277 94 7MB
English Pages IX, 150 [158] Year 2020
Springer Series in Chemical Physics 122
Svatopluk Civiš · Ekaterina Zanozina · Adam Pastorek · Petr Kubelík · Martin Ferus · Ashok Chilukoti
Atomic Emission Spectra of Neutral Noble Gases in the Infrared Spectral Range
Springer Series in Chemical Physics Volume 122
Series Editors Jan Peter Toennies, Max Planck Institut für Dynamic und Selbstorganisation, Göttingen, Germany Kaoru Yamanouchi, Department of Chemistry, University of Tokyo, Tokyo, Japan Wolfgang Zinth, Institute für Medizinische Optik, Universität München, München, Germany
The Springer Series in Chemical Physics consists of research monographs in basic and applied chemical physics and related analytical methods. The volumes of this series are written by leading researchers of their fields and communicate in a comprehensive way both the basics and cutting-edge new developments. This series aims to serve all research scientists, engineers and graduate students who seek up-to-date reference books.
More information about this series at http://www.springer.com/series/676
Svatopluk Civiš Ekaterina Zanozina Adam Pastorek Petr Kubelík Martin Ferus Ashok Chilukoti •
•
•
•
•
Atomic Emission Spectra of Neutral Noble Gases in the Infrared Spectral Range
123
Svatopluk Civiš J. Heyrovsky Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague, Czech Republic
Ekaterina Zanozina J. Heyrovsky Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague, Czech Republic
Adam Pastorek J. Heyrovsky Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague, Czech Republic
Petr Kubelík J. Heyrovsky Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague, Czech Republic
Martin Ferus J. Heyrovsky Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague, Czech Republic
Ashok Chilukoti J. Heyrovsky Institute of Physical Chemistry Academy of Sciences of the Czech Republic Prague, Czech Republic
ISSN 0172-6218 ISSN 2364-9003 (electronic) Springer Series in Chemical Physics ISBN 978-3-030-47351-8 ISBN 978-3-030-47352-5 (eBook) https://doi.org/10.1007/978-3-030-47352-5 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
We cannot discover new oceans until we have the courage to lose sight of the shore —Muriel Chen
Preface
Between 2000 and 2005, I visited Japan on several occasions. I worked together with Prof. Kawaguchi on a wide range of projects, one of which was a project focused on the coupling of a high-resolution continuous Fourier Transform interferometer Bruker IFS 120 with pulse laser or pulse discharge sources. In Japan, we used a solid-state Nd:YAG laser on its second harmonic frequency (512 nm) and later, back in Prague, an excimer ArF laser (193 nm). We tested the data acquisition using an SX processor, later using a simpler programmable FPGA system that, in combination with the interferometer, governed the data collection in the proper positions of the moving mirror and their subsequent storage. Hence, we were successful in the construction of a device that added a third dimension—time—to the classic highly resolved spectra. The solution to the acquisition problem was based on the idea of fast data collection, with large amounts of time-shifted data being collected from the detector instead of one single signal. Using this procedure, a set of time-shifted spectra can be obtained, with a laser or discharge pulse placed in the centre. This system creates a unique package of spectra containing information about what happens to the sample and its surface before, during and after the laser or discharge pulse. This system allows us to monitor events that were previously unobservable because of their short lifetime during the fast process of deexcitation after the pulse initiation. Together with Prof. Kawaguchi, we have constructed two unique systems for two equal interferometers, one at the Okayama University, Japan, and the other in Prague at the J. Heyrovský Institute of Physical Chemistry. This book summarizes a series of studies related to noble gases. Some of them have already been published and some are newly introduced. This compilation of measured spectral lines includes some ranges where the spectral information is, so far, completely absent. These are mainly spectra between 5–12 lm where we have successfully measured transitions between highly excited Rydberg states of neutral
vii
viii
Preface
noble-gas atoms. We strongly believe that our spectra will find use in a wide range of scientific areas including calibration standards for experimental physics, theoretical physics or infrared astronomy. Prague, Czech Republic January 2020
Svatopluk Civiš
Acknowledgements I am deeply grateful to Prof. Kentaro Kawaguchi who helped me to implement the time-resolved FTS method in our laboratory in Prague. Without his expertise and selfless help, this atlas would probably never come into existence. I want to thank also Prof. Vladislav Chernov, a great theorist, with whom I have been collaborating for a long time and who developed the methods (based on the Quantum Defect Theory) for the interpretation of our spectra. His codes are used in our group up to this day. I am also grateful to Antonín Knížek and Alan Heays for reading the manuscript and providing valuable comments. This work was supported by the ERDF/ESF “Centre of Advanced Applied Sciences” (grant No. CZ.02.1.01/0.0/0.0/16_019/0000778) and partly also by the Czech Science Foundation within the project reg. no. 18-27653S.
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
2 Experimental Setup and Spectral Analysis . . . . . . . . . . . . . . . . . . . .
3
3 Spectra . . . . 3.1 Helium 3.2 Neon . . 3.3 Argon . 3.4 Krypton 3.5 Xenon .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. 9 . 10 . 23 . 55 . 95 . 125
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
ix
Chapter 1
Introduction
Spectra of the noble gases are among the most widely studied, because they relate to a wide variety of applications. Noble gases commonly appear as inert gases in many laboratory spectral calibration sources, in different types of discharges, astrophysical spectra, emission sources used for photochemistry and in plasmas employed in industrial processing. As a proof of their widespread application, the noble gases are among the most frequently accessed spectra in the Atomic Spectra Database [1] maintained by the Atomic Spectroscopy Data Center at the National Institute of Standards and Technology (NIST). Our research is currently focused on the study of highly-excited (Rydberg) states of neutral noble gases in the infrared spectral domain. This involves precise experimental laboratory measurements together with comprehensive reviews of all published data to select the most reliable values for the energy levels that are consonant with the best spectral data. In 2002, the Atomic Spectroscopy Data Center at NIST recorded high-resolution spectra of Ne, Kr, and Xe between 0.7 and 5.0 µm with the 2 m NIST Fouriertransform spectrometer [2]. These measurements provide new precise wavelengths and relative intensities and resolve questions concerning multiple classification of several lines. However, in light of the great importance of noble-gas spectra and the fact that our spectrometer (Bruker IFS 120 FTS) is a high-resolution instrument ideally suited to observe the time-resolved emission spectra of atomic transitions, we decided to make new additional measurements of the spectra of all noble gases (excluding Rn) in the infrared spectral range from 1 to 14 µm. Comprehensive line lists containing precise wavelengths, reliable energy level classifications, and relative line intensities of these gases in their natural isotopic mixtures have been the main goal of our experimental and theoretical work. In this Atlas, we focus particularly on transitions between excited Rydberg states corresponding to transitions between principal quantum numbers n = 6 − 10. Such spectra belong to the infrared (IR) spectral region (700–1800 cm−1 ), especially to transitions characterized by high orbital quantum numbers l, i.e., f -, g-, h- and i-states. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 S. Civiš et al., Atomic Emission Spectra of Neutral Noble Gases in the Infrared Spectral Range, Springer Series in Chemical Physics 122, https://doi.org/10.1007/978-3-030-47352-5_1
1
2
1 Introduction
In addition, many lines were remeasured over a wide spectral region 700– 7000 cm−1 . In total, 1187 lines of five neutral noble gases (Helium, Neon, Argon, Krypton and Xenon) are compiled in this publication. The data are presented in the form of tables containing the wavenumbers, their uncertainties and line intensities accompanied by charts showing the corresponding range of the spectrum. The wavenumbers listed in the tables are compared to experimental values (if available) recorded by other authors.
Chapter 2
Experimental Setup and Spectral Analysis
All the spectra presented in this atlas were measured with the time-resolved Fouriertransform infrared (FTIR) spectrometer at the Department of Spectroscopy, J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences. The original purpose in constructing time-resolved hardware was to directly observe the excitation and de-excitation of atomic and molecular species as well as follow chemical processes in periodically-excited systems. The first report describing the principle of time-resolved spectrometry with a continuously-scanning interferometer was published by Mantz [3]. This author used novel instrumentation for studying the infrared absorption spectra of transient species generated by flash photolysis. Berg and Sloan [4] developed a compact data acquisition system for sub-microsecond time-resolved FTS and demonstrated its functionality on the gas-phase reaction between O(1 D2 ) atoms and CH4 . Besides flash photolysis, laboratory discharges [5–7] and laser-induced dielectric breakdown plasmas [8] have been used to initiate chemical processes, as well. Nakanaga et al. [9] used a time-resolved high-resolution continuously scanning FTIR method to observe the relaxation of vibrationally-excited CO in a pulseddischarge plasma. Kawaguchi et al. [10] reviewed the technique of time-resolved synchronous FTS with a continuously-scanning mirror and modified a high-resolution Bruker IFS 120 HR interferometer to investigate the time profiles of ArH+ and ArH emission lines in an Ar/H2 pulsed discharge. The same method was later used with an ArF excimer laser as the excitation system [8, 11, 12]. In addition to molecular species, the time-resolved FTIR spectroscopy has been successfully applied also in the spectroscopy of the Rydberg states transitions of various atoms [13–19]. The time evolution of emission lines in our pulsed-discharge plasma is not presented here but we profit by using a time-resolved technique in two ways: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 S. Civiš et al., Atomic Emission Spectra of Neutral Noble Gases in the Infrared Spectral Range, Springer Series in Chemical Physics 122, https://doi.org/10.1007/978-3-030-47352-5_2
3
4
2 Experimental Setup and Spectral Analysis
Fig. 2.1 A diagram of the time-resolved Fourier-transform spectrometer with FPGA microcontroller
1. The time dependence of line intensities distinguishes the emission from multiple species generated in the plasma, which is useful in the assignment procedure. 2. Time-resolution can be used to increase the signal-to-noise ratio of some shortlived spectral lines by limiting data collection to an optimal time slice after the discharge pulse, when weak-line intensities are at their maxima. The experimental setup (Fig. 2.1) used for the measurement of spectra presented in this book is described briefly in this chapter and more details can be found in the literature [7, 14, 20]. The Bruker IFS 120 HR spectrometer is a high resolution, continuously scanning, single-sided acquisition Michelson interferometer with vacuum optics. The commercial system was modified in our laboratory to enable time-resolved data acquisition using the continuous-scanning synchronous method. This approach requires precise time synchronization of the pulse discharge and data sampling at a precisely-controlled optical path difference to obtain high-quality interferograms. These conditions were achieved by a special timing scheme (see Fig. 2.2) controlled by an (Intel) Altera Corporation Field-Programmable Gate Array (FPGA). The obtained data is sorted into the time-shifted interferograms. Samples of noble gases were excited by 22 µs-long discharge pulses at a repetition rate of 10 kHz. The discharges were produced in a 20 cm-long water-cooled glass discharge tube with an inner diameter of 12 mm and KBr or CaF2 windows. A slow
2 Experimental Setup and Spectral Analysis
5
Fig. 2.2 Timing synchronization scheme controlled by the FPGA showing HeNe interference fringes (HeNe digital signal), pulse discharge (Discharge trigger) and the data acquisition (AD trigger) controlled by FPGA. The “AD trigger” refers to the Analog-Digital converter trigger
and continuous flow of the noble gas was regulated to maintain a pressure of 65– 260 Pa in the discharge cell. The water-cooled stainless-steel anode was connected to a high voltage source (typically 1 kV) modulated by a high-voltage transistor switch (model HTS 81, Behlke electronic GmbH, Frankfurt, Germany). The watercooled stainless-steel cathode was grounded. Depending on the sample-dependent resistance of the discharge cell, the peak-to-peak discharge current varied between 0.2 and 0.6 A. The emitted radiation was focused with either a KBr or CaF2 lens into the evacuated interferometer. The total spectral range (700–10 000 cm−1 ) was recorded in several separate measurements. In each of these experiments, different interference band filters were used to increase the signal-to-noise ratio (see Table 2.1). KBr and CaF2 optical elements were used in the spectral range from 700 to 2000 and from 2000 to 10 000 cm−1 respectively. Two detectors—MCT (HgCdTe) and InSb—were needed to cover the whole spectral range. Spectra were recorded with an unapodized resolution of 0.02 cm−1 and a time-resolution of 1–3 µs. Between 32 and 100 scans were co-added for each measurement to further increase the signal-to-noise ratio.
Table 2.1 Single-measurement spectral ranges and instrument configuration Spectral range Filter Serial no. Detector Beam splitter (cm−1 ) specification 700–1000 1000–1250 1250–1600 1600–2000 2000–4000
WBP 3067 WBP 3067 WBP 3067 WBP 3067 LWP 3673
4000–5000 5000–7700
WBP 3834 WBP 4187
— BP-3067-1-1-05 BP-3067-2-1-05 BP-3067-3-1-05 LWP-3673-1-108 BP-3834-1-1-08 BP-4187-1-1-10
MCT MCT MCT InSb InSb
KBr KBr KBr CaF2 CaF2
InSb InSb
CaF2 CaF2
6
2 Experimental Setup and Spectral Analysis
Lines of CO, H2 O, NH3 and CO2 appearing in the spectra as impurities were used for wavenumber calibration, according to high-precision values of molecular rotation-vibration bands taken from HITRAN [21]. The recorded spectra were processed with code developed for this purpose. The measured interferograms were transformed into spectrograms, adopting the NortonBeer-weak apodization function [22] and the Mertz phase correction method [23]. Several time-shifted spectrograms with strong noble gas emission lines were averaged to increase the signal-to-noise ratio. The baseline of the resulting spectrogram was constructed by removing all the spectral lines and fitting the rest of the data with a cubic spline. This baseline was then subtracted from the spectrogram. A list of observed line wavenumbers with uncertainties and intensities are tabulated in Chap. 3. All these values are calculated by fitting a Voigt profile to each line, which under our experimental conditions does not differ significantly from a Lorentzian shape. The spectral resolution of FT spectrometer is given by Δν = 1/δmax , where δmax is the maximum displacement of the moveable mirror. The best resolution of our measurements was of 0.02 cm−1 that corresponds to approximately 1.5–3.5 data points per full width at half maximum (FWHM). The measured wavenumbers were calibrated using absorption lines of different molecular rotation-vibration bands using correction by applying the following formula: (2.1) νcorr = νobs (1 − α) − β, where νcorr are the corrected wavenumbers, νobs are the observed wavenumbers and α and β are parameters obtained by linear fitting of the deviation between the lines’ positions measured in this work and the high-precision wavenumbers taken from the HITRAN database [21] as a function of the wavenumbers. In the Fourier transform spectroscopy theory, the calibration is normally done with the help of (2.1) with β = 0. Such a form is used as an option in Bruker software for the spectra analysis [24, Sect. 8.12, p. 127]. We retained the β term for an account of possible systematic errors which could be due, e.g., to a systematic phase shift in the interferogram [25]. Since the obtained β value is very small, its presence has little effect on the accuracy of our measured wavenumbers. All tabulated wavenumbers were obtained using a fit to a Lorentzian line shape. The fit and the estimation of the corresponding statistical uncertainties can be obtained using any software for data visualization (e.g., Origin) or scientific calculation (e.g., Mathematica). The uncertainties are calculated by adding the statistical and calibration uncertainties in quadrature. The latter are primarily determined by the statistical uncertainties of the calibration factor found from the linear fit of the measured versus the reference wavenumber dependence. To assign transitions between previously unstudied levels we predict line positions from approximate level energies computed from the Rydberg formula assuming small quantum defect of the order of 0.001. The error in this energy-level approximation is rather high, but by calculating the expected line intensities, we can make reliable line classifications. Indeed, it appears that the line identification procedure is impossible
2 Experimental Setup and Spectral Analysis
7
without information on each transitions oscillator strength. Modern ab initio calculations of the necessary matrix elements (see, for example [26] and references therein) use powerful resource-consuming methods that have certain limitations. In particular, they a bit vague the behavior of excited-state wavefunctions, and the energy error for even lowly-excited states is far from spectroscopic accuracy. On the other hand, the methods of the quantum defect theory (QDT) [27, 28], use experimental level energies as input parameters and are well suited for describing Rydberg states with arbitrary orbital quantum number l, including the intermediate-excitation Rydberg states of interest here. Some calculated matrix elements for atomic transitions between high-l Rydberg states were published in our previous works [7, 11–19, 29–36]. The accuracies of matrix elements computed within the QDT approximation are estimated sufficiently well to reliably classify our observed lines. Using QDT predicted line assignments we compute experimental levels from the measured line wavenumbers. For this task we used the LOPT program [37], that performs a least-square level-energy optimization that minimizes a weighted sum of squared “observed minus Ritz” wavenumber differences. We include maximal possible set of line measurements into our optimization. A graphical depiction of all levels contributing to the observed spectra is given at the end of the corresponding section for each atom on Figs. 3.1–3.5.
Chapter 3
Spectra
This atlas compiles 1187 infrared spectral lines arising from five noble gases: He, Ne, Ar, Kr, and Xe. The spectroscopic data included in this atlas are presented in the form of tables accompanied by figures, each detailing a section of the complete spectral region. This structure permits easy reference to our spectra and line assignments with the users spectrogram, and easy reference to the corresponding transition wavenumbers and intensities. The spectral line tables are composed of five columns. The first column denoted “No.” contains a reference line number to the accompanying spectrum. The second column denoted “Wavenumber” gives the spectral line positions obtained from the spectrogram by fitting the line profile function and a literature reference if this data has been published elsewhere. The uncertainty of this value is stated in parentheses (e.g., 808.641(4) corresponds to 808.641 ± 0.004). The values in the third column “Intensity” are relative emission intensities obtained by the line profile fitting with no additional corrections. The spectra were recorded during various experiments with slightly different experimental conditions and were not calibrated with a standard radiometric source. Then, the measured intensities are burdened with error caused by the used optical elements’ transparency and detector sensitivity at the actual wavenumber. Moreover, the low pressure in our discharge plasma, typically about 100 Pa, may be considered as a non-equilibrium environment. Under these conditions, the population distribution of atomic energy levels can be non-Maxwellian and show minor deviations from plasma in local thermodynamic equilibrium (LTE), which in turn leads to slightly different line intensities when compared with an equilibrium plasma. For these reasons, the user should consider these values to be semiquantitative information about the strength of the lines. Only the intensities of lines lying close to each other can be directly compared (being aware of the eventual non-LTE conditions).
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 S. Civiš et al., Atomic Emission Spectra of Neutral Noble Gases in the Infrared Spectral Range, Springer Series in Chemical Physics 122, https://doi.org/10.1007/978-3-030-47352-5_3
9
10
3 Spectra
The fourth column denoted “Identification” describes upper and lower state assignment of all the observed transitions. The notation (including the usage of various angular momentum coupling schemes) follows that adopted in the Atomic Spectral Database of NIST [1]. The last column, “Wavenumber (other works)”, serves for comparison of our measured data with values published in other studies. Each transition table is accompanied by a full-page figure. This figure contains measured spectrograms showing all measured spectral lines, marked with a black dot and a number corresponding to the number in the first column of the following table. In the case where a spectral line appears too close to the figure border, its label appears on the previous or next page. In case the groups of noble gas spectral lines are too close to each other, only the first and last lines are marked and connected by a straight line. This approach has been chosen for better readability only and has no special meaning. Although the experiments were conducted with high-purity gases, there are several lines in the spectrum belonging to contaminant species. These impurities are mainly CO, H2 O, atomic oxygen O I and other noble gases. H2 O gets into the discharge cell through a small leakage, as well as CO2 and O2 which produce CO and O I in the discharge. The spectra of some of these species (H2 O and CO) were used for wavenumber calibration. The spectral lines of the impurities visible in the figure are marked with labels different from those used for the noble-gase tabulated lines. A few lines visible in the spectrum remain unassigned.
3.1 Helium High-resolution spectra of He I within the wavenumber range 800–7000 cm−1 were experimentally observed and analyzed. For part of the measured spectral range we compare the measured lines with linelists from works [38–43]. In most cases, our wavenumbers agree with the previously published measurements within their specified uncertainties. One exception is the 3 p(3 P)–4d(3 D) (∼5879 cm−1 ) multiplet line, which was measured in works [38–40] without resolution of its fine-structure, while 3 p(3 P0 )–4d(3 D1 ) and 3 p(3 P1 )–4d(3 D1,2 ) components are resolved by our time-resolved Fourier-transform technique. Another exception is the 2268.957(8) cm−1 5 p(3 P)–7d(3 D) line reported by Akihiro Kono [42] as 2268.9475 cm−1 . However, the 5 p(3 P)–7d(3 D) multiplet components calculated by Drake [44] are in much better agreement with our new data, which we then favour. It should be mentioned that in all tables we compare measured wavenumbers only, and not with calculated values.
3.1 Helium
11
The scale of tabulated relative intensities only applies within the same spectral range, bearing in mind that different filters, detectors and beamsplitters were used for the measurements in each range: 800–1000, 1000–1200, 1200–1680, 1680–3500, 3500–4100, 4100–5000, 5000–7000 cm−1 . The corresponding configurations of filters, detectors, and beamsplitters are listed in Table 2.1. All energy levels of He I, which are involved in transitions within the studied IR range are shown in Fig. 3.1.
12
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13
No.
Wavenumber (cm−1 ) 808.641(4) 808.686(7) 808.928(7) 810.404(23) 811.097(9) 876.925(12) 884.621(27) 918.934(5) 919.050(2) 1135.414(6) 1172.404(2) 1275.600(4) 1318.310(3)
Intensity (arbitrary units) 2.84E4 1.03E4 6.61E3 1.09E4 9.97E3 7.05E3 8.75E3 2.30E5 1.85E4 3.23E4 2.67E4 1.71E4 2.38E4
6h–7i 6g–7h 6 f –7g 6d(1 D)–7 f (1 F) 6d(3 D)–7 f (3 F) 6 p(3 P)–7d(3 D) 7h–9i 4s(3 S1 )–4 p(3 P1,2 ) 4s(3 S1 )–4 p(3 P0 ) 5 p(3 P)–6s(3 S) 5 p(1 P)–6s(1 S) 5d(3 D)–6 p(3 P) 5 p(1 P)–6d(1 D)
Identification
918.9368(3)/918.9270(3) [41] 919.0463(3) [41]
Wavenumber (other works) (cm−1 )
3.1 Helium 13
14
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
No.
