Applied Mathematics for Business, Economics, Life Science and Social Sciences [Solution Manual ed.] 0130858897, 9780130858894

Book by Barnett, Raymond A., Ziegler, Michael R.

272 48 33MB

English Pages [994] Year 1999

Report DMCA / Copyright

DOWNLOAD PDF FILE

Recommend Papers

Applied Mathematics for Business, Economics, Life Science and Social Sciences [Solution Manual ed.]
 0130858897, 9780130858894

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

- Student syions Manual

Nhlensti(5 for Business, Economics, LtSciences andSocial SCIences

‘Seventh

Edition



Raymond A. Barnett / Michael R. Ziegler / Karl E.Byleen

Digitized by the Internet Archive in 2021 with funding from Kahle/Austin Foundation

https://archive.org/details/studentsolutionsOO0Obarn_y5i3

Student Solutions Manual

Applied ~ Mathematics for Business, Economics, Life Sciences, and Social Sciences

Seventh Edition

Raymond A. Barnett / Michael R. Ziegler / Karl E. Byleen

PRENTICE HALL, Upper Saddle River, NJ 07458

Acquisitions Editor: Kathy Boothby Sestak Supplement Editor: Joanne Wendelken Special Projects Manager: Barbara A. Murray Production Editor: Maria T. Molinari Supplement Cover Manager: Paul Gourhan

Supplement Cover Designer:

Manufacturing Buyer:

Liz Nemeth Alan Fischer

© 2000 by Prentice Hall Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher

Printed in the United States of America

LORS EeSi) "On, Sta meme il

TSBNE

OG = 13> 0658657,

Prentice-Hall International (UK) Limited, London Prentice-Hall of Australia Pty. Limited, Sydney Prentice-Hall Canada, Inc., Toronto Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-Hall of India Private Limited, New Delhi

Prentice-Hall (Singapore) Pte. Ltd. Prentice-Hall of Japan, Inc., Tokyo Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro

CONTENTS CHAPTER 1 A

A BEGINNING ES ea eR

LIBRARY OF ELEMENTARY

FUNCTIONS

ii

stercsceasesa asses csecesovoctesesesedesosacotomeeeres featcorer aree ete tebenesssossacossincsee odorett mm 1

EMEA ASR gNe BARMMMae

ermaticrrnancbsaxeneasecsanesco+sh-n

3.5;

y intercept:

-4.2

10 25)

(Oa

(Ses,

.co)

-10 29.

Using line,

3 with a = 3 for we find that the

equation

16

CHAPTER

1

of

A

the

the vertical line and b = -5 for equation of the vertical line is

horizontal

BEGINNING

LIBRARY

line

OF

is y =

ELEMENTARY

-5.

FUNCTIONS

the horizontal x = 3 and the

31.

Using 3 with a = -1 for the vertical line and b = -3 line, we find that the equation of the vertical line equation of the horizontal line is y = -3.

Sore

m=

-3

For

the

point

(4,

and y, = -1. Re

fo

a

-1),

x, =

4

te:

Using 6, we get: Ste

A)

ye ob fSq-32ci+ 012 y=

-3x

+

-

2

3

For

the point

and

Lg

we

Pals

pogy,

2091

39.

%9035

y=

The

are

(1,

3)

AR

OT

points

ee SS Re

x, = 7,

and y, =

-5

5.

4ijiLet

a 43.

45. 47.

=

Using

4,

3x

+

we

© get:

6)

4

OU

:

-5,

yy, =

-2,

X,

=

5,

and

Using 4, we get:

_-4-

(-2)

m5 024(=5)

~

-4+2

=-2

21

G45

“So 0eemae

See

> M63 -3

-

Bes

Gio

(2

SS

7

-10

the

,

slope

is

using

4:

not

:

defined;

the

;

line

through

(2,

7)

and

(ibs

3)

Vertical

393-203 2 80 S*

Se ai First,

find

he

the

slope

eaSey ee X, Then, or

y -

-

X,

Tak

by using

6,

(7,

5),

3 =

we

6 y -

3

bee

m(xX

-

x,),

where

m

= 2 and

(Gc,

y,)

=.

get:

F(x —Ss)h)

iOrietaya—

These two equations are these, we obtain: =X + Sie =) 4 OF 9 X= eS

49.

x;

Y, = -4.

we get: 2

=

= and

Zi

ie

6,

(=O

> 3 (x +

5 =

y tas

or

Skee

5

Using

fy? 45158 Ee 4

y+ 5 =0

y=0

i

iad

11 yr

“the

for the horizontal is x = -1 and the

5 = 5 (x == olf)

equivalent.

After

simplifying

either

one

of

EXERCISE

1-3

ye=n-8

First, find the slope using 4: Paes ca Wastin1,Wetye et, "OS Se ey S SeeiteaS) anSeae 5% 7a 5 By using 6, and either one of these

points,

we

obtain:

y - (-2) = -2 [x - (-5)] fusing (-5, -2)1 Vaastu

=

QE (x +

S(y +22)2=15%.— Sy el =e x + Sy =) -15

>|)

5 5

17

Biss, 37)’ and) (2iaes3)) Since each point has the same x coordinate, the graph of the vertical line. Then, using 3, of

the

formed a = 2,

by these two points will bea we have x = 2 as the equation

line.

B31. ¥(2, 3) manda (= 5a) Since each point has the same y coordinate, the graph of the horizontal

equation 55.A

line with

line.

of

Then,

the

using

line formed by these two points will 3, with b = 3, we have y = 3 as the

line.

linear function Yy

57.

Not

a

10

function Yy

59.

A

x

10

-10

-10

0

x

10

-10

-10

The graphs of y = mx + 2, m any real number, all intercept (0, 2); for each real number m, y = mx line that passes through the point (0, 2).

65.

The graph

=

|mx + b| coincides

for all x satisfying mx + b = 0. graph of f in the x axis for all is never a linear function.

We (A)

are

given

A =

100(0.06)t

PAG

NE l=

Sm

wemhianiouA

ING

ME

20,

we

have

A

+

100

0

with

the graph

The graph of x satisfying

=

6t

+

have the same y + 2 is a non-vertical

of

g is the mx + b


(1 + r)3

= 1500 5 3

1+eo

i

Vi S= 11447 0.1447

(ibd,

CHAPTER

1 REVIEW

b=)

33

87.

(A)

R(130) = 2085) -R2(50)) =) 80 l s20BEESO 228). 1.6

Slope?

730, 2150 ta eon)

Equation:

38.

R =

R(1L20)eept

(C)

L76h=

(D)

1.6; The slope the cost.

1i6Ge

= Gueme,—

(A)

ep

2

7%6(Cc

-

50)

@rm R.=\126C

e=25192 Si

gives

the

change

in

retail

5.

a0

isn

an.

2 oom

SS

6mmm2a69. 1e2 52%)

2234

price

per

0

caon is 09smi2iOne

AES)

3031

2S

20"

The

year

1995

£(25)) =F3103 34 The year 2000 (3.0) (= 3 08n4) (D)

39.

(A)

corresponds

Ge)

to

x

=

10)

AS;

approximately

17

CHAPTER

1

120

25

0:49

“for

024408

“ for

OLS 9x

“for

consumption

is

dropping

A BEGINNING

eggs (1-3)

(OPS

) ee mo OY. 27117, corresponds to x = 30 3 466 Ooo 6 501, 2.00

The per capita egg every five years.

COX)

change

"(B)

5

(C)

unit

3246x

x Consumo

=

6 (120)

(B)

£(x))

80

LIBRARY

OF ELEMENTARY

FUNCTIONS

36

and (1-2)

40.

(A)

Let

=

number

of

CE)

x

=

84,000

+

IR (ote)

ee

OSs

video

tapes

produced.

15x

R(x)

C(x)

@ 200000

(B)

Re (se)

= |CS)

©

5Oret=

S45 000) +

B5oa=) S=)

847.0100 2, 400, unites

REeGucomsOususc xt 27200

15x

41.

xis,

0

2, 400%) Rp

= =

Rie)

= xp(x)

00s

Garor

27200

p(x) C(x)

=

Oss

(1-3)

50 - 1.25x Price-demand function 160l¢ 20x 1 Cost’ function x(50

-

1.25x)

Revenue

function

R(x) C(x)

(B)

R=C x(50

=

DLOZ25Sc)e"=b16ORs

31,25" 50x08, -1.25x* + 40x = ~1.25 (x4 1 3 2x08S256) = -1.25(x - 16)? = (x #006)2% = x =

iO,

160 4 10x 160 160! tape -160 128 16 4° V¥i28 = 27 318 16 - V128 =~ 4.686

R= C at x = 42 686u thousand units (47,686 units) and x = 27.314 thousand units (ATP Biley wtaalies) RVC LOre lee Aen OO Iams 4 a exe S104 Ri> C £or 4a6S86e

1,

‘then

through

OF

b%

f(x)

(0,1);

=

p° =

curves;

b%,

1 for

there

as

x

increases.

f(x)

(0,1) x

48

CHAPTER

2

ADDITIONAL

ELEMENTARY

tices

(=. bi

FUNCTIONS

isb i> 7.

0,

any

are

asymptote.

increases

Graphvota

b>

no

RANGE

b#¥1

base

b.

holes

or

jumps.

e.

If

0’
1

i 4.

PROPERTIES

OF

= 10

LOGARITHMIC

FUNCTIONS

If b, M, and N are positive real numbers, then:

numbers,

ar

log, 1 =

0

e.

log, MN =

De

log, b =

ib

fe

log, 5 =

Cc. log, b* pe

Gr

log, MP

may

Log Me = log, N

bos 5.

real

ee Bt MeSxqe

LOGARITHMIC

Common

ae

NOTATION;

logarithm

logarithm

log*x*= dresses

¥ ey

linGea—

is equivalent is equivalent

and

log, M +

log, N

log, M =

log, N

if

and

56

CHAPTER

2

ADDITIONAL

Ss

only



M=N

log,) x

log, x

to to

em.

ELEMENTARY

x are

RELATIONSHIPS

pee 1 Oe x = er

EEE n nnn nn

Ee 2) = 8? (emg 3)

p and

= p log,M

LOGARITHMIC-EXPONENTIAL

logusa=

Natural

b #1,

ileal

FUNCTIONS

ese ty

SSS

log, AS)

a=A2

aaa log, 8 rea

pe A

log,,1

= y is equivalent

pO

log,e

17.

log, ,0.2 = y is equivalent

a9.

log,,10° = 3

9.

= y is equivalent

to 10” = 1; y= to e” = e; y=

log, 5 =

log,P

29.

een

=

log,p

-

=

log,p

-

(log, a +

=

log,p

-

log,¢g -

-

log,2

log,x = 2 x=

m =u

log,A

0. 1.

(0.2)¥ = 0.2;

2" 43

y=

1.

23 slog, 1000

3%

(using

4f)

27.

log, ars log,r

+

log ,r -

log, s)

log, L

(using

3)

log.,,7?

=

5 log, L

(using

4f)

(using

4e)

a

fous

ee

This

tel

b =

4x ae yes

39.1 °

09473

oFshe

dem pat?

41.1 ‘

6

9 = (3)

x= 2

(since

x” 3 log, by

aoe

(37jy

B=

3°Y

45.

2

=

log

x =

=

5 log) x 3

log,y°

Nate ui

are

implies the the

same).

ae

iy

log,10° = 2 3 1og,10

“= =

log,10 = :

This inequality implies that 2= VOL y= =2.

43.

OS)

p-4

equality 10

exponents

L OG

4g)

35. log,10°4 = -4

ay

BS ee

(using

log, s

33. log,49 = y

x=9

37.

=-log,,10° = 3

2a)

25.

31.

to

ai. Log,

(using

Li

10 = pi/2 Square both sides: MOOR esbDitele Gan — sl Oe

3 log,o VN = log,n'/3 b = 3 log,N

3 log,y

47.

log, (x Vy) =

log, x? +

lege”

=

2 log, x + F log,y

49.

Wee i20° 20 *") = 1og,50 +) 10g,2/°:2" = log,50 - 0.2t log.2

EXERCISE

2-3

57

SL.

log, P(1

+ r)' =

log,P

+ log,(1 + r)* =

Dist.

log,100e°°°F* = 1og.100 + Yeglem log 100

=

0.01t

log,P +

tlog,(1

+ 2)

ae

log.e

= log

100

=)

0). Oané

/ 55.

2 log,x = 3 1log,8 =

log,4

log,x =

log,2

x= 57.

+

3 5 1og,4

log, x = =

=

log,6

log,6

=

=

1og,8*/°

+

egyor '2

2 3 109,8

-

8

log,4

(using

Therefore,

x(x

Seay. (se AMoS hau Pe

+

+

2 log, 2 =

log) 4 =

log ,4°/? -

tog 87/4 +

x

4) 4)

=

log,21

-

4)

=

21

eon

-3

is

log, (-3)

log,21

-

=3

not

is

61.

log, (x -

1)

Therefore,

z 3 Alike

not

x

1) =

There

is

no

not

not

solution, 1) =

defined.

it

FO

1 =40(xoe

a

defined. ]

jae

Ol

= 1 = = 95en=

solution

TOs

ae

vi

bee

since 20

log, (-%5 )

Similarly,

1)re = Log, 4(-2 5]

defined.

Y

Y =slog. (x =z)

Gee 9, VO

graphiok

ahi

CHAPTER

10?

x-

0

a

1)

Losi o( 5n

is

58

log, , (x +

b, legal

Log) o(-aL 9 +

The

-

ys«|

ees) el:

=

=

is

65.

log, 2°

log, 8

ala og, (-"5 -

Mo aE

log,6

2e)

log, (x log, x(x

63.

-

4-3 log, &

2e)

log, 8 -

log, x +

since

-

log, 8

x=

[Note:

log,3

e(using

log,x =

59.

aly + 5 log,9

y =

log, (x =

2)

teethne

Graph

Zenash

2

ADDITIONAL

ELEMENTARY

FUNCTIONS

OL

y =

1S.420

log,

x shifted

to

the

67.

Since

logarithmic

functions

must have x + 1 > y= 1+ In(x + 1)

69.

are

defined

only

for

(A) 3.54743 (B) -2.16032 (©) 45 62629 (D) -3.19704

Divs

10* =

12

(Take

common

log 10* = log12 wie

de OT92

logarithms

of

both

sides)

4dogi0”

=

x log 10

=

x

logil0

+fad fac

1.03%

Jog(1.03)*

7005)7"

=

log 2.475

Tog 2,03' =

3

(Take here

sides)

logarithms

of

both

sides;

30.6589

either common or natural logarithms we'll use natural logarithms. )

of

both

sides;

= 1n 3

A 2ZE= ey

fem)

=i)

(Take either common or natural we use common logarithms)

In 1.00514°

81.

4. gh ~ 3. g

= -1og.2.475

x=

79.

OnE S54

= 1.0792

e~ = 4.304 (Take natural logarithms of both In e* = 1n 4.304 = 1.4595 xm u 1.4595 (lne*. = xlne =,x; ine= 2) 2.475

we

of

Woge = i.1285 KeeelsiwA 43:1) (B) logx = -2.0497 x =) 020089 (C) In xt="26:7763 x = 16.0595 (Dipole 18.879

75.

=

"inputs",

range

(A)

Xie

Wes.

positive

0 or x > -1; domain: (-1, ©). The is the set of all real numbers.

In

ua, 1.005 1.005

” =

B20 e273

ais eySissy)

83>

Xx, xO

y=) imei

x > G Y 3

increasing

(0,

©)

decreasing

(0,

1)

increasing

[1,

)

EXERCISE

2-3

59

85.

y=

21n(x

oe Been

x

>

-2

BTUs.

y

=925) -1 0

Wea

Aa

eS

| Xe

0

Yy

|=e 0 Ee 1K 33S)

1 5

a. =

2 389

10

=)

Aeon

increasing

(-2,

©) increasing

89.

The

calculator

109 (7)

calculate

109 (7"}= or

91.

calculate

Hom

= and

y =

log, oY ces

log

log

13

0.

-

bust

Thus,

log

=

as

the

common

not

(0,

)

13

as

og (77) To

logarithm

of

the

;

find

result:

0.2688453123

7 to

Ole Dy) tick, log, 1 =

log 13

7

take

log(1.8571...)

anya numbernwb,s

implies 93.

interprets

13

get

the

same

result.

log, 1 = y is

0 for

any

equivalent

permissible

base

to

b”

=

1 which

b.

log, 9¢ ="058x =

0.8x

Therefore,

© =

(using

1)

and y = c-10°-8*, 95. A £unction £ 1s) "larger than" a function gryon haleraicewl [[cl, Jolll alse ie((S%)) Ss Vep(s@) aeCha 2) eS be S Jo). 2g((9) S38 eilSid) SS jollss) steke Al ES Be Ss ANG, eles SiS x > Vx > In x for 1< x < 16

an

1

PMT = $600, Ds

ik

2s 29

In CIGOay

PV = $9,000, =

=T2

= 2 = 0.75

=

PV

,

a O01

f(r oly 2? =n (0275) =n in(1.01) =°1n(0.75) woe (0 275) 11.

_

Giion

= -2OM000TI— pee eins

)

i

ieee

= 200

40,000

= 68.25843856 ~ *°86-01

Pur = 200

0.01,

Pv = $5000/"a'= We

_40,000

1i-. (1 +.Qnor

496]0 .0075

3010750504 7 %199-29 a.

0. BOT

7. PMT = 40,000

1 - (1 + 0.01)

GL

n = 20,

i=?

+) —n

xn

1.)

i Substituting

9000 Sys

Graph The Ma

600

= r

Bert

ES

15i

+

ee

Y,

=

15x

+

1

given values into e +, -20 (1° + 1)

(faI

Cade

eer

a

(1 +2 43)?°

bi 54290

=)

=

me ee

S4000,

+ ote,

Yo

Date XC)

m=

i

Et

this

formula

gives

il

aeCea ial

(1 ea)

%

1

2

curves intersect at x = nOCO29 . Thuse2 = 0.029%

Homer

PV

the

104)

=

=e

-05

0 and

"40

O.,0S 0.02 gO =

Present

=

pr

=

PMTa>,;

3

4000aFA

il

value —

a

1) 1

see

02

= 4000 (27.35547924) = $109,421.92

EXERCISE

3-4

89

15.

This

is

a present

PMT’ =

$350,

Hence,

PV

mee =

They should $16,800.00. 17.

(A)

value

4{12)

=

problem.

48,

i = S57. =O

=

deposit

= 350(40.18478189) = $14,064.67 The child will receive $14,064.67.

2Vj=esco0,

n=

35047819

OOM

PMTa>;

18,

i =

0075

350(48)

=

0.0L

Monthly payment = PMT = Py ——————— So) a Oe a ae 1 =e PV

600

“2;

Aglo.01

The amount paid in 18 payments = Thus, the interest paid = 658.62 (B) PMT

=

000 @7B]0.015

“1

600

16-39826858

= $36.59 per month 36.59(18) = $658.62. - 600 = $58.62.

(4 = 0.015)

600

= $38.28 per month ~ 15.67256089 For 18 payments, the total amount = 38.28(18) = $689.04. Thus, the interest paid = 689.04 - 600 = $89.04. 19.

Amortized amount = 16,000 - (16,000) (0.25) = $12,000 ABOHEKS), WEAVE ee SEO ONO) Miall a a ((SUA)) es TA) ah (0) 0S

PMT

= monthly

The total Thus, the

21.

ee I NOE aa; "1 A7F0.015

ee ANE 43 .84466677

PV

PMT

=

The

amortization

Totals

CHAPTER

3

$273.69

per

amount paid in 72 months = 273.69(72) = $19,705.68. interest paid = 19,705.68 - 12,000 = $7705.68.

First, we compute the required quarterly i = 0.045, and’ n= 98;"as follows:

Payment number 0 al 2 3 4 5 6 yi 8

90

payment

cae

4

al2 a

5000

i schedule

payment

See ES

i

$758.05 is as

Ci

Unpaid balance reduction

$758.05 758.05 158205 758.05 758.05 758.05 158205 PS 03

$225.00 ZOd On S95 ASRS T2238 OB, 63.88 Bi2ni64

S5sen05 BIS) 7]5 OH SKF 5 1K) 608.30 635.67 664.28 694.17 T2589

6064.38

1064.38

5000.00

FINANCE

222

per quarter follows:

Interest

OF

PV = $5000,

0 045 )oc ne = (0d) 2°

Payment

MATHEMATICS

for

Unpaid balance $5000.00 4466.95 3909.91 38200,8a PTTALS) Sal 2083.84 AESS16 WAGES, 0.00

month

23.

First, ihe =

we 12

compute

72(100)

the

OO,

required

12, =

3.(12)

i

ee

ON gen eee a ee — pas™

Vie

ie

a)?

Now, compute the unpaid payments: PV =

for

PV =

0.01 = (1 e0OsORiC Men 1)-

()()()()

unpaid balance PMT = $199.29,

S=he

payment

$6000,

VErsiGe

Je~ = $199.29

arated Z + 2)

PMT

monthly

60 (LO

after 12 payments by considering i= 0.01, and n = 24.

ee

5L99..29

= 19, 929(10—

24

Ey8ieee

0.01

(1.01)~**}

= $4233459

Thus, the amount of the loan paid in 12 months is 6000 - 4233.59 = $1766.41, and the amount of total payment made during 12 months is 12(199.29) = $2391.48. The interest paid during the first 12 months (first year) is:

2391.48

-

1766.41

Similarly, the considering 12

=

$625.07

unpaid unpaid

PV = 199.29 cE

balance as he

after PMT

eo

two years Sol OOo

can be computed by eto OOdee” ANC Tl —seleze

mulOpGg0( te 01)87) = $2243.02

Thus, the amount of the loan paid during 24 months is 6000 - 2243.02 = $3756.98, and the amount of the loan paid during the second year is 3756.98 - 1766.41 = $1990.57. The amount of total payment during the second year is 12(199.29) = $2391.48. The interest paid during the second year is:

2391.48

-

1990.57

=

$400.91

The total amount paid in 36 months is total interest paid is 7174.44 - 6000 during

= 25.

the

third

year

is

1174.44

-

(625.07

+

= $7174.44. Thus, the and the interest paid

400.91)

=

1174.44

-

1025.98

"$148.46.

PMT = monthly payment = $525, Thus, PV

the

1=

PMT

Hence,

present

UST

selling

value

of

epee |a i

price

=

n = 30(12)

all

(SVAls)

loan

payments

1 n(

= The The Pa

The

total amount paid interest paid is: esO.0 00m

Dieaaee

(2)

total

amount

owed

= 360,

i = a

+ down +

eee

at

the

$60,846.38

payment 25,000

$85,846.38 in 30 years 189,000

(360 months) = 525(360) 60,846.38 = $128,153.62

-

aS

end

of

= 0.0081667.

is:

dee 0. 0081667)22°° .=. 0.0081667

60,846.38

27.

199.29(36) = $1174.44

=

the

=

$189,000.

0.0029167

two

years

is:

A = P(1 + i)” = 6000(1 + 0.0029167)74 = 6000(1.0029167)24 = 6434.39 Now,

the

monthly

payment

is:

EXERCISE

3-4

OL

PMT

=

where

29.

ope: ie

PV

1

es

a)? PV

e035

48,

6434.39

0.0029167 (1 + 0, 0029167.

=

The the

total amount paid in 48 payments is 143.85(48) interest paid is 6904.80 - 6000 = $904.80.



=

aymnent.

Monthl

eo

Se

al

(tee

Ina,

(A)

OROTSE

ee

1 =) (E00 1s

US

CSC

Similarly, loan to be

Wee

841.39 =

(C)

Tie

841.39

(1acOl alywees

='$55,

Om Omel:

oe

after

ee

sige. >HALEN MgWhy

841.39

noo

of

payment

PMT

=

PV

aCe

20

after

years

=

12(10)

(with

25

12(5)

n =

remainder

(with

years

=

0125 7 11="20(12)"=*

sama deny

60]

240%

ad (de togt)

ip

0.0125 = 30,000 ——— 1 = (ee OO rebar oo 236,000 The

total

amount

paid

in

240

Ts

3

MATHEMATICS

OF

FINANCE

GTO a8

(IOUS ine!

payments

395.04(240) = $94,809.60 Thus, the interest paid is: $94,809.60 - $30,000 = $64,809.60

CHAPTER

remainder

of

120]

$36,813 .32

; OR 2 = oie

to

loan

909502

[Note:

=

OROWE:

$30,000,)

PV =

02011)°° OnOLst

Monthly

92

a

arrel 4rere OL) -240 3= $70,952.33

n =

[Note:

The balance of the loan paid in 5 years) is:

= (A)

OO OO

Sais39

31.

the balance of the loan paid in 10 years) is:

OF Only

=*s

12

(with balance to compute the balance after 10 years Now, arene. Olas Oe $841.39, = PMT use years), 20 in paid be Sa o = 240. Heese 202) PMT Se Balance after 10 years

= 841.39 fi die = 841.39 (B)

ORAS2

Oe OL 1) ees

ek

1,

eee

21750000

;

(0). @atal

000

PV ss

Thus,

$6904.80.

=

a=

S75, O00,

=

PV

payment:

monthly

compute the First, = Stools Myce, 3012)

month

per

$143.85

=

PMT

fe

Thus,

0.0029167.

=

12

=

1

$6434.39,

=

nli=—4gjm—

is:

2 S795. 04

of

loan

to

be

(B)

New a=

payment 0.0125,

=

PMT

ee 1

-

(1

=

$395.04

+

$100.00

=

$495.04.

+.2)

495.04 = 30,000

$30,000,

375

:

0.0125

4 =

PV =

(1 + 0. 0f359e2%

4 =

(1.0125)

Therefore,

Bis

ha) O105)

“hrs es 0.7575 495.04 (£00125) 7 re 1 - 0.7575 = 052425 in(170125)"" ‘= In(o.2425) -n 1n(1.0125) = 1n(0.2425) =

Se

ante

=

114.047

The total amount paid in 114 payments 495204 (114)e = 9556, 43.4. 56 Thus, the interest paid is: $56,434.56 - $30,000 = $26,434.56 The savings on interest is: $64,809.60 - $26,434.56 = $38,375.04 33.

PV = $500,000,

PMT

=

months

$495.04

or

9.5

years

is:

2 5243.00625)52 PMT 0.00625 | © = 1 - (1.00625) ., it _ B002000(0.00625) ah

$5,000

(1.00625)

Oh)

=

(1.00625)" = ae Thus,

114

i = pone = 0.00625

G 500,000 = 500,000(0.00625) Sur = ae00625)0 =n.= (A)

of

=

157

1

#4

500,000(0.00625) 5000

0.375 in(0.375) (0.375)

in

'

E>.

eG OOEASy withdrawals.

(B) PMT = $4,000 500,000(0.00625) 4000 =.0.21875

(1.00625)" = 1 = (1,00625)." TG)

Thus,

(C)

The

243

1n(0.21875) 1n(1.00625)

than

per

month

$3,000. 12

the

owner

can

on

For

500, 000("45=] a Thus,

_ ~ ~243

withdrawals.

interest

greater

a

$500,000

example,

at

the

7.5%

compounded

interest

in

monthly

the

first

is

month

is

3-4

2)

So teo

withdraw

$3,000

per

month

forever.

EXERCISE

35.

(A)

= 11

4

i 1 + )" Raed

i

FV =e

=

a = a

$7007,

=

PMT

.

0.0062,

annuity:

ordinary

the

of

value

future

the

calculate

First,

.= 360

m=3012)

- 11 2 3608°" 1.006062) (1.0

100

0.0062

=) SISSploy The interest earned during the 30 year period is: = 133,137 = Se70007 = $97,137 i3ees7 -\360(100) determine Next, using $133,137 as the present value,

the

monthly

payment:

PV = $133,137, i = 0.0062, nm = 15(12) = 180 = 1337137 —___0.0062 ___— ey per 1 - (1.0062) dee: (14 2) = ~ EO?= 2000

(eyoPer = $2000, m=1, pur

S97

(t shih) 458% ne

m=1,

r=

eat he = Sl O73

37

(3-3)

i, n=3

gy

=.12)9038,28(1 + i)? ieee Ma = {5993799 ~ 1-3475775

3 In(1 + i) = 1n(1.3475775) In(1 +1) 1 +a 30.

= 0.0994362

= ef -9994362 ~ 1.1045 i = 0.1045 or 10.45%

(3-2)

P = $1500, I = $100, Seng med. 7m 3: ¥ 8% From

fae

31.

= a

Problem

wnewn =

pete

24,

oe

51,500,

We

want

PV

=

to

PMT

(20

2-=

find

wal i

Or

20S

—77v=-0.02,..m

the

present

a

i

=

value,

= e200

Te

2(4) PV,

0.02

= of

Cay

8 this

annuity.

$10,988.22 32.

The

committee

(A)

The present value of an annuity which provides for quarterly withdrawals of $5000 for 10 years at 12% interest compounded quarterly is given by: Quand PV

=

for hi

Il

deposit

i as i)-"

iS

will

PMT = $5000,

and n = 10(4)

(Gh se OBOE 0.03

166 66626711 amount

$10,988.22.

with

= 5000

This

should

= have

= 0.03;

= 40

-40

(1203)07°] to

i = Tg

be

in

=2S115,573 86 the

account

when

he

retires.

CHAPTER

3 REVIEW

101

(B)

To

determine

(A),

we

the

use

quarterly

the

si

deposit

to

accumulate

x|

where

FV’=

$115,573.86,

PMT | SSR dye 2 epand pry==442Qmneme0

(C)

=

103 eS 5i7 3%. o6 teens

=

a

(1 + 0.03) =

=

$359.64

i =

=

The

amount

of

LS

pees

=

PMT

=

eee

S283 771320

the

loan

O01

a

=

=

is

Seand

ae

(1s

=

in part

1

quarterly

payment

$3000(3] =

m=

=

2000

$2000.

ee Ten

So,

(3-4)

The

monthly

interest

rate

12 (10)\e=eode

79)

$2396.40.

is:

S171, 228es0

= $99.85 per month amount paid in 24 payments

The 99.85(24)

amount

0:03,

The amount collected during the 10-year period is: ($5000)40 = $200,000 _The amount deposited during the 20-year period is: (SS5964))'3 0) =8 S285 77d 120 Thus, the interest earned during the 30-year period SZOOMO00

33%

the

formula:

the

ene

(lO)

is interest

= =o

O25)

paid

1

is

2396.40

(IPOS)

-

2000

=

$396.40.

(3-4) 34.

FV’ =" $507 000Par* =

PMT

=9S=10709, -

———~——_

FV

(a ¢ t)S,

Lint=

92)

0.09 or

OF 00757

7 1 9 Sam

(ie

aye.

ja) saul.

x)

=.

ah))

=

50,000 95.007028

=

$526.28

per

(from

Table

IT)

month

(3-3)

(By

ey

pies OLOies ae 56 wie her

need to obtain:

solve

the

Asay By

ino?

eee)

OnUO027/4

lig 2 In(1.000274)

=

2530.08

days

or

6.93

years.

2 S020 Tauisl

102

we we

2

2 ent

PAWS

same

=, in 2 ¥.

(A)

1256)

raomoars

Sb) ¢ To determine how long it will take money to double, equation 2P = P(1 + i)” for n. From this equation,

da (dete)

="

50,000

-

4

: waee

CHAPTER

rae

3

sql A inti. t) =

MATHEMATICS

OF

7.27

years.

FINANCE

(3-2)

36.

First, we must calculate the future compounded monthly for 2.5 years.

A = P(1

+ i)™ where 0.055

= 8000(2 +

L2

P = $8000,

i = ae

$8000

and n=

at

5.5%

interest

30

30

) = $9176.33 debt

PMT

=

=

PV

ul

=

9176.33



where

(1 + 2)

PV

=

Teo

Stet

10, 516.80) =

$8000)

graphs

of

=

y,2 =

are

aa

12

at

5.5%

0.0045833

= 60 =

42 .058179

1 -

=

=

$175.28

(1.0045833)

is:

$2516.80

ere

2%

(3-4)

(beet & 1200 andiiie 222 = 0.005. .

The

.

7

(1005) -29(60),.= $10,516.80 Thus, the interest paid is:

bs

of

Now, we calculate the monthly payment to amortize this interest compounded monthly over 5 years. 0.055

1+

38.

value

will

at

y =

the

right.

120

100,000

$100,000

after

70

payments,

that

is,

after

10 months.

first

find

the

(3-3) monthly

ent = Py an

payment:

PV = $50,000

i = 2:0? = 9.0075

re

12

n = 12(20)

0.0075 50,000 1 =" (1 fom7*° $449.86

per

The present value x years, is given

5

= 240

month

of by

the

$449.86

per

month,

20

year

annuity

at

9%,

after

3 REVIEW

103

1 2 -Gr foo Ts 42S

y = 449.86 0.0075 59,981.33|1 4 (1.0075) ~22(20-» |

CHAPTER

The

graphs

of

50,000

shown

are

The 39.

unpaid

18;

balance

P a SOP From

40.

x =

23,

PV =elOOOFee7 The quarterly

y =

10,000

See

ile

$10,000

after

18

years.

(3-4)

Mim. 360 =

pes 100565

e:,) 0025

(eee

0

below

= 40/3025, (2 = payment is:

=

right.

the

be

tC =

aE

PMT = own = iLoyoyle)

at

will

oO. 08),

Problem

on

0

figure

in the

intersection:

(1.0075)

1-

59,981.33| si Y, = 10,000

“32(20-») |

Ops O25)

=

0.288

or

28.8%

(3-1)

74

: {Ls

25 AenPee ay (AU: OSy),

Payment number 0 1 B 3 4

Payment

$265.82 265.82 265.82 PASS) yishal

S25 00 18.98 2 Sale 6.48

Totals

IMOSS) LAW

63.27

ee

82

Unpaid balance reduction

Interest

$240.82 246.84 PSS) -{0)ih 25933

Unpaid balance $1000.00 759.18 Syl es! 2595585 0.00

1000.00

(3-4) 41.

PMie—asZ2 00," BVee=

S25 00)

a=

ene

=)

0. 00665

By = pur (1=iy = er: 7

215) nels

(1.00665)

i=

f

2500 30,075.188

104

CHAPTER

3

RIMM

take

{52015

Mice a =O

3070755188

-

F(1800665)=



19

MOS Sie25

083105 tne. OSsies5 In 1.083125 eae 00GR

n

it will

10).00665)

010

(1 O0e5)2 e = TD) Tye O06S) =

Thus,

(141

One

13

MATHEMATICS

months,

OF

FINANCE

ek

or

12.32

months

1 year

and

1 month.

(3-2)

42.

Pree eee

5e50,000, (iG),

a

=

ry

(Lite)

total

eh)

43.

The

="0.0876,

m=

25

0.0876 1 = 5

eS

="(0F O43ior

ed

———?-0438 —__ _ 37,230

(1

+

amount

a(S 5), 347548)

Thus, foo

&. 76%

92

= 850,000 The

ar =

=

0.0438)

=

invested

is:

af]

(1.0438)

-

S664, 169.76

the interest earned with this annuity 50 7000 .— S664,169.7/6 = S185 .83 0-24

effective

_ _ 555,347.48

1

rate

for

Security

is:

S & L is:

mM

ts (2 + mn) -~ 1 where r = 9.38% = 0.0938 and m = 12 my.

2 2.0938 ) -~ 1 = 0.09794 or 9.794%

= (2+ D2 The

effective

rate

for

West

Lake

S & L is:

m

a e

(2 +

=

-

(2 +

Ves

1 where

r

=

9.35%

=

0.0935

and

m

=

365

365

=

Thus,

44.

45.

A =

West

Lake

$5000, interest

r=

Ve Pt ~

0.09799

is

a better

investment.

t = Be =

0.25

$4899.08,

earned

the

PMT

Pu. ee

eM

1 =

is

I =

or

$5000.00

ee UE ee (4899.08) (0.25) ~ 0.0824

Using

Waste

-

S & L

P =

The

=

|

sinking

=

peo),

fund

9.8%

-

(3-2)

$4899.08

or

8.24%

a =

ae

=

$100.92.

Thus:

(3=f)

formula

ee Tey

S200,

FV

=

sil0) O00}, fand

0.0075

ed

=

0.0075,

we

have:

TD

000 .c apinks AAG AMD Dh Rice.1G Cite O07) > — 2 (GLwOOr7/Sp re: eal

Therefore,

fee 0075)?

om

Tos

(140085) Wk 0075)e% n

The

couple

will

=

OS 75

7k). 023 75ee-? = sim I, 375, Ine Sere

i00nEhe

have

to

1.375

utes 5

make

43

deposits.

CHAPTER

3 REVIEW

105

46.

0.45 29="-25 Pe i

Pv = $80,000, A)

PMT

a

= "25. Suan eee

s ace ay 80, 000

eae ott

0.0125 =

(B)

Now.use PMT = calculate the

!

PV

=

1

PMT

ied =

47.

(0.

=

=

30025))

1000

=e

ieee heor25) $1435.63 monthly

$1435.63, i= 0.0125, unpaid balance.

and

n=

96

;

IWASYS) 4{538}

ge3

-84

(GE sees Ones)

A

0.0125

of

12

unpaid

Deposit:

balance

$10,000

%

Sea oo 0 40! [1

after

the

first

=

84

to

at

8.75%

(PROREZS))

-~84

]

year

Amount of loan paid during the first year: $80,000 - $74,397.48 = $5602.52 Amount of payments during the first year: TONGA S5 5.63) em Slee SO Thus, the interest paid during the first year S$17/,22/ .56e="S5602252 =esilpe2sea04

Certificate

-

payment

(hh FH

$74,397.48 (C)

96

n=48(22Z)5e.

_=,0-0125,

is:

compounded

monthly

for

288

months

Ara

P(

1+)?

P = 10,000

=)

10; 000K 2e00729))

="

SOi) O41

288

:

i=

86

N=

Reduce the principal: Step 1: Find the monthly ai

12

=O

OO 29

A238

payment.

PMP = PV

Day

ORSTS

ee

PV = $60,000

(P)

0.00854 ——————*"— 1 °° = 60,000(0.008961)

Mice0 025 i= > 12 n = 12(30)

= 60,000 = Step

2: Find

$537.66 the

unpaid

present value 288 payments.

PV = =

PMT

per

rege

i

a

CHAPTER

3

Soe

537.66(106.9659599)

MATHEMATICS

OF

after

$537.66

=1S5 7251 4 332

106

= 360

month

balance

of

= 0.00854

FINANCE

72

per

payments,

month

PMT

that

annuity

at

is,

find

10.25%

2553'7..66

i=

ee

n =

288

=

0.00854167

the

for

Step

3:

Reduce

the

required

principal

to

pay

off

by

the

$10,000

and

determine

the

length

of

time

loan.

1 -_ (100854167) eee a) 7” 0.00854167 0.7548005 0.2451995 __In(0.2451995) = 165.3 ~ 1n(1.00854167)

Pe Ei 33 ey ee 1 -

(1.00854167)~" iT}= (1.00854167) ” = _ n ~

The loan will be paid off after 166 more payments. Thus, by reducing the principal after 72 payments, the entire loan will be paid after 72 + 166 = 238 payments.

Step

4: Calculate 8275%

Lor

the

future

360)



value

of

a $537.66

2) ee

FV = es

monthly

48.

Use

the

$10,000

to

reduce

A

PMT = 75,000

ie

25s

ero.087s Medias ent the

the total given by:

principal

os, 0 (ora tam

and

invest

the

interest

for

each

of

374)

the

PV = $75,000

n = 2 (30)4=4360

inthe #2

12% mort 12% mortg age:: gage

at

(J=2900-9,

PMT = PVT tite

= Total

annuity

payment.

We find the monthly payment and options. The monthly payment is

=

month

PMT = $537.66

122 .= 547. 66 (1.00729167) a ae pet a537 66 (195.60300TS) = 1054155084 Conclusion:

per

238°="122imonths.

i1 = = ~4,° “75 = 0.01 0.

0.01 ———————+>> Myce: sabtaal th Azo 8

75,000(0.010286)

771.46 per month interest paid = 360(771.46) =—S2 0202 oo0 mortqage:)

PMT = 75,000

1-=

wee

-

75,000

=/05009375

0.009375 ——————— >> tT > (T0093 7S) "

75,000(0.0097126) =

Total The

$728.45

interest

lower

rate

per

month

paid would

= S

360(728.47) - 75,000 Sle), eas. OW save over $15,000 in interest.

(3-4)

CHAPTER

3 REVIEW

107

49.

A-=.

$5000,

erj=e2

P= (1 +2)” 50.

P =

A =

A

= 4476.20(1

=

+

i)

(oe OO oe

Pep

) = 0.0803811

a = ef 0803811 1020837

_ 4 9837

som

r = 10.76%

p = eS

(8.37%

= 0.1076,

first

compute

the

monthly

i=

eS

=. 0.01,

and

nm =

PMT

=

rot ee Che

ess te hee

PMT.

PV

we

calculate

$222.44)" na

Thus,

the 9%

aaa

=

“i

1

unpaid 0.09,

+

r

=

the 1°=

229) 4404

-

9944.73 payment

5(12)

a balance

m= =

unpaid

03.01 *) —n

and?

using

(3-1) PV =

n=.

-36 after

CHAPTER

3

$10,000,

=.60.

balance 60

after -

24°=

24

$2225 44 payments

S

per month

by using

36.

= 22;244[1 - (1.01)~2°) = $6697.11 2 years

is

$6697.11.

(3-4)

12

9b

(2 43

0.09\12 12 }

= (10075)

108

t = = = 0.5

0.01 100 = 10,000 ————————————_ = = 1.— (804-0! 69) 522 = = (i%'91) 76° =°

r=

(3-2)

Se 00 1. +O O76 JiOFS)

ert

10

1n(2.23404)

: dcs

51. A = $5000,

=Gyn

(3:2)

+ i)?°

In(1

Ts =

53.

m= 1,)r

76 14

ts 7)"

> 2020008) > 3.204 4476.20 —

1+

Now,

(nt=vS

er e710

inte

We

$10,000,

Pt

10,000

52.

£00.095,

ee eye 102095) 39) ct. 095)

$4476.20,

10

'=99 75%

MATHEMATICS

OF

FINANCE

=

+7"=11 = 090938

‘or

9-398

(3-2)

54.

(A)

We

first

calculate

compounded

FV

=

(lee

PMT

the

annually

gy

=

4

future

for

1

value

of

an

annuity

of

$2000

at

8%

9 years.

where

PMT

;

="S2000,

7 =

0.08)

andinwang

9

= 2000

oe

aeoe

rete

4.2 95°000[ (1208)

Now, we calculate the future annually for 36 years.

A=

P(1

+ i)™,

where

= 24,975.12(1 This FV

is

=

the

value

of

this

P = $24,975.12,

amount

i = 0.08,

future

value

r

of

a

where

$2000

PMT

=

annuity

$2000,

i =

Rijs 0208)" = 1 = of freee Seek 1 _ 25, 000[(1.08)3© 0.08 The PMT

amount

Sep

ye

of

loan

is

VEY

oe

($100,000)

(0.8)

=

let

a = eo

=a

OUS9S03,

=

$746.79

monthly

Tet

Hee

=

80,000

u

$896.76

(B) To find =

i =

payment =

for

PMT

=

monthly

unpaid

1 an

for

(hisrd)

3746.79,

0.0089583,

for

=

$80,000

n

3

36

(3-3)

and

the

SIIMi,05,

for

after

$41,482.19

serhent

LeOaet

Then

716 .66667

0.7991735

15 10

ees OO

Wes)

years. years,

we

use

mortgage:

i = co

=

0.0089583,

620089593) AGREES

-240

unpaid 15-year

2

balance

for

n =

12(20)

the

30-year

240

iy AD - (1.0089583) ]

mortgage

mortgage:

OOOH,

unpaid

=

te = 83,362.915[1

gi =

Se)

=

Ee

OOSSES 31-0 ow|= 100,103.81[1 896.76 TERE LTE uv

=

- 1] = $374,204

-60

VA

n

years.

=

payment

balance

30-year

eid)

$73,558.78

Mee

and

annually

ao

4

the

I 746.79 PV =

Next,

compounded

—_0.9596687

30

0.0089583

the

PMT

First,

8%

716.66667 Sseae

1 - (1 + 0.0089593)°°

PV

n = 36

0.08,

ie —anbn(s0)

0.0089583 = EES

1, - (1+ 0.0089583) 369

PMT

compounded

6 ae

=) (2X0) O00)

Substitute ete

Thus, 53.

Let

«vy =

the x = y =

2.45

A (aS)

base

into

of of

is

to

(2):

(1):

ai ae ofS Memeo

price

number number

add



9.80.)

$17.95;

pounds pounds

of of

17295

the

surcharge

Total

amount

of

Columbian

beans:

132

x 50

amount

of

Brazilian

beans:

132

x 40

=

Columbian

beans

needed:

12 16%

+

Ss 176Y

OF

3G@*

ae Brazilian

beans

needed:

5: 16%

+

10 i¢6Y

SF

igee

we

need

to

(1)

ax + 2y =

(2)

(2)

by

-y

Substitute

Sy eeil) -3

and

=

-9,240

=

6,160

y =

6,160

y

per

pound.

+

6,600

lbs.

5,280

lbs.

3BY

ro) oe

solve:

ox + 2y = 6,600

Multiply

$2.45

robust blend mild blend

Total

Thus,

is

ax + 2 (6,160)

resis

add

into.

to

(1):

(1):

6,600

6,600



2,310

=

94,290

SS =—5), 720

Therefore, 5,720 6,160

55.

Let

x = y =

the manufacturer should produce pounds of the robust blend and pounds of the mild blend

amount amount

of of

mix mix

We want to solve the Oelx +50'..2y = 20 0: 06x + 0. 02y = 6

A, B.

and

following (1) (2)

system

Clear the decimals from (1) and (2) 10 and both sides of (2) by 100. x + 2y = 200 (3) 6x + 2y = 600 (4)

of

equations:

by multiplying

both

sides

EXERCISE

of

4-1

(1)

by

123

Multiply 5x

=

Se

Now 80)

(3)

by

-1

and

add

to

(4):

400

till,

substitute ae

va

2yY y

x =

80

into

(3):

80

grams;

00 120

60 x = mix

Solution:

A =

y = mix

B =

grams

60

pa

57.

p=

200

equation]

[Approach

70

-od + 4

j9) 3 (A)

Avoidance

-3.d + 230 The

[Avoidance

figure

shows

the

equation]

graphs

of

r

the

two

Ng

equations. (B)

a

Setting the two equations other, we have aS15 a+ 70 ~ a 43 d + 230

to

each

S %

Approach 200 d

100

Distance in centimeters

70

-

230

=d =

22 gig

equal

Liles es 15 d'="160 a (C)

The

EXERCISEa 4-2

ae

Things Le

rat

=

141

would

cm

be

(approx:)

very

confused

SR

to

(!);

it

would

ET

vacillate.

IT

ETE

SSDI

DEE

EE IE BLEDEL

EEE

remember:

eMAT RICHES

A MATRIX

is

brackets. matrix mxX

has

nis

a rectangular

Each m

the

number

in

rows

and

n

SIZE;

m

and

array

of

a matrix columns, n

are

numbers is

it the

called is

written an

called

DIMENSIONS.

within

ELEMENT. an

m

If

a

X n MATRIX;

A matrix

with

n

rows and n columns is a SQUARE MATRIX OF ORDER n. A matrix with only one column is a COLUMN MATRIX; a matrix with only one row is a ROW MATRIX. The element in the ith row and jth column of a matrix A is denoted ais: The PRINCIPAL DIAGONAL of a matrix A consists [bo

A system of system if: (a) (b) (c)

124

of

CHAPTER

the

elements

linear

Ay41

equations

AgQ1

is

4337

transformed

two equations ar interchanged; an equation is multiplied by a nonzero a constant multiple of one equation is equation.

4

SYSTEMS

OF

LINEAR

EQUATIONS;

MATRICES

into

an

equivalent

constant; added to another

EE

Jw

Associated

is

with

a,x,

+

a,x,

+ bx,

the

a

b,x,

An

=

b

Lah

linear

system

k,

= k,

AUGMENTED

a, 4.

the

MATRIX

k

3

(I) of

the

system

|

(II)

b,|

augmented

matrix

is

transformed

into

a

row-equivalent

matrix

athe (a)

two

rows

are

(b)

a row

(c)

a constant

is multiplied

(KR; ts (Note: 5.

The

Given

interchanged



system

is

added

to

another

row

"replaces.")

linear

(II).

equations

If

(II)

is

(I)

row

and

its

equivalent

to

a matrix

0

i

n

(2)) ie 0

| 0

|. then (I) has infinitely many 0 solutions (consistent and dependent) ;

(3)

[2

"

a

0

0

Pp

2X93 8

(Omens

a

Ae

ia

5 "

(I)

p #0,

then

x3

36

=) > £2

Sra

bale

0

has

and

(I)

: solution;

independent) ;

has

no

solution

(inconsistent).

=65

3

-5

then

(consistent

° Crs,

-4,.a,,

F =

,

E a unique

associated

m

@e=| (B)

row

0

ieeeAgc:

es

one

(KR, => Rik;

1

(a8)

a5

means

of

augmented matrix of the form:

7.

of

constant

R,).

arrow

the

R,)i

by a nonzero

multiple ed

(R; oO

7

|, size

-8

CG

ioe eS

5)

0

2x4

size 3 X 2. F would have to have one more column to be square.

=

—6

EXERCISE

4-2

125

13.

Interchange and row 2.

row

15.

1

R,

1

dhs

=

ak

xX, =

2

eure

IK

e263

3

Z

3

R, OR,

row,

7S 0

(-3)R, +R,

Thus,

ad

£1LO

0

A)

From the last inconsistent.

1.

Te

3

eZ

0

et

-1

5

10

2

R, +R,

(-5)R, +R,

Asie

=:

Sa

@)

Al

-1

ab

0

2

(-2)R,

+R,

>R,

(-3)R, +R,

OR,

conclude

220 2

1

-4

we

i

LOT

R, OR,

2

1

-1

that

3 -5 -10

(-2)R, +R,

there

is

2

1

7>R,

7

R,

= 2

3

2

meet A fae | a0)

i

=5

-3

=5

0

0

0

solution;

the

ij

>R,

no

EXERCISE

system

4-3

is

133

35.]

3°.

-2

1

-7

1

1

-3

1

i:

2

1

=4

0

- | 32

1

-4

Oa

OL

1

hes

al)

Br

=—2

1

R, OR,

Ie

=3

il

-5

10

5R, +R,

From

this

(-3)R,

+R,

AR,

al

Ore

= 1

—1

-2

2

=10

0

0

0

0

matrix,

=6

x,

-

es

4 ,

this -2s

=3

=i

and 26

-3

matrix,

-6

X, + 2x,

+t+1,

Die

5

20

-10 > R,

or

=3

-

x, =

15

and

x,

=t,

sbr | S74] 0

ae

ren rd es 40°

By

0

0

0

0

Get

Let

x,

at

be

any

real

t.

2 -

i

0

0

x, =

s and

0

-4

eve

1

PER

ea

-3]

0

x, 7-t.)

real

i

Then

numbers.

4R, +R,

-10

(-8)FR, hak

1

oly

OR, eae

Ser

3

A

BD - yy

-7

s and

t any

ey

GDR

0

*11G0"

2.

ee:

aL

5

=

x, =

mieile

ies {

~ | oo

2x,

and

OR,

Sh iol Opliga Faeries

| ee

2,

3}

ct Pa

8) F-2

Rote

+

2 | 3R, +R,

oe:

0

fp

5

(-5)85 + TR Ons

-7

ql -42

solution.

Ai

EP 9

ooo | ea) | 20 Se

134

=

X, =

silat

3

From

wat

-2

OR,

then

PO

No

}-5)

1

2

(-1)R,

oy

ee

72ers

O

= }| 0

4 -2

-3°,

OR,

R,

2 1-1.

OE

OL

0

0

MATRICES

64) =19 eet 8

-40

(26)Rn. &4 pio tp ; : : ores

ee

S$

Baie:

5

3

ae

24.3

See

Peo iioes ROR

0 0 system x,

-

0 of

0 equations

9X2

=

-4

X13

2

S

1-3

0

ot

“MT

0

0

“4

hs 0

0

is:

and

x

=

2.5x,

-

4

tee Lee

x, =

t.

x, F

2256

X,

c

a

43.

=

Then =

any

real

2

ali!

ah

Ae

1

-2

4

(-1)R,

+ R, >

-1‘

-2;

9

A

al F

(-2)R,

+

(-4)R,

+R,

bd}

12

= 1 | 7, ag R, -

1

1

0

0

AKON

Fae,

1

0

0

1

TNE on

RR il ey te eee eli

(B) The of

(to simplify

4

R, 3

system is solutions.

OR

3 ~

3 0 0

The

system

of

x

=

1

Lo 3

R, >} R, 0

x.

2

Solution:

of

R,

the arithmetic)

2

0

(A) The

t,

5

“ieee

45.

number

4

-3

:1

for

It

al

0

ail

eee

=

-2

SANS

at

x,

=

A

X,

=

Sin‘

=2,

2}

£2

24 all

-2,

two

parameters

system is dependent solutions.

with

one

parameter

(D)

Impossible.

system

is

independent

with

a unique

(GeVRe

(+i),

2

R, >

4

PRLS

3

R,

RoR

3

R,

1

with

The

1

R, +

is:

dependent

(C)

Al :

x,

=

I:

and

an

and

an

infinite infinite

number number

solution.

EXERCISE

4-3

135

47.

x7

Xoyaee

3x,

+

If

kx,

k = 2

=

-3,

Os

the

system

is

E -1

>

4

2

0

0}

-5

3

-9

-4

Gwe

a a a0

i

7

il}

0

3

-4

-1

7

ee -3

-6

(-2)R,

+R,

OR,

(-2)R, +R,

AR,

(-1)R,

+R,

OR,

(-3)R,

>R,

=

2x,

real

32) -3

0

=

= 2a) a a ORS

ga 1 2

0.2

ONO

R,

XS

7=2

Dk || ENO)

1

=i)

5-2

2

6

0

0

0

0

2X,

te IC Mat,

Al 0

=—=26

et

Be = ise

2R, dep ioy omega) (-3)R, + R, > R, ~

0.6-)'-#12, -& Rage FR,

-2 al 6 | -3.4 2) -0.1

.-32l

xX, =

Xx,

t,

s}

Ss and

3

x,

wheres,

of

ae

Jala 0 1

-1 -4

ail

4 | -2.4 6 | -3.4

0)

SO.

0

5

0

Osa

Tie

Ce

ome).

Ot

&

3" Bye

Ea

=2 = 3

§ 27)

4e-l

1 DS

-=1

C.

t are

>

(-1)R,

+

R, >

2a4

R,

R,

(206

1

=A

IR,

( 2) 3

O

R

3

oes

OF

LINEAR

EQUATIONS;

MATRICES

(to simplify

Ri

0 eee

BR,

+R,

9.3

SiS

SYSTEMS

i 2

a2 aA:

0

4

+R (-2)R,

ge 0

ia.5a '-2) Soe Bi,

AD

al 0

CHAPTER

3" and

3), a

system

=

07

ah Orie ds |eolG

+

-2R,

2

ap

k =

=

ie ial x |e ai

Ry

-4

= 53. | 72

6

si

The system has no solutions. If k #-3, the system has a unique solution.

any

3

aot

aly

raat

Thus,

kx, =

6x,

If

7

alee

3S

51.]

+

+

X,

3a

ail

x,

2X,

ee

3X

-3R,

49.

7

arithmetic)

oR

4

m& un

SN

CN et

‘i

st

0

St

z

Be:

Coon

| aes a] al

4

ee +st et ot

By es e

:

19) ef com

a

my ~~ |

~ 1s oe

=f ot we la 1

wN o

sie is:

Onesy

~

N

+ +

gl &me oad

st

ot

+

(x ves

&

sO

& ~e

wm

NO

| ~m

XxX, =

od

OF2% wm

Xoo =

coh

equations

-0.5,

oe a a ee fcV2).

AMAR: re

Aaa +perience Ta tenes.

Sant IC

Solution:

of

MO

Te} ! 'CcoOG00

system

8

woON +t

: uw wo moM °

The

(oa) N a)

iZR > Ry wm &

+ & Meee ie ee FON a Ge

“tas fi. ora

_N NN

& ~~

&

Tet

RIL Cot i woman

op woul iS)! elgQh

IN

le YO AN AUN

pe ~m

“i

ina (oe)

th a sho

EXERCISE

4-3

137

1-2) ef

Gmmege

=*| R,

1

2

3

760

AKO)

1

2

AZO)

0)

Oh Bly

Slo)ck

(0.1)R, +R,

330 120

+R,

OR,

(-0.2)R,

+R,

OR,

| See

OR,

tO ome se Os) 05

(-0.6)R,

1

-32

s and

0

One iil

2

0

Ora

10R,

CHAPTER

4

SYSTEMS

=|

1e =2 0. 20,3 0) -0.2

1

Ope

l=t

-80

420

0

Al

2

420

10

0

0

am

100

> R,

LINEAR

EQUATIONS;

MATRICES

760 \etee ues

ab oe (-gy)a a,

R,+R,

(-2)R,

OF

3 =0.6) -0,1)y

-80

(-2)R, + Ry aay

138

ee

t.

760

O76 O52

3

Ot Notas.

boats.

model is: 1.5x, =

+

+ 1,

numbers

boats

x,

ch -5t

2s

one-person

0.5x,

=

1

3

Thee Oy 5 Let

70) tone ae vil oo Oe UNL ee of See "9% onlane

+ 2 5%,= ral x,

Ore

1-2 Ofc. pig peo

+R,

OR,

OR,

if orig aoe 66” | me Oo a Thus,

xX.

person (B)

st

=

20 220 206

20),

boats,

The

Xo) and

+

0.6x,

+

0.9x,

n E 2 1

+

x,

In

Thus,

where (C)

+

x)

=

A202

=

65-280

to

ee

2

i

Hs

Sue

80


R,

ele ~

t is

model

=

380

t < 210

(two-person

x

0

boats,

S\SK0)

-80

+

2 A

one-person

0 2 Be 1 Bh a6

real

mathematical

2R,

20

boats.

(four-person

1

0

1.2x,

0.5x,

OnSe

~10

=)

x,

keep

be

or

is:

1.5x,

(t any

&

order

100,

OR,

=t

i

43

four-person

ie r E 420 Ol

Os

Then,

x,

fee 7 r 209 Be |‘a é is 2 3 | | 330 m6 0.9 “ayo pmez0 0 -0.3 -0.6] -126 1 (-0.6)R, +R, OR, (-5.3)2 7

: 2}!

(-2)R, +R,

x,

and

model

xX, +

ee 1 | 0.6 0.9 1.2] 2R, > R,

Let

100

mathematical

0.5x,

Thus,

220,

an

and

t 2 80.

boats)

integer.

is:

2

760

ONG

ORS

BS

OL 2

OS

120

(-0.6R,)

+R,

OR,

(-0.2R,)

+R,

JR,

il OMe

2

Oe

res

OF

=O

Ja

760 =12'6 | =| -32

(-o.3)®2 >

ik

2

760

70

al

420

OO

-32

0.1R,+R,7>R,

760 | From this matrix, we conclude that there is no solution; 420 | there is no production schedule that will use all the 10

labor-hours

in

all

departments.

EXERCISE

4-3

139

59.

Let

x, =

number

of

tank

cars

gallon

tank

cars

Xy =

number

of

8000

number

of

18,000

3

the mathematical x, + x, +

6000x,

Dividing

+

the

Xj

Hag

3x,

+

The

augmented

eh 4x,

+

Fs 1) 31 3a

model

+

second

equation

x,

=

9x,

=

18, 000x,

="2 5070100

by 2000,

corresponding

O)

t.

24

we

get

the

system

5

2S

x,

cars

24

matrix

xX,

tank

is: Xar=

8000x,,

AR

to

this

Ome

6

system

eA) 2 E 0 4 i

tej fh Sys}

is:

53

(-1)R, +R, Re

(-3)R, +R, > R,

xX, =

gallon

24) " 3 ih

oe

Let

gallon

x Then,

Thus

6000

-

5X3

=

—29

+

6x,

=

156!

Then

Be 5t - 29 and PS) = 53 - 6t Thus, (5t - 29) 6000-gallon tank cars, (53 - 6t) 8000-gallon tank cars and (t) 18000-gallon tank cars should be purchased. Also, since t, 5t - 29 and 53 - 6t must each be non-negative integers, it follows that El= 46), 77 FOrReE

61.

Let

xX,

Then,

iT}

federal

income

tax

x, =

state

income

tax

x,

local

income

tax

=

the mathematical model is: x, = 0.50[7,650,000 —- (x, + x;)]

xX, =

0.20[7,650,000

-

(x, + x3) ]

xX, =

0.10[7,650,000

-

(Xx, + X,) ]

and

The

140

x,

+

0.5x,

+

0.5x,

=

3,825,000

0.2x,

+

X,

+

0.2x,

=

1,530,000

0.1x,

+

0.1x,

+

x,

=

765,000

corresponding

augmented

matrix

is:

a

0). 5

075) 1537825, 000

(-0.2)R,

OZ

AL

OFZ

CMAs.

saver

a

Cote.

CHAPTER

4

SYSTEMS

1715810), 000

765,000

OF

LINEAR

EQUATIONS;

1

+R,

OR

fr) —S R 3 3

MATRICES

a

BHOL5), 000

ae

TES), 000

205

20R,

>

R,

(simplify arithmetic)

382,500

\o On]

.5 | 3,825,000 sa 745,000 |Ry 7,650,000 i iO “OS: ele oe #O"OoO 19 OF Oo

an

+o oo oO

~#

a

0.5

0

at

0

ORS

0.5

| 3,825,000}

(-0.5)R,

+ R,

7,650,000

(=OOK2 DER

+

19 Cipage =9

0

=17"t

>

R

765,000

1 (-a7)%s ma

19 | 7,650,000 Oo:

7 R

R,

~6; 1207000

=] (Sk

=)

0

TS) || Ue SNO! MOOG, 360,000

IR,

+

R, =

R,

(-19)R,

+

R, >

Ry

3,240,000 810,000 ii Sao 360,000

Ore Or ono °o gle} (eos ©

THUS,

ie

Sa), 240); 0100,

itabricty ;

63.

1S

&6,

1

4x4

4,410,000

income

(7*650°000

Let

=

x,

2

_

=

=

X,

4 x

$810,000,

x, =

$4,410,000

By

00 57165

or

$360,000.

which

is

The

57.65%

total

of

tax

the

taxable

57.658).

Taxable

income

of

company

A

Taxable

income

of

company

B

Taxable

income

of

company

C

Taxable

income

of

company

D

PR

Il

ara =

The

taxable

=

income

each

company is given by + 0.03x, + 0.07x,

=

0.12x,

+

0.81(2.6)

Il

0.11x,

+

0.09x,

+

OR 7216 88)))

+

0.02x,

+

0.14x,

et Fae

0.06x,

which

of

OR a3 2)" ih 0.08x,

is

x, —

the

same

0.08x,

+

0.11x, +

+

the

system

of

equations:

0.13x, 0.08x,

0.78(4.4)

as:

-

0.03x,

-

0.07x

-

0.11x,

-

0.13x

Ate.

ORO Ss

-0.12x,

+

X,

-0.11x,

-

0.09x,

Pe

-0.06x,

-

0.02x,

-

0.14x,

+e

ll rw

Dee dls

ns

te

278/856

=)

Sea

PP

EXERCISE

4-3

141

This

is

the

mathematical

1 ~ Oi Delite =0.06

model.

-0.08 -0.03 Qiegal 20.025 Ondee iam &20.024,=0.12

-0.07][ x, R,

all

il

eo

il

2

OG

0

2

0

4

18

(-1)R, +R,

1 | 24

0

0

8

AG)

1

P

10

0

a

-4

-16

-4%3

7,

OR,

(=2)R,.+ R, > R,

1 Se 0

0

0

Hi

2s

0

1

8 4

(-2)R, +R, AR, TAUS 7 (es0i=5 Os xX, = food

(B)

142

B,

The

and

1.

LOG?

2,

4 ounces

mathematical + +

10x, 10x,

= =

340 180

10x,

+

30x,

=

220

4

SYSTEMS

a.

Ow

#2

0

30x, 10x,

CHAPTER

Lio

OF

and of

x,

=

food

model

LINEAR

4 or

8 ounces

Cc.

is:

EQUATIONS;

MATRICES

of

food

A,

2 ounces

of

30

10]

340

207

10;

180

10>

30%

220

i 10

jy]

3

1}

34

Bi

ys

1

a

yto.b

3

a

1 122

I~

(3422

2S

1 7 Fy

R, OR,

oe

10 F2 7 ®2

il

SA

(-3)R, +R,

OR,

(-1)R, +R,

OR,

1

SO

18

1

2alk 2.0

0

,

4

(-2)R,

+R,

OR,

Ae

10 10 %3 7 ¥3

bee

| 1

~lo

18 10 ee

1 (C)

The

From this matrix, we conclude there is no solution.

mathematical

model

30x,

+

10x,

+

20x,

10x,

+

10x,

+

20x,

i 10 10 10

=

is:

340 180

a4 20/_[ 29 201 180) L30

R, © R,

10 10

4 seo] | 20] 340) 13

whe REOER:

elAgy

that

1 1

2 18)_[2 1 ‘4 4 21 34) Lo -2 -4| -20 i (-3)%

(-3)R, +R, OR,

>

ohh apa

i b

1

Omi.

d

ie y E

0

°

21

40

.oga

-2

(-1)R, +R, Let

x3

x, to The x,

67.

Let

=

be

t

0

(t any

real

number).

