Basic business statistics: concepts and applications [13th ed., global edition]
9780321870025, 1292069023, 9781292069029, 0321870026
Basic Business Statisticshelps students see the role statistics will play in their own careers by providing examples dra
489
114
35MB
English
Pages 840 Seiten
[842]
Year 2014;2015
Report DMCA / Copyright
DOWNLOAD PDF FILE
Table of contents :
Cover......Page 1
Title......Page 5
Copyright......Page 6
Contents......Page 11
Preface......Page 21
USING STATISTICS: “You Cannot Escape from Data”......Page 31
GS.1 Statistics: A Way of Thinking......Page 32
GS.2 Data: What Is It?......Page 33
“Big Data”......Page 34
Statistics: An Important Part of Your BusinessEducation......Page 35
Excel and Minitab Guides......Page 36
KEY TERMS......Page 37
EG2. Entering Data......Page 38
EG3. Opening and Saving Workbooks......Page 39
EG5. Printing Worksheets......Page 40
MG3. Opening and Saving Worksheets and Projects......Page 41
MG5. Printing Parts of a Project......Page 42
USING STATISTICS: Beginning of the End … Or the End of the Beginning?......Page 43
Establishing the Variable Type......Page 44
Nominal and Ordinal Scales......Page 45
Interval and Ratio Scales......Page 46
Data Sources......Page 48
Data Formatting......Page 49
Recoding Variables......Page 50
1.4 Types of Sampling Methods......Page 51
Simple Random Sample......Page 52
Cluster Sample......Page 53
1.5 Types of Survey Errors......Page 54
Measurement Error......Page 55
THINK ABOUT THIS: New Media Surveys/Old Sampling Problems......Page 56
USING STATISTICS: Beginning of the End … Revisited......Page 57
KEY TERMS......Page 58
CHAPTER REVIEW PROBLEMS......Page 59
CardioGood Fitness......Page 60
Learning with the Digital Cases......Page 61
EG1.4 Types of Sampling Methods......Page 63
MG1.2 Measurement Scales for Variables......Page 64
MG1.4 Types of Sampling Methods......Page 65
USING STATISTICS: The Choice Is Yours......Page 66
How to Proceed with This Chapter......Page 67
The Summary Table......Page 68
The Contingency Table......Page 69
The Ordered Array......Page 72
The Frequency Distribution......Page 73
The Relative Frequency Distributionand the Percentage Distribution......Page 75
The Cumulative Distribution......Page 77
Stacked and Unstacked Data......Page 79
The Bar Chart......Page 81
The Pie Chart......Page 82
The Pareto Chart......Page 83
The Side-by-Side Bar Chart......Page 85
The Stem-and-Leaf Display......Page 87
The Histogram......Page 89
The Percentage Polygon......Page 90
The Cumulative Percentage Polygon (Ogive)......Page 91
The Scatter Plot......Page 95
The Time-Series Plot......Page 96
2.6 Organizing Many Categorical Variables......Page 98
Obscuring Data......Page 100
Creating False Impressions......Page 101
Chartjunk......Page 102
Guidelines for Constructing Visualizations......Page 104
SUMMARY......Page 105
KEY EQUATIONS......Page 106
CHAPTER REVIEW PROBLEMS......Page 107
Managing Ashland MultiComm Services......Page 112
The Choice Is Yours Follow-Up......Page 113
Clear Mountain State Student Surveys......Page 114
EG2.1 Organizing Categorical Variables......Page 115
EG2.2 Organizing Numerical Variables......Page 117
EG2.3 Visualizing Categorical Variables......Page 119
EG2.4 Visualizing Numerical Variables......Page 121
EG2.6 Organizing Many Categorical Variables......Page 124
MG2.1 Organizing Categorical Variables......Page 125
MG2.3 Visualizing Categorical Variables......Page 126
MG2.4 Visualizing Numerical Variables......Page 128
MG2.6 Organizing Many Categorical Variables......Page 130
USING STATISTICS: More Descriptive Choices......Page 131
The Mean......Page 132
The Median......Page 134
The Mode......Page 135
The Geometric Mean......Page 136
The Range......Page 137
The Variance and the Standard Deviation......Page 138
The Coefficient of Variation......Page 142