Wavenumber (cm−1 ) 1333.441(17) 1333.511(32) 1338.959(17) 1341.188(3) 1341.601(4) 1344.141(7) 1344.541(4) 1345.273(2) 1459.368(3) 2127.677(10) 2129.826(21) 2129.948(4) 2149.798(19) 2150.236(15) 2152.884(15) 2154.016(8) 2170.801(2) 2268.959(8) 2327.776(4) 2356.227(3) 2425.577(2)
Intensity (arbitrary units) 3.13E4 3.39E4 4.91E3 7.48E5 3.86E5 4.31E4 6.16E5 1.39E5 2.71E4 1.95E3 1.49E4 1.13E5 7.47E4 5.14E4 3.90E3 2.51E4 1.14E5 1.58E4 6.59E6 1.08E5 2.66E5
6h–8i 6g–8h 5 f (3 F2 )–6d(3 D1 ) 5g–6h 5 f –6g 5d(1 D)–6 f (1 D) 3s(1 S0 )–3 p(1 P1 ) 5d(3 D)–6 f (3 D) 5 p(3 P)–6d(3 P) 5 p(1 P)–7d(1 D) 4 p(3 P0 )–5s(3 S1 ) 4 p(3 P1 )–5s(3 S1 ) 5g–7h 5 f –7g 5d(1 D)–7 f (3 F) 5d(3 D)–7 f (3 F) 4 p(1 P1 )–5s(1 S0 ) 5 p(3 P)–7d(3 D) 3s(3 S1 )–3 p(3 P2 ) 4d(3 D) –5 p(3 P) 4 p(1 P1 )–5d(1 D2 )
Identification
2425.59 [45]
2268.9475 [42] 2327.78 [10]
2129.83 [45]
1344.1404(10) [41] 1344.5350(4) [41] 1345.2712(10) [41]
Wavenumber (other works) (cm−1 )
3.1 Helium 15
16
3 Spectra
1 2 3 4 5 6 7 8 9 10
No.
Wavenumber (cm−1 ) 2465.273(11) 2469.734(2) 2474.671(2) 2476.636(2) 2496.004(6) 2699.986(17) 2700.108(2) 3002.235(4) 3502.595(3) 3622.159(6)
Intensity (arbitrary units) 1.51E4 4.77E6 5.75E5 1.75E6 1.22E4 1.34E5 4.90E5 2.32E4 5.00E4 1.86E4
4 f (3 F)–5d(3 D) 4 f –5g 4d(1 D)–5 f (1 F) 4d(3 D)–5 f (3 F) 4d(1 D2 )–5 p(1 P1 ) 4 p(3 P0 )–5d(3 D1 ) 4 p(3 P1,2 )–5d(3 D2,3 ) 4s(1 S0 )–5 p(1 P1 ) 4s(3 S1 )–5 p(3 P0,1 ) 4 p(1 P1 )–6s(1 S0 )
Identification
2469.749(10) [40]
Wavenumber (other works) (cm−1 )
3.1 Helium 17
18
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 3719.079(3) 3748.264(7) 3768.055(3) 3808.263(7) 3810.834(3) 3815.972(7) 3817.937(2) 4334.684(11) 4577.415(11) 4619.479(5) 4624.718(6) 4626.685(3) 4651.196(8) 4730.861(2) 4733.244(24) 4733.543(3) 4857.462(13) 4894.625(10)
Intensity (arbitrary units) 6.33E4 1.99E4 4.86E4 1.21E5 5.54E5 2.11E4 3.21E5 1.76E3 4.21E3 5.72E4 1.16E4 3.97E4 5.35E3 9.15E5 3.54E5 2.60E6 5.27E7 3.54E3
4 p(3 P2 )–6s(3 S1 ) 4 p(3 D)–6 p(3 P) 4 p(1 P)–6d(1 D) 4 f (3 F)–6d(3 D) 4 f –6g 4d(1 D)–6 f (1 F) 4d(3 D)–6 f (3 F) 4s(1 S0 )–6 p(1 P1 ) 4 p(1 P)–7d(1 D) 4 f –7g 4d(1 D)–7 f (1 F) 4d(3 D)–7 f (3 F) 4 p(3 P)–7s(3 S) 3 p(3 P1 )–4s(1 S0 ) 3 p(3 P0 )–4s(3 S1 ) 3 p(3 P1,2 )–4s(3 S1 ) 2s(1 S)–2 p(1 P) 4s(3 S1 )–6 p(3 P)
Identification
4730.862(10) [40], 4730.860 [39] 4733.24(10) [40], 4733.263 [39] 4733.541(10) [40], 4733.547 [39] 4857.454 [39], 4857.43 [43], 4857.55 [38]
Wavenumber (other works) (cm−1 )
3.1 Helium 19
20
3 Spectra
1 2 3 4 5 6 7 8 9 10 11
No.
Wavenumber (cm−1 ) 5102.662(14) 5115.494(5) 5144.327(27) 5151.572(18) 5237.089(3) 5346.922(3) 5350.328(3) 5387.744(4) 5879.623(32) 5879.913(2) 6627.882(3)
Intensity (arbitrary units) 1.72E4 8.63E4 1.35E4 1.19E4 9.83E5 3.33E6 9.63E6 3.78E4 7.95E5 2.59E6 2.01E5
4 p(1 P)–8d(1 D) 3d(3 D)–4 p(3 P) 4 f –8g 4d(3 D)–8 f (3 F) 3 p(1 P1 )–4d(1 D2 ) 3d(1 D2 )–4 f (1 F3 ) 3d(3 D)–4 f (3 F) 3d(1 D2 )–4 p(1 P1 ) 3 p(3 P0 )–4d(3 D1 ) 3 p(3 P1 )–4d(3 D1,2 ) 3s(1 S0 )–4 p(1 P1 )
Identification
5237.084(10) [40], 5237.088 [39] 5346.925(10) [40], 5347.01 [39], 5346.99 [38] 5350.328(10) [40], 5350.15 [39], 5350.39 [38] 5387.752 [39] 5879.67 [38] 5879.894(10) [40], 5879.925 [39], 5879.90 [43], 5879.67 [38] 6627.888(10) [40], 6627.881 [39]
5115.505(10) [40], 5115.49 [39], 5115.48 [43]
Wavenumber (other works) (cm−1 )
3.1 Helium 21
22
3 Spectra
Fig. 3.1 All energy levels of He I, which are involved in transitions within the studied IR range. Blue line depicts the ionization energy
3.2 Neon
23
3.2 Neon In this section, we report on a high resolution Ne I emission spectrum over the 800–7000 cm−1 range recorded in a pulsed discharge plasma. The identification of the lines was performed by comparison with transition probability values calculated using the quantum defect method and was published in [13] in detail. Some of our tabulated Ne I spectral lines are also published by Morillon [46] and in critical compilations by Sansonetti [47]. Within their uncertainty limits, our values agree with the data from the mentioned studies, with the exception of the following cases. In the case of the 5 p–5d multiplet we can compare our values only with some multiplet components measured in 1972 [46]. Given the 0.06 cm−1 measurement resolution in Morillon’s research [46], we consider that his wavenumbers in the 1820–2060 cm−1 range agree with our results. The line at 1930.315 cm−1 can be multiply assigned. Within the given uncertainties, it can be classified as either 5s [1/2]1 –5 p [1/2]0 or 5 p [1/2]1 –5d [3/2]2 transitions, the former being slightly more probable according to our QDT calculation of dipole transition moments. The scale of tabulated relative intensities only applies within the same spectral range, bearing in mind that different filters, detectors and beamsplitters were used for the measurements in each range: 700–930, 930–1280, 1280–1600, 1600–1980, 1980–3400, 3400–4000, 4000–5000, 5000–7600 cm−1 . The corresponding configurations of filters, detectors, and beamsplitters are listed in Table 2.1. All energy levels of Ne I, which are involved in transitions within the studied IR range are shown in Fig. 3.2.
24
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
No.
Wavenumber (cm−1 ) 779.062(10) [13] 807.945(23) [13] 808.091(25) [13] 808.284(13) [13] 808.313(18) [13] 808.559(16) [13] 808.823(14) [13] 809.107(12) [13] 809.344(9) [13] 809.601(8) [13] 810.174(15) [13] 811.437(13) [13] 823.490(8) [13] 829.524(5) [13] 840.198(3) [13] 847.283(3) [13] 850.717(6) [13] 869.570(2) [13] 872.103(4) [13] 872.420(2) [13] 872.537(2) [13] 876.442(2) [13] 879.140(4) [13] 881.261(13) [13]
Intensity (arbitrary units) 2.78E4 1.03E4 6.14E4 5.21E4 1.13E5 3.15E4 4.73E4 1.55E5 4.18E4 4.75E4 2.68E4 1.67E4 5.70E4 3.20E4 3.77E4 7.72E4 2.84E4 9.33E4 5.56E4 4.38E4 1.89E5 3.18E4 3.31E4 1.02E4 4d [3/2]1 –5 p [1/2]0 6 f [7/2]–7g[9/2] 6h[9/2]–7i[11/2] 6h[11/2]–7i[13/2] 6h –7i 6g[7/2]–7h[9/2] 6g –7h 6h[13/2]–7i[15/2] 6h[7/2]–7i[9/2] 6g[11/2]–7h[13/2] 6g[5/2]–7h[7/2] 6 f [9/2]–7g[11/2] 6s[3/2]2 –6 p[1/2]1 6d[7/2]4 –7 f [9/2]4 4d[3/2]1 –5 p[1/2]0 6s[3/2]1 –6 p[5/2]2 6s [1/2]1 –6 p [1/2]1 6s [1/2]1 –6 p [3/2]2 6s[3/2]1 –6 p[3/2]1 6s [1/2]0 –6 p [1/2]1 6s[3/2]2 –6 p[5/2]3 6s[3/2]1 –6 p[3/2]2 6s [1/2]0 –6 p [3/2]1 3d[3/2]1 –4 p[1/2]1
Identification
Wavenumber (other works) (cm−1 )
3.2 Neon 25
26
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
Wavenumber (cm−1 ) 889.986(4) [13] 891.849(9) [13] 910.614(2) [13] 919.146(2) [13] 961.741(7) [13] 965.627(5) 993.701(4) [13] 1008.244(2) [13] 1009.356(9) [13] 1019.193(10) [13] 1029.439(4) [13] 1033.399(6) [13] 1044.236(2) [13] 1045.250(4) [13] 1057.089(4) [13] 1061.280(2) [13] 1061.627(8) [13] 1076.045(8) [13] 1100.159(4) [13] 1103.171(8) [13]
Intensity (arbitrary units) 4.33E4 2.23E4 1.81E5 1.11E5 2.12E4 5.14E3 5.88E4 1.96E4 1.26E4 4.52E3 1.30E4 9.53E3 1.91E4 1.18E4 6.81E3 2.45E4 6.68E3 5.40E3 1.18E4 3.79E3 6s[3/2]2 –6 p[5/2]2 4d[1/2]1 –5 p[1/2]0 3d[3/2]2 –4 p[1/2]1 6s[3/2]2 –6 p[3/2]2 6s [1/2]1 –6 p [1/2]0 3d [3/2]1 –4 p[1/2]0 3d[1/2]1 –4 p[1/2]1 3d[1/2]0 –4 p[1/2]1 6s[3/2]1 –6 p[1/2]0 6 p[3/2]2 –6d[3/2]2 6 p[3/2]2 –6d[5/2]3 6 p[3/2]1 –6d[5/2]2 6 p[5/2]2 –6d[7/2]3 6 p [3/2]2 –6d [5/2]3 6 p [3/2]1 –6d [5/2]2 6 p[5/2]3 –6d[7/2]4 6 p [1/2]1 –6d [3/2]2 6 p[5/2]3 –6d[5/2]3 5 p[1/2]0 –6s[3/2]1 6 p[1/2]1 –6d[1/2]1
Identification
Wavenumber (other works) (cm−1 )
3.2 Neon 27
28
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
Wavenumber (cm−1 ) 1114.852(6) [13] 1129.258(2) [13] 1131.045(2) [13] 1140.799(4) [13] 1199.455(2) [13] 1221.594(3) [13] 1223.446(2) [13] 1237.291(8) [13] 1238.587(4) [13] 1240.364(2) [13] 1248.618(2) [13] 1262.497(5) [13] 1272.047(2) [13] 1272.922(9) [13] 1276.010(2) [13] 1285.081(9) [13] 1287.743(2) [13] 1288.620(2) [13] 1298.428(2) [13] 1299.947(2) [13]
Intensity (arbitrary units) 5.10E3 8.05E4 3.42E3 8.21E3 7.84E4 1.68E4 1.12E4 6.86E3 1.30E4 5.35E5 2.24E5 8.19E3 4.53E4 2.68E3 5.97E4 6.95E3 2.94E5 3.62E4 5.76E5 3.31E4 6 p[1/2]1 –6d[3/2]2 3d[5/2]3 –4 p[5/2]3 3d[5/2]2 –4 p[5/2]3 5 p [1/2]0 –6s [1/2]1 3d[5/2]2 –4 p[5/2]2 3d [3/2]1 –4 p [3/2]1 3d[3/2]2 –4 p[5/2]3 3d [3/2]2 –4 p [3/2]1 3d[7/2]3 –4 p[5/2]3 3d[7/2]4 –4 p[5/2]3 3d [5/2]2 –4 p [3/2]1 3d[3/2]1 –4 p[5/2]2 3d [3/2]1 –4 p [1/2]1 3d [3/2]1 –4 p [3/2]2 5 p[3/2]2 –6s[3/2]2 5 p[3/2]1 –6s[3/2]2 3d [3/2]2 –4 p [1/2]1 3d [3/2]2 –4 p [3/2]2 3d [5/2]3 –4 p [3/2]2 3d [5/2]2 –4 p [3/2]2
Identification
Wavenumber (other works) (cm−1 )
3.2 Neon 29
30
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No.
Wavenumber (cm−1 ) 1306.996(2) [13] 1312.962(2) [13] 1318.712(2) [13] 1327.781(2) [13] 1333.414(2) [13] 1336.904(2) [13] 1338.691(8) [13] 1339.627(4) [13] 1339.810(8) [13] 1340.015(4) [13] 1340.507(10) [13] 1341.071(6) [13] 1341.770(6) [13] 1342.756(5) [13] 1342.810(4) [13] 1343.779(7) [13] 1343.827(8) [13] 1345.895(4) [13] 1347.305(3) [13] 1348.208(12) [13] 1348.916(5) [13] 1349.007(3) [13]
Intensity (arbitrary units) 4.73E5 2.02E5 2.64E4 4.52E4 2.32E4 3.72E5 3.12E3 8.00E4 9.80E3 1.88E5 7.07E4 9.73E4 2.66E5 2.47E5 8.01E4 1.22E5 7.28E4 1.27E5 1.46E4 1.40E4 7.18E4 9.04E4 3d[7/2]3 –4 p[5/2]2 3d[5/2]2 –4 p[3/2]1 5 p[3/2]2 –6s[3/2]1 5 p[3/2]1 –6s[3/2]1 5 p[5/2]2 –6s[3/2]2 3d[5/2]3 –4 p[3/2]2 3d[5/2]2 –4 p[3/2]2 5 f [7/2]–6g[9/2] 5g[11/2, 7/2]–6 f [9/2, 5/2] 5g[9/2]–6h[11/2] 5 f [5/2]–6g[5/2] 5g –6h 5g[7/2]–6h[9/2] 5g[11/2]–6h[13/2] 5 f [5/2]–6g[7/2] 5g[5/2]–6h[7/2] 5 f –6g 5 f [9/2]–6g[11/2] 5 p [1/2]1 –6s [1/2]0 5 f [9/2]–6g[9/2] 5 p [3/2]2 –6s [1/2]1 5 f [3/2]–6g[5/2]
Identification
Wavenumber (other works) (cm−1 )
3.2 Neon 31
32
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
No.
Wavenumber (cm−1 ) 1350.466(2) [13] 1356.114(6) [13] 1356.731(7) [13] 1363.719(7) [13] 1363.749(9) [13] 1365.584(2) [13] 1369.008(2) [13] 1370.261(5) [13] 1370.609(9) [13] 1370.802(7) [13] 1372.118(3) [13] 1372.139(4) [13] 1375.712(3) [13] 1376.005(9) [13] 1376.118(9) [13] 1376.369(3) [13] 1387.328(8) [13] 1405.364(4) [13] 1431.093(2) [13] 1475.178(2) [13] 1502.992(4) [13]
Intensity (arbitrary units) 1.91E4 1.60E4 1.11E4 7.18E3 9.94E3 1.19E5 1.58E4 1.17E4 4.95E3 6.27E3 1.41E4 1.77E4 2.34E4 6.52E4 6.31E4 2.98E4 9.55E3 9.68E3 1.25E5 3.36E4 7.95E3 5 p [3/2]1 –6s [1/2]0 5d[5/2]3 –6 f [7/2]4 5d[5/2]2 –6 f [7/2]3 5d[3/2]1 –6 f [5/2]2 5d [3/2]1 –6 f [5/2]2 5 p[5/2]3 –6s[3/2]2 5 p [1/2]1 –6s [1/2]1 5d [5/2]3 –6 f [7/2]4 5d [5/2]2 –6 f [7/2]3 5d [3/2]2 –6 f [5/2]3 5 p [3/2]1 –6s [1/2]1 5d[3/2]2 –6 f [5/2]3 5d[7/2]3 –6 f [9/2]4 3d[3/2]1 –4 p[3/2]1 5 p[5/2]2 –6s[3/2]1 5d[7/2]4 –6 f [9/2]5 5d[1/2]1 –6 f [3/2]2 3d[3/2]2 –4 p[3/2]1 3d[3/2]2 –4 p[3/2]2 5 p[1/2]1 –6s[3/2]2 3d[1/2]0 –4 p[3/2]1
Identification
Wavenumber (other works) (cm−1 )
3.2 Neon 33
34
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 1514.180(2) [13] 1517.879(5) [13] 1536.681(2) [13] 1621.291(3) [13] 1678.443(2) [13] 1698.944(2) [13] 1702.105(2) [13] 1709.180(4) [13] 1722.198(2) [13] 1726.780(2) [13] 1730.884(2) [13] 1735.849(2) [13] 1749.118(2) [13] 1752.280(2) [13] 1763.053(2) [13] 1764.687(2) [13] 1811.390(2) [13] 1820.459(2) [13]
Intensity (arbitrary units) 2.90E4 6.25E3 2.78E4 7.63E5 5.67E6 2.47E6 3.04E6 8.75E5 1.48E7 9.16E6 2.85E7 5.82E6 6.00E6 5.79E6 8.51E6 6.10E6 2.51E6 2.20E7 3d[1/2]1 –4 p[3/2]2 5 p[1/2]1 –6s[3/2]1 5s[3/2]1 –5 p[1/2]1 5s[3/2]2 –5 p[1/2]1 5s[3/2]1 –5 p[5/2]2 5s [1/2]1 –5 p [3/2]1 5s [1/2]1 –5 p [1/2]1 5 p [1/2]0 –5d [3/2]1 5s [1/2]1 –5 p [3/2]2 5s[3/2]1 –5 p[3/2]1 5s[3/2]2 –5 p[5/2]3 5s[3/2]1 –5 p[3/2]2 5s [1/2]0 –5 p [3/2]1 5s [1/2]0 –5 p [1/2]1 5s[3/2]2 –5 p[5/2]2 3d[3/2]1 –4 p[1/2]0 5s[3/2]2 –5 p[3/2]1 5s[3/2]2 –5 p[3/2]2
Identification
1820.47(6) [46]
Wavenumber (other works) (cm−1 )
3.2 Neon 35
36
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
No.
Wavenumber (cm−1 ) 1839.781(6) [13] 1850.208(2) [13] 1859.925(2) [13] 1868.992(9) [13] 1877.130(3) [13] 1877.425(3) [13] 1878.249(2) [13] 1886.701(2) [13] 1910.226(3) [13] 1910.962(6) [13] 1911.057(3) [13] 1925.758(5) [13] 1930.316(2) [13] 1930.704(2) 1933.479(2) 1933.866(2) [13] 1935.038(2) [13] 1937.390(4) [13] 1940.550(4) [13] 1942.571(2) [13] 1943.227(2) [13] 1949.499(2) [13] 1954.404(2) [13] 1967.824(2) [13]
Intensity (arbitrary units) 7.20E5 1.38E7 4.16E6 4.47E5 4.15E6 2.51E6 9.79E6 6.26E6 1.81E6 1.13E7 1.42E7 3.17E5 1.14E7 3.79E6 2.71E6 4.58E6 3.59E6 8.51E5 8.50E5 1.91E7 5.36E5 5.08E5 8.25E6 4.31E6 5 p[3/2]2 –5d[1/2]1 3d [3/2]1 –4 p [1/2]0 5 p[3/2]2 –5d[3/2]2 5 p[3/2]1 –5d[3/2]2 3d[1/2]1 –4 p[1/2]0 5 p[3/2]1 –5d[3/2]1 5 p[3/2]2 –5d[5/2]3 5 p[3/2]1 –5d[5/2]2 5 p [3/2]2 –5d [3/2]2 5 p [3/2]2 –5d [5/2]3 5 p[5/2]2 –5d[7/2]3 5 p[5/2]2 –5d[3/2]1 5s [1/2]1 –5 p [1/2]0 5 p [1/2]1 –5d [5/2]2 5 p [3/2]1 –5d [3/2]2 5 p [3/2]1 –5d [5/2]2 5 p[5/2]2 –5d[5/2]2 5 p [1/2]1 –5d [3/2]1 5 p [3/2]1 –5d [3/2]1 5 p[5/2]3 –5d[7/2]4 5 p[5/2]3 –5d[7/2]3 5 p[5/2]3 –5d[3/2]2 5s[3/2]1 –5 p[1/2]0 5 p[5/2]3 –5d[5/2]3
Identification
1954.43(6) [46] 1967.90(6) [46]
1942.63(6) [46]
1933.90(6) [46] 1935.06(6) [46]
1930.35(6) [46]
1911.04(6) [46]
1878.28(6) [46] 1886.72(6) [46]
1877.14(6) [46]
1850.21(6) [46] 1859.92(6) [46]
Wavenumber (other works) (cm−1 )
3.2 Neon 37
38
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
No.
