283 48 33MB
English Pages [994] Year 1999
- Student syions Manual
Nhlensti(5 for Business, Economics, LtSciences andSocial SCIences
‘Seventh
Edition
‘
Raymond A. Barnett / Michael R. Ziegler / Karl E.Byleen
Digitized by the Internet Archive in 2021 with funding from Kahle/Austin Foundation
https://archive.org/details/studentsolutionsOO0Obarn_y5i3
Student Solutions Manual
Applied ~ Mathematics for Business, Economics, Life Sciences, and Social Sciences
Seventh Edition
Raymond A. Barnett / Michael R. Ziegler / Karl E. Byleen
PRENTICE HALL, Upper Saddle River, NJ 07458
Acquisitions Editor: Kathy Boothby Sestak Supplement Editor: Joanne Wendelken Special Projects Manager: Barbara A. Murray Production Editor: Maria T. Molinari Supplement Cover Manager: Paul Gourhan
Supplement Cover Designer:
Manufacturing Buyer:
Liz Nemeth Alan Fischer
© 2000 by Prentice Hall Upper Saddle River, NJ 07458
All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher
Printed in the United States of America
LORS EeSi) "On, Sta meme il
TSBNE
OG = 13> 0658657,
Prentice-Hall International (UK) Limited, London Prentice-Hall of Australia Pty. Limited, Sydney Prentice-Hall Canada, Inc., Toronto Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall (Singapore) Pte. Ltd. Prentice-Hall of Japan, Inc., Tokyo Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro
CONTENTS CHAPTER 1 A
A BEGINNING ES ea eR
LIBRARY OF ELEMENTARY
FUNCTIONS
ii
stercsceasesa asses csecesovoctesesesedesosacotomeeeres featcorer aree ete tebenesssossacossincsee odorett mm 1
EMEA ASR gNe BARMMMae
ermaticrrnancbsaxeneasecsanesco+sh-n
3.5;
y intercept:
-4.2
10 25)
(Oa
(Ses,
.co)
-10 29.
Using line,
3 with a = 3 for we find that the
equation
16
CHAPTER
1
of
A
the
the vertical line and b = -5 for equation of the vertical line is
horizontal
BEGINNING
LIBRARY
line
OF
is y =
ELEMENTARY
-5.
FUNCTIONS
the horizontal x = 3 and the
31.
Using 3 with a = -1 for the vertical line and b = -3 line, we find that the equation of the vertical line equation of the horizontal line is y = -3.
Sore
m=
-3
For
the
point
(4,
and y, = -1. Re
fo
a
-1),
x, =
4
te:
Using 6, we get: Ste
A)
ye ob fSq-32ci+ 012 y=
-3x
+
-
2
3
For
the point
and
Lg
we
Pals
pogy,
2091
39.
%9035
y=
The
are
(1,
3)
AR
OT
points
ee SS Re
x, = 7,
and y, =
-5
5.
4ijiLet
a 43.
45. 47.
=
Using
4,
3x
+
we
© get:
6)
4
OU
:
-5,
yy, =
-2,
X,
=
5,
and
Using 4, we get:
_-4-
(-2)
m5 024(=5)
~
-4+2
=-2
21
G45
“So 0eemae
See
> M63 -3
-
Bes
Gio
(2
SS
7
-10
the
,
slope
is
using
4:
not
:
defined;
the
;
line
through
(2,
7)
and
(ibs
3)
Vertical
393-203 2 80 S*
Se ai First,
find
he
the
slope
eaSey ee X, Then, or
y -
-
X,
Tak
by using
6,
(7,
5),
3 =
we
6 y -
3
bee
m(xX
-
x,),
where
m
= 2 and
(Gc,
y,)
=.
get:
F(x —Ss)h)
iOrietaya—
These two equations are these, we obtain: =X + Sie =) 4 OF 9 X= eS
49.
x;
Y, = -4.
we get: 2
=
= and
Zi
ie
6,
(=O
> 3 (x +
5 =
y tas
or
Skee
5
Using
fy? 45158 Ee 4
y+ 5 =0
y=0
i
iad
11 yr
“the
for the horizontal is x = -1 and the
5 = 5 (x == olf)
equivalent.
After
simplifying
either
one
of
EXERCISE
1-3
ye=n-8
First, find the slope using 4: Paes ca Wastin1,Wetye et, "OS Se ey S SeeiteaS) anSeae 5% 7a 5 By using 6, and either one of these
points,
we
obtain:
y - (-2) = -2 [x - (-5)] fusing (-5, -2)1 Vaastu
=
QE (x +
S(y +22)2=15%.— Sy el =e x + Sy =) -15
>|)
5 5
17
Biss, 37)’ and) (2iaes3)) Since each point has the same x coordinate, the graph of the vertical line. Then, using 3, of
the
formed a = 2,
by these two points will bea we have x = 2 as the equation
line.
B31. ¥(2, 3) manda (= 5a) Since each point has the same y coordinate, the graph of the horizontal
equation 55.A
line with
line.
of
Then,
the
using
line formed by these two points will 3, with b = 3, we have y = 3 as the
line.
linear function Yy
57.
Not
a
10
function Yy
59.
A
x
10
-10
-10
0
x
10
-10
-10
The graphs of y = mx + 2, m any real number, all intercept (0, 2); for each real number m, y = mx line that passes through the point (0, 2).
65.
The graph
=
|mx + b| coincides
for all x satisfying mx + b = 0. graph of f in the x axis for all is never a linear function.
We (A)
are
given
A =
100(0.06)t
PAG
NE l=
Sm
wemhianiouA
ING
ME
20,
we
have
A
+
100
0
with
the graph
The graph of x satisfying
=
6t
+
have the same y + 2 is a non-vertical
of
g is the mx + b
(1 + r)3
= 1500 5 3
1+eo
i
Vi S= 11447 0.1447
(ibd,
CHAPTER
1 REVIEW
b=)
33
87.
(A)
R(130) = 2085) -R2(50)) =) 80 l s20BEESO 228). 1.6
Slope?
730, 2150 ta eon)
Equation:
38.
R =
R(1L20)eept
(C)
L76h=
(D)
1.6; The slope the cost.
1i6Ge
= Gueme,—
(A)
ep
2
7%6(Cc
-
50)
@rm R.=\126C
e=25192 Si
gives
the
change
in
retail
5.
a0
isn
an.
2 oom
SS
6mmm2a69. 1e2 52%)
2234
price
per
0
caon is 09smi2iOne
AES)
3031
2S
20"
The
year
1995
£(25)) =F3103 34 The year 2000 (3.0) (= 3 08n4) (D)
39.
(A)
corresponds
Ge)
to
x
=
10)
AS;
approximately
17
CHAPTER
1
120
25
0:49
“for
024408
“ for
OLS 9x
“for
consumption
is
dropping
A BEGINNING
eggs (1-3)
(OPS
) ee mo OY. 27117, corresponds to x = 30 3 466 Ooo 6 501, 2.00
The per capita egg every five years.
COX)
change
"(B)
5
(C)
unit
3246x
x Consumo
=
6 (120)
(B)
£(x))
80
LIBRARY
OF ELEMENTARY
FUNCTIONS
36
and (1-2)
40.
(A)
Let
=
number
of
CE)
x
=
84,000
+
IR (ote)
ee
OSs
video
tapes
produced.
15x
R(x)
C(x)
@ 200000
(B)
Re (se)
= |CS)
©
5Oret=
S45 000) +
B5oa=) S=)
847.0100 2, 400, unites
REeGucomsOususc xt 27200
15x
41.
xis,
0
2, 400%) Rp
= =
Rie)
= xp(x)
00s
Garor
27200
p(x) C(x)
=
Oss
(1-3)
50 - 1.25x Price-demand function 160l¢ 20x 1 Cost’ function x(50
-
1.25x)
Revenue
function
R(x) C(x)
(B)
R=C x(50
=
DLOZ25Sc)e"=b16ORs
31,25" 50x08, -1.25x* + 40x = ~1.25 (x4 1 3 2x08S256) = -1.25(x - 16)? = (x #006)2% = x =
iO,
160 4 10x 160 160! tape -160 128 16 4° V¥i28 = 27 318 16 - V128 =~ 4.686
R= C at x = 42 686u thousand units (47,686 units) and x = 27.314 thousand units (ATP Biley wtaalies) RVC LOre lee Aen OO Iams 4 a exe S104 Ri> C £or 4a6S86e
1,
‘then
through
OF
b%
f(x)
(0,1);
=
p° =
curves;
b%,
1 for
there
as
x
increases.
f(x)
(0,1) x
48
CHAPTER
2
ADDITIONAL
ELEMENTARY
tices
(=. bi
FUNCTIONS
isb i> 7.
0,
any
are
asymptote.
increases
Graphvota
b>
no
RANGE
b#¥1
base
b.
holes
or
jumps.
e.
If
0’
1
i 4.
PROPERTIES
OF
= 10
LOGARITHMIC
FUNCTIONS
If b, M, and N are positive real numbers, then:
numbers,
ar
log, 1 =
0
e.
log, MN =
De
log, b =
ib
fe
log, 5 =
Cc. log, b* pe
Gr
log, MP
may
Log Me = log, N
bos 5.
real
ee Bt MeSxqe
LOGARITHMIC
Common
ae
NOTATION;
logarithm
logarithm
log*x*= dresses
¥ ey
linGea—
is equivalent is equivalent
and
log, M +
log, N
log, M =
log, N
if
and
56
CHAPTER
2
ADDITIONAL
Ss
only
2é
M=N
log,) x
log, x
to to
em.
ELEMENTARY
x are
RELATIONSHIPS
pee 1 Oe x = er
EEE n nnn nn
Ee 2) = 8? (emg 3)
p and
= p log,M
LOGARITHMIC-EXPONENTIAL
logusa=
Natural
b #1,
ileal
FUNCTIONS
ese ty
SSS
log, AS)
a=A2
aaa log, 8 rea
pe A
log,,1
= y is equivalent
pO
log,e
17.
log, ,0.2 = y is equivalent
a9.
log,,10° = 3
9.
= y is equivalent
to 10” = 1; y= to e” = e; y=
log, 5 =
log,P
29.
een
=
log,p
-
=
log,p
-
(log, a +
=
log,p
-
log,¢g -
-
log,2
log,x = 2 x=
m =u
log,A
0. 1.
(0.2)¥ = 0.2;
2" 43
y=
1.
23 slog, 1000
3%
(using
4f)
27.
log, ars log,r
+
log ,r -
log, s)
log, L
(using
3)
log.,,7?
=
5 log, L
(using
4f)
(using
4e)
a
fous
ee
This
tel
b =
4x ae yes
39.1 °
09473
oFshe
dem pat?
41.1 ‘
6
9 = (3)
x= 2
(since
x” 3 log, by
aoe
(37jy
B=
3°Y
45.
2
=
log
x =
=
5 log) x 3
log,y°
Nate ui
are
implies the the
same).
ae
iy
log,10° = 2 3 1og,10
“= =
log,10 = :
This inequality implies that 2= VOL y= =2.
43.
OS)
p-4
equality 10
exponents
L OG
4g)
35. log,10°4 = -4
ay
BS ee
(using
log, s
33. log,49 = y
x=9
37.
=-log,,10° = 3
2a)
25.
31.
to
ai. Log,
(using
Li
10 = pi/2 Square both sides: MOOR esbDitele Gan — sl Oe
3 log,o VN = log,n'/3 b = 3 log,N
3 log,y
47.
log, (x Vy) =
log, x? +
lege”
=
2 log, x + F log,y
49.
Wee i20° 20 *") = 1og,50 +) 10g,2/°:2" = log,50 - 0.2t log.2
EXERCISE
2-3
57
SL.
log, P(1
+ r)' =
log,P
+ log,(1 + r)* =
Dist.
log,100e°°°F* = 1og.100 + Yeglem log 100
=
0.01t
log,P +
tlog,(1
+ 2)
ae
log.e
= log
100
=)
0). Oané
/ 55.
2 log,x = 3 1log,8 =
log,4
log,x =
log,2
x= 57.
+
3 5 1og,4
log, x = =
=
log,6
log,6
=
=
1og,8*/°
+
egyor '2
2 3 109,8
-
8
log,4
(using
Therefore,
x(x
Seay. (se AMoS hau Pe
+
+
2 log, 2 =
log) 4 =
log ,4°/? -
tog 87/4 +
x
4) 4)
=
log,21
-
4)
=
21
eon
-3
is
log, (-3)
log,21
-
=3
not
is
61.
log, (x -
1)
Therefore,
z 3 Alike
not
x
1) =
There
is
no
not
not
solution, 1) =
defined.
it
FO
1 =40(xoe
a
defined. ]
jae
Ol
= 1 = = 95en=
solution
TOs
ae
vi
bee
since 20
log, (-%5 )
Similarly,
1)re = Log, 4(-2 5]
defined.
Y
Y =slog. (x =z)
Gee 9, VO
graphiok
ahi
CHAPTER
10?
x-
0
a
1)
Losi o( 5n
is
58
log, , (x +
b, legal
Log) o(-aL 9 +
The
-
ys«|
ees) el:
=
=
is
65.
log, 2°
log, 8
ala og, (-"5 -
Mo aE
log,6
2e)
log, (x log, x(x
63.
-
4-3 log, &
2e)
log, 8 -
log, x +
since
-
log, 8
x=
[Note:
log,3
e(using
log,x =
59.
aly + 5 log,9
y =
log, (x =
2)
teethne
Graph
Zenash
2
ADDITIONAL
ELEMENTARY
FUNCTIONS
OL
y =
1S.420
log,
x shifted
to
the
67.
Since
logarithmic
functions
must have x + 1 > y= 1+ In(x + 1)
69.
are
defined
only
for
(A) 3.54743 (B) -2.16032 (©) 45 62629 (D) -3.19704
Divs
10* =
12
(Take
common
log 10* = log12 wie
de OT92
logarithms
of
both
sides)
4dogi0”
=
x log 10
=
x
logil0
+fad fac
1.03%
Jog(1.03)*
7005)7"
=
log 2.475
Tog 2,03' =
3
(Take here
sides)
logarithms
of
both
sides;
30.6589
either common or natural logarithms we'll use natural logarithms. )
of
both
sides;
= 1n 3
A 2ZE= ey
fem)
=i)
(Take either common or natural we use common logarithms)
In 1.00514°
81.
4. gh ~ 3. g
= -1og.2.475
x=
79.
OnE S54
= 1.0792
e~ = 4.304 (Take natural logarithms of both In e* = 1n 4.304 = 1.4595 xm u 1.4595 (lne*. = xlne =,x; ine= 2) 2.475
we
of
Woge = i.1285 KeeelsiwA 43:1) (B) logx = -2.0497 x =) 020089 (C) In xt="26:7763 x = 16.0595 (Dipole 18.879
75.
=
"inputs",
range
(A)
Xie
Wes.
positive
0 or x > -1; domain: (-1, ©). The is the set of all real numbers.
In
ua, 1.005 1.005
” =
B20 e273
ais eySissy)
83>
Xx, xO
y=) imei
x > G Y 3
increasing
(0,
©)
decreasing
(0,
1)
increasing
[1,
)
EXERCISE
2-3
59
85.
y=
21n(x
oe Been
x
>
-2
BTUs.
y
=925) -1 0
Wea
Aa
eS
| Xe
0
Yy
|=e 0 Ee 1K 33S)
1 5
a. =
2 389
10
=)
Aeon
increasing
(-2,
©) increasing
89.
The
calculator
109 (7)
calculate
109 (7"}= or
91.
calculate
Hom
= and
y =
log, oY ces
log
log
13
0.
-
bust
Thus,
log
=
as
the
common
not
(0,
)
13
as
og (77) To
logarithm
of
the
;
find
result:
0.2688453123
7 to
Ole Dy) tick, log, 1 =
log 13
7
take
log(1.8571...)
anya numbernwb,s
implies 93.
interprets
13
get
the
same
result.
log, 1 = y is
0 for
any
equivalent
permissible
base
to
b”
=
1 which
b.
log, 9¢ ="058x =
0.8x
Therefore,
© =
(using
1)
and y = c-10°-8*, 95. A £unction £ 1s) "larger than" a function gryon haleraicewl [[cl, Jolll alse ie((S%)) Ss Vep(s@) aeCha 2) eS be S Jo). 2g((9) S38 eilSid) SS jollss) steke Al ES Be Ss ANG, eles SiS x > Vx > In x for 1< x < 16
an
1
PMT = $600, Ds
ik
2s 29
In CIGOay
PV = $9,000, =
=T2
= 2 = 0.75
=
PV
,
a O01
f(r oly 2? =n (0275) =n in(1.01) =°1n(0.75) woe (0 275) 11.
_
Giion
= -2OM000TI— pee eins
)
i
ieee
= 200
40,000
= 68.25843856 ~ *°86-01
Pur = 200
0.01,
Pv = $5000/"a'= We
_40,000
1i-. (1 +.Qnor
496]0 .0075
3010750504 7 %199-29 a.
0. BOT
7. PMT = 40,000
1 - (1 + 0.01)
GL
n = 20,
i=?
+) —n
xn
1.)
i Substituting
9000 Sys
Graph The Ma
600
= r
Bert
ES
15i
+
ee
Y,
=
15x
+
1
given values into e +, -20 (1° + 1)
(faI
Cade
eer
a
(1 +2 43)?°
bi 54290
=)
=
me ee
S4000,
+ ote,
Yo
Date XC)
m=
i
Et
this
formula
gives
il
aeCea ial
(1 ea)
%
1
2
curves intersect at x = nOCO29 . Thuse2 = 0.029%
Homer
PV
the
104)
=
=e
-05
0 and
"40
O.,0S 0.02 gO =
Present
=
pr
=
PMTa>,;
3
4000aFA
il
value —
a
1) 1
see
02
= 4000 (27.35547924) = $109,421.92
EXERCISE
3-4
89
15.
This
is
a present
PMT’ =
$350,
Hence,
PV
mee =
They should $16,800.00. 17.
(A)
value
4{12)
=
problem.
48,
i = S57. =O
=
deposit
= 350(40.18478189) = $14,064.67 The child will receive $14,064.67.
2Vj=esco0,
n=
35047819
OOM
PMTa>;
18,
i =
0075
350(48)
=
0.0L
Monthly payment = PMT = Py ——————— So) a Oe a ae 1 =e PV
600
“2;
Aglo.01
The amount paid in 18 payments = Thus, the interest paid = 658.62 (B) PMT
=
000 @7B]0.015
“1
600
16-39826858
= $36.59 per month 36.59(18) = $658.62. - 600 = $58.62.
(4 = 0.015)
600
= $38.28 per month ~ 15.67256089 For 18 payments, the total amount = 38.28(18) = $689.04. Thus, the interest paid = 689.04 - 600 = $89.04. 19.
Amortized amount = 16,000 - (16,000) (0.25) = $12,000 ABOHEKS), WEAVE ee SEO ONO) Miall a a ((SUA)) es TA) ah (0) 0S
PMT
= monthly
The total Thus, the
21.
ee I NOE aa; "1 A7F0.015
ee ANE 43 .84466677
PV
PMT
=
The
amortization
Totals
CHAPTER
3
$273.69
per
amount paid in 72 months = 273.69(72) = $19,705.68. interest paid = 19,705.68 - 12,000 = $7705.68.
First, we compute the required quarterly i = 0.045, and’ n= 98;"as follows:
Payment number 0 al 2 3 4 5 6 yi 8
90
payment
cae
4
al2 a
5000
i schedule
payment
See ES
i
$758.05 is as
Ci
Unpaid balance reduction
$758.05 758.05 158205 758.05 758.05 758.05 158205 PS 03
$225.00 ZOd On S95 ASRS T2238 OB, 63.88 Bi2ni64
S5sen05 BIS) 7]5 OH SKF 5 1K) 608.30 635.67 664.28 694.17 T2589
6064.38
1064.38
5000.00
FINANCE
222
per quarter follows:
Interest
OF
PV = $5000,
0 045 )oc ne = (0d) 2°
Payment
MATHEMATICS
for
Unpaid balance $5000.00 4466.95 3909.91 38200,8a PTTALS) Sal 2083.84 AESS16 WAGES, 0.00
month
23.
First, ihe =
we 12
compute
72(100)
the
OO,
required
12, =
3.(12)
i
ee
ON gen eee a ee — pas™
Vie
ie
a)?
Now, compute the unpaid payments: PV =
for
PV =
0.01 = (1 e0OsORiC Men 1)-
()()()()
unpaid balance PMT = $199.29,
S=he
payment
$6000,
VErsiGe
Je~ = $199.29
arated Z + 2)
PMT
monthly
60 (LO
after 12 payments by considering i= 0.01, and n = 24.
ee
5L99..29
= 19, 929(10—
24
Ey8ieee
0.01
(1.01)~**}
= $4233459
Thus, the amount of the loan paid in 12 months is 6000 - 4233.59 = $1766.41, and the amount of total payment made during 12 months is 12(199.29) = $2391.48. The interest paid during the first 12 months (first year) is:
2391.48
-
1766.41
Similarly, the considering 12
=
$625.07
unpaid unpaid
PV = 199.29 cE
balance as he
after PMT
eo
two years Sol OOo
can be computed by eto OOdee” ANC Tl —seleze
mulOpGg0( te 01)87) = $2243.02
Thus, the amount of the loan paid during 24 months is 6000 - 2243.02 = $3756.98, and the amount of the loan paid during the second year is 3756.98 - 1766.41 = $1990.57. The amount of total payment during the second year is 12(199.29) = $2391.48. The interest paid during the second year is:
2391.48
-
1990.57
=
$400.91
The total amount paid in 36 months is total interest paid is 7174.44 - 6000 during
= 25.
the
third
year
is
1174.44
-
(625.07
+
= $7174.44. Thus, the and the interest paid
400.91)
=
1174.44
-
1025.98
"$148.46.
PMT = monthly payment = $525, Thus, PV
the
1=
PMT
Hence,
present
UST
selling
value
of
epee |a i
price
=
n = 30(12)
all
(SVAls)
loan
payments
1 n(
= The The Pa
The
total amount paid interest paid is: esO.0 00m
Dieaaee
(2)
total
amount
owed
= 360,
i = a
+ down +
eee
at
the
$60,846.38
payment 25,000
$85,846.38 in 30 years 189,000
(360 months) = 525(360) 60,846.38 = $128,153.62
-
aS
end
of
= 0.0081667.
is:
dee 0. 0081667)22°° .=. 0.0081667
60,846.38
27.
199.29(36) = $1174.44
=
the
=
$189,000.
0.0029167
two
years
is:
A = P(1 + i)” = 6000(1 + 0.0029167)74 = 6000(1.0029167)24 = 6434.39 Now,
the
monthly
payment
is:
EXERCISE
3-4
OL
PMT
=
where
29.
ope: ie
PV
1
es
a)? PV
e035
48,
6434.39
0.0029167 (1 + 0, 0029167.
=
The the
total amount paid in 48 payments is 143.85(48) interest paid is 6904.80 - 6000 = $904.80.
‘
=
aymnent.
Monthl
eo
Se
al
(tee
Ina,
(A)
OROTSE
ee
1 =) (E00 1s
US
CSC
Similarly, loan to be
Wee
841.39 =
(C)
Tie
841.39
(1acOl alywees
='$55,
Om Omel:
oe
after
ee
sige. >HALEN MgWhy
841.39
noo
of
payment
PMT
=
PV
aCe
20
after
years
=
12(10)
(with
25
12(5)
n =
remainder
(with
years
=
0125 7 11="20(12)"=*
sama deny
60]
240%
ad (de togt)
ip
0.0125 = 30,000 ——— 1 = (ee OO rebar oo 236,000 The
total
amount
paid
in
240
Ts
3
MATHEMATICS
OF
FINANCE
GTO a8
(IOUS ine!
payments
395.04(240) = $94,809.60 Thus, the interest paid is: $94,809.60 - $30,000 = $64,809.60
CHAPTER
remainder
of
120]
$36,813 .32
; OR 2 = oie
to
loan
909502
[Note:
=
OROWE:
$30,000,)
PV =
02011)°° OnOLst
Monthly
92
a
arrel 4rere OL) -240 3= $70,952.33
n =
[Note:
The balance of the loan paid in 5 years) is:
= (A)
OO OO
Sais39
31.
the balance of the loan paid in 10 years) is:
OF Only
=*s
12
(with balance to compute the balance after 10 years Now, arene. Olas Oe $841.39, = PMT use years), 20 in paid be Sa o = 240. Heese 202) PMT Se Balance after 10 years
= 841.39 fi die = 841.39 (B)
ORAS2
Oe OL 1) ees
ek
1,
eee
21750000
;
(0). @atal
000
PV ss
Thus,
$6904.80.
=
a=
S75, O00,
=
PV
payment:
monthly
compute the First, = Stools Myce, 3012)
month
per
$143.85
=
PMT
fe
Thus,
0.0029167.
=
12
=
1
$6434.39,
=
nli=—4gjm—
is:
2 S795. 04
of
loan
to
be
(B)
New a=
payment 0.0125,
=
PMT
ee 1
-
(1
=
$395.04
+
$100.00
=
$495.04.
+.2)
495.04 = 30,000
$30,000,
375
:
0.0125
4 =
PV =
(1 + 0. 0f359e2%
4 =
(1.0125)
Therefore,
Bis
ha) O105)
“hrs es 0.7575 495.04 (£00125) 7 re 1 - 0.7575 = 052425 in(170125)"" ‘= In(o.2425) -n 1n(1.0125) = 1n(0.2425) =
Se
ante
=
114.047
The total amount paid in 114 payments 495204 (114)e = 9556, 43.4. 56 Thus, the interest paid is: $56,434.56 - $30,000 = $26,434.56 The savings on interest is: $64,809.60 - $26,434.56 = $38,375.04 33.
PV = $500,000,
PMT
=
months
$495.04
or
9.5
years
is:
2 5243.00625)52 PMT 0.00625 | © = 1 - (1.00625) ., it _ B002000(0.00625) ah
$5,000
(1.00625)
Oh)
=
(1.00625)" = ae Thus,
114
i = pone = 0.00625
G 500,000 = 500,000(0.00625) Sur = ae00625)0 =n.= (A)
of
=
157
1
#4
500,000(0.00625) 5000
0.375 in(0.375) (0.375)
in
'
E>.
eG OOEASy withdrawals.
(B) PMT = $4,000 500,000(0.00625) 4000 =.0.21875
(1.00625)" = 1 = (1,00625)." TG)
Thus,
(C)
The
243
1n(0.21875) 1n(1.00625)
than
per
month
$3,000. 12
the
owner
can
on
For
500, 000("45=] a Thus,
_ ~ ~243
withdrawals.
interest
greater
a
$500,000
example,
at
the
7.5%
compounded
interest
in
monthly
the
first
is
month
is
3-4
2)
So teo
withdraw
$3,000
per
month
forever.
EXERCISE
35.
(A)
= 11
4
i 1 + )" Raed
i
FV =e
=
a = a
$7007,
=
PMT
.
0.0062,
annuity:
ordinary
the
of
value
future
the
calculate
First,
.= 360
m=3012)
- 11 2 3608°" 1.006062) (1.0
100
0.0062
=) SISSploy The interest earned during the 30 year period is: = 133,137 = Se70007 = $97,137 i3ees7 -\360(100) determine Next, using $133,137 as the present value,
the
monthly
payment:
PV = $133,137, i = 0.0062, nm = 15(12) = 180 = 1337137 —___0.0062 ___— ey per 1 - (1.0062) dee: (14 2) = ~ EO?= 2000
(eyoPer = $2000, m=1, pur
S97
(t shih) 458% ne
m=1,
r=
eat he = Sl O73
37
(3-3)
i, n=3
gy
=.12)9038,28(1 + i)? ieee Ma = {5993799 ~ 1-3475775
3 In(1 + i) = 1n(1.3475775) In(1 +1) 1 +a 30.
= 0.0994362
= ef -9994362 ~ 1.1045 i = 0.1045 or 10.45%
(3-2)
P = $1500, I = $100, Seng med. 7m 3: ¥ 8% From
fae
31.
= a
Problem
wnewn =
pete
24,
oe
51,500,
We
want
PV
=
to
PMT
(20
2-=
find
wal i
Or
20S
—77v=-0.02,..m
the
present
a
i
=
value,
= e200
Te
2(4) PV,
0.02
= of
Cay
8 this
annuity.
$10,988.22 32.
The
committee
(A)
The present value of an annuity which provides for quarterly withdrawals of $5000 for 10 years at 12% interest compounded quarterly is given by: Quand PV
=
for hi
Il
deposit
i as i)-"
iS
will
PMT = $5000,
and n = 10(4)
(Gh se OBOE 0.03
166 66626711 amount
$10,988.22.
with
= 5000
This
should
= have
= 0.03;
= 40
-40
(1203)07°] to
i = Tg
be
in
=2S115,573 86 the
account
when
he
retires.
CHAPTER
3 REVIEW
101
(B)
To
determine
(A),
we
the
use
quarterly
the
si
deposit
to
accumulate
x|
where
FV’=
$115,573.86,
PMT | SSR dye 2 epand pry==442Qmneme0
(C)
=
103 eS 5i7 3%. o6 teens
=
a
(1 + 0.03) =
=
$359.64
i =
=
The
amount
of
LS
pees
=
PMT
=
eee
S283 771320
the
loan
O01
a
=
=
is
Seand
ae
(1s
=
in part
1
quarterly
payment
$3000(3] =
m=
=
2000
$2000.
ee Ten
So,
(3-4)
The
monthly
interest
rate
12 (10)\e=eode
79)
$2396.40.
is:
S171, 228es0
= $99.85 per month amount paid in 24 payments
The 99.85(24)
amount
0:03,
The amount collected during the 10-year period is: ($5000)40 = $200,000 _The amount deposited during the 20-year period is: (SS5964))'3 0) =8 S285 77d 120 Thus, the interest earned during the 30-year period SZOOMO00
33%
the
formula:
the
ene
(lO)
is interest
= =o
O25)
paid
1
is
2396.40
(IPOS)
-
2000
=
$396.40.
(3-4) 34.
FV’ =" $507 000Par* =
PMT
=9S=10709, -
———~——_
FV
(a ¢ t)S,
Lint=
92)
0.09 or
OF 00757
7 1 9 Sam
(ie
aye.
ja) saul.
x)
=.
ah))
=
50,000 95.007028
=
$526.28
per
(from
Table
IT)
month
(3-3)
(By
ey
pies OLOies ae 56 wie her
need to obtain:
solve
the
Asay By
ino?
eee)
OnUO027/4
lig 2 In(1.000274)
=
2530.08
days
or
6.93
years.
2 S020 Tauisl
102
we we
2
2 ent
PAWS
same
=, in 2 ¥.
(A)
1256)
raomoars
Sb) ¢ To determine how long it will take money to double, equation 2P = P(1 + i)” for n. From this equation,
da (dete)
="
50,000
-
4
: waee
CHAPTER
rae
3
sql A inti. t) =
MATHEMATICS
OF
7.27
years.
FINANCE
(3-2)
36.
First, we must calculate the future compounded monthly for 2.5 years.
A = P(1
+ i)™ where 0.055
= 8000(2 +
L2
P = $8000,
i = ae
$8000
and n=
at
5.5%
interest
30
30
) = $9176.33 debt
PMT
=
=
PV
ul
=
9176.33
—
where
(1 + 2)
PV
=
Teo
Stet
10, 516.80) =
$8000)
graphs
of
=
y,2 =
are
aa
12
at
5.5%
0.0045833
= 60 =
42 .058179
1 -
=
=
$175.28
(1.0045833)
is:
$2516.80
ere
2%
(3-4)
(beet & 1200 andiiie 222 = 0.005. .
The
.
7
(1005) -29(60),.= $10,516.80 Thus, the interest paid is:
bs
of
Now, we calculate the monthly payment to amortize this interest compounded monthly over 5 years. 0.055
1+
38.
value
will
at
y =
the
right.
120
100,000
$100,000
after
70
payments,
that
is,
after
10 months.
first
find
the
(3-3) monthly
ent = Py an
payment:
PV = $50,000
i = 2:0? = 9.0075
re
12
n = 12(20)
0.0075 50,000 1 =" (1 fom7*° $449.86
per
The present value x years, is given
5
= 240
month
of by
the
$449.86
per
month,
20
year
annuity
at
9%,
after
3 REVIEW
103
1 2 -Gr foo Ts 42S
y = 449.86 0.0075 59,981.33|1 4 (1.0075) ~22(20-» |
CHAPTER
The
graphs
of
50,000
shown
are
The 39.
unpaid
18;
balance
P a SOP From
40.
x =
23,
PV =elOOOFee7 The quarterly
y =
10,000
See
ile
$10,000
after
18
years.
(3-4)
Mim. 360 =
pes 100565
e:,) 0025
(eee
0
below
= 40/3025, (2 = payment is:
=
right.
the
be
tC =
aE
PMT = own = iLoyoyle)
at
will
oO. 08),
Problem
on
0
figure
in the
intersection:
(1.0075)
1-
59,981.33| si Y, = 10,000
“32(20-») |
Ops O25)
=
0.288
or
28.8%
(3-1)
74
: {Ls
25 AenPee ay (AU: OSy),
Payment number 0 1 B 3 4
Payment
$265.82 265.82 265.82 PASS) yishal
S25 00 18.98 2 Sale 6.48
Totals
IMOSS) LAW
63.27
ee
82
Unpaid balance reduction
Interest
$240.82 246.84 PSS) -{0)ih 25933
Unpaid balance $1000.00 759.18 Syl es! 2595585 0.00
1000.00
(3-4) 41.
PMie—asZ2 00," BVee=
S25 00)
a=
ene
=)
0. 00665
By = pur (1=iy = er: 7
215) nels
(1.00665)
i=
f
2500 30,075.188
104
CHAPTER
3
RIMM
take
{52015
Mice a =O
3070755188
-
F(1800665)=
—
19
MOS Sie25
083105 tne. OSsies5 In 1.083125 eae 00GR
n
it will
10).00665)
010
(1 O0e5)2 e = TD) Tye O06S) =
Thus,
(141
One
13
MATHEMATICS
months,
OF
FINANCE
ek
or
12.32
months
1 year
and
1 month.
(3-2)
42.
Pree eee
5e50,000, (iG),
a
=
ry
(Lite)
total
eh)
43.
The
="0.0876,
m=
25
0.0876 1 = 5
eS
="(0F O43ior
ed
———?-0438 —__ _ 37,230
(1
+
amount
a(S 5), 347548)
Thus, foo
&. 76%
92
= 850,000 The
ar =
=
0.0438)
=
invested
is:
af]
(1.0438)
-
S664, 169.76
the interest earned with this annuity 50 7000 .— S664,169.7/6 = S185 .83 0-24
effective
_ _ 555,347.48
1
rate
for
Security
is:
S & L is:
mM
ts (2 + mn) -~ 1 where r = 9.38% = 0.0938 and m = 12 my.
2 2.0938 ) -~ 1 = 0.09794 or 9.794%
= (2+ D2 The
effective
rate
for
West
Lake
S & L is:
m
a e
(2 +
=
-
(2 +
Ves
1 where
r
=
9.35%
=
0.0935
and
m
=
365
365
=
Thus,
44.
45.
A =
West
Lake
$5000, interest
r=
Ve Pt ~
0.09799
is
a better
investment.
t = Be =
0.25
$4899.08,
earned
the
PMT
Pu. ee
eM
1 =
is
I =
or
$5000.00
ee UE ee (4899.08) (0.25) ~ 0.0824
Using
Waste
-
S & L
P =
The
=
|
sinking
=
peo),
fund
9.8%
-
(3-2)
$4899.08
or
8.24%
a =
ae
=
$100.92.
Thus:
(3=f)
formula
ee Tey
S200,
FV
=
sil0) O00}, fand
0.0075
ed
=
0.0075,
we
have:
TD
000 .c apinks AAG AMD Dh Rice.1G Cite O07) > — 2 (GLwOOr7/Sp re: eal
Therefore,
fee 0075)?
om
Tos
(140085) Wk 0075)e% n
The
couple
will
=
OS 75
7k). 023 75ee-? = sim I, 375, Ine Sere
i00nEhe
have
to
1.375
utes 5
make
43
deposits.
CHAPTER
3 REVIEW
105
46.
0.45 29="-25 Pe i
Pv = $80,000, A)
PMT
a
= "25. Suan eee
s ace ay 80, 000
eae ott
0.0125 =
(B)
Now.use PMT = calculate the
!
PV
=
1
PMT
ied =
47.
(0.
=
=
30025))
1000
=e
ieee heor25) $1435.63 monthly
$1435.63, i= 0.0125, unpaid balance.
and
n=
96
;
IWASYS) 4{538}
ge3
-84
(GE sees Ones)
A
0.0125
of
12
unpaid
Deposit:
balance
$10,000
%
Sea oo 0 40! [1
after
the
first
=
84
to
at
8.75%
(PROREZS))
-~84
]
year
Amount of loan paid during the first year: $80,000 - $74,397.48 = $5602.52 Amount of payments during the first year: TONGA S5 5.63) em Slee SO Thus, the interest paid during the first year S$17/,22/ .56e="S5602252 =esilpe2sea04
Certificate
-
payment
(hh FH
$74,397.48 (C)
96
n=48(22Z)5e.
_=,0-0125,
is:
compounded
monthly
for
288
months
Ara
P(
1+)?
P = 10,000
=)
10; 000K 2e00729))
="
SOi) O41
288
:
i=
86
N=
Reduce the principal: Step 1: Find the monthly ai
12
=O
OO 29
A238
payment.
PMP = PV
Day
ORSTS
ee
PV = $60,000
(P)
0.00854 ——————*"— 1 °° = 60,000(0.008961)
Mice0 025 i= > 12 n = 12(30)
= 60,000 = Step
2: Find
$537.66 the
unpaid
present value 288 payments.
PV = =
PMT
per
rege
i
a
CHAPTER
3
Soe
537.66(106.9659599)
MATHEMATICS
OF
after
$537.66
=1S5 7251 4 332
106
= 360
month
balance
of
= 0.00854
FINANCE
72
per
payments,
month
PMT
that
annuity
at
is,
find
10.25%
2553'7..66
i=
ee
n =
288
=
0.00854167
the
for
Step
3:
Reduce
the
required
principal
to
pay
off
by
the
$10,000
and
determine
the
length
of
time
loan.
1 -_ (100854167) eee a) 7” 0.00854167 0.7548005 0.2451995 __In(0.2451995) = 165.3 ~ 1n(1.00854167)
Pe Ei 33 ey ee 1 -
(1.00854167)~" iT}= (1.00854167) ” = _ n ~
The loan will be paid off after 166 more payments. Thus, by reducing the principal after 72 payments, the entire loan will be paid after 72 + 166 = 238 payments.
Step
4: Calculate 8275%
Lor
the
future
360)
—
value
of
a $537.66
2) ee
FV = es
monthly
48.
Use
the
$10,000
to
reduce
A
PMT = 75,000
ie
25s
ero.087s Medias ent the
the total given by:
principal
os, 0 (ora tam
and
invest
the
interest
for
each
of
374)
the
PV = $75,000
n = 2 (30)4=4360
inthe #2
12% mort 12% mortg age:: gage
at
(J=2900-9,
PMT = PVT tite
= Total
annuity
payment.
We find the monthly payment and options. The monthly payment is
=
month
PMT = $537.66
122 .= 547. 66 (1.00729167) a ae pet a537 66 (195.60300TS) = 1054155084 Conclusion:
per
238°="122imonths.
i1 = = ~4,° “75 = 0.01 0.
0.01 ———————+>> Myce: sabtaal th Azo 8
75,000(0.010286)
771.46 per month interest paid = 360(771.46) =—S2 0202 oo0 mortqage:)
PMT = 75,000
1-=
wee
-
75,000
=/05009375
0.009375 ——————— >> tT > (T0093 7S) "
75,000(0.0097126) =
Total The
$728.45
interest
lower
rate
per
month
paid would
= S
360(728.47) - 75,000 Sle), eas. OW save over $15,000 in interest.
(3-4)
CHAPTER
3 REVIEW
107
49.
A-=.
$5000,
erj=e2
P= (1 +2)” 50.
P =
A =
A
= 4476.20(1
=
+
i)
(oe OO oe
Pep
) = 0.0803811
a = ef 0803811 1020837
_ 4 9837
som
r = 10.76%
p = eS
(8.37%
= 0.1076,
first
compute
the
monthly
i=
eS
=. 0.01,
and
nm =
PMT
=
rot ee Che
ess te hee
PMT.
PV
we
calculate
$222.44)" na
Thus,
the 9%
aaa
=
“i
1
unpaid 0.09,
+
r
=
the 1°=
229) 4404
-
9944.73 payment
5(12)
a balance
m= =
unpaid
03.01 *) —n
and?
using
(3-1) PV =
n=.
-36 after
CHAPTER
3
$10,000,
=.60.
balance 60
after -
24°=
24
$2225 44 payments
S
per month
by using
36.
= 22;244[1 - (1.01)~2°) = $6697.11 2 years
is
$6697.11.
(3-4)
12
9b
(2 43
0.09\12 12 }
= (10075)
108
t = = = 0.5
0.01 100 = 10,000 ————————————_ = = 1.— (804-0! 69) 522 = = (i%'91) 76° =°
r=
(3-2)
Se 00 1. +O O76 JiOFS)
ert
10
1n(2.23404)
: dcs
51. A = $5000,
=Gyn
(3:2)
+ i)?°
In(1
Ts =
53.
m= 1,)r
76 14
ts 7)"
> 2020008) > 3.204 4476.20 —
1+
Now,
(nt=vS
er e710
inte
We
$10,000,
Pt
10,000
52.
£00.095,
ee eye 102095) 39) ct. 095)
$4476.20,
10
'=99 75%
MATHEMATICS
OF
FINANCE
=
+7"=11 = 090938
‘or
9-398
(3-2)
54.
(A)
We
first
calculate
compounded
FV
=
(lee
PMT
the
annually
gy
=
4
future
for
1
value
of
an
annuity
of
$2000
at
8%
9 years.
where
PMT
;
="S2000,
7 =
0.08)
andinwang
9
= 2000
oe
aeoe
rete
4.2 95°000[ (1208)
Now, we calculate the future annually for 36 years.
A=
P(1
+ i)™,
where
= 24,975.12(1 This FV
is
=
the
value
of
this
P = $24,975.12,
amount
i = 0.08,
future
value
r
of
a
where
$2000
PMT
=
annuity
$2000,
i =
Rijs 0208)" = 1 = of freee Seek 1 _ 25, 000[(1.08)3© 0.08 The PMT
amount
Sep
ye
of
loan
is
VEY
oe
($100,000)
(0.8)
=
let
a = eo
=a
OUS9S03,
=
$746.79
monthly
Tet
Hee
=
80,000
u
$896.76
(B) To find =
i =
payment =
for
PMT
=
monthly
unpaid
1 an
for
(hisrd)
3746.79,
0.0089583,
for
=
$80,000
n
3
36
(3-3)
and
the
SIIMi,05,
for
after
$41,482.19
serhent
LeOaet
Then
716 .66667
0.7991735
15 10
ees OO
Wes)
years. years,
we
use
mortgage:
i = co
=
0.0089583,
620089593) AGREES
-240
unpaid 15-year
2
balance
for
n =
12(20)
the
30-year
240
iy AD - (1.0089583) ]
mortgage
mortgage:
OOOH,
unpaid
=
te = 83,362.915[1
gi =
Se)
=
Ee
OOSSES 31-0 ow|= 100,103.81[1 896.76 TERE LTE uv
=
- 1] = $374,204
-60
VA
n
years.
=
payment
balance
30-year
eid)
$73,558.78
Mee
and
annually
ao
4
the
I 746.79 PV =
Next,
compounded
—_0.9596687
30
0.0089583
the
PMT
First,
8%
716.66667 Sseae
1 - (1 + 0.0089593)°°
PV
n = 36
0.08,
ie —anbn(s0)
0.0089583 = EES
1, - (1+ 0.0089583) 369
PMT
compounded
6 ae
=) (2X0) O00)
Substitute ete
Thus, 53.
Let
«vy =
the x = y =
2.45
A (aS)
base
into
of of
is
to
(2):
(1):
ai ae ofS Memeo
price
number number
add
—
9.80.)
$17.95;
pounds pounds
of of
17295
the
surcharge
Total
amount
of
Columbian
beans:
132
x 50
amount
of
Brazilian
beans:
132
x 40
=
Columbian
beans
needed:
12 16%
+
Ss 176Y
OF
3G@*
ae Brazilian
beans
needed:
5: 16%
+
10 i¢6Y
SF
igee
we
need
to
(1)
ax + 2y =
(2)
(2)
by
-y
Substitute
Sy eeil) -3
and
=
-9,240
=
6,160
y =
6,160
y
per
pound.
+
6,600
lbs.
5,280
lbs.
3BY
ro) oe
solve:
ox + 2y = 6,600
Multiply
$2.45
robust blend mild blend
Total
Thus,
is
ax + 2 (6,160)
resis
add
into.
to
(1):
(1):
6,600
6,600
—
2,310
=
94,290
SS =—5), 720
Therefore, 5,720 6,160
55.
Let
x = y =
the manufacturer should produce pounds of the robust blend and pounds of the mild blend
amount amount
of of
mix mix
We want to solve the Oelx +50'..2y = 20 0: 06x + 0. 02y = 6
A, B.
and
following (1) (2)
system
Clear the decimals from (1) and (2) 10 and both sides of (2) by 100. x + 2y = 200 (3) 6x + 2y = 600 (4)
of
equations:
by multiplying
both
sides
EXERCISE
of
4-1
(1)
by
123
Multiply 5x
=
Se
Now 80)
(3)
by
-1
and
add
to
(4):
400
till,
substitute ae
va
2yY y
x =
80
into
(3):
80
grams;
00 120
60 x = mix
Solution:
A =
y = mix
B =
grams
60
pa
57.
p=
200
equation]
[Approach
70
-od + 4
j9) 3 (A)
Avoidance
-3.d + 230 The
[Avoidance
figure
shows
the
equation]
graphs
of
r
the
two
Ng
equations. (B)
a
Setting the two equations other, we have aS15 a+ 70 ~ a 43 d + 230
to
each
S %
Approach 200 d
100
Distance in centimeters
70
-
230
=d =
22 gig
equal
Liles es 15 d'="160 a (C)
The
EXERCISEa 4-2
ae
Things Le
rat
=
141
would
cm
be
(approx:)
very
confused
SR
to
(!);
it
would
ET
vacillate.
IT
ETE
SSDI
DEE
EE IE BLEDEL
EEE
remember:
eMAT RICHES
A MATRIX
is
brackets. matrix mxX
has
nis
a rectangular
Each m
the
number
in
rows
and
n
SIZE;
m
and
array
of
a matrix columns, n
are
numbers is
it the
called is
written an
called
DIMENSIONS.
within
ELEMENT. an
m
If
a
X n MATRIX;
A matrix
with
n
rows and n columns is a SQUARE MATRIX OF ORDER n. A matrix with only one column is a COLUMN MATRIX; a matrix with only one row is a ROW MATRIX. The element in the ith row and jth column of a matrix A is denoted ais: The PRINCIPAL DIAGONAL of a matrix A consists [bo
A system of system if: (a) (b) (c)
124
of
CHAPTER
the
elements
linear
Ay41
equations
AgQ1
is
4337
transformed
two equations ar interchanged; an equation is multiplied by a nonzero a constant multiple of one equation is equation.
4
SYSTEMS
OF
LINEAR
EQUATIONS;
MATRICES
into
an
equivalent
constant; added to another
EE
Jw
Associated
is
with
a,x,
+
a,x,
+ bx,
the
a
b,x,
An
=
b
Lah
linear
system
k,
= k,
AUGMENTED
a, 4.
the
MATRIX
k
3
(I) of
the
system
|
(II)
b,|
augmented
matrix
is
transformed
into
a
row-equivalent
matrix
athe (a)
two
rows
are
(b)
a row
(c)
a constant
is multiplied
(KR; ts (Note: 5.
The
Given
interchanged
—
system
is
added
to
another
row
"replaces.")
linear
(II).
equations
If
(II)
is
(I)
row
and
its
equivalent
to
a matrix
0
i
n
(2)) ie 0
| 0
|. then (I) has infinitely many 0 solutions (consistent and dependent) ;
(3)
[2
"
a
0
0
Pp
2X93 8
(Omens
a
Ae
ia
5 "
(I)
p #0,
then
x3
36
=) > £2
Sra
bale
0
has
and
(I)
: solution;
independent) ;
has
no
solution
(inconsistent).
=65
3
-5
then
(consistent
° Crs,
-4,.a,,
F =
,
E a unique
associated
m
@e=| (B)
row
0
ieeeAgc:
es
one
(KR, => Rik;
1
(a8)
a5
means
of
augmented matrix of the form:
7.
of
constant
R,).
arrow
the
R,)i
by a nonzero
multiple ed
(R; oO
7
|, size
-8
CG
ioe eS
5)
0
2x4
size 3 X 2. F would have to have one more column to be square.
=
—6
EXERCISE
4-2
125
13.
Interchange and row 2.
row
15.
1
R,
1
dhs
=
ak
xX, =
2
eure
IK
e263
3
Z
3
R, OR,
row,
7S 0
(-3)R, +R,
Thus,
ad
£1LO
0
A)
From the last inconsistent.
1.
Te
3
eZ
0
et
-1
5
10
2
R, +R,
(-5)R, +R,
Asie
=:
Sa
@)
Al
-1
ab
0
2
(-2)R,
+R,
>R,
(-3)R, +R,
OR,
conclude
220 2
1
-4
we
i
LOT
R, OR,
2
1
-1
that
3 -5 -10
(-2)R, +R,
there
is
2
1
7>R,
7
R,
= 2
3
2
meet A fae | a0)
i
=5
-3
=5
0
0
0
solution;
the
ij
>R,
no
EXERCISE
system
4-3
is
133
35.]
3°.
-2
1
-7
1
1
-3
1
i:
2
1
=4
0
- | 32
1
-4
Oa
OL
1
hes
al)
Br
=—2
1
R, OR,
Ie
=3
il
-5
10
5R, +R,
From
this
(-3)R,
+R,
AR,
al
Ore
= 1
—1
-2
2
=10
0
0
0
0
matrix,
=6
x,
-
es
4 ,
this -2s
=3
=i
and 26
-3
matrix,
-6
X, + 2x,
+t+1,
Die
5
20
-10 > R,
or
=3
-
x, =
15
and
x,
=t,
sbr | S74] 0
ae
ren rd es 40°
By
0
0
0
0
Get
Let
x,
at
be
any
real
t.
2 -
i
0
0
x, =
s and
0
-4
eve
1
PER
ea
-3]
0
x, 7-t.)
real
i
Then
numbers.
4R, +R,
-10
(-8)FR, hak
1
oly
OR, eae
Ser
3
A
BD - yy
-7
s and
t any
ey
GDR
0
*11G0"
2.
ee:
aL
5
=
x, =
mieile
ies {
~ | oo
2x,
and
OR,
Sh iol Opliga Faeries
| ee
2,
3}
ct Pa
8) F-2
Rote
+
2 | 3R, +R,
oe:
0
fp
5
(-5)85 + TR Ons
-7
ql -42
solution.
Ai
EP 9
ooo | ea) | 20 Se
134
=
X, =
silat
3
From
wat
-2
OR,
then
PO
No
}-5)
1
2
(-1)R,
oy
ee
72ers
O
= }| 0
4 -2
-3°,
OR,
R,
2 1-1.
OE
OL
0
0
MATRICES
64) =19 eet 8
-40
(26)Rn. &4 pio tp ; : : ores
ee
S$
Baie:
5
3
ae
24.3
See
Peo iioes ROR
0 0 system x,
-
0 of
0 equations
9X2
=
-4
X13
2
S
1-3
0
ot
“MT
0
0
“4
hs 0
0
is:
and
x
=
2.5x,
-
4
tee Lee
x, =
t.
x, F
2256
X,
c
a
43.
=
Then =
any
real
2
ali!
ah
Ae
1
-2
4
(-1)R,
+ R, >
-1‘
-2;
9
A
al F
(-2)R,
+
(-4)R,
+R,
bd}
12
= 1 | 7, ag R, -
1
1
0
0
AKON
Fae,
1
0
0
1
TNE on
RR il ey te eee eli
(B) The of
(to simplify
4
R, 3
system is solutions.
OR
3 ~
3 0 0
The
system
of
x
=
1
Lo 3
R, >} R, 0
x.
2
Solution:
of
R,
the arithmetic)
2
0
(A) The
t,
5
“ieee
45.
number
4
-3
:1
for
It
al
0
ail
eee
=
-2
SANS
at
x,
=
A
X,
=
Sin‘
=2,
2}
£2
24 all
-2,
two
parameters
system is dependent solutions.
with
one
parameter
(D)
Impossible.
system
is
independent
with
a unique
(GeVRe
(+i),
2
R, >
4
PRLS
3
R,
RoR
3
R,
1
with
The
1
R, +
is:
dependent
(C)
Al :
x,
=
I:
and
an
and
an
infinite infinite
number number
solution.
EXERCISE
4-3
135
47.
x7
Xoyaee
3x,
+
If
kx,
k = 2
=
-3,
Os
the
system
is
E -1
>
4
2
0
0}
-5
3
-9
-4
Gwe
a a a0
i
7
il}
0
3
-4
-1
7
ee -3
-6
(-2)R,
+R,
OR,
(-2)R, +R,
AR,
(-1)R,
+R,
OR,
(-3)R,
>R,
=
2x,
real
32) -3
0
=
= 2a) a a ORS
ga 1 2
0.2
ONO
R,
XS
7=2
Dk || ENO)
1
=i)
5-2
2
6
0
0
0
0
2X,
te IC Mat,
Al 0
=—=26
et
Be = ise
2R, dep ioy omega) (-3)R, + R, > R, ~
0.6-)'-#12, -& Rage FR,
-2 al 6 | -3.4 2) -0.1
.-32l
xX, =
Xx,
t,
s}
Ss and
3
x,
wheres,
of
ae
Jala 0 1
-1 -4
ail
4 | -2.4 6 | -3.4
0)
SO.
0
5
0
Osa
Tie
Ce
ome).
Ot
&
3" Bye
Ea
=2 = 3
§ 27)
4e-l
1 DS
-=1
C.
t are
>
(-1)R,
+
R, >
2a4
R,
R,
(206
1
=A
IR,
( 2) 3
O
R
3
oes
OF
LINEAR
EQUATIONS;
MATRICES
(to simplify
Ri
0 eee
BR,
+R,
9.3
SiS
SYSTEMS
i 2
a2 aA:
0
4
+R (-2)R,
ge 0
ia.5a '-2) Soe Bi,
AD
al 0
CHAPTER
3" and
3), a
system
=
07
ah Orie ds |eolG
+
-2R,
2
ap
k =
=
ie ial x |e ai
Ry
-4
= 53. | 72
6
si
The system has no solutions. If k #-3, the system has a unique solution.
any
3
aot
aly
raat
Thus,
kx, =
6x,
If
7
alee
3S
51.]
+
+
X,
3a
ail
x,
2X,
ee
3X
-3R,
49.
7
arithmetic)
oR
4
m& un
SN
CN et
‘i
st
0
St
z
Be:
Coon
| aes a] al
4
ee +st et ot
By es e
:
19) ef com
a
my ~~ |
~ 1s oe
=f ot we la 1
wN o
sie is:
Onesy
~
N
+ +
gl &me oad
st
ot
+
(x ves
&
sO
& ~e
wm
NO
| ~m
XxX, =
od
OF2% wm
Xoo =
coh
equations
-0.5,
oe a a ee fcV2).
AMAR: re
Aaa +perience Ta tenes.
Sant IC
Solution:
of
MO
Te} ! 'CcoOG00
system
8
woON +t
: uw wo moM °
The
(oa) N a)
iZR > Ry wm &
+ & Meee ie ee FON a Ge
“tas fi. ora
_N NN
& ~~
&
Tet
RIL Cot i woman
op woul iS)! elgQh
IN
le YO AN AUN
pe ~m
“i
ina (oe)
th a sho
EXERCISE
4-3
137
1-2) ef
Gmmege
=*| R,
1
2
3
760
AKO)
1
2
AZO)
0)
Oh Bly
Slo)ck
(0.1)R, +R,
330 120
+R,
OR,
(-0.2)R,
+R,
OR,
| See
OR,
tO ome se Os) 05
(-0.6)R,
1
-32
s and
0
One iil
2
0
Ora
10R,
CHAPTER
4
SYSTEMS
=|
1e =2 0. 20,3 0) -0.2
1
Ope
l=t
-80
420
0
Al
2
420
10
0
0
am
100
> R,
LINEAR
EQUATIONS;
MATRICES
760 \etee ues
ab oe (-gy)a a,
R,+R,
(-2)R,
OF
3 =0.6) -0,1)y
-80
(-2)R, + Ry aay
138
ee
t.
760
O76 O52
3
Ot Notas.
boats.
model is: 1.5x, =
+
+ 1,
numbers
boats
x,
ch -5t
2s
one-person
0.5x,
=
1
3
Thee Oy 5 Let
70) tone ae vil oo Oe UNL ee of See "9% onlane
+ 2 5%,= ral x,
Ore
1-2 Ofc. pig peo
+R,
OR,
OR,
if orig aoe 66” | me Oo a Thus,
xX.
person (B)
st
=
20 220 206
20),
boats,
The
Xo) and
+
0.6x,
+
0.9x,
n E 2 1
+
x,
In
Thus,
where (C)
+
x)
=
A202
=
65-280
to
ee
2
i
Hs
Sue
80
R,
ele ~
t is
model
=
380
t < 210
(two-person
x
0
boats,
S\SK0)
-80
+
2 A
one-person
0 2 Be 1 Bh a6
real
mathematical
2R,
20
boats.
(four-person
1
0
1.2x,
0.5x,
OnSe
~10
=)
x,
keep
be
or
is:
1.5x,
(t any
&
order
100,
OR,
=t
i
43
four-person
ie r E 420 Ol
Os
Then,
x,
fee 7 r 209 Be |‘a é is 2 3 | | 330 m6 0.9 “ayo pmez0 0 -0.3 -0.6] -126 1 (-0.6)R, +R, OR, (-5.3)2 7
: 2}!
(-2)R, +R,
x,
and
model
xX, +
ee 1 | 0.6 0.9 1.2] 2R, > R,
Let
100
mathematical
0.5x,
Thus,
220,
an
and
t 2 80.
boats)
integer.
is:
2
760
ONG
ORS
BS
OL 2
OS
120
(-0.6R,)
+R,
OR,
(-0.2R,)
+R,
JR,
il OMe
2
Oe
res
OF
=O
Ja
760 =12'6 | =| -32
(-o.3)®2 >
ik
2
760
70
al
420
OO
-32
0.1R,+R,7>R,
760 | From this matrix, we conclude that there is no solution; 420 | there is no production schedule that will use all the 10
labor-hours
in
all
departments.
EXERCISE
4-3
139
59.
Let
x, =
number
of
tank
cars
gallon
tank
cars
Xy =
number
of
8000
number
of
18,000
3
the mathematical x, + x, +
6000x,
Dividing
+
the
Xj
Hag
3x,
+
The
augmented
eh 4x,
+
Fs 1) 31 3a
model
+
second
equation
x,
=
9x,
=
18, 000x,
="2 5070100
by 2000,
corresponding
O)
t.
24
we
get
the
system
5
2S
x,
cars
24
matrix
xX,
tank
is: Xar=
8000x,,
AR
to
this
Ome
6
system
eA) 2 E 0 4 i
tej fh Sys}
is:
53
(-1)R, +R, Re
(-3)R, +R, > R,
xX, =
gallon
24) " 3 ih
oe
Let
gallon
x Then,
Thus
6000
-
5X3
=
—29
+
6x,
=
156!
Then
Be 5t - 29 and PS) = 53 - 6t Thus, (5t - 29) 6000-gallon tank cars, (53 - 6t) 8000-gallon tank cars and (t) 18000-gallon tank cars should be purchased. Also, since t, 5t - 29 and 53 - 6t must each be non-negative integers, it follows that El= 46), 77 FOrReE
61.
Let
xX,
Then,
iT}
federal
income
tax
x, =
state
income
tax
x,
local
income
tax
=
the mathematical model is: x, = 0.50[7,650,000 —- (x, + x;)]
xX, =
0.20[7,650,000
-
(x, + x3) ]
xX, =
0.10[7,650,000
-
(Xx, + X,) ]
and
The
140
x,
+
0.5x,
+
0.5x,
=
3,825,000
0.2x,
+
X,
+
0.2x,
=
1,530,000
0.1x,
+
0.1x,
+
x,
=
765,000
corresponding
augmented
matrix
is:
a
0). 5
075) 1537825, 000
(-0.2)R,
OZ
AL
OFZ
CMAs.
saver
a
Cote.
CHAPTER
4
SYSTEMS
1715810), 000
765,000
OF
LINEAR
EQUATIONS;
1
+R,
OR
fr) —S R 3 3
MATRICES
a
BHOL5), 000
ae
TES), 000
205
20R,
>
R,
(simplify arithmetic)
382,500
\o On]
.5 | 3,825,000 sa 745,000 |Ry 7,650,000 i iO “OS: ele oe #O"OoO 19 OF Oo
an
+o oo oO
~#
a
0.5
0
at
0
ORS
0.5
| 3,825,000}
(-0.5)R,
+ R,
7,650,000
(=OOK2 DER
+
19 Cipage =9
0
=17"t
>
R
765,000
1 (-a7)%s ma
19 | 7,650,000 Oo:
7 R
R,
~6; 1207000
=] (Sk
=)
0
TS) || Ue SNO! MOOG, 360,000
IR,
+
R, =
R,
(-19)R,
+
R, >
Ry
3,240,000 810,000 ii Sao 360,000
Ore Or ono °o gle} (eos ©
THUS,
ie
Sa), 240); 0100,
itabricty ;
63.
1S
&6,
1
4x4
4,410,000
income
(7*650°000
Let
=
x,
2
_
=
=
X,
4 x
$810,000,
x, =
$4,410,000
By
00 57165
or
$360,000.
which
is
The
57.65%
total
of
tax
the
taxable
57.658).
Taxable
income
of
company
A
Taxable
income
of
company
B
Taxable
income
of
company
C
Taxable
income
of
company
D
PR
Il
ara =
The
taxable
=
income
each
company is given by + 0.03x, + 0.07x,
=
0.12x,
+
0.81(2.6)
Il
0.11x,
+
0.09x,
+
OR 7216 88)))
+
0.02x,
+
0.14x,
et Fae
0.06x,
which
of
OR a3 2)" ih 0.08x,
is
x, —
the
same
0.08x,
+
0.11x, +
+
the
system
of
equations:
0.13x, 0.08x,
0.78(4.4)
as:
-
0.03x,
-
0.07x
-
0.11x,
-
0.13x
Ate.
ORO Ss
-0.12x,
+
X,
-0.11x,
-
0.09x,
Pe
-0.06x,
-
0.02x,
-
0.14x,
+e
ll rw
Dee dls
ns
te
278/856
=)
Sea
PP
EXERCISE
4-3
141
This
is
the
mathematical
1 ~ Oi Delite =0.06
model.
-0.08 -0.03 Qiegal 20.025 Ondee iam &20.024,=0.12
-0.07][ x, R,
all
il
eo
il
2
OG
0
2
0
4
18
(-1)R, +R,
1 | 24
0
0
8
AG)
1
P
10
0
a
-4
-16
-4%3
7,
OR,
(=2)R,.+ R, > R,
1 Se 0
0
0
Hi
2s
0
1
8 4
(-2)R, +R, AR, TAUS 7 (es0i=5 Os xX, = food
(B)
142
B,
The
and
1.
LOG?
2,
4 ounces
mathematical + +
10x, 10x,
= =
340 180
10x,
+
30x,
=
220
4
SYSTEMS
a.
Ow
#2
0
30x, 10x,
CHAPTER
Lio
OF
and of
x,
=
food
model
LINEAR
4 or
8 ounces
Cc.
is:
EQUATIONS;
MATRICES
of
food
A,
2 ounces
of
30
10]
340
207
10;
180
10>
30%
220
i 10
jy]
3
1}
34
Bi
ys
1
a
yto.b
3
a
1 122
I~
(3422
2S
1 7 Fy
R, OR,
oe
10 F2 7 ®2
il
SA
(-3)R, +R,
OR,
(-1)R, +R,
OR,
1
SO
18
1
2alk 2.0
0
,
4
(-2)R,
+R,
OR,
Ae
10 10 %3 7 ¥3
bee
| 1
~lo
18 10 ee
1 (C)
The
From this matrix, we conclude there is no solution.
mathematical
model
30x,
+
10x,
+
20x,
10x,
+
10x,
+
20x,
i 10 10 10
=
is:
340 180
a4 20/_[ 29 201 180) L30
R, © R,
10 10
4 seo] | 20] 340) 13
whe REOER:
elAgy
that
1 1
2 18)_[2 1 ‘4 4 21 34) Lo -2 -4| -20 i (-3)%
(-3)R, +R, OR,
>
ohh apa
i b
1
Omi.
d
ie y E
0
°
21
40
.oga
-2
(-1)R, +R, Let
x3
x, to The x,
67.
Let
=
be
t
0
(t any
real
number).
X%, + 2x, = 10
Then,
x, =
8 ounces
Ofetoodee,
number number
of of
OFS
barrels barrels
of of
of
jt
TOE
92.t
=
-
eLOMES
ftps
Sab
for
Divide each side and each side of equations: XX,+
Xx, +
+ 3X, +
x3 +
3x,
+ 2x,
2x,
A;
x
10
mix mix
+
2x,
=
30
xX, =
30
5x,
=
2t
ounces
of
food
B;
A, B, Gc D
(1) (2) (3)
of equation (1) by 30, each side equation (3) by 10. This yields
2X,
+
food
= R,
solution:is: =
| TUS psAy
of equation (2) by 25, the system of linear
70
EXERCISE
4-3
143
al
Al
qt
2
30
2
3
ul
AL
30m
~ a) @
ff
+i.
3
= 305]
3
2
2
5
70
®
t=.
=).
=2
-20
(-2)R, +R,
7R,
(-3)R,
OR,
al
+R, 0
tC)
0
iif
R, +R,
7R,
1
ill
®
30 73),
il
0
2
0
1
0
0
(-1)R, +R, 5
60
= 3
=3
2,
0 Olen
PAS
5
60
-1
-3
-30
-2
-4
-50
al,
R,+R,>R,
2
= 0
il
(-3)®s
78s
>R, 0
il
lO
1
OPEL
0
0
al
10 -5
2
25
(-2)R, bers en.)
Thus,
x,
peels’ X, x,
Let
=
Be
-
25
each
2t
mix
=—25
number
mix
A,
=
of
number
must
barrels
of
mix
D.
Then
t -
number
of
barrels
2s
be
of
5 =
barrels
of
nonnegative,
mix
5
(-2)R,
hours
(A)
4
10.
10 mix
Also,
‘0 -[2
i (-2)®2
B.
CHAPTER
by
2
Company
6th
20x,
= of
Since
30x,
equation
4
an
the
of
barrels
integer.
system
of
40
E
Thus,
C.
t < 10.
Let
R, OR,
144
2X,
-5
and
Divide linear
71.
+
t = of
of
69.
x,
barrels
Sekai SY
See
Pies ch os
for
i200
ty Xn oe 1000 ope
EQUATIONS;
1300
MATRICES
2
4 deck
ah | alls) +R,
‘Company’
° ia
0
gauss
Si
hourswior
DR,
A ‘and!
(B)
The x,
system
of
equations is: I 1500
st
X, + X, X,
+ X3
ete
=
200
=
1000
=
1300
Ley! e (Opt) wig eal) SAYS OK6) Mra Maro Wazou One ls HOTT LOO0 Om One ets lan L300 (-1)R,
+R,
aeRO
Ore
_{0
1 OS Oo)
Let
Since
7>R,
tt
@r
=
t.
X1
aoorsR,
ales
oe
173
"as }62)
sen.
Se0%
40
a
Ba
29
96.
69 | 89}
a2
865
508
26
ao \S 7 20ene eRe Te | 20.27 “ey 270 Seek we
Thus, Vee
the decoded message is Seen a oie), e238 39 20
which
corresponds
GONE
of
‘ ih
¢ |Pi timid Soak 6’ 823
59.
inverse
ax . 2 | 1 grees: | -1
+R, al
Now
find
WITH
THE
(8°27 ime
Oeec
moma
225.
49
S14)
74
to
WIND
"THE BEST YEARS OF OUR LIVES" corresponds to the sequence Bom £5 27 21-5 19° 9°20 27 25) 5 ae 1s) aoe S Peewee milan 9228 5 19
Gehaks
15
We divide the numbers in the sequence into groups of 5 and use these groups as the columns of a matrix with 5 rows, adding 3 blanks at the end to make the columns come out even. Then we multiply this matrix on the left by the given matrix B.
1
0
il
0
1
1
0
3
Beolg
i
1
5
0 2
A
at
0
0
At
0
2
1
1
1
2
a
AU
50
ORGS epee
The
20
i
208 omsenihy
Ze
505
863
Sy
59
Biome
LOS
27]
WAKOGy Rake)
Od
PS
KEN
70
WA
(9S)
56
ag
123
SS)
SYS,
Si
5S)
eld
ls
5
a
6
82%
G19
28V
274
Tam
27
41S! © ME 12).
LOO.
9
encoded Zio 82 OOO. 99=
5
Dic
AY
Zen
81 2
message
"9 352
is: (S950 wield. AO, 105s alO6e .Sén 97,
g/OS 123 e599 127
50) eehOOM RE Sare/ 27 laps ley hey
S981
EXERCISE
63
4-5
96
163
61.
First,
we
must
find
-2
-1
2
Bei
Now
2r-2.
-4
al
2-44
LP2>e109P
66)
"SS
98.
124)
62
87°
67°
Ie
reek
43
55
41
81
94.
69.
112
HLO9P
896
143
decoded 5) eS)
27) lve
message
7 Saw
corresponds GREATEST
B:
(18: 20
gomets ee
to
Be a
mares 7
15
820"
“23
19
es| 18
5
Bapht
127
8
S27 rt 018.
ae 27
(20°77
is
S.-i) M8
20295 e ome
97.19
«8
15.
935
to
SHOW
ON
EARTH
BASIC
remember: PROPERTIES
Assuming
OF
MATRICES
matrices
all products and sums are A, B, C, I, and O, then
ADDITION
PROPERTIES
ASSOCIATIVE:
(A
COMMUTATIVE:
+
B)
+
defined
C=A+
(B+
ADDITIVE
IDENTITY:
Ag+
OR=30R+
ADDITIVE
INVERSE:
A
(-A)
+
sAne.
=
=I1A=A
MULTIPLICATIVE
If
A
INVERSE:
A(BC)
=
is
exists,
C)
+Az=O
(AB)C
a
square
matrix
then aA!
