Boylestad Introductory Circuit Analysis [13 ed.]

Instructor Solutions Manual for Boylestad Introductory Circuit Analysis 13th, DC: Chapters(1-11). AC: Chapters(12-25)

154 36 75MB

English Pages 363 Year 2016

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
N/A
Recommend Papers

Boylestad Introductory Circuit Analysis [13 ed.]

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

Chapter 1 1.

-

2.

-

3.

-

4.

a. v = d/t, where v = speed, d = distance, t = time Given t = 2h, 15 min = Time = V=

𝑑 𝑡

2×60+15 h 60

135 60

=

ℎ = 2.25h

60.5 𝑚𝑖 ℎ 2.25

b. Speed in km/h V=

𝑑 𝑡

=

135 = 60

= 26.889 mph

60.5mi×

V = 43.264 km/h 5.

a. b.

6.

100 yd �

×

1 2.25ℎ

mph = (0.6)(160 km/h) = 96 mph km/h = (1.7)(70 mph) = 119 km/h 3𝑓𝑡 1 𝑚𝑖 �� � 1𝑦𝑑 5260𝑓𝑡

80𝑚𝑖 1ℎ 1 𝑚𝑖𝑛 �60𝑚𝑖𝑛� � 60𝑠 � ℎ

t=

1.609𝑘𝑚 1 𝑚𝑖

𝑑 𝑣

=

0.0568𝑚𝑖 0.0222 𝑚𝑖/𝑠

= 0.0568mi

= 0.222 mi/s

= 2.5586s

t = 2.56s 7.

8.

a.

= 139.33 ft/s

b.

t=

c.

u=

= 0.43 s = 40.91 mph

-

Chapter 1

1

9.

-

10.

-

11.

MKS, CGS, °C =

= 20°

SI: K = 273.15 + °C = 273.15 + 20 = 293.15 12.

4000 J ×

13.

a. b. c. d.

14.

15.

16.

17.

18.

2

0.7378𝑓𝑡−𝑙𝑏 1𝐽

= 2951.2 ft-lbs

é2.2 lbs ù 70.8 kg ê ú = 155.76 lbs ë kg û é 1 kg ù 145 lbs ê ú = 65.91 kg ë2.2 lbs û é12 in. ù é2.54 cm ù 6 ft ê úê ú = 182.88 cm ë ft û ë 1 in. û é 1 in. ù é 1 ft ù 179.9 cm ê úê ú = 5.9 ft = 5 ft 10.8 in. ë2.54 cm û ë12 in. û

a.

°F = 2(°C) + 30° = 40° + 30° = 70°

b.

°F =

c.

very close

d.

30°C Æ 90°F vs. 86°F 5°C Æ 40°F vs 41°F

a.

14.6

b.

c.

1,046.1

d.

e.

3.14159 = 3.1

a.

14.60

b.

c.

1,046.06

d.

e.

3.14159 = 3.14

a.

14.603

b.

c.

1,046.060

d.

e.

3.14159 = 3.142

a.

104

b. 106

e.

100

f. 10- 1

= 68°

56.0 = 0.0625 = 0.1

56.04 = 0.0625 = 0.06

56.042 = 0.0625 = 0.063

c. 103

d. 10- 3

Chapter 1

19.

20.

21.

a.

15 ¥ 103

e.

4.02 ¥ 10- 4 f. 2 ¥ 10- 10

b.

5 ¥ 10- 3

c. 2.4 ¥ 106

a. 4.3 × 103 + 43.0 × 103 = 47.3 × 103 = 4.73 × 104 b. 8.0 × 104 + 46.0 × 104 = 54.0 × 104 = 5.40 × 105 c. 600 × 10−6 + 6 × 10−6 = 606 × 10−6 = 6.06 × 10−4 d. 2.6 × 103 + 0.06 × 103 - 0.5 × 103 = 2.16 × 103 = 2160

a. (1000)(10000) = (103 )(104 ) = 107 b. (0.001)(100) = (1 × 10–3 )(102) = 10–1 c. (102)(107) = 109 d. (100)(0.000001) = (102)(10-6) = 10-4 e. (10−8 )(107 ) = 10−1 = 1 × 10−1 f. (104 )(10−10 )(1026 ) = 1 × 1020 a. b. c. d.

(50 ¥ 103)(2 ¥ 10-3) = 100 ¥ 100 = 100 (2.2 ¥ 103)(2 ¥ 10-3) = 4.4 ¥ 100 = 4.40 (82 ¥ 10−6)(1.2 ¥ 10-6) = 98.40 (30 ¥ 10-4)(4 ¥ 10-3)(7 ¥ 108) = 840 ¥ 101 = 8.40 ¥ 103

23.

a. b. c. d. e. f.

102/104 = 10-2 = 10 ¥ 10- 3 10-2/103 = 10-5 = 10 ¥ 10- 6 104/10-3 = 107 = 10 ¥ 106 10-7/102 = 1.0 ¥ 10- 9 1038/10-4 = 1.0 ¥ 1042 = 101/10-2 = 1 ¥ 103

24.

a. 8 × 10−5 = 0.5 × 108 = 5.0 × 107

22.

d. 60 ¥ 103

4 × 103

b. c. d.

6 × 10−3 6 × 106

44 × 10−5 5 × 10−5 88 × 1018 8 × 10−8

6 6

= × 10−9 = 1× 10−9 =

=

44 5

88 8

× 100 = 8.8

× 1026 = 1.1× 1027

(102)3 = 1.0 ¥ 106 (104)8 = 100.0 ¥ 1030

a. c.

26.

a. (4002 ) = (4 × 102 )2 = 16 × 104 b. (6 × 10−4 )2 = 1296 × 10−16 = 12.96 × 10−14 c. (5 × 10−3 ) (3 × 10−4 )2 = (5 × 10−3 ) (9 × 10−8 ) = 45 × 10−11 d. ((2 × 10−4 ) (0.8 × 105 ) (0.0005 × 106 )) 3 = ((2 × 10−4 ) (8 × 104 ) (5 × 102 )) 3 = (80 × 102 )3 = (8 × 103 )3 = ((8)3 × 103 )3 = 512 × 109 = 5.12 × 1011

Chapter 1

b. d.

(10-4)1/2 = 10.0 ¥ 10- 3 (10-7)9 = 1.0 ¥ 10- 63

25.

3

27.

= (9 ¥ 104)(102)/(3 ¥ 104) = (9 ¥ 106)/(3 ¥ 104) = 3 ¥ 102 = 300

a. b.

= 2 ¥ 105

c.

= 9.0 ¥ 1012 = 1.5 ¥ 10-7 = 150.0 ¥ 10- 9

d.

= 24.0 ¥ 1012

e. f.

(16 ¥ 10-6)1/2(105)5(2 ¥ 10-2) = (4 ¥ 10-3)(1025)(2 ¥ 10-2) = 8 ¥ 1020 = 800.0 ¥ 1018

g.

= 5.64 ¥ 104 = 56.40 ¥ 103 28.

29.

4

Scientific:

a. b. c. d.

2.05 × 101 5.04 × 104 6.74 × 10−4 4.60 × 10−2

Engineering:

a. b. c. d.

20.46 × 100 50.42 × 103 674.00 × 10−6 46.00 × 10−3

Scientific

a. b. c. d.

5.0 × 10−2 4.5 × 101 1/32 = 0.03125 = 3.125 × 10−2 3.14159 = 3.142 × 100

Engineering:

a. b. c. d.

50.0 × 10−3 0.045 × 103 31.25 × 10−3 3.142 × 100

Chapter 1

30.

Scientific Notation a. 3.2 × 10−3 b. b. (7 × 107 )(4 × 101 ) = 2.8 × 108 c.

(2×104 )(6×107 ) = (5×104 ) 2 8

12 5

� � 107 = 2.4 × 107

d. (6.2) × (10 ) × (82 × 10−3 ) = (38.44)(82)(4.02) × 108 = 1.267 × 1012

Engineering Notation: a. 3.20 × 103 b. 280.0 × 106 = 0.028 × 109 c. 24.0 × 106 d. 1.267 × 1012 +2

31.

a.

6 ¥ 104 = 0.06 ¥ 10+6 = 0.06 × 10+6 -3 -3

b.

0.4 ¥ 10-3 = 400 ¥ 10-6 = 400 × 10−6 +3 -2

c.

+3

50 ¥ 105 = 5000 ¥ 103 = 5 ¥ 106 = 0.005 ¥ 109 = 0.005 × 109 -3

+2

33.

-3

12 ¥ 10-7 = 0.0012 ¥ 10-3 = 1.2 ¥ 10-6 = 1200 ¥ 10-9 = 1200 × 109 -4

32.

-3 -3

+4 d.

+3

+3

+3

a. 0.06 × 100 s = 60 × 10−3 s = 60 ms b. 4000 × 10−6 s = 4 × 10−3 s = 4 ms c. 0.08 × 10−3 s = 80 × 10−5 = 80 𝜇𝑠 d. 6400 × 10−12 s = 0.0064 × 10−6 s = 0.0064 𝜇𝑠 e. 100 × 10−3 m = 1 × 10−3 m = 1 km a.

1.5 min

b.

2 × 10−2 h

Chapter 1

= 90 s

= 72 s

5

34.

35.

36.

0.05 s

d.

0.16 m

e.

1.2 ¥ 10-7 s

f.

4 ¥ 108 s

= 0.16 ¥ 103 mm = 160 mm = 1.2 ¥ 102 ns = 120 ns = 4629.6 days

a.

80 ¥ 10-3 m

b.

60 cm

c.

é 1 µm ù 12 × 10−3 m ê -6 ú = 12 ¥ 10−3 × 10+6 µm = 12 × 103 µm ë10 m û

d.

60 cm2

a.

100 in.

b.

4 ft

c.

6 lb

d.

60 ¥ 103 dynes

e.

150,000 cm

f.

0.002 mi

5280 ft, 5280 ft

6

= 0.05 ¥ 106 µs = 50 ¥ 103 µs

c.

= 8000 ¥ 10-3 cm = 8 cm

= 60 ¥ 10- 5 km

= 60 ¥ 10- 4 m2

= 2.54 m

= 1.22 m = 26.7 N

5280 ft

= 0.13 lb

= 4921.26 ft

= 3.22 m

= 1760 yds = 1609.35 m, 1.61 km

Chapter 1

37.

38.

= 26.82 m/s

d = 15km �

1000𝑚 39.37 𝑖𝑛. 1𝑓𝑡 1 𝑚𝑖 � � 1𝑚 � �12 𝑖𝑛.� �5280𝑓𝑡� 1𝑘𝑚

= 9.321 mi ≅ 9.32055 V=

1𝑚𝑖 8.5 𝑚𝑖𝑛

,t=

=

9.321𝑚𝑖 1 𝑚𝑖 8.5 𝑚𝑖𝑛

= 79.2285 min ≅ 79.23 min

= 3600 in fi 3600 quarters

39.

100 yds

40.

60 mph:

41.

d = vt = �800

d 500 mi = = 8.33 h = 8 h: 19.8 min u 60 mph d 500 mi = 7.14 h = 7 h: 8.4 min 70 mph: t = = u 70 mph difference = 1 h: 11.4 min t=

= 1382.4m 42.

𝑑 𝑣

cm � s

d = 86 stories

[0.048h] �

60𝑚𝑖𝑛 60𝑠 1𝑚 � �1 𝑚𝑖𝑛� �100𝑐𝑚� 1ℎ

= 1605 steps

u=

43.

= 13.38 minutes

= 0.228 miles

d = (86 stories) = 44.82 min/mile

,

44.

u=

Chapter 1

distance = 86 stories

= 1204 ft

= 1.14 minutes

7

45.

= 4.74 ¥ 10- 3 Btu

a.

b.

24 ounces

c.

1.4 days

d.

1 m3

46.

6(4 × 2 + 8) = 96

47.

(42 + 6/5)/3 = 14.4

48.

= 7.1 ¥ 10- 4m3

= 1.21 ¥ 105 s

= 2113.38 pints

æ2 ö2 52 + ç ÷ = 5.044 è3ø

49.

MODE = DEGREES: cos 21.87° = 0.928

50.

MODE = DEGREES: tan-1(3/4) = 36.87°

51.

= 7.071

52.

205 ¥ 10- 6

53.

1.20 ¥ 1012

54.

6.667 ¥ 106 + 0.5 ¥ 106 = 7.17 ¥ 106

8

Chapter 1

Chapter 1

9

Chapter 2 1.

-

2.

a.

F=

b.

F=k

c.

F=

d.

Exponentially,

a.

r = 1 ft:

3.

= 18 ¥ 109 N

= 2 ¥ 109 N

=

= 0.18 ¥ 109 N

= 10 while

= 100

é12 in. ù é 1 m ù 1 ft ê úê ú = 0.305 m ë 1 ft û ë39.37 in. û 9 -6 -6 -3 kQ1Q2 (9´10 )(8´10 C)(40´10 C) 2880´10 = = F= 2 2 -3 r 93´10 (0.305 m) = 30.97 N b.

r =10 ft: = 3.05 m = 0.31 N

F= c.

r = 100 yds:

é 3 ft ù é12 in. ù é 1 m ù 100 yds ê úê úê ú = 91.4 m ë1 yd û ë 1 ft û ë39.37 in. û kQ1Q2 2880 ´10-3 2880 ´10 -3 = = F= 2 2 3 r (91.4 m) 8.35´10 = 345 µN 4.

-

5.

𝑄1 = 𝑄2 = 𝑄; 𝐹1 =

10

𝑘𝑄 2 𝑟2

⇒ 𝑄2 =

𝐹1 𝑟 2 ; 𝑘

𝑘𝑄 2

𝐹2 = (2𝑟)2 =

𝑘 2𝑟 2



𝐹1𝑟2 𝑘

𝑟2

� and 𝐹2 = (2𝑟)2 𝐹1 =

𝐹1 4

Ans.

Chapter 2

6.

F=

7.

F=

𝑘𝑄1 𝑄2 𝑟2

=r=�

𝑘𝑄1 𝑄2 𝑟2

⇒r= �

(9 × 109 )(30×10−6 )2 (4.5 × 104 )

= 0.01342 m = 13.42 mm

= 4(1.8) = 7.2

a.

F=

b.

Q1/Q2 = 1/2 fi Q2 = 2Q1 7.2 = kQ1Q2 = (9 ¥ 109)(Q1)(2Q1) = 9 ¥ 109

= 72 mN

= 20 µC Q2 = 2Q1 = 2(2 ¥ 10-5 C) = 40 µC 𝑊 𝑄

3.4𝐽 12𝜇𝐶

8.

V=

9.

W = VQ = (60 V)(8 mC) = 0.48 J

10.

Q=

11.

Q=

12.

a.

𝑊 𝑉

=

=

= 283.33 kv

400𝜇𝐽 40𝑚𝐶

= 10 mC

W 620 mJ = = 68.9 mC 9V V W = QV = (1 × 1012 electrons)(40 V) = 40 × 1012 eV é ù 1C 40 × 1012 ê ú = 6.41 µJ 18 ë6.242 ´ 10 electrons û

b.

Q 96 mC = = 11.43 mA t 8.4 s

13.

I=

14.

I=

15.

Q = It = (40 mA)(1.2)(60 s) = 2.88 C

16.

Q = It = (250 mA)(1.2)(60 s) = 18.0 C

17.

t=

Chapter 2

𝑄 𝑡

600 𝐶

= (4)(60𝑠) = 2.50A

=3s

11

18.

21.847 ¥ 1018 electrons = 0.29 A

I= 19.

= 3.5 C

5 min = (5)(60 s) = 300 s Q = It = (4 mA)(300 s) = 1.2 C = 7.49 ¥ 1018 electrons

1.2 C

20.

I=

21.

0.92 × 1016 electrons � I=

22.

a.

= 1.194 A > 1 A (yes)

𝑄 𝑡

=

1.474𝑚𝐶 50𝑚𝑠

1𝐶 6.242×1018 electrons

= 29.48mA

� = 1.474 mC

Q = It = (2 mA)(0.01 µs) = 2 ¥ 10-11 C 2 ¥ 10-11 C = 1.25 ¥ 108 ¢ = $1.25 ¥ 106 = 1.25 million Q = It = (100 µA)(1.5 ns) = 1.5 ¥ 10-13 C

b.

1.5 ¥ 10-13 C

= 0.94 million

(a) > (b) 23.

Q = 𝐼𝑡 = (300 × 10−3A) × (40s) = 12C V=

24.

𝑊 𝑄

=

60𝐽 12C

= 5.0V

Q = It =

= 210 C = 3.53 V

V=

25.

Q= I=

12

𝑊 𝑉

𝑄 𝑡

=

=

0.8 24𝑉

= 0.0333C

0.0333𝐶 6×10−3 𝑠

= 5.55A

Chapter 2

Ah rating 180 Ah = = 4.5 A t(hours) 40 h

26.

I=

27.

Ah rating = current × hours = (0.64A)(80h) = 51.2 Ah.

28.

t (hours) =

29.

45 Ah (for 1 h):𝑊1 = VQ = V. I. t 60𝑚𝑖𝑛 = (12V) (45A) (1h)� ��

𝐴ℎ 𝑟𝑎𝑡𝑖𝑛𝑔 𝐼

=

72𝐴ℎ 1.80𝐴

= 40h

1ℎ

60𝑠 � 1 𝑚𝑖𝑛

1ℎ

60𝑠 � 1 𝑚𝑖𝑛

= 1.944 ×106 J 75 Ah (for 1 h):𝑊2 = VQ = V. I. t 60𝑚𝑖𝑛 = (12V) (75A) (1h)� �� Ratio

𝑊2 𝑊1

= 3.240 ×106 J = 1.67 or 67% more energy available with 75Ah rating for 60s discharge:

45Ah = It = I[60𝑠] �

1𝑚𝑖𝑛 1ℎ � �60 𝑚𝑖𝑛� 60𝑠

= I (16.67×10−3 h)

75Ah = It = I[60𝑠] �

1𝑚𝑖𝑛 1ℎ � �60 𝑚𝑖𝑛� 60𝑠

= I (16.67×10−3 h)

And I =

45𝐴ℎ 16.67 ×10−3 ℎ

And I = 4500A = 𝐼2 𝐼1

= 2700A

75𝐴ℎ 16.67 ×10−3 ℎ

= 4500A

= 1.67 or 67% more starting current available at 75Ah.

30.

0.75(18 Ah) = 13.5 Ah Þ @ 250 mA

31.

(18 Ah − 15.5 Ah)/18 Ah × 100% = 13.89%

32.

At 100 mA, discharge time @ 120 H; At 25 mA, discharge time @ 425 h; @ 300 h more at 25 mA

33.

I=

4𝐴ℎ 8.0ℎ

= 500 mA;

Q = It = (500mA) (8h) �

60𝑚𝑖𝑛 60𝑠 � �1 𝑚𝑖𝑛� 1ℎ

= 41.40 kC

Energy = W = QV = (14.4kC)(12V) = 172.8kJ

34.

-

35.

-

36.

-

Chapter 2

13

37.

a.

b. c.

38.

-

39.

-

40.

-

41.

-

14

é2.54 cm ù 0.5 in ê ú = 1.27 cm ë 1 in û é30 kV ù 1.27 cm ê ú = 38.1 kV ë cm û é270 kV ù 1.27 cm ê ú = 342.9 kV ë cm û 342.9 kV:38.1 kV = 9:1

Chapter 2

Chapter 3 1.

a. 0.4 inches = 400 mils b. 1⁄32 in. = 0.03125 in. [ c. 1⁄5 in. = 0.2 in. [

1000 𝑚𝑖𝑙𝑠 1 𝑖𝑛.

d. 20 mm = 20 × 10-3m [ e. 0.02 ft [

f. 2.

3.

3cm [

12 𝑖𝑛. 1 𝑓𝑡

1 𝑖𝑛. 2.54 𝑐𝑚

][

][

1000 𝑚𝑖𝑙𝑠 1 𝑖𝑛.

] = 200 mils

39.37 𝑖𝑛. 1𝑚

1000 𝑚𝑖𝑙𝑠 1 𝑖𝑛.

1000 𝑚𝑖𝑙𝑠 1 𝑖𝑛.

] = 31.25 mils

][

1000 𝑚𝑖𝑙𝑠 1 𝑖𝑛.

] = 787.4 mils

] = 240 mils

] = 1181.10 mils

a.

ACM = (30 mils)2 = 900 CM

b.

0.08 in. = 80 mils, ACM = (80 mils)2 = 6.4 ¥ 103 CM

c.

é1" ù ê ú = 0.0625 in. = 62.5 mils, ACM = (62.5 mils)2 = 3.91 ¥ 103 CM êë16 úû

d.

2 cm

e.

0.02 ft

f.

é39.37 in. ù 4 × 10−3 m ê ú ë 1m û

= 787.4 mils, ACM = (787.4 mils)2 = 620 ¥ 103 CM

= 240 mils, ACM = (240 mils)2 = 57.60 ¥ 103 CM

é1000 mils ù 2 3 ê ú = 157.48 mils, ACM = (157.48 mils) = 24.8 × 10 CM 1 in ë û

ACM = (dmils)2 Dmils = √𝐴CM a. d = √1800𝐶𝑀 = 42.43mils = 0.0424 in. b. d = √840𝐶𝑀 = 28.98 mils = 0.029 in. c. d = √42,000𝐶𝑀 = 204.94 mils = 0.205 in. d. d = √2000𝐶𝑀 = 44.72 mils = 0.045 in. e. d = √8.25𝐶𝑀 = 2.87 mils = 0.0029 in. f. d = √6 × 103 = 77.46 mils = 0.0775 in.

Chapter 3

15

4.

R=𝜌 5.

6.

𝑙 𝐴

= (10.37)

a.

A= r

b.

d=

1 16

A CM =

9.

a.

𝑙

ACM =

16

544 CM = 23.32 mils = 23.3 ¥ 10- 3 in.

larger

c.

smaller

𝜌=

𝑅𝑙 𝑙

=

𝑅𝐴 𝜌

=

(4.4Ω)(3906.25 𝐶𝑀) 600

=

= 28.65 ft.

= 942.73 CM

942.73 CM = 30.70 mils = 30.7 ¥ 10- 3 in.

b.

a.

= 4.051 Ω

in. = 0.0625 in. = 62.5 mils, ACM = (62.5)2 = 3906.25CM.

d=

8.

(400′ ) 1024 𝐶𝑀

æ 80¢ ö l = 17 ç ÷ = 544 CM R è 2.5 Ω ø

R = 𝜌𝐴 ⇒ l =

7.

ACM = (32 mils)2 = 1024 CM.

0.032 in. = 32 mils,

(600Ω)(148𝐶𝑀) (1200 𝑓𝑡)

= 74 ⇒ Iron.

1/32≤ = 0.03125≤ = 31.25 mils, ACM = (31.25 mils)2 = 976.56 CM rl RA (3.14 Ω)(976.56 CM) Þl= = R= = 295.7 ft A r 10.37

b.

(5)(295.7) 295.7´ 1000´ = Þx = = 1.48 lbs 5 lb 1000 x

c.

−40° C: F =

9 C + 32° = 5 9 105° C: F = C = 32° = 5 F° = −40° Æ 221°

9 (-40) + 32 = −40° 5 9 (105) + 32 = 221° 5

Chapter 3

10.

a.

b.

11.

5" 8

= 0.625" = 625 mils ; 5.8" = 5800 mils ∴ A = (625 mils) (5800 mils) = 4⁄𝜋 𝐶𝑀 ⇒ 3.625 × 106 sq.mils [1 𝑠𝑞.𝑚𝑖𝑙 ] = 4.62 × 106 CM. 1" 10

= 0.1" = 100 mils, ACM = (100 𝑚𝑖𝑙𝑠)2 = 1.0 × 104 = 10 × 103 𝐶𝑀

(#10)

a.

4.62×106 𝐶𝑀 10 ×103 𝐶𝑀

= 462 wires

3" = 3000 mils, 1/2" = 0.5 in. = 500 mils Area = (3 ¥ 103 mils)(5 ¥ 102 mils) = 15 ¥ 105 sq. mils

15 ¥ 105 sq mils

b.

= 19.108 ¥ 105 CM

R=

=

= 21.71 µΩ

R=

=

= 35.59 µΩ

Aluminum bus-bar has almost 64% higher resistance. c. 12.



l2 = 2l1, A2 = A1/4, r2 = r1 =8 and R2 = 8R1 = 8(0.2 ) = 1.6 ∆R = 1.6 - 0.2 = 1.4

13.

A=

𝜋𝑑 2 4

⇒d=

√4𝐴 𝜋

= �

4(0.06 𝑖𝑛.2 ) 𝜋

= 0.2764 in.

dmils = 276.4 mils, ACM = (276.4 𝑚𝑖𝑙𝑠)2 = 76,396.96 CM 𝑅1 𝑅2

𝜌 𝑙1 1 �𝐴

=𝜌

𝑙 2 2�𝐴 2

and 𝑅2 =

Chapter 3

1

𝜌1 𝑙1 𝐴2

=𝜌

2 𝑙2 𝐴1

𝑅1 𝑙2𝐴1 𝑙1 𝐴2

=

=

𝑙1 𝐴2

𝑙2 𝐴1

(𝜌1 = 𝜌2 )

(900𝑚Ω)(600𝑓𝑡)(50,000 𝐶𝑀) (400𝑓𝑡)(76,396.96𝐶𝑀)

= 883.54 mΩ.

17

14.

a.

#12 = 6,529.9 CM, #14 = 4,106.8 CM 6,529.9 CM - 4,106.8 CM ´100% = 59% larger 4,106.8 CM = 1.33,

b.

= 1.59

Imax ratio = 1.33 vs Area ratio = 1.59 1.59 - 1.33 ´100% = 19.55% higher ratio for area 1.33 15.

a.

= 2 yes

b.

= 16.16 yes

= 7.5

16.

a. b.

17.

a.

#20 #30 #30 #40

1021.50𝐶𝑀 100.50 𝐶𝑀

=

100.50𝐶𝑀 9.89 𝐶𝑀

=

Yes ≅ 10

= 10.16 ≅ 10 𝑌𝑒𝑠

= 10.162

= 51,850 CM fi #3

A=

but 110 A fi #2 b. 18.

= 103,700 CM fi #0

A=

a. 𝐴�𝐶𝑀 =

b.

1.192 𝑚𝐴 𝐶𝑀

200 𝐴 167,810 𝐶𝑀

�𝜋

1𝐶𝑀

�4 𝑠𝑞.𝑚𝑖𝑙𝑠

1 𝑖𝑛.2

= 1.192 𝑚𝐴�𝐶𝑀

��

1000 𝑚𝑖𝑙𝑠 1000 𝑚𝑖𝑙𝑠 � � 1 𝑖𝑛. � 1 𝑖𝑛.

c. 6KA �1.52 𝑘𝐴� = 3.95 𝑖𝑛.2

18

= 1.52 𝑘𝐴� 2 𝑖𝑛.

Chapter 3

19. 20.

234.5+10 4Ω

=

234.5+80 𝑅2

R2 =

21.

244.5

= 5.15Ω

5 5 (℉ − 32) = (32 − 32) = 0° (= 32℉) 9 9

𝐶=

5 (68 − 32) = 20° (= 68℉) 9

234.5°+20° 2.6Ω

𝑅2 =

a.

(314.5)(4Ω)

= 0.028

𝐶=

22.

, 𝑅2 =

=

234.5°+0° 𝑅2

(234.5)(2.6Ω) = 2.396Ω 254.5

°C =

5 5 (°F - 32°) = (70° - 32°) = 21.11° 9 9

°C =

= 15.56°

234.5 + 21.11 234.5 + 15.56 = 0.025 Ω R2

b.

R2 =

(250.06)(0.025 Ω) = 24.46 mΩ 255.61

°C =

= 10°

234.5 + 21.11 234.5 + 10 = 0.025 Ω R2 R2 =

(244.5) (0.025 Ω) = 23.91 mΩ 255.61

c.

Part a: 25 mΩ − 24.46 mΩ = 0.54 mΩ Part b: 24.45 mΩ − 23.91 mΩ = 0.55 mΩ Linear 40°F fi 23.91 mΩ − 0.55 mΩ = 23.36 mΩ

d.

°C =

= −34.44°

234.5 + 21.11 234.5 - 34.44 = 25 mΩ R2

(25 mΩ)(200.06) = 19.57 mΩ 255.61 Yes, 25 mΩ − 19.57 mΩ = 5.43 mΩ

R2 =

Chapter 3

19

e.

°C =

= 48.89°

234.5 + 21.11 234.5 + 48.89 = 25 mΩ R2

(25 mΩ)(283.39) = 27.72 mΩ 255.61 Yes, 2.72 mΩ

R2 =

23.

a. b.

24.

a.

234.5+4 2Ω 234.5+4 2Ω

= =

234.5+𝑡2 2.2Ω 234.5+𝑡2 0.2Ω

, 𝑡2 = 45.45℃

, 𝑡2 = −209.05℃

68°F = 20°C

234.5 + 20 234.5 + T2 = 1Ω 2Ω 2(254.5) - 234.5 = T2 1 T2 = 274.5°C b.

#10 = 0.9989 Ω/1000´

c. din = 0.102 in @ 25.

1 ˝ 10

a.

a20 =

b.

R = R20[1 + a20(t - 20°C)] 1 Ω = 0.8 Ω [1 + 0.00393(t - 20°)] 1.25 = 1 + 0.00393t - 0.0786 1.25 - 0.9214 = 0.00393t 0.3286 = 0.00393t

= 0.003929 @ 0.00393

t= 26.

20

= 83.61°C

R = R20[1 + a20(t - 20°C)] = 0.4 Ω [1 + 0.00393(16 - 20)] = 0.4 Ω [1 - 0.01572] = 0.39 Ω

Chapter 3

27.

From Table 3.2, 1000′ of #12 Copper wire = 1.588Ω @20℃ ℃=

5 5 (℉ − 32) = (170 − 32) = 76.67℃ 9 9

𝑅 = 𝑅20 [1 +∝20 (𝑡 − 20℃)]

28.

= 1.588Ω [1 + 0.00393 (76.67 − 20)] = 1.942Ω (PPM)(∆T) =

∆R =

(200)(65° - 20°) = 0.198 Ω

R = Rnominal + ∆R = 22.198 Ω 29.

(PPM)(∆T) =

∆R =

(100)(50° - 20°) = 0.30 Ω

R = Rnominal + ∆R = 100 Ω + 0.30 Ω = 100.30 Ω 30.

a.

2 times larger

b.

31. 32.

20𝑘Ω − 6.5𝑘Ω = 13.5𝑘Ω

33.

-

34.

a. b. c. d. e.

35.

a. b. c. d.

36.

a.

10 Ω ± 20% fi 8 Ω − 12 Ω 15 Ω ± 20% fi 12 Ω − 18 Ω

b.

10 Ω ± 10% fi 9 Ω − 11 Ω 15 Ω ± 10% fi 13.5 Ω − 16.5 Ω

4 times larger

6.25 kΩ and 18.75 kΩ

820 Ω ± 5%, 820 Ω ± 41 Ω, 779 Ω ´ 861 Ω 220 Ω ± 10%, 220 Ω ± 22 Ω, 198 Ω ´ 242 Ω 91 kΩ ± 20%, 91 kΩ ± 18.2 kΩ, 77.8 kΩ ´ 109.2 kΩ 9.1 kΩ ± 5%, 9100 Ω ± 455 Ω, 8,645 Ω ´ 9,555 kΩ 3.9 MΩ ± 20%, 3.9 MΩ ± 0.78 MΩ, 3.12 MΩ ´ 4.68 MΩ

78 Ω = Violet, Gray, Black, Silver 0.66Ω = Blue, Blue, Silver, Silver 44 kΩ = Yellow, Yellow, Orange, Silver 6.7 MΩ = Blue, Violet, Green, Silver

37.

470 Ω ± 10% = 470 Ω ± 47 Ω = 423 Ω ´ 517 Ω Yes

38.

No change

Chapter 3

}

no overlap, continuance

}

no overlap

21

721 = 72 × 101 Ω = 720Ω = 0.72kΩ 222 = 22 × 102 Ω = 2.2kΩ 3.9 × 104 Ω = 39kΩ = 𝑄4 𝐶5 = 1.2 × 105 Ω = 0.12MΩ

39.

a. b. c. d.

40.

a. 𝐺𝑎 =

b.

41.

1 1 = = 4.55𝑚𝑆 220Ω 𝑅𝑎 1 = 0.167𝑚𝑆 𝐺𝑏 = 6𝑘Ω 1 𝐺𝑐 = 1.1𝑀Ω = 0.91𝜇𝑆

c. d. 𝐺𝑎 > 𝐺𝑏 > 𝐺𝑐 𝑣𝑠. 𝑅𝑐 > 𝑅𝑏 > 𝑅𝑎

a.

Table 3.2, Ω/1000¢ = 1.588 Ω

= 629.72 mS

G=

= 629.69 mS (Cu)

or G =

42.

43.

b.

G=

a.

G1 =

b.

G2:G1 = 50 mS: 100 mS = 1:2 whereas R2:R1 = 20 Ω:10 Ω = 2:1. The rate of change is the same although one is increasing and the other decreasing.

c.

inverse − linear

1 1 1 = 100 mS, G2 = = 50 mS, G3 = = 10 mS 10 Ω 20 Ω 100 Ω

2 3

5 3

2 3

𝐴2 = 1 𝐴1 = 𝐴1 , 𝑙2 = �1 − � 𝑙1 = 𝐺1 𝐺2

44.

-

45.

-

46.

-

22

= 384.11 mS (Al)

=

𝐴 𝜌1 1 𝑙1 𝐴2 𝜌2 𝑙2

=

𝜌1 𝑙2 𝐴1 𝜌2 𝑙1 𝐴2

=

𝑙 � 1�𝐴1 3 𝑙1 �5�3𝐴1 �

=

1 5

𝑙1 3

, 𝜌2 = 𝜌1

Chapter 3

47.

-

æ 2.54 cm ö in. = 0.083 in. ç ÷ = 0.21 cm è 1 in. ø

48.

= 0.035 cm2

A= l=

49.

a.

" 4 ft

= 40,603 cm = 406.03 m

= 1.27 cm, 3 in. = 121.92 cm

= 21.71 µΩ

R=

50.

51. 52.

= 7.62 cm

b.

R=

= 35.59 µΩ

c.

increases

d.

decreases

𝑅𝑠 =

𝜌 𝜌 250 × 10−6 = 200 ⇒ d = = = 1.25𝜇𝑐𝑚. 200 𝑑 200

𝑅𝑠 𝑙 (225Ω)�1�2 𝑖𝑛. � 𝑙 𝑅 = 𝑅𝑠 ⇒ w= = 0.1875𝑖𝑛. = 𝑚 𝑅 600Ω a.

d = 1 in. = 1000 mils ACM = (103 mils)2 = 106 CM

r1 = b.

1 in. = 2.54 cm A=

Chapter 3

= 1 CM-Ω/ft

= 5.067 cm2

l = 1000 ft

= 30,480 cm

r2 =

= 1.66 ¥ 10- 7 Ω-cm

23

c.

= 1.66 ¥ 10- 7

k=

53.

-

54.

-

55.

-

56.

-

57.

-

58.

a.

-50°C specific resistance @ 105 Ω-cm 50°C specific resistance @ 500 Ω-cm 200°C specific resistance @ 7 Ω-cm

b.

negative

c.

No

d.

r=

a.

Log scale:

10 fc fi 3 kΩ 100 fc fi 0.4 kΩ

b.

negative

c.

no—log scales imply linearity

d.

1 kΩ fi 30 fc 10 kΩ fi 2 fc ∆R 10 kΩ - 1k = = 321.43 Ω/fc ∆ fc 30 fc - 2 fc

59.

∆Ω - cm 300 - 30 270 Ω - cm = = @ 3.6 Ω-cm/°C 125 - 50 75° C ∆T

and 60.

24

a.

@ 0.5 mA, V 195 V @ 1 mA, V 200 V @ 5 mA, V 215 V

b.

∆Vtotal = 215 V - 195 V = 20 V

c.

5 mA:0.5 mA = 10:1 compared to 215 V: 200 V = 1.08:1

= -321.43 Ω/fc

Chapter 3

Chapter 4 1.

V = IR = (5.6 mA)(220 Ω) = 1.23 V

2.

I=

3.

R=

4.

I=

5.

𝑉 = 𝐼𝑅 = (5𝜇𝐴)(0.2𝑀Ω) = 1.0𝑉

6.

24 V V = = 10.91 mA R 2.2 kΩ = 16 kΩ

= 300 A

I=

= 2.4 mA

7.

R=

= 54.55 Ω

8.

𝐼=

9.

𝑅=

10.

R=

V 4.5 V = = 56.25 Ω I 80 mA

11.

𝑅=

𝑉 𝐼

12. 13.

𝑉 𝑅

=

𝑉 𝐼

110𝑉 7𝑘Ω

= 15.71𝑚𝐴

=

150𝑉 4.6𝐴

=

36𝑚𝑉 30𝜇𝐴

= 32.61Ω

= 1.2𝑘Ω

𝑉 = 𝐼𝑅 = (14𝐴)(0.8Ω) = 9.6𝑉

a.

R=

= 12.63 Ω

b.

t=2h

= 7200 s

W = Pt = VIt = (120 V)(9.5 A)(7200 s) = 8.21 ¥ 106 J 14. 15.

𝑉 = 𝐼𝑅 = (8.4µA)(4.2 MΩ) = 35.28𝑉 -

Chapter 4

25

16.

-

17.

-

18.

-

19.

-

20.

P=

21.

𝑡=

22.

W = t

𝑊 𝑃

=

540 J 540 J = = 2.5 W é 60 s ù 216 s 3.6 min ê ú ë1 min û 840𝐽

60𝐽�𝑠

a. 12h�

= 14𝑠

60𝑚𝑖𝑛 60𝑠 � �1𝑚𝑖𝑛� 1ℎ

= 43,200𝑠.

𝑊 = 𝑃𝑡 = (3𝑊)(43,200𝑠) = 129. 𝑘𝐽

23.

b. 𝑘𝑊ℎ =

(3𝑊)(12ℎ) 1000

= 36 × 10−3 𝑘𝑊ℎ

P = VI = (3 V)(1.4 A) = 4.20 W t=

= 2.86 s

24.

P = EI = (12 V)(40 A) = 480 W

25.

P = I2R = (7.2 mA)2 4 kΩ = 207.36 mW

26.

P = I 2R fi I =

27.

𝐼=� =�

28.

𝑃 𝑅

3𝑊 69Ω

= 10.44 mA

= 208.51𝑚𝐴

𝑉 = 𝐼𝑅 = (208.51𝑚𝐴)(69Ω) = 14.39𝑉 I=

= 1.31 mA

P = I2R = (1.31 mA)2 16.8 kΩ = 28.83 mW æ é60 min ù é 60 s ù ö W = Pt = (28.83 mW) ç ç1 h ê 1 h ú ê1 min ú ÷÷ = 103.79 J ûë ûø è ë 29.

26

E=

P 10 kW = = 208.33 V I 48 A Chapter 4

30.

𝑃 𝑅

1.5𝑊 5.0𝑀Ω

𝐼=� =�

= 547.72𝜇𝐴

No. the current will not be double. 31.

V=

32.

𝑃 = 𝑉𝐼, 𝐼 = 𝑅=

33.

34.

= 9.61 V

𝑉 𝐼

=

𝑃 𝑉

240𝑉 0.417𝐴

100 240

=

= 0.417𝐴

= 575.54Ω

V=

= 120 V

R=

= 32 Ω

a. 𝑃 = 𝑉𝐼 & 𝐼 =

𝑃 𝑉

=

0.5×10−3 𝑊 4.5𝑉

= 0.11𝑚𝐴

b. Ah-rating = (0.11𝑚𝐴)(550ℎ) = 60.5𝑚𝐴ℎ

35.

I=

= 70.71 mA = 1.42 kV

V= 36.

𝑃 = 𝑉𝐼 = (240𝑉)(40𝐴) = 9.6𝑘𝑊

𝑃𝐻𝑃 = 37.

38.

9.6𝑘𝑊

746𝑊�𝐻𝑃

=

9600𝑊 746𝑊�𝐻𝑃

= 12.87𝐻𝑃

a.

æV 2 ö æ12 V ö 2 ÷ W = Pt = ç ç R ÷ t = ç10 Ω ÷ 60 s = 86.4 J è ø è ø

b.

Energy doubles, power the same

W = Pt fi t =

39.

= 260 h

kWh =

Chapter 4

3 W 12 ´10 Wh =8h = 1500 W P

= 59.80 kWh

27

40.

a.

æ 60 min ö æ 60 s ö 6 W = Pt = (60 W)(10 h) ç ÷ç ÷ = 2.16 × 10 Ws è 1 h ø è1 min ø

b.

1 Ws = 1 J \ 2.16 × 106 J

c.

W = Pt = (60 W)(10 h) = 600 Wh = 0.6 kWh

d. e. 41.

Cost = (0.6 kWh)(12 ¢/kWh) = 7.2 ¢ 𝑃𝑡 (1000)(𝑘𝑊ℎ) ⇒P= 1000 𝑡 𝑃 125×103 𝑊 = = 543.48𝐴 𝑉 230𝑉

a. 𝑘𝑊ℎ = b. 𝐼 =

=

(1000)(1500𝑘𝑊ℎ) 12ℎ

= 125𝑘𝑊

c. 𝑃𝑙𝑜𝑠𝑡 = 𝑃𝑖 − 𝑃𝑜 = 𝑃𝑖 − η𝑃𝑖 (1 − η) = 125𝑘𝑊(1 − 0.79) = 26.25kW

42.

𝑘𝑊ℎ𝑙𝑜𝑠𝑡 =

#𝑘𝑊ℎ = 𝑘𝑊ℎ =

43.

44.

=

(26.25𝑘𝑊)(12ℎ)

= 7.14𝑘𝑊ℎ

𝑃𝑡 ⇒ 1000

t=

1000

(𝑘𝑊ℎ)(1000) 𝑃

=

a.

$120 = $4/day 30 days

b.

$4 / day = 26.7¢/h 15 h/day

c.

26.7¢/h = 2.23 kW 12¢/kWh

d.

2.23 kW = 37.17 @ 37 bulbs 60 W

e.

no

$1.00 11¢� 𝑘𝑊ℎ

𝑡=

28

$1.00 14¢

𝑃𝑡 1000

= 315𝑘𝑊ℎ

(7.14)(1000) 260𝑊

= 27.46ℎ

= 9.09𝑘𝑊ℎ

9.09𝑘𝑊ℎ 198𝑊

= 45.91ℎ

Chapter 4

45.

𝑡 = 6ℎ�𝑑𝑎𝑦 (365𝑑𝑎𝑦𝑠) = 2190ℎ

𝑘𝑊ℎ =

𝑃𝑡 1000

=

(400𝑊)(2190ℎ)

= 876𝑘𝑊ℎ

𝑘𝑊ℎ =

𝑃𝑡 1000

=

(213𝑊)(2190ℎ)

= 466.47𝑘𝑊ℎ

1000

Cost = (876𝑘𝑊ℎ)(12¢/kWh) = $105.12 1000

Cost = (466.47𝑘𝑊ℎ)(12¢/kWh) = $55.98 Cost savings = $105.12 − $55.98 = $49.14

(78 W)(4 h/day)(31 days) P×t = = 9.67 kWh 1000 1000 Cost = (12¢/kWh)(9.67 kWh) = $1.16

46.

kWh =

47.

a. 𝑃 = 𝑉𝐼 − (110𝑉)(100𝐴) = 11𝐾𝑊

b. 𝑃 = 2 × 240𝑊 + 2500𝑊 + 10 × 100𝑊 + 2000𝑊 + 1500𝑊 + 1500𝑊 = 8.98𝑘𝑊 < 11𝑘𝑊 (𝑌𝑒𝑠)

c. 𝑊 = 𝑃𝑡 = (8.98𝑘𝑊)(3ℎ) = 26.94 kWh 48.

kWh =

(1600 W)(8 h) + (1200 W)(1/3 h) + (4800 W)(1 h) + (900 W)(1/4 h) + (200 W)(1.2 h) + (50 W)(3.5 h) 1000

12, 800 Wh + 400 Wh + 4800 Wh + 225 Wh + 240 Wh + 175 Wh = = 18.64 kWh 1000 (18.64 kWh)(12¢/kWh) = $2.24

49.

kWh =

æ 1 ö (200W)(4 h) + (6)(60 W)(6 h) + (1200 W)(0.5 h) + (175 W)(3.5 h) + (250 W)ç4 h ÷ + (30 W)(8 h) è 3 ø 1000

800 Wh + 2160 Wh + 600 Wh + 612.5 Wh + 1083.32 Wh + 240 Wh = = 5.496 kWh 1000 (5.496 kWh)(12¢/kWh) = 65.95¢

50.

h=

51.

η = 𝑃𝑜 ; 𝑃𝑖 =

= 90.98%

𝑃

𝑖

𝑃𝑖 = 𝑉𝐼; 𝐼 = 52.

𝑃

𝑃𝑜

η

=

Chapter 4

0.75

= 1492𝑊

1492𝑊 𝑃𝑖 = = 12.43𝐴 𝑉 120𝑉

η = 𝑃𝑜 × 100% = 𝑖

(1.5ℎ𝑝)�746𝑊�ℎ𝑝�

(0.88)�746𝑊�ℎ𝑝� × (4.5𝐴)(220𝑉)

100% =

656.48 × 990

100% = 66.31%

29

53.

a. Pi = EI = (120 V)(1.8 A) = 216 W Pi = Po + Plost, Plost = Pi - Po = 216 W - 50 W = 166 W

h% =

b.

54.

55.

¥ 100% =

¥ 100% = 23.15%

(4.6ℎ𝑝) �746𝑊�ℎ𝑝� 𝑃𝑜 = 𝑃𝑖 = 𝑉𝐼 = ⇒I = = 18.65 𝐴 (0.80)(230𝑉) η η𝑉 𝑃𝑜

a.

Pi =

= 1657.78 W

b.

Pi = EI = 1657.78 W (110 V)I = 1657.78 W 1657.78 W I= = 13.81 A 120 V

c.

Pi =

= 2131.43 W

Pi = EI = 2131.43 W (120 V)I = 2131.43 W 2131.43 W I= = 17.76 A 120 V 56.

(16ℎ𝑝) �746𝑊�ℎ𝑝� = 13,563.64𝑊 𝑃𝑖 = = η 0.88 𝑃𝑖 13,563.64𝑊 𝐼= = = 56.52𝐴 𝑉 240𝑉 𝑃𝑜

57.

hT = h1 ◊ h2 0.75 = 0.85 ¥ h2 h2 = 0.88, h2 = 88%

58.

η 𝑇 = η 1 . η 2 = (0.86)(0.76) = 0.6536⇒ 65.36%

59.

η𝑇 = η1 . η2 = (0.82) = 0.9η2 η2 =

30

0.82 0.9

= 0.9111 ⇒ 91.11%

Chapter 4

60.

a.

hT = h1 ◊ h2 ◊ h3 = (0.93)(0.87)(0.21) = 0.170 fi 17%

b.

hT = h1 ◊ h2 ◊ h3 = (0.93)(0.87)(0.80) = 0.647 fi 64.7% ¥ 100% = 280.59%

61.

η𝑇 = 𝑛12 =

𝑃𝑜 = η1 . η2 = η2 . 2η1 = 2𝑛12 𝑃𝑖

𝑃𝑜 𝑃𝑜 200𝑊 ⇒ η1 = � =� = 0.5 2𝑃𝑖 2𝑃𝑖 2(400𝑊)

η2 = 2η1 = 2(0.5) = 1.0 η1 = 50%, η2 = 100%

Chapter 4

31

Chapter 5 1.

a. b. c. d.

E and R1 R1 and R2 E1, E2, and R1 E and R1; R3, R4, and R5

2.

a. b. c. d.

E1 and R1; E2, R3, and R4 E1 and R1; R5 and R6 R2 and R3 E1 and R1

3.

a. b. c.

RT = 0.1 kΩ + 0.39 kΩ + 1.2 kΩ + 6.8 kΩ = 8.49 kΩ RT = 1.2 Ω + 2.7 Ω + 8.2 Ω = 12.1 Ω RT = 1.2 Ω + 2.2 Ω + 3.3 Ω + 4.7 Ω = 11.4 Ω

4.

a. b. c.

RT = 8.2 kΩ + 10 kΩ + 9.1 kΩ + 1.8 kΩ + 2.7 kΩ = 31.8 kΩ RT = 47 Ω + 820 Ω + 91 Ω + 1.2 kΩ = 2158.0 Ω RT = 3.3 Ω + 10 kΩ = 13.3 kΩ

5.

a. b.

RT = 1.2 kΩ + 1 kΩ + 2.2 kΩ + 3.3 kΩ = 7.7 kΩ RT = 1 kΩ + 2 kΩ + 3 kΩ + 4.7 kΩ + 6.8 kΩ = 17.5 kΩ

6.

a. 2MΩ will have most impact. b. 200Ω, 2kΩ can be neglected. c. 𝑅𝑇 = 200Ω + 2kΩ + 2MΩ + 400kΩ = 2.4022MΩ = 2.4022𝑀Ω vs 2.4MΩ for part (b).

7.

a. b.

Reading = 10 Ω + 33 Ω + 56 Ω + 68 Ω = 167 Ω Reading = 0.82 kΩ + 1.2 kΩ + 3.3 kΩ = 5.32 kΩ

8.

a. b.

RT = 129 kΩ = R + 56 kΩ + 22 kΩ + 33 kΩ, Reading = 18 kΩ RT = 103 kΩ = 24 kΩ + R1 + 43 kΩ + 2R1 = 67 kΩ + 3R1, R1 = 12 kΩ R2 = 24 kΩ

9.

a. b. c.

1.2 kΩ + 2.2 kΩ = 3.4 kΩ 0Ω •Ω

10.

a. 𝑅𝑇 = 12Ω + 14Ω + 20Ω = 46Ω

b. 𝐼𝑠 =

𝐸 𝑅𝑇

=

76𝑉 46Ω

= 1.65𝐴

c. 𝑉1 = 𝐼1 𝑅1 = (1.65𝐴)(12Ω) = 19.8𝑉 ; 𝑉2 = 𝐼2 𝑅2 = (1.65𝐴)(14Ω) = 23.1𝑉 𝑉3 = 𝐼3 𝑅3 = (1.65𝐴)(20Ω) = 33.0𝑉 d. 𝑃𝑠 = 𝐸𝐼𝑠 = (76𝑉)(1.65𝐴) = 125.4𝑊 e. 𝑃20Ω = 𝑉3 𝐼3 = (33.0𝑉)(1.65A) = 54.45𝑊

32

Chapter 5

11.

a. The most: 𝑅3 , the least: 𝑅1 b. 𝑅3 , 𝑅𝑇 = 2.2𝑘Ω + 6.8𝑘Ω + 84𝑘Ω = 93𝑘Ω 𝐼𝑠 =

𝐸 𝑅𝑇

=

60𝑉 93𝑘Ω

= 0.65𝑚𝐴

c. 𝑉1 = 𝐼1 𝑅1 = (0.65𝑚𝐴)(2.2𝑘Ω) = 1.43𝑉 𝑉2 = 𝐼2 𝑅2 = (0.65𝑚𝐴)(6.8𝑘Ω) = 4.42𝑉 𝑉3 = 𝐼3𝑅3 = (0.65𝑚𝐴)(84𝑘Ω) = 54.6𝑉,

Result agree with part (a) 12.

a. b.

13.

I.

II.

RT = 12 kΩ + 4 kΩ + 6 kΩ = 22 kΩ E = IRT = (4 mA)(22 kΩ) = 88 V RT = 12 Ω + 22 Ω + 82 Ω + 10 Ω = 126 Ω E = IRT = (500 mA)(126 Ω) = 63 V =4A

a.

I=

b. c. d.

E = IRT = (4 A)(9 Ω) = 36 V RT = 9 Ω = 4.7 Ω + 1.3 Ω + R, V4.7 Ω = (4 A)(4.7 Ω) = 18.8 V V1.3 Ω = (4 A)(1.3 Ω) = 5.2 V V3 Ω = (4 A)(3 Ω) = 12 V

a.

I=

b.

V3.3 kΩ = (3 mA)(3.3 kΩ) = 9.9 V

R=3Ω

= 3 mA

E = 6.6 V + 9 V + 9.9 V = 25.5 V

14.

c.

R=

d.

V2.2 kΩ = 6.6 V, V3 kΩ = 9 V, V3.3 kΩ = 9.9 V

= 3 kΩ

a.

Im =

b.

RT = 1 kΩ + 2.4 kΩ + 5.6 kΩ = 9 kΩ Im =

c.

Chapter 5

= 8.18 mA, Vm =

= 18 V

= 2.5 mA, Vm = 2.5 mA(2.4 kΩ + 5.6 kΩ) = 20 V

3.3 kΩ(12 V) = 8.8 V 4.5 kΩ Vm = 12 V − 8.8 V = 3.2 V 12 V Im = = 2.67 mA 4.5 kΩ

V3.3 kΩ =

33

15.

a.

I=

10 V = 0.333 A 30 Ω

V=0V

16.

80 V = 5.33 V 60 Ω

b.

I = 0 A, V = IR =

a.

RT = 3 kΩ + 1 kΩ + 2 kΩ = 6 kΩ Is =

= 20 mA = (20 mA)(3 kΩ) = 60 V = (20 mA)(1 kΩ) = 20 V = (20 mA)(2 kΩ) = 40 V

b.

17.

=

= (20 mA)2 ◊ 3 kΩ = 1.2 W

=

= (20 mA)2 ◊ 1 kΩ = 0.4 W

=

= (20 mA)2 ◊ 2 kΩ = 0.8 W

c.

PT = PR1 + PR 2 + PR 3 = 1.2 W + 0.4 W + 0.8 W = 2.4 W

d.

PT = EIs = (120 V)(20 mA) = 2.4 W

e.

the same

f.

R1 - the largest

g.

dissipated

h.

R1: 2 W, R2 : 1/2 W, R3: 1 W

𝑃 = 28𝑊 = (2𝐴)2 . 𝑅, ⇒R = 7Ω 𝑉1 = 𝐼1𝑅1 = (2A)(3Ω) = 6𝑉 𝑉2 = 𝐼2𝑅2 = (2A)(2Ω) = 4𝑉

𝑉3 = 𝐼3𝑅3 = (2A)(7Ω) = 14𝑉

18.

𝐸 = 𝑉1 + 𝑉2 + 𝑉3 = 6𝑉 + 4𝑉 + 14𝑉 = 24𝑉

12 𝑃 = 12𝑊 = 𝐼 2 . 2Ω; 𝐼 = � = 2.449𝐴 2

𝑃 = 20𝑊 = 𝐼 2 . 𝑅1 = (2.449𝐴)2 𝑅1 𝑅1 = 3.335Ω, 𝑅𝑇 = 36Ω = 3.335Ω + 𝑅2 + 2Ω = 5.225Ω + 𝑅2 ⇒𝑅2 = 30.665Ω 𝐸 = 𝐼𝑅𝑇 = (2.449𝐴)(30.665Ω) = 75.10𝑉

34

Chapter 5

19.

a.

æ 1 ö RT = NR1 = 8 ç28 Ω ÷ = 225 Ω è 8 ø = 0.53 A

I=

20.

b.

æ 8 ö 2 æ 1 ö æ 64 ö æ 225 ö P = I R = ç A ÷ ç28 Ω ÷ = ç ÷ç ÷ =8W è15 ø è 8 ø è 225 ø è 8 ø

c.

æ 8 ö æ 225 ö Ω ÷ = 15 V V = IR = ç A ÷ ç è15 ø è 8 ø

d.

All go out!

2

𝑃𝑆 = 𝑃𝑅1 + 𝑃𝑅2 + 𝑃𝑅3 E.I. = 𝐼 2 𝑅1 + 𝐼 2 𝑅2 +40 (𝑅1 + 𝑅2 )𝐼 2 − E.I. + 40 = 0 10𝐼 2 − 40𝐼 + 40 = 0 𝐼 2 − 4𝐼 + 4 = 0

−(−4)±�(−4)2 −4(1)(4) 4±√16−16 = 2(1) 2 40𝛺 40W = (2𝐴)2 𝑅, 𝑅 = = 10 Ω. 4

I=𝑥 = P=

21.

a. b. c.

22.

a. b.

23.

a.

Vab + 4 V + 9 V − 12 V = 0, Vab = −13 V + 12 V = −1 V Vab + 4 V + 8 V − 4 V = 0, Vab = 4 V − 12 V = −8 V Vab + 12 V − 5 V + 6 V − 12 V = 0, Vab = −18 V + 17 V = −1 V

4V = 388.3 mA 10.3 Ω 16 V = 1.39 A ET = −4 V + 10 V - 12 V = −6 V, I = 11.5 Ω ET = 8 V - 32 V + 20 V = −4 V, I =

P = 8 mW = I2R, R = I=

b.

4

= 2 = 2A.

I=

= 2 kΩ

E 20 V - E = 2 mA (CW), = RT 3 kΩ + 2 kΩ = 8 mA, R =

E = 10 V

= 1.5 kΩ

E E - 4 V - 10 V E - 14 V = 8 mA (CCW) = = RT 2 kΩ + 1.5 kΩ 3.5 kΩ E = 42 V

I=

24.

a.

Chapter 5

−6 V + 4 V - 12 V - V = 0, V = −18 V + 4 V = −14 V

35

b.

+30 V − 7 V - 8 V - V = 0, V = 30 V − 15 V = 15 V

c.

−14 V - 22 V - V1 + 12 V = 0, V1 = −36 V + 12 V = −24 V V1 − V2 − 12 V = 0, V2 = V1 − 12 V = −24 V − 12 V = −36 V

25.

a. b. c.

26.

a.

I= = 1.25A 6𝛺 𝑉2 = IR = (1.25A)(4Ω) = 5V 50V-10V-𝑉1-5V = 0 𝑉1 = 50𝑉 − 15𝑉 = 35𝑉

10𝑉

+10 V - V2 = 0 V2 = 10 V +10 V - 6 V - V1 = 0 V1 = 4 V +24 V - 10 V - V1 = 0 V1 = 14 V +10 V - V2 + 8 V = 0 V2 = 18 V

b.

27.

28.

a.

V1.8 Ω = IR = (3 A)(1.8 Ω) = 5.4 V 24 V − V1 − 10 V − 5.4 V = 0, V1 = 24 V − 15.4 V = 8.6 V V2.7 Ω = IR = (3 A)(2.7 Ω) = 8.1 V 10 V − 8.1 V − V2 = 0 V2 = 10 V − 8.1 V = 1.9 V

b.

+ 10 V - V1 + 6 V - 2 V - 3 V = 0, V1 = 11 V +10 V - V2 - 3 V = 0, V2 = 7 V

2𝑉 4𝛺

2𝑉 4𝛺

29.

a. b. c. d.

30.

36

= =

100𝑉 𝑅2

= , 𝑅2 =

200𝑉 ; 𝑅3

𝑅3 =

(100𝑉)(4𝛺) 2𝑉

(200𝑉)(4𝛺) 2𝑉

= 200Ω.

= 400Ω.

10 kΩ V3: V2 = 10 kΩ:1 kΩ = 10:1 V3: V1 = 10 kΩ:100 Ω = 100:1 RE (10 kΩ)(60 V) = 54.05 V V3 = 3 = 0.1 kΩ + 1 kΩ + 10 kΩ RT (R + R3 )E (1 kΩ + 10 kΩ)(60 V) V¢ = 2 = 59.46 V = 11.1 kΩ RT

a.

V=

b.

V=

= 20 V

(5 kΩ)(40 V) (2 kΩ + 3 kΩ)(40 V) = 20 V = 10 kΩ 4 kΩ + 1 kΩ + 2 kΩ + 3 kΩ

Chapter 5

(1.5 Ω + 0.6 Ω + 0.9 Ω)(0.72 V) (3 Ω)(0.72 V) = 0.36 V = (2.5 Ω + 1.5 Ω + 0.6 Ω + 0.9 Ω + 0.5Ω) 6 kΩ

c.

31.

20 V V1 (1.2 Ω)(20 V) , V1 = = 12 V = 2Ω 1.2 Ω 2Ω 20 V V2 (6.8 Ω)(20 V) , V2 = = 68 V = 2Ω 6.8 Ω 2Ω

a.

E = V1 + 20 V + V2 = 12 V + 20 V + 68 V = 100 V 120 V - V1 - 80 V = 0, V1 = 40 V 80 V - 10 V - V3 = 0, V3 = 70 V

b.

32.

68 Ω(1000 V) V 1000 V = 680 V = 2 , V2 = 68 Ω 100 Ω 100 Ω V 1000 V 2 Ω(1000 V) = 20 V = 1 , V1 = 2Ω 100 Ω 100 Ω E = V1 + V2 + 1000 V = 20 V + 680 V + 1000 V = 1700 V

a.

V1 = 0 V 10 kΩ(50 V - 30 V) V2 = 10 kΩ + 3.3 kΩ + 4.7 kΩ 10 kΩ(20 V) = = 11.11 V 18 kΩ Vx = E1 − V3.3 kΩ 3.3 kΩ(20 V) V3.3 kΩ = 18 kΩ = 3.67 V Vx = 50 V − 3.67 V = 46.33 V

b.

33.

3𝑉 3 𝑘𝛺 3𝑉 3 𝑘𝛺

I=

𝑉

2 = 4 𝑘𝛺 ; 𝑉2 =

=

𝑉4 5 𝑘𝛺

3𝑉 3 𝑘𝛺

; 𝑉4 =

= 1 mA.

(3𝑉)(4𝑘𝛺) 3 𝑘Ω

(3𝑉)(5𝑘𝛺) 3 𝑘Ω

= 4V. = 5V.

E = 3 V + 4 V + 18 V + 5 V = 30 V.

Chapter 5

37

34.

a.

b.

35.

a.

R(20 V) 2.2 kΩ + 1.8 kΩ + R 4(4 kΩ + R) = 20R 16 kΩ + 4R = 20R 16R = 16 kΩ 16 R= kΩ = 1 kΩ 16

4V=

(6 MΩ + R)(140 V) 6 MΩ + R + 3 MΩ 110(9 MΩ + R) = 840 MΩ + 140R 990 MΩ + 110R = 840 MΩ + 140R 30R = 150 MΩ 150 MΩ = 5 MΩ R= 30 110 V =

Rbulb =

= 160 Ω

Vbulb = 8 V =

b. 36.

Rbulb (12 V) 160 Ω(12 V) , Rx = 80 Ω in series with the bulb = 160 Ω + Rx Rbulb + Rx

VR = 12 V - 8 V = 4 V, P =

= 0.2 W, \ 1/4 W okay

VR1 + VR2 = 92V 1 VR2 + VR2 = 92V 5

1 5

𝑉𝑅2 � + 1� = 92 V

𝑉𝑅2 = 𝑅2 =

37.

𝑅1 =

𝑉𝑅2 𝐼𝑅2

𝑉𝑅1 𝐼𝑅1

= 76.67 V

=

=

76.67 𝑉 5 𝑚𝐴

= 15.334 kΩ

92𝑉−76.67𝑉 5𝑚𝐴

= 3.066 kΩ

𝑅𝑇 = 𝑅1 + 𝑅2 + 𝑅3 = 2𝑅3 + 7𝑅3 + 𝑅3 = 10𝑅3

𝑉3 = 38.

92𝑉 1.2

𝑅3 (80𝑉) 10𝑅3

= 8V,

𝑉1 = 2𝑉3 = 2(8𝑉) = 16𝑉, 𝑉2 = 7𝑉3 = 7(8𝑉) = 56V.

= 4(3VR1 ) = 12VR1

a.

E = VR1 + 3VR1 + 12VR1 \RT = R1 + 3R1 + 12R1 = 16R1 = R1 = 38

= 6.4 kΩ

= 400 Ω, R2 = 3R1 = 1.2 kΩ, R3 = 12R1 = 4.8 kΩ Chapter 5

b.

39.

40.

RT =

= 400 kΩ, R2 = 1.2 MΩ, R3 = 4.8 MΩ

= 103 and

= 103 also

a.

Va = 12 V + 5 V = 17 V Vb = 5 V + 16 V = 21 V Vab = 17 V − 21 V = −4 V

b.

Va = −6 V −6 V + 6 V + 10 V − Vb = 0, Vb = 10 V Vab = Va − Vb = −6 V − 10 V = −16 V

c.

−8 V + 3 V − Va = 0, Va = −5 V Vb = −8 V Vab = Va − Vb = −5 V − (−8 V) = −5 V + 8 V = +3 V

a.

IØ =

60 V + 20 V 80 V = 0.8 A = 18 Ω+ 82 Ω 100 Ω Va = 60 V − I(18 Ω) = 60 V − (0.8 A)(18 Ω) = 60 V − 14.4 V = 45.6 V ® 100 V - 60 V 40 V = 5 mA I= = 4(2 kΩ) 8 kΩ Va − I(2 kΩ) + 100 V = 0 Va = (I)(2 kΩ) − 100 V = (5 mA)(2 kΩ) − 100 V = 10 V − 100 V = −90 V

b.

41.

= 6.4 MΩ, R1 =

I=

54𝑉−27𝑉 1𝑘𝛺+2𝑘𝛺+3𝑘𝛺

27𝑉 6 𝑘𝛺

=

= 4.5 𝑚𝐴 (CCW).

𝑉1𝑘𝛺 = 4.5V, 𝑉2𝑘𝛺 = 9V; 𝑉3𝑘𝛺 = 13.5𝑉1𝑘𝛺

a.

b. c. 42.

𝐼𝑅2 = 𝑅1 =

𝑅3 =

Chapter 5

𝑉𝑎 = 27V, 𝑉𝑏 = 27𝑉 + 4.5𝑉 = 31.5𝑉 𝑉𝑐 = 27𝑉 + 4.5𝑉 + 9𝑉 = 40.5 𝑉 𝑉𝑑 = –13.5V, 𝑉𝑒 = 0V 𝑉𝑎𝑏 = –4.5V, 𝑉𝑑𝑐 = –54V, 𝑉𝑐𝑏 = 9V 𝑉𝑎𝑐 = –13.5V, 𝑉𝑑𝑏 = −54𝑉 + 9𝑉 = −45𝑉.

6𝑉+6𝑉 12𝑉 = 10𝛺 10𝛺

𝑉𝑅1 𝐼

𝑉𝑅3 𝐼

=

=

18𝑉−6𝑉 1.2𝐴

= 1.2A

=

−6𝑉+12𝑉 1.2𝐴

12𝑉 1.2𝐴

= 10Ω

= 5Ω

39

= 48 V - 12 V = 36 V

43.

R2 =

= 2.25 kΩ

= 12 V - 0 V = 12 V R3 =

= 0.75 kΩ

= 20 V R4 =

= 1.25 kΩ

VR1 = E - VR 2 - VR 3 - VR 4 = 100 V - 36 V - 12 V - 20 V = 32 V R1 = 44.

= 2 kΩ

a.

Va = −8 V + 14 V = +6 V, Vb = 14 V Vc = +I(10 Ω) − 6 V with 20 V 14 V + 6 V I= =1A = 10 Ω + 10 Ω 20 Ω Therefore, Vc = (1 A)(10 Ω) − 6 V = 10 V − 6 V = 4 V Vd = 0 V

b.

Vab = Va − Vb = 6 V − 14 V = −8 V Vcb= Vc − Vb = 4 V − 14 V = −10 V Vcd = Vc − Vd = 4 V − 0 V = 4 V

c.

Vad = Va − Vd = 6 V − 0 V = 6 V Vca = Vc − Va = 4 V − 6 V = −2 V

45.

V0 = 0 V, V4 = (2 kΩ)(6 mA) + 3 V = 12 V + 3 V = 15 V, V7 = 4 V V10 = V1 − V0 = 12 V − 0 V = 12 V, V23 = V2 − V3 = 4 V − (−8 V) = 4 V + 8 V = 12 V V30 = V3 − V0 = −8 V − 0 V = −8 V, V67 = V6 − V7 = 4 V − 4 V = 0 V 4 V + 8 V 12 V =3A V56 = V5 − V6 = 3 V − 4 V = −1 V, I≠ = = 4Ω 4Ω

46.

V0 = 0 V, V03 = V0 − V3 = 0 V − 0 V = 0 V, V2 = (3 mA)(3.3 kΩ) = 9.9 V V23 = V2 − V3 = 9.9 V − 0 V = 9.9 V, V12 = V1 − V2 = 20 V − 9.9 V = 10.1 V S Ii = S Io Ii = 4 mA + 3 mA + 10 mA = 17 mA

40

Chapter 5

47.

a. 𝑉𝐿 = 𝐼𝐿 . 𝑅𝐿 = (3.5A)(32Ω) = 112V. 𝑉𝑖𝑛𝑡 = 122V – 112V = 10V 𝑅𝑖𝑛𝑡 =

𝑉𝑖𝑛𝑡 𝐼

10𝑉

= 3.5𝐴 = 2.86Ω

b. VR = Voltage regulation = VR = 8.93% Ans. 48.