Wavenumber (cm−1 ) 2033.515(3) [13] 2038.949(2) [13] 2059.092(3) [13] 2101.338(5) 2116.479(6) 2119.566(8) 2120.447(4) 2151.668(8) 2155.059(9) 2183.550(4) 2198.092(3) 2370.623(2) [13] 2441.319(6) [13] 2441.982(7) [13] 2463.820(3) [13] 2465.213(2) [13] 2467.756(6) [13] 2471.738(3) [13] 2473.434(7) [13] 2473.656(3) [13] 2477.902(2) [13]
Intensity (arbitrary units) 1.00E5 3.16E5 4.26E5 1.01E5 5.47E4 5.47E4 1.53E5 5.88E4 5.86E4 1.45E5 6.00E4 1.27E6 4.75E4 4.11E4 1.44E6 1.22E7 1.64E7 1.05E7 7.55E6 1.01E7 1.79E7 5 p[1/2]1 –5d[1/2]0 5 p[1/2]1 –5d[1/2]1 5 p[1/2]1 –5d[3/2]2 3d[3/2]2 –4 p [3/2]2 3d[7/2]3 –4 p [3/2]2 4 p [3/2]2 –5s[3/2]2 4 p [1/2]1 –5s[3/2]2 5 f [5/2]–7g[7/2] 5 f [9/2]–7g[11/2] 3d[1/2]1 –4 p [1/2]1 3d[1/2]0 –4 p [1/2]1 4 p [1/2]0 –5s [1/2]1 4 f [9/2]5 –5d[7/2]4 4 f [9/2]4 –5d[7/2]3 4 f [7/2]–5g[7/2] 4 f [7/2]–5g[9/2] 4 f [5/2]–5g[5/2] 4 f [5/2]–5g[7/2] 4 f [5/2]–5g [7/2] 4 f [7/2]–5g [9/2] 4 f [9/2]–5g[11/2]
Identification
Wavenumber (other works) (cm−1 ) 2033.50(6) [46] 2038.94(6) [46] 2059.09(6) [46] 2101.3429(6) [47] 2116.4843(8) [47] 2119.5735(5) [47] 2120.4502(3) [47] 2151.675(6) [46] 2155.056(6) [46] 2183.5529(3) [47] 2198.0955(4) [47] 2370.6246(3) [47] 2441.3238(5) [47] 2441.9861(6) [47] 2463.8244(4) [47] 2465.2142(4) [47] 2467.7616(8) [47] 2471.7312(3)/7475(3) [47] 2473.4303(5) [47] 2473.6578(3) [47] 2477.9053(4) [47]
3.2 Neon 39
40
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
No.
Wavenumber (cm−1 ) 2481.891(2) [13] 2484.174(4) [13] 2484.197(6) [13] 2490.293(4) [13] 2491.366(4) [13] 2494.302(6) [13] 2495.360(3) [13] 2503.487(5) [13] 2509.992(2) [13] 2511.478(2) [13] 2511.986(3) [13] 2518.918(4) [13] 2520.796(3) [13] 2521.790(3) [13] 2522.710(3) [13] 2522.795(4) [13] 2527.401(2) [13] 2533.247(2) [13] 2534.353(2) [13] 2541.834(3) [13] 2542.941(3) [13] 2555.139(4) [13] 2562.790(2) [13] 2649.267(4) 2689.452(4)
Intensity (arbitrary units) 1.06E6 6.04E6 5.12E6 6.16E5 4.39E5 2.91E6 2.06E6 4.38E5 1.21E6 1.74E6 1.24E6 5.34E5 1.95E6 2.75E6 1.95E6 6.05E4 2.19E6 3.60E6 4.64E6 3.40E5 4.48E5 1.78E6 5.70E5 1.29E6 3.14E5 4 f [9/2]–5g[9/2] 4 f [3/2]2 –5g[5/2]3 4 f [3/2]1 –5g[5/2]2 4d[5/2]3 –5 f [5/2]3 4d[5/2]2 –5 f [5/2]2 4d[5/2]3 –5 f [7/2]4 4d[5/2]2 –5 f [7/2]3 4d[3/2]1 –5 f [3/2]1 4d [3/2]1 –5 f [5/2]2 4 p[1/2]0 –5s[3/2]1 4d[3/2]1 –5 f [5/2]2 4d[3/2]2 –5 f [3/2]2 4d [3/2]2 –5 f [5/2]3 4d [5/2]3 –5 f [7/2]4 4d [5/2]2 –5 f [7/2]3 4d [5/2]2 –5 f [5/2]2 4d[3/2]2 –5 f [5/2]3 4d[7/2]3 –5 f [9/2]4 4d[7/2]4 –5 f [9/2]5 4d[7/2]3 –5 f [7/2]3 4d[7/2]4 –5 f [7/2]4 4d[1/2]1 –5 f [3/2]2 4d[1/2]0 –5 f [3/2]1 3d[3/2]1 –4 p [1/2]0 4 p [1/2]0 –4d[1/2]1
Identification
2527.4023(3) [47] 2533.2494(3) [47] 2534.3548(3) [47] 2541.8410(3) [47] 2542.9464(3) [47] 2555.1441(5) [47] 2562.7916(5) [47] 2649.2670(3) [47] 2689.4553(3) [47]
Wavenumber (other works) (cm−1 ) 2481.8924(4) [47] 2484.1763(4) [47] 2484.1990(4) [47] 2490.2968(3) [47] 2491.3706(3) [47] 2494.3083(3) [47] 2495.3649(3) [47] 2503.4747(3) [47] 2509.9940(3) [47] 2511.4801(4) [47] 2511.9867(3) [47] 2518.9219(3) [47] 2520.7984(3) [47] 2521.7917(3) [47] 2522.7116(3) [47]
3.2 Neon 41
42
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 2741.103(4) 2761.711(4) 2789.820(2) [13] 2815.550(2) [13] 2874.430(2) [13] 2898.609(2) [13] 2900.160(2) [13] 2929.058(2) [13] 2945.293(12) [13] 2947.907(2) [13] 2948.783(2) [13] 2949.064(2) [13] 2973.649(5) [13] 2983.254(4) 2997.467(2) [13] 2999.238(2) [13] 3013.667(2) [13] 3137.880(3)
Intensity (arbitrary units) 9.40E5 3.03E5 6.63E6 9.35E5 3.33E6 2.07E6 5.23E6 2.99E6 2.80E4 9.47E6 3.62E6 3.52E6 6.00E4 5.21E5 1.19E7 1.78E6 6.22E6 4.97E5 4 p [1/2]0 –4d[3/2]1 3d[1/2]1 –4 p [1/2]0 4 p[3/2]2 –5s[3/2]2 4 p[3/2]1 –5s[3/2]2 4 p[3/2]2 –5s[3/2]1 4 p [1/2]1 –5s [1/2]0 4 p[3/2]1 –5s[3/2]1 4 p[5/2]2 –5s[3/2]2 5 p [3/2]2 –7s[1/2]1 4 p [3/2]2 –5s [1/2]1 4 p [1/2]1 –5s [1/2]1 4 p [3/2]1 –5s [1/2]0 5 p[5/2]3 –7s[3/2]2 4s [1/2]1 –4 p[1/2]1 4 p[5/2]3 –5s[3/2]2 4 p [3/2]1 –5s [1/2]1 4 p[5/2]2 –5s[3/2]1 4s [1/2]0 –4 p[1/2]1
Identification
Wavenumber (other works) (cm−1 ) 2741.1056(5) [47] 2761.7142(1) [47] 2789.8220(3) [47] 2815.5518(4) [47] 2874.4317(3) [47] 2898.6116(4) [47] 2900.1617(3) [47] 2929.0598(4) [47] 2945.2988(5) [47] 2947.9090(3) [47] 2948.7858(4) [47] 2949.0649(4) [47] 2973.6531(7) [47] 2983.2563(3) [47] 2997.4691(4) [47] 2999.2391(3) [47] 3013.6695(4) [47] 3137.8834(4) [47]
3.2 Neon 43
44
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 3224.599(21) [13] 3255.203(4) 3259.946(5) 3263.738(14) [13] 3267.613(3) [13] 3286.692(8) [13] 3292.523(5) 3299.403(6) [13] 3302.956(5) 3303.834(3) 3310.299(2) [13] 3364.494(2) 3369.717(4) 3394.908(2) [13] 3521.876(2) [13] 3574.034(2) [13] 3625.684(2) [13] 3721.883(2) [13]
Intensity (arbitrary units) 5.49E4 3.23E5 1.04E5 4.48E4 3.22E5 4.12E4 9.26E4 1.60E5 6.71E4 2.14E5 3.61E6 3.67E5 7.78E4 7.58E5 1.98E6 3.22E5 2.73E5 4.14E6 5 p[3/2]2 –6d[5/2]3 4 p[1/2]0 –5s [1/2]1 4 p [1/2]1 –4d[1/2]0 5 p [3/2]2 –6d [5/2]3 5 p[5/2]2 –6d[7/2]3 5 p [3/2]1 –6d [5/2]2 4 p [3/2]2 –4d[7/2]3 5 p[5/2]3 –6d[7/2]4 4 p [3/2]2 –4d[3/2]2 4 p [3/2]1 –4d[7/2]2 4 p[1/2]1 –5s[3/2]2 4s [1/2]1 –4 p[5/2]2 4 p [3/2]1 –4d[3/2]1 4 p[1/2]1 –5s[3/2]1 4 p [1/2]0 –4d [3/2]1 4 p[1/2]0 –4d[1/2]1 4 p[1/2]0 –4d[3/2]1 4s[3/2]1 –4 p[1/2]1
Identification
Wavenumber (other works) (cm−1 ) 3224.5953(6) [47] 3255.2059(4) [47] 3259.9497(4) [47] 3263.7385(5) [47] 3267.6408(7) [47] 3286.7009(6) [47] 3292.5295(9) [47] 3299.4043(8) [47] 3302.9613(5) [47] 3303.8385(5) [47] 3310.3011(4) [47] 3364.4977(4) [47] 3369.7197(4) [47] 3394.9108(4) [47] 3521.8778(4) [47] 3574.0363(4) [47] 3625.6865(4) [47] 3721.8850(4) [47]
3.2 Neon 45
46
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
Wavenumber (cm−1 ) 3916.760(2) [13] 3936.987(4) [13] 3962.772(7) [13] 3973.207(2) [13] 4010.312(3) [13] 4014.367(5) [13] 4034.981(3) [13] 4086.362(7) [13] 4087.291(2) [13] 4088.346(7) [13] 4089.220(2) [13] 4100.035(5) [13] 4102.012(2) [13] 4103.124(2) [13] 4122.651(2) [13] 4127.872(8) [13] 4137.696(2) [13] 4139.673(6) [13] 4148.489(2) [13] 4150.490(5) [13]
Intensity (arbitrary units) 1.97E7 9.52E5 7.26E5 4.54E6 7.33E5 1.39E5 5.77E5 1.26E5 2.05E6 1.42E5 1.13E6 2.05E5 2.75E6 5.96E6 2.56E6 7.41E4 2.31E6 1.30E5 1.24E6 2.10E5 4s[3/2]2 –4 p[1/2]1 4 p[3/2]2 –4d[1/2]1 4 p[3/2]1 –4d[1/2]1 4 p[3/2]2 –4d[3/2]2 4 p[3/2]2 –4d[5/2]3 4 p[3/2]1 –4d[3/2]1 4 p[3/2]1 –4d[5/2]2 4 p [3/2]2 –4d [5/2]2 4 p [3/2]2 –4d [5/2]3 4 p [3/2]2 –4d [3/2]2 4 p [1/2]1 –4d [3/2]2 4 p [1/2]1 –4d [3/2]1 4 p[5/2]2 –4d[7/2]3 4s[3/2]1 –4 p[5/2]2 4s [1/2]1 –4 p [3/2]1 4 p[5/2]2 –4d[3/2]1 4 p [3/2]1 –4d [5/2]2 4 p [3/2]1 –4d [3/2]2 4 p[5/2]2 –4d[5/2]2 4 p [3/2]1 –4d [3/2]1
Identification
Wavenumber (other works) (cm−1 ) 3916.7618(4) [47] 3936.9881(5) [47] 3962.7778(3) [47] 3973.2099(5) [47] 4010.3152(5) [47] 4014.3681(5) [47] 4034.9836(5) [47] 4086.3685(5) [47] 4087.2934(5) [47] 4088.3450(5) [47] 4089.2217(5) [47] 4100.0391(5) [47] 4102.0155(5) [47] 4103.1262(5) [47] 4122.6533(5) [47] 4127.8759(5) [47] 4137.6984(5) [47] 4139.6749(5) [47] 4148.4914(5) [47] 4150.4923(5) [47]
3.2 Neon 47
48
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
Wavenumber (cm−1 ) 4169.322(2) [13] 4170.422(3) [13] 4173.104(2) [13] 4173.981(2) [13] 4180.856(4) [13] 4216.632(2) [13] 4217.961(3) [13] 4229.592(2) [13] 4242.362(2) [13] 4277.278(2) [13] 4298.001(2) [13] 4327.731(2) [13] 4411.509(2) [13] 4437.239(2) [13] 4449.798(2) [13] 4457.465(2) [13] 4493.686(2) [13] 4509.114(4) [13] 4605.313(2) [13] 4751.266(2) [13]
Intensity (arbitrary units) 9.65E6 3.23E5 8.32E6 2.18E7 2.34E5 1.80E7 3.68E6 6.33E7 1.46E7 2.80E7 2.28E7 1.51E7 6.03E6 4.05E7 2.37E6 5.47E6 5.49E6 2.73E5 1.23E7 1.11E7 4 p[5/2]3 –4d[7/2]4 4 p[5/2]3 –4d[7/2]3 4s [1/2]1 –4 p [1/2]1 4s [1/2]1 –4 p [3/2]2 4 p[5/2]3 –4d[3/2]2 4s[3/2]1 –4 p[3/2]1 4 p[5/2]3 –4d[5/2]3 4s[3/2]2 –4 p[5/2]3 4s[3/2]1 –4 p[3/2]2 4s [1/2]0 –4 p [3/2]1 4s[3/2]2 –4 p[5/2]2 4s [1/2]0 –4 p [1/2]1 4s[3/2]2 –4 p[3/2]1 4s[3/2]2 –4 p[3/2]2 4 p[1/2]1 –4d[1/2]0 4 p[1/2]1 –4d[1/2]1 4 p[1/2]1 –4d[3/2]2 4 p[1/2]1 –4d[3/2]1 4s[3/2]1 –4 p[1/2]0 4s [1/2]1 –4 p [1/2]0
Identification
Wavenumber (other works) (cm−1 ) 4169.3244(5) [47] 4170.4249(5) [47] 4173.1065(5) [47] 4173.9831(5) [47] 4180.8571(5) [47] 4216.6339(5) [47] 4217.9623(5) [47] 4229.5935(5) [47] 4242.3638(5) [47] 4277.2802(5) [47] 4298.0031(5) [47] 4327.7334(5) [47] 4411.5108(5) [47] 4437.2408(5) [47] 4449.8001(5) [47] 4457.4672(5) [47] 4493.6889(5) [47] 4509.117(1) [47] 4605.3155(5) [47] 4751.2680(5) [47]
3.2 Neon 49
50
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No.
Wavenumber (cm−1 ) 5351.217(6) [13] 5367.615(2) [13] 5369.417(2) [13] 5375.540(2) [13] 5377.321(2) [13] 5411.007(2) [13] 5416.022(6) [13] 5416.047(4) [13] 5426.691(2) [13] 5432.460(2) [13] 5436.271(2) [13] 5436.511(2) [13] 5437.782(2) [13] 5438.041(4) [13] 5445.404(2) [13] 5461.803(2) [13] 5468.183(2) [13] 5469.970(2) [13] 5484.862(3) [13] 5486.648(2) [13] 5528.490(3) [13] 5543.009(2) [13]
Intensity (arbitrary units) 5.11E4 1.75E6 1.21E6 7.35E6 5.13E6 2.48E6 4.88E5 4.90E5 3.95E6 2.30E6 5.01E6 8.45E4 3.64E6 6.21E4 8.91E5 3.35E6 5.12E6 6.55E6 5.41E5 6.71E5 1.71E6 5.92E5 3d[5/2]3 –4 f [3/2]2 3d[5/2]3 –4 f [5/2]3 3d[5/2]2 –4 f [5/2]2 3d[5/2]3 –4 f [7/2]4 3d[5/2]2 –4 f [7/2]3 3d [3/2]1 –4 f [5/2]2 3d[3/2]1 –4 f [3/2]1 3d[3/2]1 –4 f [3/2]2 3d [3/2]2 –4 f [5/2]3 3d[3/2]1 –4 f [5/2]2 3d [5/2]3 –4 f [7/2]4 3d [5/2]3 –4 f [5/2]3 3d [5/2]2 –4 f [7/2]3 3d [5/2]2 –4 f [5/2]2 3d[3/2]2 –4 f [3/2]2 3d[3/2]2 –4 f [5/2]3 3d[7/2]3 –4 f [9/2]4 3d[7/2]4 –4 f [9/2]5 3d[7/2]3 –4 f [7/2]3 3d[7/2]4 –4 f [7/2]4 3d[1/2]1 –4 f [3/2]2 3d[1/2]0 –4 f [3/2]1
Identification
Wavenumber (other works) (cm−1 ) 5351.2167(6) [47] 5367.6161(6) [47] 5369.4181(6) [47] 5375.5419(6) [47] 5377.3221(6) [47] 5411.0081(6) [47] 5416.0382(6) [47] 5416.0382(6) [47] 5426.6921(6) [47] 5432.4618(6) [47] 5436.2722(6) [47] 5436.4996(6) [47] 5437.7835(6) [47] 5438.0319(6) [47] 5445.4048(6) [47] 5461.8050(6) [47] 5468.1842(6) [47] 5469.9711(6) [47] 5484.8639(6) [47] 5486.6486(6) [47] 5528.491(1) [47] 5543.0107(6) [47]
3.2 Neon 51
52
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
No.
Wavenumber (cm−1 ) 5825.257(2) 6068.234(8) [13] 6093.941(6) [13] 6406.775(8) [13] 6470.212(8) [13] 6488.533(4) [13] 6513.647(5) [13] 6563.886(2) 6581.076(7) [13] 6581.221(13) [13] 6603.174(3) [13] 6627.151(5) [13] 6632.055(8) [13] 6670.930(3) [13] 6696.179(8) [13] 6970.548(10) [13]
Intensity (arbitrary units) 1.04E6 7.25E4 1.38E5 3.16E4 5.85E4 2.26E5 1.09E5 6.77E6 2.07E5 5.39E4 2.99E5 4.82E4 1.03E5 4.69E5 5.07E4 5.36E4 3 p [1/2]0 –4s[3/2]1 4 p[5/2]2 –6s[3/2]1 4 p[5/2]3 –6s[3/2]2 4 p[1/2]1 –6s[3/2]2 4 p[3/2]2 –5d[3/2]2 4 p[3/2]2 –5d[5/2]3 4 p[3/2]1 –5d[5/2]2 3 p [1/2]0 –4s [1/2]1 4 p [3/2]2 –5d [5/2]3 4 p [1/2]1 –5d [3/2]2 4 p[5/2]2 –5d[7/2]3 4 p[5/2]2 –5d[5/2]2 4 p [3/2]1 –5d [5/2]2 4 p[5/2]3 –5d[7/2]4 4 p[5/2]3 –5d[5/2]3 4 p[1/2]1 –5d[1/2]1
Identification
Wavenumber (other works) (cm−1 ) 5825.2578(6) [47] 6068.2360(7) [47] 6093.9428(7) [47] 6406.7747(7) [47] 6470.2093(7) [47] 6488.5334(7) [47] 6513.6465(7) [47] 6563.8865(7) [47] 6581.0762(7) [47] 6581.2147(7) [47] 6603.1725(7) [47] 6627.1543(7) [47] 6632.0525(7) [47] 6670.9294(7) [47] 6696.1806(8) [47] 6970.5446(8) [47]
3.2 Neon 53
54
3 Spectra
Fig. 3.2 All energy levels of Ne I, which are involved in transitions within the studied IR range. Blue line depicts the ionization energy
3.3 Argon
55
3.3 Argon The study of the emission spectra of neutral argon in pulsed discharge plasma in the 800–2000 cm−1 range was already published by our group in [48]. In this section we report spectra of Ar I in a wider range (800–7100 cm−1 ). For part of this data set we can compare measured lines with other high-resolution measurements of the Ar I spectrum from works [49, 50]. Within the uncertainty limits, our values agree with the data from previous studies. The only exception is the 2000.2637 cm−1 line reported by [50] to belong to Th II spectrum. The line they observed could possibly be a result of blending of the 5 f 7s 2 2 F7/2 –6d 2 (1 G)7s J = 9/2 transition line in Th II with the 4d [3/2]2 –6 p [1/2]1 transition line in Ar I. The latter line is clearly seen in our spectra at 2000.331 cm−1 (while no Th lines are detected). The scale of tabulated relative intensities only applies within the same spectral range, bearing in mind that different filters, detectors and beamsplitters were used for the measurements in each range: 800–1000, 1000–1200, 1200–1650, 1650–2000, 2000–3500, 3500–4100, 4100–5000, 5000–7100 cm−1 . The corresponding configurations of filters, detectors, and beamsplitters are listed in Table 2.1. All energy levels of Ar I, which are involved in transitions within the studied IR range are shown in Fig. 3.3.