PROPERTIES
LEFT DISTRIBUTIVE: RIGHT DISTRIBUTIVE:
4
SYSTEMS
indicated
PROPERTIES
AI
CHAPTER
the
A
(-A)
ASSOCIATIVE PROPERTY: MULTIPLICATIVE IDENTITY:
COMBINED
for
A+B=B+H+A
MULTIPLICATION
164
8 5
119,
4-6
Things 1.
327.24
the
VATA
THE
inverse
oa
6
20048"
which
ee
3
B+
Thus,
the
OF
LINEAR
A(B + C) (B+ C)A
EQUATIONS;
=
AB BA
MATRICES
+ AC + CA
ana
a7l
= a-lg = fr.
hogan
EQUALITY ADDITION:
bE
Af=—hBethenyAg+
LEFT
Die
Ag=i
MULTIPLICATION:
RIGHT MULTIPLICATION: 2.
USING
INVERSE
C=
5 anc hienmeAm—
B
47
C-
NCE.
If A = B, then AC = BC.
METHODS
TO
SOLVE
SYSTEMS
OF
EQUATIONS
If the number of equations in a system equals the number of variables and the coefficient matrix has an inverse, then the system will always have a unique solution that can be found by using the inverse of the coefficient matrix to solve the corresponding matrix equation.
Matrix
Equation
Solution
AX = B
ab
5
2
| =| 5]
-14[*,
-4
3.
|
Re + | 7
Thus,
X=aA lB
3x, + x, = 5 2x, - X, = -4
=55
Bae
os
2
0
MO
rei
B
=-2
3
85. | ep
-3x,
i
aX
+
3X,
226 -X.
216 3X,
~
2x,
1
4x,
=
ive
ae
pee 2 =
3
ee
=
sk
-
=
2
2x,
il 5
fe : a 2x,
2
x,
2X, ees) -X, + 3X, - 2x, Thus,
=4
a
XX
Ky
=
3X5)
-2x,
+
3x.
~2x, at
2) 2X,
; =)
and
2
14
=
LX,
2) 5
=a73 =1
tien,
xX, -
=
it 4x,
=
-2
3X, + 2x,
+ 3x, xX
3 =
4x,
Ji =2
ae and
des
=2
3
1
1
x, m= 4
x,
3 il -2
EXERCISE
4-6
165
ee te [3 aes : Ree : ta 3 i ris
1
ee
a
&
te
4
1(-2) + 4-1
Thus, x, = -8
eeeand,
x, = 2
adie : nee + ial ; °| Thus, x, = 0
2. saute
2°3
"(=1)2
Suegeand
3, = 4
s.[2 3] ]: . ibe 7 = iF 2,has BD)
i -1 |1 1 Mey oy (SLVR
Xx. an
inverse,
then
] = a1/5]. X, “i
°]: i -1 | i a - ig = oad Bae 4 i OF21 4-274 Gea |i 1
Se Rs
(-1)R,
0
>
R,
1 xea "7= 37 XS"
ee
R, + Rk, >
se
R,
ieee |
=2:
is. [} ace (8)
tad Opeewl:
17.
MMO Wjw
Seared
x,
The
equation
matrix
Ak
3
WooayP op
|x,
for
the
given
system
is:
k, -1
From
Exercise
Thus,
bk 7=
2S
166
1
Therefore,
CHAPTER
4
4-5,
Problem x
:
“1
SYSTEMS
21,
[
|
=
k | ]
14Lk,
OF
LINEAR
EQUATIONS;
MATRICES
:
=|
-2
mes, 1
xX.
eee a ee
=i]
atkSde
and
thUS7
2)
eco
Pa
ae
ore 2
[2PeoieIDis -| [3]3) ~“eeeee e-
cy The
2
| ee)
|
xX.
19.
JUS
a4)
%
Thus,
matrix
equation
rf 5) 2
7
for
the
given
system
is:
& ]
ILX,
k, -1
From
Exercise
4-5,
Problem
23,
2
|
=
me, [2]=[.2 2][8 (a)
xy
E
7
S (By |2| = x,
21.
The
d
ae i
25)
7
all *]: el
0
zy
-2>
matrix
xy
for
0 || m2
ky
0
all
Xx, | =
k,
4
x,
k,
=)
xX
and
Thus,
the
given
=
-2
xX, =
24
Geaee
a
system
is:
4 te Sr From
Exercise
4-5,
147
A THUS oyot ae =7 |) SAC
es)... 2,,-1
Thus,
Shoe
=2
ali-1
equation
a.
fa
ely |eal
5
X,
| a
idk =o)
X,
Ms
Al
Problem
eOOtae
25, | 0
1
i
2
=i
4
=)
25
eg24
3
2
-4
1
2
Sy
yea!
Thus,
My
bean
®t]
Ay
X, | =|
-2
aL:
k,
x,
2
oi (A)
-4
X>.) x
=
by
ab
Re)
219
+2
-4
2
k,
Beak
cM
1
Ome
bOe Tian
2
0
=
was ae
OF
x, =
0
EXERCISE
4-6
167
x (B)
a
=-5.
X5
=
x3
ve (C)
X5
=
The
5
+5,
9-12,
-2
5
get
2
See)
al
0
-7
dk
=
-2
=1
0
3
2
2
17
dl:
-2
al
equation
TP
-1
al
-4
2
matrix
3
-4
2
br 23.
-12
-2
for
vOnh
i X, | =
k,
2
x,
k,
=
5
1 the
"4
xy
cS
=)
U
xy
=
Ne,
}
Xp
=
—2F
Xo
=
3);
Exercise
X3
=
=
3
=f
-7 given
system
is:
4s
one? From
3
4-57"
Problem
277;
|>
ners)
i
0
62-b2em =[
2
ba
(-1)R,
+
1
AX
=
0 RH
3}
i
-8
1
0 2S
0 Bits
=o + R,
=
€C
elses,
i
tlhe | Gra l
(8,
ib
0
-
R,
ee
2R,
5)
has
infinitely
an
inverse.
real
number.
Solve
1
BY
hk
1
0
0
0
+ Rk; >
R,
An =
x
=
a
St.
x,
=
t,
t any
B33.) Ax Bx. = C
(A - B)X=C xa
al
ts:
(n1)R,
Ome=13
BX
3 i
system have
R, —> R,
0 0 Solutions: 31.
2
tee
ees
ae Dee | BO
the not
(A +
I)X
=
C,
B)**c
where
I is
order
n
the
identity
matrix
of
xK'e (A +t) we 35.
Ake
iE =
1D
—-
BX
AX + BX (A + B)X
No Lo)+ uu
x =_(al4.B)-1(c + D) Bilis
The
matrix
equation
fe ea ili
First
2
we
for
the
given
system
is:
a ]
X,
compute
k,
the
inverse
of 2
a
er
2
hi Py OOIIO 1
MAL ‘
"| -1)R,
greg
ste
1
2 001
i
50
Ge
0-001.
17-1
a
u
+
R,
a
DR
2
(-1000)Ro > 1R,
EXERCISE
4-6
169
by
1!
23007
Ol
ged
k
in 1000
0 | -2000
4 Pes
=
2
eae «
SS:
Es
Bras
(ay
39.
The
Nee aes
xX.
&
matrix
Fe sit 6°16.) Sons
=
2000
2
1000
-1000
2000
ere
1000
-1000/11
2000
ee
1000
-1000/Lo
2000 1000
apee 2 p -1000]L1
equation
rH | Waco 6 il) ated pe re
Pts,
&
-1
We
veeX.
2s ve
(-2.001)R,
ia
for
=
t
Ge 3 ae O76
equation
the
4
X,
1000
a
k| ||
-1000)LX,
0
pees dd?
eto
2008 F202, 0611, sx, = Lago00 -1000
system
135
ae XG and
is:
for
the
0.4
. 6-3 0.4
a
18:42
Xo
Pps}
given
2
145
xX
—Oe08m
HSSterimeoeod, 75 sOmioe
x, 3 = -15.2
250 ies
SYSTEMS
=
given
Bala SL 22.9
elle
CHAPTER
& 2000 |“ |
5%
1000
-1
Sage
system
is:
125
AD fF wo FP wu” ~ @omown7a)
170
4
0
=)'Sir2
matrix
“
135 ss 75
i
=
The
>R
i
: 2 ee
18.2
41.
+ R,
1-1000
+o
ce
-1000
oe
0 | Mi | 410607
er
0
OF
LINEAR
EQUATIONS;
MATRICES
—0.44) 1] 135
-0..68 | 0:84
[1155 75
3 eee
Gee 6. 4
bert) 7
Soh 1 250 3 195 1s
rst Pp
Cg ae ieeae Bee) AVERLT, BE 2
-0.25 shoo
145 125
.0.37) -0.4
0 0.5
0.28. 0.4
-0721 O12
|[i250 4.195
=0,16 +0.04 Ol Sib seat
. 0.28 Los
tei4s 125:
4
24
ore
24
big
=
5
and
a)
xX, =
15 43.
Let
The
-2
x,
= 15
x,
=
Number
of
$4
tickets
sold
x
=
Number
of
$8
tickets
sold
mathematical model wet x, = 10,000
aX, + The
as}
3
8x,
=.
,
corresponding
is:
k&k =
matrix
| alse
Compute
the
inverse
F ait MAG
tae) R, +
R, oad R,
aa
Concert
*] 7
2
ae 1:
the
iL ao
3
60,000,
coefficient
[1 Lad
7
Return
68,000
is:
matrix
4 é ad | OO oe
R,
(-1)R,
a eae
+
A.
_
R, >
R,
_t
ne
xi
Thus,
A? =
|
-
a
$56,000
2-3 eae
epee
equation
m > 1 crt ecko a
Mipotls2 0).
of
56,000,
: aa
-1 9 0FJL56,000)"* 14, 000
Thus,
6,000
Concert
2:
$4
tickets
Return
and
4,000
$8
tickets
must
be
sold.
$8
tickets
must
be
sold.
$8
tickets
must
be
sold.
$60,000
*] 4 2-7 Teo ee " bee Pet 2 tl60,o00) 15,000 Thus,
5,000
Concert
3:
x, | _ x,
a. -1
Thus,
3,000
$4
tickets
Return
2% fae ge 7 JL68,000 1
$4
and
5,000
$68,000
tickets
y eee 7,000 and
7,000
EXERCISE
4-6
171
(B)
$9,000
Return?
x,| 2
2s
x,
at
=,"
This
is
$3,000
a
*] x,
possible;
eS
1
te
is
Fix
9" 000
=7 7504
x, Cannot
not
negative.
k.
=
Thus,
gy
Since
x,
(L=anaes
x,
cannot
a:
20,000
22 (0),
negative.
k4
-
ae t
and
20,000
20,000 -10,000 +
=
-
-10,000
-10,000
k4°
+
-20,000
ks 22 (0)
|
tad taal od
AE 0 ae
X,
be
Then
alee] ohh k
is) =
|pate : ee
a lns000}
possible;
return
Since
be
Return?
x,
This
"aril
not
x,| 2
(C)
nina ||eeren E anes
80,000
+ Ae: 0
k => 42
10,000
k2
40,000
Thus, 40,000 < k § 80,000; any number between $40,000 and $80,000 is a possible return. 45.
Let
Ay
=
number
of
hours
at
Plant
A
and
x
=
number
of
hours
at
Plant
B
Then,
The
the
model
frames)
+
8x,
=
k,
(number
of
car
5X,
+
8x,
=
k,
(number
of
truck
corresponding
matrix
equation
frames)
is:
ds % ie x,
k,
compute
the
84,
5 First
we
ie
8 |1
i; E
474
eRe
a
Ba
SV
is:
10x,
te
ae 10%
172
mathematical
(and
CHAPTER
om.
bo
71
4
SYSTEMS
inverse
OF
of lig
|
|i E On
mk
(-5)R,
+R,
LINEAR
EQUATIONS;
OR,
4 | i5
eee
a
ah ASa Z4%,
MATRICES
>R,
|
including)
10
Thus
for
For xy
For
order
|
2
ss.
x,
order
Let
Then, Rigo oie ds
3
=
X,
>
“
-5
k,
4@1L%,
Ea
1600
ale
25
x, =
280
hours
at
Plant
25
hours
at
Plant
B
Plant
A
=
1
-5
heen
peo
Bit
x,
-=SLGOmMHOUGS
at
xy
=
80
hours
at
Plant
A
and
te xX, =
225
hours
at
Plant
B
3: =
=
-5
ay
and
2: 5
xy
:
1:
2
1
a
ie
:
-= bites 7
a order
z
=
5.18
Now,
x)
oor
ee
x = Se 55 x, =
-
R, (-0.02)R, + R, 9 R, Ee 0.5 | 5 4 § ep he a °| Geers Mi Or an Oa & -2 20 20R, >
i i pee (A)
R,
(-0.5)R,
or 6 ie ON eed” | FV
Diet
1:
fie
Protein
-
60
Diet
2;
ounces
6
X,
oz,
20
Diet
3:
A,
R,
6 iad =a) 20
Fat
10)oz,
Z0
-
80
6 oz
ounces
Fate
4
ounces
of
Protein
-
|= fsa Thus,
mix
—
>
of
mix
B.
of
mix
B.
of
mix
B.
4) oz
22 |aa 4 (23
-2
Thus,
of
Protein
aig May
0 ounces
60 mix
10
of
A,
60
ounces
oz,
Fat
-
A,
100
ounces
faneediae
mix
6 oz
e]-(5 sl)-[2). sm a Protein
-
20
x.
x)
CHAPTER
oz,
Fat
-
is not
4
-
14
oz
?
_—
-2
This
174
hae
lee ee Thus,
(B)
20
+R,
A:
20J1L14
possible;
SYSTEMS
OF
LINEAR
240
x, and
x, must
EQUATIONS;
both
MATRICES
be
nonnegative.
Protein
-
20
1 -| 6 Ba l-2) x
This
EXERCISE
oz,
-
10z
?
tale ‘ asap se f20sl ad . L-20
=
is not
Fat
possible;
x, and
ae ee
x, must
BS
both
be
nonnegative.
4-7
Things 1.
to remember:
Given
two
industries
Cy
C, and
with
Cy
Ci\a 1
a
x.
Yi Uo ete, perp
where
as; is
worth
of
the
output
equation
d
=)
Technology Matrix
matrix
Cy,
dy
Output Matrix
input for
Final Demand Matrix
required
C;.
The
X = MX
from
C, to
solution
to
produce
the
a dollar's
input-output
+ Dis
x = (I - mb, where
1.
I is
the
identity
40¢ from A and output for A.
20¢
from
s.r-m=(? Real Got) 10.2) Converting
the
decimals
matrix,
E are
required
all “oa” to
fractions
SN
=
pa 5 Ry :
mets
:
+R,
=
(I
=
M)~*D,
2
0.4
0
016
-0.2
“|[8|
~H2
inverse.
a dollar's
calculate
the
worth
inverse,
5
re
Thus,
wlH wir
me oO
|
re sy ps
i3
4202‘ |ana r-n
0.9
x.
at
a
we
I
652,7,
OR,
thus, r-m=|
ae
to
al
7 Siok
produce
an
| : =3
0 >R,
to
I - M has
of
Bes ied |Loove One :
23,
assuming
Ea
9.2
and)
5
/
2
6
Sue
he w|e
Ro tk,
have:
OR,
£.8
*-Or4
i
Q4ur se
oc,
=
16.4,
Me Seok
ae
EXERCISE
4-7
175
7.
20¢
from
A,
Gollar's
1, 92.1.0 O°)
10¢
from
worth
DAioebvg “a Worl Oem
11..X =
of
B,
and
output
ousiel tacl-o0.20
10¢
for
one ; “Borer
from
E are
“O42 O.ic] Se (Ont
26s )}=|' 022" 0238.
90k4 1518s 0.22.
sn
oe
agriculture, ba1 lion.
$18
Ome 5 50 TSANG HIe( aeeoUias +
6
billion;
ise eee fs °|“ be? Crash) Ouaig) converting
the
decimals
i
‘ 1
0 4%,
4
18
On
Sheet
bot?
Oy)
4
|e
8
:
ee 7
®1 + Fo >
Thus
ee 1
ONS 1) Ole
OV
0.7 }-0el F°=0 53 =0'2) |a 206, 20k -Qx1 ,-0.47 Ong 10R,
> R,
10R,
> R,
$15.6
4
SYSTEMS
LINEAR
7
|
0
1
Ppurs Ble
‘
10oO
5
i
O 5 a8
85
Fy
Ro
BiH @lw
KS) I
P/O Uw
aak,
> R,
aa
146
Saeoll2s Pai Ome TH0sae
Se" 0 Ga Ousycd)
|S
46
0.8 2 Or 2) =.| hot Ww ee =
On 7 =O =0.2 059° —O81=0-1
S13 9, 22 Py to R, OR,
OF
energy,
1
| : 7
-10R,; > R,
CHAPTER
and
0 pile -||241
OL ies On) Or*
billion;
|
2
06>
= [5 O Ol) 1,
building,
tl | 16 = ig O76)
22>M=|'0')
5a 22.4
fractions.
mn AO — 70 +
R,
ie
to
3
7
(1.6)5 + (0.4)10 + “Ome 0222)5at) (1018)10 tnlG ey ie (0.38)5 + (0.22)10 + (ieee
ay -| 0.8 re] woe Oe Sten 07
2s 10
awow
-|
176
a
Omees0.2 =—0.2 insomee O.9°~ 0. L -0)52 SS)
2751.4 ve eee 1.9 + 2.2 | sPis.2
15.
to produce
M)~*D,
ey Therefore 7| 5 x;
Thus, $22.43
required
B.
EQUATIONS;
MATRICES
"206 -=00p .9
10 0 FO O1£10 £ 0 08 se Ove
+R,
>R,
©O _——— N\o
af |
ie
I ae
Posy (-7)R,
=
1 0
On
="
oO
al
1
-9
0
OF
Mahe
— 216
0
10
-20
oot dh @OPM
0
76
Cys ee il
>R, +R,
0 -10
R, > R,
AR,
=1 362
-8
OO
Veo
60
0
0
0
O92
10
8R, +R,
SAM
QO -10 e1:0
srt) PA
0
0
-2
OLeP
2R, +R,
ik
ree)
-10
ab
=LE820
0
Q
=7 518 -1.82
0
0)
45744
10
S200
70
0
>R,
45.44
a
oO”
G7.L8
0
-0.91
[he8)
ie
82
0
OS9L.
0
0
al
O22
"07.16
-8.18 1
82.
aa
WM AY
Oo
=0".92 O91
~ =8
08
eZ
je. CaS
eae
%3 73
i
0
0
1S
OBA
OAS
a0
al
0
One
doe
0.4
0
0
1
O22 a Oe Gn
ele?
1.82R, +R, > R, 7.18R,
+R,
>R,
ess!
Pe
02.247
10258
OO, PesAOZA62
1222
(2 = MO) =| O8e)
alan
DPSS}
ONAL
Beak = (2 - Mo *D=|0.4. OF22)
=
17.
(A)
The
40
D=
bp
.
0.4
0.16.
1.28
20
5 10
+
(OF: ZaySS
(Ons) 2
Osa
(e125) Sie elas) O
(GR22)210
+
HOES)
matrix
0.8,
M =
Smee
gas
:
input-output
COs Saeco
0825
ALP
:
The
woOhe sys:
1.2
(1758) 20
;
technology
love
Glee? 2) EO
and
the
‘
matrix
38.6 Seif)
equation
,
is
Li] 74 :
final
X
=
demand
MX
+
i
matrix
Dor
x
X=
he
Sale + halt where
The
solution
0.4
oe
0025
E 0
oe
ee
X =
40
is
X =
(I -
M) WD,
°| e-3 Pel ut
0.7 -0.1
0.1"5
provided
OG:
0925
-0.1
4-0.25),|
2
a Ah
ORS
0
fi
: ie -0.25 | 1 al
aah
53.
-7.5
O)h
I - M has
aa
an
inverse.
Now,
O75
ets:
Httate kK)
EXERCISE
4-7
177
a é
i
0.1
:
at (-0.7)R,
=O. ass] It
+ R, >
0
Ry
< ff -7.5 | 0 ee (0.2)R, > R, 07
Ss
1
~ kK ide e. S E 6h
atte
gaat
(7.5)R, + R, > R,
Te : iv a fees [tab ave 2) s ee ovo"fig 0.2 1.4JL40 64 for each million;
sector is: Manufacturing:
$64
million
If the agricultural output is increased by $20 million and the manufacturing output remains at $64 million, then the final demand Dis given by
RET
ap
are
The final demand final demand for
19.
Pater!
1 0.2 tis ool a.s si 2 | 6.2 olace
Thus, the output Agriculture: $80 (B)
7
Let
0.7 -0.1
Pee 0.75dL 64
4 i 38
for agriculture increases to $54 million manufacturing decreases to $38 million.
x
i=
total
output
of
energy
Hy
ie total
output
of
mining
demand
matrix
and
the
0.4x.
Then
the
final
equation
D =
C we and
is:
i
the
input-output
matrix
p2
* vs Gee fall | Hew X, This
0.4%
0.6x,
0.4x,
=
of
equations
0.3x,
total ouput of the the mining sector.
element
to
produce
be
a number
CHAPTER
3 4%,
x, =
Thus, the output of
178
+
0.4x, system
is equivalent to 0.4x, - 0.355) a0
or
Each
aexs,
the dependent 0.2x, + 0.3x,
which
74a
OFS
yields 0.6x, =
4
of $1
a
technology
dollar's
between
SYSTEMS
OF
worth
0 and
LINEAR
1,
energy
sector
matrix
represents
of
output
for
inclusive.
EQUATIONS;
MATRICES
should
C;.
the
be
75%
input
Hence,
of
the
needed
each
total from
element
Cc;
must
23.
The
technology
matrix
The
input-output
Ke
ie
The
solution
=|
matrix
OF
2 AORZ
Oz22
OA
equation
and
the
final
is X = MX
demand
matrix
D lia -
+ Dor
x. ih
gd,
ae.
+ ee where
so%
10
is X =
ee 1 3 =) a 9
~
Ge)
}
1.
provided
0.4
i5, 6
+R,
&
0
1
me
+S
Thus,
(ah =
ear
Be
=
;
2
oes:
10
10
2g
>,
2
j=
:
2 2
0
:
a
Ro +R,
OR,
and
1n8
0.4
we
20
1.
Sip
26]
the
output
for
technology
matrix
M =
D = ial The
mj
60
xX +
e.
each
sector
ei
0.30
0715
input-output
where
X
is:
coal,
$28
billion;
steel,
$26
i
0.20
matrix
eit
=
w
10
provided
--
Now,
Spalted o 22]
Therefore, billion.
1 5 x=!/, 20
Wet
inverse.
= Sao toad ay 0 a¢.4 Cinehiy wer le
Ee 5k,
m)~+
an
aes
2
>R,
has
a
|sal ea 5 bar Gard) 6
Bil:
- M)
0.6
2
0
Matrix
(I
ied chy
~0.2
2
1
The
M)~1D,
a] ab #3 > iL 3 at ar hes l. 0.
R,7R,
ge (e
25.
(I -
anh
x,
be i E he ed -| 0.9 eae
10 9
X =
+,
The
=|,
uo
a
=
| and
the
final
demand
Je ean) oO
equation
solution
is X = MX
is ‘X=
+ Dor
(I - m)~*p,
es
(I - M) 1 0
has an i
inverse.
Now nt,
Ope
a
* 2
°|‘4 LE 20
|a
3
3
#20 7
io
0
PR aR AGsAR
met. 3
at
0
10 5
ee - 30
: :
20
i
RR OR, R,+R,
ae 5
3)
8
to foe
|
°
ce
0
al
TOM ate
7
3
bei? Al
0
2
z fy
| of
Dns 5 Rp > yarRp
4
8
Ry R 07 eR Bea
EXERCISE
4-7
LHS.
Thu
lacked ®) babes
s (r'-m7
Therefore,
Ue Wiun|r co |
the
output
Agriculture—$148
for
each
million;
sector
The
technology
matrix
M=]0.2
10
148
80
146
is:
Tourism—$146 0.2
27.
60
0.2.
POR4)
ORs
0.1
0.1]
ORI
OR
million and
the
final
demand
matrix
Dae 20
The
input-output O25
x = be
MOR'4:
0.8."
ot
20
al
0
0
(ER
1
Of)
0
0
al
"0,0 W=022,
(I - mM)1D, O22" i
provided
I - M has
OR 4ar 023
0.8
-0.3 -0.1
—0 29> =0'.1
0.9
0).12.
0.32%
OPEL
it
0
0
8
er omleemes meas -2
inverse.
0.9
Ore
(0.25
an
-0.4
ORR2 a Oe
S051) 0h 1009) 1, 0!
10R,
+ Dor
es
Ore
is X =
-04.4%+=0%3
-0527 “0.2
is X = MX
10
Ode
solution
wa a
equation
LO.3
oe eS
OZ e Oras
The
matrix
-4
-3
10
oe -1
>t 9
0
0
Oo Sor Ores OF
70 10
£
> R,
& 2)Ry > Ry
10R, >R 10R,
> R,
[110 0 0 Alar eg ea 00, Sao eC ee
84
6-46
“et —2".
i eer 9 sO =5 cummed Gu 3 24°10; 190]
9 —3)
1)
S)
0
OF
ato
-2
=
R, OR,
9
0
SG 0
Of
0
(8) RK, +R, — Rp
2R iF By R3
1) 0 OR
9 = 5) 5)1 32 10" b 10
0 OF
9 ok 1Fo
lO)
9QR,
CHAPTER
+R,
4
+R,
Oa aa)
sOmees 0
2 BRS
R
1 al 0 820.7 Te (-32)R,
180
R, =>
Onion9
taoaeee
aaeo 40 Oe).
So
iy
don
On
1t
t.8.
-5,)
0
m7) all
10). 0
40 a
0 ak
R, &
geeeate
Line
=4 eh FOR
ep Ose.
0! Om
1 Zama
eller 0
Jey Ose
pl 95
7R,
0 O
237,
OR,
SYSTEMS
OF LINEAR
EQUATIONS;
MATRICES
R,
Gesi
> 95
Le) 1 Sas
Now,
mee) ain) On
X44
||
R,
(ft -/M)- =)
ag
IOs
Omer
Tee
i
te
0 See
=. 28
0.28.11
15
O68
2h21232
81
(iG) a0) +)
(0'. 78)al-
KOmA BO! +s
(1.. 32)
(O24) 10
(0432)05R
$40.1
technology
matrix
The
input-output
is
matrix
M =
Set 5
(Ome 220 (eZ
ert aS
equation
0naeHa
29.4 34.4
manufacturing,
910 Sivan
0.07 0225) Onda
SZ
40.1
(le28)i2Z0
billion;
O05 The
F0832. WO s
BORA r 032s
10
4.32...
+
Aly
S102
(0 162
Ona)
Therefore, agriculture, energy, $34.4 billion.
29.
Pel a OF W Oke OS
0.26 qr- and
Ora
Oeee Ola 7:8
(OP
1.32
Mie AT-M) D ="'9.4
{OMe
OD
Gea?
ies6geO.Ome O62
Sale
On
$29.4
billion;
and
aOR 23°" 07.09
0.12 0.15 0.19 JRO Siam OO Sammons “OLS Cr2:Same Ores6
is
XK =
MX
+ D
A
where
X =
7" and
D is
the
final
demand
matrix.
Thus,
X =
(I
- m)~?D,
M.
0,95
Phare
How,
tT - uM =|
0-07 -0.25 =O
—0 alvin
0.88 -0.08 2 0) 1.9
S022SeenOF109
-0.15 0297 0.28
Lev SameO eStpem
Onsde? 4.0%. 4.0
OPA Nessie
S95 Wn»
x =| 0-26
1.83,
Oe SiO O.Ah
0, Adie 0.48
1:
65
D =|
41] 18 Sail
ana
Agriculture:
$65
billion;
Manufacturing:
$88
(I
-
m)~1pD ~ | 83 qal 88
Energy:
D =|
48]
$83
billion;
Labor:
$71
billion;
83 99 $97 billion;
Labor:
$83
billion;
billion
32
Year 2:
|p
a0) 66 aussi
PAS Year
-0.19 9082 0.84
81
ana
(1 - mtv =|
Dat 33 Agriculture: $81 billion; Energy: Manufacturing: $99 billion
97
EXERCISE
4-7
181
55
nae
35 Agriculture: $117 billion; Energy: Manufacturing: $120 billion
120 $124
CHAPTER
y=)
and
-
(J=*P' =
4 RS REVIEW
eR
ne
127
(I - M)"!pD =
Year
PT
ES
I
EEE
ES
billion;
a
EE
tT
Labor:
ILE AEE
2
point
of
intersection adie!
a
2
+
4x
256 pe
zis
ae ‘aie
Gh
-4= 3
is the
fFThis
solution.
(2m 1
into,
(1)
(2)
equation
Substitute 2x
The
billion;
AES ELL NEE
2.
(1)
26
ee: Y.= 5x+
$106
Substitute
x = 4
(is)
anton
yro2-4-42=4
(aaa)
Solution: x = 4,'Y = @ataaa
0) (A)
-
is not
3
second row is not to the right [condition 1 in the first row. R, o
(B)
form;
ek 0
in reduced
the
left-most
1 in the
of the (d)]
left-most
R,
1
©
2
is not
‘9
3
3
element
in reduced in
row
form;
2 is
not
left-most
the 1.
[condition
nonzero (b)]
3%, gies) hi 0 0
Fi
3
Rw
y:
is not
1
1
3
second row is not the only non-zero its column. [condition (c)]
(SL)
5
182
Ome?
sta)
a-|5
Ba
ei
aus
(C)
AB
is
BA
is defined.
4
defined;
SYSTEMS
Rat Rie
form;
the
left-most
1 in the
element
in
(4-3)
Ry
4
|.e-| -10
A> 46-2" x" 5: MBs 3EK+2 ao, = Shy, ais = 2% b3, =/—1, not
in reduced
hap
(A) (B)
CHAPTER
form.
is in reduced
a
10 (D)
|2
ceecemme
the the
7
by» =a
number number
of of
columns rows of
of B.
A #
(4-2,
OF LINEAR
EQUATIONS;
MATRICES
4-4)
Ei -2 1
‘|. E -2 | ‘|i re
-3
Z
(-1) 8, +R, ~
is 0
‘ 1
calculate
as
|? 1 B=
-1
-2
the
(2)R, +R, x,
inverse
:
z
0
($1) RoR,
‘| Therefore, 2
or
A+
0 R,
a
=
of
Sr
the
3] ona [1]-[
Sree 2
ri
ifpe 2
Be +21:
ist
4
ye)&
coefficient
ig ala
1 +2
>R,
=
8 7; 2]
matrix
xX,
i
=
Sy
A:
2
Ae
4
(4-4)
(4-2,
S62
ella The matrices B and D cannot be added because their dimensions different.
of > af > af! 1
AC
is not
defined
Ofecris 1
gyall 200 40713" 200 eal 23-400
ie
1,400,
6
200)
Solution:
Bon
EAA
Bs,
4 5
1
7
are
| 10)
Z
Ss)
O44
1002 1
0
0
edit oeOle
SAN
cll
5
+
0
Of
DON
meri
4ii0) ih
2
ee
3%
wand
40 30
2
0
5
3
7
2
1
4
5
$0),
0
1 ay
4
3
1
4
we dl gO)
0
tac
OR
p0ebed
~
1
5
49 430
ras
4
O°
0
CHAPTER
4
0]
ty
20
R,
a
5
0
0
0
> ®
3
Olbe
ete
tM)"
ip
it
1
3
az
4
0
0."
70
iien
a ae
aes
45%;
7
ee)
5
0
a
0
0
13 2 #2
Se
O°
yO kee ew
Ory
J).
0
Rieke
OL
Ae
eee
(SES
él, 2R3
SYSTEMS
OF
+R
beer
OR,
LINEAR
EQUATIONS;
O eIX nin
3
_i
2R,+R,>R,,
190
0
Oe
27S
53
2
Pe
cart
Lano-so ll er
0
wy
0
tine
5
0
(-75 }R2+ Bs > Rs
~
9
4
4
a
12h
0
>
2 (-3
-5
Gl
1 4
2
R, OR, 0
=5
40510
- Ry
“ae
(4-3)
2,400
OE
0
Oo
-20
io
a
Won
tes
Ey
5
ou | 2 5
0°
eo
= 1,400 = 3,200 x, = 2,400
BR 200)
0.3
e) 7
1
aa
7;
0-2
xX,
O1/=|5
Ss
fo
Bee
x,
4
2
0
To.
2 4ee
WhO
1
34.M=
aren
(-9)R, +R, > R, :
MATRICES
Sle b
ie
5|~ uly o
13
7
b}
TT Thus
(I
-
yt
M
eee. eR
35.
0.4
ve | =|
One
LG
5
GlL*YR0Rs
5
i273 =10.2 Oi
fr = mp
1.3
I SL5,
10
Xe=
eC)
0.7 || 40 6. 023. 2ZOun 0.8) «=~ 4. AO
(A) The system has a unique solution. (B) The system either has no solutions
81 1.49 62
es
or
(4-7)
infinitely
many
solutions.
(4-6) 36.
37.
(A) The
has
a unique
solution.
(B) The
system
has
no
(C)
system
has
infinitely
The
The
third X
Each
38.
system
Let
step x =
Sete
=)
in
the
(A) C(x) R(x) (B)
step
—SMX
in (IT —
(B)
(A) M)X
is
number
6,480
solutions.
incorrect: not X(T >—
mM)
(4-6)
of
machines
produced.
+ 22.45x
sarc):
59.95x = 243,000 37.5x = 243,000 x = 6,480 If
many
is correct.
= 243,000 = 59.95x (x)s
solutions.
+ 22.45x
machines are produced, C = point (6,480, 388,476).
R =
$388,476;
break-even
(C) ASDrOfeoccurs) Yy
1f
x >16,/4807a
loss
occurssitt
x
R, (-0.02)R, +R, >R, 100R, > R, , 2 2 |) 7:00 °|4 B 0 | 500 cial 0 1] -200 100 0 1] -200 100 i}
°| ey
(-2)R, +R, OR, Thus,
the
xy
Hence,
a fe ‘ x, Now
192
CHAPTER
the
4
matrix
-200
solution
500 -200)
500
re
=200
“ 260)"
100
is:
hee bs |
=
-900
10
1000
+
=
250
tons
of
ore
A.
oS
100
tons
of
ore
B.
-
be 100
2aghl 2a 7 ie - ae r ee 2OCdLeS -460 + 500 40
solution
SYSTEMS
is
rallead
500
=
X,
the
Again
inverse
OF
is:
xX,
150
tons
of
ore
A.
5)
40
tons
of
ore
B.
LINEAR
EQUATIONS;
MATRICES
(4-6)
41.
Let
“Sige
number
of
A
trucks
trucks
xX,
=
number
of
model
B
xX,
=
number
of
model
C trucks
Then
X,
+
and
18, 000x,
+
or
xX, +
xX, +
9x,
The
model
+
X=
We
22,000x,
X,
+
11x,
+
augmented
+
es
15x,
30,000x,
=
793007000
12
=
matrix
5y(0)
corresponding
to
this
system
is is
:
1 |ofl
EL? Now
ie rhs |ie é e Saee
15
(250
HOR
0
6 | 42
0
iaR, > Ry
(=9)R, + R5 > 1R, The
a - 2
2
corresponding
system
of
qo.
0 ex . E
0 -2 Fe
ul
cl
1
eal
Now,
i. Sa Lg pee 5) + 3x, = 21 since
persis
-/ Of
For
5: 6: 7:
sts= ie i] t =
42.
X,,
(A)
Xj,
equations
t =U5066)
1 medel
A A A
3 model 5 model
x, are lor
600
6,000
1,400
Supplier
A
-(§ 1620.) total
SOOM
The
These
Zia.
Kwe= Oa 21 x,=¢
integers,
rs
we
9 SE must
have.
7).
6 model: 3 model 0 model
%Bstrucks, B trucks, B trucks,
sC"trucks C trucks C trucks
(4-3)
of materials for each alloy from also defined, but does not have an this problem.
300
ORS
0.70
att
6.50
6.70
0, 40)
820450
Supplier
5S model 6 model 7 model
B
$13,930]
costs
of
Alloy2
materials
from
Supplier
A is:
from
Supplier
B is:
from
the
DES ESAe Oe asics, 5010
total
Stipes
2k
53 Waa
$13,880 The
are
nonnegative
truck,’ trucks, trucks,
bie
Sb
is
luti solutzons
The elements of MN give the cost each supplier. The product NM is interpretation in the context of
at.
(C)
ana ath the
and
0
(1), FR, 7? Fy Pe
a
A Sa 50
costs
of
+4 515,930
values
7 Supplier
4
can
be
| 7,620 13-880) B will
materials 521, 460
obtained
matrix
product
dah 13,930
provide
the
materials
at
lower
cost.
CHAPTER
(4-4)
4 REVIEW
193
15
0. 20
£0: 25
0.05]
6835
2 4
The labor LSS Omoor
cost
for
one
model
B calculator
at
the
California
plant
(B) The elements
of MN give the total labor costs for each calculator each plant. The product NM is also defined, but does not have an interpretation in the context of this problem.
|
(C) MN
44.
Let
x
and
X,
all
0.5
Ui. 20
0325
0.20
invested
at
5%
at
10%.
Go
1
|
1 Od
Hence,
The
xy
matrix
|
0.1x,
1
0.05
Dice
we
+R,
=
$2000
Lagi
0
dl
CHAPTER
+R,
5%,
$6.35
S5!,20
given
above
‘i
il
it
5000
0
1
3000
si se
%2 7
X, =
: inverse
|
Model
A
Model
B
(4-4)
is:
(-1)R, +R,
*®,
$3000
at to
Fe
1 0
2000 i
3000
|
the
|
>R,
10%.
(253)
system
||
in
Problem
35
is:
5000
20
SYSTEMS
400
OF
il
of
|1
Oin'O OSA Ube 0. 05
of
i matrix
Oop)
0.05
aes
>R,
inverse
210)
4
et 0.050
1 0.05 0.
the
| EL I I 194
system
corresponding
the
0.05
mrs
oo 200
400
0
Si
the
|iy; | ak
the
Texas
SB (5S
5000
al
al
Thus,
at
equation
i
(-0.05)R,
T° 0)
>R,
compute
|
for
|q
40 0
Callus.
5000 400
2
matrix
x
1
Now
x
| 5000
(-0.05)R,
45.
+
augmented
0.05
4
invested
Por
1
10
amount
0.05x,
;
12
amount
Then,
The
15 OF 05 et 12 0 ; 4
at
E-00 05 ®2
1
> Ry
coefficient
LOVO0G.; =), DOOR
LINEAR
0
I
34 1 °|-[2 i 2 a4 Pca ZO LD, e (-1)R, +R, R, 1 0
matrix
is
| 8,000 I 3000
23; 000
EQUATIONS;
2000
MATRICES
aoe au and
-1 SO
20
Boe 1 Rk
ae |: 2 -1°°'20 oo)
is:
matrix
°| “1
A.
° 2 a PY 420
Rk,
-| :
equations return)
the
Ot
PR, >} R,
of
5000
2
=-1>
20
k = $200? x.if
..
2
Xx,
-1
This
is
k =
$600?
tut
X, is
|
20
not
-1000
x. >» Cannot
alee
=
x
=
600
be
Al
negative.
x, Aees2,000,
x, © s7fo00
7000
possible,
k.
007 x,0= $6,000) ix; 2 $11,000
200
x, Cannot
be
negative.
Then
2 Belle z pas ong : a =i | 20)tbek -5,000 + 20k
xX, =
Since
Ge :
possible,
a return
x] x, SO
not
-1
This
a 20
2
xX.
Fix
sf
10,000
x, 2 0,
we
-
20k,
have.
=
3
-5,000
10,000
-
+
20k2
20k
0
20k Ss! £0, 900 ks 500
Since
x, 2 0,
we
have
-5,000
+ 20k2
0
20k 2 5,000 k28250 The
possible
annual
yields
must
satisfy
250
< k < 500.
CHAPTER
(4-6)
4 REVIEW
195
47.
Let
x,
number
of
$8
tickets
X,
=
number
of
$12
tickets
x,
=
number
of
$20
tickets
$8
tickets
Since
the
number
of
must
equal
the
number
of
$20
tickets,
have yo =. Xq0 OF
Xe
Wirz ian
Also, since all seats are x, + xX, + x, = 25,000
Finally, the return is 8x, + 12x, + 20x, =
Thus,
the
system
x,
LY 1s 6
Soy
xy
+
X5
+
8x,
+
12x,
+
First,
we
(-8)R,
=
20x,
the
eo) 25)
000
or
al
8
inverse
of
the
06
20
cme
1
R,
Concert
Oe
sche ctevis
Hab
x,
+
2
Thus | % | =|-3 =
CHAPTER
25,000
eA
coefficient
R
matrix
%d kl) Se
DORE Si Dien
2 Ftarns7 at iim
100s
0 3.aaar
DR,
2
1
Thus,
the inverse
Lean
is|-3
Yoyo eis
+
=e
196
30
=
7
REE
3
As
1:
=I x,
0
xX,
(-2) +R, R, OR,
sae
0.:
ail
12
R,+R,
70-1.
fio
a
le 0-2} ft | 6.) ING. Sees tao i ricwese | eo |@) (-12)R, +R, R,
O27 SY Py, 2 igheieon Peer a)femeewa, Omen
Oca
required) .
OR,
1 23
Two
return
is:
=e
the
(Qi Steet, ta
~“i0° CM
R is
Uae
Ta tovtess [co we ge Ay Oot Di i seni OR,
+R,
(where
equations
x,
compute
(OF 20h Aromat (19. SOR (-1)R, +R,
1.)
of
R
sold
1
4
SYSTEMS
ee) xX.
=
257,000
Eb
S351
g
7
--$]|)
-3
OF
Or
0 25,000 | =]
2]L320,000
LINEAR
EQUATIONS;
Dy
Earns | Ie
1
1
5,000
15,000 5,000
MATRICES
alt
X5
0 =
25,000
we
and
=
5,000
$8
tickets
x, =
15,000
$12
tickets
x, =
5,000
$20
tickets
Concert
2:
x,
eae
x,
ae
Xo
+
O
x,
=
25,000
or
fo
he
A,
4
Swe aL
en X,
0 =
25,000
=
25,000
4
an
Bin
Thus | x, | =|
4
0
-3.._7..-¢.||.
25,000
x; and
13023
=
7,500
$8
tickets
=
10,000
$12
tickets
x,
=
7,500
$20
tickets
Xx,
°
x3
4
2-3
x,
a
=
25000
or
7
4
0
7 -3]]
25,000]
M3
=
10,000
$8
tickets
5,000
$12
tickets
x, =
10,000
$20
tickets
Problem 47, if it is not tickets and $12 tickets, then x, + x, + x, = 25,000
8x, + 12x,
+ 20x,
k
augmented
matrix
is:
a
ibe Xo
0
10,000
=|.
5,000 10,000
required to have an equal number the new mathematical model is:
(return
of
$8
requested)
i
k
a |ge
puei2 . 20
k
1
oe
1 (-1)R,
: E
1
QO)
4
k
(-8) Ry ce
:
-L
od
2. 20)
5
Om A,
(4-6)
From
ie aaa
ee al.
11L340,000
x, =
ey
7500
Sorry: 20 >
Thus |*|=]-3
The
|-10,000
3:
x,
x,
7,500
|=
330,000
x
x,
48.
7
x,
Concert
and
bere
1 | 25,000
m
+
= 50,000 R, >
25,000
12.1
ee
4 Ro =
R,
2
tears R,
| 3.)
|
| 2
5
Or
2008000
ood
|-¢ +
953
pe
= _ 50,000
R,
CHAPTER
4 REVIEW
197
Concert
1 QO
©
0 FT.
eke=5S8207000-
-2] 237
-5,000)| s0rEnG
= =
x, = 2 - 5,000 x, = 30,000 - 3t
,
t
ae Since
X11
X, 2 0,
Concernta2a,
1 eee Since
x,,
Fa Lo
3:
k=
The
x,,
satisfy ==
t must
technology
‘
we
lis _
-;
x
=
Ze
=
35,000
-
xX,
=
¢
tickets,
3
2)
gefou
0
li
of
integer
t $ 11,666.
(4-3)
ack
Pet
5
2
AR
Pe
(896 |
24°
*
+R,OR
Be 0.60
- mM
aiyeeo
1
AO
I
wees
odemebaer
oe
oe
oc (h 2h
a
7
huss
Dd:
for
the
output
xX =
4
and
SYSTEMS
ie i 2
output
agriculture
peg
4
x, =
CHAPTER
inverse
Gar
2
198
R,
Peel P
(A)
5
R,
X,
11.
4-0
Qyez
Grea
7
oro 1
0
0
il
form:
is:
a = 5
a
(minimum)
ete
0
i pivot column
EXERCISE
5-4
235
(C)
His
$s,
8
-
s,/1(@
Py
1b
oO
CY t0
S,
3
0
i:
OF)
1
Pils
Oi;
L0F
| te
ih
21. Fo) © 0.8 a)fot
5
8
Oy
s
0
1
O
{10
3
ees,5 a. |
se
(-1)R, + 2,OR, 30R, on,
X,
acu ~
eats
$5]
0
The
0
simplex
Faas
So
pt
60
15:
tableau
S,
2
S,
pps
pivot _,.
1g)
Oy
|e
bial MOR
80"
for
1
5 So
a. |sp
this
Enter X, Ss,
x,
al
i)
S,
S3
0
0
0
lame’
oye
Pag
3
SA riOl
aL
©) OMPOUMBIE
oi.
gm fost or
eee
Thus,
is:
|10
deea
|10
gk
[Note: The have been
CHAPTER
5
LINEAR
+ R, => R,,
AND
and
40R,
+
ha
m=
mmOn
eh
|= =) 3. faim inant)
eyo ul
és |a1
copes
INEQUALITIES
pivot elements circled. ]
= = 6 (minimum)
af
236
row
P = 150
5; »,0= 0) s, = 0; smemer
19) 6 0) O20} 1 |240 Peet
max
ee
(-1)R,
weLaaton
in the last
nonnegative.
ta?
a
al
the elements
are
P.
ere
ee
All
ati,
problem
Os
i
Paver >
S,
2 eels
soe
Po 13.
X,
—? R,
LINEAR
PROGRAMMING
=
R, => R,
-10
0
2. (-3). +
15.
%
SF
Sy
0
0
i
38
x,
il
0
0
2
|,
9
1
The
simplex ;
Sp
B20
a (-3
112240
>
+
R,
>
R3,
and
10R,
+
R, =>
R,
83
1g
le
0
ot
ail
0
2
ee:
1
0
°
oo
ter
1 to6t |) A es ey = Psy Ss OP ts = 0.
for
this
tableau
Optimal
problem
solution:
max
P =
260 0 at
is:
Enter
Exit —
OF
R, oad R,,
X,
Pees
0
x,
+s;
X,
-2
8,
Mlle,
Cosy
OVP
@
al
0
0
0
FL
8G
AT
So
CO | 5
0
0
0
Ee
eee
a
2
2
2
(minimum)
2-5
a
PLi-2
-3
0
+
Divot
t-a1PRoace-Re-—>
A
¥
ay
il
ils
tabi pivot
~
row
**
2
R.,
(1)
2
0
0
0
ee lee
eo
oats
3
fs ee and
3k)
3
1
44k
RFR
4
4
2= 3 A
DRS 0
pies
2
. =e)
“)
ML 3
0
re, 0
il:
a0= 2
(minimum)
6
7
i ea -2
il
i
1
ig ia
@)
0
-8
0
0
qi 8; 0
0
ey 2
Ss Cogito Bee
Seyamo 3}
2R, + R,+>R,, and
1 203
0
257
0/2
0
ilk
6
whew
0
Ss
Ss
Iz
0
0
Al
0
ee
3
6
0 OG Be Bp Se | tN 4
1
Ogee
g0e
ls
sein
2
0
QO
0
4
ilies
(2,
(-1)R, +R, OR,
-1
4 , pivo a
8R, +R,>R,
Since there are no positive elements dashed line), we conclude that there
s Ge
in is
the pivot column no solution.
(above
EXERCISE
the
5-4
237
17.
The
simplex
tableau Mae
this
Sin
1Sop
eee
0
none
2 = 2 (minimum)
a
toe
OR
hee
a 24
Side
0
See
(101s
Pe
pee
Xo,
pve ahs: |oe Soh
for
Ce
si"
3"
"0
S3
NEY cad
oOo
P
Te
870)
e2) T
eek 1
@)
OG
oa)
-3 Pein
0 sae
ep
row
gt
alt
4
+ Ro
0
0
0
Le
SOR
OMe
£62?
04
is:
Ry
4R, t F)—>
2
112 ne
pivo
3 < pivot
| [Note: We positive
coals
Pivot
a
®
0
“3
,itebOe
Mada”
RSsse eee AR outta | Oi
=1'
50:0)"
25)
Boe
io ->
2 oO
$
19.
The
9R,,
R, +R,
simplex
0
pe 8%a
ea
s
3R, +R,
2) 2 Us.
1
this S,
So
1 -2
1
0
ee
OO
pivot
gt
Be 0
ut 5%,
238
Ley
CHAPTER
3 >
5
Ry,
X33
242)"
fa
0
et -4
lo
( 2) Ry +
1
5
the above
in the
S3
P
Bh
R, >
PROM: we el 5
150
0
ee Oe (aei +12 ; aaa a)
oe
Optimal
solution:
xX, =
10,
5,
Clee
Ory
max
Ss, =
3
eae P = 7 at Xx, = 3,
0,
Ss, =
21.
is:
i
PO
R,,
SR,
+
R, >
R,
il
1 2
-1
1 2
0 1
0
3
-4
5
0
150
is
110
|PA Dea tie|er 0 Ro
AND
0
0410 |22 = 10 (minimum) OP Ores 15
0 | 10
INEQUALITIES
0
P
0
R,
LINEAR
S%
Nee
SB
problem
NCL 0
S,
CeO
for
Xp,
Prow 281]@
wv
line
column.]
X,
il
ambeeds
> R,
X,
i
or
tableau
P
ey
omer, ce 6 8 Oe
0
Syaie cite ee re eo cae
and
+R,
row
1
-1
R, +R,
2R,
2 Re -, Ro X,
A
and
only use elements
the dashed
A
column
&,,
2
0 1 0 ce ik” pas omen
wwlrose
si N
MUON
(-3)R,
-1
pivot
problem
LINEAR
+
Rk,
>
R,,
PROGRAMMING
4R,
+
R,
>
R,
.
3
1
1 3) 0
£
a
un 0
7
cr . =
=
19)
3
go
FP
Al
=p 2
1i-
R,
X,
x;
S;
S»
al
0
ay
1
0
0
0
1
A.
0
al
0
0
0
al
2
3
at a alee
simplex
ivot he
—)
~1
I
0
@
(3)
b
3
me -4
-3
R,
ts | 4
270
£1
50
0
2
2
Lo
R,
and
3
Optimal xX, =
this
problem
solution:
3,
x,
=
13 4
R,
+
S,
S>
S3
Ss,
3}
Py
5
ak
0
0
OM23
Sy
@)
att
aL
0
tk
0
0
-2
0
0
t pivot column
iail 2 ae i
Ry
&
Ce
>
DO
P
7
R,
0,
8
5
Lire
=
4
.
2 ches
“At
Msi
,
2
fae
a
og
0
1
a!
3
Oo
0
[aa
1
te
ho
va
2
O13
ds
0
47
0
Q) +
Qo -&
-2
0
0
0
al
0
QO
-1
0
>R,, and
*
(minimum)
2)
+R,
0.
:
8
(-1)R,
17 at x, = 4,
Ss, =
0
0
|
max P= =
ees 8
ab
123
s,
=
0 med oe7
0
i a4el]
0,
2
(-3)R, +R, >R,, 4R, + R, od R,
R;
is:
x;
RF.
1
>
X,
ete eet
+
:
eee
ak il 2 0 ft Sean aectieee teenth azL Ac SeeG Se
mraz)
45,
4
for
-3
(minimum)
OF a meanest
x,
-4
3
P
eee
tableau
eR
1;
R,
x,
See
The
y-1 Pp of
2 =
2R,
0
>
2
0
ah ||) aus
R,
EXERCISE
5-4
239
Re Ke Se 1 1 1 S35 92 CUCU) aon
ae L 0,0 FO, Oke ee
OAPs
OF
->:
| 08
Oe
S08) A Ona
De
Te
~5= JR, +R, 7, R,—R
R OR,
3+ Rk,
X,
0 Bewig pay
07 i] 0k
07 2° 0--15 1. 3,
P
OO
an
FE
83
SQ
S$,
X3;
X,
as
F
3
‘
2
1
15 -14 -2ps 0% 10 OS-le Pa
3
25a
1
OO
OUR eee sone
d
R, +R, > R, Optimal Sa
25.
=2
3
solution:
22
ge
at
iL, anus
6,
Bo
the
third by 10 problem is: PEC al
first
to
clear Ss
2
problem
1
LT Goi ke aia OF) 328 rece 00. (320305 09
the
constraint
fractions.
Ss
Ss
P
0
te” Or
eOn Near ooO On er cog Lomia aoe Tee t1 0
2
3
OCISee “Oe FOm
by a
Then,
the
the
i600...
i,
2. i080 =
1,350
5 +800 - 900
2
1
1
| z alt
Cs
oO
| LW)
©»
O'=1,
0
0
0
800
he
(a)
oO
ws jo)cS
"0.
"Lior
too
800
_ iT]
parl00
1,600
400 Ce
al
CHAPTER
5
LINEAR
INEQUALITIES
AND
second
simplex
au
240
01)
s, =
Si
ope
OF
08
Multiply
4 S, s ye B
P =
max
LINEAR
PROGRAMMING
by
100,
tableau
and the
for
this
xy
xX
Sy
8
se
aoe
0
2M
me
0
A)
Pee
Pe
So
P
10
600 Cl
400
0
oo &
Optimal
S3
300
6 © “1/26, 000
solution:
max
P =
26,000
at
Kina
e001
X=
600,
Ss =
0,
Be =
Sb
S3
1g
0,
s, = 300. 27.
The
simplex X,
tableau
X,
apa mee
2 3
ee
meme
2
for
this
X3;
S$,
Sy
Pe
Paso O Sd. 50
problem
Sz
is:
12
="0=| 600 -20r' |600
oe oe
75 300
Se Oh. G1 A080 | AO Rea 3
Cte
0
aE > R,
‘
oe, 2) & Mees 62 90 meee at oO meee 623 §0 (-2)R,
+ R, >
pape)
06 71 90 60
Ry,
-;
oye 75 =04] 600 208} 400 21 0
lr LPR
he
$ G) 0
DO o® sa 60
2
+ R, >
GO)
0)
0
0
ge
R;,
and
TEP }450
3R,
+ RnR,
306
|422 ~ ig9
ed
La
) Ce RS ae od br 2p, > R, X,
X,
X3;
S,
pee 0 1¢1)4 2 o~d 0 Stormo 7s
xf
=
0
1
+ @
>|
+
1
O-=
0-4
ime te 4-0 2 len 2 + Rk, 7 eau,
k, + R, >
7
0
0}180
OO 0
eG [szouy 011/225
R,, (-rae + R, > R,
|
s-%
0
2
0 0 {180
ees) we“Oro sese Feo 1 ELGG eon creer Oe R3,
Optimal ai ae
0 | 30
20 | io in| 450
solution: max P = 450 30; A ea se a
EXERCISE
5-4
241
29.
The
simplex x,
$,fa2.
tableau
X>
Sy
82
22h
for
S
this
S3
S, | totes
(a0.
glia
Sleliey.4:
GO
Od
problem
is:
P
ne
S,
$0) h 0a
a)
ao
Cum
O-
fous
48 =
OLE
GicE
60 4
16
ol WO ooteb@ |Sry 9 3°. onh oiiehae | algae OlneOe | One),
Pulte
(-2)R, + R, > R,, and
SR,
+
240.
>
(-3)R, + 2, OR,
fei.
OF)
-2
Teo
90),
4.0
balay
ORE23,-aeulanG
2
iH}
Oo’
@
0
0
0
ape-4
4
i
ney
O
Atul
Oe"
OO
(-1)R, + R,
Shoe
eon
3R
2
OR,
he
O01)
a
OO.
40t gD
Ay
0)
+
R, a
R,
aia
On ie oaakoo nS 20) eGo 2 ener Rs Acta togy
0 TAO (Ome R,
Cig
DR, (-1)R, + R, OR,
0920) 19 Oi) 300 Rad [i MLE
and
R3,
12
a ate
tay
+
R, =
R, => R,
di0
(-2)R,
+
oe
4R,
eo, lad
and
2R,
2 2
ra
14
4
ii
+ R, OR
5
322)
et
Ones
wedi Stan ade ge eae
Oo 1 0 -1
1
0
ea
OmiES aie
0/12 [4 = 22 1
R,
242
+
CHAPTER
R,
>
R,,
5
LINEAR
3R,
oo R; >
INEQUALITIES
R,
AND
(-1)R,
LINEAR
PROGRAMMING
5
LS
a OL ON
S,
0
0
1
S,
0
0
Ou
Petes x,
(A)
Veer
0
Solution
1
0
0
4
ad
0
1
0
6
aus vind)
0...
0.
-S0ulod
iL
0
0
0
the
first
aed
using
=2
ag
2
3
8
column
as
the
pivot
column
P
iS Ls al
MT
>
10 MV 206
EXERCISE
5-4
243
Of
Ggeley
1)
OF
Sos OU
6%
23
ayjota
68
oll
0 40 =ie Cyd 0.70 “LT Sia0.
olla
Opes oteiaia
$= 3
iaR, > R,
AGO) ;,
(nde!)
20 ey
FO
ee
eh oeae: tahoe 2R,
+
x5
R, =)
Ras
+
R, >
X,
S$,
Sp
$3
0
a
0
0
1
:
»
-
la
ae
se
ukQileesieleners
ae
So
(-1)R,
X,
i! ~
aOe ul
JA
P
Ord
0-0)
0
: Md
So
S3
S,
2.4)
1
1
BO
ee
Ome
s,
1°@
Oty
Oi
Pte
0am
Comune
(-1) R, +
tao Ry
>
G)i(0 ots MR pee wie a
CHAPTER
Os
5
Ry,
Poe Mele Ve
Okan
LINEAR
INEQUALITIES
solution:
at™x,
33° x,s=
er
i) a2
16
10
Daley fae = 40
Oe R,
R,
Optimal
P
32 ]a_2 0% @ 0 MO, te
244
fe
Sy
Meh
R, >
{10
X,
3)
R, +
P
x,
P
Rom
ae +
R, ae R,
Ga vom e voles || uc
6
t= 3 2 - 6
eee
AND
LINEAR
PROGRAMMING
=
oS
107
max
P = 13
sia
‘
1
0
=1
0
al
0
0
a,
Gg. 0
0
(-1)R,
3
0
0
6
1.
oO
Mane
if
i |)Au
+
R,
0 =>
R,,
R, +
X,
X,
S,
Sy
x,
1
0
=i
0
5,
Gago
“>
at :
ot
;
Ne
@
ewes
P
Oh
Choosing the same
The
0
ee
-1
33.
-i:
simplex
R, >
S83
i5
R,
P
0
3
=
oon
ee)
“
alae
Optimal
solution:
at
Sir f=
Rens as oocie sewecnet wee
aocii)
-
ii
yeae
a
Se
=
ays,
=
max P = 13 Oy
$,
=
0,
0
dope
either solution produces optimal solution.
tableau
for
this
X,
problem
is:
iz)
opus. (i) 2
(A)
Solution
using
the
first
column 20
vt
Mem
Bee
4
the
pivot
column
20
O81) Poll se | 22 ote
i2F,
7
1
1
2
al
0
OF
eee
65%
Gs
1s)
Pot ae
a
as
Ry
1
PAO)
EXERCISE
5-4
245
Ale
6
o
to3
2
eeeeewe
wee
ee
vo eee
0-2 4 2k, > R, al
0
Ges
ew ee
2
-1
got
Oe 2
hae
(-3)" * R 2 7? oR Ror oh Xy
Xx.
s
0
ab
0
2
x,
Siete
SEY
(B)
Solution
using
X,
Si]
X,
P
-1
0
LO
8
a eee
Optimal
8
the
second
S,
25)
cdpOe
c=
column
So
solution:
max
P = 60
at x, = 12, x, = 8, x, = 0,
Oneal
a).
X3;
1G)
+ sk ® ee 3 S>
SQ) eed
OO.
Pil.
AS/
8
3
x,
(ecm
ew ws
0
eS 3
ew ole
1448
3
Z
eS
oO ie
1
ew ewe
0
ee. ec
52
oS
eee
3
0
ae: -7
of
P
as
the
OF
pivot
oo
0
colum
Le
SON) 208)
eet 20
$2] 2.2.4 0 20 132 |22 = 32 P
|-3
seile2
(-1)R, xy
tookg
+ Rot xX,
x,
ods
te
Rey
3R,
Sy
So
PER
Re,
P
od Mate ei Saat eS MPSot jcgde (AE
=
Bye)
Pil
LO
9)
Od)
Duae ds
ree
ON
eon
Oe
at NcO
The maximum value of P is 60. at two corner points, (12, 8, line segment connecting these 35.
246
Optimal
solution:
ae
ae
See the number of A components rad9 ul the number of B components x, = the number of C components The mathematical model for this problem Maximize P = 7x, + 8x, + 10x Subject to 2X, + 3X, + 2x, < 1000 BS e or 2x,
3)
2
dt,
0
this
obtain
=
1000
=
1S010
P=
0
Sy
10x,
tableau
s, 2 to
ns
S; +
xX,
oie
s
problem
the
equivalent
form:
is:
P
OY
1000
1ee
500
$2} [email protected].__9 | 800. | 202. = ao0 2
iayar-se-f0*
[0
.90)»
1
0
2%, 7
Peet
29 irDiOO
Zz
1
mens
=
G0),
0°
eet
60280 © 70>
(-2)R,
+
R, _
; @
(ee
os
Ak
a
tO)
[1000
4
3.0 Oba Ry,
1400 t
10R,
= 0
m
26)
905
0 +
R, ~
R,
R200
|200
_
0
A400
_
400
PERUVE bocce sausccs Ce
heePA
Boeeeaeeg
t}-4000
TD
ee 800
ZL
2% 7
OOM, at
ee
E
LZ
i
aeara
1 * oO.
Bade1)\p
=
a
eae a 1
sOnges oO
De
1
-0
1.400
4S © 7214000
R © R oF? R. Bon 2937 Atty thy
Q
1
n0
it 1 bees ae 2
0:
[p-LOOy
Races ones enn e hahaa
7
0
eg
a
0
mete
et
0
0
oh
1
174300
2R,
>
1
=
350
PyR 100 =—— teas = 200
|320
1/4
-
1400
R,
EXERCISE
5-4
247
i
12
(-a)R.
+B
>
x,
X,
x3
S,
L
2
0
fille
x,
Re
F,
+
S>
R,
>
R,
P
al
0
200
the maximum profit is $4400 when Optimal solution: components and 300 C components are manufactured.
37.
Let
x, =
the
amount
invested
in
2
the
amount
invested
in mutual
and
=
the
amount
invested
The
mathematical Maximize
model
for
.08x,
+
P =
Subject
to:
xigt
X, 41
We
introduce 2S
slack
es
res
- 08x,
The
simplex
Ss,
S.|
X51
.15x,
+
xX, +
+
X,
-
-15x,
s, it and
0
+
Pa=
0
problem
is:
Ie
il
Al
1
il
0
0
1SQOP
Sy
100,000
|100,000
ein
Stone
0
Log)
0
et
the
equivalent
form:
0) 1010/0
=
So
sD) ja Fone
obtain
See +
this
s, 2 to
S;
S,
S130,
funds.
is:
2e0
xX,
-1
100,000
+ Gje-punimand fo(opm
©).
Ge
elaine
-1
f°
A464.
G
23) 1
2,02)"
L0um
10) ian eee
aR,
CHAPTER
X3
xX,
for
market
X, < x,
X,
(-1)R,
248
+
x,
tableau
bonds,
as < 100,000
variables
.13x,
+
0 B
funds,
problem
x,
P | +08
~
-
in money this
.13x,
25.
government
A components,
200
>
5
noon 00 1
fag
aay
0
= 23.02 Ra
INEQUALITIES
AND
LINEAR
-+
Oyo
Cae
R,
LINEAR
Oia
1.
Rak,
PROGRAMMING
0 ]50,000
8
-18,000
Ry,
24,000R,
0
0
+ R =
@ -2000
fo) =
elu ale
0
0
I
e|"°So i) tv oir LZ
ap oO
(2) [o)
0
1 | 240,000
« 22 Ra + RB, 5 'R,, . 2000R, + R,
oO oO
R,
EXERCISE
5-4
249
xX,
X,
30
fred
xf ett
Xx
+
al x o
P
0
S)
0
S»
ws
-1
(0
5
+ -o
on
s2
10
1000
10
4000
het and
(A)
x, X, x3
=
the the the
The
number number number
of of of
mathematical
Maximize
P =
:
Subject
1 | 260,000
number of potential customers is 260,000 when 5 prime-time ads, and bP 0 late-night ads
Optimal solution: maximum x, = 10 daytime ads, x = are placed. 41.
Ip
colonial houses, split-level houses, ranch-style houses.
model
20,000x,
for -
this
problem
18, 000x,
+
is:
24,000x,
pi 2x,
+
BS2X
+
60, 000x,
+
60, 000x,
+
80,000x,
4,000x,
+
3,000x,
+
4,000x,
to:
x,
S30 < 3,200,000 < 180,000
BE Lypee Deey OX. 3 > 0 We simplify the inequalities obtain the initial form:
es 2*1
+
Ay 2 X2
+
6x,
+
6x,
+
4x,
+
-20,000x,
[Note:
3X,
~
This
The
simplex
S; +
+
change
tableau
for
this
Xo
problem
X3
Sy
0
0} 320 |222
olan
40s)apn LS 0sup eee mame wee Aaa
0
oO
1
R3,
24,000R,
0
1
3
ABE= ow 0.
mn
4
ee
met)
he ee rae ele oem meen
1:-20;,000
5
0.
y218;0007%-24,,000°°0 R, ->
Ro,
(-4) R, +
il
uf
3
en
pe
2
ay
@)
ieee
R, —>
nn
30
=—@
He
10
0
80
Rie
dC
lg
40
60
0 ~ 0.
AND
LINEAR
..1.1720; 000
PROGRAMMING
30 a
vag
4o
0
..0
aus INEQUALITIES
P
100-00
-6000),00924,000.
LINEAR
of
0 |p 30
g
CHAPTER
interpretation
cy)
6
3
the
0
OCs
6
=8000 ut
80
S3
5,
(-8) R, +
=a
P=
So
$1
P
9320
variables
is:
$1
www ow
9°30
= S,
+
Ss,
S;
a= Sy
24,000x,
will
slack
variables. ]
xy
250
xX, +
introduce
4x,
-
simplification
slack
then
8x,
+
18, 000x,
and
+
R, —
R,
the
to
~
-8000 -6000 0 24,000 0 0 1 1720,000 ple & 2 Rs +iR, > Ry, (-2)R, + Ry > Ry, 8000R, 4 R, > R,
0
=; 1
2
©
aaa
15
0
ipso
1-4
+.
See
20
eee
iee...
2
el
+
0
30
0 -2000 0 8000 0 400011 960,000 (-4). +R, X,
STA xX,
X,
0
Plo are (B)
R,
3
GS TOP
Recta Optimal houses,
>
(-2)% + Bouse |Kee, S3
2000R,
+R,
Sy
S5
hla
-5
0
0
10
sal
0
20
i
OQ”
-4
a
jo.
0...0
-+
—?
R,
Je
1i06
20
0 0 0 2000 2000 11 1,000,000 solution: maximum profit is $1,000,000 when x, = 20 colonial » Mos 20 split-level houses, and bp 10 ranch-style houses
built.
The mathematical model for this problem is: Maximize P = 17,000x, + 18,000x, + 24,000x, Subject
to:
Bae + 60,000x,
+
FX, + 60, 000x,
x, < 30
+
80, 000x,
S 37200,000
4,000x, + 3,000x, + 4,000x,
Roe
-24,000
30]
*-0") 380
= 30 ane ay
0
(= 4) R
EXERCISE
5-4
251
:
=1
iL
=.
ig
i:
To
Swe
2
@)
0
- g.
21,
Boi,
(0
2
fi.
36
=4
90)
ga
40
30 [75 = 60 so | —80= = 4p
30
60 | 60 _
ee
-5000
-6000
0
24,000
a
0
0
1
1720,000
ais Rio ;
ie
1
1.
£20
Seo
oo
30
1 2
Cis ine
0
A =a)
oar oF
| 0 ar” o
40 60
0
0
-5000
-6000
(-i2 )R, + Rea X,
X,
ay
Oa
Omer
Xp
Ld
sas
built.
0
24,000
Ri,
Ua
X;
pO4n
40
Ree
Ze
1 | 720,000
eee,
3
oh
60, 000R, + Rive,
Sy
S5
S3
P
AL:
as
Om!
AO
10
2
NO!
yo
40
eye
de
0
20
eae
Tin
Optimal houses,
(C)
ee
fono
solution: maximum profit is $960,000 when x, es 40 split level houses and x, = 10 ranch
In
this
case,
Ss, = 20
(thousand)
labor
hours
= 0 colonial houses are
are
not
used.
the
simplex
The mathematical model for this problem is: Maximize P = 25,000x, + 18,000x, + 24,000x,
; Subject
af 2%,
+
4 2%
+
60, 000x,
a
60,000x,
+
80, 000x,
4,000x,
+
3,000x,
+
4,000x,
to:
Following
the
solutions
xX, = 30
in parts
(A)
and
S 13/7200, 000 < 180,000 (B),
we
obtain
tableau: x,
X,
x3
S)
S5
te
G4
1
1
=
2
=
:
i
poe
3
6
6
S780.
s
- 257000). ne
43
252
CHAPTER
5
LINEAR
S187 000mme 245000".
0"
AND
LINEAR
30
0/1320
30 eee
ep
te
328 = 53.33
preset keertate fie OC 0°
£0."
aR,
INEQUALITIES
P
HOH
1.40.
re| She ©)don-nereBenn toons acta Pel.
S3
PROGRAMMING
ff
0
ib
z
6 ©
:
al
Z
i
6 a
oy 1p
Paes Omeee
0
ei kire>
Ki,
-6R,
X3
+ Koeao
x,
X,
S,
Sp
71
20
5
s
A. | OOP
S|
0
$
o,
0
he,
0
ChE
| 370 Ole | 45
0
1] 0
|
-25,000 -18,000) -24,000. 0.0 (-3)
0
25,000R,
S3
+ R, >
R,
1
eG
Fo
30
+
7.5
0
50
er | ert {e-*- Gran” 9 + 0 45 p |circcirrtereciesrecceseesesceresteseeeposeeesscseees O50
1000
0
0
6250
1 Ud, i225 £009
Optimal solution: maximum profit is $1,125,000 when X= 45 colonial houses, xX, = 0 split level houses and xX, = 0 ranch houses are built. In this case, a 7.5 acres of land, and Sy = 50(10,000) = $500,000 of capital are not used.