X%, + 2x, = 10

Then,

x, =

8 ounces

Ofetoodee,

number number

of of

OFS

barrels barrels

of of

of

jt

TOE

92.t

=

-

eLOMES

ftps

Sab

for

Divide each side and each side of equations: XX,+

Xx, +

+ 3X, +

x3 +

3x,

+ 2x,

2x,

A;

x

10

mix mix

+

2x,

=

30

xX, =

30

5x,

=

2t

ounces

of

food

B;

A, B, Gc D

(1) (2) (3)

of equation (1) by 30, each side equation (3) by 10. This yields

2X,

+

food

= R,

solution:is: =

| TUS psAy

of equation (2) by 25, the system of linear

70

EXERCISE

4-3

143

al

Al

qt

2

30

2

3

ul

AL

30m

~ a) @

ff

+i.

3

= 305]

3

2

2

5

70

®

t=.

=).

=2

-20

(-2)R, +R,

7R,

(-3)R,

OR,

al

+R, 0

tC)

0

iif

R, +R,

7R,

1

ill

®

30 73),

il

0

2

0

1

0

0

(-1)R, +R, 5

60

= 3

=3

2,

0 Olen

PAS

5

60

-1

-3

-30

-2

-4

-50

al,

R,+R,>R,

2

= 0

il

(-3)®s

78s

>R, 0

il

lO

1

OPEL

0

0

al

10 -5

2

25

(-2)R, bers en.)

Thus,

x,

peels’ X, x,

Let

=

Be

-

25

each

2t

mix

=—25

number

mix

A,

=

of

number

must

barrels

of

mix

D.

Then

t -

number

of

barrels

2s

be

of

5 =

barrels

of

nonnegative,

mix

5


(-2)R,

hours

(A)

4

10.

10 mix

Also,

‘0 -[2

i (-2)®2

B.

CHAPTER

by

2

Company

6th

20x,

= of

Since

30x,

equation

4

an

the

of

barrels

integer.

system

of

40

E

Thus,

C.

t < 10.

Let

R, OR,

144

2X,

-5

and

Divide linear

71.

+

t = of

of

69.

x,

barrels

Sekai SY

See

Pies ch os

for

i200

ty Xn oe 1000 ope

EQUATIONS;

1300

MATRICES

2

4 deck

ah | alls) +R,

‘Company’

° ia

0

gauss

Si

hourswior

DR,

A ‘and!

(B)

The x,

system

of

equations is: I 1500

st

X, + X, X,

+ X3

ete

=

200

=

1000

=

1300

Ley! e (Opt) wig eal) SAYS OK6) Mra Maro Wazou One ls HOTT LOO0 Om One ets lan L300 (-1)R,

+R,

aeRO

Ore

_{0

1 OS Oo)

Let

Since

7>R,

tt

@r

=

t.

X1

aoorsR,

ales

oe

173

"as }62)

sen.

Se0%

40

a

Ba

29

96.

69 | 89}

a2

865

508

26

ao \S 7 20ene eRe Te | 20.27 “ey 270 Seek we

Thus, Vee

the decoded message is Seen a oie), e238 39 20

which

corresponds

GONE

of

‘ ih

¢ |Pi timid Soak 6’ 823

59.

inverse

ax . 2 | 1 grees: | -1

+R, al

Now

find

WITH

THE

(8°27 ime

Oeec

moma

225.

49

S14)

74

to

WIND

"THE BEST YEARS OF OUR LIVES" corresponds to the sequence Bom £5 27 21-5 19° 9°20 27 25) 5 ae 1s) aoe S Peewee milan 9228 5 19

Gehaks

15

We divide the numbers in the sequence into groups of 5 and use these groups as the columns of a matrix with 5 rows, adding 3 blanks at the end to make the columns come out even. Then we multiply this matrix on the left by the given matrix B.

1

0

il

0

1

1

0

3

Beolg

i

1

5

0 2

A

at

0

0

At

0

2

1

1

1

2

a

AU

50

ORGS epee

The

20

i

208 omsenihy

Ze

505

863

Sy

59

Biome

LOS

27]

WAKOGy Rake)

Od

PS

KEN

70

WA

(9S)

56

ag

123

SS)

SYS,

Si

5S)

eld

ls

5

a

6

82%

G19

28V

274

Tam

27

41S! © ME 12).

LOO.

9

encoded Zio 82 OOO. 99=

5

Dic

AY

Zen

81 2

message

"9 352

is: (S950 wield. AO, 105s alO6e .Sén 97,

g/OS 123 e599 127

50) eehOOM RE Sare/ 27 laps ley hey

S981

EXERCISE

63

4-5

96

163

61.

First,

we

must

find

-2

-1

2

Bei

Now

2r-2.

-4

al

2-44

LP2>e109P

66)

"SS

98.

124)

62

87°

67°

Ie

reek

43

55

41

81

94.

69.

112

HLO9P

896

143

decoded 5) eS)

27) lve

message

7 Saw

corresponds GREATEST

B:

(18: 20

gomets ee

to

Be a

mares 7

15

820"

“23

19

es| 18

5

Bapht

127

8

S27 rt 018.

ae 27

(20°77

is

S.-i) M8

20295 e ome

97.19

«8

15.

935

to

SHOW

ON

EARTH

BASIC

remember: PROPERTIES

Assuming

OF

MATRICES

matrices

all products and sums are A, B, C, I, and O, then

ADDITION

PROPERTIES

ASSOCIATIVE:

(A

COMMUTATIVE:

+

B)

+

defined

C=A+

(B+

ADDITIVE

IDENTITY:

Ag+

OR=30R+

ADDITIVE

INVERSE:

A

(-A)

+

sAne.

=

=I1A=A

MULTIPLICATIVE

If

A

INVERSE:

A(BC)

=

is

exists,

C)

+Az=O

(AB)C

a

square

matrix

then aA!

PROPERTIES

LEFT DISTRIBUTIVE: RIGHT DISTRIBUTIVE:

4

SYSTEMS

indicated

PROPERTIES

AI

CHAPTER

the

A

(-A)

ASSOCIATIVE PROPERTY: MULTIPLICATIVE IDENTITY:

COMBINED

for

A+B=B+H+A

MULTIPLICATION

164

8 5

119,

4-6

Things 1.

327.24

the

VATA

THE

inverse

oa

6

20048"

which

ee

3

B+

Thus,

the

OF

LINEAR

A(B + C) (B+ C)A

EQUATIONS;

=

AB BA

MATRICES

+ AC + CA

ana

a7l

= a-lg = fr.

hogan

EQUALITY ADDITION:

bE

Af=—hBethenyAg+

LEFT

Die

Ag=i

MULTIPLICATION:

RIGHT MULTIPLICATION: 2.

USING

INVERSE

C=

5 anc hienmeAm—

B

47

C-

NCE.

If A = B, then AC = BC.

METHODS

TO

SOLVE

SYSTEMS

OF

EQUATIONS

If the number of equations in a system equals the number of variables and the coefficient matrix has an inverse, then the system will always have a unique solution that can be found by using the inverse of the coefficient matrix to solve the corresponding matrix equation.

Matrix

Equation

Solution

AX = B

ab

5

2

| =| 5]

-14[*,

-4

3.

|

Re + | 7

Thus,

X=aA lB

3x, + x, = 5 2x, - X, = -4

=55

Bae

os

2

0

MO

rei

B

=-2

3

85. | ep

-3x,

i

aX

+

3X,

226 -X.

216 3X,

~

2x,

1

4x,

=

ive

ae

pee 2 =

3

ee

=

sk

-

=

2

2x,

il 5

fe : a 2x,

2

x,

2X, ees) -X, + 3X, - 2x, Thus,

=4

a

XX

Ky

=

3X5)

-2x,

+

3x.

~2x, at

2) 2X,

; =)

and

2

14

=

LX,

2) 5

=a73 =1

tien,

xX, -

=

it 4x,

=

-2

3X, + 2x,

+ 3x, xX

3 =

4x,

Ji =2

ae and

des

=2

3

1

1

x, m= 4

x,

3 il -2

EXERCISE

4-6

165

ee te [3 aes : Ree : ta 3 i ris

1

ee

a

&

te

4

1(-2) + 4-1

Thus, x, = -8

eeeand,

x, = 2

adie : nee + ial ; °| Thus, x, = 0

2. saute

2°3

"(=1)2

Suegeand

3, = 4

s.[2 3] ]: . ibe 7 = iF 2,has BD)

i -1 |1 1 Mey oy (SLVR

Xx. an

inverse,

then

] = a1/5]. X, “i

°]: i -1 | i a - ig = oad Bae 4 i OF21 4-274 Gea |i 1

Se Rs

(-1)R,

0

>

R,

1 xea "7= 37 XS"

ee

R, + Rk, >

se

R,

ieee |

=2:

is. [} ace (8)

tad Opeewl:

17.

MMO Wjw

Seared

x,

The

equation

matrix

Ak

3

WooayP op

|x,

for

the

given

system

is:

k, -1

From

Exercise

Thus,

bk 7=

2S

166

1

Therefore,

CHAPTER

4

4-5,

Problem x

:

“1

SYSTEMS

21,

[

|

=

k | ]

14Lk,

OF

LINEAR

EQUATIONS;

MATRICES

:

=|

-2

mes, 1

xX.

eee a ee

=i]

atkSde

and

thUS7

2)

eco

Pa

ae

ore 2

[2PeoieIDis -| [3]3) ~“eeeee e-

cy The

2

| ee)

|

xX.

19.

JUS

a4)

%

Thus,

matrix

equation

rf 5) 2

7

for

the

given

system

is:

& ]

ILX,

k, -1

From

Exercise

4-5,

Problem

23,

2

|

=

me, [2]=[.2 2][8 (a)

xy

E

7

S (By |2| = x,

21.

The

d

ae i

25)

7

all *]: el

0

zy

-2>

matrix

xy

for

0 || m2

ky

0

all

Xx, | =

k,

4

x,

k,

=)

xX

and

Thus,

the

given

=

-2

xX, =

24

Geaee

a

system

is:

4 te Sr From

Exercise

4-5,

147

A THUS oyot ae =7 |) SAC

es)... 2,,-1

Thus,

Shoe

=2

ali-1

equation

a.

fa

ely |eal

5

X,

| a

idk =o)

X,

Ms

Al

Problem

eOOtae

25, | 0

1

i

2

=i

4

=)

25

eg24

3

2

-4

1

2

Sy

yea!

Thus,

My

bean

®t]

Ay

X, | =|

-2

aL:

k,

x,

2

oi (A)

-4

X>.) x

=

by

ab

Re)

219

+2

-4

2

k,

Beak

cM

1

Ome

bOe Tian

2

0

=

was ae

OF

x, =

0

EXERCISE

4-6

167

x (B)

a

=-5.

X5

=

x3

ve (C)

X5

=

The

5

+5,

9-12,

-2

5

get

2

See)

al

0

-7

dk

=

-2

=1

0

3

2

2

17

dl:

-2

al

equation

TP

-1

al

-4

2

matrix

3

-4

2

br 23.

-12

-2

for

vOnh

i X, | =

k,

2

x,

k,

=

5

1 the

"4

xy

cS

=)

U

xy

=

Ne,

}

Xp

=

—2F

Xo

=

3);

Exercise

X3

=

=

3

=f

-7 given

system

is:

4s

one? From

3

4-57"

Problem

277;

|>

ners)

i

0

62-b2em =[

2

ba

(-1)R,

+

1

AX

=

0 RH

3}

i

-8

1

0 2S

0 Bits

=o + R,

=

€C

elses,

i

tlhe | Gra l

(8,

ib

0

-

R,

ee

2R,

5)

has

infinitely

an

inverse.

real

number.

Solve

1

BY

hk

1

0

0

0

+ Rk; >

R,

An =

x

=

a

St.

x,

=

t,

t any

B33.) Ax Bx. = C

(A - B)X=C xa

al

ts:

(n1)R,

Ome=13

BX

3 i

system have

R, —> R,

0 0 Solutions: 31.

2

tee

ees

ae Dee | BO

the not

(A +

I)X

=

C,

B)**c

where

I is

order

n

the

identity

matrix

of

xK'e (A +t) we 35.

Ake

iE =

1D

—-

BX

AX + BX (A + B)X

No Lo)+ uu

x =_(al4.B)-1(c + D) Bilis

The

matrix

equation

fe ea ili

First

2

we

for

the

given

system

is:

a ]

X,

compute

k,

the

inverse

of 2

a

er

2

hi Py OOIIO 1

MAL ‘

"| -1)R,

greg

ste

1

2 001

i

50

Ge

0-001.

17-1

a

u

+

R,

a

DR

2

(-1000)Ro > 1R,

EXERCISE

4-6

169

by

1!

23007

Ol

ged

k

in 1000

0 | -2000

4 Pes

=

2

eae «

SS:

Es

Bras

(ay

39.

The

Nee aes

xX.

&

matrix

Fe sit 6°16.) Sons

=

2000

2

1000

-1000

2000

ere

1000

-1000/11

2000

ee

1000

-1000/Lo

2000 1000

apee 2 p -1000]L1

equation

rH | Waco 6 il) ated pe re

Pts,

&

-1

We

veeX.

2s ve

(-2.001)R,

ia

for

=

t

Ge 3 ae O76

equation

the

4

X,

1000

a

k| ||

-1000)LX,

0

pees dd?

eto

2008 F202, 0611, sx, = Lago00 -1000

system

135

ae XG and

is:

for

the

0.4

. 6-3 0.4

a

18:42

Xo

Pps}

given

2

145

xX

—Oe08m

HSSterimeoeod, 75 sOmioe

x, 3 = -15.2

250 ies

SYSTEMS

=

given

Bala SL 22.9

elle

CHAPTER

& 2000 |“ |

5%

1000

-1

Sage

system

is:

125

AD fF wo FP wu” ~ @omown7a)

170

4

0

=)'Sir2

matrix



135 ss 75

i

=

The

>R

i

: 2 ee

18.2

41.

+ R,

1-1000

+o

ce

-1000

oe

0 | Mi | 410607

er

0

OF

LINEAR

EQUATIONS;

MATRICES

—0.44) 1] 135

-0..68 | 0:84

[1155 75

3 eee

Gee 6. 4

bert) 7

Soh 1 250 3 195 1s

rst Pp

Cg ae ieeae Bee) AVERLT, BE 2

-0.25 shoo

145 125

.0.37) -0.4

0 0.5

0.28. 0.4

-0721 O12

|[i250 4.195

=0,16 +0.04 Ol Sib seat

. 0.28 Los

tei4s 125:

4

24

ore

24

big

=

5

and

a)

xX, =

15 43.

Let

The

-2

x,

= 15

x,

=

Number

of

$4

tickets

sold

x

=

Number

of

$8

tickets

sold

mathematical model wet x, = 10,000

aX, + The

as}

3

8x,

=.

,

corresponding

is:

k&k =

matrix

| alse

Compute

the

inverse

F ait MAG

tae) R, +

R, oad R,

aa

Concert

*] 7

2

ae 1:

the

iL ao

3

60,000,

coefficient

[1 Lad

7

Return

68,000

is:

matrix

4 é ad | OO oe

R,

(-1)R,

a eae

+

A.

_

R, >

R,

_t

ne

xi

Thus,

A? =

|

-

a

$56,000

2-3 eae

epee

equation

m > 1 crt ecko a

Mipotls2 0).

of

56,000,

: aa

-1 9 0FJL56,000)"* 14, 000

Thus,

6,000

Concert

2:

$4

tickets

Return

and

4,000

$8

tickets

must

be

sold.

$8

tickets

must

be

sold.

$8

tickets

must

be

sold.

$60,000

*] 4 2-7 Teo ee " bee Pet 2 tl60,o00) 15,000 Thus,

5,000

Concert

3:

x, | _ x,

a. -1

Thus,

3,000

$4

tickets

Return

2% fae ge 7 JL68,000 1

$4

and

5,000

$68,000

tickets

y eee 7,000 and

7,000

EXERCISE

4-6

171

(B)

$9,000

Return?

x,| 2

2s

x,

at

=,"

This

is

$3,000

a

*] x,

possible;

eS

1

te

is

Fix

9" 000

=7 7504

x, Cannot

not

negative.

k.

=

Thus,

gy

Since

x,

(L=anaes

x,

cannot

a:

20,000

22 (0),

negative.

k4

-

ae t

and

20,000

20,000 -10,000 +

=

-

-10,000

-10,000

k4°

+

-20,000

ks 22 (0)

|

tad taal od

AE 0 ae

X,

be

Then

alee] ohh k

is) =

|pate : ee

a lns000}

possible;

return

Since

be

Return?

x,

This

"aril

not

x,| 2

(C)

nina ||eeren E anes

80,000

+ Ae: 0

k => 42

10,000

k2

40,000

Thus, 40,000 < k § 80,000; any number between $40,000 and $80,000 is a possible return. 45.

Let

Ay

=

number

of

hours

at

Plant

A

and

x

=

number

of

hours

at

Plant

B

Then,

The

the

model

frames)

+

8x,

=

k,

(number

of

car

5X,

+

8x,

=

k,

(number

of

truck

corresponding

matrix

equation

frames)

is:

ds % ie x,

k,

compute

the

84,

5 First

we

ie

8 |1

i; E

474

eRe

a

Ba

SV

is:

10x,

te

ae 10%

172

mathematical

(and

CHAPTER

om.

bo

71

4

SYSTEMS

inverse

OF

of lig

|

|i E On

mk

(-5)R,

+R,

LINEAR

EQUATIONS;

OR,

4 | i5

eee

a

ah ASa Z4%,

MATRICES

>R,

|

including)

10

Thus

for

For xy

For

order

|

2

ss.

x,

order

Let

Then, Rigo oie ds

3

=

X,

>



-5

k,

4@1L%,

Ea

1600

ale

25

x, =

280

hours

at

Plant

25

hours

at

Plant

B

Plant

A

=

1

-5

heen

peo

Bit

x,

-=SLGOmMHOUGS

at

xy

=

80

hours

at

Plant

A

and

te xX, =

225

hours

at

Plant

B

3: =

=

-5

ay

and

2: 5

xy

:

1:

2

1

a

ie

:

-= bites 7

a order

z

=

5.18

Now,

x)

oor

ee

x = Se 55 x, =

-
R, (-0.02)R, + R, 9 R, Ee 0.5 | 5 4 § ep he a °| Geers Mi Or an Oa & -2 20 20R, >

i i pee (A)

R,

(-0.5)R,

or 6 ie ON eed” | FV

Diet

1:

fie

Protein

-

60

Diet

2;

ounces

6

X,

oz,

20

Diet

3:

A,

R,

6 iad =a) 20

Fat

10)oz,

Z0

-

80

6 oz

ounces

Fate

4

ounces

of

Protein

-

|= fsa Thus,

mix



>

of

mix

B.

of

mix

B.

of

mix

B.

4) oz

22 |aa 4 (23

-2

Thus,

of

Protein

aig May

0 ounces

60 mix

10

of

A,

60

ounces

oz,

Fat

-

A,

100

ounces

faneediae

mix

6 oz

e]-(5 sl)-[2). sm a Protein

-

20

x.

x)

CHAPTER

oz,

Fat

-

is not

4

-

14

oz

?

_—

-2

This

174

hae

lee ee Thus,

(B)

20

+R,

A:

20J1L14

possible;

SYSTEMS

OF

LINEAR

240

x, and

x, must

EQUATIONS;

both

MATRICES

be

nonnegative.

Protein

-

20

1 -| 6 Ba l-2) x

This

EXERCISE

oz,

-

10z

?

tale ‘ asap se f20sl ad . L-20

=

is not

Fat

possible;

x, and

ae ee

x, must

BS

both

be

nonnegative.

4-7

Things 1.

to remember:

Given

two

industries

Cy

C, and

with

Cy

Ci\a 1

a

x.

Yi Uo ete, perp

where

as; is

worth

of

the

output

equation

d

=)

Technology Matrix

matrix

Cy,

dy

Output Matrix

input for

Final Demand Matrix

required

C;.

The

X = MX

from

C, to

solution

to

produce

the

a dollar's

input-output

+ Dis

x = (I - mb, where

1.

I is

the

identity

40¢ from A and output for A.

20¢

from

s.r-m=(? Real Got) 10.2) Converting

the

decimals

matrix,

E are

required

all “oa” to

fractions

SN

=

pa 5 Ry :

mets

:

+R,

=

(I

=

M)~*D,

2

0.4

0

016

-0.2

“|[8|

~H2

inverse.

a dollar's

calculate

the

worth

inverse,

5

re

Thus,

wlH wir

me oO

|

re sy ps

i3

4202‘ |ana r-n

0.9

x.

at

a

we

I

652,7,

OR,

thus, r-m=|

ae

to

al

7 Siok

produce

an

| : =3

0 >R,

to

I - M has

of

Bes ied |Loove One :

23,

assuming

Ea

9.2

and)

5

/

2

6

Sue

he w|e

Ro tk,

have:

OR,

£.8

*-Or4

i

Q4ur se

oc,

=

16.4,

Me Seok

ae

EXERCISE

4-7

175

7.

20¢

from

A,

Gollar's

1, 92.1.0 O°)

10¢

from

worth

DAioebvg “a Worl Oem

11..X =

of

B,

and

output

ousiel tacl-o0.20

10¢

for

one ; “Borer

from

E are

“O42 O.ic] Se (Ont

26s )}=|' 022" 0238.

90k4 1518s 0.22.

sn

oe

agriculture, ba1 lion.

$18

Ome 5 50 TSANG HIe( aeeoUias +

6

billion;

ise eee fs °|“ be? Crash) Ouaig) converting

the

decimals

i

‘ 1

0 4%,

4

18

On

Sheet

bot?

Oy)

4

|e

8

:

ee 7

®1 + Fo >

Thus

ee 1

ONS 1) Ole

OV

0.7 }-0el F°=0 53 =0'2) |a 206, 20k -Qx1 ,-0.47 Ong 10R,

> R,

10R,

> R,

$15.6

4

SYSTEMS

LINEAR

7

|

0

1

Ppurs Ble



10oO

5

i

O 5 a8

85

Fy

Ro

BiH @lw

KS) I

P/O Uw

aak,

> R,

aa

146

Saeoll2s Pai Ome TH0sae

Se" 0 Ga Ousycd)

|S

46

0.8 2 Or 2) =.| hot Ww ee =

On 7 =O =0.2 059° —O81=0-1

S13 9, 22 Py to R, OR,

OF

energy,

1

| : 7

-10R,; > R,

CHAPTER

and

0 pile -||241

OL ies On) Or*

billion;

|

2

06>

= [5 O Ol) 1,

building,

tl | 16 = ig O76)

22>M=|'0')

5a 22.4

fractions.

mn AO — 70 +

R,

ie

to

3

7

(1.6)5 + (0.4)10 + “Ome 0222)5at) (1018)10 tnlG ey ie (0.38)5 + (0.22)10 + (ieee

ay -| 0.8 re] woe Oe Sten 07

2s 10

awow

-|

176

a

Omees0.2 =—0.2 insomee O.9°~ 0. L -0)52 SS)

2751.4 ve eee 1.9 + 2.2 | sPis.2

15.

to produce

M)~*D,

ey Therefore 7| 5 x;

Thus, $22.43

required

B.

EQUATIONS;

MATRICES

"206 -=00p .9

10 0 FO O1£10 £ 0 08 se Ove

+R,

>R,

©O _——— N\o

af |

ie

I ae

Posy (-7)R,

=

1 0

On

="

oO

al

1

-9

0

OF

Mahe

— 216

0

10

-20

oot dh @OPM

0

76

Cys ee il

>R, +R,

0 -10

R, > R,

AR,

=1 362

-8

OO

Veo

60

0

0

0

O92

10

8R, +R,

SAM

QO -10 e1:0

srt) PA

0

0

-2

OLeP

2R, +R,

ik

ree)

-10

ab

=LE820

0

Q

=7 518 -1.82

0

0)

45744

10

S200

70

0

>R,

45.44

a

oO”

G7.L8

0

-0.91

[he8)

ie

82

0

OS9L.

0

0

al

O22

"07.16

-8.18 1

82.

aa

WM AY

Oo

=0".92 O91

~ =8

08

eZ

je. CaS

eae

%3 73

i

0

0

1S

OBA

OAS

a0

al

0

One

doe

0.4

0

0

1

O22 a Oe Gn

ele?

1.82R, +R, > R, 7.18R,

+R,

>R,

ess!

Pe

02.247

10258

OO, PesAOZA62

1222

(2 = MO) =| O8e)

alan

DPSS}

ONAL

Beak = (2 - Mo *D=|0.4. OF22)

=

17.

(A)

The

40

D=

bp

.

0.4

0.16.

1.28

20

5 10

+

(OF: ZaySS

(Ons) 2

Osa

(e125) Sie elas) O

(GR22)210

+

HOES)

matrix

0.8,

M =

Smee

gas

:

input-output

COs Saeco

0825

ALP

:

The

woOhe sys:

1.2

(1758) 20

;

technology

love

Glee? 2) EO

and

the



matrix

38.6 Seif)

equation

,

is

Li] 74 :

final

X

=

demand

MX

+

i

matrix

Dor

x

X=

he

Sale + halt where

The

solution

0.4

oe

0025

E 0

oe

ee

X =

40

is

X =

(I -

M) WD,

°| e-3 Pel ut

0.7 -0.1

0.1"5

provided

OG:

0925

-0.1

4-0.25),|

2

a Ah

ORS

0

fi

: ie -0.25 | 1 al

aah

53.

-7.5

O)h

I - M has

aa

an

inverse.

Now,

O75

ets:

Httate kK)

EXERCISE

4-7

177

a é

i

0.1

:

at (-0.7)R,

=O. ass] It

+ R, >

0

Ry

< ff -7.5 | 0 ee (0.2)R, > R, 07

Ss

1

~ kK ide e. S E 6h

atte

gaat

(7.5)R, + R, > R,

Te : iv a fees [tab ave 2) s ee ovo"fig 0.2 1.4JL40 64 for each million;

sector is: Manufacturing:

$64

million

If the agricultural output is increased by $20 million and the manufacturing output remains at $64 million, then the final demand Dis given by

RET

ap

are

The final demand final demand for

19.

Pater!

1 0.2 tis ool a.s si 2 | 6.2 olace

Thus, the output Agriculture: $80 (B)

7

Let

0.7 -0.1

Pee 0.75dL 64

4 i 38

for agriculture increases to $54 million manufacturing decreases to $38 million.

x

i=

total

output

of

energy

Hy

ie total

output

of

mining

demand

matrix

and

the

0.4x.

Then

the

final

equation

D =

C we and

is:

i

the

input-output

matrix

p2

* vs Gee fall | Hew X, This

0.4%

0.6x,

0.4x,

=

of

equations

0.3x,

total ouput of the the mining sector.

element

to

produce

be

a number

CHAPTER

3 4%,

x, =

Thus, the output of

178

+

0.4x, system

is equivalent to 0.4x, - 0.355) a0

or

Each

aexs,

the dependent 0.2x, + 0.3x,

which

74a

OFS

yields 0.6x, =

4

of $1

a

technology

dollar's

between

SYSTEMS

OF

worth

0 and

LINEAR

1,

energy

sector

matrix

represents

of

output

for

inclusive.

EQUATIONS;

MATRICES

should

C;.

the

be

75%

input

Hence,

of

the

needed

each

total from

element

Cc;

must

23.

The

technology

matrix

The

input-output

Ke

ie

The

solution

=|

matrix

OF

2 AORZ

Oz22

OA

equation

and

the

final

is X = MX

demand

matrix

D lia -

+ Dor

x. ih

gd,

ae.

+ ee where

so%

10

is X =

ee 1 3 =) a 9

~

Ge)

}

1.

provided

0.4

i5, 6

+R,

&

0

1

me

+S

Thus,

(ah =

ear

Be

=

;

2

oes:

10

10

2g

>,

2

j=

:

2 2

0

:

a

Ro +R,

OR,

and

1n8

0.4

we

20

1.

Sip

26]

the

output

for

technology

matrix

M =

D = ial The

mj

60

xX +

e.

each

sector

ei

0.30

0715

input-output

where

X

is:

coal,

$28

billion;

steel,

$26

i

0.20

matrix

eit

=

w

10

provided

--

Now,

Spalted o 22]

Therefore, billion.

1 5 x=!/, 20

Wet

inverse.

= Sao toad ay 0 a¢.4 Cinehiy wer le

Ee 5k,

m)~+

an

aes

2

>R,

has

a

|sal ea 5 bar Gard) 6

Bil:

- M)

0.6

2

0

Matrix

(I

ied chy

~0.2

2

1

The

M)~1D,

a] ab #3 > iL 3 at ar hes l. 0.

R,7R,

ge (e

25.

(I -

anh

x,

be i E he ed -| 0.9 eae

10 9

X =

+,

The

=|,

uo

a

=

| and

the

final

demand

Je ean) oO

equation

solution

is X = MX

is ‘X=

+ Dor

(I - m)~*p,

es

(I - M) 1 0

has an i

inverse.

Now nt,

Ope

a

* 2

°|‘4 LE 20

|a

3

3

#20 7

io

0

PR aR AGsAR

met. 3

at

0

10 5

ee - 30

: :

20

i

RR OR, R,+R,

ae 5

3)

8

to foe

|

°

ce

0

al

TOM ate

7

3

bei? Al

0

2

z fy

| of

Dns 5 Rp > yarRp

4

8

Ry R 07 eR Bea

EXERCISE

4-7

LHS.

Thu

lacked ®) babes

s (r'-m7

Therefore,

Ue Wiun|r co |

the

output

Agriculture—$148

for

each

million;

sector

The

technology

matrix

M=]0.2

10

148

80

146

is:

Tourism—$146 0.2

27.

60

0.2.

POR4)

ORs

0.1

0.1]

ORI

OR

million and

the

final

demand

matrix

Dae 20

The

input-output O25

x = be

MOR'4:

0.8."

ot

20

al

0

0

(ER

1

Of)

0

0

al

"0,0 W=022,

(I - mM)1D, O22" i

provided

I - M has

OR 4ar 023

0.8

-0.3 -0.1

—0 29> =0'.1

0.9

0).12.

0.32%

OPEL

it

0

0

8

er omleemes meas -2

inverse.

0.9

Ore

(0.25

an

-0.4

ORR2 a Oe

S051) 0h 1009) 1, 0!

10R,

+ Dor

es

Ore

is X =

-04.4%+=0%3

-0527 “0.2

is X = MX

10

Ode

solution

wa a

equation

LO.3

oe eS

OZ e Oras

The

matrix

-4

-3

10

oe -1

>t 9

0

0

Oo Sor Ores OF

70 10

£

> R,

& 2)Ry > Ry

10R, >R 10R,

> R,

[110 0 0 Alar eg ea 00, Sao eC ee

84

6-46

“et —2".

i eer 9 sO =5 cummed Gu 3 24°10; 190]

9 —3)

1)

S)

0

OF

ato

-2

=

R, OR,

9

0

SG 0

Of

0

(8) RK, +R, — Rp

2R iF By R3

1) 0 OR

9 = 5) 5)1 32 10" b 10

0 OF

9 ok 1Fo

lO)

9QR,

CHAPTER

+R,

4

+R,

Oa aa)

sOmees 0

2 BRS

R

1 al 0 820.7 Te (-32)R,

180

R, =>

Onion9

taoaeee

aaeo 40 Oe).

So

iy

don

On

1t

t.8.

-5,)

0

m7) all

10). 0

40 a

0 ak

R, &

geeeate

Line

=4 eh FOR

ep Ose.

0! Om

1 Zama

eller 0

Jey Ose

pl 95

7R,

0 O

237,

OR,

SYSTEMS

OF LINEAR

EQUATIONS;

MATRICES

R,

Gesi

> 95

Le) 1 Sas

Now,

mee) ain) On

X44

||

R,

(ft -/M)- =)

ag

IOs

Omer

Tee

i

te

0 See

=. 28

0.28.11

15

O68

2h21232

81

(iG) a0) +)

(0'. 78)al-

KOmA BO! +s

(1.. 32)

(O24) 10

(0432)05R

$40.1

technology

matrix

The

input-output

is

matrix

M =

Set 5

(Ome 220 (eZ

ert aS

equation

0naeHa

29.4 34.4

manufacturing,

910 Sivan

0.07 0225) Onda

SZ

40.1

(le28)i2Z0

billion;

O05 The

F0832. WO s

BORA r 032s

10

4.32...

+

Aly

S102

(0 162

Ona)

Therefore, agriculture, energy, $34.4 billion.

29.

Pel a OF W Oke OS

0.26 qr- and

Ora

Oeee Ola 7:8

(OP

1.32

Mie AT-M) D ="'9.4

{OMe

OD

Gea?

ies6geO.Ome O62

Sale

On

$29.4

billion;

and

aOR 23°" 07.09

0.12 0.15 0.19 JRO Siam OO Sammons “OLS Cr2:Same Ores6

is

XK =

MX

+ D

A

where

X =

7" and

D is

the

final

demand

matrix.

Thus,

X =

(I

- m)~?D,

M.

0,95

Phare

How,

tT - uM =|

0-07 -0.25 =O

—0 alvin

0.88 -0.08 2 0) 1.9

S022SeenOF109

-0.15 0297 0.28

Lev SameO eStpem

Onsde? 4.0%. 4.0

OPA Nessie

S95 Wn»

x =| 0-26

1.83,

Oe SiO O.Ah

0, Adie 0.48

1:

65

D =|

41] 18 Sail

ana

Agriculture:

$65

billion;

Manufacturing:

$88

(I

-

m)~1pD ~ | 83 qal 88

Energy:

D =|

48]

$83

billion;

Labor:

$71

billion;

83 99 $97 billion;

Labor:

$83

billion;

billion

32

Year 2:

|p

a0) 66 aussi

PAS Year

-0.19 9082 0.84

81

ana

(1 - mtv =|

Dat 33 Agriculture: $81 billion; Energy: Manufacturing: $99 billion

97

EXERCISE

4-7

181

55

nae

35 Agriculture: $117 billion; Energy: Manufacturing: $120 billion

120 $124

CHAPTER

y=)

and

-

(J=*P' =

4 RS REVIEW

eR

ne

127

(I - M)"!pD =

Year

PT

ES

I

EEE

ES

billion;

a

EE

tT

Labor:

ILE AEE

2

point

of

intersection adie!

a

2

+

4x

256 pe

zis

ae ‘aie

Gh

-4= 3

is the

fFThis

solution.

(2m 1

into,

(1)

(2)

equation

Substitute 2x

The

billion;

AES ELL NEE

2.

(1)

26

ee: Y.= 5x+

$106

Substitute

x = 4

(is)

anton

yro2-4-42=4

(aaa)

Solution: x = 4,'Y = @ataaa

0) (A)

-

is not

3

second row is not to the right [condition 1 in the first row. R, o

(B)

form;

ek 0

in reduced

the

left-most

1 in the

of the (d)]

left-most

R,

1

©

2

is not

‘9

3

3

element

in reduced in

row

form;

2 is

not

left-most

the 1.

[condition

nonzero (b)]

3%, gies) hi 0 0

Fi

3

Rw

y:

is not

1

1

3

second row is not the only non-zero its column. [condition (c)]

(SL)

5

182

Ome?

sta)

a-|5

Ba

ei

aus

(C)

AB

is

BA

is defined.

4

defined;

SYSTEMS

Rat Rie

form;

the

left-most

1 in the

element

in

(4-3)

Ry

4

|.e-| -10

A> 46-2" x" 5: MBs 3EK+2 ao, = Shy, ais = 2% b3, =/—1, not

in reduced

hap

(A) (B)

CHAPTER

form.

is in reduced

a

10 (D)

|2

ceecemme

the the

7

by» =a

number number

of of

columns rows of

of B.

A #

(4-2,

OF LINEAR

EQUATIONS;

MATRICES

4-4)

Ei -2 1

‘|. E -2 | ‘|i re

-3

Z

(-1) 8, +R, ~

is 0

‘ 1

calculate

as

|? 1 B=

-1

-2

the

(2)R, +R, x,

inverse

:

z

0

($1) RoR,

‘| Therefore, 2

or

A+

0 R,

a

=

of

Sr

the

3] ona [1]-[

Sree 2

ri

ifpe 2

Be +21:

ist

4

ye)&

coefficient

ig ala

1 +2

>R,

=

8 7; 2]

matrix

xX,

i

=

Sy

A:

2

Ae

4

(4-4)

(4-2,

S62

ella The matrices B and D cannot be added because their dimensions different.

of > af > af! 1

AC

is not

defined

Ofecris 1

gyall 200 40713" 200 eal 23-400

ie

1,400,

6

200)

Solution:

Bon

EAA

Bs,

4 5

1

7

are

| 10)

Z

Ss)

O44

1002 1

0

0

edit oeOle

SAN

cll

5

+

0

Of

DON

meri

4ii0) ih

2

ee

3%

wand

40 30

2

0

5

3

7

2

1

4

5

$0),

0

1 ay

4

3

1

4

we dl gO)

0

tac

OR

p0ebed

~

1

5

49 430

ras

4



0

CHAPTER

4

0]

ty

20

R,

a

5

0

0

0

> ®

3

Olbe

ete

tM)"

ip

it

1

3

az

4

0

0."

70

iien

a ae

aes

45%;

7

ee)

5

0

a

0

0

13 2 #2

Se



yO kee ew

Ory

J).

0

Rieke

OL

Ae

eee

(SES

él, 2R3

SYSTEMS

OF

+R

beer

OR,

LINEAR

EQUATIONS;

O eIX nin

3

_i

2R,+R,>R,,

190

0

Oe

27S

53

2

Pe

cart

Lano-so ll er

0

wy

0

tine

5

0

(-75 }R2+ Bs > Rs

~

9

4

4

a

12h

0

>

2 (-3

-5

Gl

1 4

2

R, OR, 0

=5

40510

- Ry

“ae

(4-3)

2,400

OE

0

Oo

-20

io

a

Won

tes

Ey

5

ou | 2 5



eo

= 1,400 = 3,200 x, = 2,400

BR 200)

0.3

e) 7

1

aa

7;

0-2

xX,

O1/=|5

Ss

fo

Bee

x,

4

2

0

To.

2 4ee

WhO

1

34.M=

aren

(-9)R, +R, > R, :

MATRICES

Sle b

ie

5|~ uly o

13

7

b}

TT Thus

(I

-

yt

M

eee. eR

35.

0.4

ve | =|

One

LG

5

GlL*YR0Rs

5

i273 =10.2 Oi

fr = mp

1.3

I SL5,

10

Xe=

eC)

0.7 || 40 6. 023. 2ZOun 0.8) «=~ 4. AO

(A) The system has a unique solution. (B) The system either has no solutions

81 1.49 62

es

or

(4-7)

infinitely

many

solutions.

(4-6) 36.

37.

(A) The

has

a unique

solution.

(B) The

system

has

no

(C)

system

has

infinitely

The

The

third X

Each

38.

system

Let

step x =

Sete

=)

in

the

(A) C(x) R(x) (B)

step

—SMX

in (IT —

(B)

(A) M)X

is

number

6,480

solutions.

incorrect: not X(T >—

mM)

(4-6)

of

machines

produced.

+ 22.45x

sarc):

59.95x = 243,000 37.5x = 243,000 x = 6,480 If

many

is correct.

= 243,000 = 59.95x (x)s

solutions.

+ 22.45x

machines are produced, C = point (6,480, 388,476).

R =

$388,476;

break-even

(C) ASDrOfeoccurs) Yy

1f

x >16,/4807a

loss

occurssitt

x
R, (-0.02)R, +R, >R, 100R, > R, , 2 2 |) 7:00 °|4 B 0 | 500 cial 0 1] -200 100 0 1] -200 100 i}

°| ey

(-2)R, +R, OR, Thus,

the

xy

Hence,

a fe ‘ x, Now

192

CHAPTER

the

4

matrix

-200

solution

500 -200)

500

re

=200

“ 260)"

100

is:

hee bs |

=

-900

10

1000

+

=

250

tons

of

ore

A.

oS

100

tons

of

ore

B.

-

be 100

2aghl 2a 7 ie - ae r ee 2OCdLeS -460 + 500 40

solution

SYSTEMS

is

rallead

500

=

X,

the

Again

inverse

OF

is:

xX,

150

tons

of

ore

A.

5)

40

tons

of

ore

B.

LINEAR

EQUATIONS;

MATRICES

(4-6)

41.

Let

“Sige

number

of

A

trucks

trucks

xX,

=

number

of

model

B

xX,

=

number

of

model

C trucks

Then

X,

+

and

18, 000x,

+

or

xX, +

xX, +

9x,

The

model

+

X=

We

22,000x,

X,

+

11x,

+

augmented

+

es

15x,

30,000x,

=

793007000

12

=

matrix

5y(0)

corresponding

to

this

system

is is

:

1 |ofl

EL? Now

ie rhs |ie é e Saee

15

(250

HOR

0

6 | 42

0

iaR, > Ry

(=9)R, + R5 > 1R, The

a - 2

2

corresponding

system

of

qo.

0 ex . E

0 -2 Fe

ul

cl

1

eal

Now,

i. Sa Lg pee 5) + 3x, = 21 since

persis

-/ Of

For

5: 6: 7:

sts= ie i] t =

42.

X,,

(A)

Xj,

equations

t =U5066)

1 medel

A A A

3 model 5 model

x, are lor

600

6,000

1,400

Supplier

A

-(§ 1620.) total

SOOM

The

These

Zia.

Kwe= Oa 21 x,=¢

integers,

rs

we

9 SE must

have.

7).

6 model: 3 model 0 model

%Bstrucks, B trucks, B trucks,

sC"trucks C trucks C trucks

(4-3)

of materials for each alloy from also defined, but does not have an this problem.

300

ORS

0.70

att

6.50

6.70

0, 40)

820450

Supplier

5S model 6 model 7 model

B

$13,930]

costs

of

Alloy2

materials

from

Supplier

A is:

from

Supplier

B is:

from

the

DES ESAe Oe asics, 5010

total

Stipes

2k

53 Waa

$13,880 The

are

nonnegative

truck,’ trucks, trucks,

bie

Sb

is

luti solutzons

The elements of MN give the cost each supplier. The product NM is interpretation in the context of

at.

(C)

ana ath the

and

0

(1), FR, 7? Fy Pe

a

A Sa 50

costs

of

+4 515,930

values

7 Supplier

4

can

be

| 7,620 13-880) B will

materials 521, 460

obtained

matrix

product

dah 13,930

provide

the

materials

at

lower

cost.

CHAPTER

(4-4)

4 REVIEW

193

15

0. 20

£0: 25

0.05]

6835

2 4

The labor LSS Omoor

cost

for

one

model

B calculator

at

the

California

plant

(B) The elements

of MN give the total labor costs for each calculator each plant. The product NM is also defined, but does not have an interpretation in the context of this problem.

|

(C) MN

44.

Let

x

and

X,

all

0.5

Ui. 20

0325

0.20

invested

at

5%

at

10%.

Go

1

|

1 Od

Hence,

The

xy

matrix

|

0.1x,

1

0.05

Dice

we

+R,

=

$2000

Lagi

0

dl

CHAPTER

+R,

5%,

$6.35

S5!,20

given

above

‘i

il

it

5000

0

1

3000

si se

%2 7

X, =

: inverse

|

Model

A

Model

B

(4-4)

is:

(-1)R, +R,

*®,

$3000

at to

Fe

1 0

2000 i

3000

|

the

|

>R,

10%.

(253)

system

||

in

Problem

35

is:

5000

20

SYSTEMS

400

OF

il

of

|1

Oin'O OSA Ube 0. 05

of

i matrix

Oop)

0.05

aes

>R,

inverse

210)

4

et 0.050

1 0.05 0.

the

| EL I I 194

system

corresponding

the

0.05

mrs

oo 200

400

0

Si

the

|iy; | ak

the

Texas

SB (5S

5000

al

al

Thus,

at

equation

i

(-0.05)R,

T° 0)

>R,

compute

|

for

|q

40 0

Callus.

5000 400

2

matrix

x

1

Now

x

| 5000

(-0.05)R,

45.

+

augmented

0.05

4

invested

Por

1

10

amount

0.05x,

;

12

amount

Then,

The

15 OF 05 et 12 0 ; 4

at

E-00 05 ®2

1

> Ry

coefficient

LOVO0G.; =), DOOR

LINEAR

0

I

34 1 °|-[2 i 2 a4 Pca ZO LD, e (-1)R, +R, R, 1 0

matrix

is

| 8,000 I 3000

23; 000

EQUATIONS;

2000

MATRICES

aoe au and

-1 SO

20

Boe 1 Rk

ae |: 2 -1°°'20 oo)

is:

matrix

°| “1

A.

° 2 a PY 420

Rk,

-| :

equations return)

the

Ot

PR, >} R,

of

5000

2

=-1>

20

k = $200? x.if

..

2

Xx,

-1

This

is

k =

$600?

tut

X, is

|

20

not

-1000

x. >» Cannot

alee

=

x

=

600

be

Al

negative.

x, Aees2,000,

x, © s7fo00

7000

possible,

k.

007 x,0= $6,000) ix; 2 $11,000

200

x, Cannot

be

negative.

Then

2 Belle z pas ong : a =i | 20)tbek -5,000 + 20k

xX, =

Since

Ge :

possible,

a return

x] x, SO

not

-1

This

a 20

2

xX.

Fix

sf

10,000

x, 2 0,

we

-

20k,

have.

=

3

-5,000

10,000

-

+

20k2

20k

0

20k Ss! £0, 900 ks 500

Since

x, 2 0,

we

have

-5,000

+ 20k2

0

20k 2 5,000 k28250 The

possible

annual

yields

must

satisfy

250

< k < 500.

CHAPTER

(4-6)

4 REVIEW

195

47.

Let

x,

number

of

$8

tickets

X,

=

number

of

$12

tickets

x,

=

number

of

$20

tickets

$8

tickets

Since

the

number

of

must

equal

the

number

of

$20

tickets,

have yo =. Xq0 OF

Xe

Wirz ian

Also, since all seats are x, + xX, + x, = 25,000

Finally, the return is 8x, + 12x, + 20x, =

Thus,

the

system

x,

LY 1s 6

Soy

xy

+

X5

+

8x,

+

12x,

+

First,

we

(-8)R,

=

20x,

the

eo) 25)

000

or

al

8

inverse

of

the

06

20

cme

1

R,

Concert

Oe

sche ctevis

Hab

x,

+

2

Thus | % | =|-3 =

CHAPTER

25,000

eA

coefficient

R

matrix

%d kl) Se

DORE Si Dien

2 Ftarns7 at iim

100s

0 3.aaar

DR,

2

1

Thus,

the inverse

Lean

is|-3

Yoyo eis

+

=e

196

30

=

7

REE

3

As

1:

=I x,

0

xX,

(-2) +R, R, OR,

sae

0.:

ail

12

R,+R,

70-1.

fio

a

le 0-2} ft | 6.) ING. Sees tao i ricwese | eo |@) (-12)R, +R, R,

O27 SY Py, 2 igheieon Peer a)femeewa, Omen

Oca

required) .

OR,

1 23

Two

return

is:

=e

the

(Qi Steet, ta

~“i0° CM

R is

Uae

Ta tovtess [co we ge Ay Oot Di i seni OR,

+R,

(where

equations

x,

compute

(OF 20h Aromat (19. SOR (-1)R, +R,

1.)

of

R

sold

1

4

SYSTEMS

ee) xX.

=

257,000

Eb

S351

g

7

--$]|)

-3

OF

Or

0 25,000 | =]

2]L320,000

LINEAR

EQUATIONS;

Dy

Earns | Ie

1

1

5,000

15,000 5,000

MATRICES

alt

X5

0 =

25,000

we

and

=

5,000

$8

tickets

x, =

15,000

$12

tickets

x, =

5,000

$20

tickets

Concert

2:

x,

eae

x,

ae

Xo

+

O

x,

=

25,000

or

fo

he

A,

4

Swe aL

en X,

0 =

25,000

=

25,000

4

an

Bin

Thus | x, | =|

4

0

-3.._7..-¢.||.

25,000

x; and

13023

=

7,500

$8

tickets

=

10,000

$12

tickets

x,

=

7,500

$20

tickets

Xx,

°

x3

4

2-3

x,

a

=

25000

or

7

4

0

7 -3]]

25,000]

M3

=

10,000

$8

tickets

5,000

$12

tickets

x, =

10,000

$20

tickets

Problem 47, if it is not tickets and $12 tickets, then x, + x, + x, = 25,000

8x, + 12x,

+ 20x,

k

augmented

matrix

is:

a

ibe Xo

0

10,000

=|.

5,000 10,000

required to have an equal number the new mathematical model is:

(return

of

$8

requested)

i

k

a |ge

puei2 . 20

k

1

oe

1 (-1)R,

: E

1

QO)

4

k

(-8) Ry ce

:

-L

od

2. 20)

5

Om A,

(4-6)

From

ie aaa

ee al.

11L340,000

x, =

ey

7500

Sorry: 20 >

Thus |*|=]-3

The

|-10,000

3:

x,

x,

7,500

|=

330,000

x

x,

48.

7

x,

Concert

and

bere

1 | 25,000

m

+

= 50,000 R, >

25,000

12.1

ee

4 Ro =

R,

2

tears R,

| 3.)

|

| 2

5

Or

2008000

ood

|-¢ +

953

pe

= _ 50,000

R,

CHAPTER

4 REVIEW

197

Concert

1 QO

©

0 FT.

eke=5S8207000-

-2] 237

-5,000)| s0rEnG

= =

x, = 2 - 5,000 x, = 30,000 - 3t

,

t

ae Since

X11

X, 2 0,

Concernta2a,

1 eee Since

x,,

Fa Lo

3:

k=

The

x,,

satisfy ==

t must

technology



we

lis _

-;

x

=

Ze

=

35,000

-

xX,

=

¢

tickets,

3

2)

gefou

0

li

of

integer

t $ 11,666.

(4-3)

ack

Pet

5

2

AR

Pe

(896 |

24°

*

+R,OR

Be 0.60

- mM

aiyeeo

1

AO

I

wees

odemebaer

oe

oe

oc (h 2h

a

7

huss

Dd:

for

the

output

xX =

4

and

SYSTEMS

ie i 2

output

agriculture

peg

4

x, =

CHAPTER

inverse

Gar

2

198


R,

Peel P

(A)

5

R,

X,

11.

4-0

Qyez

Grea

7

oro 1

0

0

il

form:

is:

a = 5

a

(minimum)

ete

0

i pivot column

EXERCISE

5-4

235

(C)

His

$s,

8

-

s,/1(@

Py

1b

oO

CY t0

S,

3

0

i:

OF)

1

Pils

Oi;

L0F

| te

ih

21. Fo) © 0.8 a)fot

5

8

Oy

s

0

1

O

{10

3

ees,5 a. |

se

(-1)R, + 2,OR, 30R, on,

X,

acu ~

eats

$5]

0

The

0

simplex

Faas

So

pt

60

15:

tableau

S,

2

S,

pps

pivot _,.

1g)

Oy

|e

bial MOR

80"

for

1

5 So

a. |sp

this

Enter X, Ss,

x,

al

i)

S,

S3

0

0

0

lame’

oye

Pag

3

SA riOl

aL

©) OMPOUMBIE

oi.

gm fost or

eee

Thus,

is:

|10

deea

|10

gk

[Note: The have been

CHAPTER

5

LINEAR

+ R, => R,,

AND

and

40R,

+

ha

m=

mmOn

eh

|= =) 3. faim inant)

eyo ul

és |a1

copes

INEQUALITIES

pivot elements circled. ]

= = 6 (minimum)

af

236

row

P = 150

5; »,0= 0) s, = 0; smemer

19) 6 0) O20} 1 |240 Peet

max

ee

(-1)R,

weLaaton

in the last

nonnegative.

ta?

a

al

the elements

are

P.

ere

ee

All

ati,

problem

Os

i

Paver >

S,

2 eels

soe

Po 13.

X,

—? R,

LINEAR

PROGRAMMING

=

R, => R,

-10

0

2. (-3). +

15.

%

SF

Sy

0

0

i

38

x,

il

0

0

2

|,

9

1

The

simplex ;

Sp

B20

a (-3

112240

>

+

R,

>

R3,

and

10R,

+

R, =>

R,

83

1g

le

0

ot

ail

0

2

ee:

1

0

°

oo

ter

1 to6t |) A es ey = Psy Ss OP ts = 0.

for

this

tableau

Optimal

problem

solution:

max

P =

260 0 at

is:

Enter

Exit —

OF

R, oad R,,

X,

Pees

0

x,

+s;

X,

-2

8,

Mlle,

Cosy

OVP

@

al

0

0

0

FL

8G

AT

So

CO | 5

0

0

0

Ee

eee

a

2

2

2

(minimum)

2-5

a

PLi-2

-3

0

+

Divot

t-a1PRoace-Re-—>

A

¥

ay

il

ils

tabi pivot

~

row

**

2

R.,

(1)

2

0

0

0

ee lee

eo

oats

3

fs ee and

3k)

3

1

44k

RFR

4

4

2= 3 A

DRS 0

pies

2

. =e)

“)

ML 3

0

re, 0

il:

a0= 2

(minimum)

6

7

i ea -2

il

i

1

ig ia

@)

0

-8

0

0

qi 8; 0

0

ey 2

Ss Cogito Bee

Seyamo 3}

2R, + R,+>R,, and

1 203

0

257

0/2

0

ilk

6

whew

0

Ss

Ss

Iz

0

0

Al

0

ee

3

6

0 OG Be Bp Se | tN 4

1

Ogee

g0e

ls

sein

2

0

QO

0

4

ilies

(2,

(-1)R, +R, OR,

-1

4 , pivo a

8R, +R,>R,

Since there are no positive elements dashed line), we conclude that there

s Ge

in is

the pivot column no solution.

(above

EXERCISE

the

5-4

237

17.

The

simplex

tableau Mae

this

Sin

1Sop

eee

0

none

2 = 2 (minimum)

a

toe

OR

hee

a 24

Side

0

See

(101s

Pe

pee

Xo,

pve ahs: |oe Soh

for

Ce

si"

3"

"0

S3

NEY cad

oOo

P

Te

870)

e2) T

eek 1

@)

OG

oa)

-3 Pein

0 sae

ep

row

gt

alt

4

+ Ro

0

0

0

Le

SOR

OMe

£62?

04

is:

Ry

4R, t F)—>

2

112 ne

pivo

3 < pivot

| [Note: We positive

coals

Pivot

a

®

0

“3

,itebOe

Mada”

RSsse eee AR outta | Oi

=1'

50:0)"

25)

Boe

io ->

2 oO

$

19.

The

9R,,

R, +R,

simplex

0

pe 8%a

ea

s

3R, +R,

2) 2 Us.

1

this S,

So

1 -2

1

0

ee

OO

pivot

gt

Be 0

ut 5%,

238

Ley

CHAPTER

3 >

5

Ry,

X33

242)"

fa

0

et -4

lo

( 2) Ry +

1

5

the above

in the

S3

P

Bh

R, >

PROM: we el 5

150

0

ee Oe (aei +12 ; aaa a)

oe

Optimal

solution:

xX, =

10,

5,

Clee

Ory

max

Ss, =

3

eae P = 7 at Xx, = 3,

0,

Ss, =

21.

is:

i

PO

R,,

SR,

+

R, >

R,

il

1 2

-1

1 2

0 1

0

3

-4

5

0

150

is

110

|PA Dea tie|er 0 Ro

AND

0

0410 |22 = 10 (minimum) OP Ores 15

0 | 10

INEQUALITIES

0

P

0

R,

LINEAR

S%

Nee

SB

problem

NCL 0

S,

CeO

for

Xp,

Prow 281]@

wv

line

column.]

X,

il

ambeeds

> R,

X,

i

or

tableau

P

ey

omer, ce 6 8 Oe

0

Syaie cite ee re eo cae

and

+R,

row

1

-1

R, +R,

2R,

2 Re -, Ro X,

A

and

only use elements

the dashed

A

column

&,,

2

0 1 0 ce ik” pas omen

wwlrose

si N

MUON

(-3)R,

-1

pivot

problem

LINEAR

+

Rk,

>

R,,

PROGRAMMING

4R,

+

R,

>

R,

.

3

1

1 3) 0

£

a

un 0

7

cr . =

=

19)

3

go

FP

Al

=p 2

1i-


R,

X,

x;

S;



al

0

ay

1

0

0

0

1

A.

0

al

0

0

0

al

2

3

at a alee

simplex

ivot he

—)

~1

I

0

@

(3)

b

3

me -4

-3

R,

ts | 4

270

£1

50

0

2

2

Lo

R,

and

3

Optimal xX, =

this

problem

solution:

3,

x,

=

13 4

R,

+

S,

S>

S3

Ss,

3}

Py

5

ak

0

0

OM23

Sy

@)

att

aL

0

tk

0

0

-2

0

0

t pivot column

iail 2 ae i

Ry

&

Ce

>

DO

P

7

R,

0,

8

5

Lire

=

4

.

2 ches

“At

Msi

,

2

fae

a

og

0

1

a!

3

Oo

0

[aa

1

te

ho

va

2

O13

ds

0

47

0

Q) +

Qo -&

-2

0

0

0

al

0

QO

-1

0

>R,, and

*

(minimum)

2)

+R,

0.

:

8

(-1)R,

17 at x, = 4,

Ss, =

0

0

|

max P= =

ees 8

ab

123

s,

=

0 med oe7

0

i a4el]

0,

2

(-3)R, +R, >R,, 4R, + R, od R,

R;

is:

x;

RF.

1

>

X,

ete eet

+

:

eee

ak il 2 0 ft Sean aectieee teenth azL Ac SeeG Se

mraz)

45,

4

for

-3

(minimum)

OF a meanest

x,

-4

3

P

eee

tableau

eR

1;

R,

x,

See

The

y-1 Pp of

2 =

2R,

0

>

2

0

ah ||) aus

R,

EXERCISE

5-4

239

Re Ke Se 1 1 1 S35 92 CUCU) aon

ae L 0,0 FO, Oke ee

OAPs

OF

->:

| 08

Oe

S08) A Ona

De

Te

~5= JR, +R, 7, R,—R

R OR,

3+ Rk,

X,

0 Bewig pay

07 i] 0k

07 2° 0--15 1. 3,

P

OO

an

FE

83

SQ

S$,

X3;

X,

as

F

3



2

1

15 -14 -2ps 0% 10 OS-le Pa

3

25a

1

OO

OUR eee sone

d

R, +R, > R, Optimal Sa

25.

=2

3

solution:

22

ge

at

iL, anus

6,

Bo

the

third by 10 problem is: PEC al

first

to

clear Ss

2

problem

1

LT Goi ke aia OF) 328 rece 00. (320305 09

the

constraint

fractions.

Ss

Ss

P

0

te” Or

eOn Near ooO On er cog Lomia aoe Tee t1 0

2

3

OCISee “Oe FOm

by a

Then,

the

the

i600...

i,

2. i080 =

1,350

5 +800 - 900

2

1

1

| z alt

Cs

oO

| LW)

©»

O'=1,

0

0

0

800

he

(a)

oO

ws jo)cS

"0.

"Lior

too

800

_ iT]

parl00

1,600

400 Ce

al

CHAPTER

5

LINEAR

INEQUALITIES

AND

second

simplex

au

240

01)

s, =

Si

ope

OF

08

Multiply

4 S, s ye B

P =

max

LINEAR

PROGRAMMING

by

100,

tableau

and the

for

this

xy

xX

Sy

8

se

aoe

0

2M

me

0

A)

Pee

Pe

So

P

10

600 Cl

400

0

oo &

Optimal

S3

300

6 © “1/26, 000

solution:

max

P =

26,000

at

Kina

e001

X=

600,

Ss =

0,

Be =

Sb

S3

1g

0,

s, = 300. 27.

The

simplex X,

tableau

X,

apa mee

2 3

ee

meme

2

for

this

X3;

S$,

Sy

Pe

Paso O Sd. 50

problem

Sz

is:

12

="0=| 600 -20r' |600

oe oe

75 300

Se Oh. G1 A080 | AO Rea 3

Cte

0

aE > R,



oe, 2) & Mees 62 90 meee at oO meee 623 §0 (-2)R,

+ R, >

pape)

06 71 90 60

Ry,

-;

oye 75 =04] 600 208} 400 21 0

lr LPR

he

$ G) 0

DO o® sa 60

2

+ R, >

GO)

0)

0

0

ge

R;,

and

TEP }450

3R,

+ RnR,

306

|422 ~ ig9

ed

La

) Ce RS ae od br 2p, > R, X,

X,

X3;

S,

pee 0 1¢1)4 2 o~d 0 Stormo 7s

xf

=

0

1

+ @

>|

+

1

O-=

0-4

ime te 4-0 2 len 2 + Rk, 7 eau,

k, + R, >

7

0

0}180

OO 0

eG [szouy 011/225

R,, (-rae + R, > R,

|

s-%

0

2

0 0 {180

ees) we“Oro sese Feo 1 ELGG eon creer Oe R3,

Optimal ai ae

0 | 30

20 | io in| 450

solution: max P = 450 30; A ea se a

EXERCISE

5-4

241

29.

The

simplex x,

$,fa2.

tableau

X>

Sy

82

22h

for

S

this

S3

S, | totes

(a0.

glia

Sleliey.4:

GO

Od

problem

is:

P

ne

S,

$0) h 0a

a)

ao

Cum

O-

fous

48 =

OLE

GicE

60 4

16

ol WO ooteb@ |Sry 9 3°. onh oiiehae | algae OlneOe | One),

Pulte

(-2)R, + R, > R,, and

SR,

+

240.

>

(-3)R, + 2, OR,

fei.

OF)

-2

Teo

90),

4.0

balay

ORE23,-aeulanG

2

iH}

Oo’

@

0

0

0

ape-4

4

i

ney

O

Atul

Oe"

OO

(-1)R, + R,

Shoe

eon

3R

2

OR,

he

O01)

a

OO.

40t gD

Ay

0)

+

R, a

R,

aia

On ie oaakoo nS 20) eGo 2 ener Rs Acta togy

0 TAO (Ome R,

Cig

DR, (-1)R, + R, OR,

0920) 19 Oi) 300 Rad [i MLE

and

R3,

12

a ate

tay

+

R, =

R, => R,

di0

(-2)R,

+

oe

4R,

eo, lad

and

2R,

2 2

ra

14

4

ii

+ R, OR

5

322)

et

Ones

wedi Stan ade ge eae

Oo 1 0 -1

1

0

ea

OmiES aie

0/12 [4 = 22 1

R,

242

+

CHAPTER

R,

>

R,,

5

LINEAR

3R,

oo R; >

INEQUALITIES

R,

AND

(-1)R,

LINEAR

PROGRAMMING

5

LS

a OL ON

S,

0

0

1

S,

0

0

Ou

Petes x,

(A)

Veer

0

Solution

1

0

0

4

ad

0

1

0

6

aus vind)

0...

0.

-S0ulod

iL

0

0

0

the

first

aed

using

=2

ag

2

3

8

column

as

the

pivot

column

P

iS Ls al

MT

>

10 MV 206

EXERCISE

5-4

243

Of

Ggeley

1)

OF

Sos OU

6%

23

ayjota

68

oll

0 40 =ie Cyd 0.70 “LT Sia0.

olla

Opes oteiaia

$= 3

iaR, > R,

AGO) ;,

(nde!)

20 ey

FO

ee

eh oeae: tahoe 2R,

+

x5

R, =)

Ras

+

R, >

X,

S$,

Sp

$3

0

a

0

0

1

:

»

-

la

ae

se

ukQileesieleners

ae

So

(-1)R,

X,

i! ~

aOe ul

JA

P

Ord

0-0)

0

: Md

So

S3

S,

2.4)

1

1

BO

ee

Ome

s,

1°@

Oty

Oi

Pte

0am

Comune

(-1) R, +

tao Ry

>

G)i(0 ots MR pee wie a

CHAPTER

Os

5

Ry,

Poe Mele Ve

Okan

LINEAR

INEQUALITIES

solution:

at™x,

33° x,s=

er

i) a2

16

10

Daley fae = 40

Oe R,

R,

Optimal

P

32 ]a_2 0% @ 0 MO, te

244

fe

Sy

Meh

R, >

{10

X,

3)

R, +

P

x,

P

Rom

ae +

R, ae R,

Ga vom e voles || uc

6

t= 3 2 - 6

eee

AND

LINEAR

PROGRAMMING

=

oS

107

max

P = 13

sia



1

0

=1

0

al

0

0

a,

Gg. 0

0

(-1)R,

3

0

0

6

1.

oO

Mane

if

i |)Au

+

R,

0 =>

R,,

R, +

X,

X,

S,

Sy

x,

1

0

=i

0

5,

Gago

“>

at :

ot

;

Ne

@

ewes

P

Oh

Choosing the same

The

0

ee

-1

33.

-i:

simplex

R, >

S83

i5

R,

P

0

3

=

oon

ee)



alae

Optimal

solution:

at

Sir f=

Rens as oocie sewecnet wee

aocii)

-

ii

yeae

a

Se

=

ays,

=

max P = 13 Oy

$,

=

0,

0

dope

either solution produces optimal solution.

tableau

for

this

X,

problem

is:

iz)

opus. (i) 2

(A)

Solution

using

the

first

column 20

vt

Mem

Bee

4

the

pivot

column

20

O81) Poll se | 22 ote

i2F,

7

1

1

2

al

0

OF

eee

65%

Gs

1s)

Pot ae

a

as

Ry

1

PAO)

EXERCISE

5-4

245

Ale

6

o

to3

2

eeeeewe

wee

ee

vo eee

0-2 4 2k, > R, al

0

Ges

ew ee

2

-1

got

Oe 2

hae

(-3)" * R 2 7? oR Ror oh Xy

Xx.

s

0

ab

0

2

x,

Siete

SEY

(B)

Solution

using

X,

Si]

X,

P

-1

0

LO

8

a eee

Optimal

8

the

second

S,

25)

cdpOe

c=

column

So

solution:

max

P = 60

at x, = 12, x, = 8, x, = 0,

Oneal

a).