56
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No.
Wavenumber (cm−1 ) 805.041(6) [48] 808.040(33) [48] 808.663(30) [48] 809.275(38) [48] 810.037(18) [48] 810.555(18) [48] 812.020(20) [48] 816.297(15) [48] 818.094(34) [48] 820.665(60) [48] 821.480(12) [48] 864.110(9) [48] 870.701(6) [48] 891.975(12) [48] 895.840(9) [48] 899.810(6) [48] 905.673(15) [48] 922.354(6) [48] 931.873(6) [48] 968.343(3) [48] 972.806(20) [48] 994.301(6) [48]
Intensity (arbitrary units) 3.68E5 1.04E5 8.84E4 6.74E4 1.77E5 9.06E4 1.15E5 1.53E5 2.53E4 9.31E4 7.44E4 1.66E5 7.92E5 9.92E4 1.45E5 6.60E5 6.17E4 2.42E5 1.28E5 8.63E5 7.03E4 5.00E5 4d[5/2]2 –4 f [7/2]3 6h[9/2]–7i[11/2] 6g[9/2]–7h[11/2] 6h –7i 6h[13/2]–7i[15/2] 6h[7/2]–7i[9/2] 6g[11/2]–7h[13/2] 6 p[3/2]2 –5d[3/2]2 6 f [5/2]–7g[7/2] 6 f [9/2]–7g[11/2] 7s[3/2]2 –7 p[3/2]2 6 p[1/2]1 –5d[1/2]1 6 p[5/2]3 –5d[7/2]4 5d[1/2]0 –5 f [3/2]1 6 p [3/2]1 –5d [5/2]2 4d [5/2]3 –4 f [7/2]4 7s[3/2]1 –7 p[1/2]0 6 p [3/2]2 –5d [5/2]3 5d[5/2]3 –7 p[3/2]2 6 p[5/2]2 –5d[7/2]3 5d[5/2]2 –7 p[3/2]1 4d[7/2]3 –4 f [9/2]4
Identification
Wavenumber (other works) (cm−1 )
3.3 Argon 57
58
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No.
Wavenumber (cm−1 ) 1009.144(33) [48] 1018.183(21) [48] 1024.945(9) [48] 1034.230(12) [48] 1035.223(21) [48] 1037.007(15) [48] 1037.043(24) [48] 1043.955(60) [48] 1053.348(12) [48] 1053.695(38) [48] 1059.056(6) [48] 1088.444(52) [48] 1090.299(15) [48] 1164.304(25) [48] 1169.448(30) [48] 1169.730(25) [48] 1183.492(6) [48] 1226.270(9) [48] 1257.030(6) [48] 1274.698(6) [48] 1282.040(6) [48] 1287.574(9) [48]
Intensity (arbitrary units) 2.51E3 3.00E3 6.09E3 8.17E3 2.74E3 4.59E3 2.26E3 2.92E3 7.31E3 1.55E3 8.92E3 1.12E3 3.87E3 3.43E3 1.71E3 3.03E3 7.88E4 7.41E3 4.94E3 1.46E4 1.06E4 8.15E3 6 p[1/2]0 –7s[3/2]1 6 p[1/2]1 –5d[3/2]2 6 p[3/2]1 –5d[5/2]2 4d [5/2]2 –4 f [7/2]3 4d [5/2]–4 f [5/2] 4d[7/2]3 –4 f [7/2]3 4d[7/2]3 –4 f [7/2]4 6 p[1/2]0 –5d[3/2]1 4d [3/2]2 –4 f [5/2]3 4d [3/2]2 –4 f [5/2]2 6 p[3/2]2 –5d[5/2]3 5 p[1/2]0 –4d[1/2]1 6 p[5/2]2 –5d[5/2]2 6 p[5/2]3 –5d[5/2]3 6 p[3/2]2 –7s[3/2]2 5d[7/2]4 –7 p[5/2]3 4d[7/2]4 –4 f [9/2]5 4d[7/2]4 –4 f [7/2]4 6 p[3/2]1 –5d[3/2]1 6 p[5/2]3 –7s[3/2]2 4d[3/2]2 –4 f [3/2]2 6 p[5/2]2 –7s[3/2]1
Identification
Wavenumber (other works) (cm−1 )
3.3 Argon 59
60
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
No.
Wavenumber (cm−1 ) 1308.569(18) [48] 1323.146(6) [48] 1323.458(20) [48] 1339.838(32) [48] 1342.456(15) [48] 1343.961(32) [48] 1344.183(3) [48] 1344.803(6) [48] 1346.776(9) [48] 1349.358(18) [48] 1355.046(30) [48] 1360.875(15) [48] 1361.288(62) [48] 1361.324(42) [48] 1371.329(15) [48] 1385.660(2) [48] 1409.400(12) [48] 1431.641(6) [48] 1439.916(9) [48]
Intensity (arbitrary units) 3.63E3 5.91E4 3.23E3 9.22E3 2.55E4 8.04E3 8.36E3 1.52E4 4.39E4 1.67E4 3.61E3 3.25E3 2.00E4 3.29E4 5.93E3 2.22E4 6.82E3 2.84E4 8.74E3 6s[3/2]1 –6 p[1/2]1 4d[3/2]2 –4 f [5/2]3 4d[3/2]2 –4 f [5/2]2 5g[9/2]–6h[11/2] 5g[7/2]–6h[9/2] 5g [9/2]–6h [11/2] 5g [7/2]–6h [9/2] 5 f [7/2]–6g[9/2] 5g[11/2]–6h[13/2] 5g[5/2]–6h[7/2] 5 f –6g 5 p[3/2]1 –4d[1/2]0 5 f [9/2]4 –6g[11/2]5 5 f [9/2]5 –6g[11/2]6 6 p[1/2]1 –7s[3/2]2 6s[3/2]2 –6 p[1/2]1 4d[3/2]1 –6 p[3/2]1 6s[3/2]1 –6 p[5/2]2 6s [1/2]1 –6 p [1/2]1
Identification
Wavenumber (other works) (cm−1 )
3.3 Argon 61
62
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 1467.807(6) [48] 1473.759(6) [48] 1482.291(3) [48] 1496.995(6) [48] 1500.073(12) [48] 1508.731(9) [48] 1510.454(9) [48] 1513.049(9) [48] 1536.845(6) [48] 1537.257(6) [48] 1574.088(16) [48] 1587.542(3) [48] 1599.324(22) [48] 1676.041(10) [48] 1704.571(15) [48] 1710.069(10) [48] 1723.023(9) [48] 1746.976(20) [48]
Intensity (arbitrary units) 1.36E4 1.45E4 7.08E4 1.72E4 3.06E3 8.51E3 6.49E3 9.93E3 1.93E4 3.34E4 4.33E3 3.41E4 4.12E3 3.47E5 5.63E5 2.51E5 3.97E6 3.02E5 5 p[3/2]2 –4d[1/2]1 6s [1/2]1 –6 p [3/2]2 6s[3/2]2 –6 p[5/2]3 6s[3/2]1 –6 p[3/2]1 5 p[3/2]1 –4d[1/2]1 6s[3/2]2 –6 p[5/2]2 6s[3/2]1 –6 p[3/2]2 6s [1/2]0 –6 p [3/2]1 4d[1/2]1 –4 f [3/2]1 4d[1/2]1 –4 f [3/2]2 6s[3/2]2 –6 p[3/2]1 6s[3/2]2 –6 p[3/2]2 4d[5/2]3 –6 p[5/2]3 4d[1/2]0 –4 f [3/2]1 4d[5/2]3 –6 p[3/2]2 6s[3/2]1 –6 p[1/2]0 5 p[3/2]2 –4d[3/2]2 4d[5/2]2 –6 p[5/2]2
Identification
1704.5679(8) [49] 1710.0644(5) [49] 1723.0187(3) [49] 1746.9721(4) [49]
Wavenumber (other works) (cm−1 )
3.3 Argon 63
64
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
No.
Wavenumber (cm−1 ) 1755.289(10) [48] 1778.619(32) [48] 1798.365(15) [48] 1812.330(10) [48] 1828.936(10) [48] 1852.206(6) [48] 1857.162(20) [48] 1881.600(9) [48] 1907.288(8) [48] 1952.495(15) [48] 1952.976(6) [48] 1978.936(10) [48] 1990.634(10) [48] 1991.405(8) [48] 2079.743(12) 2080.887(3) 2106.998(5) 2120.814(4) 2131.833(5)
Intensity (arbitrary units) 6.10E5 1.10E5 2.75E5 8.82E5 6.81E5 2.57E6 2.86E5 1.43E6 1.44E5 1.93E5 4.05E5 2.29E6 6.25E5 6.95E6 5.31E5 1.06E8 6.01E5 1.38E6 4.16E6 5 p[3/2]1 –4d[3/2]2 4d [3/2]1 –6 p [1/2]0 5s [1/2]0 –5 p[1/2]1 4d[5/2]2 –6 p[3/2]1 4 f [9/2]5 –5d[7/2]4 5 p[1/2]1 –4d[1/2]0 4 f [5/2]3 –5d[3/2]2 4d [5/2]3 –6 p [3/2]2 5 p[5/2]2 –4d[3/2]2 4d[7/2]3 –6 p[5/2]3 4 f [9/2]4 –5d[7/2]3 4d[7/2]3 –6 p[5/2]2 4d [5/2]2 –6 p [3/2]1 5 p[1/2]1 –4d[1/2]1 4 f [7/2]4 –5d[5/2]3 5 p[5/2]3 –4d[7/2]4 4d [3/2]2 –5 f [5/2]3 3d [5/2]3 –5 p[5/2]3 5 p [3/2]2 –4d [3/2]2
Identification
Wavenumber (other works) (cm−1 ) 1755.2831(3) [49] 1778.6263(3) [49] 1798.3588(3) [49], 1798.3612 [50] 1812.3256(3) [49], 1812.3252 [50] 1828.9313(3) [49], 1828.9304 [50] 1852.2026(3) [49], 1852.2032 [50] 1857.1584(3) [49], 1857.1561 [50] 1881.5954(3) [49], 1881.5942 [50] 1907.2839(3) [49], 1907.2837 [50] 1952.4926(3) [49], 1952.4902 [50] 1952.9706(3) [49], 1952.9670 [50] 1978.9326(3) [49], 1978.9311 [50] 1990.6309(3) [49], 1990.6295 [50] 1991.3992(3) [49], 1991.3991 [50] 2079.7502(3) [49] 2080.8897(3) [49] 2106.9917(5) [49] 2120.8171(3) [49] 2131.8359(3) [49]
3.3 Argon 65
66
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
Wavenumber (cm−1 ) 2131.833(5) 2140.997(4) 2141.288(4) 2141.717(8) 2159.413(5) 2162.120(5) 2193.455(5) 2194.189(6) 2196.088(5) 2196.670(7) 2197.209(4) 2208.399(4) 2208.569(5) 2211.581(5) 2213.544(5) 2246.613(5) 2261.239(5) 2270.115(5) 2284.415(4) 2284.806(4)
Intensity (arbitrary units) 4.16E6 7.27E6 9.24E6 6.25E6 8.13E6 8.49E5 7.75E6 5.42E5 4.51E4 8.11E4 5.86E6 8.83E5 1.42E6 1.66E7 6.64E7 2.17E7 1.37E6 1.42E7 4.83E7 1.13E7
5 p [3/2]2 –4d [3/2]2 5 p [1/2]0 –4d [3/2]1 5 p [1/2]1 –4d [3/2]2 4d[7/2]4 –6 p[5/2]3 5 p [1/2]1 –4d [5/2]2 4d[3/2]2 –6 p[1/2]1 5 p [3/2]1 –4d [3/2]2 3d [3/2]2 –5 p[5/2]2 3d [3/2]1 –5 p[1/2]0 5d[7/2]3 –8 p[5/2]2 5 p[1/2]0 –6s[3/2]1 4d[5/2]2 –4 f [7/2]3 5s [1/2]1 –5 p[3/2]2 5 p[3/2]1 –4d [5/2]2 5 p[5/2]2 –4d[7/2]3 5 p[1/2]1 –4d[3/2]2 5 p[3/2]2 –4d[5/2]2 5 p[5/2]3 –4d[7/2]3 5 p [3/2]2 –4d [5/2]3 5 p[1/2]0 –4d[3/2]1
Identification
Wavenumber (other works) (cm−1 ) 2131.8359(3) [49] 2140.9990(3) [49] 2141.2904(3) [49] 2141.7196(3) [49] 2159.4158(3) [49] 2162.1254(3) [49] 2193.4579(3) [49] 2194.1919(3) [49] 2196.0919(3) [49] 2196.7152(8) [49] 2197.2121(3) [49] 2208.4057(3) [49] 2208.5727(3) [49] 2211.5834(3) [49] 2213.5460(3) [49] 2246.6156(3) [49] 2261.2421(3) [49] 2270.1168(3) [49] 2284.4171(3) [49] 2284.8056(3) [49]
3.3 Argon 67
68
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No.
Wavenumber (cm−1 ) 2293.505(4) 2378.454(5) 2382.454(5) 2417.337(5) 2440.403(5) 2445.505(5) 2469.539(5) 2469.591(5) 2473.071(5) 2473.098(8) 2479.380(5) 2479.693(5) 2489.393(7) 2489.707(5) 2493.907(7) 2494.259(5) 2494.981(6) 2495.006(12) 2495.222(5) 2495.260(7) 2499.483(5) 2502.075(5)
Intensity (arbitrary units) 4.01E7 1.12E7 7.58E7 2.62E6 1.79E6 2.89E7 5.21E6 4.26E6 5.23E7 4.60E7 1.92E6 2.86E6 2.05E7 2.29E7 7.20E6 1.11E7 2.73E7 2.31E7 3.52E6 3.31E6 1.65E7 1.34E6
5 p[3/2]1 –4d[5/2]2 3d [3/2]2 –5 p[3/2]2 5 p[3/2]2 –4d[5/2]3 4d[1/2]1 –6 p[1/2]1 4d[7/2]3 –4 f [7/2]4 5 p[5/2]2 –4d[5/2]2 4 f [7/2]4 –5g[7/2]4 4 f [7/2]3 –5g[7/2]3 4 f [7/2]4 –5g[9/2]5 4 f [7/2]3 –5g[9/2]4 4 f [5/2]2 –5g[5/2]2 4 f [5/2]3 –5g[5/2]3 4 f [5/2]2 –5g[7/2]3 4 f [5/2]3 –5g[7/2]4 4 f [5/2]2 –5g [7/2]3 4 f [5/2]3 –5g [7/2]4 4 f [7/2]4 –5g [9/2]5 4 f [7/2]3 –5g [9/2]4 4 f [7/2]4 –5g [9/2]4 4 f [7/2]3 –5g [9/2]4 5 p[3/2]2 –6s[3/2]2 5 p[5/2]3 –4d[5/2]2
Identification
Wavenumber (other works) (cm−1 ) 2293.5068(3) [49] 2378.4572(3) [49] 2382.4561(3) [49] 2417.3418(3) [49] 2440.4078(3) [49] 2445.5073(3) [49] 2469.5656(3) [49] 2469.5987(3) [49] 2473.0739(3) [49] 2473.1102(3) [49] 2479.4116(3) [49] 2479.7056(3) [49] 2489.4120(3) [49] 2489.7220(3) [49] 2493.9253(7) [49] 2494.2737(3) [49] 2494.0047(6) [49] 2495.0047(6) [49] 2495.2332(13) [49] 2495.2332(13) [49] 2499.4868(3) [49] 2502.0780(3) [49]
3.3 Argon 69
70
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 2505.651(7) 2505.700(4) 2510.332(5) 2515.799(5) 2515.847(3) 2520.795(3) 2521.208(7) 2531.748(4) 2542.862(5) 2552.316(5) 2556.534(5) 2566.720(5) 2576.574(5) 2604.484(5) 2605.761(5) 2608.839(5) 2619.218(5) 2623.290(5)
Intensity (arbitrary units) 5.84E7 4.94E7 5.17E6 3.29E6 3.24E6 2.02E7 1.16E7 2.20E6 4.20E6 2.28E6 1.08E6 1.13E7 6.47E6 1.44E6 2.29E5 9.71E6 7.10E5 2.26E7
4 f [9/2]4 –5g[11/2]5 4 f [9/2]5 –5g[11/2]6 3d [5/2]2 –5 p[3/2]1 4 f [9/2]4 –5g[9/2]5 4 f [9/2]5 –5g[9/2]6 4 f [3/2]2 –5g[5/2]3 4 f [3/2]1 –5g[5/2]2 5 p[3/2]1 –6s[3/2]2 5 p [3/2]2 –4d [3/2]1 5 p [1/2]1 –4d [3/2]1 4d[1/2]0 –6 p[1/2]1 5 p[5/2]2 –4d[5/2]3 5 p[3/2]2 –6s[3/2]1 5 p[3/2]1 –4d [3/2]1 4d[1/2]1 –6 p[3/2]1 5 p[3/2]1 –6s[3/2]1 4d[1/2]1 –6 p[3/2]2 5 p[5/2]3 –4d[5/2]3
Identification
Wavenumber (other works) (cm−1 ) 2505.6623(3) [49] 2505.7057(3) [49] 2510.3355(3) [49] 2515.799(5) [49] 2515.8301(3) [49] 2520.8112(3) [49] 2521.2210(3) [49] 2531.7513(3) [49] 2542.8637(1) [49] 2552.3181(3) [49] 2556.5390(3) [49] 2566.7213(3) [49] 2576.5772(3) [49] 2604.4858(3) [49] 2605.7661(3) [49] 2608.8419(3) [49] 2619.2228(3) [49] 2623.2920(3) [49]
3.3 Argon 71
72
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
No.
Wavenumber (cm−1 ) 2689.168(5) 2692.255(5) 2696.434(5) 2701.709(5) 2740.319(5) 2744.057(9) 2744.962(6) 2747.619(5) 2747.969(6) 2753.877(5) 2760.839(5) 2838.638(5) 2860.367(5) 3003.177(6) 3003.593(5) 3016.731(5) 3023.080(5) 3040.563(5) 3061.921(5) 3092.730(5) 3095.407(5)
Intensity (arbitrary units) 5.50E6 1.37E7 2.72E7 8.57E6 5.04E7 5.48E4 8.61E4 6.65E6 3.16E5 8.23E6 2.61E7 2.02E6 3.48E6 1.46E6 1.92E7 2.41E7 2.13E7 7.65E6 7.39E5 8.16E6 1.72E6
5 p [3/2]1 –6s [1/2]0 5 p[3/2]2 –6s [1/2]1 5 p[3/2]1 –4d[3/2]1 5 p [1/2]1 –6s [1/2]1 5 p[5/2]3 –6s[3/2]2 6 p[5/2]2 –8s[3/2]1 4d[1/2]0 –6 p[3/2]1 4d[3/2]2 –4 f [5/2]3 4d[3/2]2 –4 f [5/2]2 5 p[3/2]1 –6s [1/2]1 5 p[5/2]2 –6s[3/2]1 4d[3/2]1 –5 f [3/2]2 4d[3/2]1 –5 f [5/2]2 4d[1/2]1 –4 f [5/2]2 3d[3/2]1 –5 p[3/2]1 5s[3/2]1 –5 p[1/2]1 5 p[1/2]1 –6s[3/2]2 3d [3/2]1 –5 p[3/2]1 5 p [1/2]0 –5d[1/2]1 3d [3/2]1 –5 p [1/2]1 4 p [1/2]0 –3d[1/2]1
Identification
Wavenumber (other works) (cm−1 ) 2689.1726(3) [49] 2692.2580(3) [49] 2696.4354(3) [49] 2701.7123(3) [49] 2740.3226(3) [49] 2744.0525(9) [49] 2744.9632(3) [49] 2747.6223(3) [49] 2747.9691(3) [49] 2753.8798(3) [49] 2760.8424(3) [49] 2838.6384(3) [49] 2860.3627(3) [49] 3003.1852(3) [49] 3003.5961(3) [49] 3016.7344(3) [49] 3023.0838(3) [49] 3040.5660(3) [49] 3061.9268(3) [49] 3092.7336(3) [49] 3095.4093(3) [49]
3.3 Argon 73
74
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 3100.170(5) 3102.185(5) 3125.514(4) 3129.634(5) 3141.841(5) 3151.809(5) 3191.517(5) 3226.198(5) 3263.299(5) 3272.992(5) 3282.768(5) 3356.062(5) 3382.226(4) 3415.222(5) 3417.294(5) 3432.408(5) 3435.420(5) 3449.559(5)
Intensity (arbitrary units) 3.50E6 8.43E5 9.61E5 1.02E6 1.13E6 5.69E6 1.07E8 1.10E7 7.74E5 4.24E6 7.64E6 1.42E8 2.57E6 1.00E7 4.96E6 3.20E7 2.78E6 1.38E6
5 p[1/2]1 –6s[3/2]1 3d [3/2]1 –5 p[3/2]2 4d [3/2]1 –5 f [5/2]2 4d[5/2]3 –5 f [9/2]4 4d[5/2]3 –5 f [5/2]3 4d[5/2]3 –5 f [7/2]4 5s[3/2]2 –5 p[1/2]1 3d[5/2]3 –5 p[5/2]3 4d[5/2]2 –5 f [5/2]2 4d[5/2]2 –5 f [7/2]3 3d[5/2]3 –5 p[5/2]2 5s[3/2]1 –5 p[5/2]2 4d [5/2]3 –5 f [7/2]4 3d[3/2]1 –5 p[1/2]0 5 p[3/2]2 –4d [3/2]2 5s [1/2]1 –5 p[3/2]1 5 p[3/2]2 –4d [5/2]2 5 p[3/2]1 –4d [3/2]2
Identification
Wavenumber (other works) (cm−1 ) 3100.1742(3) [49] 3102.1880(3) [49] 3125.5136(4) [49] 3129.6340(3) [49] 3141.8337(4) [49] 3151.7997(3) [49] 3191.5209(3) [49] 3226.2014(3) [49] 3263.2924(6) [49] 3272.9837(3) [49] 3282.7720(3) [49] 3356.0661(3) [49] 3382.2227(3) [49] 3415.2255(3) [49] 3417.2967(3) [49] 3432.4115(3) [49] 3435.4222(3) [49] 3449.5614(3) [49]
3.3 Argon 75
76
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
No.
