣❤ ♦✈❡r t❤✐s ❤❛❧❢✲♦♣❡♥ ✐♥t❡r✈❛❧ ✐s ❡①❤❛✉st❡❞ ❜② ❡①❤❛✉st✐♥❣ t❤❡ ✉♥❞❡r❧②✐♥❣ r❛② ✇✐t❤ t❤❡ ❝❧♦s❡❞ ✐♥t❡r✈❛❧s✿
[0, b]
❛s
b → 1✳
❆r❡❛ ♦❢ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥
❚❤❡♥ ✇❡ ❤❛✈❡✿
Z
b
1 dx b→1 0 1 − x b √ = lim −2 1 − x b→1
= lim
√
0
= 2. ❚❤❡ ❛r❡❛ ♦❢ ❛♥ ✉♥❜♦✉♥❞❡❞ r❡❣✐♦♥ ♠❛② ❜❡ ✜♥✐t❡✦
✷✳✶✶✳
❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✻✷
❊①❛♠♣❧❡ ✷✳✶✶✳✶✾✿ ❞✐✈❡r❣❡♥❝❡ ❲❤❛t ✐❢ t❤❡ ❢✉♥❝t✐♦♥ ✐s♥✬t ❛❧❧ ♣♦s✐t✐✈❡❄ ❲❤❛t ✐s t❤❡ ❛r❡❛ ✉♥❞❡r ❛♥ ♦s❝✐❧❧❛t✐♥❣ ❣r❛♣❤✱ s✉❝❤ ❛s t❤✐s❄
y = sin
❲✐t❤ t❤❡ ❣r❛♣❤ ❧✐❦❡ t❤✐s✱ ♦♥❡ ❝❛♥
❣✉❡ss
1 x
t❤❛t t❤❡ ❧✐♠✐t ❞♦❡s♥✬t ❡①✐st ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡r❡ ✐s ♥♦ ❛r❡❛✳
❏✉st ❛s ✇✐t❤ ❛❧❧ ❧✐♠✐ts✱ t❤❡r❡ ❛r❡ t❤r❡❡ ♣♦ss✐❜❧❡ ♦✉t❝♦♠❡s ❢♦r t❤❡s❡ ❛r❡❛s✿ ❛ ♥✉♠❜❡r✱ ✐♥✜♥✐t②✱ ♦r ✉♥❞❡✜♥❡❞✳ ❚❤✐s ✐s t❤❡ s✉♠♠❛r②✳ ❲❡ ✏❡①❤❛✉st✑ t❤❡ ❤❛❧❢✲♦♣❡♥ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥✱
(a, b] ♦r [a, b)✱ ✇✐t❤ ❝❧♦s❡❞ ♦♥❡s✳
■❢ t❤❡ ❢✉♥❝t✐♦♥ ✐s ✐♥t❡❣r❛❜❧❡
♦♥ t❤❡s❡ ❝❧♦s❡❞ ❛♥❞ ❜♦✉♥❞❡❞ ❞♦♠❛✐♥s✱ ✇❡ t❤❡♥ ✏❡①❤❛✉st✑ ❛ ♣♦ss✐❜❧② ✐♥✜♥✐t❡ ❛r❡❛ ♦✈❡r t❤✐s ❞♦♠❛✐♥ ✇✐t❤ ✜♥✐t❡ ♦♥❡s✳
■❢ t❤❡ ❧✐♠✐t ♦❢ t❤✐s ✐♥t❡❣r❛❧ ❡①✐sts✱ ✐t ✐s ❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿
■♥t❡❣r❛❧ ♦✈❡r ❤❛❧❢✲♦♣❡♥ ✐♥t❡r✈❛❧s
❛♥❞
❚❤❡s❡ ❧✐♠✐ts✱ ♦❢ ❝♦✉rs❡✱ ❝❛♥ ❜❡ ✐♥✜♥✐t❡✳
Z
b
f (t) dt = lim
a→c
c
Z
c
f (t) dt = lim a
b→c
Z Z
b
f (t) dt a b
f (t) dt a
✷✳✶✶✳ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✻✸
❲❛r♥✐♥❣✦ ❚❤❡ ♥♦t❛t✐♦♥ ✐s ✉♥❢♦rt✉♥❛t❡❧② ✐❞❡♥t✐❝❛❧ t♦ t❤❡ ♦♥❡ ❢♦r ♣r♦♣❡r ✐♥t❡❣r❛❧s✱ ❜✉t t❤✐s ✐s ♥♦t❤✐♥❣ ❜✉t ❛♥ ❛❜✲ ❜r❡✈✐❛t✐♦♥ ❢♦r t❤❡ ❧✐♠✐t ♦♥ t❤❡ r✐❣❤t✳
❲❡ ❛❧s♦ ❞❡✜♥❡ t❤❡ ✐♥t❡❣r❛❧ ♦✈❡r ❛♥ ♦♣❡♥ ✐♥t❡r✈❛❧ ✐♥ t❡r♠s ♦❢ t❤❡ ♦♥❡s ♦✈❡r ❤❛❧❢✲♦♣❡♥ ✐♥t❡r✈❛❧s✱ ✇✐t❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥ ❢♦r ❛♥② c ❜❡t✇❡❡♥ a ❛♥❞ b✿
■♥t❡❣r❛❧ ♦✈❡r ♦♣❡♥ ✐♥t❡r✈❛❧ Z
b
f (t) dt = a
Z
c
f (t) dt + a
Z
b
f (t) dt c
■♥ t❤❡ ❝❛s❡ ♦❢ ✐♥✜♥✐t❡ ❧✐♠✐ts✱ ✇❡ ❢♦❧❧♦✇ t❤❡ ❛❧❣❡❜r❛ ♦❢ ✐♥✜♥✐t✐❡s ❛❜♦✈❡✳ ❋♦r ❝❛s❡ ✷✱ ✇❡ r❡♣❡❛t t❤❡ ❞❡✜♥✐t✐♦♥ ❢♦r ❝❛s❡ ✶✳
❉❡✜♥✐t✐♦♥ ✷✳✶✶✳✷✵✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ♦♥ ✜♥✐t❡ ✐♥t❡r✈❛❧s ❚❤❡ ❧✐♠✐ts ♦❢ t❤❡ ✐♥t❡❣r❛❧s ❛❜♦✈❡ ❛r❡ ✭❛❧s♦✮ ❝❛❧❧❡❞ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s✳ ❲❤❡♥ t❤❡ ❧✐♠✐t ❡①✐sts✱ ♦r t❤❡ t✇♦ ❧✐♠✐ts ✐♥ t❤❡ ❧❛st ❝❛s❡ ❡①✐st✱ ✇❡ s❛② t❤❛t t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧ ❝♦♥✈❡r❣❡s ❛♥❞ t❤❡ ❢✉♥❝t✐♦♥ ✐s ✐♥t❡❣r❛❜❧❡ ❀ ♦t❤❡r✇✐s❡ ✐t ❞✐✈❡r❣❡s✳
❊①❡r❝✐s❡ ✷✳✶✶✳✷✶ ❙❤♦✇ t❤❛t r❡♣❧❛❝✐♥❣ t❤❡ ❧❛st ❞❡✜♥✐t✐♦♥ ✇✐t❤ Z
b a
❄
f (t) dt == lim+ ε→0
Z
b−ε
f (t) dt . a+ε
✇♦♥✬t ♣r♦❞✉❝❡ t❤❡ s❛♠❡ r❡s✉❧t✳
❊①❛♠♣❧❡ ✷✳✶✶✳✷✷✿ ❤♦❧❡ ✐♥ ❞♦♠❛✐♥ ❚❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ♦✈❡r ❛♥ ✐♥t❡r✈❛❧ ✇✐t❤ ❛ ♣♦ss✐❜❧❡ ♠✐ss✐♥❣ ♣♦✐♥t ✐♥s✐❞❡ ❢♦❧❧♦✇s ❛❞❞✐t✐✈✐t② ♦❢ t❤❡ ✐♥t❡❣r❛❧ t❤❛t ❝♦♠❡s ❢r♦♠ t❤❡ ✐❞❡❛ ♦❢ ❛❞❞✐t✐✈✐t② ♦❢ t❤❡ ❛r❡❛s✳ ❋♦r ❡①❛♠♣❧❡✱ t❤✐s ✐s ✇❤❛t s✉❝❤ ❛♥ ✐♥t❡❣r❛❧ ❧♦♦❦s ❧✐❦❡✿
❚❤❡ ❢✉♥❝t✐♦♥ ✐s ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ✐s ❦♥♦✇♥ t♦ ❜❡ ❝♦♥✈❡r❣❡♥t✳
1 p , |x|
✷✳✶✶✳ ❚❤❡ ❛r❡❛s ♦❢ ✐♥✜♥✐t❡ r❡❣✐♦♥s✿ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
✶✻✹
❚❤❡♦r❡♠ ✷✳✶✶✳✷✸✿ ■♠♣r♦♣❡r ■♥t❡❣r❛❧s ♦❢ ❘❡❝✐♣r♦❝❛❧s ■■ ❋♦r ❛♥②
a > 0✱
✇❡ ❤❛✈❡
Z Pr♦♦❢✳
b 0
1−p b 1 dx = 1 − p xp ∞
✇❤❡♥
0 < p < 1,
✇❤❡♥
p ≥ 1.
❋♦r p 6= 1✱ ✇❡ ❤❛✈❡✿ Z
b 0
Z b 1 1 dx = lim+ dx p p a→0 x Za x
❇② ❞❡✜♥✐t✐♦♥✳
b
= lim+ a→0
❲❡ ✉s❡ P❋ ♥❡①t✳
x−p dx
a
b 1 −p+1 x = lim+ a→0 −p + 1
a
1 = lim+ b−p+1 − a−p+1 a→0 −p + 1 1 −p+1 −p+1 = . b − lim+ a a→0 −p + 1
❚❤❡ r❡♠❛✐♥✐♥❣ ❧✐♠✐t ✐s 0 ✇❤❡♥ −p + 1 > 0✱ ❛♥❞ ✐t ✐s ✐♥✜♥✐t❡ ✇❤❡♥ −p + 1 < 0✳ ❊①❡r❝✐s❡ ✷✳✶✶✳✷✹
❋✐♥✐s❤ t❤❡ ♣r♦♦❢✳ ❊①❡r❝✐s❡ ✷✳✶✶✳✷✺
▼❛t❝❤ t❤❡ ✐♥t❡❣r❛❧s ❛♥❞ t❤❡ ❛r❡❛s ♦❢ t❤❡ t✇♦ t❤❡♦r❡♠s ❛❜♦✉t ✐♥t❡❣r❛❧s ♦❢ t❤❡ r❡❝✐♣r♦❝❛❧s✳ ❍✐♥t✿ ■t✬s ❛❜♦✉t s②♠♠❡tr②✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ✐♥t❡❣r❛❧ • ❝♦♥✈❡r❣❡s ✇❤❡♥ p > 1✱
Z
b 0
• ❞✐✈❡r❣❡s ✇❤❡♥ 0 < p ≤ 1✳
1 dx✿ xp
❚❤✐s ✐s t❤❡ s✉♠♠❛r② ♦❢ t❤❡ t✇♦ t②♣❡s ♦❢ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ❢♦r t❤❡s❡ ❢✉♥❝t✐♦♥s✿
✷✳✶✷✳ Pr♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ❛♥❞ ✐♠♣r♦♣❡r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s
✶✻✺
❊①❡r❝✐s❡ ✷✳✶✶✳✷✻
❲❤❛t ♣♦ss✐❜❧❡ ✈❛❧✉❡s ❝❛♥ t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❛♥❞ ✐ts ❛s②♠♣t♦t❡ t❛❦❡❄ ●✐✈❡ ❛♥ ❡①❛♠♣❧❡ ❢♦r ❡❛❝❤ ✈❛❧✉❡✳
✷✳✶✷✳ Pr♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ❛♥❞ ✐♠♣r♦♣❡r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ❚❤✉s✱ ✇❡ ❤❛✈❡ ❡①t❡♥❞❡❞ t❤❡ ✐❞❡❛ ♦❢ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✇✐t❤ t❤❡ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥✿
• ❝❧♦s❡❞ ❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧s✱ s✉❝❤ ❛s [a, b]✱ t♦
• ❤❛❧❢✲♦♣❡♥✱ s✉❝❤ ❛s (a, b] ❛♥❞ [a, b)✱ ❛♥❞ ❛❧s♦ ♣♦ss✐❜❧② ✐♥✜♥✐t❡✱ s✉❝❤ ❛s (−∞, b] ❛♥❞ [a, ∞)✱ ❛♥❞ ❢✉rt❤❡r t♦
• ♦♣❡♥ ✐♥t❡r✈❛❧s✱ s✉❝❤ ❛s (a, b)✱ ❛♥❞ ♣♦ss✐❜❧② ✐♥✜♥✐t❡✱ s✉❝❤ ❛s (−∞, +∞)✳
■t ✐s ♣♦ss✐❜❧❡ t♦ ❤❛✈❡ ❛ ✉♥✐❢♦r♠ tr❡❛t♠❡♥t ♦❢ t❤❡s❡ ❝❛s❡s✿
❲❡ ♦✉t❧✐♥❡ ✐t ❜❡❧♦✇✳ ■❢ ✇❡ ❞❡♥♦t❡ ❛♥ ✐♥t❡r✈❛❧ ❜② I ✱ ❛❧❧ t❤❡s❡ ✐♥t❡❣r❛❧s ❝❛♥ ❜❡ ✇r✐tt❡♥ ✐♥ t❤❡ s❛♠❡ ♥♦t❛t✐♦♥✿ ■♥t❡❣r❛❧ ♦✈❡r ✐♥t❡r✈❛❧
Z
f dx I
❚❤❡s❡ ✐♥t❡❣r❛❧s ❤❛✈❡ ✐❞❡♥t✐❝❛❧ ♣r♦♣❡rt✐❡s✳ ■♥ ❢❛❝t✱ t❤❡ ♣r♦♣❡rt✐❡s ♦❢ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ❢♦❧❧♦✇ ❢r♦♠ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♣r♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ✐♥t❡❣r❛❧s✱ ✇❤✐❝❤ ✐♥ t✉r♥ ❝♦♠❡ ❢r♦♠ t❤❡ ♣r♦♣❡rt✐❡s ♦❢ ❧✐♠✐ts✳ ❆s r❡❣✐♦♥s ❛r❡ ❥♦✐♥❡❞ t♦❣❡t❤❡r ✈✐❛ ✉♥✐♦♥✱ t❤❡✐r ❛r❡❛s ❛r❡ ❛❞❞❡❞ ✕ ❡✈❡♥ t❤♦✉❣❤ t❤❡ r❡❣✐♦♥s ♠❛② ❜❡ ✉♥❜♦✉♥❞❡❞✳ ❚❤❡ ❛r❡❛ ✐♥t❡r♣r❡t❛t✐♦♥ ♦❢ ❛❞❞✐t✐✈✐t② ✐s t❤❡ s❛♠❡ ❛s ❜❡❢♦r❡✱ ❛s ❧♦♥❣ ❛s t❤❡ ✐♥t❡❣r❛❧s ❛r❡ ❝♦♥✈❡r❣❡♥t✿
✷✳✶✷✳
Pr♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ❛♥❞ ✐♠♣r♦♣❡r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s
✶✻✻
❚❤❡♦r❡♠ ✷✳✶✷✳✶✿ ❆❞❞✐t✐✈✐t② ♦❢ ■♥t❡❣r❛❧s ❙✉♣♣♦s❡
f
✐s ✐♥t❡❣r❛❜❧❡ ♦✈❡r ✐♥t❡r✈❛❧s
✐♥t❡❣r❛❜❧❡ ♦✈❡r
I ∪ J✱
I
❛♥❞
J
f dx =
Z
t❤❛t s❤❛r❡ ♦♥❡ ♣♦✐♥t✳ ❚❤❡♥
f
✐s
❛♥❞ ✇❡ ❤❛✈❡✿
Z
f dx + I
Z
J
f dx I∪J
❚❤❡♦r❡♠ ✷✳✶✷✳✷✿ ■♥t❡❣r❛❜✐❧✐t② ■❢
f
✐s ✐♥t❡❣r❛❜❧❡ ♦✈❡r ✐♥t❡r✈❛❧
I ✱ t❤❡♥ ✐t ✐s ❛❧s♦ ✐♥t❡❣r❛❜❧❡ ♦✈❡r ❛♥② ✐♥t❡r✈❛❧ J ⊂ I ✳
❚❤❡ ❛❧❣❡❜r❛✐❝ r✉❧❡s ❛r❡ ❛❧s♦ t❤❡ s❛♠❡✳
❚❤❡♦r❡♠ ✷✳✶✷✳✸✿ ❙✉♠ ❘✉❧❡ ❢♦r ■♥t❡❣r❛❧s ❙✉♣♣♦s❡
f
❛♥❞
g
❛r❡ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥s ♦✈❡r ✐♥t❡r✈❛❧
I✳
❚❤❡♥ s♦ ✐s
f + g✱
❛♥❞
✇❡ ❤❛✈❡✿
Z
(f + g) dx = I
Z
f dx + I
Z
g dx I
❚❤❡♦r❡♠ ✷✳✶✷✳✹✿ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ■♥t❡❣r❛❧s ❙✉♣♣♦s❡
f
✐s ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ ♦✈❡r ✐♥t❡r✈❛❧
I✳
❚❤❡♥ s♦ ✐s
c·f
❢♦r ❛♥② r❡❛❧
✷✳✶✷✳
Pr♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ❛♥❞ ✐♠♣r♦♣❡r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s
✶✻✼
c✱ ❛♥❞ ✇❡ ❤❛✈❡✿ Z
I
(c · f ) dx = c ·
Z
f dx I
❊①❡r❝✐s❡ ✷✳✶✷✳✺ Pr♦✈❡ t❤❡ t✇♦ t❤❡♦r❡♠s✳ ❍✐♥t✿ ❯s❡ t❤❡ r✉❧❡s ♦❢ ❧✐♠✐ts✳
❊①❡r❝✐s❡ ✷✳✶✷✳✻ ❲❤❛t ✐s t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ❢♦r ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s❄
❚❤❡ ♠❛✐♥ ♣❛rt ♦❢ t❤❡ ❝♦♥str✉❝t✐♦♥ ♦❢ ❛♥ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧ ✐s ♦♥❡ ♦❢ t❤❡s❡ ❧✐♠✐ts✿
lim
x→b
Z
x
dx
❛♥❞
a
lim
x→∞
Z
x
dx . a
❚❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ✐s t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ❧✐♠✐t✳
❚❤❡r❡ ✐s ❛ ✇❛② t♦ ♣r❡❞✐❝t ✇❤❛t ❤❛♣♣❡♥s
✇✐t❤♦✉t ❡✈❛❧✉❛t✐♥❣ t❤❡ ❧✐♠✐t✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ ✐s ❛ ♠❛ ❥♦r t❤❡♦r❡♠ ❢r♦♠ ❱♦❧✉♠❡ ✷ ✭❈❤❛♣t❡r ✷❉❈✲✶✮✿
❚❤❡♦r❡♠ ✷✳✶✷✳✼✿ ▼♦♥♦t♦♥❡ ❈♦♥✈❡r❣❡♥❝❡
❊✈❡r② ♠♦♥♦t♦♥❡ ❛♥❞ ❜♦✉♥❞❡❞ s❡q✉❡♥❝❡ ❝♦♥✈❡r❣❡s✳ ❜♦✉♥❞❡❞ ❢✉♥❝t✐♦♥ ❝♦♥✈❡r❣❡s ❛t ✐♥✜♥✐t②✳
❊✈❡r② ♠♦♥♦t♦♥❡ ❛♥❞
❲❡ ❛❧s♦ ❦♥♦✇ ❢r♦♠ ❱♦❧✉♠❡ ✷✿
❚❤❡♦r❡♠ ✷✳✶✷✳✽✿ ▼♦♥♦t♦♥✐❝✐t② ❚❤❡♦r❡♠
❆♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✐s ♠♦♥♦t♦♥❡ ✇❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ ✐s ❡✐t❤❡r ❛❧❧ ♣♦s✐✲ t✐✈❡ ♦r ❛❧❧ ♥❡❣❛t✐✈❡✳ ▲❡t✬s ❡①❝❧✉❞❡ t❤❡ r❡st ♦❢ t❤❡ ❢✉♥❝t✐♦♥s✱ s✉❝❤ ❛s
sin
❛♥❞
cos✿
❚❤❡♥✱ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
❚❤❡♦r❡♠ ✷✳✶✷✳✾✿ ❈♦♥✈❡r❣❡♥❝❡ ♦❢ ◆♦♥✲♥❡❣❛t✐✈❡ ■♥t❡❣r❛❧
■❢ ❛ ❢✉♥❝t✐♦♥ ✐s ♥♦♥✲♥❡❣❛t✐✈❡✱ ✐ts ✐♥t❡❣r❛❧s ❛r❡ ❡✐t❤❡r ❝♦♥✈❡r❣❡♥t ♦r ✐♥✜♥✐t❡✳ ❊①❡r❝✐s❡ ✷✳✶✷✳✶✵ Pr♦✈❡ t❤❡ t❤❡♦r❡♠✳
❚❤❡♥✱ t♦ ❡st❛❜❧✐s❤ ❝♦♥✈❡r❣❡♥❝❡✱ ✇❡ ❝❛♥ ✉s❡ ❛ ❞✐r❡❝t ❝♦♠♣❛r✐s♦♥ ✇✐t❤ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥✱ ❛ ❢✉♥❝t✐♦♥ t❤❛t ❤❛s ❛ ❝♦♥✈❡r❣❡♥t ✐♥t❡❣r❛❧✳ ❚❤❡ ♦t❤❡r ❢✉♥❝t✐♦♥ s❤♦✉❧❞ ❜❡ ❧❛r❣❡r✿
✷✳✶✷✳
Pr♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ❛♥❞ ✐♠♣r♦♣❡r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s
✶✻✽
❙✐♠✐❧❛r❧②✱ t♦ ❡st❛❜❧✐s❤ ❞✐✈❡r❣❡♥❝❡✱ ✇❡ ❝❛♥ ✉s❡ ❛ ❞✐r❡❝t ❝♦♠♣❛r✐s♦♥ ✇✐t❤ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥✱ ❛ ❢✉♥❝t✐♦♥ t❤❛t ❤❛s ❛ ❞✐✈❡r❣❡♥t ✐♥t❡❣r❛❧✳ ❚❤❡ ♦t❤❡r ❢✉♥❝t✐♦♥ s❤♦✉❧❞ ❜❡ s♠❛❧❧❡r✳
❊①❛♠♣❧❡ ✷✳✶✷✳✶✶✿ ❝♦♠♣❛r✐s♦♥ ❈♦♥s✐❞❡r t❤❡s❡ t✇♦ ❢❛❝ts✿ ❚❤❡ ✐♥t❡❣r❛❧
❚❤❡ ✐♥t❡❣r❛❧
Z
Z
∞
1 x1/2
1 ∞ 1
dx
1 dx x3
❞✐✈❡r❣❡s
❝♦♥✈❡r❣❡s
❜❡❝❛✉s❡
❜❡❝❛✉s❡
Z
Z
∞ 1 ∞ 1
1 x1/3
dx
1 dx x2
❞✐✈❡r❣❡s✳
❝♦♥✈❡r❣❡s✳
❚❤❡s❡ ❝♦♥❝❧✉s✐♦♥s ❝♦♠❡ ❢r♦♠ t❤❡ ✐♥❡q✉❛❧✐t✐❡s ❜❡❧♦✇✿
1/3
≤ 1/2
≤
2
≤3
=⇒
x1/3
≤ x1/2
≤
x2
≤ x3
=⇒
1
Z
1 1 1 ≥ 1/2 ≥ ≥ 3 =⇒ 2 Z ∞x Z ∞x Z ∞x 1 1 1 1 dx ≥ dx = ∞ > dx ≥ dx 1/3 1/2 2 x x x x3 1 1 1
x1/3 ∞ 1
❊①❡r❝✐s❡ ✷✳✶✷✳✶✷ ❲❤❛t ❞♦❡s t❤❡ ♠✐❞❞❧❡ ✐♥❡q✉❛❧✐t② ❣✐✈❡ ✉s❄
❚❤❡ ✐❞❡❛ ❛♣♣❧✐❡s t♦ ❛❧❧ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s✿
❚❤❡♦r❡♠ ✷✳✶✷✳✶✸✿ ❈♦♠♣❛r✐s♦♥ ❢♦r ■♠♣r♦♣❡r ■♥t❡❣r❛❧s ❙✉♣♣♦s❡
I
✐s ❛♥ ✐♥t❡r✈❛❧✱ ❛♥❞
0 ≤ f (x) ≤ g(x) ❢♦r ❛❧❧
• •
x
✐♥
I✳
❚❤❡♥✱ ❢♦r ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ♦✈❡r
■❢ t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧ ♦❢ ♦❢
f
I✱
✇❡ ❤❛✈❡✿
❞✐✈❡r❣❡s✱ t❤❡♥ s♦ ❞♦❡s t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧
g✳
■❢ t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧ ♦❢
g
❝♦♥✈❡r❣❡s✱ t❤❡♥ s♦ ❞♦❡s t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧
✷✳✶✷✳
Pr♦♣❡rt✐❡s ♦❢ ♣r♦♣❡r ❛♥❞ ✐♠♣r♦♣❡r ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧s ♦❢
f
❛♥❞ ✇❡ ❤❛✈❡✿
0≤
✶✻✾
Z
I
f dx ≤
Z
g dx . I
❊①❡r❝✐s❡ ✷✳✶✷✳✶✹ Pr♦✈❡ t❤❡ t❤❡♦r❡♠✳
❙✉♣♣♦s❡ t❤❡ ❢✉♥❝t✐♦♥s ❛r❡ ♥♦♥✲♥❡❣❛t✐✈❡✳
❆❝❝♦r❞✐♥❣ t♦ t❤❡
❈♦♥✈❡r❣❡♥❝❡ ❚❤❡♦r❡♠✱
t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥
♠❛❦❡s s❡♥s❡✿
❈♦♥✈❡r❣❡♥❝❡ ♦❢ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧
Z
I
f dx < ∞
❉✐✈❡r❣❡♥❝❡ ♦❢ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧
Z ❚❤❡♥ t❤❡
❈♦♠♣❛r✐s♦♥ ❚❤❡♦r❡♠
I
f dx = ∞
❛❜♦✈❡ ❝❛♥ ❜❡ r❡❛❞ ❢r♦♠ t❤❡s❡ s✐♠♣❧❡ ✐♥❡q✉❛❧✐t✐❡s✿
Z ❛♥❞
Z
I
I
f dx ≥
Z
f dx ≤
Z
I
I
g dx = ∞ g dx < ∞ .
❊①❡r❝✐s❡ ✷✳✶✷✳✶✺ ❲❤❛t ✐❢ ✇❡ ✉s❡
str✐❝t
✐♥❡q✉❛❧✐t✐❡s ✐♥ t❤❡ ❛❜♦✈❡ ❡①❛♠♣❧❡❄
❊①❡r❝✐s❡ ✷✳✶✷✳✶✻ ❲❤❛t ❝❛♥ ✇❡ ❞❡r✐✈❡ ❛❜♦✉t t❤❡ ❝♦♥✈❡r❣❡♥❝❡✴❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ♦❢ t❤❡ r❡❝✐♣r♦❝❛❧ ♣♦✇❡rs ❜❛s❡❞ ❡♥t✐r❡❧② ♦♥ t❤❛t ♦❢
1/x❄
❍✐♥t✿
❊①❡r❝✐s❡ ✷✳✶✷✳✶✼ ❙t❛t❡ ❛♥❞ ♣r♦✈❡ t❤❡ ❙q✉❡❡③❡ ❚❤❡♦r❡♠ ❢♦r ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s✳
✷✳✶✸✳ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
✶✼✵
✷✳✶✸✳ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
▲❡t✬s r❡✈✐❡✇ ✇❤❛t ✇❡ ❦♥♦✇ ❛❜♦✉t ❢r❡❡ ✢✐❣❤t ❢r♦♠ ❱♦❧✉♠❡ ✷✳ ❆ s♦❝❝❡r ❜❛❧❧ r♦❧❧✐♥❣ ♦♥ ❛ ❤♦r✐③♦♥t❛❧ ♣❧❛♥❡ ✇✐❧❧ ❤❛✈❡ ❛ ❝♦♥st❛♥t ✈❡❧♦❝✐t②✿
❆ ♣✐♥❣✲♣♦♥❣ ❜❛❧❧ t❤r♦✇♥ ✉♣ ✐♥ t❤❡ ❛✐r ❣♦❡s ✉♣✱ s❧♦✇s ❞♦✇♥ ✉♥t✐❧ ✐t st♦♣s ❢♦r ❛♥ ✐♥st❛♥t✱ ❛♥❞ t❤❡♥ ❛❝❝❡❧❡r❛t❡s t♦✇❛r❞ t❤❡ s✉r❢❛❝❡✿
❲❤❛t ✐❢ ✇❡ ❞♦ ❜♦t❤✿ ❲❡ r♦❧❧ ❛ s♦❝❝❡r ❜❛❧❧ ❤♦r✐③♦♥t❛❧❧② ❛♥❞ t❤r♦✇ ❛ ♣✐♥❣✲♣♦♥❣ ❜❛❧❧ ✈❡rt✐❝❛❧❧②❄ ▲❡t✬s tr② t♦ ❢♦❧❧♦✇ ❜♦t❤ ❜❛❧❧s ❛t t❤❡ s❛♠❡ t✐♠❡✿
❲❡✬❞ ❤❛✈❡ t♦ ✢② t❤r♦✉❣❤ t❤❡ ❛✐r ❛s ✐❢ t❤r♦✇♥ ❛t ❛♥ ❛♥❣❧❡✦ ❖✉r ✉♥❞❡rst❛♥❞✐♥❣ ✐s t❤❛t ❛ t❤r♦✇♥ ❜❛❧❧ ♠♦✈❡s ✐♥ ❜♦t❤ ✈❡rt✐❝❛❧ ❛♥❞ ❤♦r✐③♦♥t❛❧ ❞✐r❡❝t✐♦♥s✱ s✐♠✉❧t❛♥❡♦✉s❧② ❛♥❞ ✐♥❞❡♣❡♥❞❡♥t❧②✿
✷✳✶✸✳ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
✶✼✶
❚❤❡ ❞②♥❛♠✐❝s ✐s ✈❡r② ❞✐✛❡r❡♥t✿ ✶✳ ■♥ t❤❡ ❤♦r✐③♦♥t❛❧ ❞✐r❡❝t✐♦♥✱ ❛s t❤❡r❡ ✐s ♥♦ ❢♦r❝❡ ❝❤❛♥❣✐♥❣ t❤❡ ✈❡❧♦❝✐t②✱ t❤❡ ❧❛tt❡r r❡♠❛✐♥s ❝♦♥st❛♥t✳ ✷✳ ▼❡❛♥✇❤✐❧❡✱ t❤❡ ✈❡rt✐❝❛❧ ✈❡❧♦❝✐t② ✐s ❝♦♥st❛♥t❧② ❝❤❛♥❣❡❞ ❜② t❤❡ ❢♦r❝❡ ♦❢ ❣r❛✈✐t②✳ ▲❡t✬s ♥♦✇ ✉s❡ t❤❡s❡ ❞❡s❝r✐♣t✐♦♥s t♦ r❡♣r❡s❡♥t t❤❡ ♠♦t✐♦♥ ♠❛t❤❡♠❛t✐❝❛❧❧②✳ ❘❡❝❛❧❧ ❤♦✇ ✇❡ ✉s❡❞ t❤❡s❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts t♦ ✜♥❞ ✈❡❧♦❝✐t② ❛♥❞ t❤❡♥ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ❢r♦♠ t❤❡ ❧♦❝❛t✐♦♥✿ pn
7→
vn =
pn+1 − pn ∆p = ∆t h
7→
an =
∆v vn+1 − vn = ∆t h
❍❡r❡ h = ∆t ✐s t❤❡ ✐♥❝r❡♠❡♥t ♦❢ t✐♠❡✳ ❚❤❡s❡ ❢♦r♠✉❧❛s ❤❛✈❡ ❛❧s♦ ❜❡❡♥ s♦❧✈❡❞ ❢♦r pn+1 ❛♥❞ vn+1 r❡s♣❡❝t✐✈❡❧② ✐♥ ♦r❞❡r t♦ ♠♦❞❡❧ ❧♦❝❛t✐♦♥ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t✐♠❡✿ an
7→
vn+1 = vn + han
7→
pn+1 = pn + hvn
❚❤❡s❡ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛s ❛r❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✿ ❚❤❡ ❞✐s♣❧❛❝❡♠❡♥ts ❛r❡ ❜❡✐♥❣ ❛❞❞❡❞ ♦♥❡ ❛t ❛ t✐♠❡✳ ❚❤✐s ✐s ✇❤❛t t❤❡ r❡s✉❧ts ♠✐❣❤t ❧♦♦❦ ❧✐❦❡✿
❚❤✐s t✐♠❡✱ ✇❡ ❤❛✈❡ t✇♦ s✉❝❤ s❡q✉❡♥❝❡s✿ ♦♥❡ ❢♦r ❤♦r✐③♦♥t❛❧ ❛♥❞ ♦♥❡ ❢♦r ✈❡rt✐❝❛❧✳ ❲❡ ❝♦♥str✉❝t t❤❡ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ✐♥ t❤❡ ♠♦st ❝♦♥✈❡♥✐❡♥t ✇❛②✿ • ❚❤❡ x✲❛①✐s ✐s ❤♦r✐③♦♥t❛❧✳
• ❚❤❡ y ✲❛①✐s ✐s ✈❡rt✐❝❛❧✳
✷✳✶✸✳
✶✼✷
❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
❍♦✇❡✈❡r✱ ✇❡ ❛❜❛♥❞♦♥ t❤❡ ❢❛♠✐❧✐❛r y = f (x) s❡t✉♣✦ ❲❡ ❤❛✈❡ t❤r❡❡
✈❛r✐❛❜❧❡s
♥♦✇✿
✶✳ t ✐s t✐♠❡✳ ✷✳ x ✐s t❤❡ ❤♦r✐③♦♥t❛❧ ❞✐♠❡♥s✐♦♥✱ t❤❡ ❞❡♣t❤✳ ✸✳ y ✐s t❤❡ ✈❡rt✐❝❛❧ ❞✐♠❡♥s✐♦♥✱ t❤❡ ❤❡✐❣❤t✳ ❊✐t❤❡r ♦❢ t❤❡ t✇♦ s♣❛t✐❛❧ ✈❛r✐❛❜❧❡s ❞❡♣❡♥❞s ♦♥ t❤❡ t❡♠♣♦r❛❧ ✈❛r✐❛❜❧❡✳ ❚❤❡✐r ❣r❛♣❤s ❛r❡ ♣❧♦tt❡❞ ❜❡❧♦✇ ✭❧❡❢t✮✿
▼❡❛♥✇❤✐❧❡✱ t❤❡ ❛❝t✉❛❧ ♣❛t❤ ♦❢ t❤❡ ❜❛❧❧ t❤r♦✉❣❤ s♣❛❝❡ ✇✐❧❧ ❛♣♣❡❛r t♦ ❛♥ ♦❜s❡r✈❡r ❛s ❛ ❝✉r✈❡ ✐♥ t❤❡✱ ✈❡rt✐❝❛❧❧② ❛❧✐❣♥❡❞✱ xy ✲♣❧❛♥❡ ✭r✐❣❤t✮✳ ❆s t❤❡r❡ ✐s ♥♦ t✲❛①✐s✱ ✇❡ ♣r♦✈✐❞❡ t❤❡ t✐♠❡s ❜② ❧❛❜❡❧✐♥❣ ❛ ❢❡✇ ♣♦✐♥ts ♦❢ t❤❡ tr❛❥❡❝t♦r②✳ ❍✐st♦r✐❝❛❧❧②✱ ♦♥❡ ♦❢ t❤❡ ✈❡r② ✜rst ❛♣♣❧✐❝❛t✐♦♥s ♦❢ ❝❛❧❝✉❧✉s ✇❛s ✐♥ ❜❛❧❧✐st✐❝s✳ ❇❡❢♦r❡ ❝❛❧❝✉❧✉s✱ ♦♥❡ ❤❛❞ t♦ r❡s♦rt t♦ tr✐❛❧ ❛♥❞ ❡rr♦r ❛♥❞ ✇❛t❝❤✐♥❣ ✇❤❡r❡ t❤❡ ❝❛♥♥♦♥❜❛❧❧s ✇❡r❡ ❧❛♥❞✐♥❣✳ ❆ ✇❡❧❧✲❞❡s✐❣♥❡❞ t❡st ♠❛② ♣r♦✈✐❞❡ ♦♥❡ ✇✐t❤ ❛ t❛❜❧❡ ✭✐✳❡✳✱ ❛ ❢✉♥❝t✐♦♥✮ t❤❛t ❣✐✈❡s t❤❡ s❤♦t ❧❡♥❣t❤ ❢♦r ❡❛❝❤ ❛♥❣❧❡ ♦❢ t❤❡ ❜❛rr❡❧✳ ❍♦✇❡✈❡r✱ s✉❝❤ ❛ r❡❢❡r❡♥❝❡ t❛❜❧❡ ♠❛② ♣r♦✈❡ ✉s❡❧❡ss ✇❤❡♥ ♦♥❡ ✐s t♦ s❤♦♦t ❢r♦♠ ❛♥ ❡❧❡✈❛t❡❞ ♣♦s✐t✐♦♥✱ ♦r ❛t ❛♥ ❡❧❡✈❛t❡❞ t❛r❣❡t✱ ♦r ♦✈❡r ❛♥ ♦❜st❛❝❧❡✳ ❚❤❡r❡ ❛r❡ ❥✉st t♦♦ ♠❛♥② ♣❛r❛♠❡t❡rs✦ ▲❡t✬s ❝♦♥s✐❞❡r ♦♥❡ ♦❢ s✉❝❤ ♣r♦❜❧❡♠s✳ P❘❖❇▲❊▼✿ ❋r♦♠ ❛ 200✲❢♦♦t ❡❧❡✈❛t✐♦♥✱ ❛ ❝❛♥♥♦♥ ✐s ✜r❡❞ ❤♦r✐③♦♥t❛❧❧② ❛t 200 ❢❡❡t ♣❡r s❡❝♦♥❞✳ ❍♦✇ ❢❛r ✇✐❧❧ t❤❡ ❝❛♥♥♦♥❜❛❧❧ ❣♦❄
◮
❲❡ ✇✐❧❧ ✜♥❞ t❤❡ ✇❤♦❧❡ ♣❛t❤✦ ▲❡t h = ∆t ❜❡ t❤❡ ✐♥❝r❡♠❡♥t ♦❢ t✐♠❡✳ ❲❡ ❤❛✈❡ t❤❡s❡ s✐① s❡q✉❡♥❝❡s ✇✐t❤ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts ❝♦♠♣✉t❡❞ ❢♦✉r t✐♠❡s✿ ❤♦r✐③♦♥t❛❧ ✈❡rt✐❝❛❧ ♣♦s✐t✐♦♥
xn
✈❡❧♦❝✐t②
vn =
❛❝❝❡❧❡r❛t✐♦♥
xn+1 − xn h vn+1 − vn an = h
yn yn+1 − yn h un+1 − un bn = h un =
❉◗ ❉◗
✷✳✶✸✳ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
✶✼✸
◆♦✇✱ ❢r♦♠ t❤❡ ♣✉r♣♦s❡ ♦❢ ♠♦❞❡❧✐♥❣ ❛♥❞ s✐♠✉❧❛t✐♦♥✱ t❤❡ ❞❡r✐✈❛t✐♦♥ s❤♦✉❧❞ ❣♦ ✐♥ t❤❡ ♦♣♣♦s✐t❡ ❞✐r❡❝t✐♦♥✳ ❲❡ ❣♦ ✐♥ r❡✈❡rs❡✿ t❤❡ ✈❡❧♦❝✐t② ❛♥❞ t❤❡♥ t❤❡ ❧♦❝❛t✐♦♥ ❢r♦♠ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥✳ ❲❤❡♥ ✇❡ s♦❧✈❡ t❤❡ ❛❜♦✈❡ ❡q✉❛t✐♦♥s✱ ✇❡ ❡♥❞ ✉♣ ✇✐t❤ t❤❡s❡ ❢♦✉r r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛s ✭t❤❡ ❘✐❡♠❛♥♥ s✉♠s✮ ❢♦r ♦✉r s✐① s❡q✉❡♥❝❡s✿ ❤♦r✐③♦♥t❛❧ ❛❝❝❡❧❡r❛t✐♦♥ ✈❡❧♦❝✐t② ♣♦s✐t✐♦♥
✈❡rt✐❝❛❧
an
bn
vn+1 = vn + han
un+1 = un + hbn ❘❙
xn+1 = xn + hvn yn+1 = yn + hun ❘❙
❊①❛♠♣❧❡ ✷✳✶✸✳✶✿ ❤♦✇ ❢❛r
◆♦✇ ✐♥ t❤❡ s♣❡❝✐✜❝ ❝❛s❡ ♦❢ ❢r❡❡ ❢❛❧❧✱ t❤❡r❡ ✐s ❥✉st ♦♥❡ ❢♦r❝❡✱ t❤❡ ❣r❛✈✐t②✳ ❚❤❡r❡❢♦r❡✱ t❤❡ ❤♦r✐③♦♥t❛❧ ❛❝❝❡❧❡r❛t✐♦♥ ✐s ③❡r♦ ❛♥❞ t❤❡ ✈❡rt✐❝❛❧ ❛❝❝❡❧❡r❛t✐♦♥ ✐s ❝♦♥st❛♥t ✭❢❡❡t ♣❡r s❡❝♦♥❞ sq✉❛r❡❞✮✿ a = 0, b = −32 .
❲❡ ❝❤♦♦s❡ t❤❡ ✐♥❝r❡♠❡♥t ♦❢ t✐♠❡✿ h = 0.1 .
◆❡①t✱ ✇❡ ❛❝q✉✐r❡ t❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥s✿ x
y
✐♥✐t✐❛❧ ❧♦❝❛t✐♦♥✿ x0 = 0 y0 = 200 ✐♥✐t✐❛❧ ✈❡❧♦❝✐t②✿ v0 = 200 u0 = 0 ❚❤❡s❡ ❢♦✉r ♥✉♠❜❡rs s❡r✈❡ ❛s t❤❡ ✐♥✐t✐❛❧ t❡r♠s ♦❢ ♦✉r ❢♦✉r s❡q✉❡♥❝❡s✿ ❤♦r✐③♦♥t❛❧
t✐♠❡ t0
t1 = t0 + h
❛❝❝❡❧❡r❛t✐♦♥ ✈❡❧♦❝✐t② ♣♦s✐t✐♦♥ ❛❝❝❡❧❡r❛t✐♦♥ ✈❡❧♦❝✐t② ♣♦s✐t✐♦♥
t2 = t1 + h ...
a0 = 0
✈❡rt✐❝❛❧ b0 = −32
v1 = 200 + 0.1 · 0 u1 = 0 + 0.1 · (−32) x1 = 0 + 0.1 · 200 y1 = 200 + 0.1 · 0 a1 = 0
v2 = v1 + ha1
b1 = −32
u2 = u1 + hb1
x2 = x1 + hv1
y3 = y1 n + hu1
...
...
❚❤❡ ❢♦✉r ❢♦r♠✉❧❛s ❛r❡ ✐❞❡♥t✐❝❛❧ ❥✉st ❛s ❜❡❢♦r❡✿ ❂❘❬✲✶❪❈✰❘❈❬✲✶❪✯❘✶❈✶
❲❡ ✉s❡ t❤❡♠ t♦ ❡✈❛❧✉❛t❡ t❤❡ ❧♦❝❛t✐♦♥ ❡✈❡r② h = 0.1 s❡❝♦♥❞✳ ❲❡ t❛❦❡ t❤❡ s♣r❡❛❞s❤❡❡t ♣r❡s❡♥t❡❞ ❛❜♦✈❡✱ ❝♦♣② ❛♥❞ ♣❛st❡ t❤❡ ❝♦❧✉♠♥s ❢♦r ❛❝❝❡❧❡r❛t✐♦♥✱ ✈❡❧♦❝✐t②✱ ❛♥❞ ♣♦s✐t✐♦♥✿
✷✳✶✸✳
❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
✶✼✹
❖❢ ❝♦✉rs❡✱ ❢♦r t❤❡ ❤♦r✐③♦♥t❛❧ ✈❛❧✉❡s✱ ✇❡ r❡♣❧❛❝❡ ❛❝❝❡❧❡r❛t✐♦♥ ✇✐t❤
a = 0✳
❚♦ ✜♥❞ ✇❤❡♥ ❛♥❞ ✇❤❡r❡ t❤❡ ❜❛❧❧ ❤✐ts t❤❡ ❣r♦✉♥❞✱ ✇❡ s❝r♦❧❧ ❞♦✇♥ t♦ ✜♥❞ t❤❡ r♦✇ ✇✐t❤
■t ❤❛♣♣❡♥s ❛❜♦✉t
t = 3.5✳
❲❡ ❝❛♥ ❛❧s♦ ❝♦♠❜✐♥❡ t❤❡
❚❤❡♥✱ t❤❡ ✈❛❧✉❡ ♦❢
x✲❝♦❧✉♠♥
❛♥❞ t❤❡
x
❛t t❤❡ t✐♠❡ ✐s ❛❜♦✉t
y ✲❝♦❧✉♠♥
y
❛♥❣❧❡
❚❤❡ ✈❡❧♦❝✐t② ♦❢
0✳
x = 700✳
t♦ ♣❧♦t t❤❡ ♣❛t❤ ♦❢ t❤❡ ❝❛♥♥♦♥❜❛❧❧✿
❲✐t❤ t❤❡ s♣r❡❛❞s❤❡❡t✱ ✇❡ ❝❛♥ ❛s❦ ❛♥❞ ❛♥s✇❡r ❛ ✈❛r✐❡t② ♦❢ q✉❡st✐♦♥s ❛❜♦✉t s✉❝❤ ♠♦t✐♦♥✳ ✐♥tr♦❞✉❝❡ t❤❡
❝❧♦s❡ t♦
❇✉t ✜rst✱ ❧❡t✬s
♦❢ t❤❡ ❜❛rr❡❧ ♦❢ t❤❡ ❝❛♥♥♦♥ ✐♥t♦ t❤❡ ♠♦❞❡❧✳
200 ❢❡❡t ♣❡r s❡❝♦♥❞ ✇❡ ❤❛✈❡ ❜❡❡♥ ✉s✐♥❣ ✐s t❤❡ ✏♠✉③③❧❡ ✈❡❧♦❝✐t②✑✱ ✐✳❡✳✱ t❤❡ s♣❡❡❞✱ s✱ ✇✐t❤ ✇❤✐❝❤ α✱ ✐s✳ ❚❤❛t✬s ✇❤❡r❡ t❤❡ ✐♥✐t✐❛❧ ❤♦r✐③♦♥t❛❧ ❛♥❞
t❤❡ ❝❛♥♥♦♥❜❛❧❧ ❧❡❛✈❡s t❤❡ ♠✉③③❧❡ ✕ ♥♦ ♠❛tt❡r ✇❤❛t t❤❡ ❛♥❣❧❡✱ t❤❡ ✈❡rt✐❝❛❧ ✈❡❧♦❝✐t✐❡s ❝♦♠❡ ❢r♦♠✿
✷✳✶✸✳
❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
✶✼✺
❚❤❡s❡ ❢♦r♠✉❧❛s ❝♦♠❡ ❢r♦♠ tr✐❣♦♥♦♠❡tr② ✭❱♦❧✉♠❡ ✶✮✿
v0 = s cos α
❛♥❞
u0 = s sin α .
❲❡ ✉s❡ t❤❡♠ ❜❡❧♦✇ t♦ ♣r♦✈✐❞❡ t❤❡ ✐♥✐t✐❛❧ ✈❛❧✉❡s ♦❢ t❤❡ t✇♦ ✈❡❧♦❝✐t✐❡s✿
❲❡ ❝❛♥ ❢r❡❡❧② ❡♥t❡r t❤❡ ❞❛t❛ ❢♦r t❤❡ ❢♦❧❧♦✇✐♥❣ ✭❤✐❣❤❧✐❣❤t❡❞ ✐♥ ❣r❡❡♥✮✿
•
t❤❡ ✐♥✐t✐❛❧ s♣❡❡❞
•
t❤❡ ✐♥✐t✐❛❧ ❛♥❣❧❡
•
t❤❡ ✐♥✐t✐❛❧ ❧♦❝❛t✐♦♥
•
❛❧❧ ❛❝❝❡❧❡r❛t✐♦♥s
❚❤❡ r❡st ✐s ❝♦♠♣✉t❡❞ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ s❛♠❡ ❢♦r♠✉❧❛s ❛s ❜❡❢♦r❡✳
❊①❛♠♣❧❡ ✷✳✶✸✳✷✿ ❧♦♥❣❡st s❤♦t ■t ✐s r❡❛❧❧② tr✉❡ t❤❛t
45
❞❡❣r❡❡s ✐s t❤❡ ❜❡st ❛♥❣❧❡ t♦ s❤♦♦t ❢♦r ❛ ❧♦♥❣❡r ❞✐st❛♥❝❡✿
■t ❛♣♣❡❛rs t❤❛t t❤❡ ♦♥❡ ✐♥ t❤❡ ♠✐❞❞❧❡ ✐s t❤❡ ❜❡st✱ ❜✉t ✇❡ ❝❛♥✬t ♣r♦✈❡ t❤✐s ✇✐t❤ ❥✉st t❤❡ ♥✉♠❡r✐❝❛❧ ♠❡t❤♦❞s✳ ◆♦✇✱ ✇❤❛t ✐❢ ✇❡ tr② t♦ s❤♦♦t ❢r♦♠ ❛ ❤✐❧❧ ❛❣❛✐♥✱ s❛②✱
500
❢❡❡t ❤✐❣❤❄
✷✳✶✸✳ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
✶✼✻
■t✬s ♥♦t t❤❡ ❜❡st ❛♥②♠♦r❡✦ ❊①❡r❝✐s❡ ✷✳✶✸✳✸
❙❤♦✇ t❤❛t t❤❡ ❜❡st s❤♦t ✇✐❧❧ ❜❡❝♦♠❡ ♠♦r❡ ❛♥❞ ♠♦r❡ ✢❛t ❛s t❤❡ ❡❧❡✈❛t✐♦♥ ❣r♦✇s✳ ❊①❛♠♣❧❡ ✷✳✶✸✳✹✿ ✈❛r✐❛❜❧❡ ❣r❛✈✐t②
❲❤❛t ❤❛♣♣❡♥s ✐❢ t❤❡ ❣r❛✈✐t② s✉❞❞❡♥❧② ❞✐s❛♣♣❡❛rs❄ ■♥ t❤❡ ❝♦❧✉♠♥ ❢♦r t❤❡ ✈❡rt✐❝❛❧ ❛❝❝❡❧❡r❛t✐♦♥✱ ✇❡ ❥✉st r❡♣❧❛❝❡ −32 ✇✐t❤ 0 ❛❢t❡r ❛ ❢❡✇ r♦✇s✿
❚❤❡ ❝❛♥♥♦♥❜❛❧❧ ✢✐❡s ♦✛ ♦♥ ❛ t❛♥❣❡♥t✳ ❊①❛♠♣❧❡ ✷✳✶✸✳✺✿ ✈❛r✐❛❜❧❡ ❣r❛✈✐t②
❲❤❛t ❤❛♣♣❡♥s ✐❢ t❤❡ ❣r❛✈✐t② st❛rts t♦ ✐♥❝r❡❛s❡❄ ▲❡t✬s ✐♥❝r❡❛s❡ t❤❡ ❞♦✇♥✇❛r❞ ❛❝❝❡❧❡r❛t✐♦♥ 1 ❢♦♦t ♣❡r s❡❝♦♥❞ sq✉❛r❡❞ ♣❡r s❡❝♦♥❞✿
❚❤❡ tr❛❥❡❝t♦r② ❧♦♦❦s st❡❡♣❡r ❛♥❞ st❡❡♣❡r✱ ❜✉t ✐s t❤❡r❡ ❛ ✈❡rt✐❝❛❧ ❛s②♠♣t♦t❡ ❄ ❲❡ ❝❛♥✬t ❛♥s✇❡r ✇✐t❤ ❥✉st t❤❡ ♥✉♠❡r✐❝❛❧ ♠❡t❤♦❞s✳
✷✳✶✸✳ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
✶✼✼
❊①❛♠♣❧❡ ✷✳✶✸✳✻✿ ❤♦r✐③♦♥t❛❧ ❣r❛✈✐t②
❲❤❛t ❤❛♣♣❡♥s ✐❢ t❤❡ ❣r❛✈✐t② ✐s ❤♦r✐③♦♥t❛❧ ✐♥st❡❛❞❄ ❚❤❡ ♠♦t✐♦♥ ✇✐❧❧ ❜❡ ❛❧♦♥❣ ❛ ♣❛r❛❜♦❧❛ t❤❛t ❧✐❡s ♦♥ ✐ts s✐❞❡✱ ♦❢ ❝♦✉rs❡✳ ❇✉t ✇❤❛t ✐❢ t❤❡r❡ ❛r❡ ❜♦t❤ ✈❡rt✐❝❛❧ ✭❞♦✇♥✮ ❛♥❞ ❤♦r✐③♦♥t❛❧ ✭❧❡❢t✮ ❢♦r❝❡s ♦❢ ❣r❛✈✐t②❄ ▲❡t✬s ♠♦❞✐❢② t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ❝♦❧✉♠♥s ❛❝❝♦r❞✐♥❣❧② ❜② r❡♣❧❛❝✐♥❣ 0✬s ✇✐t❤ −32 ✐♥ t❤❡ ❤♦r✐③♦♥t❛❧ ❛❝❝❡❧❡r❛t✐♦♥ ❝♦❧✉♠♥✿
■s t❤✐s ❛ ♣❛r❛❜♦❧❛❄ ❊①❡r❝✐s❡ ✷✳✶✸✳✼
❊①♣❧❛✐♥ t❤❡ r❡s✉❧ts ✐♥ t❤❡ ❧❛st ❡①❛♠♣❧❡✳ ■♥ s♣✐t❡ ♦❢ t❤❡s❡ ♥✉♠❡r♦✉s ❡①❛♠♣❧❡s✱ ✇❡ ❝❛♥ ♦♥❧② ❞♦ ♦♥❡ ❛t ❛ t✐♠❡✦ ❚❤❡ ❝♦♥❝❧✉s✐♦♥s ✇❡ ❞r❛✇ ❛r❡ ❛❧s♦ s♣❡❝✐✜❝ t♦ t❤❡s❡ s✐t✉❛t✐♦♥s ✭❛❝❝❡❧❡r❛t✐♦♥s✱ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥s✱ ❡t❝✳✮✳ ❊①❛♠♣❧❡ ✷✳✶✸✳✽✿ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛s
❇❡❝❛✉s❡ ❡✈❡r②t❤✐♥❣ ✐s r❡❝✉rs✐✈❡✱ ✇❡ ❤❛✈❡ t♦ r✉♥ t❤❡ ❝♦♠♣✉t❛t✐♦♥s ❞✐r❡❝t❧② t♦ s❡❡ ✇❤❛t ❤❛♣♣❡♥s✱ ❛s ✐♥ t❤❡ ❧❛st ❡①❛♠♣❧❡✿ ❛❝❝❡❧❡r❛t✐♦♥ an ✈❡❧♦❝✐t② vn+1 = vn + han ♣♦s✐t✐♦♥ xn+1 = xn + hvn ■s t❤❡r❡ ❛♥ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛ ❢♦r t❤❡ ♣♦s✐t✐♦♥❄ ■♥ ♦t❤❡r ✇♦r❞s✱ ❝❛♥ ✇❡ ❡①♣r❡ss xn ✐♥ t❡r♠s ♦❢ n❄ ■❢ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ✐s ③❡r♦✱ ✐t✬s ❡❛s②✿ an = 0 =⇒ vn = v0 = v =⇒ xn+1 = xn + hv .
❆❞❞✐♥❣ t❤❡ s❛♠❡ ♥✉♠❜❡r ✐s ❥✉st ♠✉❧t✐♣❧✐❝❛t✐♦♥✿ xn = x0 + hvn .
■❢ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ✐s ♥♦♥✲③❡r♦ ❜✉t ❝♦♥st❛♥t✱ ✐t✬s ♠♦r❡ ❝♦♠♣❧✐❝❛t❡❞✿ an = a =⇒ vn+1 = vn + ha .
❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡✿ vn = v0 + han .
✷✳✶✸✳ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥ ◆❡①t✿
✶✼✽
xn+1 = xn + hvn = xn + h(v0 + han) = xn + hv0 + h2 an .
❲❡ ❛r❡ ❛❞❞✐♥❣ ❝♦♥s❡❝✉t✐✈❡ ✐♥t❡❣❡rs✦ ❊①❡r❝✐s❡ ✷✳✶✸✳✾
❋✐♥✐s❤ t❤❡ ❝♦♠♣✉t❛t✐♦♥✳ ❍✐♥t✿ ❯s❡ ❛ ❢♦r♠✉❧❛ ❢r♦♠ ❈❤❛♣t❡r ✶✳ ❊①❡r❝✐s❡ ✷✳✶✸✳✶✵
❲❤❛t ✐❢ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ✐s ✐♥❝r❡❛s✐♥❣ ❧✐♥❡❛r❧②❄ ❍✐♥t✿ ❯s❡ ❛ ❢♦r♠✉❧❛ ❢r♦♠ ❈❤❛♣t❡r ✶✳ ❚❤❡ ❝❤❛❧❧❡♥❣❡ ♦❢ ✜♥❞✐♥❣ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛s ❢♦r s✉♠s ♦❢ s❡q✉❡♥❝❡s ✐s ❛❞❞r❡ss❡❞ ✐♥ ❈❤❛♣t❡r ✺✳ ❚❤✐s ✐s ✇❤② ✇❡ ♥♦✇ t✉r♥ t♦ t❤❡ ❝♦♥t✐♥✉♦✉s ❝❛s❡✱ ✐✳❡✳✱ ✇❡ t❛❦❡ t❤❡ ❧✐♠✐t ♦❢ ❡✈❡r②t❤✐♥❣ ❛❜♦✈❡✿ h = ∆t → 0
❚❤❡ ❞✐s❛♣♣❡❛r❛♥❝❡ ♦❢ h ♠❛❦❡s ❛❧❣❡❜r❛ s✐♠♣❧❡r✦ ❚❤✐s t✐♠❡✱ ✐♥st❡❛❞ ♦❢ s✐① s❡q✉❡♥❝❡s✱ ✇❡ ❤❛✈❡ t❤❡s❡ s✐① ❢✉♥❝t✐♦♥s ♦❢ t✐♠❡✿ x✱ t❤❡ ❞❡♣t❤✱ t❤❡ ❤♦r✐③♦♥t❛❧ ❧♦❝❛t✐♦♥
v = x′ ✱ t❤❡ ❤♦r✐③♦♥t❛❧ ✈❡❧♦❝✐t②
a = v ′ ✱ t❤❡ ❤♦r✐③♦♥t❛❧ ❛❝❝❡❧❡r❛t✐♦♥
y ✱ t❤❡ ❤❡✐❣❤t✱ t❤❡ ✈❡rt✐❝❛❧ ❧♦❝❛t✐♦♥
u = y ′ ✱ t❤❡ ✈❡rt✐❝❛❧ ✈❡❧♦❝✐t②
b = u′ ✱ t❤❡ ✈❡rt✐❝❛❧ ❛❝❝❡❧❡r❛t✐♦♥
❚❤❡r❡ ✐s ♥♦ t✐♠❡ ✐♥❝r❡♠❡♥t ❛s ❛ ♣❛r❛♠❡t❡r ❛♥②♠♦r❡✦ ◆♦✇ t❤❡ s♣❡❝✐✜❝ ❝❛s❡ ♦❢ ❢r❡❡ ❢❛❧❧✿ a = 0, b = −g .
❋r♦♠ ❱♦❧✉♠❡ ✷✱ ✇❡ ❦♥♦✇✿ ✶✳ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧ ✐s ❧✐♥❡❛r✳ ❆♥❞ t❤❡ ♦♥❧② ❢✉♥❝t✐♦♥ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ✇❤✐❝❤ ✐s ❧✐♥❡❛r ✐s ❛ q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧✳ ✷✳ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❧✐♥❡❛r ♣♦❧②♥♦♠✐❛❧ ✐s ❝♦♥st❛♥t✳ ❆♥❞ t❤❡ ♦♥❧② ❢✉♥❝t✐♦♥ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ✇❤✐❝❤ ✐s ❝♦♥st❛♥t ✐s ❛ ❧✐♥❡❛r ♣♦❧②♥♦♠✐❛❧✳ ❲❡ ❝♦♥❝❧✉❞❡ ❛❜♦✉t ❢r❡❡ ❢❛❧❧ ✿ ✶✳ ❚❤❡ ❤♦r✐③♦♥t❛❧ ♣♦s✐t✐♦♥ x = x(t) ✐s ❧✐♥❡❛r✳ ✷✳ ❚❤❡ ✈❡rt✐❝❛❧ ♣♦s✐t✐♦♥ y = y(t) ✐s q✉❛❞r❛t✐❝✳ ❲❤❛t ♠❛❦❡s t❤❡s❡ t✇♦ ❢✉♥❝t✐♦♥s s♣❡❝✐✜❝ ❛r❡ t❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥s ✿ x0 ✱ t❤❡ ✐♥✐t✐❛❧ ❞❡♣t❤✱ x0 = x(0) y0 ✱ t❤❡ ✐♥✐t✐❛❧ ❤❡✐❣❤t✱ y0 = y(0)
❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡✿
dx dt t=0 dy u0 ✱ t❤❡ ✐♥✐t✐❛❧ ✈❡rt✐❝❛❧ ❝♦♠♣♦♥❡♥t ♦❢ ✈❡❧♦❝✐t②✱ u(0) = dt t=0 v0 ✱ t❤❡ ✐♥✐t✐❛❧ ❤♦r✐③♦♥t❛❧ ❝♦♠♣♦♥❡♥t ♦❢ ✈❡❧♦❝✐t②✱ v(0) =
x = x0 +v0 t 1 y = y0 +u0 t − gt2 2
❚❤❡s❡ t✇♦ ❡q✉❛t✐♦♥s ❛❧❧♦✇ ✉s t♦ s♦❧✈❡ ❛ ✈❛r✐❡t② ♦❢ ♣r♦❜❧❡♠s ❛❜♦✉t ♠♦t✐♦♥✳ ❲❡ ❝❛rr② t❤✐s ♦✉t ❢♦r x ❛♥❞ y s❡♣❛r❛t❡❧② ❛♥❞ t❤❡ r❡s✉❧ts ❛r❡ s❤♦✇♥ ✐♥ t❤❡ s♣r❡❛❞s❤❡❡t✿
✷✳✶✸✳ ❙❤♦♦t✐♥❣ ❛ ❝❛♥♥♦♥
✶✼✾
❊①❛♠♣❧❡ ✷✳✶✸✳✶✶✿ ❤♦✇ ❢❛r
▲❡t✬s r❡✈✐s✐t t❤❡ ♣r♦❜❧❡♠ ❛❜♦✉t ❛ s♣❡❝✐✜❝ s❤♦t ✇❡ s♦❧✈❡❞ ♥✉♠❡r✐❝❛❧❧②✳ ❖✉r ❡q✉❛t✐♦♥s ❜❡❝♦♠❡✿ x =
200t
y = 200
−16t2
◆♦✇✱ ❛♥❛❧②t✐❝❛❧❧②✱ t❤❡ ❤❡✐❣❤t ❛t t❤❡ ❡♥❞ ✐s 0✱ s♦ t♦ ✜♥❞ ✇❤❡♥ ✐t ❤❛♣♣❡♥❡❞✱ ✇❡ s❡t y = 0✱ ♦r 200 − 16t2 = 0 ,
❛♥❞ s♦❧✈❡ ❢♦r t✳ ❚❤❡♥✱ t❤❡ t✐♠❡ ♦❢ ❧❛♥❞✐♥❣ ✐s✿ t1 =
r
√ 5 2 200 = . 16 2
❚♦ ✜♥❞ ✇❤❡r❡ ✐t ❤❛♣♣❡♥❡❞✱ ✇❡ s✉❜st✐t✉t❡ t❤✐s ✈❛❧✉❡ ♦❢ t ✐♥t♦ x❀ t❤❡ ❧♦❝❛t✐♦♥ ✐s✿ √ 5 2 ≈ 707 . x1 = 200t1 = 200 2
❚❤❡ r❡s✉❧t ♠❛t❝❤❡s ♦✉r ❡st✐♠❛t❡✦ ❊①❛♠♣❧❡ ✷✳✶✸✳✶✷✿ ✈❛r✐❛❜❧❡ ❣r❛✈✐t②
❲❤❛t ❤❛♣♣❡♥s ✐❢ t❤❡ ❣r❛✈✐t② ✐s ❞❡❝r❡❛s✐♥❣❄ ❙✉♣♣♦s❡ ✐t ✐s ❞❡❝r❡❛s✐♥❣ 1 ❢♦♦t ♣❡r s❡❝♦♥❞ sq✉❛r❡❞ ♣❡r s❡❝♦♥❞✳ ❲✐t❤ t❤❡ t♦♦❧s ❞❡✈❡❧♦♣❡❞ ✐♥ t❤✐s ❝❤❛♣t❡r✱ ✐t✬s ❡❛s②✿ b = −g − t =⇒ u = u0 − gt −
t2 gt2 t3 =⇒ y = y0 + u0 t − − . 2 2 6
❲❡ ❝♦♥✜r♠ t❤❛t t❤❡ tr❛❥❡❝t♦r② ✇✐❧❧ ❜❡❝♦♠❡ st❡❡♣❡r ❛♥❞ st❡❡♣❡r✳ ❲❡ ❛❧s♦ ❞✐s❝♦✈❡r t❤❛t t❤❡r❡ ✐s ♥♦ ✈❡rt✐❝❛❧ ❛s②♠♣t♦t❡✦
❈❤❛♣t❡r ✸✿ ❲❤❛t ✇❡ ❝❛♥ ❞♦ ✇✐t❤ ✐♥t❡❣r❛❧ ❝❛❧❝✉❧✉s
❈♦♥t❡♥ts
✸✳✶ ❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✷ ❚❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✸ ❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✹ ❚❤❡ r❛❞✐❛❧ ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✺ ❚❤❡ ✢♦✇ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ✢✉① ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✻ ❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✼ ❚❤❡ t♦t❛❧ ❛♥❞ t❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✸✳✽ ◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✾ ▲❡♥❣t❤s ♦❢ ❝✉r✈❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✳✶✵ ❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡ ✳ ✸✳✶✶ ❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s ✳ ✳ ✸✳✶✷ ❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✽✵ ✶✽✽ ✶✾✷ ✷✵✶ ✷✵✹ ✷✵✽ ✷✶✺ ✷✶✾ ✷✸✵ ✷✸✻ ✷✹✹ ✷✺✶
✸✳✶✳ ❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s
❚❤❡r❡ ❛r❡ t✇♦ ♠❛✐♥ ✇❛②s t♦ ❡♥t❡r ❞✐✛❡r❡♥t✐❛❧ ❝❛❧❝✉❧✉s✿ t❤r♦✉❣❤ t❤❡ st✉❞② ♦❢ ❣❡♦♠❡tr② ✭✜♥❞✐♥❣ s❡❝❛♥t ❛♥❞ t❛♥❣❡♥t ❧✐♥❡s ♦❢ ❝✉r✈❡s✮ ❛♥❞ t❤r♦✉❣❤ t❤❡ st✉❞② ♦❢ ♠♦t✐♦♥ ✭✜♥❞✐♥❣ ✈❡❧♦❝✐t② ❛♥❞ ❛❝❝❡❧❡r❛t✐♦♥ ❢r♦♠ ❧♦❝❛t✐♦♥✮✳ ❙✐♠✐❧❛r❧②✱ t❤❡r❡ ❛r❡ t✇♦ ♠❛✐♥ ✇❛②s t♦ ❡♥t❡r ✐♥t❡❣r❛❧ ❝❛❧❝✉❧✉s✿ t❤r♦✉❣❤ t❤❡ st✉❞② ♦❢ ❣❡♦♠❡tr② ✕ ✜♥❞✐♥❣ ❛r❡❛s ✉♥❞❡r ❝✉r✈❡s ✕ ❛♥❞ t❤r♦✉❣❤ t❤❡ st✉❞② ♦❢ ♠♦t✐♦♥ ✕ ✜♥❞✐♥❣ ❧♦❝❛t✐♦♥ ❢r♦♠ ✈❡❧♦❝✐t② ❛♥❞ ❛❝❝❡❧❡r❛t✐♦♥✳ ❚❤❡s❡ ❛r❡ t✇♦ ✈❡r② ❞✐st✐♥❝t ❡①❛♠♣❧❡s ♦❢ r❡❝♦❣♥✐③✐♥❣ ❘✐❡♠❛♥♥ s✉♠s✳ ❚❤r♦✉❣❤♦✉t t❤✐s ❝❤❛♣t❡r✱ ✇❡ ✇✐❧❧ ❝❛rr② ♦✉t t❤✐s ❦❡② st❡♣ ✐♥ ❛ ✈❛r✐❡t② ♦❢ ❡♥t✐r❡❧② ♥❡✇ s✐t✉❛t✐♦♥s✳ ❇✉t ✇❡ ✇✐❧❧ st❛rt ✇✐t❤ s♦♠❡t❤✐♥❣ ❢❛♠✐❧✐❛r✳ ❊①❛♠♣❧❡ ✸✳✶✳✶✿ ❛r❡❛ ♦❢ ❝✐r❝❧❡
■♥ ❈❤❛♣t❡r ✶✱ ✇❡ ❝♦♥✜r♠❡❞ t❤❛t t❤❡ ❛r❡❛ ♦❢ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s r ✐s A = πr2 ✉s✐♥❣ ♥♦t❤✐♥❣ ❜✉t ❛ s♣r❡❛❞✲ s❤❡❡t✳ ❆♥❞ ❧❛t❡r ✐♥ t❤❡ ❝❤❛♣t❡r✱ ✇❡ ✉s❡❞ ✐♥t❡❣r❛t✐♦♥ t♦ ♣r♦✈✐❞❡ ❛ ♣r❡❝✐s❡ ❛♥s✇❡r✳ ❚❤❡ s♦❧✉t✐♦♥✱ ❤♦✇❡✈❡r✱ ✇❛s♥✬t ❢✉❧❧② s❛t✐s❢❛❝t♦r② ❜❡❝❛✉s❡ ✇❡ r❡❧✐❡❞ ♦♥ t❤❡ s②♠♠❡tr② ♦❢ t❤❡ ❝✐r❝❧❡ t♦ ❝♦♠♣✉t❡ t❤❡ ❛r❡❛ ♦❢ ✐ts ❤❛❧❢ s♦ t❤❛t t❤❡ ❛r❡❛ ♦❢ t❤❡ ✇❤♦❧❡ ❝✐r❝❧❡ ✐s t❤❡♥ t✇✐❝❡ t❤✐s ♥✉♠❜❡r✳ ❚❤✐s ✐s t♦♦ ❧✐♠✐t✐♥❣✳ ▲❡t✬s st❛rt ♦✈❡r✳ ❚❤❡r❡ ❛r❡
t✇♦ ❢✉♥❝t✐♦♥s t❤✐s t✐♠❡✱ ❢♦r t❤❡ t♦♣ ❛♥❞ t❤❡ ❜♦tt♦♠ ♦❢ t❤❡ ❝✐r❝❧❡✿ f (x) =
❲✐t❤ t❤❡ ❢♦r♠✉❧❛s✿
√
√ 1 − x2 ❛♥❞ g(x) = − 1 − x2 ,
−1 ≤ x ≤ 1 .
❂❙◗❘❚✭✶✲❘❈❬✲✷❪✂ ✷✮ ❛♥❞ ❂✲❙◗❘❚✭✶✲❘❈❬✲✷❪✂ ✷✮
✸✳✶✳
❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s
✶✽✶
✇❡ ♣❧♦t ❜♦t❤✿
❲❡ ❧❡t t❤❡ ✈❛❧✉❡s ♦❢ x r✉♥ ❢r♦♠ −1 t♦ 1 ❡✈❡r② 0.1 ❛♥❞ ❝♦✈❡r❡❞✱ ❜❡st ✇❡ ❝❛♥✱ t❤✐s ❝✐r❝❧❡ ✇✐t❤ ✈❡rt✐❝❛❧ ❜❛rs ❜❛s❡❞ ♦♥ t❤❡s❡ s❡❣♠❡♥ts✳ ❚❤❡♥ t❤❡ ❛r❡❛ ♦❢ t❤❡ ❝✐r❝❧❡ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ s✉♠ ♦❢ t❤❡ ❛r❡❛s ♦❢ t❤❡ ❜❛rs✿ ❲❡ ❛❞❞ ❛ ❝♦❧✉♠♥ ♦❢ t❤❡ ✇✐❞t❤s ♦❢ t❤❡ ❜❛rs✱ ♠✉❧t✐♣❧② t❤❡♠ ❜② t❤❡ ❤❡✐❣❤ts✱ ♣❧❛❝❡ t❤❡ r❡s✉❧t ✐♥ t❤❡ ❧❛st ❝♦❧✉♠♥✱ ❛♥❞ ✜♥❛❧❧② ❛❞❞ ❛❧❧ ❡♥tr✐❡s ✐♥ t❤✐s ❝♦❧✉♠♥✿
❚❤❡ ❤❡✐❣❤t ♦❢ t❤❡ r❡❝t❛♥❣❧❡ ❧♦❝❛t❡❞ ❛t x ✐s f (x) − g(x)✱ ❛♥❞ ✐ts ❛r❡❛ ✐s (f (x) − g(x)) · 0.1✳ ❲❡ ❝♦♠♣✉t❡ t❤❡s❡ ✐♥ t❤❡ ♥❡①t ❝♦❧✉♠♥ ❛♥❞ t❤❡♥ ❛❞❞ t❤❡♠✿ ❛♣♣r♦①✐♠❛t❡ ❛r❡❛ ♦❢ t❤❡ ❝✐r❝❧❡ = 3.1 . ■t ✐s ❝❧♦s❡ t♦ t❤❡ t❤❡♦r❡t✐❝❛❧ r❡s✉❧t ✇❡ ❡st❛❜❧✐s❤❡❞ ✐♥ ❈❤❛♣t❡r ✶✿ ❡①❛❝t ❛r❡❛ ♦❢ t❤❡ ❝✐r❝❧❡ = π = 3.14159... ❖❢ ❝♦✉rs❡✱ ✇❡ r❡❛❧✐③❡ t❤❛t ✇❡ ❝♦✉❧❞ ♣r♦❞✉❝❡ t❤❡ s❛♠❡ r❡s✉❧t ✐❢ ✇❡ t❛❦❡ t❤❡ ❞❛t❛ ❢r♦♠ t❤❡ ✜rst s♣r❡❛❞✲ s❤❡❡t✱ X i
f (ci ) · 0.1 ,
❛♥❞ t❤❡♥ s✉❜tr❛❝t t❤❡ ❞❛t❛ ❢♦r t❤❡ ♥❡✇ ❢✉♥❝t✐♦♥✱ X i
❋✉rt❤❡r♠♦r❡✱ ✇❡ ❤❛✈❡ X i
f (ci )0.1 −
X i
g(ci ) · 0.1 .
g(ci ) · 0.1 =
X i
f (ci ) − g(ci ) · 0.1 .
❚❤❡ ❝♦♠♠♦♥ s❡♥s❡ ❛❜♦✉t ❤♦✇ t❤❡ ✭✉♥s✐❣♥❡❞✮ ❧❡♥❣t❤s ♦❢ ✐♥t❡r✈❛❧s ❜❡❤❛✈❡ ✐s t❤❛t t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ✉♥✐♦♥ ♦❢ t✇♦ ✐♥t❡r✈❛❧s ✐s t❤❡ s✉♠ ♦❢ t❤❡ t✇♦ ❧❡♥❣t❤s ♠✐♥✉s t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ ✐♥t❡rs❡❝t✐♦♥✿ ❧❡♥❣t❤ ♦❢ P ∪ Q = ❧❡♥❣t❤ ♦❢ P + ❧❡♥❣t❤ ♦❢ Q − ❧❡♥❣t❤ ♦❢ P ∩ Q .
✸✳✶✳
❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s
■t ✐s ❝❛❧❧❡❞ t❤❡ ♣♦✐♥t✳
✶✽✷
❛❞❞✐t✐✈✐t② ♦❢ t❤❡ ❧❡♥❣t❤✳
❚❤❡ ❧❛st t❡r♠ ❞✐s❛♣♣❡❛rs ✇❤❡♥ t❤❡r❡ ✐s ♥♦ ♦✈❡r❧❛♣ ♦r ✐t ✐s ❥✉st ❛
■❢ ✇❡ ❜✉✐❧❞ r❡❝t❛♥❣❧❡s ♦♥ t♦♣ ♦❢ t❤❡s❡ ✐♥t❡r✈❛❧s✱ ✇❡ ❛r❡ ✐♥ ❛ s✐♠✐❧❛r s✐t✉❛t✐♦♥ ✕ ❢♦r t❤❡ ✭✉♥s✐❣♥❡❞✮ ❛r❡❛s✿
■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ❛r❡❛ ♦❢ t❤❡ ✉♥✐♦♥ ♦❢ t✇♦ r❡❣✐♦♥s ✐s t❤❡ s✉♠ ♦❢ t❤❡ t✇♦ ❛r❡❛s ♠✐♥✉s t❤❡ ❛r❡❛ ♦❢ t❤❡ ✐♥t❡rs❡❝t✐♦♥✿ ❛r❡❛ ♦❢ P ∪ Q = ❛r❡❛ ♦❢ P + ❛r❡❛ ♦❢ Q − ❛r❡❛ ♦❢ P ∩ Q .
■t ✐s ❝❛❧❧❡❞ t❤❡
❛❞❞✐t✐✈✐t② ♦❢ t❤❡ ❛r❡❛✳
❚❤❡ ❧❛st t❡r♠ ❞✐s❛♣♣❡❛rs ✇❤❡♥ t❤❡r❡ ✐s ♥♦ ♦✈❡r❧❛♣ ♦r ✐t ✐s ❥✉st ❛ ❝✉r✈❡✳
❚❤❡ ✐❞❡❛ ✐s t❤❡♥ t♦ ❜❡ ❛♣♣❧✐❡❞ t♦ ❝✉r✈❡❞ r❡❣✐♦♥s✿
❍♦✇❡✈❡r✱ ♦✉r ✉♥❞❡rst❛♥❞✐♥❣ ♦❢ ❛r❡❛s ✐s ❧✐♠✐t❡❞ t♦ t❤♦s❡ ♦❢ r❡❣✐♦♥s ✉♥❞❡r ❣r❛♣❤s ♦❢ ❢✉♥❝t✐♦♥s✳ ❊✈❡♥ t❤❡♥✱ t❤❡ ❛❞❞✐t✐✈✐t② ♦❢ t❤❡ ❛r❡❛s ♦❢ t❤♦s❡ r❡❣✐♦♥s ❤❛s ❜❡❡♥ ♦♥❧② ❞❡♠♦♥str❛t❡❞ ❢♦r t❤❡ s♣❡❝✐❛❧ ❝❛s❡ ✇❤❡♥ s✉❝❤ ❛ r❡❣✐♦♥ ✐s ❝✉t ❜② ❛ ✈❡rt✐❝❛❧ ❧✐♥❡✿ Z Z Z c
c
b
a
f dx .
f dx =
f dx +
b
❚❤✐s ❝❛s❡ ✐s ✐❧❧✉str❛t❡❞ ❜❡❧♦✇ ✭t❤❡ ❧✐♥❡ ✐s x = b✮✿
❲❤❛t ✐❢ t❤❡ r❡❣✐♦♥ ✉♥❞❡r t❤❡ ❣r❛♣❤ ✐s ❝✉t ❜② ❛♥♦t❤❡r ❣r❛♣❤❄
a
✸✳✶✳
❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s
✶✽✸
❲❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ✜♥❞ t❤❡ ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥ ❜❡t✇❡❡♥
t❤❡ ❣r❛♣❤s ✿
❚❤❡ ✐♥t❡❣r❛❧ ✐♥t❡r♣r❡t❛t✐♦♥ ✐s ❡❛s② t♦ s❡❡✿ ■❢ f (x) ≥ g(x) ❢♦r ❛❧❧ x ✐♥ [a, b]✱ t❤❡♥✿ P =R−Q=
Z
b a
f dx −
Z
b
g dx = a
❲❡ ❤❛✈❡ ❛ss✉♠❡❞ t❤❡ ❛❞❞✐t✐✈✐t② ♦❢ t❤❡ ❛r❡❛s ❛♥❞ ✉s❡❞ t❤❡ ❙✉♠
Z
b a
(f − g) dx .
❘✉❧❡ ❢♦r ✐♥t❡❣r❛❧s✳ ❍♦✇❡✈❡r✱ ❡✈❡r② t❡r♠ ✐♥ t❤❡ ❢♦r♠✉❧❛ ✐s t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤✳ ■♥ ♦r❞❡r t♦ ❥✉st✐❢② t❤❡ ❛❞❞✐t✐✈✐t② ❢♦r t❤❡ ❛r❡❛s ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s✱ ✇❡ ♥❡❡❞ t♦ st❛rt ❢r♦♠ s❝r❛t❝❤✳ ❇❛❝❦ t♦ ❛♣♣r♦①✐♠❛t✐♦♥s✳ ❲❡ st❛rt✱ ❛s ❜❡❢♦r❡✱ ✇✐t❤ ❛ ♣❛rt✐t✐♦♥ ♦❢ t❤❡ ✐♥t❡r✈❛❧ [a, b] ✐♥t♦ n ✐♥t❡r✈❛❧s ♦❢ ♣♦ss✐❜❧② ❞✐✛❡r❡♥t ❧❡♥❣t❤s✿ [x0 , x1 ], [x1 , x2 ], ..., [xn−1 , xn ] ,
✇✐t❤ x0 = a, xn = b✳
❚❤❡ ♣r✐♠❛r② ♥♦❞❡s ♦❢ P ❛r❡✿ x0 < x1 < x2 < ... < xn−1 < xn
❚❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ ✐♥t❡r✈❛❧s ❛r❡✿ ❚❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ P ❛r❡✿
∆xi = xi − xi−1 , i = 1, 2, ..., n .
c1 ✐♥ [x0 , x1 ], c2 ✐♥ [x1 , x2 ], ..., cn ✐♥ [xn−1 , xn ] .
✸✳✶✳ ❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s
✶✽✹
❚❤✐s t✐♠❡✱ ✇❡ ❢❛❝❡ t✇♦ ❢✉♥❝t✐♦♥s✳ ❲❡ ❛♣♣r♦①✐♠❛t❡ t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s ✇✐t❤ r❡❝t❛♥❣❧❡s ✇✐t❤ t❤❡s❡ ✇✐❞t❤s✿
▲❡t✬s t❛❦❡ ❛ ❧♦♦❦ ❛t t❤❡ it❤ r❡❝t❛♥❣❧❡✳ ■ts ✇✐❞t❤ ✐s✱ ❛s ❜❡❢♦r❡✱ ∆xi ✳ ◆♦✇✱ ✐ts t♦♣ ✐s f (ci ) ❛♥❞ t❤❡ ❜♦tt♦♠ ✐s g(ci ) ✭✐♥st❡❛❞ ♦❢ t❤❡ x✲❛①✐s✮✳ ❚❤❡r❡❢♦r❡✱ ✐ts ❤❡✐❣❤t ✐s f (ci ) − g(ci )✳ ❚❤❡♥✱ ✐ts ❛r❡❛ ✐s (f (ci ) − g(ci ))∆x2 ✳ ❍❡♥❝❡✱ t❤❡ t♦t❛❧ ❛r❡❛ ♦❢ t❤❡ r❡❝t❛♥❣❧❡s ✐s✿ (f (c1 ) − g(c1 ))∆x1 + (f (c2 ) − g(c2 ))∆x2 + ... + (f (cn ) − g(cn ))∆xn .
❚❤❡ ❦❡② st❡♣ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❲❡ r❡❝♦❣♥✐③❡ t❤✐s ❡①♣r❡ss✐♦♥ ❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤✐s ♥❡✇ ❢✉♥❝t✐♦♥✱ f − g ✱ t❤❡ ❞✐✛❡r❡♥❝❡ ✿ Σ (f − g) · ∆x =
n X i=1
|
(f − g)(ci )∆xi . {z
}
❛r❡❛s ♦❢ t❤❡ r❡❝t❛♥❣❧❡s
■♥❞❡❡❞✱ ✐t ✐s ❝♦♥✈❡♥✐❡♥t t♦ t❤✐♥❦ ♦❢ ❡❛❝❤ t❡r♠ ❛s ✐❢ ✐t r❡❢❡rs t♦ ❛ s✐♥❣❧❡ ❢✉♥❝t✐♦♥✱ f − g ✿ f (ck ) − g(ck ) = (f − g)(ck ) .
❚❤❡ r❡❝t❛♥❣❧❡s ✇❡ st❛rt❡❞ ✇✐t❤ ❛r❡ s❤♦✇♥ ♦♥ t❤❡ ❧❡❢t ❛♥❞ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ ♦♥ t❤❡ r✐❣❤t✿
❲❡ ❝❛♥ st✐❧❧ ❣♦ ❜❛❝❦ ❛♥❞ ❡①♣❧❛✐♥ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ ♥❡✇ ❢✉♥❝t✐♦♥ ✐♥ t❡r♠s ♦❢ ❛r❡❛s✳ ■t✬s ❛s ✐❢ t❤❡ r❡❝t❛♥❣❧❡s ❛r❡ ✜rst ❛❧✐❣♥❡❞ ✇✐t❤ y = f (x)✱ t❤❡♥ ❝✉t ❢r♦♠ ❜❡❧♦✇ ✇✐t❤ y = g(x)✱ s✉s♣❡♥❞❡❞ ✐♥ t❤❡ ❛✐r✱ ❛♥❞ t❤❡♥ ❞r♦♣♣❡❞ ♦♥ t❤❡ x✲❛①✐s✱ ❧✐❦❡ t❤✐s✿
✸✳✶✳
❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s
✶✽✺
❲❤❛t ✇❡ s❡❡ ✐s t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ f − g ✳ ❲❡ ❞❡✜♥❡ t❤❡ ❛r❡❛ ❛❝❝♦r❞✐♥❣❧②✿
❉❡✜♥✐t✐♦♥ ✸✳✶✳✷✿ ❛r❡❛ ❜❡t✇❡❡♥ ❣r❛♣❤s ❙✉♣♣♦s❡ f ❛♥❞ g ❛r❡ t✇♦ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦♥ ✐♥t❡r✈❛❧ [a, b] ✇✐t❤ f (x) ≥ g(x) ❢♦r ❛❧❧ x ✐♥ [a, b]✳ ❚❤❡♥ t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s ♦❢ t❤❡s❡ ❢✉♥❝t✐♦♥s ♦✈❡r ✐♥t❡r✈❛❧ [a, b] ✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡ ❧✐♠✐t ♦❢ ❛ s❡q✉❡♥❝❡ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦❢ t❤❡✐r ❞✐✛❡r❡♥❝❡ ✇✐t❤ t❤❡ ♠❡s❤ ♦❢ t❤❡✐r ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥s Pk ❛♣♣r♦❛❝❤✐♥❣ 0 ❛s k → ∞✱ ✇❤❡♥ ❛❧❧ t❤❡s❡ ❧✐♠✐ts ❡①✐st ❛♥❞ ❛r❡ ❛❧❧ ❡q✉❛❧ t♦ ❡❛❝❤ ♦t❤❡r✿ ❆r❡❛ ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s ♦❢ f, g = lim Σ (f − g) · ∆x . k→∞
❲❛r♥✐♥❣✦ ❯♥❧✐❦❡ t❤❡ ❛r❡❛ ✏✉♥❞❡r✑ t❤❡ ❣r❛♣❤✱ t❤✐s ♥✉♠❜❡r ❝❛♥✲ ♥♦t ❜❡ ♥❡❣❛t✐✈❡ ❛s ❞❡✜♥❡❞✳
❊①❡r❝✐s❡ ✸✳✶✳✸ ■❢ f ❛♥❞ g r❡♣r❡s❡♥t t❤❡ ✈❡❧♦❝✐t✐❡s ♦❢ t✇♦ ♦❜❥❡❝ts✱ ✇❤❛t ❞♦❡s t❤❡ ❛r❡❛ r❡♣r❡s❡♥t❄ ❚❤❡ ❞❡✜♥✐t✐♦♥ r❡♣❡❛ts t❤❛t ♦❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✿
❚❤❡♦r❡♠ ✸✳✶✳✹✿ ❆r❡❛ ❇❡t✇❡❡♥ ●r❛♣❤s ❛s ■♥t❡❣r❛❧ ❙✉♣♣♦s❡ f ❛♥❞ g ❛r❡ t✇♦ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦♥ ✐♥t❡r✈❛❧ [a, b] ✇✐t❤ f (x) ≥ g(x) ❢♦r ❛❧❧ x ✐♥ [a, b]✳ ■❢ f − g ✐s ✐♥t❡❣r❛❜❧❡✱ t❤❡♥ t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s ♦❢ f ❛♥❞ g ✐s ❡q✉❛❧ t♦ ❆r❡❛ ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s ♦❢ f, g =
Z
b a
(f − g) dx
❲❡ ❤❛✈❡ ❛ ✈❛r✐❡t② ♦❢ r❡❣✐♦♥s ✇❡ ✉s❡❞ t♦ ❜❡ ✉♥❛❜❧❡ t♦ ❝♦♠♣✉t❡✳
❊①❛♠♣❧❡ ✸✳✶✳✺✿ ❛r❡❛ ❜❡t✇❡❡♥ ♣❛r❛❜♦❧❛s ❊✈❛❧✉❛t❡ t❤❡ ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡ ♣❛r❛❜♦❧❛s y = x2 ❛♥❞ y = 2x2 + 1 ❜❡t✇❡❡♥ x = 0 ❛♥❞ x = 1✳ ■t ✐s ❝❧❡❛r t❤❛t g(x) = x2 ❛♥❞ f (x) = 2x2 + 1✱ ❛s ✇❡❧❧ ❛s a = 0 ❛♥❞ b = 1✳ ❚❤❡ ❢✉♥❝t✐♦♥s ❛r❡ ❝♦♥t✐♥✉♦✉s ❛♥❞✱ t❤❡r❡❢♦r❡✱ ✐♥t❡❣r❛❜❧❡✳ ❇❡❢♦r❡ ✇❡ ❛♣♣❧② t❤❡ ❢♦r♠✉❧❛✱ ✇❡ ❥✉st ♥❡❡❞ t♦ ❝♦♥✜r♠ t❤❛t t❤❡ ❣r❛♣❤ ♦❢ f ✐s ❛❜♦✈❡ t❤❡ ❣r❛♣❤ ♦❢ g ✿
✸✳✶✳
❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s
✶✽✻
❋♦r ❡✈❡r② x ❜❡t✇❡❡♥ 0 ❛♥❞ 1✱ ✇❡ ❤❛✈❡ x2 < 2x2 + 1 ❜❡❝❛✉s❡ 0 < x2 + 1✳ ❚❤✉s✱ ❆r❡❛ =
Z
b a
(f − g) dx =
Z
1
(2x2 + 1) − x
0
2
❙♦♠❡t✐♠❡s t❤❡ ✐♥t❡r✈❛❧ ✐s ♥♦t ♣r♦✈✐❞❡❞✳
dx =
Z
1 0
1 1 1 4 2 3 (x + 1) dx = x + x = + 1 = . 3 3 3 0
❊①❛♠♣❧❡ ✸✳✶✳✻✿ ❛r❡❛ ♣❛r❛❜♦❧❛ ❛♥❞ ❛ ❧✐♥❡
❊✈❛❧✉❛t❡ t❤✐s ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥ ✐s ❜♦✉♥❞❡❞ ❜② t❤❡ ♣❛r❛❜♦❧❛ y = x2 ❛♥❞ t❤❡ ❤♦r✐③♦♥t❛❧ ❧✐♥❡ y = 3✳ ❲❡ ✇✐❧❧ ♥❡❡❞ s♦♠❡ ❛❧❣❡❜r❛ t❤✐s t✐♠❡✱ t♦ ✜♥❞ a, b✿
√
❚❤❡ ✐♥t❡rs❡❝t✐♦♥ ♣♦✐♥ts (x, y) s❛t✐s❢②✿ y = 3 = x2 ✳ ❚❤❡♥ a = − 3, b = s❦❡t❝❤ t❤❛t f (x) = 3 ❛♥❞ g(x) = x2 ✳ ❚❤❡♥✱ ❆r❡❛
=
Z
Z
√
3✳ ❲❡ ❛❧s♦ r❡❛❧✐③❡ ❢r♦♠ t❤❡
b
(f − g) dx
a√
3
3 − x2 dx − 3 √3 1 = 3x − x3 3 √ − 3 √ √ 1√ 3 1 √ 3 = 3 3− 3 − −3 3 − (− 3) 3 3 √ √ 1 3 =2 3 3− 3 3 √ √ =2 3 3− 3 =
√
√ = 4 3.
❊①❛♠♣❧❡ ✸✳✶✳✼✿ ❛r❡❛ ❜❡t✇❡❡♥
x2
❛♥❞
x3
❊✈❛❧✉❛t❡ t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ y = x2 ❛♥❞ y = x3 ✳ ❖♥❝❡ ❛❣❛✐♥✱ ✇❡ ✜♥❞ t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♣♦✐♥ts ❜② s♦❧✈✐♥❣ x2 = x3 ✳ ❲❡ ❤❛✈❡ a = 0 ❛♥❞ b = 1✱ ✇❤✐❝❤ ❝♦♥✜r♠s t❤❡ s❦❡t❝❤ ❛♥❞ t❤❡ ❢❛❝t t❤❛t x3 < x2 ✿
✸✳✶✳
❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s
✶✽✼
❚❤❡♥✱ ✇❡ ❤❛✈❡✿ ❆r❡❛
=
Z
Z
b a
(f − g) dx 1
x2 − x3 dx 0 1 1 3 1 4 = x − x 3 4
=
0
1 1 − 3 4 1 = . 12 =
❊①❛♠♣❧❡ ✸✳✶✳✽✿ ❝✐r❝❧❡ ▲❡t✬s r❡✈✐s✐t t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ ❛r❡❛ ♦❢ t❤❡ ❝✐r❝❧❡✿
❚❤✐s t✐♠❡ ✇❡ ❞♦♥✬t ❤❛✈❡ t♦ s♣❧✐t ✐t ✐♥ ❤❛❧❢ ❛♥❞ r❡❧② ♦♥ ✐ts s②♠♠❡tr②❀ t❤❡ ❝✐r❝❧❡ ✐s t❤❡ r❡❣✐♦♥ ❜❡t✇❡❡♥ t✇♦ ❣r❛♣❤s✿
y= ❚❤❡ ❢♦r♠❡r ✐s
f
❛♥❞ t❤❡ ❧❛tt❡r ✐s
❆r❡❛
=
Z
R −R
√
g✳
R2
√
R 2 − x2
❆❧s♦✱
−
x2
+
❛♥❞
√ y = − R 2 − x2 .
a = −R, b = R✳ √
R2
−
x2
❚❤❡♥✱
dx = 2
Z
R −R
√
R2 − x2 dx = πR2 .
❚❤❡ ✐♥t❡❣r❛❧ ✐s ❡✈❛❧✉❛t❡❞ ✈✐❛ ❛ tr✐❣ s✉❜st✐t✉t✐♦♥✱ ❥✉st ❛s ❜❡❢♦r❡✳
❊①❡r❝✐s❡ ✸✳✶✳✾ ❋✐♥❞ t❤❡ ❛r❡❛ ♦❢ t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡ t✇♦ r❡❣✐♦♥s ❜♦✉♥❞❡❞ ❜② t❤❡ ❝✐r❝❧❡s
1✳
x2 +y 2 = 1 ❛♥❞ (x−1)2 +y 2 =
✸✳✷✳
❚❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
✶✽✽
❊①❡r❝✐s❡ ✸✳✶✳✶✵
❋✐♥❞ t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t❤❡ ❝✉r✈❡s
x = y2
❛♥❞
x = y4✳
✸✳✷✳ ❚❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
❚❤❡ ♠❡t❤♦❞ t❤❛t st❛rts t♦ s❤❛♣❡ ✉♣ ✐s ❛s ❢♦❧❧♦✇s✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ q✉❛♥t✐t②
Q
✏❝♦♥t❛✐♥❡❞✑ ✐♥ ❛ s♣❛❝❡ r❡❣✐♦♥
R✿
❛r❡❛✱ ✈♦❧✉♠❡✱ ♠❛ss✱ ♣❛rt✐❝✉❧❛r ♠❛t❡r✐❛❧✱
❝❤❛r❣❡✱ ❡t❝✳ ❚❤❡♥✿ ✶✳ ❲❡ r❡♣r❡s❡♥t t❤❡ t♦t❛❧ q✉❛♥t✐t②
Q
❛s t❤❡ s✉♠ ♦❢ ✐ts ✈❛❧✉❡s
Qi
♦✈❡r s✐♠♣❧❡r✱ ❛♥❞ s♠❛❧❧❡r✱ ♣❛rts ♦❢
R✳
✷✳ ❲❡ r❡♣r❡s❡♥t✱ ♦r ❛♣♣r♦①✐♠❛t❡✱ ❡❛❝❤ ♦❢ t❤❡s❡ ✈❛❧✉❡s ✈✐❛ ❛ ❢❛♠✐❧✐❛r q✉❛♥t✐t②✱ ❡✳❣✳✱ ❛r❡❛ ✈✐❛ ❧❡♥❣t❤✱ ✈♦❧✉♠❡ ✈✐❛ ❛r❡❛✱ ❡t❝✳ ✸✳ ❲❡ r❡❝♦❣♥✐③❡ t❤❡ s✉♠ ❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥ t❤❛t r❡♣r❡s❡♥ts s♦♠❡ ♦t❤❡r q✉❛♥t✐t②
q
s♣r❡❛❞
♦✈❡r t❤❡ r❡❣✐♦♥✳ ✹✳ ❚❤❡ q✉❛♥t✐t②
Q
✐s ❡q✉❛❧ t♦ t❤❡ ✐♥t❡❣r❛❧ ♦❢
q✳
❚❤❡ ❧❛st st❡♣ ✐s ♥❡❝❡ss❛r② ♦♥❧② ✇❤❡♥ ✇❡ ❛♣♣r♦①✐♠❛t❡ ❛♥ ✐❞❡❛❧✐③❡❞ s✐t✉❛t✐♦♥✳ ❲❡ ✇✐❧❧ ✐❧❧✉str❛t❡ t❤❡ ♠❡t❤♦❞ ✇✐t❤ ♦♥❡ ♠♦r❡ ❡①❛♠♣❧❡✳ ▲❡t✬s r❡❝❛❧❧ ❤♦✇ t❤❡
❧✐♥❡❛r ❞❡♥s✐t② ✇❛s ❞❡✜♥❡❞ ✐♥ ❱♦❧✉♠❡ ✷✳
❲❡ ❛r❡ ❣✐✈❡♥ ❛ ♠❡t❛❧ r♦❞✿
❚❤❡ r♦❞ ♠✐❣❤t ❜❡ ♥♦♥✲✉♥✐❢♦r♠✱ ✐✳❡✳✱ t❤❡ ❞❡♥s✐t② ✈❛r✐❡s ❜✉t ♦♥❧② ✐♥ t❤❡ ❤♦r✐③♦♥t❛❧ ❞✐r❡❝t✐♦♥✳ ❋♦r ❡①❛♠♣❧❡✱ t❤✐s ✐s ✇❤❛t ♠✐❣❤t ❤❛♣♣❡♥ ✇❤❡♥ t✇♦ ♠❡t❛❧s ❛r❡ ✭✐♠♣❡r❢❡❝t❧②✮ ♠❡❧t❡❞ ✐♥t♦ ❛ ♣✐❡❝❡ ♦❢ ❛❧❧♦②✿
❆♥♦t❤❡r ❡①❛♠♣❧❡ ✐s ♣❛rt✐❝❧❡s s✉s♣❡♥❞❡❞ ✐♥ ❛ ❧✐q✉✐❞ t❤❛t s❡tt❧❡s ✕ ❜❡❝❛✉s❡ ♦❢ ❣r❛✈✐t② ✕ ✐♥ ❛ ♣❛tt❡r♥ t❤❛t ✐s ❞❡♥s❡r ❛t t❤❡ ❜♦tt♦♠✿
✸✳✷✳
❚❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
✶✽✾
x✲❛①✐s✮ ✇✐t❤ ♥♦ ❝❤❛♥❣❡ ✐♥ ❞❡♥s✐t② ✐♥ t❤❡ ❞✐r❡❝t✐♦♥s ♣❡r♣❡♥❞✐❝✉❧❛r x ❞❡s✐❣♥❛t✐♥❣ ❧✐♥❡❛r ❞❡♥s✐t② y = l(x)✳
■♥ ❡✐t❤❡r ❝❛s❡✱ t❤❡r❡ ✐s ❛ ❧✐♥❡ ✭✇❡ ❝❛❧❧ ✐t t❤❡
t♦ ✐t✳ ❲❡ t❤❡♥ ✐❣♥♦r❡ t❤♦s❡ ❞✐r❡❝t✐♦♥s ❛♥❞ t❤❡ ❞❡♥s✐t② ❜❡❝♦♠❡s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❛ s✐♥❣❧❡ ♥✉♠❜❡r t❤❡ ❧♦❝❛t✐♦♥ ❛❧♦♥❣ t❤✐s ❧✐♥❡❀ ❤❡♥❝❡ t❤❡
❚❛❦❡ ❛ s♠❛❧❧ ♣✐❡❝❡ ♦❢ t❤❡ r♦❞ ❛t ❧♦❝❛t✐♦♥
x✱ ∆x
❧♦♥❣✱ ❛♥❞ ❧❡t✬s ❝❛❧❧ ✐ts ♠❛ss
❤❛✈❡✿ ▲✐♥❡❛r ❞❡♥s✐t②
=
♠❛ss ❧❡♥❣t❤
=
∆m✳
❚❤❡♥✱ ❢♦r t❤✐s ♣✐❡❝❡✱ ✇❡
∆m m(x + ∆x) − m(x) = . ∆x ∆x
▲❡t✬s r❡✈❡rs❡ t❤✐s ❛♥❛❧②s✐s✳ ❙✉♣♣♦s❡ t❤✐s t✐♠❡ t❤❡ ❧✐♥❡❛r ❞❡♥s✐t②
l
✐s ❣✐✈❡♥✱ ✇❤❛t ✐s t❤❡ ♠❛ss ♦❢ t❤❡ r♦❞❄
❊①❛♠♣❧❡ ✸✳✷✳✶✿ t✇♦ ♣✐❡❝❡s ❙✉♣♣♦s❡ t❤❡ t✇♦ ♠❡t❛❧s ❤❛✈❡♥✬t ♠❡r❣❡❞ ❛t ❛❧❧✿
❚❤❡r❡❢♦r❡✱ t❤❡ ♠❛ss ✐s s✐♠♣❧② t❤❡ s✉♠ ♦❢ t❤❡ t✇♦✿ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥ ♦✈❡r
l✱
1·1+2·1 = 3✳
■t ✐s ❛❧s♦ t❤❡ ❛r❡❛ ♦❢ t❤❡ t✇♦ r❡❝t❛♥❣❧❡s
✇❤✐❝❤ ✐s ❛ st❡♣✲❢✉♥❝t✐♦♥✱ ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧ ♦❢
[0, 2]✳
❊①❡r❝✐s❡ ✸✳✷✳✷ ❲❤❛t ✐❢ t❤❡ t✇♦ r♦❞s ❤❛✈❡ ❧❡♥❣t❤s
■♥st❡❛❞ ♦❢ ❥✉st ♣♦✐♥t✐♥❣ ♦✉t ✇❤❛t
m
❲❡ ❤❛✈❡ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥
P✿
0.5
❛♥❞
1.5❄
✐s✱ ❧❡t✬s st❛rt ❢r♦♠ s❝r❛t❝❤✳
a = x0 ≤ c1 ≤ x1 ≤ ... ≤ cn ≤ xn = b ,
l
✸✳✷✳
❚❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
✶✾✵
✇✐t❤ t❤❡s❡ ❧❡♥❣t❤s ♦❢ s❡❣♠❡♥ts✿
∆xi = xi − xi−1 . ❲❡ ✜rst ✐♠❛❣✐♥❡ t❤❛t t❤❡ r♦❞ ✐s ❞✐✈✐❞❡❞ ✐♥t♦ s♠❛❧❧❡r ♣✐❡❝❡s s♦ t❤❛t t❤❡ ❞❡♥s✐t② ♦❢ ❡❛❝❤ ✐s ❢♦✉♥❞ s❡♣❛r❛t❡❧②✿ F1 , F2 , ..., Fn ✿
❚❤❡♥ t❤❡ t♦t❛❧ ✇❡✐❣❤t ✐s s✐♠♣❧② t❤❡ ❢♦❧❧♦✇✐♥❣✿ ❚♦t❛❧ ✇❡✐❣❤t = F1 ∆x1 + F2 ∆x2 + ... + Fn ∆xn . ❚❤❡ ❢♦r♠✉❧❛ ✐s s✉✣❝✐❡♥t ❢♦r ❛♣♣❧✐❝❛t✐♦♥s ✇❤❡♥ ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ✐s s✉✣❝✐❡♥t✳ ❍❡r❡✱ ✇❡ ❛ss✉♠❡ t❤❛t t❤❡ ❞❡♥s✐t② ✐s ❝❤❛♥❣✐♥❣ ❝♦♥t✐♥✉♦✉s❧② ❛♥❞ ✇❡ ❝✉t t❤❡ r♦❞ ✐♥t♦ t❤❡s❡ s♠❛❧❧ s❡❣♠❡♥ts ❜② t❤❡ ♣❧❛♥❡s st❛rt✐♥❣ ❛t x = xi ❛♥❞ t❤❡♥ s❛♠♣❧❡ ✐ts ❞❡♥s✐t② ❛t t❤❡ ♣♦✐♥ts ci ✿
❚❤❡♥ t❤❡ ❞❡♥s✐t② ♦❢ ❡❛❝❤ s❡❣♠❡♥t ✕ ✐❢ ✉♥✐❢♦r♠ ✕ ✐s ❣✐✈❡♥ ❜② l(ci ) ❛♥❞ ✇❡ ❤❛✈❡✿ ▼❛ss ♦❢ it❤ s❡❣♠❡♥t = ❞❡♥s✐t② · ❧❡♥❣t❤ = l(ci ) · ∆xi . ❚❤❡♥✱ ❚♦t❛❧ ♠❛ss =
n X i=1
❲❡
l(ci ) · ∆xi .
r❡❝♦❣♥✐③❡ t❤✐s ❡①♣r❡ss✐♦♥ ❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ❢✉♥❝t✐♦♥ ♦✈❡r t❤✐s ♣❛rt✐t✐♦♥✿ ❉❡✜♥✐t✐♦♥ ✸✳✷✳✸✿ ♠❛ss ■❢ ❛ ❢✉♥❝t✐♦♥ l ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛ s❡❣♠❡♥t [a, b] ✐s ❝❛❧❧❡❞ ❧✐♥❡❛r ❞❡♥s✐t②✱ t❤❡♥ ✐ts ❘✐❡♠❛♥♥ s✉♠
✐s ❝❛❧❧❡❞ t❤❡
♠❛ss ♦❢ t❤❡ s❡❣♠❡♥t✳
Σ l · ∆x
◆♦✇✱ ✇❤❛t ✐❢ t❤❡ ❞❡♥s✐t② ✈❛r✐❡s ❝♦♥t✐♥✉♦✉s❧②❄
❊①❛♠♣❧❡ ✸✳✷✳✹✿ ❧✐♥❡❛r ❞❡♣❡♥❞❡♥❝❡ ❙✉♣♣♦s❡ t❤❡ ❞❡♥s✐t② ♦❢ ❛ r♦❞ ♦❢ ❧❡♥❣t❤ 2 ✐s ❝❤❛♥❣✐♥❣ ❧✐♥❡❛r❧②✿ ❢r♦♠ 1 t♦ 2✳ ❚❤❡♥ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❛✈❡r❛❣❡ ❞❡♥s✐t② ✐s ❝❧❡❛r❀ ✐t ✐s 1.5✳ ❲❡ ❥✉st ❛✈❡r❛❣❡✳ ▲❡t✬s ♠❛❦❡ s✉r❡ t❤❛t t❤❡ ❞❡✜♥✐t✐♦♥ ♠❛❦❡s s❡♥s❡✿
✸✳✷✳
❚❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
✶✾✶
■t ❢♦❧❧♦✇s t❤❛t t❤❡ ♠❛ss ✐s 1.5 · 2 = 3✳ ■t ✐s ❛❧s♦ t❤❡ ❛r❡❛ ♦❢ t❤❡ tr❛♣❡③♦✐❞ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥ l(x) = 1 + x/2 ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤✐s ❢✉♥❝t✐♦♥ ♦✈❡r [0, 2]✳ ■❢ t❤❡ ❞❡♥s✐t② ✐s ✈❛r✐❛❜❧❡✱ t❤❡♥ t❤❡ ♠❛ss ♦❢ ❡❛❝❤ s❡❣♠❡♥t ✕ ✇❤❡♥ s❤♦rt ❡♥♦✉❣❤ ✕ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ ♠❛ss ♦❢ s✉❝❤ ❛ s❡❣♠❡♥t ♠❛❞❡ ❡♥t✐r❡❧② ♦❢ ♠❛t❡r✐❛❧ ♦❢ ❞❡♥s✐t② l(ci )✿ ▼❛ss ♦❢ it❤ s❡❣♠❡♥t ≈ ❞❡♥s✐t② · ❧❡♥❣t❤ = l(ci ) · ∆xi , ❛♥❞ ❚♦t❛❧ ♠❛ss ≈ ❚❤❡♥✱ ✇❡ ❞❡✜♥❡ t❤❡ ✐♥t❡❣r❛❧ ♦❢ l✿
♠❛ss
n X i=1
l(ci ) · ∆xi = Σ l · ∆x .
♦❢ t❤❡ r♦❞ ❛s t❤❡ ❧✐♠✐t✱ ✐❢ ✐t ❡①✐sts✱ ♦❢ t❤❡s❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✐✳❡✳✱ t❤❡ ❘✐❡♠❛♥♥
❉❡✜♥✐t✐♦♥ ✸✳✷✳✺✿ ♠❛ss ■❢ ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ l ♦♥ s❡❣♠❡♥t [a, b] ✐s ❝❛❧❧❡❞ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ Z b l dx ✐s ❝❛❧❧❡❞ t❤❡
♠❛ss ♦❢ t❤❡ s❡❣♠❡♥t✳
❧✐♥❡❛r ❞❡♥s✐t②✱
t❤❡♥ ✐ts
a
❊①❛♠♣❧❡ ✸✳✷✳✻✿ q✉❛❞r❛t✐❝ ❞❡♣❡♥❞❡♥❝❡ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛❣❛✐♥ ❛ r♦❞ ♦❢ ❧❡♥❣t❤ 2 ✇✐t❤ t❤❡ ❞❡♥s✐t② ❝❤❛♥❣✐♥❣ ❢r♦♠ 1 t♦ 2✱ ❜✉t q✉❛❞r❛t✐❝❛❧❧②✱ l(x) = x2 + 1✳ ❚❤❡ ♠❛ss ✐s ✐♠♣♦ss✐❜❧❡ t♦ ❣✉❡ss✿
❲❡ ❝♦♠♣✉t❡ t❤❡ ✐♥t❡❣r❛❧✿ ▼❛ss =
Z
b
l dx = a
Z
1
1 x3 4 (x + 1) dx = + x = . 3 3 0 2
0
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
✶✾✷
❍❡r❡ ✐s ❛♥♦t❤❡r ✇❛② t♦ ❡①♣❧❛✐♥ ♦✉r ❞❡✜♥✐t✐♦♥✳ ❲❡ r❡❛❧✐③❡ t❤❛t ❡✈❡r② ❧♦❝❛t✐♦♥ ✇✐t❤ ❤✐❣❤❡r ❞❡♥s✐t② s✐♠♣❧② ❝♦♥t❛✐♥s ♠♦r❡ ♠❛t❡r✐❛❧ ❛♥❞ ✇❡ ❝❛♥ ❥✉st s♣r❡❛❞ ✐t ♦✉t ✕ ✈❡rt✐❝❛❧❧② ✕ ♠❛❦✐♥❣ ❛ ♣❧❛t❡ t❤❛t ✐s ✇✐❞❡r ❛t t❤✐s s♣♦t ❛♥❞ t❤✐♥♥❡r ❛t t❤❡ ❧♦❝❛t✐♦♥ ✇✐t❤ ❛ ❧♦✇❡r ❞❡♥s✐t②✿
■♥ r❡✈❡rs❡✱ ✐♠❛❣✐♥❡ t❤❛t t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ✐s ♠❛❞❡ ♦❢ ❛ s❤❡❡t ♦❢ ♠❡t❛❧✱ ✇❤✐❝❤ ✐s t❤❡♥ ♥♦♥✲✉♥✐❢♦r♠ r♦❞✳
r♦❧❧❡❞
✐♥t♦ ❛
❊①❡r❝✐s❡ ✸✳✷✳✼
❋✐♥❞ ❤♦✇ t❤❡ ♠❛ss ♦❢ ❛ r♦❞ ✇✐t❤ ❛♥ ❡①♣♦♥❡♥t✐❛❧❧② ❣r♦✇✐♥❣ ❞❡♥s✐t② ❣r♦✇s✳ ❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ♣r♦✈✐❞❡s ❢✉rt❤❡r ✐♥s✐❣❤t✳ ❙✉♣♣♦s❡ m(x) ✐s t❤❡ ✇❡✐❣❤t ♦❢ t❤❡ r♦❞ ❢r♦♠ a t♦ x✳ ❚❤❡♥ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s t❤❡ ❞❡♥s✐t②✿
m′ (x) = l(x) . ❊①❡r❝✐s❡ ✸✳✷✳✽
■s ✐t ♠❡❛♥✐♥❣❢✉❧ t♦ s♣❡❛❦ ♦❢ t❤❡ ♠❛ss ♦❢ ❛♥ ✐♥✜♥✐t❡❧② ❧♦♥❣ r♦❞❄
✸✳✸✳ ❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
❈❛♥ ✇❡ ♥♦✇ ❜❛❧❛♥❝❡ t❤✐s ♥♦♥✲✉♥✐❢♦r♠ r♦❞ ♦♥ ❛ s✐♥❣❧❡ ♣♦✐♥t ♦❢ s✉♣♣♦rt❄ ❚r✐❛❧ ❛♥❞ ❡rr♦r s✉❣❣❡st t❤✐s✿
❚❤❡ q✉❡st✐♦♥ ✐s ✐♠♣♦rt❛♥t ❜❡❝❛✉s❡ t❤✐s ♣♦✐♥t✱ ❝❛❧❧❡❞ t❤❡ ♦❜❥❡❝t✳
❝❡♥t❡r ♦❢ ♠❛ss✱
✐s t❤❡ ❝❡♥t❡r ♦❢ r♦t❛t✐♦♥ ♦❢ t❤❡
❚❤❡ ❛♥❛❧②s✐s st❛rts ✇✐t❤ ❛ s✐♠♣❧❡st ❝❛s❡✱ s❡❡s❛✇✳ ❚✇♦ ♣❡rs♦♥s ♦❢ ❡q✉❛❧ ✇❡✐❣❤t ✇✐❧❧ ❜❡ ✐♥ ❛ st❛t❡ ♦❢ ❜❛❧❛♥❝❡ ✇❤❡♥ ❧♦❝❛t❡❞ ❛t ❡q✉❛❧ ❞✐st❛♥❝❡s ❢r♦♠ t❤❡ ♣♦✐♥t ♦❢ s✉♣♣♦rt✿
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
✶✾✸
◆♦✇✱ ✇❤❛t ❝❛♥ ❜❡ ❝❤❛♥❣❡❞❄ ❲❤❛t ✐❢ ♦♥❡ ♣❡rs♦♥ ✐s ❤❡❛✈✐❡r t❤❛♥ t❤❡ ♦t❤❡r❄ ❋r♦♠ ❡①♣❡r✐❡♥❝❡✱ ✇❡ ❦♥♦✇ t❤❛t t❤❡ ❢♦r♠❡r ♣❡rs♦♥ s❤♦✉❧❞ s✐t ❢❛rt❤❡r ❢r♦♠ t❤❡ ❝❡♥t❡r ✐♥ ♦r❞❡r t♦ ❜❛❧❛♥❝❡ t❤❡ ❜❡❛♠✿
■♥ ❢❛❝t✱ ✐❢ t❤❡ ♣❡rs♦♥ ✐s t✇✐❝❡ ❛s ❤❡❛✈② ❛s t❤❡ ♦t❤❡r✱ t❤❡ ❞✐st❛♥❝❡ ❢♦r t❤❡ ♦t❤❡r s❤♦✉❧❞ ❜❡ t✇✐❝❡ ❛s ❧♦♥❣✦ ❈♦♥✈❡rs❡❧②✱ ✐❢ ♦♥❡ ♣❡rs♦♥ s✐ts ❢❛rt❤❡r ❢r♦♠ t❤❡ ❝❡♥t❡r t❤❛♥ t❤❡ ♦t❤❡r ♦❢ t❤❡ s❛♠❡ ✇❡✐❣❤t✱ t❤❡ ❢♦r♠❡r ♣❡rs♦♥ s❤♦✉❧❞ ❜❡ ❥♦✐♥❡❞ ❜② ❛♥♦t❤❡r ✐♥ ♦r❞❡r t♦ ❜❛❧❛♥❝❡ t❤❡ ❜❡❛♠✳ ❙✉♣♣♦s❡ t❤❡ s❤♦rt❡r ❞✐st❛♥❝❡ ✐s ❛♥❞ ✇❡✐❣❤ts ❛r❡
2m
❛♥❞
m✳
a
❛♥❞ t❤❡ s♠❛❧❧❡r ✇❡✐❣❤t ✐s
❲❡ ❡①♣r❡ss t❤✐s ❞❛t❛ ✈✐❛ t❤❡
m✳
❚❤❡♥✱ ❝♦♠❜✐♥❡❞✱ t❤❡ ❞✐st❛♥❝❡s ❛r❡
❜❛❧❛♥❝❡ ❡q✉❛t✐♦♥
a
❛♥❞
2a
✿
(a)(2m) = (2a)(m) .
■♥ ♦t❤❡r ✇♦r❞s✱ t❤✐s ❡①♣r❡ss✐♦♥✿ ❞✐st❛♥❝❡ ❝❛❧❧❡❞
❧❡✈❡r
t❤❡ ♠♦♠❡♥t
·
✇❡✐❣❤t
✱ ✐s t❤❡ s❛♠❡ t♦ t❤❡ ❧❡❢t ❛♥❞ t♦ t❤❡ r✐❣❤t ♦❢ t❤❡ s✉♣♣♦rt✳ ❚❤✐s ❞✐st❛♥❝❡ ✐s ❛❧s♦ ❝❛❧❧❡❞ t❤❡
✳
▲❡t✬s ❛❞❞ t❤❡
x✲❛①✐s✳
❲❡ t❤❡♥ r❡❛❧✐③❡ t❤❛t ✐t ✐s t❤❡
s✐❣♥❡❞ ❞✐st❛♥❝❡
✱ ✐✳❡✳✱ t❤❡
x✲❝♦♦r❞✐♥❛t❡✱
r❡✲✇r✐t❡ t❤❡ ❜❛❧❛♥❝❡ ❡q✉❛t✐♦♥✿
(−a)(2m) + (2a)(m) = 0 .
♦❢ t❤❡ ♦❜❥❡❝t t❤❛t ♠❛tt❡rs✳ ❲❡ s✐♠♣❧②
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
✶✾✹
❚❤❡♥✱
♠♦♠❡♥t = ❝♦♦r❞✐♥❛t❡ · ✇❡✐❣❤t
❋✉rt❤❡r♠♦r❡✱ ✇❡ ❝❛♥ ❛ss✉♠❡ t❤❡r❡ ✐s ❛♥ ♦❜❥❡❝t ❛t ❡✈❡r② ❧♦❝❛t✐♦♥ ❜✉t t❤❡ r❡st ♦❢ t❤❡♠ ❤❛✈❡ 0 ♠❛ss✳ ❚❤❡ ❜❛❧❛♥❝❡ ❡q✉❛t✐♦♥ ❜❡❝♦♠❡s✿ ... + (−2a)(0) + (−a)(2m) + (0)(0) + (a)(0) + (2a)(m) + ... = 0 .
❚❤✐s ❛♥❛❧②s✐s ❜r✐♥❣s ✉s t♦ t❤❡ ✐❞❡❛ ♦❢ ❝♦♠❜✐♥✐♥❣ t❤❡ ✇❡✐❣❤ts ❛♥❞ t❤❡ ❞✐st❛♥❝❡s ✐♥ ❛ ♣r♦♣♦rt✐♦♥❛❧ ♠❛♥♥❡r ✐♥ ♦r❞❡r t♦ ❡✈❛❧✉❛t❡ t❤❡ ❝♦♥tr✐❜✉t✐♦♥ ♦❢ ❛ ♣❛rt✐❝✉❧❛r ✇❡✐❣❤t t♦ t❤❡ ♦✈❡r❛❧❧ ❜❛❧❛♥❝❡✳ ❚❤❡ ❜❛❧❛♥❝❡ ❡q✉❛t✐♦♥ s✐♠♣❧② s❛②s t❤❛t t❤❡ s✉♠ ♦❢ ❛❧❧ ♠♦♠❡♥ts ✐s 0✳
❉❡✜♥✐t✐♦♥ ✸✳✸✳✶✿ ✇❡✐❣❤ts ❲❡ ❝❛❧❧ ❛ s②st❡♠ ♦❢ ✇❡✐❣❤ts ❛♥② ❝♦❧❧❡❝t✐♦♥ ♦❢ ♥♦♥✲♥❡❣❛t✐✈❡ ♥✉♠❜❡rs m1 , ..., mn ❝❛❧❧❡❞ ✇❡✐❣❤ts ❛ss✐❣♥❡❞ t♦ n ❧♦❝❛t✐♦♥s ✇✐t❤ ❝♦♦r❞✐♥❛t❡s a1 , ..., an ♦♥ t❤❡ x✲❛①✐s✳
❉❡✜♥✐t✐♦♥ ✸✳✸✳✷✿ t♦t❛❧ ♠♦♠❡♥t
❚❤❡ t♦t❛❧ ♠♦♠❡♥t ♦❢ t❤❡ s②st❡♠ ♦❢ ✇❡✐❣❤ts ✇✐t❤ r❡s♣❡❝t t♦ ❜❡ t❤❡ s✉♠ ♦❢ t❤❡ ♠♦♠❡♥ts ♦❢ t❤❡ ✇❡✐❣❤ts✱ ✐✳❡✳✱ X
t♦ t❤❡ ♦r✐❣✐♥ ✐s ❞❡✜♥❡❞
mi ai .
i
❚❤❡ ❜❛❧❛♥❝❡
❡q✉❛t✐♦♥ ♦❢ t❤❡ s②st❡♠ st❛t❡s t❤❛t ✐ts t♦t❛❧ ♠♦♠❡♥t ✐s ③❡r♦✳
❲❡ ♥♦✇ ❣♦ ❜❛❝❦ t♦ t❤❡ ♦r✐❣✐♥❛❧ ♣r♦❜❧❡♠✿ ◮ ❙✉♣♣♦s❡ ❞✐✛❡r❡♥t ✇❡✐❣❤ts ❛r❡ ❧♦❝❛t❡❞ ♦♥ ❛ ❜❡❛♠✱ ✇❤❡r❡ ❞♦ ✇❡ ♣✉t t❤❡ s✉♣♣♦rt ✐♥ ♦r❞❡r t♦
❜❛❧❛♥❝❡ ✐t❄
■t ✇❛s ❡♥t✐r❡❧② ♦✉r ❞❡❝✐s✐♦♥ t♦ ♣❧❛❝❡ t❤❡ ♦r✐❣✐♥ ♦❢ ♦✉r x✲❛①✐s ❛t t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss✳ ❚❤❡ r❡s✉❧t ✇❡ ❤❛✈❡ ❡st❛❜❧✐s❤❡❞ s❤♦✉❧❞ ❜❡ ✐♥❞❡♣❡♥❞❡♥t ❢r♦♠ t❤❛t ❝❤♦✐❝❡ ❛♥❞ ✇❡ ❝❛♥ ♠♦✈❡ t❤❡ ♦r✐❣✐♥ ❛♥②✇❤❡r❡✳
❲❡ ❥✉st ♥❡❡❞ t♦ ❡①❡❝✉t❡ ❛ ❝❤❛♥❣❡ ♦❢ ✈❛r✐❛❜❧❡s✳ ❙✉♣♣♦s❡ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ✭❛♥❞ t❤❡ ♦r✐❣✐♥ ♦❢ t❤❡ ♦❧❞ ❝♦♦r❞✐♥❛t❡ s②st❡♠✮ ✐s ❧♦❝❛t❡❞ ❛t t❤❡ ♣♦✐♥t ✇✐t❤ ❝♦♦r❞✐♥❛t❡ c ♦❢ t❤❡ ♥❡✇ ❝♦♦r❞✐♥❛t❡ s②st❡♠✳ ❚❤❡♥✱ t❤❡ ♥❡✇ ❝♦♦r❞✐♥❛t❡ ♦❢ t❤❡ it❤ ♦❜❥❡❝t ✐s ci = ai + c .
❚❤❡r❡❢♦r❡✱ t❤❡ ❜❛❧❛♥❝❡ ❡q✉❛t✐♦♥ ❤❛s t❤✐s ❢♦r♠✿ X i
mi (ci − c) = 0 .
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
❲❡ r❡✇r✐t❡✿
✶✾✺
X
mi ci = c
i
❚❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❡q✉❛t✐♦♥ ♠❛② ❜❡ s❡❡♥ ❛s ❢♦❧❧♦✇s✿
X
mi .
i
◮ ❚❤❡ ✇❤♦❧❡ ✇❡✐❣❤t ✐s ❝♦♥❝❡♥tr❛t❡❞ ❛t c✳
❍❡♥❝❡ t❤❡ ♥❛♠❡✳
❉❡✜♥✐t✐♦♥ ✸✳✸✳✸✿ ♠♦♠❡♥t ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ s②st❡♠ ♦❢ ✇❡✐❣❤ts m1 , ..., mn ❧♦❝❛t❡❞ ❛t c1 , ..., cn ♦♥ t❤❡ x✲❛①✐s✳ ❋♦r ❛ ❣✐✈❡♥ ♣♦✐♥t c ❛♥❞ ❢♦r ❡❛❝❤ i✱ t❤❡ ♣r♦❞✉❝t mi (ci − c)
✐s ❝❛❧❧❡❞ t❤❡ it❤ ✇❡✐❣❤t✬s ♠♦♠❡♥t
✇✐t❤ r❡s♣❡❝t t♦ c✳
X i
❚❤❡ s✉♠ ♦❢ t❤❡ ♠♦♠❡♥ts✱
mi (ci − c) ,
✐s ❝❛❧❧❡❞ t❤❡ t♦t❛❧ ♠♦♠❡♥t ✇✐t❤ r❡s♣❡❝t t♦ c✳ ❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤✐s s②st❡♠ ♦❢ ✇❡✐❣❤ts ✐s s✉❝❤ ❛ ♣♦✐♥t c t❤❛t t❤❡ t♦t❛❧ ♠♦♠❡♥t ✇✐t❤ r❡s♣❡❝t t♦ c ✐s ③❡r♦✳ ❖❢ ❝♦✉rs❡✱ ✐❢ c = 0✱ ✇❡ ❤❛✈❡ t❤❡ ♦❧❞ ❞❡✜♥✐t✐♦♥✳
❊①❛♠♣❧❡ ✸✳✸✳✹✿ ❝❡♥t❡r ♦❢ ♠❛ss ❜② tr✐❛❧ ❛♥❞ ❡rr♦r ❋♦❧❧♦✇✐♥❣ t❤✐s ✐♥s✐❣❤t✱ ❧❡t✬s ✜♥❞ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ ❛♥ ♦❜❥❡❝t✳ ❚❤❡ ♠❡t❤♦❞ ❛♠♦✉♥ts t♦ tr✐❛❧ ❛♥❞ ❡rr♦r✳ ❲❡ ❥✉st ♠♦✈❡ c ✇❤✐❧❡ ✇❛t❝❤✐♥❣ t❤❡ t♦t❛❧ ♠♦♠❡♥t✿
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
✶✾✻
❊①❡r❝✐s❡ ✸✳✸✳✺
❲❤❛t ✐❢ ✇❡ ❛❧❧♦✇ t❤❡ ✈❛❧✉❡s ♦❢ mi t♦ ❜❡ ♥❡❣❛t✐✈❡❄ ❲❤❛t ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ s②st❡♠ ❛♥❞ ♦❢ c❄ ❚♦ ♠❛❦❡ ♦✉r t❛s❦ ❡❛s✐❡r✱ ✇❡ s♦❧✈❡ t❤❡ ❜❛❧❛♥❝❡ ❡q✉❛t✐♦♥ ❢♦r c✳ ❚❤❡♦r❡♠ ✸✳✸✳✻✿ ❈❡♥t❡r ♦❢ ▼❛ss ■❢
c
✐s t❤❡ ❝♦♦r❞✐♥❛t❡ ♦❢ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤❡ s②st❡♠ ♦❢ ✇❡✐❣❤ts✱ t❤❡♥ ✇❡
❤❛✈❡✿
P mi ci c = Pi i mi ❊①❡r❝✐s❡ ✸✳✸✳✼
Pr♦✈❡ t❤❡ ❢♦r♠✉❧❛✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ ❈❡♥t❡r ♦❢ ♠❛ss =
t♦t❛❧ ♠♦♠❡♥t t♦t❛❧ ♠❛ss
❊①❛♠♣❧❡ ✸✳✸✳✽✿ ❝❡♥t❡r ♦❢ ♠❛ss ❢r♦♠ t❤❡ ❢♦r♠✉❧❛
❆r♠❡❞ ✇✐t❤ t❤✐s ❢♦r♠✉❧❛✱ ✇❡ ❝❛♥ q✉✐❝❦❧② ✜♥❞ t❤❡ ❝❡♥t❡rs ♦❢ ♠❛ss ♦❢ ♦❜❥❡❝ts✳ ❇❡❧♦✇ ✐s t❤❡ s❤❛♣❡ ❢r♦♠ t❤❡ ❧❛st ❡①❛♠♣❧❡✿
❊①❛♠♣❧❡ ✸✳✸✳✾✿ t✇♦ ♦❜ ❥❡❝ts
▲❡t✬s t❡st t❤❡ ❢♦r♠✉❧❛ ❢♦r ❛ s②st❡♠ ♦❢ ❥✉st t✇♦ ♦❜❥❡❝ts✳ ❋✐rst✱ s✉♣♣♦s❡ ✇❡ ❤❛✈❡ t✇♦ ✐❞❡♥t✐❝❛❧ ✇❡✐❣❤ts ❧♦❝❛t❡❞ ❛t a ❛♥❞ b✳ ❚❤❡♥ c=
ma + mb a+b = . m+m 2
❙♦✱ ♥♦ ♠❛tt❡r ✇❤❛t t❤❡ ✇❡✐❣❤t ✐s✱ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ❧✐❡s ❤❛❧❢✇❛② ❜❡t✇❡❡♥ t❤❡ t✇♦ ♦❜❥❡❝ts✱ ❛s ❡①♣❡❝t❡❞✳ ❲❤❛t ✐❢ t❤❡ ✇❡✐❣❤ts ❛r❡ ❞✐✛❡r❡♥t❄ ❲❡ ❝❛♥ ❣✉❡ss t❤❛t t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ✇✐❧❧ ❜❡ ❝❧♦s❡r t♦ t❤❡ ❤❡❛✈✐❡r ♦❜❥❡❝t✳ ❇✉t ❜② ❤♦✇ ♠✉❝❤❄ ❙✉♣♣♦s❡ t❤❡s❡ ❛r❡ m ❛♥❞ 2m✳ ❲❡ ❝♦♠♣✉t❡✿ c=
ma + 2mb a + 2b 1 2 = = a + b. m + 2m 3 3 3
■t✬s t✇✐❝❡ ❛s ❝❧♦s❡ t♦ t❤❡ ❤❡❛✈✐❡r ♦❜❥❡❝t ✭❜♦tt♦♠ ❧❡❢t✮✿
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
■♥ ❣❡♥❡r❛❧✱
✶✾✼
t❤❡ ♣r♦♣♦rt✐♦♥ ♦❢ t❤❡ ❞✐st❛♥❝❡ ✐s t❤❡ ♣r♦♣♦rt✐♦♥ ♦❢ t❤❡ ✇❡✐❣❤t✳
❊①❡r❝✐s❡ ✸✳✸✳✶✵
■❢ α ❛♥❞ β ❛r❡ t❤❡ s❤❛r❡s ♦❢ t❤❡ t♦t❛❧ ✇❡✐❣❤t✱ ✇❤❡r❡ ✐s t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤✐s t✇♦✲♦❜❥❡❝t s②st❡♠❄ ▼♦r❡ ❣❡♥❡r❛❧❧②✱ t❤❡ ❝♦♦r❞✐♥❛t❡ ♦❢ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤❡ s②st❡♠ ❝❛♥ ❜❡ r❡✲✇r✐tt❡♥✿ P mi ci X mi P = ci . c = Pi i mi j mj i ❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✳
❈♦r♦❧❧❛r② ✸✳✸✳✶✶✿ ❲❡✐❣❤t❡❞ ❆✈❡r❛❣❡ ■❢ ❛t
c ✐s t❤❡ ❝♦♦r❞✐♥❛t❡ ♦❢ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ ❛ s②st❡♠ ci ✱ ✇❡✐❣❤ts mi ✱ ❛♥❞ t❤❡ t♦t❛❧ ✇❡✐❣❤t M ✱ t❤❡♥ X c= µi c i ,
♦❢ ✇❡✐❣❤ts ✇✐t❤ ❧♦❝❛t✐♦♥s
i
✇❤❡r❡
µi
❛r❡ t❤❡
r❡❧❛t✐✈❡ ✇❡✐❣❤ts
✿
µi =
mi . M
❲❡ st❛rt t♦ ♥♦t✐❝❡ t❤❛t t❤❡ ♥✉♠❡r♦✉s ❜❧♦❝❦s ♣❧❛❝❡❞ ♦♥ t❤❡ ❜❛r st❛rt t♦ ❧♦♦❦ ❧✐❦❡ t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥✦ ❚❤❡ ✈❛❧✉❡ ♦❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ ❜❧♦❝❦s ♣❧❛❝❡❞ ❛t t❤❛t ❧♦❝❛t✐♦♥✳ ❲❡ ❦♥♦✇ t❤❛t t❤✐s ❢✉♥❝t✐♦♥ ❝❛♥ ❛❧s♦ ❜❡ s❡❡♥ ❛s t❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ♦❢ ❛ r♦❞✳ ◆❡①t✱ ❧❡t✬s ✐♠❛❣✐♥❡ t❤❛t t❤❡ ❞❡♥s✐t② ✈❛r✐❡s ✐♥ ❛ ♠♦r❡ ✉♥♣r❡❞✐❝t❛❜❧❡ ✇❛②✳ ❲❡ ❝♦♥t✐♥✉❡ ✐♥ t❤❡ s❛♠❡ ✇❛② ❛s ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥ ✕ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ♦❢ ✐♥t❡r✈❛❧ [a, b] ✐s ❣✐✈❡♥✿
a = x0 ≤ c1 ≤ x1 ≤ ... ≤ xn−1 ≤ cn ≤ xn = b ❚❤❡♥ t❤❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥ l ✐s ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✳ ❚❤❡♥ t❤❡ t❡r♠s l(ci )∆xi r❡♣r❡s❡♥t✐♥❣ t❤❡ ✇❡✐❣❤t ♦❢ ❡❛❝❤ ✐♥t❡r✈❛❧ ❛r❡ ❢♦r♠❡❞✳✳✳ ❜✉t ♥♦t s✐♠♣❧② ❛❞❞❡❞ t❤✐s t✐♠❡✿
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
✶✾✽
❊❛❝❤ ♦❢ t❤❡s❡ t❡r♠s ✐s ❛ ✇❡✐❣❤t ♣❧❛❝❡❞ ♦♥ t♦♣ ♦❢ t❤❡ ✐♥t❡r✈❛❧ ✈✐s✉❛❧✐③❡❞ ❛s ❛ r❡❝t❛♥❣❧❡✳ ❍♦✇❡✈❡r✱ ✐t ✐s ❛ss✉♠❡❞ t❤❛t t❤❡ ✇❡✐❣❤t ♦❢ t❤❡
it❤
r❡❝t❛♥❣❧❡ ✐s ❝♦♥❝❡♥tr❛t❡❞ ❛t
ci ✳
❚❤❡ ❧❡✈❡r ♦❢ ❡❛❝❤ ✇❡✐❣❤t ✐s ❛❧s♦ s❤♦✇♥✳ ❚❤❡♥ t❤❡
t♦t❛❧ ♠♦♠❡♥t ♦❢ t❤✐s s②st❡♠ ♦❢ ✇❡✐❣❤ts ✇✐t❤ r❡s♣❡❝t t♦ s♦♠❡
X i
mi (ci − c) =
X i
c
l(ci ) · ∆xi (ci − c) =
✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿
X i
l(ci )(ci − c) · ∆xi .
❍❛✈❡ ✇❡ ♣r♦❞✉❝❡❞ ❛ ❘✐❡♠❛♥♥ s✉♠ ❛s ❜❡❢♦r❡❄ ❲❡❧❧✱ t❤✐s ✐s♥✬t t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ✭❞❡♣❡♥❞❡♥t ♦♥ ♦✉r ❝❤♦✐❝❡ ♦❢
l✦
▲❡t✬s tr② t❤✐s ❢✉♥❝t✐♦♥
c✮✿ f (x) = l(x)(x − c) .
❚❤❡♥✱ ✐♥❞❡❡❞✱ ✇❡ ❢❛❝❡ ✐ts ❘✐❡♠❛♥♥ s✉♠✿
X i
mi (ci − c) = Σ f · ∆x .
❏✉st ❛s ❛❜♦✈❡✱ t❤❡ s②st❡♠ ♦❢ ✇❡✐❣❤ts t❤❛t ♠❛❦❡s ✉♣ t❤❡ r♦❞ ✐s ❜❛❧❛♥❝❡❞ ✇❤❡♥ t❤❡ t♦t❛❧ ♠♦♠❡♥t ✐s ③❡r♦✿
Σ l(x)(x − c) · ∆x = 0 . ❲❡ ❛rr✐✈❡ t♦ ❛ s✐♠✐❧❛r ❝♦♥❝❧✉s✐♦♥ ❜❡❧♦✇✳
❚❤❡♦r❡♠ ✸✳✸✳✶✷✿ ❈❡♥t❡r ♦❢ ▼❛ss ✕ ❉✐s❝r❡t❡ ❈❛s❡ ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ y = l(x) ✐s ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ci , i = 1, 2, ..., n✱ ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ✐♥t❡r✈❛❧ [a, b]✳ ❚❤❡♥ t❤❡ s②st❡♠ ♦❢ ✇❡✐❣❤ts l(ci )∆xi , i = 1, 2, ..., n✱ ❤❛s ✐ts ❝❡♥t❡r ♦❢ ♠❛ss ❛t t❤❡ ❢♦❧❧♦✇✐♥❣ ♣♦✐♥t✿ c=
Σ l(x)x · ∆x Σ l(x) · ∆x
❲❤❛t ✇❡ ❤❛✈❡ ❞✐s❝♦✈❡r❡❞ ✐s t❤❛t t❤❡ ♣r♦❜❧❡♠ ♦❢ ❜❛❧❛♥❝✐♥❣ ❛ r♦❞ ✇✐t❤ ❛ ✈❛r✐❛❜❧❡ ❞❡♥s✐t② ✐s ❡q✉✐✈❛❧❡♥t t♦ t❤❡ ♣r♦❜❧❡♠ ♦❢ ❜❛❧❛♥❝✐♥❣ t❤❡ r❡❣✐♦♥ ❜❡❧♦✇ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥✿
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
✶✾✾
❊①❛♠♣❧❡ ✸✳✸✳✶✸✿ ♣✐❡❝❡ ♦❢ ❝✐r❝❧❡ ▲❡t✬s t❡st t❤✐s ❢♦r♠✉❧❛ ♦♥ s♦♠❡ r❡❣✐♦♥s ❝✉t ❢r♦♠ t❤❡ ✉♥✐t ❝✐r❝❧❡✿
■♥ ❈❤❛♣t❡r ✹✱ ✇❡ ✇✐❧❧ ♦✛❡r ♠♦r❡ ❝♦♠♣❧❡① ❡①❛♠♣❧❡s✳
❊①❡r❝✐s❡ ✸✳✸✳✶✹ Pr♦✈❡ t❤❛t ✐❢ t❤❡ ❞❡♥s✐t② ♦❢ t❤❡ r♦❞ ✐s str✐❝t❧② ✐♥❝r❡❛s✐♥❣ ✭♦r ❞❡❝r❡❛s✐♥❣✮✱ ✐ts ❝❡♥t❡r ♦❢ ♠❛ss ❝❛♥♥♦t ❜❡ ✐♥ t❤❡ ❝❡♥t❡r✳ ❚❤❡ ♥❡①t st❡♣ ✐s t♦ t❤✐♥❦ ♦❢ t❤❡ ✇❡✐❣❤ts ❛ss✐❣♥❡❞ t♦ ❞✐str✐❜✉t✐♦♥ ♦❢ ✇❡✐❣❤t ✐s ♥♦ ❧♦♥❣❡r ✐♥❝r❡♠❡♥t❛❧✳
❡✈❡r② ❧♦❝❛t✐♦♥ ♦♥ t❤❡ x✲❛①✐s✳ ■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡
❲❤❛t ✇❡ ❤❛✈❡ ❧❡❛r♥❡❞ ✐s t❤❛t t❤❡ t♦t❛❧ ♠♦♠❡♥t ♦❢ t❤❡ r❡❣✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ s♦♠❡ c ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❛t ♦❢ t❤✐s s②st❡♠ ♦❢ ✇❡✐❣❤ts✱ ✇❤✐❝❤ ✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠✱ X i
♦❢ t❤❡ ❢✉♥❝t✐♦♥
mi (ci − c) =
X i
l(ci ) · ∆xi (ci − c) = Σ f · ∆x ,
f (x) = l(x)(x − c) .
❚❤❡ ❜❡❛♠ ❞♦❡s♥✬t ❤❛✈❡ t♦ ❜❡ ❜❛❧❛♥❝❡❞ ❛♥❞ t❤❡ t♦t❛❧ ♠♦♠❡♥t ❞♦❡s♥✬t ❤❛✈❡ t♦ ❜❡ ③❡r♦ ❢♦r ❡❛❝❤ ♣❛rt✐t✐♦♥✱ ❜✉t ✐t ❞♦❡s ❤❛✈❡ t♦ ❞✐♠✐♥✐s❤ t♦ ③❡r♦ ❛s ✇❡ r❡✜♥❡ t❤❡ ♣❛rt✐t✐♦♥s✳ ❚❤✐s ♠❡❛♥s t❤❛t t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♦❢ t❤✐s ❢✉♥❝t✐♦♥ ✐s ③❡r♦✳
❉❡✜♥✐t✐♦♥ ✸✳✸✳✶✺✿ ❝❡♥t❡r ♦❢ ♠❛ss ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ♥♦♥✲♥❡❣❛t✐✈❡ ❢✉♥❝t✐♦♥ y = l(x) ✐♥t❡❣r❛❜❧❡ ♦♥ s❡❣♠❡♥t [a, b] ❝❛❧❧❡❞ t❤❡ ❞❡♥s✐t② ❢✉♥❝t✐♦♥✳ ❚❤❡♥✱ ❢♦r ❛ ❣✐✈❡♥ ♣♦✐♥t c✱ t❤❡ ✐♥t❡❣r❛❧ Z
b a
l(x)(x − c) dx
✐s ❝❛❧❧❡❞ t❤❡ t♦t❛❧ ♠♦♠❡♥t ♦❢ t❤❡ s❡❣♠❡♥t ✇✐t❤ r❡s♣❡❝t t♦ c✳ ❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤❡ s❡❣♠❡♥t ✇✐t❤ ❞❡♥s✐t② ❢✉♥❝t✐♦♥ l ✐s s✉❝❤ ❛ ♣♦✐♥t c t❤❛t t❤❡ t♦t❛❧ ♠♦♠❡♥t
✇✐t❤ r❡s♣❡❝t t♦ c ✐s ③❡r♦✳
❏✉st ❛s ✐♥ t❤❡ ❞✐s❝r❡t❡ ❝❛s❡✱ t❤❡ ❜❛❧❛♥❝❡ ❡q✉❛t✐♦♥ ❝❛♥ ❜❡ s♦❧✈❡❞ ❢♦r c✿
✸✳✸✳
❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss
✷✵✵
❚❤❡♦r❡♠ ✸✳✸✳✶✻✿ ❈❡♥t❡r ♦❢ ▼❛ss ✕ ❈♦♥t✐♥✉♦✉s ❈❛s❡ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ♥♦♥✲♥❡❣❛t✐✈❡ ❢✉♥❝t✐♦♥
y = l(x)
✐♥t❡❣r❛❜❧❡ ♦♥ ✐♥t❡r✈❛❧
[a, b]✳
■❢ t❤❡ ♠❛ss ♦❢ t❤❡ s❡❣♠❡♥t ✐s ♥♦t ③❡r♦✱ t❤❡♥ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ✐s✿
Rb
l(x)x dx c = Ra b l(x) dx a
Pr♦♦❢✳ ❋✐rst✱ ✇❡ ♥♦t❡ t❤❛t ❢♦❧❧♦✇✐♥❣✿
y = l(x)(x − c)
0= ◆♦✇ s♦❧✈❡ ❢♦r
t♦t❛❧ ♠♦♠❡♥t
✐s ✐♥t❡❣r❛❜❧❡ ❜② P❘✳ ❚❤❡♥ ✇❡ ✉s❡
=
c✳
Z
b a
l(x)(x − c) dx =
Z
❙❘
b
l(x)x dx + c a
❛♥❞
Z
❈▼❘
t♦ ❝♦♠♣✉t❡ t❤❡
b
l(x) dx . a
❖♥❝❡ ❛❣❛✐♥✱ ✇❡ ❤❛✈❡✿
❈❡♥t❡r ♦❢ ♠❛ss
=
t♦t❛❧ ♠♦♠❡♥t t♦t❛❧ ♠❛ss
❊①❡r❝✐s❡ ✸✳✸✳✶✼ ❙❤♦✇ t❤✐s t❤❡♦r❡♠ ✐♠♣❧✐❡s t❤❡ ♣r❡✈✐♦✉s ♦♥❡✳
❊①❛♠♣❧❡ ✸✳✸✳✶✽✿ ❧✐♥❡❛r ❞❡♣❡♥❞❡♥❝❡ ❙✉♣♣♦s❡ t❤❡ ❞❡♥s✐t② ♦❢ ❛ r♦❞ ♦❢ ❧❡♥❣t❤
❚❤❡♥✱ t❤❡ ♠❛ss ✐s
3✳
2
✐s ❝❤❛♥❣✐♥❣ ❧✐♥❡❛r❧②✿ ❢r♦♠
1
t♦
2✱
✐✳❡✳✱
l(x) = x/2 + 1✳
■t ✇❛s ❢♦✉♥❞ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥ ❜❛s❡❞ ♦♥ ❛ ❝♦♠♠♦♥ s❡♥s❡ ❛♥❛❧②s✐s✳ ❚❤❛t✬s t❤❡
❞❡♥♦♠✐♥❛t♦r ♦❢ t❤❡ ❢r❛❝t✐♦♥✳ ◆♦✇✱ t❤❡ ♥✉♠❡r❛t♦r✳ ▼❡r❡ ❝♦♠♠♦♥ s❡♥s❡ ✇♦♥✬t ❤❡❧♣ t❤✐s t✐♠❡❀ ✇❡ ♥❡❡❞ t♦ ✐♥t❡❣r❛t❡✿
Z
2
l(x)x dx = 0
Z
2
(x/2 + 1)x dx
Z0 2
(x2 /2 + x) dx 0 2 = x3 /6 + x2 /2
=
0
= 8/6 + 4/2
= 10/3 .
✸✳✹✳
❚❤❡ r❛❞✐❛❧ ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
✷✵✶
❚❤❡r❡❢♦r❡✱ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ✐s c=
❙❧✐❣❤t❧② t♦ t❤❡ r✐❣❤t ♦❢ t❤❡ ❝❡♥t❡r✳✳✳
10 10 ÷3= . 3 9
❊①❡r❝✐s❡ ✸✳✸✳✶✾
❋✐♥❞ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ ❛ r♦❞ ✇✐t❤ ❛ ❧✐♥❡❛r❧② ✐♥❝r❡❛s✐♥❣ ❞❡♥s✐t②✳ ❊①❡r❝✐s❡ ✸✳✸✳✷✵
❋✐♥❞ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ ❛ ♣❧❛t❡ ❝✉t ❢r♦♠ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s 1 ❝❡♥t❡r❡❞ ❛t t❤❡ ♦r✐❣✐♥ ❜② t❤❡ ❧✐♥❡s x = a ❛♥❞ x = b✳ ❊①❡r❝✐s❡ ✸✳✸✳✷✶
❲❤❛t ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ ❛♥ ✐♥✜♥✐t❡ ♦❜❥❡❝t❄
✸✳✹✳ ❚❤❡ r❛❞✐❛❧ ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
❙✉♣♣♦s❡ ♥❡①t ✇❡ ❤❛✈❡ ❛♥ ❛❧❧♦② t❤❛t ✐s r♦t❛t❡❞ ❛s ✐t ❤❛r❞❡♥s✳ ❚❤❡♥ ✐ts ❞❡♥s✐t② ❞❡♣❡♥❞s ✭♦♥❧②✮ ♦♥ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ❝❡♥t❡r✳
❚❤❡ s❛♠❡ ❡✛❡❝t ✐s ♣r♦❞✉❝❡❞ ❜② st✐rr✐♥❣ ❛ ❧✐q✉✐❞✳ ■♥ ❡✐t❤❡r ❝❛s❡✱ ✇❡ ✐❣♥♦r❡ t❤❡ ❞❡♣t❤ ❛♥❞ ❛❧❧ ✇❡ s❡❡ ✐s ❛ ❞✐s❦✳ ❚❤❡♥✱ ❢♦r ❛♥② r❛❞✐❛❧ ❧✐♥❡ ✭✇❡ ♣✐❝❦ ♦♥❡ ❛♥❞ ❝❛❧❧ ✐t t❤❡ x✲❛①✐s✮ t❤❡r❡ ✐s ♥♦ ❝❤❛♥❣❡ ✐♥ ❞❡♥s✐t② ✐♥ t❤❡ ❞✐r❡❝t✐♦♥s ♣❡r♣❡♥❞✐❝✉❧❛r t♦ ✐t✳ ❲❡ t❤❡♥ ✐❣♥♦r❡ t❤♦s❡ ❞✐r❡❝t✐♦♥s ❛♥❞ t❤❡ ❞❡♥s✐t② ❜❡❝♦♠❡s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❛ s✐♥❣❧❡ ♥✉♠❜❡r x ❞❡s✐❣♥❛t✐♥❣ t❤❡ ❞✐st❛♥❝❡ t♦ t❤❡ ❝❡♥t❡r ❛❧♦♥❣ t❤✐s ❧✐♥❡❀ ❤❡♥❝❡ t❤❡ r❛❞✐❛❧ ❞❡♥s✐t② y = r(x)✳ ❍❡r❡ ❛r❡ ❛ ❢❡✇ ❡①❛♠♣❧❡s ♦❢ t❤✐s ❢✉♥❝t✐♦♥✿
✸✳✹✳
❚❤❡ r❛❞✐❛❧ ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
✷✵✷
❲❡ ✇✐❧❧ ♣r♦✈✐❞❡ ❛♥❛❧②s✐s s✐♠✐❧❛r t♦ t❤❡ ♦♥❡ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥ t♦ ❞❡✜♥❡ t❤❡ ♠❛ss ♦❢ s✉❝❤ ❛♥ ♦❜❥❡❝t✳ ❙✉♣♣♦s❡ t❤❡ r❛❞✐❛❧ ❞❡♥s✐t② r ✐s ❣✐✈❡♥✱ ✇❤❛t ✐s t❤❡ ♠❛ss ♦❢ t❤❡ ❞✐s❦❄ ❊①❛♠♣❧❡ ✸✳✹✳✶✿ t✇♦ ♣✐❡❝❡s
❙✉♣♣♦s❡ t❤❡ t✇♦ ♠❡t❛❧s ✇✐t❤ ❞❡♥s✐t✐❡s 2 ♦♥ t❤❡ ✐♥s✐❞❡ ❛♥❞ 1 ♦♥ t❤❡ ♦✉ts✐❞❡ ❤❛✈❡♥✬t ♠❡r❣❡❞ ❛t ❛❧❧✳ ❚❤❡ ♦❜❥❡❝t ✐s s✐♠♣❧② ❛ ❝♦♠❜✐♥❛t✐♦♥ ♦❢ ❛ ❞✐s❦ ♦❢ r❛❞✐✉s 1 ❛♥❞ ❛ ✇❛s❤❡r ❛r♦✉♥❞ ✐t ♦❢ t❤✐❝❦♥❡ss 1✿
❚❤❡♥✱ t❤❡ ♠❛ss ✐s s✐♠♣❧② t❤❡ s✉♠ ♦❢ t❤❡ ♠❛ss ♦❢ t❤❡ ❞✐s❦ ❛♥❞ t❤❡ ♠❛ss ♦❢ t❤❡ ✇❛s❤❡r✿ ▼❛ss
= 2 · ❛r❡❛ ♦❢ t❤❡ ❞✐s❦ =2·π·1
2
+1 · ❛r❡❛ ♦❢ t❤❡ ✇❛s❤❡r +1 · (π · 22 − π · 12 ) .