43.
Let
x 1 Ul the
number
of
boxes
of
Assortment
I,
Kygh=
the
number
of
boxes
of
Assortment
II,
the
number
of
boxes
of
Assortment
III.
and
x,
(A)
The
=
profit
S2408—
The
per
box
[4K0.20)
profit
per
of +
box
Assortment
4(0.25))
of
+
I is:
L2(0530)a-
Assortment
II
=
S400
is:
eeo Om 1 2500S?O) Re =4 CO).25)) 4 4 0OR 30) = = ts3-00 The profit per box of Assortment III is: if OO—wbSiiOaZ0) +ae(On25) + S(O). 30) —=S 5200 The mathematical model for this problem is: Maximize P = Ax, + 3X, + 5x
Subject
to:
4x,
+
12x,
+
a
Ax,
+
Ax,
+
8x,
< 4000
12x,
+
4x,
+
8x,
< 5600
X11
We
introduce
slack
4x,
+
12x,
+
8x,
4x,
+
4x,
+
8x,
12x,
+
Ax,
+
8x,
~4x,
=
3X,
-
5X3
Xp,
X,
variables +
< 4800
2
0
to obtain
Sy) + +
S, +. P=
the
=
4800
=
4000
=
5600
initial
form:
0
EXERCISE
5-4
253
wetea | fs.
Sif
4
ae
S5|
4
A
Ss
Fi
goa
8.
83
10)
0
Oma
OL...)
uo
aoe = 600
SOMmano?
see - 500
3] 12489040
P
=6
23)
510
0)
5600 |$600 _ a9
OCmmre
0
abo
Oe
2
Sere
sects
ai) 120.
“64
(1
ep)
Ok
ce6
(Ol
"4
Wh
Met
=4)
ete
=34455
MO * GoM
W0) , Oke 0
Cee
2040.0)
(-8)R,
+ R; >
R,,
SR,
+ Roop.
Ay
OO." ioe
x
mus
Gyo 3
=o)
a
eo)
1)
a0
* 0%
oO
ae
Ee
£0
RO.
442
© &. O04
-pF8] 5
yg
Se
eCo0 ee,
3
0
500
10
193200
ie
0 f)
OLiS 1 0 0 +
SA" 0 0
ChOn igbwreaeyO (400 0 -— R,
aa A BA
40)
5-5.
(aka
ay
eer
eceeeewwrereereere
ener
and
(A)
in parts
solutions
is:
< 6000 < 6000 < 5600
S,
=4.°
*:
8x, 8x, 8x,
X,
ewsewwee
P
+ + +
12x, 4x, Ax,
X,
Aritq math
+ + +
the
Following tableau:
Ss]
4x, 4x, 12x,
to:
Subject
problem
for this + 5X3
model + 3X,
The mathematical Maximize P = 4x,
PROGRAMMING
a?
R,
the
simplex
xX,
X,
-1
5 X;
a ~
X3
S,
Sy,
1
0
2
0
-8
0
0
2
0
1
0 1 ois]
ao Optimal
45.
Let and
The
0
solution:
assortment
I,
assortment
III
candies
are
> ois the x= the x, = the
Subject
are
0
50
10 3 0 @igaee
maximum 50
12
-%a
UC |CO
Xo. =
not
400 675
e525 profit
boxes
of
produced.
is
In
this
of of of
grams grams grams
of of of
food food food
A, B, C.
model for this problem 3x, + 4x, + 5x,
to:
$3,525
assortment
when II,
case,
used.
number number number
mathematical Maximize P =
r
$3
x,
and
s, 2 =
= x,
400
0 boxes =
675
of
boxes
of
fruit-filled
is:
x + 3X, + 2x, < 30 2x, ne
i 2x, S$ 24 X11 Xp, Xy a)
We
The
introduce X,
+
2x,
tan
-3X,
-
simplex x,
Sy
s)
ail
slack
3X,
+
kot 4x,
-
variables
2x,
+
S,
2x,
+
S,
5x,
tableau
for
XX,
SS,
So
3
2
1
0
@ 9
S, to
=
SiO
="
24
+2 P=
X,
2 1
s, ot and
this
obtain
the
initial
form:
£10
problem
is:
P
O./
1
30 303la5
Gf
15
24
0}
|p = 2
is aR, > R,
Tepe My rety ~-}2 7 @ 9 Bored) 5-0. Rae
Rt
Ry
eR,
BH Py 7 o}12) 0 at.| 0 SR,
+
R;
>
R;
“1° @)‘o 1 a o fs] S- 3 1 1 | 2 2 2 0 2 of42 [ae og Bier Oy 80 teem d 60 i2%,
7
EXERCISE
5-4
257
wR
Orie 2 oy aie
aT
2
ae
Cone ea aR ) ia oo emia Rte Nigar Roe
Let
ary =
and
x x3
58S)
109)
2 t-2) a Ne
rie
8s bn mk
f 0- 7 ~ =< 3
oe
ae
5
SS, 1 #
a
a
Pee oeigc ae 129
units when 10.5 grams of
of protein is 64.5 of food B and Aye
undergraduate students, graduate students, faculty members.
of of of
number number number
the the the
Il
100)
3
the maximum amount Optimal solution: 0 grams of food A, x, = 3 grams Pa food C are used.
47.
5 Se
eRe ile” «ae 1 1 60 a,
rg
of
ee
Sd eek ie Ce ee 2
Ou
4
1S as ST) ase 3 2 2 aa
au)
el
Xa
Bee
1
The mathematical model for this problem is: Maximize P = 18x, + 25x, + 30x, < 20 x, Si et Subject to: 100x,
+
150x,
200x,
=
a hte 5 second
the
Divide
introduce
slack
x,
6+ xX, + 3X, + + - 25x, =
2X, -18x,
The
X,
Ss,
X,
ul
x, 4x, 30x,
3
af
oe
S,
to
Sy
= =
Sy
+
+
P
So
iP
pe
0
0
PAO, 64
=0
is:
problem
this
S,
simplify the arithmetic. Then obtain the initial form.
to
50
Ss, and
+
for
tableau
simplex
ees by
inequality
variables
< 3200
2 0
20 EBoks
20
20
=| 2.3 © o 1 0}64 [eb ie P | -18
-25*>
-30
0
1
ab ma al
0
al
0
A 1
ee
-18 -25
-30
ee
0
R,,
54 R, >
(=1)
0
0
1
30R,
+
aew
Ss
0
R, >
Ge ee
-2
(-3)": A
258
CHAPTER
0
0
pore Rex,
5
LINEAR
1] 3R,
pa
ee
480 3 i
INEQUALITIES
1
Q
NY
i
AND
LINEAR
oe
1/2 6
480
871/2 =16
o 2-4 of Ei
Pos
erie OEeee
2R,
8
114 Dal. 26 | ee
1]
#
—ale
Sy
By der ¢ R,
0
0
2R, >
R,
eee
deh tO.) eat Oe
2
3
z
ne
i1
-2
-3
(Qy 72° 00 2) ee ore i
4 0 6%
3 ati 1 PSD
4
0
1-4
0
2
Q
20
0
2 MO 0. Lia
~ leneoe ieee
086) >
Ry
PROGRAMMING
ine
21
[Pecos
ie = 24
~
goals ati e4 Pec 1
(-3):
+
—>
XX,
5,
4
2
1
0
ymalgor
ia
pete,
jugt
@
wdidatéww
R,,
3 |. soa |) Aetna Ry
+
R,
—>
Over
yee
0
16
1:00)
|4
=2
x,
tones eeteozC
R,
Optimal solution: the maximum number of interviews undergraduates, X, = 16 graduate students, and i= are hired.
EXERCISE
18
16
es. R,
X,
0
= ii 1
Olas
1 1
2
X,
is 520 when cil 0 4 faculty members
5-5
Things
to
remember:
1.
Given a matrix A. The transpose of A, denoted A’, is the matrix formed by interchanging the rows and corresponding columns of A (first row with first columnn, second row with second column, and so on.)
2.
FORMATION
Given
3.
OF
THE
DUAL
a minimization
PROBLEM
problem
with
2 problem
constraints:
Step
1. Use the coefficients and constants in the problem constraints and the objective function to form a matrix A with the coefficients of the objective function in the last row.
Step
2.
Step
3. Use the rows of A’ to form < problem constraints.
THE
Interchange the rows and columns of the matrix A’, the transpose of A.
FUNDAMENTAL
PRINCIPLE
OF
matrix
a maximization
A to
form
problem
with
DUALITY
A minimization problem has a solution if and only if its dual problem has a solution. If a solution exists, then the optimal value of the minimization problem is the same as the optimal value of the dual problem. 4.
SOLUTION
OF
A
MINIMIZATION
PROBLEM
Given a minimization problem the objective function: (i)
with
nonnegative
coefficients
Write all problem constraints as 2 inequalities. may introduce negative numbers on the right side problem constraints. )
in
(This of the
EXERCISE
5-5
259
(ii)
Form
(iii)
(iv)
(v)
the
dual
Write the initial system of the variables from the minimization variables.
dual problem, using the problem as the slack
Use
the
the
simplex
method
Read the solution bottom row of the (Note:
If
the
minimization
1, 0A =
problem.
E59 oes
megeteys
to
solve
dual
problem.
of the minimization problem from the final simplex tableau in Step (iv).
dual
problem
problem
has
has no
no
solution,
then
the
solution.]
-5 0 ie al 8
aoe
4
3 cae
a Ses
8G. 4]
4 uh ie
+2 [2a BH atl a Oo Ayn
:
pee
PONIgy Kyte wy ; A’ = | PO epee dies
-
+ X,
12y,
+
simplex
tableau
for
Y,
yo
*%,
X,
4
3
ul
0
xy
P
=
2
Il
oO
this
problem
is:
P
¥,
0
9
9 = q eS:
x,
od PO eee Om Cr B
-13
-12
(-4)R,
+R,
Optimal 15.
(A)
0
0
ab
2 R, and13R,
solution
min
p=
matrix
corresponding
The its
matrix A’ corresponding columns, that is:
oat sts a5 8
AMS Thus,
the
P
4
X,
1
a
P
4
0
al
0
al
0
er 13
1S1e26
7R,
2 6 ace
The
-1
ee
0
+R,
¥2
QO
to
the to
OP
al
given the
meomnmen 2
oes
problem
dual
is:
problem
A=]
has
the
2
3)
Fis
1
2
8
ts oe 1 rows of A as
7 PAS 1
dual
problem
is:
Maximize
Subject
P =
to:
15y,
ayn
t)
3y,
+
+
8y5
ty, 3 7 2y,
Sale
¥y: Yo 20 (B)
We introduce for the dual 2y,
+
RYS
3y,
+
2y>
ps
8y,
TY
The
BE
x, and x, to
obtain
X,
=
ZF)
+
tableau
(Vo
Ue
P.
=. 0
for
this
Hay
gh”
RG
LS15 4 28 BS 2%,
262
CHAPTER
5
problem
ares
TS
a0
Seas
Apa: 3
eae
is:
INEQUALITIES
1
Wise
(-3)R,
AND
LINEAR
1
7
33820) werner
=15.
PR,
LINEAR
system
HF
ereeeeaeenecennenenaanecevnacanetboaen:
PO
initial
12
it
5a
the
=
+
simplex
Yy
slack variables problem:
PROGRAMMING
enene
eee
1. eee
e
ee
Fone eecece
=8 ~ 0=*="0 +R,
> R, and15R,
a
ece:
71)
hee +R,
>R,
io
BO
ee
es)-4)
9
oF EO
0 |2
|S
w=7
1
|24=3 -
0. @23, 12.6eu3
2Re 2 >, 2
Lmtd
mee
ore
i (A)
0-2 Eo
ile
vec
|F
eran
reat
Ou).
h2
2
6 | *3
eineaaitie. 1/54
Optimal
17.
Os
(-3 oe oe +R, hae OR ? and=z Pes +R,-R 3 3
Pipegeaag y;
ee sO
solution:
The matrices problem are: Na
min
C =
54
corresponding
2
1
8
So
3
4
nRel
4
z
at
to
x, =
the
X, =
given
2 and
6,
1B
problem
-2
and
to
the
dual
gta
A’ =
4
8
4
respectively. Thus,
the dual problem is: Maximize P = 8y, + 4y,
Subject
to:
2y,
-
2Y> ail
Va
3Y
s 4
¥,, Y, 2 0 (B)
We introduce for the dual 2y,
=
x -8y,
The
2y>
+
+. 3Y, -
ay,
¥
A
+
tableau
¥2
2g
=)
11
=
4
P=
0
%
for
*%,
Le
LOPES SENS
(-2)R, +R,
Optimal
xX,
+ X,
simplex
iter
slack variables problem:
problem
X, to
obtain
¥,
14
ay
ie
min
+ #15. 5) “ Sg
8R, +R,
>R,
C =
at
32
the
initial
Yo
*%
system
is:
P
00")
OR, and
solution:
this
x, and
2A ls On
l3q(a0) al
Ses
2Y5
-8y,
=
8y,
CHAPTER
ig
5
slack
variables
a
x, and
xX, to
obtain
3!
TX +
LINEAR
=
9
P=
0
INEQUALITIES
AND
LINEAR
PROGRAMMING
the
initial
)
is:
problem
Tt
=2
Balas
4
al problem
2 as
the
Maximize Subject
-8 P =
to:
y,
slack
+
¥,
-
2¥,
Yeas
ZY,
+
y;
8y,
+
8y,
-4y,
The
x,
+
simplex
to
al
{7
i)
-4
pet
8
x, and
X,
respectively.
al ~
Yet
By,
=
By, 2 2Y>
x, to
+
obtain
Y; 55
for
this
problem
0
initial
system:
is:
Yt 0
0
1
Coes
0
1
RE Pe Oy OES WY
8
You a the
=n)
ne lt
By,
2y, Sif
nes ee
o=2
problem
S47)
+
ts
tO
© AE
+ X;
tableau
Pe
oe
variables
dual
the
.
5
-8 Ay,
and
Vigo introduce
column.
7
‘ll
¥ar
We
pivot
calculations. ]
given
4
-2
PN Ss
column
corresponding
“ih
ili
either
W
27
fas 1
x)
5
0
Sy
lele
3)
ae
1. Sateen
iz
p= 1) Re +R, OR, and AR, +R, OR,
0
0
P
oe Nieatad
Or
=3
aL:
2
“0
“E2
0
ee aoe
Optimal solution:
-1
oo
?
0
te
4
Oo;|
2
ho
1
min C=20
5
20
at R,
3
Wt "
0
Auto
ior
G)
0
lcd
&
Leo
eee
oh ae
0]
Oya
Tos
iP S00 "Sol Ne O}.25-1-0...'0...2..1] 42
ui
0
a
Maen Ygres Hn Kin ms ha 2Ct | ON Oh ods lel ~ Yb Ona ib 2 2
31.
8 202. ah il Oe (0% te. war
solution:
The matrices
As= | =4
Thus,
=D
Z
the
4
2
dual
C =
43
at
Ee ue 0,
2;
to the given problem
Loa and)
SAgs
r
ea
is:
Maximize
and
Ci Ras Be
ey
Ves
CHAPTER
+ x,
ay,
5
X,,
+P
LINEAR
INEQUALITIES
=
2
=
2
to:
iy
are:
eS a5 Pe
Yo) S12 2Y>
variables
the dual
, respectively.
ie)
Yury
ay
4
F (-2 Re+R, > R,,
x, =*3
3
en
slack
Zz
5 al
-4
=
1
problem
sal
aR, aS R, > R,
xg"
-4y,
introduce
2
2
eg cinikas
Subject
We
0:
ral SCH imael sb
6
al
Ie
5
min
corresponding
Ten!
tie
gS
é2 2 Ro+R, >R, and
Optimal
@)
.
Ut 0S 5
1° 5..0.,0 ‘5 =0llme Orang ---0- 0--dicanad Nag
2R,- R,
Yup ie P10.
:
LINEAR
PROGRAMMING
eC
obtain
the
initial
system:
The
simplex
tableau
ea
Fy
pet x,|
-4
al
foes
ih.
0
01) 0 +k,
0
is:
2 2
2
=A CO)
(-1)R,
problem
5 ObETE 2) OF) P55] Rod's
0
2
this
ee
1.
me)
for
GB |) 23| Gae.2 TN)
>R,,
m~
42, +R,
0
> R,,
2
Sy
0
as
1
Date
=
0
3
0
7
le
ee
0
131
ae
ak
0
2
Gok
0
8
33.
The
35.
The original problem of variables.
37.
No. the
39.
Yes.
41.
The matrices
has
2 variables must
have
both
sides
of
and two
corresponding
the
4 problem
problem
8 dual
inequality
4 il problem
is:
A
T
=
slack
eye t
“4Y, *
SY,
2y,
-
3Y,
+
33
2y,
+
¥y, +
Y3
-l6y,
-
-
7R;,
12y,
by
and
variables
X11
Xp,
* xX, +X
+ xX
and 5
3
3
8
1
ab
4
=
16
=
3
(one
of
problem
are:
: respectively.
Pay, +
Py
3Y5
3y3
2y,
-
2y,
evr
x,
problem
the dual
2
and
number
16
2
SY;
any
-1.
4
to:
the
the problem solution.
constraints.
G6 |ARA ae? 1 P = 16y, - 14y, +
Maximize
Subject
14y,
2R, +R,
constraints,
to the given problem
and
introduce
OR;
Ge. ae al2
problem will not be a standard maximization in the last column will be negative.)
Multiply
0 | 10
0. (Sy Ok 2
x, column, are negative, does not have an optimal
3
We
4
Since all the entries above the dashed line in the pivot column,
se
16 the
il
CP
0
Thus,
0
7R, +R,
x,
The dual elements
-7
and16R,+R,—7R,
a
problem
0
1 gO bre eo | 3
Oo el6 on) vnG
Vs
dual
p@s
t p-2) O
and 6R,+R,->R,
tee
0
=
12y,
no SS
>
Se)
Sere
Yor Yon Y=
0
to
initial
obtain
the
system:
= ct
a
aC)
EXERCISE
5-5
269
The
simplex
cn x
3 2
tableau
for
4
By)
3
3-0)
this
1
problem
is:
Cot)
Aes
eon as
Gibb.
Gg
bop
5FP |1.qieDodd-140°"12 2.15.0.,10) 30 Pa 740), 30) ae 1
ABO 3 4
2
ae Se
3
=~
Boom)
1
S16
0)
Gl)
Xo \/ Sones
al
18424"
(-3)R,
sO
ee
ae
SOMAnS
1
SS720t
Dol
>
ie,
Pek
S82 = 5.33 =8 aa
MOpadiAb
LO
(-2)R,
+” Ro i> RS,
7 10 OF as5 ee 10.4 3 0) tom penend ig ©) ar ai nen Rates hiro iby (pean
and
16R,
0) = FG)
“| din ae On 1) ee OT een cee ee a eas WIE OP -6'l=4 0) gh avis pa aR, > Rp
HOR
i ete
3 1:.°0 ¢=e cena i, “on, 4. -4 ia
ite GO) eee Ce eee a 0-6 -4 0 O° 8 Giieg -35 FR+ Ry > Ry (-2 Ry + RyRy, and 6R,+R,>R,
Vinton!
YO" Vol 0° 9 ¥,
Vas
00 de
LO,
eo
a
POOR. 43.
Faw
ei
Subject
sae
C = to:
-
22
PHY)
2>
eS
Xy 2
0
+ Xq,
corresponding
LINEAR
at
=
3,
min ic = 44 xX,=
5.
forming the dual.
> -12
X11
CHAPTER
Optimal solution: A
“2
Xy
270
0 er
inequalities
xX,
The matrices
aD ake
as ee ores eee
The first and second Minimize
2oe
Wh 6 a) cou fig 0 e-ee
INEQUALITIES
Xz,
xX,
to the given problem
AND
LINEAR
and the dual problem
PROGRAMMING
are:
and
The
dual
problem
is:
Maximize
aA’ =
P =
Subject
to:
-12y,
-
ae
+ ¥% “Vo ALY “Y2 + 4 Vy OV_0 V5 Vy
y3
The
+
simplex
aiv
¥20
x,f-1 0 142-70 a3 -1 X, a mt os (-1)R,
+
25,
-
20y,
tableau
Y3
-
for
Vg
Y,
this
98 Har
Ss
R, and
20R,
the
= = P=
UI Fe MN Ono
is:
Xa
‘octeonhes 2 = 5 Sowyeos err ei 2 = 5 orem -OneE O° 1 Le
+ Rk AR,
0
Lie
0
-1
OM
Ge), [0:4
«A
O10
(4
(akon
0
ik yy hOSoato
-10
obtain
=
+
problem
IA I IA V
x, to
=
15y,
3) mo
and
+ X,
q O54 «00S:0 0 on? —& © i ara ins gn 0 Gio ico sparse Go oF Oo” + R, >
Xz,
ie
-Y> +12y,
+ 20y,
ay
We introduce the slack variables X,, Xp, initial system: ier + y3 + X, “Y, + Y, + X, Wart
25y,
-y,
1.
20
i10
oF 4|/7=
5
ee Leones egret) ** 0nts Ol4Gees ee (-1)R,
OG
ist
+ R, >
0 R, and
102 15R,
«220
«620 = aah ted
+ R; >
R
EXERCISE
5-5
271
-1
0
0
ak
-1
0
i.
iL
0
0
-1
Q)=t-
00
-3
0
0
+ R, >
R,
5
3R,
1
-1
0
0
0
0
0
0
0
4
0
1
0
0
0
6
Be
OS
e210
R, + R, 2
Oa
oe
3
a.
ie
0
0
0
0
de
=i
-1
0
ili
0
0
;
:
:
y
QO
0
5
2 1
R,,
1260
and
ye a
Rg + R, >
ee
=i
1
0
2
1
0
6
°
:
:
¥
:
;
Ee ore ea
PL 45.
Oe |25,
70
4
ie REPe) Le
40) 4) 0
(A) Let x, ail = the number
5.2:
420
eee
ate
of
hours
the
=
the
number
of
hours
the
Grafton
x,
=
the
number
of
hours
the
West
The
mathematical
for
this
solution:
166
x,
Cedarburg
x
model
Optimal
min
C = =
12);
x;
at =
x, = (ey 207
x, =
an
has
and
3
R,
plant
plant
Bend
problem
is
plant
is
operated,
operated, is
operated.
is:
Minimize C = 70X, + 75X, + 90x, Subject to: 20x, + 10x, + 20x, = 300 10x, + 20x, + 20x, 22010 X11 Xo, Xy 2 0
Divide each of the problem constraint inequalities by 10 to simplify the calculations. The matrices correspanding to the given problem and
the
dual
problem
are:
2 A=
al
70
2
i's) 90
30) Thus,
the
dual
problem
AO
’ respectively.
1
is:
Maximize P = 30y, + 20y, Subject to: 2V7% tala
S770)
Vit 2y5 = 75 2y, + 2y, S 90 We
introduce
slack
¥,1 Yo 2
0
variables
X,,
X,,
and
x,
system:
2y, + Yq at 2y, + -30y,
272
CHAPTER
5
=
Yo 2y, 2Y>
+ X, + X,
20y,
LINEAR
= 70 = 75 =).9/0
+ X, +)
INEQUALITIES
AND
P=
0
LINEAR
PROGRAMMING
to
obtain
the
initial
The
simplex
tableau
na
for
this
ae
Sys
allel
0707
mG)
1
1
0
0
%{ 1 eet
2 2
0 1 0 10
0
problem
is:
"= 35
@) “= gto" ae potss
of |B. as FRAO |S0- oer _ ere
Piteconezoiiay soute vat
LT gosto, 1. Memon gee gn) guelgniz, a9 | 90
pa
200, 420 Aoaud tho Halho
te > R,
(-1)R, +R, R,, (-2)R, +R, OR;, and 30R, +R,
moe
SD
U0
0
ee
ee
Deep ed
mop ai y,|
(B)
0
35
22 = 70
40
$h =
R,
= 26.67
te | 2 128 = 20
Yoh
AG 0. Xp).
0
1
XS.
0
-4 3
LOeedsloe-go
0 te a. ont CRRA
PF 0
25
0
10
10 hours
20 AB
plant is operated 5 hours per day, and the Grafton plant is not used.
0 il 0 ORS pet a
The minimal production cost when the Cedarburg plant is
per
day,
the West
is $1150 operated
Bend
If the demand for deluxe ice cream increases to 300 gallons per and all other data remains the same, then the matrices for this problem and the dual problem are:
day
respectively.
Thus,
the
Maximize
dual
P =
Subject
problem
30y, to:
2y,
ee
Yy 2y,
We introduce system:
is:
+ 30y,
slack
VS S570 2y, S975
+
2Y
790
¥4: Yn 2
0
variables
Xy1
Xqr
and
x,
to
obtain
the
EXERCISE
initial
5-5
273
2y, +
Yo + Xx,
Vint
2Y5
2y,
+
2y>
-30y,
-
30y,
The
=e RO + X,
= =
+) X, +P
simplex
tableau
for
75 90
Sa0)
this
problem
Yi
oXs.
ft,
Roa
Ms
we Sey tee
2
ol Om
0. age
0 |0) TOR Oe Odie
©
eee a =
-30
-30
Be 2, Note:
0 >
is:
70
es 2.75
NE
0
0
al
0
R,
Either column 1 or We chose column 1.
QBs. 0 eae ao he
column
0 (as MRCP pr M/S
2 can
1 0
+ = Ss -=
be
used
as
6 O%
o| 0M
0 1
the
pivot
column.
S35
35 lz = 70 40 $= Dx 26.67
6 gill Praline Sleeagene ee ge Oe OO iE)20P 2A -30
-30
0
0
(-1) R, +
R, =>
Ry,
(-2) R, +
R3
R3,
30R,
Bid
tak
Mp
gk
"Yo.
>
Gee.
0
0 =-15°
Ovyedex
h
15
1
(-3)%s
of
F25
LES
oy
$40
rere
guan()
0
1
R,
>
-3) Rs +
R,
>, Ry,
15R,
oie"
0
+
3
elles) | eee
0 | lig. =
PolsOy
il
svpeck,
eit
Xl}
(C)
0
SLOSSO
Ry,
te iRaurd? Ry
The minimal production cost when the West Bend plant is
is $1350 operated
15 hours per day, and the Cedarburg and Grafton plants are not used.
i10) pOn' AOG,1S)Bled sso If and
the all
problem
demand other
and
for data
the
deluxe
ice
remains
dual
cream
the
same,
increases to 400 gallons per then the matrices for this
are:
respectively.
274
CHAPTER
5
LINEAR
INEQUALITIES
AND
LINEAR
PROGRAMMING
day
Thus,
the
dual
Maximize
P =
Subject
problem
30y, to:
+
2¥,
+
>
S7/(0)
Vv, +
2y,
975
2y,
< 90
2y,
We introduce system: 2y,
+
Vo
¥, +
2yY,
2y,
+
is:
40y,
slack
+
Vir Yo 2
0
variables
Xy1
qt
2Y>
simplex
¥%,
tableau
%
for
4
i
i
0
®
*3
2
| eveeu
P
L-30
=
90
+.B. sh.
0
this
0
70.
0
problem
0
70
£0
1.75 | tae Sst
reeee a
-40
to
obtain
the
initial
is:
FP
x,
*%
x,
= 75 + X,
¥2
and
=. 70
+ X,
-30y, - 40y, The
Xs
0
= =
70
375
i Da waza a
0
1
Pide BBE 3
Psi
ged
de cweo ero[270
A
Peey-
1
oO
GO
0
0
2» soho
75
=
OTS
5
bensud
Atha
zs
-40.
0
ak
0
=O)
mire, + RS R,! na 2
ee
40R,
eo v
2 Poaped
Let
5 x, x, x,
1
em
a 0
ue: = = =
Oy
OQ.
“G-| the the the the
23”
R
|
A
3:
hae)=
Dane
On
0
0
OQ
0
e500
Ts eae 2 EMT YW 2
0
of of of of
20
2
|7s/2
ees ee
eee
+
eeeRe
—
aR
2"
R, => R,
10
The minimal
|
30
0
15
when the Grafton plant and West Bend plant are each operated 10 hours per day, and the Cedarburg plant is not
o'° 40 10 © 1] 1650 number number number number
R
10R,
-
DF eh Ss
i
278
=
5
(-2)R,
+
R, =
not
Sitges)
re
ate
i
i
0
45
pea
4)
R,,
4
bomae OPS
LINEAR
INEQUALITIES
8 Repeat ere!
2
2
12
CHAPTER
Ry,
AND
LINEAR
PROGRAMMING
+ R, =
R,
system:
1
rR Ww|“a
aS
by
+
1
yy
ie)
ee.
WiR h
Nd
1
ae)
3
1
1
1
“eae
1
9
os
if
wD
0
and
yy
Ww
14k,
+
R, =>
R,
Ww
3
3
Tae il
7
dl 0
0
-+
->
0 -+
0
=
9
1
0
al
0 1
Wey
oe
4
1/426
4R, > R,
1
O
=r
FP
eS
ein
"
if
od
ae
sen
O
ae
=O
0
3
0
7
Bae) 003 Ort wrticand = 0Ore < 4] 1-
R
Og
Sag md 5Wa i
and 5R,
51.
+
Rk, >
a
%
xy = the number of X, = the number of x, = the number of and x, = the number of The mathematical model Minimize C = 5X, + Subject to: X, + Xp
We multiply constraints
the are
a
Wary
YT Ys
a NOV
Oe i0inel
yy.
oar”
R
students students students students for this 2x, + 3x,
The
oi
Ot PtegO.
0) d= 1c yt :2 Mee y=1), 0 6
aught minimal
ef
Soe
> pC
cholesterol
iey intake
is 428 units when 10 ounces of food L, 8 ounces of food M, and 2 ounces of food N are used.
R,
Let
x,
.
i
Ya
bused from bused from bused from bused from problem is: + 4x, 2 300
North North South South
Division Division Division Division
to Central, to Washington, to Central, to Washington.
xX, + X = 500 + x, < 400 Xy + xX, < 500 Xy1 Xqr Xqr X, 2 0
last two problem constraints by -1 of the => type. The model becomes:
so
that
all
the
EXERCISE
5-5
Minimize C = 5X, + 2x, + 3x, + 4x, Subject to: 5 a a 2 300 ~X,
-
x, X,
~Xy X11
X_,
Xz,
+
X,
hee, X,
2) 500 Z -400 ri-500 2 0
279
The
matrices
for
a
al
0 A= |. Sb
Oy 30°
The
this
0
and
the
dual
problem
0
300
i,
0
ESO =400
1 0
0 @ Tie ee
Seana pes O-
0
Ak
Sil
Sat
OF
5
2
3
Ae
and
| 25:00
4
il Maximize P = 300y, Subject to: y,
is:
problem
variables
X,1
Xzy
-
V's
and
x,
= 0 to
obtain
Y,
The
-
the
+
+
400y,
tableau
Kyeolio
for
this
LMyintey
il
0
-1
0
X,
il
0
0
-1
a
d
problem
-500
400
43
o%a.
©
al
0
0
0
0
5
0
il
0
0
0
2
may
BelRtidL
R,
=
R,
and
@)
ko
0
1
-1
0
0
0
0
0
1
-1
0
0
CHAPTER
5
+
Or A a0
R,
LINEAR
=
R,
0
500R,
0
(-1)R,
0
0
all
~
-1
0
il
+
0
0
Oc
and
300R,
INEQUALITIES
AND
R,
0
weth—uiai-o%
[99 >}Hewins
aia
[84 abet
0
0
=>
i R,
5
T =
Seem.
0
2
2 Ao
al
0
0
3
ale
0
i
R, >
LINEAR
0
5
0
-1
+
P=
is:
~a,
500
3
it +
wih
SOE) ViC lo solgl
Gal) aR, +
=
Magee
oO ABA colonusd, molt BOnme -300
xX,
500y,
x,
Zatko'y'
280
+
5
a
Xp
~ V4
500y,
simplex
ie
=e
¥2 -300y,
=
V4
=
Vy
i
500y,
=e S=3 S,4
te
pane
4
-500
system:
Yi
5
S5
“ay,
Xz,
0
-400
ays
Vaca, slack
0
400y,
-
500y,
¥, - 3 Y, 2, introduce
-1
300.500 +
y,
We
are:
ead) 01] 4h
OL
dual
problem
R,
PROGRAMMING
15
initial
wre
meme
0
e ee
we ew
we em
ew
974100
Pe
ee
ee
eB
+2004
ee
we wm em eB ew
Be
20-5300"
ee
ee
ee
ee
ee
ee
pee ew ee
500
i
4
ee
5
ee
2
eg
x,
0
0
0
0
1
-1
-1
i
0
4
Yi
il
0
0
-1
0
1
0
0
0
2
~ Yo
0
il
0
-1
0
0
0
aff
0
4
Et
BOS
io0)
nelis >ghids-&
tort
oxsles
6
1
The
eee
5
minimal
cost
is
Bods
$2200
when
300
students
are
bused
from
North
Division to Washington, 400 students are bused from South Division to Central, and 100 students are bused from South Division to Washington. No students are bused from North Division to Central. EXERCISE
5-6
Things
to
remember:
Given a linear programming problem with an objective function to be maximized and problem constraints that are a combination of 2 and < inequalities as well as equations. The solution method is called the BIG M method. 1.
THE
BIG
M METHOD—-INTRODUCING
VARIABLES
STEP
1.
If
TO
FORM
any
THE
SLACK,
MODIFIED
problem
SURPLUS
AND
ARTIFICIAL
PROBLEM
constraints
have
negative
constants
on the right-hand side, multiply both sides by -1 to obtain a constraint with a nonnegative constant. [If the constraint is an inequality, this will reverse the direction of the inequality. ] STEP
2.
Introduce
a
SLACK
STEP
3.
Introduce
a
SURPLUS
STEP
4.
Introduce
STEP
5. For each artificial variable objective function. Use the artificial variables.
in
each
VARIABLE
in
VARIABLE
each
S$ constraint.
and
an
ARTIFICIAL
variable
in
each
VARIABLE
= constraint. an
artificial
=
constraint.
ay, add -Ma, to the same constant M for
all
EXERCISE
5-6
281
PROBLEM
THE
M METHOD—SOLVING
BIG
THE
2.
preliminary
simplex
modified
the
for
tableau
STEP
1. Form the problem.
STEP
2. Use row operations to eliminate the M's in the bottom row of the preliminary simplex tableau in the columns The corresponding to the artificial variables. tableau. simplex resulting tableau is the initial
STEP
3. Solve the modified problem by applying the simplex method to the initial simplex tableau found in Step
2.
problem
to
modified
the
of
4. Relate the optimal solution the original problem.
STEP
If the modified problem has no optimal solution, then the original problem has no optimal solution. If all artificial variables are zero in the then delete the solution to the modified problem, artificial variables to find an optimal solution to
(a) (b)
the
original
problem.
If any artificial variables are nonzero in the then optimal solution to the modified problem, original problem has no optimal solution. eS (c)
1.
(A)
(S) s, to convert the first inequality artificial an and s, variable surplus a into an equation, (2) into an equation. variable a, 1 to convert the second inequality The modified problem is: Maximize P = 5x, + 2x, - Ma, variable
slack
a
introduce
We
use
we
and
Subject
to:
x, + 2x, + Ss, x, +
XX, X11
(B)
The
preliminary
Xj)
§Xy > Sy
A
2
1
-5
simplex
tableau
So
Rae
i
0
0
OFTLZ
i
0
-1
aL
0
4
-2
0
Albi 4
0
(-M) R, +
Thus,
the
Creteate
R, >
for
|~
the
simplex
erg
CHAPTER
is:
1
2
Be eG Oin
wiOie,
40
12
1
1
0).
ailing
tO
4
LINEAR
INEQUALITIES
AND
LINEAR
PROGRAMMING
50
Ue
al
0
4
=O
1
|-4M
=1
in amg ig gt
Ay 2)
0
0.
2930
4
0
Al
Mae
12
is:
a
5
= Ae F
problem
0
Xy
5
Sor
1
x,
R
+
ae
Thus, x,
(D)
=
The
3.
(A)
the
>
2}
We
=
the
0,
5R,
+
R,
solution S, =50,
solution
aC, +e
introduce
obtain
R, and
optimal x,
optimal
fp,
X,
S$,
of
>
of
the
Ss, =
the
8,
modified a, =
problem
the
slack
modified
preliminary
mH
is:
max
original
problem
is:
max
P =
60
variable
problem:
s, and
Maximize
the P =
to:
artificial 3X,
2x,
+
5x,
Bi 55+ +
simplex
oS).
8,
£
tableau
for
the
Sy
X,
fa,
Xz,
modified
Sy,
problem
0
8
2
1
7
0
0
8
al
AL
0
1
0
Salle
al
al
0
1
0
6
0
M
iL
0
0
0
1|-6M
R, 3
3)
Me
=
28
>
6
is:
0
Me
a, to
a, 2 0
i
Thus,
at
Ma,
%
(-M) R, +
60
at
variable
-
2
a5,
P =
OF.
X11
Oe
1
0.
X,
The
a
R,
Subject
(B)
Sp
i Cet Ca) G2). ns, ote dl al | Odi ae 05-1 ty }0 |.o& | Subtle gee ot 0" 40."e07 422
R,
12,
24
R, X,
eee Blige 1
12
4
Ay
(M+
problem.
12
0
0.0=)
R, >
solve
R,
the
initial
x,
X,
Sy
2
ay
il
simplex
tableau
is:
S,
a,
P
Al
1
0
0
8
al
0
1
0
6
EXERCISE
5-6
283
122 "17 0 Sto) ee
S) ae
+ R,
(-1)R,
the
Thus,
ee
eae
‘(D)
x
5.
(A)
solution
optimal
The
On
2555
of
the
Ge
simplex
preliminary
xy
X>
Sy)
S»
a,
2
1
0
0
0
2
1
Og
=a
al
0
4
-3
0
0
M
al!
0
-1 if -4
tableau
Ss,
the
i
i
0 0
~
4
-—M-
P
-1
2
1
0
0
0
2
al
Oy
tal
il
0
4
1
M-4
-M-3
R, +R,
R,,
0)
ined cs OF g O82
ales
Gee 0
a,
5
LINEAR
is:
M
D»,ljl-4mu
el
-M
3
-
elie lag
0
0
2
-1
AL
0
4
M
0
1
|-4M
0
a
ai Oi
RS
jol
1p
0-1
0
ol.
yO
74.
af 1
= 07]
46
i
Oo}
4
wi 4
ae
(M+ 4)R,+R,7R,
No optimal solution exists because the elements in the above the dashed line are negative. (the Sy column)
CHAPTER
4
IV 0
problem
modified
‘ll
ay
®
So:
2
S
AW 1)
Sheep
iy
2
-1
S)
0 2
S11
Sa
P
xX,
ae -1
Xp,
the
for
x,
AL
a,
Hy
XX, X11
284
at
and artificial variables to obtain surplus, We introduce slack, = Ax, + 3x, - Ma, P e Maximiz : problem modified = 2 ot 2X, + S, ni= Subj ectsto
The
at
30
P = 30
P =
max
is:
problem
original
xX, +
(B)
is max
problem
modified
the
a
an
Sh
en
of
solution
optimal
>R3
(M+ 5) R, +R;
> R, and
1130
5
M+
0
0
2
P
1|-6M
0
0
5
-
-M
3
-—M-
Ie
1 tf
(18 0
ares
6 Ritholbg Meme teed |».
ce
x,
problem.
modified
the
solve
to
method
simplex
the
use
We
(C)
INEQUALITIES
AND
LINEAR
PROGRAMMING
pivot
column
7.
(A)
We introduce slack, surplus, and artificial modified problem: Maximize P = 5x, + 10x, Subject
to:
Xe
t.
%
2x,
+
3x,
X\1
x
x
Ss
2
S,
1
Ss)
al
a
al
ay
2
3
OE
Pease
|— 10)
Thus,
0
0
(-M) R, +
the
a,
0
to
6,
the
es -
Xr
obtain
S,
Sz
+, a, ='12
ay .&>
Sor
0
P
0
0
3
1
O};12
ith
R, >
+
variables Ma,
Al
al
A
0
0
0
3
2
3
O)
sadl
ut
0
12
0
1gl
0)
thf
| ~ 0
=
Me
ee
ee)
R,
initial
simplex
x,
X,
Ss,
ij.
a,
Z
tableau
is:
S,
Sp
a,
124
it
A
0
0
0
3
0
-1
1
0
3 2
3
x,
x, “ra: Dy
X,
S)
S,
a,
12
i
4
Or
io:
#.¢
3
-1
0
-3
it
0
3
M + .5
0
0
1 |-3M + 30
i!
3M
The optimal solution x, = 0, Xo Fg, s, = (D)
+
-1 10
of the modified problem 0, Sx= Oy and a, = 3.
The original problem does artificial variable a, in nonzero
M
not the
have an optimal solution of the
is:
max
P =
-3M
+
30
solution, since the modified problem has
at
a
value.
EXERCISE
5-6
285
9.
Introducing + X,.To minimize P = 2x, - X,, we maximize T = -P = -2x, modified the obtain we , variables al artifici and slack, surplus, problem: Maximize T = -2x, + xX, - Ma, =S 9x, * Ss, x,i+ Subject: tot) 5X,
+
3X,
X11
x,
So
Xp
a Ay >2
30
Spr
for
this
problem
Sy,
tableau
simplex
preliminary
The
-
X_,
SS
+
0
bas
J
a
2 pe ONee ey |A eee STieseeu cee 7
(This
is the
simplex
initial
a!
5 Ro 5
Al
0
0
1
1
0
M
0
(5M
-
3
“|
Ome sen a sn -5M
+2
-3M-1
Ry,
ae
(
R,
waa
ss = 10
od ee oe omen te), Sas eee 0
R,
4 0) 27eees
De
3
2
i
lt
-12
R
X,
0:(@)
se
1
1
1
Le
2
m-2
5
3
a0]
==
R
aIR.
Thus,
=— LR
the
Minny Pe=
286
CHAPTER
0
Sore
R
oes R
oT
optimal
em)
solution
Max,
ele
5
INEQUALITIES
LINEAR
ne
is:
AND
S$,
$,
5
3S
fe
3
1
Ba
2) 1 9 ices Sau 3
o ad# 3 TLo
11-12
SiemR
X,
Ont
OSes
eases) ~botlioas ne03 Aim2 mite Mm 7 0-2duel
one
1
tableau. )
ill
30 _
|-30M
1
0
M
0
-3M-1
}|_-5M +2
is:
max
3 T =
LINEAR
-1
at x, = 3,
PROGRAMMING
The
modified
problem
constraints
is:
for
maximizing
Maximize
Subject
P =
2x,
to:
P =
Ttoee
+
preliminary
simplex
tableau
X,
S,;
Sp
A
12
1
1
1
0
0
0
8
5
3
0
-1
zy
Om’
30
-2
1
0
ek
0
Oy
(-M) R, "HR,
>
Xy subject —
3X,
FE Sy a
X11
X,
-
x, +) oes, 5X,
The
2X,
Xp,
for
the
a,
Ie
LAO
aint
Sy,
Sqr
modified
1
i
ero
~ 4]
©)
3
Og -V5 1 6 0 f 30h [bane
-3M+1 is the
Soha92
23M
(-1)R,+R,
0
Sy
105°
initial
soa
lems
|-30m
As 5 Ro =
He
:
M051
tableau.)
z
| See
“phat
R,
la
age
Owe
22 @
0
0
+4161 0
>R,,
t 1
11
2
M
0
|=
(5M+2)R,+R,
-1 1
0};
3.00,
=
>R,
-2
Thus,
11.
ee NE i a
the
By)
M+2
‘la
ee
10
> R, and
optimal
25
ets
s,
ee
Ry +R,
solution
le
I
2
Sue
5R, > R, X,
X,
S$,
Sp
8
P
0
>
5
4
-t
Ya)
SE ie le x | dpe dt et ey te Do oe +R,
2
ieee ee eal me leek ere eee a
245 3
&5%,
is:
R,
5,
1
40
problem
S,
simplex
given
nS
Ay =e
X>
(This
the
ety SS I
x,
P\L-5M-2
to
Ma,
CW
ee eS
ed ta
16
0d, 8 we Le
ae
tee ae Cec k pal
me
OR,
is:
max
P =
16
at
x, =
8,
x,
We introduce slack, surplus, and artificial variables modified problem: Maximize P = 2x, + 5x, - Ma
=.0.
to
obtain
the
i
Subject
to:
x, + 2X, 2x,
+
+
X,
xX, +
S,
Saye! +
X,
X11
Sy
= or
X_,
Sys
Sor
ees
Sz,
Aub
aes
a,2
0
EXERCISE
5-6
287
simplex
preliminary
The Xx,
Xp
S1
S>
S3
a,
P
di
Pe
i:
0
0
0
0|
18
2
ap
0
al
0
0
01
22:
al
1
0
6
-1
al:
OF}
2O
Rye Re
ie! 1
445 @
S, 10
S$,
Ss, S,
2
el
0
an a,
:
‘
4
P a TONS
1
0
0
0
21
ae =
21
(this is the initial
A
ed
r
0
10
ie.
i
simplex tableau.)
ee
Dy
all
0
Al
ih
a
0
0
-1
0
0
M
(—1),R,
R,,
(-1)R, +R,
$ -5i
1 0
; 3:
7
>
+R,
0
07 ty
Wo
sro
6
0
0
21
il
0
10
0
1 | -10M
>R,,
uO. 00
1’
em
SO ea
G) 2 =F) 00teg
-M-5
af la,
S$, SO
2: Sey SP. 0 -- 0 P i) se lh sax &
-M-2
and
10g GO:
10 toe
a
(M+ 5)R, +R,
9 12
c!
ped
288
CHAPTER
1 0 0
5
“> Ry
9
|i = 18 ple = 2 |S 1
2R, —-> R,
:
ye
ae es Sig” aes 28ie Van by ee
SOR ; $
is:
Rs
(PM)
$
problem
this
for
tableau
LINEAR
$ -+ =
oe JOT =o i Oe OO. es Yep MerA ah)
INEQUALITIES
AND
LINEAR
9 12 2
PROGRAMMING.
xy
x5
Sy
S5
Pee ero) ea
ay ct
Peet
8.
Oey aS es: ee
Beiale waa ew
13.
S3
4
2
a,
P
| th | CS 2 ee en
Oo}; o| Oh Se
M1
8 9 age Le
Optimal
solution:
dar [atin Ma) 2) ae an.
We introduce surplus and artificial variables to obtain problem: Maximize P = 10x, + 12x, + 20x, - Ma, - Ma, Subject to: 3x, 45205, 2x, =e, La, X,
The
preliminary x,
X,
3
S,
X3
all
1
simplex
-1
OTe?
2
0
0
ie
0
ea
R,
Sh?
72
=
16
ay,
a, 25
10
problem
is:
2
OM
0 a,2
Sy,
the
X,
modified
problem
is:
po ico yh SS, SP. ap 4?
ieee Smee Ps
17}
eo | ei -5 | 6l(SMR,
+ Ky.
AO 0 lol
00 Af mo Rs
Oy 8 2 oF-04_ | 8 G@) 1% “3 - 2M’ i2k
1 1 =5 -'M >
2 -2 ~6-4 2M
1 gh 0) 8 Ci Ba! |).0 “0-0 "1 |.0
RR,
EXERCISE
5-6
291
y@
2
i
2
;
1
-1
Ris,
LINEAR
1
0
Duna
0
0
o
e080
0
0
60
Uo
ieee
ae. |O58.005. 0 2-1. ek ee eo Meas
Om
eee
(ai yRot RowRy
INEQUALITIES
AND
LINEAR
Olin
Ts?
HO
1 | -90mM
(OM+ 5)R, + Ry aa
PROGRAMMING
the
-1 1 a es
-2 2 -
0
‘ S,
jad
Apne
3
Se data
O° eer 0 OF = aie
e © ular
6
(Gu+3)r
3
2
2)
Jnl
$M+ 2 0
(-1)R, +R,
7R,,
X,
x3
S)
S,
a,
S3
Q
-9
0
0
il
-1
-2
Ped.
Sel.
Se)
Oh.
M
aedae)
M
4
are dst
1.
4
ao Bo
OO
(M-3)R,+R, a,
10 25 15
2 isms
Vee Wie ee = «0! 6 $0: Sig R,
P
2
0
30
S21
0}
20
bo to Oe fo ot20 0
Optimal
23.
25.
solution:
max
P =
120
at
xs
20%
(A)
Refer to Problem 5. The graph of the feasible region is shown at the right. Since it is unbounded, P = 4x, + 3X, does not have a maximum value by Theorem 2(B) in Section 5.2.
(B)
Refer to Problem 7. The graph of the feasible Therefore, P = 5X, + 10x, maximum value, by Theorem See.
We
will
maximize
Subject
P =
to:
-C
Xa +
=
region is empty. does not have a 2(C) in Section
-10x,
+
3X, 4x,
X11
be
40x,
+
5x3
+ S, +
Xp,
x,
X31
=" 6 PGS
Sy,
ote 3
S, 2
0
EXERCISE
5-6
295
where
s,,
S, are
x,
X,
slack variables.
XX,
S,
Sy
The
simplex
tableau
5,| Oe @Dudl> 2 0) -40
-5
aS 4 Ro x,
0
in
Spe pews
2
X
10
S$,
3
ee
Beng,
Vila
~ X51
020
a
+
0
1.10
Oe
St.
0
So
1S
0) aes
-5
0
0
+ R, —> R, and 40R,
3
ee min.
C =
2
5
pare
P{-M+5
(-2)R,
2M
0
On
15%
>
5
-
Xy,
= 7S
Xz,
Syr
modified
the
+
Sor
problem
Ee!
ay eae
Ay 2
10
is:
0
2
0
X3
Sy
Sy
a,
1
a
0
0
DIMe 2
By and
2c
Dire (0 =) 5
the
tS.
2x,
5
15
0
(M -
0 | 24
oa 22 Ome
eS
M
at
sp
Al
a
AND
LINEAR
3@O3 3. 7
al
Zee 28)
Oe
05
0
0
2R,
INEQUALITIES
1 | -M
R,
0 alma
R,
x, = 0, X, = G X3 = 0.
X11
x,
+ R,
0
15
see
Introduce slack, surplus, and artificial variables to obtain modified problem: Maximize P = soos ae 10x, ~ 15x, mae
The
1)
12
Subject
296
-40
(-3)R,
Xx,
=O
©,
0
Pinks
ci P 27.
0
is:
12
s,[ 4, .2)\ 0.4 \ 9° po eel ee P10
for this problem
+
R,
PROGRAMMING
>
2
5
R, and
2
=i
1
0gae
22
M— 5 eaiSS
5R,
+
R,
>
R,
1
|
i
os
29.
i )
i
4
Ei
cee
the
2
2
Shin 5 :
a Nie
The matrices
Thus,
1
3_73
es ne
Sana ek
ese
problem
'
Optimal
49
ee
ae
corresponding
dual
22
icp) ||5 ;
lem a 8 ee a be peso eel
a
eae
is:
Maximize Subject
1
On|
3
4}
P =
a
5
and
,
a
xX,
&
the dual
7
max ,
P =
17
_ 22
x3
or
problem
5
:
are:
40
6y, +
to:
ee
xy
to the given problem
solution:
3Y,
y,
SiO
3y, # 4y,
S 40
Y> 0
40
1
0
(-3)R,
10
=
this
ze
X11 Xyr and x, to obtain
=
for
Yo
oF
0
6R, + R, > OF
R,
20
al
0
10 0/108 |= —5 he A. Fo, 5 2= 5
Oy 0
eae3 InlyedOun
"Op\
Oumar
12° T60
(-1)R, +R,
‘At
0
0
0
ome1 Ons
Onl +
LO x0
Gr a Osea
|10
Crm
CO
>R, and 3R, eR
EXERCISE
tlie5 tind
5-6
> Ry,
297
Ya)
Vo
ey
Vile lL
Ro!
Me
ho.
3
ar
¥,|
%
0
31.
Leena
We
15
OGD
4
The
the
52]
5
0
2
slack x, ine 3x,
-
-
9x,
Sy
this
Xx;
S)
So
i!
3
aL
1
0
0
a =O
Ue
1
if
ak
0
i
3
1
0
6
x3
S,
sae
Bl
2
33%,
8
i
a
ay
Sp i
tr ke
Omg
0)
P
0
0
the
number
of
16K
modules
=
the
number
of
64K
modules.
model
is:
Maximize
thet
8
and
x,
The
mathematical
rer
5
_ 28 all
5
3
-9
-5
LINEAR
1
0
+ R, > R,
oes
1
a ae pee)
3)
3
0
6
, + Rk, > R, an
oO
28,
P =
18x,
solution: xe
to:
+
4,
INEQUALITIES
max yee
d
1
1360
3R, +R;
OR,
P = 372
at
OF
10x,
+
2x,
+
30x,
15x, < 2200
X11
5
0
1
3
4x,
x,
CHAPTER
2
aa
i
>R, and 12R,
SZ
Subject
298
0
40
4
Optimal
ee Le
0
P
as
5
a
+R,
1
a
360
cha
$2
0]
1
&=
XX,
e
1
3
eo.)-F = a
2p 5 nei R ate
x, | 0
“
(-1)R,
Ue TMMR ek |e
xX,
4
-12
Ly Say On| Gees
OSes
system:
eles 7 0
60
> Rp => R,
3 -3
initial
s, to
is:
5
0
the
ena TM
;
0 | 40
0
obtain
a3: er
(0)
problem
P
©) 1) 3 TORR -5
C = poe
=60 Ao cts
for
35
min
=740 +
X,
-9
s, and
S;
5X,
tableau
:
solution:
liar
variables +
Xx,
-12
Optimal
135
DONE
se,
simplex
S,
(Oaieare
1
A
2K,
2x,
Aor)
iS
er
introduce
-12x,
ge
St Bet 8 _15 oe Ae”. |eee
a] Oe PU
>
AND
LINEAR
PROGRAMMING
X,
=
500
2
50
2
0
We introduce slack, surplus, and artificial variables modified problem: Maximize P = 18x, + 30x, - Ma, Subject to: 10x, + 15x, + s, 2x,
4x,
+
X,
Xp,
simplex
tableau
for
S,;
Sp
Sz
a
P
ak
0
0
0
OD
fE22'00
the
Xp,
US}
2
4
0
1
0
0
0
500
af:
0
0
QO
-1
1
0
50
0
0
0
je
al
0
x,
X,
S$,
Sp
$3
A
P
Sy
10
al
af
0
0
0
0 | 2200
s. 1
2 @
4 BL
-30
(-M) R, +
the
(2200 500
Sor
Sz,
A,
problem
x
50
2
0
is:
R, >} R,
3
Cape
Sy,
modified
110)
-18
=
aback Wake as X11
preliminary
obtain
Sy
x,
The
to
S
uf
eck
0 1 0 Ooen® oh
ald
sO:
1p
0 of elimi)
3
-10
2
500 | 2 = 250 50 | 32 - 50
ae
OF) 17008
2200
Toran?
and
(M +
18)R,
+
R, >
R,
[atOe a iia 33 15
~
pieC4)stoitirn2 2a loi: | doo ld sooghon 4 MO 0. 0, R CS
al
0
mit)
0-
=
10
“Ss
-10
0 | 1700
1s
0|
260
PRE iss -04- =.= 1s «+ 0.1050 Be-a0' 0, 0 16 m+ te ri ado (-15)R, + R, 9 R,, 30R, + R, > R, 0
0
O21 1 LOLS
ieee.
1
-=
'0
4
eS
->
0
200
=e)
ol
100.)
SSS aS Sat Shee ee a
Ob
sas.
we 38S
200
Wy
80
2 = 200
O18
113900
2
See Eig EXERCISE
5-6
299
0
v0
Mee ee
G41 TL 00
900 10
al
SO) 0
=
Hie
00
loeso
1S Se am0 eT
eRe a"
Gl =O)
ato aSa
2
x,
x me
PG).
Die
X,
S,
a0
ai cee
1
ite
S>
-< 2
Let
the the the
and The
mathematical
Sif
ay
4
4
P
80
0
0
ne me
3
number number number
al
ee 0
fb
x, = X, x3
3
S3
1 3
oOeee 35.
at
60
The maximum profit is $4140 when 130 16K modules and 60
eke aU
Oe
ea
64K modules
imaian
of of of
ads ads ads
placed placed placed
in in in
model
is:
Minimize
Subject
the the the
are
Sentinel, Journal, Tribune.
C = to:
200x, + 200x, + 100x. Si Kat X, + x, < 10 2000x, + 500x, a 1500x, 2 16,000 X11 Xy, Xy 2 0
Divide the second constraint inequality by 100 to simplify calculations, and introduce slack, surplus, and artificial obtain the equivalent form: Maximize P = -C = -200x, - 200x, -100x, - Ma 1 Subject to: i ke ane x, + Sy =).10 20x, + 5X, + 15x, - Sp + a, a 160 X11 X_, Xz, Sy, Sy, a, 2 0 The
simplex
xX,
200
X,
200
tableau
X,
100
S,
a,
0
0
M
(-M) R, oR
300
CHAPTER
5
for
S,;
LINEAR
the
modified
problem
is:
P
aL.
0
Re
INEQUALITIES
AND
manufactured
each day.
LINEAR
PROGRAMMING
the variables
to
S,
x,
X,
Xx,
S,
S,
1
1
1
i
gato naa 4
met ee 69) teh. 4 3d. pel
loems? 200 mle 20
UM
R,
A000
Pin,
Te200
a
G)
1
3
-
0
10
R3 ze
0
2
M - 10
Ta
8
eact on 6ae 5 72 2 nc, Loe @es OF
10
>, of baie Oy nt cet? benblPinel agte= °°
—15Mit.
R,, ancy
3 0
ila)
R,
SoM
+ R, >
P
160
285M4+ 200
=
a,
—o
32
Sf igen
il
-1600
0
8
4R, => R,
o
#e--(G)r 1
44
3
aiecs,. 2 !ee 71 bane ee On
50>
x,
=
X,
|_0
et
The ads
+510
0
X,
1
-2
02%
¢
-s
1
1
gene Fi es 2ae
10
M - 10
S,
S>
4°
>= * 42
=3°¢-2
minimal cost is $1200 when are placed in the Journal,
a,
eon
two and
Ss
1 | -1600
g@
8
©
2
ads are placed in the Sentinel, no eight ads are placed in the Tribune.
EXERCISE
5-6
301
37.
Let and
x, X, x,
=
the the the
number number number
The
mathematical
of of of
bottles bottles bottles
model
is:
of of of
brand brand brand
A, B, C.
Minimize C = 0.6x, Subject to: 10x, + 2x, +
+ 0.4x, + 0.9x. 10x, + 20x, 2 100 3x, + 4x, : 24 X11 Xp, Xz 2 0
Divide the first inequality by 10, and introduce slack, artificial variables to obtain the equivalent form: Maximize P = -10C = -6x, > ae 9x, - Ma bh Subject to: x bP aoe 2X, - S, 2, = 10 2x, + 3X, + 4x, + S, = 24 X11 X_, Xz, Sy, Sy, ay a0 The
simplex
(+M)R,
VAR,
tableau
>
the
s
P
modified
problem
is:
R,
re
avi
for
surplus,
a2
ey
=
1
2
Qe
ie-
2
oO
op
10d
S-es
swale ae 3 delat ferret! tt oc 4.247. Abies Peas ==) R,
3
3
GON
et
ira
PE:
Ba feet tate (3oa ee Vie oye es ach Sect popes gaa -M + 6 ag
302
CHAPTER
=MetrAay i R, >
5
LINEAR
© = 2M
R, and
ta 9
M
(2M -
INEQUALITIES
AND
2)R,
Oreo
1! -10M
+ R, >
R,
LINEAR
PROGRAMMING
and
The minimal cost is $4.30 when 0 bottles of brand A, 4 bottles of brand B and 3 bottles of brand C are consumed.
39.
the the the
number number number
Let
x
and
x3
The
mathematical
1
ae
eubic cubic cubic
of of of
is:
model
yards. yards yards
of mix of mix of mix
A; B, C.
Maximize P = 12x, + 16x, Subject to: 16x, + 8x, + 12x, + 8x, + X1
We simplify the inequalities, and introduce artificial variables to obtain the modified Maximize P = 12x, + 16x, + 8x, - Ma, Subject
to:
4x, + 2x, + 4x, 3X,
+
2x, + X11
The
simplex
Xo:
X3,
Sis
tableau
for
the
modified
a,
So
P
al
0
x,
X,
X;
4
2
4
+S,
-1
Sy,
a,
problem
and
= 200 = 17/5 =O
s
+
8x,
16x, 2 800 16x, < 700 Xp, Xy 2 0
slack, surplus, problem: a,
4x,
+
is:
0 | 200
a ee ee ee -12
-16
-8
0
M
0
iL
0
(-M)R, + R, > R,
af ae
xy
x,
x
@® 3
2 2
4 4
-4M - 12
-2M
:
@®
-
16
:
}
4
2
-
(-3)R,
12
-2M
+
R, >
-
16
R, and
P
1
0
ofF
200
0
a
orl
as
0
0
1 | -200mM
-4M
-
8
72%=so 2 = 58.33
50
4
Ceesee CPA Os -4M
So
-4M - 8
4% 7 R
||
a,
Oe
AligiS) dat Onl he, -200M
M
(4M+ 12) R, +
R, >
R,
EXERCISE
5-6
303
Lee
kee 13
OF
4°
ene =O
2R,
>
R
he +: 1 ¢0ietae QO
0
Been
rs
Ii
1-4 as
sens}
-
0 2 3
12
MWe
I
of
car
of
truck
number
of
car
number
of
truck
and
x
The
mathematical
model
Maximize
50x,
x
25
0
50
frames
this
70x,
used.
produced
50x,
+
in
Racine, in
Racine.
is:
70x,
250
eS
af
Milwaukee,
in Milwaukee,
produced
problem
+
in
produced
frames
amount
is 1100
350 x,
300
+
200 150x,
+
200x,
50,000 135x, xX. 14
43.
Let
x As x. x
WwW Ee
xX,
and Costa
x
ea) fon)
eG
Revenue
Protiitwe
304
CHAPTER
X3,
X51
IA VIA IA IW
sg
the
number
of
barrels
of
used
in
regular
gasoline,
number
of
barrels
of
used
ara premium
gasoline,
the
number
of
barrels
of
used
am
regular
gasoline,
the
number
of
barrels
of
used
in premium
gasoline,
the
number
of
barrels
of
used
in
regular
gasoline,
the
number
of
barrels
of (es) ued @) (OY les) used
in premium
gasoline.
30 (x,
x)
=
+
xX >)
38 (x,
ra
5
35% 000
180x,
the
28 (x, R
+
LINEAR
+
+X 3
Ce
10x,
+
+
x, ) +
+
18x,
INEQUALITIES
AND
+
34 (x,
+
46 (x,
+
x
+
+
16x,
8x,
LINEAR
4
of
pounds when
25 cubic yards of mix A, 50 cubic yards of mix B, and 0 cubic yards of mix C are
produced
frames
maximum
nitrogen
IL |} ALLO
frames
for +
0
2
BC
number
The
mae
3
number
to:
50
iB
S
1 i
Subject
=
0
ay
P =
100
0
-+ M+
24
T Blo plo PIb~ It
=3
AS
-10
=
a
x
6)
PS 6)
+
4x,
PROGRAMMING
+
12x,
Thus,
the
mathematical
Maximize
P =
Subject
to:
for
model
10x,
+
18x,
+
this
8x,
+
problem 16x,
+
4
x il
PGA a ist
3
+
x.
3
ul
15x, X51
45.
X31
is:
Ax,
as
+
12x,
40,000 25,000 15,000 30,000 25,000 0 + 5X 0 WIA VIA VIVIVVMV 0
5 4
#6
percentage
of
funds
invested
in
high-tech
percentage
of
funds
invested
in
global
percentage percentage oe te 5 = percentage
of
funds
invested
in
corporate
bonds
of
funds
invested
in municipal
bonds
of
funds
invested
in EDs
Let
x.
Risk
i
funds
funds
levels:
High-tech Global
funds:
funds:
Corporate
Bonds:
Municipal
Bonds:
Fr oO FN
CD's:
Total
risk
Return:
The
level:
0.11x,
+
2.7X, 0.1x,
+
mathematical model Maximize P = O.11x, Subject
to: 2.7X,
x, +
+
+
1.2x,
0.09x,
+
0.08x,
X,
1. 8x,
+
+
X3
X51
+
Xy
+
Ave
ounces
of
food
L,
ounces
of
food
M,
ounces
of
food
N.
and
The
mathematical
model
for
Minimize
0.4x,
+
8x
60x.
+
+ oe +
+
EE Ep Bip
this
0.6x,
+ + 10x. + 30x + 4x Bo ND NN + 40x. 10x
45
~
problem +
+
0.05x,
IA VV Ul Fr oor
of of
30x 10x 10x.
0.05x,
2
cia =o
of
to:
+
.8
number number
X, x
C =
0.5x,
xs
0.5x,
x
X3,
+
number
br
Subject
+
1.2x,
Let
= =
the the the
+
for this problem is: + 0.1x, + 0.09x, + 0.08x,
xX.rl
47.
1.8x,
0. 8x.
is:
3
400 200 300 150 900 WwW WWW xX. IA 0 IV Ww
30x. 10x 20x. 6x. 50x.
X51
EXERCISE
5-6
305
49.
Let
and The
a = X, = x, = x4 = x, = =
the the the the the the
number number number number number number
of of of OF of of
students students students students students students
from A from.A from B from B from C from C problem
mathematical
model
Lom
this
Minimize
Ax,
8x,
+
Subject
«C= to:
x,
+
6x,
+
4x,
enrolled enrolled enrolled enrolled enrolled enrolled
Xe, +
school school school school school school
Day,
By EG;
I, IEAbic
is: +
at
in in in in in in
3X, = = Xe =
+ X, + X + Xz
f
9X,
500 1200 1800
2 1400 2 1400 < 2000
+ X, < 2000 < 300 < 300 (0
5 REVIEW +
xX,
+ xy ’
< a
=
8 27 0
The graphs of the inequalities are shown at the right. The solution region is shaded; it is bounded. The
corner
(07°0) 7 300;
306
CHAPTER
5
points
oye
LINEAR
are:
Noy
2),
xy
(4,
INEQUALITIES
0)
AND
3x4 He 9X5 ='27
LINEAR
PROGRAMMING
(5-1)
2.
3X, 2X,
TES
Ee
+
216
4x,
X,,
le,
X, 2)
0
The graphs of the inequalities are shown at the right. The solution region is shaded; it is unbounded. The corner points are: orem (2, 3), (8, 0) 3x, +X_ =9
The
feasible
region
is the
the given inequalities, by the shaded region in right. mhescorner
(Zee The
points,
and
value
Corner
of
are
solution
and the
(0,
is indicated graph at the
0),
P at
(0,
corner
P =
10 B(0,8)
5);
point
X, + 2X5 = 10
is:
6X, + 2x,
(0, 0)
Prema
PEG) tee Sy) P = 6(2) + 2(4) PR =moiCA en to) (O)\
the maximum
(5-4)
i,
A, 5) Ths
each
(Ope (2, (47 Thus,
of
(454-0):.
Point 5) 4) 0.)
set
2x1 + 4X_ = 16
crests
ee2t0) =O
occurs
nee
D(4,
0)5
PEGE mi Da
anihadi
=. 0 = 20 t= o24
at x, = 4, X, = 0, and the maximum
value
is P=
24.
(5-2) 4.
We introduce the slack equations: 2X, +r Xa + Sy x,
5.
There
6.
The
+
are
basic
= shox
2X,
2 basic
variables
and
solutions
s, to
obtain
the
system
of
8 10
(5-3)
2 nonbasic
are
Ss, and
given
in
Intersection Point
variables.
the
following
(5-3)
table.
j
Feasible? Yes No Yes
Yes No
Yes
(5-3)
CHAPTER
5 REVIEW
307
7.
knter
3 is:
Problem
for
tableau
simplex
The
:
Exit
s,
@)
ate
wcOGLAd
8
8
z=
4
s,}_1__2._.0..2._9 {10 |4% = 10 pees
P22.
02.0%
tT)
9 (5-4)
8.
Plexo,
sy ~
Gey
I
is
‘OO | 8
il
2
0
aL
ORELO
0
0
1
Sy Pe
$s, |P
-6
2
7 0
an 2 Fy ap Ry
x,|
eee
1»
1
oH
fas?
i
:
2
0
1
0
=o
0
0
al
ih =Giur
(SYR
A al
@
a
7
4 110 0
R, and 6R, + R, >
R,
ee 0
O|
4
s.\! N ae Oe" saws 1 O01 bs 6 Optimal solution: max P = 24 at x, = 4, x, = 0. 8 3S)Mangan
gee
P
9.
0
ak
3
0
a2
X>
X3
S,
S5
4
(5-4)
Enter
xy
xy] 2h Ba |,(2
8
S3
P
Bi
Oe mon meCetne Oleg ns
Og 4 oe,
tONEAO
SOS
=i
Bxit 153 psQ)ys Oods Sais2cio 09
PtHP?
_pe
5
3
ok
0 and
3
Biba
corner points are (0, 0), >5)02) (3 pee rane. (5,0).
The
value
Corner
each
Point
P=
corner
ies
(ORE Gy (2a) (4) (59990))
P= ws (OF ars 5(0) Pit msi (03) Pi =N Si
the maximum
SC)
occurs
Meil Bla0 sbural
?P 0
ah
0
ee 2
epsjg0
P =
40
at
(5-4)
of by
6),
point
is:
3X, + 4x,
(OvnnnO))
Thus,
% 2
(5-5)
The (25
P at
La
20.
feasible region is the solution set given inequalities and is indicated shading in the graph at the right.
of
*%,
0
aSeeSosioe-20
The the the
(0,
Yo
Optimal solution: max y, = 0 and y, = 2.
3
X, =
-5
#5) AO)
=
©
awa 6o)OS 24 et ((S)) eee eet (49) oe Sea) e=21'5
at i
hr X, = 5, and the
maximum
value
is P=
26.
(5-2)
310
CHAPTER
5
LINEAR
INEQUALITIES
AND
LINEAR
PROGRAMMING
18.
We
simplify
and s, to
inequalities
obtain
x,
The
the
+
2X,
xX, +
Xp,
2x,
Wj
Ke
-3x,
-
4x,
simplex
the
+
and
equivalent
S,
introduce
Sp,
+
S, +
tableau
for
variables
S11
Sy,
12
=
7
=
10
Pi=
this
slack
form: =
+
the
(0
problem
is:
Enter
i.