Z Scores......Page 143
Shape: Skewness and Kurtosis......Page 144
VISUAL EXPLORATIONS: Exploring Descriptive Statistics......Page 147
Quartiles......Page 150
The Boxplot......Page 154
The Population Mean......Page 157
The Population Variance and Standard Deviation......Page 158
The Empirical Rule......Page 159
The Chebyshev Rule......Page 160
3.5 The Covariance and the Coefficient of Correlation......Page 161
The Covariance......Page 162
The Coefficient of Correlation......Page 163
3.6 Descriptive Statistics: Pitfalls and Ethical Issues......Page 167
SUMMARY......Page 168
KEY EQUATIONS......Page 169
CHECKING YOUR UNDERSTANDING......Page 170
CHAPTER REVIEW PROBLEMS......Page 171
Clear Mountain State Student Surveys......Page 174
EG3.2 Variation and Shape......Page 175
EG3.3 Exploring Numerical Data......Page 176
MG3.5 The Covariance and the Coefficient of Correlation......Page 177
EG3.2 Variation and Shape......Page 178
MG3.5 The Covariance and the Coefficient of Correlation......Page 179
USING STATISTICS: Possibilities at M&R Electronics World......Page 181
4.1 Basic Probability Concepts......Page 182
Events and Sample Spaces......Page 183
Simple Probability......Page 185
Joint Probability......Page 186
Marginal Probability......Page 187
General Addition Rule......Page 188
Computing Conditional Probabilities......Page 191
Decision Trees......Page 193
Independence......Page 195
Multiplication Rules......Page 196
Marginal Probability Using the General Multiplication Rule......Page 197
4.3 Bayes’ Theorem......Page 199
THINK ABOUT THIS: Divine Providence and Spam ......Page 202
4.4 Counting Rules......Page 204
4.5 Ethical Issues and Probability......Page 207
REFERENCES......Page 208
KEY TERMS......Page 209
CHAPTER REVIEW PROBLEMS......Page 210
Clear Mountain State Student Surveys......Page 212
EG4.4 C ounting Rules......Page 213
MG4.4 Counting Rules......Page 214
USING STATISTICS: Events of Interest at Ricknel Home Centers......Page 215
Expected Value of a Discrete Variable......Page 216
Variance and Standard Deviation of a Discrete Variable......Page 217
5.2 Covariance of a Probability Distribution and Its Application in Finance......Page 219
Covariance......Page 220
Portfolio Expected Return and Portfolio Risk......Page 221
5.3 Binomial Distribution......Page 225
5.4 Poisson Distribution......Page 232
5.5 Hypergeometric Distribution......Page 236
REFERENCES......Page 239
KEY TERMS......Page 240
CHAPTER REVIEW PROBLEMS......Page 241
Managing Ashland MultiComm Services......Page 243
Digital Case......Page 244
EG5.3 Binomial Distribution......Page 245
EG5.5 Hypgeometric Distribution......Page 246
MG5.4 Poisson Distribution......Page 247
MG5.5 Hypergeometric Distribution......Page 248
USING STATISTICS: Normal Downloading at MyTVLab......Page 249
6.2 The Normal Distribution......Page 250
Computing Normal Probabilities......Page 252
Finding X Values......Page 257
THINK ABOUT This: What Is Normal?......Page 261
Comparing Data Characteristics to Theoretical Properties......Page 263
Constructing the Normal Probability Plot......Page 265
6.4 The Uniform Distribution......Page 267
6.5 The Exponential Distribution......Page 270
USING STATISTICS: Normal Downloading at MyTVLab, Revisited......Page 272
KEY EQUATIONS......Page 273
CHAPTER REVIEW PROBLEMS......Page 274
Managing Ashland MultiComm Services......Page 275
Clear Mountain State Student Surveys......Page 276
EG6.3 Evaluating Normality......Page 277
MG6.3 Evaluating Normality......Page 278
MG6.5 The Exponential Distribution......Page 279
USING STATISTICS: Sampling Oxford Cereals......Page 280
The Unbiased Property of the Sample Mean......Page 281
Standard Error of the Mean......Page 283
Sampling from Normally Distributed Populations......Page 284
Sampling from Non-normally Distributed Populations—The Central Limit Theorem......Page 287