𝑉𝑁𝐿 − 𝑉𝐹𝐿 𝑉𝐹𝐿

× 100% =

122𝑉−112𝑉 112𝑉

× 100%

39.6 V 3.3 Ω(12 V) = 11.85 V = 3.3 Ω + 43 mΩ 3.343 Ω

a.

VL =

b.

VR =

c.

Is = IL =

¥ 100% =

¥ 100% = 1.27%

= 3.59 A

Ps = EIs = (12 V)(3.59 A) = 43.08 W Pint = I2Rint = (3.59 A)2 43 Ω = 0.554 W 49.

𝐸 𝑅𝑇

30𝑉 2.2 𝑘𝛺+6.8 𝑘𝛺

30𝑉 9 𝑘𝛺

a.

I=

b.

I=

c.

Not for most applications.

Chapter 5

𝐸 𝑅𝑇

= =

30𝑉 9 𝑘𝛺+0.450 𝑘𝛺

=

= 3.33 mA.

= 3.175 mA

41

Chapter 6 1.

a. b. c. d.

R2 and R3 E and R3 R2 and R3 R2 and R3

2.

a. b. c. d.

E, R1, R2, R3, and R4 E, R1, R2, and R3 E and R1 none

3.

a. b.

R3 and R4, R5 and R6 E and R1, R6 and R7

4.

a.

RT =

b.

RT =

c.

RT =

5.

c.

1 1 1 + + 2𝑘𝛺 4𝑘𝛺 25𝑘𝛺

1

=

1 1 1 + + 1.1kΩ 110𝛺 11𝛺

1 0.5×10−3 𝑆+0.25×10−3 𝑆+40×10−6 𝑆

=

=

1 0.79×10−3 𝑆

1 0.909×10−3 𝑆+9.09×10−3 𝑆+90.909×10−3 𝑆

=

= 1.266kΩ

1 100.908×10−3 𝑆

= 9.91Ω

(4 kΩ)(4 kΩ) 12 kΩ = 4 kΩ, 𝑅𝑇 = = 2 kΩ 3 4 kΩ+4 kΩ 20𝛺 10𝛺 𝑅′ 𝑇 = = 5Ω , 𝑅" 𝑇 = = 5Ω 4 2 (5Ω)(5Ω) = 2.5Ω 𝑅𝑇 = 5𝛺+5𝛺 1 1 1 = 𝑅𝑇 = 1 1 1 = 0.5𝑆+0.5×10−3 𝑆+0.5×10−6 𝑆 500×10−3 +0.5×10−3 +0.0005×10−3 + +

=

a.

2𝛺 2𝑘𝛺 2𝑀𝛺

1 500.5×10−3

b.

= 1.998Ω

RT =

=

= 193.57 Ω

RT =

=

42

= 13.33Ω.

a. 𝑅′ 𝑇 =

b.

6.

(40Ω)(20Ω) 40𝛺+20𝛺 1

= 304.14 Ω

Chapter 6

7.

a.

= 3 Ω || 6 Ω = 2 Ω RT = 1.61 Ω =

b.

=

, R=8Ω

= 2 kΩ

RT = 1.8 kΩ =

8.

,

c.

RT = 5.08 kΩ =

a.

RT = 1.02 Ω =

R = 18 kΩ ,

R = 6.8 kΩ

1

1.02 kΩ =

563.73´10 -6 +

1 R

1.020 kΩ =1 R 1.020 kΩ R= = 2.4 kΩ 425´10 -3

575 × 10−3 +

b.

RT = 6 kΩ = R1 = 24 kΩ

c.

9.

1 1 1 1 1 = + + + 1.11 kΩ R 8.2 kΩ 10 kΩ 2 kΩ 1 900.9 ¥ 10−6S = + 121.95 ¥ 10−6S + 100 ¥ 10−6S + 500 ¥ 10−6S R 1 = 178.95 ¥ 10−6S R 1 R= = 5.588 kΩ @ 5.6 kΩ -6 178.95´10 S

a. 2.2kΩ b. About 2 kΩ c. 𝑅𝑇 =

1

1 1 1 1 + + + 2.2𝑘𝛺 33𝑘𝛺 330𝐾𝛺 3.3𝑀𝛺

=

1 488.181×10−6 𝑆

Chapter 6

1 454.545×10−6 𝑆+30.303×10−6 𝑆+3.030×10−6 𝑆+0.303×10−6 𝑆

= 2.048 kΩ

d. 330 kΩ, 3.3 MΩ; 𝑅𝑇 =

e. 𝑅𝑇 reduced.

=

(2.2𝑘𝛺)(33𝑘𝛺) 2.2𝑘𝛺+33𝑘𝛺

= 2.06 kΩ.

43

10.

𝑅𝑇 =

a.

=

1 1 = 0.33S+0.5S+0.1S 0.93S

= 1.075 Ω.

∞ Ω. 𝑅𝑇 = 3Ω // 7Ω = 2.1Ω.

b. c. 11.

1

1 1 1 + + 3Ω 2Ω 10Ω

24 Ω || 24 Ω = 12 Ω

(Two of the 24 Ω resistors “shorted” out.) 0.1 S =

+ 0.08333 S + 0.00833 S

0.1 S =

+ 0.09167 S

= 0.1 S - 0.09167 S = 0.00833 S R1 =

12.

a.

= 120 Ω

RT = = 36 V

b. c.

=6Ω

Is =

=6A = 4.5 A = 1.5 A

d.

44

Is = I1 + I2 6 A = 4.5 A + 1.5 A = 6 A (checks)

Chapter 6

13.

𝑉𝑅1 20𝑉 = = 5A, 𝑅1 4𝛺 𝑉 20𝑉 = 1.667A. 𝐼2 = 𝑅𝑅2 = 12𝛺 2 𝑉𝑅3 20𝑉 = 0.417A. 𝐼3 = 𝑅 = 48𝛺 3 1 1 𝑅𝑇 = 1 1 1 = 0.25𝑆+0.0833𝑆+0.0208𝑆 + +

a. 𝐼1 =

b.

c. 𝐼𝑆 =

=

4𝛺 12𝛺 48𝛺

20𝑉 2.83𝛺

= 7.067𝐴 = 7.07 𝐴.

1 353.38×10−3 𝑆

= 2.83Ω.

d. 𝐼𝑆 = 𝐼1 + 𝐼2 + 𝐼3 = 5A+1.667A+0.417A = 7.07A. e. They match.

14.

a.

I R1 =

VR1 R1

=

24 V = 2.4 mA, 10 kΩ

= 20 mA,

= 3.53 mA

15.

1 1 = -6 1 1 1 100´10 S + 833.333´10 -6 S + 147.06´10 -6 S + + 10 kΩ 1.2 kΩ 6.8 kΩ 1 = = 925.93 Ω 1.08´10 -3 S

b.

RT =

c.

Is =

d.

Is = I1 + I2 + I3 = 2.4 mA + 20 mA + 3.53 mA = 25.93 mA

e.

they match

a.

RT @ 900 Ω

b.

RT =

=

= 25.92 mA

1 1 1 1 1 + + + 20 kΩ 10 kΩ 1 kΩ 91 kΩ 1 -6

-6

-3

-6

50´10 S + 100´10 S + 1´10 S + 10.99´10 S 1 = = 862.07 Ω, very close 1.16´10 -3 S c.

Chapter 6

I3 the most, I4 the least

45

d.

I R3

16.

VR 60 V 60 V = 3.0 mA, I R 2 = 2 = = 6 mA R1 R2 20 kΩ 10 kΩ VR VR 60 V 60 V = 60.0 mA, I R 4 = 4 = = 0.659 mA = 3 = R3 R4 1 kΩ 91 kΩ

I R1 =

VR1

=

60 V E = = 69.6 mA RT 862.07 kΩ Is = 3 mA + 6 mA + 60 mA + 0.659 mA = 69.66 mA (checks)

e.

Is =

f.

always greater

a. 𝑅𝑇 = 8Ω =

(20Ω)(𝑅2 ) 20Ω+𝑅2

160Ω + 8𝑅2 = 20𝑅2

12𝑅2 = 160 Ω ⇒ 𝑅2 =

b. P = 64W =

17.

𝑉2 𝑅

=

𝐸2 𝑅

=

c.

40 3

= 13.33 𝛺 =

f.

2560 3

= 29.21𝑉.

�(120𝑊)(6𝛺) = √720 = 26.83 V.

d. 𝐼𝑆 = 𝐼1 + 𝐼2 + 𝐼3 = 2.24𝐴 + 3𝐴 +

e.

40 3

40 Ω. 3

and 𝐸 2 = � � (64) or 𝐸 = �

𝑉 2 𝐸2 = 𝑅 and E = √𝑃𝑅 = 𝑅 𝐸 26.83V 𝑅2 = = = 8.94Ω 𝐼2 3𝐴 𝑉 𝐸 26.83 = 2.24A 𝐼1 = 𝑅1 = = 𝑅1 12𝛺 1

a. P = b.

𝐸2

160 12

26.83 6𝛺

= 5.24+4.47 = 9.71A.

𝑃𝑆 = E𝐼𝑆=(26.83𝑉)(9.71𝐴) = 260.52 𝑊 = 260.5𝑊

𝑃𝑅1 =

𝑃𝑅2 =

𝐸2 𝑅1

𝐸2 𝑅2

=

=

(26.83𝑉)2 12𝛺

(26.83𝑉)2 8.94𝛺

= 59.99W. =80.52W.

g. 𝑃𝑠 = 𝑃1 + 𝑃2 + 𝑃3 => 260.5W = 59.99+80.52+80.52 = 260.51W 𝑃𝑠 = 260.5𝑊 = 𝑃1 + 𝑃2 + 𝑃3 = 260.5𝑊.

46

Chapter 6

18.

I3 =

=9A

E=

= 36 V = 12.3 A - 10.8 A = 1.5 A

R1 = 19.

a. b. c.

= 24 Ω V = 48 V

48 V = 2.67 mA 18 kΩ 48 V 48 V + Is = + I2 = 16 mA + 4 mA + 2.67 mA = 22.67 mA 3 kΩ 12 kΩ I2 =

2

d.

20.

a. b. c.

21.



22.

a.

2

𝐼𝑅2 = 4𝐴 − 1𝐴 = 3𝐴, 𝑅2=

𝑅3 = 𝐼1 ↑ =

RT = RT = RT =

𝐸 𝐼2

=

𝑉𝑅3 𝐸 15𝑉 = = = 15V. 𝐼3 𝐼3 1𝐴 15𝑉 = 3A, 𝐼𝑆 = 𝐼1 + 4𝐴 5𝛺

1

1 1 1 + + 2𝑘𝛺 4.4𝑘𝛺 8𝑘𝛺

=

𝑉𝑅2 𝐼2

=

15𝑉 3𝐴

= 5𝛺.

= 3𝐴 + 4𝐴 = 7𝐴.

1 0.5×10−3 𝑆+227.27×10−6 𝑆+125+×10−6 𝑆

1 500×10−6 𝑆+227.27×10−6 𝑆+125×10−6 𝑆 1 852.27×10−6 𝑆 = 1.173 kΩ.

𝐼𝑅1=

b.

2

E (48 V) V = 192 mW P= = = R R 12 kΩ

𝑉𝑅1 𝑅1

𝐼𝑅3 =

=

𝑉𝑅3 𝑅3

60𝑉 2𝑘𝛺

=

= 30mA, 𝐼𝑅2 =

60𝑉 8𝑘𝛺

= 7.5 mA.

𝑉𝑅2 𝑅2

=

60𝑉 4.4𝑘𝛺

= 13.64 𝑚𝐴.

𝑃𝑅1= 𝑉𝑅1 . 𝐼𝑅1 = (60V)(30mA) = 1.8W.

𝑃𝑅2 = 𝑉𝑅3 . 𝐼𝑅2 = (60V)(13.64mA) = 818.4 mW. 𝑃𝑅3 = 𝑉𝑅2 . 𝐼𝑅3 = (60V)(7.5mA) = 450 mW.

Chapter 6

47

c.

d. e. 23.

24.

a.

𝐼𝑆=

𝐸 𝑅𝑇

=

60𝑉 1.173𝑘𝛺

= 51.15mA, 𝑃𝑠 = 𝐸𝑠 . 𝐼𝑠 = (60V)(51.15mA)

𝑃𝑆 = 3.069W ≈ 3.07 W.

𝑃𝑆 = 1.8 W + 818.4 mW + 450 mW = 3.068 W ≈ 3.07 W(𝑐ℎ𝑒𝑐𝑘𝑠). 𝑅1 = The smallest parallel resistor. Ibulb =

= 66.667 mA

b.

RT =

= 225 Ω

c.

Is =

= 0.533 A

d.

P=

=8W

e.

Ps = 8(8 W) = 64 W

f.

none, Is drops by 66.667 mA

Network redrawn:

60 V

+ −





20 Ω

12 Ω

RT 7.5 Ω

1.429 Ω

RT = 1.429 Ω || 7.5 Ω = 1.2 Ω E 2 (60 V)2 = Ps = = 3 kW RT 1.2 Ω 25.

a.

b.

48

5 × 60 W = 300 W Ibulbs =

= 2.5 A

Imicro =

= 10 A

ITV =

= 2.67 A

IDVD =

= 208.33 mA

Is = S I = 2.5 A + 10 A + 2.67 A + 208.33 mA = 15.38 A No

Chapter 6

26.

c.

RT =

d.

Ps = E Is = (120 V)(15.38 A) = 1,845.60 W

e.

Ps = 1845.60 W = 300 W + 1200 W + 320 W + 25 W = 1845 W (checks)

a.

b.

27.

28.

29.

6𝛺 10𝛺

= 7.8 Ω

= 3.75 Ω, 3.75Ω‖4𝛺 = 1.935 Ω.

24𝑉+4𝑉 = 14.47A. 1.935𝛺 𝑉 2 (24𝑉+4𝑉)2 = 𝑃4𝛺 = 𝑅 = 4𝛺

𝐼1 =

196W.

c. 𝐼2 = 𝐼1 = 14.47A.

𝐼𝑠 = 10 mA + 5 mA = 15 mA

𝐼2 = 5 mA – 4 mA= 1 mA. a.

SIi = SIo 5A+7A+3A=9A+I 15 A = 9 A + I 6A=I

b.

S Ii = S Io 8 mA = 2 mA + I1 I1 = 8 mA − 2 m A = 6 mA S Ii = S Io I1 + 9 mA = I2 I2 = 6 mA + 9 mA = 15 mA S Ii = S Io I2 = 10 mA + I3 I3 = 15 mA − 10 mA = 5 mA

a.

S Ii = S Io 8 A = 3 A + I2 I2 = 8 A − 3 A = 5 A, I3 = 3 A S Ii = S Io I2 + I3 = I4 I4 = 5 A + 3 A = 8 A

b.

S Ii = S Io Is = 36 mA + 4 mA = 40 mA S Ii = S Io 36 mA = I3 + 20 mA I3 = 36 mA − 20 mA = 16 mA S Ii = S Io 4 mA + 20 mA = I4 I4 = 24 mA I5 = Is = 40 mA

Chapter 6

49

30.

𝐼2 = 5 mA ̶ 2 mA = 3 mA, 𝐼1 = 9 mA − 5 mA = 4 mA, 𝐼3 = 2 mA.

E = 𝐼2 . 𝑅2 = (3 mA)(5kΩ) = 15V = Source Voltage.

𝑅1 =

RT =

31.

a.

𝑉𝑅1 𝐼1

=

𝐸 𝐼1

1

=

15𝑉 4mA

1 1 1 + + 3.75kΩ 5kΩ 7.5kΩ

R1 =

= 3.75kΩ, 𝑅3 = =

𝑉𝑅3 𝐼3

=

𝐸 𝐼3

=

15𝑉 2mA

= 7.5kΩ.

1 266.67×10−6 𝑆+200×10−6 𝑆+133.33×10−6 𝑆

=

1 600×10−6 𝑆

= 1.67 kΩ.

=5Ω

I2 = I - I1 = 3 A - 2 A = 1 A = 10 Ω

R= b.

E = I1R1 = (2 A)(6 Ω) = 12 V I2 =

= 1.33 A

I3 =

=1A

R3 =

= 12 Ω

I = I1 + I2 + I3 = 2 A + 1.33A + 1 A = 4.33 A 32.

a.

I1 =

= 64 mA

I3 =

= 16 mA

Is = I1 + I2 + I3 I2 = Is - I1 - I3 = 100 mA - 64 mA - 16 mA = 20 mA R=

= 3.2 kΩ

I = I2 + I3 = 20 mA + 16 mA = 36 mA b.

P=

= 30 V

E = V1 = 30 V I1 =

=1A

Because R3 = R2, I3 = I2 , and Is = I1 + I2 + I3 = I1 + 2I2

50

Chapter 6

2 A = 1 A + 2I2 I2 =

= 0.5 A

I3 = 0.5 A R2 = R3 =

= 60 Ω = (0.5 A)2 ◊ 60 Ω = 15 W

33.

𝐼2 =

3𝛺 𝐼 15𝛺 1

3𝛺

= 0.2𝐼1 = 0.2(10𝐴) = 2𝐴.

𝐼3 = 2𝛺 𝐼1 = 1.5(10𝐴) = 15𝐴.

𝐼4 =

34.

3𝛺 𝐼 20𝛺 1

=

3 20

3 2

(10𝐴) = 𝐴 = 1.5𝐴.

𝐼𝑇 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 = 10 A + 2 A + 15 A + 1.5 A = 28.5 A.

a.

I1 =

= 16 mA

I2 = 20 mA - 16 mA = 4 mA

35.

1 kΩ(I T ) 1 kΩ(I T ) = 1 kΩ + 2.4 kΩ 3.4 kΩ 3.4 kΩ(2.5 A) = 8.5 A and IT = 1 kΩ I1 = IT − 2.5 A = 8.5 A − 2.5 A = 6 A

b.

I2.4kΩ = 2.5 A =

a.

RT =

=

= Ix =

= 2.18 Ω I,

I1 =

(6 A) = 3.27 A

I2 =

(6 A) = 1.64 A

I3 =

(6 A) = 1.09 A

I4 = 6 A b.

4 Ω || 4 Ω = 2 Ω 20 Ω(8 A) 20 Ω(8 A) = I2 = = 5.33 A 20 Ω + 2 Ω + 8 Ω 30 Ω I1 =

= 2.67 A

I3 = 8 A − I2 = 8 A − 5.33 A = 2.67 A I4 = 8 A Chapter 6

51

36.

a.

I1 @

b.

I1/I2 = 10 Ω/1 Ω = 10,

c.

I1/I3 = 1 kΩ/1 Ω = 1000, I3 = I1/1000 = 9 A/1000

d.

I1/I4 = 100 kΩ/1 Ω = 100,000,

e.

very little effect, 1/100,000

f.

RT =

(10 A) = 9 A I2 =

@ 0.9 A 9 mA

I4 = I1/100,000 = 9 A/100,000

90 µA

= =

= 0.91 Ω

Ix =

37.

I1 =

(10 A) = 9.1 A excellent (9 A)

g.

I2 =

(10 A) = 0.91 A excellent (0.9 A)

h.

I3 =

(10 A) = 9.1 mA excellent (9 mA)

i.

I4 =

(10 A) = 91 µA excellent (90 µA)

a.

b.

38.

,

3ΩI 39 Ω(1 A) = 1 A, I = = 13 A = I2 3 Ω + 36 Ω 3Ω I1 = I − 1 A = 13 A − 1 A = 12 A CDR: I36Ω =

I3 = I = 24 mA, V12kΩ = IR = (4 mA)(12 kΩ) = 48 V 48 V V I2 = = 12 mA = R 4 kΩ I1 = I− 4 mA − I2 = 24 mA − 4 mA − 12 mA = 8 mA

a. I2 =

3kΩ I R 1

b. I1 =

9kΩ(30mA) 9kΩ+3kΩ

I

=> R= �I1 � 3 kΩ.

R = 3(3 kΩ) = 9 kΩ.

I2 =

52

I1 3

2

= 22.5 mA

= 7.5mA =

22.5mA 3

Chapter 6

39.

91 mA = 𝐼1 + 𝐼2 + 𝐼3 = 𝐼1 + 2𝐼1 + 2𝐼2 = 𝐼1 + 2𝐼1 + 2(2𝐼1) 91 mA = 𝐼1 + 2𝐼1 + 4𝐼1 = 7𝐼1 91𝑚𝐴 7

𝐼1 =

= 13mA.

𝐼2 = 2𝐼1 = 2(13 mA) = 26 mA.

𝐼3 = 2𝐼2 = 2(26 mA) = 52 mA.

𝑅1 =

𝑉𝑅1 𝐼1

𝑅3 =

𝑉𝑅3 𝐼3

𝑅2 =

40.

a.

𝑉𝑅2 𝐼2

=

= =

28𝑉 13𝑚𝐴

= 2.154 kΩ.

28𝑉 52𝑚𝐴

= 0.538 kΩ

28𝑉 26𝑚𝐴

= 1.077 kΩ

P L = V LI L 72 W = 12 V ◊ IL IL =

=6A

I1 = I2 =

41.

b. c.

Psource = EI = (12 V)(3 A) = 36 W = 36 W + 36 W = 72 W (the same)

d.

Idrain = 6 A (twice as much)

𝑅𝑇 = 6Ω ║42Ω = 5.25Ω I2 = I3 =

42.

=3A

1 2

𝐸 𝑅𝑇

=

1 2

21 5.25𝛺

= 4A.

I1 = ( 𝐼2 ) = ( 4𝐴 ) = 2𝐴. I8 Ω =

= 2 A,

I=5A-2A=3A

IR = 5 A + 3 A = 8 A, 43.

a. b.

Chapter 6

V2 =

R=

=2Ω

= 16.48 V

= 11 MΩ || 22 kΩ = 21.956 kΩ

53

V2 = c.

= 16.47 V (very close to ideal)

Rm = 20 V[20,000 Ω/V] = 400 kΩ = 400 kΩ || 22 kΩ = 20.853 kΩ V2 =

d:

a.

= 16.32 V (still very close to ideal) V2 =

= 13.33 V

= 200 kΩ || 11 MΩ = 196.429 kΩ

b.

V2 = c.

= 13.25 V (very close to ideal)

Rm = 400 kΩ = 400 kΩ || 200 kΩ = 133.333 kΩ V2 =

44.

= 11.43 V (a 1.824 V drop from Rint = 11 MΩ level)

e.

DMM level of 11 MΩ not a problem for most situations VOM level of 400 kΩ can be a problem for some situations.

a.

Vab = 40V.

b. c.

Vab =

22MΩ(40V) 22MΩ+2MΩ

= 20V.

R M = 400V(22,000 Ω/V) = 8.8MΩ.

Vab =

(8.8MΩ)(40V) 8.8MΩ+2MΩ

= 32.59V

(Significant drop from ideal) 𝑅𝑀 = 40V[22,000 𝛺/𝑉] = 880 𝑘𝛺 Vab =

(8.8 kΩ)(40V) 8.8 kΩ+2 MΩ

= 12.22 V

(Significant error). 45.

not operating properly, 6 kΩ not connected RT =

= 1.71 kΩ

RT = 3 kΩ || 4 kΩ = 1.71 kΩ 46.

Vab = E + I4 kΩ ◊ R4 kΩ I4 kΩ =

= 1.6 mA

Vab = 4 V + (1.6 mA)(4 kΩ) = 4 V + 6.4 V = 10.4 V 4 V supply connected in reverse so that I=

= 3.2 mA

and Vab = 12 V - (3.2 mA)(1 kΩ) = 12 V - 3.2 V = 8.8 V obtained 54

Chapter 6

Chapter 7 1.

a. b. c.

R1, R2,. and E are in series; R3, R4 and R5 are in parallel E and R1 are in series; R2, R3 and R4 are in parallel. E and R1 are in series; R2, R3 and R4 are in parallel.

2.

a. b. c.

E1 and R1 in series; R2 and R3 in parallel. E and R1 in series, R2, R3, and R4 in parallel. E, R1, R4 and R6 are in parallel; R2 and R5 are in parallel.

3.

a.

RT = 4 Ω + 10 Ω || (4 Ω + 4 Ω) + 4 Ω = 4 Ω + 10 Ω || 8 Ω + 4 Ω = 4 Ω + 4.44 Ω + 4 Ω = 12.44 Ω

b.

RT = 10 Ω +

c.

RT = 6.8 Ω + 10 Ω || (8.2 Ω + 1.2 Ω) = 6.8 Ω + 10 Ω || 9.4 Ω = 6.8 Ω + 4.85 Ω = 11.65 Ω

4.

a. b. c.

= 10 Ω + 5 Ω = 15 Ω

4Ω + 10 Ω = 2 Ω + 10 Ω = 12 Ω 2 RT = 10 Ω RT = 2 Ω + 8 Ω || (4 Ω + 6 Ω || 12 Ω) = 2 Ω + 8 Ω || (4 Ω + 4 Ω) = 2 Ω + 8 Ω || 8 Ω = 2 Ω + 4 Ω =6Ω RT =

5.

3.3𝑘Ω ∥ 15𝑘Ω = 2.676𝑘Ω

15 kΩ RT

3.3 kΩ 15 kΩ

6.

𝑅𝑇 = 9.6𝑘Ω = 𝑅1 ∥ �𝑅1 +

So that 9.6𝑘Ω =

7.

And 𝑅1 =

a. b. c. d. e.

Chapter 7

𝑅𝑇 = 2 × 2.676𝑘Ω = 5.35kΩ

3.3 kΩ

(𝑅1 )(1.5𝑅1 ) 𝑅1 +1.5𝑅1

2.5(9.6𝑘Ω) 1.5

𝑅1 � 2

=

= 16𝑘Ω

= 𝑅1 ∥ 1.5𝑅1

1.5 𝑅12 2.5𝑅1

=

1.5𝑅1 2.5

yes I2 = Is - I1 = 10 A - 4 A = 6 A yes V3 = E - V2 = 14 V - 8 V = 6 V = 4 Ω || 2 Ω = 1.33 Ω , = 4 Ω || 6 Ω = 2.4 Ω = 1.33 Ω + 2.4 Ω = 3.73 Ω RT =

55

f.

=

= 10 Ω, RT =

Is =

8.

=1A

g.

Ps = EIs = Pabsorbed = (20 V)(1 A) = 20 W

a.

= R1 || R2 = 10 Ω || 15 Ω = 6 Ω RT = || (R3 + R4) = 6 Ω || (10 Ω + 2 Ω) = 6 Ω || 12 Ω = 4 Ω

b.

Is =

= 9 A,

I1 =

I2 = c. 9.

= 10 Ω + 10 Ω = 20 Ω

=

=6A

=3A

I1 = Is − I2 = 6 A − 3 A = 3 A Va = I2R4 = (3 A)(2 Ω) = 6 V

a. 𝑅𝑇 = 𝑅1 + (𝑅2 ∥ 𝑅3 ∥ 𝑅4 ) = 11Ω + 𝐸

80𝑉

𝐼𝑠 = 𝑅 = 20Ω = 4𝐴 𝑇

27Ω 3

= 20Ω

4 3

𝐼4 = 𝐴 (𝐼𝑠 = 𝐼1 = 𝐼2 + 𝐼3 + 𝐼4 ) & 𝐼2 = 𝐼3 = 𝐼4

b. 𝑉1 = 𝐼1 𝑅1 = (4𝐴)(11Ω) = 44𝑉 (∴𝐼1 = 𝐼𝑠) 10.

4 3

𝑉3 = 𝐼3 𝑅3 = � 𝐴� (27Ω) = 36𝑉

Redrawn:

a.

b.

Va = 32 V 8 Ω || 24 Ω = 6 Ω 6 Ω(32 V) = 10.67 V Vb = 6 Ω + 12 Ω

32 V 32 V = = 1.78 A 12 Ω + 6 Ω 18 Ω RT = 72 Ω || 18 Ω || 18 Ω = 8.12 Ω I1 =

9Ω E 32 V = Is = = 3.94 A RT 8.12 Ω 11.

56

a.

Va = 36 V, Vb = 60 V Vc =

5 kΩ(60 V) = 20 V 5 kΩ + 10 kΩ Chapter 7

¬ 60 V - 36 V = 24 mA, I1 = 1 kΩ 60 V 60 V I8kΩ = = 7.5 mA, I10kΩ = = 4 mA 8 kΩ 15 kΩ

b.

24 mA ¨

¨ I = 24 mA + 7.5 mA = 31.5 mA

¨ I2 = 31.5 mA + 4 mA = 35.5 mA 12.

13.

a.

= 1.2 kΩ + 6.8 kΩ = 8 kΩ, = 2 kΩ || = + 2.4 kΩ = 1.6 kΩ + 2.4 kΩ = 4 kΩ = 1 kΩ || 4 kΩ = 0.8 kΩ RT = 1 kΩ ||

b.

Is =

c.

V=

= 19.2 V

𝐸 120 𝑉 = = 10Ω 𝐼 12𝐴

∴ 10Ω =

14.

= 60 mA

𝑅𝑇 = 2𝑅 ∥ 2𝑅 ∥ (𝑅 + 𝑅) = 2𝑅 ∥ 2𝑅 ∥ 2𝑅 ∥ =

𝑅𝑇 =

2𝑅 = 30Ω

= 2 kΩ || 8 kΩ = 1.6 kΩ

2𝑅 3

2𝑅 3

3 2

𝑎𝑛𝑑 𝑅 = (10Ω) = 15Ω RT = 1 Ω || (1 Ω + 1 Ω + RT) = 1 Ω || (2 Ω + RT) 2 Ω + RT 2 Ω + RT = = 1 Ω + 2 Ω + RT 3 Ω + RT RT(3 Ω + RT) = 2 Ω + RT 3RT + = 2 Ω + RT + 2RT − 2 Ω = 0

RT = = RT = −1 ± 1.732 = 0.732 Ω or −2.732 Ω Since RT < 1 Ω and positive choose RT = 0.732 Ω

Chapter 7

57

15.

a.

RT = (R1 || R2 || R3) || (R6 + R4 || R5) = (12 kΩ || 12 kΩ || 3 kΩ) || (10.4 kΩ + 9 kΩ || 6 kΩ) = (6 kΩ || 3 kΩ) || (10.4 kΩ + 3.6 kΩ) = 2 kΩ || 14 kΩ = 1.75 kΩ Is =

= 16 mA,

I2 =

= 2.33 mA

= R1 || R2 || R3 = 2 kΩ = R6 + R4 || R5 = 14 kΩ I6 =

= 2 mA

b.

V1 = E = 28 V = R4 || R5 = 6 kΩ || 9 kΩ = 3.6 kΩ V5 = I6 = (2 mA)(3.6 kΩ) = 7.2 V

c.

P=

= 261.33 mW

24 V = 6 A; 24 V − 8 V = 16 V, I2 Ø = VR 2 / R2 = 16 V/2 Ω = 8 A 4Ω 8V I1 Ø = = 0.8 A, I = I1 + I2 = 6 A + 8 A = 14 A 10 Ω I1 Ø =

16.

a.

17.

𝐼1 =

30𝑉 47Ω

a.

R¢ = R4 + R5 = 14 Ω + 6 Ω = 20 Ω R≤ = R2 || R¢ = 20 Ω || 20 Ω = 10 Ω R¢≤ = R≤ + R1 = 10 Ω + 10 Ω = 20 Ω RT = R3 || R¢≤ = 5 Ω || 20 Ω = 4 Ω

18.

= 638.298 mA 21 21𝑉 = = 209.02 mA 𝐼2 = 160Ω ∥ 270Ω 100.47Ω

Is =

=5A

I1 = I3 = I4 = b.

58

=1A =4A = (since R¢ = R2) =

= 0.5 A

Va = I3R3 - I4R5 = (4 A)(5 Ω) - (0.5 A)(6 Ω) = 20 V - 3 V = 17 V æI ö = ç 1 ÷ R2 = (0.5 A)(20 Ω) = 10 V è2 ø Chapter 7

19.

𝐸 𝑅1 +𝑅4 ∥(𝑅2 +𝑅3 ∥𝑅5 )

a. 𝐼1 = =

20𝑉 6.545Ω

= 3.056𝐴

b. CDR : 𝐼2 = 𝐼2 =

𝐼3 =

12.224𝐴 8+3 𝐼2 2

=

𝑅4 (𝐼1 ) 𝑅4 +𝑅2 +𝑅3 ∥𝑅5

= 1.111𝐴

20𝑉 4Ω+4Ω∥(4Ω+6Ω∥6Ω)

=

=

20𝑉 4Ω+4Ω∥(4Ω+3Ω)

=

20𝑉 4Ω+4Ω∥(7Ω)

=

20𝑉 4Ω+2.545Ω

4Ω(3.056𝐴) 4Ω+4Ω+6Ω∥16Ω

= 0.56𝐴

𝐼4 = 𝐼1 − 𝐼2 = 3.056A-1.111A = 1.945 A

𝑉𝑎 = 𝐼4 𝑅4 = (1.945A)(4Ω) = 7.78V 20.

a.

𝑉𝑏 = 𝐼3 𝑅3 = (0.56A)(6Ω) = 3.36V IE =

= 2 mA

IC = IE = 2 mA b.

IB = = 24 µA

= c.

VB = VBE + VE = 2.7 V VC = VCC - ICRC = 8 V - (2 mA)(2.2 kΩ) = 8 V - 4.4 V = 3.6 V

d.

VCE = VC - VE = 3.6 V - 2 V = 1.6 V VBC = VB - VC = 2.7 V - 3.6 V = -0.9 V

21.

a. 𝐼2 =

44Ω 4Ω+8Ω

=

44Ω 22Ω

= 2A

b. −44𝑉 + 𝑉1 − 44𝑉 =), 𝑉1 = 88𝑉 c. 𝐼1 = 𝐼2 = 2𝐴

Chapter 7

59

22.

a.

All resistors in parallel (between terminals a & b)

RT = 16 Ω || 16 Ω || 8 Ω || 4 Ω || 32 Ω 8 Ω || 8 Ω || 4 Ω || 32 Ω 4 Ω || 4 Ω || 32 Ω 2 Ω || 32 Ω = 1.88 Ω b.

All in parallel. Therefore, V1 = V4 = E = 32 V

c.

I3 = V3/R3 = 32 V/4 Ω = 8 A ¨

d.

Is = I1 + I2 + I3 + I4 + I5 = =2A+4A+8A+1A+2A = 17 A RT =

23.

a. b.

c.

60

= 1.88 Ω as above

Va = −6 V, Vb = −20 V

20 V =4A 5Ω V 14 V I 2 Ω ® = ab = =7A 2Ω 2Ω 6V I3 Ω ! =2A 3Ω I3Ω = I2Ω + I6V ≠, I6V = I3Ω − I2Ω = 2 A − 7 A = −5 A I + I6V = I5Ω, I = I5Ω − I6V = 4 A − (−5A) = 9 A I5 Ω ¯ =

Vab = Va − Vb = (−6 V) − (−20 V) = −6 V + 20 V = +14 V

Chapter 7

24.

a.

Applying Kirchoff's voltage law in the CCW direction in the upper "window": +18 V + 20 V - V8Ω = 0 V8Ω = 38 V I8Ω =

= 4.75 A

I3Ω =

=2A

KCL: I18V = 4.75 A + 2 A = 6.75 A b. 25.

V = (I3Ω)(6 Ω) + 20 V = (2 A)(6 Ω) + 20 V = 12 V + 20 V = 32 V

𝐼2 𝑅2 = 𝐼3 𝑅3 and 𝐼2 =

𝐼3 𝑅3 𝑅2

=

4𝑅3 20

=

𝑅3 5

(since the voltage across parallel elements is same) 𝐼1 = 𝐼2 + 𝐼3 =

𝑅3 5

+4

KVL: 120 = 𝐼1 𝑅1 + 𝐼3 𝑅3 And 120 =

𝑅3 5

= �

12 𝑅3 5

+ 4� (12) + 4𝑅3

+ 48 + 4𝑅3 = 6.4𝑅3 + 48

6.4𝑅3 = 72Ω

26.

𝑅3 =

72 6.4

= 11.25

Assuming Is = 1 A, the current Is will divide as determined by the load appearing in each branch. Since balanced Is will split equally between all three branches.

æ1 ö V1 = ç A ÷ (10 Ω) = è3 ø æ1 ö V2 = ç A ÷ (10 Ω) = è6 ø æ1 ö V3 = ç A ÷ (10 Ω) = è3 ø Chapter 7

10 V 3 10 V 6 10 V 3 61

E = V1 + V2 + V3 =

= 8.33 V

RT = 27.

a.

= 8.33 Ω

R¢T = R5 || (R6 + R7) = 6 Ω || 3 Ω = 2 Ω R≤T = R3 || (R4 + R¢T) = 4 Ω || (2 Ω + 2 Ω) = 2 Ω RT = R1 + R2 + R≤T = 3 Ω + 5 Ω + 2 Ω = 10 Ω I=

b.

= 24 A

I4 =

= 12 A

I7 =

28.

=8A

c.

V3 = I3R3 = (I - I4)R3 = (24 A - 12 A)4 Ω = 48 V V5 = I5R5 = (I4 - I7)R5 = (4 A)6 Ω = 24 V V7 = I7R7 = (8 A)2 Ω = 16 V

d.

P= = (8 A)22 Ω = 128 W P = EI = (240 V)(24 A) = 5760 W

a.

R¢T = R4 || (R6 + R7 + R8) = 2 Ω || 7 Ω = 1.56 Ω R≤T = R2 || (R3 + R5 + R¢T) = 2 Ω || (4 Ω + 1 Ω + 1.56 Ω) = 1.53 Ω RT = R1 + R≤T = 4 Ω + 1.53 Ω = 5.53 Ω

b.

I = 40 V/5.53 Ω = 7.23 A

c.

I3 =

2 Ω(7.23 A) 2 Ω( I ) = 1.69 A = 2 Ω + 6.56 2 Ω + 6.56 Ω

I7 =

= 0.375 mA = (0.375 A)2 2 Ω = 0.281 W

29.

a. 𝐸 = (48𝑚𝐴)(1.6𝑘Ω) = 76.8𝑉 b. 𝑅𝐿2 =

48𝑉 12𝑚𝐴

32𝑉 8𝑚𝐴

= 4𝑘Ω, 𝑅𝐿2 =

c. 𝐼𝑅1 = 80𝑚𝐴 − 48𝑚𝐴 = 32𝑚𝐴 𝐼𝑅2 = 32𝑚𝐴 − 12𝑚𝐴 = 20𝑚𝐴 𝐼𝑅3 = 20𝑚𝐴 − 8𝑚𝐴 = 12𝑚𝐴 𝑉

𝑅1 = 𝐼 𝑅1 = 𝑅2 =

62

𝑅1

𝑉𝑅2 𝐼𝑅2 𝑉

=

𝑅2 = 𝐼 𝑅3 = 𝑅3

64𝑉−48𝑉 32𝑚𝐴

48𝑉−32𝑉 20𝑚𝐴 32𝑉 12𝑚𝐴

=

=

16𝑉 32𝑚𝐴

16𝑉 20𝑚𝐴

= 4𝑘Ω

= 0.5 𝑘𝛺

= 0.8 𝑘𝛺

= 2.67 𝑘𝛺

Chapter 7

= 40 mA

30.

= 40 mA - 10 mA = 30 mA = 30 mA - 20 mA = 10 mA = 40 mA = 40 mA - 4 mA = 36 mA R1 =

= 0.5 kΩ

R2 =

= 2 kΩ

R3 =

= 4 kΩ

R4 =

= 1 kΩ

R5 =

= 0.6 kΩ

P1 =

= (40 mA)20.5 kΩ = 0.8 W (1 watt resistor)

P2 =

= (30 mA)22 kΩ = 1.8 W (2 watt resistor)

P3 =

= (10 mA)24 kΩ = 0.4 W (1/2 watt or 1 watt resistor)

P4 =

= (36 mA)21 kΩ = 1.3 W (2 watt resistor)

P5 =

= (40 mA)20.6 kΩ = 0.96 W (1 watt resistor)

All power levels less than 2 W. Four less than 1 W.

Chapter 7

63

31.

32.

a.

yes, RL

Rmax (potentiometer)

b.

VDR:

=3V= R2 =

R1 =

= 400 Ω fi 390 Ω

R2 =

= 266.67 Ω fi 270 Ω

= 0.25 kΩ = 250 Ω

R1 = 1 kΩ - 0.25 kΩ = 0.75 kΩ = 750 Ω = E - VL = 12 V - 3 V = 9 V (Chose

c.

rather than

since numerator of VDR

equation "cleaner")

=9V= 9R1 + 9(R2 || RL) = 12R1

R1 =

fi and R1(R2 + 10 kΩ) = 30 kΩ R2

R1R2 + 10 kΩ R1 = 30 kΩ R2 R1 + R2 = 1 kΩ: (1 kΩ - R2)R2 + 10 kΩ (1 kΩ - R2) = 30 kΩ R2 + 39 kΩ R2 - 10 kΩ2 = 0 R2 = 0.255 kΩ, -39.255 kΩ R2 = 255 Ω R1 = 1 kΩ - R2 = 745 Ω 33.

a.

Vab =

= 32 V

Vbc = 40 V - 32 V = 8 V b.

80 Ω || 1 kΩ = 74.07 Ω 20 Ω || 10 kΩ = 19.96 Ω Vab =

= 31.51 V

Vbc = 40 V - 31.51 V = 8.49 V c.

64

P=

= 12.411 W + 3.604 W = 16.02 W

Chapter 7

d.

P=

= 12.8 W + 3.2 W = 16 W

The applied loads dissipate less than 20 mW of power. 34.

35.

12 V = 1.2 mA 10 kΩ V ab = Va − Vb = 12 V − (−18 V) = 30 V I=

36 kΩ || 6 kΩ || 12 kΩ = 3.6 kΩ = 16.88 V π 27 V. Therefore, not operating properly!

V= 6 kΩ resistor "open"

R¢ = 12 kΩ || 36 kΩ = 9 kΩ, V = 36.

= 27 V

Network redrawn:

24 V =3A 8Ω P6Ω = I2R = (3 A)2 ◊ 6 Ω = 54 W

I8Ω = I6Ω =

37.

a.

R10 + R11 || R12 = 1 Ω + 2 Ω || 2 Ω = 2 Ω R4 || (R5 + R6) = 10 Ω || 10 Ω = 5 Ω R1 + R2 || (R3 + 5 Ω) = 3 Ω + 6 Ω || 6 Ω = 6 Ω RT = 2 Ω || 3 Ω || 6 Ω = 2 Ω || 2 Ω = 1 Ω I = 12 V/1 Ω = 12 A

b.

I1 = 12 V/6 Ω = 2 A I3 = I4 =

d.

Chapter 7

I10 =

c.

I6 = I4 = 0.5 A

=1A = 0.5 A

=6A

65

38.

a. 𝐼𝐶𝑆 = 1.5𝑚𝐴 0.3 1 (200𝛺)(1.5𝑚𝐴) 𝑅 𝐼 ⇒ Ω = 𝛺 = 10 mΩ. b. 𝑅𝑠ℎ𝑢𝑛𝑡 = 𝑀 𝐶𝑆 = 30 10 𝐼𝑚𝑎𝑥 − 𝐼𝐶𝑆

39.

150 mA: 𝑅𝑠ℎ𝑢𝑛𝑡 =

(1.5 𝑘𝛺)(100µ𝛺)

300 mA: 𝑅𝑠ℎ𝑢𝑛𝑡 =

40.

41.

600 mA: 𝑅𝑠ℎ𝑢𝑛𝑡 =

= 1Ω.

(1.5 𝑘𝛺)(100µ𝛺) 300𝑚𝐴−0.1 𝑚𝐴

(1.5 𝑘𝛺)(100µ𝛺) 600𝑚𝐴−0.1 𝑚𝐴

𝑉𝑚𝑎𝑥 −𝑉𝐶𝑆 𝐼𝐶𝑆

2V: 𝑅𝑆 =

2𝑉−(1𝑚𝐴)(1000𝛺) 1𝑚𝐴

=

= 0.5Ω = 0.25 Ω

20𝑉−(5µ𝐴)(1.5𝑘𝛺) 50µ𝐴

𝑅𝑆 = 400 kΩ 1 𝛺 b. �𝑉 = 1�𝐼 = = 20,000. 50µ𝐴 𝑐𝑠

2𝑉−1𝑉 1𝑚𝐴

= 1kΩ

= 19kΩ

200𝑉−1𝑉 1𝑚𝐴

200V : 𝑅𝑆 =

= 199kΩ

15MΩ = (0.5V)( 𝛺�𝑉 ) ⇒ 𝛺�𝑉 = 30 × 106 1

1 30 ×106

𝐼𝐶𝑆 = 𝛺

=

a. 𝑅𝑆 =

𝐸 𝐼𝑀

�𝑉

43.

150𝑚𝐴−0.1 𝑚𝐴

a. 𝑅𝑆 =

20V : 𝑅𝑆 =

42.

30𝐴−1.5 𝑚𝐴

b. x𝐼𝑀 =

=

=

5 𝑥200µ𝐴 5 𝑥200µ𝐴



𝐸 𝑥𝐼𝑀

+

– (𝑅𝑠𝑒𝑟𝑖𝑒𝑠 + 𝑅𝑀 +

– 1000Ω – 𝑅𝑢𝑛𝑘

𝑍𝑒𝑟𝑜 𝐴𝑑𝑗𝑢𝑠𝑡 2

2𝑘𝛺 2

= 23kΩ.

)

– (25kΩ + 1 kΩ + 1kΩ)

25×103 𝑥 3 4

𝑍𝑒𝑟𝑜 𝐴𝑑𝑗𝑢𝑠𝑡 5𝑉 = 200µ𝐴 2 𝑍𝑒𝑟𝑜 𝑎𝑑𝑗𝑢𝑠𝑡 𝑅𝑀 + + 2

− 𝑅𝑀 −

𝐸 𝑅𝑠𝑒𝑟𝑖𝑒𝑠

𝑅𝑢𝑛𝑘 =

= 0.033µ𝐴.

– 25kΩ – 25 × 103

x = , 𝑅𝑢𝑛𝑘 = 8.33 𝑘𝛺 1 2

x = , 𝑅𝑢𝑛𝑘 = 25 𝑘𝛺

66

1 4

x = , 𝑅𝑢𝑛𝑘 = 75 𝑘𝛺

Chapter 7

44.

-

45.

a.

Network redrawn:

Rohmmeter = 1.2 kΩ || (3.1 kΩ + 1.2 kΩ + 1.65 kΩ) = 1.2 kΩ || 5.95 kΩ = 1 kΩ b.

All three resistors are in parallel Rohmmeter =

Chapter 7

R 18 Ω = =6Ω 3 N

67

Chapter 8 1. 2.

3.

4.

5.

6.

𝐼1 =

(8Ω)(8𝐴) 8Ω+2Ω

= 6.4𝐴, 𝐼2 = 8𝐴 − 𝐼1 = 8𝐴 − 6.4𝐴 = 1.6 𝐴.

a. 𝐼1 = 𝐼2 = 25 𝑚𝐴 b. 𝑉2 = 𝐼2 𝑅2 = (25𝑚𝐴)(3.3 𝑘Ω) = 82.5 V 𝑉3 = 𝐼𝑅𝑇 = (25 𝑚𝐴)(2.2 𝑘 Ω + 3.3 𝑘 Ω) = 25 𝑚𝐴 (5.5 𝑘Ω) = 137.5 𝑉

E + 𝑉𝑅1 − 𝑉𝑆 = 0; 𝑉𝑅1 = (8 𝑚𝐴)(3.0 𝑘Ω) = 24 V 𝑉3 = 𝐸 + 𝑉𝑅1 = 12 𝑉 + 24 𝑉 = 36 𝑉 ± a.

Vs = E = 24 V

b.

I2 =

c.

I + I s = I 2, I s = I 2 - I = 6 A - 2 A = 4 A

=6A

𝑉1 = 𝑉2 = 𝑉3 = 𝐼𝑅𝑇 = 0.8 𝐴 [8Ω ∥ 24 Ω ∥ (16 Ω + 8 Ω) ] = 0.8 𝐴 [8Ω ∥ 24 Ω ∥ (24 Ω) ] = 0.8 𝐴 [8Ω ∥ 12 Ω ] = 3.84 V 𝑉2 3.84 𝐴 𝐼2 = = = 0.16 𝐴. 𝑅2 24 Ω 𝑅3 𝑉𝑆 16Ω (3.84𝑉) 16Ω (3.84𝑉) 𝑉3 = = = = 2.56 𝑉. 𝑅3 + 𝑅4 16 Ω + 8 Ω 24 Ω a.

I1 =

= 12 A,

KCL: I + Is - I1 = b.

+

a. I = b. I =

68

=0

- I = 12 A + 3 A - 4 A = 11 A

Vs = E = 24 V VDR: V3 =

7.

=3A

𝐸 𝑅𝑆 E RS

=

=

=6V

22 𝑉 = 4.23 𝐴, 𝑅𝑃 = 𝑅𝑆 = 5.2Ω 5.2 𝑉 12 V = 3.75 mA, 𝑅𝑃 = 𝑅𝑆 = 3.2 𝑘Ω 3.2 Ω

CHAPTER 8

8.

9.

a. E = 𝐼𝑅𝑆 = 6𝐴 (15Ω) = 90 𝑉, 𝑅𝑆 = 15Ω . b. E = 𝐼𝑅𝑆 = 18 𝑚𝐴 ( 3 𝑘Ω ∥ 9 kΩ) = 18 mA (2.25 kΩ) = 40.5 V , 𝑅𝑆 = 2.25 𝑘Ω a. CDR; 𝐼𝐿 =

𝑅𝑆 𝐼(𝑆 ) 𝑅𝑆 + 𝑅𝐿

=

95 Ω (12𝑚𝐴) 95Ω + 15Ω

= 10.36 mA.

b. 𝐸𝑆 = 𝐼𝑆 . 𝑅 =(12 mA) (95Ω) = 1.14 V 𝑅𝑆 = 95Ω 𝐸𝑆 1.14𝑉 𝐼𝐿 = = = 10.36 𝑚𝐴. 𝑅𝑆 + 𝑅𝐿 95Ω + 15Ω Yes, we obtained the same result. 10.

11.

12.

a. E = I𝑅2 = (2𝐴)(6Ω) = 12𝑉; 𝑅𝑆 = 6Ω b. 𝐸𝑇 = 18 𝑉 + 12𝑉 = 30 𝑉; 𝑅𝑇 = 12 Ω + 6 Ω = 18 Ω. c. 𝐼3 =

𝐸𝑇 𝑅𝑇 +95Ω

14.

30 𝑉 18 Ω+95 Ω

= 0.265 𝑚𝐴

a. 𝐼𝑇 = 6.2 𝐴 − 1.2 𝐴 − 0.6 𝐴 = 4.4 𝐴 b. 𝑉𝑆 = 𝐼𝑇 𝑅 = (4.4𝐴)(8Ω) = 35.2 𝑉

𝐼𝑇 ↑ = 9𝐴 − 6𝐴 = 3𝐴 CDR; 𝐼1 =

13.

=

𝑅2 𝐼𝑇 𝑅1 + 𝑅2

=

6Ω (3𝐴) 4Ω + 6Ω

= 1.8𝐴

𝑉2 = I1 𝑅1 = (1.8𝐴)(4Ω) = 7.2Ω

E2 E1 20 V 9 V = R2 R1 2Ω 3Ω = 10 A - 3 A = 7 AØ

a.

IT =

b.

Vab = -IT (R1 || R2 || R3) = - 7A (3 Ω || 6 Ω || 2 Ω) = - 7 A (1 Ω) =- 7V

c.

I3 =

a.

CHAPTER 8

7V = 1.17 A ≠ 6Ω IT = 3 mA + 6 mA - 5 mA = 4 mA ≠ RI 1 kΩ (4 mA) I R1 = 3 T = = 1.25 mA R1 + R3 2.2 kΩ + 1 kΩ V1 = I R1 (R1) = (1.25 mA)(2.2 kΩ) = 2.75 V

69

15.

4 - 4I1 - 8I3 = 0 6 - 2I2 - 8I3 = 0 I1 + I2 = I3 ────────────

a.

I1 =

b. 16.

𝐼1

b.

70

𝐼2

→ ↑ 𝐼3 ← 𝐼1 = 𝐼𝑅1 ; 𝐼2 = 𝐼𝑅3 ; 𝐼3 = 𝐼𝑅2 12 + 15 – 3𝐼3 − 4𝐼1 = 0 15 – 3𝐼3 –12𝐼2 = 0 𝐼1 + 𝐼2 = 𝐼3 𝐼1 = 4.75A; 𝐼2 = 0.25 A; 𝐼3 = 5𝐴 𝐼𝑅1 = 𝐼1 = 4.75 𝐴; 𝐼𝑅2 = 𝐼3 = 5A; 𝐼𝑅2 = 𝐼2 = 0.25A a.

17.

æ4 ö Va = I3R3 = ç A ÷ (8 Ω) = 4.57 V è7 ø

𝐸

𝐼𝐸1 = 𝑅1 = 𝑆

12 𝑉 4Ω

= 3𝐴 ↓, ↑ 𝐼𝐸2 =

𝐸2 𝑅𝑆

=

15 𝑉 3Ω

= 5𝐴 ↑

𝑅𝑃 = 𝑅𝑆 = 4Ω ; 𝑅𝑃 = 𝑅𝑆 = 3Ω Combined/Single current source = 𝐼𝑆 ↑ = 𝐼𝐸2 − 𝐼𝐸1 = 5𝐴 − 3𝐴 = 2𝐴 𝑅𝑃 = 4Ω ∥ 3Ω = 1.714 Ω (1.714Ω)(2𝐴) 𝐼12Ω = = 0.25𝐴 1.714Ω + 12Ω The same current in both parts (a) and (b).

�𝐼�1⃗ ↓ 𝐼3 ⃖𝐼�2�� 15 = 𝐼1 (5.6 𝑘Ω) − 𝐼3 (2.2 𝑘Ω) + 25 = 0 –25 + 𝐼3 (2.2 𝑘Ω) + 𝐼2 (3.3 𝑘Ω) − 40 = 0 𝐼1 + 𝐼2 = 𝐼3 𝐼1 = 𝐼𝑅1 = 2.02 𝑚𝐴, 𝐼2 = 𝐼𝑅2 = 11.01 𝑚𝐴, 𝐼3 = 𝐼𝑅3 = 13.03 𝑚𝐴

CHAPTER 8

18.

a.

-1.2 kΩ I1 + 9 - 8.2 kΩ I3 = 0 -10.2 kΩ I2 + 8.2 kΩ I3 + 6 = 0 I2 + I3 = I1 ────────────────────── I1 = 2.03 mA, I2 = 1.23 mA, I3 = 0.8 mA = I1 = 2.03 mA = I3 = 0.8 mA = I2 = 1.23 mA = I9.1kΩ

b.

19.

𝐼1 = 𝐼𝑅1 (𝐶𝑊), 𝐼2 = 𝐼𝑅2 (𝑑𝑜𝑤𝑛), 𝐼3 = 𝐼𝑅3 (𝐶𝑊), 𝐼4 = 𝐼𝑅4 (𝑑𝑜𝑤𝑛), 𝐼5 = 𝐼𝑅5 (𝐶𝑊) a.

b.

𝐸1 − 𝐼1 . 𝑅1 − 𝐼2 . 𝑅2 = 0 𝐼2 . 𝑅2 − 𝐼3 . 𝑅3 − 𝐼4 . 𝑅4 = 0 𝐼4 . 𝑅4 − 𝐼5 . 𝑅5 − 𝐸2 = 0 𝐼1 = 𝐼2 + 𝐼3 𝐼3 = 𝐼4 + 𝐼5

𝐸1 − 𝐼2 (𝑅1 + 𝑅2 ) − 𝐼3 𝑅1 = 0.

𝐼2 . 𝑅2 − 𝐼3 (𝑅3 + 𝑅4 ) + 𝐼5 . 𝑅4 = 0.

c.

d.

CHAPTER 8

𝐼3 . 𝑅4 − 𝐼5 (𝑅4 + 𝑅5 ) – 𝐸2 = 0.

𝐼2 (𝑅1 + 𝑅2 ) + 𝐼3 𝑅1 + 0 = 𝐸1 𝐼2 . 𝑅2 − 𝐼3 (𝑅3 + 𝑅4 ) + 𝐼5 𝑅4 = 0 0 + 𝐼3 𝑅4 − 𝐼5 (𝑅4 + 𝑅4 ) = 𝐸2

3𝐼2 + 2𝐼3 + 0 = 15 1𝐼2 – 9𝐼3 + 5𝐼5 = 0 0+5𝐼3 − 8𝐼5 = 12 𝐼3 = 𝐼𝑅3 = −382.17 𝑚𝐴(𝐶𝑊)

71

20.

4 - 4I1 - 8(I1 - I2) = 0 -8(I2 - I1) - 2I2 - 6 = 0 ───────────────

a.

I1 =

, I2 =

= I1 = = I2 =

æ 1 ö æ 5 ö = I1 - I2 = ç- A ÷ - ç- A ÷ = è 7 ø è 7 ø b.

æ4 ö Va = I R 3 R3 = ç A ÷ (8 Ω) = 4.57 V è7 ø

21

𝐼1 ↓ 𝐼2 ↓ –12 – 4𝐼1 − 3(𝐼1 − 𝐼2 ) – 15 = 0 15 – 3(𝐼2 − 𝐼1 ) − 15𝐼2 = 0 By solving 𝐼1 = −4.75𝐴, 𝐼2 = 0.25𝐴 𝐼𝐸1 = 4.75𝐴(𝐶𝐶𝑊) 𝐼𝐸2 = 4.75𝐴 + 0.25𝐴 = 5.0A (up) 𝐼𝑅2 = 𝐼1 − 𝐼2 = (−4.75 𝐴) − (0.25𝐴) = −5.0𝐴 (b) 𝑃𝐸2 = 𝐼𝐸2 .𝐸2 = (5.0𝐴)(15𝑉) = 75𝑊 𝑃𝑅3 = 𝐼𝑅23 . 𝑅3 (0.25)2 . 12 Ω = 750 𝑚𝑊

22.

a. 𝐼1 ↓ 𝐼2 ↓ 15 – 𝐼1 (5.6 𝑘Ω) − 2.2 𝑘Ω ( 𝐼1 − 𝐼2 ) + 25 = 0 –25 – 2.2 kΩ (𝐼2 – 𝐼1 ) – 𝐼2 (3.3 𝑘Ω) − 40 = 0 , solving for I1 and I2 ∴ 𝐼1 = 2.02 𝑚𝐴 , 𝐼2 = 11.01 𝑚𝐴 𝐼𝑅1 = 2.02 mA, 𝐼𝑅2 = 11.01 𝑚𝐴 𝐼𝑅3 = 𝐼2 − 𝐼1 = 8.99 𝑚𝐴 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼2) b. 𝑉3.3 𝑘Ω = 𝐼2 𝑅2 = (11.01 𝑚𝐴)(3.3 𝑘Ω) = 36.33 𝑉

23.

a.

-I1(1.2 kΩ) + 9 - 8.2 kΩ(I1 - I2) = 0 -I2(1.1 kΩ) + 6 - I2 (9.1 kΩ) - 8.2 kΩ(I2 - I1) = 0 ────────────────────────────────── I1 = 2.03 mA, I2 = 1.23 mA = I1 = 2.03 mA, = 1.23 mA = 2.03 mA - 1.23 mA = 0.80 mA (direction of I1)

b.

72

Va = 6 V − I2(1.1 kΩ) = 6 V − (1.23 mA)(1.1 kΩ) = 6 V − 1.35 V = 4.65 V

CHAPTER 8

24.

25.

a. 𝐼1 ⤸ 𝐼2 ⤸ 𝐼3 ⤸ 15 – 𝐼1 (2) - 1(𝐼1 − 𝐼2 ) = 0 –1(𝐼2 − 𝐼1 ) − 𝐼2 (4) – 5(𝐼2 − 𝐼3 ) = 0 –5(𝐼3 − 𝐼2 ) − 𝐼3 (3) − 12 = 0 ________________________________ 3𝐼1 − 1𝐼2 + 0 = 15 –1𝐼1 + 10𝐼2 − 5𝐼3 = 0 0 – 5𝐼2 + 8𝐼3 = −12 __________________________________________ 𝐼1 = 4.87𝐴; 𝐼2 = −382.17𝑚𝐴; 𝐼3 = −1.261𝐴

(b), (c) – Ignore. d. 𝐼15𝑉 ↑ = 𝐼1 = 4.87𝐴 𝐼12𝑉 ↑ = – 𝐼3 = −(−1.261𝐴) = 1.261𝐴

a.

with

or

−I1 2.2 kΩ − (I1 - I2)9.1 kΩ + 18 V = 0 −18 V - (I2 - I1)9.1 kΩ - 7.5 kΩ I2 − (I2 - I3)6.8 kΩ = 0 -6.8 kΩ(I3 - I2) − 3 V - 3.3 kΩ I3 = 0 ────────────────────── 11.3 kΩ I1 − 9.1 kΩI2 = 18 V 23.4 kΩ I2 − 9.1 kΩI1 − 6.8 kΩ I3 = −18 V 10.1 kΩ I3 − 6.8 kΩ I2 = −3 V ────────────────────── 11.3 kΩ I1 − 9.1 kΩ I2 = 18 V −9.1 kΩ I2 + 23.4 kΩ I2 − 6.8 kΩ I3 = −18 V −6.8 kΩ I2 + 10.1 kΩ I3 = −3 V ─────────────────────────────

b.

I1 = 1.21 mA, I2 = −0.48 mA, I3 = −0.62 mA

c.

I E1 ¯ = I1 − I2 = 1.21 mA − (−0.48 mA) = 1.69 mA I E 2 ! = −I3 = −(−0.62 mA) = 0.62 mA

26.

a.

b. c. 27.

a.

CHAPTER 8

-4 I1 - 3(I1 - I2) - 4(I1 - I3) = 0 -3(I2 - I1) - 10 I2 - 15 - 4(I2 - I3) = 0 -7 I3 - 4(I3 - I1) - 4(I3 - I2) = 0 ───────────────────────────── I1 = -430.4 mA, I2 = -1.05 A, I3 = -395.1 mA = I1 = −430.4 mA -6.8 kΩ I1 - 4.7 kΩ(I1 - I2) + 6 - 2.2 kΩ(I1 - I4) = 0 -6 - 4.7 kΩ(I2 - I1) - 8.2 kΩ (I2 - I3) = 0 -1.1 kΩ I3 - 22 kΩ(I3 - I4) - 8.2 kΩ(I3 - I2) - 9 = 0 -1.2 kΩ I4 - 2 kΩ(I4 - I1) - 22 kΩ(I4 - I3) = 0 ──────────────────────────────────── 73

28.

b.

I1 = -0.597 mA, I2 = -2.13 mA, I3 = -2.27 mA, I4 = -2.03 mA

c.

I6V = I1 − I2 = −0.597 mA − (−2.13 mA) = 1.53 mA P6V = E I6V = (6 V)(1.53 mA) = 9.18 mW

a.

Network redrawn:

b.

-2I1 - 6 - 4I1 + 4I2 = 0 -4I2 + 4I1 - 1I2 + 1I3 - 6 = 0 -1I3 + 1I2 + 6 - 8I3 = 0

c.

I1 = -3.8 A, I2 = -4.20 A, I3 = 0.20 A

d.

= (6 V)(0.2 A) = 1.2 W = (6 V)(4.2 A) = 25.2 W = 1.2 W + 25.2 W = 26.4 W

29.

74

a.

20 V - IB(270 kΩ) - 0.7 V - IE(0.51 kΩ) = 0 IE(0.51 kΩ) + 8 V + IC(2.2 kΩ) - 20 V = 0 IE = IB + IC ────────────────────────────── IB = 63.02 µA, IC = 4.42 mA, IE = 4.48 mA

b.

VB = 20 V - IB(270 kΩ) = 20 V - (63.02 µA)(270 kΩ) = 20 V - 17.02 V = 2.98 V VE = IERE = (4.48 mA)(510 Ω) = 2.28 V VC = 20 V - IC(2.2 kΩ) = 20 V - (4.42 mA)(2.2 kΩ) = 20 V -9.72 V = 10.28 V

c.

b

IC/IB = 4.42 mA/63.02 µA = 70.14

CHAPTER 8

30.

I24V = I6Ω = I10Ω = I12V = 3 A (CW) I4Ω = 3 A (CCW)

24 V - 6I1 - 4I2 - 10I1 + 12 V = 0 and 16I1 + 4I2 = 36 I1 - I2 = 6 A ─────────────────── I 1 = I2 + 6 A 16[I2 + 6 A] + 4I2 = 36 16I2 + 96 + 4I2 = 36 20I2 = -60 I2 = -3 A I1 = I2 + 6 A = -3 A + 6 A = 3 A

31.

20 V - 4I1 - 6(I1 - I2) - 8(I3 - I2) - 1I3 = 0 10I1 - 14I2 + 9I3 = 20 I3 - I1 = 3 A I2 = 8 A ──────────────────────── 10I1 - 14(8 A) + 9[I1 + 3 A] = 20 19I1 = 105 I1 = 5.526 A I3 = I1 + 3 A = 5.526 A + 3 A = 8.526 A I2 = 8 A I20V = I4Ω = 5.53 A (dir. of I1) I6Ω = I2 - I1 = 2.47 A (dir. of I2) I8Ω = I3 - I2 = 0.53 A (dir. of I3) I1Ω = 8.53 A (dir. of I3)

CHAPTER 8

75

32.

a.

b. 33.

a.

b.

34.

a. b.

35.

a.

b. c.

36.

(4 + 8)I1 - 8I2 = 4 (8 + 2)I2 - 8I1 = -6 ─────────────

æ 1 ö æ 5 ö 4 I 8Ω¯ = I1 - I 2 = ç- A ÷ - ç- A ÷ = A è 7 ø è 7 ø 7

𝐼1 ⤸ 𝐼2 ⤸ (4 + 3) 𝐼1 – 3𝐼2 = −12 − 15 (3 + 12) 𝐼2 − 3𝐼1 = 15 𝐼3Ω ↑= 𝐼2 − 𝐼1 = 0.25𝐴— 4.75𝐴 = 5.0𝐴 𝐼1 ⤸ 𝐼2 ⤸ 𝐼1 (5.6 kΩ + 2.2 kΩ) – 2.2 kΩ (𝐼2 ) = 15 + 25 = 40 𝐼2 (2.2 kΩ + 3.3 kΩ) - 2.2 kΩ (𝐼1 ) = –25 -40 = -65 𝐼𝐸1 = 𝐼1 = 2.02 𝑚𝐴, 𝐼𝐸2 ↑ = 11.01 𝑚𝐴 𝐼𝐸3 ↓ = 𝐼1 − 𝐼2 = (2.02 𝑚𝐴) − (−11.01𝑚𝐴) = 13.03 mA 𝐼1 ⤸ 𝐼2 ⤸ 𝐼3 ⤸ 𝐼1 (2 + 1) − 1𝐼2 = 15 𝐼2 (1 + 4 + 5) − 1𝐼1 − 5𝐼3 = 0. 𝐼3 (5 + 3) − 5𝐼2 = −12

𝐼1 = 4.87𝐴; 𝐼2 = −382.17 𝑚𝐴, 𝐼3 = −1.261𝐴 𝐼𝑅2 = 𝐼1 − 𝐼2 = (4.84𝐴) − (−382.17𝑚𝐴) = 5.252 𝐴

a.

b. c.

(2.2 kΩ + 9.1 kΩ)I1 - 9.1 kΩI2 = 18 (9.1 kΩ + 7.5 kΩ + 6.8 kΩ)I2 - 9.1 kΩ I1 - 6.8 kΩI3 = -18 (6.8 kΩ + 3.3 kΩ)I3 - 6.8 kΩI2 = -3 ─────────────────────────── I1 = 1.21 mA, I2 = -0.48 mA, I3 = -0.62 mA Ø = I1 − I2 = 1.21 mA − (−0.48 mA) = 1.69 mA ≠ = −I3 = −(−0.62 mA) = 0.62 mA

76

CHAPTER 8

37.

a.

(3 Ω + 6 Ω)I1 − 6 Ω I2 = 9 V (6 Ω + 2 Ω)I2 − 6 Ω I1 = 20 V ──────────────────── 9 Ω I 1 − 6 Ω I2 = 9 V −6 Ω I1 + 8 Ω I2 = 20 V ──────────────────── I1 = 5.33 A, I2 = 6.5 A

38.

39.

b.

Vab = 2 Ω (I2) − 20 V = 2 Ω(6.5 A) − 20 V = 13 V − 20 V = −7 V

a.

a.1

b.

I1 = -0.597 mA, I2 = -2.13 mA, I3 = -2.27 mA, I4 = -2.03 mA

c.

I22kΩ = I4 − I3 = −2.03 mA − (−2.27 mA) = 240 µA V22kΩ = IR = (240 ¥ 10−6A)(22 kΩ) = 5.28 V

a.