■t✬s 5π ✳ ❲❡ ❝❛♥ ❥✉st r❡♣❧❛❝❡ t❤❡ ❞✐s❦ t❤❛t ❤❛s ❛ ❝♦♥st❛♥t t❤✐❝❦♥❡ss ❛♥❞ ❛ ✈❛r✐❛❜❧❡ ❞❡♥s✐t② ✇✐t❤ ♦♥❡ t❤❛t ❤❛s ❛ ✈❛r✐❛❜❧❡ t❤✐❝❦♥❡ss ❛♥❞ ❛ ❝♦♥st❛♥t ❞❡♥s✐t②✳ ❚❤❡♥ ✇❡ ❝❛♥ ✉s❡ t❤❡ r❡s✉❧ts ♦❢ t❤❡ ❧❛st s❡❝t✐♦♥✳ ■♥st❡❛❞ ✇❡ st❛rt ❢r♦♠ s❝r❛t❝❤✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ♦❢ t❤❡ r❛❞✐✉s✿
a = x0 ≤ c1 ≤ x1 ≤ ... ≤ cn ≤ xn = b ❍❡r❡✱ ✇❡ ❝✉t t❤❡ ❞✐s❦ ✐♥t♦ s♠❛❧❧ ✇❛s❤❡rs ❜② t❤❡ ❝②❧✐♥❞❡rs st❛rt✐♥❣ ❛t x = xi ❛♥❞ t❤❡♥ s❛♠♣❧❡ ✐ts ❞❡♥s✐t② ❛t t❤❡ ♣♦✐♥ts ci ✿
❚❤❡♥ t❤❡ ❞❡♥s✐t② ♦❢ ❡❛❝❤ ✇❛s❤❡r ✕ ✇❤❡♥ ✉♥✐❢♦r♠ ✕ ✐s r(ci ) ❛♥❞ ✇❡ ❤❛✈❡✿
▼❛ss ♦❢ it❤ ✇❛s❤❡r = ❞❡♥s✐t② · ❛r❡❛ = r(ci ) · πx2i − πx2i−1 ,
s✐♥❝❡ t❤❡ ✐♥s✐❞❡ r❛❞✐✉s ♦❢ t❤❡ ✇❛s❤❡r ✐s xi−1 ❛♥❞ t❤❡ ♦✉ts✐❞❡ ✐s xi ✳
✸✳✹✳
❚❤❡ r❛❞✐❛❧ ❞❡♥s✐t② ❛♥❞ t❤❡ ♠❛ss
✷✵✸
❚❤❡♥ ✇❡ ❤❛✈❡✿ ▼❛ss ♦❢ t❤❡ ❞✐s❦ =
n X i=1
❚❤✐s ❢♦r♠✉❧❛ ✐s ✜♥❡ ❢♦r ❝♦♠♣✉t❛t✐♦♥s ❜✉t ✐t ✐s
♥♦t
r(ci ) · π x2i − x2i−1
t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛♥② ❢✉♥❝t✐♦♥✦
❆ ❝❧❡✈❡r tr✐❝❦ ✐s t♦ ❝❤♦♦s❡ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s t♦ ❜❡ t❤❡ ♠✐❞✲♣♦✐♥ts✿
1 ci = (xi + xi−1 ) . 2 ❚❤❡♥✱ ✇❡ ❝❛♥ ❢❛❝t♦r t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t✇♦ sq✉❛r❡s ❛♥❞ s✐♠♣❧✐❢②✿ n X
▼❛ss ♦❢ t❤❡ ❞✐s❦ =
i=1
❚❤✐s
r(ci ) · π(xi + xi−1 )(xi − xi−1 ) = 2π
✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ s✐♠♣❧❡ ❢✉♥❝t✐♦♥✿
n X i=1
r(ci )ci · ∆xi .
▼❛ss ♦❢ t❤❡ ❞✐s❦ = 2πΣ xr(x) · ∆x .
❞❡♥s✐t② ✈❛r✐❡s ❝♦♥t✐♥✉♦✉s❧② ❄ ❚❤❡♥ t❤❡ ♠❛ss ♦❢ ❡❛❝❤ ✇❛s❤❡r ✕ ✇❤❡♥ t❤✐♥ ❡♥♦✉❣❤ ✕ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ ♠❛ss ♦❢ s✉❝❤ ❛ ✇❛s❤❡r ♠❛❞❡ ❲✐t❤ t❤✐s ❞✐s❝♦✈❡r②✱ ✇❡ ❝❛♥ ❛❞❞r❡ss t❤❡ q✉❡st✐♦♥✿ ❲❤❛t ✐❢ t❤❡ ❡♥t✐r❡❧② ♦❢ ♠❛t❡r✐❛❧ ♦❢ ❞❡♥s✐t② r(ci )✿
▼❛ss ♦❢ it❤ ✇❛s❤❡r ≈ ❞❡♥s✐t② · ❛r❡❛ = r(ci ) · πx2i − πx2i−1 .
❚❤❡♥ ✇❡ ❣♦ t❤r♦✉❣❤ t❤❡ s❛♠❡ ❛❧❣❡❜r❛✿ ❚♦t❛❧ ♠❛ss ≈ ❚❤❡♥✱ ✇❡ ❞❡✜♥❡ t❤❡
n X i=1
r(ci ) · π
x2i
−
x2i−1
= 2π
n X i=1
r(ci )ci · ∆xi .
♠❛ss ♦❢ t❤❡ ❞✐s❦ ❛s t❤❡ ❧✐♠✐t ♦❢ t❤❡s❡ ❘✐❡♠❛♥♥ s✉♠s❀ ✐✳❡✳✱ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✿ ❉❡✜♥✐t✐♦♥ ✸✳✹✳✷✿ ♠❛ss ♦❢ ❞✐s❦ ■❢ ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ r ♦♥ s❡❣♠❡♥t [0, b] ✐s ❝❛❧❧❡❞ ❛ r❛❞✐❛❧ ❢♦❧❧♦✇✐♥❣ ✐♥t❡❣r❛❧ ✐s ❝❛❧❧❡❞ t❤❡ ♠❛ss ♦❢ t❤❡ ❞✐s❦ ♦❢ r❛❞✐✉s b✿ ▼❛ss = 2π
Z
❞❡♥s✐t②✱ t❤❡♥ t❤❡
b
xr(x) dx . 0
❖♥❝❡ ❛❣❛✐♥✱ ✇❡ r❡❛❧✐③❡ t❤❛t ❡❛❝❤ ❧♦❝❛t✐♦♥ ✇✐t❤ ❤✐❣❤❡r ❞❡♥s✐t② s✐♠♣❧② ❝♦♥t❛✐♥s ♠♦r❡ ♠❛t❡r✐❛❧ ❛♥❞ ✇❡ ❝❛♥ ❥✉st s♣r❡❛❞ ✐t ♦✉t ✕ ✈❡rt✐❝❛❧❧② ✕ ♠❛❦✐♥❣ t❤❡ ❞✐s❦ t❤✐❝❦❡r ❛t t❤✐s s♣♦t ❛♥❞ t❤✐♥♥❡r ❛t t❤❡ ❧♦❝❛t✐♦♥ ♦❢ ❧♦✇❡r ❞❡♥s✐t②✳
✸✳✺✳ ❚❤❡ ✢♦✇ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ✢✉①
✷✵✹
❊①❛♠♣❧❡ ✸✳✹✳✸✿ ❧✐♥❡❛r ❞❡♣❡♥❞❡♥❝❡
❙✉♣♣♦s❡ t❤❡ ❞❡♥s✐t② ♦❢ ❛ ❞✐s❦ ♦❢ r❛❞✐✉s 2 ✐s ❝❤❛♥❣✐♥❣ ❧✐♥❡❛r❧②✿ ❢r♦♠ 1 t♦ 2✳ ❚❤❡♥ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❛✈❡r❛❣❡ ❞❡♥s✐t② ❞❡♣❡♥❞s ♦♥ t❤❡ r❡s♣❡❝t✐✈❡ ❛r❡❛s✱ ❛s s❤♦✇♥ ❛❜♦✈❡✳
❚❤❡ ♠❛ss ♠✉st ❤❛✈❡ s♦♠❡t❤✐♥❣ t♦ ❞♦ ✇✐t❤ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤✐s s✉r❢❛❝❡ ♦❢ r❡✈♦❧✉t✐♦♥✳✳✳ ▲❡t✬s ✐♥t❡❣r❛t❡✿ ▼❛ss
Z
b
xr(x) dx = 2π Z 2a x(2 − x/2) dx =π 0 Z 2 (2x − x2 /2) dx =π 0 2 2 3 = π(x − x /6) 0
2
3
= π(2 − 2 /6) =
8π . 3
✸✳✺✳ ❚❤❡ ✢♦✇ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ✢✉① ❙✉♣♣♦s❡ ✇❛t❡r ✢♦✇s ✐♥ ❛ ❝❛♥❛❧✿
❍♦✇ ♠✉❝❤ ✇❛t❡r ✐s ❝r♦ss✐♥❣ t❤❡ ❣✐✈❡♥ ❧✐♥❡ ♣❡r ✉♥✐t ♦❢ t✐♠❡❄ ❲❡ ✇✐❧❧ ✐❣♥♦r❡ t❤❡ ❞❡♣t❤ ❛♥❞ ❝♦♥s✐❞❡r t❤✐s ✈✐❡✇ ❢r♦♠ ❛❜♦✈❡✿
❲❤❡♥ t❤❡ ✈❡❧♦❝✐t② ♦❢ t❤❡ ✇❛t❡r ✐s t❤❡ s❛♠❡ ❛t ❛❧❧ ❧♦❝❛t✐♦♥s✱ t❤❡ t♦t❛❧ ❛♠♦✉♥t ♦❢ t❤❡ ✇❛t❡r t❤❛t ❤❛s ❝r♦ss❡❞
✸✳✺✳ ❚❤❡ ✢♦✇ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ✢✉①
✷✵✺
t❤❡ ❧✐♥❡✱ ❝❛❧❧❡❞ t❤❡ ✢✉① F ✱ ✐s t❤❡ ✈❡❧♦❝✐t② v t✐♠❡s t❤❡ ✇✐❞t❤ W ♦❢ t❤❡ ❝r♦ss✲s❡❝t✐♦♥✿
F =v·W . ❚❤❡ ✢♦✇ ✈❡❧♦❝✐t② ♠❛② ✈❛r② ❞❡♣❡♥❞✐♥❣ ♦♥ t❤❡ ❧♦❝❛t✐♦♥ ✭♥♦t t✐♠❡✦✮✳ ❲❡ ❛ss✉♠❡ t❤❛t t❤❡ ✈❡❧♦❝✐t② ✐s t❤❡ s❛♠❡ ❛❧♦♥❣ t❤❡ ❧✐♥❡s ♣❛r❛❧❧❡❧ t♦ t❤❡ ✇❛❧❧s ♦❢ t❤❡ ❝❛♥❛❧✳ ❲❡ ✈✐s✉❛❧✐③❡ t❤❡ ♣r♦❝❡ss ❜② ✐♠❛❣✐♥✐♥❣ t❤❛t ❛ ♥❛rr♦✇ str✐♣ ♦❢ r❡❞ ❞②❡ ✐s ❛♣♣❧✐❡❞ ❛❝r♦ss t❤❡ ❝❛♥❛❧ ❛♥❞ t❤❡♥ ❛❢t❡r✱ s❛②✱ ♦♥❡ ♠✐♥✉t❡ ✇❡ s❡❡ ❤♦✇ t❤❡ ❞✐❡ ❤❛s ♣r♦❣r❡ss❡❞✿
❲❤❛t ✐s t❤❡ ✢✉① t❤❡♥❄ ❚♦ ❜❡❣✐♥ ✇✐t❤✱ ✇❡ ❛ss✉♠❡ t❤❛t t❤❡ ✢♦✇ ✈❡❧♦❝✐t② ❞❡♣❡♥❞s ♦♥ ❛ s✐♥❣❧❡ ✈❛r✐❛❜❧❡ ✭♦♥❡ ❞❡❣r❡❡ ♦❢ ❢r❡❡❞♦♠ ❛❣❛✐♥✮✱ t❤❡ ❧♦❝❛t✐♦♥ ❞✐st❛♥❝❡ ❛❝r♦ss t❤❡ ❝❛♥❛❧✳ ❚❤❡♥✱ t❤❡r❡ ✐s ❛ ❧✐♥❡ ✕ ✇❡ ❝❤♦♦s❡ ✐t t♦ ❜❡ ✐♥t❡r✈❛❧ [a, b] ♦♥ t❤❡ x✲❛①✐s ✕ ✇✐t❤ ♥♦ ❝❤❛♥❣❡ ✐♥ ✈❡❧♦❝✐t② ✐♥ t❤❡ ❞✐r❡❝t✐♦♥s ♣❡r♣❡♥❞✐❝✉❧❛r t♦ ✐t✳ ❚❤❡♥ t❤❡ ✈❡❧♦❝✐t② ✐s ❛ ❢✉♥❝t✐♦♥ y = v(x) ♦❢ ❛ s✐♥❣❧❡ ♥✉♠❜❡r x ✐♥ [a, b]✳ ❙✉♣♣♦s❡ t❤✐s t✐♠❡ t❤❡ ✈❡❧♦❝✐t② v ✐s ❣✐✈❡♥ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ❧♦❝❛t✐♦♥✱ ✇❤❛t ✐s t❤❡ ✢✉①❄ ❊①❛♠♣❧❡ ✸✳✺✳✶✿ t✇♦ ❣❛t❡s
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ t✇♦ s❡♣❛r❛t❡ ❝❛♥❛❧s s✐❞❡ ❜② s✐❞❡✱ ✇✐t❤ t❤❡ ✈❡❧♦❝✐t✐❡s 1 ❛♥❞ 2 ❛♥❞ t❤❡ s❛♠❡ ✇✐❞t❤ 1✿
❚❤❡r❡❢♦r❡✱ t❤❡ ✈♦❧✉♠❡ ✐s s✐♠♣❧② t❤❡ s✉♠ ♦❢ t❤❡ t✇♦✿ 1 · 1 + 2 · 1 = 3✳ ■t ✐s ❛❧s♦ t❤❡ ❛r❡❛ ♦❢ t❤❡ t✇♦ r❡❝t❛♥❣❧❡s ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ✈❡❧♦❝✐t② ❢✉♥❝t✐♦♥ v ✱ ✇❤✐❝❤ ✐s ❛ st❡♣✲❢✉♥❝t✐♦♥✱ ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧ ♦❢ l ♦✈❡r [0, 2]✳ ■♥st❡❛❞ ♦❢ ❥✉st ♣♦✐♥t✐♥❣ ♦✉t t❤❛t t❤❡ ✢✉① ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ s♣❡❡❞ ✭✇✐t❤ r❡s♣❡❝t t♦ ❧♦❝❛t✐♦♥ ♥♦t t✐♠❡✦✮✱ ❧❡t✬s st❛rt ❢r♦♠ s❝r❛t❝❤✳ ❲❡ ❤❛✈❡ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ✿
a = x0 ≤ c1 ≤ x1 ≤ ... ≤ cn ≤ xn = b ❲❡ ✜rst ✐♠❛❣✐♥❡ t❤❛t t❤❡ ❝❛♥❛❧ ✐s ❞✐✈✐❞❡❞ ✐♥t♦ ❝❤❛♥♥❡❧s ♦r ❧♦❝❦s s♦ t❤❛t t❤❡ ✢♦✇ ✈❡❧♦❝✐t② t❤r♦✉❣❤ ❡❛❝❤ ✐s ❢♦✉♥❞ s❡♣❛r❛t❡❧②✿ F1 , F2 , ..., Fn ✿
✸✳✺✳ ❚❤❡ ✢♦✇ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ✢✉①
✷✵✻
❚❤❡♥ t❤❡ t♦t❛❧ ✢♦✇ ✐s s✐♠♣❧② t♦t❛❧ ✈♦❧✉♠❡ = F1 ∆x1 + F2 ∆x2 + ... + Fn ∆xn . ❚❤❡ ❢♦r♠✉❧❛ ✐s s✉✣❝✐❡♥t ❢♦r ♣r❛❝t✐❝❛❧ ❛♣♣❧✐❝❛t✐♦♥s✳ ❚♦ ✜♥❞ ❛ ❢♦r♠✉❧❛ ❢♦r ❛♥ ✐❞❡❛❧✐③❡❞ s✐t✉❛t✐♦♥✱ ✇❡ ❝♦♥t✐♥✉❡ ♦♥✳ ❲❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ✜♥❞ ❛ ❘✐❡♠❛♥♥ s✉♠ ❤❡r❡✳ ❲❡ ✐♠❛❣✐♥❡ t❤❛t t❤❡ ✢♦✇ ✈❡❧♦❝✐t② ✈❛r✐❡s ✐♥❝r❡♠❡♥t❛❧❧② ♦✈❡r t❤❡ ❣❛t❡s t❤❛t ❞✐✈✐❞❡ t❤❡ ❝❛♥❛❧✬s ❝r♦ss✲s❡❝t✐♦♥✳ ❚❤❡ ❝❛♥❛❧ ✐s ❝✉t ✐♥t♦ s❡❣♠❡♥ts ❜② t❤❡ ❧✐♥❡ st❛rt✐♥❣ ❛t x = xi ❛♥❞ s❛♠♣❧❡❞ ✈❡❧♦❝✐t② ❛t t❤❡ ♣♦✐♥ts ci ✐s v(ci )✿
❚❤❡♥ ✇❡ ❤❛✈❡✿ ❚❤❡♥✱
❋❧✉① t❤♦✉❣❤ it❤ s❡❣♠❡♥t = ✈❡❧♦❝✐t② · ✇✐❞t❤ = v(ci ) · ∆xi . ❚♦t❛❧ ✢✉① =
n X i=1
v(ci ) · ∆xi .
❲❡ r❡❝♦❣♥✐③❡ t❤✐s ❡①♣r❡ss✐♦♥ ❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠✱ Σ v · ∆x✱ ♦❢ t❤❡ ✈❡❧♦❝✐t② ❢✉♥❝t✐♦♥ ♦✈❡r t❤✐s ♣❛rt✐t✐♦♥✳
❉❡✜♥✐t✐♦♥ ✸✳✺✳✷✿ ✢♦✇ ✈❡❧♦❝✐t②
■❢ ❛ ❢✉♥❝t✐♦♥ v ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛ s❡❣♠❡♥t [a, b] ✐s ❝❛❧❧❡❞ ❛ ✢♦✇ ✈❡❧♦❝✐t②✱ t❤❡♥ ✐ts ❘✐❡♠❛♥♥ s✉♠ ✐s ❝❛❧❧❡❞ t❤❡ ✢✉① ✿ ❋❧✉① = Σ v · ∆x . ❲❤❛t ✐❢ t❤❡ ✢♦✇ ✈❡❧♦❝✐t② ✈❛r✐❡s ❝♦♥t✐♥✉♦✉s❧②❄
❊①❛♠♣❧❡ ✸✳✺✳✸✿ ❧✐♥❡❛r ❞❡♣❡♥❞❡♥❝❡ ❙✉♣♣♦s❡ t❤❡ ✈❡❧♦❝✐t② ♦❢ t❤❡ ❝❛♥❛❧ ♦❢ ✇✐❞t❤ 2 ✐s ❝❤❛♥❣✐♥❣ ❧✐♥❡❛r❧②✿ ❢r♦♠ 1 t♦ 2✳ ❚❤❡♥ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❛✈❡r❛❣❡ ✈❡❧♦❝✐t② ✐s ❝❧❡❛r❀ ✐t ✐s 1.5✳
❚❤❡r❡❢♦r❡✱ t❤❡ ✈♦❧✉♠❡ ✐s 1.5 · 1 = 1.5✳ ■t ✐s ❛❧s♦ t❤❡ ❛r❡❛ ♦❢ t❤❡ tr✐❛♥❣❧❡ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ✈❡❧♦❝✐t② ❢✉♥❝t✐♦♥ v(x) = 1 + x ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧ ♦❢ v ♦✈❡r [0, 2]✳ ❚❤❡♥ t❤❡ ✢✉① t❤r♦✉❣❤ ❡❛❝❤ s❡❣♠❡♥t ✕ ✇❤❡♥ s❤♦rt ❡♥♦✉❣❤ ✕ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ ✈♦❧✉♠❡ ✇✐t❤ t❤❡ ✇❛t❡r ♠♦✈✐♥❣ ❡♥t✐r❡❧② ❛t t❤❡ ✈❡❧♦❝✐t② v(ci )✿ ❱♦❧✉♠❡ ♦❢ it❤ s❡❣♠❡♥t ≈ ✈❡❧♦❝✐t② · ✇✐❞t❤ = v(ci ) · ∆xi .
✸✳✺✳
❚❤❡ ✢♦✇ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ✢✉①
✷✵✼
❚❤❡♥✱ ❋❧✉①
❲❡ ❞❡✜♥❡ t❤❡
✢✉①
= ❚♦t❛❧
✈♦❧✉♠❡
≈
n X i=1
v(ci ) · ∆xi .
♦❢ t❤❡ r♦❞ ❛s t❤❡ ❧✐♠✐t✱ ✐❢ ✐t ❡①✐sts✱ ♦❢ t❤❡s❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✐✳❡✳✱ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♦❢
v✳
❉❡✜♥✐t✐♦♥ ✸✳✺✳✹✿ ✢✉① ■❢ ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥
v
♦♥ s❡❣♠❡♥t
t❤❡♥ ✐ts ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✐s ❝❛❧❧❡❞ t❤❡
❋❧✉①
=
[a, b]
✢✉① Z
✐s ❝❛❧❧❡❞ ❛
✢♦✇ ✈❡❧♦❝✐t②
♦❢ t❤❡ ✢♦✇✿
b
v dx . a
❍❡r❡ ✐s ❛♥♦t❤❡r ✇❛② t♦ ❡①♣❧❛✐♥ t❤✐s r❡s✉❧t✳ ❲❡ ❝❛♥ t❛❦❡ ♦✉r ❝❛♥❛❧✱ ✇✐t❤ ❛ ✈❛r✐❛❜❧❡ ✇❛t❡r
❝♦♥st❛♥t ✈❡❧♦❝✐t② ❛s ♦♥❡ t❤❛t ❤❛s ♠♦r❡ ✇❛t❡r✳ ❛ ❝❛♥❛❧ ✇✐t❤ t❤❡ s❛♠❡ ✢✉① ❜✉t ❛
✐♥ ❛ ❝❛♥❛❧✱
✈❡❧♦❝✐t②✱ ❛♥❞ ✐♠❛❣✐♥❡
✈❡❧♦❝✐t②✳ ❍♦✇ ✐s ✐t ♣♦ss✐❜❧❡❄ ❲❡ t❤✐♥❦ ♦❢ ❡❛❝❤ ❧♦❝❛t✐♦♥ ✇✐t❤ ❤✐❣❤❡r
❚❤❡ ✜rst ❛♣♣r♦❛❝❤ ✐s t♦ s♣r❡❛❞ t❤❡ ✇❛t❡r ♦✉t ✕ ✈❡rt✐❝❛❧❧② ✕ ♠❛❦✐♥❣ t❤❡ ❝❛♥❛❧
❞❡❡♣❡r
❛t t❤✐s s♣♦t ❛♥❞ s❤❛❧❧♦✇❡r
❛t t❤❡ ❧♦❝❛t✐♦♥ ✇✐t❤ ❛ ❧♦✇❡r ✈❡❧♦❝✐t②✿
❚❤❡ s❡❝♦♥❞ ❛♣♣r♦❛❝❤ ✐s t♦ t❤✐♥❦ ♦❢ ❡❛❝❤ ❧♦❝❛t✐♦♥ ✇✐t❤ ❤✐❣❤❡r ✈❡❧♦❝✐t② ❛s s✐♠♣❧② ♦♥❡ ✇✐t❤
❞❡♥s❡r
❧✐q✉✐❞✳
❊①❡r❝✐s❡ ✸✳✺✳✺ ❲❤❛t ✐❢ t❤✐s ✐s ❛♥ ♦❝❡❛♥✱ ✐✳❡✳✱ t❤❡ ❝r♦ss✲s❡❝t✐♦♥ ♦❢ ♦✉r ✏❝❛♥❛❧✑ ✐s ✐♥✜♥✐t❡❧② ✇✐❞❡❄
❆ ✈❛r✐❛t✐♦♥ ♦❢ t❤✐s ❛♥❛❧②s✐s ✐s ❛s ❢♦❧❧♦✇s✳ ❙✉♣♣♦s❡ ♥♦✇ t❤❛t t❤❡ ✇❛t❡r ✢♦✇s t❤r♦✉❣❤ ❛
❙✉♣♣♦s❡ t❤❡ ✢♦✇ ✈❡❧♦❝✐t② ✈❛r✐❡s ❞❡♣❡♥❞✐♥❣ ♦♥ t❤❡
♣✐♣❡ ✿
❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ❧♦❝❛t✐♦♥ t♦ t❤❡ ♣✐♣❡✬s ✇❛❧❧✳
❋♦r ❡①❛♠♣❧❡✱
t❤❡ ✇❛t❡r ♠❛② ❣♦ s❧♦✇❡r ♥❡①t t♦ t❤❡ ✇❛❧❧ ❜❡❝❛✉s❡ ♦❢ t❤❡ ❢r✐❝t✐♦♥✳ ❲❡ ❤❛✈❡ ❛ ❝✐r❝✉❧❛r ♣❛tt❡r♥ ❛❣❛✐♥✳✳✳
❉❡✜♥✐t✐♦♥ ✸✳✺✳✻✿ ✢✉① ■❢ ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ ♣✐♣❡ ♦❢ r❛❞✐✉s
R✱
v
♦♥ s❡❣♠❡♥t
[0, R]
t❤❡♥ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✐s ❝❛❧❧❡❞ ❛ Z R
✢♦✇ ✈❡❧♦❝✐t②
xv(x) dx
2π
0
t❤r♦✉❣❤ ❛
✐s ❝❛❧❧❡❞ t❤❡
✢✉①✳
✸✳✻✳
❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦
✷✵✽
❊①❡r❝✐s❡ ✸✳✺✳✼
❋♦❧❧♦✇✐♥❣ t❤❡ ✐❞❡❛s ❞❡✈❡❧♦♣❡❞ ✐♥ t❤✐s ❝❤❛♣t❡r✱ ❥✉st✐❢② t❤❡ ❛❜♦✈❡ ❞❡✜♥✐t✐♦♥✳
✸✳✻✳ ❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦
❙✉♣♣♦s❡ ❛ ❜❛❧❧ ✐s ❞r♦♣♣❡❞ ♦♥ t❤❡ ❣r♦✉♥❞ ❢r♦♠ ❛ ❝❡rt❛✐♥ ❤❡✐❣❤t✿
❚❤✐s ♣❤❡♥♦♠❡♥♦♥ ✐s t❤❡ r❡s✉❧t ♦❢ t❤❡ ❣r❛✈✐t❛t✐♦♥❛❧ ❢♦r❝❡✳ ❚❤✐s ❢♦r❝❡ ✐s ❞✐r❡❝t❡❞ ❞♦✇♥✱ ❥✉st ❛s t❤❡ ♠♦✈❡♠❡♥t ♦❢ t❤❡ ❜❛❧❧✳ ❚❤❡ ✇♦r❦ ❞♦♥❡ ♦♥ t❤❡ ❜❛❧❧ ❜② t❤✐s ❢♦r❝❡ ❛s ✐t ❢❛❧❧s ✐s ❡q✉❛❧ t♦ t❤❡ ✭s✐❣♥❡❞✮ ♠❛❣♥✐t✉❞❡ ♦❢ t❤❡ ❢♦r❝❡✱ ✐✳❡✳✱ t❤❡ ✇❡✐❣❤t ♦❢ t❤❡ ❜❛❧❧✱ ♠✉❧t✐♣❧✐❡❞ ❜② t❤❡ ✭s✐❣♥❡❞✮ ❞✐st❛♥❝❡ t♦ t❤❡ ❣r♦✉♥❞✱ ✐✳❡✳✱ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t✳ ❆❧❧ ❤♦r✐③♦♥t❛❧ ♠♦t✐♦♥ ✐s ✐❣♥♦r❡❞ ❛s ✉♥r❡❧❛t❡❞ t♦ t❤❡ ❣r❛✈✐t②✳ ❚❤❡ ♥❡❡❞ ❢♦r ✉s✐♥❣ t❤❡ s✐❣♥❡❞ ❞✐st❛♥❝❡ D ❛♥❞ ❢♦r❝❡ F ✐s r❡✈❡❛❧❡❞ ❜② t❤❡ ❡①❛♠♣❧❡ ♦❢ ♠♦✈✐♥❣ ❛♥ ♦❜❥❡❝t ✉♣ ❢r♦♠ t❤❡ ❣r♦✉♥❞✳ ❚❤❡♥ t❤❡ ✇♦r❦ W ♣❡r❢♦r♠❡❞ ❜② t❤❡ ❣r❛✈✐t❛t✐♦♥❛❧ ❢♦r❝❡ ✐s ♥❡❣❛t✐✈❡✦
❖❢ ❝♦✉rs❡✱ t❤❡ s✐❣♥ ✐♥ ❡✐t❤❡r ❝❛s❡ ✐s ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ ❛①✐s ✇❡ ❛ss✐❣♥ t♦ t❤❡ ❧✐♥❡ ♦❢ ♠♦t✐♦♥✳ ❙✉♣♣♦s❡ ✇❡ ❛r❡ t♦ ♠♦✈❡ ❢r♦♠ ♣♦✐♥t a ♦♥ t❤❡ x✲❛①✐s t♦ ♣♦✐♥t b > a✳ ❲❤❡♥ t❤❡ ❢♦r❝❡ F ✐s ❝♦♥st❛♥t✱ t❤❡ ✇♦r❦ W ✐s ❡q✉❛❧ t♦ t❤❡ ❢♦r❝❡ F t✐♠❡s t❤❡ ❞✐st❛♥❝❡ ❝♦✈❡r❡❞ ❜❡t✇❡❡♥ a ❛♥❞ b✿ W = F · (b − a) .
❚❤❡ ❢♦r❝❡ ♠❛② ✈❛r② ❞❡♣❡♥❞✐♥❣ ♦♥ t❤❡ ❧♦❝❛t✐♦♥ ❜❡t✇❡❡♥ a ❛♥❞ b✳ ❊①❛♠♣❧❡ ✸✳✻✳✶✿ ♣❤②s✐❝s
❚❤❡ ❡①❛♠♣❧❡s ♦❢ ✈❛r✐❛❜❧❡ ❢♦r❝❡s ♠❛② ❜❡ t❤❡s❡✿ s♣r✐♥❣✱ ❣r❛✈✐t❛t✐♦♥✱ ❛✐r ♣r❡ss✉r❡✳
✸✳✻✳
✷✵✾
❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦
■♥ t❤❡ ❝❛s❡ ♦❢ ❛♥ ♦❜❥❡❝t ❛tt❛❝❤❡❞ t♦ ❛ s♣r✐♥❣✱ t❤❡ ❢♦r❝❡ ✐s ♣r♦♣♦rt✐♦♥❛❧ t♦ t❤❡ ✭s✐❣♥❡❞✮ ❞✐st❛♥❝❡ ♦❢ t❤❡ ♦❜❥❡❝t t♦ ✐ts ❡q✉✐❧✐❜r✐✉♠ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❍♦♦❦❡✬s ▲❛✇ ✿
F (x) = −kx .
❆✇❛② ❢r♦♠ t❤❡ ❣r♦✉♥❞✱ t❤❡ ❣r❛✈✐t② ✐s ♣r♦♣♦rt✐♦♥❛❧ t♦ t❤❡ r❡❝✐♣r♦❝❛❧ ♦❢ t❤❡ sq✉❛r❡ ♦❢ t❤❡ ❞✐st❛♥❝❡ ♦❢ t❤❡ ♦❜❥❡❝t t♦ t❤❡ ❝❡♥t❡r ♦❢ t❤❡ ♣❧❛♥❡t ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ◆❡✇t♦♥✬s ▲❛✇ ♦❢ ●r❛✈✐t❛t✐♦♥ ✿
F (x) = − ❚❤❡
♣r❡ss✉r❡
k . x2
❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ♠❡❞✐✉♠✬s r❡s✐st❛♥❝❡ t♦ ♠♦t✐♦♥ ♠❛② ❝❤❛♥❣❡ ❛r❜✐tr❛r✐❧②✳
❊①❛♠♣❧❡ ✸✳✻✳✷✿ tr❛❝t✐♦♥
❙✉♣♣♦s❡ t❤❡ ❢♦r❝❡ ✐s ♦t❤❡r r♦✉❣❤❡r✳
✳ ❙✉♣♣♦s❡ t❤❛t t❤❡r❡ ❛r❡ t✇♦ ❞✐st✐♥❝t str✐♣s✿ ♦♥❡ ✐s s♠♦♦t❤❡r ❛♥❞ t❤❡
tr❛❝t✐♦♥
❚❤❡ ❢♦r❝❡ t❛❦❡s ✕ ❜❡t✇❡❡♥ a = 0 ❛♥❞ b = 2 ✕ ♦♥❧② t✇♦ ❞✐✛❡r❡♥t ✈❛❧✉❡s 1 ❛♥❞ 2 s✇✐t❝❤✐♥❣ ❛t c = 1✳ ❚❤❡r❡❢♦r❡✱ t❤❡ ✇♦r❦ ✐s s✐♠♣❧② t❤❡ s✉♠ ♦❢ t❤❡ t✇♦ ♦✈❡r ❡✐t❤❡r ♦❢ t❤❡ s❡❣♠❡♥ts✿ 1 · 1 + 2 · 1 = 3✳ ■t ✐s ❛❧s♦ t❤❡ ❛r❡❛ ♦❢ t❤❡ t✇♦ r❡❝t❛♥❣❧❡s ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢♦r❝❡ ❢✉♥❝t✐♦♥ F ✱ ✇❤✐❝❤ ✐s ❛ st❡♣✲❢✉♥❝t✐♦♥✱ ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧ ♦❢ l ♦✈❡r [0, 2]✳ ❋♦r t❤❡ ❣❡♥❡r❛❧ ❝❛s❡✱ ✇❡ ❤❛✈❡ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ✿
a = x0 ≤ c1 ≤ x1 ≤ ... ≤ cn ≤ xn = b
✸✳✻✳
❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦
✷✶✵
❚❤❡ ♣❛t❤ ✐s ❞✐✈✐❞❡❞ ✐♥t♦ s♠❛❧❧ s❡❣♠❡♥ts ❜②
x = xi ❛♥❞ t❤❡♥ t❤❡ ❢♦r❝❡ F (ci ) ❛♥❞ ✇❡ ❤❛✈❡✿
✐s s❛♠♣❧❡❞ ❛t t❤❡ ♣♦✐♥ts
ci ✳
❚❤❡♥ t❤❡
❢♦r❝❡ ♦♥ ❡❛❝❤ s❡❣♠❡♥t ✕ ✐❢ ❝♦♥st❛♥t ✕ ✐s ❡q✉❛❧ t♦ ❲♦r❦ ♦♥
it❤
s❡❣♠❡♥t
=
❢♦r❝❡
❚❤❡♥✱
=
❚♦t❛❧ ✇♦r❦
❖♥❝❡ ❛❣❛✐♥✱ ✇❡
r❡❝♦❣♥✐③❡
n X i=1
·
❧❡♥❣t❤
= F (ci ) · ∆xi .
F (ci ) · ∆xi .
t❤✐s ❡①♣r❡ss✐♦♥ ❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠✱
♣❛rt✐t✐♦♥✳
Σ F · ∆x✱
♦❢ t❤❡ ❢♦r❝❡ ❢✉♥❝t✐♦♥ ♦✈❡r t❤✐s
❉❡✜♥✐t✐♦♥ ✸✳✻✳✸✿ ✇♦r❦ ■❢ ❛ ❢✉♥❝t✐♦♥ ✐s ❝❛❧❧❡❞ ❛
F
✐s ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛ s❡❣♠❡♥t
❢♦r❝❡ ❢✉♥❝t✐♦♥✱ t❤❡♥ ✐ts ❘✐❡♠❛♥♥ s✉♠ ✐s ❝❛❧❧❡❞ t❤❡ ✇♦r❦
♦✈❡r ✐♥t❡r✈❛❧
[a, b]
♦❢ t❤❡ ❢♦r❝❡
[a, b]✿
❲♦r❦
= Σ F · ∆x .
❲❤❛t ✐❢ t❤❡ ❢♦r❝❡ ✈❛r✐❡s ✏❝♦♥t✐♥✉♦✉s❧②✑❄
❊①❛♠♣❧❡ ✸✳✻✳✹✿ ❧✐♥❡❛r ❞❡♣❡♥❞❡♥❝❡ ❙✉♣♣♦s❡ t❤❡ ❢♦r❝❡ ✐s ❝❤❛♥❣✐♥❣ ❧✐♥❡❛r❧② ♦✈❡r t❤❡ ✐♥t❡r✈❛❧ ❛✈❡r❛❣❡ ❢♦r❝❡ ✐s ❝❧❡❛r❀ ✐t ✐s
[0, 2]✿
❢r♦♠
1
t♦
2✳
❚❤❡♥ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡
1.5✳
1.5 · 2 = 3✳ ■t ✐s ❛❧s♦ t❤❡ ❛r❡❛ F (x) = 1 + x/2 ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧ ♦❢
❚❤❡r❡❢♦r❡✱ t❤❡ ✇♦r❦ ✐s
♦❢ t❤❡ tr✐❛♥❣❧❡ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢♦r❝❡
❢✉♥❝t✐♦♥
t❤✐s ❢✉♥❝t✐♦♥ ♦✈❡r
[0, 2]✳
❲❤❡♥ t❤❡ ❝❤❛♥❣❡ ♦❢
t❤❡ ❢♦r❝❡ ✐s ♥♦♥✲❧✐♥❡❛r✱ t❤❡ ❛r❣✉♠❡♥t ❢❛✐❧s✳
❚❤❡ ✇♦r❦ ♦♥ ❡❛❝❤ s❡❣♠❡♥t ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ ✇♦r❦ ✇✐t❤ t❤❡ ❢♦r❝❡ ❜❡✐♥❣ ❝♦♥st❛♥t❧② ❡q✉❛❧ t♦ ❲♦r❦ ♦♥
it❤
s❡❣♠❡♥t
≈
❢♦r❝❡
❚❤❡♥✱ ❚♦t❛❧ ✇♦r❦
≈
n X i=1
·
❧❡♥❣t❤
F (ci )✿
= F (ci ) · ∆xi .
F (ci ) · ∆xi .
❲❡ ❞❡✜♥❡ t❤❡ ✇♦r❦ ♦❢ t❤❡ ❢♦r❝❡ ❛s t❤❡ ❧✐♠✐t✱ ✐❢ ✐t ❡①✐sts✱ ♦❢ t❤❡s❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✐✳❡✳✱ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♦❢
F✳
❉❡✜♥✐t✐♦♥ ✸✳✻✳✺✿ ✇♦r❦ ■❢ ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥
F
♦♥ s❡❣♠❡♥t
❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✐s ❝❛❧❧❡❞ t❤❡
✇♦r❦
❲♦r❦
[a, b]
✐s ❝❛❧❧❡❞ ❛
❢♦r❝❡ ❢✉♥❝t✐♦♥✱ t❤❡♥ ✐ts
♦❢ t❤❡ ❢♦r❝❡ ♦✈❡r ✐♥t❡r✈❛❧
=
Z
b
F dx . a
[a, b]✿
✸✳✻✳
❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦
✷✶✶
❊①❡r❝✐s❡ ✸✳✻✳✻
❍♦✇ ♠✉❝❤ ✇♦r❦ ❞♦❡s ✐t t❛❦❡ t♦ ♠♦✈❡ ❛♥ ♦❜❥❡❝t ❛tt❛❝❤❡❞ t♦ ❛ s♣r✐♥❣ s ✉♥✐ts ❢r♦♠ t❤❡ ❡q✉✐❧✐❜r✐✉♠❄ ❊①❡r❝✐s❡ ✸✳✻✳✼
❍♦✇ ♠✉❝❤ ✇♦r❦ ❞♦❡s ✐t t❛❦❡ t♦ ♠♦✈❡ ❛♥ ♦❜❥❡❝t s ✉♥✐ts ❢r♦♠ t❤❡ ❝❡♥t❡r ♦❢ ❛ ♣❧❛♥❡t❄ ❆s ❛ s✉♠♠❛r②✱ ✇❡ ❤❛✈❡ s♦❧✈❡❞ t❤❡ ♣r♦❜❧❡♠ ♦❢ ✜♥❞✐♥❣ ❛ ❝❡rt❛✐♥ q✉❛♥t✐t② W ✕ ✇♦r❦✱ ✢♦✇✱ ❛♥❞ ♠❛ss ✕ ✐♥ ❛♥ ✐❞❡♥t✐❝❛❧ ♠❛♥♥❡r✳ ❲❡ ❤❛✈❡ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ✿
a = x0 ≤ c1 ≤ x1 ≤ ... ≤ cn ≤ xn = b ❲❡ ❞✐✈✐❞❡ t❤❡ ♣❛t❤ ✐♥t♦ s♠❛❧❧ s❡❣♠❡♥ts ❜② x = xi ❛♥❞ t❤❡♥ s❛♠♣❧❡ q✉❛♥t✐t② F ✕ t❤❡ ❢♦r❝❡✱ ♦r t❤❡ ✢♦✇ s♣❡❡❞✱ ♦r t❤❡ ❧✐♥❡❛r ❞❡♥s✐t② ✕ ❛t t❤❡ ♣♦✐♥ts ci ✿
❚❤❡♥ t❤✐s q✉❛♥t✐t②✱ F (ci )✱ ♦♥ ❡❛❝❤ s❡❣♠❡♥t ✐s ✉s❡❞ t♦ ✜♥❞ t❤❡ ✈❛❧✉❡ ♦❢ W ✿
Wi = F (ci ) · ∆xi .
❚❤❡♥✱ t❤❡ t♦t❛❧ ❛♣♣r♦①✐♠❛t❡❞ ✈❛❧✉❡ ♦❢ W ♦✈❡r t❤❡ ✇❤♦❧❡ s❡❣♠❡♥t ✐s
X i
Wi =
n X i=1
F (ci ) · ∆xi ,
✇❤✐❝❤ ✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ F ♦✈❡r t❤✐s ♣❛rt✐t✐♦♥✳ ❚❤❡ ❡①❛❝t ✈❛❧✉❡ ♦❢ t❤❡ t♦t❛❧ ♦❢ W ✐s t❤❡ ❧✐♠✐t ♦❢ t❤❡s❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✐✳❡✳✱ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡r✈❛❧ ♦❢ F ✿ Z b F dx . W = a
❲❛r♥✐♥❣✦
❈♦♥tr❛r② t♦ t❤❡ ✉♥✐✜❡❞ ❛♣♣r♦❛❝❤ ♣r❡s❡♥t❡❞ ❤❡r❡✱ t❤❡ tr❡❛t♠❡♥ts ♦❢ t❤❡ t❤r❡❡ ✐♥t❡❣r❛❧s ❛r❡ s✉❜st❛♥✲ t✐❛❧❧② ❞✐✛❡r❡♥t ✐♥ ❞✐♠❡♥s✐♦♥ 3 ✭❈❤❛♣t❡r ✹❍❉✲✺ ❛♥❞ ✹❍❉✲✻✮✿ • ❚❤❡ ✇♦r❦ ✐s ❛♥ ✐♥t❡❣r❛❧ ♦✈❡r ❛ ❝✉r✈❡✳ • ❚❤❡ ✢♦✇ ✐s ❛♥ ✐♥t❡❣r❛❧ ♦✈❡r ❛ s✉r❢❛❝❡✳ • ❚❤❡ ♠❛ss ✐s ❛♥ ✐♥t❡❣r❛❧ ♦✈❡r ❛ s♦❧✐❞✳
✸✳✻✳
❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦
✷✶✷
❲❡ ♥♦✇ ❝♦♥s✐❞❡r ❛ ❞✐✛❡r❡♥t s❡t✉♣✳✳✳ ❲❡ ❛rr✐✈❡❞ ❛t t❤❡ ✐♥t❡❣r❛❧ ❢♦r♠✉❧❛ ❛❜♦✈❡ ❜❡❝❛✉s❡ ♦❢ ❛ s✐♠♣❧❡ ✭✏❛❞❞✐t✐✈❡✑✮ ♣r♦♣❡rt② ♦❢ ✇♦r❦✿
◮
❲❤❡♥ t❤❡r❡ ❛r❡ t✇♦ s❡❣♠❡♥ts ♦❢ t❤❡ tr✐♣✱ t❤❡ ✇♦r❦ t♦ ♠♦✈❡ t❤r♦✉❣❤ t❤❡ t✇♦ ✐s ❡q✉❛❧ t♦ t❤❡
✇♦r❦ r❡q✉✐r❡❞ t♦ ♠♦✈❡ t❤r♦✉❣❤ t❤❡ ✜rst ♣❧✉s t❤❡ ✇♦r❦ r❡q✉✐r❡❞ t♦ ♠♦✈❡ t❤r♦✉❣❤ t❤❡ s❡❝♦♥❞✳ ❲❡ ❛r❡ t♦ ❝♦♥s✐❞❡r ❛ s✐t✉❛t✐♦♥ ✇❤❡♥
◮
❚✇♦ ♦❜❥❡❝ts✱ ♣♦ss✐❜❧② ✐❞❡♥t✐❝❛❧✱ ✉♥❞❡r ❛ ❢♦r❝❡✱ ♣♦ss✐❜❧② ❝♦♥st❛♥t✱ ❤❛✈❡ t♦ ❜❡ ♠♦✈❡❞
❞✐st❛♥❝❡s✳
❞✐✛❡r❡♥t
❚❤❡♥ t❤❡r❡ ✐s ♥♦ s✉❝❤ ❛ s❤♦rt❝✉t ❢♦r♠✉❧❛✳ ❊①❛♠♣❧❡ ✸✳✻✳✽✿ ❜r✐❝❦s
❆♥ ❡①❛♠♣❧❡ ♦❢ s✉❝❤ ❛ t❛s❦ ✐s st❛❝❦✐♥❣ ❜r✐❝❦s✿
❚❤❡♥ t❤❡ ✇♦r❦ ✕ ♦❢ t❤❡ ♣❡rs♦♥ ❛❝t✐♥❣
❛❣❛✐♥st
t❤❡ ❣r❛✈✐t② ✕ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿
W = M · 0 · h + M · 1 · h + M · 2 · h + M · 3 · h, ✇❤❡r❡
M
✐s t❤❡ ✇❡✐❣❤t ♦❢ t❤❡ ❜r✐❝❦ ❛♥❞
h
✐s ✐ts ❤❡✐❣❤t✳
❋✉rt❤❡r♠♦r❡✱ ✇❡ ❝♦♥s✐❞❡r t❤❡ ♣♦ss✐❜✐❧✐t② t❤❛t t❤❡ ❢♦r❝❡ ✐s ❝♦♥st❛♥t ❜✉t t❤❡ ♦❜❥❡❝t ❝❛♥✬t ❜❡ t❤♦✉❣❤t ♦❢ ❛s ❛ ♣♦✐♥t ❛♥②♠♦r❡✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ❞✐✛❡r❡♥t ♣❛rts ♦❢ t❤❡ ♦❜❥❡❝t ✇✐❧❧ tr❛✈❡❧ ❞✐✛❡r❡♥t ❞✐st❛♥❝❡s✳ ❚❤✐s s✐t✉❛t✐♦♥ ✐s♥✬t ❝♦✈❡r❡❞ ❜② t❤❡ ❛❜♦✈❡ ❞❡✜♥✐t✐♦♥ ♦❢ ✇♦r❦✳ ❊①❛♠♣❧❡ ✸✳✻✳✾✿ ❝✉❜✐❝❛❧ t❛♥❦
❙✉♣♣♦s❡ ✇❡ ❛r❡ t♦ ✜❧❧ ❛ t❛♥❦ ✇✐t❤
w×w
❜❛s❡ ❛♥❞ ❤❡✐❣❤t
❲❤❛t ✐s t❤❡ ✇♦r❦ r❡q✉✐r❡❞ ❛ss✉♠✐♥❣ t❤❛t t❤❡ ❞❡♥s✐t② ✐s
h
✇✐t❤ ✇❛t❡r ✕ ❢r♦♠ t❤❡ ❜♦tt♦♠✿
1❄
❲❡ ✐♠❛❣✐♥❡ t❤❛t ✇❛t❡r ❛♣♣❡❛rs ❛t t❤❡ ❜♦tt♦♠ ✐♥ t❤✐♥ s❧✐❝❡s ❛♥❞ t❤❡♥ ❡❛❝❤ ✐s ❞❡❧✐✈❡r❡❞ t♦ t❤❡ ❛♣♣r♦♣r✐❛t❡
[0, h]✳ ❚❤✐s ♠❡❛♥s t❤❛t t❤❡ x✲❛①✐s ✐s ✈❡rt✐❝❛❧✳ ❚❤❡ it❤ s❧✐❝❡ ✐s ❛ sq✉❛r❡ ❜❡t✇❡❡♥ t❤❡ ♣❧❛♥❡s x = xi−1 ❛♥❞ x = xi ✳ ■ts t❤✐❝❦♥❡ss ✐s ∆xi = xi − xi−1 ❛♥❞ 2 ✐ts ✇❡✐❣❤t ✐s w · ∆xi ✳ ◆♦✇✱ t❤❡ it❤ s❧✐❝❡ ✐s ❞❡❧✐✈❡r❡❞ t♦ ❤❡✐❣❤t ci ✳ ❚❤❡ ✇♦r❦ t♦ ❞♦ s♦ ✐s ❤❡✐❣❤t✳ ❚❤❡② ❝♦♠❡ ❢r♦♠ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥
P
♦❢
w2 ∆xi · ci .
✸✳✻✳
❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦
✷✶✸
❚❤❡♥ t❤❡ t♦t❛❧ ✇♦r❦ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜②✿ ❲♦r❦ ≈ ❚❤✐s ✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ ✐♥t❡❣r❛❧✿ ❲♦r❦ = w
2
n X
w2 ci · ∆xi .
Z
x dx = w2
i=1
h 0
h2 . 2
❚❤❡ r❡s✉❧t ♠❛t❝❤❡s t❤❡ ✐❞❡❛ t❤❛t t❤❡ ✇♦r❦ r❡q✉✐r❡❞ ✐s t❤❡ s❛♠❡ ❛s t❤❡ ✇♦r❦ t♦ ♠♦✈❡ t❤❡ ✇❤♦❧❡ ❛♠♦✉♥t ♦❢ ✇❛t❡r✱ ✈♦❧✉♠❡ w2 h✱ ❢r♦♠ t❤❡ ❜♦tt♦♠ t♦ t❤❡ ❛✈❡r❛❣❡ ❤❡✐❣❤t ✇✐t❤✐♥ t❤❡ t❛♥❦✱ h/2✳
❊①❡r❝✐s❡ ✸✳✻✳✶✵
❙✉♣♣♦s❡ ✇❡ ❛r❡ t♦ ✜❧❧ ❛ ❝②❧✐♥❞r✐❝❛❧ t❛♥❦ ✇✐t❤ ❜❛s❡ ♦❢ r❛❞✐✉s R ❛♥❞ ❤❡✐❣❤t h ✇✐t❤ ✇❛t❡r ❢r♦♠ t❤❡ ❜♦tt♦♠✳ ❲❤❛t ✐s t❤❡ ✇♦r❦ r❡q✉✐r❡❞❄ ❊①❡r❝✐s❡ ✸✳✻✳✶✶
❲❤❛t ✐❢ t❤❡ ❤♦r✐③♦♥t❛❧ ❝r♦ss✲s❡❝t✐♦♥s ♦❢ t❤❡ t❛♥❦ ❤❛✈❡ ❛r❜✐tr❛r② ✭❜✉t ✐❞❡♥t✐❝❛❧✮ s❤❛♣❡❄ ❊①❡r❝✐s❡ ✸✳✻✳✶✷
❙✉♣♣♦s❡ ❛ ❝❤❛✐♥ ♦❢ ✇❡✐❣❤t M ❛♥❞ ❧❡♥❣t❤ h ✐s t♦ ❜❡ ♣✉❧❧❡❞ ❛❧❧ t❤❡ ✇❛② ✉♣ ❢r♦♠ t❤❡ ❣r♦✉♥❞❄ ❲❤❛t ✐s t❤❡ ✇♦r❦ r❡q✉✐r❡❞❄ ■♥ t❤❡ ❡①❛♠♣❧❡s ❛❜♦✈❡✱ t❤❡ ✇♦r❦ ✐s r❡♣❡t✐t✐✈❡✳ ❲❤❛t ✐❢ t❤❡ ❝r♦ss✲s❡❝t✐♦♥ ✈❛r✐❡s ✐♥ s❤❛♣❡ ❛♥❞ s✐③❡❄ ❊①❛♠♣❧❡ ✸✳✻✳✶✸✿ s♣❤❡r✐❝❛❧ t❛♥❦
❙✉♣♣♦s❡ ✇❡ ❛r❡ t♦ ✜❧❧ ❛ s♣❤❡r✐❝❛❧ t❛♥❦ ♦❢ r❛❞✐✉s R ✇✐t❤ ✇❛t❡r ❢r♦♠ t❤❡ ❜♦tt♦♠✿
❲❤❛t ✐s t❤❡ ✇♦r❦ r❡q✉✐r❡❞❄ ❲❡ ✐♠❛❣✐♥❡ t❤❛t ✇❛t❡r ❛♣♣❡❛rs ❛t t❤❡ ❜♦tt♦♠ ✐♥ t❤✐♥ s❧✐❝❡s ❛♥❞ t❤❡♥ ❡❛❝❤ ✐s ❞❡❧✐✈❡r❡❞ t♦ t❤❡
✸✳✻✳
❚❤❡ ❢♦r❝❡ ❛♥❞ t❤❡ ✇♦r❦
❛♣♣r♦♣r✐❛t❡ ❤❡✐❣❤t✳
it❤
P ♦❢ [−R, R]✳ ❚❤❡ it❤ s❧✐❝❡ ✐s ❛ ❞✐s❦ ∆xi = xi − xi−1 ✱ r❛❞✐✉s ri ✭t♦ ❜❡ ❢♦✉♥❞✮✱ ❛♥❞
❚❤❡② ❝♦♠❡ ❢r♦♠ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥
❜❡t✇❡❡♥ t❤❡ ♣❧❛♥❡s x = 2 ✐ts ✇❡✐❣❤t ✐s πri · ∆xi ✳ ◆♦✇✱ t❤❡
✷✶✹
xi−1
❛♥❞
x = xi ✳
■ts t❤✐❝❦♥❡ss ✐s
s❧✐❝❡ ✐s ❞❡❧✐✈❡r❡❞ t♦ ❧♦❝❛t✐♦♥
❞✐s♣❧❛❝❡♠❡♥t ✐s✱ t❤❡r❡❢♦r❡✱
R + ci
ci
✭❞❡♣✐❝t❡❞ ♥❡❣❛t✐✈❡✮✱ ❝♦✈❡r✐♥❣ t❤❡ ✐♥t❡r✈❛❧
[−R, ci ]✳
❚❤❡
❛♥❞ t❤❡ ✇♦r❦ t♦ ❞♦ s♦ ✐s
πri2 ∆xi · (R + ci ) . ❚❤❡♥ t❤❡ t♦t❛❧ ✇♦r❦ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣✿
❲♦r❦
≈
n X i=1
πri2 (R + ci ) · ∆xi .
▲❡t✬s ✜♥❞ t❤❡ r❛❞✐✉s ♦❢ t❤❡ s❧✐❝❡✳ ❋r♦♠ t❤❡ P②t❤❛❣♦r❡❛♥ ❚❤❡♦r❡♠✱ ✇❡ ❤❛✈❡✿
ri2 = R2 − c2i . ❚❤❡♥ t❤❡ ❛❜♦✈❡ ❡①♣r❡ss✐♦♥ ✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥t❡❣r❛❧✿
✇♦r❦
=π =π
Z
R
Z−R R
−R
(R2 − x2 )(R + x) dx R3 − x2 R + R2 x − x3 dx
R 1 1 1 = π R 3 x − x3 R + R 2 x2 − x4 3 2 4 −R 1 4 1 4 1 4 1 4 4 4 41 41 = π R − R + R − R − π −R + R + R − R 3 2 4 3 2 4 4 = πR4 . 3
❚❤❡ r❡s✉❧t ♠❛t❝❤❡s t❤❡ ✐❞❡❛ t❤❛t t❤❡ ✇♦r❦ r❡q✉✐r❡❞ ✐s t❤❡ s❛♠❡ ❛s t❤❡ ✇♦r❦ t♦ ♠♦✈❡ t❤❡ ✇❤♦❧❡ ❜❛❧❧ ♦❢ 3 4 ✇❛t❡r✱ ✈♦❧✉♠❡ πR ✱ s♦ t❤❛t ✐ts ❝❡♥t❡r ♦❢ ♠❛ss ♠♦✈❡s ❢r♦♠ −R t♦ 0✳ 3 ❊①❡r❝✐s❡ ✸✳✻✳✶✹
❙✉♣♣♦s❡ ✇❡ ❛r❡ t♦ ✜❧❧ ❛ ✏♣❛r❛❜♦❧♦✐❞✑ t❛♥❦ ❛❝q✉✐r❡❞ ❜② r♦t❛t✐♥❣ t❤❡ ❣r❛♣❤ ♦❢
y = x2
❛r♦✉♥❞ t❤❡
x✲❛①✐s✱
✇❤✐❝❤ ✐s ✈❡rt✐❝❛❧✱ ❢r♦♠ t❤❡ ❜♦tt♦♠✳ ❲❤❛t ✐s t❤❡ ✇♦r❦ r❡q✉✐r❡❞❄
❊①❡r❝✐s❡ ✸✳✻✳✶✺
❲❤❛t ✇♦r❦ ✐s ♥❡❡❞❡❞ t♦ ♣✉❧❧ ❛❧❧ t❤❡ ✇❛② ✉♣ ❛ ❝❤❛✐♥ ❤❛♥❣✐♥❣ ❞♦✇♥ ✐❢ ✐t ✐s
10
❢❡❡t ❧♦♥❣ ❛♥❞
20
♣♦✉♥❞s
❤❡❛✈②❄
❊①❡r❝✐s❡ ✸✳✻✳✶✻
❲❤❛t ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ✇♦r❦ r❡q✉✐r❡❞ ♦✈❡r ❛♥ ✐♥✜♥✐t❡❧② ❧♦♥❣ tr✐♣❄
❊①❡r❝✐s❡ ✸✳✻✳✶✼
❙❤♦✇ t❤❛t t❤❡ ✇♦r❦ r❡q✉✐r❡❞ t♦ ♠♦✈❡ ❛♥ ♦❜❥❡❝t ♣✐❡❝❡ ❜② ♣✐❡❝❡✱ ❛s ❛❜♦✈❡✱ ✐s t❤❡ s❛♠❡ ❛s t❤❡ ✇♦r❦ r❡q✉✐r❡❞ t♦ ♠♦✈❡ t❤❡ ✇❤♦❧❡ ♦❜❥❡❝t ❛s ✐❢ ✐ts t♦t❛❧ ♠❛ss ✐s ❝♦♥❝❡♥tr❛t❡❞ ❛t ❛ s✐♥❣❧❡ ♣♦✐♥t✱ ✐ts ❝❡♥t❡r ♦❢ ♠❛ss✳
✸✳✼✳
❚❤❡ t♦t❛❧ ❛♥❞ t❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥
✷✶✺
✸✳✼✳ ❚❤❡ t♦t❛❧ ❛♥❞ t❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥
❲❤❛t ❞♦ t❤❡s❡ ❡①❛♠♣❧❡s ❤❛✈❡ ✐♥ ❝♦♠♠♦♥❄ ❆ ❝❡rt❛✐♥ q✉❛♥t✐t②✱
f ✱ ✐s ✏s♣r❡❛❞✑
❛r♦✉♥❞ ❧♦❝❛t✐♦♥s ✐♥ s♣❛❝❡❀ ❢♦r ♥♦✇✱ ✐t ✐s ❛♥ ✐♥t❡r✈❛❧ ✇✐t❤✐♥ t❤❡
x✲❛①✐s✳
❚❤✐s
q✉❛♥t✐t② ♠❛② ❜❡✿ ❧❡♥❣t❤✱ ❛r❡❛✱ ❞❡♥s✐t②✱ ✈❡❧♦❝✐t②✱ ❢♦r❝❡✳ ❲❤❡♥ t❤❡ q✉❛♥t✐t② ✐s ❝♦♥st❛♥t ✇✐t❤✐♥ ❛ s❡❣♠❡♥t ♦❢ t❤❡ ✐♥t❡r✈❛❧✱ ♠✉❧t✐♣❧②✐♥❣ t❤✐s ✈❛❧✉❡ ❜② t❤❡ ❧❡♥❣t❤ ♦❢ t❤✐s ♣✐❡❝❡✱
❲❤❡♥ t❤❡ q✉❛♥t✐t②
f
f✳
❛r❡❛
t♦t❛❧ ❛r❡❛
❧✐♥❡❛r ❞❡♥s✐t②
♠❛ss
t♦t❛❧ ♠❛ss
✢♦✇ r❛t❡
✢✉①
t♦t❛❧ ✢✉①
❢♦r❝❡
✇♦r❦
t♦t❛❧ ✇♦r❦
t♦t❛❧ ✈❛❧✉❡
♦❢
f
✐s t❤❡ s✉♠ ♦❢ t❤❡ t❡r♠s
❲❤❡♥ t❤✐s ❝❤❛♥❣❡ ✐s ❝♦♥t✐♥✉♦✉s✱ t❤❡
❛t t❤❡ ❧✐♠✐t✱ ✐t ✐s t❤❡ ✐♥t❡❣r❛❧ ♦❢ ◆♦✇✱ t❤❡
❧❡♥❣t❤
✈❛r✐❡s ❢r♦♠ s❡❣♠❡♥t t♦ s❡❣♠❡♥t ♦✈❡r t❤❡ ✐♥t❡r✈❛❧✱ ✐t ✐s r❡♣r❡s❡♥t❡❞ ❜② ❛ ❢✉♥❝t✐♦♥✳ ❲❤❡♥
t❤✐s ❝❤❛♥❣❡ ✐s ✐♥❝r❡♠❡♥t❛❧✱ t❤❡ ❢✉♥❝t✐♦♥
f · ∆x Σf · ∆x
f
q✉❛♥t✐t②
❛✈❡r❛❣❡
❘❡❝❛❧❧ t❤❛t t❤❡
f
♦✈❡r
t♦t❛❧ ✈❛❧✉❡
♦❢
f
f · ∆x✱
✐✳❡✳✱ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡
✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤✐s ❘✐❡♠❛♥♥ s✉♠ ❛♥❞✱
[a, b]✳
✈❛❧✉❡✳
♠❡❛♥
✭♦r t❤❡ ❛✈❡r❛❣❡✮ ♦❢ ❛ q✉❛♥t✐t② ❣✐✈❡♥ ❜②
❢♦❧❧♦✇✐♥❣✿ ▼❡❛♥
=
✐♥✜♥✐t❡❧② ♠❛♥②
▲❡t✬s st❛rt ✇✐t❤ t❤❡ ✐❞❡❛ ♦❢ ❛
n
♥✉♠❜❡rs
y1 , ..., yn
✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡
y1 + y2 + ... + yn . n
❍♦✇ s❤♦✉❧❞ ✇❡ ✉♥❞❡rst❛♥❞ t❤❡ ♠❡❛♥ ♦❢ ❛ q✉❛♥t✐t② t❤❛t ✐s ❚❤❡ ♥✉♠❡r❛t♦r ✇♦✉❧❞ ❤❛✈❡
m1 , ..., mn
∆x✱ ❣✐✈❡s ✉s ❛ ♥❡✇ ❜✉t st✐❧❧ ❢❛♠✐❧✐❛r q✉❛♥t✐t②✿
❝♦♥t✐♥✉♦✉s❧②
s♣r❡❛❞ ♦✈❡r ❛ ❧✐♥❡ s❡❣♠❡♥t✱ s❛②
[a, b]❄
t❡r♠s✦
✇❡✐❣❤t❡❞ ❛✈❡r❛❣❡✳
❲❡ ❛ss✉♠❡ t❤❛t ✇❡ ❤❛✈❡
n ✇❡✐❣❤ts✱
✐✳❡✳✱
n
♣♦s✐t✐✈❡ ♥✉♠❜❡rs
✇✐t❤
m1 + ... + mn = 1 . ❚❤❡♥ ❢♦r ❛♥② ❣✐✈❡♥
n
♥✉♠❜❡rs
y1 , ..., yn ✱
✇❡ ❞❡✜♥❡ t❤❡✐r ✇❡✐❣❤t❡❞ ❛✈❡r❛❣❡ ❛s ❢♦❧❧♦✇s✿
❲❡✐❣❤t❡❞ ❛✈❡r❛❣❡
= m1 y1 + m2 y2 + ... + mn yn =
n X
mi yi .
i=1
❊①❡r❝✐s❡ ✸✳✼✳✶
❙❤♦✇ t❤❛t t❤❡ ♠❡❛♥ ✐s t❤❡ ✇❡✐❣❤t❡❞ ❛✈❡r❛❣❡ ✇✐t❤
mi = 1/n
❢♦r ❛❧❧
i✳
❊①❛♠♣❧❡ ✸✳✼✳✷✿ s❝♦r❡s
❚❤❡ ✇❡✐❣❤t❡❞ ❛✈❡r❛❣❡ ♠❛② ❛♣♣❡❛r ✇❤❡♥ ♦♥❡ ❝♦♠♣✉t❡s t❤❡ t♦t❛❧ s❝♦r❡ ✐♥ ❛ ❝❧❛ss ❛❢t❡r s❡✈❡r❛❧ ❛ss✐❣♥♠❡♥ts ♦❢ ❞✐✛❡r❡♥t
• • • •
✇❡✐❣❤ts✳
❋♦r ❡①❛♠♣❧❡✱ t❤✐s ♠❛② ❜❡ t❤❡ ❣r❛❞❡ ❜r❡❛❦❞♦✇♥✿
20% 30% ♠✐❞t❡r♠✿ 20% ✜♥❛❧ ❡①❛♠✿ 30%
♣❛rt✐❝✐♣❛t✐♦♥✿ q✉✐③③❡s✿
❚❤❡♥ t❤❡ t♦t❛❧ s❝♦r❡ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣ ✇❡✐❣❤t❡❞ ❛✈❡r❛❣❡ ♦❢ t❤❡ ✜✈❡ s❝♦r❡s✿ ❚❖❚❆▲
= .20 × P + .30 × Q + .20 × M + .30 × F .
✸✳✼✳
❚❤❡ t♦t❛❧ ❛♥❞ t❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥
✷✶✻
❊①❛♠♣❧❡ ✸✳✼✳✸✿ ❝❡♥t❡r ♦❢ ♠❛ss❄ ❘❡❝❛❧❧ t❤❛t ✐❢ c ✐s t❤❡ ❝♦♦r❞✐♥❛t❡ ♦❢ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ ❛ s②st❡♠ ♦❢ ✇❡✐❣❤ts ✇✐t❤ ❧♦❝❛t✐♦♥s ❛t yi ❛♥❞ r❡❧❛t✐✈❡ ✇❡✐❣❤ts mi ✱ t❤❡♥ X c=
mi yi .
i
❚❤❡r❡❢♦r❡✱ t❤❡ ✇❡✐❣❤t❡❞ ❛✈❡r❛❣❡ ✐s t❤❡ s❛♠❡✱ ✐♥ t❤✐s ❝❛s❡✱ ❛s t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤❡ s②st❡♠✳
❚❤❡ ♥❡✇ s❡t✉♣ ✐s ❛s ❢♦❧❧♦✇s✿ ◮ ❆ s✉❜st❛♥❝❡ ✐s ✉♥✐❢♦r♠❧② ❞✐str✐❜✉t❡❞ ♦✈❡r ❛ s❡❣♠❡♥t ♦❢ t❤❡ ❧✐♥❡✳
❚❤❡♥✱ t❤❡ ✇❡✐❣❤t ♦❢ t❤❡ s❡❣♠❡♥t ✐s ♣r♦♣♦rt✐♦♥❛❧ t♦ ✐ts ✇✐❞t❤✳ ❲❡ ❛r❡✱ t❤❡♥✱ ❥✉st✐✜❡❞ t♦ ✉s❡ t❤❡s❡ ✇✐❞t❤s ❛s s✉❜st✐t✉t❡s ❢♦r t❤❡ t❤❡ ♠❛✐♥ ✐❞❡❛✿ ◮ ❊❛❝❤ ✇❡✐❣❤t mi ✐s t❤❡
r❡❧❛t✐✈❡ ❧❡♥❣t❤ ♦❢ t❤❡ ✐♥t❡r✈❛❧
✇❡✐❣❤ts
✐♥ t❤❡ ✇❡✐❣❤t❡❞ ❛✈❡r❛❣❡✳ ❚❤✐s ✐s
✇❤❡r❡ yi ♦❢ t❤❡ q✉❛♥t✐t② ✐s ❧♦❝❛t❡❞✳
❲❡ st❛rt ✇✐t❤ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ♦❢ t❤❡ ✐♥t❡r✈❛❧✿ a = x0 ≤ c1 ≤ x1 ≤ ... ≤ cn ≤ xn = b
❚❤❡♥ ✇❡ ✇r✐t❡ t❤❡ r❡❧❛t✐✈❡ ❧❡♥❣t❤s✿ mi =
▲❡t✬s s✉❜st✐t✉t❡✿
∆xi . b−a
n n X 1 X ∆xi yi = yi · ∆xi . ❲❡✐❣❤t❡❞ ❛✈❡r❛❣❡ = b−a b − a i=1 i=1
❋✉rt❤❡r♠♦r❡✱ ✐❢ t❤❡s❡ ♥✉♠❜❡rs ❛r❡ ❣✐✈❡♥ ❜② ❛ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✱ f (ci ) = yi ,
t❤❡♥ ✇❡ ❤❛✈❡✿
n
1 X ❲❡✐❣❤t❡❞ ❛✈❡r❛❣❡ = f (ci ) · ∆xi . b − a i=1
❚❤✐s s✉♠ ✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤✐s ❢✉♥❝t✐♦♥✳
❉❡✜♥✐t✐♦♥ ✸✳✼✳✹✿ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❢✉♥❝t✐♦♥ ❚❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ f ❞❡✜♥❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ ❛♥ ✐♥t❡r✈❛❧ [a, b] ✐s ❞❡♥♦t❡❞ ❛♥❞ ❞❡✜♥❡❞ ❛s ❢♦❧❧♦✇s✿ f¯ =
1 Σ f · ∆x . b−a
■t ✐s✱ ✐♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ t♦t❛❧ ✈❛❧✉❡ ♦❢ f ♣❡r ✉♥✐t ♦❢ ❧❡♥❣t❤✳
✸✳✼✳
❚❤❡ t♦t❛❧ ❛♥❞ t❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥
✷✶✼
❲❛r♥✐♥❣✦ ❚❤❡ ❛✈❡r❛❣❡ ♠❛ss ♦❢ ❛ s②st❡♠ ♦❢ ✇❡✐❣❤ts ✐s ♥♦t t❤❡ s❛♠❡ ❛s t❤❡ ❛✈❡r❛❣❡
❧♦❝❛t✐♦♥
♦❢ t❤❡ ✇❡✐❣❤ts✳
❲❤❛t ✐❢ t❤❡ ❢✉♥❝t✐♦♥ ❞♦❡s♥✬t ❝❤❛♥❣❡ ✐♥❝r❡♠❡♥t❛❧❧② ❜✉t ✏❝♦♥t✐♥✉♦✉s❧②✑❄
❊①❛♠♣❧❡ ✸✳✼✳✺✿ ❧✐♥❡❛r ❞❡♣❡♥❞❡♥❝❡ f 1.5✳
❙✉♣♣♦s❡ t❤❡ ❢✉♥❝t✐♦♥ ✈❛❧✉❡ ✐s ❝❧❡❛r❀ ✐t ✐s
✐s ❧✐♥❡❛r✱ ❢r♦♠
1
t♦
2
♦✈❡r t❤❡ ✐♥t❡r✈❛❧
[0, 2]✳
❚❤❡♥ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❛✈❡r❛❣❡
❲❤❡r❡ ❞♦❡s ✐t ❝♦♠❡s ❢r♦♠❄ ❚❤❡ ❛r❡❛ ♦❢ t❤❡ tr✐❛♥❣❧❡ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ ♦❢
f
♦✈❡r
[0, 2]✱
❞✐✈✐❞❡❞ ❜② ✐ts ❧❡♥❣t❤✱
f✱
✐✳❡✳✱
3✱
✇❤✐❝❤ ✐s t❤❡ ✐♥t❡❣r❛❧
2✳
❚❤❡♥ ✇❡ t❤✐♥❦ ♦❢ t❤❡ ❢r❛❝t✐♦♥ ❛❜♦✈❡ ❛s ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ❛✈❡r❛❣❡✳ ❚❤✐s ❛♥❛❧②s✐s ❥✉st✐✜❡s t❤❡ ❢♦❧❧♦✇✐♥❣ ❞❡✜♥✐t✐♦♥✿
❉❡✜♥✐t✐♦♥ ✸✳✼✳✻✿ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❢✉♥❝t✐♦♥ ❚❤❡
❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥ f
❞❡✜♥❡❞ ❛s ❢♦❧❧♦✇s✿
f¯ =
1 b−a
❚♦ ✐❧❧✉str❛t❡✱ ❝♦♥s✐❞❡r ❤♦✇ ♦♥❡ ❧❡✈❡❧s ❛♥ ✉♥❡✈❡♥ s✉r❢❛❝❡ ♦❢ s❛♥❞✿
❚❤❡ ❛♠♦✉♥t ♦❢ s❛♥❞ ✐s t❤❡ s❛♠❡✳ ❚❤❡ ❛✈❡r❛❣❡ ❞❡♣t❤ ♦❢ ❛ ❝❛♥❛❧ ✐s ❛♥♦t❤❡r ✐♥t❡r♣r❡t❛t✐♦♥✿
Z
♦✈❡r ✐♥t❡r✈❛❧
b
f dx . a
[a, b]
✐s ❞❡♥♦t❡❞ ❛♥❞
✸✳✼✳
❚❤❡ t♦t❛❧ ❛♥❞ t❤❡ ❛✈❡r❛❣❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥
✷✶✽
❇♦t❤ ❝❛♥❛❧s ❤❛✈❡ t❤❡ s❛♠❡ ❛♠♦✉♥t ♦❢ ✇❛t❡r✳ ❚❤✉s✱ ❜② ✏❛✈❡r❛❣✐♥❣✑ ✇❡ ♠❡❛♥ r❡♣❧❛❝✐♥❣ ❛♥② ❢✉♥❝t✐♦♥✱
y = f (x)✱
t❤❛t t❤❡ t✇♦ ❤❛✈❡ t❤❡ s❛♠❡ ✐♥t❡❣r❛❧✿
f¯ · (b − a) =
Z
✇✐t❤ ❛
❝♦♥st❛♥t ❢✉♥❝t✐♦♥✱ y = f¯✱ ❝❤♦s❡♥ s♦
b
f dx . a
❊①❡r❝✐s❡ ✸✳✼✳✼
Pr♦✈❡ t❤❡ ❛❜♦✈❡ st❛t❡♠❡♥t✳
❚❤❡♦r❡♠ ✸✳✼✳✽✿ Pr♦♣❡rt✐❡s ♦❢ ❆✈❡r❛❣❡ ❖✈❡r ❛ ❣✐✈❡♥ ✐♥t❡r✈❛❧✱ ✇❡ ❤❛✈❡✿
•
❚❤❡ ❛✈❡r❛❣❡ ♦❢ t❤❡ s✉♠ ✐s t❤❡ s✉♠ ♦❢ t❤❡ ❛✈❡r❛❣❡s✿
f + g = f¯ + g¯ . •
❚❤❡ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡ ♦❢ t❤❡ ❛✈❡r❛❣❡ ✐s t❤❡ ❛✈❡r❛❣❡ ♦❢ t❤❡ ❝♦♥st❛♥t ♠✉❧t✐♣❧❡✿
cf = cf¯ . ❊①❡r❝✐s❡ ✸✳✼✳✾
Pr♦✈❡ t❤❡ t❤❡♦r❡♠✳ ❊①❡r❝✐s❡ ✸✳✼✳✶✵
❲❤❛t ❝❛♥ ②♦✉ s❛② ❛❜♦✉t t❤❡ ❛✈❡r❛❣❡ ♦❢ ✭❛✮ ❛♥ ♦❞❞ ❢✉♥❝t✐♦♥ ♦✈❡r
[−r, r]✱
[−r, r]✱
✭❜✮ ❛♥ ❡✈❡♥ ❢✉♥❝t✐♦♥ ♦✈❡r
✭❝✮ ❛ ♣❡r✐♦❞✐❝ ❢✉♥❝t✐♦♥❄
❲❡ ❝❛♥ r❡✇r✐t❡ t❤❡ t❛❜❧❡ ✇✐t❤ ✇❤✐❝❤ ✇❡ st❛rt❡❞ t❤❡ s❡❝t✐♦♥✿
f
Z
b
f dx a
1 b−a
Z
b
f dx a
❧❡♥❣t❤
t♦t❛❧ ❛r❡❛
❛✈❡r❛❣❡ ❧❡♥❣t❤
❧✐♥❡❛r ❞❡♥s✐t②
t♦t❛❧ ♠❛ss
❛✈❡r❛❣❡ ❧✐♥❡❛r ❞❡♥s✐t②
✢✉①
t♦t❛❧ ✢✉①
❛✈❡r❛❣❡ ✢✉①
❢♦r❝❡
t♦t❛❧ ✇♦r❦
❛✈❡r❛❣❡ ❢♦r❝❡
❆❧❧ ❤❛✈❡ ❜❡❡♥ ✐♥tr♦❞✉❝❡❞ ✐♥ t❤❡ ❝❤❛♣t❡r ❡①❝❡♣t ❢♦r t❤❡ ✜rst ✐t❡♠ t❤❛t ❝♦♠❡s ❢r♦♠ ❱♦❧✉♠❡ ✷✳
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✶✾
❊①❡r❝✐s❡ ✸✳✼✳✶✶
❲❤❛t ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❛✈❡r❛❣❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ♦♥ ❛♥ ✐♥✜♥✐t❡ ✐♥t❡r✈❛❧❄
✸✳✽✳ ◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
❚♦ ❛♣♣❧② t❤❡ ✐♥t❡❣r❛❧ ❢♦r♠✉❧❛s ♣r❡s❡♥t❡❞ ✐♥ t❤✐s ❝❤❛♣t❡r✱ ✇❡ ♥❡❡❞ t♦ ❡✈❛❧✉❛t❡ t❤♦s❡ ✐♥t❡❣r❛❧s✳ ❚❤✐s ✐s ❛♥ ✐❞❡❛❧ ♦✉t❝♦♠❡✿ ❆r❡❛ = ❲❡ ❤❛✈❡ ❛♥ ❡①❛❝t
♥✉♠❜❡r✳
Z
2
1 1 x3 13 03 − = . x dx = = 3 0 3 3 3 2
0
❍♦✇❡✈❡r✱ s✉❝❤ ❛♥ ♦✉t❝♦♠❡ ✐s ❛♥ ❡①❝❡♣t✐♦♥✱ ♥♦t ❛ r✉❧❡✦ ❙♦♠❡ ✐♥t❡❣r❛❧s ❞♦ ♥♦t ♣r♦❞✉❝❡ ❢❛♠✐❧✐❛r ❢✉♥❝t✐♦♥s s♦ t❤❛t ✇❡ ❝❛♥ ❥✉st ♣❧✉❣ ✐♥ t❤❡ t✇♦ ✈❛❧✉❡s✳ ❈♦♥✈❡rs❡❧②✱ s♦♠❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥s ❤❛✈❡ ❜❡❡♥ ❞❡✜♥❡❞ ❛s ✐♥t❡❣r❛❧s ♦♥❧②✱ s✉❝❤ ❛s✿ Z 2 erf(x) = √ π
2
e−x dx .
❚❤❡r❡ ✐s ♥♦ ♦t❤❡r ❢♦r♠✉❧❛✦
❲❤❛t ❞♦ ✇❡ ❞♦❄ ❚❤❡ ❛♥s✇❡r ✐s ✐♥ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✳ ■t ✐s ❞❡✜♥❡❞ ✈✐❛ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❛♥❞ t❤❡s❡ s✉♠s s❡r✈❡ ❛s ✐ts ❛♣♣r♦①✐♠❛t✐♦♥s✳ ❲❡ ✇✐❧❧ ❛ss✉♠❡ ❜❡❧♦✇ t❤❛t ❛❧❧ ❢✉♥❝t✐♦♥s ❛r❡ ✐♥t❡❣r❛❜❧❡✱ ✇❤✐❝❤ ♠❡❛♥s t❤❛t ❛♥② ❝❤♦✐❝❡ ♦❢ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ❢♦r t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✐s ❡q✉❛❧❧② ✈❛❧✐❞✳ ❊①❛♠♣❧❡ ✸✳✽✳✶✿ ♣❛rt✐t✐♦♥ s❝❤❡♠❡s
▲❡t✬s r❡✈✐❡✇ t❤❡ ✇❛②s ✇❡ ❡st✐♠❛t❡ t❤✐s ✐♥t❡❣r❛❧ ♦❢ f (x) = x2 ♦✈❡r [0, 1]✿ Z
1
f dx . 0
❲❡ ❝❤♦♦s❡ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥t❡r✈❛❧s t♦ ❜❡ n = 4 ✇✐t❤ ❡q✉❛❧ ✐♥t❡r✈❛❧s ♦❢ ❧❡♥❣t❤ h = 1/4✳ ❚❤❡♥ ✇❡ ❝❤♦♦s❡✱ ❛s t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✱ t❤❡ ❧❡❢t✲❡♥❞ ♦r t❤❡ r✐❣❤t✲❡♥❞ ♦❢ ❡❛❝❤ ✐♥t❡r✈❛❧✿
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✵
❆t t❤♦s❡ ♣♦✐♥ts✱ t❤❡ ❢✉♥❝t✐♦♥ ✐s ❡✈❛❧✉❛t❡❞✳ ❚❤✐s ✐s t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠
•
x x
−−
0
2
0
|
1/4
−−
1/16
L4 0 · 1/4
+
1/16 · 1/4
|
−− |
1/2
+
−− •
3/4
1/4
1
9/16
1/4 · 1/4 +
1
9/16 · 1/4
❲❡✱ ❢✉rt❤❡r♠♦r❡✱ r❡❛❧✐③❡ t❤❛t ✇❡ ❛r❡ ❝♦♠♣✉t✐♥❣ t❤❡ ❘✐❡♠❛♥♥ s✉♠
L4 ✿
❢✉♥❝t✐♦♥
≈ 0.22 ❢♦r t❤✐s ❛✉❣♠❡♥t❡❞ ♣❛rt✐✲
t✐♦♥✳ ■ts ❢♦✉r ✈❛❧✉❡s ❛r❡ s❤♦✇♥ ❛t ❜♦tt♦♠ ♦❢ t❤❡ t❛❜❧❡✳
❲❛r♥✐♥❣✦ ■t ✐s ❜❡tt❡r t♦ ❛✈♦✐❞ ✏❛♣♣r♦①✐♠❛t✐♥❣ ✇✐t❤ ❛♣♣r♦①✐✲ ♠❛t✐♦♥s✑ ❛♥❞ r❡♣❧❛❝❡ t❤❡ ❧❛st ♥✉♠❜❡r ✇✐t❤ ✐ts ❡①❛❝t ✈❛❧✉❡✿
L4 =
7 = .21875 . 32
❊①❡r❝✐s❡ ✸✳✽✳✷ ❈r❡❛t❡ ❛ t❛❜❧❡ ♦❢ ✈❛❧✉❡s ❢♦r t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❢✉♥❝t✐♦♥ ❢♦r t❤❡ r✐❣❤t ❡♥❞s✳
❊①❛♠♣❧❡ ✸✳✽✳✸✿ ♠✐❞✲♣♦✐♥t ❘✐❡♠❛♥♥ s✉♠s ❲❡ ❝❛♥ ❛❧s♦ ❝❤♦♦s❡ t❤❡ ♠✐❞✲♣♦✐♥ts ❛s t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s✿
❚❤✐s ✐s t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ ♠✐❞✲♣♦✐♥t ❘✐❡♠❛♥♥ s✉♠
x
•
−− 1/8
(1/8)2
f (x) = x2 M4
|
−− 3/8
(3/8)2
M4
|
❢♦r t❤❡ s❛♠❡ ✐♥t❡❣r❛❧✿
−− 5/8
(5/8)2
|
−−
7/8
•
(7/8)2
(1/8)2 · 1/4 + (3/8)2 · 1/4 + (5/8)2 · 1/4 + (7/8)2 · 1/4 = 0.328125
■t ✐s ♠✉❝❤ ❝❧♦s❡r t❤❛♥
L4
t♦ t❤❡ tr✉❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧✱
1/3✳
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✶
❊①❡r❝✐s❡ ✸✳✽✳✹
❲❡ ❤❛✈❡ ♣r❡✈✐♦✉s❧② ✉s❡❞ ❛ s♣r❡❛❞s❤❡❡t t♦ ❝❛❧❝✉❧❛t❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❢✉♥❝t✐♦♥ ❢♦r Ln ✳ ❈r❡❛t❡ ❛ s♣r❡❛❞s❤❡❡t t♦ ❛✉t♦♠❛t❡ ❝♦♠♣✉t❛t✐♦♥s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❢✉♥❝t✐♦♥ ❢♦r Rn ❛♥❞ Mn ✳ ❚❤✐s ✐s ✇❤❛t ❛❧❧ ❘✐❡♠❛♥♥ s✉♠s ❤❛✈❡ ✐♥ ❝♦♠♠♦♥✿ ❲❡ ❝❤♦♦s❡ ❛ ♣♦✐♥t ♦♥ t❤❡ ❣r❛♣❤ ❛♥❞ t❤❡♥ ❛♣♣r♦①✐♠❛t❡s ✐ts ♣✐❡❝❡ ✇✐t❤ ❛ ❤♦r✐③♦♥t❛❧ s❡❣♠❡♥t✳ ❚❤❡ t❤r❡❡ ♠❛✐♥ ❝❤♦✐❝❡s ❛r❡ s❤♦✇♥ ❜❡❧♦✇✿
❲❤❛t ✐❢ ✇❡ ❝❤♦♦s❡ t✇♦ ♣♦✐♥ts ✕ ❛t t❤❡ ❡♥❞ ❛♥❞ t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ t❤❡ ✐♥t❡r✈❛❧ ✕ ❛♥❞ ❛♣♣r♦①✐♠❛t❡ t❤✐s ♣✐❡❝❡ ♦❢ t❤❡ ❣r❛♣❤ ✇✐t❤ ❛ s❧♦♣❡❞ ❧✐♥❡❄ ■t ✐s✱ ✐♥ ❢❛❝t✱ t❤❡ ❢❛♠✐❧✐❛r s❡❝❛♥t ❧✐♥❡✦ ❚❤✐s t❤✐r❞ ✇❛② t♦ ❛♣♣r♦①✐♠❛t❡ t❤❡ ❛r❡❛ ✐s s❤♦✇♥ ♦♥ t❤❡ ❢❛r r✐❣❤t✳ ■♥st❡❛❞ ♦❢ ❛ r❡❝t❛♥❣❧❡✱ ✇❡ ❤❛✈❡ ❛ tr❛♣❡③♦✐❞✳ ■ts ❛r❡❛ ✐s t❤❡ ❛✈❡r❛❣❡ ♦❢ t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ t✇♦ ❜❛s❡s ✭✈❡rt✐❝❛❧✮ ♠✉❧t✐♣❧✐❡❞ ❜② t❤❡ ❤❡✐❣❤t ✭❤♦r✐③♦♥t❛❧✮✿
❚❤❡♥ t❤❡ ❛r❡❛ ♦❢ t❤❡ tr❛♣❡③♦✐❞ ♦✈❡r t❤❡ ✐♥t❡r✈❛❧ [xk−1 , xk ] ✐s ❡q✉❛❧ t♦
f (xk−1 ) + f (xk ) h. 2 ❚❤❡ s✉♠ ♦❢ ❛❧❧ n ♦❢ t❤❡s❡ ✐s ❝❛❧❧❡❞ t❤❡
tr❛♣❡③♦✐❞ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ❛♥❞ ❞❡♥♦t❡❞ ❜② Tn✳
❊①❡r❝✐s❡ ✸✳✽✳✺
❙❤♦✇ t❤❛t Tn ✐s t❤❡ ❛✈❡r❛❣❡ ♦❢ Ln ❛♥❞ Rn ✳
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
❊①❛♠♣❧❡ ✸✳✽✳✻✿
✷✷✷
Tn
▲❡t✬s ❝♦♠♣✉t❡ s✉♠
T4
❢♦r t❤❡ s❛♠❡ ✐♥t❡❣r❛❧✳ ❲❡ ✉s❡ t❤❡ s❛♠❡ ❞❛t❛ ❛♥❞ t❤❡♥ ❛❞❞ t❤❡ ❢♦❧❧♦✇✐♥❣ t❡r♠s✿
f (xk−1 )h + f (xk )h ❢♦r ❡❛❝❤ ✐♥t❡r✈❛❧✿
x x2
• 0
−−
|
1/4
0 0 · 1/4
−−
1/16
−− |
1/2
1/16 · 1/4
+
−− •
3/4
1/4
1/16 · 1/4
+
|
1
9/16
1 ≈ 0.016
1/4 · 1/4
1/4 · 1/4 +
≈ 0.079
9/16 · 1/4
≈ 0.203
9/16 · 1/4 +
1 · 1/4 ≈ 0.391 s✉♠
T4
❤❛❧❢
≈ 0.689 ≈ 0.345
❲❛r♥✐♥❣✦ ❚❤❡ r❡s✉❧t ✐s
♥♦t
❛ ❘✐❡♠❛♥♥ s✉♠✳
❊①❡r❝✐s❡ ✸✳✽✳✼ ❈r❡❛t❡ ❛ s♣r❡❛❞s❤❡❡t t♦ ❛✉t♦♠❛t❡ ❝♦♠♣✉t❛t✐♦♥s ♦❢
Tn ✳
❚❤❡s❡ ❛r❡ t❤❡ ❢♦r♠✉❧❛s ❢♦r t❤❡ ❢♦✉r ❛♣♣r♦①✐♠❛t✐♦♥s✿
Ln =
n X i=1
Rn =
n X
f a + (i − 1)h h f a + ih h
i=1 n X
f a + (i − 1)h + h/2 h i=1 n X 1 f a + (i − 1)h + f a + ih h Tn = 2 i=1 Mn =
❚❤❡ ❡①♣r❡ss✐♦♥s ❛♣♣r♦①✐♠❛t❡ t❤❡ ✐♥t❡❣r❛❧ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡♥s❡✳
❚❤❡♦r❡♠ ✸✳✽✳✽✿ ❈♦♥✈❡r❣❡♥❝❡ ♦❢ ❘✐❡♠❛♥♥ ❙✉♠s ■❢
f
✐s ✐♥t❡❣r❛❜❧❡ ♦♥
[a, b]✱
t❤❡♥ t❤❡ s❡q✉❡♥❝❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡
tr❛♣❡③♦✐❞ s✉♠ ❝♦♥✈❡r❣❡ t♦ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♦❢
Ln , R n , M n , T n → ❖♥❧② t❤❡ ❧❛st ♣❛rt ♥❡❡❞s ♣r♦♦❢✳
❊①❡r❝✐s❡ ✸✳✽✳✾ Pr♦✈❡ t❤❡ ♠✐ss✐♥❣ ♣❛rt✳ ❍✐♥t✿ ❚❤❡ ❙q✉❡❡③❡ ❚❤❡♦r❡♠✳
Z
f✿
b
f dx a
❛s
n → ∞.
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✸
❍♦✇ ✇❡❧❧ ❞♦ t❤❡s❡ ❢♦✉r ♣❡r❢♦r♠❄ • ◗✉❡st✐♦♥✿ ❋♦r ❛ ❣✐✈❡♥ n✱ ❤♦✇ ❝❧♦s❡ ❛r❡ ✇❡ t♦ t❤❡ tr✉❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧❄ • ❆♥s✇❡r✿ ❲❡ ❞♦♥✬t ❦♥♦✇✱ ❛♥❞ ✇❡ ❝❛♥✬t ❦♥♦✇✱ ✇✐t❤♦✉t s♦♠❡
❛ ♣r✐♦r✐ ❦♥♦✇❧❡❞❣❡✳
■❢ ✇❡ ❦♥❡✇ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧✱ ✇❡ ✇♦✉❧❞♥✬t ♥❡❡❞ t♦ ❛♣♣r♦①✐♠❛t❡ ✐t✦ ❱❛r✐♦✉s ❜❡❤❛✈✐♦rs ♦❢ f ❛r❡ s❤♦✇♥ ❛❧♦♥❣ ✇✐t❤ t❤❡ ❡rr♦r ✭②❡❧❧♦✇✮ ♦❢ Ln ✿
❙✐♥❝❡ ❛❧❧ ❢♦✉r ❛♣♣r♦①✐♠❛t✐♦♥s ❛r❡ s♣❡❝✐✜❝ ❛r❡❛s✱ t❤❡ ❡rr♦rs ❛r❡ ❛❧s♦ s❡❡♥ ❛s ❝❡rt❛✐♥ ❛r❡❛s✿
❚❤❡ s✐♠♣❧❡st ❛
♣r✐♦r✐ ❦♥♦✇❧❡❞❣❡ ❛❜♦✉t ❛ ❢✉♥❝t✐♦♥ ✐s ✐ts ♠♦♥♦t♦♥✐❝✐t②✳ ❚❤❡♦r❡♠ ✸✳✽✳✶✵✿ ❘✐❡♠❛♥♥ ❙✉♠s ♦❢ ▼♦♥♦t♦♥❡ ❋✉♥❝t✐♦♥s ✶✳ ■❢
f
✐s ✐♥❝r❡❛s✐♥❣ ♦♥
[a, b]✱
t❤❡ ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠ ✉♥❞❡r❡st✐♠❛t❡s t❤❡
✐♥t❡❣r❛❧✱ ✇❤✐❧❡ t❤❡ r✐❣❤t✲❡♥❞ s✉♠ ♦✈❡r❡st✐♠❛t❡s ✐t✿
f ր =⇒ Ln ≤
Z
b
f dx ≤ Rn .
a
✷✳ ❲❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ ✐s ❞❡❝r❡❛s✐♥❣✱ t❤❡ ✐♥❡q✉❛❧✐t✐❡s ❛r❡ r❡✈❡rs❡❞✿
f ց =⇒ Ln ≥
Z
b a
f dx ≥ Rn .
■♥ ❡✐t❤❡r ❝❛s❡✱ t❤❡ tr✉❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧ I ❧✐❡s ❜❡t✇❡❡♥ Rn ❛♥❞ Ln ✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ ❈♦r♦❧❧❛r② ✸✳✽✳✶✶✿ ■♥t❡r✈❛❧ ❢♦r ■♥t❡❣r❛❧ ♦❢ ▼♦♥♦t♦♥❡ ❋✉♥❝t✐♦♥ ■❢ ❛ ❢✉♥❝t✐♦♥
f
✐s ♠♦♥♦t♦♥❡✱ t❤❡♥
Z
b
f dx a
❧✐❡s ✇✐t❤✐♥ ❡✐t❤❡r
[Ln , Rn ]
♦r
[Rn , Ln ] .
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✹
❚❤❡ st❛t❡♠❡♥t ✐s t❤❡ ❛❜s♦❧✉t❡✱ ♥♦t ❛♣♣r♦①✐♠❛t❡✱ tr✉t❤✦ ❲❤✐❧❡ t❤❡ ❧❛st r❡s✉❧t r❡❧✐❡s ♦♥ ♠♦♥♦t♦♥✐❝✐t② ✭❛♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ f ✮✱ ❢♦r t❤❡ ♦t❤❡r t✇♦ ❛♣♣r♦①✐♠❛t✐♦♥s✱ ❛ s✐♠✐❧❛r r❡s✉❧t r❡❧✐❡s ♦♥ ❝♦♥❝❛✈✐t② ✭❛♥❞ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ♦❢ f ✮✳ ❚❤❡♦r❡♠ ✸✳✽✳✶✷✿ ❘✐❡♠❛♥♥ ❙✉♠s ♦❢ ❈♦♥✈❡① ❋✉♥❝t✐♦♥s ✶✳ ■❢
f
✐s ❝♦♥❝❛✈❡ ❞♦✇♥ ♦♥
[a, b]✱
t❤❡ tr❛♣❡③♦✐❞ s✉♠ ✉♥❞❡r❡st✐♠❛t❡s t❤❡ ✐♥t❡✲
❣r❛❧✿
f ⌢ =⇒ Tn ≤
Z
b
f dx . a
✷✳ ▼❡❛♥✇❤✐❧❡✱ ✇❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ ✐s ❝♦♥❝❛✈❡ ✉♣✱ t❤❡ ✐♥❡q✉❛❧✐t② ✐s r❡✈❡rs❡❞✿
f ⌣ =⇒ Tn ≥
Z
b
f dx . a
❲❡ t❤✉s ❤❛✈❡ ❞✐s❝♦✈❡r❡❞ ❤♦✇ t❤❡s❡ ❛♣♣r♦①✐♠❛t✐♦♥s ❡rr ✐♥ ❞✐✛❡r❡♥t ❞✐r❡❝t✐♦♥s ✉♥❞❡r ❞✐✛❡r❡♥t ❝✐r❝✉♠st❛♥❝❡s✳ ❍♦✇❡✈❡r✱ t❤❡ tr✉❡ ♠❡❛s✉r❡ ♦❢ t❤❡ q✉❛❧✐t② ♦❢ t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ✐s t❤❡ ❛❝t✉❛❧ ❞✐✛❡r❡♥❝❡✱ ✐✳❡✳✱ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ✐♥t❡❣r❛❧✿
❊rr♦r = ■♥t❡❣r❛❧ − ❆♣♣r♦①✐♠❛t✐♦♥
❙✐♥❝❡ ✇❡ ❞♦♥✬t ❦♥♦✇ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧✱ ✇❡ ❞♦♥✬t ❦♥♦✇ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❡rr♦r❀ ✇❡ ❝❛♥ ♦♥❧② ❡st✐♠❛t❡ ✐t✳ ❲✐t❤ t❤✐s ❡st✐♠❛t❡✱ ✇❡ ❝❛♥ ❡st❛❜❧✐s❤ t❤❛t ✇❡ ❤❛✈❡♥✬t ❞❡✈✐❛t❡❞ ❢r♦♠ t❤❡ tr✉t❤ t♦♦ ❢❛r✳ ❊①❡r❝✐s❡ ✸✳✽✳✶✸
❊st✐♠❛t❡ t❤❡ ❡rr♦r ✇❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ ✐s ♠♦♥♦t♦♥❡✳ ▲❡t✬s t❛❦❡ ❛ ❧♦♦❦ ❛t t❤❡ ❧❡❢t✲❡♥❞ ❛♣♣r♦①✐♠❛t✐♦♥ ♦♥ ❛ s✐♥❣❧❡ ✐♥t❡r✈❛❧✳ ❙✉♣♣♦s❡ t❤❡ ♦♥❧② ✈❛❧✉❡ t❤❛t ♠❛tt❡rs✱ f (xk )✱ ✐s ❦♥♦✇♥✳ ❇❡②♦♥❞ t❤❛t✱ t❤❡ ❢✉♥❝t✐♦♥ ❝❛♥ ❡①❤✐❜✐t ❛ ✈❛r✐❡t② ♦❢ ❜❡❤❛✈✐♦rs✱ ✐♥❝❧✉❞✐♥❣ ❢❛st ❣r♦✇t❤✳ ❚❤❡ ❢❛st❡r f ❣r♦✇s ♣❛st xk ✱ t❤❡ ❧❛r❣❡r ✐s t❤❡ ❡rr♦r ♦❢ Ln ✳ ❆s t❤❡ r❛t❡ ♦❢ t❤✐s ❣r♦✇t❤ ✐s ❧✐♠✐t❧❡ss✱ s♦ ✐s ♦✉r ❡rr♦r ✭❧❡❢t✮✿
❈❛♥ ✇❡ ❝♦♥tr♦❧ t❤❡ s✐③❡ ♦❢ t❤❡ ❡rr♦r❄ ❨❡s✱ ✐❢ ✇❡ ❛r❡ ❛✇❛r❡ ♦❢ ✕ ❛ ♣r✐♦r✐ ✕ t❤❡ ❧✐♠✐t ♦♥ t❤❡ r❛t❡ ♦❢ ❣r♦✇t❤ ♦❢ f ✱ ✐✳❡✳✱ ✐ts ❞❡r✐✈❛t✐✈❡✳ ■❢ t❤❡ ❞❡r✐✈❛t✐✈❡ ✐s ❧❡ss t❤❛♥ s♦♠❡ ♥✉♠❜❡r K ✱ t❤❡♥ t❤❡ s❧♦♣❡ ♦❢ t❤❡ ❣r❛♣❤ ♦❢ f ✐s ❧❡ss t❤❛♥ K ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ❣r❛♣❤ ✇✐❧❧ ❤❛✈❡ t♦ st❛② ✉♥❞❡r t❤❡ ❧✐♥❡ ✇✐t❤ s❧♦♣❡ K ✭r✐❣❤t✮✳ ❚❤✐s ❧✐♥❡ ✐s t❤❡ ✇♦rst✲❝❛s❡ s❝❡♥❛r✐♦✳ ◆♦t❡ t❤❛t s✉❝❤ ❛ r❡str✐❝t✐♦♥ ✐s ❡①♣❡❝t❡❞ t♦ ❜❡ ♣♦ss✐❜❧❡ ✇❤❡♥ t❤❡ ❞❡r✐✈❛t✐✈❡ f ′ ✐s ❝♦♥t✐♥✉♦✉s ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❊①tr❡♠❡ ❱❛❧✉❡ ❚❤❡♦r❡♠ ✭❱♦❧✉♠❡ ✷✮✳ ❇❡❧♦✇✱ ✇❡ ♣r♦✈✐❞❡ ❛ ❜♦✉♥❞ ❢♦r t❤❡ ❡rr♦r✿
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✺
❚❤❡♦r❡♠ ✸✳✽✳✶✹✿ ❊rr♦r ❇♦✉♥❞ ♦❢ ❘✐❡♠❛♥♥ ❙✉♠s ■
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ f ✐s ❞✐✛❡r❡♥t✐❛❜❧❡ ❛♥❞ ❢♦r ❛❧❧ x ✐♥ [a, b] ✇❡ ❤❛✈❡✿ |f ′ (x)| ≤ K1 ,
❢♦r s♦♠❡ ♥✉♠❜❡r K1 ✳ ❚❤❡♥ Z b K1 (b − a)2 ≤ Sn − , f dx 2n a
✇❤❡t❤❡r Sn ✐s t❤❡ ❧❡❢t Ln (f ) ♦r t❤❡ r✐❣❤t Rn (f ) ❘✐❡♠❛♥♥ s✉♠ ♦❢ f ✳ Pr♦♦❢✳
■❢ ✇❡ ❤❛✈❡ ❛♥ ❡st✐♠❛t❡ ❢♦r t❤❡ ❞❡r✐✈❛t✐✈❡✱ f ′ (x) ≤ K ,
♦♥ t❤❡ ✇❤♦❧❡ ❞♦♠❛✐♥ ♦❢ ✐♥t❡❣r❛t✐♦♥ [a, b]✱ ✇❡ ❤❛✈❡ ❛♥ ❡st✐♠❛t❡ ❢♦r t❤❡ ❡rr♦r ♦♥ ❡❛❝❤ ✐♥t❡r✈❛❧ ✜rst✿ Z xk 1 1 f dx ≤ (K∆x) · ∆x = K∆x2 , f (xk )∆x − 2 2 xk−1
❛s t❤❡ ❛r❡❛ ♦❢ t❤✐s tr✐❛♥❣❧❡✳ ❚❤❡♥ ✇❡ ❝♦♠♣✉t❡ ❛♥ ❡st✐♠❛t❡ ❢♦r t❤❡ ❡rr♦r ♦❢ t❤❡ ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠ ♦✈❡r t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✿ En
Z b f dx = Ln − a n−1 n−1 Z xk X X = f (xk )∆x − f dx k=0 xk−1 k=0 ! Z n−1 X xk = f (xk )∆x − f dx xk−1 k=0 Z xk n−1 X ≤ f dx f (xk )∆x − xk−1
❇② t❤❡ ❚r✐❛♥❣❧❡ ■♥❡q✉❛❧✐t② ✐♥ ❈❤❛♣t❡r ✶P❈✲✷.
k=0
≤ =
n−1 X 1
k=0 n−1 X k=0
=
2
1 K 2
n−1 X 1 k=0
K∆x2
2
K
b−a n
2
(b − a)2 n2
1 (b − a)2 . = K 2 n
❙♦✱ ❛♥ ❛
♣r✐♦r✐ ❜♦✉♥❞ ♦♥ t❤❡ ❞❡r✐✈❛t✐✈❡ ❣✐✈❡s ❛♥ ❛ ♣r✐♦r✐ ❜♦✉♥❞ ♦♥ t❤❡ ❡rr♦r✳
■❢ ♥♦✇ ✇❡ ♥❡❡❞ t♦ s❛② s♦♠❡t❤✐♥❣ s♣❡❝✐✜❝ ❛❜♦✉t t❤❡ ✉♥❦♥♦✇♥ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧✱ ✇❡ ❝❛♥✿ ❈♦r♦❧❧❛r② ✸✳✽✳✶✺✿ ■♥t❡r✈❛❧ ❢♦r ❘✐❡♠❛♥♥ ■♥t❡❣r❛❧
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ f ✐s ❞✐✛❡r❡♥t✐❛❜❧❡ ❛♥❞ ❢♦r ❛❧❧ x ✐♥ [a, b] ✇❡ ❤❛✈❡✿ |f ′ (x)| ≤ K1 ,
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✻
❢♦r s♦♠❡ ♥✉♠❜❡r
K1 ✳
▲❡t
En = ❚❤❡♥✱ t❤❡ ✐♥t❡❣r❛❧
K1 (b − a)2 . 2n
Z
b
f dx a
❧✐❡s ✇✐t❤✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥t❡r✈❛❧✿
✇❤❡t❤❡r
Sn
✐s t❤❡ ❧❡❢t
Ln (f )
Sn − En , Sn + En ,
♦r t❤❡ r✐❣❤t
Rn (f )
❘✐❡♠❛♥♥ s✉♠ ♦❢
f✳
❊①❛♠♣❧❡ ✸✳✽✳✶✻✿ ❡rr♦r ❜♦✉♥❞ ♦❢ ❘✐❡♠❛♥♥ s✉♠s
▲❡t✬s t❡st t❤✐s t❤❡♦r❡♠ ♦♥ t❤❡ ✐♥t❡❣r❛❧ Z
1
x2 dx = 1/3 , 0
✇✐t❤ L4 = 0.22 ❝♦♠♣✉t❡❞ ♣r❡✈✐♦✉s❧②✳ ❋✐rst✱ ✇❡ ✜♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡✿ f (x) = x2 =⇒ f ′ (x) = 2x .
❚❤❡♥✱ ✇❡ ❝❤♦♦s❡✱ ♦❢ ❝♦✉rs❡✱ K1 = 2 .
◆❡①t✱ E4 =
2 2(1 − 0)2 = = 0.25 . 2·4 8
❚❤❡♥ t❤❡ ✐♥t❡❣r❛❧✬s ✈❛❧✉❡ s❤♦✉❧❞ ❜❡ ✇✐t❤✐♥ t❤❡ ✐♥t❡r✈❛❧✿
[L4 − E4 , L4 + E4 ] = [0.22 − 0.25, 0.22 + 0.25] = [−0.03, 0.45] .
❆ ✈❡r② ❝r✉❞❡ ❜✉t ❝♦rr❡❝t ❡st✐♠❛t❡✦ ❲❡ ❝❛♥ ❛♣♣❧② t❤❡ t❤❡♦r❡♠ ❛❣❛✐♥✱ t♦ t❤❡ r✐❣❤t✲❡♥❞ ❛♣♣r♦①✐♠❛t✐♦♥✱ r❡s✉❧t✐♥❣ ✐♥ ❛♥ ✐♥t❡r✈❛❧ ♦❢ t❤❡ s❛♠❡ s✐③❡ ❜✉t ❝❡♥t❡r❡❞ ❛r♦✉♥❞ R4 ✿ [R4 − E4 , R4 + E4 ] = [0.47 − 0.25, 0.47 + 0.25] = [0.22, 0.72] .
❋✉rt❤❡r♠♦r❡✱ s✐♥❝❡ t❤❡ ✈❛❧✉❡ I ♦❢ t❤❡ ✐♥t❡❣r❛❧ ❜❡❧♦♥❣s t♦ ❜♦t❤ ✐♥t❡r✈❛❧s✱ ✐t ❜❡❧♦♥❣s t♦ t❤❡✐r ✐♥t❡rs❡❝t✐♦♥✿ [−0.03, 0.45] ∩ [0.22, 0.72] = [0.22, 0.45] .
❙✐♠✐❧❛r❧②✱ ✇❡ ❤❛✈❡ I ✇✐t❤✐♥ [L10 − E10 , L10 + E10 ] = [0.29 − 0.1, 0.29 + 0.1] = [0.19, 0.39] . ❊①❡r❝✐s❡ ✸✳✽✳✶✼
❋✐♥❞ t❤❡ ✐♥t❡r✈❛❧ ❢♦r t❤❡ ❛❜♦✈❡ ✐♥t❡❣r❛❧ ✉s✐♥❣ R10 ✳ ❋♦r ❝♦♥tr❛st✱ ❧❡t✬s t❛❦❡ ❛ ❧♦♦❦ ❛t t❤❡ ♠✐❞✲♣♦✐♥t ❛♣♣r♦①✐♠❛t✐♦♥✳ ❋✐rst s✉♣♣♦s❡ t❤❛t f ✐s ❧✐♥❡❛r✿
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✼
❊✈❡♥ t❤♦✉❣❤ t❤❡ s❧♦♣❡s ❛r❡ ❞✐✛❡r❡♥t✱ t❤❡ ❡rr♦r ✐s t❤❡ s❛♠❡✱ ③❡r♦✳ ■t ❛♣♣❡❛rs t❤❡♥ t❤❛t t❤❡
❞❡r✐✈❛t✐✈❡ ❞♦❡s♥✬t
♠❛tt❡r✦ ▲❡t✬s ♥♦✇ ❛❞❞ ❝♦♥❝❛✈✐t②✿
❚❤❡ ❡rr♦r ✐s♥✬t ③❡r♦ ❛s ✐♥ t❤❡ ❢♦r♠❡r ❝❛s❡✳ ❚❤✐s ♦❜s❡r✈❛t✐♦♥ s✉❣❣❡sts t❤❛t t❤❡ ❡rr♦r ✐s ✏❝r❡❛t❡❞✑ ❜② t❤❡
❞❡r✐✈❛t✐✈❡ ♦❢ f ✳
s❡❝♦♥❞
❊①❡r❝✐s❡ ✸✳✽✳✶✽
❲❤❛t ❞✐✛❡r❡♥❝❡ ❞♦❡s ✐t ♠❛❦❡ ✐❢
f
✐s ❝♦♥❝❛✈❡ ❞♦✇♥ ✐♥st❡❛❞ ♦❢ ✉♣❄
❚❤❡ ✐❞❡❛ ♦❢ t❤❡ ❧❛st t❤❡♦r❡♠ ✇❛s t♦ ✉s❡ ❛ ❜♦✉♥❞ ❢♦r t❤❡ ❞❡✈✐❛t❡ t♦♦ ❢❛r ❢r♦♠ ✐ts
❞❡r✐✈❛t✐✈❡ t♦ ♠❛❦❡ s✉r❡ t❤❛t t❤❡ ❢✉♥❝t✐♦♥ ❞♦❡s♥✬t
❝♦♥st❛♥t ❛♣♣r♦①✐♠❛t✐♦♥ ✭♦♥ ❡❛❝❤ ✐♥t❡r✈❛❧✮✳ ❙✐♠✐❧❛r❧②✱ t❤❡ ✐❞❡❛ ♦❢ t❤❡ ♥❡①t t❤❡♦r❡♠ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ t♦ ♠❛❦❡ s✉r❡ t❤❛t t❤❡ ❢✉♥❝t✐♦♥ ❞♦❡s♥✬t ❞❡✈✐❛t❡ t♦♦ ❢❛r ❢r♦♠ ✐ts
✐s t♦ ✉s❡ ❛ ❜♦✉♥❞ ❢♦r t❤❡
❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥✳ ❲❡ ❛❝❝❡♣t t❤❡ r❡s✉❧t ✇✐t❤♦✉t ♣r♦♦❢✳
❚❤❡♦r❡♠ ✸✳✽✳✶✾✿ ❊rr♦r ❇♦✉♥❞ ♦❢ ❘✐❡♠❛♥♥ ❙✉♠s ■■ ❙✉♣♣♦s❡ ❢♦r ❛❧❧
x
✐♥
[a, b]✱
✇❡ ❤❛✈❡
|f ′′ (x)| ≤ K2 ,
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✽
❢♦r s♦♠❡ r❡❛❧
K2 ✳
❚❤❡♥
Z b K2 (b − a)3 ≤ Mn (f ) − f dx , 24n2 a
❛♥❞
❙♦✱ ❛♥ ❛
Z b K2 (b − a)3 ≤ Tn (f ) − f dx . 12n2 a
♣r✐♦r✐ ❜♦✉♥❞ ♦♥ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ❣✐✈❡s ❛♥ ❛ ♣r✐♦r✐ ❜♦✉♥❞ ♦♥ t❤❡ ❡rr♦r✳
❊①❡r❝✐s❡ ✸✳✽✳✷✵
❙✉❣❣❡st ❛ s✐♠✐❧❛r t❤❡♦r❡♠ ❢♦r Ln ❛♥❞ Rn ✳ ❍✐♥t✿ ❲❤❛t ✐s t❤❡ ✇♦rst✲❝❛s❡ s❝❡♥❛r✐♦❄ ❚❤✉s✱ t❤❡ tr✉❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ❧✐❡s ✇✐t❤✐♥ t❤✐s ✐♥t❡r✈❛❧✿ [Mn − En , Mn + En ] ,
✇❤❡r❡
En =
K2 (b − a)3 . 24n2
❊①❛♠♣❧❡ ✸✳✽✳✷✶✿ ❡rr♦r ❜♦✉♥❞ ♦❢ ❘✐❡♠❛♥♥ s✉♠s✱ ❝♦♥t✐♥✉❡❞
▲❡t✬s ❝♦♥✜r♠ t❤✐s r❡s✉❧t ❢♦r
Z
1
x2 dx = 1/3 0
❛♥❞ M4 = 0.328125 ❝♦♠♣✉t❡❞ ♣r❡✈✐♦✉s❧②✳ ❋✐rst✱ ✇❡ ✜♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡s✿ f (x) = x2 =⇒ f ′ (x) = 2x =⇒ f ′′ (x) = 2 .
❚❤❡♥✱ ✇❡ ❝❤♦♦s❡✱ ♦❢ ❝♦✉rs❡✱ K2 = 2 .
◆❡①t✱ E4 =
2(1 − 0)3 2 = = 0.0052083333... 2 24 · 4 24 · 16
❚❤❡♥ t❤❡ ✐♥t❡❣r❛❧✬s ✈❛❧✉❡ s❤♦✉❧❞ ❜❡ ✇✐t❤✐♥ t❤❡ ✐♥t❡r✈❛❧✿
[M4 − E4 , M4 + E4 ] = [0.328125 − 0.0052083..., 0.328125 + 0.0052083...] = [0.329166..., 0.333333...] .
■t ❤❛♣♣❡♥s t♦ ❜❡ ❡①❛❝t❧② t❤❡ r✐❣❤t ❡♥❞ ♦❢ t❤❡ ✐♥t❡r✈❛❧✳ ❚❤❡ r❡❛s♦♥ ✐s t❤❛t K2 ✐s♥✬t ❛♥ ❡st✐♠❛t❡ ❜✉t t❤❡ ❡①❛❝t ✈❛❧✉❡ ♦❢ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡✳ ❊①❛♠♣❧❡ ✸✳✽✳✷✷✿ ♠♦r❡ ❝♦♠♣❧❡① ❡rr♦r ❜♦✉♥❞
❆ ♠♦r❡ ❝♦♠♣❧❡① ❡①❛♠♣❧❡ ✐s✿
Z
1
x3 dx = 1/4 . 0
❋✐rst✱ t❤❡ ❡st✐♠❛t❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧ ✇✐t❤ n = 4✿ M4 = (1/8)3 · 1/4 + (3/8)3 · 1/4 + (5/8)3 · 1/4 + (7/8)3 · 1/4 = 0.2421875 .
❚❤❡♥✱ ✇❡ ✜♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡s✿
f (x) = x3 =⇒ f ′ (x) = 3x2 =⇒ f ′′ (x) = 6x .
❲❡ ♥❡❡❞ K2 t♦ s❛t✐s❢②✿
K2 ≥ |f ′′ (x)| = 6x, ❢♦r ❛❧❧ 0 ≤ x ≤ 1 .
✸✳✽✳
◆✉♠❡r✐❝❛❧ ✐♥t❡❣r❛t✐♦♥
✷✷✾
❚❤❡ ❝❤♦✐❝❡ ✐s t❤❡♥ ♦❜✈✐♦✉s✿ K2 = 6 .
◆❡①t✱ t❤❡ ❡rr♦r ❜♦✉♥❞✿ E4 =
K2 (b − a)3 6(1 − 0)3 6 = = = 0.015625 . 2 2 24n 24 · 4 24 · 16
❚❤❡♥ t❤❡ ✐♥t❡❣r❛❧✬s ✈❛❧✉❡ s❤♦✉❧❞ ❜❡ ✇✐t❤✐♥ t❤❡ ✐♥t❡r✈❛❧✿
[M4 − E4 , M4 + E4 ] = [0.242 − .016, 0.242 + 0.016] = [0.226, 0.258] .
■t ✐s✳ ◆♦t❡ t❤❛t t❤❡ ❡①✐st❡♥❝❡ ♦❢ K2 ✐s ❣✉❛r❛♥t❡❡❞ ❜② t❤❡ ❊①tr❡♠❡
❱❛❧✉❡ ❚❤❡♦r❡♠ ♣r♦✈✐❞❡❞ f ′′ ✐s ❝♦♥t✐♥✉♦✉s✳
❊①❛♠♣❧❡ ✸✳✽✳✷✸✿ ❤♦✇ t♦ ❣✉❛r❛♥t❡❡ ❛❝❝✉r❛❝②
❆t t❤❡ ♥❡①t✱ ♠♦r❡ ♣r❛❝t✐❝❛❧✱ ❧❡✈❡❧✱ ✇❡ ❛r❡ ❛s❦❡❞ t♦ ❡st✐♠❛t❡ ❛♥ ✐♥t❡❣r❛❧ ✇✐t❤ ❛ ❡①❛♠♣❧❡✱ s✉♣♣♦s❡ ✇❡ ♥❡❡❞ t♦ ❦♥♦✇ ✇✐t❤✐♥ 0.1 t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧✿ Z
❣✐✈❡♥ ❛❝❝✉r❛❝②✳ ❋♦r
1
x3 dx . 0
❚❤❡♥ t❤❡ ❛♥s✇❡r ❛❜♦✈❡ ❛♣♣❧✐❡s ❛s E = 0.015625 < 0.1✳ ❲❤❛t ✐❢ t❤❡ ❛❝❝✉r❛❝② ♥❡❡❞s t♦ ❜❡ 0.01❄ ❚❤❡♥ n = 4 ✐s t♦♦ s♠❛❧❧✦ ▲❡t✬s tr② n = 5✳ ❲❡ ❤❛✈❡✿ E5 =
K2 (b − a)3 6(1 − 0)3 6 = = = 0.01 . 24 · 52 24 · 52 24 · 25
❋✉rt❤❡r♠♦r❡✱ ✇❡ ♦❜s❡r✈❡ t❤❛t ✐♥ ♦r❞❡r t♦ ❡♥s✉r❡ t❤❛t t❤❡ ❡rr♦r ✐s ❧❡ss t❤❛♥ s♦♠❡ ε > 0✱ ✇❡ s✐♠♣❧② ♥❡❡❞ t♦ ✜♥❞ n t❤❛t s❛t✐s✜❡s✿ 3 6(1 − 0) ≤ ε. 24 · n2
■♥ ❣❡♥❡r❛❧✱ ✇❡ ❛r❡ s♦❧✈✐♥❣ t❤❡ ✐♥❡q✉❛❧✐t②✿ En =
K2 (b − a)3 ≤ ε. 24n2
❈♦r♦❧❧❛r② ✸✳✽✳✷✹✿ ❊st✐♠❛t✐♦♥ ♦❢ ❊rr♦r ♦❢ ◆✉♠❡r✐❝❛❧ ■♥t❡❣r❛t✐♦♥ ❙✉♣♣♦s❡ ❢♦r ❛❧❧
x
✐♥
[a, b]
✇❡ ❤❛✈❡
|f ′′ (x)| ≤ K2 , ❢♦r s♦♠❡ r❡❛❧
K2 ✳
❚❤❡♥✱ ❢♦r ❛♥② ❣✐✈❡♥
Z ❧✐❡s ✇✐t❤✐♥
ε
❢r♦♠
Mn
ε > 0✱
t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ✐♥t❡❣r❛❧
b
f dx a
♣r♦✈✐❞❡❞
n≥
r
K2 (b − a)3 . 24ε
✸✳✾✳
▲❡♥❣t❤s ♦❢ ❝✉r✈❡s
✷✸✵
❊①❡r❝✐s❡ ✸✳✽✳✷✺ ❈r❡❛t❡ ❛ s♣r❡❛❞s❤❡❡t t♦ ❛✉t♦♠❛t❡ t❤❡s❡ ❝♦♠♣✉t❛t✐♦♥s✳
✸✳✾✳ ▲❡♥❣t❤s ♦❢ ❝✉r✈❡s
❲❡ ❤❛✈❡ s✉❝❝❡ss❢✉❧❧② ✉s❡❞ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❝♦♥str✉❝t✐♦♥ t♦ ❛♣♣r♦①✐♠❛t❡ ❛♥❞✱ ❛t t❤❡ ❧✐♠✐t✱ ❝♦♠♣✉t❡ t❤❡
❛r❡❛s
✉♥❞❡r t❤❡ ❣r❛♣❤s ♦❢ ❢✉♥❝t✐♦♥s✳ ■t ✇♦✉❧❞ ❜❡✱ ❤♦✇❡✈❡r✱ ❛ ❣r❛✈❡ ♠✐st❛❦❡ t♦ t❤✐♥❦ t❤❛t t❤❡ st❡♣ ❢✉♥❝t✐♦♥
♣r♦❞✉❝❡❞ ❜② t❤✐s ❝♦♥str✉❝t✐♦♥ ❝❛♥ s❡r✈❡ ❛s ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✐ts❡❧❢✿
❚❤❡ r❡❛s♦♥ ✐s r❡✈❡❛❧❡❞ ✇❤❡♥ ✇❡ ✇❛t❝❤ ❤♦✇ s♣❡❝t❛❝✉❧❛r❧② t❤✐s ✐❞❡❛ ❢❛✐❧s ✇❤❡♥ ❛♣♣❧✐❡❞ t♦ ❝♦♠♣✉t✐♥❣ t❤❡
❧❡♥❣t❤s
♦❢ ❝✉r✈❡s✳
❊①❛♠♣❧❡ ✸✳✾✳✶✿ str❛✐❣❤t ❧✐♥❡ ▲❡t✬s ❝♦♥s✐❞❡r ❛ ✈❡r② s✐♠♣❧❡ ❝❛s❡ ♦❢
y = f (x) = x
♦✈❡r
[0, 1]✳
❚❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ❝✉r✈❡ ✇✐t❤ t❤❡
❤♦r✐③♦♥t❛❧ s❡❣♠❡♥ts ❧♦♦❦s ❥✉st ❛s ❣♦♦❞ ❛s t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤✿
❚❤❡ r❡s✉❧t ✐s ✐❧❧✉str❛t❡❞ ❢♦r ❛ ♣❛rt✐t✐♦♥ ✇✐t❤
n = 10
✐♥t❡r✈❛❧s ♦❢ ❡q✉❛❧ ❧❡♥❣t❤ ❛♥❞ t❤❡ ❧❡❢t ❡♥❞s ❛s
s❡❝♦♥❞❛r② ♥♦❞❡s✳
❆ ♣r♦❜❧❡♠ ❛♣♣❡❛rs ✇❤❡♥ ✇❡ ❧♦♦❦ ❛t t❤❡ ❛❝t✉❛❧ ♥✉♠❜❡rs✳ t❤❡
P②t❤❛❣♦r❡❛♥ ❚❤❡♦r❡♠✳
❚❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ❣r❛♣❤ ✐s
√
2
❜②
▼❡❛♥✇❤✐❧❡✱ t❤❡ t♦t❛❧ ❧❡♥❣t❤ ♦❢ t❤❡ ❤♦r✐③♦♥t❛❧ s❡❣♠❡♥ts t❤❛t ♠❛❦❡ ✉♣ t❤❡
❣r❛♣❤ ♦❢ t❤❡ r❡s✉❧t✐♥❣ st❡♣ ❢✉♥❝t✐♦♥ ✐s
1❀
✐t✬s s✐♠♣❧② t❤❡ ❜♦tt♦♠ ♦❢ t❤❡ ❜✐❣ tr✐❛♥❣❧❡✳ ❚♦♦ ❧♦✇✦
✸✳✾✳
▲❡♥❣t❤s ♦❢ ❝✉r✈❡s
✷✸✶
❖♥❡ ♠❛② tr② t♦ ✜① t❤❡ ♣r♦❜❧❡♠ ❜② ❛❞❞✐♥❣ t❤❡ ✈❡rt✐❝❛❧ s❡❣♠❡♥ts t♦ ♦✉r ❡st✐♠❛t❡ ♦❢ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❞✐❛❣♦♥❛❧✳ ❚❤❡♥✱ t❤❡ ❡st✐♠❛t❡ ❜❡❝♦♠❡s 2❀ ✐t✬s s✐♠♣❧② t❤❡ s✉♠ ♦❢ t❤❡ ♦t❤❡r t✇♦ s✐❞❡s ♦❢ t❤❡ ❜✐❣ tr✐❛♥❣❧❡✳ ❚♦♦ ❤✐❣❤✦ ■t ✐s ✐♠♣♦rt❛♥t t❤❛t t❤❡ ♥✉♠❜❡rs ✇♦♥✬t ❝❤❛♥❣❡ ❡✈❡♥ ✐❢ ✇❡ st❛rt t♦ r❡✜♥❡ t❤❡ ♣❛r✲ t✐t✐♦♥✳ ■♥ ❝♦♥tr❛st✱ t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ❛r❡❛ ♦❢ t❤❡ tr✐❛♥❣❧❡✱ Ln ✱ ✐s ❣❡tt✐♥❣ ❜❡tt❡r ❛s ✇❡ ✐♥❝r❡❛s❡ n✳ ❚♦p ✉♥❞❡rst❛♥❞ t❤❡ r❡❛s♦♥ ❢♦r t❤✐s ❞✐s❝r❡♣❛♥❝②✱ ❧❡t✬s ❝♦♥s✐❞❡r t❤❡ ❧✐♥❡ y = g(x) = x/2✳ ■ts ❛❝t✉❛❧ ❧❡♥❣t❤ ✐s 12 + (1/2)2 ≈ 1.19 ❜② t❤❡ P②t❤❛❣♦r❡❛♥ ❚❤❡♦r❡♠✳ ❚❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ✇✐t❤ ❤♦r✐③♦♥t❛❧ s❡❣♠❡♥ts ✐s st✐❧❧ ❡q✉❛❧ t♦ 1 ❛♥❞ t❤❡ ♦♥❡ ✇✐t❤ ❜♦t❤ ✈❡rt✐❝❛❧ ❛♥❞ ❤♦r✐③♦♥t❛❧ s❡❣♠❡♥ts ✐s 1.5✳ ❚❤❡ ❡st✐♠❛t❡s ❛r❡ st✐❧❧ ♦✛ ❜✉t t❤❡② ❛r❡ ❝❧♦s❡r t♦ t❤❡ tr✉t❤✦
❲❤❛t ❡①♣❧❛✐♥s t❤❡ ❞✐✛❡r❡♥❝❡❄ ❚❤❡ s❧♦♣❡✳ ❚♦ ❝♦♥✜r♠ t❤✐s ✐❞❡❛✱ ❥✉st t❛❦❡ t❤❡ ❧✐♥❡ ✇✐t❤ ❚❤❡♥ t❤❡ ❡st✐♠❛t❡ ✐s ❡q✉❛❧ t♦ ✐ts ❛❝t✉❛❧ ❧❡♥❣t❤✦ ■♥ ❢❛❝t✱ t❤❡ ❝❛s❡ ♦❢ ❛ ❧✐♥❡❛r f ✐s ✈❡r② s✐♠♣❧❡✿ q ❜❛s❡ 2 + ❤❡✐❣❤t ▲❡♥❣t❤ =
2
=
q
③❡r♦
s❧♦♣❡✳
❜❛s❡ 2 + ( ❜❛s❡ · s❧♦♣❡ )2 .
❊①❡r❝✐s❡ ✸✳✾✳✷
❙❤♦✇ t❤❛t t❤❡ ❝♦♥❝❧✉s✐♦♥s r❡♠❛✐♥ ✈❛❧✐❞ ♥♦ ♠❛tt❡r ✇❤❛t ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ ♦❢ [0, 1] ✇❡ ❝❤♦♦s❡✳ ❊①❡r❝✐s❡ ✸✳✾✳✸
❙❤♦✇ t❤❛t t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❣r❛♣❤ ♦❢ ❛ st❡♣ ❢✉♥❝t✐♦♥ ♦✈❡r ❛♥② ♣❛rt✐t✐♦♥ ♦❢ [a, b] ✐s b − a✳ ❚❤❡ ❧❡ss♦♥ ✐s t❤❛t t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❣r❛♣❤ ✕ ✉♥❧✐❦❡ t❤❡ ♦♥❡ ❢♦r t❤❡ ❛r❡❛ ✉♥❞❡r t❤❡ ❣r❛♣❤ ✕ s❤♦✉❧❞ ❞❡♣❡♥❞ ♦♥ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳ ❊①❛♠♣❧❡ ✸✳✾✳✹✿ ❧❡♥❣t❤ ♦❢ ❝✐r❝❧❡
❇✉t ✜rst✱ ❧❡t✬s ❝♦♠♣✉t❡ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❝✐r❝❧❡ ❛s t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥✳ ❲❡ ❝♦♠♣✉t❡ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ✉♣♣❡r ❤❛❧❢ ♦❢ t❤❡ ✉♥✐t ❝✐r❝❧❡ ❜② ✜rst r❡♣r❡s❡♥t✐♥❣ ✐t ❛s t❤❡ ❣r❛♣❤ ♦❢ ❛ s✐♠♣❧❡ ❢✉♥❝t✐♦♥✿ √ f (x) = 1 − x2 .
✸✳✾✳
▲❡♥❣t❤s ♦❢ ❝✉r✈❡s
✷✸✷
❚❤❡ ✐❞❡❛ ✐s s✐♠♣❧❡✿
P❧❛❝❡ ♣♦✐♥ts ♦♥ t❤❡ ❝✉r✈❡✱ ❝♦♥♥❡❝t t❤❡♠ ❝♦♥s❡❝✉t✐✈❡❧② ❜② ❡❞❣❡s✱ ❛♥❞ t❤❡♥
❛♣♣r♦①✐♠❛t❡ t❤❡ ❝✉r✈❡ ✇✐t❤ ❛ ❝♦♥t✐♥✉♦✉s ❝✉r✈❡ ♠❛❞❡ ♦❢ t❤❡s❡ ❡❞❣❡s✳ ❲❡ ❤❛✈❡ ❛ ❧✐st ♦❢ t❤❡ ✈❛❧✉❡s ♦❢
x
✐♥ t❤❡ ✜rst ❝♦❧✉♠♥✿
x0 , x1 , ..., xn , ❛♥❞ t❤❡ ❧✐st ♦❢ ❝♦rr❡s♣♦♥❞✐♥❣ ✈❛❧✉❡s ♦❢
y
✐♥ t❤❡ ♥❡①t ❝♦❧✉♠♥✿
y0 = f (x0 ), y1 = f (x1 ), ..., yn = f (xn ) . ■♥ t❤❡ t❤✐r❞ ❝♦❧✉♠♥✱ ✇❡ ❝♦♠♣✉t❡ t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ s❡❣♠❡♥ts ✈✐❛ t❤❡
lk = ❲❡ ✉s❡ t❤❡ ❢♦r♠✉❧❛✿
p
❉✐st❛♥❝❡ ❋♦r♠✉❧❛ ✿
(xk+1 − xk )2 + (yk+1 − yk )2 .
❂❙◗❘❚✭✭❘❈❬✲✷❪✲❘❬✲✶❪❈❬✲✷❪✮✂ ✷✰✭❘❈❬✲✶❪✲❘❬✲✶❪❈❬✲✶❪✮✂ ✷✮
❆s ✇❡ ✐♥❝r❡❛s❡ t❤❡ ♥✉♠❜❡r ♦❢ s❡❣♠❡♥ts✱
n✱ t❤❡ r❡s✉❧t t❤❛t ✇❡ ❦♥♦✇ t♦ ❜❡ ❝♦rr❡❝t✱ π ✱ ✐s ❜❡✐♥❣ ❛♣♣r♦❛❝❤❡❞✳
❲❡ ✇✐❧❧ s❡❡ ✐♥ ❈❤❛♣t❡r ✹ ❛ ❜❡tt❡r ✇❛② t♦ r❡♣r❡s❡♥t ❝✉r✈❡s ❛♥❞ ❡s♣❡❝✐❛❧❧② t❤❡ ❝✐r❝❧❡✳
❲❡✱ ❥✉st ❛s ❛❧✇❛②s✱ st❛rt ✇✐t❤ ❛ ❞✐s❝r❡t❡ s✐t✉❛t✐♦♥✳ ❲❡ s✐♠♣❧② ❤❛✈❡ ❛ s❡q✉❡♥❝❡ ♦❢ ♣♦✐♥ts ♦♥ t❤❡ ♣❧❛♥❡✳ ❙✉❝❤ ❛ s❡q✉❡♥❝❡ ✐s s❡❡♥ ❛s ❛ ✏❝✉r✈❡✑ ✐❢ ✇❡ ♣r♦❝❡❡❞ ❢r♦♠ ♣♦✐♥t t♦ ♣♦✐♥t ❛❧♦♥❣ ❛ str❛✐❣❤t ❧✐♥❡✳ ❚❤❡ ❧❡♥❣t❤s ♦❢ t❤❡s❡ s❡❣♠❡♥ts ❛r❡ ❢♦✉♥❞ ❜② t❤❡
❉✐st❛♥❝❡ ❋♦r♠✉❧❛✱ ❥✉st
❛s ✐♥ t❤❡ ❛❜♦✈❡ ❡①❛♠♣❧❡✳ ■t ✐s t❤✐s s✐♠♣❧❡✦ ◆♦✇✱ s♦♠❡t❤✐♥❣ ♠♦r❡ s♣❡❝✐✜❝✳ ❲❤❛t ✐❢ t❤❡s❡ ♣♦✐♥ts ❢♦r♠ t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♥♦❞❡s ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢
(xk−1 , f (xk−1 ))
■t ✐s t❤❡
t♦
❞❡✜♥❡❞ ❛t t❤❡
[a, b]❄
❚❤✐s ✐s ✇❤❛t ❤❛♣♣❡♥s t♦ ❡❛❝❤ ✐♥t❡r✈❛❧ ❢r♦♠
y = f (x)
(xk , f (xk ))✳
[xk−1 , xk ], k = 1, 2, ..., n ♦❢ t❤❡ ♣❛rt✐t✐♦♥✳
❚❤❡ ❣r❛♣❤ ♦❢
f
❣♦❡s ✭❥✉♠♣s✮
❲❡ t❤❡♥ ❝♦♥str✉❝t ❛ s❧♦♣❡❞ s❡❣♠❡♥t ❜❡t✇❡❡♥ t❤❡s❡ t✇♦ ♣♦✐♥ts✿
s❡❝❛♥t ❧✐♥❡ ✦ ❆ r✐❣❤t tr✐❛♥❣❧❡ ✐s ❢♦r♠❡❞ ❜② t❤❡s❡ t✇♦ s❡❣♠❡♥ts✿
✸✳✾✳ ▲❡♥❣t❤s ♦❢ ❝✉r✈❡s
✷✸✸
• ❤♦r✐③♦♥t❛❧ [xk−1 , xk ]✱ ❛♥❞
• ✈❡rt✐❝❛❧ ❢r♦♠ f (xk−1 ) t♦ f (xk )✱ ♦r ✈✐❝❡ ✈❡rs❛✳
❚❤❡ ❧❡♥❣t❤s ♦❢ t❤❡s❡ s✐❞❡s ❛r❡✿
• ❤♦r✐③♦♥t❛❧ ✭❜❛s❡✱ t❤❡ r✉♥✮✿ h = xk − xk−1 = ∆xk ✱ ❛♥❞
• ✈❡rt✐❝❛❧ ✭❤❡✐❣❤t✱ t❤❡ r✐s❡✮✿ |f (xk ) − f (xk−1 )| = ∆yk ✳
❚❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❡❞❣❡ ✭t❤❡ ❤②♣♦t❡♥✉s❡ ♦❢ t❤❡ tr✐❛♥❣❧❡✮ ✐s t❤❡♥ t❤❡ ❢♦❧❧♦✇✐♥❣✿ q q ∆x2k + ∆yk2 = ∆x2k + (f (xk ) − f (xk−1 ))2 .
❚❤✉s✱ t❤❡ ❢✉❧❧ ❧❡♥❣t❤ ♦❢ t❤❡ tr✐♣ ❛❧♦♥❣ t❤❡s❡ ♣♦✐♥ts ♦♥ t❤❡ ❣r❛♣❤ ♦❢ f ✐s ❡q✉❛❧ t♦ t❤❡ ❢♦❧❧♦✇✐♥❣✿ n q n q X X 2 2 ❚♦t❛❧ ❧❡♥❣t❤ = ∆xk + ∆yk = ∆x2k + (f (xk ) − f (xk−1 ))2 k=1
k=1
❊①❛♠♣❧❡ ✸✳✾✳✺✿ ❧❡♥❣t❤ ♦❢ ♣❛r❛❜♦❧❛
❲❡ ❛♣♣r♦①✐♠❛t❡ t❤❡ ❧❡♥❣t❤ ♦❢ ❛ ♣❛r❛❜♦❧❛ y = x2 , 0 ≤ x ≤ 1✱ ❜❡❧♦✇✿
❲❤❛t ✐❢ ♥♦✇ ✇❡ ❤❛✈❡ ❛ ❝♦♥t✐♥✉♦✉s ❝✉r✈❡✱ t❤❡ ❣r❛♣❤ ♦❢ y = f (x) ❞❡✜♥❡❞ ♦♥ t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧ [a, b]❄ ❚❤❡s❡ ❡st✐♠❛t❡s ❛r❡ ❡①❛❝t ✐♥ t❤❡ ❝❛s❡ ♦❢ ❛ ❧✐♥❡❛r f ✳ ❲❡ ✇✐❧❧✱ ❥✉st ❛s ❜❡❢♦r❡✱ ✉s❡ ❛ ♣❛rt✐t✐♦♥ ♦❢ t❤❡ ✐♥t❡r✈❛❧ t♦ s♣❧✐t t❤❡ ❝✉r✈❡ ✐♥t♦ s♠❛❧❧❡r ♣✐❡❝❡s ❜✉t t❤❡♥ ✇❡ ✇✐❧❧ ❛♣♣r♦①✐♠❛t❡ t❤❡s❡ ♣✐❡❝❡s ♥♦t ✇✐t❤ ❤♦r✐③♦♥t❛❧ s❡❣♠❡♥ts ❜✉t ✇✐t❤ s❡❝❛♥t ❧✐♥❡s✳
✸✳✾✳ ▲❡♥❣t❤s ♦❢ ❝✉r✈❡s
✷✸✹
▲❡t✬s ❞❡✜♥❡ ❛♥❞ t❤❡♥ ❝♦♠♣✉t❡ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❣r❛♣❤ ♦❢ y = f (x) ♦✈❡r t❤❡ ✐♥t❡r✈❛❧ [a, b]✳ ❚❤❡♥✱ t❤❡ ❢✉❧❧ ❧❡♥❣t❤ ♦❢ t❤❡ ❣r❛♣❤ ♦❢ f ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ s✉♠ ♦❢ ❛❧❧ n ♦❢ t❤♦s❡✱ ❛s ❢♦❧❧♦✇s✿ ❧❡♥❣t❤ ≈ Ln =
n q X k=1
∆x2k + (f (xk ) − f (xk−1 ))2 .
❚❤❡ ❧✐♠✐t ♦❢ t❤✐s s❡q✉❡♥❝❡ ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❝✉r✈❡✦ ❲❡ ✇♦✉❧❞ ♣r❡❢❡r✱ ❤♦✇❡✈❡r✱ t♦ ❝♦♥♥❡❝t t❤✐s ✐❞❡❛ ❜❛❝❦ t♦ t❤❡ ✐❞❡❛ ♦❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ❛♥❞ t♦ t❤❡ ♠❛❝❤✐♥❡r② t❤❛t ✇❡ ❤❛✈❡ ❞❡✈❡❧♦♣❡❞✳ ❯♥❢♦rt✉♥❛t❡❧②✱ t❤✐s ❡①♣r❡ss✐♦♥ ❞♦❡s♥✬t ❧♦♦❦ ❧✐❦❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥✦ ❲❤❛t ✐s ♠✐ss✐♥❣ ✐s ∆xk ❛s ❛ ♠✉❧t✐♣❧❡ ✐♥ ❡❛❝❤ ♦❢ t❤❡ t❡r♠s✳ ❲❡ ✇✐❧❧ ❤❛✈❡ t♦ ❝r❡❛t❡ ✐t ❜② ♠❛♥✐♣✉❧❛t✐♥❣ t❤❡ ❢♦r♠✉❧❛✳ ❲❡ ❝❛♥ ✉s❡ t❤❡ ✐♥s✐❣❤t ❢r♦♠ t❤❡ ❡❛r❧✐❡r ❞✐s❝✉ss✐♦♥✿ ❚❤❡r❡ ♠✉st ❜❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ f ♣r❡s❡♥t✳ ❚❤✐s ♠❡❛♥s t❤❛t ✇❡ ♠✉st s❡❡ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ✐♥ t❤❡ ❢♦r♠✉❧❛✦ ❲❤❡r❡ ✐s ✐t❄ ❲❡ s❡❡ t❤❡ ❞✐✛❡r❡♥❝❡ ❜✉t ♥♦t t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✳ ❲❡ ✇✐❧❧ ♥❡❡❞ t♦ ❝r❡❛t❡ ✐t ❜② ♠❛♥✐♣✉❧❛t✐♥❣ t❤❡ ❢♦r♠✉❧❛✳ ❚❤❡ t✇♦ ❣♦❛❧s ♠❛t❝❤ ✉♣✿ ❲❡ ❞✐✈✐❞❡ ❛♥❞ ♠✉❧t✐♣❧② ❡❛❝❤ t❡r♠ ❜② ∆xk ✳ ❚✇♦ ❜✐r❞s ✇✐t❤ ♦♥❡ st♦♥❡✿ ❙✉♠ ♦❢ ❧❡♥❣t❤s
n q X ∆x2k + (f (xk ) − f (xk−1 ))2 = k=1
n q X ∆xk = ∆x2k + (f (xk ) − f (xk−1 ))2 · ∆xk k=1 s n X 1 (∆x2k + (f (xk ) − f (xk−1 ))2 ) · ∆xk = 2 ∆x k k=1 s 2 n X f (xk ) − f (xk−1 ) · ∆xk . = 1+ ∆x k k=1
❍❡r❡ ✐s ∆xk . ❍❡r❡ ✐s t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✳
❇✉t t❤✐s ✐s st✐❧❧ ♥♦t t❤❡ ❘✐❡♠❛♥♥ s✉♠✳ ❚❤❡ ❡①♣r❡ss✐♦♥ t❤❛t ♣r❡❝❡❞❡s ∆xk ✇♦✉❧❞ ❤❛✈❡ t♦ ❜❡ t❤❡ ✈❛❧✉❡ ♦❢ s♦♠❡ ❢✉♥❝t✐♦♥ ❡✈❛❧✉❛t❡❞ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✳ ❲❡ ❤❛✈❡♥✬t s♣❡❝✐✜❡❞ t❤♦s❡ ②❡t ❛♥❞ t❤❛t✬s ❛ ❣♦♦❞ ♥❡✇s ❜❡❝❛✉s❡ ♥♦✇ ✐t ✐s ♦✉r ❝❤♦✐❝❡✦ ❲❡ ❛♣♣❧②✱ ❛s ✇❡✬✈❡ ❞♦♥❡ ♠❛♥② t✐♠❡s ❜❡❢♦r❡✱ t❤❡ ▼❡❛♥ ❱❛❧✉❡ ❚❤❡♦r❡♠✳ ❚❤❡r❡ ✐s s♦♠❡ ck ✐♥ t❤❡ ✐♥t❡r✈❛❧ [xk−1 , xk ] s✉❝❤ t❤❛t t❤❡ s❧♦♣❡ ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡ ❛t t❤❛t ❧♦❝❛t✐♦♥ ✐s ❡q✉❛❧ t♦ t❤❡ s❧♦♣❡ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡ ♦✈❡r t❤❡ ✐♥t❡r✈❛❧✿ ❚❤❡r❡❢♦r❡✱
f (xk ) − f (xk−1 ) = f ′ (ck ) . ∆xk
n q X ❙✉♠ ♦❢ ❧❡♥❣t❤s = 1 + (f ′ (ck ))2 · ∆xk . k=1
❋✐♥❛❧❧②✱ t❤✐s ✐s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦✈❡r t❤❡ ♣❛rt✐t✐♦♥ ♦❢ [a, b] ✇✐t❤ t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s c1 , ..., cn ❀ t❤❡ ❢✉♥❝t✐♦♥ ✐s✿ q g(x) =
1 + (f ′ (x))2 .
❏✉st ❛s ❢♦r t❤❡ ❛r❡❛ ✭♠❛ss✱ ✇♦r❦✱ ❡t❝✳✮✱ t❤❡ ❛♥❛❧②s✐s ❛❜♦✈❡ r❡✈❡❛❧s t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ♥❡✇ ❝♦♥❝❡♣t✳
❉❡✜♥✐t✐♦♥ ✸✳✾✳✻✿ ❧❡♥❣t❤ ♦❢ ❝✉r✈❡ ❚❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❝✉r✈❡ ❣✐✈❡♥ ❜② t❤❡ ❣r❛♣❤ y = f (x) ♦❢ ❛ ❞✐✛❡r❡♥t✐❛❜❧❡ ❢✉♥❝t✐♦♥ ♦✈❡r ✐♥t❡r✈❛❧ [a, b] ✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥t❡❣r❛❧✿ Z bq ▲❡♥❣t❤ = 1 + (f ′ )2 dx a
✸✳✾✳
▲❡♥❣t❤s ♦❢ ❝✉r✈❡s
✷✸✺
✐❢ ✐t ❡①✐sts✳
◆♦t❡ t❤❛t t❤❡ ❢✉♥❝t✐♦♥
f
✐ts❡❧❢ ✐s
❛❜s❡♥t
❢r♦♠ t❤❡ ❢♦r♠✉❧❛✦ ❚❤❛t✬s ✉♥❞❡rst❛♥❞❛❜❧❡ ❜❡❝❛✉s❡ ♦♥❧② t❤❡ s❤❛♣❡
✭❣✐✈❡♥ ❜② t❤❡ ❞❡r✐✈❛t✐✈❡✮ ❛♥❞ ♥♦t t❤❡ ❧♦❝❛t✐♦♥ ♠❛tt❡rs ❢♦r t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❝✉r✈❡✳ ❈❤❛♣t❡r ✷❉❈✲✺ t❤❛t ✐❢
f ′ = g′✱
t❤❡♥
f =g+C
■♥ ❢❛❝t✱ ✇❡ ❦♥♦✇ ❢r♦♠
❛♥❞ ✐ts ❣r❛♣❤ ❤❛s t❤❡ s❛♠❡ ❧❡♥❣t❤✳
❚❤❡♦r❡♠ ✸✳✾✳✼✿ ▲❡♥❣t❤ ♦❢ ❈✉r✈❡
■❢ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ f ✐s ❝♦♥t✐♥✉♦✉s✱ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❝✉r✈❡ ❣✐✈❡♥ ❜② t❤❡ ❣r❛♣❤ y = f (x) ♦✈❡r [a, b] ✐s ❞❡✜♥❡❞✳ Pr♦♦❢✳ ❲❡ ♥❡❡❞ t❤❡ ❡①tr❛ ❝♦♥❞✐t✐♦♥ t♦ ❡♥s✉r❡ t❤❛t t❤❡
▼❡❛♥ ❱❛❧✉❡ ❚❤❡♦r❡♠ ❛♣♣❧✐❡s ❛♥❞ t❤❡ r❡s✉❧t✐♥❣ ❢✉♥❝t✐♦♥
✐s ✐♥t❡❣r❛❜❧❡✳
❊①❛♠♣❧❡ ✸✳✾✳✽✿ ❝✐r❝✉♠❢❡r❡♥❝❡ ♦❢ ❝✐r❝❧❡ ■t ✐s t✐♠❡ t♦ ♣r♦✈❡ t❤❛t t❤❡ ❝✐r❝✉♠❢❡r❡♥❝❡ ♦❢ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s
R
✐s
2πR✳
❲❡ r❡♣r❡s❡♥t✱ ❛❣❛✐♥✱ t❤❡ ✉♣♣❡r ❤❛❧❢ ♦❢ t❤❡ ❝✐r❝❧❡ ❜② t❤❡ ❣r❛♣❤✿
y = f (x) =
√
❚❤❡♥✱
f ′ (x) = − √ ❲❡ ❛♣♣❧② t❤❡ ❢♦r♠✉❧❛✿
❍❛❧❢ ♦❢ t❤❡ ❧❡♥❣t❤
R 2 − x2 . x . − x2
R2
Z bq = 1 + (f ′ (x))2 dx a s 2 Z R x dx 1 + −√ = 2 − x2 R −R Z Rr x2 1+ 2 = dx R − x2 −R r Z R R2 = dx R 2 − x2 −R Z R 1 √ dx =R· R 2 − x2 −R = ... = R·π.