X3;

1G)

+ sk ® ee 3 S>

SQ) eed

OO.

Pil.

AS/

8

3

x,

(ecm

ew ws

0

eS 3

ew ole

1448

3

Z

eS

oO ie

1

ew ewe

0

ee. ec

52

oS

eee

3

0

ae: -7

of

P

as

the

OF

pivot

oo

0

colum

Le

SON) 208)

eet 20

$2] 2.2.4 0 20 132 |22 = 32 P

|-3

seile2

(-1)R, xy

tookg

+ Rot xX,

x,

ods

te

Rey

3R,

Sy

So

PER

Re,

P

od Mate ei Saat eS MPSot jcgde (AE

=

Bye)

Pil

LO

9)

Od)

Duae ds

ree

ON

eon

Oe

at NcO

The maximum value of P is 60. at two corner points, (12, 8, line segment connecting these 35.

246

Optimal

solution:

ae

ae

See the number of A components rad9 ul the number of B components x, = the number of C components The mathematical model for this problem Maximize P = 7x, + 8x, + 10x Subject to 2X, + 3X, + 2x, < 1000 BS e or 2x,

3)

2

dt,

0

this

obtain

=

1000

=

1S010

P=

0

Sy

10x,

tableau

s, 2 to

ns

S; +

xX,

oie

s

problem

the

equivalent

form:

is:

P

OY

1000

1ee

500

$2} [email protected].__9 | 800. | 202. = ao0 2

iayar-se-f0*

[0

.90)»

1

0

2%, 7

Peet

29 irDiOO

Zz

1

mens

=

G0),



eet

60280 © 70>

(-2)R,

+

R, _

; @

(ee

os

Ak

a

tO)

[1000

4

3.0 Oba Ry,

1400 t

10R,

= 0

m

26)

905

0 +

R, ~

R,

R200

|200

_

0

A400

_

400

PERUVE bocce sausccs Ce

heePA

Boeeeaeeg

t}-4000

TD

ee 800

ZL

2% 7

OOM, at

ee

E

LZ

i

aeara

1 * oO.

Bade1)\p

=

a

eae a 1

sOnges oO

De

1

-0

1.400

4S © 7214000

R © R oF? R. Bon 2937 Atty thy

Q

1

n0

it 1 bees ae 2

0:

[p-LOOy

Races ones enn e hahaa

7

0

eg

a

0

mete

et

0

0

oh

1

174300

2R,

>

1

=

350

PyR 100 =—— teas = 200

|320

1/4

-

1400

R,

EXERCISE

5-4

247

i

12

(-a)R.

+B

>

x,

X,

x3

S,

L

2

0

fille

x,

Re

F,

+

S>

R,

>

R,

P

al

0

200

the maximum profit is $4400 when Optimal solution: components and 300 C components are manufactured.

37.

Let

x, =

the

amount

invested

in

2

the

amount

invested

in mutual

and

=

the

amount

invested

The

mathematical Maximize

model

for

.08x,

+

P =

Subject

to:

xigt

X, 41

We

introduce 2S

slack

es

res

- 08x,

The

simplex

Ss,

S.|

X51

.15x,

+

xX, +

+

X,

-

-15x,

s, it and

0

+

Pa=

0

problem

is:

Ie

il

Al

1

il

0

0

1SQOP

Sy

100,000

|100,000

ein

Stone

0

Log)

0

et

the

equivalent

form:

0) 1010/0

=

So

sD) ja Fone

obtain

See +

this

s, 2 to

S;

S,

S130,

funds.

is:

2e0

xX,

-1

100,000

+ Gje-punimand fo(opm

©).

Ge

elaine

-1



A464.

G

23) 1

2,02)"

L0um

10) ian eee

aR,

CHAPTER

X3

xX,

for

market

X, < x,

X,

(-1)R,

248

+

x,

tableau

bonds,

as < 100,000

variables

.13x,

+

0 B

funds,

problem

x,

P | +08

~

-

in money this

.13x,

25.

government

A components,

200

>

5

noon 00 1

fag

aay

0

= 23.02 Ra

INEQUALITIES

AND

LINEAR

-+

Oyo

Cae

R,

LINEAR

Oia

1.

Rak,

PROGRAMMING

0 ]50,000

8

-18,000

Ry,

24,000R,

0

0

+ R =

@ -2000

fo) =

elu ale

0

0

I

e|"°So i) tv oir LZ

ap oO

(2) [o)

0

1 | 240,000

« 22 Ra + RB, 5 'R,, . 2000R, + R,

oO oO

R,

EXERCISE

5-4

249

xX,

X,

30

fred

xf ett

Xx

+

al x o

P

0

S)

0



ws

-1

(0

5

+ -o

on

s2

10

1000

10

4000

het and

(A)

x, X, x3

=

the the the

The

number number number

of of of

mathematical

Maximize

P =

:

Subject

1 | 260,000

number of potential customers is 260,000 when 5 prime-time ads, and bP 0 late-night ads

Optimal solution: maximum x, = 10 daytime ads, x = are placed. 41.

Ip

colonial houses, split-level houses, ranch-style houses.

model

20,000x,

for -

this

problem

18, 000x,

+

is:

24,000x,

pi 2x,

+

BS2X

+

60, 000x,

+

60, 000x,

+

80,000x,

4,000x,

+

3,000x,

+

4,000x,

to:

x,

S30 < 3,200,000 < 180,000

BE Lypee Deey OX. 3 > 0 We simplify the inequalities obtain the initial form:

es 2*1

+

Ay 2 X2

+

6x,

+

6x,

+

4x,

+

-20,000x,

[Note:

3X,

~

This

The

simplex

S; +

+

change

tableau

for

this

Xo

problem

X3

Sy

0

0} 320 |222

olan

40s)apn LS 0sup eee mame wee Aaa

0

oO

1

R3,

24,000R,

0

1

3

ABE= ow 0.

mn

4

ee

met)

he ee rae ele oem meen

1:-20;,000

5

0.

y218;0007%-24,,000°°0 R, ->

Ro,

(-4) R, +

il

uf

3

en

pe

2

ay

@)

ieee

R, —>

nn

30

=—@

He

10

0

80

Rie

dC

lg

40

60

0 ~ 0.

AND

LINEAR

..1.1720; 000

PROGRAMMING

30 a

vag

4o

0

..0

aus INEQUALITIES

P

100-00

-6000),00924,000.

LINEAR

of

0 |p 30

g

CHAPTER

interpretation

cy)

6

3

the

0

OCs

6

=8000 ut

80

S3

5,

(-8) R, +

=a

P=

So

$1

P

9320

variables

is:

$1

www ow

9°30

= S,

+

Ss,

S;

a= Sy

24,000x,

will

slack

variables. ]

xy

250

xX, +

introduce

4x,

-

simplification

slack

then

8x,

+

18, 000x,

and

+

R, —

R,

the

to

~

-8000 -6000 0 24,000 0 0 1 1720,000 ple & 2 Rs +iR, > Ry, (-2)R, + Ry > Ry, 8000R, 4 R, > R,

0

=; 1

2

©

aaa

15

0

ipso

1-4

+.

See

20

eee

iee...

2

el

+

0

30

0 -2000 0 8000 0 400011 960,000 (-4). +R, X,

STA xX,

X,

0

Plo are (B)

R,

3

GS TOP

Recta Optimal houses,

>

(-2)% + Bouse |Kee, S3

2000R,

+R,

Sy

S5

hla

-5

0

0

10

sal

0

20

i

OQ”

-4

a

jo.

0...0

-+

—?

R,

Je

1i06

20

0 0 0 2000 2000 11 1,000,000 solution: maximum profit is $1,000,000 when x, = 20 colonial » Mos 20 split-level houses, and bp 10 ranch-style houses

built.

The mathematical model for this problem is: Maximize P = 17,000x, + 18,000x, + 24,000x, Subject

to:

Bae + 60,000x,

+

FX, + 60, 000x,

x, < 30

+

80, 000x,

S 37200,000

4,000x, + 3,000x, + 4,000x,

Roe

-24,000

30]

*-0") 380

= 30 ane ay

0

(= 4) R

EXERCISE

5-4

251

:

=1

iL

=.

ig

i:

To

Swe

2

@)

0

- g.

21,

Boi,

(0

2

fi.

36

=4

90)

ga

40

30 [75 = 60 so | —80= = 4p

30

60 | 60 _

ee

-5000

-6000

0

24,000

a

0

0

1

1720,000

ais Rio ;

ie

1

1.

£20

Seo

oo

30

1 2

Cis ine

0

A =a)

oar oF

| 0 ar” o

40 60

0

0

-5000

-6000

(-i2 )R, + Rea X,

X,

ay

Oa

Omer

Xp

Ld

sas

built.

0

24,000

Ri,

Ua

X;

pO4n

40

Ree

Ze

1 | 720,000

eee,

3

oh

60, 000R, + Rive,

Sy

S5

S3

P

AL:

as

Om!

AO

10

2

NO!

yo

40

eye

de

0

20

eae

Tin

Optimal houses,

(C)

ee

fono

solution: maximum profit is $960,000 when x, es 40 split level houses and x, = 10 ranch

In

this

case,

Ss, = 20

(thousand)

labor

hours

= 0 colonial houses are

are

not

used.

the

simplex

The mathematical model for this problem is: Maximize P = 25,000x, + 18,000x, + 24,000x,

; Subject

af 2%,

+

4 2%

+

60, 000x,

a

60,000x,

+

80, 000x,

4,000x,

+

3,000x,

+

4,000x,

to:

Following

the

solutions

xX, = 30

in parts

(A)

and

S 13/7200, 000 < 180,000 (B),

we

obtain

tableau: x,

X,

x3

S)

S5

te

G4

1

1

=

2

=

:

i

poe

3

6

6

S780.

s

- 257000). ne

43

252

CHAPTER

5

LINEAR

S187 000mme 245000".

0"

AND

LINEAR

30

0/1320

30 eee

ep

te

328 = 53.33

preset keertate fie OC 0°

£0."

aR,

INEQUALITIES

P

HOH

1.40.

re| She ©)don-nereBenn toons acta Pel.

S3

PROGRAMMING

ff

0

ib

z

6 ©

:

al

Z

i

6 a

oy 1p

Paes Omeee

0

ei kire>

Ki,

-6R,

X3

+ Koeao

x,

X,

S,

Sp

71

20

5

s

A. | OOP

S|

0

$

o,

0

he,

0

ChE

| 370 Ole | 45

0

1] 0

|

-25,000 -18,000) -24,000. 0.0 (-3)

0

25,000R,

S3

+ R, >

R,

1

eG

Fo

30

+

7.5

0

50

er | ert {e-*- Gran” 9 + 0 45 p |circcirrtereciesrecceseesesceresteseeeposeeesscseees O50

1000

0

0

6250

1 Ud, i225 £009

Optimal solution: maximum profit is $1,125,000 when X= 45 colonial houses, xX, = 0 split level houses and xX, = 0 ranch houses are built. In this case, a 7.5 acres of land, and Sy = 50(10,000) = $500,000 of capital are not used.

43.

Let

x 1 Ul the

number

of

boxes

of

Assortment

I,

Kygh=

the

number

of

boxes

of

Assortment

II,

the

number

of

boxes

of

Assortment

III.

and

x,

(A)

The

=

profit

S2408—

The

per

box

[4K0.20)

profit

per

of +

box

Assortment

4(0.25))

of

+

I is:

L2(0530)a-

Assortment

II

=

S400

is:

eeo Om 1 2500S?O) Re =4 CO).25)) 4 4 0OR 30) = = ts3-00 The profit per box of Assortment III is: if OO—wbSiiOaZ0) +ae(On25) + S(O). 30) —=S 5200 The mathematical model for this problem is: Maximize P = Ax, + 3X, + 5x

Subject

to:

4x,

+

12x,

+

a

Ax,

+

Ax,

+

8x,

< 4000

12x,

+

4x,

+

8x,

< 5600

X11

We

introduce

slack

4x,

+

12x,

+

8x,

4x,

+

4x,

+

8x,

12x,

+

Ax,

+

8x,

~4x,

=

3X,

-

5X3

Xp,

X,

variables +

< 4800

2

0

to obtain

Sy) + +

S, +. P=

the

=

4800

=

4000

=

5600

initial

form:

0

EXERCISE

5-4

253

wetea | fs.

Sif

4

ae

S5|

4

A

Ss

Fi

goa

8.

83

10)

0

Oma

OL...)

uo

aoe = 600

SOMmano?

see - 500

3] 12489040

P

=6

23)

510

0)

5600 |$600 _ a9

OCmmre

0

abo

Oe

2

Sere

sects

ai) 120.

“64

(1

ep)

Ok

ce6

(Ol

"4

Wh

Met

=4)

ete

=34455

MO * GoM

W0) , Oke 0

Cee

2040.0)

(-8)R,

+ R; >

R,,

SR,

+ Roop.

Ay

OO." ioe

x

mus

Gyo 3

=o)

a

eo)

1)

a0

* 0%

oO

ae

Ee

£0

RO.

442

© &. O04

-pF8] 5

yg

Se

eCo0 ee,

3

0

500

10

193200

ie

0 f)

OLiS 1 0 0 +

SA" 0 0

ChOn igbwreaeyO (400 0 -— R,

aa A BA

40)

5-5.

(aka

ay

eer

eceeeewwrereereere

ener

and

(A)

in parts

solutions

is:

< 6000 < 6000 < 5600

S,

=4.°

*:

8x, 8x, 8x,

X,

ewsewwee

P

+ + +

12x, 4x, Ax,

X,

Aritq math

+ + +

the

Following tableau:

Ss]

4x, 4x, 12x,

to:

Subject

problem

for this + 5X3

model + 3X,

The mathematical Maximize P = 4x,

PROGRAMMING

a?

R,

the

simplex

xX,

X,

-1

5 X;

a ~

X3

S,

Sy,

1

0

2

0

-8

0

0

2

0

1

0 1 ois]

ao Optimal

45.

Let and

The

0

solution:

assortment

I,

assortment

III

candies

are

> ois the x= the x, = the

Subject

are

0

50

10 3 0 @igaee

maximum 50

12

-%a

UC |CO

Xo. =

not

400 675

e525 profit

boxes

of

produced.

is

In

this

of of of

grams grams grams

of of of

food food food

A, B, C.

model for this problem 3x, + 4x, + 5x,

to:

$3,525

assortment

when II,

case,

used.

number number number

mathematical Maximize P =

r

$3

x,

and

s, 2 =

= x,

400

0 boxes =

675

of

boxes

of

fruit-filled

is:

x + 3X, + 2x, < 30 2x, ne

i 2x, S$ 24 X11 Xp, Xy a)

We

The

introduce X,

+

2x,

tan

-3X,

-

simplex x,

Sy

s)

ail

slack

3X,

+

kot 4x,

-

variables

2x,

+

S,

2x,

+

S,

5x,

tableau

for

XX,

SS,

So

3

2

1

0

@ 9

S, to

=

SiO

="

24

+2 P=

X,

2 1

s, ot and

this

obtain

the

initial

form:

£10

problem

is:

P

O./

1

30 303la5

Gf

15

24

0}

|p = 2

is aR, > R,

Tepe My rety ~-}2 7 @ 9 Bored) 5-0. Rae

Rt

Ry

eR,

BH Py 7 o}12) 0 at.| 0 SR,

+

R;

>

R;

“1° @)‘o 1 a o fs] S- 3 1 1 | 2 2 2 0 2 of42 [ae og Bier Oy 80 teem d 60 i2%,

7

EXERCISE

5-4

257

wR

Orie 2 oy aie

aT

2

ae

Cone ea aR ) ia oo emia Rte Nigar Roe

Let

ary =

and

x x3

58S)

109)

2 t-2) a Ne

rie

8s bn mk

f 0- 7 ~ =< 3

oe

ae

5

SS, 1 #

a

a

Pee oeigc ae 129

units when 10.5 grams of

of protein is 64.5 of food B and Aye

undergraduate students, graduate students, faculty members.

of of of

number number number

the the the

Il

100)

3

the maximum amount Optimal solution: 0 grams of food A, x, = 3 grams Pa food C are used.

47.

5 Se

eRe ile” «ae 1 1 60 a,

rg

of

ee

Sd eek ie Ce ee 2

Ou

4

1S as ST) ase 3 2 2 aa

au)

el

Xa

Bee

1

The mathematical model for this problem is: Maximize P = 18x, + 25x, + 30x, < 20 x, Si et Subject to: 100x,

+

150x,

200x,

=

a hte 5 second

the

Divide

introduce

slack

x,

6+ xX, + 3X, + + - 25x, =

2X, -18x,

The

X,

Ss,

X,

ul

x, 4x, 30x,

3

af

oe

S,

to

Sy

= =

Sy

+

+

P

So

iP

pe

0

0

PAO, 64

=0

is:

problem

this

S,

simplify the arithmetic. Then obtain the initial form.

to

50

Ss, and

+

for

tableau

simplex

ees by

inequality

variables

< 3200

2 0

20 EBoks

20

20

=| 2.3 © o 1 0}64 [eb ie P | -18

-25*>

-30

0

1

ab ma al

0

al

0

A 1

ee

-18 -25

-30

ee

0

R,,

54 R, >

(=1)

0

0

1

30R,

+

aew

Ss

0

R, >

Ge ee

-2

(-3)": A

258

CHAPTER

0

0

pore Rex,

5

LINEAR

1] 3R,

pa

ee

480 3 i

INEQUALITIES

1

Q

NY

i

AND

LINEAR

oe

1/2 6

480

871/2 =16

o 2-4 of Ei

Pos

erie OEeee

2R,

8

114 Dal. 26 | ee

1]

#

—ale

Sy

By der ¢ R,

0

0

2R, >

R,

eee

deh tO.) eat Oe

2

3

z

ne

i1

-2

-3

(Qy 72° 00 2) ee ore i

4 0 6%

3 ati 1 PSD

4

0

1-4

0

2

Q

20

0

2 MO 0. Lia

~ leneoe ieee

086) >

Ry

PROGRAMMING

ine

21

[Pecos

ie = 24

~

goals ati e4 Pec 1

(-3):

+

—>

XX,

5,

4

2

1

0

ymalgor

ia

pete,

jugt

@

wdidatéww

R,,

3 |. soa |) Aetna Ry

+

R,

—>

Over

yee

0

16

1:00)

|4

=2

x,

tones eeteozC

R,

Optimal solution: the maximum number of interviews undergraduates, X, = 16 graduate students, and i= are hired.

EXERCISE

18

16

es. R,

X,

0

= ii 1

Olas

1 1

2

X,

is 520 when cil 0 4 faculty members

5-5

Things

to

remember:

1.

Given a matrix A. The transpose of A, denoted A’, is the matrix formed by interchanging the rows and corresponding columns of A (first row with first columnn, second row with second column, and so on.)

2.

FORMATION

Given

3.

OF

THE

DUAL

a minimization

PROBLEM

problem

with

2 problem

constraints:

Step

1. Use the coefficients and constants in the problem constraints and the objective function to form a matrix A with the coefficients of the objective function in the last row.

Step

2.

Step

3. Use the rows of A’ to form < problem constraints.

THE

Interchange the rows and columns of the matrix A’, the transpose of A.

FUNDAMENTAL

PRINCIPLE

OF

matrix

a maximization

A to

form

problem

with

DUALITY

A minimization problem has a solution if and only if its dual problem has a solution. If a solution exists, then the optimal value of the minimization problem is the same as the optimal value of the dual problem. 4.

SOLUTION

OF

A

MINIMIZATION

PROBLEM

Given a minimization problem the objective function: (i)

with

nonnegative

coefficients

Write all problem constraints as 2 inequalities. may introduce negative numbers on the right side problem constraints. )

in

(This of the

EXERCISE

5-5

259

(ii)

Form

(iii)

(iv)

(v)

the

dual

Write the initial system of the variables from the minimization variables.

dual problem, using the problem as the slack

Use

the

the

simplex

method

Read the solution bottom row of the (Note:

If

the

minimization

1, 0A =

problem.

E59 oes

megeteys

to

solve

dual

problem.

of the minimization problem from the final simplex tableau in Step (iv).

dual

problem

problem

has

has no

no

solution,

then

the

solution.]

-5 0 ie al 8

aoe

4

3 cae

a Ses

8G. 4]

4 uh ie

+2 [2a BH atl a Oo Ayn

:

pee

PONIgy Kyte wy ; A’ = | PO epee dies

-

+ X,

12y,

+

simplex

tableau

for

Y,

yo

*%,

X,

4

3

ul

0

xy

P

=

2

Il

oO

this

problem

is:

P

¥,

0

9

9 = q eS:

x,

od PO eee Om Cr B

-13

-12

(-4)R,

+R,

Optimal 15.

(A)

0

0

ab

2 R, and13R,

solution

min

p=

matrix

corresponding

The its

matrix A’ corresponding columns, that is:

oat sts a5 8

AMS Thus,

the

P

4

X,

1

a

P

4

0

al

0

al

0

er 13

1S1e26

7R,

2 6 ace

The

-1

ee

0

+R,

¥2

QO

to

the to

OP

al

given the

meomnmen 2

oes

problem

dual

is:

problem

A=]

has

the

2

3)

Fis

1

2

8

ts oe 1 rows of A as

7 PAS 1

dual

problem

is:

Maximize

Subject

P =

to:

15y,

ayn

t)

3y,

+

+

8y5

ty, 3 7 2y,

Sale

¥y: Yo 20 (B)

We introduce for the dual 2y,

+

RYS

3y,

+

2y>

ps

8y,

TY

The

BE

x, and x, to

obtain

X,

=

ZF)

+

tableau

(Vo

Ue

P.

=. 0

for

this

Hay

gh”

RG

LS15 4 28 BS 2%,

262

CHAPTER

5

problem

ares

TS

a0

Seas

Apa: 3

eae

is:

INEQUALITIES

1

Wise

(-3)R,

AND

LINEAR

1

7

33820) werner

=15.

PR,

LINEAR

system

HF

ereeeeaeenecennenenaanecevnacanetboaen:

PO

initial

12

it

5a

the

=

+

simplex

Yy

slack variables problem:

PROGRAMMING

enene

eee

1. eee

e

ee

Fone eecece

=8 ~ 0=*="0 +R,

> R, and15R,

a

ece:

71)

hee +R,

>R,

io

BO

ee

es)-4)

9

oF EO

0 |2

|S

w=7

1

|24=3 -

0. @23, 12.6eu3

2Re 2 >, 2

Lmtd

mee

ore

i (A)

0-2 Eo

ile

vec

|F

eran

reat

Ou).

h2

2

6 | *3

eineaaitie. 1/54

Optimal

17.

Os

(-3 oe oe +R, hae OR ? and=z Pes +R,-R 3 3

Pipegeaag y;

ee sO

solution:

The matrices problem are: Na

min

C =

54

corresponding

2

1

8

So

3

4

nRel

4

z

at

to

x, =

the

X, =

given

2 and

6,

1B

problem

-2

and

to

the

dual

gta

A’ =

4

8

4

respectively. Thus,

the dual problem is: Maximize P = 8y, + 4y,

Subject

to:

2y,

-

2Y> ail

Va

3Y

s 4

¥,, Y, 2 0 (B)

We introduce for the dual 2y,

=

x -8y,

The

2y>

+

+. 3Y, -

ay,

¥

A

+

tableau

¥2

2g

=)

11

=

4

P=

0

%

for

*%,

Le

LOPES SENS

(-2)R, +R,

Optimal

xX,

+ X,

simplex

iter

slack variables problem:

problem

X, to

obtain

¥,

14

ay

ie

min

+ #15. 5) “ Sg

8R, +R,

>R,

C =

at

32

the

initial

Yo

*%

system

is:

P

00")

OR, and

solution:

this

x, and

2A ls On

l3q(a0) al

Ses

2Y5

-8y,

=

8y,

CHAPTER

ig

5

slack

variables

a

x, and

xX, to

obtain

3!

TX +

LINEAR

=

9

P=

0

INEQUALITIES

AND

LINEAR

PROGRAMMING

the

initial

)

is:

problem

Tt

=2

Balas

4

al problem

2 as

the

Maximize Subject

-8 P =

to:

y,

slack

+

¥,

-

2¥,

Yeas

ZY,

+

y;

8y,

+

8y,

-4y,

The

x,

+

simplex

to

al

{7

i)

-4

pet

8

x, and

X,

respectively.

al ~

Yet

By,

=

By, 2 2Y>

x, to

+

obtain

Y; 55

for

this

problem

0

initial

system:

is:

Yt 0

0

1

Coes

0

1

RE Pe Oy OES WY

8

You a the

=n)

ne lt

By,

2y, Sif

nes ee

o=2

problem

S47)

+

ts

tO

© AE

+ X;

tableau

Pe

oe

variables

dual

the

.

5

-8 Ay,

and

Vigo introduce

column.

7

‘ll

¥ar

We

pivot

calculations. ]

given

4

-2

PN Ss

column

corresponding

“ih

ili

either

W

27

fas 1

x)

5

0

Sy

lele

3)

ae

1. Sateen

iz

p= 1) Re +R, OR, and AR, +R, OR,

0

0

P

oe Nieatad

Or

=3

aL:

2

“0

“E2

0

ee aoe

Optimal solution:

-1

oo

?

0

te

4

Oo;|

2

ho

1

min C=20

5

20

at R,

3

Wt "

0

Auto

ior

G)

0

lcd

&

Leo

eee

oh ae

0]

Oya

Tos

iP S00 "Sol Ne O}.25-1-0...'0...2..1] 42

ui

0

a

Maen Ygres Hn Kin ms ha 2Ct | ON Oh ods lel ~ Yb Ona ib 2 2

31.

8 202. ah il Oe (0% te. war

solution:

The matrices

As= | =4

Thus,

=D

Z

the

4

2

dual

C =

43

at

Ee ue 0,

2;

to the given problem

Loa and)

SAgs

r

ea

is:

Maximize

and

Ci Ras Be

ey

Ves

CHAPTER

+ x,

ay,

5

X,,

+P

LINEAR

INEQUALITIES

=

2

=

2

to:

iy

are:

eS a5 Pe

Yo) S12 2Y>

variables

the dual

, respectively.

ie)

Yury

ay

4

F (-2 Re+R, > R,,

x, =*3

3

en

slack

Zz

5 al

-4

=

1

problem

sal

aR, aS R, > R,

xg"

-4y,

introduce

2

2

eg cinikas

Subject

We

0:

ral SCH imael sb

6

al

Ie

5

min

corresponding

Ten!

tie

gS

é2 2 Ro+R, >R, and

Optimal

@)

.

Ut 0S 5

1° 5..0.,0 ‘5 =0llme Orang ---0- 0--dicanad Nag

2R,- R,

Yup ie P10.

:

LINEAR

PROGRAMMING

eC

obtain

the

initial

system:

The

simplex

tableau

ea

Fy

pet x,|

-4

al

foes

ih.

0

01) 0 +k,

0

is:

2 2

2

=A CO)

(-1)R,

problem

5 ObETE 2) OF) P55] Rod's

0

2

this

ee

1.

me)

for

GB |) 23| Gae.2 TN)

>R,,

m~

42, +R,

0

> R,,

2

Sy

0

as

1

Date

=

0

3

0

7

le

ee

0

131

ae

ak

0

2

Gok

0

8

33.

The

35.

The original problem of variables.

37.

No. the

39.

Yes.

41.

The matrices

has

2 variables must

have

both

sides

of

and two

corresponding

the

4 problem

problem

8 dual

inequality

4 il problem

is:

A

T

=

slack

eye t

“4Y, *

SY,

2y,

-

3Y,

+

33

2y,

+

¥y, +

Y3

-l6y,

-

-

7R;,

12y,

by

and

variables

X11

Xp,

* xX, +X

+ xX

and 5

3

3

8

1

ab

4

=

16

=

3

(one

of

problem

are:

: respectively.

Pay, +

Py

3Y5

3y3

2y,

-

2y,

evr

x,

problem

the dual

2

and

number

16

2

SY;

any

-1.

4

to:

the

the problem solution.

constraints.

G6 |ARA ae? 1 P = 16y, - 14y, +

Maximize

Subject

14y,

2R, +R,

constraints,

to the given problem

and

introduce

OR;

Ge. ae al2

problem will not be a standard maximization in the last column will be negative.)

Multiply

0 | 10

0. (Sy Ok 2

x, column, are negative, does not have an optimal

3

We

4

Since all the entries above the dashed line in the pivot column,

se

16 the

il

CP

0

Thus,

0

7R, +R,

x,

The dual elements

-7

and16R,+R,—7R,

a

problem

0

1 gO bre eo | 3

Oo el6 on) vnG

Vs

dual

p@s

t p-2) O

and 6R,+R,->R,

tee

0

=

12y,

no SS

>

Se)

Sere

Yor Yon Y=

0

to

initial

obtain

the

system:

= ct

a

aC)

EXERCISE

5-5

269

The

simplex

cn x

3 2

tableau

for

4

By)

3

3-0)

this

1

problem

is:

Cot)

Aes

eon as

Gibb.

Gg

bop

5FP |1.qieDodd-140°"12 2.15.0.,10) 30 Pa 740), 30) ae 1

ABO 3 4

2

ae Se

3

=~

Boom)

1

S16

0)

Gl)

Xo \/ Sones

al

18424"

(-3)R,

sO

ee

ae

SOMAnS

1

SS720t

Dol

>

ie,

Pek

S82 = 5.33 =8 aa

MOpadiAb

LO

(-2)R,

+” Ro i> RS,

7 10 OF as5 ee 10.4 3 0) tom penend ig ©) ar ai nen Rates hiro iby (pean

and

16R,

0) = FG)

“| din ae On 1) ee OT een cee ee a eas WIE OP -6'l=4 0) gh avis pa aR, > Rp

HOR

i ete

3 1:.°0 ¢=e cena i, “on, 4. -4 ia

ite GO) eee Ce eee a 0-6 -4 0 O° 8 Giieg -35 FR+ Ry > Ry (-2 Ry + RyRy, and 6R,+R,>R,

Vinton!

YO" Vol 0° 9 ¥,

Vas

00 de

LO,

eo

a

POOR. 43.

Faw

ei

Subject

sae

C = to:

-
22

PHY)

2>

eS

Xy 2

0

+ Xq,

corresponding

LINEAR

at

=

3,

min ic = 44 xX,=

5.

forming the dual.

> -12

X11

CHAPTER

Optimal solution: A

“2

Xy

270

0 er

inequalities

xX,

The matrices

aD ake

as ee ores eee

The first and second Minimize

2oe

Wh 6 a) cou fig 0 e-ee

INEQUALITIES

Xz,

xX,

to the given problem

AND

LINEAR

and the dual problem

PROGRAMMING

are:

and

The

dual

problem

is:

Maximize

aA’ =

P =

Subject

to:

-12y,

-

ae

+ ¥% “Vo ALY “Y2 + 4 Vy OV_0 V5 Vy

y3

The

+

simplex

aiv

¥20

x,f-1 0 142-70 a3 -1 X, a mt os (-1)R,

+

25,

-

20y,

tableau

Y3

-

for

Vg

Y,

this

98 Har

Ss

R, and

20R,

the

= = P=

UI Fe MN Ono

is:

Xa

‘octeonhes 2 = 5 Sowyeos err ei 2 = 5 orem -OneE O° 1 Le

+ Rk AR,

0

Lie

0

-1

OM

Ge), [0:4

«A

O10

(4

(akon

0

ik yy hOSoato

-10

obtain

=

+

problem

IA I IA V

x, to

=

15y,

3) mo

and

+ X,

q O54 «00S:0 0 on? —& © i ara ins gn 0 Gio ico sparse Go oF Oo” + R, >

Xz,

ie

-Y> +12y,

+ 20y,

ay

We introduce the slack variables X,, Xp, initial system: ier + y3 + X, “Y, + Y, + X, Wart

25y,

-y,

1.

20

i10

oF 4|/7=

5

ee Leones egret) ** 0nts Ol4Gees ee (-1)R,

OG

ist

+ R, >

0 R, and

102 15R,

«220

«620 = aah ted

+ R; >

R

EXERCISE

5-5

271

-1

0

0

ak

-1

0

i.

iL

0

0

-1

Q)=t-

00

-3

0

0

+ R, >

R,

5

3R,

1

-1

0

0

0

0

0

0

0

4

0

1

0

0

0

6

Be

OS

e210

R, + R, 2

Oa

oe

3

a.

ie

0

0

0

0

de

=i

-1

0

ili

0

0

;

:

:

y

QO

0

5

2 1

R,,

1260

and

ye a

Rg + R, >

ee

=i

1

0

2

1

0

6

°

:

:

¥

:

;

Ee ore ea

PL 45.

Oe |25,

70

4

ie REPe) Le

40) 4) 0

(A) Let x, ail = the number

5.2:

420

eee

ate

of

hours

the

=

the

number

of

hours

the

Grafton

x,

=

the

number

of

hours

the

West

The

mathematical

for

this

solution:

166

x,

Cedarburg

x

model

Optimal

min

C = =

12);

x;

at =

x, = (ey 207

x, =

an

has

and

3

R,

plant

plant

Bend

problem

is

plant

is

operated,

operated, is

operated.

is:

Minimize C = 70X, + 75X, + 90x, Subject to: 20x, + 10x, + 20x, = 300 10x, + 20x, + 20x, 22010 X11 Xo, Xy 2 0

Divide each of the problem constraint inequalities by 10 to simplify the calculations. The matrices correspanding to the given problem and

the

dual

problem

are:

2 A=

al

70

2

i's) 90

30) Thus,

the

dual

problem

AO

’ respectively.

1

is:

Maximize P = 30y, + 20y, Subject to: 2V7% tala

S770)

Vit 2y5 = 75 2y, + 2y, S 90 We

introduce

slack

¥,1 Yo 2

0

variables

X,,

X,,

and

x,

system:

2y, + Yq at 2y, + -30y,

272

CHAPTER

5

=

Yo 2y, 2Y>

+ X, + X,

20y,

LINEAR

= 70 = 75 =).9/0

+ X, +)

INEQUALITIES

AND

P=

0

LINEAR

PROGRAMMING

to

obtain

the

initial

The

simplex

tableau

na

for

this

ae

Sys

allel

0707

mG)

1

1

0

0

%{ 1 eet

2 2

0 1 0 10

0

problem

is:

"= 35

@) “= gto" ae potss

of |B. as FRAO |S0- oer _ ere

Piteconezoiiay soute vat

LT gosto, 1. Memon gee gn) guelgniz, a9 | 90

pa

200, 420 Aoaud tho Halho

te > R,

(-1)R, +R, R,, (-2)R, +R, OR;, and 30R, +R,

moe

SD

U0

0

ee

ee

Deep ed

mop ai y,|

(B)

0

35

22 = 70

40

$h =

R,

= 26.67

te | 2 128 = 20

Yoh

AG 0. Xp).

0

1

XS.

0

-4 3

LOeedsloe-go

0 te a. ont CRRA

PF 0

25

0

10

10 hours

20 AB

plant is operated 5 hours per day, and the Grafton plant is not used.

0 il 0 ORS pet a

The minimal production cost when the Cedarburg plant is

per

day,

the West

is $1150 operated

Bend

If the demand for deluxe ice cream increases to 300 gallons per and all other data remains the same, then the matrices for this problem and the dual problem are:

day

respectively.

Thus,

the

Maximize

dual

P =

Subject

problem

30y, to:

2y,

ee

Yy 2y,

We introduce system:

is:

+ 30y,

slack

VS S570 2y, S975

+

2Y

790

¥4: Yn 2

0

variables

Xy1

Xqr

and

x,

to

obtain

the

EXERCISE

initial

5-5

273

2y, +

Yo + Xx,

Vint

2Y5

2y,

+

2y>

-30y,

-

30y,

The

=e RO + X,

= =

+) X, +P

simplex

tableau

for

75 90

Sa0)

this

problem

Yi

oXs.

ft,

Roa

Ms

we Sey tee

2

ol Om

0. age

0 |0) TOR Oe Odie

©

eee a =

-30

-30

Be 2, Note:

0 >

is:

70

es 2.75

NE

0

0

al

0

R,

Either column 1 or We chose column 1.

QBs. 0 eae ao he

column

0 (as MRCP pr M/S

2 can

1 0

+ = Ss -=

be

used

as

6 O%

o| 0M

0 1

the

pivot

column.

S35

35 lz = 70 40 $= Dx 26.67

6 gill Praline Sleeagene ee ge Oe OO iE)20P 2A -30

-30

0

0

(-1) R, +

R, =>

Ry,

(-2) R, +

R3

R3,

30R,

Bid

tak

Mp

gk

"Yo.

>

Gee.

0

0 =-15°

Ovyedex

h

15

1

(-3)%s

of

F25

LES

oy

$40

rere

guan()

0

1

R,

>

-3) Rs +

R,

>, Ry,

15R,

oie"

0

+

3

elles) | eee

0 | lig. =

PolsOy

il

svpeck,

eit

Xl}

(C)

0

SLOSSO

Ry,

te iRaurd? Ry

The minimal production cost when the West Bend plant is

is $1350 operated

15 hours per day, and the Cedarburg and Grafton plants are not used.

i10) pOn' AOG,1S)Bled sso If and

the all

problem

demand other

and

for data

the

deluxe

ice

remains

dual

cream

the

same,

increases to 400 gallons per then the matrices for this

are:

respectively.

274

CHAPTER

5

LINEAR

INEQUALITIES

AND

LINEAR

PROGRAMMING

day

Thus,

the

dual

Maximize

P =

Subject

problem

30y, to:

+

2¥,

+

>

S7/(0)

Vv, +

2y,

975

2y,

< 90

2y,

We introduce system: 2y,

+

Vo

¥, +

2yY,

2y,

+

is:

40y,

slack

+

Vir Yo 2

0

variables

Xy1

qt

2Y>

simplex

¥%,

tableau

%

for

4

i

i

0

®

*3

2

| eveeu

P

L-30

=

90

+.B. sh.

0

this

0

70.

0

problem

0

70

£0

1.75 | tae Sst

reeee a

-40

to

obtain

the

initial

is:

FP

x,

*%

x,

= 75 + X,

¥2

and

=. 70

+ X,

-30y, - 40y, The

Xs

0

= =

70

375

i Da waza a

0

1

Pide BBE 3

Psi

ged

de cweo ero[270

A

Peey-

1

oO

GO

0

0

2» soho

75

=

OTS

5

bensud

Atha

zs

-40.

0

ak

0

=O)

mire, + RS R,! na 2

ee

40R,

eo v

2 Poaped

Let

5 x, x, x,

1

em

a 0

ue: = = =

Oy

OQ.

“G-| the the the the

23”

R

|

A

3:

hae)=

Dane

On

0

0

OQ

0

e500

Ts eae 2 EMT YW 2

0

of of of of

20

2

|7s/2

ees ee

eee

+

eeeRe



aR

2"

R, => R,

10

The minimal

|

30

0

15

when the Grafton plant and West Bend plant are each operated 10 hours per day, and the Cedarburg plant is not

o'° 40 10 © 1] 1650 number number number number

R

10R,

-


DF eh Ss

i

278

=

5

(-2)R,

+

R, =

not

Sitges)

re

ate

i

i

0

45

pea

4)

R,,

4

bomae OPS

LINEAR

INEQUALITIES

8 Repeat ere!

2

2

12

CHAPTER

Ry,

AND

LINEAR

PROGRAMMING

+ R, =

R,

system:

1

rR Ww|“a

aS

by

+

1

yy

ie)

ee.

WiR h

Nd

1

ae)

3

1

1

1

“eae

1

9

os

if

wD

0

and

yy

Ww

14k,

+

R, =>

R,

Ww

3

3

Tae il

7

dl 0

0

-+

->

0 -+

0

=

9

1

0

al

0 1

Wey

oe

4

1/426

4R, > R,

1

O

=r

FP

eS

ein

"

if

od

ae

sen

O

ae

=O

0

3

0

7

Bae) 003 Ort wrticand = 0Ore < 4] 1-

R

Og

Sag md 5Wa i

and 5R,

51.

+

Rk, >

a

%

xy = the number of X, = the number of x, = the number of and x, = the number of The mathematical model Minimize C = 5X, + Subject to: X, + Xp

We multiply constraints

the are

a

Wary

YT Ys

a NOV

Oe i0inel

yy.

oar”

R

students students students students for this 2x, + 3x,

The

oi

Ot PtegO.

0) d= 1c yt :2 Mee y=1), 0 6

aught minimal

ef

Soe

> pC

cholesterol

iey intake

is 428 units when 10 ounces of food L, 8 ounces of food M, and 2 ounces of food N are used.

R,

Let

x,

.

i

Ya

bused from bused from bused from bused from problem is: + 4x, 2 300

North North South South

Division Division Division Division

to Central, to Washington, to Central, to Washington.

xX, + X = 500 + x, < 400 Xy + xX, < 500 Xy1 Xqr Xqr X, 2 0

last two problem constraints by -1 of the => type. The model becomes:

so

that

all

the

EXERCISE

5-5

Minimize C = 5X, + 2x, + 3x, + 4x, Subject to: 5 a a 2 300 ~X,

-

x, X,

~Xy X11

X_,

Xz,

+

X,

hee, X,

2) 500 Z -400 ri-500 2 0

279

The

matrices

for

a

al

0 A= |. Sb

Oy 30°

The

this

0

and

the

dual

problem

0

300

i,

0

ESO =400

1 0

0 @ Tie ee

Seana pes O-

0

Ak

Sil

Sat

OF

5

2

3

Ae

and

| 25:00

4

il Maximize P = 300y, Subject to: y,

is:

problem

variables

X,1

Xzy

-

V's

and

x,

= 0 to

obtain

Y,

The

-

the

+

+

400y,

tableau

Kyeolio

for

this

LMyintey

il

0

-1

0

X,

il

0

0

-1

a

d

problem

-500

400

43

o%a.

©

al

0

0

0

0

5

0

il

0

0

0

2

may

BelRtidL

R,

=

R,

and

@)

ko

0

1

-1

0

0

0

0

0

1

-1

0

0

CHAPTER

5

+

Or A a0

R,

LINEAR

=

R,

0

500R,

0

(-1)R,

0

0

all

~

-1

0

il

+

0

0

Oc

and

300R,

INEQUALITIES

AND

R,

0

weth—uiai-o%

[99 >}Hewins

aia

[84 abet

0

0

=>

i R,

5

T =

Seem.

0

2

2 Ao

al

0

0

3

ale

0

i

R, >

LINEAR

0

5

0

-1

+

P=

is:

~a,

500

3

it +

wih

SOE) ViC lo solgl

Gal) aR, +

=

Magee

oO ABA colonusd, molt BOnme -300

xX,

500y,

x,

Zatko'y'

280

+

5

a

Xp

~ V4

500y,

simplex

ie

=e

¥2 -300y,

=

V4

=

Vy

i

500y,

=e S=3 S,4

te

pane

4

-500

system:

Yi

5

S5

“ay,

Xz,

0

-400

ays

Vaca, slack

0

400y,

-

500y,

¥, - 3 Y, 2, introduce

-1

300.500 +

y,

We

are:

ead) 01] 4h

OL

dual

problem

R,

PROGRAMMING

15

initial

wre

meme

0

e ee

we ew

we em

ew

974100

Pe

ee

ee

eB

+2004

ee

we wm em eB ew

Be

20-5300"

ee

ee

ee

ee

ee

ee

pee ew ee

500

i

4

ee

5

ee

2

eg

x,

0

0

0

0

1

-1

-1

i

0

4

Yi

il

0

0

-1

0

1

0

0

0

2

~ Yo

0

il

0

-1

0

0

0

aff

0

4

Et

BOS

io0)

nelis >ghids-&

tort

oxsles

6

1

The

eee

5

minimal

cost

is

Bods

$2200

when

300

students

are

bused

from

North

Division to Washington, 400 students are bused from South Division to Central, and 100 students are bused from South Division to Washington. No students are bused from North Division to Central. EXERCISE

5-6

Things

to

remember:

Given a linear programming problem with an objective function to be maximized and problem constraints that are a combination of 2 and < inequalities as well as equations. The solution method is called the BIG M method. 1.

THE

BIG

M METHOD—-INTRODUCING

VARIABLES

STEP

1.

If

TO

FORM

any

THE

SLACK,

MODIFIED

problem

SURPLUS

AND

ARTIFICIAL

PROBLEM

constraints

have

negative

constants

on the right-hand side, multiply both sides by -1 to obtain a constraint with a nonnegative constant. [If the constraint is an inequality, this will reverse the direction of the inequality. ] STEP

2.

Introduce

a

SLACK

STEP

3.

Introduce

a

SURPLUS

STEP

4.

Introduce

STEP

5. For each artificial variable objective function. Use the artificial variables.

in

each

VARIABLE

in

VARIABLE

each

S$ constraint.

and

an

ARTIFICIAL

variable

in

each

VARIABLE

= constraint. an

artificial

=

constraint.

ay, add -Ma, to the same constant M for

all

EXERCISE

5-6

281

PROBLEM

THE

M METHOD—SOLVING

BIG

THE

2.

preliminary

simplex

modified

the

for

tableau

STEP

1. Form the problem.

STEP

2. Use row operations to eliminate the M's in the bottom row of the preliminary simplex tableau in the columns The corresponding to the artificial variables. tableau. simplex resulting tableau is the initial

STEP

3. Solve the modified problem by applying the simplex method to the initial simplex tableau found in Step

2.

problem

to

modified

the

of

4. Relate the optimal solution the original problem.

STEP

If the modified problem has no optimal solution, then the original problem has no optimal solution. If all artificial variables are zero in the then delete the solution to the modified problem, artificial variables to find an optimal solution to

(a) (b)

the

original

problem.

If any artificial variables are nonzero in the then optimal solution to the modified problem, original problem has no optimal solution. eS (c)

1.

(A)

(S) s, to convert the first inequality artificial an and s, variable surplus a into an equation, (2) into an equation. variable a, 1 to convert the second inequality The modified problem is: Maximize P = 5x, + 2x, - Ma, variable

slack

a

introduce

We

use

we

and

Subject

to:

x, + 2x, + Ss, x, +

XX, X11

(B)

The

preliminary

Xj)

§Xy > Sy

A

2

1

-5

simplex

tableau

So

Rae

i

0

0

OFTLZ

i

0

-1

aL

0

4

-2

0

Albi 4

0

(-M) R, +

Thus,

the

Creteate

R, >

for

|~

the

simplex

erg

CHAPTER

is:

1

2

Be eG Oin

wiOie,

40

12

1

1

0).

ailing

tO

4

LINEAR

INEQUALITIES

AND

LINEAR

PROGRAMMING

50

Ue

al

0

4

=O

1

|-4M

=1

in amg ig gt

Ay 2)

0

0.

2930

4

0

Al

Mae

12

is:

a

5

= Ae F

problem

0

Xy

5

Sor

1

x,

R

+

ae

Thus, x,

(D)

=

The

3.

(A)

the

>

2}

We

=

the

0,

5R,

+

R,

solution S, =50,

solution

aC, +e

introduce

obtain

R, and

optimal x,

optimal

fp,

X,

S$,

of

>

of

the

Ss, =

the

8,

modified a, =

problem

the

slack

modified

preliminary

mH

is:

max

original

problem

is:

max

P =

60

variable

problem:

s, and

Maximize

the P =

to:

artificial 3X,

2x,

+

5x,

Bi 55+ +

simplex

oS).

8,

£

tableau

for

the

Sy

X,

fa,

Xz,

modified

Sy,

problem

0

8

2

1

7

0

0

8

al

AL

0

1

0

Salle

al

al

0

1

0

6

0

M

iL

0

0

0

1|-6M

R, 3

3)

Me

=

28

>

6

is:

0

Me

a, to

a, 2 0

i

Thus,

at

Ma,

%

(-M) R, +

60

at

variable

-

2

a5,

P =

OF.

X11

Oe

1

0.

X,

The

a

R,

Subject

(B)

Sp

i Cet Ca) G2). ns, ote dl al | Odi ae 05-1 ty }0 |.o& | Subtle gee ot 0" 40."e07 422

R,

12,

24

R, X,

eee Blige 1

12

4

Ay

(M+

problem.

12

0

0.0=)

R, >

solve

R,

the

initial

x,

X,

Sy

2

ay

il

simplex

tableau

is:

S,

a,

P

Al

1

0

0

8

al

0

1

0

6

EXERCISE

5-6

283

122 "17 0 Sto) ee

S) ae

+ R,

(-1)R,

the

Thus,

ee

eae

‘(D)

x

5.

(A)

solution

optimal

The

On

2555

of

the

Ge

simplex

preliminary

xy

X>

Sy)



a,

2

1

0

0

0

2

1

Og

=a

al

0

4

-3

0

0

M

al!

0

-1 if -4

tableau

Ss,

the

i

i

0 0

~

4

-—M-

P

-1

2

1

0

0

0

2

al

Oy

tal

il

0

4

1

M-4

-M-3

R, +R,

R,,

0)

ined cs OF g O82

ales

Gee 0

a,

5

LINEAR

is:

M

D»,ljl-4mu

el

-M

3

-

elie lag

0

0

2

-1

AL

0

4

M

0

1

|-4M

0

a

ai Oi

RS

jol

1p

0-1

0

ol.

yO

74.

af 1

= 07]

46

i

Oo}

4

wi 4

ae

(M+ 4)R,+R,7R,

No optimal solution exists because the elements in the above the dashed line are negative. (the Sy column)

CHAPTER

4

IV 0

problem

modified

‘ll

ay

®

So:

2

S

AW 1)

Sheep

iy

2

-1

S)

0 2

S11

Sa

P

xX,

ae -1

Xp,

the

for

x,

AL

a,

Hy

XX, X11

284

at

and artificial variables to obtain surplus, We introduce slack, = Ax, + 3x, - Ma, P e Maximiz : problem modified = 2 ot 2X, + S, ni= Subj ectsto

The

at

30

P = 30

P =

max

is:

problem

original

xX, +

(B)

is max

problem

modified

the

a

an

Sh

en

of

solution

optimal

>R3

(M+ 5) R, +R;

> R, and

1130

5

M+

0

0

2

P

1|-6M

0

0

5

-

-M

3

-—M-

Ie

1 tf

(18 0

ares

6 Ritholbg Meme teed |».

ce

x,

problem.

modified

the

solve

to

method

simplex

the

use

We

(C)

INEQUALITIES

AND

LINEAR

PROGRAMMING

pivot

column

7.

(A)

We introduce slack, surplus, and artificial modified problem: Maximize P = 5x, + 10x, Subject

to:

Xe

t.

%

2x,

+

3x,

X\1

x

x

Ss

2

S,

1

Ss)

al

a

al

ay

2

3

OE

Pease

|— 10)

Thus,

0

0

(-M) R, +

the

a,

0

to

6,

the

es -

Xr

obtain

S,

Sz

+, a, ='12

ay .&>

Sor

0

P

0

0

3

1

O};12

ith

R, >

+

variables Ma,

Al

al

A

0

0

0

3

2

3

O)

sadl

ut

0

12

0

1gl

0)

thf

| ~ 0

=

Me

ee

ee)

R,

initial

simplex

x,

X,

Ss,

ij.

a,

Z

tableau

is:

S,

Sp

a,

124

it

A

0

0

0

3

0

-1

1

0

3 2

3

x,

x, “ra: Dy

X,

S)

S,

a,

12

i

4

Or

io:

#.¢

3

-1

0

-3

it

0

3

M + .5

0

0

1 |-3M + 30

i!

3M

The optimal solution x, = 0, Xo Fg, s, = (D)

+

-1 10

of the modified problem 0, Sx= Oy and a, = 3.

The original problem does artificial variable a, in nonzero

M

not the

have an optimal solution of the

is:

max

P =

-3M

+

30

solution, since the modified problem has

at

a

value.

EXERCISE

5-6

285

9.

Introducing + X,.To minimize P = 2x, - X,, we maximize T = -P = -2x, modified the obtain we , variables al artifici and slack, surplus, problem: Maximize T = -2x, + xX, - Ma, =S 9x, * Ss, x,i+ Subject: tot) 5X,

+

3X,

X11

x,

So

Xp

a Ay >2

30

Spr

for

this

problem

Sy,

tableau

simplex

preliminary

The

-

X_,

SS

+

0

bas

J

a

2 pe ONee ey |A eee STieseeu cee 7

(This

is the

simplex

initial

a!

5 Ro 5

Al

0

0

1

1

0

M

0

(5M

-

3

“|

Ome sen a sn -5M

+2

-3M-1

Ry,

ae

(

R,

waa

ss = 10

od ee oe omen te), Sas eee 0

R,

4 0) 27eees

De

3

2

i

lt

-12

R

X,

0:(@)

se

1

1

1

Le

2

m-2

5

3

a0]

==

R

aIR.

Thus,

=— LR

the

Minny Pe=

286

CHAPTER

0

Sore

R

oes R

oT

optimal

em)

solution

Max,

ele

5

INEQUALITIES

LINEAR

ne

is:

AND

S$,

$,

5

3S

fe

3

1

Ba

2) 1 9 ices Sau 3

o ad# 3 TLo

11-12

SiemR

X,

Ont

OSes

eases) ~botlioas ne03 Aim2 mite Mm 7 0-2duel

one

1

tableau. )

ill

30 _

|-30M

1

0

M

0

-3M-1

}|_-5M +2

is:

max

3 T =

LINEAR

-1

at x, = 3,

PROGRAMMING

The

modified

problem

constraints

is:

for

maximizing

Maximize

Subject

P =

2x,

to:

P =

Ttoee

+

preliminary

simplex

tableau

X,

S,;

Sp

A

12

1

1

1

0

0

0

8

5

3

0

-1

zy

Om’

30

-2

1

0

ek

0

Oy

(-M) R, "HR,

>

Xy subject —

3X,

FE Sy a

X11

X,

-

x, +) oes, 5X,

The

2X,

Xp,

for

the

a,

Ie

LAO

aint

Sy,

Sqr

modified

1

i

ero

~ 4]

©)

3

Og -V5 1 6 0 f 30h [bane

-3M+1 is the

Soha92

23M

(-1)R,+R,

0

Sy

105°

initial

soa

lems

|-30m

As 5 Ro =

He

:

M051

tableau.)

z

| See

“phat

R,

la

age

Owe

22 @

0

0

+4161 0

>R,,

t 1

11

2

M

0

|=

(5M+2)R,+R,

-1 1

0};

3.00,

=

>R,

-2

Thus,

11.

ee NE i a

the

By)

M+2

‘la

ee

10

> R, and

optimal

25

ets

s,

ee

Ry +R,

solution

le

I

2

Sue

5R, > R, X,

X,

S$,

Sp

8

P

0

>

5

4

-t

Ya)

SE ie le x | dpe dt et ey te Do oe +R,

2

ieee ee eal me leek ere eee a

245 3

&5%,

is:

R,

5,

1

40

problem

S,

simplex

given

nS

Ay =e

X>

(This

the

ety SS I

x,

P\L-5M-2

to

Ma,

CW

ee eS

ed ta

16

0d, 8 we Le

ae

tee ae Cec k pal

me

OR,

is:

max

P =

16

at

x, =

8,

x,

We introduce slack, surplus, and artificial variables modified problem: Maximize P = 2x, + 5x, - Ma

=.0.

to

obtain

the

i

Subject

to:

x, + 2X, 2x,

+

+

X,

xX, +

S,

Saye! +

X,

X11

Sy

= or

X_,

Sys

Sor

ees

Sz,

Aub

aes

a,2

0

EXERCISE

5-6

287

simplex

preliminary

The Xx,

Xp

S1

S>

S3

a,

P

di

Pe

i:

0

0

0

0|

18

2

ap

0

al

0

0

01

22:

al

1

0

6

-1

al:

OF}

2O

Rye Re

ie! 1

445 @

S, 10

S$,

Ss, S,

2

el

0

an a,

:



4

P a TONS

1

0

0

0

21

ae =

21

(this is the initial

A

ed

r

0

10

ie.

i

simplex tableau.)

ee

Dy

all

0

Al

ih

a

0

0

-1

0

0

M

(—1),R,

R,,

(-1)R, +R,

$ -5i

1 0

; 3:

7

>

+R,

0

07 ty

Wo

sro

6

0

0

21

il

0

10

0

1 | -10M

>R,,

uO. 00

1’

em

SO ea

G) 2 =F) 00teg

-M-5

af la,

S$, SO

2: Sey SP. 0 -- 0 P i) se lh sax &

-M-2

and

10g GO:

10 toe

a

(M+ 5)R, +R,

9 12

c!

ped

288

CHAPTER

1 0 0

5

“> Ry

9

|i = 18 ple = 2 |S 1

2R, —-> R,

:

ye

ae es Sig” aes 28ie Van by ee

SOR ; $

is:

Rs

(PM)

$

problem

this

for

tableau

LINEAR

$ -+ =

oe JOT =o i Oe OO. es Yep MerA ah)

INEQUALITIES

AND

LINEAR

9 12 2

PROGRAMMING.

xy

x5

Sy

S5

Pee ero) ea

ay ct

Peet

8.

Oey aS es: ee

Beiale waa ew

13.

S3

4

2

a,

P

| th | CS 2 ee en

Oo}; o| Oh Se

M1

8 9 age Le

Optimal

solution:

dar [atin Ma) 2) ae an.

We introduce surplus and artificial variables to obtain problem: Maximize P = 10x, + 12x, + 20x, - Ma, - Ma, Subject to: 3x, 45205, 2x, =e, La, X,

The

preliminary x,

X,

3

S,

X3

all

1

simplex

-1

OTe?

2

0

0

ie

0

ea

R,

Sh?

72

=

16

ay,

a, 25

10

problem

is:

2

OM

0 a,2

Sy,

the

X,

modified

problem

is:

po ico yh SS, SP. ap 4?

ieee Smee Ps

17}

eo | ei -5 | 6l(SMR,

+ Ky.

AO 0 lol

00 Af mo Rs

Oy 8 2 oF-04_ | 8 G@) 1% “3 - 2M’ i2k

1 1 =5 -'M >

2 -2 ~6-4 2M

1 gh 0) 8 Ci Ba! |).0 “0-0 "1 |.0

RR,

EXERCISE

5-6

291

y@

2

i

2

;

1

-1

Ris,

LINEAR

1

0

Duna

0

0

o

e080

0

0

60

Uo

ieee

ae. |O58.005. 0 2-1. ek ee eo Meas

Om

eee

(ai yRot RowRy

INEQUALITIES

AND

LINEAR

Olin

Ts?

HO

1 | -90mM

(OM+ 5)R, + Ry aa

PROGRAMMING

the

-1 1 a es

-2 2 -


0

‘ S,

jad

Apne

3

Se data

O° eer 0 OF = aie

e © ular

6

(Gu+3)r

3

2

2)

Jnl

$M+ 2 0

(-1)R, +R,

7R,,

X,

x3

S)

S,

a,

S3

Q

-9

0

0

il

-1

-2

Ped.

Sel.

Se)

Oh.

M

aedae)

M

4

are dst

1.

4

ao Bo

OO

(M-3)R,+R, a,

10 25 15

2 isms

Vee Wie ee = «0! 6 $0: Sig R,

P

2

0

30

S21

0}

20

bo to Oe fo ot20 0

Optimal

23.

25.

solution:

max

P =

120

at

xs

20%

(A)

Refer to Problem 5. The graph of the feasible region is shown at the right. Since it is unbounded, P = 4x, + 3X, does not have a maximum value by Theorem 2(B) in Section 5.2.

(B)

Refer to Problem 7. The graph of the feasible Therefore, P = 5X, + 10x, maximum value, by Theorem See.

We

will

maximize

Subject

P =

to:

-C

Xa +

=

region is empty. does not have a 2(C) in Section

-10x,

+

3X, 4x,

X11

be

40x,

+

5x3

+ S, +

Xp,

x,

X31

=" 6 PGS

Sy,

ote 3

S, 2

0

EXERCISE

5-6

295

where

s,,

S, are

x,

X,

slack variables.

XX,

S,

Sy

The

simplex

tableau

5,| Oe @Dudl> 2 0) -40

-5

aS 4 Ro x,

0

in

Spe pews

2

X

10

S$,

3

ee

Beng,

Vila

~ X51

020

a

+

0

1.10

Oe

St.

0

So

1S

0) aes

-5

0

0

+ R, —> R, and 40R,

3




ee min.

C =

2

5

pare

P{-M+5

(-2)R,

2M

0

On

15%

>

5

-

Xy,

= 7S

Xz,

Syr

modified

the

+

Sor

problem

Ee!

ay eae

Ay 2

10

is:

0

2

0

X3

Sy

Sy

a,

1

a

0

0

DIMe 2

By and

2c

Dire (0 =) 5

the

tS.

2x,

5

15

0

(M -

0 | 24

oa 22 Ome

eS

M

at

sp

Al

a

AND

LINEAR

3@O3 3. 7

al

Zee 28)

Oe

05

0

0

2R,

INEQUALITIES

1 | -M

R,

0 alma

R,

x, = 0, X, = G X3 = 0.

X11

x,

+ R,

0

15

see

Introduce slack, surplus, and artificial variables to obtain modified problem: Maximize P = soos ae 10x, ~ 15x, mae

The

1)

12

Subject

296

-40

(-3)R,

Xx,

=O

©,

0

Pinks

ci P 27.

0

is:

12

s,[ 4, .2)\ 0.4 \ 9° po eel ee P10

for this problem

+

R,

PROGRAMMING

>

2

5

R, and

2

=i

1

0gae

22

M— 5 eaiSS

5R,

+

R,

>

R,

1

|

i

os

29.

i )

i

4

Ei

cee

the

2

2

Shin 5 :

a Nie

The matrices

Thus,

1

3_73

es ne

Sana ek

ese

problem

'

Optimal

49

ee

ae

corresponding

dual

22

icp) ||5 ;

lem a 8 ee a be peso eel

a

eae

is:

Maximize Subject

1

On|

3

4}

P =

a

5

and

,

a

xX,

&

the dual

7

max ,

P =

17

_ 22

x3

or

problem

5

:

are:

40

6y, +

to:

ee

xy

to the given problem

solution:

3Y,

y,

SiO

3y, # 4y,

S 40

Y> 0

40

1

0

(-3)R,

10

=

this

ze

X11 Xyr and x, to obtain

=

for

Yo

oF

0

6R, + R, > OF

R,

20

al

0

10 0/108 |= —5 he A. Fo, 5 2= 5

Oy 0

eae3 InlyedOun

"Op\

Oumar

12° T60

(-1)R, +R,

‘At

0

0

0

ome1 Ons

Onl +

LO x0

Gr a Osea

|10

Crm

CO

>R, and 3R, eR

EXERCISE

tlie5 tind

5-6

> Ry,

297

Ya)

Vo

ey

Vile lL

Ro!

Me

ho.

3

ar

¥,|

%

0

31.

Leena

We

15

OGD

4

The

the

52]

5

0

2

slack x, ine 3x,

-

-

9x,

Sy

this

Xx;

S)

So

i!

3

aL

1

0

0

a =O

Ue

1

if

ak

0

i

3

1

0

6

x3

S,

sae

Bl

2

33%,

8

i

a

ay

Sp i

tr ke

Omg

0)

P

0

0

the

number

of

16K

modules

=

the

number

of

64K

modules.

model

is:

Maximize

thet

8

and

x,

The

mathematical

rer

5

_ 28 all

5

3

-9

-5

LINEAR

1

0

+ R, > R,

oes

1

a ae pee)

3)

3

0

6

, + Rk, > R, an

oO

28,

P =

18x,

solution: xe

to:

+

4,

INEQUALITIES

max yee

d

1

1360

3R, +R;

OR,

P = 372

at

OF

10x,

+

2x,

+

30x,

15x, < 2200

X11

5

0

1

3

4x,

x,

CHAPTER

2

aa

i

>R, and 12R,

SZ

Subject

298

0

40

4

Optimal

ee Le

0

P

as

5

a

+R,

1

a

360

cha

$2

0]

1

&=

XX,

e

1

3

eo.)-F = a

2p 5 nei R ate

x, | 0



(-1)R,

Ue TMMR ek |e

xX,

4

-12

Ly Say On| Gees

OSes

system:

eles 7 0

60

> Rp => R,

3 -3

initial

s, to

is:

5

0

the

ena TM

;

0 | 40

0

obtain

a3: er

(0)

problem

P

©) 1) 3 TORR -5

C = poe

=60 Ao cts

for

35

min

=740 +

X,

-9

s, and

S;

5X,

tableau

:

solution:

liar

variables +

Xx,

-12

Optimal

135

DONE

se,

simplex

S,

(Oaieare

1

A

2K,

2x,

Aor)

iS

er

introduce

-12x,

ge

St Bet 8 _15 oe Ae”. |eee

a] Oe PU

>

AND

LINEAR

PROGRAMMING

X,

=

500

2

50

2

0

We introduce slack, surplus, and artificial variables modified problem: Maximize P = 18x, + 30x, - Ma, Subject to: 10x, + 15x, + s, 2x,

4x,

+

X,

Xp,

simplex

tableau

for

S,;

Sp

Sz

a

P

ak

0

0

0

OD

fE22'00

the

Xp,

US}

2

4

0

1

0

0

0

500

af:

0

0

QO

-1

1

0

50

0

0

0

je

al

0

x,

X,

S$,

Sp

$3

A

P

Sy

10

al

af

0

0

0

0 | 2200

s. 1

2 @

4 BL

-30

(-M) R, +

the

(2200 500

Sor

Sz,

A,

problem

x

50

2

0

is:

R, >} R,

3

Cape

Sy,

modified

110)

-18

=

aback Wake as X11

preliminary

obtain

Sy

x,

The

to

S

uf

eck

0 1 0 Ooen® oh

ald

sO:

1p

0 of elimi)

3

-10

2

500 | 2 = 250 50 | 32 - 50

ae

OF) 17008

2200

Toran?

and

(M +

18)R,

+

R, >

R,

[atOe a iia 33 15

~

pieC4)stoitirn2 2a loi: | doo ld sooghon 4 MO 0. 0, R CS

al

0

mit)

0-

=

10

“Ss

-10

0 | 1700

1s

0|

260

PRE iss -04- =.= 1s «+ 0.1050 Be-a0' 0, 0 16 m+ te ri ado (-15)R, + R, 9 R,, 30R, + R, > R, 0

0

O21 1 LOLS

ieee.