Bie
ws,
f Me CQyer
S5
il
it
Peeve 12
0
Ss,
6,
-P
0
o
OY
127
1
0
0
7
mnL el Oors0oNme1.§
-3
-4
0
0
)RA ii rey
0 | 10
0
di
aa
= = 10
0
a
7 Sa Vata 1
ea.G) «se 0 «0.10 a
1
1
0
Re ! Ww
i ry
oO
ee Or 23
0
@
(-2)Ro +
oO
3
Ons
a
6
On 00 5.08) ©) a3}= 12 Al
0
0
al
il
acy Cee
|,| 2 Oo Oe ie
hr
(-1)R, +R,
liel~ 267
1
1 =
oO
>R,,
Oo
2R
is)
2
2
x,
X,
Oo
oO
is)ns
kr
> R,
Pes 0
oO
>R,,
4R, +R,
@®
0
re
(-1)R, +R, and
1
1
2,01
oe
ane
On|
Ce Ts 2 | Oe
=
2
0
0
D
ee
Os
a
Onan:
Ba)
LL Oe
ae PO
ae OO 2
he
> Ry»(-3) + Ry > Ry”
1
S,
S5
S3
Re 0
-1
2
0
0. 0. ee mee Ol Li ea On
Optimal
bet
P
solution:
2, Oe
tS.
max
0
2
Okt coh 28 P =
26
at
andR,+R,—>R,
(5-4)
CHAPTER
5 REVIEW
311
19.
The feasible region is the solution set the given inequalities and is indicated the shaded region in the graph at the Tac iaitere The corner points ancun(S) sie
are!
The
each
value
Corner
of
C at
Point
(Oi,
(07
2:0))
Gy= (Els
(Sin
corner
Cys
(Sia)
LO)
3X,
+
3:(0))
Sy
point
cs 7S¥ (sy)
(Oyo) Gres (Sy) the minimum occurs
t
Thus,
is:
8x,
asiaON =
se Wi((Sy)
of by
80
=
G(B)y
55,
\ Ss
at xX, = 9,
Sal X, = 3,
and
the minimum
value
is
C= 51.
(5-2) 20.
The matrices
al
Thus,
corresponding
if)
the
to the
given
problem
dual
problem
is:
Maximize
P =
Subject
to:
LOy,
Introduce
the
y, + y+ -10y,
The
=
simplex
Vio
slack
variables
Y, Cy
9
ove
15y,
=
3y,
tableau
Oe
Pee
-15
(-2)\R,
CHAPTER
eee
this
eee
oe
-3
Ry 2
5
LINEAR
0 Renda
x,
=
3
=
8
—
8.)
problem
the dual
to
15y,
+
problem
are:
3y,
Me
R,
Optimal Ess
24.
(A)
X3
Sy
So
meee os OCS fcr das ot!Sd 0) solution:
Tk Uy Beal 2
te
max
Xx, =
P =
ips ied 23
at
OF
(5-4)
We introduce a surplus variable Ss, and an artificial variable a, to convert the first inequality (2) into an equation; we introduce a slack variable s, to convert the second inequality (S) into an equation.
The
modified
problem
is:
Maximize
Subject
P
to:
x,
SOAS),
+
3X,
Cae
-
Ma,
ae ey
x, + 2x, X,1
(B)
P
The
preliminary Xx
X,
aL
iy
et -1
SS,
simplex
aa
bade Xy,
Sys
Sor
SC
Ay ZO)
tableau. is:
4
So
P
=)
i
0
0
6
2
0
0
aL
0
8
-3
0
MoO
i
0
Now xX,
Xp,
a,
il
sl)
Sy
1
2
P|"
-1
-3
Ss,
ak 0
a,
S,
P
1
0
0
6
al
a
-1
0
ib
0
8 |~
Al
2
0
SiH
20
OsiNebiOn
oMe= 150 5-M= 3s (Mimi
(-M)R, + R,; > R, Thus,
the
initial
simplex
tableau
X>
a,
‘il
if
Sri;
it
2
Ona
Ome
-M-3
mM
0
0
S,
a,
Sy
P
a
0
0
6
6 a) see
0)
0
ar
oo}
&
[es%
M.
0
.0.
1+]
6M
Pj-mM-1 (C) ay
Lae
x,
X,
i
al
S,
is:
x,
-1
ee sat ae @)
P|-mM-1
> Oc ei ome
1
Sido
ates
EMCI
(-1) R, +
R, >
@)
oeae revert 2R, >
~
Mek
R,.
O47
Ae
%G
Weg
pn
Oe
(M +
ei
1
se
if
is ipUO RI
yan!
em
ieae
Dt
Loem
3) R, +
R, >
eee)
ng
te
a
nO
hood Bd
R,
2
4-4
Oe a
re
R,
ct)
0
-2
2
-1
4
i
1
0
0
3
1
4
=
x,
X>
x,
ik
0
X,
0
1
S)
a,
-2
S>
2
al.
-1
-1
ab
P
0
4
0
2
The optimal solution to the modified problem aca -= "47 x, t= 2 tia OF; a, = 0, S33 OF ail
(D)
Since
(A)
is:
Maximum
P =
10
2
a, =
Maximum
25.
4
0,
P =
the
10
at
solution x, =
4,
to
the
x, =
Ze
original
problem
is: (5-4)
We introduce a surplus variable s, and an artificial variable a, to convert the first inequality (2) into an equation; we introduce a slack variable S, to convert the second inequality ( S>
nl
R, 1g.
-1
0
z
Reoat 2 1 De eee i,ati”
@ The
R,,
X,
0
sa
M
=
Since
M40
solution
a, Sb, a, al # 0,
to
Maa the
eer the
i
agefh
i || saleae
modified
problem
Subject
P =
2X,
original
to:
+
le Ky 3x,
a +
3X,
X,
=)
4,
Bop
OF
problem
(5-6) does
not
have
Multiply the second inequality by -1 to obtain right-hand side. This yields the problem: Maximize
is:
ee a
solution.
a positive
number
on
the
+ X,
3x, an Xe pe, Be 2X, 2X, DUO, X11 X_, X,
R
Keo.
A
of 4 + R. 5 > R 5
(-1)R,
0
0
obtain:
22 AS §8 10 9 (0)
=e) Pos 10
is:
26. 26
8
COO
4
Ss, to
(5-6)
Dr et
2%) 20 Yyot Ao | 10") CO
problem.
22
Wa
tuckOplaick 0
coefficients (5-5)
12
0
aes 4
for
© ta
ee
EONR
Sp
SEI
eee Sz] s
+
tableau
X,
R,
xX,
X,
ed ST ~
$3]
0
me
eee
P
Optimal
S,
10
es NS
0
SB.
i
Sp
S;
ee Ta
|
2
os.
Sy
P
10 es 2
0 a
6 2
0
2
%
0
Basic
%1 %
tes are Ber Ot Be ete 2 =
Oy
0
isd
(Sy
Xx, =
Lge
36
(0, 10)
Solution
5,
5,
Corner
8, s,
(6008)
Point
5s 10)
solution:
Max
.P =
36sat
ae
The graph of the feasible region the path to the optimal solution shown at the right.
8
and is
a
32.
Multiply the first 2 inequality. Now
constraint inequality by -1 to transform it the problem now is: Minimize C = 3x, + 2x, Subject
to:
em +
3% Pa
x, X,
matrices
Thus,
the
corresponding
dual
problem
to this problem and its dual are,
is:
Maximize Subject
We introduce slack the dual problem: -2y,
+
ayant) 20y, -
2Y>
variables
POUR
BY, 8 9¥5 -
(Ys 6y,
to:
x, and
SG,
+ X, +
Pi
P =
~20y, -2y,
+
=a
ti
x, to
=
3
= =
2 0
oy 2Y>
obtain
into
a
> -20
2x,
The
(S22)
9
X,
2
6
Xy
=
0
respectively:
t+ 6y3
ray
Ry.
N1
oO AIn ©
(-1)R,
+
0
0
0
0
0
0
al
0
M
0
al
-15M
R, ab R3,
(SMM S
Sreicaton Aan
eet
S
1
1
|
1 id]n
1
By
O'o "Oo —
aloOee
Heal1
'
1
on;
ioe) 1 1 UE th
Im|nees |
1s
To
ss ' '
| ox)
' ' '
1
1‘ 1‘
1|
1 1
'
1
O,0 od FA!0o oo ad oO O10 did died :& bis eee
Optimal solution
solution: of
the
Max
P =
original
OFS os
GIT
lo
pail
SS
al 1
1
1
ar
a]
-15
‘
‘
at
problem
x, = is:
|
’
' 'I
als
a!
S
Ni 1
1
Of©
|
lou
aeti wie
’
'
'
ro]n
'
KS Sb OPS
!
td
'
1
A
at ' 1 ‘
1
Od
aie
~~Gal
1
'
to]n
|
& Sats}
dan cit ' 1
od
Hnrt
1
So
1
'
'
aa
Porn
| =
'
1
'
SS) Ce) Laue
+
'
t itn
' 1 ' ’
&1
al
rd]n
td]n
'
wet
'
4 H ’
’ eal = pal Imdn
a
ore
1
TS) a) (er (2)
=> R,
eS
st
Ot
SO
2R,
‘
ercae
OS——____1L
|
‘ ’ (Oo
dint
AlN dd
'
|
1]n 1 ' ' '
taIN
3) R, tay
Xo
AIN
GO} ty
'
=iL
0
M
OMe
85)
Wo)
icito) ail Ord OO A = eet
‘1 '
20 ps 2 6
® al
:
ine) t
=| ' Ure 1
Als
2:
:
!
1S .OF HtO Wo Os! =
dain
=
Ndcr iN
Jd
|
2%.
5|
=a 1
imi
Aaa) i fe Se
GW © YH A
'
4
7xdd ed} '
iN
'
LPi
'
'
+'
‘
Odin
AN et cn
oya |
(-M) R, +
‘
ia nel
ee Op) Gal, Gay
3}, wba, Cl = TS
Thus,
mat
a
the
optimal
oe
CHAPTER
5 REVIEW
321
34.
Multiply the first two into 2 inequalitites.
Minimize
C =
Subject
to:
constraint inequalities The problem now is:
15x,
oe3
+
12x,
+
ere gs
xX, X11 Xp,
corresponding
sal
Sal
0
-240
0 il
Ot
i a ed
-500
0
1
0 1 auloy | hile
0 alisy
A=
Thus,
the
0
dual
0
+ Xz,
X, Xy
to this
400
+
-1
F400
= =
S00) 0
problem
and
and
its dual
300
problem
AY
is:
Maximize
P = to:
eae
=
Y>
500y,
xX]
1
-
tableau
ee
-240y,
-
=)
500y,
SRO
¥3
+
Ve
mE
V4
Xp,
etek
X 37
for
Oa
So
yhG@dy
“GO
0
0
il
this
problem
is:
i
Somers
a
“ay
OR
0
0
al
souls
0
0
Ome
182 Ps
=
0
0
i
0
Om
xX,
0
-1
0
i
0
0
0
a
0 | 18
0
0
0
0
i
CHAPTER
+eR,
5
=>
LINEAR
R3,
400R,
+
INEQUALITIES
Reb
AND
300y,
obtain
the
15 = 12 aa lo) 18 0
as)
Bl
0
(-1)R,
+
P,
om
aL
-300
to
+
-1
-400
£
300y,
0
500
x,
ages -
400y,
y3
+ x,
3 400y,
and
+
< 15 + y, $ 12 < 15 Ys + y, S$ 18 30) Ma > 6
+
xX, P{L240
322
r
Va
-1}
variables X,, dual problem:
%
a
x,[
respectively:
A’ =
tage
simplex
are,
als!
We introduce the slack initial system for the
The
them
300
me von.
+
transform
18x,
2
Subject
240y,
to
=> -240 => -500
7 fon + xX
x,
The matrices
15x,
by
bh
Site
[Note: iT}
ais)
be we the
Either
chosen choose first
element
can
as the pivot; the element in row.]
0
FR,
LINEAR
PROGRAMMING
i
=1 -1 fe f2
~
1 0 OC 0
1 3Rib) 2
0 @) 0 1
4
eq}
of
Ene Gis
«6 'G G 0
ib
6
KO", 20 ). 0 bi OBE we hab oh. 40 Oo
Zi
3
=1 Oy
3
2
15 12 0 6
0
-1
1
0
0
0
0
aS
OL
= 1
0
i
-1
0
0
12
1.
41
0
0
-1
0
0
0
0
Seeorne 0 0G) ere a D140 60R,
0
+
0
R, >
-60
300
ey
9600
ee
ae
1
0
0
15
-1
st
dL
0
0
12
-1
0
a
0
0
0
a
0
0
Y,
0
0
1
0
QO
a
1]
0
Pe -1
eee
0
A
= 0
460
R,
ee
35.
15 12 0 18
4’
-1 HELO -1 B mie y i ShamoGl)s ake O05 1s a Sa 3
QractegEaig:. ahausS “Oe hig Mie oe! 0 plow daw
me
PO de md.
aA.
0-40
0
0
+
Ax,
+
x, =
0,
199960
ao the number of regular sails Wai the number of competition sails. mathematical model for this problem is: Maximize P = 100x, + 200x,
2x,
at
Rone,&,6 1
(A)
to:
9960
60
solution:
Subject
C =
et le 400
Optimal Let and The
min
240
x,
=
240,
x, =
400,
x, =
60.
3x. 2 Sel50 10x,
X,,
X,
< 380 2
0
CHAPTER
5 REVIEW
323
The
feasible
region
is
Xe
indicated
The corner Siptan 1
(0, 38)
x,+10x,=380
The
P at
each
value
point
(0, 0) (0:38) (45, 20) (75, 0) P =
when
to:
2x,
+
4x,
+
The
feasible
(A).
The
Corner
region
value
of
and
P at
point
10x,
2
45
Corner
100x,
regular
point
+ 200x,
and
20
competition
corner
points
corner
DOmnt
100x,
+
are
the
same
as
in part
eis.
260x,
100(0) + 260(0) = 0 100(0) + 260(38) = 9,880 10045) +5260'(20) = 9,700 LOOU/5)* #8260 (0). = 7,500
2x,
+
Ax,
+
$9,880
when
38
competition
Pe=
and
is:
3X,
Ry,
0
(-1) R, +
R,
0
1
>
R,,
On
0 0.12R,
Z,
1
-1
EZ S000
ered
So)
Ae ot
0 | 25,000
iL
-1
0
0
i
0
25,000
0
0.03
SOR2
7ir0
0
Ole eZee ily
3,000
+
Ry =>
Ry,
R,
OBC)
O7
a ee2
0
1
0
ar
Gg.
90%
Ole-O0Fl4
«0
0
O)
ag i
1
0
-1
alt
2,
->
0
-1
ra O)
fo
R
+
OL.M0 alee R,
Ak
ORL
+
R3 =>
1
Ry,
(0.17) R,
“
R,
125,000
a
+
R,
era R,
_ 62,500
35 ae
=
Ry
0 |75,000
-1
0
{25,000
0
0
150,000
a
ThPAV:
TOROS)
Ry
0
“hg
—
0
iL
(-2)R,
“)
R,
-0.05
1) >
Ry,
0
-
1
-1
X3
Sy
0
af!
0
1 =
X, 'y
S5
-1
ak
S3
P
1 = 1
0
137,500
x3
0
0
1
>
0
0
62,500
x,
al
0
0
0
1
0
0
|}50,000
8)
oO
ro)
co)
° 2)a)
0:03
OO
28ers
500
ey
The maximum return is $12,500 when $50,000 is invested in $37,500 in steel stock, and $62,500 in government bonds.
(B)
The
oil
stock,
mathematical model for this problem is: Maximize P = 0.09x, + 0.12x, + ORO 55< 4+ x, + x, S$ 1507, 000 Subject tos 1 2 3 xX, SS 5070100 xX, + X, - X, S72257 060 X11 Xp, X, za 0)
Introduce
slack variables S,;, Sy, S, to obtain the initial system: x, + xX, + x, + S; = 150,000 x, + S, = 50,000 x, + Kowa x, + S, = 25,000 -0.09x, - 0.12x, - 0.05x, + P=) 10
The
simplex
tableau
for
this
problem
is:
x,
X,
Ss,
it
1
al
0
0
0
{150,000
Sy
1
0
0
1
0
0
50,000
X3
S,
So
S3
Je
alg 28 eC)500deIie eile ge). 22.000
P
=~0)095
Of
1255
(—1)R, + R, >
0
Oy
i
0
0
1
ee
ee
O05 R,,
0
0
0.12R,
VQ) en ae
0
1
+ R, >
R,
one
0
a
0 |125,000 0
O10
0
50,000
0]
25,000
2
pe alee oe 0 0’ .@) i G1 ial 1
3i}.
0
Ob Cero.
-2uf
0 |62,500
040 |4
0 |50,000 0 |25,000
0
326
CHAPTER
R,
+
5
LINEAR
R, =
R,,
0.17R,
INEQUALITIES
+
AND
R, =
LINEAR
R,
PROGRAMMING
0
x,
X,
x3] 0 #85) 2 Kol 4. PLO.03
X3
S;
Ove Ot ar
pers OV ecu
O
O
So
S3
P
Ok'S 0 | 62,500 1!) Of oR 08] 50.000 0 ¢ 0 | 87,500 oO 00 un
oO
fo)
oO Ww un
Pp Ww
ro
0)N on
The maximum return is $13,625 when $0 is invested in oil stock, $87,500 is invested in steel stock, and $62,500 in invested in government bonds.
37.
Let
The
x, =
the
number
of
motors
from
A to
X,
=
the
number
of
motors
from
A to
Y,
x, =
the
number
of motors
from
B to
X,
xs
the
number
of motors
from
B to
Y.
mathematical model Minimize C = SX, + Subject
to:
X, Xx,
+
Multiply the first two model then becomes: Minimize C = 5x, + to:
-X,
-
Se,
500 000
+
for
siee-t) 600 bee 0). i aa. Ol wee
SS
The
ft
A
8.599
dual problem Maximize P =
Subject
to:
this
200
8x, +9x,
X11
matrices
900
+ X,
2 900
Xo,
-Y>
2 inequalities.
The
-
20 the
+O
problem
are:
0 0 =
1 0 1
Neo eOE Seat -08 Al IR
=16 500 8-1,000
1,000y,
+ 900y,
+ Y,
S*5 +y, 38
+ Y;
Sf) a
dual
CHAPTER
5
LINEAR
INEQUALITIES
AND
2R,
+
R, 5
R,
P
+2 | 1,350 ays
22)! habe
6 650 350
9...3p]. 150 Se
ORLive
(36350
The maximum profit is $3,350 when 1,350 pounds of 150 pounds of wild rice are used to produce 1,500 6,650 pounds of long grain rice and 350 pounds of produce 7,000 pounds of brand B.
330
Ry,
LINEAR
PROGRAMMING
long grain rice and pounds of brand A, and wild rice are used to (5-5)
Let
x,
Zh = number
=
The
number
constraints
vitamins:
of
grams
of
mix
A
of
grams
of
mix
B
are:
:
2x, + 5x, 2 850
ae
2x, + 4x, > 800
200 KE:
ayes. 1
= 1,150
Sree The the
The
fees),
corner
(100,
points
150),
value
Corner
of
C at
50),
The mix
each
point
0.04x,
+
C= 0204(0)) + Coa 0204 CL00)), Crs0.04(300) C = 0.04(425)
minimum cost B are used.
is
value
Corner
of
C at
$16.50
each
Point
C = C = C = Ga=
0.04x,
Corner
of
Point
(COP 23:0) (LOOT TSO) (3:0'10)7) 50) (425, 0)
C at
oO oO w
is: the
contraints
given
above.
is:
0.09x,
300
grams
point +
of
is: the
mix
A and
constraints
50
grams
given
of
above.
is:
0.06x,
to
$13.00
when
The mathematical model for this problem minimize C = 0.04x, + 0.12x, subject to value
o oO vt
0.04(0) + 0.06(230) = 13.80 0.04(100) + 0.06(150) = 13.00 0.04(300) + 0.06(50) = 15.00 On 041(425)) ae 10 0.6)(0) L700
The minimum cost decreases grams of mix B are used.
The
oO oO oO
0". 09( 23:0) R= e200 + OF 09 (150) =e 50 + 0.09(50) = 16.50 + 0.09(0) = 17.00
when
corner
Ci=
(OR =23:0) CEO OF 5 0)) (300/405 0!) (425), 0,)
oO oO N
0).
The mathematical model for this problem Minimize C = 0.04x, + 0.06x, subject to The
(C)
(425,
corner
Cr=
(0, 230) (L007 150) (300, 50) (425, 0)
(B)
o oO us
are:
(300,
Point
aaNet
48: 0) by
The mathematical model for this problem minimize C = 0.04x, + 0.09x, subject to The
f
ie)
feasible region is indicated shading in the graph at the
right.
(A)
Aaya 100
2 :
each
C=
corner
0.04x,
point
+
100
is: the
grams
of
constraints
mix
A and
given
150
above.
is:
0.12x,
C= 0.08(0) + 0.12(230) = 27.60 G = 0.04100) + 0:12,(150) = 22-00 Cre On0 2 (3:00) ir ROR 215.0) = SeO0 C= 10000 (425)) +. 0:12.00) (817200
The minimum cost increases grams of mix B are used.
to
$17.00
when
425
grams
of
CHAPTER
mix
A and
5 REVIEW
0 (5-2)
331
atl 7 My
P
AG
:
;
+ hit De) iene i
peta Soeéy i open Sof ni
ad
Sdi.t
&
x
os. rs >,
Oe Tgpatesy ety,
oJ
5
Ay
:o38
wes
? N,:
10-9-8
=
the
Thus,
there =
26+26-26-10-10-10
and
three
O,:
Selecting
N,:
10
the
first
the
second
the
third
digit
ways
digit
ways
Og:
Selecting
Ng:
10
digit
ways
=
17,576,000
repeated
digits
are
allowed.
no
letter
repeated
no
number
repeated
letter
or
ways
three
720
no
letters,
15,600
=
numbers,
ways
are
15; 600.7205 =
different
Selecting 10
plates.
letters
O,:
N, -N,
O,: N,:
are
repeated
49
339- 000
license
plates
Size choices
Combined choices
Color
35.
repeated.
ways
N, +N, +N3-N,-N;+N,
No
be
ways
Thus,
(B)
may
choices
B,
s
no
digit
repeated.
S
A (B, M)
M
B
with
L
(B, L)
XL
(B,
XL)
(R,
S)
Start
s
M
R
(R, M)
L
(R,
L)
XL
(R,
XL)
There are 8 combined choices; the size can be chosen in 4 ways. The 2-4 = 8 just as in Example 3. 37.
Let Then Thus,
338
T = G =
the the
n(?) n(T
CHAPTER
6
people people
=
32,
U
G)
who who
.n(G) =
n(T)
PROBABILITY
=
play play 937,
color can number of
tennis, golf. ott
+ n(G)
-
and
KH G) nit
be chosen in 2 ways and the possible combined choices is
= n
8 and G)
=
32
n(U) +
= 37
75. -
8 =
61
The
set
of
people
mente.
«©Since
U =
that
ntl
taacomlows: There
39.
Let
are
F = G =
14
the the
people people
=
42,
feet)
G)
(
play
who
nic)
=
7
= n(U)
=
and
nae tennis
speak speak
French, German.
and
55,
G')i
a(F' m GY
and
—
nk
Now n(F U
G) = n(F)
+ n(G)
(F
=
Y.G) oO
17
n(F ANG),
is
represented
(fTU 6G) OntT 75
nor
and
(F'
71), Gh)w=—LOOF-
golf
GC)
neither
G)) = (U0)
m
17
(=)
by
a.6")
= 2,
Glee
golf.
n(U)
G')
=
100.
= @,
Since
it
follows
that
j=) 83
so
G) = nF) + mG) = neFw.G) = 42 + 55 - 83 = 14
are
14
people
who
speak
Test (A)
both
Interview
outcomes
Aggressive
PASH
SA)
\.
ae
"selecting
250
to
INS...
or
integer
events
=) P(A)
equal
Crs
of numbers less than 8 is the same as the is
166
PCAs
numbers
largest
The number both 6 and 24.
of
39:38:37 -36535) 5
TG > 59.51
5147!
largest
number
8 is
cf
.
21
a number
P(A) B, +
One
250 = 1000
and PG)
ails which
=
is
divisible
by
either
aot
C, =
P(A. 5) — P(A a GC) =
PBA C)
+oP(AnABaacG) Therefore,
(*)
P(A U BUC)
=
P(A)
+
P(B)
+'P(C)
-
P(A
N
B)
EXERCISE
6-4
357
will
hold
if A and
C,
eitAin her C=) Equation (*) which case P(A
51.
From
U
will
BU
also
C)
Example
and
B and
C are
or* rn C=O, B
=
hold
P(A)
+
if
A,
B,
P(B)
+
P(C)
and
exclusive.
Note
that,
if
C are
mutually
exclusive,
in
5,
365! = 1 -—-—2——_ -1.-
P(E)
Mutually
then wanes = oO:
ie
3657 (365
-
1 365" il
n)!
"es
365! eee (365
(8 (Geaye
a
-
n)!
3652
eae
(365)” For
calculators
S =
set
with
a Poss key,
this form involves fewer calculator steps. Also, 365! produces an overflow error on many calculat ors, while P3 66 ei) does not produce an overflow error for many values of n.
Disc
n(S)'=
of
all
22-12%
Let E = Then E'
lists
.0,
of
nm birth*months,
*129(n
"at least = "no two
times)
two people have people have the
n{ EB)" =12-11-10 -gs. oss Pe
E Adeeb sO cee ls ” bs LAL a 182¢=''p),) aA) TUS ee CEs) 55).
G2
1
for
bP(E)
=
Thus,
aP(E)
a[{1
-
=
a -
+ bP(E)
=
a
(a +
b) P(E)
(A)
From
the
plot,
Therefore,
(B)
Theoretical So,
(C)
358
P(7
The
CHAPTER
0m
answer
6
=
2)]
ome
n + 1)Jos. 6 836 Da]
(ghee
= 121 __ ee (2 —tra)\!
ena
rth)
=
Therefore,
a a+b
7 and
8 each
or
=
8)
ik 5 6 + 36 =
depends
PROBABILITY
on
3*2:]
1 = ie 12" (12, = in)
aP(E).
came
Up
OMeimess
ze + as =
.
(Od,
probability: 8)
=
=a
mec he
°then
the same birth month." same birth month."
eee are 97> hee “prep p:
P(E)]
12°"
!
=n) i 12
ELE} E =a) P(E")
Odds
pet
Leterme
=
n’
oS BBs
CHAPTER
6
P(A
PROBABILITY
Q
B)
a
sample
B,
space
denoted
P(B)
#0
S,
the
P(A|B),
CONDITIONAL
is defined
by
NS)
PRODUCT
For
RULE
events
A
and
B,
P(A)
#
0,
P(A CQ B) = P(A)-P(B| A)
[Note:
We can use
compute Jw
P(A
PROBABILITY
™
either
Step
#0,
ina
sample
space
S,
= P(B)-P(A| B).
P(A)-P(B|A)
or P(B)-P(A|B)
to
B).]
TREES
Given a sequence probabilities of
1. Draw
outcomes
P(B)
of probability experiments. combined outcomes:
a tree
of
the
diagram
sequence
corresponding
of
To
to
compute
all
the
combined
experiments.
Step 2. Assign a probability to each tree branch. (This is the probability of the occurrence of the event on the right end of the branch subject to the occurrence of all events on the path leading to the event on the right end of the branch. The probability of the occurrence of a combined outcome that corresponds to a path through the tree is the product of all branch probabilities on the path.*) Step 3. Use the results in steps 1 and 2 to answer various questions related to the sequence of experiments as a whole. If a
A and
B are
independent
sample
space
S,
(*) If ie
P(A |B) either
and
equation
©
B)
Otherwise,
A
INDEPENDENT
in
P(B|A)*=
(*)
holds,
=
events in a and only if
nonzero
probabilities
in
P(B)
then
A and
B are
sample
space
S.
independent.
and
B are
A set of events subset {E,, Eo,
is
said
any
E,3
BLA)
=)
See
the
P(A
(aN)
re
See
the
given
Ow
A
E,)
to =
be
INDEPENDENT
table. ©)
of
7.
table both
for A
and
if
for
each
finite
P(E,) P(E.) » P(E)
3,6.
occurrences
B
EVENTS
50
given
A and
DEPENDENT.
OF
NE,
Then
P(A) -P(B).
SET
P(E,
5.
= P(A)
A and B be any INDEPENDENT if P(A
1.
with
INDEPENDENCE
Let are
jn
events
then
PCD).
=%
See
the
2:0
P(CA D)
given
table.
= probability of occurrences
CimbotheGrcandmepr— aa O0on D.
EXERCISE
6-5
361
9. 13.
P(AND)
P(Al|_D) Events
A and
if
MID)ye=|
P(A
PCASG\
0.10
>= — P(p)
ED)
7 0.207
D are
ph
.50
11.
independent
15.
P(C
BCA) =P (0) =
ea
(A)
ete
H, =
"a head
independent
(B)
Let
H, =
P(H,
H =
Given
"all
heads"
P, E = F =
table:
i
2
a)
sua
"pointer "pointer
ta
PCE
T,)
and
TENGene
iP lands lands
P(T,)
ithe
5
aS
neil
the
P(H,)
tosses
3
PUP)
a= Pi1
ame cna
356
+
356
=
356
=
P(2
=
58
128
4}. = {1,
a
Eta), —
ea
Sue
ENT Me
re 1D
JENNER
21.
From
the
(A)
P(M
(B)
P(R)
FS
E and
NCA CG) F are
=
P(NQ
R)
SE
+
=e
P(MQ
BOSE
eG)
's
R)
=
CHAPTER
6
PROBABILITY
CAC
ete
26
e ee
1D
=
eee
TP ay, TAY
=e 3S
362
,
256°
OO
3}.
Pil Be hae
tree,
= '€.3) (5G)
=
2,
dependent.
probability AS)
ak
independent,
then
and Thus,
are
HO. Yi2 5
A
Oe PZ)
is
(3) =
=e)
JAH)
toss
ASS 1 5Let elan 78 eG ht
=
sisi P(T,)
an even number" = {2, a number less than 4"
OO)
*# P(C):P(D) Pp Cram
each
ithytoss;,,",
P(T,)
Oe
= =
Since tee
=
Finally,
"all tails," then Hn T = @ and 1 Re SSeS 2 3
Vex Gay) es
2 ae pie se)
“on
Since
P(H,)
P(H,)
4
on on
toss."
P(H,)
tadl =
P(C om D) dependent.
toss."
= 30
.06
Since
ith
T =
ee
3}
PP
(A). PULE) (B)
ae
the
e,
Te
=
=
oe
eet) a =a(.2.0), (20)
D are
tosses,
the
Hg)
(or T, Wye SiG)
DK Ge) Wh) FE)
19.
eet
eighth
other
on
(Nr eket a)
Saminlia rsLyi
the
the
"a head
(a) A,
P(T,
of
on
= PGES
MD)
PUG
PKA) PCD) =a 510) (210)) Bre O Thus, A and D are independent.
7a
P(C AO. Dns ords
PCC iD)
(Srey
Sadan
:
if
7
Ry
ul
{HH, HT} and P(E,)
Been
rH)
Thy
and
P(E.)
3)
{HH,
TH}
and
P(E,)
(A)
Since
E, \
Since
E, =
P(E,
A
NIP DIP
{HH}
E,)
=
# ©,
P(HH)
E, and
ge 7
=
E, are
P(E,)
not
mutually
. P(E,),
E, and
exclusive.
E, are
independent.
(B)
25.
Since
E, M
. Since
P(E,
E, = ©, aN E,)
Therefore,
E, and
Let
E; =
"even
number
and
0; =
Zoddenumber
Then
= as and
P(E.)
E, and
-=
0 and
P(E,)
E, are on
on,
E, are
exclusive.
yes sav te P(E, a) E,) # P(E,) : P(E,).
. P(E,)
dependent.
the
ith
throw,"
thesith
i =
1,2,
throw) "iie=el,
Ry!
2 &
i)
PteeBering eS
P(O;)
mutually
A hgelumset IN) [S) [
The probability at the right.
tree
for
this
experiment
is
shown 9 fay
I)
iS) I (
27.
P(E, NE)
LYViy = Phd = (z\3)
P(E,
=
U
E,)
hecECe=— and H =
(A)
P(E,)
+
P(E.)
-
P(E,
(a) E,)
De
ree:
+
aint hy eS Sew
Tirst. card is. aeclub,)" "second card is a heart."
Without replacement, shown at the right.
the
probability
tree
is
as 31Sl,
Thus, P(C A H) = (a 51) = .0637. (B)
With
replacement,
PCG) 29.
the
G =
"the
card
is
black"
fam
che,
Card
1s
divisible
PCH Gy G)
draws
eR ES eae= aletta Hr =Sas (a\i)
+=)
{3,
6,
or
=
9 of
are
ae ae independent
2%4
by
or
3"
clubs
=" or
club}
{3,
CEN YOR SIS Gsmerger aoe OtNeaenpn aL. Norpee eres
(B)
P(H NM G)
P(G)
1/2
= . =
P(H) -P(G)
H and
G are
26
6,
spades}
(A)
Thus,
and
S0625%
{spade
H
=
and
or,
P(G)
9)%,
¢:
= Be
) PH) 6 3 = 52 = 26
= a = a
43
independent.
EXERCISE
6-5
363
31.
(A) S = {BB, BG, GB, GG} A = {BB, GG} and P(A) = 3 2 5
B = {BG, GB, GG} and P(B) -3 A B= {GG}. 4 and = i
P(A QM B) Thus, (B)
P(A
S =
{BBB,
BBG,
=
{BBB,
GGG}
B
=
{BGG,
B=
P(A)
=
Since
(A)
B)
A
AM
33.
M
The
# P(A)-P(B)
GBG,
BGB,
BGG,
GGB,
GGG}
arpa
P(B)
B,
ee
P(A
QQ B)
=
the
GBB,
2 =(57
N|h
= 5 =
probability 2
7
tree
5
oii
2S
with
2
A and
replacement
PIR, AR) P(R,
FR
P(W, O Ro) = 49
With
Z
without
P(R,
ape
Without
B are
independent.
is
as
follows:
is
as
*
replacement
ee
PCR 1 GW)2
ie
Ro
P(W,
4
W>
P(W, O Wy) =
2
one
ball
was
[see
the
(a) R,)
+
P(R,
Wahi ih ad 9.0
follows:
5
Wy,2
~ 949 ©5849.) (B)
|r
ne
=< eet
replacement
P(E)
=
10
tree
73
least
Bs)
A W,) = 4%
,R 1.
3S
(A)
GGG}
25
Se 2
At
dependent.
= +
2
stare
E =
are
4
W.
2
tr
probability 27
Let
GGB,
"andwPr(Asar
1 =
35.
events
GBG,
P(A)-P(B),
TR, P(C), cancer is more likely red die is used. The FDA should ban the use
(D)
C are
to be developed of the red die.
if
the
table is Totals
EXERCISE
6-5
367
Now
PC
P(C|R)
TR)
0.02
= i BR)
ois
0.04
and
P(C)
= 0.08
Since P(C|R) < P(C) it appears that the red die development of cancer. Therefore, the use of the banned.
55.
Below
(A)
90
A
Female Male
(F) (F')
Total
(Note:
in
The
the
Referring
to
.286 .264
«20d .096
5 A2)0)
5510)
72:00
table above was by dividing each entry
the
table
P(ANF) P(F)
in
part
=F
(ERE
CAR
aC)
E)) = Some
(VE) ere (3)
P(F)
36
(
= .520 7 °220
P(B | FY) =
maeeeOd
(G)
No,
the
to
490 = -200
2IBO ES P(F')
and Fie.
Bee
= 480 = °500
in parts
and
(E)
C are
imply
(B),
that
independent
remember:
BAYES'
Let
U,,
FORMULA
Un,
oh aes
U_, be
n mutually
is the sample space S. Then that, P(E) .+.0«.
P(
P(U, | E)
Let
E be
exclusive
an
events
arbitrary
event
whose
in
UAE)
Piz)
P(U, A E)
* PUA
EB) = Plt eee) PEO)
"P(E oo Similar
368
3096
6-6
Things
CHAPTER
6
results
hold
PROBABILITY
for
ee Uz,
given
104 = .520~ °200 =
results
(D),
A, B, Fans
1.
table
ee
(C),
EXERCISE
the
PICO) P(F)
P(CINE')
Ril
25
P(A | F) =
Total
derived from by 1000.]
(EC) PCC Aie=
e420
P(A ET
be
(A):
.130 = .520~ °250
PAGE
120
C
.130 20
P(A| F') =~ pip) Tigo = 8220 (D) Se (CA
Above
B
probability
problem
(B) P(A| F) =
90-120
reduces the die should not
Uz,
Ok
8 P(U, 7 E)
aU,
ee Pe | U,,) P(U.) ..-,
UL.
union
S such
of
2.
BAYES'
FORMULA
AND
a. -P(M1 A) 3. P(A)
Sum
results
of
A)
all
hold
branch probabilities leading to E
for
= P(M): P(A lM
= P(MM
TREES
Product of branch probabilities leading to E through U,
P(U, | E) Similar
PROBABILITY
=
+ P(NQ
Up,
Uy,
(.6)(.8)
A)
-++4
=
U,,:
.48
= P(M)P(A|M)
+ P(N) P(A| N)
(56)4,.8)\4-(44)(.3) P(M-X A)
eA
.48
= + P(MO
A) + P(NT
« “= =
7.
Referring
to
the
Venn
(see Problems
A) — -60
=
.60
1 and 3)
230
diagram: 25
PiU
“AraR)
eeee
BNR )e=
pip)
ORE CDS aot
ti
60
|. 60s
vid Teer
100
Using
Bayes'
formula:
PCY
PU) |)
QR)
P(U, OR) + P(U, O'R) 40 V25 100} 40
2
P(U,
P(U, | R')
“ar
.25
5
.coamito
Fea
100
@
nc
(4+!
100
100
;
1 Pe,
15_
Py eee100 ap oe
Ghe
a5
Guin)
100
Bayes'
26
B0,) PLR | 05)
ER |e
100 ,60
15_
Using
S00
=
25) (2 35) “Sony
100 }40
9.
P(U,) P(R | U,)
3
ae
(from
the
Venn
diagram)
el
formula:
BCU
R')
= PR)
P(U,) PCR" ‘
P(U,
(AY I)
|)
se P(U,
GVORE)
P(U,) P(R' | U,) ~ P(U,)P(R' | U,) + P(U,)P(R' | U,) ~
40 V15 (z00 lao) 740 y15 60
V25
(00 40) i (z00 (60)
EXERCISE ry
6-6
369
11.
ee
P(ChAUCIsen PYG
LPOG)
P(UN ee
(.2) (ay
08 _ =) Sega
» Rey
ee
P(WAC) ‘a LO)
_ Pwo
18
|
64 Bere
PL Ley
+ CoS)
ee
cay
+ (.5)(.2)
From
the
e Che ete) PaP(Wa 4
Venn
P(U,
=
{See Problem
P(VA C) Ch + PiW a Clee. PIU AIC) ( 552) oe
LTE
2", iss
or
P(A AQ B)
"
11)
(02) .4his 36
ee
diagram,
5
P(U}|R)
+ (.2)(.4)
Recall
= P(A)-P(B|A).]
wae
> (25) (2) 0 (0 6)
17.
[Note:
(23). 6)
P(WA C) Cc) = Plv mR Cc) + BIU' AC) 3) .6 ewe
(.3)(.6)
15.
C)
PaP(GARaC) 2+A PiVIA Gye BWR C)
M
0 > a0 5
R)
P(R)
3
ee
125
100
=
Adeee
125
00 Using
Bayes'
formula:
EL
pe
eee)
P(U, |R) = PU,WOER) ia PU
ria Ry ee Pt,oy By. 100
O5)+ 29%.
From
the
Venn
diagram,
20
P(U,|R) = 546 Using
Bayes'
P(U,|R)
=
BO...
a90 = a0
100
20 A15 2 #2100 ~ 106 05 05s
.154 2° /40en
=>
formula:
20
EAUs OR) PW,
Ona)
as PC USN Rare P(GR OyR) ey LTE
100°
100
15 dy
0 20,
#406,
3200
_____-2__ J0O5%+
370
CHAPTER
6
PROBABILITY
ne
oR,
5
;
a
=
0107, 300 tree
(6-2)
diagram
replacement
Start
P(W,
:
(6-2)
we
1A Ser, 210, aheed Cagah
B 4
2
»
+R,
Zones
26S
BiSenepenoe
4
W
4
Ra
:
R,
M R,) = P(W,) P(R, | W,)
W
aR
Start
W,
a =
without
is:
P(W, 1 R,) = P(W,) P(R, | Wy)
. 2
oo
431
(oe
= 3 °4. 20
ae
(6-5)
51.
Part
(B)
involves
dependent
events
because
P(R, | W,) = 3mn P(R,)
and
52.
=
P(R,|W,)
The
events
(A)
Using
P(W,
the
(A)
tree
red
P(one
R,)
+
P(R,
(ay R,)
red
are
diagram
in
Problem
balls)
=
P(W,
ball)
=
P(W, (a) R,)
(a) W,)
PANS Se
SCBA P(two
red
balls)
Thus,
the
probability
of
red 0 ali 2
CHAPTER
6
=
balls
cig
390
+
ee 20
20 ee
ee 5
independent.
= P(W,)P(R,)
Number
ST mace)
# P(R,)
in part
P(zero
M
PROBABILITY
P(R,
Mad
(6-5) 50(A),
we
=.
P(W,) P(W,)
+
P(R,
have:
yp eae, lets
dae = Tiog
3aqan.eee mils
[9 ° ea
.16
(a) W,)
+ P(R,) P(W,)
e:Mi
OP ibe
ges uSameos tr *°
a) R,)
=
P(R,) P(R,)
distribution
is:
Probability D.
1
36
The
expected
Riexyr= (B)
Using
number
OWSLOP the
P(zero
+ 1248)
tree
diagram
red balls)
P(one
red
of
ball)
red
balls
is:
+°2(.36) in
©
Problem
4484+
1.72
291.2
50(B),
we
have:
= P(W, M W,) = P(W,)P(W,|W,) =
P(W, O
Ry)
+
PUR
= P(W,)P(R,|W,)
A
P(two Thus,
red balls) the
Number
red
W,)
(4-20
ee
5
= P(R, A R,) = P(R,) P(R,|R,)
probability
of
5
ae mraee
+ P(R,) P(W, | R,)
2 2473/32 Qazi ae
= ee.
distribution
= ae
& =
.3
is:
balls
F's)Jk 0 al
2
53.
The
The
expected
Be)
e=nO ch)
number
+ean6)iet
of
tree
diagram
for
this
red
balls
2(.3)
=
problem
is: 2.2
is
as
(6-3)
follows:
3 R 2
oe
Start
4
+
4‘
: R
The probability of selecting urn that of selecting urn U, is .5.
U, is
.5 and
U,
7
4
an
Piru.)ee
(C)
P(R)
=
= = amie P(R TM U,)
(B) P(R|U,) 22 + P(RA
bg=
+ia
U,)
2 P(U,)P(R bU ke % P(U,) PIR | UZ) de
oy) dak
ensue)
Bore co 1S P(U, OR) P(R)
P(U,) P(R | U,) a ae P(U;) P(R| Uj) + P(U,)P(R|U;) yas LO Ok 98
eer oe Een
2
did Pg a
inh 215
Ona Wy adap
203
1S
CHAPTER
6 REVIEW
391
(BE) P(UL | WS
P(U, O W)
J
P(U,) P(W | U,) 2
a
Seas
P(U,) P(W| Uy) + P(U,) Pw | U,)
ne
ee
293
SPN 2s
F) P(U.
ane tebad
PORT GS
2s
Ry TSP
Ne
etal)
Sete
(Note: In parts (A)—(F), we from the tree diagram. ]
54.
No,
557.8
0S)
because
# P(R).
Let
A be
P(A)
the
event
n(A)
=
=
Bie)
(See
"all
Problem
C135
mts) ais) =
diamonds."
values
of
the
probabilities (6-5, 6-6)
53.)
(6=5)
"3 diamonds Rhus
the
=
2 spades."
Ci3 5°
Thus,
Then
event
"The
married
£502) 2Dae 40Ao a=mi (eG)
multiplication
(6-3) 10-9-8-7-6!
8!
the
and
oA eo Ries
lO
couple
is
in
the
group
of
4 people."
8-7-6!
BAAS Clo Can “Montel Thus ee CA)
n(A)
C13,3°°13,2 ae : 10!
Let A be Then
Then
5
98+ BLS) "elie eee (ios ait
By
the
Caeae
Let B be the event sayl(is)) = 13,3°13,2°
PB) _
57.
derived
CSo 5
(A)
(B)
P(R|U,)
©
soinik eo meres
Pere pie ee (0) ALBYSYS}
principle,
(6-3)
there
are
NN, branches
58.
in
S and
H are
P(S)
0 and
P(H)
#
P(S@@)
(Hi)
that
(A)
From
(B)
The event A = Simple.events
the
CHAPTER
6
diagram.
mutually #
0.
(6-1)
exclusive.
Hence,
P(S
A
H)
=
0,
while
Therefore,
-~SPCS) me ECE)
implies
(370.2).
392
tree
Events
which 59.
the
plot,
(2,
S and P(2)
F are =
9
20
=
dependent.
(6-5)
Daleks
"the minimum of the two (27 02)\5 mic ieo\eenisyu2)y,
6)
PROBABILITY
(6,
2a
Thus
(A)
=
numbers 1(2, ade b £3.49 |onde
200s
The x;
ah
probability 0 12
22
iit 9
22
«220
22
distribution
of X is:
2 7
22
CHAPTER
6 REVIEW
399
125) i: (55) one ; 255) Le ios Aa (B) E(X) = (55) 82.
Let
Event
and
Event Event Event
Then,
NH individual MH = individual SH = individual P = individual
using
P(NH) P(MH) P(SH)
the
with normal heart, with minor heart problem, with severe heart problem, passes the cardiogram test.
notation
given
above,
we
We want)
.95 .30 «05
Co.find:
P(NA WP). =
P(NHQ P) PASE)
P(NH) P(P | NH) rs P(NHQ
P(NH) P(P | NH) 7
»,
The
have:
= .82 =0.11 = .07
P(P| NH) = P(P| MH) = P¢P |"SH)st=
83.
; (6-7)
N|R
tree
diagram
for
this
(282)'(.95)
problem
is
P) + P(MHQ
P) + P(SHN
P(NH) P(P | NH + P(MH)P(P| MH)
+ P(SH)P(P| SH)
(282) 4.95)
4 ((.11) (30)
as
+
P)
(.07) (205)
e
amen (6-6)
follows:
oe 1005 i)
M
(Man)
94 4~
Start
10 0
a
+
W
(Woman)
now
(Colorblind)
C (Not colorblind)
Too,
Cc
99
—
Too” We
C
2oe
SOO
P(M) P(C | M) P(M)P(C|™M) + P(wW)P(C| Ww)
(6-6)
According to the empirical probabilities, candidate A should have won the election. Since candidate B won the election one week later, either some of the students changed their minds during the week, or the 30 students in the math class were not representative of the entire student
body,
400
gy Maen ae
5:
Cc)
or both.
CHAPTER
6
PROBABILITY
(6-39
7 MARKOV
EXERCISE
CHAINS
7-1
Things
a;
to
remember:
MARKOV
CHAINS
A MARKOV
CHAIN,
or
PROCESS,
is
trials, or observations such matrix from one state to the Given a Markov chain matrix of the form
s kaa Each
entry
with Ss
Sk2 s,. ki
is
the
n
a
sequence
that next
of
experiments,
the transition is constant.
states,
a kth
STATE
probability MATRIX
is
a
ka
proportion
of
the
population
that
are
in
state i after the kth trial, or, equivalently, the probability of a randomly selected element of the population being in state i after the kth trial. The sum of all the entries in the kth state matrix S,. must be 1. A TRANSITION MATRIX is a constant square matrix P of order n such that the entry in the ith row and jth column indicates the probability of the system moving from the ith state to the jth
state on the next observation in each row must be 1. COMPUTING
Ape So is
STATE
the
MATRICES
initial
matrix for a Markov are given by:
First-state
S,P
Second-state
S
=
SP
Third-state
SS
SRS OF
ale
of
the
entries
CHAIN
P is
the
subsequent
transition state
matrices
matrix
matrix
TRANSITION
MATRIX
transition
matrix
then
sum
matrix
A
chain,
and the
The
matrix
the
a Markov
caek
kth-state
MARKOV
then
SoP
KoA
A
trial.
matrix
S, =
P is
for
state chain,
S, =
POWERS
If
FOR
or
the
and
kth
So is
state
an
initial
matrix
is
state
given
matrix
by
Se0 PS
The entry in the ith row and jth column of p* indicates the probability of the system moving from the ith state to the jth state in k observations or trials. The sum of the entries in each
row
of
P*¥
is
1.
EXERCISE
7-1
401
1
S, =
SoP
=
.8
[1
2
03[-8
Initial
state
- =3
A
8
A: (1)(.8) + (0)(.4) =.8
B e4e— AB:
0
2)
First state
A eee
sat
Il
6))=.2 .2 +(0)(. (1)(
6
3°
Si.= 6S.P =
pedsa2bma_ 51[-8
LS
A
PO.
B
wad
First Initial state
state A
8
ae
mete
4
B aaa
5
(.4) 8)=.6 + (.5) (. A: (.5)
AB:
2)=.4 (.(.6) (.5) +(.5)
6
5. Selig
20.8 Ss
UY
al
'[ea2
af ‘2 (from Problem 1) 269
The probability of being in state A after probability of being in state B after two
two trials is .72; trials is .28.
e Sy =Ue
3)
=A
SP
shsiee
56
.4)|-8 A
FP
lsoek
a7
|
(from
Problem
B
SiG
The probability of being in state A after probability of being in state B after two
402
CHAPTER
7
MARKOV
the
CHAINS
two trials is .64; trials ig. .36°
the
11.
No.
Choose
is an
any
x,
acceptable A
0S
x $1,
then
transition
diagram,
and
B
A
.4
0
B
mle
eX
is the
corresponding
transition
matrix
A= “By C
aoe 25> + a= Dita 0) + 2.4 = ap tre eds
he
10 + a+ Orme 5+ Cutmes +)
19.
No. Cra
.3 = &0>= O'=
il 1 1
1 I 1
0].
“
eS
Blue
system:
eel _# eee
equivalent -2S, Soh
.2616
22775)le
oe
(C)
domme
SOMO, | a0 ke hy2273 ss656°9.¢091 .2273
Red
29. (A)
.2275
3428
.06 .3328 .4056 363 4091 22]
"22260
[3636
eee
-.6s,
+
-2S,
=
0
-6s,
=
-28,
=
0
SoS
1
or
al
Ss, +
The solution is: Sue 22908, =p. Thus, the stationary matrix S = urn will be selected 25% of the
79. [:25 time
.75]. In the long run, and the blue urn 75% of
the the
mea
time.
31.
i(Abss = whee
31 [°
S, = s,P = 1.8
aye
Soe-
7A)
S,P
and
so
S.
[bach
The
state
approach
s
and
i
[288]
so
a
alternate
"limiting"
[-5
0 .53[9
So
esas
between
412
Sec 1
= ie
“lk Pe
Parts
(B) and regular, this
7
and
[.8
.2];
they
do
SLs 4 =
[ao
+5]
on.
ale)
CHAPTER
.8]
*.5]
2
yeaa
els
E
ie
Sete
0
“th
‘uy
li= Soi ee
WG
MARKOV
So is
a stationary
al
P and
the
identity,
(C) are not valid for this matrix. does not contradict Theorem 1.
CHAINS
matrix.
alk
% Be
The powers of P alternate between approach a limiting matrix. (D)
[.2
matrix.
51[°o20qi]1) Ts= [.5
S,P =
P has
the
we vA
form
4
if
use
ue ws
it
fee 2.) eae€)
ac
where B
eithersA
|
0 0
el
P= [4
We
Sincesr=
D
0 0
matrix
425).
C’ to
DEE
limiting
A
B) 4
Erom Cc
0 all
ead Ree R = La
have
to
go
B
PN |p ok mB) 0
0 0 0
P(G
to
wesc
G
0 il! = 225
.75;,
2:5"trialis
[oS
B
Ale Bl 0 CESS
toyA)
S
row
1 =5 3 5
hes
meee
-(
operations
O
real
=§
i) ekg tat
3
Oe aT
aera or f= ne
Fr sir
R,
BE
mus, Fe [2 Epo ft?
ys
cl
ip
Bs MD
feel
Bll
We will
P= by
0 01; 0 (7=3))
0
Lick
p en «0
0
t,t
CL?
.7
0:
form
for
441.
pe Ay OraeOey fale, Oni
Bo
22.
(7-3)
o_o
0 1
1
.7352
1784
.5704
"2568 0 0 .0056|’ .0112
aa eye.
0 0
.0432
0 0
.0432 |’
.0864 .0864 0 1 1 [0 .7999° 2000 .6997! 2999
Rui ‘iehuama 0 16
L6 0}! 0 i
(7-3)
amie aac heal
De
A standard
|
ae
deed 0 0 1 0 1 ho pa {| .1972 .7916 .0056 o04ds, (6839 %,0112 MB Cima 0 6 Oa OG! ys! 9° Fo etoet oh
Det
26)
21.
4066 .3935 Gal...
=|
0 0 1 } nC mach O. 1 1.0 00 PAn= 16528 _.2176-...1296 46 0 1 sf 0 0 1 th tala "ad Wan 0 i .7498 .2499 .2458 .01680 OG 0 0 1
0
Bi
A722) #21242 .4895'..117 |, 465) = 8 A oe ae 222 .48 al.4 2 212001 °.1199|;_P = Bl .4 .48 112 Cl4 | 48 ate .1201
‘
.4799) 14802 .4798
Mag01 / 13999 "4001
P=
Pt
6
3,
determine
0
the
ae 0 0
given
matrix
is:
:
(7-3)
2
43 the
A
B
C
A| 0 Bi 0 CUe2)
a 0 426
0 1 22
limiting
matrix
of:
solving
CHAPTER
7 REVIEW
431
[s,
Sy
0 0
S,]]
zy 0
DAL The
Set
From
the
+
-6s,
=*S,'°
Ss, +
-2S,
=
S3
Sora
al
Sot
first
Substituting -28, now
and
-8s,
that
A
0
5, + § 2 + S}.=A1S
-28,
=a)
aS5 i>
-6s,
=
So45
8s,
an)
-
into
isoen
we
the
have
fourth
eran
so
PS
.1
SS
as
and
See
Ss, =
equation
Busby
eS
(0 0
-2S,
gal
4
eee 24
(B).
£.5
The
transition
5
Sia 5
Sy tN SBRes2] i meas oe 4
B
A| 1 0 Bl] 0 1 C\SS2 et OF
gives
esl
A
B
(ey
had
4
5]
tas) ecsir= 5
A (sire.
B 4
(a .5)
432
for an absorbing states. For this
Markov chain with matrix, we have:
0 2
where
"Fre
(7 =40)
Thus,
FRisA(4
25/251) A B a 0 0 1 SA PAYS
CHAPTER
7
eta!
0 0 aeee
2. . 6) mand ) OF=see one limiting matrix has the form
x
Shi)
(7-3)
Ra-a[
(2
Bee
e
is the standard form and one nonabsorbing
p=
.8s,.
matrix:
A
=
Ss, =
(S
els sie
[0
- The
and
AS AS Age
(A)
P=
S,],
is:
Si
equations,
SS
B
All eed: 7B) al Cll
equations Ss,
Sy
values
HS
Sy
22
OF
third
these
+
follows
'¥ Pr=
23.
692
corresponding system of -28, = ss, Ss;
It
0 Lat RS.
MARKOV
"(b= Wil). 6s E 0 0 0
CHAINS
= =
fo21)0-e= 25
(Slo
a7 ie and
©. (1°25)
two
absorbing
(A)
[0
0
Meyei.>
x }.0 Be 1
1}
ft. | -21))
0 1 Fea
0 i
24.
If
one
of the
P,
1 feed = Pi,
ie =
0
0
My
hs
0
ee
forms: P,
Ken oe =
P, if
Bute
A
=
B
(6
125d 6 «So
0]
oO (er 1) £5 = G
Ke =
all
P,
odd.
P, for
power
No
of
k,
13 P,
db,
loans
Cog
Paws,
60, P,== & ‘ k is
ONG 1) if
ipl jon ae c— (3
P has
then
0,
to
0 P, =af 5Mee oo
and
fom
Ps
(7-3)
equal
2 entries
with
matrix
are P, = th
Py,
k is
A
au
a transition
P is
No.
0 0 0
even
Gulal joerc
entries.
25.
TL ‘ and
cane
(7-2)
Yes;
0 P=].5 75
P=
0 0 WW
0 0 ey
EY dl 5) .5| 0 5 0 1 1] gS)
is
is
regular
regular
since
75 ORS 5 7 jos onAaaRSs Mea HS:
P=
since
. 2S YAS AOS eres BPS
AS Hse SPisy
P=
(7-2)
6 B
R 26.
(A)
(C)
R|Usbes Bee GL.6
(B)ePs=
The
chain
[s,
which
is
is
regular
since
S3]
iy
2
Sy
oS) o| 3 Se
equivalent
Ss, +
S,
+
it
and
has
solve
PaZole .6 aS:
only the
=25 5 | = Aail
G
225) 6 3
25 2 sl
positive
entries.
system:
{s,
Sy
S3],
CI
Is
Ge
ales 1
to: S3 =
a
-5S,
+
-2S,
+
-6s,
=
7S)
-25s,
+
-6s,
+
-3s,
=
S5
-25s,
+
-2S,
-
-1s,
=as.
Ss;
= Che
So +
5S,
S, =
‘I
-2S,
+
-6S,
=a)
-25s,
-
-4s,
+
3S,
=
0
-258,
+
-2S,
-9S,
=
"0
CHAPTER
7 REVIEW
433
We use row operations to second, third and fourth calculations. il
-5
a
ih
2
6 |0
Hak
2. =4 * 3h
3x0 > * —o@iho 5R, (-3
eS) Es
+
R,
>
+
7%
Al
il!
0
¢
0
~
if
boty!
=F
al
ab
‘il
1
5
0
“iat
AE |
5
1
5
Om
R,
(-1)R,
R,
R,
(3)
OM
+B
(-7)R,
+
R,
4503)
a150s
The
30
%3
~
solution
0.
*®3
is
R
ec P=
()
51801130
Bea
+
(-23)R,
+
R, -> R,
150R,
+
R,
> R,
0.4,
335
Ss =
R,
>
FR, > >
R, ae
R, %
R,
120. Oeame 2100 1-14 Chom
5
Oa
Ova
\n-
0-
SOL
alee
ies
R,
0.25and
G
yaa
ae
Aa
GL.4
s=p50ue-20
22R,
oe TES ORI4;, B
i
Os
+
13
sonia yal Motor pi tO! |teponlers ‘Whe. Be 7 23 S|foto) ew mcr ame ORLA
in. 11 | 45
-2R,. > ©
the
Ori-= $ |=3
as
Oe ar eee
OR
but first multiply simplify the
dl
q | -5
13
R,
R, >
solve this system; equations by 10 to
ee
p02
In the long run, the blue urn 40%
the red urn will be selected 40% of the time, of the time, and the green urn 20% of the time.
(7-2)
6
(B)
(C)
B G 0 0 Gaz 2) esl
State R is an absorbing state. The chain is possible to go from states B and G to state (namely 1) steps.
(D) RE OG
The
EP R—ai
cinGum ol. >
limiting
=e
CHAPTER
7
Deke | EWemlhiay.cmna— Sheet
matrix
Z| 0
?-(2 434
P=
R ige|| Al. B| .2 GL.6
MARKOV
4 CHAINS
P has
the
2
E | ances
form:
absorbing since it is R in a finite number
On—
[
Sleey -
|
?
ed Q)
where F = (I
PT 29°o|| & Meee ie aly
- (i
iH}
|
ot xr
il
We
use
row
lea
operations
“i
(3): >
ik o13 Oeste
find
the
=
(zo:
R,
+
R,
~
43
R,
Ry
>
BG (3
R,
=
dae.
i
Ge
pd
aia
Oem
1
wl|o
-—>
1
inverse:
| - [2 -3 15 °)- [2 3 | 3 ‘
we Alales > 79
T7949"
velocity secant
at
line
x
OTOL
=
4:
through
80
Slope
of
(2,
f(2)),
(4,
£(4)):
2
secant
linesthroughe
(sree ah aa
(27.
THE
DERIVATIVE
Ged = ee a
L(2)))
or
001. +0.
19996
8
lea
ES
—
2
rs
eae ee das 022) 4) aaa =O
CHAPTER
some
ft/sec
£(4)= £12) | [a = 214) 04) - [27 = 202) - 4) F(3) - £(2 ee
442
0.001”
ft/sec
79.99 —>180nc-7 ©OG Ole) o SOe
4-2
(B)
Ore
100
en
07001
2 ata 2t-000,
201
or2eck
(D)
aos.
AL
X=
=1,
slope
='1; =
=5;
‘at x = at
x
3; =
-1,
33. 8
41.
The any
function:
slope point
Beeb h As The
h->
0,
slope
of on
y=
slope’
-2 =
0;
at
x
=
1,
slope
=
-1;
the the
fi )n
6+ of
line is m. The slope graph is also m.
=
3h the
x
slope
of
the
of
the
graph
of
f(x)
= mx
+ bat
5341
ab)? ~(3(1)2, « 134d t.2hve oh? we 3 = SS h Car Fo esa Ys ema RE yoke es a) —>
6.
graph
43.
‘The
=
35. 0.25 or >
slope
39.
slope
graph
at
x =
1 is
6.
-0.01
-0.001
>
=1
a
eel
is not
defined
at
t 1. (0,
1
0).
EXERCISE
8-1
443
45.
(A)
Average
rate
of
change,
1975—1985:
An9 = 9386.1 ie
(B)
Average
rate
of
change,
1975—1990:
LORO1 wa. 53 He
(B)
Let
y, be
Yi DG) Ge
the
+
regression
10) e— y, (10) =
equation
,
then
found
evaluate
in
(A)
Y, at
0). 12. hes /yvas
== =
and
S023 7 perays
set
x = #1,
£0.10
+0.001. To two decimal places, the result is -0.13. Thus, instantaneous rate of change of weekly hours with respect 1980 is approximately -0.13 weekly hours/year.
49.
(A)
R(1000) = 60(1000) - 0.025(1000)? = $35,000 R(1000' +h) R000). 460 (1000 + A) — 0.025 (1000 h)? h . h 60,000 + 60h - 0.025(1,000,000 + 2000h + h?) - 35,000 h y
One
the to time
-
35,000
2
: 10h -_0.025h" = i$0'=1-0.025h > 10 as h = 0 At a production level of and is INCREASING at the
(B)
R(1300) = 60(1300) - 0.025(1300) R(1300 +2 hh) = RUSOC svt lover h a _ 78,000 + 60h —- 0.025(1,690,000 rj h *
r
7 =Sh_-0.025n"
zi
£(3) = =150()7r4 770s) £(3_+4h) Sb es oa h fe) DU EI
In
1990,
the
444
CHAPTER
8
at
THE
annual the
DERIVATIVE
& h)*
$35,000
=
of
30. was
130,000
revenue
= 1S0N) >) 8st
11,360,000 metric
3537s
ie Per 9
is
0,400 = 14, 360 teas Ee ee 4 hit 10,400 = 13a h et eet Ho) e+ 2310 “70h ee 10 0G h
production
rate
is
Siesta
1,300 car seats, the rate of $5 per seat.
-130h = 1508" 7 meee,
DECREASING
=.535,4750 ay. 0.025: (1300 h + 2600b.+ |e ester
25) 3 0 0RE ee
At a production level of and is DECREASING at the
51.
1,000 car seats, the revenue rate of $10 per seat.
tons
metric per
$35,750
14,360
aera tons
year.
and
was
in
53.
26. =
526s2
(A)
Average
rate
of
change,
1988—1991:
——
(B)
Average
rate
of
change,
1987—1989:
Or Ste onlghes) aio
(B)
Let
y, be y, (2
Yo
the Ts x)
regression i
equation
found
y, (2)
=e se x a a ae ee THeNUeVvakiate
in
(A)
y, at
eS
S17
and
see Jab Oni/ yr
Gy)somo
ae binleon/yse
set
x = a wai 2SolOot as =OPACO) I
+0.001. To two decimal places, the instantaneous rate of change expenditures for services and supplies with respect to time is $62.96 billion/year.
57.
£(30) mrcuer
= 0.008(30)2 bh) = h
£(30)
- 0.9(30)
+ 29.6 = 9.8
_ 0,008(30 + hy" = 0-9 sumeeh) +. 29.6 -_9.8 ea h _ 0.008(900 + 60h% h?) = 27--0.9h + 29.6 fi h \ 2 v 0.42h (ee erry COLE
In 1990, the number of male infant was DECREASING at the rate of 0.42
EXERCISE
deaths deaths
per per
100,000 100,000
births births
9.8
was per
9.8 and year.
8-2
Cae
SS
Things 1.
of
to
ETT a
SS
A ET
AE
SR SEER
IE
SE
SS
I
SS OE EE
A
ESET
EE
remember:
LIMIT
We
write
lim)
£(s).=)
boon
£(x)
5
-iaas
s-—=c¢
XC
if the functional value f(x) L whenever x is close to but CG)ee.
is close to the single real number not equal to c (on either side of
[Note: The existence of a limit at c has nothing to do with the value of the function at c. In fact, c may not even be in the domain of f(see Examples 2 and 3). However, the function must be defined on both sides of c.]
EXERCISE
8-2
445
Ito
ONE-SIDED
LIMITS
We write
lim
f(x)
= K
[x 3% c”~
is read
"x approaches
c from
x->C-
the left" and means x > c and x < c] and call K the LIMIT THE LEFT or LEFT-HAND LIMIT if f(x) is close to K whenever close to c, but to the left of c on the real number line.
We
write
lim
f(x)
= L
[x ~
ct
is
read
"x approaches
FROM
x
is
c from
xoct
the
right"
FROM
THE
and
means
RIGHT
whenever x is number line. EXISTENCE
or
x
close
OF
A
to
Let
f and
ime
OF
c,
x
>
LIMIT
but
to
to exist, must both
c]
and
if
the
call
L
the
f(x)
is
close
right
of
c on
LIMIT to
the
L
real
the limit from the exist, and must be
left and equal.
the
LIMITS
g be
f (ee).
two
functions
a= os
lim
xc
where
c and
LIMIT
In order for a limit limit from the right PROPERTIES
—
RIGHT-HAND
and
g(x)
assume
that
= M
x-C
L and
M are
real
numbers
(both
limits
exist).
Then,
(a)
(by
JLim{ f(s)
+ .o(x) 1].=
Limtt (x)
=o (xyes
xc
Lim
f(x)
2+ lim
g(x)
=
=" Lin’
f(x)
="
g(x)
"= L°-1t
tam
o(sc)
=
2
(Di
x3
1.
lim
f(x)
-
50
9 =e
4
g(x).
x3
aba
ilt.4
=
x3
=
15.
xg (36)
x33
tejeves,
exist
x1
x17
ai.
not
x72+
x71t
g(1)
f(x)
x2
x72 -
(Hyee
2
(D)eeO))
"2
=
Lamesa)
(CG)
e—aee
os)
eeleime
(CB)
2
=
f(x)
CA)
lim
x33
“[Property
g(x)
[Property
4(b)]
4(c)]
G
se)
ae anal =x
;
;
Oy eropesty 2(e) 1
—ence 18 00
Picayoudinagia x33 ee) t
19.
21.
limVf(x)
9 =
a/1im
x33
og lS
oe
f(x)
=
V5
[Property
4(f) ]
x33
2f(x)
TG
aA es dee
AE
Lim 2£ (2x)
Ee
Saeae eas
x
Be ee
ee 2-lim
Pe
f(x)
Fe
ae
2. Bo or
EO
ee I
x3
23.
Lim (2x? =
5s)
2(5)*
—-~3
[Stnee
f(x)
=
2x*
-
3 is
continuous
at
x =
5]
x:
47
EXERCISE
8-2
447
25.
5x
ik
x22 4 x
sist
mG OAT Ie
(ex)
+ (2)2
2
2
31.
33.
Lim (x + 1)3(2x - 1)? = Lim(x ¥°2)?- Timex x2
lim V5
-
limV25
~
x>-1
x2
4x = NEE lim, (5. -
A
0
h
(1,
lim
(4x
-
=
seems
3 +
f£(1
+
h))
f(1))
4hx — 3h + 2h*
|
f(x +h) - f(x
at
(1 + 4H,
-2;
.
h-0
tangent
and
f(1))
(1,
through
1s
2h)
=
+4 2h) R43)
shy
h
h>0 4x
-
3
h-0
lim
h-0
f(x + h) - f(x h
=
3
13s
3
- 2xh + 3h*x = h* + bh? =
Sy
ee
eee
=
h-0
_
b(3x? =.2x + 3hx - bh + h?)
h30
h
=a
= lim (3x2 - 2x + 3hx - h + h*) = 3x? - 2x h-0
EXERCISE
8-3
455
( Simp lati,
Steps
BAX +)
tep
2.
PEUX
Evaluate
plep
1.
Gi teed)
Step
2.
tie)
as
dim SA
rca
—
tine
EE
h>0
Ee (ec)
2
fix)
=
0 at's
are
ALIS)6 £' (3)
=
2hA
f(x) ECL)
NOW
et (23)
f(1)
of
x=
=
Qua tl? @)e ]2;
CHAPTER
8
of secant
THE
2
fF (eS;
aces De.
i)
2) Las ale
2
h =
2
lim(-2x h-0
LN (EP)
2
-
h)
=
-2x
e
ee (28
ee eae line:
4,
+h)
=
ey
(3
i=
oe
line:
DERIVATIVE
ea
a See CT rEg y= 1D a = 2
1
ee)
= 2) 3h 4>p2
456
=
Sees
secant
= 2) £1
Slope
2 eo
ee
= x*° +x = 44 eno
Slope
(B)
ESS,
h
TMS
ibe)
eto
OF (ac) 2 ae) Oye (0 ae) h u 4 Dee (x! 4 hie = 2 Bee h : we 2xh 2h = h = -2x - h
h
Evaluate
)
ee
Bl)
exe
simpli tv.
x
h
ae Now
= (Qhesuxt
eee h Al ere h dt ©)
Ve
Gia)
(53)
eel
ee
h5>0
abals
ze
ty DB)
h->0
diy
Thus)
Eh
lim
SS
f(x)
h pe 2 2 ec Re
h
aa
-
5)
(x2
#44+A
a
h
(ener EC)
— ae
ao
ee 2
G
af
eat 3h thea 2 h
2 ee 3
h
(C)
lim(3ue Byes 2
fee ee Ah
.
Sa
.
h30
h>0 (D)
19.