❱✐❛ tr✐❣ s✉❜st✐t✉t✐♦♥✳
✸✳✶✵✳
❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
✷✸✻
❊①❡r❝✐s❡ ✸✳✾✳✾
❋✐♥❞ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ s❡❣♠❡♥t ♦❢ t❤❡ ♣❛r❛❜♦❧❛ y = x2 ❢r♦♠ (0, 0) t♦ (1, 1)✳ ❊①❡r❝✐s❡ ✸✳✾✳✶✵
❋✐♥❞ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ s❡❣♠❡♥t ♦❢ t❤❡ ❝✉r✈❡ y = x3 ❢r♦♠ (0, 0) t♦ (1, 1)✳ ❊①❡r❝✐s❡ ✸✳✾✳✶✶
❋✐♥❞ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ s❡❣♠❡♥t ♦❢ t❤❡ ❝✉r✈❡ y = sin x ❛❜♦✈❡ t❤❡ ✐♥t❡r✈❛❧ [0, π]✳
✸✳✶✵✳ ❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
❲❡ ♣✉rs✉❡❞ t❤❡ ✐❞❡❛ ♦❢ ❛ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ✐♥ ♦r❞❡r t♦ tr❛♥s✐t✐♦♥ ❢r♦♠
• •
❣❡♦♠❡tr② ✿ ♣♦✐♥ts✱ ❧✐♥❡s✱ tr✐❛♥❣❧❡s✱ ❝✐r❝❧❡s✱ ♣❧❛♥❡s✱ ❝✉❜❡s✱ s♣❤❡r❡s✱ ❡t❝✳✱ t♦ ❛❧❣❡❜r❛ ✿ ♥✉♠❜❡rs✱ ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ♥✉♠❜❡rs✱ ❢✉♥❝t✐♦♥s✱ ❡t❝✳
❚❤✐s ❛♣♣r♦❛❝❤ ❛❧❧♦✇s ✉s t♦ s♦❧✈❡ ❣❡♦♠❡tr✐❝ ♣r♦❜❧❡♠s ✕ s✉❝❤ ❛s ✜♥❞✐♥❣ t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ t✇♦ ♣♦✐♥ts ✕ ✇✐t❤♦✉t ♠❡❛s✉r✐♥❣✳ ❘❡❝❛❧❧ ❤♦✇✱ ❢♦r ❞✐♠❡♥s✐♦♥ 2✱ t❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ✐s ❜✉✐❧t✿
❲❡ ❤❛✈❡ ❛ ❝♦rr❡s♣♦♥❞❡♥❝❡✿ ❧♦❝❛t✐♦♥ P ←→ ♣❛✐r (x, y). ❚❤✐s ✐s ❤♦✇ ✐t ✇♦r❦s✿
✸✳✶✵✳
❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
❲❡ ❝♦♥t✐♥✉❡ ✇✐t❤
❞✐♠❡♥s✐♦♥ 3✳
✷✸✼
❚❤❡r❡ ✐s ♠✉❝❤ ♠♦r❡ ❣♦✐♥❣ ♦♥✿
■t ✐s ❜✉✐❧t ✐♥ s❡✈❡r❛❧ st❛❣❡s✿ ✶✳ ❚❤r❡❡
❝♦♦r❞✐♥❛t❡ ❛①❡s ❛r❡ ❝❤♦s❡♥✿
t❤❡ x✲❛①✐s✱ t❤❡ y ✲❛①✐s✱ ❛♥❞ t❤❡ z ✲❛①✐s✳
✷✳ ❚❤❡ t✇♦ ❛①❡s ❛r❡ ♣✉t t♦❣❡t❤❡r ❛t t❤❡✐r ♦r✐❣✐♥s s♦ t❤❛t ✐t ✐s ❛ 90✲❞❡❣r❡❡ t✉r♥ ❢r♦♠ t❤❡ ♣♦s✐t✐✈❡ ❞✐r❡❝t✐♦♥ ♦❢ ♦♥❡ ❛①✐s t♦ t❤❡ ♣♦s✐t✐✈❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ ♥❡①t ✕ ❢r♦♠ x t♦ y t♦ z t♦ x✳ ✸✳ ❯s❡ t❤❡ ♠❛r❦s ♦♥ t❤❡ ❛①✐s t♦ ❞r❛✇ ❛ ❣r✐❞✳
❆❧t❡r♥❛t✐✈❡❧②✱ t❤❡ s②st❡♠ ✐s ❜✉✐❧t ❢r♦♠ t❤r❡❡ ❝♦♣✐❡s ♦❢ t❤❡ ❈❛rt❡s✐❛♥ ♣❧❛♥❡✿ t❤❡ xy ✲♣❧❛♥❡✱ t❤❡ yz ✲♣❧❛♥❡✱ ❛♥❞ t❤❡ zx✲♣❧❛♥❡✳ ❚❤❡② ❛r❡ ❝❛❧❧❡❞ t❤❡ ❝♦♦r❞✐♥❛t❡ ♣❧❛♥❡s✳
✸✳✶✵✳
❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
✷✸✽
❲❡ ❤❛✈❡✱ ❛s ❜❡❢♦r❡✱ ❛ ❝♦rr❡s♣♦♥❞❡♥❝❡ ❜❡t✇❡❡♥ ❧♦❝❛t✐♦♥s ❛♥❞ t❤❡✐r ❛❧❣❡❜r❛✐❝ r❡♣r❡s❡♥t❛t✐♦♥s✿ ❧♦❝❛t✐♦♥ P ←→ tr✐♣❧❡ (x, y, z) ■t ✇♦r❦s ✐♥
❜♦t❤ ❞✐r❡❝t✐♦♥s✳
❋♦r ❡①❛♠♣❧❡✱ s✉♣♣♦s❡ P ✐s ❛ ❧♦❝❛t✐♦♥ ✐♥ t❤✐s s♣❛❝❡✳ ❲❡ t❤❡♥ ✜♥❞ t❤❡ ❞✐st❛♥❝❡s ❢r♦♠ t❤❡ t❤r❡❡ ♣❧❛♥❡s t♦ t❤❛t ❧♦❝❛t✐♦♥ ✕ ♣♦s✐t✐✈❡ ✐♥ t❤❡ ♣♦s✐t✐✈❡ ❞✐r❡❝t✐♦♥ ❛♥❞ ♥❡❣❛t✐✈❡ ✐♥ t❤❡ ♥❡❣❛t✐✈❡ ❞✐r❡❝t✐♦♥ ✕ ❛♥❞ t❤❡ r❡s✉❧t ✐s t❤❡ t❤r❡❡ ❝♦♦r❞✐♥❛t❡s ♦❢ P ✱ s♦♠❡ ♥✉♠❜❡rs x✱ y ✱ ❛♥❞ z ✿
❚❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ yz ✲♣❧❛♥❡ ✐s ♠❡❛s✉r❡❞ ❛❧♦♥❣ t❤❡ x✲❛①✐s✱ ❡t❝✳ ❲❡ ✉s❡ t❤❡ ♥❡❛r❡st ♠❛r❦ t♦ s✐♠♣❧✐❢② t❤❡ t❛s❦✳ ❈♦♥✈❡rs❡❧②✱ s✉♣♣♦s❡ x, y, z ❛r❡
♥✉♠❜❡rs✳
• ❋✐rst✱ ✇❡ ♠❡❛s✉r❡ x ❛s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ yz ✲♣❧❛♥❡ ✕ ♣♦s✐t✐✈❡ ✐♥ t❤❡ ♣♦s✐t✐✈❡ ❞✐r❡❝t✐♦♥ ❛♥❞ ♥❡❣❛t✐✈❡ ✐♥ t❤❡ ♥❡❣❛t✐✈❡ ❞✐r❡❝t✐♦♥ ✕ ❛❧♦♥❣ t❤❡ x✲❛①✐s ❛♥❞ ❝r❡❛t❡ ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ yz ✲♣❧❛♥❡✳ • ❙❡❝♦♥❞✱ ✇❡ ♠❡❛s✉r❡ y ❛s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ xz ✲♣❧❛♥❡ ❛❧♦♥❣ t❤❡ y ✲❛①✐s ❛♥❞ ❝r❡❛t❡ ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ xz ✲♣❧❛♥❡✳ • ❚❤✐r❞✱ ✇❡ ♠❡❛s✉r❡ z ❛s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ xy ✲♣❧❛♥❡ ❛❧♦♥❣ t❤❡ z ✲❛①✐s ❛♥❞ ❝r❡❛t❡ ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ xy ✲♣❧❛♥❡✳ ❚❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡s❡ t❤r❡❡ ♣❧❛♥❡s ✕ ❛s ✐❢ t❤❡s❡ ✇❡r❡ t❤❡ t✇♦ ✇❛❧❧s ❛♥❞ t❤❡ ✢♦♦r ✐♥ ❛ r♦♦♠ ✕ ✐s ❛ P = (x, y, z) ✐♥ t❤❡ s♣❛❝❡✿
❧♦❝❛t✐♦♥
✸✳✶✵✳
❚❤✐s
❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
3✲❞✐♠❡♥s✐♦♥❛❧
❝♦♦r❞✐♥❛t❡ s②st❡♠ ✐s ❝❛❧❧❡❞
✷✸✾
t❤❡ ❈❛rt❡s✐❛♥ s♣❛❝❡
✱ ♦r t❤❡
3✲s♣❛❝❡✳
❖♥❝❡ t❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ✐s ✐♥ ♣❧❛❝❡✱ ✐t ✐s ❛❝❝❡♣t❛❜❧❡ t♦ t❤✐♥❦ ♦❢ ❧♦❝❛t✐♦♥ ❛s tr✐♣❧❡s ♦❢ ♥✉♠❜❡rs ❛♥❞ ✈✐❝❡ ✈❡rs❛✳ ■♥ ❢❛❝t✱ ✇❡ ❝❛♥ ✇r✐t❡✿
P = (x, y, z) . ❖♥❡ ❝❛♥ t❤✐♥❦ ♦❢ t❤❡
3✲s♣❛❝❡
❛s ❛
st❛❝❦ ♦❢ ♣❧❛♥❡s
✱ ❡❛❝❤ ♦❢ ✇❤✐❝❤ ✐s ❥✉st ❛ ❝♦♣② ♦❢ ♦♥❡ ♦❢ t❤❡ ❝♦♦r❞✐♥❛t❡
♣❧❛♥❡s✿
❲❡ ❝❛♥ ✉s❡ t❤✐s ✐❞❡❛ t♦ r❡✈❡❛❧ t❤❡ ✐♥t❡r♥❛❧ str✉❝t✉r❡ ♦❢ t❤❡ s♣❛❝❡✳
❚❤❡♦r❡♠ ✸✳✶✵✳✶✿ P❧❛♥❡s P❛r❛❧❧❡❧ t♦ ❈♦♦r❞✐♥❛t❡ P❧❛♥❡s
L ✐s ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ xy ✲♣❧❛♥❡✱ t❤❡♥ ❛❧❧ ♣♦✐♥ts ♦♥ L ❤❛✈❡ t❤❡ s❛♠❡ z ✲❝♦♦r❞✐♥❛t❡✳ ❈♦♥✈❡rs❡❧②✱ ✐❢ ❛ ❝♦❧❧❡❝t✐♦♥ L ♦❢ ♣♦✐♥ts ❝♦♥s✐sts ♦❢ ❛❧❧ ♣♦✐♥ts ✇✐t❤ t❤❡ s❛♠❡ z ✲❝♦♦r❞✐♥❛t❡✱ L ✐s ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ xy ✲♣❧❛♥❡✳ ■❢ L ✐s ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ yz ✲♣❧❛♥❡✱ t❤❡♥ ❛❧❧ ♣♦✐♥ts ♦♥ L ❤❛✈❡ t❤❡ s❛♠❡ x✲❝♦♦r❞✐♥❛t❡✳ ❈♦♥✈❡rs❡❧②✱ ✐❢ ❛ ❝♦❧❧❡❝t✐♦♥ L ♦❢ ♣♦✐♥ts ❝♦♥s✐sts ♦❢ ❛❧❧ ♣♦✐♥ts ✇✐t❤ t❤❡ s❛♠❡ x✲❝♦♦r❞✐♥❛t❡✱ L ✐s ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ yz ✲♣❧❛♥❡✳ ■❢ L ✐s ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ zx✲♣❧❛♥❡✱ t❤❡♥ ❛❧❧ ♣♦✐♥ts ♦♥ L ❤❛✈❡ t❤❡ s❛♠❡ y ✲❝♦♦r❞✐♥❛t❡✳ ❈♦♥✈❡rs❡❧②✱ ✐❢ ❛ ❝♦❧❧❡❝t✐♦♥ L ♦❢ ♣♦✐♥ts ❝♦♥s✐sts ♦❢ ❛❧❧ ♣♦✐♥ts ✇✐t❤ t❤❡ s❛♠❡ y ✲❝♦♦r❞✐♥❛t❡✱ L ✐s ❛ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ zx✲♣❧❛♥❡✳
✶✳ ■❢
✷✳
✸✳
✸✳✶✵✳
❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
✷✹✵
❚❤❡♥✱ ✇❡ ❤❛✈❡ ❛ ❝♦♠♣❛❝t ✇❛② t♦ r❡♣r❡s❡♥t t❤❡s❡ ♣❧❛♥❡s✿
x = k, y = k, ❢♦r s♦♠❡ r❡❛❧
❘❡❧❛t✐♦♥s ♥✉♠❜❡rs
♦r
z = k,
k✳
❛r❡ ✉s❡❞ ✐♥ t❤❡ s❛♠❡ ✇❛② ❛s ❜❡❢♦r❡ ❜✉t ✇✐t❤ ♠♦r❡ ✈❛r✐❛❜❧❡s✳
(x, y, z)
❆ r❡❧❛t✐♦♥ ♣r♦❝❡ss❡s ❛ tr✐♣❧❡ ♦❢
❛s t❤❡ ✐♥♣✉t ❛♥❞ ♣r♦❞✉❝❡s ❛♥ ♦✉t♣✉t✱ ✇❤✐❝❤ ✐s✿ ❨❡s ♦r ◆♦✳ ■❢ ✇❡ ❛r❡ t♦ ♣❧♦t t❤❡
❛ r❡❧❛t✐♦♥✱ t❤✐s ♦✉t♣✉t ❜❡❝♦♠❡s✿ ❛ ♣♦✐♥t ♦r ♥♦ ♣♦✐♥t✳ ❋♦r ❡①❛♠♣❧❡✱ ❧❡t✬s tr② ♦♥❡ ♦❢ t❤❡ r❡❧❛t✐♦♥s ❛❜♦✈❡✿
✐♥♣✉t
r❡❧❛t✐♦♥
(x, y, z) 7→
x = 2? ❋❆▲❙❊ y
♦✉t♣✉t
❚❘❯❊
−−−−−−→
P❧♦t
(x, y, z) .
❉♦♥✬t ♣❧♦t✳
❖♥❧② t❤❡ ♣♦✐♥ts ✇✐t❤ t❤❡
x✲❝♦♦r❞✐♥❛t❡
❡q✉❛❧ t♦
2
✇✐❧❧ ❜❡ ♣❧♦tt❡❞✳
❊①❛♠♣❧❡ ✸✳✶✵✳✷✿ ♣❧❛♥❡ ❈♦♥s✐❞❡r t❤✐s r❡❧❛t✐♦♥✿
✐♥♣✉t
r❡❧❛t✐♦♥
(x, y, z) 7→
x + y + z = 2? ❋❆▲❙❊ y
♦✉t♣✉t
❚❘❯❊
−−−−−−→
P❧♦t
❉♦♥✬t ♣❧♦t✳
❲❡ ❝❛♥ ❞♦ ✐t ❜② ❤❛♥❞✿
❲❡ ❝❛♥ ✉s❡✱ ❛s ❜❡❢♦r❡✱ t❤❡
s❡t✲❜✉✐❧❞✐♥❣ ♥♦t❛t✐♦♥ ✿
{(x, y, z) :
❛ ❝♦♥❞✐t✐♦♥ ♦♥
❋♦r ❡①❛♠♣❧❡✱ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❛❜♦✈❡ r❡❧❛t✐♦♥ ✐s ❛ s✉❜s❡t ♦❢
x, y, z} .
R2
❣✐✈❡♥ ❜②✿
{(x, y, z) : x + y + z = 2} . ❲❡ ❛❝❝❡♣t t❤❡ ❢♦❧❧♦✇✐♥❣ ✇✐t❤♦✉t ♣r♦♦❢✿
(x, y, z) .
❣r❛♣❤
♦❢
✸✳✶✵✳
✷✹✶
❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
❚❤❡♦r❡♠ ✸✳✶✵✳✸✿ P❧❛♥❡ ❊✈❡r② ♣❧❛♥❡ t❤r♦✉❣❤ ❛ ♣♦✐♥t
(h, k, l)
✐s ❣✐✈❡♥ ❜② t❤❡ r❡❧❛t✐♦♥✿
A(x − h) + B(y − k) + C(z − l) = 0 . ■♥ ♣❛rt✐❝✉❧❛r✱ ✇❡ ❤❛✈❡✿ ✶✳ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ yz ✲♣❧❛♥❡✿ B = C = 0 ✷✳ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ zx✲♣❧❛♥❡✿ A = C = 0 ✸✳ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ xy ✲♣❧❛♥❡✿ A = B = 0 ❊①❛♠♣❧❡ ✸✳✶✵✳✹✿ ❡q✉❛❧ ❞✐st❛♥❝❡
❍♦✇ ❞♦ ✇❡ ♣❧♦t t❤❡ ❣r❛♣❤ ♦❢ ❛ ♠♦r❡ ❝♦♠♣❧❡① r❡❧❛t✐♦♥❄ ▲❡t✬s ❝♦♥s✐❞❡r t❤✐s✿ ✐♥♣✉t
(x, y, z) 7→
r❡❧❛t✐♦♥
x2 + y 2 + z 2 = 1? ❋❆▲❙❊ y
♦✉t♣✉t ❚❘❯❊
−−−−−−→
P❧♦t (x, y, z) .
❉♦♥✬t ♣❧♦t✳
❲❡ t❡st ❡❛❝❤ ♦❢ t❤❡s❡ tr✐♣❧❡s (x, y, z) ✇✐t❤ t❤❡ ❤❡❧♣ ♦❢ ❛ s♣r❡❛❞s❤❡❡t✳ ❏✉st ❛s ❜❡❢♦r❡✱ ✐♥st❡❛❞ ♦❢ t❡st✐♥❣ ✇❤❡t❤❡r x2 + y 2 + z 2 ✐s ❡q✉❛❧ t♦ 1✱ ✇❡ ❝❤❡❝❦ ✇❤❡t❤❡r ✐t ✐s ✇✐t❤✐♥ ❛ s♠❛❧❧ ✜①❡❞ ♥✉♠❜❡r✱ s✉❝❤ ❛s 0.001✱ ❢r♦♠ 1 ❜❡❢♦r❡ ✇❡ ♣❧♦t ✐t✳ ❚❤❡ s♣r❡❛❞s❤❡❡t ✐s ❡✈❛❧✉❛t❡❞ s❡♣❛r❛t❡❧② ❢♦r s❡✈❡r❛❧ ❞✐st✐♥❝t ✈❛❧✉❡s ♦❢ z ✿
❚❤❡♥ ✇❡ ♣✉t t❤❡s❡ t♦❣❡t❤❡r ❛s s❤❡❡ts ♦❢ ♣❛♣❡r ✭❢❛r r✐❣❤t✮✳ ❚❤❡ r❡s✉❧t ❧♦♦❦s ❧✐❦❡ ❛ s✉r❢❛❝❡❀ ✇❡ ✇✐❧❧ ❞❡♠♦♥str❛t❡ t❤❛t ✇❡ ❤❛✈❡ ❛ s♣❤❡r❡✳ ◆♦✇ t❤❛t ❡✈❡r②t❤✐♥❣ ✐s ❝♦♦r❞✐♥❛t❡s✳
♣r❡✲♠❡❛s✉r❡❞✱
✇❡ ❝❛♥ s♦❧✈❡ t❤❡ ❣❡♦♠❡tr✐❝ ♣r♦❜❧❡♠s ❜② ❛❧❣❡❜r❛✐❝❛❧❧② ♠❛♥✐♣✉❧❛t✐♥❣
❚❤❡ ✜rst ❣❡♦♠❡tr✐❝ t❛s❦ ✐s ✜♥❞✐♥❣ t❤❡ ❞✐st❛♥❝❡✳ ❲❤❛t ✐s t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ ❧♦❝❛t✐♦♥s P ❛♥❞ Q ✐♥ t❡r♠s ♦❢ t❤❡✐r ❝♦♦r❞✐♥❛t❡s (x, y, z) ❛♥❞ (x′ , y ′ , z ′ )❄ ❋♦r ❞✐♠❡♥s✐♦♥ 2✱ ✇❡ ✉s❡❞ t❤❡ ❞✐st❛♥❝❡ ❢♦r♠✉❧❛ ❢r♦♠ t❤❡ 1✲❞✐♠❡♥s✐♦♥❛❧ ❝❛s❡✳ ❲❡ ❢♦✉♥❞ t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ t✇♦ ♣♦✐♥ts ♦♥ t❤❡ ♣❧❛♥❡ ❛s t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❞✐❛❣♦♥❛❧ ♦❢ t❤❡ r❡❝t❛♥❣❧❡ ✕ ✇✐t❤ ✐ts s✐❞❡s ♣❛r❛❧❧❡❧ t♦ t❤❡ ❝♦♦r❞✐♥❛t❡ ❛①❡s ✕ t❤❛t ❤❛s t❤❡s❡ ♣♦✐♥ts ❛t t❤❡ ♦♣♣♦s✐t❡ ❝♦r♥❡rs✿
✸✳✶✵✳
❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
✷✹✷
❙✐♠✐❧❛r❧②✱ ✇❡ ✜♥❞ t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ t✇♦ ♣♦✐♥ts ✐♥ s♣❛❝❡ ❛s t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❞✐❛❣♦♥❛❧ ♦❢ t❤❡
❜♦①
✕ ✇✐t❤
✐ts ❡❞❣❡s ♣❛r❛❧❧❡❧ t♦ t❤❡ ❝♦♦r❞✐♥❛t❡ ❛①❡s ❛♥❞ s✐❞❡s ♣❛r❛❧❧❡❧ t♦ t❤❡ ❝♦♦r❞✐♥❛t❡ ♣❧❛♥❡s ✕ t❤❛t ❤❛s t❤❡s❡ ♣♦✐♥ts ❛t t❤❡ ♦♣♣♦s✐t❡ ❝♦r♥❡rs✿
❚❤❡♦r❡♠ ✸✳✶✵✳✺✿ ❉✐st❛♥❝❡ ❋♦r♠✉❧❛ ❢♦r ❉✐♠❡♥s✐♦♥ ❚❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ ♣♦✐♥ts ❣✐✈❡♥ ❜② t❤❡✐r ❝♦♦r❞✐♥❛t❡s
(x′ , y ′ , z ′ )
3 P = (x, y, z)
❛♥❞
Q=
✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿
d(P, Q) =
p (x − x′ )2 + (y − y ′ )2 + (z − z ′ )2
Pr♦♦❢✳
❲❡ ✉s❡ t❤❡ ❞✐st❛♥❝❡ ❢♦r♠✉❧❛ ❢r♦♠ t❤❡
1✲❞✐♠❡♥s✐♦♥❛❧
❝❛s❡ s❡♣❛r❛t❡❧② ❢♦r ❡❛❝❤ ♦❢ t❤❡ t❤r❡❡ ❛①❡s✱ ❛s
❢♦❧❧♦✇s✳ ❚❤❡ ❞✐st❛♥❝❡
x ❛♥❞ x′ ♦♥ t❤❡ x✲❛①✐s ✐s |x − x′ |✱ ′ ′ ❜❡t✇❡❡♥ y ❛♥❞ y ♦♥ t❤❡ y ✲❛①✐s ✐s |y − y |✱ ❛♥❞ ′ ′ ❜❡t✇❡❡♥ z ❛♥❞ z ♦♥ t❤❡ z ✲❛①✐s ✐s |z − z |✳ ′ ′ ′ ❚❤❡♥✱ t❤❡ s❡❣♠❡♥t ❜❡t✇❡❡♥ t❤❡ ♣♦✐♥ts P = (x, y, z) ❛♥❞ Q = (x , y , z ) ✐s t❤❡ ❞✐❛❣♦♥❛❧ ♦❢ t❤✐s ✏❜♦①✑✳ ′ ′ ′ ■ts s✐❞❡s ❛r❡✿ |x−x |✱ |y −y |✱ ❛♥❞ |z −z |✳ ❖✉r ❝♦♥❝❧✉s✐♦♥ ❜❡❧♦✇ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ P②t❤❛❣♦r❡❛♥ ❚❤❡♦r❡♠ • • •
❜❡t✇❡❡♥
❛♣♣❧✐❡❞ t✇✐❝❡✿ ❲❡ ✜rst ✜♥❞ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❞✐❛❣♦♥❛❧ ♦❢ t❤❡ ♦♣♣♦s✐t❡ ❢❛❝❡ ♦❢ t❤❡ ❜♦① ❛♥❞ t❤❡♥ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ♠❛✐♥ ❞✐❛❣♦♥❛❧✱ ❛s ❢♦❧❧♦✇s✿
d(P, A) = |x − x′ |
d(A, B) = |y − y ′ | =⇒ d(P, B)2 = (x − x′ )2 + (y − y ′ )2
d(P, B)2 = (x − x′ )2 + (y − y ′ )2 d(B, Q) = |z − z ′ | =⇒ d(P, Q)2 = d(P, B)2 + d(B, Q)2
= (x − x′ )2 + (y − y ′ )2 + (z − z ′ )2
❊①❡r❝✐s❡ ✸✳✶✵✳✻
Pr♦✈❡ t❤❛t ✐♥ t❤❡ ❧❛tt❡r ❝❛s❡ t❤❡ tr✐❛♥❣❧❡ ✐s ✐♥❞❡❡❞ ❛ r✐❣❤t tr✐❛♥❣❧❡✳
❆ tr❡❛t♠❡♥t ♦❢ t❤❡ s❡❝♦♥❞ ❣❡♦♠❡tr✐❝ t❛s❦✱
❞✐r❡❝t✐♦♥s✱ ✐s ♣♦st♣♦♥❡❞ ✉♥t✐❧ ❈❤❛♣t❡r ✹❍❉✲✶✳
❚❤✐s ✐s ♦✉r ❝♦♥❝❧✉s✐♦♥ ❛❜♦✉t t❤❡ r❡❧❛t✐♦♥ ❝♦♥s✐❞❡r❡❞ ❛❜♦✈❡✿
✸✳✶✵✳
❚❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❢♦r ❞✐♠❡♥s✐♦♥ t❤r❡❡
✷✹✸
❚❤❡♦r❡♠ ✸✳✶✵✳✼✿ ❙♣❤❡r❡ ❚❤❡ s♣❤❡r❡ ♦❢ r❛❞✐✉s
R
♦❢ ❛❧❧ ♣♦✐♥ts
R>0
❝❡♥t❡r❡❞ ❛t ❛ ♣♦✐♥t
✉♥✐ts ❛✇❛② ❢r♦♠
(h, k, l)✱
(h, k, l)✱
✇❤✐❝❤ ✐s t❤❡ ❝♦❧❧❡❝t✐♦♥
✐s ❣✐✈❡♥ ❜② t❤❡ r❡❧❛t✐♦♥✿
(x − h)2 + (y − k)2 + (z − l)2 = R2 . Pr♦♦❢✳
■t ❢♦❧❧♦✇s ❢r♦♠ t❤❡
❉✐st❛♥❝❡ ❋♦r♠✉❧❛ ❢♦r ❞✐♠❡♥s✐♦♥ 3✳
❚❤❡♦r❡♠ ✸✳✶✵✳✽✿ ❈②❧✐♥❞❡r ❚❤❡ ❝②❧✐♥❞❡r ♦❢ r❛❞✐✉s ♦❢ ❛❧❧ ♣♦✐♥ts
R
R>0
❝❡♥t❡r❡❞ ❛r♦✉♥❞ t❤❡
z ✲❛①✐s✱
✇❤✐❝❤ ✐s t❤❡ ❝♦❧❧❡❝t✐♦♥
✉♥✐ts ❛✇❛② ❢r♦♠ t❤❡ ❛①✐s ♠❡❛s✉r❡❞ ❤♦r✐③♦♥t❛❧❧②✱ ✐s ❣✐✈❡♥ ❜② t❤❡
r❡❧❛t✐♦♥✿
x2 + y 2 = R 2 . Pr♦♦❢✳
■t ❢♦❧❧♦✇s ❢r♦♠ t❤❡
❉✐st❛♥❝❡ ❋♦r♠✉❧❛ ❢♦r ❉✐♠❡♥s✐♦♥ 2✳
❘❡♣r❡s❡♥t❛t✐♦♥s ♦❢ s❡ts ♦❢ ❛❧❧ ♣♦✐♥ts
t❤❡ s♣❛❝❡ n = 1, 2, 3✿
1
❞✐♠❡♥s✐♦♥✿ ❞✐st❛♥❝❡
1
2
x2 + y 2 = 1 x2 + y 2 + z 2 = 1
|x| = 1
s❡t✿
t✇♦ ♣♦✐♥ts
❝✐r❝❧❡
s♣❤❡r❡
◆✴❆
❧❡♥❣t❤
❛r❡❛
x2 + y 2 ≤ 1 x2 + y 2 + z 2 ≤ 1
≤1
|x| ≤ 1
s❡t✿
✐♥t❡r✈❛❧
❞✐s❦
❜❛❧❧
❧❡♥❣t❤
❛r❡❛
✈♦❧✉♠❡
✐ts ✏s✐③❡✑✿
❚❤❡ ❧❛tt❡r ❧✐st ✐s ❛ ❧✐st ♦❢ t❤❡ ❜✉✐❧❞✐♥❣ ❜❧♦❝❦s ❝❛❧❧❡❞ ✏❝❡❧❧s✑✳ ❚❤❡② ❛r❡ ♣r❡s❡♥t❡❞ ❜❡❧♦✇✱ ❢♦r t❤❡
t❤❡ ❝❡❧❧s m = 0, 1, 2, 3✿
❞✐♠❡♥s✐♦♥s ♦❢
3
=1
✐ts ✏s✐③❡✑✿ ❞✐st❛♥❝❡
✉♥✐t ❛✇❛② ❢r♦♠ t❤❡ ♦r✐❣✐♥ ❛r❡ ♣r❡s❡♥t❡❞ ❜❡❧♦✇✱ ❢♦r t❤❡
❞✐♠❡♥s✐♦♥s ♦❢
✸✳✶✶✳
✷✹✹
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s
❚❤❡ tr❛♥s✐t✐♦♥ ❢r♦♠ r❡❧❛t✐♦♥s ♦❢ t❤r❡❡ ✈❛r✐❛❜❧❡s t♦
❢✉♥❝t✐♦♥s
♦❢ t✇♦ ✈❛r✐❛❜❧❡s ✇✐❧❧ ❜❡ ❞✐s❝✉ss❡❞ ✐♥ ❈❤❛♣t❡r ✹✳
❲❡ s❡❡ ❤♦✇ ♠✉❝❤ ❤❛r❞❡r ✐t ✐s t♦ ✈✐s✉❛❧✐③❡ t❤✐♥❣s ✐♥ t❤❡ 3✲❞✐♠❡♥s✐♦♥❛❧ s♣❛❝❡✳ ❚❤❛t✬s ✇❤② ✇❡ ✇✐❧❧ ♥❡❡❞ ❛ ❢✉rt❤❡r ❞❡✈❡❧♦♣♠❡♥t ♦❢ t❤❡ ❛❧❣❡❜r❛✐❝ tr❡❛t♠❡♥t ♦❢ t❤❡s❡ ❣❡♦♠❡tr✐❝ ✐❞❡❛s ✐♥ ❱♦❧✉♠❡ ✹ ✭❈❤❛♣t❡r ✹P❈✲✷✮✳
✸✳✶✶✳ ❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s
❲❡ ❤❛✈❡ ❝♦♠❡ t♦ ✉♥❞❡rst❛♥❞
❛r❡❛s ✐♥ t❡r♠s ♦❢ ❧❡♥❣t❤s✳
■♥❞❡❡❞✱ ✐❢ ✇❡ r❡❛rr❛♥❣❡ t❤❡s❡ ♣❡♥❝✐❧s ❜② ♠♦✈✐♥❣ ❡❛❝❤ ✉♣ ♦r ❞♦✇♥✱ t❤❡② ✇✐❧❧ st✐❧❧ ❝♦✈❡r t❤❡ s❛♠❡ ❛r❡❛✿
❚❤✐s ❢❛❝t ✐s ♠❡❛♥t t♦ ✐❧❧✉str❛t❡ t❤❡ ❢♦❧❧♦✇✐♥❣ s✐t✉❛t✐♦♥✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❢♦✉r ❢✉♥❝t✐♦♥s f, g, F, G t❤❛t ❤❛✈❡ ♥♦t❤✐♥❣ t♦ ❞♦ ✇✐t❤ ❡❛❝❤ ♦t❤❡r ❡①❝❡♣t t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s ✕ ♦♥ t❤❡ xy ✲♣❧❛♥❡ ✕ ✐s t❤❡ s❛♠❡✿
f (x) − g(x) = F (x) − G(x) , ❢♦r ❛❧❧ x ✐♥ [a, b]✳ ▲❡t✬s ❝♦♠♣❛r❡✿ t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ f ❛♥❞ g ✈s✳ t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ F ❛♥❞ G✳ ❊❛❝❤ ♣❛✐r ♦❢ ❝♦rr❡s♣♦♥❞✐♥❣ r❡❝t❛♥❣❧❡s ✐♥ t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ t❤❡ t✇♦ ❛r❡❛s ♦✈❡r s♦♠❡ ♣❛rt✐t✐♦♥ ❤❛✈❡ t❤❡ s❛♠❡ ❤❡✐❣❤t ✭s❛♠❡ ♣❡♥❝✐❧✮✳
❚❤❛t ✐s ✇❤② t❤❡ ❘✐❡♠❛♥♥ s✉♠s ♦✈❡r ❛ ♣❛rt✐t✐♦♥ ♦❢ [a, b] t❤❛t ❛♣♣r♦①✐♠❛t❡ t❤❡ ❛r❡❛s ❜❡t✇❡❡♥ ❡✐t❤❡r ♣❛✐r ♦❢ ❣r❛♣❤s ❛r❡ t❤❡ s❛♠❡✿ Σ (f − g) · ∆x = Σ (F − G) · ∆x ,
✸✳✶✶✳ ❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s
♦✈❡r ❛♥② ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥
P✳
✷✹✺
❚❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡❣r❛❧s ✕ t❤❡ ❛r❡❛s ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s ✕ ❛r❡ ❡q✉❛❧ t♦♦✿
Z
b a
(f − g) dx =
Z
b a
(F − G) dx .
❊①❛♠♣❧❡ ✸✳✶✶✳✶✿ ❡q✉❛❧ ❛r❡❛s
❚❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t❤❡ ❣r❛♣❤s ♦❢
y = x2 + 1
❛♥❞
y = x2 + 2
✐s t❤❡ s❛♠❡ ❛s t❤❛t ♦❢ t❤❡ sq✉❛r❡ ❜❡❧♦✇✿
❈♦♥❝❧✉s✐♦♥✿
◮ ❚❤❡ ✈❡rt✐❝❛❧ ❝r♦ss✲s❡❝t✐♦♥ ♦❢ t❤❡ ♣❧❛♥❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② y = f (x) ❛♥❞ y = g(x) ✐s t❤❡ ✈❡rt✐❝❛❧ s❡❣♠❡♥t [g(x), f (x)] ❢♦r ❡❛❝❤ x✱ ❛♥❞ ♦♥❧② t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡s❡ s❡❣♠❡♥ts✱ f (x) − g(x)✱ ❛✛❡❝t t❤❡ ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥✳
▲❡t✬s ♥♦✇ ❣♦ ✉♣ ✐♥ ❞✐♠❡♥s✐♦♥ ❛♥❞ ❡①❛♠✐♥❡ t❤❡ ❝r♦ss✲s❡❝t✐♦♥s ♦❢ ❛ s♦❧✐❞ ❛♥❞ ✜♥❞ ♦✉t ✇❤❛t t❤❡② t❡❧❧ ✉s ❛❜♦✉t t❤❡ ✈♦❧✉♠❡ ♦❢ t❤✐s s♦❧✐❞✳ ❇✉t ✜rst✱ ✇❤❛t ✐s ✈♦❧✉♠❡ ❄ ❚❤❡ q✉❡st✐♦♥ ✇✐❧❧ ❜❡ ❛❞❞r❡ss❡❞ ✐♥ ❢✉❧❧ ♦♥❧② ✐♥ ❱♦❧✉♠❡ ✹ ✭❈❤❛♣t❡r ✹❍❉✲✺✮✳ ❋♦r ♥♦✇✱ ✇❡ ✇✐❧❧ r❡❧② ♦♥ ❛ s✐♠♣❧✐❢②✐♥❣ ❛ss✉♠♣t✐♦♥✳
V = w · d · h✱ ✇❤❡r❡ w 2 ❝②❧✐♥❞❡r✱ V = πR h✱ ✇❤❡r❡ R
❲❡ ❞♦ ✉♥❞❡rst❛♥❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ✈♦❧✉♠❡ ♦❢ s✉❝❤ ❛ s✐♠♣❧❡ s♦❧✐❞ ❛s ❛ ❜♦①✳ ■t ✐s t❤❡ ✇✐❞t❤✱
d
t❤❡ ❞❡♣t❤✱ ❛♥❞
✐ts r❛❞✐✉s ❛♥❞
h
h
t❤❡ ❤❡✐❣❤t✳ ❲❡ ❛❧s♦ ✏❦♥♦✇✑ t❤❡ ✈♦❧✉♠❡ ♦❢ ❛
✐s ✐s
✐s t❤❡ ❤❡✐❣❤t✳
❲❡ ❝❛♥ ❣❛✐♥ ✐♥s✐❣❤t ❢r♦♠ t❤✐s✿
❱♦❧✉♠❡
=
■♥❞❡❡❞✱ t❤❡ ❛r❡❛ ♦❢ t❤❡ ❜❛s❡ ✐s✱ r❡s♣❡❝t✐✈❡❧②✱ ❲❤❛t ❞♦ t❤❡② ❛❧❧ ❤❛✈❡ ✐♥ ❝♦♠♠♦♥❄ ✭❛♥ ✐♥t❡❣r❛❧✮✳
❛r❡❛ ♦❢ t❤❡ ❜❛s❡
A = wd
❛♥❞
❤❡✐❣❤t
A = πR2 ✳
❚❤❡ s❛♠❡ ✐s tr✉❡ ❢♦r t❤❡ ♣r✐s♠✳
❚❤❡ ❜❛s❡ ✐s ❛ r❡❣✐♦♥ ♦♥ t❤❡ ♣❧❛♥❡ ❛♥❞ ✇❡ ♠✐❣❤t ❦♥♦✇ ✐ts ❛r❡❛
❚❤✐s r❡❣✐♦♥ ✐s ❧✐❢t❡❞ ♦✛ t❤❡ ♣❧❛♥❡ t♦ t❤❡ ❤❡✐❣❤t
❝②❧✐♥❞❡r✲❧✐❦❡ s♦❧✐❞✿
·
h✳
A
❇❡t✇❡❡♥ t❤❡s❡ t✇♦ ♣❧❛♥❡ r❡❣✐♦♥s ❧✐❡s ❛
✸✳✶✶✳ ❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s
✷✹✻
❲❡ ✇✐❧❧ ❛ss✉♠❡ t❤❛t ✐ts ✈♦❧✉♠❡ ✐s✿
V = A · h. ❏✉st ❛s ✇❡ ❤❛✈❡ ❜❡❡♥ ✉s✐♥❣ r❡❝t❛♥❣❧❡s t♦ ❛♣♣r♦①✐♠❛t❡ t❤❡ s❧✐❝❡s ♦❢ ♣❧❛♥❡ r❡❣✐♦♥s✱ t❤❡s❡ ✏s❤❡❧❧s✑ ✇✐❧❧ ❛♣♣r♦①✲ ✐♠❛t❡ s❧✐❝❡s ♦❢ s♦❧✐❞s✳ ❙✉♣♣♦s❡ t❤❛t✱ ✐♥st❡❛❞ ♦❢ ❛ st❛❝❦ ♦❢ ♣❡♥❝✐❧s✱ ✇❡ ❤❛✈❡ ❛ st❛❝❦ ♦❢ ❝♦✐♥s✳ ■❢ ✇❡ r❡❛rr❛♥❣❡ t❤❡s❡ ❝♦✐♥s ❜② ♠♦✈✐♥❣ t❤❡♠ s✐❞❡ t♦ s✐❞❡✱ t❤❡ t♦t❛❧ ✈♦❧✉♠❡ ✇✐❧❧ r❡♠❛✐♥ t❤❡ s❛♠❡✿
❲❡ r❡❛❧✐③❡ t❤❛t ✇❡ s❤♦✉❧❞ tr② t♦ ✉♥❞❡rst❛♥❞ ✈♦❧✉♠❡s ✐♥ t❡r♠s ♦❢ ❛r❡❛s✳ ■t ✐s ❝❛❧❧❡❞ t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡ ✿
■❢ t❤❡ ✈❡rt✐❝❛❧ ❝r♦ss✲s❡❝t✐♦♥s ♦❢ t✇♦ s♦❧✐❞s ✐♥ t❤❡ s♣❛❝❡ ❤❛✈❡ ❡q✉❛❧ ❛r❡❛s✱ t❤❡♥ t❤❡✐r ✈♦❧✉♠❡s ❛r❡ ❛❧s♦ ❡q✉❛❧✳
❚♦ ❝♦♥✜r♠ t❤❛t t❤✐s ♣r✐♥❝✐♣❧❡ ♠❛❦❡s s❡♥s❡✱ ✇❡ ❝❛♥ ♠❛t❝❤ ✐t ✇✐t❤ ✇❤❛t ✇❡ ❦♥♦✇ ❛❜♦✉t t❤❡ ✐❞❡❛ ♦❢ ❛r❡❛ ✐♥ t❡r♠s ♦❢ ❧❡♥❣t❤s✿
■❢ t❤❡ ✈❡rt✐❝❛❧ ❝r♦ss✲s❡❝t✐♦♥s ♦❢ t✇♦
❤❛✈❡ ❡q✉❛❧
❙✉♣♣♦s❡ ♦✉r s♦❧✐❞
S
−−
❧❡♥❣t❤s ❛r❡❛s
− −✱
−−
r❡❣✐♦♥s ✐♥ t❤❡ ♣❧❛♥❡ s♦❧✐❞s ✐♥ t❤❡ s♣❛❝❡
t❤❡♥ t❤❡✐r
✐s ❧♦❝❛t❡❞ ✐♥ t❤❡ ❈❛rt❡s✐❛♥
3✲s♣❛❝❡✳
−−
❛r❡❛s ✈♦❧✉♠❡s
−−
−−
❛r❡ ❛❧s♦ ❡q✉❛❧✳
■ts ❝r♦ss✲s❡❝t✐♦♥s ❛r❡ t❤❡ ✐♥t❡rs❡❝t✐♦♥s ♦❢
S
✇✐t❤
t❤❡ ✈❛r✐♦✉s ♣❧❛♥❡s✱ ❡s♣❡❝✐❛❧❧② t❤❡ ♦♥❡s ♣❛r❛❧❧❡❧ t♦ t❤❡ ❝♦♦r❞✐♥❛t❡ ♣❧❛♥❡s✳ ❲❡ ❝❤♦♦s❡ t❤♦s❡ ♣❛r❛❧❧❡❧ t♦ t❤❡
yz ✲♣❧❛♥❡
❛♥❞✱ t❤❡r❡❢♦r❡✱ ♣❡r♣❡♥❞✐❝✉❧❛r t♦ t❤❡
s♦❧✐❞ ❝♦rr❡s♣♦♥❞✐♥❣ t♦ ❛❧❧ ✈❛❧✉❡s t❤❡
x✲❛①✐s✳
x
x✲❛①✐s✳
❚❤✉s✱ ✇❡ ✇✐❧❧ ❝♦♥s✐❞❡r ❛❧❧ ✈❡rt✐❝❛❧ ❝r♦ss✲s❡❝t✐♦♥ ♦❢ t❤✐s
❛s t❤❡ ✐♥t❡rs❡❝t✐♦♥s ♦❢
S
✇✐t❤ t❤❡ ✈❡rt✐❝❛❧ ♣❧❛♥❡s t❤r♦✉❣❤ t❤❡ ♣♦✐♥t
x
♦♥
❊❛❝❤ ♦❢ t❤❡♠ ✐s ❛ ♣❧❛♥❡ r❡❣✐♦♥ ❛♥❞✱ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡✱ ♦♥❧② ✐ts ❛r❡❛ ❛✛❡❝ts t❤❡
✈♦❧✉♠❡ ♦❢ t❤❡ r❡❣✐♦♥✿
✸✳✶✶✳
✷✹✼
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s
❲❡ ❞❡♥♦t❡ t❤✐s ❛r❡❛ ♦❢ t❤❡ ❝r♦ss✲s❡❝t✐♦♥ ❛t x ❜② A(x)✳ ■t ✐s s✐♠♣❧② ❛ ❢✉♥❝t✐♦♥ ♦❢ x✳ ❊①❛♠♣❧❡ ✸✳✶✶✳✷✿ ❝②❧✐♥❞❡r
❲❤❛t ✐s t❤❡ ✈♦❧✉♠❡ ♦❢ ❛ ❝②❧✐♥❞❡r ♦❢ r❛❞✐✉s R ❛♥❞ ❤❡✐❣❤t h❄
■t ✐s ❧♦❝❛t❡❞ ✐♥ ♦✉r 3✲s♣❛❝❡✱ ❜✉t ❛❧❧ ✇❡ ♥❡❡❞ t♦ ❦♥♦✇ ✐s ✐ts ❞✐♠❡♥s✐♦♥s✳ ❲❡ ❤❛✈❡ A(x) = πR2 .
❇② t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡✱ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤✐s ❝②❧✐♥❞❡r ✐s t❤❡ s❛♠❡ ❛s t❤❡ ✈♦❧✉♠❡ ♦❢ ❛ ❜♦① s❡❝t✐♦♥ ♦❢ ✇❤✐❝❤ ✐s ❛ sq✉❛r❡ ✇✐t❤ ❛r❡❛ πR2 ❛♥❞ t❤❡ s❛♠❡ ❤❡✐❣❤t✿
t❤❡
❝r♦ss✲
❱♦❧✉♠❡ = πR2 · h . ▲❡t✬s ❝♦♥✜r♠ t❤❡ ✐❞❡❛ ♦❢ t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡ ✈✐❛ ❘✐❡♠❛♥♥ s✉♠s✳ ❲❡ ♣❧❛❝❡ t❤❡ x✲❛①✐s s♦♠❡❤♦✇ ❛❧♦♥❣ t❤❡ s♦❧✐❞✳ ❙✉♣♣♦s❡ t❤❡ s♦❧✐❞ S ❧✐❡s ❡♥t✐r❡❧② ❜❡t✇❡❡♥ s♦♠❡ ✈❡rt✐❝❛❧ ♣❧❛♥❡s x = a ❛♥❞ x = b✳ ❲❡ ❝♦♥t✐♥✉❡ ✇✐t❤ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥ P ♦❢ t❤❡ ✐♥t❡r✈❛❧ [a, b]✿ a = x0 ≤ c1 ≤ x1 ≤ ... ≤ xn = b
❚❤❡ ✈❡rt✐❝❛❧ ♣❧❛♥❡s x = xi ❝✉t t❤❡ s♦❧✐❞ ✐♥t♦ n s❧✐❝❡s✳ ❚❤❡ it❤ s❧✐❝❡ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❚❤❡ ❝r♦ss✲s❡❝t✐♦♥ ♦❢ S ❝r❡❛t❡❞ ❜② t❤❡ ✈❡rt✐❝❛❧ ♣❧❛♥❡ x = ci ✐s ❛ ♣❧❛♥❡ r❡❣✐♦♥❀ ✐ts ❛r❡❛ ✐s A(ci )✿
✸✳✶✶✳
✷✹✽
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s
❲❡ ❝♦♥str✉❝t ❛ ♥❡✇ s♦❧✐❞ ❢r♦♠ t❤✐s ♣❧❛♥❡ r❡❣✐♦♥ ❜② ❣✐✈✐♥❣ ✐t ❛ t❤✐❝❦♥❡ss ❡q✉❛❧ t♦ ∆xi = xi − xi−1 ✳ ❚❤❡♥ ✐ts ✈♦❧✉♠❡ ✐s A(ci ) · ∆xi ✳ ❚❤❡♥ ✇❡ ❤❛✈❡✿ ❚♦t❛❧ ✈♦❧✉♠❡ =
n X i=1
❚❤✐s ✈❛❧✉❡s ✐s t❤❡♥ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✳
r❡❝♦❣♥✐③❡❞
A(ci ) · ∆xi .
❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ y = A(x) ♦✈❡r [a, b]✿ Σ A · ∆x✳ ❚❤❡✐r ❧✐♠✐t ✐s t❤❡
❉❡✜♥✐t✐♦♥ ✸✳✶✶✳✸✿ ✈♦❧✉♠❡ ♦❢ s♦❧✐❞ ❚❤❡
✈♦❧✉♠❡ ♦❢ ❛ s♦❧✐❞
✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡ ✐♥t❡❣r❛❧ Z
b
A(x) dx , a
✐❢ ✐t ❡①✐sts✱ ✇❤❡r❡ A(c) ✐s t❤❡ ❛r❡❛ ✭✐❢ ✐t ❡①✐sts✮ ♦❢ t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡ s♦❧✐❞ ❛♥❞ t❤❡ ♣❧❛♥❡ x = c✳
❲❛r♥✐♥❣✦ ❚❤❡ ❛r❡❛
A(x) ✐ts❡❧❢✱ ❢♦r ❡❛❝❤ x✱ ✐s ✉♥❞❡rst♦♦❞✱ ❛♥❞
♠❛② ❤❛✈❡ t♦ ❜❡ ❝♦♠♣✉t❡❞✱ ❛s ❛ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✳
❚❤✉s✱ t❤❡ ✈♦❧✉♠❡ ✐s t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ ❛r❡❛✿
✸✳✶✶✳
✷✹✾
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s
❊①❛♠♣❧❡ ✸✳✶✶✳✹✿ s♣❤❡r❡
❚❤❡ ❝r♦ss✲s❡❝t✐♦♥s ♦❢ t❤❡ s♣❤❡r❡ ❛r❡ ❝✐r❝❧❡s✿
▼♦r❡ ♣r❡❝✐s❡❧②✱ t❤❡ ❝r♦ss✲s❡❝t✐♦♥s ♦❢ t❤❡ ❜❛❧❧ ❛r❡ ❞✐s❦s ❛♥❞ ✐t ✐s t❤❡ ❛r❡❛s ♦❢ t❤❡s❡ ❞✐s❦s t❤❛t ✇❡ ♥❡❡❞ t♦ ✜♥❞✳ ❙✉♣♣♦s❡ t❤❡ r❛❞✐✉s ♦❢ t❤✐s ❝✐r❝❧❡ ❛t x ✐s r✳ ❲❤❛t ✐s ✐t❄ ▲❡t✬s t❛❦❡ ❛ s✐❞❡ ✈✐❡✇✿
❚❤❡♥
x2 + r 2 = R 2 .
❚❤❡♥ t❤❡ ❛r❡❛ ♦❢ t❤✐s ❝✐r❝❧❡ ✐s✿ A(x) = π
❚❤❡r❡❢♦r❡✱ ❱♦❧✉♠❡ =
Z
R
A(x) dx = π −R
Z
√
R 2 − x2
R −R
R2 − x
2
2
= π(R2 − x2 ) .
1 dx = π R2 x − x3 3
R 4 = πR3 . 3 −R
❲❡ ❤❛✈❡ ❞♦♥❡ ❛❧❧ ♣r❡❧✐♠✐♥❛r② ✇♦r❦ t♦ ❛♥s✇❡r t❤❡ q✉❡st✐♦♥✿ ❲❤❛t ✐s t❤❡ ✈♦❧✉♠❡ ✇❤❡♥ t❤❡ ❝r♦ss✲s❡❝t✐♦♥s ❛r❡ ❝✐r❝❧❡s t❤❛t ❝❤❛♥❣❡ ❢r♦♠ s❧✐❝❡ t♦ s❧✐❝❡❄
✸✳✶✶✳
✷✺✵
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ✈✐❛ t❤❡✐r ❝r♦ss✲s❡❝t✐♦♥s
❉❡✜♥✐t✐♦♥ ✸✳✶✶✳✺✿ s♦❧✐❞ ♦❢ r❡✈♦❧✉t✐♦♥ ❙✉♣♣♦s❡ y = f (x) s❛t✐s✜❡s f (x) ≥ 0 ❢♦r ❛❧❧ x ✐♥ [a, b]✳ ❚❤❡♥✱ t❤❡ s♦❧✐❞ ♦❢ r❡✈♦❧✉t✐♦♥ ♦❢ f ❛❜♦✉t t❤❡ x✲❛①✐s ✐s t❤❡ ❢♦❧❧♦✇✐♥❣ s❡t ✐♥ t❤❡ xyz ✲s♣❛❝❡✿ {(x, y, z) :
p
y 2 + z 2 ≤ f (x) } .
❚❤❡♦r❡♠ ✸✳✶✶✳✻✿ ❱♦❧✉♠❡ ♦❢ ❙♦❧✐❞ ♦❢ ❘❡✈♦❧✉t✐♦♥ ❙✉♣♣♦s❡ y = f (x) s❛t✐s✜❡s f (x) ≥ 0 ❢♦r ❛❧❧ x ✐♥ [a, b]✳ ❚❤❡♥✱ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ s♦❧✐❞ ♦❢ r❡✈♦❧✉t✐♦♥ ♦❢ f ❛❜♦✉t t❤❡ x✲❛①✐s ✐s✿ V =
Z
b
πf (x)2 dx . a
❊①❡r❝✐s❡ ✸✳✶✶✳✼ Pr♦✈❡ t❤❡ t❤❡♦r❡♠✳
❲❛r♥✐♥❣✦ ❊✈❡♥ ✇❤❡♥ t❤❡ ❝r♦ss✲s❡❝t✐♦♥s ❛r❡ ❝✐r❝❧❡s✱ t❤❡② ♠❛② ❝❤❛♥❣❡ ❢r♦♠ s❧✐❝❡ t♦ s❧✐❝❡ ✐♥ ✇❛②s t❤❛t ❛r❡ s♦ ❝♦♠✲ ♣❧❡① t❤❛t ✇❡ ♠❛② ❤❛✈❡ t♦ t✉r♥ t♦ ♥✉♠❡r✐❝❛❧ ✐♥t❡✲ ❣r❛t✐♦♥✳
■♥ ❣❡♥❡r❛❧✱ ❝r♦ss✲s❡❝t✐♦♥s ❝❛♥ ❤❛✈❡ ❛♥② ❣❡♦♠❡tr②
♦r t♦♣♦❧♦❣② ✿
❊①❡r❝✐s❡ ✸✳✶✶✳✽ ❉❡s❝r✐❜❡ t❤❡ ❝r♦ss✲s❡❝t✐♦♥s ♦❢ t❤❡s❡ s✉r❢❛❝❡s✳
❊①❛♠♣❧❡ ✸✳✶✶✳✾✿ ♣②r❛♠✐❞ ▲❡t✬s ✜♥❞ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ r✐❣❤t ♣②r❛♠✐❞ ✭✐✳❡✳✱ ♦♥❡ ✇✐t❤ ✐ts ❤❡✐❣❤t ♣❡r♣❡♥❞✐❝✉❧❛r t♦ ✐ts ❜❛s❡✮ t❤❛t ❤❛s ❛ sq✉❛r❡ ❜❛s❡ ✇✐t❤ s✐❞❡ 2h ❛♥❞ ❤❡✐❣❤t h✳ ■ts ❝r♦ss✲s❡❝t✐♦♥s ♣❛r❛❧❧❡❧ t♦ t❤❡ ❜❛s❡ ❛r❡ sq✉❛r❡s ✿
✸✳✶✷✳
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥
✷✺✶
❚❤❡ s✐❞❡ ♦❢ t❤❡ sq✉❛r❡ ❧♦❝❛t❡❞ x ✉♥✐ts ❢r♦♠ t❤❡ ❜❛s❡ ✐s 2(h − x)❀ t❤❡r❡❢♦r❡✱ ❱♦❧✉♠❡ =
Z
h
A(x) dx = 0
Z
h 0
❊①❡r❝✐s❡ ✸✳✶✶✳✶✵
h 2 2 2 3 2(h − x) dx = − (h − x) = h3 . 3 3 0
▼♦❞✐❢② t❤❡ ❛❜♦✈❡ ❡①❛♠♣❧❡ t♦ ✜♥❞ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ r✐❣❤t ♣②r❛♠✐❞ ✇✐t❤ sq✉❛r❡ ❜❛s❡ ✇✐t❤ s✐❞❡ Q ❛♥❞ ❤❡✐❣❤t h✳ ❊①❡r❝✐s❡ ✸✳✶✶✳✶✶
❋✐♥❞ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ r✐❣❤t ❝♦♥❡ ✇✐t❤ ❛ ❝✐r❝✉❧❛r ❜❛s❡ ♦❢ r❛❞✐✉s R ❛♥❞ ❤❡✐❣❤t h✳ ❲❡ ❞❡✜♥❡❞ ✐♥ t❤✐s s❡❝t✐♦♥ t❤❡ ✈♦❧✉♠❡ ♦❢ ❛ s♦❧✐❞ ✈✐❛ ✐ts ❝r♦ss✲s❡❝t✐♦♥s✳ ❚❤❡ ❞❡✜♥✐t✐♦♥ r❡❧✐❡s ♦♥ t❤❡ ❝②❧✐♥❞r✐❝❛❧ s❧✐❝❡s t♦ ❛♣♣r♦①✐♠❛t❡ t❤❡ s♦❧✐❞✳ ❚❤❡s❡ ❝♦♠♣❧❡① ♦❜❥❡❝ts ❛r❡ t♦ ❜❡ r❡♣❧❛❝❡❞ ✇✐t❤ tr✉❡ ❡❧❡♠❡♥t❛r② ❜✉✐❧❞✐♥❣ ❜❧♦❝❦s ♦❢ s♦❧✐❞s ✕ ❜r✐❝❦s ❛♥❞ ❜♦①❡s ✕ t♦ ❢♦❧❧♦✇ t❤❡ ✐❞❡❛ ♦❢ t❤❡ ❘✐❡♠❛♥♥ s✉♠✳ ❚❤❡ ❣❡♥❡r❛❧ ❞❡✜♥✐t✐♦♥ ✐s ♣r❡s❡♥t❡❞ ✐♥ ❱♦❧✉♠❡ ✹ ✭❈❤❛♣t❡r ✹❍❉✲✺✮✳ ❊①❡r❝✐s❡ ✸✳✶✶✳✶✷
✭❛✮ Pr♦✈❡ t❤❛t t❤❡ ✇♦r❦ ♥❡❡❞❡❞ t♦ ✜❧❧ ✕ ❢r♦♠ t❤❡ ❜♦tt♦♠ ✕ ❛ t❛♥❦ ❧♦❝❛t❡❞ ❜❡t✇❡❡♥ t❤❡ ♣❧❛♥❡s x = 0 ❛♥❞ x = h ✭t❤❡ x✲❛①✐s ✐s ✈❡rt✐❝❛❧✮ ❛♥❞ ✇✐t❤ t❤❡ ❛r❡❛ ♦❢ ✐ts ❤♦r✐③♦♥t❛❧ ❝r♦ss✲s❡❝t✐♦♥ ❛t ❤❡✐❣❤t x ❡q✉❛❧ Z h A(x)x dx✳ ✭❜✮ ❙❤♦✇ t❤❛t t❤✐s ✇♦r❦ ✐s ❡q✉❛❧ t♦ t❤❡ ✇♦r❦ ♥❡❡❞❡❞ t♦ ♠♦✈❡ t❤✐s ♠❛ss ❢r♦♠ t♦ A(x) ✐s 0
❤❡✐❣❤t 0 t♦ t❤❡ ❤❡✐❣❤t ♦❢ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤❡ t❛♥❦✳ ❊①❡r❝✐s❡ ✸✳✶✶✳✶✸
❙❡t ✉♣ ❜✉t ❞♦ ♥♦t ❡✈❛❧✉❛t❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ❢♦r t❤❡ ✈♦❧✉♠❡ ♦❢ ❛ ❜♦① W × D × H ✐♥ t❡r♠s ♦❢ ✐ts ❝r♦ss✲s❡❝t✐♦♥s✳
✸✳✶✷✳ ❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥
■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ ✇✐❧❧ ❝♦♥s✐❞❡r ♠♦r❡ ❝♦♠♣❧❡① s✉r❢❛❝❡s ♦❢ r❡✈♦❧✉t✐♦♥✳ ❈♦♥s✐❞❡r ❛♥ ♦❜❥❡❝t t❤❛t ✐s r♦t❛t❡❞ ❛s ✐t ❤❛r❞❡♥s✿
✸✳✶✷✳
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥
✷✺✷
❚❤❡ s❛♠❡ ❡✛❡❝t ✐s ♣r♦❞✉❝❡❞ ❜② ✉s✐♥❣ ❛ ❝✉tt✐♥❣ t♦♦❧ ♦♥ ❛ ❤❛r❞ ♦❜❥❡❝t ❛s ✐t ✐s ❜❡✐♥❣ r♦t❛t❡❞✳ ▲❡t✬s r♦t❛t❡ ❛ ❝✉r✈❡✳ ■❢ t❤✐s ❝✉r✈❡ ✐s ❛ ❝✐r❝❧❡✱ t❤❡ r❡s✉❧t ♦❢ t❤❡ r♦t❛t✐♦♥ ✐s s✐♠✐❧❛r t♦ ❛ s❧✐♥❦②✿
▼❛t❤❡♠❛t✐❝❛❧❧②✱ ✇❡ ❤❛✈❡ ❛ ❝✉r✈❡ ❛♥❞ ❛ ❧✐♥❡ ♦♥ t❤❡ xy ✲♣❧❛♥❡✱ ✇❡ ❛❞❞ t❤❡ z ✲❛①✐s✱ t❤❡♥ ✇❡ r♦t❛t❡ t❤❡ ❝✉r✈❡ ❛r♦✉♥❞ t❤❡ ❧✐♥❡ ✐♥ t❤❡ r❡s✉❧t✐♥❣ 3✲s♣❛❝❡✱ ♦♥❡ ♣♦✐♥t ❛t ❛ t✐♠❡✳
❊❛❝❤ ♦❢ t❤❡ ♣♦✐♥ts ♦♥ t❤❡ ❝✉r✈❡ ♣r♦❞✉❝❡s ❛ ❝✐r❝❧❡✳ ❚♦❣❡t❤❡r t❤❡s❡ ❝✐r❝❧❡s ❢♦r♠ ❛ s✉r❢❛❝❡✳ ❚❤✐s s✉r❢❛❝❡ ❜♦✉♥❞s ❛ s♦❧✐❞✳ ❲❤❛t ✐s t❤❡ ✈♦❧✉♠❡ ♦❢ t❤✐s s♦❧✐❞❄ ❙✉♣♣♦s❡ t❤✐s ❝✉r✈❡ ✐s s✐♠♣❧② t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ y = f (x) ≥ 0, a ≤ x ≤ b ,
❛♥❞ s✉♣♣♦s❡ t❤❡ ❧✐♥❡ ✐s t❤❡ x✲❛①✐s ♦r t❤❡ y ✲❛①✐s✿
✸✳✶✷✳
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥
✷✺✸
❆s t❤❡ ❝❤♦✐❝❡ ♦❢ t❤❡ x✲❛①✐s ✐s ❡❛s✐❧② ❛❞❞r❡ss❡❞ ❜② t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡✱ ✇❡ ❝❤♦♦s❡ t❤❡ y ✲❛①✐s✳ ▲❡t✬s ❜❡ ❝❧❡❛r ✇❤❛t ✇❡ ❛r❡ t❛❧❦✐♥❣ ❛❜♦✉t✳ ❚❤❡ s✉r❢❛❝❡ ❝r❡❛t❡❞ ❜② ❛ r♦t❛t❡❞ ❝✉r✈❡ ❤❛s ♥♦ ✈♦❧✉♠❡❀ t❤❡ s♦❧✐❞ ✐t ✕ ♣❛rt✐❛❧❧② ✕ ❜♦✉♥❞s ❞♦❡s✳ ❋♦r t❤❡ ❝❛s❡ ♦❢ ❛ ❞❡❝r❡❛s✐♥❣ f ✱ t❤✐s s♦❧✐❞ ❝♦♥t❛✐♥s ❡✈❡r② ♣♦✐♥t (x, y, z) t❤❛t s❛t✐s✜❡s✿
• ■ts ❞✐st❛♥❝❡ ✭♠❡❛s✉r❡❞ ❤♦r✐③♦♥t❛❧❧②✮ ❢r♦♠ t❤❡ y ✲❛①✐s ✐s ❜❡t✇❡❡♥ a ❛♥❞ x ✉♥✐ts✳
• ■ts ❞✐st❛♥❝❡ ✭♠❡❛s✉r❡❞ ✈❡rt✐❝❛❧❧②✮ ❢r♦♠ t❤❡ xz ✲♣❧❛♥❡ ✐s ❜❡t✇❡❡♥ f (b) ❛♥❞ f (x) ✉♥✐ts✳
❊①❡r❝✐s❡ ✸✳✶✷✳✶
❉❡s❝r✐❜❡ t❤❡ s♦❧✐❞ ❢♦r t❤❡ ❝❛s❡ ♦❢ ❛♥ ✐♥❝r❡❛s✐♥❣ f ✳ ❚❤❡ ❛♥❛❧②s✐s ♦❢ t❤❡ ✐❞❡❛ ♦❢ ✈♦❧✉♠❡ ❢♦❧❧♦✇✐♥❣ t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡ ✐s ❜❛s❡❞ ♦♥ ❝✉tt✐♥❣ t❤❡ s♦❧✐❞ ✐♥t♦ ❞✐s❦s✳ ❖❢ ❝♦✉rs❡✱ ✐t ❝❛♥ ❜❡ ✉s❡❞ ❢♦r ❡✐t❤❡r ❝❛s❡✳ ■♥st❡❛❞✱ ✇❡ st❛rt ❢r♦♠ s❝r❛t❝❤ ❛♥❞ ♣✉rs✉❡ t❤❡ ✐❞❡❛ ♦❢ ❝✉tt✐♥❣ t❤❡ s♦❧✐❞ ✐♥t♦ ✇❛s❤❡rs ✭r✐♥❣s✮✳ ❲❡ ✇✐❧❧ ✉s❡✱ ❤♦✇❡✈❡r✱ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢❛❝t ♣r❡✈✐♦✉s❧② ❞❡r✐✈❡❞ ❢r♦♠ t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡✿ ❚❤❡♦r❡♠ ✸✳✶✷✳✷✿ ❱♦❧✉♠❡ ♦❢ ❲❛s❤❡r
❚❤❡ ✈♦❧✉♠❡ ♦❢ ❛ ✇❛s❤❡r ✇✐t❤ t❤❡ ✐♥♥❡r r❛❞✐✉s r✱ t❤❡ ♦✉t❡r r❛❞✐✉s R✱ ❛♥❞ t❤✐❝❦♥❡ss h ✐s t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t❤❡ ✈♦❧✉♠❡s ♦❢ t❤❡ t✇♦ ❝②❧✐♥❞❡rs✿ ❱♦❧✉♠❡ = πR2 h − πr2 h = πh(R2 − r2 ) . ❲❡ ❥✉st s✉❜tr❛❝t t❤❡ ✈♦❧✉♠❡s ♦❢ t❤❡s❡ t✇♦ ❝②❧✐♥❞❡rs✿
❊①❛♠♣❧❡ ✸✳✶✷✳✸✿ ♣❡❞❡st❛❧
❙✉♣♣♦s❡ t❤❡ ♦❜❥❡❝t ✐s s✐♠♣❧② t❤❡ ❝♦♠❜✐♥❛t✐♦♥ ♦❢ ❛ ❞✐s❦ ♦❢ r❛❞✐✉s 1 ❛♥❞ t❤❡ ✇❛s❤❡r ❛r♦✉♥❞ ✐t ♦❢ t❤✐❝❦♥❡ss 1✿
✸✳✶✷✳
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥
✷✺✹
❚❤❡♥✱ t❤❡ ✈♦❧✉♠❡ ✐s s✐♠♣❧② t❤❡ s✉♠ ♦❢ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ ❞✐s❦ ❛♥❞ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ ✇❛s❤❡r✿
= 2 · ❛r❡❛
❱♦❧✉♠❡
+1 · ❛r❡❛
♦❢ t❤❡ ❞✐s❦
= 2 · π · 12
♦❢ t❤❡ ✇❛s❤❡r
+1 · (π · 22 − π · 12 ) .
❊①❛♠♣❧❡ ✸✳✶✷✳✹✿ ②✉rt ❙✉♣♣♦s❡ t❤❡ t❤✐❝❦♥❡ss ✐s ❝❤❛♥❣✐♥❣ ❧✐♥❡❛r❧② ❢r♦♠
1
t♦
2✿
❲❤❛t ✐s t❤❡ ✈♦❧✉♠❡ ♦❢ t❤✐s ♦❜❥❡❝t❄ ❊✈❡♥ t❤♦✉❣❤ ✇❡ ❦♥♦✇ t❤❡ ❛♥s✇❡r ❢r♦♠ t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡✱ ✇❡ ✇✐❧❧ ❤❛✈❡ t♦ st❛rt ✇✐t❤ ❛♣♣r♦①✐♠❛t✐♦♥s ❛❣❛✐♥✳✳✳
❲❡ ❤❛✈❡ ❛♥ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥
P
♦❢ t❤❡ r❛❞✐✉s✿
a = x0 ≤ c1 ≤ x1 ≤ ... ≤ cn ≤ xn = b ❚❤❡s❡ ❛r❡ t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ s❡❣♠❡♥ts✿
∆xi = xi − xi−1 . ❍❡r❡✱ ✇❡ ❝✉t t❤❡ s♦❧✐❞ ✐♥t♦ t❤✐♥ ✇❛s❤❡rs ❜② t❤❡ ❝②❧✐♥❞❡rs st❛rt✐♥❣ ❛t ♣♦✐♥ts s❛♠♣❧❡ ✐ts ❤❡✐❣❤t ❛t t❤❡ ♣♦✐♥ts
ci ✿
x = xi
♦♥ t❤❡
x✲❛①✐s
❛♥❞ t❤❡♥
✸✳✶✷✳
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥
✷✺✺
❚❤❡♥ t❤❡ ❤❡✐❣❤t ♦❢ ❡❛❝❤ ✇❛s❤❡r ✐s f (ci )✱ ❛♥❞ ✇❡ ❤❛✈❡✿
▼❛ss ♦❢ it❤ ✇❛s❤❡r = r❛❞✐✉s · ❛r❡❛ = f (ci ) · πx2i − πx2i−1 ,
s✐♥❝❡ t❤❡ ✐♥s✐❞❡ r❛❞✐✉s ♦❢ t❤❡ ✇❛s❤❡r ✐s xi−1 ❛♥❞ t❤❡ ♦✉ts✐❞❡ ✐s xi ✳
❚❤❡♥✱ ✇❡ ❤❛✈❡✿
❚♦t❛❧ ✈♦❧✉♠❡ =
n X i=1
f (ci ) · π x2i − x2i−1
❲❡ ❝❛♥ ✉s❡ t❤✐s ❢♦r♠✉❧❛ ❢♦r ❝♦♠♣✉t❛t✐♦♥s✳ ❲❤❛t ✐❢ t❤❡ s♦❧✐❞ ✐s♥✬t ❛❝t✉❛❧❧② ♠❛❞❡ ♦❢ ✇❛s❤❡rs ❛♥❞ ✐ts t❤✐❝❦♥❡ss ✈❛r✐❡s ❝♦♥t✐♥✉♦✉s❧②❄ ❚❤❡♥ t❤❡ ✈♦❧✉♠❡ ♦❢ ❡❛❝❤ ✇❛s❤❡r ✕ ✇❤❡♥ t❤✐♥ ❡♥♦✉❣❤ ✕ ✐s ❛♣♣r♦①✐♠❛t❡❞ ❜② t❤❡ ✈♦❧✉♠❡ ♦❢ s✉❝❤ ❛ ✇❛s❤❡r ✇✐t❤ t❤❡ ❝♦♥st❛♥t ❤❡✐❣❤t f (ci )✿ ♠❛ss ♦❢ it❤ ✇❛s❤❡r ≈ r❛❞✐✉s · ❛r❡❛ = f (ci ) · πx2i − πx2i−1 . ❚❤❡♥✱ ✇❡ ❤❛✈❡✿
❚♦t❛❧ ✈♦❧✉♠❡ ≈
n X i=1
f (ci ) · π x2i − x2i−1 .
❚❤✐s ✐s t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ ✇❛s❤❡rs ❜✉✐❧t ♦♥ t♦♣ ♦❢ t❤❡ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥✳ ❚❤✐s t✐♠❡✱ ❥✉st ❛s ♦♥ s❡✈❡r❛❧ ♦❝❝❛s✐♦♥s ❜❡❢♦r❡✱ ✇❡ ❞♦ ♥♦t r❡❝♦❣♥✐③❡ t❤✐s ❡①♣r❡ss✐♦♥ ❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛♥② ❢✉♥❝t✐♦♥ ♦✈❡r t❤✐s ♣❛rt✐t✐♦♥✱ ✇❤✐❝❤ ✐s s✉♣♣♦s❡❞ t♦ ❜❡✿ n X g(ci ) · ∆xi i=1
❢♦r s♦♠❡ ❢✉♥❝t✐♦♥ g ✳
❋❛❝t♦r✐♥❣ t❛❦❡s ✉s ♦♥❡ st❡♣ ❝❧♦s❡r t♦ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥✿ t♦t❛❧ ✈♦❧✉♠❡ ≈
n X i=1
πf (ci )(xi + xi−1 ) · ∆xi .
❲❡ ❥✉st ♥❡❡❞ t♦ ❞♦ s♦♠❡t❤✐♥❣ ❛❜♦✉t t❤❡ t❡r♠ (xi + xi−1 )✳✳✳ ❲❡ ❜❛❝❦ ✉♣ ❛ ❜✐t❀ ✇❡ ❤❛✈❡♥✬t ❝❤♦s❡♥ s❡❝♦♥❞❛r② ♥♦❞❡s✦ ▲❡t✬s ❛ss✉♠❡ t❤❛t ❢✉♥❝t✐♦♥ f ✐s ✐♥t❡❣r❛❜❧❡✳ ❚❤❡♥ t❤❡ ❝❤♦✐❝❡ ♦❢ s❡❝♦♥❞❛r② ♥♦❞❡s ✐s ♦✉rs✳ ▲❡t✬s ❝❤♦♦s❡ t❤❡ ♠✐❞✲♣♦✐♥ts✿
1 ci = (xi + xi−1 ) . 2 ❚❤❡♥✱ ❚♦t❛❧ ✈♦❧✉♠❡ ≈ 2π
n X i=1
f (ci )ci · ∆xi .
✸✳✶✷✳
✷✺✻
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥
❚❤✐s t✐♠❡✱ ✇❡ ❞♦ r❡❝♦❣♥✐③❡ t❤✐s ❡①♣r❡ss✐♦♥ ❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ s✐♠♣❧❡ ❢✉♥❝t✐♦♥✳ ❚❤❡♥✱ ✇❡ ❞❡✜♥❡ t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ s♦❧✐❞ ❛s t❤❡ ❧✐♠✐t ♦❢ t❤❡s❡ ❘✐❡♠❛♥♥ s✉♠s✿ 2πΣxf (x) ∆x .
■t ✐s ✐♠♣♦rt❛♥t t♦ ❝♦♥✜r♠ t❤❛t t❤✐s ♥❡✇ ❞❡✜♥✐t✐♦♥ ♦❢ ✈♦❧✉♠❡ ♠❛t❝❤❡s t❤❡ ♦❧❞ ♦♥❡✳ ❚❤❡♦r❡♠ ✸✳✶✷✳✺✿ ❱♦❧✉♠❡ ♦❢ ❙♦❧✐❞ ♦❢ ❘❡✈♦❧✉t✐♦♥ ●✐✈❡♥ ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥
f
♦♥ s❡❣♠❡♥t
[a, b]✱
t❤❡ ❛❜♦✈❡ ✐♥t❡❣r❛❧ ✐s ❡q✉❛❧ t♦
t❤❡ ✈♦❧✉♠❡ ♦❢ t❤❡ s♦❧✐❞ ♦❢ r❡✈♦❧✉t✐♦♥ ♦❜t❛✐♥❡❞ ❜② r♦t❛t✐♥❣ ♦❢ t❤❡ ❣r❛♣❤ ♦❢
❱♦❧✉♠❡
= 2π
Z
f✿
b
xf (x) dx . a
Pr♦♦❢✳
❋♦r s✐♠♣❧✐❝✐t②✱ ✇❡ ❛ss✉♠❡ t❤❛t f ✐s ❞❡❝r❡❛s✐♥❣✳ ❲❡ st❛rt ✇✐t❤ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ ✈♦❧✉♠❡ ♦❢ t❤❡ ❈❛✈❛❧✐❡r✐ ♣r✐♥❝✐♣❧❡✳ ❚❤❡ ❝r♦ss✲s❡❝t✐♦♥s ♦❢ t❤❡ s♦❧✐❞ ❛❧♦♥❣ t❤❡ y ✲❛①✐s ❛r❡ ❝✐r❝❧❡s❀ s♣❡❝✐✜❝❛❧❧②✱ t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡ s✉r❢❛❝❡ ✇✐t❤ t❤❡ ♣❧❛♥❡ y = q ✐s ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s f −1 (q)✳
▲❡t✬s ❝♦♥s✐❞❡r t❤❡ ✇❤♦❧❡ s♦❧✐❞ s✇❡♣t ❜② t❤✐s ❝✉r✈❡✳ ❲❡ ❦♥♦✇ t❤✐s✿ ❱♦❧✉♠❡ = π ❲❡ ❛♣♣❧② ■♥t❡❣r❛t✐♦♥
❜② ❙✉❜st✐t✉t✐♦♥
Z
f −1 (a)
f −1 (y) f −1 (b)
✇✐t❤ x = f −1 (y)✳ ❚❤❡♥✿
❱♦❧✉♠❡ = π ❲❡ ❛♣♣❧② ■♥t❡❣r❛t✐♦♥
❜② P❛rts
Z
2
dy .
a
x2 f ′ (x) dx . b
✇✐t❤ u = x2 , dv = f ′ dx✳ ❚❤❡♥✿
❱♦❧✉♠❡
a Z ! a 2xf (x) dx = π x2 f (x) − b b Z b 2 2 xf (x) dx . = πa f (a) − πb f (b) + 2π a
❚❤❡ ❡①tr❛ t❡r♠s ❝♦♠❡ ❢r♦♠ t❤❡ ❞✐s❦ ❛t t❤❡ ❜♦tt♦♠ ❛♥❞ t❤❡ ❝②❧✐♥❞❡r ✐♥ t❤❡ ♠✐❞❞❧❡ t♦ ❜❡ r❡♠♦✈❡❞✿
✸✳✶✷✳
❱♦❧✉♠❡s ♦❢ s♦❧✐❞s ♦❢ r❡✈♦❧✉t✐♦♥
✷✺✼
❊①❡r❝✐s❡ ✸✳✶✷✳✻ ▼♦❞✐❢② t❤❡ ♣r♦♦❢ ♦❢ t❤❡ t❤❡♦r❡♠ ❢♦r t❤❡ ❝❛s❡ ♦❢ ❛♥ ✐♥❝r❡❛s✐♥❣
f✳
❈❤❛♣t❡r ✹✿ ❙❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
❈♦♥t❡♥ts
✹✳✶ ❆ ❜❛❧❧ ✐s t❤r♦✇♥✳✳✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✷ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✸ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✹ ■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s ✳ ✳ ✳ ✳ ✳ ✹✳✺ ❚❤❡ ❝❡♥tr♦✐❞ ♦❢ ❛ ✢❛t ♦❜❥❡❝t ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✻ ❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✼ ❱❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✽ ❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✾ ❚❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C ✐s t❤❡ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡ R2 ✳ ✳ ✹✳✶✵ ▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿ C ✐s♥✬t ❥✉st R2 ✹✳✶✶ ❉✐s❝r❡t❡ ❢♦r♠s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✳✶✷ ❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✺✽ ✷✻✹ ✷✼✹ ✷✽✺ ✷✾✸ ✷✾✼ ✸✵✼ ✸✶✷ ✸✶✾ ✸✷✸ ✸✷✽ ✸✸✼
✹✳✶✳ ❆ ❜❛❧❧ ✐s t❤r♦✇♥✳✳✳
▲❡t✬s r❡✈✐❡✇ ✇❤❛t ✇❡ ❧❡❛r♥❡❞ ✐♥ ❈❤❛♣t❡r ✷❉❈✲✸ ❛❜♦✉t ♠♦t✐♦♥ ♦❢ ❛ ❜❛❧❧ ✭♦r ❛ ❝❛♥♥♦♥❜❛❧❧✮✳ ❲❤❡♥ ❛ ❜❛❧❧ ✐s t❤r♦✇♥ ✐♥ t❤❡ ❛✐r ✉♥❞❡r ❛♥ ❛♥❣❧❡✱ ✐t ♠♦✈❡s ✐♥ ❜♦t❤ ✈❡rt✐❝❛❧ ❛♥❞ ❤♦r✐③♦♥t❛❧ ❞✐r❡❝t✐♦♥s✱ s✐♠✉❧t❛♥❡♦✉s❧② ❛♥❞ ✐♥❞❡♣❡♥❞❡♥t❧②✳ ❚❤❡ ❞②♥❛♠✐❝s ✐s ✈❡r② ❞✐✛❡r❡♥t✳ ■♥ t❤❡ ❤♦r✐③♦♥t❛❧ ❞✐r❡❝t✐♦♥✱ ❛s t❤❡r❡ ✐s ♥♦ ❢♦r❝❡ ❝❤❛♥❣✐♥❣ t❤❡ ✈❡❧♦❝✐t②✱ t❤❡ ❧❛tt❡r r❡♠❛✐♥s ❝♦♥st❛♥t✿
▼❡❛♥✇❤✐❧❡✱ t❤❡ ✈❡rt✐❝❛❧ ✈❡❧♦❝✐t② ✐s ❝♦♥st❛♥t❧② ❝❤❛♥❣❡❞ ❜② t❤❡ ❣r❛✈✐t②✳ ❚❤❡ ❞❡♣❡♥❞❡♥❝❡ ♦❢ t❤❡ ❤❡✐❣❤t ♦♥ t❤❡ t✐♠❡ ✐s q✉❛❞r❛t✐❝✿
✹✳✶✳
❆ ❜❛❧❧ ✐s t❤r♦✇♥✳✳✳
❲❡ ❤❛✈❡
✷✺✾
t❤r❡❡ ✈❛r✐❛❜❧❡s✿
• t ✲ t✐♠❡✳
• x ✲ t❤❡ ❤♦r✐③♦♥t❛❧ ❞✐♠❡♥s✐♦♥✱ t❤❡ ❞❡♣t❤✱ t❤❛t ❞❡♣❡♥❞s ♦♥ t✐♠❡✳
• y ✲ t❤❡ ✈❡rt✐❝❛❧ ❞✐♠❡♥s✐♦♥✱ t❤❡ ❤❡✐❣❤t✱ t❤❛t ❛❧s♦ ❞❡♣❡♥❞s ♦♥ t✐♠❡✳
❚❤❡ ♣❛t❤ ♦❢ t❤❡ ❜❛❧❧ ✇✐❧❧ ❛♣♣❡❛r t♦ ❛♥ ♦❜s❡r✈❡r ✕ ❢r♦♠ t❤❡ r✐❣❤t ❛♥❣❧❡ ✕ ❛s ❛ ❝✉r✈❡✳ ■t ✐s ♣❧❛❝❡❞ ✐♥ t❤❡ xy ✲♣❧❛♥❡ ♣♦s✐t✐♦♥❡❞ ✈❡rt✐❝❛❧❧②✿
❋✐rst✱ t❤❡
s❡q✉❡♥❝❡s✳
❲❡ ✉s❡❞ t❤❡s❡
❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts t♦ ✜♥❞ t❤❡ ✈❡❧♦❝✐t② ❛♥❞ t❤❡♥ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ❢r♦♠ t❤❡ ❧♦❝❛t✐♦♥✿ ❤♦r✐③♦♥t❛❧ ♣♦s✐t✐♦♥ ✈❡❧♦❝✐t② ❛❝❝❡❧❡r❛t✐♦♥
xn
xn+1 − xn vn = h vn+1 − vn an = h
✈❡rt✐❝❛❧
yn
yn+1 − yn h un+1 − un bn = h un =
✇❤❡r❡ h ✐s t❤❡ ✐♥❝r❡♠❡♥t ♦❢ t✐♠❡✳ ❚❤❡s❡ ❢♦r♠✉❧❛s ❝❛♥ ♥♦✇ ❜❡ s♦❧✈❡❞ ✐♥ ♦r❞❡r t♦ ❜❡ ❛❜❧❡ t♦ ♠♦❞❡❧ t❤❡ ❧♦❝❛t✐♦♥ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t✐♠❡✳ ❚❤❡ r❡s✉❧t ✐s t❤❡s❡ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛s ❢♦r t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✿ ❤♦r✐③♦♥t❛❧
✈❡rt✐❝❛❧
❛❝❝❡❧❡r❛t✐♦♥
an
bn
✈❡❧♦❝✐t②
vn+1 = vn + han
un+1 = un + hbn
♣♦s✐t✐♦♥
xn+1 = xn + hvn yn+1 = yn + hun
Pr♦❜❧❡♠✿ ❋r♦♠ ❛ 200✲❢❡❡t ❡❧❡✈❛t✐♦♥✱ ❛ ❝❛♥♥♦♥ ✐s ✜r❡❞ ❤♦r✐③♦♥t❛❧❧② ❛t 200 ❢❡❡t ♣❡r s❡❝♦♥❞✳ ❍♦✇ ❢❛r ✇✐❧❧ t❤❡ ❝❛♥♥♦♥❜❛❧❧ ❣♦❄
✹✳✶✳
✷✻✵
❆ ❜❛❧❧ ✐s t❤r♦✇♥✳✳✳
❚❤❡ ♣❤②s✐❝s ✐s ❛s ❢♦❧❧♦✇s✿ • ❍♦r✐③♦♥t❛❧✿ ❚❤❡r❡ ✐s ♥♦ ❢♦r❝❡✱ ❤❡♥❝❡ an = 0 ❢♦r ❛❧❧ n✳
• ❱❡rt✐❝❛❧✿ ❚❤❡ ❢♦r❝❡ ✐s ❝♦♥st❛♥t ❛♥❞ bn = −g ❢♦r ❛❧❧ n✳ ❍❡r❡ g ✐s t❤❡ ❣r❛✈✐t❛t✐♦♥❛❧ ❝♦♥st❛♥t✿ g = 32 ❢t✴s❡❝2 .
◆❡①t✱ ✇❡ ❛❝q✉✐r❡ t❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥s✿ • ❚❤❡ ✐♥✐t✐❛❧ ❧♦❝❛t✐♦♥✿ x0 = 0 ❛♥❞ y0 = 200✳
• ❚❤❡ ✐♥✐t✐❛❧ ✈❡❧♦❝✐t②✿ v0 = 200 ❛♥❞ u0 = 0✳ ❊①❛♠♣❧❡ ✹✳✶✳✶✿ ❤♦✇ ❢❛r
❚♦ ✜♥❞ ✇❤❡♥ ❛♥❞ ✇❤❡r❡ t❤❡ ❜❛❧❧ ❤✐ts t❤❡ ❣r♦✉♥❞✱ ✇❡ s❝r♦❧❧ ❞♦✇♥ t♦ ✜♥❞ t❤❡ r♦✇ ✇✐t❤ y ❝❧♦s❡st t♦ 0✿
■t ❤❛♣♣❡♥s s♦♠❡t✐♠❡ ❜❡t✇❡❡♥ t = 3.5 ❛♥❞ t = 3.6 s❡❝♦♥❞s✱ s❛② t1 = 3.55 s❡❝♦♥❞s✳ ❙❡❝♦♥❞✱ t❤❡ ✈❛❧✉❡s ♦❢ x ❞✉r✐♥❣ t❤✐s t✐♠❡ ♣❡r✐♦❞ ❛r❡ ❜❡t✇❡❡♥ x = 700 ❛♥❞ x = 720 ❢❡❡t✱ s❛②✱ x1 = 710 ❢❡❡t✳ ❲❡ ❛❧s♦ ♣❧♦t t❤❡ ❣r❛♣❤s ♦❢ x ❛♥❞ y ❛s ❢✉♥❝t✐♦♥s ♦❢ t ♦♥ t❤❡ r✐❣❤t✳ ❚❤❡ s♣r❡❛❞s❤❡❡t ✐s ❝♦♥str✉❝t❡❞ ❢♦r x ❛♥❞ y s❡♣❛r❛t❡❧②✱ ❛s ❢♦❧❧♦✇s✳ ❚❤❡ t✐♠❡ ✐s ✐♥ t❤❡ ✜rst ❝♦❧✉♠♥ ♣r♦❣r❡ss✐♥❣ ❢r♦♠ 0 ❡✈❡r② 0.05✳ ❚❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ✐s ✐♥ t❤❡ ♥❡①t✱ 0 ❛♥❞ −32✱ r❡s♣❡❝t✐✈❡❧②✳ ■♥ t❤❡ ♥❡①t ❝♦❧✉♠♥✱ t❤❡ ✐♥✐t✐❛❧ ✈❡❧♦❝✐t② ✐s ❡♥t❡r❡❞ ✐♥ t❤❡ t♦♣ ❝❡❧❧✱ 200 ❛♥❞ 0 r❡s♣❡❝t✐✈❡❧②✳ ❇❡❧♦✇✱ t❤❡ ✈❡❧♦❝✐t② ✐s ❝♦♠♣✉t❡❞ ❛s ❛ ❘✐❡♠❛♥♥ s✉♠ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣r❡✈✐♦✉s ❝♦❧✉♠♥✱ ✇✐t❤ t❤❡ s❛♠❡ ❢♦r♠✉❧❛✿ ❂❘❬✲✶❪❈✰✭❘❈❬✲✷❪✲❘❬✲✶❪❈❬✲✷❪✮✯❘❬✲✶❪❈❬✲✶❪
■♥ t❤❡ ♥❡①t ❝♦❧✉♠♥✱ t❤❡ ✐♥✐t✐❛❧ ❧♦❝❛t✐♦♥ ✐s ❡♥t❡r❡❞ ✐♥ t❤❡ t♦♣ ❝❡❧❧✱ 0 ❛♥❞ 200 r❡s♣❡❝t✐✈❡❧②✳ ❇❡❧♦✇✱ t❤❡ ❧♦❝❛t✐♦♥ ✐s ❝♦♠♣✉t❡❞ ❛s ❛ ❘✐❡♠❛♥♥ s✉♠ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♣r❡✈✐♦✉s ❝♦❧✉♠♥✱ ✇✐t❤ t❤❡ s❛♠❡ ❢♦r♠✉❧❛✿ ❂❘❬✲✶❪❈✰✭❘❈❬✲✸❪✲❘❬✲✶❪❈❬✲✸❪✮✯❘❈❬✲✶❪
❚❤❡ r❡s✉❧ts ❛r❡ s❤♦✇♥ ❜❡❧♦✇✿
✹✳✶✳
✷✻✶
❆ ❜❛❧❧ ✐s t❤r♦✇♥✳✳✳
❚♦ ✜♥❞ t❤❡ s♦❧✉t✐♦♥ t♦ t❤❡ ♣r♦❜❧❡♠ ❢r♦♠ t❤✐s ❞❛t❛✱ ✇❡ ✜♥❞ t❤❡ ✐♥t❡r✈❛❧ ❞✉r✐♥❣ ✇❤✐❝❤ t❤❡ ❝❛♥♥♦♥❜❛❧❧ ❤✐t t❤❡ ❣r♦✉♥❞✱ ✐✳❡✳✱ y = 0✳ ❲❡ ❣♦ ❞♦✇♥ t❤❡ y ❝♦❧✉♠♥ ✉♥t✐❧ ✇❡ ✜♥❞ t❤❡ ✈❛❧✉❡ ❝❧♦s❡st t♦ 0❀ ✐t ✐s y = 1.2✳ ❲❡ t❤❡♥ ✜♥❞ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✈❛❧✉❡ ♦❢ x❀ ✐t ✐s x = 700✳ P❧♦tt✐♥❣ x ❛❣❛✐♥st y ♣r♦❞✉❝❡s t❤❡ ♣❛t❤ ♦❢ t❤❡ ❝❛♥♥♦♥❜❛❧❧✿
❊①❡r❝✐s❡ ✹✳✶✳✷
❯♥❞❡r t❤❡ s❛♠❡ ❝♦♥❞✐t✐♦♥s✱ s♦❧✈❡ ♥✉♠❡r✐❝❛❧❧② t❤❡ ♣r♦❜❧❡♠ ♦❢ ❤✐tt✐♥❣ ❛ t❛r❣❡t 500 ❢❡❡t ❛✇❛②✳ ❲❡ st❛rt ✇✐t❤ t❤❡
❝♦♥t✐♥✉♦✉s ❝❛s❡
♥♦✇✿
• ❤♦r✐③♦♥t❛❧✿ x′′ = 0 • ✈❡rt✐❝❛❧✿ y ′′ = −g
❲❡ st❛rt ❛t t❤❡ s❛♠❡ ♣❧❛❝❡ ❛s ❛❜♦✈❡✿ x′′ = 0,
x′ (0) = 200, x(0) = 0
y ′′ = −g, y ′ (0) = 0,
y(0) = 200
❙✐♥❝❡ t❤❡ ✈❡❧♦❝✐t② ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥✱ ✇❡ ✐♥t❡❣r❛t❡ t❤❡s❡✳ ❚❤❡♥ ❢♦r ❤♦r✐③♦♥t❛❧✱ ✇❡ ❤❛✈❡✿ ′
x =
✇❤❡r❡ Cx ✐s ❛♥② ❝♦♥st❛♥t✳ ◆❡①t✱ ❢♦r t❤❡ ✈❡rt✐❝❛❧✱ ′
y =
✇❤❡r❡ Cy ✐s ❛♥② ❝♦♥st❛♥t✳
Z
Z
0 dt = Cx ,
−g dt = −gt + Cy ,
❙✐♥❝❡ t❤❡ ❧♦❝❛t✐♦♥ ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ✈❡❧♦❝✐t②✱ ✇❡ ✐♥t❡❣r❛t❡ t❤❡s❡✳ ❚❤❡♥ ❢♦r ❤♦r✐③♦♥t❛❧✱ ✇❡ ❤❛✈❡✿ x=
Z
′
x dt =
Z
Cx dt = Cx t + Kx ,
✹✳✶✳
✷✻✷
❆ ❜❛❧❧ ✐s t❤r♦✇♥✳✳✳
✇❤❡r❡ Kx ✐s ❛♥② ❝♦♥st❛♥t✳ ◆❡①t✱ ❢♦r t❤❡ ✈❡rt✐❝❛❧✱ y=
✇❤❡r❡ Ky ✐s ❛♥② ❝♦♥st❛♥t✳ ❚❤✉s✱ t❤❡ ❣❡♥❡r❛❧
s♦❧✉t✐♦♥
Z
′
y dx =
Z
(−gt + Cy ) dt = − 12 gt2 + Cy t + Ky ,
♦❢ t❤✐s s②st❡♠ ♦❢ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s ✐s✿ x = y =
C x t + Kx , − 12 gt2
+ C y t + Ky .
❆♥② ♣♦ss✐❜❧❡ ❞②♥❛♠✐❝s ✐s ❢♦✉♥❞ ❜② s♣❡❝✐❢②✐♥❣ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❢♦✉r ❝♦♥st❛♥ts✿ Cx , Cy , , Kx , Ky .
❚❤❡ ♣❤②s✐❝s ♦❢ t❤❡ s✐t✉❛t✐♦♥ ❛❧❧♦✇s ✉s t♦ ❛ss✐❣♥ ♠❡❛♥✐♥❣s t♦ t❤❡s❡ ❢♦✉r ❝♦♥st❛♥ts✳ ❋✐rst✱ x′ =
Cx =⇒ x′ (0) = Cx ,
y ′ = −gt + Cy =⇒ y ′ (0) = Cy .
❚❤❡r❡❢♦r❡✱ • Cx ✐s t❤❡ ✭❝♦♥st❛♥t✮ ❤♦r✐③♦♥t❛❧ ❝♦♠♣♦♥❡♥t ♦❢ ✈❡❧♦❝✐t②❀ • Cy ✐s t❤❡ ✐♥✐t✐❛❧ ✈❡rt✐❝❛❧ ❝♦♠♣♦♥❡♥t ♦❢ ✈❡❧♦❝✐t②✳
◆❡①t✱
x =
Cx t + Kx =⇒ x(0) = Kx ,
y = − 21 gt2 + Cy t + Ky =⇒ y(0) = Ky .
❚❤❡r❡❢♦r❡✱
• Kx ✐s t❤❡ ✐♥✐t✐❛❧ ❤♦r✐③♦♥t❛❧ ❧♦❝❛t✐♦♥ ✭❞❡♣t❤✮❀ • Ky ✐s t❤❡ ✐♥✐t✐❛❧ ✈❡rt✐❝❛❧ ❧♦❝❛t✐♦♥ ✭❤❡✐❣❤t✮✳
❚❤✉s✱ ✇❡ ❤❛✈❡✿
❉❡♣t❤ = ❍❡✐❣❤t =
✐♥✐t✐❛❧ ❞❡♣t❤ ✐♥✐t✐❛❧ ❤❡✐❣❤t
+ +
✐♥✐t✐❛❧ ❤♦r✐③♦♥t❛❧ ✈❡❧♦❝✐t② ✐♥✐t✐❛❧ ✈❡rt✐❝❛❧ ✈❡❧♦❝✐t②
· t✐♠❡
· t✐♠❡
− 21 g · t✐♠❡
2
❲❡ ✉s❡❞ t❤❡s❡ t✇♦ ❡q✉❛t✐♦♥s t♦ s♦❧✈❡ ❛ ✈❛r✐❡t② ♦❢ ♣r♦❜❧❡♠s ❛❜♦✉t ♠♦t✐♦♥✳ ❊①❛♠♣❧❡ ✹✳✶✳✸✿ ❤♦✇ ❢❛r
❋r♦♠ ❛ 200✲❢❡❡t ❡❧❡✈❛t✐♦♥✱ ❛ ❝❛♥♥♦♥ ✐s ✜r❡❞ ❤♦r✐③♦♥t❛❧❧② ❛t 200 ❢❡❡t ♣❡r s❡❝♦♥❞✳ ❍♦✇ ❢❛r ✇✐❧❧ t❤❡ ❝❛♥♥♦♥❜❛❧❧ ❣♦❄
❚❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥s✿ • t❤❡ ✐♥✐t✐❛❧ ❧♦❝❛t✐♦♥✿ 0 ❛♥❞ 200✳ • t❤❡ ✐♥✐t✐❛❧ ✈❡❧♦❝✐t②✿ 200 ❛♥❞ 0✳
✹✳✶✳
✷✻✸
❆ ❜❛❧❧ ✐s t❤r♦✇♥✳✳✳
❚❤❡♥ ♦✉r ❡q✉❛t✐♦♥s ❜❡❝♦♠❡✿ x =
200t , −16t2 .
y = 200
Pr❡✈✐♦✉s❧② ✇❡ s♦❧✈❡❞ t❤❡ ♣r♦❜❧❡♠ ❛❧❣❡❜r❛✐❝❛❧❧② ❛s ❢♦❧❧♦✇s✳ ❚❤❡ ❤❡✐❣❤t ❛t t❤❡ ❡♥❞ ♦❢ t❤❡ ✢✐❣❤t ✐s y1 = 0✱ s♦ t♦ ✜♥❞ t❤❡ t✐♠❡✱ ✇❡ s❡t y = 200 − 16t2 = 0 ❛♥❞ s♦❧✈❡ ❢♦r t✿ t1 =
r
200 ≈ 3.54 . 16
❲❡ s✉❜st✐t✉t❡ t❤✐s ✈❛❧✉❡ ♦❢ t ✐♥t♦ x t♦ ✜♥❞ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❞❡♣t❤✿ √ 5 2 ≈ 707 . x1 = 200t1 = 200 2
❲❤❛t ❛❜♦✉t t❤❡ ✈❡❧♦❝✐t② ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t✐♠❡❄ ❲❡ ❤❛✈❡✿ dx = vx , dt dy = vy −gt . dt
❆❞❞✐♥❣ t❤❡s❡ t✇♦ ❡q✉❛t✐♦♥s t♦ t❤❡ ❢♦r♠❡r t✇♦ ❛❧❧♦✇s ✉s t♦ s♦❧✈❡ ♠♦r❡ ♣r♦❢♦✉♥❞ ♣r♦❜❧❡♠s✳ ❊①❛♠♣❧❡ ✹✳✶✳✹✿ ✐♠♣❛❝t
■♥ t❤❡ s❡tt✐♥❣ ♦❢ t❤❡ ❧❛st ❡①❛♠♣❧❡✱ ❤♦✇ ❤❛r❞ ❞♦❡s t❤❡ ❜❛❧❧ ❤✐t t❤❡ ❣r♦✉♥❞❄ ❋✐rst✱ ✇❡ ❡①❛♠✐♥❡ t❤❡ s♣r❡❛❞s❤❡❡t✳ ■♥st❡❛❞ ♦❢ t❤❡ ❢♦r♠✉❧❛s✱ ✇❡ ❝♦♠♣✉t❡ t❤❡ ❛✈❡r❛❣❡ ✈❡❧♦❝✐t✐❡s ✭✐✳❡✳✱ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts✮ t♦ ❛♣♣r♦①✐♠❛t❡ t❤❡ ✈❡❧♦❝✐t✐❡s✳ ❚❤❡ ❢♦r♠✉❧❛ ❢♦r x′ ✐s✿ ❂✭❘❈❬✲✷❪✲❘❬✲✶❪❈❬✲✷❪✮✴✭❘❈❬✲✸❪✲❘❬✲✶❪❈❬✲✸❪✮
❛♥❞ t❤❡ ❢♦r♠✉❧❛ ❢♦r y ′ ✐s✿ ❂✭❘❈❬✲✷❪✲❘❬✲✶❪❈❬✲✷❪✮✴✭❘❈❬✲✹❪✲❘❬✲✶❪❈❬✲✹❪✮
❚❤❡ ❞❡♥♦♠✐♥❛t♦rs r❡❢❡r t♦ t❤❡ ❝♦❧✉♠♥ t❤❛t ❝♦♥t❛✐♥s t❤❡ t✐♠❡✱ ❛♥❞ t❤❡ ♥✉♠❡r❛t♦r r❡❢❡rs t♦ t❤❡ ❝♦❧✉♠♥s t❤❛t ❝♦♥t❛✐♥ x ❛♥❞ y r❡s♣❡❝t✐✈❡❧②✳
▲♦♦❦✐♥❣ ❛t t❤❡ s❛♠❡ r♦✇ ❛s ❜❡❢♦r❡✱ ✇❡ s❡❡ t❤❛t t❤❡ ✈❡rt✐❝❛❧ ✈❡❧♦❝✐t② ❛t t❤❡ ♠♦♠❡♥t ♦❢ ✐♠♣❛❝t ✐s ❜❡t✇❡❡♥ −110.4 ❛♥❞ −113.6 ❢❡❡t ♣❡r s❡❝♦♥❞✳ ◆♦✇✱ t❤❡ ❛❧❣❡❜r❛✳ ❚❤❡ ❢♦r♠✉❧❛s ❢♦r t❤❡ ✈❡❧♦❝✐t✐❡s t❛❦❡ t❤✐s ❢♦r♠✿ dx = 200 , dt dy = −32t . dt
▲❡t✬s ✜♥❞ t❤❡ ✈❡❧♦❝✐t② ❛t t❤❡ t✐♠❡ ♦❢ ❝♦♥t❛❝t✳ ❲❡ s✉❜st✐t✉t❡ t❤❡ t✐♠❡ ✇❡✬✈❡ ❢♦✉♥❞✱ √ 5 2 t1 = , 2
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✻✹
✐♥t♦ t❤❡ ❢♦r♠✉❧❛s ❢♦r ✈❡❧♦❝✐t②✿ dx = 200, dt t=t1 √ 5 2 dy ≈ −112 . = −32t1 = −32 dt t=t1 2
❚❤❡ ❛♥s✇❡r ♠❛t❝❤❡s ♦✉r ❡st✐♠❛t❡✳
❇✉t ✇❤✐❝❤ ♦♥❡ ♦❢ t❤❡ t✇♦ ♥✉♠❜❡rs r❡♣r❡s❡♥t ❤♦✇ ❢❛st t❤❡ ❜❛❧❧ ❤✐ts t❤❡ ❣r♦✉♥❞❄ ■t ✐s t❤❡ ❧❛tt❡r ✐❢ t❤❡ ❜❛❧❧ ❤✐ts t❤❡ ✭❤♦r✐③♦♥t❛❧✮ s✉r❢❛❝❡✱ ❛♥❞ ✐t ✐s t❤❡ ❢♦r♠❡r ✐❢ t❤✐s ✐s ❛ ✇❛❧❧✳ ❚❤❡♥✱ t❤❡ ❣❡♥❡r❛❧ ❛♥s✇❡r s❤♦✉❧❞ ❜❡ ❛ ❝♦♠❜✐♥❛t✐♦♥ ♦❢ t❤❡ t✇♦✳ ❚❤✐s ✐s ❤♦✇ t❤❡② s❤♦✉❧❞ ❜❡ ❝♦♠❜✐♥❡❞ ✈✐❛ t❤❡ P②t❤❛❣♦r❡❛♥ ❚❤❡♦r❡♠ ✿
❚❤❡♥✱ t❤❡ ✐♠♣❛❝t ✐s ❞❡t❡r♠✐♥❡❞ ❜② t❤✐s ♥✉♠❜❡r✿ p 2002 + (−112)2 ≈ 229 .
✹✳✷✳ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
❊①❛♠♣❧❡ ✹✳✷✳✶✿ ❜❛❧❧
■♠❛❣✐♥❡ ❛ ♣❡rs♦♥ ♦❜s❡r✈✐♥❣ t❤❡ ✢✐❣❤t ♦❢ ❛ t❤r♦✇♥ ❜❛❧❧ ❛s ✐t ♣❛ss❡s ❜②✿
■s t❤❡r❡ ❛♥♦t❤❡r ✇❛② t♦ ❝❛♣t✉r❡ t❤✐s ✢✐❣❤t❄ ■♠❛❣✐♥❡ t❤❡r❡ ❛r❡ t✇♦ ♠♦r❡ ♦❜s❡r✈❡rs✿ • ❚❤❡ ✜rst ♦♥❡ ✭r❡❞✮ ✐s ♦♥ t❤❡ ❣r♦✉♥❞ ✉♥❞❡r t❤❡ ♣❛t❤ ♦❢ t❤❡ ❜❛❧❧ ❛♥❞ ❝❛♥ ♦♥❧② s❡❡ t❤❡ ❢♦r✇❛r❞ ♣r♦❣r❡ss ♦❢ t❤❡ ❜❛❧❧✳ • ❚❤❡ s❡❝♦♥❞ ♦♥❡ ✭❣r❡❡♥✮ ✐s ❜❡❤✐♥❞ t❤❡ t❤r♦✇ ❛♥❞ ❝❛♥ s❡❡ ♦♥❧② t❤❡ r✐s❡ ❛♥❞ ❢❛❧❧ ♦❢ t❤❡ ❜❛❧❧✳
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✻✺
■❢ t❤❡ t✇♦ ♠❛❦❡ r❡❝♦r❞s ♦❢ ✇❤❡r❡ t❤❡ ❜❛❧❧ ✇❛s ❛t ✇❤❛t t✐♠❡✱ t❤❡② ❝❛♥ ✉s❡ t❤❡ t✐♠❡ st❛♠♣s t♦ ♠❛t❝❤ t❤❡ t✇♦ ❝♦♦r❞✐♥❛t❡s ❛♥❞ t❤❡♥ ♣❧♦t t❤✐s ♣♦✐♥t ♦♥ t❤❡ xy ✲♣❧❛♥❡✳ ❚❤❡s❡ ♣♦✐♥ts ✇✐❧❧ ❢♦r♠ t❤❡ ❜❛❧❧✬s tr❛❥❡❝t♦r②✱ ✇❤❛t t❤❡ ✜rst ♦❜s❡r✈❡r s❛✇✳ ■t ✐s ❝❛❧❧❡❞ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✳ ❈✉r✈❡s ❛r❡♥✬t r❡♣r❡s❡♥t❡❞ ❛s ❣r❛♣❤s ♦❢ ❢✉♥❝t✐♦♥s✳ ■♥ ❢❛❝t✱ y ❞♦❡s♥✬t ❞❡♣❡♥❞ ♦♥ x ❛♥②♠♦r❡✱ ❜✉t t❤❡② ❛r❡
r❡❧❛t❡❞ t♦ ❡❛❝❤ ♦t❤❡r✳ ❚❤❡ ❧✐♥❦ ✐s ❡st❛❜❧✐s❤❡❞ ❜② ♠❡❛♥s ♦❢ ❛♥♦t❤❡r ✈❛r✐❛❜❧❡✱ t✳ ❙♦✱ ✇❡ ❤❛✈❡ t✇♦ ❢✉♥❝t✐♦♥s
t❤❛t ❤❛✈❡ ♥♦t❤✐♥❣ t♦ ❞♦ ✇✐t❤ ❡❛❝❤ ♦t❤❡r ❡①❝❡♣t t❤❡ ✐♥♣✉ts ❝❛♥ ❜❡ ♠❛t❝❤❡❞✳
❉❡✜♥✐t✐♦♥ ✹✳✷✳✷✿ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ❆ ♣❛r❛♠❡tr✐❝ ✈❛r✐❛❜❧❡✿
❝✉r✈❡ ♦♥ t❤❡ ♣❧❛♥❡ ✐s ❛ ❝♦♠❜✐♥❛t✐♦♥ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ♦❢ t❤❡ s❛♠❡ (
x = f (t) y = g(t)
❲❡ ❝❛♥ ❛❧s♦ ✉s❡ t❤❡ ❈❛rt❡s✐❛♥ s②st❡♠ ♦❢ ♣♦✐♥ts t♦ r❡♣r❡s❡♥t t❤✐s ❝✉r✈❡✿ (x, y) = f (t), g(t)
❊①❡r❝✐s❡ ✹✳✷✳✸ ❊①♣❧❛✐♥ ❤♦✇ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ✐s ❛ r❡❧❛t✐♦♥✳
❊①❛♠♣❧❡ ✹✳✷✳✹✿ ♣❧♦tt❡r ❆ ❝✉r✈❡ ♠❛② ❜❡ ♣❧♦tt❡❞ ♦♥ ❛ ♣✐❡❝❡ ♦❢ ♣❛♣❡r ❜② ❤❛♥❞ ♦r ❜② ❛ ❝♦♠♣✉t❡r ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ♠❡t❤♦❞✳ ❆ ♣❡♥ ✐s ❛tt❛❝❤❡❞ t♦ ❛ r✉♥♥❡r ♦♥ ❛ ✈❡rt✐❝❛❧ ❜❛r✱ ✇❤✐❧❡ t❤❛t ❜❛r s❧✐❞❡s ❛❧♦♥❣ ❛ ❤♦r✐③♦♥t❛❧ r❛✐❧ ❛t t❤❡ ❜♦tt♦♠ ❡❞❣❡ ♦❢ t❤❡ ♣❛♣❡r✿
✹✳✷✳ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✻✻
❚❤❡ ❝♦♠♣✉t❡r ❝♦♠♠❛♥❞s t❤❡ ♥❡①t ❧♦❝❛t✐♦♥ ♦❢ ❜♦t❤ ❛s ❢♦❧❧♦✇s✳ ❆t ❡❛❝❤ ♠♦♠❡♥t ♦❢ t✐♠❡ t✱ ✇❡ ❤❛✈❡✿ ✶✳ ❚❤❡ ❤♦r✐③♦♥t❛❧ ❧♦❝❛t✐♦♥ ♦❢ t❤❡ ✈❡rt✐❝❛❧ ❜❛r ✭❛♥❞ t❤❡ ♣❡♥✮ ✐s ❣✐✈❡♥ ❜② x = f (t)✳ ✷✳ ❚❤❡ ✈❡rt✐❝❛❧ ❧♦❝❛t✐♦♥ ♦❢ t❤❡ ♣❡♥ ✐s ❣✐✈❡♥ ❜② y = g(t)✳ ❲❛r♥✐♥❣✦ ❚❤✐s ✈✐❡✇ ♦❢ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s ✐s ♠♦st ✉s❡❢✉❧ ✇✐t❤✐♥ t❤❡ ❢r❛♠❡✇♦r❦ ♦❢ ♠✉❧t✐❞✐♠❡♥s✐♦♥❛❧ s♣❛❝❡s ❛♥❞ ✈❡❝✲ t♦rs✳
❊①❛♠♣❧❡ ✹✳✷✳✺✿ str❛✐❣❤t ❧✐♥❡s
▲❡t✬s ❡①❛♠✐♥❡ ♠♦t✐♦♥ ❛❧♦♥❣ ❛ str❛✐❣❤t ❧✐♥❡ ♦♥ t❤❡ xy ✲♣❧❛♥❡✳ ❋✐rst ✇❡ ❣♦ ❛❧♦♥❣ t❤❡ x✲❛①✐s✳ ❚❤❡ ♠♦t✐♦♥ ✐s r❡♣r❡s❡♥t❡❞ ❜② ❛ ❢❛♠✐❧✐❛r ❧✐♥❡❛r ❢✉♥❝t✐♦♥ ♦❢ t✐♠❡✿ x = 2t + 1 .
❲❡ ❛r❡ ♠♦✈✐♥❣ 2 ❢❡❡t ♣❡r s❡❝♦♥❞ t♦ t❤❡ r✐❣❤t st❛rt✐♥❣ ❛t x = 1✳ ❚❤❡s❡ ❛r❡ ❛ ❢❡✇ ♦❢ t❤❡ ❧♦❝❛t✐♦♥s✿
❙❡❝♦♥❞ ✇❡ ❣♦ ❛❧♦♥❣ t❤❡ y ✲❛①✐s✳ ❚❤❡ ♠♦t✐♦♥ ✐s r❡♣r❡s❡♥t❡❞ ❜② ❛♥♦t❤❡r ❧✐♥❡❛r ❢✉♥❝t✐♦♥ ♦❢ t✐♠❡✿ y = 3t + 2 .
❲❡ ❛r❡ ♠♦✈✐♥❣ 3 ❢❡❡t ♣❡r s❡❝♦♥❞ ✉♣ st❛rt✐♥❣ ❛t y = 2✳ ❚❤❡s❡ ❛r❡ ❛ ❢❡✇ ♦❢ t❤❡ ❧♦❝❛t✐♦♥s✿
◆♦✇✱ ✇❤❛t ✐❢ t❤❡s❡ t✇♦ ❛r❡ ❥✉st t✇♦ ❞✐✛❡r❡♥t ✈✐❡✇s ♦❢ t❤❡ s❛♠❡ ♠♦t✐♦♥ ❢r♦♠ t✇♦ ❞✐✛❡r❡♥t ♦❜s❡r✈❡rs❄ ❚❤❡♥ ✇❡ ❤❛✈❡✿ ( x = 2t + 1 , y = 3t + 2 .
❚❤❡s❡ ❛r❡ ❛ ❢❡✇ ♦❢ t❤❡ ❧♦❝❛t✐♦♥s✿
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✻✼
❊①❡r❝✐s❡ ✹✳✷✳✻
❊①♣❧❛✐♥ ✇❤② t❤❡s❡ ♣♦✐♥ts ❧✐❡ ♦♥ ❛ str❛✐❣❤t ❧✐♥❡✳ ❍✐♥t✿ tr✐❛♥❣❧❡s✳ ❖❢ ❝♦✉rs❡✱ t❤❡ ♠♦t✐♦♥ ♠❡t❛♣❤♦r ✕ x ❛♥❞ y ❛r❡ ❝♦♦r❞✐♥❛t❡s ✐♥ t❤❡ s♣❛❝❡ ✕ ✇✐❧❧ ❜❡ s✉♣❡rs❡❞❡❞✳ ■♥ ❝♦♥tr❛st t♦ t❤✐s ❛♣♣r♦❛❝❤✱ ✇❡ ❧♦♦❦ ❛t t❤❡ t✇♦ q✉❛♥t✐t✐❡s ❛♥❞ t✇♦ ❢✉♥❝t✐♦♥s t❤❛t ♠✐❣❤t ❤❛✈❡ ♥♦t❤✐♥❣ t♦ ❞♦ ✇✐t❤ ❡❛❝❤ ♦t❤❡r ✭❡①❝❡♣t ❢♦r t✱ ♦❢ ❝♦✉rs❡✮✳ ❊①❛♠♣❧❡ ✹✳✷✳✼✿ ❝♦♠♠♦❞✐t✐❡s tr❛❞❡r
❙✉♣♣♦s❡ ❛ ❝♦♠♠♦❞✐t✐❡s tr❛❞❡r ❢♦❧❧♦✇s t❤❡ ♠❛r❦❡t✳ ❲❤❛t ❤❡ s❡❡s ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿ • t ✲ t✐♠❡ • x ✲ t❤❡ ♣r✐❝❡ ♦❢ ✇❤❡❛t ✭s❛②✱ ✐♥ ❞♦❧❧❛rs ♣❡r ❜✉s❤❡❧✮ • y ✲ t❤❡ ♣r✐❝❡ ♦❢ s✉❣❛r ✭s❛②✱ ✐♥ ❞♦❧❧❛rs ♣❡r t♦♥✮ ❲❡ s✐♠♣❧② ❤❛✈❡ t✇♦ ❢✉♥❝t✐♦♥s ❛♥❞ ✇❡ ✕ ✐♥✐t✐❛❧❧② ✕ ❧♦♦❦ ❛t t❤❡♠ s❡♣❛r❛t❡❧②✳ ❋✐rst✱ ❧❡t✬s ✐♠❛❣✐♥❡ t❤❛t t❤❡ ♣r✐❝❡ ♦❢
✇❤❡❛t
✐s ❞❡❝r❡❛s✐♥❣✿
x ց ❚❤❡ ❞❛t❛ ❝♦♠❡s t♦ t❤❡ ♦❜s❡r✈❡r ✐♥ ❛ ♣✉r❡✱ ♥✉♠❡r✐❝❛❧ ❢♦r♠✳ ❚♦ s✐♠✉❧❛t❡ t❤✐s s✐t✉❛t✐♦♥ ❛♥❞ t♦ ♠❛❦❡ t❤✐s s♣❡❝✐✜❝✱ ♦♥❡ ❝❛♥ ❝❤♦♦s❡ ❛ ❢♦r♠✉❧❛✱ ❢♦r ❡①❛♠♣❧❡✿
x = f (t) =
1 . t+1
❚♦ s❤♦✇ s♦♠❡ ❛❝t✉❛❧ ❞❛t❛✱ ✇❡ ❡✈❛❧✉❛t❡ x ❢♦r s❡✈❡r❛❧ ✈❛❧✉❡s ♦❢ t✿
t
x
0 1.00 1 0.50 2 0.33 ❲✐t❤ ♠♦r❡ ♣♦✐♥ts ❛❝q✉✐r❡❞ ✐♥ ❛ s♣r❡❛❞s❤❡❡t✱ ✇❡ ❝❛♥ ♣❧♦t t❤❡ ❣r❛♣❤ ♦♥ t❤❡ tx✲♣❧❛♥❡✿
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✻✽
❆t t❤✐s ♣♦✐♥t✱ ✇❡ ❝♦✉❧❞✱ ✐❢ ♥❡❡❞❡❞✱ ❛♣♣❧② t❤❡ ❛✈❛✐❧❛❜❧❡ ❛♣♣❛r❛t✉s t♦ st✉❞② t❤❡ s②♠♠❡tr✐❡s✱ t❤❡ ♠♦♥♦t♦♥✐❝✐t②✱ t❤❡ ❡①tr❡♠❡ ♣♦✐♥ts✱ ❡t❝✳ ♦❢ t❤✐s ❢✉♥❝t✐♦♥✳ ❙❡❝♦♥❞✱ s✉♣♣♦s❡ t❤❛t t❤❡ ♣r✐❝❡ ♦❢
s✉❣❛r
✐s ✐♥❝r❡❛s✐♥❣ ❛♥❞ t❤❡♥ ❞❡❝r❡❛s✐♥❣✿
y րց ❚♦ ♠❛❦❡ t❤✐s s♣❡❝✐✜❝✱ ✇❡ ❝❛♥ ❝❤♦♦s❡ ❛♥ ✉♣s✐❞❡✲❞♦✇♥ ♣❛r❛❜♦❧❛✿
y = g(t) = −(t − 1)2 + 2 . ❲❡ t❤❡♥ ❛❣❛✐♥ ❡✈❛❧✉❛t❡ y ❢♦r s❡✈❡r❛❧ ✈❛❧✉❡s ♦❢ t✿
t
y
0 1.00 1 2.00 2 1.00 ❲✐t❤ ♠♦r❡ ♣♦✐♥ts ❛❝q✉✐r❡❞ ✐♥ ❛ s♣r❡❛❞s❤❡❡t✱ ✇❡ ♣❧♦t t❤❡ ❣r❛♣❤ ♦♥ t❤❡ ty ✲♣❧❛♥❡✿
❲❤❛t ✐❢ t❤❡ tr❛❞❡r ✐s ✐♥t❡r❡st❡❞ ✐♥ ✜♥❞✐♥❣ ❤✐❞❞❡♥ r❡❧❛t✐♦♥s ❜❡t✇❡❡♥ t❤❡s❡ ❝♦♠❜✐♥❡ t❤❡ ❞❛t❛ ✜rst✿
t
x
0 1.00 1 0.50 2 0.33
t ❛♥❞
y
0 1.00 1 2.00 2 1.00
t −→
x
t✇♦ ❝♦♠♠♦❞✐t✐❡s✳
▲❡t✬s
y
0 1.00 1.00 1 0.50 2.00 2 0.33 1.00
❙✐♥❝❡ t❤❡ ✐♥♣✉t t ✐s t❤❡ s❛♠❡✱ ✇❡ ❣✐✈❡ ✐t ❛ s✐♥❣❧❡ ❝♦❧✉♠♥✳ ❚❤❡r❡ s❡❡♠s t♦ ❜❡ t✇♦ ♦✉t♣✉ts✳ ❆ ❜❡tt❡r ✐❞❡❛ ✐s t♦ s❡❡ ♣❛✐rs (x, y)✿ , y ) t ( x
0 ( 1.00 , 1.00 ) 1 ( 0.50 , 2.00 ) 2 ( 0.33 , 1.00 ) ❆ ✈❛❧✉❡ ♦❢ x ✐s ♣❛✐r❡❞ ✉♣ ✇✐t❤ ❛ ✈❛❧✉❡ ♦❢ y ✇❤❡♥ t❤❡② ❛♣♣❡❛r ❛❧♦♥❣ t❤❡ s❛♠❡ t ✐♥ ❜♦t❤ ♣❧♦ts✳ ❍♦✇ ❞♦ ✇❡ ❝♦♠❜✐♥❡ t❤❡ t✇♦ ♣❧♦ts ❄ ❆s t❤❡ t✇♦ ♣❧♦ts ❛r❡ ♠❛❞❡ ♦❢ ✭✐♥✐t✐❛❧❧②✮ ❞✐s❝♦♥♥❡❝t❡❞ ♣♦✐♥ts ✕ (t, x) ❛♥❞ (t, y) ✕ s♦ ✐s t❤❡ ♥❡✇ ♣❧♦t✳ ❚❤✐s ✐s ✇❤❛t ❤❛♣♣❡♥s t♦ ❡❛❝❤ ♣❛✐r✿
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✻✾
❚❤❡r❡ ✐s ♥♦ t✦ ❆s t❤❡ ✐♥❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡ ✐s t❤❡ s❛♠❡ ❢♦r ❜♦t❤ ❢✉♥❝t✐♦♥s✱ ♦♥❧② t❤❡ ❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡s ❛♣♣❡❛r✳ ■♥st❡❛❞ ♦❢ ♣❧♦tt✐♥❣ ❛❧❧ ♣♦✐♥ts
(x, y)
♦♥ t❤❡
xy ✲♣❧❛♥❡
✕ ❢♦r ❡❛❝❤
❚❤❡ ❞✐r❡❝t✐♦♥ ♠❛tt❡rs✦ ❙✐♥❝❡
t
t✳
(t, x, y)✱
✇❤✐❝❤ ❜❡❧♦♥❣ t♦ t❤❡
3✲❞✐♠❡♥s✐♦♥❛❧
s♣❛❝❡✱ ✇❡ ❥✉st ♣❧♦t
■t✬s ❛ ✏s❝❛tt❡r ♣❧♦t✑ ❝♦♥♥❡❝t❡❞ t♦ ♠❛❦❡ ❛ ❝✉r✈❡✿
✐s ♠✐ss✐♥❣✱ ✇❡ ❤❛✈❡ t♦ ♠❛❦❡ s✉r❡ ✇❡ ❦♥♦✇ ✐♥ ✇❤✐❝❤ ❞✐r❡❝t✐♦♥ ✇❡ ❛r❡
♠♦✈✐♥❣ ❛♥❞ ✐♥❞✐❝❛t❡ t❤❛t ✇✐t❤ ❛♥ ❛rr♦✇✳ ■❞❡❛❧❧②✱ ✇❡ ❛❧s♦ ❧❛❜❡❧ t❤❡ ♣♦✐♥ts ✐♥ ♦r❞❡r t♦ ✐♥❞✐❝❛t❡ ♥♦t ♦♥❧② ✏✇❤❡r❡✑ ❜✉t ❛❧s♦ ✏✇❤❡♥✑✿
❚❤✉s✱ t❤✐s ✐s ♠♦t✐♦♥✱ ❥✉st ❛s ❜❡❢♦r❡✱ ❜✉t t❤r♦✉❣❤ ✇❤❛t s♣❛❝❡❄ ❆♥ ❛❜str❛❝t
s♣❛❝❡ ♦❢ ♣r✐❝❡s
♠❛❞❡ ✉♣✳ ❚❤❡ s♣❛❝❡ ✐s ❝♦♠♣r✐s❡❞ ♦❢ ❛❧❧ ♣♦ss✐❜❧❡ ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ♣r✐❝❡s✱ ✐✳❡✳✱ ❛ ♣♦✐♥t ❛ ❝♦♠❜✐♥❛t✐♦♥ ♦❢ t✇♦ ♣r✐❝❡s✿
x
❢♦r ✇❤❡❛t ❛♥❞
y
(x, y)
t❤❛t ✇❡✬✈❡ st❛♥❞s ❢♦r
❢♦r s✉❣❛r✳
❍♦✇ ♠✉❝❤ ✐♥❢♦r♠❛t✐♦♥ ❛❜♦✉t t❤❡ ❞②♥❛♠✐❝s ♦❢ t❤❡ t✇♦ ♣r✐❝❡s ❝♦♥t❛✐♥❡❞ ✐♥ t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥s ❝❛♥ ✇❡ r❡❝♦✈❡r ❢r♦♠ t❤❡ ♥❡✇ ❣r❛♣❤❄ ❆ ❧♦t✳ ❲❡ ❝❛♥ s❤r✐♥❦ t❤❡ ❣r❛♣❤ ✈❡rt✐❝❛❧❧② t♦ ❞❡✲❡♠♣❤❛s✐③❡ t❤❡ ❝❤❛♥❣❡ ♦❢
y
❛♥❞ t♦ r❡✈❡❛❧ t❤❡
q✉❛❧✐t❛t✐✈❡
❜❡❤❛✈✐♦r ♦❢
x✱
❛♥❞ ✈✐❝❡ ✈❡rs❛✿
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✼✵
❲❡ s❡❡ t❤❡ ❞❡❝r❡❛s❡ ♦❢ x ❛♥❞ t❤❡♥ t❤❡ ✐♥❝r❡❛s❡ ❢♦❧❧♦✇❡❞ ❜② t❤❡ ❞❡❝r❡❛s❡ ♦❢ y ✳ ■♥ ❛❞❞✐t✐♦♥✱ t❤❡ ❞❡♥s✐t② ♦❢ t❤❡ ♣♦✐♥ts ✐♥❞✐❝❛t❡s t❤❡ s♣❡❡❞ ♦❢ t❤❡ ♠♦t✐♦♥✳ ❊①❛♠♣❧❡ ✹✳✷✳✽✿ ❛❜str❛❝t
❲❡ ❝❛♥ ❞♦ t❤✐s ✐♥ ❛ ❢✉❧❧② ❛❜str❛❝t s❡tt✐♥❣✳ ❲❤❡♥ t✇♦ ❢✉♥❝t✐♦♥s✱ f, g ✱ ❛r❡ r❡♣r❡s❡♥t❡❞ ❜② t❤❡✐r r❡s♣❡❝t✐✈❡ ❧✐sts ♦❢ ✈❛❧✉❡s ✭✐♥st❡❛❞ ♦❢ ❢♦r♠✉❧❛s✮✱ t❤❡② ❛r❡ ❡❛s✐❧② ❝♦♠❜✐♥❡❞ ✐♥t♦ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✱ F ✳ ❲❡ ❥✉st ♥❡❡❞ t♦ ❡❧✐♠✐♥❛t❡ t❤❡ r❡♣❡❛t❡❞ ❝♦❧✉♠♥ ♦❢ ✐♥♣✉ts✳ ❙✉♣♣♦s❡ ✇❡ ♥❡❡❞ t♦ ❝♦♠❜✐♥❡ t❤❡s❡ t✇♦ ❢✉♥❝t✐♦♥s✿
t x = f (t)
t y = g(t)
0
1
0
5
1
2
1
2
3
−1
3
0
3
3
4
1
4
0
&
2
= ?
2
❲❡ r❡♣❡❛t t❤❡ ✐♥♣✉ts ❝♦❧✉♠♥ ✕ ♦♥❧② ♦♥❝❡ ✕ ❛♥❞ t❤❡♥ r❡♣❡❛t t❤❡ ♦✉t♣✉ts ♦❢ ❡✐t❤❡r ❢✉♥❝t✐♦♥✳ ❋✐rst r♦✇✿
f : 0 7→ 1 & g : 0 7→ 5
=⇒ F : 0 7→ (0, 5)
❙❡❝♦♥❞ r♦✇✿
f : 1 7→ 2 & g : 1 7→ −1
❆♥❞ s♦ ♦♥✳ ❚❤✐s ✐s t❤❡ ✇❤♦❧❡ s♦❧✉t✐♦♥✿
=⇒ F : 1 7→ (2, −1)
t x = f (t)
t y = g(t)
t P = (f (t) , g(t))
0
1
0
5
0
(1
,
5)
1
2
1
1
(2
,
2
3
−1
2
(3
,
−1)
3
0
3
3
3
(0
,
3)
4
1
4
0
4
(1
,
0)
❛♥❞
2
2
−→
2)
❆s ②♦✉ ❝❛♥ s❡❡✱ t❤❡r❡ ❛r❡ ♥♦ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s ❝❛rr✐❡❞ ♦✉t ❛♥❞ t❤❡r❡ ✐s ♥♦ ♥❡✇ ❞❛t❛✱ ❥✉st t❤❡ ♦❧❞ ❞❛t❛ ❛rr❛♥❣❡❞ ✐♥ ❛ ♥❡✇ ✇❛②✳ ❍♦✇❡✈❡r✱ ✐t ✐s ❜❡❝♦♠✐♥❣ ❝❧❡❛r t❤❛t t❤❡ ❧✐st ✐s ❛❧s♦ ❛ ❢✉♥❝t✐♦♥ ♦❢ s♦♠❡ ❦✐♥❞✳ ❲❛r♥✐♥❣✦ ❚❤❡ ❡♥❞ r❡s✉❧t ✐s♥✬t t❤❡ ❣r❛♣❤ ♦❢ ❛♥② ❢✉♥❝t✐♦♥✳
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✼✶
❊①❛♠♣❧❡ ✹✳✷✳✾✿ s♣r❡❛❞s❤❡❡t
❚❤✐s ✐s ❛ s✉♠♠❛r② ♦❢ ❤♦✇ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ✐s ❢♦r♠❡❞ ❢r♦♠ t✇♦ ❢✉♥❝t✐♦♥s ♣r♦✈✐❞❡❞ ✐♥ ❛ s♣r❡❛❞s❤❡❡t✳ ❚❤❡ t❤r❡❡ ❝♦❧✉♠♥s ✕
❚❤✐s ❝❤❛rt ✐s t❤❡
t ✱ x✱
♣❛t❤
❛♥❞
y
✕ ❛r❡ ❝♦♣✐❡❞ ❛♥❞ t❤❡♥ t❤❡ ❧❛st t✇♦ ❛r❡ ✉s❡❞ t♦ ❝r❡❛t❡ ❛ ❝❤❛rt✿
✕ ♥♦t t❤❡ ❣r❛♣❤ ✕ ♦❢ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✳ ◆♦t❡ ❛❧s♦ t❤❛t t❤❡ ❝✉r✈❡ ✐s♥✬t t❤❡
❣r❛♣❤ ♦❢ ❛♥② ❢✉♥❝t✐♦♥ ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡ ❛s t❤❡
❱❡rt✐❝❛❧ ▲✐♥❡ ❚❡st
✐s ✈✐♦❧❛t❡❞✳
❊①❛♠♣❧❡ ✹✳✷✳✶✵✿ ♣❛tt❡r♥
P❧♦tt✐♥❣ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ♠❛② r❡✈❡❛❧ ❛ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t✇♦ q✉❛♥t✐t✐❡s✿
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛r❡ ❢✉♥❝t✐♦♥s ✦ ❚❤✐s ✐❞❡❛ ❝♦♠❡s ✇✐t❤ ❝❡rt❛✐♥ ♦❜❧✐❣❛t✐♦♥s ✭❱♦❧✉♠❡ ✶✮✳
❋✐rst✱ ✇❡ ❤❛✈❡ t♦
♥❛♠❡
✐t✱ s❛②
F✳
❙❡❝♦♥❞✱ ❛s ✇❡
❝♦♠❜✐♥❡ t❤❡ t✇♦ ❢✉♥❝t✐♦♥s✱ ✇❡ ✉s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥ ❢♦r t❤✐s ♦♣❡r❛t✐♦♥✿ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡
F = (f, g) :
(
x = f (t) y = g(t)
✐♥❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡ ❄ ■t ✐s t✳ ❆❢t❡r ❛❧❧✱ t❤✐s ✐s t❤❡ ✐♥♣✉t ♦❢ ❜♦t❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥s ✐♥✈♦❧✈❡❞✳ ❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡ ❄ ■t ✐s t❤❡ ✏❝♦♠❜✐♥❛t✐♦♥✑ ♦❢ t❤❡ ♦✉t♣✉ts ♦❢ t❤❡ t✇♦ ❢✉♥❝t✐♦♥s✱ ✐✳❡✳✱ x ❛♥❞ y✳
◆❡①t✱ ✇❤❛t ✐s t❤❡ ❲❤❛t ✐s t❤❡
❲❡ ❦♥♦✇ ❤♦✇ t♦ ❝♦♠❜✐♥❡ t❤❡s❡❀ ✇❡ ❢♦r♠ ❛ ♣❛✐r✱
P = (x, y)✳
❚❤✐s
P
✐s ❛ ♣♦✐♥t ♦♥ t❤❡
xy ✲♣❧❛♥❡✦
❚♦ s✉♠♠❛r✐③❡✱ ✇❡ ❞♦ ✇❤❛t ✇❡ ❤❛✈❡ ❞♦♥❡ ♠❛♥② t✐♠❡s ❜❡❢♦r❡ ✭❛❞❞✐t✐♦♥✱ ♠✉❧t✐♣❧✐❝❛t✐♦♥✱ ❡t❝✳✮ ❛ ♥❡✇ ❢✉♥❝t✐♦♥ ❢r♦♠ t✇♦ ♦❧❞ ❢✉♥❝t✐♦♥s✳
❲❡ r❡♣r❡s❡♥t ❛ ❢✉♥❝t✐♦♥
f
❞✐❛❣r❛♠♠❛t✐❝❛❧❧② ❛s ❛
✕ ✇❡ ❝r❡❛t❡
❜❧❛❝❦ ❜♦①
t❤❛t
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✼✷
♣r♦❝❡ss❡s t❤❡ ✐♥♣✉t ❛♥❞ ♣r♦❞✉❝❡s t❤❡ ♦✉t♣✉t✿ ✐♥♣✉t
→
t ◆♦✇✱ ✇❤❛t ✐❢ ✇❡ ❤❛✈❡ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥
❢✉♥❝t✐♦♥
x
g✿ ❢✉♥❝t✐♦♥
→
t F = (f, g)❄
→
f
✐♥♣✉t
❍♦✇ ❞♦ ✇❡ r❡♣r❡s❡♥t
♦✉t♣✉t
♦✉t♣✉t
→
g
y
❚♦ r❡♣r❡s❡♥t ✐t ❛s ❛ s✐♥❣❧❡ ❢✉♥❝t✐♦♥✱ ✇❡ ♥❡❡❞ t♦ ✏✇✐r❡✑ t❤❡✐r ❞✐❛❣r❛♠s
t♦❣❡t❤❡r s✐❞❡ ❜② s✐❞❡✿
t →
f
t →
g
|| ■t ✐s ♣♦ss✐❜❧❡ ❜❡❝❛✉s❡ t❤❡ ✐♥♣✉t ♦❢
f
→ x l
→ y
✐s t❤❡ s❛♠❡ ❛s t❤❡ ✐♥♣✉t ♦❢
g✳
❋♦r t❤❡ ♦✉t♣✉ts✱ ✇❡ ❝❛♥ ❝♦♠❜✐♥❡ t❤❡♠
❡✈❡♥ ✇❤❡♥ t❤❡② ❛r❡ ♦❢ ❞✐✛❡r❡♥t ♥❛t✉r❡✳ ❚❤❡♥ ✇❡ ❤❛✈❡ ❛ ❞✐❛❣r❛♠ ♦❢ ❛ ♥❡✇ ❢✉♥❝t✐♦♥✿
(f, g) : t →
❲❡ s❡❡ ❤♦✇ t❤❡ ✐♥♣✉t ✈❛r✐❛❜❧❡
t
t
ր t →
f
ց t →
g
→ x ց
(x, y)
→ y ր
→ P
✐s ❝♦♣✐❡❞ ✐♥t♦ t❤❡ t✇♦ ❢✉♥❝t✐♦♥s✱ ♣r♦❝❡ss❡❞ ❜② t❤❡♠
✐♥ ♣❛r❛❧❧❡❧✱ ❛♥❞ ✜♥❛❧❧②
t❤❡ t✇♦ ♦✉t♣✉ts ❛r❡ ❝♦♠❜✐♥❡❞ t♦❣❡t❤❡r t♦ ♣r♦❞✉❝❡ ❛ s✐♥❣❧❡ ♦✉t♣✉t✳ ❚❤❡ r❡s✉❧t ❝❛♥ ❜❡ s❡❡♥ ❛❣❛✐♥ ❛s ❛ ❜❧❛❝❦ ❜♦①✿
t →
→ P
F
❚❤❡ ❞✐✛❡r❡♥❝❡ ❢r♦♠ ❛❧❧ t❤❡ ❢✉♥❝t✐♦♥s ✇❡ ❤❛✈❡ s❡❡♥ s♦ ❢❛r ✐s t❤❡ ♥❛t✉r❡ ♦❢ t❤❡ ♦✉t♣✉t✳ ❲❤❛t ❛❜♦✉t t❤❡ ♦✉t♣✉ts ♦❢
F✳
✐♠❛❣❡
✭t❤❡ r❛♥❣❡ ♦❢ ✈❛❧✉❡s✮ ♦❢
F = (f, g)❄
■t ✐s s✉♣♣♦s❡❞ t♦ ❜❡ ❛ r❡❝♦r❞✐♥❣ ♦❢ ❛❧❧ ♣♦ss✐❜❧❡
❚❤❡ t❡r♠✐♥♦❧♦❣② ✉s❡❞ ✐s ♦❢t❡♥ ❞✐✛❡r❡♥t t❤♦✉❣❤✳
❉❡✜♥✐t✐♦♥ ✹✳✷✳✶✶✿ ♣❛t❤ ♦❢ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ❚❤❡
♣❛t❤
♦❢ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡
P = (f (t), g(t))
♦♥ t❤❡
x = f (t), y = g(t)
✐s t❤❡ s❡t ♦❢ ❛❧❧ s✉❝❤ ♣♦✐♥ts
xy ✲♣❧❛♥❡✳
❚❤❡ ♣❛t❤ ✐s t②♣✐❝❛❧❧② ❛ ❝✉r✈❡✳ ❲❡ ♣❧♦t s❡✈❡r❛❧ ♦❢ t❤❡♠ ❜❡❧♦✇✳
❊①❛♠♣❧❡ ✹✳✷✳✶✷✿ ♣❛t❤ ■♥ ❣❡♥❡r❛❧✱ t❤❡ t✇♦ ♣r♦❝❡ss❡s✱
x = x(t) ❛♥❞ y = y(t)✱ ❛r❡ ✐♥❞❡♣❡♥❞❡♥t✳ ❲❤❡♥ ✇❡ ❝♦♠❜✐♥❡ (x, y) ❢♦r ❡❛❝❤ t✱ t❤❡ r❡s✉❧t ♠❛② ❜❡ ✉♥❡①♣❡❝t❡❞✿
t❤❡ ♣❛t❤ ♦❢ t❤❡ ♦❜❥❡❝t ❜② ♣❧♦tt✐♥❣
t❤❡♠ t♦ s❡❡
✹✳✷✳
P❛r❛♠❡tr✐❝ ❝✉r✈❡s ♦♥ t❤❡ ♣❧❛♥❡
✷✼✸
❲❤❛t ❛❜♦✉t t❤❡ ❣r❛♣❤ ♦❢ F = (f, g)❄ ❆s ✇❡ ❦♥♦✇ ❢r♦♠ ❈❤❛♣t❡r ✶✱ t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✐s s✉♣♣♦s❡❞ t♦ ❜❡ ❛ r❡❝♦r❞✐♥❣ ♦❢ ❛❧❧ ♣♦ss✐❜❧❡ ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ✐♥♣✉ts ❛♥❞ ♦✉t♣✉ts ♦❢ F ✳ ❲❤❛t ✐❢ t❤❡ ♦✉t♣✉ts ❛r❡ 2✲❞✐♠❡♥s✐♦♥❛❧❄
❉❡✜♥✐t✐♦♥ ✹✳✷✳✶✸✿ ❣r❛♣❤ ♦❢ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ❚❤❡ ❣r❛♣❤ ♦❢ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ x = f (t), y = g(t) ✐s t❤❡ s❡t ♦❢ ❛❧❧ ♣♦✐♥ts ♦❢ t❤❡ ❢♦r♠✿ (t, x, y) = (t, f (t), g(t))
✐♥ t❤❡ txy ✲s♣❛❝❡✳ ❚❤❡ ❣r❛♣❤ ✐s ❜✉✐❧t ❢r♦♠ t❤❡s❡ t✇♦✿ • t❤❡ ❣r❛♣❤ ♦❢ x = f (t) ♦♥ t❤❡ tx✲♣❧❛♥❡ ✭t❤❡ ✢♦♦r✮✱ ❛♥❞
• t❤❡ ❣r❛♣❤ ♦❢ y = g(t) ♦♥ t❤❡ ty ✲♣❧❛♥❡ ✭t❤❡ ✇❛❧❧ ❢❛❝✐♥❣ ✉s✮✳
■t ✐s ❛ ❝✉r✈❡ ✐♥ s♣❛❝❡✱ ❛❦✐♥ t♦ ❛ ♣✐❡❝❡ ♦❢ ✇✐r❡✿
❚❤❡♥ t❤❡ s❤❛❞♦✇ ♦❢ t❤✐s ✇✐r❡ ♦♥ t❤❡ ✢♦♦r ✐s t❤❡ ❣r❛♣❤ x = f (t) ✭❧✐❣❤t ❢r♦♠ ❛❜♦✈❡✮✳ ■❢ t❤❡ ❧✐❣❤t ✐s ❜❡❤✐♥❞ ✉s✱ t❤❡ s❤❛❞♦✇ ♦♥ t❤❡ ✇❛❧❧ ✐♥ ❢r♦♥t ✐s t❤❡ ❣r❛♣❤ y = g(t)✳ ■♥ ❛❞❞✐t✐♦♥✱ ♣♦✐♥t✐♥❣ ❛ ✢❛s❤❧✐❣❤t ❢r♦♠ r✐❣❤t t♦ ❧❡❢t
✹✳✸✳
❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✼✹
✇✐❧❧ ♣r♦❞✉❝❡ t❤❡ ♣❛t❤ ♦❢ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ♦♥ t❤❡ xy ✲♣❧❛♥❡✳ ❚❤✐s ✐s t❤❡ s✉♠♠❛r② ♦❢ t❤❡ t❡r♠✐♥♦❧♦❣②✿ t②♣❡s ♦❢ ❢✉♥❝t✐♦♥s✿
❣❡♥❡r❛❧ ❢✉♥❝t✐♦♥s ♥✉♠❡r✐❝❛❧ ❢✉♥❝t✐♦♥s ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s ♠♦t✐♦♥
t❤❡ s❡t ♦❢ ❛❧❧ ♦✉t♣✉ts✿ ✐♠❛❣❡
r❛♥❣❡
♣❛t❤
tr❛❥❡❝t♦r②
✹✳✸✳ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
❆♥② ❢♦r♠✉❧❛ ✇✐t❤ t✇♦ ✐♥❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡s ❛♥❞ ♦♥❡ ❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡ ❝❛♥ ❜❡ st✉❞✐❡❞ ✐♥ t❤✐s ♠❛♥♥❡r✿
a = wd ♦r z = x + y . ❙✉❝❤ ❛♥ ❡①♣r❡ss✐♦♥ ✐s ❝❛❧❧❡❞ ❛
❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✳
❚❤❡ ♥♦t❛t✐♦♥ ✐s ❛s ❢♦❧❧♦✇s✿
g(w, d) = wd ♦r f (x, y) = x + y . ❊①❛♠♣❧❡ ✹✳✸✳✶✿ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
▲❡t
f (x, y) = x + y . ❲❡ ✐❧❧✉str❛t❡ t❤✐s ♥❡✇ ❢✉♥❝t✐♦♥ ❜❡❧♦✇✳ ❋✐rst✱ ❜② ❝❤❛♥❣✐♥❣ ✕ ✐♥❞❡♣❡♥❞❡♥t❧② ✖ t❤❡ t✇♦ ✈❛r✐❛❜❧❡s✱ ✇❡ ❝r❡❛t❡ ❛ t❛❜❧❡ ♦❢ ♥✉♠❜❡rs ✭❧❡❢t✮✳ ❲❡ ❝❛♥✱ ❢✉rt❤❡r♠♦r❡✱ ❝♦❧♦r t❤✐s ❛rr❛② ♦❢ ❝❡❧❧s ✭♠✐❞❞❧❡✮ s♦ t❤❛t t❤❡ ❝♦❧♦r ♦❢ t❤❡ (x, y)✲❝❡❧❧ ✐s ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ ✈❛❧✉❡ ♦❢ z ✿
❚❤❡ ✈❛❧✉❡ ♦❢ z ❝❛♥ ❛❧s♦ ❜❡ ✈✐s✉❛❧✐③❡❞ ❛s t❤❡ ❡❧❡✈❛t✐♦♥ ♦❢ ❛ ♣♦✐♥t ❛t t❤❛t ❧♦❝❛t✐♦♥ ✭r✐❣❤t✮✳ ❙♦✱ t❤❡ ♠❛✐♥ ♠❡t❛♣❤♦r ❢♦r ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ✇✐❧❧ ❜❡
t❡rr❛✐♥ ✿
❊❛❝❤ ❧✐♥❡ ✐♥❞✐❝❛t❡s ❛ ❝♦♥st❛♥t ❡❧❡✈❛t✐♦♥✳ ❊①❛♠♣❧❡ ✹✳✸✳✷✿ ❞✐st❛♥❝❡
❚❤❡ ❞✐st❛♥❝❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❈❛rt❡s✐❛♥ ♣❧❛♥❡ ❝r❡❛t❡s ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✳ ❚❤✐s ✐s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ❛ ♣♦✐♥t (x, y) t♦ t❤❡ ♦r✐❣✐♥✿ p z = x2 + y 2 .
✹✳✸✳ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✼✺
❙❧✐❣❤t❧② s✐♠♣❧❡r ✐s t❤❡ sq✉❛r❡ ♦❢ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ ❛ ♣♦✐♥t (x, y) t♦ t❤❡ ♦r✐❣✐♥✿ z = x2 + y 2 .
❲❡ ❝r❡❛t❡ ❛ t❛❜❧❡ ♦❢ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❡①♣r❡ss✐♦♥ ♦♥ t❤❡ ❧❡❢t ✐♥ ❛ s♣r❡❛❞s❤❡❡t ✇✐t❤ t❤❡ ❢♦r♠✉❧❛✿ ❂❘❈✶✂ ✷✰❘✶❈✂ ✷
❲❡ t❤❡♥ ❝♦❧♦r t❤❡ ❝❡❧❧s✿
❚❤❡ ♥❡❣❛t✐✈❡ ✈❛❧✉❡s ♦❢ z ❛r❡ ✐♥ ❜❧✉❡ ❛♥❞ t❤❡ ♣♦s✐t✐✈❡ ❛r❡ ✐♥ r❡❞✳ ❚❤❡ ❝✐r❝✉❧❛r ♣❛tt❡r♥ ✐s ❝❧❡❛r✳ ❚❤❡ ♣❛tt❡r♥ s❡❡♠s t♦ ❜❡ ♠❛❞❡ ❢r♦♠ ❝♦♥❝❡♥tr✐❝ ❝✐r❝❧❡s ✇✐t❤ t❤❡ r❛❞✐✐ t❤❛t ✈❛r② ✇✐t❤ z ✿
❋♦r ❡❛❝❤ z ✱ ✇❡ ❤❛✈❡ ❛ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ x ❛♥❞ y ✳ ❲❡ ❛❧s♦ r❡♣r❡s❡♥t ❛ ❢✉♥❝t✐♦♥ p ❞✐❛❣r❛♠♠❛t✐❝❛❧❧② ❛s ❛ ❜❧❛❝❦ ❜♦① t❤❛t ♣r♦❝❡ss❡s t❤❡ ✐♥♣✉ts ❛♥❞ ♣r♦❞✉❝❡s t❤❡ ♦✉t♣✉t✿ ✐♥♣✉ts ❢✉♥❝t✐♦♥ ♦✉t♣✉t x ց
→
p
ր
y
z
■♥st❡❛❞✱ ✇❡ ✇♦✉❧❞ ❧✐❦❡ t♦ s❡❡ ❛ s✐♥❣❧❡ ✐♥♣✉t ✈❛r✐❛❜❧❡✱ (x, y)✱ ❞❡❝♦♠♣♦s❡❞ ✐♥t♦ t✇♦✱ x ❛♥❞ y ✱ t♦ ❜❡ ♣r♦❝❡ss❡❞ ❜② t❤❡ ❢✉♥❝t✐♦♥ ❛t t❤❡ s❛♠❡ t✐♠❡ ✿ (x, y) →
p
→ z
❚❤❡ ❞✐✛❡r❡♥❝❡ ❢r♦♠ ❛❧❧ t❤❡ ❢✉♥❝t✐♦♥s ✇❡ ❤❛✈❡ s❡❡♥ s♦ ❢❛r ✐s t❤❡ ♥❛t✉r❡ ♦❢ t❤❡ ✐♥♣✉t✳ ❙♦✱ ❡✈❡♥ t❤♦✉❣❤ ✇❡ s♣❡❛❦ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✱ t❤❡ ✐❞❡❛ ♦❢ ❢✉♥❝t✐♦♥ r❡♠❛✐♥s t❤❡ s❛♠❡✿ ◮ ❚❤❡r❡ ✐s ❛ s❡t ✭❞♦♠❛✐♥✮ ❛♥❞ ❛♥♦t❤❡r ✭❝♦❞♦♠❛✐♥✮ ❛♥❞ t❤❡ ❢✉♥❝t✐♦♥ ❛ss✐❣♥s t♦ ❡❛❝❤ ❡❧❡♠❡♥t ♦❢
t❤❡ ❢♦r♠❡r ❛♥ ❡❧❡♠❡♥t ♦❢ t❤❡ ❧❛tt❡r✳
❚❤❡ ✐❞❡❛ ✐s r❡✢❡❝t❡❞ ✐♥ t❤❡ ♥♦t❛t✐♦♥ ✇❡ ✉s❡✿ ♦r
F :X→Z F
X −−−−→ Z
✹✳✸✳ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✼✻
❆ ❝♦♠♠♦♥ ✇❛② t♦ ✈✐s✉❛❧✐③❡ t❤❡ ❝♦♥❝❡♣t ♦❢ ❢✉♥❝t✐♦♥ ✕ ❡s♣❡❝✐❛❧❧② ✇❤❡♥ t❤❡ s❡ts ❝❛♥♥♦t ❜❡ r❡♣r❡s❡♥t❡❞ ❜② ♠❡r❡ ❧✐sts ✕ ✐s t♦ ❞r❛✇ s❤❛♣❡❧❡ss ❜❧♦❜s ❝♦♥♥❡❝t❡❞ ❜② ❛rr♦✇s✿
■♥ ❝♦♥tr❛st t♦ ♥✉♠❡r✐❝❛❧ ❢✉♥❝t✐♦♥✱ ❤♦✇❡✈❡r✱ t❤❡ ❞♦♠❛✐♥ ✐s ❛ s✉❜s❡t ♦❢ t❤❡ ❋♦r ❡①❛♠♣❧❡✱ ✇❡ ❤❛✈❡ ❢♦r
(x, y)✲♣❧❛♥❡✳
f (x, y) = x + y ✿
(0, 0) → 0, (0, 1) → 1, (1, 0) → 1, (1, 1) → 2, (1, 2) → 3, (2, 1) → 3, ... ❊❛❝❤ ❛rr♦✇ ❝❧❡❛r❧② ✐❞❡♥t✐✜❡s t❤❡ ✐♥♣✉t ✭❛♥ ❡❧❡♠❡♥t ♦❢ ✭❛♥ ❡❧❡♠❡♥t ♦❢
Z✮
X✮
♦❢ t❤✐s ♣r♦❝❡❞✉r❡ ❜② ✐ts ❜❡❣✐♥♥✐♥❣ ❛♥❞ t❤❡ ♦✉t♣✉t
❜② ✐ts ❡♥❞✳
❚❤✐s ✐s t❤❡ ♥♦t❛t✐♦♥ ❢♦r t❤❡ ♦✉t♣✉t ♦❢ ❛ ❢✉♥❝t✐♦♥
F
✇❤❡♥ t❤❡ ✐♥♣✉t ✐s
x✿
■♥♣✉t ❛♥❞ ♦✉t♣✉t ♦❢ ❢✉♥❝t✐♦♥ F (x, y) = z ♦r
F : (x, y) → z ■t r❡❛❞s✿ ✏ F ♦❢
(x, y)
✐s
z ✑✳
❲❡ st✐❧❧ ❤❛✈❡✿
F(
✐♥♣✉t
)=
✐♥♣✉t
→
♦✉t♣✉t
❛♥❞
F :
♦✉t♣✉t
.