I1(6.8 kΩ + 4.7 kΩ - 2.2 kΩ) - 4.7 kΩ (I2) - 2.2 kΩ I4 = 6 I2(4.7 kΩ + 8.2 kΩ) - 4.7 kΩ(I1) - 8.2 kΩ(I3) = -6 I3(8.2 kΩ + 1.1 kΩ + 22 kΩ) - 8.2 kΩ I2 - 22 kΩ I4 = -9 I4(2.2 kΩ + 1.2 kΩ + 22 kΩ) - 22 kΩ(I3) - 2.2 kΩ(I1) = 0 ───────────────────────────

a.2 𝐼1 ⤸ 𝐼2 ⤸ 𝐼3 ⤸

(1Ω + 2Ω + 4Ω) 𝐼1 − 2Ω 𝐼2 − 4Ω 𝐼3 = 16 𝑉 (2Ω + 2Ω + 10Ω) 𝐼2 − 2Ω 𝐼1 − 10Ω 𝐼3 = −25 𝑉 (4Ω + 10Ω + 8Ω) 𝐼3 − 10Ω 𝐼2 − 4Ω 𝐼1 = 25 𝑉 _____________________________________ 7𝐼1 − 2𝐼2 − 4𝐼3 = 16 2𝐼1 − 14𝐼2 − 10𝐼3 = 25 4𝐼1 + 10𝐼2 − 22𝐼3 = −25 b. 𝐼1 = 3.1788𝐴; 𝐼2 = −0.1585 𝐴 ; 𝐼3 = 1.6422𝐴

CHAPTER 8

77

40.

a.

a.3

I1(2 Ω + 4 Ω) − I24 Ω = −6 V I2(4 Ω + 1 Ω) − I14 Ω − I31 Ω = −6 V I3(1 Ω + 8 Ω) − I21 Ω = 6 V ─────────────────────────── 6I1 − 4I2 = -6 V −4I1 + 5I2 − I3 = –6 V − 1I2 + 9I3 = 6 V ─────────────────

41.

b.

I1 = −3.8 A, I2 = −4.20 A, I3 = 0.2 A I R1 = I1 − I2 = −3.8 A − (−4.20 A) = −3.8 A + 4.20 A = 0.4 A

c.

I1Ω = I2 − I3 = −4.20 A − 0.2 A = −4.4 A + -V1Ω = (I1Ω)(1 Ω) = (−4.4 A)(1 Ω) = −4.4 V

a. At V1: S Ii = S Io

0=

V -V V1 +5 A + 1 2 2Ω 8Ω

At V2: S Ii = S Io V V1 - V2 = 3A+ 2 8Ω 4Ω

é1 1 ù é1 ù and V1 ê + ú - V2 ê ú = -5 ë2 8 û ë8 û é1 ù é1 1 ù -V1 ê ú + V2 ê + ú = -3 ë8 û ë8 4 û ───────────────────────────

78

b.

V1 = −10.27 V, V2 = −11.36 V

c.

V8Ω = V1 − V2 = −10.27 V − (−11.36 V) = 1.09 V

d.

I2Ω ≠ =

10.27 V V1 = = 5.14 A 2Ω 2Ω 11.36 V V I4Ω ≠ = 2 = = 2.84 A 4Ω 4Ω

CHAPTER 8

42.

a.

𝑉01

𝑉02

− 𝑁𝑜𝑑𝑒 𝑉𝑜𝑙𝑡𝑎𝑔𝑒𝑠

At 𝑉1 ∶ ∑ 𝐼𝑖 = ∑ 𝐼𝑜 . 0=

𝑉1 8Ω

+ 10𝐴 + 𝐼6Ω

And 𝑉1 − 6Ω 𝐼 − 54𝑉 − 𝑉2 = 0 Or, I =

𝑉1 −𝑉2 −54 6Ω 𝑉

=

𝑉1 𝑉 + 2 6Ω 6Ω 𝑉

− 9𝐴 𝑉

So that, 0 = 8Ω1 + 10𝐴 + 6Ω1 − 6Ω2 − 9𝐴 or, 𝑉1 �

1 1 1 + � − 𝑉2 � � 8Ω 6Ω 6Ω

= −10𝐴 + 9𝐴 = −1𝐴. 𝑉

𝑉

2 + 5Ω2 At 𝑉2 : ∑ 𝐼𝑖 = ∑ 𝐼𝑜 ⇒ 𝐼 = 20Ω

𝑉

𝑉

𝑉

𝑉

2 Or, 6Ω1 − 6Ω2 − 9𝐴=20Ω + 5Ω2

And, 𝑉2 �

1 1 1 1 + + � − 𝑉1 � � 20Ω 6Ω 5Ω 6Ω

Resulting in 𝑉1 � 1

b.

1

= −9𝐴.

1 1 1 + � − 𝑉2 � � 8Ω 6Ω 6Ω 1

1

= −1𝐴.

+ � = −9𝐴. –𝑉1 � � + 𝑉2 � + 20Ω 6Ω 6Ω 5Ω 0.292 – 0.167 𝑉2 = −1𝐴

–0.167𝑉1 + 0.417𝑉2 = −9𝐴. c.

43.

a.

𝑉1 = −20.45𝑉; 𝑉2 = −29.77𝑉. 𝐼20Ω =

𝑉2 20Ω

= 1.49𝐴.

At V1: S Ii = S Io

4A =

V1 V1 - V2 + +2A 2Ω 4Ω

At V2: S Ii = S Io V -V V V 2A+ 1 2 = 2 + 2 4Ω 20 Ω 5 Ω or

b.

CHAPTER 8

é1 1 ù é1 ù V1 ê + ú - V2 ê ú = 2 ë2 4 û ë4 û é1 ù é1 1 1 ù -V1 ê ú + V2 ê + + ú=2 ë4 û ë 4 20 5 û

V1 = 4.8 V, V2 = 6.4 V

79

c.

44.

a.

I1: P = V1I1 = (4.8 V)(4 A) = 19.2 W I 2: P =

At V1: S Ii = S Io 0=6A +

b. c.

45.

= 3.2 W

V1 V1 - V2 V1 - V2 + + 5Ω 3Ω 2Ω

At V2: S Ii = S Io V V V - V2 V1 - V2 + = 2 + 2 7A + 1 3Ω 2Ω 4Ω 8Ω é 1 é 1 1 1 ù 1 ù + + + so that V1 ê ú - V2 ê ú = −6 A ë5 Ω 3 Ω 2 Ω û ë3 Ω 2 Ω û é 1 é 1 1 1 1 ù 1 ù V2 ê + + + + ú - V1 ê ú =7A ë4 Ω 8 Ω 3 Ω 2 Ω û ë3 Ω 2 Ω û ──────────────────────────────────── or 1.03V1 − 0.833V2 = −6 −0.833V1 + 1.21V2 = 7 ─────────────────── V1 = −2.59 V, V2 = 4 V V2Ω = V3Ω = V2 − V1 = 4 V − (−2.59 V) = 6.59 V V5Ω = V1 = −2.59 V V4Ω = V8Ω = V2 = 4 V

a. Source conversion: I3 = At V1: S Ii = S Io

0=

12 V = 3 A, Rp = R3 = 4 Ω 4Ω

V1 V V - V2 + 1 +5 A + 1 +3 A 3Ω 6Ω 4Ω

At V2: S Ii = S Io

3A+

Rewritten:

b. c.

80

V1 - V2 V = 2 +4A 4Ω 8Ω é 1 1 1 ù V2 V1 ê + + = −5 A − 3 A úë3 Ω 6 Ω 4 Ω û 4 Ω é 1 ù é 1 1 ù -V1 ê + ú + V2 ê ú = −4 A + 3 A ë4 Ω û ë4 Ω 8 Ω û

V1 = −14.86 V, V2 = −12.57 V 14.86 V I6Ω ≠ = = 2.48 A 6Ω

CHAPTER 8

46.

a.

15 V = 5 A, Rp = 3 Ω 3Ω

Source conversion: Is = V1

5A

6Ω V2

3Ω

5Ω

4Ω 3A

47.

b.

V1 = 0 V (tied to ground) S Ii = S Io V V V 0= 2 + 2 + 2 +3A 6Ω 4Ω 5Ω é 1 1 1 ù + + and V2 ê ú = −3 A ë6 Ω 4 Ω 5 Ω û V2[616.67 mS] = −3 A 3A V2 = = 4.86 V 616.67 mS

c.

V2 - = −4.86 V

+

a.

20 Ω V2

V1 20 Ω

}

2A

9Ω

10 Ω 18 Ω

4A

4Ω

V 1: S I i = S I o

0=2A+

V1 V1 - V2 + 9 Ω 10 Ω

V 2: S I i = S I o V V V1 - V2 +4A = 2 + 2 10 Ω 18 Ω 4 Ω ────────────────────────────── 0.211 V1 − 0.1 V2 = −2 −0.1 V1 + 0.405 V2 = 4 ─────────────────── b.

CHAPTER 8

V1 = −5.43 V, V2 = 8.53 V

81

VR 4 = V1 − V2 + -

48.

a.

= (−5.43 V) − (8.53 V) = −13.96 V V2

V1 2Ω

2Ω

2Ω

9Ω



5A

V3

3.94 Ω

7Ω

2Ω

4Ω



c.

1.33 Ω

V 1: S I i = S I o V - V2 V 0=5A+ 1 + 1 2Ω 2Ω V 2: S I i = S I o V2 V - V3 V1 - V2 = + 2 2Ω 3.94 Ω 2Ω V 3: S I i = S I o V3 V2 - V3 = 2Ω 1.33 Ω

49.

b.

V1 = −6.556 V, V2 = −3.113 V V3 = −1.245 V

c.

I9Ω =

3.113 V V2 = = 0.346 A ≠ 9Ω 9Ω

a.

At V1: S Ii = S Io

0=5A+

V1 V1 - V3 + 2Ω 6Ω

At V2: S Ii = S Io

5A=2A+

V2 4Ω

At V3: S Ii = S Io

V V1 - V3 +2 A + 3 6Ω 5Ω

82

CHAPTER 8

Rewritten: é 1 1 1 ù + V3 = −5 A V1 ê úë2 Ω 6 Ω û 6 Ω é 1 ù V2 ê ú=5A−2A ë4 Ω û é 1 1 1 ù + V1 = 2A V3 ê úë6 Ω 5 Ω û 6 Ω ───────────────────────

50.

b.

V1 = −6.92 V, V2 = 12 V, V3 = 2.3 V

c.

I4Ω =

12 V V1 = =3A 4Ω 4Ω

a.

Node V1:

S Ii = S Io 2A=

Supernode V2, V3: 0= Independent source: V2 - V3 = 24 V or V3 = V2 - 24 V 2 eq. 2 unknowns: =2A =0 ───────────────────── 0.267V1 - 0.1V2 = 2 +0.1V1 - 0.433V2 = -2 ──────────────── V1 = 10.08 V, V2 = 6.94 V V3 = V2 - 24 V = -17.06 V

CHAPTER 8

83

51.

Supernode:

S Ii = S Io 3A+4A=3A+

2 eq. 2 unk.

Subt. V2 = 16 V + V1 4A= and V1 = 48 V V2 = 16 V + V1 = 64 V ────────────────── 52.

a.

é1 1 ù é1 ù V1 ê + ú - V2 ê ú = −5 ë2 8 û ë8 û é1 ù é1 1 ù −V1 ê ú + V2 ê + ú = −3 ë8 û ë8 4 û ──────────────────── V1 = −10.27 V, V2 = −11.36 V

53.

b.

= V1 = −10.27 V,

a.

(𝑉01 𝑉02 ) 1 1 1 𝑉1 � + � − 𝑉2 � � = 8 6 6

= V2 = −11.36 V

–10A + 9A = –1A

1 1 1 1 + + � − 𝑉1 � � = −9𝐴 6 20 5 6 𝑉1 = −20.45𝑉; 𝑉2 = −29.77 𝑉 𝑉1 − 𝑉6Ω − 54𝑉 − 𝑉2 = 0 𝑉6Ω = 𝑉1 − 𝑉2 − 54𝑉 = 20.45 − (−29.77) − 54 = −44.68 𝑉. 𝑉2 �

b.

84

CHAPTER 8

54.

é 1 é 1 ù 1 ù V1 ê + ú - V2 ê ú = −2 A ë9 Ω 10 Ω û ë10 Ω û é 1 é 1 ù 1 1 ù + + V2 ê ú - V1 ê ú =4A ë10 Ω 18 Ω 4 Ω û ë10 Ω û

a.

é 1 é 1 ù 1 ù + V1 ê ú - V2 ê ú = −2 A ë9 Ω 10 Ω û ë10 Ω û é 1 ù é 1 1 1 ù + + -V1 ê ú + V2 ê ú =4A ë10 Ω û ë10 Ω 18 Ω 4 Ω û ────────────────────────────── 0.211 V1 − 0.1 V2 = −2 −0.1 V1 + .405 V2 = 4 ──────────────────────────────

b.

55.

c.

V1 = −5.43 V, V2 = 8.53 V

d.

I4Ω =

8.53 V V2 = = 2.13 AØ 4Ω 4Ω

é 1 é 1 ù 1 ù + ú - V2 ê ú = −5 A ë2 Ω 2 Ω û ë2 Ω û é 1 é 1 ù é 1 ù 1 1 1 ù + + + V2 ê ú - V1 ê ú - V3 ê ú =0 ë2 Ω 9 Ω 7 Ω 2 Ω û ë2 Ω û ë2 Ω û é 1 é 1 ù 1 1 ù + + V3 ê ú - V2 ê ú =0 ë2 Ω 2 Ω 4 Ω û ë2 Ω û ──────────────────────────────

a.

V1 ê

V1 = −6.556 V, V2 = −3.113 V V3 = −1.245 V I9Ω =

b.

56.

-3.113 V V2 = = 0.346 A ≠ 9Ω 9Ω

é 1 1 1 ù + V = −5 A V1 ê ú6 Ω 3 6 Ω 2 Ω ë û é 1 ù V2 ê ú=5A−2A ë4 Ω û é 1 1 1 ù + V = 2A V3 ê ú6 Ω 1 5 Ω 6 Ω ë û ───────────────────────

a.

b.

V1 = −6.92 V, V2 = 12 V, V3 = 2.3 V

c.

I2Ω =

CHAPTER 8

6.92 V V2 = = 3.46 A 2Ω 2Ω 85

57.

V1

a. 12 A

1Ω

2Ω

10 Ω

2A

8Ω

é 1 1 1 1 ù + + + V1 ê ú = 14 A ë1 Ω 2 Ω 10 Ω 8 Ω û V1[1.725 S] = 14 A 14 V1 = V 1.725 = 8.1 V

58.

59.

b.

Va = 0 V, Vb = 8.12 V Vab = Va − Vb = 0 V − 8.12 V = −8.12 V

a.

Same figure used for problem 46. V1 = 0 V é 1 1 1 1 ù + + V2 ê V1= −3 A ú6 Ω 4 Ω 5 Ω 6 Ω ë û

b.

V1 = 0 V \ V2[0.617 S] = −3 A -3 V2 = V 0.617 = -4.86 V

c.

I5Ω =

4.86 V V2 = = .972 A 5Ω 5Ω

Mesh analysis : 𝐼1 ⤸ 𝐼2 ⤸

𝐼3 ⤸

(2𝛺 + 6𝛺 + 10𝛺)𝐼1 − 2𝛺𝐼2 − 10𝐼3 = 18𝑉 ( 2𝛺 + 2𝛺 + 5𝛺)𝐼2 − 2𝛺 𝐼1 − 5𝛺 𝐼3 = 0

(5𝛺 + 20𝛺 + 10𝛺) 𝐼3 − 10𝛺𝐼1 − 5𝛺𝐼2 = 0

_______________________________________

Rewritten :

18𝐼1 − 2𝐼2 − 10𝐼3 = 18

−2𝐼1 + 9𝐼2 − 5𝐼3 = 0

−10𝐼1 − 5𝐼2 + 35𝐼3 = 0

___________________________________________

86

CHAPTER 8

b. c. d.

𝐼1 = 1.312𝐴 , 𝐼2 = 0.543𝐴 , 𝐼3 = 0.452 𝐴

𝐼𝑅3 = 𝐼3 − 𝐼1 = 0.452𝐴 − 1.312𝐴 = −0.86 𝐴 No No ; 2𝛺�10𝛺 = 1�5 ≠ 2𝛺�20𝛺 = 1�10 0𝑉1

60.

0𝑉2

0𝑉3

Source conversion : I =

b. c. d.

𝐸 𝑅3

=

18𝑉 6Ω

= 3𝐴.

𝑅𝑠 = 𝑅𝑝 = 6Ω. 1 1 1 1 1 + �− 𝑉2 − 𝑉 = 3𝐴. 𝑉1 � + 6Ω 2Ω 2Ω 2Ω 2Ω 3 1 1 1 1 1 + 𝑉1 − 𝑉 = 0. 𝑉2 � + �− 2Ω 5Ω 10Ω 2Ω 5Ω 3 1 1 1 1 1 + 𝑉1 − 𝑉 = 0. 𝑉3 � + �− 5Ω 2Ω 20Ω 2Ω 5Ω 2 Or, 1.167 𝑉1 − 0.5𝑉2 − 0.5𝑉3 = 3 –0.5𝑉1 + 0.8𝑉2 − 0.2𝑉3 = 0 –0.5𝑉1 − 0.2𝑉2 − 0.75𝑉3 = 0 ___________________________ 𝑉1 = 10.12𝑉; 𝑉2 = 8.58𝑉; 𝑉3 = 9.04𝑉 𝑉5Ω = 𝑉2 − 𝑉3 = −0.46𝑉 No. No; 2Ω�10Ω = 1�5 ≠ 2Ω�20Ω = 1�10.

𝐼1 ⤸ 𝐼2 ⤸ 𝐼3 ⤸ Source conversation : E = IR = (20mA)(2kΩ) = 40V. 𝑅𝑠 = 2𝑘Ω 𝐼1 (2𝑘Ω + 33𝑘Ω + 3.3𝑘Ω) − 33𝑘Ω𝐼2 − 3.3𝑘Ω𝐼3 = 40𝑉 𝐼2 (33𝑘Ω + 56𝑘Ω + 36𝑘Ω) − 33𝑘Ω𝐼1 − 36𝑘Ω𝐼3 = 0𝑉 𝐼3 (36𝑘Ω + 3.3𝑘Ω + 5.6𝑘Ω) − 3.3𝑘Ω𝐼1 − 36𝑘Ω𝐼2 = 0𝑉 __________________________________________________

61.

b. c. d. CHAPTER 8

38.3𝑘Ω𝐼1 − 33𝑘Ω𝐼2 − 3.3𝑘Ω𝐼3 = 40 −33𝑘Ω𝐼1 + 125𝑘Ω𝐼2 − 36𝑘Ω𝐼3 = 0 −3.3𝑘Ω𝐼1 − 36𝑘Ω𝐼2 + 44.9𝑘Ω𝐼3 = 0 __________________________________ 𝐼1 = 1.61𝐴 ; 𝐼2 = 0.597𝐴; 𝐼3 = 0.597𝐴. 𝐼5 = 𝐼2 − 𝐼3 = 0.597𝐴 − 0.597𝐴 = 0. Yes Yes. 87

0𝑉1

62.

0𝑉2

b. c. d.

63.

1 1 1 1 1 + + 𝑉2 − 𝑉 = 20𝑚𝐴. �− 2𝑘Ω 33𝑘Ω 56𝑘Ω 33𝑘Ω 56𝑘Ω 3 1 1 1 1 1 + + 𝑉1 − 𝑉 = 0. 𝑉2 � �− 33𝑘Ω 3.3𝑘Ω 36𝑘Ω 33𝑘Ω 36𝑘Ω 3 1 1 1 1 1 𝑉3 � + + 𝑉2 − 𝑉 = 0. �− 56𝑘Ω 36𝑘Ω 5.6𝑘Ω 36𝑘Ω 56𝑘Ω 1

𝑉1 �

Rewritten: 548.16𝑉1 − 30.3𝑉2 − 17.86𝑉3 = 20 × 103 −30.3𝑉1 + 361.11𝑉1 − 27.78𝑉3 = 0 −17.86𝑉1 − 27.78𝑉2 + 224.21𝑉3 = 0 ______________________________________ 𝑉1 = 36.78𝑉 ; 𝑉2 = 3.34𝑉; 𝑉3 = 3.34𝑉 𝑉𝑅𝑆 = 𝑉2 − 𝑉3 = 3.34𝑉 − 3.34𝑉 = 0 𝑉. Yes. Yes.

Mesh Analysis: 𝐼1 ⤸ 𝐼2 ⤸ 𝐼3 ⤸ (1𝑘Ω + 2𝑘Ω + 2𝑘Ω) 𝐼1 − 2𝑘Ω𝐼2 − 2𝑘Ω𝐼3 = 15𝑉 −2𝑘Ω𝐼1 + (2𝑘Ω + 2𝑘Ω + 2𝑘Ω) 𝐼2 − 2𝑘Ω𝐼3 = 0 −2𝑘Ω𝐼1 − 2𝑘Ω𝐼2 + (2𝑘Ω + 2𝑘Ω + 2𝑘Ω)𝐼3 = 0 ________________________________________ 𝐼1 = 5𝑚𝐴; 𝐼2 = 2.5𝑚𝐴; 𝐼3 = 2.5𝑚𝐴 𝐼1 = 𝐼15𝑉 = 5𝑚𝐴 Nodal Analysis: Source conversion: I =15𝑉�1𝑘Ω = 15𝑚𝐴; 𝑅𝑃 = 1𝑘Ω 0𝑉1 0𝑉3

88

0𝑉3

0𝑉2

1 1 1 1 1 + + 𝑉2 − 𝑉 = 15𝑚𝐴 �− 1𝑘Ω 2𝑘Ω 2𝑘Ω 2𝑘Ω 2𝑘Ω 3 1 1 1 1 1 𝑉1 + � + + 𝑉 =0 − � 𝑉2 − 2𝑘Ω 2𝑘Ω 2𝑘Ω 2𝑘Ω 3 2𝑘Ω 1 1 1 1 1 𝑉1 − 𝑉2 + � + + − �𝑉 = 0 2𝑘Ω 2𝑘Ω 2𝑘Ω 2𝑘Ω 3 2𝑘Ω __________________________________________ 𝑉1 = 10𝑉; 𝑉2 = 5𝑉; 𝑉3 = 5𝑉. 𝑉1 = 10𝑉 = 𝐸 − 𝐼𝑅𝑆 = 15𝑉 − 𝐼(1𝑘Ω) 15𝑉 − 10𝑉 𝐼= = 5𝑚𝐴. 1𝑘Ω 𝑉1 �

CHAPTER 8

64.

Mesh analysis : 𝐼1 ⤸ 𝐼2 ⤸ 𝐼3 ⤸ Source conversion : E = IRs = (4A)(10Ω) = 40V, Rs = 10Ω (10 + 10 + 20)𝐼1 − 10𝐼2 − 20𝐼3 = 40 (10 + 20 + 20)𝐼2 − 10 𝐼1 − 20 𝐼3 = 0 (20 + 20 + 10) 𝐼3 − 20𝐼1 − 20𝐼2 = 0 _______________________________________ Rewritten : 40𝐼1 − 10𝐼2 − 20𝐼3 = 40 −10𝐼1 + 50𝐼2 − 20𝐼3 = 0 −20𝐼1 − 20𝐼2 + 50𝐼3 = 0 ___________________________________________ 𝐼1 = 1.647𝐴 , 𝐼2 = 0.7059𝐴 , 𝐼3 = 0.941 𝐴 𝐼1 = 𝐼40𝑉 = 1.647𝐴 ≅ 1.65𝐴 𝑉10Ω = 16.47V , ∴ 𝑉 = 40𝑉 − 16.47 𝑉 Vs = 23.53V 𝑉

𝐼𝑠 = � �= � 𝑅 𝑠

23.53𝑉 � 10Ω

= 2.353 A

Nodal analysis :

𝑉1 �

1 1 1 1 + + � − 𝑉2 10 10 20 20

𝑉2 �

𝑉1 = 23.53 𝑉 ,

IRs =

65.

𝑉1 𝑅𝑠

𝑉3 �

= 2.353 A

1 1 1 1 + + � − 𝑉1 20 20 10 20 1 1 1 1 + + � − 𝑉1 10 20 20 10

− − −

1 𝑉 10 3 1 𝑉 20 3 1 𝑉 20 3

=4 =0 =0

𝑉2 = 9.412 𝑉 , 𝑉3 = 14.12 𝑉

I=

20 V é ù é2 ù 4 2 Ω + ê Ω + 3 Ω ú || ê Ω + 4 Ω ú 5 ë5 û ë5 û

= = 7.36 A

CHAPTER 8

89

66.

RT = 2.27 kΩ + [4.7 kΩ + 2.27 kΩ] [1.1 kΩ + 2.27 kΩ] = 2.27 kΩ + [6.97 kΩ] [3.37 kΩ] = 2.27 kΩ + 2.27 kΩ = 4.54 kΩ I=

= 1.76 mA

67.

68.

(Y-Δ conversion) 80 V 80 V = I= 12 kΩ || 12 kΩ || 6 kΩ 3 kΩ = 26.67 mA

Using ∇ − ∆ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

a.

60𝑉

I = (18Ω‖18Ω)‖[(18Ω‖18Ω)+(18Ω‖18Ω)] 60𝑉 60𝑉 = 9Ω‖(9Ω+9Ω) 9Ω‖18Ω 60𝑉 = = 10A 6Ω

=

b. 69.

∆ − ∇ 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛.

= 0.83 mA

90

CHAPTER 8

70.

a.

b.

R¢ = R1 + 1 kΩ = 3 kΩ R≤ = R2 + 1 kΩ = 3 kΩ R¢T =

= 1.5 kΩ

RT = 1 kΩ + 1.5 kΩ + 1 kΩ = 3.5 kΩ Is = 71.

= 5.71 mA

Using two Δ - Y conversions: c - g: 27 Ω



27 Ω = 5.4 Ω

a - h: 27 Ω



27 Ω = 5.4 Ω

RT = 5.4 Ω = 5.4 Ω = 4.2 Ω

CHAPTER 8

(13.5 Ω + 5.4 Ω) 18.9Ω

91

Chapter 9 1.

a.

E1 : short circuit E2 𝑅𝑇 (from source) = 4Ω + 2Ω || 15Ω = (4 + 1.765) Ω = 5.765Ω

E 1:

𝐸

16𝑉

𝐼𝑠 = � 1 �= � � = 2.8A 𝑅 5.765Ω 𝑇

[𝐼1′5Ω ] =

2Ω(2.8A) 2Ω+15Ω

= 0.32A

E2 : (taking E2 and short circuit E1) 𝑅𝑇 (from source) = 2Ω + 4Ω || 15 Ω = 2 Ω + 3.158 Ω = 5.158 Ω

E 2:

10𝑉 = 1.94A 5.158 4Ω+(2A) � 4Ω+15Ω � = 0.42A

𝐼𝑠 = E2/RT =

𝐼1"5Ω =

𝐼15Ω ↑ = 0.42A – 0.33A = 0.08A

b.

𝐼𝑠1 = E1/Rs1 =

16𝑉 4Ω

= 4A↑

𝑅𝑃1 = 𝑅𝑠1 = 4Ω

𝐼𝑠2 =

E2 𝑅𝑠2

=

10𝑉 2Ω

= 5A↓

𝐼𝑠 = 𝐼𝑠1 – 𝐼𝑠2 = 4A – 5A = 1A , 𝑅𝑠1 || 𝑅𝑠2 = 4Ω || 2Ω = 1.333Ω c. 2.

𝐼15Ω =

1.333Ω(1A) 1.333Ω+15A

= 0.08A

the same

a.

24 Ω(3 A) = 2.25 A 24 Ω + 8 Ω V¢ = I¢R = (2.25)(4.7 Ω) = 10.575 V I¢ =

V¢¢ =

4.7 Ω(12 V) = 1.763 V 4.7 Ω + 3.3 Ω + 24 Ω = 8.81 V

92

CHAPTER 9

V ¢2 (10.575 V)2 = 23.79 W = R 4.7 Ω V ¢¢2 (1.763 V)2 = 0.661 W P= = R 4.7 Ω

b.

P=

c.

3.

V 2 (8.81 V)2 = 16.51 W = R 4.7 Ω

d.

P=

e.

23.79 W + 0.661 W π 16.51 W 24.45 W ≠ 16.51 W

E:

E : considering E and open circuit 10A source 𝑅𝑇 = 12Ω + 24Ω || 60Ω = 29.14Ω

𝐼𝑠 =

𝐸 𝑅𝑇

𝐼6′0Ω =

24𝑉 = 0.824A 29.14Ω 24Ω(0.824A) = 0.235A 24Ω+60Ω

=

I : considering I (10V source) and short circuit 24V 24Ω || 60Ω = 17.14Ω

I:

12Ω(10A) = 4.118A 12Ω+17.14Ω 24Ω(4.118A) = 1.177A 𝐼6′′0Ω = 24Ω+60Ω ′ ′′ 𝐼60Ω = 𝐼 + 𝐼 = 4.118 + 1.177

𝐼 ′′′ =

4.

= 5.295A↓

Considering E1(+48V) and short circuit 30V source

E 1:

𝐼𝑇 =

𝐼𝑇 =

𝐼1 =

48𝑉 18Ω+9Ω//15Ω//10Ω 48𝑉 = 18Ω+3.6Ω

9Ω(𝐼𝑇 ) 9Ω+6Ω

=

2.22A

9Ω(2.222A) 15Ω

∴ 15Ω || 10Ω = 6Ω

5Ω || 6Ω = 3.6Ω = 1.33A

Considering E2 (30V source) and short circuit E1 (48V)

E 2:

𝐸

30𝑉 (18Ω||9Ω) +(15Ω||10Ω) 30𝑉 30𝑉 = 2.5A = 6Ω+6Ω 12Ω

𝐼𝑇 = 𝑅2 = 𝑇

=

I30V = IT + I1 = 2.5A + 1.333A = 3.833A(Direction of I1) CHAPTER 9

93

5.

I: 4.7 kΩ

+

V'R 3 −

4 mA

10 kΩ

18 kΩ

4 mA

6.43 kΩ

8 kΩ

3.3 kΩ I

6.43 kΩ(4 mA) = 1.78 mA 6.43 kΩ + 8 kΩ V R¢3 = -IR3 = −(1.78 mA)(4.7 kΩ) VR¢ = −8.37 V

I=

3

E:



18 V

+

5.54 kΩ(18 V) = 6.42 V 5.54 kΩ + 10 kΩ 4.7 kΩ(6.42 V) VR¢¢3 = = 3.77 V 4.7 kΩ + 3.3 kΩ VR 3 = VR¢3 + VR¢¢3 = −8.37 V + 3.77 V = −4.6 V

V= 10 kΩ

18 kΩ

+

8 kΩ V −

} 5.54 kΩ

6.

E:

Considering 40V sorce and open circuit 10mA source 6.8𝐾Ω( 40V) [𝑉2′ ] = = 14.468V = 14.47V 6.8𝐾Ω+12KΩ

I:

Considering 10V source and short circuit 40V source 𝐼2 = current through 6.8𝐾Ω 12KΩ(10mA) 𝐼2 = � � = 6.383 mA 𝑉2′′

12KΩ+6.8𝐾Ω

= 𝐼2 𝑅2 = (6.383mA) (6.8KΩ) = 43.40V V2 = 𝑉2′ + 𝑉2′′ = 57.87V = 14.47V + 43.40V = 57.87V

94

CHAPTER 9

7.

E:

I'

6.8 kΩ

1.2 kΩ

2.2 kΩ

R1

} 5.5 kΩ

+ −

+ V −

4.7 kΩ

8V

2.53 kΩ

1.2 kΩ + −

8V

Consider source (5mA) and open circuit 2mA source and short circuit 8V source [(6.8𝑘Ω)||(1.2𝑘Ω+4.7𝑘Ω)](5𝑚𝐴)

[(6.8𝑘Ω)||(5.9𝑘Ω)](5𝑚𝐴)

𝐼 ′ = [(6.8𝑘Ω)||(1.2𝑘Ω+4.7𝑘Ω)]+2.2𝑘Ω = [(6.8𝑘Ω)||(5.9𝑘Ω)]+2.2𝑘Ω 𝐼′ =

(3.16𝑘Ω)(5mA) 3.16𝑘Ω+2.2𝑘Ω

= 3.004mA↓

I (5 mA): 6.8 kΩ 5 mA

R1

2.2 kΩ

1.2 kΩ

4.7 kΩ

I''

}

𝐼

6.8 kΩ + 1.2 kΩ || 4.7 kΩ = 3.088 kΩ

I (2 mA): 6.8 kΩ 2.2 kΩ

R1

4.7 kΩ

0.956 kΩ

8.

2 mA

′′

4.288𝐾Ω 4.7𝐾Ω(1.866mA) = 9𝐾Ω+4.7𝐾Ω

= 0.640mA

&onsider 2 mA source 2.2𝐾Ω+6.8𝐾Ω=9𝐾Ω 1.2𝐾Ω || 4.7𝐾Ω = 0.956𝐾Ω 9𝐾Ω(2mA) 𝐼 ′′′ = = 1.808mA 9𝐾Ω+0.956𝐾Ω

I = 𝐼′↓ + 𝐼′′↓+𝐼′′′↑

= (3.004 + 0.640 – 1.808)mA

}

I'''

1.2 kΩ

Considering 8V source 2.2𝐾Ω + 6.8𝐾Ω = 9𝐾Ω 9𝐾Ω || 4.7𝐾Ω = 3.088𝐾Ω 𝑅𝑇 = 3.088𝐾Ω + 1.2𝐾Ω = 4.288𝐾Ω 8𝑉 = 1.866mA 𝐼𝑆 =

I = 1.836 mA

E 1:

12 V 12 Ω || 4 Ω + 4 Ω + 6 Ω 12 V 12 V = = 3 Ω + 10 Ω 13 Ω = 923.1 mA V s1 = IR = (923.1 mA)(4 Ω) = 2.492 V

I¢ =

CHAPTER 9

95

I:

9 Ω(6 A) = 4.154 A 9Ω+4Ω Vs≤ = I≤4Ω = (4.154 A)(4 Ω) = 16.62 V I≤ =

E 2:

R¢T = 12 Ω || (4 Ω + 6 Ω) = 12 Ω || 10 Ω = 5.455 Ω E 8V I= 2 = = 0.846 A RT 4 Ω + 5.455 Ω 12 Ω(0.846 A) 12 Ω( I ) = I¢≤ = = 0.462 A 22 Ω 12 Ω + 10 Ω V3¢¢¢ = I¢≤(4 Ω) = 0.462 A(4 Ω) = 1.848 V Vs (polarity of Vs¢¢) = = 16.62 V - 2.492 V - 1.848 V = 12.28 V 9.

a.

b.

𝑅𝑡ℎ = 𝑅3 + 𝑅1 ||𝑅2 = 4Ω + 6Ω||9Ω = 4Ω + 3.6Ω = 7.6Ω 𝐸𝑡ℎ =

𝐼1 =

𝐸𝑡ℎ 𝑅𝑡ℎ +𝑅

𝐼2 =

𝐼3 = 96

𝑅2 𝐸 𝑅2 +𝑅1

=

=

9Ω( 18V ) 9Ω+6Ω

10.8𝑉 = 7.6Ω+5Ω

10.8𝑉 7.6Ω+40Ω

=

9Ω( 18V ) 15Ω

= 10.8 V

0.93𝐴

= 226.89 mA

10.8𝑉 7.6Ω+120Ω

= 84.64 mA

CHAPTER 9

10.

a.

RTh: ¨ RTh = 3.3 kΩ + 1.2 kΩ || 2.4 kΩ = 3.3 kΩ + 0.8 kΩ = 4.1 kΩ

ETh:

ETh = (120 mA)(2.4 kΩ || 1.2 kΩ) = 96 V b.

RTh = 4.1 kΩ

96 V = 15.74 mA 6.1 kΩ 2 P = I R = (15.74 mA)2 2 kΩ = 0.495 W R = 100 kΩ: 96 V I= = 0.922 mA 104.1 kΩ P = I2R = (0.922 mA)2 100 kΩ = 85 mW I=

11.

a.

RTh:

¨ RTh = 6 Ω + 6 Ω || 6 Ω = 9 Ω

ETh:

ETh =

b.

𝐸𝑡ℎ 2 �R 𝑡ℎ +𝑅

R = 4 Ω ; P = �𝑅

P = 2.367 W R = 90Ω ; P = �

= �

10𝑉 �2 × 9𝛺+90𝛺

CHAPTER 9

10𝑉 2 � 9Ω+4Ω

= 10 V



90Ω = 0.918W.

97

12. RTh

R1

R2



RTh = 3 || 6 Ω = 2Ω



10 Ω

+



ETh

+

+



18𝑉+9𝑉

I=� � = 3A 3Ω+6Ω V3Ω = IR = (3A) (3Ω) = 9V 𝐸𝑡ℎ = 18V – 9V = 9V

6Ω − 9V +

18 V



13.

I



10 Ω

RTh:

RTh = 5.6 kΩ || 2.2 kΩ = 1.58 kΩ

I:

ETh: Superposition: E¢Th = IRT = 8 mA(5.6 kΩ || 2.2 kΩ) = 8 mA(1.579 kΩ) = 12.64 V

E:

5.6 kΩ(16 V) 5.6 kΩ + 2.2 kΩ = 11.49 V

E≤Th =

+ ETh = 11.49 V - 12.64 V = -1.15 V 14.

RTh: 8Ω

RTh



For 𝐸𝑡ℎ

IT = 4A 8 I2Ω = � �A, 4A = I2Ω + I3Ω





RTh = (8 Ω + 2 Ω) || (3 Ω + 4 Ω) = (8 Ω + 2 Ω) || 7 Ω = 9.556 Ω

3

NOD ANALYSIS:

ETh:

+

I

8Ω I' 4A

ETh −

8

8

𝑉

𝑉

𝑉

𝑉

2 4 = � 32 � + �2+4 � = � 32 � + � 62 �

I2Ω = �3�A, I3Ω = �6�A



98





CHAPTER 9

𝐸𝑡ℎ = V6Ω + V2Ω = (IT) (6A) + I2Ω (2 Ω) 8 = 4(6A) + � 𝐴� (2 Ω) 3 16

= 24V + � 3 �V = 29.333 V RTh:

4 kΩ

4 kΩ

4 kΩ = 1.333 kΩ 3

4 kΩ

20 V

RTh =

RTh

4 kΩ

+

ETh

8 mA

4 kΩ

4 kΩ = 1 kΩ 4

Source conversion: 20 V = 5 mA, Rp = 4 kΩ I= 4 kΩ

a

+

a.

𝑅𝑡ℎ = 9.556 Ω



15.

𝐸𝑡ℎ = 29.333 V,



b

+ 1.333 kΩ

4 kΩ

5 mA

8 mA

ETh = ITRT = (3 mA)(1 kΩ) = 3 V

ETh −

b. + −

a.

3 mA

1 kΩ I

16.

}

} 1 kΩ

3V

10 kΩ

I10kΩ =

3V 3V = = 0.273 mA 1 kΩ + 10 kΩ 11 kΩ

RTh: ¨RTh = 2 Ω + 8 Ω = 10 Ω

ETh: ETh = V16Ω

CHAPTER 9

99

20 V = 825.08 mA 20 Ω + 4.24 Ω 5 Ω(825.08 mA) 5 Ω( I T ) = 125.01 mA I¢ = = 33 Ω 5 Ω + 28 Ω ETh = V16Ω = (I¢)(16 Ω) = (125.01 mA)(16 Ω) = 2 V

IT =

17.

ETh 2V 2V = = = 66.67 mA RTh + R 10 Ω + 20 Ω 30 Ω 2V 2V = 50 Ω: I = = 33.33 mA 10 Ω + 50 Ω 60 Ω 2V 2V = 100 Ω: I = = 18.18 mA 10 Ω + 100 Ω 110 Ω

b.

20 Ω:

a.

RTh:

I =

¨RTh = 3. 3 kΩ + 2.2 kΩ || 1.1 kΩ = 3.3 kΩ + 0.73 kΩ = 4.03 kΩ

E 1:

ETh: Superposition:

E¢Th = V2.2kΩ = =8V

2.2 kΩ(12 V) 2.2 kΩ + 1.1 kΩ

ETh≤ = E2 = 4 V

ETh = E¢Th + E≤Th = 8 V + 4 V = 12 V b.

100

CHAPTER 9

V= 18.

1.2 kΩ(12 V) = 2.75 V 1.2 kΩ + 4.03 kΩ

RTh: RTh = 1.2 kΩ + 3.3 kΩ + 2.2 kΩ || 5.6 kΩ = 4.5 kΩ + 1.58 kΩ = 6.08 kΩ

RTh

ETh: Source conversions: ≠I1 =

= 10 mA, Rs = 2.2 kΩ

ØI2 =

= 2.14 mA, Rs = 5.6 kΩ

Combining parallel current sources: I¢T = I1 - I2 = 10 mA - 2.14 mA = 7.86 mA≠ and 2.2 kΩ || 5.6 kΩ = 1.58 kΩ 5 mA −

7.86 mA

+

7.86 mA

3.3 kΩ + 1.58 kΩ − I'

1.2 kΩ 5 mA

+ ETh −

I¢ = 7.86 mA + 5 mA = 12.86 mA V3.3kΩ = IR = (5 mA)(3.3 kΩ) = 16.5 V V1.58kΩ = IR = (12.86 mA)(1.58 kΩ) = 20.3 V ETh = 16.5 V + 20.3 V = 36.8 V 19.

a.

RTh: ¨RTh = 51 kΩ || 10 kΩ = 8.36 kΩ

ETh: ETh =

CHAPTER 9

10 kΩ(20 V) = 3.28 V 10 kΩ + 51 kΩ

101

b.

c.

IERE + VCE + ICRC = 20 V but IC = IE and IE(RC + RE) + VCE = 20 V 20 V - VCE 20 V - 8 V 12 V or IE = = 4.44 mA = 2.2 kΩ + 0.5 kΩ 2.7 kΩ RC + RE

ETh - IBRTh - VBE - VE = 0 E - V BE - V E 3.28 V - 0.7 V - (4.44 mA)(0.5 kΩ) = and IB = Th 8.36 kΩ RTh =

20.

= 43.06 µA

d.

VC = 20 V - ICRC = 20 V - (4.44 mA)(2.2 kΩ) = 20 V - 9.77 V = 10.23 V

a.

ETh = 20 V I = 1.6 mA =

b.

ETh= 60 mV, RTh = 2.72 kΩ

c.

ETh = 16 V, RTh = 2.2 kΩ

= 12.5 kΩ

21. RTh = 4 Ω || (2 Ω + 2 Ω) =

4Ω =2Ω 2

By KVL , 10 = 4IT + 2IT + 4I4Ω + 4 10 = 4IT + 2IT + 4(IT – I4Ω) 6 = 6IT + 4I4Ω 10 = 10IT – 4I4Ω

(1) (2)

IT = 1A, I4Ω = 0 𝐸𝑡ℎ = 2 × 1 + 4 × 0 = 2𝑉 102

CHAPTER 9

22.

a. From Problem 9, RN = RTh = 7.6 Ω

𝑅𝑇 = 6Ω + 9Ω || 4Ω = 6Ω + 2.769Ω

𝐼𝑠 =

𝐼𝑁 =

23.

𝐸 𝑅𝑇

=

18𝑉 8.769Ω

9Ω(2.0527A) 9Ω+4Ω

b.

RTh = 7.6 Ω, ETh = INRN = (1.421 A)(7.6 Ω) = 10.8 V

c.

same results

a.

From Problem 10, RN = RTh = 4.1 kΩ

= 2.0527 A = 1.421 A

2.4 kΩ(120 mA) = 87.80 mA 2.4 kΩ + (1.2 kΩ || 3.3 kΩ) 1.2 kΩ(87.80 mA) IN = = 23.41 mA 1.2 kΩ + 3.3 kΩ I¢ =

b. c.

From Problem 12, RN = RTh = 2 Ω 3Ω + 18 V −

8Ω IN



24.

RTh = 4.1 kΩ, ETh = INRN = (23.41 mA)(4.1 kΩ) = 96 V same results.

12 V

IN 10 Ω ⇒ 6 A





1.5 A

+ 𝐸

18𝑉

I1 = � 1 � = � � = 6A 𝑅 3Ω 1 𝐸2

9𝑉

𝐼2 = � � = � � = 1.5A 𝑅 6Ω 2

25.

𝐼𝑁 = I1 – I2 = 6A – 1.5A = 4.5A

From Problem 13, RN = RTh = 1.58 kΩ

IN = 8 mA − 7.27 mA = 0.73 mA 26.

From Problem 14, RN = RTh = 7.56 Ω

CHAPTER 9

103

2A

4 Ω(2 A) 4 Ω + 3 Ω + 6 Ω || 2Ω 4 Ω(2 A) = = 0.941 A 7 Ω + 1.5 Ω 12 Ω(0.941 A) 2 ΩI¢ = I¢¢ = = 0.235 A 8Ω 2 Ω+6 Ω I¢ =

I'' 6Ω 2A

2Ω 4Ω

I' 3Ω

IN = 2 A − I¢¢ = 2 A − 0.235 A = 1.765 A 27.

From Problem 16, RN = RTh = 10 Ω

RT = 20 Ω + 5 Ω (12 Ω + 1.778 Ω) = 23.67 Ω E 20 V Is = T = = 844.95 mA RT 23.67 Ω 5 Ω(844.95 mA) =224. 98 mA I12Ω = 5Ω + (12 Ω + 1.778 Ω) 16 Ω(224.98 mA) = 200 mA IN = 16 Ω + 2 Ω 28.

From Problem 18, RN = RTh = 6.08 kΩ IN: Starting with figure from problem 18: I'

7.86 mA

3.3 kΩ

IN

1.58 kΩ

5 mA

1.2 kΩ IN

and coverting sources:

I'

1.58 kΩ + 12.42 V −

3.3 kΩ

1.2 kΩ

+ −

16 V

12.42 V - 6 V I¢ = 1.58 kΩ + 3.3 kΩ + 1.2 kΩ = 1.06 mA 104

CHAPTER 9

IN = I¢ + 5 mA = 1.06 mA + 5 mA = 6.06 mA 29.

From Problem 21, RN = RTh = 2 Ω

IN =

30.

2V =1A 2Ω

R N: 80 Ω 40 Ω

RN =

20 Ω

RN

1 = 11.43 Ω 1 1 1 + + 40 Ω 20 Ω 80 Ω

40 Ω

20 Ω

4A

80 Ω

200 mA

Ø IN = 4 A + 200 mA = 4.2 A

}

source conversion

31.

a.

R = RTh = 7.6 Ω from Problem 9

b.

ETh = 10.8 V from Problem 9 𝐸2

32.

𝑡ℎ

a.

R = RTh = 2 Ω from Problem 12

b.

ETh = 9 V from Problem 12 𝐸2

33.

(10.8)2

Pmax = �4𝑅𝑡ℎ � = �4(7.6Ω)� = 3.84W

𝑡ℎ

a. b.

(9𝑉)2

Pmax = �4𝑅𝑡ℎ � = �4(2Ω)� = 10.125W

R = RTh = 9.556 Ω from Problem 14 ETh = 29.333 V from Problem 14 𝐸2

(29.333)2

Pmax = �4𝑅𝑡ℎ � = �4(9.556Ω)� = 22.51 W 𝑡ℎ

CHAPTER 9

105

34.

35.

a.

R = RTh = 6.08 kΩ from Problem 18

b.

ETh = 36.8 V from Problem 18 E2 (36.8 V)2 = 55.51 mW Pmax = Th = 4RTh 4(6.08 kΩ)

a.

R = RN = RTh = 2.18 Ω b.

36.

37.

Pmax =

2 (13.33 A)2 2.18 Ω I N RN = 96.84 W = 4 4

é E ù2 Th Pmax = ê ú R4 ë RTh + R4 û with R1 = 0 Ω, ETh is a maximum and RTh is a minimum. \ R1 = 0 Ω a. V, and therefore V4 wll be its largest value when R2 is as large as possible. Therefore, choose R2 = open-circuit (∞ Ω) and P4 = b.

38.

will be a maximum.

No, examine each individually.

The voltage VL will be maximum, when R = 500 Ω because the full voltage E will appear across RL. 𝑉2

𝐸2

(16𝑉)2

Pmax = �𝑅𝐿 � = �𝑅 � = � 100Ω � = 2.56 W 𝐿

39.

𝐿

IT≠ = 4 A + 7 A = 11 A RT = 10 Ω || 6 Ω || 3 Ω = 1.67 Ω VL = ITRT = (11 A)(1.67 Ω) = 18.37 V IL =

106

= 6.12 A

CHAPTER 9

40.

41.

-5 V / 2.2 kΩ + 20 V / 8.2 kΩ = 0.2879 V 1/ 2.2 kΩ + 1/ 8.2 kΩ 1 = 1.7346 kΩ Req = 1/ 2.2 kΩ + 1/ 8.2 kΩ Eeq 0.2879 V = = 39.3 µA IL = Req + RL 1.7346 kΩ + 5.6 kΩ VL = ILRL = (39.3 µA)(5.6 kΩ) = 220 mV

Eeq =

400𝑉

𝑅𝐿

42.

20𝑉

10𝑉

𝐼𝑇 = � � – �80𝑉� – �50𝑉� = 5A – 0.25A – 0.2A 80𝑉 𝑅𝑇 = 300Ω || 80Ω || 80Ω || 50Ω = 20.69Ω 𝑉𝐿 = 𝐼𝑇 𝑅𝑇 = (4.55A) (20.69Ω) = 94.14 V 𝑉 94.4 𝑉 𝐼𝐿 = 𝐿 = � � = 0.314 A 300𝑉

(4 A)(4.7 Ω) + (1.6 A)(3.3 Ω) 18.8 V + 5.28 V = 3.01 A = 8Ω 4.7 Ω + 3.3 Ω Req = 4.7 Ω + 3.3 Ω = 8 Ω

Ieq =

IL =

= 2.25 A

VL = ILRL = (2.25 A)(2.7 Ω) = 6.08 V 43.

=

(4 mA)(8.2 kΩ) + (8 mA)(4.7 kΩ) - (10 mA)(2 kΩ) 8.2 kΩ + 4.7 kΩ + 2 kΩ

=

= 3.38 mA

Req = 8.2 kΩ + 4.7 kΩ + 2 kΩ = 14.9 kΩ Eeq I eq (14.9 kΩ)(3.38 mA) = = 2.32 mA IL = 14.9 kΩ + 6.8 kΩ Req + RL VL = ILRL = (2.32 mA)(6.8 kΩ) = 15.78 V 44.

15 KΩ || (8 KΩ + 7 KΩ ) = 15 KΩ || 15 KΩ = 7.5 KΩ 7.5KΩ(80V)

Vab = � � = 50V 7.5KΩ+4.5KΩ Iab = �

CHAPTER 9

50𝑉 � 15KΩ

= 3.333mA

107

45.

10 V - 8 V 2 kΩ + 0.51 kΩ + 1.5 kΩ = 498.75 µA V0.51kΩ = (498.75 µA)(0.51 kΩ) = 0.25 V = 10 V - 0.25 V = 9.75 V Iba =

46.

Vab = 0 V (short) Iab = 0 A (open) R2 any resistive value

\ R2 = short-circuit, open-circuit, any value 47.

a. b.

Is = �

30𝑉 � 8KΩ+24/3KΩ

𝐼 3

I = � 𝑆 � = 0.625 mA Is = �

c. 48.

= 1.875 mA

30𝑉 � 24KΩ+8KΩ/12KΩ

= 1.042 mA, I =

12𝑘(𝐼𝑠) 12𝑘+8𝑘

= 0.625mA.

yes

(a)

10 V 4 kΩ || 8 kΩ + 4 kΩ || 4kΩ 10 V = 2.67 kΩ + 2 kΩ

IT =

=

= 2.14 mA

8 Ω( IT ) = 1.43 mA, I2 = IT/2 = 1.07 mA 8Ω+4Ω I = I1 - I2 = 1.43 mA - 1.07 mA = 0.36 mA

I1 =

108

CHAPTER 9

(b)

(8 kΩ || 4 kΩ)(10 V) 8 kΩ || 4 kΩ + 4 kΩ || 4kΩ = 5.72 V

V1 =

I1 =

= 0.71 mA

V2 = E - V1 = 10 V - 5.72 V = 4.28 V I2 =

= 1.07 mA

I = I2 - I1 = 1.07 mA - 0.71 mA = 0.36 mA 49.

a.

b.

IR2 = �

𝑅1 (𝐼) � 𝑅1 +𝑅2 +𝑅3

=�

3Ω(9A) � 3Ω+2Ω+4Ω

IR1 = �

𝑅2 (𝐼) � 𝑅1 +𝑅2 +𝑅3

=�

2Ω(9A) � 3Ω+2Ω+4Ω

V = IR2. 𝑅2 = (3A) (2Ω) = 6V

= 3A

= 2A

V = IR1.R1 = (2A)(3Ω) = 6V c.

CHAPTER 9

YES.

109

Chapter 10 1.

(a)

E =

= 36 ¥ 103 N/C

(b)

E =

= 36 ¥ 109 N/C

E (1 mm): E (2 m) = 36 × 109: 36 × 103 = 1 × 106 𝑘∅

𝑘∅

2.

∈ = � 2� = � = � 𝑟 ∈

3.

C = [∅/V] = �

4. 5.

9×103 (3𝜇𝑐) 96 𝑁/𝑐

1700𝜇𝐶 �= 34𝑉

= 16.77m

50𝜇𝐹

∅ = CV = 0.25𝜇𝐹 (220𝑉) = 55𝜇𝐶 a.

é 1m ù 1≤ ê ú = 25.4 mm ë39.37¢¢ û

= 19.69 V/m

E =

b. E =

6.



= 1.97 kV/m 180𝜇𝐶

V= � � = � � = 18.37 V 𝐶 9.8𝜇𝐹 𝑉

18.37𝑉

∈=� �=� � = 6.123 KV/m 𝑑 3𝑚𝑚

7.

0.2" �

1𝑚 � 39.37"

= 5.08 mm 0.2𝑚2

𝐴

C = 8.85×10−12 ∈𝑟 � � = 8.85 × 10−12 (1) �5.08𝑚𝑚� = 348.43pF 𝑑 𝐴

0.2𝑚2

8.

C = 8.85 × 10−12 ∈𝑟 �𝑑� = 8.85 × 10−12(2.5) �5.08𝑚𝑚� = 871.06pf

9.

C = 8.85 × 10−12 ∈𝑟 � � = 8.85 × 10−12 𝑑

𝐴

d=�

8.85×10−12 (4)(0.18𝑚2 ) � 2.5𝜇𝑓

d = 2.55 𝜇𝑚 110

CHAPTER 10

10. 11.

12.

𝐶

0

a.

C = 8.85 ¥ 10-12(7)

b.

E =

c.

Q = CV = (24.78 nF)(200 V) = 4.96 µC

a.

C=

b. c.

C = 2(4.7 µF) = 9.4 µF C = 20(4.7 µF) = 94 µF æ1 ö (4)ç ÷ è 3 ø (4.7 µF) = 25.1 µF C= æ1 ö ç ÷ è4 ø

d.

13.



= 24.78 nF

80 V V = = 400 kV/m d 0.2 mm

(4.7 µF) = 2.35 µF

8.85×10−12 ∈𝑟 𝐴 � 𝐶

=�

D = 152.57 𝜇𝑚 � 6.007 mils�

14.

7.3𝜇𝐹

C = ∈𝑟 𝐶0 = � � = � � = 5 (mica) 𝐶 1460𝜇𝐹

8.85×10−12 (5)(0.03𝑚2 ) �= 8700𝑝𝐹

10−6 𝑚 39.37" 1000𝑚 � � 1𝑚 � � 1" � 1𝜇𝑚

5000𝑉 � 𝑚𝑖𝑙

152.57𝜇𝑚

= 6.007m

= 30.035KV = 30.04KV

mica:

= 0.24 mils

= 6.10 µm

0.24 mils

(22 µF)/°C = 4400 pF/°C

15.

[80°C] = 0.35 µF 16. 17. 18. 19.

j=+ 5% , size = 60pF + 3pF , 57pF→ 63𝑝𝐹 − −

f=+ 1% , size = 67 × 10 = 670 𝜇𝐹 −

+ −

6.7pF

663.3𝜇𝐹 → 676.7𝜇𝐹

K=+ 280pF 10% , size = 28 × 102 pF = 2800pF + − − a. τ = RC = (10 ¥ 103 Ω)(10 µF) = 100 ms

CHAPTER 10

2520pF → 3080𝑝𝐹

111

b.

uC = E(1 - e-t/τ) = 20 V(1 - e- t/100 ms)

c.

1τ = 0.632(20 V) = 12.64 V, 3τ = 0.95(20 V) = 19 V 5τ = 0.993(20 V) = 19.87 V

d.

iC =

20 V -t/τ e = 2 mAe- t/100 ms 10 kΩ uR = Ee-t/τ = 20 Ve- t/100 ms

e.

20.

21.

υC = E(1 - e-t/τ) = 20 V(1 - e- t/1s)

a.

τ = RC = (100 kΩ)(10 µF) = 1 s

b.

c.

1τ = 12.64 V, 3τ = 19 V, 5τ = 19.87 V

d.

e.

Same as problem 21 with 5τ = 5 s and Im = 200 µA

a.

τ = RC = (2.2 kΩ + 3.3 kΩ)1 µF = (5.5 kΩ)(1 µF) = 5.5 ms

b.

uC = E(1 - e-t/τ) = 100 V(1 - e- t/5.5 ms)

c.

1τ = 63.21 V, 3τ = 95.02 V, 5τ = 99.33 V

d.

iC =

e-t/τ =

20 V -t/τ e = 200 µA e- t/1s 100 kΩ υR = Ee-t/τ = 20V e- t/1s iC =

e-t/τ = 18.18 mAe- t/5.5 ms

3.3 kΩ (100 V) = 60 V 3.3 kΩ + 2.2 kΩ = 60 Ve- t/5.5 ms

VR 2 =

e.

112

CHAPTER 10

22.

a.

R = 68 kΩ + 22 kΩ = 90 kΩ τ = RC = (90 kΩ)(18 µF) = 1.62 s

b.

uC = E(1 - e-t/τ) = (80 V - 30 V)(1 - e-t/τ) uC = 50 V(1 - e−t/1.62s)

c.

iC =

e-t/τ =

50 V -t/τ e = 555.56 µAe- t/1.62s 90 kΩ

d.

23.

a. 200 𝜇𝑠

−100𝜇𝑠

b. Vc = 20 (1 – �𝑒 200𝜇𝑠 � = 20V (1 – 𝑒 −0.5 ) = 20V (1 – 0.607) = 20V(0.393) = 7.86 V −2𝑚𝑠

c. Vc = 20V (1 – �𝑒 200𝜇𝑆 � 24.

a. b. c. d. e. f.

= 20V (1 – 𝑒 −10 ) = 20V ( 1 – 45.4 × 10−6) = 20(999.95 × 10−3) = 19.999 V ≈ 20V

t = 20 ms, 5t = 5(20 ms) = 100 ms t 20 ms = t = RC, R = = 2 kΩ C 10 µF uC (20 ms) = 40 mV(1 - e-20ms/20ms) = 40 mV(1 - e-1) = 40 mV(1 - .368) = 40 mV(0.632) = 25.28 mV uC = 40 mV(1 - e-10) = 40 mV(1 - 45 ¥ 10-6) @ 40 mV Q = CV = (10 µF)(40 mV) = 0.4 µC t = RC = (1000 ¥ 106 Ω)(10 µF) = 10 ¥ 103 s 5t = 50 ¥ 103 s

25.

= 13.89 h

a.

t = RC = (4.7 kΩ)(56 µF) = 263.2 ms

b.

uC = E(1- e-t/t) = 22 V(1 - e- t/263.2ms) 22 V - t / 263.2ms E - t /t e = e iC = = 4.68 mAe- t/263.2ms 4.7 kΩ R

c.

uC(1 s) = 22 V(1 - e-1s/263.2ms) = 22 V(1 - e-3.8) = 22 V(1 - 22.37 ¥ 10-3) = 21.51 V iC (1 s) = 4.68 mAe-1s/263.2ms = 4.68 mA(22.37 ¥ 10-3) = 0.105 mA

d.

uC = 21.51 Ve-t/263.2ms iC =

CHAPTER 10

= 4.58 mAe- t/263.2ms

113

e.

26.

a.

t = RC = (3 kΩ + 2 kΩ)(2 µF) = 10 ms uC = 30 V(1 - e- t/10ms) 30 V - t /10ms e iC = = 6 mA- t/10ms 5 kΩ = iC R1 = (6 mA)(3 kΩ)e-t/10ms = 18 Ve- t/10ms

b.

100ms: e-10 = 45.4 ¥ 10-6 uC = 30 V(1 - 45.4 ¥ 10-6) = 30 V iC = 6 mA(45.4 ¥ 10-6) = 0.27 µA = 18 V(45.4 ¥ 10-6) = 0.82 mV

c.

200 ms: t¢ = R2C = (2 kΩ)(2 µF) = 4 ms uC = 30 Ve- t/4ms 30 V - t / 4ms e iC = = -15 mAe- t/4ms 2 kΩ At t = 0: u R 2 = iCR2 = (6 mA)(2 kΩ)e−t/10 ms = 12 Ve−t/10 ms At t = 200 ms: u R 2 = −(15 mA)(2 kΩ)e−t/4 ms = −30 Ve−t/4 ms

d.

114

CHAPTER 10

12 V

30 V

27.

a.

t = RC = (120 kΩ)(47 pF) = 5.64 µs u C = 40 V(1 − e−t/5.64µs) 40 V - t / 5.64µs e iC = = 333.33 µAe−t/5.64µs 120 kΩ

b.

t¢ = RC = (270 kΩ)(47 pF) = 12.69 µs At 5t uC = 40 V(1 − e-5t/t) = 40 V(1 − e-5) = 40 V(1 − 6.74 × 10−3) = 39.73 V \ uC = 39.73 Ve- t/12.69µs 39.73 V - t /12.69 ms e iC = = −331 µAe−t/12.69µs 270 kΩ

c. 40

39.73 V

28.2 63.45 µs 333.33

28.2 63.45 µs 331

CHAPTER 10

115

28.

a. b. c.

29.

𝜏 = RC = (2mΩ)(2000𝜇𝐹) = 4𝜇𝑠 5 𝜏 = 20 𝜇𝑠 𝑉 18𝑉 Im = � � = � � = 9KA 𝑅 2𝑚Ω YES.

a.

uC = Vf + (Vi - Vf)e-t/t t = RC = (4.7 kΩ)(4.7 µF) = 22.1 ms, Vf = 40 V, Vi = 6 V uC = 40 V + (6 V - 40 V)e-t/22.1ms uC = 40 V - 34 Ve- t/22.1ms

b.

Initially VR = E + uC = 40 V − 6 V = 34 V 34 V - t / 22.1ms V - t /t = e iC = R e = 7.23 mA e- t/22.1ms R 4.7 kΩ

c.

30.

116

a.

t = RC = (4.7 kΩ)(4.7 µF) = 22.1 ms, Vf = 40 V, Vi = −40 V uC = Vf + (Vi − Vf)e-t/t = 40 V + (−40 V − 40 V)e-t/22.1ms uC = 40 V − 80 Ve- t/22.1ms

b.

Initially VR = E + uC = 40 V − (−40 V) = 80 V 80 V - t / 22.1ms V e and iC = R = = 17.02 mAe- t/22.1ms 4.7 kΩ R

CHAPTER 10

c.

υC +40 V

5τ = 110.5 ms 0

t

−40 V iC

17.02 mA

5τ = 110.5 ms 0

31.

a.

t = RC = (4.7 kΩ)(4.7 µF) = 22.1 ms, Vf = 40 V, Vi = 40 V uC = Vf + (Vi − Vf)e-t/t = 40 V + (40 V − 40 V)e-t/t = 40 V + 0e-t/t uC = 40 V

b.

Initially VR = E − uC = 40 V − 40 V = 0 V V - t /t 0 V - t /t = e and iC = R e =0A R R

c.

40 V

0

32.

t

υC

iC

40 V

0A t

0A t

t = RC = (R1 + R2)(C) = (1 kΩ + 2.2 kΩ)(180 µF) = (3.2 kΩ)(180 µF) = 576 ms uC = 20 Ve- t/576ms Vi 20 V - t / 576ms e- t /t = e iC = = 6.25 mAe- t/576ms R1 + R2 3.2 kΩ 2.2 kΩ (20 V) = 13.75 V VDR: VR 2 = 2.2 kΩ + 1 kΩ u R 2 = 13.75 Ve- t/576ms

CHAPTER 10

117

iC

υC 6.25 mA

20 V

13.75 V

0A 0 5τ = 2.88 s

t

0 5τ = 2.88 s

t

33.

uC = Vf + (Vi -Vf)e-t/t t = RC = (820 Ω)(3300 pF) = 2.71 µs, Vf = -20 V, Vi = −10 V uC = -20 V + (−10 V - (-20 V))e-t/2.71µs uC = -20 V + 10 Ve- t/2.71µs -(20 V - 10 V) -10 V = Im = = −12.2 mA 820 Ω 820 Ω iC = iR = -12.2 mAe- t/2.71µs

34.

a.

118

υR2

5τ = 2.88 s

R = 10 kΩ + 8.2 kΩ = 18.2 kΩ τ = RC = (18.2 kΩ)(6.8 µF) = 123.76 ms uC = Vf + (Vi − Vf)e−t/τ Vf = 20 V + 40 V = 60 V Vi = −8 V uC = 60 V + (−8 V − 60 V)e−t/123.76 ms uC = 60 V − 68 Ve−t/123.76 ms 8 V + 20 V + 40 V Im = = 3.74 mA 18.2 kΩ −t/123.76 ms iC = 3.74 mAe CHAPTER 10

t

b.

35.

a.

Cτ = 20 µF + 47 µF = 67 µF τ = RC = (56 kΩ)(67 µF) = 3.75 s uC = 18 V(1 − e−t/3.75 s) υC

0

18 V

5τ = 18.75 ms

b.

uC = 18 V(1 − e−10s/5.75 s) = 18 V(1 − e−2.67) = 18 V(1 − 69.25 ¥ 10−3) = 18 V(0.931) = 16.76 V

c.

uC = 18 V(1 − e−5) = 18 V(1 − 6.74 ¥ 10−3) = 18 V(.993) = 17.88 V Q20µF = CV = (20 µF)(17.88 V) = 357.6 µC Q47µF = CV = (47 µF)(17.88 V) = 840.36 µC

CHAPTER 10

t

119

36.

a.

Network redrawn: +

321.4 µA 10 kΩ

CT = 67µF ⇒

56 kΩ

10 kΩ

67µF ⇒

}



56 kΩ 18 V

source conversion

8.48 kΩ

source conversion + −

8.48 kΩ 2.73 V

+ 67µFυC −

τ = RC = (8.48 kΩ)(67 µF) = 568.2 ms uC = 2.73 V(1 − e−t/568.2 ms)

37.

120

b.

uC = 2.73 V(1 − e−10s/568.2 ms) = 2.73 V(1 − e−17.6) = 2.73 V(1 − 22.72 ¥ 10−9) @ 2.73 V

c.

uC = 2.73 V(1 − e−5) = 2.73 V (0.993) = 2.72 V Q20µF = CV = (20 µF)(2.72 V) = 54.4 µC Q47µF = CV = (47 µF)(2.72 V) = 127.84 µC

a.

uC = 140 mV(1 - e-1ms/2 ms) = 140 mV(1 - e-0.5) = 140 mV(1 - 0.6065) = 140 mV(0.3935) = 55.59 mV

b.

uC = 140 mV(1 - e-10) = 140 mV(1 - 45.4 ¥ 10-6) @ 139.99 mV

c.

100 mV = 140 mV(1 - e-t/2 ms) 0.714 = 1 - e-t/2 ms 0.286 = e-t/2 ms loge 0.286 = loge e-t/2 ms 1.252 = -t/2 ms t = 1.252 (2 ms) = 2.5 ms

d.

uC = 138 mV = 140 mV(1 - et/2 ms) 0.986 = 1 - e-t/2 ms -14 × 10−3 = -e-t/2 ms loge 14 × 10−3 = -t/2 ms -4.268 = -t/2 ms t = (4.268)(2 ms) = 8.54 µs

CHAPTER 10

38.

𝜏 = RC = (44 K Ω)(30 𝜇𝐹) = 1.32s −𝑡

−𝑡

Vc = 15V (1 – �𝑒 1.32𝑠 �) = 15V – 15V 𝑒 1.32𝑠 −𝑡

10V = 15V – 15V𝑒 1.32𝑠 −𝑡

–5V = –15V𝑒 1.32𝑠 −𝑡

1

�3� = 𝑒 1.32𝑠

−𝑡

0.333 = 𝑒 1.32𝑠 loge0.333 = �

−𝑡 � 1.32𝑠 −𝑡 �1.32𝑠�

–1.0996 = t = 1.0996(1.32s) = 1.45s

39.

𝑉

T= –𝜏 loge�1 − � 𝐸𝑐 ��

12s = –𝜏

12S = –𝜏 12S =

loge�1 − �

15𝑉 �� 20𝑉

loge[1 − 0.25]

287.68 × 10−3 𝜏

𝜏=�

12𝑆 � 0.28768

𝜏 = RC = 𝜏

= 41.67 s

41.67𝑆

R = �𝐶 � = �800𝜇𝐹 � = 52.09KΩ 40.

a.