=x
(A)
Average
(B)
pe
of tangent Tine at “(ob 20> lor ys = #4) le.-01)
Equation y - f(1)
f(x)
SE)
(1)
at
line
tangent
of
Slope
+x
rz
BAe
velocity:
Instantaneous
f(x)
= 6x -x
Step
1.
ao
Simplify
=
h)
+
lim(3
h>0
3 meters/sec.
,
- =aeix
peru l6x = x)
«Gigs bles (ee
Pid eihjes L(x)
h
at
ig]
h
h meters/sec.
2
-
timer 1 + b).
+
3
ee
h>0 =
21.
Bx
| 122 pee
(1)
2
iH}
5 meters/sec..
=
(C)
y
and
+ 1) (eh) - (17 \=. flee F(t 4 ah) ‘a = h + bea ae 1 + ch - 2 2h a) Ue = ice
velocity:
Average
Fl) if
oe
velocity:
Lj),
—
Sic
Ge + 2ete bth) = 6x + x
6h
N64
h
7 =
_
BZ
= $h—2xh 2 26 -2x-h Step
2.
gat
ata
Evaluate
h>0
d 5 tie ee)h = Ed
h350 Therefore,
fotay
23.
f(x)
= 6
6G sox
f' (x)
h
shes A
Viana
espine. > ox = h>0
6
FF(Lak
eh
een
ex
aes
Ee(2)
=
6
PPA)
SS
Ay
Wout QO.
2 (3)
= Vx - 3
Step1. simplify F(a & Bb) h
**+")— + -3
Vx +h
-—i(x) =a
Vx
+
=
h x+h-x
hivx
+
-
(Vx- 3)
h NaN
h+
x
+
ho +
Vx
Voce
es Vx)
Vx
1 Ve
+
hs +
Vx
EXERCISE
8-3
457
Step
2.
Evaluate
o£ a
(xe
2 D%e
fore
rh
FS
i
EN)
:
oe ee
h
1
f(y
~ 2Vx"
oe
=
S38
ON
se
Dawes
2Vx
Fg)
£°(3)
2V2"
=e
=
Step
1.
Simplify
£Gc th) = £030) |
h
oi
eS
ee
ree
¥
ie SeMeO Te
h
ee
bs
i
mh
h
+h
eee
h
rile ae!
~ x(x + B)
Len) Een Moateis IS feo ei Bsa ©) i iad 418.3
step 2. Eva
1;
PAW
pies ee (C0
h50
3
h
A
af
Bao RE
Therefore,
f'(x)
1 = ine
27.
F'(x)
exist
at
29.
F'(x) does not re (ep Ee)
exist
at
x =
c;
the
31.
F'(x)
does
not
exist
at
x
e;
F is
33.
F'(x)
does
exist
35.
f(x)
does
1
AYO
-xX +x
at
x
el 12 =)
pee =
x =
pene
hy 5 42 tial
=2
awaar, a
ULES )a ee qi
9:
tangent
at
a.
=
graph
not
has
a vertical
defined
at
x
=
e.
Ge
= x* - 4x
f(x +h)
h - £(x) _ (x + h)? - 4(x + h) - (x2 - Ax) h ss h SA ax
Sa
CHAPTER
2V3
aei
tr(xX)
POND) ssi £(R)) ee
458
a
ho0oVx + h+Vx
Pri
ey
hh)
h
Lim Ext ey
h30 Th
+
8
THE
DERIVATIVE
he ia
ee
Ase h
AR
ee eae
eee a ae
line
Step2.
f(x
lim
Evaluate
+ h)
-
hy
£(x
h->0
hy) 2 2x4 44 e) eE(x) Saig hems im iee =,
.
37.
f' (2), =;
=424,, =
-
2x
=
f'(x)
Therefore,
.
J
4.
0%
(B)
£9(0) een (Ai)
(C)
Since f is a quadratic the graph of f is function, a parabola. y intercept: y = 0 x intercepts: x = 0, x = 4 Vertex: (2, -4)
+
4(x
=
h)
+
eee
2(x
-
h)?
the
for
process
two-step
the Set
To find v = f'(x), use f(x) = Ye eM function, Step1. f(x
x
given
distance
B)
+
= 4(x2 + 2xh + h*) - 2(x + h) = 4x + 8xh + 4h* - 2x - 2h (4x2 + 8xh + 4h? - 2x - 2h) - (4x* - 2x) + h) - £(x) f(x n+ 2x ae Asc) 4"Exch Shahee 8xh + 4h* - 2h f(x
+
h)
Aix
h(8x
+ 4h
-
2)
h(8x
+
-
2)
8x
h 4h.-=
h iT]
lim
f(x
+
h30 the
Thus,
h)
-
£(x
h
velocity,
v = £'(x) f'(1) f'(3) f'(5)
=
+
4h
lim(8x
h-0 = = = =
2,
.nit
+ 4h
8x - 2 8-1 - 2 = 8-3 - 2 = 8-5 - 2 =
0
-
2)
=
8x’ -
2
6 feet per second 22 feet per second 38 feet per second
i ae
41.
Wee Bawhia Bene, PTA
TTA 7 Lat tt? och a ca EaUAS GHase
Mae
(x)
=
2% perb0)-si2
69
45.
f(x)
= Af i
ax
= ae;
ECO}
EXERCISE
07 71
8-3
459
47.
(A)
The All
graphs of g and three functions
(B)
‘ m(x_+
h are vertical translations of the should have the same derivative.
ah =M(x)U.
(xe
h)? ae Oe
graph
of
f.
(x2 ec)
h
x? + 2xh ene oe
Ow 32 he h
Pn 2xh +h) ge (oe ~ =
Step 2.caplim 49.
(A)
m(x
+
h)
”
-
2x
m(x
h +h
en)
a h #0
:
=i zim ll 2xai+ (2x
h
1) ) =
“m' (x)
2
SS
The graph of f(x) = C, Ca constant, is a horizontal line C units above or below the x axis depending on the sign of C. At any given point on the graph, the slope of the tangent line is 0.
(B) Step 1, #2 + B) - f(x) -£=£_ 4 Step2. limt +2) i* -— f(x) _ MnOuelo h30
h
h3>0
f(x) 51.
The
graph
f is not
Pplan 5
of
f(x)
=
yn
XC IV
differentiable
at
because the graph of f has corner at this point.
53.
f(x)
=
\* +
1
lim
only
£'(x)
£(x)
=
The
xX
if x . 0 is f'(0). Since =
0
and
lim
E(x
=
x0t
at
0 as
well;
lim
0.210
x 30+
f is
differentiable
for
real
numbers.
|x| + h) h
limit
CHAPTER
1
a
= Fe
lim'’2x
differentiable
£(0 lim
x =
x07
f is
h>0
460
f'(x)
question
=
x07
55.
N
P-n oadCane
ce 26
It is clear that the
pay
if x
i
Thus,
A
8
-
does
THE
£(0)
' =m
|0 + h|
exist.
Thus,
h>0
not
DERIVATIVE
KO| |
h f is
=
not
Lim
hoo
21
A
differentiable
at
x
=
OF
57.
f(x)
= A
ce
OE
The
limit
h>0
59.
ijn
jewel gels
does
er
eBid 03 bie Becca
Ve dl
h
at
x =
0.
eS 2x ~ oC) 06S x S 2
(Ay eror
i lim
0
. Ge eee bey
30.
ee
2Xi = 3
f' (x) =
28.
oH)
=9(2x = 3x 4,2) (22 4.2) & ite = ee SS) Syax > 6x4 Ax 414° =-6x 4 eas eee a tx 4 Bsc ee = 8x + 3x° - 12x +7
da ne
CHAPTER
55) 7
8
THE
= x anssee (x? - 5)72/3 (3x4) = ue eoaiale
DERIVATIVE
(8-5,
8-6) (8-6)
31.ye
_ 3x4ge+4
dy _ x*(6x) - (3x° + 4)2x _ +8x _ -8 [x*}? Vs =
Cer
dx
ee
Men 2)* ? (obigl
axle 3) ees
A amas
exe
7)
(2x
P 2d
-
= xe 4 2) 812)
3)7
+ 2) Taxlex Sosy
iat 4:2) ]
(Qean ay
aioe
wea) (Bat
en eae
eta
ny aii ee 2) (Pa
OS ake) Boornix)
(Ox
ae 0, down kK units afk < 0)|. The graph’ of gies the same as the graph of f'. (1-2, 8-6) 48.
49.
Mo
eke POR CIM ore nei eS!
Lim(ox
Cle a) Ly epee
x33
50. 51.
2x
aoe sue eens
(8-2)
2 Lins ay 7 nex cay Ser 7 Mae a Oeto Aix
aia
GeO
2x
;
Neb)
wp
x
For x < 4,
BL SIA 2) St
aoe
AG
(8-2)
|x - 4| '="4ixe-ma)sa(4e
x
z S) reBinet Mim ( baie Se! 4 ce teueee te ty te ete. x47 aye x47
xo4rta
53
Por &¢ Goa :
lim x94+
54.
It
lim 1g
498
Wee
Kntane *
-
=e
4
follows x -4
eng
CHAPTER
oo_
pes Ce eee? fe
52.
(8-2)
ne
er
aes A
Pe: 7
8
2)
any x34+ X -
from
4
not
=)
4
i e exist
DERIVATIVE
-
a (8-2)
A
Exercises
does
THE
ete x -
=
alm x34+
52
and
aes
53
wl
(8-2)
that (8-2)
55.
geen!
lim
2) “= 2"-= 23)
h350
ara.#7444 eae Lim
h
h>0
Bes 1, = 3 4
:
h
> h>0 eeeh 56.
f(x) lim
= x* +4 Pie een) = /£(2 h
h>0
Sima + hb) hd h>0
“eT (2. wih)”, sega
ey
lau
(8-2)
[2a e-4]
h
h50
ea
> 4h + Be we AVE'B
eship allei
h>0
su
h
=m
ud i)
:
Abas oh4
h>0
h
dbal
4
(8-2)
h-0
57.
Metar(x) S
=
:
rr,
1 F(x
Hh) =
Metiocoe+ lim
h>0
h
ee
YL x
vk
(By
A tert
h>0
h
hank
Me tp2 = (et
evel
ke
© opStr 3
+2
(eee
Me
Da)
#92)
Sie
ag noo A(x + h + 2) (x + 2) ‘
=i
#10ub Ake: |
Figo Cc + b+ 2) (eva 58.
{Aye
Tim
F(x)
=
-6,
x3 -27-
lim.
f(x)
=
6;
lim
x—3-2+
(B)eetam £(x)
=
bs
he aoe
£(x)
does
not
Se exist
x—>-2
4
x0
(C)
lim
f(x)
=
2,
x27
lim
f(x)
=
-2;
lim £(x)
x3 2+
does
not
exist
x2 10
-10
10
-10
59.
1a((S2) Step
x 1.
-
(8=2)
x
Simplify
Lior
er
ee
ais h
hie
nic
Se
©.St? 24s) ee
7 _ =
al?
(x? =! X)
h x
+
2xh + hh? -
x
-
h-
x? +
x
h
2Wade NE 2
—_
a
eh}
h
CHAPTER
8 REVIEW
499
; Step
Vik zim
2. Evaluate
(
+ A) = of (x) x 4
jfpleytBacal Seach te2) aa lahgy eA °
1
(A)
hs
540559) | ses
Saal
Lamem(x)
Svat
Viaim
x17
(jeeeim
f(x)
=
1
—
om,
x17
We
want
f(s)
=
1
1t
laimeiccdt——-Peeem x 31+
1 -
m =
-1
+ m which f(x)
implies
ah] ambien ll dl al ow ah ae Se teh Negd heb rigs
(D)
x2
The graphs does not.
in
(A)
and
(B)
have
m=
1.
at
x =
|
jumps
1;
the
graph
in
(C) (8=2)
CHAPTER
8 REVIEW
501
1.
EUS) (A)
SS lim
8ote elt
Le
2
Oe
=
eee
Se
ae
h-07-
1 =
lim
(2 + hel
KE
h
>
=
h-07
=
Sb
oom
otal
h-0-
eleniny 3 =
teh]
-="sh-if-h-
(+) (-) (+)
> 0 for: (inequality (interval
f is continuous
7 are’
x 0
x
8 -12 8
Numbers
A.
Sil.
f (x)
-4 0 5
455
eee 10x (x) = x?
& and
Numbers
x
x
-4 -3
x
partition
for
all
numbers.
Numbers f(x)
0
DA
+)
4 8
=3: 5
\(=>) (+)
notation) notation)
()
f(x)
+
5x
Be
-
3
~ x Thus)
£(=5)
.4
0.4 5, =63 xX
Then
i
+
-5,
x
++
+
discontinuous
f is
=
0,
x
3 are
Test
Numbers
and
at
x
partition
3 and
numbers.
£ (Se) —+x =!
:
Test
+915
73
Thus,
e
Numbers
>
-5
O\ for:
< x
0! on
(Sle SS5
a(x)
a
Os Oniy
(co,
(B)
0)
U
=$.(-)
-1
1
(+)
1
25
n~)
4
36
(+)
36 >a3
Ory
oo)
(se
(inequality (interval
notation)
notation)
5.
-1.33, Me PON
7135)
WU
X, =
155207
(Everts).
(1.20,
xd) 3
3 O23
eo) 3523.)
EXERCISE
9-1
511
41.
43.
(CXS) ae Pe 6x LS Be Partition numbers: x (A)
Be)
=
OVon
(—con
(BY
EG)
ae
O Mone
(=2)53, ae 07 2)
BU AS
47.
49.
Sy.
WW
-0.72
(0727s)
epee
numbers
Coy
2 Goa
(B)
L(x)
Dalle). all x,
2/53)
Pa
3 + 6x - x
Partition
45.
58 ns -2.53,
—257=
a(=— 271.5
2-
x32+
61.
f is discontinuous at x = -1 and x = 1 because f is not points. However, lim (x) =e alae Lim joy) ERG x
63.
(A)
Yes;
g is
(B)
Since
lim
defined
at
these
at
x=
x
-
continuous
on
(-1,
g(x)
=
-1 = g(-1),
o(x)
=
2 ="9(2),
2). g is
continuous
from
the
right
-1
x>-1+t
(Cc)
Since
lim
.¢ is
Continuous
from
the
interval
[-1,
2].
continuous
from
the
left
at
x =
2.
x>2-
65.
(D)
Yes;
g is
(A)
Since
“lim
continuous
f(x)
=
on
f(0)
the
=
closed
07
£ is
right
at
x =
0.
x-0+
(By)
Sance:
lam =f(x)°=
-1
4+ £(0)i=
10,
£ 1s
not
‘continuous
£rom*the
left
x07
aie
= OF
(C)
£ is
continuous
(D)
f is dome
not continuous on the closed interval [0, 1] since (x) = One 41) a=, pies, Fliss not continuous from
on
the
open
interval
(0,
1). the
Lett
at
x17
eS
(E)
f is
continuous
C7pexeineercepts:
x =
on
-5,
the
half-closed
2
69.
x
interval
intercepts:
f(x)
ke
ex)
=
ioenot,
2 # =" Se
[0,
1).
x =
-6,
-l,
4
f(x)
0 for
Continuous
on
all (=i)
x.
This
ss)er
does 2s
not
contradict
discontinuous
at
Theorem x =
2 because
f
1.
EXERCISE
9-1
513
73.
illustrate that either condition one of these two conditions must
The following sketches Theorem 2 implies that
f(x)
is possible. occur.
f(x) 5
x 5
10
-5
P(x)
TSS
dR)
ONS2 A Ob OP 550 162 TOME | oe) UaADAe ed
Diane
The
(By.
graph
Lim
of
(2x)
.]/
x
: Decreasing
1 Increasing
4
x -3
0 3
Numbers
rates 15
12 15
(+)
(=) (+)
Therefore, f is increasing on (-«, -2) and on (2, 0), £ is decreasing on (-2, 2); f has a local maximum at x = -2 and a local minimum at x = 2.
520
CHAPTER
9
GRAPHING
AND
OPTIMIZATION
35.
f(x) =x - 3x* - 24x+7 f' (x) = 3x* - 6x - 24 f'
is
continuous
for
all
x and
f' (x) = 3x* - 6x - 24 = 0 aio 2x 8). =.0 3(x
+ 2) (x - 4) = 0 -2 and x = 4 are = Thus, x The sign chart for f' is: '
'
0
-2
-3
i f(x)
Increasing!
Decreasing
Numbers
F(x)
=
+
ee
tah
eta
f'.
for
Test
+
- = O++ |= s.=—
+ 40 +o4
Bi
numbers
partition
t+)
a4
=a
ae
0
‘
5
=a)
(+)
21
; Increasing
f is increasing on (-«, -2) and on (4, ~), f is decreasing on Therefore, (-2, 4); f has a local maximum at x = -2 and a local minimum at x = 4.
37.
£(x) = 2x* - x! f'(x) = 4x - 4x f'
is
continuous
for
all
x and
and
x
f' (x) = 4x - 4x? = 0 4x(1 - x*) = 0 4x(1 - x)(1 + x) = 0 Thus, x = -1, x = 0,
The
sign
f' (x)
chart
for Oa
St
f'
0—-————
: ' ' —____o___e__}_e—__ nt : . : f(x)
ae
=
-2
Increasing!
.
1
Lor
Test
Numbers
.
1
3
0
.
Decreasing 1
Increasing'
+> ae
x an Cale =2 px
2
2
ag 2
Decreasing
2
f is increasing on (-~, Therefore, f£ has local 0) -and-on--(1.--0); (i) Minimum at x = OQ.
39.
f(x) = 4+ en)
8
23
(-)
2
3
(+)
-24
(-)
2
-1) and on (0, 1), f is decreasing on maxima at x = -1 and x = 1 and a local
2x
Sa
x =
f' (x) ee 24 (+)
B GL
8x - x -
f' is continuous for mate) =) 8 —" 25400
Thus,
El,
numbers
is:
= = 044444
=
partition
1 are
=
4 is
all
x and
4
a partition
number
for
f'.
EXERCISE
9-2
521
The
sign
chart
EN (x)
for
f£'
is:
++++0-++-=
-
Test
att
0 £(x)
x
45
0
'
5
Increasing
(-cc, se (4,
im (G29)
4) 4 ©)
D6
EKGS)
0
4
4
20
BLASS)
or t+) -2
(-)
on
(4,
! Decreasing
Therefore, f is increasing local maximum at x = 4. Se
Numbers
on
(-«,
4)
if
and
decreasing
GRAPH
~
Increasing
Rising
0 -
Local maximum Decreasing
Horizontal Falling
OF
~);
f has
a
f
tangent
f(x) 20
10
5
41.
10
x
Fide) ee eesae PAN Wey oeLS, f'
is
continuous
f' (x)
=
3x7
-
3
for
all
x and
ial 0)
3 ee Saye = 10 Bio ceame Au)) Nore Et
ay)
ae
(0)
Thus, x = -1 and x = 1 are The sign chart. for f* is: £° (2)
Fae tact 2) 0 -----e
partition UES Preset a ye
HH -2
f(x)
-1
Increasing:
0
x ill
Decreasing |
numbers
2
for f'. Restenunbers x -2 0 2
(Sx)
9 -39
(+) (-) (+)
i Increasing '
Therefore, f is increasing on (-e, -1) and on (1, «), f.is decreasing on (-1, 1); f£ has a local maximum at x = -1 and a local minimum at x = 1. Seige Sisters Tea SCMM ARMM ETRE: L865 1 57) ae SY es een Set ares cr
ae (=e077
522
RE a
= 1)r
ee er eae
ee
TORAH
is
Increasing
Rising
5 il (lls) oa
0 0
Local maximum Decreasing Local minimum
Horizontal Falling Horizontal
(67)
+
Increasing
Rising
CHAPTER
9
GRAPHING
AND
OPTIMIZATION
OF Eth ey tangent tangent
x
f(x)
so 0 1
3 a nat
10 = 12s
Seta
Pays
6x7 = 3?
-12 % 12x - 32 for
continuous
is
f'
f(x)
x and
all
19 + 2x - 3x” =. 0 -3 (x? - 4x +4) 20 =3 (= 2)" = 0
Wee
Thus, x = 2 is The sign chart
a partition for ae ae
for
number
Test
2.
Decreasing
f(x)
ee ihe d Oe
3
| Decreasing
f is decreasing for all x, Therefore, at x = 2. horizontal tangent line er e eke Gente en gee e See ie £ a(x) x
2)
(-co, x= XFS
x
2 2
f(x)
0
10
2
2
~
Decreasing
0 -
Decreasing
47.
i.e.,
on
(-co,
GRAPH
OF
f
oo),
and
is
there
a
Falling Horizontal Falling
tangent
f(x) 10
der 45.
OxSe-1250-)
«
—_—_t+—_+—_>_ +>
Qa
Numbers
mel fos
ae Te i AOS aa
alae
f'.
az
x
increasing on Critical values: x = -1.26; x = -1.26 at minimum local -1.26); (-co,
(-1.26,
0);
decreasing
on
ing on Critical values: x = -0.43, x = 0.54, x = 2.14; increas and -0.43) (-«, on ing decreas co}; and (2.14, 0.54) (043, at minima local 0.54, = x at maximum local (0.54, 2.14); Roe! -0.243'Sandiix =)2 #4
EXERCISE
9-2
523
49.
f(x) = 0.25x4 + 230° + 2.5x% - 11x £' (x) = x° + 6x7 + 5x - 11 f'
is
£' (x)
continuous
for
=
A sign
all
0 at
x =
-4.17,
chart
for
£"
x;
using
-2.78,
a root-approximation
0.95
(e¢ritical
routine,
values)..
is:
15
(-20,-4.17) (-4.17,-2.78) (=2.78,0.95) (0-95,0) f'(x)
-----
O++4+4++0-----
O+++++
-5
8 -____e—_____«______> -4.17 f(x)
Decreasing
‘f is (-c0, ate
51.
-2.78
ttncreasing
increasing -4.17) and ="-4) i
x
0.95_
becreasing
15
increasing
f
on (-4.17, -2.78) and (0.95, (-2.78, 0.95); local maximum
and
x
=
5
«); decreasing on at x = -2.78; local
minima
0.95.
Increasing on (-1, 2) [£'(x) > 0]; decreasing on (-e0, -1) and on (2, oo) [£'(x) < 0]; local minimum at x = -1; (local maximum at x®=02>
53.
Increasing on (-1, 2) and on (2, 0) [f£'(x) > 0]; decreasing On! (coy. 1) ie (Ex) Ole local minimum at os = =d).
be
COUP
it ees ERS
lik atoant |
BOE wis lel | IT | MEL, es | BN]
FiFg
BERRA
S55).
LIES
6 (sc)ie>
Ol von (—co sn — 1) mandaon (3) cooSR EY (xy -< Oren (ade oa)> EY (x) e=s0eatece—— ol anciece—i oe
Bele)
=
= = :
fio
Beet
2
Critical values: the domain of f
524
CHAPTER
9
(Note:
(2)
=
£ is
not
rep a i?
(x + 2) f'(x) # 0 for (i.e.,
GRAPHING
AND
-2
is
Siro
bel (x)
ee OM One (=o) anclmon 9°); £° (x) < 0 on) Y{-e, a2) on) (i) 3) Gin (oc) el Olercte 2y xa Cand ocv=ase
(372 ang ee
defined
at
x
=
-2.]
”
3 ; Ge tn2) all x, and f'
not
OPTIMIZATION
a critical
is defined value since
at -2
all points in is not in the
4
61.
f(x)
(-»,
not
defined
Eee x)
local
Or]
=
2)
=
0
chart
for
f'
ee; As a
ss
ae Increasing
PAS) we tie
-—
--+-*
ej
=
-2
+
+
and
x =
=
x
2;
‘
ND-
tase
Therefore, en Mec. 0) minimum at
in
x
-2.and
=
2 are
is:
'
: L(x)
not
Tt
2) (x —
Theasign
0 is
0
the critical values are x Thus, also partition numbers for f'.
63.
x
£ has
a critical value of f since a partition number for f'.
0 is not x = 0 is
x = but
4 ue
2
Se
: (x)
at
co);
(-2,
on
and
=1-
Critical values: the domain of f,
(ecm
f is
-2)
on
increasing
[Note:
x
no
Set
oy.
!! Increasing
f is
Therefore, extrema.
0
'
Increasing
£(x)
Bz) 2 t*)
Ba =
ee
eee By. 208-1
Numbers
Test
+ + 3
wile
neculé
f' (x)
isa
is:
f£'
for
chart
eign
Mae
-2
x =
values;
critical
any
have
not
f does f'.
Thus, f). number for
domain of partition
0
+
+
> x
|
Test
Numbers
b38
eS) 5
=>
Ses 1
te1:Increasin: g een 1 Decreasing
3
ge (+)
AE
-35 (-) Sass)
f is increasing on (-~, -2) and on (2, ©), f is decreasing and on. (0,42)mi¢-has a,docal maximum at x = -2 and a local x = 2. [Note:
ot = + 5
f is
not
defined
at
x
=
0.]
ie = 2-138 ill
2
Critical values: the domain of f;
x x
= =
0 is 0 is
© is
not
EXERCISE
9-2
not a critical value of f Since’ a partition number for f'.
in
Sg) = 2 pesegaer il
2
pie
Oe RPA, Bie -2
525
Thus, ae The f'
the
critical
sign (x)
chart
ee
Py
value
for
EE
0
f'
+
is x =
-2;
-2
is
also
a partition
+++
22
+
ND
is
es Toe ee
oe
Test
Therefore, and on (0,
65.
(64)
nes
: Increasing
a9
[Note:
(x - 2) (2x)
f(x) =
(x
x
=“Gop
-
Thus, the partition
$40
atx
67.
Oar
Increasing}
f'
ae
are
x
at
x
=
on
=
0 and
x
=
2 is not
0 and
4 are
Test =
tlhe
es
>
AL
Decreasing
«x
=i
ei
3 5
(-«, 0) and on (4, local maximum at x
F' (x)
2 (+)
At
| Increasing
f is increasing on on (2, 4); f has a
Numbers
=3
f=)
ot co)
co), £ is decreasing on = 0 and a local minimum /
2x7 (x =
the
we
6)ilse
CHAPTER
critical
construct
partition
526
in
also
4
ee 2 (r=
Ie doe) 6)
= 2x°(x - 6) (3x - 12) = 6x?(x - 4) (x - 6) Now
-2)
2.]
4;
i
f(x) = x4(x - 6)? £) (x) = Xe(2 x= (OC
Thus,
(-,
is:
=A
=
(+)
0
for
hale
defined
——+—_>—_—_—_—__
Therefore, (0, 2) and
hp)
1
sai)
2 is not a critical value of f since 2 is a partition number for fF'.
critical values numbers for f'.
al
f(x)
Az
1
=0
4)
chart
Lx)
= sit
10
x - 4x
sign
F' (x)
x? - 4x rere (x2 =92)
2
x = x =
4x
-
not
- x4(1)
past = (a)att 2)2
xX(x
The
1
: Decreasing ‘ 1
f is
2 )
-
Critical values: the domain of f; re (x)
0
f is increasing on (-2, 0) and f is decreasing »); f has a local minimum at x = -2.
x
0S
Numbers
x
Ei
Pas Decreasing!
£(x)
for
is:
a 23
number
9
values
the
sign
of
f are
chart
numbers) .
GRAPHING
AND
OPTIMIZATION
for
x
=
f'
OF
xu—
(x =
On
4
and
eX se ee
x=
nL =
26.
Ohare
‘
f(x)
1
49
Decreasing
'
Increasing
:Decreasing
;
iy
ax 412) 7/7
(x)
(3)(xX
2 St
Eun(sc\ies,
'Increasing
4.)
f'(x).#
2;
x =
2 is also
defined
not
es
ee
ee
ND 25
=
x
at
Decreasing
on
avx - x = 2x'/2 - x,
GS)
f' (x)
iH}
Critical
nti a eg.
iH}
values:
(+)
f is decreasing on 4 and local minima
critical
defined,
for
f is
Numbers
ra), co \-)
og. 1
«
is
f'. Test
er
f(2)
value
Ae ee
' Increasing
f is increasing Therefore, local minimum at x = 2.
“71.
+
[Note:
2.
for
number
—_—___+_+-2_+—__——_> 0 81 7% £(x)
7
and on (6, ~), maximum at x =
Thus,;—the
x:
all
a partition
=
=
=p
f' (x)
(¥s )
aie
0 for
ficyee
x =
-75 0
2 ——+_—_
=
is
f'
values:
Critical
5
1414 =1/3
2
—
Od)
90.
1
f is increasing on (0, 4) Therefore, (-cc, 0) and on (4, 6); f£ has a local at x = 0 and x = 6:
69.
2RO
=a
Ses
0.
£ SG
x
+_—_ + > « _+_ + _o—_ —_ + —_» —j+ He
Numbers
Test
ne) OS
eS
eee
Rte
Ohare
eT
f' (x)
SO
wale
a
(2,
»)
and
decreasing
Oo
x Vv
oO
1;
x=
(-~,
on
2);
a
f has
x>0
GAS a
=
a
f' (x)
MT
sa ie Bg He x x] Thus, the critical number for f'.
The
sign
ENC)
£(x)
chart
x value
for
f'
or
a partition
also
Test
Oe shee
t.
}
ie
eee
fy 4
' Decreasing 1:
Increasing
1 is
is:
(eet '
f is x =
>
x
2
f is increasing Therefore, local maximum at x = 1.
Numbers
ee ae ee
7
on
(0,
1)
and
x1
£" Cx)
4
ft)
4
-3 (-)
decreasing
1
on
(1,
~);
EXERCISE
f has
a
9-2
527
73.
Let
f(x)
(Al)
Tice >
= x°> + kx 0
f'(x)
= 3x? + k > 0 for all x.
There
are
ON (Bie
ree
no
critical
values
and
no
local
extrema;
f is
increasing
(J -£. |; f is
decreasing
neo)in,
.
PA(se=R'
(0,
'
' —_——_|
81.
interval
ee
'
C(x)
om
= 0 = 0
80)
Next, construct number for C'). C(x)
320
values:
aCi)
(x -
+
te +B) (0.24) values:
- O.1de(2e)
(a, 6), then P' (x) P is increasing.
=
_ O.14(1 - ey (te? +1)?
Eee
i
C'is
continuous
for
all
t on
the
interval
the
interval
(0,
24)
(0,
24):
Ori(1 = 1e*) = 0 (t2 + 1)? 0 eee 0 (TS ey(r + 6)
=
the
critical
value
of
C on
is
t =
1.
EXERCISE
9-2
529
The
sign
chart’
Cure)
for
Hi
Cc"
1 is
a partition
es ee Oem
ee
ot
1
Increasing
p(t) = ese
(t7 + 49) (8.4)
- 8.4t(2t)
t
—
Hh
Bg Be (ss) wee el eS 5 =O. i=) a
;
Concave
:
Upward
of f is concave upward there is an inflection
Numbers
es
on (6, ) and concave point at x = 6.
EXERCISE
9-3
535
51.
f(x) = x® - 24x27 + 10x - 5 f' (x) = 4x° - 48x + 10 f"(x) = 12x% - 48
Now,
£"(x)
= 12x* - 48 = 0 12(x* - 4) = 0
ADT (Sce-te The
sign
2)n(ec
chart
£" (x)
2)
for
ee
See f" (partition
$+++0-------
i
———+—_>—_—_—_
-3 — of
-2
numbers
Giana: ——_
0
+>
—
The
sign
ye
'
Downward
:
Upward
chart
for
f"(x) ar
fihas)a*
local maximum at xk = £ has®a™local®minimum at x
(partition
1
2
1
Graph ia
536
graph
CHAPTER
is
2)
is:
Test
eS
3
Numbers
xX
0
=
0°) Bake = "4°
3
jae
-12
(x)
(-)
ees
f
de
:.
The
number
Cea
ee Sa 0
(-e, -2) and on (2, ~), the graph has inflection points at
A)
“Gheretores)
Pry
£" (x)
(Sh dt)
Upward
590)
60.
60+
Concave
12
Py
3
3
|
=
Numbers
=de
Concave
2)
is:
0
ING) = Soc = Ie Sole SA) Crattacallivatuecemcr—s10 nA GY (0)4 =" 25< OFS 2Theretore;,
6(4
2)
oy
;
E(x) hae = Ge 1G Foe Il ae lox (=
and
x
«x
Thus, the graph of f is concave upward on graph is concave downward on (-2, 2); the X=) (— DealCl yell Kee
53
-2
Test
Concave f
are
9
of
Concave
1
Concave
Downward
|
Upward
f »has
GRAPHING
an
inflection
AND
OPTIMIZATION
point
at
x =
2...
The
graph
ofs
fase
55.
toy ee + x 42 Pie 3x"... 1 PEEx)we= OX Since £'(x) = values. “Now,
3x* + ££" (x)
1 > 0 for = 6x = 0 bret
The
sign
chart
for
f"
x,
f does
not
have
number
is
0)
-1 Downward
Upward
|
The graph of f has an Mebectiion pont at x Thevgqraph of £ is:
-1
0
0 1
2 4
=
5
(4)
“Jtangent line x
Critical value: x fr?) ="0“Thus,
second
(x)
6
---~
= -3(2 - x)? = 6(2 - x)
f"
1
0.
foe = (2 - x)? + 1 Pumeee 3 (2 = x)*(-1) f"(x) = -6(2 - x)(-1) -3(2 and on for f"
Cenex)
f(x)
f(x)
BE
57.
1
x
: Concave
Concave
*
Numbers
Test
es
wer
0
critical
is:
'
ae
any
0)
(partition
MS vie
Ptige
f£" (x)
all
= 2 the
derivative
test
fairls-
“Note
that
£'(x)
=
x)? < 0 for all x #2. Therefore, f 1s decreasing on (-©, 2) (2, ~), and f does not have any local extrema. The sign chart (partition number is 2) is: Test Numbers +i
et te Og sie=e
—ey—
1
0 Graph of Ff
Coase. Concave Upward
The graph of f has an iaclectton point atx The graph of f is: oe 0
f (x) 9
2 3
al 0
' |
eb
Concave Downward
'
=
f" (x)
oe es
;
ae
ee
ee
x
Reto
OB:
f(x)
2). s tangent line
,
EXERCISE
9-3
5:37,
f(x) = x - 12x Fh (oe) 33a eae
59.
a
(EXs)
k=
4)
es Cele)
OE
Critical values: x = -2, x = 2 f has a local maximum Therefore, = -12 < 0. = 6(-2) f"(-2) £ hag antocal minimum at eTherefore, f° (2) = 6(2)i=(42 > OD sign chart for £"(x) = 6x (partition number is 0) is: Test Numbers i
£" (x)
EPR
5 Oe Rab 4
OL)
Slips Graph
:
The
‘
Concave
ones
1
Downward
graph
of
Tee Tee pill ee EA)
_t———c@0mO
>
f has
-2. The
at x = x = 2.
“-6
-1
x
(-)
et
ar a
Vt Concave
{| Upward
an
inflection
point
at
x =
0.
The
graph
of f is:
f(x) 16
=1116
ERS SSS SR oS BE BS EE A
61.
x
BY (ee)
-o
< x
n, then 4, and bo.
GRAPHING
AND
each limit will be ~ or -«, depending on m, and f(x) does not have a horizontal asymptote.
OPTIMIZATION
5.
LOCATING
VERTICAL
Let
tem) = d(x)
f(x)
ASYMPTOTES
where
’
If at x = c the not 0, then the Of L.
both
n
and
d are
continuous
at
x
=
c.
denominator d(x) is 0 and the numerator n(x) is line x = c is a vertical asymptote for the graph
[Note: Since a rational function is a ratio of two polynomial functions and polynomial functions are continuous for all real numbers, this theorem includes rational functions as a special case. ]
&.
A GRAPHING
STRATEGY
Analyze
FOR
y =
f(x)
Step
1.
f(x):
(A)
Find real
(B)
Find intercepts. the x intercepts exist. ]
[The y intercept is f(0), are the solutions to f(x)
if it exists; = 0, if they
(C)
Find
[Use
they
the domain of f. [The domain of f is the set of numbers x that produce real values for f(x).]
asymptotes.
Theorems
3 and
4,
if
calculate limits at points of discontinuity and decreases without bound. ]
all
apply,
and
as
otherwise
x increases
Step 2. Analyze f'(x): Find any critical values for f(x) and any partition numbers for f'(x). [Remember, every critical value for f(x) is also a partition number for f'(x), but some partition numbers for f'(x) may not be critical values for f(x).] Construct a sign chart for f'(x), determine the intervals where f(x) is increasing and decreasing, and find local maxima and minima. step where
3.
Analyze
the
graph
f"({x): of
Construct
f is
concave
find
any
inflection
points.
Step
4.
Sketch
graph
the
of
a
sign
upward
f:
Draw
chart
and
for
concave
asymptotes
f"(x), downward,
and
determine and
locate
intercepts, local maxima and minima, and inflection points. Sketch in what you know from steps 1—3. In regions of uncertainty, use point-by-point plotting to complete the graph. Ss S
aeuerom
the
graph,
f'(x)
3.
From
the
graph,
f(x)
is
5.
From
the
graph,
f(x)
has
7.
From
the
graph,
f"(x)
9.
The
graph
of
f is
-1
«x
0
Graph
Concave
i
Concave
of
Upward
'
Downward
£
O
|
Intercepts:
f(x)
=
Concave
(B)
+
=
Downward
Domain:
£'(x)
a
Upward'
Analyze
2.
—
Concave }
(A)
Step
=
0
ketch
19.
£ (x)
‘
'
EXERCISE
9-4
547
(A)
Domain:
All
real
numbers
(B)
Intercepts:
y-intercept: x-intercept:
(C)
Asymptotes:
Horizontal asymptote: y = 0 Vertical asymptotes: x = -2,
1
£' (56)
-
—- -
—
‘
ND, + + +. +
except
x =
-2,
x =
0 0 x =
1
#.+ND
-
-
-
-
HH -2
f£(x)
0
Decreasing:
Step
3.
Analyze
i Decreasing
f"(x):
a
£" (x)
2
Increasing
1
----ND
--
rT
0++
ND++4++4+
x -2 Graph
of
f
0
2
Concave
'Concave Concavet Concave
Downward
Downward Upward 1 Upward a
ry
'
F (x )
Inflection Point
Step
23.
lim X—oo
25.
4.
Sketch
graph
(Limen(saxSteeoxPeig
5
29.
Peau
31.
lim jim
of
f:
(4x° + 2x - 9) = lim 4x° = © xX— 00
27. Win
548
the
ea
3a
On|
5x2
+
4. 5
=, a. Koy 14(¢),) 2
sara22" at Oey Aten
2*—
CHAPTER
11
Eee)
9
GRAPHING
AND
2
OPTIMIZATION
(by 3) = Se
by 3)
2
33.
Ea3a)
=
act
ax”
asymptotes:
Horizontal
x
2
= er
2
iL
1
a x”
x2
je a
= “5 x
:
;
=
1 is
Vy =
LIne
= M(-1) N(1) = 2,
0,
sthe
Thus
function
0 and
=
D(1)
x = -1 is a vertical asymptote; a vertical asymptote.
the
a horizontal
Oe
-4#
=
,
fi
is
2
y =
a rational
1 and
=
D(-1)
5,
Using
asymptotes:
i
‘
line
N(-2)
0 and
f is
tod
asymptotes:
Horizontal asymptote. Vertical
+
ae
ae
the
2 and
=
= Using 5, D(-2) asymptotes: -2 is a vertical asymptote.
Vertical line x =
£(x)
2x
=
=
biTm ae
asymptote.
35.
function
a rational
; f is
2
a horizontal line line x =
the
2,
so
so
the
1 is
x?
37.
Pane
x"
+
E is
an 6
ax”
39.
b
Vertical
asymptotes:
vertical
asymptotes.
f(x)
ace = "5 x
asymptotes:
Horizontal asymptote.
= Son 3;
£ is a rational
Dix i
41.
Aan)
=
no
f has
5,
=
—
x
f does
x;
N(3)
0,
=
D(3)
=
a horizontal
have
not
9,
3 isa
x =
line
the
so
asymptote. —2
+
3x
cee Horizontal)
=
oe
Loy
hx
UP
asymptotes:
asymptote. asymptotes:
Vertical
a vertical asymptote; vertical asymptote.
43.
x;
all
for
6#0
+
x?
x2 =
Using
asymptotes:
Vertical vertical
=
a horizontal
have
not
function
ax” asymptote.
£ does
=x;
D(x)
5,
Using
asymptotes:
Horizontal
function
a rational
#
Ly (tet
Ee 27 Oe ax”
——-
bx
Using
D(-1)
= 5,
=
2x?
—5 = 2;
x
0,
asymptote.
N(-1)
N(2)
=
-3,
earratvonal.
line =
so
2 is
y = 12,
Luncteron
so
the
the
line
a horizontal line
x =
x
=
2 is
-lisa
24
IVe iad as at Bx4
2x?
=~» = 2;
asymptotes:
the
oh apes
po Wade Blea ax”
Horizontal
Faas
0,
=
D(2)
giex ose WO.2 oe~ lage agg
BP iticn Awe
2 ey
oe
the
inew
VO
melSmcumihorDZOn cad:
bx
EXERCISE
9-4
549
Vertical
so
is
=
asymptotes: Using 5, D(-1) = 0, N(-1) = -3, , : F AG PS eae a vertical asymptote. Since lim f(x) = lim oN, nae x2
have
a vertical
asymptote
at
x =
x
the 1,
line
x =
f does
not
2.
45. f(x) = x? - 6x? Step
1.
Analyze
(A)
Domain:
(B)
Intercepts:
f(x):
All
real
numbers,
(-©,
©).
y intercept: f(0) = 0 x intercepts: x - 6x7 =
0
x7(x - 6) = 0 (C)
x= a polynomial,
Asymptotes: Since f is vertical asymptotes.
Step
2.
f'(x)
Analyze
are
no
horizontal
or
f' (x):
= 3x* - 12x = 3x(x - 4)
Critical
values:
x
=0,
Partition numbers: The sign chart for f' (x)
x=4
x = 0, f' is:
++++0-----
x
4
OF) tacts
‘
'
+--+ +--+ =i)
f(x)
40
Increasing
3
Local
Maximum
Minimum
te
chart
EB (5x)
.for
>
«x
Increasing
Local
£™(X) ="6x "42 Partition numbers
Test
aes
| Decreasing
Thus, £ is increasing (0, 4); £ has a local
Sign
0, 6 there
on (--, maximum
.
5
-"2) f": x = 2
Rela
co
Sa
Oba
15
(+)
3
LRH
ee
Ses)
Test
mae
e238 °
Concave
e
-1
f£"%:
'
££
£° (x)
eer a oe
0) and on (4, ~); f is decreasing on at x = 0 and a local minimum at x = 4.
6(x for
Ors Adal ah
Graph
x
Numbers
«
Downward
{|
Concave
Numbers
x
Le (3)
i
-6 (-)
3
6
(+)
TA GI Lr
Upward
Inflection Point
Thus, the graph of f is concave downward on (-c, 2) on (2, e); there is an inflection point at x = 2.
550
CHAPTER
9
GRAPHING
AND
OPTIMIZATION
and
concave
upward
-1
f(x) 10 x
-70
30
47.
£(x)
= (x + 4) (x - 2)?
Step
1.
Analyze
f(x):
(A)
Domain:
All
real
(B)
Intercepts:
numbers,
(C)
Asymptotes: vertical asymptotes.
(-%,
©).
f(0) = A(-2)7 = 16 y intercept: (x + 4) (x - 2)7=0 x intercepts: SQ = 7-4). 2 there are no Since f is a polynomial,
horizontal
or
Step Analyze 2. f' (x): f' (x)
=
it
412
=
(x -
2)[2(x
cm 2) ia), + le
=x = 2) (35¢ + Seo xe = 2) +
+
4)
+
(x -
Critical values: x = -2,.x Partition numbers: x = -2,
Sign
chart.
for
tet
£' (x)
= 2 x = 2
f':
Ae Ome -
a f(x)
2)]
6) 2)
erty
:
= Pcie 7
det il,
:
tartar tars tN imagem tos
Increasing! Decreasing Local Maximum
3.
Analyze
- the
! Increasing
x
Numbers ae
Fi i(3e)
a3 Oy
V5 +) 229 (>)
3
TES) 5 (se)
Local Minimum
f is increasing on (--, -2) Thus, (-2, 2); f has a local maximum at Step
Test
ae Sis 2
and on (2, ~); f is decreasing on x = -2 and a local minimum at x = 2.
f"(x):
P= S(sc + 2) (1) + 3 (ce — 92) (1) Partition number for f": x = 0
=
6x
EXERCISE
9-4
551
Sagniichastiltion
£" (x)
i":
eS
ye
Ie
Test
‘
x
a A
tee Graph ee
.
ry
St
nO.
awe
'
Numbers
Concave
1
Concave
Downward
|
Upward
(x)
i
rey
Sree
rik)
Inflection Point
Thus, the graph of f is concave downward on (-«, 0) on (0, ~); there is an inflection point at x = 0. Step
4.
Sketch
the
graph
of
f(x)
= 8x 2 2c
Step
1.
Analyze
f(x):
Domain: All Intercepts:
real numbers, y intercept:
x
(-«, ©). f(0) = 0
intercepts:
8x°
=
(4
234
= xia SS
(C)
upward
32 16 0
49. f(x) (A) (B)
concave
f:
18((eis)) = 0 2
and
Asymptotes:
No
horizontal
or
vertical
=m
0 0, 2 asymptotes.
step Analyze 2. if (x):
f£'(x)
= 24x* - 8x° = 8x*(3 - x)
Criticallivalues: xe= Partition) numbers:'x
Sign
chart!
for
0) so =)3 = 0, x =
pee eee,
Oe es, Ce RE
£4 (6c)
‘
Test
te
=
a
a
Increasing! Increasing
Numbers
So
:
Sr 80
3 ee '
‘
f(x)
3
6%:
x
ee
ae
3
&
-1 ‘A
Decreasing
£°(X)
32)
(4+)
6%
(+)
4-128
(-)
Local
Maximum
Thus, local
552
f£ is increasing on maximum at x = 3.
CHAPTER
9
GRAPHING
AND
(-© ,
3)
OPTIMIZATION
and
decreasing
on
(3,
~);
f has
a
tepEsn
Analyze
f"
(3s) :
f£" (x) = 48x - 24x* = 24x(2 - x)
erat
; Concave
Downward | Upward
| Downward
2
Inflection Point
4.
(-)
24
(+)
S
-72
(-)
the on (-c8, 0) and on +*27*%0)% 0 = x at points on are inflecti
concave downward on (0, 2); there
Ofeee:
graph
the
Sketch
-72
Inflection Point
the graph of f is Thus, graph is concave upward and X = 2. Step
-1
alt
3
; Concave
Concave
oe
Zs
,
2
1
0
Numbers EAS)
x
'
' =a
Test
tes cer eke cone
ae
Br
£" (x)
2
x =
0,
x =
f":
Partition numbers for Sign chart: for fi":
f(x)
f(x)
32 54 wWwno!|™%
51.
fa=)43 Step
(A)
1. Analyze f(x): All real numbers Domain:
(B)
Intercepts:
y intercept: ee
eet
x intercepts:
=
f£(0)
}
bie (C)
x
except
=
3.
S =
-1
teas
3 =
sem et x =
=3
Asymptotes: asymptote:
Horizontal :
Thus,
y =
lim
xo
x* 2 _ KI-
3
lim
X— eo
ili
ee
x 1 is
Vertical as is not 0 at
x =
a horizontal te: 3.
asymptote.
The denominator is 0 at x = 3 and the Thus, x = 3 is a vertical asymptote.
EXERCISE
numerator
9-4
553
Step
BB
2.
Analyze
dae
(>t))
een
f' (x):
eS
ae
pe woly Ei (ae
Critical values: None Partition number: x = Sign chart for f'; ES (xX),
2
f(x)
aoe
ose
Decreasing
Thus, f is extrema.
NN
££
Se
ce
f£":
Thus, the graph On? (Si co) ir
3)
and
on
(3,
x =
©);
there
are
no
local
3
on
Test
Numbers
SS ee 2 -12
er
Gas (x)
4
12
———
(-) (+)
: Concave
Upward
of
f is
f(x)
concave
downward
f(x)
0 -1 4
9
(=)
oui)
x
Maal eae
Downward
CHAPTER
noo
4
(--,
BONITO
Concave
2
£" (x)
2
oe
Graph
554
x
1
VE
Numbers
Ne iear (Ga -13)2
See NUN erga p MT
a
x
Test
"
Partition number for Sign chart for f":
-3 0 5
a ae Se
on
x
£" (x)
1,
lim
x00
(A)
«x
0
Graph Pee
'
Concave
Downward
'
Concave
.
Upward
Inflection Point
Thus, the graph of f is on (0, ~). There is an
558
CHAPTER
9
GRAPHING
AND
concave downward inflection point
OPTIMIZATION
on at
(-c, 0) x = 0.
and
concave
upward
63.
f(x) = (x* + 3)(9 - x’) Step Analyze 1. f(x): (A)
Domain:
(B)
Intercepts:
All
real y
numbers,
(--,
intercept:
£(0)
x intercepts:
©). =
3(9)
=
(x* + 3)(9
27
- x*) = 0
(Boe) aS) an x)
1-1)
6
Local minimum
Thus,
on
:(=)
-1
12.
(+)
60
(+)
msta(re -
BY, +
numbers
for
ie
3
(--,
+ (x* - 4)(4)
for
=60
Le
f":
-2)
and
local
on
(0,
minima
at
per
Wha
x = 4
:.
8
Edt Ba ar
.
.
3
3
! Concave
!
CPE
Inflection point
f is
concave
oa = Sees
+
Test
}
Numbers
x x
2
r" (x)
AL
0
>
"
(+)
Hanh)
if
+ (+)
Upward
point
of
+
Concave
' Downward 1
graph
4
;
Inflection
f is
~);
3
x =
'
ae ea ET om Upward
the
(0,
/f':
Concave
Thus,
ee
3
' Graph
on
(1 + x*)3
numbers for
decreasing
(x + BYx- 8
")°
Ghart
3
f is
f"(x):
632 2) 2° +5
aoe.
0);
+ mh (-2h =. be2ee) (DCN (ta)
fr Sion
(-~,
concave
downward
See
upward
on
on
(-=, 2) and
Ev33sae Beit
the
graph
on
has
(2. ~-); the
:
inflection
=
EXERCISE
9-4
565
Step
4.
Sketch
x
bai(59)
al}
3
aa) 0
4 1
V3
Fi
3
7 336
the
graph
of
f(x)
fF:
4
HE)
=
oe
a
5x?
+
3x7
+
8x
-'5
Step Analyze 1. f(x): (A)
Domain:
(B)
Intercepts:
y-intercept: f(0) x-intercepts: x =
(C)
Asymptotes:
None
Step
2.
all
real
Analyze
numbers
f'(x):
Cra ta cally lwesi-mece—s—
f is decreasing (-0.53, f has a
tep
1.24) local
3.
on
f£'(x) Ol 5S)
(--,
Analyze
~); x =
f"(x):
0.617
= 4x? - 15x? + 6x + 8 and
(1.24,
f has 1.24
f"(x)
local
3.04); minima
£(x) Part
= x 1.
- 21x?
Analyze
All
+ 100x*
f is at
x
increasing =
-0.53
and
on 3.04;
= 12x? - 30x + 6
The graph of f is concave upward on (-o©, of f is concave downward on (0.22, 2.28); peints atx = 0222 andu 2.28)
75.
1 .877e3e72
sl An or Od
-0.53)
and (3.04, maximum at
= -5 -1.18,
0.22) sand4(2..28), 00); the graph the graph has inflection
+ 20x + 100
f(x):
(A)
Domain:
real
numbers
(B)
Intercepts:
y intercept: x intercept:
(C)
Asymptotes:
none;
lim X—
f£(0) = 100 x = 8501, 13786
f(x)
=
lim
-00
f(x)
= ©
500
x—00
Part 2. Analyze f'(x): £'(x) = 4x? - 63x” + 200x + 20 Critical
values:
SORT Oy
f is
a)
An S
increasing
on
(-0.10,
4.57)
and
f is decreasing on (-o%, -0.10) and f has a local maximum at x = 4.57; atGexka= -0.10 and 11.28.
566
CHAPTER
9
GRAPHING
15
fel Ss
AND
OPTIMIZATION
(11.28,
©);
(4.57, 11.28); f has local minima
-500 P
500
Part 3. Analyze
f"(x):
f"(x)
= 12x*
- 126x + 200
The graph of f is concave upward on (-«, 1.95) and _ v5, (8.55, o); the graph of f is concave downward on (1.95, 8.55); the graph has inflection points at a= and x
t2 +
Since
Vertical asymptotes: asymptotes.
(-)
Decreasing
Local
maximum
Thus, C is increasing on maximum value at t = 1. tep c"
3.
ees =
(20 et)
2
and
decreasing
on
(1,
~);
C has
a
(ES
2
Gre) a
1)
he
1)
ae)
aus for
(Ese
C"
on
2
[0,
tls)
~):
3
t =
Me
Bais
V3
forvc": red, ee te
rele
f
i pf
cp
0 ;
Graph Of Ge)
12
(t2 + 1)3 (t2 + 1)3 263) sO. 28t(e = Na )icetee V3)
numbers
chart’
— 0214(1 = (t2 + 1)4
0 28 t) 9 OSEEUL Se") | OL atu = 0 ode
OweBE(E*
Partition
Sign
1)
Analyz
(eo eb)
(t)
(0,
1
1 VB: Concave
ff
3
1
Downward
Test
Numbers
Gate) t EE
1
-0.07
(-)
2 = 0.005 (+) ooo
Concave
!
Upward
Inflection point
Thus, the graph of C is concave downward on (0, V3) and concave on (V3, ©); the graph has an inflection point at t = V3.
572
CHAPTER
9
GRAPHING
AND
OPTIMIZATION
upward
Step
Soe
4.
Sketch
ieiiet=
=
the
5
graph
of
20e*,
C(t):
1
1s
the
1S
graph
t $ 30,
of
the
graph
of
N is
concave
upward
on
N:
N(t)
a 20 1S 10
5S. 10-15..20'
25.30
EXERCISE
9-4
573
EXERCISE
9-5
Things
to
remember:
[a,b] assumes both an a closed interval Absolute interval. that on minimum absolute must always occur at critical values or at on
function f continuous absolute maximum and an (if they exist) extrema
A
1.
endpoints.
f is
Verify
(b)
Determine
(c)
Evaluate f at found ine ()i-
(a)
The absolute maximum found in step (c).
f(x)
on
[a,
b]
is
the
largest
(e)
The absolute values found
minimum in step
f(x) (c)..
on
[a,
b]
is
the
smallest
TEST
Suppose f is continuous value C on TI:
FHE)/OSFlEe NM
0
FOR
on
an
open
interval
the
critical
at
b and
interval
SHE)
+
the
I and
(a,
values values
the
of
b).
the
of
MINIMUM
AND
MAXIMUM
ABSOLUTE
f on
b].
f on
a and
endpoints
the
[a, of
values
critical
the
on
function
a
(a)
SECOND-DERIVATIVE
3.
continuous
of
minimum
absolute
and
To find the absolute maximum the closed interval [a, b]:
that
:
EXTREMA
ABSOLUTE
FINDING
FOR
STEPS
2.
has
only
one
critical
Example
Absolute minimum
Sock SOY AEST
CT Ws Oe
I
4.
0
-
Absolute maximum
0
0
Test fails
STRATEGY
Step
1:
FOR
SOLVING
Introduce
variables
of
then
f,
and
Maximize
574
CHAPTER
9
APPLIED
GRAPHING
OPTIMIZATION
and
construct
(or minimize)
AND
— x I
OPTIMIZATION
a
function
PROBLEMS
f,
including
a mathematical
f on
the
interval
model
I
of
the the
domain form:
I
Step
2:
Find
the
interval
Step SE
SE
Interval absolute
3.
Interval
I and
maximum
the
(or minimum)
value(s)
of
LE
SEY
LE
[0, 10]; maximum: [0,
ES
TE
I
SE
absolute minimum: £f(10) = 14
8];
absolute
Seinterval [1, 10]; absolute maximum:
minimum:
f£(0)
absolute minimum: £f(10) = 14
TS
f(0)
=
=
£(1)
0; =
£(7)
£(1)
=
£(7)
9.
Interval
[2,
f£(5)
=
7;
I,
and
Baie
ae
Bs
xX =
aE)
=He2x
2 is
eX)
=
-
SY Te
420-2
the
(oe
only
f on
to
answer
SETS BORE PLE SEPT DEE FDIS TPIT
EPI
0 is
monecjae=
f(3)
=
9
maximum:
f(3)
=
9
='5;
=c5;
absolute
2)
critical
value
on
f(2)
=
yey
f(2) = 1 is the absolute an absolute maximum.
We
yee is)
si
minimun.
the
=
26.
only
critical
value
on
I,
and
f(0)
=
1 -
0? =
1.
—6x
24
Pets
=
I = (-0, ©)
DO) = 0. Therefore, the test fails. Since f'(x) = -3x* < 0 on (-cc, 0) and on and f does not have any absolute extrema. —
2x
—
2 x >
Critical
values:
x x =
the
and
eF(/2))
absolute
©),
2
f is
decreasing
I
x
(Note: =
on
-2(x + 2) (x = 2)
x the
=
(0,
0
256-8: s s2xb a08 _ glx’ n.d) x
Thus,
REE
0201064 8x = x*, I = (-«, ©)
f£' (x) = -3x?
(se)
EE LEASES TRIE ESBS
2
Dee fix) pep, -.2
ieee)
the
maximum:
fees) =o8 2x. =12 (42 =x) x = 4 is the only critical value on I, and f(4) = 10 + 32 - 16 Ei = =2 £"(4) = -2 < 0. Therefore, £(4) = 26 is the absolute maximum. The function does not have an absolute minimum.
x =
the
(00; |00)
=)
£"(2) = 2 > 0. Therefore, The function does not have
23. F(x)
model
absolute
[1, 9]; absolute minimum: maximum: f(4) = £(9) = 9 minimum:
of
occurs.
0;
interval absolute
absolute
this
ME
Ve
5];
value
x where
3: Use the solution to the mathematical questions asked in the problem.
ENS
1.
absolute
2
maximum
x = -2 is not a critical domain of f is x > 0.]
=y=2i
0j
of
£ 1s
40,
Pipe lera, £2800 xe OO nay iy2h 2h (xe x
Therefore, Cit)
x
x = 20
is
the
400) 20) (x 400)g _ 24(x 24% =- 20) (x ++ 20) 20) xe
only
critical
value.
19,200
a=
=
c"(20)
at
= Sa
>
minimum cost. The dimensions
of
diagram
right.
at
the
0.
Therefore,
the
fence
x =
are
20
shown
for
in
40
the
the
on (Expensive side)
49.
Let
x =
number
uta printings Cost
=
[Note:
of
books
produced
each
printing.
Then,
the
number
of
000 = cet
C(x)
=
cost of storage + cost of printing be 50,000 io (1000), x >= )0
* is
the
2
average
ci (x) = 2 - 50:000,000 2 Critical
x
in
storage
_ x? - 100,000,000
x value:
‘
number
each
day.]
_ (x + 10,000)(x - 10,000)
2x7 =
2x?
10,000
100,000,000
C"(x)
=
3
c" (10,000)
=
100,000
008 Sho
(10,000)
Thus,
the
minimum
printings
51.
(A)
is
Let lay
the the
C(x)
=
cost
50,000 _ 10,000 =
cost pipe total
to in
occurs
x =
10,000
and
the
number
of
ae
lay the
cost
when
=
the pipe on lake is 1.4 (1.4) Vx2
the land units.
+25
2014) x(xe ¥25)71/2
1 unit;
Seid)
St (Peay Ge 4 25yt C' (x) = (1.4) 5 (02 + 25) 71/2 (2x)
be —
then
sc)er OMS
the
cost
to
xe SiO
rego! + 2
= "1
= 1
9 1.4xr x? + 25 x? + 25 C'(x) = 0 when 1.4x - Vx* + 25 = 0 or 1.96x* .96x2 x
= x* + 25 = 25 2508 = 96 = 26-04
a= 7-5 ll
Thus,
the
critical
value
das x .= 6.1
EXERCISE
9-5
581
EM xy Sethe 20n
> )e
(1.4) f-3 (0? § 5) 37255
ce" (5.1)
=
Ces
Ste bEa peeinrs
AE ai)
iepdareprenipde get
doyle
305.2
1s
=O
((5.1)? + 25)3/2 Thus,
the cost will that: C(0) = €(5-1) =
Note
Thus,
a minimum when x = 5.1. (134)425 4 107 Ooroe.
(1.21)27% = x* + 25 92737 =*25 Tier = oO) = +10.91
x x Critical on
the
C(0) C(L0})
value:
x =
10.91
>
interval
[0,
10].
Now,
C(t)
the
absolute
= 3007 — 240r7+
C'(t)
=
i.e.,
there
60t
-
240;
S00. t =
minimum
occurs
when
critical
x
10
miles.
=
the
only
critical
will
be
Let
Then
the
x =
the
number
of
mice
in
each
order.
minimum;
number
the
of
jaa x
500
GUA
Ss eCeat
a= oy Shae
(OX(534),
1t
continuous
se(G7)
at
x =
es
Sin
1,
since
Lim f(x)
does
not
exist.
(9-1)
x
CHAPTER
9 REVIEW
583
10.
(CAS)
lcs
(ex:
(B)
xX—>2
11.
(C)
£ is NOT
(AY)
eee (6)
x3
(C)
£ is
continous
at
eae
£(2)
x =
is
2 since
(BPE)
continous
at
x =
not
f(2)
Beis)
3 since
--0 +++ 0 -----
Lim Jar)
ND - ---
———+>—__+—___»—_ >x
of
Concave
f
2
0
-1
Graph
|}Concavei
Downward
Concave
| Concave
} Upward ; Downward
' Downward
Point of Inflection
Point of Inflection t
1
EE (2)
accent
meetin
1
= (OY =o) atau
Sg
| Ls)
E(x)
Using
epeine
this
points
(2, 3h
oes
-3),
Decr.
1
Decr.
¢ Incr.
Local
Local
maximum
minimum
information
(-3,
(8))).5
(3,
0)
(=2,
on
together
Si}
the
(iy,
graph,
with
22)
we
the
(0,
OF
have
Domain: all Intercepts:
real numbers y intercept: f(0) = 0 x-intercepts: x = 0 Asymptotes: Horizontal asymptote: y = no vertical asymptotes Critical values: x = 0
£Y(x)*
SP a PE SN ~ adh En
Se
Gia eee a
encsey
f(x)
Dn
Decreasing
9
GRAPHING
yey
ee
Increasing Local minimum
CHAPTER
2
'
0
584
epee
bo Oo --
AND
OPTIMIZATION
is not
defined.
(9-1)
=e
=
12.
defined
SS se((S\
(9-1)
E£"(x)
---
O+4+4+¢4
+++
4+4+4¢4+0 ---
;
ey 2
-2 ;
Concave
Downward !
Upward
Concave
f(x)
Se
4
Concave
: Downward
Inflection point
Inflection point
(9-4) 14.
16.
f(x)
= x4 + 5x 4x° +
15.
=
f£"(x)
= 12x + 30x
(9-3)
From the graph: (Conmeerm sf (x) =) 4
(By
does
not
x
exist
since
lim
(9-3)
a=
(Ge)
jaime x>2+
f(x)
#.lim.
sal G7
aan S
(E)
No,
f(x)
x7>2+
x27
x2
(Gd)!
Soe
y" = a
x27
f(x)
3x+4
vile
15x
f'(x)
iG).1im
y=
lim
since
does
f(x)
(9-1)
exist.
not
x72
iT.
From the (Ayman:
graph: cx) =
3.
(B)\
x7357
(E)mves,,
lim
f(x)
=e
-hC)e-binetts)e—as-
x75+
sance
Lim
f(x)
=
(DD)
Ff(5)
=
3
x75
£(5).
=
3.
(9-1)
x75
18.
Mece
SAE
AND
x
re
on (x'#
(-«, =20
OPTIMIZATION
-2)
and
Thus,
on from
(=2, (C),
(x)
3 ne
0
! Increasing
Thus,
CHAPTER
for
ee
:
Increasing
number
(x #)-2).
x
been) 3 -2-101 f(x)
x
f':
for
ua (Ge)
;
6 f'(x) ey) # 0 forjall x + have any critical values.
numbers:
chart
6
2)
values:
(B)
ae
Zee)
0). f does
not
have
any (9-4)
ex)
=. UI
£" (x)
(A)
|
> = Ox + 2 bk i)
x
i
N
+
(x + 2)?
Partition numbers for Saon chart. for fF":
+++
eas)
-
ND--
f":
x
=
-2
Test
-
a yea
The on
(B)
The
; :
Concave
Graph orate
Upward
(3G
x
ey
ee
Numbers 2 taste)
-3
‘5
=a)
0
Concave Downward
graph of °°).
f is
concave
graph
f does
upward
on
(-e,
-2)
and
concave
downward
(-2,,
of
not
have
any
inflection
points.
(9-4)
f(x) 28.
The
graph
of f is:
(9-4) |
29.
re
aE
AR
OS FE
MEE
SE SARS
x
Li 3c)
-o
Negative and x intercept Positive and Local maximum Positive and Local minimum Positive and
< x < -2 bie -2 < x < -1 ce Sal Sere SL oe el fk x
40.
(9-1)
=iCo
x92-.2,- x
all x such that g is continuous
there
lim
~5
X— oo
x2
are
no
=
lim
xcercor
xX—e00
horizontal
Tim X—
“Ffx)%=
=e
-0o
asymptotes.
Since the denominator x“ - 9 = (x + 3) (x - 3) = 0 when x = 3, and since the numerator x? # 0 at these values, and x = 3 are vertical asymptotes.
x = the
CHAPTER
-3
and
lines
when x = -3 (9-4)
9 REVIEW
591
5T.
52.
53.
54.
f is [a, b]. Since fisa polynomial, Yes. Consider f on the interval b]. [a, on maximum absolute an has f , Therefore continuous on [a, b]. of maximum absolute the b, = x and a = x at minimum Since f has a local maximum local a has f b); (a, in c point some at occur must b] f on [a, (9-5) abex = ce No, the and
are is:
increasing/decreasing properties domain of f. A correct statement (0, ©).
stated in terms of f(x) is decreasing
intervals in on (--, 0) (9-2)
is also A critical value for f(x) is a partition number for f'(x) that are that numbers f'(x) may have partition in the domain of f. However, Oia (36) £ for values not in the domain of f and hence are not critical il ; oh let f(x) = = Then f'(x) = -~5 and 0 is a partition number for example, x f(x) since it is not in the for value f' (x), but 0 is NOT a critical (9-2) domain of f. y
fey = 6 = ete, FUCK) MO 2 x? Fevgy soto" 2 bese
Oe x Ss A
is defined for all x and. f"(x) Now, f"(x) = 12 - 6x = 0 implies x = 2. f' has a critical value at x = 2. Thus, Since this is the only critical value
= -6 so that
= £"(x)
(f'(x))"
of £' and
y = f(x)
40 32 24
y = f'(x)
8
x
OF te holslowss chat is the absolute maximum of graph is shown at the right.
=) 6 = 12
f's(2) f'(2) f'. The
55.
Let
one
0 be
>
x
Then
numbers.
the
of
(9-5) is
a
other
the
number.
Now,
we
have:
Sie
=e
xe
Ss!
So
AMOUBIS\
536
a0. =
= =
S"(x)
56.
f(x) Step
BGO
AOO
thevonly
Sh
and
S(20)
when
Oy
Wee
==
20*%is 0
Therefore, occurs
xa
we
each
=
=
e202
critical
QO)
=
+ ai =
20)
number
is
0)
valte*ot 00 Saat = a =
40
is
the
GS on~
absolute
Yop"
minimum
= (x - 1)3(x + 3) 1.
Analyze
(A)
Domain:
(B)
Intercepts:
All
f(x): real
CHAPTER
9
numbers.
= £(0) = (27 Py y intercept: x intercepts: (x - 1) x 42 2))) = ©)
GRAPHING
AND
OPTIMIZATION
sum,
and
this (9-5)
20.
So
592
(0,
50
=
es
(C)
Asymptotes: Since f is has no asymptotes.
Step
2.
Analyze
a polynomial
(of
degree
4),
the
graph
of
f
f' (x):
£'(x) = (x - 1)3(1) + (x + 3) (3)(xe - 1)7(1) (er- 1) 40 Ce snl 4(x - 1)7(x + 2)
=
Sa
SY
Crvtical) values:! x =! -2, x = 1 Partition numbers: x = -2, x= 1 Sign
chart
f' (x)
for
S55l—
at =) 00+ +i
eee
| eee
Saeed, f(x)
Decreasing
= = =
Net.
OF + fee +
se eae aE 9
ee ee
Shred
ee
numbers
Srgnechart’
£" (x)
for
+++
for
on (-~, minimum
=2\
££
Concave
:
Upward
Sketch
$¥2
f (x)
-2
-27
0 a
2
16
(+)
-2); f is increasing at x = -2.
f":
x =
-1,
x=
4+0----O+
on
(-2,
1)
and
1) (1)
1.
-1
:
,
+ 4+
1
wodsonay Concave
| Downward
‘
,
the
graph
Test Ms
fe
x
aA
0
Concave
2D
Numbers f£"
(x)
26
Ae)
36
(+)
-12
(-)
| Upward
Thus, the graph of f is concave upward graph of f is concave downward on (-1, points at x = -1 and at x=1.
Step 4.
(-)
8 (+)
£":
‘
Graph
-64
0
|! Increasing
4(x - 1)4(1) + 4(x + 2) (2)(x 4(x - 1)((x - 1) + 2(x + 2)] 12(x - 1) (x + 1)
Partition
Nonbers
-3
| Tae
| Increasing
Thus, f is decreasing (1, ©); f has a local
£" (x)
+.
.
on (--%, -1) and on (1, ~); the 1); the graph has inflection
of f:
-3 0
(9-4)
CHAPTER
9 REVIEW
593
57.
Talc) Step
(A) (B) (C)
xt
4 x8 4 Ce oe oe Analyze f(x): (f is a polynomial function) Domain: All real numbers Intercepts: y-intercept: £(0) = 4 x-intercepts: x = 0.79, 1.64 (of degree Since f is a polynomial function Asymptotes: graph of f has no asymptotes.
1.
4),
the
Step Analyze 2. f' (x):
f' (x) = 4x? + 3x? - 8x - 3 Criticalvahues* x= -1.68, -0.35, «328; -0.35) and (1.28, ~); f is decreasing on fis increasing on (-1.68, 1.28). f£ has local minima at x = -1.68 and (-0.35, (-co, -1.68).and x = 1.28.,fahas a local maximum at x = -0.35. tep
3.
Analyze
f£"(x)
£"
(x):
= 12x? + 6x - 8
The graph of f is concave downward concave upward on (-o, -1.10) and points at x = —1L/10/and 0.'60:. 58.
on (-1.10, (0.60, ~);
the graph of f is 0.60); the graph has inflection (9-4)
f(x) = 0.25x* - 5x? + 31x* - 70x Part
1.