1

-=

'0

4

eS

->

0

200

=e)

ol

100.)

SSS aS Sat Shee ee a

Ob

sas.

we 38S

200

Wy

80

2 = 200

O18

113900

2

See Eig EXERCISE

5-6

299

0

v0

Mee ee

G41 TL 00

900 10

al

SO) 0

=

Hie

00

loeso

1S Se am0 eT

eRe a"

Gl =O)

ato aSa

2

x,

x me

PG).

Die

X,

S,

a0

ai cee

1

ite

S>

-< 2

Let

the the the

and The

mathematical

Sif

ay

4

4

P

80

0

0

ne me

3

number number number

al

ee 0

fb

x, = X, x3

3

S3

1 3

oOeee 35.

at

60

The maximum profit is $4140 when 130 16K modules and 60

eke aU

Oe

ea

64K modules

imaian

of of of

ads ads ads

placed placed placed

in in in

model

is:

Minimize

Subject

the the the

are

Sentinel, Journal, Tribune.

C = to:

200x, + 200x, + 100x. Si Kat X, + x, < 10 2000x, + 500x, a 1500x, 2 16,000 X11 Xy, Xy 2 0

Divide the second constraint inequality by 100 to simplify calculations, and introduce slack, surplus, and artificial obtain the equivalent form: Maximize P = -C = -200x, - 200x, -100x, - Ma 1 Subject to: i ke ane x, + Sy =).10 20x, + 5X, + 15x, - Sp + a, a 160 X11 X_, Xz, Sy, Sy, a, 2 0 The

simplex

xX,

200

X,

200

tableau

X,

100

S,

a,

0

0

M

(-M) R, oR

300

CHAPTER

5

for

S,;

LINEAR

the

modified

problem

is:

P

aL.

0

Re

INEQUALITIES

AND

manufactured

each day.

LINEAR

PROGRAMMING

the variables

to

S,

x,

X,

Xx,

S,

S,

1

1

1

i

gato naa 4

met ee 69) teh. 4 3d. pel

loems? 200 mle 20

UM

R,

A000

Pin,

Te200

a

G)

1

3

-

0

10

R3 ze

0

2

M - 10

Ta

8

eact on 6ae 5 72 2 nc, Loe @es OF

10

>, of baie Oy nt cet? benblPinel agte= °°

—15Mit.

R,, ancy

3 0

ila)

R,

SoM

+ R, >

P

160

285M4+ 200

=

a,

—o

32

Sf igen

il

-1600

0

8

4R, => R,

o

#e--(G)r 1

44

3

aiecs,. 2 !ee 71 bane ee On

50>

x,

=

X,

|_0

et

The ads

+510

0

X,

1

-2

02%

¢

-s

1

1

gene Fi es 2ae

10

M - 10

S,

S>



>= * 42

=3°¢-2

minimal cost is $1200 when are placed in the Journal,

a,

eon

two and

Ss

1 | -1600

g@

8

©

2

ads are placed in the Sentinel, no eight ads are placed in the Tribune.

EXERCISE

5-6

301

37.

Let and

x, X, x,

=

the the the

number number number

The

mathematical

of of of

bottles bottles bottles

model

is:

of of of

brand brand brand

A, B, C.

Minimize C = 0.6x, Subject to: 10x, + 2x, +

+ 0.4x, + 0.9x. 10x, + 20x, 2 100 3x, + 4x, : 24 X11 Xp, Xz 2 0

Divide the first inequality by 10, and introduce slack, artificial variables to obtain the equivalent form: Maximize P = -10C = -6x, > ae 9x, - Ma bh Subject to: x bP aoe 2X, - S, 2, = 10 2x, + 3X, + 4x, + S, = 24 X11 X_, Xz, Sy, Sy, ay a0 The

simplex

(+M)R,

VAR,

tableau

>

the

s

P

modified

problem

is:

R,

re

avi

for

surplus,

a2

ey

=

1

2

Qe

ie-

2

oO

op

10d

S-es

swale ae 3 delat ferret! tt oc 4.247. Abies Peas ==) R,

3

3

GON

et

ira

PE:

Ba feet tate (3oa ee Vie oye es ach Sect popes gaa -M + 6 ag

302

CHAPTER

=MetrAay i R, >

5

LINEAR

© = 2M

R, and

ta 9

M

(2M -

INEQUALITIES

AND

2)R,

Oreo

1! -10M

+ R, >

R,

LINEAR

PROGRAMMING

and

The minimal cost is $4.30 when 0 bottles of brand A, 4 bottles of brand B and 3 bottles of brand C are consumed.

39.

the the the

number number number

Let

x

and

x3

The

mathematical

1

ae

eubic cubic cubic

of of of

is:

model

yards. yards yards

of mix of mix of mix

A; B, C.

Maximize P = 12x, + 16x, Subject to: 16x, + 8x, + 12x, + 8x, + X1

We simplify the inequalities, and introduce artificial variables to obtain the modified Maximize P = 12x, + 16x, + 8x, - Ma, Subject

to:

4x, + 2x, + 4x, 3X,

+

2x, + X11

The

simplex

Xo:

X3,

Sis

tableau

for

the

modified

a,

So

P

al

0

x,

X,

X;

4

2

4

+S,

-1

Sy,

a,

problem

and

= 200 = 17/5 =O

s

+

8x,

16x, 2 800 16x, < 700 Xp, Xy 2 0

slack, surplus, problem: a,

4x,

+

is:

0 | 200

a ee ee ee -12

-16

-8

0

M

0

iL

0

(-M)R, + R, > R,

af ae

xy

x,

x

@® 3

2 2

4 4

-4M - 12

-2M

:



-

16

:

}

4

2

-

(-3)R,

12

-2M

+

R, >

-

16

R, and

P

1

0

ofF

200

0

a

orl

as

0

0

1 | -200mM

-4M

-

8

72%=so 2 = 58.33

50

4

Ceesee CPA Os -4M

So

-4M - 8

4% 7 R

||

a,

Oe

AligiS) dat Onl he, -200M

M

(4M+ 12) R, +

R, >

R,

EXERCISE

5-6

303

Lee

kee 13

OF



ene =O

2R,

>

R

he +: 1 ¢0ietae QO

0

Been

rs

Ii

1-4 as

sens}

-

0 2 3

12

MWe

I

of

car

of

truck

number

of

car

number

of

truck

and

x

The

mathematical

model

Maximize

50x,

x

25

0

50

frames

this

70x,

used.

produced

50x,

+

in

Racine, in

Racine.

is:

70x,

250

eS

af

Milwaukee,

in Milwaukee,

produced

problem

+

in

produced

frames

amount

is 1100

350 x,

300

+

200 150x,

+

200x,

50,000 135x, xX. 14

43.

Let

x As x. x

WwW Ee

xX,

and Costa

x

ea) fon)

eG

Revenue

Protiitwe

304

CHAPTER

X3,

X51

IA VIA IA IW

sg

the

number

of

barrels

of

used

in

regular

gasoline,

number

of

barrels

of

used

ara premium

gasoline,

the

number

of

barrels

of

used

am

regular

gasoline,

the

number

of

barrels

of

used

in premium

gasoline,

the

number

of

barrels

of

used

in

regular

gasoline,

the

number

of

barrels

of (es) ued @) (OY les) used

in premium

gasoline.

30 (x,

x)

=

+

xX >)

38 (x,

ra

5

35% 000

180x,

the

28 (x, R

+

LINEAR

+

+X 3

Ce

10x,

+

+

x, ) +

+

18x,

INEQUALITIES

AND

+

34 (x,

+

46 (x,

+

x

+

+

16x,

8x,

LINEAR

4

of

pounds when

25 cubic yards of mix A, 50 cubic yards of mix B, and 0 cubic yards of mix C are

produced

frames

maximum

nitrogen

IL |} ALLO

frames

for +

0

2

BC

number

The

mae

3

number

to:

50

iB

S

1 i

Subject

=

0

ay

P =

100

0

-+ M+

24

T Blo plo PIb~ It

=3

AS

-10

=

a

x

6)

PS 6)

+

4x,

PROGRAMMING

+

12x,

Thus,

the

mathematical

Maximize

P =

Subject

to:

for

model

10x,

+

18x,

+

this

8x,

+

problem 16x,

+

4

x il

PGA a ist

3

+

x.

3

ul

15x, X51

45.

X31

is:

Ax,

as

+

12x,

40,000 25,000 15,000 30,000 25,000 0 + 5X 0 WIA VIA VIVIVVMV 0

5 4

#6

percentage

of

funds

invested

in

high-tech

percentage

of

funds

invested

in

global

percentage percentage oe te 5 = percentage

of

funds

invested

in

corporate

bonds

of

funds

invested

in municipal

bonds

of

funds

invested

in EDs

Let

x.

Risk

i

funds

funds

levels:

High-tech Global

funds:

funds:

Corporate

Bonds:

Municipal

Bonds:

Fr oO FN

CD's:

Total

risk

Return:

The

level:

0.11x,

+

2.7X, 0.1x,

+

mathematical model Maximize P = O.11x, Subject

to: 2.7X,

x, +

+

+

1.2x,

0.09x,

+

0.08x,

X,

1. 8x,

+

+

X3

X51

+

Xy

+

Ave

ounces

of

food

L,

ounces

of

food

M,

ounces

of

food

N.

and

The

mathematical

model

for

Minimize

0.4x,

+

8x

60x.

+

+ oe +

+

EE Ep Bip

this

0.6x,

+ + 10x. + 30x + 4x Bo ND NN + 40x. 10x

45

~

problem +

+

0.05x,

IA VV Ul Fr oor

of of

30x 10x 10x.

0.05x,

2

cia =o

of

to:

+

.8

number number

X, x

C =

0.5x,

xs

0.5x,

x

X3,

+

number

br

Subject

+

1.2x,

Let

= =

the the the

+

for this problem is: + 0.1x, + 0.09x, + 0.08x,

xX.rl

47.

1.8x,

0. 8x.

is:

3

400 200 300 150 900 WwW WWW xX. IA 0 IV Ww

30x. 10x 20x. 6x. 50x.

X51

EXERCISE

5-6

305

49.

Let

and The

a = X, = x, = x4 = x, = =

the the the the the the

number number number number number number

of of of OF of of

students students students students students students

from A from.A from B from B from C from C problem

mathematical

model

Lom

this

Minimize

Ax,

8x,

+

Subject

«C= to:

x,

+

6x,

+

4x,

enrolled enrolled enrolled enrolled enrolled enrolled

Xe, +

school school school school school school

Day,

By EG;

I, IEAbic

is: +

at

in in in in in in

3X, = = Xe =

+ X, + X + Xz

f

9X,

500 1200 1800

2 1400 2 1400 < 2000

+ X, < 2000 < 300 < 300 (0

5 REVIEW +

xX,

+ xy ’

< a
=

8 27 0

The graphs of the inequalities are shown at the right. The solution region is shaded; it is bounded. The

corner

(07°0) 7 300;

306

CHAPTER

5

points

oye

LINEAR

are:

Noy

2),

xy

(4,

INEQUALITIES

0)

AND

3x4 He 9X5 ='27

LINEAR

PROGRAMMING

(5-1)

2.

3X, 2X,

TES

Ee

+

216

4x,

X,,

le,

X, 2)

0

The graphs of the inequalities are shown at the right. The solution region is shaded; it is unbounded. The corner points are: orem (2, 3), (8, 0) 3x, +X_ =9

The

feasible

region

is the

the given inequalities, by the shaded region in right. mhescorner

(Zee The

points,

and

value

Corner

of

are

solution

and the

(0,

is indicated graph at the

0),

P at

(0,

corner

P =

10 B(0,8)

5);

point

X, + 2X5 = 10

is:

6X, + 2x,

(0, 0)

Prema

PEG) tee Sy) P = 6(2) + 2(4) PR =moiCA en to) (O)\

the maximum

(5-4)

i,

A, 5) Ths

each

(Ope (2, (47 Thus,

of

(454-0):.

Point 5) 4) 0.)

set

2x1 + 4X_ = 16

crests

ee2t0) =O

occurs

nee

D(4,

0)5

PEGE mi Da

anihadi

=. 0 = 20 t= o24

at x, = 4, X, = 0, and the maximum

value

is P=

24.

(5-2) 4.

We introduce the slack equations: 2X, +r Xa + Sy x,

5.

There

6.

The

+

are

basic

= shox

2X,

2 basic

variables

and

solutions

s, to

obtain

the

system

of

8 10

(5-3)

2 nonbasic

are

Ss, and

given

in

Intersection Point

variables.

the

following

(5-3)

table.

j

Feasible? Yes No Yes

Yes No

Yes

(5-3)

CHAPTER

5 REVIEW

307

7.

knter

3 is:

Problem

for

tableau

simplex

The

:

Exit

s,

@)

ate

wcOGLAd

8

8

z=

4

s,}_1__2._.0..2._9 {10 |4% = 10 pees

P22.

02.0%

tT)

9 (5-4)

8.

Plexo,

sy ~

Gey

I

is

‘OO | 8

il

2

0

aL

ORELO

0

0

1

Sy Pe

$s, |P

-6

2

7 0

an 2 Fy ap Ry

x,|

eee



1

oH

fas?

i

:

2

0

1

0

=o

0

0

al

ih =Giur

(SYR

A al

@

a

7

4 110 0

R, and 6R, + R, >

R,

ee 0

O|

4

s.\! N ae Oe" saws 1 O01 bs 6 Optimal solution: max P = 24 at x, = 4, x, = 0. 8 3S)Mangan

gee

P

9.

0

ak

3

0

a2

X>

X3

S,

S5

4

(5-4)

Enter

xy

xy] 2h Ba |,(2

8

S3

P

Bi

Oe mon meCetne Oleg ns

Og 4 oe,

tONEAO

SOS

=i

Bxit 153 psQ)ys Oods Sais2cio 09

PtHP?

_pe

5

3

ok

0 and

3

Biba

corner points are (0, 0), >5)02) (3 pee rane. (5,0).

The

value

Corner

each

Point

P=

corner

ies

(ORE Gy (2a) (4) (59990))

P= ws (OF ars 5(0) Pit msi (03) Pi =N Si

the maximum

SC)

occurs

Meil Bla0 sbural

?P 0

ah

0

ee 2

epsjg0

P =

40

at

(5-4)

of by

6),

point

is:

3X, + 4x,

(OvnnnO))

Thus,

% 2

(5-5)

The (25

P at

La

20.

feasible region is the solution set given inequalities and is indicated shading in the graph at the right.

of

*%,

0

aSeeSosioe-20

The the the

(0,

Yo

Optimal solution: max y, = 0 and y, = 2.

3

X, =

-5

#5) AO)

=

©

awa 6o)OS 24 et ((S)) eee eet (49) oe Sea) e=21'5

at i

hr X, = 5, and the

maximum

value

is P=

26.

(5-2)

310

CHAPTER

5

LINEAR

INEQUALITIES

AND

LINEAR

PROGRAMMING

18.

We

simplify

and s, to

inequalities

obtain

x,

The

the

+

2X,

xX, +

Xp,

2x,

Wj

Ke

-3x,

-

4x,

simplex

the

+

and

equivalent

S,

introduce

Sp,

+

S, +

tableau

for

variables

S11

Sy,

12

=

7

=

10

Pi=

this

slack

form: =

+

the

(0

problem

is:

Enter

i.

Bie

ws,

f Me CQyer

S5

il

it

Peeve 12

0

Ss,

6,

-P

0

o

OY

127

1

0

0

7

mnL el Oors0oNme1.§

-3

-4

0

0

)RA ii rey

0 | 10

0

di

aa

= = 10

0

a

7 Sa Vata 1

ea.G) «se 0 «0.10 a

1

1

0

Re ! Ww

i ry

oO

ee Or 23

0

@

(-2)Ro +

oO

3

Ons

a

6

On 00 5.08) ©) a3}= 12 Al

0

0

al

il

acy Cee

|,| 2 Oo Oe ie

hr

(-1)R, +R,

liel~ 267

1

1 =

oO

>R,,

Oo

2R

is)

2

2

x,

X,

Oo

oO

is)ns

kr

> R,

Pes 0

oO

>R,,

4R, +R,



0

re

(-1)R, +R, and

1

1

2,01

oe

ane

On|

Ce Ts 2 | Oe

=

2

0

0

D

ee

Os

a

Onan:

Ba)

LL Oe

ae PO

ae OO 2

he

> Ry»(-3) + Ry > Ry”

1

S,

S5

S3

Re 0

-1

2

0

0. 0. ee mee Ol Li ea On

Optimal

bet

P

solution:

2, Oe

tS.

max

0

2

Okt coh 28 P =

26

at

andR,+R,—>R,

(5-4)

CHAPTER

5 REVIEW

311

19.

The feasible region is the solution set the given inequalities and is indicated the shaded region in the graph at the Tac iaitere The corner points ancun(S) sie

are!

The

each

value

Corner

of

C at

Point

(Oi,

(07

2:0))

Gy= (Els

(Sin

corner

Cys

(Sia)

LO)

3X,

+

3:(0))

Sy

point

cs 7S¥ (sy)

(Oyo) Gres (Sy) the minimum occurs

t

Thus,

is:

8x,

asiaON =

se Wi((Sy)

of by

80

=

G(B)y

55,

\ Ss

at xX, = 9,

Sal X, = 3,

and

the minimum

value

is

C= 51.

(5-2) 20.

The matrices

al

Thus,

corresponding

if)

the

to the

given

problem

dual

problem

is:

Maximize

P =

Subject

to:

LOy,

Introduce

the

y, + y+ -10y,

The

=

simplex

Vio

slack

variables

Y, Cy

9

ove

15y,

=

3y,

tableau

Oe

Pee

-15

(-2)\R,

CHAPTER

eee

this

eee

oe

-3

Ry 2

5

LINEAR

0 Renda

x,

=

3

=

8



8.)

problem

the dual

to

15y,

+

problem

are:

3y,

Me

R,

Optimal Ess

24.

(A)

X3

Sy

So

meee os OCS fcr das ot!Sd 0) solution:

Tk Uy Beal 2

te

max

Xx, =

P =

ips ied 23

at

OF

(5-4)

We introduce a surplus variable Ss, and an artificial variable a, to convert the first inequality (2) into an equation; we introduce a slack variable s, to convert the second inequality (S) into an equation.

The

modified

problem

is:

Maximize

Subject

P

to:

x,

SOAS),

+

3X,

Cae

-

Ma,

ae ey

x, + 2x, X,1

(B)

P

The

preliminary Xx

X,

aL

iy

et -1

SS,

simplex

aa

bade Xy,

Sys

Sor

SC

Ay ZO)

tableau. is:

4

So

P

=)

i

0

0

6

2

0

0

aL

0

8

-3

0

MoO

i

0

Now xX,

Xp,

a,

il

sl)

Sy

1

2

P|"

-1

-3

Ss,

ak 0

a,

S,

P

1

0

0

6

al

a

-1

0

ib

0

8 |~

Al

2

0

SiH

20

OsiNebiOn

oMe= 150 5-M= 3s (Mimi

(-M)R, + R,; > R, Thus,

the

initial

simplex

tableau

X>

a,

‘il

if

Sri;

it

2

Ona

Ome

-M-3

mM

0

0

S,

a,

Sy

P

a

0

0

6

6 a) see

0)

0

ar

oo}

&

[es%

M.

0

.0.

1+]

6M

Pj-mM-1 (C) ay

Lae

x,

X,

i

al

S,

is:

x,

-1

ee sat ae @)

P|-mM-1

> Oc ei ome

1

Sido

ates

EMCI

(-1) R, +

R, >

@)

oeae revert 2R, >

~

Mek

R,.

O47

Ae

%G

Weg

pn

Oe

(M +

ei

1

se

if

is ipUO RI

yan!

em

ieae

Dt

Loem

3) R, +

R, >

eee)

ng

te

a

nO

hood Bd

R,

2

4-4

Oe a

re

R,

ct)

0

-2

2

-1

4

i

1

0

0

3

1

4

=

x,

X>

x,

ik

0

X,

0

1

S)

a,

-2

S>

2

al.

-1

-1

ab

P

0

4

0

2

The optimal solution to the modified problem aca -= "47 x, t= 2 tia OF; a, = 0, S33 OF ail

(D)

Since

(A)

is:

Maximum

P =

10

2

a, =

Maximum

25.

4

0,

P =

the

10

at

solution x, =

4,

to

the

x, =

Ze

original

problem

is: (5-4)

We introduce a surplus variable s, and an artificial variable a, to convert the first inequality (2) into an equation; we introduce a slack variable S, to convert the second inequality ( S>

nl

R, 1g.

-1

0

z

Reoat 2 1 De eee i,ati”

@ The

R,,

X,

0

sa

M

=

Since

M40

solution

a, Sb, a, al # 0,

to

Maa the

eer the

i

agefh

i || saleae

modified

problem

Subject

P =

2X,

original

to:

+

le Ky 3x,

a +

3X,

X,

=)

4,

Bop

OF

problem

(5-6) does

not

have

Multiply the second inequality by -1 to obtain right-hand side. This yields the problem: Maximize

is:

ee a

solution.

a positive

number

on

the

+ X,

3x, an Xe pe, Be 2X, 2X, DUO, X11 X_, X,

R

Keo.

A

of 4 + R. 5 > R 5

(-1)R,

0

0

obtain:

22 AS §8 10 9 (0)

=e) Pos 10

is:

26. 26

8

COO

4

Ss, to

(5-6)

Dr et

2%) 20 Yyot Ao | 10") CO

problem.

22

Wa

tuckOplaick 0

coefficients (5-5)

12

0

aes 4

for

© ta

ee

EONR

Sp

SEI

eee Sz] s

+

tableau

X,

R,

xX,

X,

ed ST ~

$3]

0

me

eee

P

Optimal

S,

10

es NS

0

SB.

i

Sp

S;

ee Ta

|

2

os.

Sy

P

10 es 2

0 a

6 2

0

2

%

0

Basic

%1 %

tes are Ber Ot Be ete 2 =

Oy

0

isd

(Sy

Xx, =

Lge

36

(0, 10)

Solution

5,

5,

Corner

8, s,

(6008)

Point

5s 10)

solution:

Max

.P =

36sat

ae

The graph of the feasible region the path to the optimal solution shown at the right.

8

and is

a

32.

Multiply the first 2 inequality. Now

constraint inequality by -1 to transform it the problem now is: Minimize C = 3x, + 2x, Subject

to:

em +

3% Pa

x, X,

matrices

Thus,

the

corresponding

dual

problem

to this problem and its dual are,

is:

Maximize Subject

We introduce slack the dual problem: -2y,

+

ayant) 20y, -

2Y>

variables

POUR

BY, 8 9¥5 -

(Ys 6y,

to:

x, and

SG,

+ X, +

Pi

P =

~20y, -2y,

+

=a

ti

x, to

=

3

= =

2 0

oy 2Y>

obtain

into

a

> -20

2x,

The

(S22)

9

X,

2

6

Xy

=

0

respectively:

t+ 6y3

ray


Ry.

N1

oO AIn ©

(-1)R,

+

0

0

0

0

0

0

al

0

M

0

al

-15M

R, ab R3,

(SMM S

Sreicaton Aan

eet

S

1

1

|

1 id]n

1

By

O'o "Oo —

aloOee

Heal1

'

1

on;

ioe) 1 1 UE th

Im|nees |

1s

To

ss ' '

| ox)

' ' '

1

1‘ 1‘

1|

1 1

'

1

O,0 od FA!0o oo ad oO O10 did died :& bis eee

Optimal solution

solution: of

the

Max

P =

original

OFS os

GIT

lo

pail

SS

al 1

1

1

ar

a]

-15





at

problem

x, = is:

|



' 'I

als

a!

S

Ni 1

1

Of©

|

lou

aeti wie



'

'

ro]n

'

KS Sb OPS

!

td

'

1

A

at ' 1 ‘

1

Od

aie

~~Gal

1

'

to]n

|

& Sats}

dan cit ' 1

od

Hnrt

1

So

1

'

'

aa

Porn

| =

'

1

'

SS) Ce) Laue

+

'

t itn

' 1 ' ’

&1

al

rd]n

td]n

'

wet

'

4 H ’

’ eal = pal Imdn

a

ore

1

TS) a) (er (2)

=> R,

eS

st

Ot

SO

2R,



ercae

OS——____1L

|

‘ ’ (Oo

dint

AlN dd

'

|

1]n 1 ' ' '

taIN

3) R, tay

Xo

AIN

GO} ty

'

=iL

0

M

OMe

85)

Wo)

icito) ail Ord OO A = eet

‘1 '

20 ps 2 6

® al

:

ine) t

=| ' Ure 1

Als

2:

:

!

1S .OF HtO Wo Os! =

dain

=

Ndcr iN

Jd

|

2%.

5|

=a 1

imi

Aaa) i fe Se

GW © YH A

'

4

7xdd ed} '

iN

'

LPi

'

'

+'



Odin

AN et cn

oya |

(-M) R, +



ia nel

ee Op) Gal, Gay

3}, wba, Cl = TS

Thus,

mat

a

the

optimal

oe

CHAPTER

5 REVIEW

321

34.

Multiply the first two into 2 inequalitites.

Minimize

C =

Subject

to:

constraint inequalities The problem now is:

15x,

oe3

+

12x,

+

ere gs

xX, X11 Xp,

corresponding

sal

Sal

0

-240

0 il

Ot

i a ed

-500

0

1

0 1 auloy | hile

0 alisy

A=

Thus,

the

0

dual

0

+ Xz,

X, Xy

to this

400

+

-1

F400

= =

S00) 0

problem

and

and

its dual

300

problem

AY

is:

Maximize

P = to:

eae

=

Y>

500y,

xX]

1

-

tableau

ee

-240y,

-

=)

500y,

SRO

¥3

+

Ve

mE

V4

Xp,

etek

X 37

for

Oa

So

yhG@dy

“GO

0

0

il

this

problem

is:

i

Somers

a

“ay

OR

0

0

al

souls

0

0

Ome

182 Ps

=

0

0

i

0

Om

xX,

0

-1

0

i

0

0

0

a

0 | 18

0

0

0

0

i

CHAPTER

+eR,

5

=>

LINEAR

R3,

400R,

+

INEQUALITIES

Reb

AND

300y,

obtain

the

15 = 12 aa lo) 18 0

as)

Bl

0

(-1)R,

+

P,

om

aL

-300

to

+

-1

-400

£

300y,

0

500

x,

ages -

400y,

y3

+ x,

3 400y,

and

+

< 15 + y, $ 12 < 15 Ys + y, S$ 18 30) Ma > 6

+

xX, P{L240

322

r

Va

-1}

variables X,, dual problem:

%

a

x,[

respectively:

A’ =

tage

simplex

are,

als!

We introduce the slack initial system for the

The

them

300

me von.

+

transform

18x,

2

Subject

240y,

to

=> -240 => -500

7 fon + xX

x,

The matrices

15x,

by

bh

Site

[Note: iT}

ais)

be we the

Either

chosen choose first

element

can

as the pivot; the element in row.]

0

FR,

LINEAR

PROGRAMMING

i

=1 -1 fe f2

~

1 0 OC 0

1 3Rib) 2

0 @) 0 1

4

eq}

of

Ene Gis

«6 'G G 0

ib

6

KO", 20 ). 0 bi OBE we hab oh. 40 Oo

Zi

3

=1 Oy

3

2

15 12 0 6

0

-1

1

0

0

0

0

aS

OL

= 1

0

i

-1

0

0

12

1.

41

0

0

-1

0

0

0

0

Seeorne 0 0G) ere a D140 60R,

0

+

0

R, >

-60

300

ey

9600

ee

ae

1

0

0

15

-1

st

dL

0

0

12

-1

0

a

0

0

0

a

0

0

Y,

0

0

1

0

QO

a

1]

0

Pe -1

eee

0

A

= 0

460

R,

ee

35.

15 12 0 18

4’

-1 HELO -1 B mie y i ShamoGl)s ake O05 1s a Sa 3

QractegEaig:. ahausS “Oe hig Mie oe! 0 plow daw

me

PO de md.

aA.

0-40

0

0

+

Ax,

+

x, =

0,

199960

ao the number of regular sails Wai the number of competition sails. mathematical model for this problem is: Maximize P = 100x, + 200x,

2x,

at

Rone,&,6 1

(A)

to:

9960

60

solution:

Subject

C =

et le 400

Optimal Let and The

min

240

x,

=

240,

x, =

400,

x, =

60.

3x. 2 Sel50 10x,

X,,

X,

< 380 2

0

CHAPTER

5 REVIEW

323

The

feasible

region

is

Xe

indicated

The corner Siptan 1

(0, 38)

x,+10x,=380

The

P at

each

value

point

(0, 0) (0:38) (45, 20) (75, 0) P =

when

to:

2x,

+

4x,

+

The

feasible

(A).

The

Corner

region

value

of

and

P at

point

10x,

2

45

Corner

100x,

regular

point

+ 200x,

and

20

competition

corner

points

corner

DOmnt

100x,

+

are

the

same

as

in part

eis.

260x,

100(0) + 260(0) = 0 100(0) + 260(38) = 9,880 10045) +5260'(20) = 9,700 LOOU/5)* #8260 (0). = 7,500

2x,

+

Ax,

+

$9,880

when

38

competition

Pe=

and

is:

3X,

Ry,

0

(-1) R, +

R,

0

1

>

R,,

On

0 0.12R,

Z,

1

-1

EZ S000

ered

So)

Ae ot

0 | 25,000

iL

-1

0

0

i

0

25,000

0

0.03

SOR2

7ir0

0

Ole eZee ily

3,000

+

Ry =>

Ry,

R,

OBC)

O7

a ee2

0

1

0

ar

Gg.

90%

Ole-O0Fl4

«0

0

O)

ag i

1

0

-1

alt

2,

->

0

-1

ra O)

fo

R

+

OL.M0 alee R,

Ak

ORL

+

R3 =>

1

Ry,

(0.17) R,



R,

125,000

a

+

R,

era R,

_ 62,500

35 ae

=

Ry

0 |75,000

-1

0

{25,000

0

0

150,000

a

ThPAV:

TOROS)

Ry

0

“hg



0

iL

(-2)R,

“)

R,

-0.05

1) >

Ry,

0

-

1

-1

X3

Sy

0

af!

0

1 =

X, 'y

S5

-1

ak

S3

P

1 = 1

0

137,500

x3

0

0

1

>

0

0

62,500

x,

al

0

0

0

1

0

0

|}50,000

8)

oO

ro)

co)

° 2)a)

0:03

OO

28ers

500

ey

The maximum return is $12,500 when $50,000 is invested in $37,500 in steel stock, and $62,500 in government bonds.

(B)

The

oil

stock,

mathematical model for this problem is: Maximize P = 0.09x, + 0.12x, + ORO 55< 4+ x, + x, S$ 1507, 000 Subject tos 1 2 3 xX, SS 5070100 xX, + X, - X, S72257 060 X11 Xp, X, za 0)

Introduce

slack variables S,;, Sy, S, to obtain the initial system: x, + xX, + x, + S; = 150,000 x, + S, = 50,000 x, + Kowa x, + S, = 25,000 -0.09x, - 0.12x, - 0.05x, + P=) 10

The

simplex

tableau

for

this

problem

is:

x,

X,

Ss,

it

1

al

0

0

0

{150,000

Sy

1

0

0

1

0

0

50,000

X3

S,

So

S3

Je

alg 28 eC)500deIie eile ge). 22.000

P

=~0)095

Of

1255

(—1)R, + R, >

0

Oy

i

0

0

1

ee

ee

O05 R,,

0

0

0.12R,

VQ) en ae

0

1

+ R, >

R,

one

0

a

0 |125,000 0

O10

0

50,000

0]

25,000

2

pe alee oe 0 0’ .@) i G1 ial 1

3i}.

0

Ob Cero.

-2uf

0 |62,500

040 |4

0 |50,000 0 |25,000

0

326

CHAPTER

R,

+

5

LINEAR

R, =

R,,

0.17R,

INEQUALITIES

+

AND

R, =

LINEAR

R,

PROGRAMMING

0

x,

X,

x3] 0 #85) 2 Kol 4. PLO.03

X3

S;

Ove Ot ar

pers OV ecu

O

O

So

S3

P

Ok'S 0 | 62,500 1!) Of oR 08] 50.000 0 ¢ 0 | 87,500 oO 00 un

oO

fo)

oO Ww un

Pp Ww

ro

0)N on

The maximum return is $13,625 when $0 is invested in oil stock, $87,500 is invested in steel stock, and $62,500 in invested in government bonds.

37.

Let

The

x, =

the

number

of

motors

from

A to

X,

=

the

number

of

motors

from

A to

Y,

x, =

the

number

of motors

from

B to

X,

xs

the

number

of motors

from

B to

Y.

mathematical model Minimize C = SX, + Subject

to:

X, Xx,

+

Multiply the first two model then becomes: Minimize C = 5x, + to:

-X,

-

Se,

500 000

+

for

siee-t) 600 bee 0). i aa. Ol wee

SS

The

ft

A

8.599

dual problem Maximize P =

Subject

to:

this

200

8x, +9x,

X11

matrices

900

+ X,

2 900

Xo,

-Y>

2 inequalities.

The

-

20 the

+O

problem

are:

0 0 =

1 0 1

Neo eOE Seat -08 Al IR

=16 500 8-1,000

1,000y,

+ 900y,

+ Y,

S*5 +y, 38

+ Y;

Sf) a

dual

CHAPTER

5

LINEAR

INEQUALITIES

AND

2R,

+

R, 5

R,

P

+2 | 1,350 ays

22)! habe

6 650 350

9...3p]. 150 Se

ORLive

(36350

The maximum profit is $3,350 when 1,350 pounds of 150 pounds of wild rice are used to produce 1,500 6,650 pounds of long grain rice and 350 pounds of produce 7,000 pounds of brand B.

330

Ry,

LINEAR

PROGRAMMING

long grain rice and pounds of brand A, and wild rice are used to (5-5)

Let

x,

Zh = number

=

The

number

constraints

vitamins:

of

grams

of

mix

A

of

grams

of

mix

B

are:

:

2x, + 5x, 2 850

ae

2x, + 4x, > 800

200 KE:

ayes. 1

= 1,150

Sree The the

The

fees),

corner

(100,

points

150),

value

Corner

of

C at

50),

The mix

each

point

0.04x,

+

C= 0204(0)) + Coa 0204 CL00)), Crs0.04(300) C = 0.04(425)

minimum cost B are used.

is

value

Corner

of

C at

$16.50

each

Point

C = C = C = Ga=

0.04x,

Corner

of

Point

(COP 23:0) (LOOT TSO) (3:0'10)7) 50) (425, 0)

C at

oO oO w

is: the

contraints

given

above.

is:

0.09x,

300

grams

point +

of

is: the

mix

A and

constraints

50

grams

given

of

above.

is:

0.06x,

to

$13.00

when

The mathematical model for this problem minimize C = 0.04x, + 0.12x, subject to value

o oO vt

0.04(0) + 0.06(230) = 13.80 0.04(100) + 0.06(150) = 13.00 0.04(300) + 0.06(50) = 15.00 On 041(425)) ae 10 0.6)(0) L700

The minimum cost decreases grams of mix B are used.

The

oO oO oO

0". 09( 23:0) R= e200 + OF 09 (150) =e 50 + 0.09(50) = 16.50 + 0.09(0) = 17.00

when

corner

Ci=

(OR =23:0) CEO OF 5 0)) (300/405 0!) (425), 0,)

oO oO N

0).

The mathematical model for this problem Minimize C = 0.04x, + 0.06x, subject to The

(C)

(425,

corner

Cr=

(0, 230) (L007 150) (300, 50) (425, 0)

(B)

o oO us

are:

(300,

Point

aaNet

48: 0) by

The mathematical model for this problem minimize C = 0.04x, + 0.09x, subject to The

f

ie)

feasible region is indicated shading in the graph at the

right.

(A)

Aaya 100

2 :

each

C=

corner

0.04x,

point

+

100

is: the

grams

of

constraints

mix

A and

given

150

above.

is:

0.12x,

C= 0.08(0) + 0.12(230) = 27.60 G = 0.04100) + 0:12,(150) = 22-00 Cre On0 2 (3:00) ir ROR 215.0) = SeO0 C= 10000 (425)) +. 0:12.00) (817200

The minimum cost increases grams of mix B are used.

to

$17.00

when

425

grams

of

CHAPTER

mix

A and

5 REVIEW

0 (5-2)

331

atl 7 My

P

AG

:

;

+ hit De) iene i

peta Soeéy i open Sof ni

ad

Sdi.t

&

x

os. rs >,

Oe Tgpatesy ety,

oJ

5

Ay

:o38

wes

? N,:

10-9-8

=

the

Thus,

there =

26+26-26-10-10-10

and

three

O,:

Selecting

N,:

10

the

first

the

second

the

third

digit

ways

digit

ways

Og:

Selecting

Ng:

10

digit

ways

=

17,576,000

repeated

digits

are

allowed.

no

letter

repeated

no

number

repeated

letter

or

ways

three

720

no

letters,

15,600

=

numbers,

ways

are

15; 600.7205 =

different

Selecting 10

plates.

letters

O,:

N, -N,

O,: N,:

are

repeated

49

339- 000

license

plates

Size choices

Combined choices

Color

35.

repeated.

ways

N, +N, +N3-N,-N;+N,

No

be

ways

Thus,

(B)

may

choices

B,

s

no

digit

repeated.

S

A (B, M)

M

B

with

L

(B, L)

XL

(B,

XL)

(R,

S)

Start

s

M

R

(R, M)

L

(R,

L)

XL

(R,

XL)

There are 8 combined choices; the size can be chosen in 4 ways. The 2-4 = 8 just as in Example 3. 37.

Let Then Thus,

338

T = G =

the the

n(?) n(T

CHAPTER

6

people people

=

32,

U

G)

who who

.n(G) =

n(T)

PROBABILITY

=

play play 937,

color can number of

tennis, golf. ott

+ n(G)

-

and

KH G) nit

be chosen in 2 ways and the possible combined choices is

= n

8 and G)

=

32

n(U) +

= 37

75. -

8 =

61

The

set

of

people

mente.

«©Since

U =

that

ntl

taacomlows: There

39.

Let

are

F = G =

14

the the

people people

=

42,

feet)

G)

(

play

who

nic)

=

7

= n(U)

=

and

nae tennis

speak speak

French, German.

and

55,

G')i

a(F' m GY

and



nk

Now n(F U

G) = n(F)

+ n(G)

(F

=

Y.G) oO

17

n(F ANG),

is

represented

(fTU 6G) OntT 75

nor

and

(F'

71), Gh)w=—LOOF-

golf

GC)

neither

G)) = (U0)

m

17

(=)

by

a.6")

= 2,

Glee

golf.

n(U)

G')

=

100.

= @,

Since

it

follows

that

j=) 83

so

G) = nF) + mG) = neFw.G) = 42 + 55 - 83 = 14

are

14

people

who

speak

Test (A)

both

Interview

outcomes

Aggressive

PASH

SA)

\.

ae

"selecting

250

to

INS...

or

integer

events

=) P(A)

equal

Crs

of numbers less than 8 is the same as the is

166

PCAs

numbers

largest

The number both 6 and 24.

of

39:38:37 -36535) 5

TG > 59.51

5147!

largest

number

8 is

cf

.

21

a number

P(A) B, +

One

250 = 1000

and PG)

ails which

=

is

divisible

by

either

aot

C, =

P(A. 5) — P(A a GC) =

PBA C)

+oP(AnABaacG) Therefore,

(*)

P(A U BUC)

=

P(A)

+

P(B)

+'P(C)

-

P(A

N

B)

EXERCISE

6-4

357

will

hold

if A and

C,

eitAin her C=) Equation (*) which case P(A

51.

From

U

will

BU

also

C)

Example

and

B and

C are

or* rn C=O, B

=

hold

P(A)

+

if

A,

B,

P(B)

+

P(C)

and

exclusive.

Note

that,

if

C are

mutually

exclusive,

in

5,

365! = 1 -—-—2——_ -1.-

P(E)

Mutually

then wanes = oO:

ie

3657 (365

-

1 365" il

n)!

"es

365! eee (365

(8 (Geaye

a

-

n)!

3652

eae

(365)” For

calculators

S =

set

with

a Poss key,

this form involves fewer calculator steps. Also, 365! produces an overflow error on many calculat ors, while P3 66 ei) does not produce an overflow error for many values of n.

Disc

n(S)'=

of

all

22-12%

Let E = Then E'

lists

.0,

of

nm birth*months,

*129(n

"at least = "no two

times)

two people have people have the

n{ EB)" =12-11-10 -gs. oss Pe

E Adeeb sO cee ls ” bs LAL a 182¢=''p),) aA) TUS ee CEs) 55).

G2

1

for

bP(E)

=

Thus,

aP(E)

a[{1

-

=

a -

+ bP(E)

=

a

(a +

b) P(E)

(A)

From

the

plot,

Therefore,

(B)

Theoretical So,

(C)

358

P(7

The

CHAPTER

0m

answer

6

=

2)]

ome

n + 1)Jos. 6 836 Da]

(ghee

= 121 __ ee (2 —tra)\!

ena

rth)

=

Therefore,

a a+b

7 and

8 each

or

=

8)

ik 5 6 + 36 =

depends

PROBABILITY

on

3*2:]

1 = ie 12" (12, = in)

aP(E).

came

Up

OMeimess

ze + as =

.

(Od,

probability: 8)

=

=a

mec he

°then

the same birth month." same birth month."

eee are 97> hee “prep p:

P(E)]

12°"

!

=n) i 12

ELE} E =a) P(E")

Odds

pet

Leterme

=

n’
oS BBs

CHAPTER

6

P(A

PROBABILITY

Q

B)

a

sample

B,

space

denoted

P(B)

#0

S,

the

P(A|B),

CONDITIONAL

is defined

by

NS)

PRODUCT

For

RULE

events

A

and

B,

P(A)

#

0,

P(A CQ B) = P(A)-P(B| A)

[Note:

We can use

compute Jw

P(A

PROBABILITY



either

Step

#0,

ina

sample

space

S,

= P(B)-P(A| B).

P(A)-P(B|A)

or P(B)-P(A|B)

to

B).]

TREES

Given a sequence probabilities of

1. Draw

outcomes

P(B)

of probability experiments. combined outcomes:

a tree

of

the

diagram

sequence

corresponding

of

To

to

compute

all

the

combined

experiments.

Step 2. Assign a probability to each tree branch. (This is the probability of the occurrence of the event on the right end of the branch subject to the occurrence of all events on the path leading to the event on the right end of the branch. The probability of the occurrence of a combined outcome that corresponds to a path through the tree is the product of all branch probabilities on the path.*) Step 3. Use the results in steps 1 and 2 to answer various questions related to the sequence of experiments as a whole. If a

A and

B are

independent

sample

space

S,

(*) If ie

P(A |B) either

and

equation

©

B)

Otherwise,

A

INDEPENDENT

in

P(B|A)*=

(*)

holds,

=

events in a and only if

nonzero

probabilities

in

P(B)

then

A and

B are

sample

space

S.

independent.

and

B are

A set of events subset {E,, Eo,

is

said

any

E,3

BLA)

=)

See

the

P(A

(aN)

re

See

the

given

Ow

A

E,)

to =

be

INDEPENDENT

table. ©)

of

7.

table both

for A

and

if

for

each

finite

P(E,) P(E.) » P(E)

3,6.

occurrences

B

EVENTS

50

given

A and

DEPENDENT.

OF

NE,

Then

P(A) -P(B).

SET

P(E,

5.

= P(A)

A and B be any INDEPENDENT if P(A

1.

with

INDEPENDENCE

Let are

jn

events

then

PCD).

=%

See

the

2:0

P(CA D)

given

table.

= probability of occurrences

CimbotheGrcandmepr— aa O0on D.

EXERCISE

6-5

361

9. 13.

P(AND)

P(Al|_D) Events

A and

if

MID)ye=|

P(A

PCASG\

0.10

>= — P(p)

ED)

7 0.207

D are

ph

.50

11.

independent

15.

P(C

BCA) =P (0) =

ea

(A)

ete

H, =

"a head

independent

(B)

Let

H, =

P(H,

H =

Given

"all

heads"

P, E = F =

table:

i

2

a)

sua

"pointer "pointer

ta

PCE

T,)

and

TENGene

iP lands lands

P(T,)

ithe

5

aS

neil

the

P(H,)

tosses

3

PUP)

a= Pi1

ame cna

356

+

356

=

356

=

P(2

=

58

128

4}. = {1,

a

Eta), —

ea

Sue

ENT Me

re 1D

JENNER

21.

From

the

(A)

P(M

(B)

P(R)

FS

E and

NCA CG) F are

=

P(NQ

R)

SE

+

=e

P(MQ

BOSE

eG)

's

R)

=

CHAPTER

6

PROBABILITY

CAC

ete

26

e ee

1D

=

eee

TP ay, TAY

=e 3S

362

,

256°

OO

3}.

Pil Be hae

tree,

= '€.3) (5G)

=

2,

dependent.

probability AS)

ak

independent,

then

and Thus,

are

HO. Yi2 5

A

Oe PZ)

is

(3) =

=e)

JAH)

toss

ASS 1 5Let elan 78 eG ht

=

sisi P(T,)

an even number" = {2, a number less than 4"

OO)

*# P(C):P(D) Pp Cram

each

ithytoss;,,",

P(T,)

Oe

= =

Since tee

=

Finally,

"all tails," then Hn T = @ and 1 Re SSeS 2 3

Vex Gay) es

2 ae pie se)

“on

Since

P(H,)

P(H,)

4

on on

toss."

P(H,)

tadl =

P(C om D) dependent.

toss."

= 30

.06

Since

ith

T =

ee

3}

PP

(A). PULE) (B)

ae

the

e,

Te

=

=

oe

eet) a =a(.2.0), (20)

D are

tosses,

the

Hg)

(or T, Wye SiG)

DK Ge) Wh) FE)

19.

eet

eighth

other

on

(Nr eket a)

Saminlia rsLyi

the

the

"a head

(a) A,

P(T,

of

on

= PGES

MD)

PUG

PKA) PCD) =a 510) (210)) Bre O Thus, A and D are independent.

7a

P(C AO. Dns ords

PCC iD)

(Srey

Sadan

:

if

7

Ry

ul

{HH, HT} and P(E,)

Been

rH)

Thy

and

P(E.)

3)

{HH,

TH}

and

P(E,)

(A)

Since

E, \

Since

E, =

P(E,

A

NIP DIP

{HH}

E,)

=

# ©,

P(HH)

E, and

ge 7

=

E, are

P(E,)

not

mutually

. P(E,),

E, and

exclusive.

E, are

independent.

(B)

25.

Since

E, M

. Since

P(E,

E, = ©, aN E,)

Therefore,

E, and

Let

E; =

"even

number

and

0; =

Zoddenumber

Then

= as and

P(E.)

E, and

-=

0 and

P(E,)

E, are on

on,

E, are

exclusive.

yes sav te P(E, a) E,) # P(E,) : P(E,).

. P(E,)

dependent.

the

ith

throw,"

thesith

i =

1,2,

throw) "iie=el,

Ry!

2 &

i)

PteeBering eS

P(O;)

mutually

A hgelumset IN) [S) [

The probability at the right.

tree

for

this

experiment

is

shown 9 fay

I)

iS) I (

27.

P(E, NE)

LYViy = Phd = (z\3)

P(E,

=

U

E,)

hecECe=— and H =

(A)

P(E,)

+

P(E.)

-

P(E,

(a) E,)

De

ree:

+

aint hy eS Sew

Tirst. card is. aeclub,)" "second card is a heart."

Without replacement, shown at the right.

the

probability

tree

is

as 31Sl,

Thus, P(C A H) = (a 51) = .0637. (B)

With

replacement,

PCG) 29.

the

G =

"the

card

is

black"

fam

che,

Card

1s

divisible

PCH Gy G)

draws

eR ES eae= aletta Hr =Sas (a\i)

+=)

{3,

6,

or

=

9 of

are

ae ae independent

2%4

by

or

3"

clubs

=" or

club}

{3,

CEN YOR SIS Gsmerger aoe OtNeaenpn aL. Norpee eres

(B)

P(H NM G)

P(G)

1/2

= . =

P(H) -P(G)

H and

G are

26

6,

spades}

(A)

Thus,

and

S0625%

{spade

H

=

and

or,

P(G)

9)%,

¢:

= Be

) PH) 6 3 = 52 = 26

= a = a

43

independent.

EXERCISE

6-5

363

31.

(A) S = {BB, BG, GB, GG} A = {BB, GG} and P(A) = 3 2 5

B = {BG, GB, GG} and P(B) -3 A B= {GG}. 4 and = i

P(A QM B) Thus, (B)

P(A

S =

{BBB,

BBG,

=

{BBB,

GGG}

B

=

{BGG,

B=

P(A)

=

Since

(A)

B)

A

AM

33.

M

The

# P(A)-P(B)

GBG,

BGB,

BGG,

GGB,

GGG}

arpa

P(B)

B,

ee

P(A

QQ B)

=

the

GBB,

2 =(57

N|h

= 5 =

probability 2

7

tree

5

oii

2S

with

2

A and

replacement

PIR, AR) P(R,

FR

P(W, O Ro) = 49

With

Z

without

P(R,

ape

Without

B are

independent.

is

as

follows:

is

as

*

replacement

ee

PCR 1 GW)2

ie

Ro

P(W,

4

W>

P(W, O Wy) =

2

one

ball

was

[see

the

(a) R,)

+

P(R,

Wahi ih ad 9.0

follows:

5

Wy,2

~ 949 ©5849.) (B)

|r

ne

=< eet

replacement

P(E)

=

10

tree

73

least

Bs)

A W,) = 4%

,R 1.

3S

(A)

GGG}

25

Se 2

At

dependent.

= +

2

stare

E =

are

4

W.

2

tr

probability 27

Let

GGB,

"andwPr(Asar

1 =

35.

events

GBG,

P(A)-P(B),

TR, P(C), cancer is more likely red die is used. The FDA should ban the use

(D)

C are

to be developed of the red die.

if

the

table is Totals

EXERCISE

6-5

367

Now

PC

P(C|R)

TR)

0.02

= i BR)

ois

0.04

and

P(C)

= 0.08

Since P(C|R) < P(C) it appears that the red die development of cancer. Therefore, the use of the banned.

55.

Below

(A)

90

A

Female Male

(F) (F')

Total

(Note:

in

The

the

Referring

to

.286 .264

«20d .096

5 A2)0)

5510)

72:00

table above was by dividing each entry

the

table

P(ANF) P(F)

in

part

=F

(ERE

CAR

aC)

E)) = Some

(VE) ere (3)

P(F)

36

(

= .520 7 °220

P(B | FY) =

maeeeOd

(G)

No,

the

to

490 = -200

2IBO ES P(F')

and Fie.

Bee

= 480 = °500

in parts

and

(E)

C are

imply

(B),

that

independent

remember:

BAYES'

Let

U,,

FORMULA

Un,

oh aes

U_, be

n mutually

is the sample space S. Then that, P(E) .+.0«.

P(

P(U, | E)

Let

E be

exclusive

an

events

arbitrary

event

whose

in

UAE)

Piz)

P(U, A E)

* PUA

EB) = Plt eee) PEO)

"P(E oo Similar

368

3096

6-6

Things

CHAPTER

6

results

hold

PROBABILITY

for

ee Uz,

given

104 = .520~ °200 =

results

(D),

A, B, Fans

1.

table

ee

(C),

EXERCISE

the

PICO) P(F)

P(CINE')

Ril

25

P(A | F) =

Total

derived from by 1000.]

(EC) PCC Aie=

e420

P(A ET

be

(A):

.130 = .520~ °250

PAGE

120

C

.130 20

P(A| F') =~ pip) Tigo = 8220 (D) Se (CA

Above

B

probability

problem

(B) P(A| F) =

90-120

reduces the die should not

Uz,

Ok

8 P(U, 7 E)

aU,

ee Pe | U,,) P(U.) ..-,

UL.

union

S such

of

2.

BAYES'

FORMULA

AND

a. -P(M1 A) 3. P(A)

Sum

results

of

A)

all

hold

branch probabilities leading to E

for

= P(M): P(A lM

= P(MM

TREES

Product of branch probabilities leading to E through U,

P(U, | E) Similar

PROBABILITY

=

+ P(NQ

Up,

Uy,

(.6)(.8)

A)

-++4

=

U,,:

.48

= P(M)P(A|M)

+ P(N) P(A| N)

(56)4,.8)\4-(44)(.3) P(M-X A)

eA

.48

= + P(MO

A) + P(NT

« “= =

7.

Referring

to

the

Venn

(see Problems

A) — -60

=

.60

1 and 3)

230

diagram: 25

PiU

“AraR)

eeee

BNR )e=

pip)

ORE CDS aot

ti

60

|. 60s

vid Teer

100

Using

Bayes'

formula:

PCY

PU) |)

QR)

P(U, OR) + P(U, O'R) 40 V25 100} 40

2

P(U,

P(U, | R')

“ar

.25

5

.coamito

Fea

100

@

nc

(4+!

100

100

;

1 Pe,

15_

Py eee100 ap oe

Ghe

a5

Guin)

100

Bayes'

26

B0,) PLR | 05)

ER |e

100 ,60

15_

Using

S00

=

25) (2 35) “Sony

100 }40

9.

P(U,) P(R | U,)

3

ae

(from

the

Venn

diagram)

el

formula:

BCU

R')

= PR)

P(U,) PCR" ‘

P(U,

(AY I)

|)

se P(U,

GVORE)

P(U,) P(R' | U,) ~ P(U,)P(R' | U,) + P(U,)P(R' | U,) ~

40 V15 (z00 lao) 740 y15 60

V25

(00 40) i (z00 (60)

EXERCISE ry

6-6

369

11.

ee

P(ChAUCIsen PYG

LPOG)

P(UN ee

(.2) (ay

08 _ =) Sega

» Rey

ee

P(WAC) ‘a LO)

_ Pwo

18

|

64 Bere

PL Ley

+ CoS)

ee

cay

+ (.5)(.2)

From

the

e Che ete) PaP(Wa 4

Venn

P(U,

=

{See Problem

P(VA C) Ch + PiW a Clee. PIU AIC) ( 552) oe

LTE

2", iss

or

P(A AQ B)

"

11)

(02) .4his 36

ee

diagram,

5

P(U}|R)

+ (.2)(.4)

Recall

= P(A)-P(B|A).]

wae

> (25) (2) 0 (0 6)

17.

[Note:

(23). 6)

P(WA C) Cc) = Plv mR Cc) + BIU' AC) 3) .6 ewe

(.3)(.6)

15.

C)

PaP(GARaC) 2+A PiVIA Gye BWR C)

M

0 > a0 5

R)

P(R)

3

ee

125

100

=

Adeee

125

00 Using

Bayes'

formula:

EL

pe

eee)

P(U, |R) = PU,WOER) ia PU

ria Ry ee Pt,oy By. 100

O5)+ 29%.

From

the

Venn

diagram,

20

P(U,|R) = 546 Using

Bayes'

P(U,|R)

=

BO...

a90 = a0

100

20 A15 2 #2100 ~ 106 05 05s

.154 2° /40en

=>

formula:

20

EAUs OR) PW,

Ona)

as PC USN Rare P(GR OyR) ey LTE

100°

100

15 dy

0 20,

#406,

3200

_____-2__ J0O5%+

370

CHAPTER

6

PROBABILITY

ne

oR,

5

;

a

=

0107, 300 tree

(6-2)

diagram

replacement

Start

P(W,

:

(6-2)

we

1A Ser, 210, aheed Cagah

B 4

2

»

+R,

Zones

26S

BiSenepenoe

4

W

4

Ra

:

R,

M R,) = P(W,) P(R, | W,)

W

aR

Start

W,

a =

without

is:

P(W, 1 R,) = P(W,) P(R, | Wy)

. 2

oo

431

(oe

= 3 °4. 20

ae

(6-5)

51.

Part

(B)

involves

dependent

events

because

P(R, | W,) = 3mn P(R,)

and

52.

=

P(R,|W,)

The

events

(A)

Using

P(W,

the

(A)

tree

red

P(one

R,)

+

P(R,

(ay R,)

red

are

diagram

in

Problem

balls)

=

P(W,

ball)

=

P(W, (a) R,)

(a) W,)

PANS Se

SCBA P(two

red

balls)

Thus,

the

probability

of

red 0 ali 2

CHAPTER

6

=

balls

cig

390

+

ee 20

20 ee

ee 5

independent.

= P(W,)P(R,)

Number

ST mace)

# P(R,)

in part

P(zero

M

PROBABILITY

P(R,

Mad

(6-5) 50(A),

we

=.

P(W,) P(W,)

+

P(R,

have:

yp eae, lets

dae = Tiog

3aqan.eee mils

[9 ° ea

.16

(a) W,)

+ P(R,) P(W,)

e:Mi

OP ibe

ges uSameos tr *°

a) R,)

=

P(R,) P(R,)

distribution

is:

Probability D.

1

36

The

expected

Riexyr= (B)

Using

number

OWSLOP the

P(zero

+ 1248)

tree

diagram

red balls)

P(one

red

of

ball)

red

balls

is:

+°2(.36) in

©

Problem

4484+

1.72

291.2

50(B),

we

have:

= P(W, M W,) = P(W,)P(W,|W,) =

P(W, O

Ry)

+

PUR

= P(W,)P(R,|W,)

A

P(two Thus,

red balls) the

Number

red

W,)

(4-20

ee

5

= P(R, A R,) = P(R,) P(R,|R,)

probability

of

5

ae mraee

+ P(R,) P(W, | R,)

2 2473/32 Qazi ae

= ee.

distribution

= ae

& =

.3

is:

balls

F's)Jk 0 al

2

53.

The

The

expected

Be)

e=nO ch)

number

+ean6)iet

of

tree

diagram

for

this

red

balls

2(.3)

=

problem

is: 2.2

is

as

(6-3)

follows:

3 R 2

oe

Start

4

+

4‘

: R

The probability of selecting urn that of selecting urn U, is .5.

U, is

.5 and

U,

7

4

an

Piru.)ee

(C)

P(R)

=

= = amie P(R TM U,)

(B) P(R|U,) 22 + P(RA

bg=

+ia

U,)

2 P(U,)P(R bU ke % P(U,) PIR | UZ) de

oy) dak

ensue)

Bore co 1S P(U, OR) P(R)

P(U,) P(R | U,) a ae P(U;) P(R| Uj) + P(U,)P(R|U;) yas LO Ok 98

eer oe Een

2

did Pg a

inh 215

Ona Wy adap

203

1S

CHAPTER

6 REVIEW

391

(BE) P(UL | WS

P(U, O W)

J

P(U,) P(W | U,) 2

a

Seas

P(U,) P(W| Uy) + P(U,) Pw | U,)

ne

ee

293

SPN 2s

F) P(U.

ane tebad

PORT GS

2s

Ry TSP

Ne

etal)

Sete

(Note: In parts (A)—(F), we from the tree diagram. ]

54.

No,

557.8

0S)

because

# P(R).

Let

A be

P(A)

the

event

n(A)

=

=

Bie)

(See

"all

Problem

C135

mts) ais) =

diamonds."

values

of

the

probabilities (6-5, 6-6)

53.)

(6=5)

"3 diamonds Rhus

the

=

2 spades."

Ci3 5°

Thus,

Then

event

"The

married

£502) 2Dae 40Ao a=mi (eG)

multiplication

(6-3) 10-9-8-7-6!

8!

the

and

oA eo Ries

lO

couple

is

in

the

group

of

4 people."

8-7-6!

BAAS Clo Can “Montel Thus ee CA)

n(A)

C13,3°°13,2 ae : 10!

Let A be Then

Then

5

98+ BLS) "elie eee (ios ait

By

the

Caeae

Let B be the event sayl(is)) = 13,3°13,2°

PB) _

57.

derived

CSo 5

(A)

(B)

P(R|U,)

©

soinik eo meres

Pere pie ee (0) ALBYSYS}

principle,

(6-3)

there

are

NN, branches

58.

in

S and

H are

P(S)

0 and

P(H)

#

P(S@@)

(Hi)

that

(A)

From

(B)

The event A = Simple.events

the

CHAPTER

6

diagram.

mutually #

0.

(6-1)

exclusive.

Hence,

P(S

A

H)

=

0,

while

Therefore,

-~SPCS) me ECE)

implies

(370.2).

392

tree

Events

which 59.

the

plot,

(2,

S and P(2)

F are =

9

20

=

dependent.

(6-5)

Daleks

"the minimum of the two (27 02)\5 mic ieo\eenisyu2)y,

6)

PROBABILITY

(6,

2a

Thus

(A)

=

numbers 1(2, ade b £3.49 |onde

200s

The x;

ah

probability 0 12

22

iit 9

22

«220

22

distribution

of X is:

2 7

22

CHAPTER

6 REVIEW

399

125) i: (55) one ; 255) Le ios Aa (B) E(X) = (55) 82.

Let

Event

and

Event Event Event

Then,

NH individual MH = individual SH = individual P = individual

using

P(NH) P(MH) P(SH)

the

with normal heart, with minor heart problem, with severe heart problem, passes the cardiogram test.

notation

given

above,

we

We want)

.95 .30 «05

Co.find:

P(NA WP). =

P(NHQ P) PASE)

P(NH) P(P | NH) rs P(NHQ

P(NH) P(P | NH) 7

»,

The

have:

= .82 =0.11 = .07

P(P| NH) = P(P| MH) = P¢P |"SH)st=

83.

; (6-7)

N|R

tree

diagram

for

this

(282)'(.95)

problem

is

P) + P(MHQ

P) + P(SHN

P(NH) P(P | NH + P(MH)P(P| MH)

+ P(SH)P(P| SH)

(282) 4.95)

4 ((.11) (30)

as

+

P)

(.07) (205)

e

amen (6-6)

follows:

oe 1005 i)

M

(Man)

94 4~

Start

10 0

a

+

W

(Woman)

now

(Colorblind)

C (Not colorblind)

Too,

Cc

99



Too” We

C

2oe

SOO

P(M) P(C | M) P(M)P(C|™M) + P(wW)P(C| Ww)

(6-6)

According to the empirical probabilities, candidate A should have won the election. Since candidate B won the election one week later, either some of the students changed their minds during the week, or the 30 students in the math class were not representative of the entire student

body,

400

gy Maen ae

5:

Cc)

or both.

CHAPTER

6

PROBABILITY

(6-39

7 MARKOV

EXERCISE

CHAINS

7-1

Things

a;

to

remember:

MARKOV

CHAINS

A MARKOV

CHAIN,

or

PROCESS,

is

trials, or observations such matrix from one state to the Given a Markov chain matrix of the form

s kaa Each

entry

with Ss

Sk2 s,. ki

is

the

n

a

sequence

that next

of

experiments,

the transition is constant.

states,

a kth

STATE

probability MATRIX

is

a

ka

proportion

of

the

population

that

are

in

state i after the kth trial, or, equivalently, the probability of a randomly selected element of the population being in state i after the kth trial. The sum of all the entries in the kth state matrix S,. must be 1. A TRANSITION MATRIX is a constant square matrix P of order n such that the entry in the ith row and jth column indicates the probability of the system moving from the ith state to the jth

state on the next observation in each row must be 1. COMPUTING

Ape So is

STATE

the

MATRICES

initial

matrix for a Markov are given by:

First-state

S,P

Second-state

S

=

SP

Third-state

SS

SRS OF

ale

of

the

entries

CHAIN

P is

the

subsequent

transition state

matrices

matrix

matrix

TRANSITION

MATRIX

transition

matrix

then

sum

matrix

A

chain,

and the

The

matrix

the

a Markov

caek

kth-state

MARKOV

then

SoP

KoA

A

trial.

matrix

S, =

P is

for

state chain,

S, =

POWERS

If

FOR

or

the

and

kth

So is

state

an

initial

matrix

is

state

given

matrix

by

Se0 PS

The entry in the ith row and jth column of p* indicates the probability of the system moving from the ith state to the jth state in k observations or trials. The sum of the entries in each

row

of

P*¥

is

1.

EXERCISE

7-1

401

1

S, =

SoP

=

.8

[1

2

03[-8

Initial

state

- =3

A

8

A: (1)(.8) + (0)(.4) =.8

B e4e— AB:

0

2)

First state

A eee

sat

Il

6))=.2 .2 +(0)(. (1)(

6



Si.= 6S.P =

pedsa2bma_ 51[-8

LS

A

PO.

B

wad

First Initial state

state A

8

ae

mete

4

B aaa

5

(.4) 8)=.6 + (.5) (. A: (.5)

AB:

2)=.4 (.(.6) (.5) +(.5)

6

5. Selig

20.8 Ss

UY

al

'[ea2

af ‘2 (from Problem 1) 269

The probability of being in state A after probability of being in state B after two

two trials is .72; trials is .28.

e Sy =Ue

3)

=A

SP

shsiee

56

.4)|-8 A

FP

lsoek

a7

|

(from

Problem

B

SiG

The probability of being in state A after probability of being in state B after two

402

CHAPTER

7

MARKOV

the

CHAINS

two trials is .64; trials ig. .36°

the

11.