❋✉♥❝t✐♦♥s ❛r❡ ❡①♣❧✐❝✐t r❡❧❛t✐♦♥s✳ ❚❤❡r❡ ❛r❡ t❤r❡❡ ✈❛r✐❛❜❧❡s r❡❧❛t❡❞ t♦ ❡❛❝❤ ♦t❤❡r✱ ❜✉t t❤✐s r❡❧❛t✐♦♥ ✐s ✉♥❡q✉❛❧✿ ❚❤❡ t✇♦ ✐♥♣✉t ✈❛r✐❛❜❧❡s ❝♦♠❡ ✜rst ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ♦✉t♣✉t ✐s ❞❡♣❡♥❞❡♥t ♦♥ t❤❡ ✐♥♣✉t✳ ❚❤❛t ✐s ✇❤② ✇❡ s❛② t❤❛t t❤❡ ✐♥♣✉ts ❛r❡ t❤❡ ✐♥❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡s ✇❤✐❧❡ t❤❡ ♦✉t♣✉t ✐s t❤❡ ❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡✳
❊①❛♠♣❧❡ ✹✳✸✳✸✿ ✢♦✇❝❤❛rts r❡♣r❡s❡♥t ❢✉♥❝t✐♦♥s ❋♦r ❡①❛♠♣❧❡✱ ❢♦r ❛ ❣✐✈❡♥ ✐♥♣✉t
(x, y)✱
✇❡ ✜rst s♣❧✐t ✐t✿
x
❛♥❞
y
❛r❡ t❤❡ t✇♦ ♥✉♠❡r✐❝❛❧ ✐♥♣✉ts✳ ❚❤❡♥ ✇❡
❞♦ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥s❡❝✉t✐✈❡❧②✿
• • •
❛❞❞
x
❛♥❞
y✱ 2✱
♠✉❧t✐♣❧② ❜②
❛♥❞ t❤❡♥
sq✉❛r❡✳
❙✉❝❤ ❛ ♣r♦❝❡❞✉r❡ ❝❛♥ ❜❡ ❝♦♥✈❡♥✐❡♥t❧② ✈✐s✉❛❧✐③❡❞ ✇✐t❤ ❛ ✏✢♦✇❝❤❛rt✑✿
(x, y) →
x+y
→ u →
u·2
→ z →
z2
→ v
❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ❝♦♠❡ ❢r♦♠ ♠❛♥② s♦✉r❝❡s ❛♥❞ ❝❛♥ ❜❡ ❡①♣r❡ss❡❞ ✐♥ ❞✐✛❡r❡♥t ❢♦r♠s✿
•
❛ ❧✐st ♦❢ ✐♥str✉❝t✐♦♥s ✭❛♥ ❛❧❣♦r✐t❤♠✮
•
❛♥ ❛❧❣❡❜r❛✐❝ ❢♦r♠✉❧❛
•
❛ ❧✐st ♦❢ ♣❛✐rs ♦❢ ✐♥♣✉ts ❛♥❞ ♦✉t♣✉ts
•
❛ ❣r❛♣❤
✹✳✸✳
❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
• ❆♥
✷✼✼
❛ tr❛♥s❢♦r♠❛t✐♦♥
❛❧❣❡❜r❛✐❝ r❡♣r❡s❡♥t❛t✐♦♥
❣✐✈❡ ✐t ❛ ♥❛♠❡✱ s❛②
f✱
✐s ❡①❡♠♣❧✐✜❡❞ ❜②
z = x2 y ✳
■♥ ♦r❞❡r t♦ ♣r♦♣❡r❧② ✐♥tr♦❞✉❝❡ t❤✐s ❛s ❛ ❢✉♥❝t✐♦♥✱ ✇❡
❛♥❞ ✇r✐t❡✿
f (x, y) = x2 y . ▲❡t✬s ❡①❛♠✐♥❡ t❤✐s ♥♦t❛t✐♦♥✿ ❋✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
z ♥❛♠❡✿
=
f
↑
(
x, y
↑
❞❡♣❡♥❞❡♥t
↑ ↑
❢✉♥❝t✐♦♥
✈❛r✐❛❜❧❡
x2 y
) =
↑↑
✐♥❞❡♣❡♥❞❡♥t
✐♥❞❡♣❡♥❞❡♥t
✈❛r✐❛❜❧❡s
✈❛r✐❛❜❧❡s
❊①❛♠♣❧❡ ✹✳✸✳✹✿ ♣❧✉❣ ✐♥ ✈❛❧✉❡s
■♥s❡rt ♦♥❡ ✐♥♣✉t ✈❛❧✉❡ ✐♥ ❛❧❧ ♦❢ t❤❡s❡ ❜♦①❡s ❛♥❞ t❤❡ ♦t❤❡r ✐♥ t❤♦s❡ ❝✐r❝❧❡s✳ ❋♦r ❡①❛♠♣❧❡✱ t❤✐s ❢✉♥❝t✐♦♥✿
f (x) =
2x2 y − 3y + 7 , y 3 + 2x + 1
❝❛♥ ❜❡ ✉♥❞❡rst♦♦❞ ❛♥❞ ❡✈❛❧✉❛t❡❞ ✈✐❛ t❤✐s ❞✐❛❣r❛♠✿
f () = ❚❤✐s ✐s ❤♦✇
f (3, 0)
22 −3 +7 .
3 + 2 + 1
✐s ❡✈❛❧✉❛t❡❞✿
f
3
✵ ,
2
✵ − 3 ✵ +7 23 = . 3 ✵ +2 3 +1
■♥ s✉♠♠❛r②✱
◮ ✏ x✑
❛♥❞ ✏ y ✑ ✐♥ ❛ ❢♦r♠✉❧❛ s❡r✈❡ ❛s
♣❧❛❝❡❤♦❧❞❡rs
❢♦r✿ ♥✉♠❜❡rs✱ ✈❛r✐❛❜❧❡s✱ ❛♥❞ ✇❤♦❧❡ ❢✉♥❝t✐♦♥s✳
❍♦✇ ❞♦ ✇❡ st✉❞② ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s❄ ❲❡ ✉s❡ ✇❤❛t ✇❡ ❦♥♦✇ ❛❜♦✉t ❢✉♥❝t✐♦♥s ♦❢ s✐♥❣❧❡ ✈❛r✐❛❜❧❡✳ ❆❜♦✈❡ ✇❡ ❧♦♦❦❡❞ ❛t t❤❡ ❝✉r✈❡s ♦❢ ❝♦♥st❛♥t ❡❧❡✈❛t✐♦♥ ♦❢ t❤❡ s✉r❢❛❝❡s✳
❆♥ ❛❧t❡r♥❛t✐✈❡ ✐❞❡❛ ✐s ❛ s✉r✈❡②✐♥❣
♠❡t❤♦❞✿
◮
■♥ ♦r❞❡r t♦ st✉❞② ❛ t❡rr❛✐♥✱ ✇❡ ❝♦♥❝❡♥tr❛t❡ ♦♥ t❤❡ t✇♦ ♠❛✐♥ ❞✐r❡❝t✐♦♥s✳
■♠❛❣✐♥❡ t❤❛t ✇❡ ❞r✐✈❡ s♦✉t❤✲♥♦rt❤ ❛♥❞ ❡❛st✲✇❡st s❡♣❛r❛t❡❧②✱ ✇❛t❝❤✐♥❣ ❤♦✇ t❤❡ ❡❧❡✈❛t✐♦♥ ❝❤❛♥❣❡s✿
❲❡ ❝❛♥ ❡✈❡♥ ✐♠❛❣✐♥❡ t❤❛t ✇❡ ❞r✐✈❡ ❛r♦✉♥❞ ❛ ❝✐t② ♦♥ ❛ ❤✐❧❧ ❛♥❞ t❤❡s❡ tr✐♣s ❢♦❧❧♦✇ t❤❡ str❡❡t ❣r✐❞✿
✹✳✸✳
❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✼✽
❊❛❝❤ ♦❢ t❤❡s❡ tr✐♣s ❝r❡❛t❡s ❛ ❢✉♥❝t✐♦♥ ♦❢ s✐♥❣❧❡ ✈❛r✐❛❜❧❡✱ ❚♦ ✈✐s✉❛❧✐③❡✱ ❝♦♥s✐❞❡r t❤❡ ♣❧♦t ♦❢
F (x, y) = sin(xy)
x
♦r
y✳
♦♥ t❤❡ ❧❡❢t✿
❲❡ ♣❧♦t t❤❡ s✉r❢❛❝❡ ❛s ❛ ✏✇✐r❡✲❢r❛♠❡✑ ♦♥ t❤❡ r✐❣❤t✳ ❊❛❝❤ ✇✐r❡ ✐s ❛ s❡♣❛r❛t❡ tr✐♣✳ ❚❤❡ ❣r❛♣❤s ♦❢ t❤❡s❡ ❢✉♥❝t✐♦♥s ❛r❡ t❤❡ s❧✐❝❡s ❝✉t ❜② t❤❡ ✈❡rt✐❝❛❧ ♣❧❛♥❡s ❛❧✐❣♥❡❞ ✇✐t❤ t❤❡ ❛①❡s ❢r♦♠ t❤❡ s✉r❢❛❝❡ t❤❛t ✐s t❤❡ ❣r❛♣❤ ♦❢
F✿
❊①❛♠♣❧❡ ✹✳✸✳✺✿ s❛❞❞❧❡
▲❡t✬s ♣❧♦t t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✿
z = xy .
✹✳✸✳ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✼✾
❚❤✐s ✐s ✇❤❛t t❤❡ ❣r❛♣❤s ♦❢ t❤❡s❡ r❡❧❛t✐♦♥s ❧♦♦❦ ❧✐❦❡ ✇❤❡♥ ♣❧♦tt❡❞ ❢♦r ✈❛r✐♦✉s z ✬s❀ t❤❡② ❛r❡ ❝✉r✈❡s ❝❛❧❧❡❞ ❤②♣❡r❜♦❧❛s ✿
■♥st❡❛❞✱ ✇❡ ✜① ♦♥❡ ✐♥❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡ ❛t ❛ t✐♠❡✳ ❲❡ ✜① y ✜rst✿
♣❧❛♥❡
❡q✉❛t✐♦♥ ❝✉r✈❡ y=2 z = x · 2 ❧✐♥❡ ✇✐t❤ y=1 z = x · 1 ❧✐♥❡ ✇✐t❤ y=0 z = x · 0 = 0 ❧✐♥❡ ✇✐t❤ y = −1 z = x · (−1) ❧✐♥❡ ✇✐t❤ y = −2 z = x · (−2) ❧✐♥❡ ✇✐t❤
❚❤❡ ✈✐❡✇ s❤♦✇♥ ❜❡❧♦✇ ✐s ❢r♦♠ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ y ✲❛①✐s✿
s❧♦♣❡ 2 s❧♦♣❡ 1 s❧♦♣❡ 0 s❧♦♣❡ 1 s❧♦♣❡ − 2
❚❤❡ ❞❛t❛ ❢♦r ❡❛❝❤ ❧✐♥❡ ❝♦♠❡s ❢r♦♠ t❤❡ x✲❝♦❧✉♠♥ ♦❢ t❤❡ s♣r❡❛❞s❤❡❡t ❛♥❞ ♦♥❡ ♦❢ t❤❡ z ✲❝♦❧✉♠♥s✳ ❚❤❡s❡ ❧✐♥❡s ❣✐✈❡ t❤❡ ❧✐♥❡s ♦❢ ❡❧❡✈❛t✐♦♥ ♦❢ t❤✐s t❡rr❛✐♥ ✐♥ ❛ ♣❛rt✐❝✉❧❛r✱ s❛②✱ ❡❛st✲✇❡st ❞✐r❡❝t✐♦♥✳ ❚❤✐s ✐s ❡q✉✐✈❛❧❡♥t t♦ ❝✉tt✐♥❣ t❤❡ ❣r❛♣❤ ❜② ❛ ✈❡rt✐❝❛❧ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ xz ✲♣❧❛♥❡✳ ❲❡ ✜① x s❡❝♦♥❞✿
♣❧❛♥❡
❡q✉❛t✐♦♥ ❝✉r✈❡ x=2 z = 2 · y ❧✐♥❡ ✇✐t❤ x=1 z = 1 · y ❧✐♥❡ ✇✐t❤ x=0 z = 0 · y = 0 ❧✐♥❡ ✇✐t❤ x = −1 z = (−1) · y ❧✐♥❡ ✇✐t❤ x = −2 z = (−2) · y ❧✐♥❡ ✇✐t❤
s❧♦♣❡ 2 s❧♦♣❡ 1 s❧♦♣❡ 0 s❧♦♣❡ 1 s❧♦♣❡ − 2
❚❤✐s ✐s ❡q✉✐✈❛❧❡♥t t♦ ❝✉tt✐♥❣ t❤❡ ❣r❛♣❤ ❜② ❛ ✈❡rt✐❝❛❧ ♣❧❛♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ yz ✲♣❧❛♥❡✳ ❚❤❡ ✈✐❡✇ s❤♦✇♥ ❜❡❧♦✇ ✐s ❢r♦♠ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ x✲❛①✐s✿
❚❤❡ ❞❛t❛ ❢♦r ❡❛❝❤ ❧✐♥❡ ❝♦♠❡s ❢r♦♠ t❤❡ y ✲r♦✇ ♦❢ t❤❡ s♣r❡❛❞s❤❡❡t ❛♥❞ ♦♥❡ ♦❢ t❤❡ z ✲r♦✇s✳ ❚❤❡s❡ ❧✐♥❡s ❣✐✈❡ t❤❡ ❧✐♥❡s ♦❢ ❡❧❡✈❛t✐♦♥ ♦❢ t❤✐s t❡rr❛✐♥ ✐♥ ❛ ♣❛rt✐❝✉❧❛r✱ s❛②✱ ♥♦rt❤✲s♦✉t❤ ❞✐r❡❝t✐♦♥✳
✹✳✸✳
❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✽✵
❊①❡r❝✐s❡ ✹✳✸✳✻
Pr♦✈✐❞❡ ❛ s✐♠✐❧❛r ❛♥❛❧②s✐s ❢♦r f (x, y) = 3x + 2y ✳ ❊①❛♠♣❧❡ ✹✳✸✳✼✿ ❜❛❦❡r
❲❡ ✇✐❧❧ t❛❦❡ ❛ ❧♦♦❦ ❛t t❤❡ ❡①❛♠♣❧❡ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥ ❢r♦♠ ❛ ❞✐✛❡r❡♥t ❛♥❣❧❡✳ ❚❤❡ t✐♠❡ t ✐s ♥♦t ❛ ♣❛rt ♦❢ ♦✉r ❝♦♥s✐❞❡r❛t✐♦♥ ❛♥②♠♦r❡ ❜✉t ✇❡ r❡t❛✐♥ t❤❡ t✇♦ ✈❛r✐❛❜❧❡s r❡♣r❡s❡♥t✐♥❣ t❤❡ t✇♦ ❝♦♠♠♦❞✐t✐❡s ✿ • x ✐s t❤❡ ♣r✐❝❡ ♦❢ ✇❤❡❛t✳ • y ✐s t❤❡ ♣r✐❝❡ ♦❢ s✉❣❛r✳ ❲❡ ❛❧s♦ ❛❞❞ ❛ ♣r♦❞✉❝t t♦ t❤❡ s❡t✉♣✿ • z ✐s t❤❡ ♣r✐❝❡ ♦❢ ❛ ❧♦❛❢ ♦❢ ❜r❡❛❞✳ ❲❤❛t ✐s t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡s❡ t❤r❡❡❄ ❆s t❤♦s❡ t✇♦ ❛r❡ t❤❡ t✇♦ ♠❛❥♦r ✐♥❣r❡❞✐❡♥ts ✐♥ ❜r❡❛❞✱ ✇❡ ✇✐❧❧ ❛ss✉♠❡ t❤❛t ◮ z ❞❡♣❡♥❞s ♦♥ x ❛♥❞ y ✳ ❖♥❡ ❝❛♥ ✐♠❛❣✐♥❡ ❛ ❜❛❦❡r ✇❤♦ ❡✈❡r② ♠♦r♥✐♥❣✱ ✉♣♦♥ r❡❝❡✐✈✐♥❣ t❤❡ ✉♣❞❛t❡❞ ♣r✐❝❡s ♦❢ ✇❤❡❛t ❛♥❞ s✉❣❛r✱ ✉s❡s ❛ t❛❜❧❡ t❤❛t ❤❡ ♠❛❞❡ ✉♣ ✐♥ ❛❞✈❛♥❝❡ t♦ ❞❡❝✐❞❡ ♦♥ t❤❡ ♣r✐❝❡ ♦❢ ❤✐s ❜r❡❛❞ ❢♦r t❤❡ r❡st ♦❢ t❤❡ ❞❛②✳ ▲❡t✬s s❡❡ ❤♦✇ s✉❝❤ ❛ t❛❜❧❡ ♠✐❣❤t ❝♦♠❡ ❛❜♦✉t✳ ❲❤❛t ❦✐♥❞ ♦❢ ❞❡♣❡♥❞❡♥❝✐❡s ❛r❡ t❤❡s❡❄ ■♥❝r❡❛s✐♥❣ ♣r✐❝❡s ♦❢ t❤❡ ✐♥❣r❡❞✐❡♥ts ✐♥❝r❡❛s❡s t❤❡ ❝♦st ❛♥❞ ✉❧t✐♠❛t❡❧② t❤❡ ♣r✐❝❡ ♦❢ t❤❡ ♣r♦❞✉❝t✿ x ր =⇒ z ր
y ր =⇒ z ր
❆t ✐ts s✐♠♣❧❡st✱ s✉❝❤ ❛♥ ✐♥❝r❡❛s❡ ✐s ❧✐♥❡❛r✳ ■♥ ❛❞❞✐t✐♦♥ t♦ s♦♠❡ ✜①❡❞ ❝♦sts✿ • ❊❛❝❤ ✐♥❝r❡❛s❡ ♦❢ x ❧❡❛❞s t♦ ❛ ♣r♦♣♦rt✐♦♥❛❧ ✐♥❝r❡❛s❡ ♦❢ z ✳ • ❊❛❝❤ ✐♥❝r❡❛s❡ ♦❢ y ❧❡❛❞s t♦ ❛ ♣r♦♣♦rt✐♦♥❛❧ ✐♥❝r❡❛s❡ ♦❢ z ✳ ■♥❞❡♣❡♥❞❡♥t❧②✦ ❆ s✐♠♣❧❡ ❢♦r♠✉❧❛ t❤❛t ❝❛♣t✉r❡s t❤✐s ❞❡♣❡♥❞❡♥❝❡ ♠❛② ❜❡ t❤✐s✿
z = p(x, y) = 2x + y + 1 . ■♥ ♦r❞❡r t♦ ✈✐s✉❛❧✐③❡ t❤✐s ❢✉♥❝t✐♦♥✱ ✇❡ ❝♦♠♣✉t❡ ❛ ❢❡✇ ♦❢ ✐ts ✈❛❧✉❡s✿ • p(0, 0) = 1 • p(0, 1) = 2 • p(0, 2) = 3 • p(1, 0) = 3 • p(1, 1) = 4 • ❡t❝✳ ❊✈❡♥ t❤♦✉❣❤ t❤✐s ✐s ❛ ❧✐st✱ ✇❡ r❡❛❧✐③❡ t❤❛t t❤❡ ✐♥♣✉t ✈❛r✐❛❜❧❡s ❞♦♥✬t ✜t ✐♥t♦ ❛ ❧✐st ❝♦♠❢♦rt❛❜❧② ✕ t❤❡② ❢♦r♠ ❛ t❛❜❧❡ ✦ (0, 0) (1, 0) (2, 0) ...
(0, 1) (1, 1) (2, 1) ... (0, 2) (1, 2) (2, 2) ... ...
...
...
...
■♥ ❢❛❝t✱ ✇❡ ❝❛♥ ❛❧✐❣♥ t❤❡s❡ ♣❛✐rs ✇✐t❤ x ✐♥ ❡❛❝❤ ❝♦❧✉♠♥ ❛♥❞ y ✐♥ ❡❛❝❤ r♦✇✿
y\x
0
1
2
...
0
(0, 0) (1, 0) (2, 0) ...
1
(0, 1) (1, 1) (2, 1) ...
2
(0, 2) (1, 2) (2, 2) ...
...
...
...
...
...
✹✳✸✳
❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✽✶
◆♦✇✱ t❤❡ ✈❛❧✉❡s✱ z = p(x, y)✿
y\x
0
1
2 ...
0
1
3
5 ...
1
2
4
6 ...
2
3
5
7 ...
...
... ... ... ...
❚❤❛t✬s ✇❤❛t t❤❡ ❜❛❦❡r✬s t❛❜❧❡ ♠✐❣❤t ❧♦♦❦ ❧✐❦❡✳ ▲❡t✬s ❜r✐♥❣ t❤❡s❡ t✇♦ t♦❣❡t❤❡r✿
y\x 0
0
1
2
...
(0, 0)
(1, 0)
(2, 0)
...
ց 1
1
(0, 1)
(0, 2)
...
...
... 6 ...
(2, 2) ց
3
5 ... ...
ց
4
(1, 2) ց
...
(2, 1) ց
2
ց
3
(1, 1) ց
2
ց
ց
5
...
... ... 7 ...
...
...
■♥ t❤❡ ♣❛st✱ ✇❡ ❤❛✈❡ ✈✐s✉❛❧✐③❡❞ ♥✉♠❡r✐❝❛❧ ❢✉♥❝t✐♦♥s ❜② ♣✉tt✐♥❣ ❜❛rs ♦♥ t♦♣ ♦❢ t❤❡ x✲❛①✐s✳ ◆♦✇✱ ✇❡ ✈✐s✉❛❧✐③❡ t❤❡ ✈❛❧✉❡s ❜② ❜✉✐❧❞✐♥❣ ❝♦❧✉♠♥s ✇✐t❤ ❛♣♣r♦♣r✐❛t❡ ❤❡✐❣❤ts ♦♥ t♦♣ ♦❢ t❤❡ xy ✲♣❧❛♥❡✿
◆♦t✐❝❡ t❤❛t ❜② ✜①✐♥❣ ♦♥❡ ♦❢ t❤❡ ✈❛r✐❛❜❧❡s ✕ x = 0, 1, 2 ♦r y = 0, 1, 2 ✕ ✇❡ ❝r❡❛t❡ ❛ ❢✉♥❝t✐♦♥ ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ♦t❤❡r ✈❛r✐❛❜❧❡✳ ❲❡ ✜① x ❜❡❧♦✇ ❛♥❞ ❡①tr❛❝t t❤❡ ❝♦❧✉♠♥s ❢r♦♠ t❤❡ t❛❜❧❡✿
y z x=0:
0 1 1 2
y z x=1:
2 3 ❆
♣❛tt❡r♥
0 3 1 4
x 0 1 2 z 1 3 5
x=2:
2 5
✐s ❝❧❡❛r✿ ❣r♦✇t❤ ❜② 1✳ ❲❡ ♥❡①t ✜① y ❛♥❞ ❡①tr❛❝t t❤❡
y=0:
y z
y=1:
x 0 1 2 z 2 4 6
0 5 1 6 2 7
r♦✇s
❢r♦♠ t❤❡ t❛❜❧❡✿
y=2:
x 0 1 2 z 3 5 7
✹✳✸✳
❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
❆
♣❛tt❡r♥
✐s ❝❧❡❛r✿ ❣r♦✇t❤ ❜②
✷✽✷
2✳
❲❡ ❤❛✈❡ t❤❡ t♦t❛❧ ♦❢ s✐① ✭❧✐♥❡❛r✮ ❢✉♥❝t✐♦♥s✦
▲❡t✬s ❞♦ t❤❡ s❛♠❡ ✇✐t❤ ❛ s♣r❡❛❞s❤❡❡t✳ ❚❤✐s ✐s t❤❡ ❞❛t❛✿
❚❤❡ ✈❛❧✉❡ ✐♥ ❡❛❝❤ ❝❡❧❧ ✐s ❝♦♠♣✉t❡❞ ❢r♦♠ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ✈❛❧✉❡ ♦❢ ❝♦rr❡s♣♦♥❞✐♥❣ ✈❛❧✉❡ ♦❢
y
x
✭❛❧❧ t❤❡ ✇❛② ✉♣✮ ❛♥❞ ❢r♦♠ t❤❡
✭❛❧❧ t❤❡ ✇❛② ❧❡❢t✮✳ ❚❤✐s ✐s t❤❡ ❢♦r♠✉❧❛✿
❂✷✯❘✸❈✰❘❈✷✰✶ ❚❤❡ s✐♠♣❧❡st ✇❛② t♦ ✈✐s✉❛❧✐③❡ ✐s ❜② ❝♦❧♦r✐♥❣ t❤❡ ❝❡❧❧ ❞❡♣❡♥❞✐♥❣ ♦♥ t❤❡ ✈❛❧✉❡s ✭❝♦♠♠♦♥ ✐♥ ❝❛rt♦❣r❛♣❤②✿ ❡❧❡✈❛t✐♦♥✱ t❡♠♣❡r❛t✉r❡✱ ❤✉♠✐❞✐t②✱ ♣r❡❝✐♣✐t❛t✐♦♥✱ ♣♦♣✉❧❛t✐♦♥ ❞❡♥s✐t②✱ ❡t❝✳✿
❚❤❡ ❣r♦✇t❤ ✐s ✈✐s✐❜❧❡✿ ■t ❣r♦✇s t❤❡ ♠♦st ✐♥ s♦♠❡ ❞✐❛❣♦♥❛❧ ❞✐r❡❝t✐♦♥ ❜✉t ✐t✬s
♥♦t
45
❞❡❣r❡❡s✳
❲❡ ❝❛♥ ❛❧s♦ ✈✐s✉❛❧✐③❡ ✇✐t❤ ❛ ❜❛r ❝❤❛rt✱ ❥✉st ❛s ❜❡❢♦r❡✿
■❢ ✇❡ ✉s❡❞ ❜❛rs t♦ r❡♣r❡s❡♥t t❤❡ ❘✐❡♠❛♥♥ s✉♠s t♦ ❝♦♠♣✉t❡ t❤❡
❛r❡❛✱ ❤❡r❡ ✇❡ ❛r❡ ❛❢t❡r t❤❡ ✈♦❧✉♠❡✳✳✳
❚❤❡ ♠♦st ❝♦♠♠♦♥ ✇❛②✱ ❤♦✇❡✈❡r✱ t♦ ✈✐s✉❛❧✐③❡ ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ✐♥ ♠❛t❤❡♠❛t✐❝s ✐s ✇✐t❤ ✐ts
❣r❛♣❤✱ ✇❤✐❝❤✱ ✐♥ t❤✐s ❝❛s❡✱ ✐s ❛ s✉r❢❛❝❡✿
✹✳✸✳ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✽✸
■♥ t❤✐s ♣❛rt✐❝✉❧❛r ❝❛s❡✱ t❤✐s ✐s ❛ ♣❧❛♥❡✳ ❚❤❡ s❡❝♦♥❞ ❣r❛♣❤ ✐s t❤❡ s❛♠❡ s✉r❢❛❝❡ ❜✉t ❞✐s♣❧❛②❡❞ ❛s ❛ ✇✐r❡✲ ❢r❛♠❡ ✭♦r ❡✈❡♥ ❛ ✇✐r❡✲❢❡♥❝❡✮✳ ❚❤❡ ✇✐r❡s ❛r❡ t❤❡ ❣r❛♣❤s ♦❢ t❤♦s❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥s ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡ ❝r❡❛t❡❞ ❢r♦♠ ♦✉r ❢✉♥❝t✐♦♥ ✇❤❡♥ ✇❡ ✜① ♦♥❡ ✈❛r✐❛❜❧❡ ❛t ❛ t✐♠❡✳ ❊❛❝❤ ♦❢ t❤❡s❡ ✇✐r❡s ❝♦♠❡s ❢r♦♠ ❝❤♦♦s✐♥❣ ❡✐t❤❡r✿
• •
t❤❡ r♦✇ ♦❢
x✬s
t❤❡ ❝♦❧✉♠♥ ♦❢
✭t♦♣✮ ❛♥❞ ♦♥❡ ♦t❤❡r r♦✇ ✐♥ t❤❡ t❛❜❧❡✱ ♦r
y ✬s
✭❧❡❢t♠♦st✮ ❛♥❞ ♦♥❡ ♦t❤❡r ❝♦❧✉♠♥ ✐♥ t❤❡ t❛❜❧❡✳
❊①❡r❝✐s❡ ✹✳✸✳✽
Pr♦✈✐❞❡ ❛ s✐♠✐❧❛r ❛♥❛❧②s✐s ❢♦r ✭❛✮ t❤❡ ✇✐♥❞✲❝❤✐❧❧ ❛♥❞ ✭❜✮ t❤❡ ❤❡❛t ✐♥❞❡①✳
❚❤❡ ❢✉♥❝t✐♦♥s ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡ ❝r❡❛t❡❞ ❢r♦♠ ♦✉r ❢✉♥❝t✐♦♥
z = p(x, y)
✇❤❡♥ ✇❡ ✜① ♦♥❡ ✈❛r✐❛❜❧❡ ❛t ❛ t✐♠❡ ❛r❡✿
y = b −→ fb (x) = p(x, b)
x = a −→ ga (y) = p(a, y)
❚❤❡r❡ ❛r❡ ✐♥✜♥✐t❡❧② ♠❛♥② ♦❢ t❤❡♠✳ ❚❤❡✐r ❣r❛♣❤s ❛r❡ t❤❡ s❧✐❝❡s ✕ ❛❧♦♥❣ t❤❡ ❛①❡s ✕ ♦❢ t❤❡ s✉r❢❛❝❡ t❤❛t ✐s t❤❡ ❣r❛♣❤ ♦❢
F✳
❚❤❡r❡❢♦r❡✱ t❤❡ ♠♦♥♦t♦♥✐❝✐t② ♦❢ t❤❡s❡ ❢✉♥❝t✐♦♥s t❡❧❧s ✉s ❛❜♦✉t t❤❡ ♠♦♥♦t♦♥✐❝✐t② ♦❢
p ✕ ✐♥ t❤❡ ❞✐r❡❝t✐♦♥s ♦❢ t❤❡
❛①❡s✦ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ❛r❡ ❢✉♥❝t✐♦♥s✳
❚❤✐s ✐❞❡❛ ❝♦♠❡s ✇✐t❤ ❝❡rt❛✐♥ q✉❡st✐♦♥s t♦ ❜❡ ❛♥s✇❡r❡❞✳ ❲❤❛t ✐s t❤❡ ✐♥♣✉t✱ t❤❡ ✐♥❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡ ❄ ❚❛❦✐♥❣ ❛ ❝❧✉❡ ❢r♦♠ ♦✉r ❛♥❛❧②s✐s ♦❢ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s✱ ✇❡ ❛♥s✇❡r✿ ■t ✐s t❤❡ ✏❝♦♠❜✐♥❛t✐♦♥✑ ♦❢ t❤❡ t✇♦ ✐♥♣✉ts ♦❢ t❤❡ ❢✉♥❝t✐♦♥✱ ✐✳❡✳✱
x
❛♥❞
y
t❤❛t ❢♦r♠ ❛ ♣❛✐r✱
t❤❡ ❞❡♣❡♥❞❡♥t ✈❛r✐❛❜❧❡ ❄ ■t ✐s
z✳
X = (x, y)✱
✇❤✐❝❤ ✐s ❛ ♣♦✐♥t ♦♥ t❤❡
xy ✲♣❧❛♥❡✳
❲❤❛t ✐s t❤❡ ♦✉t♣✉t✱
✹✳✸✳ ❋✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
✷✽✹
❲❡ r❡♣r❡s❡♥t ❛ ❢✉♥❝t✐♦♥ p ❞✐❛❣r❛♠♠❛t✐❝❛❧❧② ❛s ❛ ❜❧❛❝❦ ❜♦① t❤❛t ♣r♦❝❡ss❡s t❤❡ ✐♥♣✉t ❛♥❞ ♣r♦❞✉❝❡s t❤❡ ♦✉t♣✉t✿ ✐♥♣✉ts
❢✉♥❝t✐♦♥
♦✉t♣✉t
x ց
y
7→
p
ր
z
■♥st❡❛❞✱ ✇❡ ✇♦✉❧❞ ❧✐❦❡ t♦ s❡❡ ❛ s✐♥❣❧❡ ✐♥♣✉t ✈❛r✐❛❜❧❡✱ (x, y)✱ ❞❡❝♦♠♣♦s❡❞ ✐♥t♦ t✇♦✱ x ❛♥❞ y ✱ t♦ ❜❡ ♣r♦❝❡ss❡❞ ❜② t❤❡ ❢✉♥❝t✐♦♥ ❛t t❤❡ s❛♠❡ t✐♠❡ ✿ (x, y) →
p
→ z
❚❤❡ ❞✐✛❡r❡♥❝❡ ❢r♦♠ ❛❧❧ t❤❡ ❢✉♥❝t✐♦♥s ✇❡ ❤❛✈❡ s❡❡♥ s♦ ❢❛r ✐s t❤❡ ♥❛t✉r❡ ♦❢ t❤❡ ✐♥♣✉t✳ ◆❡①t✱ ✇❤❛t ✐s t❤❡ ❞♦♠❛✐♥ ♦❢ p❄ ■t ✐s s✉♣♣♦s❡❞ t♦ ❜❡ ❛ r❡❝♦r❞✐♥❣ ♦❢ ❛❧❧ ♣♦ss✐❜❧❡ ✐♥♣✉ts✱ ✐✳❡✳✱ ❛❧❧ ♣❛✐rs (x, y) ❢♦r ✇❤✐❝❤ t❤❡ ♦✉t♣✉t z = p(x, y) ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ♠❛❦❡s s❡♥s❡✳ ❚❤✐s r❡q✉✐r❡♠❡♥t ❝r❡❛t❡s ❛ s✉❜s❡t ♦❢ t❤❡ xy ✲♣❧❛♥❡ ❛♥❞✱ t❤❡r❡❢♦r❡✱ ❛ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ x ❛♥❞ y ✳ ❲❤❛t ❛❜♦✉t t❤❡ ✐♠❛❣❡✱ ✐✳❡✳✱ t❤❡ r❛♥❣❡ ♦❢ ✈❛❧✉❡s ♦❢ p❄ ■t ✐s ❛ r❡❝♦r❞✐♥❣ ♦❢ ❛❧❧ ♣♦ss✐❜❧❡ ♦✉t♣✉ts ♦❢ p✳
❉❡✜♥✐t✐♦♥ ✹✳✸✳✾✿ ✐♠❛❣❡ ♦❢ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ❚❤❡ ✐♠❛❣❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s z = p(x, y) ✐s t❤❡ s❡t ♦❢ ❛❧❧ s✉❝❤ ✈❛❧✉❡s z ♦♥ t❤❡ z ✲❛①✐s✳ ❲❤❛t ❛❜♦✉t t❤❡ ❣r❛♣❤ ♦❢ p = (f, g)❄ ■t ✐s s✉♣♣♦s❡❞ t♦ ❜❡ ❛ r❡❝♦r❞✐♥❣ ♦❢ ❛❧❧ ♣♦ss✐❜❧❡ ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ✐♥♣✉ts ❛♥❞ ♦✉t♣✉ts ♦❢ F ✳
❉❡✜♥✐t✐♦♥ ✹✳✸✳✶✵✿ ❣r❛♣❤ ♦❢ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
❊①❡r❝✐s❡ ✹✳✸✳✶✶
❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s z = p(x, y) ✐s t❤❡ s❡t ♦❢ ❛❧❧ s✉❝❤ ♣♦✐♥ts x, y, p(x, y) ✐♥ t❤❡ xyz ✲s♣❛❝❡✳
❙❦❡t❝❤ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✿
x = t2 − 1, y = 2t2 + 3 .
❊①❡r❝✐s❡ ✹✳✸✳✶✷ ❙✉♣♣♦s❡ t❤❛t t❤❡ ❢♦❧❧♦✇✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ r❡♣r❡s❡♥ts t❤❡ ♠♦t✐♦♥ ♦❢ ❛♥ ♦❜❥❡❝t ♦♥ t❤❡ ♣❧❛♥❡✿ x = 3t − 1, y = t2 − 1 .
✭❛✮ ❲❤❡♥ ❞♦❡s t❤❡ ♦❜❥❡❝t ❝r♦ss t❤❡ x✲❛①✐s❄ ✭❜✮ ❲❤❡♥ ❞♦❡s t❤❡ ♦❜❥❡❝t ❝r♦ss t❤❡ y ✲❛①✐s❄
❊①❡r❝✐s❡ ✹✳✸✳✶✸ ❘❡♣r❡s❡♥t ❛s ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ t❤❡ r♦t❛t✐♦♥ ♦❢ ❛ r♦❞ ♦❢ ❧❡♥❣t❤ 2 t❤❛t ♠❛❦❡s ♦♥❡ ❢✉❧❧ t✉r♥ ❡✈❡r② 3 s❡❝♦♥❞s✳
✹✳✹✳ ■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
✷✽✺
✹✳✹✳ ■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
❲❤❡♥ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ✐s ❢♦r♠❡❞ ❢r♦♠ t✇♦ ❢✉♥❝t✐♦♥s ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡✿ x = f (t), y = g(t) ,
❛r❡ t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ f ❛♥❞ g ✈✐s✐❜❧❡ ✐♥ t❤❡ s❤❛♣❡ ✭❛♥❞ t❤❡ s❧♦♣❡✮ ♦❢ t❤❡ ♣❛t❤❄ ❈♦♥✈❡rs❡❧②✱ ❝❛♥ t❤❡ ❞❡r✐✈❛t✐✈❡s ❜❡ ❞❡❞✉❝❡❞ ❢r♦♠ t❤❡ s❧♦♣❡s ♦r ❞✐r❡❝t✐♦♥s ♦❢ t❤❡ ♣❛t❤❄ ❚❤❡ s❧♦♣❡s ♦❢ t❤❡ ❣r❛♣❤s ♦❢ f ❛♥❞ g ♣r♦❞✉❝❡ t❤❡ s❧♦♣❡ ♦❢ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ❛❝❝♦r❞✐♥❣ t♦ ❛ s✐♠♣❧❡ r✉❧❡ ✇❤✐❝❤ ✐s ❡❛s② t♦ ❞✐s❝♦✈❡r ❢r♦♠ t❤❡ ❝❛s❡ ✇❤❡♥ ❜♦t❤ ❢✉♥❝t✐♦♥s ❛r❡ ❧✐♥❡❛r✿
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢ m ❛♥❞ n ❛r❡ t❤❡ s❧♦♣❡s ♦❢ f ❛♥❞ g r❡s♣❡❝t✐✈❡❧②✱ t❤❡♥ t❤❡ s❧♦♣❡ ♦❢ (f, g) ✐s mn ✳ ■♥❞❡❡❞✱ ❝❤❛♥❣❡ ♦❢ y = ❝❤❛♥❣❡ ♦❢ y/❝❤❛♥❣❡ ♦❢ t . ❝❤❛♥❣❡ ♦❢ x ❝❤❛♥❣❡ ♦❢ x/❝❤❛♥❣❡ ♦❢ t ❲❤❡♥ t❤❡ ❢✉♥❝t✐♦♥s ❛r❡ ♥♦♥✲❧✐♥❡❛r✱ t❤❡ r✉❧❡ ✐s t❤❡ s❛♠❡ ❜✉t ✐t ✐s ❛♣♣❧✐❡❞ ♦♥❡ ♣♦✐♥t ❛t ❛ t✐♠❡✿ s❧♦♣❡ ❛t (a, b)
=
g ′ (b) . f ′ (a)
❚♦ s❡❡ ✇❤②✱ ✐t s✉✣❝❡s t♦ ③♦♦♠ ✐♥ ♦♥❡ ❛ ♣♦✐♥t ♦❢ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ❛s ✇❡❧❧ ❛s t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♣♦✐♥ts ♦❢ t❤❡ ❣r❛♣❤s ♦❢ t❤❡ t✇♦ ❢✉♥❝t✐♦♥s✿
✹✳✹✳
■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
✷✽✻
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡ t❤✐s✿
dy dy = dx dt ❚❤❡ ❢♦r♠✉❧❛ r❡s❡♠❜❧❡s t❤❡
dx dt
❈❤❛✐♥ ❘✉❧❡✱ ♥♦t ❜② ❝♦✐♥❝✐❞❡♥❝❡✳
❊①❡r❝✐s❡ ✹✳✹✳✶
Pr♦✈❡ t❤❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❝❛s❡ ✇❤❡♥
f
✐s ♦♥❡✲t♦✲♦♥❡✳
❚❤❡ t✇♦ s♣❡❝✐❛❧ ❝❛s❡s ❛r❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
• f ′ (a) = 0 =⇒
• g ′ (b) = 0 =⇒
t❤❡ s❧♦♣❡ ✐s ✈❡rt✐❝❛❧✱ ❛♥❞ t❤❡ s❧♦♣❡ ✐s ❤♦r✐③♦♥t❛❧✳
❚❤❡ ❢♦r♠❡r ❝❛s❡ ✇❛s s❡❡♥ ❛s ✏❡①tr❡♠❡✑ ✐♥ ❝❛❧❝✉❧✉s ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡✳ ■t✬s ♥♦t ❡①tr❡♠❡ ✐♥ ❝❛❧❝✉❧✉s ♦❢ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s✦ ❊①❛♠♣❧❡ ✹✳✹✳✷✿ ❝♦♠♠♦♦❞✐t✐❡s tr❛❞❡r
❘❡❝❛❧❧ t❤❛t t❤❡ ♣r✐❝❡ ♦❢ ✇❤❡❛t ❛♥❞ t❤❡ ♣r✐❝❡ ♦❢ s✉❣❛r ❛r❡ r❡♣r❡s❡♥t❡❞ ❜② t✇♦ ❢✉♥❝t✐♦♥s ❝♦♠❜✐♥❡❞ ✐♥t♦ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✳ ❲✐t❤ t❤❡s❡ ❢✉♥❝t✐♦♥s s❛♠♣❧❡❞✱ ✇❡ ❝♦♠♣✉t❡ t❤❡✐r r❛t❡s ♦❢ ❝❤❛♥❣❡✿
t
x
x′
0 1.00 ↓
↓
1 0.50 ↓
↓
t
y
y′
0 1.00 0.5 − 1.0 = −.5 1−0
0.33 − 0.5 2 0.33 = −.17 2−1
↓
↓
1 2.00 ↓
↓
2 1.00
2.00 − 1.00 =1 1−0 1.00 − 2.00 = −1 2−1
◆♦t❡ t❤❛t t❤❡r❡ ❛r❡ ❢❡✇❡r ♥✉♠❜❡rs t❤❛♥ ✐♥ t❤❡ ♦r✐❣✐♥❛❧ ❜❡❝❛✉s❡ t❤❡r❡ ❛r❡ ❢❡✇❡r s❡❣♠❡♥ts t❤❛♥ ♣♦✐♥ts✳
✹✳✹✳
✷✽✼
■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
▲❡t✬s ♥♦✇ ❝♦♥✜r♠ t❤✐s r❡s✉❧t ✈✐❛ ❛❝t✉❛❧ ❞✐✛❡r❡♥t✐❛t✐♦♥ ♦❢ ♦✉r ❢✉♥❝t✐♦♥s✿ x = f (t) =
1 t+1
=⇒ 2
y = g(t) = −(x − 1) + 2
x′ = f ′ (t) = −
1 (t + 1)2
y ′ = g ′ (t) = −2(x − 1)
❲❡ ❤❛✈❡ ❝♦♠♣✉t❡❞ t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ t✇♦ ❝♦♠♣♦♥❡♥t ❢✉♥❝t✐♦♥s✳ ❈♦♠❜✐♥❡❞✱ t❤❡② ❛❧s♦ ❢♦r♠ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✦ ❚❤❡ s✐❣♥s ♦❢ t❤❡ t✇♦ ♥❡✇ ❢✉♥❝t✐♦♥s t❡❧❧ ✉s t❤❡ ✐♥❝r❡❛s✐♥❣✴❞❡❝r❡❛s✐♥❣ ❜❡❤❛✈✐♦r ♦❢ t❤❡ t✇♦ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥s ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✳ ❋♦r ❡①❛♠♣❧❡✱ x′ < 0 s❤♦✇s t❤❛t t❤❡ ❝✉r✈❡ ♠♦✈❡s t♦ t❤❡ ❧❡❢t ❛♥❞✳✳✳ ♠♦✈❡s ❞♦✇♥ ✐♥✐t✐❛❧❧② ❜❡❝❛✉s❡ y ′ < 0✳ ❚❤❡ ❝✉r✈❡ ❛❧s♦ ♠♦✈❡s ✉♣ ❜❡❝❛✉s❡ y ′ > 0✳ ▲❡t✬s ✈✐s✉❛❧✐③❡ ❛♥❞ ❝♦♥✜r♠ t❤❡s❡ r❡s✉❧ts ✇✐t❤ ❛ s♣r❡❛❞s❤❡❡t ✭✇✐t❤♦✉t ✉s✐♥❣ t❤❡ ❝♦♠♣✉t❡❞ ❞❡r✐✈❛t✐✈❡s ❛❜♦✈❡✮✿
■♥ ♦r❞❡r t♦ ❛♣♣r♦①✐♠❛t❡ ❡✐t❤❡r ♦❢ t❤❡ t✇♦ ❞❡r✐✈❛t✐✈❡s✱ ✇❡ ✉s❡ t❤❡ s❧♦♣❡ ♦❢ t❤❡ s❡❣♠❡♥t ❜❡t✇❡❡♥ t✇♦ ❛❞❥❛❝❡♥t ♣♦✐♥ts✳ ■t ✐s t❤❡ ❛✈❡r❛❣❡ r❛t❡ ♦❢ ❝❤❛♥❣❡ ✭❛❧s♦ ❦♥♦✇♥ ❛s t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t✱ t❤❡ s❧♦♣❡ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡✱ ❡t❝✳✮✿ ❝❤❛♥❣❡ ♦❢ x ❝❤❛♥❣❡ ♦❢ y ❛♥❞ . ❝❤❛♥❣❡ ♦❢ t ❝❤❛♥❣❡ ♦❢ t ❚❤❡ ❝❤❛♥❣❡ ♦❢ t ✐s ✜①❡❞ ❛s h = ∆t✳ ❚❤✐s ✈❛❧✉❡ ❢♦r ❡✐t❤❡r x ❛♥❞ y ✐s ❝♦♠♣✉t❡❞ ✈✐❛ t❤❡ s❛♠❡ s♣r❡❛❞s❤❡❡t ❢♦r♠✉❧❛ ❛s ❜❡❢♦r❡✿ ❂✭❘❈❬✲✶❪✲❘❬✲✶❪❈❬✲✶❪✮✴❘✷❈✶
◆♦t❡ t❤❛t t❤❡r❡ ❛r❡ ♦♥❡ ❢❡✇❡r ❝❡❧❧s ✐♥ t❤✐s ❝♦❧✉♠♥ ❜❡❝❛✉s❡ t❤❡r❡ ❛r❡ ♦♥❡ ❢❡✇❡r s❡❣♠❡♥ts t❤❛♥ ♣♦✐♥ts✳
■♥ ❛❞❞✐t✐♦♥ t♦ x′ < 0 =⇒ x ց✱ ✇❡ ❛❧s♦ ❣❡t x′ ր =⇒ x ⌣ ✭❝♦♥❝❛✈❡ ✉♣✮✳ ❙✐♠✐❧❛r❧②✱ y ′ > 0 =⇒ x ր ❛♥❞ y ′ ց =⇒ y ⌢ ✭❝♦♥❝❛✈❡ ❞♦✇♥✮ ✐♥✐t✐❛❧❧② ❛♥❞ t❤❡♥ t❤❡ ♦♣♣♦s✐t❡✳ ❆❧s♦✱ t❤❡ ❛♣♣❛r❡♥t ❧✐♥❡❛r✐t② ♦❢ y ′
✹✳✹✳
✷✽✽
■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
✐♥❞✐❝❛t❡ t❤❛t y ♠✐❣❤t ❜❡ q✉❛❞r❛t✐❝✳✳✳ ❋r♦♠ t❤❡ ♠♦♥♦t♦♥✐❝✐t② ♦❢ t❤❡ ❝♦♠♣♦♥❡♥t ❢✉♥❝t✐♦♥s✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t ✐♥✐t✐❛❧❧② t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ❣♦❡s տ ❛♥❞ t❤❡♥ ւ t♦ ❝♦♥✜r♠ t❤❡ ♣✐❝t✉r❡✳ ❊①❡r❝✐s❡ ✹✳✹✳✸
❲❤❛t ❝♦♥❝❧✉s✐♦♥s ❛❜♦✉t t❤❡ s❤❛♣❡ ♦❢ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ❝❛♥ ②♦✉ ❞r❛✇ ❢r♦♠ t❤❡ ❝♦♥❝❛✈✐t② ♦❢ ✐ts ❝♦♠♣♦♥❡♥t ❢✉♥❝t✐♦♥s❄ ❚❤✉s✱ ✇❡ ❝❛♥ s❛② ❛❜♦✉t ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ t❤❛t ✐ts ❞❡r✐✈❛t✐✈❡ ✐s ♠❛❞❡ ✉♣ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥s ✐♥✈♦❧✈❡❞✳ ❚❤❡r❡ ❛r❡ ♦♥❧② t✇♦ ❢♦r ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ✕ ❛♥❞ ✐♥✜♥✐t❡❧② ♠❛♥② ❢♦r ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✦ ❊①❛♠♣❧❡ ✹✳✹✳✹✿ ❜❛❦❡r
❚❤❡ ❞❡♣❡♥❞❡♥❝❡ ♦❢ t❤❡ ♣r✐❝❡ ♦❢ ❜r❡❛❞ ♦♥ t❤❡ ♣r✐❝❡s ♦❢ ✇❤❡❛t ❛♥❞ s✉❣❛r ❛r❡ r❡♣r❡s❡♥t❡❞ ❜② t❤❡ ❢✉♥❝t✐♦♥ z = p(x, y) ❜❡❧♦✇✳ ❆s ✐t ✐s s❛♠♣❧❡❞✱ ✇❡ ❝❛♥ ❝♦♠♣✉t❡ t❤❡ r❛t❡s ♦❢ ❝❤❛♥❣❡ ♦❢ t❤✐s ❢✉♥❝t✐♦♥ ✐♥ t❤❡ ❤♦r✐③♦♥t❛❧ ❛♥❞ ✈❡rt✐❝❛❧ ❞✐r❡❝t✐♦♥s✿
y\x 0 → 1 → 2 1 → 3 → 5
0 ♦✈❡r x :
♦✈❡r y :
2 → 4 → 6
1
3 → 5 → 7
2
y\x 0
1
2
0
1
3
5
↓
↓
↓
↓
↓
↓
↓
↓
1 2
2
4
3
5
6 7
❘❡❝❛❧❧ t❤❛t ❜② ✜①✐♥❣ ♦♥❡ ♦❢ t❤❡ ✈❛r✐❛❜❧❡s✱ ✇❡ ❝r❡❛t❡ ❛ ❢✉♥❝t✐♦♥ ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ♦t❤❡r ✈❛r✐❛❜❧❡✳ ◆♦✇ ✇❡ ❛♣♣r♦①✐♠❛t❡ t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡s❡ ❢✉♥❝t✐♦♥s ❥✉st ❛s ❜❡❢♦r❡✱ ✈✐❛ t❤❡ ❛✈❡r❛❣❡ r❛t❡ ♦❢ ❝❤❛♥❣❡ ✿ ❝❤❛♥❣❡ ♦❢ z ❝❤❛♥❣❡ ♦❢ z ❛♥❞ . ❝❤❛♥❣❡ ♦❢ x ❝❤❛♥❣❡ ♦❢ y ❋✐rst✱ ✇❡ ❛♣♣r♦①✐♠❛t❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ✐♥ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ y ✿
y (x = 0)
z′
z
y (x = 1)
z′
z
y (x = 2)
z′
z
0 ↓
1 ↓
0 ↓
3 ↓
0 ↓
5 ↓
1 ↓
2 ↓
1 ↓
4 ↓
1 ↓
6 ↓
2 ↓
2−1 =1 1−0 3−2 3 ↓ =1 2−1
4−3 =1 1−0 5−4 5 ↓ =1 2−1
2 ↓
6−5 =1 2−1 7−6 7 ↓ =1 2−1
2 ↓
❆❧❧ 1s✳ ◆♦t❡ t❤❛t t❤❡r❡ ❛r❡ ❢❡✇❡r ♥✉♠❜❡rs t❤❛♥ ✐♥ t❤❡ ♦r✐❣✐♥❛❧ ❜❡❝❛✉s❡ t❤❡r❡ ❛r❡ ❢❡✇❡r s❡❣♠❡♥ts t❤❛♥ ♣♦✐♥ts✳ ❙✐♠✐❧❛r❧②✱ ✇❡ ❛♣♣r♦①✐♠❛t❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ✐♥ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ x✿
(y = 0) x 0 → 1
→ 2
(y = 1) x 0 1 2
(y = 0) x 0 1 2
z 2 4 6
z 3 5 7
z′
z′
z 1 → 3 → 5 3 − 1 5−3 z′ =2 =2 1−0 2−1
2 2
2 2
❆❧❧ 2s✳ ❲❡ ♣✉t t❤❡s❡ ♦♥❡✲✈❛r✐❛❜❧❡ ❢✉♥❝t✐♦♥s t♦❣❡t❤❡r❀ t❤❡♥ t❤❡ r❛t❡s ♦❢ ❝❤❛♥❣❡ ♦❢ F ✇✐t❤ r❡s♣❡❝t t♦ x ❛♥❞ y ❛r❡ t❤❡s❡ ♥❡✇ ❢✉♥❝t✐♦♥s ♦❢ t✇♦ ✈❛r✐❛❜❧❡s r❡s♣❡❝t✐✈❡❧②✿
y\x 0 1 2 ❧❡❛❞✐♥❣ t♦
0
2 2
1
2 2
2
2 2
y\x 0 1 2 &
0 1
1 1 1
2
1 1 1
y\x 0 ❧❡❛❞✐♥❣ t♦
1
2
0 1
(2, 1) (2, 1)
2
(2, 1) (2, 1)
✹✳✹✳
✷✽✾
■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
❚❤❡ t✇♦ ❢✉♥❝t✐♦♥s ❛r❡ ❢✉rt❤❡r ❝♦♠❜✐♥❡❞ ♦♥ t❤❡ r✐❣❤t✳ ❆s ✇❡ s❤❛❧❧ s❡❡ ❧❛t❡r✱ ❣♦✐♥❣ 2 ❤♦r✐③♦♥t❛❧❧② ❛♥❞ 1 ✈❡rt✐❝❛❧❧② ✐s t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ ❢❛st❡st ❣r♦✇t❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ p✳ ▲❡t✬s ♥♦✇ ❝♦♥✜r♠ t❤✐s r❡s✉❧t ✈✐❛ ❛❝t✉❛❧ ❞✐✛❡r❡♥t✐❛t✐♦♥ ♦❢ ♦✉r ❢✉♥❝t✐♦♥✿ p(x, y) = 2x + y + 1 .
❏✉st ❛s ❜❡❢♦r❡✱ ✇❡ ✜① ♦♥❡ ♦❢ t❤❡ ✈❛r✐❛❜❧❡s ❛♥❞ ❞✐✛❡r❡♥t✐❛t❡ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ♦t❤❡r✳ ❲❡ ❝❛❧❧ t❤❡s❡ t✇♦ ❢✉♥❝t✐♦♥s t❤❡ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ♦❢ p ✇✐t❤ r❡s♣❡❝t t♦ x ❛♥❞ y r❡s♣❡❝t✐✈❡❧②✳ ❲❡ ✉s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ t✇♦ t②♣❡s ♦❢ ♥♦t❛t✐♦♥ ✭❢♦❧❧♦✇✐♥❣ ▲❡✐❜♥✐③ ❛♥❞ ▲❛❣r❛♥❣❡ ❛s ❜❡❢♦r❡✮✳ ❋♦r x✱ ✇❡ ❞❡❝❧❛r❡ y ✜①❡❞ ❛♥❞ ❞✐✛❡r❡♥t✐❛t❡ ♦✈❡r x ∂ ∂ ∂p = p′x = (2x + y + 1) = (2x) + 0 + 0 = 2 . ∂x ∂x ∂x
❋♦r y ✱ ✇❡ ❞❡❝❧❛r❡ x ✜①❡❞ ❛♥❞ ❞✐✛❡r❡♥t✐❛t❡ ♦✈❡r y ✿ ∂p ∂ ∂ = p′y = (2x + y + 1) = 0 + (y) + 0 = 1 . ∂y ∂y ∂y
❚❤❡ ❝♦♥❝❧✉s✐♦♥ ♠✐❣❤t s♦✉♥❞ ❢❛♠✐❧✐❛r✿ ❚❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ ✐s ❝♦♥st❛♥t✦ ❚❤❡ ❝♦♠❜✐♥❛t✐♦♥ ♦❢ t❤❡ t✇♦ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ✇✐❧❧ ❜❡ s❡❡♥ ❛s t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ p ❝❛❧❧❡❞ t❤❡ ❣r❛❞✐❡♥t ♦❢ p✳ ❚❤✐s ✐s ❛ ♥❡✇ ❦✐♥❞ ♦❢ ❢✉♥❝t✐♦♥ t♦ ❜❡ ❞✐s❝✉ss❡❞ ✐♥ ❱♦❧✉♠❡ ✹ ✭❈❤❛♣t❡rs ✹❍❉✲✹ ❛♥❞ ✹❍❉✲✺✮✳ ❲❡ ❝❛♥ ❝♦♥✜r♠ t❤❡s❡ r❡s✉❧ts ❜② ❡①❛♠✐♥✐♥❣ t❤❡ s♣r❡❛❞s❤❡❡t✳ ❊❛❝❤ ❧✐♥❡ ✭✇✐r❡✮ ❜❡❧♦✇ ♦♥ t❤❡ r✐❣❤t ✐s t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡✿
❆♥❞ ❡❛❝❤ ❤❛s ✐ts ♦✇♥ ❞❡r✐✈❛t✐✈❡✦ ❆s ✇❡ ♠♦✈❡ ❤♦r✐③♦♥t❛❧❧②✱ t❤❡ ✈❛❧✉❡s ♦❢ x ❣r♦✇ ❜② 0.1 ✇❤✐❧❡ t❤❡ ✈❛❧✉❡s ♦❢ z ❣r♦✇ ❜② 0.2✳ ❚❤❡r❡❢♦r❡✱ p′x = 2✳ ❙✐♠✐❧❛r❧②✱ ❛s ✇❡ ♠♦✈❡ ✈❡rt✐❝❛❧❧②✱ t❤❡ ✈❛❧✉❡s ♦❢ y ❣r♦✇ ❜② 0.1 ❛♥❞ s♦ ❞♦ t❤❡ ✈❛❧✉❡s ♦❢ z ✳ ❚❤❡r❡❢♦r❡✱ p′y = 1✳ ❲❛r♥✐♥❣✦
❉♦ ♥♦t ❝♦♥❢✉s❡ ♣❛rt✐❛❧ ❞✐✛❡r❡♥t✐❛t✐♦♥ ✇✐t❤ ✐♠♣❧✐❝✐t ❞✐✛❡r❡♥t✐❛t✐♦♥ t❤❛t ❝♦♠❡s ✉♥❞❡r r❡❧❛t❡❞ r❛t❡s ✿ ∂ (xy) = y ∂x
✈s✳
d dy (xy) = y + . dx dx
❚❤❡ ❡①tr❛ t❡r♠ ♦♥ t❤❡ r✐❣❤t ❝♦♠❡s ❢r♦♠ t❤❡ ❢❛❝t t❤❛t t❤❡ t✇♦ ✈❛r✐❛❜❧❡s ❛r❡ r❡❧❛t❡❞✳
✹✳✹✳
■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
✷✾✵
❊①❛♠♣❧❡ ✹✳✹✳✺✿ ♥♦♥✲❧✐♥❡❛r
▲❡t✬s ❝♦♥s✐❞❡r t❤✐s ❢✉♥❝t✐♦♥ ❛❣❛✐♥✿ q(x, y) = sin(xy) .
❈♦♠♣✉t❡ t❤❡ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ❜② t❤❡ ❈❤❛✐♥ ❘✉❧❡✳ ❋✐rst ✇❡ ❞❡❝❧❛r❡ y ❛♥ ✉♥❦♥♦✇♥ ❛♥❞ ✉♥s♣❡❝✐✜❡❞ ❜✉t ✜①❡❞ ♣❛r❛♠❡t❡r ❛♥❞ ❝❛rr② ♦✉t ❞✐✛❡r❡♥t✐❛t✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ x✿ ∂ ∂ ∂q sin(xy) = cos(xy) · = (xy) = cos(xy)y . ∂x ∂x ∂x
❚❤✐s t✐♠❡✱ x ✐s t❤❡ ♣❛r❛♠❡t❡r✿
∂q ∂ ∂ sin(xy) = cos(xy) · = (xy) = cos(xy)x . ∂y ∂y ∂y
▲❡t✬s ❝♦♥✜r♠ t❤❡s❡ r❡s✉❧ts ❜② ❡①❛♠✐♥✐♥❣ t❤❡ ❣r❛♣❤ ♦❢ q ♣❧♦tt❡❞ ✇✐t❤ ❛ s♣r❡❛❞s❤❡❡t✿
◆♦t❡ t❤❛t t❤❡ ❡❞❣❡ ♦❢ t❤❡ s✉r❢❛❝❡ ✐s ❛ ❝✉r✈❡ ❛♥❞ ✐t ✐s t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❣✐✈❡♥ ✐♥ t❤❡ ✈❡r② ❧❛st r♦✇ ♦❢ t❤❡ t❛❜❧❡✳ ❲❡ ❛❧s♦ ♥♦t✐❝❡ t❤❛t✿ ∂q = 0 ❢♦r y = 0✳ • ❚❤❡ s✉r❢❛❝❡ ✐s ✢❛t ❛❧♦♥❣ t❤❡ x✲❛①✐s✱ ❜❡❝❛✉s❡ ∂x ∂q • ❚❤❡ s✉r❢❛❝❡ ✐s ✢❛t ❛❧♦♥❣ t❤❡ y ✲❛①✐s✱ ❜❡❝❛✉s❡ ∂x = 0 ❢♦r x = 0✳ ❲❡ ❛♣♣r♦①✐♠❛t❡ t❤❡s❡ ❞❡r✐✈❛t✐✈❡s ❥✉st ❛s ❜❡❢♦r❡✿❚❤❡ ❛✈❡r❛❣❡ r❛t❡ ♦❢ ❝❤❛♥❣❡ ✇✐t❤ t❤❡ ❝❤❛♥❣❡ ♦❢ x ❛♥❞ y ✐s ✜①❡❞ ❛s h = ∆x = ∆y ✳ ■♥ ❛ s♣r❡❛❞s❤❡❡t✱ t❤❡ r❛t❡ ♦❢ ❝❤❛♥❣❡ ♦❢ z ✐♥ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ x ❛♥❞ y ✐s ❝♦♠♣✉t❡❞ ✈✐❛ t❤❡ s❛♠❡ ❢♦r♠✉❧❛ ❜✉t ❛♣♣❧✐❡❞ ❤♦r✐③♦♥t❛❧❧② ❛♥❞ ✈❡rt✐❝❛❧❧② r❡s♣❡❝t✐✈❡❧②✿ ❂✭❘❬✲✷✸❪❈✲❘❬✲✷✸❪❈❬✲✶❪✮✴❘✶❈✶ ❛♥❞ ❂✭❘❈❬✲✷✸❪✲❘❬✲✶❪❈❬✲✷✸❪✮✴❘✶❈✶
❚❤❡ ❢♦r♠✉❧❛s ♣r♦❞✉❝❡ t❤❡ t✇♦ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s✿
✹✳✹✳
✷✾✶
■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
❆t t❤❡ ♣♦✐♥t (0.1, 0.1)✱ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ t✇♦ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ❛r❡ ❡q✉❛❧✱ ✇❤✐❝❤ ✐s ✇❤② t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ ❢❛st❡st ❣r♦✇t❤ ♦❢ q ✐s ❛t 45 ❞❡❣r❡❡s✳ ◆♦t❡ ❛❧s♦ t❤❛t t❤❡ ❤✐❣❤❡st ❧♦❝❛t✐♦♥s ❢♦r♠ ❛ r✐❞❣❡❀ ✐t ✐s ✇❤❡r❡ ❜♦t❤ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ❛r❡ ❡q✉❛❧ t♦ 0✳ ❚♦ ✜♥❞ t❤❡ ❧♦❝❛t✐♦♥ ♦❢ t❤❡ r✐❞❣❡✱ ✇❡ s♦❧✈❡ t❤❡ ❡q✉❛t✐♦♥
cos(xy) = 0 =⇒ xy = π/2 . ■t✬s ❛ ❤②♣❡r❜♦❧❛✳ ❚❤❡ ✐❞❡❛ t❤❛t t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ♣❛rt✐❛❧ ❞❡r✐✈❛t✐✈❡s ✐♥❞✐❝❛t❡ t❤❡ ❞✐r❡❝t✐♦♥ ♦❢ t❤❡ ❢❛st❡st ❣r♦✇t❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❝❛♥ ❜❡ ✐❧❧✉str❛t❡❞ ❛♣♣r♦①✐♠❛t❡❧② ❛s ❢♦❧❧♦✇s✿
\x qx′ > 0 qx′ < 0
y
qy′ > 0
ր
qy′ < 0
ց
տ ւ
❊①❛♠♣❧❡ ✹✳✹✳✻✿ ❜r❡❛❞ ❜✉②❡rs
❲❡ ✇✐❧❧ t❛❦❡ t❤❡ t✇♦ ❡①❛♠♣❧❡s ✕ t❤❡ ❝♦♠♠♦❞✐t② tr❛❞❡r ❛♥❞ t❤❡ ❜❛❦❡r ✕ ❢r♦♠ t❤❡ ❧❛st t✇♦ s❡❝t✐♦♥s ❛♥❞ ❛s❦✱ ✇❤❛t ♣r✐❝❡ ♦❢ ❜r❡❛❞ ❤❛✈❡ ❞❛✐❧② ✈✐s✐t♦rs t♦ t❤❡ ❜❛❦❡r② s❤♦♣ s❡❡♥ ♦✈❡r t✐♠❡❄ ❚❤❡s❡ ❛r❡ t❤❡ ✈❛r✐❛❜❧❡s✿ • t ✐s t✐♠❡✳ ❚✇♦ ✈❛r✐❛❜❧❡s r❡♣r❡s❡♥t✐♥❣ t❤❡s❡ t✇♦ ❝♦♠♠♦❞✐t✐❡s ✿ • x ✐s t❤❡ ♣r✐❝❡ ♦❢ ✇❤❡❛t✳ • y ✐s t❤❡ ♣r✐❝❡ ♦❢ s✉❣❛r✳ ❆♥❞ ❛ ♣r♦❞✉❝t ✿ • z ✐s t❤❡ ♣r✐❝❡ ♦❢ ❛ ❧♦❛❢ ♦❢ ❜r❡❛❞✳ ❚❤❡ ✈✐s✐t♦rs s❡❡ ❤♦✇ z ❞❡♣❡♥❞s ♦♥ t✱ ✈✐❛ s♦♠❡ ❢✉♥❝t✐♦♥ ♦❢ s✐♥❣❧❡ ✈❛r✐❛❜❧❡ ✿
z = h(t) . ❲❤❛t ✐s ✐t❄ ❚❤✐s ✐s t❤❡ s✉♠♠❛r② ♦❢ t❤❡ s❡t✉♣✿ ❊①❛♠♣❧❡ ✶ ✭tr❛❞❡r✮
t
−→
❲❡ r❡❛❧✐③❡ t❤❛t t❤❡ ♣r♦❜❧❡♠ ✐s ❛❜♦✉t
(x, y)
−→
z
❊①❛♠♣❧❡ ✷ ✭❜❛❦❡r✮
❝♦♠♣♦s✐t✐♦♥s ✦
❘❡❝❛❧❧ t❤❛t t❤❡ ♣r✐❝❡ ♦❢ ✇❤❡❛t ❛♥❞ t❤❡ ♣r✐❝❡ ♦❢ s✉❣❛r ❛r❡ r❡♣r❡s❡♥t❡❞ ❜② ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✿
x = f (t) =
1 , y = g(t) = −(x − 1)2 + 2 . t+1
❋✉rt❤❡r♠♦r❡✱ t❤❡ ♣r✐❝❡ ♦❢ ❜r❡❛❞ ✐s ❝♦♠♣✉t❡❞ ❢r♦♠ t❤❡ ♦t❤❡r t✇♦ ♣r✐❝❡s ❜② t❤❡ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✿
z = p(x, y) = 2x + y + 1 . ❚❤❡ t✇♦ ❢✉♥❝t✐♦♥s ❛r❡ ✈✐s✉❛❧✐③❡❞ ❛s ❢♦❧❧♦✇s✿
✹✳✹✳
■♥tr♦❞✉❝t✐♦♥ t♦ ❝❛❧❝✉❧✉s ♦❢ s❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
❚❤❡♥✱ ♦❢ ❝♦✉rs❡✱
h
✷✾✷
✐s t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t❤❡s❡ t✇♦✿
t 7→ (x, y) 7→ z , ❝♦♠♣✉t❡❞ ✈✐❛ t❤❡ ❢♦❧❧♦✇✐♥❣ s✉❜st✐t✉t✐♦♥✿
h(t) = p f (t), g(t) .
❚♦ ✈✐s✉❛❧✐③❡ ✇❤❛t ❤❛♣♣❡♥s✱ ✐♠❛❣✐♥❡ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ✕ ♦♥ t❤❡ ❣r❛♣❤ ♦❢
xy ✲♣❧❛♥❡
✕ ❜❡✐♥❣ ✏❧✐❢t❡❞✑ t♦ t❤❡
p✿
❚❤❡ ❡❧❡✈❛t✐♦♥ ✐s t❤❡♥ t❤❡ ✈❛❧✉❡ ♦❢
h✳
❚❤❡ ❡♥❞ r❡s✉❧t ✐s ❜❡❧♦✇✿
■♥ t❤❡ ♣❛st✱ ✇❡ ❤❛✈❡ ❢♦✉♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ❜② t❤❡
❈❤❛✐♥ ❘✉❧❡ ✿
❲❡
❡①♣r❡ss❡❞ ✐t ✐♥ t❡r♠s ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ t✇♦ ❢✉♥❝t✐♦♥s ✐♥✈♦❧✈❡❞ ✭t❤❡✐r ♣r♦❞✉❝t✮✳ ❲❡ t❤❡♥ ❝♦♥❥❡❝t✉r❡ t❤❛t ✐♥ ♦r❞❡r t♦ ✜♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❝♦♠♣♦s✐t✐♦♥ ❛❜♦✈❡✱ ✇❡ ♥❡❡❞ t♦ ✉♥❞❡rst❛♥❞ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣✿
•
t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✱ ❛♥❞
✹✳✺✳
❚❤❡ ❝❡♥tr♦✐❞ ♦❢ ❛ ✢❛t ♦❜❥❡❝t
•
✷✾✸
t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✳
✹✳✺✳ ❚❤❡ ❝❡♥tr♦✐❞ ♦❢ ❛ ✢❛t ♦❜❥❡❝t ❲❡ ❝♦♥t✐♥✉❡ ✇✐t❤ ♦✉r ❛♥❛❧②s✐s ♦❢ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss st❛rt❡❞ ✐♥ ❈❤❛♣t❡r ✸ ❜✉t ✐♥ t❤❡
2✲❞✐♠❡♥s✐♦♥❛❧
s❡tt✐♥❣✳
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ♣❧❛t❡ ✇✐t❤ ✉♥✐❢♦r♠ ❛ ❞❡♥s✐t② ❛♥❞ ✐❞❡♥t✐❝❛❧ t❤✐❝❦♥❡ss ✭✐t ✐s ❦♥♦✇♥ ❛s ❛ ✏❧❛♠✐♥❛✑✮✳ ❍♦✇ ❝❛♥ ✇❡ ❜❛❧❛♥❝❡ ✐t ♦♥ ❛ s✐♥❣❧❡ s✉♣♣♦rt ❝❛❧❧❡❞ t❤❡
❝❡♥tr♦✐❞ ❄
❚❤❡r❡ ❛r❡ ❛ ❢❡✇ ❤❡✉r✐st✐❝s t❤❛t ❤❡❧♣✳ ■❢ t❤❡ ♦❜❥❡❝t ❤❛s ❛ ✏❝❡♥t❡r✑✱ s✉❝❤ ❛s ❛ ❝✐r❝❧❡ ♦r ❛ sq✉❛r❡✱ t❤✐s ✐s ✐t✳
❆❧s♦✱ ❛♥② ❛①✐s ♦❢ s②♠♠❡tr② ✇✐❧❧ ❤❛✈❡ t♦ ❝♦♥t❛✐♥ t❤❡ ❝❡♥tr♦✐❞✳ ❚❤❡ ✐❞❡❛ ♦❢ ❝❡♥tr♦✐❞ ✐s r❡❧❛t❡❞ t♦ t❤❡ ❝♦♥❝❡♣t ♦❢ t❤❡
❝❡♥t❡r ♦❢ ♠❛ss
✇❤✐❝❤ ✐s t❤❡ ❝❡♥t❡r ♦❢ r♦t❛t✐♦♥ ♦❢ t❤❡
♦❜❥❡❝t ✇❤❡♥ s✉❜❥❡❝t❡❞ t♦ ❛ ❢♦r❝❡✳ ❲❡ st✉❞✐❡❞ t❤✐s ❝♦♥❝❡♣t ♣r❡✈✐♦✉s❧② ❜✉t ✇✐t❤ t❤❡ ✇❡✐❣❤t ❞✐str✐❜✉t❡❞ ✇✐t❤✐♥ ❛ str❛✐❣❤t s❡❣♠❡♥t✱ s✉❝❤ ❛s ❛ s❡❡s❛✇✿
❲❡ ❢♦✉♥❞ t❤❛t ✐❢ ♦♥❡ ♣❡rs♦♥ ✐s ❤❡❛✈✐❡r t❤❛♥ t❤❡ ♦t❤❡r✱ t❤❡ ❧❛tt❡r ♣❡rs♦♥ s❤♦✉❧❞ s✐t ❢❛rt❤❡r ❢r♦♠ t❤❡ ❝❡♥t❡r ✐♥ ♦r❞❡r t♦ ❜❛❧❛♥❝❡ t❤❡ ❜❡❛♠✳ ■♥ ❢❛❝t✱ t❤❡ ❞✐st❛♥❝❡ s❤♦✉❧❞ ❜❡ t✇✐❝❡ ❛s ❧♦♥❣✦ ❈♦♥s✐❞❡r ❛ ✈❛r✐❛t✐♦♥ ♦❢ t❤❡
s❡❡s❛✇✳
♣♦✐♥t ♦❢ s✉♣♣♦rt ✐♥ t❤❡ ♠✐❞❞❧❡✿
■t ✐s ♠❛❞❡ ♦❢ t✇♦ ❜❡❛♠s ♥❛✐❧❡❞ t♦❣❡t❤❡r t♦ ❢♦r♠ ❛ ❝r♦ss ✇✐t❤ ❛ s✐♥❣❧❡
✹✳✺✳
❚❤❡ ❝❡♥tr♦✐❞ ♦❢ ❛ ✢❛t ♦❜❥❡❝t
✷✾✹
■t ❛♣♣❡❛rs t❤❛t ❢♦✉r ♣❡rs♦♥s ♦❢ ❡q✉❛❧ ✇❡✐❣❤t ✇✐❧❧ ❜❡ ✐♥ ❜❛❧❛♥❝❡ ✇❤❡♥ ❧♦❝❛t❡❞ ❛t ❡q✉❛❧ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ♣♦✐♥t ♦❢ s✉♣♣♦rt✳ ❇✉t t❤❡r❡ ✐s ♠♦r❡✿ ❚❤❡② ✇✐❧❧ ❜❡ ❜❛❧❛♥❝❡❞ ❛s ❧♦♥❣ ❛s ❡✐t❤❡r ✐♥ ❜❛❧❛♥❝❡✦ ❲❡ ❝❛♥ t❤❡♥ ✉s❡ ✇❤❛t ✇❡ ❤❛✈❡ ❧❡❛r♥❡❞ ❢r♦♠ t❤❡
1✲❞✐♠❡♥s✐♦♥❛❧
❲❡ ❡①♣❧♦r❡ t❤✐s ✐❞❡❛ ❜② r❡♣❧❛❝✐♥❣ t❤✐s ❝♦♥str✉❝t✐♦♥ ✇✐t❤ ❛ sq✉❛r❡✳ ♣r❡✈✐♦✉s❧② ❝❛♥ ❜❡ ✐♥t❡r♣r❡t❡❞ ❛s t❤✐s sq✉❛r❡
♣❛✐r
❜❛❧❛♥❝❡❞ ♦♥ ❛ ❜❛r
♦❢ ♣❡rs♦♥s ❢❛❝✐♥❣ ❡❛❝❤ ♦t❤❡r ❛r❡ ❝❛s❡✳
❚❤❡♥ t❤❡ s❡❡s❛✇s t❤❛t ✇❡ ❝♦♥s✐❞❡r❡❞
t❤❛t ❣♦❡s ❛❧❧ t❤❡ ✇❛② ❛❝r♦ss✿
❲❡ ❝❛♥ s♣r❡❛❞ t❤❡ ✇❡✐❣❤t ❛❧♦♥❣ t❤❡ ❧✐♥❡ ♣❛r❛❧❧❡❧ t♦ t❤❡ ❜❛r ❜❡❝❛✉s❡ ♦♥❧② t❤❡ ❞✐st❛♥❝❡ t♦ t❤✐s ❜❛r ♠❛tt❡rs ❢♦r t❤❡ ❧❡✈❡r❛❣❡ ♦❢ ❡❛❝❤ ✇❡✐❣❤t✳
❖♥❝❡ ✇❡ ❛❞❞ t❤❡
x✲
❛♥❞
y ✲❛①✐s
t♦ t❤❡ ♣✐❝t✉r❡✱ t❤✐s ❞✐st❛♥❝❡ ✐s s✐♠♣❧② t❤❡
x✲❝♦♦r❞✐♥❛t❡✿
◆♦✇✱ ♦✉r ♣r♦❜❧❡♠ ✐s t❤❛t ♦❢ ❜❛❧❛♥❝✐♥❣ t❤❡ r❡❣✐♦♥ ❜❡❧♦✇ t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥✳
✹✳✺✳ ❚❤❡ ❝❡♥tr♦✐❞ ♦❢ ❛ ✢❛t ♦❜❥❡❝t
✷✾✺
▲❡t✬s r❡✈✐❡✇ ❤♦✇ ✇❡ ❞♦ t❤✐s✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ♥♦♥✲♥❡❣❛t✐✈❡ ❢✉♥❝t✐♦♥ y = f (x) ✐♥t❡❣r❛❜❧❡ ♦♥ s❡❣♠❡♥t [a, b]✳ ❋♦r ❛ ❣✐✈❡♥ ♣♦✐♥t c✱ t❤❡ ✐♥t❡❣r❛❧ Z b
a
f (x)(x − c) dx
✐s ❝❛❧❧❡❞ t❤❡ t♦t❛❧ ♠♦♠❡♥t ♦❢ t❤❡ r❡❣✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ c✳ ❚❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤❡ r❡❣✐♦♥ ✐s s✉❝❤ ❛ ♣♦✐♥t c t❤❛t t❤❡ t♦t❛❧ ♠♦♠❡♥t ✇✐t❤ r❡s♣❡❝t t♦ c ✐s ③❡r♦✿ Rb f (x)x dx c = Ra b . f (x) dx a ❊①❛♠♣❧❡ ✹✳✺✳✶✿ ❜❛❧❛♥❝❡ ❛ tr✐❛♥❣❧❡
▲❡t✬s r❡✈✐❡✇ ❤♦✇ ✇❡ ❝❛♥ ❜❛❧❛♥❝❡ ❛ tr✐❛♥❣❧❡ ♦♥ ✐ts ❤♦r✐③♦♥t❛❧ ❡❞❣❡✳ ❙✉♣♣♦s❡ ✐t ✐s t❤❡ r❡❣✐♦♥ ✉♥❞❡r t❤❡ ❣r❛♣❤ y = f (x) = x ❢r♦♠ 0 t♦ 1✿
❲❡ ❝♦♠♣✉t❡ t❤❡ t♦t❛❧ ♠♦♠❡♥t ♦❢ t❤❡ ♦❜❥❡❝t✿
Z
1
f (x)x dx = 0
Z
1
Z0
x · x dx 1
x2 dx 0 1 3 = x /3
=
0
= 1/3 .
▼❡❛♥✇❤✐❧❡✱ t❤❡ ♠❛ss ✐s s✐♠♣❧② 1/2✳ ❚❤❡r❡❢♦r❡✱ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ✕ ♦♥ t❤❡ x✲❛①✐s ✕ ✐s
c1 =
1 1 2 ÷ = . 3 2 3
❲❤❛t ✐❢ ✇❡ ✇❛♥t t♦ ❜❛❧❛♥❝❡ t❤❡ tr✐❛♥❣❧❡ ♦♥ ✐ts ♦t❤❡r ❡❞❣❡❄ ❲❡ ♣❧❛❝❡ t❤❡ x✲❛①✐s ❛❧♦♥❣ t❤❛t ❡❞❣❡✱ t❤❡♥ t❤❡ s❧❛♥t❡❞ ❡❞❣❡s ✐s ❣✐✈❡♥ ❜② y = g(x) = 1 − x✳ ❲❡ ❝♦♠♣✉t❡ t❤❡ t♦t❛❧ ♠♦♠❡♥t ♦❢ t❤❡ ♦❜❥❡❝t✿
Z
1
g(x)x dx = 0
Z
Z0
1
(1 − x)x dx 1
(x − x2 ) dx 0 1 2 3 = y /2 − y /3
=
0
= 1/2 − 1/3
= 1/6 .
✹✳✺✳ ❚❤❡ ❝❡♥tr♦✐❞ ♦❢ ❛ ✢❛t ♦❜❥❡❝t
✷✾✻
▼❡❛♥✇❤✐❧❡✱ t❤❡ ♠❛ss ✐s st✐❧❧ 1/2✳ ❚❤❡r❡❢♦r❡✱ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ✕ ❛❧♦♥❣ t❤✐s ❡❞❣❡ ✕ ✐s
c2 =
1 1 1 ÷ = . 6 2 3
❲❡ ❝❛♥ ❜❛❧❛♥❝❡ t❤❡ tr✐❛♥❣❧❡ ♦♥ ❡✐t❤❡r ♦❢ t✇♦ ❜❛rs✳ ◆♦✇ ✇❡ r❡♠♦✈❡ t❤❡ ❜❛rs ❛♥❞ r❡♣❧❛❝❡ t❤❡♠ ✇✐t❤ ❛ s✐♥❣❧❡ s✉♣♣♦rt ♣❧❛❝❡❞ ❛t t❤❡✐r ✐♥t❡rs❡❝t✐♦♥✳
❉❡✜♥✐t✐♦♥ ✹✳✺✳✷✿ t♦t❛❧ ♠♦♠❡♥t ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ y = f (x) ✐s ✐♥t❡❣r❛❜❧❡ ♦♥ [a, b]✳ ❚❤❡♥ t❤❡ t♦t❛❧ ♠♦♠❡♥t ♦❢ t❤❡ r❡❣✐♦♥ ✉♥❞❡r t❤❡ ❣r❛♣❤ ♦❢ f ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ❧✐♥❡ x = c ✐s ❞❡✜♥❡❞ t♦ ❜❡✿
Z
b a
(x − c)f (x) dx
❙✉❝❤ ❛ ❧✐♥❡ ✐s ❛♥ ❛①✐s ♦❢ t❤❡ r❡❣✐♦♥ ✐❢ t❤❡ t♦t❛❧ ♠♦♠❡♥t ✐s ③❡r♦✳
❊①❛♠♣❧❡ ✹✳✺✳✸✿ ❤❛❧❢✲❝✐r❝❧❡ ▲❡t✬s tr② t❤❡ ❤❛❧❢✲❝✐r❝❧❡✳ ❖♥❡ ♦❢ t❤❡ ❛①❡s ✇✐❧❧ ❣♦ t❤r♦✉❣❤ t❤❡ ❝❡♥t❡r ♣❡r♣❡♥❞✐❝✉❧❛r t♦ t❤❡ ❞✐❛♠❡t❡r✳ ❲❡ ❥✉st ♥❡❡❞ t♦ ✜♥❞ t❤❡ ♦t❤❡r✳ ❚❤❛t✬s ✇❤② ✇❡ ♣❧❛❝❡ t❤❡ q✉❛rt❡r ♦❢ t❤❡ ❞✐s❦ ❛❞❥❛❝❡♥t t♦ t❤❡ ♦r✐❣✐♥✿
❚❤❡♥ t❤❡ t♦t❛❧ ♠♦♠❡♥t ✐s✿
❚❤❡r❡❢♦r❡✱
Z Z
1 0
1 0
√
√ (x − c) 1 − x2 dx = 0 .
x 1−
x2
dx = c
Z
1
√
0
1 − x2 dx .
❚❤❡ ✐♥t❡❣r❛❧ ♦♥ t❤❡ r✐❣❤t✲❤❛♥❞ s✐❞❡ ✐s s✐♠♣❧② t❤❡ ❛r❡❛ ♦❢ t❤❡ q✉❛rt❡r ❝✐r❝❧❡✱ ❛♥❞ t❤❡ ♦♥❡ ♦♥ t❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ✐s ❡❛s✐❧② ❡✈❛❧✉❛t❡❞ ❜② s✉❜st✐t✉t✐♦♥ ✭u = 1 − x2 ✮✿ Z 0 Z 1 √ 1√ − u du x 1 − x2 dx = 2 1 0 0 1 2 3/2 =− u 23 1
1 = . 3
❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡✿
1 4 = cπ/4 =⇒ c = ≈ .42 . 3 3π
✹✳✻✳
✷✾✼
❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
❊①❡r❝✐s❡ ✹✳✺✳✹ ❋✐♥❞ t❤❡ ❛①❡s ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡ ❣r❛♣❤ y =
1 − 0.5 ❛♥❞ t❤❡ ❛①❡s✳ x + 0.5
❲❡ ❤❛✈❡ ❜❡❡♥ ❛❜❧❡ t♦ ✉s❡ ♦♥❧② t❤✐s ❞❡✜♥✐t✐♦♥ t♦ ✜♥❞ t❤❡ ❛①❡s ♦❢ r❡❣✐♦♥s ✇✐t❤ s②♠♠❡tr✐❡s✳ ❋♦r t❤❡ ❣❡♥❡r❛❧ ❝❛s❡✱ ✇❡ ✇✐❧❧ ❤❛✈❡ t♦ ✉s❡ t❤❡ x✲ ❛♥❞ y ✲❛①❡s ❛✈❛✐❧❛❜❧❡ t♦ ✉s✿
❉❡✜♥✐t✐♦♥ ✹✳✺✳✺✿ ❝❡♥tr♦✐❞ ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ y = f (x) ✐s ❞❡❝r❡❛s✐♥❣ ♦♥ [0, A] ❛♥❞ f (0) = B > 0✳ ❚❤❡♥ t❤❡ ❝❡♥tr♦✐❞ ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡ ❣r❛♣❤ ♦❢ f ✱ t❤❡ x✲❛①✐s✱ ❛♥❞ t❤❡ y ✲❛①✐s ✐s ❛ ♣♦✐♥t (cx , cy ) s✉❝❤ t❤❛t t❤❡ t♦t❛❧ ♠♦♠❡♥ts ♦❢ t❤❡ r❡❣✐♦♥ ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ❧✐♥❡s x = cx ❛♥❞ y = cy ❛r❡ ③❡r♦❀ ✐✳❡✳✱ Z
❛♥❞
Z
A 0
(x − cx )f (x) dx = 0 ,
B 0
(y − cy )f −1 (y) dy = 0 .
❚❤❡♥✱ t❤❡ ❝♦♦r❞✐♥❛t❡s ♦❢ t❤❡ ❝❡♥tr♦✐❞ ❛r❡✿ 1 cx = A
Z
A 0
1 xf (x) dx ❛♥❞ cy = A
Z
B
yf −1 (y) 0
✇❤❡r❡ A ✐s t❤❡ ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥✳
❊①❡r❝✐s❡ ✹✳✺✳✻ ❋✐♥❞ t❤❡ ❝❡♥tr♦✐❞ ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡ ❣r❛♣❤ ♦❢ y = 1 − x2 ✳ ❚❤❡ ❣❡♥❡r❛❧ ❝❛s❡ ♦❢ ❛ ♣❧❛t❡ ♦❢ ❛♥ ❛r❜✐tr❛r② s❤❛♣❡ ✇✐❧❧ ❜❡ ❛❞❞r❡ss❡❞ ✐♥ ❱♦❧✉♠❡ ✹✳
✹✳✻✳ ❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
■❢ ✇❡ ✇❛♥t t♦ st✉❞② t❤❡ ❊✉❝❧✐❞❡❛♥ ♣❧❛♥❡✱ ❛♥❞ ❊✉❝❧✐❞❡❛♥ ❣❡♦♠❡tr②✱ ❛❧❣❡❜r❛✐❝❛❧❧②✱ ✇❡ s✉♣❡r✐♠♣♦s❡ t❤❡ ❈❛rt❡s✐❛♥ ❣r✐❞ ♦✈❡r t❤✐s ♣❧❛♥❡✿
✹✳✻✳ ❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
✷✾✽
❲❡ ❝❛♥ ♣❧❛❝❡ t❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ♦♥ t♦♣ ♦❢ ♦✉r ♣❤②s✐❝❛❧ s♣❛❝❡ ✐♥ ❛ ♥✉♠❜❡r ♦❢ ✇❛②s✳
▼❡❛♥✇❤✐❧❡ t❤❡
❣❡♦♠❡tr② ♦♥ t❤❡ ♣✐❡❝❡ ♦❢ ♣❛♣❡r ❞❡t❡r♠✐♥❡s ✇❤❛t ✐s ❣♦✐♥❣ ♦♥✱ ♥♦t ❛ ♣❛rt✐❝✉❧❛r ❝❤♦✐❝❡ ♦❢ t❤❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠✳ ❲❡ st❛rt ✇✐t❤ ❞✐♠❡♥s✐♦♥
1✳
❚❤❡ ❧✐♥❡ ❝❛♥ ❤❛✈❡ ❞✐✛❡r❡♥t ❝♦♦r❞✐♥❛t❡ s②st❡♠s ❛ss✐❣♥❡❞ t♦ ✐t✳ ❲❡ ❝❛♥ ✐♠❛❣✐♥❡ t❤❛t ✇❡ ❤❛✈❡ t❤r❡❡ ♣❡♥❝✐❧s✿ ♦♥❡ ✉♥♠❛r❦❡❞ ❛♥❞ t✇♦ ✇✐t❤ t❤❡ ✇❤♦❧❡
x✲❛①✐s
✐s ❞r❛✇♥ ♦♥ t❤❡♠✳ ❚❤❡ ✜rst r❡♣r❡s❡♥ts t❤❡ ✏r❡❛❧✐t②✑✱❛♥❞ t❤❡
♦t❤❡r t✇♦ r❡♣r❡s❡♥t t✇♦ ❞✐✛❡r❡♥t ❝♦♦r❞✐♥❛t❡ s②st❡♠s t♦ ❜❡ ✉s❡❞ t♦ r❡❝♦r❞ t❤❡ ❧♦❝❛t✐♦♥s ♦♥ t❤❡ ✜rst✿
❚❤❡♥ ✇❡ ❤❛✈❡✿ ✶✳ P♦✐♥t
A ❤❛s ❝♦♦r❞✐♥❛t❡ 1 ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ✜rst ❈❛rt❡s✐❛♥ s②st❡♠ ❜✉t −2 ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ s❡❝♦♥❞✳
✷✳ P♦✐♥t
B
❤❛s ❝♦♦r❞✐♥❛t❡
2 ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ ✜rst ❈❛rt❡s✐❛♥ s②st❡♠ ❜✉t −1 ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ s❡❝♦♥❞✳
✸✳ ❆♥❞ s♦ ♦♥✳ ❚❤❡s❡ ❈❛rt❡s✐❛♥ s②st❡♠s ❛r❡ r❡❧❛t❡❞ t♦ ❡❛❝❤ ♦t❤❡r ✈✐❛ s♦♠❡ ❜❛s✐❝ tr❛♥s❢♦r♠❛t✐♦♥s✱ s✉❝❤ ❛s ❛ s❤✐❢t✿
❆❜♦✈❡ ②♦✉ s❡❡ t✇♦ ✇❛②s t♦ ✐♥t❡r♣r❡t t❤❡ tr❛♥s❢♦r♠❛t✐♦♥✿ ✶✳ ❚❤❡ ❛rr♦✇s ❛r❡ ❜❡t✇❡❡♥ t❤❡ ✷✳ ❲❡ ♠♦✈❡ t❤❡
y ✲❛①✐s
s♦ t❤❛t
x✲❛①✐s
❛♥❞ t❤❡ ✐♥t❛❝t
y = f (x)
y ✲❛①✐s✳
✐s ❛❧✐❣♥❡❞ ✇✐t❤
x✳
❲❡ ❢♦❧❧♦✇❡❞ t❤❡ ❢♦r♠❡r ✐♥ ❈❤❛♣t❡r ✶P❈✲✷ ❛♥❞ ✇❡ ✇✐❧❧ ❢♦❧❧♦✇ t❤❡ ❧❛tt❡r ✐♥ t❤✐s s❡❝t✐♦♥✳ ❚❤❡s❡ ❛r❡ t❤❡ t❤r❡❡ ♠❛✐♥ tr❛♥s❢♦r♠❛t✐♦♥s ♦❢ ❛♥ ❛①✐s✿ s❤✐❢t✱ ✢✐♣✱ ❛♥❞ str❡t❝❤ ✭❧❡❢t✮✳ ❆♥❞ t❤✐s ✐s ✇❤❛t ❤❛♣♣❡♥s t♦ t❤❡ ❝♦♦r❞✐♥❛t❡s ♦❢ ♣♦✐♥ts ✭r✐❣❤t✮✿
✹✳✻✳
✷✾✾
❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
❲❛r♥✐♥❣✦ ❚❤❡ ♣♦✐♥ts ❞♦♥✬t ♠♦✈❡✳
❚❤✐s ✐s t❤❡ ❛❧❣❡❜r❛ ❢♦r t❤❡ ❜❛s✐❝ tr❛♥s❢♦r♠❛t✐♦♥s ♦❢ t❤❡ ❛①✐s✱ t❤❡ ♦❧❞ ❛♥❞ t❤❡ ♥❡✇ ❝♦♦r❞✐♥❛t❡s✿ s❤✐❢t ❜② k
1. t −−−−−−−−−→ ✢✐♣
2. t −−−−−−→
str❡t❝❤ ❜② k
x=t−k x = −t
3. t −−−−−−−−−−→ x = t/k
❚❤❡ t❤r❡❡ ♠❛② ❝♦♠❡ r❡s♣❡❝t✐✈❡❧② ❢r♦♠✿ ✶✳ ❝❤❛♥❣✐♥❣ t❤❡ st❛rt✐♥❣ ❧♦❝❛t✐♦♥ ♦❢ t❤❡ ♠✐❧❡st♦♥❡s ✷✳ r❡♣❧❛❝✐♥❣ ❡❛st ✇✐t❤ ✇❡st ❛s t❤❡ ♣♦s✐t✐✈❡ ❞✐r❡❝t✐♦♥ ✸✳ s✇✐t❝❤✐♥❣ ❢r♦♠ ♠✐❧❡s t♦ ❦✐❧♦♠❡t❡rs ◆♦✇ ❞✐♠❡♥s✐♦♥ 2✱ t❤❡
✳
♣❧❛♥❡
❇♦t❤ x✲ ❛♥❞ y ✲❛①✐s ❝❛♥ ❜❡ s✉❜❥❡❝t❡❞ t♦ t❤❡ tr❛♥s❢♦r♠❛t✐♦♥s ❛❜♦✈❡✳ ❚❤❡ ❝❤❛♥❣❡ ♦❢ ❝♦♦r❞✐♥❛t❡s ✉♥❞❡r t❤❡ r❡s✉❧t✐♥❣ s✐① ❜❛s✐❝ tr❛♥s❢♦r♠❛t✐♦♥s ♦❢ t❤❡ xy ✲♣❧❛♥❡ ✐s s❤♦✇♥ ❜❡❧♦✇✿ ✈❡rt✐❝❛❧ s❤✐❢t✿
( x , y
❤♦r✐③♦♥t❛❧ s❤✐❢t✿
( x
)
( x , y−k ) , y )
( x−k , y )
✢✐♣✿
( x , y
✢✐♣✿
( x
)
( x , y · (−1) )
, y )
( x · (−1) , y )
str❡t❝❤✿ str❡t❝❤✿
( x , y
)
( x , y/k ) ( x
, y )
( x/k , y )
.
✹✳✻✳ ❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
✸✵✵
❇✉t s♦♠❡ tr❛♥s❢♦r♠❛t✐♦♥s ❝❛♥♥♦t ❜❡ r❡❞✉❝❡❞ t♦ ❛ ❝♦♠❜✐♥❛t✐♦♥ ♦❢ t❤❡s❡ s✐①✱ s✉❝❤ ❛s t❤❡ r♦t❛t✐♦♥✳ ❊①❛♠♣❧❡ ✹✳✻✳✶✿ ♦t❤❡r tr❛♥s❢♦r♠❛t✐♦♥s
❘❡❝❛❧❧ ❢r♦♠ ❈❤❛♣t❡r ✶P❈✲✸✱ t❤❛t ✐♥ ♦r❞❡r t♦ ✜♥❞ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ✐♥✈❡rs❡ ❢✉♥❝t✐♦♥✱ ✇❡ ❡①❡❝✉t❡ ❛ ✢✐♣ ❛❜♦✉t t❤❡ ❞✐❛❣♦♥❛❧ ♦❢ t❤❡ ♣❧❛♥❡✳ ❲❡ ❣r❛❜ t❤❡ ❡♥❞ ♦❢ t❤❡ x✲❛①✐s ✇✐t❤ t❤❡ r✐❣❤t ❤❛♥❞ ❛♥❞ ❣r❛❜ t❤❡ ❡♥❞ ♦❢ t❤❡ y ✲❛①✐s ✇✐t❤ t❤❡ ❧❡❢t ❤❛♥❞ t❤❡♥ ✐♥t❡r❝❤❛♥❣❡ t❤❡♠✿
❲❡ ❢❛❝❡ t❤❡ ♦♣♣♦s✐t❡ s✐❞❡ ♦❢ t❤❡ ♣❛♣❡r t❤❡♥✱ ❜✉t t❤❡ ❣r❛♣❤ ✐s st✐❧❧ ✈✐s✐❜❧❡✿ ❚❤❡ x✲❛①✐s ✐s ♥♦✇ ♣♦✐♥t✐♥❣ ✉♣ ❛♥❞ t❤❡ y ✲❛①✐s r✐❣❤t✳ ❚❤❡ ❛①❡s ❝❛♥ ❛❧s♦ ❜❡ s❦❡✇❡❞ ✿
❊✈❡♥ t❤❡♥✱ t❤❡ t✇♦ ♥✉♠❜❡rs ✐♥❞✐❝❛t✐♥❣ t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t✇♦ ❧✐♥❡s ✇✐❧❧ ✉♥❛♠❜✐❣✉♦✉s❧② ❞❡t❡r♠✐♥❡ ❛ ❧♦❝❛t✐♦♥ ♦♥ t❤❡ ♣❧❛♥❡✳ ❆♥❞ s♦ ♦♥✳✳✳ ❋✉rt❤❡r ❛♥❛❧②s✐s ✐s ♣r❡s❡♥t❡❞ ✐♥ ❱♦❧✉♠❡ ✹ ✭❈❤❛♣t❡r ✹❉❊✲✷✮✳ ❚❤❡r❡ ❛r❡ ❛❧s♦ ❛❧t❡r♥❛t✐✈❡ ❝♦♦r❞✐♥❛t❡ s②st❡♠s✳ ◆♦t ♦♥❧② t❤❡ ❛①❡s ❛r❡ ♥♦t r❡❝t❛♥❣✉❧❛r❀ t❤❡② ❛r❡ ❛❧s♦ ❝✉r✈❡❞ ✦ ❚❤❡ ❝✐r❝❧❡ ✐s ❛ ✈❡r② s♣❡❝✐❛❧ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✳ ❚❤✐s ❝✉r✈❡ ✇✐❧❧ ❛❧s♦ s✉♣♣❧② ✉s ✇✐t❤ ❛ ♥❡✇ ✇❛② t♦ r❡❝♦r❞ ❧♦❝❛t✐♦♥s ♦♥ t❤❡ ♣❧❛♥❡✳ ■t ✐s ❝❛❧❧❡❞ t❤❡ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡ s②st❡♠✳ ❲❤❛t ♠❛❦❡s ❝♦♦r❞✐♥❛t❡ s②st❡♠s ♣♦ss✐❜❧❡ ✐s ♦✉r ❛❜✐❧✐t② t♦ ✉♥❛♠❜✐❣✉♦✉s❧② ❛ss✐❣♥ ❡❛❝❤ ♣♦✐♥t t♦ ❝❡rt❛✐♥ ♣r❡✲ ❞❡t❡r♠✐♥❡❞ s❡ts✳ P❛r❛❧❧❡❧ ❧✐♥❡s ❞♦♥✬t ✐♥t❡rs❡❝t ❛♥❞ t❤❡② ❛❧s♦ ❝♦✈❡r t❤❡ ✇❤♦❧❡ ♣❧❛♥❡✳ ❚❤❛t✬s ✇❤② ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿ ✶✳ ❊✈❡r② ♣♦✐♥t ❜❡❧♦♥❣s t♦ ♦♥❡ ❛♥❞ ♦♥❧② ♦♥❡ ❤♦r✐③♦♥t❛❧ ❧✐♥❡✳ ✷✳ ❊✈❡r② ♣♦✐♥t ❜❡❧♦♥❣s t♦ ♦♥❡ ❛♥❞ ♦♥❧② ♦♥❡ ✈❡rt✐❝❛❧ ❧✐♥❡✳
✹✳✻✳ ❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
✸✵✶
Pr♦✈✐❞✐♥❣ ♦♥❡ ❢r♦♠ ❡✐t❤❡r ❝❧❛ss ❢♦r ❡❛❝❤ ♣♦✐♥t ✐s ❤♦✇ t❤❡ ❈❛rt❡s✐❛♥ s②st❡♠ ✇♦r❦s✿
◆♦✇✱ ✇❡ ❛❧s♦ ❤❛✈❡✿ ✶✳ ❈♦♥❝❡♥tr✐❝ ❝✐r❝❧❡s ❞♦♥✬t ✐♥t❡rs❡❝t ❛♥❞ t❤❡②✱ ♣❧✉s t❤❡ ❝❡♥t❡r✱ ❛❧s♦ ❝♦✈❡r t❤❡ ✇❤♦❧❡ ♣❧❛♥❡✳
❚❤❛t✬s ✇❤②
❡✈❡r② ♣♦✐♥t ❜❡❧♦♥❣s t♦ ♦♥❡ ❛♥❞ ♦♥❧② ♦♥❡ ♦❢ t❤❡s❡ ❝✐r❝❧❡s✱ ♦r t❤❡ ❝❡♥t❡r✳ ✷✳ ▲✐♥❡s t❤r♦✉❣❤ t❤❡ ♦r✐❣✐♥ ❤❛✈❡ ♦♥❧② ♦♥❡ ♣♦✐♥t ✐♥ ❝♦♠♠♦♥ ❛♥❞ t❤❡② ❛❧s♦ ❝♦✈❡r t❤❡ ✇❤♦❧❡ ♣❧❛♥❡✳ ❚❤❛t✬s ✇❤② ❡✈❡r② ♣♦✐♥t✱ ♦t❤❡r t❤❛♥ t❤❡ ♦r✐❣✐♥✱ ❜❡❧♦♥❣s t♦ ♦♥❡ ❛♥❞ ♦♥❧② ♦♥❡ ♦❢ t❤❡s❡ ❧✐♥❡s✳ Pr♦✈✐❞✐♥❣ ♦♥❡ ❢r♦♠ ❡✐t❤❡r ❝❧❛ss ❢♦r ❡❛❝❤ ♣♦✐♥t ✐s ❤♦✇ t❤❡ ♣♦❧❛r s②st❡♠ ✇♦r❦s✳ ◆♦✇✱ t❤❡ ♥✉♠❡r✐❝❛❧ r❡♣r❡s❡♥t❛t✐♦♥s ♦❢ ❧♦❝❛t✐♦♥s✱ ✐✳❡✳✱ t❤❡✐r ❝♦♦r❞✐♥❛t❡s✳ ❚❤❡ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ✐s ❜❛s❡❞ ♦♥ t❤❡ ✐❞❡❛ ♦❢ ♠❡❛s✉r✐♥❣ t❤❡ ❞✐st❛♥❝❡s ❢r♦♠ t❤❡ ♣♦✐♥t t♦ t❤❡ ❛①❡s✳
❚❤❡ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡ s②st❡♠ ✐s ❜❛s❡❞ ♦♥ t❤❡s❡ t✇♦ ✐❞❡❛s✿
•
♠❡❛s✉r✐♥❣ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ♣♦✐♥t t♦ t❤❡ ♦r✐❣✐♥ ❛♥❞
•
♠❡❛s✉r✐♥❣ t❤❡ ❛♥❣❧❡ ✇✐t❤ t❤❡
❋♦r ❡①❛♠♣❧❡✱ ✇❡ ❤❛✈❡ t❤❡s❡✿
x✲❛①✐s✳
✹✳✻✳
✸✵✷
❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
❚❤❡ ❞❡✜♥✐t✐♦♥ ✐s ✐♥❞❡♣❡♥❞❡♥t ❢r♦♠ t❤❡ ♣r❡s❡♥❝❡ ♦❢ ❛ ❈❛rt❡s✐❛♥ s②st❡♠✿
❉❡✜♥✐t✐♦♥ ✹✳✻✳✷✿ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s ❙✉♣♣♦s❡ ❛ ♣♦✐♥t O ❝❛❧❧❡❞ t❤❡ ♣♦❧❡ ❛♥❞ ❛ r❛② L ❝❛❧❧❡❞ t❤❡ ♣♦❧❛r ❛①✐s st❛rt✐♥❣ ❛t O ❛r❡ ❣✐✈❡♥ ♦♥ t❤❡ ♣❧❛♥❡✳ ❚❤❡♥ ❢♦r ❛♥② ♣♦✐♥t P ✱ ✐ts ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s ❛r❡ t❤❡ t✇♦ ♥✉♠❜❡rs✱ θ ❛♥❞ r✱ ❞❡✜♥❡❞ ❛s ❢♦❧❧♦✇s✿ • θ ✐s t❤❡ ❛♥❣❧❡ ❢r♦♠ L t♦ t❤❡ ❧✐♥❡ OP ✐♥ t❤❡ ❝♦✉♥t❡r❝❧♦❝❦✇✐s❡ ❞✐r❡❝t✐♦♥✳ • r ✐s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ P t♦ O✳ ❚❤❡② ❝♦♠♠♦♥❧② ❝♦✲❡①✐st t❤♦✉❣❤✳
❉❡✜♥✐t✐♦♥ ✹✳✻✳✸✿ ❛ss♦❝✐❛t❡❞ ♣♦❧❛r ❛♥❞ ❈❛rt❡s✐❛♥ s②st❡♠s ❆ ♣♦❧❛r ❛♥❞ ❛ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡ s②st❡♠s ❛r❡ ❝❛❧❧❡❞ ❛ss♦❝✐❛t❡❞ ✇✐t❤ ❡❛❝❤ ✇❤❡♥ t❤❡ ♣♦❧❡ ♦❢ t❤❡ ❢♦r♠❡r ✐s t❤❡ ♦r✐❣✐♥ ♦❢ t❤❡ ❧❛tt❡r ❛♥❞ t❤❡ ♣♦❧❛r ❛①✐s ♦❢ t❤❡ ❢♦r♠❡r ✐s t❤❡ x✲❛①✐s ♦❢ t❤❡ ❧❛tt❡r✳
❲❛r♥✐♥❣✦ ◆♦ ♠❛tt❡r ✇❤❛t
θ
✐s✱ ✐t✬s
O
✐❢
r = 0✳
❊①❛♠♣❧❡ ✹✳✻✳✹✿ ♣♦❧❛r ♣♦✐♥ts ▲❡t✬s ❝♦♥s✐❞❡r t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ ❛ss♦❝✐❛t❡❞ ♣♦❧❛r ❛♥❞ ❈❛rt❡s✐❛♥ s②st❡♠s✳ ❋♦r ❡❛❝❤ ♦❢ t❤❡s❡ ♣❛✐rs (θ, r)✱ ✇❡ ❝♦♠♣✉t❡ ✐ts ❝♦✉♥t❡r♣❛rt ♦♥ t❤❡ xy ✲♣❧❛♥❡✿ θ 0.00 1.00 1.00 3.14
r →
x
y
1.00
0.00
0.00
0.00
0.54
0.84
1.00 → −1.00
0.00
1.00 →
0.00 →
1.00 →
1.57 −1.50 →
❲❡ ♣❧♦t t❤❡♠ ❤❡r❡✿
0.00 −1.50
✹✳✻✳
✸✵✸
❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
❲❡ ✉s❡❞ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢♦r♠✉❧❛s ❢♦r t❤❡ ❧❛st t✇♦ ❝♦❧✉♠♥s✿ ❂❘❈❬✲✾❪✯❈❖❙✭❘❈❬✲✶✵❪✮ ❛♥❞ ❂❘❈❬✲✶✵❪✯❙■◆✭❘❈❬✲✶✶❪✮ ❚❤❡♦r❡♠ ✹✳✻✳✺✿ ❈♦♥✈❡rs✐♦♥ ❇❡t✇❡❡♥ P♦❧❛r ❆♥❞ ❈❛rt❡s✐❛♥ ✶✳ ❆ ♣♦✐♥t
P
✇✐t❤ t❤❡ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
r ❛♥❞ θ ❤❛s t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♦r❞✐♥❛t❡s
✐♥ t❤❡ ❛ss♦❝✐❛t❡❞ ❈❛rt❡s✐❛♥ s②st❡♠✿
x = r cos θ, y = r sin θ ✷✳ ❆ ♣♦✐♥t
P
✇✐t❤ t❤❡ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡s
❝♦♦r❞✐♥❛t❡s ✐♥ t❤❡ ❛ss♦❝✐❛t❡❞ ♣♦❧❛r s②st❡♠✿
θ = arctan
y x
, r=
x 6= 0
❛♥❞
y
❤❛s t❤❡ ❢♦❧❧♦✇✐♥❣
p x2 + y 2
❊①❡r❝✐s❡ ✹✳✻✳✻
Pr♦✈❡ t❤❡ t❤❡♦r❡♠✳ ❚❤❡ ♠❛✐♥ ❞✐✛❡r❡♥❝❡ ❢r♦♠ t❤❡ ❈❛rt❡s✐❛♥ s②st❡♠ ✐s ❛s ❢♦❧❧♦✇s✳ ❚❤❡ ✐❞❡❛ ♦❢ ❛ ❝♦♦r❞✐♥❛t❡ s②st❡♠ ✐s t♦ ❛ss♦❝✐❛t❡ ❛ ♣❛✐r ✭♦r tr✐♣❧❡✱ ❡t❝✳✮ ♦❢ ♥✉♠❜❡rs t♦ ❡✈❡r② ❧♦❝❛t✐♦♥ ✐♥ ❛♥ ✉♥❛♠❜✐❣✉♦✉s ✇❛②✳ ■t✬s ❛ ❝♦rr❡s♣♦♥❞❡♥❝❡✿ ❧♦❝❛t✐♦♥ ←→ ❛ ♣❛✐r ♦❢ ♥✉♠❜❡rs ■♥ t❤❡ ❢♦r✇❛r❞ ❞✐r❡❝t✐♦♥✱ → ✳ ❈❛rt❡s✐❛♥✿
❙✉♣♣♦s❡ P ✐s ❛ ❧♦❝❛t✐♦♥ ♦♥ t❤❡ ♣❧❛♥❡✳ ❲❡ t❤❡♥ ❞r❛✇ ❛ ✈❡rt✐❝❛❧ ❧✐♥❡ t❤r♦✉❣❤ P ✉♥t✐❧ ✐t ✐♥t❡rs❡❝ts t❤❡ x✲❛①✐s✳ ❚❤❡ ♠❛r❦✱ x✱ ♦❢ t❤❡ ❧♦❝❛t✐♦♥ ✇❤❡r❡ t❤❡② ❝r♦ss ✐s t❤❡ x✲❝♦♦r❞✐♥❛t❡ ♦❢ P ✳ ❲❡ ♥❡①t ❞r❛✇ ❛ ❤♦r✐③♦♥t❛❧ ❧✐♥❡ t❤r♦✉❣❤ P ✉♥t✐❧ ✐t ✐♥t❡rs❡❝ts t❤❡ y ✲❛①✐s✳ ❚❤❡ ♠❛r❦✱ y ✱ ♦❢ t❤❡ ❧♦❝❛t✐♦♥ ✇❤❡r❡ t❤❡② ❝r♦ss ✐s t❤❡ y ✲❝♦♦r❞✐♥❛t❡ ♦❢ P ✳ ❲❡ ❡♥❞ ✉♣ ✇✐t❤ r ≥ 0 ❛♥❞ 0 ≤ θ < 2π ✳
✹✳✻✳
✸✵✹
❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
P♦❧❛r✿
❙✉♣♣♦s❡ P ✐s ❛ ❧♦❝❛t✐♦♥ ♦♥ t❤❡ ♣❧❛♥❡✳ ❲❡ t❤❡♥ ❞r❛✇ ❛ ❧✐♥❡ ❢r♦♠ O t❤r♦✉❣❤ P ✳ ❲❡ ♠❡❛s✉r❡ t❤❡ ❛♥❣❧❡ ♦❢ OP ✇✐t❤ t❤❡ ♣♦❧❛r ❛①✐s ❝♦✉♥t❡r❝❧♦❝❦✇✐s❡✳ ❚❤❛t✬s θ✳ ❲❡ ♠❡❛s✉r❡ t❤❡ ❞✐st❛♥❝❡ ❢r♦♠ O t♦ P ✳ ❚❤❛t✬s r✳ ■♥ t❤❡ ❜❛❝❦✇❛r❞ ❞✐r❡❝t✐♦♥✱ ← ✳ ❈❛rt❡s✐❛♥✿
❙✉♣♣♦s❡ x ❛♥❞ y ❛r❡ ♥✉♠❜❡rs✳ ❋✐rst✱ ✇❡ ✜♥❞ t❤❡ ♠❛r❦ x ♦♥ t❤❡ x✲❛①✐s ❛♥❞ ❞r❛✇ ❛ ✈❡rt✐❝❛❧ ❧✐♥❡ t❤r♦✉❣❤ t❤✐s ♣♦✐♥t✳ ❙❡❝♦♥❞✱ ✇❡ ✜♥❞ t❤❡ ♠❛r❦ y ♦♥ t❤❡ y ✲❛①✐s ❛♥❞ ❞r❛✇ ❛ ❤♦r✐③♦♥t❛❧ ❧✐♥❡ t❤r♦✉❣❤ t❤✐s ♣♦✐♥t✳ ❚❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡s❡ t✇♦ ❧✐♥❡s ✐s t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❧♦❝❛t✐♦♥ P ♦♥ t❤❡ ♣❧❛♥❡✳ P♦❧❛r✿
❙✉♣♣♦s❡ θ ❛♥❞ r ❛r❡ ♥✉♠❜❡rs✳ ❋✐rst✱ ✇❡ r♦t❛t❡ t❤❡ ♣♦❧❛r ❛①✐s θ r❛❞✐❛♥s ✐♥ t❤❡ ❝♦✉♥t❡r❝❧♦❝❦✇✐s❡ ❞✐r❡❝t✐♦♥✳ ❙❡❝♦♥❞✱ ✇❡ ✜♥❞ t❤❡ ♠❛r❦ r ♦♥ t❤❡ ♣♦❧❛r ❛①✐s ❛♥❞ ❞r❛✇ ❛ ❝✐r❝❧❡ ❝❡♥t❡r❡❞ ❛t O t❤r♦✉❣❤ t❤✐s ♣♦✐♥t✳ ❚❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡s❡ t✇♦ ✐s t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❧♦❝❛t✐♦♥ P ♦♥ t❤❡ ♣❧❛♥❡✳ ❯♥❢♦rt✉♥❛t❡❧②✱ t❤❡r❡ ❛r❡ ♠♦r❡ ❞✐✛❡r❡♥t ♣❛✐rs (θ, r) t❤❛t ♣r♦❞✉❝❡ ✭✐♥ ❛❞❞✐t✐♦♥ t♦ (θ, 0)✮ ✐❞❡♥t✐❝❛❧ ❧♦❝❛t✐♦♥s✳ ❯♥❧✐❦❡ t❤❡ ❈❛rt❡s✐❛♥ s②st❡♠✱ t❤❡ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❞♦❡s ♥♦t ❣✐✈❡ ❛♥ ✉♥❛♠❜✐❣✉♦✉s r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❡✈❡r② ❧♦❝❛t✐♦♥ ♦♥ t❤❡ ♣❧❛♥❡✿ (θ + 2π, r) = (θ, r),
(θ, −r) = (θ + π, r) .
✹✳✻✳
✸✵✺
❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
❲❡ ❛❞❞r❡ss t❤✐s ♣r♦❜❧❡♠ ❜② ✉s✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s✳ ❘❡❝❛❧❧ t❤❛t t❤❡ x✲❝♦♦r❞✐♥❛t❡ ♦❢ t❤❡ ♣♦✐♥t ♦♥ t❤❡ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s r ❛t ❛♥❣❧❡ θ ✇✐t❤ t❤❡ x✲❛①✐s ✐s r cos θ ❛♥❞ ✐ts y ✲❝♦♦r❞✐♥❛t❡ ✐s r sin θ✿
❊①❡r❝✐s❡ ✹✳✻✳✼
❙✉❣❣❡st ♦t❤❡r ❡①❛♠♣❧❡s ♦❢ ❤♦✇ t✇♦ ❞✐✛❡r❡♥t ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s ♣r♦❞✉❝❡ t❤❡ s❛♠❡ ♣♦✐♥t✳ ❊①❡r❝✐s❡ ✹✳✻✳✽
❘❡♣r❡s❡♥t ✐♥ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s t❤❡s❡ ♣♦✐♥ts ❣✐✈❡♥ ❜② t❤❡✐r ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡s✿ ✭❛✮ (1, 2)❀ ✭❜✮ (−1, −1)❀ ✭❝✮ (0, 0)✳ ❊①❡r❝✐s❡ ✹✳✻✳✾
❘❡♣r❡s❡♥t ✐♥ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡s t❤❡s❡ ♣♦✐♥ts ❣✐✈❡♥ ❜② t❤❡✐r ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s✿ ✭❛✮ θ = 0, r = −1❀ ✭❜✮ θ = π/4, r = 2❀ ✭❝✮ θ = 1, r = 0✳ ❲❡ ❤❛✈❡ ❛ ❢❛♠✐❧② ♦❢ ❝♦♥❝❡♥tr✐❝ ❝✐r❝❧❡s ♣❛r❛♠❡tr✐③❡❞ ✐♥ ❛ ✉♥✐❢♦r♠ ✇❛②✿
❚❤❡r❡❢♦r❡✱ t❤❡ ♣❛✐r ♦❢ ♥✉♠❜❡rs✱ θ −∞ < θ < +∞
❛♥❞
r −∞ < r < +∞,
✹✳✻✳
✸✵✻
❈♦♦r❞✐♥❛t❡ s②st❡♠s❀ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s
❞❡t❡r♠✐♥❡s ✭❜✉t ♥♦t ✉♥❛♠❜✐❣✉♦✉s❧②✮ ❛ ❧♦❝❛t✐♦♥ ♦♥ t❤❡ ♣❧❛♥❡✿ • ❚❤❡ ❧❛tt❡r ♥✉♠❜❡r✱ r✱ ❞❡t❡r♠✐♥❡s
• ❚❤❡ ❢♦r♠❡r ♥✉♠❜❡r✱ θ✱ t❡❧❧s
✇❤✐❝❤
❤♦✇ ❢❛r
❝✐r❝❧❡ ✇❡ ♣✐❝❦✳
✇❡ ❣♦ ❛❧♦♥❣ t❤✐s ❝✐r❝❧❡✳
❚❤✐s ❛♠❜✐❣✉✐t② ♦❢ t❤❡ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡ s②st❡♠ ❛❧❧♦✇s ✉s t♦ ❡✛❡❝t✐✈❡❧② r❡♣r❡s❡♥t s♦♠❡ ❝♦♠♣❧❡① ❝✉r✈❡s✳ ❊①❛♠♣❧❡ ✹✳✻✳✶✵✿ ♣♦❧❛r ❝✉r✈❡s
❙✐♠♣❧❡ r❡❧❛t✐♦♥s ❜❡t✇❡❡♥ r ❛♥❞ θ ♣r♦❞✉❝❡ ❝✉r✈❡s✿ ♦♥ t❤❡ θr✲♣❧❛♥❡ ❛♥❞ ♦♥ t❤❡ xy ✲♣❧❛♥❡✳ ❚❤❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s R ✐s ✈❡r② s✐♠♣❧❡✱ ❜② ❞❡s✐❣♥✿ r = R.
❙♦✱ r ✐s ✜①❡❞ ✇❤✐❧❡ θ ✈❛r✐❡s✿
◆❡①t✱ θ ✐s ✜①❡❞ ✇❤✐❧❡ r ✈❛r✐❡s❀ ✐t✬s ❛ r❛②✿
■❢ ❜♦t❤ ✈❛r②✱ ✐❞❡♥t✐❝❛❧❧②✱ ✇❡ ❤❛✈❡ t❤✐s s♣✐r❛❧✿
❊①❛♠♣❧❡ ✹✳✻✳✶✶✿ s♣✐r❛❧
❙✉♣♣♦s❡ ✇❡ ♥❡❡❞ t♦ ✜♥❞ ❛ ♣♦❧❛r r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤✐s s♣✐r❛❧✱ ✇✐♥❞✐♥❣ ♦♥t♦ t❤❡ ♦r✐❣✐♥✿
✹✳✼✳
✸✵✼
❱❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡
❲❡ r❡❛❧✐③❡ t❤❛t ✇❡ ♥❡❡❞ r t♦ ❛♣♣r♦❛❝❤ 0 ❛s θ ❣♦❡s t♦ ✐♥✜♥✐t②✳ ❋♦r ❡①❛♠♣❧❡✱ t❤✐s ✇✐❧❧ ❞♦✿ r = 1/θ, θ > 0 . ❊①❡r❝✐s❡ ✹✳✻✳✶✷
❋✐♥❞ ❛ ♣♦❧❛r r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤✐s s♣✐r❛❧✿
❚❤❡ r❡❝t❛♥❣✉❧❛r ❣r✐❞ ♦❢ t❤❡ ❈❛rt❡s✐❛♥ s②st❡♠ ✐s r❡♣❧❛❝❡❞ ✇✐t❤ t❤✐s✿
❊①❡r❝✐s❡ ✹✳✻✳✶✸
❘❡♣r❡s❡♥t ♦♥❡ ♦❢ t❤❡ ❝✉r✈❡❞ r❡❝t❛♥❣❧❡s ❛s ❛ s❡t ✉s✐♥❣ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s✳
✹✳✼✳ ❱❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡
▲❡t✬s t❛❦❡ ❛♥♦t❤❡r ❧♦♦❦ ❛t t❤❡ ♣r♦❜❧❡♠ ❢r♦♠ t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ t❤❡ ❝❤❛♣t❡r✳ Pr♦❜❧❡♠✿
❋r♦♠ ❛ 200✲❢❡❡t ❡❧❡✈❛t✐♦♥✱ ❛ ❝❛♥♥♦♥ ✐s ✜r❡❞ ❤♦r✐③♦♥t❛❧❧② ❛t 200 ❢❡❡t ♣❡r s❡❝♦♥❞✳ ❍♦✇ ❢❛r ✇✐❧❧ t❤❡
✹✳✼✳
❱❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡
✸✵✽
❝❛♥♥♦♥❜❛❧❧ ❣♦❄
❚❤❡ r❡s✉❧t ✇❛s t❤❡s❡ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛s ❝♦♠♣✉t❡❞ ❛s t❤❡ ❘✐❡♠❛♥♥ s✉♠s✿ ❤♦r✐③♦♥t❛❧ ❛❝❝❡❧❡r❛t✐♦♥ ✈❡❧♦❝✐t② ♣♦s✐t✐♦♥
✈❡rt✐❝❛❧
an
bn
vn+1 = vn + han
un+1 = un + hbn
xn+1 = xn + hvn yn+1 = yn + hun
❚❤❡ ♥❡①t st❡♣ ✐s ♦❜✈✐♦✉s✿ ◮ ❲❡ ✐♥t❡r♣r❡t t❤❡ ❧♦❝❛t✐♦♥s ❛s
♣♦✐♥ts ♦♥ t❤❡ ♣❧❛♥❡✳
❚❤❡② ❛r❡ ❝♦♠♣✉t❡❞ r❡❝✉rs✐✈❡❧②✱ ❥✉st ❛s t❤❡✐r ❝♦♦r❞✐♥❛t❡s ❛r❡✿ ❧♦❝❛t✐♦♥ ❤♦r✐③♦♥t❛❧ ✈❡rt✐❝❛❧ (xn , yn )
✈❡❧♦❝✐t② ❞✐s♣❧❛❝❡♠❡♥t ❤♦r✐③♦♥t❛❧ ✈❡rt✐❝❛❧ ❤♦r✐③♦♥t❛❧ ✈❡rt✐❝❛❧ < vn , u n >
< hvn , hun >
❚❤❡ ♥❡①t q✉❡st✐♦♥ ✐s t❤❡♥✿ ◮ ❍♦✇ ❞♦ ✇❡ ✐♥t❡r♣r❡t t❤❡ ✈❡❧♦❝✐t✐❡s ❛♥❞ t❤❡ ❞✐s♣❧❛❝❡♠❡♥ts❄
❚❤❡② ❛r❡ ✈❡❝t♦rs✳ ❏✉st ❛s ✇❡ ❝♦♠❜✐♥❡ ♣❛✐rs ♦❢ ♥✉♠❜❡rs ✐♥t♦ ♣♦✐♥ts ❢♦r ❧♦❝❛t✐♦♥s✱ Pn = (xn , yn ) ,
✇❡ ♥♦✇ ❝♦♠❜✐♥❡ t❤❡ ♣❛✐rs ♦❢ ♥✉♠❜❡rs ✐♥t♦ ✈❡❝t♦rs ❢♦r ✈❡❧♦❝✐t✐❡s ❛♥❞ ❞✐s♣❧❛❝❡♠❡♥ts✿ Vn =< vn , un >, Dn =< hvn , hun > .
❚❤❡ ❞✐✛❡r❡♥❝❡ ✐s ✐♥ ❛❧❣❡❜r❛✳✳✳ ❇✉t ✜rst t❤❡ ❞❡✜♥✐t✐♦♥s✳
❉❡✜♥✐t✐♦♥ ✹✳✼✳✶✿ ✈❡❝t♦r ✐♥ ❞✐♠❡♥s✐♦♥ 2 ■❢ ❛ s❡❣♠❡♥t✬s st❛rt✐♥❣ ♣♦✐♥t ✐s t❤❡ ♦r✐❣✐♥✱ ✐✳❡✳✱ ✐t✬s OP ❢♦r s♦♠❡ P ✱ ✐t ✐s ❝❛❧❧❡❞ ❛ ✭2✲❞✐♠❡♥s✐♦♥❛❧✮ ✈❡❝t♦r ✐♥ R2 ✳
✹✳✼✳
❱❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡
✸✵✾
❉❡✜♥✐t✐♦♥ ✹✳✼✳✷✿ ✈❡❝t♦r ✐♥ xy✲♣❧❛♥❡ ❚❤❡
❝♦♠♣♦♥❡♥ts
♦❢ ✈❡❝t♦r
OP
❛r❡ t❤❡ ❝♦♦r❞✐♥❛t❡s ♦❢ ✐ts t❡r♠✐♥❛❧ ♣♦✐♥t
P✱
❛❝✲
❝♦r❞✐♥❣ t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥✿
P = (a, b) ⇐⇒ OP =< a, b >
❲❛r♥✐♥❣✦ ■t ✐s ❛❧s♦ ❝♦♠♠♦♥ t♦ ✉s❡
(a, b) t♦ ❞❡♥♦t❡ t❤❡ ✈❡❝t♦r✳
▲❡t✬s ❝♦♥s✐❞❡r t❤❡ ❛❧❣❡❜r❛✳ ❚❤✐s ✐s ✇❤❛t ✇❡ ❤❛✈❡ ✇❤❡♥ ✇❡ tr❡❛t t❤❡ t✇♦ ❞✐r❡❝t✐♦♥s s❡♣❛r❛t❡❧②✿
xn+1 = xn + hvn , yn+1 = yn + hun . ❆❢t❡r ❝♦♠❜✐♥✐♥❣ t❤❡s❡ ♣❛✐rs ♦❢ ♥✉♠❜❡rs ✐♥t♦ ♣♦✐♥ts ❛♥❞ ✐♥t♦ ✈❡❝t♦rs✱ ✇❡ ❤❛✈❡✿
(xn+1 , yn+1 ) = (xn , yn )+ < hvn , hun > . ❚❤❡ ❛❞❞✐t✐♦♥ ♦❢ ♣♦✐♥ts ❛♥❞ ✈❡❝t♦rs ✐s ❞✐s❝✉ss❡❞ ✐♥ ❱♦❧✉♠❡ ✹✳ ❲❡ ❝♦♥❝❡♥tr❛t❡ ♦♥ t❤❡ ❢♦❧❧♦✇✐♥❣ t✇♦ ♦♣❡r❛t✐♦♥s✳ ❋✐rst✱ t❤❡ ❞✐s♣❧❛❝❡♠❡♥ts ❛r❡ t❤❡ ✈❡❧♦❝✐t✐❡s ♠✉❧t✐♣❧✐❡❞ ❜② t❤❡ t✐♠❡ ✐♥❝r❡♠❡♥t
h✿
Dn = hVn . ❚❤✐s ✐s
s❝❛❧❛r ♠✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ✈❡❝t♦rs
✳
❙❡❝♦♥❞✱ t❤❡ ❞✐s♣❧❛❝❡♠❡♥ts ❛r❡ ❛❞❞❡❞ ❝♦♥s❡❝✉t✐✈❡❧②✿
Pn+1 = Pn + Dn = (Pn−1 + Dn−1 ) + Dn = Pn−1 + (Dn−1 + Dn ) . ❚❤✐s ✐s
✈❡❝t♦r ❛❞❞✐t✐♦♥
✳
❊①❛♠♣❧❡ ✹✳✼✳✸✿ ✈❡❧♦❝✐t② ♦❢ str❡❛♠ ■❢ ✇❡ ❧♦♦❦ ❛t t❤❡ ✈❡❧♦❝✐t✐❡s ♦❢ ♣❛rt✐❝❧❡s ✐♥ ❛ str❡❛♠✱ t❤❡② ♠❛② ❛❧s♦ ❜❡ ❝♦♠❜✐♥❡❞ ✇✐t❤ t❤❡ s♣❡❡❞ ♦❢ r♦✇✐♥❣ ♦❢ t❤❡ ❜♦❛t✿
❊①❡r❝✐s❡ ✹✳✼✳✹ ❲✐t❤ t❤❡ ✈❡❧♦❝✐t✐❡s ❛s s❤♦✇♥✱ ✇❤❛t ✐s t❤❡ ❜❡st str❛t❡❣② t♦ ❝r♦ss t❤❡ ❝❛♥❛❧❄
✹✳✼✳
❱❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡
✸✶✵
❊①❛♠♣❧❡ ✹✳✼✳✺✿ ❢♦r❝❡s
▲❡t✬s ❛❧s♦ ❧♦♦❦ ❛t ❢♦r❝❡s r❡s♣❡❝t✐✈❡ ❞✐r❡❝t✐♦♥s✿
❛s ✈❡❝t♦rs✳
❋♦r ❡①❛♠♣❧❡✱ s♣r✐♥❣s ❛tt❛❝❤❡❞ t♦ ❛♥ ♦❜❥❡❝t ✇✐❧❧ ♣✉❧❧ ✐t ✐♥ t❤❡✐r
❲❡ ❛❞❞ t❤❡s❡ ✈❡❝t♦rs t♦ ✜♥❞ t❤❡ ❝♦♠❜✐♥❡❞ ❢♦r❝❡ ❛s ✐❢ ♣r♦❞✉❝❡❞ ❜② ❛ s✐♥❣❧❡ s♣r✐♥❣✳ ❚❤❡ ❢♦r❝❡s ❛r❡ ✈❡❝t♦rs t❤❛t st❛rt ❛t t❤❡ s❛♠❡ ❧♦❝❛t✐♦♥✳ ❊①❛♠♣❧❡ ✹✳✼✳✻✿ ❞✐s♣❧❛❝❡♠❡♥ts
❲❡ ❝❛♥ ✐♥t❡r♣r❡t t❤❡ ❞✐s♣❧❛❝❡♠❡♥ts✱ t♦♦✱ ❛s ✈❡❝t♦rs ❛❧✐❣♥❡❞ t♦ t❤❡✐r st❛rt✐♥❣ ♣♦✐♥ts✳ ■♠❛❣✐♥❡ ✇❡ ❛r❡ ❝r♦ss✐♥❣ ❛ r✐✈❡r 3 ♠✐❧❡s ✇✐❞❡ ❛♥❞ ✇❡ ❦♥♦✇ t❤❛t t❤❡ ❝✉rr❡♥t t❛❦❡s ✉s 2 ♠✐❧❡s ❞♦✇♥str❡❛♠✳ ❚❤❡r❡ ❛r❡ t❤r❡❡ ❞✐✛❡r❡♥t ✇❛②s t❤✐s ❝❛♥ ❤❛♣♣❡♥✿ ✶✳ ❛ tr✐♣ 3 ♠✐❧❡s ♥♦rt❤ ❢♦❧❧♦✇❡❞ ❜② ❛ tr✐♣ 2 ♠✐❧❡s ❡❛st❀ ♦r ✷✳ ❛ tr✐♣ 2 ♠✐❧❡s ❡❛st ❢♦❧❧♦✇❡❞ ❜② ❛ tr✐♣ 3 ♠✐❧❡s ♥♦rt❤❀ ❜✉t ❛❧s♦ ✸✳ ❛ tr✐♣ ❛❧♦♥❣ t❤❡ ❞✐❛❣♦♥❛❧ ♦❢ ❛ r❡❝t❛♥❣❧❡ ✇✐t❤ ♦♥❡ s✐❞❡ ❣♦✐♥❣ 3 ♠✐❧❡s ♥♦rt❤ ❛♥❞ ❛♥♦t❤❡r 2 ♠✐❧❡s ❡❛st✳ ❚❤❡ t❤r❡❡ ♦✉t❝♦♠❡s ❛r❡ t❤❡ s❛♠❡✿
❚❤❡② ❛r❡ t❤❡ s❛♠❡✳ ❚❤✐s ✐s ✈❡❝t♦r
❛❧❣❡❜r❛ ✇❡ ♥❡❡❞ t♦ ❧❡❛r♥✳
❙♦✱ ✇❡ ❤❛✈❡ ❛ ❝♦♦r❞✐♥❛t❡✇✐s❡ ❛❞❞✐t✐♦♥✿
✹✳✼✳
❱❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡
✸✶✶
❍❡r❡✿ < 1, 2 > + < 2, −1 >=< 1 + 2, 2 + (−1) >=< 3, 1 > .
●❡♦♠❡tr✐❝❛❧❧②✱ t♦ ❛❞❞ t✇♦ ✈❡❝t♦rs✱ ✇❡ ❢♦❧❧♦✇ ❡✐t❤❡r✿ ✶✳ ❚❤❡ ❤❡❛❞✲t♦✲t❛✐❧✿ t❤❡ tr✐❛♥❣❧❡ ❝♦♥str✉❝t✐♦♥✳ ✷✳ ❚❤❡ t❛✐❧✲✇✐t❤✲t❛✐❧✿ t❤❡ ♣❛r❛❧❧❡❧♦❣r❛♠ ❝♦♥str✉❝t✐♦♥✳ ❚❤❡② ❤❛✈❡ t♦ ♣r♦❞✉❝❡ t❤❡ s❛♠❡ r❡s✉❧t✦ ❚❤❡② ❞♦✱ ❛s ✐❧❧✉str❛t❡❞ ❜❡❧♦✇✿
❲❡ ❛❧s♦ ❤❛✈❡ ❛ ♠✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ t❤❡ ❝♦♦r❞✐♥❛t❡s ❜② t❤❡ s❛♠❡ ♥✉♠❜❡r✿
❍❡r❡✿ 2· < 2, 1 >=< 2 · 2, 2 · 1 >=< 4, 2 > .
■♥ s✉♠♠❛r②✱ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
❉❡✜♥✐t✐♦♥ ✹✳✼✳✼✿ ✈❡❝t♦r ♦♣❡r❛t✐♦♥s ✶✳ ❆♥② t✇♦ ✈❡❝t♦rs < a, b > ❛♥❞ < u, v > ❝❛♥ ❜❡ ❛❞❞❡❞✱ ♣r♦❞✉❝✐♥❣ ❛ ♥❡✇ ✈❡❝t♦r ❝❛❧❧❡❞ t❤❡✐r s✉♠ ✿ < a, b > + < u, v >=< a + u, b + v >
✷✳ ❆♥② ✈❡❝t♦r < a, b > ❝❛♥ ❜❡ ♠✉❧t✐♣❧✐❡❞ ❜② ❛ ♥✉♠❜❡r k ✱ ♣r♦❞✉❝✐♥❣ ❛ ♥❡✇ ✈❡❝t♦r ❝❛❧❧❡❞ t❤❡ s❝❛❧❛r ♣r♦❞✉❝t ✿ k < a, b >=< ka, kb >
❆❧♦♥❣ t❤✐s ❛❧❣❡❜r❛✱ t❤❡r❡ ✐s s✐❧❧ ❣❡♦♠❡tr② t♦♦✳ ❆ ✈❡❝t♦r ❤❛s ❛ ❞✐r❡❝t✐♦♥✱ ✇❤✐❝❤ ✐s ♦♥❡ ♦❢ t❤❡ t✇♦ ❞✐r❡❝t✐♦♥s ♦❢ t❤❡ ❧✐♥❡ ✐t ❞❡t❡r♠✐♥❡s✱ ❛♥❞ ❛ ♠❛❣♥✐t✉❞❡✱ ❞❡✜♥❡❞ ❛s ❢♦❧❧♦✇s✳
✹✳✽✳
❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡
✸✶✷
❉❡✜♥✐t✐♦♥ ✹✳✼✳✽✿ ♠❛❣♥✐t✉❞❡ ♦❢ ✈❡❝t♦r ❚❤❡
♠❛❣♥✐t✉❞❡ ♦❢ ❛ ✈❡❝t♦r OP
✐ts t✐♣
P✱
=< a, b >
✐s ❞❡✜♥❡❞ ❛s t❤❡ ❞✐st❛♥❝❡ ❢r♦♠
O
t♦
❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿
|| < a, b > || = ❆❧❣❡❜r❛ ❛♥❞ ❣❡♦♠❡tr② ♦❢ ✈❡❝t♦rs ❝❛♥ ✐♥t❡r❛❝t✳ ❋♦r ❡①❛♠♣❧❡✱ t❤❡
√
a2 + b2
❚r✐❛♥❣❧❡ ■♥❡q✉❛❧✐t② t❛❦❡ t❤✐s ❢♦r♠✿
||A + B|| ≤ ||A|| + ||B||
❊①❡r❝✐s❡ ✹✳✼✳✾ ❲❤② ♥♦t ✏ 0 =⇒ x2 + 1 6= 0 . ■❢ ✇❡ tr② t♦ s♦❧✈❡ ✐t t❤❡ ✉s✉❛❧ ✇❛②✱ ✇❡ ❣❡t t❤❡s❡✿
x= ❚❤❡r❡ ❛r❡ ♥♦ s✉❝❤
r❡❛❧ ♥✉♠❜❡rs✳
√
−1
❛♥❞
√ x = − −1 .
❍♦✇❡✈❡r✱ ❧❡t✬s ✐❣♥♦r❡ t❤✐s ❢❛❝t ❢♦r ❛ ♠♦♠❡♥t✳ ▲❡t✬s s✉❜st✐t✉t❡ ✇❤❛t ✇❡ ❤❛✈❡ ❜❛❝❦ ✐♥t♦ t❤❡ ❡q✉❛t✐♦♥ ❛♥❞ ✕ ❜❧✐♥❞❧② ✕ ❢♦❧❧♦✇ t❤❡ r✉❧❡s ♦❢ ❛❧❣❡❜r❛✳ ❲❡ ✏❝♦♥✜r♠✑ t❤❛t t❤✐s ✏♥✉♠❜❡r✑ ✐s ❛ ✏s♦❧✉t✐♦♥✑✿
√ x2 + 1 = ( −1)2 + 1 = (−1) + 1 = 0 . ❲❡ ❝❛❧❧ t❤✐s ❡♥t✐t② t❤❡
✐♠❛❣✐♥❛r② ✉♥✐t✱ ❞❡♥♦t❡❞ ❜② i✳
❲❡ ❥✉st ❛❞❞ t❤✐s ✏♥✉♠❜❡r✑ t♦ t❤❡ s❡t ♦❢ ♥✉♠❜❡rs ✇❡ ❞♦ ❛❧❣❡❜r❛ ✇✐t❤✿
✹✳✽✳
❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡
✸✶✸
❆♥❞ s❡❡ ✇❤❛t ❤❛♣♣❡♥s✳✳✳ ▼❛❦✐♥❣
i
❛ ♣❛rt ♦❢ ❛❧❣❡❜r❛ ✇✐❧❧ ♦♥❧② r❡q✉✐r❡ t❤✐s t❤r❡❡✲♣❛rt ❝♦♥✈❡♥t✐♦♥✿
i 6= 0✮✱
✶✳
i
✷✳
i ❝❛♥ ♣❛rt✐❝✐♣❛t❡ ✐♥ t❤❡ ✭❢♦✉r✮ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s ✇✐t❤ r❡❛❧ ♥✉♠❜❡rs ❜② ❢♦❧❧♦✇✐♥❣ t❤❡ s❛♠❡ r✉❧❡s❀
✸✳
i2 = −1✳
✐s ♥♦t ❛ r❡❛❧ ♥✉♠❜❡r ✭❛♥❞✱ ✐♥ ♣❛rt✐❝✉❧❛r✱
❜✉t ❛❧s♦
❲❤❛t ❛❧❣❡❜r❛✐❝ r✉❧❡s ❛r❡ t❤♦s❡❄ ❆ ❢❡✇ ✈❡r② ❜❛s✐❝ ♦♥❡s✿
x + y = y + x, x · y = y · x, x(y + z) = xy + xz, ❲❡ ❛❧❧♦✇ ♦♥❡ ♦r s❡✈❡r❛❧ ♦❢ t❤❡s❡ ♣❛r❛♠❡t❡rs t♦ ❜❡
i✳
❡t❝✳
❋♦r ❡①❛♠♣❧❡✱ ✇❡ ❤❛✈❡✿
i + y = y + i, i · y = y · i, i(y + z) = iy + iz,
❡t❝✳
❲❤❛t ♠❛❦❡s t❤✐s ❡①tr❛ ❡✛♦rt ✇♦rt❤✇❤✐❧❡ ✐s ❛ ♥❡✇ ❧♦♦❦ ❛t q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧s✳ ❋♦r ❡①❛♠♣❧❡✱ t❤✐s ✐s ❤♦✇ ✇❡ ♠❛② ❢❛❝t♦r ♦♥❡✿
x2 − 1 = (x − 1)(x + 1) . ❚❤❡♥
x=1
❛♥❞
x = −1
❛r❡ t❤❡
❇✉t s♦♠❡ ♣♦❧②♥♦♠✐❛❧s✱ ❝❛❧❧❡❞
x✲✐♥t❡r❝❡♣ts
♦❢ t❤❡ ♣♦❧②♥♦♠✐❛❧✿
✐rr❡❞✉❝✐❜❧❡✱ ❝❛♥♥♦t ❜❡ ❢❛❝t♦r❡❞❀ t❤❡r❡ ❛r❡ ♥♦ a, b s✉❝❤ t❤❛t✿ x2 + 1 = (x − a)(x − b) .
❚❤❡r❡ ❛r❡ ♥♦
r❡❛❧ a, b✱ t❤❛t ✐s✦ ❯s✐♥❣ ♦✉r r✉❧❡s✱ ✇❡ ❞✐s❝♦✈❡r✿
(x − i)(x + i) = x2 − ix + ix − i2 = x2 + 1 . ❖❢ ❝♦✉rs❡✱ t❤❡ ♥✉♠❜❡r
i
✐s
♥♦t ❛♥ x✲✐♥t❡r❝❡♣t ♦❢ f (x) = x2 + 1 ❛s t❤❡ x✲❛①✐s ✭✏t❤❡ r❡❛❧ ❧✐♥❡✑✮ ❝♦♥s✐sts ♦❢ ♦♥❧②
✭❛♥❞ ❛❧❧✮ r❡❛❧ ♥✉♠❜❡rs✳ ❙♦✱ ♠✉❧t✐♣❧❡s ♦❢
i
❛♣♣❡❛r ✐♠♠❡❞✐❛t❡❧② ❛s ✇❡ st❛rt ❞♦✐♥❣ ❛❧❣❡❜r❛ ✇✐t❤ ✐t✳
❉❡✜♥✐t✐♦♥ ✹✳✽✳✶✿ ✐♠❛❣✐♥❛r② ♥✉♠❜❡rs ❚❤❡ r❡❛❧ ♠✉❧t✐♣❧❡s ♦❢ t❤❡ ✐♠❛❣✐♥❛r② ✉♥✐t✱ ✐✳❡✳✱
z = ri, r ❛r❡ ❝❛❧❧❡❞
✐♠❛❣✐♥❛r② ♥✉♠❜❡rs✳
r❡❛❧,
✹✳✽✳ ❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡
✸✶✹
❲❡ ❤❛✈❡ ❝r❡❛t❡❞ ❛ ✇❤♦❧❡ ❝❧❛ss ♦❢ ♥♦♥✲r❡❛❧ ♥✉♠❜❡rs✦ ❖❢ ❝♦✉rs❡✱
ri✱
✇❤❡r❡
r
✐s r❡❛❧✱ ❝❛♥✬t ❜❡ r❡❛❧✿
(ri)2 = r2 i2 = −r2 < 0 . ❚❤❡ ♦♥❧② ❡①❝❡♣t✐♦♥ ✐s
0i = 0❀
✐t✬s r❡❛❧✦
❚❤❡r❡ ❛r❡ ❛s ♠❛♥② ♦❢ t❤❡♠ ❛s t❤❡ r❡❛❧ ♥✉♠❜❡rs✿
❊①❛♠♣❧❡ ✹✳✽✳✷✿ q✉❛❞r❛t✐❝ ❡q✉❛t✐♦♥s
❚❤❡ ✐♠❛❣✐♥❛r② ♥✉♠❜❡rs ♠❛② ❛❧s♦ ❝♦♠❡ ❢r♦♠ s♦❧✈✐♥❣ t❤❡ s✐♠♣❧❡st q✉❛❞r❛t✐❝ ❡q✉❛t✐♦♥s✳ ❋♦r ❡①❛♠♣❧❡✱ t❤❡ ❡q✉❛t✐♦♥
x2 + 4 = 0 ❣✐✈❡s ✉s ✈✐❛ ♦✉r s✉❜st✐t✉t✐♦♥✿
■♥❞❡❡❞✱ ✐❢ ✇❡ s✉❜st✐t✉t❡
p √ √ √ x = ± −4 = ± 4(−1) = ± 4 −1 = ±2i .
x = 2i
✐♥t♦ t❤❡ ❡q✉❛t✐♦♥✱ ✇❡ ❤❛✈❡✿
(2i)2 + 4 = (2)2 (i)2 + 4 = 4(−1) + 4 = 0 . ▼♦r❡ ❣❡♥❡r❛❧ q✉❛❞r❛t✐❝ ❡q✉❛t✐♦♥s ❛r❡ ❞✐s❝✉ss❡❞ ✐♥ t❤❡ ♥❡①t s❡❝t✐♦♥✳
■♠❛❣✐♥❛r② ♥✉♠❜❡rs ♦❜❡② t❤❡ ❧❛✇s ♦❢ ❛❧❣❡❜r❛ ❛s ✇❡ ❦♥♦✇ t❤❡♠✦ ■❢ ✇❡ ♥❡❡❞ t♦ s✐♠♣❧✐❢② t❤❡ ❡①♣r❡ss✐♦♥✱ ✇❡ tr② t♦ ♠❛♥✐♣✉❧❛t❡ ✐t ✐♥ s✉❝❤ ❛ ✇❛② t❤❛t r❡❛❧ ♥✉♠❜❡rs ❛r❡ ❝♦♠❜✐♥❡❞ ✇✐t❤ r❡❛❧ ✇❤✐❧❡ ❋♦r ❡①❛♠♣❧❡✱ ✇❡ ❝❛♥ ❥✉st ❢❛❝t♦r
i
i
✐s ♣✉s❤❡❞ ❛s✐❞❡✳
♦✉t ♦❢ ❛❧❧ ❛❞❞✐t✐♦♥ ❛♥❞ s✉❜tr❛❝t✐♦♥✿
5i + 3i = (5 + 3)i = 8i . ■t ❧♦♦❦s ❡①❛❝t❧② ❧✐❦❡ ♠✐❞❞❧❡ s❝❤♦♦❧ ❛❧❣❡❜r❛✿
5x + 3x = (5 + 3)x = 8x . ❆❢t❡r ❛❧❧✱
x
❝♦✉❧❞ ❜❡ i✳ ❆♥♦t❤❡r s✐♠✐❧❛r✐t② ✐s ✇✐t❤ t❤❡ ❛❧❣❡❜r❛ ♦❢ q✉❛♥t✐t✐❡s t❤❛t ❤❛✈❡ ✉♥✐ts✿
5
✐♥✳
+3
✐♥✳
= (5 + 3)
✐♥✳
=8
✐♥✳ .