VISUAL EXPLORATIONS: Exploring Sampling Distributions......Page 291
7.3 Sampling Distribution of the Proportion......Page 292
7.4 Sampling from Finite Populations......Page 295
KEY EQUATIONS......Page 296
CHAPTER 7 MINITAB GUIDE......Page 297
Digital Case......Page 299
EG7.3 Sampling Distribution of the Proportion......Page 300
MG7.3 Sampling Distribution of the Proportion......Page 301
USING STATISTICS: Getting Estimates at Ricknel Home Centers......Page 302
8.1 Confidence Interval Estimate for the Mean (Known)......Page 303
Can You Ever Know the Population StandardDeviation?......Page 308
Student’s t Distribution......Page 309
Properties of the t Distribution......Page 310
The Concept of Degrees of Freedom......Page 311
The Confidence Interval Statement......Page 312
8.3 Confidence Interval Estimate for the Proportion......Page 317
Sample Size Determination for the Mean......Page 320
Sample Size Determination for the Proportion......Page 322
8.5 Confidence Interval Estimation and Ethical Issues......Page 325
USING STATISTICS: Getting Estimates at Ricknel Home Centers, Revisited......Page 326
KEY EQUATIONS......Page 327
CHAPTER REVIEW PROBLEMS......Page 328
Managing Ashland MultiComm Services......Page 331
Digital Case......Page 332
Clear Mountain State Student Surveys......Page 333
EG8.2 Confidence Interval Estimate for the Mean (Unknown)......Page 334
EG8.4 Determining Sample Size......Page 335
MG8.3 Confidence Interval Estimate for the Proportion......Page 336
MG8.4 Determining Sample Size......Page 337
USING STATISTICS: Significant Testing at Oxford Cereals......Page 338
The Null and Alternative Hypotheses......Page 339
The Critical Value of the Test Statistic......Page 340
Risks in Decision Making Using Hypothesis Testing......Page 341
Hypothesis Testing Using the Critical Value Approach......Page 344
Hypothesis Testing Using the p-Value Approach......Page 347
A Connection Between Confidence Interval Estimationand Hypothesis Testing......Page 349
Can You Ever Know the Population StandardDeviation?......Page 350
9.2 t Test of Hypothesis for the Mean (s Unknown)......Page 351
The Critical Value Approach......Page 352
Checking the Normality Assumption......Page 354
The Critical Value Approach......Page 358
The p-Value Approach......Page 359
9.4 Z Test of Hypothesis for the Proportion......Page 362
The Critical Value Approach......Page 363
The p-Value Approach......Page 364
Statistical Significance Versus Practical Significance......Page 366
9.6 Power of a Test (online)......Page 367
REFERENCES......Page 368
CHAPTER REVIEW PROBLEMS......Page 369
Managing Ashland MultiComm Services......Page 371
Sure Value Convenience Stores......Page 372
EG9.2 t Test of Hypothesis for the Mean (Unknown)......Page 373
EG9.4 Z Test of Hypothesis for the Proportion......Page 374
MG9.3 One-Tail Tests......Page 375
MG9.4 Z Test of Hypothesis for the Proportion......Page 376
USING STATISTICS: For North Fork, Are There Different Means to the Ends?......Page 377
Pooled-Variance t Test for the Difference Between TwoMeans......Page 378
Confidence Interval Estimate for the Difference BetweenTwo Means......Page 383
t Test for the Difference Between Two Means, AssumingUnequal Variances......Page 384
Do People Really Do This?......Page 386
10.2 Comparing the Means of Two Related Populations......Page 389
Paired t Test......Page 390
Confidence Interval Estimate for the Mean Difference......Page 395
Z Test for the Difference Between Two Proportions......Page 397
Confidence Interval Estimate for the DifferenceBetween Two Proportions......Page 401
10.4 F Test for the Ratio of Two Variances......Page 403
USING STATISTICS: For North Fork, Are There Different Means to the Ends? Revisited......Page 408
SUMMARY......Page 409
KEY EQUATIONS......Page 410