No.

Choose

is an

any

x,

acceptable A

0S

x $1,

then

transition

diagram,

and

B

A

.4

0

B

mle

eX

is the

corresponding

transition

matrix

A= “By C

aoe 25> + a= Dita 0) + 2.4 = ap tre eds

he

10 + a+ Orme 5+ Cutmes +)

19.

No. Cra

.3 = &0>= O'=

il 1 1

1 I 1

0].



eS

Blue

system:

eel _# eee

equivalent -2S, Soh

.2616

22775)le

oe

(C)

domme

SOMO, | a0 ke hy2273 ss656°9.¢091 .2273

Red

29. (A)

.2275

3428

.06 .3328 .4056 363 4091 22]

"22260

[3636

eee

-.6s,

+

-2S,

=

0

-6s,

=

-28,

=

0

SoS

1

or

al

Ss, +

The solution is: Sue 22908, =p. Thus, the stationary matrix S = urn will be selected 25% of the

79. [:25 time

.75]. In the long run, and the blue urn 75% of

the the

mea

time.

31.

i(Abss = whee

31 [°

S, = s,P = 1.8

aye

Soe-

7A)

S,P

and

so

S.

[bach

The

state

approach

s

and

i

[288]

so

a

alternate

"limiting"

[-5

0 .53[9

So

esas

between

412

Sec 1

= ie

“lk Pe

Parts

(B) and regular, this

7

and

[.8

.2];

they

do

SLs 4 =

[ao

+5]

on.

ale)

CHAPTER

.8]

*.5]

2

yeaa

els

E

ie

Sete

0

“th

‘uy

li= Soi ee

WG

MARKOV

So is

a stationary

al

P and

the

identity,

(C) are not valid for this matrix. does not contradict Theorem 1.

CHAINS

matrix.

alk

% Be

The powers of P alternate between approach a limiting matrix. (D)

[.2

matrix.

51[°o20qi]1) Ts= [.5

S,P =

P has

the

we vA

form

4

if

use

ue ws

it

fee 2.) eae€)

ac

where B

eithersA

|

0 0

el

P= [4

We

Sincesr=

D

0 0

matrix

425).

C’ to

DEE

limiting

A

B) 4

Erom Cc

0 all

ead Ree R = La

have

to

go

B

PN |p ok mB) 0

0 0 0

P(G

to

wesc

G

0 il! = 225

.75;,

2:5"trialis

[oS

B

Ale Bl 0 CESS

toyA)

S

row

1 =5 3 5

hes

meee

-(

operations

O

real



i) ekg tat

3

Oe aT

aera or f= ne

Fr sir

R,

BE

mus, Fe [2 Epo ft?

ys

cl

ip

Bs MD

feel

Bll

We will

P= by

0 01; 0 (7=3))

0

Lick

p en «0

0

t,t

CL?

.7

0:

form

for

441.

pe Ay OraeOey fale, Oni

Bo

22.

(7-3)

o_o

0 1

1

.7352

1784

.5704

"2568 0 0 .0056|’ .0112

aa eye.

0 0

.0432

0 0

.0432 |’

.0864 .0864 0 1 1 [0 .7999° 2000 .6997! 2999

Rui ‘iehuama 0 16

L6 0}! 0 i

(7-3)

amie aac heal

De

A standard

|

ae

deed 0 0 1 0 1 ho pa {| .1972 .7916 .0056 o04ds, (6839 %,0112 MB Cima 0 6 Oa OG! ys! 9° Fo etoet oh

Det

26)

21.

4066 .3935 Gal...

=|

0 0 1 } nC mach O. 1 1.0 00 PAn= 16528 _.2176-...1296 46 0 1 sf 0 0 1 th tala "ad Wan 0 i .7498 .2499 .2458 .01680 OG 0 0 1

0

Bi

A722) #21242 .4895'..117 |, 465) = 8 A oe ae 222 .48 al.4 2 212001 °.1199|;_P = Bl .4 .48 112 Cl4 | 48 ate .1201



.4799) 14802 .4798

Mag01 / 13999 "4001

P=

Pt

6

3,

determine

0

the

ae 0 0

given

matrix

is:

:

(7-3)

2

43 the

A

B

C

A| 0 Bi 0 CUe2)

a 0 426

0 1 22

limiting

matrix

of:

solving

CHAPTER

7 REVIEW

431

[s,

Sy

0 0

S,]]

zy 0

DAL The

Set

From

the

+

-6s,

=*S,'°

Ss, +

-2S,

=

S3

Sora

al

Sot

first

Substituting -28, now

and

-8s,

that

A

0

5, + § 2 + S}.=A1S

-28,

=a)

aS5 i>

-6s,

=

So45

8s,

an)

-

into

isoen

we

the

have

fourth

eran

so

PS

.1

SS

as

and

See

Ss, =

equation

Busby

eS

(0 0

-2S,

gal

4

eee 24

(B).

£.5

The

transition

5

Sia 5

Sy tN SBRes2] i meas oe 4

B

A| 1 0 Bl] 0 1 C\SS2 et OF

gives

esl

A

B

(ey

had

4

5]

tas) ecsir= 5

A (sire.

B 4

(a .5)

432

for an absorbing states. For this

Markov chain with matrix, we have:

0 2

where

"Fre

(7 =40)

Thus,

FRisA(4

25/251) A B a 0 0 1 SA PAYS

CHAPTER

7

eta!

0 0 aeee

2. . 6) mand ) OF=see one limiting matrix has the form

x

Shi)

(7-3)

Ra-a[

(2

Bee

e

is the standard form and one nonabsorbing

p=

.8s,.

matrix:

A

=

Ss, =

(S

els sie

[0

- The

and

AS AS Age

(A)

P=

S,],

is:

Si

equations,

SS

B

All eed: 7B) al Cll

equations Ss,

Sy

values

HS

Sy

22

OF

third

these

+

follows

'¥ Pr=

23.

692

corresponding system of -28, = ss, Ss;

It

0 Lat RS.

MARKOV

"(b= Wil). 6s E 0 0 0

CHAINS

= =

fo21)0-e= 25

(Slo

a7 ie and

©. (1°25)

two

absorbing

(A)

[0

0

Meyei.>

x }.0 Be 1

1}

ft. | -21))

0 1 Fea

0 i

24.

If

one

of the

P,

1 feed = Pi,

ie =

0

0

My

hs

0

ee

forms: P,

Ken oe =

P, if

Bute

A

=

B

(6

125d 6 «So

0]

oO (er 1) £5 = G

Ke =

all

P,

odd.

P, for

power

No

of

k,

13 P,

db,

loans

Cog

Paws,

60, P,== & ‘ k is

ONG 1) if

ipl jon ae c— (3

P has

then

0,

to

0 P, =af 5Mee oo

and

fom

Ps

(7-3)

equal

2 entries

with

matrix

are P, = th

Py,

k is

A

au

a transition

P is

No.

0 0 0

even

Gulal joerc

entries.

25.

TL ‘ and

cane

(7-2)

Yes;

0 P=].5 75

P=

0 0 WW

0 0 ey

EY dl 5) .5| 0 5 0 1 1] gS)

is

is

regular

regular

since

75 ORS 5 7 jos onAaaRSs Mea HS:

P=

since

. 2S YAS AOS eres BPS

AS Hse SPisy

P=

(7-2)

6 B

R 26.

(A)

(C)

R|Usbes Bee GL.6

(B)ePs=

The

chain

[s,

which

is

is

regular

since

S3]

iy

2

Sy

oS) o| 3 Se

equivalent

Ss, +

S,

+

it

and

has

solve

PaZole .6 aS:

only the

=25 5 | = Aail

G

225) 6 3

25 2 sl

positive

entries.

system:

{s,

Sy

S3],

CI

Is

Ge

ales 1

to: S3 =

a

-5S,

+

-2S,

+

-6s,

=

7S)

-25s,

+

-6s,

+

-3s,

=

S5

-25s,

+

-2S,

-

-1s,

=as.

Ss;

= Che

So +

5S,

S, =

‘I

-2S,

+

-6S,

=a)

-25s,

-

-4s,

+

3S,

=

0

-258,

+

-2S,

-9S,

=

"0

CHAPTER

7 REVIEW

433

We use row operations to second, third and fourth calculations. il

-5

a

ih

2

6 |0

Hak

2. =4 * 3h

3x0 > * —o@iho 5R, (-3

eS) Es

+

R,

>

+

7%

Al

il!

0

¢

0

~

if

boty!

=F

al

ab

‘il

1

5

0

“iat

AE |

5

1

5

Om

R,

(-1)R,

R,

R,

(3)

OM

+B

(-7)R,

+

R,

4503)

a150s

The

30

%3

~

solution

0.

*®3

is

R

ec P=

()

51801130

Bea

+

(-23)R,

+

R, -> R,

150R,

+

R,

> R,

0.4,

335

Ss =

R,

>

FR, > >

R, ae

R, %

R,

120. Oeame 2100 1-14 Chom

5

Oa

Ova

\n-

0-

SOL

alee

ies

R,

0.25and

G

yaa

ae

Aa

GL.4

s=p50ue-20

22R,

oe TES ORI4;, B

i

Os

+

13

sonia yal Motor pi tO! |teponlers ‘Whe. Be 7 23 S|foto) ew mcr ame ORLA

in. 11 | 45

-2R,. > ©

the

Ori-= $ |=3

as

Oe ar eee

OR

but first multiply simplify the

dl

q | -5

13

R,

R, >

solve this system; equations by 10 to

ee

p02

In the long run, the blue urn 40%

the red urn will be selected 40% of the time, of the time, and the green urn 20% of the time.

(7-2)

6

(B)

(C)

B G 0 0 Gaz 2) esl

State R is an absorbing state. The chain is possible to go from states B and G to state (namely 1) steps.

(D) RE OG

The

EP R—ai

cinGum ol. >

limiting

=e

CHAPTER

7

Deke | EWemlhiay.cmna— Sheet

matrix

Z| 0

?-(2 434

P=

R ige|| Al. B| .2 GL.6

MARKOV

4 CHAINS

P has

the

2

E | ances

form:

absorbing since it is R in a finite number

On—

[

Sleey -

|

?

ed Q)

where F = (I

PT 29°o|| & Meee ie aly

- (i

iH}

|

ot xr

il

We

use

row

lea

operations

“i

(3): >

ik o13 Oeste

find

the

=

(zo:

R,

+

R,

~

43

R,

Ry

>

BG (3

R,

=

dae.

i

Ge

pd

aia

Oem

1

wl|o

-—>

1

inverse:

| - [2 -3 15 °)- [2 3 | 3 ‘

we Alales > 79

T7949"

velocity secant

at

line

x

OTOL

=

4:

through

80

Slope

of

(2,

f(2)),

(4,

£(4)):

2

secant

linesthroughe

(sree ah aa

(27.

THE

DERIVATIVE

Ged = ee a

L(2)))

or

001. +0.

19996

8

lea

ES



2

rs

eae ee das 022) 4) aaa =O

CHAPTER

some

ft/sec

£(4)= £12) | [a = 214) 04) - [27 = 202) - 4) F(3) - £(2 ee

442

0.001”

ft/sec

79.99 —>180nc-7 ©OG Ole) o SOe

4-2

(B)

Ore

100

en

07001

2 ata 2t-000,

201

or2eck

(D)

aos.

AL

X=

=1,

slope

='1; =

=5;

‘at x = at

x

3; =

-1,

33. 8

41.

The any

function:

slope point

Beeb h As The

h->

0,

slope

of on

y=

slope’

-2 =

0;

at

x

=

1,

slope

=

-1;

the the

fi )n

6+ of

line is m. The slope graph is also m.

=

3h the

x

slope

of

the

of

the

graph

of

f(x)

= mx

+ bat

5341

ab)? ~(3(1)2, « 134d t.2hve oh? we 3 = SS h Car Fo esa Ys ema RE yoke es a) —>

6.

graph

43.

‘The

=

35. 0.25 or >

slope

39.

slope

graph

at

x =

1 is

6.

-0.01

-0.001

>

=1

a

eel

is not

defined

at

t 1. (0,

1

0).

EXERCISE

8-1

443

45.

(A)

Average

rate

of

change,

1975—1985:

An9 = 9386.1 ie

(B)

Average

rate

of

change,

1975—1990:

LORO1 wa. 53 He

(B)

Let

y, be

Yi DG) Ge

the

+

regression

10) e— y, (10) =

equation

,

then

found

evaluate

in

(A)

Y, at

0). 12. hes /yvas

== =

and

S023 7 perays

set

x = #1,

£0.10

+0.001. To two decimal places, the result is -0.13. Thus, instantaneous rate of change of weekly hours with respect 1980 is approximately -0.13 weekly hours/year.

49.

(A)

R(1000) = 60(1000) - 0.025(1000)? = $35,000 R(1000' +h) R000). 460 (1000 + A) — 0.025 (1000 h)? h . h 60,000 + 60h - 0.025(1,000,000 + 2000h + h?) - 35,000 h y

One

the to time

-

35,000

2

: 10h -_0.025h" = i$0'=1-0.025h > 10 as h = 0 At a production level of and is INCREASING at the

(B)

R(1300) = 60(1300) - 0.025(1300) R(1300 +2 hh) = RUSOC svt lover h a _ 78,000 + 60h —- 0.025(1,690,000 rj h *

r

7 =Sh_-0.025n"

zi

£(3) = =150()7r4 770s) £(3_+4h) Sb es oa h fe) DU EI

In

1990,

the

444

CHAPTER

8

at

THE

annual the

DERIVATIVE

& h)*

$35,000

=

of

30. was

130,000

revenue

= 1S0N) >) 8st

11,360,000 metric

3537s

ie Per 9

is

0,400 = 14, 360 teas Ee ee 4 hit 10,400 = 13a h et eet Ho) e+ 2310 “70h ee 10 0G h

production

rate

is

Siesta

1,300 car seats, the rate of $5 per seat.

-130h = 1508" 7 meee,

DECREASING

=.535,4750 ay. 0.025: (1300 h + 2600b.+ |e ester

25) 3 0 0RE ee

At a production level of and is DECREASING at the

51.

1,000 car seats, the revenue rate of $10 per seat.

tons

metric per

$35,750

14,360

aera tons

year.

and

was

in

53.

26. =

526s2

(A)

Average

rate

of

change,

1988—1991:

——

(B)

Average

rate

of

change,

1987—1989:

Or Ste onlghes) aio

(B)

Let

y, be y, (2

Yo

the Ts x)

regression i

equation

found

y, (2)

=e se x a a ae ee THeNUeVvakiate

in

(A)

y, at

eS

S17

and

see Jab Oni/ yr

Gy)somo

ae binleon/yse

set

x = a wai 2SolOot as =OPACO) I

+0.001. To two decimal places, the instantaneous rate of change expenditures for services and supplies with respect to time is $62.96 billion/year.

57.

£(30) mrcuer

= 0.008(30)2 bh) = h

£(30)

- 0.9(30)

+ 29.6 = 9.8

_ 0,008(30 + hy" = 0-9 sumeeh) +. 29.6 -_9.8 ea h _ 0.008(900 + 60h% h?) = 27--0.9h + 29.6 fi h \ 2 v 0.42h (ee erry COLE

In 1990, the number of male infant was DECREASING at the rate of 0.42

EXERCISE

deaths deaths

per per

100,000 100,000

births births

9.8

was per

9.8 and year.

8-2

Cae

SS

Things 1.

of

to

ETT a

SS

A ET

AE

SR SEER

IE

SE

SS

I

SS OE EE

A

ESET

EE

remember:

LIMIT

We

write

lim)

£(s).=)

boon

£(x)

5

-iaas

s-—=c¢

XC

if the functional value f(x) L whenever x is close to but CG)ee.

is close to the single real number not equal to c (on either side of

[Note: The existence of a limit at c has nothing to do with the value of the function at c. In fact, c may not even be in the domain of f(see Examples 2 and 3). However, the function must be defined on both sides of c.]

EXERCISE

8-2

445

Ito

ONE-SIDED

LIMITS

We write

lim

f(x)

= K

[x 3% c”~

is read

"x approaches

c from

x->C-

the left" and means x > c and x < c] and call K the LIMIT THE LEFT or LEFT-HAND LIMIT if f(x) is close to K whenever close to c, but to the left of c on the real number line.

We

write

lim

f(x)

= L

[x ~

ct

is

read

"x approaches

FROM

x

is

c from

xoct

the

right"

FROM

THE

and

means

RIGHT

whenever x is number line. EXISTENCE

or

x

close

OF

A

to

Let

f and

ime

OF

c,

x

>

LIMIT

but

to

to exist, must both

c]

and

if

the

call

L

the

f(x)

is

close

right

of

c on

LIMIT to

the

L

real

the limit from the exist, and must be

left and equal.

the

LIMITS

g be

f (ee).

two

functions

a= os

lim

xc

where

c and

LIMIT

In order for a limit limit from the right PROPERTIES



RIGHT-HAND

and

g(x)

assume

that

= M

x-C

L and

M are

real

numbers

(both

limits

exist).

Then,

(a)

(by

JLim{ f(s)

+ .o(x) 1].=

Limtt (x)

=o (xyes

xc

Lim

f(x)

2+ lim

g(x)

=

=" Lin’

f(x)

="

g(x)

"= L°-1t

tam

o(sc)

=

2

(Di

x3

1.

lim

f(x)

-

50

9 =e

4

g(x).

x3

aba

ilt.4

=

x3

=

15.

xg (36)

x33

tejeves,

exist

x1

x17

ai.

not

x72+

x71t

g(1)

f(x)

x2

x72 -

(Hyee

2

(D)eeO))

"2

=

Lamesa)

(CG)

e—aee

os)

eeleime

(CB)

2

=

f(x)

CA)

lim

x33

“[Property

g(x)

[Property

4(b)]

4(c)]

G

se)

ae anal =x

;

;

Oy eropesty 2(e) 1

—ence 18 00

Picayoudinagia x33 ee) t

19.

21.

limVf(x)

9 =

a/1im

x33

og lS

oe

f(x)

=

V5

[Property

4(f) ]

x33

2f(x)

TG

aA es dee

AE

Lim 2£ (2x)

Ee

Saeae eas

x

Be ee

ee 2-lim

Pe

f(x)

Fe

ae

2. Bo or

EO

ee I

x3

23.

Lim (2x? =

5s)

2(5)*

—-~3

[Stnee

f(x)

=

2x*

-

3 is

continuous

at

x =

5]

x:

47

EXERCISE

8-2

447

25.

5x

ik

x22 4 x

sist

mG OAT Ie

(ex)

+ (2)2

2

2

31.

33.

Lim (x + 1)3(2x - 1)? = Lim(x ¥°2)?- Timex x2

lim V5

-

limV25

~

x>-1

x2

4x = NEE lim, (5. -

A

0

h

(1,

lim

(4x

-

=

seems

3 +

f£(1

+

h))

f(1))

4hx — 3h + 2h*

|

f(x +h) - f(x

at

(1 + 4H,

-2;

.

h-0

tangent

and

f(1))

(1,

through

1s

2h)

=

+4 2h) R43)

shy

h

h>0 4x

-

3

h-0

lim

h-0

f(x + h) - f(x h

=

3

13s

3

- 2xh + 3h*x = h* + bh? =

Sy

ee

eee

=

h-0

_

b(3x? =.2x + 3hx - bh + h?)

h30

h

=a

= lim (3x2 - 2x + 3hx - h + h*) = 3x? - 2x h-0

EXERCISE

8-3

455

( Simp lati,

Steps

BAX +)

tep

2.

PEUX

Evaluate

plep

1.

Gi teed)

Step

2.

tie)

as

dim SA

rca



tine

EE

h>0

Ee (ec)

2

fix)

=

0 at's

are

ALIS)6 £' (3)

=

2hA

f(x) ECL)

NOW

et (23)

f(1)

of

x=

=

Qua tl? @)e ]2;

CHAPTER

8

of secant

THE

2

fF (eS;

aces De.

i)

2) Las ale

2

h =

2

lim(-2x h-0

LN (EP)

2

-

h)

=

-2x

e

ee (28

ee eae line:

4,

+h)

=

ey

(3

i=

oe

line:

DERIVATIVE

ea

a See CT rEg y= 1D a = 2

1

ee)

= 2) 3h 4>p2

456

=

Sees

secant

= 2) £1

Slope

2 eo

ee

= x*° +x = 44 eno

Slope

(B)

ESS,

h

TMS

ibe)

eto

OF (ac) 2 ae) Oye (0 ae) h u 4 Dee (x! 4 hie = 2 Bee h : we 2xh 2h = h = -2x - h

h

Evaluate

)

ee

Bl)

exe

simpli tv.

x

h

ae Now

= (Qhesuxt

eee h Al ere h dt ©)

Ve

Gia)

(53)

eel

ee

h5>0

abals

ze

ty DB)

h->0

diy

Thus)

Eh

lim

SS

f(x)

h pe 2 2 ec Re

h

aa

-

5)

(x2

#44+A

a

h

(ener EC)

— ae

ao

ee 2

G

af

eat 3h thea 2 h

2 ee 3

h

(C)

lim(3ue Byes 2

fee ee Ah

.

Sa

.

h30

h>0 (D)

19.

=x

(A)

Average

(B)

pe

of tangent Tine at “(ob 20> lor ys = #4) le.-01)

Equation y - f(1)

f(x)

SE)

(1)

at

line

tangent

of

Slope

+x

rz

BAe

velocity:

Instantaneous

f(x)

= 6x -x

Step

1.

ao

Simplify

=

h)

+

lim(3

h>0

3 meters/sec.

,

- =aeix

peru l6x = x)

«Gigs bles (ee

Pid eihjes L(x)

h

at

ig]

h

h meters/sec.

2

-

timer 1 + b).

+

3

ee

h>0 =

21.

Bx

| 122 pee

(1)

2

iH}

5 meters/sec..

=

(C)

y

and

+ 1) (eh) - (17 \=. flee F(t 4 ah) ‘a = h + bea ae 1 + ch - 2 2h a) Ue = ice

velocity:

Average

Fl) if

oe

velocity:

Lj),



Sic

Ge + 2ete bth) = 6x + x

6h

N64

h

7 =

_

BZ

= $h—2xh 2 26 -2x-h Step

2.

gat

ata

Evaluate

h>0

d 5 tie ee)h = Ed

h350 Therefore,

fotay

23.

f(x)

= 6

6G sox

f' (x)

h

shes A

Viana

espine. > ox = h>0

6

FF(Lak

eh

een

ex

aes

Ee(2)

=

6

PPA)

SS

Ay

Wout QO.

2 (3)

= Vx - 3

Step1. simplify F(a & Bb) h

**+")— + -3

Vx +h

-—i(x) =a

Vx

+

=

h x+h-x

hivx

+

-

(Vx- 3)

h NaN

h+

x

+

ho +

Vx

Voce

es Vx)

Vx

1 Ve

+

hs +

Vx

EXERCISE

8-3

457

Step

2.

Evaluate

o£ a

(xe

2 D%e

fore

rh

FS

i

EN)

:

oe ee

h

1

f(y

~ 2Vx"

oe

=

S38

ON

se

Dawes

2Vx

Fg)

£°(3)

2V2"

=e

=

Step

1.

Simplify

£Gc th) = £030) |

h

oi

eS

ee

ree

¥

ie SeMeO Te

h

ee

bs

i

mh

h

+h

eee

h

rile ae!

~ x(x + B)

Len) Een Moateis IS feo ei Bsa ©) i iad 418.3

step 2. Eva

1;

PAW

pies ee (C0

h50

3

h

A

af

Bao RE

Therefore,

f'(x)

1 = ine

27.

F'(x)

exist

at

29.

F'(x) does not re (ep Ee)

exist

at

x =

c;

the

31.

F'(x)

does

not

exist

at

x

e;

F is

33.

F'(x)

does

exist

35.

f(x)

does

1

AYO

-xX +x

at

x

el 12 =)

pee =

x =

pene

hy 5 42 tial

=2

awaar, a

ULES )a ee qi

9:

tangent

at

a.

=

graph

not

has

a vertical

defined

at

x

=

e.

Ge

= x* - 4x

f(x +h)

h - £(x) _ (x + h)? - 4(x + h) - (x2 - Ax) h ss h SA ax

Sa

CHAPTER

2V3

aei

tr(xX)

POND) ssi £(R)) ee

458

a

ho0oVx + h+Vx

Pri

ey

hh)

h

Lim Ext ey

h30 Th

+

8

THE

DERIVATIVE

he ia

ee

Ase h

AR

ee eae

eee a ae

line

Step2.

f(x

lim

Evaluate

+ h)

-

hy

£(x

h->0

hy) 2 2x4 44 e) eE(x) Saig hems im iee =,

.

37.

f' (2), =;

=424,, =

-

2x

=

f'(x)

Therefore,

.

J

4.

0%

(B)

£9(0) een (Ai)

(C)

Since f is a quadratic the graph of f is function, a parabola. y intercept: y = 0 x intercepts: x = 0, x = 4 Vertex: (2, -4)

+

4(x

=

h)

+

eee

2(x

-

h)?

the

for

process

two-step

the Set

To find v = f'(x), use f(x) = Ye eM function, Step1. f(x

x

given

distance

B)

+

= 4(x2 + 2xh + h*) - 2(x + h) = 4x + 8xh + 4h* - 2x - 2h (4x2 + 8xh + 4h? - 2x - 2h) - (4x* - 2x) + h) - £(x) f(x n+ 2x ae Asc) 4"Exch Shahee 8xh + 4h* - 2h f(x

+

h)

Aix

h(8x

+ 4h

-

2)

h(8x

+

-

2)

8x

h 4h.-=

h iT]

lim

f(x

+

h30 the

Thus,

h)

-

£(x

h

velocity,

v = £'(x) f'(1) f'(3) f'(5)

=

+

4h

lim(8x

h-0 = = = =

2,

.nit

+ 4h

8x - 2 8-1 - 2 = 8-3 - 2 = 8-5 - 2 =

0

-

2)

=

8x’ -

2

6 feet per second 22 feet per second 38 feet per second

i ae

41.

Wee Bawhia Bene, PTA

TTA 7 Lat tt? och a ca EaUAS GHase

Mae

(x)

=

2% perb0)-si2

69

45.

f(x)

= Af i

ax

= ae;

ECO}

EXERCISE

07 71

8-3

459

47.

(A)

The All

graphs of g and three functions

(B)

‘ m(x_+

h are vertical translations of the should have the same derivative.

ah =M(x)U.

(xe

h)? ae Oe

graph

of

f.

(x2 ec)

h

x? + 2xh ene oe

Ow 32 he h

Pn 2xh +h) ge (oe ~ =

Step 2.caplim 49.

(A)

m(x

+

h)



-

2x

m(x

h +h

en)

a h #0

:

=i zim ll 2xai+ (2x

h

1) ) =

“m' (x)

2

SS

The graph of f(x) = C, Ca constant, is a horizontal line C units above or below the x axis depending on the sign of C. At any given point on the graph, the slope of the tangent line is 0.

(B) Step 1, #2 + B) - f(x) -£=£_ 4 Step2. limt +2) i* -— f(x) _ MnOuelo h30

h

h3>0

f(x) 51.

The

graph

f is not

Pplan 5

of

f(x)

=

yn

XC IV

differentiable

at

because the graph of f has corner at this point.

53.

f(x)

=

\* +

1

lim

only

£'(x)

£(x)

=

The

xX

if x . 0 is f'(0). Since =

0

and

lim

E(x

=

x0t

at

0 as

well;

lim

0.210

x 30+

f is

differentiable

for

real

numbers.

|x| + h) h

limit

CHAPTER

1

a

= Fe

lim'’2x

differentiable

£(0 lim

x =

x07

f is

h>0

460

f'(x)

question

=

x07

55.

N

P-n oadCane

ce 26

It is clear that the

pay

if x

i

Thus,

A

8

-

does

THE

£(0)

' =m

|0 + h|

exist.

Thus,

h>0

not

DERIVATIVE

KO| |

h f is

=

not

Lim

hoo

21

A

differentiable

at

x

=

OF

57.

f(x)

= A

ce

OE

The

limit

h>0

59.

ijn

jewel gels

does

er

eBid 03 bie Becca

Ve dl

h

at

x =

0.

eS 2x ~ oC) 06S x S 2

(Ay eror

i lim

0


. Ge eee bey

30.

ee

2Xi = 3

f' (x) =

28.

oH)

=9(2x = 3x 4,2) (22 4.2) & ite = ee SS) Syax > 6x4 Ax 414° =-6x 4 eas eee a tx 4 Bsc ee = 8x + 3x° - 12x +7

da ne

CHAPTER

55) 7

8

THE

= x anssee (x? - 5)72/3 (3x4) = ue eoaiale

DERIVATIVE

(8-5,

8-6) (8-6)

31.ye

_ 3x4ge+4

dy _ x*(6x) - (3x° + 4)2x _ +8x _ -8 [x*}? Vs =

Cer

dx

ee

Men 2)* ? (obigl

axle 3) ees

A amas

exe

7)

(2x

P 2d

-

= xe 4 2) 812)

3)7

+ 2) Taxlex Sosy

iat 4:2) ]

(Qean ay

aioe

wea) (Bat

en eae

eta

ny aii ee 2) (Pa

OS ake) Boornix)

(Ox

ae 0, down kK units afk < 0)|. The graph’ of gies the same as the graph of f'. (1-2, 8-6) 48.

49.

Mo

eke POR CIM ore nei eS!

Lim(ox

Cle a) Ly epee

x33

50. 51.

2x

aoe sue eens

(8-2)

2 Lins ay 7 nex cay Ser 7 Mae a Oeto Aix

aia

GeO

2x

;

Neb)

wp

x

For x < 4,

BL SIA 2) St

aoe

AG

(8-2)

|x - 4| '="4ixe-ma)sa(4e

x

z S) reBinet Mim ( baie Se! 4 ce teueee te ty te ete. x47 aye x47

xo4rta

53

Por &¢ Goa :

lim x94+

54.

It

lim 1g

498

Wee

Kntane *

-

=e

4

follows x -4

eng

CHAPTER

oo_

pes Ce eee? fe

52.

(8-2)

ne

er

aes A

Pe: 7

8

2)

any x34+ X -

from

4

not

=)

4

i e exist

DERIVATIVE

-

a (8-2)

A

Exercises

does

THE

ete x -

=

alm x34+

52

and

aes

53

wl

(8-2)

that (8-2)

55.

geen!

lim

2) “= 2"-= 23)

h350

ara.#7444 eae Lim

h

h>0

Bes 1, = 3 4

:

h

> h>0 eeeh 56.

f(x) lim

= x* +4 Pie een) = /£(2 h

h>0

Sima + hb) hd h>0

“eT (2. wih)”, sega

ey

lau

(8-2)

[2a e-4]

h

h50

ea

> 4h + Be we AVE'B

eship allei

h>0

su

h

=m

ud i)

:

Abas oh4

h>0

h

dbal

4

(8-2)

h-0

57.

Metar(x) S

=

:

rr,

1 F(x

Hh) =

Metiocoe+ lim

h>0

h

ee

YL x

vk

(By

A tert

h>0

h

hank

Me tp2 = (et

evel

ke

© opStr 3

+2

(eee

Me

Da)

#92)

Sie

ag noo A(x + h + 2) (x + 2) ‘

=i

#10ub Ake: |

Figo Cc + b+ 2) (eva 58.

{Aye

Tim

F(x)

=

-6,

x3 -27-

lim.

f(x)

=

6;

lim

x—3-2+

(B)eetam £(x)

=

bs

he aoe

£(x)

does

not

Se exist

x—>-2

4

x0

(C)

lim

f(x)

=

2,

x27

lim

f(x)

=

-2;

lim £(x)

x3 2+

does

not

exist

x2 10

-10

10

-10

59.

1a((S2) Step

x 1.

-

(8=2)

x

Simplify

Lior

er

ee

ais h

hie

nic

Se

©.St? 24s) ee

7 _ =

al?

(x? =! X)

h x

+

2xh + hh? -

x

-

h-

x? +

x

h

2Wade NE 2

—_

a

eh}

h

CHAPTER

8 REVIEW

499

; Step

Vik zim

2. Evaluate

(

+ A) = of (x) x 4

jfpleytBacal Seach te2) aa lahgy eA °

1

(A)

hs

540559) | ses

Saal

Lamem(x)

Svat

Viaim

x17

(jeeeim

f(x)

=

1



om,

x17

We

want

f(s)

=

1

1t

laimeiccdt——-Peeem x 31+

1 -

m =

-1

+ m which f(x)

implies

ah] ambien ll dl al ow ah ae Se teh Negd heb rigs

(D)

x2

The graphs does not.

in

(A)

and

(B)

have

m=

1.

at

x =

|

jumps

1;

the

graph

in

(C) (8=2)

CHAPTER

8 REVIEW

501

1.

EUS) (A)

SS lim

8ote elt

Le

2

Oe

=

eee

Se

ae

h-07-

1 =

lim

(2 + hel

KE

h

>

=

h-07

=

Sb

oom

otal

h-0-

eleniny 3 =

teh]

-="sh-if-h-

(+) (-) (+)

> 0 for: (inequality (interval

f is continuous

7 are’

x 0

x

8 -12 8

Numbers

A.

Sil.

f (x)

-4 0 5

455

eee 10x (x) = x?

& and

Numbers

x

x

-4 -3

x

partition

for

all

numbers.

Numbers f(x)

0

DA

+)

4 8

=3: 5

\(=>) (+)

notation) notation)

()

f(x)

+

5x

Be

-

3

~ x Thus)

£(=5)

.4

0.4 5, =63 xX

Then

i

+

-5,

x

++

+

discontinuous

f is

=

0,

x

3 are

Test

Numbers

and

at

x

partition

3 and

numbers.

£ (Se) —+x =!

:

Test

+915

73

Thus,

e

Numbers

>

-5

O\ for:

< x

0! on

(Sle SS5

a(x)

a

Os Oniy

(co,

(B)

0)

U

=$.(-)

-1

1

(+)

1

25

n~)

4

36

(+)

36 >a3

Ory

oo)

(se

(inequality (interval

notation)

notation)

5.

-1.33, Me PON

7135)

WU

X, =

155207

(Everts).

(1.20,

xd) 3

3 O23

eo) 3523.)

EXERCISE

9-1

511

41.

43.

(CXS) ae Pe 6x LS Be Partition numbers: x (A)

Be)

=

OVon

(—con

(BY

EG)

ae

O Mone

(=2)53, ae 07 2)

BU AS

47.

49.

Sy.

WW

-0.72

(0727s)

epee

numbers

Coy

2 Goa

(B)

L(x)

Dalle). all x,

2/53)

Pa

3 + 6x - x

Partition

45.

58 ns -2.53,

—257=

a(=— 271.5
2-

x32+

61.

f is discontinuous at x = -1 and x = 1 because f is not points. However, lim (x) =e alae Lim joy) ERG x

63.

(A)

Yes;

g is

(B)

Since

lim

defined

at

these

at

x=

x

-

continuous

on

(-1,

g(x)

=

-1 = g(-1),

o(x)

=

2 ="9(2),

2). g is

continuous

from

the

right

-1

x>-1+t

(Cc)

Since

lim

.¢ is

Continuous

from

the

interval

[-1,

2].

continuous

from

the

left

at

x =

2.

x>2-

65.

(D)

Yes;

g is

(A)

Since

“lim

continuous

f(x)

=

on

f(0)

the

=

closed

07

£ is

right

at

x =

0.

x-0+

(By)

Sance:

lam =f(x)°=

-1

4+ £(0)i=

10,

£ 1s

not

‘continuous

£rom*the

left

x07

aie

= OF

(C)

£ is

continuous

(D)

f is dome

not continuous on the closed interval [0, 1] since (x) = One 41) a=, pies, Fliss not continuous from

on

the

open

interval

(0,

1). the

Lett

at

x17

eS

(E)

f is

continuous

C7pexeineercepts:

x =

on

-5,

the

half-closed

2

69.

x

interval

intercepts:

f(x)

ke

ex)

=

ioenot,

2 # =" Se

[0,

1).

x =

-6,

-l,

4

f(x)

0 for

Continuous

on

all (=i)

x.

This

ss)er

does 2s

not

contradict

discontinuous

at

Theorem x =

2 because

f

1.

EXERCISE

9-1

513

73.

illustrate that either condition one of these two conditions must

The following sketches Theorem 2 implies that

f(x)

is possible. occur.

f(x) 5

x 5

10

-5

P(x)

TSS

dR)

ONS2 A Ob OP 550 162 TOME | oe) UaADAe ed

Diane

The

(By.

graph

Lim

of

(2x)

.]/

x

: Decreasing

1 Increasing

4

x -3

0 3

Numbers

rates 15

12 15

(+)

(=) (+)

Therefore, f is increasing on (-«, -2) and on (2, 0), £ is decreasing on (-2, 2); f has a local maximum at x = -2 and a local minimum at x = 2.

520

CHAPTER

9

GRAPHING

AND

OPTIMIZATION

35.

f(x) =x - 3x* - 24x+7 f' (x) = 3x* - 6x - 24 f'

is

continuous

for

all

x and

f' (x) = 3x* - 6x - 24 = 0 aio 2x 8). =.0 3(x

+ 2) (x - 4) = 0 -2 and x = 4 are = Thus, x The sign chart for f' is: '

'

0

-2

-3

i f(x)

Increasing!

Decreasing

Numbers

F(x)

=

+

ee

tah

eta

f'.

for

Test

+

- = O++ |= s.=—

+ 40 +o4

Bi

numbers

partition

t+)

a4

=a

ae

0



5

=a)

(+)

21

; Increasing

f is increasing on (-«, -2) and on (4, ~), f is decreasing on Therefore, (-2, 4); f has a local maximum at x = -2 and a local minimum at x = 4.

37.

£(x) = 2x* - x! f'(x) = 4x - 4x f'

is

continuous

for

all

x and

and

x

f' (x) = 4x - 4x? = 0 4x(1 - x*) = 0 4x(1 - x)(1 + x) = 0 Thus, x = -1, x = 0,

The

sign

f' (x)

chart

for Oa

St

f'

0—-————

: ' ' —____o___e__}_e—__ nt : . : f(x)

ae

=

-2

Increasing!

.

1

Lor

Test

Numbers

.

1

3

0

.

Decreasing 1

Increasing'

+> ae

x an Cale =2 px

2

2

ag 2

Decreasing

2

f is increasing on (-~, Therefore, f£ has local 0) -and-on--(1.--0); (i) Minimum at x = OQ.

39.

f(x) = 4+ en)

8

23

(-)

2

3

(+)

-24

(-)

2

-1) and on (0, 1), f is decreasing on maxima at x = -1 and x = 1 and a local

2x

Sa

x =

f' (x) ee 24 (+)

B GL

8x - x -

f' is continuous for mate) =) 8 —" 25400

Thus,

El,

numbers

is:

= = 044444

=

partition

1 are

=

4 is

all

x and

4

a partition

number

for

f'.

EXERCISE

9-2

521

The

sign

chart

EN (x)

for

f£'

is:

++++0-++-=

-

Test

att

0 £(x)

x

45

0

'

5

Increasing

(-cc, se (4,

im (G29)

4) 4 ©)

D6

EKGS)

0

4

4

20

BLASS)

or t+) -2

(-)

on

(4,

! Decreasing

Therefore, f is increasing local maximum at x = 4. Se

Numbers

on

(-«,

4)

if

and

decreasing

GRAPH

~

Increasing

Rising

0 -

Local maximum Decreasing

Horizontal Falling

OF

~);

f has

a

f

tangent

f(x) 20

10

5

41.

10

x

Fide) ee eesae PAN Wey oeLS, f'

is

continuous

f' (x)

=

3x7

-

3

for

all

x and

ial 0)

3 ee Saye = 10 Bio ceame Au)) Nore Et

ay)

ae

(0)

Thus, x = -1 and x = 1 are The sign chart. for f* is: £° (2)

Fae tact 2) 0 -----e

partition UES Preset a ye

HH -2

f(x)

-1

Increasing:

0

x ill

Decreasing |

numbers

2

for f'. Restenunbers x -2 0 2

(Sx)

9 -39

(+) (-) (+)

i Increasing '

Therefore, f is increasing on (-e, -1) and on (1, «), f.is decreasing on (-1, 1); f£ has a local maximum at x = -1 and a local minimum at x = 1. Seige Sisters Tea SCMM ARMM ETRE: L865 1 57) ae SY es een Set ares cr

ae (=e077

522

RE a

= 1)r

ee er eae

ee

TORAH

is

Increasing

Rising

5 il (lls) oa

0 0

Local maximum Decreasing Local minimum

Horizontal Falling Horizontal

(67)

+

Increasing

Rising

CHAPTER

9

GRAPHING

AND

OPTIMIZATION

OF Eth ey tangent tangent

x

f(x)

so 0 1

3 a nat

10 = 12s

Seta

Pays

6x7 = 3?

-12 % 12x - 32 for

continuous

is

f'

f(x)

x and

all

19 + 2x - 3x” =. 0 -3 (x? - 4x +4) 20 =3 (= 2)" = 0

Wee

Thus, x = 2 is The sign chart

a partition for ae ae

for

number

Test

2.

Decreasing

f(x)

ee ihe d Oe

3

| Decreasing

f is decreasing for all x, Therefore, at x = 2. horizontal tangent line er e eke Gente en gee e See ie £ a(x) x

2)

(-co, x= XFS

x

2 2

f(x)

0

10

2

2

~

Decreasing

0 -

Decreasing

47.

i.e.,

on

(-co,

GRAPH

OF

f

oo),

and

is

there

a

Falling Horizontal Falling

tangent

f(x) 10

der 45.

OxSe-1250-)

«

—_—_t+—_+—_>_ +>

Qa

Numbers

mel fos

ae Te i AOS aa

alae

f'.

az

x

increasing on Critical values: x = -1.26; x = -1.26 at minimum local -1.26); (-co,

(-1.26,

0);

decreasing

on

ing on Critical values: x = -0.43, x = 0.54, x = 2.14; increas and -0.43) (-«, on ing decreas co}; and (2.14, 0.54) (043, at minima local 0.54, = x at maximum local (0.54, 2.14); Roe! -0.243'Sandiix =)2 #4

EXERCISE

9-2

523

49.

f(x) = 0.25x4 + 230° + 2.5x% - 11x £' (x) = x° + 6x7 + 5x - 11 f'

is

£' (x)

continuous

for

=

A sign

all

0 at

x =

-4.17,

chart

for

£"

x;

using

-2.78,

a root-approximation

0.95

(e¢ritical

routine,

values)..

is:

15

(-20,-4.17) (-4.17,-2.78) (=2.78,0.95) (0-95,0) f'(x)

-----

O++4+4++0-----

O+++++

-5

8 -____e—_____«______> -4.17 f(x)

Decreasing

‘f is (-c0, ate

51.

-2.78

ttncreasing

increasing -4.17) and ="-4) i

x

0.95_

becreasing

15

increasing

f

on (-4.17, -2.78) and (0.95, (-2.78, 0.95); local maximum

and

x

=

5

«); decreasing on at x = -2.78; local

minima

0.95.

Increasing on (-1, 2) [£'(x) > 0]; decreasing on (-e0, -1) and on (2, oo) [£'(x) < 0]; local minimum at x = -1; (local maximum at x®=02>

53.

Increasing on (-1, 2) and on (2, 0) [f£'(x) > 0]; decreasing On! (coy. 1) ie (Ex) Ole local minimum at os = =d).

be

COUP

it ees ERS

lik atoant |

BOE wis lel | IT | MEL, es | BN]

FiFg

BERRA

S55).

LIES

6 (sc)ie>

Ol von (—co sn — 1) mandaon (3) cooSR EY (xy -< Oren (ade oa)> EY (x) e=s0eatece—— ol anciece—i oe

Bele)

=

= = :

fio

Beet

2

Critical values: the domain of f

524

CHAPTER

9

(Note:

(2)

=

£ is

not

rep a i?

(x + 2) f'(x) # 0 for (i.e.,

GRAPHING

AND

-2

is

Siro

bel (x)

ee OM One (=o) anclmon 9°); £° (x) < 0 on) Y{-e, a2) on) (i) 3) Gin (oc) el Olercte 2y xa Cand ocv=ase

(372 ang ee

defined

at

x

=

-2.]



3 ; Ge tn2) all x, and f'

not

OPTIMIZATION

a critical

is defined value since

at -2

all points in is not in the

4

61.

f(x)

(-»,

not

defined

Eee x)

local

Or]

=

2)

=

0

chart

for

f'

ee; As a

ss

ae Increasing

PAS) we tie

-—

--+-*

ej

=

-2

+

+

and

x =

=

x

2;



ND-

tase

Therefore, en Mec. 0) minimum at

in

x

-2.and

=

2 are

is:

'

: L(x)

not

Tt

2) (x —

Theasign

0 is

0

the critical values are x Thus, also partition numbers for f'.

63.

x

£ has

a critical value of f since a partition number for f'.

0 is not x = 0 is

x = but

4 ue

2

Se

: (x)

at

co);

(-2,

on

and

=1-

Critical values: the domain of f,

(ecm

f is

-2)

on

increasing

[Note:

x

no

Set

oy.

!! Increasing

f is

Therefore, extrema.

0

'

Increasing

£(x)

Bz) 2 t*)

Ba =

ee

eee By. 208-1

Numbers

Test

+ + 3

wile

neculé

f' (x)

isa

is:

f£'

for

chart

eign

Mae

-2

x =

values;

critical

any

have

not

f does f'.

Thus, f). number for

domain of partition

0

+

+

> x

|

Test

Numbers

b38

eS) 5

=>

Ses 1

te1:Increasin: g een 1 Decreasing

3

ge (+)

AE

-35 (-) Sass)

f is increasing on (-~, -2) and on (2, ©), f is decreasing and on. (0,42)mi¢-has a,docal maximum at x = -2 and a local x = 2. [Note:

ot = + 5

f is

not

defined

at

x

=

0.]

ie = 2-138 ill

2

Critical values: the domain of f;

x x

= =

0 is 0 is

© is

not

EXERCISE

9-2

not a critical value of f Since’ a partition number for f'.

in

Sg) = 2 pesegaer il

2

pie

Oe RPA, Bie -2

525

Thus, ae The f'

the

critical

sign (x)

chart

ee

Py

value

for

EE

0

f'

+

is x =

-2;

-2

is

also

a partition

+++

22

+

ND

is

es Toe ee

oe

Test

Therefore, and on (0,

65.

(64)

nes

: Increasing

a9

[Note:

(x - 2) (2x)

f(x) =

(x

x

=“Gop

-

Thus, the partition

$40

atx

67.

Oar

Increasing}

f'

ae

are

x

at

x

=

on

=

0 and

x

=

2 is not

0 and

4 are

Test =

tlhe

es

>

AL

Decreasing

«x

=i

ei

3 5

(-«, 0) and on (4, local maximum at x

F' (x)

2 (+)

At

| Increasing

f is increasing on on (2, 4); f has a

Numbers

=3

f=)

ot co)

co), £ is decreasing on = 0 and a local minimum /

2x7 (x =

the

we

6)ilse

CHAPTER

critical

construct

partition

526

in

also

4

ee 2 (r=

Ie doe) 6)

= 2x°(x - 6) (3x - 12) = 6x?(x - 4) (x - 6) Now

-2)

2.]

4;

i

f(x) = x4(x - 6)? £) (x) = Xe(2 x= (OC

Thus,

(-,

is:

=A

=

(+)

0

for

hale

defined

——+—_>—_—_—_—__

Therefore, (0, 2) and

hp)

1

sai)

2 is not a critical value of f since 2 is a partition number for fF'.

critical values numbers for f'.

al

f(x)

Az

1

=0

4)

chart

Lx)

= sit

10

x - 4x

sign

F' (x)

x? - 4x rere (x2 =92)

2

x = x =

4x

-

not

- x4(1)

past = (a)att 2)2

xX(x

The

1

: Decreasing ‘ 1

f is

2 )

-

Critical values: the domain of f; re (x)

0

f is increasing on (-2, 0) and f is decreasing »); f has a local minimum at x = -2.

x

0S

Numbers

x

Ei

Pas Decreasing!

£(x)

for

is:

a 23

number

9

values

the

sign

of

f are

chart

numbers) .

GRAPHING

AND

OPTIMIZATION

for

x

=

f'

OF

xu—

(x =

On

4

and

eX se ee

x=

nL =

26.

Ohare



f(x)

1

49

Decreasing

'

Increasing

:Decreasing

;

iy

ax 412) 7/7

(x)

(3)(xX

2 St

Eun(sc\ies,

'Increasing

4.)

f'(x).#

2;

x =

2 is also

defined

not

es

ee

ee

ND 25

=

x

at

Decreasing

on

avx - x = 2x'/2 - x,

GS)

f' (x)

iH}

Critical

nti a eg.

iH}

values:

(+)

f is decreasing on 4 and local minima

critical

defined,

for

f is

Numbers

ra), co \-)

og. 1

«

is

f'. Test

er

f(2)

value

Ae ee

' Increasing

f is increasing Therefore, local minimum at x = 2.

“71.

+

[Note:

2.

for

number

—_—___+_+-2_+—__——_> 0 81 7% £(x)

7

and on (6, ~), maximum at x =

Thus,;—the

x:

all

a partition

=

=

=p

f' (x)

(¥s )

aie

0 for

ficyee

x =

-75 0

2 ——+_—_

=

is

f'

values:

Critical

5

1414 =1/3

2



Od)

90.

1

f is increasing on (0, 4) Therefore, (-cc, 0) and on (4, 6); f£ has a local at x = 0 and x = 6:

69.

2RO

=a

Ses

0.

£ SG

x

+_—_ + > « _+_ + _o—_ —_ + —_» —j+ He

Numbers

Test

ne) OS

eS

eee

Rte

Ohare

eT

f' (x)

SO

wale

a

(2,

»)

and

decreasing

Oo

x Vv

oO

1;

x=

(-~,

on

2);

a

f has

x>0

GAS a

=

a

f' (x)

MT

sa ie Bg He x x] Thus, the critical number for f'.

The

sign

ENC)

£(x)

chart

x value

for

f'

or

a partition

also

Test

Oe shee

t.

}

ie

eee

fy 4

' Decreasing 1:

Increasing

1 is

is:

(eet '

f is x =

>

x

2

f is increasing Therefore, local maximum at x = 1.

Numbers

ee ae ee

7

on

(0,

1)

and

x1

£" Cx)

4

ft)

4

-3 (-)

decreasing

1

on

(1,

~);

EXERCISE

f has

a

9-2

527

73.

Let

f(x)

(Al)

Tice >

= x°> + kx 0

f'(x)

= 3x? + k > 0 for all x.

There

are

ON (Bie

ree

no

critical

values

and

no

local

extrema;

f is

increasing

(J -£. |; f is

decreasing

neo)in,

.

PA(se=R'

(0,

'

' —_——_|

81.

interval

ee

'

C(x)

om

= 0 = 0

80)

Next, construct number for C'). C(x)

320

values:

aCi)

(x -

+

te +B) (0.24) values:

- O.1de(2e)

(a, 6), then P' (x) P is increasing.

=

_ O.14(1 - ey (te? +1)?

Eee

i

C'is

continuous

for

all

t on

the

interval

the

interval

(0,

24)

(0,

24):

Ori(1 = 1e*) = 0 (t2 + 1)? 0 eee 0 (TS ey(r + 6)

=

the

critical

value

of

C on

is

t =

1.

EXERCISE

9-2

529

The

sign

chart’

Cure)

for

Hi

Cc"

1 is

a partition

es ee Oem

ee

ot

1

Increasing

p(t) = ese

(t7 + 49) (8.4)

- 8.4t(2t)

t


Hh

Bg Be (ss) wee el eS 5 =O. i=) a

;

Concave

:

Upward

of f is concave upward there is an inflection

Numbers

es

on (6, ) and concave point at x = 6.

EXERCISE

9-3

535

51.

f(x) = x® - 24x27 + 10x - 5 f' (x) = 4x° - 48x + 10 f"(x) = 12x% - 48

Now,

£"(x)

= 12x* - 48 = 0 12(x* - 4) = 0

ADT (Sce-te The

sign

2)n(ec

chart

£" (x)

2)

for

ee

See f" (partition

$+++0-------

i

———+—_>—_—_—_

-3 — of

-2

numbers

Giana: ——_

0

+>



The

sign

ye

'

Downward

:

Upward

chart

for

f"(x) ar

fihas)a*

local maximum at xk = £ has®a™local®minimum at x

(partition

1

2

1

Graph ia

536

graph

CHAPTER

is

2)

is:

Test

eS

3

Numbers

xX

0

=

0°) Bake = "4°

3

jae

-12

(x)

(-)

ees

f

de

:.

The

number

Cea

ee Sa 0

(-e, -2) and on (2, ~), the graph has inflection points at

A)

“Gheretores)

Pry

£" (x)

(Sh dt)

Upward

590)

60.

60+

Concave

12

Py

3

3

|

=

Numbers

=de

Concave

2)

is:

0

ING) = Soc = Ie Sole SA) Crattacallivatuecemcr—s10 nA GY (0)4 =" 25< OFS 2Theretore;,

6(4

2)

oy

;

E(x) hae = Ge 1G Foe Il ae lox (=

and

x

«x

Thus, the graph of f is concave upward on graph is concave downward on (-2, 2); the X=) (— DealCl yell Kee

53

-2

Test

Concave f

are

9

of

Concave

1

Concave

Downward

|

Upward

f »has

GRAPHING

an

inflection

AND

OPTIMIZATION

point

at

x =

2...

The

graph

ofs

fase

55.

toy ee + x 42 Pie 3x"... 1 PEEx)we= OX Since £'(x) = values. “Now,

3x* + ££" (x)

1 > 0 for = 6x = 0 bret

The

sign

chart

for

f"

x,

f does

not

have

number

is

0)

-1 Downward

Upward

|

The graph of f has an Mebectiion pont at x Thevgqraph of £ is:

-1

0

0 1

2 4

=

5

(4)

“Jtangent line x

Critical value: x fr?) ="0“Thus,

second

(x)

6

---~

= -3(2 - x)? = 6(2 - x)

f"

1

0.

foe = (2 - x)? + 1 Pumeee 3 (2 = x)*(-1) f"(x) = -6(2 - x)(-1) -3(2 and on for f"

Cenex)

f(x)

f(x)

BE

57.

1

x

: Concave

Concave

*

Numbers

Test

es

wer

0

critical

is:

'

ae

any

0)

(partition

MS vie

Ptige

f£" (x)

all

= 2 the

derivative

test

fairls-

“Note

that

£'(x)

=

x)? < 0 for all x #2. Therefore, f 1s decreasing on (-©, 2) (2, ~), and f does not have any local extrema. The sign chart (partition number is 2) is: Test Numbers +i

et te Og sie=e

—ey—

1

0 Graph of Ff

Coase. Concave Upward

The graph of f has an iaclectton point atx The graph of f is: oe 0

f (x) 9

2 3

al 0

' |

eb

Concave Downward

'

=

f" (x)

oe es

;

ae

ee

ee

x

Reto

OB:

f(x)

2). s tangent line

,

EXERCISE

9-3

5:37,

f(x) = x - 12x Fh (oe) 33a eae

59.

a

(EXs)

k=

4)

es Cele)

OE

Critical values: x = -2, x = 2 f has a local maximum Therefore, = -12 < 0. = 6(-2) f"(-2) £ hag antocal minimum at eTherefore, f° (2) = 6(2)i=(42 > OD sign chart for £"(x) = 6x (partition number is 0) is: Test Numbers i

£" (x)

EPR

5 Oe Rab 4

OL)

Slips Graph

:

The



Concave

ones

1

Downward

graph

of

Tee Tee pill ee EA)

_t———c@0mO

>

f has

-2. The

at x = x = 2.

“-6

-1

x

(-)

et

ar a

Vt Concave

{| Upward

an

inflection

point

at

x =

0.

The

graph

of f is:

f(x) 16

=1116

ERS SSS SR oS BE BS EE A

61.

x

BY (ee)

-o

< x
n, then 4, and bo.

GRAPHING

AND

each limit will be ~ or -«, depending on m, and f(x) does not have a horizontal asymptote.

OPTIMIZATION

5.

LOCATING

VERTICAL

Let

tem) = d(x)

f(x)

ASYMPTOTES

where



If at x = c the not 0, then the Of L.

both

n

and

d are

continuous

at

x

=

c.

denominator d(x) is 0 and the numerator n(x) is line x = c is a vertical asymptote for the graph

[Note: Since a rational function is a ratio of two polynomial functions and polynomial functions are continuous for all real numbers, this theorem includes rational functions as a special case. ]

&.

A GRAPHING

STRATEGY

Analyze

FOR

y =

f(x)

Step

1.

f(x):

(A)

Find real

(B)

Find intercepts. the x intercepts exist. ]

[The y intercept is f(0), are the solutions to f(x)

if it exists; = 0, if they

(C)

Find

[Use

they

the domain of f. [The domain of f is the set of numbers x that produce real values for f(x).]

asymptotes.

Theorems

3 and

4,

if

calculate limits at points of discontinuity and decreases without bound. ]

all

apply,

and

as

otherwise

x increases

Step 2. Analyze f'(x): Find any critical values for f(x) and any partition numbers for f'(x). [Remember, every critical value for f(x) is also a partition number for f'(x), but some partition numbers for f'(x) may not be critical values for f(x).] Construct a sign chart for f'(x), determine the intervals where f(x) is increasing and decreasing, and find local maxima and minima. step where

3.

Analyze

the

graph

f"({x): of

Construct

f is

concave

find

any

inflection

points.

Step

4.

Sketch

graph

the

of

a

sign

upward

f:

Draw

chart

and

for

concave

asymptotes

f"(x), downward,

and

determine and

locate

intercepts, local maxima and minima, and inflection points. Sketch in what you know from steps 1—3. In regions of uncertainty, use point-by-point plotting to complete the graph. Ss S

aeuerom

the

graph,

f'(x)

3.

From

the

graph,

f(x)

is

5.

From

the

graph,

f(x)

has

7.

From

the

graph,

f"(x)

9.

The

graph

of

f is


-1

«x

0

Graph

Concave

i

Concave

of

Upward

'

Downward

£

O

|

Intercepts:

f(x)

=

Concave

(B)

+

=

Downward

Domain:

£'(x)

a

Upward'

Analyze

2.



Concave }

(A)

Step

=

0

ketch

19.

£ (x)



'

EXERCISE

9-4

547

(A)

Domain:

All

real

numbers

(B)

Intercepts:

y-intercept: x-intercept:

(C)

Asymptotes:

Horizontal asymptote: y = 0 Vertical asymptotes: x = -2,

1

£' (56)

-

—- -





ND, + + +. +

except

x =

-2,

x =

0 0 x =

1

#.+ND

-

-

-

-

HH -2

f£(x)

0

Decreasing:

Step

3.

Analyze

i Decreasing

f"(x):

a

£" (x)

2

Increasing

1

----ND

--

rT

0++

ND++4++4+

x -2 Graph

of

f

0

2

Concave

'Concave Concavet Concave

Downward

Downward Upward 1 Upward a

ry

'

F (x )

Inflection Point

Step

23.

lim X—oo

25.

4.

Sketch

graph

(Limen(saxSteeoxPeig

5

29.

Peau

31.

lim jim

of

f:

(4x° + 2x - 9) = lim 4x° = © xX— 00

27. Win

548

the

ea

3a

On|

5x2

+

4. 5

=, a. Koy 14(¢),) 2

sara22" at Oey Aten

2*—

CHAPTER

11

Eee)

9

GRAPHING

AND

2

OPTIMIZATION

(by 3) = Se

by 3)

2

33.

Ea3a)

=

act

ax”

asymptotes:

Horizontal

x

2

= er

2

iL

1

a x”

x2

je a

= “5 x

:

;

=

1 is

Vy =

LIne

= M(-1) N(1) = 2,

0,

sthe

Thus

function

0 and

=

D(1)

x = -1 is a vertical asymptote; a vertical asymptote.

the

a horizontal

Oe

-4#

=

,

fi

is

2

y =

a rational

1 and

=

D(-1)

5,

Using

asymptotes:

i



line

N(-2)

0 and

f is

tod

asymptotes:

Horizontal asymptote. Vertical

+

ae

ae

the

2 and

=

= Using 5, D(-2) asymptotes: -2 is a vertical asymptote.

Vertical line x =

£(x)

2x

=

=

biTm ae

asymptote.

35.

function

a rational

; f is

2

a horizontal line line x =

the

2,

so

so

the

1 is

x?

37.

Pane

x"

+

E is

an 6

ax”

39.

b

Vertical

asymptotes:

vertical

asymptotes.

f(x)

ace = "5 x

asymptotes:

Horizontal asymptote.

= Son 3;

£ is a rational

Dix i

41.

Aan)

=

no

f has

5,

=



x

f does

x;

N(3)

0,

=

D(3)

=

a horizontal

have

not

9,

3 isa

x =

line

the

so

asymptote. —2

+

3x

cee Horizontal)

=

oe

Loy

hx

UP

asymptotes:

asymptote. asymptotes:

Vertical

a vertical asymptote; vertical asymptote.

43.

x;

all

for

6#0

+

x?

x2 =

Using

asymptotes:

Vertical vertical

=

a horizontal

have

not

function

ax” asymptote.

£ does

=x;

D(x)

5,

Using

asymptotes:

Horizontal

function

a rational

#

Ly (tet

Ee 27 Oe ax”

——-

bx

Using

D(-1)

= 5,

=

2x?

—5 = 2;

x

0,

asymptote.

N(-1)

N(2)

=

-3,

earratvonal.

line =

so

2 is

y = 12,

Luncteron

so

the

the

line

a horizontal line

x =

x

=

2 is

-lisa

24

IVe iad as at Bx4

2x?

=~» = 2;

asymptotes:

the

oh apes

po Wade Blea ax”

Horizontal

Faas

0,

=

D(2)

giex ose WO.2 oe~ lage agg

BP iticn Awe

2 ey

oe

the

inew

VO

melSmcumihorDZOn cad:

bx

EXERCISE

9-4

549

Vertical

so

is

=

asymptotes: Using 5, D(-1) = 0, N(-1) = -3, , : F AG PS eae a vertical asymptote. Since lim f(x) = lim oN, nae x2

have

a vertical

asymptote

at

x =

x

the 1,

line

x =

f does

not

2.

45. f(x) = x? - 6x? Step

1.

Analyze

(A)

Domain:

(B)

Intercepts:

f(x):

All

real

numbers,

(-©,

©).

y intercept: f(0) = 0 x intercepts: x - 6x7 =

0

x7(x - 6) = 0 (C)

x= a polynomial,

Asymptotes: Since f is vertical asymptotes.

Step

2.

f'(x)

Analyze

are

no

horizontal

or

f' (x):

= 3x* - 12x = 3x(x - 4)

Critical

values:

x

=0,

Partition numbers: The sign chart for f' (x)

x=4

x = 0, f' is:

++++0-----

x

4

OF) tacts



'

+--+ +--+ =i)

f(x)

40

Increasing

3

Local

Maximum

Minimum

te

chart

EB (5x)

.for

>

«x

Increasing

Local

£™(X) ="6x "42 Partition numbers

Test

aes

| Decreasing

Thus, £ is increasing (0, 4); £ has a local

Sign

0, 6 there

on (--, maximum

.

5

-"2) f": x = 2

Rela

co

Sa

Oba

15

(+)

3

LRH

ee

Ses)

Test

mae

e238 °

Concave

e

-1

f£"%:

'

££

£° (x)

eer a oe

0) and on (4, ~); f is decreasing on at x = 0 and a local minimum at x = 4.

6(x for

Ors Adal ah

Graph

x

Numbers

«

Downward

{|

Concave

Numbers

x

Le (3)

i

-6 (-)

3

6

(+)

TA GI Lr

Upward

Inflection Point

Thus, the graph of f is concave downward on (-c, 2) on (2, e); there is an inflection point at x = 2.

550

CHAPTER

9

GRAPHING

AND

OPTIMIZATION

and

concave

upward

-1

f(x) 10 x

-70

30

47.

£(x)

= (x + 4) (x - 2)?

Step

1.

Analyze

f(x):

(A)

Domain:

All

real

(B)

Intercepts:

numbers,

(C)

Asymptotes: vertical asymptotes.

(-%,

©).

f(0) = A(-2)7 = 16 y intercept: (x + 4) (x - 2)7=0 x intercepts: SQ = 7-4). 2 there are no Since f is a polynomial,

horizontal

or

Step Analyze 2. f' (x): f' (x)

=

it

412

=

(x -

2)[2(x

cm 2) ia), + le

=x = 2) (35¢ + Seo xe = 2) +

+

4)

+

(x -

Critical values: x = -2,.x Partition numbers: x = -2,

Sign

chart.

for

tet

£' (x)

= 2 x = 2

f':

Ae Ome -

a f(x)

2)]

6) 2)

erty

:

= Pcie 7

det il,

:

tartar tars tN imagem tos

Increasing! Decreasing Local Maximum

3.

Analyze

- the

! Increasing

x

Numbers ae

Fi i(3e)

a3 Oy

V5 +) 229 (>)

3

TES) 5 (se)

Local Minimum

f is increasing on (--, -2) Thus, (-2, 2); f has a local maximum at Step

Test

ae Sis 2

and on (2, ~); f is decreasing on x = -2 and a local minimum at x = 2.

f"(x):

P= S(sc + 2) (1) + 3 (ce — 92) (1) Partition number for f": x = 0

=

6x

EXERCISE

9-4

551

Sagniichastiltion

£" (x)

i":

eS

ye

Ie

Test



x

a A

tee Graph ee

.

ry

St

nO.

awe

'

Numbers

Concave

1

Concave

Downward

|

Upward

(x)

i

rey

Sree

rik)

Inflection Point

Thus, the graph of f is concave downward on (-«, 0) on (0, ~); there is an inflection point at x = 0. Step

4.