❙♦✱ t❤❡ ♥❛t✉r❡ ♦❢ t❤❡ ✉♥✐t ❞♦❡s♥✬t ♠❛tt❡r ✭✐❢ ✇❡ ❝❛♥ ♣✉s❤ ✐t ❛s✐❞❡✮✳ ❊✈❡♥ s✐♠♣❧❡r✿
5
❛♣♣❧❡s
+3
❛♣♣❧❡s
= (5 + 3)
❛♣♣❧❡s
=8
❛♣♣❧❡s
.
■t✬s ✏ 8 ❛♣♣❧❡s✑ ♥♦t ✏ 8✑✦ ❆♥❞ s♦ ♦♥✳ ❚❤✐s ✐s ❤♦✇ ✇❡ ♠✉❧t✐♣❧② ❛♥ ✐♠❛❣✐♥❛r② ♥✉♠❜❡r ❜② ❛ r❡❛❧ ♥✉♠❜❡r✿
2 · (3i) = (2 · 3)i = 6i . ❲❡ ❤❛✈❡ ❛ ♥❡✇ ✐♠❛❣✐♥❛r② ♥✉♠❜❡r✳ ❍♦✇ ❞♦ ✇❡ ♠✉❧t✐♣❧② t✇♦ ✐♠❛❣✐♥❛r② ♥✉♠❜❡rs❄ ■t✬s ❞✐✛❡r❡♥t❀ ❛❢t❡r ❛❧❧✱ ✇❡ ❞♦♥✬t ✉s✉❛❧❧② ♠✉❧t✐♣❧② ❛♣♣❧❡s ❜② ❛♣♣❧❡s✦ ■♥ ❝♦♥tr❛st t♦ t❤❡ ❛❜♦✈❡✱ ❡✈❡♥ t❤♦✉❣❤ ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❛♥❞ ❞✐✈✐s✐♦♥ ❢♦❧❧♦✇ t❤❡ s❛♠❡ r✉❧❡ ❛s ❛❧✇❛②s✱ ✇❡ ❝❛♥✱ ✇❤❡♥ ♥❡❝❡ss❛r②✱ ❛♥❞ ♦❢t❡♥ ❤❛✈❡ t♦✱ s✐♠♣❧✐❢② t❤❡ ♦✉t❝♦♠❡ ♦❢ ♦✉r ❛❧❣❡❜r❛ ✉s✐♥❣ ♦✉r ❢✉♥❞❛♠❡♥t❛❧ ✐❞❡♥t✐t② ✿
i2 = −1 .
✹✳✽✳
❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡
✸✶✺
❋♦r ❡①❛♠♣❧❡✿
(5i) · (3i) = (5 · 3)(i · i) = 15i2 = 15(−1) = −15 . ■t✬s r❡❛❧✦ ❲❡ ❛❧s♦ s✐♠♣❧✐❢② t❤❡ ♦✉t❝♦♠❡ ❜② ✉s✐♥❣ t❤❡ ♦t❤❡r
❢✉♥❞❛♠❡♥t❛❧ ❢❛❝t
❛❜♦✉t t❤❡ ✐♠❛❣✐♥❛r② ✉♥✐t✿
i 6= 0 . ❲❡ ❝❛♥ ❞✐✈✐❞❡ ❜②
i✦
❋♦r ❡①❛♠♣❧❡✱
5i 5 5 5i = = ·1= . 3i 3i 3 3
❆s ②♦✉ ❝❛♥ s❡❡✱ ❞♦✐♥❣ ❛❧❣❡❜r❛ ✇✐t❤ ✐♠❛❣✐♥❛r② ♥✉♠❜❡rs ✇✐❧❧ ♦❢t❡♥ ❜r✐♥❣ ✉s ❜❛❝❦ t♦ r❡❛❧ ♥✉♠❜❡rs✳ ❚❤❡s❡ t✇♦ ❝❧❛ss❡s ♦❢ ♥✉♠❜❡rs ❝❛♥♥♦t ❜❡ s❡♣❛r❛t❡❞ ❢r♦♠ ❡❛❝❤ ♦t❤❡r✦ ❚❤❡② ❛r❡♥✬t✳ ▲❡t✬s t❛❦❡ ❛♥♦t❤❡r ❧♦♦❦ ❛t q✉❛❞r❛t✐❝ ❡q✉❛t✐♦♥s✳ ❚❤❡ ❡q✉❛t✐♦♥
ax2 + bx + c = 0, a 6= 0 ,
✐s s♦❧✈❡❞ ✇✐t❤ t❤❡ ❢❛♠✐❧✐❛r
◗✉❛❞r❛t✐❝ ❋♦r♠✉❧❛ ✿ x=
−b ±
√
b2 − 4ac . 2a
▲❡t✬s ❝♦♥s✐❞❡r
x2 + 2x + 10 = 0 . ❚❤❡♥ t❤❡ r♦♦ts ❛r❡ s✉♣♣♦s❡❞ t♦ ❜❡✿
√
22 − 4 · 10 √2 −2 ± −36 = 2 √ = −1 ± −9 √ √ = −1 ± 9 −1
x =
−2 ±
❚❤❡r❡ ✐s ♥♦ r❡❛❧ s♦❧✉t✐♦♥✦ ❇✉t ✇❡ ❣♦ ♦♥✳
= −1 ± 3i . ❲❡ ❡♥❞ ✉♣ ❛❞❞✐♥❣ r❡❛❧ ❛♥❞ ✐♠❛❣✐♥❛r② ♥✉♠❜❡rs✦ ❆s t❤❡r❡ ✐s ♥♦ ✇❛② t♦ s✐♠♣❧✐❢② t❤✐s✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
◮
❆ ♥✉♠❜❡r
a + bi✱
✇❤❡r❡
a, b 6= 0
❛r❡ r❡❛❧✱ ✐s ♥❡✐t❤❡r r❡❛❧ ♥♦r ✐♠❛❣✐♥❛r②✳
❊①❡r❝✐s❡ ✹✳✽✳✸
❊①♣❧❛✐♥ ✇❤②✳
❚❤✐s ❛❞❞✐t✐♦♥ ✐s ♥♦t ❧✐t❡r❛❧✳ ■t✬s ❧✐❦❡ ✏❛❞❞✐♥❣✑ ❛♣♣❧❡s t♦ ♦r❛♥❣❡s✿
5 ■t✬s ♥♦t
❛♣♣❧❡s
+3
♦r❛♥❣❡s
= ...
8 ❛♥❞ ✐t✬s ♥♦t 8 ❢r✉✐t ❜❡❝❛✉s❡ ✇❡ ✇♦✉❧❞♥✬t ❜❡ ❛❜❧❡ t♦ r❡❛❞ t❤✐s ❡q✉❛❧✐t② ❜❛❝❦✇❛r❞s✳
❤♦✇❡✈❡r✱ ❜❡ ♠❡❛♥✐♥❣❢✉❧✿
(5a + 3o) + (2a + 4o) = (5 + 3)a + (3 + 4)o = 8a + 7o . ■t ✐s ❛s ✐❢ ✇❡ ❝♦❧❧❡❝t
s✐♠✐❧❛r t❡r♠s✱ ❧✐❦❡ t❤✐s✿ (5 + 3x) + (2 + 4x) = (5 + 2) + (3 + 4)x = 8 + 7x .
❚❤❡ ❛❧❣❡❜r❛ ✇✐❧❧✱
✹✳✽✳
❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡
✸✶✻
❚❤✐s ✐❞❡❛ ❡♥❛❜❧❡s ✉s t♦ ❞♦ t❤✐s✿
(5 + 3i) + (2 + 4i) = (5 + 3) + (3 + 4)i = 8 + 7i . ❊❛❝❤ ♦❢ t❤❡ ♥✉♠❜❡rs ✇❡ ❛r❡ ❢❛❝✐♥❣ ❝♦♥t❛✐♥ ❜♦t❤ r❡❛❧ ♥✉♠❜❡rs ❛♥❞ ✐♠❛❣✐♥❛r② ♣❛rts✳ ❚❤✐s ❢❛❝t ♠❛❦❡s t❤❡♠ ✏❝♦♠♣❧❡①✑✳✳✳
❉❡✜♥✐t✐♦♥ ✹✳✽✳✹✿ ❝♦♠♣❧❡① ♥✉♠❜❡r ❆♥② s✉♠ ♦❢ r❡❛❧ ❛♥❞ ✐♠❛❣✐♥❛r② ♥✉♠❜❡rs ✐s ❝❛❧❧❡❞ ❛
❝♦♠♣❧❡① ♥✉♠❜❡r✳ ❚❤❡ s❡t ♦❢
❛❧❧ ❝♦♠♣❧❡① ♥✉♠❜❡rs ✐s ❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿
C = {z = a + bi : a, b
r❡❛❧}
❲❛r♥✐♥❣✦ ❆❧❧ r❡❛❧ ♥✉♠❜❡rs ❛r❡ ❝♦♠♣❧❡① ✭b
= 0✮✳
❆❞❞✐t✐♦♥ ❛♥❞ s✉❜tr❛❝t✐♦♥ ❛r❡ ❡❛s②❀ ✇❡ ❥✉st ❝♦♠❜✐♥❡ s✐♠✐❧❛r t❡r♠s ❥✉st ❧✐❦❡ ✐♥ ♠✐❞❞❧❡ s❝❤♦♦❧✳ ❋♦r ❡①❛♠♣❧❡✱ (1 + 5i) + (3 − i) = 1 + 5i + 3 − i = (1 + 3) + (5i − i) = 4 + 4i . ❚♦ s✐♠♣❧✐❢②
♠✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✱ ✇❡ ❡①♣❛♥❞ ❛♥❞ t❤❡♥ ✉s❡ i2 = −1✱ ❛s ❢♦❧❧♦✇s✿ (1 + 5i) · (3 − i) = 1 · 3 + 5i · 3 + 1 · (−i) + 5i · (−i) = 3 + 15i − i − 5i2
= (3 + 5) + (15i − i)
= 8 + 14i . ■t✬s ❛ ❜✐t tr✐❝❦✐❡r ✇✐t❤
❞✐✈✐s✐♦♥ ✿
1 + 5i 3 + i 1 + 5i = 3−i 3−i 3+i (1 + 5i)(3 + i) = (3 − i)(3 + i) −2 + 8i = 2 3 − i2 −2 + 8i = 2 3 +1 1 = (−2 + 8i) 10 = −0.2 + 0.8i .
❚❤❡ s✐♠♣❧✐✜❝❛t✐♦♥ ♦❢ t❤❡ ❞❡♥♦♠✐♥❛t♦r ✐s ♠❛❞❡ ♣♦ss✐❜❧❡ ❜② t❤❡ tr✐❝❦ ♦❢ ♠✉❧t✐♣❧②✐♥❣ ❜②
3 + i✳
■t ✐s t❤❡ s❛♠❡
tr✐❝❦ ✇❡ ✉s❡❞ ✐♥ ❱♦❧✉♠❡ ✶ t♦ s✐♠♣❧✐❢② ❢r❛❝t✐♦♥s ✇✐t❤ r♦♦ts t♦ ❝♦♠♣✉t❡ t❤❡✐r ❧✐♠✐ts✿
√ √ 1+ x 1 1 1+ x √ = √ √ = . 1−x 1− x 1− x1+ x
❉❡✜♥✐t✐♦♥ ✹✳✽✳✺✿ ❝♦♠♣❧❡① ❝♦♥❥✉❣❛t❡ ❚❤❡
❝♦♠♣❧❡① ❝♦♥❥✉❣❛t❡ ♦❢ z = a + bi ✐s ❞❡✜♥❡❞ ❛♥❞ ❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿ z¯ = a + bi = a − bi .
❚❤❡ ❢♦❧❧♦✇✐♥❣ ✐s ❝r✉❝✐❛❧✳
✹✳✽✳
❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡
✸✶✼
❚❤❡♦r❡♠ ✹✳✽✳✻✿ ❆❧❣❡❜r❛ ♦❢ ❈♦♠♣❧❡① ◆✉♠❜❡rs ❚❤❡ r✉❧❡s ♦❢ t❤❡ ❛❧❣❡❜r❛ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❛r❡ ✐❞❡♥t✐❝❛❧ t♦ t❤♦s❡ ♦❢ r❡❛❧ ♥✉♠✲ ❜❡rs✿
• • • • •
z+u=u+z (z + u) + v = z + (u + v) ❈♦♠♠✉t❛t✐✈✐t② ♦❢ ♠✉❧t✐♣❧✐❝❛t✐♦♥✿ z · u = u · z ❆ss♦❝✐❛t✐✈✐t② ♦❢ ♠✉❧t✐♣❧✐❝❛t✐♦♥✿ (z · u) · v = z · (u · v) ❉✐str✐❜✉t✐✈✐t②✿ z · (u + v) = z · u + z · v ❈♦♠♠✉t❛t✐✈✐t② ♦❢ ❛❞❞✐t✐♦♥✿ ❆ss♦❝✐❛t✐✈✐t② ♦❢ ❛❞❞✐t✐♦♥✿
❚❤✐s ✐s t❤❡ ❝♦♠♣❧❡① ♥✉♠❜❡r s②st❡♠ ❀ ✐t ❢♦❧❧♦✇s t❤❡ r✉❧❡s ♦❢ t❤❡ r❡❛❧ ♥✉♠❜❡r s②st❡♠ ❜✉t ❛❧s♦ ❝♦♥t❛✐♥s ✐t✳ ❚❤✐s t❤❡♦r❡♠ ✇✐❧❧ ❛❧❧♦✇ ✉s t♦ ❜✉✐❧❞ ❝❛❧❝✉❧✉s ❢♦r ❝♦♠♣❧❡① ❢✉♥❝t✐♦♥s t❤❛t ✐s ❛❧♠♦st ✐❞❡♥t✐❝❛❧ t♦ ❝❛❧❝✉❧✉s ❢♦r r❡❛❧ ❢✉♥❝t✐♦♥s ❜✉t ❛❧s♦ ❝♦♥t❛✐♥s ✐t✳
❉❡✜♥✐t✐♦♥ ✹✳✽✳✼✿ st❛♥❞❛r❞ ❢♦r♠ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡r ❊✈❡r② ❝♦♠♣❧❡① ♥✉♠❜❡r x ❤❛s t❤❡ st❛♥❞❛r❞
r❡♣r❡s❡♥t❛t✐♦♥ ✿
z = a + bi ,
✇❤❡r❡ a ❛♥❞ b ❛r❡ t✇♦ r❡❛❧ ♥✉♠❜❡rs✳ ❚❤❡ t✇♦ ❝♦♠♣♦♥❡♥ts ❛r❡ ♥❛♠❡❞ ❛s ❢♦❧❧♦✇s✿ • a ✐s t❤❡ r❡❛❧ ♣❛rt ♦❢ z ✱ ✇✐t❤ ♥♦t❛t✐♦♥✿ a = Re(z) ; • bi ✐s t❤❡
✐♠❛❣✐♥❛r② ♣❛rt ♦❢ z ✱ ✇✐t❤ ♥♦t❛t✐♦♥✿ b = Im(z) .
❚❤❡♥✱ t❤❡ ♣✉r♣♦s❡ ♦❢ t❤❡ ❝♦♠♣✉t❛t✐♦♥s ❛❜♦✈❡ ✇❛s t♦ ✜♥❞ t❤❡ st❛♥❞❛r❞ ❢♦r♠ ♦❢ ❛ ❝♦♠♣❧❡① ♥✉♠❜❡r t❤❛t ❝♦♠❡s ❢r♦♠ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s ✇✐t❤ ♦t❤❡r ❝♦♠♣❧❡① ♥✉♠❜❡rs✳ ❚❤❡② ✇❡r❡ ❧✐t❡r❛❧❧② s✐♠♣❧✐✜❝❛t✐♦♥s✳ ❚❤❡ ❞❡✜♥✐t✐♦♥ ♠❛❦❡s s❡♥s❡ ❜❡❝❛✉s❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ r❡s✉❧t✿
❚❤❡♦r❡♠ ✹✳✽✳✽✿ ❙t❛♥❞❛r❞ ❋♦r♠ ♦❢ ❈♦♠♣❧❡① ◆✉♠❜❡r ❚✇♦ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❛r❡ ❡q✉❛❧ ✐❢ ❛♥❞ ♦♥❧② ✐❢ ❜♦t❤ t❤❡✐r r❡❛❧ ❛♥❞ ✐♠❛❣✐♥❛r② ♣❛rts ❛r❡ ❡q✉❛❧✳
❙♦✱ ✇❡ ❤❛✈❡✿ z = Re(z) + Im(z)i .
■♥ ♦r❞❡r t♦ s❡❡ t❤❡ ❣❡♦♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✱ ✇❡ ♥❡❡❞ t♦ ❝♦♠❜✐♥❡ t❤❡ r❡❛❧ ♥✉♠❜❡r ❧✐♥❡ ❛♥❞ t❤❡ ✐♠❛❣✐♥❛r② ♥✉♠❜❡r ❧✐♥❡✳ ❍♦✇❄ ❲❡ r❡❛❧✐③❡ t❤❛t t❤❡② ❤❛✈❡ ♥♦t❤✐♥❣ ✐♥ ❝♦♠♠♦♥✳✳✳ ❡①❝❡♣t 0 = 0i ❜❡❧♦♥❣s t♦ ❜♦t❤✿
❲❡ ❝❛♥ tr② t♦ ❝♦♠❜✐♥❡ t❤❡♠ ❧✐❦❡ t❤❛t✱ ♦r ❧✐❦❡ t❤✐s✿
✹✳✽✳
❍♦✇ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❡♠❡r❣❡
✸✶✽
❖r ✇❡ ❝❛♥ tr② t♦ ❝♦♠❜✐♥❡ t❤❡♠ ✐♥ t❤❡ s❛♠❡ ♠❛♥♥❡r ✇❡ ❜✉✐❧t t❤❡
xy ✲♣❧❛♥❡✿
❚❤✐s r❡♣r❡s❡♥t❛t✐♦♥ ❤❡❧♣s ✉s ✉♥❞❡rst❛♥❞ t❤❡ ♠❛✐♥ ✐❞❡❛✿
◮ ■❢
❈♦♠♣❧❡① ♥✉♠❜❡rs ❛r❡ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥s ♦❢ t❤❡ r❡❛❧ ✉♥✐t✱
z = a + bi✱
t❤❡♥
a
❛♥❞
b
1✱
❛r❡ t❤♦✉❣❤t ♦❢ ❛s t❤❡ ❝♦♠♣♦♥❡♥ts ♦❢ ✈❡❝t♦r
❛♥❞ t❤❡ ✐♠❛❣✐♥❛r② ✉♥✐t✱
z
i✳
✐♥ t❤❡ ♣❧❛♥❡✳ ❲❡ ❤❛✈❡ ❛ ♦♥❡✲t♦✲♦♥❡
❝♦rr❡s♣♦♥❞❡♥❝❡✿
C ←→ R2 , ❣✐✈❡♥ ❜②
a + bi ←→ < a, b > . ❚❤❡♥ t❤❡
x✲❛①✐s
■t ✐s ❝❛❧❧❡❞ t❤❡
♦❢ t❤✐s ♣❧❛♥❡ ❝♦♥s✐sts ♦❢ t❤❡ r❡❛❧ ♥✉♠❜❡rs ❛♥❞ t❤❡
y ✲❛①✐s
♦❢ t❤❡ ✐♠❛❣✐♥❛r② ♥✉♠❜❡rs✳
❝♦♠♣❧❡① ♣❧❛♥❡
✳
❲❛r♥✐♥❣✦ ❚❤✐s ✐s ❥✉st ❛ ✈✐s✉❛❧✐③❛t✐♦♥✳
❚❤❡♥ t❤❡ ❝♦♠♣❧❡① ❝♦♥❥✉❣❛t❡ ♦❢
z
✐s t❤❡ ❝♦♠♣❧❡① ♥✉♠❜❡r ✇✐t❤ t❤❡ s❛♠❡ r❡❛❧ ♣❛rt ❛s
♣❛rt ✇✐t❤ t❤❡ ♦♣♣♦s✐t❡ s✐❣♥✿
Re(¯ z ) = Re(z)
❛♥❞
Im(¯ z ) = − Im(z) .
z
❛♥❞ t❤❡ ✐♠❛❣✐♥❛r②
✹✳✾✳
❚❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C ✐s t❤❡ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡ R2
✸✶✾
❲❛r♥✐♥❣✦ ❆❧❧ ♥✉♠❜❡rs ✇❡ ❤❛✈❡ ❡♥❝♦✉♥t❡r❡❞ s♦ ❢❛r ❛r❡ r❡❛❧ ♥♦♥✲❝♦♠♣❧❡①✱ ❛♥❞ s♦ ❛r❡ ❛❧❧ q✉❛♥t✐t✐❡s ♦♥❡ ❝❛♥ ❡♥✲ ❝♦✉♥t❡r ✐♥ ❞❛②✲t♦✲❞❛② ❧✐❢❡ ♦r s❝✐❡♥❝❡✿ t✐♠❡✱ ❧♦❝❛t✐♦♥✱ ❧❡♥❣t❤✱ ❛r❡❛✱ ✈♦❧✉♠❡✱ ♠❛ss✱ t❡♠♣❡r❛t✉r❡✱ ♠♦♥❡②✱ ❡t❝✳
✹✳✾✳ ❚❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡
C
✐s t❤❡ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡
R2
♥✉♠❜❡rs✱ t❤❡② ♠✉st ❜❡ s✉❜ ❥❡❝t t♦ s♦♠❡ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s✳ 2 ❲❡ ✇✐❧❧ ✐♥✐t✐❛❧❧② ❧♦♦❦ ❛t t❤❡♠ t❤r♦✉❣❤ t❤❡ ❧❡♥s ♦❢ ✈❡❝t♦r ❛❧❣❡❜r❛ ♦❢ t❤❡ ♣❧❛♥❡ R ✳ ❆ ❝♦♠♣❧❡① ♥✉♠❜❡r z ❤❛s t❤❡ st❛♥❞❛r❞ r❡♣r❡s❡♥t❛t✐♦♥ ✿ ■❢ ✇❡ ❝❛❧❧ ❝♦♠♣❧❡① ♥✉♠❜❡r
z = a + bi , ✇❤❡r❡
a
❛♥❞
b
❛r❡ t✇♦ r❡❛❧ ♥✉♠❜❡rs✳
❚❤❡s❡ t✇♦ ❝❛♥ ❜❡ s❡❡♥ ✐♥ t❤❡
❣❡♦♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥
♦❢ ❝♦♠♣❧❡①
♥✉♠❜❡rs✿
❚❤❡r❡❢♦r❡✱
a
❛♥❞
b
❛r❡ t❤♦✉❣❤t ♦❢ ❛s t❤❡ ❝♦♦r❞✐♥❛t❡s ♦❢
✐s ♥♦t ♦♥❧② ❛ ♣♦✐♥t ♦♥ t❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ ❜✉t ❛❧s♦ ❛
z
❛s ❛
✈❡❝t♦r✳
♣♦✐♥t
♦♥ t❤❡ ♣❧❛♥❡✳ ❇✉t ❛♥② ❝♦♠♣❧❡① ♥✉♠❜❡r
❲❡ ❤❛✈❡ ❛ ❝♦rr❡s♣♦♥❞❡♥❝❡✿
C ←→ R2 , ❣✐✈❡♥ ❜②
a + bi ←→ < a, b > ❚❤❡r❡ ✐s ♠♦r❡ t♦ t❤✐s t❤❛♥ ❥✉st ❛ ♠❛t❝❤❀ t❤❡ ❛❧❣❡❜r❛ ♦❢ ✈❡❝t♦rs ✐♥
R2
❛♣♣❧✐❡s✦
✹✳✾✳
❚❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C ✐s t❤❡ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡ R2
✸✷✵
❲❛r♥✐♥❣✦
■♥ s♣✐t❡ ♦❢ t❤✐s ❢✉♥❞❛♠❡♥t❛❧ ❝♦rr❡s♣♦♥❞❡♥❝❡✱ ✇❡ ✇✐❧❧ ❝♦♥t✐♥✉❡ t♦ t❤✐♥❦ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❛s ♥✉♠❜❡rs ✭❛♥❞ ✉s❡ t❤❡ ❧♦✇❡r ❝❛s❡ ❧❡tt❡rs✮✳ ▲❡t✬s s❡❡ ❤♦✇ t❤✐s ❛❧❣❡❜r❛ ♦❢ ♥✉♠❜❡rs ✇♦r❦s ✐♥ ♣❛r❛❧❧❡❧ ✇✐t❤ t❤❡ ❛❧❣❡❜r❛ ♦❢ ❋✐rst✱ t❤❡ ❛❞❞✐t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs ✐s ❞♦♥❡
(a + bi)
2✲✈❡❝t♦rs✳
❝♦♠♣♦♥❡♥t✇✐s❡ ✿
+ (c + di)
= (a + c)
+ (b + d)i
< a, b > + < c, d > = < a + c ,
b+d>
■t ❝♦rr❡s♣♦♥❞s t♦ ❛❞❞✐t✐♦♥ ♦❢ ✈❡❝t♦rs✿
❙❡❝♦♥❞✱ ✇❡ ❝❛♥ ❡❛s✐❧② ♠✉❧t✐♣❧② ❝♦♠♣❧❡① ♥✉♠❜❡rs ❜② r❡❛❧ ♦♥❡s✿
(a + bi)
c = (ac)
+ (bc)i
< a, b > c = < ac ,
bc >
■t ❝♦rr❡s♣♦♥❞s t♦ s❝❛❧❛r ♠✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ✈❡❝t♦rs✳
❲❛r♥✐♥❣✦
❱❡❝t♦r ❛❧❣❡❜r❛ ♦❢ R2 ✐s ❝♦♠♣❧❡① ❛❧❣❡❜r❛✱ ❜✉t ♥♦t ✈✐❝❡ ✈❡rs❛✳ ❈♦♠♣❧❡① ♠✉❧t✐♣❧✐❝❛t✐♦♥ ✐s ✇❤❛t ♠❛❦❡s ✐t ❞✐✛❡r❡♥t✳ ❊①❛♠♣❧❡ ✹✳✾✳✶✿ ❝✐r❝❧❡ ❲❡ ❝❛♥ ❡❛s✐❧② r❡♣r❡s❡♥t ❝✐r❝❧❡s ♦♥ t❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡✿
z = r cos θ + r sin θ · i .
❖✉r st✉❞② ♦❢ ❝❛❧❝✉❧✉s ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs st❛rts ✇✐t❤ t❤❡ st✉❞② ♦❢ t❤❡ t♦♣♦❧♦❣② ✐s t❤❡ s❛♠❡ ❛s t❤❛t ♦❢
t❤❡ ❊✉❝❧✐❞❡❛♥ ♣❧❛♥❡
R
2
✦
t♦♣♦❧♦❣②
♦❢ t❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡✳ ❚❤✐s
✹✳✾✳
❚❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C ✐s t❤❡ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡ R2
❏✉st ❛s ❜❡❢♦r❡✱ ❡✈❡r② ❢✉♥❝t✐♦♥
z = f (t)
✸✷✶
✇✐t❤ ❛♥ ❛♣♣r♦♣r✐❛t❡ ❞♦♠❛✐♥ ❝r❡❛t❡s ❛ s❡q✉❡♥❝❡✿
zk = f (k) . ❆ ❢✉♥❝t✐♦♥ ✇✐t❤ ❝♦♠♣❧❡① ✈❛❧✉❡s ❞❡✜♥❡❞ ♦♥ ❛ r❛② ✐♥ t❤❡ s❡t ♦❢ ✐♥t❡❣❡rs✱
s❡q✉❡♥❝❡✱ ♦r s✐♠♣❧② s❡q✉❡♥❝❡✳
{p, p + 1, ...}✱
✐s ❝❛❧❧❡❞ ❛♥
✐♥✜♥✐t❡
❊①❛♠♣❧❡ ✹✳✾✳✷✿ s♣✐r❛❧
❆ ❣♦♦❞ ❡①❛♠♣❧❡ ✐s t❤❛t ♦❢ t❤❡ s❡q✉❡♥❝❡ ♠❛❞❡ ♦❢ t❤❡ r❡❝✐♣r♦❝❛❧s✿
zk = ■t
cos k sin k + i. k k
t❡♥❞s t♦ 0 ✇❤✐❧❡ s♣✐r❛❧✐♥❣ ❛r♦✉♥❞ ✐t✳
❚❤❡ st❛rt✐♥❣ ♣♦✐♥t ♦❢ ❝❛❧❝✉❧✉s ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❚❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❛
♥✉♠❜❡rs
s❡q✉❡♥❝❡ ♦❢ ❝♦♠♣❧❡①
✐s t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ✐ts r❡❛❧ ❛♥❞ ✐♠❛❣✐♥❛r② ♣❛rts ♦r✱ ✇❤✐❝❤ ✐s ❡q✉✐✈❛❧❡♥t✱ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ♣♦✐♥ts
✭♦r ✈❡❝t♦rs✮ ♦♥ t❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ s❡❡♥ ❛s ❛♥② ♣❧❛♥❡✿ ❚❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡
k t❤ ♣♦✐♥t t♦ t❤❡ ❧✐♠✐t ✐s ❣❡tt✐♥❣
s♠❛❧❧❡r ❛♥❞ s♠❛❧❧❡r✳
❲❡ ✉s❡ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ❢♦r ✈❡❝t♦rs ♦♥ t❤❡ ♣❧❛♥❡ ❜② s✐♠♣❧② r❡♣❧❛❝✐♥❣ ✈❡❝t♦rs ✇✐t❤ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❛♥❞ ✏♠❛❣♥✐t✉❞❡✑ ✇✐t❤ ✏♠♦❞✉❧✉s✑✳
✹✳✾✳
❚❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ C ✐s t❤❡ ❊✉❝❧✐❞❡❛♥ s♣❛❝❡ R2
✸✷✷
❉❡✜♥✐t✐♦♥ ✹✳✾✳✸✿ ❝♦♥✈❡r❣❡♥t s❡q✉❡♥❝❡ ❙✉♣♣♦s❡
C✳
{zk : k = 1, 2, 3, ...}
✐s ❛ s❡q✉❡♥❝❡ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✱ ✐✳❡✳✱ ♣♦✐♥ts ✐♥
❝♦♥✈❡r❣❡s
❲❡ s❛② t❤❛t t❤❡ s❡q✉❡♥❝❡
♣♦✐♥t ✐♥
C✱
❝❛❧❧❡❞ t❤❡
❧✐♠✐t
t♦ ❛♥♦t❤❡r ❝♦♠♣❧❡① ♥✉♠❜❡r
z✱
✐✳❡✳✱ ❛
♦❢ t❤❡ s❡q✉❡♥❝❡✱ ✐❢✿
||zk − z|| → 0
❛s
k → ∞,
❞❡♥♦t❡❞ ❛s ❢♦❧❧♦✇s✿
zk → z
❛s
k → ∞,
♦r
z = lim zk . k→∞
❝♦♥✈❡r❣❡♥t ❞✐✈❡r❣❡s✳
■❢ ❛ s❡q✉❡♥❝❡ ❤❛s ❛ ❧✐♠✐t✱ ✇❡ ❝❛❧❧ t❤❡ s❡q✉❡♥❝❡
✈❡r❣❡s ❀ ♦t❤❡r✇✐s❡ ✐t ✐s ❞✐✈❡r❣❡♥t
❛♥❞ ✇❡ s❛② ✐t
❛♥❞ s❛② t❤❛t ✐t
■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ♣♦✐♥ts st❛rt t♦ ❛❝❝✉♠✉❧❛t❡ ✐♥ s♠❛❧❧❡r ❛♥❞ s♠❛❧❧❡r ❝✐r❝❧❡s ❛r♦✉♥❞ ❛ tr❡♥❞ ✐♥ ❛ ❝♦♥✈❡r❣❡♥t s❡q✉❡♥❝❡ ✐s t♦ ❡♥❝❧♦s❡ t❤❡ t❛✐❧ ♦❢ t❤❡ s❡q✉❡♥❝❡ ✐♥ ❛
❞✐s❦ ✿
z✳
❝♦♥✲
❆ ✇❛② t♦ ✈✐s✉❛❧✐③❡
❚❤❡♦r❡♠ ✹✳✾✳✹✿ ❯♥✐q✉❡♥❡ss ♦❢ ▲✐♠✐t ❆ s❡q✉❡♥❝❡ ❝❛♥ ❤❛✈❡ ♦♥❧② ♦♥❡ ❧✐♠✐t ✭✜♥✐t❡ ♦r ✐♥✜♥✐t❡✮❀ ✐✳❡✳✱ ✐❢ a ❛♥❞ b ❛r❡ ❧✐♠✐ts ♦❢ t❤❡ s❛♠❡ s❡q✉❡♥❝❡✱ t❤❡♥ a = b✳
❉❡✜♥✐t✐♦♥ ✹✳✾✳✺✿ s❡q✉❡♥❝❡ t❡♥❞s t♦ ✐♥✜♥✐t② ❲❡ s❛② t❤❛t ❛ s❡q✉❡♥❝❡ ❡❛❝❤ r❡❛❧ ♥✉♠❜❡r ♥✉♠❜❡r
k > N✱
zk t❡♥❞s t♦ ✐♥✜♥✐t②
✐❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❞✐t✐♦♥ ❤♦❧❞s✿ ❋♦r
R✱ t❤❡r❡ ❡①✐sts s✉❝❤ ❛ ♥❛t✉r❛❧ ♥✉♠❜❡r N
t❤❛t✱ ❢♦r ❡✈❡r② ♥❛t✉r❛❧
✇❡ ❤❛✈❡
||zk || > R . ❲❡ ✉s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥✿
zk → ∞
❛s
k → ∞.
❚❤❡ ❢♦❧❧♦✇✐♥❣ ✐s ❛♥♦t❤❡r ❛♥❛❧♦❣ ♦❢ ❛ ❢❛♠✐❧✐❛r t❤❡♦r❡♠ ❛❜♦✉t t❤❡ t♦♣♦❧♦❣② ♦❢ t❤❡ ♣❧❛♥❡✳
❚❤❡♦r❡♠ ✹✳✾✳✻✿ ❈♦♠♣♦♥❡♥t✇✐s❡ ❈♦♥✈❡r❣❡♥❝❡ ♦❢ ❙❡q✉❡♥❝❡s ❆ s❡q✉❡♥❝❡ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs zk ✐♥ C ❝♦♥✈❡r❣❡s t♦ ❛ ❝♦♠♣❧❡① ♥✉♠❜❡r z ✐❢ ❛♥❞ ♦♥❧② ✐❢ ❜♦t❤ t❤❡ r❡❛❧ ❛♥❞ t❤❡ ✐♠❛❣✐♥❛r② ♣❛rts ♦❢ zk ❝♦♥✈❡r❣❡ t♦ t❤❡ r❡❛❧ ❛♥❞ t❤❡ ✐♠❛❣✐♥❛r② ♣❛rts ♦❢ z r❡s♣❡❝t✐✈❡❧②❀ ✐✳❡✳✱ zk → z ⇐⇒ Re(zk ) → Re(z) ❛♥❞ Im(zk ) → Im(z) .
✹✳✶✵✳ ▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿
C
✐s♥✬t ❥✉st
R2
✸✷✸
❚❤❡ ❛❧❣❡❜r❛✐❝ ♣r♦♣❡rt✐❡s ♦❢ ❧✐♠✐ts ♦❢ s❡q✉❡♥❝❡s ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs ✇✐❧❧ ❛❧s♦ ❧♦♦❦ ❢❛♠✐❧✐❛r✿
❚❤❡♦r❡♠ ✹✳✾✳✼✿ ❙✉♠ ❘✉❧❡ ❢♦r ❈♦♠♣❧❡① ❙❡q✉❡♥❝❡s ■❢ s❡q✉❡♥❝❡s
zk , uk
❝♦♥✈❡r❣❡✱ t❤❡♥ s♦ ❞♦❡s
z k + uk ✱
❛♥❞ ✇❡ ❤❛✈❡✿
lim (zk + uk ) = lim zk + lim uk .
k→∞
k→∞
k→∞
❚❤❡♦r❡♠ ✹✳✾✳✽✿ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ❈♦♠♣❧❡① ❙❡q✉❡♥❝❡s ■❢ s❡q✉❡♥❝❡
zk
❝♦♥✈❡r❣❡s✱ t❤❡♥ s♦ ❞♦❡s
czk
❢♦r ❛♥② ❝♦♠♣❧❡① ♥✉♠❜❡r
c✱
❛♥❞ ✇❡
❤❛✈❡✿
lim c zk = c · lim zk .
k→∞
k→∞
❲♦✉❧❞♥✬t ❝❛❧❝✉❧✉s ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❜❡ ❥✉st ❛ ❝♦♣② ♦❢ ❝❛❧❝✉❧✉s ♦♥ t❤❡ ♣❧❛♥❡❄ ◆♦✱ ♥♦t ✇✐t❤ t❤❡ ♣♦ss✐❜✐❧✐t② ♦❢ ♠✉❧t✐♣❧✐❝❛t✐♦♥ t❛❦❡♥ ✐♥t♦ ❛❝❝♦✉♥t✳
✹✳✶✵✳ ▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿
❙♦✱ t❤❡ ✈❡❝t♦r ❛❧❣❡❜r❛ ♦❢ ❏✉st ❧✐❦❡ ✐♥ ♣❧❛♥❡
C✳
R2 ✱
R2
✐s ✐♥❝❧✉❞❡❞ ✐♥ t❤❡ ❝♦♠♣❧❡① ❛❧❣❡❜r❛ ♦❢
♠✉❧t✐♣❧✐❝❛t✐♦♥ ❜② ❛ r❡❛❧ ♥✉♠❜❡r
r
▲❡t✬s st❛rt ✇✐t❤ ❞❡❣r❡❡s✿
1
1
❜❡❝♦♠❡s
i✱
✇❤✐❧❡
c
R2
❚❤❡r❡ ✐s ♠♦r❡ t♦ t❤❡ ❧❛tt❡r✳
✇✐❧❧ ❛❧s♦ r♦t❛t❡ ❡❛❝❤ ✈❡❝t♦r✳
i
i s❡✈❡r❛❧ t✐♠❡s✳ i ❜❡❝♦♠❡s −1✱ ❡t❝✳✿
❛♥❞ ♠✉❧t✐♣❧② ✐t ❜②
✐s♥✬t ❥✉st
✇✐❧❧ str❡t❝❤✴s❤r✐♥❦ ❛❧❧ ✈❡❝t♦rs ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ❝♦♠♣❧❡①
❍♦✇❡✈❡r✱ ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❜② ❛ ❝♦♠♣❧❡① ♥✉♠❜❡r
❊①❛♠♣❧❡ ✹✳✶✵✳✶✿ ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❜②
C✳
C
▼✉❧t✐♣❧✐❝❛t✐♦♥ ❜②
i
r♦t❛t❡s t❤❡ ♥✉♠❜❡r ❜②
90
✹✳✶✵✳
▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿
C
✐s♥✬t ❥✉st
✸✷✹
R2
r♦t❛t✐♦♥ ❢r♦♠ ✵ ❞❡❣r❡❡s t♦ ✾✵ i · i = i2 = −1 r♦t❛t✐♦♥ ❢r♦♠ ✾✵ ❞❡❣r❡❡s t♦ ✶✽✵ −1 · i = −i r♦t❛t✐♦♥ ❢r♦♠ ✶✽✵ ❞❡❣r❡❡s t♦ ✷✼✵ 2 −i · i = −i = 1 r♦t❛t✐♦♥ ❢r♦♠ ✷✼✵ ❞❡❣r❡❡s t♦ ✸✻✵ ❛♥❞ s♦ ♦♥✳ 1·i=i
❊①❛♠♣❧❡ ✹✳✶✵✳✷✿ ❝♦♠♣❧❡① ♠✉❧t✐♣❧✐❝❛t✐♦♥
❆ ♠♦r❡ ❝♦♠♣❧❡① ❡①❛♠♣❧❡✿ u
= 1 + 2i
v
=2+i
uv = 2 + 4i + i + 2i2 = (2 − 2) + (4 + 1)i = 0 + 5i
❚❤❡ r♦t❛t✐♦♥ ♦❢ v ✐s ✈✐s✐❜❧❡✿
■♥ ❝♦♥tr❛st✱ ✇❡ ❝❛♥ s❡❡ t❤❡ r❡s✉❧t ♦❢ ♠✉❧t✐♣❧②✐♥❣ v ❜② w = 2✿ ♥♦ r♦t❛t✐♦♥✳ ❙♦✱ t❤❡ ✐♠❛❣✐♥❛r② ♣❛rt ♦❢ c ✐s r❡s♣♦♥s✐❜❧❡ ❢♦r r♦t❛t✐♦♥✳ ❍♦✇ ❞♦❡s ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❛✛❡❝t t♦♣♦❧♦❣②❄
❚❤❡♦r❡♠ ✹✳✶✵✳✸✿ Pr♦❞✉❝t ❘✉❧❡ ❢♦r ❈♦♠♣❧❡① ❙❡q✉❡♥❝❡s ■❢ s❡q✉❡♥❝❡s
zk , uk
❝♦♥✈❡r❣❡✱ t❤❡♥ s♦ ❞♦❡s
z k · uk ✱
❛♥❞
lim (zk · uk ) = lim zk · lim uk .
k→∞
k→∞
k→∞
✹✳✶✵✳
▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿
C
✸✷✺
R2
✐s♥✬t ❥✉st
Pr♦♦❢✳ ❙✉♣♣♦s❡
zk = ak + bk i → a + bi ❛♥❞ uk = pk + qk i = p + qi .
❚❤❡♥✱ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❈♦♠♣♦♥❡♥t✇✐s❡
❈♦♥✈❡r❣❡♥❝❡ ❚❤❡♦r❡♠
❛❜♦✈❡✱ ✇❡ ❤❛✈❡✿
ak → a, bk → b ❛♥❞ pk → p, qk → q .
❚❤❡♥✱ ❜② t❤❡ Pr♦❞✉❝t
✱ ✇❡ ❤❛✈❡✿
❘✉❧❡ ❢♦r ♥✉♠❡r✐❝❛❧ s❡q✉❡♥❝❡s
ak pk → ap, ak qk → aq, bk pk → bp, bk qk → bq .
❚❤❡♥✱ ❛s ✇❡ ❦♥♦✇✱ zk · uk = (ak pk − bk qk ) + (ak qk + bk pk )i → (ap − bq) + (aq + bq)i = (a + bi)(p + qi) ,
❜② t❤❡ ❙✉♠
✳
❘✉❧❡ ❢♦r ♥✉♠❡r✐❝❛❧ s❡q✉❡♥❝❡s
❚❤❡♦r❡♠ ✹✳✶✵✳✹✿ ◗✉♦t✐❡♥t ❘✉❧❡ ❢♦r ❈♦♠♣❧❡① ❙❡q✉❡♥❝❡s ■❢ s❡q✉❡♥❝❡s
z k , uk
❝♦♥✈❡r❣❡ ✭✇✐t❤
uk 6= 0✮✱
t❤❡♥ s♦ ❞♦❡s
zk /uk ✱
❛♥❞
zk limk→∞ zk = , k→∞ uk limk→∞ uk lim
♣r♦✈✐❞❡❞
lim uk 6= 0 .
k→∞
❏✉st ❧✐❦❡ r❡❛❧ ♥✉♠❜❡rs✦
❊①❡r❝✐s❡ ✹✳✶✵✳✺ Pr♦✈❡ t❤❡ ❧❛st t❤❡♦r❡♠✳ ■♥ ❛❞❞✐t✐♦♥ t♦ t❤❡ st❛♥❞❛r❞✱ ❈❛rt❡s✐❛♥✱ r❡♣r❡s❡♥t❛t✐♦♥✱ ❛ ❝♦♠♣❧❡① ♥✉♠❜❡r x = a + bi ❝❛♥ ❜❡ ❞❡✜♥❡❞ ✐♥ t❡r♠s ♦❢ t❤❡ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s✳
❲❡ ❥✉st ❝♦♥t✐♥✉❡ ♦✉r ❝♦rr❡s♣♦♥❞❡♥❝❡ ✇✐t❤ ❛ ♥❡✇ ♦♥❡✿ a + bi ←→ (a, b) ←→ (θ, r)
❚❤❡ t✇♦ q✉❛♥t✐t✐❡s θ ❛♥❞ r ❜❡❝♦♠❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿
❉❡✜♥✐t✐♦♥ ✹✳✶✵✳✻✿ ♠♦❞✉❧✉s ❛♥❞ ❛r❣✉♠❡♥t ❙✉♣♣♦s❡ z ✐s ❛ ❝♦♠♣❧❡① ♥✉♠❜❡r✳ ✶✳ ❚❤❡ ❞✐st❛♥❝❡ ❢r♦♠ t❤❡ ❧♦❝❛t✐♦♥ ♦❢ z ♦♥ t❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡ t♦ t❤❡ ♦r✐❣✐♥ O
✹✳✶✵✳ ▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿
C
✐s♥✬t ❥✉st
✐s ❝❛❧❧❡❞ t❤❡ ♠♦❞✉❧✉s ♦❢
R2
z
✸✷✻
❞❡♥♦t❡❞ ❜②✿
||z|| ✷✳ ❚❤❡ ❛♥❣❧❡ ♦❢ t❤❡ ❧✐♥❡ t❤r♦✉❣❤ t❤❡ ♣♦✐♥t ✐s ❝❛❧❧❡❞ t❤❡ ❛r❣✉♠❡♥t ♦❢
z
z
❢r♦♠ t❤❡ ♦r✐❣✐♥
O
✇✐t❤ t❤❡
x✲❛①✐s
❞❡♥♦t❡❞ ❜②✿
Arg(z)
❆ s✐♠♣❧❡ ❡①❛♠✐♥❛t✐♦♥ t❡❧❧s ✉s ❤♦✇ t♦ tr❛♥s✐t✐♦♥ ❜❡t✇❡❡♥ t❤❡ t✇♦ ❝♦♦r❞✐♥❛t❡ s②st❡♠s✿
❚❤❡♦r❡♠ ✹✳✶✵✳✼✿ ❈♦♥✈❡rs✐♦♥ ♦❢ ❈♦♠♣❧❡① ◆✉♠❜❡rs ❙✉♣♣♦s❡
x = a + bi
✐s ❛ ❝♦♠♣❧❡① ♥✉♠❜❡r✳ ❚❤❡♥✱ ✇❡ ❤❛✈❡✿
✶✳ ❚❤❡ ♠♦❞✉❧✉s ♦❢
z
✐s ❢♦✉♥❞ ❜②✿
||z|| = ✷✳ ❚❤❡ ❛r❣✉♠❡♥t ♦❢
z
√
a2 + b2
✐s ❢♦✉♥❞ ❜②✿
Arg(z) = arctan
❆♥② t✇♦ r❡❛❧ ♥✉♠❜❡rs t❤❡ ❝♦♠♣❧❡① ♥✉♠❜❡r✿
r≥0
❛♥❞
0 ≤ θ < 2π
b a
❝❛♥ s❡r✈❡ ❛s t❤♦s❡✳ ■t ✐s ❝❛❧❧❡❞ t❤❡ ❣❡♦♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢
z = r cos θ + i sin θ ❚❤❡ ❛❧❣❡❜r❛ t❛❦❡s ❛ ♥❡✇ ❢♦r♠ t♦♦✳ ❲❡ ❞♦♥✬t ♥❡❡❞ t❤❡ ♥❡✇ r❡♣r❡s❡♥t❛t✐♦♥ t♦ ❝♦♠♣✉t❡ ❛❞❞✐t✐♦♥ ❛♥❞ ♠✉❧t✐✲ ♣❧✐❝❛t✐♦♥ ❜② r❡❛❧ ♥✉♠❜❡rs✱ ❜✉t ✇❡ ♥❡❡❞ ✐t ❢♦r ♠✉❧t✐♣❧✐❝❛t✐♦♥✳ ❲❤❛t ✐s t❤❡ ♣r♦❞✉❝t ♦❢ t✇♦ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿
❈♦♥s✐❞❡r✿
z1 = r1 cos ϕ1 + i sin ϕ1
❛♥❞
z2 = r2 cos ϕ2 + i sin ϕ2 ?
z1 z2 = r1 cos ϕ1 + i sin ϕ1 ) · r2 cos ϕ2 + i sin ϕ2 = r1 r2 cos ϕ1 + i sin ϕ1 · cos ϕ2 + i sin ϕ2
= r1 r2 cos ϕ1 cos ϕ2 + i sin ϕ1 cos ϕ2 + cos ϕ1 sin ϕ2 + i2 sin ϕ1 sin ϕ2 .
❲❡ ✉t✐❧✐③❡ t❤❡ ❢♦❧❧♦✇✐♥❣ tr✐❣♦♥♦♠❡tr✐❝ ✐❞❡♥t✐t✐❡s ✭❱♦❧✉♠❡ ✶✮✿
cos a cos b − sin a sin b = cos(a + b)
❛♥❞
cos a sin b + sin a cos b = sin(a + b) .
✹✳✶✵✳
▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✿
❚❤❡♥✱
C
✐s♥✬t ❥✉st
R2
✸✷✼
z1 z2 = r1 r2 cos(ϕ1 + ϕ2 ) + i sin(ϕ1 + ϕ2 ) .
❊①❛♠♣❧❡ ✹✳✶✵✳✽✿ ❣❡♦♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ♠✉❧t✐♣❧✐❝❛t✐♦♥
❲❡ ❝❛♥ s❡❡ t❤❡ ❛❜♦✈❡ ❝♦♠♣✉t❛t✐♦♥ ♦♥ t❤❡ ❝♦♠♣❧❡① ♣❧❛♥❡✿
❲❡ ❤❛✈❡ ♣r♦✈❡♥ t❤❡ ❢♦❧❧♦✇✐♥❣✿ ❚❤❡♦r❡♠ ✹✳✶✵✳✾✿ ▼✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ ❈♦♠♣❧❡① ◆✉♠❜❡rs ❲❤❡♥ t✇♦ ❝♦♠♣❧❡① ♥✉♠❜❡rs ❛r❡ ♠✉❧t✐♣❧✐❡❞✱ t❤❡✐r ♠♦❞✉❧✐ ❛r❡ ♠✉❧t✐♣❧✐❡❞ ❛♥❞ t❤❡ ❛r❣✉♠❡♥ts ❛r❡ ❛❞❞❡❞✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿
r1 cos ϕ1 + i sin ϕ1 ) · r2 cos ϕ2 + i sin ϕ2 = r1 r2 cos(ϕ1 + ϕ2 ) + i sin(ϕ1 + ϕ2 ) ❊①❡r❝✐s❡ ✹✳✶✵✳✶✵
❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ❝♦♥✈❡r❣❡♥t s❡q✉❡♥❝❡ ♦❢ ❝♦♠♣❧❡① ♥✉♠❜❡rs✳ ❈♦♥s✐❞❡r t❤❡ s❡q✉❡♥❝❡ ♦❢ t❤❡ ♠♦❞✉❧✐ ❛♥❞ t❤❡ s❡q✉❡♥❝❡ ♦❢ t❤❡ ❛r❣✉♠❡♥ts ♦❢ t❤❡ t❡r♠s ♦❢ t❤❡ s❡q✉❡♥❝❡ ❛♥❞ ♣r♦✈❡ t❤❛t t❤❡② ❝♦♥✈❡r❣❡✳ ❊①❡r❝✐s❡ ✹✳✶✵✳✶✶
✭❛✮ ❘❡♣r❡s❡♥t t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♠♣❧❡① ♥✉♠❜❡r ✐♥ t❤❡ st❛♥❞❛r❞ ❢♦r♠✿
(2 + 3i)(−1 + 2i)✳
■♥❞✐❝❛t❡ t❤❡ r❡❛❧
❛♥❞ ✐♠❛❣✐♥❛r② ♣❛rts✳ ✭❜✮ ❋✐♥❞ ✐ts ♠♦❞✉❧✉s ❛♥❞ ❛r❣✉♠❡♥t✳ ❊①❡r❝✐s❡ ✹✳✶✵✳✶✷
❙✐♠♣❧✐❢②
(1 + i)2 ✳
❊①❡r❝✐s❡ ✹✳✶✵✳✶✸
✭❛✮ ❋✐♥❞ t❤❡ r♦♦ts ♦❢ t❤❡ ♣♦❧②♥♦♠✐❛❧
x2 + 2x + 2✳
✭❜✮ ❋✐♥❞ ✐ts
x✲✐♥t❡r❝❡♣ts✳
✭❝✮ ❋✐♥❞ ✐ts ❢❛❝t♦rs✳
❊①❡r❝✐s❡ ✹✳✶✵✳✶✹
❲❤❛t ❝❛♥ ②♦✉ s❛② ❛❜♦✉t t❤❡ ✐♠❛❣✐♥❛r② ♣❛rts ♦❢ t❤❡ r♦♦ts ♦❢ t❤❡s❡ q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧s❄
✹✳✶✶✳
❉✐s❝r❡t❡ ❢♦r♠s
✸✷✽
✹✳✶✶✳ ❉✐s❝r❡t❡ ❢♦r♠s
■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ ♦✉t❧✐♥❡ ❛♥ ❛❧t❡r♥❛t✐✈❡ ✈✐❡✇ ♦♥ ❞✐s❝r❡t❡ ❝❛❧❝✉❧✉s✿ ❞✐✛❡r❡♥❝❡s✱ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts✱ s✉♠s✱ ❛♥❞ ❘✐❡♠❛♥♥ s✉♠s✳ ❍♦✇❡✈❡r✱ ✇❡ ✇✐❧❧ ❞❡❛❧ ✇✐t❤ s♦♠❡t❤✐♥❣ ❡✈❡♥ ♠♦r❡ ❢✉♥❞❛♠❡♥t❛❧ t❤❛♥ t❤♦s❡ ❢♦✉r✿ ❲❡ ♠♦✈❡ ❜❡②♦♥❞ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦♥ ♥♦❞❡s ♦❢ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥s✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ❢✉♥❝t✐♦♥ y = f (x) ❛♥❞ ✇❡ ❛r❡ t♦ st✉❞② ✐ts ❜❡❤❛✈✐♦r ❛r♦✉♥❞ ❛ ♣♦✐♥t x = a✳ ❚❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ♦❢ f ❛t a ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿ ∆f r✐s❡ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡ = t❤❡ s❧♦♣❡ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡ t❤r♦✉❣❤ (a, f (a)) = ∆x x=a r✉♥ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡
❲❡ ❝❛♥ ❛❧✇❛②s s❡❡ ∆x✱ ∆y ♦♥ t❤❡ ❣r❛♣❤✿
❚❤✉s✱ ✇❡ ❤❛✈❡✿ • ∆x ✐s t❤❡ r✉♥ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡✳
• ∆y ✐s t❤❡ r✐s❡ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡✳
❚❤❡r❡ ✐s ❛ ❢✉♥❝t✐♦♥❛❧ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡♠✿ • y ❞❡♣❡♥❞s ♦♥ x ✈✐❛ • ∆y ❞❡♣❡♥❞s ♦♥ ∆x
y = f (x) .
❛♥❞ x ✈✐❛ ∆y =
∆f · ∆x . ∆x
❚❤❡ ❧❛tt❡r✱ tr✐✈✐❛❧✱ ❡q✉❛t✐♦♥ r❡❢❡rs t♦ ❛ s♣❡❝✐✜❝ ❧♦❝❛t✐♦♥✱ x = a ❛♥❞ y = f (a)✱ ♦♥ t❤❡ xy ✲♣❧❛♥❡✱ ❛♥❞ ✐t ✐s ❛ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ t✇♦ ♥❡✇ ✈❛r✐❛❜❧❡s ❛s t❤❡ ♦❧❞ ♦♥❡s ❤❛✈❡ ❜❡❡♥ s♣❡❝✐✜❡❞✳
✹✳✶✶✳
❉✐s❝r❡t❡ ❢♦r♠s
✸✷✾
❲❡ ❝❛♥✱ ❢✉rt❤❡r♠♦r❡✱ ♠❛❦❡ t❤❡s❡ ✈❛r✐❛❜❧❡s ❡①♣❧✐❝✐t✿
❇❡❧♦✇✱ ✇❡ ❛❞♦♣t ❛ s✐♠♣❧❡r✱ ✐❢ ❧❡ss ❡①♣❧✐❝✐t✱ ❛♣♣r♦❛❝❤✳ ❊①❛♠♣❧❡ ✹✳✶✶✳✶✿ ❜r♦❦❡♥ s♣❡❡❞♦♠❡t❡r
❘❡❝❛❧❧ ✇❤❛t ✇❡ st❛rt❡❞ ✇✐t❤ ✐♥ t❤❡ ✈❡r② ❜❡❣✐♥♥✐♥❣✳ ❙✉♣♣♦s❡ t❤❡ s♣❡❡❞♦♠❡t❡r ✐s ❜r♦❦❡♥ ❛♥❞ ✐♥ ♦r❞❡r t♦ ❡st✐♠❛t❡ ❤♦✇ ❢❛st ✇❡ ❛r❡ ❞r✐✈✐♥❣✱ ✇❡ ❧♦♦❦ ❛t t❤❡ ♦❞♦♠❡t❡r ❡✈❡r② ❤♦✉r✿
❚❤❛t✬s ❛ ❞✐s❝r❡t❡ 0✲❢♦r♠✳ ❚♦ ✜♥❞ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t ❢♦r ❡✈❡r② ❤♦✉r✱ ✇❡ ❥✉st ❧♦♦❦ ❛t t❤❡ ❞✐✛❡r❡♥❝❡s✿
❚❤❛t✬s ❛ ❞✐s❝r❡t❡ 1✲❢♦r♠✳ ❆❧t❡r♥❛t✐✈❡❧②✱ t❤❡ ♦❞♦♠❡t❡r ✐s ❜r♦❦❡♥ ❛♥❞ ✇❡ ❧♦♦❦ ❛t t❤❡ s♣❡❡❞♦♠❡t❡r t♦ s❛♠♣❧❡ t❤❡ ✈❡❧♦❝✐t② ❛♥❞ t❤❡♥✱ ✈✐❛ t❤❡ ❘✐❡♠❛♥♥ s✉♠s✱ ✜♥❞ t❤❡ ❞✐s♣❧❛❝❡♠❡♥t✳ ▲❡t✬s st❛rt ♦✈❡r✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ♣❛rt✐t✐♦♥ ♦❢ s♦♠❡ ✐♥t❡r✈❛❧ [a, b] ♦♥ t❤❡ x✲❛①✐s✳
❚❤✐s t✐♠❡✱ ✇❡ ✇♦♥✬t ❛❞❞ s❡❝♦♥❞❛r② ♥♦❞❡s ❜✉t✱ ✐♥st❡❛❞✱ ❝♦♥s✐❞❡r ❛ ❝❡❧❧ ❚❤❡r❡ ❛r❡ t✇♦ t②♣❡s ♦❢ ♣✐❡❝❡s ✐♥ t❤❡ ✐♥t❡r✈❛❧✿ • t❤❡
♥♦❞❡s ✿
• t❤❡
❡❞❣❡s ✿
x = xk , k = 0, 1, ..., n ck = [xk−1 , xk ], k = 1, ..., n
❞❡❝♦♠♣♦s✐t✐♦♥ ♦❢ t❤❡ ✐♥t❡r✈❛❧✳
✹✳✶✶✳
❉✐s❝r❡t❡ ❢♦r♠s
✸✸✵
❚❤❡ ✐♥❝r❡♠❡♥ts ♦❢ x ❛r❡ st✐❧❧ ∆xk = xk − xk−1 ✳
❲❡ ✐♥tr♦❞✉❝❡ t❤❡s❡ ♥❛♠❡s✿
❉❡✜♥✐t✐♦♥ ✹✳✶✶✳✷✿ ❝❡❧❧s
• ❚❤❡ ♥♦❞❡s ❛r❡ ❝❛❧❧❡❞ 0✲❝❡❧❧s✳ • ❚❤❡ ❡❞❣❡s ❛r❡ ❝❛❧❧❡❞ 1✲❝❡❧❧s✳
❊①❛♠♣❧❡ ✹✳✶✶✳✸✿ ❝❡❧❧ ❞❡❝♦♠♣♦s✐t✐♦♥ ❙♣❡❝✐✜❝ r❡♣r❡s❡♥t❛t✐♦♥s ❝❛♥ ❛❧s♦ ❜❡ ♣r♦✈✐❞❡❞ ✇✐t❤ ❛ s♣r❡❛❞s❤❡❡t✱ ❝❤♦♦s✐♥❣✱ ❢♦r ❡①❛♠♣❧❡✱ ∆x = 1✿
❨♦✉ ❝❛♥ s❡❡ ❤♦✇ ❡✈❡r② ♦t❤❡r ❝❡❧❧ ✐s ❛ sq✉❛r❡ ❛♥❞ ❡✈❡r② ♦t❤❡r ✐s str❡t❝❤❡❞ ❤♦r✐③♦♥t❛❧❧② t♦ ❡♠♣❤❛s✐③❡ t❤❡ ❞✐✛❡r❡♥t ♥❛t✉r❡ ♦❢ t❤❡s❡ ❝❡❧❧s✿ ♥♦❞❡s ✈s✳ ❡❞❣❡s✳ ■♥ t❤❡ ♠♦t✐♦♥ ✐♥t❡r♣r❡t❛t✐♦♥✱ t❤❡r❡ ✐s ❛ ♥✉♠❜❡r ✭t❤❡ ❧♦❝❛t✐♦♥✮ ❛ss♦❝✐❛t❡❞ ✇✐t❤ ❡❛❝❤ ♥♦❞❡ ❛♥❞ ❛ ♥✉♠❜❡r ✭t❤❡ ❞✐s♣❧❛❝❡♠❡♥t✮ ❛ss♦❝✐❛t❡❞ ✇✐t❤ ❡❛❝❤ ❡❞❣❡✳
❉❡✜♥✐t✐♦♥ ✹✳✶✶✳✹✿ ❞✐s❝r❡t❡ ❢♦r♠ ❋♦r ❛ ❣✐✈❡♥ ♣❛rt✐t✐♦♥ ✭♦❢ ❛♥ ✐♥t❡r✈❛❧ ♦r t❤❡ ✇❤♦❧❡ r❡❛❧ ❧✐♥❡✮✱ ✇❡ ❞❡✜♥❡ t❤❡ ❢♦❧❧♦✇✲ ✐♥❣✿ • ❆ ❞✐s❝r❡t❡ ❢♦r♠ ♦❢ ❞❡❣r❡❡ 0 ✐s ❛ r❡❛❧✲✈❛❧✉❡❞ ❢✉♥❝t✐♦♥ ✇✐t❤ 0✲❝❡❧❧s ✭♥♦❞❡s✮ ❛s ✐♥♣✉ts✳ • ❆ ❞✐s❝r❡t❡ ❢♦r♠ ♦❢ ❞❡❣r❡❡ 1 ✐s ❛ r❡❛❧✲✈❛❧✉❡❞ ❢✉♥❝t✐♦♥ ✇✐t❤ 1✲❝❡❧❧s ✭❡❞❣❡s✮ ❛s ✐♥♣✉ts✳ ❲❡ ✉s❡ ❛rr♦✇s t♦ ♣✐❝t✉r❡ t❤❡s❡ ❢✉♥❝t✐♦♥s ❛s ❝♦rr❡s♣♦♥❞❡♥❝❡s✿
❍❡r❡ ✇❡ ❤❛✈❡ t✇♦✿ • ❛ ❞✐s❝r❡t❡ 0✲❢♦r♠ • ❛ ❞✐s❝r❡t❡ 1✲❢♦r♠
f : 0 7→ 2, 1 7→ 4, 2 7→ 3, ... s : [0, 1] 7→ 3, [1, 2] 7→ .5, [2, 3] 7→ 1, ...
✹✳✶✶✳
❉✐s❝r❡t❡ ❢♦r♠s
✸✸✶
❆ ♠♦r❡ ❝♦♠♣❛❝t ✇❛② t♦ ✈✐s✉❛❧✐③❡ ✐s t❤✐s✿
❲❡ ❝❛♥ ❛❧s♦
❧✐st t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ t✇♦ ❢✉♥❝t✐♦♥s✿
•
❛ ❞✐s❝r❡t❡
•
❛ ❞✐s❝r❡t❡
0✲❢♦r♠ f ✿ f (0) = 2, f (1) = 4, f (2) = 3, ... 1✲❢♦r♠ s✿
s [0, 1] = 3, s [1, 2] = .5, s [2, 3] = 1, ...
❊①❛♠♣❧❡ ✹✳✶✶✳✺✿ ❢♦r♠s ✇✐t❤ s♣r❡❛❞s❤❡❡t
❉✐s❝r❡t❡ ❢✉♥❝t✐♦♥s ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❜② t❛❜❧❡s ✭s♣r❡❛❞s❤❡❡ts✮✿
❚❤❡ ♠♦st ❝♦♠♠♦♥ ✇❛② t♦ ✈✐s✉❛❧✐③❡ ❛ ❢✉♥❝t✐♦♥ ✐s ✇✐t❤ ✐ts ✇✐t❤
y = f (x)✿
•
❋♦r ❛ ❞✐s❝r❡t❡
•
❋♦r ❛ ❞✐s❝r❡t❡
(x, y)✱
❛
❣r❛♣❤✱ ✇❤✐❝❤ ❝♦♥s✐sts ♦❢ ♣♦✐♥ts ♦♥ t❤❡ xy✲♣❧❛♥❡
0✲❢♦r♠✱ x ✐s ❛ ♥♦❞❡✱ ❛ ♥✉♠❜❡r✱ ❛♥❞ y = f (x) ✐s ❛❧s♦ ❛ ♥✉♠❜❡r✳ ❚♦❣❡t❤❡r✱ ♣♦✐♥t ♦♥ t❤❡ xy ✲♣❧❛♥❡ ✭✇✐t❤ t❤❡ x✲❛①✐s s♣❧✐t ✐♥t♦ ❝❡❧❧s ❛s s❤♦✇♥ ❛❜♦✈❡✮✳ 1✲❢♦r♠✱ [A, B]
✐s ❛♥ ✐♥t❡r✈❛❧ ✐♥ t❤❡
t❤❡② ♣r♦❞✉❝❡ ❛ ❝♦❧❧❡❝t✐♦♥ ♦❢ ♣♦✐♥ts ♦♥ t❤❡
x✲❛①✐s✱
xy ✲♣❧❛♥❡
t❤❡② ♣r♦❞✉❝❡
y = g([A, B]) ✐s ❛ ♥✉♠❜❡r✳ ❚♦❣❡t❤❡r✱ (x, y) ❢♦r ❡✈❡r② x ✐♥ [A, B]✳ ❚❤❡ r❡s✉❧t ✐s
❛♥❞
s✉❝❤ ❛s
❛ ❤♦r✐③♦♥t❛❧ s❡❣♠❡♥t✳ ❊✈❡♥ t❤♦✉❣❤ t❤❡s❡ ❢✉♥❝t✐♦♥s ♠❛② ❝♦♥s✐st ♦❢ ✉♥r❡❧❛t❡❞ ♣✐❡❝❡s✱ ✐t ✐s ♣♦ss✐❜❧❡ t❤❛t ✇❡ ❝❛♥ s❡❡ ❛
❝✉r✈❡ ✐❢ ✇❡ ③♦♦♠ ♦✉t✿
❝♦♥t✐♥✉♦✉s
✹✳✶✶✳
❉✐s❝r❡t❡ ❢♦r♠s
✸✸✷
❊①❛♠♣❧❡ ✹✳✶✶✳✻✿ ❣r❛♣❤s ♦❢ ❢♦r♠s ✇✐t❤ s♣r❡❛❞s❤❡❡t ❚♦ ✉♥❞❡rs❝♦r❡ t❤❡ ❞✐✛❡r❡♥❝❡ ❜❡t✇❡❡♥ t❤❡ t✇♦✱ t❤❡ ❣r❛♣❤ ♦❢ ❛ ❞✐s❝r❡t❡ 0✲❢♦r♠ ✐s s❤♦✇♥ ✇✐t❤ ❞♦ts ❛♥❞ t❤❛t ♦❢ ❛ ❞✐s❝r❡t❡ 1✲❢♦r♠ ✇✐t❤ ✈❡rt✐❝❛❧ ❜❛rs✿
◆❡①t✱ ✇❡ ❞✐s❝✉ss s♦♠❡ ♦❢ t❤❡ ❝❛❧❝✉❧✉s ✐ss✉❡s✳
❊①❛♠♣❧❡ ✹✳✶✶✳✼✿ ❞✐✛❡r❡♥❝❡ ▲❡t✬s ❝♦♥s✐❞❡r ❛♥ ❡①❛♠♣❧❡ ♦❢ ♠♦t✐♦♥✳ ❙✉♣♣♦s❡ ❛ 0✲❢♦r♠ p ❣✐✈❡s t❤❡ ♣♦s✐t✐♦♥ ♦❢ ❛ ♣❡rs♦♥ ❛♥❞ s✉♣♣♦s❡ t❤❡ ❢♦❧❧♦✇✐♥❣✿ • ❆t t✐♠❡ n ❤♦✉rs✱ ✇❡ ❛r❡ ❛t t❤❡ 5✲♠✐❧❡ ♠❛r❦✿ p(n) = 5✳ • ❆t t✐♠❡ n + 1 ❤♦✉rs✱ ✇❡ ❛r❡ ❛t t❤❡ 7✲♠✐❧❡ ♠❛r❦✿ p(n + 1) = 7✳ ❲❡ ❞♦♥✬t ❦♥♦✇ ✇❤❛t ❡①❛❝t❧② ❤❛s ❤❛♣♣❡♥❡❞ ❞✉r✐♥❣ t❤✐s ❤♦✉r ❜✉t t❤❡ s✐♠♣❧❡st ❛ss✉♠♣t✐♦♥ ✇♦✉❧❞ ❜❡ t❤❛t ✇❡ ❤❛✈❡ ❜❡❡♥ ✇❛❧❦✐♥❣ ❛t ❛ ❝♦♥st❛♥t s♣❡❡❞ ♦❢ 2 ♠✐❧❡s ♣❡r ❤♦✉r✳
◆♦✇✱ ✐♥st❡❛❞ ♦❢ ♦✉r ✈❡❧♦❝✐t② ❢✉♥❝t✐♦♥ v ❛ss✐❣♥✐♥❣ t❤✐s ✈❛❧✉❡ t♦ ❡❛❝❤ ✐♥st❛♥t ♦❢ t✐♠❡ ❞✉r✐♥❣ t❤✐s ♣❡r✐♦❞✱ ✐t ✐s ❛ss✐❣♥❡❞ t♦ t❤❡ ✇❤♦❧❡ ✐♥t❡r✈❛❧✿
♦r ❜❡tt❡r✿
v
= 2,
[n,n+1]
v [n, n + 1] = 2 .
❚❤✐s ✇❛②✱ t❤❡ ❡❧❡♠❡♥ts ♦❢ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ ✈❡❧♦❝✐t② ❢✉♥❝t✐♦♥ ❛r❡ t❤❡ ❡❞❣❡s ❛♥❞ t❤❡ r❡s✉❧t✐♥❣ ❢✉♥❝t✐♦♥ ✐s ❛ ❞✐s❝r❡t❡ 1✲❢♦r♠✦
✹✳✶✶✳ ❉✐s❝r❡t❡ ❢♦r♠s
✸✸✸
❚❤❡ ❢✉♥❝t✐♦♥s✱ ✇❤❡♥ ❞❡✜♥❡❞ ♦♥ t❤❡ ♥♦❞❡s✱ ❝❤❛♥❣❡ ❛❜r✉♣t❧② ❛♥❞✱ ❝♦♥s❡q✉❡♥t❧②✱ t❤❡ ❝❤❛♥❣❡ ♦✈❡r ❡✈❡r② ✐♥t❡r✈❛❧ [A, B] ✐s s✐♠♣❧② t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ ✈❛❧✉❡s ❛t t❤❡ ♥♦❞❡s✱ ❢r♦♠ r✐❣❤t t♦ ❧❡❢t✿ f (B) − f (A) .
❚❤❡ ♦✉t♣✉t ♦❢ t❤✐s s✐♠♣❧❡ ❝♦♠♣✉t❛t✐♦♥ ✐s t❤❡♥ ❛ss✐❣♥❡❞ t♦ t❤❡ ✐♥t❡r✈❛❧ [A, B]✿ [A, B] 7→ f (B) − f (A)
❏✉st ❛s ❜❡❢♦r❡✱ t❤❡ ❞✐✛❡r❡♥❝❡ st❛♥❞s ❢♦r t❤❡ ❝❤❛♥❣❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳
❉❡✜♥✐t✐♦♥ ✹✳✶✶✳✽✿ ❞✐✛❡r❡♥❝❡ ♦❢ ❞✐s❝r❡t❡ 0✲❢♦r♠ ❚❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ ❛ ❞✐s❝r❡t❡ 0✲❢♦r♠ f ✐s ❛ ❞✐s❝r❡t❡ 1✲❢♦r♠ ❣✐✈❡♥ ❜② ✐ts ✈❛❧✉❡s ❛t ❡❛❝❤ ❡❞❣❡✿ ∆f (ck ) = f (xk ) − f (xk−1 )
❚❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ ❛ 0✲❢♦r♠ ❛♥❞ ✐ts ❞✐✛❡r❡♥❝❡ ✐s ✐❧❧✉str❛t❡❞ ❜❡❧♦✇✿
❊①❛♠♣❧❡ ✹✳✶✶✳✾✿ ❞✐✛❡r❡♥❝❡ ✇✐t❤ s♣r❡❛❞s❤❡❡t ❚❤✐s ✐s ❤♦✇ ❛ s♣r❡❛❞s❤❡❡t ❝♦♠♣✉t❡s t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❣✐✈❡♥ ❜② t❤❡ ❞❛t❛ ✐♥ t❤❡ ✜rst ❝♦❧✉♠♥✿
❊①❛♠♣❧❡ ✹✳✶✶✳✶✵✿ ❝♦♠♣✉t✐♥❣ ❞✐✛❡r❡♥❝❡s ❲❤❡♥ t❤❡ ❞✐s❝r❡t❡ 0✲❢♦r♠s ❛r❡ r❡♣r❡s❡♥t❡❞ ❜② ❢♦r♠✉❧❛s✱ t❤❡ ❝♦♠♣✉t❛t✐♦♥s ❛r❡ str❛✐❣❤t❢♦r✇❛r❞ ✭h = 1✮
✹✳✶✶✳
✸✸✹
❉✐s❝r❡t❡ ❢♦r♠s
✇✐t❤ ❛ ❝❤❛♥❝❡ ♦❢ s✐♠♣❧✐✜❝❛t✐♦♥✿ (1) f (n) = 3n2 + 1 =⇒ ∆f (cn ) = (3n2 + 1) − (3(n − 1)2 + 1) = 6n − 3 1 1 1 1 =⇒ ∆g (cn ) = − =− ❢♦r n 6= 0, 1 (2) g(n) = n n n−1 n(n − 1) (3) p(n) = 2n
=⇒ ∆p (cn ) = 2n − 2n−1 = 2n−1
❉❡✜♥✐t✐♦♥ ✹✳✶✶✳✶✶✿ s✉♠ ♦❢ ❞✐s❝r❡t❡ 1✲❢♦r♠ ❚❤❡ s✉♠ ♦❢ ❛ ❞✐s❝r❡t❡ 1✲❢♦r♠ g ✐s ❛ ❞✐s❝r❡t❡ 0✲❢♦r♠ ❣✐✈❡♥ ❜② ✐ts ✈❛❧✉❡ ❛t ❡❛❝❤ ♥♦❞❡ xk , 1 ≤ k ≤ n, ♦❢ ❛ ♣❛rt✐t✐♦♥ ♦❢ [a, b] ❜②✿ X
g = g(c1 ) + g(c2 ) + ... + g(ck ) ,
[a,xk ]
✇❤❡r❡ c1 , c2 , ..., cn ❛r❡ t❤❡ ❡❞❣❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥✳ ❚❤❡ ❢✉♥❞❛♠❡♥t❛❧ r❡❧❛t✐♦♥ ✐s ❜❡t✇❡❡♥ t❤❡ ❞✐✛❡r❡♥❝❡s ❛♥❞ s✉♠s✳ ❚❤❡ r❡s✉❧t ✐s ✈❡r② s✐♠✐❧❛r t♦ t❤❡ ♦♥❡ ♣r❡s❡♥t❡❞ ✐♥ ❈❤❛♣t❡r ✶❀ t❤❡ t✇♦ ♦♣❡r❛t✐♦♥s ❝❛♥❝❡❧ ❡❛❝❤ ♦t❤❡r ✐♥ ❡✐t❤❡r ♦r❞❡r✿
❋✐rst✱ ✇❡ ❤❛✈❡ ❛ 0✲❢♦r♠ ❛♥❞ ❛ 1✲❢♦r♠✿ • ✐❢ f ✐s ❞❡✜♥❡❞ ❛t t❤❡ ♥♦❞❡s xk , k = 0, 1, 2, ..., n✱ ♦❢ t❤❡ ♣❛rt✐t✐♦♥✱ t❤❡♥
• t❤❡ ❞✐✛❡r❡♥❝❡ g ♦❢ f ✐s ❞❡✜♥❡❞ ❛t t❤❡ ❡❞❣❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❜②✿
g(ck ) = f (xk ) − f (xk−1 ) .
❚❤❡♦r❡♠ ✹✳✶✶✳✶✷✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❉✐s❝r❡t❡ ❈❛❧❝✉❧✉s ■ ❙✉♣♣♦s❡
f
✐s ❛ ❞✐s❝r❡t❡
0✲❢♦r♠✳ X [a,x]
❚❤❡♥✱ ❢♦r ❡❛❝❤ ♥♦❞❡
(∆f ) = f (x) − f (a) .
❙❡❝♦♥❞✱ ✇❡ ❤❛✈❡ ❛ 1✲❢♦r♠ ❛♥❞ ❛ 0✲❢♦r♠✿ • ✐❢ g ✐s ❞❡✜♥❡❞ ❛t t❤❡ ❡❞❣❡s ck , k = 1, 2, ..., n✱ ♦❢ t❤❡ ♣❛rt✐t✐♦♥✱ t❤❡♥
• t❤❡ s✉♠ f ♦❢ g ✐s ❞❡✜♥❡❞ r❡❝✉rs✐✈❡❧② ❛t t❤❡ ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ❜②✿ f (xk ) = f (xk−1 ) + g(ck ) .
x
♦❢ t❤❡ ♣❛rt✐t✐♦♥✱ ✇❡ ❤❛✈❡✿
✹✳✶✶✳
❉✐s❝r❡t❡ ❢♦r♠s
✸✸✺ ❚❤❡♦r❡♠ ✹✳✶✶✳✶✸✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❉✐s❝r❡t❡ ❈❛❧❝✉❧✉s ■■ ❙✉♣♣♦s❡
g
✐s ❛ ❞✐s❝r❡t❡
1✲❢♦r♠✳
❚❤❡♥✱ ✇❡ ❤❛✈❡✿
∆
X [a,x]
g = g .
❏✉st ❛s ✐♥ ❈❤❛♣t❡r ✶✱ ✇❡ ❝❛rr② ♦✉t t❤❡ ❝♦♠♣✉t❛t✐♦♥s ✇✐t❤ ❛ s♣r❡❛❞s❤❡❡t✿
◆❡①t✱ ❝♦♠♣♦s✐t✐♦♥s✳ ◆❡①t✱ t❤❡r❡ ❛r❡ ♥♦ ❝♦♠♣♦s✐t✐♦♥s ♦❢ ❢♦r♠s✦ ❋♦r ❡①❛♠♣❧❡✱ t❤❡r❡ ✐s ♥♦ ✇❛② t♦ ❡①❡❝✉t❡ t❤❡s❡ ❝♦♥s❡❝✉t✐✈❡❧②✿ • 0✲❝❡❧❧ 7→ ♥✉♠❜❡r✱ ❢♦❧❧♦✇❡❞ ❜② • 0✲❝❡❧❧ 7→ ♥✉♠❜❡r
❚♦ ❜❡ ❛❜❧❡ t♦ ❢♦r♠ ❛ ❝♦♠♣♦s✐t✐♦♥✱ ♦♥❡ ♦❢ t❤❡s❡ ❤❛s t♦ ♠❛♣ ❝❡❧❧s t♦ ❝❡❧❧s✿ • 0✲❝❡❧❧ 7→ 0✲❝❡❧❧ 7→ ♥✉♠❜❡r
• 1✲❝❡❧❧ 7→ 1✲❝❡❧❧ 7→ ♥✉♠❜❡r
❲❡ ❝r❡❛t❡ ❛ ❝♦♠♣♦s✐t✐♦♥ q ◦ p ♦❢ ❛ 0✲ ♦r 1✲❢♦r♠ q ✇✐t❤ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥ ♦r ❢♦r♠ p ♦♥❧② ✇❤❡♥ t❤❡ ✈❛❧✉❡s ♦❢ p ❛r❡ 0✲ ❛♥❞ 1✲❝❡❧❧s r❡s♣❡❝t✐✈❡❧②✳ ❚♦ ❞❡✜♥❡ s✉❝❤ ❛ s♣❡❝✐❛❧ ❢✉♥❝t✐♦♥✱ ✇❡ ✇✐❧❧ r❡q✉✐r❡ t❤❛t t❤❡ ❢✉♥❝t✐♦♥ p ❛ss✐❣♥s ❛ k ✲ ♦r (k − 1)✲❝❡❧❧ t♦ ❡❛❝❤ k ✲❝❡❧❧✿
✹✳✶✶✳
❉✐s❝r❡t❡ ❢♦r♠s
✸✸✻
❚❤❡r❡ ✐s ❛❧s♦ ❛ s♣❡❝✐❛❧ r❡q✉✐r❡♠❡♥t✿
❉❡✜♥✐t✐♦♥ ✹✳✶✶✳✶✹✿ ❝❡❧❧ ❢✉♥❝t✐♦♥ ❆ ❝❡❧❧ ❢✉♥❝t✐♦♥ y = p(x) ✐s ❛ ❢✉♥❝t✐♦♥ t❤❛t ❛ss✐❣♥s • •
❛ ♥♦❞❡ t♦ ❡❛❝❤ ♥♦❞❡✱ ❛♥❞ ❛♥ ❡❞❣❡ ♦r ❛ ♥♦❞❡ t♦ ❡❛❝❤ ❡❞❣❡✱
✐♥ s✉❝❤ ❛ ✇❛② t❤❛t t❤❡ ❡♥❞✲♣♦✐♥ts ♦❢ ❡❛❝❤ ❡❞❣❡ r❡♠❛✐♥ ❡♥❞✲♣♦✐♥ts✿
p [u, v] = p(u), p(v) ❚❤❡ r❡q✉✐r❡♠❡♥t ❣✉❛r❛♥t❡❡s ✏❝♦♥t✐♥✉✐t②✑✿
❇❡❝❛✉s❡ ♦❢ t❤❡ ♣r♦♣❡rt②✱ t❤❡ ✈❛❧✉❡s ♦❢ ❛ ❝❡❧❧ ❢✉♥❝t✐♦♥ ♦♥ t❤❡ ❡❞❣❡s ❝❛♥ ❜❡ r❡❝♦♥str✉❝t❡❞ ❢r♦♠ ✐ts ✈❛❧✉❡s ♦♥ t❤❡ ♥♦❞❡s✳ ❚❤❡ ❢♦r♠❡r ✐s t❤❡♥ ❛♥❛❧♦❣♦✉s t♦ t❤❡ ❋♦r ❝♦♥✈❡♥✐❡♥❝❡✱ ✇❡ ❛ss✉♠❡ t❤❛t
∆
❞✐✛❡r❡♥❝❡
♦❢ t❤❡ ❝❡❧❧ ❢✉♥❝t✐♦♥✳
✐s ③❡r♦ ✇❤❡♥ ❝♦♠♣✉t❡❞ ♦✈❡r ❛♥② ♥♦❞❡
x✳
❇❡❧♦✇ ✐s ❛♥ ❛♥❛❧♦❣ ♦❢ t❤❡ ❝❤❛✐♥ r✉❧❡✿
❚❤❡♦r❡♠ ✹✳✶✶✳✶✺✿ ❈❤❛✐♥ ❘✉❧❡ ❚❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ✐s t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t❤❡ ❧❛tt❡r ✇✐t❤ t❤❡ ❢♦r♠❡r❀ ✐✳❡✳✱ ❢♦r ❛♥② ❝❡❧❧ ❢✉♥❝t✐♦♥ x = p(t) ❢r♦♠ [a, b] t♦ [c, d] ❛♥❞ ❛♥② 0✲❢♦r♠ y = g(x) ♦♥ [c, d]✱ ✇❡ ❤❛✈❡ t❤❡ ❞✐✛❡r❡♥❝❡s s❛t✐s❢②✿ ∆(g ◦ p) = ∆g ◦ p . ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡ ❢♦r ❡❛❝❤ ❡❞❣❡
s✿ ∆(g ◦ p)(s) = ∆g (p(s)) .
❏✉st ❛s ✐♥ t❤❡ ❝❛s❡ ♦❢ ❛ tr❛❞✐t✐♦♥❛❧ tr❡❛t♠❡♥t✱ ✇❡ ❛s❦✿ ■❢ ✇❡ s❛♠♣❧❡ ❛ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ♦♥ ❛♥ ✐♥t❡r✈❛❧✱ ✇❤❛t ❤❛♣♣❡♥s ✐❢ ✇❡ r❡✜♥❡ t❤❡ ♣❛rt✐t✐♦♥s❄ ❋✐rst✱ ✇❤❛t ❤❛♣♣❡♥s t♦ t❤❡
❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t
❛s
∆x → 0❄
■t ❝♦♥✈❡r❣❡s t♦ t❤❡ ❞❡r✐✈❛t✐✈❡✿
✹✳✶✷✳ ❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s
✸✸✼
❇✉t ✇❤❛t ❤❛♣♣❡♥s t♦ t❤❡ ❞✐✛❡r❡♥❝❡ ❛s ∆x → 0❄ ❆ ♥❡✇ ❝♦♥❝❡♣t ❡♠❡r❣❡s✿
■t ✐s ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ ❞❡❣r❡❡ 1 ❞✐s❝✉ss❡❞ ✐♥ t❤❡ ♥❡①t s❡❝t✐♦♥✳ ❙❡❝♦♥❞✱ ✇❤❛t ❤❛♣♣❡♥s t♦ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❛s ∆x → 0❄ ■t ❝♦♥✈❡r❣❡s t♦ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✿
❇✉t ✇❤❛t ❤❛♣♣❡♥s t♦ t❤❡ s✉♠ ❛s ∆x → 0❄ ❚❤❡r❡ ✐s ♥♦ ❝♦♥✈❡r❣❡♥❝❡✦ ❯♥❧❡ss t❤❡ ❢✉♥❝t✐♦♥ ❜❡✐♥❣ s❛♠♣❧❡❞ ✐s ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ ❞❡❣r❡❡ 1✳ ◆♦ ♥❡❡❞ ❢♦r ❛ ♥❡✇ ❝♦♥❝❡♣t✳
✹✳✶✷✳ ❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s ■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ ♦✉t❧✐♥❡ ❛♥ ❛❧t❡r♥❛t✐✈❡ ✈✐❡✇ ♦♥ ❝❛❧❝✉❧✉s✿ ❞❡r✐✈❛t✐✈❡ ❛♥❞ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s✳ ❍♦✇❡✈❡r✱ ✇❡ ✇✐❧❧ ❞❡❛❧ ✇✐t❤ s♦♠❡t❤✐♥❣ ❡✈❡♥ ♠♦r❡ ❢✉♥❞❛♠❡♥t❛❧ t❤❛♥ t❤♦s❡ t✇♦✿ ❲❡ ♠♦✈❡ ❜❡②♦♥❞ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦♥ ✐♥t❡r✈❛❧s✳ ◗✉❡st✐♦♥✿ ■s t❤❡ ❞❡r✐✈❛t✐✈❡
dy ❛ ❢r❛❝t✐♦♥❄ dx
❚❤❡ ❛♥s✇❡r t❤❛t ❢♦❧❧♦✇❡❞ t❤❡ ❞❡✜♥✐t✐♦♥ ✇❛s ❛♥ ❡♠♣❤❛t✐❝ ◆♦✦ ❆ ♠♦r❡ ❛❞✈❛♥❝❡❞ ❛♥s✇❡r ✇❡ ❣✐✈❡ ❤❡r❡ ✐s✿ ❨❡s✱ ❤❡r❡✬s ❤♦✇ ❛♥❞ ✇❤②✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ❢✉♥❝t✐♦♥ y = f (x) ❛♥❞ ✇❡ ❛r❡ t♦ st✉❞② ✐ts ❜❡❤❛✈✐♦r ❛r♦✉♥❞ ❛ ♣♦✐♥t x = a✳ ❚❤❡ ❞❡r✐✈❛t✐✈❡
✹✳✶✷✳ ❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s
✸✸✽
❛t a ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿ r✐s❡ ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡ dy = t❤❡ s❧♦♣❡ ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡ t❤r♦✉❣❤ (a, f (a)) = dx x=a r✉♥ ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡
❚❤✐s ✐s ❛ ❢r❛❝t✐♦♥ ❛❢t❡r ❛❧❧✦ ❊①❛♠♣❧❡ ✹✳✶✷✳✶✿
dx − dy ✲♣❧❛♥❡
❙♣❡❝✐✜❝❛❧❧②✱ s✉♣♣♦s❡ f (x) = x2 + 2x✳ ❆t a = 0✱ ✇❡ ❤❛✈❡ f (0) = 0✱ s♦ ♦✉r ✐♥t❡r❡st ✐s t❤❡ ♣♦✐♥t (0, 0)✳ ❚❤❡♥✱ dy = 2. = 2x + 2 dx x=0 x=0
■❢ t❤✐s ✐s ❛ ❢r❛❝t✐♦♥✱ ✇❤❛t ✇♦✉❧❞ ❜❡ t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤✐s✿
dy = 2 · dx ?
■t ✐s t❤❡ ❡q✉❛t✐♦♥ ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡ ✇r✐tt❡♥ ✇✐t❤ r❡s♣❡❝t t♦ dy ❛♥❞ dx✳ ❚❤✉s✱ t❤❡ ❡q✉❛t✐♦♥
dy = f ′ (a) · dx
r❡❢❡rs t♦ ❛ s♣❡❝✐✜❝ ❧♦❝❛t✐♦♥✱ x = a ❛♥❞ y = f (a)✱ ♦♥ t❤❡ xy ✲♣❧❛♥❡ ❛♥❞ ✐t ✐s ❛ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ t✇♦ ♥❡✇ ✈❛r✐❛❜❧❡s ❛s t❤❡ ♦❧❞ ♦♥❡s ❤❛✈❡ ❜❡❡♥ s♣❡❝✐✜❡❞✳ ❲❡ ❝❛♥ ❛❧✇❛②s s❡❡ dx✱ dy ♦♥ t❤❡ ❣r❛♣❤✿
❚❤✉s✱ ✇❡ ❤❛✈❡✿ • dx ✐s t❤❡ r✉♥ ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡✳ • dy ✐s t❤❡ r✐s❡ ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡✳
❚❤❡② ❛r❡ ❝❛❧❧❡❞ t❤❡ ❞✐✛❡r❡♥t✐❛❧s ♦❢ x ❛♥❞ y r❡s♣❡❝t✐✈❡❧②✳
✹✳✶✷✳
❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s
✸✸✾
❲❛r♥✐♥❣✦ ❍❡r❡✱
X = dx ❛♥❞ Y = dy ❛r❡ ❥✉st ❝❡rt❛✐♥ ✈❛r✐❛❜❧❡s x ❛♥❞ y r❡s♣❡❝t✐✈❡❧②❀ t❤❡ ❧❛tt❡r ❞❡♣❡♥❞s
r❡❧❛t❡❞ t♦
♦♥ t❤❡ ❢♦r♠❡r ❧✐♥❡❛r❧②✿
Y =m·X.
❚❤❡ ❛❧❣❡❜r❛ ♠❛② ❝♦♠❡ ❢r♦♠ t❤❡ ❡①❛♠♣❧❡ ❛❜♦✈❡✿
• y ❞❡♣❡♥❞s ♦♥ x ✈✐❛ y = f (x)✳
• dy ❞❡♣❡♥❞s ♦♥ x ❛♥❞ dx ✈✐❛ dy = f ′ (x)dx✳
❊①❛♠♣❧❡ ✹✳✶✷✳✷✿ ❧✐♥❡❛r✐③❛t✐♦♥
●✐✈❡♥ ❛ ❢✉♥❝t✐♦♥ f (x) = x2 ✱ ✜♥❞ ✐ts ❜❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥ ❛t a = 1✳ ❙✐♥❝❡ f ′ (x) = 2x✱ ✇❡ s❡❡ t❤❛t f ′ (a) = f ′ (1) = 2 ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ❜❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ f ❛t a = 1 ✐s
L(x) = f (a) + f ′ (a)(x − a) = 1 + 2(x − a) . ◆♦✇ ✇❡ r❡✲✐♥t❡r♣r❡t t❤❡s❡ q✉❛♥t✐t✐❡s✿ ✶✳ dx = x − a ✷✳ dy = L(x) − L(a) ❚❤❡♥✱ ✇❡ ❤❛✈❡✿
dy = 2 · dx .
❚❤❡ ❡q✉❛t✐♦♥ ❡①♣r❡ss❡s ♦✉r ❞❡r✐✈❛t✐✈❡ ✐♥ t❡r♠s ♦❢ t❤❡s❡ ♥❡✇ ✈❛r✐❛❜❧❡s✱ t❤❡ ❞✐✛❡r❡♥t✐❛❧s✳ ❲❡ ❝❛♣t✉r❡ t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ✐♥❝r❡♠❡♥t ♦❢ x ❛♥❞ t❤❛t ♦❢ y ✕ ❝❧♦s❡ t♦ a✳ ■♥❞❡❡❞✱ y ❣r♦✇s t✇✐❝❡ ❛s ❢❛st ❛s x✳ ❲❡ ❛❝q✉✐r❡ t❤✐s ✐♥❢♦r♠❛t✐♦♥ ❜② ✐♥tr♦❞✉❝✐♥❣ ❛ ♥❡✇ ❝♦♦r❞✐♥❛t❡ s②st❡♠ (dy, dx)✳ ■♥ t❤✐s ❝♦♦r❞✐♥❛t❡ s②st❡♠✱ t❤❡ ❜❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥ ✭❣✐✈❡♥ ❜② t❤❡ t❛♥❣❡♥t ❧✐♥❡✮ ❜❡❝♦♠❡s s✐♠♣❧② ❛ ❧✐♥❡❛r ❢✉♥❝t✐♦♥✳ ❚❤❡ ❛♥❛❧②s✐s ♣r❡s❡♥t❡❞ ❛❜♦✈❡ ❛♣♣❧✐❡s t♦ ❡✈❡r② ♣♦✐♥t ✕ ❛♥❞ t♦ ❛❧❧ ♣♦✐♥ts ❛t ♦♥❝❡✿
❘❡❝❛❧❧ ❛❧s♦ ❢r♦♠ ❈❤❛♣t❡r ✶ ❤♦✇ ✇❡ ❧❡❛r♥❡❞ t♦ ❧♦♦❦ ❛t t❤❡ ✐♥t❡❣r❛❧ ❞✐✛❡r❡♥t❧②✿ Z b k(x) dx . a
❲❡ ❝❤❛♥❣❡
✇❤❛t ✇❡ ✐♥t❡❣r❛t❡✳ ■♥st❡❛❞ ♦❢ ❛ ❢✉♥❝t✐♦♥✱ k(x)✱ ✐t ✐s ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠✱ k(x) · dx✳
❉❡✜♥✐t✐♦♥ ✹✳✶✷✳✸✿ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ ❞❡❣r❡❡ 1 ❆ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ t✇♦ ✈❛r✐❛❜❧❡s✿
♦❢ ❞❡❣r❡❡ 1✱ ♦r s✐♠♣❧② ❛ 1✲❢♦r♠✱ ✐s ❞❡✜♥❡❞ ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ ϕ = ϕ(x, dx) = k(x) · dx ,
✇❤❡r❡ y = k(x) ✐s ❛ ❢✉♥❝t✐♦♥ ♦❢ x✳
✹✳✶✷✳
❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s
✸✹✵
❚❤❡ ❢✉♥❝t✐♦♥ ✐s s✐♠♣❧② ❧✐♥❡❛r ✇✐t❤ r❡s♣❡❝t t♦ t❤❡ s❡❝♦♥❞ ✈❛r✐❛❜❧❡✳
❲❛r♥✐♥❣✦ ❚❤❡ s②♠❜♦❧ ✏ ·✑ st❛♥❞s ❢♦r ♠✉❧t✐♣❧✐❝❛t✐♦♥ ❛♥❞ ✐t ✐s
♦❢t❡♥ ♦♠✐tt❡❞✳
▲❡t✬s ♣❧♦t t❤❡ ❣r❛♣❤ ♦❢ s✉❝❤ ❛ ❢✉♥❝t✐♦♥ ❜❡❧♦✇✿
•
❋✐rst✱ ✇❡ ♣❧♦t t❤❡ ❣r❛♣❤ ♦❢
•
❚❤❡♥✱ ✇❡ ♦❜s❡r✈❡ t❤❛t
•
❋✐♥❛❧❧②✱ ✇❡ ❝♦♥♥❡❝t t❤❡s❡ ❞♦ts t♦ t❤❡ ❝✉r✈❡ ✇✐t❤
ϕ
✐s
k
✭❣r❡❡♥✮ ❛❜♦✈❡ t❤❡ ❧✐♥❡
0
✇❤❡♥
dx = 0
dx = 1✳
❛♥❞ ♣❧♦t ♣♦✐♥ts ♦♥ t❤❡
str❛✐❣❤t ❧✐♥❡s
x✲❛①✐s
✭r❡❞✮✳
✭♦r❛♥❣❡✮✳
❚❤❡ r❡s✉❧t ✐s t❤✐s s✉r❢❛❝❡✿
❆s ♣r❡s❡♥t❡❞ ❛❜♦✈❡✱ ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♠❛② ❝♦♠❡ ❢r♦♠ t❤❡ ❢♦❧❧♦✇✐♥❣✿
y = f (x)
❛t
dy = f ′ (a) , dx
x = a =⇒
❛♥❞✱ ❢✉rt❤❡r♠♦r❡✱
=⇒ dy = f ′ (a) · dx . ❆ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ✐s ❛ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ t✇♦ ❡①tr❛ ✈❛r✐❛❜❧❡s✱ ♦♥❝❡ t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ♦❧❞ ♦♥❡s ❤❛s ❜❡❡♥ s♣❡❝✐✜❡❞✳ ❚❤❡ ❞❡♣❡♥❞❡♥❝❡ ❜❡t✇❡❡♥ t❤❡ ❞✐✛❡r❡♥t✐❛❧s ✈❛r✐❡s ❢r♦♠ ❧♦❝❛t✐♦♥ t♦ ❧♦❝❛t✐♦♥✳ ❙♦✱ ❞✐✛❡r❡♥t✐❛❧ ♦❢
x✱
✇❤✐❝❤ ✐s ❛ ✈❛r✐❛❜❧❡ s❡♣❛r❛t❡ ❢r♦♠✱ ❜✉t r❡❧❛t❡❞ t♦✱
❘❡❝❛❧❧ ❛❧s♦ ❤♦✇ t❤❡
dx
✐s t❤❡
x✳
❈❤❛✐♥ ❘✉❧❡✱ ✐♥ t❤❡ ▲❡✐❜♥✐③ ♥♦t❛t✐♦♥✱ ✇❛s ✐♥t❡r♣r❡t❡❞ ❛s ❛ ✏❝❛♥❝❡❧❧❛t✐♦♥✑
♦❢
du✿
dy 6 du dy = . dx 6 du dx ◆♦✇ ✇❡ ❝❛♥ s❡❡ t❤❛t ✐t ✐s ✐♥❞❡❡❞ ❛ ❝❛♥❝❡❧❧❛t✐♦♥✱ ✇❤❡♥
du
✐s ♥♦t ③❡r♦✳
❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s ❛r❡ ✇❤❛t ✇❡ ✐♥t❡❣r❛t❡✳ ❋♦r s✐♠♣❧✐❝✐t②✱ ✐♥st❡❛❞ ♦❢ ✉s✐♥❣ ♣❛rt✐t✐♦♥s ❛♥❞ ❞✐s❝r❡t❡ ❢♦r♠s t♦ ❞❡✜♥❡ t❤❡ ✐♥t❡❣r❛❧✱ ✇❡ ❥✉st r❡❢❡r t♦ t❤❡ ✏✉s✉❛❧✑ ✐♥t❡❣r❛❧✿
❉❡✜♥✐t✐♦♥ ✹✳✶✷✳✹✿ ✐♥t❡❣r❛❧ ♦❢ 1✲❢♦r♠ ❚❤❡
✐♥t❡❣r❛❧ ♦❢ ❛ 1✲❢♦r♠ ϕ = k dx ♦✈❡r ❛♥ ✐♥t❡r✈❛❧ [a, b] ✐s ❞❡✜♥❡❞ t♦ ❜❡ Z
❚❤❡♥ t❤❡ ❢♦r♠
k dx
✐s
f (u) ·
[a,b]
✐♥t❡❣r❛❜❧❡
▲❡t✬s t❛❦❡ ❛ ❧♦♦❦ ❛t ❤♦✇ ✇❡ r❡♣r❡s❡♥t❡❞ t❤❡ ❢♦r♠✉❧❛ ♦❢
Z
ϕ=
Z
b
k(x) dx . a
✇❤❡♥❡✈❡r
k
✐s ✐♥t❡❣r❛❜❧❡✳
✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥
du 6 dx = 6 dx
Z
f (u) du .
✐♥ ❈❤❛♣t❡r ✷✿
✹✳✶✷✳ ❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s
✸✹✶
■♥ ❧✐❣❤t ♦❢ t❤❡ ♥❡✇ ❞❡✜♥✐t✐♦♥✱ t❤✐s ✐s ❛ ❧✐t❡r❛❧ ❝❛♥❝❡❧❧❛t✐♦♥✳
❊①❡r❝✐s❡ ✹✳✶✷✳✺ ❙❤♦✇ t❤❛t t❤❡ s✉♠✱ ❜✉t ♥♦t t❤❡ ♣r♦❞✉❝t✱ ♦❢ t✇♦ 1✲❢♦r♠s ✐s ❛❧s♦ ❛ 1✲❢♦r♠✳ ❆♥❞ s♦ ✐s ❛ ♠✉❧t✐♣❧❡ ♦❢ ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠✳ ❉✐✛❡r❡♥t✐❛t✐♦♥ ✐s ❛❧s♦ tr❛♥s❧❛t❡❞ ✐♥t♦ t❤❡ ❧❛♥❣✉❛❣❡ ♦❢ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠s✳
❉❡✜♥✐t✐♦♥ ✹✳✶✷✳✻✿ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ ❞❡❣r❡❡ 0 ❆ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ ❞❡❣r❡❡ 0✱ ♦r s✐♠♣❧② ❛ 0✲❢♦r♠✱ ✐s ❛♥② ❢✉♥❝t✐♦♥ y = f (x) ♦❢ x✳ ❏✉st ❛s ❞✐s❝r❡t❡ ❢♦r♠s✱ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠s ♦❢ ❞✐✛❡r❡♥t ❞❡❣r❡❡s ❛r❡ ✐♥t❡r❝♦♥♥❡❝t❡❞✳
❉❡✜♥✐t✐♦♥ ✹✳✶✷✳✼✿ ❡①t❡r✐♦r ❞❡r✐✈❛t✐✈❡ ♦❢ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ ❞❡❣r❡❡ 0 ❚❤❡ ❡①t❡r✐♦r ❞❡r✐✈❛t✐✈❡ df ♦❢ ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ f ♦❢ ❞❡❣r❡❡ 0 ✐s ❞❡✜♥❡❞ t♦ ❜❡ t❤❡ 1✲❢♦r♠ ❣✐✈❡♥ ❜②✿ df = f ′ (x) dx
❚❤✐s ♥♦t❛t✐♦♥ ✐s ✉s❡❞ ❛❧♦♥❣ ✇✐t❤ ♦t❤❡rs ✉s❡❞ ✇❤❡♥ t❤❡ ♥❛♠❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ t❤❛t r❡❧❛t❡s x ❛♥❞ y ✐s ♥♦t ♣r♦✈✐❞❡❞✿
❉✐✛❡r❡♥t✐❛❧ df
❋♦r ❡①❛♠♣❧❡✱ ✇❡ ❤❛✈❡ ❛s ❜❡❢♦r❡✿ ❲❡ ❝❛♥ ❛❧s♦ ❤❛✈❡✿
dy
d( )
y = x2 =⇒ dy = 2x dx . d(x2 ) = 2x dx .
❚❤✉s✱ t❤❡ ❡①t❡r✐♦r ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❝♦♥t❛✐♥s ❛❧❧ ✐♥❢♦r♠❛t✐♦♥ ❛❜♦✉t ✐ts ❞❡r✐✈❛t✐✈❡✱ ❛♥❞ ✈✐❝❡ ✈❡rs❛✳ ❍♦✇❡✈❡r✱ t❤❡ ❢♦r♠❡r ♣r♦✈✐❞❡s ❛ ❞✐r❡❝t ❛♥s✇❡r t♦ t❤✐s q✉❡st✐♦♥✿ ◮ ■❢ ✇❡ ❛r❡ ❛t x = a ❛♥❞ ♠❛❦❡ ❛ st❡♣ dx✱ ✇❤❛t ✐s t❤❡ st❡♣ dy ♦❢ y ❄
❊①❛♠♣❧❡ ✹✳✶✷✳✽✿ ❞✐s♣❧❛❝❡♠❡♥t ❙✉♣♣♦s❡ x ✐s t✐♠❡ ❛♥❞ y = f (x) ✐s t❤❡ ❧♦❝❛t✐♦♥ ❛t t✐♠❡ x✳ ❚❤❡ ❡①t❡r✐♦r ❞❡r✐✈❛t✐✈❡ ♣r♦✈✐❞❡s ❛ ❞✐r❡❝t ❛♥s✇❡r t♦ t❤✐s q✉❡st✐♦♥✿ ◮ ❙✉♣♣♦s❡ x ✐s t✐♠❡ ❛♥❞ y = f (x) ✐s t❤❡ ❧♦❝❛t✐♦♥ ❛t t✐♠❡ x✳ ■❢ ❛t t✐♠❡ x = a ✇❡ ❛r❡ ❛t y = f (a) ❛♥❞ t❤❡♥ ✇❡ ♠♦✈❡ ❢♦r ❛ s❤♦rt s❤♦rt t✐♠❡ dx✱ ❤♦✇ ❢❛r ✇✐❧❧ ✇❡ ❣♦❄ ■t✬s t❤❡ ✈❡❧♦❝✐t② ♠✉❧t✐♣❧✐❡❞ ❜② t❤❡ t✐♠❡ ✐♥❝r❡♠❡♥t✿ ❉✐s♣❧❛❝❡♠❡♥t = f ′ (a) · dx , ❜✉t ♦♥❧② ✇❤❡♥ t❤❡ ✈❡❧♦❝✐t②✱ f ′ ✱ ✐s ❝♦♥st❛♥t✳ ■♥ t❤❡ ❣❡♥❡r❛❧ ❝❛s❡✱ t❤✐s ✐s ❛♥ ❡st✐♠❛t❡✳
❊①❛♠♣❧❡ ✹✳✶✷✳✾✿ ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥ ❲❡ ❤❛✈❡ ✉s❡❞ t❤✐s ❛❧❣❡❜r❛ ❢♦r ✐♥t❡❣r❛t✐♦♥ ❜② s✉❜st✐t✉t✐♦♥✳ ❈♦♥s✐❞❡r t❤❡ ✐♥t❡❣r❛❧✿ Z
2
2x sin x2 dx . 0
✹✳✶✷✳ ❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s
✸✹✷
❚❤❡ ✐❞❡❛ ✐s t♦ ✐♥tr♦❞✉❝❡ ❛ ♥❡✇ ✈❛r✐❛❜❧❡
u = x2 .
❍❡r❡ ✐s ❛ ❢❛♠✐❧✐❛r ❝♦♠♣✉t❛t✐♦♥ ✐♥t❡r♣r❡t❡❞ ✐♥ ❛ ♥❡✇ ✇❛②✿ u = x2 =⇒ du = 2x dx Z x=2 2x sin x2 dx =⇒ x=0 Z u=22 sin u du = u=02
u=4 = − cos u u=0
❊①t❡r✐♦r ❞❡r✐✈❛t✐✈❡
du = 2x dx Z 2x sin x2 dx [0,2] Z sin u du =
[0, 2] → [02 , 22 ]
[02 ,22 ]
u=4 = − cos u u=0
= − cos 4 − (− cos 0) = − cos 4 − (− cos 0)
❖✉r ❞❡✜♥✐t✐♦♥ ♦❢ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ tr❡❛ts t❤❡ ✐♥t❡❣r❛♥❞ ❛s ❛ s✐♠♣❧❡ ❝❛s❡ ♦❢ ♠✉❧t✐♣❧✐❝❛t✐♦♥ ♦❢ t✇♦ ♥✉♠❜❡rs✳ ❚❤❛t ✐s ✇❤② ✇❡ ❛r❡ ❛t ❧✐❜❡rt② t♦ ❛❧❣❡❜r❛✐❝❛❧❧② ♠❛♥✐♣✉❧❛t❡ t❤❡s❡ ❡①♣r❡ss✐♦♥s t❤❡ ✇❛② ✇❡ ❤❛✈❡✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ ✐s ❛ s✐♠♣❧❡ r❡✲st❛t❡♠❡♥t ✇✐t❤ ♦✉r ♥❡✇ ♥♦t❛t✐♦♥ ♦❢ ❛ ❢❛♠✐❧✐❛r t❤❡♦r❡♠ ✭❈❤❛♣t❡r ✶✮✿
❚❤❡♦r❡♠ ✹✳✶✷✳✶✵✿ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ❙✉♣♣♦s❡ ϕ ✐s ❛ 1✲❢♦r♠ ✐♥t❡❣r❛❜❧❡ ♦♥ ✐♥t❡r✈❛❧ [a, b]✳ ❚❤❡♥✱ Z
[a,b]
ϕ = F (b) − F (a) ,
❢♦r ❛♥② 0✲❢♦r♠ F t❤❛t s❛t✐s✜❡s✿ dF = ϕ .
■♥ ♦r❞❡r t♦ st✉❞② ❛ r❡❛❧✲✈❛❧✉❡❞ ❢✉♥❝t✐♦♥ y = f (x) ❛♥❞ ✐ts ❝❤❛♥❣❡✱ ✇❡ ♥♦✇ ❦❡❡♣ tr❛❝❦ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s ✿ • t❤❡ ❧♦❝❛t✐♦♥s✱ x ✈s✳ y ✱ ❛♥❞ • t❤❡ ❞✐r❡❝t✐♦♥s✱ dx ✈s✳ dy ✳
❚❤❡ r❡❧❛t✐♦♥ ✐s ❛s ❢♦❧❧♦✇s✿
(x, dx) 7→ (y, dy) = f (x), f ′ (x)dx
❲❤❛t ✐s t❤❡ r❡❧❛t✐♦♥ t♦ ❞✐s❝r❡t❡ ❢♦r♠s ❄
❲❡ ❦♥♦✇ t❤❛t ❞✐s❝r❡t❡ ❢♦r♠s ❝r❡❛t❡❞ ❜② s❛♠♣❧✐♥❣ ❛ ❢✉♥❝t✐♦♥ ❛♥❞ r❡✜♥✐♥❣ ♣❛rt✐t✐♦♥s ❝♦♥✈❡r❣❡s t♦ ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ t❤❡ s❛♠❡ ❞❡❣r❡❡✳ ❈❛♥ ✇❡ r❡✈❡rs❡ t❤✐s ❝♦rr❡s♣♦♥❞❡♥❝❡❄
❆♥② ❢✉♥❝t✐♦♥ ❝❛♥ ❜❡ s❛♠♣❧❡❞✳ ■t ♠❛tt❡rs ✇❤❡r❡✿ ✶✳ ❙❛♠♣❧✐♥❣ ❛t t❤❡ ♣r✐♠❛r② ♥♦❞❡s ♣r♦❞✉❝❡s ❛ ❞✐s❝r❡t❡ 0✲❢♦r♠✳ ✷✳ ❙❛♠♣❧✐♥❣ ❛t t❤❡ s❡❝♦♥❞❛r② ♥♦❞❡s ♣r♦❞✉❝❡s ❛ ❞✐s❝r❡t❡ 1✲❢♦r♠✳ ❆ ❜❡tt❡r ✐❞❡❛✱ ❤♦✇❡✈❡r✱ ✐s t♦ s❛♠♣❧❡ ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❞❡❣r❡❡✳
❚❤❡♦r❡♠ ✹✳✶✷✳✶✶✿ ❉✐s❝r❡t❡ ❛♥❞ ❉✐✛❡r❡♥t✐❛❧ ❋♦r♠s ✶✳ ❆ ❞✐✛❡r❡♥t✐❛❧ 0✲❢♦r♠ ❡✈❛❧✉❛t❡❞ ❛t t❤❡ ♥♦❞❡s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ✐s ❛ ❞✐s❝r❡t❡ 0✲❢♦r♠✳
✹✳✶✷✳
❉✐✛❡r❡♥t✐❛❧ ❢♦r♠s
✸✹✸
✷✳ ❆ ❞✐✛❡r❡♥t✐❛❧ 1✲❢♦r♠ ❡✈❛❧✉❛t❡❞ ✕ ❜② ✐♥t❡❣r❛t✐♦♥ ✕ ❛t t❤❡ ✐♥t❡r✈❛❧s ♦❢ t❤❡ ♣❛rt✐t✐♦♥ ✐s ❛ ❞✐s❝r❡t❡ 1✲❢♦r♠❀ ✐✳❡✳✱ ✐❢ ϕ ✐s ❛ ❞✐✛❡r❡♥t✐❛❧ 1✲❢♦r♠✱ t❤❡ ❝♦rr❡✲ s♣♦♥❞✐♥❣ ❞✐s❝r❡t❡ 1✲❢♦r♠ ✐s ❞❡✜♥❡❞ ❜②✿
s [A, B] =
❙♦✱ ❛ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ♦❢ ❞❡❣r❡❡
1
✐s
Z
ϕ [A,B]
✐ts ✐♥t❡❣r❛❧s✿
■♥t❡❣r❛❧ ♦❢ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠ ✏❡✈❛❧✉❛t❡✑
✐♥♣✉t
→
↓ Z
[−1, 1]
3x3 + sin x dx = 0 | {z } ↑
❞✐✛❡r❡♥t✐❛❧ ❢♦r♠
↑ ♦✉t♣✉t
■❢ ✇❡ s❡t t❤❡ ♠♦t✐♦♥ ✐♥t❡r♣r❡t❛t✐♦♥ ❛s✐❞❡✱ t❤❡ ♣✉r♣♦s❡ ♦❢ t❤❡ ♥❡✇ ❝♦♥❝❡♣t ✐s t♦ ♠❛❦❡ ❛ ❝❛r❡❢✉❧ ❞✐st✐♥❝t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ❧♦❝❛t✐♦♥✱
◮
x✱
❛♥❞ t❤❡ ❞✐r❡❝t✐♦♥✱
dx✿
❍♦✇ ❢❛st ❛r❡ ✇❡ ❣♦✐♥❣ ❢r♦♠ t❤✐s ❧♦❝❛t✐♦♥ ✐♥ t❤❛t ❞✐r❡❝t✐♦♥❄
❚❤❡r❡ ✐s ♦♥❧② ♦♥❡ ❞✐r❡❝t✐♦♥ ✭❛♥❞ ✐ts ♦♣♣♦s✐t❡✮ ❢♦r ❛ ❢✉♥❝t✐♦♥ ♦❢ ♦♥❡ ✈❛r✐❛❜❧❡✱ ❜✉t ✐♥✜♥✐t❡❧② ♠❛♥② ❢♦r ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s✳ ❲❡ ✇✐❧❧ s❡❡ ❛♣♣❧✐❝❛t✐♦♥s ♦❢ ❞✐✛❡r❡♥t✐❛❧ ❢♦r♠s ✐♥ t❤❡ ♠✉❧t✐❞✐♠❡♥s✐♦♥❛❧ ❝❛s❡ ✐♥ ❱♦❧✉♠❡ ✹✳
❈❤❛♣t❡r ✺✿ ❙❡r✐❡s
❈♦♥t❡♥ts
✺✳✶ ❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s ✳ ✺✳✷ ❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✸ ❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✹ ■♥✜♥✐t❡ s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✺ ▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✻ ❋r♦♠ ✜♥✐t❡ s✉♠s ✈✐❛ ❧✐♠✐ts t♦ s❡r✐❡s ✳ ✳ ✳ ✺✳✼ ❉✐✈❡r❣❡♥❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✽ ❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✾ ❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✶✵ ❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✶✶ ❚❤❡ ❘❛t✐♦ ❚❡st ❛♥❞ t❤❡ ❘♦♦t ❚❡st ✳ ✳ ✳ ✺✳✶✷ P♦✇❡r s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺✳✶✸ ❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✸✹✹ ✸✺✷ ✸✻✷ ✸✻✽ ✸✼✺ ✸✽✹ ✸✾✷ ✸✾✺ ✹✵✷ ✹✵✽ ✹✶✺ ✹✷✶ ✹✷✽
✺✳✶✳ ❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s
❆♣♣r♦①✐♠❛t✐♥❣ ❢✉♥❝t✐♦♥s ✐s ❧✐❦❡ ❛♣♣r♦①✐♠❛t✐♥❣ ♥✉♠❜❡rs ✕ s✉❝❤ ❛s π ✱ e✱ ♦r t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ♦❢ ❛♥② ❢✉♥❝t✐♦♥ ✕ ❜✉t ❤❛r❞❡r✳ ❘❡❝❛❧❧ ❢r♦♠ ❱♦❧✉♠❡ ✷ ✭❈❤❛♣t❡r ✷❉❈✲✻✮ t❤❡ ♠❡❛♥✐♥❣ ♦❢ ❧✐♥❡❛r✐③❛t✐♦♥ ✿ ❲❡ r❡♣❧❛❝❡ ❛ ❣✐✈❡♥ ❢✉♥❝t✐♦♥ y = f (x) ✇✐t❤ ❛ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ y = L(x) t❤❛t ❜❡st ❛♣♣r♦①✐♠❛t❡s ✐t ❛t ❛ ❣✐✈❡♥ ♣♦✐♥t✳ ❚❤✐s ❢✉♥❝t✐♦♥ ✐s ❝❛❧❧❡❞ t❤❡ ❜❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✱ ❛♥❞ ✐t ❤❛♣♣❡♥s t♦ ❜❡ t❤❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ t❤❡ ❣r❛♣❤ ♦❢ ✇❤✐❝❤ ✐s t❤❡ t❛♥❣❡♥t ❧✐♥❡ ❛t t❤❡ ♣♦✐♥t✳ ❚❤❡ r❡♣❧❛❝❡♠❡♥t ✐s ❥✉st✐✜❡❞ ❜② t❤❡ ❢❛❝t t❤❛t ✇❤❡♥ ②♦✉ ③♦♦♠ ✐♥ ♦♥ t❤❡ ♣♦✐♥t✱ t❤❡ t❛♥❣❡♥t ❧✐♥❡ ✇✐❧❧ ♠❡r❣❡ ✇✐t❤ t❤❡ ❣r❛♣❤✿
✺✳✶✳
❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s
✸✹✺
❍♦✇❡✈❡r✱ t❤❡r❡ ✐s ❛ ♠♦r❡ ❜❛s✐❝ ❛♣♣r♦①✐♠❛t✐♦♥✿ ❛
❝♦♥st❛♥t
❢✉♥❝t✐♦♥✱
y = C(x)✳
❊①❛♠♣❧❡ ✺✳✶✳✶✿ sq✉❛r❡ r♦♦t
▲❡t✬s r❡✈✐❡✇ t❤✐s ❡①❛♠♣❧❡ ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✻✿
◮
❍♦✇ ❞♦ ✇❡ ❝♦♠♣✉t❡
❲❡ ❛♣♣r♦①✐♠❛t❡✳ ❢✉♥❝t✐♦♥
f (x) =
√
√
4.1
✇✐t❤♦✉t ❛❝t✉❛❧❧② ❡✈❛❧✉❛t✐♥❣
f (x) =
√
x❄ √
❙♣❡❝✐✜❝❛❧❧②✱ ✐♥ ♦r❞❡r t♦ ❛♣♣r♦①✐♠❛t❡ t❤❡ ♥✉♠❜❡r ♦❢
x
✏❛r♦✉♥❞✑
4.1✱
✇❡ ❛♣♣r♦①✐♠❛t❡ t❤❡
a = 4✳
❲❡ ✜rst ❛♣♣r♦①✐♠❛t❡ t❤❡ ❢✉♥❝t✐♦♥ ✇✐t❤ ❛
❝♦♥st❛♥t
❢✉♥❝t✐♦♥✿
C(x) = 2 . ❚❤✐s ✈❛❧✉❡ ✐s ❝❤♦s❡♥ ❜❡❝❛✉s❡
f (a) =
√ √
4 = 2✳
❚❤❡♥ ✇❡ ❤❛✈❡✿
4.1 = f (4.1) ≈ C(4.1) = 2 .
■t ✐s ❛ ❝r✉❞❡ ❛♣♣r♦①✐♠❛t✐♦♥✿
❚❤❡ ♦t❤❡r✱ ❧✐♥❡❛r✱ ❛♣♣r♦①✐♠❛t✐♦♥ ✐s ✈✐s✐❜❧② ❜❡tt❡r✳ ❲❡ ❛♣♣r♦①✐♠❛t❡ t❤❡ ❢✉♥❝t✐♦♥ ✇✐t❤ ❛
❚❤✐s ✈❛❧✉❡ ✐s ❝❤♦s❡♥ ❜❡❝❛✉s❡
√
f (a) =
√
1 L(x) = 2 + (x − 4) . 4 4=2
❛♥❞
f ′ (a) =
1 ✳ ❚❤❡♥ ✇❡ ❤❛✈❡✿ 4
1 4.1 = f (4.1) ≈ L(4.1) = 2 + (4.1 − 4) = 2.025 . 4
❧✐♥❡❛r ❢✉♥❝t✐♦♥✿
✺✳✶✳
❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s
✸✹✻
❲❡ ❤❛✈❡ ❢♦r ❛ ❢✉♥❝t✐♦♥ y = f (x) ❛♥❞ ❛ ♣♦✐♥t x = a✿ ❚❤❡ ❜❡st ❝♦♥st❛♥t ❛♣♣r♦①✐♠❛t✐♦♥✿
C(x) = f (a) .
❚❤❡ ❜❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥✿
L(x) = f (a)
+f ′ (a)(x − a) .
❲❡ s❤♦✉❧❞ ♥♦t✐❝❡ ❡❛r❧② ♦♥ t❤❛t t❤❡ ❧❛tt❡r ❥✉st ❛❞❞s ❛ ♥❡✇ ✭❧✐♥❡❛r✮ t❡r♠ t♦ t❤❡ ❢♦r♠❡r✦ ❲❛r♥✐♥❣✦
❚❤❡ ❧❛tt❡r ✐s ❜❡tt❡r t❤❛♥ t❤❡ ❢♦r♠❡r ✕ ❜✉t ♦♥❧② ✇❤❡♥ ✇❡ ♥❡❡❞ ♠♦r❡ ❛❝❝✉r❛❝②✳ ❖t❤❡r✇✐s❡✱ t❤❡ ❧❛tt❡r ✐s ✇♦rs❡ ❜❡❝❛✉s❡ ✐t r❡q✉✐r❡s ♠♦r❡ ❝♦♠♣✉t❛t✐♦♥✳
❈❛♥ ✇❡ ❞♦ ❜❡tt❡r t❤❛♥ t❤❡ ♠❛t✐♦♥❄ ❨❡s✳
❜❡st
❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥❄ ◆♦✳ ❈❛♥ ✇❡ ❞♦ ❜❡tt❡r t❤❛♥ t❤❡ ❜❡st
❧✐♥❡❛r
❛♣♣r♦①✐✲
❊①❛♠♣❧❡ ✺✳✶✳✷✿ r♦❛❞ ❝✉r✈❛t✉r❡
❖♥❡ ❝❛♥ ✉♥❞❡rst❛♥❞ ❧✐♥❡❛r✐③❛t✐♦♥ ❛s ✐❣♥♦r✐♥❣ t❤❡ s❤❛♣❡ ♦❢ t❤❡ r♦❛❞ ❛♥❞ ❝♦♥❝❡♥tr❛t✐♥❣ ♦♥ t❤❡ ❤❡❛❞❧✐❣❤ts ♦❢ t❤❡ ❝❛r ✭❈❤❛♣t❡r ✷❉❈✲✸✮ ♦♥❡ ❧♦❝❛t✐♦♥ ❛t ❛ t✐♠❡✿
■♥ ❈❤❛♣t❡r ✷❉❈✲✹✱ ✇❡ ❛❧s♦ ❧❡❛r♥❡❞ t❤❛t t❤❡ ❝✉r✈❛t✉r❡ ♦❢ t❤❡ r♦❛❞ ✐s ❞❡t❡r♠✐♥❡❞ ❜② ❤♦✇ ❢❛st t❤❡ ❤❡❛❞❧✐❣❤ts t✉r♥ ❛♥❞✱ t❤❡r❡❢♦r❡✱ ❜② t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✐t r❡♣r❡s❡♥ts✿
❆ ❢✉rt❤❡r ✐❞❡❛ ✐s t♦ ❛♣♣r♦①✐♠❛t❡ t❤❡ ❝✉r✈❡ ♦❢ t❤❡ r♦❛❞ ✇✐t❤ ❛ ❢♦r ❧♦✇❡r ❝✉r✈❛t✉r❡ ❛♥❞ s♠❛❧❧❡r ❢♦r ❤✐❣❤❡r ❝✉r✈❛t✉r❡✿
❝✐r❝❧❡
♦❢ ❛♥ ❛♣♣r♦♣r✐❛t❡ r❛❞✐✉s ✕ ❧❛r❣❡r
❊✈❡r② ❝✐r❝❧❡ ✐s ❛ q✉❛❞r❛t✐❝ ❝✉r✈❡ ❛♥❞✱ t❤❡r❡❢♦r❡✱ ✐s s❡❡♥ ❛s ❛ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥✳ ❙✐♥❝❡ t❤❡ ♦♥❧② t❤✐♥❣ ✇❡ ✇❛♥t ❢r♦♠ ✐t ✐s ✐ts ❝✉r✈❛t✉r❡✱ ✇❡ ❝❛♥ r❡♣❧❛❝❡ t❤❡ ❝✐r❝❧❡ ✇✐t❤ ❛♥♦t❤❡r q✉❛❞r❛t✐❝ ❜✉t s✐♠♣❧❡r ✭❛♥❞ ❡①♣❧✐❝✐t❧② ❣✐✈❡♥✮ ❝✉r✈❡ ✕ t❤❡ ♣❛r❛❜♦❧❛✳ ❚❤❡ ❝✉r✈❛t✉r❡ ✐s ❢✉rt❤❡r st✉❞✐❡❞ ✐♥ ❱♦❧✉♠❡ ✹ ✭❈❤❛♣t❡r ✹❍❉✲✷✮✳ ❇❡❧♦✇ ✇❡ ✐❧❧✉str❛t❡ ❤♦✇ ✇❡ ❛tt❡♠♣t t♦ ❛♣♣r♦①✐♠❛t❡ ❛ ❢✉♥❝t✐♦♥ ❛r♦✉♥❞ t❤❡ ♣♦✐♥t (1, 1) ✇✐t❤ ❝♦♥st❛♥t ❢✉♥❝t✐♦♥s
✺✳✶✳
❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s
✸✹✼
✜rst❀ ❢r♦♠ t❤♦s❡✱ ✇❡ ❝❤♦♦s❡ t❤❡ ❤♦r✐③♦♥t❛❧ ❧✐♥❡ t❤r♦✉❣❤ t❤❡ ♣♦✐♥t✳ ❚❤✐s ❧✐♥❡ t❤❡♥ ❜❡❝♦♠❡s ♦♥❡ ♦❢ t❤❡ ♠❛♥② ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ t❤❡ ❝✉r✈❡ t❤❛t ♣❛ss t❤r♦✉❣❤ t❤❡ ♣♦✐♥t❀ ❢r♦♠ t❤♦s❡✱ ✇❡ ❝❤♦♦s❡ t❤❡ t❛♥❣❡♥t ❧✐♥❡✿
s❡q✉❡♥❝❡ ♦❢ ❛♣♣r♦①✐♠❛t✐♦♥s✦ ■♥❞❡❡❞✱ t❤❡ t❛♥❣❡♥t ❧✐♥❡ ✇✐❧❧ ❜❡❝♦♠❡ ♦♥❡ ♦❢ t❤❡ ♠❛♥② q✉❛❞r❛t✐❝ ❝✉r✈❡s ✕ ♣❛r❛❜♦❧❛s ✕ t❤❛t ♣❛ss t❤r♦✉❣❤ t❤❡ ♣♦✐♥t✳✳✳ ❛♥❞ ❛r❡ t❛♥❣❡♥t t♦ t❤❡ ❝✉r✈❡✳ ❲❤✐❝❤ ♦♥❡ ♦❢ t❤♦s❡ ❞♦ ✇❡ ❝❤♦♦s❡❄
◆♦✇✱ ✇❡ s❤❛❧❧ s❡❡ t❤❛t t❤❡s❡ ❛r❡ ❥✉st t❤❡ t✇♦ ✜rst st❡♣s ✐♥ ❛
■♥ ♦r❞❡r t♦ ❛♥s✇❡r t❤❛t✱ ✇❡ ♥❡❡❞ t♦ r❡✈✐❡✇ ❛♥❞ ✉♥❞❡rst❛♥❞ ❤♦✇ t❤❡ ❜❡st ❝♦♥st❛♥t ❛♥❞ t❤❡ ❜❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥s ✇❡r❡ ❝❤♦s❡♥✳ ■♥ ✇❤❛t ✇❛② ❛r❡ t❤❡② t❤❡ ❜❡st❄ ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ y = f (x) ✐s ❣✐✈❡♥ ❛♥❞ ✇❡ ✇♦✉❧❞ ❧✐❦❡ t♦ ❛♣♣r♦①✐♠❛t❡ ✐ts ❜❡❤❛✈✐♦r ✐♥ t❤❡ ✈✐❝✐♥✐t② ♦❢ ❛ ♣♦✐♥t✱ x = a✱ ✇✐t❤ ❛♥♦t❤❡r ❢✉♥❝t✐♦♥ y = T (x)✳ ❚❤❡ ❧❛tt❡r ✐s t♦ ❜❡ t❛❦❡♥ ❢r♦♠ s♦♠❡ ❝❧❛ss ♦❢ ❢✉♥❝t✐♦♥s t❤❛t ✇❡ ✜♥❞ s✉✐t❛❜❧❡✳ ❆ ❝❧❛ss ♦❢ r❡❧❛t✐✈❡❧② s✐♠♣❧❡ ❢✉♥❝t✐♦♥s t❤❛t ❛r❡ ❛❧s♦ q✉✐t❡ ✈❡rs❛t✐❧❡ ✐s t❤❡ ♣♦❧②♥♦♠✐❛❧s✳ ❲❤❛t ✇❡ ♥❡❡❞ t♦ ❝♦♥s✐❞❡r ✐s t❤❡
❡rr♦r✱ ✐✳❡✳✱ t❤❡ ❞✐✛❡r❡♥❝❡ ❜❡t✇❡❡♥ t❤❡ ❢✉♥❝t✐♦♥ f
❚❤❡ t❤❡ ❡rr♦r ❢✉♥❝t✐♦♥ ✐s s❡❡♥ ❜❡❧♦✇✿
❛♥❞ ✐ts ❛♣♣r♦①✐♠❛t✐♦♥ T ✿
E(x) = |f (x) − T (x)|
❲❡ ❛r❡ s✉♣♣♦s❡❞ t♦ ♠✐♥✐♠✐③❡ t❤❡ ❡rr♦r ❢✉♥❝t✐♦♥ ✐♥ s♦♠❡ ✇❛②✳ ❖❢ ❝♦✉rs❡✱ t❤❡ ❡rr♦r ❢✉♥❝t✐♦♥ y = E(x) ✐s ❧✐❦❡❧② t♦ ❣r♦✇ ✇✐t❤ ♥♦ ❧✐♠✐t ❛s ✇❡ ♠♦✈❡ ❛✇❛② ❢r♦♠ ♦✉r ♣♦✐♥t ♦❢ ✐♥t❡r❡st✱ x = a✳✳✳ ❜✉t ✇❡ ❞♦♥✬t ❝❛r❡✳ ❲❡ ✇❛♥t t♦ ♠✐♥✐♠✐③❡ t❤❡ ❞✐✛❡r❡♥❝❡ ✐♥ t❤❡ ✈✐❝✐♥✐t② ♦❢ a✱ ✇❤✐❝❤ ♠❡❛♥s ♠❛❦✐♥❣ s✉r❡ t❤❛t t❤❡ ❧✐♠✐t ♦❢ t❤❡ ❡rr♦r ❛s x → a ❣♦❡s t♦ 0✦ ❚❤❡♦r❡♠ ✺✳✶✳✸✿ ❇❡st ❝♦♥st❛♥t ❛♣♣r♦①✐♠❛t✐♦♥
❙✉♣♣♦s❡
f
✐s ❝♦♥t✐♥✉♦✉s ❛t
x=a
❛♥❞
C(x) = k ✐s ❛♥② ♦❢ ✐ts ❝♦♥st❛♥t ❛♣♣r♦①✐♠❛t✐♦♥s ✭✐✳❡✳✱ ❛r❜✐tr❛r② ❝♦♥st❛♥t ❢✉♥❝t✐♦♥s✮✳ ❚❤❡♥✱
✺✳✶✳ ❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s
✸✹✽
t❤❡ ❡rr♦r E ♦❢ t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ❛♣♣r♦❛❝❤❡s 0 ❛t x = a ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ ❝♦♥st❛♥t ✐s ❡q✉❛❧ t♦ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ f ❛t x = a✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ lim (f (x) − C(x)) = 0 ⇐⇒ k = f (a) .
x→a
Pr♦♦❢✳
❯s❡ t❤❡ ❙✉♠ ❘✉❧❡ ❢♦r ❧✐♠✐ts ❛♥❞ t❤❡♥ t❤❡ ❝♦♥t✐♥✉✐t② ♦❢ f ✿ 0 = lim (f (x) − C(x)) = lim f (x) − lim C(x) = f (a) − k . x→a
x→a
x→a
❚❤❛t✬s t❤❡ ❛♥❛❧♦❣ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ t❤❡♦r❡♠ ❢r♦♠ ❱♦❧✉♠❡ ✷ ✭❈❤❛♣t❡r ✷❉❈✲✻✮✿ ❚❤❡♦r❡♠ ✺✳✶✳✹✿ ❇❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥
❙✉♣♣♦s❡ f ✐s ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a ❛♥❞ L(x) = f (a) + m(x − a)
✐s ❛♥② ♦❢ ✐ts ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥s✳ ❚❤❡♥✱ t❤❡ ❡rr♦r E ♦❢ t❤❡ ❛♣♣r♦①✐♠❛✲ t✐♦♥ ❛♣♣r♦❛❝❤❡s 0 ❛t x = a ❢❛st❡r t❤❛♥ x − a ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ ❝♦❡✣❝✐❡♥t ♦❢ t❤❡ ❧✐♥❡❛r t❡r♠ ✐s ❡q✉❛❧ t♦ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ f ❛t x = a✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ f (x) − L(x) = 0 ⇐⇒ m = f ′ (a) . x→a x−a lim
Pr♦♦❢✳
❯s❡ t❤❡ ❙✉♠ ❘✉❧❡ ❢♦r ❧✐♠✐ts ❛♥❞ t❤❡♥ t❤❡ ❞✐✛❡r❡♥t✐❛❜✐❧✐t② ♦❢ f ✿ f (x) − f (a) f (x) − L(x) = lim − lim m = f ′ (a) − m . x→a x→a x→a x−a x−a
0 = lim
▲❡t✬s ❝♦♠♣❛r❡ t❤❡ ❝♦♥❞✐t✐♦♥s ✐♥ t❤❡ t✇♦ t❤❡♦r❡♠s✿ f (x) − C(x) → 0 ❛♥❞
f (x) − L(x) →0 x−a
❚❤❡ ❝♦♠♣❛r✐s♦♥ r❡✈❡❛❧s t❤❡ s✐♠✐❧❛r✐t② ❛♥❞ t❤❡ ❞✐✛❡r❡♥❝❡ ✐♥ ❤♦✇ ✇❡ ♠✐♥✐♠✐③❡ t❤❡ ❡rr♦r✦ ❚❤❡ ❞✐✛❡r❡♥❝❡ ✐s ✐♥ t❤❡ ❞❡❣r❡❡✿ ❤♦✇ ❢❛st t❤❡ ❡rr♦r ❢✉♥❝t✐♦♥ ❣♦❡s t♦ ③❡r♦✳ ■♥❞❡❡❞✱ ✇❡ ❧❡❛r♥❡❞ ✐♥ ❈❤❛♣t❡r ✷❉❈✲✻ t❤❛t t❤❡ ❧❛tt❡r ❝♦♥❞✐t✐♦♥ ♠❡❛♥s t❤❛t f (x) − L(x) ❝♦♥✈❡r❣❡s t♦ 0 ❢❛st❡r t❤❛♥ x − a✱ ✐✳❡✳✱ f (x) − L(x) = o(x − a);
t❤❡r❡ ✐s ♥♦ s✉❝❤ r❡str✐❝t✐♦♥ ❢♦r t❤❡ ❢♦r♠❡r✳ ❙♦ ❢❛r✱ t❤✐s ✐s ✇❤❛t ✇❡ ❤❛✈❡ ❞✐s❝♦✈❡r❡❞✿
◮ ▲✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥s ❛r❡ ❜✉✐❧t ❢r♦♠ t❤❡ ❜❡st ❝♦♥st❛♥t ❛♣♣r♦①✐♠❛t✐♦♥ ❜② ❛❞❞✐♥❣ ❛ ❧✐♥❡❛r
t❡r♠✳
❚❤❡ ❜❡st ♦♥❡ ♦❢ t❤♦s❡ ❤❛s t❤❡ s❧♦♣❡ ✭✐ts ♦✇♥ ❞❡r✐✈❛t✐✈❡✮ ❡q✉❛❧ t♦ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ f ❛t a✳ ❍♦✇ t❤❡ s❡q✉❡♥❝❡ ♦❢ ❛♣♣r♦①✐♠❛t✐♦♥s ✇✐❧❧ ♣r♦❣r❡ss ✐s ♥♦✇ ❝❧❡❛r❡r✿ ◮ ◗✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s ❛r❡ ❜✉✐❧t ❢r♦♠ t❤❡ ❜❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥ ❜② ❛❞❞✐♥❣ ❛ q✉❛❞r❛t✐❝
t❡r♠✳
✺✳✶✳ ❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s
✸✹✾
❖♥❡ ♦❢ t❤❡♠ ♠✐❣❤t ❜❡ t❤❡ ❜❡st✿
❚♦ ❞❡❝✐❞❡ ✇❤✐❝❤ ♦♥❡ ♦❢ t❤♦s❡ ✐s t❤❡ ❜❡st✱ ✇❡ t❤✐♥❦ ❜② ❛♥❛❧♦❣② ❛♥❞ tr② t♦ ♠❛❦❡ t❤❡ ❡rr♦r ❢✉♥❝t✐♦♥
E
❣♦ t♦
❜✉t ❡✈❡♥ ❢❛st❡r✿
❚❤❡♦r❡♠ ✺✳✶✳✺✿ ❇❡st q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥
❙✉♣♣♦s❡ f ✐s t✇✐❝❡ ❝♦♥t✐♥✉♦✉s❧② ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a ❛♥❞ Q(x) = f (a) + f ′ (a)(x − a) + p(x − a)2
✐s ❛♥② ♦❢ ✐ts q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s✳ ❚❤❡♥✱ t❤❡ ❡rr♦r E ♦❢ t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ❛♣♣r♦❛❝❤❡s 0 ❛t x = a ❢❛st❡r t❤❛♥ (x − a)2 ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ ❝♦❡✣❝✐❡♥t ♦❢ t❤❡ q✉❛❞r❛t✐❝ t❡r♠ ✐s ❡q✉❛❧ t♦ ❤❛❧❢ ♦❢ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ f ❛t x = a✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿ f (x) − Q(x) 1 = 0 ⇐⇒ p = f ′′ (a) . 2 x→a (x − a) 2 lim
Pr♦♦❢✳ ❲❡ ❛♣♣❧② ▲✬❍♦♣✐t❛❧✬s r✉❧❡ t✇✐❝❡✿
f (x) − Q(x) x→a (x − a)2 f ′ (x) − f ′ (a) − 2p(x − a) = lim x→a 2(x − a) f ′′ (x) − 2p = lim x→a 2 f ′′ (x) = lim −p x→a 2 1 = f ′′ (a) − p . 2
0 = lim
❋✐rst✳
❆♥❞ s❡❝♦♥❞✳
0
✺✳✶✳
❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s
✸✺✵
❖♥❝❡ ❛❣❛✐♥✱ t❤❡ ❝♦♥❞✐t✐♦♥ ♦❢ t❤❡ t❤❡♦r❡♠ ♠❡❛♥s t❤❛t
f (x) − Q(x)
❝♦♥✈❡r❣❡s t♦
0
❢❛st❡r t❤❛♥
(x − a)2 ✱
f (x) − Q(x) = o((x − a)2 ) . ❲❡ st❛rt t♦ s❡❡ ❛ ♣❛tt❡r♥✿
•
❚❤❡ ❞❡❣r❡❡s ♦❢ t❤❡ ❛♣♣r♦①✐♠❛t✐♥❣ ♣♦❧②♥♦♠✐❛❧s ❛r❡ ❣r♦✇✐♥❣✳
•
❚❤❡ ❞❡❣r❡❡s ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡s ❜❡✐♥❣ t❛❦❡♥ ✐♥t♦ ❛❝❝♦✉♥t ❛r❡ ❣r♦✇✐♥❣ t♦♦✳
❊①❛♠♣❧❡ ✺✳✶✳✻✿ sq✉❛r❡ r♦♦t ❋♦r t❤❡ ♦r✐❣✐♥❛❧ ❡①❛♠♣❧❡ ♦❢
f (x) =
f (x)
=
√
√
x
❛t
a = 4✱
✇❡ ❤❛✈❡✿
x
=⇒ f (4)
=2 1 = 4
1 =⇒ f ′ (4) = (x1/2 )′ = x−1/2 2 ′ 1 1 1 −1/2 ′′ x = − x−3/2 =⇒ f ′′ (4) = − f (x) = 2 4 32 f ′ (x)
❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡✿
✇❤② ❜❡st✿
❛♣♣r♦①✐♠❛t✐♦♥s✿
C(x) =
2
❙❛♠❡ ✈❛❧✉❡ ❛s
1 2 + (x − 4) 4 1 1 2 + (x − 4) − (x − 4)2 2 · 32 4
L(x) = Q(x) =
f.
✳✳✳❆♥❞ s❛♠❡ s❧♦♣❡ ❛s
f.
✳✳✳❆♥❞ s❛♠❡ ❝♦♥❝❛✈✐t② ❛s
f.
❊①❛♠♣❧❡ ✺✳✶✳✼✿ s✐♥❡ ▲❡t✬s ❛♣♣r♦①✐♠❛t❡
f (x) = sin x
❛t
x = 0✳
❋✐rst✱ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❛♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡s✿
f (x)
= sin x
=⇒ f (0)
= 0 =⇒ C(x) = 0
f ′ (x)
= cos x
=⇒ f ′ (0)
= 1 =⇒ L(x) = x
′′
′′
f (x) = − sin x =⇒ f (0) = 0 =⇒ Q(x) = ?
❚❤❡r❡❢♦r❡✱ t❤❡ ❜❡st q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥ ✐s✿
0 Q(x) = 0 + 1(x − 0) − (x − 0)2 = x . 2 ❙❛♠❡ ❛s t❤❡ ❧✐♥❡❛r✦ ❲❤②❄ ❇❡❝❛✉s❡ t❤❡ s✐♥❡ ✐s ♦❞❞✳
♦r
✺✳✶✳ ❋r♦♠ ❧✐♥❡❛r t♦ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s
✸✺✶
❊①❛♠♣❧❡ ✺✳✶✳✽✿ ❝♦s✐♥❡
▲❡t✬s ❛♣♣r♦①✐♠❛t❡ f (x) = cos x ❛t x = 0✳ ❋✐rst✱ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❛♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡s✿ f (x)
= cos x
=⇒ f (0)
=1
=⇒ C(x) = 1
f ′ (x)
= − sin x =⇒ f ′ (0)
=0
=⇒ L(x) = 1
f ′′ (x) = − cos x =⇒ f ′′ (0) = −1 =⇒ Q(x) = ?
❚❤❡r❡❢♦r❡✱ t❤❡ ❜❡st q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥ ✐s✿ 1 1 Q(x) = 1 + 0(x − 0) − (x − 0)2 = 1 − x2 . 2 2
◆♦ ❧✐♥❡❛r t❡r♠✦ ❲❤②❄ ❇❡❝❛✉s❡ t❤❡ ❝♦s✐♥❡ ✐s ❡✈❡♥✳ ❊①❛♠♣❧❡ ✺✳✶✳✾✿ ❡❞❣❡ ❜❡❤❛✈✐♦r
❚❤❡ ❛♣♣❧✐❝❛❜✐❧✐t② ♦❢ t❤❡ t❤❡♦r❡♠s ❞❡♣❡♥❞s ♦♥ t❤❡ ♥❛t✉r❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳ ❈♦♥s✐❞❡r t❤❡s❡ t❤r❡❡ ❢❛♠✐❧✐❛r ❢✉♥❝t✐♦♥s ✭❱♦❧✉♠❡ ✷✮✿
❚❤❡s❡ ❛r❡ t❤❡ r❡s✉❧ts ♦❢ ♦✉r ❛♥❛❧②s✐s✿ ✶✳ ❋✉♥❝t✐♦♥ f (x) = sin x1 ✭✇✐t❤ f (0) = 0✮ ✐s ♥♦t ❝♦♥t✐♥✉♦✉s ❛t 0✱ ❛♥❞ ♥♦♥❡ ♦❢ t❤❡ t❤❡♦r❡♠s ❛♣♣❧②✳ ❚❤❡r❡ ✐s ♥♦ ❣♦♦❞ ❛♣♣r♦①✐♠❛t✐♦♥ ❛t 0✱ ♦❢ ❛♥② ❦✐♥❞✳ ✷✳ ❋✉♥❝t✐♦♥ g(x) = x sin x1 ✭✇✐t❤ f (0) = 0✮ ✐s ❝♦♥t✐♥✉♦✉s ❛t 0✱ ❛♥❞ t❤❡ ✜rst t❤❡♦r❡♠ ❛♣♣❧✐❡s✳ ❇✉t ❛s ✐t✬s ♥♦t ❞✐✛❡r❡♥t✐❛❜❧❡✱ ❛♥❞ t❤❡ ♦t❤❡r t✇♦ t❤❡♦r❡♠s ❞♦ ♥♦t ❛♣♣❧②✳ ❚❤❡ ❜❡st ❝♦♥st❛♥t ❛♣♣r♦①✐♠❛t✐♦♥ ❛t 0 ✐s C(x) = 0✱ ❜✉t ✐t✬s ♥♦t✱ ❛♥❞ t❤❡r❡ ✐s ♥♦♥❡✱ ❛ ❣♦♦❞ ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥✳ ✸✳ ❋✉♥❝t✐♦♥ h(x) = x2 sin x1 ✭✇✐t❤ f (0) = 0✮ ✐s ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t 0✱ ❛♥❞ t❤❡ ✜rst t✇♦ t❤❡♦r❡♠ ❛♣♣❧②✳ ❇✉t ✐t✬s ♥♦t t✇✐❝❡ ❞✐✛❡r❡♥t✐❛❜❧❡✱ ❛♥❞ t❤❡ ❧❛st t❤❡♦r❡♠ ❞♦❡s ♥♦t ❛♣♣❧②✳ ❚❤❡ ❜❡st ❧✐♥❡❛r ✭❛♥❞
✺✳✷✳ ❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✺✷
❝♦♥st❛♥t✮ ❛♣♣r♦①✐♠❛t✐♦♥ ❛t
0
L(x) = 0
✐s
❜✉t ✐t✬s ♥♦t✱ ❛♥❞ t❤❡r❡ ✐s ♥♦♥❡✱ ❛ ❣♦♦❞ q✉❛❞r❛t✐❝
❛♣♣r♦①✐♠❛t✐♦♥✳
❲❡ ✉s❡❞ s❡q✉❡♥❝❡s ♦❢ ♥✉♠❜❡rs t♦ ❛♣♣r♦①✐♠❛t❡ ♦t❤❡r ♥✉♠❜❡rs ✐♥ ❱♦❧✉♠❡ ✷❀ ♥♦✇ ✇❡ ✇✐❧❧ ✉s❡ s❡q✉❡♥❝❡s ♦❢
❢✉♥❝t✐♦♥s t♦ ❛♣♣r♦①✐♠❛t❡ ♦t❤❡r ❢✉♥❝t✐♦♥s✳ ■♥ ♦r❞❡r t♦ ❜❡ ❛❜❧❡ t♦ ❣♦ ❜❡②♦♥❞ q✉❛❞r❛t✐❝ ✐♥ ♦✉r s❡q✉❡♥❝❡ ♦❢ ♣♦❧②♥♦♠✐❛❧ ❛♣♣r♦①✐♠❛t✐♦♥s✱ ✇❡ r❡♥❛♠❡ t❤❡♠ ❛❝❝♦r❞✐♥❣ t♦ t❤❡✐r ❞❡❣r❡❡s ✿
T0 (x) = C(x) T1 (x) = L(x) T2 (x) = Q(x) ... ❊①❛♠♣❧❡ ✺✳✶✳✶✵✿ sq✉❛r❡ r♦♦t
❇❛❝❦ t♦ t❤❡ ♦r✐❣✐♥❛❧ ❡①❛♠♣❧❡ ♦❢
f (x) =
√
x
❛t
a = 4✳
❖♥❡ ❝❛♥ ❣✉❡ss ✇❤❡r❡ t❤✐s ✐s ❣♦✐♥❣✿
2 = T0 (x) f − T0 = o(1)
❝♦♥st❛♥t✿
1 (x − 4) + 2 = T1 (x) f − T1 = o(x − a) 4 1 (x − 4) + 2 = T2 (x) f − T2 = o((x − a)2 ) + 4 1 + (x − 4) + 2 = T3 (x) f − T3 = o((x − a)3 ) 4
❧✐♥❡❛r✿
❝✉❜✐❝✿
1 (x − 4)2 2 · 32 1 (x − 4)2 2 · 32
−
q✉❛❞r❛t✐❝✿
(?)(x − 4)3 − ✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
❲❡ ❛❞❞ ❛ t❡r♠ ❡✈❡r② t✐♠❡ ✇❡ ♠♦✈❡ ❞♦✇♥ t♦ t❤❡ ♥❡①t ❞❡❣r❡❡❀ ✐t✬s t❤❡ r❡❝✉rs✐✈❡ s✉♠ ✭❛s ❞✐s❝✉ss❡❞ ✐♥ ❈❤❛♣t❡r ✶✮ ♦❢ t❤❡ s❡q✉❡♥❝❡ ♦❢ t❤❡ t❡r♠s t❤❛t ❦❡❡♣ ❛♣♣❡❛r✐♥❣✳ ❚❤❡ r❡s✉❧t✐♥❣ s❡q✉❡♥❝❡ ✐s ❝❛❧❧❡❞ ❛ ✏s❡r✐❡s✑✳
◆❡①t✱ t❤❡ ❣❡♥❡r❛❧ t❤❡♦r②✳
✺✳✷✳ ❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
❆ ♣♦❧②♥♦♠✐❛❧ ✐s t②♣✐❝❛❧❧② ✇r✐tt❡♥ ✐♥ ✐ts st❛♥❞❛r❞ ❢♦r♠ ✿
P (x) = a0 + a1 x + a2 x2 + ... + an xn . ■t✬s t❤❡ s✉♠ ♦❢ ♠✉❧t✐♣❧❡s ✭❛ ❧✐♥❡❛r ❝♦♠❜✐♥❛t✐♦♥✮ ♦❢ t❤❡ ♣♦✇❡rs ♦❢
x✳
❍♦✇❡✈❡r✱ ✐♥ ♦r❞❡r t♦ ❜❡ ❛❜❧❡ t♦ ❝♦♥❝❡♥tr❛t❡ ♦♥ ❛ ♣❛rt✐❝✉❧❛r ✈❛❧✉❡ ♦❢ ♣♦❧②♥♦♠✐❛❧ ✐♥ t❡r♠s ♦❢ t❤❡ ❞❡✈✐❛t✐♦♥ ♦❢
x
❢r♦♠
a✱
✐✳❡✳✱
x − a✳
x✱
✐✳❡✳✱
x = a✱
✇❡ ✇❛♥t t♦ ❡①♣r❡ss t❤❡
❲❡ ✜♥❞ ❛ s♣❡❝✐❛❧ ❛♥❛❧♦❣ ♦❢ t❤❡ st❛♥❞❛r❞ ❢♦r♠
♦❢ t❤❡ ♣♦❧②♥♦♠✐❛❧❀ ❛ ♣♦❧②♥♦♠✐❛❧ ✐s st✐❧❧ t❤❡ s✉♠ ♦❢ ♣♦✇❡rs✱ ❥✉st ♥♦t ♦❢
x
❜✉t ♦❢
(x − a)✳
❆ ❢❛♠✐❧✐❛r ❡①❛♠♣❧❡ ♦❢ s✉❝❤ ❛ tr❛♥s✐t✐♦♥ ❝♦♠❡s ❢r♦♠ ❧✐♥❡❛r ♣♦❧②♥♦♠✐❛❧s ❛♥❞ t❤❡✐r ♣♦✐♥t✲s❧♦♣❡ ❢♦r♠ ✿
L(x) = mx + b = m(x − a) + d . ❚❤❡r❡ ✐s ❛❧s♦ t❤❡ ✈❡rt❡① ❢♦r♠ ♦❢ q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧s ✭❈❤❛♣t❡r ✶P❈✲✹✮✿
Q(x) = a(x − h)2 + k .