Analyze all
f(x): real
200
(A)
Domain:
numbers
(B)
Intercepts:
(C)
Asymptotes: since f is a polynomial function (of degree 4), the graph of f has no asymptotes; lim f(x) = ©
f(0) y intercept: Soncencepiswex=)
20
#19
= 0 (Olu ell. 10
-200 f(x)
X—> too
Part
f'(x)
2.
Analyze
= x° - 15x* + 62x - 70
Critical Signe
£' (x):
values:
Chaise
f' (x)
=
1.187),
100
4219
s.a94
formas:
----
75
i
L)
O++++4+
0
:
i
----
OF
+++
:
——__—__¢—_—____»______+_> x REY 4.19 8.94 £(x)
Decreasing
NC ONeeL yee pecreasing
Local minimum
594
CHAPTER
9
GRAPHING
Local maximum
AND
10
'
ineeoheune
Local minimum
OPTIMIZATION
-100
F(x)
f f f f
is increasing on (1.87, 4.19) and (8.94, o); is decreasing on (--, 1.87) and (4.19, 8.94); has local minima at x = 1.87 and x = 8.94; has a local maximum at x = 4.19
Par
Analyze
f"(x)
film
= 3x* - 30x + 62
Partition
Sign
chart
£" (x)
numbers
for
for
f":
x =
2.92,
'
4+ +
+
'
+--+
0
2.92
Concave Downward
7.08
; Concave ' Upward
Inflection Point
sxc =
“5
10
«
-100
i Concave ' Downward
f" (x)
Inflection Point
The graph of f is concave (-co, 2.92) and (7.08, «); and
100
f":
++++0----0+
Enh of £
7.08
downward on (2.92, 7.08) and concave upward on the graph has inflection points at x.= 2.92
7.08.
(9-4)
P(x)
59.
(A)
82
(B)
p is discontinuous at x = 12 and x = 24. In each case, the limit from the left is greater then the limit from the right, reflecting the corresponding drop in price at these order quantities.
(D)
C is discontinuous at x = 12 and x = 24. In each case, the limit from the left is greater than the limit from the right, reflecting savings to the customer due to the corresponding drop in price at these order quantities. (9-1)
——————————. es
12
24
30
C(x) ea pe
$30 $20 $10
12
24
30
x
CHAPTER
9 REVIEW
595
60.
(A)
(B)
For the first 15 months, the price is increasing and concave down, with a local maximum at t = 15. For the next 15 months, the price is decreasing and concave down, with an inflection point at t = 30. For the next 15 months, the price is decreasing and concave up, with a local minimum at t = 45. For the remaining 15 months, the price is increasing and concave up.
p(t)
(9-1) 61.
(A)
R(x) = xp(x) R' (x) = 500 -
500x - 0.025x*, 0 Ss x S 20,000 0 0.05x; 500 - 0.05x 10,000
x
x = 10,000
Thus,
a critical
R(0) = 0 R(10,000) R(20,000)
Now,
Thus, (B)P
is
R(10,000)
PGs)
R(x)
P' (x)
TSO"
value.
2,500,000 0 =
$2,500,000
is
the
500x - 0.025x* = 150x - 0.025x*
-
C(x)
="
00px,
ta0'~
absolute
maximum
of
R.
- (350x + 50,000) - 50,000, 0 < x
[Note:
12
x =
value:
Critical
0,
so
x =
is
-12
not
a critical
value. ]
(x) Ca)
=
1440 ean ae
65.
Cla) = 40004
cost
Marginal
x =
when
(9-5)
12.
ar AMO) SO) Bell.
a
=
10
=
C'(x)
=
0
0. doc, x) > (0
30= = C(x)
cost
Average
>
193
a minimum
is
C(x)
Therefore,
1440
) =
Gh)
+
10
+ a
0.2x
and
y intercept
-40,000 + x* _ (x + 200) (x - 200) -= -4000 +.1 _ = x 10 10x” 10x” Thus, C'(x) < 0 on (0, 200) and C'(x) > 0 on (200, ~).
Therefore,
of
graph
The
C'(x)
line
a straight
is
slope
with
10.
=CG.
is decreasing at
x
=
on
(0,
te G(x)" =aeE(200)) _= 4000 200
Min
Ce
ae
Therefore,
upward
Using point
increasing
200),
200.
on
+
10
” ag 19 (200) Se
the graph (0, -).
for
CHAPTER
9
),
and
a minimum
a
of
y =C'(x) C(x)
is
concave
this information and point-bythe (use a calculator), plotting
asymptote
(200,
es
graphs of C'(x) and C(x) are in the diagram at the right. The line y = 0.1x + 10 is an
598
+
on
as
AND
50
shown
oblique
100 200 300 400
y = C(x).
GRAPHING
C(x) occurs
OPTIMIZATION
(9-4)
(B)
Let
C(x)
function Using find
be
the
C(x)
the
"find
The minimum cookies.
(A)
equation
from
part
(A).
The
average
cost
= ee) the
minimum"
routine
on
the
graphing
utility,
we
that
min C(x)
67.
regression
= C(129) average
= 1.71 cost
is
$1.71
at
a production
level
of
129
dozen (9-4)
CubicReg Yea?
tbxttextd
30
(B)
The
The the
regression
equation
found
in
(A)
is:
Vix) = "S0T0ie" + 0.832" - 2.3% 4 221 rate of change of sales number of ads is:.
with
y'(x)
= -0.03x* + 1.66x - 2.3 =
Critical
value:
+
50
to
-10
y" (x)
-0.06x
respect
0
y'(x)
1.66
-0.06x
+
1.66
=
0
xX =
27.667
From the graph, the absolute maximum of y'(x) Thus, 28 ads should be placed each month. The sales is: y(28) = 588
68. C(t) = 20t? - 120¢ + 800,
occurs at x ~ 27.667. expected number of (9-5)
0s t ,
e709 -0004332t
i Z,
ain
82") ve 1n(5) mindy een in (er -0.0004332t
=
1 =
(ln
2
-ln
te
0)
In 2 ~
0.0004332
0.6931
_
=N0004332 7 At”
|
half-life
the
Thus,
radium
is approximately
30
ee
1 eo
years.
ef 02t = 2
Thus, In(e°-°%*) = In 2
Ly = gf (30) DaO
1600
37. 2P, = pie28 |om
ea(r’ < (0)
02.0.6
35.
of
0
0.02
and
Therefore,
2
==
t = a
Inez
= 34.66
years.
1n(e°97) = in (3) =l1n 1 - ing 30r
t=
=1ln
2)
oi(In 2 =
_ -In 2 -0#6931 FRE PHS OPE TMS O
0)
= -0.0231 Thus, the continuous compound rate of decay of the cesium isotope is approximately -0.0231.
39.
41.
ap “a pre 2e) f pelos
Peary elie 20r = 1n2 r= — = 0.0347 ors
A = Pet 9 60.02¢ f768.x1014 = 5ex0 0-02 _ 1:68 X hae * sae a so 1008 = ene 00) In(e9:92%) = 1n(33,6 0. 02t0l=
ATs
tin 33,600
& San 33,600.
noe
o Om02 7 4 yard square one be Thus, there will mately approxi in person of land per 521 years.
604
CHAPTER
10
ADDITIONAL
DERIVATIVE
TOPICS
EXERCISE
10-2
Things 1.
to
remember:
DERIVATIVES
OF
THE
NATURAL
LOGARITHMIC
AND
EXPONENTIAL
FUNCTIONS Ye*
=
ae
= bey be = z
1. f(x) = ae f' (x) a.
fixe
=
6G e a
ls In x = 6e% (7) = 6e* »- e
= 2x° +: 36%
i
as
£' (x)
=
d
2g 2G x
exk&s2 Dae + 3 Go Gle™ S2ex® + 3e x
[Note: e = 2.71828 first term.] Ss
E(x)
= in. 3 =
ed. 5 x
inc)
is
5.1ln
in
S¢
a
x
constant
and
(Property
IN =(3(5)
so
of
we
use
the
power
rule
on
the
logarithms)
5ne
=
7. £(x) = (ln x)? bay (x) =e) (1
2h
3x) axin
x
(Power
x)= = 2
iy x =
rule
for
functions)
(9) tix) = x In x f(s) ox a “ ~
*
=
=
x4 = In
x‘(5.) +
a
x
i, x + ln x so55 - (Product
(In x)4x°
y
= x° +4? )
In
rule) \ x = x (1 +
-
4 In x)
—_
P1073) f'(x)
exe
Hf.
= x ae
+ e%” Bek? (Product
rule)
= x*e*%(x + 3)
13. f(x) = aaa
—
Oe 4 ies 5B [See
NN
B(x
S
|
pe
+ 9)
RSS
IR i
+ 9) e* = et (2x)
fe Ge
(x7 +9)?
(x7 + 9)?
f,
(Quotient
rule)
- 2%.4+ 9)
(x2 + 9)?
EXERCISE
10-2
605
Perse)
Nee
=
4
4
xt
S in
f' (x) =
2x!
(1
4x?
rule)
\
_ x - 4 inx_ 1-4 inx x
x?
= (x¢+ 2)3(in
nx + (ln x) f (x + 293
(x + 22) + (in x913 + 2704)
2
3
ats
19.
x
(Quotient
r sa etnias Be J ig 'x Pale
f' (x) = (x hie
\
in
x
=)-
f(x)
-
POE a(l
17.
x
f(x) f'(x)
2
HAE
x +
+ 2)%in
3(x
x + ¥+3
(x + 2)%[3 In
eet & 1)2%e* ri ae
e* a
(x + 1)? eS
=
ake
.
-
= (x + 1)3e% + eX(3) (x #1)712)
|
+e ye" Atx) = dened We La +) lee 31 = Ge +1
2A ete x ; ELA)
23.
- (e+ ax?oe
e241)
© dk
,
a
(ex) 2
oz
= (x? + Le*: 2x a
ex
f(x) = x(1n x)? f' (x) = hein x)? + (1n x)3 a8
+ (in x)3(1) = x(3) (ln x) (4) x
25. F(x) = (4 - 5e*)?
= -15e%(4
£' (x) = 3(4 - 5e*)2(-5e*%) Pfs,
— et (2x)
Gal)
V1
=
+
In
x
2° (1 °4+\In
mes ' = 5(1 + In x) f'(x) eet
= (In x)?[3 + In x]
- 5e*)?
x) 1/2
& fta
i Lire
ea ue de
~ 2x(1 + In x)?/2 7 2xV¥1 + In x 29.
606
f(x)
= xe* - e& ape te x f' (x) lp= xape
CHAPTER
10
ADDITIONAL
AmireRK:nae ee ai Xe
DERIVATIVE
TOPICS
+e Poems ee x -= xe
x
= eee ws
31.
f(x)
= 2x* Inx - x
be (F
x?’
Step 4.
Sati x)
the
graph
of
f is
Sketch the graph of f:
=
Step
0 and
concave
on
(0,
o).
1)
(3 .- x) e%
1.
Analyze
(A)
Domain:
(B)
Intercepts:
All
f(x):
real
numbers,
(-«,
©).
y intercept:
£(0)
x intercept:
(3 - x)e*
=
(3
3) =
(C)
upward
-
0)e9
=
3
= 0
3xe=40 Kar
Asymptotes: Horizontal
Using
the
asymptote:
Consider
the
Bete
0.00059
-2 0.000000047
we
that
f(x)
the
first
Vertical
lim
=
0 and
limit,y =
asymptotes:
0 is
There
are
no
=
(3. -) x)e* + eX (-1)J5.(2.-x).e% values:
(2 - x)e* x=! x =
chattel
0 2>\[Note:"
not
exist.
Because
asymptotes.
al
et7S9G]
2 caei = Wan i
> x
:
Thus, local
does
-154,185.26
wlerghs
Partition numbers: s20m chart for f'.;
f(x)
and
asymptote.
vertical
But).
0
f(x)
a horizontal
Anal
pbb
lim
-296.83
xX—o0o
.
£' (x)
x3
10
£(x)|
e
eritical,
f as
x
X—-00
of
of
as. X—-0o, tables,
following
conclude
behavior
2,
5
Test
Numbers
x
iO
4)
0
oF
be)
'
Increasing
! Decreasing
f is increasing on maximum at x = 2.
(-«,
3
2)
and
decreasing
we
on
())
(2,
~);
f has
EXERCISE
10-2
a
611
Step
3.
Analyze
f" (x):
£E"(x) = (2 - x)e* + eX(-1) = (1 - x)e* Partition number for f": x = 1 Sign chart for f":
eX) Concave Downward
|; |
Concave Upward
Graph of f
2
1
0
Thus, the graph of f is concave upward on (1, ©); the graph has an inflection
0
L(+)
2
Heel)
on (-», 1) and concave ite point at x = a
downward
f(x) 7
Sketch the graph of f:
Step 4.
Numbers
Test
eames hae
aie
ener
£" (x)
f(x)
6 5
4
53.
f(x)
=
In
x*
x.
-2-1]
e Anal (A) Domain: All
£ positive
There is no y intercept. x Inx=0 Insc =) 0 x = ih
y intercept: x intercept:
(B)
Intercepts:
(C)
Consider the Asymptotes: clear that lim f(x) does
x
4
©).
(0,
numbers,
1 2
It is x>0. and as behavior of f as xo f is unbounded as x approaches . not exist;
xX— 00
The
following
Bf f(x) Thus, Step
puis
Qi -0.00046 vertical or
0 -0.023 there are no Analyze
2.
values:
+
Aw Abey S75
wareOW
0
ee
612
CHAPTER
10
x git
ADDITIONAL
Ve
=
(Note:
x
>
0]
Oe e
= yyegg 9 =
0.6065
DERIVATIVE
TOPICS
Ve
=
0 as
asymptotes.
e (tl © olin we)
x
number:
0.001 -0.000007 horizontal
2)lneesr="0
dion
Partition
f approaches
f£' (x):
#(5) * tinier
Critical
that
indicates
table
0.6065
x approaches
0.
Sigmachart
£0)
for
1
o6':
hae
O)
reat
Test
, 0
> x
=
1
ale
f(x)
Decreasing
Thus, a
f is
local
Step TB ((S%a)|
' ‘
at
Analyze
=
x(5) +
Poteueivon
Increasing
decreasing
minimum
3.
x
)
‘
1
x
on =
(0,
e cet)
£' (x)
i.
= 20.19. (=)
Bi
1° *(+)
increasing
(eo 2 Ges co);
on
f has
e2/?,
f"(x):
(GP eS) 2 alka Ga Pees
number
and
Numbers
sfor.6%%
36+
AS
alicl, 5%
2elnexn=
ings
0
=
43
x = ef 3/2 = 0.2231 Sign.chart
for
f";:
£" (x)
Atcod '
Cutatot
+
Test
‘
te 0 e3/2 4 Graph OLE
Thus, the upward on
tep
55.
ketch
the
= e* - 227
Eaux
= ef —
Critical
Solve To
| !
two
Concave Upward
il
graph of f is concave (an eo); the graph
4
E(x)
Concave Downward
a3
gra
Numbers
£" (x) e =) 61 al) 3
(+)
downward on (0, e°/? ) and concave has an inflection point at x = Biles:
f:
f(x)
-co < X < co
Ax
values:
f'(x) decimal
= e* - 4x = 0 places,
x
=
0.36
and
x =
2.15
Increasing/Decreasing: f(x) is increasing on (--%, 0.36) and on (2.15, «); f(x) is decreasing on (0.36, 2.15) Local extrema: f(x) has a local maximum at x = 0.36 and a local minimum acrset=.2715
EXERCISE
10-2
613
57.
f(x)
= 20
£%Ux)
ln x -
0 < x < ©
Fe = --e*
Critical
values:
Solve To
e*
two
f'(x)
=
decimal
- e~ = 0
places,
x = 2.21
Increasing/Decreasing:
f(x)
is increasing
on
(0,
2.21)
and decreasing
on
(25a2yw co)
Local 59.
61.
extrema:
f(x)
On a graphing
has
utility,
a local graph
maximum
y, =
at
e* and
x = 2.21
bi
x*.
Rounded
decimal places, the points of intersection (2043)).4.18),-. (8561775503 :.66)i.
are:
On
Yo = x'/5_
a graphing
utility,
graph
y; =
ln x and
(-0.82,
off
to
two
0.44),
There
is a point
of intersection at (3.65, 1.30) (two decimal places). Using the hint that In x < x/° for large x, we find a second point of intersection at (332,105.11, 12.71) (two decimal places). 63.
Demand:
p=
Revenue: Cost:
5 -
R =
xp
¢-="x()r
Profit
=
In x,
5S
=
-
x(5
=
x
Revenue
-
In x)
Cost:
value(s):
P
=
5x
5x
=
P(x)
i)
Axe
P' (x)
=
4
=
30—
or
Critical
x § 50
P'(x)
=
3 -
- x
ln
x In x
x
=
x
eC nw
-
(5) -
ln
x
inex
ln
x =
hig’ 6S
x=e P"
(x)
"
ae
-_
Since
65.
él
x =
and
P"(e-) ”
e* is
the
3
only
maximum
weekly
profit
OS ws)
1n(e?)
=
Let
x =
CCA
=
the
2.
number
=
-_
critical
occurs Thus,
of
oo%)
0
= ae aie e
the
PES
=1
(10 - 10x)e*
R(ge=
ROG)
oe
Absolute
maximum
el. weekly
weekly
revenue
revenue
is
occurs
R(1)
=
at
price
p = an =
3.68
thousand
Test
Numbers
dollars,
Som 0Gr or
$3680. (B)
The
sign
R' (x)
chart
Pg
a
for
R'
Os
is:
ae ae > =
x
—_>+———————__—_—_+—_>
Increasing
< Ovon,
1) and x = 1,
ese.)
Thus, the graph on (0, 2). The
of R is concave downward graph is shown at the
(0,
2
ADDITIONAL
R(x) 400 350
1.50 1.00
|) Soe PA | Ae aia
10
12)
oe .00
R(x)
CHAPTER
(+)
decreasing on (1, as noted in (A).
R" (3c) f=) We
‘ak
10. 10
~0
= 100xe°:°*
R' (x) = 100xe°-95*(-0.05) + 100e°°-95* = 1006 °*°5*(7 *0.05x) Critical
value(s):
R'(x)
=
100e°°-95*(1
-
0.05x)
= 0
1 -10-08x7=
0 = 20 R" (x) = 100e7°299* (0
0)
2
only
at
critical
x = S
value,
The
and
absolute
f" 2) =
maximum
of f
f(x) = 3x - x7 + e*, x>0 oe = gars 0 £' (x). = 3 Critical value(s): f'(x) = 3 - 2x -
£°(x)
= -2 + @&*
£(1373)
and
£"(1.373)
(= 340393)
=
f(x) = BX e
e*
f has
an
is:
= 0
= -2 + e 1-373
=
bey oyeas vewn ele
2.487
x)e x
=
Bo gi
oles
2
e2*
= Aree Critical
CHAPTER
ae
= (ex)
value(s):
10
f'(x)
ADDITIONAL
< g
and £" (1..373)> 0
x(l e" x) SF (ln
Eg
644
0,
ily She
Since x = 1.373 is the only critical value, absolute maximum at x = 1.373. The absolute
"(x
0 £'(x) = 10xe™2*(-2) + 10e°2*(1) = 10e°7*(1 - 2x), Critical value(s): f'(x) = 10e2*(1 - 2x) = 0
f" (x)
pince
e
the
0 on
(-00,"69) «);
(-«,
on
there
are
extrema.
(x):
(-0, f is
©). concave
graph
of
paler ae i x
(-cco,
oo);
are
there
no
f:
OZ)
CHAPTER
10
REVIEW
645
2:9) aE eo)
ee x
tep
dinwee
1
(A)
Domain:
(B)
Intercepts:
all
positive
real
numbers,
(0,
©).
y intercept:
Since x = 0 is not no y intercept. x intercepts: x ln x = 0 Woy prets 10, Pe
in
the
domain,
there
10
(C) Asymptotes: lim
(2° ln x)
does
not
exist.
xX— 0°
It
can
be
shown
that
lim
(x
In
x)
=
0.
Thus,
there
are
no
x-0+
horizontal Step
2.
or
vertical
Analyze
asymptotes.
f' (x):
f'n = *(5) + (in sce x = x*[1 + 3 In x], Critical
values:
x
x>0
[1 GP eh sop b'dill a4)
3 in
x
wee =
0.
nce
(since
Sign
fx)
numbers:
chart
for 1
“aise
x =
f':
bineianooa: Oi
:
3.4
E" (x)
e 1/3)
Syet
CHAPTER
10
ADDITIONAL
x)
sour Ty in
646
and
increasing
in ex
X(S sth Thsc)e Pc Sb0 Partition numbers: x(5 + 6 ln
DERIVATIVE
-0.27
(-)
1 weds eee ASy
2
~(3) + (ees
Numbers
AXBOS OSLM()S
0.5
! Increasing
decreasing on (0, minimum at x = e273, Anal
Test
> «x.
a
f is
a local tep.
1
Decreasing
Thus,
=0.72
e 2/3
at reer ———_+————_4—_+——_+— etf3
£(x)
0)
-5
X Sen Partition
x >
= 0 = 0
x=
-2
x=
e/6
TOPICS
~ 9.43
on
Ce nes
coo);
f has
is
Sien
chart
for
f°:
etx) “ie eat Boat lad ie OF She ae ———_—_}+-—-yt ’
0
.
-5/6
5
:
Concave
;
Concave
of
*
Downward
'
Upward
Thus,
the
upward
:
graph
on
te
Numbers Zo ; (x)
x esteDn ea ENE StS
1
Graph
f
Test x
.2
-0.93
il
(-)
5
(+)
of
f is concave downward on (0, en oy and concave co); the graph has an inflection point at x = ae.
(e~/*,
Sketch
ery
a 2
4-
f(x)
& (10-2)
= 3[1n(4 - a \
DA
3e*[(1n(4
ame
A me es rd 7} —£ )]
&
a (10-3)
4-e
31.
y
=,
5x-1
S x-1 Cin)
er 32. 33.
a
(230)
= 2 x5. x-1 (in, 5)
x
i
Gx 10G5(x° - x) = df 1n (x? SG ax
1
ve.
ed! ag Bees = 5
al = =[In(x*
+ x
ire
Ct
Sa esi
a
ee) Soa s eis
(02)
2
=
5 [1n (x? + x)] BSyPy WOW ax Ln (2? + x)
=4/2
2
ibgyoe 20s ae tte aha)
=142)
i
.
Be
+ x)]
[1n(x* + x)]
ye
yee
Mines
BONE
(10-3)
see 2x +1 ory REL ELT oe MADE oe ID DRE UO Pe
ITS.
x + xX- 2letasx 26 (leletarex) 11/2 (10-3)
34.
ev=
x7 + y+
1
Differentiate
ee
eVixy'
xeVy'
implicitly:
a
oad Sal
+ y) = 2x + y'
- y' = 2x - ye
oe 2x - yet xeY :
OMG
ee
- 1 0
Bik yoOre.4
|
(10-4)
CHAPTER
10
REVIEW
647
315.
-Av=
nr? ,
a0)
Differentiate —
dtorats*
with
20. arin
ane
respect
6mr
since
The area increases at is no largest value.
36.
to
the
t:
are=
dts
rate
3
6ar.
This
is
smallest
when
r =
0;
there (10-5)
y=x° Differentiate
with
respect
to
t:
Oy ek dt BasieofS Solving
for
dx
UNG
dt
To
find
oo
we
get
6
3x7
1: aged gals
KEN
3x2 vdt,
where
ae
d Se
since
solve
ae
the
inequality
5
3x? al!
37.
(A)
we
3x?
aay
3x?
= -0.335 mg/ml per hour.
2 dA at = -45 mm* per day respect
to
(negative
because
the
area
:
is
t:
nore
dat
dt -45 = 2mR dR
(c/a Gb.
dR Peipig
is
Ce
*2nR
ised. gts a ke -150--On4 “Son
-0.477
mm
per
(10-5)
day
CHAPTER
10
REVIEW
651
49. N(t)
= 10(1 - e9-4¢)
(A) N'(t)
N'(1)
= -10e°-48(-9.4) = 4e°9-4t = @e°9-4(1) = ge-9-4 2. 2.68.
Thus, learning 1 day.
N'(5)
is
(A),
is
N'(t)
increasing
the
rate
of
2.68
units
per
day
at
the
rate
of
0.54
units
per
day after
= @e°°-4© > 0 on’
(03920). N*(t) = 4e°9-40(_9.4) Thus, the graph downward on (0,
of N
at
after
= 4e°9-4(5) = ge-2 = 0.54
Thus, learning 5 days.
(B) From
increasing
(00710) 7° "Thus,
= -1.6e°9-4© < 0 on
Nis
increasing
on
(0, 10).
of N is concave 10). The graph
is:
N(t)
(10-3) 50.
Given:
T = a(a + 7)
Differentiate
aT _
with
2 Be 5
de = 9 + 2 po ar AE
liciedowan’
= 2+
2x°3/2,
respect
to
ONDEoe
-5/2 ax
Jae = 3%
ax _ 2 oe i -3 (9)
-5/2
dt
and = =
3 when
x =
9.
t:
dt
(Sy
a %=y=3..3° =
-5> -
evdx -
3 f 4
KP ax
om say Sa ae A Geiserep oa ariseyCoe CP eo
EXERCISE
11-1
657
ey
67.
2x
=
3
vis
[ (ax
-
ayax =
2 fx ax -
Given
y(0)
=
5:
07 -
5 =
3(0)
fs apo a
+
Cc.
Hence,
SE
C=5
oie
andy
=
eee
x
-
3x+5.
C' (x) = 6x* - 4x C(x) = ibe6x2 - 4x)dx= nea Given
69.
228° Ng
C(0)
=
3000:
3000
C(x)
= 2x° - 2x* + 3000.
dx
20
6le
=
2(0° ) -
ERS 2 (07 ) +
ce Le
C.
Hence,
C =
C=
2x -2x7+¢C
3000
and
t fe1/2
9s
dt
=
20
ti/2
Be
AO Naar
te
See
eM
tone
2 Given
Sas).
=)
40-7
405=
40V1 + Cor
40
=
40
+c.
Hence,
C =
71.
f 2x?
+ 3x1
- 1)dx = 2 |x 2ax a 3 {tax 2
-1
=
42s
Given y(1) y=
658
3 anl|x| Pe = 0:
-2 + 3 dale]
CHAPTER
11
[a
x
0 =
=
=x
INTEGRATION
om 4-3 in|1|°=
413.
3Sth)xp
bes
1 #e¢. = Hence,”
C C*=-3%and
0 and
73.
IR
Wee. 2
x
{ et
Given)
woe
x(.0)
cee
75.
c=. 1s
J, .= Ae?
-
eee C=
- 2t+c
Cn
Mtence,)
Ga.
—suand
2t - 3.
f tax - aya
Given
y(2)
= 3:
[a
= 4 fx a
3 = 2-27
-
fa dic(ay hehe
- 3-2 + Cc. Hence,
C=
C 2h 224
3x 4h
1 and y = 2x
- 3x +1.
- [PE-*
x
x
xX
2 |x ax -
79.
Z2i(.0))
fi dt = 4e
4x - 3
Be «
77.
- 2)dt = a{ etat “
. fxta
=
2-2
ce
Pe
xtic
cota ae -2
=
fxac-2fx2ax-
we
81.
83.
[ee
2 2
-
%
2
Juke
SE 2
x
-
(ies - Bla - {e*ax - 2 {xtax = ey = eagin|x|\
eC
am et - 1 Ges
t2 2
2
Ee.) tah w= _, i{Peay 2 acse [(ape=4 fae ni fe22:3, Ge (RDeo Given
85.
sae
M(4)
=
5:
5=44+5+Corc=5-
3 = 3.
-1
sn a rl eC eee
Hence,
M=
t+
4+ 4.
ay wbx + 2
Car
3
Vx
v=
Res
oc
lez
+ sia)ae = 5 J28a
+ 2 [tae
Vx wS/3
/3
eee,
2,
3 Given yo
y(1)
Bo! 2 4
oa
HMI
AY
¢
3 =
0:
0 =
3x4!>
=
But?
+ 3/2
Boe.
Hence,
C =
-6
and
16,
EXERCISE
11-1
659
87.
pi (x)
=
p(x)
= [-Spax = -10 { ax = =i0a
Given
p(1)
p(x)
a9.
91.
- 23
=
= - + C=
20
20:
+ C= = *.¢ C =
Hence,
C.
10+
10 and
= L + 10.
2|fe ax|= 2
[by 4(a)] Ce xh + oe + Cy
txt 4 ax? + 1)de = x4 4 3x? + 1+ 1+
iC, =
an
Cis
C is
since
constant
arbitrary
[by 4(b)]
arbitrary)
93. C(x) = - 000 x
te-1,000 [ x"ax C(x) = [SG ax = | = sees x =
-1,000
= +
pad OO0R
C
NI
x
Given C(100)
= 25: “ee + C = 25 c =15 Thus, C(x) = ee + 15. Cost
function:
Fixed
95.
(A)
costs:
C(x) C(0)
= xC(x) =
= 15x + 1,000
$1,000
The cost function increases from downward from 0 to 4 and concave inflection point at x = 4.
(B) C(x) = fe (x) dx = { ox
0 to 8. The upward from
graph is concave 4 to 8. There is an
- 24x + 53)dx
= 3 [x? ax - 24 |xax + [53 ax =
Since
c(4) C(8)
660
CHAPTER
30,
we
-
12x?
+
53x
have
K =
30
and
C(0)
=
C(x)
= x? - 12x? + 53x + 30.
= 42 - 12(4)? = 82 =:19 (Bia
11
x?
INTEGRATION
+ 53(4) 53(8)
+
K
+ 30 = $114 thousand $198 thousand 30
200
(C)
(D)
Manufacturing plants are often inefficient at low and high levels of production.
100
4
97.
S(t)
x
8
= -25¢7/> 5/3
S(t) = fsa Given
$(0)
= [ -25e?3at = -25 {e2/3at Eesha
= 2000:
-15(0)°/3
+ C = 2000.
Hence,
b96)= ss eda at
C = 2000
and
S(t) = -15t°/3 + 2000. Now, we want to find t such that S(t) that is: -15t°/3? + 2000 = 800 157" = -1200
= 800,
e°/> = 80 and Thus,
99.
the
t= 807/59 = 14
company
Sattpees=25t2/3-S(t)
=
should
manufacture
f (-25e2
fe E)'at
S(0)
=
S(t)
= 2,000
101.
we
see
So
we
that get
L'(x)
L(x)
Vo
{70 ae
¢2/3 yer
ie
f ots
2,000
the
t =
= g(x)
=
2,000
=
for
14
months.
=25
-.15¢°/3 -
ast?
of
=
T0E&
= 70t + G
implies
point
8.92
- 70) dt
= -25 {27/3 ae E
= -15e°
_ Graphing
computer
70
=
Given
the
C =
2,000
and
- 70t /2A2 WOE;
bli
intersection
is
800
on!
x =
O+sec's
8.92066,
LOPSO"
sy)
a (4) (In x)
ane
C]
=
24
x
4
sc
ey a =
1n_x)? oF
as
cet
xfs
+5C
= a7 * 4 C
tes =iaaae
6
5,
+
=
f eau
(es ~1/X a heck
nt
4 ay = fea -¥+c-
f Ana Check:
x dx.
=
du
then
x,
ln
u =
Let
then
ul
Oo
du
Q, ct 1
=
3t7dt.
7 { 2c
+ 5)°dt = 7{ (t? + 5) 63 tat
ee ee ees EAL oreo at LOLf udu Fit 2 te
670
CHAPTER
11
INTEGRATION
+
5)
3
61.
eva. dt
3b ne 4
Let
u
=
t2 =6
45)
then)
‘aw-="260ae.
vas lice: quae & 3 {(2 ul dyri/“exgé = 3 {(e? - eee = 3
rt/2gy = eas
$MCte
dt
3.067 4S a) Mere
oe
2 63.
dp
e + e*
dk
(e&* - e%)?
Let
u = e~ - e*,
Doz
Re
x
then
du =
(e* + e™~) dx.
a, J 2
=
fie
aa
e*)
72 (e*
+
e
~) dx
=
f wan
-1
= 65.
Let
v =
f eau
au,
=
then
dv
=
67.
a
du.
{en 2 au = 1f eau, a
Check: ¥
ty tee erale® =ne*) Aa 1e
“28 Ege
C |+ 1 a2 au (a)
+
eee
du = 1 a
a
evav = + ov +Ce= a
4a au oC
=
=e Bau
p' (x) = ——2000 (3x + 50)? hetu
pd
=
3x.+
50,
then
du
=
3 dx.
= | peatananeenes a -6000 [ (3x + 50)7*dx = -6000 [ (3x + 50)72 Zax 3 ; (3x + 50) is a = oe -2000 oe,Oe mor = -2000 fu 2B du
Given
p(150)
=
_ 4 50 © _ 2000 F0a5
+ ©
4:
2000 i60°+ 50). © 2000 500. + C
Os (eS
C= ©
2
Thus,
p(x)
Thus,
the
* =
24060 3x + 50°
2000 ‘a dN Seger B50 (3x. +. 50). 2000 7.5x + 125 = 2000 7.5x = 1875 bre Ey
PAS)
demand
is
250
bottles
when
the
price
is
$2.50.
EXERCISE 11-2
671
69.
500
CMG {ge ah See ayery Ss soe Ne argsx+l1
=
C(x)
ay
Now, cost
CO)ijs is:
Glico)
S
—
ie
and
So(e)
500
[12 ax + 500 fer ater1s
=
1294+
in(x
+
1).
le 10 = 10eo 8"
(A) S(t)
=
f ao
500
2.
Ci)
Thus,
2000...
= ~y
=
Inix
+
12xe01500
1)
+
in(x
(ib = S3+0l Zy Come
orld
a
Cc
+
+
1)
The
2000.
average
2000
+
ze
2000 + Fo9q
500 = 12 + Fogg 1n(1001)
_ G(1000)
71.
1
aq _ = 12 + 5 In(1001)
+ 2
=
per
17.45
or
$17.45
pair
of
shoes
0 eetecaed
- 10e°9:1*)dt =
f20 dt - 10 { 2-28 ae
= 10t - =e ect* 4 cle 10 + 10bes’s Shc Given, $(0)n=s
Total
sales
Git)
(By 02)
On
time
estimated
a graphing
=,0 0 -100
t:
100e"°+" = 100
sales
for
utility,
the
Eig first
result
is:
E
months:
million.
months.
i 100 {3 i zat TOO
Given Q(0) = OF: 0 100 Iin(1 ) + Oe 0 and Q(t) ANGI, (C Q(9) = AKO)(0) “alsev((iSy" es al))
CHAPTER
$50
solve
18.41
US
672
twelve
L0€ 4 20d] °-FEOS 10082 100 200 10t. + 100e °-+
or
The
at
eames
as 1012 a, 100] 2) = 20 + 100e!:? = 50
Total
(C)
0% 0 + 100629 # C 100 + C= c=
11
INTEGRATION
LOO)
#2549))
Mine
LD)
+
[sat
atta
Maye nWain
353
243
Error
bound
for
Ay:
Error < |r(7) - r(0)| (a7) =-fo544106) (B) We want
to find n such
that
Hie 30,
|x(7) - r(0)| ( =
|I - A,| $5,
| = N|R
that
55. £0
is:
)< 5
(110)7 On
77.0
Salmon)
f(x)
19.
tee
Be es
10
(B)
s= 2
CAEP
ec eepeees
273
455
(C)
To the left of P = 2, the left rectangles underestimate the true area and the right rectangles overestimate the true area. To the right of P = 2, the left rectangles overestimate the true area and the right rectangles underestimate the true area.
(D)
N, =
sum
of
Sel
ap
areas
+ Sel
sum
of
of
+ 8-1
4+ 5-1
of
rectangles
areas
Se a nses
rectangles
cS Cs
below
+ 0-1
=
above
ce a i Cr
the
graph
of
f:
graph
of
f:
26 the
Ae BS)
5
Thus;
*26-S f EUXPaxis
$39:
0
21.
f(x)
= 0.25x*
- 4 on
[2, 5]
L, 6 = £(2)Ax + £(2.5)Ax + £(3)Ax + £(3.5)Ax + £(4)Ax + £(4.5)Ax where
Ax
=
0.5
Thus,
L, = Re =
[-3
-
2.44
-
1.75
-
0.94
+
£(3.5)Ax
£(2.5)Ax
+
£(3)Ax
where
=
0.5
Ax
+
0 + +
1.06](0.5) £(4)Ax
+
=
-3.53
£(4.5)Ax
+
£(5)Ax
Thus, Re =o
A, =
Lt 6 :
44
—
ER Sas
1275 ES—
—
0.94 pe
0.91
a0
=
e062.
251065)
m=
—0.91.
N55
EXERCISE
11-4
687
Error
bound
for
Le and
Re:
Error < |f(5) - £(2)| (DAT6 Error
bound
Error
for
2
\= (2225! £0y=3) | (Oss) = caass
Ag:
< —,
=
Be
Geometrically, the definite integral over the interval [2, 5] is the area of the region which lies above the x-axis minus the area of the region which lies below the x-axis. From the figure, if R, represents the region bounded by the graph of f and the x-axis for 2 S$ x S 4 and R, represents the region bounded by the graph of f and the x-axis for ‘M5 < xeSe5),, then 5
| f(x) dx
=
area
(R,)
=
2
area (R,)
25. f(x) = xt - 2x2 +3
23. £(x) = e*
5
2
5
=5
10
-10
0
0
Thus, f is monotone increasing on (-c, 0] and monotone
monotone
o).
[0,
on
decreasing
Thus, £ is monotone on (-:, -1] and on and
on
increasing [1,
~).
2
27.
[ox ax; at
Eile)
| eee
=o
Re leer es | (Sut - '4)s 0.05 en) ale 0.05 n
3< n
sate
: 29.
0.05
ne ways + 6%
I es
2
dx;
[rT ROL,
TE(s0)
B= ee
Saree
vero
iG
( =
js o 005
lent-4 ta")iealee 005 2 [0.018316 - 1] ee 0.005 (0.981684)
2
n*= 0.005
0.981684)2212 0. eeoy 81683) Or G0s 393 688
CHAPTER
11
INTEGRATION
decreasing [0, 1], and on
[-1,
0]
31.
Suppose
f is monotonic
on
[a,
b].
Let
I
b f f(x)
dx.
Then
a
fet, Now,
lim
|f(b) - f(a)| i. = 5) = 0
n—0o
Thus,
|S le(blm £8). (b== a ) n
lim
| I - L_|
n—o0o
n
33. Let a = 300,
= 0 which
b = 900,
implies
I =
lim
nooo
n = 2. Then Ax = me
L
in
= 300
L, = £(300) (300) + £(600) (300) = [400 + 300]300 = 210,000 R, = £(600)300 + £(900) (300) = [300 + 200]300 = 150,000 es
2 ;
Ltt
Error
R
bound
2 _ 210,000 for
: 150.000
||amen
A,:
Error < |£(900) - £(300)| Serre = |200 - 400| (150) = 200(150) = $30,000 Dapeeee s(t) 2 eb0al 8c, aceoos) biz. Gagnoer4a:aThenAtce) L, = A(2)1 + A(3)1 + A(4)1 + A(5)1 = 939 + 1017 + 1102 + 1193 = $4251
© ; eT
R, = A(3)1 + A(4)1 + A(5)1 + A(6)1 = 1017 + 1102 + 1193 + 1293 = $4605 Since
A'(t)
is
increasing
on
[2,
6],
2
$4251 =f 800e°°°8tat < $4605 0
37.
First
60 days:
L, = = R, = =
N(0)20 + N(20)20 + N(40)20 (10 + 51 + 68)20 = 2580 N(20)20 + N(40)20 + N(60)20 (51 + 68 + 76)20 = 3900
we
2580 : 3200)
Error
bound
for
eee an A;:
Error < |N(60) - N(0)| tire = (76 - 10)(10) = 660 units
EXERCISE
11-4
689
Second 60 days: L, = N(60)20 + N(80)20
(76 R,
+ 81
N(80)20 (81
+ 84)20
+ N(100)20
=
4820
+ N(100)20
+ 84
+
86)20
+ N(120) 20 =
5020
4820 +5 5020 _= 4920
A noe Error
bound
Error
? (3
-
2 (5-4)
MSpe
é 4(1)¥/?)
hgOe =
Bo2
9.333.
i
if (e2* - 2x)2(e2* - 1) dx
al (e** - 2x)*(2e2* - 2) ax 0
1
DN
73°
2
tet
ae
rege eee : 6 lle = =a
43.
aun
a
3/2
am
2) 3 2)
[note : The has
es a)
the
form
integrand u*du;
an
antiderivative is 3 2x 3 ea UBT oe en ZOE. . | 3 zs 3
25.918
:
(x1
a,
3 4x)
ag
+ 2x)dx
= (1n|x| + x’) * tl
In|-1] + (-1)? - [1n|-2] + (-2)7]
=
1-i1n2-4 -3 - ln 2 =
-3.693
EXERCISE
11-5
695
45.
fix)
=_
5008
(A) Ave f(x)
—)
5 0saron
a0
LOH
10
1
= ee
al
(500
-
50x) dx
(B)
500
pa 10
(500x
f(t)
= 3t? - 2t on
(A) Ave
f(t)
Ave f(x) = 250
|+9 ;
25x“)
cree ale
ut i0 [9,900
47.
2,
-
=)2/500)]
[-1,
= 250
f(x) = 500 - 50x
2]
Pe g (eis 2 = 5~an (-1) iio 1 aay
¥)
(Eee |S
=p(a Suf-2)7
f(t) = 3t~ - 2¢
2 Ave f(t) = 2
Z}
49. f(x) = Vx = x!/3 on
[1, 8]
aL
8
(A) Ave £(x) = g— -f xl/3 ax
(B)
-
1 AL
=
(9%
3
39547318
Vk
1
3
eG, ae ette =. 60. 55° Ts, = 99 (18 ~1)=
f
(x)
z AS x
= 1.61 Avef(x) 0
51.
f(x)
= 4e°°°2* on
[0, i
(A)
Ave
f(x)
i0
| = 20e 0.2%, ) |x2 A
BE 10
CHAPTER
11
10
WG yoke Ea tls
696
10]
INTEGRATION
ie ae 4) =,10.73
Ave f(x) = 1.73 f(x) = 4e -0.2x
53.
f(x)
= 0.25x* Ax =
M4
- 4 0n
5 0 4 =
a= 0, b=
8, n=4;
2
£(1)Ax
+ £(3)Ax
ieee
W795
+ £(5)Ax
42.25
8
Thus,
[0, 8],
I = ih (0.25x2
+ £(7)Ax
+°8.25)2,
=
10
- 4)dx = 10.
0
Error bound: Potcoe = 9025x750 From
Thise*r
=
iy|\s =
L£O-+
:
© =
=
0.5
3,
[Gon
BS.
£" (xc)
O55(8-="'0)7 3 .
bday
256
2
= 384 7 0-67
‘0567
2
f (On 25x50 14)
a 2at | - 4 )ax
ax =
f (ax
0
7 12
[tf This
=" (20.67 = 10}
error
does
lie
*
hs
-
4x)
0.67
within
the
error
57. £"(x) = 0.5 on [0, 8] 0.5(8 -3 0)> = 256 Pi M>| 4S 24n 24n2 as 0.005
Sire S12.
6m
“12
bound
aye
fa="
1.0'..67
calculated
in
Problem
53.
32
3n?'
n
2
Mee
ne
32
0.015
~
PREIS) Sys!
47
59. n—-oco lim[(1 - c?)Ax + (1 - c2)Ax + .. + (1 - c2)Ax] where Ax = n Ge =
irik
2—*
ana
n
5
ay Ke="1
52,
«,
2
sa
Riemann
sum
tor
{ (1
-
x*) dx.
2
ff(1 - x*)dx = (x . 3) , = [5 = 382 - (2 - Fy] = -36
EXERCISE
11-5
697
61.
lim [ (3c? -
2c,
+
3)Ax
+
(3c% ~
2c,
+
3)Ax
+...
+
k=
1-2)
(Gc. ~
2c, +
3)Ax],
n-ceo
where
Ax =
*4—
ana
Cc, =
2 foe
an
vs) a Riemannesun
12
tor
|
(3x2
-
2x
+
3)dx.
2 12
12
‘
(17)°™2)(19)*
(3x7 - 2x + 3)dx = (x - x + ax}
+ 36a
2
17, OaL0 3
63. fixV2x
3
-
f x(2x2 - 3)1/2ax 2
y
af Be
i
aig
a
[ote : The
form
a
4a (3)(22? 2 3) 3/2|°' See
~ 33/2
2 (i5y3/2)-
-
73
the
u?/ 2 qu;
3
~ 33/2
ase’? - 53/2) ~ 7.819
1
1 65. f FON xere Ger’ 5 asia 453
Consider the indefinite integral and let u = x Aon Then du = (2x - 2)dx = 2(x - 1)dx. x- 1 Pipe 2curs. = 18ory ca (eG 1 =
liequern ee caeaAone
x0 = 2k tes
(ob ea
y du
2
=
43),
5 Inju
+
ju
C
Thus, x-
1
| ose ermee:
1
Soe
SUA
=
al =l1n|x 2 |
A=
5 Nes in
-
9 in AVE = 5 aa (in a:
=
in ="=0. In 3)" 3)*=°-0.203
3
Pom f Berge wi (em tet) Consider
Then
the
du'=
indefinite
integral
and
let
u =
e*
+
e%.
(-e* + e“)dx = -(e”* - e*) dx.
pera Sa
=
tSSS mPey C=
~{udu
=
=u" +
C=
Thus,
AY
i@ici~ fae
ee
u. a
Tle aes
SPECTR
698
CHAPTER
11
INTEGRATION
3 |-1.
1 Spay
pre ERE
has
2 3/2 = 2 (2x0 _ 3)3/2,
= (2t2)?
=(5)?
integrand
1 ee
ie
.+ C
the
ae
69.
f(t)
= - OM
(A)
a=1,
tL
b=2,.n=
Percation maqGpoincs
M, =
i)
+ £(1.3)Ax
|f"(t)|
Thus,
+ £(1.9)Ax
+ 0.5263]0.2
t3
[1, 2] = max = Onild,
s #4=4)
3
ln 2 = 0.6919
_ 1
2] = 2
_ 9 9933
+ 0.0033
ln 2 = 0.6931
(C) Brror This
71.
on
iz
jr-m,| (B)
+ £(1.7)Ax
+ 0.5882
bound:
pide == 0d verte) se Max
0 2) 99
+ £(1.5)Ax
[0.9091 + 0.7692 + 0.6667 (3.4595)0.2 = 0.6919
Error
= 0.2
{1 Vi27el 245136718, {1,1, 1.3, 1.5, 19g;
£(1.1)Ax
= =
5, Ax = ee
£(t)
=
error
= + fe on
Maxon)
|r E
|in 2 - M, | =
on
is within
(Te2hss
M_ | < 2(2
12:n
the
Stee
f1742)\-=
Z
|0.6931
max
3 oe Is) 55
- 0.6919|
bound
-+ t2’ 4 on
determined
L*(eye= eaRape
= 0.0012 in part
(Ae
2 t3
07,
1
Jan? te hone = < 0.0005 ens ss ees
n” 2 72(0.0005) ~ 166-67 nace eh Ae)
73. 6 i a
ds
ax #512163
EXERCISE
11-5
699
900]
= 500 - 5 on [300,
77. C'(x)
The increase in cost from a production level of 300 bikes production level of 900 bikes per month is given by: 900
(soo : 3 ex= (soox 2 1,2)300
300
= 315,000 - (135,000) = $180,000 in
in value
loss
Total
loss
VilL0))
=
in
in value
10
= {
VS)
5
=
25 500(> =
the
second
10
VCE) de = i
5
= 81.
-
12)dt
=
5005 =
12t)
0
0
Total
t2
5
{ V' (t) dt = { 500(t
=
="V(0)
5 years:
first
the
5
U(S)>
month
900
i
79.
per
5
0
60) = F-$23) 0750 5 years:
12)dt
-
500(t
500{ (50 = 120)
=
t2
s00(5 a
25 = (z =
60) =
12)
10
-$11, 250
(A)
- -/130
(B)
be the quadratic regression model part (A). The number of units by a new employee during the first is given (approximately) by
Let q(t) found in produced 100 eave
10
i
0
83.
(A)
the
find
To
Ler 11
q(t)dt
ig
ef
> =
5te
=
6505
useful
-t
55
t? = In 55
700
CHAPTER
11
INTEGRATION
life,
set
C'(t)
=
R'(t)
and
solve
for
t.
to
a
(B)
The
total
P(2)
-
profit
accumulated 2
P(0)
f DR" CC) 0 2
2
en
che
- 11
ee DBL
S>
Ct)
(A)
a=
the
total
00,000
+
profit
OP ’ Seem —2
0
1
C(x)
=
approximately
aie Coane)
is PD)SRY
$2,272.
08
+ 300 = $420 500
sie
(60,000
+
300x)dx
0
=
>, i 599 (60,000x + 150x*)
ae =55 (30,000,000
[500
:
+ 37,500,000),
=
$135,000
(C) C(500) is the average cost per unit at a production level units; Ave C(x) is the average value of the total cost as increases from 0 units to 500 units.
87.
first
©.&
G(500) = ee Ave
5g Bey
the
3005
Average cost per unit: Zin) = C(x) _ 60,000 x
(B)
is
In
integral, the integrand has the form e”du, where u = -t*; an antiderivative
2/2
a-woe stews eed foes pool -37e 22 = 22 Thus,
[Note:
Ede 0
1 0
~ iitae
0 alka
(-2t)dt
4?
2- 1e
=i
is:
sh
2
0
5
life
2
aer= { (ste 0
2
5
useful
- f ore dt
0 2
the 2
e= SGN (Ee)
J ste tat 5
during
of 500 production
(A)
(B)
Let q(x) be the quadratic regression model found in part (A). The increase in cost in going from a production level of 2 thousand watches per month to 8 thousand watches per by month is given (approximately)
‘keq(x) dx = 100.505 2
Therefore,
the
increase
in cost
is approximately
$100,505.
EXERCISE
11-5
701
89.
Average AveuS
price:
a
oy
(X
x
300
f(x)
900
99.
Using
2, i
P(O)
5
. =77,500
0
5 to
approximate
1 and
5,000 + 4,500 17,500
Therefore,
Lat
one
we
= =
=
the
Therefore,
1,500t) n =
5 f IQS) 0
Ax
the
0
(constant).
5
f Coleidt
over
of
5
ata
0
C'(t)
end
0
i RGE Now,
profits
the
and
5
5
fey.
total
to
M = 10
+ 3,500
total
+ 2,500
accumulated
= [ox wae 900 17 7/010
a midpoint
f£(x)dx = M,
sum
+ R' (3) + R'(3)2
profits
are
- ibCEC Cvacsue.
1,500
(approximately):
7), 500"
97,5001
=—S10;000
2,100
Ay 7KONO,
with
+ 2,000
n
900
=
£(300)Ax
4 and
Ax
=
+ £(900)Ax
600,
we
have
+ £(1,500)Ax
+ £(2,100)Ax
0
[900
+ 1,700
(5,200)600
+ 1,700
+ 900)600
= 3,120,000
sq ft
EXERCISE
11-5
703
101.
w(t) The
= 0.2e9°1& weight
increase
during
0 8
°
The
weight
hour
W(16)
8
during
16th 16
= f
hour,
W'(t)dt
2's .2. 5
the
second
is
given 16
= f
Ee
temperature
over
1_? 2 ip C(t)dt =pi
Gee
=5(4
105.
Using a midpoint sum R(t) from the graph,
3 I
Ritlde=aM
107.
P(e) (A)
the
total
50.3
TE
iz
0
B24
eight
0.2e°:1tgt
2e
Abs)
=
[0,
20)"
3 and
2]
is
CHAPTER
11
the
8th
16
8
given
by: 2
6 10t
0
Celsius
At
=
1,
and
4805
+
of
OES of
5e+0ies
air
=e
estimating
the
values
ei
inhaled
is
approximately
1.1
liters.
fe Sa!
people
during
the
first
seven
months:
q
A 0.1 |ae Sar { — #2 at + = 0.1dt 49
0
fraction
of
247 8.4t | | re Ses
people
t“
nites
+
2
98
49
INTEGRATION
0
+
7 ORE! ao)” + “a t
—
inv
495.
tay O 45 Opal
during
the
=
first
7) 0
On
OY SANs
two
years:
Wane 5 eo)5 ey 1. (24 0.1dt + 0.1 |ae A f dt + ptt? 49 24 J, 24 24 Git 2 ie =O Uisiidn (tate. Aoi ies gett O-17S {in 625
704
from
grams
22 pidge 6oa° olen (a
= "10>"
Pia
1 rer
8e"5.45
£0) dt.=
-2trt,
On6 fin
Average
i.e.,
= 20-16
Je
period
O26
(B)
hours,
by:
A ed ps
aosat le G
3
with n = we have
AO Rik
49 fraction
1
time
a
volume
= eee
ieee Average
grams
1 3 5 r(3)2 : R(3)2 n (3)! 2 2 3
3 =
Thus,
by:
then du = 0.1dt.)
8
=
Average
given
= 0.2f eo -1tge
(Let u = 0.1t,
aq S990 o
8
103.
is
8
0
e9-1£(9.1) dt
gent
the
- W(8)
hours
0
increase
through
eight
0
= ae =
first
- f 0.2e°-1"gt
= i W' (t)dt
- W(0)
W(8)
the 8
8
=
in a9)
400i
Ooms
of
CHAPTER
11
REVIEW 3
1. f(3? - 2eyae = 3fePae - afe ae = 3-2 -2-B 2.
5
{ (ax - 3)ax=2[ 2
5
3
5
x ae-3f a= 2
2
5
4 ce
8-
ee
ary
§
- 3x
2
2
= (25 yi) c= ALS = (20 =
height
= Ave
(ad £(x)
=
eee tr
(11=5)
7
(li=ay
5(-2) = S10
5 f(x) dx a
(2) = z = 0.4
= Al. £(x) dx
b
(11-4,
Li=5)
(11-4,
11-3)
(11-4,
11=5)
(11-4,
11-5)
b
d
(e;
i bE((Seebe
=
b
d
i f(x) dx
+
b
(a) a d
ax +
a
11
) EES) OSC == b
+
0
Sle
OV 6m =
lee
ete)
b
sca f f(x) ax
0
2)
ax
CG
f f(x) a
J (Se)
if f(x) (e!
b
f if (Se) esce—
CHAPTER
3,
2
b
18.
706
table
+ £(11)Ax
+26
(-1)
22.
the
f(x) = 6x* + 2x on [-1, 2]; ‘eae
21.
5 - (3 + 1)= 45.333 (11755)
values By i
Seine
20.
27+ nie
|-="15383
Using the oe —-
&
16.
(3%° +
(el
i f(x) ax
2) =
INTEGRATION
060="
J f(x) ax + b
a
2+
oe
0.4
d
i Be )iebe c
(Li
27, Lis)
a
23.
b
i re (39) \Yobre =
-{ niex\axt="=(-2)"
b b
24.
-{ FAX)
(11-4,
11-5)
=
=2
(11-4,
11-5)
=
-0.4
(11-4,
11-5)
b
0
d
{ EX \OxX: i=
-{ f£(x)dx
d
26.
2
Cc
f fix) ax = Cc
25.
=
a
(from
Problem
22)
0
Let f be an antiderivative function. Then: fmrrseinereasing on [07 1] and [3,74] (£' (6)y S10); rFeis decreasing on (1; 3] (£' (x) < 0); the graph of f is concave down on [0, 2] (f' is decreasing); the graph of f is concave up on [2, 4] (f' is increasing); f has a local maximum at x = 1; f has a local minimum at x = 3; there is an inflection point at x = 2. The graphs of antiderivative functions differ by a vertical translation.
(11-1)
f(x)
a
ae|
TOUR
= 2'sine)
4, dy v|
29.
a 2 a a
from
the
figure,
approximately equal computed in Problem
30.
Let y Leo = Cx”.
Then
to 1 as 28(B).
os aoe ani
2Cx.
the
slopes
computed
] 2i-ter(, es
2(-2) eat
at
in
(2,
1)
Problem
and
wate
(-2,
28(A),
(11-3)
-1)
not
are
4 as (11-3)
From
the
a original
equation,
C =
Oe~>F of
so
yee (en ahey = 2x(2 wesw)
large
Let
u =
xX +
1," then
X =
1/16 5
z
_ 2038 - 92-3°R
iia aie 86 ee 56.
a SYP)
7
32 (16 :of x) 3206 k)aee
x
1 B202G
+¢4
(ota?
8
2-a6""") 3
324°)
sedis eS 3 2048 2048) 1234 _ er, 267 ( oe )sae
u=-
1,
ax =
du;
and
u
=
i (1125)
0 when’x W=Lieu
=
when x = 1. 1
2
2
-1
0
0
i x(x + 1)4dx = i (u - 1)utdu = f (u? - u*) du
o "6 - 5 skid 3 > ied? 15 a 3 Gamma (11-5)
_ 1a ete x £(0) fe= 2 57.) ay Beams Let
u
=
x,
then
du
=
3
3x’ dx.
3
y = foxte%ax = 3 fe? stax = 3 feta = 362+ c= Given
£(0)
=
Se
0 06N,
N(O!)
=
800 = Ce® = c. Hence, C = 800 and M(t)
CHAPTER
11
+c
: 7 (x).=
3e°
=
1.
(11-3)
800,EN > 0
From the differential constant. Since N(0)
712
3
2:
Pearse Cs Bee Hence ,.Gi= —L andwye=)
58.
30"
INTEGRATION
equation, = 800, we
N(t) have
= 800e°-%t,
=
Ce?
88>
where
C is
an
arbitrary
(lisse
f(x)
0
0.5 =e)
Sucetiwes
e*
M.
=
x
1
on
(0,
£(0.1)Ax
= [0.9900 =10.74805 6215
=
.e
Te (x)
=
-2xe
f£"(x)
=
-2e%"
graph
1];
az=0,
+ £(0.3)Ax +
0.9139
b=
1,
n=
+ £(0.5)Ax
+ 0.7788
5, ce
+
£(0.7)Ax
+ 0.6126
+
Be
ne
£(0.9)Ax
+ 0.4449]0.2 (11-5)
phy
£(sc).
The
(11-5)
mt] r
-
+ 4x* e*"
of
f"
is
shown
A
=
(4x?
at
lf"(x)I
(60-05% _ 1) dx 10 Jao aie SIP SOS
ee I
] 50 la0
= 4 [206-5
- 50 -
(20e% - 40)]
= 16e*°> - 16e* - 8 = $68.70
716
CHAPTER
11
INTEGRATION
(112mm
To
«
5, At = 10. a = 0, b= 50, n= the table, = N(0)At + N(10)At + N(20)At + N(30)At + N(40)At
(A) From L. 5
[5 +
+
jis
=
AB
Rs
Sree
Error
bound
+
17
+
14
+
[10
=
14
17
+
=
+
19
an
for
19}10
=
650 + N(40)At
+ N(30)At
+ N(20)At
N(10)At
RELS
A,
10
=
800
=
20]10
+
725
+ N(50)At
components
Ac:
eee ="'|20 -.5|5°=075
- ON
Error < |N(50) QuadReg y=ax2+bxtc
(B)
a=~-.@05
x5
(C) Let
q(t) be model found
the quadratic regression in part (B). The number of units produced by a new employee in the first 50 days of employment is given (approximately) by
50
{ q(t)dt
0
80.
MomGtindethe
fFnInt Onde a months. Estimated sales after 12 months:
gives
the
total
sales
after
t
S(12). = S0(2 = 27% 798(12)) = soya - 68-95) = 31 sons Wimtdd ions To
find
the
time
to
reach
“402 SOL = eyo)
$40
million
in
sales,
solve
formic:
O28 = dee 4leF
nde
ig
—0-08¢
=
In (0. 2)
Ce
82.
oe MURA -0.08
=
20
months
: ‘ : ' Using a midpoint sum with from the graph, we have:
Ave
q
C(t)
12
= eel
n
C(t)dt
(11-3)
=
6,
2 = i oana ae 2 and
At
Tien
83.
aA GAS aks
+6+8+9+4+8+
eens ae) AG tea oli
Sy
of
C
CG) at
0
= G5Me = ap (C(1)AE + C(3)At + C(5)At = 24
values
Reb
= eat
0
ree
the
4)
+ C(7)At
+
C(9)At
= a = 6.5 parts
+ C(11)At)
per million
(11-5)
SS) -1
A = [seat = -5 {rae = -5 ies + C= = + C Now
84.
A(1)
= A+
A(t)
= 5£
A(5)
= ae Spin
The
area
The
total
C=
5.
Therefore,
of
the
amount
wound
of
after
5 days
is
seepage
during
the
4
4
0
OL
u =
0 and
a
T = | R(t) dt - f —4000 [Let
C =
1 +
t,
then
poe)
du
=
1 cm?.
first
(11-3)
four
years
is given
by:
ra:
at = 1000 | (1 + t)ae = 10004 +4) “1/4 — 0 -1
dt.]
=
-1000/4 A ee
Sule
4 _ Oni
-1000 5
+
1000
=
800
0
gallons
(11 =a) 718
CHAPTER
11
INTEGRATION
85.
(A) A(t)
= 770e°°°%F£,
Population
A(35) (B)
Time
t
in year
>0
= 770e0°92'35)
to
#£(1995 is t = 0)
2030:
t =
35
= 770e°-35 = 1093 million
double:
770e°°°1f = 1540 eo Olt _ >
OnOTE
=F in E=
It will
a2
hy
0.01
take
~
69.3
approximately
70
years
for
the
population
to
double. (11-3)
86.
Let Q = Then,
Q(t)
be
the
= = -0.00012389 where died).
Q) is We
the
want
amount
and amount
to
find
of
Q(t)
carbon-14
present
in
the
bone
at
time
t.
= Q,e0-0001238t,
present t such
originally that
Q(t)
(i.e., =
at
the
time
the
animal
0.040).
0.040, = g,e-0-0001238¢ e70-0001238t _ 9 o4 -0.0001238t
= t=
87. N'(t)
ln 0.04 ins0.04) =0.0001238
= 7e°°°t® and N(0)
| ~
26,000
years
(11-3)
= 25.
N(t) = frer-ttae = 7 {ero tae = = z fer 28(-0.1) at Given
N(0)
252
s'27 967°-te ge ew oS 25°=" 2708 + C= =704 ©
Hence, C =.95 and N(t) = 95 - 70e°°-1©. The type N(15) = 95 - 70e°9-2045) = 95 -~ 70e1-5 completing the course.
HS
t
Cet
=
eT
a
P4-S.67
} eauy
©) T = 4p""
;
MS =
;
stiininm
st
Se
»
0!
8
“y)
ar
e hy
« L10K ra Shr Yj
PYLE
:
ge
Oi
-
ae ae
{
an”
i
;
12
ADDITIONAL
EXERCISE
le
12-1
Things 1.
INTEGRATION
TOPICS
eeaaaaaaaaacaaacaaaacacaaaaacaaaaaaaaaaaaaacaaaaaaaaaaaaa
a
to
AREA
remember: UNDER
A CURVE
If f is continuous and f(x) 2 0 over the the area between y = f(x) and the x-axis given by the definite integral:
interval from x =
[a, b], then a to x = bis
b
Aa
J f (x) ax a
b If
f(x)
y =
f(x)
< 0 over
and
the
the
interval
x-axis
from
[a,
x =
b],
then
a to
x =
the
b is
between
area
given
by
b
i [=f (x)
dx.
a
if f(x) is positive for some values of x and negative Finally, the area between the graph of f and the x axis can for others, be obtained by dividing [a, b] into subintervals on which f is finding the area over each always positive or always negative, subinterval, and then summing these areas. 2.
AREA
BETWEEN
TWO
CURVES
If f and g are continuous and f(x) 2 g(x) [a, b], then the area bounded by y = f(x) aes x S bois given exactly by:
y
over the interval and y = g(x), for
f(x)
b
A=
{ [£(x)
- g(x) ) dx.
g(x)
a
EXERCISE
12-1
721
3.
INDEX
OF
If y =
INCOME
f(x)
is
CONCENTRATION
the
equation
of
a Lorenz
curve,
then
the
il!
Index
of
Income
Concentration
=
2{
ere =e
(G9) iors
0
b
b
beanenf
g(x) ax
3.a={
a
5.
Since
[-h(x) ] dx a
the
shaded
region
in Figure
(c)
is below
the
x-axis,
h(x)
< 0.
b
Thus,
i h(x) dx represents
:
ite
the
negative
of
the
area
of
the
region.
a
4 { ={-2x 0
A
= 1)dx
9.A
4
f [2x + 1]dx = (x* +x)
9 720
0
2
Il I
2 ail te -
ajax = {
ai
[4 - x*]dx
Ly pie a=
Ng
are
Be
Foe
, at
=
enh), ot 1
b
] dx
19.a=
il
—
¢
TT
ala((0lS)
mo,
=
g(xX)]dx
23.
A=
Cc
i {[f(x) a
12
ADDITIONAL
INTEGRATION
=
05698
d
| £(x)ax + { {[-f(x) ]dx (2)
b
I [f(x)
CHAPTER
ne
b
d
722
Ey
a
| [-f(x) a
PA a JAW
13.a
Xo)
wenafoLeda =ffdawa =
bo
(0-8 ae ee
2a«|amet4}
TOPICS
C
-
g(x)]dx
+ i [o(x) b
=
Lica
25.
Find the x-coordinates of the points of intersection of the two curves on [a, d] by solving the equation f(x) = g(x), as x O. 1x +"0F0008K0.0003X + 0.1x% - 57 = 0 -0.1
iT:
+ VO.01
a 5p OOO 300
PS = f
0 300
= f
+ 0.0684
0.0006 =0.1 + O$9e0s
[67 =
(10 + 0.1x + 0-0003x-
(57-0
adie -=,10000035-),ax
emer
2
bo
) lax
2
0
=
(57x - 0.05x*
- 0.0001x°)
300
9
= $9,900
150 43.
The area of the region PS is the producers' surplus and represents the total gain to producers who are willing to supply units at a lower price than $67 but are still able to supply the product at $67.
~ x = 300
45.
500
p = D(x),= 50a= 0.1x;p Equilibrium price: D(x) = 50l=)
Thus,
738
x
x = 260
CHAPTER
12
sig
+.0.05x
OF dsei= ae +0 30 55¢ Soh ss Wis ilsps X= 2.00
and p = 50
ADDITIONAL
Six) S(x)
-
0.1(260)
INTEGRATION
= 24.
TOPICS
260
CS = f
260
[(50
—
0)ix)n
9
24)dx
J
0
(26
-
0.1x) dx
0 260
(26x - 0.05x7) i
i
$3,380 260
PS
i
260
[24
s=re(21 9490)50520) Idx
Y
0
£23). 90". '0520] dx
0
P
(13x - 0.025x?)
iH}
0
$1,690
47. D(x)
= 80e-°-°91* and s(x)
Equilibrium
price:
D(x)
= 30e°:91*
=
S(x)
eye:8
e0 -002x
3
8 0.002x = n(5) Ms
in
2
0.002 Thus,
D = 30e°:991(499) 490
CS Bs = J
[80e -0.001x
0 778
~ 4g, -0.001x
490
_ 49) dx =alg) ( RLU ee -0.001
49x) 4
= -80,000e°°49 490
PS e= if
0.001
_ 30e 0.001x ]dx [49 -
+ 80,000
- 24,010 = $6,980
490
3 a Ol ie =): =¥ (49x = Qes
0
24,010
49. D(x)
= 80 - 0.04x;
Equilibrium
price:
S(x)
= 30e°:-°01*
D(x)
=
= 30, 000hens,
end)
"= $5,041
S(x)
sogzndnodxveigge?°° * Using
a graphing xX =
Tus,
p =
80
=
utility,
we
find
that
614 (0404) 614e=
55
EXERCISE
12-2
739
614
614
CS = f
[80
-
0.04x
-
55)dx
f
(25
-
0.04x)dx
0
(25x - 0.02x7)
:
= $7,810 614
PS = f
[55 -
614
(30e°-991%) }ax = i
0
(55°
30e% 904%) ax
0
£1(55x = 30,000e°: 9%)
614
2
= $8,336
51. D(x)
= 80e°9:9*.
s(x)
= 15 + 0.0001x?
Equilibrium price: D(x) = S(x) Using a graphing utility, we find
Thus,
xX = 556 p = 15 + 0.0001(556)* 556
CS = 1
that
= 46
[80e79-901x _ 46)dx = (-80,000e°9-991* - 46x)
BSG
;
0
= $8,544 556
PS = f
-
[46 - (15 + 0.0001x*)]dx
556
= i
0
(31 - 0.0001x*)dx
0
(Hees)
556 0
u
740
CHAPTER
12
ADDITIONAL
INTEGRATION
TOPICS
$117,507
53.
(A)
Price-Demand
Price-Suppl
QuadReg yEax?tbxt
p = D(x)
Pp = S(x)
Graph the price-demand of intersection.
and
price-supply
models
and
find
their
point
(sya
Equilibrium Equilibrium
30 Intersection X=21.456637 .Y=6.5087005
quantity x = 21.457 price p = 6.51
.
Gris
(B)
Let D(x) be the quadratic in part (A). Consumers' surplus:
regression
model
21.457
CS = i
[Diy
=
6.51)dx =
sii.
0
Let S(x) be the linear part (A). Producers' surplus
regression
model
in
-457
PS = f
[6 351>=)
3S (x). ] dx =
$27,087
0
EXERCISE
12-3
Things 1.
to remember:
INTEGRATION-BY-PARTS fu GVa=
Iho
uve
—
FORMULA
fv au
INTEGRATION-BY-PARTS:
(a) (b)
The It
product must
standard (c)
The than
(a)
For
(e)
For
new the
be
SELECTION
udv must possible
formulas integral, original
equal to
or
u AND
dv
not
xPe™,
integrals
x? (1n x)%,
involving
(ln x)%;
(preferably
by using
be
any
more
involved
Juav.
integrals involving us, oes dv, = ede.
u =
integrand.
substitutions.)
should
integral
dv
original
integrate
simple
Jvdu,
OF
the
try try
dv = xPdx.
EXERCISE
12-3
741
lees [xe*ax 3x
Let
u =
x and dv = e*dx. 3x
Axi Cxa= git ee ee 3
[xe
3x
ex: 3
-
Then, du = dx and
Paes3 xe ax
v =
.
2 [3x ot AD Mae Roh 3 + e"dx = 3 xe 9 ©
ax =
3
3. [x2 in x dx Let
u =
fo? an
5.
ln x
sy
x
a
C
and dv =
=
xdx.
x?