Wavenumber (cm−1 ) 3467.034(5) 3474.278(5) 3482.809(5) 3484.576(5) 3494.030(5) 3504.048(5) 3508.063(5) 3516.648(6) 3518.189(5) 3530.849(3) 3540.328(4) 3545.791(4) 3573.360(5) 3597.959(5) 3617.853(10) 3619.684(5) 3627.309(5) 3647.111(5) 3654.461(5)
Intensity (arbitrary units) 4.98E7 2.58E8 4.57E6 2.78E7 1.00E8 3.82E6 7.76E7 8.33E5 2.93E5 2.96E7 2.67E7 2.25E7 6.22E6 6.98E6 2.24E5 1.90E5 1.10E6 1.53E7 2.51E7
3d[5/2]3 –5 p[3/2]2 5s[3/2]2 –5 p[5/2]3 4d[7/2]3 –5 f [9/2]4 5s [1/2]1 –5 p [1/2]1 5s [1/2]1 –5 p [3/2]2 3d [3/2]1 –5 p [1/2]0 5s[3/2]1 –5 p[3/2]1 4d [5/2]2 –5 f [7/2]3 4d [5/2]2 –5 f [5/2]3 5s[3/2]2 –5 p[5/2]2 5s[3/2]1 –5 p[3/2]2 5s [1/2]0 –5 p [3/2]1 3d[5/2]2 –5 p[5/2]2 5s [1/2]0 –5 p [1/2]1 5 p[3/2]2 –5d[3/2]2 4 f [3/2]2 –6d[3/2]2 4 f [3/2]1 –5d [3/2]1 3d [5/2]3 –5 p[3/2]2 3d [3/2]2 –5 p [1/2]1
Identification
Wavenumber (other works) (cm−1 ) 3467.0373(3) [49] 3474.2819(64) [49] 3482.8101(3) [49] 3484.5791(3) [49] 3494.0335(3) [49] 3504.0525(3) [49] 3508.0666(3) [49] 3516.6474(3) [49] 3518.1904(8) [49] 3530.8526(3) [49] 3540.3313(3) [49] 3545.7945(3) [49] 3573.3636(3) [49] 3597.9620(3) [49] 3617.8589(3) [49] 3619.6875(3) [49] 3627.3130(3) [49] 3647.1139(3) [49] 3654.4636(3) [49]
3.3 Argon 77
78
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
No.
Wavenumber (cm−1 ) 3663.915(5) 3672.002(5) 3676.253(7) 3682.850(5) 3691.094(6) 3694.217(6) 3715.115(5) 3725.361(5) 3754.142(5) 3757.626(4) 3766.436(5) 3779.793(5) 3801.276(20) 3810.712(5) 3812.724(41) 3828.058(5) 3828.325(13) 3830.456(30) 3830.791(9)
Intensity (arbitrary units) 2.23E6 6.94E6 5.81E4 2.15E7 1.59E5 3.49E5 1.31E8 2.96E7 8.61E5 2.65E6 2.59E7 2.65E5 1.20E5 1.15E6 8.63E5 3.23E6 5.83E5 4.45E5 6.60E5
3d [3/2]2 –5 p[3/2]2 4d[7/2]4 –5 f [9/2]4 5 p[5/2]3 –4d [5/2]2 5s[3/2]2 –5 p[3/2]1 5 p[3/2]2 –5d[7/2]3 4d[7/2]4 –5 f [7/2]4 5s[3/2]2 –5 p[3/2]2 3d[5/2]2 –5 p[3/2]1 5 p[5/2]2 –4d [5/2]3 3d[5/2]2 –5 p[3/2]2 4 f [5/2]2 –6d[3/2]1 4d[3/2]2 –5 f [3/2]2 4d[3/2]2 –5 f [5/2]3 5 p[5/2]3 –4d [5/2]3 4 f [7/2]3 –6g[9/2]4 3d [5/2]2 –5 p[3/2]2 5 p[3/2]2 –4d [3/2]1 4 f [5/2]2 –6g[7/2]3 4 f [5/2]3 –6g[7/2]4
Identification
Wavenumber (other works) (cm−1 ) 3663.9180(3) [49] 3671.9998(3) [49] 3676.2657(3) [49] 3682.8532(3) [49] 3691.0920(3) [49] 3694.2020(10) [49] 3715.1178(3) [49] 3725.3642(3) [49] 3754.1430(3) [49] 3757.6289(3) [49] 3766.4389(3) [49] 3779.7932(3) [49] 3801.2718(3) [49] 3810.7137(3) [49] 3812.7985(51) [49] 3828.0610(3) [49] 3828.3245(3) [49] 3830.5014(106) [49] 3830.7906(18) [49]
3.3 Argon 79
80
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
No.
Wavenumber (cm−1 ) 3849.816(11) 3866.389(12) 3866.808(14) 3874.658(6) 3895.895(5) 3904.972(6) 3919.693(6) 3922.398(6) 3940.887(6) 3945.266(10) 3978.968(5) 4163.231(6) 4171.348(5) 4173.882(19) 4182.140(6) 4192.599(5) 4203.849(33)
Intensity (arbitrary units) 3.56E6 6.33E5 2.55E5 8.67E4 2.52E7 1.25E5 3.45E7 1.05E7 1.04E5 2.78E5 5.67E7 1.83E5 2.11E7 5.83E4 1.57E5 4.04E7 9.29E4
4 f [9/2]4 –6g[11/2]5 4 f [3/2]2 –6g[5/2]3 4 f [3/2]1 –6g[5/2]2 5 p[3/2]1 –5d[5/2]2 5s [1/2]1 –5 p [1/2]0 4d [5/2]3 –7 p [3/2]2 5s[3/2]1 –5 p[1/2]0 3d[7/2]3 –5 p[5/2]3 5 p[1/2]1 –4d [3/2]2 5 p[3/2]1 –6s [1/2]0 3d[7/2]3 –5 p[5/2]2 3d[7/2]3 –5 p[3/2]2 4 p [1/2]1 –3d[1/2]0 4d[1/2]0 –5 f [3/2]1 4d[7/2]4 –7 p[5/2]3 3d[7/2]4 –5 p[5/2]3 4d[3/2]1 –6 f [5/2]2
Identification
Wavenumber (other works) (cm−1 ) 3849.8042(8) [49] 3866.4002(26) [49] 3866.8038(36) [49] 3874.6649(3) [49] 3895.8981(3) [49] 3904.9717(6) [49] 3919.6961(3) [49] 3922.4009(3) [49] 3940.8940(3) [49] 3945.2764(3) [49] 3978.9716(3) [49] 4163.2368(3) [49] 4171.3499(3) [49] 4173.8640(5) [49] 4182.1415(3) [49] 4192.6019(3) [49] 4203.8383(75) [49]
3.3 Argon 81
82
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
No.
Wavenumber (cm−1 ) 4321.610(6) 4351.920(6) 4369.878(8) 4436.604(6) 4485.331(12) 4492.202(19) 4501.312(6) 4521.068(6) 4528.326(6) 4536.056(6) 4613.388(14) 4642.506(3) 4686.318(3) 4729.180(39) 4749.254(9) 4752.496(5)
Intensity (arbitrary units) 5.86E7 9.19E5 7.83E4 2.81E5 5.04E4 3.46E5 9.34E4 3.12E6 5.38E7 1.34E7 2.15E5 5.21E7 1.08E7 9.24E4 8.71E4 1.17E6
4 p [1/2]1 –3d[1/2]1 5 p[1/2]1 –4d [3/2]1 5 p[1/2]0 –5d[1/2]1 5 p[1/2]1 –6s [1/2]0 4d[5/2]3 –6 f [5/2]3 4d[5/2]3 –6 f [7/2]4 5 p[1/2]1 –6s [1/2]1 3d[3/2]2 –5 p[1/2]1 4 p [3/2]2 –3d[1/2]1 4 p [3/2]1 –3d[1/2]0 4d[5/2]2 –6 f [7/2]3 4 p [1/2]1 –3d[3/2]2 4 p [3/2]1 –3d[1/2]1 4d [5/2]3 –6 f [7/2]3 5 p[3/2]2 –5d[1/2]1 3d[5/2]3 –5 p [3/2]2
Identification
4642.5082(3) [49] 4686.3198(3) [49] 4729.1871(45) [49] 4749.2522(3) [49] 4752.4982(3) [49]
Wavenumber (other works) (cm−1 ) 4321.6119(3) [49] 4351.9215(3) [49] 4369.8870(3) [49] 4436.6086(3) [49] 4485.2981(166) [49] 4492.1761(55) [49] 4501.3157(3) [49] 4521.0712(3) [49] 4528.3284(3) [49] 4536.0578(3) [49]
3.3 Argon 83
84
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
No.
Wavenumber (cm−1 ) 4763.755(5) 4803.830(5) 4821.362(5) 4821.779(5) 4825.791(6) 4833.790(19) 4841.964(5) 4849.222(5) 4860.399(6) 4863.185(6) 4913.320(6) 4916.414(9) 4920.639(5) 4981.465(5) 4991.121(5) 4992.227(5) 5000.572(6)
Intensity (arbitrary units) 9.50E7 6.44E6 8.33E5 6.40E6 6.36E5 3.18E5 9.24E6 1.52E8 2.85E6 9.02E4 3.86E4 3.69E4 1.02E7 1.02E6 7.38E5 1.82E6 9.82E4
4 p[1/2]0 –3d[1/2]1 3d[3/2]2 –5 p[5/2]3 3d [3/2]1 –4 f [3/2]1 3d [3/2]1 –4 f [3/2]2 5s[3/2]1 –5 p [3/2]2 4d[7/2]3 –6 f [9/2]4 3d[1/2]1 –5 p[1/2]1 4 p [3/2]2 –3d[3/2]2 3d[3/2]2 –5 p[5/2]2 3d [3/2]1 –4 f [5/2]2 5 p [1/2]1 –5d [3/2]2 5 p[1/2]0 –7s[3/2]1 4 p [1/2]0 –5s[3/2]1 3d[5/2]2 –5 p [3/2]1 5s[3/2]2 –5 p [1/2]1 3d[1/2]0 –5 p[1/2]1 5s[3/2]2 –5 p [3/2]2
Identification
Wavenumber (other works) (cm−1 ) 4763.7568(3) [49] 4803.8323(3) [49] 4821.3722(3) [49] 4821.7833(3) [49] 4825.7921(3) [49] 4833.7383(43) [49] 4841.9676(3) [49] 4849.2246(3) [49] 4860.4029(3) [49] 4863.1981(3) [49] 4913.3272(10) [49] 4916.4170(6) [49] 4920.6418(3) [49] 4981.4677(3) [49] 4991.1242(3) [49] 4992.2295(3) [49] 5000.5785(4) [49]
3.3 Argon 85
86
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
No.
Wavenumber (cm−1 ) 5007.215(6) 5044.666(6) 5333.301(5) 5365.563(6) 5383.510(6) 5385.230(6) 5407.815(12) 5424.614(5) 5425.111(6) 5427.973(6) 5580.474(6) 5580.507(8) 5589.074(10) 5608.880(5) 5730.648(11) 5730.769(5)
Intensity (arbitrary units) 1.96E5 3.70E5 9.07E4 1.95E5 1.45E5 1.25E5 4.55E4 4.44E5 8.76E5 2.53E5 2.38E6 1.32E6 3.67E4 1.88E5 7.79E4 6.44E5
4 p [3/2]1 –3d[3/2]2 3d[3/2]2 –5 p[3/2]2 3d[1/2]1 –5 p[3/2]1 3d[1/2]1 –5 p[3/2]2 3d [3/2]2 –4 f [3/2]2 3d [5/2]3 –4 f [9/2]4 3d [5/2]3 –4 f [5/2]3 3d [3/2]2 –4 f [5/2]3 3d[3/2]1 –4 p [1/2]0 3d [5/2]3 –4 f [7/2]4 4 p[3/2]2 –3d[1/2]1 4 p[3/2]1 –3d[1/2]0 3d [5/2]2 –4 f [5/2]2 3d [5/2]2 –4 f [7/2]3 4 p [3/2]2 –3d[7/2]3 4 p[3/2]1 –3d[1/2]1
Identification
Wavenumber (other works) (cm−1 ) 5007.2161(3) [49] 5044.6682(3) [49] 5333.2985(3) [49] 5365.5629(3) [49] 5383.5132(3) [49] 5385.2359(3) [49] 5407.8144(3) [49] 5424.6185(3) [49] 5425.1122(3) [49] 5427.9759(3) [49] 5580.4771(3) [49] 5580.5079(3) [49] 5589.0716(3) [49] 5608.8840(3) [49] 5730.6554(3) [49] 5730.7691(3) [49]
3.3 Argon 87
88
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12
No.
Wavenumber (cm−1 ) 5901.372(5) 5972.057(5) 6040.497(6) 6040.915(6) 6051.665(5) 6082.329(5) 6146.844(5) 6178.773(5) 6200.757(5) 6252.399(5) 6287.714(5) 6294.254(5)
Intensity (arbitrary units) 2.43E7 1.52E6 1.04E5 1.02E6 4.51E6 2.35E6 1.17E5 9.62E5 4.95E5 4.93E6 1.84E6 4.66E5
4 p[3/2]2 –3d[3/2]2 4 p [1/2]1 –5s[3/2]2 3d[3/2]1 –4 f [3/2]1 3d[3/2]1 –4 f [3/2]2 4 p[3/2]1 –3d[3/2]2 3d[3/2]1 –4 f [5/2]2 4 p [1/2]1 –5s[3/2]1 4 p [3/2]2 –5s[3/2]2 4 p[5/2]2 –3d[1/2]1 4 p [1/2]0 –5s [1/2]1 3d [3/2]1 –4 f [5/2]2 4 p [3/2]1 –3d[5/2]2
Identification
Wavenumber (other works) (cm−1 ) 5901.3725(3) [49] 5972.0567(3) [49] 6040.5042(3) [49] 6040.9167(3) [49] 6051.6654(3) [49] 6082.3322(3) [49] 6146.8432(3) [49] 6178.7732(3) [49] 6200.7575(3) [49] 6252.3992(3) [49] 6287.7156(3) [49] 6294.2547(3) [49]
3.3 Argon 89
90
3 Spectra
1 2 3 4 5 6 7 8 9 10 11
No.
Wavenumber (cm−1 ) 6320.675(6) 6353.561(6) 6426.852(6) 6472.093(9) 6490.618(5) 6511.552(5) 6513.198(5) 6521.654(5) 6533.358(5) 6586.799(16) 6588.989(6)
Intensity (arbitrary units) 1.59E5 9.66E4 8.54E4 5.82E4 1.41E6 7.14E5 1.34E6 2.41E6 6.33E6 3.03E4 4.25E6
3d[3/2]2 –5 p [1/2]1 4 p [3/2]2 –5s[3/2]1 4 p [3/2]2 –3d[5/2]3 3d[5/2]3 –4 f [3/2]2 3d[5/2]3 –4 f [9/2]4 4 p [3/2]1 –5s[3/2]1 3d[5/2]3 –4 f [5/2]3 4 p[5/2]2 –3d[3/2]2 3d[5/2]3 –4 f [7/2]4 5s[3/2]1 –4 f [5/2]2 4 p[1/2]0 –5s[3/2]1
Identification
Wavenumber (other works) (cm−1 ) 6320.6730(3) [49] 6353.5597(3) [49] 6426.8546(3) [49] 6472.0932(3) [49] 6490.6200(3) [49] 6511.5511(3) [49] 6513.1985(3) [49] 6521.6538(3) [49] 6533.3600(3) [49] 6586.8027(3) [49] 6588.9881(3) [49]
3.3 Argon 91
92
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
No.
Wavenumber (cm−1 ) 6644.247(6) 6651.020(8) 6651.315(6) 6720.168(6) 6761.278(6) 6782.804(5) 6803.790(7) 6804.099(6) 6823.912(6) 6831.342(6) 6832.300(8) 6849.098(6) 6849.455(6) 6858.032(5) 7012.249(6) 7013.588(6) 7016.024(6)
Intensity (arbitrary units) 1.08E7 5.62E4 2.40E5 3.95E4 2.10E5 1.11E6 4.66E4 7.22E5 3.86E6 3.41E6 1.09E5 1.99E6 9.18E4 7.02E4 2.03E6 8.06E4 1.39E6
4 p [1/2]0 –3d [3/2]1 3d[1/2]1 –5 p [3/2]2 4 p [1/2]1 –3d[3/2]1 5s[3/2]2 –4 f [3/2]2 5s[3/2]2 –4 f [5/2]3 4 p[3/2]2 –3d[7/2]3 3d[5/2]2 –4 f [5/2]3 3d[5/2]2 –4 f [5/2]2 3d[5/2]2 –4 f [7/2]3 3d [5/2]3 –4 f [7/2]4 3d [5/2]3 –4 f [5/2]3 3d [3/2]2 –4 f [5/2]3 3d [3/2]2 –4 f [5/2]2 4 p [3/2]2 –3d[3/2]1 3d [5/2]2 –4 f [7/2]3 3d [5/2]2 –4 f [5/2]2 4 p [3/2]1 –3d[3/2]1
Identification
Wavenumber (other works) (cm−1 ) 6644.2443(3) [49] 6651.0239(3) [49] 6651.3147(3) [49] 6720.1741(3) [49] 6761.2791(3) [49] 6782.8037(3) [49] 6803.7904(3) [49] 6804.1004(3) [49] 6823.9129(3) [49] 6831.3425(3) [49] 6832.2944(3) [49] 6849.0986(3) [49] 6849.4457(3) [49] 6858.0314(3) [49] 7012.2491(3) [49] 7013.5887(3) [49] 7016.0228(3) [49]
3.3 Argon 93
94
3 Spectra
Fig. 3.3 All energy levels of Ar I, which are involved in transitions within the studied IR range. Blue line depicts the ionization energy
3.4 Krypton
95
3.4 Krypton In this section we report the Kr I emission spectrum over the range 700–7700 cm−1 range. For parts of this range, Kr I spectral lines are known from [51–57]. Some of these measurements were done in the 50–60s with grating spectrometers and had relatively low accuracy. Within their uncertainty limits, our values agree with the results of two high-resolution FTIR measurements by Mishra et al. [56] and Sansonetti and Greene [57]. The scale of tabulated relative intensities only applies within the same spectral range, bearing in mind that different filters, detectors and beamsplitters were used for the measurements in each range: 750–960, 660–1200, 1200–1650, 1650–2000, 2000–2300, 2300–3800, 3800–5100, 5100–7600 cm−1 . The corresponding configurations of filters, detectors, and beamsplitters are listed in Table 2.1. All energy levels of Kr I, which are involved in transitions within the studied IR range are shown in Fig. 3.4.
96
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
No.
Wavenumber (cm−1 ) 771.456(16) 778.314(18) 791.505(3) 794.970(22) 799.623(9) 804.589(52) 807.922(60) 808.272(63) 808.763(33) 810.279(55) 810.621(18) 811.470(20) 812.362(14) 813.561(27) 827.710(45) 838.874(6) 848.372(18) 850.782(40) 851.986(13) 858.102(16) 877.145(21)
Intensity (arbitrary units) 3.37E4 4.73E4 2.22E4 4.32E4 1.11E5 2.41E4 6.88E4 1.58E4 5.63E4 1.28E4 1.16E5 6.14E4 5.98E4 8.65E4 2.42E4 3.92E5 7.69E4 4.44E4 6.40E4 6.13E4 3.53E4
7 p[3/2]1 –6d[5/2]2 8s[3/2]2 –8 p[5/2]3 7 p[1/2]1 –6d[3/2]2 6d[1/2]1 –5 f [3/2]2 7 p[3/2]2 –6d[5/2]3 6d[1/2]1 –5 f [3/2]1 6h[11/2]–7i[13/2] 6g[9/2]–7h[11/2] 6h[9/2]–7i[11/2] 6g[7/2]–7h[9/2] 6h[13/2]–7i[15/2] 6h[7/2]–7i[9/2] 5d[5/2]3 –4 f [5/2]3 6g[11/2]–7h[13/2] 6 f [9/2]–7g[11/2] 5d[5/2]–4 f [7/2] 7 p[1/2]–6d[3/2] 5 f [3/2]1 –7d[1/2]0 7 p[5/2]–6d[5/2] 5d[5/2]–4 f [5/2] 6d[1/2]0 –5 f [3/2]1
Identification
Wavenumber (other works) (cm−1 )
3.4 Krypton 97
98
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 883.802(5) 905.140(14) 905.514(27) 914.598(8) 946.961(19) 958.318(16) 1013.572(52) 1072.393(2) 1319.612(4) 1324.405(7) 1338.771(9) 1339.086(7) 1339.976(3) 1343.447(2) 1349.331(2) 1350.381(10) 1352.778(4) 1352.806(6)
Intensity (arbitrary units) 3.65E5 7.12E4 1.89E4 1.68E5 4.24E4 1.00E5 3.17E4 1.55E4 1.39E4 7.69E3 5.11E3 5.90E3 5.02E4 5.18E4 8.18E4 2.27E4 2.41E4 2.14E4
5d[5/2]2 –4 f [7/2]3 7 p[5/2]3 –6d[5/2]3 7 p[5/2]2 –6d[5/2]3 6 p[1/2]–5d[1/2] 5 f [9/2]–7d[7/2] 5d[3/2]2 –4 f [3/2]2 5d[3/2]2 –4 f [5/2]3 5d[7/2]3 –4 f [9/2]4 7 p[1/2]1 –8s[3/2]2 6d[7/2]4 –8 p[5/2]3 5g[9/2]–6h[9/2] 5g[7/2]–6h[7/2] 5g[9/2]–6h[11/2] 5g[7/2]–6h[9/2] 5g[11/2]–6h[13/2] 5 f [7/2]–6g[9/2] 5g[5/2]3 –6h[7/2]4 5g[5/2]2 –6h[7/2]3
Identification
Wavenumber (other works) (cm−1 )
3.4 Krypton 99
100
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
No.