CHAPTER REVIEW PROBLEMS......Page 411
Managing Ashland MultiComm Services......Page 413
CardioGood Fitness......Page 414
Clear Mountain State Student Surveys......Page 415
EG10.1 Comparing the Means of Two IndependentPopulations......Page 416
EG10.2 Comparing the Means of Two Related Populations......Page 418
EG10.4 f Test for the Ratio of Two Variances......Page 419
MG10.2 Comparing the Means of Two Related Populations......Page 421
MG10.4 F Test for the Ratio of Two Variances......Page 422
USING STATISTICS: The Means to Find Differences at Arlington’s......Page 424
11.1 The Completely Randomized Design: One-WayANOVA......Page 425
Analyzing Variation in One-Way ANOVA......Page 426
F Test for Differences Among More Than Two Means......Page 428
Multiple Comparisons: The Tukey-Kramer Procedure......Page 432
The Analysis of Means (ANOM) (online)......Page 434
Levene Test for Homogeneity of Variance......Page 435
Testing for Factor and Block Effects......Page 440
Multiple Comparisons: The Tukey Procedure......Page 445
11.3 The Factorial Design: Two-Way ANOVA......Page 448
Factor and Interaction Effects......Page 449
Testing for Factor and Interaction Effects......Page 451
Multiple Comparisons: The Tukey Procedure......Page 454
Interpreting Interaction Effects......Page 456
SUMMARY......Page 461
KEY EQUATIONS......Page 462
KEY TERMS......Page 463
CHAPTER REVIEW PROBLEMS......Page 464
Digital Case......Page 467
Clear Mountain State Student Surveys......Page 468
EG11.1 The Completely Randomized Design: One-WayANOVA......Page 470
EG11.2 The Randomized Block Design......Page 472
EG11.3 The Factorial Design: Two-Way ANOVA......Page 473
MG11.1 The Completely Randomized Design: One-WayANOVA......Page 474
MG11.3 The Factorial Design: Two-Way ANOVA......Page 475
USING STATISTICS: Avoiding Guesswork About Resort Guests......Page 477
12.1 Chi-Square Test for the Difference Between TwoProportions......Page 478
12.2 Chi-Square Test for Differences Among More Than TwoProportions......Page 485
The Marascuilo Procedure......Page 488
The Analysis of Proportions (ANOP) (online)......Page 490
12.3 Chi-Square Test of Independence......Page 491
12.4 Wilcoxon Rank Sum Test: A Nonparametric Methodfor Two Independent Populations......Page 497
Assumptions......Page 503
12.6 McNemar Test for the Difference Between TwoProportions (Related Samples) (online)......Page 507
USING STATISTICS: Avoiding Guesswork About Resort Guests, Revisited......Page 508
REFERENCES......Page 509
CHAPTER REVIEW PROBLEMS......Page 510
Managing Ashland MultiComm Services......Page 512
Sure Value Convenience Stores......Page 513
Clear Mountain State Student Surveys......Page 514
EG12.2 Chi-Square Test for Differences Among More Than TwoProportions......Page 516
EG12.4 Wilcoxon Rank Sum Test: a Nonparametric Method forTwo Independent Populations......Page 517
MG12.1 Chi-Square Test for the Difference Between TwoProportions......Page 518
MG12.4 Wilcoxon Rank Sum Test: a Nonparametric method forTwo Independent Populations......Page 519
MG12.5 Kruskal-Wallis Rank Test: a Nonparametric method forthe One-Way ANOVA......Page 520
USING STATISTICS: Knowing Customers at Sunflowers Apparel......Page 521
13.1 Types of Regression Models......Page 522
Simple Linear Regression Models......Page 523
The Least-Squares Method......Page 524
Computing the Y Intercept, b0, and the Slope, b1......Page 527
VISUAL EXPLORATIONS: Exploring Simple Linear Regression Coefficients......Page 530
Computing the Sum of Squares......Page 532
The Coefficient of Determination......Page 533
Standard Error of the Estimate......Page 535
Evaluating the Assumptions......Page 537
Residual Plots to Detect Autocorrelation......Page 541
The Durbin-Watson Statistic......Page 542
13.7 Inferences About the Slope and CorrelationCoefficient......Page 545