τ = RC = (12 kΩ + 8.2 kΩ)(6.8 µF) = 137.36 ms uC = 60 V(1 − e−t/τ) 48 V = 60 V(1 − e−t/τ) 0.8 = 1 − e−t/τ 0.2 = 1 − e−t/τ loge0.2 = logee−t/τ −1.61 = −t/τ t = (1.61)τ = (1.61)(137.36 ms) = 221.15 ms

b.

iC =

c.

E - t /t 60 V - t / t e = e R 20.2 kΩ

= 2.97 mAe−t/137.36 ms iC(221.15 ms) = 2.97 mAe−221.15 ms/137.36 ms = 2.97 mAe−1.61 = 2.97 mA (199.89 × 10−3) = 0.594 mA t = 2τ iC = 2.97 mAe−2τ/τ = 2.97 mAe−2 = 0.4 mA 0.135 P = EI = (60 V)(0.4 mA) = 24 mW

CHAPTER 10

121

41.

a.

um = uR = Ee-t/t = 60 Ve-1t/t = 60 Ve-1 = 60 V(0.3679) = 22.07 V

b.

iC =

= 6 µAe-2

= 6 µA(0.1353) = 0.81 µA

42.

c.

uC = E(1 - e-t/t) 50 V = 60 V(1 - e-t/2 s) 0.8333 = 1 - e-t/2 s loge 0.1667 = -t/2 s t = -(2 s)(-1.792) = 3.58 s

a.

Thevenin’s theorem: RTh:

t = RC = (10 MΩ)(0.2 µF) = 2 s

ETh: ¨RTh = 8 kΩ || 24 kΩ = 6 kΩ

ETh =

-24 kΩ (20 V) = −15 V 24 kΩ + 8 kΩ

t = RC = (10 kΩ)(15 µF) = 0.15 s uC = E(1 - e-t/t) = −15 V(1 - e- t/0.15 s)

iC =

122

15 V - t / 0.15 E - t /t e =e = −1.5 mAe- t/0.15 s 10 kΩ R

CHAPTER 10

b.

43.

a.

Source conversion and combining series resistors: E = −(4 mA)(6.8 kΩ) = −27.2 V RT = 6.8 kΩ + 1.5 kΩ = 8.3 kΩ Vf = −27.2 V, Vi = 10 V t = RC = (8.3 kΩ)(2.2 µF) = 18.26 ms uC = Vf + (Vi - Vf)e-t/t = −27.2 V + (10 V - (−27.2 V))e-t/18.26 ms uC = −27.2 V + 37.2 Ve- t/18.26 ms uR(0+) = −27.2 V - (−27.2 V))e-t/18.26 ms = −37.2 V 32.7 V - t /18.26ms e iC = 8.3 kΩ iC = −4.48 mAe- t/18.26 ms

CHAPTER 10

123

b.

44.

a.

RTh = 3.9 kΩ + 0 Ω || 1.8 kΩ = 3.9 kΩ ETh = 36 V

+ 18 µF 12 V −

t = RC = (3.9 kΩ)(18 µF) = 70.2 ms uC = Vf + (Vi - Vf)e-t/t = 36 V + (+12 V - 36 V)e-t/70.2 ms uC = 36 V - 24 Ve- t/70.2 ms uR(0+) = 24 V − 12 V = 24 V 24 V - t / 70.2ms e iC = 3.9 kΩ iC = 6.15 mAe- t/70.2 ms

b.

351 ms

124

351 ms

CHAPTER 10

45.

Source conversion: E = IR1 = (5 mA)(0.56 kΩ) = 2.8 V R¢ = R1 + R2 = 0.56 kΩ + 3.9 kΩ = 4.46 kΩ



RTh = 4.46 kΩ || 6.8 kΩ = 2.69 kΩ I=

= 0.107 mA

ETh = 4 V - (0.107 mA)(6.8 kΩ) = 4 V - 0.727 V = 3.27 V

uC = 3.27 V(1 - e-t/t) t = RC = (2.69 kΩ)(20 µF) = 53.80 ms uC = 3.27 V(1 - e- t/53.80 ms) iC = = 1.22 mA e- t/53.80 ms

46.

a.

CHAPTER 10

t = RC = (6.8 kΩ)(39 µF) = 265.2 ms uC = Vf + (Vi - Vf)e-t/t = −20 V + (−8 V - (−20 V))e-t/265.2 ms uC = −20 V + 12 Ve- t/265.2 ms uR(0 +) = +8 V - 20 V = −12 V 12 V - t / 265.2ms e iC = 6.8 kΩ iC = −1.76 mAe- t/265.2 ms

125

b.

47.

𝑅𝑡ℎ = 3 M Ω // 12 M Ω = 2.4 M Ω 12M Ω (24V) 𝐸𝑡ℎ = � � = 19.2 V

a.

12M Ω+3M Ω −𝑡

b.

𝜏 = 𝑅𝑡ℎ C = (2.4 M Ω) (1 𝜇𝐹)= 2.4s

VC = 𝐸𝑡ℎ (1 – �𝑒 𝜏 � = 19.2V (1 – [𝑒−4] = 19.2V(1 – 0.0183) = 18.85v

−𝑡

𝐸

Ic = � � 𝑒 𝜏 𝑅 4𝜇𝐴 =

19.2𝑉 −𝑡 𝑒𝜏 2.4M Ω −𝑡

c.

0.5 = 𝑒 2.4𝑠 −𝑡 loge0.5 = 2.4𝑠 t = –(2.4s) (–0.693) = 1.66s Vmeter = VC

−𝑡

VC = 𝐸𝑡ℎ (1 – �𝑒 𝜏 �

−𝑡

15V = 19.2V((1 – �𝑒 2.4𝑠 �

−𝑡

15V = 19.2 – 19.2 �𝑒 2.4𝑠 � −𝑡

– 4.2= – 19.2V �𝑒 2.4𝑠 � −𝑡

0.218 = �𝑒 2.4𝑠 �

−𝑡

loge(0.218) = 2.4𝑠 t = –(2.4s) (–1.52) t = 3.65s 126

CHAPTER 10

48. 0 Æ 1 ms: iC = 2 ¥ 10-6

(20 V) = 40 mA 1 ms

1 Æ 3 ms: iC = 2 ¥ 10-6

= 0 mA

3 Æ 6 ms: iC = −2 ¥ 10-6

= −6.67 mA

6Æ 12 ms: iC = -2 ¥ 10-6

(10 V) = −3.33 mA 6 ms

iC(mA)

80 60

40

40 20 0

1

2

3

−20

4 5 −6.67

6

7

8

9

10 −3.33

11

12

t (ms)

−40 −60 −80

49.

(5 V) = -1.18 A 20 µs (10 V) = 4.7 A 20 Æ 30 µs: iC = 4.7 µF 10 µs (10 V) = −1.57 A 30 Æ 60 µs: iC = −4.7 µF 30 µs 0 Æ 20 µs: iC = −4.7 µF

(0 V) =0A 10 µs (10 V) = 4.7 A 70 Æ 80 µs: iC = 4.7 µF 10 µs 60 Æ 70 µs: iC = 4.7 µF

80 µs Æ 100 µs: iC = −4.7 µF

CHAPTER 10

(5 V) = −1.175 A 20 µs

127

iC(A) 10 8 6

4.7

4.7

4 2

0A

0

10

−2

20

30

−1.18 A

40

50

60

0 70

−1.57

80

90

100

t (ms)

−1.175

−4 −6 −8

50.

iC =

fi 0 Æ 4 ms: iC = 0 mA

=0V

4 Æ 6 ms: iC = -40 mA 6 Æ 16 ms: iC = +40 mA 16 Æ 20 ms: iC = -80 mA 20 Æ 25 ms: iC = 0 mA

=

(-40 mA) = −4 V

=

(40 mA) = +20 V

(4 ms) (-80 mA) = −16 V 20 µs =0V =

0V

51.

52.

6 𝜇𝐹 + 5 𝜇𝐹 = 11 𝜇𝐹 , 8 𝜇𝐹 + 15 𝜇𝐹= 23 𝜇𝐹 CT = �

(11𝜇𝐹)(23𝜇𝐹) 11𝜇𝐹+23𝜇𝐹

[𝐶𝑇′ ] = �

� = 7.44 𝜇𝐹

(8𝜇𝐹)(12𝜇𝐹) 8𝜇𝐹+12𝜇𝐹

�= 4.8𝜇𝐹

�𝐶𝑇" � = [𝐶𝑇′ ] + 12 𝜇𝐹 = 4.8 𝜇𝐹+ 12 𝜇𝐹 = 16.8 𝜇𝐹 [𝐶𝑇′′′ ] = �

128

CT = �

�𝐶𝑇" �(8𝜇𝐹) �𝐶𝑇" �+8𝜇𝐹

(8𝜇𝐹)(1𝜇𝐹) 8𝜇𝐹+1𝜇𝐹

�= �

(16.8𝜇𝐹)(8𝜇𝐹) 16.8𝜇𝐹+8𝜇𝐹

� = 0.889𝜇𝐹

� = 1𝜇𝐹

CHAPTER 10

53.

10 µF || 100 µF = 9.09 µF 20 µF + 9.09 µF = 29.09 µF QT = CTE = (29.09 µF)(20 V) = 581.8 µC Q20µF = CV = (20 µF)(20 V) = 400 µC V20µF = 20 V QT¢ = CT¢ E = (9.09 µF)(20 V) = 181.8 µC QT¢ = Q10µF = Q100µF = 181.8 µC Q 181.8 µC = = 18.18 V V10µF = C 10 µF Q 181.8 µC = = 1.818 V V100µF = C 100 µF

54.

360 𝜇𝐹+200 𝜇𝐹= 560 𝜇𝐹 CT �

(470𝜇𝐹)(560𝜇𝐹) 470𝜇𝐹+560𝜇𝐹

� = 255.53 𝜇𝐹

QT = CTE = 255.53 𝜇𝐹 (70V) = 17.89mC 𝑄

𝑉3 = � 𝐶3 � = � 3

55.

17.89𝑚𝐶 � 470𝜇𝐹

= 38.06 𝑉

V1 = V2 = E – V3 = 70V – 38.06 V = 31.94V Q1= V1 C1 = 11.498 mC Q2 = V2C2= (31.94v)(200 𝜇𝐹)= 6.39 mC

Steady state so ignore 10 KΩ resistor [𝐶𝑇′ ] = 330 𝜇𝐹 + 100 𝜇𝐹= 430 𝜇𝐹 CT = �

�𝐶𝑇′ � (220𝜇𝐹) �𝐶𝑇′ �+220𝜇𝐹

�=�

(430𝜇𝐹)(220𝜇𝐹) 430𝜇𝐹+220𝜇𝐹



CT = 145.54 𝜇𝐹 (𝑄𝑇 ) = 𝑄1 = CTE = (145.45𝜇𝐹) (30V) = 4.37mC ∅

4.37mC

𝑉1= � 𝐶1 � = � 220𝜇𝐹 � = 19.86V

56.

1

V3 = V2 = E – V1 = 30V – 19.86 V = 10.14 V 𝑄2 = C2 V2 = 330 𝜇𝐹(10.14 V) = 3.346 mC 𝑄3 = C3 V3 = (100 𝜇𝐹) (10.14 v) = 1.014 mC

V4kΩ =

= 32 V = V0.08µF

Q0.08µF = (0.08 µF)(32 V) = 2.56 µC V0.04µF = 48 V Q0.04µF = (0.04 µF)(48 V) = 1.92 µC 57. 58.

1

1

WC = � �C𝑉 2 = � �(140 pF) (20 V)2 = 28𝜇𝐽 2 2

C = 8𝜇𝐹, W = 1500J 𝑄2

W = �2𝐶 �

Q = √2𝐶𝑊 = �2(8𝜇𝐹)(1500𝐽) Q = 0.155C

CHAPTER 10

129

59.

a.

(220 kΩ + 3.3 kΩ)(12 V) = 9.85 V 2.2 kΩ + 3.3 kΩ + 1.2 kΩ (3.3 kΩ)(12 V) V100µF = = 5.91 V 2.2 kΩ + 3.3 kΩ + 1.2 kΩ

V200µF =

1 (200 µF)(9.85 V)2 = 970 mJ 2 1 W100µF = (100 µF)(5.91 V)2 = 1.75 mJ 2

W200µF =

60.

a. b. c. d. e.

130

1

WC = � �C𝑉 2 2 1

= � �(1500𝜇𝐹 ) (120V)2 = 10.8J 2 Q = CV = (1500𝜇𝐹)(120 V) = 0.18 C 𝑄

I = � �=� 𝑡

0.18𝑐 1 2500𝑠

𝑊

� = 450 A 10.8𝐽

P = Vav Iav = � � = � 𝑡 𝑄

0.18𝑐

1 𝑠 2500

t=� �=� � = 15s. 𝐼 12𝑚𝐴

� = 27 KW

CHAPTER 10

Chapter 11 1.

2.

B=

b. c.

0.04 T F = NI = (40 t)(2.2 A) = 88 At

d.

0.04 T

0.02 m2

= 0.4 ¥ 103 gauss

é2.54 cm ù é 1 m ù d = 0.15≤ ê ú = 3.81 mm úê ë 1¢¢ û ë100 cm û é2.54 cm ù é 1 m ù úê ú = 25.4 mm l = 1≤ ê ë 1¢¢ û ë100 cm û A=

= L 3.

pd 2 p(3.81 mm)2 = 11.40 ¥ 10-6 m2 = 4 4 N 2 m A (250) 2 (4π × 10−7 )(11.4 × 10−6 m 2 ) = = 35.25 μH 0.00254 m

2 −7 −6 2 2 m r m0 A (250) (600)(4π ×10 )(11.4 × 10 m ) a. L N= = 21.15 mH = 25.4 mm

b.

increase = change in µr Lnew = µrLo

m m

2 r 0 4.= L N=

5.

6.

= 4/2 ¥ 10-2 Wb/m2 = 0.02 Wb/m2

a.

(200t)2 (1000)(4π × 10−7 )(1.5 ×10−4 m 2 ) = 37.699 mH 0.20 mm

L= a.

L¢ = (3)2Lo = 9Lo = 9(4.7 mH) = 42.3 mH

b.

L¢ =

c.

L¢ =

d.

æ1 ö2 1 ç ÷ (1500)Lo 2 2 = 375(4.7 mH) = 1.76 mH L¢ = è ø 1 2

a.

39 ¥ 102 µH ± 10% fi 3900 µH ± 10% fi 3.9 mH ± 10%

CHAPTER 11

Lo =

(4.7 mH) = 1.57 mH = 16 (4.7 mH) = 75.2 mH

131

b.

68 × 100 µH ± 5% = 68 µF ± 5%

c.

47 µH ± 10%

d.

15 × 102 µH ± 10% = 1500 µH ± 10% = 15 mH ± 10% = (60 t)(140 mWb/s) = 8.4 V

7.

e=

8.

e=

25 V = 62.5 mWb/s 400 t

9.

e=

æ ö ç 1 ÷ æ ö 1 fi N = e ç ÷ = 50 mV ç ÷ = 10 turns ç df ÷ è5 m Wb/s ø ç ÷ è dt ø

10.

a.

e=

= (22 mH)(1 A/s) = 22 mV

b.

e=

= (22 mH)(20 mA/ms) = 440 mV

e=

æ 6 mA ö = (22 mH) ç ÷ = 1.32 V è100 ms ø

11.

L 470 mH = = 23.5 µs 20 kΩ R

a.

t=

b.

iL =

c.

uL = Ee-t/t = 40 Ve- t/23.5 µs uR = iRR = iLR = E(1 - e-t/t) = 40 V(1 - e- t/23.5 µs)

d.

iL: 1t = 1.264 mA, , 3t = 1.9 mA, 5t = 1.986 mA uL: 1t = 14.72 V, 3t = 1.96 V, 5t = 280 mV

40 V E (1 - e - t / t ) = (1 - e-t/t) 20 kΩ R = 2 mA(1 − e−t/23.5 µs)

e.

132

CHAPTER 11

12.

L 4.7 mH = = 2.14 µs R 2.2 kΩ

a.

t=

b.

iL =

c.

uL = Ee-t/t = 12 Ve- t/2.14 µs uR = iRR = iLR = E(1 - e-t/t) = 12 V(1 - e- t/2.14 µs)

d.

iL: 1t = 3.45 mA, , 3t = 5.18 mA, 5t = 5.41 mA uL: 1t = 4.42 V, 3t = 0.60 V, 5t = 0.08 V

(1 - e-t/t) = 5.45 mA(1 - e- t/2.14 µs)

e.

13.

14.

L 12 mH = = 0.6 µs R 20 kΩ uL = (28 V − 12 V)e−t/0.6µs = 16 Ve−t/0.6µs

a.

t=

b.

is = iR = iL =

c.

5t = 5(0.6 µs) = 3 µs

E 16 V (1 − e−t/t) = (1 − e−t/0.6µs) = 0.8 mA(1 − e−t/0.6µs) R 20 kΩ

iL = RT =

= 1.2 kΩ

æL ö R(15 ms) 1.2 kΩ(15 ms) = 5t = 5 ç ÷ = 15 µs: L = 5 5 èRø = 3.6 mH 15.

a.

iL = If + (Ii - If)e-t/t Ii = 8 mA, If =

CHAPTER 11

= 9.23 mA, t =

= 30.77 µs

133

iL = 9.23 mA + (8 mA - 9.23 mA)e-t/30.77 µs iL = 9.23 mA - 1.23 mAe- t/30.77 µs +E = 0 and = iRR = iLR = (8 mA)(3.9 kΩ) = 31.2 V =E= 36 V - 31.2 V = 4.8 V uL = 4.8 Ve- t/30.77 µs b.

16.

a.

Ii = -8 mA, If = 9.23 mA, t =

= 30.77 µs

iL = If + (Ii - If)e-t/t = 9.23 mA + (-8 mA - 9.23 mA)e-t/30.77 µs iL = 9.23 mA - 17.23 mA e- t/30.77 µs +E = 0 (at t = 0-) but, = iRR = -iLR = (-8 mA)(3.9 kΩ) = -31.2 V =E= 36 V - (-31.2 V) = 67.2 V - t/30.77 µs uL = 67.2 V e b.

17.

134

c.

Final levels are the same. Transition period defined by 5t is also the same.

a.

t=

b.

iL =

L 100 mH 100 mH = = = 29.41 µs R R1 + R2 3.4 kΩ 2.2 kΩ(20 V) At 0+ u R 2 = = 12.94 V 2.2 kΩ + 1.2 kΩ u R 2 = 12.94Ve- t/29.41 µs E 20 V (1 - e - t / t ) = (1 - e - t / 29.41 ms ) R1 + R2 3.4 kΩ iL = 5.88 mA(1 − e- t/29.41 µs)

CHAPTER 11

c.

18.

a.

Source conversion:

t=

= 588.2 µs

iL = If + (Ii - If)e-t/t If =

= 1.76 mA

iL = 1.76 mA + (4 mA - 1.76 mA)e-t/588.2µs iL = 1.76 mA + 2.24 mA e- t/588.2µs

uR(0 +) = 4 mA(3.4 kΩ) = 13.6 V KVL: +6 V − 13.6 V - uL(0+) = 0 uL(0+) = −7.6 V - t/588.2µs uL = −7.6 Ve b.

19.

a. If = τ=

= 2 mA =

= 19.23 µs

iL = If + (Ii - If )e-t/τ = 2 mA + (6 mA - 2 mA)e-t/19.23 µs iL = 2 mA + 4 mAe- t/19.23 µs KVL: 20.8 V − 62.4 V - υL(0+) = 0 υL(0+) = −41.60 V υL = −41.6 Ve-t/19.23 µs

CHAPTER 11

135

b.

20.

a.

t=

uL = 8 Ve- t/0.278µs, iL =

21.

=

10 mH = 0.278 µs 36 kΩ

= 0.222 mA(1 - e- t/0.278µs)

b.

5t fi steady state L 10 mH = t¢ = = 0.208 µs R 12 kΩ + 36 kΩ iL = Ime-t/t¢ = 0.222 mAe- t/0.208µs uL = -(0.222 mA)(48 kΩ)e-t/t = -10 .66Ve- t/0.308µs

a.

t=

L 4.7 mH = = 2.35 µs R 2 kΩ

iL =

= 6 mA(1 - e- t/2.35µs)

uL = Ee-t/t = 12 V e- t/2.35µs b.

136

iL = 6 mA(1 - e-t/2.35µs) = 6 mA(1 - e-1µs/2.35µs) = 6 mA(1 - e-0.426) = 6 mA(1 - .653) = 6 mA(.347) = 2.08 mA L 4.7 mH = t¢ = = 392 ns R1 + R2 12 kΩ iL = 2.08 mAe- t/392ns uL = 12 Ve-t/2.35µs = 12 Ve-1µs/2.35µs = 12 Ve-0.426 = 12 V(.653) = 7.84 V CHAPTER 11

At t = 0+ after switch moved uL = −(2.08 mA)(12 kΩ) = −24.96 V and uL = −24.96 Ve- t/392ns 5t¢ = 1.96 µs c.

6 mA

iL

2.08 mA 0 12 V

1 µs τ = 2.35 µs

t

1.96 µs

7.84 V

0

1.96 µs τ 1 µs

t

−24.96 V

22.

a.

RTh = 6.8 kΩ ETh = 6 V

t=

iL =

= 0.74 µs

= 0.88 mA(1 - e- t/0.74µs)

uL = Ee-t/t = 6 Ve- t/0.74µs

CHAPTER 11

137

b.

Assume steady state and IL = 0.88 mA

t¢ =

= 0.33 µs

iL = Ime-t/t¢ = 0.88 mA e- t/0.33µs uL = -Vme-t/t¢ Vm = ImR = (0.88 mA)(15 kΩ) = 13.23 V uL = -13.23 Ve- t/0.33µs c.

d.

23.

138

a.

= ImR2 = (0.88 mA)(8.2 kΩ) = 7.22 V

RTh = 2 kΩ + 2.2 kΩ + 6.2 kΩ || 3 kΩ = 6.22 kΩ 6.2 kΩ(12 V) ETh = = 8.09 V 6.2 kΩ + 3 kΩ 8.09 V L 47 mH = If = = 1.3 mA , t = = 7.56 µs 6.22 kΩ R 6.22 kΩ CHAPTER 11

iL = 1.3 mA(1 - e- t/7.56µs) u L = 8.09 Ve- t/7.56µs

24.

b.

0.632(1.3 mA) = 0.822 mA 0.368(8.09 V) = 2.98 V

a.

Source conversion: E = IR = (4 mA)(12 kΩ) = 48 V, ENet = 48 V − 20 V = 28 V

t=

= 55.56 ns

= 0.778 mA(1 - e- t/55.56ns)

iL =

uL = Ee-t/t = 28 Ve- t/55.56ns b.

t = 100 ns: iL = 0.778 mA(1 - e-100ns/55.56ns) = 0.778 mA(1 - e-1.8) = 0.65 mA 0.165

uL = 28 Ve 25.

-1.8

= 4.62 V RTh = 2.2 kΩ || 4.7 kΩ = 1.50 kΩ 4.7 kΩ(10 V) ETh = = −6.81 V 4.7 kΩ + 2.2 kΩ

a.

t=

= 6.67 µs

= −4.54 mA(1 - e- t/6.67µs)

iL =

uL = Ee-t/t = −EThe−t/τ = −6.81 Ve- t /6.67µs b.

t = 10 µs: iL = −4.54 mA(1 - e-10µs/6.67µs) = −4.54 mA(1 - e-1.5) 0.223 = −3.53 mA uL = −6.81 V(0.223) = -1.52 V

c.

t¢ =

= 2.13 µs

iL = −3.53 mAe- t/2.13µs At t = 10 µs VL = (3.53 mA)(4.7 kΩ) = 16.59 V uL = 16.59 Ve- t/2.13µs

CHAPTER 11

139

d.

–1.52 V

26.

a.

Finding the Thevenin circuit for the inductor: RTh = R4 || (R3 + R1 || R2) = 1 kΩ || (2.7 kΩ + 8.2 kΩ || 2.2 kΩ) R1 R2 R4 RTh = 1 kΩ || 4.43 kΩ = 0.816 kΩ R3 Is E R1

R'T

+

I' R2

R4

ETh −

R3

RT ¢ = R1 + R2 || (R3 + R4) = 8.2 kΩ + 2.2 kΩ || (2.7 kΩ + 1 kΩ) = 8.2 kΩ + 2.2 kΩ || 3.7 kΩ = 8.2 kΩ + 1.38 kΩ = 9.58 kΩ

36 V = = 3.76 mA ¢ 9.58 kΩ RT R2 ( I s ) 2.2 kΩ(3.76 mA) = and I¢ = = 1.4 mA R2 + R3 + R4 2.2 kΩ + 2.7 kΩ + 1 kΩ and finally ETh = I¢R4 = (1.4 mA)(1 kΩ) = 1.4 V Then Is =

E

L 10 mH = = 12.25 µs R 0.816 kΩ t/12.25µs uL = 1.4 Ve= 1.4 Ve-25µs/12.25µs = 1.4 Ve-2.05 = 1.4 V(128.73 ¥ 10-3) = 180 mV t=

b.

140

uL = 1.4 Ve-t/12.25µs uL = 1.4 Ve-1µs/12.25µs = (1.4 V)(e-0.082) = (1.4 V)(.0921) = 1.29 V

CHAPTER 11

c.

Finding the Thevenin equivalent for R1 at 1t At 1t: uL = 1.4 Ve-t/t = 1.4 Ve-t/t = 1.4 Ve-1 = 1.4 V(0.368) = 515.2 mV +

+

36 V

515.2 mV = V'L (at 1τ)

2.2 kΩ R1





8.2 kΩ

2.7 kΩ

RTh¢ = 2.2 kΩ || 2.7 kΩ = 1.21 kΩ 2.2 kΩ

R'Th

2.7 kΩ

+

+

36 V

+ 515.2 mV

2.2 kΩ −

− − E' + Th

− 2.7 kΩ

− ETh¢ + 36 V − u R 2 = 0

ETh¢ = 36 − u R 2

u R2 =

2.2 kΩ(515.2 mV) = 0.231 V 2.2 kΩ + 2.7 kΩ

\ ETh¢ = 36 V − 0.231 V = 35.77 V −

35.77 V

+

E'Th

R'Th 1.21 kΩ

8.2 kΩ

u R1 =

8.2 kΩ(35.77 V) = 31.34 V 8.2 kΩ + 1.21 kΩ

+ V − R1

d.

27.

a.

ETh (1 − e-t/t) RTh 1.4 V (1 - e - t /12.25 ms ) = 0.81 kΩ = 1.72 mA(1 − e-t/12.25µs) 1 mA = 1.72 mA(1 − e-t/12.25µs) 0.581 = 1 − e-t/12.25µs 0.419 = e-t/12.25µs t = 12.25 µsloge0.419 = 12.25 µs(0.87) = 10.66 µs iL =

Ii =

= 2 mA

t = 0 s: Thevenin: RTh = 3.3 kΩ + 1 kΩ || 4.7 kΩ = 3.3 kΩ + 0.82 kΩ = 4.12 kΩ ETh =

= 2.81 V

iL = If + (Ii - If)e-t/t CHAPTER 11

141

If =

= 0.68 mA, t =

= 0.49 ms

iL = 0.68 mA + (2 mA - 0.68 mA)e-t/0.49 ms iL = 0.68 mA + 1.32 mAe- t/0.49 ms uR(0+) = 2 mA(4.12 kΩ) = 8.24 V KVL(0+): 2.81 V - 8.24 V - uL = 0 uL = -5.43 V uL = -5.43 Ve- t/0.49 ms b.

28.

a.

8V = 5.33 mA, VL = 0 V 1.5 kΩ RTh = (3 kΩ || 12 kΩ) || 4 kΩ = 1.5 kΩ 2.4 kΩ(20 V) ETh = = 7.5 V 2.4 kΩ + 4 kΩ Steady-state: IL =

¢ = 1.5 kΩ || 1.5 kΩ = 0.75 kΩ RTh ¢ = 8 V + 7.5 V = 15.5 V ETh

t=

L 3 mH = = 4 µs R 0.75 kΩ

15.5 V = 20.67 mA Ii = 5.33 mA 0.75 kΩ iL = If + (Ii − If)e−t/τ = 20.67 mA + (5.33 mA − 20.67 mA)e−t/4 µs iL = 20.67 mA − 15.34 mAe−t/4µs υL = 15.5 Ve−t/4µs If =

142

CHAPTER 11

b.

iL(2t) = 20.67 mA − 15.34 mA e−2

} 0.135

= 18.6 mA

uL (2t) = 15.5 Ve-2 = 15.5 V(0.135) = 2.09 V c.

Ii = 18.6 mA υL + υR − 8 V = 0 υL = 8 V − υR = 8 V − (18.6 mA)(1.5 kΩ) = −19.9 V L 3 mH = t¢ = = 2 µs R 1.5 kΩ

8V = 5.33 mA 1.5 kΩ iL = If + (Ii − If)e−t/τ = 5.33 mA + (18.6 mA − 5.33 mA)e−t/2µs = 5.33 mA + 13.27 mAe−t/2µs υL = −19.9 Ve−t/2µs Ii = 18.6 mA

29.

If =

a.

RTh = 2 MΩ || 10 MΩ = 1.67 MΩ 10 MΩ(24 V) ETh = = 20 V 10 MΩ + 2 MΩ = 12 µA

iL = 12 µAe-t/5 µs 10 µA = 12 µAe-t/5 µs

CHAPTER 11

143

0.833 = e-t/5 µs loge 0.833 = -t/5 µs 0.183 = t/5 µs t = 0.183(5 µs) = 0.92 µs

30.

b.

uL (0+) = iL(0+)Rm = (12 µA)(10 MΩ) = 120 V uL = 120 Ve-t/5µs = 120 Ve-10µs/5µs = 120 Ve-2 = 120 V(0.135) = 16.2 V

c.

uL = 120 Ve-5t/t = 120 Ve-5 = 120 V(6.74 ¥ 10-3) = 0.81 V

a.

Closed Switch: RTh = 1.2 kΩ || 2.2 kΩ = 0.776 kΩ 1.2 kΩ(24 V) ETh = = 8.47 V 1.2 kΩ + 2.2 kΩ

Open Switch: ¢ = 6.9 kΩ || 1.2 kΩ = 1.02 kΩ RTh ¢ = 1.2 kΩ(24 V) = −3.56 V ETh 8.1 kΩ

−3.56 V + υR − υL = 0 υL = −3.56 V + (10.91 mA)(1.02 kΩ) = 7.57 V υL = 7.57Ve−t/1.18 ms

L 1.24 H = = 1.18 ms R 1.02 kΩ 3.56 V Iss = = 3.49 mA = If 1.02 kΩ iL = If + (Ii - If)e-t/t = -3.49 mA + ((-10.91 mA - (-3.49 mA))e-t/1.18 ms iL = −3.49 mA − 7.42 mAe−t/1.18 ms t=

144

CHAPTER 11

b.

31.

a.

iL = 150 mA(1 - e-1.5ms/15ms) = 150 mA(1 - e-1/10) = 150 mA(1 - e-0.01) = 150 mA(1 - 0.90484) = 150 mA(0.0952) = 14.28 mA

b.

iL = 150 mA(1 - e-150ms/15ms) = 150 mA(1 - e-10) = 149.99 mA

c.

75 mA = 150 mA(1 - e-t/t) 0.5 = 1 - e-t/t 0.5 = e-t/t 0.5 = e-t/t loge 0.5 = -t/t t = -(t)(loge 0.5) = -(15 ms)(loge 0.5) = -(15 ms)(-693.15 ¥ 10-3) = 10.397 ms

d.

149 mA = 150 mA(1 - e-t/15 ms) 0.99 = 1 - e-t/15ms -0.01 = -e-t/15ms 0.01 = e-t/15ms loge 0.01 = -t/15 ms t = -(15 ms)(loge 0.01) = -(15 ms)(-4.605) = 69.08 ms

CHAPTER 11

145

32.

a.

IL (1τ) = 0.632Imax = 126.4 µA Imax =

= 200 µA

iL = I m (1 - e - t / t ) -64.4 ms ö æ ç 160 mA = 200 mA 1 - e t ÷ ç ÷ è ø 0.8 = 1 - e

b.

0.2 = e

-64.4 ms t

-64.4 ms t

log e 0.2 = -1.61 =

t=

33.

-64.4 ms t

64.4 ms = 40 µs 1.61

L L = 40 ms = , L = (500 kΩ)(40 µs) = 20 mH R 500 kΩ

c.

t=

d.

Im =

a.

L fi open circuit equivalent 10 MΩ(16 V) VL = = 13.33 V 10 MΩ + 2 MΩ

E fi E = (200 µA)(500 Ω) = 100 mV R

b.

RTh = 2 MΩ || 10 MΩ = 1.67 MΩ 10 MΩ(16 V) ETh = = 13.33 V 10 MΩ + 2 MΩ = 7.98 µA c.

iL = 7.98 µA(1 - e-t/3 µs)

t=

= 3 µs

10 µA = 7.98 µA(1 - e-t/3 µs) 1.253 = 1 - e-t/3 µs 0.253 = e-t/3 µs loge(0.253) = -t/3µs 1.374 = t/3µs t = 1.374(3 µs) = 4.12 µs 146

CHAPTER 11

uL = 13.33 V e-t/3 µs = 13.33 V e-12 µs/3 µs = 13.33 V e-4 = 13.33 V(0.0183) = 0.244 V

d.

34.

eL =

é15 mA ù 0 - 4 ms, eL = (200mH) ê ú = 750 mV ë 4 ms û é0 mA ù 4 - 10 ms, eL = (200 mH) ê ú= 0 V ë 6 ms û é15 mA ù 10 - 14 ms, eL = (200 mH) ê ú = 750 mV ë 4 ms û é15 mA ù 14 - 18 ms, eL = −(200 mH) ê ú = −750 mV ë 4 ms û

:

18 - 19 ms, eL = 0 V

eL

é15 mA ù 19 - 22 ms, eL = −(200 mH) ê ú = −1 V ë 3 ms û 22 ms Æ, eL = 0 V

1 0.75 V

18 19 4

5

10

14 15

22 20

25

t (ms)

−0.75 V −1

35.

uL = 0 Æ 2 ms: uL = 0 V

æ 30 mA ö 2 Æ 6 ms: uL = −(5 mH) ç ÷ = −37.5 mV è 4 ms ø 6 Æ 10 ms: uL = 0 V æ 20 mA ö 10 Æ 14 ms: uL = (5 mH) ç ÷ = 25 mV è 4 ms ø 14 Æ 17 ms: uL = 0 V æ 5 mA ö 17 Æ 19 ms: uL = −(5 mH) ç ÷ = −12.5 mV è 2 ms ø 19 Æ, uL = 0 V

CHAPTER 11

147

ʋL(mV) 40 30

25

20 10 0

2

6 5

17 10

0

19

14 15

20

25

t (ms)

−10 –12.5

−20 −30 −40

36.

–37.5

L = 10 mH, 4 mA at t = 0 s

uL = 0 - 5 µs: uL = 0 V, ∆iL = 0 mA and iL = 4 mA 5 - 10 µs: ∆iL = 10 - 12 µs: ∆iL =

(-10 V) = -5 mA (-25 V) = -5 mA

12 - 16 µs: uL = 0 V, ∆iL = 0 mA and iL = -6 mA 16 - 24 µs: ∆iL =

10 V = 8 mA

iL(mA) 10 5 0 −5 −10

4 mA

+2 mA 5

−1 mA10

15 16

24 25

t (µs)

−6 mA

L4 + L5 = 5.6 mH + 3.4 mH = 9.0 mH L3 || (L4 + L5) = 4 mH || 9 mH = 2.77 mH = L" L' = L1 || (L2 + L") = 2.4 mH || (3.3 mH + 2.77 mH) = 2.4 mH || 6.07 mH L' = (2.4 mH)(6.07 mH)/(2.4 mH + 6.07 mH) = 1.72 mH LT = L6 + L' = 10 mH + 1.72 mH = 11.72 mH

37.

a.

38.

L2 || L4 = 20 mH || 60 mH = 15 mH L' = L2 + L3 || L4 = 55 mH + 15 mH = 70 mH L" = L5 || L' = 22 mH || 70 mH = 16.74 mH LT = L1 + L' = 18 mH + 16.74 mH = 34.74 mH

148

20

CHAPTER 11

39.

33 mH + 1.8 mH = 5.1 mH 4.7 mH || 5.1 mH = 2.45 mH

40.

= 6.2 mH + 12 mH || 36 mH + 24 mH = 39.2 mH = 9.1 µ F + 10 µF || 91 µF = 9.1 µF + 9.01 µF = 18.11 µF || 3.3 µF = 18.11 µF || 3.3 µF = 2.79 µF CT = 39.2 mH in series with 2.79 µF

41.

7 µF || 42 µF = 6 µF 12 µF + 6 µF = 18 µF 5 mH + 20 mH = 25 mH Series combination of 2.2 kΩ resistor, 25 mH coil, 18 µF capacitor

42.

a.

= 2 kΩ || 8.2 kΩ = 1.61 kΩ, 1.2 mH L¢ t= T = = 745.3 µs ¢ RT 1.61 kΩ

= 3 mH || 2 mH = 1.2 mH

iL =

36 V (1 - e - t / 745.3 ms ) = 22.36 mA(1 - e- t/745.3µs) 1.61 kΩ uL = Ee-t/t = 36 Ve -t/745.3µs =

b.

CHAPTER 11

149

43.

a.

Source conversion: E = 16 V, Rs = 2 kΩ RTh = 2 kΩ + 2 kΩ || 8.2 kΩ = 2 kΩ + 1.61 kΩ = 3.61 kΩ 8.2 kΩ(16 V) ETh = = 12.86 V 8.2 kΩ + 2 kΩ E 12.86 V 30 mH L = Im = Th = = 3.56 mA, t = = 8.31 µs RTh 3.61 kΩ R 3.61 kΩ iL = 3.56 mA(1 - e- t/8.31µs) u L1 + u L2 = 12.86 V initially (t = 0+)

10 mH of total = 10 mH + 20 mH uL = 4.29 Ve−t/8.31µs

uL =

= 4.29 V

b.

44.

a. ¨RTh = 10 kΩ || 20 kΩ = 6.67 kΩ ETh =

= 13.33 V

LT = 3 H + 4.7 H || 10 H = 3 H + 3.197 H = 6.197 H τ=

= 0.93 ms

υL = 13.33Ve- t/0.93 ms iL =

150

(1 - e-t/τ) = 2 mA(1 - e- t/0.93 ms)

CHAPTER 11

b.

c.

u L3 = (0.52)(13.33e−t/0.93 ms) = 6.93 Ve−t/0.93 ms

25 V

45.

= I 2 I= R2

= 6.25 A

E 25 V 25 V = = = 1.79 A R2 + R3 10 Ω + 4 Ω 14 Ω

+ I2 = 6.25 A + 1.79 A = 8.04 A

I1 = 46.

I1 = I2 = 0 A V1 = V2 = E = 100 V

47.

I1 =

= 3 A, I2 = 0 A

V1 = 12 V, V2 = 0 V 48.

V2 =

6 Ω + (75 V) = 15 V 6 Ω + 4 Ω + 20 Ω

V1 = ∞ V (open ckt)

75 V = 2.5 A 20 Ω + 4 Ω + 6 Ω I2 = 0 A I1 =

CHAPTER 11

151

Chapter 12 1.

Φ: CGS: 5 ¥ 104 Maxwells, English: 5 ¥ 104 lines B: CGS: 8 Gauss, English: 51.62 lines/in.2

2.

Φ: SI 6 ¥ 10- 4 Wb, English 60,000 lines B: SI 0.465 T, CGS 4.65 ¥ 103 Gauss, English 30,000 lines/in.2

3.

a.

B=

4.

a.

R=

b.

R=

c.

R=

=

= 0.04 T

=

from the above R (c) > R (a) > R (b) 5.

R=

6.

R=

7.

9 in. H=

8.

µ=

9.

B=

F Φ

F Φ

=

=

500 At = 609.76 ¥ 103 At/Wb 8.2´10-4 Wb 150 gilberts 66,000 max wells

= 2.273 ¥ 10-3 rels (CGS)

= 0.2286 m

500 At F = = 2187.23 At/m 0.2286 m l = 4 ¥ 10- 4 Wb/Am

= 0.33 T

Fig. 12.7: H 800 At/m NI = Hl fi I = Hl/N = (800 At/m)(0.2 m)/75 t = 2.13 A

152

CHAPTER 12

10.

B=

= 0.6 T

Fig. 12.7, Hiron = 2500 At/m Fig. 12.8, Hsteel = 70 At/m NI = Hl(iron) + Hl(steel) (200 t)I = (Hiron + Hsteel)l (200 t)I = (2500 At/m + 70 At/m)0.3 m I= 11.

a.

200

= 3.86 A

N1I1 + N2I2 = Hl B=

=1T

Fig. 12.7: H 750 At/m N1(2 A) + (40 t)(3 A) = (750 At/m)(0.2 m) N1 = 15 t

12.

= 13.34 ¥ 10- 4 Wb/Am

b.

µ=

a.

80,000 lines l(cast steel) = 5.5 in. l(sheet steel) = 0.5 in. Area = 1 in.2 B=

= 8 ¥ 104 ¥ 10-8 Wb = 8 ¥ 10-4 Wb = 0.14 m = 0.013 m = 6.45 ¥ 10-4 m2 = 1.24 T

Fig 12.8: Hsheet steel 460 At/m, Fig. 12.7: Hcast steel 1275 At/m NI = Hl(sheet steel) + Hl(cast iron) = (460 At/m)(0.013 m) + (1275 At/m)(0.14 m) = 5.98 At + 178.50 At NI = 184.48 At b.

Cast steel: µ =

= 9.73 ¥ 10- 4 Wb/Am

Sheet steel: µ =

= 26.96 ¥ 10- 4 Wb/Am

CHAPTER 12

153

13.

N 1I + N 2 =

+

(20 t)I + (30 t)I = (50 t)I = B=

" "

with 0.25 in.2

B=

= 1.6 ¥ 10-4 m2

= 0.5 T

Fig. 12.8: Hcast steel Fig. 12.7: Hcast iron

280 At/m 1500 At/m

lcast steel = 5.5 in.

= 0.14 m

lcast iron = 2.5 in.

= 0.064 m

(50 t)I = (280 At/m)(0.14 m) + (1500 At/m)(0.064 m) 50I = 39.20 + 96.00 = 135.20 I = 2.70 A 14.

a.

lab = lef = 0.05 m, laf = 0.02 m, lbc = lde = 0.0085 m NI = 2Hablab + 2Hbclbc + Hfalfa + Hglg = 1.2 T fi H

B=

360 At/m (Fig. 12.8)

100I = 2(360 At/m)(0.05 m) + 2(360 At/m)(0.0085 m) + (360 At/m)(0.02 m) + 7.97 ¥ 105(1.2 T)(0.003 m) = 36 At + 6.12 At + 7.2 At + 2869 At 100I = 2918.32 At I 29.18 A b.

air gap: metal = 2869 At:49.72 At = 58.17:1 = 3.33 ¥ 10- 3 Wb/Am

µsheet steel =

µair = 4π ¥ 10- 7 Wb/Am µsheet steel: µair = 3.33 ¥ 10-3 Wb/Am:4p ¥ 10-7 15.

4 cm f=

2627:1

= 0.04 m NI

(80 t)(0.9 A)

= 1.35 N

154

CHAPTER 12

16.

C = 2πr = (6.28)(0.4 m) = 2.512 m B=

= 1.54 T

Fig. 12.7: Hsteel = 2100 At/m Hg = 7.97 ¥ 105; Bg = (7.97 ¥ 105)(1.54 T) = 1.23 ¥ 106 At/m; lg = 0.002 m; lsteel = 2.512 m; N1I1 + N2I2 = Hglg + Hl(sheet steel) (250 t)(I1) + (50 t)(0.3 A) = (1.23 ¥ 106 At/m)(0.002 mm) + (2100 At/m)(2.512 m) I1 = 30.88 A 17.

a.

= 2 ¥ 10-3 m

0.2 cm

= 0.79 ¥ 10-4 m2

A=

NI = Hglg, Hg = 7.96 ¥ 105 Bg é æ 0.2´10 -4 Wb ö ù 5 ê ÷ ú 2 ¥ 10-3 m (200 t)I = (7.96´10 ) ç -4 2 ÷ ç ê è 0.79´10 m ø úû ë I = 2.02 A b.

Bg =

= 0.25 T

F@ 2N 18.

Table: Section

Φ(Wb)

-4

a-b, g-h b-c, f-g

2 ¥ 10

c-d, e-f

2 ¥ 10-4

-4

CHAPTER 12

2 ¥ 10-4

B(T)

H

l(m)

5 ¥ 10 5 ¥ 10-4

0.2 0.1

5 ¥ 10-4

0.099

-4

a-h b-g d-e

A(m2)

5 ¥ 10 2 ¥ 10-4

0.2 0.2

5 ¥ 10-4

0.002

Hl

155

Bbc = Bcd = Bg = Bef = Bfg =

= 0.4 T

Air gap: Hg = 7.97 ¥ 105(0.4 T) = 3.19 ¥ 105 At/m Hglg = (3.19 ¥ 105 At/m)(2 mm) = 638 At Fig 12.8: Hbc = Hcd = Hef = Hfg = 55 At/m Hbclbc = Hfglfg = (55 At/m)(0.1 m) = 5.5 At Hcdlcd = Heflef = (55 At/m)(0.099 m) = 5.45 At For loop 2: SF = 0 Hbclbc + Hcdlcd + Hglg + Heflef + Hfglfg - Hgblgb = 0 5.5 At + 5.45 At + 638 At + 5.45 At + 5.50 At - Hgblgb = 0 Hgblgb = 659.90 At and Hgb =

= 3300 At/m

Fig 12.7: Bgb 1.55 T with Φ2 = BgbA = (1.55 T)(2 ¥ 10-4 m2) = 3.1 ¥ 10-4 Wb ΦT = Φ1 + Φ2 = 2 ¥ 10-4 Wb + 3.1 ¥ 10-4 Wb = 5.1 ¥ 10-4 Wb = Φab = Φha = Φgh Bab = Bha = Bgh =

= 1.02 T

B-H curve: (Fig 12.8): Hab = Hha = Hgh 180 At/m Hablab = (180 At/m)(0.2 m) = 36 At Hhalha = (180 At/m)(0.2 m) = 36 At Hghlgh = (180 At/m)(0.2 m) = 36 At which completes the table! Loop #1: SF = 0 NI = Hablab + Hbglbg + Hghlgh + Hahlah (200 t)I = 36 At + 659.49 At + 36 At + 36 At (200 t)I = 767.49 At 3.84 A I 19.

156

NI = Hl l = 2πr = (6.8)(0.08 m) = 0.50 m (100 t)(2 A) = H(0.50 m) H = 400 At/m Fig. 12.8: B 0.68 T Φ = BA = (0.68 T)(0.012 m2) Φ = 8.16 mWb

CHAPTER 12

20.

NI = Hab(lab + lbc + lde + lef + lfa) + Hglg 300 At = Hab(0.8 m) + 7.97 ¥ 105 Bg(0.8 mm) 300 At = Hab(0.8 m) + 637.6 Bg Assuming 637.6 Bg Hab(0.8 m) then 300 At = 637.6 Bg and Bg = 0.47 T Φ = BA = (0.47 T)(2 ¥ 10-4 m2) = 0.94 ¥ 10-4 Wb Bab = Bg = 0.47 T fi H 270 At/m (Fig. 12.8) 300 At = (270 At/m)(0.8 m) + 637.6(0.47 T) 300 At π 515.67 At \ Poor approximation! ¥ 100% @ 58% Reduce Φ to 58% 0.58(0.94 ¥ 10-4 Wb) = 0.55 ¥ 10-4 Wb B=

= 0.28 T fi H

190 At/m (Fig. 12.8)

300 At = (190 At/m)(0.8 m) + 637.6(0.28 T) 300 At π 330.53 At Reduce Φ another 10% = 0.55 ¥ 10-4 Wb - 0.1(0.55 ¥ 10-4 Wb) = 0.495 ¥ 10-4 Wb B=

= 0.25 T fi H

175 At/m (Fig. 12.7)

300 At = (175 At/m)(0.8) + 637.6(0.28 T) 300 At π 318.53 At but within 5% \ OK Φ 0.55 ¥ 10- 4 Wb 21.

a.

1τ = 0.632 Tmax Tmax 1.5 T for cast steel 0.632(1.5 T) = 0.945 T At 0.945 T, H 700 At/m (Fig. 12.7) \ B = 1.5 T(1 - e- H/700 At/m)

b.

H = 900 At/m: 900 At/m ö æ ç B = 1.5 T 1 - e 700 At/m ÷ = 1.09 T ç ÷ è ø Graph: 1.1 T H = 1800 At/m: 1800 At/m ö æ B = 1.5 T ç1 - e 700 At/m ÷ = 1.39 T ç ÷ è ø Graph: 1.38 T H = 2700 At/m: 2700 At/m ö æ ç B = 1.5 1 - e 700 At/m ÷ = 1.47 T ç ÷ è ø Graph: 1.47 T

CHAPTER 12

157

Excellent comparison! c.

B = 1.5 T(1 - e-H/700 At/m) = 1.5 T - 1.5 Te-H/700 At/m B - 1.5 T = -1.5 Te-H/700 At/m 1.5 - B = 1.5 Te-H/700 At/m = e-H/700 At/m

æ B ö loge ç1 ÷= è 1.5 T ø æ B ö and H = -700 loge ç1 ÷ è 1.5 T ø d.

B = 1 T:

æ 1T ö H = -700 loge ç1 ÷ = 769.03 At/m è 1.5 T ø Graph: B = 1.4 T:

750 At/m

æ 1.4 T ö H = -700 loge ç1 ÷ = 1895.64 At/m è 1.5 T ø Graph: e.

1920 At/m

æ B ö H = -700 loge ç1 ÷ è 1.5 T ø æ 0.2 T ö = -700 loge ç1 ÷ è 1.5 T ø = 100.2 At/m I=

= 40.1 mA vs 44 mA for Ex. 12.1

158

CHAPTER 12

Chapter 13 1.

a. b. c. d. e.

10 V 15 ms: -10 V, 20 ms: 0 V 20 V 20 ms 2 cycles

2.

a. b. c. d. e.

200 µA 1 µs: 200 µA, 7 µs: -200 µA 400 µA 4 µs 2.5 cycles

3.

a. b. c. d. e.

40 mV 1.5 ms: -40 mV, 5:1 ms: -40 mV 80 mV 2 ms 3.5 cycles

4.

a. b. c.

e. f.

high 5 cycles T = 5 µs 1 1 = = 200 kHz f= T 5 ms 16 mV 32 mV

a.

T=

b.

T=

c.

T=

d.

T=

a.

f=

b.

f=

c.

f=

d.

f=

d.

5.

6.

CHAPTER 13

250 Hz

= 4 ms

50 MHz 28 kHz 2 Hz

= 20 ns

= 35.71 µs

= 0.5 s

= 1 Hz 1/36 s 75 ms 40

= 36 Hz = 13.33 Hz = 25 kHz

159

7.

8. 9. 10.

T=

2 kHz

= 0.5 ms, 5(0.5 ms) = 2.5 ms

25 ms = 0.25 ms 100 cycles 72 cycles = 9 Hz f= 8s T=

a.

Vpeak = (2.5 div.)(50 mV/div) = 125 mV

b.

T = (3.2 div.)(10 µs/div.) = 32 µs

c.

f=

11.

a. b. c. d.

Peak = 2.8 div.(10 mV/div.) = 28 mV Peak-to-peak = 2(28 mV) = 56 mV T = 2 div.(5 µs/div.) = 10 µs 5 cycles

12.

a. b. c. d.

13.

a. b. c. d.

14.

a. b.

160

1 1 = = 31.25 kHz T 32 ms

æ p ö Radians = ç ÷ 40° = 0.22π rad è180° ø æ p ö Radians = ç ÷ 60° = rad è180° ø æ p ö Radians = ç ÷ 135° = 0.75p rad è180° ø æ p ö Radians = ç ÷ 170° = 0.94p rad è180° ø æ180° ö æp ö Degrees = ç ÷ ç ÷ = 60° è p øè 3 ø æ180° ö Degrees = ç ÷ 1.2p = 216° è p ø æ180° ö 1 Degrees = ç ÷ p = 18° è p ø 10 æ180° ö Degrees = ç ÷ 0.6 p = 108° è p ø

2p 2p = = 3.93 rad/s T 1.6 s 2p 2p w= = = T 0.5 ms 0.5

w=

= 12.5 ¥ 103 rad/s

CHAPTER 13

2p 2p 2p = 897.597 ¥ 103 rad/s = = 7 µs 7´10-6 s T 2p 2p w= = 2.09 × 106 rad/s = T 3×10−6 s

w=

c. d. 15.

a. b. c. d.

w = 2p f = 2p (150 Hz) = 942.48 rad/s w = 2p f = 2p (0.5 kHz) = 3.142 × 103 rad/s w = 2p f = 2p (4 kHz) = 25.13 ¥ 103 rad/s w = 2p f = 2p (0.008 MHz) = 50.27 ¥ 103 rad/s

16.

a.

w = 2p f =

17.

f=

c.

f=

d.

f=

= 104.09 Hz

= 9.61 ms

T=

b.

654 rad/s

fif=

18 rad/s

w 2p

= 2.86 Hz, T = 349.07 ms

6600 rad/s

w 2p

=

0.19 rad/s

2p

= 1050.42 Hz, T = 0.952 ms

= 30.24 ¥ 10-3 Hz, T = 33.07 ms

æ p ö 2p radians (120°) ç ÷= è180° ø 3 t=

q

w

=

1 2p/ 3 rad 2p/ 3 rad 2 = 5.56 ms = = = 2p f 2p (60 Hz) (6)(60) 180

18.

æ p ö p (45°) ç ÷ = , a = wt fi w = è180° ø 4

19.

a.

Amplitude = 20, f =

b.

Amplitude = 12, f = 120 Hz

c.

Amplitude = 106, f =

d.

Amplitude = 8, f =

20.

-

21.

-

CHAPTER 13

4 9

= 87.27 rad/s

= 60 Hz

= 1591.55 Hz

w 2p

=

10, 058 rad/s = 1.6 kHz 2p

161

= 35.699 ms,

cycle = 17.85 ms

22.

T=

23.

i = 0.3 sin 60° = 0.3(0.866) = 0.26 A

24.

æ180° ö 1.4p ç ÷ = 252° è p ø

176

u = 25 sin 252° = 25(-0.9511) = -23.78 V 25.

26.

8 ¥ 10-3 = 40 ¥ 10-3 sin a 0.2 = sin a a = sin-1 0.2 = 11.54° and 180° - 11.54° = 168.46°

u = Vm sin a 60 = Vm sin 30° = Vm (0.5) 60 \Vm = = 120 V

1.5 ms 160°

æ 360 ö T = 1.5 ms ç ÷ = 18 ms è 30 ø = 55.56 Hz 18 w = 2p f = (2p)(55.56 Hz) = 349.07 rad/s f=

and u = 120 sin 349.07t 27.

-

28.

-

29.

a.

u = 6 × 10- 3 sin (2π 2000t + 30°)

b.

i = 20 ¥ 10- 3 sin(2π 60t - 60°)

30.

a.

u = 120 ¥ 10- 6 sin(2π 1000t - 80°)

31.

u = 12 ¥ 10- 3 sin(2π 2000t + 135°)

32.

u = 8 ¥ 10- 3 sin(2π 500t +π/6)

33.

u leads i by 90°

34.

u leads i by 10°

35.

u = 5 sin (wt - 30° + 90°) = 5 sin (wt + 60°) and i = 8 sin(wt + 50°) u leads i by 10°

36.

u = −5 cos(wt + 90°) = 5 sin(ωt + 90° + 90° + 180°) = 5 sinwt i = −3 sin(wt + 20°) = 3 sin(ωt + 20° + 180°) = 3 sin(wt + 200°) For υ = 5 sin ωt i = 3 sin(ωt + 200°) i leads u by 200°

162

CHAPTER 13

37.

T= t1 =

38.

= 1 ms

120° æ T ö 2 æ1 ms ö ç ÷= ç ÷= 180° è 2 ø 3 è 2 ø

2p T

w = 2p f = T=

2p

w

=

2p = 125.66 µs 50, 000 rad/s

æ 40° ö t1 = ç ÷ (T) = è 360° ø = 13.96 µs 39.

æ 40° ö ç ÷ (125.66 µs) è 360° ø

T = 1 ms tpeak @ 30° tpeak =

40.

a.

T = ( 8 div.)(1 ms/div.) = 8 ms (both waveforms)

b.

f=

c.

Peak = (2.5 div)(0.5 V/div.) = 1.25 V Vrms = 0.707(1.25 V) = 0.884 V

d.

Phase shift = 4.6 div., T = 8 div.

= 125 Hz (both)

q=

¥ 360° = 207° i leads e

or e leads i by 153° 41.

42.

G=

æ1 ö 1 1 (1 mV)(10 ms) + (5 mV)(10 ms) - (2 mV)(10 ms) + 2ç (4 mV)(5 ms)÷ - (2 mV)(10 ms) 2 è2 ø 2

40 ms 5 mV + 50 mV - 20 mV + 20 mV - 10 mV 45 mV = = 40 40 = 1.125 µV

CHAPTER 13

163

43.

1 1 ms) + (6 mV)(3 ms) - (2 mV)(5 ms) 2 2 G= 14 ms -6 mV + 4 mV + 18 mV - 5 mV +22 mV - 11 mV 11 mV = = = 14 14 14 = 0.786 mV -(6 mV)(1 ms) + (8 mV)(

44.

45.

a.

0V

b.

c. 46.

The same

1 1 (pr2) = p(20 mA)2 = 628.32 µA 2 2 628.32 mA 628.32 mA = G= = 15.71 mA d 40 mA (15.71 mA)(/ p ) - (5 mA)(/ p) G= 2/ p

Area =

= 5.36 mA 47.

48.

a.

T = ( 2 div.)(0.2 ms/div) = 0.4 ms

b.

f=

c.

Average = (-2.5 div.)(10 mV/div.) = -25 mV

a.

T = (4 div.)(10 µs/div.) = 40 µs

b.

f=

c.

G=

= 2.5 kHz

= 25 kHz

=

164

CHAPTER 13

=

= 1.713 div.

1.713 div.(10 mV/div.) = 17.13 mV Vrms = 0.7071(130 V) = 91.92 V Irms = 0.7071(5 ¥ 10−3 A) = 3.54 mA Vrms = 0.7071(9 ¥ 10−6 V) = 6.36 µV

49.

a. b. c.

50.

ω = 2πf = 2π(60 Hz) = 377 rad/s a. u = 6.8( 2)sin 377t b. c.

51.

i = 60( 2)sin 3.77t = 84.85 sin 377t u = 5 ¥ 103 ( 2 ) sin 3.77t = 7.07 ¥ 103 sin 377t

Vrms =

(2 V)2 (4 s) + (-2 V)2 (1 s)+ (-1 V)2 4s

( )=

12 s

2 2 2 16 V s + 4 V s + 4 V s 12 s

s 24 V 2/ 2 = 2V 12 / s = 1.414 V =

52.

Vrms = =

53.

(3 V)2 (2 s) + (2 V)2 (2 s) + (1 V) 2 2s + (-1 V) 2 (2 s) + (-3 V) 2 (2 s) + (1 V) 2 2s

( )

12 s

50 2 V = 12

2 4.167 V = 2.04 V

=0V

G= Vrms =

54.

a.

( )

=8V

T = (4 div.)(10 µs/div.) = 40 µs f=

= 25 kHz

Av. = (1 div.)(20 mV/div.) = 20 mV Peak = (2 div.)(20 mV/div.) = 40 mV = 34.64 mV

rms = b.

T = (2 div.)(50 µs) = 100 µs f=

= 10 kHz

Av. = (-1.5 div.)(0.2 V/div.) = -0.3 V Peak = (1.5 div.)(0.2 V/div.) = 0.3 mV rms = CHAPTER 13

= 367.42 mV 165

55.

a.

b.

A1 = Area = 96 + (4)(64) + (2)(4) = 96 + 256 + 8 = 360

56.

166

c.

rms =

= 5.48

d.

G=

e.

rms @ 1.5 (average value)

a.

Vdc = IR = (4 mA)(2 k ) = 8 V Meter indication = 2.22(8 V) = 17.76 V

b.

Vrms = 0.707(16 V) = 11.31 V

= 3.67

CHAPTER 13

Chapter 14 1.

-

2.

-

3.

a.

(377)(10) cos 377t = 3770 cos 377t

b.

(400)(20) cos(400t + 60°) = 8 ¥ 103 cos(400t + 60°)

c.

(

d.

(-200)(1) cos(t + 180°) = -200 cos(t + 180°) = 200 cos t

a.

Im = Vm/R = 160 V/20 Ω = 8 A, i = 8 sin 100t

b.

Im = Vm/R = 60 V/20 Ω = 3 A, i = 3 sin(2000t + 45°)

c.

Im = Vm/R = 6 V/3 Ω = 2 A, i = 2 sin(wt + 100°)

d.

Im = Vm/R = 12 V/3 Ω = 4 A, i = 4 sin(wt + 220°)

a.

Vm = ImR = (0.2 A)(7.8 ¥ 103 Ω) = 1.56 kV Vm = 1.56 ¥ 103 V υ = 1.56 ¥ 103 sin 500t

b.

Vm = ImR = (5 ¥ 10-3 A)(7.8 ¥ 103 Ω) = 39 V υ = 39 sin(600t - 120°)

a.



b.

XL = 2πfL = 2π(3 mH)(60 Hz) = 1.13 Ω

c.

XL = 2π(3 mH)(8 kHz) = 150.79 Ω

d.

XL = 2π(3 mH)(1.4 MHz) = 26.39 kΩ

a.

L=

b.

L=

a.

XL = 2πfL fi f =

4.

5.

6.

7.

8.

f=

CHAPTER 14

20)(157) cos(157t - 20°) = 4440.63 cos(157t - 20°)

2.5 kΩ (12.47 kHz) 45 kΩ (5.8 kHz)

= 1.23 H

XL XL XL = = 2pL (6.28)(47 mH) 295.16 ´10 -3 H

10 Ω 295.16´10

= 31.91 mH

-3

H

= 33.88 Hz

167

9.

10.

11.

12.

13.

168

XL

4 kΩ

b.

f=

c.

f=

a.

Vm = ImXL = (25 mA)(20 Ω) = 500 mV υ = 0.5 sin(wt + 90°)

b.

Vm = ImXL = (40 ¥ 10-3 A)(20 Ω) = 0.8 V υ = 0.8 sin(wt + 150°)

c.

i = 6 sin(wt + 150°), Vm = ImXL = (6 A)(20 Ω) = 120 V υ = 120 sin(wt + 240°) = 120 sin(wt - 120°)

a.

XL = wL = (150 rad/s)(0.15 H) = 22.5 Ω Vm = ImXL = (15 A)(22.5 Ω) = 337.5 V υ = 337.5 sin(150t + 90°)

b.

XL = wL = (400 rad/s)(0.15 H) = 60 Ω -6 Vm = ImXL = (6 ¥ 10-6 A)(60 Ω) = 360 ´10 V -6 υ = 360 ¥ 10 sin(400t + 120°)

a.

Im =

Vm 120 V = = 3 A, i = 3 sin(wt - 90°) XL 40 Ω

b.

Im =

Vm 30 V = = 0.75 A, i = 0.75 sin(wt - 70°) X L 40 Ω

a.

XL = wL = (90 rad/s)(0.25 H) = 22.5 Ω Im = Vm/XL = 2.5 V/22.5 Ω = 0.111 A i = 0.111 sin(90t - 90°)

b.

XL = wL = (20 rad/s)(0.25 H) = 5 Ω Im = Vm/XL = 16 mV/5 Ω = 3.2 mA i = 3.2 ¥ 10-3 sin(20t - 85°)

a.

XC =

1 1 = =• Ω 2p fC 2p (0 Hz)(0.4´10-6 F)

b.

XC =

1 1 = = 4973.6 kΩ 2p fC 2p (80 Hz)(0.4´10-6 F)

c.

XC =

1 1 = = 159.15 Ω 2p fC 2p (2.5 kHz)(0.4´10-6 F)

295.16´10

-3

H

XL 295.16 ´10

-3

H

=

=

295.16´10 -3 H

= 13.55 kHz

12 kΩ 295.16 ´10 -3 H

= 40.66 kHz

CHAPTER 14

d.

14.

15.

16.

17.

XC =

XC =

1 1 ÞC = 2p fC 2p fX C

a.

C=

b.

C=

a.

f=

b.

f=

1 1 = = 0.68 Hz 2p CX C 2p (3.9´10 -6 F)(60 kΩ)

c.

f=

= 408.1 kHz

d.

f=

a.

Im = Vm/XC = 120 V/2.5 Ω = 48 A i = 48 sin(wt + 90°)

b.

Im = Vm/XC = 4 × 10−3 V/2.5 Ω = 0.16 A i = 1.6 × 10−3 sin(wt + 130°)

a.

υ = 30 sin 250t, XC =

1

2p (250 Hz)(75 Ω) = 8.49 µF

1

2p(36 kHz)(2.2 kΩ) = 2009.5 pF = 4.08 kHz

Im =

b.

a.

= 20.40 Hz

4 kΩ

= 4 kΩ

(250)

= 7.5 mA, i = 7.5 ¥ 10-3 sin(250t + 90°)

υ = 90 ¥ 10-3 sin 377t, XC = Im =

18.

1 1 = = 0.159 Ω 2p fC 2p (2.5 mHz)(0.4´10-6 F)

90 2.65

90

= 2.65 kΩ = 33.96 µF, i = 33.96 ¥ 10-6 sin(377t + 90°)

Vm = ImXC = (50 ¥ 10-3 A)(2 kΩ) = 100 V υ = 100 sin(wt - 90°)

CHAPTER 14

169

19.

b.

Vm = ImXC = (2 ¥ 10-6)(2 kΩ) = 4 mV υ = 4 ¥ 10-3 sin(wt - 30°)

a.

i = 0.2 sin 500t, XC =

= 4 kΩ

(500)(0.5

Vm = ImXC = (0.2 A)(4 kΩ) = 800 V, υ = 800 sin(500t - 90°) b.

i = 5 ¥ 10-3 sin (377t − 45°), XC =

(377)(0.5

= 5.305 kΩ

Vm = ImXC = (5 ¥ 10-3 A)(5.305 kΩ) = 26.53 V υ = 26.53 sin(377t - 135°) 20.

a.

υ leads i by 90° fi L, XL = Vm/Im = 550 V/11 A = 50 Ω L=

b.

= 132.63 mH

υ leads i by 90° fi L, XL = Vm/Im = 36 V/4 A = 9 Ω = 147.36 µH

L= c.

υ and i are in phase fi R R=

=7Ω

i = 5sin(wt + 90° )üï ý i leads u by 90° Þ C u = 2000 sin wt ïþ

21.

XC =

= 400 Ω, C =

I 1 = = 15.92 µF wX C (157 rad/s)(400 Ω) fiL

XL = c.

-

23.

-

170

= 254.78 mH

u = 35 sin(wt - 20°)üï ý in phase Þ R i = 7 sin(wt - 20°) ïþ R=

22.

= 40 Ω, L =

=5Ω

CHAPTER 14

24.



XC =

2π(2kΩ)(1.5 µF) (18.85

10−3)

@ 53.05 Hz 25.

XL = 2πfL = R L=

26.

= 318.47 mH

XL = 2πfL 1 XC = 2pfC f2 = and f =

27.

2

29.

10−6)(80

10−3)

= 2.5 kHz

XC = XL

1 = 2πfL fi 2pfC 28.

(2

a.

P=

b.

P=

c.

P=

d.

P=

R=

(3600

= 3.58 nF

= 389.7 W, Fp = 0.866

= 50 W, Fp = 1.0

= 73.86 W, Fp = 0.985

= 2.30 W, Fp = 0.766

æ8 A ö 2 = 7 Ω, P = I2R = ç ç ÷÷ 7 Ω = 224 W è 2ø (56 V) = 224 W P=

56 V

æ56 V ö æ 8 A ö P = VI cos θ = ç ÷÷ cos 0° = 224 W ÷÷ çç ç è 2 øè 2 ø All the same!

CHAPTER 14

171

30.

P = 150 W: Fp = cos θ = P/VI = 150 W/(200 V)(2.5 A) = 0.3 P = 0 W: Fp = cos θ = 0 500 500 W P = 500 W: Fp = = =1 (200 V)(2.5 A) 500

31.

P= 600 W =

(60 V)

(0.5) fi Im = 40 A

i = 40 sin(ωt + 20° − 60°) = 40 sin(ωt - 40°) 32.

a.