Sketch

the

graph

of

f(x)

= 8x 2 2c

Step

1.

Analyze

f(x):

Domain: All Intercepts:

real numbers, y intercept:

x

(-«, ©). f(0) = 0

intercepts:

8x°

=

(4

234

= xia SS

(C)

upward

32 16 0

49. f(x) (A) (B)

concave

f:

18((eis)) = 0 2

and

Asymptotes:

No

horizontal

or

vertical

=m

0 0, 2 asymptotes.

step Analyze 2. if (x):

f£'(x)

= 24x* - 8x° = 8x*(3 - x)

Criticallivalues: xe= Partition) numbers:'x

Sign

chart!

for

0) so =)3 = 0, x =

pee eee,

Oe es, Ce RE

£4 (6c)



Test

te

=

a

a

Increasing! Increasing

Numbers

So

:

Sr 80

3 ee '



f(x)

3

6%:

x

ee

ae

3

&

-1 ‘A

Decreasing

£°(X)

32)

(4+)

6%

(+)

4-128

(-)

Local

Maximum

Thus, local

552

f£ is increasing on maximum at x = 3.

CHAPTER

9

GRAPHING

AND

(-© ,

3)

OPTIMIZATION

and

decreasing

on

(3,

~);

f has

a

tepEsn

Analyze

f"

(3s) :

f£" (x) = 48x - 24x* = 24x(2 - x)

erat

; Concave

Downward | Upward

| Downward

2

Inflection Point

4.

(-)

24

(+)

S

-72

(-)

the on (-c8, 0) and on +*27*%0)% 0 = x at points on are inflecti

concave downward on (0, 2); there

Ofeee:

graph

the

Sketch

-72

Inflection Point

the graph of f is Thus, graph is concave upward and X = 2. Step

-1

alt

3

; Concave

Concave

oe

Zs

,

2

1

0

Numbers EAS)

x

'

' =a

Test

tes cer eke cone

ae

Br

£" (x)

2

x =

0,

x =

f":

Partition numbers for Sign chart: for fi":

f(x)

f(x)

32 54 wWwno!|™%

51.

fa=)43 Step

(A)

1. Analyze f(x): All real numbers Domain:

(B)

Intercepts:

y intercept: ee

eet

x intercepts:

=

f£(0)

}

bie (C)

x

except

=

3.

S =

-1

teas

3 =

sem et x =

=3

Asymptotes: asymptote:

Horizontal :

Thus,

y =

lim

xo

x* 2 _ KI-

3

lim

X— eo

ili

ee

x 1 is

Vertical as is not 0 at

x =

a horizontal te: 3.

asymptote.

The denominator is 0 at x = 3 and the Thus, x = 3 is a vertical asymptote.

EXERCISE

numerator

9-4

553

Step

BB

2.

Analyze

dae

(>t))

een

f' (x):

eS

ae

pe woly Ei (ae

Critical values: None Partition number: x = Sign chart for f'; ES (xX),

2

f(x)

aoe

ose

Decreasing

Thus, f is extrema.

NN

££

Se

ce

f£":

Thus, the graph On? (Si co) ir

3)

and

on

(3,

x =

©);

there

are

no

local

3

on

Test

Numbers

SS ee 2 -12

er

Gas (x)

4

12

———

(-) (+)

: Concave

Upward

of

f is

f(x)

concave

downward

f(x)

0 -1 4

9

(=)

oui)

x

Maal eae

Downward

CHAPTER

noo

4

(--,

BONITO

Concave

2

£" (x)

2

oe

Graph

554

x

1

VE

Numbers

Ne iear (Ga -13)2

See NUN erga p MT

a

x

Test

"

Partition number for Sign chart for f":

-3 0 5

a ae Se

on

x

£" (x)

1,

lim

x00

(A)

«x

0

Graph Pee

'

Concave

Downward

'

Concave

.

Upward

Inflection Point

Thus, the graph of f is on (0, ~). There is an

558

CHAPTER

9

GRAPHING

AND

concave downward inflection point

OPTIMIZATION

on at

(-c, 0) x = 0.

and

concave

upward

63.

f(x) = (x* + 3)(9 - x’) Step Analyze 1. f(x): (A)

Domain:

(B)

Intercepts:

All

real y

numbers,

(--,

intercept:

£(0)

x intercepts:

©). =

3(9)

=

(x* + 3)(9

27

- x*) = 0

(Boe) aS) an x)

1-1)

6

Local minimum

Thus,

on

:(=)

-1

12.

(+)

60

(+)

msta(re -

BY, +

numbers

for

ie

3

(--,

+ (x* - 4)(4)

for

=60

Le

f":

-2)

and

local

on

(0,

minima

at

per

Wha

x = 4

:.

8

Edt Ba ar

.

.

3

3

! Concave

!

CPE

Inflection point

f is

concave

oa = Sees

+

Test

}

Numbers

x x

2

r" (x)

AL

0

>

"

(+)

Hanh)

if

+ (+)

Upward

point

of

+

Concave

' Downward 1

graph

4

;

Inflection

f is

~);

3

x =

'

ae ea ET om Upward

the

(0,

/f':

Concave

Thus,

ee

3

' Graph

on

(1 + x*)3

numbers for

decreasing

(x + BYx- 8

")°

Ghart

3

f is

f"(x):

632 2) 2° +5

aoe.

0);

+ mh (-2h =. be2ee) (DCN (ta)

fr Sion

(-~,

concave

downward

See

upward

on

on

(-=, 2) and

Ev33sae Beit

the

graph

on

has

(2. ~-); the

:

inflection

=

EXERCISE

9-4

565

Step

4.

Sketch

x

bai(59)

al}

3

aa) 0

4 1

V3

Fi

3

7 336

the

graph

of

f(x)

fF:

4

HE)

=

oe

a

5x?

+

3x7

+

8x

-'5

Step Analyze 1. f(x): (A)

Domain:

(B)

Intercepts:

y-intercept: f(0) x-intercepts: x =

(C)

Asymptotes:

None

Step

2.

all

real

Analyze

numbers

f'(x):

Cra ta cally lwesi-mece—s—

f is decreasing (-0.53, f has a

tep

1.24) local

3.

on

f£'(x) Ol 5S)

(--,

Analyze

~); x =

f"(x):

0.617

= 4x? - 15x? + 6x + 8 and

(1.24,

f has 1.24

f"(x)

local

3.04); minima

£(x) Part

= x 1.

- 21x?

Analyze

All

+ 100x*

f is at

x

increasing =

-0.53

and

on 3.04;

= 12x? - 30x + 6

The graph of f is concave upward on (-o©, of f is concave downward on (0.22, 2.28); peints atx = 0222 andu 2.28)

75.

1 .877e3e72

sl An or Od

-0.53)

and (3.04, maximum at

= -5 -1.18,

0.22) sand4(2..28), 00); the graph the graph has inflection

+ 20x + 100

f(x):

(A)

Domain:

real

numbers

(B)

Intercepts:

y intercept: x intercept:

(C)

Asymptotes:

none;

lim X—

f£(0) = 100 x = 8501, 13786

f(x)

=

lim

-00

f(x)

= ©

500

x—00

Part 2. Analyze f'(x): £'(x) = 4x? - 63x” + 200x + 20 Critical

values:

SORT Oy

f is

a)

An S

increasing

on

(-0.10,

4.57)

and

f is decreasing on (-o%, -0.10) and f has a local maximum at x = 4.57; atGexka= -0.10 and 11.28.

566

CHAPTER

9

GRAPHING

15

fel Ss

AND

OPTIMIZATION

(11.28,

©);

(4.57, 11.28); f has local minima

-500 P

500

Part 3. Analyze

f"(x):

f"(x)

= 12x*

- 126x + 200

The graph of f is concave upward on (-«, 1.95) and _ v5, (8.55, o); the graph of f is concave downward on (1.95, 8.55); the graph has inflection points at a= and x

t2 +

Since

Vertical asymptotes: asymptotes.

(-)

Decreasing

Local

maximum

Thus, C is increasing on maximum value at t = 1. tep c"

3.

ees =

(20 et)

2

and

decreasing

on

(1,

~);

C has

a

(ES

2

Gre) a

1)

he

1)

ae)

aus for

(Ese

C"

on

2

[0,

tls)

~):

3

t =

Me

Bais

V3

forvc": red, ee te

rele

f

i pf

cp

0 ;

Graph Of Ge)

12

(t2 + 1)3 (t2 + 1)3 263) sO. 28t(e = Na )icetee V3)

numbers

chart’

— 0214(1 = (t2 + 1)4

0 28 t) 9 OSEEUL Se") | OL atu = 0 ode

OweBE(E*

Partition

Sign

1)

Analyz

(eo eb)

(t)

(0,

1

1 VB: Concave

ff

3

1

Downward

Test

Numbers

Gate) t EE

1

-0.07

(-)

2 = 0.005 (+) ooo

Concave

!

Upward

Inflection point

Thus, the graph of C is concave downward on (0, V3) and concave on (V3, ©); the graph has an inflection point at t = V3.

572

CHAPTER

9

GRAPHING

AND

OPTIMIZATION

upward

Step

Soe

4.

Sketch

ieiiet=

=

the

5

graph

of

20e*,

C(t):

1

1s

the

1S

graph

t $ 30,

of

the

graph

of

N is

concave

upward

on

N:

N(t)

a 20 1S 10

5S. 10-15..20'

25.30

EXERCISE

9-4

573

EXERCISE

9-5

Things

to

remember:

[a,b] assumes both an a closed interval Absolute interval. that on minimum absolute must always occur at critical values or at on

function f continuous absolute maximum and an (if they exist) extrema

A

1.

endpoints.

f is

Verify

(b)

Determine

(c)

Evaluate f at found ine ()i-

(a)

The absolute maximum found in step (c).

f(x)

on

[a,

b]

is

the

largest

(e)

The absolute values found

minimum in step

f(x) (c)..

on

[a,

b]

is

the

smallest

TEST

Suppose f is continuous value C on TI:

FHE)/OSFlEe NM

0

FOR

on

an

open

interval

the

critical

at

b and

interval

SHE)

+

the

I and

(a,

values values

the

of

b).

the

of

MINIMUM

AND

MAXIMUM

ABSOLUTE

f on

b].

f on

a and

endpoints

the

[a, of

values

critical

the

on

function

a

(a)

SECOND-DERIVATIVE

3.

continuous

of

minimum

absolute

and

To find the absolute maximum the closed interval [a, b]:

that

:

EXTREMA

ABSOLUTE

FINDING

FOR

STEPS

2.

has

only

one

critical

Example

Absolute minimum

Sock SOY AEST

CT Ws Oe

I

4.

0

-

Absolute maximum

0

0

Test fails

STRATEGY

Step

1:

FOR

SOLVING

Introduce

variables

of

then

f,

and

Maximize

574

CHAPTER

9

APPLIED

GRAPHING

OPTIMIZATION

and

construct

(or minimize)

AND

— x I

OPTIMIZATION

a

function

PROBLEMS

f,

including

a mathematical

f on

the

interval

model

I

of

the the

domain form:

I

Step

2:

Find

the

interval

Step SE

SE

Interval absolute

3.

Interval

I and

maximum

the

(or minimum)

value(s)

of

LE

SEY

LE

[0, 10]; maximum: [0,

ES

TE

I

SE

absolute minimum: £f(10) = 14

8];

absolute

Seinterval [1, 10]; absolute maximum:

minimum:

f£(0)

absolute minimum: £f(10) = 14

TS

f(0)

=

=

£(1)

0; =

£(7)

£(1)

=

£(7)

9.

Interval

[2,

f£(5)

=

7;

I,

and

Baie

ae

Bs

xX =

aE)

=He2x

2 is

eX)

=

-

SY Te

420-2

the

(oe

only

f on

to

answer

SETS BORE PLE SEPT DEE FDIS TPIT

EPI

0 is

monecjae=

f(3)

=

9

maximum:

f(3)

=

9

='5;

=c5;

absolute

2)

critical

value

on

f(2)

=

yey

f(2) = 1 is the absolute an absolute maximum.

We

yee is)

si

minimun.

the

=

26.

only

critical

value

on

I,

and

f(0)

=

1 -

0? =

1.

—6x

24

Pets

=

I = (-0, ©)

DO) = 0. Therefore, the test fails. Since f'(x) = -3x* < 0 on (-cc, 0) and on and f does not have any absolute extrema. —

2x



2 x >

Critical

values:

x x =

the

and

eF(/2))

absolute

©),

2

f is

decreasing

I

x

(Note: =

on

-2(x + 2) (x = 2)

x the

=

(0,

0

256-8: s s2xb a08 _ glx’ n.d) x

Thus,

REE

0201064 8x = x*, I = (-«, ©)

f£' (x) = -3x?

(se)

EE LEASES TRIE ESBS

2

Dee fix) pep, -.2

ieee)

the

maximum:

fees) =o8 2x. =12 (42 =x) x = 4 is the only critical value on I, and f(4) = 10 + 32 - 16 Ei = =2 £"(4) = -2 < 0. Therefore, £(4) = 26 is the absolute maximum. The function does not have an absolute minimum.

x =

the

(00; |00)

=)

£"(2) = 2 > 0. Therefore, The function does not have

23. F(x)

model

absolute

[1, 9]; absolute minimum: maximum: f(4) = £(9) = 9 minimum:

of

occurs.

0;

interval absolute

absolute

this

ME

Ve

5];

value

x where

3: Use the solution to the mathematical questions asked in the problem.

ENS

1.

absolute

2

maximum

x = -2 is not a critical domain of f is x > 0.]

=y=2i

0j

of

£ 1s

40,

Pipe lera, £2800 xe OO nay iy2h 2h (xe x

Therefore, Cit)

x

x = 20

is

the

400) 20) (x 400)g _ 24(x 24% =- 20) (x ++ 20) 20) xe

only

critical

value.

19,200

a=

=

c"(20)

at

= Sa

>

minimum cost. The dimensions

of

diagram

right.

at

the

0.

Therefore,

the

fence

x =

are

20

shown

for

in

40

the

the

on (Expensive side)

49.

Let

x =

number

uta printings Cost

=

[Note:

of

books

produced

each

printing.

Then,

the

number

of

000 = cet

C(x)

=

cost of storage + cost of printing be 50,000 io (1000), x >= )0

* is

the

2

average

ci (x) = 2 - 50:000,000 2 Critical

x

in

storage

_ x? - 100,000,000

x value:



number

each

day.]

_ (x + 10,000)(x - 10,000)

2x7 =

2x?

10,000

100,000,000

C"(x)

=

3

c" (10,000)

=

100,000

008 Sho

(10,000)

Thus,

the

minimum

printings

51.

(A)

is

Let lay

the the

C(x)

=

cost

50,000 _ 10,000 =

cost pipe total

to in

occurs

x =

10,000

and

the

number

of

ae

lay the

cost

when

=

the pipe on lake is 1.4 (1.4) Vx2

the land units.

+25

2014) x(xe ¥25)71/2

1 unit;

Seid)

St (Peay Ge 4 25yt C' (x) = (1.4) 5 (02 + 25) 71/2 (2x)

be —

then

sc)er OMS

the

cost

to

xe SiO

rego! + 2

= "1

= 1

9 1.4xr x? + 25 x? + 25 C'(x) = 0 when 1.4x - Vx* + 25 = 0 or 1.96x* .96x2 x

= x* + 25 = 25 2508 = 96 = 26-04

a= 7-5 ll

Thus,

the

critical

value

das x .= 6.1

EXERCISE

9-5

581

EM xy Sethe 20n

> )e

(1.4) f-3 (0? § 5) 37255

ce" (5.1)

=

Ces

Ste bEa peeinrs

AE ai)

iepdareprenipde get

doyle

305.2

1s

=O

((5.1)? + 25)3/2 Thus,

the cost will that: C(0) = €(5-1) =

Note

Thus,

a minimum when x = 5.1. (134)425 4 107 Ooroe.

(1.21)27% = x* + 25 92737 =*25 Tier = oO) = +10.91

x x Critical on

the

C(0) C(L0})

value:

x =

10.91

>

interval

[0,

10].

Now,

C(t)

the

absolute

= 3007 — 240r7+

C'(t)

=

i.e.,

there

60t

-

240;

S00. t =

minimum

occurs

when

critical

x

10

miles.

=

the

only

critical

will

be

Let

Then

the

x =

the

number

of

mice

in

each

order.

minimum;

number

the

of

jaa x

500

GUA

Ss eCeat

a= oy Shae

(OX(534),

1t

continuous

se(G7)

at

x =

es

Sin

1,

since

Lim f(x)

does

not

exist.

(9-1)

x

CHAPTER

9 REVIEW

583

10.

(CAS)

lcs

(ex:

(B)

xX—>2

11.

(C)

£ is NOT

(AY)

eee (6)

x3

(C)

£ is

continous

at

eae

£(2)

x =

is

2 since

(BPE)

continous

at

x =

not

f(2)

Beis)

3 since

--0 +++ 0 -----

Lim Jar)

ND - ---

———+>—__+—___»—_ >x

of

Concave

f

2

0

-1

Graph

|}Concavei

Downward

Concave

| Concave

} Upward ; Downward

' Downward

Point of Inflection

Point of Inflection t

1

EE (2)

accent

meetin

1

= (OY =o) atau

Sg

| Ls)

E(x)

Using

epeine

this

points

(2, 3h

oes

-3),

Decr.

1

Decr.

¢ Incr.

Local

Local

maximum

minimum

information

(-3,

(8))).5

(3,

0)

(=2,

on

together

Si}

the

(iy,

graph,

with

22)

we

the

(0,

OF

have

Domain: all Intercepts:

real numbers y intercept: f(0) = 0 x-intercepts: x = 0 Asymptotes: Horizontal asymptote: y = no vertical asymptotes Critical values: x = 0

£Y(x)*

SP a PE SN ~ adh En

Se

Gia eee a

encsey

f(x)

Dn

Decreasing

9

GRAPHING

yey

ee

Increasing Local minimum

CHAPTER

2

'

0

584

epee

bo Oo --

AND

OPTIMIZATION

is not

defined.

(9-1)

=e

=

12.

defined

SS se((S\

(9-1)

E£"(x)

---

O+4+4+¢4

+++

4+4+4¢4+0 ---

;

ey 2

-2 ;

Concave

Downward !

Upward

Concave

f(x)

Se

4

Concave

: Downward

Inflection point

Inflection point

(9-4) 14.

16.

f(x)

= x4 + 5x 4x° +

15.

=

f£"(x)

= 12x + 30x

(9-3)

From the graph: (Conmeerm sf (x) =) 4

(By

does

not

x

exist

since

lim

(9-3)

a=

(Ge)

jaime x>2+

f(x)

#.lim.

sal G7

aan S

(E)

No,

f(x)

x7>2+

x27

x2

(Gd)!

Soe

y" = a

x27

f(x)

3x+4

vile

15x

f'(x)

iG).1im

y=

lim

since

does

f(x)

(9-1)

exist.

not

x72

iT.

From the (Ayman:

graph: cx) =

3.

(B)\

x7357

(E)mves,,

lim

f(x)

=e

-hC)e-binetts)e—as-

x75+

sance

Lim

f(x)

=

(DD)

Ff(5)

=

3

x75

£(5).

=

3.

(9-1)

x75

18.

Mece
SAE

AND

x

re

on (x'#

(-«, =20

OPTIMIZATION

-2)

and

Thus,

on from

(=2, (C),

(x)

3 ne

0

! Increasing

Thus,

CHAPTER

for

ee

:

Increasing

number

(x #)-2).

x

been) 3 -2-101 f(x)

x

f':

for

ua (Ge)

;

6 f'(x) ey) # 0 forjall x + have any critical values.

numbers:

chart

6

2)

values:

(B)

ae

Zee)

0). f does

not

have

any (9-4)

ex)

=. UI

£" (x)

(A)

|

> = Ox + 2 bk i)

x

i

N

+

(x + 2)?

Partition numbers for Saon chart. for fF":

+++

eas)

-

ND--

f":

x

=

-2

Test

-

a yea

The on

(B)

The

; :

Concave

Graph orate

Upward

(3G

x

ey

ee

Numbers 2 taste)

-3

‘5

=a)

0

Concave Downward

graph of °°).

f is

concave

graph

f does

upward

on

(-e,

-2)

and

concave

downward

(-2,,

of

not

have

any

inflection

points.

(9-4)

f(x) 28.

The

graph

of f is:

(9-4) |

29.

re

aE

AR

OS FE

MEE

SE SARS

x

Li 3c)

-o

Negative and x intercept Positive and Local maximum Positive and Local minimum Positive and

< x < -2 bie -2 < x < -1 ce Sal Sere SL oe el fk x

40.

(9-1)

=iCo

x92-.2,- x

all x such that g is continuous

there

lim

~5

X— oo

x2

are

no

=

lim

xcercor

xX—e00

horizontal

Tim X—

“Ffx)%=

=e

-0o

asymptotes.

Since the denominator x“ - 9 = (x + 3) (x - 3) = 0 when x = 3, and since the numerator x? # 0 at these values, and x = 3 are vertical asymptotes.

x = the

CHAPTER

-3

and

lines

when x = -3 (9-4)

9 REVIEW

591

5T.

52.

53.

54.

f is [a, b]. Since fisa polynomial, Yes. Consider f on the interval b]. [a, on maximum absolute an has f , Therefore continuous on [a, b]. of maximum absolute the b, = x and a = x at minimum Since f has a local maximum local a has f b); (a, in c point some at occur must b] f on [a, (9-5) abex = ce No, the and

are is:

increasing/decreasing properties domain of f. A correct statement (0, ©).

stated in terms of f(x) is decreasing

intervals in on (--, 0) (9-2)

is also A critical value for f(x) is a partition number for f'(x) that are that numbers f'(x) may have partition in the domain of f. However, Oia (36) £ for values not in the domain of f and hence are not critical il ; oh let f(x) = = Then f'(x) = -~5 and 0 is a partition number for example, x f(x) since it is not in the for value f' (x), but 0 is NOT a critical (9-2) domain of f. y

fey = 6 = ete, FUCK) MO 2 x? Fevgy soto" 2 bese

Oe x Ss A

is defined for all x and. f"(x) Now, f"(x) = 12 - 6x = 0 implies x = 2. f' has a critical value at x = 2. Thus, Since this is the only critical value

= -6 so that

= £"(x)

(f'(x))"

of £' and

y = f(x)

40 32 24

y = f'(x)

8

x

OF te holslowss chat is the absolute maximum of graph is shown at the right.

=) 6 = 12

f's(2) f'(2) f'. The

55.

Let

one

0 be

>

x

Then

numbers.

the

of

(9-5) is

a

other

the

number.

Now,

we

have:

Sie

=e

xe

Ss!

So

AMOUBIS\

536

a0. =

= =

S"(x)

56.

f(x) Step

BGO

AOO

thevonly

Sh

and

S(20)

when

Oy

Wee

==

20*%is 0

Therefore, occurs

xa

we

each

=

=

e202

critical

QO)

=

+ ai =

20)

number

is

0)

valte*ot 00 Saat = a =

40

is

the

GS on~

absolute

Yop"

minimum

= (x - 1)3(x + 3) 1.

Analyze

(A)

Domain:

(B)

Intercepts:

All

f(x): real

CHAPTER

9

numbers.

= £(0) = (27 Py y intercept: x intercepts: (x - 1) x 42 2))) = ©)

GRAPHING

AND

OPTIMIZATION

sum,

and

this (9-5)

20.

So

592

(0,

50

=

es

(C)

Asymptotes: Since f is has no asymptotes.

Step

2.

Analyze

a polynomial

(of

degree

4),

the

graph

of

f

f' (x):

£'(x) = (x - 1)3(1) + (x + 3) (3)(xe - 1)7(1) (er- 1) 40 Ce snl 4(x - 1)7(x + 2)

=

Sa

SY

Crvtical) values:! x =! -2, x = 1 Partition numbers: x = -2, x= 1 Sign

chart

f' (x)

for

S55l—

at =) 00+ +i

eee

| eee

Saeed, f(x)

Decreasing

= = =

Net.

OF + fee +

se eae aE 9

ee ee

Shred

ee

numbers

Srgnechart’

£" (x)

for

+++

for

on (-~, minimum

=2\

££

Concave

:

Upward

Sketch

$¥2

f (x)

-2

-27

0 a

2

16

(+)

-2); f is increasing at x = -2.

f":

x =

-1,

x=

4+0----O+

on

(-2,

1)

and

1) (1)

1.

-1

:

,

+ 4+

1

wodsonay Concave

| Downward



,

the

graph

Test Ms

fe

x

aA

0

Concave

2D

Numbers f£"

(x)

26

Ae)

36

(+)

-12

(-)

| Upward

Thus, the graph of f is concave upward graph of f is concave downward on (-1, points at x = -1 and at x=1.

Step 4.

(-)

8 (+)

£":



Graph

-64

0

|! Increasing

4(x - 1)4(1) + 4(x + 2) (2)(x 4(x - 1)((x - 1) + 2(x + 2)] 12(x - 1) (x + 1)

Partition

Nonbers

-3

| Tae

| Increasing

Thus, f is decreasing (1, ©); f has a local

£" (x)

+.

.

on (--%, -1) and on (1, ~); the 1); the graph has inflection

of f:

-3 0

(9-4)

CHAPTER

9 REVIEW

593

57.

Talc) Step

(A) (B) (C)

xt

4 x8 4 Ce oe oe Analyze f(x): (f is a polynomial function) Domain: All real numbers Intercepts: y-intercept: £(0) = 4 x-intercepts: x = 0.79, 1.64 (of degree Since f is a polynomial function Asymptotes: graph of f has no asymptotes.

1.

4),

the

Step Analyze 2. f' (x):

f' (x) = 4x? + 3x? - 8x - 3 Criticalvahues* x= -1.68, -0.35, «328; -0.35) and (1.28, ~); f is decreasing on fis increasing on (-1.68, 1.28). f£ has local minima at x = -1.68 and (-0.35, (-co, -1.68).and x = 1.28.,fahas a local maximum at x = -0.35. tep

3.

Analyze

f£"(x)

£"

(x):

= 12x? + 6x - 8

The graph of f is concave downward concave upward on (-o, -1.10) and points at x = —1L/10/and 0.'60:. 58.

on (-1.10, (0.60, ~);

the graph of f is 0.60); the graph has inflection (9-4)

f(x) = 0.25x* - 5x? + 31x* - 70x Part

1.

Analyze all

f(x): real

200

(A)

Domain:

numbers

(B)

Intercepts:

(C)

Asymptotes: since f is a polynomial function (of degree 4), the graph of f has no asymptotes; lim f(x) = ©

f(0) y intercept: Soncencepiswex=)

20

#19

= 0 (Olu ell. 10

-200 f(x)

X—> too

Part

f'(x)

2.

Analyze

= x° - 15x* + 62x - 70

Critical Signe

£' (x):

values:

Chaise

f' (x)

=

1.187),

100

4219

s.a94

formas:

----

75

i

L)

O++++4+

0

:

i

----

OF

+++

:

——__—__¢—_—____»______+_> x REY 4.19 8.94 £(x)

Decreasing

NC ONeeL yee pecreasing

Local minimum

594

CHAPTER

9

GRAPHING

Local maximum

AND

10

'

ineeoheune

Local minimum

OPTIMIZATION

-100

F(x)

f f f f

is increasing on (1.87, 4.19) and (8.94, o); is decreasing on (--, 1.87) and (4.19, 8.94); has local minima at x = 1.87 and x = 8.94; has a local maximum at x = 4.19

Par

Analyze

f"(x)

film

= 3x* - 30x + 62

Partition

Sign

chart

£" (x)

numbers

for

for

f":

x =

2.92,

'

4+ +

+

'

+--+

0

2.92

Concave Downward

7.08

; Concave ' Upward

Inflection Point

sxc =

“5

10

«

-100

i Concave ' Downward

f" (x)

Inflection Point

The graph of f is concave (-co, 2.92) and (7.08, «); and

100

f":

++++0----0+

Enh of £

7.08

downward on (2.92, 7.08) and concave upward on the graph has inflection points at x.= 2.92

7.08.

(9-4)

P(x)

59.

(A)

82

(B)

p is discontinuous at x = 12 and x = 24. In each case, the limit from the left is greater then the limit from the right, reflecting the corresponding drop in price at these order quantities.

(D)

C is discontinuous at x = 12 and x = 24. In each case, the limit from the left is greater than the limit from the right, reflecting savings to the customer due to the corresponding drop in price at these order quantities. (9-1)

——————————. es

12

24

30

C(x) ea pe

$30 $20 $10

12

24

30

x

CHAPTER

9 REVIEW

595

60.

(A)

(B)

For the first 15 months, the price is increasing and concave down, with a local maximum at t = 15. For the next 15 months, the price is decreasing and concave down, with an inflection point at t = 30. For the next 15 months, the price is decreasing and concave up, with a local minimum at t = 45. For the remaining 15 months, the price is increasing and concave up.

p(t)

(9-1) 61.

(A)

R(x) = xp(x) R' (x) = 500 -

500x - 0.025x*, 0 Ss x S 20,000 0 0.05x; 500 - 0.05x 10,000

x

x = 10,000

Thus,

a critical

R(0) = 0 R(10,000) R(20,000)

Now,

Thus, (B)P

is

R(10,000)

PGs)

R(x)

P' (x)

TSO"

value.

2,500,000 0 =

$2,500,000

is

the

500x - 0.025x* = 150x - 0.025x*

-

C(x)

="

00px,

ta0'~

absolute

maximum

of

R.

- (350x + 50,000) - 50,000, 0 < x

[Note:

12

x =

value:

Critical

0,

so

x =

is

-12

not

a critical

value. ]

(x) Ca)

=

1440 ean ae

65.

Cla) = 40004

cost

Marginal

x =

when

(9-5)

12.

ar AMO) SO) Bell.

a

=

10

=

C'(x)

=

0

0. doc, x) > (0

30= = C(x)

cost

Average

>

193

a minimum

is

C(x)

Therefore,

1440

) =

Gh)

+

10

+ a

0.2x

and

y intercept

-40,000 + x* _ (x + 200) (x - 200) -= -4000 +.1 _ = x 10 10x” 10x” Thus, C'(x) < 0 on (0, 200) and C'(x) > 0 on (200, ~).

Therefore,

of

graph

The

C'(x)

line

a straight

is

slope

with

10.

=CG.

is decreasing at

x

=

on

(0,

te G(x)" =aeE(200)) _= 4000 200

Min

Ce

ae

Therefore,

upward

Using point

increasing

200),

200.

on

+

10

” ag 19 (200) Se

the graph (0, -).

for

CHAPTER

9

),

and

a minimum

a

of

y =C'(x) C(x)

is

concave

this information and point-bythe (use a calculator), plotting

asymptote

(200,

es

graphs of C'(x) and C(x) are in the diagram at the right. The line y = 0.1x + 10 is an

598

+

on

as

AND

50

shown

oblique

100 200 300 400

y = C(x).

GRAPHING

C(x) occurs

OPTIMIZATION

(9-4)

(B)

Let

C(x)

function Using find

be

the

C(x)

the

"find

The minimum cookies.

(A)

equation

from

part

(A).

The

average

cost

= ee) the

minimum"

routine

on

the

graphing

utility,

we

that

min C(x)

67.

regression

= C(129) average

= 1.71 cost

is

$1.71

at

a production

level

of

129

dozen (9-4)

CubicReg Yea?

tbxttextd

30

(B)

The

The the

regression

equation

found

in

(A)

is:

Vix) = "S0T0ie" + 0.832" - 2.3% 4 221 rate of change of sales number of ads is:.

with

y'(x)

= -0.03x* + 1.66x - 2.3 =

Critical

value:

+

50

to

-10

y" (x)

-0.06x

respect

0

y'(x)

1.66

-0.06x

+

1.66

=

0

xX =

27.667

From the graph, the absolute maximum of y'(x) Thus, 28 ads should be placed each month. The sales is: y(28) = 588

68. C(t) = 20t? - 120¢ + 800,

occurs at x ~ 27.667. expected number of (9-5)

0s t ,

e709 -0004332t

i Z,

ain

82") ve 1n(5) mindy een in (er -0.0004332t

=

1 =

(ln

2

-ln

te

0)

In 2 ~

0.0004332

0.6931

_

=N0004332 7 At”

|

half-life

the

Thus,

radium

is approximately

30

ee

1 eo

years.

ef 02t = 2

Thus, In(e°-°%*) = In 2

Ly = gf (30) DaO

1600

37. 2P, = pie28 |om

ea(r’ < (0)

02.0.6

35.

of

0

0.02

and

Therefore,

2

==

t = a

Inez

= 34.66

years.

1n(e°97) = in (3) =l1n 1 - ing 30r

t=

=1ln

2)

oi(In 2 =

_ -In 2 -0#6931 FRE PHS OPE TMS O

0)

= -0.0231 Thus, the continuous compound rate of decay of the cesium isotope is approximately -0.0231.

39.

41.

ap “a pre 2e) f pelos

Peary elie 20r = 1n2 r= — = 0.0347 ors

A = Pet 9 60.02¢ f768.x1014 = 5ex0 0-02 _ 1:68 X hae * sae a so 1008 = ene 00) In(e9:92%) = 1n(33,6 0. 02t0l=

ATs

tin 33,600

& San 33,600.

noe

o Om02 7 4 yard square one be Thus, there will mately approxi in person of land per 521 years.

604

CHAPTER

10

ADDITIONAL

DERIVATIVE

TOPICS

EXERCISE

10-2

Things 1.

to

remember:

DERIVATIVES

OF

THE

NATURAL

LOGARITHMIC

AND

EXPONENTIAL

FUNCTIONS Ye*

=

ae

= bey be = z

1. f(x) = ae f' (x) a.

fixe

=

6G e a

ls In x = 6e% (7) = 6e* »- e

= 2x° +: 36%

i

as

£' (x)

=

d

2g 2G x

exk&s2 Dae + 3 Go Gle™ S2ex® + 3e x

[Note: e = 2.71828 first term.] Ss

E(x)

= in. 3 =

ed. 5 x

inc)

is

5.1ln

in



a

x

constant

and

(Property

IN =(3(5)

so

of

we

use

the

power

rule

on

the

logarithms)

5ne

=

7. £(x) = (ln x)? bay (x) =e) (1

2h

3x) axin

x

(Power

x)= = 2

iy x =

rule

for

functions)

(9) tix) = x In x f(s) ox a “ ~

*

=

=

x4 = In

x‘(5.) +

a

x

i, x + ln x so55 - (Product

(In x)4x°

y

= x° +4? )

In

rule) \ x = x (1 +

-

4 In x)

—_

P1073) f'(x)

exe

Hf.

= x ae

+ e%” Bek? (Product

rule)

= x*e*%(x + 3)

13. f(x) = aaa



Oe 4 ies 5B [See

NN

B(x

S

|

pe

+ 9)

RSS

IR i

+ 9) e* = et (2x)

fe Ge

(x7 +9)?

(x7 + 9)?

f,

(Quotient

rule)

- 2%.4+ 9)

(x2 + 9)?

EXERCISE

10-2

605

Perse)

Nee

=

4

4

xt

S in

f' (x) =

2x!

(1

4x?

rule)

\

_ x - 4 inx_ 1-4 inx x

x?

= (x¢+ 2)3(in

nx + (ln x) f (x + 293

(x + 22) + (in x913 + 2704)

2

3

ats

19.

x

(Quotient

r sa etnias Be J ig 'x Pale

f' (x) = (x hie

\

in

x

=)-

f(x)

-

POE a(l

17.

x

f(x) f'(x)

2

HAE

x +

+ 2)%in

3(x

x + ¥+3

(x + 2)%[3 In

eet & 1)2%e* ri ae

e* a

(x + 1)? eS

=

ake

.

-

= (x + 1)3e% + eX(3) (x #1)712)

|

+e ye" Atx) = dened We La +) lee 31 = Ge +1

2A ete x ; ELA)

23.

- (e+ ax?oe

e241)

© dk

,

a

(ex) 2

oz

= (x? + Le*: 2x a

ex

f(x) = x(1n x)? f' (x) = hein x)? + (1n x)3 a8

+ (in x)3(1) = x(3) (ln x) (4) x

25. F(x) = (4 - 5e*)?

= -15e%(4

£' (x) = 3(4 - 5e*)2(-5e*%) Pfs,

— et (2x)

Gal)

V1

=

+

In

x

2° (1 °4+\In

mes ' = 5(1 + In x) f'(x) eet

= (In x)?[3 + In x]

- 5e*)?

x) 1/2

& fta

i Lire

ea ue de

~ 2x(1 + In x)?/2 7 2xV¥1 + In x 29.

606

f(x)

= xe* - e& ape te x f' (x) lp= xape

CHAPTER

10

ADDITIONAL

AmireRK:nae ee ai Xe

DERIVATIVE

TOPICS

+e Poems ee x -= xe

x

= eee ws

31.

f(x)

= 2x* Inx - x

be (F

x?’

Step 4.

Sati x)

the

graph

of

f is

Sketch the graph of f:

=

Step

0 and

concave

on

(0,

o).

1)

(3 .- x) e%

1.

Analyze

(A)

Domain:

(B)

Intercepts:

All

f(x):

real

numbers,

(-«,

©).

y intercept:

£(0)

x intercept:

(3 - x)e*

=

(3

3) =

(C)

upward

-

0)e9

=

3

= 0

3xe=40 Kar

Asymptotes: Horizontal

Using

the

asymptote:

Consider

the

Bete

0.00059

-2 0.000000047

we

that

f(x)

the

first

Vertical

lim

=

0 and

limit,y =

asymptotes:

0 is

There

are

no

=

(3. -) x)e* + eX (-1)J5.(2.-x).e% values:

(2 - x)e* x=! x =

chattel

0 2>\[Note:"

not

exist.

Because

asymptotes.

al

et7S9G]

2 caei = Wan i

> x

:

Thus, local

does

-154,185.26

wlerghs

Partition numbers: s20m chart for f'.;

f(x)

and

asymptote.

vertical

But).

0

f(x)

a horizontal

Anal

pbb

lim

-296.83

xX—o0o

.

£' (x)

x3

10

£(x)|

e

eritical,

f as

x

X—-00

of

of

as. X—-0o, tables,

following

conclude

behavior

2,

5

Test

Numbers

x

iO

4)

0

oF

be)

'

Increasing

! Decreasing

f is increasing on maximum at x = 2.

(-«,

3

2)

and

decreasing

we

on

())

(2,

~);

f has

EXERCISE

10-2

a

611

Step

3.

Analyze

f" (x):

£E"(x) = (2 - x)e* + eX(-1) = (1 - x)e* Partition number for f": x = 1 Sign chart for f":

eX) Concave Downward

|; |

Concave Upward

Graph of f

2

1

0

Thus, the graph of f is concave upward on (1, ©); the graph has an inflection

0

L(+)

2

Heel)

on (-», 1) and concave ite point at x = a

downward

f(x) 7

Sketch the graph of f:

Step 4.

Numbers

Test

eames hae

aie

ener

£" (x)

f(x)

6 5

4

53.

f(x)

=

In

x*

x.

-2-1]

e Anal (A) Domain: All

£ positive

There is no y intercept. x Inx=0 Insc =) 0 x = ih

y intercept: x intercept:

(B)

Intercepts:

(C)

Consider the Asymptotes: clear that lim f(x) does

x

4

©).

(0,

numbers,

1 2

It is x>0. and as behavior of f as xo f is unbounded as x approaches . not exist;

xX— 00

The

following

Bf f(x) Thus, Step

puis

Qi -0.00046 vertical or

0 -0.023 there are no Analyze

2.

values:

+

Aw Abey S75

wareOW

0

ee

612

CHAPTER

10

x git

ADDITIONAL

Ve

=

(Note:

x

>

0]

Oe e

= yyegg 9 =

0.6065

DERIVATIVE

TOPICS

Ve

=

0 as

asymptotes.

e (tl © olin we)

x

number:

0.001 -0.000007 horizontal

2)lneesr="0

dion

Partition

f approaches

f£' (x):

#(5) * tinier

Critical

that

indicates

table

0.6065

x approaches

0.

Sigmachart

£0)

for

1

o6':

hae

O)

reat

Test

, 0

> x

=

1

ale

f(x)

Decreasing

Thus, a

f is

local

Step TB ((S%a)|

' ‘

at

Analyze

=

x(5) +

Poteueivon

Increasing

decreasing

minimum

3.

x

)



1

x

on =

(0,

e cet)

£' (x)

i.

= 20.19. (=)

Bi

1° *(+)

increasing

(eo 2 Ges co);

on

f has

e2/?,

f"(x):

(GP eS) 2 alka Ga Pees

number

and

Numbers

sfor.6%%

36+

AS

alicl, 5%

2elnexn=

ings

0

=

43

x = ef 3/2 = 0.2231 Sign.chart

for

f";:

£" (x)

Atcod '

Cutatot

+

Test



te 0 e3/2 4 Graph OLE

Thus, the upward on

tep

55.

ketch

the

= e* - 227

Eaux

= ef —

Critical

Solve To

| !

two

Concave Upward

il

graph of f is concave (an eo); the graph

4

E(x)

Concave Downward

a3

gra

Numbers

£" (x) e =) 61 al) 3

(+)

downward on (0, e°/? ) and concave has an inflection point at x = Biles:

f:

f(x)

-co < X < co

Ax

values:

f'(x) decimal

= e* - 4x = 0 places,

x

=

0.36

and

x =

2.15

Increasing/Decreasing: f(x) is increasing on (--%, 0.36) and on (2.15, «); f(x) is decreasing on (0.36, 2.15) Local extrema: f(x) has a local maximum at x = 0.36 and a local minimum acrset=.2715

EXERCISE

10-2

613

57.

f(x)

= 20

£%Ux)

ln x -

0 < x < ©

Fe = --e*

Critical

values:

Solve To

e*

two

f'(x)

=

decimal

- e~ = 0

places,

x = 2.21

Increasing/Decreasing:

f(x)

is increasing

on

(0,

2.21)

and decreasing

on

(25a2yw co)

Local 59.

61.

extrema:

f(x)

On a graphing

has

utility,

a local graph

maximum

y, =

at

e* and

x = 2.21

bi

x*.

Rounded

decimal places, the points of intersection (2043)).4.18),-. (8561775503 :.66)i.

are:

On

Yo = x'/5_

a graphing

utility,

graph

y; =

ln x and

(-0.82,

off

to

two

0.44),

There

is a point

of intersection at (3.65, 1.30) (two decimal places). Using the hint that In x < x/° for large x, we find a second point of intersection at (332,105.11, 12.71) (two decimal places). 63.

Demand:

p=

Revenue: Cost:

5 -

R =

xp

¢-="x()r

Profit

=

In x,

5S

=

-

x(5

=

x

Revenue

-

In x)

Cost:

value(s):

P

=

5x

5x

=

P(x)

i)

Axe

P' (x)

=

4

=

30—

or

Critical

x § 50

P'(x)

=

3 -

- x

ln

x In x

x

=

x

eC nw

-

(5) -

ln

x

inex

ln

x =

hig’ 6S

x=e P"

(x)

"

ae

-_

Since

65.

él

x =

and

P"(e-) ”

e* is

the

3

only

maximum

weekly

profit

OS ws)

1n(e?)

=

Let

x =

CCA

=

the

2.

number

=

-_

critical

occurs Thus,

of

oo%)

0

= ae aie e

the

PES

=1

(10 - 10x)e*

R(ge=

ROG)

oe

Absolute

maximum

el. weekly

weekly

revenue

revenue

is

occurs

R(1)

=

at

price

p = an =

3.68

thousand

Test

Numbers

dollars,

Som 0Gr or

$3680. (B)

The

sign

R' (x)

chart

Pg

a

for

R'

Os

is:

ae ae > =

x

—_>+———————__—_—_+—_>

Increasing

< Ovon,

1) and x = 1,

ese.)

Thus, the graph on (0, 2). The

of R is concave downward graph is shown at the

(0,

2

ADDITIONAL

R(x) 400 350

1.50 1.00

|) Soe PA | Ae aia

10

12)

oe .00

R(x)

CHAPTER

(+)

decreasing on (1, as noted in (A).

R" (3c) f=) We

‘ak

10. 10

~0

= 100xe°:°*

R' (x) = 100xe°-95*(-0.05) + 100e°°-95* = 1006 °*°5*(7 *0.05x) Critical

value(s):

R'(x)

=

100e°°-95*(1

-

0.05x)

= 0

1 -10-08x7=

0 = 20 R" (x) = 100e7°299* (0

0)

2

only

at

critical

x = S

value,

The

and

absolute

f" 2) =

maximum

of f

f(x) = 3x - x7 + e*, x>0 oe = gars 0 £' (x). = 3 Critical value(s): f'(x) = 3 - 2x -

£°(x)

= -2 + @&*

£(1373)

and

£"(1.373)

(= 340393)

=

f(x) = BX e

e*

f has

an

is:

= 0

= -2 + e 1-373

=

bey oyeas vewn ele

2.487

x)e x

=

Bo gi

oles

2

e2*

= Aree Critical

CHAPTER

ae

= (ex)

value(s):

10

f'(x)

ADDITIONAL

< g

and £" (1..373)> 0

x(l e" x) SF (ln

Eg

644

0,

ily She

Since x = 1.373 is the only critical value, absolute maximum at x = 1.373. The absolute

"(x


0 £'(x) = 10xe™2*(-2) + 10e°2*(1) = 10e°7*(1 - 2x), Critical value(s): f'(x) = 10e2*(1 - 2x) = 0

f" (x)




pince

e

the

0 on

(-00,"69) «);

(-«,

on

there

are

extrema.

(x):

(-0, f is

©). concave

graph

of

paler ae i x

(-cco,

oo);

are

there

no

f:

OZ)

CHAPTER

10

REVIEW

645

2:9) aE eo)

ee x

tep

dinwee

1

(A)

Domain:

(B)

Intercepts:

all

positive

real

numbers,

(0,

©).

y intercept:

Since x = 0 is not no y intercept. x intercepts: x ln x = 0 Woy prets 10, Pe

in

the

domain,

there

10

(C) Asymptotes: lim

(2° ln x)

does

not

exist.

xX— 0°

It

can

be

shown

that

lim

(x

In

x)

=

0.

Thus,

there

are

no

x-0+

horizontal Step

2.

or

vertical

Analyze

asymptotes.

f' (x):

f'n = *(5) + (in sce x = x*[1 + 3 In x], Critical

values:

x

x>0

[1 GP eh sop b'dill a4)

3 in

x

wee =

0.

nce

(since

Sign

fx)

numbers:

chart

for 1

“aise

x =

f':

bineianooa: Oi

:

3.4

E" (x)

e 1/3)

Syet

CHAPTER

10

ADDITIONAL

x)

sour Ty in

646

and

increasing

in ex

X(S sth Thsc)e Pc Sb0 Partition numbers: x(5 + 6 ln

DERIVATIVE

-0.27

(-)

1 weds eee ASy

2

~(3) + (ees

Numbers

AXBOS OSLM()S

0.5

! Increasing

decreasing on (0, minimum at x = e273, Anal

Test

> «x.

a

f is

a local tep.

1

Decreasing

Thus,

=0.72

e 2/3

at reer ———_+————_4—_+——_+— etf3

£(x)

0)

-5

X Sen Partition

x >

= 0 = 0

x=

-2

x=

e/6

TOPICS

~ 9.43

on

Ce nes

coo);

f has

is

Sien

chart

for

f°:

etx) “ie eat Boat lad ie OF She ae ———_—_}+-—-yt ’

0

.

-5/6

5

:

Concave

;

Concave

of

*

Downward

'

Upward

Thus,

the

upward

:

graph

on

te

Numbers Zo ; (x)

x esteDn ea ENE StS

1

Graph

f

Test x

.2

-0.93

il

(-)

5

(+)

of

f is concave downward on (0, en oy and concave co); the graph has an inflection point at x = ae.

(e~/*,

Sketch

ery

a 2

4-

f(x)

& (10-2)

= 3[1n(4 - a \

DA

3e*[(1n(4

ame

A me es rd 7} —£ )]

&

a (10-3)

4-e

31.

y

=,

5x-1

S x-1 Cin)

er 32. 33.

a

(230)

= 2 x5. x-1 (in, 5)

x

i

Gx 10G5(x° - x) = df 1n (x? SG ax

1

ve.

ed! ag Bees = 5

al = =[In(x*

+ x

ire

Ct

Sa esi

a

ee) Soa s eis

(02)

2

=

5 [1n (x? + x)] BSyPy WOW ax Ln (2? + x)

=4/2

2

ibgyoe 20s ae tte aha)

=142)

i

.

Be

+ x)]

[1n(x* + x)]

ye

yee

Mines

BONE

(10-3)

see 2x +1 ory REL ELT oe MADE oe ID DRE UO Pe

ITS.

x + xX- 2letasx 26 (leletarex) 11/2 (10-3)

34.

ev=

x7 + y+

1

Differentiate

ee

eVixy'

xeVy'

implicitly:

a

oad Sal

+ y) = 2x + y'

- y' = 2x - ye

oe 2x - yet xeY :

OMG

ee

- 1 0

Bik yoOre.4

|

(10-4)

CHAPTER

10

REVIEW

647

315.

-Av=

nr? ,

a0)

Differentiate —

dtorats*

with

20. arin

ane

respect

6mr

since

The area increases at is no largest value.

36.

to

the

t:

are=

dts

rate

3

6ar.

This

is

smallest

when

r =

0;

there (10-5)

y=x° Differentiate

with

respect

to

t:

Oy ek dt BasieofS Solving

for

dx

UNG

dt

To

find

oo

we

get

6

3x7

1: aged gals

KEN

3x2 vdt,

where

ae

d Se

since

solve

ae

the

inequality

5

3x? al!

37.

(A)

we

3x?

aay

3x?


= -0.335 mg/ml per hour.

2 dA at = -45 mm* per day respect

to

(negative

because

the

area

:

is

t:

nore

dat

dt -45 = 2mR dR

(c/a Gb.

dR Peipig

is

Ce

*2nR

ised. gts a ke -150--On4 “Son

-0.477

mm

per

(10-5)

day

CHAPTER

10

REVIEW

651

49. N(t)

= 10(1 - e9-4¢)

(A) N'(t)

N'(1)

= -10e°-48(-9.4) = 4e°9-4t = @e°9-4(1) = ge-9-4 2. 2.68.

Thus, learning 1 day.

N'(5)

is

(A),

is

N'(t)

increasing

the

rate

of

2.68

units

per

day

at

the

rate

of

0.54

units

per

day after

= @e°°-4© > 0 on’

(03920). N*(t) = 4e°9-40(_9.4) Thus, the graph downward on (0,

of N

at

after

= 4e°9-4(5) = ge-2 = 0.54

Thus, learning 5 days.

(B) From

increasing

(00710) 7° "Thus,

= -1.6e°9-4© < 0 on

Nis

increasing

on

(0, 10).

of N is concave 10). The graph

is:

N(t)

(10-3) 50.

Given:

T = a(a + 7)

Differentiate

aT _

with

2 Be 5

de = 9 + 2 po ar AE

liciedowan’

= 2+

2x°3/2,

respect

to

ONDEoe

-5/2 ax

Jae = 3%

ax _ 2 oe i -3 (9)

-5/2

dt

and = =

3 when

x =

9.

t:

dt

(Sy

a %=y=3..3° =

-5> -

evdx -

3 f 4

KP ax

om say Sa ae A Geiserep oa ariseyCoe CP eo

EXERCISE

11-1

657

ey

67.

2x

=

3

vis

[ (ax

-

ayax =

2 fx ax -

Given

y(0)

=

5:

07 -

5 =

3(0)

fs apo a

+

Cc.

Hence,

SE

C=5

oie

andy

=

eee

x

-

3x+5.

C' (x) = 6x* - 4x C(x) = ibe6x2 - 4x)dx= nea Given

69.

228° Ng

C(0)

=

3000:

3000

C(x)

= 2x° - 2x* + 3000.

dx

20

6le

=

2(0° ) -

ERS 2 (07 ) +

ce Le

C.

Hence,

C =

C=

2x -2x7+¢C

3000

and

t fe1/2

9s

dt

=

20

ti/2

Be

AO Naar

te

See

eM

tone

2 Given

Sas).

=)

40-7

405=

40V1 + Cor

40

=

40

+c.

Hence,

C =

71.

f 2x?

+ 3x1

- 1)dx = 2 |x 2ax a 3 {tax 2

-1

=

42s

Given y(1) y=

658

3 anl|x| Pe = 0:

-2 + 3 dale]

CHAPTER

11

[a

x

0 =

=

=x

INTEGRATION

om 4-3 in|1|°=

413.

3Sth)xp

bes

1 #e¢. = Hence,”

C C*=-3%and

0 and

73.

IR

Wee. 2

x

{ et

Given)

woe

x(.0)

cee

75.

c=. 1s

J, .= Ae?

-

eee C=

- 2t+c

Cn

Mtence,)

Ga.

—suand

2t - 3.

f tax - aya

Given

y(2)

= 3:

[a

= 4 fx a

3 = 2-27

-

fa dic(ay hehe

- 3-2 + Cc. Hence,

C=

C 2h 224

3x 4h

1 and y = 2x

- 3x +1.

- [PE-*

x

x

xX

2 |x ax -

79.

Z2i(.0))

fi dt = 4e

4x - 3

Be «

77.

- 2)dt = a{ etat “

. fxta

=

2-2

ce

Pe

xtic

cota ae -2

=

fxac-2fx2ax-

we

81.

83.

[ee

2 2

-

%

2

Juke

SE 2

x

-

(ies - Bla - {e*ax - 2 {xtax = ey = eagin|x|\

eC

am et - 1 Ges

t2 2

2

Ee.) tah w= _, i{Peay 2 acse [(ape=4 fae ni fe22:3, Ge (RDeo Given

85.

sae

M(4)

=

5:

5=44+5+Corc=5-

3 = 3.

-1

sn a rl eC eee

Hence,

M=

t+

4+ 4.

ay wbx + 2

Car

3

Vx

v=

Res

oc

lez

+ sia)ae = 5 J28a

+ 2 [tae

Vx wS/3

/3

eee,

2,

3 Given yo

y(1)

Bo! 2 4

oa

HMI

AY

¢

3 =

0:

0 =

3x4!>

=

But?

+ 3/2

Boe.

Hence,

C =

-6

and

16,

EXERCISE

11-1

659

87.

pi (x)

=

p(x)

= [-Spax = -10 { ax = =i0a

Given

p(1)

p(x)

a9.

91.

- 23

=

= - + C=

20

20:

+ C= = *.¢ C =

Hence,

C.

10+

10 and

= L + 10.

2|fe ax|= 2

[by 4(a)] Ce xh + oe + Cy

txt 4 ax? + 1)de = x4 4 3x? + 1+ 1+

iC, =

an

Cis

C is

since

constant

arbitrary

[by 4(b)]

arbitrary)

93. C(x) = - 000 x

te-1,000 [ x"ax C(x) = [SG ax = | = sees x =

-1,000

= +

pad OO0R

C

NI

x

Given C(100)

= 25: “ee + C = 25 c =15 Thus, C(x) = ee + 15. Cost

function:

Fixed

95.

(A)

costs:

C(x) C(0)

= xC(x) =

= 15x + 1,000

$1,000

The cost function increases from downward from 0 to 4 and concave inflection point at x = 4.

(B) C(x) = fe (x) dx = { ox

0 to 8. The upward from

graph is concave 4 to 8. There is an

- 24x + 53)dx

= 3 [x? ax - 24 |xax + [53 ax =

Since

c(4) C(8)

660

CHAPTER

30,

we

-

12x?

+

53x

have

K =

30

and

C(0)

=

C(x)

= x? - 12x? + 53x + 30.

= 42 - 12(4)? = 82 =:19 (Bia

11

x?

INTEGRATION

+ 53(4) 53(8)

+

K

+ 30 = $114 thousand $198 thousand 30

200

(C)

(D)

Manufacturing plants are often inefficient at low and high levels of production.

100

4

97.

S(t)

x

8

= -25¢7/> 5/3

S(t) = fsa Given

$(0)

= [ -25e?3at = -25 {e2/3at Eesha

= 2000:

-15(0)°/3

+ C = 2000.

Hence,

b96)= ss eda at

C = 2000

and

S(t) = -15t°/3 + 2000. Now, we want to find t such that S(t) that is: -15t°/3? + 2000 = 800 157" = -1200

= 800,

e°/> = 80 and Thus,

99.

the

t= 807/59 = 14

company

Sattpees=25t2/3-S(t)

=

should

manufacture

f (-25e2

fe E)'at

S(0)

=

S(t)

= 2,000

101.

we

see

So

we

that get

L'(x)

L(x)

Vo

{70 ae

¢2/3 yer

ie

f ots

2,000

the

t =

= g(x)

=

2,000

=

for

14

months.

=25

-.15¢°/3 -

ast?

of

=

T0E&

= 70t + G

implies

point

8.92

- 70) dt

= -25 {27/3 ae E

= -15e°

_ Graphing

computer

70

=

Given

the

C =

2,000

and

- 70t /2A2 WOE;

bli

intersection

is

800

on!

x =

O+sec's

8.92066,

LOPSO"

sy)

a (4) (In x)

ane

C]

=

24

x

4

sc

ey a =

1n_x)? oF

as

cet

xfs

+5C

= a7 * 4 C

tes =iaaae

6

5,

+

=

f eau

(es ~1/X a heck

nt

4 ay = fea -¥+c-

f Ana Check:

x dx.

=

du

then

x,

ln

u =

Let

then

ul

Oo

du

Q, ct 1

=

3t7dt.

7 { 2c

+ 5)°dt = 7{ (t? + 5) 63 tat

ee ee ees EAL oreo at LOLf udu Fit 2 te

670

CHAPTER

11

INTEGRATION

+

5)

3

61.

eva. dt

3b ne 4

Let

u

=

t2 =6

45)

then)

‘aw-="260ae.

vas lice: quae & 3 {(2 ul dyri/“exgé = 3 {(e? - eee = 3

rt/2gy = eas

$MCte

dt

3.067 4S a) Mere

oe

2 63.

dp

e + e*

dk

(e&* - e%)?

Let

u = e~ - e*,

Doz

Re

x

then

du =

(e* + e™~) dx.

a, J 2

=

fie

aa

e*)

72 (e*

+

e

~) dx

=

f wan

-1

= 65.

Let

v =

f eau

au,

=

then

dv

=

67.

a

du.

{en 2 au = 1f eau, a

Check: ¥

ty tee erale® =ne*) Aa 1e

“28 Ege

C |+ 1 a2 au (a)

+

eee

du = 1 a

a

evav = + ov +Ce= a

4a au oC

=

=e Bau

p' (x) = ——2000 (3x + 50)? hetu

pd

=

3x.+

50,

then

du

=

3 dx.

= | peatananeenes a -6000 [ (3x + 50)7*dx = -6000 [ (3x + 50)72 Zax 3 ; (3x + 50) is a = oe -2000 oe,Oe mor = -2000 fu 2B du

Given

p(150)

=

_ 4 50 © _ 2000 F0a5

+ ©

4:

2000 i60°+ 50). © 2000 500. + C

Os (eS

C= ©

2

Thus,

p(x)

Thus,

the

* =

24060 3x + 50°

2000 ‘a dN Seger B50 (3x. +. 50). 2000 7.5x + 125 = 2000 7.5x = 1875 bre Ey

PAS)

demand

is

250

bottles

when

the

price

is

$2.50.

EXERCISE 11-2

671

69.

500

CMG {ge ah See ayery Ss soe Ne argsx+l1

=

C(x)

ay

Now, cost

CO)ijs is:

Glico)

S



ie

and

So(e)

500

[12 ax + 500 fer ater1s

=

1294+

in(x

+

1).

le 10 = 10eo 8"

(A) S(t)

=

f ao

500

2.

Ci)

Thus,

2000...

= ~y

=

Inix

+

12xe01500

1)

+

in(x

(ib = S3+0l Zy Come

orld

a

Cc

+

+

1)

The

2000.

average

2000

+

ze

2000 + Fo9q

500 = 12 + Fogg 1n(1001)

_ G(1000)

71.

1

aq _ = 12 + 5 In(1001)

+ 2

=

per

17.45

or

$17.45

pair

of

shoes

0 eetecaed

- 10e°9:1*)dt =

f20 dt - 10 { 2-28 ae

= 10t - =e ect* 4 cle 10 + 10bes’s Shc Given, $(0)n=s

Total

sales

Git)

(By 02)

On

time

estimated

a graphing

=,0 0 -100

t:

100e"°+" = 100

sales

for

utility,

the

Eig first

result

is:

E

months:

million.

months.

i 100 {3 i zat TOO

Given Q(0) = OF: 0 100 Iin(1 ) + Oe 0 and Q(t) ANGI, (C Q(9) = AKO)(0) “alsev((iSy" es al))

CHAPTER

$50

solve

18.41

US

672

twelve

L0€ 4 20d] °-FEOS 10082 100 200 10t. + 100e °-+

or

The

at

eames

as 1012 a, 100] 2) = 20 + 100e!:? = 50

Total

(C)

0% 0 + 100629 # C 100 + C= c=

11

INTEGRATION

LOO)

#2549))

Mine

LD)

+

[sat

atta

Maye nWain

353

243

Error

bound

for

Ay:

Error < |r(7) - r(0)| (a7) =-fo544106) (B) We want

to find n such

that

Hie 30,

|x(7) - r(0)| ( =

|I - A,| $5,

| = N|R

that

55. £0

is:

)< 5

(110)7 On

77.0

Salmon)

f(x)

19.

tee

Be es

10

(B)

s= 2

CAEP

ec eepeees

273

455

(C)

To the left of P = 2, the left rectangles underestimate the true area and the right rectangles overestimate the true area. To the right of P = 2, the left rectangles overestimate the true area and the right rectangles underestimate the true area.

(D)

N, =

sum

of

Sel

ap

areas

+ Sel

sum

of

of

+ 8-1

4+ 5-1

of

rectangles

areas

Se a nses

rectangles

cS Cs

below

+ 0-1

=

above

ce a i Cr

the

graph

of

f:

graph

of

f:

26 the

Ae BS)

5

Thus;

*26-S f EUXPaxis

$39:

0

21.

f(x)

= 0.25x*

- 4 on

[2, 5]

L, 6 = £(2)Ax + £(2.5)Ax + £(3)Ax + £(3.5)Ax + £(4)Ax + £(4.5)Ax where

Ax

=

0.5

Thus,

L, = Re =

[-3

-

2.44

-

1.75

-

0.94

+

£(3.5)Ax

£(2.5)Ax

+

£(3)Ax

where

=

0.5

Ax

+

0 + +

1.06](0.5) £(4)Ax

+

=

-3.53

£(4.5)Ax

+

£(5)Ax

Thus, Re =o

A, =

Lt 6 :

44



ER Sas

1275 ES—



0.94 pe

0.91

a0

=

e062.

251065)

m=

—0.91.

N55

EXERCISE

11-4

687

Error

bound

for

Le and

Re:

Error < |f(5) - £(2)| (DAT6 Error

bound

Error

for

2

\= (2225! £0y=3) | (Oss) = caass

Ag:

< —,

=

Be

Geometrically, the definite integral over the interval [2, 5] is the area of the region which lies above the x-axis minus the area of the region which lies below the x-axis. From the figure, if R, represents the region bounded by the graph of f and the x-axis for 2 S$ x S 4 and R, represents the region bounded by the graph of f and the x-axis for ‘M5 < xeSe5),, then 5

| f(x) dx

=

area

(R,)

=

2

area (R,)

25. f(x) = xt - 2x2 +3

23. £(x) = e*

5

2

5

=5

10

-10

0

0

Thus, f is monotone increasing on (-c, 0] and monotone

monotone

o).

[0,

on

decreasing

Thus, £ is monotone on (-:, -1] and on and

on

increasing [1,

~).

2

27.

[ox ax; at

Eile)

| eee

=o

Re leer es | (Sut - '4)s 0.05 en) ale 0.05 n

3< n

sate

: 29.

0.05

ne ways + 6%

I es

2

dx;

[rT ROL,

TE(s0)

B= ee

Saree

vero

iG

( =

js o 005

lent-4 ta")iealee 005 2 [0.018316 - 1] ee 0.005 (0.981684)

2

n*= 0.005

0.981684)2212 0. eeoy 81683) Or G0s 393 688

CHAPTER

11

INTEGRATION

decreasing [0, 1], and on

[-1,

0]

31.

Suppose

f is monotonic

on

[a,

b].

Let

I

b f f(x)

dx.

Then

a

fet, Now,

lim

|f(b) - f(a)| i. = 5) = 0

n—0o

Thus,

|S le(blm £8). (b== a ) n

lim

| I - L_|

n—o0o

n

33. Let a = 300,

= 0 which

b = 900,

implies

I =

lim

nooo

n = 2. Then Ax = me

L

in

= 300

L, = £(300) (300) + £(600) (300) = [400 + 300]300 = 210,000 R, = £(600)300 + £(900) (300) = [300 + 200]300 = 150,000 es

2 ;

Ltt

Error

R

bound

2 _ 210,000 for

: 150.000

||amen

A,:

Error < |£(900) - £(300)| Serre = |200 - 400| (150) = 200(150) = $30,000 Dapeeee s(t) 2 eb0al 8c, aceoos) biz. Gagnoer4a:aThenAtce) L, = A(2)1 + A(3)1 + A(4)1 + A(5)1 = 939 + 1017 + 1102 + 1193 = $4251

© ; eT

R, = A(3)1 + A(4)1 + A(5)1 + A(6)1 = 1017 + 1102 + 1193 + 1293 = $4605 Since

A'(t)

is

increasing

on

[2,

6],

2

$4251 =f 800e°°°8tat < $4605 0

37.