(an
Then
i=
9(%) -
axe
a
ge
By rein NE PRE
sR
bs
5
3
3
du
=
& and v =
ee
ae
1/
eee
ESRC a Fy
3
*. aes
Rae 9
[(x + 15 (x + 2)dx The
better
choice
The alternative integral of the
is
u =
is u = form
x
+.2,
dv = (x ++ 1)° dx
(x + alee
dav =
(x +
2)dx,
which
will
lead
to
an
fx Pedy = Cseet 12) ods Let
u = x + 2 and
Substitute
into
dv= (x + 2) Max:
the
integration
is
See
u =.x
and. dv =.e “dx.
[xe™*ax = x(-e*)
tte
7
du.=..dx-andv-=
- fice) axSe
2
[xe* axZi/\ber 2x ax = 1
a
(x + 1)°.
n|r
+
C
2
-e*.
fe*ax = -sweitesce
2x
= LY eta
ce
at ic
1
| (x - 3) e*dx Let
u =
(x - 3) and dv = e*dx.
Then
fix - 3) e*dx = (x- 3)e% - fe%ax =
du = dx and v = e%.
(x - 3)e*% - eX + C
= xe* - 4e* + C. fl
Thus,
i (x - 3)e%dx
=
(xe* - 4e%)
=
-3e
1
PA ae
I
0
742
v=
= fedxut 1)°ax 6
e 49 ORB
.Then
a2 at Ee
and
[xe*ax Let
9.
du = dx formula:
Prisca 2) S eed) 6
fix + 1)° (x + 2)dx
ie
Then
by parts
CHAPTER
12
ADDITIONAL
+
4 =
INTEGRATION
-4.1548.
TOPICS
ote eh
irae iVor)
S34 2G
3
13.
f iis, Wprewebeq 1
u
Let
fan 2x
In
=
2x
and (ln
ax =
=
dv
2x) (x)
3
f In 2x de) s(x
Thus,
|x
~
|»
du = Then
dx.
dne2k
3
v=
xX.
+
Cc
x
=
(3.1n
| =z
Ss x
2x
x In
SS 2
and
6.2.3)
- (in 2 -
=.2.68217.
1)
al
15.
2X
ae
Substitution: [Note:
Inju + |u|
[Pau = Mag
—?*— ax = | eg
not
value
u = du
19.
=
+
since
needed,
2
2 Z
fu dun
Substitution:
C
e+ u du ou 2x dx
Absolute
e = Bleerett 536
+
+1
ln(x |
C=
12
On)
2
1g
BA Z
c=
ln x
cs xo
[Vx in x dx = fod? ln x dx het
=
in
x and
av
=
x/*ax.
far In x dx = cara In x - fA 2 x = ra =
Since
f(x)
=
are:
& and v
du
Then
23/2
(x - 3)e*
in
x
x- 2 |,d/2ax
In
x
-
ae ree erpoe
L epee
See
ee Mereeert
Pe
J
a =
with
13
Formula
using
C,
fl
in | Pe
integral:
indefinite
the
Consider
i aye as 9
1.
cd 5 ~ 0.2939.
in
Z
43
> Pxtaar ok a ee
1 [agape
(a+
2
a
Beh
Se
nS
are x +1 hss
Thus;/
2
x? + 3x
A) [eae
1n| x
Inix
+73
|
|
| = -F 19
uF
a
3
xt 53
x
Kot 3 in|
the
ail
al
al
2
Xe
+
ee
Fear
=3.70
10
-
(x?
3.70
756
the
first
A=
(10 in |x +
CHAPTER
12
the right. intersection
3x) | ax Las0
- i
ae
For
gs
+
at of
=
oP
integral,
Ve? + 2/0|
(=20029)
ADDITIONAL
(x2 + 3x) dx
use Formula 1.36 =o 710
le
S[3.62
INTEGRATION
-
ae
:
—
AC
10"1236 ao
s(t
+c
1
The graphs of f and g are shown The x-coordinates of the points are: x, = = Sri Oi, Xun 36 A=
integral:
second
+ Cc
= x? + 3x
47. £(x) tm cae g(x)
®
|
= In|x + 3| - 5 In|x + 3] + 3 In[x| = 3 In|x + 3| + 3 In|x|
aan
C
+
x
+
u = x + 3, du = dx.
1 on
d=
5;Tiak 8 tate
i
Ree ae =
c = 3,
1,
b=
0,
a =
15 with
Formula
1
a =
Substitution:
Now (Ee 3 ak = dn pxces/3 |” Use
Diag
+
Sdu = (x + 1)dx
x
ae
2(
+ 2x| +
= 5 In|x
45.
du = (2x + 2)dx =
1
= 5 in tulese
x + 41
u-= x* + 2x
Substitution:
aS
Ueteed ee 0al
36 with
(253 + 3x2 eg)
—2(8e65))]
TOPICS
2
=
a = 1: 1.36 -3.70
3sis3s
49.
f(x)
=
xVx + 4,
The
graphs
The
x-coordinates
are:
of
Giles)
xX, =
f and
ht g are
the
of
-3.49,
act oe
xX, =
LY
shown
at
the
right.
=o
points
of
intersection
2
CE,
Ones
-3 0.83
0.83
a={
[1 +xxVx + 4]dx= Sat -3.49
For
the
second
integral,
0.83 a=(x+}2)
Zam
51.
Find
-
2.60005)"
= =
x
Use
el
xVx
+
4dx
22
with
a
=
4 and
uv
ul
b=
1s:
0.83 +
4)3)
2/9850"
price
-3.49
0F891695))
p =
15:
- 30x
ee
-48
Sof -
30x
me
eth
Formula
20077500
py ant (0° [Fy 0
20
Ey ae="
= 15x | 3000( a a
S00 0R8b
= h— J Syarca=—ci00)
(=15) (300) 7sny
1n|300
3000
+ 1500.1n(100)
3000
+ 1500
the
ah
surplus:
[15x + 1500
Thus,
-
= 200
Consumers'
Be
7500 3000
Formula
—(—7
the demand when the 15 = 7500 - Me 15x 15x
x
+ x)dx
— 8
odira +(x
SHOE 4500
use
13x
-3.49
aa5r =
x,
(1
3.49
- 15x];
si=
-l:;
00
200
- x|] -
1300 - x|
20073000
etal0 [Paya
1500
1n(300)
1n(5)] gs0, 352
consumers'
surplus
is
$1352.
The shaded represents consumers'
region the surplus.
EXERCISE
12-4
757
55.
PASSOWES SayeOP; ¢ =a ofoeE’
CS)
250
CU
c(0)
# 10x
u= | 9a On 05xOE
Bs
fi = 250(565 In|1 (Formulas
= 25,000 L
x
250/7 01 05%
as
Raed) Met osy? In|1 + 0.05x| lor 2008 + 10 (905
+ 0. 05x
3 and
en 10/7 PPT
+ K
4)
= 5,000 In|1 + 0.05x| + 200x - 4,000 In|1 + 0.05x| + K x1, 000*ln')1, Since To
find
GC (=
The
At
C(0) C(x)
+°0705x|
+ 200K 7+ K
= 25,000, K = 25,000 and 1,000 In(1 +)0205x) 7+ /200x-+-25;,000,
the
production
25 OF COMO
production
level
a production
C(850)-2-17
level
produces
a cost
of
$150,000,
solve
300,000
is x =
level
000
that
tes
x 210
of
608
850
Int1.+.0.
pairs
pairs
05 (850)
of
of
skis.
skis,
+- 200850) | +255, 000_=)$198 "7728
We
57.
FV = et | f(t)e**dt 0 Now, r= 0.1, T= 10,
£(t)
= 50¢t?.
10
10
0
0
FV = e(0-1)10 [ 50t7e °-**de = 50e | bia To
evaluate
the
fete?-teae Bf
integral,
2,-0.1t
oT neni -O.1
Now,
using
Formula
use
2
Formula
[re ?-tat
47
IEGE with
n
=
= 1oetewcnt
2 and
47
fee—Oedt daresn), ee 5 ea
4 20 {teat
again:
WV -0.1)¢ eo nteeg dtor= oo -10te -0.1t
B0e[-L0e"e UE — 200teyis Ereeailen
758
CHAPTER
12
- 2000e7
ADDITIONAL
- 2000e?
INTEGRATION
TOPICS
+ 2000]
-0.1¢t
+ 10 e=O a1
Thus, fete0-teae S"420c7%e+e osirg00te 972 4 20008
50e[-1000e!
-0.1:
-0.1
-0.1¢t
FV
a =
Fee:
10
J)
= 100,000e - 250,000 = 21,828 or $21,828
Index
of
Income
Concentration:
2
1
2
[x -
f(x)]dx
it
2{ x ~
0
5xvi
+
3x ax =
i [2x
0 at
ae-
foxT
0
the
second
2
use
1
Formula
zee = 21
S(e)
3:
3x)°|"
pt
3x)°|"
3
4H
P(e
we
b=
say
TS
PY
196
win
ole Gy
cae
age te?
1s:
tlic
al
2 int
have
eo
Danie
6)
pe
es
t? eae (1 + t)?
_
2
0,
b =
x
a
=
4 (Lies
1 and
As the area bounded by the two curves gets smaller, the Lorenz curve approaches y = x and the distribution of income approaches perfect equality—all individuals share equally in the income.
Beet fe sia, $(0)
a =
ae )seme
Formula 7 with a = 1 and
Since
with
a.
t? (1 + t)?
ak
22
i
Samo G) =\=—_,;
= S4*-
Sea
Po
YY
s(t)
3x] dx
15(3)?
il x.
Sy Lorenz curve
Use
+
3°-3x- o al
0 =
+
0
integral, a
xvVT
1
fo2x
For
-
0
+ ep sce
0 =1-1-2i1n1+CandcCe=0.
Thus,
al
eVeetatek fas Goes 2pm? tut Now,
the
total
sales
by: S(24)
during
the
first
two
years
(= 24
months)
is
given
: =
1+
Thus, total million.
24
-
sales
oy
during
- 2 In|1 + 24| = 24.96 - 2 1n 25 = 18.5 the
first
two
years
is
approximately
EXERCISE
$18.5
12-4
a9
g
65. 3 E
se 2 4 2s
in millions of The total sales, (24 over the first two years dollars, is the area under the curve months)
25 Bae ==
y = S'(t)
Gj 0
12
from t = 0 to t = 24.
24
Months
67.
P' (x)
=
xV2
+
3x,
P(1)
=
-$2,000
P(x) = [x2 + 3x dx = ae
BPR
(Formula
C=
Pies The
=2 000'=
Ee number
of
cars
GF7SES 70007"
if
dR
== 8= dt
10
cars
= SES
100
Se V t2 + 9
Using
X=54.005306 .Y=13000
must
be
sold
to
have
a
4
are
sold
eae
per
week:
= 12,000 Soh
2414770
Thererkore:
9
Formula
100 Intersection
ae |Prcertes ie 100 { V t? +
00Cr 83
egy ha) alae DOUESA
that
Profit
26,000
a2
4
ee 135
DEOLIE
P(10)
69.0)
sae
2(9
22)
000
eee
et 35
Bide
32) 2/4 04
ee t? +
36
with
a
=
3
9
(a2 =
9),
we
have:
R= 100 In|t + Vt? +9) +.¢ Now R(0) = 0, so 0 = 100 In]3| + C or C = -100 R(t) = 100 In|t + Vt? +9] - 100 1n 3 and
Ri4)
760
=7100. = 100 = 100
CHAPTER
12
In(4-e N4- bon ln 9 - 100 ln 3 ln 3 = 110 feet
ADDITIONAL
100
INTEGRATION
01m
TOPICS
1n 3.
Thus,
71.
60 =
N'(t) The by
Ve? + 25
number
of
fo iis.
items
60
learned
in
the
12
dt
1
60 [ >
first
twelve
hours
of
study ores
is given
—— gt
o Vez + 25
o Vez + 25
2
60 bin |t +
Vt?
+ 25| ) F ,
using
Formula
36
60 Lin |12 + V¥122 + 25| - inv25] 4
=
60 (in-257="ine5S)
=
60
ln
5 =
96.57
or
97
items
12
73.
fe ‘a Je 5
oe , 0
CHAPTER
The area under the rate of ecunve, Y.= Ni (€), from \t.=
y=N()
—
|
6 Hours of Study
12
: 12
REVIEW (e
( Hi (x) CL
(12-1)
2.A=
a
Il
(2
An)
i [-f£(x) ]dx
(12-1)
b
1
e
a=
[-In
xldx +
{"in x ax
0.5
nik
We evaluate Then du xin
]dx
(a
i £(x) ax + a
4.
i [-f(x) b
b
»
12
represents the total number of items learned in that time interval.
b
no i
learning 0 tontr=
x -
=
the
integral
= dx, We Eb
using
integration-by-parts.
and [in x dx =
[x(Z)ae =
xInx-x+0
In
[in x
Let
u=1n
x,
dv=
dx.
y
Thus, ‘ll
a=
-{
e
x
dx+
0.5 =e (—x
cy
(AL ee
dx
il
1 nx+x)/). ORY: WAR SES”
(51)
+
(x In
x-
i
x)],
se al Galisye!
(12-1)
CHAPTER
12
REVIEW
761
integration-by-parts:
Use
5. [xetare.
4x
Let
[xet*arx = Xf
4x
[x In x dx. Let
uv="In=x x
fx in
4x
4x
integration-by-parts:
and
dv
In x
2
{2.
125 ee
25°-= Se 495 20.833 -
ad
16.
f xe“dx.
Use
integration-by-parts.
0
Let
u = x and
[xe*ax = xe
dv = e“dx.
Then
- ferax = xe* -
du = dx and v = e*.
ef + C
nk
Therefore,
f xe*dx
=
(xe* -
aL
e*)
=1l-e - e - (0-1 - 1)
0
=] 17.
Formula
Use
38 with
3
- BLN
fw 0
Vx* +
a =
(12-3,
12-4)
4
- 16
ae
3
ae]
+ Vv
nl
0
16
= 5 [3V25 S816 ima:
aoe
ee S (te inV16)
= $(15 - 16 in 8] + densa ==> =/@ ln 8-4 § inbdeeaons 18.
Let
u =
3x,
then
du
=
3 dx.
Now,
use
Formula
(12-4) 40
with
a
=
7.
f 9x2 - 49 dx = 1 (Ve - 49 du =
a
aN
VaaVose
Alr w|
19.
fee-Stae,
Let
u = Poesia.
fee
Use
49
-
- 4a
49
rent PROPER RE’ ~"Waihs)
agi
+
C
ee + V¥9x2 - a9 |) HG,
(12-4)
integration-by-parts.
t and dv =
Bee
-
e °>*dt.
-0.5¢t Ee
iO
2 =2te °°
Sat,
fe-0.5¢t
Then
0 sr
= fe °t
du = dt and -0.5t aCe
ee
epee
-0.5t
v = ae 5 hte -0.5¢t
cogs
tc
4c
(12-3,
CHAPTER
12
REVIEW
12-4)
763
20.
{2 In x dx. Let
ln
u =
x
fo? an
Use
integration-by-parts. =
x and dv
De
ae=
3
ee 21.
Use
2.
=
2 (2
fi. ee
_
v
2G
(12-3, andd=
c=1, i
a = 1,
Formula 48 with Pas 1
2. ;
occ
(12-4)
y
22.
S 4
[(x? - 6x? + 9x)
Hw ll
- xidx + [ [x - (x? - 6x? + 9x) ]dx 2)
°o i)
4
(x3 - 6x2 + 8x)dx + J (-x? + 6x? - 8x)dx
iH}
2
°o NS)
2
=
= 4
-
+
4x?
x-coordinates
of
=A+4=
The =
764
CHAPTER
=
2x3
4
+
La 4
+ O30
=
“axe
2
8
do) 5); x, ) SC 0) = 10 +°2-0 - 3-0 FO; (x = O®and y'=-0)
3 =
10
y
+ 2x = 3 y Ohya + 2(-3). 10 = 1) €(-3, (x = -3 and y = 1)
3(1)
5-1
7. g(x, y) = x7 - 3y¥ 427 -3(-1)7 = 1 Bio Ned)
5. g(x, y) = x - 3y¥ g(0, 0) = 0? - 3-07 = 0 Ca=nOnand
ee
reer
(x
0)
=
2 and y =
-1)
9. 9(3, 4) - 6£(3, 4) = 32 - 3(4)? - 6(10 + 2-3 - 3-4] - 9 yh)22ee
LAR
YN
3
f(x,
y)
3 aa
h = 3(x* - y*)?2x = 6x(x* - y*)?
yy? 2c)
#3 (x7 - yjyn(-3¥)
= 99 (ee = ye
f(x, y) = (3x*y - 1)4
£.(x, y) = 4(3x7y - pe f(x, y) = 4(3x%y - 20H 37.
f(x, y) = In(x? + y*)
39.
f(x, y) = Yew
= 4(3xy - 1)36xy = 24xy(3x’y - 1)3 =2) = 4(3xy - 1)332x2 = 12x7(3x2y - 1)3
f(x, y) = yet aaa) = Yevy? = yew f(x,
y)
pH)
,
oo?
oy = ver 2yx + Ye 41.
ay)
rule)
+ aye
f(x, y) = a Applying
so
the
eae
quotient
rule:
eee Cet.
2 Lp Gb a val)
ae A
_ 2 + y*) (2x) - 2 - y*) (2x) i (x7 + y*)? _
2x? + 2y?x -
2x7 + 2y?x |
(x*+ y*)? Again,
applying
_ ae
780
(Product
oy ay = axyer
CHAPTER
the
quotient
Cit
2 + y*)(-2y) = 02- Y) (ay) _
MULTIVARIABLE
ye
rule:
(x2+ y7)?
13
Axy*
CALCULUS
-4x7y_ (x2 + y*)?
Map
iNe fic,
y)i=y
Since
(eB)
f is
+ 4y* - Sy + 3 independent
of
of ae
x,
0
='¢(y)
y)
g(x,
if
that*is;
If g(x, y) depends on y only, independent of x, then
is
og _ a
yh = xy+xwty y) = 2xy’ $0 35¢
f(x,
45.
f(x,
Eek). ae y=
x|
y)
f(x,
|
oY. x
bel xX, y)
eee
Meee”
£
AD. me
(GS;
f
297 ma
va
ot!
Oe
uraPe
a
x Senet)
(x7
of
menial
>t5) 6
‘i
il
oo)
SS
y)
ae)
ie
\
le
\
x
¥
ae
y)
pans \ ee fe Z
2x
f
nse
)
£(x, y) = xe f(x, y) = xye’" + & = xy-eY
f(x,y) foo (X
51.
a ae AR 1B
x2
\ \
\
sae S y
=
SE
eyMae
£ Ge)
f
= 4xy
ig
/
1
£(X, Y) = 4xy
f(x, y) = 2° + 6x =
2x“y +
=
y)
fx,
functions.
such
of
number
infinite
an
are
there
Clearly
==
y)
y)
P(x,
Wye
P(x,
iv)
-2x 2x Add
Eg (X
+ 2ye’¥
xye xy + 2xe xy
fy (x
Sox
0 + =
+ -
Substitute
+
2x
0 and
2y.-
y)
= xyeY
y)
e
—
4y
P,,( 7
—
y =
(1)
and
4 into
=
0 + 12
oy)
Onan
2ie5
4yye
A
iL
=) 0) when
(1) (2) (2):
(1):
-2y +
-2x
8 =
0
ye
4
+2-4-4#=0 +4= Ke 0 when x
-2x
P(x,
2x
Of
+ 2xe¥
xe xy
2xir
OU
OL
4h
0 =
2y - 4 = 0 4y + 12 = 0
equations
Thus,
= xe
y)
- 2y7 - 4x + 12y - 5 -x° + 2xy
Phx, yo= P(x,
E(x,
P(X,
y)
=
0 ee, = 2 and
y=
4.
EXERCISE
13-2
781
53. Fix,
vy) 2)"
F(x, Set
sexty>
F(x,
y)
=.0
ay 4/10;
(2)
,ayve=
and
Fi, (x,
y)
=
0 and
Aye ica sD 0 -4x*y - 4= 0
Boxe From
jou
y) = 3x? - 4xy? - 2; F(x, y) = Lg Ap
-+., x
solve
hee simultaneously:
(1) (2)
Substituting
this
into
(1),
12
3x2we “) --2=0 -
0
4 MN
S
x4
3x°
55.
=
x(a -
Using
a graphing a. 14 200
Then,
y =
2x3
-
utility,
we
find
that
-0.694.
E(x) om Sxtee VB Ae - Gy 2 (AUF (x, (Duma. + ext 6. 2 = 3x° - 4x - 3 SLE (x,
1)]
=
6x
-
4;
critical
values:
6x
-
4 =
0
oes
Sans
ea
os [£( Ll (A axe
De ]
roe>
0
Pe Therefore, (5. 1)= oft (x; OL)" (B)
oe is
the
may have f(h, y), Bioee
a
f(x, (A)
y)
2 3(3) value
of
se,
6 is
(5. 2) =
f(x,
se
y)
Se
on
SHES -3 is
the
the
curve
nati minimum
£(x,.
1)3
value
26 Gee
= 4 - x4y + 3x
the
minimum
value
of
f(0,
y)
or
= =
eT.
alist t (OMe + ¥
Let
Ye 2 and find the maximum value of f(x, 2) = 4 - 2x4 + 12x 4 32 = -2x4 + 12x 4 36. Using a graphing utility we find that the maximum value of °f(xX,£2)" is 746/302 at ixt=aeher 14471592 Ie Alysisye.
(B) £,(x, y)'= -427y + 3y7 £ (15145, f(x,
ve
£(1.145,
782
2 4(3) =
smaller values on other curves f(x, k), k constant, h constant. For example, the minimum value of f(x,“2
VY A 6y 57.
minimum
4
CHAPTER
13
2)
=
=x4
-0.008989 +
6xy
+
=
5y4
2)) ‘= 92,021
MULTIVARIABLE
CALCULUS
0
59.
f(x,
y)
=
1n (x2 + y’)
(see
Problem
37)
ae ae A
£(%,
f x (* ; y) =
(x2 vee + y7)2 - 2x(2x) emt y
ue
ey
ey re). sshd 6 see asa Be
ee'
fy
ee aheal>ile:
f(x,
OO
(x,
fy (x
ay
eee
A? * ey
z
h
h-0
a?
= lin h50
BV ea
Oe
iene
———
h>0
ey
We
k30
es ie
h
Oy
= at
SS ao
4
h
wid eae
(B) lim
D
ae ee a al ge TGA ORE py BOT tee Gah? y 2
61. f(x, y) = x + 2y oie. + Db, vy). - f(x,y) (e+ (A) lin *——*_ ——— = lim h-0
(x t0y")2°- 2yvi2y)
; y) = G0T és ttos Sabo Vv) TE ILS :
esIdina. In)
h
h>0
Obs
f(x, iy + Keo =) flxp cy) Oz lin 6x OS
SADC Reg) oo
k30
k
6
= Bae ot 12) k
2 Spb (97 14 020K 26 ke ie, a
Si.) Oise
eae
ee
k>0
_ Ayk + 2k = lim = 0
k
7
k
ee
4
90 ih
Dy’
ee
2k
ee
tn
aay
63. R(x,
y) = 80x + 90y + 0.04xy - 0.05x*
C(x, y) 8x + 6y + 20,000 The profit P(x, y) is given
mix
gee) & R(X,
y)
C(x,
- 0.05y”
by:
¥)
80x + 90y + 0.04xy - 0.05x* - 0.05y% - (8x + 6y + 20,000)
= 72x + B4y + 0.04xy - 0.05x7 - 0.05y7 - 20,000 Now
P(x,
Vieteie
and P,(1200,
1800)
P(x,
=
+°0.04y
=
72
=D
Y)
and P(1200,
84
1800)
="0°1x
+ 0.04(1800) bac
+ 0.04x
-
o- el
-
0.1(1200)
Ome
0.1y
=
84
+ 0.04(1200)
=
84
+ 48
-
180
=
0.1(1800)
-48.
1800) output level, profit will increase Thus, at the (1200, approximately $24 per unit increase in production of type A calculators; and profit will decrease $48 per unit increase in production of type B calculators.
EXERCISE
13-2
783
65.
67.
% =.200 y = 300
= -
5p +44; 4q¢ + 2p
Ox dp _=
-5,
rg OnuE
A $1 A by
increase 5 pounds
in at
the any
price price
of brand A will level (p, q).
decrease
the
demand
for
brand
A $1 B by
increase 2 pounds
in at
the any
price price
of brand A will level (p, q).
increase
the
demand
for
brand
f(x,
y)
=
10x
ey
x79: 25y9-25 = 75 °0-255,0.25 y) = 10 (0.75)
(A) f(x, f(x, (B)
2
10 (0.25) x9°75y79-75
y)
Marginal
productivity
of
= 2,5%0-75,-0-75
labor
=
£,.(600,
100)
=" 9-5(600)6 -7-7 (100). > ae ae Marginal
productivity
of
capital
=
£Y,(600,
100)
2..5(600)°-' (100), °*’> = guee (C)
69.
71.
The
x = f(p, y = g(p,
should
encourage
the
q) = 8000 - 0.09p* + 0.08q* gq) = 15,000 + 0.04p? - 0.3q%
£i(P,
a)r=;
G,(P,
q)
Thus,
the
O20802).q
=
0. 16q->
= 0.04(2)p
=
0.08p
products
are
£.(p,
@)
Q
fs Ml
°
=
the
-0..003(2)q | (=)
> 0
=
(Skis) (Ski boots)
=0,,006q.
PavereSties) Ga (Sayeed
at
=6a
a4 (65). °-**° (53)
CHAPTER
13
MULTIVARIABLE
CALCULUS
of change of surface a one-pound gain in
Sera 2 499
For a 65 pound child 57 inches tall, the rate area is approximately 21.99 square inches for height, weight held fixed.
784
capital.
(Butter) (Margarine)
For a 65 pound child 57 inches tall, the rate area is approximately 11.31 square inches for weight, height held fixed.
£,,(65,¥57)
of
.003(2)p = -0.006p < 0
products
*57)
use
competitive.
A = f(w, h) = 15.64w°- 4259-725 (A) £.(w, 6A) S15 764100425) wan ii} 15960 (02 725) Woe £.(w, h) PSP ha (BI £2(65',
increased
0
x = f(p, gq) = 800 - 0.004p* - 0.003q* y = g(p, q) = 600 - 0.003p% - 0.002qg%
Thus,
73.
government
of change of surface a one-inch gain in
TS.
C(W,
100;W
==
L)
CW,
bE) paid = =;
Cyl.
8)
The
index
per
1-inch
EXERCISE 13-3 SL Things
i-
100 a7x 6
xeFur 600K J64 |z
125
increases
12.5
increase
units
in the
of the head (length held when W = 6 and L = 8.
I
a
"==
ORGASM
100 re _
=
100w
_
7)
C,(W,
SSE
WARE SEE
IOP FANE
width
fixed)
The
index
per
1-inch
decreases
LEE LEESON
9.38
increase
(width held and L = 8.
SP IT EEE E LES SITLL! ERTS TE
-9.38
fixed)
units
in length when
W =
ALLE DTI LIE LEE !CBE LEE LESTD TITEL EE DELETE
6
TALLER
ETD LLL LED,
to remember:
f(a, b) is a LOCAL MAXIMUM if there exists a circular region in the domain of f(x, y) with (a, b) as the center, such that f(a, b) = f(x, y) for all (x, y) in the region. Similarly, f(a, b) is a LOCAL MINIMUM if f(a, b) S f(x, y) for all (x, y) in the region. If
f(a,
b)
function
is
f(x, f(a,
either
a
y),
and
Dyr=
0
SECOND-DERIVATIVE
local
if
maximum
f(a,
b)
and
TEST
FOR
f(a,
LOCAL
of
and
a
local
fila,
b)
1D)
a=
EXTREMA
minimum
exist,
for
the
then
aOr
FOR
z =
f(x,
y)
Given: (a)
f(a,
iD)
=" 0 and
(b)
All second-order partial derivatives circular region containing (a, b) as
(c)
A=
£64:
f(a,
Dyes
=
Then: Dhabt ii)
4ii)
iv) Leifiseh
y)
ees):
are
=
=
fy (a
=/0
(1a).
ib),
(Ca
Dd)
is a critical in
of f exist center.
fy la
point]. some
b).
AC i— B* > maximum.
0 and
A
minimum.
0 and
A>
0,
then
f(a,
b)
is
a
local
If AC - B* < 0, then f has a saddle point at
(a, b).
If AC - B* = 0, then the test fails.
4 x + Sy - 6 4 # 0; f(x,
nonzero
Db)
for
all
(x,
vy)
=
5 4,0;
the
functions
f(x,
y)
and £ (x, y)
y).
EXERCISE
13-3
785
34
2(%,
.Vv)
EAM,
=
3.0
eetee2xet
VY). pe ee
nonzero
for
all
F(x; eV o2_6.>
16. Sart
4x; (x,
0.2
6.8
+ x4
+ 0.6y’;
the
function
f(x,
'y)
232
y).
oe -
fy =
ok
f(x,
y)
=
-2x
4=
0
f(x,
y)
=
-2y =! 0
bets)
=2
y="0 Thus,
(=2,-,
Ore
-2,
£25
0),
is7a
errticalspoint.
fy =O,
fy =e
0)-£)(-2,
Om
]
(f,(-2,
and
0). )
£A-2;
THUS ale —2), O)i— 26) —
(eQ)2) = 4(-2)
E(x; syne x? + y¥ + 2x f(x, y) S24 +) 2 = 20
-
6y +
: AF
0)
be 2) 2) >
sae5255,
0%.
Fn be 2A
08
- 0? = 10 is a local
maximum
(using
3).
14
xe =e
Le Kee ee
2y
6" = 0
Thus
71,
“Sh)iers
Sty
-
y= 3 i
fst
22s
te (=i Thus,
al cuuticallipoint:
0
3) -f,(-1, using
3,
=
0
fy (ol. 3)
f(-1,
f(x, ¥) S°xy teexef x ayyod 2) =/0
3)
[f,,(-1, =
4 is
fy = ee =
Ss) a
0
,
=-2521e)
local
0*
2
fill =
3)
222
4 >-0
minimun.
Sy —.2
» Siete” fy See
fS
nus,
x= 3 -=2)' 4s. a critical
(3;
hes Rte £(3,
Thus, 11.
Fier -2)
a peti i
fi (3.
-2) -£ (3,
using
(ee
ga =
-6x
fy EZ
2G
3,
Lo
+
-2)
-
a saddle
alae 2xy
-
=
0
iO)
Solving (1) and (2) for is a critical point.
786
CHAPTER
13
MULTIVARIABLE
27
+
Bee Sa
=1
£ (3)
=2')i) Da Be. Hee. Ov 0. a
[f,(3,
f has
2y + 14 aan
point.
point 14x
+
at
(3,
2y +
10
[1] PS,Ag=
2
-2)
=
0
="
ee 4:
P 65—s
2a
minimum
Eyles =
20)
2)
3=6
5>) 0
and
a 2627 - 2-2-2 + 3-22 - 4-2 - 8-2 + 20 = B.
(2
Ox
Vy
=
j _
f=
0
y= Thus,
t= 2072.0
26205 20 =188-
obtain
2)
is a local
oxy d (xy)
=
7+ 2°
2) = A
Sy + 20
£(x, y) : ey f=
1-6) (4)
j= i=
fiyls,
(1)
(2)
4>
using
2)
ye
:
point.
ee
Thus,
=
8 =
Lew
2) = 2
ay" +/4x -
fy =4x-2y-42:=0 f = -2x + 6y y Solving (1) and
2
Re
eles 3-37 42-3 +See
EGX,
=
xY
6,< 0
=
oxy 9 (xy) oy
ex
0 (e¥ # 0)
(0,
5
is
=
0
x=
a critical
(xy) xy 2AAY) aa
Oe 2
e
0 (e&” # 0)
point.
:
SL RE9g 1+ ue
= yey
=
&Y
xy. yerx
fy
+ xye*’
==
(xy)
xe xy
a
= x72
= ye £4. (0,
0)
£460.
0)-£,,,(0,
Thus,
17.
=
0
using
Paar
3,
Oo); = f(x,
(£,,(0, y)
has
0)
OTe
=e
Ore
a saddle
+
et
PE
at
point
at
(0,
£0.
0)
=-0
a 0 0).
f(x, y) = x+y - 3xy
fete - 3y.= 3(x* - y) = 0 Thus.’
y = x)
(1)
pyeray - 3x = 3(y - x) = 0
Thus, y zy X. Combining (1) a0"
0 Or
Eo
0x
mrPor
tne
x
=
(2) and (2), we obtain 1, and the critical En
critical
zo,
0)
Pee
Ol
Thus,
using
point
(0,
=0
3,
f(x,
(2,00. ON y)
has
- 1) = 0. Therefore, 0) and (1, 1). Cy
3
0): ee.
0, 0)
x = x“ or x(x points are (0,
0)
=
2=3
,
= 0 = (-3)>
a saddle
point
at
Ey (0.
OO,
= e-9 50 (0,
0).
EXERCISE
13-3
787
For the critical fol, lh) = 46 ffl:
1)-£f,,(1,
Bea
Silly ae a0)
P.o.4
Galles
Thus,
using
1)
3,
(1,
-
f(1,
£(L P21) oe 19s 19.
point
1): ecyems dd)
[f, (1,
1)
is
1 ewes
a
e=" —3
i) ise =
local
tee) 20
;
16-167
fil.
(3)
minimum
=
927
1) 0
minimum.
f(x,
y) = x° - 3xy + 6 f x = 3x* - 3y = 0 Thus, fy =
y¥ = x* or -6xy
+
12y
y = &x. =
0 or
THUS) eva = DOROLEext =n), Therefore, the critical
788
(f,,(
_
CHAPTER
13
MULTIVARIABLE
—6y(x
—
points
CALCULUS
2).
are
=
0
(0,
0),
(2,
2),
and
(2,
-2).
Now,
fi. =
6X
es =
For the critical £60, 9) ° Ey (0. Thus,
23.
the
-6y
fy =
-6x
+ 12
point (0, 0): Li eee 0) - [£,,(0, OlS= 0:12
second-derivative
test
0
fails.
For the critical point (2, 2): Pe (2s 2)-f (2, 2) - [f(2, 2) dita =i
12+
Oge :
Thug,
(2,
2).
21x,
vy) has
a saddle
point
at
For’ the critical point (2, Peake -2) +f) (2, -2) - [f
-2): (2, — Dy) |Pie
Thus,
point
f(x,
y)
f(x,
f.. a= Set
y)
4xy a &. =
has
a
saddle
at
(a2) TP46=%-144
from
P to
C is:
have:
6x -
24
Therefore)’ hag
distance
x — 20x + y* + 100
= 3x° - 24x + 3y° - 12y + 140 =
6
0
P, =
(4,
2)
is
a critical
and
[bead
and
PL (4, . =
Fy =
and
2
[P,,]
Therefore,
120= ye
Peep = Poet yy -
6y.-
7
bie
35.
distance distance
2a
oi
tO)
:
) iz
=36°6°-
P has
Ove>
point.
0 "= 36
a minimum
at
> 0 the
point
(4,
Let The
: : x = length, y = width, and z = height. surface area of the box is:
Sm
xy
tywaxzet
ayvz . orarS(x;oy)
230 e = Kae =e
0)
See
128 =
0
Thus,
y = 28
a. 3
y
y
(128) 4
Setting (8, 4).
Y y = 4 in
ae
xyo+
=
Cre
7226 47 = eat
Tore
Sc
or
y* - 64y = yiy
and (1), we
2). Then
V = xyz
mi + oS
xXa>
=
64
or
64 >. sifa
Z=
One yi>ed
(1)
128
y -
find
64)
=
:
0
(Since
yu= 4 x= 8.
yield Therefore,
y > 0,
y =
0 does
a critical point.) the critical point
EXERCISE
13-3
not
is
791
Now
have: S22 apie = eee and
a
we
:
ae 7
S.(8,
and
S68,
A)
Sy (8,
MAN
4)-S/ (8,
Length
x =
@))s,
120
32..=
er
>. .0
eG
[S,(8,
package, (ei)
-
2
Pan aig He B42 Oe
=
1-4
af
3a>
0
require the least amount of material are: : , 64 : y = 4 inches; Height Zz = 8(4) = 2 inches.
Width
the
4)]}“
will
that
8 inches;
37. Let x = length of x + 2y + 2z = 120 Volume = V = xyz. From.
-
dimensions
the
Thus,
4)
,
- 2 aT
y = width,
Thus,
we
and
z = height.
Then
have:
; 2 Or sc P9 x V(x, vi Sig{ > hr Slay amph easeks os
Yona
V, = 60y - xy ¥(60
Sux
60
ee =
60x
-
-
Ly)
x
-
x? es
x(60 -
y
2xy
Solving (2) (40, 20) is
and the
Lee =
-2x
Vi, (40,
Thus, and
x
-
z =
2y
20) -V (40,
CHAPTER
Bist
x =
13
40
(Since y > 0, y = 0 does a critical point.)
not
yield
(3)
(Since x > 0, x = 0 does not a critical point.) we obtain x = 40 and y = 20.
yield
0
and
Var (ae;
20)
=
-20
and
Vise;
20)
=
60
and
Vin teen
20)
=
cae
20)
-
the maximum volume 120 - 40 2-
Length
792
-
=
(2)
(3) for x and y, critical point.
Vel Seo, 60
Oo oO
- 2y) = 0 NIx Sioa eI = 10)
AON
vey =
I
as
inches;
ah
[V,,,(40,
of =
20
Width
MULTIVARIABLE
20) ]~ =
the :
package
y =
20
inches.
CALCULUS
< -
0 40
--
40
=
-20
‘ (-20)
(=80)
-—
[=20]
= 1600 - 400 =e 200 N= a0 is obtained when
The
inches;
Thus,
package
has
x = 40, y = 4 ; dimensions:
Height
z =
20
inches.
20,
EXERCISE
13-4
Things
i:
to remember:
Any local maxima or minima of the function z = f(x, y) subject to the constraint g(x, y) = 0 will be among those points (Xp, Yo) for which (x,, Yo: Ao) is a solution to the system:
F(x,
Y,
7 a
F(x,
Y,
A) = 0
Fy(x, y, A) = 0 where
F(x,
partial METHOD
OF
[Note:
y,
A) = f(x,
derivatives
y)
LAGRANGE
y),
for
(b)
Form
(c)
Find
function
the
the
the
functions of two variables, the of three or more variables.)
Formulate the problem in the form: Maximize (or Minimize) z = f(x, y) Subject to: g(x, y) = 0
Pix, yA)
all
functions
(a)
the
provided
MULTIPLIERS
Although stated also applies to
method
+ Ag(x,
exist.
F:
= f(x, y) + Agtx, ¥)
critical
points
(x,,
Yo:
Ao)
for
F,
that
is,
solve
system:
Fi(x, y, 4) = 0
(Gymerie
Fy (x,
y,
d)
Fy(x,
¥,
A) =O
(x,
assume
Yo: that
=O
Ao)
is
(x,,
the
Yo)
is
only
critical
point
the
solution
to
the
of
F,
then
problem.
If
has more than one critical point, then evaluate z = f(x, Ate (3.., Yo) for each critical point (x,, You Xo) OLVF.
Assume that the largest of these values is the maximum value of f(x, y) subject to the constraint g(x, y) = 0, the smallest is the minimum value of f(x, y) subject to constraint g(x, y) = 0. 1.
Step1.
Maximize f(x, y) Subject to: g(x,
Step2.
F(x,
y,
A)
iT}
F y)
and the
= 2xy y) =x+y-6=0
f(x, y) + Ag(x,
y)
2xy + A(x + y -
6)
EXERCISE
13-4
793
F
=2y+A=0
F
gsa2xatr
Ag=
(1)
0
(2)
Py cemocrr Yn ee aa 0.
(3)
From
obtain:
(1)
and
(2),
ru
we
r
Zosenrvln ioe Substituting these nr
Baia
(3),
we
have:
is
(3,
3,
cdaak
AX = -6. the critical
Thus,
3. Step1.
into
r
point
only critical point 3) = 2°3-3 = 18.
Since (3, 3, -6) that max f(x, y)
is the = £(3,
Minimize f(x, y) Subject to: g(x,
= x + y¥ y) = 3x + 4y -
F(x, y, A) = £(x%, Yb
=x
(1)
and
3A Scat
i
conclude
for
F,
we
conclude
0
(2) (3)
we
obtain:
ag -2r these
3(-3) + 4(-2A)
into
-
(3),
critical
(3,
4,
point
is
have:
=25
-2 (3,
the
is
-2)
we
0
25
tv A= w|P A. = Since
we
(1)
(2),
Substituting
The
=
F,
Ag(x! y)
Boi 2y + 44 = 0 25-220) Bype 3x + ay From
25
for
+ y + A(3x + 4y - 25) S40
2x + 3h
PS
-6).
4,
-2).
critical
only
point
that min f(x, y) = £(3, 4) = 3% + 4? = 25. 5. Steps.
Maximize
f(x,
y)
F(x,
-y;- A) =(£(x,
P=
-3
FY =
4+
=
4y -
0
(3)
794
CHAPTER
13
does
A = not
2x
+ 5y -
3 =
0
y) = 4y ="93x £22 (2xi+ Syn
3)
(2)
a have
MULTIVARIABLE
to
(1)
Fy) =(2Xk ty = 31e= From)(1))
subject
\y) + Ag(x,
+ 2A =0 5A =
3x
10
(3)
from a
(2),
A=
solution.
CALCULUS
- 2 Thus,
the
system
(1),
(2),
7.
Maximize
Step 1.
and minimize
Subject
to:
BAX,
JA) Fe f(x,_
Y,
g(x,
f(x,
y)
y) + Ag(x,ry)
= 2xy + A(x
+ y" — 18)
FL=
2y +
2Ax =
0
(1)
Fy =
2x + 2dy =
0
(2)
Fo=2x¢+y-18=0 From
(1),
(2),
= 2xy
y) = x7 + y - 18 = 0
and
(3) (3),
we
obtain
the
critical
points
ae phe i LES He 34 sb) ie AS), 8S) Vi) tard Poe 30.77, £43, 3) = (253% 2 2.18 £(3, -3) = 2-3(-3) = -18 £(-3, 3) = 2(-3)-3 = -18 f£(-3, -3) = 2(-3)(-3) = 18 Thus, max f(x,y) = f (3, 3) = £(-3, -3) = 18; min f(x,y) = £(3, -3) = £(-3,3) = -18. 9.
Let
x and
y be
the
required
numbers.
Step 1.
Maximize f(x, y) = xy Subject to: x + y = 10
Step 2.
BURR
Step 3.
Fetes yor a
A)
*= xy
From
A420
x+y(1)
-i,
g(x,
Y=
44>y = 10
20
Sy 210)
(1) (2)
10 = 0
and
(2),
(3)
we
obtain:
y = =K
Substituting
N= The
or
A604
=x+A=0
Fos x=
yr
these
into
(3),
we
have:
-5 critical
point is (5, 5, -5). Since (5, 5, -5) is the only critical point for F, we conclude Chat max f(x, y) =" f(5,°S) = 5:5 = 25. Thus, the maximum product is 25 when x = 5 and ‘Va
11. Step 1.
Minimize f(x, y, Subject to: g(x,
FOX
ee,
EE
2x°F
Boe
2y - ih = 0
Fi =
2z
BA
ae
+
La
z) y)
= x* + ad + Z = 2x - y + 32++528'
aerate
2h = "0
3X =
ey Vi
ea
=40
Pie Wig
(1)
(2) 0
(
n
4
= 10, = Vesely,
4
squares
0.7x + 1.
the
a
line
is
Refer
to
right.
x
4"
XV
ab
8
8
al
W)
5
10
4
a
3
4
L2
9
4
0
0
16
10
ity)
30
30
4 > ome
k=1.* 2
X35
es
INO)
>»
eee
4 ee
Ah
Sy x
ee
ek
=
SO),
0
EXERCISE
13-5
801
system
into
values
Substituting these we have: 10m + 4d = 17 30m + 10d = 30
(ae
-2.5, The solution of this system is m= is line s square least the Thus, d= 10.5. graph the to Refer 10.5. + -2.5x = ad + y=mx at the right.
Totals
Vx
ah
3
3
aL
2 3
4 5
8
4
15
9
4
6
24
16
10
18
50
30
4
3
S
4
pM soe =
y
4
PEs:
= 18,
Yk
= 10,
es
Thus,
e
X,Y
ae
= 50,
50).
kau Substituting these values into the formulas (2) and (3)], we have: for m and d [formulas 4(50) (10) (18 20fet CE
[Note: All points lie on the line.]
=
~ an=
4(30) =" (10) 16) = De) r.
Sy
18
x
Fea:
CALCULUS
=259),
$e Si
aie
atatwdktohe
Substituting these values respectively, we have:
mee)
ewer
86)
Mees
Thus,
A
the
least
Gotals
92.5,
=
6 +12 4
squares
y=
oy
line
-1.5(2.5)
4.5
Xi
Vx
XV
x
0 5
10 22,
0 LAK)
0 25
10 ALS 20
Sal: 46 5 1. 160
50
Thus, Xk = 50, Substituting respectively,
310 690 1020
100 225 400
21:30
750
for
meandy
a:
-1.5x
into
+ 4.5.
=.0.75.
2 y, = 160, aXe
these values we have:
(3)
4.5
is y = +
and
Seo, = 2:5
Wn
ae
(2)
ees
972 - 64 7g
(-972) (8),
When’x°=
formulas
@ s6uerag" ig
t is) 2 gt
a=
into
= 2130, es = 750.
formulas
(2)
and
(3)
for
m and
a;
_ 5(2130) - (50) (160) _ 2650 _, ,, 5(750) - (50)2 1250 ; = ener 4 12(50) _ 54 Pesi6o _ = 2.12(50) me oO Thus, the least squares line is y = 2.12x When=x = 25,-y = 2.12(25) + 10.8 = 63.8.
11.
Totals Thus,
Xi
Yr
-1 i 3 5 Zi 15
14 2 8 6 5 45 =
Substituting respectively,
EL) 5(85)
ce
45
-
x;
-14 12 24 30 35 87
ili 1 9 25 49 85
5
ne
ee
XLV
1G.
5)
YE
=
these values we have:
45,
into
ES) (85). 22400 = (15)j¢ %],. 200
So)
ek
+ 10.8.
5
=
formulas
87,
(2)
2
atk
=
and
(3)
85.
for
m and
el,
Ny 5
3619.6
Thus, the least squares line is Vea. 2x + 12) 56:. When x ='2, y ="-1.2(2)°+ 1276 ="1022.
EXERCISE
13-5
803
13.
Xq
; Totals
Yr
x 0.25 4.00
PAS 22
25)
21
73.5
22°22'5
5.0 6.5 9.5 aie 0 E255 14.0 L5e5 80.0
al 18 12 11 8 5 a 144
O50 ri ay ac 114.0 WAGE 100.0 70.0 Aly, & VIA SS
2500 PX ISS 90.25 2 OO 56).25 196.00 DEO) AS 887.50
¥
Thus,
XV 125 44.0
0.5 2.0
otk
=
.
80,
nk
Substituting these values respectively, we have: a
10(772.5)
-
10(887.5) at
Ladner
15.
a
=e
(2)
(3)
for
and
OS
or
m and
d,
-1.53
2475
7) 266 Fue te
547 9
nay
line
x = 8, y = -1.53(8)
is
+ 26.64
= 14.4.
Minimize F(a,
b,
c)
=
(at
D+c-
2)? +
(4a
+
2b+
Cc -
1)?
+ (9a # 3b +>coFi (a,
DC)
S=92 (a+
b+
G-
2)
+
8(4a
+
=
F(a,
F(a,
b,
b,
¢c)
c)
The
system
or:
CHAPTER
708a
= 2(a =
200a
=
2(a+
=
804
ne
=i] (2 be otk
formulas
-3795
- (80)?
Thus, the least squares Vy =) -L353x) + 267.64:
When
ok
into
(80) (144)
(= 1553)):(80)) 10
¥
aba
is:
60a
+
+ b+ +
+
F(a,
+
60c
-
18(9a 126
c - 2) + 4(4a
60b
+
6(9a
2bat-c +
3b
+
1)
3b
oe
|
1)
aM
|
1)
D+c-
2)
+
2(4a
+
2b
+
2(9a
+
3b+C
-
t=O
F(a,
DC)
a0,
F(a,
ib
ach=
14
©
+ 200b + 60c = + 60b+ 20c = + 20b+ «8cr=.
MULTIVARIABLE
CALCULUS
126 38 14
1)
+
38
8c
-
|
-
+
c
(16a 4 4b
+o
ae
®)
+4
20c
20b
—
+ 2b
+
‘DaLC)
708a 200a 60a
13
200b
+
1)24
1)
+ 32(16a+ 4b+c - 3)
+ 8(16a + 4b+ Cc - 3)
+ 2(16a + 4b+c- 3)
BiereelullOn is (a, b,c). = which gives us the equation shown at the right: y= ax* + bx +c or
(0.75," -3.45, 4:75)" for the parabola
y = 0.75x* - 3.45x + 4.75 Bhe-gaven-points:—-(1,—2)s.(Qm also
17.
appear
System
on
(1)
the
L)g—(33-b)
4»
3)
graph.
is:
n
n
[2 sep + nd = & VY, n
(a)
n
(24
n
é e «}? f eo Hg
ae n
Multiply
equation
resulting
(a)
by
equations.
{ oS *,} equation
This
will
eliminate
(b)
by n,
d from
the
and
add
the
system.
Thus, n
Bey’ Kk
m=
n which
is
ee x eal |ela My
oi ¥2)-(> [2%
[2.4]
equation
n
2 Ye
d=
(A)
Solving
equation
(a)
for
d,
we
have
2%]
kor *
k=1* n
which 19.
(2).
n
is
equation
Suppose
that
(3). n
=
5 and
Kos
only
25
=
ade,
X,
v=,
Peat
OP
Therefore,
from
formula
xX, =
2.
5
Then
ae,
=
Ke
-2-1+0+31+2=0.
(2)
5
2
agate
5 2, x
eee 5
y
ee Ux, V_ ore
5 Dee rl
k
k=1
5
Dave ECO
which
eEormLaem 3\\)
is
the
merci
average
of
er Sat
Y¥y+
Yor
V3.
Yq,
and
Ys:
EXERCISE
13-5
805
(B)
If
the
average
of
the
x-coordinates
is
0,
then
same
as
in part
n
A=L_ _ Q n
Then
all
instead
calculations of
will
be
the
(A)
with
"n"
5.
10 QuadReg
| 23.
(B)
The
tee)
quadratic
regression
function
best
fits
the
data.
The cubic regression function has the form y = ax? + bx? + cx + d.»\The normal equations form a system of 4 linear equations in the 4 variables a, b, c and d. The system can be solved using Gauss-Jordan elimination.
25) o) (A)
Xx,
v7.
0 23.8 alk 165 2 19.0 5 29.0 4 8729 5 yl 2 6 yl gall le eZser5
TOtalisie2
7
Thus, x ~
0 N65 38k 0 87.0 P56 256.0 366.6 syaey 7)
0 il 4 9 16 25 36 91
7
Ye = 23685)
these
TOTS Ts =
xa
7
igi
Substituting .
X, Vy
values
Xe
into
21238. 5) ee
the
7
oat2 491
= OS
formulas
for
m and
d,
we
have:
eo
= = 7.15 M91y = (042 196 Bua 2a8ne Sind fe fats Sycure Thus, (B)
Biksorn
1998 will
the
(2)
Thus,
CHAPTER
squares
line
corresponds to x = be y= 7.15(13) +
Totals
806
least
13. The 12.62 =
Bae
X,Y,
ae
50 5). 8) 6.0 625". Fh sO}
210) al BRS) ih sd! Mae iteal
10.0 9.9 8.4 The 8 Teal
252,00 30.25 36.00 A225 49.00
Woe
43.8
30.0 oe
0),
kei
MULTIVARIABLE
Vay
*
CALCULUS
7.15x
+
12.62.
monthly production in the 105.57 or 105.57 thousand
X,
Ps
13
is y =
13th year pexmonthe
182.50
Kor
x
RK
=
AS
oi
Sie
Renee
re
ASA 5Sy
Substituting
these
values
into
2048.8) SFO. 5) See 5(18225)..~. (30}* 12.5 pee, 225 - (20.48) (30) Was Thus,
a demand
(B) Cost:
C =
Revenue:
Profit:
equation
is y =
the
formulas
-0.48x
xy
=
-0.48x"
+ 4.38.
= -0.48x7 + 6.3x - 17.52 6.3. ° = -0.96x
+
6.3
P"(x)
=
P(x) has a maximum at x = 6.56; to maximize the monthly profit.
-0.96
Xi
and
P"(6.56)
Yx
50 55 60 65 70 300
=
XV
WS 13 10 6 iz 46
=
5(2595)
-
5(18,250)
these
5
values
(300)
_ -825
- (300)?
1250
46
(A) (B)
The least squares P(57) = -0.66(57)
Thus,
( : 66) 300 oo
into
(46)
as
=
the
line for + 48.8 =
price
per
bottle
should
be
5
= 2595, 2% = 18,250. formulas
the data is 11.18 beats
for
m and
d,
we
have:
86.7 102.9 12S 86.4 234.0 2 ORS 1363 248.0 241.4
2.89 4.41 SB)GVAE) Seo 12.96 13.69 22.09 38.44 50.41
7.4 Sa7
29 20
214.6 174.0
S410 75.69
Aes, 61.8
23 464
Deis I 2049.4
hei
=
P = -0.667 + per minute.
48.8.
x,
XV 5
Yx Syl 49 53 36 65 35 29 40 34
68)
the
Ar es
*
xq
X=
0
-0.66
ew Pasa 2a3 PB fh B26 3hi/ Aa, Gr Tacit
cat. *
6.56
2500 3025 3600 4225 4900 135250
5
Substitituting
years.
0, k > 0 constant
have:
StiheniM(1 = @*) = 2 S(3) = M(1 - e3*) = 5
From the equation
first equation, yields:
M =
z
-
e
=. -
Substituting
this
in
the
second
2
aaa)? and
Qe
2 - 2e°* = 5 - 5e* ASe* +3 = 0
(1)
EXERCISE
14-2
843
Now
let
t =
e*
(k =
-ln
t).
2c? - 5t +32 which
factors
are
1n(-1.82)
k = -1n(0.82) Now,
M =
Thus,
61. ‘Let for
t =
=
rp
e 9-2)
and
t = 0.82
and
and
t =
1n(1)
-1.82.
implies
k =
0,
time
t.
it
follows
that
denote the problem is
= =
k(T)—8800)),
the Z
abil
M = $11 million.
T(t) this
fie COLO
becomes
= 0.2.
k = 0.2
Separating aT
1,
is undefined
pad Un (1
(1)
tenet —3) =s0
solutions
Since
equation
into
(tetn (OE The
Then
0
temperature vk n(§)
want
to
720e1/21n(5/6)t.
-
= 800
find
t such
that
500) S00, s720e 9 ua”
T(t)
eilaantS/ eeu 2
ns :
byes.Z in(Z)e
ie in (35) 12 12
Qin
C=
5
=
9.6
n(§)
844
CHAPTER
14
DIFFERENTIAL
EQUATIONS
minutes.
= 500.
Thus,
the
constants
63.
Let for
T(t) this
denote the temperature problem is:
of
a =
(Tian
=)
Separating
25) pe Koons,
the variables,
TGQ0))
the S25),
we have
pie
at
2 (1)
time
t.
Then
the
model
i= 225 5
me oe aT eae. =:
frat
In|it = (25) =. kc. + C Tf =
95
=
ekttc
T= 25 + Aekt Using the constants
initial conditions A and k, we have:
7T(0)
=
325
and
T(1)
=
225
to
evaluate
the
T(0) = 325 = 25 + Ae’, A = 300 Thus, T(t) = 25 + 300e*°. T(1) = 225 = 25 + 300e& 300e* = 200 Fat 3 19 k=
Therefore, Finally,
T(t) we
Sin 3
= 25 + 300e¢1M(2/3) |
want
to
determine
7T(4):
T7(4)
=
25
+
3006" 12 '273)
= 25 + 300e1(2/3)" 2 4
= 25 + 300(5
65.
If P(t) is the number this problem is:
at ap pees)
P ap =
iF: ibe
Sil
Pee
(0)
of
bacteria
ie— OO;
Pi.)
"=
present
4
Os
and
P(1)
at
time
t,
= 84.26'F
then
the
model
for
0r
SK Cte i ertela
= kt + C ie
ekttc
P=
Ae*t.
General
We use the conditions constants A and k.
solution P(0)
=
P(0)
= 100 = Ae®, A = 100.
P(t) P(1) ef k
= = = =
100
=
140
to
evaluate
the
Thus,
100e*¢ 140 = 100e* a4 1n(1.4).
EXERCISE
14-2
845
Therefore,
(A)
P(t)
= 100e(21-4)€.
When
t =
= particular
5,
= 538
solution (B)
bacteria.
When
P =
ein(1.4)€
1000,
- 49
gaa 2) fe Seo
ie =
this
problem
ap P(50,, 000)"
Tutied)
= 6.8
is:
=
P)
= 500.
- P); P(0) = 100, P(10)
a = kP(50,000
|
AUG) 10
k dt
mas!
fx GE 1 HS ae ace Ab Ms aS ONO00N= 5|a a
Jenene EN) te TI
ee 1 50,000
[12
P
-
1n(50,000
i
-
eas
ks
OP
eG
P)]
=
as ;| = OR
_—
ee enn 607/000
'— %P
kt
+C
50,000(kt
+ C)
in| 390, 000K + 50, 000C
@30,000C,,50, 000kt Ae?’ 000kt
Pe which
can
DA
be =
Using the constants
Ss
written
50,000 5
4+
Be
50,000kt
;
B=
conditions P(0) = 100 B and k, we obtain
See
ee
Oe
1 + Be° + B) = 50,000 i + B= 3500 B= 499, 50,000 a A ee et oe
=
500
100(1
P(t) P(10)
846
= 1 + 499e750,000kt*
CHAPTER
obtain
50, 000Ae?9: 000kt ; 1 + Aed0 000kE
ea
Ae
BY)
we
P,
for
equation
this
Solving
14
=
Oe eo
Tee
OOU
Psa
is
499e7°290, 000k
DIFFERENTIAL
EQUATIONS
Bl
and
P(10)
=
500
hours.
t, then the model for
infected at time
is the number of people
67. If P(t)
in
to
evaluate
the
1 + 499e7500,000k _ 499 499 e790, 000k
=
99
99 -500, 000k = In(755) 1
500,000
=
i ee
Therefore,
99
(ass):
50,000
P(t)
:
= 1 + 499e0-11n(99/499)€°
(A) When
Particular
;
solution
t = 20,
P(20) (
50,000 = —aree aay = 2422 ae ee 499e2 1n (99/499)
)
(B) When
peopie.
P = 25,000,
499e9-11n(99/499)
50,000
et OE A
25,000 5| er
TY
t
=
ee 1 + 499e0-11n(99/499)t
=
2
e0-11n(99/499)¢ _ _1_ 499
99 )t 2 n(795) 1 0.1 in(go5 1 1n( 799}
10 Gu=
ad_,i ds = ka @_
I Sr 05
=
38.4
days.
Ss 2u0%
ka,
Tene Phod
IF=fhe I
InI=kins+cC
=In I
s*+c
(k In s = ln s*)
ress pal eens
:
Therefore,
t
I = As*, 71.
(Note:
el@™S
If P(t) is the number of people the model for this problem is:
etre KP(1000
3
- P).;
PO)
= 5,
= sk.) who
P(1)
have
heard
the
rumor
at
time
t,
then
= 10.
Sere
P(1000 - p) = * at ee or
|Seenp aeriee fx dt
_ =e ae acral 1000 - lar = ke + 2 EXERCISE
14-2
847
Mia sts 1000 [2m P - 1n(1000
- P)]
Ket
AG
1n(ip00 5) = 1000(kt + C) 1000 aon 1000
Solving
Chey eda
E
= ee
Using B and
-
for
OL
the conditions k, we have
iP ((0)
==
Sis
oe B)
1
+
17S
at
w(0)
=
0
wee.
ier. OC
and
wie)
864
CHAPTER
e=ae 17.57
14
(230 =
DIFFERENTIAL
Cc
75/2
EQUATIONS
-0.005t
solution
130,
we
have
if
this
= 0.
diet
is
Now,
we
want
to
determine
C such
oy
The
the
person
model
for
i7.5)e ENT
i7.5)e
125 - 130e9-45 7 25'( 125 7 4s -0.15 20: 1 -
C=
Thus,
125.
eG
-0.15)
-¢
=
eG es\, 0.005030)
125 = 47.5 + (230 Cc
w(30)
we
125.5 44.5 |* (230
js56
that
should
this
consume
problem
1,647
0-15
) bas
ia FW
calories
per
day.
is
Sete = %t, where Now,
¢ and f(t)
rs(it)
A are
= 4, =e
Ldt
constants.
and =
the
integrating
factor
is: .
eft
Thus, it
k(t) = —;[treat = ota S + (|=A + Gett e
e
= 2+ For
Student
k(t) Applying
A,
4 =
0.8
andi
=
t =
(6)
For
the
6,
=
Applying
initial
condtion
we
have:
t =
k(6)
Thus,
B,
=
k(0)
= 0.1
-0.8
yields:
0.8
and
dA =
0.7.
Thus,
= 0.7 + Me °-8E, the
initial
condition
0.4 = 0.7 + Me? or M= and k(t) = 0.7 - 0.3e°9-8t When
solution
0:9 - 0.8e°9-'5) = 0.9 - 0.86 "-® = 0.9934 or 89.34%
Student
k(t)
General
= 0.9 + Meo:8,
0.1 = 0.9 + Me® or M= and k(t) = 0.9 - 0.8e79:8¢, When
0.9.
Me‘’*
6,
we
k(0)
=
0.4
yields:
-0.3
have:
= 0.7 -.0.3e7°°8'9)
= 0.7 - 0.3674:8 = 0.6975
or 69.75%
EXERCISE
14-3
865
CHAPTER
1.
14
REVIEW
2x
cv x, y'
y =
Substitute
(wa)
=
differential
given
the
= HE into x
equation:
cVx
cV¥x = cVx
Thus,
2.
= 5 reas
given
the
into
differential
Ge* = 1
| Pei
esa
y'
ce */3,
yee
Substitute equation:
(14-1)
solution.
general
cVxis the
y =
Ce 2 Ge
ce?
= 1 ih ee ik
Thus’, 3.
yee
+
is
ce*/3
the
general 4.
(14-1)
(B)
(14-1)
solution.
(14-1)
(A) y
6.
Sie
ey
SS
C=2
0 C=-2
PLP
ALOIFCFP
FAIL
AF
SOIPOCLIALAS
AMAA SMASA ASA
i
C=-1
iC Tloo! A A Aa A Aa A et a A
(14-1) (14-1)
(14-2)
da 2 ky) ka>a0 Sune
(14-2)
7a
d
9.
the disease is spreading A single person began the spread of a disease; the number of people of product the to proportional is that at a rate (14-2) who have the disease and the number who don't have it.
10.
= Uak(y 25),
There are 100 grams of a radioactive material and the material is decaying accident occurs,
the
11.
amount
differential
CHAPTER
14
at at
the instant a nuclear a rate proportional to
(14-2)
present.
y' + 3x¢y + 9 = eX (1 - x + y) = & y' + (3x7 - &)y = (1 - x)e* - 9 The
866
eae
equation
DIFFERENTIAL
is
- xe™ + ye™
first-order
EQUATIONS
linear.
(14-2,
14-3)
12.
y'
+ 10y + 25 = 5x/
The the
13.
5x term implies that the equation cannot be written
Wate sy = Ve
xy +
Also,
14.
the
variables
equation
(S) =
can
=
3)
=
form:
Cys
equation
is
Also, 14-3)
ae
2) (er3)
A!
be written
in
=
xX -
3.
first-order
linear
form:
(14-2,
6) Ve =) 12.50) —8.16
yy' = 4xe*Y = 4xe*eY Separation of variables The
15.
of
linear. (14-2,
6
So) yt. 2(x
Separation Vat
2x -
Sete
equation is not first-order in the form f(y)y' = g(x).
not
form:
y’e’y'
first-order
14-3)
= 4xe~*
linear.
(Te@s2)+14-3)
4
eee
et = =
ee
Separate
the
variables
|4
ik i le a lIn|y| = -4 1n|x| y=
einx
* Cae
in
x
“wee
Be
Ss efelnx
y=
Ax”
-4
A
=-Z x
F
General
solution
(14-2)
16.
wes
4, = x
x Integrating
First-order
factor:
I(x)
linear
equation
= elf (x) dx =e J(4/x)dx _
yadtax _ “Bina =e
Therefore,
= eels 1 {4
Ske x!
Ga
og
is)
oA
dx al
) = aie
cx =. |xae = -.|-- + C x! xl 6
General
|
solution
(14-3)
x
CHAPTER
14
REVIEW
867
17.
y'
=
3x?
2 =
3x7
Separate
the
variables
{Z = fax2ax =x
+C
= eo ‘< KEIR
General
x +c
solution
(14-2)
18. y' = 2y - ‘& y'
-
2y =
-e&
Integrating
factor:
SITES [200 o(20 ax,
=
+ ce**
y'
= 2y + x®
y'
- =
g(x)
1
y= Fig [Ima = 1
[SxS
x sc!
Ye.5.
I(x)
linear
et*(e ts Cj (14-3)
equation
= el (-5/x) dx =
@ oP
ae
-5
er
ax, g(x) =x" 2 8 [x a=
* cx
=
General
[=
+ c|
solution
(14-3)
3 + = aie
ar
pee
a4
Separate
*x
See 1Adie sea
2a
Bt iy y
CHAPTER
the
variables
ax
°y>
&
in|3 + y| = 1In(2 + x) + C
868
= -e&
solution
First-order
factor:
equation
= el (-2) dx =s@54%
General
= x6
Integrating
y'
linear
Le [er?*(-e%) ax= o* | eax
e &
y=
20.
I(x)
at
LAE
19.
First-order
14
OT St) EC ae eC
= A(2
+ x)
-
DIFFERENTIAL
(Note: 2 + x > 0.)
(Dik ache Al Quythse)
3
EQUATIONS
General
solution
(14-2)
21.
wea - y; y(0) = 0 nea
=
merayor
Jat
-1In|10
1
Separate
variables
= fe
- y|]
gnji0
the
= x+Cc
- y| = -x+-cCc
100
yes
Jeo
Ste fe y = 10 Applying
the
= Ae *
- Ae*.
initial
General
condition
solution
y(0)
=
0,
we
have:
feei0 - Ae’, A = 10 Pnus;, 22.
y.=
10 - 10e~.
Particular
y' + y= x; y(0) = 0 Integrating factor: I(x) Thus,
y
solution
(14-2
g(x)
x
ace dx = e* |xe%ax 2 eo“ie = a e VY S9xt1-.1.+. Ce. General solution the
initial
14-3)
= elidx _ ox
= Fog | 21x) (20 ax,
Applying
or
condition
y(0)
=
0,
we
4 'C]
have:
feen0 = 1 + Ce’, C= 1 Therefore,
23.
y= x-1+e%*.
y' = 2ye*;
y(0)
Separate
Applying
initial
Meas
(14-3)
the variables
General
Thus,
solution
=1
a = 26 ~*
the
Particular
solution
condition
y(0)
=
1,
we
have:
2? 2 as?, a = e y =
ee2e
Particular
solution
(14-2)
CHAPTER
14
REVIEW
869
erie Pee IO A 24.
1etd
a
yi
GY Te
ANTE
al sot parca
a
WEWBUAIE, lis PATENT
j i First-order
: linear
: equation
Integrating, factor: I(x) = el(1/(x+4) dx 2 Qln(x+4) mesa bh ge’ Thus, Y = T(x) frosguadx, GG aa
1
2x
oot
xary
Vile Applying tai
the
Olmak "
(vo APe)ivi fw +
y =
=
nee
+
Solving
for
y+
\ x2 +A
y and
V4 16
y =
ny; +
In
2y =
Integrating
CHAPTER
have:
Particular
solution
(14-3)
variables
General
x;
Vie
the
solution,
initial
16.24.
y(l)
factor:
il = Fog |
14
sane A areas
the
applying
aga
:esaeant
870
we
implicit
condition
y(0)
form
=
0,
we
have:
A
Therefore,
ye
1,
;
solution
C
ae
=
=
750)
fx ax
mi)
y
y(0)
4ea
Separate
AY
Thus,
ge
e
4) =
0 #14 A=
heat
sales General
condition
(y + 4)? = x75
4=
=
a
ta
Z
ne x
4)dy
(ye or
x
ee
VO
(ys 3
26.
initial
ee mea
y
a
eee
a
poe
c=A4
Therefore,
25.
fins
_ yx 4 4
=
I(x)
x
in x
= el(2/x)dx _ Q2inx _ Qinx ax,
dx
-
g(x)
(Integrate
=
2
1nx by
parts)
be: Cals G |
Be: ln x - a + oe
DIFFERENTIAL
solution
(14-2)
2
g(x in
Particular
EQUATIONS
General
solution
_ 2
Applying
the
initial
condition
1 1 2=3(1)Inl-9+C,
27.
oi
x(1l
i=
a 3
y =
Therefore,
+
;
‘ee
ey 14 y d
x
19
Wiad
y(O)
=
= 2,
we
have:
;
:
(14-3)
solution
Particular
lin) 66.
[xy
4 inx )
by
the
integrating
eee
ie exa?
sides:
forty ‘ax = fex® dx x ty
Step.5:
Solve
for
y:
Vo=Eua2r (B)
Solution
using
mee) ait + 210.
cx4
General
separation
xy
of
solution
variables
= 4y, =98
xy' = 4y™4 8 SAS. ana 4y +
bae ger es
gy
oye
pee Ale
ae
ig + gr
a fra
. In|4y + 8| = 1n|x|
+ K
in|4y"+ 6| "s"4 Init + 5 In|4y + 8] = 1n x* +1 l4y + 8] A
CHAPTER
14
Vat OM
DIFFERENTIAL
299)
= ante lin. Fob A Mx*
VS Gx
872
(ae
EQUATIONS
(mM= te”)
2
(C = M/4)
(14-2), dea
30.
The equation it cannot be
y' + y = x can be solved solved by separating the
Integrating
using an integrating variables.
factor;
factor:
f(x) = 1, I(x) = el ® = o* Multiply
by e*:
ey’
+ e*y = xe*
[e*y]" = xe* Integrate:
Solve
31.
for
e*y=
xe~*
y=
Ce*
- e~ + C
y:
The equation it cannot be
+ x)=
y' = xy? can solved using
1
be an
(14-3)
solved by separating integrating factor
the
variables;
yy" xy —y'=x a
'
[fears
fx ax
1.442 Yau
= 158
a2
ae
=
5,
-2
1,2 4 x
PP
Or:
2 =2 =— of eee Seen
Step
=
OY =
(CG =22K)
14-2
—L0
1: Write
the
differential
omy.ey Ae. ae
ax),
=
=e;
in
standard
factor: a! (-5/x) dx bes)
=
I(x)
In&
wigln> Step
3: Multiply
by
x? (y'
xy! Step
4: Integrate
-
the
integrating
5x ty) =x?