Wavenumber (cm−1 ) 1357.916(5) 1358.112(3) 1360.789(5) 1361.423(6) 1370.097(2) 1372.378(6) 1372.512(6) 1375.698(10) 1385.487(6) 1416.744(2) 1450.631(2) 1475.985(5) 1492.364(3) 1493.344(3) 1493.715(2) 1514.974(1) 1524.703(4) 1573.843(4) 1573.881(3) 1598.249(11) 1599.232(2)
Intensity (arbitrary units) 3.46E4 2.19E5 2.04E4 2.85E4 2.11E4 2.02E4 2.02E4 1.19E4 1.63E4 1.87E4 2.92E4 9.41E3 1.47E4 1.72E4 1.10E5 2.45E5 1.12E4 2.21E4 3.51E5 1.15E4 4.38E4
7s[3/2]2 –7 p[1/2]1 5d[7/2]4 –4 f [9/2]5 5 f [5/2]2 –6g[7/2]3 5 f [5/2]3 –6g[7/2]4 7s[3/2]1 –7 p[5/2]2 5 f [9/2]4 –6g[11/2]5 5 f [9/2]5 –6g[11/2]6 5 f [3/2]1 –6g[5/2]2 5 f [3/2]–6g[5/2] 5d[7/2]4 –4 f [7/2]4 7s[3/2]1 –7 p[3/2]1 7s[3/2]1 –7 p[3/2]2 5d[3/2]1 –7 p[5/2]2 7s[3/2]2 –7 p[5/2]2 7s[3/2]2 –7 p[5/2]3 6 p[5/2]3 –5d[7/2]4 6 p[3/2]2 –4d [3/2]1 6 p[3/2]1 –4d [3/2]1 7s[3/2]2 –7 p[3/2]1 5d[3/2]1 –7 p[3/2]2 7s[3/2]2 –7 p[3/2]2
Identification
1416.8 [52]
Wavenumber (other works) (cm−1 )
3.4 Krypton 101
102
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 1693.770(4) 1707.733(5) 1761.941(5) 1776.035(10) 1790.174(4) 1795.335(2) 1800.841(3) 1800.888(5) 1845.860(2) 1850.024(2) 1886.799(2) 1888.031(5) 1890.973(2) 1932.689(5) 1945.480(8) 1977.299(6) 1998.124(13) 1998.952(10)
Intensity (arbitrary units) 2.14E5 1.66E5 1.98E5 8.02E4 4.16E5 7.68E6 6.25E5 3.16E5 6.49E6 3.53E6 2.92E6 2.68E5 1.22E6 2.74E5 1.98E5 3.40E5 1.02E5 1.06E5
6 p[3/2]1 –5d[3/2]2 5 p [1/2]1 –6s[3/2]2 5d[3/2]1 –7 p[1/2]0 4 f [5/2]3 –6d[3/2]2 4 f [9/2]5 –6d[7/2]4 6 p[5/2]2 –5d[7/2]3 6 p[5/2]3 –5d[7/2]3 6 p[3/2]2 –5d[5/2]2 6 p[3/2]2 –5d[5/2]3 6 p[3/2]1 –5d[5/2]2 6 p[1/2]0 –5d[3/2]1 4 f [9/2]4 –6d[7/2]3 5d[1/2]0 –4 f [3/2]1 5d[5/2]3 –7 p[5/2]3 4 f [7/2]3 –6d[5/2]2 5d[5/2]2 –7 p[5/2]2 5d[3/2]2 –7 p[1/2]1 4 f [7/2]4 –6d[5/2]3
Identification
1886.8 [52]
1776.2 [52] 1790.2 [52] 1795.3 [52]
Wavenumber (other works) (cm−1 )
3.4 Krypton 103
104
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
No.
Wavenumber (cm−1 ) 2038.205(3) 2042.355(2) 2057.828(5) 2092.837(3) 2120.051(13) 2152.195(16) 2159.023(11) 2162.647(11) 2163.769(7) 2204.130(5) 2219.808(5) 2224.316(7) 2224.707(17) 2237.141(9) 2239.437(3) 2259.153(2) 2276.301(5) 2284.839(4) 2285.826(7)
Intensity (arbitrary units) 6.70E5 2.42E6 2.68E5 5.44E5 2.01E6 1.32E5 1.06E5 7.03E5 5.82E5 1.73E5 2.93E5 1.24E6 1.40E5 4.34E4 4.94E5 7.55E5 2.35E5 2.63E6 5.88E5
5d[5/2]3 –7 p[3/2]2 6 p[5/2]2 –5d[5/2]2 5d[5/2]2 –7 p[3/2]1 6 p[5/2]3 –5d[5/2]3 6 p[1/2]1 –5d[3/2]2 5g[7/2]–7h[9/2] 5g[11/2]–7h[13/2] 5d[1/2]1 –4 f [3/2]1 5d[1/2]1 –4 f [3/2]2 6 p[1/2]1 –6s [1/2]0 5d[1/2]1 –4 f [5/2]2 5d[7/2]3 –7 p[5/2]2 5d[7/2]3 –7 p[5/2]3 4 f [5/2]2 –6d[3/2]1 5d[3/2]2 –7 p[3/2]2 6 p[1/2]1 –6s [1/2]1 6 p[1/2]1 –5d[5/2]2 6 p[3/2]2 –7s[3/2]2 6 p[3/2]2 –5d[3/2]1
Identification
2162.6517(7) [57] 2163.7689(7) [57] 2204.1342(16) [57] 2219.8120(7) [57] 2224.3171(7) [57] 2224.6865(7) [57] 2237.1480(10) [57] 2239.4396(14) [57] 2259.1543(7) [57] 2276.3049(7) [57] 2284.8408(9) [57] 2285.8222(9) [57], 2285.8 [52]
2092.8393(7) [57] 2120.0504(7) [57]
Wavenumber (other works) (cm−1 )
3.4 Krypton 105
106
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
Wavenumber (cm−1 ) 2292.738(7) 2293.197(22) 2298.128(7) 2319.397(8) 2320.172(28) 2325.610(19) 2333.984(9) 2334.961(7) 2345.894(11) 2359.364(8) 2408.088(3) 2457.228(3) 2461.982(12) 2475.661(11) 2480.339(5) 2487.676(5) 2488.476(9) 2501.390(11) 2502.160(5) 2504.684(12)
Intensity (arbitrary units) 7.77E4 2.92E4 8.53E4 1.14E5 2.46E4 3.18E4 1.31E5 3.26E5 3.29E5 4.60E4 1.14E6 6.90E6 7.77E4 3.30E6 1.35E7 5.67E5 7.68E5 3.89E6 5.87E6 1.04E5
7 p[5/2]3 –7d[7/2]4 4 f [3/2]2 –6d[3/2]1 5 p [3/2]1 –6s[3/2]1 4d [5/2]3 –4 f [5/2]3 4d [5/2]3 –4 f [5/2]2 7 p[1/2]1 –7d[1/2]0 6 p[3/2]1 –7s[3/2]2 6 p[3/2]1 –5d[3/2]1 4d [5/2]3 –4 f [7/2]3 4d [3/2]1 –7 p[3/2]2 6 p[3/2]2 –7s[3/2]1 6 p[3/2]1 –7s[3/2]1 4 f [7/2]4 –5g[5/2]3 4 f [7/2]4 –5g[7/2] 4 f [7/2]4 –5g[9/2]4 4 f [5/2]2 –5g[5/2]2 4 f [5/2]3 –5g[5/2]3 4 f [5/2]3 –5g[7/2]3 4 f [5/2]2 –5g[7/2]4 6 p [3/2]2 –7s [1/2]1
Identification
2333.9808(8) [57] 2334.9621(9) [57] 2345.8648(8) [57] 2359.3688(12) [57] 2408.0886(8) [57] 2457.2289(8) [57], 2457.22 [55] 2461.964(2) [57] 2475.6962(8) [57], 2475.72 [55] 2480.3655(8) [57], 2480.34 [55] 2487.6784(8) [57], 2487.56 [55] 2488.4720(9) [57], 2488.40 [55] 2501.3942(8) [57], 2501.41 [55] 2502.1591(8) [57], 2502.14 [55] 2504.6649(16) [57]
Wavenumber (other works) (cm−1 ) 2292.7387(12) [57] 2293.188(3) [57] 2298.1315(8) [57] 2319.4028(8) [57] 2320.1682(13) [57]
3.4 Krypton 107
108
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No.
Wavenumber (cm−1 ) 2510.558(3) 2525.115(12) 2525.291(8) 2526.320(11) 2527.296(7) 2531.818(5) 2538.788(8) 2538.960(11) 2543.749(5) 2544.837(6) 2578.914(5) 2604.613(4) 2610.792(8) 2624.399(12) 2634.172(14) 2638.505(10) 2649.558(5) 2667.556(7) 2677.905(21) 2698.092(11) 2699.224(5) 2700.428(8)
Intensity (arbitrary units) 2.41E6 6.78E6 9.08E6 1.43E6 3.25E6 9.04E6 5.92E5 6.54E5 5.07E6 3.15E6 2.76E5 1.08E6 5.60E4 2.15E4 2.49E4 2.64E4 3.13E6 5.86E4 1.94E4 7.95E4 1.01E6 2.78E5
5d[7/2]4 –7 p[5/2]3 4 f [9/2]4 –5g[11/2]5 4 f [9/2]5 –5g[11/2]6 6 p[5/2]2 –7s[3/2]2 6 p[5/2]2 –5d[3/2]1 6 p[5/2]3 –7s[3/2]2 4 f [9/2]4 –5g[9/2]4 4 f [9/2]5 –5g[9/2]5 4 f [3/2]2 –5g[5/2]2 4 f [3/2]–5g[5/2] 4d [5/2]2 –4 f [5/2]2 4d [5/2]2 –4 f [7/2]3 7 p[5/2]3 –9s[3/2]2 6d[5/2]3 –7 f [7/2]4 6 p [3/2]1 –7s [1/2]1 7 p[5/2]2 –9s[3/2]1 6 p[5/2]2 –7s[3/2]1 7s[3/2]1 –6 p [3/2]1 6d[5/2]2 –7 f [7/2]3 4d [3/2]2 –4 f [3/2]1 4d [3/2]2 –4 f [3/2]2 7s[3/2]1 –5 f [3/2]2
Identification
2698.1073(8) [57] 2699.2248(8) [57] 2700.4232(9) [57]
2638.5129(11) [57] 2649.5591(8) [57] 2667.5575(9) [57]
Wavenumber (other works) (cm−1 ) 2510.5584(8) [57], 2510.61 [55] 2525.1266(8) [57], 2525.23 [55] 2525.2859(8) [57], 2525.30 [55] 2526.3110(8) [57], 2526.30 [55] 2527.2927(8) [57], 2527.30 [55] 2531.8177(8) [57], 2531.80 [55] 2538.7954(10) [57], 2538.87 [55] 2538.9538(10) [57], 2538.87 [55] 2543.7513(8) [57], 2543.79 [55] 2544.8347(8) [57], 2544.88 [55] 2578.9170(14) [57] 2604.6136(08) [57] 2610.7937(10) [57]
3.4 Krypton 109
110
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
No.
Wavenumber (cm−1 ) 2733.168(5) 2743.467(13) 2746.575(13) 2754.502(5) 2755.283(13) 2760.259(5) 2783.043(14) 2822.689(4) 2855.433(4) 2855.807(41) 2856.567(28) 2883.507(4) 2919.331(4) 2931.896(4) 2992.327(5) 2993.148(18) 3173.128(12) 3203.576(5) 3227.092(3) 3240.979(4) 3260.309(4)
Intensity (arbitrary units) 1.43E5 1.81E4 2.68E4 3.54E6 2.07E5 4.47E6 1.76E4 5.01E5 5.55E5 2.58E4 2.10E4 1.14E6 1.51E5 1.26E5 4.85E6 1.82E6 3.39E4 1.42E5 1.38E7 7.35E5 1.75E7
7s[3/2]1 –5 f [5/2]2 7s[3/2]1 –6 p [1/2]1 7 p[1/2]1 –9s[3/2]2 4d [3/2]2 –4 f [5/2]3 4d [3/2]2 –4 f [5/2]2 6 p[1/2]1 –7s[3/2]2 6d[7/2]3 –7 f [9/2]4 5d[3/2]1 –5 f [3/2]2 5d[3/2]1 –5 f [5/2]2 7s[3/2]2 –5 f [5/2]3 7 p[3/2]2 –5d [3/2]2 6 p[1/2]1 –7s[3/2]1 5d[3/2]1 –6 p [3/2]2 5d[1/2]0 –7 p[1/2]1 5 p[1/2]0 –4d[1/2]1 6s[3/2]1 –6 p[1/2]1 5d[3/2]1 –6 p [1/2]0 5d[1/2]1 –7 p[1/2]1 6s[3/2]1 –6 p[5/2]2 4d[3/2]1 –6 p[1/2]1 6s[3/2]2 –6 p[1/2]1
Identification
2822.6908(12) [57] 2855.4327(8) [57] 2855.7807(8) [57] 2856.5459(11) [57] 2883.5079(8) [57] 2919.3332(8) [57] 2931.8978(9) [57] 2992.3285(9) [57] 2993.1455(8) [57], 2993.1 [52] 3173.1321(9) [57], 3173.6 [52] 3203.5763(8) [57] 3227.0940(8) [57] 3240.9802(12) [57] 3260.3112(10) [57], 3260.2 [52]
Wavenumber (other works) (cm−1 ) 2733.1678(17) [57] 2743.478(3) [57] 2746.589(3) [57] 2754.5029(8) [57] 2755.2676(8) [57] 2760.2597(8) [57]
3.4 Krypton 111
112
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 3274.760(6) 3278.598(6) 3291.909(4) 3294.757(4) 3308.505(3) 3334.398(3) 3340.368(3) 3346.930(3) 3353.442(4) 3357.521(9) 3359.304(15) 3367.833(5) 3379.002(15) 3389.427(8) 3419.422(4) 3421.423(6) 3422.862(9) 3435.316(13)
Intensity (arbitrary units) 4.78E4 6.53E4 5.97E5 3.32E5 1.50E6 4.28E5 2.72E5 3.01E5 1.01E6 4.06E4 1.21E4 2.10E5 2.90E4 5.47E4 1.60E7 2.99E6 1.00E6 1.54E4
5d[5/2]2 –6 p [3/2]1 5d[5/2]3 –5 f [9/2]4 6s [1/2]1 –6 p [3/2]1 5d[5/2]3 –5 f [5/2]3 5d[5/2]3 –5 f [7/2]4 6s [1/2]1 –5 f [3/2]1 5d[5/2]2 –5 f [5/2]2 6s [1/2]0 –6 p [3/2]1 5d[5/2]2 –5 f [7/2]3 6s [1/2]1 –5 f [5/2]2 5d[5/2]3 –6 p [3/2]2 6s [1/2]1 –6 p [1/2]1 7s[3/2]1 –8 p[3/2]1 6s [1/2]0 –5 f [3/2]1 6s[3/2]1 –6 p[3/2]1 6s [1/2]1 –6 p [3/2]2 6s [1/2]0 –6 p [1/2]1 7s[3/2]2 –8 p[1/2]1
Identification
Wavenumber (other works) (cm−1 ) 3274.7599(8) [57] 3278.6005(16) [57], 3278.7 [52] 3291.9094(8) [57] 3294.7592(9) [57] 3308.5066(18) [57] 3334.3983(9) [57] 3340.3700(9) [57] 3346.9321(8) [57] 3353.4430(10) [57] 3357.5206(12) [57] 3359.2925(10) [57] 3367.8339(9) [57] 3378.987(2) [57] 3389.4223(8) [57] 3419.4245(10) [57] 3421.4205(9) [57] 3422.8547(8) [57] 3435.309(3) [57]
3.4 Krypton 113
114
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
No.
Wavenumber (cm−1 ) 3439.357(7) 3439.754(30) 3444.882(10) 3445.192(9) 3455.833(14) 3463.872(8) 3468.562(5) 3474.927(4) 3480.209(14) 3488.750(4) 3494.258(4) 3496.002(12) 3506.936(8) 3509.692(18) 3513.486(16) 3550.942(4) 3570.596(4) 3600.452(14) 3616.536(25) 3667.248(16) 3675.213(13) 3680.447(23) 3686.587(7)
Intensity (arbitrary units) 5.71E4 1.72E4 2.14E4 4.32E4 6.11E4 1.94E5 5.55E6 7.52E6 9.21E3 3.05E7 7.70E6 5.07E5 5.29E4 8.87E3 1.80E4 2.96E5 4.95E5 1.69E4 1.56E4 1.46E4 1.95E4 2.09E4 5.35E4
4d[5/2]3 –7 p[5/2]2 4d[5/2]3 –7 p[5/2]3 5d[1/2]1 –7 p[3/2]2 4 f [9/2]5 –7d[7/2]4 7s[3/2]2 –8 p[5/2]3 5d[3/2]2 –5 f [3/2]2 6s[3/2]1 –6 p[3/2]2 4d[3/2]1 –6 p[5/2]2 4 f [7/2]3 –7d[5/2]2 6s[3/2]2 –6 p[5/2]3 6s[3/2]2 –6 p[5/2]2 5d[3/2]2 –5 f [5/2]3 5d[3/2]2 –6 p [1/2]1 5d[3/2]2 –5 f [7/2]3 7s[3/2]2 –8 p[3/2]2 4d [3/2]1 –6 p [3/2]1 5d[7/2]3 –5 f [9/2]4 5d[7/2]3 –5 f [7/2]3 4d [3/2]2 –5 f [5/2]2 4d[3/2]1 –6 p[3/2]1 6s [1/2]1 –6 p [1/2]0 4d [3/2]1 –6 p [3/2]2 6s[3/2]2 –6 p[3/2]1
Identification
Wavenumber (other works) (cm−1 ) 3439.3590(12) [57] 3439.7290(11) [57] 3444.8921(14) [57] 3445.1882(10) [57] 3455.8423(19) [57] 3463.8807(8) [57] 3468.5642(8) [57] 3474.9284(12) [57] 3480.2190(8) [57] 3488.7531(8) [57] 3494.2591(8) [57], 3494.9 [53] 3495.9904(10) [57] 3506.9363(9) [57] 3509.6985(10) [57] 3513.4963(12) [57] 3550.9444(9) [57] 3570.5976(9) [57] 3600.456 (5) [57] 3616.553 (2) [57] 3667.2582(9) [57] 3675.2181(16) [57] 3680.4533(10) [57] 3686.5902(14) [57]
3.4 Krypton 115
116
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
No.
Wavenumber (cm−1 ) 3716.392(9) 3735.725(5) 3961.847(5) 4036.257(10) 4115.416(4) 4120.794(4) 4248.201(10) 4253.709(3) 4283.242(3) 4313.533(13) 4364.786(6) 4434.263(4) 4440.701(9) 4446.039(4) 4472.687(11) 4495.179(6) 4564.432(5)
Intensity (arbitrary units) 3.28E4 2.69E5 4.99E5 1.09E5 9.83E5 7.07E5 6.07E4 2.21E6 6.35E6 3.77E4 1.22E5 1.73E5 7.92E4 3.32E6 5.38E4 1.31E5 5.53E7
4d[3/2]1 –6 p[3/2]2 6s[3/2]2 –6 p[3/2]2 5 p[3/2]2 –4d[1/2]1 4d[5/2]3 –6 p[5/2]3 4d[3/2]1 –6 p[1/2]0 5 p[3/2]1 –4d[1/2]1 4d[5/2]2 –6 p[5/2]3 4d[5/2]2 –6 p[5/2]2 4d[5/2]3 –6 p[3/2]2 6 p[3/2]2 –6d[1/2]1 5d[1/2]0 –6 p [3/2]1 6 p[3/2]2 –6d[3/2]2 5d[1/2]0 –6 p [1/2]1 4d[5/2]2 –6 p[3/2]1 5d[7/2]4 –8 p[5/2]3 4d[5/2]2 –6 p[3/2]2 5 p[3/2]2 –4d[3/2]2
Identification
Wavenumber (other works) (cm−1 ) 3716.3994(9) [57] 3735.7294(8) [57] 3961.8511(10) [57], 3961.847 [54] 4036.2683(8) [57], 4036.263 [54] 4115.4202(8) [57], 4115.413 [54] 4120.7973(9) [57], 4120.792 [54] 4248.2061(9) [57] 4253.7132(10) [57], 4253.708 [54] 4283.2454(9) [57], 4283.244 [54] 4313.5371(9) [57] 4364.7879(10) [57] 4434.2666(12) [57] 4440.7114(15) [57] 4446.0431(9) [57], 4446.045 [54] 4472.691(2) [57] 4495.1833(9) [57] 4564.4374(9) [57], 4564.4364 [51]
3.4 Krypton 117
118
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No.