Im = Em/R = 120 V/6.8 kΩ = 17.65 mA, i = 17.65 ¥ 10- 3 sin(2π60t + 20°)

b.

æ17.65 mA ö 2 P=IR= ç ÷÷ 6.8 kΩ = 1.06 W ç 2 è ø

c.

T =

2

= 16.67 ms

6(16.67 ms) = 100.02 ms @ 0.1 s 33.

34.

a.

XL = ωL = (1500 rad/s)(3 mH) = 4.5 kΩ 240 V V 240 V Im = m = = 53.33 mA, i = 53.33 sin(1500t - 45°) = X L (1500 rad/s)(3 mH) 4.5 kΩ

b.

Power loss = 0 W

a.

XC =

1 1 1 = = = 294.88 kΩ w C (2p 600 rad/s)(900 pF) (3.768)(900 ¥ 10-12)

Em = ImXC = (20 ¥ 10-3 A)(294.88 kΩ) = 5857.62 V e = 5.897 ¥ 103 sin(2π600t - 120°)

35.

b.

P=0W

a.

X C1 =

1 1 1 = = = 50 Ω 4 2p f C1 wC1 (10 rad/s)(2 µF) = 10 Ω

E = 84.85 V –60°

I1 =

= 1.697 A –150°

I2 =

= 8.485 A –150°

i1 = 2.4 sin(104t + 150°) i2 = 12 sin(104t + 150°)

172

CHAPTER 14

b.

CT = 2 µF || 10 µF = 12 µF 1 1 = XC = 4 wC (10 rad/s)(12 µF)

84.85Ð 60° E = 8.33 Ω Ð -90° XCT = 10.19 A–150° is = 14.4 sin (104t + 150°)

Is =

36.

a.

L1 || L2 = 60 mH || 120 mH = 40 mH = 2πfLT = 2π(103 Hz)(40 mH) = 251.33 Ω Vm = Im X LT = (80 A)(251.33 Ω) = 20.11 kV

and υs = 20.11 kV sin(103t + 30° + 90°)

so that υs = 20.11 ¥ 103 sin(103t + 120°) ,

b.

= 2pfL1 = 2p(103 Hz)(60 mH) = 376.99 Ω = 16 A

and i1 = 16 sin(103t + 30°) = 2πfL2 = 2π(103 Hz)(120 mH) = 753.98 Ω =8A and i2 = 8 A sin(103t + 30°) 37.

a. c. e.

7.21 –56.31° 15.81 –71.57° 2236.07 –−63.43°

b. d. f.

4.24 –45° 500.05 –5.71° 0.45 –−63.43°

38.

a. c. e.

17.89 –−116.57° 20.22 × 10−3 –−8.53° @ 200 –0°

b. d. f.

8.94 –−26.57° 8.49 × 10−3 –−135° 1000 –−178.85°

39.

a. c. e.

4.6 + j3.86 −j2000 47.97 + j1.68

b. d. f.

−6.0 + j10.39 −6 × 10−3 − j2.2 × 10−3 4.7 × 10−4 −j1.71 × 10−4

40.

a. c. e.

42 + j0.11 −3 × 10−3 − j5.20 × 10−3 −15

b. d. f.

1 × 103 − j1.73 × 103 −6.13 × 10−3 + j5.14 × 10−3 2.09 × 10−3 − j1.20

41.

a.

9.4 + j8.4

b.

246.2 + j51.7

c.

5.74 × 10−6 + j84

CHAPTER 14

173

42.

43.

44.

45.

46.

47.

48.

a.

3.2 + j0.6

b.

239.3 + j301

c.

−20.5 + j4

a.

12.17 –54.70°

b.

98.37 –13.38°

c.

28.07 –−115.91°

a.

−12.0 + j34.0

b.

86.80 + j312.40

c.

−283.90 − j637.65

a.

8.00 –20°

b.

49.68 –−64.0°

c.

40 × 10−3–40°

a.

6.0 –−50°

b.

200 × 10−6 –60°

c.

109 –−170°

a.

4

b.

−4.15 − j4.23

c.

6.69 − j6.46

a.

b.

c.

174

= 10.0 - j5.0

= 19.38 ¥ 10-3 –-15.69°

= 3.07 ¥ 103 –79.44°

CHAPTER 14

49

= 5.06 –88.44°

a.

b.

æ öæ 8 öæ ö 1 1 ÷ ç ÷ç ÷ -4 2 ÷ç ç è 4´10 Ð 20° ø è j( j ) ø è 36 - j30 ø

æ 8 öæ ö 1 (2500– −20°) ç ÷ ç ÷ è - j ø è 46.861Ð -39.81° ø (2500 –-20°)(8j)(0.0213 –39.81°) = 426 –109.81° 50.

a. (x + j5) + (3x + jy) - j6 = 16 (x + 3x) + j(5 + y - 6) = 16 + j0 x + 3x = 16 5+y-6=0 y = +6 - 5 4x = 16 y=1 x=4 b.

51.

a.

(18 –20°)(x –-60°) = 30.64 - j25.72 (18x –-40°) = 40 –(-40°) 18 x = 40° x = 2.22 5x + j10 2 - jy ────── 10x + j20 - j5xy - j210y = 90 - j70 (10x + 10y) + j(20 - 5xy) = 90 - j70 10x + 10y = 90 x+y=9 x=9-yfi

20 - 5xy = -70 20 - 5(9 - y)y = -70 5y(9 - y) = 90 y2 - 9y + 18 = 0 y= y=

= 6, 3

For y = 6, x = 3 y = 3, x = 6 (x = 3, y = 6) or (x = 6, y = 3) = 4 –-θ = 3.464 - j2 = 4 –-30°

b.

θ = 30° 52.

a.

180.0 –40°

b.

25 ¥ 10-3 –-60°

c.

212.13 –-120°

CHAPTER 14

175

53.

54.

a.

21.21 –−180°

b.

4.24 ¥ 10-6 –90°

c.

3.96 × 10−6–50°

a.

56.57 sin(377t + 20°)

b.

169.68 sin (377t + 10°)

c.

11.31 ¥ 10- 3 sin(377t − 110°)

d.

6000 sin(377t - 180°)

55.

(Using peak values) ein = υa + υb fi υa = ein - υb = 60 V –90° - 20 V –-45° = j60 V − (14.142 V − j14.142 V) = j60 V - 14.142 V + j14.142 V = −14.142 V + j74.142 V = 75.479 V –100.8° and va = 75.48 sin(377t + 100.8°)

56.

is = i1 + i2 fi i1 = is - i2 (Using peak values) = (30 ¥ 10-6 A –80°) - (4 ¥ 10-6 A –-30°) = 5.21 ¥ 10-6 + j0.98 ¥ 10−6 − 3.46 ¥10−6 + j2 ¥10−6 = 1.86 ¥10−6 A –59.58° -6 i1 = 1.86 ¥ 10 sin (wt + 59.58°)

57.

(Using peak values) ein = υa + υb + υc υa = ein − υb − υc = 120 V –30° − 30 V –60° − 40 V –−90° = (103.92 V + j60 V) − (15 V + j25.981 V) − (−j40 V) = 88.92 V + j74.02 V = 115.70 V –39.775° va = 115.70 sin(377t + 39.78°)

58.

(Using effective values) Is = I1 + I2 + I3 I1 = Is − I2 − I3 = 12.73 A –180° − 5.66 A –90° − 2[5.66 A –90°] = 12.73 A –180° − 5.66 A –90° − 11.32 A –90° = −12.73 A − (j5.66 A) − (j11.32 A) = −12.73 A − j16.98 A = 21.22 A –−126.86° = (1.414)(21.22 A)sin 377t i1 = 30 sin 377t

176

CHAPTER 14

Chapter 15 1.

2.

a.

I = (0.7071)(20 mA – 30°) = 14.14 mA – 30°

b.

V = IR = (14.14 mA – 30°)(2 kΩ – 0°) = 28.28 V – 30°

c.



d.

u = (1.414)(28.28 V) sin (1000t + 30°) = 40 sin (1000t + 30°)

e.



a.

VR = (0.7071)(24 V) – 20° = 16.97 V – 20°

b.

I=

c.



d.

3.

4.

VR 16.97 V Ð 20° = = 2.5 A – 20° R 6.8 Ω Ð 0°

i = (1.414)(2.5 A) sin (300t + 20°) = 3.53 sin (300t + 20°)

e.



a.

IL = (0.7071)(10 mA) – 40° = 7.071 mA/– 40°

b.

VL = ILXL = (0.7071 mA – 40°)(2 kΩ – 90°) = 14.14 V – 130°

c.



d.

uL = (1.414)(14.14 V) sin (250t + 130°) = 20 sin (250t + 130°)

e.



a.

XL = wL = (750 rad/s)(40 mH) = 30 Ω

b.

VL = (0.7071)(200 µV) – 90° = 141.42 µV – 90°

c.

IL =

CHAPTER 15

VL 141.42 mV Ð 90° = = 4.71 µA – 0° XL 30 Ω Ð 90°

177

5.

d.



e.

iL = (1.414)(4.71 µA) sin (750t + 0°) = 6.66 ¥ 10−6sin 750t

f.



a.

IL = (0.7071)(6 mA) – 20° = 4.243 mA – 20° VL = (0.7071)(16 V) – 110° = 11.314 V – 110°

6.

7.

178

VL 11.314 V Ð 110° = = 2.67 kΩ – 90° = XL IL 4.243 mA Ð 20°

b.

ZL =

c.

XL = wL fi L =

d.



e.



a.

VC = (0.7071)(60 V) – 60° = 42.43 V – 60°

b.

IC =

c.



d.

iC = (1.414)(1.061 A) sin (400t + 150°) = 1.5 sin (400t + 150°)

e.



a.

XC =

b.

IC = (0.7071)(5 µA) – −80° = 3.54 µA – −80°

c.

VC = ICXC = (3.54 µA – −80°)(5 kΩ – −90°) = 17.7 mV – −170°

d.



e.

uC = (1.414)(17.7 mV) sin (2000t − 170°) = 25.03 ¥ 10−3 sin (2000t − 170°)

XL 2.67 kΩ = = 2.23 H w 1200 rad/s

VC 42.43 V Ð 60° = = 1.061 A – 150° XC 40 Ω Ð -90°

1 1 = = 5 kΩ wC (20, 000 rad/s)(0.01 µF)

CHAPTER 15

8.

f.



a.

IC = (0.7071)(60 µA) – 80° = 42.43 µA – 80° VC = (0.7071)(24 mV) – −10° = 16.97 mV – −10°

b

XC = ZC =

c.

XC =

d.



e.



VC 16.97 mV Ð -10° = = 400 Ω – −90° 42.43 µA Ð 80° IC

1 1 1 ÞC = = = 1.25 µF wC wX C (2000 rad/s)(400 Ω)

9.



10.

XL = 2πfL = 2π(1.2 kHz)(5 mH) = 37.7 Ω

11.

XC =

1 1 = = 79.58 Ω 2pfC 2p(100 kHz)(0.02 µF)

12.

a.

ZT = 7.8 Ω + j8.2 Ω = 11.32 Ω – 46.43°

b.

ZT = 2 Ω - j8 Ω + 20 Ω = 22 Ω - j8 Ω = 23.41 Ω – -19.98°

c.

ZT = 3 kΩ + j3.2 kΩ + 5.6 kΩ + j6.8 kΩ = 8.6 kΩ + j10 kΩ = 13.19 kΩ – 49.30°

a.

ZT = 3 Ω + j5 Ω = 5.83 Ω – 59.1°

b.

ZT = 1 kΩ + j8 kΩ + j6 kΩ - j4 kΩ = 1 kΩ + j10 kΩ = 10.05 Ω – 84.29°

c.

ZT = R + jω L1 −

13.

j + jω L2 = R + jX L1 − jX C + jX L2 ωC

Now, XL1 = w L1 = 2p fL1 = 2p (103 Hz)(47 ¥ 10-3 H) = 295.31 Ω = 0.295 kΩ XC =

= 1.592 kΩ

XL2 = ωL2 = 2πfL2 = 2π(103 Hz)(200 ¥ 10−3 H) = 1.257 kΩ ZT = 0.5 kΩ + j0.295 kΩ - j1.59 kΩ + j1.257 kΩ ZT = 0.5 kΩ + j0.038 kΩ = 500 Ω - j38 Ω 14.

a.

ZT =

E 120 V Ð 0° = = 20 Ω – -45° = 14.142 Ω - j14.142 Ω = R - jXC 6 A Ð 45° I

b.

ZT =

80 V Ð 130° E = = 4 kΩ – 90° = j4 kΩ = jXL I 20 mA Ð 40°

CHAPTER 15

179

15.

ZT =

a.

ZT = 8 Ω + j6 Ω = 10 Ω – 36.87°

c.

I = E/ZT = 100 V – 0°/10 Ω – 36.87° = 10 A – -36.87° VR = (I – q)(R – 0°) = (10 A – -36.87°)(8 Ω – 0°) = 80 V – -36.87° VL = (I – q)(XL – 90°) = (10 A – -36.87°)(6 Ω – 90°) = 60 V – 53.13°

f.

P = I2R = (10 A)2 8 Ω = 800 W

g.

Fp = cos θT = R/ZT = 8 Ω/10 Ω = 0.8 lagging

a.

uR = 113.12 sin(w t - 36.87°) uL = 84.84 sin(w t + 53.13°) i = 14.14 sin (w t - 36.87°) ZT = 18 Ω - j29.15 Ω = 34.26 Ω –-58.30° 1 1 = XC = = 29.15 Ω 2p fC 2p (60 Hz)(91 µF)

c.

I=

h. 16.

8 kV Ð 0° E = = 666.67 Ω – 30° = 577.35 Ω + j333.34 Ω = R + jXL I 12 A Ð -30°

c.

= 3.50 A –78.30°

VR = (I –θ)(R –0°) = (3.50 A –78.30°)(18 Ω –0°) = 63.0 V –78.30° VC = (I –θ)(XC –-90°) = (3.50 A –78.30°)(29.15 Ω –-90°) = 102.03 V –−11.70°

17.

f.

P = I2R = (3.50 A)2 18 Ω = 220.5 W

g.

Fp = R/ZT = 18 Ω/34.26 Ω = 0.525 leading

h.

i = 4.95 sin(377t + 78.30°) υR = 89.1 sin(377t + 78.30°) υC = 144.27 sin(377t − 11.70°)

a.

ZT = 4 Ω + j6 Ω - j10 Ω = 4 Ω - j4 Ω = 5.66 Ω –-45°

c.

XL = wL fi L = XC =

d.

I=

= 16 mH



= 265 µF

= 8.83 A –45°

VR = (I –θ)(R –0°) = (8.83 A –45°)(4 Ω –0°) = 35.32 V – 45° VL = (I –θ)(XL –90°) = (8.83 A –45°)(6 Ω –90°) = 52.98 V –135° VC = (I –θ)(XC –-90°) = (8.83 A –45°)(10 Ω –-90°) = 88.30 V –-45°

180

CHAPTER 15

18.

f.

E = VR + VL + VC 50 V –0° = 35.32 V –45° + 52.98 V –135° + 88.30 V –-45° 50 V –0° = 49.95 V –0° @ 50 V – 0°

g.

P = I2R = (8.83 A)2 4 Ω = 311.88 W

h.

Fp = cos θT =

i.

i = 12.49 sin(377t + 45°) e = 70.7 sin 377t υR = 49.94 sin(377t + 45°) υL = 74.91 sin(377t + 135°) υC = 124.86 sin(377t - 45°)

a.

XL = wL = (20 × 103 rad/s)(0.1H) = 2 kΩ 1 1 = XC = = 6.1 kΩ 3 wC (20´10 rad/s)(8200 pF)

= 4 Ω/5.66 Ω = 0.707 leading

ZT = 1.2 kΩ + j2 kΩ − j6.1 kΩ = 1.2 kΩ − j4.1 kΩ = 4.27 kΩ –−73.69° b.



c.



d.

4.24 V Ð 60° E = = 0.993 mA –133.69° ZT 4.27 kΩ Ð -73.69° VR = IR = (0.993 mA –133.69°)(1.2 kΩ –0°) = 1.19 V –133.69° VL = IXL = (0.993 mA –133.69°)(2 kΩ –90°) = 1.99 V –223.69° VC = IXC = (0.993 mA –133.69°)(6.1 kΩ –−90°) = 6.06 V –43.69° I=

e.



f.

E = VR + VL + VC 4.24 V –60° = 1.19 V –133.69° + 1.99 V –223.69° + 6.06 V –43.69° = (−0.822 V + j0.80 V) + (−1.44 V − j1.37 V) + (4.38 V + j 4.19 V) = 2.12 V+ j3.62 V 4.24 V –60° @ 4.20 V –59.65°

g.

P = I2R = (0.993 mA)2(1.2 kΩ) = 1.18 mW

h.

Fp =

i.

i = 1.4 × 10−3 sin (20,000t + 133.69°) υR = 1.68 sin (20,000t + 133.69°) υL = 2.81 sin (20,000t + 223.69°) υC = 8.57 sin (20,000t + 43.69°)

CHAPTER 15

1.2 kΩ R = = 0.281 leading 4.27 kΩ ZT

181

19.

20.

a.

ZT = 30 Ω + j100 Ω − j20 Ω = 30 Ω + j80 Ω = 85.44 Ω – 69.44°

b.

Is =

c.

VR = IRR = IsR = (468.16 mA – −9.44°)(30 Ω – 0°) = 14.04 V – −9.44°

d.

Fp = cos qT =

a.

ZT = 8 Ω + j34 Ω - j16 Ω = 8 Ω + j18 Ω = 19.7 Ω – 66.04° E 48 V Ð 0° - 32 V Ð 45° Is = IL = T = 19.7 Ω Ð 66.04° ZT

E 40 V Ð 60° = = 468.16 mA – −9.44° ZT 85.44 Ω Ð 69.44°

R 30 Ω = = 0.351 lagging ZT 85.44 Ω

48 V - (22.63 V + j22.63 V) 19.7 Ω Ð 66.04° 25.37 V - j22.63 V 33.99 V Ð -41.729° = = 19.7 Ω Ð 66.04° 19.7 Ω Ð 66.04° IL = 1.726 A – -107.77° =

21.

b.

V C = I C X C = I sX C = (1.726 A – −107.77°)(16 Ω – -90°) VC = 27.62 V – -197.77°

a.

IL1 = I = 8 mA – 30°

b.

ZT = R − jXC + jXL1 + R2 + jXL2 = 2 kΩ − j4 kΩ + j8 kΩ + 5 kΩ + j4 kΩ = 7 kΩ + j8 kΩ = 10.63 kΩ – 48.81° Vs = IZT = (8 mA – 30°)(10.63 kΩ – 48.81°) = 85.04 V – 78.81°

c.

22.

VR1 = IR1 = (8 mA – 30°)(2 kΩ – 0°) = 16 V – 30°

24 V (rms) fi 33.94 V (peak) 43.20 V(p − p) fi 21.60 V (peak)

22 Ω(33.94 V) 22 Ω +R 475.20 + 21.60R = 746.68 Vscope = 21.60 V =

182

CHAPTER 15

R=

23.

a.

271.48 Ω = 12.57 Ω ≈ 12.6 Ω 21.60 æ 22.8 V ö VL (rms) = 0.7071 ç ÷ = 8.06 V è 2 ø XL =

2.4 mA

= 3.36 kΩ

XL = w L = (1000 rad/s)L = 3.36 kΩ fi L =

3.36 kΩ = 3.36 H 1000 rad/s

b. (26 V)2 = 2

VR = 611.04 611.04 = 24.72 V

VR = R=

24.

V R (rms) 24.72 V = = 10.3 kΩ I (rms) 2.4 mA

c.

6.2 H

a.

æ10.37 Vö VR(rms) = 0.7071 ç ÷ = 3.666 V è 2 ø IR(rms) =

VR (rms) 3.666 V = = 366.6 µA 10 kΩ R

b. (15 V)

(3.666 V) 211.56 211.56

14.55 V

14.55 V VC (rms) = = 39.69 kΩ I (rms) 366.6 µA 1 1 1 ÞC = = XC = = 100.25 pF ≈ 100 pF 2p fC 2p fX C 2p (40 kHz)(39.69 kΩ) XC =

25.

P = VI cos θ fi 9000 W = (200 V)(I)(0.9) 9000 W I= = 50 A 180 0.9 = cos θ

CHAPTER 15

183

θ = 25.84° V = 200 V –0°, I = 50 A –-25.84° ZT =

50 A –-25.84°

= 4 Ω –−25.84° = 3.6 Ω + j1.74 Ω

26.

P = VI cos q fi 400 W = (240 V)(3 A) cos θ cos θ = 0.5556 fi θ = 56.25° V = 240 V –0°, I = 3 A –-56.25° 240 V –0° = 80 Ω –56.25° = 44.44 Ω + j66.52 Ω ZT = 3 A –−56.25° RT = 44.44 Ω = 4 Ω + R fi R = 40.44 Ω So, the series elements that must be in the enclosed contained in Fig. 15.102 are R = 40.44 Ω and XL = 66.52 Ω.

27.

a.

b.

28.

a.

b.

(6 kΩ –0°) (200 V –60°) (6 kΩ + j8 kΩ)

V2 =

(8 kΩ –90°)(200 V –60°) = 160 V –96.87° 10 –53.13°

(40 Ω –90°)(110 V –15°) 4400 V–105° = 89.27 V –50.75° 49.29 Ω–54.25° (6.8 Ω + j40 Ω + 22 Ω) (22 ΩÐ0°)(110 V Ð15°) 2420 kV Ð15° = = 49.097 V –-39.25° V2 = 49.29 ΩÐ54.25° 49.29 Ω Ð 54.25° V1 =

(20 Ω –90°) (30 V –60°) = 21.225 V –195° (20 Ω + j20 Ω − j40 Ω) (40 Ω –−90°)(30 V –60°) = 42.43 V –15° V2 = V1 =

ZT = 4.7 kΩ + j30 kΩ + 3.3 kΩ - j10 kΩ = 8 kΩ + j20 kΩ = 21.541 kΩ –68.199° = 3.3 kΩ + j30 kΩ - j10 kΩ = 3.3 kΩ + j20 kΩ = 20.27 kΩ –80.631° (20.27 kΩ –80.631°) (150 V –0°) V1 = = 141.15 V –12.432° V2 = =

29.

a.

1200 V–60° = 120 V –6.87° 10 –53.13°

V1 =

= 3.3 kΩ - j10 kΩ = 10.53 kΩ –-71.737° (10.53 kΩ –−71.737°) (150 V –0°)

= 73.33 V –-139.94°

XL = wL = (1000 rad/s)(20 mH) = 20 Ω XC =

= 25.64 Ω

ZT = 30 Ω + j20 Ω - j25.64 Ω = 30 Ω - j5.64 Ω = 30.53 Ω –-10.65°

184

CHAPTER 15

= 655.1 mA –50.65°

I=

VR = (I – θ)(R – 0°) = (655.1 mA –50.65°)(30 Ω –0°) = 19.65 V –50.65° VC = (655.1 mA –50.65°)(25.64 Ω –-90°) = 16.80 V –−39.35° b.

cos θT =

= 0.983 leading

c.

P = I2R = (655.1 mA)2 30 Ω = 12.87 W

f.

VR =

= 19.66 V –50.65° = 16.80 V –−39.35°

VC =

30.

g.

ZT = 30 Ω - j5.64 Ω = R - jXC

a.

ZT =

–tan-1XL/R

f 0 Hz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

b.

ZT 1.0 kΩ 1.008 kΩ 1.181 kΩ 1.606 kΩ 2.134 kΩ 2.705 kΩ

θT 0.0° 7.16° 32.14° 51.49° 62.05° 68.3°

VL = f 0 Hz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

c. f 0 Hz 1 kHz

CHAPTER 15

VL 0.0 V 0.623 V 2.66 V 3.888 V 4.416 V 4.646 V

θL = 90° - tan-1 XL/R 90.0° 82.84°

185

5 kHz 10 kHz 15 kHz 20 kHz

57.85° 38.5° 27.96° 21.7°

f 0 Hz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

VR = RE/ZT 5.0 V 4.96 V 4.23 V 3.11 V 2.34 V 1.848 V

d.

31.

a.

ZT = │ZT│ = f 0 kHz 1 kHz 3 kHz 5 kHz 7 kHz 10 kHz

186

–-tan-1XC/R , θT = -tan-1XC/R │ZT│ •Ω 353.1 Ω 150.80 Ω 120.78 Ω 111.09 Ω 105.58 Ω

θT -90.0° -73.55° -48.46° -34.11° -25.82° -18.71°

CHAPTER 15

b.

–-90° + tan-1XC/R

VC =

│VC│ =

f 0 Hz 1 kHz 3 kHz 5 kHz 7 kHz 10 kHz

c.

θC = -90° + tan-1 XC/R f 0 Hz 1 kHz 3 kHz 5 kHz 7 kHz 10 kHz

d.

│VC│ 10.0 V 9.59 V 7.49 V 5.61 V 4.36 V 3.21 V

θC 0.0° -16.45° -41.54° -55.89° -64.18° -71.29°

│VR│ =

f 0 Hz 1 kHz 3 kHz 5 kHz 7 kHz 10 kHz

CHAPTER 15

│VR│ 0.0 V 2.83 V 6.63 V 8.28 V 9.00 V 9.47 V

187

32.

a.

ZT = f 0 Hz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

b.

ZT •Ω 19.31 × 103 Ω 3.40 × 103 Ω 1.21 × 103 Ω 1.16 × 103 Ω 1.84 × 103 Ω

θT -90.0° -87.03° -72.91° -34.33° +30.75° +56.99°

│VC│ = f 0 Hz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

│VC│ 120 V 120.62 V 136.94 V 192.4 V 133.45 V 63.29 V

c. f 0 Hz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

188

I 0.0 mA 6.21 mA 35.29 mA 99.17 mA 103.45 mA 65.22 mA

CHAPTER 15

33.

=Rfif=

a.

XC =

= 1.54 kHz

b.

Low frequency: XC very large resulting in large ZT High frequency: XC approaches zero ohms and ZT approaches R

c.

f = 100 Hz: XC =

1 1 = = 3.39 kΩ 2pfC 2p (100 Hz)(0.47 mF)

ZT @ XC f = 10 kHz: XC =

1 1 = = 33.86 Ω 2pfC 2p (10 kHz)(0.47 mF)

ZT @ R d.

-

e.

f = 40 kHz: XC =

1 1 = = 8.47 kΩ 2pfC 2p (40 kHz)(0.47 mF)

q = -tan-1 34.

= -2.2°

a.

b.

c.

35.

(I):

(a)

θdiv. = 0.8 div., θT = 4 div. θ=

¥ 360° = 72°

u 1 leads u 2 by 72° (b)

CHAPTER 15

u1: peak-to-peak = (5 div.)(0.5 V/div.) = 2.5 V

189

æ 2.5 V ö V1(rms) = 0.7071 ç ÷ = 0.88 V è 2 ø u2: peak-to-peak = (2.4 div.)(0.5 V/div.) = 1.2 V æ1.2 V ö V2(rms) = 0.7071 ç ÷ = 0.42 V è 2 ø (c)

T = (4 div.)(0.2 ms/div.) = 0.8 ms f=

(II):

(a)

=

= 1.25 kHz (both)

θdiv. = 2.2 div., θT = 6 div. θ=

¥ 360° = 132°

u 1 leads u 2 by 132°

190

(b)

u1: peak-to-peak = (2.8 div.)(2 V/div.) = 5.6 V æ 5.6 V ö V1(rms) = 0.7071 ç ÷ = 1.98 V è 2 ø u2: peak-to-peak = (4 div.)(2 V/div.) = 8 V æ8 V ö V2(rms) = 0.7071 ç ÷ = 2.83 V è 2 ø

(c)

T = (6 div.)(10 µs/div.) = 60 µs 1 f= = = 16.67 kHz 60 ms

CHAPTER 15

Chapter 16 1.

a.

b.

12 kΩÐ90° (2 kΩÐ0°)(6 kΩÐ90°) = 2 kΩ + j6 kΩ 6.325Ð71.57° = 1.897 kΩ – 18.43° = 1.799 kΩ + j0.599 kΩ

ZT =

72 kΩ∠ − 90° (12 kΩ∠ − 90°)(6 kΩ∠0°) = = ZT ′ = 5.37 kΩ∠ − 26.57° n 6 kΩ − j12 kΩ 13.42∠ − 63.43°

ZT ′ X L (5.37 kΩ∠ − 26.57°)(20 kΩ∠90°) 107.4∠63.43° = = = 5.885 kΩ∠ − 11.32° ZT + X L 5.37 kΩ∠ − 26.57° + 20 kΩ∠90° 18.25∠74.75°

= ZT

Rectangular form ZT = 5.77 kΩ – j1.155kΩ c.

XL1 = ωL = 2πfL1 = 2π(10 kHz)(40 mH) = 2.513 kΩ XC =

1 1 1 = = = 2.653 kΩ wC 2p fC 2p (10 kHz)(6 nF)

XL2 = ωL = 2πfL2 = 2π(10 kHz)(20 mH) = 1.257 kΩ

(1.257 kΩ∠90°)(2.653 kΩ∠ − 90°) 3.335 kΩ∠0° ZT ′ = = = 2.389 kΩ∠90° j1.257 kΩ − j 2.653 kΩ 1.396∠ − 90° (2.513 kΩ∠90°)(2.389 kΩ∠90°) 6.004 kΩ∠180° ZT = = 1.225 kΩ∠90° = j1.225 kΩ = 4.902∠90° j 2.513 kΩ + j 2.389 kΩ 2.

a.

b. c.

1 1 1 1 1 1 1 = + + = + + ZT X L XC R 8 Ω Ð 90° 4 Ω Ð -90° 12 Ω Ð 0° = 0.125 – -90° + 0.25 – 90° + 0.083 – 0° = -j0.125 + j0.25 + 0.083 = 0.083 + j0.125 = 150.05 ¥ 10-3 – 56.416° 1 ZT = = 6.66 Ω – -56.42° = 3.68 Ω - j5.55 Ω -3 150.05´10 Ð 56.416° ZT = -j4 kΩ = 4 kΩ – -90° 1 ZT

=

1 R1

+

1 XL

+

1 XC

1 R2

=

1 1.2 kΩ Ð 0°

I. II.

-6

+

1 3.2 kΩ Ð 90°

+

1 4.6 kΩ Ð -90° -6

+

1 3.6 kΩ Ð 0°

= 833.33 ¥ 10 – 0° + 312.5 ¥ 10 – -90° + 217.39 ¥ 10 – 90° + 277.78 ¥ 10-6 – 0° = 1.111 ¥ 10-3 - j312.5 ¥ 10-6 + j217.39 ¥ 10-6 = 1.111 ¥ 10-3 - j95.11 ¥ 10-6 = 1.115 ¥ 10-3 – -4.89° 1 ZT = = 896.86 Ω – 4.89° = 893.6 Ω + j76.45 Ω -3 1.115´10 Ð -4.89° 3.

-6

+

1 1 = 0.1136 s = 0.1136 S – 0° = R 8.8 Ω 1 1 = 3.333 mS – -90° = −j3.333 mS = −j3.333´10-3 S = YL = j300 Ω 300 ΩÐ−90°

YR =

CHAPTER 16

191

III.

4.

a.

b.

YC =

1 1 = 0.333 mS – 90° = j0.333´10-3 S = 3 kΩ Ð-90° j3 kΩ

(15 Ω∠0°)(60 Ω∠90°) 900∠90° = = 14.55∠14.04° 15 Ω + j 60 Ω 61.85∠75.96° 1 1 YT= = 0.069∠ − 14.04°= 0.067S − j0.017S= G − jB = ZT 14.55 Ω∠14.04° ZT =

22 Ω || 2.2 Ω= 2 Ω (2 Ω∠0°)(8 Ω∠90°) = ZT = 1.94 Ω∠ − 14.03° 2 Ω − j8 Ω 1 1 Y = 0.515 Ω∠14.03° = = T ZT 1.94 Ω∠ − 14.03° YT = G + jB 0.49S + j0.12 =

c.

1 1 1 YT = + + 4 kΩ∠0° 6 kΩ∠90° 9 kΩ∠ − 90° = 0.25 ×10−3 S∠0° + 0.167 × 10−3 S∠ − 90° + 0.111×10−3 S 3 = 0.25 × 10−3 S − j0.056 ×10−= S 0.256 mS∠ − 12.63° YT= G − jB

= ZT 3.91 kΩ∠ − 12.63° d.

G

Y 5.

a.

-jB

ZT = 4 Ω + j8 Ω = 8.94 Ω – 63.43° YT = 0.112 S – −63.43° YT = 50.09 mS −j100.17 mS = G − jBL

b.

ZT = 33 Ω + 20 Ω − j60 Ω = 53 Ω − j60 Ω = 80.06 Ω – 48.54° YT = 12.49 mS – 48.54° = 8.27 mS + j9.36 mS = G + jBC

c.

ZT = 400 Ω − j500 Ω − j600 Ω = 400 Ω − j100 Ω = 412.31 Ω – −14.03° YT = 2.43 mS – 14.03° = 2.36 mS + j0.59 mS = G − jBC

192

CHAPTER 16

6.

I.

a.

1 kΩ = 500 Ω 2 2 kΩ Ð -90° X C1 || X C 2 = = 1 kΩ – -90° 2 1 1 + YT = 500 Ω Ð 0° 1 kΩ Ð -90° = 2 ¥ 10-3 S + 1 ¥ 10-3 S – 90° = 2 mS + j1 ms

R1 || R2 =

b. 500 Ω

II.

a.

1 kΩ

1 1 1 + + 10 kΩ Ð 0° 4 kΩ Ð 90° 8 kΩ Ð 90° = 100 ¥ 10-6 + 250 ¥ 10-6 – -90° + 125 ¥ 10-6 – -90° = 100 ¥ 10-6 + 375 ¥ 10-6 – -90° = 100 µS - j375 µs

YT =

b. 10 kΩ

7.

a.

2.67 kΩ

XL = 2π fL = 2π(2 kHz)(470 mH) = 5.91 kΩ ZT = 4.7 kΩ + j5.91 kΩ = 7.55 kΩ – 51.51°

CHAPTER 16

193

1 1 = = 132.45 µS – -51.51° ZT 7.55 kΩ Ð 51.51° = 82.43 µS - j103.67 µS = G - jBL

YT =

b.

1 1 fiR= = 12.13 kΩ R 82.43 mS 1 1 BL = 103.67 µS = fi XL = = 9.65 kΩ XL 103.67 mS G = 82.43 mS =

12.13 kΩ

c.

R

XL = 9.65 kΩ

R = 12.13 kΩ XL = 2π fL = 9.65 kΩ, L =

d. 8.

YT=

9.65 kΩ = 767.92 mH 2p (2 kHz)

Both have resistance and inductive components.

I 6 × 10−3 ∠103 t + 10° + 90° 6 × 10−3 ∠70° = = 24 V 24 ∠103 t − 60° + 90°

= GL + jBL 0.25×10−3 S∠70° = 0.086 mS + j0.235 mS Y= T G= = L 0.086 mS X= L

1 1 = R= = 11.627 kΩ L RL 0.086 mS

1 1 = = 4.255 kΩ BL 0.235 mS

X L =ω L =103 L =4.255 × 10−3 Ω; ω =10000 rad/s L=

9.

4.255 ×10−3 103

1 1 + = 0.1 S - j0.05 S = 111.8 mS –-26.57° 10 Ω Ð 0° 20 Ω Ð 90°

a.

YT =

b.

-

c.

E = Is/YT = 2 A –0°/111.8 mS –-26.57°= 17.89 V –26.57° IR =

194

H = 4.255 H

= 17.89 V –26.57°/10 Ω –0° = 1.79 A –26.57°

CHAPTER 16

IL =

10.

11.

= 17.89 V –26.57°/20 Ω –90° = 0.89 A –-63.43°

f.

P = I2R = (1.79 A)2 10 Ω = 32.04 W

g.

Fp =

h.

e = 25.30 sin(377t + 26.57°) iR = 2.53 sin(377t + 26.57°) iL = 1.26 sin(377t - 63.43°) is = 2.83 sin 377t

a.

XC =

b.

YT =

c.

E=

= 18.02 V – -6.1°

IR =

= 1.80 mA – -6.1°

IC =

= 0.883 mA – 83.90°

= 0.894 lagging

1 1 = = 20.4 kΩ 2p fC 2p (60 Hz)(0.13 mF) 1 1 + = 0.1 mS –0° + 0.049 mS – -90° 10 kΩ Ð 0° 20.4 kΩ Ð -90° = 0.111 mS – 26.10°

d.

-

e.

Is = IR + IC 2 mA – 20° = 1.80 mA – -6.1° + 0.883 mA – 83.90° = (1.79 mA - j0.191 mA) + (0.094 mA + j0.878 mA) = 1.88 mA + j0.687 mA 2 mA – 20° @ 2 mA – 20.07°

f.

P = I2R = (1.80 mA)2 10 kΩ = 32.4 mW

g.

Fp =

h.

ω = 2pf = 377 rad/s is = 2.83 ¥ 10- 3 sin(ωt + 20°) iR = 2.55 ¥ 10- 3 sin(ωt - 6.57°) iC = 1.25 ¥ 10- 3 sin(ωt + 83.44°) e = 25.48 sin(ωt - 6.57°)

a.

R1 || R2 = 220 Ω || 120 Ω = 77.65 Ω

CHAPTER 16

= 0.9 leading

195

XC__XL ȍ–-ƒ__ȍ–ƒ  Ð ƒ  Ð ƒ  Ð ƒ = =   ȍ–ƒ - j  Ð -ƒ - j + j  ZT  R__R __ X&__X/  ȍ–ƒ__ȍ–ƒ 

E

Y T

F

-

G

I s



  Ð ƒ ´ Ð  ƒ  65.21 Ω – 32.91° =   j  Ð  ƒ

  =  15.34 mS – -32.91° ZT Ÿ Ð ƒ

E 9 Ð ƒ =  184.02 mA – -32.91° ZT Ÿ Ð ƒ E 9 Ð ƒ =  200 mA – 90° XC Ÿ Ð -ƒ

H

I C

I

H    VLQwt 16.97 sin wt is   ¥- VLQ wt-ƒ 260.02 ¥ 10- 3 sin (wt - 32.91°)

J

Fp FRVq7 FRVƒ 0.84 lagging

 D

   + + Ÿ Ð ƒ Ÿ Ð ƒ Ÿ Ð -ƒ  6–°6–-°6–°  6-j6 0.89 S –-19.81° ZT 1.12 Ω – 19.81° Y T 

E

-

F

X C

fi

XL ȦLfiL 

G

5.31 mH

2.40 V –79.81°

E I R  I L 

196

531 µF

2.00 A –79.81° 1.20 A –-10.19°

CHAPTER 16

= 0.48 A –169.81°

IC =

13.

f.

Is = IR + IL + IC 2.121 A –60° = 2.00 A –79.81° + 1.20 A –-10.19° + 0.48 A –169.81° 2.121 A –60° 3 = 2.13 A –60.01°

g.

P = I2R = (2.00 A)2 1.2 Ω = 4.8 W

h.

Fp =

i.

e = 3.39 sin(377t + 79.81°) iR = 2.83 sin(377t + 79.81°) iL = 1.70 sin(377t - 10.19°) iC = 0.68 sin(377t + 169.81°)

a.

XL = wL = (1000 rad/s)(3.9 H) = 3.9 kΩ, 1 1 = XC = = 8.33 kΩ wC (1000 rad/s)(0.12 mF) 1 1 1 + + YT = 3 kΩ Ð 0° 3.9 kΩ Ð 90° 8.33 kΩ Ð -90° = 0.333 mS –0° + 0.256 mS –-90° + 0.120 mS –90° = 0.333 mS - j0.136 mS = 0.36 mS –-22.22°

d.

E = I/YT = 3.54 mA –-20°/0.36 mS –-22.22° = 9.83 V –2.22° IR = IL = IC =

14.

= 0.941 lagging

= 9.83 V–2.22°/3 kΩ –0° = 3.28 mA –2.22° = 9.83 V–2.22°/3.9 kΩ –90° = 2.52 mA –-87.78° = 9.83 V–2.22°/8.33 kΩ –-90° = 1.18 mA –92.22°

g.

P = I2R = (3.28 mA)23 kΩ = 32.28 mW

h.

Fp = G/YT = 0.333 mS/0.36 mS = 0.925 leading

i.

e = 13.9 sin(1000t + 2.22°) iR @ 4.64 ¥ 10-3 sin(1000t + 2.22°) iL @ 3.56 ¥ 10-3 sin(1000t - 87.78°) iC = 1.67 ¥ 10-3 sin(1000t + 92.22°)

a.

I= I1 + I 2 , (22 Ω∠0°)(60 Ω∠90°) = 22 Ω + j 60 Ω (60 Ω∠90°)(30 A∠40°) I1 = = 20.66 Ω∠20° (22 Ω∠0°)(30 A∠40°) I2 = = 20.66 Ω∠20°

ZT =

CHAPTER 16

1320∠90° = 22.66 Ω∠20° 63.906∠70° 1800∠130° = 87.12 A∠110° 20.66∠20° 31.95 A∠20° 197

b.

′ 12 Ω − j 6 Ω ZT= = 13.42 Ω∠ − 26.57° (4 Ω∠90°)(13.42 Ω∠ − 26.57°) 53.68∠63.43° = = 3.141 Ω∠83.99° 16 Ω − j 6 Ω 17.09∠ − 20.56° (13.42 Ω∠ − 26.57°)(8 A∠45°) I1 = 34.19 A∠ − 65.56° = 3.141 Ω∠83.99° (4 Ω∠0°)(8 A∠45°) I2 = = 10.19 A∠ − 38.99° 3.141 Ω∠83.99° ZT =

c. (20 Ω∠90°)(30 Ω∠90°) 600∠180° = ZT ′ = j 20 Ω + j 40 Ω − j10 Ω 50∠90°

′ 12 Ω∠90°; Z= ZT= j 40 − j10 = j 30 3 kΩ + j12 Ω; and Z= T 2 (30 Ω∠90°)(5 A∠0°) (30 Ω∠90°)(5 A∠0°) = 3 A∠0° = j 20 Ω + j 40 Ω − j10 Ω 50 Ω∠90° (20 Ω∠90°)(5 A∠0°) (20 Ω∠90°)(5 A∠0°) I2 = = = 2 A∠0° j 50 Ω 50 Ω∠90°

I1=

15.

a.

–-90° + tan-1XC/R

ZT =

θT = -90° + tan-1XC/R

│ZT│ =

f 0 Hz 1 kHz 2 kHz 3 kHz 4 kHz 5 kHz 10 kHz 20 kHz

b.

198

│VC│ =

│ZT│ 40.0 35.74 28.22 22.11 17.82 14.79 7.81 3.959

θT 0.0° -26.67° -45.14° -56.44° -63.55° -68.30° -78.75° -89.86°

= I[ZT(f)]

CHAPTER 16

f 0 kHz 1 kHz 2 kHz 3 kHz 4 kHz 5 kHz 10 kHz 20 kHz c.

│IR│ = f 0 kHz 1 kHz 2 kHz 3 kHz 4 kHz 5 kHz 10 kHz 20 kHz

16.

a.

│VC│ 2.0 V 1.787 V 1.411 V 1.105 V 0.891 V 0.740 V 0.391 V 0.198 V

│IR│ 50.0 mA 44.7 mA 35.3 mA 27.64 mA 22.28 mA 18.50 mA 9.78 mA 4.95 mA –90° - tan-1XL/R

ZT =

θT = 90° - tan-1XL/R

│ZT│ =

f

θT

0 Hz 1 kHz 5 kHz 7 kHz 10 kHz

b.

0.0 k 1.22 k 3.91 k 4.35 k 4.65 k

90.0° 75.86° 38.53° 29.6° 21.69°

│IL│ = f

CHAPTER 16

199

• 31.75 mA 6.37 mA 4.55 mA 3.18 mA

0 Hz 1 kHz 5 kHz 7 kHz 10 kHz

c.

17.

IR =

= 8 mA (constant)

–90° - tan-1XC/R

YT =

f │YT│ 0 Hz 25.0 mS 1 kHz 27.98 mS 2 kHz 35.44 mS 3 kHz 45.23 mS 4 kHz 56.12 mS 5 kHz 67.61 mS 10 kHz 128.04 mS 20 kHz 252.59 mS

18.

YT =

(use data of Prob. 36),

f 0 Hz 1 kHz 5 kHz 7 kHz 10 kHz

200

θT 0.0° 26.67° 45.14° 56.44° 63.55° 68.30° 78.75° 89.86°

YT • 0.82 mS 0.256 mS 0.23 mS 0.215 mS

θT -90.0° -75.86° -38.53° -29.6° -21.69°

CHAPTER 16

19.

a.

YT = G –0° + BL –-90° + BC –90° –tan-1

= f 0 Hz

│YT│ XL fi 0 , ZT = 0 , YT = • 1.86 mS 1.02 mS 1.00 mS 1.02 mS 1.04 mS

1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

f 0 Hz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz b.

ZT = f 0 kHz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

c.

│θT│ -90.0° -57.51° -12.63° +1.66° +9.98° +16.54°

ZT 0.0 537.63 980.39 1k 980.39 961.54

θT 90.0° 57.52° 12.63° -1.66° -9.98° -16.54°

VC(f) = I[ZT(f)] f 0 kHz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

CHAPTER 16

│VC│ 0.0 V 5.38 V 9.80 V 10 V 9.80 V 9.62 V

201

d.

IL = f 0 kHz 1 kHz 5 kHz 10 kHz 15 kHz 20 kHz

20.

a.

Rp =

Rs2 + X s2 (20 Ω)2 + (70 Ω)2 = = 265 Ω (R) Rs 20 Ω 5300 Ω = 75.71 Ω (C) 70 Ω

Xp =

b.

(2 kΩ)2 + (14 kΩ − 8 kΩ)2

Rp =

a.

= 20 kΩ (R)

(2 kΩ)2 + (6 kΩ)2 = 6.67 kΩ (L) 6 kΩ

Xp =

21.

IL 10.0 mA 8.56 mA 3.12 mA 1.59 mA 1.04 mA 0.765 mA

Rs =

= 7.02 kΩ

Xs =

= 2.88 kΩ

ZT = 7.02 kΩ - j2.88 kΩ b.

Rs =

= 17.48 Ω

Xs =

= 29.72 Ω

ZT = 17.48 Ω + j29.72 Ω 22.

a.

CT = 2 µF XC =

= 79.62 Ω

XL = ωL = 2π(103 Hz)(10 mH) = 62.8 Ω YT =

1 1 1 + + 220 Ω Ð 0° 79.62 Ω Ð -90° 62.8 Ω Ð 90°

= 4.55 mS –0° + 12.56 mS –90° + 15.92 mS –-90°

202

CHAPTER 16

= 4.55 mS - j3.36 mS = 5.66 mS –-36.44° E = I/YT = 1 A –0°/5.66 mS –-36.44° = 176.68 V –36.44° = 176.68 V –36.44°/220 –0° = 0.803 A –36.44°

IR =

= 176.68 V –36.44°/62.80 –90° = 2.813 A –-53.56°

IL = b.

Fp = G/YT = 4.55 mS/5.66 mS = 0.804 lagging

c.

P = I2R = (0.803 A)2 220 Ω = 141.86 W

f.

Is = IR + 2IC + IL and IC = = = IC = -0.657 + j0.893 = 1.11 A –126.43° = 176.7 Ω –36.44°

ZT =

g.

= 142.15 Ω + j104.96 Ω = R + jXL 23.

P = VI cos θ = 8000 W = (120 V)(80 A)cos θ cos θ = 0.833 (lagging) θ = 33.56° 40 A –-33.56° 120 V –0° = 0.333 S –-33.56° = 0.277 S - j0.184 S

YT =

YT = 0.277 S - j0.184 S = GT - jBL GT = 0.277 S =

= 0.05 S +

and R¢ = =

XL

0.277 S

XL=

= 4.405 Ω

= 0.184 S = 5.435 Ω

4.405Ω 20Ω

CHAPTER 16

𝑅𝑅 ′

𝑋𝑋𝐿𝐿

5.435Ω

203

Chapter 17 1.

2.

(16 Ω∠0°)(8 Ω∠ − 90°) 16 Ω − j8 Ω = 6 Ω∠90° + 7.155 Ω∠ − 63.43°= 3.225∠ − 7.13°

a.

ZT= X L + X C || R= 6 Ω∠90° +

b.

IS =

c.

I1 =I S =6.20 A∠7.13° (from Fig. 17.38)

d.

I2 =

e.

V= X L ⋅ I= (6 Ω∠90°)(6.20 A∠7.13°) = 37.2 V∠97.13° L S

a.

ZT = 3 Ω + j6 Ω + 2 Ω –0° || 8 Ω –-90° = 3 Ω + j6 Ω + 1.94 Ω –-14.04° = 3 Ω + j6 Ω + 1.88 Ω - j0.47 Ω = 4.88 Ω + j5.53 Ω = 7.38 Ω –48.57°

b.

Is =

c.

IC = =

3.

jX C I S (8 Ω∠ − 90°)(6.20 A∠7.13°) 49.6∠82.87° = = = 2.77 A∠109.44° R − jX C 16 Ω − j8 Ω 17.89∠ − 26.57°

= 4.07 A –-48.57°

Z R2 I S Z R 2 + ZC

=

(2 Ω Ð 0° )(4.07 A Ð -48.57° ) 2 Ω - j8 Ω = 0.987 A –27.39°

Z LE (6 Ω Ð 90° )(30 V Ð 0° ) 180 V Ð 90° = = 7.38 Ω Ð 48.57° 7.38 Ω Ð 48.57° ZT = 24.39 V –41.43°

d.

VL =

a.

ZT ( jX L ) || (R2 − jX= = C ) ( j12 Ω) || (8 Ω − j12 Ω) =

204

E (20 V∠0°) = = 6.20 A∠7.13° ZT 3.225∠ − 7.13°

b.

I= S

c.

I2 =

(12 Ω∠90°)(14.42 ∠ − 56.3°) = 2.163 Ω∠33.7° j12 Ω + 8 Ω − j12 Ω

(50 V∠0°) E = = 23.12 A∠ − 33.7° ZT 2.163 Ω∠33.7°

(12 Ω∠90°)I S (12 Ω∠90°)(23.12 A∠ − 33°) = = 128.27 A∠22.6° 2.163 Ω∠33.7° 2.163 Ω∠33.7 °

CHAPTER 17

4.

d.

VC= I 2 ⋅ X C= (128.27 A∠22.6°)(12 Ω∠ − 90°)= 1.539 KV∠ − 67.4°

e.

P = EI cos θ = (50 V)(23.12 A)cos(33.7°) = 961.74 W

a.

ZT = R1 + Z 2 + Z3 , where R1 = 5 KΩ (4 KΩ∠ − 90°)(6 KΩ ∠90°) = (12 KΩ∠ − 90°) − j 4 KΩ + j 6 KΩ Z = (12 KΩ ||12 KΩ)||(8 KΩ ∠90°) = (6 KΩ∠0°) || (8 KΩ ∠90°) 3 R2 || R3 || X = L2

Z 2 X C || = X L1 =

=

(48 ∠90°) = (4.8 KΩ ∠36.87°) = 3.8 KΩ + j2.88 KΩ 6 + j8

Z= 5 KΩ − j12 KΩ + 3.8 KΩ + j 2.88 KΩ T = 8.8 KΩ − j9.12 = KΩ 12.67 KΩ∠ − 46° b.

V2 = I R2 ⋅ R2 = I R3 ⋅ R3 = I L ⋅ X L2 , IS =

(240 V∠60°) E = = 18.94 mA∠106°) ZT 12.67 KΩ ∠ − 46°

= IL

(6 KΩ∠0°)I S (6 KΩ∠0°)18.94 ×10−3 A∠106° = 23.68 mA∠69.13° = Z3 4.8 KΩ ∠36.87°

= V2 (23.68 mA∠69.13°)(8 KΩ∠90°) = 189.44∠159.13°

5.

c.

Fp = power factor = cos 46° = 0.695 (lagging)

a.

400 Ω –-90° || 400 Ω –-90° =

= 200 Ω –-90°

Z¢ = 100 Ω - j200 Ω = 223.61 Ω –-63.43° = -j200 Ω + j600 Ω = +j400 Ω = 400 Ω –90° (223.61 Ω Ð -63.43° )(400 Ω Ð 90° ) 89, 444.00 Ω Ð 26.57° = ZT = Z¢ || = (100 Ω - j200 Ω) + j400 Ω 223.61Ð 63.43° = 400 Ω –-36.86° I=

= 0.25 A –36.86°

(200 Ω Ð -90° )(100 Ω Ð 0° ) 20, 000 V Ð -90° = = 89.44 V –-26.57° 100 Ω - j200 Ω 223.61Ð -63.43°

b.

VC =

c.

P = EI cos θ = (100 V)(0.25 A) cos 36.86° = (25)(0.8) = 20 W

CHAPTER 17

205

6.

Z2 I (9 Ω∠ − 90°)(2 A∠30°) 18∠ − 60° = = = 2.55 A∠ − 30° Z1 + Z2 5 Ω + j 4 Ω − j9 Ω 7.071∠ − 45°

I1 a. =

b.

Z2 I 6.40∠39° = (2 A∠30 = °) 1.81 A∠114° Z1 + Z 2 7.071∠ − 45°

= I2

VC= I 2 ⋅ X C= (1.81 A∠114°)(16∠ − 90°)= 28.96 V∠24° c.

Vab = I1 ⋅ X L1 − I 2 ⋅ X L2 = (2.55 A∠ −15°)(4 Ω∠90°) − (1.81 A∠114°)(7 Ω∠90°) = 10.2 V∠75° −12.67 V∠204° = 2.64 V + j 9.85 +11.57 + j 5.15 = 14.21 + j14 = 19.95 V∠44.57°

7.

Z1 = 10 Ω –0° Z2 = 80 Ω –90° || 20 Ω –0° 1600 Ω Ð90° 1600 Ω Ð 90° = = 20 + j80 82.462 Ð75.964° = 19.403 Ω –14.036° Z3 = 60 Ω –-90°

a.

ZT = (Z1 + Z2) || Z3 = (10 Ω + 18.824 Ω + j4.706 Ω) || 60 Ω –-90° = 29.206 Ω –9.273° || 6 Ω –-90° = =

= 1.42 A –18.26°

I1 =

b.

= 28.103 Ω –-18.259°

V1 = = 26.57 V –4.76°

c.

206

P = EI cos θ = (40 V)(1.423 A)cos 18.259° = 54.07 W

CHAPTER 17

8.

!! R2 = 1 kΩ a. R2

+ VL2 XL2

Is

+ E −



X L1 = 2π fL1 = 2π(5 kHz)(68 mH) = 2.14 kΩ

R1

X L2 = 2π fL2 = 2π(5 kHz)(100 mH) = 3.14 kΩ

XL1 + VC −

XC

XC =

1 1 = = 10.61 kΩ 2p fC 2p (5 kHz)(3 nF)

ZT = R2 + X L2 || (R1 + X L1 + XC)

kΩ + j2.14 kΩ - j10.61 kΩ ) = 1 kΩ + (3.14 kΩ –90°) || (6.8 !#####"#####$ 6.8 kΩ - j8.47 kΩ !###"### $ 10.86 kΩ Ð -51.24° = 1 kΩ + (3.14 kΩ –90°) || (10.86 kΩ –-51.24°) (3.14 kΩ Ð 90° )(10.86 kΩ Ð -51.24° ) = 1 kΩ + + j3.14 kΩ + 6.8 kΩ - j8.47 kΩ 34.10 kΩ Ð 38.76° 34.10 kΩ Ð 38.76° = 1 kΩ + = 1 kΩ + 6.8 - j5.33 8.64 Ð -38° = 1 kΩ + 3.95 kΩ –76.76° = 1 kΩ + 0.904 kΩ + j3.85 kΩ = 1.904 kΩ + j3.85 kΩ ZT = 4.3 kΩ –63.69° E 10 V Ð 0° = Is = = 2.33 mA –-63.69° ZT 4.3 kΩ Ð 63.69° b.

IC =

X L2 I s X L2 + (R 1 + X L1 + X C )

=

(3.14 kΩ Ð 90° )(2.33 mA Ð -63.69° ) + j3.14 kΩ + 6.8 kΩ - j8.47 kΩ

7.32 mA Ð26.3° 7.32 mA Ð 26.3° = = 0.847 mA –64.4° 6.8 - j5.33 8.64 Ð -38.1° VC = ICXC = (0.847 mA –64.4°)(10.61 kΩ –-90°) = 8.99 V –-25.60° =

c.

9.

VL2 = E - IsR2 = 10 V –0° - (2.33 mA –-63.69°)(1 kΩ –0°) = 10 V - 2.33 V –-63.69° = 10 V - (1.03 V - j2.09 V) = 8.97 V + j2.09 V = 9.21 V –13.12°

a. R1

+

+

VL L

VS





R2

+ C

VC



XL = 2π fL = 2π(10 kHz)(47 mH) = 2.95 kΩ 1 1 = XC = 2p fC 2p (10 kHz)(0.01 mF) = 1.59 kΩ

CHAPTER 17

207

1 1 1 1 = + + ZT R1 X L R 2 + XC 1 1 1 1 = + + ZT 4.7 kΩ 2.95 kΩ Ð 90° 1.8 kΩ - j1.59 kΩ 1 2.40 kΩ Ð -41.46° = 212.77 µS - j338.98 µS + 312.26 µS + j275.88 µS = 525.03 µS - j63.1 µS = 528.81 µS –-6.85° 1 = 1.89 kΩ –6.85° and ZT = 528.81 mS Ð -6.85° Vs = (I)(ZT) = (8 mA –0°)(1.89 kΩ –6.85°) = 15.12 V –6.85° = 212.77 µS –0° + 338.98 µS –-90° +

10.

X C Vs (1.59 kΩ Ð -90° )(15.12 V Ð 6.85° ) = 1.8 kΩ - j1.59 kΩ R + XC 24 V Ð -83.15° = 10 V –-41.69° = 2.40 Ð -41.46°

b.

VC =

c.

VL = Vs = 15.12 V –6.85°)

a.

Z1= 5 Ω + j1 Ω= 5.099 Ω∠13.309° Z 2= 4 Ω Z3= (6 Ω + j15 Ω − j 7 Ω= ) (6 Ω + j8 Ω= ) 17.889 Ω∠26.565° YT =

1 1 1 1 1 1 + + = + + Z1 Z 2 Z3 5.099 Ω∠13.309° 4 Ω∠0° 17.889 Ω∠26.565°

YT 0.196 S ∠ − 13.309° + 0.25 S ∠0° + 0.056 S ∠ − 26.565° = YT (0.191 S − j 0.045 S + (0.25 S ) + (0.05 S − j 0.025 S ) = S 0.496 S ∠ − 8.11° = 0.491 S − j 0.07 = 1 1 Z= = = 2.02 Ω∠8.11° T YT 0.496 S ∠ − 8.11° b.

c.

I= 1

120 V∠0° E = = 23.53 A∠ −13.309° Z1 5.099 Ω∠13.309°

I 2=

E 120 V∠0° = 30 A∠0° = 4 Ω∠ ° Z2

I= 3

120 V∠0° E = = 6.70 A∠ − 26.57° Z3 17.889 Ω∠26.565°

I= S

E 120 V∠0° = = 59.406 A∠ − 8.11° ZT 2.02 Ω∠8.11°

I S= I1 + I 2 + I 3= 23.53 A∠ − 13.309° + 30 A∠0° + 6.70 A∠ − 26.57°

59.4 A∠= − 8.11° (22.89 A − j 5.417 A) + (30 A) + (6 A − j 3 A) = 58.989 A − j8.417 A = 58.9 A − j8.4 A = 59.4 A∠ − 8.11° (checks) 208

CHAPTER 17

d. 11.

F= P

G 0.491 S = = 0.989 (lagging) YT 0.496 S

a.

X= L1 2π (103 )(0.4= H) 2513.27 Ω L1 ω= X= L2 2π (103 )(0.8H) = 5026.55 Ω L2 ω= X= C

1 1 = = 159.15 Ω 3 ωC 2π (10 )(1 µ F )

ZT = R∠0° + X L1 ∠90° + ( X C ∠ − 90°) || ( X L2 ∠90°) = 400 Ω + j 2513.27 Ω − j164.35= Ω 400 Ω + j 2348.9 Ω = 2.383 kΩ∠80.34°

IS b.=

50 V∠0° = 20.98 mA∠ − 80.34° 2.383 kΩ∠80.34°

c.= I1

X L2 I S (5.026∠90°)(20.98 mA∠ − 80.34°) = = 21.67 mA∠ − 80.34° X L2 + X C 5.026 kΩ − j0.159 kΩ

= I2

XC IS (0.159 kΩ∠ − 90°)(20.98 mA∠ − 80.34°) = X L2 + X C j 5.026 kΩ − j0.159 kΩ = 0.69 mA∠ − 260.34 = ° 0.69 mA∠99.66°

V1 I = (0.69 mA∠99.66°)(5.026 kΩ∠90°) = 3.47 V∠189.66° d. = 2 X L2 Vab = E − I S R1 = 50∠0° − (20.98 mA∠ − 80.34°)(400 Ω∠0°) = 49.07 V∠8.04°

12.

e.

= P I S2= R (20.98 mA) 2 (400 Ω= ) 0.176 W

f.

F = P

a.

ZT= 2 kΩ + Z= T = = =

b. c.

400 Ω R = = 0.168 (lagging) ZT 2383 Ω (1.2 kΩ∠0°)(1.8 kΩ∠ − 90°) 3.6 kΩ∠90° + 1.2 kΩ − j1.8 kΩ 2 2.16 kΩ∠ − 90° 2 kΩ + + 1.8 kΩ∠90° 2.16∠ − 56.31° 2 kΩ +1 kΩ∠ − 33.69° +1.8 kΩ∠90° 2 kΩ + 832.05 Ω − j 554.70 Ω + j1.8 kΩ 2.83 kΩ + j1.25= kΩ 3.09 kΩ∠23.83°

V= = 60 V∠0° 1 IR= 1 (30 mA∠0°)(2 kΩ∠0°)

= I1

(1.2 kΩ∠0°)(30 mA∠0°) 36 A∠0° = = 16.67 mA∠56.31° 1.2 kΩ − j1.8 kΩ 2.16 × 103 ∠ − 56.31°

(

)

d.

 3.6 kΩ  V2= I X L1 || X L2 = (30 mA∠0°)  ∠90° =  54 V∠90°  2 

e.

VS =IZT =(30 mA∠0°)(3.09 kΩ∠23.83°) =92.70 V∠23.83°

CHAPTER 17

209

13.

R3 + R4 = 2.7 kΩ + 4.3 kΩ = 7 kΩ R¢ = 3 kΩ || 7 kΩ = 2.1 kΩ Z¢ = 2.1 kΩ - j10 Ω

(40 kΩ Ð 0° )(20 mA Ð 0° ) 40 kΩ + 2.1 kΩ - j10 Ω = 19 mA –+0.014° as expected since R1

(CDR)

I¢ (of 10 Ω cap.) =

(3 kΩ Ð 0°)(19 mA Ð 0.014°) 57 mA Ð 0.014° = 10 3 kΩ + 7 kΩ = 5.7 mA –0.014° P = I2R = (5.7 mA)2 4.3 kΩ = 139.71 mW I4 =

(CDR)

14.



Z=′ 15 Ω − j 20 Ω = 25 Ω∠ − 53.13° R4 ∠0° || Z=′ 20 Ω∠0° || 25 Ω∠ − 53.13= ° 12.40 Ω∠ − 23.36° Z ′′ = R3∠0° + R4 ∠0° || Z ′ = 15 Ω + 12.40 Ω∠ − 23.36° = 15 Ω + (11.38 Ω − j 4.92 Ω)= 26.38 Ω − j 4.92 Ω = 26.83 Ω∠ − 10.5° 536.6∠ −10.56° = 11.51 Ω∠ − 4.5° 46.64∠ − 6.06° ′′ 15 Ω + 11.51∠ − 4.5°= 15 Ω + (11.47 Ω − j 0.90) ZT= R1∠0° + R2 ∠0° || Z =

′′ 20 Ω∠0° || 26.83∠ − 10.56= R2 ∠0° || Z= °

= (26.47 − j0.90) = Ω 26.49 Ω∠ − 1.95° 220 V∠0° E IS = = = 8.31 Ω∠1.95° ZT 26.49 Ω∠ − 1.95° I R1 = I , I 5=

R2 ∠0° I S (20 Ω∠0°)(8.31 A∠1.95°) 166.2 A∠1.95° = 3.56 A∠8.01° = = ′′ 46.64∠ − 6.06° R2 ∠0° + Z 46.64∠ − 6.06°

= I R5

R4 ∠0° I R3 73∠8.01° (20 Ω∠0°)(3.56 A∠8.01°) = 1.81 A∠37.75° = = 40.31∠ − 29.74° 20 Ω + (15 − j 20) R4 ∠0° + Z ′

15.

!! XC = 10 kΩ

a.

+

E = 120 V ∠ 0°

10 kΩ

10 kΩ 40 kΩ

2.7 kΩ 3 kΩ R5

4.3 kΩ



40 kΩ + 10 kΩ

ZT′

!##"##$ (40 kΩ Ð 0° )(120 V Ð 0° )

(40 kΩ Ð 0° )(120 V Ð 0° ) = 96 V –0° 40 kΩ + 10 kΩ RTh = 10 kΩ || 40 kΩ = 8 kΩ ZT¢ = 3 kΩ || (2.7 kΩ + 4.3 kΩ) = 3 kΩ || 7 kΩ = 2.1 kΩ

ETh =

210

CHAPTER 17

ZTh

+

8 kΩ

10 kΩ ZT′

ETh = 96 V ∠ 0°

2.1 kΩ



ETh 96 V Ð 0° 96 V Ð 0° = = ZT 8 kΩ + 2.1 kΩ - j10 kΩ 10.1 kΩ - j10 kΩ 96 V Ð 0° = 6.76 mA –44.72° = 14.21 kΩ Ð -44.72° (3 kΩ Ð 0° )(IC ) (3 kΩ Ð 0° )(6.76 mA Ð 44.72° ) = I R5 = 10 kΩ Ð 0° 3 kΩ + 2.7 kΩ + 4.3 kΩ 20.28 mA Ð 44.72° = 10 = 2.03 mA –44.72° PR 5 = I2R = (2.03 mA)24.3 kΩ = 17.72 mW

IC = Is =

16.

2.21 kΩ

a.

ZT

I

2.21 kΩ

2.2 kΩ

ZT′′

2.21 kΩ

2.2 kΩ

XC = 2.2 kΩ

1 1 = 2p fC 2p (40 kHz)(1.8 nF)

= 2.21 kΩ

ZT′

ZT¢ = (2.2 kΩ –0°) || (2.2 kΩ - j2.21 kΩ) !###"###$ 3.12 kΩ Ð -45.13° 6.86 kΩ Ð -45.13° 6.86 kΩ Ð -45.13° = = 2.2 + 2.2 - j2.21 4.4 - j2.21 6.86 kΩ Ð -45.13° = 1.36 kΩ –-18.46° = 4.92 Ð -26.67° ZT¢¢ = 2.2 kΩ –0° || (2.21 kΩ –-90° + 1.36 kΩ –-18.46°) = 2.2 kΩ –0° || (-j2.21 kΩ + 1.29 kΩ - j0.43 kΩ) = 2.2 kΩ –0° || (1.29 kΩ - j2.64 kΩ) ! #"# $ 2.94 kΩ Ð -63.96°

(2.2 kΩ Ð 0° )(2.94 kΩ Ð -63.96° ) 2.2 kΩ + 1.29 kΩ - j2.64 kΩ 6.47 kΩ Ð -63.96° 6.47 kΩ Ð -63.96° = = 3.49 - j2.64 4.38 Ð -37.11° ZT¢¢ = 1.48 kΩ –-26.85° = 1.32 kΩ - j0.668 kΩ ZT = 2.21 kΩ –-90° + ZT¢¢ = -j2.21 kΩ + 1.32 kΩ - j0.668 kΩ = 1.32 kΩ - j2.89 kΩ = R - jXC = 3.18 kΩ –-65.45° =

CHAPTER 17

211

b.

Source conversion:

2.2 kΩ 2.21 kΩ

2.21 kΩ

+ 4 mA

8.8 V ∠ 0°

2.2 kΩ

2.2 kΩ

2.2 kΩ



Second source conversion:

2.21 kΩ IR3

Z′

I

2.2 kΩ

2.2 kΩ

+ VR3



} Z′′

ì Z¢ = 2.2 kΩ - j2.21 kΩ = 3.12 kΩ Ð -45.13 °ü ï ï í ý source conversion 8.8 V Ð 0° = 2.82 mA Ð 45.13° ï ïI = 3.12 kΩ Ð -45.13° î þ ZT¢¢ = 2.2 kΩ –0° || 3.12 kΩ –-45.13° (2.2 kΩ Ð 0° )(3.12 kΩ Ð -45.13° ) 6.86 kΩ Ð -45.13° = = 2.2 kΩ + 2.2 kΩ - j2.21 kΩ 4.4 - j2.21 6.86 kΩ Ð -45.13° = 1.39 kΩ –-18.46° = 1.32 kΩ - j0.44 kΩ = 4.92 Ð -26.67° ( Z¢¢)(I) (1.39 kΩ Ð -18.46° )(2.82 mA Ð 45.13° ) IR3 = = ¢ ¢ Z + 2.2 kΩ - j2.21 kΩ 1.32 kΩ - j0.44 kΩ + 2.2 kΩ - j2.21 kΩ 3.92 mA Ð 26.67° 3.92 mA Ð 26.67° = = 3.52 - j2.65 4.41Ð -36.97° = 0.89 mA –63.64° VR 3 = I R 3 R 3 = (0.89 mA –63.64°)(2.2 kΩ –0°) = 1.96 V –63.64° 17.