First

60 days:

L, = = R, = =

N(0)20 + N(20)20 + N(40)20 (10 + 51 + 68)20 = 2580 N(20)20 + N(40)20 + N(60)20 (51 + 68 + 76)20 = 3900

we

2580 : 3200)

Error

bound

for

eee an A;:

Error < |N(60) - N(0)| tire = (76 - 10)(10) = 660 units

EXERCISE

11-4

689

Second 60 days: L, = N(60)20 + N(80)20

(76 R,

+ 81

N(80)20 (81

+ 84)20

+ N(100)20

=

4820

+ N(100)20

+ 84

+

86)20

+ N(120) 20 =

5020

4820 +5 5020 _= 4920

A noe Error

bound

Error


? (3

-

2 (5-4)

MSpe

é 4(1)¥/?)

hgOe =

Bo2

9.333.

i

if (e2* - 2x)2(e2* - 1) dx

al (e** - 2x)*(2e2* - 2) ax 0

1

DN

73°

2

tet

ae

rege eee : 6 lle = =a

43.

aun

a

3/2

am

2) 3 2)

[note : The has

es a)

the

form

integrand u*du;

an

antiderivative is 3 2x 3 ea UBT oe en ZOE. . | 3 zs 3

25.918

:

(x1

a,

3 4x)

ag

+ 2x)dx

= (1n|x| + x’) * tl

In|-1] + (-1)? - [1n|-2] + (-2)7]

=

1-i1n2-4 -3 - ln 2 =

-3.693

EXERCISE

11-5

695

45.

fix)

=_

5008

(A) Ave f(x)

—)

5 0saron

a0

LOH

10

1

= ee

al

(500

-

50x) dx

(B)

500

pa 10

(500x

f(t)

= 3t? - 2t on

(A) Ave

f(t)

Ave f(x) = 250

|+9 ;

25x“)

cree ale

ut i0 [9,900

47.

2,

-

=)2/500)]

[-1,

= 250

f(x) = 500 - 50x

2]

Pe g (eis 2 = 5~an (-1) iio 1 aay

¥)

(Eee |S

=p(a Suf-2)7

f(t) = 3t~ - 2¢

2 Ave f(t) = 2

Z}

49. f(x) = Vx = x!/3 on

[1, 8]

aL

8

(A) Ave £(x) = g— -f xl/3 ax

(B)

-

1 AL

=

(9%

3

39547318

Vk

1

3

eG, ae ette =. 60. 55° Ts, = 99 (18 ~1)=

f

(x)

z AS x

= 1.61 Avef(x) 0

51.

f(x)

= 4e°°°2* on

[0, i

(A)

Ave

f(x)

i0

| = 20e 0.2%, ) |x2 A

BE 10

CHAPTER

11

10

WG yoke Ea tls

696

10]

INTEGRATION

ie ae 4) =,10.73

Ave f(x) = 1.73 f(x) = 4e -0.2x

53.

f(x)

= 0.25x* Ax =

M4

- 4 0n

5 0 4 =

a= 0, b=

8, n=4;

2

£(1)Ax

+ £(3)Ax

ieee

W795

+ £(5)Ax

42.25

8

Thus,

[0, 8],

I = ih (0.25x2

+ £(7)Ax

+°8.25)2,

=

10

- 4)dx = 10.

0

Error bound: Potcoe = 9025x750 From

Thise*r

=

iy|\s =

L£O-+

:

© =

=

0.5

3,

[Gon

BS.

£" (xc)

O55(8-="'0)7 3 .

bday

256

2

= 384 7 0-67

‘0567

2

f (On 25x50 14)

a 2at | - 4 )ax

ax =

f (ax

0

7 12

[tf This

=" (20.67 = 10}

error

does

lie

*

hs

-

4x)

0.67

within

the

error

57. £"(x) = 0.5 on [0, 8] 0.5(8 -3 0)> = 256 Pi M>| 4S 24n 24n2 as 0.005

Sire S12.

6m

“12

bound

aye

fa="

1.0'..67

calculated

in

Problem

53.

32

3n?'

n

2

Mee

ne

32

0.015

~

PREIS) Sys!

47

59. n—-oco lim[(1 - c?)Ax + (1 - c2)Ax + .. + (1 - c2)Ax] where Ax = n Ge =

irik

2—*

ana

n

5

ay Ke="1

52,

«,

2

sa

Riemann

sum

tor

{ (1

-

x*) dx.

2

ff(1 - x*)dx = (x . 3) , = [5 = 382 - (2 - Fy] = -36

EXERCISE

11-5

697

61.

lim [ (3c? -

2c,

+

3)Ax

+

(3c% ~

2c,

+

3)Ax

+...

+

k=

1-2)

(Gc. ~

2c, +

3)Ax],

n-ceo

where

Ax =

*4—

ana

Cc, =

2 foe

an

vs) a Riemannesun

12

tor

|

(3x2

-

2x

+

3)dx.

2 12

12



(17)°™2)(19)*

(3x7 - 2x + 3)dx = (x - x + ax}

+ 36a

2

17, OaL0 3

63. fixV2x

3

-

f x(2x2 - 3)1/2ax 2

y

af Be

i

aig

a

[ote : The

form

a

4a (3)(22? 2 3) 3/2|°' See

~ 33/2

2 (i5y3/2)-

-

73

the

u?/ 2 qu;

3

~ 33/2

ase’? - 53/2) ~ 7.819

1

1 65. f FON xere Ger’ 5 asia 453

Consider the indefinite integral and let u = x Aon Then du = (2x - 2)dx = 2(x - 1)dx. x- 1 Pipe 2curs. = 18ory ca (eG 1 =

liequern ee caeaAone

x0 = 2k tes

(ob ea

y du

2

=

43),

5 Inju

+

ju

C

Thus, x-

1

| ose ermee:

1

Soe

SUA

=

al =l1n|x 2 |

A=

5 Nes in

-

9 in AVE = 5 aa (in a:

=

in ="=0. In 3)" 3)*=°-0.203

3

Pom f Berge wi (em tet) Consider

Then

the

du'=

indefinite

integral

and

let

u =

e*

+

e%.

(-e* + e“)dx = -(e”* - e*) dx.

pera Sa

=

tSSS mPey C=

~{udu

=

=u" +

C=

Thus,

AY

i@ici~ fae

ee

u. a

Tle aes

SPECTR

698

CHAPTER

11

INTEGRATION

3 |-1.

1 Spay

pre ERE

has

2 3/2 = 2 (2x0 _ 3)3/2,

= (2t2)?

=(5)?

integrand

1 ee

ie

.+ C

the

ae

69.

f(t)

= - OM

(A)

a=1,

tL

b=2,.n=

Percation maqGpoincs

M, =

i)

+ £(1.3)Ax

|f"(t)|

Thus,

+ £(1.9)Ax

+ 0.5263]0.2

t3

[1, 2] = max = Onild,

s #4=4)

3

ln 2 = 0.6919

_ 1

2] = 2

_ 9 9933

+ 0.0033

ln 2 = 0.6931

(C) Brror This

71.

on

iz

jr-m,| (B)

+ £(1.7)Ax

+ 0.5882

bound:

pide == 0d verte) se Max

0 2) 99

+ £(1.5)Ax

[0.9091 + 0.7692 + 0.6667 (3.4595)0.2 = 0.6919

Error

= 0.2

{1 Vi27el 245136718, {1,1, 1.3, 1.5, 19g;

£(1.1)Ax

= =

5, Ax = ee

£(t)

=

error

= + fe on

Maxon)

|r E

|in 2 - M, | =

on

is within

(Te2hss

M_ | < 2(2

12:n

the

Stee

f1742)\-=

Z

|0.6931

max

3 oe Is) 55

- 0.6919|

bound

-+ t2’ 4 on

determined

L*(eye= eaRape

= 0.0012 in part

(Ae

2 t3

07,

1

Jan? te hone = < 0.0005 ens ss ees

n” 2 72(0.0005) ~ 166-67 nace eh Ae)

73. 6 i a

ds

ax #512163

EXERCISE

11-5

699

900]

= 500 - 5 on [300,

77. C'(x)

The increase in cost from a production level of 300 bikes production level of 900 bikes per month is given by: 900

(soo : 3 ex= (soox 2 1,2)300

300

= 315,000 - (135,000) = $180,000 in

in value

loss

Total

loss

VilL0))

=

in

in value

10

= {

VS)

5

=

25 500(> =

the

second

10

VCE) de = i

5

= 81.

-

12)dt

=

5005 =

12t)

0

0

Total

t2

5

{ V' (t) dt = { 500(t

=

="V(0)

5 years:

first

the

5

U(S)>

month

900

i

79.

per

5

0

60) = F-$23) 0750 5 years:

12)dt

-

500(t

500{ (50 = 120)

=

t2

s00(5 a

25 = (z =

60) =

12)

10

-$11, 250

(A)

- -/130

(B)

be the quadratic regression model part (A). The number of units by a new employee during the first is given (approximately) by

Let q(t) found in produced 100 eave

10

i

0

83.

(A)

the

find

To

Ler 11

q(t)dt

ig

ef

> =

5te

=

6505

useful

-t

55

t? = In 55

700

CHAPTER

11

INTEGRATION

life,

set

C'(t)

=

R'(t)

and

solve

for

t.

to

a

(B)

The

total

P(2)

-

profit

accumulated 2

P(0)

f DR" CC) 0 2

2

en

che

- 11

ee DBL

S>

Ct)

(A)

a=

the

total

00,000

+

profit

OP ’ Seem —2

0

1

C(x)

=

approximately

aie Coane)

is PD)SRY

$2,272.

08

+ 300 = $420 500

sie

(60,000

+

300x)dx

0

=

>, i 599 (60,000x + 150x*)

ae =55 (30,000,000

[500

:

+ 37,500,000),

=

$135,000

(C) C(500) is the average cost per unit at a production level units; Ave C(x) is the average value of the total cost as increases from 0 units to 500 units.

87.

first

©.&

G(500) = ee Ave

5g Bey

the

3005

Average cost per unit: Zin) = C(x) _ 60,000 x

(B)

is

In

integral, the integrand has the form e”du, where u = -t*; an antiderivative

2/2

a-woe stews eed foes pool -37e 22 = 22 Thus,

[Note:

Ede 0

1 0

~ iitae

0 alka

(-2t)dt

4?

2- 1e

=i

is:

sh

2

0

5

life

2

aer= { (ste 0

2

5

useful

- f ore dt

0 2

the 2

e= SGN (Ee)

J ste tat 5

during

of 500 production

(A)

(B)

Let q(x) be the quadratic regression model found in part (A). The increase in cost in going from a production level of 2 thousand watches per month to 8 thousand watches per by month is given (approximately)

‘keq(x) dx = 100.505 2

Therefore,

the

increase

in cost

is approximately

$100,505.

EXERCISE

11-5

701

89.

Average AveuS

price:

a

oy

(X

x

300

f(x)

900

99.

Using

2, i

P(O)

5

. =77,500

0

5 to

approximate

1 and

5,000 + 4,500 17,500

Therefore,

Lat

one

we

= =

=

the

Therefore,

1,500t) n =

5 f IQS) 0

Ax

the

0

(constant).

5

f Coleidt

over

of

5

ata

0

C'(t)

end

0

i RGE Now,

profits

the

and

5

5

fey.

total

to

M = 10

+ 3,500

total

+ 2,500

accumulated

= [ox wae 900 17 7/010

a midpoint

f£(x)dx = M,

sum

+ R' (3) + R'(3)2

profits

are

- ibCEC Cvacsue.

1,500

(approximately):

7), 500"

97,5001

=—S10;000

2,100

Ay 7KONO,

with

+ 2,000

n

900

=

£(300)Ax

4 and

Ax

=

+ £(900)Ax

600,

we

have

+ £(1,500)Ax

+ £(2,100)Ax

0

[900

+ 1,700

(5,200)600

+ 1,700

+ 900)600

= 3,120,000

sq ft

EXERCISE

11-5

703

101.

w(t) The

= 0.2e9°1& weight

increase

during

0 8

°

The

weight

hour

W(16)

8

during

16th 16

= f

hour,

W'(t)dt

2's .2. 5

the

second

is

given 16

= f

Ee

temperature

over

1_? 2 ip C(t)dt =pi

Gee

=5(4

105.

Using a midpoint sum R(t) from the graph,

3 I

Ritlde=aM

107.

P(e) (A)

the

total

50.3

TE

iz

0

B24

eight

0.2e°:1tgt

2e

Abs)

=

[0,

20)"

3 and

2]

is

CHAPTER

11

the

8th

16

8

given

by: 2

6 10t

0

Celsius

At

=

1,

and

4805

+

of

OES of

5e+0ies

air

=e

estimating

the

values

ei

inhaled

is

approximately

1.1

liters.

fe Sa!

people

during

the

first

seven

months:

q

A 0.1 |ae Sar { — #2 at + = 0.1dt 49

0

fraction

of

247 8.4t | | re Ses

people

t“

nites

+

2

98

49

INTEGRATION

0

+

7 ORE! ao)” + “a t



inv

495.

tay O 45 Opal

during

the

=

first

7) 0

On

OY SANs

two

years:

Wane 5 eo)5 ey 1. (24 0.1dt + 0.1 |ae A f dt + ptt? 49 24 J, 24 24 Git 2 ie =O Uisiidn (tate. Aoi ies gett O-17S {in 625

704

from

grams

22 pidge 6oa° olen (a

= "10>"

Pia

1 rer

8e"5.45

£0) dt.=

-2trt,

On6 fin

Average

i.e.,

= 20-16

Je

period

O26

(B)

hours,

by:

A ed ps

aosat le G

3

with n = we have

AO Rik

49 fraction

1

time

a

volume

= eee

ieee Average

grams

1 3 5 r(3)2 : R(3)2 n (3)! 2 2 3

3 =

Thus,

by:

then du = 0.1dt.)

8

=

Average

given

= 0.2f eo -1tge

(Let u = 0.1t,

aq S990 o

8

103.

is

8

0

e9-1£(9.1) dt

gent

the

- W(8)

hours

0

increase

through

eight

0

= ae =

first

- f 0.2e°-1"gt

= i W' (t)dt

- W(0)

W(8)

the 8

8

=

in a9)

400i

Ooms

of

CHAPTER

11

REVIEW 3

1. f(3? - 2eyae = 3fePae - afe ae = 3-2 -2-B 2.

5

{ (ax - 3)ax=2[ 2

5

3

5

x ae-3f a= 2

2

5

4 ce

8-

ee

ary

§

- 3x

2

2

= (25 yi) c= ALS = (20 =

height

= Ave

(ad £(x)

=

eee tr

(11=5)

7

(li=ay

5(-2) = S10

5 f(x) dx a

(2) = z = 0.4

= Al. £(x) dx

b

(11-4,

Li=5)

(11-4,

11-3)

(11-4,

11=5)

(11-4,

11-5)

b

d

(e;

i bE((Seebe

=

b

d

i f(x) dx

+

b

(a) a d

ax +

a

11

) EES) OSC == b

+

0

Sle

OV 6m =

lee

ete)

b

sca f f(x) ax

0

2)

ax

CG

f f(x) a

J (Se)

if f(x) (e!

b

f if (Se) esce—

CHAPTER

3,

2

b

18.

706

table

+ £(11)Ax

+26

(-1)

22.

the

f(x) = 6x* + 2x on [-1, 2]; ‘eae

21.

5 - (3 + 1)= 45.333 (11755)

values By i

Seine

20.

27+ nie

|-="15383

Using the oe —-

&

16.

(3%° +

(el

i f(x) ax

2) =

INTEGRATION

060="

J f(x) ax + b

a

2+

oe

0.4

d

i Be )iebe c

(Li

27, Lis)

a

23.

b

i re (39) \Yobre =

-{ niex\axt="=(-2)"

b b

24.

-{ FAX)

(11-4,

11-5)

=

=2

(11-4,

11-5)

=

-0.4

(11-4,

11-5)

b

0

d

{ EX \OxX: i=

-{ f£(x)dx

d

26.

2

Cc

f fix) ax = Cc

25.

=

a

(from

Problem

22)

0

Let f be an antiderivative function. Then: fmrrseinereasing on [07 1] and [3,74] (£' (6)y S10); rFeis decreasing on (1; 3] (£' (x) < 0); the graph of f is concave down on [0, 2] (f' is decreasing); the graph of f is concave up on [2, 4] (f' is increasing); f has a local maximum at x = 1; f has a local minimum at x = 3; there is an inflection point at x = 2. The graphs of antiderivative functions differ by a vertical translation.

(11-1)

f(x)

a

ae|

TOUR

= 2'sine)

4, dy v|

29.

a 2 a a

from

the

figure,

approximately equal computed in Problem

30.

Let y Leo = Cx”.

Then

to 1 as 28(B).

os aoe ani

2Cx.

the

slopes

computed

] 2i-ter(, es

2(-2) eat

at

in

(2,

1)

Problem

and

wate

(-2,

28(A),

(11-3)

-1)

not

are

4 as (11-3)

From

the

a original

equation,

C =

Oe~>F of

so

yee (en ahey = 2x(2 wesw)

large

Let

u =

xX +

1," then

X =

1/16 5

z

_ 2038 - 92-3°R

iia aie 86 ee 56.

a SYP)

7

32 (16 :of x) 3206 k)aee

x

1 B202G

+¢4

(ota?

8

2-a6""") 3

324°)

sedis eS 3 2048 2048) 1234 _ er, 267 ( oe )sae

u=-

1,

ax =

du;

and

u

=

i (1125)

0 when’x W=Lieu

=

when x = 1. 1

2

2

-1

0

0

i x(x + 1)4dx = i (u - 1)utdu = f (u? - u*) du

o "6 - 5 skid 3 > ied? 15 a 3 Gamma (11-5)

_ 1a ete x £(0) fe= 2 57.) ay Beams Let

u

=

x,

then

du

=

3

3x’ dx.

3

y = foxte%ax = 3 fe? stax = 3 feta = 362+ c= Given

£(0)

=

Se

0 06N,

N(O!)

=

800 = Ce® = c. Hence, C = 800 and M(t)

CHAPTER

11

+c

: 7 (x).=

3e°

=

1.

(11-3)

800,EN > 0

From the differential constant. Since N(0)

712

3

2:

Pearse Cs Bee Hence ,.Gi= —L andwye=)

58.

30"

INTEGRATION

equation, = 800, we

N(t) have

= 800e°-%t,

=

Ce?

88>

where

C is

an

arbitrary

(lisse

f(x)

0

0.5 =e)

Sucetiwes

e*

M.

=

x

1

on

(0,

£(0.1)Ax

= [0.9900 =10.74805 6215

=

.e

Te (x)

=

-2xe

f£"(x)

=

-2e%"

graph

1];

az=0,

+ £(0.3)Ax +

0.9139

b=

1,

n=

+ £(0.5)Ax

+ 0.7788

5, ce

+

£(0.7)Ax

+ 0.6126

+

Be

ne

£(0.9)Ax

+ 0.4449]0.2 (11-5)

phy

£(sc).

The

(11-5)

mt] r

-

+ 4x* e*"

of

f"

is

shown

A

=

(4x?

at

lf"(x)I
(60-05% _ 1) dx 10 Jao aie SIP SOS

ee I

] 50 la0

= 4 [206-5

- 50 -

(20e% - 40)]

= 16e*°> - 16e* - 8 = $68.70

716

CHAPTER

11

INTEGRATION

(112mm

To

«

5, At = 10. a = 0, b= 50, n= the table, = N(0)At + N(10)At + N(20)At + N(30)At + N(40)At

(A) From L. 5

[5 +

+

jis

=

AB

Rs

Sree

Error

bound

+

17

+

14

+

[10

=

14

17

+

=

+

19

an

for

19}10

=

650 + N(40)At

+ N(30)At

+ N(20)At

N(10)At

RELS

A,

10

=

800

=

20]10

+

725

+ N(50)At

components

Ac:

eee ="'|20 -.5|5°=075

- ON

Error < |N(50) QuadReg y=ax2+bxtc

(B)

a=~-.@05

x5

(C) Let

q(t) be model found

the quadratic regression in part (B). The number of units produced by a new employee in the first 50 days of employment is given (approximately) by

50

{ q(t)dt

0

80.

MomGtindethe

fFnInt Onde a months. Estimated sales after 12 months:

gives

the

total

sales

after

t

S(12). = S0(2 = 27% 798(12)) = soya - 68-95) = 31 sons Wimtdd ions To

find

the

time

to

reach

“402 SOL = eyo)

$40

million

in

sales,

solve

formic:

O28 = dee 4leF

nde

ig

—0-08¢

=

In (0. 2)

Ce

82.

oe MURA -0.08

=

20

months

: ‘ : ' Using a midpoint sum with from the graph, we have:

Ave

q

C(t)

12

= eel

n

C(t)dt

(11-3)

=

6,

2 = i oana ae 2 and

At

Tien

83.

aA GAS aks

+6+8+9+4+8+

eens ae) AG tea oli

Sy

of

C

CG) at

0

= G5Me = ap (C(1)AE + C(3)At + C(5)At = 24

values

Reb

= eat

0

ree

the

4)

+ C(7)At

+

C(9)At

= a = 6.5 parts

+ C(11)At)

per million

(11-5)

SS) -1

A = [seat = -5 {rae = -5 ies + C= = + C Now

84.

A(1)

= A+

A(t)

= 5£

A(5)

= ae Spin

The

area

The

total

C=

5.

Therefore,

of

the

amount

wound

of

after

5 days

is

seepage

during

the

4

4

0

OL

u =

0 and

a

T = | R(t) dt - f —4000 [Let

C =

1 +

t,

then

poe)

du

=

1 cm?.

first

(11-3)

four

years

is given

by:

ra:

at = 1000 | (1 + t)ae = 10004 +4) “1/4 — 0 -1

dt.]

=

-1000/4 A ee

Sule

4 _ Oni

-1000 5

+

1000

=

800

0

gallons

(11 =a) 718

CHAPTER

11

INTEGRATION

85.

(A) A(t)

= 770e°°°%F£,

Population

A(35) (B)

Time

t

in year

>0

= 770e0°92'35)

to

#£(1995 is t = 0)

2030:

t =

35

= 770e°-35 = 1093 million

double:

770e°°°1f = 1540 eo Olt _ >

OnOTE

=F in E=

It will

a2

hy

0.01

take

~

69.3

approximately

70

years

for

the

population

to

double. (11-3)

86.

Let Q = Then,

Q(t)

be

the

= = -0.00012389 where died).

Q) is We

the

want

amount

and amount

to

find

of

Q(t)

carbon-14

present

in

the

bone

at

time

t.

= Q,e0-0001238t,

present t such

originally that

Q(t)

(i.e., =

at

the

time

the

animal

0.040).

0.040, = g,e-0-0001238¢ e70-0001238t _ 9 o4 -0.0001238t

= t=

87. N'(t)

ln 0.04 ins0.04) =0.0001238

= 7e°°°t® and N(0)

| ~

26,000

years

(11-3)

= 25.

N(t) = frer-ttae = 7 {ero tae = = z fer 28(-0.1) at Given

N(0)

252

s'27 967°-te ge ew oS 25°=" 2708 + C= =704 ©

Hence, C =.95 and N(t) = 95 - 70e°°-1©. The type N(15) = 95 - 70e°9-2045) = 95 -~ 70e1-5 completing the course.

HS

t

Cet

=

eT

a

P4-S.67

} eauy

©) T = 4p""

;

MS =

;

stiininm

st

Se

»

0!

8

“y)

ar

e hy

« L10K ra Shr Yj

PYLE

:

ge

Oi

-

ae ae

{

an”

i

;

12

ADDITIONAL

EXERCISE

le

12-1

Things 1.

INTEGRATION

TOPICS

eeaaaaaaaaacaaacaaaacacaaaaacaaaaaaaaaaaaaacaaaaaaaaaaaaa

a

to

AREA

remember: UNDER

A CURVE

If f is continuous and f(x) 2 0 over the the area between y = f(x) and the x-axis given by the definite integral:

interval from x =

[a, b], then a to x = bis

b

Aa

J f (x) ax a

b If

f(x)

y =

f(x)

< 0 over

and

the

the

interval

x-axis

from

[a,

x =

b],

then

a to

x =

the

b is

between

area

given

by

b

i [=f (x)

dx.

a

if f(x) is positive for some values of x and negative Finally, the area between the graph of f and the x axis can for others, be obtained by dividing [a, b] into subintervals on which f is finding the area over each always positive or always negative, subinterval, and then summing these areas. 2.

AREA

BETWEEN

TWO

CURVES

If f and g are continuous and f(x) 2 g(x) [a, b], then the area bounded by y = f(x) aes x S bois given exactly by:

y

over the interval and y = g(x), for

f(x)

b

A=

{ [£(x)

- g(x) ) dx.

g(x)

a

EXERCISE

12-1

721

3.

INDEX

OF

If y =

INCOME

f(x)

is

CONCENTRATION

the

equation

of

a Lorenz

curve,

then

the

il!

Index

of

Income

Concentration

=

2{

ere =e

(G9) iors

0

b

b

beanenf

g(x) ax

3.a={

a

5.

Since

[-h(x) ] dx a

the

shaded

region

in Figure

(c)

is below

the

x-axis,

h(x)

< 0.

b

Thus,

i h(x) dx represents

:

ite

the

negative

of

the

area

of

the

region.

a

4 { ={-2x 0

A

= 1)dx

9.A

4

f [2x + 1]dx = (x* +x)

9 720

0

2

Il I

2 ail te -

ajax = {

ai

[4 - x*]dx

Ly pie a=

Ng

are

Be

Foe

, at

=

enh), ot 1

b

] dx

19.a=

il



¢

TT

ala((0lS)

mo,

=

g(xX)]dx

23.

A=

Cc

i {[f(x) a

12

ADDITIONAL

INTEGRATION

=

05698

d

| £(x)ax + { {[-f(x) ]dx (2)

b

I [f(x)

CHAPTER

ne

b

d

722

Ey

a

| [-f(x) a

PA a JAW

13.a

Xo)

wenafoLeda =ffdawa =

bo

(0-8 ae ee

2a«|amet4}

TOPICS

C

-

g(x)]dx

+ i [o(x) b

=

Lica

25.

Find the x-coordinates of the points of intersection of the two curves on [a, d] by solving the equation f(x) = g(x), as x O. 1x +"0F0008K0.0003X + 0.1x% - 57 = 0 -0.1

iT:

+ VO.01

a 5p OOO 300

PS = f

0 300

= f

+ 0.0684

0.0006 =0.1 + O$9e0s

[67 =

(10 + 0.1x + 0-0003x-

(57-0

adie -=,10000035-),ax

emer

2

bo

) lax

2

0

=

(57x - 0.05x*

- 0.0001x°)

300

9

= $9,900

150 43.

The area of the region PS is the producers' surplus and represents the total gain to producers who are willing to supply units at a lower price than $67 but are still able to supply the product at $67.

~ x = 300

45.

500

p = D(x),= 50a= 0.1x;p Equilibrium price: D(x) = 50l=)

Thus,

738

x

x = 260

CHAPTER

12

sig

+.0.05x

OF dsei= ae +0 30 55¢ Soh ss Wis ilsps X= 2.00

and p = 50

ADDITIONAL

Six) S(x)

-

0.1(260)

INTEGRATION

= 24.

TOPICS

260

CS = f

260

[(50



0)ix)n

9

24)dx

J

0

(26

-

0.1x) dx

0 260

(26x - 0.05x7) i

i

$3,380 260

PS

i

260

[24

s=re(21 9490)50520) Idx

Y

0

£23). 90". '0520] dx

0

P

(13x - 0.025x?)

iH}

0

$1,690

47. D(x)

= 80e-°-°91* and s(x)

Equilibrium

price:

D(x)

= 30e°:91*

=

S(x)

eye:8

e0 -002x

3

8 0.002x = n(5) Ms

in

2

0.002 Thus,

D = 30e°:991(499) 490

CS Bs = J

[80e -0.001x

0 778

~ 4g, -0.001x

490

_ 49) dx =alg) ( RLU ee -0.001

49x) 4

= -80,000e°°49 490

PS e= if

0.001

_ 30e 0.001x ]dx [49 -

+ 80,000

- 24,010 = $6,980

490

3 a Ol ie =): =¥ (49x = Qes

0

24,010

49. D(x)

= 80 - 0.04x;

Equilibrium

price:

S(x)

= 30e°:-°01*

D(x)

=

= 30, 000hens,

end)

"= $5,041

S(x)

sogzndnodxveigge?°° * Using

a graphing xX =

Tus,

p =

80

=

utility,

we

find

that

614 (0404) 614e=

55

EXERCISE

12-2

739

614

614

CS = f

[80

-

0.04x

-

55)dx

f

(25

-

0.04x)dx

0

(25x - 0.02x7)

:

= $7,810 614

PS = f

[55 -

614

(30e°-991%) }ax = i

0

(55°

30e% 904%) ax

0

£1(55x = 30,000e°: 9%)

614

2

= $8,336

51. D(x)

= 80e°9:9*.

s(x)

= 15 + 0.0001x?

Equilibrium price: D(x) = S(x) Using a graphing utility, we find

Thus,

xX = 556 p = 15 + 0.0001(556)* 556

CS = 1

that

= 46

[80e79-901x _ 46)dx = (-80,000e°9-991* - 46x)

BSG

;

0

= $8,544 556

PS = f

-

[46 - (15 + 0.0001x*)]dx

556

= i

0

(31 - 0.0001x*)dx

0

(Hees)

556 0

u

740

CHAPTER

12

ADDITIONAL

INTEGRATION

TOPICS

$117,507

53.

(A)

Price-Demand

Price-Suppl

QuadReg yEax?tbxt

p = D(x)

Pp = S(x)

Graph the price-demand of intersection.

and

price-supply

models

and

find

their

point

(sya

Equilibrium Equilibrium

30 Intersection X=21.456637 .Y=6.5087005

quantity x = 21.457 price p = 6.51

.

Gris

(B)

Let D(x) be the quadratic in part (A). Consumers' surplus:

regression

model

21.457

CS = i

[Diy

=

6.51)dx =

sii.

0

Let S(x) be the linear part (A). Producers' surplus

regression

model

in

-457

PS = f

[6 351>=)

3S (x). ] dx =

$27,087

0

EXERCISE

12-3

Things 1.

to remember:

INTEGRATION-BY-PARTS fu GVa=

Iho

uve



FORMULA

fv au

INTEGRATION-BY-PARTS:

(a) (b)

The It

product must

standard (c)

The than

(a)

For

(e)

For

new the

be

SELECTION

udv must possible

formulas integral, original

equal to

or

u AND

dv

not

xPe™,

integrals

x? (1n x)%,

involving

(ln x)%;

(preferably

by using

be

any

more

involved

Juav.

integrals involving us, oes dv, = ede.

u =

integrand.

substitutions.)

should

integral

dv

original

integrate

simple

Jvdu,

OF

the

try try

dv = xPdx.

EXERCISE

12-3

741

lees [xe*ax 3x

Let

u =

x and dv = e*dx. 3x

Axi Cxa= git ee ee 3

[xe

3x

ex: 3

-

Then, du = dx and

Paes3 xe ax

v =

.

2 [3x ot AD Mae Roh 3 + e"dx = 3 xe 9 ©

ax =

3

3. [x2 in x dx Let

u =

fo? an

5.

ln x

sy

x

a

C

and dv =

=

xdx.

x?

(an

Then

i=

9(%) -

axe

a

ge

By rein NE PRE

sR

bs

5

3

3

du

=

& and v =

ee

ae

1/

eee

ESRC a Fy

3

*. aes

Rae 9

[(x + 15 (x + 2)dx The

better

choice

The alternative integral of the

is

u =

is u = form

x

+.2,

dv = (x ++ 1)° dx

(x + alee

dav =

(x +

2)dx,

which

will

lead

to

an

fx Pedy = Cseet 12) ods Let

u = x + 2 and

Substitute

into

dv= (x + 2) Max:

the

integration

is

See

u =.x

and. dv =.e “dx.

[xe™*ax = x(-e*)

tte

7

du.=..dx-andv-=

- fice) axSe

2

[xe* axZi/\ber 2x ax = 1

a

(x + 1)°.

n|r

+

C

2

-e*.

fe*ax = -sweitesce

2x

= LY eta

ce

at ic

1

| (x - 3) e*dx Let

u =

(x - 3) and dv = e*dx.

Then

fix - 3) e*dx = (x- 3)e% - fe%ax =

du = dx and v = e%.

(x - 3)e*% - eX + C

= xe* - 4e* + C. fl

Thus,

i (x - 3)e%dx

=

(xe* - 4e%)

=

-3e

1

PA ae

I

0

742

v=

= fedxut 1)°ax 6

e 49 ORB

.Then

a2 at Ee

and

[xe*ax Let

9.

du = dx formula:

Prisca 2) S eed) 6

fix + 1)° (x + 2)dx

ie

Then

by parts

CHAPTER

12

ADDITIONAL

+

4 =

INTEGRATION

-4.1548.

TOPICS

ote eh

irae iVor)

S34 2G

3

13.

f iis, Wprewebeq 1

u

Let

fan 2x

In

=

2x

and (ln

ax =

=

dv

2x) (x)

3

f In 2x de) s(x

Thus,

|x

~



du = Then

dx.

dne2k

3

v=

xX.

+

Cc

x

=

(3.1n

| =z

Ss x

2x

x In

SS 2

and

6.2.3)

- (in 2 -

=.2.68217.

1)

al

15.

2X

ae

Substitution: [Note:

Inju + |u|

[Pau = Mag

—?*— ax = | eg

not

value

u = du

19.

=

+

since

needed,

2

2 Z

fu dun

Substitution:

C

e+ u du ou 2x dx

Absolute

e = Bleerett 536

+

+1

ln(x |

C=

12

On)

2

1g

BA Z

c=

ln x

cs xo

[Vx in x dx = fod? ln x dx het

=

in

x and

av

=

x/*ax.

far In x dx = cara In x - fA 2 x = ra =

Since

f(x)

=

are:

& and v

du

Then

23/2

(x - 3)e*

in

x

x- 2 |,d/2ax

In

x

-

ae ree erpoe

L epee

See

ee Mereeert

Pe

J

a =

with

13

Formula

using

C,

fl

in | Pe

integral:

indefinite

the

Consider

i aye as 9

1.

cd 5 ~ 0.2939.

in

Z

43

> Pxtaar ok a ee

1 [agape

(a+

2

a

Beh

Se

nS

are x +1 hss

Thus;/

2

x? + 3x

A) [eae

1n| x

Inix

+73

|

|

| = -F 19

uF

a

3

xt 53

x

Kot 3 in|

the

ail

al

al

2

Xe

+

ee

Fear

=3.70

10

-

(x?

3.70

756

the

first

A=

(10 in |x +

CHAPTER

12

the right. intersection

3x) | ax Las0

- i

ae

For

gs

+

at of

=

oP

integral,

Ve? + 2/0|

(=20029)

ADDITIONAL

(x2 + 3x) dx

use Formula 1.36 =o 710

le

S[3.62

INTEGRATION

-

ae

:



AC

10"1236 ao

s(t

+c

1

The graphs of f and g are shown The x-coordinates of the points are: x, = = Sri Oi, Xun 36 A=

integral:

second

+ Cc

= x? + 3x

47. £(x) tm cae g(x)

®

|

= In|x + 3| - 5 In|x + 3] + 3 In[x| = 3 In|x + 3| + 3 In|x|

aan

C

+

x

+

u = x + 3, du = dx.

1 on

d=

5;Tiak 8 tate

i

Ree ae =

c = 3,

1,

b=

0,

a =

15 with

Formula

1

a =

Substitution:

Now (Ee 3 ak = dn pxces/3 |” Use

Diag

+

Sdu = (x + 1)dx

x

ae

2(

+ 2x| +

= 5 In|x

45.

du = (2x + 2)dx =

1

= 5 in tulese

x + 41

u-= x* + 2x

Substitution:

aS

Ueteed ee 0al

36 with

(253 + 3x2 eg)

—2(8e65))]

TOPICS

2

=

a = 1: 1.36 -3.70

3sis3s

49.

f(x)

=

xVx + 4,

The

graphs

The

x-coordinates

are:

of

Giles)

xX, =

f and

ht g are

the

of

-3.49,

act oe

xX, =

LY

shown

at

the

right.

=o

points

of

intersection

2

CE,

Ones

-3 0.83

0.83

a={

[1 +xxVx + 4]dx= Sat -3.49

For

the

second

integral,

0.83 a=(x+}2)

Zam

51.

Find

-

2.60005)"

= =

x

Use

el

xVx

+

4dx

22

with

a

=

4 and

uv

ul

b=

1s:

0.83 +

4)3)

2/9850"

price

-3.49

0F891695))

p =

15:

- 30x

ee

-48

Sof -

30x

me

eth

Formula

20077500

py ant (0° [Fy 0

20

Ey ae="

= 15x | 3000( a a

S00 0R8b

= h— J Syarca=—ci00)

(=15) (300) 7sny

1n|300

3000

+ 1500.1n(100)

3000

+ 1500

the

ah

surplus:

[15x + 1500

Thus,

-

= 200

Consumers'

Be

7500 3000

Formula

—(—7

the demand when the 15 = 7500 - Me 15x 15x

x

+ x)dx

— 8

odira +(x

SHOE 4500

use

13x

-3.49

aa5r =

x,

(1

3.49

- 15x];

si=

-l:;

00

200

- x|] -

1300 - x|

20073000

etal0 [Paya

1500

1n(300)

1n(5)] gs0, 352

consumers'

surplus

is

$1352.

The shaded represents consumers'

region the surplus.

EXERCISE

12-4

757

55.

PASSOWES SayeOP; ¢ =a ofoeE’

CS)

250

CU

c(0)

# 10x

u= | 9a On 05xOE

Bs

fi = 250(565 In|1 (Formulas

= 25,000 L

x

250/7 01 05%

as

Raed) Met osy? In|1 + 0.05x| lor 2008 + 10 (905

+ 0. 05x

3 and

en 10/7 PPT

+ K

4)

= 5,000 In|1 + 0.05x| + 200x - 4,000 In|1 + 0.05x| + K x1, 000*ln')1, Since To

find

GC (=

The

At

C(0) C(x)

+°0705x|

+ 200K 7+ K

= 25,000, K = 25,000 and 1,000 In(1 +)0205x) 7+ /200x-+-25;,000,

the

production

25 OF COMO

production

level

a production

C(850)-2-17

level

produces

a cost

of

$150,000,

solve

300,000

is x =

level

000

that

tes

x 210

of

608

850

Int1.+.0.

pairs

pairs

05 (850)

of

of

skis.

skis,

+- 200850) | +255, 000_=)$198 "7728

We

57.

FV = et | f(t)e**dt 0 Now, r= 0.1, T= 10,

£(t)

= 50¢t?.

10

10

0

0

FV = e(0-1)10 [ 50t7e °-**de = 50e | bia To

evaluate

the

fete?-teae Bf

integral,

2,-0.1t

oT neni -O.1

Now,

using

Formula

use

2

Formula

[re ?-tat

47

IEGE with

n

=

= 1oetewcnt

2 and

47

fee—Oedt daresn), ee 5 ea

4 20 {teat

again:

WV -0.1)¢ eo nteeg dtor= oo -10te -0.1t

B0e[-L0e"e UE — 200teyis Ereeailen

758

CHAPTER

12

- 2000e7

ADDITIONAL

- 2000e?

INTEGRATION

TOPICS

+ 2000]

-0.1¢t

+ 10 e=O a1

Thus, fete0-teae S"420c7%e+e osirg00te 972 4 20008

50e[-1000e!

-0.1:

-0.1

-0.1¢t

FV

a =

Fee:

10

J)

= 100,000e - 250,000 = 21,828 or $21,828

Index

of

Income

Concentration:

2

1

2

[x -

f(x)]dx

it

2{ x ~

0

5xvi

+

3x ax =

i [2x

0 at

ae-

foxT

0

the

second

2

use

1

Formula

zee = 21

S(e)

3:

3x)°|"

pt

3x)°|"

3

4H

P(e

we

b=

say

TS

PY

196

win

ole Gy

cae

age te?

1s:

tlic

al

2 int

have

eo

Danie

6)

pe

es

t? eae (1 + t)?

_

2

0,

b =

x

a

=

4 (Lies

1 and

As the area bounded by the two curves gets smaller, the Lorenz curve approaches y = x and the distribution of income approaches perfect equality—all individuals share equally in the income.

Beet fe sia, $(0)

a =

ae )seme

Formula 7 with a = 1 and

Since

with

a.

t? (1 + t)?

ak

22

i

Samo G) =\=—_,;

= S4*-

Sea

Po

YY

s(t)

3x] dx

15(3)?

il x.

Sy Lorenz curve

Use

+

3°-3x- o al

0 =

+

0

integral, a

xvVT

1

fo2x

For

-

0

+ ep sce

0 =1-1-2i1n1+CandcCe=0.

Thus,

al

eVeetatek fas Goes 2pm? tut Now,

the

total

sales

by: S(24)

during

the

first

two

years

(= 24

months)

is

given

: =

1+

Thus, total million.

24

-

sales

oy

during

- 2 In|1 + 24| = 24.96 - 2 1n 25 = 18.5 the

first

two

years

is

approximately

EXERCISE

$18.5

12-4

a9

g

65. 3 E

se 2 4 2s

in millions of The total sales, (24 over the first two years dollars, is the area under the curve months)

25 Bae ==

y = S'(t)

Gj 0

12

from t = 0 to t = 24.

24

Months

67.

P' (x)

=

xV2

+

3x,

P(1)

=

-$2,000

P(x) = [x2 + 3x dx = ae

BPR

(Formula

C=

Pies The

=2 000'=

Ee number

of

cars

GF7SES 70007"

if

dR

== 8= dt

10

cars

= SES

100

Se V t2 + 9

Using

X=54.005306 .Y=13000

must

be

sold

to

have

a

4

are

sold

eae

per

week:

= 12,000 Soh

2414770

Thererkore:

9

Formula

100 Intersection

ae |Prcertes ie 100 { V t? +

00Cr 83

egy ha) alae DOUESA

that

Profit

26,000

a2

4

ee 135

DEOLIE

P(10)

69.0)

sae

2(9

22)

000

eee

et 35

Bide

32) 2/4 04

ee t? +

36

with

a

=

3

9

(a2 =

9),

we

have:

R= 100 In|t + Vt? +9) +.¢ Now R(0) = 0, so 0 = 100 In]3| + C or C = -100 R(t) = 100 In|t + Vt? +9] - 100 1n 3 and

Ri4)

760

=7100. = 100 = 100

CHAPTER

12

In(4-e N4- bon ln 9 - 100 ln 3 ln 3 = 110 feet

ADDITIONAL

100

INTEGRATION

01m

TOPICS

1n 3.

Thus,

71.

60 =

N'(t) The by

Ve? + 25

number

of

fo iis.

items

60

learned

in

the

12

dt

1

60 [ >

first

twelve

hours

of

study ores

is given

—— gt

o Vez + 25

o Vez + 25

2

60 bin |t +

Vt?

+ 25| ) F ,

using

Formula

36

60 Lin |12 + V¥122 + 25| - inv25] 4

=

60 (in-257="ine5S)

=

60

ln

5 =

96.57

or

97

items

12

73.

fe ‘a Je 5

oe , 0

CHAPTER

The area under the rate of ecunve, Y.= Ni (€), from \t.=

y=N()



|

6 Hours of Study

12

: 12

REVIEW (e

( Hi (x) CL

(12-1)

2.A=

a

Il

(2

An)

i [-f£(x) ]dx

(12-1)

b

1

e

a=

[-In

xldx +

{"in x ax

0.5

nik

We evaluate Then du xin

]dx

(a

i £(x) ax + a

4.

i [-f(x) b

b

»

12

represents the total number of items learned in that time interval.

b

no i

learning 0 tontr=

x -

=

the

integral

= dx, We Eb

using

integration-by-parts.

and [in x dx =

[x(Z)ae =

xInx-x+0

In

[in x

Let

u=1n

x,

dv=

dx.

y

Thus, ‘ll

a=

-{

e

x

dx+

0.5 =e (—x

cy

(AL ee

dx

il

1 nx+x)/). ORY: WAR SES”

(51)

+

(x In

x-

i

x)],

se al Galisye!

(12-1)

CHAPTER

12

REVIEW

761

integration-by-parts:

Use

5. [xetare.

4x

Let

[xet*arx = Xf

4x

[x In x dx. Let

uv="In=x x

fx in

4x

4x

integration-by-parts:

and

dv

In x

2

{2.


125 ee

25°-= Se 495 20.833 -

ad

16.

f xe“dx.

Use

integration-by-parts.

0

Let

u = x and

[xe*ax = xe

dv = e“dx.

Then

- ferax = xe* -

du = dx and v = e*.

ef + C

nk

Therefore,

f xe*dx

=

(xe* -

aL

e*)

=1l-e - e - (0-1 - 1)

0

=] 17.

Formula

Use

38 with

3

- BLN

fw 0

Vx* +

a =

(12-3,

12-4)

4

- 16

ae

3

ae]

+ Vv

nl

0

16

= 5 [3V25 S816 ima:

aoe

ee S (te inV16)

= $(15 - 16 in 8] + densa ==> =/@ ln 8-4 § inbdeeaons 18.

Let

u =

3x,

then

du

=

3 dx.

Now,

use

Formula

(12-4) 40

with

a

=

7.

f 9x2 - 49 dx = 1 (Ve - 49 du =

a

aN

VaaVose

Alr w|

19.

fee-Stae,

Let

u = Poesia.

fee

Use

49

-

- 4a

49

rent PROPER RE’ ~"Waihs)

agi

+

C

ee + V¥9x2 - a9 |) HG,

(12-4)

integration-by-parts.

t and dv =

Bee

-

e °>*dt.

-0.5¢t Ee

iO

2 =2te °°

Sat,

fe-0.5¢t

Then

0 sr

= fe °t

du = dt and -0.5t aCe

ee

epee

-0.5t

v = ae 5 hte -0.5¢t

cogs

tc

4c

(12-3,

CHAPTER

12

REVIEW

12-4)

763

20.

{2 In x dx. Let

ln

u =

x

fo? an

Use

integration-by-parts. =

x and dv

De

ae=

3

ee 21.

Use

2.

=

2 (2

fi. ee

_

v

2G

(12-3, andd=

c=1, i

a = 1,

Formula 48 with Pas 1

2. ;

occ

(12-4)

y

22.

S 4

[(x? - 6x? + 9x)

Hw ll

- xidx + [ [x - (x? - 6x? + 9x) ]dx 2)

°o i)

4

(x3 - 6x2 + 8x)dx + J (-x? + 6x? - 8x)dx

iH}

2

°o NS)

2

=

= 4

-

+

4x?

x-coordinates

of

=A+4=

The =

764

CHAPTER

=

2x3

4

+

La 4

+ O30

=

“axe

2

8

do) 5); x, ) SC 0) = 10 +°2-0 - 3-0 FO; (x = O®and y'=-0)

3 =

10

y

+ 2x = 3 y Ohya + 2(-3). 10 = 1) €(-3, (x = -3 and y = 1)

3(1)

5-1

7. g(x, y) = x7 - 3y¥ 427 -3(-1)7 = 1 Bio Ned)

5. g(x, y) = x - 3y¥ g(0, 0) = 0? - 3-07 = 0 Ca=nOnand

ee

reer

(x

0)

=

2 and y =

-1)

9. 9(3, 4) - 6£(3, 4) = 32 - 3(4)? - 6(10 + 2-3 - 3-4] - 9 yh)22ee

LAR

YN

3

f(x,

y)

3 aa

h = 3(x* - y*)?2x = 6x(x* - y*)?

yy? 2c)

#3 (x7 - yjyn(-3¥)

= 99 (ee = ye

f(x, y) = (3x*y - 1)4

£.(x, y) = 4(3x7y - pe f(x, y) = 4(3x%y - 20H 37.

f(x, y) = In(x? + y*)

39.

f(x, y) = Yew

= 4(3xy - 1)36xy = 24xy(3x’y - 1)3 =2) = 4(3xy - 1)332x2 = 12x7(3x2y - 1)3

f(x, y) = yet aaa) = Yevy? = yew f(x,

y)

pH)

,

oo?

oy = ver 2yx + Ye 41.

ay)

rule)

+ aye

f(x, y) = a Applying

so

the

eae

quotient

rule:

eee Cet.

2 Lp Gb a val)

ae A

_ 2 + y*) (2x) - 2 - y*) (2x) i (x7 + y*)? _

2x? + 2y?x -

2x7 + 2y?x |

(x*+ y*)? Again,

applying

_ ae

780

(Product

oy ay = axyer

CHAPTER

the

quotient

Cit

2 + y*)(-2y) = 02- Y) (ay) _

MULTIVARIABLE

ye

rule:

(x2+ y7)?

13

Axy*

CALCULUS

-4x7y_ (x2 + y*)?

Map

iNe fic,

y)i=y

Since

(eB)

f is

+ 4y* - Sy + 3 independent

of

of ae

x,

0

='¢(y)

y)

g(x,

if

that*is;

If g(x, y) depends on y only, independent of x, then

is

og _ a

yh = xy+xwty y) = 2xy’ $0 35¢

f(x,

45.

f(x,

Eek). ae y=

x|

y)

f(x,

|

oY. x

bel xX, y)

eee

Meee”

£

AD. me

(GS;

f

297 ma

va

ot!

Oe

uraPe

a

x Senet)

(x7

of

menial

>t5) 6

‘i

il

oo)

SS

y)

ae)

ie

\

le

\

x

¥

ae

y)

pans \ ee fe Z

2x

f

nse

)

£(x, y) = xe f(x, y) = xye’" + & = xy-eY

f(x,y) foo (X

51.

a ae AR 1B

x2

\ \

\

sae S y

=

SE

eyMae

£ Ge)

f

= 4xy

ig

/

1

£(X, Y) = 4xy

f(x, y) = 2° + 6x =

2x“y +

=

y)

fx,

functions.

such

of

number

infinite

an

are

there

Clearly

==

y)

y)

P(x,

Wye

P(x,

iv)

-2x 2x Add

Eg (X

+ 2ye’¥

xye xy + 2xe xy

fy (x

Sox

0 + =

+ -

Substitute

+

2x

0 and

2y.-

y)

= xyeY

y)

e



4y

P,,( 7



y =

(1)

and

4 into

=

0 + 12

oy)

Onan

2ie5

4yye

A

iL

=) 0) when

(1) (2) (2):

(1):

-2y +

-2x

8 =

0

ye

4

+2-4-4#=0 +4= Ke 0 when x

-2x

P(x,

2x

Of

+ 2xe¥

xe xy

2xir

OU

OL

4h

0 =

2y - 4 = 0 4y + 12 = 0

equations

Thus,

= xe

y)

- 2y7 - 4x + 12y - 5 -x° + 2xy

Phx, yo= P(x,

E(x,

P(X,

y)

=

0 ee, = 2 and

y=

4.

EXERCISE

13-2

781

53. Fix,

vy) 2)"

F(x, Set

sexty>

F(x,

y)

=.0

ay 4/10;

(2)

,ayve=

and

Fi, (x,

y)

=

0 and

Aye ica sD 0 -4x*y - 4= 0

Boxe From

jou

y) = 3x? - 4xy? - 2; F(x, y) = Lg Ap

-+., x

solve

hee simultaneously:

(1) (2)

Substituting

this

into

(1),

12

3x2we “) --2=0 -

0

4 MN

S

x4

3x°

55.

=

x(a -

Using

a graphing a. 14 200

Then,

y =

2x3

-

utility,

we

find

that

-0.694.

E(x) om Sxtee VB Ae - Gy 2 (AUF (x, (Duma. + ext 6. 2 = 3x° - 4x - 3 SLE (x,

1)]

=

6x

-

4;

critical

values:

6x

-

4 =

0

oes

Sans

ea

os [£( Ll (A axe

De ]

roe>

0

Pe Therefore, (5. 1)= oft (x; OL)" (B)

oe is

the

may have f(h, y), Bioee

a

f(x, (A)

y)

2 3(3) value

of

se,

6 is

(5. 2) =

f(x,

se

y)

Se

on

SHES -3 is

the

the

curve

nati minimum

£(x,.

1)3

value

26 Gee

= 4 - x4y + 3x

the

minimum

value

of

f(0,

y)

or

= =

eT.

alist t (OMe + ¥

Let

Ye 2 and find the maximum value of f(x, 2) = 4 - 2x4 + 12x 4 32 = -2x4 + 12x 4 36. Using a graphing utility we find that the maximum value of °f(xX,£2)" is 746/302 at ixt=aeher 14471592 Ie Alysisye.

(B) £,(x, y)'= -427y + 3y7 £ (15145, f(x,

ve

£(1.145,

782

2 4(3) =

smaller values on other curves f(x, k), k constant, h constant. For example, the minimum value of f(x,“2

VY A 6y 57.

minimum

4

CHAPTER

13

2)

=

=x4

-0.008989 +

6xy

+

=

5y4

2)) ‘= 92,021

MULTIVARIABLE

CALCULUS

0

59.

f(x,

y)

=

1n (x2 + y’)

(see

Problem

37)

ae ae A

£(%,

f x (* ; y) =

(x2 vee + y7)2 - 2x(2x) emt y

ue

ey

ey re). sshd 6 see asa Be

ee'

fy

ee aheal>ile:

f(x,

OO

(x,

fy (x

ay

eee

A? * ey

z

h

h-0

a?

= lin h50

BV ea

Oe

iene

———

h>0

ey

We

k30

es ie

h

Oy

= at

SS ao

4

h

wid eae

(B) lim

D

ae ee a al ge TGA ORE py BOT tee Gah? y 2

61. f(x, y) = x + 2y oie. + Db, vy). - f(x,y) (e+ (A) lin *——*_ ——— = lim h-0

(x t0y")2°- 2yvi2y)

; y) = G0T és ttos Sabo Vv) TE ILS :

esIdina. In)

h

h>0

Obs

f(x, iy + Keo =) flxp cy) Oz lin 6x OS

SADC Reg) oo

k30

k

6

= Bae ot 12) k

2 Spb (97 14 020K 26 ke ie, a

Si.) Oise

eae

ee

k>0

_ Ayk + 2k = lim = 0

k

7

k

ee

4

90 ih

Dy’

ee

2k

ee

tn

aay

63. R(x,

y) = 80x + 90y + 0.04xy - 0.05x*

C(x, y) 8x + 6y + 20,000 The profit P(x, y) is given

mix

gee) & R(X,

y)

C(x,

- 0.05y”

by:

¥)

80x + 90y + 0.04xy - 0.05x* - 0.05y% - (8x + 6y + 20,000)

= 72x + B4y + 0.04xy - 0.05x7 - 0.05y7 - 20,000 Now

P(x,

Vieteie

and P,(1200,

1800)

P(x,

=

+°0.04y

=

72

=D

Y)

and P(1200,

84

1800)

="0°1x

+ 0.04(1800) bac

+ 0.04x

-

o- el

-

0.1(1200)

Ome

0.1y

=

84

+ 0.04(1200)

=

84

+ 48

-

180

=

0.1(1800)

-48.

1800) output level, profit will increase Thus, at the (1200, approximately $24 per unit increase in production of type A calculators; and profit will decrease $48 per unit increase in production of type B calculators.

EXERCISE

13-2

783

65.

67.

% =.200 y = 300

= -

5p +44; 4q¢ + 2p

Ox dp _=

-5,

rg OnuE

A $1 A by

increase 5 pounds

in at

the any

price price

of brand A will level (p, q).

decrease

the

demand

for

brand

A $1 B by

increase 2 pounds

in at

the any

price price

of brand A will level (p, q).

increase

the

demand

for

brand

f(x,

y)

=

10x

ey

x79: 25y9-25 = 75 °0-255,0.25 y) = 10 (0.75)

(A) f(x, f(x, (B)

2

10 (0.25) x9°75y79-75

y)

Marginal

productivity

of

= 2,5%0-75,-0-75

labor

=

£,.(600,

100)

=" 9-5(600)6 -7-7 (100). > ae ae Marginal

productivity

of

capital

=

£Y,(600,

100)

2..5(600)°-' (100), °*’> = guee (C)

69.

71.

The

x = f(p, y = g(p,

should

encourage

the

q) = 8000 - 0.09p* + 0.08q* gq) = 15,000 + 0.04p? - 0.3q%

£i(P,

a)r=;

G,(P,

q)

Thus,

the

O20802).q

=

0. 16q->

= 0.04(2)p

=

0.08p

products

are

£.(p,

@)

Q

fs Ml

°

=

the

-0..003(2)q | (=)

> 0

=

(Skis) (Ski boots)

=0,,006q.

PavereSties) Ga (Sayeed

at

=6a

a4 (65). °-**° (53)

CHAPTER

13

MULTIVARIABLE

CALCULUS

of change of surface a one-pound gain in

Sera 2 499

For a 65 pound child 57 inches tall, the rate area is approximately 21.99 square inches for height, weight held fixed.

784

capital.

(Butter) (Margarine)

For a 65 pound child 57 inches tall, the rate area is approximately 11.31 square inches for weight, height held fixed.

£,,(65,¥57)

of

.003(2)p = -0.006p < 0

products

*57)

use

competitive.

A = f(w, h) = 15.64w°- 4259-725 (A) £.(w, 6A) S15 764100425) wan ii} 15960 (02 725) Woe £.(w, h) PSP ha (BI £2(65',

increased

0

x = f(p, gq) = 800 - 0.004p* - 0.003q* y = g(p, q) = 600 - 0.003p% - 0.002qg%

Thus,

73.

government

of change of surface a one-inch gain in

TS.

C(W,

100;W

==

L)

CW,

bE) paid = =;

Cyl.

8)

The

index

per

1-inch

EXERCISE 13-3 SL Things

i-

100 a7x 6

xeFur 600K J64 |z

125

increases

12.5

increase

units

in the

of the head (length held when W = 6 and L = 8.

I

a

"==

ORGASM

100 re _

=

100w

_

7)

C,(W,

SSE

WARE SEE

IOP FANE

width

fixed)

The

index

per

1-inch

decreases

LEE LEESON

9.38

increase

(width held and L = 8.

SP IT EEE E LES SITLL! ERTS TE

-9.38

fixed)

units

in length when

W =

ALLE DTI LIE LEE !CBE LEE LESTD TITEL EE DELETE

6

TALLER

ETD LLL LED,

to remember:

f(a, b) is a LOCAL MAXIMUM if there exists a circular region in the domain of f(x, y) with (a, b) as the center, such that f(a, b) = f(x, y) for all (x, y) in the region. Similarly, f(a, b) is a LOCAL MINIMUM if f(a, b) S f(x, y) for all (x, y) in the region. If

f(a,

b)

function

is

f(x, f(a,

either

a

y),

and

Dyr=

0

SECOND-DERIVATIVE

local

if

maximum

f(a,

b)

and

TEST

FOR

f(a,

LOCAL

of

and

a

local

fila,

b)

1D)

a=

EXTREMA

minimum

exist,

for

the

then

aOr

FOR

z =

f(x,

y)

Given: (a)

f(a,

iD)

=" 0 and

(b)

All second-order partial derivatives circular region containing (a, b) as

(c)

A=

£64:

f(a,

Dyes

=

Then: Dhabt ii)

4ii)

iv) Leifiseh

y)

ees):

are

=

=

fy (a

=/0

(1a).

ib),

(Ca

Dd)

is a critical in

of f exist center.

fy la

point]. some

b).

AC i— B* > maximum.

0 and

A
minimum.

0 and

A>

0,

then

f(a,

b)

is

a

local

If AC - B* < 0, then f has a saddle point at

(a, b).

If AC - B* = 0, then the test fails.

4 x + Sy - 6 4 # 0; f(x,

nonzero

Db)

for

all

(x,

vy)

=

5 4,0;

the

functions

f(x,

y)

and £ (x, y)

y).

EXERCISE

13-3

785

34

2(%,

.Vv)

EAM,

=

3.0

eetee2xet

VY). pe ee

nonzero

for

all

F(x; eV o2_6.>

16. Sart

4x; (x,

0.2

6.8

+ x4

+ 0.6y’;

the

function

f(x,

'y)

232

y).

oe -

fy =

ok

f(x,

y)

=

-2x

4=

0

f(x,

y)

=

-2y =! 0

bets)

=2

y="0 Thus,

(=2,-,

Ore

-2,

£25

0),

is7a

errticalspoint.

fy =O,

fy =e

0)-£)(-2,

Om

]

(f,(-2,

and

0). )

£A-2;

THUS ale —2), O)i— 26) —

(eQ)2) = 4(-2)

E(x; syne x? + y¥ + 2x f(x, y) S24 +) 2 = 20

-

6y +

: AF

0)

be 2) 2) >

sae5255,

0%.

Fn be 2A

08

- 0? = 10 is a local

maximum

(using

3).

14

xe =e

Le Kee ee

2y

6" = 0

Thus

71,

“Sh)iers

Sty

-

y= 3 i

fst

22s

te (=i Thus,

al cuuticallipoint:

0

3) -f,(-1, using

3,

=

0

fy (ol. 3)

f(-1,

f(x, ¥) S°xy teexef x ayyod 2) =/0

3)

[f,,(-1, =

4 is

fy = ee =

Ss) a

0

,

=-2521e)

local

0*

2

fill =

3)

222

4 >-0

minimun.

Sy —.2

» Siete” fy See

fS

nus,

x= 3 -=2)' 4s. a critical

(3;

hes Rte £(3,

Thus, 11.

Fier -2)

a peti i

fi (3.

-2) -£ (3,

using

(ee

ga =

-6x

fy EZ

2G

3,

Lo

+

-2)

-

a saddle

alae 2xy

-

=

0

iO)

Solving (1) and (2) for is a critical point.

786

CHAPTER

13

MULTIVARIABLE

27

+

Bee Sa

=1

£ (3)

=2')i) Da Be. Hee. Ov 0. a

[f,(3,

f has

2y + 14 aan

point.

point 14x

+

at

(3,

2y +

10

[1] PS,Ag=

2

-2)

=

0

="

ee 4:

P 65—s

2a

minimum

Eyles =

20)

2)

3=6

5>) 0

and

a 2627 - 2-2-2 + 3-22 - 4-2 - 8-2 + 20 = B.

(2

Ox

Vy

=

j _

f=

0

y= Thus,

t= 2072.0

26205 20 =188-

obtain

2)

is a local

oxy d (xy)

=

7+ 2°

2) = A

Sy + 20

£(x, y) : ey f=

1-6) (4)

j= i=

fiyls,

(1)

(2)

4>

using

2)

ye

:

point.

ee

Thus,

=

8 =

Lew

2) = 2

ay" +/4x -

fy =4x-2y-42:=0 f = -2x + 6y y Solving (1) and

2

Re

eles 3-37 42-3 +See

EGX,

=

xY

6,< 0

=

oxy 9 (xy) oy

ex

0 (e¥ # 0)

(0,

5

is

=

0

x=

a critical

(xy) xy 2AAY) aa

Oe 2

e

0 (e&” # 0)

point.

:

SL RE9g 1+ ue

= yey

=

&Y

xy. yerx

fy

+ xye*’

==

(xy)

xe xy

a

= x72

= ye £4. (0,

0)

£460.

0)-£,,,(0,

Thus,

17.

=

0

using

Paar

3,

Oo); = f(x,

(£,,(0, y)

has

0)

OTe

=e

Ore

a saddle

+

et

PE

at

point

at

(0,

£0.

0)

=-0

a 0 0).

f(x, y) = x+y - 3xy

fete - 3y.= 3(x* - y) = 0 Thus.’

y = x)

(1)

pyeray - 3x = 3(y - x) = 0

Thus, y zy X. Combining (1) a0"

0 Or

Eo

0x

mrPor

tne

x

=

(2) and (2), we obtain 1, and the critical En

critical

zo,

0)

Pee

Ol

Thus,

using

point

(0,

=0

3,

f(x,

(2,00. ON y)

has

- 1) = 0. Therefore, 0) and (1, 1). Cy

3

0): ee.

0, 0)

x = x“ or x(x points are (0,

0)

=

2=3

,

= 0 = (-3)>

a saddle

point

at

Ey (0.

OO,

= e-9 50 (0,

0).

EXERCISE

13-3

787

For the critical fol, lh) = 46 ffl:

1)-£f,,(1,

Bea

Silly ae a0)

P.o.4

Galles

Thus,

using

1)

3,

(1,

-

f(1,

£(L P21) oe 19s 19.

point

1): ecyems dd)

[f, (1,

1)

is

1 ewes

a

e=" —3

i) ise =

local

tee) 20

;

16-167

fil.

(3)

minimum

=

927

1) 0

minimum.

f(x,

y) = x° - 3xy + 6 f x = 3x* - 3y = 0 Thus, fy =

y¥ = x* or -6xy

+

12y

y = &x. =

0 or

THUS) eva = DOROLEext =n), Therefore, the critical

788

(f,,(

_

CHAPTER

13

MULTIVARIABLE

—6y(x



points

CALCULUS

2).

are

=

0

(0,

0),

(2,

2),

and

(2,

-2).

Now,

fi. =

6X

es =

For the critical £60, 9) ° Ey (0. Thus,

23.

the

-6y

fy =

-6x

+ 12

point (0, 0): Li eee 0) - [£,,(0, OlS= 0:12

second-derivative

test

0

fails.

For the critical point (2, 2): Pe (2s 2)-f (2, 2) - [f(2, 2) dita =i

12+

Oge :

Thug,

(2,

2).