t Test for the Slope......Page 546
F Test for the Slope......Page 547
t Test for the Correlation Coefficient......Page 549
The Confidence Interval Estimate for the MeanResponse......Page 553
The Prediction Interval for an Individual Response......Page 554
13.9 Potential Pitfalls in Regression......Page 557
SUMMARY......Page 559
REFERENCES......Page 560
KEY EQUATIONS......Page 561
CHAPTER REVIEW PROBLEMS......Page 562
Brynne Packaging......Page 566
EG13.2 Determining the Simple Linear Regression Equation......Page 568
EG13.5 Residual Analysis......Page 569
EG13.8 Estimation of Mean Values and Prediction of IndividualValues......Page 570
MG13.5 Residual Analysis......Page 571
MG13.8 Estimation of Mean Values and Prediction of IndividualValues......Page 572
USING STATISTICS: The Multiple Effects of OmniPower Bars......Page 573
14.1 Developing a Multiple Regression Model......Page 574
Interpreting the Regression Coefficients......Page 575
Predicting the Dependent Variable Y......Page 577
Adjusted r2......Page 580
Test for the Significance of the Overall MultipleRegression Model......Page 581
14.3 Residual Analysis for the Multiple RegressionModel......Page 583
Tests of Hypothesis......Page 585
Confidence Interval Estimation......Page 586
14.5 Testing Portions of the Multiple Regression Model......Page 588
Coefficients of Partial Determination......Page 592
14.6 Using Dummy Variables and Interaction Termsin Regression Models......Page 593
Dummy Variables......Page 594
Interactions......Page 596
14.7 Logistic Regression......Page 603
14.8 Influence Analysis......Page 608
Cook’s Distance Statistic, Di......Page 609
Comparison of Statistics......Page 610
SUMMARY......Page 611
KEY EQUATIONS......Page 613
CHAPTER REVIEW PROBLEMS......Page 614
Managing Ashland MultiComm Services......Page 617
Digital Case......Page 618
EG14.1 Developing a Multiple Regression Model......Page 619
EG14.3 Residual Analysis for the Multiple RegressionModel......Page 620
EG14.7 Logistic Regression......Page 621
MG14.1 Developing a Multiple Regression Model......Page 622
MG14.4 Inferences Concerning the Population RegressionCoefficients......Page 623
MG14.7 Logistic Regression......Page 624
MG14.8 Influence Analysis......Page 625
USING STATISTICS: Valuing Parsimony at WSTA-TV......Page 626
Finding the Regression Coefficients and Predicting Y......Page 627
Testing for the Significance of the Quadratic Model......Page 629
Testing the Quadratic Effect......Page 630
The Coefficient of Multiple Determination......Page 632
15.2 Using Transformations in Regression Models......Page 634
The Log Transformation......Page 635
15.3 Collinearity......Page 638
15.4 Model Building......Page 639
The Stepwise Regression Approach to Model Building......Page 641
The Best-Subsets Approach to Model Building......Page 642
Steps for Successful Model Building......Page 646
Ethical Issues......Page 648
KEY EQUATIONS......Page 649
CHAPTER REVIEW PROBLEMS......Page 651
Sure Value Convenience Stores......Page 653
More Descriptive Choices Follow-Up......Page 654
EG15.3 Collinearity......Page 655
MG15.1 The Quadratic Regression Model......Page 656
MG15.4 Model Building......Page 657
USING STATISTICS: Principled Forecasting......Page 659
16.2 Component Factors of Time-Series Models......Page 660
16.3 Smoothing an Annual Time Series......Page 661
Moving Averages......Page 662
Exponential Smoothing......Page 664
The Linear Trend Model......Page 667
The Quadratic Trend Model......Page 669
The Exponential Trend Model......Page 671
Model Selection Using First, Second, and PercentageDifferences......Page 673
16.5 Autoregressive Modeling for Trend Fitting andForecasting......Page 677
Selecting an Appropriate Autoregressive Model......Page 678
Determining the Appropriateness of a Selected Model......Page 679