Source conversion: E = IZ = (0.5 A –0°)(2Ω –-90°) = 1 V –-90° Is

+



E



I1

8Ω 2Ω

1 kΩ

ZT

1# Ω# Ð$ 0° ZT = -j2 Ω + j8 Ω + 2!Ω#Ð#-90° #"||# 2 Ω Ð -90° (2 Ω Ð -90° )(1 Ω Ð 0° ) = 1 - j2 2.24 Ð -63.44° = -j2 Ω + j8 Ω + 0.89 Ω –-26.56° = +j6 Ω + 0.796 Ω - j0.398 Ω

212

CHAPTER 17

= 0.796 Ω + j5.6 Ω = 5.66 Ω –81.91° E 1 V Ð -90° = Is = = 0.177 A –-171.91° ZT 5.66 Ω Ð 81.91°

(2 Ð -90° )(I s ) (2 Ð -90°)(0.177 A Ð -171.91°) = (2 Ð -90° ) + 1Ð 0° 1 - j2 354 mA Ð -261.91° = 2.24 Ð -63.44° = 158 mA –-198.47° V1 = I1R1 = (158 mA –-198.47°)(1 Ω –0°) = 158 mV –-198.47°

I1 =

CHAPTER 17

213

Chapter 18 1.

-

2.

Z = − j 5 Ω + 3 Ω∠0° || 5 Ω∠90° = − j 5 Ω +

15 Ω∠90° 3 Ω + j5 Ω

15 Ω∠90° = − j5 Ω + 2.57∠30.96° 5.83∠59.04° = − j 5 Ω + 2.20 Ω + j1.32= Ω 2.20 Ω − j 3.68= Ω 4.29 Ω∠ − 59.13° = − j5 Ω +

E 90 V∠30° I== = 20.98 A∠89.13° Z 4.29 Ω∠ − 59.13° 3.

4.

180 Ω∠90° = 14.06 Ω∠51.34° 10 Ω + j8 Ω = E IZ = (3 A∠120°)(14.06 Ω∠51.34°) = 42.18 V∠171.34° Z = 10 Ω∠0° || 8 Ω∠90° =

a.

I =

µV

16 V = 3.2 ×10−3 V; = Z 5 kΩ∠0° = R 5 × 103 Ω

I= b. 5.

𝜇𝜇𝜇𝜇 𝑅𝑅

=

16𝜇𝜇

5×103 Ω

= 3.2 × 10−3 𝑉𝑉 ; Z = 5kΩ ∠0°

V = (hI)(R) = (40I)(40 kΩ) =1.6×106 I; Z = 40 kΩ∠0°

Clockwise mesh currents: E - I 1Z 1 - I 1Z 2 + I 2Z 2 = 0 -I2Z2 + I1Z2 - I2Z3 - E2 = 0 ──────────────────── [Z1 + Z2]I1 - Z2I2 = E1 -Z2I1 + [Z2 + Z3]I2 = -E2 ──────────────────

=

6.

= 5.15 A –-24.5°

=

Clockwise mesh currents: E1 – I1 Z1 – I1 Z2 + I2 Z2 = 0 – I2 Z2 + I1 Z2 – I2 Z3 – E2 = 0

Where

[𝑍𝑍1 + 𝑍𝑍2 ] I1 – Z2 I2 = E1

Z= 1 R= 1 50 Ω∠0°

– Z2 I1 + [Z2 + Z3] I2 = –E2 I 50Ω= I= 1

214

Z1 = R1 –0° = 4 Ω –0° Z2 = XL –90° = 6 Ω –90° Z3 = XC –-90° = 8 Ω –-90° E1 = 10 V –0°, E2 = 40 V –60°

[ Z 2 + Z3 ]E1 − z2 E2 z1Z 2 + z1Z 3 + z2 Z3

Z= X C ∠ − 90°; = 40 Ω∠ − 90° 2 Z= X C ∠ − 90°; = 60 Ω∠ − 90°; 3 E= 1 6 V∠45°; E2= 30 V∠0° CHAPTER 18

7.

Z1 = 12 Ω + j12 Ω = 16.971 Ω –45° Z2 = 3 Ω –0° Z3 = -j1 Ω E1 = 20 V –50° E2 = 60 V –70° E3 = 40 V –0°

a.

I1[Z1 + Z2] - Z2I2 = E1 - E2 I2[Z2 + Z3] - Z2I1 = E2 - E3 ─────────────────── (Z1 + Z2)I1 - Z2I2 = E1 - E2 -Z2I1 + (Z2 + Z3)I2 = E2 - E3 ───────────────────── Using determinants: = 2.55 A –132.72° 8.

Clockwise mesh currents: E 1 - I 1Z 1 - I 1Z 2 + I 2Z 2 = 0 -I2Z2 + I1Z2 - I2Z3 - I2Z4 + I3Z4 = 0 -I3Z4 + I2Z4 - I3Z5 - E2 = 0 ─────────────────────────

X L1 = wL1 = (2π)(2 kHz)(110 µH) = 1.38 Ω X L 2 = wL2 = (2π)(2 kHz)(220 µH) = 2.76 Ω 1 1 X C1 = = wC1 2p (2 kHz)(39 mF) = 3.62 Ω 1 1 X C2 = = wC2 2p (2 kHz)(39 mF) = 2.04 Ω Z1 = 4 Ω + j1.38 Ω Z2 = -j3.62 Ω Z3 = j2.76 Ω Z4 = -j2.04 Ω Z5 = 8 Ω –0° E1 = 6 V –0° E2 = 120 V –120°

───────────────────────────────────

I R1 = I3 =

[Z2 Z 4 ]E1 + [Z2 - [Z1 + Z2 ][Z2 + Z3 + Z 4 ]]E2 2

2

2

[Z1 + Z2 ][Z2 + Z3 + Z 4 ][Z 4 + Z5 ] - [Z1 + Z2 ]Z 4 - [Z 4 + Z5 ]Z2 1000 V Ð -64.5° = 8.04 A –3.84° = 124.4 Ω Ð -68.34°

CHAPTER 18

215

9. Z1 = 15 Ω –0°, Z2 = 15 Ω –0° Z3 = -j10 Ω = 10 Ω –-90° Z4 = 3 Ω + j4 Ω = 5 Ω –53.13° E1 = 220 V –0° E2 = 100 V –90°

I1(Z1 + Z3) - I2Z3 - I3Z1 = E1 I2(Z2 + Z3) - I1Z3 - I3Z2 = -E2 I3(Z1 + Z2 + Z4) - I1Z1 - I2Z2 = 0 ─────────────────────── I1(Z1 + Z3) - I2Z3 - I 3Z 1 = E1 + I2(Z2 + Z3) - I3Z2 = -E2 -I1Z3 - I 2Z 2 + I3(Z1 + Z2 + Z4) = 0 -I1Z1 ─────────────────────────────────── Applying determinants: I3 = = 48.33 A –-77.57° or I3 =

if one carefully examines the network!

10. Z1 = 7 Ω –0°, Z2 = 5 Ω –−90° Z3 = 4 Ω –0°, Z4 = 6 Ω –-90° Z5 = 4 Ω –0°, Z6 = 6 Ω + j8 Ω E1 = 25 V –0°, E2 = 40 V –60°

I1(Z1 + Z2 + Z4) - I2Z2 - I3Z4 = E1 I2(Z2 + Z3 + Z5) - I1Z2 - I3Z5 = -E2 I3(Z4 + Z5 + Z6) - I1Z4 - I2Z5 = 0 ───────────────────────── Z2I2 - Z 4I 3 = E 1 (Z1 + Z2 + Z4) I1 Z5I3 = -E2 -Z2I1 + (Z2 + Z3 + Z5)I2 - Z5I2 + (Z4 + Z5 + Z6)I3 = 0 Z4I1 ───────────────────────────────────────── = Z4 + Z5 + Z6 and determinants: Using Z¢ = Z1 + Z2 + Z4, Z≤ = Z2 + Z3 + Z5,

=

216

5229.24∠74.86° = 1.45 A∠26.77° 3609.675∠48.09°

CHAPTER 18

11. Z1 = 10 Ω + j20 Ω Z3 = 80 Ω –0° Z5 = 15 Ω –90° Z7 = 5 Ω –0° E1 = 25 V –0°

Z2 = -j20 Ω Z4 = 6 Ω –0° Z6 = 10 Ω –0° Z8 = 5 Ω - j20 Ω E2 = 75 V –20°

I1(Z4 + Z6 + Z7) - I2Z4 - I4Z6 = E1 I2(Z1 + Z2 + Z4) - I1Z4 - I3Z2 = 0 I3(Z2 + Z3 + Z5) - I2Z2 - I4Z5 = -E2 I4(Z5 + Z6 + Z8) - I1Z6 - I3Z5 = 0 ───────────────────────── - Z 4 I2 +0 - Z 6I 4 = E 1 (Z4 + Z6 + Z7) I1 - Z 2I 3 +0 =0 -Z4I1 + (Z1 + Z2 + Z4)I2 - Z5I4 = -E2 0 - Z2 I2 + (Z2 + Z3 + Z5)I3 +0 - Z5I3 + (Z5 + Z6 + Z7)I4 = 0 -Z6I1 ──────────────────────────────────────────────────── Applying determinants: = 0.68 A –-162.9° 12.

Z1 = 6 kΩ –0° Z2 = 10 kΩ –0° Z3 = 2 kΩ + j4 kΩ = 4.472 kΩ –63.43°

Mesh equations I1(Z1 + Z2) - Z2I2 = -28 V I2(Z2 + Z3) - Z2I1 = 0 ────────────────── (Z1 + Z2)I1 - Z2I2 = -28 V -Z2I1 + (Z2 + Z3)I2 = 0 ─────────────────── I L = I2 =

=

−(10 kΩ∠0°)(28 V) 60∠0° + 26.83∠63.43° + 44.72∠63.43°

−280 V −280 V = (60 + 12 + j 23.99 + 20 + j 39.99)kΩ (92 + j 63.98)kΩ −280 V = = −2.49 mA∠34.82° 112.06 kΩ∠34.82° 13.

CHAPTER 18

Source Conversion: E = (I –0°)(R –0°) = (60 I)(40 kΩ –0°) = 2.4 ¥ 106 I –0° Z1 = Rs = Rp = 40 kΩ –0° Z2 = -j0.2 kΩ Z3 = R1 = 8 kΩ –0° Z4 = j4 kΩ; = 4 kΩ –90° 217

Mesh Analysis Equation I1(Z1 + Z2 + Z3) - Z3I2 = -E I2(Z3 + Z4) - Z3I1 = 0 ──────────────────── (Z1 + Z2 + Z3)I1 - Z3I2 = -E -Z3I1 + (Z3 + Z4)I2 = 0 ──────────────────── I L = I2 =

−(8 kΩ∠0°)24 ×106 I∠0° (40 kΩ − j 0.2 kΩ + 8 kΩ)(8 kΩ + 4 kΩ) − (8 kΩ∠0°)(8 kΩ∠0°) = 51.49I∠149.31° =

14.

6Vx - I1 1 kΩ - 10 V –0° = 0 10 V–0° - I2 4 kΩ - I2 2 kΩ = 0 ─────────────────────── Vx = I2 2 kΩ -I1 1 kΩ + I2 12 kΩ = 10 V –0° -I2 6 kΩ = -10 V –0° ────────────────────── I2 =

=

= 1.67 mA –0° = I2kΩ

-I1 1 kΩ + (1.667 mA –0°)(12 kΩ) = 10 V –0° -I1 1 kΩ + 20 V –0° = 10 V –0° -I1 1 kΩ = -10 V –0° I1 =

=

= 10 mA –0° E1 = 5 V –0° E2 = 20 V –0° Z1 = 2.2 kΩ –0° Z2 = 5 kΩ –90° Z3 = 10 kΩ –0° I = 4 mA –0°

15.

E1 - I1Z1 - Z2(I1 - I2) = 0 -Z2(I2 - I1) + E2 - I3Z3 = 0 ─────────────────── I 3 - I2 = I Substituting, we obtain: I1(Z1 + Z2) - I2Z2 = E1 I1Z2 - I2(Z2 + Z3) = IZ3 - E2 ──────────────────── Determinants: I1 = 1.39 mA –-126.48°, I2 = 1.341 mA –-10.56°, I3 = 2.693 mA –-174.8° I10kΩ = I3 = 2.69 mA –-174.8° 218

CHAPTER 18

Z1 = 1 kΩ –0° Z2 = 4 kΩ + j6 kΩ E = 10 V –0°

16.

-Z1(I2 - I1) + E - I3Z3 = 0 I1 = 6 mA –0°, 0.1 Vs = I3 - I2, Vs = (I1 - I2)Z1 ───────────────────────────────── Substituting: (1 kΩ)I2 + (4 kΩ + j6 kΩ)I3 = 16 V –0° I3 = 0.6 V –0° (99 Ω)I2 + ──────────────────────────── Determinants: I3 = I6 kΩ = 1.38 mA –-56.31° 17.

Z1 = 4 kΩ –0° Z2 = 2 kΩ –90° Z3 = 8 kΩ –-90° I1 = 2 mA –0° I2 = 6 mA –30° Y1 = 0.25 mS –0° Y2 = 0.5 mS –−90° Y3 = 0.125 mS–90°

I= 1 I3 + I 4 1  1  V V −V 1  I1 = 1 + 1 2 =V1  +  − V2   =I1 Z1 Z2  Z1 Z 2   Z2  I1 Or, V1[Y1 + Y2 ] −V2 [Y2 ] = I 4 = I5 + I 2 =

V1 − V2 V2 = + I2 Z2 Z3

 1  1  1  V2  +  − V1   = −I2  Z2   Z 2 Z3  −I2 Or, V2 [Y2 + Y3 ] − V1[Y2 ] =

Therefore, [Y1 + Y2 ]V1 − [Y2 ]V2 = I1 −I2 [Y2 ]V1 + [Y2 + Y3 ]V2 = = V1

[Y2 + Y3 ]I1 − Y2 I2 −[Y1 + Y2 ]I 2 + Y2 I1 2579∠ − 45.77° = = = 22.89 V∠ −10.54° Y1Y2 + Y1Y3 + Y2Y3 Y1Y2 + Y1Y3 + Y2Y3 112.67∠ − 56.31°

CHAPTER 18

219

18. Z1 = 3 Ω + j4 Ω = 5 Ω –53.13° Z2 = 2 Ω –0° Z3 = 6 Ω –0° || 8 Ω –-90° = 4.8 Ω –-36.87° I1 = 0.6 A –20° I2 = 4 A –80° 0 = I1 + I3 + I4 + I2 0 = I1 +

V1[Y1 + Y2] - V2[Y2] = -I1 - I2 ────────────────────── I 2 + I4 = I5 or

I2 +

or and

220

V2[Y2 + Y3] - V1[Y2] = I2 ────────────────── [Y1 + Y2]V1 - Y2V2 = -I1 - I2 -Y2V1 + [Y2 + Y3]V2 = I2

CHAPTER 18

Applying determinants: V1 =

= 5.12 V –-79.36°

V2 =

= 2.71 V –39.96° Z1 = 5 Ω –0° Z4 = 2 Ω –0° E = 30 V –50° I = 4 A –90° XL = 2πfL = 2π(10 kHz)(0.1 mH) = 6.28Ω 1 1 = XC = 2p fC 2p (10 kHz)(4.7 mF) = 3.39 Ω Z2 = 6.28 Ω –90° Z3 = 3.39 Ω –-90°

19.

V1[Y1 + Y2 + Y3] - V2Y3 = E1Y1 -V1[Y3] + V2[Y3 + Y4] = +I ────────────────────── Using determinants:

üï ý after source conversion. ï þ

V1 = 17.92 V –59.25° and V2 = 13.95 V –93.64° 20. Z1 = 10 Ω –0° Z2 = 10 Ω –0° Z3 = 4 Ω –90° Z4 = 2 Ω –0° Z5 = 8 Ω –-90° E = 50 V –120° I = 0.8 A –70° I1 = I2 + I5 fi or V1[Y1 + Y2 + Y3 + Y5] - V2[Y3 + Y5] = E1Y1 I3 + I5 = I4 + I fi or V2[Y3 + Y4 + Y5] - V1[Y3 + Y5] = -I resulting in

CHAPTER 18

221

V1[Y1 + Y2 + Y3 + Y5] - V2[Y3 + Y5] = E1Y1 -V1[Y3 + Y5] + V2[Y3 + Y4 + Y5] = -I ─────────────────────────────── Applying determinants: V1 = 19.78 V –132.48° and V2 = 13.37 V –98.78° 21.

Z1 = 15 Ω –0° Z2 = 10 Ω –-90° Z3 = 15 Ω –0° Z4 = 3 Ω + j4 Ω

é 1 1 1 1 ù 1 + + 220 V Ð 0° 100 V Ð 90° = 0 V2 ê ú15 Ω ë15 Ω - j10 Ω 15 Ω û 15 Ω V2 [133.34 ¥ 10-3 + j100 ¥ 10-3] = 14.67 + j6.67

[

]

[

]

= 96.30 V –-12.32° V1 = E1 = 220 V –0°, V3 = E2 = 100 V –90° 22.

E1 = 25 V –0° E2 = 75 V –20°

V 1:

=0

V 2: V 3: V 4:

Z1 = 10 Ω + j20 Ω Z2 = 6 Ω –0° Z3 = 5 Ω –0° Z4 = 20 Ω –-90° Z5 = 10 Ω –0° Z6 = 80 Ω –0° Z7 = 15 Ω –90° Z8 = 5 Ω - j20 Ω

=0 =0 =0

───────────────────────

222

CHAPTER 18

Rearranging: æ1 V1 ç è Z1 æ1 V2 ç è Z1 æ1 V3 ç è Z6 æ1 V4 ç è Z2

1 1 ö + ÷Z2 Z3 ø 1 1 ö + + ÷ Z 4 Z6 ø 1 1 ö + + ÷ Z 7 Z8 ø +

+

= = =

1 1 1 ö + + ÷ Z 4 Z 7 Z5 ø

=0

Setting up and then using determinants: V1 = 14.62 V –-5.86°, V2 = 35.03 V –-37.69° V3 = 32.4 V –-73.34°, V4 = 5.67 V –23.53° 23.

Y1 = = 0.25 S –0° Y2 = = 1 S –-90° Y3 = = 0.2 S –0° Y4 = = 0.25 S –90° Y5 =

V1[Y1 + Y2] - Y2V2 = I1 V2[Y2 + Y3 + Y4] - Y2V1 - Y4V3 = -I2 V3[Y4 + Y5] - Y4V2 = I2 ───────────────────────────

= 0.125 S –-90° I1 = 2 A –30° I2 = 3 A –150°

- Y2 V2 + 0 = I1 [Y1 + Y2]V1 - Y4 V3 = -I2 -Y2V1 + [Y2 + Y3 + Y4]V2 0 - Y4 V2 + [Y4 + Y5]V3 = I2 ──────────────────────────────────── V1 = = 5.74 V –122.76°

CHAPTER 18

223

V2 =

= 4.04 V –145.03° = 25.94 V –78.07°

V3 = 24.

Y1 = = 0.25 S –0° Y2 = = 0.167 S –0° Y3 = = 0.125 S –0° Y4 = V1[Y1 + Y2 + Y3] - Y2V2 - Y3V3 = I1 V2[Y2 + Y4 + Y5] - Y2V1 - Y4V3 = 0 V3[Y3 + Y4 + Y6] - Y3V1 - Y4V2 = -I2 ─────────────────────────── [Y1 + Y2 + Y3]V1 - Y 2V 2 - Y 3V 3 = I 1 -Y2V1 + [Y2 + Y4 + Y5]V2 - Y 4V 3 = 0 -Y3V1 - Y4V2 + [Y3 + Y4 + Y6]V3 = -I2 ──────────────────────────────────────────

= 0.5 S –90° Y5 = = 0.2 S –-90° Y6 = = 0.25 S –-90° I1 = 4 A –0° I2 = 6 A –90°

V1 = = 15.13 V –1.29° V2 =

= 17.24 V –3.73°

V3 = = 10.59 V –-0.11° 25.

Left node:

V1 4Ix = Ix + 5 mA –0° +

Right node: V2 8 mA –0° = Insert Ix =

224

CHAPTER 18

Rearrange, reduce and 2 equations with 2 unknowns result: V1[1.803 –123.69°] + V2 = 10 V1[2.236 –116.57°] + 3 V2 = 16 ────────────────────── Determinants: V1 = 4.37 V –-128.66° V2 = V1kΩ = 2.25 V –17.63° Z1 = 1 kΩ –0° Z2 = 2 kΩ –90° Z3 = 3 kΩ –-90° I1 = 12 mA –0° I2 = 4 mA –0° E = 10 V –0°

26.

0 = I1 + and

= -I1 - I2

with V2 - V1 = E Substituting and rearranging: = -I1 - I2 and solving for V1: V1 = 15.4 V – 178.2° with V2 = VC = 5.41 V – 174.87° 27.

Left node: V1 2 mA –0° = 12 mA –0° + and 1.5 V1 - V2 = -10 Right node: V2 0 = 2 mA –0° + and 2.7 V1 - 3.7 V2 = -6.6 Using determinants:

CHAPTER 18

V1 = V2kΩ = -10.67 V –0° = 10.67 V –180° V2 = -6 V –0° = 6 V –180° 225

Z1 = 2 kΩ –0° Z2 = 1 kΩ–0° Z3 = 1 kΩ –0° I = 5 mA –0°

28.

V 1: I = with I1 = and

V2 - V1 = 2Vx = 2V1 or V2 = 3V1

Substituting will result in: =I or and with

=I V1 = Vx = -2 V –0° V2 = -6 V –0°

29.

I1 =

= 1 ¥ 10-3 Ei

Y1 =

= 0.02 mS –0°

Y2 =

= 1 mS –0°

Y3 = 0.02 mS –0° I2 = (V1 - V2)Y2 V1(Y1 + Y2) - Y2V2 = -50I1 V2(Y2 + Y3) - Y2V1 = 50I2 = 50(V1 - V2)Y2 = 50Y2V1 - 50Y2V2 ──────────────────────────────────────────── (Y1 + Y2)V1 - Y2V2 = -50I1 -51Y2V1 + (51Y2 + Y3)V2 = 0 ─────────────────────── V L = V2 =

226

= -2451.92 Ei

CHAPTER 18

30.

a.

yes

= = 2 –-90° = 2 –-90° (balanced)

b.

Z1 = 5 kΩ –0°, Z2 = 8 kΩ –0° Z3 = 2.5 kΩ –90°, Z4 = 4 kΩ –90° Z5 = 5 kΩ –-90°, Z6 = 1 kΩ –0° I1[Z1 + Z3 + Z6] - Z1I2 - Z3I3 = E I2[Z1 + Z2 + Z5] - Z1I1 - Z5I3 = 0 I3[Z3 + Z4 + Z5] - Z3I1 - Z5I2 = 0 ───────────────────────

- Z 1I 2 - Z 3I 3 = E [Z1 + Z3 + Z6]I1 - Z 5I 3 = 0 -Z1I1 + [Z1 + Z2 + Z5]I2 - Z5I2 + [Z3 + Z4 + Z5]I3 = 0 -Z3I1 ─────────────────────────────────────── I2 = I3 = = I2 - I3 =

CHAPTER 18

E[Z 1 Z 4 - Z 3 Z 2 ] E[20´10 6 Ð 90° -20´10 6 Ð 90°] = =0A ZD ZD

227

c.

I=

= = 10 mA –0°

Y1 = = 0.2 mS –0° Y2 = = 0.125 mS –0° Y3 = V1[Y1 + Y2 + Y6] - Y1V2 - Y2V3 = I V2[Y1 + Y3 + Y5] - Y1V1 - Y5V3 = 0 V3[Y2 + Y4 + Y5] - Y2V1 - Y5V2 = 0 ───────────────────────── [Y1 + Y2 + Y6]V1 - Y 1V 2 - Y 2V 3 = I -Y1V1 + [Y1 + Y3 + Y5]V2 - Y 5V 3 = 0 -Y2V1 - Y5V2 + [Y2 + Y4 + Y5]V3 = 0 ─────────────────────────────────────────

= 0.4 mS –-90° Y4 = = 0.25 mS –-90° Y5 = = 0.2 mS –90° Y6 = V2 = 1 mS –0°

V2 = V3 = = V2 - V3 = =0V 31.

a.

=

1 –-90° π 1 –90° (not balanced) b.

The solution to 26(b) resulted in E(Z 1 Z 5 + Z 3 (Z 1 + Z 2 + Z 5 )) I3 = = ZD where ZΔ = (Z1 + Z3 + Z6)[(Z1 + Z2 + Z5)(Z3 + Z4 + Z5) and and

228

]

- Z1[Z1(Z3 + Z4 + Z5) - Z3Z5] - Z3[Z1Z5 + Z3(Z1 + Z2 + Z5)] Z1 = 5 kΩ –0°, Z2 = 8 kΩ –0°, Z3 = 2.5 kΩ –90° Z4 = 4 kΩ –90°, Z5 = 5 kΩ –-90°, Z6 = 1 kΩ –0° = 1.76 mA –-71.54°

CHAPTER 18

c.

The solution to 26(c) resulted in V3 =

= YΔ = (Y1 + Y2 + Y6)[(Y1 + Y3 + Y5)(Y2 + Y4 + Y5) -

where

- Y1 [Y1(Y2 + Y4 + Y5) + Y2Y5] - Y2[Y1Y5 + Y2(Y1 + Y3 + Y5)] Y1 = 0.2 mS –0°, Y2 = 0.125 mS –0°, Y3 = 0.4 mS –-90° Y4 = 0.25 mS –-90°, Y5 = 0.2 mS –90°

with

Y6 = 1 mS –0°, I = 10 mA –0° V3 = = 7.03 V –-18.46°

Source conversion: and 32.

Z 1Z 4 = Z 3Z 2 (R1 - jXC)

= R 3R 2

(1 kΩ - j1 kΩ) and

X C1 =

XC =

= 1 kΩ

= (0.1 kΩ)(0.1 kΩ) = 10 kΩ =

\ Rx = 5 Ω, Lx =

33.

]

= 5 Ω + j5 Ω

= 5 mH

1 1 1 = = kΩ = 0.25 kΩ wC1 (2000 rad/s)(2 mF) 4

Z1 = R1 ||

–90° = (2 kΩ –0°) || (0.25 kΩ –-90°) = 248.07 Ω –-82.88°

Z2 = R2 –0° = 0.5 kΩ –0°, Z3 = R3 –0° = 4 kΩ –0° Z4 = Rx + j = 1 kΩ + j12 kΩ,

X= L (2000 rad/s)(6 H) = 12 kΩ∅ Lx ω= Z1 Z 2 248.07 Ω∠ − 82.88° 0.5∠0° = = = Z3 Z 4 4 kΩ∠0° 12.04∠85.236° 62.017 × 10−3 ∠ − 82.88° ≠ 0.4152∠ − 85.236° (Unbalanced) 34.

Apply Eq. 18.6.

CHAPTER 18

229

35.

For balance: R1(Rx + j R1Rx + jR1

) = R2(R3 + j

)

= R2R3 + jR2

\ R1Rx = R2R3 and R1

= R2

and R1wLx = R2wL3

so that 36.

Z1 = 8 Ω –-90° = -j8 Ω Z2 = 4 Ω –90° = +j4 Ω Z3 = 8 Ω –90° = +j8 Ω Z4 = 6 Ω –-90° = -j6 Ω Z5 = 5 Ω –0°

a.

Z6 =

= 5 Ω –38.66°

Z7 =

= 6.25 Ω –-51.34°

Z8 =

= 3.125 Ω –128.66°

Z¢ = Z7 + Z3 = 3.9 Ω + j3.12 Ω = 4.99 Ω –38.66° Z≤ = Z8 + Z4 = -1.95 Ω - j3.56 Ω = 4.06 Ω –-118.71° Z¢ || Z≤ = 10.13 Ω –-67.33°= 3.90 Ω - j9.35 Ω ZT = Z6 + Z¢ || Z≤ = 7.80 Ω - j6.23 Ω = 9.98 Ω –-38.61° I=

37.

230

ZY =

= 12.02 A –38.61°

ZD 12 Ω - j9Ω = = 4 Ω - j3 Ω 3 3

CHAPTER 18

ZT = 2 Ω + 4 Ω + j3 Ω + [4 Ω - j3 Ω + j3 Ω] || [4 Ω - j3 Ω + j3 Ω] = 6 Ω - j3 Ω + 2 Ω = 8 Ω - j3 Ω = 8.544 Ω –-20.56° I=

= 7.02 A –20.56°

Z4 = 3ZY = 3(3 Ω –90°) = 9 Ω –90° Z = 9 Ω –90° || (12 Ω - j16 Ω) = 9 Ω –90° || 20 Ω –−53.13° = 12.96 Ω –67.13°

38.

[12.96 Ω –67.13°] = 8.64 Ω –67.13°

ZT = Z || 2Z = I= 39.

220 V–0°

= 25.46 A –-63.13°

ZΔ = 3ZY = 3(5 Ω) = 15 Ω Z1 = 15 Ω –0° || 5 Ω –-90° = 4.74 Ω –-71.57° Z2 = 15 Ω –0° || 5 Ω –-90° = 4.74 Ω –-71.57° Z3 = Z1 = 4.74 Ω –-71.57° = 1.5 Ω - j4.5 Ω ZT = Z1 || (Z2 + Z3) = (4.74 Ω –-71.57°) || (3 Ω - j9 Ω) = (4.74 Ω –-71.57°) || (9.489 Ω –-71.57°) =

44.97 Ð−143.14° 14.23 ΩÐ-71.23°

ZT = (3.16 Ω –-71.57°) = 0.999 I=

E 200 V Ð30° = = 63.29 A –101.57° ZT 3.16 Ω Ð -71.57°

CHAPTER 18

231

Chapter 19 1. = 3 Ω –0°, Z2 = 8 Ω –90°, Z3 = 6 Ω –-90° Z2 || Z3 = 8 Ω –90° || 6 Ω –-90° = 24 Ω –-90°

I=

E1 30 VÐ30° = = 1.24 A –112.875° Z1 + Z2 || Z3 3 Ω - j24 Ω = 3.72 A –-67.125°

I¢ =

Z1|| Z2 = 3 Ω –0° || 8 Ω –90° = 2.809 Ω –20.556° I= = 10.597 A –72.322° I≤ =

= 3.721 A –2.878° = I¢ + I≤ = 3.72 A –-67.125° + 3.721 A –2.878° = 1.446 A - j3.427 A + 3.716 A + j0.187 A = 5.162 A - j3.24 A = 6.09 A –-32.12°

2.

232

Considering Source I = 0.3 A Ð90° and short circuiting the voltage source E = 0.3 A ∠0°. Let Z1 = 10 Ω –90°, Z2 = 5 Ω –-90° I = 0.3 A –60°, E = 15 V –0° Z1I (10 Ω Ð90° )(0.3 A Ð60°) 3.0 A Ð150° = = I¢ = +j10 Ω -j5 Ω Z1 + Z2 5 Ω Ð90° = 0.6A –60° Consider E and o/p ckt I: E 15 V Ð0° 15 AÐ0° = I≤ = = +j10 Ω j5 Ω Z1 + Z 2 5 ΩÐ90° = 3 A –-90° Therefore, IC = I¢ - I≤ = 0.6 A –60° - 3 A –-90° = (0.3 A + j0.52 A) + j3 A = 0.3 A + j3.52 A = 3.53 A –85.13°

CHAPTER 19

3.

Z1 = 3 Ω –90°, Z2 = 7 Ω –-90° E = 12 V –90° Z3 = 6 Ω –-90°, Z4 = 4 Ω –0° Z¢ = Z1|| (Z3 + Z4) = 3 Ω –90° || (4 Ω - j6 Ω) = 3 Ω –90° || 7.21 Ω –-56.31° = 4.33 Ω –70.56°

E:

V1 = =

(4.33 Ω Ð70.56° )(12 V Ð90° ) (1.44 Ω + j4.08 Ω) - j7 Ω

= 15.94 V –224.31° Therefore, I¢ =

=

15.94 V –224.31°

= 5.31 A –134.31° I:

Consider I and sort ckt E Z≤ = Z3 || Z1 + Z2 = -j6 Ω + 3 Ω –90° || 7 Ω –-90° = -j6 Ω + 5.25 Ω –90° = -j6 Ω + j5.25 Ω = -j0.75 Ω = 0.75 Ω–-90° CDR:

I3 =

=

I≤ =

=

(4 Ω Ð0°)(0.8 A Ð120°) = 0.79 A –130.62° 4 Ω - j0.75 Ω (0.79 A

= 1.38 A –130.62°

IL = I¢ - I≤ (direction of I¢) = 5.31 A –134.31° - 1.38 A –130.62° = (-3.71 A + j3.79 A) - (-0.89 A + j1.05 A) = 3.92 A –135.82°

CHAPTER 19

233

4.

I:

IC

2.41 kΩ VC1

2 kΩ

1.17 kΩ

1 = 1.17 kΩ 2p (20 kHz)(6.8 nF) 1 = = 2.41 kΩ 2p (20 kHz)(3.3 nF)

X C1 =

+−

3.9 kΩ

6 mA ∠ 180°

X C2

} (2 kΩ ∠ 0°) || (1.17 kΩ ∠ −90°) = 1.01 kΩ ∠ −59.67°

Z¢ = 2.41 kΩ –-90° + 1.01 kΩ –-59.67° = -j2.41 kΩ + 0.510 kΩ - j0.871 kΩ = 0.510 kΩ - j3.28 kΩ IC = =

R 2I (3.9 kΩ Ð 0°)(6 mA Ð 180°) = R 2 + Z¢ 3.9 kΩ + 0.510 kΩ - j3.28 kΩ 23.4 mA Ð 180° 23.4 mA Ð 180° = 4.41Ð - j3.28 5.5Ð -36.64°

= 4.25 mA –216.64°

VC1 = IC X C 2 = (4.25 mA –216.64°)(2.41 kΩ –-90°) = 10.24 V –126.64° 2 kΩ

E:

2.41 kΩ

+

+

VC2



1.17 kΩ

14 V ∠ 0°

3.9 kΩ

− Z′

Z¢ = (1.17 kΩ –-90°) || (3.9 kΩ - j2.41 kΩ) = (1.17 kΩ –-90°) || (4.58 kΩ –-31.71°) =

(1.17 kΩ Ð - 90°)(4.58 kΩ Ð -31.71°) 5.36 kΩ Ð -121.71° = - j1.17 kΩ + j3.9 kΩ - j2.41 kΩ 3.9 - j3.58

5.36 kΩ Ð -121.71° = 1.01 kΩ –-79.16° 5.29 Ð -42.55° (1.01 kΩ Ð - 79.16°)(14 V Ð 0°) Z¢(E) = V Z¢ = ¢ 2 kΩ + 1.01 kΩ Ð -79.16° Z + R1 =

=

14.14 V Ð -79.16° 14.14 V Ð -79.16° 14.14 V Ð -79.16° = = 2 + 0.189 - j0.991 2.189 - j0.991 2.4 Ð -24.36°

= 5.89 V –-54.8° X C2 VZ¢ (2.41 kΩ Ð -90°)(5.89 V Ð -54.8°) 14.195 V Ð -144.8° VC 2 = = = 3.9 kΩ - j2.41 kΩ X C2 + R 2 - j2.41 kΩ + 3.9 kΩ =

234

14.195 V Ð -144.8° = 3.1 V –-113° 4.58 Ð -31.71° CHAPTER 19

VC = VC1 + VC 2 = 10.24 V –126.64° + 3.1 V –-113° = (-6.11 V + j8.21 V) + (-1.21 V - j2.85 V) = -7.31 V + j5.36 V = 9.06 V –143.75° 5.

E:

R1

R2 C



L

E

IL1

+

Is

XL = 2π fL = 2π(10 kHz)(20 mH) = 1.26 kΩ 1 1 = XC = 2p fC 2p (10 kHz)(0.01 mF) = 1.59 kΩ

ZT = R1 –0° + XC –-90°) || (R2 –0° + XL – 90°) kΩ = 1 kΩ + (1.59 kΩ –-90°) || (2.2 !#kΩ # #+"j1.26 ### $) 2.54 kΩ Ð 29.8° (1.59 kΩ Ð -90°)(2.54 kΩ Ð 29.8° ) = 1 kΩ + - j1.59 kΩ + 2.2 kΩ + j1.26 kΩ 4.04 kΩ Ð -60.2° 4.04 kΩ Ð -60.2° = 1 kΩ + = 1 kΩ + 2.2 - j0.33 2.23Ð -8.46° = 1 kΩ + 1.81 kΩ –-51.74° = 1 kΩ + (1.12 kΩ - j1.42 kΩ) = 2.12 kΩ - j1.42 kΩ = 2.55 kΩ –-33.82° E 16 V Ð 60° = Is = = 6.27 mA –93.82° ZT 2.55 kΩ Ð -33.82° ( X C Ð -90°)(I s ) I L1 = X C Ð -90° + R2 Ð 0° + X L Ð 90° (1.59 kΩ Ð -90° )(6.27 mA Ð 93.82° ) = - j1.59 kΩ + 2.2 kΩ + j1.26 kΩ 9.97 mA Ð 3.82° 9.97 mA Ð 3.82° = = 2.2 - j0.33 2.22 Ð -8.53° ≠ I L1 = 4.49 mA –12.35° I:

2.2 kΩ

8 mA ∠ 30° 1 kΩ

IL2

(1 kΩ –0°) || (1.59 kΩ –-90°) = 847.74 Ω –-32.17° Z¢ = XL + 847.74 Ω –-32.17° = j1.26 kΩ + 717.59 Ω - j451.36 Ω = 0.72 kΩ + j0.81 kΩ = 1.08 kΩ –48.36°

1.26 kΩ 1.59 kΩ

} Z′

CHAPTER 19

235

R 2 (I) (2.2 kΩ Ð 0°)(8 mA Ð 30°) = R 2 + Z¢ 2.2 kΩ + 0.72 kΩ + j0.81 kΩ 17.6 mA Ð 30° 17.6 mA Ð 30° = = 2.92 + j0.81 3.03Ð 15.50° = 5.81 mA –14.5° IL = I L1 - I L 2 (direction of I L1 ) = (4.49 mA –12.35°) - (5.81 mA –14.5°) = (4.39 mA + j0.96 mA) - (5.62 mA + j1.45 mA) = -1.23 mA - j0.49 mA = 1.32 mA –-158.2° I L2 =

6.

AC:

1 1 1 = = 2pfC wC (1000)(4.7 mF) = 212.77 Ω XL = 2pfL = wL = (1000)(47 mH) = 47 Ω XC =

Z1 = 212.77 Ω –-90°, Z2 = 47 Ω – 0°, Z3 = 22 Ω + j47 Ω = 51.89 Ω –64.92° Z2|| Z3 = 29.23 Ω –30.66° ZT = Z1 + Z2|| Z3 = -j212.77 Ω + 25.14 Ω + j14.91 Ω = 25.14 Ω - j197.86 Ω = 199.45 Ω –-82.76° Is =

E 20 V Ð 60° = = 0.1 A –142.76° ZT 199.45 Ω Ð -82.76°

Z 3I s (51.89 Ω Ð 64.92°)(0.1 A Ð 142.76°) 5.19 A Ð 207.68° = = Z3 + Z2 22 Ω + j47 Ω + 47 Ω 83.49 Ð 34.26° I = 62.16 mA – 173.42° 3 and i = 62.16 ¥ 10- sin (1000t + 173.42°) I=

DC:

I= = 72.46 mA

3

i = -72.46 mA + 62.16 ¥ 10- sin (1000t + 173.42°)

236

CHAPTER 19

7.

DC:

DC: Consider 15V (dc) source & open ckt I (AC) VC = 15V AC: Consider I = 3 A∠0°source and short ckt. 15 V dc source

AC:

(9 ΩÐ−0°)(I) 9 Ω + 3 Ω -j1 Ω = 2.24 A –4.76°

IC =

VC = ICXC = (2.24 A –4.76°)(1 Ω –-90°) = 2.24 V –-85.24° υC = 15 V + sin(ωt − 85.24°) = 15 V + 3.17 sin(ωt - 85.24°)

8. E = 20 V –0° Z1 = 10 kΩ –0° Z2 = 5 kΩ - j5 kΩ = 7.071 kΩ –-45° Z3 = 5 kΩ –90° I = 5 mA –0° Z¢ = Z1 || Z2 = 10 kΩ –0° || 7.071 kΩ –-45° = 4.472 kΩ –-26.57° (CDR)

(4.472 kΩ Ð -26.57°)(5 mA Ð 0°) 22.36 mA Ð -26.57° Z¢I = = 4 kΩ - j2 kΩ + j5 kΩ 5Ð 36.87° Z¢ + Z3 = 4.472 mA –-63.44°

I¢ =

Z≤ = Z2 || Z3 = 7.071 kΩ –-45° || 5 kΩ –90° = 7.071 kΩ –45°

(VDR)

V¢ = = 8.945 V –26.565°

CHAPTER 19

237

= 1.789 mA –-63.435° = 0.8 mA - j1.6 mA

I≤ =

I = I¢ + I≤ = (2 mA - j4 mA) + (0.8 mA - j1.6 mA) = 2.8 mA - j5.6 mA = 6.26 mA –-63.43° 9.

Considering hI(Current ) source and short ckt. E = 10 V∠0° Let Z1 = 1Ω –0° Z2 = 10 kΩ –90° I = 2 mA –0° E = 10 V –0° H = 200 Therefore, I¢ =

=

(15 kΩ –0°)(200)(2 mA –0°)

= 0.333 A –-33.69° 15 kΩ + j10 kΩ E: Considering e and open ckt. hI I≤ =

=

18.03 kΩ –33.69° = 0.555 mA –-33.69° IL = I¢ - I≤ (direction of I¢) = 332.78 mA –-33.69° - 0.555 mA –-33.69° = 332.225 mA –-33.69° 10.

µV: Z1 = 5 kΩ –0°, Z2 = 1 kΩ –-90° Z3 = 4 kΩ –0° V = 2 V –0°, µ = 20

V¢ L =

-Z3 ( mV) -(4 kΩ Ð 0°)(20)(2 V Ð 0°) = = -17.67 V –6.34° 5 kΩ - j1 kΩ + 4 kΩ Z1 + Z2 + Z3

I: CDR: I¢ = = = 1.104 mA –6.34° V≤ L = -I¢Z3 = -(1.104 mA –6.34°)(4 kΩ –0°) = -4.416 V –6.34° VL = V¢ L + V≤ L = -17.67 V –6.34° - 4.416 V –6.34° = -22.09 V –6.34°

238

CHAPTER 19

11.

R1 = Z1 = 20 kΩ –0° R2 + jXL = Z2 = 7 kΩ + j7 kΩ I = 2 mA –0° Η = 150

I¢ =

=

(20 kΩ –0°)(150)(2 mA –0°) = 215.13 mA –-14.53° 20 kΩ + 7 kΩ + j10 kΩ

Given V = 10 V –0°; µ = 25 (25)(10 V –0°) 20 kΩ + 7 kΩ + j7 kΩ = 8.964 mA –-14.53°

I≤ =

=

IL = I¢ - I≤ (direction of I¢) = 215.13 mA –-14.53° - 8.964 mA –-14.53° = 206.17 mA –-14.53° R1 = 2 kΩ, R2 = 2 kΩ, h = 60, VL = (hI + I)RL Let IL = hI + I = (h + 1)I And by KVL, VL = IR1 + E = −ILRL

12.

so that I = Therefore, VL = -(h + 1)IRL = -(h + 1)

R1

RL

R1

Subt. for R1, RL VL = -(h + 1)IRL = -(h + 1)

2 kΩ –0°

2 kΩ –0°

VL = -(h + 1)(VL - E) VL(2 + h) = E(h + 1) 61 (30 V –47°) = 29.52 V –47° VL = 62 13.

I 1: I1 = 1 mA –0° Z1 = 2 kΩ –0° Z2 = 5 kΩ –0°

KVL: V1 - 20 V - V = 0

I¢ =

\ I¢ =

or V =

V1 = 21 V

CHAPTER 19

239

V = I5kΩZ2 = [I1 - I¢]Z2 = I1Z2 - I¢Z2

éZ ù I¢ ê 1 + Z2 ú = I1Z2 ë 21 û [I1] =

and I¢ =

(5 kΩ Ð 0°)(1 mA Ð 0° ) = 0.981 mA –0° æ 2 kΩ Ð 0° ö ç ÷ + 5 kΩ Ð 0° 21 è ø

I 2: V1 = 20 V + V = 21 V I≤ =

fiV=

I5kΩ =

I≤ = I2 - I5kΩ = I2 -

é Z ù I≤ ê1 + 1 ú = I2 ë 21Z2 û =

I≤ =

= 1.963 mA –0°

I = I¢ + I≤ = 0.981 mA –0° + 1.963 mA –0° = 2.94 mA –0° 14.

E 1:

10 V –0° - I 10 Ω - I 2 Ω - 4 Vx = 0 with Vx = I 10 Ω Solving for I: I=

= 192.31 mA –0°

= 10 V –0° - I(10 Ω) = 10 V - (192.31 mA –0°)(10 Ω –0°) = 8.08 V –0°

240

CHAPTER 19

I:

SIi = SIo 5 A –0° +

=0

5 A + 0.1 Vx + 2.5 Vx = 0 2.6 Vx = -5 A Vx =

= -1.923 V

= -Vx = -(-1.923 V) = 1.923 V –0° = 8.08 V –0° + 1.923 V –0° = 10 V –0° Vs = 15.

For ZTh: Short ckt E and open ckt Xc terminal a and b Z1 = 3 Ω –0°, Z2 = 4 Ω –90° E = 100 V –0° ZTh = R1 || XL = (2 Ω –0° || 5 Ω –90°) =

10 –0°

5.385 –68.199° = 1.86 Ω –21.80° = 1.73 Ω + j0.69 Ω

For ETh: Open ckt voltage between terminal a and b ETh =

16.

ZTh:

ETh:

(5 Ω –90°) jXLE jXL + R1 (j5 Ω + 2 Ω) 500 V –90° = 92.85 V –21.80° 5.385 –68.199°

Z1 = 2 kΩ –0°, Z2 = 3 kΩ –−90°, Z3 = 6 kΩ –90° E = 25 V –30 ° ZTh = Z3 + Z1 || Z2 = +j6 kΩ + (2 kΩ –0° || 3 kΩ –-90°) = +j6 kΩ + 1.664 kΩ –-33.69° = +j6 kΩ + 1.385 kΩ -j0.923 kΩ = 1.385 kΩ + j5.077 kΩ = 5.26 kΩ –74.74°

Z2E (3 kΩ Ð-90°)(25 V Ð30°) = 2 kΩ -j3 kΩ Z2 + Z1 75 V Ð−60° = 20.79 V –-3.69° =

ETh =

CHAPTER 19

241

17.

ZTh: Z1 = 20 Ω + j20 Ω = 28.284 Ω–45° Z2 = 70 Ω –0°

ZTh = Z1 || Z2 = (28.284 Ω –45°) || (70 Ω –0°) =

1979.88 Ω Ð45° = 21.47 Ω –32.47° 92.195 Ð12.53°

ETh = IZ¢ = IZTh = (0.2 A –0°)(21.47 Ω –32.47°) = 4.29 V –32.47° 18.

ZTh

120 Ω

XL = 2π fL = 2π(1 kHz)(12 mH) = 75.4 Ω

75.4 Ω ZTh

470 Ω

Ω) ZTh = (120 Ω –0°) || 470 !#Ω #+"j75.4 ##$ 476.01Ð 9.11° (120 Ω Ð 0°)(476.01 Ω Ð 9.11° ) = 120 Ω + 470 Ω + j75.4 Ω 57.12 kΩ Ð 9.11° = 590 +" j75.4 Ω ## $ !## 594.8Ð7.28° ZTh = 96.03 Ω –1.83° ETh

Source conversion: E2 = IZ = (2 mA –-90°)(470 Ω –0°) = 0.94 V –-90° Rs = 470 Ω 120 Ω

+

8 V ∠ 0°



I

75.4 Ω

+ −

ETh

450 Ω

+

0.94 V ∠ −90°



8 V Ð 0° - 0.94 V Ð -90° 120 Ω + 470 Ω + j75.4 Ω 8 V Ð 0° - (- j0.94 V) 8 V + j0.94 V = = 590 Ω + j75.4 Ω 594.8 Ω Ð 7.28° 8.055 V Ð 6.70° = 594.8 Ω Ð 7.28° = 13.54 mA –-0.58° ETh = 8 V –0° - IR = 8 V –0° - (13.54 mA –-0.58°)(120 Ω) = 8 V –0° - 1.62 V –-0.58° = 8 V - (1.62 V - j16.4 ¥ 10-3 V) = 8 V - 1.62 V + j16.4 ¥ 10-3 V = 8 V - 1.62 V + j0.016 V = 6.38 V + j16.4 ¥ 10-3 V I=

242

CHAPTER 19

19.

X C1 = X C2 =

1 1 = = 3.39 kΩ 2p fC 2p (1 kHz)(0.047 mF)

Source conversions: Z¢ = R1 + XC1 = 2 kΩ - j3.39 kΩ = 3.94 kΩ –-59.46°

E1 10 V Ð 0° = = 2.53 mA –59.46° Z¢ 3.94 kΩ Ð -59.46° E 10 V Ð 0° I2 = 2 = = 5 mA –0°, E = IZ = (5 mA –0°)(2 kΩ –0°) = 10 V –0° R 2 2 kΩ Ð 0° I1 =

C2

3.39 kΩ I1

I2

2 kΩ

R3



Z′

R2

E = 10 V ∠ 0°

+

IT = I1 - I2 = 2.53 mA –59.46° - 5 mA –0° = 1.29 mA + j2.18 mA - 5 mA = -2.47 mA + j2.18 mA = 3.29 mA –138.57° Z¢ || R2 = (3.94 kΩ –-59.46°) || (2 kΩ –0°) (3.94 kΩ Ð -59.46° )(2 kΩ Ð 0° ) = 2 kΩ - j3.39 kΩ + 2 kΩ 7.88 kΩ Ð -59.46° 7.88 kΩ Ð -59.46° = = 4 - j3.39 5.24 Ð -40.28° = 1.51 kΩ –-19.18° Source conversion: E¢ = IZ = (3.29 mA –138.57°)(1.51 kΩ –-19.18°) = 4.97 V –119.39° 1.51 kΩ ∠ −19.18°

+ −

3.39 kΩ

+ ETh



2 kΩ



E′

I′

E

+

ZTh = (2 kΩ –0°) || (1.51 kΩ –-19.18° - j3.39 kΩ) = (2 kΩ –0°) || (1.43 kΩ - j0.496 kΩ - j3.39 kΩ) = (2 kΩ –0°) || (1.43 kΩ - j3.89 kΩ) = (2 kΩ –0°) || (4.14 kΩ –-69.82°) (2 kΩ Ð 0° )(4.14 kΩ Ð -69.82°) = 2 kΩ + 1.43 kΩ - j3.89 kΩ 8.28 kΩ Ð -69.82° = 3.43 - j3.89

CHAPTER 19

243

8.28 kΩ Ð -69.82° 5.19 Ð -48.6° ZTh = 1.6 kΩ –-21.22° E¢ + E I¢ = 2 kΩ - j3.39 kΩ + 1.51 kΩ Ð -19.18° 4.97 V Ð 119.39° +10 V Ð 0° = 2 kΩ - j3.39 kΩ + 1.43 kΩ Ð - j0.496 kΩ -2.44 V + j4.33 V + 10 V = 3.43 kΩ - j3.89 kΩ 7.56 V + j4.33 V 8.71 V Ð 29.8° = = 5.19 kΩ Ð -48.6° 5.19 kΩ Ð -48.6° = 1.68 mA –78.4° ETh - V2kΩ + E = 0 ETh = V2kΩ - E = (I¢)(2 kΩ) - 10 V –0° = (1.68 mA –78.4°)(2 kΩ –0°) - 10 V = 3.36 V –78.40° - 10 V = 0.68 V + j3.29 V - 10 V = -9.32 V + j3.29 V ETh = 9.88 V –160.56° =

10 Ω

20. 2Ω



ZTh



ZTh = (8 Ω –-90°) || (10 Ω + 2 Ω || 4 Ω –90°) æ 8 Ω Ð 90° ö = (8 Ω –-90°) || ç10 Ω + ÷ + j4 ø è!###"2# ## $ 8 Ω Ð 90° 10 Ω + 4.47 Ð# 63.44° !### "# #$

10 Ω# + 1.79 26.56° !# # #"Ω#Ð# ## $ 10 Ω + 1.6 Ω + j0.8 Ω !###"###$ 11.6 +# j0.8 Ω !#Ω #" #$ 11.63 Ω Ð 3.95° = (8 Ω –-90°) || (11.63 Ω –3.95°) 92.8 Ω Ð -86.05° 92.8 Ω Ð -86.05° = = - j8 + 11.6 + j0.8 11.6 - j7.2 92.8 Ω Ð -86.05° = 13.65Ð -31.83° ZTh = ZN = 6.79 Ω –-54.22°

244

CHAPTER 19

Z1 = 2 Ω –0°, Z3 = 8 Ω –-90° Z2 = 4 Ω –90°, Z4 = 10 Ω –0° E = 50 V –0° ETh = V2 + V4 V2 =

(4 Ω Ð 90° )(50 V Ð 0°) + j4 kΩ + 2 Ω Ð 0° || (10 Ω - j8 Ω) = 47.248 V –24.7° =

V1 = E - V2 = 50 V –0° - 47.248 V –24.7° = 20.972 V –-70.285° (10 Ω Ð 0° )(20.972 V Ð -70.285°) V4 = = = 16.377 V –-31.625° 10 Ω - j8 Ω ETh = V2 + V4 = 47.248 V –24.7° + 16.377 V –-31.625° = (42.925 V + j19.743 V) + (13.945 V - j8.587 V) = 56.870 V + j11.156 V = 57.95 V –11.10° 21.

ZTh: Z1 = 10 Ω –0°, Z2 = 8 Ω –90° Z3 = 8 Ω –-90°

ZTh = Z3 + Z1 || Z2 = -j8 Ω + 10 Ω –0° || 8 Ω –90° = -j8 Ω + 6.247 Ω –51.34° = -j8 Ω + 3.902 Ω + j4.878 Ω = 3.902 Ω - j3.122 Ω = 5.00 Ω –-38.66° ETh: Superposition: (E1) E¢ Th = = = 74.965 V –51.34° (I)

CHAPTER 19

245

E≤ Th = = IZ3 + I(Z1 || Z2) = I(Z3 + Z1 || Z2) = (0.5 A –60°)(-j8 Ω + 10 Ω –0° || 8 Ω –90°) = (0.5 A –60°)(-j8 Ω + 3.902 Ω + j4.878 Ω) = (0.5 A –60°)(3.902 Ω - j3.122 Ω) = (0.5 A –60°)(4.997 Ω –-38.663°) = 2.499 V –21.337°

ETh = E¢Th + E≤ Th = 74.965 V –51.34° + 2.449 V –21.337° = (46.83 V + j58.538 V) + (2.328 V + j0.909 V) = 49.158 V + j59.447 V = 77.14 V –50.41° 22.

ZTh:

ZTh = Z = 15 Ω - j15 = 21.21 Ω –-45° ETh:

23.

a.

ETh = E - VZ = E − IZ = 20 V –40° - IZ = 20 V –40° - (0.5 A –90°)(21.21 Ω –-45°) = 20 V –40° - 10.605 V –45° = (15.321 V + j12.856 V) - (7.499 V + j7.944 V) = 7.822 V + j5.357 V = 9.48 V –34.41° AC: ETh:

Z1 = Z3 = 22 Ω + wL –90° = 22 Ω + j47 Ω = 51.89 Ω – 64°

ETh =

Z 3E (51.89 Ω Ð 64.92° )(20 V Ð 60°) = = 6.21 V – 207.36° 22 Ω + j47 kΩ - j212.77 Ω Z3 + Z1

ZTh:

246

CHAPTER 19

(212.77 Ω Ð -90° )(51.89 Ω Ð 64.92°) - j212.77 Ω + 22 Ω + j47 kΩ = 66.04 Ω –57.36 ° = 35.62 Ω + j55.61 Ω

ZTh = Z1 || Z2 =

DC:

ETh:

ETh = -5 V

RTh: RTh = 22 Ω

b.

AC: I=

6.21 V Ð 207.36° 35.62 Ω + j55.61 Ω + 47 Ω 6.21 V Ð 207.36° = 82.62 Ω + j55.61 Ω 6.21 V Ð 207.36° = 99.59 Ω Ð 33.94° = 62.36 mA –173.42° =

DC:

I= = 72.46 mA 3

i = -72.46 mA + 62.36 ¥ 10- sin (1000t + 173.42°) matching the results of Problem 4.

CHAPTER 19

247

24.

a.

ZTh:

= 9 Ω + 3 Ω = 12 Ω = RTh

¨ZTh =

DC: Considering the 15 V dc

E¢Th = 15 V

AC: Considering the 3 A∠0° AC source

¨E≤Th =

= (3 A – 0°)(9 Ω –0°) = 27 V – 0°

ETh = ETh' + ETh'' = 15 V + 27 V –0° DC: VC = 15 V

b.

AC: VC = =

(27 V –0°) 12 Ω

= 2.24 V –-85.24°

υC = 15 V+ 2.24 V –-85.24° = 15 V + 3.17 sin(wt - 85.24°) 25.

a.

ZTh:

Z1 = Z2 =

Z1 = 10 kΩ –0° Z2 = 5 kΩ - j5 kΩ = 7.071 kΩ –-45°

ZTh = Z1 || Z2 = (10 kΩ –0°) || (7.071 kΩ –-45°) = 4.47 kΩ –-26.57° Source conversion: 248

CHAPTER 19

E1 = (I–θ)(R1–0°) = (5 mA –0°)(10 kΩ –0°) = 50 V –0° ETh =

(7.071 kΩ Ð -45° )(20 V Ð 0° + 50 V Ð 0°) (5 kΩ - j5 kΩ) + (10 kΩ) (7.071 kΩ Ð -45° )(70 V Ð 0°) = (15 kΩ - j5 kΩ) =

= = 31.31 V –-26.57° b.

ETh 31.31 V Ð -26.565° = ZTh + Z L 4.472 kΩ Ð -26.565° +5 kΩ Ð 90° 31.31 V Ð -26.565° 31.31 V Ð -26.565° = = 4 kΩ - j2 kΩ + j5 kΩ 4 kΩ + j3 kΩ

I=

= 6.26 mA –63.44°

= 26.

Z1 = 10 kΩ – 0° Z2 = 10 kΩ – 0° Z3 = 1 kΩ – -90°

ZTh = Z3 + Z1 || Z2 = 5 kΩ - j1 kΩ @ 5.1 kΩ –-11.31° ETh: (VDR) 27.

ETh =

= 10 V

ZTh: Z1 = 40 Z2 = 0.2 Z3 = 5

= 40 kΩ –0° = 0.2 kΩ –-90° = 5 kΩ –0°

ZTh = Z3 || (Z1 + Z2) = 5 kΩ –0° || (40 kΩ - j0.2 kΩ) = 4.44 kΩ –-0.03°

CHAPTER 19

249

I¢ = = = 88.89 I –0.255° ETh = -I¢Z3 = -(88.89 I –0.255°)(5 kΩ –0°) = -444.45 ¥ 103 I –0.26° 28.

ZTh: ¨

ZTh = Z1 = 15 kΩ –0°

ETh: E¢ Th = -(hI)(Z1) = -(200)(2 mA – 0°)(15 kΩ – 0°) = -6 kV –0°

E: ETh = E¢ Th + E≤ Th = -6 kV –0° + 10 V –0° = -5999 V –0°

29.

ZTh:

= 5 kΩ –0°

Z1 = 5 k

250

Z2 = -j1

¨ZTh = Z1 + Z2 = 5 kΩ - j1 kΩ = 5.10 kΩ –-11.31°

CHAPTER 19

ETh:

ETh = 1 ETh = [µV + VZ1 ]

= -µV - IZ1 = -(20)(2 V –0°) − (2 mA –0°)(5 kΩ –0°) = −50 V –0°

30.

Z1 = 20 kΩ – 0°

ZTh:

Z'2 = 7 kΩ – 0° ¨ZTh = Z1 + Z'2 = 27 kΩ – 0°

ETh: ETh = µV - (hI)(Z1) = (25)(10 V –0°) - (150)(2 mA –0°)(20 kΩ –0°) = 250 V –0° - 6000 V –0° = -5750 V –0° 31.

ETh: (Eoc) hI = -I R1 = 2 kΩ –0° \I = 0 and hI = 0 with Eoc = ETh = E = 30 V –47° Isc: Isc = -(h + 1)I =

Ε 30 V –47° = −(60 + 1) R1 2 kΩ –0°

= -915 mA –47°

ZTh =

CHAPTER 19

30 V –47° = -32.79 Ω –0° (negative resistance) -915 mA –47°

251

32.

ETh: E¢ oc = 21 V Z1 = 5 kΩ –0° V = I1Z1 = (1 mA –0°)(5 kΩ –0°) = 5 V –0° E¢ oc = E¢ Th = 21 V = 21(5 V –0°) = 105 V –0° V = I 2Z 1 = (2 mA –0°)(5 kΩ –0°) = 10 V –0° E≤ oc = E≤ Th = V + 20 V = 21 V = 210 V –0°

Isc: I¢ sc = I1

20 V = V \ V = 0 V and I¢ = 0 A \ I≤sc = I2 Isc = I¢ sc + I≤ sc = 3 mA –0° Eoc = E¢ oc + E≤ oc = 105 –0° + 210 V –0° = 315 V –0° = ETh = 105 kΩ –0°

ZTh = 33.

Eoc: (ETh)

KVL: -6 Ix(2 kΩ) - Ix(1 kΩ) + 8 V –0° - Ix(3.3 kΩ) = 0 Ix =

= 0.491 mA –0°

Eoc = ETh = Ix(3.3 kΩ) = 1.62 V –0°

252

CHAPTER 19

Isc:

34.

Isc =

= 2.667 mA –0°

ZTh =

=

= 607.42 Ω –0°

From Problem ZN = ZTh = 1.73 Ω + j0.69 Ω IN:

R = Z1 = 2 Ω –0°, Z2 = XL = j5 Ω = 5 Ω –90° Isc = IN =

2 Ω –0°

= 50 Ω –0° 35.

From Problem 17: ZN = ZTh = 21.47 Ω –32.47° Z1 = 20 Ω + j20 Ω Z2 = 70 Ω –0° ¨ZN = Z1 || Z2 I = 0.2 A –0° For Isc: As ZN = ZTh by passed by short circuit ¨Isc = I = IN = 0.2 A –0°

CHAPTER 19

253

36.

From Problem 21: ZN = ZTh = 5.00 Ω –-38.66° I N:

ZT = Z1 + Z2 || Z3 = 10 Ω + 8 Ω –90° || 8 Ω –-90°

Superposition:

(E1)

= 10 Ω + = very large impedance Is = and

=0A =0V = E1 = 120 V –0°

with so that I¢ sc =

=

= 15 A –90° (I)

I≤ sc = I = 0.5 A –60°

IN = I¢ sc + I≤sc = + j15 A + 0.5 A –60° = + j15 A + 0.25 A + j0.433 A = 0.25 A + j15.433 A = 15.44 A –89.07° 37.

a.

Z N: E = 20 V –0°, I2 = 0.4 A –20° Z1 = 6 Ω + j8 Ω = 10 Ω –53.13° = 9 Z2 = 9 Ω - j12 Ω = 15 Ω –-53.13° ZN = Z1 || Z2 = (10 Ω –53.13°) || (15 Ω –-53.13°) = 9.66 Ω –14.93° I N: (E)

I¢ sc = E/Z1 = 20 V –0°/10 Ω –53.13°

(I2)

I≤ sc = I2 = 0.4 A –20°

= 2 A –-53.13° IN = I¢ sc + I≤ sc = 2 A –-53.13° + 0.4 A –20° = 2.15 A –-42.87°

254

CHAPTER 19

38.

Z N: E1 = 120 V –30°, Z1 = 3 Ω –0° Z2 = 8 Ω - j8 Ω, Z3 = 4 Ω –90°

IN:

ZN = Z3 + Z1 || Z2 = 4 Ω –90° + (3 Ω –0°) || (8 Ω - j8 Ω) = 4.37 Ω –55.67° = 2.47 Ω + j3.61 Ω I= =

120 V Ð 30° 3 Ω + (8 Ω - j8Ω) || 4Ω Ð 90°

= = 18.05 A –-16.22° Isc = IN = 39.

a.

(8 Ω - j8Ω)(18.05 A Ð -16.22°) Z2 (I) = = 22.83 A –-34.65° 8 Ω - j8 Ω + j4 Ω Z2 + Z3

AC: I N:

Z1 = Z3 = 22 Ω + j47 Ω = 51.89 Ω – 64°

E 20 V Ð60° = = 94 mA – 150° Z1 212.77 Ω Ð - 90° ZN = ZTh (problem 23) = 66.04 –57.36° = 35.62 Ω + j55.61 Ω IN =

DC: I N:

IN =

= 227.27 mA

RN = RTh = (problem 23) = 22 Ω

CHAPTER 19

255

b.

AC: I N:

Z N (I N ) (66.04 Ω Ð 57.36°)(94 mA Ð 150°) = 35.62 Ω + j55.61 Ω + 47 Ω Z N + 47 Ω 6.21 A Ð 207.36 ° = = 62.68 mA –173.22° 99.08 Ð 34.14 °

I=

DC:

I=

= 72.46 mA

3

and i = -72.46 mA + 62.68 ¥ 10- sin (1000t + 173.22°) Same as Problem 6 and 23. 40. a.

F rom problem 24: Z Th = RTh = ZN = 12 Ω –0° DC: Considering DC source (15V) and open ckt. I(AC source) Then Norton’s Current is

I¢ N =

15 V = 1.25 A 12 Ω

AC: Considering AC source 3 A∠0 °and short ckt. 15V dc then the norton’s current is

I≤ N =

−(3 A –0°)(9 Ω ∠0°) 12 Ω ∠0° = 2.25 A –0°

IN = I'N + I"N = 1.25 A + 2.25 A –0°

256

CHAPTER 19

b.

DC: VC = IR = (1.25 A)(12 Ω) = 15 V AC: Z ¢ = 12 Ω –0° || 1 Ω –-90° =

12 –-90° 12 - j1

= 0.997 Ω –-85.25°

Therefore, VC = IZ¢ = (2.25 A –0°)(0.997 Ω –-85.24°) = 2.24 V –-85.24° Hence, VC = 15 V + 2.24 V –-85.24° = 15 V + 3.17 sin(ω t –85.24°) 41.

a.

Note Problem 25(a):

ZN = ZTh = 4.47 kΩ –-26.57°

Using the same source conversion: E1 = 50 V –0° Defining ET = E1 + E = 50 V –0° + 20 V –0° = 70 V –0° Z1 = 10 kΩ –0° Z2 = 5 kΩ - j5 kΩ = 7.071 kΩ –-45° Isc =

= 7 mA –0°

IN = Isc = 7 mA –0° b.

I=

Z N (I N ) (4.472 kΩ Ð -26.565°)(7 mA Ð 0°) = Z N + Z L 4.472 kΩ Ð -26.565° + 5 kΩ Ð 90°

= =

= 6.26 mA –63.44° as obtained in Problem 25.

42. Z N:

CHAPTER 19

Z1 = 10 kΩ –0°, Z2 = 10 kΩ –0 Z3 = -j1 kΩ ZN = Z3 + Z1 || Z2 = 5 kΩ - j1 kΩ = 5.1 kΩ –-11.31°

257

I N:

-(Z 2 || Z 3 )20 V (Z 2 || Z 3 ) + Z1 -(0.995 kΩ Ð -84.29°)(20 V) = 0.1 kΩ - j0.99 kΩ + 10 kΩ V2 = -1.961 V –-78.69° V2 =

IN = Isc = 43.

V2 -1.961 V Ð -78.69° = = -1.96 ¥ 10- 3 V –11.31° 1 kΩ Ð -90° Z3

Z N:

Z1 = 40 kΩ –0°, Z2 = 0.2 kΩ –-90° Z3 = 5 kΩ –0° ZN = Z3 || (Z1 + Z2) = 5 kΩ –0° || (40 kΩ - j0.2 kΩ) = 4.44 kΩ –-0.03°

I N:

IN = Isc = = = 100 I –0.29° 44.