- 5x Sy (xy)! = both
form:
10
integrating
Step2: Find an
equation
Eres
factor:
(-10x71)
-10x-® -10x
sides:
foesy 'dx = xy
=
[-10%-8 dx 2x
P2F2C
CHAPTER
14
REVIEW
873
Step5: Solve
for y:
y= (A)
(B)
2 + cx?
General
solution
Applying the initial condition y(0)\= 2, we have: Zr 2 4550.2 Thus, y = 2 + cx° satisfies y(0) = 2 for all values Applying the initial condition y(0) = 0F=" 25+) 0 eOrmes a— a0 Thus, there is no particular solution
©) Applying the initial condition'y(1) pl ame oe (e(al)\« Cesarel: Meleae at THUS) Ve =e x° is the particular
y(1) 33.
we
that
=
1,
G.
have: satisfies
we
y(0)
=
0.
have:
solution
that
satisfies
=1.
yy'
ie ax
= x 2
=e
or
(14-3) =x
(ae
y? = x7
Applying
the
eae
+C
(Ge=82
initial
16 = 07 +C Thus,
0,
oH
y? = x*
General
condition
and +16
Ri)
C= and
y(0)
=
solution
4,
we
have:
16 Va
xt
4516
Particular
solution
(14-2)
5
34.
(A) -2
(B)
The graphs. are xX axis only at
(D)
The
increasing x = 0.
and
cross
the
2
-5
5
(C)
-2
2
graphs
have
local
minimum,
three
times.
a
and
local
cross
maximum,
a
the x axis (14-1)
-5
35.
y= M(1 = e7**), (mM (A)
PAt
‘64=
AC.
(B)
874
CHAPTER
4 =
=65)):/a=e
Using
we
27
MG
=e
iM
Clase
a graphing
find
14
that
s.09) ki 0 2 =
so
M=
Aicig
ae
so
M=
1 = ak
utility
to
M = 9.2.
DIFFERENTIAL
4
2k)
EQUATIONS
graph
an2ke
Ui
the
two
equations
in part
(A),
(14-2)
36.
Let
V(t)
denote
for
this
problem
Integrating Thus,
the
value
is:
factor:
of
the
a =
KVse
dv aes
kv ps= .0
I(t)
=
V0)"
=2 SOORAV
el (-k) dt =
i
V=
refrigerator
Foy | Teraeat,
eoAllie)
at
C20)
time
t.
Then
the
model
B= 925
e kt 0
1 fee x0"dils ek {o dt e
v=
Cex,
Applying
V(0)
the
solution
V(0)
=
500
and
V(20)
=
25,
we
have:
= 500 = Ce®, c = 500
Therefore,
V(20)
General
conditions
V(t)
=
500ex¢,
= 25 = 500e*!20) e 20k
Dey 1 ee 500 m0
PAU
ous
ets
1n(35)
ahs
nas
k= 30 1120 Therefore, Finally, V(5)
=
V(t) we
= 500e(1/20)1n (1/20) € |
want
to
calculate
500e (1/20) in(1/20)5
V when
t =
5:
ps 500e(1/4) in(1/20)
2s 500e
0-25 1n20
=
$236.44
(14-2
37.
The
model
for
this
problem
(A) 500,000 - s ds
cama
k dt
a3.
Separate
We
use
the
constants
variables
* fx dt er
Came
=
ae*e
=)
2.007000F
conditions A and
the
k > 0
a!
-1n(200,000 - s) = kt +c 2000 0008S is = e Xt ©
Ss)
14-3)
is:
= = k(200,000 - s); s(0) = 0, s(1) = 50,000, ds
or
s(0)
(0 < s < 200,000)
—
Ae"
=
0 and
General
s(1)
=
solution
50,000
to
evaluate
the
k.
s(0),.= 0 = 200,000 A = 200,000 Thus, s = 200,000
- Ae® - 200,000e**.
CHAPTER
14
REVIEW
875
s(1)
= 50,000 = 200,000e* = _~ . SeMPe
200,000 - 200,000e* 150,000 150,000 _ 3 IGG. COU tre
iE) aes in(j)
Therefore, Finally,
s = 200,000 we
determine
150,000 200, 000e1" (3/4) aini3/Me
- 200,000e!"'3/4)©, t such
= 200,000 = 50,000 ooru0N 200,000
She |= In(Z}e
part
(A),
S(t) Since
we
eyes
know
= 200,000
we
want
the
=
150,000.
ik n(]
anh
From
s(t)
od ~ 4
chr TA (3/Aee (B)
that
- 200, 000e1 (3/4)
ee
that
- 200,000e** sales
150,000 = 200,000
to
be
$150,000
after
3 years,
we
have
- 200,000e-7*
200, 000e-2* = 50,000 e3* = 0.25 -3k = ln 0.25 jou dn(0225) SOY 3 Thus, s(t) = 200,000 - 200,000e!t/3)1n0.25 Now, s(1) = 200,000 - 200,000e!1/3)1"9-25 ~ 74, 000 Therefore, the that the sales
38.
(A)
The S=
sales after
in the first 3 years will
year should be be $150,000.
equilibrium price p(t) at time t satisfies D; p(0) = 75. Thus, 100 + p + p' = 200 - p' 2p' + 2p = 100
Dp! +sp.=_50
Integrating factor: Thus,
p
= ee Fay
I(t) = e/fitidt
JTlevaleyae,
g(t)
= Qfidt . ot 2= 50
= fet. 50 dt = 50e“[e" + Cc] e
= 50 + 50ce¢ p
876
CHAPTER
14
=
50
(A = 50C)
+ Ae“.
DIFFERENTIAL
General
EQUATIONS
solution
$74,000
-
p
to
ensure (14-2)
(B)
The
equilibrium
price
Pp = lim (50 + 25e°°) t—oo
(C)
p is given
Applying
the
Therefore, Applying
initial
pipe the
ou
condition
initial
Pp, =
The
graphs
of P, and
For
an
initial
decreases price 39.
The
amount 0.05A
Now,
f(t)
the
in
_= =
price
the
an
the
account
-0.05,
and
=
at
solution
25,
we
have
right.
equilibrium
commodity
initial
any
solution
the
price
commodity
at
the
ts Se
the
have:
time
below
increases t must
the
equilibrium
toward
p.
(14-1,
14-2)
satisfy
-5000.
integrating
-0'.058an
A = 100,000 Applying
the
of the
For
I(t) = ef(-0-05)de _ _-0.05t ty
p(0)
shown
above
of
we
Particular
Pp, are
price p.
75,
A = -25
256 ~
price
the
toward
p,
dA ig
BO
=
Particular
condition
and
Therefore,
p = 50,
p(0)
A = 25
ys 25e ¢
25 = 50 + Ae?
price
e © = 50.
t— eo
75 = 50 + Ae? and
(D)
by
= 50 + 25 lim
+ ce®-°°*
initial
“2
is:
0.05¢|
General
condition
factor
e
-0.05t
|
solution
A(0)
=
60,000
at
any
time
yields:
A(0) = 100,000 + Ce® = 60,000 Cc
Thus,
the
amount
in
=
-40,000
the
account
¢ is:
A(t) = 100,000 - 40,000e°-°¢ To determine Ome:
100,000
when
the
- 40,000e°-°* e
o.ost
amount
in
the
account
is
0,
we
must
solve
A(t)
=
0
= 0 ._ 100,000
5
40,000
ln
C=O.
2
=
obnE
18 5326
Thus, the account will be depleted withdrawn from the account is: 5000(18'.326) = $91,630
after
18.326
years.
The
total
amount
(14-3)
CHAPTER
14
REVIEW
877
40.
Let r be the continuous compound rate form). Then the amount in the account
of at
interest any time
(expressed t is given
in decimal by:
aA Ane_ rA + 2,000 dA ae
or
sf=
rA
2,000
(Note: the method of separation to solve the equation.)
Now,
f(t)
=
I(t)
=e
-r
and
the
Pe Eley
of
integrating
variables
factor
could
also
have
been
used
is:
ert
Thus,
vePeers! st
and
A=
Applying
_ 2,000
Cet
the
A(0)
J2,0006 -rt dt
initial
= 15,000
the
amount
A(t) Now,
at
10,
dy iis_
account
A(10)
=
15,000
at
any
time
a graphing
100
Therefore,
utility
e Ht
i 100
+
Integrating
ve l
Wp
to
as
t is:
we
have
ee
r
Expressed
+
yields:
— a
70,000.
,
0.0912.
dy ae
Thus,
=
70,000 = (as eee 2.000) 30: _ 2,000
Using
41.
the
= (25, 000 + ee t =
A(0)
+ ae
in
’
r=
condition
solution
= Ce® - ae
C = 15,000 Thus,
General
1G
solve
this
equation
a percentage,
WAKO)
a Son)
I(t)
Wilh ee dhe e yee
r =
for
r,
9.12%.
we
find (14-2
that or
14-3)
e=
factor:
y= Say
eaieee,
af!
g(t)
a
= 100i
.e °
E
= + fet 200 + e')dt =e t {(100e" + 1)dt = e*[100e" + t + C] Se
y=
1004,
Applying
the
te
+eCe =
initial
condition,
0 =1100 + 0e° + Ce®, C= Therefore,
878
CHAPTER
14
y = 100
General
+
have:
-100
te * -
DIFFERENTIAL
we
solution
100e°.
EQUATIONS
Particular
solution
(14-3)
42.
Let p(t) be have p(0) =
the 0.
amount
of
pollutants
in
the
tank
at
time
t.
At
Pollutants are entering the tank at the constant rate 2(75) per hour. The amount of water in the tank at time t is: 100 + 75¢ - 50t = 100 + 25t
The
amount
of
pollutants
in
each
gallon
of water
at
time
=
t = 150
0,
we
pounds
t is:
p(t) 200 The
The
+ 25¢
rate
pollutants
settle)
iy 2p 1c)
TO07s25tj°
4 +
mathematical dp
ms
In
standard
dt ~
(A)
at which
Pee
150
A
model 2p
this
p(0)
4:%-t" form,
leaving
the
tank
at
time
t is:
.t
for
ps
are
the
problem
is:
ey differential
equation
is:
2
deine 40 406P = 4t°°
Now, f(t) =] a Sand rit) = ela (Apelias Sooaintdst) reint4 ne)?
= (4 + t)? Thus,
p(t)
= Fen
| evgievae,
i = —+— (4 +
¢)
fu +t) 2 TSO
150
(4 +3 t)?
=i ten tianeT
(4
=
Applying
the
+
50(4
+
initial
Now,
at
p(t)
=
an
=
150
vee 296
¢)
t)
+ Tae
condition
50(4
(C =
+
0 = 50(4) + or Therefore,
gle)
+
and ¢)
p(0)
=
{250K)
0, we
General
solution
have
C = -3,200
- Wore
Particular
solution
t = 2,
p(2) = 50(6) - “200 = 211.1
There are 2 hours.
approximately
211.1
pounds
of pollutants
in
CHAPTER
the
14
tank
after
REVIEW
879
(B)
tank
to
contain
result
is
t =~ 10.3
To find how long it will take for the we solve the equation of pollutants,
700
pounds
50(4 + t) - 289. = 700 (4 +
43.
Let
p(t)
k
~
integral
1(b))
(using
a>-o~,
~ due
b-co.
Inb
Lim
sa,PES
J ee
limit
the
bce.
1
ya eee
Snain
inb
bec 2 ln b>3«
integral
CHAPTER
2 ox) | = a
does
lim
a—-oo
not
eater
(a3)
exist;
the
hence,
as
boo boo,
the
PROBABILITY
AND
Limits:
x =
x
u
=
In
du
=
xe
Substitution:
0
Hah
1 implies
x = b implies
(1n_b)
u =
0
u = in bd
= limit
diverges.
15
0
u du
-
2
u = 1 - x = -dx du
Substitution:
diverges. b
oo
Since
ot
converges.
Sim 2oNG aim |Go a--0o = be
Therefore, 2V1
Mes2
expel
Weis
-far¥/au (Cael ut eae eat AS
cma Vesta
improper
Reb + et 5
improper
is
Since
-2b
rin |e
-ee$+
47.
0
0
Pe
45.
-2
.
b
‘co
43.
diverges.
integral
improper
this
bo4~,
as
+ b*) 30
ln(1
CALCULUS
does
not
exist;
hence,
the
improper
00
49.
0
Tryo0
f(t)
6000e 9-14
7
—U-
= 59,000
0
lim (e9:127 - 1) = $50,000 T—yoo
= 1500e°-°4t co
ui
CV = f 150029: 94 —-9-99tG+ = dim} 0
Too
At
an
1500e°
tae
0
= ie 53.
ge
0
= lim ee e9-12t)" 51.
fs
CV = f 6000e-°-12tgt = Lim|
zi
es
—U.
interest
rate
= -30,000 lim (e° 9°95? - 1) = $30,000 Too
of
15%,
0°
rT
CV = i 6000e 9:15
dt = Lim | 6000e-°9: +5 at
0
0
ry 0
= 1in|-40, 000¢"9-35¢ Tyco
= lim [-40,000e°:1°7 + 40,000] T—0 = $40,000
Increasing $40,000. At
an
the interest
interest
rate
of
rate
to 15% decreases
the capital
value
to
value
to
10%,
co
T
0
0
CV = f 6000e7°:29Fge = Lim|
6000e° °° dt
lim |-60,o00e"?-2#
i
THJ00
uu
0
lim [-60,000e°9-17 + 60,000] Too
= $60,000 Decreasing $60,000. In
general,
required 55.
the
R(t)
=
interest
increasing
to establish
3e°0-2t
=
rate the
the
to
10%
interest
income
increases rate
Total
capital
decreases
the
amount
of
capital
stream.
3e°0-4t rn)
(A)
the
production
Ty
= f R(t)dt
= Lim { R(t) dt
0
Lim|
Teseo!0 a
(3e70°2E ~ 3679-40) ae
0
rim | (-150"0-2" $.7.5e79+ 46) Too
J
Lim (=18e79:2? 407256794? 4:75]
Tyo
7.5 billion
ft?
EXERCISE
15-1
889
T
4
T
S es Feud: **) dt = 3R75
i R(t)dt = f (367)
’
0
0
we need to solve
ft?. Thus,
ft? is 3.75 billion
(B) 50% of 7.5 billion
LOT. Now,
re oe yke 0.2 + 7.5e°°**) fz (3e70-2 ~ 3670-40)ge = | (-15e°9-2© 0
215602"
417 Seiy
ee 7
esa S
and
=15e6 0:27 4.7.5e°0°4? = -3.75
57.
i
al
0
=
waa
i
=
seepage
Total
(1
+
t)
find
we
utility,
a graphing
Using
2
that
aay Glan
dat
a
Substitution:
1
0
Limits:
1+b
500 Lim|
years.
6.14
lami500 leet
boo
+S = $00 1im| oie ie
T =
Fane
u=1+t
t¢ = 0 implies t = bimplies
u-*du
u=1 u=1+b
Ail ‘1!
= 500 bo lim F = u =
59.
Total
=
=
E beafat
nam To
0
Thus,
EXERCISE RAE
eS
8 million
15-2
SIRI
Things 1.
BS DT
to
9
I EEE 5S INSERTED
1) cb = 500 gallons
Jy hte 7400
R(t) at
immigrants
LEESET
ak
Seatat i Lim(-7
500
R(ENGEv=
1+b
will
ETE I
lim TAP)
RTT NS| (5 ce)
-200 ere to:
Se
LN
=
mi peace T30L(5 + T)
Tel
enter
EES TEI DE
NE ELEN
(5 + t) -200
the
| T +
a| =o
country
under
NE LE TELE PEE
EEL
this
ET TE IEELS TE EE ES PO
TIE
policy.
EEL
remember:
CONTINUOUS
RANDOM
VARIBLE
A CONTINUOUS RANDOM VARIABLE X is a function that assigns a numeric value to each outcome of an experiment. The set of possible values of X is an interval of real numbers. This interval may be open or closed, and it may be bounded or unbounded.
890
CHAPTER
15
PROBABILITY
AND
CALCULUS
EE ET
EET,
2.
PROBABILITY
DENSITY
The function f(x) continuous random
(a)
f(x)
(b)
ia £(x)dx
(c)
The
FUNCTION
is a PROBABILITY variable xX if:
2 0 for
all x €
(-«,
DENSITY
FUNCTION
for
a
o)
= 1
probability
Pie Sx
that
x lies
in
the
interval
[c,
d]
is given
by
d
Sa)
= i £ (x) dx. Cc
i
Range 3.
CUMULATIVE
If
of
X =
f is a probability F(x)
=
P(X S x)
where
F is
PROPERTIES
If
f is F(x)
F'(x)
D)*-OeS-F (c) ST
F(x) TEA
—
CUMULATIVE
f.
function, F
is
then
the
defined
associated
by
of
f,
that
DISTRIBUTION
density
function
is,
F'
=
f.
FUNCTIONS
and
RCE) aé
f(x)
cumulative wherever
Segeroo SLE
SEG
distribution
function,
then:
RET
RR
f is continuous.
< x < 09.
is nondecreasing TB
of
FF(ey
OF
(32)
= Domain
FUNCTION
antiderivative
a probability
=
1
FUNCTION
an
31
=
= ft f(.Hydes
a= F (d)
is the associated (a)
e)
density
DISTRIBUTION
Furthermore, E\CiSexe sd)
he
(-e,
DISTRIBUTION
CUMULATIVE
f£(x)dx
ESI
on ER
SESE
(-%, APE
©). EE
SE
RS SR
SRN
EXERCISE
nS
15-2
RRERE TEOST
RES
891
1.
see
we
that
ayeFh
meal E20 SS
mr
graph
the
0
0
[i f00 ax= ifg x ax
From
right.
the
at
is shown (-9, ©).
f(x) x €
The graph of f(x) 20 for
4
0
x>A4
0)
_ ieitie -
=) Ab 3.
‘one: eee Ss 0 Tie 4esex 3 x
Heike
otherwise
0
a probability
f is not
Be
tis
since
density
function
since
-4]
al Smee
=
1)
=
i se((Eebe
Sy)
1 (Bimeetx
>
5)
=
f 12S Wobie =
i 0
5 5
(Gyeetx
4]
ig 2 oe
i 8 Oso ee Ti
weneeee
1s
is:
F(x)
Os x (400 + t*) 0 hs fat |* , S800 8 ee, 1-400. + 400 + t27/0 400 + x : x< 0 if 0
F(x)
Step 2:
sthen
| 2),
0. & TEde
=
0
x
214 S$ m)
ES
= ae
Lf x20
400 + x* en:
. fo
=
_ 1 4095 2 400 + m@ ak -400 400
+ m?
2
400 + m* = 800 m* = 400 m
55.
The
E(X)
of
number
expected
= nef
=
xeona
20
hours
eee
hay = (3 ) ak
PROBABILITY
DENSITY
al
fu
Ho)
al HW = 3 (a + b)
(c) Mean: A
(d)
Median:
(e)
Standard
15
*0
jprait
x20
2 i-x/h
f(x)
2,48:
Ace
with
function,
density
The probability
[Note:
"A =
2.
]
otherwise
0
(15-4) 20.
p=
= 2
Gia
A = 2
m=Ai1n2= 21.
wp=
(A)
Ze
Oo =
50,
(Lor
xX
ZuaLor
tx
Required
6
=
62) area
1.3863
=
Deine?
41 =6 50 =
62°=) 50m, = Ean A,
+
(15-4)
-1.5 250
A,
(area
corresponding
= 1 .5) + (area corresponding to Zz = 0.4332 + 0.4772 0.9104 Z
(Bz
(tor,
x
Required
I
39)
area
59
6
20
to 2)
eS
(area corresponding Za= ale) 0.4332
to Required area
(15-4)
CHAPTER
15
REVIEW
931
22.
Given (A)
wt =
We
82
and
first
o =
8.
find the number the mean.
are
from
For
x
84:
z
=
S4— 82
For
x =)94:
z
=
=
Now;4P
=
(84,
of
standard
2 _
=
B(0.25)
that
84
and
94
9 25
98 222 2
Sex S 94),
deviations
1'5
Ss z Ss 1.5)
=10).. S345 (B)
23.
For x =) 60:8
zs =
ee
P(X
P(z
2 -2.75)
2 60)
0
0
[ e*dx = -oo
=
1im [ Sax= a->-
since
e740
= =
0.4970 0.9970 0
a—-oo
=
a
+
0.5000 (15-4)
lim
(he)
=49
a—-oo
a>-o.
co
24.
=fe =D
line)
a
as
=
(15-1)
b
f x
=
o (x + 3)
sim
as
bow}
(x + 3)
iq fie
Substitution:
te
.u =a Cll =
ee
Cie
“"baes (2H d2) 1G bel bit 3 3) hae Thus,
the
improper
integral
ro)
25.
Yes.
Since
converges.
7
i
Seb) Cobre
‘co
f
-1
follows
-1
that
)
f(x) dx + i f(x) dx and av
00
it
(15-1)
-1
co
i f(x) dx = 1
( =
i) E(x) ax =
4
1
f(x) dx -
J f£(x)dx =1
=
LZ -
fe f(x) dx
=i
exists. _
(15-1) je
-10x
a0 -get*) = f(x)
:
Lin sce.
0
2 0 on
0
otherwise (-09,
co)
)
f
i exisesr
and
0
f(x)idxa=
oO
Ii f(x) dx + J f(x)
co
-0oo
dx
0
co
b
= i e@OX dye = Lim [ e 19 aye 0
a=
be
ately ae 1im| 10
Mere
te
= rim| Therefore, function.
932
CHAPTER
15
let
k =
10;
10
¢ reel ;
eek 4
10 ©
f(x)
=
ae
= a0
T0e;.* ista
probability
density
(15-2)
PROBABILITY
AND
CALCULUS
27.
je
~
10x
0°
0
()
f(x) ax + f f(x) dx
{
dx
f(x)
f
Since
0
x2,
otherwise
0
*
£4)
:
vi
0
oo
co
b
‘00
ax
{ eX ax = Lim | eb be / 0
0
Vad
1im| 5
28.
0
ae = ok | 10 75 e TO |
ee = im no
tear diverges,
(15-2)
k exists.
constant
le with median X is an exponentially distributed random variab the probability and 3 = pm mean the m= 3 1n 2. It follows that density function is:
if geea
Dteisjerr”
otherwise
0
2
1X) Now,
$3
(X)
=
3
0
3
P
f(x) dx + f f(x) dx
f
f(x) ax
f co
0
—0o 3 =
f
2
xa
Jé
= 1 3e*/3|
3
(15-4)
si= 0.6921
= 1 @*e
0
29.
ax
b= ; xf (x) dx = f 2X
R
R re - ge im [0 Foeee —2°%—ax = 50 R-eo lim { = R- - ==) =1-— (xt *5y25) Ge: + 5)? 9
x
1 - 23,
bo 20
0
otherwise
(x +
x
f f(tydt = 0 +f 0
oo
co
Thus,
x
0
x
function.
probability distribution When x 2 0, we have:
cumulative
5)
CHAPTER
15
REVIEW
933
Next,
to
IPA) a
find eG
the
median,
Se)
m,
we
must
solve
the
following
for
m:
=
» Sro2stow woe
(m+5)2 2 a
5 ae
ee 8
(mn ty5) 4. 22 (m + 5)2 = 50 feist
Therefore,
Sy
V50
m+t+5=
5V2
the
median,
0.8 08 30.
ee)
sae
find
p=
distribution 0
median eX
m,
Som)
We 0:8)
(15-33
function TE ogra
we
1.68.
(1S=3)
is:
ie yod solve
v= a for
m:
90. 2
m Using
2074"
itx21
4, - 9:8 x 9-24
the
Bm)
V2 - 5 =
otherwise
cumulative
F(x) = To
equals
x
0 The
m,
me
a graphing
2
utility,
we
find
that
m =
x
31.
Consider
If we
the
integral
let
u = 1 + e*,
x
co
[es (1
+
then
ev)
du = e* dx, and
limu X— oo
fo)
f ee
ceo),(Se ee)
=
ce
1 u
eth
=
= =
32. J (ax* + bx + c) F(x)
b
1im { 5
boo), bool
im
Bese
lime
x—> -00
=a
Thus
du
u
1in|-2
= ~,
b
U}1
{1 -
al | =e
(15=2)
b
af x? f(x)dx + bf xf (x)dx + cf” f(x) dx
—co
a(o7
fe Mo)
TDC,
since { x f(x)dx = o% + p?, f xf (x)dx = ,
934
CHAPTER
15
PROBABILITY
AND
CALCULUS
and (pa f(x)dx = 1.
(15-3)
33.
ii}
f, (x)
is
0
graphs
of
0
otherwise
papoere The
y
if x20
ieee
£, (x)
f,
if x20
7
otherwise
shown
f, are
f, and
fo
at the right. In comparison with f,, the graph of f, is shifted to the right. Therefore xX, should have a greater 34.
Refer
to
under
the
Sole
than
mean
x (15-3)
X, .
In comparsion with f,, the area the variance of X, graph of f., is more spread out. Therefore, (15-3) greater than the variance of X, 33.
in Problem
graphs
the
be
should
30
it, = ia xf, (x) dx = f x(0.25xe*/?) dx Le
0
30
= f 0.25x%e*/2dx = 4 0
i= rs xf, (x) dx = f x(0.0625x%e*/*) dx 0
3%
30
(15-3)
fs f 0.0625x°e*/?dx = 6 0
36.
V, (x) = ; x’£, (x) dx - 4? = f x2(0.25xe"*/*)dx - 16 ean
0 30
= f 0.25x°e*/2Gx - 16 = 24 - 16 = 8 0
=
V.(x) 2
he
xf. 2 (x) dx - 6% =
0
x2 (0.0625x%e7*/7)dx - 36
30
ss ( 0.0625x4e-*/*Gx - 36 = 48 - 36 = 12 0
37.
(A)
The
total
production
‘co
(15-3)
is given
by:
a
{ R(t) dt = 0
{ R(t) dt
im T— 00
0 T
= Lim { (12e79s3*) ~iager TO0/
= nim T—
“yar
(9
(4069? + 20e°9°%)
00
suikim (240¢79-2 7 he) 206 95°70
T 0
20)
T—> 00
Thus,
the
total
production
is 20 million
He! 20 barrels.
CHAPTER
15
REVIEW
935
we
will
well
the
(B) To find when
50%
reach
of
the
production,
total
solve
must
bi i R(t) dt
10
=
0
for
T.
Now,
fr (1ae°0-3t ~ 12670-6t)ae
T f R(t) dt 0
0
|(-400r®-2* + 2007065)
Tp 0
ddan Thus,
we
=40e79:37 + 20e7°:°T + 20 = 10 A0e 9:22 mo0e ("= 110
or
£(x)
O02
ae
this
solve
equation,
we
find
that (15-1)
years.
4.09
T =
to
utility
a graphing
Using
38.
+ 20ers eo ia 20
have
0.01x)
Te
0
02S
S100
otherwise
100
100
f(x) dx = f
(A) 40
0.02(1
=,0s0dx) dx
40
The and
2
=
0.02]
(x =
30:.005x*))
=
0.021 (100) =)
50)
probability that the 100 pounds is 0.36. (e"
:
BAXs S) 50)
£(x) dx =
-—
weekly ne
50
=P
Sp (50 ~ 0.005-507) Solve
the
following
for
100 40
(407-2
3)iie="
demand
(1 -
for
0" 36 popcorn
0.01x) dx =
is between
40
a
50
=
50 (x7=0'. 005x7)
‘
= 1 - 0.25 = 0.75
x:
x
f BCE) ae
==
0596
(x =
number
of
pounds
of
popcorn)
0
1 ie 50
J,
(i pOe
0 are ae
ae oY 50 (te =] OF 005:E2)
0.96
Rota) 5 3 0.96
ea
50 |x - 0.005x*) = 0.96
x 5x* - 1000x + x? - 200x (x - 80) (x Thus, week.
936
CHAPTER
80
15
0.005x% 48,000 + 9600 - 120)
pounds
of
PROBABILITY
= 48 = 0 = 0 =0
bie SOMNOG exe = s20 popcorn must be on hand
AND
CALCULUS
at
the
beginning
of
the (15-2)
0 i 2400e7°°12%dt
CV =
Value:
Capital
39.
T Lim | 2400e°°:+4* dt
=
= lim
240077)
mulim
=20,000(e;0°*°% +1)
T—00
nae
a
(my
0.5
if
- x)
J6x(1
_
|
45
(15-1)
=35207000
x S 2
otherwise
0
ae
-0.12t|p
0
0
Peet-2°0-02),
P(X < 0.2)
=
1 =
=
-1 f= f
0.2
f (x) dx
D2 f
=
f(x) dx
0 0.2 =1-
f
6x(1
=
x)
ax
0-
=1-
(B)
The
-oo
0
"=
(2x
expected
The
cumulative
or
for The 41.
median
=
P(X Sm) -
2m?
£(x)
=
time
Escape
{n°
= = .
=
ener ais -x/4000
= 4000 ©
F(x)
cumulative =
we
0
find
that
0.. 5 (15-2,
exponential
an
m=
density
function,
15-3)
it is
Sie 2. (0)
otherwise
0 The
is:
cla ogc dl we solve
pe = 4000. As Thus, expressed by A = UW = 4000. failure
0.5
50%.
m. Using a graphing utility, median percentage is 50%.
Mean
ae ris
.if000S xtshi
m,
the
3m*
2
distribution function 0 LEexcr
=
im
0-8 order
In
(C)
is usable
drug
the
that
Probability
(B)
shelf-life
the
The probability that months is 0.2778.
drug
the
of
after
we)
=
we
must
five
2 and
is between
months
GR c «10 Roo J (x + 10) 1 5+ 70) lim
8
ist 2
2 3 = 0.6667 median,
the
find
to
m,
solve
the
following
for
m:
m
= f f(x) dx = ‘
$m)
P(X
0
| yearere
_i
Rilx + 10)?
2
(x +
ma
1
a5.
f(x)
=
\s a Pata mi
ey 10
10
2
Jo
10)
10 m+
2
=
Pee
2
eon
ac: ee
OLY
o-x/h
10. 10
=
20
m
=
10
x
jA 0
2
m+ m+
>
15-3)
0
otherwise
Bix > 1) = 1/ eX/hax = e? M1 Lim
Thus,
(15-2,
months
Roe
cer | eax
= &
(Given)
2
41
R
Pam (i) | = “1+ lim (e7®/* R-eo
e 1/4)
= eo?
elk .
CHAPTER
15 REVIEW
939
Thus,
=
Po} ir Therefore,
f(x),
A = IPwolR 5, is given
with
2
co
‘co
2
2
by f(x)
=
ee
x20
;
otherwise
R
(A) P(X > 2) = i f(x) dx = : 2e°2* dx = 2 im | e 2% dx R
=2 lim (-ete R—oo
(B)
Mean
life
L
=!A1im. (e 2% zpe
wh = Avs
ra’
G84 oT
*
pa
te
ee
4
r
ry
Si
£
im
¥
Rig y
«
;
2
7
Te
2~
a
bee. i
i
EXERCISE
A-1
Things
ae
TOPICS
SPECIAL
A
APPENDIX
to remember:
SEQUENCES A SEQUENCE is a function whose domain is a set of successive If the domain of a given sequence is a finite set, then integers. the sequence is the sequence is called a FINITE SEQUENCE; otherwise, In general, unless stated to the contrary or an INFINITE SEQUENCE. the domain of a sequence will be the context specifies otherwise, understood to be the set N of natural numbers. NOTATION
FOR
SEQUENCES
Rather than function notation f(n), n in the domain of a given sequence f, subscript notation a, is normally used to denote the is value in the range corresponding to n, and the sequence itself a wy" range, the in elements The f(n). or f than rather {a,} denoted is a, term, a, is the first are called the TERMS of the sequence; the second term, and an is the nth term or general term. SERIES
The sum of the terms of the sequence, Given a sequence {a}. If the sequence is finite, a SERIES. called is +a,ta, +a if the sequence is SERIES; FINITE a is series nding the correspo infinite, then the corresponding series is an INFINITE SERIES. Only finite series are considered in this section. NOTATION
FOR
SERIES
Series are represented using SUMMATION NOTATION. then 2, «, n is a finite sequence, ie {a,}, k=1, e a +hAob+ Aa, tet 1
2
the
series
n
is denoted
$
Gists
k=1* symbol
The
SUMMING
ARITHMETIC
If
{a,},
MEAN
© is called
the
SUMMATION
SIGN
and k is called
the
INDEX.
a of
MEAN
k=1,
the
a=
2,
.,
sequence
mn,
is a finite
is defined
sequence,
then
the
ARITHMETIC
as
+ 3 Xy: DN =1
ee
LUE
EEE
EXERCISE
A-1
943
a, ==
Pag Wi ee) a a, aor
3;.
2n+
a
1 # 2ere a2 yn ge tit a 8 ira daincreme cia Ning
5
2525 rsa,
=
a, = 2-34 3.=09 a, =
2-4
a, = A
a=
(310s
a,
=
eee
=
=
(-3)i+1
Peal
(-3
(-3)2
=
coe ( 3)
ween
a, = (23) **4me0(-3)? a,
=
kl=
11.
404+ 5 (+06
1) e204 93h
=
35
oli
4+
2
4
=
=6
See Ane 1Gane
Seon
= 243 no
23
+ 3 =
2°10
=
aj)
3
+
2n
27),
ee
“See 3
9
37s=
o = (-3
Ta
4, 4-3)
:S =
11
43-2
2 7 rer 99"
F997
9.08, 0H,
Pp? Sop
(226-93)
045(2°7--53)
1. =
F060
=021
k=1
13.
4d
¥Y (2k = 3) = k=4
15. 17.
= a=
(2-55-93)
5 +7
117s
32
+ >
=
+ 924
+ zi. + ae
eae Oi
es 10 uke LOL wll Oana On
an
5
a, =
mean
is given
=_i a= fla 19.
- 3) + (2°4
a, =
96,
ay =
77,
4,
a, =
Phy, aa. =
ys
4
ee
1 Ae
iE
6.
Here
n
444d
2 1000.
+
100,
10
=
_
.1000
5 and
the
4411
arithmetic
by:
gee =F
a, =
+44
65,
and
aio
2414
Ae =
82,
74.
a, =
Here
n =
Ga = = 3.6
6) 74, 10
as = and
ony, the
ag =
88,
arithmetic
a, =
87,
mean
ag =
is
given
al
B= AV age =
21.
diss
S250 49
=
65
os
82-5
gba 28? ak A Buea a n
pe
Ul
1
21
2)
Seiya Geel
22
ae baler ds
Sah Shh
Cai
sat
i eet Oe
Ge
peed Ag
mee
944
APPENDIX
A:
SPECIAL
Ey
TOPICS
048
aes ah
age
iyo)
hs
one
ose
87s
ss
7
+
7H
91; by:
23.
25.
mPa Co ay
0
= = = = =
(-1)1] (-1)7) (-1)3])> (=1)4] (-1)°]
111 + 2[1 + 3114 All + 5[1 +
= = = = =
a, a, a, a, a,
a, = n{l + (-1);
4 0 8 0
3”
+
em
Be
=) ee alee
ate
S43) 92 Poh ae PO Og
Wie Beet iy
eee
sy Oh.
coer eS
ie
ee
Given -2, beginning
29.
Given 4, 8, 12, multiples of 4.
31.
Given
116
The sequence is a, = An, epee
16, .. Thus,
2n
33.
- 1 an?
ya
ta
Same
the
integer
of positive
set nl,
fractions
the
set
of
integers
and
whose
is
sequence
The
2 ot a - ..
numerators are the odd positive Thus, even positive integers. *
integers
The sequence is the set of successive .. Thus, a, = 27 - 3), or = pl eeye eS
-1, 0, 1, with -2.
27.
2)
whose
denominators
are
the
i
consists
of
the
positive
The sequence consists -3, 5, -7, « Thus, with alternating signs.
of
the
odd
sequence Given 1, -2, 3, -4, «The Thus, with alternating signs.
integers
)4**n,eni= t, 2, 3. Biesnte1 n 35.
Given 1, integers ay
37.
=
(-1)"*7*(2n
: Given
1,
integral
powers
2-1
CN Fe (5)
39.
Given
powers
x,
A
x,
of x.
of
x,
x’,
Thus,
™
a
teh Sa
Ly
a=
1),
8 125’
whe 25’
2). 5’
al
eye
..
The
2,
positive
87
sequence
j consists
sequence
is
of
the
: nonnegative
Thus, ein
The
a, = xt
eel
the
set
of positive
integral
ee, oS,
EXERCISE
A-1
945
41.
Given
xX,
-x,
The sequence is the alternating signs.
se
x with
of
txth- 2) Sp dati
a, = (21) 43.
x,
powers
integral
(217271
k=1
HOCH Pi
Sy?
22k +3" 2B 8
emo
47.
5
>
k=1
xk-1l
(AP 2 43
4+ 44+
81
+ xosl+xet
(-1)°x
va e ne cst)
Eni
+ x
+
x”
es a (-1) 4x? cab
eo iseam ” 2-4er
9
7
5
6 =
5:4
x
de 1 25gee
je 5 sod
mis 51.
+
49
3
11
Ot
ee
oo
-
25
16 "a 32
xo + xt + x2 4+ x
$ (ieeea
49.
1)"
ome
+ 3 7 2-w 468s antes )3
2-3
eee
2)
A Gaos — Ie ae Gad)? (243177 ee Oe aL
=~1-9+
45.
2 (k + 1)
(BY)
2+
3+
1
2S ee
- =
eel
(Aol
a =0
55.
Sus
Ge sat Vs who Rte
A
i,
eC beat
b> ae ae
a5
Oy
(2
59.
a, = 2 and
0
aie
sat:
bs Bicstat nro Uk wep 1
ne
57.
a a, =
(iy
eee
n
ee k=1
+ 2
63.
ee
a, =
3+a,
+5 2it=
318)
a,
3+a,
+) 2 =o on tea
=
CO
3-a,
+
=
9242
In a4, = A5, a
2 ==
a,
=aE(41 +
a 3
946
2
a
=3
ate oe
1S
Hed e826
SOM
te 2
A =he 2 2(8n-1 + auiig'y n22,
a, =
(abe
1 and
a, =
2a,_,
a, =
2-a,
a, =
2+ a, = wea ere
a,
=
2-a,
=e2e4
Ha
§
as
=
2-a,
=)
=)
16
let
il
ak 5 (eee. 2) a1) =8 a6
1 anes
ES
2( 2
a,) vet:
APPENDIX
2
cod tht
em
FORE a2 a, = ‘il ES
=
ee
eos
61.
3-a,
as
4
peewee
2 i:
for gneve a, = 2 a,
shige
3a)
(Bilt clad k
2 Hogue
3a,_,
A:
SPECIAL
a=es2
6) N oA ae DNV
3/20
TOPICS
(j + 2)
+ 6 =
@4+5
jek
53.
odd
2s,
5
Pt (2k + 1920] $ (21)
set of positive Thus,
ee (So: a ayer Li Wee
\2
2998
12
A= 2
2
=
oul
28a
=
Then:
2
7
aay.EY S72 ear zagit Pei2(23 ae aN)7cei, 7) AGS 4 (73 2 i771) i (72 a 3
ue seas
u
and V2 = 1.414214
EXERCISE
A-2
Things 1.
to remember: of
ARITHMETIC
SEQUENCE
DIFFERENCE,
such
ina
that
ls
ws
COMMON
the
called
d,
thereis constant
if
an
called
is
that
d,
cal Mis kag
allen
>
a
11: numbers
of
sequence
A
Apr
)
43,
is,
for 2.
@),
a,
numbers
A sequence
Ay,
Ayr
GEOMETRIC SEQUENCE if there the COMMON RATIO, such that
Any
mr
Agr
exists
omy
a
called
is
constant
a nonzero
r,
called
a ie Sot
that
3.
is, a=
form
all,
mTH
TERM
if,
taya4 nes.
1.
OF
AN
with
sequence
arithmetic
is an
{a}
SEQUENCE
ARITHMETIC
common
difference
d,
then a7,*.ag forvallin 4.
mTH
TERM
4
a, =
5.
>
(n -
1)d
Lf
OF
is
img {a,}
fomrall
t
A
GEOMETRIC
a geometric
a,r ne>
SUM
FORMULAS
The
sum
SEQUENCE
sequence
with
common
r,
ratio
then
n-1
i. FOR
S, of
a, + a, + az +
the
FINITE
first
ARITHMETIC
n
+ a, with
(a) S| = 52a + tn - 1) dl
terms
common
of
SERIES
an
arithmetic
difference
d,
series
is
given
by
(First Form)
EXERCISE
A-2
947
or
by n9 (ay +
(b)
S., =
SUM
FORMULAS
at (7755 4) ire
i or
a Ue to Sama eae #1.
AN
INFINITE
+a)
+ a,.+
OF
SUM
Die,
by:
Form)
(A) =117 This a, =
r having to be:
/=16,, 20, is an arithmetic ao =
-26,
SERIES
-1
property
the
with
sequence
geometric
infinite
an
is
+ a, + =,
«
Form)
(Second
GEOMETRIC
with common ratio sum S_ is defined
ns
(First
is given
by
Ce
IN
r,
ratio
ee,
series
a geometric
of
terms
common
eee. with
+ ata,
Gy,
n
first
the
S_ of
sum
The
SERIES
GEOMETRIC
FINITE
FOR
Form)
(Second
a):
common
= G, ,(2a)> + Cy ,(2a)“(-b) + Cy o(2a)>(-bj* + C3 (2a); (oe + Cy 4(2a) (-b)* + C, 5 (-b)?
32a° - 80a4b + 80a2b* - 40a*b® + 10ab* - b” 27.
The
term
fifth
expansion
the
in
of
(x -
1)7°
is:
114 _ 3960514 om pott-ay4 — 18-17-16-15 4-3-2-1
29.
The
Cig gP I =" 31.
The
eleventh
Gi hy ORO
2.10 2
term
in
ear
35.
The
Legsee10
two
APPENDIX
and
A:
De:
ee
(2x + y) if
of
264x*y"
is?
0
Can)
pe ee new
ey Seal Odoree
6 e1) te) 6. 1 Seezoesls
and
These
are
(a + b)®.
SPECIAL
pea
are:
~§=«610) Sy
respectively. (a + b)°
rows
expansion
the
_mre 12:11
ee Se ee Ca OW MOL (na 0 Pee) next
q) 15 9.6
6.5-4-3-d-aae 2 — ern
33.
952
(p +
seventh term in the expansion of 9.6 » W5-14-13ie121-10. 9 ge
TOPICS
the
coefficients
in the
binomial
expansions
of
EXERCISE
A-4
aaa,
ee
Things 1.
to remember:
INCREMENTS
For
y =
£(x)
x,,
any
and
2
in the
domain
of
f:
Ax = xX, - X, X, = X, + Ax
Ay = y, - ¥, = £(x,) - £(x,)
= £(x, + Ax) - £(x,)
eax Ay represents the change in y corresponding to a change AX” if 2 Ay depends on the function f, can be either positive or negative. the input x, and the increment Ax. 2.
DIFFERENTIALS
then the DIFFERENTIAL If y = f(x) defines a differentiable function, dy (or df) is defined as the product of f'(x) and dx, where dx = Ax. Symbolically, dy = f£'(x)dx [or df = f'(x)dx] where dx = Ax. [Note: The differential dy (or df) is actually a function involving x and dx—a change in either one or both two independent variables, will affect dy (or df) .] ea
sss
1.
Baoerx,
vee
~- x, = 4-13
fix.) - £(x,) = 3 42 - 3-17 aedg
se 45
Ay _45 _ oe, = 15 3.
Ax) - £(x,) ieee 7 Ax
24 + 2) = £3372 31" £(1 a ae Tae 2 2
Ay = f(x,) - f(x,) = £(3) ee - oe,
See,
leg 3.-
1 =
- £(1) = 3-37 - 3-1% = 27 -)3 = 24
.2
Ay _ 24 _
foro = 4 y = 30 + 12x
- x
dy = (30 + 12x2 - x°)'dx = (24x - 3x*)dx
3 2(1 - 3)
a
= Ha (CH) (Spd
Sem
5Ie
-3/24, dx .= =295 dy =a 590(- 1)2 Fe $3) ax ae
EXERCISE
A-4
953
13.
£20
&
Ax
(A)
Dv Ax)
of
E42)
Are)
324
Ax + 4Ax
5
(B) As Ax tends
2. . guide -
+ Ax”) Ax
12
i
12
Dre
y = (2x4 dy
17.
the
in
table:
Ax # 0
1)>
ter ©date, ‘-
x
”
+
9
2
(x? op).( 1)
= x(2x)
4) 0a
Fae £(5)
(using
(x2 + 9)2
vy =—i(x) = 03% Ayaer 205° +2022)y=
(Cy
ax
1)
= £(5.2) - £(5) = aD ADdit4 Ho 345 Qinete eels mace tae dy = (x* - 3x)" dx = (2x - 3) (0.2) s= 5
21.
values
following
+
= 3(2x + 1)7(2)dx = 6(2x * 1)°Gx
ys 19.
Ax + 3Ax,
the
Note
_ + 3Ax) _ Ax(12
to zero,
then, clearly, 12 3Ax tends to 12.
ase nd4 = 1.4
x=5
2 y = f(x) = 75(4 : Z| Ay =s£T5"
+)
'(-025)
= £(4.5)
- £(5)
]°=. £(S)
= 75(1 2 a 75) - 75(4 = 25) =it428G7>-€45
ay = [75(2 . 23.
A cube length volume
2)\|, “|
=8-3. 35
hae dx oe= ekel “5 i (-0.5) g= e(-is2)4= 3
with sides of length x has volume V(x) = x°?. If we increase the of each side by an amount Ax = dx, then the approximate change in is:
dv = 3x*dx Therefore, letting 0.2 inch coating],
av = 3(10)*(0.4) Which
954
is
APPENDIX
the
A:
x = 10 and we have
=
0.4
[= 2(0.2),
since
fiberglass
shell.
= 120 cubic inches,
approximate
SPECIAL
dx
TOPICS
volume
of
the
each
face
has
a
25.
= x° + 2x + 3; f£'(x) = 2x + 2; x = -0.5; Ax = dx f(-0.5 + Ax) - £(-0.5) (A) Ay 2(-075 + Ax) + 3 - ((-0.5)7 + 2(-0,5) S (20.5 © A 1 euh-0.5) 4 Ax)* + 2(-0.5 +5Ax) 420.75 dy = f'(-0.5)dx = 1-dx = d&
f(x)
27.
(-0.5 + 0.1)? + 2(-0.5 + 0.1) 0.1 (-0.5 + 0.2)? + 2(-0.5 + 0.2) 0.2 (-0.5 + 0.3)? + 2(-0.5 + 0.3) 0.3
= = = = = =
(B) Ay(0.1) dy(0.1) Ay(0.2) dy(0.2) Ay(0.3) dy(0.3)
+ 0.75 = 0.11 + 0.75 = 0.24 + 0.75 = 0.39
x = 1; Ax = dx
= 3x* - 4x;
= x - 2x7; £'(x) E(x)
+73)
- £(1) = (1 + Ax)? - 2(1 + Ax)? - [13 - 2(1)71
(A) Ay = £(1 + Ax)
mutite Ax)> /- 2(bep 4x)* had dy = f£'(1)dx = (-1)dx = -dx
0.5
-0.5
0.5 -0.5
Ay(0.15) dy(0.15)
= = = = = =
+
b;
(B) Ay(0.05) dy(0.05) Ay(0.10) dy(0.10)
29.
(1 + 0.05)? - 2(1 + 0.05) + 1 = -0.0474 -0.05 (1 + 0.10)? - 2(1 + 0.10)? + 1 = -0.089 -0.10 (1 + 0.15)? - 2(1 + 0.15)? + 1 = -0.1241 -0.15
True
f(x)
Ay =
=
mx
f(3
+ Ax)
f'(x)
-
£(3)
m;
=
x
= m(3 =
=
3;
Ax
+ Ax)
=
+ b-
dx
(3m + Bb)
mAx
ay.= £'(3) dx = mdx Thus, Ay = dy
aii.
False.
At x = 2, dy = f'(2)dx. dy = Example. Let f(x) = x - Ax
0 for
all
dx
implies
only
that
6 (2)ie=
EXERCISE
A-4
0:.
955
33.
3
Poa = 213
Sax G
Nb ap
pe
dy = 3 (3x0 - 2x + 1)" 35.
1) _ ig olGe > 2)
Sax gro
"(6x ~ 2)0x =) 82
dy = f'(x)dx = aaa
Ay = f(x + Ax) - £(x)
x =
Let
Then:
043.
4,: Ax-=
x =
Then N'(x)
5 -8=8-
applies.
3a
rule
applies.
16 = Terenas x2
ora
eee
Taha ta
rule
if L'Hopital's
see
to
Check
1:
Step
3a
TOPICS
applies.
applies.
by
factoring
Step2: Apply L'Hopital's oe,
D. (ao.
1)
be
in (1 +
4x)
iim
D, (x)
lim x0
x0
Therefore,
1.
7
7.
e
lim
Ge
aC
od
Se dhe
x
Thus,
2:
=.0.
x0
L'Hopital's
Step
rule applies.
lim.x
0 and
=
1ln(1)
=
4x)
+
in(i
if L'Hopital's
to see
Step 1: Check Tee
et,
iim
=
rule.
Apply
rule
3a
applies.
L'Hopital's
rule. alt
-
«DX.
wer
Therefore,
(4.4
lim x0
ee
2x7
+
7
Xoo
5x?
+
9
iraad
ee
santieasebmlkam Won Ox 325°
=
eh.
applies.
rule
if L'Hopital's
see
to
Step1: Check
2x),
et
x
4
:
4
sae
Lis
.
4x)
+
D,. In(1
lim0° (5x* + 9) = &. lim (2x* + 7) = © and xX—
x00
Thus,
Step
L'Hopital's
2:
Apply
rule
L'Hopital's
7) D, (2x* + ——— AC ee X—eo
xBes
rie
x00
X
Step
1:
Check
e°* =
o
to
13.
2:
Apply
x—joo
DX
lim
Gate
if L'Hopital's
lim
X00
15
rule
KX
applies.
L'Hopital's
Thus,
rule
4 applies.
rule. 3x
3x
=Sha
ae
meee
at
ee =
co,
Thus,
lim
x00
Ef «X
=
wo,
IN X
Step 1: Check to see if L'Hopital's x—e0°
het,21m —«meh =
= 72
(0
x = ~.
L'Hopital's
3x
x30
x—joo
15x2
15x
X— 00
De
lim
see lim
and
X— 00
Step
xX—J00
lim cee
3x
iam
lim
x00
|
— >, =
ax +7 = 5x° + 9
lim
Therefore,
rule.
Ate
TSlim
=
9)
+
yo
oN
4 applies.
x2 = ©
and
lim
In x = ~.
Thus,
rule applies. L'Hopital's
rule
4 applies.
xX— oo
EXERCISE
A-5
961
Step
2:
Apply
A
Ge = TA iJanes
afhusy u
tant 2x7 = oo o f
i = tim nae
iim D. ae
rule. =
PA
|
x
:
L'Hopital's
x 15.
x
pee
+1
Therefore
i
SOS
x1
x1
2.
1 =
+
limx?
5x + 4,
4+
Lim
x1
4
ae Lim x? ae
x+el
limx
Rule
L'Hopital's
does
not
-i0_,
+1
2
x1
27.0
2am x72
x2
(xX
x
im
x2
+2
(x
-
=
4
2)
co
e!X _ 1 - 4x
lim
x0
x
Step 1:
lim (e** - 1 - 4x)
x0
= e° - 1 = 0 and lim x = 0.
RB
Thus,
x0
L'Hopital's
rule
3a
applies.
Step 2:
D(e** - 1 - 4x)
int #50
3a
:
Since
aatxae a
ee
Do
4
lim (4e**
Sm 256
- 4)
= 4e°
0
i
2x
-
4 =
:
Ovand
lim
x90
x0
indeterminate
form
Step3: Apply D.(4e™* Ax
-
iy Xo
x30
$
me lim x2
l
4x
er
inise
OS
x90
«2
4x
eel!
x2
2x-=
4e'*
:
0,
-
4
lim'7 janes 2x
x0
670
applies. rule
e - 1 So
pat
3a
L'Hopital's
4x
fT
and
4)
D,2x
Thus,
21.
form.
indeterminate
an
is not
limit
the
Therefore
19.
(x4 2) = 4 im(x - 2)* = "0 andslim x2
xX+ 2 ee - 2)
.
pay
again.
ae 4x
4e ee
eg 4
16e
oe
2x
Say
2
4x
8.
= °
els
> eats
§
Step 1: lim
In(x
does
not
x2
-
1)
=
APPENDIX
=
0 and
lim
x2
(x -
1)
=
apply.
Step2: Use the tim in(x*=~ 1)
962
1In(1)
A:
quotient property AGel al 0
SPECIAL
TOPICS
for
limits.
1.
Thus,
L'Hdopital's
rule
23.
Lim
nn (ss:
x30t
Step
x’)
x?
1:
lim x 30+
2:
D. In(1 + x)
x 30+
lim in(l
fie
Cc,
x’)
x
0 and
1 =
in
=
Vx)
+
in(i i
x =(0-
lim x—-0t
3b applies.
rule
L'Hopital's
Thus,
2:
re 1D = OL ape
ae eS D, in(1 + Vx) Spee =a lim = a = Mane x0+ Dx x0+ In(1 + Vx) _ | Thus,
lim
x>-2
: Lit)
x + 2x +1 == ee x +x+1
Step
1:
Since
1
ys,
=
tin
= me
= =| CO;
moor 2Nx(L + Nx)
x
x30t
27.
3xX(1.+
1:
x70t
Step
SO
x30*
+ Vx
x-0t
Step
3x?
=) (Cor,
x
x>0+
. lim
ae ee a im hae ee
Dow
Thus,
25.
3b applies.
rule
L'Hopital's
Thus, Step
x0*
y
x0+*
oes, 0,.
0 end amy =,Id
eax)
=
1)
(x? geesce +
Lim,
x>-
L'Hopital's
eS,
Ae
rule
does
not
apply. Step
Using
2:
the
limit
properties,
29.
ham
4x
Beets?
Step
+
-
Ax* +
x = 5x
+
4
=
4+) Wee oe
it 2 ee
Wilh
;
1:
steers
-
1)
=
lim
(x0 + 4° + Sx + 2)
Thus,
F
2
eee
x->-1
have:
1
lim
x9-1
we
f-2)? 122s 2 (22)7 + 4-2 eee
tt Oe ae OC > w-2 x + e+ a
aK
L'Hopital's
rule
a1
Bleed
=n] =.0 and
= -L+4-54+22=0.
3a applies.
EXERCISE
A-5
963
Step 1
2: Di(xi + x4 4A
Paresh Dix Since,
x'- 1)
;
lim
(3x* + 2x
-
3x7 + 2x
hit:
+ 4° + 5x42)
es
xo-1
1)
=e. =) lt =e Owane
x--1
is
a 0/0
form
= LAM
og e Lin’ e x>-1 D, (3x + 8x + 5)
5-1
31.
Mn
x 40h
x
3x* + 8x + 5 again.
tt
D (3x2 + 2x - 1)
SMe
ee
x>-1
3a applies
and
Step 3:
Thus, 1s
0
eS
Pin ote tay 4 Se
x>-1
indeterminate
-1
3x2 + Ox + 5
x4
Sl.
alee Sere 5 OXetS
5,
ax
aK
lea
bh
+ 5x + 20 049-1 3x + Bx + 5
en)x
+
bo
4-1 Sx + 8
x - 12x + 16
aaa oo
x24
S 6x + 12x - 8
Step 1:
lim
(x° - 12x + 16)
= 8 - 24 + 16 = 0 and
x27
Lime (9° 829 63° 412%
BlS) = "BS 24a F 24=
gmelo:
x 927
Thus, Step
L'Hopital's
3b applies.
2:
Dee lim
rule
ST
Ese)
- 12x + 16) Fe Llavaee
eae
3x7 - 12 e
.
i lim
-. =e 6h =
aie D(x? = 6x e 19x eB) soe nexee er ax + 12 Since lim (3xX* - 12) = 12 - 12 = 0 and x72
lim x27
G36
12x + 12)
indeterminate
form
and
= 420-24
+112
3b applies
= 0,
lim __ 3x) 2 1 e522 3x = DO ede
again.
stens3 ;
¥ D(3x* - 12) at Ln ie. 5.08. = oa a ok. 2. jaa D, (3x? = 12% + 12) ) g459- OX - 12°
‘
se 1m
345-x
- 2
=
-oo,
is
Thus,
, ist) xg
964
x seep - 12xae+ 16eee 2h: GCs 12H 8) wee
“a>
APPENDIX
A:
SPECIAL
TOPICS
33° - 12 ee Gee exe 12
Se
x
nyo
=
-oo,
33.
peer + 5x Xoo
4x° +
7
= e and lim (42° + 7) = ©. xX—oo L'Hopital's rule 4 applies.
lim (3x7 + 5x) x—Je0
Thus,
Step 2:
Chara
D(3x° + 5x)
lim
== soe
= e
and
12x
D
(6x
+
5)
4x?
3 ae ee
35.
lame
a= —
x—e0
e**
2
x
Step1 hime = oo and
4
12x
x00.
in 2 x00
and
lim
x =
4 applies
he
x
har + as
Goo
; es x: O56
=)
x RT aa,
2
L'Hopital's
Thus,
e*~ = .
lim
We X— 0
( AX
x—peo D,e** Since
+
3
X
~
2e°*
X00
D,e**
4 applies.
and
o/coo
indeterminate
in x00 lim
x—0
e2@X"
e?* =
co,
lim
x00
re is
an
form
again.
Step 3: Dx
rule
xX—00
x—00
Step 2:
x
: ee
+ 5x 7 + 7 +
x—00
co/co
in Se x—e00
oS oe|
5 Pe
an
6
pany eed Box xX— 00
2 is
12x
lim —al = 0 >aoe = Al lim >-— = Ro 2hx
iecees Pa(i22)
ae
oat
lim
X—eo
again.
and 4 applies
form
co,
=
123%
lim
X—oo
xX— 00
indeterminate
1:
tm)
xX—00
5)
+
(6x
lim
Since
7)
+
X— 00 D, (4°
=
1
= Of =Shintesss are
2e2*
x
1
“thus
ims
xX— 00 e2*
=
lim. s5yp-=
X00
ex
lim
X00
~ >, =
2e2*
EXERCISE
A-5
965
37..
T+eS
[int samanese X00 1+ x
Step 1:
lim (1 + e*)
= 1 and lim (1 + x*) = &.
x00
x00
Thus,
this
limit
SceD 2: : , Since
39. lim
lim ee
«
is
not
o
(1 +
e~)
an
indeterminate
,
=
1 and lim xo
(1 + x’)
form.
ee
EWES,
dn @ %
ALG (1, amen ain he x00 1 + x?
-xX
x0
oe
In(1l
Step
+
4e~)
1:
tim,
e * Ss0eeand
Jim
xX— 0°
In(1
+74e*))=
In 1 = 0.
x00
Thus,
L'Hopital's
rule 3b applies.
Step 2:
D,(e*)
ie
ee.
=
+ 4e@~%)
D 216 In(1
x00
.Ate
-e™*
oe,
ee
1
x30
1+
4e
ae
eee
(
= =o,
1,
then
rule
L'Hopital's
4
sa at
Step 3: .
De
xe Donxtt This
limit
Applying
.
teen tne 2 is «o if n =
L'Hopital's
2 and has
the
rule 4 n times,
indeterminate
we have
lim
x—joo
form
= = co, 11:
/e
Thus
if n > 2.
lim
xX— 300
EXERCISE
—
a
A-5
= &.
967
VISE(LeK*297K
Y1=(19XK*3)*(173)/K
49.
51.
Y=1.0049876
EXERCISE
Y=.99966656
A-6
Things 1.
to remember:
REGULAR
‘
REGIONS:
A region R in the xy plane is a REGULAR x REGION if functions f(x) and g(x) and numbers a and b so that
Raeeocry) A region and k(y)
R= See 2.
| g(x) Sy S f(x),
Figure
17
in
the
DOUBLE
INTEGRATION
2 on
A, ge 4
eS
OVER
| g(x)
y) ay dx -
a geometric
REGULAR
REGIONS: a Sx
Sy) Db}
F(x,
y) dy| ax.
g(x)
y
Regular
If
R=
{(x, y) | hly) [rte
$x
kly),
x region
cS y < d},
df ky) y) dx dy = i i F(x,
4
Ce}
Regular
APPENDIX
A:
SPECIAL
TOPICS
then
y)ax|ay.
h(y)
y
968
functions
interpretation.
f(x)
f i a
R
for
SuVe sere (he b
[fev
exist
x15 Kiyae sey saa? text
exist
ars oc = bY
R is a REGULAR y REGION if there and numbers c and d so that
{ (x, y) | bypass
there
y region
Phen
h(y)
te x, y =.0,; 05
Pay The
region
Metix,
x S12
is
x Ss2) s 4 - x7, 0s yy )osy
which is a regular x region. Also, on the interval 0 S$ x S$ 2, write the equation y = 4 - x as cihus,; x= V4 - Vi OFS. vis, 4!.-
OS
y)| 0 s x's Nal-"yi
Peetiix,
can
we
wie 4)
Hence R is which is a regular y region. regular y a and region x r both a regula region. So
x, y =.12 - 2x, x = 0 or g(x) = sacl £(x) = 12°- 2x; x = 0 We set £(x) = g(x) to find the points intersection of the two graphs: 12 - 2x = or x + 2x - 12 = 0 yee
Seer ayo
R 2x + 6) = 0
point
x = 2 and (2, 8) is the Therefore, The region is: of intersection.
xS 2}, {(x, y) |? Sy $12 - 2x, 0S
R=
is
which Sr
2x,
=
¥
of
a regular y= x
-
x region.
4 or
kl(y)
of
To find the point(s) get h(y) = kty):
ae
=
anc
|< a= way)
intersection,
y+4=5y¥ or
¥
-
2y - 8 =
0
(y= 4) (y + 2) = 0
The points of y = 4. and y = -2, -2) and (8, 4). (2, intersection are R is region the Therefore, Ria
{(x,
which
is
y) |Sue xs
a regular
eX
TRS f { (x + y)dy Oo
dx
4)=
yt
ey
S 4,
y region.
irhe (x + y) ay|ax- iele + 3¥)
40
elle
x=0
al
mes
= on be 0) aeio
EXERCISE
A-6
969
: 4.
9.
f [tax
ov
y
+ y)dax
ikne + y) ax| dy = I cc + xy) Jey
dy
Ir(t(Vy)? is (yey alas ? 2
R= (xx Yohileelase2s R is Ris
13.
c a e haley (28 7
5
5 oe
Ly| s
the rectangle with a regular x region
Rie (io
+ wy] - Ly*)? + yly*)lidy !* Bayh yk)ay, 1 1 5\(¥=2
Get UL) 2. bs
SIR pas. (E253) no l(Zaws) and a regular y region.
ee 21,
|x|s5,2,
OF
15.
x
Rit Cog y),| cs
region
VES
but
2h
not
a
nen
29
R is the region that lies outside the circle of radius 1 centered at the origin and inside the rectangle with vertices (-2, 2), (2, 2), (20m0) # (-2%~0) R is a regular y region.
,
—S) cu (26
ese
y (-2, 2)
regular
OT Sexi Ss2}
[J02 + Praa = (aie(x*+ y*)dy dx = Irix(x4 + Pay] ae R
=
Ir(2 + 3”) |
ae= is[22(290
+ 5 (2x) >|cox
: Co + $20fx = iPegestice Zyal’ - 2 (a4 = 38 17.
R=
{(x, y)|O's xS y+
[[ue+y-
A
2)3dA
wh
nO
Sy
Sl} y+2
(x + y - 2)3dx dy= f If (200% “Y= 2) x]dy
R
iT]
=
‘3 esl
A:
SPECIAL
174
Jer = i;[F ays
APPENDIX
x=yt2
al
[era (y - 2)4] ay «(SY - py - 25], U1 |i a oa ca:
970
ib Ce
| A Se
39 (72)
TOPICS
eee
ese Ae OT
[-g5 2s} = 443
32a
20°
8
A
{(x, y)|-xSy
19. R=
mJ
dx =f eee feFivhand
|i
=v)
2
= \ ele 0
0
5 (LoVe
ety!
2
(2°) = 2e
7
acy”
Ss 1} tks sx td, On
sy
1 2'R ery)
= oe = x)ae x=0
1)dx
lh (6°* -
6o\an=
-
x+1
{fs+x
dx + ydA= ifJ (1 + x + y)?/*dy y=xt1
1 f Ra
0
ne?
exs
1
(,[2 «2
4V2
+
-
2x) 3/4
3/2
1
yee
ie
ati +
2
ao Nipadn
x)*/?] x
(i
3/2
3 dled 2)
(alee inet
[Note:
ax
(2 +
2x) 3/2
SP oNe (1 Sx 1
{ave 215F PR ee. 0 ‘52)gy2. (1
2 (aN 3o>
&,=
+
x)
2 4 _ 68 - 24V2 (8v-
_ (sV2 = 4) 45/2 _
15
15
is 23.
5/2 |= ae
y = g(x)
y= f(x) = 4x - x, 4x - x =0
=
15
= 0
- 4 x) =0 x( Ba 0, ) x= 4
Therefore,
Retix
OS xs 4.}
yo |0oS ys 4x - x, A
Cax-x"
0
40
é
=
4
2
J,i ee
ax
+ 21a
[Ny + 3?aa - f [Py
x2) ) 3/2
4
= if 2 ( (ax — x
pec
ret
a
ye)
iaey?/2 = (0 # ey
fax
0 4
= f en
Rh 5% Jax (note:
(a2) 2/2r= ate
© BP!
0
EXERCISE
A-6
971
3
x=0
= aa
2 (4)!
inches
dase
2) mao)
32°32" jo256 = 428 eee
25. y = g(x)
«=
6.
= 1 - Vx, y=
f(x)
35
f(x)
= 1+ Vx, x=4
= g(x)
1+Vx
=1
-
Vx
avx= 0 x Therefore, (COVA
=
0 the
graphs
intersect
at
the
point
Bg:
R=-((xpey) |2-- Vx s y | x(y
-
1)2da
!
61 oscrar lati antinegg we
Rvlesriataps wails
OA iy
FHT
PTAIDA
SPI SeHWDY yd wit
od (hae
AAW
i
Coe
MORO
MOAT
SPA
© pe¥ eeratlenact
ebb
vewrpoaiass ealt J
Vx
Fie ros set
Sr terrcsa\ of tat) ea
/
«onl
wae
¥,40 AAR AD
VWILCMO? OV eae GOAT By3.
Baer 09 Hb aii) alin : ethedil wird
BT AAs
eet?
osimaanel?i Maps CE:> aT
Y SST
a
2 wey
Bud
aude Mae
‘ LUPO N) w
a sae: a
“4
eur
ihewlt.,
', iarerertt
;
wl
y
tei
‘
.
a
y
Miedo pio tes cad I :
"
> ve ee ee
i. *;
j
a
tt
i
. .
i
\
We
a iy
,
: g
Prentice-Hall, Inc.
YOU SHOULD CAREFULLY READ THE TERMS AND CONDITIONS BEFORE USING THE CD-ROM PACKAGE. USING THIS CD-ROM PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. Prentice-Hall, Inc. provides this program and licenses its use. You assume responsibility for the selection of the program to achieve your intended results, and for the installation, use, and results
obtained from the program. This license extends only to use of the program in the United States or countries in which the program is marketed by authorized distributors.
LIMITATION OF REMEDIES Prentice-Hall, Inc.’s entire liability and your exclusive remedy shall be: 1. the replacement of any diskette not meeting Prentice-Hall, Inc.’s
“LIMITED WARRA “ and that is returned to Prentice-Hall, or 2. if Prentice-Hall is unable to deliver a replacement diskette that is free of defects in materials or workmanship, you may terminate this agreement by returning the program.
LICENSE GRANT
You hereby accept a nonexclusive, nontransferable, permanent license to install and use the program ON A SINGLE COMPUTER at any given time. You may ony the program solely for backup or archival purposes in support of your use of the program on the single computer. You may not modify, translate, disassemble, decompile, or reverse engineer the program, in whole or in part. TERM
The License is effective until terminated. Prentice-Hall, Inc. reserves the right to terminate this License automatically if any provision of the License is violated. You may terminate the License at any time. To terminate this License, you must return the program, including documentation, along with a written warranty stating that all copies in your possession have been returned or destroyed. LIMITED WARRANTY THE PROGRAM IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT PRENTICE-HALL, INC. OR ANY AUTHORIZED DEALER) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY PRENTICEHALL, INC., ITS DEALERS, DISTRIBUTORS, OR AGENTS SHALL CREATE A WARRANTY OR INCREASE THE SCOPE OF THIS WARRANTY.
IN NO EVENT WILL PRENTICE-HALL, INC. BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR : CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE SUCH PROGRAM EVEN IF PRENTICEHALL, INC. OR AN AUTHORIZED DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. SOME STATES DO NOT ALLOW FOR THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. / GENERAL You may not sublicense, assign, or transfer the license of the
program. Any attempt
to sublicense, assign or transfer any of the
rights, duties, or obligations hereunder is void.
oo Agreement will be governed by the laws of the State of New
ork.
Should you have an questions concerning this Agreement, you may contact Prentice-Hall, Inc. by writing to: Director of New Media Higher Education Division Prentice-Hall, Inc.
1 Lake Street Upper Saddle River, NJ 07458
SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER LEGAL RIGHTS THAT VARY FROM STATE TO STATE.
Should you have any questions concerning technical support, you
Prentice-Hall, Inc. does not warrant that the functions contained in
Upper Saddle River, NJ 07458
may write to:
New Media Production Higher Education Division
.
i
Prentice-Hall, Inc.
1 Lake Street
the program will meet your requirements or that the operation of the program will be uninterrupted or error-free.
However, Prentice-Hall, Inc. warrants the diskette(s) on which the
program is furnished to be free from defects in material and workmanship under normal use for a
period of ninety (90) days
from the date of delivery to you as evidenced by a copy of your receipt.
The oem should not be relied on as the sole basis to solve a problem whose incorrect solution could result in injury to person or property. If the program is Scag ed in such a manner, it is at the user’s own risk and Prentice-Hall, is explicitly disclaims all
liability for such misuse.
YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US THAT SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR : WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN US RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT. -
NOTICE TO CONSUMERS THIS BOOK CANNOT BE RETURNED FOR CREDIT OR REFUND IF THE SEAL ON THE VINYL DISK HOLDER IS BROKEN OR TAMPERED WITH.
a
,
ISBN
0-13-085885-7?
‘Prentice Hall, Upper Saddle River, New Jersey 07458 ¥ ttp://www.prenhall.com
91'780130!858894
| |