✺✳✷✳
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✺✸
❚❤✐s ✐s t❤❡ ❣❡♥❡r❛❧ r❡s✉❧t✿
❚❤❡♦r❡♠ ✺✳✷✳✶✿ ❈❡♥t❡r❡❞ ❋♦r♠ ♦❢ P♦❧②♥♦♠✐❛❧ a✱ ❡✈❡r② x = a✱ ✐✳❡✳✱
❋♦r ❡❛❝❤ r❡❛❧ ♥✉♠❜❡r ❢♦r♠
❝❡♥t❡r❡❞ ❛t
❞❡❣r❡❡
n
♣♦❧②♥♦♠✐❛❧
P
❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ✐♥ t❤❡
P (x) = c0 + c1 (x − a) + c2 (x − a)2 + ... + cn (x − a)n , ❢♦r s♦♠❡ r❡❛❧ ♥✉♠❜❡rs
Pr♦♦❢✳
❲❡ ✉s❡ t❤✐s ❝❤❛♥❣❡
♦❢ ✈❛r✐❛❜❧❡s ✿
c0 , ..., cn ✳
x 7→ x − a✱ ❛ s❤✐❢t t♦ t❤❡ r✐❣❤t ❜② a✳
❚❤❡ st❛♥❞❛r❞ ❢♦r♠ ✐s t❤❡♥ ❥✉st t❤❡ ❢♦r♠ ❝❡♥t❡r❡❞ ❛t x = 0✳ ■t ✐s ❢r♦♠ ❛♠♦♥❣ t❤❡s❡ ♣♦❧②♥♦♠✐❛❧s ✇❡ ✇✐❧❧ ❝❤♦♦s❡ t❤❡ ❜❡st ❛♣♣r♦①✐♠❛t✐♦♥ ❛t x = a✳ ❇❡❧♦✇ ✐s ❛ t❛❜❧❡ t❤❛t s❤♦✇s t❤❡ ♣r♦❣r❡ss ♦❢ ❜❡tt❡r ❛♥❞ ❜❡tt❡r ♣♦❧②♥♦♠✐❛❧ ❛♣♣r♦①✐♠❛t✐♦♥s ❢♦❧❧♦✇✐♥❣ t❤❡ ✐❞❡❛s ❞❡✈❡❧♦♣❡❞ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✳ ❚❤❡ ❞❡❣r❡❡s ♦❢ t❤❡s❡ ♣♦❧②♥♦♠✐❛❧s ❛r❡ ❧✐st❡❞ ✐♥ t❤❡ ✜rst ❝♦❧✉♠♥✱ ✇❤✐❧❡ t❤❡ ✜rst r♦✇ s❤♦✇s t❤❡ ❞❡❣r❡❡ ♦❢ t❤❡ t❡r♠s ♦❢ t❤❡s❡ ♣♦❧②♥♦♠✐❛❧s✿ ❞❡❣r❡❡s
n
...
3
2
1
0
0
c0 = T 0
1
c1 (x − a) + c0 = T1
c2 (x − a)2 + c1 (x − a) + c0 = T2
2 3
✳✳ ✳
c3 (x − a)3 + c2 (x − a)2 + c1 (x − a) + c0 = T3
✳✳ ✳
✳✳ ✳
✳✳ ✳
✳✳ ✳
✳✳ ✳
n cn (x − a)n + ... + c3 (x − a)3 + c2 (x − a)2 + c1 (x − a) + c0 = Tn
❖♥❝❡ ❛❣❛✐♥✱ t❤❡ s❡q✉❡♥❝❡ Tn ✐s t❤❡ s✉♠ ♦❢ t❤❡ s❡q✉❡♥❝❡ cn (x − a)n ✳
❍♦✇ ❞♦ ✇❡ ❝❤♦♦s❡ t❤❡ ❜❡st❄ ❲❡ r❡q✉✐r❡ t❤❛t t❤❡ ❡rr♦r ❢✉♥❝t✐♦♥ ❝♦♥✈❡r❣❡s t♦ ③❡r♦ ❢❛st❡r ❛♥❞ ❢❛st❡r✿
❉❡✜♥✐t✐♦♥ ✺✳✷✳✷✿ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧ ❙✉♣♣♦s❡ f ✐s n t✐♠❡s ❝♦♥t✐♥✉♦✉s❧② ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a✳ ❚❤❡♥ t❤❡ nt❤ ♣♦❧②♥♦♠✐❛❧✱ n = 0, 1, 2, ...✱ ✐s ❞❡✜♥❡❞ r❡❝✉rs✐✈❡❧② ❜②✿ T0 = f (a),
Tn (x) = Tn−1 + cn (x − a)n ,
❚❛②❧♦r
✉♥❞❡r t❤❡ r❡q✉✐r❡♠❡♥t t❤❛t t❤❡ ❡rr♦r ♦❢ t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ❛♣♣r♦❛❝❤❡s 0 ❛t x = a ❢❛st❡r t❤❛♥ (x − a)n ✿ f (x) − Tn (x) =0 x→a (x − a)n lim
✺✳✷✳
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✺✹
❚❤❡ ❝♦❡✣❝✐❡♥ts c0 , c1 , ..., cn ❛r❡ ❝❛❧❧❡❞ t❤❡ ❚❛②❧♦r
❝♦❡✣❝✐❡♥ts ♦❢ f ✳
■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ❡rr♦r ✐s✿ E = f − Tn = o (x − a)n
❆♣♣❧②✐♥❣ t❤❡ P♦✇❡r ❋♦r♠✉❧❛ ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥ r❡♣❡❛t❡❞❧② ♣r♦❞✉❝❡s ♠♦r❡ ❛♥❞ ♠♦r❡ ❜✉t s♠❛❧❧❡r ❛♥❞ s♠❛❧❧❡r ❝♦❡✣❝✐❡♥ts ✉♥t✐❧ ✐t r❡❛❝❤❡s 1✿ x′ = 1, (x2 )′′ = (2x)′ = 2, (x3 )′′ = (3x2 )′′ = (6x)′ = 6, .. .
❚❤✐s ✐s t❤❡ ❣❡♥❡r❛❧ r❡s✉❧t✳
❚❤❡♦r❡♠ ✺✳✷✳✸✿ ♥t❤ ❞❡r✐✈❛t✐✈❡ ♦❢ ♥t❤ ♣♦✇❡r ❋♦r ❛♥② n = 1, 2, 3...✱ ✇❡ ❤❛✈❡✿ (xn )(n) = n!
Pr♦♦❢✳ (xn )′ =⇒ (xn ) ′′ =⇒ (xn ) ′′
✳✳ ✳
xn−1
= n· ′
= n · (n − 1)·
✳✳ ✳
✳✳ ✳
✳✳ ✳
=⇒ (xn )(n−1) = n · (n − 1) · ... · 3· n (n)
=⇒ (x )
x
n−2 ′
x2
= n · (n − 1) · ... · 3 · 2· x
′
′
′
= n·
xn−1 =⇒
= n · (n − 1)·
xn−2 =⇒
= n · (n − 1) · (n − 2)·
✳✳ ✳
✳✳ ✳
xn−3 =⇒
✳✳ ✳
= n · (n − 1) · (n − 2) · ... · 3 · 2· x1 = n · (n − 1) · (n − 2) · ... · 3 · 2· 1
=⇒ = n!
❙❛♠❡ ❢♦r ♣♦✇❡rs ♦❢ (x − a)✿ (x − a)n
(n)
= n!
❙♦✱ t❤❛t✬s ✇❤② t❤❡ ❢❛❝t♦r✐❛❧ ❛♣♣❡❛rs ✐♥ t❤❡ ❢♦rt❤❝♦♠✐♥❣ ❢♦r♠✉❧❛s✳✳✳
❊①❡r❝✐s❡ ✺✳✷✳✹
Pr♦✈❡ t❤❡ ❧❛st ❢♦r♠✉❧❛✳ ❲❡ ❥✉♠♣ str❛✐❣❤t t♦ t❤❡ ❛♥s✇❡r✳ ❚❤✐s ✐s ♦✉r ♠❛✐♥ ✐♥t❡r❡st✳
❚❤❡♦r❡♠ ✺✳✷✳✺✿ ❚❛②❧♦r ❈♦❡✣❝✐❡♥ts ❙✉♣♣♦s❡ f ✐s n t✐♠❡s ❝♦♥t✐♥✉♦✉s❧② ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a✳ ❚❤❡♥ t❤❡ ❚❛②❧♦r ❝♦❡✣❝✐❡♥ts ♦❢ f ♠✉st ❜❡✿ 1 1 c0 = f (a), c1 = f ′ (a), c2 = f (2) (a), ..., cn = f (n) (a) 2 n!
✺✳✷✳
✸✺✺
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
Pr♦♦❢✳
❋r♦♠ t❤❡ ❧❛st t❤❡♦r❡♠✱ ✐t ❢♦❧❧♦✇s t❤❛t✿ 1 (2) 1 c0 = T0 (a), c1 = T1′ (a), c2 = T2 (a), ..., cn = Tn(n) (a) . 2 n!
❲❡ ✉s❡ t❤❡ ❧✐♠✐t ✐♥ t❤❡ ❞❡✜♥✐t✐♦♥ ❢♦r ❡❛❝❤ k = 0, 1, 2, ..., n✱ ❛s ❢♦❧❧♦✇s✳ ❙t❛rt ✇✐t❤✿ 0 : 0 = lim
x→a
f (x) − T0 (x) = lim (f (x) − T0 (x)) =⇒ T0 (a) = lim T0 (x) = lim f (x) = f (a) x→a x→a x→a (x − a)0
❲❡ ✉s❡ t❤❡ ❢❛❝t t❤❛t ❜♦t❤ T0 ❛♥❞ f ❛r❡ ❝♦♥t✐♥✉♦✉s ❛t x = a✳ ■t ❢♦❧❧♦✇s t❤❛t c0 = T0 (a) = f (a)✳ ◆❡①t✱ ✇❡ ✉s❡ ▲✬❍♦♣✐t❛❧✬s ❘✉❧❡ ✿ f ′ (x) − T1′ (x) f (x) − T1 (x) = lim =⇒ T1′ (a) = lim T1′ (x) = lim f ′ (x) = f ′ (a) 1 x→a x→a x→a x→a (x − a) 1
1 : 0 = lim
❲❡ ✉s❡ t❤❡ ❢❛❝t t❤❛t ❜♦t❤ T1′ ❛♥❞ f ′ ❛r❡ ❝♦♥t✐♥✉♦✉s ❛t x = a✳ ◆❡①t✱ ✇❡ ❛♣♣❧② ▲✬❍♦♣✐t❛❧✬s ❘✉❧❡ t✇✐❝❡✿ f ′′ (x) − T ′′ 2 (x) f (x) − T2 (x) = lim =⇒ T ′′ 2 (a) = lim T ′′ 2 (x) = lim f ′′ (x) = f ′′ (a) x→a x→a x→a x→a (x − a)2 2
2 : 0 = lim
❲❡ ✉s❡ t❤❡ ❢❛❝t t❤❛t ❜♦t❤ T ′′ 2 ❛♥❞ f ′′ ❛r❡ ❝♦♥t✐♥✉♦✉s ❛t x = a✳ ❆♥❞ s♦ ♦♥✳ ❋♦r t❤❡ ❧❛st st❡♣✱ ✇❡ ❛♣♣❧② ▲✬❍♦♣✐t❛❧✬s ❘✉❧❡ n t✐♠❡s✿ (n)
f (n) (x) − Tn (x) f (x) − Tn (x) = lim =⇒ Tn(n) (a) = lim Tn(n) (x) = lim f (n) (x) = f (n) (a) x→a x→a x→a x→a (x − a)n n!
n : 0 = lim
❲❡ ✉s❡ t❤❡ ❢❛❝t t❤❛t ❜♦t❤ Tn(n) ❛♥❞ f (n) ❛r❡ ❝♦♥t✐♥✉♦✉s ❛t x = a✳ ❊①❡r❝✐s❡ ✺✳✷✳✻
❋✐♥✐s❤ t❤❡ ♣r♦♦❢✳ ❊①❡r❝✐s❡ ✺✳✷✳✼
Pr♦✈❡ t❤❡ ❝♦♥✈❡rs❡✳ ❊①❡r❝✐s❡ ✺✳✷✳✽
Pr♦✈❡ t❤❛t t❤❡ nt❤ ❞❡❣r❡❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧ ♦❢ ❛♥ nt❤ ❞❡❣r❡❡ ♣♦❧②♥♦♠✐❛❧ ✐s t❤❛t ♣♦❧②♥♦♠✐❛❧✳ ❲❛r♥✐♥❣✦ ❚❤❡s❡ ❛r❡ ♥✉♠❜❡rs✱ ♥♦t ❢✉♥❝t✐♦♥s❀ t❤❡ ❞❡r✐✈❛t✐✈❡s ❛r❡ ❡✈❛❧✉❛t❡❞ ❛t
1 (k) . ck = f k! x=a
❙♦✱ ✇❡ ❤❛✈❡✿ T0 = f (a),
❛♥❞✱ ✐♥ s✐❣♠❛ ♥♦t❛t✐♦♥✿
x = a✿
Tn+1 (x) = Tn +
1 f (n+1) (a)(x − a)n+1 , (n + 1)!
✺✳✷✳
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✺✻
❚❤❡♦r❡♠ ✺✳✷✳✾✿ ❚❛②❧♦r P♦❧②♥♦♠✐❛❧s ♦❢ ❋✉♥❝t✐♦♥s
❙✉♣♣♦s❡ f ✐s n t✐♠❡s ❝♦♥t✐♥✉♦✉s❧② ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a✳ ❚❤❡♥ t❤❡ n✲t❤ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧ ♦❢ f ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿ Tn (x) =
n X 1 (k) f (a)(x − a)k k! k=0
❚❤✐s ✐s ✐♥❞❡❡❞ ❛ ♣♦❧②♥♦♠✐❛❧ ♦❢ ❞❡❣r❡❡ n✳ ■t ✐s ❝❡♥t❡r❡❞ ❛t a✳ ❊①❛♠♣❧❡ ✺✳✷✳✶✵✿ ❡①♣♦♥❡♥t ❛t ✵
❙♦♠❡ ❢✉♥❝t✐♦♥s ❛r❡ s♦ ❡❛s② t♦ ❞✐✛❡r❡♥t✐❛t❡ t❤❛t ✇❡ ❝❛♥ q✉✐❝❦❧② ✜♥❞ ❛❧❧ ♦❢ ✐ts ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s✳ ❋♦r ❡①❛♠♣❧❡✱ ❝♦♥s✐❞❡r f (x) = ex
❛t x = 0✳ ❚❤❡♥ f
(k)
❚❤❡r❡❢♦r❡✱
(0) = e
Tn (x) =
x
= 1. x=0
n X 1 k x . k! k=0
❚❤❡♥✱ ✇❡ ❤❛✈❡ ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ❢♦r♠✉❧❛✿ e≈1+
1 1 1 1 + + + ... + , 1! 2! 3! n!
✇❤✐❝❤ ❣✐✈❡s ❛ ❜❡tt❡r ❛❝❝✉r❛❝② ✇✐t❤ ❡❛❝❤ ♥❡✇ t❡r♠✳ ❚❤❡ ❡①❛❝t ♠❡❛♥✐♥❣ ♦❢ t❤✐s st❛t❡♠❡♥t ✐s ❡①♣❧❛✐♥❡❞ ❧❛t❡r✳ ❚❤❡ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ✐s ❡s♣❡❝✐❛❧❧② ❝♦♥✈❡♥✐❡♥t✿ Tn+1 (x) = Tn (x) +
1 (x − a)n+1 . (n + 1)!
❲❡ ✉s❡ ✐t ✐♥ ❛ s♣r❡❛❞s❤❡❡t ❛s ❢♦❧❧♦✇s✿ ❂❘❈❬✲✶❪✰❘✽❈✴❋❆❈❚✭❘✼❈✮✯✭❘❈✶✲❘✹❈✷✮✂❘✼❈
❚❤❡ ✜rst t❤r❡❡ ❛♣♣r♦①✐♠❛t✐♦♥s ❛r❡✿ 1 T0 (x) = 1, T1 (x) = x + 1, T2 (x) = x2 + x + 1 . 2
❲❡ ❝❛♥ ❝r❡❛t❡ ❛s ♠❛♥② ❛s ✇❡ ❧✐❦❡ ✐♥ ❡❛❝❤ ❝♦❧✉♠♥✿
✺✳✷✳
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✺✼
❲❡ ❝❛♥ s❡❡ ❤♦✇ t❤❡ ❝✉r✈❡s st❛rt t♦ r❡s❡♠❜❧❡ t❤❡ ♦r✐❣✐♥❛❧ ❣r❛♣❤ ✕ ❜✉t ♦♥❧② ✐♥ t❤❡ ✈✐❝✐♥✐t② ♦❢ x = 0✳ ❊❧s❡✇❤❡r❡✱ ✇❡ ❦♥♦✇ t❤❛t ♣♦❧②♥♦♠✐❛❧s ❤❛✈❡ t❤❡ ♣r♦♣❡rt② t❤❛t
Tn (x) → ∞ ❛s x → ∞ . ❚❤❡r❡❢♦r❡✱ t❤❡② ❝❛♥ ♥❡✈❡r ❣❡t ❝❧♦s❡ t♦ t❤❡ ❤♦r✐③♦♥t❛❧ ❛s②♠♣t♦t❡ ❢♦r x → −∞ ✭❞❡❣r❡❡s 4 − 7✮✿
❲❡ ❝❛♥✬t s❡❡ ✐t ♦♥ t❤❡ ♦t❤❡r ❡♥❞✱ ❜✉t✱ ❢♦r x → +∞✱ ✇❡ ❦♥♦✇ ❢r♦♠ ▲✬❍♦♣✐t❛❧✬s ❘✉❧❡ t❤❛t ♣♦❧②♥♦♠✐❛❧s ❛r❡ t♦♦ s❧♦✇ t♦ ❝♦♠♣❡t❡ ✇✐t❤ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥✳ ❚❤❡ ❣♦♦❞ ♥❡✇s ✐s t❤❛t✱ ✇✐t❤✐♥ ❛♥ ✐♥t❡r✈❛❧ ❝❡♥t❡r❡❞ ❛t 0✱ t❤❡r❡ ✐s ✈✐rt✉❛❧❧② ♥♦ ❞✐✛❡r❡♥❝❡ ❜❡t✇❡❡♥ t❤❡ t✇♦ ❣r❛♣❤s ✭❞❡❣r❡❡s 4 − 7✮✿
❲❡ ❤❛✈❡✱ ❜② ❢❛r✱ ♠♦r❡ t❤❛♥ ❥✉st ❛ s❡q✉❡♥❝❡ ♦❢ ❛♣♣r♦①✐♠❛t✐♦♥s✳ ❘❡❝❛❧❧ ❢r♦♠ ❱♦❧✉♠❡ ✶ t❤❛t ❛s ♥✉♠❜❡rs ❛r❡ r❡♣❧❛❝❡❞ ✇✐t❤ t❤❡✐r ❛♣♣r♦①✐♠❛t✐♦♥s✱ ✇❡ ❛r❡ st✐❧❧ ❛❜❧❡ t♦ ❞♦ ❛❧❣❡❜r❛ ✇✐t❤ t❤❡♠✳ ❙✐♠✐❧❛r❧②✱ ❛s ❢✉♥❝t✐♦♥s ❛r❡ r❡♣❧❛❝❡❞ ✇✐t❤ t❤❡✐r ❛♣♣r♦①✐♠❛t✐♦♥s✱ ✇❡ ❛r❡ st✐❧❧ ❛❜❧❡ t♦ ❞♦ ❝❛❧❝✉❧✉s ✇✐t❤ t❤❡♠✿
✺✳✷✳
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✺✽
❚❤❡♦r❡♠ ✺✳✷✳✶✶✿ ❉✐✛❡r❡♥t✐❛t✐♦♥ ♦❢ ❚❛②❧♦r P♦❧②♥♦♠✐❛❧s ❙✉♣♣♦s❡ f ✐s n t✐♠❡s ❝♦♥t✐♥✉♦✉s❧② ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a✳ ❚❤❡♥ t❤❡ ✜rst n ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ nt❤ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧ ♦❢ ❛ ❢✉♥❝t✐♦♥ f ❛❣r❡❡ ✇✐t❤ t❤♦s❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ f ✐ts❡❧❢❀ ✐✳❡✳✱ Tn(n) (a) = f (n) (a)
❈♦♥✈❡rs❡❧②✱ t❤✐s ♣♦❧②♥♦♠✐❛❧ ✐s t❤❡ ♦♥❧② ♦♥❡ t❤❛t s❛t✐s✜❡s t❤✐s ♣r♦♣❡rt②✳
Pr♦♦❢✳ ❙✐♥❝❡ Tn ✐s ❛ ♣♦❧②♥♦♠✐❛❧ ♦❢ ❞❡❣r❡❡ n✱ t❤❡ ♦♥❧② t❡r♠ t❤❛t ♠❛tt❡rs ❢♦r ✐ts nt❤ ❞❡r✐✈❛t✐✈❡ ✐s t❤❡ ❧❛st ♦♥❡✱ cn (x − a)n ✳ ❇② t❤❡ t❤❡♦r❡♠ ❛❜♦✈❡✱ ✇❡ ❤❛✈❡✿ Tn(n) (x) = cn (x − a)n
❊①❡r❝✐s❡ ✺✳✷✳✶✷
(n)
= cn · n! =
f (n) (a) · n! = f (n) (a) . n!
Pr♦✈❡ t❤❡ ❝♦♥✈❡rs❡✳
❊①❡r❝✐s❡ ✺✳✷✳✶✸ Pr♦✈❡ t❤❛t t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ♦❢ ❛♥ ❡✈❡♥ ✭♦❞❞✮ ❢✉♥❝t✐♦♥ ❤❛✈❡ ♦♥❧② ❡✈❡♥ ✭♦❞❞✮ t❡r♠s✳
❊①❛♠♣❧❡ ✺✳✷✳✶✹✿ ❡①♣♦♥❡♥t ❛t ✶ ▲❡t✬s ❛❣❛✐♥ ❝♦♥s✐❞❡r
f (x) = ex
❜✉t ❛t x = 1 t❤✐s t✐♠❡✳ ❲❡ st✐❧❧ ❤❛✈❡ ❛❧❧ t❤❡ ❞❡r✐✈❛t✐✈❡s r❡❛❞②✿ f
❚❤❡r❡❢♦r❡✱ t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧ ✐s✿
(k)
(1) = e x
= e. x=1
n X e (x − 1)k . Sn (x) = k! k=0
■t ✐s ♥❛♠❡❞ t❤✐s ✇❛② ✐♥ ♦r❞❡r t♦ ❝♦♠♣❛r❡ ✐t t♦ t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧ ♦❢ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥ ❛t x = 0✿ Tn (x) =
n X 1 k x . k! k=0
❙♦✱ ✇❡ ❤❛✈❡ ❛ s✐♠♣❧❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡♠✿ Sn (x) = eTn (x − 1) .
❚❤❡ ♦r✐❣✐♥❛❧ ✐s s❤✐❢t❡❞ ♦♥❡ ✉♥✐t r✐❣❤t ❛♥❞ t❤❡♥ str❡t❝❤❡❞ ✈❡rt✐❝❛❧❧② ❜② ❛ ❢❛❝t♦r ♦❢ e✳✳✳ ❚❤❡ ✜rst t❤r❡❡ ❛♣♣r♦①✐♠❛t✐♦♥s ❛r❡✿ e S0 (x) = e, S1 (x) = e(x − 1) + e, S2 (x) = (x − 1)2 + e(x − 1) + e . 2
❲❡ s❡❡ ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ ❞❡❣r❡❡s 0 − 7 ❜❡❧♦✇✿
✺✳✷✳
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✺✾
❍♦✇ ✇❡❧❧ ❞♦ ♦✉r ❛♣♣r♦①✐♠❛t✐♦♥s ✇♦r❦❄ ❘❡❝❛❧❧ ❤♦✇ ❛ ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ ❛ ❢✉♥❝t✐♦♥
f
❝♦♠❡s ✇✐t❤ ❛ ✏❢✉♥♥❡❧✑✿ ✐t ✐s ❝❡♥t❡r❡❞ ♦♥ t❤❡ t❛♥❣❡♥t ❧✐♥❡✱
❛♥❞ ✐ts ✉♣♣❡r ❛♥❞ ❧♦✇❡r ❜♦✉♥❞s ❛r❡ t❤❡ t✇♦ ♣❛r❛❜♦❧❛s ✭❥✉st ❧✐❦❡ q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥s✮✳ ❚❤✐s ✐s ✇❤❡r❡ t❤❡ ✉♥❦♥♦✇♥ ❢✉♥❝t✐♦♥
f
♠✉st r❡s✐❞❡✿
❙✐♠✐❧❛r❧② t♦ t❤❡ ❡rr♦r ❜♦✉♥❞s ❢♦r ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ✭❈❤❛♣t❡r ✸✮✱ ✇❡ ❤❛✈❡ ✐♥t❡r✈❛❧s t❤❛t ❝♦♥t❛✐♥ t❤❡ ✉♥❦♥♦✇♥ ✈❛❧✉❡ ✕ ✐❢ ✇❡ ✜① ❛ ✈❛❧✉❡ ♦❢
x✳
❋♦r ❛♥ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ ❛ ❤✐❣❤❡r ❞❡❣r❡❡✱ t❤❡ ❜❧✉❡ ❧✐♥❡ ✐♥ t❤❡ ✐❧❧✉str❛t✐♦♥ ✐s t♦ ❜❡ r❡♣❧❛❝❡❞ ✇✐t❤ ❛ ♣❛r❛❜♦❧❛ ♦r ❛ ❤✐❣❤❡r ❞❡❣r❡❡ ♣♦❧②♥♦♠✐❛❧✳ ❲❡ ❛❝❝❡♣t t❤❡ r❡s✉❧t ❜❡❧♦✇ ✇✐t❤♦✉t ♣r♦♦❢✿ ❚❤❡♦r❡♠ ✺✳✷✳✶✺✿ ❊rr♦r ❇♦✉♥❞ ❢♦r ❚❛②❧♦r ❆♣♣r♦①✐♠❛t✐♦♥
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ f ✐s (n + 1) t✐♠❡s ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a✳ ❙✉♣♣♦s❡ ❛❧s♦ t❤❛t ❢♦r ❡❛❝❤ i = 0, 1, 2, ..., n + 1✱ ✇❡ ❤❛✈❡ |f (i) (t)| < Ki ❢♦r ❡✈❡r② t ❜❡t✇❡❡♥ a ❛♥❞ x ,
❛♥❞ s♦♠❡ r❡❛❧ ♥✉♠❜❡r Ki ✳ ❚❤❡♥ En (x) = |f (x) − Tn (x)| ≤ Kn+1 ❚❤❡ ♠♦st ✐♠♣♦rt❛♥t ❝♦♥s❡q✉❡♥❝❡ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿
|x − a|n+1 . (n + 1)!
✺✳✷✳
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✻✵
❈♦r♦❧❧❛r② ✺✳✷✳✶✻✿ ❚❛②❧♦r ❆♣♣r♦①✐♠❛t✐♦♥
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ f ✐s ✐♥✜♥✐t❡❧② ♠❛♥② t✐♠❡s ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a✳ ❙✉♣♣♦s❡ ❛❧s♦ t❤❛t ❢♦r ❡❛❝❤ i = 0, 1, 2, ...✱ ✇❡ ❤❛✈❡ |f (i) (t)| < Ki ❢♦r ❡✈❡r② t ❜❡t✇❡❡♥ a ❛♥❞ x ,
❛♥❞ s♦♠❡ r❡❛❧ ♥✉♠❜❡r Ki ✳ ❚❤❡♥ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ❛t x ❝♦♥✈❡r❣❡ t♦ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❛t x✿ Tn (x) → f (x) ❛s n → ∞ ❚❤❡ r❡s✉❧t ✇✐❧❧ s❡r✈❡ ❛s ❛ ❝♦r♥❡rst♦♥❡ ❢♦r t❤❡ r❡st ♦❢ t❤❡ t❤❡♦r②✳ ❊①❡r❝✐s❡ ✺✳✷✳✶✼
❉❡r✐✈❡ t❤❡ ❝♦r♦❧❧❛r② ❢r♦♠ t❤❡ t❤❡♦r❡♠✳
❏✉st ❛s ✇✐t❤ t❤❡ ❜♦✉♥❞s ❢♦r ✐♥t❡❣r❛❧s✱ ✇❡ ♥❡❡❞ t♦ ❦♥♦✇ ❜♦✉♥❞s ❢♦r t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ ✉♥❦♥♦✇♥ ❢✉♥❝t✐♦♥
f
✕ ❛ ♣r✐♦r✐ ✕ ✐♥ ♦r❞❡r t♦ ❦♥♦✇ ❤♦✇ ❢❛r ✐t ❝❛♥ ❣♦ ❢r♦♠ t❤❡ ✈❛❧✉❡ t❤❛t ✇❡ ❞♦ ❦♥♦✇✳ ◆♦t❡ ❛❧s♦ t❤❛t t❤❡
❡rr♦r ❜♦✉♥❞ r❡s❡♠❜❧❡s t❤❡
(n + 1)st
nt❤
❚❛②❧♦r t❡r♠✳
❚❤❡ ✐♥❡q✉❛❧✐t② ✐s ❛ ✏sq✉❡❡③❡✑ ✭❈❤❛♣t❡rs ✷❉❈✲✶ ❛♥❞ ✷❉❈✲✷✮ ❢♦r t❤❡ ✉♥❦♥♦✇♥ ❢✉♥❝t✐♦♥
f✿
Tn (x) − En (x) < f (x) < Tn (x) + En (x) . ❚❤✐s ✐♥❡q✉❛❧✐t② ❣✉❛r❛♥t❡❡s t❤❛t✿
•
❚❤❡ ❡rr♦r ❛♣♣r♦❛❝❤❡s t♦
0
❛s
n→∞
•
❚❤❡ ❡rr♦r ❛♣♣r♦❛❝❤❡s t♦
0
❛s
x→a
■♥ ❢❛❝t✱ t❤❡ ❧❛tt❡r ❝♦♥✈❡r❣❡♥❝❡ ✐s
❢❛st ✿
❢♦r ❡❛❝❤
❢♦r ❡❛❝❤
x✳
n✳
q✉❛❞r❛t✐❝✱ ❝✉❜✐❝✱ ❡t❝✳
❊①❛♠♣❧❡ ✺✳✷✳✶✽✿ r♦♦t
▲❡t✬s s❡❡ ❤♦✇ ❝❧♦s❡ ✇❡ ❛r❡ t♦ t❤❡ tr✉t❤ ✇✐t❤ ♦✉r q✉❛❞r❛t✐❝ ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢
f (x) =
√
x
❛r♦✉♥❞
a=4
❢r♦♠ t❤❡ ❧❛st s❡❝t✐♦♥✳ ❘❡❝❛❧❧ t❤❛t ✇❡ ❤❛✈❡✿
1 1 (x − 4)2 . T2 (x) = 2 + (x − 4) − 4 2 · 32
❚❤❡ r❡s✉❧t ❝♦♠❡s ❢r♦♠ ♦✉r ❝♦♠♣✉t❛t✐♦♥s ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡s ✉♣ t♦ t❤❡ s❡❝♦♥❞ t♦ ✇❤✐❝❤ ✇❡ ❛❞❞ t❤❡ t❤✐r❞✿
f (x)
=
√
x
f ′ (x)
= (x1/2 )′ ′ 1 −1/2 ′′ f (x) = x 2 ′ 1 −3/2 (3) f (x) = − x 4
◆❡①t✱ ✇❡ ♥♦t✐❝❡ t❤❛t
f (3)
=⇒ f (4) = 2 1 −1/2 1 = x =⇒ f ′ (4) = 2 4 1 −3/2 1 =− x =⇒ f ′′ (4) = − 4 32 3 1 −3 −5/2 x = x−5/2 =− 4 2 8
✐s ❞❡❝r❡❛s✐♥❣✳ ❚❤❡r❡❢♦r❡✱ ♦✈❡r t❤❡ ✐♥t❡r✈❛❧
[4, +∞)✱ ♦✉r ❜❡st ✭s♠❛❧❧❡st✮ ✉♣♣❡r
❜♦✉♥❞ ❢♦r ✐t ✐s ✐ts ✐♥✐t✐❛❧ ✈❛❧✉❡✿
3 3 3 = . |f (3) (x)| ≤ |f (3) (4)| = 4−5/2 = 8 8 · 32 256 ❙♦✱ ♦✉r ❜❡st ✭s♠❛❧❧❡st✮ ❝❤♦✐❝❡ ♦❢ t❤❡ ✉♣♣❡r ❜♦✉♥❞ ✐s✿
K3 =
3 . 256
✺✳✷✳
❚❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
✸✻✶
❚❤❡♥✱ E2 (x) = |f (x) − T2 (x)| ≤ K3 √ ❚❤✐s ✐s ✇❤❡r❡ t❤❡ ❣r❛♣❤ ♦❢ y = x ❧✐❡s✿
|x − 4|3 3 1 = |x − 4|3 = |x − 4|3 . 3! 256 · 3! 512
❲❡ ❝❛♥ ♥♦✇ ❛❞❞r❡ss t❤❡ ❛❝❝✉r❛❝② ♦❢ ♦✉r ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢
√
4.1✿
1 0.001 |4.1 − 4|3 = ≈ 0.000002 . 512 512 √ ❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡ ❛♥ ✐♥t❡r✈❛❧ ✇❤❡r❡ t❤❡ tr✉❡ ✈❛❧✉❡ ♦❢ 4.1 ♠✉st ❧✐❡✿ √ T2 (4) − .000002 ≤ 4.1 ≤ T2 (4) + .000002 . E2 (4.1) =
❊①❛♠♣❧❡ ✺✳✷✳✶✾✿ ❡①♣♦♥❡♥t
▲❡t✬s ❡st✐♠❛t❡ e−0.01 ✇✐t❤✐♥ 6 ❞❡❝✐♠❛❧s✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ♥❡❡❞ t♦ ✜♥❞ s✉❝❤ ❛♥ n t❤❛t ✇❡ ❛r❡ ❣✉❛r❛♥t❡❡❞ t♦ ❤❛✈❡✿ e−0.01 − Tn (−.01) < 10−6 ,
✇❤❡r❡ Tn ✐s t❤❡ nt❤ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧ ♦❢ ex ❛r♦✉♥❞ x = 0✳ ❲❡ ❡st✐♠❛t❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ t❤✐s ❢✉♥❝t✐♦♥ ♦♥ t❤❡ ✐♥t❡r✈❛❧ [−0.01, 0]✿ x (i) (e ) = ex ≤ 1 = Ki .
❚❤❡♥✱ ❤♦✇ ❞♦ ✇❡ ♠❛❦❡ t❤❡ ❡rr♦r ❜♦✉♥❞ s❛t✐s❢② t❤✐s✿
−0.01 |x − a|n+1 e − Tn (−.01) ≤ Kn+1 < 10−6 ? (n + 1)! ❲❡ r❡✲✇r✐t❡ ❛♥❞ s♦❧✈❡ t❤✐s ✐♥❡q✉❛❧✐t② ❢♦r n✿ 0.1n+1 < 10−6 . (n + 1)!
❆ ❧❛r❣❡ ❡♥♦✉❣❤ n ✇✐❧❧ ✇♦r❦✳ ❲❡ s✐♠♣❧② ❣♦ t❤r♦✉❣❤ ❛ ❢❡✇ ✈❛❧✉❡s ♦❢ n = 1, 2, 3, ... ✉♥t✐❧ t❤❡ ✐♥❡q✉❛❧✐t② ✐s s❛t✐s✜❡❞✿ n 3 4 5 n+1 0.1 0.000004167 0.000000083 0.000000001 (n + 1)!
■t✬s n = 4 ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡ ❛♥s✇❡r ✐s✿ 4 X 1 (−0.01)i . T4 (−0.01) = i! i=0
✺✳✸✳
❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s
✸✻✷
❲❡ ♥♦✇ ❝♦♠❡ ❜❛❝❦ t♦ t❤❡ r❡q✉✐r❡♠❡♥t ❢r♦♠ ❧❛st s❡❝t✐♦♥ t❤❛t t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥s ❤❛✈❡ t♦ ♣r♦✈✐❞❡ ❢❛st❡r ❛♥❞ ❢❛st❡r ❝♦♥✈❡r❣❡♥❝❡ t♦ ③❡r♦ ♦❢ t❤❡ ❡rr♦r✳ ❈♦r♦❧❧❛r② ✺✳✷✳✷✵✿ ❊rr♦r ❈♦♥✈❡r❣❡♥❝❡
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ f ✐s (n + 1) t✐♠❡s ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a✳ ❙✉♣♣♦s❡ ❛❧s♦ t❤❛t ❢♦r ❡❛❝❤ i = 0, 1, 2, ..., n + 1✱ ✇❡ ❤❛✈❡ |f (i) (t)| < Ki ❢♦r ❡✈❡r② t ❜❡t✇❡❡♥ a ❛♥❞ x ,
❛♥❞ s♦♠❡ r❡❛❧ ♥✉♠❜❡r Ki ✳ ❚❤❡♥ En (x) |f (x) − Tn (x)| = → 0 ❛s x → a . n |x − a| |x − a|n
✺✳✸✳ ❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s
▲❡t✬s t❛❦❡ ❛ ❝❧♦s❡r ❧♦♦❦ ❛t t❤❡ t❤❡♦r❡♠s ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✳ • ❋✐rst✱ t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ♦❢ f ❢♦r♠ ❛
s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s
Tn : n = 0, 1, 2, 3, ... • ❙❡❝♦♥❞✱ s✉♣♣♦s❡ ✇❡ ✜① ❛ ✈❛❧✉❡ x ✇✐t❤✐♥ t❤❡ ✐♥t❡r✈❛❧✱ t❤❡♥ ✇❡ ❤❛✈❡ ❛
s❡q✉❡♥❝❡ ♦❢ ♥✉♠❜❡rs
Tn (x) : n = 0, 1, 2, 3, ...
❚❤✐s s❡q✉❡♥❝❡ ❤❛s t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣❡rt② ❛❝❝♦r❞✐♥❣ t♦ t❤❡ t❤❡♦r❡♠ ❛❜♦✉t ❚❛②❧♦r s❡❝t✐♦♥✱ ❢♦r ❡❛❝❤ x✿
❆♣♣r♦①✐♠❛t✐♦♥ ✐♥ t❤❡ ❧❛st
Tn (x) → f (x) ❛s n → ∞ ❊①❛♠♣❧❡ ✺✳✸✳✶✿ ❡①♣♦♥❡♥t
■♥ ♦✉r ❛♣♣r♦①✐♠❛t✐♦♥s✱ ✇❡ ❝❤♦♦s❡ t♦ ❝♦♥❝❡♥tr❛t❡ ♦♥ ❛ s✐♥❣❧❡ ✈❛❧✉❡ ♦❢ x ❛t ❛ t✐♠❡✳ ❍♦✇ ❛❜♦✉t x = 2✿
❋r♦♠ t❤✐s s❡q✉❡♥❝❡ ♦❢ ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ ex ✱ ✇❡ t❛❦❡ t❤✐s✿ Tn (2) → e2 ❛s n → ∞ .
❆♥❞ s♦ ♦♥✳
✺✳✸✳
❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s
✸✻✸
❙✐♥❝❡ t❤✐s ❝♦♥✈❡r❣❡♥❝❡ ♦❝❝✉rs ❢♦r ❡❛❝❤ x✱ ✇❡ ❝❛♥ s♣❡❛❦ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ✇❤♦❧❡ s❡q✉❡♥❝❡ ♦❢ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s✳ ❚❤❡ ❣❡♥❡r❛❧ ✐❞❡❛ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✳
❉❡✜♥✐t✐♦♥ ✺✳✸✳✷✿ ♣♦✐♥t✇✐s❡ ❝♦♥✈❡r❣❡♥t s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s fn ❞❡✜♥❡❞ ♦♥ ✐♥t❡r✈❛❧ I ✳ ❲❡ s❛② t❤❛t t❤❡ s❡q✉❡♥❝❡ ❝♦♥✈❡r❣❡s ♣♦✐♥t✇✐s❡ ♦♥ I t♦ ❛ ❢✉♥❝t✐♦♥ f ✐❢ ❢♦r ❡✈❡r② x✱ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡s❡ ❢✉♥❝t✐♦♥s ❛t x ❝♦♥✈❡r❣❡✱ ❛s ❛ s❡q✉❡♥❝❡ ♦❢ ♥✉♠❜❡rs✱ t♦ t❤❡ ✈❛❧✉❡ ♦❢ f ❛t x✱ ✐✳❡✳✱ fn (x) → f (x) .
❖t❤❡r✇✐s❡✱ ✇❡ s❛② t❤❛t t❤❡ s❡q✉❡♥❝❡ ❞✐✈❡r❣❡s
♣♦✐♥t✇✐s❡✳
❲❛r♥✐♥❣✦ ■t ♦♥❧② t❛❦❡s ❞✐✈❡r❣❡♥❝❡ ❢♦r ❛ s✐♥❣❧❡ ✈❛❧✉❡ ♦❢
x
t♦
♠❛❦❡ t❤❡ ✇❤♦❧❡ s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s ❞✐✈❡r❣❡✳
❊①❛♠♣❧❡ ✺✳✸✳✸✿ s❤r✐♥❦✐♥❣ ❚❤✐s ✐s ❤♦✇✱ t②♣✐❝❛❧❧②✱ ❛ s❡q✉❡♥❝❡ ❝♦♥✈❡r❣❡s✱ t♦ t❤❡ ③❡r♦ ❢✉♥❝t✐♦♥✱ f (x) = 0✱ ✐♥ t❤✐s ❝❛s❡✿
❚❤❡ ❢✉♥❝t✐♦♥s ❛r❡ ❝♦♥str✉❝t❡❞ ❛s ❢♦❧❧♦✇s✿ g(x) = 3 − cos x,
❨♦✉ ❝❛♥ ❝❤♦♦s❡ ❛♥② ♦t❤❡r ❢✉♥❝t✐♦♥ g ✳
n 2 fn (x) = g(x) . 3
❚❤❡ ♠✉❧t✐♣❧❡ ✐s ❣❡tt✐♥❣ s♠❛❧❧❡r ❛♥❞ s❤r✐♥❦s t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ g t♦✇❛r❞ t❤❡ x✲❛①✐s✳ ❚❤❡ ♣r♦♦❢ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ✐s r♦✉t✐♥❡ ✭❛❢t❡r ❛❧❧✱ t❤❡ s❡q✉❡♥❝❡ ✐s ❣❡♦♠❡tr✐❝✮✿
❜② t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ t✐♦♥s ❝♦♥✈❡r❣❡s t♦ 0✿
n n 2 2 → 0, g(x) = |g(x)| |fn (x)| = 3 3
❘✉❧❡✳
❚❤✉s✱ ❡❛❝❤ ♥✉♠❡r✐❝❛❧ s❡q✉❡♥❝❡ ♣r♦❞✉❝❡❞ ❢r♦♠ t❤✐s s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝✲
❚❤❡② ❞♦ t❤✐s ✐♥❞❡♣❡♥❞❡♥t❧② ♦❢ ❡❛❝❤ ♦t❤❡r✳
✺✳✸✳ ❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s
✸✻✹
❊①❛♠♣❧❡ ✺✳✸✳✹✿ s❤✐❢t✐♥❣
❆♥♦t❤❡r s✐♠♣❧❡ ❝❤♦✐❝❡ ♦❢ ❛ s❡q✉❡♥❝❡ ✐s✿ fn (x) = f (x) +
1 → f (x) + 0 = f (x) , n
❢♦r ❡❛❝❤ x✱ ♥♦ ♠❛tt❡r t❤❛t f ✐s✳ ❊①❛♠♣❧❡ ✺✳✸✳✺✿ s❡❝❛♥ts ❛♥❞ t❛♥❣❡♥ts
❲❡ s❛✐❞✱ ✐♥❢♦r♠❛❧❧②✱ t❤❛t t❤❡ s❡❝❛♥t ❧✐♥❡s ❝♦♥✈❡r❣❡ t♦ t❤❡ t❛♥❣❡♥t ❧✐♥❡ ✭❈❤❛♣t❡r ✷❉❈✲✸✮✿
▲❡t✬s ✐♥t❡r♣r❡t t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ s❡❝❛♥t ❧✐♥❡s t♦ t❤❡ t❛♥❣❡♥t ❧✐♥❡ ❛s ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s✳ ❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ f ✐s ❞❡✜♥❡❞ ♦♥ ❛♥ ♦♣❡♥ ✐♥t❡r✈❛❧ t❤❛t ❝♦♥t❛✐♥s x = a✳ ❋♦r ❡❛❝❤ n = 1, 2, 3, ...✱ ❞❡✜♥❡ ❛ ❢✉♥❝t✐♦♥ fn ❛s t❤❡ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ t❤❛t ♣❛ss❡s t❤r♦✉❣❤ t❤❡s❡ t✇♦ ♣♦✐♥ts✿
(a, f (a)) ❛♥❞
❚❤❡♥✱ fn (x) = f (a) +
1 a + ,f n
1 a+ n
.
f (a + 1/n) − f (a) (x − a) . 1/n
■❢ f ✐s ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t x = a✱ t❤❡ ❢r❛❝t✐♦♥✱ ✐ts s❧♦♣❡✱ ❝♦♥✈❡r❣❡s t♦ f ′ (a) ❛s n → ∞ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡✿ f (a + 1/n) − f (a) → f ′ (a) . 1/n
❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡✿ fn (x) = f (a) + ↓
f (x)
||
= f (a) +
f (a + 1/n) − f (a) (x − a) 1/n ↓ || f ′ (a)
(x − a)
❚❤✐s ♥❡✇ ❢✉♥❝t✐♦♥ ✐s t❤❡ ❜❡st ❧✐♥❡❛r ❛♣♣r♦①✐♠❛t✐♦♥ ♦❢ t❤❡ f ❛t a ❛♥❞ ✐ts ❣r❛♣❤ ✐s t❤❡ t❛♥❣❡♥t ❧✐♥❡ ♦❢ f ❛t a✳ ❲❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ f ✐s ♥♦t ❞✐✛❡r❡♥t✐❛❜❧❡ ❛t t❤✐s ♣♦✐♥t✱ ♦✉r s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s ❞✐✈❡r❣❡s✳
✺✳✸✳
❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s
✸✻✺
❊①❛♠♣❧❡ ✺✳✸✳✻✿ ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ❲❡ s❛✐❞ t❤❛t t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✭s❛② ❧❡❢t ❡♥❞✮ ❝♦♥✈❡r❣❡ t♦ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✭❈❤❛♣t❡r ✶✮✿
Ln →
Z
b
f dx . a
❚❤❡r❡ ✐s ♥♦t❤✐♥❣ ✐♠♣r❡❝✐s❡ ❛❜♦✉t s❛②✐♥❣ t❤❛t✳
♥✉♠❜❡rs✳
❍♦✇❡✈❡r✱ t❤❛t ✇❛s ❛ s❡q✉❡♥❝❡ ♦❢
■s t❤❡r❡ ❛ s❡q✉❡♥❝❡ ♦❢
❢✉♥❝t✐♦♥s
❤❡r❡❄ ❨❡s✱ t❤❡ s❡q✉❡♥❝❡
♦❢ st❡♣✲❢✉♥❝t✐♦♥s t❤❛t r❡♣r❡s❡♥t t❤❡ ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠s✳ ▲❡t✬s ♠❛❦❡ t❤✐s s♣❡❝✐✜❝✳
❙✉♣♣♦s❡
f
✐s ❞❡✜♥❡❞ ♦♥ ✐♥t❡r✈❛❧
[a, b]✳
❙✉♣♣♦s❡ ❛❧s♦ t❤❛t t❤❡ ✐♥t❡r✈❛❧ ✐s
❡q✉✐♣♣❡❞ ✇✐t❤ ❛ s♣❡❝✐✜❝ ❛✉❣♠❡♥t❡❞ ♣❛rt✐t✐♦♥✱ t❤❡ ❧❡❢t✲❡♥❞✱ ❢♦r ❡❛❝❤
(b − a)/n ❢♦❧❧♦✇s✿
❛♥❞
xi = a + ∆x · i✳
❚❤❡♥✱ ❢♦r ❡❛❝❤
fn (x) = F (xi )
n = 0, 1, 2, 3, ...✱
✇❤❡♥
n = 0, 1, 2, 3, ...✱
✇✐t❤
∆x =
❞❡✜♥❡ ❛ st❡♣✲❢✉♥❝t✐♦♥ ♣✐❡❝❡✇✐s❡ ❛s
xi ≤ x < xi+1 .
❚❤❡② ❛r❡ ♣❧♦tt❡❞ ✐♥ r❡❞✿
❲❤❡♥
f
✐s ❝♦♥t✐♥✉♦✉s✱ ✇❡ ❦♥♦✇ t❤❛t t❤✐s s❡q✉❡♥❝❡ ✇✐❧❧ ❝♦♥✈❡r❣❡ t♦
f
♣♦✐♥t✇✐s❡✳
❊①❡r❝✐s❡ ✺✳✸✳✼ Pr♦✈❡ t❤❡ ❧❛st st❛t❡♠❡♥t✳
❊①❡r❝✐s❡ ✺✳✸✳✽ ✭❛✮ ❙❤♦✇ t❤❛t ✇❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ ✐s ♥♦t ❝♦♥t✐♥✉♦✉s ♦♥ t❤✐s ✐♥t❡r✈❛❧✱ ♦✉r s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s ♠✐❣❤t ❞✐✈❡r❣❡✳ ✭❜✮ ❙❤♦✇ t❤❛t ✐t ❞♦❡s♥✬t
❤❛✈❡ t♦
❞✐✈❡r❣❡✱ ❤♦✇❡✈❡r✳
❊①❡r❝✐s❡ ✺✳✸✳✾ ❈♦♥s✐❞❡r ❛❧s♦ t❤❡ s❡q✉❡♥❝❡s ♦❢ st❡♣✲❢✉♥❝t✐♦♥s t❤❛t r❡♣r❡s❡♥t t❤❡ r✐❣❤t ❛♥❞ ♠✐❞❞❧❡ ♣♦✐♥t ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡ tr❛♣❡③♦✐❞ ❛♣♣r♦①✐♠❛t✐♦♥s✳
■♥ ❛❧❧ t❤❡s❡ ❡①❛♠♣❧❡s✱ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s ♠❡❛♥s ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ✭♠❛♥②✮ s❡q✉❡♥❝❡s ♦❢ ❍♦✇❡✈❡r✱ t❤❡ ✇❤♦❧❡ ❣r❛♣❤s ♦❢ t❤❡s❡ ❢✉♥❝t✐♦♥s
fn
♥✉♠❜❡rs✳
s❡❡♠ t♦ ❝♦♠♣❧❡t❡❧② ❛❝❝✉♠✉❧❛t❡ t♦✇❛r❞ t❤❡ ❣r❛♣❤ ♦❢
f✳
❚❤✐s ✐s ❛ ✏str♦♥❣❡r✑ ❦✐♥❞ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✿
❉❡✜♥✐t✐♦♥ ✺✳✸✳✶✵✿ ❝♦♥✈❡r❣❡s ✉♥✐❢♦r♠❧② ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s t❤❡ s❡q✉❡♥❝❡
❝♦♥✈❡r❣❡s ✉♥✐❢♦r♠❧② ♦♥ I
fn
❞❡✜♥❡❞ ♦♥ ✐♥t❡r✈❛❧
t♦ ❢✉♥❝t✐♦♥
f
I✳
❲❡ s❛② t❤❛t
✐❢ t❤❡ ♠❛①✐♠✉♠ ✈❛❧✉❡ ♦❢
t❤❡ ❞✐✛❡r❡♥❝❡ ❝♦♥✈❡r❣❡s✱ ❛s ❛ s❡q✉❡♥❝❡ ♦❢ ♥✉♠❜❡rs✱ t♦ ③❡r♦✿
max |fn (x) − f (x)| → 0 . I
❖t❤❡r✇✐s❡✱ ✇❡ s❛② t❤❛t t❤❡ s❡q✉❡♥❝❡
❞✐✈❡r❣❡s ✉♥✐❢♦r♠❧②✳
■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ ❣r❛♣❤s ♦❢ t❤❡ ❢✉♥❝t✐♦♥s ♦❢ t❤❡ s❡q✉❡♥❝❡ ✇✐❧❧
f✱
♥♦ ♠❛tt❡r ❤♦✇ ♥❛rr♦✇✿
❡✈❡♥t✉❛❧❧②
✜t ❡♥t✐r❡❧② ✇✐t❤✐♥ ❛ str✐♣ ❛r♦✉♥❞
✺✳✸✳
❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s
✸✻✻
■t ✐s ❝❧❡❛r t❤❛t ❡✈❡r② ✉♥✐❢♦r♠❧② ❝♦♥✈❡r❣❡♥t s❡q✉❡♥❝❡ ❝♦♥✈❡r❣❡s ♣♦✐♥t✇✐s❡ ✭t♦ t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥✮✿
sup |fn (x) − f (x)| → 0 =⇒ |fn (x) − f (x)| → 0
❢♦r ❡❛❝❤
x
✐♥
I.
I
❊①❡r❝✐s❡ ✺✳✸✳✶✶
Pr♦✈❡ t❤❡ ❧❛st st❛t❡♠❡♥t✳
❚❤❡ ❝♦♥✈❡rs❡ ✐s♥✬t tr✉❡✳ ❊①❛♠♣❧❡ ✺✳✸✳✶✷✿ t♦♦t❤ s❡q✉❡♥❝❡
❲❡ ❤❛✈❡ ❛ s❡q✉❡♥❝❡ ♦❢ ❝♦♥t✐♥✉♦✉s ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦♥ I = [0, 1] t❤❛t s❛t✐s✜❡s✿ 1 ❢♦r x > ❛♥❞ t❤❡ r❡st ♦❢ t❤❡ ✈❛❧✉❡s ♣r♦❞✉❝❡ ❛ ✏t♦♦t❤✑ ♦❢ ❤❡✐❣❤t 1✿ n+1
fn (0) = 0 ❛♥❞ fn (x) = 0
❚❤❡♥✱ ✇❡ ❤❛✈❡✿
• fn • fn
❝♦♥✈❡r❣❡s t♦
0✱
t❤❡ ❢✉♥❝t✐♦♥✱ ♣♦✐♥t✇✐s❡ ❜❡❝❛✉s❡
❞♦❡s ♥♦t ❝♦♥✈❡r❣❡ t♦
str✐♣ ♥❛rr♦✇❡r t❤❛♥
0✱
fn (x)
❡✈❡♥t✉❛❧❧② ❜❡❝♦♠❡s ③❡r♦ ❢♦r ❡❛❝❤
x✳
t❤❡ ❢✉♥❝t✐♦♥✱ ✉♥✐❢♦r♠❧② ❜❡❝❛✉s❡ t❤❡ t♦♦t❤ ✇✐❧❧ ❛❧✇❛②s st✐❝❦ ♦✉t ♦❢ ❛♥②
1✳
❊①❛♠♣❧❡ ✺✳✸✳✶✸✿ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s
❋r♦♠ t❤❡ ❧❛st s❡❝t✐♦♥✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t✱ ✇❤❡♥❡✈❡r t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ ❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧
I = [a, b]✱
f
❛r❡ ❦♥♦✇♥ t♦ ❜❡ ❜♦✉♥❞❡❞ ♦♥ ❛
t❤❡ s❡q✉❡♥❝❡ ♦❢ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ❝♦♥✈❡r❣❡s t♦
f
✉♥❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧✱ t❤❡ ✉♥✐❢♦r♠ ❝♦♥✈❡r❣❡♥❝❡ ✐s♥✬t ❣✉❛r❛♥t❡❡❞❀ ❢♦r ❡①❛♠♣❧❡✱ ❝♦♥s✐❞❡r
(−∞, +∞)✿
I ✳ ❖♥ f (x) = cos x
✉♥✐❢♦r♠❧② ♦♥
❛♥ ♦♥
✺✳✸✳
❙❡q✉❡♥❝❡s ♦❢ ❢✉♥❝t✐♦♥s
✸✻✼
❚❤❡ r❡❛s♦♥ ✐s t❤❛t ❛ ♣♦❧②♥♦♠✐❛❧ ♦❢ ❛♥② ❞❡❣r❡❡ ❛❜♦✈❡
0
✇✐❧❧ ❡✈❡♥t✉❛❧❧② ❣♦ t♦ ✐♥✜♥✐t② ✭❱♦❧✉♠❡ ✷✮✳
P♦✐♥t✇✐s❡ ❝♦♥✈❡r❣❡♥❝❡ r❡♠❛✐♥s✳
▲❡t✬s ❝♦♠♣❛r❡ t❤❡ t✇♦ t②♣❡s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ❛❣❛✐♥ ❜② r❡❢❡rr✐♥❣ t♦ t❤❡ ♦r✐❣✐♥❛❧ ❞❡✜♥✐t✐♦♥ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✿
•
❙❡q✉❡♥❝❡
fn
❝♦♥✈❡r❣❡s t♦
◮ ❢♦r ❡❛❝❤ x✱
f
❢♦r ❛♥②
♣♦✐♥t✇✐s❡ ✐❢
ε>0
t❤❡r❡ ✐s s✉❝❤ ❛♥
N >0
t❤❛t
n > N =⇒ |fn (x) − f (x)| < ε . •
❙❡q✉❡♥❝❡
◮
fn
❝♦♥✈❡r❣❡s t♦
❢♦r ❛♥②
ε>0
f
✉♥✐❢♦r♠❧② ✐❢
t❤❡r❡ ✐s s✉❝❤ ❛♥
N >0
t❤❛t✱
❢♦r ❡❛❝❤ x✱
n > N =⇒ |fn (x) − f (x)| < ε . ❆s ②♦✉ s❡❡✱ ✇❡ ❥✉st ♠♦✈❡❞ ✏❢♦r ❡❛❝❤
x✑
✇✐t❤✐♥ t❤❡ s❡♥t❡♥❝❡✳
❍❡r❡ ✐s ❤♦✇ ❞✐✛❡r❡♥t t❤❡ ✐❞❡❛ ♦❢ ✏❝❧♦s❡✑ ✐s r❡❧❛t✐✈❡ t♦ t❤❡s❡ t✇♦ t②♣❡s ♦❢ ❝♦♥✈❡r❣❡♥❝❡✿
✺✳✹✳ ■♥✜♥✐t❡ s❡r✐❡s
✸✻✽
❊①❡r❝✐s❡ ✺✳✸✳✶✹ ■♥✈❡st✐❣❛t❡ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ s❡q✉❡♥❝❡ fn (x) =
1 ✳ nx
✺✳✹✳ ■♥✜♥✐t❡ s❡r✐❡s ❲❛r♥✐♥❣✦ ❙❡r✐❡s ❛r❡ s❡q✉❡♥❝❡s✳
❖✉r ❣♦❛❧ ✐s t♦ ❜❡ ❛❜❧❡ t♦ ✜♥❞ ♦✉t t❤❡ ❡①t❡♥t t♦ ✇❤✐❝❤ ♦✉r ❛♣♣r♦①✐♠❛t✐♦♥s ✕ ♣♦❧②♥♦♠✐❛❧ ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ ❢✉♥❝t✐♦♥s ✕ ✇♦r❦✳ ❙♣❡❝✐✜❝❛❧❧②✱ ✇❡ ♥❡❡❞ t♦ ❦♥♦✇ ❢♦r ✇❤❛t ✈❛❧✉❡s ♦❢ x t❤❡ s❡q✉❡♥❝❡ ♦❢ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s Tn (x) ♦❢ ❛ ❢✉♥❝t✐♦♥ f ❝♦♥✈❡r❣❡s t♦ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ f (x)✳ ❲❡ ✇✐❧❧ ❛❧s♦ ❡st✐♠❛t❡ t❤❡ ❡rr♦r✱ ❥✉st ❛s ✇❡ ❞✐❞ ❡❛r❧✐❡r ✐♥ t❤✐s ❝❤❛♣t❡r✳ ❋♦❧❧♦✇✐♥❣ t❤❡ ❞❡✈❡❧♦♣♠❡♥t ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✱ ✇❡ ❝❛♥ ❝♦♥s✐❞❡r s❡q✉❡♥❝❡s ♦❢ ❛♥② ❢✉♥❝t✐♦♥s ❛s ❛♣♣r♦①✐♠❛t✐♦♥s✳ ❲❤❛t ♠❛❦❡s ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ❞✐✛❡r❡♥t❄ ■t✬s ✐♥ t❤❡ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s✱ ❢♦r ❛ ✜①❡❞ x✿ Tn+1 (x) = Tn (x) + cn+1 (x − a)n+1 .
❚❤❡ ❢♦r♠✉❧❛ ❝♦♥t✐♥✉❡s t♦ ❝♦♠♣✉t❡ t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ♦❢ ❤✐❣❤❡r ❛♥❞ ❤✐❣❤❡r ❞❡❣r❡❡s ❜② s✐♠♣❧② ❛❞❞✐♥❣ ♥❡✇ t❡r♠s t♦ t❤❡ ♣r❡✈✐♦✉s r❡s✉❧t✳ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ❛r❡ ❥✉st ❛ s♣❡❝✐❛❧ ❝❛s❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣✿
❉❡✜♥✐t✐♦♥ ✺✳✹✳✶✿ ♣♦✇❡r s❡r✐❡s ❝❡♥t❡r❡❞ ❛t ♣♦✐♥t ❆ s❡q✉❡♥❝❡ qn ♦❢ ♣♦❧②♥♦♠✐❛❧s ❣✐✈❡♥ ❜② ❛ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛✿
qn+1 (x) = qn (x) + cn+1 (x − a)n+1 , n = 0, 1, 2, ... , ❢♦r s♦♠❡ ✜①❡❞ ♥✉♠❜❡r a ❛♥❞ ❛ s❡q✉❡♥❝❡ ♦❢ ❝♦❡✣❝✐❡♥ts cn ✱ ✐s ❝❛❧❧❡❞ ❛ ♣♦✇❡r s❡r✐❡s ❝❡♥t❡r❡❞ ❛t a✳ P♦✇❡r s❡r✐❡s ♠❛② ❝♦♠❡ ❢✉❧❧② ❢♦r♠❡❞✳ ❍♦✇ ❞♦ ✇❡ ❛❞❞ t♦❣❡t❤❡r t❤❡ ✐♥✜♥✐t❡❧② ♠❛♥② t❡r♠s ♦❢ s✉❝❤ ❛ s❡q✉❡♥❝❡❄ ❱✐❛ ❧✐♠✐ts ✐s t❤❡ ♦♥❧② ❛♥s✇❡r✳ ❚❤❡ ♠♦st ✐♠♣♦rt❛♥t ❞❡✜♥✐t✐♦♥ ♦❢ t❤✐s ❝❤❛♣t❡r r❡♣❡❛ts t❤❡ ♦♥❡ ✐♥ ❈❤❛♣t❡r ✶✿
❉❡✜♥✐t✐♦♥ ✺✳✹✳✷✿ s❡q✉❡♥❝❡ ♦❢ s✉♠s✱ ♣❛rt✐❛❧ s✉♠s ❙✉♣♣♦s❡
an : n = s, s + 1, s + 2, ... ✐s ❛ s❡q✉❡♥❝❡✳ ■ts s❡q✉❡♥❝❡ ♦❢ s✉♠s
pn : n = s, s + 1, s + 2, ... ✐s t❤❡ s❡q✉❡♥❝❡ ❞❡✜♥❡❞ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛✿
ps = as ,
pn+1 = pn + an .
❚❤❡ s❡q✉❡♥❝❡ ✐s ❛❧s♦ ❝❛❧❧❡❞ t❤❡ ♣❛rt✐❛❧ s✉♠s ♦❢ t❤❡ ♦r✐❣✐♥❛❧✳
✺✳✹✳
■♥✜♥✐t❡ s❡r✐❡s
✸✻✾
❚❤✐s ♣r♦❝❡ss ✐s ❛ ❢❛♠✐❧✐❛r ✇❛② ♦❢ ❝r❡❛t✐♥❣ ♥❡✇ s❡q✉❡♥❝❡s ❢r♦♠ ♦❧❞ ✭❱♦❧✉♠❡ ✷✮✳ ■♠❛❣✐♥❡ t❤❛t ✇❡ st❛❝❦ t❤❡ ❡❧❡♠❡♥ts ♦❢ t❤❡ ♦r✐❣✐♥❛❧ s❡q✉❡♥❝❡
an
✭❧❡❢t✮ ♦♥ t♦♣ ♦❢ ❡❛❝❤ ♦t❤❡r t♦ ♣r♦❞✉❝❡
■♥ t❤❡ ♥❡①t s❡✈❡r❛❧ s❡❝t✐♦♥s✱ ✇❡ ✇✐❧❧ ❝♦♥❝❡♥tr❛t❡ ♦♥ s✉❝❤ s❡q✉❡♥❝❡s ♦❢
pn ✱
❛ ♥❡✇ s❡q✉❡♥❝❡ ✭r✐❣❤t✮✿
♥✉♠❜❡rs
✭r❛t❤❡r t❤❛♥ ❢✉♥❝t✐♦♥s✮ ❛♥❞
♦❝❝❛s✐♦♥❛❧❧② ❛♣♣❧② t❤❡ r❡s✉❧ts t♦ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ ♦r✐❣✐♥❛❧ s❡q✉❡♥❝❡ ✐s ❧❡❢t ❜❡❤✐♥❞✱ ❛♥❞ ✐t ✐s
t❤❡ ❧✐♠✐t ♦❢ t❤✐s ♥❡✇ s❡q✉❡♥❝❡
t❤❛t ✇❡ ❛r❡ ❛❢t❡r✳
❊①❛♠♣❧❡ ✺✳✹✳✸✿ ❧✐♠✐t ♦❢ s✉♠s
■♥ ❡✐t❤❡r ♦❢ t❤❡ t✇♦ t❛❜❧❡s ❜❡❧♦✇✱ ✇❡ ❤❛✈❡ ❛ s❡q✉❡♥❝❡ ❣✐✈❡♥ ✐♥ t❤❡ ✜rst t✇♦ ❝♦❧✉♠♥s✳ ■ts ❢♦r♠✉❧❛ ✐s ❦♥♦✇♥ ❛♥❞✱ ❜❡❝❛✉s❡ ♦❢ t❤❛t✱ ✐ts ❧✐♠✐t ✐s ❛❧s♦ ❡❛s② t♦ ✜♥❞✳ s❡q✉❡♥❝❡ ♦❢ ✭♣❛rt✐❛❧✮ s✉♠s ♦❢ t❤❡ ✜rst✳ ■ts
nt❤
t❡r♠
❚❤❡ t❤✐r❞ ❝♦❧✉♠♥ s❤♦✇s t❤❡
nt❤ t❡r♠ ❢♦r♠✉❧❛ ✐s ✉♥❦♥♦✇♥ ❛♥❞✱
❜❡❝❛✉s❡ ♦❢ t❤❛t✱ ✐ts ❧✐♠✐t
✐s ♥♦t ❡❛s② t♦ ✜♥❞✳
n 1 2 3
an p n 1 1 1 1 1 1 1 + 2 1 2 1 1 1 1 + + 3 1 2 3
n 1 2 3
✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
n
1 n
1 1 1 1 + + + ... + , 1 2 3 n
✳ ✳ ✳
↓
∞
❢♦r♠✉❧❛❄
✳ ✳ ✳
✳ ✳ ✳
n
1 2n
✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
↓
↓
↓
0
an pn 1 1 1 1 1 1 1 + 2 1 2 1 1 1 1 + + 4 1 2 4
∞
?
✳ ✳ ✳
1 1 1 1 + + + ... + n−1 , 1 2 4 2
✳ ✳ ✳
✳ ✳ ✳
↓
↓
0
❢♦r♠✉❧❛❄
?
❊①❛♠♣❧❡ ✺✳✹✳✹✿ s♦♠❡t❤✐♥❣ ❢r♦♠ ♥♦t❤✐♥❣
❚❤✐s ❡①❛♠♣❧❡ ❢r♦♠ ❱♦❧✉♠❡ ✷ ✭❈❤❛♣t❡r ✷❉❈✲✶✮ s❤♦✇s ✇❤❛t ❝❛♥ ❤❛♣♣❡♥ ✐❢ ✇❡ ✐❣♥♦r❡ t❤❡ ✐ss✉❡ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✿
❄
0 ==
0
❄
== (1 ❄
== ❄
== ❄
==
1 1 1
+0 −1) −1
+(1 +1
+0 −1) −1
+(1 +1
+0 −1) −1
+(1 +1
+... −1) −1
+... +...
+(−1 +1) +(−1 +1) +(−1 +1) +(−1 +1) +... +0
+0
+0
+0
+...
❄
== 1. ❘❡♠♦✈✐♥❣ t❤❡ ♣❛r❡♥t❤❡s❡s ✐♥ ❛♥ ✐♥✜♥✐t❡ ❝♦♠♣✉t❛t✐♦♥ ✐s ♥♦t ✇❤❛t ✇❡ ✇♦✉❧❞ ❞♦ ❛♥②♠♦r❡ ✕ ✐♥ ❧✐❣❤t ♦❢ ♦✉r ❞❡✜♥✐t✐♦♥✳ ❚❤❡ r❡s✉❧t q✉❛❧✐✜❡s ❛s ❛♥ ❡①❛♠♣❧❡ ♦❢ ✏s♦♠❡t❤✐♥❣ ❢r♦♠ ♥♦t❤✐♥❣✑✿
✺✳✹✳
■♥✜♥✐t❡ s❡r✐❡s
✸✼✵
■♥ t❤❡ ✏❝♦♠♣✉t❛t✐♦♥✑✱ ✇❡ ❣♦ ✕ ✐♠♣❧✐❝✐t❧② ✕ t❤r♦✉❣❤
t❤r❡❡
s❡q✉❡♥❝❡s✳ ❚❤❡ ❢❛❝t t❤❛t t❤❡ ✜rst ❛♥❞ t❤❡
t❤✐r❞ ❜♦t❤ ❝♦♥✈❡r❣❡ ♦❜s❝✉r❡s t❤❡ ❢❛❝t t❤❛t t❤❡ s❡❝♦♥❞ ❞✐✈❡r❣❡s✳ ❚♦ ❞❡t❡❝t t❤❡ s✇✐t❝❤❡s✱ ✇❡ ♦❜s❡r✈❡ t❤❛t t❤❡ s❡q✉❡♥❝❡s t❤❛t ♣r♦❞✉❝❡ t❤❡ t❤r❡❡ s✉♠s ❛r❡ ❞✐✛❡r❡♥t✦ ❲❡ ❧✐st t❤❡ ✜rst t✇♦ ❜❡❧♦✇✿
n 1 2 3 ✳ ✳ ✳
n ✳ ✳ ✳
an
pn
= pn
n
an
pn
=
pn
0=1−1 0
= 0
1
1
1
=
1
= 0
2
0
= 0
3
1−1
=
0=1−1 0+0+0
−1
=
1
0=1−1 0+0 ✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
0 = 1 − 1 0 + 0 + 0 + ... + 0 = 0
↓
∞
✳ ✳ ✳
✳ ✳ ✳
↓ 0
n
✳ ✳ ✳
✳ ✳ ✳
↓
↓
0
∞
1−1+1
1
✳ ✳ ✳
✳ ✳ ✳
✳ ✳ ✳
(−1)n 1 − 1 + 1 − ... + (−1)n = ✳ ✳ ✳
✳ ✳ ✳
↓
❉◆❊
❆s ❛ ❞✐✈❡r❣❡♥t s❡q✉❡♥❝❡✱ t❤❡ s❡❝♦♥❞ ♦♥❡ ❝❛♥♥♦t ❜❡ ❡q✉❛❧ t♦
❊①❡r❝✐s❡ ✺✳✹✳✺
❄ ❲❤✐❝❤ ♦❢ t❤❡ ✏ = =✑ s✐❣♥s ❛❜♦✈❡ ✐s ✐♥❝♦rr❡❝t❄
■♥ s✉♠♠❛r②✱
◮ ❆ s❡r✐❡s ✐s ❛ ♣❛✐r ♦❢ s❡q✉❡♥❝❡s✳ ❚❤❡ ✜rst ♣r♦❞✉❝❡s t❤❡ s❡❝♦♥❞ ✈✐❛ s✉♠♠❛t✐♦♥✱ ❢♦r ❡①❛♠♣❧❡✿
❛♥②t❤✐♥❣✳
✳ ✳ ✳
1, 0 ✳ ✳ ✳
↓
❉◆❊
✺✳✹✳
■♥✜♥✐t❡ s❡r✐❡s
✸✼✶
■s ✐t ❡✈❡♥ ♣♦ss✐❜❧❡ t♦ ✜♥❞ t❤❡ ❧✐♠✐t ♦❢ t❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s
pn
✇✐t❤♦✉t ✜rst ✜♥❞✐♥❣ t❤❡ ❢♦r♠✉❧❛s ❢♦r ✐ts
nt❤
t❡r♠❄ ❋♦r♠✉❧❛s t❤❛t ❤❛✈❡ ✏✳✳✳✑ ❞♦♥✬t ❝♦✉♥t✿ ❧✐st ♦❢ t❡r♠s ♦r✐❣✐♥❛❧ s❡q✉❡♥❝❡✿
1,
✭♣❛rt✐❛❧✮ s✉♠s s❡q✉❡♥❝❡✿
1,
❢♦r♠✉❧❛ ❢♦r
1 1 1 , , , ... 2 3 4
1 1+ , 2 1 1+ + 2 ... 1 1+ + 2
nt❤
t❡r♠
1 n
1 , 3 n 1 1 1 X1 + + ... + 3 4 n k=1 k
◆❡✐t❤❡r ❞♦ ❢♦r♠✉❧❛s t❤❛t r❡❧② ♦♥ t❤❡ s✐❣♠❛ ♥♦t❛t✐♦♥✳ ❚❤❡ ❝❤❛❧❧❡♥❣❡ ♣♦s❡❞ ❜② s❡r✐❡s ✐s t❤❛t t❤❡② ♥❡✈❡r ❝♦♠❡ ✇✐t❤ ❛♥ ♣❛rt✐❛❧ s✉♠ ♦❢ ❛ ♣♦✇❡r s❡r✐❡s ✐s ❛ ♣♦❧②♥♦♠✐❛❧ ♦❢
x
nt❤✲t❡r♠
❢♦r♠✉❧❛✦ ❆s ❛♥ ❡①❛♠♣❧❡✱ ❛♥
nt❤
❛♥❞✱ ❢r♦♠ ✇❤❛t ✇❡ ❦♥♦✇ ❛❜♦✉t ♣♦❧②♥♦♠✐❛❧s ✭❈❤❛♣t❡r
✶P❈✲✹✮✱ ✐t ❝❛♥ ♦♥❧② ❜❡ s✐♠♣❧✐✜❡❞ ✐♥ ❛ ❢❡✇ ✈❡r② s♣❡❝✐❛❧ ❝❛s❡s✱ s✉❝❤ ❛s t❤❡ ❇✐♥♦♠✐❛❧ ❋♦r♠✉❧❛ ✭❈❤❛♣t❡r ✶P❈✲✶✮✳
❉❡✜♥✐t✐♦♥ ✺✳✹✳✻✿ s✉♠ ♦❢ s❡q✉❡♥❝❡ ♦r s❡r✐❡s ❋♦r ❛ s❡q✉❡♥❝❡ t❤❡
an ✱
t❤❡ ❧✐♠✐t
s✉♠ ♦❢ t❤❡ s❡q✉❡♥❝❡
S
♦❢ ✐ts s❡q✉❡♥❝❡ ♦❢ ✭♣❛rt✐❛❧✮ s✉♠s
♦r✱ ♠♦r❡ ❝♦♠♠♦♥❧②✱ t❤❡
lim
n→∞
n X
✐s ❝❛❧❧❡❞ ❜②
ai = S .
i=s
❲❤❡♥ t❤❡ ❧✐♠✐t ♦❢ ♣❛rt✐❛❧ s✉♠s ❡①✐sts✱ ✇❡ s❛② t❤❛t t❤❡ ❧✐♠✐t ❞♦❡s ♥♦t ❡①✐st✱ ✇❡ s❛② t❤❛t t❤❡
pn
s✉♠ ♦❢ t❤❡ s❡r✐❡s ✿
s❡r✐❡s ❞✐✈❡r❣❡s✳
s❡r✐❡s ❝♦♥✈❡r❣❡s✳
❲❤❡♥ t❤❡
❆ s♣❡❝✐❛❧ ❝❛s❡ ♦❢ ❞✐✈❡r❣❡♥❝❡
✐s t❤❡ ❞✐✈❡r❣❡♥❝❡ t♦ ✭♣❧✉s ♦r ♠✐♥✉s✮ ✐♥✜♥✐t② ❛♥❞ ✇❡ s❛② t❤❛t t❤❡ s✉♠ ✐s
lim
n→∞
n X i=s
✐♥✜♥✐t❡ ✿
ai = ∞ .
❖♥❝❡ ❛❣❛✐♥✱ ❛ s❡r✐❡s ✐s ❛ s❡q✉❡♥❝❡ ❜✉✐❧t ❢r♦♠ ❛♥♦t❤❡r ✈✐❛ r❡❝✉rs✐✈❡ ❛❞❞✐t✐♦♥✳
❲❛r♥✐♥❣✦ ❚❤❡ st❛rt✐♥❣ ♣♦✐♥t✱ s✱ ♦❢ s✉♠♠❛t✐♦♥ ❞♦❡s♥✬t ❛✛❡❝t ❝♦♥✈❡r❣❡♥❝❡ ❜✉t ❞♦❡s ❛✛❡❝t t❤❡ s✉♠ ✇❤❡♥ t❤❡ s❡r✐❡s ❝♦♥✈❡r❣❡s✳
✺✳✹✳
■♥✜♥✐t❡ s❡r✐❡s
✸✼✷
❊①❛♠♣❧❡ ✺✳✹✳✼✿ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ♣♦✇❡r s❡r✐❡s x
◆♦t❡ t❤❛t ❛ ♣♦✇❡r s❡r✐❡s ♠❛② ❝♦♥✈❡r❣❡ ❢♦r s♦♠❡ ✈❛❧✉❡s ♦❢
❛♥❞ ❞✐✈❡r❣❡ ❢♦r ♦t❤❡rs✳ ❋♦r ❡①❛♠♣❧❡✱ t❤❡
s❡r✐❡s
1 + x + x2 + .. . • •
x=0 x = 1✳
❝♦♥✈❡r❣❡s ❢♦r ❞✐✈❡r❣❡s ❢♦r
❜✉t
❲❡ ❛❧s♦ ❞❡♠♦♥str❛t❡ ❜❡❧♦✇ t❤❛t ✐t ❝♦♥✈❡r❣❡s ❢♦r
x = 1/2✳
❚❤✐s ✐s ❛♥ ❛❜❜r❡✈✐❛t❡❞ ♥♦t❛t✐♦♥ t♦ ✇r✐t❡ t❤❡ ❧✐♠✐t ♦❢ ♣❛rt✐❛❧ s✉♠s✿
❙✉♠ ♦❢ s❡r✐❡s ∞ X
ai = lim
i=s
n→∞
n X
ai
i=s
❲❛r♥✐♥❣✦ ❚❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✐s♥✬t ❛ s❡r✐❡s✳
❘❡❝❛❧❧ t❤❛t ❤❡r❡
Σ
st❛♥❞s ❢♦r ✏❙✑ ♠❡❛♥✐♥❣ ✏s✉♠✑✳ ❚❤✐s ✐s ❤♦✇ t❤❡ ♥♦t❛t✐♦♥ ✐s ❞❡❝♦♥str✉❝t❡❞✿
❙✐❣♠❛ ♥♦t❛t✐♦♥ ❢♦r s❡r✐❡s ❜❡❣✐♥♥✐♥❣
❛♥❞ ❡♥❞ ✈❛❧✉❡s ❢♦r
k
↓
∞ k=0
X
1 1 + k k 2 3
↑
=
❛ s♣❡❝✐✜❝ s❡q✉❡♥❝❡
7 2 ↑
❛ s♣❡❝✐✜❝ ♥✉♠❜❡r✱
± ∞,
♦r ✏❉◆❊✑
❲❛r♥✐♥❣✦ ■♥ s♦♠❡ s♦✉r❝❡s✱ t❤❡ ✇♦r❞ ✏s❡r✐❡s✑ ♠✐❣❤t r❡❢❡r t♦ ♦♥❡✱ ♦r ❛ ❝♦♠❜✐♥❛t✐♦♥ ♦❢ ❛❧❧✱ ♦❢ t❤❡s❡ t❤r❡❡✿
•
t❤❡ ♦r✐❣✐♥❛❧ s❡q✉❡♥❝❡
•
✐ts s❡q✉❡♥❝❡ ♦❢ s✉♠s
•
t❤❡ ❧✐♠✐t ♦❢ t❤❡ ❧❛tt❡r✳
an ✱ pn ✱
❛♥❞
❊①❛♠♣❧❡ ✺✳✹✳✽✿ ✜♥❡t❡♥❡ss ❲❤❡♥ t❤❡r❡ ❛r❡ ♦♥❧② ✜♥✐t❡❧② ♠❛♥② ♥♦♥✲③❡r♦ ❡❧❡♠❡♥ts ✐♥ t❤❡ s❡q✉❡♥❝❡✱ ✐ts s✉♠ ✐s s✐♠♣❧❡✿
ai = 0
❢♦r ❡❛❝❤
i > N =⇒
∞ X i=1
❚❤❡ s❡r✐❡s ❝♦♥✈❡r❣❡s t♦ t❤✐s ♥✉♠❜❡r✳
ai =
N X i=1
ai .
✺✳✹✳ ■♥✜♥✐t❡ s❡r✐❡s
✸✼✸
❊①❛♠♣❧❡ ✺✳✹✳✾✿ ❞✐✈❡r❣❡♥t
◆♦♥✲③❡r♦ ❝♦♥st❛♥t ✐s t❤❡ s✐♠♣❧❡st ❡①❛♠♣❧❡ ♦❢ ❛ ❝♦♥✈❡r❣❡♥t s❡q✉❡♥❝❡ ❜✉t ❛ ❞✐✈❡r❣❡♥t s❡r✐❡s✿
ai = 1 ❢♦r ❡❛❝❤ i =⇒
∞ X
ai = lim
i=1
❊①❛♠♣❧❡ ✺✳✹✳✶✵✿
sin n
n→∞
n X i=1
1 = lim n = ∞ . n→∞
❛♥❞ r❛♥❞♦♠ s❡q✉❡♥❝❡
❈♦♥s✐❞❡r t❤❡ s❡q✉❡♥❝❡
an = sin n . ■t ❧♦♦❦s ✉♥✐❢♦r♠❧② s♣r❡❛❞ ❜❡t✇❡❡♥ −1 ❛♥❞ 1 ✭❣r❡❡♥✮✿
■ts s❡q✉❡♥❝❡ ♦❢ s✉♠s ❛❧s♦ ❧♦♦❦s ✉♥✐❢♦r♠❧② s♣r❡❛❞ ❜❡t✇❡❡♥✱ 0 ❛♥❞ 2 ✭♦r❛♥❣❡✮✳ ■t✱ t❤❡♥✱ ❛♣♣❡❛rs t♦ ❞✐✈❡r❣❡✳ ❆ s❡r✐❡s ♦❢ ❛ tr✉❧② r❛♥❞♦♠ s❡q✉❡♥❝❡ ❞✐✈❡r❣❡s ✐♥ ❛ ❞✐✛❡r❡♥t ✇❛②✿
❲❡ s❛✇ t❤❛t✱ ✇❤❡♥ ❢❛❝✐♥❣ ✐♥✜♥✐t②✱ ❛❧❣❡❜r❛ ♠❛② ❢❛✐❧✳ ❇✉t ✐t ✇♦♥✬t ✐❢ t❤❡ s❡r✐❡s ❝♦♥✈❡r❣❡✦ ■♥ t❤❛t ❝❛s❡✱ t❤❡ s❡r✐❡s ❝❛♥ ❜❡ s✉❜❥❡❝t❡❞ t♦ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s✳ ❋✉rt❤❡r♠♦r❡✱ t❤❡ ♣♦✇❡r s❡r✐❡s t♦♦ ❝❛♥ ❜❡ s✉❜❥❡❝t❡❞ t♦ ❝❛❧❝✉❧✉s ♦♣❡r❛t✐♦♥s✳✳✳ ❊①❛♠♣❧❡ ✺✳✹✳✶✶✿ ❞❡❝✐♠❛❧ ❛♣♣r♦①✐♠❛t✐♦♥s
❋♦r ❛ ❣✐✈❡♥ r❡❛❧ ♥✉♠❜❡r✱ ✇❡ ❝❛♥ ❝♦♥str✉❝t ❛ s❡r✐❡s t❤❛t t❡♥❞s t♦ t❤❛t ♥✉♠❜❡r ✕ ✈✐❛ tr✉♥❝❛t✐♦♥s ♦❢ ✐ts ❞❡❝✐♠❛❧ ❛♣♣r♦①✐♠❛t✐♦♥s✳ ❚❤❡ s❡q✉❡♥❝❡
an = 0.9, 0.09, 0.009, 0.0009, ... t❡♥❞s t♦ 0 . ❇✉t ✐ts s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐❛❧ s✉♠s
pn = 0.9, 0.99, 0.999, 0.9999, ... t❡♥❞s t♦ 1 .
✺✳✹✳ ■♥✜♥✐t❡ s❡r✐❡s
✸✼✹
❚❤❡ s❡q✉❡♥❝❡
an = 0.3, 0.03, 0.003, 0.0003, ... t❡♥❞s t♦ 0 .
❇✉t ✐ts s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐❛❧ s✉♠s pn = 0.3, 0.33, 0.333, 0.3333, ... t❡♥❞s t♦ 1/3 .
❚❤❡ ✐❞❡❛ ♦❢ s❡r✐❡s t❤❡♥ ❤❡❧♣s ✉s ✉♥❞❡rst❛♥❞ ✐♥✜♥✐t❡ ❞❡❝✐♠❛❧s✳ • ❲❤❛t ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ 0.9999...❄ ■t ✐s t❤❡ s✉♠ ♦❢ t❤❡ s❡r✐❡s✿ ∞ X i=1
9 · 10−i .
• ❲❤❛t ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ 0.3333...❄ ■t ✐s t❤❡ s✉♠ ♦❢ t❤❡ s❡r✐❡s✿ ∞ X i=1
3 · 10−i .
❊①❡r❝✐s❡ ✺✳✹✳✶✷
❋✐♥❞ s✉❝❤ ❛ s❡r✐❡s ❢♦r 1/6✳ ❲❡ ❦♥♦✇ t❤❛t ❛ ❝♦♥✈❡r❣❡♥t s❡q✉❡♥❝❡ ❝❛♥ ❤❛✈❡ ♦♥❧② ♦♥❡ ❧✐♠✐t✳ ❚❤❡♦r❡♠ ✺✳✹✳✶✸✿ ❯♥✐q✉❡♥❡ss ♦❢ ❙✉♠ ♦❢ ❙❡r✐❡s
❆ s❡r✐❡s ❝❛♥ ❤❛✈❡ ♦♥❧② ♦♥❡ s✉♠ ✭✜♥✐t❡ ♦r ✐♥✜♥✐t❡✮✳ ❚❤✉s✱ ✇❡ ❛r❡ ❥✉st✐✜❡❞ t♦ s♣❡❛❦ ♦❢ t❤❡ s✉♠✳ ❚❤✐s ❝♦♥❝❧✉s✐♦♥ ♠❛❦❡s ♣♦ss✐❜❧❡ t❤❡ t❤❡♦r② ✇❡ s❤❛❧❧ ❞❡✈❡❧♦♣✿ ◮ ❆♥② ♣♦✇❡r s❡r✐❡s ❞❡✜♥❡s ❛ ❢✉♥❝t✐♦♥ ✇✐t❤ ✐ts ❞♦♠❛✐♥ ❝♦♥s✐st✐♥❣ ♦❢ t❤♦s❡ ✈❛❧✉❡s ♦❢ x ❢♦r ✇❤✐❝❤
t❤❡ s❡r✐❡s ❝♦♥✈❡r❣❡s✳
❊①❛♠♣❧❡ ✺✳✹✳✶✹✿ s❡r✐❡s ✈s✳ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s
❚❤❡ ✇❛② ✇❡ ✉s❡ t❤❡ ❧✐♠✐ts t♦ tr❛♥s✐t✐♦♥ ❢r♦♠ s❡q✉❡♥❝❡s t♦ s❡r✐❡s ✐s ❢❛♠✐❧✐❛r✳ ■t ✐s ✐❞❡♥t✐❝❛❧ t♦ t❤❡ tr❛♥s✐t✐♦♥ ❢r♦♠ ❛ ❢✉♥❝t✐♦♥ f t♦ ✐ts ✐♥t❡❣r❛❧ ♦✈❡r [0, ∞)✿
■♥❞❡❡❞✱ ❝♦♠♣❛r❡✿
Z
∞
1 ∞ X i=1
f (x) dx = lim
b→∞
ai
= lim
n→∞
Z
b
f (x) dx
1 n X
ai
i=1
❋✉rt❤❡r♠♦r❡✱ t❤❡ ❧❛tt❡r ✇✐❧❧ ❢❛❧❧ ✉♥❞❡r t❤❡ s❝♦♣❡ ♦❢ t❤❡ ❢♦r♠❡r ✐❢ ✇❡ ❝❤♦♦s❡ f t♦ ❜❡ t❤❡ st❡♣✲❢✉♥❝t✐♦♥
✺✳✺✳
▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✼✺
♣r♦❞✉❝❡❞ ❜② t❤❡ s❡q✉❡♥❝❡ an ✿ f (x) = a[x] . ❲❛r♥✐♥❣✦ ❚❤❡ ✇♦rst ♠✐st❛❦❡ ♦♥❡ ❝❛♥ ♠❛❦❡ ✐s t♦ ❝♦♥❢✉s❡ t❤❡ ❧✐♠✐t ♦❢
an
✇✐t❤ t❤❡ ❧✐♠✐t ♦❢
pn ✳
✺✳✺✳ ▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
❚❤❡ ❦❡② t♦ ❡✈❛❧✉❛t✐♥❣ s✉♠s ♦❢ ❛ s❡r✐❡s✱ ♦r ❞✐s❝♦✈❡r✐♥❣ t❤❛t ✐t ❞✐✈❡r❣❡s✱ ✐s t♦ ✜♥❞ ❛♥ n pn ♦❢ an ✳
t❤ ♣❛rt✐❛❧ s✉♠
❡①♣❧✐❝✐t ❢♦r♠✉❧❛ ❢♦r t❤❡
❲❡ ❤❛✈❡ t♦ ❜❡ ❝❛r❡❢✉❧ ❛♥❞ ♥♦t t❛❦❡ t❤❡ ❢♦r♠❡r ♦✈❡r t❤❡ ❧❛tt❡r✿ lim an ✈s✳
n→∞
lim pn
n→∞
❊①❛♠♣❧❡ ✺✳✺✳✶✿ ❝♦♥st❛♥t
❘❡❝❛❧❧ ❛❜♦✉t t❤❡
❝♦♥st❛♥t s❡q✉❡♥❝❡ t❤❛t✱ ❢♦r ❛♥② r❡❛❧ c✱ ✇❡ ❤❛✈❡ lim c = c .
n→∞
❚❤❡ r❡s✉❧t t❡❧❧s ✉s ♥♦t❤✐♥❣ ❛❜♦✉t t❤❡ s❡r✐❡s ♣r♦❞✉❝❡❞ ❜② t❤❡ s❡q✉❡♥❝❡✦ ❈♦♥s✐❞❡r ✐♥st❡❛❞✿ c + c + c + ... = lim
n→∞
n X k=1
c = lim nc . n→∞
❚❤❡r❡❢♦r❡✱ s✉❝❤ ❛ ❝♦♥st❛♥t s❡r✐❡s ❞✐✈❡r❣❡s ✉♥❧❡ss c = 0✳ ❚❤❡ r❡s✉❧t ✐s ✇r✐tt❡♥ ❛s ❢♦❧❧♦✇s✿ ∞ X k=1
❊①❛♠♣❧❡ ✺✳✺✳✷✿ ❛r✐t❤♠❡t✐❝
▼♦r❡ ❣❡♥❡r❛❧❧②✱ ❝♦♥s✐❞❡r ✇❤❛t ✇❡ ❦♥♦✇ ❛❜♦✉t ✇❡ ❤❛✈❡✿
c = ∞.
❛r✐t❤♠❡t✐❝ ♣r♦❣r❡ss✐♦♥s ❀ ❢♦r ❛♥② r❡❛❧ ♥✉♠❜❡rs m, b > 0✱
−∞ lim (b + nm) = b n→∞ +∞
✐❢ m < 0 , ✐❢ m = 0 , ✐❢ m > 0 .
❚❤❡ r❡s✉❧t t❡❧❧s ✉s ♥♦t❤✐♥❣ ❛❜♦✉t t❤❡ s❡r✐❡s✦ ■♥st❡❛❞✱ ❧❡t✬s ❡①❛♠✐♥❡ t❤❡ ♣❛rt✐❛❧ s✉♠s ❛♥❞✱ ❜❡❝❛✉s❡ ❡❛❝❤ ✐s ❝♦♠♣r✐s❡❞ ♦❢ ♦♥❧② ✜♥✐t❡❧② ♠❛♥② t❡r♠s✱ ✇❡ ❝❛♥ ♠❛♥✐♣✉❧❛t❡ t❤❡♠ ❛❧❣❡❜r❛✐❝❛❧❧② ❜❡❢♦r❡ ✜♥❞✐♥❣ t❤❡ ❧✐♠✐t✱ ❛s ❢♦❧❧♦✇s✿ b + (b + m) + (b + 2m) + (b + 3m) + ... = lim
n→∞
n X k=0
(b + km) .
✺✳✺✳
▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✼✻
❊①❡r❝✐s❡ ✺✳✺✳✸ ❙❤♦✇ t❤❛t s✉❝❤ ❛ s❡r✐❡s ❞✐✈❡r❣❡s ✉♥❧❡ss b = m = 0✿ ∞ X k=0
(b + km) = ∞ .
❚❤❡r❡ ❛r❡ ♠♦r❡ ✐♥t❡r❡st✐♥❣ s❡r✐❡s✳
❉❡✜♥✐t✐♦♥ ✺✳✺✳✹✿ ❤❛r♠♦♥✐❝ s❡r✐❡s ❚❤❡ s❡r✐❡s ♣r♦❞✉❝❡❞ ❜② t❤❡ s❡q✉❡♥❝❡ ♦❢ r❡❝✐♣r♦❝❛❧s an = 1/n✱ ∞ X 1 k=1
✐s ❝❛❧❧❡❞ t❤❡
k
=
1 1 1 1 1 + + + + ... + + ... , 1 2 3 4 k
❤❛r♠♦♥✐❝ s❡r✐❡s✳
❊①❛♠♣❧❡ ✺✳✺✳✺✿ ❤❛r♠♦♥✐❝ s❡r✐❡s ❇❡❧♦✇ ✇❡ s❤♦✇ t❤❡ ✉♥❞❡r❧②✐♥❣ s❡q✉❡♥❝❡✱ an = 1/n✱ t❤❛t ✐s ❦♥♦✇♥ t♦ ❝♦♥✈❡r❣❡ t♦ ③❡r♦ ✭❧❡❢t✮✱ ❛♥❞ ✐ts s❡q✉❡♥❝❡ ♦❢ t❤❡ ♣❛rt✐❛❧ s✉♠s ✭r✐❣❤t✮✿
P❧♦tt✐♥❣ t❤❡ ✜rst 3000 t❡r♠s ♦❢ t❤❡ ❧❛tt❡r s❡❡♠s t♦ s✉❣❣❡sts t❤❛t ✐t ❛❧s♦ ❝♦♥✈❡r❣❡s✳ ❊①❛♠✐♥✐♥❣ t❤❡ ❞❛t❛✱ ✇❡ ✜♥❞ t❤❛t t❤❡ s✉♠ ✐s♥✬t ❧❛r❣❡✱ s♦ ❢❛r✿ 1 1 1 1 1 + + + + ... + ≈ 8.59 . 1 2 3 4 3000
❲❡ ❦♥♦✇ ❜❡tt❡r t❤❛♥ t♦ t❤✐♥❦ t❤❛t t❤✐s t❡❧❧s ✉s ❛♥②t❤✐♥❣❀ t❤❡ s❡r✐❡s ❝❤❛♣t❡r✳
❞✐✈❡r❣❡s ❛s ✇❡ ✇✐❧❧ s❤♦✇ ✐♥ t❤✐s
❊①❛♠♣❧❡ ✺✳✺✳✻✿ ❤✐❣❤❡r ♣♦✇❡rs ■❢ ✇❡ r❡♣❧❛❝❡ t❤❡ ♣♦✇❡r ♦❢ k ✐♥ t❤❡ ❤❛r♠♦♥✐❝ s❡r✐❡s✱ ✇❤✐❝❤ ✐s −1✱ ✇✐t❤ −1.1✱ t❤❡ s❡r✐❡s✱ ∞ X 1 , 1.1 k k=1
t❤❡ ❣r❛♣❤ ♦❢ ✐ts s✉♠s ❧♦♦❦s ❛❧♠♦st ❡①❛❝t❧② t❤❡ s❛♠❡✿
✺✳✺✳
▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✼✼
❍♦✇❡✈❡r✱ ✇❡ s❤♦✇ ❜❡❧♦✇ t❤❛t ✐t ✐s ❝♦♥✈❡r❣❡♥t✦
❊①❛♠♣❧❡ ✺✳✺✳✼✿ ❢❛❝t♦r✐❛❧s ■♥ ❝♦♥tr❛st✱ t❤✐s ✐s ❤♦✇ ❢❛st t❤❡ s❡r✐❡s ♦❢ t❤❡
r❡❝✐♣r♦❝❛❧s ♦❢ t❤❡ ❢❛❝t♦r✐❛❧s
✱
∞ X 1 , k! k=1 ❝♦♥✈❡r❣❡s✿
❆s s❤♦✇♥ ✐♥ ❡❛r❧✐❡r ✐♥ t❤✐s ❝❤❛♣t❡r✱ ✐t ❝♦♥✈❡r❣❡s t♦
e✳
❖♥❡ ♦❢ t❤❡ ♠♦st ✐♠♣♦rt❛♥t s❡r✐❡s ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✳
❉❡✜♥✐t✐♦♥ ✺✳✺✳✽✿ ❣❡♦♠❡tr✐❝ s❡r✐❡s ❚❤❡ s❡r✐❡s ♣r♦❞✉❝❡❞ ❜② t❤❡ ❣❡♦♠❡tr✐❝ ♣r♦❣r❡ss✐♦♥
∞ X
an = a · rn
ark = a + ar1 + ar2 + ar3 + ar4 + ... + ark + ... ,
k=0
✐s ❝❛❧❧❡❞ t❤❡
❘❡❝❛❧❧ t❤❡ ❢❛❝t ❛❜♦✉t ❣❡♦♠❡tr✐❝
✇✐t❤ r❛t✐♦
❣❡♦♠❡tr✐❝ s❡r✐❡s
♣r♦❣r❡ss✐♦♥s
✇✐t❤ r❛t✐♦
r✳
❢r♦♠ ❱♦❧✉♠❡ ✶ ✭❈❤❛♣t❡r ✶❉❈✲✶✮✳
r✱
✺✳✺✳
▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✼✽
❚❤❡♦r❡♠ ✺✳✺✳✾✿ ❈♦♥✈❡r❣❡♥❝❡ ♦❢ ●❡♦♠❡tr✐❝ Pr♦❣r❡ss✐♦♥ ❚❤❡ ❣❡♦♠❡tr✐❝ ♣r♦❣r❡ss✐♦♥ ✇✐t❤ r❛t✐♦ ✈❛❧✉❡ ♦❢
r✿
r
❝♦♥✈❡r❣❡s ❛♥❞ ❞✐✈❡r❣❡s ❞❡♣❡♥❞✐♥❣ ♦♥ t❤❡
❞✐✈❡r❣❡s 0 lim rn = n→∞ 1 +∞
✐❢ ✐❢ ✐❢ ✐❢
r ≤ −1, |r| < 1, r = 1, r > 1.
❲❛r♥✐♥❣✦ ❚❤❡ r❡s✉❧t t❡❧❧s ✉s ♥♦t❤✐♥❣ ❛❜♦✉t t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ s❡r✐❡s✳
❊①❛♠♣❧❡ ✺✳✺✳✶✵✿ ❣❡♦♠❡tr✐❝
❚❤❡ ❝♦♥str✉❝t✐♦♥ s❤♦✇♥ ❜❡❧♦✇ ✐s r❡❝✉rs✐✈❡❀ ✐t ❝✉ts ❛ sq✉❛r❡ ✐♥t♦ ❢♦✉r✱ t❛❦❡s t❤❡ ✜rst t❤r❡❡✱ ❛♥❞ t❤❡♥ r❡♣❡❛ts t❤❡ ♣r♦❝❡❞✉r❡ ✇✐t❤ t❤❡ ❧❛st ♦♥❡✿
❚❤❡s❡ ❛r❡ t❤❡ ❛r❡❛s✿ ✜rst t✇♦ sq✉❛r❡s t❤✐r❞ sq✉❛r❡ ✜rst t✇♦ sq✉❛r❡s t❤✐r❞ sq✉❛r❡ 1 1 + 4 4 1 2 1 2
1 4 1 4 1 + 4
1 16 1 16 1 + 16
1 1 + 16 16 1 8 1 + 8
... ... ... +... = 1 ?
❇❡❝❛✉s❡ t❤❡② ❛r❡ ❛❧❧ ❝✉t ♦✉t ♦❢ t❤❡ ❜✐❣ sq✉❛r❡ ❛♥❞ ❛❧❧ ♣❛rts ♦❢ t❤❡ sq✉❛r❡ ❛r❡ ❝♦✈❡r❡❞✱ t❤❡ t♦t❛❧ s✉♠ ♠✉st ❜❡ 1✳ Pr♦✈✐❞❡❞ s✉❝❤ ❛ s✉♠ ♠❛❦❡s s❡♥s❡ ✐♥ t❤❡ ✜rst ♣❧❛❝❡✦ ❉♦❡s ✐t❄ ❊❛❝❤ st❡♣ ❝r❡❛t❡s t✇♦ t❡r♠s ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ s❡r✐❡s✿ n X 1 = 2k k=1
1 1 + 2 4
+
1 1 + 8 16
❄
+ ... == 1
❚❤❡ s✉♠ ♦❢ t❤❡ s❡r✐❡s t❤❡♥ ♠✉st ❜❡ 1✱ ✐❢ ✐t ❝♦♥✈❡r❣❡s✳ ❚❤✐s ✐s ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s ❛♥❞ t❤❡ ❝♦♥str✉❝t✐♦♥ s✉❣❣❡sts t❤❛t ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ r❛t✐♦ r = 1/2 ❝♦♥✈❡r❣❡s✳ ▲❡t✬s ✐♥✈❡st✐❣❛t❡ t❤❡ ♣❛rt✐❛❧ s✉♠s ♦❢ t❤❡ ❣❡♥❡r❛❧ ❣❡♦♠❡tr✐❝ s❡r✐❡s✱ ar0 , ar1 , ar2 , ...arn−1 , arn , ... ,
✺✳✺✳
▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✼✾
✉♥❞❡r t❤❡ ❢♦❧❧♦✇✐♥❣ r❡str✐❝t✐♦♥s✿
❲❡ ✇✐❧❧ ♥❡❡❞ ❛♥
❡①♣❧✐❝✐t
r 6= 0, a 6= 0 . ❢♦r♠✉❧❛ ❢♦r t❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s ♦❢ t❤✐s s❡q✉❡♥❝❡✿
pn = ar0 + ar1 + ar2 + ... + arn−1 + arn . ❚❤❡ ✏✳✳✳✑ ♣❛rt ✐s ✇❤❛t st❛♥❞s ✐♥ t❤❡ ✇❛②✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ ❝❧❡✈❡r tr✐❝❦ ✭♣r❡s❡♥t❡❞ ✜rst ✐♥ ❈❤❛♣t❡r ✶P❈✲✶✮ s♦❧✈❡s t❤❡ ♣r♦❜❧❡♠✳ ❇❡❧♦✇✱ ✇❡ ✇r✐t❡ t❤❡ ♣❛rt✐❛❧ s✉♠
pn
✐♥ t❤❡ ✜rst r♦✇✱ ✐ts ♠✉❧t✐♣❧❡
rpn
✭❛❧❧ t❡r♠s ❛r❡ ♠✉❧t✐♣❧✐❡❞ ❜②
r✮ ✐♥ t❤❡ s❡❝♦♥❞✱
nt❤
s✉❜tr❛❝t t❤❡♠✱
❛♥❞ t❤❡♥ ❝❛♥❝❡❧ t❤❡ t❡r♠s t❤❛t ❛♣♣❡❛r t✇✐❝❡✿
= ar0
pn rpn
=
ar1
+ar1
+ar2
+... +arn−1
+arn
+ ar2
+ ar3
+... + arn
+ arn+1
❙✉❜tr❛❝t
pn − rpn = ar0 − ar1 +ar1 − ar2 +ar2 − ar3 +... +arn−1 − arn +arn − arn+1 = ar0
−arn+1 .
❚❤❡ ✏✳✳✳✑ ♣❛rt ✐s ❣♦♥❡✦ ❚❤❡r❡❢♦r❡✱
pn (1 − r) = a − arn+1 . ❚❤✉s✱ ✇❡ ❤❛✈❡ ❛♥ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛ ❢♦r t❤❡
nt❤
t❡r♠ ♦❢ t❤❡ ♣❛rt✐❛❧ s✉♠✿
pn = a
1 − rn+1 . 1−r
▲❡t✬s ♥♦t❡ t❤❛t t❤✐s ✐s t❤❡ s✉♠ ♦❢ ❛ ❣❡♦♠❡tr✐❝ ♣r♦❣r❡ss✐♦♥ ❛♥❞ ❛ ❝♦♥st❛♥t s❡q✉❡♥❝❡✿
pn =
−ra n a r + . 1−r 1−r
❲❡ t❤❡♥ ❤❛✈❡ ❛♥ ✐♥t❡r❡st✐♥❣ ♠❛t❝❤✿
❚❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s
❚❤❡ ✐♥t❡❣r❛❧
♦❢ ❛ ❣❡♦♠❡tr✐❝ ♣r♦❣r❡ss✐♦♥
♦❢ ❛♥ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥
✐s ❛ ❣❡♦♠❡tr✐❝ ♣r♦❣r❡ss✐♦♥
✐s ❛♥ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥
✇✐t❤ t❤❡ s❛♠❡ r❛t✐♦ ♣❧✉s ❛ ❝♦♥st❛♥t✳ ■t✬s ❡❛s② t♦ ✜♥❞ t❤❡ ❧✐♠✐t ♦❢ t❤✐s s❡q✉❡♥❝❡ ❜❡❝❛✉s❡
rn+1
✇✐t❤ t❤❡ s❛♠❡ ❜❛s❡ ♣❧✉s ❛ ❝♦♥st❛♥t✳ ✐s t❤❡ ♦♥❧② t❡r♠ t❤❛t ♠❛tt❡rs✳ ❚❤❡ ❝♦♥❝❧✉s✐♦♥ ✐s t❤❡
❢♦❧❧♦✇✐♥❣✿ ❚❤❡♦r❡♠ ✺✳✺✳✶✶✿ ❙✉♠ ♦❢ ●❡♦♠❡tr✐❝ ❙❡r✐❡s ❚❤❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ r❛t✐♦
r
❝♦♥✈❡r❣❡s ✐❢ ❛♥❞ ♦♥❧② ✐❢
|r| < 1 ; ✐♥ t❤❛t ❝❛s❡✱ t❤❡ s✉♠ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✿
∞ X k=0
ark =
a 1−r
✺✳✺✳
▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✽✵
Pr♦♦❢✳
❲❡ ✉s❡ t❤❡ ❛❜♦✈❡ ❢♦r♠✉❧❛ ❛♥❞ t❤❡ ❢❛♠✐❧✐❛r ♣r♦♣❡rt✐❡s ♦❢ ❧✐♠✐ts✿ n X
ark = lim pn
k=0
n→∞
1 − rn+1 = lim a n→∞ 1−r a = lim (1 − rn+1 ) n→∞ 1−r a 1 − lim rn+1 . = n→∞ 1−r
❚♦ ✜♥✐s❤✱ ✇❡ ✐♥✈♦❦❡ t❤❡ t❤❡♦r❡♠ ❛❜♦✈❡ ❛❜♦✉t t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❣❡♦♠❡tr✐❝
♣r♦❣r❡ss✐♦♥s✳
❚❤❡ t❤❡♦r❡♠ ✐s ❝♦♥✜r♠❡❞ ♥✉♠❡r✐❝❛❧❧② ❜❡❧♦✇✿
❊①❡r❝✐s❡ ✺✳✺✳✶✷
❊①♣❧❛✐♥ t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ s❡q✉❡♥❝❡ ♦❢ t❤❡s❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s ❛♥❞ t❤❡ s❡r✐❡s ✇✐t❤ r = 1✳ ❊①❛♠♣❧❡ ✺✳✺✳✶✸✿ ❣❡♦♠❡tr✐❝ s❡r✐❡s
❲❡ ❛♣♣❧② t❤❡ t❤❡♦r❡♠ ❛s ❢♦❧❧♦✇s✿ ❣❡♦♠❡tr✐❝ s❡r✐❡s 1 1 1 + + + ... 2 4 8 1 1 1 1+ + + + ... 3 9 27 1 1 1 1 − + − + ... 2 4 8 1+
✜rst t❡r♠ a r❛t✐♦ r s✉♠ 1 1 1
1 2 1 3 1 − 2
1 =2 1 − 1/2 3 1 = 1 − 1/3 2 2 1 = 1 + 1/2 3
1 + 1.1 + 1.12 + 1.13 + ...
1
1.1
❞✐✈❡r❣❡s
1 − 1 + 1 − 1 + ...
1
−1
❞✐✈❡r❣❡s
❚❤✐s ♣♦✇❡r❢✉❧ t❤❡♦r❡♠ ✇✐❧❧ ❛❧s♦ ❛❧❧♦✇ ✉s t♦ st✉❞② ♦t❤❡r s❡r✐❡s ❜② ❝♦♠♣❛r✐♥❣ t❤❡♠ t♦ ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s✳
✺✳✺✳
▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✽✶
❊①❛♠♣❧❡ ✺✳✺✳✶✹✿ ❩❡♥♦✬s ♣❛r❛❞♦① ❘❡❝❛❧❧ ❛ s✐♠♣❧❡ s❝❡♥❛r✐♦ ✭❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✶✮✿ ❆s ②♦✉ ✇❛❧❦ t♦✇❛r❞ ❛ ✇❛❧❧✱ ②♦✉ ❝❛♥ ♥❡✈❡r r❡❛❝❤ ✐t ❜❡❝❛✉s❡ ♦♥❝❡ ②♦✉✬✈❡ ❝♦✈❡r❡❞ ❤❛❧❢ t❤❡ ❞✐st❛♥❝❡✱ t❤❡r❡ ✐s st✐❧❧ ❞✐st❛♥❝❡ ❧❡❢t✱ ❡t❝✳ ■t ✇✐❧❧ t❛❦❡ ✐♥✜♥✐t❡❧② ♠❛♥② st❡♣s t♦ r❡❛❝❤ t❤❡ ✇❛❧❧✿
❲❡ ♥♦✇ ❦♥♦✇ t❤❛t t❤❡ s✉♠ ♦❢ t❤❡ ❞✐st❛♥❝❡s ✐s 1 ❛s ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s✿ 1 1 1 1 + + + + ... = 1 . 1 2 4 8
t✐♠❡
❇✉t ✇❡ ❦♥❡✇ t❤❛t✦ ❲❤❛t r❡s♦❧✈❡s t❤❡ ♣❛r❛❞♦① ✐s t❤❡ ❢❛❝t t❤❛t t❤❡ ♣❡r✐♦❞s ❛❧s♦ ❢♦r♠ ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s✳ ❙✉♣♣♦s❡ v ✐s t❤❡ s♣❡❡❞ ♦❢ t❤❡ ♣❡rs♦♥✳ ❚❤❡♥✱ t✐♠❡ ♣❡r✐♦❞s ❛r❡ ❝♦♠♣✉t❡❞ ❛s t❤❡ ❞✐st❛♥❝❡ ♦✈❡r t❤❡ s♣❡❡❞✿ 1 1 1 /v, /v, /v, ... 2 4 8
❚❤✐s ✐s ❛ ❣❡♦♠❡tr✐❝ s❡q✉❡♥❝❡ ✇✐t❤✿ a=
1 , r = 1/2 . 2v
■ts s✉♠ ✐s ❢♦✉♥❞ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ t❤❡♦r❡♠✿ 1 11 11 11 + + + ... = . 2v 4v 8v v
❚❤✐s ✐s ❤♦✇ ❧♦♥❣ ✐t t❛❦❡s✳ ❙♦✱ ❡✈❡♥ t❤♦✉❣❤ ✐t t❛❦❡s ✐♥✜♥✐t❡❧② ♠❛♥② t❛❦❡s ✐s♥✬t ✐♥✜♥✐t❡✦
st❡♣s t♦ r❡❛❝❤ t❤❡ ✇❛❧❧✱ t❤❡ t✐♠❡ ✐t
❊①❛♠♣❧❡ ✺✳✺✳✶✺✿ ✐♥✜♥✐t❡ ❞❡❝✐♠❛❧s ▲❡t✬s r❡♣r❡s❡♥t t❤❡ ♥✉♠❜❡r 0.44444... ❛s ❛ s❡r✐❡s✳ ■❢ ✇❡ ❝❛♥ ❞❡♠♦♥str❛t❡ ❝♦♥✈❡r❣❡♥❝❡✱ t❤✐s ✐s ✇❤❛t ✇❡ ❤❛✈❡✿ 0.4444... = 0.4 = 4 · 0.1
+0.04
+0.004
+4 · 0.04
+4 · 0.004 +4 · 0.0004 +...
= 4 · 10−1 +4 · 10−2 +4 · 10−3
+0.0004 +4 · 10−4
+... +...
❚❤✐s ✐s ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ t❤❡ ✜rst t❡r♠ a = .4 ❛♥❞ t❤❡ r❛t✐♦ r = 0.1 < 1✳ ❚❤❡r❡❢♦r❡✱ ✐t ❝♦♥✈❡r❣❡s ❜② t❤❡ t❤❡♦r❡♠ t♦ t❤❡ ❢♦❧❧♦✇✐♥❣✿ n X i=0
n
0.4 · 0.1 =
n X i=0
arn =
a 0.4 4 = = . 1−r 1 − 0.1 9
✺✳✺✳ ▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✽✷
❊①❡r❝✐s❡ ✺✳✺✳✶✻
❯s❡ t❤❡ ❧❛st ❡①❛♠♣❧❡ t♦ s❤♦✇ t❤❛t ❢♦r ❛♥② ❞✐❣✐t d ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ r❡♣r❡s❡♥t❛t✐♦♥✿ .dddd... =
d . 9
❊①❛♠♣❧❡ ✺✳✺✳✶✼✿ ❣❡♦♠❡tr✐❝
❍❡r❡ ✐s ❛♥♦t❤❡r ❣❡♦♠❡tr✐❝ ✐♥t❡r♣r❡t❛t✐♦♥ ♦❢ ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s✿
■♥st❡❛❞ ♦❢ ✜♥❞✐♥❣ t❤❡ s✉♠ ♦❢ ❛ s❡r✐❡s ❛s ❛ ♥✉♠❜❡r✱ ✇❡ ❛r❡ ♣r♦❞✉❝✐♥❣ ❛ s❡r✐❡s ❢r♦♠ ❛ ♥✉♠❜❡r✳ ❲❡ st❛rt ✇✐t❤ ❛ s✐♠♣❧❡ ♦❜s❡r✈❛t✐♦♥✿ 1=
3 1 1 + = (3 + 1) . 4 4 4
❲❡ r❡♣❧❛❝❡ 1 ✇✐t❤ t❤✐s ❡①♣r❡ss✐♦♥✱ ✇❤✐❝❤ ❛❧s♦ ❝♦♥t❛✐♥s 1✱ t♦ ❜❡ r❡♣❧❛❝❡❞ ✇✐t❤ t❤✐s ❡①♣r❡ss✐♦♥ ❛❣❛✐♥✱ ❡t❝✳ ❚❤✐s ✇❛②✱ ✐♥ ❝♦♥tr❛st t♦ ❛❧❧ ♦t❤❡r ❡①❛♠♣❧❡s✱ ✇❡ st❛rt ✇✐t❤ t❤❡ s✉♠ ❛♥❞ t❤❡♥ ❛❝q✉✐r❡ ❛ s❡r✐❡s ❢♦r ✐t✿ 1 1 = (3 + 1) 4 1 = (3 + 1) 4 1 1 = 3 + (3 + 1) 4 4 1 1 = 3 + (3 + 1) 4 4 ! 1 1 1 = 3 + 3 + (3 + 1) 4 4 4
= = = = =
3 4 3 4 3 4 3 4 3 4
1 4 1 + ·1 4 1 3 1 + + 4 4 4 1 3 + 2 ·1 + 2 4 4 1 3 3 1 + 2 + 2 + 4 4 4 4 +
= ... ∞ X 3 . = 4n n=1
❚❤✐s ✐♥✜♥✐t❡ ❝♦♠♣✉t❛t✐♦♥ ♠❛❦❡s s❡♥s❡✱ t❤❛♥❦s t♦ t❤❡ ❧❛st t❤❡♦r❡♠✳ ❊①❛♠♣❧❡ ✺✳✺✳✶✽✿ ♣♦✇❡r s❡r✐❡s
▲❡t✬s ♥♦t ❢♦r❣❡t ✇❤② ✇❡ ❛r❡ ❞♦✐♥❣ t❤✐s✳ ❈♦♥s✐❞❡r t❤❡ ❢❛♠✐❧✐❛r ✭❛♥❞ t❤❡ s✐♠♣❧❡st✮ ♣♦✇❡r s❡r✐❡s✿ 1 + x + x2 + x3 + ...
■t ❝♦♥✈❡r❣❡s ❢♦r x = 0 ❛♥❞ ❞✐✈❡r❣❡s ❢♦r x = 2✳ ❲❡ ❦♥♦✇ ♠♦r❡ ♥♦✇✳ ❋♦r ❡❛❝❤ x✱ t❤✐s ✐s ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ r❛t✐♦ r = x✳ ❚❤❡r❡❢♦r❡✱ ✐t ❝♦♥✈❡r❣❡s ❢♦r ❡✈❡r② x t❤❛t s❛t✐s✜❡s |x| < 1✳ ❚❤❡ s✉♠ ✐s ❛ ♥✉♠❜❡r✱ ❛♥❞ t❤✐s ♥✉♠❜❡r ✐s t❤❡ ✈❛❧✉❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❛t x✳ ❚❤❡ ✐♥t❡r✈❛❧ (−1, 1) ✐s t❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ t❤✐s ✇❛②✳ ❚❤❡ t❤❡♦r❡♠ ❡✈❡♥ ♣r♦✈✐❞❡s ❛ ❢♦r♠✉❧❛ ❢♦r t❤✐s ❢✉♥❝t✐♦♥✿ 1 + x + x2 + x3 + ... =
1 . 1−x
✺✳✺✳
▼❛✐♥ ❝❧❛ss❡s ♦❢ s❡r✐❡s
✸✽✸
❚❤❡ ❞✐✛❡r❡♥❝❡ ❜❡t✇❡❡♥ t❤❡s❡ t✇♦ ❢✉♥❝t✐♦♥s ❣✐✈❡♥ ❤❡r❡ ✐s ❝❧❡❛r❀ ✐t✬s t❤❡✐r ❞♦♠❛✐♥s✳ ❚❤❡ ♣❛rt✐❛❧ s✉♠s ♦❢ t❤❡ s❡r✐❡s ❛r❡ ♣♦❧②♥♦♠✐❛❧s t❤❛t ❛♣♣r♦①✐♠❛t❡ t❤❡ ❢✉♥❝t✐♦♥✿
❚❤❡ ♠✐s♠❛t❝❤ ✐s ✈✐s✐❜❧❡ ✐♥ t❤❡ ❣r❛♣❤ ❛s t❤❡ ❛♣♣r♦①✐♠❛t✐♦♥ ❢❛✐❧s t♦ ✐♠♣r♦✈❡ ♦✉ts✐❞❡ t❤❡ ✐♥t❡r✈❛❧ (−1, 1)✳ ❊①❡r❝✐s❡ ✺✳✺✳✶✾
❈♦♥✜r♠ t❤❛t t❤❡s❡ ❛r❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳ ❊①❡r❝✐s❡ ✺✳✺✳✷✵
❋✐♥❞ t❤❡ s✉♠s ♦❢ t❤❡ s❡r✐❡s ❣❡♥❡r❛t❡❞ ❜② ❡❛❝❤ ♦❢ t❤❡s❡ s❡q✉❡♥❝❡s ♦r s❤♦✇ t❤❛t ✐t ❞♦❡s♥✬t ❡①✐st✿ ✶✳ 1/1, 1/3, 1/5, 1/7, 1/9, 1/11, 1/13, ... ✷✳ 1/0.9, 1/0.99, 1/0.999, 1/0.9999, ... ✸✳ 1, −1, 1, −1, ... ✹✳ 1, −1/2, 1/4, −1/8, ... ✺✳ 1, 1/4, 1/16 , 1/64, ... ❊①❛♠♣❧❡ ✺✳✺✳✷✶✿ t❡❧❡s❝♦♣✐♥❣ s❡r✐❡s
❲❤❡♥ ❛ s❡r✐❡s ✐s♥✬t ❣❡♦♠❡tr✐❝✱ ✐t ♠✐❣❤t st✐❧❧ ❜❡ ♣♦ss✐❜❧❡ t♦ s✐♠♣❧✐❢② t❤❡ ♣❛rt✐❛❧ s✉♠s ✈✐❛ ❛❧❣❡❜r❛✐❝ tr✐❝❦s ❛♥❞ ✜♥❞ ✐ts s✉♠✿ ∞ X k=1
∞
1 1 − k k+1 n X 1 1 = lim − n→∞ k k+1 k=1 1 1 1 1 1 1− = lim + − + ... + − n→∞ 2 3 +1 n n 2 1 1 1 1 1 1 1 + − + + ... + − + − = lim 1 + − + n→∞ 2 2 3 3 n n n+1 1 = lim 1 − n→∞ n+1
X 1 = k(k + 1) k=1
= 1.
✺✳✻✳ ❋r♦♠ ✜♥✐t❡ s✉♠s ✈✐❛ ❧✐♠✐ts t♦ s❡r✐❡s
✸✽✹
❊①❡r❝✐s❡ ✺✳✺✳✷✷
❊①♣❧❛✐♥ ❤♦✇ t❤❡ ❛❜♦✈❡ ❝♦♠♣✉t❛t✐♦♥ ✐s ❞✐✛❡r❡♥t ❢r♦♠ t❤❡ ❢♦❧❧♦✇✐♥❣ ❛♥❞ ✇❤② ✐t ♠❛tt❡rs✿ ∞ X k=1
∞ X 1 1 1 = − k(k + 1) k k+1 k=1 1 1 1 1 1 + + ... + + ... − − = 1− 2 3 +1 2 n n 1 1 1 1 1 1 =1+ − + + − + + ... + − + + ... 2 2 3 3 n n = 1.
❊①❡r❝✐s❡ ✺✳✺✳✷✸
❯s❡ t❤❡ ❛❧❣❡❜r❛✐❝ tr✐❝❦ ❢r♦♠ t❤❡ ❛❜♦✈❡ ❡①❛♠♣❧❡ t♦ ❡✈❛❧✉❛t❡ t❤✐s ✐♥t❡❣r❛❧✿ Z
1 dx . x(x + 1)
❚❤❡ ●❡♦♠❡tr✐❝ ❙❡r✐❡s ❚❤❡♦r❡♠✱ ❛s ✇❡❧❧ ❛s ♦t❤❡r t❤❡♦r❡♠s ❛❜♦✉t ❝♦♥✈❡r❣❡♥❝❡ ♦❢ s❡r✐❡s ♣r❡s❡♥t❡❞ ❜❡❧♦✇✱ ❛❧❧♦✇s ✉s t♦ ❜❡ ❜♦❧❞❡r ✇✐t❤ ❝♦♠♣✉t❛t✐♦♥s t❤❛t ✐♥✈♦❧✈❡ ✐♥✜♥✐t❡❧② ♠❛♥② st❡♣s✳
✺✳✻✳ ❋r♦♠ ✜♥✐t❡ s✉♠s ✈✐❛ ❧✐♠✐ts t♦ s❡r✐❡s ▲❡t✬s r❡♠❡♠❜❡r t❤❛t✱ ✐♥✐t✐❛❧❧②✱ ◮ t❤❡r❡ ❛r❡ ♥♦ s❡r✐❡s✳
❆ s❡r✐❡s ✐s s❤♦rt❤❛♥❞ ❢♦r ✇❤❛t ✇❡ ❞♦ ✇✐t❤ ❛ s❡q✉❡♥❝❡✳ ❆ s❡r✐❡s ✐s✱ t❤❡r❡❢♦r❡✱ ❛❧✇❛②s ❛ ♣❛✐r ♦❢ s❡q✉❡♥❝❡s✿
❲❤❛t ✇❡ ❞♦ ✐s r❡❝✉rs✐✈❡ ❛♥❞✱ ✇❤❡♥ t❤❡ s❡q✉❡♥❝❡ ✐s ✐♥✜♥✐t❡✱ ✐♥✈♦❧✈❡s ✐♥✜♥✐t❡❧② ♠❛♥② st❡♣s✳ ❆t t❤❡ ♥❡①t st❛❣❡✱ ♥♦t❛t✐♦♥ t❛❦❡s ♦✈❡r ❛♥❞ t❤❡ s❡r✐❡s st❛rt t♦ ❜❡ tr❡❛t❡❞ ❛s ❡♥t✐t✐❡s✿ ❙❡r✐❡s
∞ X
ak ✐s t❤❡ ❧✐♠✐t ♦❢ ♣❛rt✐❛❧ s✉♠s ♦❢ ak .
k=m
❊①❡r❝✐s❡ ✺✳✻✳✶
❙❤♦✇ t❤❛t ❡✈❡r② s❡q✉❡♥❝❡ ✐s t❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s ♦❢ s♦♠❡ s❡q✉❡♥❝❡✳ ❍✐♥t✿ ❯s❡ t❤❡ ❞✐✛❡r❡♥❝❡ ❝♦♥✲ str✉❝t✐♦♥✿ an+1 = ∆pn = pn+1 − pn .
✺✳✻✳ ❋r♦♠ ✜♥✐t❡ s✉♠s ✈✐❛ ❧✐♠✐ts t♦ s❡r✐❡s
✸✽✺
■♥ ❱♦❧✉♠❡ ✶ ✭❈❤❛♣t❡r ✶P❈✲✶✮ ✇❡ ✐♥tr♦❞✉❝❡❞ ✜♥✐t❡ s✉♠s✱ ✐✳❡✳✱ s✉♠s ♦❢ t❤❡ t❡r♠s ♦❢ ❛ ❣✐✈❡♥ s❡q✉❡♥❝❡ an ♦✈❡r ❛♥ ✐♥t❡r✈❛❧ [a, b] ♦❢ ✈❛❧✉❡s ♦❢ k✿ q X
ak = ap + ap+1 + ... + aq ,
k=p
❛♥❞ t❤❡✐r ♣r♦♣❡rt✐❡s✳ ❲❡ ✉s❡❞ t❤♦s❡ ♣r♦♣❡rt✐❡s t♦ st✉❞② t❤❡ ❘✐❡♠❛♥♥ s✉♠s ✐♥ ❈❤❛♣t❡r ✶❀ t❤❡s❡ s✉♠s ❛r❡ t❤❡ ❛r❡❛s ✉♥❞❡r t❤❡ ❣r❛♣❤s ♦❢ t❤❡ st❡♣✲❢✉♥❝t✐♦♥s ♣r♦❞✉❝❡❞ ❜② t❤❡ s❡q✉❡♥❝❡s✳ ◆♦✇ ✇❡ ❥✉st ♥❡❡❞ t♦ tr❛♥s✐t✐♦♥ t♦ ✐♥✜♥✐t❡ s✉♠s ✈✐❛ ❧✐♠✐ts✳ ❆s ❛ ♠❛tt❡r ♦❢ ♥♦t❛t✐♦♥✱ ✇❡ ✇✐❧❧ ♦❢t❡♥ ♦♠✐t t❤❡ ❜♦✉♥❞s ✐♥ t❤❡ s✐❣♠❛ ♥♦t❛t✐♦♥ ❢♦r s❡r✐❡s✿
❙✐❣♠❛ ♥♦t❛t✐♦♥ ∞ X
ak ✐s r❡♣❧❛❝❡❞ ✇✐t❤
k=m
X
ak
❚❤❡ r❡❛s♦♥ ✐s ✇❤② t❤✐s ✐s ❛❝❝❡♣t❛❜❧❡ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❈♦♥s✐❞❡r t❤❡s❡ t✇♦ ✜♥✐t❡ s✉♠s✿ n X k=a
uk ❛♥❞
n X
uk .
k=b
❚❤❡ ❞✐✛❡r❡♥❝❡ ❜❡t✇❡❡♥ t❤❡♠ ✐s ❥✉st ❛ ✜♥✐t❡❧② ♠❛♥② t❡r♠s ❛♥❞✱ t❤❡r❡❢♦r❡✱ t❤❡② ❡✐t❤❡r ❜♦t❤ ❝♦♥✈❡r❣❡ ♦r ❜♦t❤ ❞✐✈❡r❣❡✱ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❚r✉♥❝❛t✐♦♥ Pr✐♥❝✐♣❧❡ ❢r♦♠ ❱♦❧✉♠❡ ✷ ✭❈❤❛♣t❡r ✷❉❈✲✶✮✳ ❚❤❡ ♥♦t❛t✐♦♥ ✐s ❡s♣❡❝✐❛❧❧② ❛♣♣r♦♣r✐❛t❡ ✇❤❡♥ t❤❡r❡ ✐s ♥♦ ❤♦♣❡ ♦❢ ✜♥❞✐♥❣ t❤❡ s✉♠ ♦❢ t❤❡ s❡r✐❡s✳ ■♥ t❤❛t ❝❛s❡✱ ✇❡ ❢❛❝❡ ❛ s✐♠♣❧❡ ❞✐❝❤♦t♦♠②✿ • ✐t ❝♦♥✈❡r❣❡s✱ ♦r • ✐t ❞✐✈❡r❣❡s✳
◆❡①t✱ ✇❡ ♣r♦✈❡ s❡✈❡r❛❧ t❤❡♦r❡♠s ❛❜♦✉t ❝♦♥✈❡r❣❡♥❝❡ ♦❢ s❡r✐❡s✳ ❚❤❡② ❛❧❧ ❢♦❧❧♦✇ t❤❡ s❛♠❡ ✐❞❡❛✿ ◮ ■❢ ❛♥ ❛❧❣❡❜r❛✐❝ r❡❧❛t✐♦♥ ❡①✐sts ❢♦r ✜♥✐t❡ s✉♠s✱ t❤❡♥ t❤✐s r❡❧❛t✐♦♥ r❡♠❛✐♥s ✈❛❧✐❞ ❢♦r ✐♥✜♥✐t❡ s✉♠s✱
✐✳❡✳✱ s❡r✐❡s✱ ♣r♦✈✐❞❡❞ t❤❡② ❝♦♥✈❡r❣❡✳
❋✐rst✱ t❤❡ ❝♦♠♣❛r✐s♦♥ ♣r♦♣❡rt✐❡s✳ ■❢ t✇♦ s❡q✉❡♥❝❡s ❛r❡ ❝♦♠♣❛r❛❜❧❡✱ t❤❡♥ s♦ ❛r❡ t❤❡✐r s✉♠s✿
✺✳✻✳ ❋r♦♠ ✜♥✐t❡ s✉♠s ✈✐❛ ❧✐♠✐ts t♦ s❡r✐❡s
✸✽✻
■♥ ❢❛❝t✱ t❤✐s s✐♠♣❧❡ ❛❧❣❡❜r❛ t❡❧❧s t❤❡ ✇❤♦❧❡ st♦r②✿ u ≤ U
❆❞❞ t❤❡ t✇♦ ✐♥❡q✉❛❧✐t✐❡s ♣r♦❞✉❝✐♥❣ t❤❡ t❤✐r❞✿
v ≤ V
u+v ≤ U +V
❚❤❡ ♦♥❧② ❞✐✛❡r❡♥❝❡ ✐s t❤❛t ✇❡ ❤❛✈❡ ♠♦r❡ t❤❛♥ ❥✉st t✇♦ t❡r♠s✿ up ≤ Up
up+1 ≤ Up+1 ... ... ...
❆❞❞ t❤❡ s❡q✉❡♥❝❡ ♦❢ ✐♥❡q✉❛❧✐t✐❡s ♣r♦❞✉❝✐♥❣ t❤❡ ♥❡✇ ♦♥❡✿
uq ≤ Uq
up + ... + uq ≤ Up + ... + Uq q q X X un ≤ Un n=p
n=p
❚❤✐s ✐s t❤❡ ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙✉♠s ♣r❡s❡♥t❡❞ ✐♥ ❱♦❧✉♠❡ ✶ ✭❈❤❛♣t❡r ✶P❈✲✶✮ t❤❛t ✇❛s ✉s❡❞ t♦ st✉❞② ❘✐❡♠❛♥♥ s✉♠s ❛♥❞ t❤❡♥ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧s ✐♥ ❈❤❛♣t❡r ✶✳ ❩♦♦♠✐♥❣ ♦✉t ❤❡❧♣s ✉s s❡❡ t❤❛t t❤❡ ❧❛r❣❡r ❢✉♥❝t✐♦♥✱ ♦r ❛ s❡q✉❡♥❝❡✱ ❛❧✇❛②s ❝♦♥t❛✐♥s ❛ ❧❛r❣❡r ❛r❡❛ ✉♥❞❡r ✐ts ❣r❛♣❤✿
❚❛❦✐♥❣ t❤❡ ❧✐♠✐t q → ∞ ❛❧❧♦✇s ✉s t♦ ♠❛❦❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❝❧✉s✐♦♥ ❜❛s❡❞ ♦♥ t❤❡ ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ▲✐♠✐ts ♦❢ ❙❡q✉❡♥❝❡s✳ ❚❤❡♦r❡♠ ✺✳✻✳✷✿ ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙❡r✐❡s ❆♥ ✐♥❡q✉❛❧✐t② ❜❡t✇❡❡♥ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ t❡r♠s ♦❢ t✇♦ s❡r✐❡s ❤♦❧❞s ❢♦r t❤❡✐r s✉♠s t♦♦✳
■♥ ♦t❤❡r ✇♦r❞s✱ s✉♣♣♦s❡
un
❛♥❞
Un
❛r❡ s❡q✉❡♥❝❡s✳
❙✉♣♣♦s❡ ❛❧s♦ t❤❛t ❡✐t❤❡r ♦❢
t❤❡ t✇♦ s❡r✐❡s t❤❡② ♣r♦❞✉❝❡ ❝♦♥✈❡r❣❡s✳ ❚❤❡♥✿
un ≤ Un =⇒
X
un ≤
X
Un .
✺✳✻✳
❋r♦♠ ✜♥✐t❡ s✉♠s ✈✐❛ ❧✐♠✐ts t♦ s❡r✐❡s
✸✽✼
❊①❛♠♣❧❡ ✺✳✻✳✸✿ ❝♦♠♣❛r✐s♦♥ ✇✐t❤ ❣❡♦♠❡tr✐❝ ❚❤❡ s❡r✐❡s
∞ X n=1
2n
1 −1
✐s♥✬t ❣❡♦♠❡tr✐❝✳✳✳ ❜✉t ❝❧♦s❡✳ ❈♦♥s✐❞❡r t❤✐s ♦❜✈✐♦✉s ❢❛❝t✿
2n − 1 ≤ 2n =⇒
2n
1 1 ≥ n. −1 2
❚❤❡ s❡r✐❡s ♣r♦❞✉❝❡❞ ❜② t❤❡ s❡q✉❡♥❝❡ ♦♥ t❤❡ r✐❣❤t ❝♦♥✈❡r❣❡s t♦ t❤❛t
∞ X n=1
2n
1✳
■t ❢♦❧❧♦✇s ❛❝❝♦r❞✐♥❣ t♦ t❤❡ t❤❡♦r❡♠
1 ≥ 1, −1
✐❢ ✇❡ ❝❛♥ ❡st❛❜❧✐s❤ t❤❛t t❤✐s s❡r✐❡s ❝♦♥✈❡r❣❡s✳
❆ r❡❧❛t❡❞ r❡s✉❧t ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✳
❚❤❡♦r❡♠ ✺✳✻✳✹✿ ❙tr✐❝t ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙❡r✐❡s ❙✉♣♣♦s❡
un
❛♥❞
Un
❛r❡ s❡q✉❡♥❝❡s✳
❙✉♣♣♦s❡ ❛❧s♦ t❤❛t ❡✐t❤❡r ♦❢ t❤❡ t✇♦ s❡r✐❡s
t❤❡② ♣r♦❞✉❝❡ ❝♦♥✈❡r❣❡s✳ ❚❤❡♥✿
un < Un =⇒
X
un
pn . ■t ✐s ❛❧s♦
❜♦✉♥❞❡❞ ✿ pn = d1 · 0.1 + d2 · 0.01 + d3 · 0.001 + ... + dn · 0.1n
< 10 · 0.1 + 10 · 0.01 + 10 · 0.001 + ... + 10 · 0.1n
< 10 · 0.1 + 10 · 0.01 + 10 · 0.001 + ... + 10 · 0.1n + ... 1 = ❇❡❝❛✉s❡ ✐t✬s ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ r = 0.1 . 1 − 0.1 = 9. ❚❤❡r❡❢♦r❡✱ t❤❡ s❡q✉❡♥❝❡ ✐s ❝♦♥✈❡r❣❡♥t ❜② t❤❡
▼♦♥♦t♦♥❡ ❈♦♥✈❡r❣❡♥❝❡ ❚❤❡♦r❡♠
✭❱♦❧✉♠❡ ✷✮✳
❚❤❡ r❡s✉❧t ❡①♣❧❛✐♥s ✇❤② t❤❡ ▼♦♥♦t♦♥❡ ❈♦♥✈❡r❣❡♥❝❡ ❚❤❡♦r❡♠ ✐s ❛❧s♦ ❦♥♦✇♥ ❛s t❤❡
♦❢ ❘❡❛❧ ◆✉♠❜❡rs ❀ ❛♥ ✏✐♥❝♦♠♣❧❡t❡✑
❈♦♠♣❧❡t❡♥❡ss Pr♦♣❡rt②
r♦♣❡ ✇♦♥✬t ❤❛♥❣✿
❊①❡r❝✐s❡ ✺✳✻✳✶✶
Pr♦✈❡ t❤❡ t❤❡♦r❡♠ ❜② ✉s✐♥❣ t❤❡ ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙❡r✐❡s ✐♥st❡❛❞✳
❊①❡r❝✐s❡ ✺✳✻✳✶✷
❙t❛t❡ ❛♥❞ ♣r♦✈❡ ❛♥ ❛♥❛❧♦❣♦✉s t❤❡♦r❡♠ ❢♦r
❜✐♥❛r②
❛r✐t❤♠❡t✐❝✳
▼♦r❡♦✈❡r✱ t❤❡ ❞❡❝✐♠❛❧ ♥✉♠❜❡rs ❛r❡ ❛❧s♦ s✉❜❥❡❝t t♦ t❤❡ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❛❧❣❡❜r❛✐❝ t❤❡♦r❡♠s ❛❜♦✈❡✳ ❊①❛♠♣❧❡ ✺✳✻✳✶✸✿ ❛❧❣❡❜r❛ ♦❢ ❞❡❝✐♠❛❧s
❲❡ ❝❛♥ ❛❞❞ ✐♥✜♥✐t❡ ❞❡❝✐♠❛❧s✿
u
= .u1 u2 ...un ... =
∞ X k=1
v
= .v1 v2 ...vn ...
=
∞ X k=1
u+v
=
∞ X k=1
uk · (0.1)k vk · (0.1)k (uk + vk ) · (0.1)k
✺✳✼✳ ❉✐✈❡r❣❡♥❝❡
✸✾✷
❲❡ ❝❛♥ ❛❧s♦ ♠✉❧t✐♣❧② ❛♥ ✐♥✜♥✐t❡ ❞❡❝✐♠❛❧ ❜② ❛♥♦t❤❡r r❡❛❧ ♥✉♠❜❡r✿ = .u1 u2 ...un ... =
u
∞ X k=1
c·u
=
∞ X k=1
uk · (0.1)k c · uk · (0.1)k
❚❤❡ ❢♦r♠✉❧❛s ❞♦♥✬t t❡❧❧ ✉s t❤❡ ❞❡❝✐♠❛❧ r❡♣r❡s❡♥t❛t✐♦♥s ♦❢ u + v ✭✉♥❧❡ss un + vn < 10✮ ♦r c · u ✳
✺✳✼✳ ❉✐✈❡r❣❡♥❝❡
❲❤❛t ✐❢ ✇❡ ❢❛❝❡ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s ✇✐t❤ s❡r✐❡s t❤❛t ❞✐✈❡r❣❡ ❄ ❚❤❡ ❧❛✇s ❛❜♦✈❡ t❡❧❧ ✉s ♥♦t❤✐♥❣✦ ❋♦r ❡①❛♠♣❧❡✱ t❤✐s ✐s t❤❡ ❙✉♠ ❘✉❧❡ ✿ X X X (an + bn ) ❝♦♥✈❡r❣❡s❀ an , bn ❝♦♥✈❡r❣❡ =⇒
❜✉t t❤✐s ✐s♥✬t✿
❊①❡r❝✐s❡ ✺✳✼✳✶
X
an ,
X
bn ❞✐✈❡r❣❡ 6=⇒
X
(an + bn ) ❞✐✈❡r❣❡s✳
❙❤♦✇ t❤❛t t❤✐s st❛t❡♠❡♥t ✇♦✉❧❞ ✐♥❞❡❡❞ ❜❡ ✉♥tr✉❡✳
❊①❛♠♣❧❡ ✺✳✼✳✷✿ ❝♦♥✈❡r❣❡♥t ♣❧✉s ❞✐✈❡r❣❡♥t ❈♦♠♣✉t❡ t❤❡ s✉♠✿
∞ X 1 en + . 2n 3 n=1
❚❤✐s s✉♠ ✐s ❛ ❧✐♠✐t✱ ❛♥❞ ✇❡ ❝❛♥✬t ❛ss✉♠❡ t❤❛t t❤❡ ❛♥s✇❡r ✇✐❧❧ ❜❡ ❛ ♥✉♠❜❡r✳ ▲❡t✬s tr② t♦ ❛♣♣❧② t❤❡ ❙✉♠ ❘✉❧❡✿ ∞ X en 1 + n 2 3 n=1
∞ ∞ X X en 1 + == ❨❡s✱ ❜✉t ♦♥❧② ✐❢ t❤❡ t✇♦ s❡r✐❡s ❝♦♥✈❡r❣❡✦ n 2 3 n=1 n=1 ∞ n ∞ X X 1 1 n = e . ❉♦ t❤❡②❄ + 2 3 n=1 n=1
❄
❚❤❡s❡ ❛r❡ t✇♦ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ t❤❡ r❛t✐♦s ❡q✉❛❧ t♦✱ r❡s♣❡❝t✐✈❡❧②✱ 1/2 ❛♥❞ e✳ ❚❤❡ ✜rst ♦♥❡ ✐s s♠❛❧❧❡r t❤❛♥ 1 ❛♥❞ t❤❡r❡❢♦r❡ t❤❡ s❡r✐❡s ❝♦♥✈❡r❣❡s✱ ❜✉t t❤❡ s❡❝♦♥❞ ♦♥❡ ✐s ❧❛r❣❡r t❤❛♥ 1 ❛♥❞ t❤❡r❡❢♦r❡ t❤❡ s❡r✐❡s ❞✐✈❡r❣❡s✦ ❚❤❡ ❝♦♥❝❧✉s✐♦♥ ✐s t❤❛t ✐t ✐s ✉♥❥✉st✐✜❡❞ t♦ ✉s❡ t❤❡ ❙✉♠ ❘✉❧❡✳ ❲❡ ♣❛✉s❡ ❛t t❤✐s ♣♦✐♥t✳✳✳ ❛♥❞ t❤❡♥ tr② t♦ s♦❧✈❡ t❤❡ ♣r♦❜❧❡♠ ❜② ♦t❤❡r ♠❡❛♥s✳ ❲❡ r❡❝❛❧❧ ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✶ t❤❛t✱ ✐♥ t❤❡ ❝❛s❡ ♦❢ ✐♥✜♥✐t❡ ❧✐♠✐ts✱ ✇❡ ❛❞❤❡r❡ t♦ t❤❡ ❢♦❧❧♦✇✐♥❣ r✉❧❡s ✭k 6= 0✮✿
❆❧❣❡❜r❛ ♦❢ ■♥✜♥✐t✐❡s
♥✉♠❜❡r ±∞
k
+ (±∞) = ±∞
+ (±∞) = ±∞
·
(±∞) = ± sign(k)∞
✺✳✼✳
❉✐✈❡r❣❡♥❝❡
✸✾✸
■t ❢♦❧❧♦✇s t❤❛t t❤❡ s❡r✐❡s ✐♥ t❤❡ ❧❛st ❡①❛♠♣❧❡ ❞✐✈❡r❣❡s t♦ ✐♥✜♥✐t②✳ ❚❤❡s❡ ❢♦r♠✉❧❛s s✉❣❣❡st t❤❡ ❢♦❧❧♦✇✐♥❣ ❞✐✈❡r❣❡♥❝❡ r❡s✉❧t ❢♦r s❡r✐❡s✳ ❚❤❡♦r❡♠ ✺✳✼✳✸✿ P✉s❤ ❖✉t ❚❤❡♦r❡♠ ❢♦r ❙❡r✐❡s
✶✳ ■❢ t❤❡ ✈❛❧✉❡s ♦❢ ❛ s❡r✐❡s ❧✐❡ ❛❜♦✈❡ t❤♦s❡ ♦❢ ❛ s❡r✐❡s t❤❛t ❞✐✈❡r❣❡s t♦ ♣♦s✐t✐✈❡ ✐♥✜♥✐t②✱ t❤❡♥ s♦ ❞♦❡s t❤✐s s❡r✐❡s✳ ✷✳ ■❢ t❤❡ ✈❛❧✉❡s ♦❢ ❛ s❡r✐❡s ❧✐❡ ❜❡❧♦✇ t❤♦s❡ ♦❢ ❛ s❡r✐❡s t❤❛t ❞✐✈❡r❣❡s t♦ ♥❡❣❛t✐✈❡ ✐♥✜♥✐t②✱ t❤❡♥ s♦ ❞♦❡s t❤✐s s❡r✐❡s✳ ■♥ ♦t❤❡r ✇♦r❞s✱ s✉♣♣♦s❡ an ❛♥❞ bn ❛r❡ s❡q✉❡♥❝❡s✳ ❙✉♣♣♦s❡ t❤❛t✱ ❢♦r ❛♥ ✐♥t❡❣❡r p✱ ✇❡ ❤❛✈❡✿ an ≥ bn ❢♦r n ≥ p .
❚❤❡♥✿
X
X
an = +∞ ⇐=
an = −∞ =⇒
X
X
bn = +∞ bn = −∞
Pr♦♦❢✳
■t ❢♦❧❧♦✇s ❢r♦♠ t❤❡ P✉s❤
❖✉t ❚❤❡♦r❡♠ ❢♦r ❙❡q✉❡♥❝❡s ✭❱♦❧✉♠❡ ✷✮✳
❙♦✱ t❤❡ s♠❛❧❧❡r s❡r✐❡s✱ ✐❢ ✐t ❣♦❡s t♦ +∞✱ ♣✉s❤❡s t❤❡ ❧❛r❣❡r ♦♥❡ ✉♣✱ t♦ +∞✳ ❆♥❞ t❤❡ ❧❛r❣❡r s❡r✐❡s✱ ✐❢ ✐t ❣♦❡s t♦ −∞✱ ♣✉s❤❡s t❤❡ ❧❛r❣❡r ♦♥❡ ❞♦✇♥✱ t♦ −∞✳ ❊①❛♠♣❧❡ ✺✳✼✳✹✿ ❝♦♠♣❛r✐s♦♥
❈♦♥s✐❞❡r t❤✐s ♦❜✈✐♦✉s ❢❛❝t✿
1 1 ≥ . 2 − 1/n 2
■t ❢♦❧❧♦✇s t❤❛t
∞ X n=1
1 = ∞. 2 − 1/n
❊①❡r❝✐s❡ ✺✳✼✳✺
●✐✈❡ ❡①❛♠♣❧❡s ♦❢ s❡r✐❡s t❤❛t s❤♦✇ t❤❛t t❤❡ ❝♦♥✈❡rs❡ ♦❢ t❤❡ t❤❡♦r❡♠ ✐s ✉♥tr✉❡✳ ❲❛r♥✐♥❣✦
◆♦t ❛❧❧ ❞✐✈❡r❣❡♥t s❡r✐❡s ❞✐✈❡r❣❡ t♦ ✐♥✜♥✐t②✳
❲❡ t✉r♥ t♦ ❛❧❣❡❜r❛✿ ❚❤❡♦r❡♠ ✺✳✼✳✻✿ ❉✐✈❡r❣❡♥❝❡ ♦❢ ❙✉♠ ♦❢ ❙❡r✐❡s
❙✉♣♣♦s❡ an ❛♥❞ bn ❛r❡ s❡q✉❡♥❝❡s✳ ❚❤❡♥✱ ✇❡ ❤❛✈❡✿ • ❚❤❡ s✉♠ ♦❢ ❛ ❞✐✈❡r❣❡♥t s❡r✐❡s ❛♥❞ ❛ ❝♦♥✈❡r❣❡♥t s❡r✐❡s ❞✐✈❡r❣❡s✿ X
an ❞✐✈❡r❣❡s✱
X
bn ❝♦♥✈❡r❣❡s
=⇒
X
(an + bn ) ❞✐✈❡r❣❡s✳
• ❋♦r s❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s✱ t❤❡ s✉♠ ♦❢ t✇♦ ❞✐✈❡r❣❡♥t s❡r✐❡s ❞✐✈❡r❣❡s✿ X X X an ❞✐✈❡r❣❡s✱ bn ❞✐✈❡r❣❡s =⇒ (an + bn ) ❞✐✈❡r❣❡s✳
✺✳✼✳
❉✐✈❡r❣❡♥❝❡
✸✾✹ ❚❤❡♦r❡♠ ✺✳✼✳✼✿ ❉✐✈❡r❣❡♥❝❡ ♦❢ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ♦❢ ❙❡r✐❡s ❙✉♣♣♦s❡
an
✐s ❛ s❡q✉❡♥❝❡✳
❚❤❡♥✱ ❛ ❝♦♥st❛♥t✱ ♥♦♥✲③❡r♦ ♠✉❧t✐♣❧❡ ♦❢ ❛ ❞✐✈❡r❣❡♥t
s❡r✐❡s ❞✐✈❡r❣❡s✿
X
an
❞✐✈❡r❣❡s
=⇒
X
kan
, k 6= 0 .