Z N: Z1 = 5 kΩ –0°, Z2 = 1 kΩ –-90° ¨ ZN = Z1 + Z2 = 5 kΩ - j1 kΩ = 5.1 kΩ –-11.31°

. I N: I¢ sc = = 7.843 mA –11.31° (I):

I≤ sc = = = 1.96 mA –11.31°

258

CHAPTER 19

IN = I¢ sc + I≤ sc = 7.843 mA –11.31° + 1.96 mA –11.31° = 9.81 mA –11.31° 45.

Z N:

Z1 = 20 kΩ –0°, Z'2 = 7 kΩ –0° V = 10 V –0°, µ = 25, h = 100 I = 2 mA –0° ZN = Z1 + Z'2 = 27 kΩ –0°

IN: (Due to hI) I¢ sc =

(20 kΩ Ð0°)(150)(2 mA ∠0°) 20 kΩÐ0°+ 7 kΩ ∠0° = 222.22 mA –0° =

(Due to µV)

(25)(10 V –0°) (27 kΩ –0°) = 9.26 mA –0°

I≤sc =

Therefore, IN (in direction of I¢sc) = I¢sc - I≤sc = 222.22 mA –0° - 9.26 mA –0° = 212.96 mA –0° 46.

Z1 = 2 kΩ –0° Z2 = 5 kΩ –0°

I2 = I3 + I5kΩ V = I5kΩZ2 = (I2 - I3)Z2 Eoc = ETh = 21 V = 21(I2 - I3)Z2 æ E ö = 21 çI 2 - oc ÷ Z2 Z1 ø è é Z ù Eoc ê1 + 21 2 ú = 21 Z2I2 Z1 û ë 21(5 kΩ Ð 0°)(2 mA Ð 0°) 21Z2I2 = Eoc = æ 5 kΩ Ð 0° ö Z 1 + 21 2 1 + 21ç ÷ Z1 è 2 kΩ Ð 0° ø ETh = Eoc = 3.925 V –0°

CHAPTER 19

259

20 V π -V \ V = 0 and IN = Isc = I2 = 2 mA –0°

ZN =

= 1.96 kΩ

47. Z1 = 1 kΩ –0° Z2 = 3 kΩ –0° Z3 = 4 kΩ –0° V2 = 21 V = Eoc fi V = I = I 1 + I 2, I 1 = I2 =

, I = I1 + I2 =

+

=

=

I= and

(21)(1 kΩ Ð 0°)(3 kΩ Ð 0°)(2 mA Ð 0°) 21Z1Z2I = 3 kΩ + 21(1 kΩ Ð 0°) Z2 + 21Z1 ETh = Eoc = 5.25 V –0° Eoc =

Isc =

fi V=

Isc

V = I 1Z 1 I = I1 + I¢ Isc = I = I1 + I¢ =

æZ + Z ö 3 fi I¢ = ç 2 ÷ Isc Z 2 è ø é Z æZ + Z ö Z + Z3 ù 3 + ç 2 ú I sc ÷ I sc = ê 3 + 2 êë21Z1 Z 2 úû è Z2 ø = 0.79 mA –0°

Isc =

\

IN = 0.79 mA –0° ZN =

260

= 6.65 kΩ –0°

CHAPTER 19

48. Z1 = 3 Ω + j4 Ω, Z2 = -j6 Ω ¨ ZTh = Z1 || Z2 = 5 Ω –53.13° || 6 Ω –-90° = 8.32 Ω –-3.18° ZL = 8.32 Ω –3.18° = 8.31 Ω - j0.46 Ω ETh = = = 199.45 V –-56.31° Pmax =

= 1198.2 W

Z1 = 3 Ω + j4 Ω = 5 Ω –53.13° Z2 = 2 Ω –0° ¨ ZN = ZTh = Z1 || Z2 = 5 Ω –53.13° || 2 Ω –0°

49.

=

3 + j4 + 2

= = = 1.56 Ω –14.47° ZTh = 1.56 Ω –14.47° ⇒ ZL = 1.56 Ω ∠−14.47° ZL = 1.51 Ω - j0.39 Ω (Conjugate of ZTh) ETh = I(Z1|| Z2) = (3 A –30°)(1.562 Ω –14.47°) = 4.69 V –74.47° (4.69 V)2 Pmax = = 3.64 W 4(1.51 Ω) 50.

ZTh: Z1 = 4 Ω –90°, Z2 = 10 Ω –0° Z3 = 5 Ω –-90°, Z4 = 6 Ω –-90° E = 60 V –60°

CHAPTER 19

261

ZTh = Z4 + Z3 || (Z1 + Z2) = -j6 Ω + (5 Ω –-90°) || (10 Ω + j4 Ω) = 2.475 Ω - j4.754 Ω = 11.04 Ω –-77.03° ZL = 11.04 Ω –77.03° ETh: ETh = = = 29.85 V –-24.29° Pmax =

= (29.85 V)2/4(2.475 Ω) = 90 W

51. Z1 = 3 Ω + j4 Ω = 5 Ω –53.13° Z2 = -j8 Ω Z3 = 12 Ω + j9 Ω

ZTh = Z2 + Z1 || Z3 = -j8 Ω + (5 Ω –53.13°) || (15 Ω –36.87°) = 5.71 Ω –-64.30° = 2.475 Ω - j5.143 Ω ZL = 5.71 Ω –64.30° = 2.48 Ω + j5.15 Ω ETh +

- E2 = 0

ETh = E2 = = 168.97 V –112.53° ETh = E2 -

= 200 V –90° - 168.97 V –112.53° = 78.24 V –34.16° = (78.24 V)2/4(2.475 Ω) = 618.33 W

Pmax = 52.

I=

3 V –0° = 1 mA –0° 3 kΩ –0°

ZTh = 60 kΩ –0° ETh = (50 I)(60 kΩ –0°) = (50)(1 mA –0°)(60 kΩ –0°) = 3000 V –0° (3 kV)2 Pmax = = 37.5 W 4(60 kΩ)

262

CHAPTER 19

53.

ETh:

Z1 = 2 kΩ –0° Z2 = 3 kΩ –-90° Z3 = 6 kΩ –90°

Z 2E (3 kΩ Ð-90°)(25 V Ð30°) = 2 kΩ -j3 kΩ Z2 + Z1 75 V Ð−60° = 20.79 V –-3.69° =

ETh =

ZTh: ¨ ZTh = Z3 + Z1 || Z2

(2 kΩ Ð 0°)(3 kΩ Ð -90°) 2 kΩ - j3 kΩ = + j6 kΩ + 1.66 kΩ –-33.69° = + j6 kΩ + 1.38 kΩ - j920.8 Ω = 1.38 kΩ + j5.08 kΩ = 5.26 kΩ – +74.80° ZTh = ZL* for maxm . power

ZTh = +j6 kΩ +

\ZL = 5.26 kΩ –-74.80° = 1.38kΩ - j5.08 kΩ b. 54.

Pmax =

(20.79 V)2 = 78.30 mW 4(1.38 kΩ)

From Problem 24, ZTh = RTh = 12 Ω, ETh = 15 V + 27 V –0° a.

\ ZL = 12 Ω

b.

Pmax = or ETh = and Pmax =

CHAPTER 19

(15 V)2 4(12 Ω)

(27 V)2 = 4.69 W + 15.19 W = 19.88 W 4(12 Ω)

= 30.887 V (30.887 V)2 = 19.88 W 4(12 Ω)

263

55.

56.

a.

Problem 25(a): ZTh = 4.47 kΩ –-26.57° = 4 kΩ - j2 kΩ ZL = 4 kΩ + j2 kΩ ETh = 31.31 V –-26.57°

b.

Pmax =

a.

ZTh = 2 kΩ –0° || 2 kΩ –-90° = 1 kΩ - j1 kΩ For maximum power ZL = ZTH ⇒ RL = RTH − jXTH − jXL RL = RTH − j(XTH − XL)

RL =

= (31.31 V)2/4(4 kΩ) = 61.27 mW

2

RTh + ( X Th + X Load ) 2

=

2 (1 kΩ)2 + (-1 kΩ + 3 kΩ)

=

(1 kΩ)2 + (2 kΩ)

2

= 2.24 kΩ

57.

b.

Rav = (RTh + RLoad)/2 = (1 kΩ + 2.24 kΩ)/2 = 1.62 kΩ (54 V)2 Pmax = = 450 mW 4(1.62 Ω)

a.

ZTh:

1 1 = 2pfC 2p (10 kHz)(4 nF) @ 3978.87 Ω XL = 2pfL = 2p(10 kHz)(30 mH) @ 1884.96 Ω Z1 = 1 kΩ –0°, Z2 = 1884.96 Ω –90° Z3 = 3978.87 Ω –-90° ZTh = (Z1 + Z2) || Z3 = (1 kΩ + j1884.96 Ω) || 3978.87 Ω –−90°) = 2133.79 Ω –62.05° || 3978.87 Ω –−90°) = 3658.65 Ω –36.52° XC =

ZL = 3658.65 Ω –-36.52° = 2940.27 Ω − j2177.27 Ω 1 1 = C= = 7.31 nF 2pfX C 2p (10 kHz)(2177.27 Ω) \

b.

RL = RTh = 2940.27 Ω

c.

= Pmax =

58.

264

=

(3978.87 Ω Ð -90°)(2 V Ð 0°) = 3.43 V–−25.53°) 1 kΩ + j1884.96 Ω - j3978.87 Ω = 1 mW

(5 kΩ –0°) = 1.25 mA –0° 4 kΩ + 11 kΩ Vab = (Iab)(11 kΩ –0°) = (1.25 mA∠0°)(11 kΩ∠0°) = 13.75 V –0°

Iab =

CHAPTER 19

59.

a. V=

=

= 5 V –0° = 0.83 mA –0°

I= b. V=

=

= 10 V –0° = 0.83 mA –0°

I=

60. I1 =

= 50 mA –0°

I2 = = 12.5 mA –-90° Z1 = 2 kΩ –0° Z2 = 4 kΩ –90° Z3 = 4 kΩ –-90° IT = I1 - I2 = (50 mA –0° - 12.5 mA –-90°) = 50 mA + j12.5 mA = 51.54 mA –14.04° Z¢ = Z1 || Z2 = (2 kΩ –0°) || (4 kΩ –90°) = 1.79 kΩ –26.57° Z¢IT (1.79 kΩ Ð 26.57°)(51.54 mA Ð 14.04°) = IC = Z¢ + Z3 1.6 kΩ + j0.8 kΩ - j4 kΩ = 25.77 mA –104.04°

CHAPTER 19

265

Chapter 20 1.

a.

PT = 60 W + 45 W + 30 W = 135 W

b.

QT = 0 VARS, ST = PT = 135 VA

c.

ST = EIs, Is =

135 VA = 0.675 A 200 V P=

d.

R, R =

(0.675 A)2

= 131.69 Ω

V = IsR = (0.675 A)(131.69 Ω) = 88.89 V V1 = V2 = E - V = 200 V - 88.89 V = 111.11 V (111.11 V)2 P1 = , R1 = = 274.34 Ω P2 =

2.

111.11 V = 0.405 A, I2 = 274.34 W

I1 =

a.

ZT = 3 Ω - j5 Ω + j9 Ω = 3 Ω + j4 Ω = 5 Ω –53.13° = 10 A –-53.13°

R: L: C:

P = I2R = (10 A)2 3 Ω = 300 W P=0W P=0W

b.

R: C: L:

Q = 0 VAR QC = I2XC = (10 A)2 5 Ω = 500 VAR QL = I2XL = (10 A)2 9 Ω = 900 VAR

c.

R: C: L:

S = 300 VA S = 500 VA S = 900 VA

d.

PT = 300 W QT = QL - QC = 400 VAR(L) ST = Fp =

e.

(111.11 V)2 = 411.51 Ω 30 W

111.11 V = 0.270 A 411.51 W

e.

I=

266

, R2 =

= EI = (50 V)(10 A) = 500 VA = 0.6 lagging

-

CHAPTER 20

f.

WR =

éVI ù é VI ù VI VI : WR = 2 ê ú = 2 ê ú = f1 f1 ë f2 û ë2 f1 û V = IR = (10 A)(3 Ω) = 30 V

WR = g.

=5J

VC = IXC = (10 A)(5 Ω) = 50 V WC =

= 1.33 J

VL = IXL = (10 A)(9 Ω) = 90 V WL = 3.

a.

= 2.39 J

R 1:

E 120 VÐ0° = = 60 mA –0° R1 2 kΩÐ0° PR1 = I2R = (60 mA)22 kΩ = 7.2 W QT = 0 VAR S R1 = PR1 = 7.2 VA I R1 =

C:

1 1 = 3.98 kΩ = 2p fC 2p (5 kHz)(0.02 mF) PT = 0 W E 120 V Ð 0° = Q T: I C = = 30.15 mA –90° XC 3.98 kΩ Ð -90° QC = I2XC = (30.15 mA)23.98 kΩ = 3.62 VAR ST = QC = 3.62 VA

XC =

R2-L: XL = 2π fL = 2π(2 kHz)(80 mH) = 1 kΩ Z¢ = 200 Ω + j1 kΩ = 1.02 kΩ –78.69° 120 V Ð 0° E = 117.65 mA –-78.69° IL = = Z¢ 1.02 kΩ Ð 78.69° QL = I2XL = (117.6 mA)2(1 kΩ) = 13.84 VAR QT = QL = 13.84 VAR PT = I2R = (117.65 mA)2(200 Ω) = 2.77 W ST = 2.77 W - j13.84 VAR fi 1.41 VA

QT = 13.84 VAR (L) − 3.62 VAR (C) = 10.22 VAR (L)

ST

=

14

.28

VA

b.

PT = 7.2 W + 2.77 W = 9.97 W

CHAPTER 20

267

ST = 9.97 + j10.22 = 14.28 VA –45.71° c.

(2 kΩ Ð 0°)(3.98 kΩ Ð -90°) 7.96 kΩ Ð -90° = 4.45Ð -63.32° 2 kΩ - j3.98 kΩ = 1.79 kΩ –-26.68°

Z¢ = R1 || XC =

(1.79 kΩ Ð -26.68°)(1.02 kΩ Ð 78.69°) (1.6 kΩ - j0.8 kΩ) + (0.2 kΩ + j1 kΩ) 1.83 kΩ Ð 52.06° 1.83 kΩ Ð 52.06° = = 1.8 kΩ + j0.2 kΩ 1.81Ð 6.34° = 1.01 kΩ –45.72° P 9.97 W = 0.698 lagging FP = T = ST 14.28 VA ZT = Z¢ || (R2 + jXL) =

4.

E 120 V Ð 0° = 118.81 mA –-45.72° = ZT 1.01 kΩ Ð 45.72°

d.

Is =

a.

PT = 0 + 100 W + 300 W = 400 W QT = 300 VAR(L) - 600 VAR(C) + 0 = -300 VAR(C) ST =

= 500 VA

Fp = b.

500 VA

= 0.8 (leading)

power triangle PT = EIs cos θT 400 W = (180 V)Is(0.8)

c.

= 2.778 A 180 V(0.8) Is = 2.778 A –126.86°

Is =

5.

a.

PT = 600 W + 400 W + 100 W = 1100 W QT = 1200 VAR(L) + 800 VAR(L) - 1800(C) = 200 VAR(L)

ST=

11002 + 2002= 1118.03 VA 1100 W

b.

Fp =

c.

power triangle

d.

Is =

1118.03 VA

= 0.984 (lagging)

1118.03 VA = 5.59 A FP = 0.984 fi θ = 10.30° Is = 5.59 A –10.30°

268

CHAPTER 20

6.

a.

PT = 200 W + 100 W + 0 + 50 W = 350 W QT = 50 VAR(L) + 100 VAR(L) - 200 VAR(C) - 400 VAR(C) = -450 VAR(C) ST =

= 570.09 VA

b.

Fp =

= 0.614 (leading)

c.

-

d.

PT = EIs cos θT 350 W = (50 V)Is(0.614) Is =

= 11.4 A

Is = 11.4 A –52.12° 7.

a.

200 W: Resistive: P = I 2R fi R =

P I

200 W

=

2

(2 A)

2

=

200 W 4 A2

= 50 Ω

400 VAR(L): Inductive: Q L = I 2X L fi X L =

QL

200 VAR(L)

= 100 Ω 4 A2 I XL 100 Ω = 3.18 mH XL = 2π fL fi L = = 2p f 2p (5 kHz) 2

=

600 VAR(C): Capacitive: Q C = I 2X C fi X C = XC =

8.

QC I

2

=

600 VAR(C) 4 A2

= 150 Ω

1 1 1 fiC= = 212.2 nF = 2p fC 2p fX C 2p (5 kHz)(150 Ω)

b.

ZT = R + jXL - jXC = 50 Ω + j100 Ω - j150 Ω = 50 Ω - j50 Ω = 70.71 Ω –-45°

c.

Vs = IZT = (2 A –0°)(70.71 Ω –-45°) = 141.42 V –-45°

d.

Fp = cos(45°) = 0.707 leading

e.

VC = IXC = (2 A –0°)(150 Ω –-90°) = 300 V –-90°

a.

IR =

90 V–30° = 3.6 A –30° 25 Ω–0° P = I2R = (3 A)2 25 Ω = 225 W QR = 0 VAR S = P = 225 VA

CHAPTER 20

269

b.

c.

90 V–30° = 9 A –-60° 10 Ω–30° PL = 0 W QL = I2XL = (9 A)2 10 Ω = 810 VAR(L) S = QL = 810 VA IL =

PT = 225 W + 400 W = 625 W QT = 600 VAR(L) + 810 VAR(L) = 1410 VAR(L)

ST =

PT2 + QT2 =

625 W = 0.405 (lagging) 1542.31 VA

Fp = 9.

(625 W) 2 + (1410 VAR) 2 = 1542.31 VA

a.

R3 + jXL = 4 Ω + j4 Ω = 5.66 Ω –45° (2 Ω Ð 0°)(5 Ω Ð -90°) 10 Ω Ð -90° = 1.86 Ω –-21.8° R2 || XC –-90° = = 5.39 Ð -68.2° 2 Ω - j5 Ω (5.66 Ω Ð 45°)(1.86 Ω Ð -21.8°) (4 Ω - j4 Ω) + (1.73 Ω - j0.69 Ω) 10.53 Ω Ð 23.2° 10.53 Ω Ð 23.2° = = = 1.59 Ω –-6.81° = 1.58 Ω - j0.19 Ω 6.62 Ð 30.01° 5.73 + j3.31 ZT = R1 + 1.59 Ω –-6.81° = 2 Ω + 1.58 Ω - j0.19 Ω = 3.58 Ω - j0.19 Ω = 3.59 Ω –-3.03° E 20 V Ð 0° = 5.57 A –3.03° Is = = ZT 3.59 Ω Ð -3.03°

b.

R1: PR1 = I s R1 = (5.57 A)22 Ω = 62.05 W

2

VR1 = IsR1 = (5.57 A –3.03°)(2 Ω –0°) = 11.14 V –3.03° VR 2 = E - VR1 = 20 V –0° - 11.14 V –3.03° = 20 V - (11.12 V + j0.5 V) = 8.88 V - j0.59 V = 8.89 V –-3.8° 2

R2: PR 2 =

I R3 =

VR 2

R2

=

(8.89 V)2 = 39.52 W 2Ω

VR 2 R3 + jX L

=

8.89 V Ð -3.8° 8.89 V Ð -3.8° = = 1.57 A –-48.8° 4 Ω + j4 Ω 5.66 Ω Ð 45°

2

R3: PR 3 = I R 3 R3 = (1.57 A)24 Ω = 9.86 W

270

CHAPTER 20

2

c.

d.

(8.89 V)2 X C: Q X C = = = 15.81 VAR(C) XC 5Ω XL: QL = I2XL = (1.57 A)24 Ω = 9.86 VAR(L) VR 3

R1: ST = PR1 = 62.05 VA R2: ST = PR 2 = 39.52 VA R3: ST = PR 3 = 9.86 VA C: ST = Q X C = 15.81 VA L: ST = QL = 9.86 VA

e.

PT: PR1 + PR 2 + PR 3 = 62.05 W + 39.52 W + 9.86 W = 111.43 W QT: Q X C - Q X L = 15.81 VAR(C) - 9.86 VAR(L) = 5.95 VAR(L) 2

Fp =

10.

2

PT + QT = 111.59 VA

ST =

PT 111.43 W = 0.998 (leadering) = ST 111.59 VA

f.

-

a.

Z1 = 3 Ω + j4 Ω = 5 Ω –53.13° Z2 = 3 Ω - j4 Ω = 5 Ω –-53.13° (5 Ω Ð 53.13°)(5 Ω Ð -53.13°) 25 Ω Ð 0° ZT = Z1 || Z2 = = 4.17 Ω –0° = (3 Ω + j4 Ω) + (3 Ω - j4 Ω) 6 E 50 V Ð 60° Is = = 11.99 A –60° = ZT 4.17 Ω Ð 0°

b.

IR–L =

c.

L: IR–L = 10 A –16.87° QL = I2XL = (10 A)2·4 Ω = 400 VAR(L)

E

50 V Ð 60° = 10 A –16.87° Z R - L 5 Ω Ð 53.13° P3Ω = I2R = (10 A)2·3 Ω = 300 W E 50 V Ð 60° IR–C = = 10 A –113.13° = Z R -C 5 Ω Ð -53.13° P3Ω = I2R = (10 A)2·3 Ω = 300 W =

C: IR–C = 10 A –113.13° QC = I2XC = (10 A)2·4 Ω = 400 VAR(C) d.

3 Ω: ST = P3Ω = 300 VA for each resistor L: ST = QL = 400 VA C: ST = QC = 400 VA

e.

PT = 300 W + 300 W = 600 W

CHAPTER 20

271

QT = 400 VAR(L) + 400 VAR(C) = 0 VAR ST = PT = 600 VA P 600 W Fp = T = =1 ST 600 VA 11.

a-c.

XL = wL = (400 rad/s)(0.1 H) = 40 Ω XC = = 25 Ω Z1 = 40 Ω –90°, Z2 = 25 Ω –-90° Z3 = 30 Ω –0° ZT = Z1 + Z2 || Z3 = +j40 Ω + (25 Ω –-90°) || (30 Ω –0°) = +j40 Ω + 19.21 Ω –-50.19° = +j40 Ω + 12.3 Ω - j14.76 Ω = 12.3 Ω + j25.24 Ω = 28.08 Ω –64.02° = 1.78 A –-64.02°

Is =

V2 = Is(Z2 || Z3) = (1.78 A –-64.02°)(19.21 Ω –-50.19°) = 34.19 V –-114.21°

d.

= 1.37 A –-24.21°

I3 =

= 1.14 A –-114.21°

Z 1:

P = 0 W, QL =

= (1.78 A)2 40 Ω = 126.74 VAR(L), S = 126.74 VA

Z 2:

P = 0 W, QC =

= (1.37 A)2 25 Ω = 46.92 VAR(C), S = 46.92 VA

Z 3:

P=

= (1.14 A)2 30 Ω = 38.99 W, QR = 0 VAR, S = 38.99 VA

PT = 0 + 0 + 38.99 W = 38.99 W QT = +126.74 VAR(L) - 46.92 VAR(C) + 0 = 79.82 VAR(L) ST = Fp =

e.

-

f.

WR = f1 =

272

I2 =

= 88.83 VA = 0.439 (lagging)

= 0.31 J = 63.69 Hz

CHAPTER 20

g.

WL =

= 0.32 J

WC = 12.

a.

= 0.12 J

15000 VA = 68.18 A 220 V FP = 0.6 fi 53° leading Is leads E by 53° 220 V –0° ZT = = 3.228 Ω –-53° 68.18 A –53° Is =

ZT = R − JXC = 1.937 Ω - J2.582 Ω b.

13.

14.

a.

Fp =

fi PT = FpST = (0.6)(15,000 VA) = 9000 W

75000 VA = 50 A 150 V Fp = 0.9 fi 25.84° (lagging) Is leads E by 25.84° E = 150 V –0°, Is = 50 A –-25.84° 150 V –0° = 3 Ω –25.84° = 2.7 Ω + j1.038 Ω = R + jXL ZT = 50 A –−25.84° I=

b.

P = S cos θ = (75000 VA)(0.9) = 6750 W

a.

PT = 0 + 300 W = 300 W QT = 600 VAR(C) + 200(L) = 400 VAR(C) ST =

= 500 VA

Fp = b.

= 0.6 (leading)

Is =

= 16.67 A

Fp = 0.6 fi 53.13° Is = 16.67 A –53.13° c.

-

d.

Load: 600 VAR(C), 0 W R = 0, L = 0, QC = I2XC fi XC =

= 2.159 Ω

Load: 200 VAR(L), 300 W C = 0, R = P/I2 = 300 W/(16.67 A)2 = 1.079 Ω XL =

= 0.7197 Ω

ZT = -j2.159 Ω + 1.0796 Ω + j0.7197 Ω = 1.08 Ω - j1.44 Ω CHAPTER 20

273

15.

a.

PT = 0 + 300 W + 600 W = 900 W QT = 500 VAR(C) + 0 + 500 VAR(L) = 0 VAR ST = PT = 900 VA Fp =

b.

Is =

c.

-

=1

= 9 A, Is = 9 A –0°

d.

Z 1:

QC =

= 20 Ω = 5A –90°

I1 =

I2 = Is - I1 = 9 A - j5 A = 10.296 A –-29.05° Z 2:

R=

= 2.83 Ω

XL,C = 0 Ω Z 3:

R=

= 5.66 Ω

XL = 16.

a.

= 4.72 Ω, XC = 0 Ω

PT = 200 W + 30 W + 0 = 230 W QT = 0 + 40 VAR(L) + 100 VAR(L) = 140 VAR(L) ST =

= 269.26 VA

Fp =

b.

Is =

= 0.854 (lagging)

31.35°

= 2.6926 A

Is = 2.69 A –-31.35°

274

CHAPTER 20

c.

Z 1:

R=

= 50 Ω

XL,XC = 0 Ω I1 =

= 2 A –0°

I2 = Is - I1 = 2.6926 A –-31.35° - 2 A –0° = 2.299 A - j1.40 A - 2.0 A = 0.299 A - j1.40 A = 1.432 A –-77.94° Z 2:

R=

= 14.63 Ω, XL =

= 19.50 Ω

XC = 0 Ω Z 3: 17.

a.

XL =

= 48.76 Ω, R = 0 Ω, XC = 0 Ω

PT = 200 W + 1000 W = 1200 W

Load 1. = ∅1 36.87° FP 0.8 (lagging); ⇒=

sin ∅1 =0.6 ∅ = = 1 P1 tan ∅ 1 200 W(tan 36.87°) = 150 VAR(C) Load 2. = FP 0.4 (leading); ⇒ = ∅ 2 66.42°

P2 tan ∅ ∅ = = 2 2 1000 W(tan 66.42°) = 2291.28 VAR(C ) ∅T = ∅1 + ∅ 2 = 150 VAR(C ) + 2291.28 VAR(C) = 2441.28 VAR(C) 2 S= PT2 + ∅= T T

F= P

2 (1200 W) 2 + (2441.28 VAR)= 2720.27 VA

PT 1200 W = = 0.441 (leading) ST 2720.27 VA

⇒= ∅ 63.83° b.

2720.27 V = 453.38 V 6A E = 453.38 V –-68.83°

ST = EI fi E =

c.

CHAPTER 20

275

I1(load1) =

2 2 S1 S1  P1 + ∅1  = = = V1 E  E   

(200) 2 + (150 VA) 2 = 0.5514 A 453.38 V

2 2 (1000) 2 + (2291.28 VA) 2 S2 S2  P2 + ∅ 2  = = = = 5.514 A 453.38 V V2 E  E    Q 150 VAR 1  2 Q = = = = 493.35 W 1  I1  QC1 ; X C 1 2 (0.5514 A) 2 I

I 2(load= 2)

Z1:

1

P1 200 W R = = = 657.80 W 1 2 I1 (0.5514 A) 2 Z1= R1 − jX C1= 657.80 W − j 493.35 W P2 1000 W 32.89 W Z 2 =jX R2 − C 2 ; R2 = = = 2 I1 (5.514 A) 2 X C= 2

Q2 2291.28 VAR = = 75.36 W (5.514 A) 2 I12

Z 2 = 32.89 W − j 75.36 W 18.

a.

b.

0.7 fi 45.573° P = S cos θ = (10 kVA)(0.7) = 7 kW Q = S sin θ = (10 kVA)(0.714) = 7.14 kVAR(L)

QC = 7.14 kVAR = XC = XC =

c.

= 6.059 Ω

1 2p fC

C=

1 1 = 438 µF = 2p fX C (2p )(60 Hz)(6.059 Ω)

Uncompensated: Is =

= 48.08 A

Compensated: Is = d.

= 33.65 A cos θ = 0.9 θ = cos-10.9 = 25.842° tan θ = x = (7 kW)(tan 25.842°) = (7 kW)(0.484) = 3.39 kVAR y = (7.14 - 3.39) kVAR = 3.75 kVAR

276

CHAPTER 20

QC = 3.75 kVAR = XC = C=

= 11.537 Ω

1 1 = 230 µF = 2p fX C (2p )(60 Hz)(11.537 Ω)

Uncompensated: Is = 48.08 A Compensated: ST =

= 7.778 kVA

Is =

= 37.39 A

∆Is = 48.08 A - 37.39 A = 10.69 A 19.

a.

PT = 8 kW, QT = 9 kVAR(L) − 3 kVAR(C) = 6 kVAR(L) = 10 kVA

ST = b.

Fp =

c.

Is =

d.

XC =

8 kW = 0.8 (lagging) 10 kVA 10,000 kW = 50 A 200 V

1 , Q C = I 2X C = 2pfC and

XC =

(200 V)2

C= e.

(200 V)2 40,000

= 6.667 Ω (6.667 Ω)

= 397.867 µF

ST = EIs = PT Is =

CHAPTER 20

8000 W = 40 A 200 V

277

20.

a.

Load 1: Load 2:

P = 20,000 W, Q = 0 VAR θ = cos-10.7 = 45.573° tan θ =

Load 3:

θ = cos-10.85 = 31.788°

x = (10 kW)tan 45.573° = (10 kW)(1.02) = 10,202 VAR(L)

tan θ = x = (5 kW)tan 31.788° = (5 kW)(0.62) = 3098.7 VAR(L) PT = 20,000 W + 10,000 W + 5,000 W = 35 kW QT = 0 + 10,202 VAR + 3098.7 VAR = 13,300.7 VAR(L) ST =

b.

= 37.442 kVA

QC = QL = 13,300.7 VAR XC = C=

c.

= 75.184 Ω

1 1 = 35.28 µF = 2p fX C (2p )(60 Hz)(75.184 Ω)

Uncompensated: Is =

= 37.44 A

Compensated: ST = PT = 35 kW Is =

= 35 A

DIs = 37.44 A - 35 A = 2.44 A 21.

278

a.

ZT = R1 + R2 + R3 + jXL - jXC = 4 Ω + 3 Ω + 2 Ω + j3 Ω - j12 Ω = 9 Ω - j9 Ω = 12.728 Ω –-45° 60 V –0° = 4.714 A –+45° I= 12.728 Ω –−45° P = VI cos θ = (60 V)(4.71 A) cos 45° = 199.83 W CHAPTER 20

b.

22.

23.

a-b: P = I2R = (4.71 A)2 4 Ω = 88.74 W b-c: P = I2R = (4.71 A)2 3 Ω = 66.55 W a-c: 88.74 W + 66.55 W = 155.29 W a-d: 155.29 W c-d: 0 W d-e: 0 W f-e: P = I2R = (4.71 A)2 2 Ω = 44.368 W = 44.37 W

a.

ST = 600 VA = EIs 600 VA = 5.455 A Is = 110 V θ = cos-10.85 = 31.79° E = 110 V –0°, Is = 5.455 A –-31.79° P = EI cos θ = (110 V)(5.455 A)(0.85) = 510.04 W Wattmeter = 510.04 W, Ammeter = 5.455 A, Voltmeter = 110 V

b.

ZT =

a.

R= XL = L=

110 V –0° = 20.16 Ω –31.79° = 17.14 Ω + j10.62 Ω = R + jXL 5.455 A –−31.79° = 5 Ω, ZT = 2

ZT - R2 = (50 Ω)2 - (5 Ω)2 = 49.75 Ω XL 49.57 Ω = 132.03 mH = (2p )(60 Hz) 2p f

b.

R=

= 10 Ω

c.

R=

= 15 Ω, ZT =

XL = L= 24.

a.

= 50 Ω

= 100 Ω = 98.87 Ω

= 262.39 mH

XL = 2πfL = (6.28)(50 Hz)(0.08 H) = 25.12 Ω ZT = I=

= 25.44 Ω = 2.358 A

P = I2R = (2.358 A)2 4 Ω = 22.24 W b.

I=

= 2.07 A

ZT =

= 28.99 Ω

CHAPTER 20

279

XL = L= c.

XL 28.13 Ω = 89.54 mH = 2p f (2p )(50 Hz)

P = I2R = (1.7 A)2 10 Ω = 28.9 W ZT = XL = L=

280

= 28.13 Ω

= 35.29 Ω = 33.84 Ω = 107.77 mH

CHAPTER 20

Chapter 21 1.

a.

ws =

(1.5 H)(10 F) 258.19 rad/s

fs = b.

ws =

c.

1851.85 rad/s

ws =

a.

= 294.73 Hz = 20,203.05 rad/s

20,203.05 rad/s

= 3215.42 Hz

XC = 30 Ω, XL = Xc at resonance =5Ω

b.

3.

= 1851.85 rad/s

(0.35 mH)(7.0 F)

fs = 2.

= 41.09 Hz

(0.81 H)(0.36 F)

fs =

= 258.19 rad/s

c.

d.

VR = IR = (12 mA)(5 Ω) = 60 mV = E VL = IXL = (12 mA)(30 Ω) = 360 mV VC = IXC = (12 mA)(30 Ω) = 360 mV VL = VC

e.

Qs =

a.

XL = 2 kΩ

b.

I=

c.

VR = IR = (120 mA)(100 Ω) = 12 V = E VL = IXL = (120 mA)(2 kΩ) = 240 V VC = IXC = (120 mA)(2 kΩ) = 240 V VL = VC = 20 VR

d.

Qs =

e.

XL = 2πfL, L = XC =

CHAPTER 21



= 6 (low Q)

f.

I=

60 mV = 12 mA 5Ω

P = I2R = (12 mA)2 5 Ω = 0.72 mW

= 120 mA

= 20 (high Q)

,C=

= 63.7 mH = 15,920 pF

281

4.

f.

BW =

g.

f2 = fs +

= 5 kHz +

= 5.13 kHz

f1 = fs -

= 5 kHz -

= 4.88 kHz

a.

fs =



b.

XL = 2πfL = 2π(1.8 kHz)(3.91 mH) = 44.2 Ω

= 250 Hz

= 3.91 mH

XC =

= 44.2 Ω

XL = XC c.

Erms = (0.707)(20 mV) = 14.14 mV Irms =

= 3.01 mA

d.

P = I2R = (3.01 mA)2 4.7 Ω = 42.58 µW

e.

ST = PT = 42.58 µVA

g.

Qs =

= 191.49 Hz

é ù 2 4 ú 1 ê R 1 æRö + f2 = ç ÷ + LC ú 2p ê2L 2 è L ø êë úû é ù 2 1 æ 4.7 Ω ö 4 1 ê 4.7 Ω ú + = ç ÷ + 2p ê2(3.91 mH) 2 è 3.91 mH ø (3.91 mH)(2 mF) ú êë úû 1 601.02 + 11.324´103 = 2p = 1897.93 Hz é ù 2 4 ú 1 ê R 1 æRö + f1 = ç ÷ + LC ú 2p ê 2L 2 è L ø êë úû 1 -601.02 + 11.324´103 = 2p = 1.71 kHz

[

]

[

PHPF =

282

Fp = 1

= 9.4

BW =

h.

f.

]

Pmax =

(42.58 µW) = 21.29 µW

CHAPTER 21

5.

6.

a.

BW = fs/Qs = 4500 Hz/15 = 300 Hz

b.

f2 = fs +

= 4500 Hz + 150 Hz = 4650 Hz

f1 = fs -

= 4500 Hz - 150 Hz = 4350 Hz

c.

Qs =

fi XL = QsR = (15)(4 Ω) = 60 Ω = XC

d.

PHPF =

Pmax =

a.

L=

(I2R) = ( 0.6 A)2 4Ω = 720 mW

= 3.185 mH

@ 250 Hz

BW =

= 40, BW =

or Qs = b.

f2 = fs + BW/2 = 10,000 Hz + 250 Hz/2 = 10,125 Hz f1 = fs - BW/2 = 10,000 Hz - 125 Hz = 9,875 Hz

c.

Qs =

d.

I=

= 250 Hz

= 40

= 6 A –0°, VL = (I –0°)(XL –90°)

= (6 A –0°)(200 Ω –90°) = 1200 V –90° VC = (I –0°)(XC –-90°) = 1200 V –-90°

7.

e.

P = I2R = (6 A)2 5 Ω = 180 W

a.

BW =

b.

Qs =

c.

L= C=

CHAPTER 21

fi Qs = fs/BW = 2500 Hz/250 Hz = 10

fi XL = QsR = (10)(5 Ω) = 50 Ω 50 = 3.185 mH (2500 Hz) (2500 Hz)(50 Ω)

= 1.274 µF

283

d. 8.

f2 = fs + BW/2 = 2500 Hz + (250 Hz/2) = 2625 Hz f1 = fs - BW/2 = 2500 Hz - (250 Hz/2) = 2375 Hz

a.

BW = 6000 Hz - 5600 Hz = 400 Hz

b.

BW = fs/Qs fi fs = QsBW = (14.5)(400 Hz) = 5800 Hz

c.

Qs =

d.

L=

fi XL = XC = QsR = (14.5)(2.5 Ω) = 36.25 Ω 36.25 Ω = 9.952 ´ 10−4 H = 0.995 mH (5800 Hz)

C=

9.

IM =

(5800 Hz)(36.25 Ω)

fiR=

=

= 0.757 µF

= 10 Ω

BW = fs/Qs fi Qs = fs/BW = 8400 Hz/120 Hz = 70 Qs =

fi XL = QsR = (70)(10 Ω) = 700 Ω

XC = XL = 700 Ω X 700 Ω L= L = = 13.26 mH (2p )(8.4 kHz) 2pf 1 1 = = 27.07 nF C= 2pfX C (2p )(8.4 kHz)(0.7 kΩ) f2 = fs + BW/2 = 8400 Hz + 120 Hz/2 = 8.46 kHz f1 = fs - BW/2 = 8400 Hz - 60 Hz = 8.34 kHz 10.

Qs =

fi XL = QsR = 20(3 Ω) = 60 Ω = XC

BW =

fi fs = QsBW = (20)(600 Hz) = 12 kHz

L= C=

60 Ω = 796.18 µH (6.28)(12 kHz) (12 kHz)(60 Ω)

= 221.16 nF

f2 = fs + BW/2 = 12,000 Hz + 600 Hz/2 = 12.3 kHz f1 = fs - BW/2 = 12,000 Hz - 600 Hz/2 = 11.7 kHz

284

CHAPTER 21

11.

a.

fs =

= 1 MHz

= 0.16 fi BW = f2 - f1 = 0.16 fs = 0.16(1 MHz) = 160 kHz

b. c.

fiR=

P= BW =



= 0.716 mH

fiC=

fs =

12.

= 720 Ω

d.

=

a.

=

= 80 fi

= 35.38 pF

=

= 56.23 Ω

=

= 50.27 Ω = 0.2 Qs = R=

= 125.66 Ω

R = Rd + 125.66 Ω = Rd + 50.27 Ω and Rd = 125.66 Ω - 50.27 Ω = 75.39 Ω c.

XC =

= XL C=

13.

a.

fp =

1 1 = = 253.3 pF 2pfX C 2p (1 MHz)(628.32 Ω)

(0.2 mH)(10 nF)

= 112.597 kHz

b.

Vc at Resonance (Z = ∞Ω) = (4 kΩ)(2 A) = 8 V CHAPTER 21

285

c.

8V

IL =

8V

IC =

14.

d.

Qp =

a.

fs =

4 kΩ

8V = 56.57 mA 141.42 Ω 8V = 56.57 mA 141.42 Ω 4 kΩ = 28.28 141.42 Ω = 13.4 kHz

= 49.46 ≥ 10 (yes)

b.

=

c.

Since

d.

XL = 2πfpL = 2π(13.4 kHz)(4.7 mH) = 395.72 Ω

≥ 10, fp @ fs = 13.4 kHz

XC =

= 395.91 Ω

XL = XC e. f. g.

= VC =

286

= (10 mA)(19.57 kΩ) = 195.7 V

≥ 10, Qp = BW =

h.

= (49.46)2 8 Ω = 19.57 kΩ

IL = IC =

= 49.46 = 270.9 Hz = (49.46)(10 mA) = 494.6 mA

CHAPTER 21

15.

a.

fs =

b.

= 1.027 MHz

=

= 86.04 Ω

Z p=

c.

= 19.36 kΩ

2

2

P = I R = (120 mA) (950.9 Ω) = 13.69 W

d.

XL = 2πfL = 2π(1.027 MHz)(200 µH) = 1.291 kΩ (86.04 Ω Ð 0°)(114.1 V) = = 7.587 V 86.04 Ω + j1.291 kΩ P=

= 669 mW

13.69 W: 669 mW @ 20:1 16.

= 5 £ 10

=

a.

fi XC =

\

b.

ZT = Rs || Rp = Rs ||

c.

E= IC =

= 104 Ω

2000 Ω

= 412.69 Ω

= (8 mA –0°)(412.69 Ω –0°) = 3.302 V –0° 3.302 V –0°

= 31.75 mA –90°

ZL = 20 Ω + j100 Ω = 101.98 Ω –78.69° 3.302 V –0° IL = = 32.38 mA –-78.69°

CHAPTER 21

287

d.

L= C=

e.

1 2pfX C

Qp =

= 636.94 µH 2p(25000 Hz) 1 = = 61.24 nF 2p(25 kHz)(104 Ω)

412.69 Ω

= 3.97

BW = fp/Qp = 25,000 Hz/3.97 = 6300.13 Hz

17.

æ 2´106 ö Hz ÷÷ (1 mH) 2p çç X 2000 Ω X è 2p ø = Qt = 35 = L Þ Rℓ = L = = 57.14 Ω 35 Rℓ 35 35 fp 2´10 6 / 2p Hz Q ℓ ³10 : Q p = = = 20 100, 000 Hz BW

And 40,000 = So R = 93.33 kΩ fi use R = 91 kΩ (standard value) 1 1 = Qp ≥ 10, XC = XL = 2000 Ω = 6 æ ö 2p fC 2´10 2p çç Hz ÷÷ C è 2p ø C = 250 pF fi use C = 240 pF (standard value) 18.

a.

fs = fp = fs

= 102.73 kHz = 102.73 kHz

= 102.73 kHz(.99958) = 102.69 kHz

fm = fs

= 102.73 kHz(0.99989) = 102.72 kHz

Since fs @ fp @ fm fi high Qp b.

XL = 2πfpL = 2π(102.69 kHz)(80 µH) = 51.62 Ω XC =

= 51.66 Ω

XL @ XC

288

CHAPTER 21

= Rs ||

c.

=

= 34.41 = 1.51 kΩ

d.

Qp =

= 29.25

BW = e.

= 3.51 kHz

Converting the voltage source to a current source: Is =

= 10 mA

And Rs = Rp = 10 kΩ Then IT =

= 8.49 mA

IC = IL @

19.

f.

VC =

a.

fs =

= (34.41)(8.49 mA) = 292.14 mA = (10 mA)(1.51 kΩ) = 15.1 V = 7.12 kHz

fp = fs

= 7.12 kHz

fm = fs

= 7.12 kHz(0.9338) = 6.65 kHz

= 7.12 kHz

1-

1 é(8 Ω)2 (1 mF) ù ê ú = 7.12 kHz (0.9839) 4 êë 0.5 mH úû = 7.01 kHz

Low Qp b.

XL = 2πfpL = 2π(6.647 kHz)(0.5 mH) = 20.88 Ω 1 1 = XC = = 23.94 Ω 2pfC 2p (6.647 kHz)(1 mF) XC > XL (low Q) = Rs || Rp = Rs ||

c.

= 500 Ω ||

= 500 Ω || 62.5 Ω

= 55.56 Ω d.

Qp =

CHAPTER 21

= 2.32

289

BW =

e.

= 2.87 kHz

One method: VC =

= (40 mA)(55.56 Ω) = 2.22 V

IC =

= 92.73 mA

IL = f. 20.

= 99.28 mA

VC = 2.22 V = 40 kΩ

a. (40 Ω)2 +

X L= b.

= (40 kΩ)(40 Ω)

160 × 104 − 1.6 ×103=

1600 × 103 − 1.6 ×103= 1264.28 Ω

1264.28 Ω = 31.607 ≥ 10 40

Q=

\ XC = XL = 1264.28 Ω

21.

c.

XL = 2πfpL fi fp =

d.

XL =

X L 1264.28 Ω = = 11.18 kHz 2pL 2p(18 mH)



a.

= 20 > 10

b.

=

(11.18 kHZ)(1264.28 Ω) fp = fs =

= 11.27 nF

= 3558.81 Hz

X L 2pfL 2pfL 2p (3558.81 Hz)(0.2 H) = = fi Rℓ = = 223.61 Ω 20 Rℓ Rℓ Qℓ

= Rs ||

= Rs ||

= 20 kΩ || (20)2 223.61 Ω

= 16.345 kΩ Converting the voltage source to a current source: 120 V = 6 mA 20 kΩ Rp = Rs = 20 kΩ = (6 mA)(16.345 kΩ) = 98.07 V VC =

290

CHAPTER 21

c.

P = I2R = (6 mA)216.345 kΩ = 588.42 mW

d.

Qp = BW =

22.

a.

16.345 kΩ fp Qp

=

c.

Qp =

= 50

= 25 fi fp = QpBW = (25)(1000 Hz) = 25 kHz

BW = =

d.

23.

a.

3558.81 Hz = 975.02 Hz 3.65

Ratio of XC to suggests high Q system. \ XL = 400 Ω = XC

b.

e.

=

= 3.65

= (0.1 mA)(10 kΩ) = 1 V

f2 = fp + BW/2 = 25 kHz +

= 25.5 kHz

f1 = fp - BW/2 = 25 kHz -

= 24.5 kHz

XC =



- X LX C +

=0

- 100 XL + 144 = 0 XL = = 50 Ω ±

= 50 Ω ± 48.54 Ω

XL = 98.54 Ω or 1.46 Ω b.

=

c.

Qp = =

= 8.21

= 8.05

BW = fp/Qp fi fp = QpBW = (8.05)(1 kHz) = 8.05 kHz

CHAPTER 21

291

=

d. e.

24.

a.

= (6 mA)(804.66 Ω) = 4.83 V

f2 = fp + BW/2 = 8.05 kHz +

= 8.55 kHz

f1 = fp - BW/2 = 8.05 kHz -

= 7.55 kHz

fs =

= 41.09 kHz

fp = fs

= 41.09 kHz

fm = fs

= 41.09 kHz(0.9978) = 41 kHz

= 41.09 kHz

= 41.09 kHz(0.0995) = 41.07 kHz

High Qp b.

= 4 mA –0°, Rs = 20 kΩ

I= =

X L 2pfL 2p (41 kHz)(0.5 mH) = = = 21.47 (high Q coil) 6Ω Rℓ Rℓ

Qp =

= 18.86 (high Qp)

= c.

= Rs || Rp = 20 kΩ || 2.771 kΩ = 2.43 kΩ

d.

VC =

e.

BW =

= 2.17 kHz

f.

XC =

1 1 = = 129.39 Ω 2pfC 2p (41 kHz)(30 nF)

= (4 mA)(2.43 kΩ) = 9.74 V

IC = IL =

292

= 75.25 mA = 75.50 mA

CHAPTER 21

25.



=

(25 kHz)(2.5 mH) = 4.36 Ω 90

=

BW = fp/Qp fi Qp = fp/BW = 25 kHz/1.84 kHz = 13.59 f p @ fs =

High Q\

fiC=

= 16.21 nF

13.59 = 5.377 kΩ = 5.34 kΩ (25 kHz)(16.21 nF)

fi R = Q pX C =

Qp =

(25 kHz)2(2.5 mH)

= (90)2 4.36 Ω = 35.32 kΩ

Rp =

R = Rs || Rp =

35.32 kΩ − 5.34 kΩ 2.2 V



26.

(35.32 kΩ)(5.34 kΩ)

fi Rs =

Qp =

= 6.29 kΩ

= 11 kΩ 11 kΩ = 343.75 Ω 32



XL = XC = 343.75 Ω fi fp = QpBW = (32)(600 Hz) = 19.2 kHz

BW =

343.75 Ω = 2.85 mH (19.2 kHz)

L=

1 1 = = 24.11 nF 2pfX C 2p(19.2 kHz)(343.75 Ω)

C=

(Rs= • Ω) =

Qp =

27.

a.

343.75 Ω = 10.74 Ω 32



fs =

= 251.65 kHz = 15.81 ≥ 10

= fp = fs = 251.65 kHz = Rs ||

b.

c.

Qp =

d.

BW =

CHAPTER 21

= 40 kΩ || (15.81)2 20 Ω = 4.44 kΩ

= 14.05

= 17.91 kHz

293

e.

20 µH, 20 nF fs the same since product LC the same fs = 251.65 kHz =

= 1.581

Low

: fp = fs = (251.65 kHz)(0.775) = 194.93 kHz XL = 2πfpL = 2π(194.93 kHz)(20 µH) = 24.496 Ω Rp =

= 50 Ω

= Rs || Rp = 40 kΩ || 50 Ω = 49.94 Ω Qp =

= 2.04

BW =

f.

= 95.55 kHz

0.4 mH, 1 nF fs = 251.65 kHz since LC product the same = 31.62 ≥ 10

=

\ fp = fs = 251.65 kHz = Rs || Qp = BW =

g.

h.

Network

= 40 kΩ || (31.62)2 20 Ω = 40 kΩ || (@ 20 kΩ) @ 13.33 kΩ = 21.08 = 11.94 kHz

= 100 ¥ 103

part (e)

= 1 ¥ 103

part (f)

= 400 ¥ 103

Yes, as Also, Vp =

ratio increased BW decreased. and for a fixed I,

and therefore Vp will increase with increase in the

L/C ratio.

294

CHAPTER 21

Chapter 22 1.

a.

left:

d1 =

≤ = 0.1875≤, d2 = 1≤

Value = 103 ¥ = 103 ¥ 1.54 = 1.54 kHz 1 center: d1 = ≤ = 0.5≤, d2 = 1≤ 2 Value = 103 ¥ 100.5/1 = 103 ¥ 10.5 = 103 ¥ 3.16 = 3.16 kHz right:

d1 =

≤ = 0.75≤, d2 = 1≤ Value = 103 ¥ = 103 ¥ 5.623 = 5.62 kHz

bottom: d1 =

b.

≤ = 0.3125≤, d2 =

≤ = 0.9375≤

Value = 10-1 ¥ = 10-1 ¥ 2.153 = 0.22 V center: d1 =

top:

= 10-1 ¥ 100.333

7.5 ≤ = 0.469≤, d2 = 0.9375≤ 16 Value = 10-1 ¥ 100.469/0.9375 = 10-1 ¥ 100.5 = 10-1 ¥ 3.16 = 0.316 V d1 =

≤ = 0.6875≤, d2 = 0.9375≤ Value = 10-1 ¥ = 10-1 ¥ 5.248 = 0.52 V

= 10-1 ¥ 100.720

a.

5

b.

-4

c.

8

d.

-6

e.

1.30

f.

3.94

g.

4.75

h.

-0.498

a.

1000

b.

1012

c.

1.59

d.

1.1

e.

1010

f.

1513.56

g.

10.02

h.

1,258,925.41

4.

a.

11.51

b.

−9.21

c.

5.

log10 54 = 1.732

2.

3.

CHAPTER 22

2.996

d.

9.07

295

log10 89 + log10 6 = 0.954 + 0.778 = 1.732 6.

log10 0.4 = -0.398 log10 18 - log10 45 = 1.255 - 1.653 = -0.398

7.

log10 0.25 = -0.602 -log10 4 = -(0.602) = -0.602 −log10 1/0.25 = −(0.602) = −(0.602) -log10 3125 = 3.495 5 log10 5 = 5(0.699) = 3.495

8.

log10 3125 = 3.495 5 log10 5 = 5(0.699) = 3.495

9.

a.

bels = log10

b.

dB = 10 log10

10.

= log10

320 MW = log10 64 = 1.806 5 MW

= 10(log10 64) = 10(1.806) = 18.06

dB = 10 log10 8 dB = 10 log10

150 W 150 W

0.8 = log10 x, where x = 150 W x = 6.309 = P1 =

150 W = 23.77 W 6.309

11.

dB = 10 log10

12.

dBm = 10 log10 dBm = 10 log10

13.

dBv = 20 log10

14.

dBυ = 20 log10 26 = 20 log10

= 10 log10

220 mW

= 10 log10 20 = 13.01

= 10 log10 220 = 23.42

= 20 log10

18.8 V 0.2 V

= 20 log 10 94 = 39.46

15 mV

1.3 = log10 x; where x =

15 mV

x = 19.953 =

15 mV Vo = 299.29 mV 296

CHAPTER 22

15.

dBs = 20 log10 dBs = 20 log10

0.002

= 20

0.032

= 44.08

dBs = 20 log10

Increase = 24.08 dBs 16.

60 dBs fi 90 dBs quiet loud 60 dBs = 20 log10

= 20 log10x

3 = log10x x = 1000 90 dBs = 20 log10

= 20 log10y

4.5 = log10y y = 31.623 ¥ 103 =

=

=

and P2 = 31.62 P1 17.



18.

a.

8 dB = 20 log10 0.4 = log10 = 2.512 V2 = (2.512)(0.775 V) = 1.947 V P=

b.

=

= 6.32 mW

-5 dB = 20 log10 -0.25 = log10 = 0.562 V2 = (0.562)(0.775 V) = 0.436 V P=

CHAPTER 22

=

= 0.32 mW

297

19.

a.

1

–-90° + tan-1 XC/R =

Aυ =

–-tan-1 R/XC

2

æ R ö ç ÷ +1 è XC ø fc =

= 3617.16 Hz

f = f c:

Aυ =

f = 0.1fc:

At fc, XC = R = 2.2 kΩ 1 1 é 1 ù 1 = = XC = ê ú = 10[2.2 kΩ] = 22 kΩ 2pfC 2p 0.1 f c C 0.1 êë2pf c C úû 1 1 1 Aυ = = 0.995 = = æ R ö2 æ 2.2 kΩ ö 2 (.1)2 + 1 ç ÷ +1 ç ÷ +1 è XC ø è 22 kΩ ø

f = 0.5fc =

:

= 0.707

XC =

Aυ =

f = 2fc:

1 = 2p fC

1 æf ö 2p ç c ÷ C è2ø

1 æ 2.2 kΩ ö 2 ç ÷ +1 è 4.4 kΩ ø

=

298

= 0.894

1 2

=

1 (2)2 + 1

= 0.447

XC = Aυ =

θ = -tan-1 R/XC f = f c:

(0.5)2 + 1

= 1.1 kΩ

æ 2.2 kΩ ö ç ÷ +1 è1.1 kΩ ø

b.

1

XC = Aυ =

f = 10fc:

é 1 ù = 2ê ú = 2[2.2 kΩ] = 4.4 kΩ êë2p f c C úû

= 0.22 kΩ

1 æ 2.2 kΩ ö 2 ç ÷ +1 è 0.22 kΩ ø

=

1 (10)2 + 1

= 0.0995

θ = -tan-1 = -45°

f = 0.1fc:

θ = -tan-1 2.2 kΩ/22 kΩ = -tan-1

= -5.71°

f = 0.5fc:

θ = -tan-1 2.2 kΩ/4.4 kΩ = -tan-1

= -26.57°

f = 2fc:

θ = -tan-1 2.2 kΩ/1.1 kΩ = -tan-1 2 = -63.43° CHAPTER 22

f = 10fc: 20.

a.

θ = -tan-1 2.2 kΩ/0.22 kΩ = -tan-1 10 = -84.29°

1 1 = = 248.68 Hz 2p RC 2p(3.2 kΩ)(0.2 mF) f = 2fc = 497.36 Hz 1 1 = XC = = 1.5999 kΩ 2p fC 2p(497.36 Hz)(0.2 mF) V 1.5999 kΩ XC Aυ = o = = 0.4469 = 2 2 Vi R +X (3.2 kΩ)2 + (1.5999 k Ω)2 fc =

C

Vo = 0.4469 V; Vi = 0.4469(10 mV) = 4.47 mV b.

(248.68 Hz) = 24.868 Hz

f=

1 1 = = 31.99 kΩ 2p fC 2p(248.68 Hz)(0.2 mF) V 31.99 kΩ XC = Aυ = o = = 0.995 2 2 2 2 Vi (3.2 kΩ) + (31.99 kΩ) R + XC Vo = 0.995 V; Vi = 0.995(10 mV) = 9.95 mV XC =

c.

Yes, at f = fc, Vo = 7.07 mV at f =

, Vo = 9.95 mV (much higher)

at f = 2fc, Vo = 4.47 mV (much lower) 21.

fc = 500 Hz = C= Aυ =

= 0.265 µF

Vo = Vi

1 æ R ö2 ç ÷ +1 è XC ø

At f = 250 Hz, XC = 2402.33 Ω and Aυ = 0.895 At f = 1000 Hz, XC = 600.58 Ω and Aυ = 0.4475 θ = -tan-1R/XC At f = 250 Hz =

fc, θ = -26.54°

At f = 1 kHz = 2fc, θ = -63.41°

CHAPTER 22

299

22.

= 70.74 kHz

a.

fc =

b.

f = 0.1 fc = 0.1(70.74 kHz) 7.074 kHz 1 1 = = 49.997 kΩ XC = 2pfC 2p(7.074 kHz)(450 pF) 49.997 kΩ = 0.995 Aυ = 2 2 (5 kΩ) + (49.997 kΩ)

c.

d.

2p(5 kΩ)(450 pF)

f = 10fc = 707.4 kHz 1 XC = = 499.97 Ω 2pfC 2p (7.074 kHz)(450 pF) 499.97 Ω = 0.0995 Aυ = 2 2 (5 kΩ) + (49.997 kΩ) Aυ =

1

0.1

= 0.01 = = 100 XC

R2 + R2 = 104 XC = XC =

300

= 104 -

= 9.999 5 kΩ 50 Ω

fif=

(50 Ω)(450 pF)

= 7.07 MHz

CHAPTER 22

23.

a.

1

–tan-1 XC/R =

Aυ =

æX ö 1+ ç C ÷ è R ø fc =

–tan-1 XC/R

= 3.62 kHz

f = f c:

Aυ =

f = 2fc:

At fc, XC = R = 2.2 kΩ ù 1 1 1é 1 1 = = ê XC = ú = [2.2 kΩ] = 1.1 kΩ 2pfC 2p (2 f c )C 2 êë2p (2 f c )C úû 2 1 Aυ = = 0.894 æ1.1 kΩ ö 2 1+ ç ÷ è 2.2 kΩ ø

f=

f c:

XC =

Aυ =

f = 10fc:

= 0.707

1 æf ö 2p ç c ÷ C è2ø 1

f c:

f=

é 1 ù = 2ê ú = 2[2.2 kΩ] = 4.4 kΩ êë2pf c C úû

æ 4.4 kΩ ö 2 1+ ç ÷ è 2.2 kΩ ø

= 0.447

XC =

= 0.22 kΩ

1

Aυ =

= 0.995 æ 0.22 kΩ ö 2 1+ ç ÷ è 2.2 kΩ ø é 1 ù 1 = 10 ê XC = ú = 10[2.2 kΩ] = 22 kΩ æf ö êë2pf c C úû c 2p ç ÷ C è 10 ø Aυ =

b.

2

1 æ 22 kΩ ö 2 1+ ç ÷ è 2.2 kΩ ø

= 0.0995

f = f c,

θ = 45°

f = 2fc,

θ = tan-1 (XC/R) = tan-1 1.1 kΩ/2.2 kΩ = tan-1

f=

f c,

θ = tan-1

f = 10fc,

θ = tan-1

CHAPTER 22

= 26.57°

= tan-1 2 = 63.43° = 5.71°

301

f=

24.

θ = tan-1

f c,

a.

f = f c: A υ =

b.

fc =

= 84.29°

= 0.707

1 1 = = 23.544 kHz 2p RC 2p(130 kΩ)(52 pF)

f = 4fc = 4(23.544 kHz) = 94.176 kHz XC =

1 1 = = 32.499 kΩ 2p fC 2p (94.176 kHz)(52 pF)

Aυ =

Vo 130 kΩ R = = = 0.970 (significant rise) 2 2 2 Vi R + XC (130 kΩ)2 + (32.499 kΩ)

c.

f = 100fc = 100(23.544 kHz) = 23544 kHz = 23.544 MHz 1 1 = 129.998 kΩ = XC = 2 p (23.544 MHz)(52 pF) 2p fC R 130 kΩ Aυ = = 0.99999 1 = 2 2 2 2 + (130 kΩ) + (129.998 kΩ) R XC

d.

At f = fc, Vo= 0.707Vi = 0.707(15 mV) = 10.605 mV 2

2 (10.605 mV) Po = V o = = 0.865 nW R 130 kΩ

25.

Aυ =

Vo = Vi

fc =

1 æX ö 1+ ç C ÷ è R ø

2

0.9 nW

–tan-1 XC/R



= 795.77 Ω

R = 795.77 Ω fi 750 Ω" +## 47$ Ω = 797 Ω !# # nominal values

\ fc = At

= 1996.93 Hz using nominal values f = 1 kHz, Aυ = 0.458 f = 4 kHz, Aυ 0.9 θ = tan-1 f = 1 kHz, θ = 63.4° f = 4 kHz, θ = 26.53°

302

CHAPTER 22

26.

a.

fc =

= 79.58 kHz

b.

f = 0.01fc = 0.01(79.577 kHz) = 0.7958 kHz 796 Hz 1 1 = XC = = 9.997 MΩ 2pfC 2p (796 Hz)(20 pF) Aυ =

c.

= 0.01

f = 100fc = 100(79.577 kHz) 7.96 MHz 1 1 = XC = = 999.72 Ω 2pfC 2p (7.96 MHz)(20 pF) Aυ =

d.

0

= 0.99995

1

Aυ = = 2R R2 +

= 4R2

= 4R2 - R2 = 3R2 XC = XC =

27.

a.

(100 kΩ) = 173.2 kΩ

1 fif= 2pfC f = 45.95 kHz

low-pass section:

= 795.77 Hz

high-pass section:

= 1.94 Hz

For the analysis to follow, it is assumed (R2 +

) || R1

R1 for all frequencies of

interest.

CHAPTER 22

303

At

= 795.77 Hz: = 0.707 Vi

X C2 =

1 = 24.39 kΩ 2pfC2

=

At

= 0.925

Vo = (0.925)(0.707 Vi) = 0.654 Vi = 1.94 kHz: Vo = 0.707

X C1 =

1 = 41 Ω 2pfC1 = 0.925 Vi

= (0.707)(0.925 Vi) = 0.64 Vi At f = 795.77 Hz + = 58.1 Ω,

= 1.37 kHz = 14.17 kΩ = 0.864 Vi

=

= 0.817

Vo = 0.817(0.864 Vi) = 0.706Vi and Aυ =

= 0.706 (@ maximum value)

After plotting the points it was determined that the gain should also be determined at f = 500 Hz and 4 kHz: f = 500 Hz:

= 159.15 Ω,

= 38.82 kΩ,

= 0.532 Vi, Vo = 0.968 f = 4 kHz:

Vo = 0.515 Vi = 19.89 Ω,

= 4.85 kΩ,

= 0.981 Vi, Vo = 0.437 Vo = 0.429 Vi b.

304

Using 0.707(.706) 0.5 to define the bandwidth BW 3.4 kHz - 0.48 kHz = 2.92 kHz and BW 2.9 kHz

CHAPTER 22

æ 2.9 kHz ö with fcenter = 480 Hz + ç ÷ = 1930 Hz è 2 ø

28.

f1 =

= 4 kHz

Choose R1 = 1 kΩ = 39.8 nF \ Use 39 nF

C1 = f2 =

= 80 kHz

Choose R2 = 20 kΩ = 99.47 pF \ Use 100 pF

C2 =

Center frequency = 4 kHz + At f = 42 kHz, Assuming Z2

= 42 kHz

= 97.16 Ω,

= 37.89 kΩ

Z1 = 0.995Vi

= Vo = 0.884 as f = f1:

CHAPTER 22

= 0.884Vi = 0.884(0.995Vi) = 0.88 Vi = 0.707Vi,

= 221.05 kΩ

305

and Vo = 0.996 so that Vo = 0.996

= 0.996(0.707Vi) = 0.704Vi

Although Aυ = 0.88 is less than the desired level of 1, f1 and f2 do define a band of frequencies for which Aυ ≥ 0.7 and the power to the load is significant. 29.

a.

fs =

b.

Qs =

= 98.1 kHz

= 16.84

BW =

c.

= 5.83 kHz

At f = fs:

= 0.93 V and Aυ =

Since Qs ≥ 10,

f1 = fs -

= 98.1 kHz -

f2 = fs +

= 101.02 kHz

= 0.93

= 95.19 kHz

At f = 95.19 kHz: XL = 2πfL = 2π(95.19 kHz)(4.7 mH) = 2.81 kΩ XC = Vo =

= 2.99 kΩ

160 Ω(1 V Ð 0°) 160 V Ð 0° = 172 + j2.81 kΩ - j2.99 kΩ 172 - j180

=

= 0.643 V–46.30°

At f = 101.02 kHz: XL = 2πfL = 2π(101.02 kHz)(4.7 mH) = 2.98 kΩ 1 1 = XC = = 2.81 kΩ 2pfC 2p (101.02 kHz)(560 pF) 160 Ω(1 V Ð 0°) 160 V Ð 0° = Vo = 172 + j2.98 kΩ - j2.81 kΩ 172 + j170 = d.

f = f s:

= 0.66 V–-44.66°

= 0.93 V

f = f1 = 95.19 kHz, Vo = 0.707(0.93 V) = 0.66 V f = f2 = 101.02 kHz, Vo = 0.707(0.93 V) = 0.66 V 30.

306

a.

fp =

159.15 kHz

CHAPTER 22

=

= 62.5 = (62.5)2 16 Ω = 62.5 kΩ and Vo

10

4 kΩ

Vi at resonance.

However, R = 3.3 kΩ affects the shape of the resonance curve and BW = fp/ applied. For Aυ =

= 0.707,

cannot be

= R for the following configuration

For frequencies near fp, XL and X = XL || XC.

and ZL =

+ jXL

XL

For frequencies near fp but less than fp X= and for Aυ = 0.707 =R

Substituting XC =

and XL = 2πf1L

the following equation can be derived: =0 For this situation: = 48.23 ¥ 103 = 2.53 ¥ 1010 and solving the quadratic equation, f1 = 135.83 kHz and

= fp - f1 = 159.15 kHz - 135.83 kHz = 22.32 kHz

so that f2 = fp +

CHAPTER 22

= 159.15 kHz + 18.75 kHz = 177.9 kHz

307

b.

Qp =

= 3.57

BW = 2(18.75 kHz) = 37.5 kHz 31.

a.

Qs =

b.

BW =

7000 Ω 7000 Ω = 15.56 440 Ω + 10 Ω 450 Ω 15.56

f1 = 5000 Hz f2 = 5000 Hz +

= 321.34 Hz

321.34 Hz 321.34 Hz

= 4.84 kHz = 5.16 kHz

c.

At resonance 10 Ω(Vi) Vo = 10 Ω + 440 Ω = 0.022 Vi d.

32.

a.

10 Ω || 4 kΩ = 9.975 Ω 9.975 ΩVi @ 0.022Vi as above in part (c) Vo = 9.975 Ω + 440 Ω

At resonance,

=

= 40 = (40)2 20 Ω = 32 kΩ

At resonance, Vo = and Aυ =

1 kΩ = 0.97Vi

= 0.97

For the low cutoff frequency note solution to Problem 30: =0 C= L=

1 1 = = 19.9 nF 2pfX C 2p (20 kHz)(400 Ω) = 3.18 mH

Substituting into the above equation and solving f1 = 16.4 kHz

308

CHAPTER 22

with

= 20 kHz - 16.4 kHz = 3.6 kHz

and BW = 2(3.6 kHz) = 7.2 kHz Qp =

= 2.78

b.

-

c.

At resonance = 32 kΩ || 100 kΩ = 24.24 kΩ with Vo = and Aυ =

= 0.96Vi = 0.96 vs 0.97 above

At frequencies to the right and left of fp, the impedance

will decrease and be

affected less and less by the parallel 100 kΩ load. The characteristics, therefore, are only slightly affected by the 100 kΩ load. d.