Wavenumber (cm−1 ) 4643.822(38) 4651.882(12) 4663.257(4) 4669.326(15) 4679.310(19) 4683.697(10) 4696.837(9) 4716.387(11) 4723.379(5) 4755.763(5) 4765.972(5) 4777.808(5) 4788.947(7) 4845.049(12) 4866.328(4) 4889.361(6) 4894.871(5) 4909.696(19) 4926.647(9) 4946.719(5) 4995.567(9) 5019.770(18)
Intensity (arbitrary units) 2.49E4 8.51E4 5.57E5 3.16E4 3.00E4 4.55E4 5.11E4 9.24E4 1.28E7 1.60E5 1.73E5 6.65E5 1.51E5 4.28E4 6.06E5 7.38E5 4.36E6 1.57E4 6.52E4 2.02E6 6.92E4 1.73E4
5d[5/2]3 –6 f [5/2]3 5d[5/2]3 –6 f [7/2]4 6 p[5/2]3 –6d[7/2]4 5d[1/2]1 –5 f [3/2]2 6 p[3/2]1 –6d[5/2]2 6 p[3/2]2 –6d[5/2]3 5d[5/2]2 –6 f [7/2]3 6 p[1/2]1 –6d[1/2]0 5 p[3/2]1 –4d[3/2]2 6 p[5/2]2 –6d[7/2]3 5d[1/2]1 –6 p [3/2]2 5 p[5/2]2 –4d[1/2]1 6 p[1/2]1 –6d[1/2]1 5d[3/2]2 –6 f [5/2]3 4d [5/2]3 –6 p [3/2]2 4d[7/2]3 –6 p[5/2]3 4d[7/2]3 –6 p[5/2]2 6 p[1/2]1 –6d[3/2]2 5d[7/2]3 –6 f [9/2]4 5 p [1/2]0 –5d[1/2]1 4d [5/2]2 –6 p [3/2]1 5d[1/2]1 –6 p [1/2]0
Identification
Wavenumber (other works) (cm−1 ) 4643.824(4) [57] 4651.885(2) [57] 4663.2602(9) [57] 4669.3326(15) [57] 4679.314(1) [57] 4683.6967(13) [57] 4696.831(3) [57] 4716.4039(13) [57] 4723.3837(10) [57], 4723.376 [54] 4755.7655(10) [57] 4765.9759(9) [57] 4777.8127(9) [57], 4777.797 [54] 4788.9559(10) [57] 4845.056(3) [57] 4866.3315(9) [57] 4889.3679(9) [57] 4894.8747(9) [57], 4894.866 [54] 4909.6853(10) [57] 4926.645(2) [57] 4946.7230(9) [57], 4946.721 [54] 4995.5706(9) [57] 5019.7748(9) [57]
3.4 Krypton 119
120
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 5318.346(7) 5321.812(14) 5347.183(7) 5502.880(4) 5553.345(6) 5602.978(9) 5756.266(7) 5846.775(6) 5903.031(6) 5916.670(6) 5918.884(6) 5931.862(6) 5956.021(6) 5976.897(8) 6291.271(18) 6319.354(14) 6375.386(8) 6460.669(8)
Intensity (arbitrary units) 2.67E5 1.31E5 4.07E5 2.57E6 3.55E5 2.17E5 4.34E5 4.42E5 2.08E6 1.75E6 4.25E6 8.96E5 3.74E6 2.45E5 6.21E4 1.11E5 2.39E5 1.68E5
4d[7/2]4 –6 p[5/2]3 5s [1/2]1 –5 p[1/2]1 5 p [1/2]1 –4d [3/2]2 5 p[5/2]3 –4d[7/2]4 5 p[1/2]0 –4d[3/2]1 5 p[1/2]1 –4d[1/2]0 5 p [3/2]2 –4d [5/2]3 5 p [3/2]1 –4d [5/2]2 5 p[3/2]1 –4d[5/2]2 5 p[1/2]1 –4d[1/2]1 5 p[5/2]2 –4d[7/2]3 5 p[5/2]3 –4d[7/2]3 5 p[3/2]2 –4d[5/2]3 5s [1/2]0 –5 p[1/2]1 5 p [1/2]0 –6s [1/2]1 4d[3/2]1 –4 f [3/2]2 4d[3/2]1 –4 f [5/2]2 5s [1/2]1 –5 p[5/2]2
Identification
Wavenumber (other works) (cm−1 ) 5318.3503(9) [57], 5318.345 [54] 5321.8112(10) [57], 5321.807 [54] 5347.1905(9) [57], 5347.190 [56] 5502.8837(9) [57], 5502.8843 [51], 5502.889 [56] 5553.3504(10) [57], 5553.3509 [51] 5602.9861(11) [57], 5602.989 [56] 5756.2711(10) [57], 5756.2712 [51] 5846.7736(10) [57], 5846.7738 [51], 5846.777 [56] 5903.0345(10) [57], 5903.0346 [51] 5916.6769(12) [57], 5916.6766 [51] 5918.8881(10) [57], 5918.8873 [51], 5918.893 [56] 5931.8663(10) [57], 5931.8660 [51] 5956.0258(10) [57], 5956.0263 [51] 5976.8991(11) [57], 5976.894 [54] 6291.2781(11) [57], 6291.278 [54] 6319.3505(13) [57], 6319.350 [56] 6375.3931(11) [57], 6375.402 [54] 6460.6750(13) [57], 6460.674 [56]
3.4 Krypton 121
122
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
No.
Wavenumber (cm−1 ) 6503.538(6) 6519.259(6) 6560.047(6) 6573.025(6) 6681.814(7) 6770.702(7) 6771.986(7) 6784.963(4) 6929.652(4) 6941.466(12) 6967.980(6) 7117.688(14) 7154.189(38) 7172.181(7) 7179.875(5) 7201.182(3) 7227.204(8) 7276.635(7) 7291.403(7) 7319.501(7) 7332.481(3) 7338.832(7) 7586.668(5)
Intensity (arbitrary units) 8.50E5 2.34E6 2.49E6 4.62E5 2.72E5 3.39E5 4.91E5 1.98E6 1.87E6 1.24E5 6.24E5 6.83E4 1.17E5 4.02E5 3.80E5 9.29E5 2.67E5 2.58E5 3.95E5 2.91E5 1.70E6 6.93E5 7.18E5
5 p[3/2]2 –6s[3/2]2 5 p[1/2]1 –4d[3/2]2 5 p[5/2]2 –4d[5/2]2 5 p[5/2]3 –4d[5/2]2 5 p[3/2]1 –4d[3/2]1 5 p[3/2]2 –6s[3/2]1 5 p[5/2]2 –4d[5/2]3 5 p[5/2]3 –4d[5/2]3 5 p[3/2]1 –6s[3/2]1 4d[5/2]3 –4 f [5/2]3 4d[5/2]3 –4 f [7/2]4 5s [1/2]1 –5 p[3/2]1 4d[5/2]2 –4 f [5/2]2 5 p [1/2]1 –6s [1/2]0 4d[5/2]2 –4 f [7/2]3 5 p [3/2]2 –6s [1/2]1 5 p [1/2]1 –6s [1/2]1 5s [1/2]1 –5 p[3/2]2 5 p [3/2]1 –4d [3/2]1 5 p[5/2]2 –6s[3/2]2 5 p[5/2]3 –6s[3/2]2 5 p[5/2]2 –4d[3/2]1 5 p[5/2]2 –6s[3/2]1
Identification
Wavenumber (other works) (cm−1 ) 6503.5415(12) [57], 6503.540 [56] 6519.2631(11) [57], 6519.2628 [51] 6560.0501(14) [57], 6560.0498 [51] 6573.0282(11) [57], 6573.025 [54] 6681.8190(13) [57], 6681.821 [56] 6770.7073(11) [57], 6770.703 [54] 6771.9884(11) [57], 6771.982 [54] 6784.9657(13) [57], 6784.9654 [51], 6784.969 [56] 6929.6533(18) [57], 6929.6534 [51], 6929.655 [56] 6941.4747(11) [57], 6941.448 [54] 6967.9848(11) [57] 7117.6915(11) [57] 7154.1776(15) [57], 7154.160 [54] 7172.1800(11) [57], 7172.155 [54] 7179.8747(12) [57], 7179.861 [54] 7201.1817(11) [57], 7201.163 [54] 7227.2014(12) [57], 7227.177 [54] 7276.6377(12) [57], 7276.6371 [51], 7276.638 [56] 7291.398(2) [57], 7291.410 [54] 7319.5040(12) [57], 7319.506 [54] 7332.4818(12) [57], 7332.4810 [51], 7332.481 [56] 7338.8343(11) [57], 7338.8348 [51] 7586.6686(15) [57]
3.4 Krypton 123
124
3 Spectra
Fig. 3.4 All energy levels of Kr I, which are involved in transitions within the studied IR range. Blue line depicts the ionization energy
3.5 Xenon
125
3.5 Xenon In this part we report the emission spectrum of Xe I in the 700–7600 cm−1 range. For part of this range existing tables of Xe I spectral lines are given in [38, 55, 56, 58–60]. Note that there are some inconsistencies in the values when compared between older works. For example, two fine-structure components (2495.592 and 2495.686 cm−1 ) of the 4f[7/2]–5g[7/2] transition are reported in the original work [55] as a single line at 2495.59(6) cm−1 without resolving its fine-structure. Further components of the 4f[5/2]–5g[7/2] transition measured in 1967 at 2529.73(6) and 2532.68(6) cm−1 are replaced here with more accurate and precise measurements at 2529.685(10) and 2532.646(10) cm−1 . Values in the region 6500–7500 cm−1 measured in 1952 by [38] are corrected as well. The scale of tabulated relative intensities only applies within the same spectral range, bearing in mind that different filters, detectors and beamsplitters were used for the measurements in each range: 700–1000, 1000–1200, 1200–1600, 1600–2100, 2100–3500, 3500–4100, 4100–5000, 5000–7600 cm−1 . The corresponding configurations of filters, detectors, and beamsplitters are listed in Table 2.1. All energy levels of Xe I, which are involved in transitions within the studied IR range are shown in Fig. 3.5.
126
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
No.
Wavenumber (cm−1 ) 732.060(16) 742.280(23) 774.143(12) 781.330(43) 792.002(60) 807.898(12) 809.044(58) 811.579(37) 812.697(32) 815.218(27) 816.349(38) 817.275(23) 818.784(40) 848.060(12) 848.842(31) 864.135(14) 877.888(14) 891.570(12) 912.027(3) 918.600(60) 923.441(30) 932.537(5) 949.090(31)
Intensity (arbitrary units) 2.10E5 1.49E5 3.01E5 2.51E5 1.27E5 5.72E5 3.80E5 4.11E5 1.74E5 9.66E4 1.99E5 7.13E4 1.68E5 8.04E5 9.49E4 2.41E5 2.91E5 3.30E5 1.87E5 1.16E5 1.75E5 1.35E6 2.38E4
7d[7/2]3 –5 f [9/2]4 7d[5/2]2 –5 f [7/2]3 6 p[3/2]2 –5d[1/2]1 7 p[1/2]1 –6d[3/2]2 6g[11/2]–7h[13/2] 6g[7/2]–7h[7/2] 6g[7/2]–7h[9/2] 6h[13/2]–7i[15/2] 6h[9/2]–7i[11/2] 6h[7/2]–7i[9/2] 6h–7i 6h–7i 6g[5/2]–7h[7/2] 7 p[3/2]2 –6d[5/2]3 6 f [3/2]–7g[5/2] 6 p [3/2]1 –6d[5/2]2 6d[3/2]1 –4 f [5/2]2 7 p[5/2]2 –6d[5/2]2 5 f [9/2]4 –8d[7/2]3 5 f [7/2]3 –8d[5/2]2 5d [3/2]2 –8 p[3/2]2 7d[7/2]4 –5 f [9/2]5 5 f [7/2]4 –8d[5/2]3
Identification
Wavenumber (other works) (cm−1 )
3.5 Xenon 127
128
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
No.
Wavenumber (cm−1 ) 1065.347(40) 1072.365(11) 1110.275(6) 1189.895(12) 1237.950(40) 1278.840(25) 1287.586(3) 1288.920(8) 1326.934(13) 1333.951(7) 1341.039(4) 1345.724(4) 1348.735(7) 1353.857(3) 1358.079(11) 1358.290(12) 1364.951(32) 1365.014(29) 1366.713(4)
Intensity (arbitrary units) 8.20E3 4.44E4 4.18E5 1.38E4 1.07E4 1.14E4 2.78E6 4.33E4 3.23E4 6.34E6 9.63E4 8.54E4 5.53E4 1.32E5 2.79E4 2.26E4 3.82E4 2.33E4 1.86E5
7 p[5/2]3 –6d[5/2]3 6s [1/2]0 –6 p[1/2]1 6 p[3/2]2 –5d[3/2]2 7 p[1/2]0 –6d[3/2]1 7d[1/2]1 –5 f [3/2]2 4 f [3/2]2 –7d[1/2]1 7 p[3/2]1 –6d[3/2]1 8s[3/2]1 –8 p[5/2]1 5g[9/2]4 –6h[11/2]5 5g[9/2]4 –6h[9/2]5 5g[7/2]3 –6h[9/2]4 7 p[3/2]2 –6d[3/2]1 8s[3/2]2 –8 p[1/2]1 5g[11/2]5 –6h[13/2]6 5g[5/2]3 –6h[7/2]4 5g[5/2]2 –6h[7/2]3 5 f [7/2]4 –6g[9/2]5 5 f [7/2]3 –6g[9/2]4 6 p[3/2]1 –5d[3/2]2
Identification
Wavenumber (other works) (cm−1 )
3.5 Xenon 129
130
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
No.
Wavenumber (cm−1 ) 1372.501(17) 1380.741(21) 1396.828(15) 1397.554(8) 1400.632(11) 1405.344(20) 1409.565(3) 1416.817(2) 1438.477(12) 1460.406(6) 1566.373(11) 1584.275(7) 1700.789(3) 1784.615(7) 1789.466(12) 1793.564(2) 1836.612(2) 1866.816(6)
Intensity (arbitrary units) 1.75E4 1.67E4 2.37E4 2.38E4 3.02E4 7.93E3 1.58E5 1.69E6 1.40E4 1.17E5 4.30E4 3.23E4 1.65E5 2.05E5 1.96E5 6.35E7 4.10E6 2.41E5
6d[5/2]3 –4 f [5/2]3 5 f [5/2]3 –6g[7/2]4 5 f [9/2]4 –6g[11/2]5 5 f [9/2]5 –6g[11/2]6 8s[3/2]1 –8 p[3/2]1 5 f [3/2]2 –6g[5/2]3 6d[5/2]3 –4 f [7/2]4 8s[3/2]2 –8 p[5/2]2 8s[3/2]1 –8 p[3/2]2 8s[3/2]2 –8 p[5/2]3 8s[3/2]2 –8 p[3/2]2 4 f [9/2]5 –7d[7/2]4 6d[5/2]2 –4 f [7/2]3 4 f [9/2]4 –7d[5/2]3 4 f [9/2]3 –7d[5/2]3 6 p[5/2]3 –5d[7/2]4 6d[7/2]3 –4 f [9/2]4 6 p[5/2]2 –5d[1/2]1
Identification
1836.64(13) [59]
Wavenumber (other works) (cm−1 )
3.5 Xenon 131
132
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
Wavenumber (cm−1 ) 1919.154(6) 1919.243(6) 1948.957(2) 1949.812(6) 1953.984(14) 2027.419(3) 2032.436(3) 2140.963(4) 2168.760(9) 2187.864(4) 2198.612(4) 2201.573(10) 2202.945(7) 2245.926(9) 2289.990(10) 2299.654(11) 2335.319(10) 2348.747(10) 2360.264(10) 2408.104(14)
Intensity (arbitrary units) 1.03E6 5.62E5 9.25E6 1.65E5 1.59E5 1.57E6 8.82E5 5.21E6 1.97E6 4.96E6 2.86E7 1.18E6 1.37E7 5.50E6 9.92E6 1.67E7 3.06E7 1.16E7 2.43E6 1.19E7
6d[7/2]3 –4 f [7/2]3 6d[7/2]3 –4 f [7/2]4 6d[7/2]4 –4 f [9/2]5 6d[7/2]4 –4 f [9/2]4 5d [3/2]2 –5 f [5/2]3 6s [1/2]1 –6 p[3/2]2 6d[7/2]4 –4 f [7/2]4 5g[11/2]5 –7h[13/2]6 5g[5/2]2 –7h[7/2]3 7 p[3/2]1 –8s[3/2]1 6d[3/2]2 –4 f [5/2]3 6d[3/2]2 –4 f [5/2]2 6 p[5/2]2 –5d[3/2]2 7 p[3/2]2 –8s[3/2]1 6d[1/2]1 –4 f [3/2]1 6d[1/2]1 –4 f [3/2]2 7 p[5/2]3 –8s[3/2]2 6d[1/2]0 –4 f [3/2]1 6d[1/2]1 –4 f [5/2]2 7 p[3/2]1 –5d [5/2]2
Identification
2168.79(19) [59] 2187.90(19) [59] 2198.65(15) [59] 2201.58(19) [59] 2202.97(10) [59] 2246.0(2) [59] 2290.0(2) [59] 2299.66(16) [59] 2335.31(16) [59] 2348.80(17) [59] 2360.3(2) [59] 2408.13(17) [59]
1954.02(15) [59] 2027.46(16) [59] 2032.46(17) [59]
Wavenumber (other works) (cm−1 ) 1919.20(15) [59] 1919.20(15) [59] 1949.00(15) [59]
3.5 Xenon 133
134
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
No.
Wavenumber (cm−1 ) 2452.850(9) 2487.104(9) 2495.592(17) 2495.686(33) 2501.894(29) 2502.123(17) 2529.685(10) 2532.646(10) 2565.835(16) 2566.688(19) 2567.370(10) 2572.049(19) 2580.743(11) 2581.502(12) 2584.201(11) 2584.553(50) 2585.403(15) 2713.034(8) 2717.462(11) 2738.345(12) 2759.247(13) 2760.972(22)
Intensity (arbitrary units) 6.58E6 7.19E6 3.47E6 3.68E6 3.73E7 8.97E7 1.80E7 2.43E7 2.87E7 3.72E7 2.03E8 1.79E7 1.54E7 1.11E7 1.19E7 1.06E6 2.15E6 2.78E7 1.51E8 7.39E7 6.09E6 1.12E7
7 p[5/2]2 –8s[3/2]2 7s[3/2]1 –7 p[1/2]1 4 f [7/2]4 –5g[7/2]4 4 f [7/2]3 –5g[7/2]4 4 f [7/2]4 –5g[9/2]5 4 f [7/2]3 –5g[9/2]4 4 f [5/2]2 –5g[7/2]3 4 f [5/2]3 –5g[7/2]4 4 f [9/2]4 –5g[11/2]5 4 f [9/2]5 –5g[11/2]6 6 p[5/2]3 –5d[7/2]3 4 f [3/2]2 –5g[5/2]3 7 p[5/2]2 –8s[3/2]1 4 f [3/2]1 –5g[5/2]2 6 p [3/2]2 –5d [5/2]3 4 f [9/2]4 –5g[9/2]4 4 f [9/2]5 –5g[9/2]5 6 p[3/2]2 –5d[5/2]2 6 p[1/2]1 –5d[1/2]1 7s[3/2]2 –7 p[1/2]1 6s [1/2]0 –6 p[3/2]1 7 p[3/2]2 –5d [3/2]2
Identification
Wavenumber (other works) (cm−1 ) 2452.84(6) [55] 2487.12(6) [55] 2495.59(6) [55] 2495.59(6) [55] 2502.06(6) [55] 2502.06(6) [55] 2529.73(6) [55] 2532.68(6) [55] 2565.87(7) [55] 2566.76(7) [55] 2567.37(7) [55] 2572.10(7) [55] 2580.74(7) [55] 2581.46(7) [55] 2584.19(7) [55] 2584.60(7) [55] 2585.39(7) [55] 2713.1(2) [59] 2717.48(7) [59] 2738.34(7) [59] 2759.3 [60] 2761.0 [60]
3.5 Xenon 135
136
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
No.
Wavenumber (cm−1 ) 2836.332(12) 2850.629(10) 2877.396(11) 2911.649(5) 2933.908(21) 2939.096(15) 2969.470(9) 3053.592(12) 3089.791(14) 3095.784(30) 3162.891(10) 3190.337(15) 3196.457(9) 3217.726(10) 3246.468(10) 3280.423(10) 3304.530(11) 3353.238(6) 3371.791(13) 3394.872(16) 3402.232(13) 3441.781(22) 3497.709(11)
Intensity (arbitrary units) 1.92E6 1.11E9 1.58E7 1.06E8 6.40E6 1.42E7 5.53E8 1.29E8 7.42E5 1.78E6 3.66E7 6.14E6 2.50E6 7.47E8 3.38E7 1.48E8 4.16E7 3.54E6 2.00E6 4.02E6 1.37E7 1.53E6 4.11E7
6d[5/2]3 –8 p[3/2]2 6 p[5/2]2 –5d[7/2]3 7 p[1/2]1 –8s[3/2]2 7s[3/2]1 –7 p[5/2]2 6s [1/2]1 –6 p[1/2]0 7s[3/2]1 –6 p [3/2]1 6 p[3/2]1 –5d[5/2]2 6 p[1/2]1 –5d[3/2]2 6d[5/2]2 –8 p[3/2]1 7 p[5/2]2 –5d [3/2]2 7s[3/2]2 –7 p[5/2]2 7s[3/2]2 –6 p [3/2]1 6d[7/2]3 –8 p[5/2]2 6 p[3/2]2 –5d[5/2]3 7s[3/2]1 –7 p[3/2]2 7s[3/2]2 –7 p[5/2]3 7s[3/2]1 –7 p[3/2]1 6d[7/2]4 –8 p[5/2]3 6d[3/2]1 –5 f [5/2]2 7 p[5/2]2 –5d [5/2]3 7s[3/2]1 –7 p[1/2]0 7 p[3/2]2 –7d[1/2]1 7s[3/2]2 –7 p[3/2]2
Identification
Wavenumber (other works) (cm−1 ) 2836.4 [60] 2850.6 [60] 2877.4 [60] 2912.1(8) [52] 2933.9 [60] 2939.1 [60] 2969.5 [60] 3053.6 [60] 3089.8 [60] 3095.8 [60] 3162.9 [60] 3190.3 [60] 3196.5 [60] 3217.7 [60] 3246.5 [60] 3280.4 [60] 3304.5 [60] 3353.3 [60] 3371.8 [60] 3394.9 [60] 3402.2 [60] 3441.8 [60] 3497.7 [60]
3.5 Xenon 137
138
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No.