❞✐✈❡r❣❡s
❊①❡r❝✐s❡ ✺✳✼✳✽
Pr♦✈❡ t❤❡s❡ t❤❡♦r❡♠s✳ ❚❤❡ ♣❛tt❡r♥ t❤❛t ✇❡ ♠❛② ❤❛✈❡ ♥♦t✐❝❡❞ ✐s t❤❛t ❝♦♥st❛♥t❧② ❛❞❞✐♥❣ ♣♦s✐t✐✈❡ ♥✉♠❜❡rs t❤❛t ❣r♦✇ ✇✐❧❧ ❣✐✈❡ ②♦✉ ✐♥✜♥✐t② ❛t t❤❡ ❧✐♠✐t✳ ❚❤❡ s❛♠❡ ❝♦♥❝❧✉s✐♦♥ ✐s✱ ♦❢ ❝♦✉rs❡✱ tr✉❡ ❢♦r ❛ ❝♦♥st❛♥t s❡q✉❡♥❝❡✳ ❲❤❛t ✐❢ t❤❡ s❡q✉❡♥❝❡ ❞❡❝r❡❛s❡s❄ ❚❤❡♥ ✐t ❞❡♣❡♥❞s✳ ❋♦r ❡①❛♠♣❧❡✱ an = 1 + 1/n ❞❡❝r❡❛s❡s ❜✉t t❤❡ s❡r✐❡s st✐❧❧ ❞✐✈❡r❣❡s✳ ■t ❛♣♣❡❛rs t❤❛t t❤❡ s❡q✉❡♥❝❡ s❤♦✉❧❞ ❛t ❧❡❛st ❞❡❝r❡❛s❡ t♦ ③❡r♦✳ ❚❤❡ ❛❝t✉❛❧ r❡s✉❧t ✐s ❝r✉❝✐❛❧✳ ❚❤❡♦r❡♠ ✺✳✼✳✾✿ ❉✐✈❡r❣❡♥❝❡ ❚❡st ❢♦r ❙❡r✐❡s ■❢ ❛ s❡q✉❡♥❝❡ ❞♦❡s♥✬t ❝♦♥✈❡r❣❡ t♦ ③❡r♦✱ ✐ts s✉♠ ❞✐✈❡r❣❡s✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿
X
an
❝♦♥✈❡r❣❡s
=⇒ an → 0
Pr♦♦❢✳
❲❡ ❤❛✈❡ t♦ ✐♥✈♦❦❡ t❤❡ ❞❡✜♥✐t✐♦♥✳ ❇✉t ❧❡t✬s t✉r♥ t♦ t❤❡ ❝♦♥tr❛♣♦s✐t✐✈❡ ❢♦r♠ ♦❢ t❤❡ t❤❡♦r❡♠✿ ◮ ■❢ ❛ s❡r✐❡s ❝♦♥✈❡r❣❡s✱ t❤❡♥ t❤❡ ✉♥❞❡r❧②✐♥❣ s❡q✉❡♥❝❡ ❝♦♥✈❡r❣❡s t♦ 0✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ♥❡❡❞ t♦ ♣r♦✈❡ t❤✐s✿ lim
n→∞
n X k=1
ak = P =⇒ lim an = 0 , n→∞
✇❤❡r❡ P ✐s s♦♠❡ ♥✉♠❜❡r✳ ❖r✱ ❢♦r t❤❡ s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐❛❧ s✉♠s pn ✱ ✇❡ ❤❛✈❡ t♦ ❞❡♠♦♥str❛t❡ t❤✐s✿ lim pn = P =⇒ lim an = 0 .
n→∞
n→∞
❘❡❝❛❧❧ t❤❡ r❡❝✉rs✐✈❡ ❢♦r♠✉❧❛s ❢♦r t❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s ♦❢ an ✿ pn+1 = pn + an ,
❛♥❞✱ ❛❝❝♦r❞✐♥❣❧②✱ ✇❡ ❤❛✈❡ t❤❡ ♦r✐❣✐♥❛❧ ❛s t❤❡ s❡q✉❡♥❝❡ ♦❢ ❞✐✛❡r❡♥❝❡s ♦❢ pn ✿ an = pn − pn−1 .
❚❤❡r❡❢♦r❡✱ lim an = lim (pn − pn−1 )
n→∞
n→∞
❇♦t❤ ❝♦♥✈❡r❣❡✱ ❛♥❞ ✇❡ ❛♣♣❧②✳✳✳
= lim pn − lim pn−1 ✳✳✳t❤❡ ❙✉♠ ❘✉❧❡ ❢♦r ❙❡q✉❡♥❝❡s✳ n→∞
=P −P = 0.
n→∞
❚❤❡ ❧✐♠✐t ✐s t❤❡ s❛♠❡ ❜❡❝❛✉s❡ ✐t✬s t❤❡ s❛♠❡ s❡q✉❡♥❝❡✳
✺✳✽✳
✸✾✺
❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
❚❤❡ ❝♦♥✈❡rs❡ ♦❢ t❤❡ t❤❡♦r❡♠ ✐s ✉♥tr✉❡ ❛s ✇✐❧❧ ❜❡ s❡❡♥ ❢r♦♠ t❤❡ ❡①❛♠♣❧❡ ♦❢ t❤❡ ❤❛r♠♦♥✐❝ s❡r✐❡s✿ X
X
an ❝♦♥✈❡r❣❡s =⇒ an → 0
an ❝♦♥✈❡r❣❡s 6⇐= an → 0
❊①❛♠♣❧❡ ✺✳✼✳✶✵✿ t❡st ❞✐✈❡r❣❡♥❝❡
❚❤❡ t❡st ✐s ❢♦r ❞✐✈❡r❣❡♥❝❡ ❛♥❞ ♥♦t❤✐♥❣ ❡❧s❡✿
1 ✶✳ lim 1 + n
6= 0 =⇒
X
X
1 1+ n
✷✳ lim sin n 6= 0
=⇒
✸✳ lim
=⇒ t❡st ❢❛✐❧s✳
1 =0 n 1 ✹✳ lim 2 = 0 n
❞✐✈❡r❣❡s✳
sin n ❞✐✈❡r❣❡s✳
=⇒ t❡st ❢❛✐❧s✳ ❲❛r♥✐♥❣✦ ❚❤❡ ❢❛✐❧✉r❡ ♦❢ t❤❡ t❡st ❞♦❡s♥✬t ♣r♦✈❡ ❛♥②t❤✐♥❣✦
✺✳✽✳ ❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
❚❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ s✉❝❤ s❡r✐❡s ✐s ❡❛s✐❡r t♦ ❞❡t❡r♠✐♥❡✳ ❆❧❧ ✇❡ ♥❡❡❞ ✐s t❤❡ ▼♦♥♦t♦♥❡
❈♦♥✈❡r❣❡♥❝❡ ❚❤❡♦r❡♠
❢r♦♠ ❱♦❧✉♠❡ ✷ ✭❈❤❛♣t❡r ✷❉❈✲✶✮✿
◮ ❊✈❡r② ♠♦♥♦t♦♥❡ ❜♦✉♥❞❡❞ s❡q✉❡♥❝❡ ❝♦♥✈❡r❣❡s✳
❖❢ ❝♦✉rs❡✱ ✇❡ ✇✐❧❧ ♥♦t ❛♣♣❧② t❤❡ t❤❡♦r❡♠ t♦ t❤❡ s❡q✉❡♥❝❡ ❜✉t r❛t❤❡r t♦ ✐ts s❡q✉❡♥❝❡ ♦❢ s✉♠s✦ ■♥❞❡❡❞✱ ✐❢ t❤❡ ♦r✐❣✐♥❛❧ s❡q✉❡♥❝❡ an ❤❛s ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s✿ an > 0✱ t❤❡♥ t❤❡ ♥❡✇ s❡q✉❡♥❝❡ ♦❢ s✉♠s ✐s ✐♥❝r❡❛s✐♥❣ ✿ pn+1 = pn + an+1 ≥ pn .
■❢ t❤❡ ❉✐✈❡r❣❡♥❝❡ ❚❡st ✐s ❛❧s♦ s❛t✐s✜❡❞✱ t❤❡ ♣❛✐r ♦❢ t❤❡ s❡q✉❡♥❝❡ ❛♥❞ ✐ts s✉♠s ✇✐❧❧ ❤❛✈❡ t♦ ❧♦♦❦ ❥✉st ❧✐❦❡ t❤❡ ❣❡♥❡r✐❝ ✐❧❧✉str❛t✐♦♥ ✇❡ ❤❛✈❡ ❜❡❡♥ ✉s✐♥❣✿
❆ ❣♦♦❞ ❡①❛♠♣❧❡ ✐s t❤❡ ❤❛r♠♦♥✐❝ s❡r✐❡s ❜❡❧♦✇✿
✺✳✽✳ ❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
✸✾✻
❙♦✱ ✐❢ s✉❝❤ ❛ s❡q✉❡♥❝❡ ✐s ❛❧s♦ ❜♦✉♥❞❡❞✱ ✐t ✐s ❝♦♥✈❡r❣❡♥t✳ ❚❤❡r❡❢♦r❡✱ s✉❝❤ ❛ s❡r✐❡s ❝❛♥✬t ❥✉st ❞✐✈❡r❣❡✱ ❛s ❞♦❡s❀ ✐t ❤❛s t♦ ❞✐✈❡r❣❡ t♦ ✐♥✜♥✐t②✳
X
sin n
❚❤❡♦r❡♠ ✺✳✽✳✶✿ ◆♦♥✲♥❡❣❛t✐✈❡ ❙❡r✐❡s
X
❋♦r ❛ s❡r✐❡s an ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s✱ an ≥ 0✱ t❤❡r❡ ❝❛♥ ❜❡ ♦♥❧② ❤❛✈❡ t✇♦ ♦✉t❝♦♠❡s✿ • ✐t ❝♦♥✈❡r❣❡s✱ ♦r • ✐t ❞✐✈❡r❣❡s t♦ ✐♥✜♥✐t②✳ ❚❤✐s ♦❜s❡r✈❛t✐♦♥ s✐❣♥✐✜❝❛♥t❧② s✐♠♣❧✐✜❡s t❤✐♥❣s❀ t❤❡ s✉♠ ♦❢ t❤❡ s❡r✐❡s ✐s ❡✐t❤❡r✿ • ❛ ♥✉♠❜❡r✱ ♦r • t❤❡ ✐♥✜♥✐t②✳
❚❤❡ ❧❛tt❡r ♦♣t✐♦♥ ❛♥❞ t❤❡ ❢♦r♠❡r ♦♣t✐♦♥ ❛r❡ ♦❢t❡♥ ✇r✐tt❡♥ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥ ✇❤❡♥❡✈❡r t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ s✉♠ ✐s ♥♦t ❜❡✐♥❣ ❝♦♥s✐❞❡r❡❞✿ ❙✉♠ ♦❢ s❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
X
X
an = ∞ ♦r
an < ∞
▼❛♥② t❤❡♦r❡♠s ✐♥ t❤❡ r❡st ♦❢ t❤❡ ❝❤❛♣t❡r ✇✐❧❧ ♦♥❧② t❡❧❧ t❤❡ ❢♦r♠❡r ❢r♦♠ t❤❡ ❧❛tt❡r✳✳✳ ❊①❛♠♣❧❡ ✺✳✽✳✷✿ ❞✐✈❡r❣❡♥❝❡
❙✐♥❝❡ t❤❡ s❡r✐❡s
(−1)n lim 1 + n X
= 1 6= 0 ,
(−1)n 1+ n
,
❢❛✐❧s t❤❡ ❉✐✈❡r❣❡♥❝❡ ❚❡st ❛♥❞✱ t❤❡r❡❢♦r❡✱ ❞✐✈❡r❣❡s✳ ▼♦r❡♦✈❡r✱ X
(−1)n 1+ n
= ∞.
❊①❡r❝✐s❡ ✺✳✽✳✸
Pr♦✈❡ t❤❛t t❤❡ ❤❛r♠♦♥✐❝ s❡r✐❡s ❞✐✈❡r❣❡s ❜② ❢♦❧❧♦✇✐♥❣ t❤✐s ♦❜s❡r✈❛t✐♦♥✿ ❢♦r ❡❛❝❤ k ❝♦♥s❡❝✉t✐✈❡ t❡r♠s✱ 1 1 1 1 k 1 , , ..., ✱ t❤❡② ❛r❡ ❛❧❧ ≥ ✱ s♦ t❤❡✐r s✉♠ ✐s ≥ = ✳ k+1 k+2 2k 2k 2k 2
❲❡ ♥♦✇ ❛❞❞r❡ss t❤❡ ✐ss✉❡ ♦❢ s❡r✐❡s ✈s✳ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ♦✈❡r ✐♥✜♥✐t❡ ❞♦♠❛✐♥s✳
✺✳✽✳
✸✾✼
❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
❇♦t❤ ❛r❡ ❧✐♠✐ts✿ Z
∞
f (x) dx = lim
b→∞
1 ∞ X
ai
= lim
i=1
n→∞
Z
b
f (x) dx
1 n X
ai
i=1
❆♥❞ t❤❡ ♥♦t❛t✐♦♥ ♠❛t❝❤❡s t♦♦✳ ◆♦t ♦♥❧② t❤❡ ✐♥t❡❣r❛❧ ❜✉t ❛❧s♦ t❤❡ s✉♠ ♦♥ t❤❡ r✐❣❤t r❡♣r❡s❡♥t ❛r❡❛s ✉♥❞❡r ❣r❛♣❤s ♦❢ ❝❡rt❛✐♥ ❢✉♥❝t✐♦♥s ❞❡✜♥❡❞ ♦♥ ✜♥✐t❡ ✐♥t❡r✈❛❧s✳ ❇♦t❤ t❤❡ ✐♥t❡❣r❛❧ ❛♥❞ t❤❡ s✉♠ ♦♥ t❤❡ ❧❡❢t ❛r❡ ❝♦♠♣✉t❡❞ ❛s ❧✐♠✐ts ♦❢ t❤❡ ♦♥❡s ♦♥ t❤❡ r✐❣❤t✿
❲❡ ❝❛♥ ❝♦♥❥❡❝t✉r❡ ♥♦✇ t❤❛t ✐❢ f ❛♥❞ an ❛r❡ r❡❧❛t❡❞✱ t❤❡♥ t❤❡s❡ ❧✐♠✐ts✱ t❤♦✉❣❤ ♥♦t ❡q✉❛❧✱ ♠❛② ❜❡ r❡❧❛t❡❞ t♦♦✳ ❚❤❡ s❡q✉❡♥❝❡ ♠❛② ❝♦♠❡ ❢r♦♠ s❛♠♣❧✐♥❣ t❤❡ ❢✉♥❝t✐♦♥✿ an = f (n), n = 1, 2, 3, ...
▲✐❦❡ t❤✐s✿
❊①❛♠♣❧❡ ✺✳✽✳✹✿ ✐♥t❡❣r❛❧s ✈s✳ s✉♠s
❈♦♥s✐❞❡r t❤✐s ♣❛✐r✿
f (x) = e−x ❛♥❞ an = e−n .
❲❤❛t ✐s t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ ❢♦r♠❡r ❛♥❞ t❤❡ s✉♠ ♦❢ ❝❡rt❛✐♥ r❡❣✐♦♥s ❛♥❞ ✇❡ ❝❛♥ ♣❧❛❝❡ ♦♥❡ ❜❡❧♦✇ ♦r ❛❜♦✈❡ t❤❡ ♦t❤❡r✿
♦❢ t❤❡ ❧❛tt❡r ❄
❇♦t❤ ❛r❡ t❤❡ ❛r❡❛s
✺✳✽✳ ❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
✸✾✽
❚❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧ ✐s ❡❛s② t♦ ❝♦♠♣✉t❡✿
Z
∞
e
−x
dx = lim
b→∞
1
▼❡❛♥✇❤✐❧❡✱ t❤❡ s❡r✐❡s ✐s ❣❡♦♠❡tr✐❝ ✇✐t❤
Z
b 1
e−x dx = lim −(e−b − e1 ) = e . b→∞
r = 1/e✿ ∞ X
e−n =
n=1
1/e . 1 − 1/e
❇♦t❤ ❝♦♥✈❡r❣❡✦
❆ ♠♦r❡ ❣❡♥❡r❛❧ r❡s✉❧t ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✳ ❚❤❡② ❡✐t❤❡r ❜♦t❤ ❝♦♥✈❡r❣❡ ♦r ❜♦t❤ ❞✐✈❡r❣❡ ✭t♦ ✐♥✜♥✐t②✮ ❢♦r ❛♥②
•
t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧ ♦❢ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥ ✇✐t❤ ❜❛s❡
•
t❤❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ r❛t✐♦
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡✿
Z
1/a
♦✈❡r
[1, ∞)
a > 0✿
❛♥❞
1/a✳ ∞
−x
a
1
dx < ∞ ⇐⇒
∞ X n=1
a−n < ∞ .
❊①❡r❝✐s❡ ✺✳✽✳✺
Pr♦✈❡ t❤❡ st❛t❡♠❡♥t✳
❲❡ ✇✐❧❧ ♥♦✇ tr② t♦ ❛♣♣❧② t❤❡ ✐❞❡❛ t♦ ❛ ❣❡♥❡r❛❧ s❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s ✐❢ ✇❡ ❝❛♥ ♠❛t❝❤ ✐t ✇✐t❤ ❛♥ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧✳ ❚❤❡ ❤♦♣❡ ✐s t❤❛t ✇❡ ❝❛♥ ❤❛♥❞❧❡ ✐♥t❡❣r❛❧s ❜❡tt❡r ✕ ✇✐t❤ ❛❧❧ t❤❡ t♦♦❧s ✐♥ ❈❤❛♣t❡r ✷ ✕ t❤❛♥ t❤❡ s❡r✐❡s✳ ❋✐rst✱ ✇❡ ♠✐❣❤t ❞✐s❝♦✈❡r t❤❛t ♦✉r s❡r✐❡s ✐s ✏❞♦♠✐♥❛t❡❞✑ ❜② ❛ ❝♦♥✈❡r❣❡♥t ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧✿
∞ X k=1
an ≤
Z
∞ 1
f (x) dx < ∞ .
❚❤❡ ❝♦♥❞✐t✐♦♥ ✐s s❛t✐s✜❡❞ ✇❤❡♥✿
an ≤ f (x)
❢♦r ❡✈❡r②
x
✐♥
[n, n + 1] .
✺✳✽✳ ❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
✸✾✾
❖r✱ ✇❡ ♠✐❣❤t ❞✐s❝♦✈❡r t❤❛t ♦✉r s❡r✐❡s ✏❞♦♠✐♥❛t❡s✑ ❛ ❞✐✈❡r❣❡♥t ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧✿
∞ X k=1
an ≥
Z
∞
f (x) dx = ∞ .
1
❚❤❡ ❝♦♥❞✐t✐♦♥ ✐s s❛t✐s✜❡❞ ✇❤❡♥✿
an ≥ f (x)
❢♦r ❡✈❡r②
x
✐♥
[n, n + 1] .
❚❤❡r❡ ✐s ❛ ✇❛② t♦ ❝♦♠❜✐♥❡ t❤❡s❡ t✇♦ ❝♦♥❞✐t✐♦♥s ✐♥t♦ ♦♥❡✳ ❚❤❡ ✐❞❡❛ ✐s t♦ ✏sq✉❡❡③❡✑ t❤❡ s❡q✉❡♥❝❡ ❜❡t✇❡❡♥ t✇♦ ❢✉♥❝t✐♦♥s✳ ❇✉t ✇❤❡r❡ ❞♦❡s t❤❡ ♦t❤❡r ❢✉♥❝t✐♦♥ ❝♦♠❡ ❢r♦♠❄ ❲❡ s❤✐❢t t❤❡ ❣r❛♣❤ ♦❢
f
t♦ t❤❡ r✐❣❤t ❜②
1
✉♥✐t ✐♥
♦r❞❡r t♦ ♣✉t ✐t ❛❜♦✈❡ t❤❡ s❡q✉❡♥❝❡✿
f (x) ≤ an ≤ f (x − 1) . ❚❤✐s ✐s t❤❡ ♠❛✐♥ ✐❞❡❛✿
❚❤❡ ❝♦♥❞✐t✐♦♥s t❤❛t ♠❛❦❡ s✉r❡ t❤❛t t❤❡ ♣✐❝t✉r❡ ✐s ❥✉st✐✜❡❞ ❛r❡ ❧✐st❡❞ ❜❡❧♦✇✳ ❚❤❡♦r❡♠ ✺✳✽✳✻✿ ■♥t❡❣r❛❧ ❈♦♠♣❛r✐s♦♥ ❚❡st
❙✉♣♣♦s❡ t❤❛t ♦♥ [1, ∞)✱ ✶✳ f ✐s ❝♦♥t✐♥✉♦✉s❀ ✷✳ f ✐s ❞❡❝r❡❛s✐♥❣❀ ✸✳ f ✐s ♥♦♥✲♥❡❣❛t✐✈❡✳ ❙✉♣♣♦s❡ ❛❧s♦ t❤❛t ✇❡ ❤❛✈❡ ❛ s❡q✉❡♥❝❡✿ an = f (n), n = 1, 2, ...
❚❤❡♥ t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧ ❛♥❞ t❤❡ s❡r✐❡s ❜❡❧♦✇✱ Z
∞
f (x) dx ❛♥❞
1
∞ X
an ,
n=1
❡✐t❤❡r ❜♦t❤ ❝♦♥✈❡r❣❡ ♦r ❜♦t❤ ❞✐✈❡r❣❡ ✭t♦ ✐♥✜♥✐t②✮❀ ✐✳❡✳✱ Z
∞ 1
f (x) dx < ∞ ⇐⇒
∞ X n=1
an < ∞ .
Pr♦♦❢✳
❋r♦♠ t❤❡ s❡❝♦♥❞ ❝♦♥❞✐t✐♦♥✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t ❢♦r ❡✈❡r②
n = 2, 3, ...
❛♥❞ ❛❧❧
f (x) ≤ an ≤ f (x − 1) . ❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡✿
Z
n+1 n
f (x) dx ≤ an ≤
Z
n+1 n
f (x − 1) dx ,
n ≤ x ≤ n + 1✱
✇❡ ❤❛✈❡
✺✳✽✳
❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
✹✵✵
♦r✱ ❛❢t❡r ❛ s✉❜st✐t✉t✐♦♥ ♦♥ t❤❡ r✐❣❤t✱
Z ❆❞❞✐♥❣ ❛❧❧ t❤❡s❡ ❢♦r
n = 2, 3, 4, ...✱ Z
n+1
f (x) dx ≤ an ≤
n
Z
n
f (x) dx . n−1
✇❡ ♦❜t❛✐♥✿
∞ 2
f (x) dx ≤
∞ X n=2
an ≤
Z
∞
f (x) dx .
1
◆♦✇✱ ❡✐t❤❡r ♦❢ t❤❡ t✇♦ ❝♦♥❝❧✉s✐♦♥s ♦❢ t❤✐s t❤❡♦r❡♠ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♣❛rt ♦❢ t❤❡
♥❡❣❛t✐✈❡ ❙❡r✐❡s ❚❤❡♦r❡♠
◆♦♥✲
❛❜♦✈❡✳ ❚❤✐s ✐s t❤❡ ♠❛✐♥ st❡♣ ♦❢ t❤❡ ♣r♦♦❢✿
❊①❡r❝✐s❡ ✺✳✽✳✼ ❉❡♠♦♥str❛t❡ t❤❛t ♥♦♥❡ ♦❢ t❤❡ t❤r❡❡ ❝♦♥❞✐t✐♦♥s ♦❢ t❤❡ t❤❡♦r❡♠ ❝❛♥ ❜❡ ❞r♦♣♣❡❞✳
❲❛r♥✐♥❣✦ ❚❤❡ s✉♠ ♦❢ t❤❡ s❡r✐❡s ❝❛♥ ❜❡ ❡st✐♠❛t❡❞ ❜② t❤❡ ✐♥✲ t❡❣r❛❧s ❜✉t r❡♠❛✐♥s ✉♥❦♥♦✇♥✳
❊①❛♠♣❧❡ ✺✳✽✳✽✿ ❤❛r♠♦♥✐❝ s❡r✐❡s ❞✐✈❡r❣❡s ❯♥❧✐❦❡ ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s✱ t❤❡ s✉♠s ♦❢ t❤❡ ❤❛r♠♦♥✐❝ s❡r✐❡s ❞♦❡s♥✬t ❤❛✈❡ ❛♥ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛✳ ❆ ❝♦♠✲ ♣❛r✐s♦♥ ✐s✱ t❤❡r❡❢♦r❡✱ ♥❡❝❡ss❛r②✳ ❚❤❡ ❤❛r♠♦♥✐❝ s❡r✐❡s ❞✐✈❡r❣❡s ❜❡❝❛✉s❡
Z
∞
1 dx = lim ln x = +∞ . x→+∞ x
1
▼♦r❡ ❣❡♥❡r❛❧ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣✳
❈♦r♦❧❧❛r② ✺✳✽✳✾✿ ❆
p✲s❡r✐❡s✱
• •
p✲s❡r✐❡s
✐✳❡✳✱
X 1 , np p > 1 ❛♥❞ 0 < p ≤ 1✳
❝♦♥✈❡r❣❡s ✇❤❡♥ ❞✐✈❡r❣❡s ✇❤❡♥
Pr♦♦❢✳ ❖♥❝❡ t❤❡ ❢✉♥❝t✐♦♥
f
✐s ❝❤♦s❡♥✿
f (x) =
1 , xp
✺✳✽✳
❙❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s
✹✵✶
t❤❡ r❡st ♦❢ t❤❡ ♣r♦♦❢ ✐s ♣✉r❡❧② ❝♦♠♣✉t❛t✐♦♥❛❧✳ ■♥❞❡❡❞✱
Z
∞
f (x) dx =
1
Z
∞
x−p dx
1
lim
b 1 −p+1 x ✐❢ p 6= 1, b→∞ −p + 1 1 = b ✐❢ p = 1, lim ln x b→∞ 1 1 (b−p+1 − 1−p+1 ) ✐❢ p 6= 1, lim b→∞ −p + 1 b = ✐❢ p = 1, lim (ln b − ln 1) b→∞
1 −p + 1 = ∞ ∞
1
✐❢
p > 1,
✐❢
p = 1, p < 1.
✐❢
❚❤❡ ❤❛r♠♦♥✐❝ s❡r✐❡s✳
❚❤✉s✱ ♥♦t ♦♥❧② t❤❡ ❤❛r♠♦♥✐❝ s❡r✐❡s ❞✐✈❡r❣❡ ❜✉t ✐t ❛❧s♦ s❡♣❛r❛t❡s t❤❡ ❞✐✈❡r❣❡♥t
p✲s❡r✐❡s
❢r♦♠ t❤❡ ❝♦♥✈❡r❣❡♥t
♦♥❡s✿
❊①❡r❝✐s❡ ✺✳✽✳✶✵ ❙❤♦✇ t❤❛t t❤❡ t❤❡♦r❡♠ ❢❛✐❧s ✐❢ ✇❡ ❞r♦♣ t❤❡ ❛ss✉♠♣t✐♦♥ t❤❛t t❤❡ ❢✉♥❝t✐♦♥ ✐s ❞❡❝r❡❛s✐♥❣✳
❈❛♥ t❤✐s
❛ss✉♠♣t✐♦♥ ❜❡ ✇❡❛❦❡♥❡❞❄
❊①❡r❝✐s❡ ✺✳✽✳✶✶ ❙❤♦✇ t❤❛t t❤❡ t❤❡♦r❡♠ ❢❛✐❧s ✐❢ ✇❡ ❞r♦♣ t❤❡ ❛ss✉♠♣t✐♦♥ t❤❛t t❤❡ ❢✉♥❝t✐♦♥ ✐s ♥♦♥✲♥❡❣❛t✐✈❡✳ ❛ss✉♠♣t✐♦♥ ❜❡ ✇❡❛❦❡♥❡❞❄
❈❛♥ t❤✐s
✺✳✾✳
❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s
✹✵✷
✺✳✾✳ ❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s
■♥ t❤❡ ❧❛st s❡❝t✐♦♥✱ ✇❡ ♠❛t❝❤❡❞ s❡r✐❡s ✇✐t❤ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧s ✐♥ ♦r❞❡r t♦ ❞❡r✐✈❡ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦r ❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ ❢♦r♠❡r ❢r♦♠ t❤❛t ♦❢ t❤❡ ❧❛tt❡r✳ ◆♦✇ ✇❡ ❢♦❧❧♦✇ t❤✐s ✐❞❡❛ ❜✉t✱ ✐♥st❡❛❞✱ ❝♦♠♣❛r❡ s❡r✐❡s t♦ ♦t❤❡r s❡r✐❡s✳
❲❛r♥✐♥❣✦ ❚❤❡ ❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙❡r✐❡s ❞♦❡s♥✬t ❤❡❧♣ ❤❡r❡ ❜❡❝❛✉s❡ ✐t ❛ss✉♠❡s t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❜♦t❤ s❡r✐❡s✳
❚❤❡ ♣❧❛♥ ✐s ❛s ❢♦❧❧♦✇s✿
◮
❈♦♠♣❛r❡ ❛ ♥❡✇ s❡r✐❡s ✭✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s✮ t♦ ❛♥ ♦❧❞ ♦♥❡ t❤❡ ❝♦♥✈❡r❣❡♥❝❡✴❞✐✈❡r❣❡♥❝❡ ♦❢
✇❤✐❝❤ ✐s ❦♥♦✇♥✳ ❚❤❡ st❛rt✐♥❣ ♣♦✐♥t ✐s t❤❡
❈♦♠♣❛r✐s♦♥ ❘✉❧❡ ❢♦r ❙✉♠s
❡❧❡♠❡♥ts ✐s s♠❛❧❧❡r✳ ■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢
an ≤ bn ✱
✭❈❤❛♣t❡r ✶P❈✲✶✮✿ ❚❤❡ s✉♠ ♦❢ ❛ s❡q✉❡♥❝❡ ✇✐t❤ s♠❛❧❧❡r
t❤❡♥ ✇❡ ❤❛✈❡ ❢♦r ❛♥②
q X n=p
an ≤
q X
p, q
✇✐t❤
p ≤ q✿
bn .
n=p
❚❤❡r❡❢♦r❡✱ t❤❡ s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐❛❧ s✉♠s ♦❢ t❤❡ ✜rst s❡r✐❡s ✐s ✏❞♦♠✐♥❛t❡❞✑ ❜② t❤❛t ♦❢ t❤❡ s❡❝♦♥❞✳ ■❢ t❤❡ s❡❝♦♥❞ ❝♦♥✈❡r❣❡s✱ ✐ts s✉♠ ✐s ❛♥ ✉♣♣❡r ❜♦✉♥❞ ❢♦r t❤❡ ♣❛rt✐❛❧ s✉♠s ♦❢ t❤❡ ✜rst✳ ❚❤❡♥✱ t❤❡ ✜rst s❡r✐❡s ❝♦♥✈❡r❣❡s t♦♦ ❜② t❤❡ t❤❡♦r❡♠ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✳ ❚❤✐s ✐s t❤❡ ♠❛✐♥ r❡s✉❧t✳
❚❤❡♦r❡♠ ✺✳✾✳✶✿ ❉✐r❡❝t ❈♦♠♣❛r✐s♦♥ ❚❡st ❢♦r ❙❡r✐❡s ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ t✇♦ s❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s t❤❛t s❛t✐s❢② t❤❡ ❢♦❧❧♦✇✐♥❣✿
0 ≤ an ≤ bn , ❢♦r ❛❧❧
n✳
❚❤❡♥✱ t❤❡♥ t❤❡ ❝♦♥✈❡r❣❡♥❝❡✴❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ ❧❛r❣❡r✴s♠❛❧❧❡r ✐♠♣❧✐❡s
t❤❡ ❝♦♥✈❡r❣❡♥❝❡✴❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ s♠❛❧❧❡r✴❧❛r❣❡r❀ ✐✳❡✳✱
X
X
an < ∞ ⇐=
an = ∞ =⇒
X
X
bn < ∞
bn = ∞
❊①❡r❝✐s❡ ✺✳✾✳✷ Pr♦✈❡ t❤❡ s❡❝♦♥❞ ♣❛rt✳
■♥ ♦r❞❡r t♦ ❛♣♣❧② t❤❡ t❤❡♦r❡♠ t♦ ❛ ♣❛rt✐❝✉❧❛r ✕ ♥❡✇ ✕ s❡r✐❡s✱ ✇❡ s❤♦✉❧❞ tr② t♦ ♠♦❞✐❢② ✐ts ❢♦r♠✉❧❛ ✇❤✐❧❡ ♣❛②✐♥❣ ❛tt❡♥t✐♦♥ t♦ ✇❤❡t❤❡r ✐t ✐s ❣❡tt✐♥❣ s♠❛❧❧❡r ♦r ❧❛r❣❡r✳
❊①❛♠♣❧❡ ✺✳✾✳✸✿
p✲s❡r✐❡s
❛s ❛ st❛rt
▲❡t✬s ❣♦ ❜❛❝❦✇❛r❞s ❛t ✜rst✳
❲❡ ❝♦♥s✐❞❡r t❤❡
p✲s❡r✐❡s
❛♥❞ s❡❡ ✇❤❡t❤❡r ✇❡ ❝❛♥ ❞❡r✐✈❡ t❤❡ ❦♥♦✇♥
❝♦♥✈❡r❣❡♥❝❡ ❢❛❝ts ❛❜♦✉t t❤❡♠✳ ❙♦♠❡ s❡r✐❡s ❝❛♥ ❜❡
♠♦❞✐✜❡❞ ✐♥t♦
s✉❝❤ ❛ s❡r✐❡s✳ ❚❤❡ ♦♥❡ ♦♥ t❤❡ ❧❡❢t ✐s ✉♥❢❛♠✐❧✐❛r ❜✉t ❝❛♥ ❜❡ ♠❛t❝❤❡❞
✺✳✾✳
❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s
✹✵✸
✇✐t❤ ❛ ❢❛♠✐❧✐❛r ♦♥❡✿
n2
1 1 ≤ 2. +1 n
❲❡ r❡♠♦✈❡ ✏ +1✑ ❛♥❞ t❤❡ ♥❡✇ s❡r✐❡s ✐s ✏❧❛r❣❡r✑✳ ❚❤❡♥✱ ❜② t❤❡ t❤❡♦r❡♠✱ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s ✭♦♥ t❤❡ ❧❡❢t✮ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤✐s
X
p✲s❡r✐❡s
✇✐t❤
p = 2 > 1✿
X 1 1 < ∞. ≤ n2 + 1 n2
❙✐♠✐❧❛r❧②✱ ✇❡ ❝❛♥ ♠♦❞✐❢② t❤✐s s❡r✐❡s✿
1 1 ≥ 1/2 . −1 n
n1/2
❲❡ r❡♠♦✈❡ ✏ −1✑ ❛♥❞ t❤❡ ♥❡✇ s❡r✐❡s ✐s ✏s♠❛❧❧❡r✑✳ ❚❤❡♥✱ t❤❡ ❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s ✭♦♥ t❤❡
p✲s❡r✐❡s
❧❡❢t✮ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❞✐✈❡r❣❡♥❝❡ ♦❢ t❤✐s
X
✇✐t❤
p = 1/2 < 1✿
X 1 1 = ∞. ≥ n1/2 + 1 n1/2
◆♦✇ ❧❡t✬s tr② t♦ ♠♦❞✐❢② t❤✐s s❡r✐❡s✿
n2
1 1 ≥ 2. −1 n
❲❡ r❡♠♦✈❡ ✏ −1✑ ❛♥❞ t❤❡ ♥❡✇ s❡r✐❡s ✐s ✏s♠❛❧❧❡r✑✳ ❚❤❡♥✱ t❤❡ ❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s ✭♦♥ t❤❡ ❧❡❢t✮ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❞✐✈❡r❣❡♥❝❡✳✳✳ ✇❛✐t✱ t❤✐s
X
p✲s❡r✐❡s
✇✐t❤
p=2>1
❝♦♥✈❡r❣❡s✦ ❙♦✱ ✇❡ ❤❛✈❡✿
X 1 1 < ∞. ≥ n2 − 1 n2
❚❤❡r❡ ✐s ♥♦t❤✐♥❣ ✇❡ ❝❛♥ ❝♦♥❝❧✉❞❡ ❢r♦♠ t❤✐s ♦❜s❡r✈❛t✐♦♥✳ ❙✐♠✐❧❛r❧②✱ ❧❡t✬s tr② t♦ ♠♦❞✐❢② t❤✐s s❡r✐❡s✿
1 1 ≤ 1/2 . +1 n
n1/2
❲❡ r❡♠♦✈❡ ✏ +1✑ ❛♥❞ t❤❡ ♥❡✇ s❡r✐❡s ✐s ✏❧❛r❣❡r✑✳ ❚❤❡♥✱ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s ✭♦♥ t❤❡ ❧❡❢t✮ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❝♦♥✈❡r❣❡♥❝❡✳✳✳ ❜✉t t❤✐s
X
p✲s❡r✐❡s
✇✐t❤
p = 1/2 < 1
❞✐✈❡r❣❡s✦ ❙♦✱ ✇❡ ❤❛✈❡✿
X 1 1 = ∞. ≤ n1/2 − 1 n1/2
❚❤❡r❡ ✐s ♥♦t❤✐♥❣ ✇❡ ❝❛♥ ❝♦♥❝❧✉❞❡ ❢r♦♠ t❤✐s ♦❜s❡r✈❛t✐♦♥✳
❊①❛♠♣❧❡ ✺✳✾✳✹✿
p✲s❡r✐❡s
❛s ❛ ❣♦❛❧
❘❡♠♦✈✐♥❣ ✏ −1✑ ❛♥❞ ✏ +1✑ ❢❛✐❧❡❞ t♦ ♣r♦❞✉❝❡
n2
✉s❡❢✉❧
1 −1
s❡r✐❡s ❢♦r t❤❡s❡ t✇♦✿
❛♥❞
1 . +1
n1/2
❲❡ ✇✐❧❧ ❤❛✈❡ t♦ ❜❡ s✉❜t❧❡r ✐♥ ✜♥❞✐♥❣ ❝♦♠♣❛r✐s♦♥s✳ ▲❡t✬s tr② ♠✉❧t✐♣❧✐❝❛t✐♦♥✳ ❲❡ ❛❞❞ ✏ 2✑ ✐♥ t❤❡ ♥✉♠❡r❛t♦r ❛♥❞ ❞✐s❝♦✈❡r t❤❛t t❤❡ ❢♦❧❧♦✇✐♥❣ ✐s tr✉❡ ❢♦r ❛❧❧
n = 2, 3, ...✿ n2
2 1 ≤ 2. −1 n
❚❤❡ ♥❡✇ s❡r✐❡s ✐s ✏❧❛r❣❡r✑✳ ❚❤❡♥✱ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s ✭♦♥ t❤❡ ❧❡❢t✮ ❢♦❧❧♦✇s ❢r♦♠ t❤❡
✺✳✾✳
❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s
✹✵✹
❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤✐s ✭♠✉❧t✐♣❧❡ ♦❢ ❛✮
p✲s❡r✐❡s X
✇✐t❤
p = 2 > 1✿
X 1 1 < ∞. ≤ n2 − 1 n2
◆❡①t✱ ✇❡ ❢♦❧❧♦✇ t❤✐s ✐❞❡❛ ❢♦r t❤❡ ♦t❤❡r s❡r✐❡s✳ ❲❡ ❛❞❞ ✏ 2✑ ✐♥ t❤❡ ❞❡♥♦♠✐♥❛t♦r ❛♥❞ ❞✐s❝♦✈❡r t❤❛t t❤❡ ❢♦❧❧♦✇✐♥❣ ✐s tr✉❡ ❢♦r ❛❧❧
n = 1, 2, ...✿
1 1 ≥ 1/2 . +1 2n
n1/2
❚❤❡ ♥❡✇ s❡r✐❡s ✐s ✏s♠❛❧❧❡r✑✳ ❚❤❡♥✱ t❤❡ ❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s ✭♦♥ t❤❡ ❧❡❢t✮ ❢♦❧❧♦✇s ❢r♦♠ t❤❡ ❞✐✈❡r❣❡♥❝❡ ♦❢ t❤✐s ✭♠✉❧t✐♣❧❡ ♦❢ ❛✮
p✲s❡r✐❡s X
p = 1/2 < 1✿
✇✐t❤
X 1 1 = ∞. ≥ n1/2 + 1 2n1/2
❲❤❛t ✐s t❤❡ ❧❡ss♦♥❄ ■t ✐s ❤❛r❞ t♦ ❝♦♠♣❛r❡ s❡q✉❡♥❝❡s ✐♥ t❤✐s ♠❛♥♥❡r✳
❢✉♥❝t✐♦♥s ♣r❡✈✐♦✉s❧②❄ ❆ ✇❛② t♦ ❝♦♠♣❛r❡ t❤❡ ❜❡❤❛✈✐♦r ♦❢ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s f, g ❛t ✐♥✜♥✐t② ✐s t♦ ❝♦♥s✐❞❡r t❤❡✐r r❡❧❛t✐✈❡ ♦r❞❡r ♦❢ ♠❛❣♥✐t✉❞❡ ❛s ♣r❡s❡♥t❡❞ ✐♥ ❈❤❛♣t❡r ✷❉❈✲✻✳ ■t ✐s ❞❡✜♥❡❞ ✈✐❛ t❤❡ ❧✐♠✐t ♦❢
❇✉t ❞✐❞ ✇❡ ❝♦♠♣❛r❡ t❤❡✐r r❛t✐♦✿
f (x) = L. x→+∞ g(x) lim
■❢
L
✐s ✐♥✜♥✐t❡✱ ✇❡ s❛② t❤❛t
f
❤❛s ❛ ❣r❡❛t❡r ♠❛❣♥✐t✉❞❡✿
f >> g . ■♥ ♣❛rt✐❝✉❧❛r✱ ✇❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❤✐❡r❛r❝❤②✿
... >> ex >> ... >> xn >> ... >> x2 >> x >>
√
x >> ... >> 1 >> ... >>
1 1 >> 2 >> ... >> e−x >> ... x x
❲❡ ❛♣♣❧② t❤✐s ✐❞❡❛ t♦ s❡r✐❡s✳ ❊①❛♠♣❧❡ ✺✳✾✳✺✿ ❝♦♠♣❛r✐s♦♥
❚❤❡ ✐❞❡❛ ✐s t❤❛t s♦♠❡ ♣❛✐rs ♦❢ s❡r✐❡s ❝♦♥✈❡r❣❡ ♦r ❞✐✈❡r❣❡ t♦❣❡t❤❡r ✇❤❡♥ t❤❡② ❛r❡ ❝♦♠♣❛r❛❜❧❡ ✐♥ s♦♠❡ ✇❛②✳ ■❢ ♦♥❡ ♦❢ t❤❡♠ ✐s ❢❛♠✐❧✐❛r✱ ✇❡ ♠❛② ❤❛✈❡ ❞✐s❝♦✈❡r❡❞ ✇❤❛t t❤❡ ♦t❤❡rs ❞♦✳ ❍❡r❡ ❛r❡ t❤❡ ✜rst t❤r❡❡ t♦ ❜❡ ❝♦♠♣❛r❡❞✿
n2
1 −1
✈s✳
1 n2
✈s✳
n2
1 . +1
✺✳✾✳
❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s
✹✵✺
❚❤✐s ✐s t❤❡ s❡❝♦♥❞ tr✐♣❧❡✿
1 1 1 ✈s✳ 1/2 ✈s✳ 1/2 . −1 n n +1
n1/2
❲❡ ❝♦♥s✐❞❡r t❤❡s❡ r❛t✐♦s✿ n2
1 1 1 1 ÷ 2 → 1 ❛♥❞ 1/2 ÷ 1/2 → 1 . ±1 n n ±1 n
❚❤❡ s❡❝♦♥❞ s❡r✐❡s ❝♦♥✈❡r❣❡s ✐♥ t❤❡ ❢♦r♠❡r ❝❛s❡ ❛♥❞ ❞✐✈❡r❣❡s ✐♥ t❤❡ ❧❛tt❡r✳ ❚❤❡♥ s♦ ❞♦❡s t❤❡ ✜rst ♦♥❡✳ ❲❡ s✉♠♠❛r✐③❡ t❤✐s ✐❞❡❛ ❜❡❧♦✇✳
❉❡✜♥✐t✐♦♥ ✺✳✾✳✻✿ ♦r❞❡r ♦❢ ♠❛❣♥✐t✉❞❡ ❢♦r s❡q✉❡♥❝❡s ■❢ t❤❡ ❧✐♠✐t ❜❡❧♦✇ ✐s ✐♥✜♥✐t❡✱ ♦r ✐ts r❡❝✐♣r♦❝❛❧ ✐s ③❡r♦✱ lim
n→∞
an = ∞ ♦r bn
lim
n→∞
bn = 0, an
❛♥❞ ❜♦t❤ s❡q✉❡♥❝❡s ❤❛✈❡ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s✱ ✇❡ s❛② t❤❛t an ✐s ♦❢
❤✐❣❤❡r ♦r❞❡r
✺✳✾✳
❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s
✹✵✻
t❤❛♥ bn ✱ ❛♥❞ ✇❡ ✉s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥✿ an >> bn
❛♥❞
bn = o(an )
❛♥❞
bn >> an ,
❚❤❡ ❧❛tt❡r r❡❛❞s ✏❧✐tt❧❡ ♦✑✳ ❲❤❡♥
an >> bn ✇❡ s❛② t❤❛t t❤❡② ❤❛✈❡
t❤❡ s❛♠❡ ♠❛❣♥✐t✉❞❡✱ ❛♥❞ ✇❡ ✉s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♥♦t❛t✐♦♥✿ an ∼ bn
❲❡ ❛♣♣❧② t❤✐s t❡r♠✐♥♦❧♦❣② t♦ ❜♦t❤ s❡q✉❡♥❝❡s ❛♥❞ s❡r✐❡s✳ ❚❤❡♦r❡♠ ✺✳✾✳✼✿ ▲✐♠✐t ❈♦♠♣❛r✐s♦♥ ❚❡st ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ t✇♦ s❡q✉❡♥❝❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s✳
❚❤❡♥✱ t❤❡ ❝♦♥✈❡r✲
❣❡♥❝❡✴❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ ❧❛r❣❡r✴s♠❛❧❧❡r ✐♥ ♠❛❣♥✐t✉❞❡ s❡r✐❡s ✐♠♣❧✐❡s t❤❡ ❝♦♥✲ ✈❡r❣❡♥❝❡✴❞✐✈❡r❣❡♥❝❡ ♦❢ t❤❡ s♠❛❧❧❡r✴❧❛r❣❡r s❡r✐❡s❀ ✐✳❡✳✱ t❤❡r❡ ❛r❡ t❤r❡❡ ❝❛s❡s ❢♦r
an ≥ 0, bn ≥ 0✿ an ∼ b n
❈❛s❡ ✶✱
an > bn
❈❛s❡ ✸✱
X
X
X
an < ∞ ⇐⇒
bn < ∞ =⇒
bn = ∞ =⇒
X
X
X
bn < ∞ .
an < ∞ .
an = ∞ .
Pr♦♦❢✳
❙✉♣♣♦s❡ t❤❡ ❧✐♠✐t ♦❢ t❤❡✐r r❛t✐♦ ❜❡❧♦✇ ❡①✐sts✱ ❛s ❛ ♥✉♠❜❡r ♦r ❛s ✐♥✜♥✐t②✿
an = L. n→∞ bn lim
■♥ ❈❛s❡s ✶ ❛♥❞ ✷✱
L
✐s ❛ ♥✉♠❜❡r✳
❚❤❡♥ t❤❡
❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❧✐♠✐t ♦❢ ❛ s❡q✉❡♥❝❡
✭❈❤❛♣t❡r ✷❉❈✲✶✮
st❛t❡s✿
◮
❋♦r ❡❛❝❤
▲❡t✬s ❝❤♦♦s❡
ε>0
ε = 1✳
t❤❡r❡ ✐s s✉❝❤ ❛♥
❚❤❡♥✱ ❢♦r t❤❡ ❢♦✉♥❞
N
t❤❛t ❢♦r ❡✈❡r②
N✱
n>N
✇❡ ❤❛✈❡✿
an − L < ε . bn ✇❡ ❤❛✈❡
an < L + ε = L + 1, bn ❢♦r ❡✈❡r②
n < N✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✇❡ ❤❛✈❡ ❛ ❝♦♠♣❛r✐s♦♥ ♦❢ ✭t❤❡ t❛✐❧s ♦❢ ✮ t✇♦ s❡q✉❡♥❝❡s✿
an < (L + 1)bn . ◆♦✇✱ ❜② t❤❡
❚❤❡♥ ❜② t❤❡
❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ❙❡r✐❡s✱ ✇❡ ❤❛✈❡✿ X
bn < ∞ =⇒
❉✐r❡❝t ❈♦♠♣❛r✐s♦♥ ❚❡st✱ ✇❡ ❤❛✈❡✿ X
X
(L + 1)bn < ∞ .
an < ∞ .
✺✳✾✳
❈♦♠♣❛r✐s♦♥ ♦❢ s❡r✐❡s
✹✵✼
❊①❡r❝✐s❡ ✺✳✾✳✽ Pr♦✈❡ ❈❛s❡ ✸✳
■♥ ♦t❤❡r ✇♦r❞s✱ ✐❢
an =L n→∞ bn lim
✐s ❛ ♥✉♠❜❡r ♦r ✐♥✜♥✐t②✱ t❤❡♥ t❤❡s❡ ❛r❡ t❤❡ t❤r❡❡ ❝❛s❡s✿ ❈❛s❡ ✶✱
L>0:
❆ ✏♣❡r❢❡❝t✑ ♠❛t❝❤✿ ❜♦t❤ ❝♦♥✈❡r❣❡ ♦r ❜♦t❤ ❞✐✈❡r❣❡✳
❈❛s❡ ✷✱
L=0:
❚❤❡ ❞❡♥♦♠✐♥❛t♦r ✏❞♦♠✐♥❛t❡s✑ t❤❡ ♥✉♠❡r❛t♦r✳
❈❛s❡ ✸✱
L=∞:
❚❤❡ ♥✉♠❡r❛t♦r ✏❞♦♠✐♥❛t❡s✑ t❤❡ ❞❡♥♦♠✐♥❛t♦r✳
❊①❡r❝✐s❡ ✺✳✾✳✾ ❆♣♣❧② t❤❡ t❤❡♦r❡♠ t♦ t❤❡ t✇♦ tr✐♣❧❡s ♦❢ s❡r✐❡s ✐♥ t❤❡ ❡①❛♠♣❧❡s ❛❜♦✈❡✳
❊①❛♠♣❧❡ ✺✳✾✳✶✵✿ ✜♥❞ ❛ ❝♦♠♣❛r✐s♦♥ s❡r✐❡s ❈♦♥s✐❞❡r t❤❡ s❡r✐❡s✿
X
√
1 . n2 + n + 1
❲❡ ♥❡❡❞ t♦ ❞❡t❡r♠✐♥❡ t♦ ✇❤❛t s✐♠♣❧❡r s❡r✐❡s t❤✐s s❡r✐❡s ✐s ✏s✐♠✐❧❛r✑✳ ❚❤❡ ❧❡❛❞✐♥❣ t❡r♠ ♦❢ t❤❡ ❡①♣r❡ss✐♦♥ 2 ✐♥s✐❞❡ t❤❡ r❛❞✐❝❛❧ ✐s n ✳ ❚❤❡r❡❢♦r❡✱ ✇❡ s❤♦✉❧❞ ❝♦♠♣❛r❡ ♦✉r s❡r✐❡s t♦ t❤❡ ❢♦❧❧♦✇✐♥❣✿
X 1 X1 √ = , n n2 t❤❡ ❞✐✈❡r❣❡♥t ❤❛r♠♦♥✐❝ s❡r✐❡s✳ ❲❡ ❡✈❛❧✉❛t❡ t❤❡ ❧✐♠✐t ♦❢ t❤❡ r❛t✐♦ ♥♦✇✿
√
n2
1 1 n ÷ =√ 2 +n+1 n n +n+1 1 =√ n2 + n + 1/n 1 =p (n2 + n + 1)/n2 1 =p 1 + 1/n + 1/n2 1 →√ 1+0+0
❛s
n→∞
= 1. ❙♦✱ ❈❛s❡ ✶ ♦❢ t❤❡
▲✐♠✐t ❈♦♠♣❛r✐s♦♥ ❚❤❡♦r❡♠ ❛♣♣❧✐❡s ❛♥❞ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t ♦✉r s❡r✐❡s ❞✐✈❡r❣❡s✳
❊①❡r❝✐s❡ ✺✳✾✳✶✶ ❏✉st✐❢② t❤❡ ✐♥t❡r♠❡❞✐❛t❡ st❡♣s ✐♥ t❤❡ ❛❜♦✈❡ ❝♦♠♣✉t❛t✐♦♥✳
❊①❡r❝✐s❡ ✺✳✾✳✶✷ ❍♦✇ ❞♦❡s t❤❡ t❤❡♦r❡♠ ❛♣♣❧② ✐❢ ✇❡ r❡♠♦✈❡
+n
❢r♦♠ t❤❡ ❛❜♦✈❡ s❡r✐❡s❄
❊①❡r❝✐s❡ ✺✳✾✳✶✸ ❍♦✇ ❞♦❡s t❤❡ t❤❡♦r❡♠ ❛♣♣❧② ✐❢ ✇❡ r❡♣❧❛❝❡
n2
✇✐t❤
n3
✐♥ t❤❡ ❛❜♦✈❡ s❡r✐❡s❄
✺✳✶✵✳
❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡
✹✵✽
❊①❛♠♣❧❡ ✺✳✾✳✶✹✿ ♣♦✇❡r s❡r✐❡s
❚❤❡ ✐❞❡❛ ♦❢ t❤❡ t❤❡♦r❡♠ ❛♣♣❧✐❡s ✇❡❧❧ t♦
X
♣♦✇❡r s❡r✐❡s✳ ■❢ ✇❡ ❤❛✈❡ t❤❡s❡ t✇♦✱
cn (x − a)n
X
❛♥❞
t❤❡ ❝♦♥❞✐t✐♦♥ ♦❢ t❤❡ t❤❡♦r❡♠ ❜❡❝♦♠❡s✿
dn (x − a)n ,
cn cn (x − a)n = → L, dn (x − a)n dn ✇❤❡♥
cn , dn > 0 ❛♥❞ x > a✳ ❍♦✇❡✈❡r✱ ❛r❡ t❤❡s❡ s❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s❄ x = a ✇✐❧❧ ❝❤❛♥❣❡ t❤❡ s✐❣♥ ♦❢ t❤❡ t❡r♠ ❢♦r ❡❛❝❤ ♦❞❞ n✦ ❚❤❡ ❛♣♣❧✐❝❛❜✐❧✐t② ♦❢
t❤r♦✉❣❤
◆♦❀ ❥✉st ♣❛ss✐♥❣ t❤❡s❡ t❤❡♦r❡♠s ✐s
✈❡r② ❧✐♠✐t❡❞✳
✺✳✶✵✳ ❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡
❋r♦♠ t❤✐s ♣♦✐♥t✱ ✇❡ ❛❜❛♥❞♦♥ t❤❡ s❡✈❡r❡ r❡str✐❝t✐♦♥ t❤❛t t❤❡ t❡r♠s ♦❢ t❤❡ s❡r✐❡s ❝❛♥✬t ❜❡ ♥❡❣❛t✐✈❡✳ ❚❤❡♥✱ ♥♦♥❡ ♦❢ t❤❡ r❡s✉❧ts ✐♥ t❤❡ ❧❛st t✇♦ s❡❝t✐♦♥s ❛♣♣❧✐❡s✦ ❚❤❡ ♣❧❛♥ ✐s t♦ ♠❛❦❡ ❢r♦♠ ♦✉r s❡r✐❡s ❛ ♥♦♥✲♥❡❣❛t✐✈❡ s❡r✐❡s ❛♥❞ s❡❡ ✐❢ t❤✐s ♥❡✇ s❡r✐❡s ❝♦♥✈❡r❣❡s ♦r ❞✐✈❡r❣❡s ✐♥ ❤♦♣❡ t❤❛t t❤✐s ✇✐❧❧ t❡❧❧ ✉s s♦♠❡t❤✐♥❣ ❛❜♦✉t t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s✳ ❖❢ ❝♦✉rs❡✱ t❤❡ ❡❛s✐❡st ✇❛② t♦ ❞♦ t❤✐s ✐s t♦ t❛❦❡ t❤❡ ❛❜s♦❧✉t❡ ✈❛❧✉❡✿
X
an
❝r❡❛t❡s
X
|an | .
❲❡ ❝❛♥ ❛❧s♦ ✇❛❧❦ ✐♥ t❤❡ ♦♣♣♦s✐t❡ ❞✐r❡❝t✐♦♥ ❛♥❞ t❛❦❡ ❛♥② s❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s✱ ✐t ✏❛❧t❡r♥❛t❡✑✿
◆♦✇✱ ✇❤✐❝❤ ✐s
X
bn
❝r❡❛t❡s
X
bn ≥ 0 ✱
❛♥❞ ♠❛❦❡
(−1)n bn , bn ≥ 0 .
♠♦r❡ ❧✐❦❡❧② ❧✐❦❡❧② t♦ ❝♦♥✈❡r❣❡✱ t❤❡ ❢♦r♠❡r ♦r t❤❡ ❧❛tt❡r❄
❊①❛♠♣❧❡ ✺✳✶✵✳✶✿ ❢❛♠✐❧✐❛r s❡r✐❡s
❙♦♠❡ ♦❢ t❤♦s❡ ❛r❡ ❡❛s② t♦ ❛♥❛❧②③❡✿ X • (−1)n ❞✐✈❡r❣❡s ✕ ❛❝❝♦r❞✐♥❣ t♦ t❤❡
•
X
1
❞✐✈❡r❣❡s t♦♦✳
1 (−1)n n ❝♦♥✈❡r❣❡s 2 X 1 ❝♦♥✈❡r❣❡s t♦♦✳ • 2n
•
❉✐✈❡r❣❡♥❝❡ ❚❡st✳
X
✕ ❛❝❝♦r❞✐♥❣ t♦ t❤❡
●❡♦♠❡tr✐❝ ❙❡r✐❡s ❚❤❡♦r❡♠✳
■♥ ❣❡♥❡r❛❧✱ t❤✐s ✐s ✇❤❛t s✉❝❤ ❛ ♣❛✐r ♦❢ s❡r✐❡s ❧♦♦❦s ❧✐❦❡ ✭t❤❡ s❡q✉❡♥❝❡s ❛r❡ ❛❜♦✈❡ ❛♥❞ t❤❡✐r s❡q✉❡♥❝❡s ♦❢ ♣❛rt✐❛❧ s✉♠s ❛r❡ ❜❡❧♦✇✮✿
✺✳✶✵✳ ❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡
✹✵✾
❆s ✇❡ ❦♥♦✇ ❛♥❞ ❝❛♥ s❡❡ ❤❡r❡✱ t❤❡ ♥♦♥✲♥❡❣❛t✐✈❡ ♦♥❡ ♣r♦❞✉❝❡s t❤❡ s❡q✉❡♥❝❡ ♦❢ s✉♠s t❤❛t ✐s ✐♥❝r❡❛s✐♥❣✳ ■t ♠❛② ♦r ♠❛② ♥♦t ❝♦♥✈❡r❣❡ ❞❡♣❡♥❞✐♥❣ ♦♥ ❤♦✇ ♠✉❝❤ ✇❡ ❛❞❞ ❛t ❡✈❡r② st❡♣✳ ❇✉t ❢♦r t❤❡ ❧❛tt❡r✱ ❤❛❧❢ ♦❢ t❤❡s❡ ✉♣✲st❡♣s ❛r❡ ❝❛♥❝❡❧❡❞ ❜② t❤❡ ❞♦✇♥✲st❡♣s✦ ❚❤✐s s✉❣❣❡sts t❤❛t ✐❢ t❤❡ ❢♦r♠❡r ✐s s❧♦✇✐♥❣ ❞♦✇♥✱ t❤❡♥ s♦ ✐s t❤❡ ❧❛tt❡r✳ ❚❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ❢♦r♠❡r t❤❡♥ ✐♠♣❧✐❡s t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ❧❛tt❡r✳✳✳
❊①❛♠♣❧❡ ✺✳✶✵✳✷✿
p✲s❡r✐❡s
❈♦♥s✐❞❡r t❤❡ ❢❛♠✐❧✐❛r t❤❡
p✲s❡r✐❡s
✇✐t❤
p = 2✿ X 1 . n2
■t ✐s ❝♦♥✈❡r❣❡♥t✳ ■ts ✏❛❧t❡r♥❛t✐♥❣✑ ✈❡rs✐♦♥ ✐s
X
(−1)n
1 . n2
❚❤❡② ❛r❡ s❤♦✇♥ ❛❜♦✈❡✳ ❍♦✇ ❞♦ t❤❡s❡ t✇♦ ❝♦♠♣❛r❡ ❄ ❚❤❡ ❢♦r♠❡r ❛♣♣❡❛rs ✏s♠❛❧❧❡r✑ t❤❛♥ t❤❡ ❧❛tt❡r✿
(−1)n
1 1 ≤ 2. 2 n n
❉♦❡s ✐t ♠❡❛♥ t❤❛t ✐t ♠✉st ❝♦♥✈❡r❣❡❄ ◆♦✱ ✐t ♠✐❣❤t st✐❧❧ ❞✐✈❡r❣❡ ❜❡❝❛✉s❡ t❤❡ ◆♦♥✲♥❡❣❛t✐✈❡ ❙❡r✐❡s ❚❤❡♦r❡♠ ❞♦❡s♥✬t ❛♣♣❧②✳ ❍♦✇❡✈❡r✱ ❛ ❝❧❡✈❡r tr✐❝❦ ✐s t♦ ✉s❡ ❛ ❤✐❞❞❡♥ ♥♦♥✲♥❡❣❛t✐✈❡ s❡r✐❡s❀ ✐t ✐s t❤❡ s✉♠ ♦❢ t❤❡ t✇♦✿
(−1)n
1 1 + 2 ≥ 0. 2 n n
❲❤❛t ❞♦ ✇❡ ❦♥♦✇ ❛❜♦✉t ✐t❄ ❆♥ ✐♥s✐❣❤t❢✉❧ ♦❜s❡r✈❛t✐♦♥ ✐s t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♥❡q✉❛❧✐t②✿
(−1)n
1 1 2 + 2 ≤ 2, 2 n n n
❲❡ ❤❛✈❡ t✇♦ ♥♦♥✲♥❡❣❛t✐✈❡✲t❡r♠ s❡r✐❡s ❛♥❞ t❤❡ ❜✐❣❣❡r ♦♥❡ ✐s ❝♦♥✈❡r❣❡♥t✦
✺✳✶✵✳
❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡
✹✶✵
❚❤❡r❡❢♦r❡✱ t❤❡ s♠❛❧❧❡r s❡r✐❡s ✐s ❝♦♥✈❡r❣❡♥t t♦♦✱
X
1 1 (−1) 2 + 2 n n n
❚❤❡r❡❢♦r❡✱ s♦ ✐s t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s✱
❜② t❤❡
X
❙✉♠ ❘✉❧❡s ❢♦r ❙❡r✐❡s
✳
(−1)n
< ∞.
1 , n2
▲❡t✬s ❣❡♥❡r❛❧✐③❡ t❤✐s ❡①❛♠♣❧❡✳ ❲❡ ❛r❡ ❛❢t❡r ❛ ♣❛rt✐❝✉❧❛r ❦✐♥❞ ♦❢ sq✉❡❡③❡✿
❚❤❡♦r❡♠ ✺✳✶✵✳✸✿ ❙q✉❡❡③❡ ❚❤❡♦r❡♠ ❢♦r ❙❡r✐❡s ❙✉♣♣♦s❡ s❡q✉❡♥❝❡s
❢♦r ❛❧❧
n✳
❚❤❡♥✱ ✐❢
an , bn
X
✇✐t❤
bn ≥ 0
s❛t✐s❢②✿
−bn ≤ an ≤ bn bn
❝♦♥✈❡r❣❡s✱ t❤❡♥ s♦ ❞♦❡s
X
an ✳
✺✳✶✵✳ ❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡
✹✶✶
Pr♦♦❢✳ ❋✐rst✱ ♥♦t❡ t❤❛t t❤❡ sq✉❡❡③❡ t❤❛t ✇❡ ❤❛✈❡ ♣r♦✈❡s ♥♦t❤✐♥❣ ❛❜♦✉t ❛❧❧ ✇❡ ❞❡r✐✈❡ ✐s t❤❛t
bn
an → 0
an
✉♥❧❡ss ✇❡ ❤❛✈❡
bn → 0 ✳
❊✈❡♥ t❤❡♥✱
t♦♦✳ ❲❤❛t ❛❜♦✉t t❤❡ s❡r✐❡s ❄ ❲❡ t❛❦❡ ❛ ❞✐✛❡r❡♥t ❛♣♣r♦❛❝❤✳ ❋✐rst✱ ✇❡ ❛❞❞
t♦ t❤❡ t❤r❡❡ ♣❛rts ♦❢ t❤❡ ❛❜♦✈❡ ✐♥❡q✉❛❧✐t②✿
0 ≤ an + bn ≤ bn + bn = 2bn . ▲❡t✬s ❞❡✜♥❡ ❛ ♥❡✇ s❡q✉❡♥❝❡✿
cn = an + bn ❢♦r ❛❧❧
n✳
❚❤❡♥✱ ✇❡ ❤❛✈❡ ❛ ♥❡✇ sq✉❡❡③❡ ✿
❚❤❡ ❧❛st s❡q✉❡♥❝❡ ♣r♦❞✉❝❡s ❛ s❡r✐❡s✱ ❚❤❡♥
X
cn
X
0 ≤ cn ≤ 2bn . 2bn ✱
t❤❛t ❝♦♥✈❡r❣❡s ❜② t❤❡ ❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ❙❡r✐❡s✳
❛❧s♦ ❝♦♥✈❡r❣❡s ❜② t❤❡ ◆♦♥✲♥❡❣❛t✐✈❡ ❙❡r✐❡s ❚❤❡♦r❡♠ ❛♥❞ t❤❡ ❉✐r❡❝t ❈♦♠♣❛r✐s♦♥ ❚❤❡♦r❡♠✳
❋✐♥❛❧❧②✱ t❤❡ ♦r✐❣✐♥❛❧ s❡r✐❡s✱
X
an =
X
(cn − bn ) ,
❝♦♥✈❡r❣❡s ❛s t❤❡ ❞✐✛❡r❡♥❝❡ ♦❢ t✇♦ ❝♦♥✈❡r❣❡♥t s❡r✐❡s ❜② t❤❡ ❙✉♠ ❘✉❧❡s ❢♦r ❙❡r✐❡s✳
❙♦✱ ✇❡ ❝❛♥ ✉s❡ t❤❡ ❢❛❝t t❤❛t
bn
❝♦♥✈❡r❣❡s t♦ ♣r♦✈❡ t❤❛t
an
❝♦♥✈❡r❣❡s t♦♦✳ ❇✉t ❤♦✇ ❞♦ ✇❡ ✜♥❞ t❤✐s ❝♦♥✈❡♥✐❡♥t
bn ❄ ❚❤❡r❡ ✐s ♦♥❡ ♥❛t✉r❛❧ ❝❤♦✐❝❡✿
bn = |an | . ❚❤✐s t✐♠❡ t❤❡ sq✉❡❡③❡ ✐s ✏♣❡r❢❡❝t✑✿ ◆♦t ♦♥❧② t❤❡ s❡q✉❡♥❝❡ ✐s ❜♦✉♥❞❡❞ ❜② t❤♦s❡ t✇♦❀ ✐t ✐s✱ ✐♥ ❢❛❝t✱ ❛❧✇❛②s ❡q✉❛❧ t♦ ♦♥❡ ♦r t❤❡ ♦t❤❡r✦ ❍❡r❡ ✐s ❛♥ ✐❧❧✉str❛t✐♦♥✿
■t✬s ❛s ✐❢ ❛ ❜❛❧❧ ✐s ❝♦♥t✐♥✉♦✉s❧② ❜♦✉♥❝✐♥❣ ♦✛ t❤❡ ❝❡✐❧✐♥❣ ❛♥❞ t❤❡ ✢♦♦r ♦❢ ❛ ❝♦rr✐❞♦r✳✳✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❝❡♣t ✐s ❝r✉❝✐❛❧✿
❉❡✜♥✐t✐♦♥ ✺✳✶✵✳✹✿ s❡r✐❡s ❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧② ❲❡ s❛② t❤❛t ❛ s❡r✐❡s
X
|an |✱
❝♦♥✈❡r❣❡s✳
X
an
❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧② ✐❢ ✐ts s❡r✐❡s ♦❢ ❛❜s♦❧✉t❡ ✈❛❧✉❡s✱
❲❛r♥✐♥❣✦ ❚❤❡ ✇♦r❞ ✏❛❜s♦❧✉t❡✑ r❡❢❡rs t♦ t❤❡ ❛❜s♦❧✉t❡ ✈❛❧✉❡✳
✺✳✶✵✳
❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡
✹✶✷
❚❤❡ ❧❛st t❤❡♦r❡♠ ✐♠♣❧✐❡s t❤❡ ❢♦❧❧♦✇✐♥❣ ✐♠♣♦rt❛♥t r❡s✉❧t✳
❚❤❡♦r❡♠ ✺✳✶✵✳✺✿ ❆❜s♦❧✉t❡ ❈♦♥✈❡r❣❡♥❝❡ ❚❤❡♦r❡♠ ■❢ ❛ s❡r✐❡s ❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧②✱ t❤❡♥ ✐t ❝♦♥✈❡r❣❡s❀ ✐✳❡✳✱
X
|an | < ∞ =⇒
X
an
❝♦♥✈❡r❣❡s
❊①❡r❝✐s❡ ✺✳✶✵✳✻ ✭❛✮ ❙❤♦✇ t❤❛t ✐❢ ❛ s❡r✐❡s ❤❛s ♦♥❧② ♣♦s✐t✐✈❡ t❡r♠s✱ t❤❡♥ ❛❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡ ♠❡❛♥s ❝♦♥✈❡r❣❡♥❝❡✳ ✭❜✮ ❙❤♦✇ t❤❛t ✐❢ ❛ s❡r✐❡s ❤❛s ♦♥❧② ♥❡❣❛t✐✈❡ t❡r♠s✱ t❤❡♥ ❛❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡ ♠❡❛♥s ❝♦♥✈❡r❣❡♥❝❡✳
❊①❛♠♣❧❡ ✺✳✶✵✳✼✿ ♣♦✇❡r s❡r✐❡s ❋♦r ♣♦✇❡r s❡r✐❡s✱ t❤❡ t❤❡♦r❡♠ ❜❡❝♦♠❡s✿
❢♦r ❡❛❝❤
x✳
X
|cn ||x − a|n < ∞ =⇒
X
cn (x − a)n
❝♦♥✈❡r❣❡s
,
❚❤❡ s❡r✐❡s ♦❢ ❛❜s♦❧✉t❡ ✈❛❧✉❡s ♦❢ t❤❡ ❚❛②❧♦r s❡r✐❡s ♦❢ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥ ✐s ✐❧❧✉str❛t❡❞
❜❡❧♦✇✿
▲♦♦❦ ❛t t❤❡ ❝✉s♣s❀ t❤❡s❡ ❛r❡♥✬t ♣♦✇❡rs ❛♥❞ t❤❡ ♥❡✇ s❡r✐❡s ✐s
♥♦t
❛ ♣♦✇❡r s❡r✐❡s✳
❚❤❡ ❝♦♥✈❡rs❡ ♦❢ t❤❡ t❤❡♦r❡♠ ✐s ❢❛❧s❡✿
X
X
|an | < ∞ =⇒ |an | < ∞ 6⇐=
X
X
an
❝♦♥✈❡r❣❡s
an
❝♦♥✈❡r❣❡s
❉❡✜♥✐t✐♦♥ ✺✳✶✵✳✽✿ s❡r✐❡s ❝♦♥✈❡r❣❡s ❝♦♥❞✐t✐♦♥❛❧❧② ❲❡ s❛② t❤❛t ❛ s❡r✐❡s ♦❢ ❛❜s♦❧✉t❡ ✈❛❧✉❡s✱
X
X
an
|an |✱
❝♦♥✈❡r❣❡s ❝♦♥❞✐t✐♦♥❛❧❧② ❞♦❡s ♥♦t✳
❚❤❡♥✱ ❡✈❡r② ✭♥✉♠❡r✐❝❛❧✮ s❡r✐❡s ❝♦♥✈❡r❣❡s ❡✐t❤❡r ❛❜s♦❧✉t❡❧② ♦r ❝♦♥❞✐t✐♦♥❛❧❧②✳
✐❢ ✐t ❝♦♥✈❡r❣❡s ❜✉t ✐ts s❡r✐❡s
✺✳✶✵✳
❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡
✹✶✸
❊①❛♠♣❧❡ ✺✳✶✵✳✾✿ ♥♦♥✲♥❡❣❛t✐✈❡
❖❢ ❝♦✉rs❡✱ ❛❧❧ ❝♦♥✈❡r❣❡♥t ♥♦♥✲♥❡❣❛t✐✈❡✲t❡r♠ s❡r✐❡s ❝♦♥✈❡r❣❡ ❛❜s♦❧✉t❡❧②✳ ❋♦r ❡①❛♠♣❧❡✱ ❛❧❧
p > 1✱
❝♦♥✈❡r❣❡ ❛♥❞✱ t❤❡r❡❢♦r❡✱ ❝♦♥✈❡r❣❡ ❛❜s♦❧✉t❡❧②✳
p✲s❡r✐❡s
✇✐t❤
X 1 , np
❈♦♥✈❡rs❡❧②✱ ❢♦r ❡✈❡r② ❝♦♥✈❡r❣❡♥t s❡r✐❡s ✇✐t❤ ♥♦♥✲♥❡❣❛t✐✈❡ t❡r♠s✱ ✇❡ ♥♦✇ ❦♥♦✇ ♦t❤❡r ✭❛❜s♦❧✉t❡❧②✮ ❝♦♥✈❡r❣❡♥t s❡r✐❡s✳ ❋♦r ❡①❛♠♣❧❡✱ s✐♥❝❡ ❛
p✲s❡r✐❡s
✇✐t❤
p > 1✱
X 1 , np
❝♦♥✈❡r❣❡s✱ t❤❡♥ ✐ts ❛❧t❡r♥❛t✐♥❣ ✈❡rs✐♦♥✱
X (−1)n np
✐s ❛❧s♦ ❝♦♥✈❡r❣❡♥t✱ ❛❜s♦❧✉t❡❧②✱ ❜❡❝❛✉s❡✿
❊①❛♠♣❧❡ ✺✳✶✵✳✶✵✿
p✲s❡r✐❡s
❖♥ t❤❡ ♦t❤❡r ❤❛♥❞✱ ❛s ❛
p✲s❡r✐❡s
✇✐t❤
,
(−1)n 1 np = np .
p ≤ 1✱ X 1 , np
❞✐✈❡r❣❡s✱ ❞♦❡s ✐t ♠❡❛♥ t❤❛t ✐ts ❛❧t❡r♥❛t✐♥❣ ✈❡rs✐♦♥✱
X (−1)n np
❛❧s♦ ❞✐✈❡r❣❡s❄ ◆♦✳
,
❚❤❡ ❢♦❧❧♦✇✐♥❣ r❡s♦❧✈❡s t❤❡ ✐ss✉❡✳ ❚❤❡♦r❡♠ ✺✳✶✵✳✶✶✿ ▲❡✐❜♥✐③ ❆❧t❡r♥❛t✐♥❣ ❙❡r✐❡s ❚❡st
❙✉♣♣♦s❡ ❛ s❡q✉❡♥❝❡ bn s❛t✐s✜❡s✿ ✶✳ bn > 0 ❢♦r ❛❧❧ n❀ ✷✳ bn > bn+1 ❢♦r ❛❧❧ n❀ ❛♥❞ ✸✳ bn → 0 ❛s n → ∞✳ X X ❚❤❡♥ t❤❡ ❛❧t❡r♥❛t✐♥❣ ✈❡rs✐♦♥ ♦❢ t❤❡ s❡r✐❡s bn ✱ t❤❡ s❡r✐❡s (−1)n bn ✱ ❝♦♥✈❡r❣❡s✳
✺✳✶✵✳
❆❜s♦❧✉t❡ ❝♦♥✈❡r❣❡♥❝❡
✹✶✹
Pr♦♦❢✳ ❚❤❡
✐❞❡❛
♦❢ t❤❡ ♣r♦♦❢ ✐s ❛s ❢♦❧❧♦✇s✳ ❋✐rst✱ t❤❡ s❡q✉❡♥❝❡ ❛❧t❡r♥❛t❡s ❜❡t✇❡❡♥ ♣♦s✐t✐✈❡ ❛♥❞ ♥❡❣❛t✐✈❡✳ ❆s
❛ r❡s✉❧t✱ t❤❡ s❡q✉❡♥❝❡ ♦❢ ✐ts s✉♠s ❣♦❡s ✉♣ ❛♥❞ ❞♦✇♥ ❛t ❡✈❡r② st❡♣✳ ❋✉rt❤❡r♠♦r❡✱ ❡❛❝❤ st❡♣ ✐s s♠❛❧❧❡r t❤❛♥ t❤❡ ❧❛st ❛♥❞ t❤❡ s✇✐♥❣ ✐s ❞✐♠✐♥✐s❤✐♥❣✳ ▼♦r❡♦✈❡r✱ ✐t ✐s ❞✐♠✐♥✐s❤✐♥❣ t♦ ③❡r♦✳ ❚❤❛t✬s ❝♦♥✈❡r❣❡♥❝❡✦
▲❡t✬s ❝♦♥s✐❞❡r t❤❡ s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐❛❧ s✉♠s ♦❢ ♦✉r s❡r✐❡s✿
pn =
n X
(−1)k bk .
k=1
❲❡ ❡①❛♠✐♥❡ t❤❡ ❜❡❤❛✈✐♦r ✐♥ t❤❡ s✉❜s❡q✉❡♥❝❡s ♦❢ ♦❞❞✲ ❛♥❞ ❡✈❡♥✲♥✉♠❜❡r❡❞ ❡❧❡♠❡♥ts✳ ❋♦r t❤❡ ♦❞❞✿
p2k+1 − p2k−1 = (−1)2k b2k + (−1)2k+1 b2k+1 = b2k − b2k+1 > 0.
❆❝❝♦r❞✐♥❣ t♦ ❝♦♥❞✐t✐♦♥ ✷✳
❚❤❡r❡❢♦r❡✱
p2k+1 ր ❙✐♠✐❧❛r❧②✱ ❢♦r t❤❡ ❡✈❡♥
p2k+2 − p2k = (−1)2k+1 b2k+1 + (−1)2k+2 b2k+2 = −b2k+1 + b2k+2
< 0.
❆❝❝♦r❞✐♥❣ t♦ ❝♦♥❞✐t✐♦♥ ✷✳
❚❤❡r❡❢♦r❡✱
p2k ց ❲❡ ❤❛✈❡ t✇♦ ♠♦♥♦t♦♥❡ s❡q✉❡♥❝❡s t❤❛t ❛r❡ ❛❧s♦ ❜♦✉♥❞❡❞✿
p1 ≤ pn ≤ p2 .
❚❤❡r❡❢♦r❡✱ ❜♦t❤ ❝♦♥✈❡r❣❡ ❜② t❤❡
▼♦♥♦t♦♥❡ ❈♦♥✈❡r❣❡♥❝❡ ❚❤❡♦r❡♠
◆❡①t✱ ❝♦♥s✐❞❡r t❤❡s❡ t✇♦ ❧✐♠✐ts✳ ❇② t❤❡
✳
❙q✉❡❡③❡ ❚❤❡♦r❡♠
✇❡ ❤❛✈❡✿
lim (−1)n bn = 0 ,
n→∞
✺✳✶✶✳
❚❤❡ ❘❛t✐♦ ❚❡st ❛♥❞ t❤❡ ❘♦♦t ❚❡st
❢r♦♠ ❝♦♥❞✐t✐♦♥ ✸✳ ❚❤❡♥✱ ❜② t❤❡ ❙✉♠
✹✶✺
❘✉❧❡ ✇❡ ❤❛✈❡✿
lim p2k+1 − lim p2k = lim (p2k+1 − p2k ) = lim (−1)2k+1 b2k+1 = 0 .
n→∞
n→∞
n→∞
n→∞
❚❤❡♥✱ t❤❡ ❧✐♠✐ts ♦❢ t❤❡ ♦❞❞ ❛♥❞ t❤❡ ❡✈❡♥ ♣❛rt✐❛❧ s✉♠s ❛r❡ ❡q✉❛❧✳ ❚❤❡r❡❢♦r❡✱ t❤❡ ✇❤♦❧❡ s❡q✉❡♥❝❡ ♦❢ ♣❛rt✐❛❧ s✉♠s pn ❝♦♥✈❡r❣❡s t♦ t❤❡ s❛♠❡ ❧✐♠✐t✳ ❊①❡r❝✐s❡ ✺✳✶✵✳✶✷
Pr♦✈✐❞❡ ❛ ♣r♦♦❢ ❢♦r t❤❡ ❧❛st st❡♣✳ ❈♦r♦❧❧❛r② ✺✳✶✵✳✶✸ ❆❧❧ ❛❧t❡r♥❛t✐♥❣
p✲s❡r✐❡s✱
✐✳❡✳✱
X (−1)n np
❝♦♥✈❡r❣❡✳
,
■♥ ♣❛rt✐❝✉❧❛r✱ t❤❡ ❛❧t❡r♥❛t✐♥❣ p✲s❡r✐❡s✱ X (−1)n np
❝♦♥✈❡r❣❡ ❝♦♥❞✐t✐♦♥❛❧❧②✳
, ✇✐t❤ 0 < p < 1 ,
✺✳✶✶✳ ❚❤❡ ❘❛t✐♦ ❚❡st ❛♥❞ t❤❡ ❘♦♦t ❚❡st
❚❤❡ ❝❤❛❧❧❡♥❣❡ ♦❢ t❤❡ ❈♦♠♣❛r✐s♦♥
❚❡st
✐s ♦❢t❡♥ ❤♦✇ t♦ ✜♥❞ ❛ s❡r✐❡s ❣♦♦❞ ❢♦r ❝♦♠♣❛r✐s♦♥✳
■♥ t❤✐s s❡❝t✐♦♥✱ ✇❡ ❝❤♦♦s❡ ❛ s✐♥❣❧❡ t②♣❡ ♦❢ s❡r✐❡s ❛♥❞ ❞❡r✐✈❡ ❛❧❧ t❤❡ ❝♦♥❝❧✉s✐♦♥s ✇❡ ❝❛♥ ❛❜♦✉t t❤❡ s❡r✐❡s t❤❛t ❝♦♠♣❛r❡ ✇❡❧❧ ✇✐t❤ ✐t✳ ❚❤✐s ❝❤♦✐❝❡ ✐s✱ ♦❢ ❝♦✉rs❡✱ t❤❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s✳ ❚❤❡ ♠♦st ✇❡❧❧✲✉♥❞❡rst♦♦❞ s❡r✐❡s ✐s t❤❡ st❛♥❞❛r❞ ❣❡♦♠❡tr✐❝ s❡r✐❡s ❜② ✐ts r❛t✐♦ r ≥ 0✿ • ■❢ r < 1✱ t❤❡♥
• ■❢ r > 1✱ t❤❡♥
X
X
X
rn ✳ ■ts ❝♦♥✈❡r❣❡♥❝❡ ✐s ❢✉❧❧② ❞❡t❡r♠✐♥❡❞
rn ❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧②✳
rn ❞✐✈❡r❣❡s✳
■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡ s❡q✉❡♥❝❡ ❤❛s t♦ ❣♦ t♦ 0 ❢❛st ❡♥♦✉❣❤ ❢♦r t❤❡ s❡r✐❡s t♦ ❝♦♥✈❡r❣❡✳ ❚❤✐s ✐❞❡❛ ♦❢ t❤❡ r❛t✐♦ ❛♥❞ t❤❡s❡ t✇♦ ❝♦♥❞✐t✐♦♥s r❡❛♣♣❡❛r ✐♥ t❤❡ ❝❛s❡ ♦❢ ❛ ❣❡♥❡r✐❝ s❡r✐❡s✳ ■♥❞❡❡❞✱ ❡✈❡r② s❡r✐❡s
X
an ❤❛s t❤❡
r❛t✐♦✱ ❛ s❡q✉❡♥❝❡✿ rn =
an+1 . an
■♥ ❝♦♥tr❛st t♦ t❤❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s✱ t❤❡ r❛t✐♦ ❞❡♣❡♥❞s ♦♥ n✳ ❇✉t ✐ts ❧✐♠✐t ❞♦❡s ♥♦t✦ ❆s ✐t t✉r♥s ♦✉t✱ t❤❡ s❡r✐❡s ❡①❤✐❜✐ts t❤❡ s❛♠❡ ❝♦♥✈❡r❣❡♥❝❡ ♣❛tt❡r♥ ❛s t❤❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ t❤❡ r❛t✐♦ ❡q✉❛❧ t♦ t❤✐s ❧✐♠✐t✿
✺✳✶✶✳
❚❤❡ ❘❛t✐♦ ❚❡st ❛♥❞ t❤❡ ❘♦♦t ❚❡st
✹✶✻
❚❤❡♦r❡♠ ✺✳✶✶✳✶✿ ❘❛t✐♦ ❚❡st ❢♦r ❙❡r✐❡s
❙✉♣♣♦s❡ an ✐s ❛ s❡q✉❡♥❝❡ ✇✐t❤ ♥♦♥✲③❡r♦ t❡r♠s✳ ❙✉♣♣♦s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧✐♠✐t ❡①✐sts✱ ❛s ❛ ♥✉♠❜❡r ♦r ❛s ✐♥✜♥✐t②✿ an+1 r = lim n→∞ an
❚❤❡♥ ✇❡ ❤❛✈❡✿ X ✶✳ ■❢ r < 1✱ t❤❡♥ an ❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧②✳
✳
✷✳ ■❢ r > 1✱ t❤❡♥
X
an ❞✐✈❡r❣❡s✳
■❢ r = 1 ♦r t❤❡ ❧✐♠✐t ❞♦❡s♥✬t ❡①✐st✱ ✇❡ s❛② t❤❛t t❤❡ t❡st ❢❛✐❧s✳ Pr♦♦❢✳
❙✉♣♣♦s❡✱ ❢♦r ❛ s❡q✉❡♥❝❡ ✇✐t❤ ♣♦s✐t✐✈❡ t❡r♠s✱ ✇❡ ❤❛✈❡✿ r = lim
n→∞
an+1 . an
❚❤❡♥✱ ❢r♦♠ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ ❧✐♠✐t✱ ✇❡ ❝♦♥❝❧✉❞❡✿ an+1 < s, ❢♦r ❛❧❧ n ≥ N , an
❢♦r s♦♠❡ N ❛♥❞ ❛♥② s > r✳ ❚❤❡r❡❢♦r❡✱ an+1 < san , ❢♦r ❛❧❧ n ≥ N .
❚❤✐s ✐♥❡q✉❛❧✐t② ✐s ♥♦✇ ❛♣♣❧✐❡❞ ♠✉❧t✐♣❧❡ t✐♠❡s✱ st❛rt✐♥❣ ❛t ❛♥② t❡r♠ m > N ✿ am < sam−1 < s(sam−2 ) = s2 am−2 < s2 (sam−3 ) = s3 am−3 < ... < sm−N aN .
❆t t❤❡ ❡♥❞✱ ✇❡ ❤❛✈❡ ❛ ❝♦♠♣❛r✐s♦♥ ♦❢ ♦✉r s❡r✐❡s ❛♥❞ ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ r❛t✐♦ s✿ am
1✳ ■♥ t❤❡ s✐♠♣❧❡st ❝❛s❡✱ ✇❡ ❤❛✈❡ ❛ ♣♦s✐t✐✈❡ ♥✉♠❜❡r✿ R=
❚❤❡♥✱ t❤❡ ❝♦♥❞✐t✐♦♥ r(x) < 1 ❜❡❝♦♠❡s✿ |x − a|
1
cn+1 . limn→∞ cn
1 < 1 ✱ ♦r |x − a| < R . R
❚❤❡s❡ x✬s ❢♦r♠ ❛♥ ✐♥t❡r✈❛❧ ❝❡♥t❡r❡❞ ❛t a✿ {x : |x − a| < R} = {x : a − R < x < a + R} .
✺✳✶✶✳
✹✶✽
❚❤❡ ❘❛t✐♦ ❚❡st ❛♥❞ t❤❡ ❘♦♦t ❚❡st
❲❤❡♥ ♦✉r ❧✐♠✐t ✐s ③❡r♦✱ ✇❡ ❤❛✈❡ R = ∞ ❛♥❞ ✇❤❡♥ ✐t ✐s ✐♥✜♥✐t②✱ ✇❡ ❤❛✈❡ R = 0✳ ❈♦r♦❧❧❛r② ✺✳✶✶✳✺✿ ❘❛t✐♦ ❚❡st ❢♦r P♦✇❡r ❙❡r✐❡s
❙✉♣♣♦s❡ cn ✐s ❛ s❡q✉❡♥❝❡ ✇✐t❤ ♥♦♥✲③❡r♦ t❡r♠s✳ ❙✉♣♣♦s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧✐♠✐t ❡①✐sts✱ ❛s ❛ ♥✉♠❜❡r ♦r ❛s ✐♥✜♥✐t②✿
❚❤❡♥✱ t❤❡r❡ ❛r❡ t❤r❡❡ ❝❛s❡s✿
cn+1 1 = lim R n→∞ cn
❚❤❡ s❡r✐❡s
X
cn (x − a)n ...
❈❛s❡ ✶✿ R = ∞ ❝♦♥✈❡r❣❡s ❢♦r ❡❛❝❤ x; ❈❛s❡ ✷✿ 0 < R < ∞ ❝♦♥✈❡r❣❡s ❢♦r ❡❛❝❤ x ✐♥ t❤❡ ✐♥t❡r✈❛❧✿ (a − R, a + R),
❛♥❞ ❞✐✈❡r❣❡s ❢♦r ❡❛❝❤ x ✐♥ t❤❡ r❛②s✿
❈❛s❡ ✸✿ R = 0
(−∞, a − R), (a + R, +∞);
❞✐✈❡r❣❡s ❢♦r ❡❛❝❤ x 6= a.
❚❤❡ ❡♥❞✲♣♦✐♥ts ♦❢ t❤✐s ✐♥t❡r✈❛❧✱ a − R ❛♥❞ a + R, ✇✐❧❧ ❤❛✈❡ t♦ ❜❡ tr❡❛t❡❞ s❡♣❛r❛t❡❧②✳ ❊①❛♠♣❧❡ ✺✳✶✶✳✻✿ s❡r✐❡s ♦❢ ♣♦✇❡rs
❚❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ 1 + x + x2 + ... ✐s ✐❧❧✉str❛t❡❞ ❜❡❧♦✇✳ ❙✐♥❝❡ cn = 1 ❛♥❞ R = 1✱ ✇❡ ✐♥❢❡r ❢r♦♠ t❤❡ t❤❡♦r❡♠ t❤❡ ❞✐✈❡r❣❡♥❝❡ ❢♦r x ♦✉ts✐❞❡ t❤❡ ✐♥t❡r✈❛❧ [−1, 1] ❛♥❞ ❝♦♥✈❡r❣❡♥❝❡ ✐♥s✐❞❡ t❤❡ ✐♥t❡r✈❛❧ (−1, 1) ✭t❤❡ ❧❛tt❡r ✐s t❤❡ ✐♥t❡r✐♦r ♦❢ t❤❡ ❢♦r♠❡r✮✳ ❚❤❡ t✇♦ ♣❛rt✐❛❧ s✉♠s✱ 1 + x + x2 + ... + x9 ❛♥❞ 1 + x + x2 + ... + x10 ,
❛r❡ s❤♦✇♥✿
✺✳✶✶✳
❚❤❡ ❘❛t✐♦ ❚❡st ❛♥❞ t❤❡ ❘♦♦t ❚❡st
✹✶✾
❊✈❡♥ t❤♦✉❣❤ t❤❡ ♣❛rt✐❛❧ s✉♠s ❛r❡ ❞❡✜♥❡❞ ❢♦r ❛❧❧ ♣♦ss✐❜❧❡ r❡❛❧ ✈❛❧✉❡s ♦❢ x✱ t❤❡ ❢✉♥❝t✐♦♥ ❣✐✈❡♥ ❜② t❤❡ s❡r✐❡s✿ f (x) = 1 + x + x2 + ... ,
✐s ✉♥❞❡✜♥❡❞ ♦✉ts✐❞❡ t❤❡ ✐♥t❡r✈❛❧ (−1, 1)✳ ❊①❛♠♣❧❡ ✺✳✶✶✳✼✿ ❡①♣♦♥❡♥t✐❛❧
▲❡t✬s ❝♦♥✜r♠ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ❚❛②❧♦r s❡r✐❡s ❢♦r f (x) = ex ❝❡♥t❡r❡❞ ❛t a = 0✳ ❲❡ ❦♥♦✇ t❤❛t t❤✐s ✐s ❛ ♣♦✇❡r s❡r✐❡s ✇✐t❤ cn =
❚❤❡♥✱
1 . n!
cn+1 n! 1 = lim 1/(n + 1)! = lim = lim = 0 . c = lim n→∞ (n + 1)! n→∞ n n→∞ n→∞ cn 1/n!
❚❤❡ s❡r✐❡s ❝♦♥✈❡r❣❡s ❢♦r ❛❧❧ x✳ ❙♦✱ (−∞, +∞) ✐s t❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ❜② t❤❡ s❡r✐❡s✳ ◆❡①t✱ t❤❡r❡ ✐s ❛♥♦t❤❡r ✇❛② t♦ ❡①tr❛❝t t❤❡ r❛t✐♦ r ❢r♦♠ ❛ ❣❡♦♠❡tr✐❝ s❡r✐❡s an = rn ✿ r=
√ n
an .
■♥ ❝♦♥tr❛st t♦ t❤❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s✱ t❤✐s ♥✉♠❜❡r ❞❡♣❡♥❞s ♦♥ n✳ ❇✉t ✐ts ❧✐♠✐t ❞♦❡s ♥♦t✦ ❆♥❛❧♦❣♦✉s❧② t♦ t❤❡ ❘❛t✐♦ ❚❡st✱ t❤❡ s❡r✐❡s ❡①❤✐❜✐ts t❤❡ s❛♠❡ ❝♦♥✈❡r❣❡♥❝❡ ♣❛tt❡r♥ ❛s t❤❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s ✇✐t❤ t❤❡ r❛t✐♦ ❡q✉❛❧ t♦ t❤✐s ❧✐♠✐t✿ ❚❤❡♦r❡♠ ✺✳✶✶✳✽✿ ❘♦♦t ❚❡st
❙✉♣♣♦s❡ an ✐s ❛ s❡q✉❡♥❝❡✳ ❙✉♣♣♦s❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ❧✐♠✐t ❡①✐sts✱ ❛s ❛ ♥✉♠❜❡r ♦r ❛s ✐♥✜♥✐t②✿ r = lim
n→∞
p n
|an |
❚❤❡♥✱ ✇❡ ❤❛✈❡✿ X ✶✳ ■❢ r < 1✱ t❤❡♥ an ❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧②✳ ✷✳ ■❢ r > 1✱ t❤❡♥
X
an ❞✐✈❡r❣❡s✳
■❢ r = 1 ♦r t❤❡ ❧✐♠✐t ❞♦❡s♥✬t ❡①✐st✱ t❤❡ t❡st ❢❛✐❧s✳ Pr♦♦❢✳
❙✉♣♣♦s❡✱ ❢♦r ❛ s❡q✉❡♥❝❡ ✇✐t❤ ♣♦s✐t✐✈❡ t❡r♠s✱ ✇❡ ❤❛✈❡✿ r = lim
n→∞
r n
an . a0
✺✳✶✶✳
❚❤❡ ❘❛t✐♦ ❚❡st ❛♥❞ t❤❡ ❘♦♦t ❚❡st
✹✷✵
❚❤❡♥✱ ❢r♦♠ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ ❧✐♠✐t✱ ✇❡ ❝♦♥❝❧✉❞❡✿ r n
an < R ❢♦r ❛❧❧ n ≥ N , a0
❢♦r s♦♠❡ N ❛♥❞ ❛♥② R > r✳ ❚❤❡r❡❢♦r❡✱
an < Rn a0 ❢♦r ❛❧❧ n ≥ N .
❲❡ t❤✉s ❤❛✈❡ ❛ ❝♦♠♣❛r✐s♦♥ ♦❢ ♦✉r s❡r✐❡s ❛♥❞ t❤❡ ❣❡♦♠❡tr✐❝ X s❡r✐❡s ✇✐t❤ r❛t✐♦ R✳ ❚❤❡ ❧❛tt❡r ❝♦♥✈❡r❣❡s ✇❤❡♥ R < 1 ❛♥❞ t❤❡♥✱ ❜② t❤❡ ❈♦♠♣❛r✐s♦♥ ❚❡st✱ s♦ ❞♦❡s an ✳ ❙✐♥❝❡ R ✐s ❛♥② ♥✉♠❜❡r ❛❜♦✈❡ R✱ t❤✐s ❝♦♥❞✐t✐♦♥ ✐s ❡q✉✐✈❛❧❡♥t t♦ r < 1✳
❊①❡r❝✐s❡ ✺✳✶✶✳✾ ❈♦♠♣❧❡t❡ t❤❡ ♣r♦♦❢ ♦❢ t❤❡ t❤❡♦r❡♠✳
❊①❡r❝✐s❡ ✺✳✶✶✳✶✵ X n ✳ 2n
❊①❛♠✐♥❡ t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ s❡r✐❡s
❊①❡r❝✐s❡ ✺✳✶✶✳✶✶
❲❤❛t ✐s t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ t✇♦ ❧✐♠✐ts ✐♥ t❤❡ t✇♦ t❤❡♦r❡♠s❄
❊①❛♠♣❧❡ ✺✳✶✶✳✶✷✿ r❡❝✉rs✐✈❡❧② ❞❡✜♥❡❞ s❡q✉❡♥❝❡s ❚❤❡ ❘♦♦t ❚❡st r❡q✉✐r❡s t❤❡ nt❤ t❡r♠ s❡q✉❡♥❝❡ t♦ ❜❡ ❦♥♦✇♥✦ ■♥ ❝♦♥tr❛st✱ t❤❡ ❘❛t✐♦ ❚❡st ❝❛♥ ❜❡ ❛♣♣❧✐❡❞ t♦ s❡q✉❡♥❝❡s ❞❡✜♥❡❞ r❡❝✉rs✐✈❡❧②✳ ❋♦r ❡①❛♠♣❧❡✱ ❧❡t an+1 = an ·
2n + 1 . 3n + 1
❚❤❡r❡ ✐s ♥♦ ❞✐r❡❝t ❢♦r♠✉❧❛ ❜✉t ✐ts ❝♦♥✈❡r❣❡♥❝❡ ✐s ♣r♦✈❡♥ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♠♣✉t❛t✐♦♥✿ 2n + 1 2 an+1 = → < 1. an 3n + 1 3
❚❤❡ s❡r✐❡s ❝♦♥✈❡r❣❡s✳ ▲❡t✬s ❝♦♥s✐❞❡r ❛ ♣♦✇❡r
s❡r✐❡s ❛❣❛✐♥✿
X
cn (x − a)n .
❚❤❡♥ t❤❡ t❤❡♦r❡♠ ❛♣♣❧✐❡s t♦ t❤✐s ♥✉♠❡r✐❝❛❧ s❡q✉❡♥❝❡✿
an = cn (x − a)n ,
❛s ❢♦❧❧♦✇s✿ r(x) = lim
n→∞
p p n |cn (x − a)n | = |x − a| lim n |cn | . n→∞
❚❤❡♥ ✐t ❝♦♥✈❡r❣❡s ❢♦r t❤♦s❡ ✈❛❧✉❡s ♦❢ x ❢♦r ✇❤✐❝❤ ✇❡ ❤❛✈❡✿ |x − a|
1✳
✺✳✶✷✳
P♦✇❡r s❡r✐❡s
✹✷✸
❊①❡r❝✐s❡ ✺✳✶✷✳✹ Pr♦✈❡ t❤❡ st❛t❡♠❡♥ts ✐♥ t❤❡ ❧❛st s❡♥t❡♥❝❡✳
❊①❡r❝✐s❡ ✺✳✶✷✳✺ ❙❦❡t❝❤ t❤❡ ❞✐✈❡r❣❡♥❝❡ ❛t x = −1 ❛♥❞ x = 1✳
❲❛r♥✐♥❣✦ ❚❤❡s❡ ❛r❡ t✇♦ ❞✐✛❡r❡♥t ❢✉♥❝t✐♦♥s✿ 1 + x + x2 + x3 + ... ❛♥❞
1 . 1−x
❚❤❡ r❡❣✐♦♥s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ❤❛✈❡ ❜❡❡♥ ✐♥t❡r✈❛❧s ♦❢ ❛ s♣❡❝✐❛❧ ❦✐♥❞✿
❚❤❡② ❛r❡ ❝❡♥t❡r❡❞ ♦♥ a✳ ❚❤❡ ✇❤♦❧❡ ❧✐♥❡ ✐s ❛ ♣♦ss✐❜✐❧✐t②✳ ❚❤❡ r❡st ❛r❡ ✜♥✐t❡✳ ❚❤♦s❡ ✐♥t❡r✈❛❧s ❤❛✈❡ ❡♥❞✲♣♦✐♥ts✳ ❇♦t❤✱ ♦♥❡✱ ♦r ♥❡✐t❤❡r ♠❛② ❜❡❧♦♥❣ t♦ t❤❡ ❞♦♠❛✐♥✳ ❆ s✐♥❣❧❡ ♣♦✐♥t ✐s ❛❧s♦ ❛ ♣♦ss✐❜✐❧✐t②✳ ❲❡ ✇✐❧❧ ♥❡❡❞ t❤❡ ❢♦❧❧♦✇✐♥❣ t❡r♠✐♥♦❧♦❣②✿
❉❡✜♥✐t✐♦♥ ✺✳✶✷✳✻✿ ✐♥t❡r✐♦r ♦❢ ✐♥t❡r✈❛❧ [a, b]
❚❤❡
✐♥t❡r✐♦r ♦❢
[a, b) (a, b]
✇✐t❤ a < b ✐s (a, b)✳
(a, b)
❚❤❡
✐♥t❡r✐♦r ♦❢ (−∞, +∞) ✐s (−∞, +∞)✳
❇❡❧♦✇ ✐s ❛ ❝♦♠♣❛❝t s✉♠♠❛r② ♦❢ t❤❡ r❡s✉❧t ❛❜♦✈❡✿
❚❤❡♦r❡♠ ✺✳✶✷✳✼✿ ■♥t❡r✈❛❧ ♦❢ ❈♦♥✈❡r❣❡♥❝❡ ✶✳ ❚❤❡ ❞♦♠❛✐♥ ♦❢ ❛ ♣♦✇❡r s❡r✐❡s ❝❡♥t❡r❡❞ ❛t
x
✐s ❛♥ ✐♥t❡r✈❛❧ ❝❡♥t❡r❡❞ ❛t
a✳
✷✳ ❚❤❡ ❝♦♥✈❡r❣❡♥❝❡ ✐s ❛❜s♦❧✉t❡ ✐♥ t❤❡ ✐♥t❡r✐♦r ♦❢ t❤❡ ✐♥t❡r✈❛❧ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✳ ✸✳ ❚❤❡ ❝♦♥✈❡r❣❡♥❝❡ ✐s ✉♥✐❢♦r♠ ♦♥ ❛♥② ❝❧♦s❡❞ ✐♥t❡r✈❛❧ ✐♥ t❤❡ ✐♥t❡r✐♦r ♦❢ t❤❡ ✐♥t❡r✈❛❧ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✳
Pr♦♦❢✳ ❋♦r s✐♠♣❧✐❝✐t②✱ ✇❡ ❛ss✉♠❡ t❤❛t a = 0✳ ■❢ t❤❡ ♦♥❧② ❝♦♥✈❡r❣❡♥t ✈❛❧✉❡ ✐s x = 0✱ ✇❡ ❛r❡ ❞♦♥❡❀ t❤❛t✬s t❤❡ ✐♥t❡r✈❛❧✳ ❙✉♣♣♦s❡ ♥♦✇ t❤❛t t❤❡r❡ ✐s ❛♥♦t❤❡r ✈❛❧✉❡✱ x = b 6= 0✱ ✐✳❡✳✱ ∞ X n=0
cn bn ❝♦♥✈❡r❣❡s✳
✺✳✶✷✳
P♦✇❡r s❡r✐❡s
✹✷✹
❚❤❡♥✱ ❜② t❤❡ ❉✐✈❡r❣❡♥❝❡
❚❡st✱ ✇❡ ❤❛✈❡
❛♥❞✱ ✐♥ ♣❛rt✐❝✉❧❛r✱
cn bn → 0 ,
|cn bn | ≤ M ❢♦r s♦♠❡ M .
❚❤❡r❡❢♦r❡✱ ✇❡ ❝❛♥ ❡st✐♠❛t❡ ♦✉r s❡r✐❡s ❛s ❢♦❧❧♦✇s✿
x n x n |cn x | ≤ |cn b | ≤ M . b b n
n
❚❤❡ ❧❛st s❡q✉❡♥❝❡ ✐s ❛ ❣❡♦♠❡tr✐❝ ♣r♦❣r❡ss✐♦♥ ❛♥❞ ✐ts s❡r✐❡s ❝♦♥✈❡r❣❡s ✇❤❡♥❡✈❡r |x/b| < 1✱ ♦r |x| < |b|✳ ❚❤❡r❡❢♦r❡✱ ❜② t❤❡ ❉✐r❡❝t ❈♦♠♣❛r✐s♦♥ ❚❡st✱ ♦✉r s❡r✐❡s ❝♦♥✈❡r❣❡s ❛❜s♦❧✉t❡❧② ❢♦r ❡✈❡r② x ✐♥ t❤❡ ✐♥t❡r✈❛❧ (−|b|, |b|)✳ ❲❡ ❝♦♥❝❧✉❞❡ t❤❛t ❛♥② t✇♦ ♣♦✐♥ts ✐♥ t❤❡ ❞♦♠❛✐♥ ♣r♦❞✉❝❡ ❛♥ ✐♥t❡r✈❛❧ t❤❛t ❧✐❡s ❡♥t✐r❡❧② ✐♥s✐❞❡ t❤❡ ❞♦♠❛✐♥✳ ❲❡ ♣r♦✈❡❞ ✐♥ ❈❤❛♣t❡r ✷❉❈✲✶ t❤❛t t❤✐s ♣r♦♣❡rt② ✐s ❡q✉✐✈❛❧❡♥t t♦ t❤❛t ♦❢ ❜❡✐♥❣ ❛♥ ✐♥t❡r✈❛❧✳ ■♥ t❤❡ ♣r♦♦❢✱ ✇❡ ❝❛♥ s❡❡ t❤❛t t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ✐s ❛❧s♦ ❛❜s♦❧✉t❡✳ ❋♦r t❤❡ ❧❛st ♣❛rt✱ ✇❡ ♠♦❞✐❢② t❤❡ ❛❜♦✈❡ ♣r♦♦❢ s❧✐❣❤t❧②✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ♥✉♠❜❡r p ✇✐t❤ 1 < p < 1✳ ❚❤❡♥✱ ❢♦r ❛♥② x ✐♥ t❤❡ ✐♥t❡r✈❛❧ [−p|b|, p|b|]✱ ✇❡ ❤❛✈❡ ❛ ❝♦♠♣❛r✐s♦♥ ♦❢ ♦✉r s❡r✐❡s ✇✐t❤ ❛ ❣❡♦♠❡tr✐❝ ♣r♦❣r❡ss✐♦♥ ✐♥❞❡♣❡♥❞❡♥t ♦❢ x✿ x n p|b| n |x| n ≤M ≤ M pn . |cn xn | ≤ M ≤ M b |b| |b|
❉❡✜♥✐t✐♦♥ ✺✳✶✷✳✽✿ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡
❚❤❡ ♠✐♥✐♠❛❧ ❞✐st❛♥❝❡ R ✭t❤❛t ❝♦✉❧❞ ❜❡ ✐♥✜♥✐t❡✮ ❢r♦♠ a t♦ t❤❡ ♣♦✐♥t ❢♦r ✇❤✐❝❤ t❤❡ s❡r✐❡s ❞✐✈❡r❣❡s ✐s ❝❛❧❧❡❞ t❤❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ♣♦✇❡r s❡r✐❡s ❝❡♥t❡r❡❞ ❛t a✳ ❚❤✐s ❞❡✜♥✐t✐♦♥ ✐s ❧❡❣✐t✐♠❛t❡ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❊①✐st❡♥❝❡
♦❢ sup ❚❤❡♦r❡♠ ❢r♦♠ ❈❤❛♣t❡r ✷❉❈✲✶✳
■❢ R ✐s t❤❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡✱ t❤❡♥ t❤❡ ❧❡♥❣t❤ ♦❢ t❤❡ ❞♦♠❛✐♥ ✐♥t❡r✈❛❧ ✐s 2R ✭✇❡ ✇✐❧❧ s❡❡ ✐♥ ❱♦❧✉♠❡ ✺ t❤❛t t❤❡r❡ ✐s✱ ✐♥ ❢❛❝t✱ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s R✮✳ ❚❤❡s❡ ❛r❡ t❤❡ t❤r❡❡ ♣♦ss✐❜✐❧✐t✐❡s✿
❲❡ ♠❛❦❡ t❤❡ ❧❛st t❤❡♦r❡♠ ♠♦r❡ s♣❡❝✐✜❝ ❜❡❧♦✇✿
❚❤❡♦r❡♠ ✺✳✶✷✳✾✿ ❘❛❞✐✉s ♦❢ ❈♦♥✈❡r❣❡♥❝❡ ♦❢ P♦✇❡r ❙❡r✐❡s ❙✉♣♣♦s❡
R
✐s t❤❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❛ ♣♦✇❡r s❡r✐❡s✿
∞ X n=0
cn (x − a)n .
❚❤❡♥✱ ✇❡ ❤❛✈❡✿ ✶✳ ❲❤❡♥
R = ∞✱
t❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ s❡r✐❡s ✐s
(−∞, +∞)✳
✺✳✶✷✳
P♦✇❡r s❡r✐❡s
✹✷✺ R < ∞✱ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ s❡r✐❡s ✐s ❛♥ ✐♥t❡r✈❛❧ a − R ❛♥❞ a + R ✭♣♦ss✐❜❧② ✐♥❝❧✉❞❡❞ ♦r ❡①❝❧✉❞❡❞✮✳ ❲❤❡♥ R = 0✱ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ s❡r✐❡s ✐s {a}✳
✷✳ ❲❤❡♥ ✸✳
✇✐t❤ t❤❡ ❡♥❞✲♣♦✐♥ts
❊①❡r❝✐s❡ ✺✳✶✷✳✶✵
●✐✈❡ ❛♥ ❡①❛♠♣❧❡ ❢♦r ❝❛s❡ ✸✳ ▲❡t✬s ❛ss✐❣♥ ❞♦♠❛✐♥s t♦ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥s ❡st❛❜❧✐s❤❡❞ ♣r❡✈✐♦✉s❧②✿ s❡r✐❡s ∞ X
✐ts s✉♠
xn
=
n=0
∞ X 1 n x n! n=0 ∞ X (−1)k k=0
(2k + 1)!
∞ X (−1)k k=0
(2k)!
✐ts ❞♦♠❛✐♥
1 (−1, 1) 1−x
= ex
(−∞, +∞)
x2k+1 = sin x
(−∞, +∞)
= cos x
(−∞, +∞)
x2k
❊①❡r❝✐s❡ ✺✳✶✷✳✶✶
Pr♦✈❡ t❤❡ ❧❛st t✇♦✳ ❍✐♥t✿ ❙t❛rt ✇✐t❤ t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s✳ ❚❤❡ ♠❛✐♥ ♠❡t❤♦❞ ♦❢ ✜♥❞✐♥❣ ❛ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✐s ✐ts ❚❛②❧♦r ❛r❡ ✐♥❞✐r❡❝t✳
s❡r✐❡s✳ ❖t❤❡r ♠❡t❤♦❞s
❊①❛♠♣❧❡ ✺✳✶✷✳✶✷✿ ♣♦✇❡r s❡r✐❡s ✈✐❛ s✉❜st✐t✉t✐♦♥
❙♦♠❡t✐♠❡s ✇❡ ❝❛♥ ✜♥❞ t❤❡ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ ❢✉♥❝t✐♦♥ ❜② ✐♥❣❡♥✐♦✉s❧② ❛♣♣❧②✐♥❣ t❤❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❣❡♦♠❡tr✐❝ s❡r✐❡s✱ ❜❛❝❦✇❛r❞✿ ∞
X 1 = rn , ❢♦r |r| < 1 . 1 − r n=0
❲❡ ❤❛✈❡ ✉s❡❞ t❤✐s ✐❞❡❛ t♦ ✜♥❞ t❤❡ ❢♦❧❧♦✇✐♥❣ r❡♣r❡s❡♥t❛t✐♦♥✿ ∞
X 1 = xn . 1 − x n=0
◆♦✇✱ t❤❡ ❢✉♥❝t✐♦♥ f (x) =
1 1 − x2
✐s r❡❝♦❣♥✐③❡❞ ❛s t❤❡ ❧❡❢t✲❤❛♥❞ s✐❞❡ ♦❢ t❤❡ ✜rst ❢♦r♠✉❧❛ ✇✐t❤ r = x2 ✳ ❚❤❡r❡❢♦r❡✱ ✇❡ ❝❛♥ s✐♠♣❧② ✇r✐t❡ ✐t ❛s ❛ ♣♦✇❡r s❡r✐❡s ✭✇✐t❤ ♦♥❧② ❡✈❡♥ t❡r♠s✮✿ ∞
∞
X X 1 2 n = (x ) = x2n . 1 − x2 n=0 n=0
✺✳✶✷✳
P♦✇❡r s❡r✐❡s
✹✷✻
❙✐♠✐❧❛r❧②✱ ✇❡ ❝❤♦♦s❡ r = x3 ✱ ❛❢t❡r ❢❛❝t♦r✐♥❣✱ ❜❡❧♦✇✿ ∞ ∞ X X 1 x 3 n =x =x (x ) = x3n+1 . 1 − x3 1 − x3 n=0 n=0
❖♥❡ ♠♦r❡ ✭r = 2x✮✿
∞
∞
X X 1 = (2x)n = 2 n · xn . 1 − 2x n=0 n=0
❚❤❡ ❝❡♥t❡r ♦❢ ❛ s❡r✐❡s ❝♦♥str✉❝t❡❞ t❤✐s ✇❛② ♠❛② ❜❡ ❡❧s❡✇❤❡r❡✿ ∞
∞
X X 1 1 = = (1 − x)n = (−1)(x − 1)n . x 1 − (1 − x) n=0 n=0
❚❤✐s ♠❡t❤♦❞ ❛♠♦✉♥ts t♦ ❛ ❝❤❛♥❣❡
♦❢ ✈❛r✐❛❜❧❡s✳
❊①❡r❝✐s❡ ✺✳✶✷✳✶✸
❋✐♥❞ t❤❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ❢♦r ❡❛❝❤ ♦❢ t❤❡s❡ ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ ❛❜♦✈❡ t❡r♠✐♥♦❧♦❣② s✐♠♣❧✐✜❡s t❤❡ t✇♦ r❡s✉❧ts ❡st❛❜❧✐s❤❡❞ ♣r❡✈✐♦✉s❧②✳ ❚❤❡♦r❡♠ ✺✳✶✷✳✶✹✿ ❘❛t✐♦ ❛♥❞ ❘♦♦t ❚❡sts ❢♦r P♦✇❡r ❙❡r✐❡s
❙✉♣♣♦s❡ cn ✐s ❛ s❡q✉❡♥❝❡ ✇✐t❤ ♥♦♥✲③❡r♦ t❡r♠s✳ ❙✉♣♣♦s❡ ♦♥❡ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ t✇♦ ❧✐♠✐ts ❡①✐sts✱ ❛s ❛ ♥✉♠❜❡r ♦r ❛s ✐♥✜♥✐t②✿ cn 1 ♦r R = p R = lim . n→∞ cn+1 limn→∞ n |cn |
❚❤❡♥✱ R ✐s t❤❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ ♣♦✇❡r s❡r✐❡s ∞ X n=0
cn (x − a)n .
❊①❛♠♣❧❡ ✺✳✶✷✳✶✺✿ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡
▲❡t✬s ❝♦♥s✐❞❡r ❋♦❧❧♦✇✐♥❣ t❤❡ ❘❛t✐♦
X xn n
.
❚❡st✱ ✇❡ ♥❡❡❞ t♦ ❝♦♠♣✉t❡ t❤❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ❛s t❤❡ ❢♦❧❧♦✇✐♥❣ ❧✐♠✐t✿ 1/n = lim n + 1 = 1 . R = lim n→∞ 1/(n + 1) n→∞ n
❚❤❡r❡❢♦r❡✱ t❤❡ ✐♥t❡r✐♦r ♦❢ t❤❡ ❞♦♠❛✐♥ ✐s (−1, 1)✳ ◆♦✇ t❤❡ ❡♥❞✲♣♦✐♥ts✿ x=1
=⇒
x = −1 =⇒
X xn
n X xn n
X1 ✐s t❤❡ ❞✐✈❡r❣❡♥t ❤❛r♠♦♥✐❝ s❡r✐❡s. n X (−1)n = ✐s t❤❡ ❝♦♥✈❡r❣❡♥t ❛❧t❡r♥❛t✐♥❣ ❤❛r♠♦♥✐❝ s❡r✐❡s. n X =
❚❤❡r❡❢♦r❡✱ t❤❡ ❞♦♠❛✐♥ ✐s [−1, 1)✳ ❲❡ ❤❛✈❡ ♦♥❡ ♠♦r❡ ♣♦✐♥t ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ✐♥ ❝♦♠♣❛r✐s♦♥ t♦ ❆ ❣✐✈❡♥ ♣♦✇❡r s❡r✐❡s ♣r♦❞✉❝❡s ❛ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ♦♥ ✐ts ❞♦♠❛✐♥✳ ❇❡❝❛✉s❡ ♦❢ t❤❡
xn ✳
❯♥✐q✉❡♥❡ss ♦❢ t❤❡ ❙✉♠ ♦❢
✺✳✶✷✳ P♦✇❡r s❡r✐❡s
✹✷✼
❙❡r✐❡s✱ ✐t ❝❛♥✬t ♣r♦❞✉❝❡ t✇♦✦ ▲❡t✬s ❧♦♦❦ ❛t t❤✐s ✐❞❡❛ ❢r♦♠ t❤❡ ♦t❤❡r ❞✐r❡❝t✐♦♥✿ ◮ ❈❛♥ ❛ ❢✉♥❝t✐♦♥ ❤❛✈❡ t✇♦ ❞✐✛❡r❡♥t r❡♣r❡s❡♥t❛t✐♦♥s ❜② ❛ ♣♦✇❡r s❡r✐❡s❄
❚❤❡ ✐ss✉❡ ✐s ❤❛♥❞❧❡❞ ✐♥ t❤❡ ♠❛♥♥❡r t❤❛t ✇♦✉❧❞ ❛♣♣❧② t♦ ♣♦❧②♥♦♠✐❛❧s✳ ❊①❛♠♣❧❡ ✺✳✶✷✳✶✻✿ st❛♥❞❛r❞ ❢♦r♠ ♦❢ ♣♦❧②♥♦♠✐❛❧s
❚❤❡r❡ ✐s t❤❡ st❛♥❞❛r❞ ✇❛② t♦ r❡♣r❡s❡♥t t❤❡♠✳ ❋♦r ❡①❛♠♣❧❡✱ x + x = 2x ✐s ❞✐s❝♦✈❡r❡❞ t♦ ❜❡ ❛ s✐♥❣❧❡ r❡♣r❡s❡♥t❛t✐♦♥ ♦♥❝❡ ✇❡ ❝❤♦♦s❡ t♦ ❝♦♠❜✐♥❡ t❤❡ s✐♠✐❧❛r t❡r♠s✳ ▲❡t✬s ❝♦♥s✐❞❡r ❛ ❧✐♥❡❛r ❢✉♥❝t✐♦♥❀ s✉♣♣♦s❡ l(x) = mx + b = nx + c ❢♦r ❡❛❝❤ x .
❙✐♥❝❡ ❛ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ ❝❛♥ ♦♥❧② ❤❛✈❡ ♦♥❡ s❧♦♣❡ ❛♥❞ ♦♥❡ y ✲✐♥t❡r❝❡♣t✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t m = n ❛♥❞ b = c✳ ❚❤❡r❡ ✐s ♦♥❧② ♦♥❡ r❡♣r❡s❡♥t❛t✐♦♥✦ ▲❡t✬s ❝♦♥s✐❞❡r ❛ q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧❀ s✉♣♣♦s❡ p(x) = ax2 + bx + c = dx2 + ex + f ❢♦r ❡❛❝❤ x .
❉♦ t❤❡s❡ ❝♦❡✣❝✐❡♥ts ❤❛✈❡ t♦ ❜❡ t❤❡ s❛♠❡❄ ❆❣❛✐♥✱ ✇❡ ♥♦t✐❝❡ t❤❛t c ✐s t❤❡ y ✲✐♥t❡r❝❡♣t✱ ❛♥❞ s♦ ✐s f ✳ ❚❤❡② ♠✉st ❜❡ ❡q✉❛❧ ✐❢ t❤✐s ✐s t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥✦ ❲❡ ❝❛♥ ✐♥t❡r♣r❡t t❤✐s ❣❡♦♠❡tr✐❝ ♦❜s❡r✈❛t✐♦♥ ❛❧❣❡❜r❛✐❝❛❧❧②✳ ❲❡ ❥✉st ♣❧✉❣ ✐♥ x = 0 ✐♥t♦ t❤❡ ❡q✉❛t✐♦♥✿ p(0) = a02 + b0 + c = d02 + e0 + f =⇒ c = f .
❲❡ ❝❛♥ ♥♦✇ ❝❛♥❝❡❧ t❤❡s❡ ❢r♦♠ t❤❡ ❡q✉❛t✐♦♥ ❢♦r p✿ p(x) = ax2 + bx + c = dx2 + ex + f =⇒ ax2 + bx = dx2 + ex =⇒ x(ax + b) = x(dx + e) .
❙✐♥❝❡ ✐t ❤♦❧❞s ❢♦r ❛❧❧ x✱ ✇❡ ❝♦♥❝❧✉❞❡ t❤❛t ✇❡ ❤❛✈❡ t✇♦ ❡q✉❛❧ ❧✐♥❡❛r ❢✉♥❝t✐♦♥s✿ ax + b = dx + e .
■t ❢♦❧❧♦✇s t❤❛t a = d ❛♥❞ b = e ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❛❜♦✈❡ ❛♥❛❧②s✐s✳ ❲❡ ❝❛♥ ❝♦♥t✐♥✉❡ ♦♥ ✇✐t❤ ❤✐❣❤❡r ❛♥❞ ❤✐❣❤❡r ❞❡❣r❡❡s✳ ❚❤❡ ❣❡♥❡r❛❧ r❡s✉❧t ✐s ❜❡❧♦✇✳ ❚❤❡♦r❡♠ ✺✳✶✷✳✶✼✿ ❯♥✐q✉❡♥❡ss ♦❢ P♦❧②♥♦♠✐❛❧ ❘❡♣r❡s❡♥t❛t✐♦♥
■❢ t✇♦ ♣♦❧②♥♦♠✐❛❧s ❛r❡ ❡q✉❛❧✱ t❤❡♥ t❤❡✐r ❝♦rr❡s♣♦♥❞✐♥❣ ❝♦❡✣❝✐❡♥ts ✐♥ t❤❡ st❛♥❞❛r❞ ❝❡♥t❡r❡❞ ❢♦r♠ ❛r❡ ❡q✉❛❧ t♦♦✱ ✐✳❡✳✱ N X n=0
=⇒
cn (x − a) cn
N
=
N X n=0
=
dn (x − a)n dn
❢♦r ❛❧❧ x ❢♦r ❛❧❧ n = 0, 1, 2, 3, ..., N
Pr♦♦❢✳
❚❤❡ ♣r♦♦❢ ✐s ❜② ✐♥❞✉❝t✐♦♥ ♦✈❡r t❤❡ ❞❡❣r❡❡ N ✳ ❚❤❡ tr✐❝❦ ❝♦♥s✐sts ♦❢ ❛ s✉❜st✐t✉t✐♦♥ x = a ✐♥t♦ t❤✐s ❢♦r♠✉❧❛❀ ❛❧❧ t❡r♠s ✇✐t❤ (x − a) ❞✐s❛♣♣❡❛r✿ c0 = d 0 .
✺✳✶✸✳ ❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✷✽
◆♦✇ t❤❡s❡ t✇♦ t❡r♠s ❛r❡ ❝❛♥❝❡❧❡❞ ❢r♦♠ ♦✉r ❡q✉❛t✐♦♥✱ ♣r♦❞✉❝✐♥❣✿ N X n=1
n
cn (x − a) =
N X n=1
dn (x − a)n .
❆s ②♦✉ ❝❛♥ s❡❡✱ t❤❡ s✉♠♠❛t✐♦♥ st❛rts ✇✐t❤ n = 1 ♥♦✇✳ ❚❤❡ ♣♦✇❡r ♦❢ (x − a) ✐♥ ❡✈❡r② t❡r♠ ✐s t❤❡♥ ❛t ❧❡❛st 1✳ ❲❡ ❝❛♥ ♥♦✇ ❢❛❝t♦r ♦✉t (x − a)✱ ♣r♦❞✉❝✐♥❣✿ (x − a)
N X
(x − a)
N −1 X
♦r
n=1
k=0
cn (x − a)n−1 = (x − a)
k
ck+1 (x − a) = (x − a)
N X
dn (x − a)n−1 ,
N −1 X
dk+1 (x − a)k .
n=1
k=0
❙✐♥❝❡ t❤✐s ❤♦❧❞s ❢♦r ❛❧❧ x✱ t❤❡ ♣♦❧②♥♦♠✐❛❧s ✐♥ ♣❛r❡♥t❤❡s❡s ✭♦❢ ❞❡❣r❡❡ N − 1✮ ❛r❡ ❡q✉❛❧✳ ❚❤❡② ♠✉st ❤❛✈❡ ❡q✉❛❧ ❝♦❡✣❝✐❡♥ts ❜② t❤❡ ✐♥❞✉❝t✐✈❡ ❛ss✉♠♣t✐♦♥✳ ❚❤❡ ✐❞❡❛ ❛♣♣❧✐❡s ✭❜✉t ♥♦t t❤❡ ♣r♦♦❢✱ t♦ ❜❡ ♣r♦✈✐❞❡❞ ✐♥ t❤❡ ♥❡①t s❡❝t✐♦♥✮ t♦ ♣♦✇❡r s❡r✐❡s✿ ❚❤❡♦r❡♠ ✺✳✶✷✳✶✽✿ ❯♥✐q✉❡♥❡ss ♦❢ P♦✇❡r ❙❡r✐❡s ❘❡♣r❡s❡♥t❛t✐♦♥
■❢ t✇♦ ♣♦✇❡r s❡r✐❡s ❛r❡ ❡q✉❛❧✱ ❛s ❢✉♥❝t✐♦♥s✱ ♦♥ ❛♥ ♦♣❡♥ ✐♥t❡r✈❛❧✱ t❤❡♥ t❤❡✐r ❝♦r✲ r❡s♣♦♥❞✐♥❣ ❝♦❡✣❝✐❡♥ts ❛r❡ ❡q✉❛❧ t♦♦✱ ✐✳❡✳✱ ∞ X n=0
=⇒
cn (x − a) cn
n
∞ X
=
n=0
=
dn (x − a)n dn
❢♦r ❛❧❧ a − r < x < a + r, ❢♦r ❛❧❧ n = 0, 1, 2, 3, ...
r>0
❲❛r♥✐♥❣✦ ❚❤❡ t❤❡♦r❡♠ ❞♦❡s♥✬t ❢♦❧❧♦✇ ❢r♦♠ t❤❡ ❧❛st ❜❡❝❛✉s❡ t❤❡ ❢❛❝t t❤❛t t✇♦ ❧✐♠✐ts ❛r❡ ❡q✉❛❧ ❞♦❡s♥✬t ✐♠♣❧② t❤❛t s♦ ❛r❡ t❤❡ s❡q✉❡♥❝❡s✳
✺✳✶✸✳ ❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
■s t❤❡r❡ ❛ r❡❛s♦♥ t♦ st✉❞② ♣♦✇❡r s❡r✐❡s ❜❡s✐❞❡s ❛s ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ ❢✉♥❝t✐♦♥s❄ ❙✉♣♣♦s❡ t❤❡ ❝❡♥t❡r a ✐s ❣✐✈❡♥✳ ❚❤❡♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ✐t❡♠s ❝r❡❛t❡ ❛ ❢✉♥❝t✐♦♥✱ f ✿ ✶✳ ❚❤❡r❡ ✐s ❛ s❡q✉❡♥❝❡ ♦❢ ♥✉♠❜❡rs✱ c0 , c1 , c2 , ...
✷✳ ❋♦r ❡❛❝❤ ✐♥♣✉t x✱ ✐ts ✈❛❧✉❡ ✉♥❞❡r t❤✐s ❢✉♥❝t✐♦♥ ✐s ❝♦♠♣✉t❡❞ ❜② s✉❜st✐t✉t✐♥❣ ✐t ✐♥t♦ ❛ ❢♦r♠✉❧❛✱ ❛ ♣♦✇❡r s❡r✐❡s ✇✐t❤ t❤❡ s❡q✉❡♥❝❡ s❡r✈✐♥❣ ❛s ✐ts ❝♦❡✣❝✐❡♥ts✿ f (x) =
∞ X n=0
cn (x − a)n .
✸✳ ❚❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✐s t❤❡ r❡❣✐♦♥ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ s❡r✐❡s✳
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✷✾
P♦✇❡r s❡r✐❡s ❛r❡ ❢✉♥❝t✐♦♥s✦ ❚❤❡r❡ ❛r❡ ♠❛② ❜❡ ♣♦✇❡r s❡r✐❡s ❢♦r ❡✈❡r② ♦❝❝❛s✐♦♥✱ ❜✉t ❛r❡ t❤❡② ❛s ❣♦♦❞ ❛s ❢✉♥❝t✐♦♥s❄ ❲❡ st❛rt ✇✐t❤
❛❧❣❡❜r❛✳
❏✉st ❛s ✇✐t❤ ❢✉♥❝t✐♦♥s ✐♥ ❣❡♥❡r❛❧✱ ✇❡ ❝❛♥ ❝❛rr② ♦✉t ✭s♦♠❡✮ ❛❧❣❡❜r❛✐❝ ♦♣❡r❛t✐♦♥s ♦♥ ♣♦✇❡r s❡r✐❡s✱ ♣r♦❞✉❝✐♥❣ ♥❡✇ ♣♦✇❡r s❡r✐❡s✳ ❍♦✇❡✈❡r✱ ✇❤❛t ✐s tr✉❧② ✐♠♣♦rt❛♥t ✐s t❤❛t ✇❡ ❝❛♥ ❞♦ t❤❡s❡ ♦♣❡r❛t✐♦♥s ✐❞❡❛ ❝♦♠❡s ❢r♦♠ ♦✉r ❡①♣❡r✐❡♥❝❡ ✇✐t❤
t❡r♠ ❜② t❡r♠✳
❚❤❡
♣♦❧②♥♦♠✐❛❧s ❀ ❛❢t❡r ❛❧❧ t❤❡ ♦♣❡r❛t✐♦♥s✱ ✇❡ ✇❛♥t t♦ ♣✉t t❤❡ r❡s✉❧t ✐♥ t❤❡
st❛♥❞❛r❞ ❢♦r♠✱ ✐✳❡✳✱ ✇✐t❤ ❛❧❧ t❡r♠s ❛rr❛♥❣❡❞ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ♣♦✇❡rs✳
❊①❛♠♣❧❡ ✺✳✶✸✳✶✿ ❛❧❣❡❜r❛ ♦❢ ♣♦❧②♥♦♠✐❛❧s ❛♥❞ ♣♦✇❡r s❡r✐❡s ❋✐rst✱ ✇❡ ❝❛♥ ❛❞❞ t✇♦ ♣♦❧②♥♦♠✐❛❧s ♦♥❡ t❡r♠ ❛t ❛ t✐♠❡✿
p(x)
=1
+2x
+3x2
q(x)
=7
+5x
−2x2
p(x) + q(x) = (1 + 7) +(2 + 5)x +(3 − 2)x2 ❲❡ ❦♥♦✇ t❤❛t ✇❡ ❝❛♥ ❛❧s♦ ❛❞❞ t✇♦ s❡r✐❡s ♦♥❡ t❡r♠ ❛t ❛ t✐♠❡ ✭✇❤❡♥ t❤❡② ❝♦♥✈❡r❣❡✮✿
p(x)
= c0
+c1 x
+c2 x2
+...
q(x)
= d0
+d1 x
+d2 x2
+...
p(x) + q(x) = (c0 + d0 ) +(c1 + d1 )x +(c2 + d2 )x2 +... ❙❡❝♦♥❞✱ ✇❡ ❝❛♥ ♠✉❧t✐♣❧② ❛ ♣♦❧②♥♦♠✐❛❧ ❜② ❛ ♥✉♠❜❡r ♦♥❡ t❡r♠ ❛t ❛ t✐♠❡✿
p(x)
=1
+2x
+3x2
2p(x) = (2 · 1) +(2 · 2)x +(2 · 3)x2 ❲❡ ❛❧s♦ ♠✉❧t✐♣❧② ❛ s❡r✐❡s ❜② ❛ ♥✉♠❜❡r ♦♥❡ t❡r♠ ❛t ❛ t✐♠❡ ✭✇❤❡♥ ✐t ❝♦♥✈❡r❣❡s✮✿
p(x)
= c0
+c1 x
+c2 x2
+...
kp(x) = (kc0 ) +(kc1 )x +(kc2 )x
2
+...
❚❤❡ ❝❛✈❡❛t ✏✇❤❡♥ t❤❡② ❝♦♥✈❡r❣❡✑ ❞✐s❛♣♣❡❛rs ✐❢ t❤❡ st❛rt✐♥❣ ♣♦✐♥t ✐s ❛ ❢✉♥❝t✐♦♥✱ ♥♦t ❛ s❡r✐❡s✳
❚❤❡ ❣❡♥❡r❛❧ r❡s✉❧t ✐s ❜❡❧♦✇✿
❚❤❡♦r❡♠ ✺✳✶✸✳✷✿ ❚❡r♠✲❜②✲❚❡r♠ ❆❧❣❡❜r❛ ♦❢ P♦✇❡r ❙❡r✐❡s
❙✉♣♣♦s❡ t✇♦ ❢✉♥❝t✐♦♥s ❛r❡ r❡♣r❡s❡♥t❡❞ ❜② ♣♦✇❡r s❡r✐❡s✿ f (x) =
∞ X
cn (x − a)n ❛♥❞ g(x) =
∞ X
cn (x − a)n +
n=0
∞ X n=0
dn (x − a)n .
❚❤❡♥ ✇❡ ❤❛✈❡✿ ✶✳ ❚❤❡ ❢✉♥❝t✐♦♥ f + g ✐s r❡♣r❡s❡♥t❡❞ ❜② t❤❡ ♣♦✇❡r s❡r✐❡s t❤❛t ✐s t❤❡ t❡r♠✲❜②✲ t❡r♠ s✉♠ ♦❢ t❤♦s❡ ♦❢ f ❛♥❞ g ✱ ❞❡✜♥❡❞ ♦♥ t❤❡ ✐♥t❡rs❡❝t✐♦♥ ♦❢ t❤❡✐r ❞♦♠❛✐♥s✿ (f + g)(x) =
n=0
∞ X n=0
dn (x − a)n =
∞ X n=0
(cn + dn )(x − a)n
✷✳ ❚❤❡ ❢✉♥❝t✐♦♥ kf ✱ ❢♦r ❛♥② ❝♦♥st❛♥t k ✱ ✐s r❡♣r❡s❡♥t❡❞ ❜② t❤❡ ♣♦✇❡r s❡r✐❡s t❤❛t
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✵
✐s t❤❡ t❡r♠✲❜②✲t❡r♠ ♣r♦❞✉❝t ♦❢ t❤❛t ♦❢ f ✱ ❞❡✜♥❡❞ ♦♥ t❤❡ s❛♠❡ ❞♦♠❛✐♥✿ (kf )(x) = k ·
∞ X n=0
cn (x − a)n =
∞ X n=0
(kcn )(x − a)n
Pr♦♦❢✳
❚❤❡ ✜rst ❝♦♥❝❧✉s✐♦♥ ✐s ❥✉st✐✜❡❞ ❜② t❤❡
❈♦♥st❛♥t ▼✉❧t✐♣❧❡ ❘✉❧❡ ❢♦r ❙❡r✐❡s✳
❙✉♠ ❘✉❧❡ ❢♦r ❙❡r✐❡s✳
❚❤❡ s❡❝♦♥❞ ❝♦♥❝❧✉s✐♦♥ ✐s ❥✉st✐✜❡❞ ❜② t❤❡
■♥ ♦t❤❡r ✇♦r❞s✱ t❤❡s❡ ✏✐♥✜♥✐t❡✑ ♣♦❧②♥♦♠✐❛❧s ❜❡❤❛✈❡ ❥✉st ❧✐❦❡ ♦r❞✐♥❛r② ♣♦❧②♥♦♠✐❛❧s✱ ✇❤❡r❡✈❡r t❤❡② ❝♦♥✈❡r❣❡✳ ◆❡①t ✐s ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞ ✐♥t❡❣r❛t✐♦♥✱ ✐✳❡✳✱
❝❛❧❝✉❧✉s✱ ♦❢ ♣♦✇❡r s❡r✐❡s✳
❲❡ ✇✐❧❧ s❡❡ t❤❛t✱ ❥✉st ❛s ✇✐t❤ ❢✉♥❝t✐♦♥s ✐♥ ❣❡♥❡r❛❧✱ ✇❡ ❝❛♥ ❝❛rr② ♦✉t t❤❡ ❝❛❧❝✉❧✉s ♦♣❡r❛t✐♦♥s ♦♥ ♣♦✇❡r s❡r✐❡s✱ ♣r♦❞✉❝✐♥❣ ♥❡✇ ♣♦✇❡r s❡r✐❡s✳ ❍♦✇❡✈❡r✱ ✇❤❛t ✐s tr✉❧② ✐♠♣♦rt❛♥t ✐s t❤❛t ✇❡ ❝❛♥ ❞♦ t❤❡s❡ ♦♣❡r❛t✐♦♥s
t❡r♠✳
❊①❛♠♣❧❡ ✺✳✶✸✳✸✿ ❝❛❧❝✉❧✉s ♦❢ ♣♦❧②♥♦♠✐❛❧s ❛♥❞ ♣♦✇❡r s❡r✐❡s
▲❡t✬s ❞✐✛❡r❡♥t✐❛t❡ ❛♥❞ ✐♥t❡❣r❛t❡ ✕ ♦♥❧② t❤❡
P♦✇❡r ❋♦r♠✉❧❛ r❡q✉✐r❡❞ ✕ ♣♦❧②♥♦♠✐❛❧s✳
❋✐rst✱ ✇❡ ❝❛♥ ❞✐✛❡r❡♥t✐❛t❡ ❛ ♣♦❧②♥♦♠✐❛❧ ♦♥❡ t❡r♠ ❛t ❛ t✐♠❡✿
p(x)
= 1 +2x +3x2
p′ (x) = 0 +2
+3 · 2x
▼❛②❜❡ t❤✐s ✐s ❥✉st t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ ❛ ♣♦✇❡r s❡r✐❡s✿
p(x)
= 1 +2x +3x2
p′ (x) = 0 +2
+...
+3 · 2x +...
❙❡❝♦♥❞✱ ✇❡ ❝❛♥ ✐♥t❡❣r❛t❡ ❛ ♣♦❧②♥♦♠✐❛❧ ♦♥❡ t❡r♠ ❛t ❛ t✐♠❡✿
p(x) = 1 +2x +3x2 Z p(x) dx = C +x +x2 +x3 ❲❤❛t ✐❢ t❤✐s ✇❛s ❥✉st t❤❡ ❜❡❣✐♥♥✐♥❣ ♦❢ ❛ ❝♦♥✈❡r❣❡♥t ♣♦✇❡r s❡r✐❡s❄
t❡r♠ ❜②
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✶
❊①❛♠♣❧❡ ✺✳✶✸✳✹✿ ❞✐✛❡r❡♥t✐❛t✐♦♥ ▲❡t✬s ❞✐✛❡r❡♥t✐❛t❡ t❤❡ t❡r♠s ♦❢ t❤❡ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥✿ ex d y dx
=
❄
1 d y dx
(ex )′ == 0 = =
+ x d y dx
+ 1
1
+
1 2 1 3 x + x 2! 3! d d ↓ dx y dx
+ ... +
1 n x n! d y dx
+
1 xn+1 (n +1)! d y dx
+...
1 1 2 1 n−1 1 2x + 3x + ... + nx + (n + 1)xn +... 2! 3! n! (n + 1)! 1 2 1 1 n x xn−1 + x + x + + ... + +... 2! (n − 1)! n!
+
ex
■t ✇♦r❦s✦
❊①❛♠♣❧❡ ✺✳✶✸✳✺✿ ✐♥t❡❣r❛t✐♦♥ ▲❡t✬s ✐♥t❡❣r❛t❡ t❤❡ t❡r♠s ♦❢ t❤❡ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥✿ ex R y Z
=
1 R y
❄
ex dx == C+ x =
C+ x
=
K+ ex
+ x R y
+
1 2 x 2! R y
+ ... +
1 n x n! R y
+
1 xn+1 (n+ 1)! R y
+...
1 2 1 11 3 1 1 1 x + x + ... + xn+1 + xn+2 +... 2 2! 3 n! n + 1 (n + 1)! n + 2 1 2 1 3 1 1 x + x xn+1 + xn+2 +... + + ... + 2! 3! (n + 1)! (n + 2)!
+
■t ✇♦r❦s✦
❊①❡r❝✐s❡ ✺✳✶✸✳✻ Pr♦✈✐❞❡ ❞❡t❛✐❧s ♦❢ t❤❡ ❛❜♦✈❡ ❝♦♠♣✉t❛t✐♦♥s✳ ❉✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞ ✐♥t❡❣r❛t✐♦♥ ♦❢ t❤❡ t❡r♠s ✐s ❡❛s②✿ d cn (x − a)n = ncn (x − a)n−1 , dx
Z
cn (x − a)n dx =
cn (x − a)n+1 . n+1
❚❤❡ ❢♦❧❧♦✇✐♥❣ t❤❡♦r❡♠ ✐s ❝❡♥tr❛❧✿
❚❤❡♦r❡♠ ✺✳✶✸✳✼✿ ❚❡r♠✲❜②✲❚❡r♠ ❈❛❧❝✉❧✉s ♦❢ P♦✇❡r ❙❡r✐❡s ❙✉♣♣♦s❡ t❤❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❛ ♣♦✇❡r s❡r✐❡s✱ f (x) =
∞ X n=0
an (x − a)n ,
✐s ♣♦s✐t✐✈❡ ♦r ✐♥✜♥✐t❡✳ ❚❤❡♥ t❤❡ ❢✉♥❝t✐♦♥ f r❡♣r❡s❡♥t❡❞ ❜② t❤✐s ♣♦✇❡r s❡r✐❡s ✐s ❞✐✛❡r❡♥t✐❛❜❧❡ ✭❛♥❞✱ t❤❡r❡❢♦r❡✱ ✐♥t❡❣r❛❜❧❡✮ ♦♥ t❤❡ ✐♥t❡r✈❛❧ ♦❢ ❝♦♥✈❡r❣❡♥❝❡✱ ❛♥❞ t❤❡ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥s ♦❢ ✐ts ❞❡r✐✈❛t✐✈❡ ❛♥❞ ✐ts ❛♥t✐❞❡r✐✈❛t✐✈❡ ❝♦♥✈❡r❣❡ ✐♥ t❤❡ ✐♥t❡r✐♦r ♦❢ t❤✐s ✐♥t❡r✈❛❧ ❛♥❞ ❛r❡ ❢♦✉♥❞ ❜② t❡r♠✲❜②✲t❡r♠ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✷
✐♥t❡❣r❛t✐♦♥ ♦❢ t❤❡ ♣♦✇❡r s❡r✐❡s ♦❢
∞ X
′
f (x) =
n=0
f
r❡s♣❡❝t✐✈❡❧②✱ ✐✳❡✳✱
cn (x − a)
n
!′
=
∞ X n=0
cn (x − a)n
′
❛♥❞
Z
f (x) dx =
∞ X
Z
n=0
cn (x − a)
n
!
dx =
∞ Z X n=0
cn (x − a)n dx
❲✐t❤ t❤✐s t❤❡♦r❡♠✱ t❤❡r❡ ✐s ♥♦ ♥❡❡❞ ❢♦r t❤❡ r✉❧❡s ♦❢ ❞✐✛❡r❡♥t✐❛t✐♦♥ ♦r ✐♥t❡❣r❛t✐♦♥ ❡①❝❡♣t ❢♦r t❤❡
❋♦r♠✉❧❛ ✦
P♦✇❡r
❲❛r♥✐♥❣✦ ❚❤❡ t❤❡♦r❡♠ s♣❡❛❦s ♦❢ t❤❡
✐♥t❡r✐♦r
♦❢ t❤❡ ✐♥t❡r✈❛❧❀
t❤❡r❡ ✐s ♥♦ ✐♥❢♦r♠❛t✐♦♥ ❛❜♦✉t ✐ts ❡♥❞✲♣♦✐♥ts✳
▲❡t✬s ✜♥❞ t❤❡ ❡①♣❧✐❝✐t ❢♦r♠✉❧❛s ❢♦r t❤❡ ♥❡✇ s❡r✐❡s ✐♥ t❤❡ st❛♥❞❛r❞ ❢♦r♠✿
❈♦r♦❧❧❛r② ✺✳✶✸✳✽✿ ❚❡r♠✲❜②✲❚❡r♠ ❉✐✛❡r❡♥t✐❛t✐♦♥ ♦❢ P♦✇❡r ❙❡r✐❡s ■♥ t❤❡ ✐♥t❡r✐♦r ♦❢ t❤❡ ✐♥t❡r✈❛❧ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❛ ♣♦✇❡r s❡r✐❡s✱ ✇❡ ❤❛✈❡✿
f ′ (x) =
∞ X n=0
◆♦t❡ t❤❡ ✐♥✐t✐❛❧ ✐♥❞❡① ♦❢
1
✐♥st❡❛❞ ♦❢
0
(cn (x − a)n )′ =
∞ X n=1
ncn (x − a)n−1 =
∞ X k=0
(k + 1)ck+1 (x − a)k .
✐♥ t❤❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❞❡r✐✈❛t✐✈❡✳
❈♦r♦❧❧❛r② ✺✳✶✸✳✾✿ ❚❡r♠✲❜②✲❚❡r♠ ■♥t❡❣r❛t✐♦♥ ♦❢ P♦✇❡r ❙❡r✐❡s ■♥ t❤❡ ✐♥t❡r✐♦r ♦❢ t❤❡ ✐♥t❡r✈❛❧ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ ❛ ♣♦✇❡r s❡r✐❡s✱ ✇❡ ❤❛✈❡✿
Z
f (x) dx =
∞ Z X n=0
∞ ∞ X X cn ck−1 n+1 (x−a) = C+ (x−a)k . cn (x−a) dx = C+ n+1 k n=0 k=1 n
❊①❛♠♣❧❡ ✺✳✶✸✳✶✵✿ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s ■♥ ❝♦♥tr❛st t♦ t❤❡ ❧❛st ❡①❛♠♣❧❡✱ ❧❡t✬s ✉s❡ t❤❡ t❤❡♦r❡♠ t♦ ✏❞✐s❝♦✈❡r✑ ❛ s♦❧✉t✐♦♥ r❛t❤❡r t❤❛♥ ❝♦♥✜r♠ ✐t✳ ❙✉♣♣♦s❡ ✇❡ ❤❛✈❡ ❛ ♠♦❞❡❧ t❤❛t st❛t❡s t❤❛t ❛ q✉❛♥t✐t②✬s r❛t❡ ♦❢ ❝❤❛♥❣❡ ✐s ♣r♦♣♦rt✐♦♥❛❧ ✭♦r ❡q✉❛❧ ❛t ✐ts s✐♠♣❧❡st✮ t♦ t❤❡ ❝✉rr❡♥t ✈❛❧✉❡s ♦❢ t❤❡ q✉❛♥t✐t②✳ ❲❡ ♥❡❡❞ t♦ s♦❧✈❡ t❤✐s ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥✿
f′ = f . ❲❡ ❛ss✉♠❡ t❤❛t t❤❡ ✉♥❦♥♦✇♥ ❢✉♥❝t✐♦♥
y = f (x)
✐s r❡♣r❡s❡♥t❡❞ ❜② ❛ ♣♦✇❡r s❡r✐❡s✳ ❲❡ ❞✐✛❡r❡♥t✐❛t❡ t❤❡
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✸
s❡r✐❡s ❛♥❞ t❤❡♥ ♠❛t❝❤ t❤❡ t❡r♠s ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❡q✉❛t✐♦♥✿ f f
′
= c0 + =
c1 ւ
=⇒ f′ ||
f
c1 x
c2 x2
+ +
2c2 x
ւ
c3 x3
+
+ 3c3 x ւ
= c0 +
||
c1 x
❆❝❝♦r❞✐♥❣ t♦ t❤❡ ❯♥✐q✉❡♥❡ss
||
+
c2 x
2
2
...
+
+
...
+
...
= c1 + 2c2 x + 3c3 x2 + ||
+
...
+
ncn xn−1
+
||
...
+ cn−1 x
n−1
cn xn ncn x
n−1
+... +...
ւ
+ (n + 1)cn+1 xn +...
+
||
cn xn
+...
♦❢ P♦✇❡r ❙❡r✐❡s✱ t❤❡ ❝♦❡✣❝✐❡♥ts ❤❛✈❡ t♦ ❜❡ ❡q✉❛❧✦
❲❡ ❤❛✈❡ ❝r❡❛t❡❞ ❛ s❡q✉❡♥❝❡ ♦❢ ❡q✉❛t✐♦♥s✿ c1 2c2 3c3 ... (n + 1)cn+1 ... ||
c0
||
c1
||
c2
||
...
cn
...