At resonance = 32 kΩ || 20 kΩ = 12.31 kΩ with Vo =

= 0.925Vi vs 0.97 Vi above

At frequencies to the right and left of fp, the impedance of each frequency will actually be less due to the parallel 20 kΩ load. The effect will be to narrow the resonance curve and decrease the bandwidth with an increase in Qp. 33.

a.

fp =

= 726.44 kHz (band-stop) =0 =0 =0

=0

=0 =0

CHAPTER 22

309

=0 L sL pw 2 -

1 [Ls + Lp] = 0 C

= 2.01 MHz (pass-band)

f=

34.

a.

fi Ls =

fs =

= 12.68 mH

XL = 2πfL = 2π(30 kHz)(12.68 mH) = 2388.91 Ω 1 1 = XC = = 26.54 kΩ 2pfC 2p (30 kHz)(200 pF) XC - XL = 26.54 kΩ - 2388.91 Ω = 24.15 kΩ(C) = 24.15 kΩ Lp = 35.

= 128.19 mH

a.

At low frequencies, L1, L2 fi short circuits and C fi open circuit. The result is VL very close to Vi at low frequencies. At high frequencies, XC shorts to ground and X L2 has a high impedance so VL approaches 0 V.

b.

Determine fequency when RL = X L2 due to voltage divide action.

R 220 Ω = = 159.15 kHz 2pL 2p (0.22 mH) Since fc less than split between XL and RL let us try 140 kHz. XL = R fi 2π fL = R fi f =

IT

Z1

Z3

+ E

+

Z2



I4 Z4 VL



Z1 = X L1 = 2π fL1 = 2π(140 kHz)(0.47 mH) = 413.43 Ω

1 1 = = 227.36 Ω 2p fC 2p (140 kHz)(5 nF) Z3 = X L2 = 2π fL2 = 2π(140 kHz)(0.22 mH) = 193.52 Ω Z4 = R = 220 Ω Z2 = XC =

ZT = Z1 + Z2 || (Z3 + Z4) (227.36 Ω Ð -90°)(220 Ω + j193.52 Ω) = j413.43 Ω + (- j227.36 Ω) + (220 Ω + j193.52 Ω) (227.36 Ω Ð -90°)(293 Ω Ð 41.34°) = j413.43 Ω + 220 Ω - j33.84 Ω 66.61 kΩ Ð -48.66° = j413.43 Ω + 222.59 Ð -8.74° = j413.43 Ω + 299.25 Ω –-39.92°

310

CHAPTER 22

= j413.43 Ω + 229.51 Ω - j192.03 Ω = 229.51 Ω + j221.40 Ω ZT = 318.89 Ω –43.97°

E 10 V Ð 0° = = 31.36 mA –-43.97° ZT 318.89 Ω Ð 43.97°

IT =

Z 2I T (227.36 Ω Ð -90°)(31.36 mA Ð -43.97°) = Z2 + Z3 + Z 4 - j227.36 Ω + j193.52 Ω + 220 Ω 7.13 A Ð -133.97° 7.13 A Ð -133.97° = = 220 - j33.84° 222.59 Ð -8.74° = 32.03 mA –-125.23° VL = I4Z4 = (32.03 mA –-125.23°)(220 Ω –0°) = 7.05 V –-125.23°

I4 =

VL 10 V

0

36.

a.

7.05 V ≅ 7.07 V

140 Hz ≅ fc

f

At very low frequencies XC fi open-circuit and XL fi short-circuit resulting in VL fi 0 V. At very high frequencies XC fi short-circuit and XL fi open-circuit resulting in VL fi 20 V.

b.

Utilize X L2 = XC as a starting point to establish a frequency of application: 2π fL2 =

1 1 1 = 1.45 kHz Þ f = = 2pfC 2p LC 2p (100 mH)(0.12 mF)

Try f = 1 kHz: 1 1 = XC = = 1.33 kΩ 2p fC 2p (1 kHz)(0.12 mF) X L2 = 2π fL2 = 2π(1 kHz)(100 mH) = 628.32 Ω Z¢ = X L2 || RL = (628.32 Ω –90°) || (1.2 kΩ –0°)

(628.32 Ω Ð 90°)(1.2 kΩ Ð 0°) 753.98´103 Ω Ð 90° = 3 1.2 kΩ + j628.32 Ω 1.35´10 Ð 27.64° Z¢ = 558.50 Ω –62.36° =

VL =

(558.50 Ω Ð 62.36°)(20 V Ð 0°) Z¢×E = ¢ 558.50 Ω Ð 62.36° - j1.33 kΩ Z + XC =

CHAPTER 22

11.17´103 V Ð 62.36° 2.591 + j494.76 - j1.33 kΩ

311

11.17´10 3 V Ð 62.36° 11.17´10 3 V Ð 62.36° = 2.591 - j835 874.28 Ð -72.76° VL = 12.78 V –135.12° which is very close to the cutoff value of 0.707(20 V) = 14.14 V. The cutoff frequency will be slightly higher than 1 kHz. =

VL 20 V 14 V 12.78 V 0

37.

a.

1 kHz fc

f

At very low frequencies XL fi short-circuit and XC fi open-circuit. The result is VL fi 60 V. At very high frequencies XL fi open-circuit and XC fi short-circuit. The result is VL fi 0 V.

b.

Defining impedances: Z1

Z3

+ E

Z5

Z4

Z2



Source conversion: Z3 E Z1

Z1

Z2

Z4

Z5

New definition: V1 E Z1

Z3 Z′

V2

Z¢ = Z1 || Z2 Z≤ = Z4 || Z5

Z′′

Applying Nodal Analysis é1 1 ù 1 E V1 ê + V2 = úêë Z¢ Z 3 úû Z 3 Z1

312

CHAPTER 22

é1 1 ù 1 V2 ê + V =0 úêë Z¢¢ Z 3 úû Z 3 1 _______________________ é1 1 ù 1 E V1 ê + V2 = úêë Z¢ Z 3 úû Z 3 Z1 é1 ù é1 1 ù -V1 ê ú + ê + ú V2 = 0 ëê Z 3 ûú ëê Z¢¢ Z 3 ûú _______________________

VL = V2 =

=

1 1 + Z¢ Z3 1 Z3 1 1 + ¢ Z Z3 1 Z3

E Z¢ 0 -

1 Z3

1 1 + Z¢¢ Z3

é1 éE ù é 1 ù 1 ù ê ¢+ ú 0 - ê ú êú Z Z3 û Z1 û ë Z3 û ë ë = é1 1 ùé 1 1 ù é 1 ùé 1 ù ê ¢+ ú ê ¢¢ + ú - êú êú Z3 û ë Z3 û ë Z3 û ë Z Z3 û ë Z

[]

E / Z1Z3 é1 ù 1 é1 1 ù 1 ê ¢+ ú ê ¢¢ + ú- 2 Z3 û Z ë Z Z3 û ë Z 3

1 XL to bring VL down to 0.707 level 3 1 1 3 1 = 123.13 kHz = 2π fL and f = = 2p fC 3 2p LC 2p (1 mH)(5 nF) Using f = 120 kHz Z1: XL = 2π fL = 2π(120 kHz)(1 mH) = 754 Ω –90° 1 1 = Z 2: X C = = 265 Ω –-90° 2p fC 2p (120 kHz)(5 nF) Z3: 754 Ω –90° Z4: 265 Ω –-90° Z5: 2.2 kΩ –0° _______________________ Z1◊Z3 = (754 Ω –90°)(754 Ω –90°) = 568.52 ¥ 103 Ω2 –180° E 60 V Ð 0° = 105.5 ¥ 10-6 –-180° = Z1Z3 568.52´103 Ω2 Ð 180° _______________________

Choosing XC =

Z¢ = Z1 || Z2 =

(754 Ω Ð 90°)(265 Ω Ð -90°) + j754 Ω - j265 Ω

199.81´103 Ω Ð 0° = 489 Ð 90° = 408.61 Ω –-90°

CHAPTER 22

313

(265 Ω Ð -90°)(2.2 kΩ Ð 0°) 538´10 3 Ω Ð -90° = 2.2 kΩ - j265 Ω 2.2 Ð -6.87° = 262.61 Ω –-83.13° é1 ù 1 ù é 1 1 + ê ¢+ ú=ê ú ë Z Z3 û ë 408.61 Ω Ð -90° 754 Ω Ð 90° û = 2.44 ¥ 10-3 –90° + 1.33 ¥ 10-3 –-90° = j2.44 ¥ 10-3 - j1.33 ¥ 10-3 = j1.11 ¥ 10-3 é1 1 ù 1 1 + ê ¢¢ + ú= Z3 û 262.61Ð -83.13° 754 Ω Ð 90° ëZ = 3.81 ¥ 10-3 –83.13° + 1.33 ¥ 10-3 –-90° = 0.455 ¥ 10-3 + j3.78 ¥ 10-3 - j1.33 ¥ 10-3 = 0.455 ¥ 10-3 + j2.54 ¥ 10-3 = 2.49 ¥ 10-3 –79.48° [1.11 ¥ 10-3 –90°][2.49 ¥ 10-3 –79.48°] = 2.76 ¥ 10-6 –169.48° _______________________ Z≤ = Z4 || Z5 =

2

Z3 = (754 Ω –90°)(754 Ω –90°) = 5.69 ¥ 10-6 –180° 1 1 = 0.176 ¥10-6 –-180° = 2 6 5.69´10 Ð 180° Z3 _______________________ and 105.5´106 Ð -180° VL = 2.58´106 Ð 168.8° = 40.89 V –-11.2° @ 41 V which is very close to 0.707(60 V) = 42.42 V VL 60 V 42.4 V 41 V

0

38. a, b.

314

fc =

fc 120 Hz

f

= 7.2 kHz

CHAPTER 22

c.

f=

f c:

=

f = 2fc:

=

f=

=

f c:

f = 10fc:

d.

f=

f c:

f = 2fc:

=

= -7 dB

= -0.969 dB = -20.04 dB = -0.043 dB

=

Aυ =

= 0.447

Aυ =

= 0.894

e.

39.

a.

fc =

1 1 1 = 1.83 kHz = = 2p RC 2p (6.8 kΩ || 12 kΩ)0.02 mF 2p (4.34 kΩ)(0.02 mF)

æ 1 and Vo = ç ç 2 è 1 + ( fc / f )

CHAPTER 22

ö ÷V ÷ i ø

315

b.

c. & d.

e.

Remember the log scale! 1.5fc is not midway between fc and 2fc = 20 log10 Aυ -1.5 = 20 log10 Aυ -0.075 = log10 Aυ Aυ =

f.

40. a, b.

θ = tan-1 fc/f

316

–-tan-1f/fc

Aυ = fc =

c.

= 0.84

1 1 = = 13.26 kHz 2p RC 2p (12 kΩ)(1000 pF)

f = fc/2 = 6.63 kHz

CHAPTER 22

= -0.97 dB f = 2fc = 26.52 kHz = -6.99 dB f = fc/10 = 1.326 kHz = -0.04 dB f = 10fc = 132.6 kHz = -20.04 dB

d.

41.

f = fc/2:

Aυ =

f = 2fc:

Aυ =

= 0.894 = 0.447

e.

θ = tan-1 f/fc f = fc/2: θ = -tan-1 0.5 = -26.57° f = f c: θ = -tan-1 1 = -45° f = 2fc: θ = -tan-1 2 = -63.43°

a.

R2 || XC =

æ - jR X ö 2 C ç ÷ Vi R jX C ø R2 X C Vi 2 è Vo = = -j R2 X C R1 ( R2 - jX C ) - jR2 X C R1 - j R2 - jX C CHAPTER 22

317

- jR2 X C Vi - jR2 X C Vi = R1 R2 - jR1 X C - jR2 X C R1 R2 - j( R1 + R2 )X C R2 X C Vi R2 Vi = = jR1 R2 + ( R1 + R2 )X C RR j 1 2 + ( R1 + R2 ) XC æ R2 ö ç ÷V R1 + R2 ø i R2 Vi è = = æ RR ö 1 R1 R2 R1 + R2 + j 1 + jç 1 2 ÷ XC è R1 + R2 ø X C R2 V R1 + R2 and Aυ = o = æ RR ö Vi 1 + jw ç 1 2 ÷ C è R1 + R2 ø =

or Aυ = defining fc =

é ù 1 ê ú êë1 + jf / f c úû é ù R2 ê 1 -1 Ð - tan f / f c ú and Aυ = ú R1 + R2 ê 1 + ( f / f ) 2 c ë û é ù R2 ê 1 ú |V | with = i R1 + R2 ê 1 + ( f / f ) 2 ú c ë û Aυ =

for f

R2 R1 + R2

f c, V o =

= 0.852Vi

at f = fc: Vo = 0.852[0.707]Vi = 0.602Vi fc =

318

= 1.02 kHz

CHAPTER 22

b.

c. & d.

-20 log10

= -20 log10

= -20 log10 1.174 = -1.39 dB -1.39 dB - 0.5 dB = -1.89 dB

e.

= 20 log10 Aυ -1.89 = 20 log10 Aυ 0.0945 = log10 Aυ Aυ = f.

= 0.80

θ = -tan-1 f/fc

42. = 24.79 kΩ

a.

From Section 21.11,

CHAPTER 22

319

Aυ =

Vo jf / f1 = Vi 1 + jf / f c

f1 =

= 642.01 Hz

fc =

= 457.47 Hz

= = −2.94 dB b.

θ = 90° - tan-1 f = f 1: f = f c: f= f=

= + tan-1

θ = 45° θ = 54.52° f1 = 321 Hz, θ = 63.44° f1 = 64.2 Hz, θ = 84.29°

f = 2f1 = 1,284 Hz, θ = 26.57° f = 10f1 = 6420 Hz, θ = 5.71°

43.

a.

VTh =

12 kΩ V i = 0.682 Vi 12 kΩ + 5.6 kΩ

RTh = 5.6 kΩ || 12 kΩ = 3.82 kΩ

320

CHAPTER 22

f = • Hz: (C fi short circuit) Vo =

= 0.465 Vi

At fc: V0 = 0.707(0.465 Vi) = 0.329 Vi

R2 (0.682 Vi ) 0.682 R2 Vi = R1 + R2 - jX C R1 + R2 - jX C V 0.682 R2 j2pf (0.682 R2 )C = and Aυ = o = Vi R1 + R2 - jX C 1 + j2pf ( R1 + R2 )C jf / f1 so that Aυ = with f1 = 1 + jf / f c = 284.59 Hz voltage-divider rule: Vo =

and fc = = 132.41 Hz

20 log10 f/f1 = 20 log10 = 20 log10 0.465 = -6.65 dB

b.

θ = 90° - tan-1 f/fc = +tan-1 fc/f = tan-1 132.6 Hz/f or

CHAPTER 22

321

1 1 = = 19.89 kHz 2p R2 C 2p (10 kΩ)(800 pF) 1 1 = fc = 2p ( R1 + R2 )C 2p (10 kΩ + 91 kΩ)(800 pF) = 1.97 kHz f1 =

44.

a.

Aυ =

b.

θ = tan-1 f/f1 - tan-1 f/fc f = 10 kHz 10 kHz 10 kHz θ = tan-1 - tan-1 = 29.66° - 87.62° = -57.96° 19.89 kHz 1.97 kHz f = fc: (f1 = 10 fc) θ = tan-1

322

= 5.71° - 45° = -39.29°

CHAPTER 22

45.

a.

R1 no effect! Note Section 22.12. Aυ =

Vo 1 + j( f / f1 ) = Vi 1 + j( f / f c )

f1 =

= 2.84 kHz

fc =

= 904.3 Hz

Note Fig. 22.65. Asymptote at 0 dB from 0 Æ fc -6 dB/octave from fc to f1 æ ö 12 kΩ + 5.6 kΩ = -9.5 dB÷ -9.95 dB from f1 on ç-20 log 5.6 kΩ è ø (b)

Note Fig. 22.67. From 0° to -26.50° at fc and f1 θ = tan-1 f/f1 - tan-1 f/fc At f = 1500 Hz (between fc and f1) θ = tan-1 1500 Hz/2.84 kHz - tan-1 1500 Hz/904.3 Hz = 27.83° - 58.92° = -31.09°

46.

a.

Aυ =

1 1 = 964.58 Hz = 2p R1C 2p (3.3 kΩ)(0.05 mF) 1 1 = fc = = 7.74 kHz 2p ( R1 || R2 )C 2p (3.3 kΩ || 0.47 kΩ) (0.05 m F) !## #"### $ 0.411 kΩ f1 =

-20 log10

= -18.08 dB

b.

CHAPTER 22

323

θ = -tan-1

+ tan-1

f = f1 : q = - tan -1 = - tan -1 1 + tan -1

f1 f + tan -1 c f1 f1 7.74 kHz 964.58 Hz

= -45° + 92.1° = 47.1°

964.58 Hz 7.74 kHz + tan -1 4 kHz 4 kHz

f = 4 kHz : q = - tan -1

= -15.06° + 69.63° = 54.57°

f = f c : q = - tan -1

f 964.58 Hz + tan -1 c 7.74 kHz fc

= -tan-1 0.1246 + tan-1 1 = -7.89° + 45° = 37.11° 47.

R3V i 4.7 kΩ V i = = 0.59 Vi R3 + R1 + R2 4.7 kΩ + 2 kΩ + 1.2 kΩ R3V i 4.7 kΩ V i = f = high: Vo = = 0.7 Vi R3 + R1 4.7 kΩ + 2 kΩ f = 0 Hz: Vo =

V0 Vi R3Vi = 0.7 Vi R3+R1

R3Vi = 0.59 Vi R3+R1+R3 0

Av =

f

Vo R3 = Vi R3 + R1 + R2 || X C Ð -90° Define R¢ = R3 + R1

324

and Au =

R3 = ¢ R + R2 || X C Ð -90°

=

R3 ( R2 - jX C ) ¢ R ( R2 - jX C ) - jR2 X C

=

R2 R3 - jR3 X C R¢R2 - jR¢X C - jR2 X C

R3 R (- jX C ) R¢ + 2 R2 - jX C

CHAPTER 22

=

R2 R3 - jR3 X C R¢R2 - j( R¢ + R2 )X C

R3 X C R2 R3 = R¢R2 ( R¢ + R2 ) - j XC R2 R3 R2 R3 1- j

XC R2 = ù R¢ é ( R¢ + R2 ) R3 XC ú ê1 - j R3 ë R2 R3 R¢ û 1- j

XC R2 = é ù ¢ ¢ R R +R ê1 - j ¢ 2 X C ú R3 ë R R2 û 1- j

=

R3 [1 - jX C / R2 ] æ R¢ + R2 ö ù R¢ é ê1 - jç ÷ XC ú êë è R¢R2 ø úû

é 1 ù ê1 - j ú 2pR2C û R3 ë = ù R1 + R3 é 1 ê1 - j ú 2p ( R¢ || R2 )C û ë

and Au =

R3 [1 - j(f1 / f )] R1 + R3 [1 - j(f c / f )]

Au dB = 20 log10

1 2pR2C 1 fc = ¢ 2p ( R || R2 )C f1 =

R3 1 2 + 20 log10 1 + ( f1 / f ) + 20 log10 R1 + R3 1 + ( f c / f )2

= -20 log10

with f1 =

R1 + R3 1 2 + 20 log10 1 + ( f1 / f ) + 20 log10 2 R3 1 + ( fc / f ) 1 1 , fc = , R¢ = R1 + R3 ¢ 2pR2C 2p ( R || R2 )C

q = -tan-1(f1/f) + tan-1(fcf) 48.

a.

Au 1 = Aumax æ 100 Hz ö æ 130 Hz ö æ f öæ f ö ç1 - j ÷ ç1 - j ÷ ç1 + j ÷ ç1 + j ÷ f øè f øè 20 kHz ø è 50 kHz ø è

CHAPTER 22

325

Proximity of 100 Hz to 130 Hz will raise lower cutoff frequency above 130 Hz: Testing: f = 180 Hz: (with lower terms only) = -20 log10

æ100 ö 2 æ130 ö 2 1+ ç ÷ - 20 log10 1 + ç ÷ è f ø è f ø

æ100 ö 2 æ130 ö 2 = -20 log10 1 + ç ÷ - 20 log10 1 + ç ÷ è180 ø è180 ø = 1.17 dB - 1.82 dB = -2.99 dB -3 dB Proximity of 50 kHz to 20 kHz will lower high cutoff frequency below 20 kHz: Testing: f = 18 kHz: (with upper terms only)

æ f ö2 æ f ö2 = -20 log10 1 + ç 20 log 1 + ÷ ç ÷ 10 è 20 kHz ø è 50 kHz ø æ 18 kHz ö 2 æ13 kHz ö 2 = -20 log10 1 + ç 20 log 1 + ÷ ç ÷ 10 è 20 kHz ø è 20 kHz ø = -2.576 dB - 0.529 dB = -3.105 dB

b.

Testing:

f = 1.8 kHz: θ = tan-1 = 3.18° + 4.14° - 5.14° - 2.06° 0° = 0.12°

326

CHAPTER 22

49.

50 kHz vs 23 kHz Æ drop about 1 dB at 23 kHz due to 50 kHz break. Ignore effect of break frequency at 10 Hz. Assume -2 dB drop at 68 Hz due to break frequency at 45 Hz. Rough sketch suggests low cut-off frequency of 90 Hz. Checking: Ignoring upper terms and using f = 90 Hz:

æ10 Hz ö 2 æ 45 Hz ö 2 æ 68 Hz ö 2 Au¢dB = -20 log10 1 + ç ÷ - 20 log10 1 + ç ÷ - 20 log10 1 + ç ÷ è f ø è f ø è f ø = −0.0532 dB − 0.969 dB − 1.96 dB = −2.98 dB (excellent) High frequency cutoff: Try f = 20 kHz

æ f ö2 æ f ö2 Au¢dB = -20 log10 1 + ç ÷ - 20 log10 1 + ç ÷ è 23 kHz ø è 50 kHz ø = −2.445 dB − 0.6445 dB = −3.09 dB (excellent

\ BW = 20 kHz - 90 Hz = 19,910 Hz f1 = 90 Hz, f2 = 20 kHz

20 kHz

Testing: f = 100 Hz θ= = tan-1 0.1 + tan-1 0.45 + tan-1 0.68 - tan-1 0.00435 - tan-1 .002 = 5.71° + 24.23° + 34.22° - 0.249° - 0.115° = 63.8° vs about 65° on the plot

CHAPTER 22

327

50.

flow = fhigh - BW = 38 kHz - 37.5 kHz = 0.5 kHz = 500 Hz Aυ =

51.

-140 æ ö æ 500 ö æ 50 f ö çç 1 - j ç1 - j ÷ ÷ ç1 + j f øè f øè 38 kHz ø è

Aυ =

=

52.

Aυ =

AυdB = -20 log20

328

and f1 = 2000 Hz

1 æ f ö 1+ ç ÷ è 2000 ø

2

,

f = 1 and f = 2 kHz 2000

CHAPTER 22

jf /1000 (1 + jf /1000)(1 + jf /10, 000)

53.

Aυ =

54.

æ f öæ f ö ç1 + j ÷ ç1 + j ÷ 1000 ø è 2000 ø è Aυ = 2 æ f ö 1 + j ç ÷ 3000 ø è AυdB = -20 log10

55.

=

CHAPTER 22

=

æ f1 ö 2 æ f2 ö 2 1+ ç ÷ + 20 log10 1 + ç ÷ + 40 log10 è1000 ø è 2000 ø

=

,

1 æ f3 ö 2 1+ ç ÷ è 3000 ø

=

329

56.

a.

Woofer − 400 Hz: XL = 2πfL = 2π(400 Hz)(4.7 mH) = 11.81 Ω 1 = = 10.20 Ω XC = 2pfC R || XC = 8 Ω –0° || 10.20–-90° = 6.3 Ω –-38.11° Vo =

=

Vo = 0.673 –-96.11° Vi and Aυ =

= 0.673 vs desired 0.707 (off by less than 5%)

Tweeter − 5 kHz: XL = 2πfL = 2π(5 kHz)(0.39 mH) = 12.25 Ω 1 XC = = = 11.79 Ω 2pfC R || XL = 8 Ω –0° || 12.25 Ω –90° = 6.7 Ω –33.15° Vo = Vo = 0.678 –88.54° Vi and Aυ = b.

= 0.678 vs 0.707 (off by less than 5%)

Woofer − 3 kHz: XL = 2πfL = 2π(3 kHz)(4.7 mH) = 88.59 Ω 1 XC = = = 1.36 Ω 2pfC R || XC = 8 Ω –0° || 1.36 Ω –-90° = 1.341 Ω –-80.35° Vo =

=

Vo = 0.015 –-170.2° Vi

330

CHAPTER 22

and Aυ =

= 0.015 vs desired 0 (excellent)

Tweeter − 3 kHz: XL = 2πfL = 2π(3 kHz)(0.39 mH) = 7.35 Ω 1 XC = = = 19.65 Ω 2pfC R || XL = 8 Ω –0° || 7.35 Ω –90° = 5.42 Ω –47.42° Vo =

=

Vo = 0.337 –124.24° Vi and Aυ =

c.

= 0.337 (acceptable since relatively close to cut frequency for tweeter)

Mid-range speaker − 3 kHz:

and

CHAPTER 22

V1 =

=

Vo =

=

Aυ =

= 1.11 –8.83° Vi = 0.998 –-46.9° Vi

= 0.998 (excellent)

331

Chapter 23 1.

a.

M=



b.

ep =

= (20)(0.08 Wb/s) = 1.6 V

c.

2.

a.

b.

3.

es = kNs

= (0.8)(80 t)(0.08 Wb/s) = 5.12 V

ep =

= (40 mH)(0.3 ¥ 103 A/s) = 12 V

es =

= (80 mH)(0.03 ¥ 103 A/s) = 24 V

k=1 (a)

Ls =

= 32 mH

(b)

ep = 1.6 V, es = kNs

(c)

ep = 15 V, es = 12 V

= 6.4 V

k = 0.2 (a)

Ls =

= 0.8 H

(b)

ep = 1.6 V, es = kNs

(c)

ep = 15 V, es = 12 V

= (0.2)(80 t)(0.08 Wb/s) = 1.28 V

a.

Ls =

= 355.56 mH

b.

ep =

= (300 t)(0.08 Wb/s) = 24 V

es = kNs

= (0.9)(25 t)(0.08 Wb/s) = 1.8 V

c.

332

= 50 mH

ep and es the same as problem 1: ep = 15 V, es = 12 V

CHAPTER 23

4.

5.

a.

Es =

b.

Φmax =

a.

Es =

b.

Φm(max) =

6.

Ep =

7.

f=

8.

Ep =

(40 V) = 240 V

= 7.51 mWb

=5V

Es =

= 625.63 µWb

(240 V) = 20 V

= 120 Hz

1 a. = = I L aI A) 0.75 A P   (3 = 4 3  = VL I L = Z L  A  (3 = Ω) 2.25 V 4  2

1 2 RL   (3 = Ω ) 0.185 Ω = b. R in a = 4 9.

10.

11.

140 V = 28 Ω 5A

Zp =

1 = V g aV = V) 100 V L   (500 = 5 100 V Ip = = 20 A 5Ω IL = Is =

220 V = 11 A 20 Ω fi

Np =

11 A 0.04 A

60

(11)60 = 16,500 turns 0.04

CHAPTER 23

333

12.

a.

600 t = 1200 t 2

a=

æ1 ö 2 Zi = a ZL = ç ÷ (10 Ω + j10 Ω) = 2.5 Ω + j2.5 Ω = 3.536 Ω –45° è2 ø Ip = Vg/Zi = 120 V/3.536 Ω = 33.94 A 2

13.

(33.94 A) = 16.97 A, VL = ILZL = (16.97 A)(14.14 Ω) = 239.96 V ≅ 240V

b.

IL = aIp =

a.

Z p = a 2Z L fi a =

2

Zp = a=

=3



b. P= 14.

= 36 Ω

= 2.78 W

a.

Re = Rp + a2Rs = 4 Ω + (4)2 1 Ω = 20 Ω

b.

Xe = Xp + a2Xs = 12 Ω + (4)2 2 Ω = 44 Ω

c.

d.

Ip =

e.

aVL = or

334

f.

-

g.

VL =

= 0.554 A –-11.73°

= I pa 2R L VL = aIpRL–0° = (4)(0.554 A –-11.73°)(20 Ω –0°) = 26.59 V –-11.73°

(120 V) = 30 V

CHAPTER 23

15.

a.

a=

=4

Re = Rp + a2Rs = 4 Ω + (4)2 1 Ω = 20 Ω Xe = Xp + a2Xs = 12 Ω + (4)2 2 Ω = 44 Ω Zp = + + = 20 Ω + j44 Ω + j(4)2 20 Ω = 20 Ω + j44 Ω + j320 Ω = 20 Ω + j364 Ω = 364.55 Ω –86.86° b.

= 329.17 mA –-86.86°

Ip =

= (I–θ)(Re–0°) = (329.17 mA –-86.86°)(20 Ω –0°)

c.

= 6.58 V –-86.86° = (I–θ)(Xe–90°) = (329.17 mA –-86.86°)(44 Ω –90°) = 14.48 V –3.14° = I(a2

) = (329.17 mA –-86.86°)(320 Ω –90°)

= 105.33 V –3.14° 16.

a.

a = Np/Ns = 4 t/1 t = 4, Re = Rp + a2Rs = 4 Ω + (4)2 1 Ω = 20 Ω Xe = Xp + a2Xs = 12 Ω + (4)2 2 Ω = 44 Ω Zp = Re + jXe - ja2XC = 20 Ω + j44 Ω - j(4)2 20 Ω = 20 Ω + j44 Ω - j320 Ω = 20 Ω - j276 Ω = 276.72 Ω –-85.86°

b.

Ip =

= 0.43 A –85.86° = (Ip–θ)(Re–0°) = (0.43 A –85.86°)(20 Ω –0°) = 8.6 V –85.86°

c.

= (Ip–θ)(Xe–90°) = (0.43 A –85.86°)(44 Ω –90°) = 18.92 V –175.86° = (Ip–θ)(a2XC–-90°) = (0.43 A –85.86°)(320 Ω –-90°) = 137.60 V –-4.14° 17.

-

18.

Coil 1: L1 - M12 Coil 2: L2 - M12 LT = L1 + L2 - 2M12 = 5 H + 8 H - 2(1 H) = 11 H

19. M12 =

(0.9) (300 mH)(600 mH) = 381.84 mH ≈ 382 mH

= 300 mH + 600 mH = 2(382 mH) = 1.64 H

CHAPTER 23

335

20.

M23 = Coil 1: Coil 2: Coil 3:

21.

E 1 - I 1[

1 (1.5 H)(6 H) = 3 H L1 + M12 - M13 = 3 H + 0.2 H - 0.1 H = 3.1 H L2 + M12 - M23 = 1.5 H + 0.2 H - 3 H = -1.3 H L3 - M23 - M13 = 6 H - 3 H - 0.1 H = 2.9 H LT = 3.1 H - 1.3 H + 2.9 H = 4.7 H +

] - I2[Zm] = 0

I 2[ + ] + I1[Zm] = 0 ────────────────────── + ) + I2(Zm) = E1 I 1( I1(Zm) + I2( + )=0 ─────────────────────── 22.

Z i = Zp +

= Rp + j

Xm = -wM –90°

+

Rp = 2 Ω,

= wLp = (103 rad/s)(8 H) = 8 kΩ

Rs = 1 Ω,

= wLs = (103 rad/s)(2 H) = 2 kΩ

M=

= 0.2 H

Zi = 2 Ω + j8 kΩ + = 2 Ω + j8 kΩ + = 2 Ω + j8 kΩ + 0.21 Ω - j19.99 Ω = 2.21 Ω + j7980 Ω Zi = 7980 Ω –89.98° 23.

336

3600 V

= 30

a.

a=

b.

12,000 VA = VsIs fi Is =

c.

Ip =

d.

a=

12,000 VA

12,000 VA

12,000 VA 3600 V

12,000 VA

= 100 A

= 3.33 A

= 3600 V 30 12,000 VA Is = = 3.33 A, Ip = 100 A 3600 V

CHAPTER 23

24.

Is = I1 = 2 A, Ep = VL = 48 V Es = Vg - VL = 240 V - 48 V = 192 V 240 V (2 A) = 10 A VgI1 = VLIL fi IL = Vg/VL ◊ I1 = 48 V Ip + I1 = IL fi Ip = IL - I1 = 10 A - 2 A = 8 A

25.

a.

Es = (100 V –0°) = 25 V –0° = VL

=

= 5 A –0° = IL

Is =

b.

æ N ö2 p Zi = a ZL = ç ç N ÷÷ ZL = è sø 2

= 20 Ω –0°

c.

26.

a.

æ100 t ö 2 2 ç ÷ 5 Ω –0° = (4) 5 Ω –0° = 80 Ω –0° 25 t è ø

E2 =

E1 =

(60 V –0°) = 10 V –0°

E3 =

E1 =

(60 V –0°) = 30 V –0°

I2 =

= 1.25 A –0°

I3 =

= 6 A –0°

=

b.

= = 0.05347 S R1 = 18.70 Ω 27.

a.

E2 =

æ 40 t ö E1 = ç ÷ (120 V –60°) = 40 V –60° è120 t ø

I2 =

= 3.33 A –60°

E3 =

æ 30 t ö E1 = ç ÷ (120 V –60°) = 30 V –60° è120 t ø

CHAPTER 23

337

= 3 A –60°

I3 = b.

= = =

= 0.0155 S

R1 = 28.

ZM =

= 64.52 Ω = ΩM12 –90°

E - I 1Z 1 - I 1 E - I1(Z1 +

- I1(-Zm) - I2(+Zm) - I1 - Zm +

- I1(-Zm) = 0

+ I2

- Zm) - I2(Zm -

)=0

or

I1(Z1 + + - 2 Zm) + I2(Zm )=E ────────────────────────────────────────────── (I2 - I1) - I1(+Zm) = 0 -I2Z2 -

or

I1(Zm ) + I2(Z2 + )=0 ────────────────────────── E 1 - I 1Z 1 - I 1

29.

- I2(-

) - I3(+

)=0

or

E1 - I1[Z1 + ] + I2 - I3 =0 ──────────────────────────────── ) + I3Z2 - I1()=0 -I2(Z2 + Z3 +

or

-I2(Z2 + Z3 + ) + I 3Z 2 + I 1 =0 ──────────────────────────────── ) + I2Z2 - I1(+ )=0 -I3(Z2 + Z4 +

or

-I3(Z2 + Z4 + ) + I 2Z 2 - I 1 =0 ───────────────────────────── ]I1 I2 + [Z1 +

\

I1 - [Z2 + Z3 +

]I2 +

I3 = E 1 Z 2I 3 = 0

I1 Z2I2 + [Z2 + Z4 + ]I3 = 0 ──────────────────────────────────────── 30.

338

Ip =

Ns 250 t Is = (400 mA) = 100 A 1t Np

CHAPTER 23

Chapter 24 1.

a.

= EL/

b.

=

d.

IL =

= 131.64 V

b.

=

Z f = 14 Ω - j20 Ω = 24.41 Ω –55°

d.

IL =

c.

2.

c.

131.64 V = 8.78 A 15 Ω

=

a.

= EL/

a. c.

4.

= 131.64 V

b.

= 8.78 A

= 131.64 V = 5.39 A

= 131.64 V

64 –-90° Zf = (8 Ω –0° || (8 Ω –-90°) = = 5.659 Ω –-45° 11.31 –45° 131.64 V = = 23.26 A 5.659 Ω

d.

IL = 23.26 A

a.

θ2 = -120°, θ3 = 120°

b.

Van = 120 V –0°, Vbn = 120 V –-120°, Vcn = 120 V –120°

c.

Ian =

= 6 A –0° = 6 A –-120°

Ibn =

= 6 A –120°

Icn =

5.

= 131.64 V

131.64 V = 5.39 A 24.41 Ω

= 3.

= 228 V/1.732 = 131.64 V

d.

IL =

= 6A

e.

VL =

=

(120 V) = 207.8 V

a.

θ2 = -120°, θ3 = +120°

b.

Van = 120 V –0°, Vbn = 120 V –-120°, Vcn = 120 V –120° = 9 Ω + j12 Ω = 15 Ω –53.13°

c.

Ian =

= 8 A –-53.13°, Ibn =

Icn =

= 8 A –66.87°

CHAPTER 24

= 8 A –-173.13°

339

e. 6.

IL =

a, b.

f.

EL =

= (1.732)(120 V) = 207.85 V

The same as problem 4. = 6 Ω –0° || 8 Ω –-90° = 4.8 Ω –-36.87°

c.

d. 7.

=8A

Ian =

= 25 A –36.87°

Ibn =

= 25 A –-83.13°

Icn =

= 25 A –156.87°

IL =

= 25 A

e.

= Van = Vbn = Vcn =

VL =

=

(120 V) = 207.84 V

= 127.0 V

= 10 Ω - j10 Ω = 14.42 Ω –-45° = Ian = Ibn = Icn = IL = IAa = IBb = ICc = 8.

= 8.98 A = 8.98 A

= 12 Ω + j16 Ω = 20 Ω–53.13° =

= 2.5 A = 13 Ω + j16 Ω = 20.62 Ω –50.91°

= VL =

9.

a.

= (2.5 A)(20.62 Ω) = 51.55 V =

(51.55 V) = 89.29 V

= 12.7 kV –-30°

EAN =

= 12.7 kV –-150°

EBN =

= 12.7 kV –90°

ECN =

b, c. IAa = Ian =

= = = 11.29 A –-97.54°

340

CHAPTER 24

10.

IBb = Ibn =

=

= 11.29 A –-217.54°

ICc = Icn =

=

= 11.29 A –22.46°

d.

Van = IanZan = (11.29 A –-97.54°)(400 + j1000) = (11.29 A –-97.54°)(1077.03 Ω –68.2°) = 12.16 kV –-29.34° Vbn = IbnZbn = (11.29 A –-217.54°)(1077.03 –68.2°) = 12.16 kV –-149.34° Vcn = IcnZcn = (11.29 A –22.46°)(1077.03 –68.2°) = 12.16 kV –90.66°

a.

Total load loss = 750 kW + 3I L R = 750 kW + 3(80 A)22 Ω = 750 kW + 38.4 kW = 788.4 kW

b.

Ef =

c.

Zline = 3 Ω + j20 Ω Vline(load) = EL -ILZline = 14.7 kV – 0° - 80 A (2 Ω + j20 Ω) = 14.7 kV - 160 V - j1600 V = 14,540 V - j1600 V = 14.63 kV –-6.28° 14.63 kV 14.63 kV = |Vf(load)| = = 8.45 kV 1.732 3 P(load)T = 3 Vf L I f L cos q 788.4 kW = 3(8.45 kV)(80 A) cos q 788.4 kW cos q = Fp = 3(8.45 kV)(80 A) Fp = 0.388

d.

0.388 fi 74.63° Vf L 8.45 kV |Zf| = = 105.63 Ω = If L 80 A

2

EL 3

=

14.7 kV = 8.49 kV 1.732

Zf = 105.63 –74.63° e.

Vf(load) =

14.7 kV

= 8.49 kV 3 P(load)T = 3 Vf L I f L cos q

788.4 kW 3(8.49 kV)(80 A) Fp = 0.387 lagging Fp = cos q =

CHAPTER 24

341

11.

a.

= E L/

c.

12.

=

a. c.

= 10.4 A

= E L/

13.

= (1.732)(10.4 A) = 18 A

b.

= EL = 208 V

b.

= 208 V

= (1.732)(13.36 A) = 23.14 A

= V L/

= 208 V/

= 120.09 V

c.

=

= 16.34 A

d.

IL =

a.

θ2 = -120°, θ3 = +120°

b.

Vab = 208 V –0°, Vbc = 208 V –-120°, Vca = 208 V –120°

c.

-

d.

Iab =

= (1.732)(16.34 A) = 28.30 A

= 9.46 A –0°

Vbc 208 V Ð -120° = 9.46 A –-120° Z bc 22 Ω Ð 0° = 9.46 A –120°

Ica = e. f.

342

IL =

Zf = 18 Ω –0° || 18 Ω –-90° = 12.728 Ω –-45°

Ibc =

15.

d.

= EL = 208 V

= 13.36 A

IL =

a.

14.

= 208 V/1.732 = 120.1 V

b.

Zf = 6.8 Ω + j14 Ω = 15.564 Ω –64.09° =

d.

= 208 V/1.732 = 120.1 V

IL = = E L/

= (1.732)(9.46 A) = 16.38 A = 208 V/1.732 = 120.1 V

a.

θ2 = -120°, θ3 = +120°

b.

Vab = 208 V –0°, Vbc = 208 V –-120°, Vca = 208 V –120°

CHAPTER 24

c.

-

d.

Zf = 100 Ω - j100 Ω = 141.42 Ω–-45°

e.

Iab =

= 1.47 A –45°

Ibc =

= 1.47 A –-75°

Ica =

= 1.47 A –165°

IL =

f. 16. a, b.

= E L/

= (1.732)(1.471 A) = 2.55 A = 208 V/1.732 = 120.1 V

The same as problem 13.

c.

-

d.

Zf = 3 Ω –0° || 4 Ω –90° = 2.4 Ω –36.87° Iab =

= 86.67 A –-36.87°

Ibc =

= 86.67 A –-156.87° = 86.67 A –83.13°

Ica = e. 17.

IL =

= (1.732)(86.67 A) = 150.11 A

= 120.1 V

Vab = Vbc = Vca = 220 V Zf = 10 Ω + j10 Ω = 14.142 Ω–45° Iab = Ibc = Ica =

18.

f.

a.

= 15.56 A

Iab = Iab = 15.33 A –-73.30°

b.

Ibc =

= 15.33 A –-193.30°

Ica =

= 15.33 A –46.7°

IAa - Iab + Ica = 0

CHAPTER 24

343

IAa = Iab - Ica = 15.33 A –-73.30° - 15.33 A –46.7° = (4.41 A - j14.68 A) - (10.51 A + j11.16 A) = 4.41 A - 10.51 A - j(14.68 A + 11.16 A) = -6.11 A - j25.84 A = 26.55 A –-103.30° IBb + Iab = Ibc IBb = Ibc - Iab = 15.33 A –-193.30° - 15.33 A –-73.30° = 26.55 A –136.70° ICc + Ibc = Ica ICc = Ica - Ibc = 15.33 A –46.7° - 15.33 A –-193.30° = 26.55 A –16.70° c.

EAB = IAa(10 Ω + j20 Ω) + Vab - IBb(22.361 Ω –63.43°) = (26.55 A –-103.30°)(22.361 Ω –63.43°) + 16 kV –0° - (26.55 A –136.70°)(22.361 Ω –63.43°) = (455.65 V - j380.58 V) + 16,000 V - (-557.42 V - j204.32 V) = 17.01 kV - j176.26 V = 17.01 kV –-0.59° EBC = IBb(22.361 Ω –63.43°) + Vbc - ICc(22.361 Ω –63.53°) = (26.55 A –136.70°)(22.361 Ω –63.53°) + 16 kV –-120° - (26.55 A –16.70°)(22.361 Ω –63.53°) = 17.01 kV –-120.59° ECA = ICc(22.361 Ω –63.43°) + Vca - IAa(22.361 Ω –63.43°) = 17.01 kV –119.41°

19.

a.

c.

20.

a. c.

21. a, b. c.

= EL = 208 V

=

= 4.00 A

= EL = 208 V =

344

d.

b. = 7.08 A

d.

=

= 120.1 V

IL =

4A

= EL IL =

= 120.09 V

= 7.08 A

The same as problem 19. = 15 Ω –0° || 20 Ω –-90° = 12 Ω –-36.87° =

d.

b.

IL =

10 A 10 A

CHAPTER 24

22.

Van = Vbn = Vcn =

= 69.28 V

Ian = Ibn = Icn =

= 2.89 A

IAa = IBb = ICc = 2.89 A 23.

Van = Vbn = Vcn =

= 69.28 V

= 10 Ω + j20 Ω = 22.36 Ω–63.43°

Vf

69.28 V = 3.10 A Zf 22.36 Ω IAa = IBb = ICc = = 3.10 A Ian = Ibn = Icn =

24.

=

Van = Vbn = Vcn = 69.28 V = 20 Ω –0° || 15 Ω –-90° = 12 Ω –-53.13° Ian = Ibn = Icn =

= 5.77 A

IAa = IBb = ICc = 5.77 A 25.

a.

= EL = 440 V

c. 26.

=

=2A

a.

= EL = 440 V

c.

= 12 Ω - j9 Ω = 15 Ω –-36.87° =

d. 27. a, b.

IL =

d. b.

= EL = IL =

= 440 V = (1.732)(2 A) = 3.46 A

= EL = 440 V

= 29.33 A

= (1.732)(29.33 A) = 50.8 A

The same as problem 25. = 22 Ω –0° || 22 Ω –90° = 15.56 Ω –45°

c.

=

28.

b.

= 28.28 A

d.

IL =

a.

θ2 = -120°, θ3 = +120°

CHAPTER 24

= (1.732)(28.28 A) = 48.98 A

345

b.

Vab = 100 V –0°, Vbc = 100 V –-120°, Vca = 100 V –120°

c.

-

d.

Iab =

= 5 A –0° = 5 A –-120°

Ibc =

= 5 A –120°

Ica =

29.

e.

IAa = IBb = ICc =

(5 A) = 8.66 A

a.

θ2 = -120°, θ3 = +120°

b.

Vab = 100 V –0°, Vbc = 100 V –-120°, Vca = 100 V –120°

c.

= 12 Ω + j16 Ω = 20 Ω –53.13°

d.

Iab = Ibc = Ica =

30.

= 5 A –-173.13° = 5 A –66.87°

e.

IAa = IBb = ICc =

a.

θ2 = -120°, θ3 = 120°

b.

Vab = 100 V –0°, Vbc = 100 V –-120°, Vca = 100 V –120°

c.

-

d.

346

= 5 A –-53.13°

= (1.732)(5 A) = 8.66 A

= 20 Ω –0° || 20 Ω –-90° = 14.14 Ω –-45° Iab =

= 7.07 A –45°

Ibc =

= 7.07 A –-75°

Ica =

= 7.07 A –165°

CHAPTER 24

e. 31.

IAa = IBb = ICc =

PT =

= 3(6 A)2 12 Ω = 1296 W

QT =

= 3(6 A)2 16 Ω = 1728 VAR(C)

ST =

= 2160 VA

Fp = 32.

(7.07 A) = 12.25 A

= 0.6 (leading)

= 120 V, PT =

= 120 V/20 Ω = 6 A

= 3(6 A)2 20 Ω = 2160 W

QT = 0 VAR ST = PT = 2160 VA Fp = 33.

PT =

= 3(8.98 A)2 10 Ω = 2419.21 W

QT =

= 3(8.98 A)2 10 Ω = 2419.21 VAR(C)

ST = Fp = 34.

=1

= 3421.28 VA = 0.7071 (leading)

= 208 V

æV 2 ö (208 V)2 f ç ÷ PT = 3 = 7210.67 W = 3× ç Rf ÷ 18 Ω è ø æV 2 ö (208 V)2 f ç ÷ QT = 3 = 7210.67 VAR(C) = 3× ç Xf ÷ 18 Ω è ø ST = Fp = 35.

= 10,197.42 VA = 0.707 (leading)

PT =

= 3(1.471 A)2 100 Ω = 649.15 W

QT =

= 3(1.471 A)2 100 Ω = 649.15 VAR(C)

ST = Fp =

CHAPTER 24

= 918.04 VA = 0.7071 (leading)

347

36.

PT =

= 3(15.56 A)2 10 Ω = 7.26 kW

QT =

= 3(15.56 A)2 10 Ω = 7.26 kVAR

ST =

37.

= 10.27 kVA

Fp =

= 0.7071 (lagging)

PT =

= 2884.80 W

QT =

= 2163.60 VAR(C)

ST =

= 3605.97 VA

Fp = 38.

= 10 Ω + j20 Ω = 22.36 Ω –63.43° = =

= 69.28 V = 3.098 A

PT =

= 3(3.098 A)2 10 Ω = 287.93 W

QT =

= 3(3.098 A)2 20 Ω = 575.86 VAR

ST =

39.

= 0.8 (leading)

= 643.83 VA

Fp =

= 0.447 (lagging)

PT =

= 26.4 kW

QT = PT = 26.4 kVAR(L) ST = Fp = 40.

= 0.707 (lagging)

= 12 Ω + j16 Ω = 20 Ω –53.13° =

348

= 37.34 kVA

=5A

PT =

= 3(5 A)2 12 Ω = 900 W

QT =

= 3(5 A)2 16 Ω = 1200 VAR(L)

CHAPTER 24

ST =

= 1500 VA

Fp =

41.

= 0.6 (lagging)

PT =

ELIL cos θ

4800 W = (1.732)(200 V)IL (0.8) IL = 17.32 A =

= 10 A

θ = cos-1 0.8 = 36.87° = 20 Ω –36.87° = 16 Ω + j12 Ω

=

42.

PT =

ELIL cos θ (208 V)IL(0.6) fi IL = 5.55 A

1200 W = =

= 120.1 V

θ = cos-1 0.6 = 53.13° (leading)

Ω - j17.31 Ω = 21.64 Ω –-53.13° = 12.98 ! #"# $ ! #"# $ R XC

=

43.

Δ:

= 15 Ω + j20 Ω = 25 Ω–53.13° =

=5A

PT =

= 3(5 A)2 15 Ω = 1125 W

QT =

= 3(5 A)2 20 Ω = 1500 VAR(L)

Y:

= V L/

= 125 V/1.732 = 72.17 V

= 3 Ω - j4 Ω = 5 Ω–-53.13° = PT = QT =

= 14.43 A = 3(14.43 A)2 3 Ω = 1874.02 W = 3(14.43 A)2 4 Ω = 2498.7 VAR

PT = 1125 W + 1874.02 W = 2999.02 W QT = 1500 VAR(L) - 2498.7 VAR(C) = 998.7 VAR(C) ST = Fp =

CHAPTER 24

= 3161 VA = 0.949 (leading)

349

44.

a.

=

= 9,237.6 V

c.

b.

IL =

= 80 A

= 400 kW P4Ω = (80 A)24 Ω = 25.6 kW PT = = 3(25.6 kW + 400 kW) = 1276.8 kW

d.

Fp =

, ST =

V LI L =

Fp = e.

= 0.576 lagging

θL = cos-1 0.576 = 54.83° (lagging) fi

IAa =

f.

(16 kV)(80 A) = 2,217.025 kVA

Van = EAN - IAa(4 Ω + j20 Ω) = 9237.6 V –0° - (80 A –-54.83°)(20.396 Ω –78.69°) = 9237.6 V –0° - 1631.68 V –23.86° = 9237.6 V - (1492.22 V + j660 V) = 7745.38 V - j660 V = 7773.45 V –-4.87°

g.

= 97.168 Ω –49.95°

=

Ω + j77.38 Ω = 62.52 ! #"# $ ! #"# $ R XC

45.

h.

Fp(entire system) = 0.576 (lagging) Fp(load) = 0.643 (lagging)

i.

η=

a.

Vf(load) =

b.

350

= 0.9398 fi 93.98%

12, 400 V

=

12, 400 V = 7,159.35 V 1.732

3 PT = 3VfIfcos q PT 2400 kW = If = 3Vf cos q 3(7,159.35 V)(0.6) If = 186.19 A IL = If = 186.19 A

CHAPTER 24

c.



10 Ω



+

+



EAN





46.

d.

EAB =

a.

-

b.

3 EAN =

=

Ef = IfZline + Vf = (186.19 A –-53.13°)(10.05 Ω –84.29°) + 7,159.35 V –0° = 1.871 ¥ 103 V –31.16° + 7,159.35 –0° = 1.6 ¥ 103 V + j0.968 ¥ 103 V + 7,159.35 V = 8.759 ¥ 103 V + j0.968 ¥ 103 V = 8,810 V –6.31°

3 (8,810 V) = 15,259 V

= 10 Ω - j10 Ω = 14.14 Ω–-45°

= 127.02 V,

=

q = cos-1 0.6 fi 53.13° If = 186.19 A –-53.13° Zline = 1 Ω + j10 Ω = 10.05 Ω –84.29°

= 8.98 A = 3(8.98 A)2 10 Ω = 2419.2 W

PT =

Each wattmeter:

= 806.4 W

47.

b.

PT = 5899.64 W, Pmeter = 1966.55 W

48.

a.

-

b.

PT =

c.

0.2 fi

+ Ph = 85 W + 200 W = 285 W

Ph = PT = Ph 49.

-

50.

a.

Iab =

= 0.5 = 200 W = 200 W - 100 W = 100 W

= 20.8 A –0°

E BC 208 V Ð -120° 208 V Ð -120° = = = 14.708 A –-165° R + jX C 10 Ω + j10 Ω 14.142 Ω Ð 45° ECA 208 V Ð 120° 208 V Ð 120° = = Ica = = 14.708 A –165° R - jX C 10 Ω - j10 Ω 14.142 Ω Ð -45° Ibc =

CHAPTER 24

351

51.

b.

IAa + Ica - Iab = 0 IAa = Iab - Ica = 20.8 A –0° - 14.708 A –165° = 20.8 A - (-14.207A + j3.807 A) = 35.007 A - j3.807 A = 35.213 A –-6.207° IBb + Iab - Ibc = 0 IBb = Ibc - Iab = 14.708 A –-165° - 20.8 A –0° = (-14.207 A - j3.807 A) - 20.8 A = -35.007 A - j3.807 A = 35.213 A –-173.79° ICc + Ibc - Ica = 0 ICc = Ica - Ibc = 14.708 A –165° - 14.708 A –-165° = (-14.207 A + j3.807 A) - (-14.207 A - j3.807 A) = 7.614 A –90°

c.

P1 = VacIAa

d.

PT = P1 + P2 = 4.326 kW + 4.327 kW = 8.653 kW

Vca = Vca – θ - 180° = 208 V –120° - 180° = 208 V –-60° IAa = 35.213 A –-6.207° P1 = (208 V)(35.213 A) cos 53.793° = 4.326 kW P2 = VbcIBb Vbc = 208 V –-120° IBb = 35.213 A –-173.79° P2 = (208 V)(35.213 A) cos 53.79° = 4.327 kW

a.

=

b.

Ian =

= 8.49 A

Ibn =

= 7.08 A

Icn =

= 42.47 A

c.

PT =

=

= 120.09 V

10 Ω +

12 Ω +

2



= (8.49 A) 10 Ω + (7.08 A) 12 Ω + (42.47 A)2 2 Ω = 720.80 W + 601.52 W + 3.61 kW = 4.93 kW QT = PT = 4.93 kVAR(L) ST =

352

2

= 6.97 kVA

CHAPTER 24

Fp = d.

= 0.707 (lagging)

Ean = 120.09 V–-30°, Ebn = 120.09 V–-150°, Ecn = 120.09 V–90° = 8.49 A –-75°

Ian =

= 7.08 A –-195°

Ibn =

= 42.47 A –45°

Icn = e.

52.

IN = Ian + Ibn + Icn = 8.49 A –-75° + 7.08 A –-195° + 42.47 A–45° = (2.02 A - j8.20 A) + (-6.84 A + j1.83 A) + (30.30 A + j30.30 A) = 25.66 A - j23.93 A = 35.09 A –-43.00°

Z1 = 12 Ω - j16 Ω = 20 Ω –-53.13°, Z2 = 3 Ω + j4 Ω = 5 Ω –53.13° Z3 = 20 Ω –0° EAB = 200 V–0°, EBC = 200 V –-120°, ECA = 200 V –120° Z Δ = Z 1Z 2 + Z 1Z 3 + Z 2Z 3 = (20 Ω –-53.13°)(5 Ω –53.13°) + (20 Ω –-53.13°)(20 Ω –0°) + (5 Ω –53.13°)(20 Ω –0°) = 100 Ω –0° + 400 Ω –-53.13° + 100 Ω –53.13° = 100 Ω + (240 Ω - j320 Ω) + (60 Ω + j80 Ω) = 400 Ω - j240 Ω = 466.48 Ω –-30.96° E AB Z 3 - E CA Z 2 (200 V Ð 0°)(20 Ω Ð 0°) - (200 V Ð 120°)(5 Ω Ð 53.13°) = Ian = ZD ZD = 10.71 A –29.59°

= Ibn =

E BC Z1 - E AB Z 3 (200 V Ð -120°)(20 Ω Ð -53.13°) - (200 V Ð 0°)(20 Ω Ð 0°) = ZD ZD = 17.12 A –-145.61°

= Icn =

E CA Z 2 - E BC Z1 (200 V Ð 120°)(5 Ω Ð 53.13°) - (200 V Ð -120°)(20 Ω Ð -53.13°) = ZD ZD = 6.51 A –42.32°

=

PT = 12 Ω + 4Ω+ 20 Ω = 1376.45 W + 1172.38 W + 847.60 W = 3396.43 W QT = 16 Ω + 3 Ω = 1835.27 VAR(C) + 879.28 VAR(L) = 955.99 VAR(C) ST =

CHAPTER 24

= 3508.40 VA

353

Fp =

354

= 0.968 (leading)

CHAPTER 24

Chapter 25 1.

I.

II.

2.

I.

II.

a.

positive-going

d.

Amplitude = 12 V

e.

% tilt = 0%

a.

positive-going

b.

-6 V

c.

1 ms

d.

8V

e.

% tilt =

a.

positive-going

b.

4V

c.

1 ms

d.

4V

e.

% tilt =

a.

negative-going

b.

-2 V

c.

3 µs

d.

-6 V

e.

% tilt =

CHAPTER 25

b.

=0V

c.

tp = 2 µs

V1 - V2 ¥ 100% V 8 V + 6 V 14 V V= =7V = 2 2 8V-6V 2 % tilt = ´100% = ¥ 100% = 28.57% 7V 7

V1 - V2 ¥ 100% V 8 V + 7 V 15 V V= = 7.5 V = 2 2 8V-7V 1 % tilt = ¥ 100% = 13.33% ´100% = 7.5 V 7.5

V1 - V2 ¥ 100% V -8 V - 6 V -14 V V= = -7 V = 2 2

355

-8 V - (-7 V) -8 V + 7 V ¥ 100% ´100% = -7 V -7 V -1 V = ¥ 100% = 14.28% -7 V

% tilt =

3.

a.

positive-going

b.

d.

Amplitude = (30 - 10)mV = 20 mV

e.

% tilt = V=

4.

tr tf

5.

tilt =

c.

æ8 ö tp = ç ÷ 4 ms = 3.2 ms è10 ø

= 29 mV ¥ 100%

% tilt =

= 10 mV

6.9%

(0.2 div.)(2 ms/div.) = 0.4 ms (0.4 div.)(2 ms/div.) = 0.8 ms = 0.1 with V =

Substituting V into top equation, = 0.1 leading to V2 =

6.

356

or V2 = 0.905(15 mV) = 13.58 mV

a.

tr = 80% of straight line segment = 0.8(2 µs) = 1.6 µs

b.

tf = 80% of 10 µs interval = 0.8(10 µs) = 8 µs

c.

At 50% level (10 mV) mid-pt. of rise = 1 µs, mid-pt. of fall = 7 µs tp = 7 µs - 1 µs = 6 µs

CHAPTER 25

7.

8.

9.

10.

d.

prf =

= 50 kHz

a.

T = (4.8 - 2.4)div.

c.

Maximum Amplitude: (2.2 div.)(0.2 V/div.) = 0.44 V = 440 mV Minimum Amplitude: (0.4 div.)(0.2 V/div.) = 0.08 V = 80 mV

I.

T = 5 µs 1 1 prf = = 200 kHz = T 5ms tp 2.5 div. Duty cycle = ´100% = ´100% = 50% T 5 div.

II.

T = 4 ms 1 1 prf = = 250 Hz = T 4 ms tp 1 div. Duty cycle = ´100% = ´100% = 25% T 4 div.

I.

T = (6 - 1)ms = 5 ms 1 1 prf = = 200 Hz = T 5 ms tp 1 div. Duty cycle = ´100% = ´100% = 20% T 5 div.

II.

T = (8 - 1)µs = 7 µs 1 1 prf = = 142.86 Hz = T 7 ms tp 3 div. Duty cycle = ´100% = ´100% = 42.86% T 7 div.

b.

f=

= 8.33 kHz

T = (3.6 div.)(2 ms/div.) = 7.2 ms prf =

= 138.89 Hz ¥ 100% = 44.4%

Duty cycle = 11.

= 120 µs

a.

T = (9 - 1)µs = 8 µs

c.

prf =

d.

Vav = (Duty cycle)(Peak value) + (1 - Duty cycle)(Vb)

CHAPTER 25

b.

tp = (3 - 1)µs = 2 µs

= 125 kHz

357

Duty cycle =

= 25%

Vav = (0.25)(6 mV) + (1 - 0.25)(-2 mV) = 1.5 mV - 1.5 mV = 0 V or Vav =

12.

e.

Veff =

I.

Vb = 0 V, Vpeak = 12 V, duty cycle = 0.5 Vav = (duty cycle)(peak value) + (1 - duty cycle)(Vb) = (0.5)(12 V) + (1 - 0.5)(0 V) =6V

14.

2 ms = 0.4 ms/div. 5 div. 10 mV On the vertical: = 2 mV/div. 5 div. T = 6 ms + 3(0.4 ms) = 7.2 ms 1 1 1 (0.8 ms)(20 mV) + (0.8 ms)(18 mV) + (2.4 ms)(18 mV) + (2.4 ms)(2 mV) 2 2 Vav = 2 7.2 ms 8´10 -6 sV + 7.2´10 -6 sV + 4.32´10 -6 sV + 2.4´10 -6 sV = 7.2 ms 60.8´10 -6 / sV = = 8.44 mV 7.2´10 -3 / s On horizontal:

1 1 (2 ms)(20 mV) + (10 ms)(20 mV) 2 2 Gav = 2 ms =

15.

= 3.46 mV

æ1 ö +ç (1 ms)(2 V) - (3 ms)(6 V)÷ 2 ø Vav = è 4 ms 1 msV - 18 msV -17 V = = -4.25 V = 4 ms 4

II.

13.

=0V

20´10 -9 / sV + 100´10 -9 / sV 20´10 -6 / s

=

120´10 -9 V 20´10 -6

= 6 mV

Using methods of Section 13.8: A1 = b1h1 = [(0.2 div.)(50 µs/div.)][(2 div.)(0.2 V/div.)] = 4 µsV A2 = b2h2 = [(0.2 div.)(50 µs/div.)][(2.2 div.)(0.2 V/div.)] = 4.4 µsV

358

CHAPTER 25

A3 = b3h3 = [(0.2 div.)(50 µs/div.)][(1.4 div.)(0.2 V/div.)] = 2.8 µsV A4 = b4h4 = [(0.2 div.)(50 µs/div.)][(1 div.)(0.2 V/div.)] = 2.0 µsV A5 = b5h5 = [(0.2 div.)(50 µs/div.)][(0.4 div.)(0.2 V/div.)] = 0.8 µsV Vav = 16.

= 117 mV

Using the defined polarity of Fig. 24.57 for υC, Vi = -6 V, Vf = +26 V and τ = RC = (8 kΩ)(0.02 µF) = 0.16 ms a.

υC = Vi + (Vf - Vi)(1 - e-t/τ) = -6 + (26 - (-6))(1 - e- t/0.16 ms) = -6 + 32(1 - e-t/0.16 ms) = 26 V - 32 Ve-t/0.16 ms υC = 26 V - 32 Ve- t/0.16 ms

b.

c.

Ii = 0 iC =

d.

20 V − [26 V − 32 Ve−t/0.16 ms] = 4 mAe- t/0.16 ms 8 kΩ

17.

τ = RC = (2 kΩ)(10 µF) = 20 ms Vi = 2 V, Vf = 10 V υC = Vi + (Vf - Vi)(1 - e-t/RC) = 2 V + (10 V - 2 V)(1 - e-t/τ) = 2 V + 8 V(1 - e-t/ t) = 2 V + 8 V - 8 Ve-t/t υC = 10 V - 8e- t/t

18.

Vi = 10 V, Vf = 2 V, τ = RC = (1 kΩ)(1000 µF) = 1 s υC = Vi + (Vf - Vi)(1 - e-t/τ) = 10 V + (2 V - 10 V)(1 - e-t) = 10 - 8(1 - e-t) = 10 - 8 + 8e-t υC = 2 V+ 8 Ve- t

CHAPTER 25

359

19.

Vi = 10 V, Ii = 0 A

Using the defined direction of iC e-t/τ

iC =

τ = RC = (1 kΩ)(1000 µF) = 1 s iC = and iC = -8mAe- t

20.

τ = RC = (5 kΩ)(0.04 µF) = 0.2 ms (throughout) υC = E(1 - e-t/τ) = 20 V(1 - e- t/0.2 ms) (Starting at t = 0 for each plot) a.

T=

= 10 ms

= 5 ms 5τ = 1 ms =

b.

T=

1 æT ö ç ÷ 5 è2 ø = 2 ms

= 1 ms 5τ = 1 ms =

c.

T=

= 0.2 ms

= 0.1 ms

æT ö 5τ = 1 ms = 10ç ÷ è2 ø

360

CHAPTER 25

21.

The mathematical expression for iC is the same for each frequency! τ = RC = (5 kΩ)(0.04 µF) = 0.2 ms = 4 mAe- t/0.2 ms

and iC =

a.

T= 5τ = 5(0.2 ms) = 1 ms =

b.

T=

= 10 ms, 5τ = 1 ms =

c.

T=

= 5 ms

1 æT ö ç ÷ 5 è2 ø

= 0.2 ms,

= 0.1 ms

æT ö 5τ = 1 ms = 10ç ÷ è2 ø 22.

τ = 0.2 ms as above T=

= 2 ms 5τ = 1 ms =



: υC = 20 V(1 - e-t/0.2 ms)

Æ T: Vi = 20 V, Vf = -20 V υC = Vi + (Vf - Vi)(1 - e-t/τ) = 20 + (-20 - 20)(1 - e-t/0.2 ms) = 20 - 40(1 - e-t/0.2 ms) = 20 - 40 + 40e-t/0.2 ms υC = -20 V+ 40 Ve- t/0.2 ms TÆ

: Vi = -20 V, Vf = +20 V υC = Vi + (Vf - Vi)(1 - e-t/τ) = -20 + (20 - (-20))(1 - e-t/τ) = -20 + 40(1 - e-t/τ) = -20 + 40 - 40e-t/τ υC = 20 V - 40 Ve- t/0.2 ms

23.

υC = Vi + (Vf - Vi)(1 - e-t/RC) Vi = 20 V, Vf = 20 V

CHAPTER 25

361

υC = 20 + (20 - 20)(1 - e-t/RC) = 20 V (for 0 Æ

For

)

Æ T, υi = 0 V and υC = 20 Ve- t/τ

τ = RC = 0.2 ms with

For T Æ

= 1 ms and 5τ =

, υi = 20 V

υC = 20 V(1 - e- t/τ) For

Æ 2T, υi = 0 V υC = 20 Ve- t/τ

24.

τ = RC = 0.2 ms 5τ = 1 ms = Vi = -10 V, Vf = +20 V 0Æ

: υC = Vi + (Vf - Vi)(1 - e-t/τ) = -10 + (20 - (-10))(1 - e-t/τ) = -10 + 30(1 - e-t/τ) = -10 + 30 - 30e-t/τ υC = +20 V - 30 Ve- t/0.2 ms

25.

362

Æ T:

Vi = 20 V, Vf = 0 V υC = 20 Ve- t/0.2 ms

1 1 = = 5.31 MΩ 2pfC 2p (10 kHz)(3 pF) (9 MΩ Ð 0°)(5.31 MΩ Ð -90°) Zp = = 4.573 MΩ –-59.5° 9 MΩ - j5.31 MΩ

Z p:

XC =

Z s:

CT = 18 pF + 9 pF = 27 pF 1 1 = XC = = 0.589 MΩ 2pfCT 2p (10 kHz)(27 pF) (1 MΩ Ð 0°)(0.589 MΩ Ð -90°) Zs = = 0.507 MΩ –-59.5° 1 MΩ - j0.589 MΩ

CHAPTER 25

Vscope =

Z sVi (0.507 MΩ Ð -59.5°)(100 V Ð 0°) = Z s + Z p (0.257 MΩ - j0.437 MΩ) + (2.324 MΩ - j3.939 MΩ) = 10 V –0° =

=

(100 V –0°)

= -59.5° 26.

Z p: X C = Zp = Z s:

= 3.333 MΩ

(9 MΩ Ð 0°)(3.333 MΩ) = 3.126 MΩ –-69.68° 9 MΩ - j3.333 MΩ

XC = Zs =

= 0.370 MΩ

(1 MΩ Ð 0°)(0.370 MΩ Ð -90°) = 0.347 MΩ –-69.68° 1 MΩ - j0.370 MΩ

3 Vscope =

Z sVi (0.347 MΩ Ð -69.68°)(100 V Ð 0°) = Z s + Z p (0.121 MΩ - j0.325 MΩ) + (1.086 MΩ - j2.931 MΩ)

= 10 V –0° =

CHAPTER 25

(100 V –0°)

363