Wavenumber (cm−1 ) 3770.996(11) 3805.702(11) 3838.667(32) 3886.309(13) 3975.703(12) 4027.130(11) 4047.085(8) 4089.917(28) 4201.156(10) 4264.390(8) 4294.447(5) 4299.394(13) 4310.410(6) 4332.802(9) 4342.415(16) 4353.304(5) 4369.854(14) 4420.003(7) 4461.702(20) 4465.780(6)
Intensity (arbitrary units) 3.68E6 5.15E6 5.13E4 4.02E4 1.93E5 4.08E6 9.86E4 9.75E4 3.09E5 2.80E5 1.74E6 1.34E5 3.87E7 4.03E5 9.28E4 4.22E5 1.72E5 7.08E5 1.06E6 4.40E5
6 p[1/2]0 –5d[3/2]1 6 p[5/2]2 –5d[5/2]2 7s[3/2]1 –6 p [1/2]1 6d[5/2]3 –5 f [7/2]4 7 p[5/2]3 –7d[7/2]4 6 p[5/2]3 –5d[5/2]3 7 p[3/2]2 –7d[5/2]3 7s[3/2]2 –6 p [1/2]1 7 p[1/2]1 –7d[1/2]1 7 p[5/2]3 –7d[5/2]3 7 p[5/2]2 –7d[7/2]3 6 p [3/2]1 –7d[5/2]2 6 p[5/2]2 –5d[5/2]3 7 p[1/2]1 –7d[1/2]0 6 p [3/2]1 –7d[3/2]2 6d[7/2]3 –5 f [9/2]4 7 p[5/2]2 –7d[3/2]2 7s[3/2]1 –6 p [1/2]0 5d[3/2]1 –7 p[5/2]2 6d[7/2]4 –5 f [9/2]5
Identification
4420.0 [60] 4461.7 [60] 4465.8 [60]
3975.7 [60] 4027.03(13) [58] 4047.1 [60] 4089.9 [60] 4201.2 [60] 4264.4 [60] 4294.4 [60] 4299.4 [60] 4310.72(15) [58] 4332.8 [60] 4342.4 [60] 4353.3 [60]
Wavenumber (other works) (cm−1 ) 3771.07(11) [58] 3805.77(12) [58] 3838.7 [60]
3.5 Xenon 139
140
3 Spectra
1 2 3 4 5 6 7 8 9 10 11
No.
Wavenumber (cm−1 ) 4489.154(13) 4656.367(6) 4677.512(10) 4794.400(12) 4854.595(29) 4929.036(9) 4933.944(6) 4952.283(5) 5321.050(6) 5770.180(18) 5976.314(4)
Intensity (arbitrary units) 1.49E5 9.57E6 9.97E5 1.15E5 8.92E4 1.25E5 3.17E7 9.12E5 2.57E6 2.69E6 1.24E7
5d[3/2]1 –6 p [3/2]1 6 p[1/2]1 –5d[5/2]2 6 p[3/2]2 –5d[3/2]1 7 p[1/2]1 –7d[3/2]2 5d[3/2]1 –7 p[3/2]1 7 p[5/2]3 –9s[3/2]2 6 p[3/2]1 –5d[3/2]1 5d[3/2]1 –7 p[1/2]0 6 p[1/2]0 –7s[3/2]1 6 p[5/2]2 –5d[3/2]1 6 p[3/2]2 –7s[3/2]2
Identification
Wavenumber (other works) (cm−1 ) 4489.2 [60] 4656.369(3) [56] 4677.511(3) [56] 4794.412(3) [56] 4854.583(3) [56] 4929.029(3) [56] 4933.941(3) [56] 4952.282(3) [56] 5321.052(3) [56] 5770.164(3) [56] 5976.312(3) [56]
3.5 Xenon 141
142
3 Spectra
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
No.
Wavenumber (cm−1 ) 6039.009(6) 6227.556(6) 6232.749(7) 6256.300(5) 6426.168(5) 6483.990(6) 6620.841(10) 6785.721(5) 6819.047(7) 6949.801(20) 6959.474(5) 7020.086(5) 7068.986(6) 7320.227(5) 7381.251(6) 7498.781(12)
Intensity (arbitrary units) 4.36E5 9.89E6 5.84E5 1.85E6 7.64E5 2.22E7 3.10E5 3.72E7 6.67E5 2.17E5 2.29E6 4.16E6 9.36E6 1.40E7 1.11E6 1.10E5
5d[5/2]3 –7 p[5/2]3 6 p[3/2]2 –7s[3/2]1 6 p[3/2]1 –7s[3/2]2 5d[5/2]3 –7 p[3/2]2 5d[5/2]2 –7 p[5/2]2 6 p[3/2]1 –7s[3/2]1 6 p[1/2]1 –5d[3/2]1 6 p[5/2]3 –7s[3/2]2 5d[5/2]2 –7 p[3/2]1 5d[3/2]1 –4 f [3/2]1 5d[3/2]1 –4 f [3/2]2 5d[3/2]1 –4 f [5/2]2 6 p[5/2]2 –7s[3/2]2 6 p[5/2]2 –7s[3/2]1 5d[7/2]3 –7 p[5/2]2 5d[7/2]3 –7 p[5/2]3
Identification
Wavenumber (other works) (cm−1 ) 6039.0 [60] 6228.04(4) [38] 6232.7 [60] 6256.3 [60] 6426.2 [60] 6484.15(4) [38] 6620.8 [60] 6785.91(5) [38] 6819.49(5) [38] 6949.9(3) [61] 6959.51(5) [38] 7019.87(5) [38] 7069.16(5) [38] 7320.53(5) [38] 7381.78(5) [38] 7498.8 [60]
3.5 Xenon 143
144
3 Spectra
Fig. 3.5 All energy levels of Xe I, which are involved in transitions within the studied IR range. Blue line depicts the ionization energy
Chapter 4
Conclusion
The spectroscopic investigation of molecular ions [45], radicals and atoms that play a fundamental role in many plasma-chemical processes are the main longstanding topic of research in our laboratory. The spectra presented in this atlas were recorded using a commercially available continuously-scanning high-resolution interferometer uniquely modified for time resolved Fourier-transform spectroscopy. We focused on several aspects of noble gas spectroscopy in particular. Advances in calibration techniques are removing the reliance on molecular atmospheric features for wavelength calibration and provide higher absolute accuracy for high-resolution spectroscopy. The high-precision atomic spectroscopy data presented in this atlas can be used directly for calibrating field astronomical measurements instead of commonlyused molecular features, such as water or carbon dioxide. The observation of radiative transitions between atomic Rydberg states is a suitable tool in plasma diagnostics. Furthermore, Rydberg-state atoms serve as a unique model for studying the electronic structure of atoms and molecules at the boundary of quantum and classical physics. There are also numerous studies on the potential utilization of Rydberg states in quantum computers. Despite decades of research of these highly-excited atomic states, there is a lack of experimental spectroscopic data and their full theoretical explanation is both incomplete and critically needed for further progress in this field. What is more, spectra of atomic species play an important role in describing and understanding stars, nebulae, galaxies and other objects in the Universe. The lack of reliable atomic data has become a crucial problem for the further progress of astronomy as well. For decades, most atomic spectral lines used by astrophysicists were in the optical or ultraviolet range while the correct interpretation of new high-resolution astrophysical spectra requires an increasing amount of high-quality atomic data, such as level energies, oscillator strengths and photoionization cross-sections relating to © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 S. Civiš et al., Atomic Emission Spectra of Neutral Noble Gases in the Infrared Spectral Range, Springer Series in Chemical Physics 122, https://doi.org/10.1007/978-3-030-47352-5_4
145
146
4 Conclusion
the infrared spectral region. Infrared astronomy is very promising for studying dustobscured objects, interstellar clouds, cool objects, such as brown dwarfs, and objects at cosmological distances from Earth. The main goal and purpose of this atlas, as perceived by us, the authors, is the hope that this atlas, or atomic spectral data in general, will become widely used in astronomical measurements, since the noble gases are present almost everywhere in the universe—in the interstellar medium, molecular clouds, nebulae, stellar envelopes and planetary atmospheres. Knowledge of their precise spectra is therefore crucial.
References
1. Kramida, A., Ralchenko, Y., Reader, J., & NIST ASD Team. (2018). NIST atomic spectra database (version 5.5.6). 2. Sansonetti, C. J., Blackwell, M. M., & Saloman, E. B. (2002). Infrared spectra of the noble gases. Physica Scripta, T100, 120–125. 3. Mantz, A. (1976). Infrared multiplexed studies of transient species. Applied Spectroscopy, 30(4), 459–461. 4. Berg, P., & Sloan, J. (1993). Compact standalone data-acquisition system for submicrosecond time-resolved Fourier-transform spectroscopy. Review of Scientific Instruments, 64(9), 2508– 2514. 5. Kawaguchi, K., Baskakov, O., Hosaki, Y., Hama, Y., & Kugimiya, C. (2003). Time-resolved Fourier transform spectroscopy of pulsed discharge products. Chemical Physics Letters, 369(3– 4), 293–298. 6. Ferus, M., Kubelík, P., Kawaguchi, K., Dryahina, K., Španˇel, P., & Civiš, S. (2011). HNC/HCN ratio in acetonitrile, formamide, and BrCN discharge. Journal of Physical Chemistry A, 115(10), 1885–1899. 7. Civiš, S., Kubelík, P., & Ferus, M. (2012). Time-resolved Fourier transform emission spectroscopy of He/CH4 in a positive column discharge. Journal of Physical Chemistry A, 116(12), 3137–3147. PMID: 22375598. 8. Kawaguchi, K., Sanechika, N., Nishimura, Y., Fujimori, R., Oka, T. N., Hirahara, Y., et al. (2008). Time-resolved Fourier transform infrared emission spectroscopy of laser ablation products. Chemical Physics Letters, 463(1–3), 38–41. 9. Nakanaga, T., Ito, F., & Takeo, H. (1993). Time-resolved high-resolution FTIR absorptionspectroscopy in a pulsed discharge. Chemical Physics Letters, 206(1–4), 73–76. 10. Kawaguchi, K., Hama, Y., & Nishida, S. (2005). Time-resolved Fourier transform infrared spectroscopy: Application to pulsed discharges. Journal of Molecular Spectroscopy, 232(1), 1–13. 11. Civiš, S., Matulková, I., Cihelka, J., Kawaguchi, K., Buslov, E. Y., & Chernov, V. E. (2010). Time-resolved Fourier-transform infrared emission spectroscopy of Au in the 1800–4000-cm−1 region: Rydberg transitions. Physical Review A, 81(1), 012510. 12. Civiš, S., Matulková, I., Cihelka, J., Kubelík, P., Kawaguchi, K., & Chernov, V. E. (2010). Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300–3600)cm−1 region: Transitions involving f and g states and oscillator strengths. Physical Review A, 82(2), 022502. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020 S. Civiš et al., Atomic Emission Spectra of Neutral Noble Gases in the Infrared Spectral Range, Springer Series in Chemical Physics 122, https://doi.org/10.1007/978-3-030-47352-5
147
148
References
13. Kubelík, P., Civiš, S., Pastorek, A., Zanozina, E. M., Chernov, V. E., Juha, L., et al. (2015). FTIR laboratory measurement of Ne I Rydberg states in 1.43–14.3 µm spectral range. Astronomy & Astrophysics, 582, A12. 14. Civiš, S., Ferus, M., Kubelík, P., Jelínek, P., & Chernov, V. E. (2012). Potassium spectra in the 700–7000 cm−1 domain: Transitions involving f-, g-, and h-states. Astronomy & Astrophysics, 541, A125. 15. Civiš, S., Ferus, M., Kubelík, P., Jelínek, P., Zanozina, E. M., & Chernov, V. E. (2012). Na I spectra in the 1.4–14 micron range: Transitions and oscillator strengths involving f-, g-, and h-states. Astronomy & Astrophysics, 542, A35. 16. Civiš, S., Ferus, M., Kubelík, P., Jelínek, P., Chernov, V. E., & Knyazev, M. Y. (2012). Laser ablation of CsI: Time-resolved Fourier-transform infrared spectra of atomic cesium in the 800–8000 cm−1 range. Journal of the Optical Society of America B, 29(5), 1112–1118. 17. Civiš, S., Ferus, M., Kubelík, P., Chernov, V. E., & Zanozina, E. M. (2012). Li I spectra in the 4.65–8.33 micron range: high-L states and oscillator strengths. Astronomy & Astrophysics, 545, A61. 18. Civiš, S., Ferus, M., Kubelík, P., Chernov, V. E., & Zanozina, E. M. (2012). Fourier transform infrared emission spectra of atomic rubidium: g- and h-states. Journal of Physics B, 45(17), 175002. 19. Civiš, S., Ferus, M., Chernov, V. E., & Zanozina, E. M. (2013). Infrared transitions and oscillator strengths of Ca and Mg. Astronomy & Astrophysics, 554, A24. 20. Civiš, S., & Chernov, V. (2011). Time-resolved Fourier transform infrared emission spectroscopy: Application to pulsed discharges and laser ablation. In G. Nikolic (Ed.), Fourier transforms. Rijeka: IntechOpen. https://doi.org/10.5772/15739. 21. Rothman, L., Gordon, I., Barbe, A., Benner, D. C., Bernath, P., Birk, M., et al. (2009). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(9–10), 533–572. 22. Norton, R. H., & Beer, R. (1976). New apodizing functions for Fourier spectrometry. Journal of the Optical Society of America, 66, 259–264. 23. Mertz, L. (1965). Transformations in Optics. New York: Wiley. 24. OPUS spectroscopic software. Reference manual. Version 5 (2004). 25. Brault, J. W. (1987). High precision Fourier transform spectrometry: The critical role of phase corrections. Microchimica Acta, 93(1), 215–227. 26. Johnson, W. R., Safronova, U. I., Derevianko, A., & Safronova, M. S. (2008). Relativistic many-body calculation of energies, lifetimes, hyperfine constants, and polarizabilities in 7 Li. Physical Review A, 77, 022510. 27. Seaton, M. J. (1983). Quantum defect theory. Reports on Progress in Physics, 46(2), 167–257. 28. Jungen, C. (Ed.). (1996). Molecular applications of quantum defect theory. New York: Taylor & Francis. 29. Civiš, S., Matulková, I., Cihelka, J., Kubelík, P., Kawaguchi, K., & Chernov, V. E. (2011). Time-resolved FTIR emission spectroscopy of Cu in the 1800–3800 cm−1 region: Transitions involving f and g states and oscillator strengths. Journal of Physics B, 44(2), 025002. 30. Civiš, S., Matulková, I., Cihelka, J., Kubelík, P., Kawaguchi, K., & Chernov, V. E. (2011). Low-excited f-, g- and h-states in Au, Ag and Cu observed by Fourier-transform infrared spectroscopy in the 1000–7500 cm−1 region. Journal of Physics B, 44(10), 105002. 31. Civiš, S., Kubelík, P., Jelínek, P., Chernov, V. E., & Knyazev, M. Y. (2011). Atomic cesium 6h states observed by time-resolved FTIR spectroscopy. Journal of Physics B, 44(22), 225006. 32. Civiš, S., Ferus, M., Chernov, V. E., Zanozina, E. M., & Juha, L. (2013). Time-resolved Fourier transform infrared spectra of Sr: h-, g-levels and oscillator strengths. Journal of Quantitative Spectroscopy and Radiative Transfer, 129, 324–332. 33. Civiš, S., Ferus, M., Chernov, V. E., Zanozina, E. M., & Juha, L. (2014). Zn I spectra in the 1300–6500 cm−1 range. Journal of Quantitative Spectroscopy and Radiative Transfer, 134, 64–73. 34. Civiš, S., Kubelík, P., Ferus, M., Chernov, V. E., Zanozina, E. M., & Juha, L. (2014). Laser ablation of an indium target: Time-resolved Fourier-transform infrared spectra of In I in the 700–7700 cm−1 range. Journal of Analytical Atomic Spectrometry, 29, 2275–2283.
References
149
35. Kubelík, P., Zanozina, E. M., Pastorek, A., Ferus, M., Juha, L., Chernov, V. E., et al. (2016). Argon FTIR spectra between 800 and 2000 cm−1 : h- and i-levels and transition probabilities. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 337–345. 36. Zanozina, E. M., Naskidashvili, A. V., Chernov, V. E., Civiš, S., Kubelík, P., Ferus, M., et al. (2016). The argon spectrum in the range of 1200–2000 cm−1 . Optics and Spectroscopy (USSR), 121(5), 655–664. 37. Kramida, A. E. (2011). The program LOPT for least-squares optimization of energy levels. Computer Physics Communications, 182(2), 419–434. 38. Humphreys, C., & Kostkowski, H. (1952). Infrared spectra of noble gases (12000 to 19000 A). Journal of Research of the National Bureau of Standards, 49(2), 73–84. 39. Martin, W. (1960). Energy levels and spectrum of neutral helium (4He I). Journal of Research of the National Bureau of Standards, 64(1), 19–28. 40. Outred, M. (1978). Tables of atomic spectral lines for the 10000 a to 40000 a region. Journal of Physical and Chemical Reference Data, 7(1), 1–262. 41. Nagai, K., Tanaka, K., & Hirota, E. (1982). Observation of fine-structure transitions of the helium atom by infrared diode laser spectroscopy. Journal of Physics B, 15, 341–345. 42. Kono, A. (1987). Infrared diode-laser measurements of some atomic helium (4He I is nl) fine-structure transitions - comment. Journal of the Optical Society of America B, 4(3), 430. 43. Lumsden, S. L., Puxley, P. J., & Hoare, M. G. (2001). Near-infrared spectra of compact planetary nebulae. Monthly Notices of the Royal Astronomical Society, 328(2), 419–441. 44. Drake, G. (2006). High precision calculations for helium (pp. 199–219). New York, NY: Springer. 45. Civiš, S., Kubát, P., Nishida, S., & Kawaguchi, K. (2006). Time-resolved Fourier transform infrared emission spectroscopy of H+ 3 molecular ion. Chemical Physics Letters, 418(4–6), 448–453. 46. Morillon, C. (1972). Etude des spectres d’émission atomique du néon et du xénon entre 3.5 et 5.5 µm à l’aide d’un spectromètre à grilles. Spectrochimica Acta Part B, 27(12), 527–536. 47. Sansonetti, C. J., Blackwell, M. M., & Saloman, E. B. (2004). High-resolution observations of the infrared spectrum of neutral neon. Journal of Research of the National Institute of Standards and Technology, 109(3), 371–389. 48. Kubelik, P., Zanozina, E. M., Pastorek, A., Ferus, M., Juha, L., Chernov, V. E., et al. (2016). Argon FTIR spectra between 800 and 2000 cm−1 : h- and i-levels and transition probabilities. Journal of Quantitative Spectroscopy and Radiative Transfer, 182, 337–345. 49. Whaling, W., Anderson, W. H. C., Carle, M. T., Brault, J. W., & Zarem, H. A. (2002). Argon I lines produced in a hollow cathode source, 332 nm to 5865 nm. Journal of Research of the National Institute of Standards and Technology, 107, 149–169. 50. Engleman, R, Jr., Hinkle, K. H., & Wallace, L. (2003). The near-infrared spectrum of a Th/Ar hollow cathode lamp. Journal of Quantitative Spectroscopy and Radiative Transfer, 78(1), 1–30. 51. Humphreys, C. J., Paul, E., & Adams, Jr. and K. B. (1961). Naval ordnance lab. Quarterly report: Foundational research projects. NAVWEPS Report, 7205, 25–52. 52. Faust, W. L., McFarlane, R. A., Patel, C. K. N., & Garrett, C. G. B. (1964). Noble gas optical maser lines at wavelengths between 2 and 35 µm. Physical Review, 133, A1476–A1486. 53. Andrade, O., Gallardo, M., & Bockasten, K. (1967). High-gain laser lines in noble gases. Applied Physics Letters, 11(3), 99–100. 54. Hernang, B. (1967). The spectrum of krypton, Kr I, in the extraphotographic infrared. Ark. Fys. (Stockholm), 33(5), 471–480. 55. Humphreys, C. J., Paul, E., Cowan, R. D., & Andrew, K. L. (1967). Spectra of the noble gases in the 4-µ region. Journal of the Optical Society of America, 57(7), 855–864. 56. Mishra, A., Kshirsagar, R., Bellary, V., & Balasubramanian, T. (2000). Identification of new transitions in the first spectra of neon, krypton and xenon in the near infrared by Fourier transform spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 67(1), 1–7.
150
References
57. Sansonetti, C. J., & Greene, M. B. (2007). Infrared spectrum and revised energy levels for neutral krypton. Physica Scripta, 75(5), 577. 58. Hepner, G. (1961). Contribution à l étude de l émission infrarouge de spectres atomiques et moléculaires dans le domaine spectral 1-3 µ - Application à l élargissement des raies de la série de paschen de l atome d hydrogène. Annals of Physics, 6(5–6), 735–788. 59. Morillon, C. (1972). Study on atomic emission-spectra of neon and xenon between 3.5 and 5.5 millimicrons using grid spectrometer. Spectrochimica Acta, Part B, B 27(12), 527. 60. Humphreys, C. J. (1973). First spectra of neon, argon, and xenon 136 in the 1.2–4.0 µm region. Journal of Physical and Chemical Reference Data, 2(3), 519–530. 61. Sittner, W. R., & Peck, E. R. (1949). The spectra of argon, krypton, and xenon between 1.2 and 2.2 micron. Journal of the Optical Society of America, 39(6), 474–477.