❲❡ ❤❛✈❡ ❝♦♥✈❡rt❡❞ ❛ ❝❛❧❝✉❧✉s ♣r♦❜❧❡♠ ✐♥t♦ ❛♥ ❛❧❣❡❜r❛ ♣r♦❜❧❡♠✦ ❲❡ ❢❛❝❡ ✐♥✜♥✐t❡❧② ♠❛♥② ❡q✉❛t✐♦♥s ✇✐t❤ ✐♥✜♥✐t❡❧② ♠❛♥② ✉♥❦♥♦✇♥s✳ ❲❡ st❛rt s♦❧✈✐♥❣ ♦♥❡ ❡q✉❛t✐♦♥ ❛t ❛ t✐♠❡ ❛♥❞ s✉❜st✐t✉t❡ t❤❡ r❡s✉❧t ✐♥t♦ t❤❡ ♥❡①t ❡q✉❛t✐♦♥✱ ♠♦✈✐♥❣ ❢r♦♠ ❧❡❢t t♦ r✐❣❤t✿ c1 =⇒ c1 = c0
2c2
||
||
c0
=⇒ c2 = c0 /2
3c3 ||
=⇒ c1 = c0
=⇒ c3 = c0 /(2 · 3)
=⇒ c2 = c0 /2
❚❤❡ ♣❛tt❡r♥ ❜❡❝♦♠❡s ❝❧❡❛r✿ cn+1 =
❚❤❡r❡❢♦r❡✱ cn =
4c4 ||
=⇒ c3 = ...
cn . n
c0 . n!
❚❤❡ ♣r♦❜❧❡♠ ✐s s♦❧✈❡❞✦ ■♥❞❡❡❞✱ ✇❡ ❤❛✈❡ ❛ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❢✉♥❝t✐♦♥ ✇❡ ❛r❡ ❧♦♦❦✐♥❣ ❢♦r✿ f (x) =
∞ X 1 n x = c0 x , n! n! n=0
∞ X c0 n=0
n
❛♥❞ ✐t ✇✐❧❧ ❣✐✈❡ ✉s t❤❡ ✈❛❧✉❡s ♦❢ f ✇✐t❤ ❛♥② ❛❝❝✉r❛❝② ✇❡ ✇❛♥t✳ ❚❤❡ ♦♥❧② ♠✐ss✐♥❣ ♣❛rt ✐♥ t❤✐s ♣r♦❣r❛♠ ✐s t❤❡ ♣r♦♦❢ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ❀ ✐t ✐s ❞♦♥❡ ✇✐t❤ t❤❡ ❘❛t✐♦ ❚❡st ✭s❡❡♥ ♣r❡✈✐♦✉s❧②✮✿ R = ∞✳ ❆s ❛ ❜♦♥✉s ✭❥✉st ❛ ❜♦♥✉s✦✮✱ ✇❡ r❡❝♦❣♥✐③❡ t❤❡ r❡s✉❧t✐♥❣ s❡r✐❡s✿ f (x) = c0 ex ✳ ❊①❡r❝✐s❡ ✺✳✶✸✳✶✶
❆♣♣❧② t❤❡ ♠❡t❤♦❞ t♦ t❤❡ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s✿ ✭❛✮ f ′ = 2f ❀ ✭❜✮ f ′ = f + 1❀ ✭❝✮ f ′′ = f ❀ ✭❞✮ f ′′ = −f ✳ ❊①❡r❝✐s❡ ✺✳✶✸✳✶✷
❙❤♦✇ t❤❛t t❤❡ ♠❡t❤♦❞ ❞♦❡s♥✬t ✇♦r❦ ❢♦r f ′ = f 2 ✳ ❚❤✐s ♠❡t❤♦❞ ♦❢ s♦❧✈✐♥❣ ❞✐✛❡r❡♥t✐❛❧ ❡q✉❛t✐♦♥s ✐s ❢✉rt❤❡r ❞✐s❝✉ss❡❞ ✐♥ ❈❤❛♣t❡r ✺❉❊✲✷✳ ❚❤❡ ♥❡✇ ❛♣♣r♦❛❝❤ t♦ ❝❛❧❝✉❧✉s ✐s ❜❛s❡❞ ♦♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❝❡♣t✿
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✹
❉❡✜♥✐t✐♦♥ ✺✳✶✸✳✶✸✿ ❛♥❛❧②t✐❝ ❢✉♥❝t✐♦♥ ❆ ❢✉♥❝t✐♦♥ ❞❡✜♥❡❞ ♦♥ ❛♥ ♦♣❡♥ ✐♥t❡r✈❛❧ t❤❛t ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❜② ❛ ♣♦✇❡r s❡r✐❡s ✐s ❝❛❧❧❡❞ ❛♥❛❧②t✐❝ ♦♥ t❤✐s ✐♥t❡r✈❛❧✳ ❲❡ ❝❛♥ ✜♥❛❧❧② ♣r♦✈❡ t❤❡ ✐♠♣♦rt❛♥t r❡s✉❧t ✇❡ ♣✉t ❢♦r✇❛r❞ ✐♥ t❤❡ ❧❛st s❡❝t✐♦♥✿
❈♦r♦❧❧❛r② ✺✳✶✸✳✶✹✿ ❯♥✐q✉❡♥❡ss ♦❢ P♦✇❡r ❙❡r✐❡s ❘❡♣r❡s❡♥t❛t✐♦♥ ❆♥ ❛♥❛❧②t✐❝ ❢✉♥❝t✐♦♥ ❤❛s ❛ ✉♥✐q✉❡ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥✱ ✐✳❡✳✱ ✐❢ t✇♦ ♣♦✇❡r s❡r✐❡s ❛r❡ ❡q✉❛❧✱ ❛s ❢✉♥❝t✐♦♥s✱ ♦♥ ❛♥ ♦♣❡♥ ✐♥t❡r✈❛❧✱ t❤❡♥ t❤❡✐r ❝♦rr❡s♣♦♥❞✐♥❣ ❝♦❡✣❝✐❡♥ts ❛r❡ ❡q✉❛❧ t♦♦✱ ✐✳❡✳✱ f (x) =
∞ X
cn (x − a)
n=0
=⇒
n
=
∞ X n=0
cn =
dn (x − a)n
❢♦r ❛❧❧ a − r < x < a + r, r > 0 ❢♦r ❛❧❧ n = 0, 1, 2, 3, ...
dn
Pr♦♦❢✳ ■t✬s t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥❀ t❤❡r❡❢♦r❡✱ t❤❡ ✈❛❧✉❡ ❛t x = a ✐s t❤❡ s❛♠❡✿ f (a) =
∞ X n=0
cn (a − a)
n
f (a) = c0
=
∞ X n=0
dn (a − a)n =⇒
= d0
■t✬s t❤❡ s❛♠❡ ❢✉♥❝t✐♦♥❀ t❤❡r❡❢♦r❡✱ t❤❡ ✈❛❧✉❡ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡ ❛t x = a ✐s t❤❡ s❛♠❡✿ ′
f (a) =
∞ X n=1
cn n(a − a)
n−1
f ′ (a) = c1
=
∞ X n=1
dn n(a − a)n−1 =⇒
= d1
❚❤❡♥ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡✱ s♦ ♦♥✳
❈♦r♦❧❧❛r② ✺✳✶✸✳✶✺ ❊✈❡r② ❛♥❛❧②t✐❝ ❢✉♥❝t✐♦♥ ✐s ✐♥✜♥✐t❡❧② ♠❛♥② t✐♠❡s ❞✐✛❡r❡♥t✐❛❜❧❡✳ ❲❤❛t ❛❜♦✉t t❤❡ ❝♦♥✈❡rs❡❄ ❲❤❛t ❦✐♥❞ ♦❢ ❢✉♥❝t✐♦♥s ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❜② ♣♦✇❡r s❡r✐❡s❄
❊①❛♠♣❧❡ ✺✳✶✸✳✶✻✿ ❞♦♠❛✐♥ ♦❢ ♣♦✇❡r s❡r✐❡s ❈♦♥s✐❞❡r ❛❣❛✐♥✿ f (x) =
1 . x−1
❚❤❡ ♣✐❝t✉r❡ ✐❧❧✉str❛t❡s t❤❡ ❧✐♠✐t❛t✐♦♥s ♦❢ r❡♣r❡s❡♥t✐♥❣ ❢✉♥❝t✐♦♥s ❜② ♣♦✇❡r s❡r✐❡s✳ ❚❤❡ ❝❡♥t❡rs ✇❡ tr② ❛r❡ a = 0, −.5, .5✿
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✺
▲❛r❣❡ ♣❛rts ♦❢ t❤❡ ❣r❛♣❤s ❧✐❡ ♦✉ts✐❞❡ t❤❡ str✐♣ ❡✈❡r② t✐♠❡✳ ❲❤②❄ ❇❡❝❛✉s❡ t❤❡ ❞♦♠❛✐♥ ♦❢ ❛♥② ♦❢ t❤❡s❡ ♣♦✇❡r s❡r✐❡s ✐s ❛♥ ✐♥t❡r✈❛❧ ❝❡♥t❡r❡❞ ❛t a t❤❛t ❝❛♥♥♦t ❝♦♥t❛✐♥ 1✦ ❚❤❡ ❣♦♦❞ ♥❡✇s ✐s t❤❛t t♦❣❡t❤❡r t❤❡② ❝♦✈❡r t❤❡ ✇❤♦❧❡ ❣r❛♣❤✳ ❚❤❡ t❡r♠✲❜②✲t❡r♠ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛❧❧♦✇s ✉s t♦ r❡❞✐s❝♦✈❡r t❤❡ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧s✳ ❙✉♣♣♦s❡ ✇❡ ❛❧r❡❛❞② ❤❛✈❡ ❛ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✇✐t❤ ❛ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ R > 0✿ f (x) = c0 + c1 (x − a) + c2 (x − a)2 + c3 (x − a)3 + ... + cn (x − a)n + ...
▲❡t✬s ❡①♣r❡ss t❤❡ ❝♦❡✣❝✐❡♥ts ✐♥ t❡r♠s ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✐ts❡❧❢✳ ❚❤❡ tr✐❝❦ ✐s ♣❛rt❧② t❤❡ s❛♠❡ ❛s ✐♥ t❤❡ ♣r♦♦❢ ♦❢ t❤❡ ❧❛st t❤❡♦r❡♠✿ ❲❡ s✉❜st✐t✉t❡ x = a ✐♥t♦ t❤✐s ❛♥❞ t❤❡ ❞❡r✐✈❡❞ ❢♦r♠✉❧❛s✱ ❡①❝❡♣t t❤✐s t✐♠❡ ✇❡ ❞♦♥✬t ❞✐✈✐❞❡ ❜✉t r❛t❤❡r ❞✐✛❡r❡♥t✐❛t❡✳ ❋✐rst s✉❜st✐t✉t✐♦♥ ❣✐✈❡s ✉s ✇❤❛t ✇❡ ❛❧r❡❛❞② ❦♥♦✇✿ f (a) = c0 .
❲❡ ❤❛✈❡ ❢♦✉♥❞ c0 ✳ ❲❡ ❞✐✛❡r❡♥t✐❛t❡✱ f ′ (x) = c1 + 2c2 (x − a) + 3c3 (x − a)2 + ... + ncn (x − a)n−1 + ... ,
❛♥❞ s✉❜st✐t✉t❡ x = a✱ ❣✐✈✐♥❣ ✉s✿
f ′ (a) = c1 .
❲❡ ❤❛✈❡ ❢♦✉♥❞ c1 ✳ ❲❡ ❞✐✛❡r❡♥t✐❛t❡ ♦♥❡ ♠♦r❡ t✐♠❡✱ f ′′ (x) = 2c2 + 3c3 (x − a) + ... + n(n − 1)cn (x − a)n−2 + ... ,
❛♥❞ s✉❜st✐t✉t❡ x = a✱ ❣✐✈✐♥❣ ✉s✿
f ′′ (a) = 2c2 .
❆❢t❡r m st❡♣s✱ ✇❡ ❤❛✈❡✿ f (m) (x) = m(m− 1)...3 · 2 · 1 · cm +m(m− 1)...3· 2· cm−1 (x− a)+ ... +n· (n− 1) · · · (n− m) · cn (x− a)n−m + ... ,
❛♥❞ s✉❜st✐t✉t✐♥❣ x = a ❣✐✈❡s ✉s✿
f (m) (a) = m!cm .
❲❡ ❤❛✈❡ ❢♦✉♥❞ cm ✳ ❚❤❡ r❡s✉❧t ♦❢ t❤✐s ❝♦♠♣✉t❛t✐♦♥ ✐s ♣r❡s❡♥t❡❞ ❜❡❧♦✇✿
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✻
❚❤❡♦r❡♠ ✺✳✶✸✳✶✼✿ ❚❛②❧♦r ❈♦❡✣❝✐❡♥ts
■❢ ❛ ❢✉♥❝t✐♦♥ ✐s r❡♣r❡s❡♥t❡❞ ❜② ❛ ♣♦✇❡r s❡r✐❡s ✇✐t❤ ❛ ♣♦s✐t✐✈❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r✲ ❣❡♥❝❡✱ f (x) = c0 + c1 (x − a) + c2 (x − a)2 + c3 (x − a)3 + ... + cn (x − a)n + ... ,
t❤❡♥ ✐ts ❝♦❡✣❝✐❡♥ts ❛r❡ t❤❡ ❚❛②❧♦r ❝♦❡✣❝✐❡♥ts✿ cn =
f (n) (a) . n!
❚❤✉s✱ t❤❡ nt❤ ♣❛rt✐❛❧ s✉♠ ♦❢ t❤✐s s❡r✐❡s ✐s t❤❡ nt❤ ❚❛②❧♦r ♣♦❧②♥♦♠✐❛❧ ♦❢ f ✳
❉❡✜♥✐t✐♦♥ ✺✳✶✸✳✶✽✿ ❚❛②❧♦r s❡r✐❡s ❙✉♣♣♦s❡ f ✐s ❛♥ ✐♥✜♥✐t❡❧② ❞✐✛❡r❡♥t✐❛❜❧❡ ❢✉♥❝t✐♦♥✳ ❚❤❡♥ t❤❡ ♣♦✇❡r s❡r✐❡s c0 + c1 (x − a) + c2 (x − a)2 + c3 (x − a)3 + ... + cn (x − a)n + ... ,
✇✐t❤ ❝♦❡✣❝✐❡♥ts✿
f (n) (a) n! ♦❢ f ❛t x = a✳ cn =
✐s ❝❛❧❧❡❞ t❤❡ ❚❛②❧♦r
s❡r✐❡s
❊①❛♠♣❧❡ ✺✳✶✸✳✶✾✿ s✐♥❡ ❛♥❞ ❝♦s✐♥❡ ▲❡t✬s ✜♥❞ t❤❡ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ❢♦r f (x) = sin x ❛t x = 0✳ ❲❡ st❛rt ✇✐t❤ ✇❤❛t ✇❡ ❛❧r❡❛❞② ❦♥♦✇✿
❲❡ ♥❡❡❞ t❤❡♠ ❛❧❧✿ f (x) ′
= sin x
=⇒ f (0) ′
=0
=⇒ T0 (x) = 0
f (x)
= cos x
=⇒ f (0)
=1
=⇒ T1 (x) = x
f ′′ (x)
= − sin x =⇒ f ′′ (0)
=0
=⇒ T2 (x) = x
1 ′ ′ f ′′ (x) = − cos x =⇒ f ′′ (0) = −1 =⇒ T3 (x) = 1 − x3 6 ...
❚❤❡ s❡q✉❡♥❝❡ st❛rts t♦ r❡♣❡❛t ✐ts❡❧❢✱ ❡✈❡r② ❢♦✉r st❡♣s✳ ❖❢ ❝♦✉rs❡✱ ❡✈❡r② ♣♦❧②♥♦♠✐❛❧ ❧❡❛✈❡s ❢♦r ✐♥✜♥✐t② ❡✈❡♥t✉❛❧❧②✱ ❜✉t t❤❡ r❡s❡♠❜❧❛♥❝❡ ❡①t❡♥❞s ❢✉rt❤❡r ❛♥❞ ❢✉rt❤❡r ❢r♦♠ t❤❡ ❝❡♥t❡r✿
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✼
❚❤❡r❡ ❛r❡ ♥♦ ❡✈❡♥ ♣♦✇❡rs ♣r❡s❡♥t ❜❡❝❛✉s❡ t❤❡ s✐♥❡ ✐s ♦❞❞✳ ❚❤❡r❡❢♦r❡✱ f (2m−1) (0) = (−1)m .
❲❡ ❤❛✈❡ t❤❡ ❚❛②❧♦r ❝♦❡✣❝✐❡♥ts✿ c2m−1 =
(−1)m . (2m − 1)!
▲❡t✬s ❛♣♣r♦①✐♠❛t❡ f (x) = cos x ❛t x = 0✳ ❲❡ st❛rt ✇✐t❤ ✇❤❛t ✇❡ ❛❧r❡❛❞② ❦♥♦✇✿
❲❡ ♥❡❡❞ t❤❡♠ ❛❧❧✿ f (x) ′
f (x) f ′′ (x) ′
f ′′ (x)
= cos x
=⇒ f (0) ′
= − sin x =⇒ f (0)
=1
=⇒ T0 (x) = 1
=0
=⇒ T1 (x) = 1
1 = −1 =⇒ T2 (x) = 1 − x2 2 1 ′ =⇒ T3 (x) = 1 − x2 =⇒ f ′′ (0) = 0 2 (4) =⇒ f (0) = 1
= − cos x =⇒ f ′′ (0)
= sin x
f (4) (x) = cos x ...
❚❤❡ s❡q✉❡♥❝❡ st❛rts t♦ r❡♣❡❛t ✐ts❡❧❢✱ ❡✈❡r② ❢♦✉r st❡♣s✳ ❖♥❝❡ ❛❣❛✐♥✱ ❡✈❡r② ♣♦❧②♥♦♠✐❛❧ ❧❡❛✈❡s ❢♦r ✐♥✜♥✐t② ❡✈❡♥t✉❛❧❧②✱ ❜✉t t❤❡ r❡s❡♠❜❧❛♥❝❡ ❡①t❡♥❞s ❢✉rt❤❡r ❛♥❞ ❢✉rt❤❡r ❢r♦♠ t❤❡ ❝❡♥t❡r✿
✺✳✶✸✳ ❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✽
❚❤❡r❡ ❛r❡ ♥♦ ♦❞❞ ♣♦✇❡rs ♣r❡s❡♥t ❜❡❝❛✉s❡ t❤❡ ❝♦s✐♥❡ ✐s ❡✈❡♥✳ ❚❤❡r❡❢♦r❡✱ f (2m) (0) = (−1)m .
❲❡ ❤❛✈❡ t❤❡ ❚❛②❧♦r ❝♦❡✣❝✐❡♥ts✿ c2m =
(−1)m . (2m)!
❚❤✐s ✐s ✇❤❛t t❤❡ ❣r❛♣❤s ♦❢ t❤❡ ♣♦❧②♥♦♠✐❛❧ ❛♣♣r♦①✐♠❛t✐♦♥s ♦❢ t❤❡s❡ ♣❡r✐♦❞✐❝ ❢✉♥❝t✐♦♥s ✇♦✉❧❞ ❧♦♦❦ ❧✐❦❡✿
❚❤❡② ❡✈❡♥t✉❛❧❧② ❜❡❝♦♠❡ ❜❛❞✱ ❜✉t t❤❡ ✐♥t❡r✈❛❧ ✇❤❡r❡ t❤✐♥❣s ❛r❡ ❣♦♦❞ ✐s ❡①♣❛♥❞✐♥❣✳ ❚❤❡ s✉r♣r✐s✐♥❣ ❜②♣r♦❞✉❝t ♦❢ t❤❡ t❤❡♦r❡♠ ✐s t❤❡ ❝♦♥❝❧✉s✐♦♥ t❤❛t t❤❡ ✇❤♦❧❡ ❛♥❛❧②t✐❝ ❢✉♥❝t✐♦♥ ✐s ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ ✈❛❧✉❡s ♦❢ ✐ts ❞❡r✐✈❛t✐✈❡s ❛t ❛ s✐♥❣❧❡ ♣♦✐♥t✳ ❈♦r♦❧❧❛r② ✺✳✶✸✳✷✵
f, g ❛r❡ ❛♥❛❧②t✐❝ ♦♥ ✐♥t❡r✈❛❧ (a−R, a+R), R > 0✳ ■❢ t❤❡② ❤❛✈❡ ♠❛t❝❤✐♥❣ ❞❡r✐✈❛t✐✈❡s ♦❢ ❛❧❧ ♦r❞❡rs ❛t a✱ t❤❡② ❛r❡ ❡q✉❛❧ ♦♥ t❤✐s ✐♥t❡r✈❛❧❀ ✐✳❡✳✱ ❙✉♣♣♦s❡
f (n) (a) = g (n) (a)
❢♦r ❛❧❧
n = 0, 1, 2, ... =⇒ f (x) = g(x)
❢♦r ❛❧❧
x
✐♥
(a−R, a+R) .
❊①❡r❝✐s❡ ✺✳✶✸✳✷✶
Pr♦✈❡ t❤❡ ❝♦r♦❧❧❛r②✳ ❍✐♥t✿ ❈♦♥s✐❞❡r f − g✳ ❙✐♥❝❡ t❤❡s❡ ❞❡r✐✈❛t✐✈❡s ❛r❡✱ ✐♥ t✉r♥✱ ❢✉❧❧② ❞❡t❡r♠✐♥❡❞ ❜② t❤❡ ❜❡❤❛✈✐♦r ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ♦♥ ❛ s♠❛❧❧ ✭♥♦ ♠❛tt❡r ❤♦✇ s♠❛❧❧✮ ✐♥t❡r✈❛❧ ❛r♦✉♥❞ t❤✐s ♣♦✐♥t✱ ✇❡ ❝♦♥❝❧✉❞❡✿ ◮ ❚❤❡r❡ ✐s ♦♥❧② ♦♥❡ ✇❛② t♦ ❡①t❡♥❞ t❤❡ ❢✉♥❝t✐♦♥ ❜❡②♦♥❞ t❤✐s ✐♥t❡r✈❛❧✳
✺✳✶✸✳
❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✸✾
❋♦r ❡①❛♠♣❧❡✱ ❛ ❢✉♥❝t✐♦♥ ❝♦♥st❛♥t ❛r♦✉♥❞ t❤❡ ♣♦✐♥t ✇✐❧❧ ❤❛✈❡ t♦ ❜❡ ❝♦♥st❛♥t ❡✈❡r②✇❤❡r❡ ❡❧s❡✳ ❆ ❢✉♥❝t✐♦♥ ❧✐♥❡❛r ❛r♦✉♥❞ ❛ ♣♦✐♥t ✇✐❧❧ ❤❛✈❡ t♦ ❜❡ ❧✐♥❡❛r ❡✈❡r②✇❤❡r❡ ❡❧s❡✳ ❆♥❞ t❤❡ s❛♠❡ ❢♦r t❤❡ q✉❛❞r❛t✐❝ ❢✉♥❝t✐♦♥s t♦♦✳ ❇❡❧♦✇ ✐s t❤❡ ❣❡♥❡r❛❧ s✐t✉❛t✐♦♥✿
■♥ ♦t❤❡r ✇♦r❞s✱ ❛♥❛❧②t✐❝ ❢✉♥❝t✐♦♥s ❛r❡ ❡①tr❡♠❡❧② ✏♣r❡❞✐❝t❛❜❧❡✑✿ ❖♥❝❡ ✇❡ ❤❛✈❡ ❞r❛✇♥ ❛ t✐♥② ♣✐❡❝❡ ♦❢ t❤❡ ❣r❛♣❤✱ t❤❡r❡ ✐s ♦♥❧② ♦♥❡ ✇❛② t♦ ❝♦♥t✐♥✉❡ t♦ ❞r❛✇ ✐t✳ ❲❡ ❝❛♥ ✐♥❢♦r♠❛❧❧② ✐♥t❡r♣r❡t t❤✐s ✐❞❡❛ ❛s ❢♦❧❧♦✇s✿
◮
❉r❛✇✐♥❣ ❛ ❝✉r✈❡ ✇✐t❤ ❛ s✐♥❣❧❡ str♦❦❡ ♦❢ t❤❡ ♣❡♥ ♣r♦❞✉❝❡s ❛♥ ❛♥❛❧②t✐❝ ❢✉♥❝t✐♦♥✱ ❜✉t st♦♣♣✐♥❣
✐♥ t❤❡ ♠✐❞❞❧❡ t♦ ❞❡❝✐❞❡ ❤♦✇ t♦ ♣r♦❝❡❡❞ ✐s ❧✐❦❡❧② t♦ ♣r❡✈❡♥t t❤✐s ❢r♦♠ ❤❛♣♣❡♥✐♥❣✳ ❲❤❛t ❦✐♥❞ ♦❢ ❢✉♥❝t✐♦♥s ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❜② ♣♦✇❡r s❡r✐❡s❄ ❚❤❡♦r❡♠ ✺✳✶✸✳✷✷✿ ❘❡♣r❡s❡♥t❛t✐♦♥ ❜② P♦✇❡r ❙❡r✐❡s
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ f ✐s ✐♥✜♥✐t❡❧② ♠❛♥② t✐♠❡s ❞✐✛❡r❡♥t✐❛❜❧❡ ♦♥ ✐♥t❡r✈❛❧ (a−R, a+ R)✱ ❛♥❞ t❤❡s❡ ❞❡r✐✈❛t✐✈❡s ❛r❡ ❜♦✉♥❞❡❞ ❜② t❤❡ s❛♠❡ ❝♦♥st❛♥t M ✿ ❢♦r ❛❧❧ x ✐♥ (a − R, a + R) .
|f (n) (x)| ≤ M
❚❤❡♥ f ✐s ❛♥❛❧②t✐❝✳ Pr♦♦❢✳
❏✉st ❝♦♠♣❛r❡ t❤❡ ❚❛②❧♦r s❡r✐❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ✇✐t❤ t❤✐s ❝♦♥✈❡r❣❡♥t s❡r✐❡s✿
XM
n!
❊①❡r❝✐s❡ ✺✳✶✸✳✷✸
❲❡❛❦❡♥ t❤❡ ❜♦✉♥❞❡❞♥❡ss ❝♦♥❞✐t✐♦♥✳
.
✺✳✶✸✳ ❈❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s
✹✹✵
❊①❛♠♣❧❡ ✺✳✶✸✳✷✹✿ ❚❛②❧♦r s❡r✐❡s ✈✐❛ s✉❜st✐t✉t✐♦♥s
❋✐♥❞ t❤❡ ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ♦❢
f (x) = x−3
❛r♦✉♥❞ a = 1✳ ❲❡ ❞✐✛❡r❡♥t✐❛t❡ ❛♥❞ s✉❜st✐t✉t❡✿ f (x)
= x−3
f ′ (x)
= (−3)x−4
f ′′ (x)
= (−3)(−4)x−5
f ..
(3)
(x) = (−3)(−4)(−5)x
⇒ f (1) = 1
⇒ c0 = 1
⇒ f ′ (1) = −3
⇒ c1 = −3
⇒ f ′′ (1) = 12
−6
⇒ f
...
...
(3)
...
⇒ c2 = 12/2 = 6
(1) = −60
f (n) (x) = (−3)(−4) · · · (−2 − n)x−3−n ⇒ f (n) (1) =
⇒ c3 = −60/6 = −10 ...
...
n
(−1) (2 + n)! (n + 1)(n + 2) ⇒ cn = (−1)n 2 2
❚❤❛t✬s t❤❡ nt❤ ❚❛②❧♦r ❝♦❡✣❝✐❡♥t✳ ❍❡♥❝❡✱ f (x) =
∞ X
(−1)n
n=1
(n + 1)(n + 2) (x − a)n . 2
❇✉t ✇❤❛t ✐s t❤❡ ✐♥t❡r✈❛❧ ♦❢ ❝♦♥✈❡r❣❡♥❝❡❄ ❚❤❡ r❛❞✐✉s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ✐s t❤❡ ❞✐st❛♥❝❡ t♦ t❤❡ ♥❡❛r❡st ♣♦✐♥t ❢♦r ✇❤✐❝❤ t❤❡r❡ ✐s ♥♦ ❝♦♥✈❡r❣❡♥❝❡✱ ✇❤✐❝❤ ❛♣♣❡❛rs t♦ ❜❡ 0✱ s♦ R = 1✳ ❲❡ ❝♦♥✜r♠ t❤✐s ✇✐t❤ t❤❡ ❘❛t✐♦ ❚❡st ✿ (n + 1)(n + 2) (n + 2)(n + 3) (n + 1)(n + 2) lim (−1)n = lim ÷ (−1)n+1 = 1. n→∞ n→∞ (n + 2)(n + 3) 2 2
❚❤❡♥ t❤❡ ❡♥❞✲♣♦✐♥ts ♦❢ t❤❡ ✐♥t❡r✈❛❧ ❛r❡ 0 ❛♥❞ 2✳ ❚❤❡ s❡r✐❡s ❝♦♥✈❡r❣❡s ✐♥ t❤❡ ✐♥t❡r✐♦r ♦❢ t❤❡ ✐♥t❡r✈❛❧✱ ❛♥❞ ✇❤❛t✬s ❧❡❢t ✐s t❤❡ ❝♦♥✈❡r❣❡♥❝❡ ❛t t❤❡ ❡♥❞✲♣♦✐♥ts✿ x = 0, x = 2,
X
X
(n + 1)(n + 2) (n + 1)(n + 2)(−1)n
❞✐✈❡r❣❡s✳ ❞✐✈❡r❣❡s✳
❚❤✉s✱ (0, 2) ✐s t❤❡ ✐♥t❡r✈❛❧ ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡ s❡r✐❡s✳ ■t ✐s ❛❧s♦ t❤❡ ❞♦♠❛✐♥ ♦❢ t❤❡ s❡r✐❡s ❡✈❡♥ t❤♦✉❣❤ ✐t✬s s♠❛❧❧❡r t❤❛♥ t❤❛t ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ❢✉♥❝t✐♦♥✳ ❚❤❡ ♠✐s♠❛t❝❤ ❜❡t✇❡❡♥ t❤❡ ❞♦♠❛✐♥s ♦❢ ❢✉♥❝t✐♦♥s ❛♥❞ t❤❡ ✐♥t❡r✈❛❧s ♦❢ ❝♦♥✈❡r❣❡♥❝❡ ♦❢ t❤❡✐r ♣♦✇❡r s❡r✐❡s r❡♣r❡s❡♥t❛t✐♦♥ ✐s t❤❡ ✭♠❛✐♥✮ r❡❛s♦♥ ✇❤② t❤❡ ♠❛t❝❤ ❜❡t✇❡❡♥ ❝❛❧❝✉❧✉s ♦❢ ❢✉♥❝t✐♦♥s ❛♥❞ ❝❛❧❝✉❧✉s ♦❢ ♣♦✇❡r s❡r✐❡s ✐s ✐♠♣❡r❢❡❝t✳ ❆t ❧❡❛st✱ t❤❡ ❞✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞ ✐♥t❡❣r❛t✐♦♥✱ ❛❝❝♦r❞✐♥❣ t♦ t❤❡ ❚❡r♠✲❜②✲❚❡r♠ ❉✐✛❡r❡♥t✐❛t✐♦♥ ❛♥❞ ■♥t❡❣r❛t✐♦♥✱ ❛r❡ ♣❡r❢❡❝t❧② r❡✢❡❝t❡❞ ✐♥ t❤✐s ♠✐rr♦r✿ f d y dx f
′
❚❛②❧♦r −−−−−−−→
X
cn (x − a)n d y dx
X ❚❛②❧♦r −−−−−−−→ (cn (x − a)n )′
Z
f R y
❚❛②❧♦r −−−−−−−→
X
cn (x − a)n R y
XZ ❚❛②❧♦r (cn (x − a)n ) dx f dx −−−−−−−→
■♥ t❤❡ ✜rst ❞✐❛❣r❛♠✱ ✇❡ st❛rt ✇✐t❤ ❛ ❢✉♥❝t✐♦♥ ❛t t❤❡ t♦♣ ❧❡❢t ❛♥❞ t❤❡♥ ✇❡ ♣r♦❝❡❡❞ ✐♥ t✇♦ ✇❛②s✿ • ❘✐❣❤t✿ ✜♥❞ ✐ts ❚❛②❧♦r s❡r✐❡s✳ ❚❤❡♥ ❞♦✇♥✿ ❞✐✛❡r❡♥t✐❛t❡ t❤❡ r❡s✉❧t t❡r♠ ❜② t❡r♠✳ • ❉♦✇♥✿ ❞✐✛❡r❡♥t✐❛t❡ ✐t✳ ❚❤❡♥ r✐❣❤t✿ ✜♥❞ ✐ts ❚❛②❧♦r s❡r✐❡s✳
❚❤❡ r❡s✉❧t ✐s t❤❡ s❛♠❡✦
❚❤✐s st✉❞② ✇✐❧❧ ❝♦♥t✐♥✉❡ ✇✐t❤ ❢✉rt❤❡r ❛♣♣❧✐❝❛t✐♦♥s ✐♥ ❈❤❛♣t❡r ✺❉❊✲✷✳
❊①❡r❝✐s❡s
❈♦♥t❡♥ts ✶ ❊①❡r❝✐s❡s✿ ❇❛❝❦❣r♦✉♥❞ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✹✶
✷ ❊①❡r❝✐s❡s✿ ▲✐♠✐ts ❛♥❞ ❝♦♥t✐♥✉✐t②
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✹✻
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✹✽
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✺✶
✸ ❊①❡r❝✐s❡s✿ ❉❡r✐✈❛t✐✈❡s ✹ ❊①❡r❝✐s❡s✿ ▼♦❞❡❧s
✺ ❊①❡r❝✐s❡s✿ ■♥❢♦r♠❛t✐♦♥ ❢r♦♠ t❤❡ ❞❡r✐✈❛t✐✈❡s
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✺✸
✻ ❊①❡r❝✐s❡s✿ ❈♦♠♣✉t✐♥❣ ❞❡r✐✈❛t✐✈❡s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✺✹
✼ ❊①❡r❝✐s❡s✿ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✺✺
✽ ❊①❡r❝✐s❡s✿ ■♥t❡❣r❛t✐♦♥
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✺✼
✾ ❊①❡r❝✐s❡s✿ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ✐♥t❡❣r❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✺✾
✶✵ ❊①❡r❝✐s❡s✿ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ r❡❧❛t❡❞ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✻✶
✶✶ ❊①❡r❝✐s❡s✿ ❙❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
✹✻✹
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✷ ❊①❡r❝✐s❡s✿ ❙❡q✉❡♥❝❡s ❛♥❞ s❡r✐❡s
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✸ ❊①❡r❝✐s❡s✿ P♦✇❡r s❡r✐❡s ❛♥❞ ❛♣♣r♦①✐♠❛t✐♦♥s
✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✹✻✻ ✹✻✽
✶✳ ❊①❡r❝✐s❡s✿ ❇❛❝❦❣r♦✉♥❞
❊①❡r❝✐s❡ ✶✳✶
❊①❡r❝✐s❡ ✶✳✹
❲❤❛t ❛r❡ t❤❡ ♠❛①✱ ♠✐♥✱ ❛♥❞ ❛♥② ❜♦✉♥❞s ♦❢ t❤❡ s❡t
❙t❛t❡ t❤❡ ❝♦♥✈❡rs❡ ♦❢ t❤✐s st❛t❡♠❡♥t✿ ✏❚❤❡ ❝♦♥✈❡rs❡
♦❢ ✐♥t❡❣❡rs❄ ❲❤❛t ❛❜♦✉t
R❄
♦❢ t❤❡ ❝♦♥✈❡rs❡ ♦❢ ❛ tr✉❡ st❛t❡♠❡♥t ✐s tr✉❡✑✳
❊①❡r❝✐s❡ ✶✳✺ ❊①❡r❝✐s❡ ✶✳✷
■s t❤❡ ❝♦♥✈❡rs❡ ♦❢ ❛ tr✉❡ st❛t❡♠❡♥t tr✉❡❄
❘❡♣r❡s❡♥t t❤❡s❡ s❡ts ❛s ✐♥t❡rs❡❝t✐♦♥s ❛♥❞ ✉♥✐♦♥s✿ ✶✳
(0, 5)
✷✳
{3}
✸✳
∅
✹✳
{x : x > 0 ❖❘ x
❊①❡r❝✐s❡ ✶✳✸
■s t❤❡ ❝♦♥✈❡rs❡ ♦❢ t❤❡ ❝♦♥✈❡rs❡ ♦❢ ❛ tr✉❡ st❛t❡♠❡♥t tr✉❡❄
✐s ❛♥ ✐♥t❡❣❡r}
✶✳ ❊①❡r❝✐s❡s✿ ❇❛❝❦❣r♦✉♥❞
✺✳
{x : x
✹✹✷
✐s ❞✐✈✐s✐❜❧❡ ❜②
6}
❞r✐✈❡r ❣♦t ❧♦st ❛♥❞ ❞r♦✈❡ ✜✈❡ ❡①tr❛ ♠✐❧❡s✳ ✺✳ ❋r✐❞❛②✱ ■ ❤❛✈❡ ❜❡❡♥ t❛❦✐♥❣ ❛ t❛①✐ t♦ t❤❡ st❛✲
❊①❡r❝✐s❡ ✶✳✻
❚r✉❡ ♦r ❢❛❧s❡✿
t✐♦♥ ❛❧❧ ✇❡❡❦ ♦♥ ❝r❡❞✐t❀ ■ ♣❛② ✇❤❛t ■ ♦✇❡
0 = 1 =⇒ 0 = 1❄
t♦❞❛②✳ ❲❤❛t ✐❢ t❤❡r❡ ✐s ❛♥ ❡①tr❛ ❝❤❛r❣❡ ♣❡r r✐❞❡ ♦❢
❊①❡r❝✐s❡ ✶✳✼
m
❞♦❧✲
❧❛rs❄
Pr♦✈❡ ♦r ❞✐s♣r♦✈❡✿ ❊①❡r❝✐s❡ ✶✳✶✹
max{max A, max B} = max(A ∪ B) .
▲❡t
✭❛✮ ■❢✱ st❛rt✐♥❣ ✇✐t❤ ❛ st❛t❡♠❡♥t ❝♦♥❝❧✉s✐♦♥s ②♦✉ ❛rr✐✈❡ t♦
A✱
A❄
❛♥❞
g : C → D
❜❡ t✇♦ ♣♦ss✐✲
❜❧❡ ❢✉♥❝t✐♦♥s✳ ❋♦r ❡❛❝❤ ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢✉♥❝t✐♦♥s✱
❊①❡r❝✐s❡ ✶✳✽
❝❧✉❞❡ ❛❜♦✉t
f : A → B
0 = 1✱
A✱
❛❢t❡r ❛ s❡r✐❡s ♦❢
st❛t❡ ✇❤❡t❤❡r ♦r ♥♦t ②♦✉ ❝❛♥ ❝♦♠♣✉t❡
• D⊂B
✇❤❛t ❝❛♥ ②♦✉ ❝♦♥✲
✭❜✮ ■❢✱ st❛rt✐♥❣ ✇✐t❤ ❛ st❛t❡♠❡♥t
❛❢t❡r ❛ s❡r✐❡s ♦❢ ❝♦♥❝❧✉s✐♦♥s ②♦✉ ❛rr✐✈❡ t♦
✇❤❛t ❝❛♥ ②♦✉ ❝♦♥❝❧✉❞❡ ❛❜♦✉t
f ◦ g✿
• C⊂A
0 = 0✱
A❄
• B⊂D • B=C
❊①❡r❝✐s❡ ✶✳✾
❲❡ ❦♥♦✇ t❤❛t ✏■❢ ✐t r❛✐♥s✱ t❤❡ r♦❛❞ ❣❡ts ✇❡t✑✳ ❉♦❡s ✐t ♠❡❛♥ t❤❛t ✐❢ t❤❡ r♦❛❞ ✐s ✇❡t✱ ✐t ❤❛s r❛✐♥❡❞❄
❊①❡r❝✐s❡ ✶✳✶✺
❊①❡r❝✐s❡ ✶✳✶✵
♦❢ ✐ts ✈❛❧✉❡s✳ ▼❛❦❡ s✉r❡ t❤❡ ❢✉♥❝t✐♦♥ ✐s ♦♥t♦✳
❋✉♥❝t✐♦♥
y = f (x)
❆ ❣❛r❛❣❡ ❧✐❣❤t ✐s ❝♦♥tr♦❧❧❡❞ ❜② ❛ s✇✐t❝❤ ❛♥❞✱ ❛❧s♦✱ ✐t
✐s ❣✐✈❡♥ ❜❡❧♦✇ ❜② ❛ ❧✐st ♦❢ s♦♠❡
x −1 0 1 2 3 4 5
♠❛② ❛✉t♦♠❛t✐❝❛❧❧② t✉r♥ ♦♥ ✇❤❡♥ ✐t s❡♥s❡s ♠♦t✐♦♥
y = f (x) −1
❞✉r✐♥❣ ♥✐❣❤tt✐♠❡✳ ■❢ t❤❡ ❧✐❣❤t ✐s ❖❋❋✱ ✇❤❛t ❞♦ ②♦✉ ❝♦♥❝❧✉❞❡❄
4 5
2
❊①❡r❝✐s❡ ✶✳✶✻
❊①❡r❝✐s❡ ✶✳✶✶
■❢ ❛♥ ❛❞✈❡rt✐s❡♠❡♥t ❝❧❛✐♠s t❤❛t ✏❆❧❧ ♦✉r s❡❝♦♥❞✲ ❤❛♥❞ ❝❛rs ❝♦♠❡ ✇✐t❤ ✇♦r❦✐♥❣ ❆❈✑✱ ✇❤❛t ✐s t❤❡ ❡❛s✲ ✐❡st ✇❛② t♦ ❞✐s♣r♦✈❡ t❤❡ s❡♥t❡♥❝❡❄
❋✉♥❝t✐♦♥
y = f (x)
✐s ❣✐✈❡♥ ❜❡❧♦✇ ❜② ❛ ❧✐st ♦❢ s♦♠❡
♦❢ ✐ts ✈❛❧✉❡s✳ ❆❞❞ ♠✐ss✐♥❣ ✈❛❧✉❡s ✐♥ s✉❝❤ ❛ ✇❛② t❤❛t t❤❡ ❢✉♥❝t✐♦♥ ✐s ♦♥❡✲t♦✲♦♥❡✳
x −1 0 1 2 3 4 5
❊①❡r❝✐s❡ ✶✳✶✷
y = f (x) −1
❚❡❛❝❤❡rs ♦❢t❡♥ s❛② t♦ t❤❡ st✉❞❡♥t✬s ♣❛r❡♥ts✿ ✏■❢ ②♦✉r st✉❞❡♥t ✇♦r❦s ❤❛r❞❡r✱ ❤❡✬❧❧ ✐♠♣r♦✈❡✑✳
0 5
0
❲❤❡♥ ❤❡
✇♦♥✬t ✐♠♣r♦✈❡ ❛♥❞ t❤❡ ♣❛r❡♥ts ❝♦♠❡ ❜❛❝❦ t♦ t❤❡ t❡❛❝❤❡r✱ ❤❡ ✇✐❧❧ ❛♥s✇❡r✿ ✏❍❡ ❞✐❞♥✬t ✐♠♣r♦✈❡✱ t❤❛t ♠❡❛♥s ❤❡ ❞✐❞♥✬t ✇♦r❦ ❤❛r❞❡r✑✳ ❆♥❛❧②③❡✳
❊①❡r❝✐s❡ ✶✳✶✼
h(x) = sin2 x + sin3 x ❛s g ◦ f ♦❢ t✇♦ ❢✉♥❝t✐♦♥s y = f (x)
❘❡♣r❡s❡♥t t❤❡ ❢✉♥❝t✐♦♥ t❤❡ ❝♦♠♣♦s✐t✐♦♥ ❛♥❞
z = g(y)✳
❊①❡r❝✐s❡ ✶✳✶✸
❙✉♣♣♦s❡ t❤❡ ❝♦st ✐s
f (x)
❞♦❧❧❛rs ❢♦r ❛ t❛①✐ tr✐♣ ♦❢
♠✐❧❡s✳ ■♥t❡r♣r❡t t❤❡ ❢♦❧❧♦✇✐♥❣ st♦r✐❡s ✐♥ t❡r♠s ♦❢ ✶✳ ▼♦♥❞❛②✱ ■ t♦♦❦ ❛ t❛①✐ t♦ t❤❡ st❛t✐♦♥
5
x f✳
❊①❡r❝✐s❡ ✶✳✶✽
❋✉♥❝t✐♦♥ ♠✐❧❡s
❛✇❛②✳
y = f (x)
✉❡s✳ ❋✐♥❞ ✐ts ✐♥✈❡rs❡ ❛♥❞ r❡♣r❡s❡♥t ✐t ❜② ❛ s✐♠✐❧❛r t❛❜❧❡✳
x 0 1 2 3 4
✷✳ ❚✉❡s❞❛②✱ ■ t♦♦❦ ❛ t❛①✐ t♦ t❤❡ st❛t✐♦♥ ❜✉t t❤❡♥ r❡❛❧✐③❡❞ t❤❛t ■ ❧❡❢t s♦♠❡t❤✐♥❣ ❛t ❤♦♠❡ ❛♥❞
✐s ❣✐✈❡♥ ❜❡❧♦✇ ❜② ❛ ❧✐st ✐ts ✈❛❧✲
y = f (x) 0 1 2 4 3
❤❛❞ t♦ ❝♦♠❡ ❜❛❝❦✳ ✸✳ ❲❡❞♥❡s❞❛②✱ ■ t♦♦❦ ❛ t❛①✐ t♦ t❤❡ st❛t✐♦♥ ❛♥❞ ■ ❣❛✈❡ ♠② ❞r✐✈❡r ❛ ✜✈❡ ❞♦❧❧❛r t✐♣✳ ✹✳ ❚❤✉rs❞❛②✱ ■ t♦♦❦ ❛ t❛①✐ t♦ t❤❡ st❛t✐♦♥ ❜✉t t❤❡
❊①❡r❝✐s❡ ✶✳✶✾
❋✐♥❞ t❤❡ ❢♦r♠✉❧❛s ♦❢ t❤❡ ✐♥✈❡rs❡s ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢✉♥❝t✐♦♥s✿ ✭❛✮
f (x) = (x + 1)3 ❀
✭❜✮
g(x) = ln(x3 )✳
✶✳ ❊①❡r❝✐s❡s✿ ❇❛❝❦❣r♦✉♥❞
✹✹✸
❊①❡r❝✐s❡ ✶✳✷✵
❊①❡r❝✐s❡ ✶✳✷✽
f, g ✱
●✐✈❡♥ t❤❡ t❛❜❧❡s ♦❢ ✈❛❧✉❡s ♦❢ ✈❛❧✉❡s ♦❢
✜♥❞ t❤❡ t❛❜❧❡ ♦❢
f ◦ g ❢♦r t❤❡ ❢✉♥❝t✐♦♥s ❣✐✈❡♥ ❜② f (u) = u + u ❛♥❞ g(x) = 3❄ ✭❛✮ ❲❤❛t ✐s t❤❡ ❝♦♠♣♦s✐t✐♦♥ f ◦ g ❢♦r t❤❡ ❢✉♥❝t✐♦♥s ❣✐✈❡♥ ❜② √ f (u) = 2 ❛♥❞ g(x) = x❄ ✭❛✮ ❲❤❛t ✐s t❤❡ ❝♦♠♣♦s✐t✐♦♥
2
f ◦ g✿ x y = g(x)
y z = f (y)
0
0
0 4
1
4
1 4
❊①❡r❝✐s❡ ✶✳✷✾
2
3
2 0
❋✉♥❝t✐♦♥
3
0
3 1
✉❡s✳ ❋✐♥❞ ✐ts ✐♥✈❡rs❡ ❛♥❞ r❡♣r❡s❡♥t ✐t ❜② ❛ s✐♠✐❧❛r
4
1
4 2
y = f (x)
t❛❜❧❡✳
x 0 1 2 3 4 y = f (x) 1 2 0 4 3
❲❤❛t ✐❢ t❤❡ ❧❛st r♦✇s ✇❡r❡ ♠✐ss✐♥❣❄
❊①❡r❝✐s❡ ✶✳✷✶
❊①❡r❝✐s❡ ✶✳✸✵
❘❡♣r❡s❡♥t t❤❡ ❢✉♥❝t✐♦♥ ❜❡❧♦✇ ❛s t❤❡ ❝♦♠♣♦s✐t✐♦♥
f ◦g
✐s ❣✐✈❡♥ ❜❡❧♦✇ ❜② ❛ ❧✐st ✐ts ✈❛❧✲
♦❢ t✇♦ ❢✉♥❝t✐♦♥s✿
●✐✈❡ ❡①❛♠♣❧❡s ♦❢ ❢✉♥❝t✐♦♥s t❤❛t ❛r❡ t❤❡✐r ♦✇♥ ✐♥✲ ✈❡rs❡s✳
p h(x) = 2x3 + x .
❊①❡r❝✐s❡ ✶✳✸✶
❊①❡r❝✐s❡ ✶✳✷✷
❘❡♣r❡s❡♥t t❤❡ ❢✉♥❝t✐♦♥
h(x) = 2 sin3 x + sin x + 5
h(x) = tan(2x) ❢✉♥❝t✐♦♥s ♦❢ ✈❛r✐❛❜❧❡s x
❘❡♣r❡s❡♥t t❤✐s ❢✉♥❝t✐♦♥✿
❛s t❤❡
❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦
❛♥❞
y✳
❛s t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ♦♥❡ ♦❢ ✇❤✐❝❤ ✐s tr✐❣♦♥♦♠❡tr✐❝✳
❊①❡r❝✐s❡ ✶✳✸✷
❘❡♣r❡s❡♥t t❤✐s ❢✉♥❝t✐♦♥✿
❊①❡r❝✐s❡ ✶✳✷✸
f ♣❡r❢♦r♠s t❤❡ ♦♣❡r❛t✐♦♥✿ ✏t❛❦❡ ❜❛s❡ 2 ♦❢ ✑✱ ❛♥❞ ❢✉♥❝t✐♦♥ g ♣❡r❢♦r♠s✿
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ t❤❡ ❧♦❣❛r✐t❤♠
✏t❛❦❡ t❤❡ sq✉❛r❡ r♦♦t ♦❢ ✑✳ t❤❡ ✐♥✈❡rs❡s ♦❢
f
❛♥❞
g✳
t❤❡s❡ ❢♦✉r ❢✉♥❝t✐♦♥s✳
✭❛✮ ❱❡r❜❛❧❧② ❞❡s❝r✐❜❡
✭❜✮ ❋✐♥❞ t❤❡ ❢♦r♠✉❧❛s ❢♦r
h(x) =
x3 + 1 , x3 − 1
❛s t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s ♦❢ ✈❛r✐❛❜❧❡s ❛♥❞
x
y✳
✭❝✮ ●✐✈❡ t❤❡♠ ❞♦♠❛✐♥s ❛♥❞
❝♦❞♦♠❛✐♥s✳ ❊①❡r❝✐s❡ ✶✳✸✸ ❊①❡r❝✐s❡ ✶✳✷✹
y = f (x)
❋✉♥❝t✐♦♥
✶✳ ❘❡♣r❡s❡♥t t❤❡ ❢✉♥❝t✐♦♥
h(x) =
p
t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s
x2 − 1 ❛s f ❛♥❞ g ✳
✈❛❧✉❡s✳ ■s t❤❡ ❢✉♥❝t✐♦♥ ♦♥❡✲t♦ ♦♥❡❄ ❲❤❛t ❛❜♦✉t ✐ts ✐♥✈❡rs❡❄
x 0 1 2 3 4
y = g(x) = 2x − 1✳
✷✳ Pr♦✈✐❞❡ ❛ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❝♦♠♣♦s✐t✐♦♥
f (g(x))
♦❢
f (u) = u2 + u
❛♥❞
Pr♦✈✐❞❡ ❛ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❝♦♠♣♦s✐t✐♦♥
f (u) = sin u
y = f (x) 0 1 2 1 2
❊①❡r❝✐s❡ ✶✳✸✹
❊①❡r❝✐s❡ ✶✳✷✺
♦❢
✐s ❣✐✈❡♥ ❜❡❧♦✇ ❜② ❛ ❧✐st ♦❢ ✐ts
❛♥❞
g(x) =
√
y = f (g(x))
x✳
y = f (x)
❋✉♥❝t✐♦♥
✐s ❣✐✈❡♥ ❜❡❧♦✇ ❜② ❛ ❧✐st ♦❢ ✐ts
✈❛❧✉❡s✳ ■s t❤❡ ❢✉♥❝t✐♦♥ ♦♥❡✲t♦ ♦♥❡❄ ❲❤❛t ❛❜♦✉t ✐ts ✐♥✈❡rs❡❄
❊①❡r❝✐s❡ ✶✳✷✻
x 0 1 2 3 4
Pr♦✈✐❞❡ ❛ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢
f (u) = u2 − 3u + 2
❛♥❞
y = f (g(x))
❊①❡r❝✐s❡ ✶✳✸✺
❊①❡r❝✐s❡ ✶✳✷✼
❲❤❛t ✐s t❤❡ ♠❡❛♥✐♥❣ ♦❢ t❤❡ ✐♥✈❡rs❡ ♦❢ t❤❡ ❢✉♥❝✲ t✐♦♥
2
f (x) = 3x + 1❄
❞♦♠❛✐♥s✳
y = f (x) 7 5 3 4 6
g(x) = x✳
❍✐♥t✿
❈❤♦♦s❡ ❛♣♣r♦♣r✐❛t❡
❋✉♥❝t✐♦♥s
y = f (x)
❛♥❞
u = g(y)
❛r❡ ❣✐✈❡♥ ❜❡❧♦✇
❜② t❛❜❧❡s ♦❢ s♦♠❡ ♦❢ t❤❡✐r ✈❛❧✉❡s✳ Pr❡s❡♥t t❤❡ ❝♦♠✲ ♣♦s✐t✐♦♥
u = h(x)
♦❢ t❤❡s❡ ❢✉♥❝t✐♦♥s ❜② ❛ s✐♠✐❧❛r
✶✳ ❊①❡r❝✐s❡s✿ ❇❛❝❦❣r♦✉♥❞
✹✹✹
❊①❡r❝✐s❡ ✶✳✹✹
t❛❜❧❡✿
x 0 1 2 3 4 y = f (x) 1 1 2 0 2 y
0 1 2 3 4
❚❤❡ t❛①✐ ❝❤❛r❣❡s $1.75 ❢♦r t❤❡ ✜rst q✉❛rt❡r ♦❢ ❛ ♠✐❧❡ ❛♥❞ $0.35 ❢♦r ❡❛❝❤ ❛❞❞✐t✐♦♥❛❧ ✜❢t❤ ♦❢ ❛ ♠✐❧❡✳ ❋✐♥❞ ❛ ❧✐♥❡❛r ❢✉♥❝t✐♦♥ ✇❤✐❝❤ ♠♦❞❡❧s t❤❡ t❛①✐ ❢❛r❡ f ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ ♥✉♠❜❡r ♦❢ ♠✐❧❡s ❞r✐✈❡♥✱ x✳
u = g(y) 3 1 2 1 0 ❊①❡r❝✐s❡ ✶✳✹✺ ❊①❡r❝✐s❡ ✶✳✸✻
✭❛✮ ❆❧❣❡❜r❛✐❝❛❧❧②✱ s❤♦✇ t❤❛t t❤❡ ❢✉♥❝t✐♦♥ f (x) = x2 ✐s ♥♦t ♦♥❡✲t♦✲♦♥❡✳ ✭❜✮ ●r❛♣❤✐❝❛❧❧②✱ s❤♦✇ t❤❛t t❤❡ ❢✉♥❝t✐♦♥ g(x) = 2x+1 ✐s ♦♥❡✲t♦✲♦♥❡✳ ✭❝✮ ❋✐♥❞ t❤❡ ✐♥✈❡rs❡ ♦❢ g ✳ ❊①❡r❝✐s❡ ✶✳✸✼
❉❡s❝r✐❜❡ ✕ ❜♦t❤ ❣❡♦♠❡tr✐❝❛❧❧② ❛♥❞ ❛❧❣❡❜r❛✐❝❛❧❧② ✕ t✇♦ ❞✐✛❡r❡♥t tr❛♥s❢♦r♠❛t✐♦♥s t❤❛t ♠❛❦❡ ❛ 1 × 1 sq✉❛r❡ ✐♥t♦ ❛ 2 × 3 r❡❝t❛♥❣❧❡✳ ❊①❡r❝✐s❡ ✶✳✸✽
❋✐♥❞ t❤❡ ❡q✉❛t✐♦♥ ♦❢ t❤❡ ❧✐♥❡ ♣❛ss✐♥❣ t❤r♦✉❣❤ t❤❡ ♣♦✐♥ts (−1, 1) ❛♥❞ (−1, 5)✳
❊①❡r❝✐s❡ ✶✳✸✾
❋✐♥❞ t❤❡ ✈❛❧✉❡ ♦❢ k s♦ t❤❛t t❤❡ ❧✐♥❡ ❝♦♥t❛✐♥✐♥❣ t❤❡ ♣♦✐♥ts (−6, 0) ❛♥❞ (k, −5) ✐s ♣❛r❛❧❧❡❧ t♦ t❤❡ ❧✐♥❡ ❝♦♥t❛✐♥✐♥❣ t❤❡ ♣♦✐♥ts (4, 3) ❛♥❞ (1, 7)✳
❊①❡r❝✐s❡ ✶✳✹✻
❋✐♥❞ t❤❡ ❡q✉❛t✐♦♥ s❛t✐s✜❡❞ ❜② ❛❧❧ ♣♦✐♥ts t❤❛t ❧✐❡ 2 ✉♥✐ts ❛✇❛② ❢r♦♠ t❤❡ ♣♦✐♥t (−1, −2) ❛♥❞ ❜② ♥♦ ♦t❤❡r ♣♦✐♥ts✳
❊①❡r❝✐s❡ ✶✳✹✼
❋♦r t❤❡ ♣♦❧②♥♦♠✐❛❧s ❣r❛♣❤❡❞ ❜❡❧♦✇✱ ✜♥❞ t❤❡ ❢♦❧✲ ❧♦✇✐♥❣✿
1 2 3 s♠❛❧❧❡st ♣♦ss✐❜❧❡ ❞❡❣r❡❡ s✐❣♥ ♦❢ t❤❡ ❧❡❛❞✐♥❣ ❝♦❡✣❝✐❡♥t ❞❡❣r❡❡ ✐s ♦❞❞✴❡✈❡♥
❈♦♥s✐❞❡r tr✐❛♥❣❧❡ ABC ✐♥ t❤❡ ♣❧❛♥❡ ✇❤❡r❡ A = (3, 2)✱ B = (3, −3)✱ C = (−2, −2)✳ ❋✐♥❞ t❤❡ ❧❡♥❣t❤s ♦❢ t❤❡ s✐❞❡s ♦❢ t❤❡ tr✐❛♥❣❧❡✳ ❊①❡r❝✐s❡ ✶✳✹✵
❋✐♥❞ ❛❧❧ x s✉❝❤ t❤❛t t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ t❤❡ ♣♦✐♥ts (3, −8) ❛♥❞ (x, −6) ✐s 5✳ ❊①❡r❝✐s❡ ✶✳✹✽ ❊①❡r❝✐s❡ ✶✳✹✶
❋✐♥❞ t❤❡ ❞✐st❛♥❝❡ ❜❡t✇❡❡♥ t❤❡ ♣♦✐♥ts ♦❢ ✐♥t❡rs❡❝✲ t✐♦♥ ♦❢ t❤❡ ❝✐r❝❧❡ (x − 1)2 + (y − 2)2 = 6 ✇✐t❤ t❤❡ ❛①❡s✳
❋✐♥❞ ❛ ♣♦ss✐❜❧❡ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❢✉♥❝t✐♦♥ ♣❧♦tt❡❞ ❜❡✲ ❧♦✇✿
❊①❡r❝✐s❡ ✶✳✹✷
❙♦❧✈❡ t❤❡ s②st❡♠ ♦❢ ❧✐♥❡❛r ❡q✉❛t✐♦♥s✿ ( x − y = −1, 2x + y = 0. ❊①❡r❝✐s❡ ✶✳✹✾ ❊①❡r❝✐s❡ ✶✳✹✸
❆ ♠♦✈✐❡ t❤❡❛t❡r ❝❤❛r❣❡s $10 ❢♦r ❛❞✉❧ts ❛♥❞ $6 ❢♦r ❝❤✐❧❞r❡♥✳ ❖♥ ❛ ♣❛rt✐❝✉❧❛r ❞❛② ✇❤❡♥ 320 ♣❡♦♣❧❡ ♣❛✐❞ ❛♥ ❛❞♠✐ss✐♦♥✱ t❤❡ t♦t❛❧ r❡❝❡✐♣ts ✇❡r❡ $3120✳ ❍♦✇ ♠❛♥② ✇❡r❡ ❛❞✉❧ts ❛♥❞ ❤♦✇ ♠❛♥② ✇❡r❡ ❝❤✐❧❞r❡♥❄
❆ ❢❛❝t♦r② ✐s t♦ ❜❡ ❜✉✐❧t ♦♥ ❛ ❧♦t ♠❡❛s✉r✐♥❣ 240 ❢t ❜② 320 ❢t✳ ❆ ❜✉✐❧❞✐♥❣ ❝♦❞❡ r❡q✉✐r❡s t❤❛t ❛ ❧❛✇♥ ♦❢ ✉♥✐❢♦r♠ ✇✐❞t❤ ❛♥❞ ❡q✉❛❧ ✐♥ ❛r❡❛ t♦ t❤❡ ❢❛❝t♦r② ♠✉st s✉rr♦✉♥❞ t❤❡ ❢❛❝t♦r②✳ ❲❤❛t ♠✉st t❤❡ ✇✐❞t❤ ♦❢ t❤❡ ❧❛✇♥ ❜❡❄
✶✳ ❊①❡r❝✐s❡s✿ ❇❛❝❦❣r♦✉♥❞
❊①❡r❝✐s❡ ✶✳✺✵
❆ ❢❛❝t♦r② ♦❝❝✉♣✐❡s ❛ ❧♦t ♠❡❛s✉r✐♥❣ 240 ❢t ❜② 320 ❢t✳ ❆ ❜✉✐❧❞✐♥❣ ❝♦❞❡ r❡q✉✐r❡s t❤❛t ❛ ❧❛✇♥ ♦❢ ✉♥✐✲ ❢♦r♠ ✇✐❞t❤ ❛♥❞ ❡q✉❛❧ ✐♥ ❛r❡❛ t♦ t❤❡ ❢❛❝t♦r② ♠✉st s✉rr♦✉♥❞ t❤❡ ❢❛❝t♦r②✳ ❲❤❛t ♠✉st t❤❡ ✇✐❞t❤ ♦❢ t❤❡ ❧❛✇♥ ❜❡❄
✹✹✺
y = f (−x) − 1✳
❊①❡r❝✐s❡ ✶✳✺✶
▼❛❦❡ ❛ ✢♦✇❝❤❛rt ❛♥❞ t❤❡♥ ♣r♦✈✐❞❡ ❛ ❢♦r♠✉❧❛ ❢♦r t❤❡ ❢✉♥❝t✐♦♥ y = f (x) t❤❛t r❡♣r❡s❡♥ts ❛ ♣❛r❦✐♥❣ ❢❡❡ ❢♦r ❛ st❛② ♦❢ x ❤♦✉rs✳ ■t ✐s ❝♦♠♣✉t❡❞ ❛s ❢♦❧❧♦✇s✿ ❢r❡❡ ❢♦r t❤❡ ✜rst ❤♦✉r ❛♥❞ $1 ♣❡r ❤♦✉r ❜❡②♦♥❞✳
❊①❡r❝✐s❡ ✶✳✺✽
❚❤❡ ❣r❛♣❤ ❞r❛✇♥ ✇✐t❤ ❛ s♦❧✐❞ ❧✐♥❡ ✐s y = x3 ✳ ❲❤❛t ❛r❡ t❤❡ ♦t❤❡r t✇♦❄
❊①❡r❝✐s❡ ✶✳✺✷
❊①♣❧❛✐♥ t❤❡ ❞✐✛❡r❡♥❝❡ ❜❡t✇❡❡♥ t❤❡s❡ t✇♦ ❢✉♥❝t✐♦♥s✿ r
√ x−1 x−1 . ❛♥❞ √ x+1 x+1
❊①❡r❝✐s❡ ✶✳✺✸
❈❧❛ss✐❢② t❤❡s❡ ❢✉♥❝t✐♦♥s✿ ❢✉♥❝t✐♦♥
♦❞❞ ❡✈❡♥ ♦♥t♦ ♦♥❡✲t♦✲♦♥❡
f (x) = 2x − 1
❊①❡r❝✐s❡ ✶✳✺✾
❚❤❡ ❣r❛♣❤ ❜❡❧♦✇ ✐s t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ f (x) = A sin x + B ❢♦r s♦♠❡ A ❛♥❞ B ✳ ❋✐♥❞ t❤❡s❡ ♥✉♠❜❡rs✳
g(x) = −x + 2 h(x) = 3
❊①❡r❝✐s❡ ✶✳✺✹
❚❤❡ ❣r❛♣❤ ♦❢ y = f (x) ✐s ♣❧♦tt❡❞ ❜❡❧♦✇✳ ❙❦❡t❝❤ y = −f (x + 5) − 6✳
❊①❡r❝✐s❡ ✶✳✻✵
❍❛❧❢ ♦❢ t❤❡ ❣r❛♣❤ ♦❢ ❛♥ ❡✈❡♥ ❢✉♥❝t✐♦♥ ✐s s❤♦✇♥ ❜❡✲ ❧♦✇❀ ♣r♦✈✐❞❡ t❤❡ ♦t❤❡r ❤❛❧❢✿
❊①❡r❝✐s❡ ✶✳✺✺
■s t❤❡ ❝♦♠♣♦s✐t✐♦♥ ♦❢ t✇♦ ❢✉♥❝t✐♦♥s t❤❛t ❛r❡ ♦❞❞✲ ✴❡✈❡♥ ♦❞❞✴❡✈❡♥❄ ❊①❡r❝✐s❡ ✶✳✺✻
❋✐♥❞ t❤❡ ❢♦r♠✉❧❛s ♦❢ t❤❡ ✐♥✈❡rs❡s ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢✉♥❝t✐♦♥s✿ ✭❛✮ f (x) = (x + 1)3 ❀ ✭❜✮ g(x) = ln(x3 )✳ ❊①❡r❝✐s❡ ✶✳✺✼
❚❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ y = f (x) ✐s ❣✐✈❡♥ ❜❡✲ ❧♦✇✳ ❙❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢ y = 2f (3x) ❛♥❞ t❤❡♥
❊①❡r❝✐s❡ ✶✳✻✶
❍❛❧❢ ♦❢ t❤❡ ❣r❛♣❤ ♦❢ ❛♥ ♦❞❞ ❢✉♥❝t✐♦♥ ✐s s❤♦✇♥ ❛❜♦✈❡❀ ♣r♦✈✐❞❡ t❤❡ ♦t❤❡r ❤❛❧❢✳
✷✳ ❊①❡r❝✐s❡s✿ ▲✐♠✐ts ❛♥❞ ❝♦♥t✐♥✉✐t②
✹✹✻
✷✳ ❊①❡r❝✐s❡s✿ ▲✐♠✐ts ❛♥❞ ❝♦♥t✐♥✉✐t②
❊①❡r❝✐s❡ ✷✳✶
P❧♦t t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥
y = f (x)✱ ✇❤❡r❡ x ✐s f (x) ✐s t❤❡
t❤❡ ✐♥❝♦♠❡ ✭✐♥ t❤♦✉s❛♥❞s ♦❢ ❞♦❧❧❛rs✮ ❛♥❞
t❛① ❜✐❧❧ ✭✐♥ t❤♦✉s❛♥❞s ♦❢ ❞♦❧❧❛rs✮ ❢♦r t❤❡ ✐♥❝♦♠❡ ♦❢
x✱ ✇❤✐❝❤ ✐s ❝♦♠♣✉t❡❞ ❛s ❢♦❧❧♦✇s✿ ♥♦ t❛① ♦♥ t❤❡ ✜rst $10, 000✱ t❤❡♥ 5% ❢♦r t❤❡ ♥❡①t $10, 000✱ ❛♥❞ 10% ❢♦r t❤❡ r❡st ♦❢ t❤❡ ✐♥❝♦♠❡✳ ■♥✈❡st✐❣❛t❡ ✐ts ❧✐♠✐ts ❛♥❞ ❝♦♥t✐♥✉✐t②✳
❊①❡r❝✐s❡ ✷✳✷
❊①♣❧❛✐♥ ✇❤② t❤❡ ❧✐♠✐t
lim sin
x→0
1 x
❞♦❡s ♥♦t ❡①✐st✳
❊①❡r❝✐s❡ ✷✳✾
❊①♣r❡ss t❤❡ ❛s②♠♣t♦t❡s ♦❢ t❤✐s ❢✉♥❝t✐♦♥ ❛s ❧✐♠✐ts ❛♥❞ ✐❞❡♥t✐❢② ♦t❤❡r ♦❢ ✐ts ✐♠♣♦rt❛♥t ❢❡❛t✉r❡s✿ ❊①❡r❝✐s❡ ✷✳✸
✭❛✮ ❙t❛t❡ t❤❡
ε✲ δ
❞❡✜♥✐t✐♦♥ ♦❢ ❧✐♠✐t✳
❞❡✜♥✐t✐♦♥ t♦ ♣r♦✈❡ t❤❛t
✭❜✮ ❯s❡ t❤❡
2
lim x = 0✳
x→0
❊①❡r❝✐s❡ ✷✳✹
✭❛✮ ❙t❛t❡ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ ❧✐♠✐t✳ ✭❜✮ ❯s❡ t❤❡ ❞❡✜♥✐✲ t✐♦♥ t♦ ♣r♦✈❡ t❤❛t
lim x3 6= 3✳
x→0
❊①❡r❝✐s❡ ✷✳✶✵
f ✐s (a, b)✑❄
❚r✉❡ ♦r ❢❛❧s❡✿ ✏■❢ ✐s ❜♦✉♥❞❡❞ ♦♥
❊①❡r❝✐s❡ ✷✳✺
(a, b)✱
t❤❡♥
f
f
✐s
[a, b)✱
t❤❡♥
f
[a, ∞)✱
t❤❡♥
f
❝♦♥t✐♥✉♦✉s ♦♥
✭❛✮ ❙t❛t❡ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ ❛♥ ✐♥✜♥✐t❡ ❧✐♠✐t✳ ✭❜✮ ❯s❡ t❤❡ ❞❡✜♥✐t✐♦♥ t♦ ♣r♦✈❡ t❤❛t
lim x3 = +∞✳
❊①❡r❝✐s❡ ✷✳✶✶
x→+∞
❚r✉❡ ♦r ❢❛❧s❡✿ ✏■❢ ❜♦✉♥❞❡❞ ♦♥
f
✐s ❝♦♥t✐♥✉♦✉s ♦♥
[a, b]✱
t❤❡♥
[a, b]✑❄
❊①❡r❝✐s❡ ✷✳✻
●✐✈❡ ❛♥ ❡①❛♠♣❧❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✇✐t❤ t✇♦ ✈❡rt✐❝❛❧ ❛s②♠♣t♦t❡s✿
x=0
❛♥❞
x = 2✳
❊①❡r❝✐s❡ ✷✳✶✷
✐s ❜♦✉♥❞❡❞ ♦♥
●✐✈❡ ❛♥ ❡①❛♠♣❧❡ ♦❢ ❛ ❢✉♥❝t✐♦♥ ✇✐t❤ ❛ ❤♦r✐③♦♥t❛❧
x = 2✳
y = −1✱
❝♦♥t✐♥✉♦✉s ♦♥
❊①❡r❝✐s❡ ✷✳✶✸
❊①❡r❝✐s❡ ✷✳✼
❛s②♠♣t♦t❡✿
f ✐s [a, b)✑❄
❚r✉❡ ♦r ❢❛❧s❡✿ ✏■❢
❛♥❞ ❛ ✈❡rt✐❝❛❧ ❛s②♠♣t♦t❡✿
f ✐s ❝♦♥t✐♥✉♦✉s [a, ∞)✑❄
❚r✉❡ ♦r ❢❛❧s❡✿ ✏■❢ ✐s ❜♦✉♥❞❡❞ ♦♥
♦♥
❊①❡r❝✐s❡ ✷✳✶✹ ❊①❡r❝✐s❡ ✷✳✽
■❞❡♥t✐❢② ❛❧❧ ✐♠♣♦rt❛♥t ❢❡❛t✉r❡s ♦❢ t❤✐s ❣r❛♣❤✿
❚r✉❡ ♦r ❢❛❧s❡✿
✏❊✈❡r② ❢✉♥❝t✐♦♥ ✐s ❜♦✉♥❞❡❞ ♦♥ ❛
❝❧♦s❡❞ ❜♦✉♥❞❡❞ ✐♥t❡r✈❛❧✑❄
✷✳ ❊①❡r❝✐s❡s✿ ▲✐♠✐ts ❛♥❞ ❝♦♥t✐♥✉✐t②
❊①❡r❝✐s❡ ✷✳✶✺
❚❤❡ ❣r❛♣❤ ♦❢ f ✐s ❣✐✈❡♥ ❜❡❧♦✇✳ ■t ❤❛s ❛s②♠♣t♦t❡s✳ ❉❡s❝r✐❜❡ t❤❡♠ ❛s ❧✐♠✐ts✳ ❍✐♥t✿ ✉s❡ ❜♦t❤ +∞ ❛♥❞ −∞✳
❊①❡r❝✐s❡ ✷✳✶✻
❆ ❤♦✉s❡ ❤❛s 4 ✢♦♦rs ❛♥❞ ❡❛❝❤ ✢♦♦r ❤❛s 7 ✇✐♥❞♦✇s✳ ❲❤❛t ✇❛s t❤❡ ②❡❛r ✇❤❡♥ t❤❡ ❞♦♦r♠❛♥✬s ❣r❛♥❞✲ ♠♦t❤❡r ❞✐❡❞❄ ❊①❡r❝✐s❡ ✷✳✶✼
■❧❧✉str❛t❡ ✇✐t❤ ♣❧♦ts ✭s❡♣❛r❛t❡❧②✮ ❢✉♥❝t✐♦♥s ✇✐t❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ❜❡❤❛✈✐♦r✿ ✭❛✮ f (x) → +∞ ❛s x → 1❀ ✭❜✮ f (x) → −∞ ❛s x → 2+ ❀ ✭❝✮ f (x) → 3 ❛s x → −∞✳ ❊①❡r❝✐s❡ ✷✳✶✽
●✐✈❡♥ f (x) = −(x − 3)4 (x + 1)3 ✳ ❋✐♥❞ t❤❡ ❧❡❛❞✐♥❣ t❡r♠ ❛♥❞ ✉s❡ ✐t t♦ ❞❡s❝r✐❜❡ t❤❡ ❧♦♥❣ t❡r♠ ❜❡❤❛✈✐♦r ♦❢ t❤❡ ❢✉♥❝t✐♦♥✳ ❊①❡r❝✐s❡ ✷✳✶✾
✭❛✮ ❙t❛t❡ t❤❡ ■♥t❡r♠❡❞✐❛t❡ ❱❛❧✉❡ ❚❤❡♦r❡♠✳ ✭❜✮ ●✐✈❡ ❛♥ ❡①❛♠♣❧❡ ♦❢ ✐ts ❛♣♣❧✐❝❛t✐♦♥✳
✹✹✼
✸✳ ❊①❡r❝✐s❡s✿ ❉❡r✐✈❛t✐✈❡s
✹✹✽
✸✳ ❊①❡r❝✐s❡s✿ ❉❡r✐✈❛t✐✈❡s
❊①❡r❝✐s❡ ✸✳✶
❚❤r❡❡ str❛✐❣❤t ❧✐♥❡s ❛r❡ s❤♦✇♥ ❜❡❧♦✇✳ ❲❤❛t ✐s s♦ s♣❡❝✐❛❧ ❛❜♦✉t t❤❡♠❄ ❋✐♥❞ t❤❡✐r s❧♦♣❡s✳
❊①❡r❝✐s❡ ✸✳✻
❚❤❡ ♣♦s✐t✐♦♥ ❛♥❞ t❤❡ ✈❡❧♦❝✐t② ❛r❡ ♣❧♦tt❡❞ ❜❡❧♦✇✳ P❧♦t t❤❡ ❛❝❝❡❧❡r❛t✐♦♥✳
❊①❡r❝✐s❡ ✸✳✷
✭❛✮ ❙✉♣♣♦s❡ ❞✉r✐♥❣ t❤❡ ✜rst 2 s❡❝♦♥❞s ♦❢ ✐ts ✢✐❣❤t ❛♥ ♦❜❥❡❝t ♣r♦❣r❡ss❡❞ ❢r♦♠ ♣♦✐♥t (0, 0) t♦ (1, 0) t♦ (2, 0)✳ ❲❤❛t ✇❛s ✐ts ❛✈❡r❛❣❡ ✈❡❧♦❝✐t② ❛♥❞ ❛✈❡r❛❣❡ ❛❝❝❡❧❡r❛t✐♦♥❄ ✭❜✮ ❲❤❛t ✐❢ t❤❡ ❧❛st ♣♦✐♥t ✐s (1, 1) ✐♥st❡❛❞❄ ❊①❡r❝✐s❡ ✸✳✸
❙✉♣♣♦s❡ t ✐s t✐♠❡ ❛♥❞ x ✐s t❤❡ ♣r✐❝❡ ♦❢ ❜r❡❛❞✳ ❲❤❛t ❝❛♥ ②♦✉ s❛② ❛❜♦✉t ✐ts ❞②♥❛♠✐❝s❄ ❇❡ ❛s s♣❡❝✐✜❝ ❛s ♣♦ss✐❜❧❡✳
❊①❡r❝✐s❡ ✸✳✼
❊❛❝❤ ♦❢ t❤❡s❡ str❛✐❣❤t ❧✐♥❡s ❛r❡ ❞r♦✇♥ t❤r♦✉❣❤ t✇♦ ♣♦✐♥t ♦❢ t❤❡ ❣r❛♣❤✳ ❲❤❛t ❞♦ t❤❡② t❡❧❧ ✉s ❛❜♦✉t t❤❡ ❢✉♥❝t✐♦♥❄ ❊①❡r❝✐s❡ ✸✳✹
❋✐♥❞ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥ts ❢♦r t❤❡ ❢✉♥❝t✐♦♥ ❣✐✈❡♥ ❜② t❤❡ ❢♦❧❧♦✇✐♥❣ ❞❛t❛✿ x
y = f (x)
−1
2
1
2
3
3
5
3
7
−2
9
5
❊①❡r❝✐s❡ ✸✳✽ ❊①❡r❝✐s❡ ✸✳✺
P❧♦t t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❛✈❡r❛❣❡ ✈❡❧♦❝✐t② ❢♦r t❤❡ ❢♦❧✲ ❧♦✇✐♥❣ ♣♦s✐t✐♦♥ ❢✉♥❝t✐♦♥✿
❋r♦♠ t❤❡ ❞❡✜♥✐t✐♦♥✱ ❝♦♠♣✉t❡ t❤❡ ❛✈❡r❛❣❡ r❛t❡ ♦❢ ❝❤❛♥❣❡ ❢♦r t❤❡ ❢✉♥❝t✐♦♥ f (x) = x2 + 1 ❛t a = 2 ✇✐t❤ h = 0.2 ❛♥❞ h = 0.1✳ ❊①♣❧❛✐♥ t❤❡ ❞✐✛❡r❡♥❝❡✳
✸✳ ❊①❡r❝✐s❡s✿ ❉❡r✐✈❛t✐✈❡s
✹✹✾
❊①❡r❝✐s❡ ✸✳✾
✭❛✮ ❈♦♠♣✉t❡ t❤❡ ❛✈❡r❛❣❡ r❛t❡ ♦❢ ❝❤❛♥❣❡ ❢♦r t❤❡ ❢✉♥❝t✐♦♥
f (x) = 3x2 − x
❛t
a = 1
❛♥❞
h = .5✳
✭❜✮ ❋✐♥❞ t❤❡ ❡q✉❛t✐♦♥ ♦❢ t❤❡ s❡❝❛♥t t♦ t❤❡ ❣r❛♣❤ ♦❢
y = f (x)
❝♦rr❡s♣♦♥❞✐♥❣ t♦ t❤✐s ❛✈❡r❛❣❡ r❛t❡ ♦❢
❝❤❛♥❣❡✳ ❊①❡r❝✐s❡ ✸✳✶✹
❨♦✉ ❤❛✈❡ r❡❝❡✐✈❡❞ t❤❡ ❢♦❧❧♦✇✐♥❣ ❡♠❛✐❧ ❢r♦♠ ②♦✉r ❊①❡r❝✐s❡ ✸✳✶✵
❜♦ss✿ ✏❚✐♠✱ ▲♦♦❦ ❛t t❤❡ ♥✉♠❜❡rs ✐♥ t❤✐s s♣r❡❛❞✲ ✐s ❣✐✈❡♥ ❜❡❧♦✇✳ ❊s✲
s❤❡❡t✳ ❚❤✐s st♦❝❦ s❡❡♠s t♦ ❜❡ ✐♥❝❤✐♥❣ ✉♣✳✳✳ ❉♦❡s
∆f t✐♠❛t❡ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ∆x ❢♦r
✐t❄ ■❢ ✐t ❞♦❡s✱ ❤♦✇ ❢❛st❄ ❚❤❛♥❦s✳ ✕ ❚♦♠✑✳ ❉❡s❝r✐❜❡
❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥
x = 0, 4,
❛♥❞
6
❛♥❞
f (x)
∆x = 0.5✳
②♦✉r ❛❝t✐♦♥s✳
❊①❡r❝✐s❡ ✸✳✶✺
■❢ t✇♦ ❢✉♥❝t✐♦♥s ❛r❡ ❡q✉❛❧✱ ❞♦ t❤❡✐r ❞❡r✐✈❛t✐✈❡s ❤❛✈❡ t♦ ❜❡ ❡q✉❛❧ t♦♦❄
❊①❡r❝✐s❡ ✸✳✶✻
❋✐♥❞ t❤❡ t❛♥❣❡♥t ❧✐♥❡ t❤r♦✉❣❤ t❤❡ ♣♦✐♥t
(2, 1)
t♦
t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ✇❤✐❝❤ ✐s
ex
2
✳
❊①❡r❝✐s❡ ✸✳✶✶
❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥
f (x)
✐s ❣✐✈❡♥ ❜❡❧♦✇✳ ❊s✲
❊①❡r❝✐s❡ ✸✳✶✼
t✐♠❛t❡ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ❢♦r
❲❤❛t ❞♦ t❤❡s❡ str❛✐❣❤t ❧✐♥❡s t❡❧❧ ✉s ❛❜♦✉t t❤❡ ❢✉♥❝✲
x = 2, 4, 9
t✐♦♥❄
❛♥❞
∆x = 1✳
❊①❡r❝✐s❡ ✸✳✶✷
❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥
f
✐s ❣✐✈❡♥ ❜❡❧♦✇✳ ❊st✐♠❛t❡
t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❞✐✛❡r❡♥❝❡ q✉♦t✐❡♥t ❛♥❞
∆x = 2, 1, 0.5✳
∆f ∆x
❢♦r
x=1 ❊①❡r❝✐s❡ ✸✳✶✽
✭❛✮ ❙t❛t❡ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❢✉♥❝✲ t✐♦♥ ❛t ♣♦✐♥t
a✳
✭❜✮ Pr♦✈✐❞❡ ❛ ❣r❛♣❤✐❝❛❧ ✐♥t❡r♣r❡t❛✲
t✐♦♥ ♦❢ t❤❡ ❞❡✜♥✐t✐♦♥✳
❊①❡r❝✐s❡ ✸✳✶✾
❋r♦♠ t❤❡ ❞❡✜♥✐t✐♦♥✱
f (x) = x2 + 1
❛t
❝♦♠♣✉t❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢
a = 2✳
❊①❡r❝✐s❡ ✸✳✶✸
❊①❡r❝✐s❡ ✸✳✷✵
❚❤❡ s❡❝❛♥t ❧✐♥❡ ♦❢ t❤❡ s✐❣♥ ❢✉♥❝t✐♦♥ ❛r❡ s❤♦✇♥ ❜❡✲
❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥
❧♦✇✳ ❲❤❛t ❞♦ t❤❡② t❡❧❧ ②♦✉ ❛❜♦✉t t❤❡ ❞✐✛❡r❡♥t✐❛✲
♠❛t❡ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡
❜✐❧✐t② ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❛t
x = 0❄
❛♥❞
6.
f (x)
✐s ❣✐✈❡♥ ❜❡❧♦✇✳ ❊st✐✲
f ′ (x) ❢♦r x = 0, 4,
✸✳ ❊①❡r❝✐s❡s✿ ❉❡r✐✈❛t✐✈❡s
✹✺✵
❊①❡r❝✐s❡ ✸✳✷✶ ❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥
f (x)
✐s ❣✐✈❡♥ ❜❡❧♦✇✳ ❊st✐✲
♠❛t❡ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡ ❛♥❞
f ′ (x) ❢♦r x = 2, 4,
9✳
❊①❡r❝✐s❡ ✸✳✷✷ ❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥
f
✐s ❣✐✈❡♥ ❜❡❧♦✇✳ ❊st✐♠❛t❡
t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡
f′
❢♦r
x=0
❛♥❞
x = 4✳
❙❤♦✇ ②♦✉r ❝♦♠♣✉t❛t✐♦♥s✳
❊①❡r❝✐s❡ ✸✳✷✸ ❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥
f (x)
✐s ❣✐✈❡♥ ❜❡❧♦✇✳ ❊st✐✲
♠❛t❡ t❤❡ ✈❛❧✉❡s ♦❢ t❤❡ ❞❡r✐✈❛t✐✈❡ ❛♥❞
6✳
f ′ (x) ❢♦r x = 1, 3✱
✹✳ ❊①❡r❝✐s❡s✿ ▼♦❞❡❧s
✹✺✶
✹✳ ❊①❡r❝✐s❡s✿ ▼♦❞❡❧s
❊①❡r❝✐s❡ ✹✳✶
❚❤❡ ♣♦♣✉❧❛t✐♦♥ ♦❢ ❛ ❝✐t② ❞❡❝❧✐♥❡s ❜② 10% ❡✈❡r② ②❡❛r✳ ❍♦✇ ❧♦♥❣ ✇✐❧❧ ✐t t❛❦❡ t♦ ❞r♦♣ t♦ 50% ♦❢ t❤❡ ❝✉rr❡♥t ♣♦♣✉❧❛t✐♦♥❄ ❊①❡r❝✐s❡ ✹✳✷
❚❤❡ ❢✉♥❝t✐♦♥ y = f (x) s❤♦✇♥ ❜❡❧♦✇ r❡♣r❡s❡♥ts t❤❡ ❧♦❝❛t✐♦♥ ✭✐♥ ♠✐❧❡s✮ ♦❢ ❛ ❤✐❦❡r ❛s ❛ ❢✉♥❝t✐♦♥ ♦❢ t✐♠❡ ✭✐♥ ❤♦✉rs✮✳ ❙❦❡t❝❤ t❤❡ ❤✐❦❡r✬s ✈❡❧♦❝✐t② ❛s t❤❡ ❞✐✛❡r✲ ❡♥❝❡ q✉♦t✐❡♥t✳
❊①❡r❝✐s❡ ✹✳✻
❙✉♣♣♦s❡ t❤❡ ❛❧t✐t✉❞❡✱ ✐♥ ♠❡t❡rs✱ ♦❢ ❛♥ ♦❜❥❡❝t ✐s ❣✐✈❡♥ ❜② t❤❡ ❢✉♥❝t✐♦♥ t2 + t✱ ✇❤❡r❡ t ✐s t✐♠❡✱ ✐♥ s❡❝♦♥❞s✳ ❲❤❛t ✐s t❤❡ ✈❡❧♦❝✐t② ✇❤❡♥ t❤❡ ❛❧t✐t✉❞❡ ✐s 12 ♠❡t❡rs❄ ❊①❡r❝✐s❡ ✹✳✼
❊①❡r❝✐s❡ ✹✳✸
❚❤❡ ✈❡❧♦❝✐t② ♦❢ t❤❡ ♦❜❥❡❝t ❛t t✐♠❡ t ✐s ❣✐✈❡♥ ❜② v(t) = 1 + 3t2 . ■❢ ❛t t✐♠❡ t = 1 t❤❡ ♦❜❥❡❝t ✐s ❛t ♣♦s✐t✐♦♥ x = 4, ✇❤❡r❡ ✐s ✐t ❛t t✐♠❡ t = 0❄ ❊①❡r❝✐s❡ ✹✳✹
❚❤❡ ❣r❛♣❤s ♦❢ t❤❡ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ♣♦s✐t✐♦♥ ♦❢ ❛ ♠♦✈✐♥❣ ♦❜❥❡❝t ❛r❡ s❤♦✇♥ ❜❡❧♦✇✳ ❉❡s❝r✐❜❡ ✇❤❛t ✐s ❤❛♣♣❡♥✐♥❣✳
❚❤❡ ✈❡❧♦❝✐t② ♦❢ t❤❡ ♦❜❥❡❝t ❛t t✐♠❡ t ✐s ❣✐✈❡♥ ❜② v(t) = 1 + et . ■❢ ❛t t✐♠❡ t = 0 t❤❡ ♦❜❥❡❝t ✐s ❛t x = 2, ✇❤❡r❡ ✐s ✐t ❛t t✐♠❡ t = 1❄ ❊①❡r❝✐s❡ ✹✳✽
❚❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ♦❢ ❛♥ ♦❜❥❡❝t ❛t t✐♠❡ t ✐s ❣✐✈❡♥ ❜② a(t) = 3t. ■❢ ❛t t✐♠❡ t = 1 t❤❡ ✈❡❧♦❝✐t② ♦❢ ♦❜❥❡❝t ✐s ❛t v(1) = −1, ✇❤❛t ✐s ✐t ❛t t✐♠❡ t = 0❄ ❊①❡r❝✐s❡ ✹✳✾
❙✉♣♣♦s❡ s(t) r❡♣r❡s❡♥ts t❤❡ ♣♦s✐t✐♦♥ ♦❢ ❛ ♣❛rt✐❝❧❡ ❛t t✐♠❡ t ❛♥❞ v(t) ✐ts ✈❡❧♦❝✐t②✳ ■❢ v(t) = sin t − cos t ❛♥❞ t❤❡ ✐♥✐t✐❛❧ ♣♦s✐t✐♦♥ ✐s s(0) = 0, ✜♥❞ t❤❡ ♣♦s✐t✐♦♥ s(1). ❊①❡r❝✐s❡ ✹✳✶✵
❙✉♣♣♦s❡ t❤❡ s♣❡❡❞ ♦❢ ❛ ❝❛r ✇❛s ❣r♦✇✐♥❣ ❝♦♥t✐♥✉✲ ♦✉s❧② ❢♦❧❧♦✇✐♥❣ t❤❡ r✉❧❡ 55 + 5t ♣❡r ❤♦✉r✱ ✇❤❡r❡ t ✐s t❤❡ ♥✉♠❜❡r ♦❢ ❤♦✉rs ♣❛ss❡❞ s✐♥❝❡ ✐t ✇❛s 250 ♠✐❧❡s ❛✇❛② ❢r♦♠ ❛ ❝✐t②✳ ❍♦✇ ❢❛r ✐s ✐t ❢r♦♠ t❤❡ ❝✐t② ❛❢t❡r 3 ❤♦✉rs ♦❢ ❞r✐✈✐♥❣ t♦✇❛r❞s ✐t❄ ❊①❡r❝✐s❡ ✹✳✶✶ ❊①❡r❝✐s❡ ✹✳✺
❚❤❡ ❣r❛♣❤s ♦❢ t❤❡ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ♣♦s✐t✐♦♥ ♦❢ ❛ ♠♦✈✐♥❣ ♦❜❥❡❝t ❛r❡ s❤♦✇♥ ❜❡❧♦✇✳ ❉❡s❝r✐❜❡ ✇❤❛t ✐s ❤❛♣♣❡♥✐♥❣✳
▲❡t x r❡♣r❡s❡♥t t❤❡ t✐♠❡ ♣❛ss❡❞ s✐♥❝❡ t❤❡ ❝❛r ❧❡❢t t❤❡ ❝✐t②✳ ❚❤❡ t❛❜❧❡ ❜❡❧♦✇ t❡❧❧s ❢♦r ✇❤❛t ✈❛❧✉❡s ♦❢ x t❤❡ ✈❡❧♦❝✐t② ❛♥❞ t❤❡ ❛❝❝❡❧❡r❛t✐♦♥ ♦❢ t❤❡ ❝❛r ❛r❡ ♣♦s✐t✐✈❡✱ ♥❡❣❛t✐✈❡✱ ♦r ③❡r♦✳ ▲❡t f (x) r❡♣r❡s❡♥t t❤❡
✹✳ ❊①❡r❝✐s❡s✿ ▼♦❞❡❧s
✹✺✷
❞✐st❛♥❝❡ ♦❢ t❤❡ ❝❛r ❢r♦♠ t❤❡ ❝✐t②✳ ❙❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢
f✳ x
✈❡❧♦❝✐t②
❛❝❝❡❧❡r❛t✐♦♥
0
0
+
1
+
2
0
−
3
−
−
−
❊①❡r❝✐s❡ ✹✳✶✷
t s❡❝♦♥❞s ❛❢t❡r ✐t ✐s f (t) = −16t2 + 8t + 6✳ ❊①♣❧❛✐♥ t❤❡ ♥✉♠❜❡rs −16, 8, 6✳
❚❤❡ ❤❡✐❣❤t ♦❢ t❤❡ ❜❛❧❧ ✭✐♥ ❢❡❡t✮ t❤r♦✇♥ ✐s ❣✐✈❡♥ ❜② t❤❡ ♠❡❛♥✐♥❣ ♦❢
❊①❡r❝✐s❡ ✹✳✶✸
❚❤❡ ❣r❛♣❤ ♦❢ t❤❡ ✈❡❧♦❝✐t② ♦❢ ❛ ❝❛r ✐s ❣✐✈❡♥ ❜❡❧♦✇✳ P❧♦t t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ r❡♣r❡s❡♥t✐♥❣ t❤❡ ❞✐s✲ t❛♥❝❡ ♦❢ t❤❡ ❝❛r ❢r♦♠ t❤❡ st❛rt✐♥❣ ♣♦✐♥t✳
❊①❡r❝✐s❡ ✹✳✶✹
❙✉♣♣♦s❡ t❤❡ s♣❡❡❞ ♦❢ ❛ ❝❛r ✇❛s ❝❤❛♥❣✐♥❣ ❝♦♥t✐♥✉✲ ♦✉s❧② ❢♦❧❧♦✇✐♥❣ t❤❡ r✉❧❡
60 − t2
♣❡r ❤♦✉r✱ ✇❤❡r❡
t ✐s
t❤❡ ♥✉♠❜❡r ♦❢ ❤♦✉rs ♣❛ss❡❞ s✐♥❝❡ ♥♦♦♥✳ ❋✐♥❞ t❤❡ ❛✈❡r❛❣❡ s♣❡❡❞ ♦❢ t❤❡ ❝❛r ❜❡t✇❡❡♥
1
♣♠ ❛♥❞
3
♣♠✳
❊①❡r❝✐s❡ ✹✳✶✺
❙✉♣♣♦s❡ t❤❡ ❛❧t✐t✉❞❡✱ ✐♥ ♠❡t❡rs✱ ♦❢ ❛♥ ♦❜❥❡❝t ✐s ❣✐✈❡♥ ❜② t❤❡ ❢✉♥❝t✐♦♥
y = t2 + t, t ≥ 0, ✇❤❡r❡
t
✐s t✐♠❡✱ ✐♥ s❡❝✳ ❲❤❛t ✐s t❤❡ ✈❡❧♦❝✐t② ✇❤❡♥
t❤❡ ❛❧t✐t✉❞❡ ✐s
12
♠❡t❡rs❄
❊①❡r❝✐s❡ ✹✳✶✻
❋✐♥❞ t❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥s ♦❢ ❛ ❢r❡❡ ❢❛❧❧✐♥❣ ♦❜❥❡❝t ❢r♦♠ t❤✐s ❞❛t❛✿
✺✳ ❊①❡r❝✐s❡s✿ ■♥❢♦r♠❛t✐♦♥ ❢r♦♠ t❤❡ ❞❡r✐✈❛t✐✈❡s
✹✺✸
✺✳ ❊①❡r❝✐s❡s✿ ■♥❢♦r♠❛t✐♦♥ ❢r♦♠ t❤❡ ❞❡r✐✈❛t✐✈❡s
❊①❡r❝✐s❡ ✺✳✶
❊①❡r❝✐s❡ ✺✳✶✵
❋✐♥❞ ❛❧❧ ❧♦❝❛❧ ♠❛①✐♠❛ ❛♥❞ ♠✐♥✐♠❛ ♦❢ t❤❡ ❢✉♥❝t✐♦♥
❋✐♥❞ t❤❡ ❧♦❝❛❧ ♠❛①✐♠✉♠ ❛♥❞ ♠✐♥✐♠✉♠ ♣♦✐♥ts ♦❢
3
f (x) = x3 − 3x✳
f (x) = x − 3x − 1✳
t❤❡ ❢✉♥❝t✐♦♥
❊①❡r❝✐s❡ ✺✳✷
❊①❡r❝✐s❡ ✺✳✶✶
✭❛✮ ❆♥❛❧②③❡ t❤❡ ✜rst ❛♥❞ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥
4
f (x) = x −2x f✳
2
✳ ✭❜✮ ❯s❡ ♣❛rt ✭❛✮ t♦ s❦❡t❝❤
❚❤❡ ❣r❛♣❤ ♦❢ ❢✉♥❝t✐♦♥ ✇❤❛t ♣♦✐♥ts ✐s
f
❞♦❡s t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢
✐ts ❣r❛♣❤ ♦❢
f
✐s ❣✐✈❡♥ ❜❡❧♦✇✳
❝♦♥t✐♥✉♦✉s❄
f
✭❛✮ ❆t
✭❜✮ ❆t ✇❤❛t ♣♦✐♥ts
❡①✐st❄
❊①❡r❝✐s❡ ✺✳✸
❙✉♣♣♦s❡ t❤❡ ❢✉♥❝t✐♦♥s t❤❛t ❢♦❧❧♦✇ ❛r❡ ❞✐✛❡r❡♥t✐❛❜❧❡✳ ✭❛✮ ❋✐♥✐s❤ t❤❡ st❛t❡♠❡♥t ✏■❢
h′ (x) = 0
❢♦r ❛❧❧
(a, b)✱ t❤❡♥✳✳✳✑✳ ✭❜✮ ❋✐♥✐s❤ t❤❡ st❛t❡♠❡♥t ′ f (x) = g ′ (x) ❢♦r ❛❧❧ x ✐♥ (a, b)✱ t❤❡♥✳✳✳✑✳
✐♥
x ✏■❢
❊①❡r❝✐s❡ ✺✳✹
❙❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❏✉st✐❢② t❤❡ ❣r❛♣❤ ❜② st✉❞②✐♥❣ t❤❡
√
xe−x ✳ ❞❡r✐✈❛t✐✈❡s ♦❢ f ✳ f (x) =
❊①❡r❝✐s❡ ✺✳✶✷ ❊①❡r❝✐s❡ ✺✳✺
■♥❞✐❝❛t❡ ✇❤✐❝❤ t❤❡ ❢♦❧❧♦✇✐♥❣ st❛t❡♠❡♥ts ❜❡❧♦✇ ✐s ✭✶✮ ❙t❛t❡ ❘♦❧❧❡✬s ❚❤❡♦r❡♠ ❛♥❞ ✐❧❧✉str❛t❡ ✐t ✇✐t❤ ❛
tr✉❡ ♦r ❢❛❧s❡ ✭♥♦ ♣r♦♦❢ ♥❡❝❡ss❛r②✮✿
s❦❡t❝❤✳ ✭❜✮ ◗✉♦t❡ ❛♥❞ st❛t❡ t❤❡ t❤❡♦r❡♠✭s✮ ♥❡❝❡s✲ s❛r② t♦ ♣r♦✈❡ ✐t✳
✭❝✮ ❲❤❛t t❤❡♦r❡♠ ❢♦❧❧♦✇s ❢r♦♠
✐t❄
✶✳ ■❢ t❤❡ ❢✉♥❝t✐♦♥
f
✐s ✐♥❝r❡❛s✐♥❣✱ t❤❡♥ s♦ ✐s
f −1 .
✷✳ ❚❤❡ ❡①♣♦♥❡♥t✐❛❧ ❢✉♥❝t✐♦♥ ❤❛s ❛♥ ❛s②♠♣t♦t❡✳ ✸✳ ■❢
❊①❡r❝✐s❡ ✺✳✻
❙❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥ ❣✐✈❡♥ ❜❡❧♦✇✳ Pr♦✲ ✈✐❞❡ ❥✉st✐✜❝❛t✐♦♥ ❢♦r ❡❛❝❤ ❢❡❛t✉r❡ ♦❢ t❤❡ ❣r❛♣❤✿
x2 + 7x + 3 . f (x) = x
f ′ (c) = 0✱
t❤❡♥
❧♦❝❛❧ ♠✐♥✐♠✉♠ ♦❢
c ✐s f✳
❛ ❧♦❝❛❧ ♠❛①✐♠✉♠ ♦r ❛
✹✳ ■❢ ❛ ❢✉♥❝t✐♦♥ ✐s ❞✐✛❡r❡♥t✐❛❜❧❡ t❤❡♥ ✐t ✐s ❝♦♥✲ t✐♥✉♦✉s✳ ✺✳ ■❢ t✇♦ ❢✉♥❝t✐♦♥s ❛r❡ ❡q✉❛❧✱ t❤❡✐r ❞❡r✐✈❛t✐✈❡s ❛r❡ ❛❧s♦ ❡q✉❛❧✳
❊①❡r❝✐s❡ ✺✳✼
✻✳ ■❢
✭❛✮ ❙t❛t❡ t❤❡ ▼❡❛♥ ❱❛❧✉❡ ❚❤❡♦r❡♠✳ ✭❜✮ ❱❡r✐❢② t❤❛t t❤❡ ❢✉♥❝t✐♦♥
f (x) =
x x+2 s❛t✐s✜❡s t❤❡ ❤②♣♦t❤❡s❡s ♦❢
t❤❡ t❤❡♦r❡♠ ♦♥ t❤❡ ✐♥t❡r✈❛❧
[1, 4]✳
❊①❡r❝✐s❡ ✺✳✽
❙❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❢✉♥❝t✐♦♥
f (x) = x4 − x2 ✳
Pr♦✈✐❞❡ ❥✉st✐✜❝❛t✐♦♥ ❢♦r ❡❛❝❤ ❢❡❛t✉r❡ ♦❢ t❤❡ ❣r❛♣❤✳
❊①❡r❝✐s❡ ✺✳✾
❋✐♥❞ ❣❧♦❜❛❧ ♠❛①✐♠❛ ❛♥❞ ♠✐♥✐♠❛ ♦❢ t❤❡ ❢✉♥❝t✐♦♥✱
f (x) = x3 − 3x
♦♥ t❤❡ ✐♥t❡r✈❛❧
[−2, 10]✳
t✇♦
❢✉♥❝t✐♦♥s
❛r❡
❡q✉❛❧✱
❞❡r✐✈❛t✐✈❡s ❛r❡ ❛❧s♦ ❡q✉❛❧✳
t❤❡✐r
❛♥t✐✲
✻✳ ❊①❡r❝✐s❡s✿ ❈♦♠♣✉t✐♥❣ ❞❡r✐✈❛t✐✈❡s
✹✺✹
✻✳ ❊①❡r❝✐s❡s✿ ❈♦♠♣✉t✐♥❣ ❞❡r✐✈❛t✐✈❡s
❊①❡r❝✐s❡ ✻✳✶
❊①❡r❝✐s❡ ✻✳✶✷
❙✉♣♣♦s❡ f (1) = 3 ❛♥❞ f ′ (1) = 2✳ ❯s❡ t❤✐s ✐♥❢♦r♠❛✲ t✐♦♥ t♦ ✜❧❧ ✐♥ t❤❡ ❜❧❛♥❦s✿
■s ✐t ♣♦ss✐❜❧❡ t❤❛t ❜♦t❤ F (x) ❛♥❞ F (2x) ❛r❡ ❜♦t❤ ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢ s♦♠❡ ♥♦♥✲③❡r♦ ❢✉♥❝t✐♦♥ f ❄
′ f −1 ( ) =
❊①❡r❝✐s❡ ✻✳✶✸
❊✈❛❧✉❛t❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ f (x) = x2 ex ✳
❊①❡r❝✐s❡ ✻✳✷
❉✐✛❡r❡♥t✐❛t❡ t❤✐s✿
❊①❡r❝✐s❡ ✻✳✶✹
❋✐♥❞ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ♦❢ h(x) = x2 + x + 1. ❲❤❛t ❞♦❡s ✐t t❡❧❧ ②♦✉ ❛❜♦✉t t❤❡ s❤❛♣❡ ♦❢ t❤❡ ❣r❛♣❤ ♦❢ f ?
g(t) = t cos t sin t . ❊①❡r❝✐s❡ ✻✳✸
❉✐✛❡r❡♥t✐❛t❡✿
❊①❡r❝✐s❡ ✻✳✶✺
ln(sin x) . x
❋✐♥❞ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ♦❢ h(x) = 2xπ ✳ ❊①❡r❝✐s❡ ✻✳✶✻
❊①❡r❝✐s❡ ✻✳✹
❈♦♠♣✉t❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ f (x) = ex
2 +3x
✳
❊①❡r❝✐s❡ ✻✳✶✼
❊①❡r❝✐s❡ ✻✳✺
❊✈❛❧✉❛t❡
d dx
sin x · ex+1 ✳
❊①❡r❝✐s❡ ✻✳✻
❊✈❛❧✉❛t❡
d dx
t
cos t + e ✳ ❍✐♥t✿ ✇❛t❝❤ t❤❡ ✈❛r✐❛❜❧❡s✳
❊①❡r❝✐s❡ ✻✳✼
❊✈❛❧✉❛t❡
dy dx
❈♦♠♣✉t❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ f (x) = ln(3x + 2)✳
❢♦r y = sin e2x .
❋✐♥❞ t❤❡ s❡❝♦♥❞ ❞❡r✐✈❛t✐✈❡ ♦❢ h(x) = xex ✳ ❊①❡r❝✐s❡ ✻✳✶✽
❋✐♥❞ t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥s✿ ✭❛✮ 3xe + eπ ✱ ✭❜✮ 7 ln x + (1/x) − ln 2. ❊①❡r❝✐s❡ ✻✳✶✾
❊✈❛❧✉❛t❡
dy dx
❢♦r y=
√
ex .
❊①❡r❝✐s❡ ✻✳✽
❊①❡r❝✐s❡ ✻✳✷✵
❊✈❛❧✉❛t❡ t❤❡ ❞❡r✐✈❛t✐✈❡ ♦❢ ♦❢ f (x) = xesin x .
❋✐♥❞ t❤❡ s❧♦♣❡s ♦❢ t❤❡ t❛♥❣❡♥t ❧✐♥❡s t♦ t❤❡ ❡❧❧✐♣s❡ x2 + 2y 2 = 1 ❛t t❤❡ ♣♦✐♥ts ✇❤❡r❡ ✐t ❝r♦ss❡s t❤❡ ❞✐❛❣♦♥❛❧ ❧✐♥❡ y = x✳
❊①❡r❝✐s❡ ✻✳✾
❙✉♣♣♦s❡ f ′ (1) = 2✱ g ′ (2) = 3✱ ❛♥❞ h′ (1) = 6✱ ✇❤❡r❡ h = g ◦ f ✳ ❲❤❛t ✐s f (1)❄
❊①❡r❝✐s❡ ✻✳✷✶
❊✈❛❧✉❛t❡
dy dx
❢♦r y = sin cos(−x)✳
❊①❡r❝✐s❡ ✻✳✶✵
■s ✐t ♣♦ss✐❜❧❡ t❤❛t ❜♦t❤ F (x) ❛♥❞ F (2x) ❛r❡ ❜♦t❤ ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢ s♦♠❡ ❢✉♥❝t✐♦♥ f ❄ ❊①❡r❝✐s❡ ✻✳✶✶
■s sin x + 3x ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ cos x2 ❄
❊①❡r❝✐s❡ ✻✳✷✷
❙✉♣♣♦s❡ x sin y + y 2 = x✳ ❋✐♥❞
dy dx ✳
✼✳ ❊①❡r❝✐s❡s✿ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✹✺✺
✼✳ ❊①❡r❝✐s❡s✿ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
❊①❡r❝✐s❡ ✼✳✶
❊①❡r❝✐s❡ ✼✳✽
✭❛✮ ❙t❛t❡ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✳ ✭❜✮ ❯s❡ ♣❛rt ✭❛✮ t♦ ❡✈❛❧✉❛t❡
❙✉♣♣♦s❡
Z
Z
1
x sin dx . 3 −1
x
0
f dx = 0, 0
Z
2
f dx = 2 . 1
3
f dx, 1
Z
Z
1
(f (x) + 3) dx, 0
4
f dx . 2
2
0
❊①❡r❝✐s❡ ✼✳✾
❙✉♣♣♦s❡ ❛ ❢✉♥❝t✐♦♥ ✐s ❞❡✜♥❡❞ ❜②✿
✭❛✮ Z▼❛❦❡ ❛ s❦❡t❝❤ ♦❢ t❤❡ ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠s ❢♦r
4
et dt .
❊①❡r❝✐s❡ ✼✳✸
1√
0
Z
✭❛✮ ❙t❛t❡ t❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s✳ ✭❜✮ ❯s❡ ♣❛rt ✭❛✮ t♦ ❡✈❛❧✉❛t❡ Z
f dx = 2,
Z
❋✐♥❞
❊①❡r❝✐s❡ ✼✳✷
d dx
1
x dx ✇✐t❤ n = 4 ✐♥t❡r✈❛❧s✳ ✭❜✮ ❙t❛t❡ t❤❡
❛❧❣❡❜r❛✐❝ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧✳
F (x) =
●✐✈❡♥ f (x) = x2 + 1, ✇r✐t❡ ✭❜✉t ❞♦ ♥♦t ❡✈❛❧✉❛t❡✮ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❢♦r t❤❡ ✐♥t❡❣r❛❧ ♦❢ f ❢r♦♠ −1 t♦ 2 ✇✐t❤ n = 6 ❛♥❞ ❧❡❢t ❡♥❞s ❛s s❛♠♣❧❡ ♣♦✐♥ts✳ ▼❛❦❡ ❛ s❦❡t❝❤✳ ❊①❡r❝✐s❡ ✼✳✺
Pr♦✈✐❞❡ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ ✈✐❛ ✐ts ❘✐❡♠❛♥♥ s✉♠s✳ ▼❛❦❡ ❛ s❦❡t❝❤✳
x
f dx. 2
❋✐♥❞✱ ✐♥ t❡r♠s ♦❢ F ✱ t❤❡ ❢♦❧❧♦✇✐♥❣✿ Z
❊①❡r❝✐s❡ ✼✳✹
Z
4
f dx, 0
Z
2
f dx, 1
Z
−1 0
f dx,
Z
2 1
(f (x) − 1) dx .
❊①❡r❝✐s❡ ✼✳✶✵
❊✈❛❧✉❛t❡ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ♦❢ f ❜❡❧♦✇ ♦♥ t❤❡ ✐♥✲ t❡r✈❛❧ [−1, 1.5] ✇✐t❤ n = 5✳ ❲❤❛t ❛r❡ ✐ts s❛♠♣❧❡ ♣♦✐♥ts❄ ❲❤❛t ❞♦❡s ✐t ❡st✐♠❛t❡❄
❊①❡r❝✐s❡ ✼✳✻
❚❤❡ ❋✉♥❞❛♠❡♥t❛❧ ❚❤❡♦r❡♠ ♦❢ ❈❛❧❝✉❧✉s ✐♥❝❧✉❞❡s Z b
t❤❡ ❢♦r♠✉❧❛
a
f (x) dx = F (b) − F (a)✳ ✭❛✮ ❙t❛t❡
t❤❡ ✇❤♦❧❡ t❤❡♦r❡♠✳ ✭❜✮ Pr♦✈✐❞❡ ❞❡✜♥✐t✐♦♥s ♦❢ t❤❡ ✐t❡♠s ❛♣♣❡❛r✐♥❣ ✐♥ t❤❡ ❢♦r♠✉❧❛✳ ❊①❡r❝✐s❡ ✼✳✼
✭❛✮ ❙t❛t❡ t❤❡ ❞❡✜♥✐t✐♦♥ ♦❢ t❤❡ ❞❡✜♥✐t❡ ✐♥t❡❣r❛❧ Z
b
a
f (x) dx ❛♥❞ ✐❧❧✉str❛t❡ t❤❡ ❝♦♥str✉❝t✐♦♥ ✇✐t❤ ❛
s❦❡t❝❤✳ ✭❜✮ ❯s❡ t❤❡ ❞❡✜♥✐t✐♦♥ t♦ ❥✉st✐❢② t❤❛t Z
b
cf (x) dx = c a
❢♦r ❛ ❝♦♥st❛♥t c✳
Z
b
f (x) dx a
❊①❡r❝✐s❡ ✼✳✶✶
❲r✐t❡ ✭❞♦♥✬tZ❡✈❛❧✉❛t❡✮ t❤❡ ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠ ♦❢ t❤❡ ✐♥t❡❣r❛❧
5
0
f (x) dx ❢♦r ❢✉♥❝t✐♦♥ f s❤♦✇♥ ❜❡❧♦✇
✇✐t❤ n = 5 ✐♥t❡r✈❛❧s✳
✼✳ ❊①❡r❝✐s❡s✿ ❘✐❡♠❛♥♥ ✐♥t❡❣r❛❧
✹✺✻
•
Z
u dv = uv...
• u = cos t =⇒ du = ... ❊①❡r❝✐s❡ ✼✳✶✼
❙✉♣♣♦s❡ t❤❛t F ✐s ❛♥ ❛♥t✐❞❡r✐✈❛t✐✈❡ ♦❢ ❛ ❞✐✛❡r❡♥✲ t✐❛❜❧❡ ❢✉♥❝t✐♦♥ f ✳ ■❢ F ✐s ✐♥❝r❡❛s✐♥❣ ♦♥ [a, b]✱ ✇❤❛t ❝❛♥ ②♦✉ s❛② ❛❜♦✉t f ❄
❊①❡r❝✐s❡ ✼✳✶✷
❲r✐t❡ t❤❡ ❢♦r♠✉❧❛ ❛♥❞ ✐❧❧✉str❛t❡ ✇✐t❤ ❛Zs❦❡t❝❤ t❤❡ 3 f (x) dx ❧❡❢t✲❡♥❞ ❘✐❡♠❛♥♥ s✉♠ L4 ♦❢ t❤❡ ✐♥t❡❣r❛❧ 1 ❢♦r t❤❡ ❢✉♥❝t✐♦♥ ♣❧♦tt❡❞ ❛❜♦✈❡✳ ❊①❡r❝✐s❡ ✼✳✶✸
❲r✐t❡ t❤❡ ♠✐❞✲♣♦✐♥t Z ❘✐❡♠❛♥♥ s✉♠ t❤❛t ❛♣♣r♦①✐✲ ♠❛t❡s t❤❡ ✐♥t❡❣r❛❧
1
0
sin x dx ✇✐t❤✐♥ .01✳
❊①❡r❝✐s❡ ✼✳✶✹
❙❡t ✉♣ t❤❡ ❘✐❡♠❛♥♥ s✉♠ ❢♦r t❤❡ ❛r❡❛ ♦❢ t❤❡ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s R ❛s t❤❡ ❛r❡❛ ❜❡t✇❡❡♥ t✇♦ ❝✉r✈❡s✱ ♣r♦✈✐❞❡ ❛♥ ✐❧❧✉str❛t✐♦♥ ❛♥❞ t❤❡ ✐♥t❡❣r❛❧ ❢♦r♠✉❧❛✳ ❊✈❛❧✉❛t❡ ❢♦r ❡①tr❛ ✺ ♣♦✐♥ts✳ ❊①❡r❝✐s❡ ✼✳✶✺
▲❡t I =
Z
8 2
f dx✳ ✭❛✮ ❯s❡ t❤❡ ❣r❛♣❤ ♦❢ y = f (x)
❜❡❧♦✇ t♦ ❡st✐♠❛t❡ L4 , M4 , R4 ✳ ✭❜✮ ❈♦♠♣❛r❡ t❤❡♠ t♦ I ✳
❊①❡r❝✐s❡ ✼✳✶✻
❈♦♠♣❧❡t❡ t❤❡ ❢♦❧❧♦✇✐♥❣ st❛t❡♠❡♥ts✿ • (f (x) · x2 )′ = f ′ (x) · x2 + ... Z • x−1 dx = ... •
Z
f ′ (x) dx = ...
✽✳ ❊①❡r❝✐s❡s✿ ■♥t❡❣r❛t✐♦♥
✹✺✼
✽✳ ❊①❡r❝✐s❡s✿ ■♥t❡❣r❛t✐♦♥
❊①❡r❝✐s❡ ✽✳✶
❊①❡r❝✐s❡ ✽✳✾
❊①❡❝✉t❡ t❤❡ ❢♦❧❧♦✇✐♥❣ s✉❜st✐t✉t✐♦♥ ✐♥ t❤❡ ✐♥t❡❣r❛❧ ✭❞♦♥✬t ❡✈❛❧✉❛t❡ t❤❡ r❡s✉❧t✐♥❣ ✐♥t❡❣r❛❧✮✿
❊✈❛❧✉❛t❡ t❤❡ ✐♥t❡❣r❛❧ ❜② s✉❜st✐t✉t✐♦♥
Z
√
cos x + sin x dx,
Z
u = sin x .
2
xex dx .
❊①❡r❝✐s❡ ✽✳✶✵ ❊①❡r❝✐s❡ ✽✳✷
❋✐♥❞ ❛❧❧ ❛♥t✐❞❡r✐✈❛t✐✈❡s ♦❢ t❤❡ ❢♦❧❧♦✇✐♥❣ ❢✉♥❝t✐♦♥✿
❙✉♣♣♦s❡ s(t) r❡♣r❡s❡♥ts t❤❡ ♣♦s✐t✐♦♥ ♦❢ ❛ ♣❛rt✐❝❧❡ ❛t t✐♠❡ t ❛♥❞ v(t) ✐ts ✈❡❧♦❝✐t②✳ ■❢ v(t) = sin t − cos t ❛♥❞ t❤❡ ✐♥✐t✐❛❧ ♣♦s✐t✐♦♥ ✐s s(0) = 0, ✜♥❞ t❤❡ ♣♦s✐t✐♦♥
❊①❡r❝✐s❡ ✽✳✶✶
s(1).
f (x) = e−x .
❋✐♥❞ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡ F ♦❢ t❤❡ ❢✉♥❝t✐♦♥ f (x) = 3x2 − 1 s❛t✐s❢②✐♥❣ t❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥ F (1) = 0✳
❊①❡r❝✐s❡ ✽✳✸ ❊①❡r❝✐s❡ ✽✳✶✷
❊✈❛❧✉❛t❡
Z
❊✈❛❧✉❛t❡ t❤❡ ✐♥t❡❣r❛❧
e3x dx .
Z
❊①❡r❝✐s❡ ✽✳✹
❊✈❛❧✉❛t❡
Z
2
x
(e +
√
1
x3 dx .
0
❊①❡r❝✐s❡ ✽✳✶✸
x+x
−1
) dx .
1
❊✈❛❧✉❛t❡✿
Z
x dx −
Z
x2 dx .
−2
Z
x−2 dx .
2
❊①❡r❝✐s❡ ✽✳✺ ❊①❡r❝✐s❡ ✽✳✶✹
❊✈❛❧✉❛t❡
Z
2
ex 2x dx .
❊①❡r❝✐s❡ ✽✳✻
❊✈❛❧✉❛t❡
❊✈❛❧✉❛t❡✿
Z
x
dx −
❊①❡r❝✐s❡ ✽✳✶✺
■♥t❡❣r❛t❡ ❜② ♣❛rts✿
Z
2x sin 5x dx .
Z
3xe−x dx .
❊①❡r❝✐s❡ ✽✳✼
❊✈❛❧✉❛t❡
❊①❡r❝✐s❡ ✽✳✶✻
Z
3
❯s❡ t❤❡ t❛❜❧❡ ♦❢ ✐♥t❡❣r❛❧s t♦ ❡✈❛❧✉❛t❡✿
et+1 dx .
Z
1
❍✐♥t✿ ✇❛t❝❤ t❤❡ ✈❛r✐❛❜❧❡s✳ ❊①❡r❝✐s❡ ✽✳✶✼
❊①❡r❝✐s❡ ✽✳✽
❈❛❧❝✉❧❛t❡✿
sin−1 2x dx .
Z
e
sin x2 +77
′
❊✈❛❧✉❛t❡✿ dx .
Z
1 0
1 dx . 2x
✽✳ ❊①❡r❝✐s❡s✿ ■♥t❡❣r❛t✐♦♥
✹✺✽
❊①❡r❝✐s❡ ✽✳✶✽ ❯s❡ s✉❜st✐t✉t✐♦♥ t♦ ❡✈❛❧✉❛t❡ t❤❡ ✐♥t❡❣r❛❧✿
Z
π
sin x cos2 x dx .
0
❊①❡r❝✐s❡ ✽✳✶✾ ■♥t❡❣r❛t❡ ❜② ♣❛rts✿
Z
x(ln x)2 dx .
❊①❡r❝✐s❡ ✽✳✷✵ ❯s❡ s✉❜st✐t✉t✐♦♥ t♦ ❡✈❛❧✉❛t❡ t❤❡ ✐♥t❡❣r❛❧✿
Z
1
√
0
1 dx . 4 − x2
❊①❡r❝✐s❡ ✽✳✷✶ ❯s❡ t❤❡ t❛❜❧❡ ♦❢ ✐♥t❡❣r❛❧s t♦ ❡✈❛❧✉❛t❡✿
Z
x2 (
p
x2 − 4 −
p x2 + 9) dx .
❊①❡r❝✐s❡ ✽✳✷✷ ❊✈❛❧✉❛t❡
Z
x sin x dx .
❊①❡r❝✐s❡ ✽✳✷✸ ❯s❡ s✉❜st✐t✉t✐♦♥
u = 1 + x2 t♦ ❡✈❛❧✉❛t❡ t❤❡ ✐♥t❡❣r❛❧ Z p 1 + x2 x5 dx .
❊①❡r❝✐s❡ ✽✳✷✹ ❯s❡ s✉❜st✐t✉t✐♦♥ t♦ ❡✈❛❧✉❛t❡ t❤❡ ✐♥t❡❣r❛❧✿
Z
π
sin x cos2 x dx .
0
❊①❡r❝✐s❡ ✽✳✷✺ ❊✈❛❧✉❛t❡ t❤❡ ✐♠♣r♦♣❡r ✐♥t❡❣r❛❧✿
Z
∞ 1
1 dx . 2x
❊①❡r❝✐s❡ ✽✳✷✻ ❋✐♥❞ t❤❡ ❛♥t✐❞❡r✐✈❛t✐✈❡
x
e +x
F
f (x) = F (0) = 1✳
♦❢ t❤❡ ❢✉♥❝t✐♦♥
s❛t✐s❢②✐♥❣ t❤❡ ✐♥✐t✐❛❧ ❝♦♥❞✐t✐♦♥
✾✳ ❊①❡r❝✐s❡s✿ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ✐♥t❡❣r❛❧s
✹✺✾
✾✳ ❊①❡r❝✐s❡s✿ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ✐♥t❡❣r❛❧s
❊①❡r❝✐s❡ ✾✳✶
❊①❡r❝✐s❡ ✾✳✾
❚❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡ ❣r❛♣❤s ♦❢
y=
0, ❛♥❞ x = 1 ✐s r❡✈♦❧✈❡❞ ❛❜♦✉t t❤❡ x✲❛①✐s✳
√
x, y =
❋✐♥❞ t❤❡
x✲❝♦♦r❞✐♥❛t❡ ♦❢ t❤❡ ❝❡♥t❡r 2 3 ❜❡t✇❡❡♥ y = x ❛♥❞ y = x ✳
❋✐♥❞ t❤❡ r❡❣✐♦♥
♦❢ ♠❛ss ♦❢ t❤❡
s✉r❢❛❝❡ ❛r❡❛ ♦❢ t❤❡ s♦❧✐❞ ❣❡♥❡r❛t❡❞✳ ❊①❡r❝✐s❡ ✾✳✶✵
❋✐♥❞ t❤❡ ✈♦❧✉♠❡ ♦❢ ❛ r✐❣❤t ❝✐r❝✉❧❛r ❝♦♥❡ ♦❢ r❛❞✐✉s
❊①❡r❝✐s❡ ✾✳✷
❆ ❝❤♦r❞ ♦❢ ❛ ❝✐r❝❧❡ ✐s ❛ str❛✐❣❤t ❧✐♥❡ s❡❣♠❡♥t ✇❤♦s❡
R
❛♥❞ ❤❡✐❣❤t
h
❜② ❛♥② ♠❡t❤♦❞ ②♦✉ ❧✐❦❡✳
❡♥❞✲♣♦✐♥ts ❧✐❡ ♦♥ t❤❡ ❝✐r❝❧❡✳ ❋✐♥❞ t❤❡ ❛✈❡r❛❣❡ ❧❡♥❣t❤ ♦❢ ❛ ❝❤♦r❞ ♣❡r♣❡♥❞✐❝✉❧❛r t♦ t❤❡ ❞✐❛♠❡t❡r✳
❲❤❛t
❛❜♦✉t ♣❛r❛❧❧❡❧❄
❊①❡r❝✐s❡ ✾✳✶✶
❈♦♠♣✉t❡ t❤❡ ❛✈❡r❛❣❡ ❛r❡❛ ♦❢ t❤❡ ❝r♦ss s❡❝t✐♦♥ ♦❢ t❤❡ s♣❤❡r❡ ♦❢ r❛❞✐✉s
1✳
❊①❡r❝✐s❡ ✾✳✸
❋✐♥❞ t❤❡ ❛✈❡r❛❣❡ ❧❡♥❣t❤ ♦❢ ❛ s❡❣♠❡♥t ✐♥ ❛ sq✉❛r❡ ♣❛r❛❧❧❡❧ t♦ ✭❛✮ t❤❡ ❜❛s❡✱ ✭❜✮ t❤❡ ❞✐❛❣♦♥❛❧✳
❊①❡r❝✐s❡ ✾✳✶✷
❋✐♥❞ t❤❡ ❝❡♥t❡r ♦❢ ♠❛ss ♦❢ t❤❡ r❡❣✐♦♥ ❜❡❧♦✇ ❢♦r
y = 2x
0 ≤ x ≤ 1✳
❊①❡r❝✐s❡ ✾✳✹
❋✐♥❞ ✭❜② ✐♥t❡❣r❛t✐♦♥✮ t❤❡ ❧❡♥❣t❤ ♦❢ ❛ ❝✐r❝❧❡ ♦❢ r❛❞✐✉s
❊①❡r❝✐s❡ ✾✳✶✸
❚❤❡ ✈♦❧✉♠❡ ♦❢ ❛ s♦❧✐❞ ✐s t❤❡ ✐♥t❡❣r❛❧ ♦❢ t❤❡ ❛r❡❛s
r✳
♦❢ ✐ts ❝r♦ss✲s❡❝t✐♦♥s✳ ❊①♣❧❛✐♥ ❛♥❞ ❥✉st✐❢② ✉s✐♥❣ ❘✐❡✲ ♠❛♥♥ s✉♠s✳
❊①❡r❝✐s❡ ✾✳✺
❋✐♥❞ t❤❡ ❛r❡❛ ❡♥❝❧♦s❡❞ ❜② t❤❡ ❝✉r✈❡s ❜❡❧♦✇✿
❊①❡r❝✐s❡ ✾✳✶✹
❚❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡ ❣r❛♣❤s ♦❢
y = x2 +
1, y = 0, x = 0 ❛♥❞ x = 1 ✐s r❡✈♦❧✈❡❞ ❛❜♦✉t t❤❡ x✲❛①✐s✳ ❋✐♥❞ t❤❡ ✈♦❧✉♠❡ ❛r❡❛ ♦❢ t❤❡ s♦❧✐❞ ❣❡♥❡r❛t❡❞✳ ❊①❡r❝✐s❡ ✾✳✶✺
❚❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡ ❣r❛♣❤s ♦❢
y = x2 +
1, y = 0, x = 0, ❛♥❞ x = 1 ✐s r❡✈♦❧✈❡❞ ❛❜♦✉t t❤❡ y ✲❛①✐s✳ ❋✐♥❞ t❤❡ ✈♦❧✉♠❡ ❛r❡❛ ♦❢ t❤❡ s♦❧✐❞ ❣❡♥❡r❛t❡❞✳ ❊①❡r❝✐s❡ ✾✳✻
❊①❡r❝✐s❡ ✾✳✶✻
❋✐♥❞ t❤❡ ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② ❛♥❞
y = 3✳
2
y = x −1
❆♥ ❛q✉❛r✐✉♠
2
♠ ❧♦♥❣✱
1
♠ ✇✐❞❡✱ ❛♥❞
1
♠ ❞❡❡♣ ✐s
❢✉❧❧ ♦❢ ✇❛t❡r✳ ❋✐♥❞ t❤❡ ✇♦r❦ ♥❡❡❞❡❞ t♦ ♣✉♠♣ ❤❛❧❢ ♦❢ t❤❡ ✇❛t❡r ♦✉t ♦❢ t❤❡ ❛q✉❛r✐✉♠ ✭t❤❡ ❞❡♥s✐t② ♦❢ ✇❛t❡r ✐s
❊①❡r❝✐s❡ ✾✳✼
❙✉♣♣♦s❡
f
f
✐s ❛♥ ✐♥t❡❣r❛❜❧❡ ❢✉♥❝t✐♦♥✳ ✭❛✮ ❙❤♦✇ t❤❛t Z a
f dx = 0✳
✐s ❛❧s♦ ♦❞❞ t❤❡♥
−a
r❡❧❛t❡❞ ❢♦r♠✉❧❛ ❢♦r ❛♥ ❡✈❡♥
✭❜✮ ❙✉❣❣❡st ❛
f✳
1000
3
❦❣✴♠ ✮✳
❊①❡r❝✐s❡ ✾✳✶✼
❋✐♥❞ t❤❡ ❛r❡❛ ♦❢ t❤❡ s✉r❢❛❝❡ ♦❢ r❡✈♦❧✉t✐♦♥ ❛r♦✉♥❞ t❤❡
x✲❛①✐s
♦❜t❛✐♥❡❞ ❢r♦♠
y=
√
x, 4 ≤ x ≤ 9✳
❊①❡r❝✐s❡ ✾✳✽
❊①❡r❝✐s❡ ✾✳✶✽
❋✐♥❞ t❤❡ ❝❡♥tr♦✐❞ ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡
❋✐♥❞ t❤❡ ❝❡♥tr♦✐❞ ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡
❝✉r✈❡s
2
y = x , y = 1✳
❝✉r✈❡s
y = 4 − x 2 , y = x + 2✳
✾✳ ❊①❡r❝✐s❡s✿ ❆♣♣❧✐❝❛t✐♦♥s ♦❢ ✐♥t❡❣r❛❧s
✹✻✵
❊①❡r❝✐s❡ ✾✳✶✾ ❋✐♥❞ t❤❡ ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② ❛♥❞
y = 3✳
y = x2 − 1
❊①❡r❝✐s❡ ✾✳✷✵ ❋✐♥❞
t❤❡
f (x) = e
x
❛r❡❛
✉♥❞❡r
t❤❡
❢r♦♠
x = −1
t♦
❣r❛♣❤
♦❢
t❤❡
❢✉♥❝t✐♦♥
x = 1✳
❊①❡r❝✐s❡ ✾✳✷✶ ❋✐♥❞
2
t❤❡
2x − 3
❛✈❡r❛❣❡
✈❛❧✉❡
♦♥ t❤❡ ✐♥t❡r✈❛❧
♦❢
t❤❡
f (x) =
❢✉♥❝t✐♦♥
[1, 3]✳
❊①❡r❝✐s❡ ✾✳✷✷ ❋✐♥❞ t❤❡ ❛r❡❛ ♦❢ t❤❡ r❡❣✐♦♥ ❜♦✉♥❞❡❞ ❜② t❤❡
x✲❛①✐s✱
❛♥❞ t❤❡ ❧✐♥❡s
x=1
❛♥❞
y =
x = 4✳
√
x✱
✶✵✳ ❊①❡r❝✐s❡s✿ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ r❡❧❛t❡❞
✹✻✶
✶✵✳ ❊①❡r❝✐s❡s✿ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ r❡❧❛t❡❞
❊①❡r❝✐s❡ ✶✵✳✶
❊①❡r❝✐s❡ ✶✵✳✼
❉❡s❝r✐❜❡ t❤❡ ♠♦t✐♦♥ ♦❢ ❛ ♣❛rt✐❝❧❡ ✇✐t❤ ♣♦s✐t✐♦♥
✭✶✮ ❙❦❡t❝❤ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡
(x, y)✱
sin 2t✳
✇❤❡r❡
❣❧❡ ♦❢ t❤✐s ✐♥t❡rs❡❝t✐♦♥✳
x = 2 + t cos t, y = 1 + t sin t, ❛s
t
✈❛r✐❡s ✇✐t❤✐♥
x = cos t, y =
✭✷✮ ❚❤❡ ❝✉r✈❡ ✐♥t❡rs❡❝ts ✐ts❡❧❢✳ ❋✐♥❞ t❤❡ ❛♥✲
[0, ∞)✳
❊①❡r❝✐s❡ ✶✵✳✽
❋✐♥❞ ❛♥ ❡q✉❛t✐♦♥ ♦❢ t❤❡ s♣✐r❛❧ ❝♦♥✈❡r❣✐♥❣ t♦ t❤❡ ♦r✐❣✐♥ ❛s ❜❡❧♦✇✿
❊①❡r❝✐s❡ ✶✵✳✷
❙✉♣♣♦s❡ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ✐s ❣✐✈❡♥ ❜②
x = cos 3t, y = 2 sin t. ❙❡t ✉♣✱ ❜✉t ❞♦ ♥♦t ❡✈❛❧✉❛t❡✱ t❤❡ ✐♥t❡❣r❛❧s t❤❛t r❡♣✲ r❡s❡♥t ✭❛✮ t❤❡ ❛r❝✲❧❡♥❣t❤ ♦❢ t❤❡ ❝✉r✈❡✱ ✭❜✮ t❤❡ ❛r❡❛ ♦❢ t❤❡ s✉r❢❛❝❡ ♦❜t❛✐♥❡❞ ❜② r♦t❛t✐♥❣ t❤❡ ❝✉r✈❡ ❛❜♦✉t t❤❡
x✲❛①✐s✳
❊①❡r❝✐s❡ ✶✵✳✸
❙✉♣♣♦s❡ ❝✉r✈❡
C
✐s t❤❡ ❣r❛♣❤ ♦❢ ❢✉♥❝t✐♦♥
y = f (x)✳
✭❛✮ ❋✐♥❞ ❛ ♣❛r❛♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ C ✳ ✭❜✮ ❋✐♥❞ ❛ ♣❛r❛♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢
C
t❤❛t ❣♦❡s ❢r♦♠
r✐❣❤t t♦ ❧❡❢t✳
❊①❡r❝✐s❡ ✶✵✳✾
P❧♦t t❤✐s ❡♥t✐r❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✿
x = sin t, y =
cos 2t✳ ❊①❡r❝✐s❡ ✶✵✳✹
❋✐♥❞ ❛❧❧ ♣♦✐♥ts ♦♥ t❤❡ ❝✉r✈❡
x = cos 3t, y = 2 sin t ✇❤❡r❡ t❤❡ t❛♥❣❡♥t ✐s ❡✐t❤❡r ❤♦r✐③♦♥t❛❧ ♦r ✈❡rt✐❝❛❧✳
❊①❡r❝✐s❡ ✶✵✳✶✵
❋✐♥❞ ❛ ♣❛r❛♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ ❝✉r✈❡ s✐♠✐❧❛r t♦ t❤❡ ♦♥❡ ❜❡❧♦✇✱ ❛ s♣✐r❛❧ ✇r❛♣♣✐♥❣ ❛r♦✉♥❞ ❛ ❝✐r❝❧❡✳ ❲❤❛t ❛❜♦✉t ♦♥❡ t❤❛t ✐s ✇r❛♣♣✐♥❣ ❢r♦♠ t❤❡ ✐♥s✐❞❡❄ ✭♥♦ ♣r♦♦❢ ♥❡❝❡ss❛r②✮✿
❊①❡r❝✐s❡ ✶✵✳✺
❙❦❡t❝❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✿
x = | cos t|, y = | sin t|, −∞ < t < +∞. ❉❡s❝r✐❜❡ t❤❡ ❝✉r✈❡ ❛♥❞ t❤❡ ♠♦t✐♦♥✳
❊①❡r❝✐s❡ ✶✵✳✻
❙❦❡t❝❤ t❤❡ ❢♦❧❧♦✇✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡s✿
1 • x(t) = , y(t) = sin t, t > 0 t • x = cos t, y = 2
❊①❡r❝✐s❡ ✶✵✳✶✶
●✐✈❡♥ ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ 2
• x = 1/t, y = 1/t , t > 0
x = sin t, y = t2 ✳
t❤❡ ❧✐♥❡✭s✮ t❛♥❣❡♥t t♦ t❤❡ ❝✉r✈❡ ❛t t❤❡ ♦r✐❣✐♥✳
❋✐♥❞
✶✵✳ ❊①❡r❝✐s❡s✿ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ r❡❧❛t❡❞
✹✻✷
❊①❡r❝✐s❡ ✶✵✳✶✷
❊①❡r❝✐s❡ ✶✵✳✷✷
❋✐♥❞ ❛ ♣❛r❛♠❡tr✐❝ r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ ❝✉r✈❡ t❤❛t ❧♦♦❦s ❧✐❦❡ t❤❡ ✜❣✉r❡ ❡✐❣❤t ♦r ❛ ✢♦✇❡r ✭♥♦ ♣r♦♦❢ ♥❡❝✲ ❡ss❛r②✮✳
❲❤❛t ❝❛♥ ②♦✉ s❛② ❛❜♦✉t t❤❡ ✐♠❛❣✐♥❛r② ♣❛rts ♦❢ t❤❡ r♦♦ts ♦❢ t❤❡s❡ q✉❛❞r❛t✐❝ ♣♦❧②♥♦♠✐❛❧s❄
❊①❡r❝✐s❡ ✶✵✳✶✸
❙❦❡t❝❤ t❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡✿ x = t2 − 1, y = 2t2 + 3 . ❊①❡r❝✐s❡ ✶✵✳✶✹
❙✉♣♣♦s❡ t❤❛t t❤❡ ❢♦❧❧♦✇✐♥❣ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ r❡♣r❡✲ s❡♥ts t❤❡ ♠♦t✐♦♥ ♦❢ ❛♥ ♦❜❥❡❝t ♦♥ t❤❡ ♣❧❛♥❡✿ x = 3t − 1, y = t2 − 1 .
✭❛✮ ❲❤❡♥ ❞♦❡s t❤❡ ♦❜❥❡❝t ❝r♦ss t❤❡ x✲❛①✐s❄ ✭❜✮ ❲❤❡♥ ❞♦❡s t❤❡ ♦❜❥❡❝t ❝r♦ss t❤❡ y ✲❛①✐s❄ ❊①❡r❝✐s❡ ✶✵✳✶✺
❘❡♣r❡s❡♥t ❛s ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ t❤❡ r♦t❛t✐♦♥ ♦❢ ❛ r♦❞ ♦❢ ❧❡♥❣t❤ 2 t❤❛t ♠❛❦❡s ♦♥❡ ❢✉❧❧ t✉r♥ ❡✈❡r② 3 s❡❝♦♥❞s✳ ❊①❡r❝✐s❡ ✶✵✳✶✻
❖♥❡ ❝✐r❝❧❡ ✐s ❝❡♥t❡r❡❞ ❛t (0, 0) ❛♥❞ ❤❛s r❛❞✐✉s 1✳ ❚❤❡ s❡❝♦♥❞ ✐s ❝❡♥t❡r❡❞ ❛t (3, 3)✳ ❲❤❛t ✐s t❤❡ r❛✲ ❞✐✉s ♦❢ t❤❡ s❡❝♦♥❞ ✐❢ t❤❡ t✇♦ ❝✐r❝❧❡s t♦✉❝❤❄
❊①❡r❝✐s❡ ✶✵✳✷✸
P❧♦t t❤❡ ❝✉r✈❡ r = 2 cos(3θ)✳ ❋♦r ✺ ❡①tr❛ ♣♦✐♥ts✱ ✜♥❞ t❤❡ ❧✐♥❡✭s✮ t❤r♦✉❣❤ t❤❡ ♦r✐❣✐♥ t❛♥❣❡♥t t♦ t❤❡ ❝✉r✈❡✳ ❊①❡r❝✐s❡ ✶✵✳✷✹
✭❛✮ P❧♦t t❤❡s❡ ♣♦✐♥ts ✐♥ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s✿ (r, θ) = (0, 1), (1, 0), (1, π), (2, 3π)✳ ✭❜✮ ❙❦❡t❝❤ t❤❡s❡ t❤r❡❡ ♣♦❧❛r ❝✉r✈❡s✿ r = 1, θ = 0, r = θ✳ ❊①❡r❝✐s❡ ✶✵✳✷✺
❋✐♥❞ ❛ ♣♦❧❛r r❡♣r❡s❡♥t❛t✐♦♥ ♦❢ ❛ ❝✉r✈❡ s✐♠✐❧❛r t♦ t❤❡ ♦♥❡ ❜❡❧♦✇✱ ❛ s♣✐r❛❧ ✇r❛♣♣✐♥❣ ❛r♦✉♥❞ ❛ ❝✐r❝❧❡✳ ❲❤❛t ❛❜♦✉t ♦♥❡ t❤❛t ✐s ✇r❛♣♣✐♥❣ ❢r♦♠ t❤❡ ✐♥s✐❞❡❄ ✭♥♦ ♣r♦♦❢ ♥❡❝❡ss❛r②✮✿
❊①❡r❝✐s❡ ✶✵✳✶✼
❘❡♣r❡s❡♥t ✐♥ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s t❤❡s❡ ♣♦✐♥ts ❣✐✈❡♥ ❜② t❤❡✐r ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡s✿ ✭❛✮ (1, 2)❀ ✭❜✮ (−1, −1)❀ ✭❝✮ (0, 0)✳ ❊①❡r❝✐s❡ ✶✵✳✶✽
❘❡♣r❡s❡♥t ✐♥ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡s t❤❡s❡ ♣♦✐♥ts ❣✐✈❡♥ ❜② t❤❡✐r ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s✿ ✭❛✮ θ = 0, r = −1❀ ✭❜✮ θ = π/4, r = 2❀ ✭❝✮ θ = 1, r = 0✳ ❊①❡r❝✐s❡ ✶✵✳✶✾
✭❛✮ ❘❡♣r❡s❡♥t t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♠♣❧❡① ♥✉♠❜❡r ✐♥ t❤❡ st❛♥❞❛r❞ ❢♦r♠✿ (2 + 3i)(−1 + 2i)✳ ■♥❞✐❝❛t❡ t❤❡ r❡❛❧ ❛♥❞ ✐♠❛❣✐♥❛r② ♣❛rts✳ ✭❜✮ ❋✐♥❞ ✐ts ♠♦❞✉❧❡ ❛♥❞ ❛r✲ ❣✉♠❡♥t✳ ❊①❡r❝✐s❡ ✶✵✳✷✵
❙✐♠♣❧✐❢② (1 + i)2 ✳
❊①❡r❝✐s❡ ✶✵✳✷✻
■♥❞✐❝❛t❡ ✐❢ t❤❡ ❢♦❧❧♦✇✐♥❣ st❛t❡♠❡♥ts ❛r❡ tr✉❡ ♦r ❢❛❧s❡✿ ✶✳ ■♥
♣♦❧❛r
❝♦♦r❞✐♥❛t❡s✱ (1, π/2) (−1, −π/2) r❡♣r❡s❡♥t t❤❡ s❛♠❡ ♣♦✐♥t✳
❛♥❞
✷✳ ❚❤❡ ❝✉r✈❡ r = 3 + cos θ ♣❛ss❡s t❤r♦✉❣❤ t❤❡ ♦r✐❣✐♥✳ ✸✳ ❚❤❡ ❝✉r✈❡ r = cos 2θ ✐s ❝❧♦s❡❞✳
❊①❡r❝✐s❡ ✶✵✳✷✶
✹✳ ❚❤❡ ❝✉r✈❡ r = 1 + cos θ ✐s ❜♦✉♥❞❡❞✳
✭❛✮ ❋✐♥❞ t❤❡ r♦♦ts ♦❢ t❤❡ ♣♦❧②♥♦♠✐❛❧ x2 + 2x + 2✳ ✭❜✮ ❋✐♥❞ ✐ts x✲✐♥t❡r❝❡♣ts✳ ✭❝✮ ❋✐♥❞ ✐ts ❢❛❝t♦rs✳
✺✳ ❚❤❡ ❣r❛♣❤ ♦❢ r = θ2 ❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❛s ❛ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ✐♥ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡s✳
✶✵✳ ❊①❡r❝✐s❡s✿ P❛r❛♠❡tr✐❝ ❝✉r✈❡s ❛♥❞ r❡❧❛t❡❞
✻✳ ■♥ ♣♦❧❛r ❝♦♦r❞✐♥❛t❡s✱
(−1, −π/2)
A = (1, π/2)
B=
r❡♣r❡s❡♥t t❤❡ s❛♠❡ ♣♦✐♥t✳
✼✳ ❚❤❡ s❧♦♣❡ ♦❢ t❤❡ ♣♦❧❛r ❝✉r✈❡ t♦
❛♥❞
✹✻✸
r =0
✐s ❡q✉❛❧
0✳
✽✳ ❚❤❡ ❣r❛♣❤ ♦❢ t❤❡ ❝✉r✈❡
r = cos 2θ
✾✳ ❚❤❡ ♣❛r❛♠❡tr✐❝ ❝✉r✈❡
x = t2 , y = sin t
✐s ❛ s♣✐r❛❧✳ ✐s
❜♦✉♥❞❡❞✳ ✶✵✳ ❚❤❡ ❣r❛♣❤ ♦❢
r = θ2
❝❛♥ ❜❡ r❡♣r❡s❡♥t❡❞ ❛s ❛
♣❛r❛♠❡tr✐❝ ❝✉r✈❡ ✐♥ ❈❛rt❡s✐❛♥ ❝♦♦r❞✐♥❛t❡s✳
✶✶✳ ❊①❡r❝✐s❡s✿ ❙❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
✹✻✹
✶✶✳ ❊①❡r❝✐s❡s✿ ❙❡✈❡r❛❧ ✈❛r✐❛❜❧❡s
❊①❡r❝✐s❡ ✶✶✳✶
❊①❡r❝✐s❡ ✶✶✳✻
❉r❛✇ ❛ ❢❡✇ ❧❡✈❡❧ ❝✉r✈❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥
f (x, y) =
❙❤♦✇ t❤❛t t❤❡ ❧✐♠✐t ❞♦❡s♥✬t ❡①✐st✿
2
x + y✳
xy . 2 x + y2 (x,y)→(0,0) lim
❊①❡r❝✐s❡ ✶✶✳✷ ❚❤❡ ❣r❛♣❤ ♦❢ ❢✉♥❝t✐♦♥
y = g(x)
s❤♦✇♥ ❜❡❧♦✇✳ ❙✉♣♣♦s❡ ♥♦✇ t❤❛t ✐s ❛ ❢✉♥❝t✐♦♥ ♦❢ ♦♥
x✱
t✇♦
♦❢
♦♥❡
✈❛r✐❛❜❧❡ ✐s
z = f (x, y) = g(x)
✈❛r✐❛❜❧❡s✱ ✇❤✐❝❤ ❞❡♣❡♥❞s ♦♥❧②
❣✐✈❡♥ ❜② t❤❡ s❛♠❡ ❢♦r♠✉❧❛✳
✇❤❡r❡ t❤❡ ❣r❛❞✐❡♥t ♦❢
f
✐s ❡q✉❛❧ t♦
❋✐♥❞ ❛❧❧ ♣♦✐♥ts
0✳
❊①❡r❝✐s❡ ✶✶✳✼ ❉r❛✇ t❤❡ ❝♦♥t♦✉r ♠❛♣ ✭❧❡✈❡❧ ❝✉r✈❡s✮ ♦❢ t❤❡ ❢✉♥❝✲ t✐♦♥
f (x, y) = ey/x ✳
❊①♣❧❛✐♥ ✇❤❛t t❤❡ ❧❡✈❡❧ ❝✉r✈❡s
❛r❡✳
❊①❡r❝✐s❡ ✶✶✳✽ ❙❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
z = f (x, y)
t❤❡ ❞❡r✐✈❛t✐✈❡s ♦❢ ✇❤✐❝❤ ❤❛✈❡ t❤❡ ❢♦❧✲
❧♦✇✐♥❣ s✐❣♥s✿
fx > 0, fxx > 0, fy < 0, fyy < 0 . ❊①❡r❝✐s❡ ✶✶✳✾ ❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
z = f (x, y)
✐s ❣✐✈❡♥ ❜❡❧♦✇ ❛❧♦♥❣ ✇✐t❤ ❢♦✉r ♣♦✐♥ts ♦♥ t❤❡ ❣r❛♣❤✳ ❙❦❡t❝❤ t❤❡ ❣r❛❞✐❡♥t ❢♦r ❡❛❝❤ ♦♥ ❛ s❡♣❛r❛t❡
xy ✲♣❧❛♥❡✿
❊①❡r❝✐s❡ ✶✶✳✸ ❋✐♥❞ ❛❧❧ ❝r✐t✐❝❛❧ ♣♦✐♥ts ♦❢ t❤❡ ❢✉♥❝t✐♦♥
f (x, y) =
2x3 − 6x + y 2 − 2y + 7✳ ❊①❡r❝✐s❡ ✶✶✳✹ ❙❦❡t❝❤ t❤❡ ❝♦♥t♦✉r ✭❧❡✈❡❧✮ ❝✉r✈❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥ s❤♦✇♥ ❜❡❧♦✇✱ ❛❧♦♥❣ ✇✐t❤ ♣♦✐♥ts
A, B, C, D✱
♦♥ t❤❡
xy ✲♣❧❛♥❡✿
❊①❡r❝✐s❡ ✶✶✳✶✵ ❋✐♥❞ t❤❡ ❣r❛❞✐❡♥t ♦❢ t❤❡ ❢✉♥❝t✐♦♥
f (x, y) = x2 y −3
(1, 1)✳ ❯s❡ t❤✐s ✐♥❢♦r♠❛t✐♦♥ t♦ s❦❡t❝❤ t❤❡ ❣r❛♣❤ ♦❢ f ✐♥ t❤❡ ✈✐❝✐♥✐t② ♦❢ t❤✐s ♣♦✐♥t✳ ❊①♣❧❛✐♥✳ ❛t t❤❡ ♣♦✐♥t
❊①❡r❝✐s❡ ✶✶✳✶✶ ❚❤❡ ❣r❛♣❤ ♦❢ ❛ ❢✉♥❝t✐♦♥ ♦❢ t✇♦ ✈❛r✐❛❜❧❡s
z = f (x, y)
✐s ❣✐✈❡♥ ❜❡❧♦✇ ❛❧♦♥❣ ✇✐t❤ ❢♦✉r ♣♦✐♥ts ♦♥ t❤❡ ❣r❛♣❤✳ Pr♦✈✐❞❡ t❤❡ s✐❣♥s ✭♣♦s✐t✐✈❡ ♦r ♥❡❣❛t✐✈❡✮ ♦❢ t❤❡ ♣❛r✲
❊①❡r❝✐s❡ ✶✶✳✺
f (x, y) = z = −1, 0, 1, 2 .
❙❦❡t❝❤ t❤❡ ❧❡✈❡❧ ❝✉r✈❡s ♦❢ t❤❡ ❢✉♥❝t✐♦♥
2xy + 1
❢♦r t❤❡ ❢♦❧❧♦✇✐♥❣ ✈❛❧✉❡s ♦❢
t✐❛❧ ❞❡r✐✈❛t✐✈❡s ♦❢
∂f