Measuring the Magnitude of the Residuals Through Squaredor Absolute Differences......Page 685
A Comparison of Four Forecasting Methods......Page 686
16.7 Time-Series Forecasting of Seasonal Data......Page 688
Least-Squares Forecasting with Monthly or QuarterlyData......Page 689
USING STATISTICS: Principled Forecasting, Revisited......Page 694
REFERENCES......Page 695
KEY TERMS......Page 696
CHAPTER REVIEW PROBLEMS......Page 697
Digital Case......Page 698
EG16.3 Smoothing an Annual Time Series......Page 699
EG16.5 Autoregressive Modeling for Trend Fitting andForecasting......Page 700
EG16.7 Time-Series Forecasting of Seasonal Data......Page 701
MG16.3 Smoothing an Annual Time Series......Page 702
MG16.7 Time-Series Forecasting of Seasonal Data......Page 703
USING STATISTICS: Finding the Right Lines at WaldoLands......Page 704
17.1 Descriptive Analytics......Page 705
Dashboards......Page 706
Data Discovery......Page 708
17.2 Predictive Analytics......Page 712
17.3 Classification and Regression Trees......Page 713
Regression Tree Example......Page 715
Multilayer Perceptrons......Page 718
17.5 Cluster Analysis......Page 721
17.6 Multidimensional Scaling......Page 723
USING STATISTICS: Finding the Right Lines at Waldolands, Revisited......Page 726
KEY TERMS......Page 727
CHAPTER REVIEW PROBLEMS......Page 728
The Mountain States Potato Company......Page 729
SG17.1 Descriptive Analytics......Page 730
SG17.3 Classification and Regression Trees......Page 734
SG17.4 Neural Networks......Page 735
SG17.6 Multidimensional Scaling......Page 736
USING STATISTICS: Mounting Future Analyses......Page 737
18.1 Analyzing Numerical Variables......Page 739
Determining Whether the Mean and/or Standard DeviationDiffers Depending on the Group......Page 740
18.2 Analyzing Categorical Variables......Page 741
Determining Whether the Proportion of Items of InterestIs Stable Over Time......Page 742
CHAPTER REVIEW PROBLEMS......Page 743
Appendices......Page 745
A.2 Rules for Algebra: Exponents and Square Roots......Page 746
A.3 Rules for Logarithms......Page 747
A.4 Summation Notation......Page 748
A.6 Greek Alphabet......Page 751
B.1 Worksheet Entries and References......Page 752
B.3 Entering Formulas into Worksheets......Page 753
B.5 Basic Worksheet Cell Formatting......Page 754
B.6 Chart Formatting......Page 756
B.8 Deleting the “Extra” Bar from a Histogram......Page 757
B.9 Creating Histograms for Discrete ProbabilityDistributions......Page 758
C.3 Details of Downloadable Files......Page 759
C.4 PHStat......Page 767
D.1 Getting Microsoft Excel Ready for Use (ALL)......Page 768
D.3 Configuring Excel Security for Add-In Usage(WIN)......Page 769
D.4 Opening PHStat (ALL)......Page 770
D.6 Checking for the Presence of the Analysis ToolPakor Solver Add-Ins (ALL)......Page 771
E.1 Table of Random Numbers......Page 772
E.2 The Cumulative Standardized NormalDistribution......Page 774
E.3 Critical Values of t......Page 776
E.4 Critical Values of x2......Page 778
E.5 Critical Values of F......Page 779
E.6 Lower and Upper Critical Values, T1, of theWilcoxon Rank Sum Test......Page 783
E.7 Critical Values of the Studentized Range, Q......Page 784
E.8 Critical Values, dI and dU, of the Durbin–WatsonStatistic, D (Critical Values Are One-Sided)......Page 786
E.9 Control Chart Factors......Page 787
E.10 The Standardized Normal Distribution......Page 788
F.1 Useful Keyboard Shortcuts......Page 789
F.3 New Function Names......Page 790
F.4 Understanding the Nonstatistical Functions......Page 792
G.1 PHStat FAQs......Page 794
G.2 Microsoft Excel FAQs......Page 795
G.4 Minitab FAQs......Page 796
Self-Test Solutions and Answers to SelectedEven-Numbered Problems......Page 797
C......Page 833
D......Page 834
K......Page 835
M......Page 836
P......Page 838
S......Page 840
T......Page 841
Z......Page 842