21x,

vy) has

a saddle

point

at

For’ the critical point (2, Peake -2) +f) (2, -2) - [f

-2): (2, — Dy) |Pie

Thus,

point

f(x,

y)

f(x,

f.. a= Set

y)

4xy a &. =

has

a

saddle

at

(a2) TP46=%-144

from

P to

C is:

have:

6x -

24

Therefore)’ hag

distance

x — 20x + y* + 100

= 3x° - 24x + 3y° - 12y + 140 =

6

0

P, =

(4,

2)

is

a critical

and

[bead

and

PL (4, . =

Fy =

and

2

[P,,]

Therefore,

120= ye

Peep = Poet yy -

6y.-

7

bie

35.

distance distance

2a

oi

tO)

:

) iz

=36°6°-

P has

Ove>

point.

0 "= 36

a minimum

at

> 0 the

point

(4,

Let The

: : x = length, y = width, and z = height. surface area of the box is:

Sm

xy

tywaxzet

ayvz . orarS(x;oy)

230 e = Kae =e

0)

See

128 =

0

Thus,

y = 28

a. 3

y

y

(128) 4

Setting (8, 4).

Y y = 4 in

ae

xyo+

=

Cre

7226 47 = eat

Tore

Sc

or

y* - 64y = yiy

and (1), we

2). Then

V = xyz

mi + oS

xXa>

=

64

or

64 >. sifa

Z=

One yi>ed

(1)

128

y -

find

64)

=

:

0

(Since

yu= 4 x= 8.

yield Therefore,

y > 0,

y =

0 does

a critical point.) the critical point

EXERCISE

13-3

not

is

791

Now

have: S22 apie = eee and

a

we

:

ae 7

S.(8,

and

S68,

A)

Sy (8,

MAN

4)-S/ (8,

Length

x =

@))s,

120

32..=

er

>. .0

eG

[S,(8,

package, (ei)

-

2

Pan aig He B42 Oe

=

1-4

af

3a>

0

require the least amount of material are: : , 64 : y = 4 inches; Height Zz = 8(4) = 2 inches.

Width

the

4)]}“

will

that

8 inches;

37. Let x = length of x + 2y + 2z = 120 Volume = V = xyz. From.

-

dimensions

the

Thus,

4)

,

- 2 aT

y = width,

Thus,

we

and

z = height.

Then

have:

; 2 Or sc P9 x V(x, vi Sig{ > hr Slay amph easeks os

Yona

V, = 60y - xy ¥(60

Sux

60

ee =

60x

-

-

Ly)

x

-

x? es

x(60 -

y

2xy

Solving (2) (40, 20) is

and the

Lee =

-2x

Vi, (40,

Thus, and

x

-

z =

2y

20) -V (40,

CHAPTER

Bist

x =

13

40

(Since y > 0, y = 0 does a critical point.)

not

yield

(3)

(Since x > 0, x = 0 does not a critical point.) we obtain x = 40 and y = 20.

yield

0

and

Var (ae;

20)

=

-20

and

Vise;

20)

=

60

and

Vin teen

20)

=

cae

20)

-

the maximum volume 120 - 40 2-

Length

792

-

=

(2)

(3) for x and y, critical point.

Vel Seo, 60

Oo oO

- 2y) = 0 NIx Sioa eI = 10)

AON

vey =

I

as

inches;

ah

[V,,,(40,

of =

20

Width

MULTIVARIABLE

20) ]~ =

the :

package

y =

20

inches.

CALCULUS

< -

0 40

--

40

=

-20

‘ (-20)

(=80)

-—

[=20]

= 1600 - 400 =e 200 N= a0 is obtained when

The

inches;

Thus,

package

has

x = 40, y = 4 ; dimensions:

Height

z =

20

inches.

20,

EXERCISE

13-4

Things

i:

to remember:

Any local maxima or minima of the function z = f(x, y) subject to the constraint g(x, y) = 0 will be among those points (Xp, Yo) for which (x,, Yo: Ao) is a solution to the system:

F(x,

Y,

7 a

F(x,

Y,

A) = 0

Fy(x, y, A) = 0 where

F(x,

partial METHOD

OF

[Note:

y,

A) = f(x,

derivatives

y)

LAGRANGE

y),

for

(b)

Form

(c)

Find

function

the

the

the

functions of two variables, the of three or more variables.)

Formulate the problem in the form: Maximize (or Minimize) z = f(x, y) Subject to: g(x, y) = 0

Pix, yA)

all

functions

(a)

the

provided

MULTIPLIERS

Although stated also applies to

method

+ Ag(x,

exist.

F:

= f(x, y) + Agtx, ¥)

critical

points

(x,,

Yo:

Ao)

for

F,

that

is,

solve

system:

Fi(x, y, 4) = 0

(Gymerie

Fy (x,

y,

d)

Fy(x,

¥,

A) =O

(x,

assume

Yo: that

=O

Ao)

is

(x,,

the

Yo)

is

only

critical

point

the

solution

to

the

of

F,

then

problem.

If

has more than one critical point, then evaluate z = f(x, Ate (3.., Yo) for each critical point (x,, You Xo) OLVF.

Assume that the largest of these values is the maximum value of f(x, y) subject to the constraint g(x, y) = 0, the smallest is the minimum value of f(x, y) subject to constraint g(x, y) = 0. 1.

Step1.

Maximize f(x, y) Subject to: g(x,

Step2.

F(x,

y,

A)

iT}

F y)

and the

= 2xy y) =x+y-6=0

f(x, y) + Ag(x,

y)

2xy + A(x + y -

6)

EXERCISE

13-4

793

F

=2y+A=0

F

gsa2xatr

Ag=

(1)

0

(2)

Py cemocrr Yn ee aa 0.

(3)

From

obtain:

(1)

and

(2),

ru

we

r

Zosenrvln ioe Substituting these nr

Baia

(3),

we

have:

is

(3,

3,

cdaak

AX = -6. the critical

Thus,

3. Step1.

into

r

point

only critical point 3) = 2°3-3 = 18.

Since (3, 3, -6) that max f(x, y)

is the = £(3,

Minimize f(x, y) Subject to: g(x,

= x + y¥ y) = 3x + 4y -

F(x, y, A) = £(x%, Yb

=x

(1)

and

3A Scat

i

conclude

for

F,

we

conclude

0

(2) (3)

we

obtain:

ag -2r these

3(-3) + 4(-2A)

into

-

(3),

critical

(3,

4,

point

is

have:

=25

-2 (3,

the

is

-2)

we

0

25

tv A= w|P A. = Since

we

(1)

(2),

Substituting

The

=

F,

Ag(x! y)

Boi 2y + 44 = 0 25-220) Bype 3x + ay From

25

for

+ y + A(3x + 4y - 25) S40

2x + 3h

PS

-6).

4,

-2).

critical

only

point

that min f(x, y) = £(3, 4) = 3% + 4? = 25. 5. Steps.

Maximize

f(x,

y)

F(x,

-y;- A) =(£(x,

P=

-3

FY =

4+

=

4y -

0

(3)

794

CHAPTER

13

does

A = not

2x

+ 5y -

3 =

0

y) = 4y ="93x £22 (2xi+ Syn

3)

(2)

a have

MULTIVARIABLE

to

(1)

Fy) =(2Xk ty = 31e= From)(1))

subject

\y) + Ag(x,

+ 2A =0 5A =

3x

10

(3)

from a

(2),

A=

solution.

CALCULUS

- 2 Thus,

the

system

(1),

(2),

7.

Maximize

Step 1.

and minimize

Subject

to:

BAX,

JA) Fe f(x,_

Y,

g(x,

f(x,

y)

y) + Ag(x,ry)

= 2xy + A(x

+ y" — 18)

FL=

2y +

2Ax =

0

(1)

Fy =

2x + 2dy =

0

(2)

Fo=2x¢+y-18=0 From

(1),

(2),

= 2xy

y) = x7 + y - 18 = 0

and

(3) (3),

we

obtain

the

critical

points

ae phe i LES He 34 sb) ie AS), 8S) Vi) tard Poe 30.77, £43, 3) = (253% 2 2.18 £(3, -3) = 2-3(-3) = -18 £(-3, 3) = 2(-3)-3 = -18 f£(-3, -3) = 2(-3)(-3) = 18 Thus, max f(x,y) = f (3, 3) = £(-3, -3) = 18; min f(x,y) = £(3, -3) = £(-3,3) = -18. 9.

Let

x and

y be

the

required

numbers.

Step 1.

Maximize f(x, y) = xy Subject to: x + y = 10

Step 2.

BURR

Step 3.

Fetes yor a

A)

*= xy

From

A420

x+y(1)

-i,

g(x,

Y=

44>y = 10

20

Sy 210)

(1) (2)

10 = 0

and

(2),

(3)

we

obtain:

y = =K

Substituting

N= The

or

A604

=x+A=0

Fos x=

yr

these

into

(3),

we

have:

-5 critical

point is (5, 5, -5). Since (5, 5, -5) is the only critical point for F, we conclude Chat max f(x, y) =" f(5,°S) = 5:5 = 25. Thus, the maximum product is 25 when x = 5 and ‘Va

11. Step 1.

Minimize f(x, y, Subject to: g(x,

FOX

ee,

EE

2x°F

Boe

2y - ih = 0

Fi =

2z

BA

ae

+

La

z) y)

= x* + ad + Z = 2x - y + 32++528'

aerate

2h = "0

3X =

ey Vi

ea

=40

Pie Wig

(1)

(2) 0

(

n

4

= 10, = Vesely,

4

squares

0.7x + 1.

the

a

line

is

Refer

to

right.

x

4"

XV

ab

8

8

al

W)

5

10

4

a

3

4

L2

9

4

0

0

16

10

ity)

30

30

4 > ome

k=1.* 2

X35

es

INO)



eee

4 ee

Ah

Sy x

ee

ek

=

SO),

0

EXERCISE

13-5

801

system

into

values

Substituting these we have: 10m + 4d = 17 30m + 10d = 30

(ae

-2.5, The solution of this system is m= is line s square least the Thus, d= 10.5. graph the to Refer 10.5. + -2.5x = ad + y=mx at the right.

Totals

Vx

ah

3

3

aL

2 3

4 5

8

4

15

9

4

6

24

16

10

18

50

30

4

3

S

4

pM soe =

y

4

PEs:

= 18,

Yk

= 10,

es

Thus,

e

X,Y

ae

= 50,

50).

kau Substituting these values into the formulas (2) and (3)], we have: for m and d [formulas 4(50) (10) (18 20fet CE

[Note: All points lie on the line.]

=

~ an=

4(30) =" (10) 16) = De) r.

Sy

18

x

Fea:

CALCULUS

=259),

$e Si

aie

atatwdktohe

Substituting these values respectively, we have:

mee)

ewer

86)

Mees

Thus,

A

the

least

Gotals

92.5,

=

6 +12 4

squares

y=

oy

line

-1.5(2.5)

4.5

Xi

Vx

XV

x

0 5

10 22,

0 LAK)

0 25

10 ALS 20

Sal: 46 5 1. 160

50

Thus, Xk = 50, Substituting respectively,

310 690 1020

100 225 400

21:30

750

for

meandy

a:

-1.5x

into

+ 4.5.

=.0.75.

2 y, = 160, aXe

these values we have:

(3)

4.5

is y = +

and

Seo, = 2:5

Wn

ae

(2)

ees

972 - 64 7g

(-972) (8),

When’x°=

formulas

@ s6uerag" ig

t is) 2 gt

a=

into

= 2130, es = 750.

formulas

(2)

and

(3)

for

m and

a;

_ 5(2130) - (50) (160) _ 2650 _, ,, 5(750) - (50)2 1250 ; = ener 4 12(50) _ 54 Pesi6o _ = 2.12(50) me oO Thus, the least squares line is y = 2.12x When=x = 25,-y = 2.12(25) + 10.8 = 63.8.

11.

Totals Thus,

Xi

Yr

-1 i 3 5 Zi 15

14 2 8 6 5 45 =

Substituting respectively,

EL) 5(85)

ce

45

-

x;

-14 12 24 30 35 87

ili 1 9 25 49 85

5

ne

ee

XLV

1G.

5)

YE

=

these values we have:

45,

into

ES) (85). 22400 = (15)j¢ %],. 200

So)

ek

+ 10.8.

5

=

formulas

87,

(2)

2

atk

=

and

(3)

85.

for

m and

el,

Ny 5

3619.6

Thus, the least squares line is Vea. 2x + 12) 56:. When x ='2, y ="-1.2(2)°+ 1276 ="1022.

EXERCISE

13-5

803

13.

Xq

; Totals

Yr

x 0.25 4.00

PAS 22

25)

21

73.5

22°22'5

5.0 6.5 9.5 aie 0 E255 14.0 L5e5 80.0

al 18 12 11 8 5 a 144

O50 ri ay ac 114.0 WAGE 100.0 70.0 Aly, & VIA SS

2500 PX ISS 90.25 2 OO 56).25 196.00 DEO) AS 887.50

¥

Thus,

XV 125 44.0

0.5 2.0

otk

=

.

80,

nk

Substituting these values respectively, we have: a

10(772.5)

-

10(887.5) at

Ladner

15.

a

=e

(2)

(3)

for

and

OS

or

m and

d,

-1.53

2475

7) 266 Fue te

547 9

nay

line

x = 8, y = -1.53(8)

is

+ 26.64

= 14.4.

Minimize F(a,

b,

c)

=

(at

D+c-

2)? +

(4a

+

2b+

Cc -

1)?

+ (9a # 3b +>coFi (a,

DC)

S=92 (a+

b+

G-

2)

+

8(4a

+

=

F(a,

F(a,

b,

b,

¢c)

c)

The

system

or:

CHAPTER

708a

= 2(a =

200a

=

2(a+

=

804

ne

=i] (2 be otk

formulas

-3795

- (80)?

Thus, the least squares Vy =) -L353x) + 267.64:

When

ok

into

(80) (144)

(= 1553)):(80)) 10

¥

aba

is:

60a

+

+ b+ +

+

F(a,

+

60c

-

18(9a 126

c - 2) + 4(4a

60b

+

6(9a

2bat-c +

3b

+

1)

3b

oe

|

1)

aM

|

1)

D+c-

2)

+

2(4a

+

2b

+

2(9a

+

3b+C

-

t=O

F(a,

DC)

a0,

F(a,

ib

ach=

14

©

+ 200b + 60c = + 60b+ 20c = + 20b+ «8cr=.

MULTIVARIABLE

CALCULUS

126 38 14

1)

+

38

8c

-

|

-

+

c

(16a 4 4b

+o

ae

®)

+4

20c

20b



+ 2b

+

‘DaLC)

708a 200a 60a

13

200b

+

1)24

1)

+ 32(16a+ 4b+c - 3)

+ 8(16a + 4b+ Cc - 3)

+ 2(16a + 4b+c- 3)

BiereelullOn is (a, b,c). = which gives us the equation shown at the right: y= ax* + bx +c or

(0.75," -3.45, 4:75)" for the parabola

y = 0.75x* - 3.45x + 4.75 Bhe-gaven-points:—-(1,—2)s.(Qm also

17.

appear

System

on

(1)

the

L)g—(33-b)



3)

graph.

is:

n

n

[2 sep + nd = & VY, n

(a)

n

(24

n

é e «}? f eo Hg

ae n

Multiply

equation

resulting

(a)

by

equations.

{ oS *,} equation

This

will

eliminate

(b)

by n,

d from

the

and

add

the

system.

Thus, n

Bey’ Kk

m=

n which

is

ee x eal |ela My

oi ¥2)-(> [2%

[2.4]

equation

n

2 Ye

d=

(A)

Solving

equation

(a)

for

d,

we

have

2%]

kor *

k=1* n

which 19.

(2).

n

is

equation

Suppose

that

(3). n

=

5 and

Kos

only

25

=

ade,

X,

v=,

Peat

OP

Therefore,

from

formula

xX, =

2.

5

Then

ae,

=

Ke

-2-1+0+31+2=0.

(2)

5

2

agate

5 2, x

eee 5

y

ee Ux, V_ ore

5 Dee rl

k

k=1

5

Dave ECO

which

eEormLaem 3\\)

is

the

merci

average

of

er Sat

Y¥y+

Yor

V3.

Yq,

and

Ys:

EXERCISE

13-5

805

(B)

If

the

average

of

the

x-coordinates

is

0,

then

same

as

in part

n

A=L_ _ Q n

Then

all

instead

calculations of

will

be

the

(A)

with

"n"

5.

10 QuadReg

| 23.

(B)

The

tee)

quadratic

regression

function

best

fits

the

data.

The cubic regression function has the form y = ax? + bx? + cx + d.»\The normal equations form a system of 4 linear equations in the 4 variables a, b, c and d. The system can be solved using Gauss-Jordan elimination.

25) o) (A)

Xx,

v7.

0 23.8 alk 165 2 19.0 5 29.0 4 8729 5 yl 2 6 yl gall le eZser5

TOtalisie2

7

Thus, x ~

0 N65 38k 0 87.0 P56 256.0 366.6 syaey 7)

0 il 4 9 16 25 36 91

7

Ye = 23685)

these

TOTS Ts =

xa

7

igi

Substituting .

X, Vy

values

Xe

into

21238. 5) ee

the

7

oat2 491

= OS

formulas

for

m and

d,

we

have:

eo

= = 7.15 M91y = (042 196 Bua 2a8ne Sind fe fats Sycure Thus, (B)

Biksorn

1998 will

the

(2)

Thus,

CHAPTER

squares

line

corresponds to x = be y= 7.15(13) +

Totals

806

least

13. The 12.62 =

Bae

X,Y,

ae

50 5). 8) 6.0 625". Fh sO}

210) al BRS) ih sd! Mae iteal

10.0 9.9 8.4 The 8 Teal

252,00 30.25 36.00 A225 49.00

Woe

43.8

30.0 oe

0),

kei

MULTIVARIABLE

Vay

*

CALCULUS

7.15x

+

12.62.

monthly production in the 105.57 or 105.57 thousand

X,

Ps

13

is y =

13th year pexmonthe

182.50

Kor

x

RK

=

AS

oi

Sie

Renee

re

ASA 5Sy

Substituting

these

values

into

2048.8) SFO. 5) See 5(18225)..~. (30}* 12.5 pee, 225 - (20.48) (30) Was Thus,

a demand

(B) Cost:

C =

Revenue:

Profit:

equation

is y =

the

formulas

-0.48x

xy

=

-0.48x"

+ 4.38.

= -0.48x7 + 6.3x - 17.52 6.3. ° = -0.96x

+

6.3

P"(x)

=

P(x) has a maximum at x = 6.56; to maximize the monthly profit.

-0.96

Xi

and

P"(6.56)

Yx

50 55 60 65 70 300

=

XV

WS 13 10 6 iz 46

=

5(2595)

-

5(18,250)

these

5

values

(300)

_ -825

- (300)?

1250

46

(A) (B)

The least squares P(57) = -0.66(57)

Thus,

( : 66) 300 oo

into

(46)

as

=

the

line for + 48.8 =

price

per

bottle

should

be

5

= 2595, 2% = 18,250. formulas

the data is 11.18 beats

for

m and

d,

we

have:

86.7 102.9 12S 86.4 234.0 2 ORS 1363 248.0 241.4

2.89 4.41 SB)GVAE) Seo 12.96 13.69 22.09 38.44 50.41

7.4 Sa7

29 20

214.6 174.0

S410 75.69

Aes, 61.8

23 464

Deis I 2049.4

hei

=

P = -0.667 + per minute.

48.8.

x,

XV 5

Yx Syl 49 53 36 65 35 29 40 34

68)

the

Ar es

*

xq

X=

0

-0.66

ew Pasa 2a3 PB fh B26 3hi/ Aa, Gr Tacit

cat. *

6.56

2500 3025 3600 4225 4900 135250

5

Substitituting




years.

0, k > 0 constant

have:

StiheniM(1 = @*) = 2 S(3) = M(1 - e3*) = 5

From the equation

first equation, yields:

M =

z

-

e

=. -

Substituting

this

in

the

second

2

aaa)? and

Qe

2 - 2e°* = 5 - 5e* ASe* +3 = 0

(1)

EXERCISE

14-2

843

Now

let

t =

e*

(k =

-ln

t).

2c? - 5t +32 which

factors

are

1n(-1.82)

k = -1n(0.82) Now,

M =

Thus,

61. ‘Let for

t =

=

rp

e 9-2)

and

t = 0.82

and

and

t =

1n(1)

-1.82.

implies

k =

0,

time

t.

it

follows

that

denote the problem is

= =

k(T)—8800)),

the Z

abil

M = $11 million.

T(t) this

fie COLO

becomes

= 0.2.

k = 0.2

Separating aT

1,

is undefined

pad Un (1

(1)

tenet —3) =s0

solutions

Since

equation

into

(tetn (OE The

Then

0

temperature vk n(§)

want

to

720e1/21n(5/6)t.

-

= 800

find

t such

that

500) S00, s720e 9 ua”

T(t)

eilaantS/ eeu 2

ns :

byes.Z in(Z)e

ie in (35) 12 12

Qin

C=

5

=

9.6

n(§)

844

CHAPTER

14

DIFFERENTIAL

EQUATIONS

minutes.

= 500.

Thus,

the

constants

63.

Let for

T(t) this

denote the temperature problem is:

of

a =

(Tian

=)

Separating

25) pe Koons,

the variables,

TGQ0))

the S25),

we have

pie

at

2 (1)

time

t.

Then

the

model

i= 225 5

me oe aT eae. =:

frat

In|it = (25) =. kc. + C Tf =

95

=

ekttc

T= 25 + Aekt Using the constants

initial conditions A and k, we have:

7T(0)

=

325

and

T(1)

=

225

to

evaluate

the

T(0) = 325 = 25 + Ae’, A = 300 Thus, T(t) = 25 + 300e*°. T(1) = 225 = 25 + 300e& 300e* = 200 Fat 3 19 k=

Therefore, Finally,

T(t) we

Sin 3

= 25 + 300e¢1M(2/3) |

want

to

determine

7T(4):

T7(4)

=

25

+

3006" 12 '273)

= 25 + 300e1(2/3)" 2 4

= 25 + 300(5

65.

If P(t) is the number this problem is:

at ap pees)

P ap =

iF: ibe

Sil

Pee

(0)

of

bacteria

ie— OO;

Pi.)

"=

present

4

Os

and

P(1)

at

time

t,

= 84.26'F

then

the

model

for

0r

SK Cte i ertela

= kt + C ie

ekttc

P=

Ae*t.

General

We use the conditions constants A and k.

solution P(0)

=

P(0)

= 100 = Ae®, A = 100.

P(t) P(1) ef k

= = = =

100

=

140

to

evaluate

the

Thus,

100e*¢ 140 = 100e* a4 1n(1.4).

EXERCISE

14-2

845

Therefore,

(A)

P(t)

= 100e(21-4)€.

When

t =

= particular

5,

= 538

solution (B)

bacteria.

When

P =

ein(1.4)€

1000,

- 49

gaa 2) fe Seo

ie =

this

problem

ap P(50,, 000)"

Tutied)

= 6.8

is:

=

P)

= 500.

- P); P(0) = 100, P(10)

a = kP(50,000

|

AUG) 10

k dt

mas!

fx GE 1 HS ae ace Ab Ms aS ONO00N= 5|a a

Jenene EN) te TI

ee 1 50,000

[12

P

-

1n(50,000

i

-

eas

ks

OP

eG

P)]

=

as ;| = OR

_—

ee enn 607/000

'— %P

kt

+C

50,000(kt

+ C)

in| 390, 000K + 50, 000C

@30,000C,,50, 000kt Ae?’ 000kt

Pe which

can

DA

be =

Using the constants

Ss

written

50,000 5

4+

Be

50,000kt

;

B=

conditions P(0) = 100 B and k, we obtain

See

ee

Oe

1 + Be° + B) = 50,000 i + B= 3500 B= 499, 50,000 a A ee et oe

=

500

100(1

P(t) P(10)

846

= 1 + 499e750,000kt*

CHAPTER

obtain

50, 000Ae?9: 000kt ; 1 + Aed0 000kE

ea

Ae

BY)

we

P,

for

equation

this

Solving

14

=

Oe eo

Tee

OOU

Psa

is

499e7°290, 000k

DIFFERENTIAL

EQUATIONS

Bl

and

P(10)

=

500

hours.

t, then the model for

infected at time

is the number of people

67. If P(t)

in

to

evaluate

the

1 + 499e7500,000k _ 499 499 e790, 000k

=

99

99 -500, 000k = In(755) 1

500,000

=

i ee

Therefore,

99

(ass):

50,000

P(t)

:

= 1 + 499e0-11n(99/499)€°

(A) When

Particular

;

solution

t = 20,

P(20) (

50,000 = —aree aay = 2422 ae ee 499e2 1n (99/499)

)

(B) When

peopie.

P = 25,000,

499e9-11n(99/499)

50,000

et OE A

25,000 5| er

TY

t

=

ee 1 + 499e0-11n(99/499)t

=

2

e0-11n(99/499)¢ _ _1_ 499

99 )t 2 n(795) 1 0.1 in(go5 1 1n( 799}

10 Gu=

ad_,i ds = ka @_

I Sr 05

=

38.4

days.

Ss 2u0%

ka,

Tene Phod

IF=fhe I

InI=kins+cC

=In I

s*+c

(k In s = ln s*)

ress pal eens

:

Therefore,

t

I = As*, 71.

(Note:

el@™S

If P(t) is the number of people the model for this problem is:

etre KP(1000

3

- P).;

PO)

= 5,

= sk.) who

P(1)

have

heard

the

rumor

at

time

t,

then

= 10.

Sere

P(1000 - p) = * at ee or

|Seenp aeriee fx dt

_ =e ae acral 1000 - lar = ke + 2 EXERCISE

14-2

847

Mia sts 1000 [2m P - 1n(1000

- P)]

Ket

AG

1n(ip00 5) = 1000(kt + C) 1000 aon 1000

Solving

Chey eda

E

= ee

Using B and

-

for

OL

the conditions k, we have

iP ((0)

==

Sis

oe B)

1

+

17S

at

w(0)

=

0

wee.

ier. OC

and

wie)

864

CHAPTER

e=ae 17.57

14

(230 =

DIFFERENTIAL

Cc

75/2

EQUATIONS

-0.005t

solution

130,

we

have

if

this

= 0.

diet

is

Now,

we

want

to

determine

C such

oy

The

the

person

model

for

i7.5)e ENT

i7.5)e

125 - 130e9-45 7 25'( 125 7 4s -0.15 20: 1 -

C=

Thus,

125.

eG

-0.15)



=

eG es\, 0.005030)

125 = 47.5 + (230 Cc

w(30)

we

125.5 44.5 |* (230

js56

that

should

this

consume

problem

1,647

0-15

) bas

ia FW

calories

per

day.

is

Sete = %t, where Now,

¢ and f(t)

rs(it)

A are

= 4, =e

Ldt

constants.

and =

the

integrating

factor

is: .

eft

Thus, it

k(t) = —;[treat = ota S + (|=A + Gett e

e

= 2+ For

Student

k(t) Applying

A,

4 =

0.8

andi

=

t =

(6)

For

the

6,

=

Applying

initial

condtion

we

have:

t =

k(6)

Thus,

B,

=

k(0)

= 0.1

-0.8

yields:

0.8

and

dA =

0.7.

Thus,

= 0.7 + Me °-8E, the

initial

condition

0.4 = 0.7 + Me? or M= and k(t) = 0.7 - 0.3e°9-8t When

solution

0:9 - 0.8e°9-'5) = 0.9 - 0.86 "-® = 0.9934 or 89.34%

Student

k(t)

General

= 0.9 + Meo:8,

0.1 = 0.9 + Me® or M= and k(t) = 0.9 - 0.8e79:8¢, When

0.9.

Me‘’*

6,

we

k(0)

=

0.4

yields:

-0.3

have:

= 0.7 -.0.3e7°°8'9)

= 0.7 - 0.3674:8 = 0.6975

or 69.75%

EXERCISE

14-3

865

CHAPTER

1.

14

REVIEW

2x

cv x, y'

y =

Substitute

(wa)

=

differential

given

the

= HE into x

equation:

cVx

cV¥x = cVx

Thus,

2.

= 5 reas

given

the

into

differential

Ge* = 1

| Pei

esa

y'

ce */3,

yee

Substitute equation:

(14-1)

solution.

general

cVxis the

y =

Ce 2 Ge

ce?

= 1 ih ee ik

Thus’, 3.

yee

+

is

ce*/3

the

general 4.

(14-1)

(B)

(14-1)

solution.

(14-1)

(A) y

6.

Sie

ey

SS

C=2

0 C=-2

PLP

ALOIFCFP

FAIL

AF

SOIPOCLIALAS

AMAA SMASA ASA

i

C=-1

iC Tloo! A A Aa A Aa A et a A

(14-1) (14-1)

(14-2)

da 2 ky) ka>a0 Sune

(14-2)

7a

d

9.

the disease is spreading A single person began the spread of a disease; the number of people of product the to proportional is that at a rate (14-2) who have the disease and the number who don't have it.

10.

= Uak(y 25),

There are 100 grams of a radioactive material and the material is decaying accident occurs,

the

11.

amount

differential

CHAPTER

14

at at

the instant a nuclear a rate proportional to

(14-2)

present.

y' + 3x¢y + 9 = eX (1 - x + y) = & y' + (3x7 - &)y = (1 - x)e* - 9 The

866

eae

equation

DIFFERENTIAL

is

- xe™ + ye™

first-order

EQUATIONS

linear.

(14-2,

14-3)

12.

y'

+ 10y + 25 = 5x/

The the

13.

5x term implies that the equation cannot be written

Wate sy = Ve

xy +

Also,

14.

the

variables

equation

(S) =

can

=

3)

=

form:

Cys

equation

is

Also, 14-3)

ae

2) (er3)

A!

be written

in

=

xX -

3.

first-order

linear

form:

(14-2,

6) Ve =) 12.50) —8.16

yy' = 4xe*Y = 4xe*eY Separation of variables The

15.

of

linear. (14-2,

6

So) yt. 2(x

Separation Vat

2x -

Sete

equation is not first-order in the form f(y)y' = g(x).

not

form:

y’e’y'

first-order

14-3)

= 4xe~*

linear.

(Te@s2)+14-3)

4

eee

et = =

ee

Separate

the

variables

|4

ik i le a lIn|y| = -4 1n|x| y=

einx

* Cae

in

x

“wee

Be

Ss efelnx

y=

Ax”

-4

A

=-Z x

F

General

solution

(14-2)

16.

wes

4, = x

x Integrating

First-order

factor:

I(x)

linear

equation

= elf (x) dx =e J(4/x)dx _

yadtax _ “Bina =e

Therefore,

= eels 1 {4

Ske x!

Ga

og

is)

oA

dx al

) = aie

cx =. |xae = -.|-- + C x! xl 6

General

|

solution

(14-3)

x

CHAPTER

14

REVIEW

867

17.

y'

=

3x?

2 =

3x7

Separate

the

variables

{Z = fax2ax =x

+C

= eo ‘< KEIR

General

x +c

solution

(14-2)

18. y' = 2y - ‘& y'

-

2y =

-e&

Integrating

factor:

SITES [200 o(20 ax,

=

+ ce**

y'

= 2y + x®

y'

- =

g(x)

1

y= Fig [Ima = 1

[SxS

x sc!

Ye.5.

I(x)

linear

et*(e ts Cj (14-3)

equation

= el (-5/x) dx =

@ oP

ae

-5

er

ax, g(x) =x" 2 8 [x a=

* cx

=

General

[=

+ c|

solution

(14-3)

3 + = aie

ar

pee

a4

Separate

*x

See 1Adie sea

2a

Bt iy y

CHAPTER

the

variables

ax

°y>

&

in|3 + y| = 1In(2 + x) + C

868

= -e&

solution

First-order

factor:

equation

= el (-2) dx =s@54%

General

= x6

Integrating

y'

linear

Le [er?*(-e%) ax= o* | eax

e &

y=

20.

I(x)

at

LAE

19.

First-order

14

OT St) EC ae eC

= A(2

+ x)

-

DIFFERENTIAL

(Note: 2 + x > 0.)

(Dik ache Al Quythse)

3

EQUATIONS

General

solution

(14-2)

21.

wea - y; y(0) = 0 nea

=

merayor

Jat

-1In|10

1

Separate

variables

= fe

- y|]

gnji0

the

= x+Cc

- y| = -x+-cCc

100

yes

Jeo

Ste fe y = 10 Applying

the

= Ae *

- Ae*.

initial

General

condition

solution

y(0)

=

0,

we

have:

feei0 - Ae’, A = 10 Pnus;, 22.

y.=

10 - 10e~.

Particular

y' + y= x; y(0) = 0 Integrating factor: I(x) Thus,

y

solution

(14-2

g(x)

x

ace dx = e* |xe%ax 2 eo“ie = a e VY S9xt1-.1.+. Ce. General solution the

initial

14-3)

= elidx _ ox

= Fog | 21x) (20 ax,

Applying

or

condition

y(0)

=

0,

we

4 'C]

have:

feen0 = 1 + Ce’, C= 1 Therefore,

23.

y= x-1+e%*.

y' = 2ye*;

y(0)

Separate

Applying

initial

Meas

(14-3)

the variables

General

Thus,

solution

=1

a = 26 ~*

the

Particular

solution

condition

y(0)

=

1,

we

have:

2? 2 as?, a = e y =

ee2e

Particular

solution

(14-2)

CHAPTER

14

REVIEW

869

erie Pee IO A 24.

1etd

a

yi

GY Te

ANTE

al sot parca

a

WEWBUAIE, lis PATENT

j i First-order

: linear

: equation

Integrating, factor: I(x) = el(1/(x+4) dx 2 Qln(x+4) mesa bh ge’ Thus, Y = T(x) frosguadx, GG aa

1

2x

oot

xary

Vile Applying tai

the

Olmak "

(vo APe)ivi fw +

y =

=

nee

+

Solving

for

y+

\ x2 +A

y and

V4 16

y =

ny; +

In

2y =

Integrating

CHAPTER

have:

Particular

solution

(14-3)

variables

General

x;

Vie

the

solution,

initial

16.24.

y(l)

factor:

il = Fog |

14

sane A areas

the

applying

aga

:esaeant

870

we

implicit

condition

y(0)

form

=

0,

we

have:

A

Therefore,

ye

1,

;

solution

C

ae

=

=

750)

fx ax

mi)

y

y(0)

4ea

Separate

AY

Thus,

ge

e

4) =

0 #14 A=

heat

sales General

condition

(y + 4)? = x75

4=

=

a

ta

Z

ne x

4)dy

(ye or

x

ee

VO

(ys 3

26.

initial

ee mea

y

a

eee

a

poe

c=A4

Therefore,

25.

fins

_ yx 4 4

=

I(x)

x

in x

= el(2/x)dx _ Q2inx _ Qinx ax,

dx

-

g(x)

(Integrate

=

2

1nx by

parts)

be: Cals G |

Be: ln x - a + oe

DIFFERENTIAL

solution

(14-2)

2

g(x in

Particular

EQUATIONS

General

solution

_ 2

Applying

the

initial

condition

1 1 2=3(1)Inl-9+C,

27.

oi

x(1l

i=

a 3

y =

Therefore,

+

;

‘ee

ey 14 y d

x

19

Wiad

y(O)

=

= 2,

we

have:

;

:

(14-3)

solution

Particular

lin) 66.

[xy

4 inx )

by

the

integrating

eee

ie exa?

sides:

forty ‘ax = fex® dx x ty

Step.5:

Solve

for

y:

Vo=Eua2r (B)

Solution

using

mee) ait + 210.

cx4

General

separation

xy

of

solution

variables

= 4y, =98

xy' = 4y™4 8 SAS. ana 4y +

bae ger es

gy

oye

pee Ale

ae

ig + gr

a fra

. In|4y + 8| = 1n|x|

+ K

in|4y"+ 6| "s"4 Init + 5 In|4y + 8] = 1n x* +1 l4y + 8] A

CHAPTER

14

Vat OM

DIFFERENTIAL

299)

= ante lin. Fob A Mx*

VS Gx

872

(ae

EQUATIONS

(mM= te”)

2

(C = M/4)

(14-2), dea

30.

The equation it cannot be

y' + y = x can be solved solved by separating the

Integrating

using an integrating variables.

factor;

factor:

f(x) = 1, I(x) = el ® = o* Multiply

by e*:

ey’

+ e*y = xe*

[e*y]" = xe* Integrate:

Solve

31.

for

e*y=

xe~*

y=

Ce*

- e~ + C

y:

The equation it cannot be

+ x)=

y' = xy? can solved using

1

be an

(14-3)

solved by separating integrating factor

the

variables;

yy" xy —y'=x a

'

[fears

fx ax

1.442 Yau

= 158

a2

ae

=

5,

-2

1,2 4 x

PP

Or:

2 =2 =— of eee Seen

Step

=

OY =

(CG =22K)

14-2

—L0

1: Write

the

differential

omy.ey Ae. ae

ax),

=

=e;

in

standard

factor: a! (-5/x) dx bes)

=

I(x)

In&

wigln> Step

3: Multiply

by

x? (y'

xy! Step

4: Integrate

-

the

integrating

5x ty) =x?

- 5x Sy (xy)! = both

form:

10

integrating

Step2: Find an

equation

Eres

factor:

(-10x71)

-10x-® -10x

sides:

foesy 'dx = xy

=

[-10%-8 dx 2x

P2F2C

CHAPTER

14

REVIEW

873

Step5: Solve

for y:

y= (A)

(B)

2 + cx?

General

solution

Applying the initial condition y(0)\= 2, we have: Zr 2 4550.2 Thus, y = 2 + cx° satisfies y(0) = 2 for all values Applying the initial condition y(0) = 0F=" 25+) 0 eOrmes a— a0 Thus, there is no particular solution

©) Applying the initial condition'y(1) pl ame oe (e(al)\« Cesarel: Meleae at THUS) Ve =e x° is the particular

y(1) 33.

we

that

=

1,

G.

have: satisfies

we

y(0)

=

0.

have:

solution

that

satisfies

=1.

yy'

ie ax

= x 2

=e

or

(14-3) =x

(ae

y? = x7

Applying

the

eae

+C

(Ge=82

initial

16 = 07 +C Thus,

0,

oH

y? = x*

General

condition

and +16

Ri)

C= and

y(0)

=

solution

4,

we

have:

16 Va

xt

4516

Particular

solution

(14-2)

5

34.

(A) -2

(B)

The graphs. are xX axis only at

(D)

The

increasing x = 0.

and

cross

the

2

-5

5

(C)

-2

2

graphs

have

local

minimum,

three

times.

a

and

local

cross

maximum,

a

the x axis (14-1)

-5

35.

y= M(1 = e7**), (mM (A)

PAt

‘64=

AC.

(B)

874

CHAPTER

4 =

=65)):/a=e

Using

we

27

MG

=e

iM

Clase

a graphing

find

14

that

s.09) ki 0 2 =

so

M=

Aicig

ae

so

M=

1 = ak

utility

to

M = 9.2.

DIFFERENTIAL

4

2k)

EQUATIONS

graph

an2ke

Ui

the

two

equations

in part

(A),

(14-2)

36.

Let

V(t)

denote

for

this

problem

Integrating Thus,

the

value

is:

factor:

of

the

a =

KVse

dv aes

kv ps= .0

I(t)

=

V0)"

=2 SOORAV

el (-k) dt =

i

V=

refrigerator

Foy | Teraeat,

eoAllie)

at

C20)

time

t.

Then

the

model

B= 925

e kt 0

1 fee x0"dils ek {o dt e

v=

Cex,

Applying

V(0)

the

solution

V(0)

=

500

and

V(20)

=

25,

we

have:

= 500 = Ce®, c = 500

Therefore,

V(20)

General

conditions

V(t)

=

500ex¢,

= 25 = 500e*!20) e 20k

Dey 1 ee 500 m0

PAU

ous

ets

1n(35)

ahs

nas

k= 30 1120 Therefore, Finally, V(5)

=

V(t) we

= 500e(1/20)1n (1/20) € |

want

to

calculate

500e (1/20) in(1/20)5

V when

t =

5:

ps 500e(1/4) in(1/20)

2s 500e

0-25 1n20

=

$236.44

(14-2

37.

The

model

for

this

problem

(A) 500,000 - s ds

cama

k dt

a3.

Separate

We

use

the

constants

variables

* fx dt er

Came

=

ae*e

=)

2.007000F

conditions A and

the

k > 0

a!

-1n(200,000 - s) = kt +c 2000 0008S is = e Xt ©

Ss)

14-3)

is:

= = k(200,000 - s); s(0) = 0, s(1) = 50,000, ds

or

s(0)

(0 < s < 200,000)



Ae"

=

0 and

General

s(1)

=

solution

50,000

to

evaluate

the

k.

s(0),.= 0 = 200,000 A = 200,000 Thus, s = 200,000

- Ae® - 200,000e**.

CHAPTER

14

REVIEW

875

s(1)

= 50,000 = 200,000e* = _~ . SeMPe

200,000 - 200,000e* 150,000 150,000 _ 3 IGG. COU tre

iE) aes in(j)

Therefore, Finally,

s = 200,000 we

determine

150,000 200, 000e1" (3/4) aini3/Me

- 200,000e!"'3/4)©, t such

= 200,000 = 50,000 ooru0N 200,000

She |= In(Z}e

part

(A),

S(t) Since

we

eyes

know

= 200,000

we

want

the

=

150,000.

ik n(]

anh

From

s(t)

od ~ 4

chr TA (3/Aee (B)

that

- 200, 000e1 (3/4)

ee

that

- 200,000e** sales

150,000 = 200,000

to

be

$150,000

after

3 years,

we

have

- 200,000e-7*

200, 000e-2* = 50,000 e3* = 0.25 -3k = ln 0.25 jou dn(0225) SOY 3 Thus, s(t) = 200,000 - 200,000e!t/3)1n0.25 Now, s(1) = 200,000 - 200,000e!1/3)1"9-25 ~ 74, 000 Therefore, the that the sales

38.

(A)

The S=

sales after

in the first 3 years will

year should be be $150,000.

equilibrium price p(t) at time t satisfies D; p(0) = 75. Thus, 100 + p + p' = 200 - p' 2p' + 2p = 100

Dp! +sp.=_50

Integrating factor: Thus,

p

= ee Fay

I(t) = e/fitidt

JTlevaleyae,

g(t)

= Qfidt . ot 2= 50

= fet. 50 dt = 50e“[e" + Cc] e

= 50 + 50ce¢ p

876

CHAPTER

14

=

50

(A = 50C)

+ Ae“.

DIFFERENTIAL

General

EQUATIONS

solution

$74,000

-

p

to

ensure (14-2)

(B)

The

equilibrium

price

Pp = lim (50 + 25e°°) t—oo

(C)

p is given

Applying

the

Therefore, Applying

initial

pipe the

ou

condition

initial

Pp, =

The

graphs

of P, and

For

an

initial

decreases price 39.

The

amount 0.05A

Now,

f(t)

the

in

_= =

price

the

an

the

account

-0.05,

and

=

at

solution

25,

we

have

right.

equilibrium

commodity

initial

any

solution

the

price

commodity

at

the

ts Se

the

have:

time

below

increases t must

the

equilibrium

toward

p.

(14-1,

14-2)

satisfy

-5000.

integrating

-0'.058an

A = 100,000 Applying

the

of the

For

I(t) = ef(-0-05)de _ _-0.05t ty

p(0)

shown

above

of

we

Particular

Pp, are

price p.

75,

A = -25

256 ~

price

the

toward

p,

dA ig

BO

=

Particular

condition

and

Therefore,

p = 50,

p(0)

A = 25

ys 25e ¢

25 = 50 + Ae?

price

e © = 50.

t— eo

75 = 50 + Ae? and

(D)

by

= 50 + 25 lim

+ ce®-°°*

initial

“2

is:

0.05¢|

General

condition

factor

e

-0.05t

|

solution

A(0)

=

60,000

at

any

time

yields:

A(0) = 100,000 + Ce® = 60,000 Cc

Thus,

the

amount

in

=

-40,000

the

account

¢ is:

A(t) = 100,000 - 40,000e°-°¢ To determine Ome:

100,000

when

the

- 40,000e°-°* e

o.ost

amount

in

the

account

is

0,

we

must

solve

A(t)

=

0

= 0 ._ 100,000

5

40,000

ln

C=O.

2

=

obnE

18 5326

Thus, the account will be depleted withdrawn from the account is: 5000(18'.326) = $91,630

after

18.326

years.

The

total

amount

(14-3)

CHAPTER

14

REVIEW

877

40.

Let r be the continuous compound rate form). Then the amount in the account

of at

interest any time

(expressed t is given

in decimal by:

aA Ane_ rA + 2,000 dA ae

or

sf=

rA

2,000

(Note: the method of separation to solve the equation.)

Now,

f(t)

=

I(t)

=e

-r

and

the

Pe Eley

of

integrating

variables

factor

could

also

have

been

used

is:

ert

Thus,

vePeers! st

and

A=

Applying

_ 2,000

Cet

the

A(0)

J2,0006 -rt dt

initial

= 15,000

the

amount

A(t) Now,

at

10,

dy iis_

account

A(10)

=

15,000

at

any

time

a graphing

100

Therefore,

utility

e Ht

i 100

+

Integrating

ve l

Wp

to

as

t is:

we

have

ee

r

Expressed

+

yields:

— a

70,000.

,

0.0912.

dy ae

Thus,

=

70,000 = (as eee 2.000) 30: _ 2,000

Using

41.

the

= (25, 000 + ee t =

A(0)

+ ae

in



r=

condition

solution

= Ce® - ae

C = 15,000 Thus,

General

1G

solve

this

equation

a percentage,

WAKO)

a Son)

I(t)

Wilh ee dhe e yee

r =

for

r,

9.12%.

we

find (14-2

that or

14-3)

e=

factor:

y= Say

eaieee,

af!

g(t)

a

= 100i

.e °

E

= + fet 200 + e')dt =e t {(100e" + 1)dt = e*[100e" + t + C] Se

y=

1004,

Applying

the

te

+eCe =

initial

condition,

0 =1100 + 0e° + Ce®, C= Therefore,

878

CHAPTER

14

y = 100

General

+

have:

-100

te * -

DIFFERENTIAL

we

solution

100e°.

EQUATIONS

Particular

solution

(14-3)

42.

Let p(t) be have p(0) =

the 0.

amount

of

pollutants

in

the

tank

at

time

t.

At

Pollutants are entering the tank at the constant rate 2(75) per hour. The amount of water in the tank at time t is: 100 + 75¢ - 50t = 100 + 25t

The

amount

of

pollutants

in

each

gallon

of water

at

time

=

t = 150

0,

we

pounds

t is:

p(t) 200 The

The

+ 25¢

rate

pollutants

settle)

iy 2p 1c)

TO07s25tj°

4 +

mathematical dp

ms

In

standard

dt ~

(A)

at which

Pee

150

A

model 2p

this

p(0)

4:%-t" form,

leaving

the

tank

at

time

t is:

.t

for

ps

are

the

problem

is:

ey differential

equation

is:

2

deine 40 406P = 4t°°

Now, f(t) =] a Sand rit) = ela (Apelias Sooaintdst) reint4 ne)?

= (4 + t)? Thus,

p(t)

= Fen

| evgievae,

i = —+— (4 +

¢)

fu +t) 2 TSO

150

(4 +3 t)?

=i ten tianeT

(4

=

Applying

the

+

50(4

+

initial

Now,

at

p(t)

=

an

=

150

vee 296

¢)

t)

+ Tae

condition

50(4

(C =

+

0 = 50(4) + or Therefore,

gle)

+

and ¢)

p(0)

=

{250K)

0, we

General

solution

have

C = -3,200

- Wore

Particular

solution

t = 2,

p(2) = 50(6) - “200 = 211.1

There are 2 hours.

approximately

211.1

pounds

of pollutants

in

CHAPTER

the

14

tank

after

REVIEW

879

(B)

tank

to

contain

result

is

t =~ 10.3

To find how long it will take for the we solve the equation of pollutants,

700

pounds

50(4 + t) - 289. = 700 (4 +

43.

Let

p(t)

k

D)*-OeS-F (c) ST

F(x) TEA



CUMULATIVE

f.

function, F

is

then

the

defined

associated

by

of

f,

that

DISTRIBUTION

density

function

is,

F'

=

f.

FUNCTIONS

and

RCE) aé

f(x)

cumulative wherever

Segeroo SLE

SEG

distribution

function,

then:

RET

RR

f is continuous.

< x < 09.

is nondecreasing TB

of

FF(ey

OF

(32)

= Domain

FUNCTION

antiderivative

a probability

=

1

FUNCTION

an

31

=

= ft f(.Hydes

a= F (d)

is the associated (a)

e)

density

DISTRIBUTION

Furthermore, E\CiSexe sd)

he

(-e,

DISTRIBUTION

CUMULATIVE

f£(x)dx

ESI

on ER

SESE

(-%, APE

©). EE

SE

RS SR

SRN

EXERCISE

nS

15-2

RRERE TEOST

RES

891

1.

see

we

that

ayeFh

meal E20 SS

mr

graph

the

0

0

[i f00 ax= ifg x ax

From

right.

the

at

is shown (-9, ©).

f(x) x €

The graph of f(x) 20 for

4

0

x>A4

0)

_ ieitie -

=) Ab 3.

‘one: eee Ss 0 Tie 4esex 3 x

Heike

otherwise

0

a probability

f is not

Be

tis

since

density

function

since


-4]

al Smee

=

1)

=

i se((Eebe

Sy)

1 (Bimeetx

>

5)

=

f 12S Wobie =

i 0

5 5

(Gyeetx

4]

ig 2 oe

i 8 Oso ee Ti

weneeee


1s

is:

F(x)

Os x (400 + t*) 0 hs fat |* , S800 8 ee, 1-400. + 400 + t27/0 400 + x : x< 0 if 0

F(x)

Step 2:

sthen

| 2),

0. & TEde

=

0

x

214 S$ m)

ES

= ae

Lf x20

400 + x* en:

. fo

=

_ 1 4095 2 400 + m@ ak -400 400

+ m?

2

400 + m* = 800 m* = 400 m

55.

The

E(X)

of

number

expected

= nef

=

xeona

20

hours

eee

hay = (3 ) ak

PROBABILITY

DENSITY

al

fu


Ho)

al HW = 3 (a + b)

(c) Mean: A

(d)

Median:

(e)

Standard

15


*0

jprait

x20

2 i-x/h

f(x)

2,48:

Ace

with

function,

density

The probability

[Note:

"A =

2.

]

otherwise

0

(15-4) 20.

p=

= 2

Gia

A = 2

m=Ai1n2= 21.

wp=

(A)

Ze

Oo =

50,

(Lor

xX

ZuaLor

tx

Required

6

=

62) area

1.3863

=

Deine?

41 =6 50 =

62°=) 50m, = Ean A,

+

(15-4)

-1.5 250

A,

(area

corresponding

= 1 .5) + (area corresponding to Zz = 0.4332 + 0.4772 0.9104 Z

(Bz

(tor,

x

Required

I

39)

area

59

6

20

to 2)

eS

(area corresponding Za= ale) 0.4332

to Required area

(15-4)

CHAPTER

15

REVIEW

931

22.

Given (A)

wt =

We

82

and

first

o =

8.

find the number the mean.

are

from

For

x

84:

z

=

S4— 82

For

x =)94:

z

=

=

Now;4P

=

(84,

of

standard

2 _

=

B(0.25)

that

84

and

94

9 25

98 222 2

Sex S 94),

deviations

1'5

Ss z Ss 1.5)

=10).. S345 (B)

23.

For x =) 60:8

zs =

ee

P(X

P(z

2 -2.75)

2 60)

0

0

[ e*dx = -oo

=

1im [ Sax= a->-

since

e740

= =

0.4970 0.9970 0

a—-oo

=

a

+

0.5000 (15-4)

lim

(he)

=49

a—-oo

a>-o.

co

24.

=fe =D

line)

a

as

=

(15-1)

b

f x

=

o (x + 3)

sim

as

bow}

(x + 3)

iq fie

Substitution:

te

.u =a Cll =

ee

Cie

“"baes (2H d2) 1G bel bit 3 3) hae Thus,

the

improper

integral

ro)

25.

Yes.

Since

converges.

7

i

Seb) Cobre

‘co

f

-1

follows

-1

that

)

f(x) dx + i f(x) dx and av

00

it

(15-1)

-1

co

i f(x) dx = 1

( =

i) E(x) ax =

4

1

f(x) dx -

J f£(x)dx =1

=

LZ -

fe f(x) dx

=i

exists. _

(15-1) je

-10x

a0 -get*) = f(x)

:

Lin sce.

0

2 0 on

0

otherwise (-09,

co)

)

f

i exisesr

and

0

f(x)idxa=

oO

Ii f(x) dx + J f(x)

co

-0oo

dx

0

co

b

= i e@OX dye = Lim [ e 19 aye 0

a=

be

ately ae 1im| 10

Mere

te

= rim| Therefore, function.

932

CHAPTER

15

let

k =

10;

10

¢ reel ;

eek 4

10 ©

f(x)

=

ae

= a0

T0e;.* ista

probability

density

(15-2)

PROBABILITY

AND

CALCULUS

27.

je

~

10x



0

()

f(x) ax + f f(x) dx

{

dx

f(x)

f

Since

0

x2,

otherwise

0

*

£4)

:

vi

0

oo

co

b

‘00

ax

{ eX ax = Lim | eb be / 0

0

Vad

1im| 5

28.

0

ae = ok | 10 75 e TO |

ee = im no

tear diverges,

(15-2)

k exists.

constant

le with median X is an exponentially distributed random variab the probability and 3 = pm mean the m= 3 1n 2. It follows that density function is:

if geea

Dteisjerr”

otherwise

0

2

1X) Now,

$3

(X)

=

3

0

3

P

f(x) dx + f f(x) dx

f

f(x) ax

f co

0

—0o 3 =

f

2

xa



= 1 3e*/3|

3

(15-4)

si= 0.6921

= 1 @*e

0

29.

ax

b= ; xf (x) dx = f 2X

R

R re - ge im [0 Foeee —2°%—ax = 50 R-eo lim { = R- - ==) =1-— (xt *5y25) Ge: + 5)? 9

x

1 - 23,

bo 20

0

otherwise

(x +

x

f f(tydt = 0 +f 0

oo

co

Thus,

x

0

x

function.

probability distribution When x 2 0, we have:

cumulative

5)

CHAPTER

15

REVIEW

933

Next,

to

IPA) a

find eG

the

median,

Se)

m,

we

must

solve

the

following

for

m:

=

» Sro2stow woe

(m+5)2 2 a

5 ae

ee 8

(mn ty5) 4. 22 (m + 5)2 = 50 feist

Therefore,

Sy

V50

m+t+5=

5V2

the

median,

0.8 08 30.

ee)

sae

find

p=

distribution 0

median eX

m,

Som)

We 0:8)

(15-33

function TE ogra

we

1.68.

(1S=3)

is:

ie yod solve

v= a for

m:

90. 2

m Using

2074"

itx21

4, - 9:8 x 9-24

the

Bm)

V2 - 5 =

otherwise

cumulative

F(x) = To

equals

x

0 The

m,

me

a graphing

2

utility,

we

find

that

m =

x

31.

Consider

If we

the

integral

let

u = 1 + e*,

x

co

[es (1

+

then

ev)

du = e* dx, and

limu X— oo

fo)

f ee

ceo),(Se ee)

=

ce

1 u

eth

=

= =

32. J (ax* + bx + c) F(x)

b

1im { 5

boo), bool

im

Bese

lime

x—> -00

=a

Thus

du

u

1in|-2

= ~,

b

U}1

{1 -

al | =e

(15=2)

b

af x? f(x)dx + bf xf (x)dx + cf” f(x) dx

—co

a(o7

fe Mo)

TDC,

since { x f(x)dx = o% + p?, f xf (x)dx = ,

934

CHAPTER

15

PROBABILITY

AND

CALCULUS

and (pa f(x)dx = 1.

(15-3)

33.

ii}

f, (x)

is

0

graphs

of

0

otherwise

papoere The

y

if x20

ieee

£, (x)

f,

if x20

7

otherwise

shown

f, are

f, and

fo

at the right. In comparison with f,, the graph of f, is shifted to the right. Therefore xX, should have a greater 34.

Refer

to

under

the

Sole

than

mean

x (15-3)

X, .

In comparsion with f,, the area the variance of X, graph of f., is more spread out. Therefore, (15-3) greater than the variance of X, 33.

in Problem

graphs

the

be

should

30

it, = ia xf, (x) dx = f x(0.25xe*/?) dx Le

0

30

= f 0.25x%e*/2dx = 4 0

i= rs xf, (x) dx = f x(0.0625x%e*/*) dx 0

3%

30

(15-3)

fs f 0.0625x°e*/?dx = 6 0

36.

V, (x) = ; x’£, (x) dx - 4? = f x2(0.25xe"*/*)dx - 16 ean

0 30

= f 0.25x°e*/2Gx - 16 = 24 - 16 = 8 0

=

V.(x) 2

he

xf. 2 (x) dx - 6% =

0

x2 (0.0625x%e7*/7)dx - 36

30

ss ( 0.0625x4e-*/*Gx - 36 = 48 - 36 = 12 0

37.

(A)

The

total

production

‘co

(15-3)

is given

by:

a

{ R(t) dt = 0

{ R(t) dt

im T— 00

0 T

= Lim { (12e79s3*) ~iager TO0/

= nim T—

“yar

(9

(4069? + 20e°9°%)

00

suikim (240¢79-2 7 he) 206 95°70

T 0

20)

T—> 00

Thus,

the

total

production

is 20 million

He! 20 barrels.

CHAPTER

15

REVIEW

935

we

will

well

the

(B) To find when

50%

reach

of

the

production,

total

solve

must

bi i R(t) dt

10

=

0

for

T.

Now,

fr (1ae°0-3t ~ 12670-6t)ae

T f R(t) dt 0

0

|(-400r®-2* + 2007065)

Tp 0

ddan Thus,

we

=40e79:37 + 20e7°:°T + 20 = 10 A0e 9:22 mo0e ("= 110

or

£(x)

O02

ae

this

solve

equation,

we

find

that (15-1)

years.

4.09

T =

to

utility

a graphing

Using

38.

+ 20ers eo ia 20

have

0.01x)

Te

0

02S

S100

otherwise

100

100

f(x) dx = f

(A) 40

0.02(1

=,0s0dx) dx

40

The and

2

=

0.02]

(x =

30:.005x*))

=

0.021 (100) =)

50)

probability that the 100 pounds is 0.36. (e"

:

BAXs S) 50)

£(x) dx =

-—

weekly ne

50

=P

Sp (50 ~ 0.005-507) Solve

the

following

for

100 40

(407-2

3)iie="

demand

(1 -

for

0" 36 popcorn

0.01x) dx =

is between

40

a

50

=

50 (x7=0'. 005x7)



= 1 - 0.25 = 0.75

x:

x

f BCE) ae

==

0596

(x =

number

of

pounds

of

popcorn)

0

1 ie 50

J,

(i pOe

0 are ae

ae oY 50 (te =] OF 005:E2)

0.96

Rota) 5 3 0.96

ea

50 |x - 0.005x*) = 0.96

x 5x* - 1000x + x? - 200x (x - 80) (x Thus, week.

936

CHAPTER

80

15

0.005x% 48,000 + 9600 - 120)

pounds

of

PROBABILITY

= 48 = 0 = 0 =0

bie SOMNOG exe = s20 popcorn must be on hand

AND

CALCULUS

at

the

beginning

of

the (15-2)

0 i 2400e7°°12%dt

CV =

Value:

Capital

39.

T Lim | 2400e°°:+4* dt

=

= lim

240077)

mulim

=20,000(e;0°*°% +1)

T—00

nae

a

(my

0.5

if

- x)

J6x(1

_

|

45

(15-1)

=35207000

x S 2

otherwise

0

ae

-0.12t|p

0

0

Peet-2°0-02),

P(X < 0.2)

=

1 =

=

-1 f= f

0.2

f (x) dx

D2 f

=

f(x) dx

0 0.2 =1-

f

6x(1

=

x)

ax

0-

=1-

(B)

The

-oo

0

"=

(2x

expected

The

cumulative

or

for The 41.

median

=

P(X Sm) -

2m?

£(x)

=

time

Escape

{n°

= = .

=

ener ais -x/4000

= 4000 ©

F(x)

cumulative =

we

0

find

that

0.. 5 (15-2,

exponential

an

m=

density

function,

15-3)

it is

Sie 2. (0)

otherwise

0 The

is:

cla ogc dl we solve

pe = 4000. As Thus, expressed by A = UW = 4000. failure

0.5

50%.

m. Using a graphing utility, median percentage is 50%.

Mean

ae ris

.if000S xtshi

m,

the

3m*

2

distribution function 0 LEexcr

=

im

0-8 order

In

(C)

is usable

drug

the

that

Probability

(B)

shelf-life

the

The probability that months is 0.2778.

drug

the

of

after

we)

=

we

must

five

2 and

is between

months

GR c «10 Roo J (x + 10) 1 5+ 70) lim

8

ist 2

2 3 = 0.6667 median,

the

find

to

m,

solve

the

following

for

m:

m

= f f(x) dx = ‘

$m)

P(X

0

| yearere

_i

Rilx + 10)?

2

(x +

ma

1

a5.

f(x)

=

\s a Pata mi

ey 10

10

2

Jo

10)

10 m+

2

=

Pee

2

eon

ac: ee

OLY

o-x/h

10. 10

=

20

m

=

10

x

jA 0

2

m+ m+

>

15-3)

0

otherwise

Bix > 1) = 1/ eX/hax = e? M1 Lim

Thus,

(15-2,

months

Roe

cer | eax

= &

(Given)

2

41

R

Pam (i) | = “1+ lim (e7®/* R-eo

e 1/4)

= eo?

elk .

CHAPTER

15 REVIEW

939

Thus,

=

Po} ir Therefore,

f(x),

A = IPwolR 5, is given

with

2

co

‘co

2

2

by f(x)

=

ee

x20

;

otherwise

R

(A) P(X > 2) = i f(x) dx = : 2e°2* dx = 2 im | e 2% dx R

=2 lim (-ete R—oo

(B)

Mean

life

L

=!A1im. (e 2% zpe

wh = Avs

ra’

G84 oT

*

pa

te

ee

4

r

ry

Si

£

im

¥

Rig y

«

;

2

7

Te

2~

a

bee. i

i

EXERCISE

A-1

Things

ae

TOPICS

SPECIAL

A

APPENDIX

to remember:

SEQUENCES A SEQUENCE is a function whose domain is a set of successive If the domain of a given sequence is a finite set, then integers. the sequence is the sequence is called a FINITE SEQUENCE; otherwise, In general, unless stated to the contrary or an INFINITE SEQUENCE. the domain of a sequence will be the context specifies otherwise, understood to be the set N of natural numbers. NOTATION

FOR

SEQUENCES

Rather than function notation f(n), n in the domain of a given sequence f, subscript notation a, is normally used to denote the is value in the range corresponding to n, and the sequence itself a wy" range, the in elements The f(n). or f than rather {a,} denoted is a, term, a, is the first are called the TERMS of the sequence; the second term, and an is the nth term or general term. SERIES

The sum of the terms of the sequence, Given a sequence {a}. If the sequence is finite, a SERIES. called is +a,ta, +a if the sequence is SERIES; FINITE a is series nding the correspo infinite, then the corresponding series is an INFINITE SERIES. Only finite series are considered in this section. NOTATION

FOR

SERIES

Series are represented using SUMMATION NOTATION. then 2, «, n is a finite sequence, ie {a,}, k=1, e a +hAob+ Aa, tet 1

2

the

series

n

is denoted

$

Gists

k=1* symbol

The

SUMMING

ARITHMETIC

If

{a,},

MEAN

© is called

the

SUMMATION

SIGN

and k is called

the

INDEX.

a of

MEAN

k=1,

the

a=

2,

.,

sequence

mn,

is a finite

is defined

sequence,

then

the

ARITHMETIC

as

+ 3 Xy: DN =1

ee

LUE

EEE

EXERCISE

A-1

943

a, ==

Pag Wi ee) a a, aor

3;.

2n+

a

1 # 2ere a2 yn ge tit a 8 ira daincreme cia Ning

5

2525 rsa,

=

a, = 2-34 3.=09 a, =

2-4

a, = A

a=

(310s

a,

=

eee

=

=

(-3)i+1

Peal

(-3

(-3)2

=

coe ( 3)

ween

a, = (23) **4me0(-3)? a,

=

kl=

11.

404+ 5 (+06

1) e204 93h

=

35

oli

4+

2

4

=

=6

See Ane 1Gane

Seon

= 243 no

23

+ 3 =

2°10

=

aj)

3

+

2n

27),

ee

“See 3

9

37s=

o = (-3

Ta

4, 4-3)

:S =

11

43-2

2 7 rer 99"

F997

9.08, 0H,

Pp? Sop

(226-93)

045(2°7--53)

1. =

F060

=021

k=1

13.

4d

¥Y (2k = 3) = k=4

15. 17.

= a=

(2-55-93)

5 +7

117s

32

+ >

=

+ 924

+ zi. + ae

eae Oi

es 10 uke LOL wll Oana On

an

5

a, =

mean

is given

=_i a= fla 19.

- 3) + (2°4

a, =

96,

ay =

77,

4,

a, =

Phy, aa. =

ys

4

ee

1 Ae

iE

6.

Here

n

444d

2 1000.

+

100,

10

=

_

.1000

5 and

the

4411

arithmetic

by:

gee =F

a, =

+44

65,

and

aio

2414

Ae =

82,

74.

a, =

Here

n =

Ga = = 3.6

6) 74, 10

as = and

ony, the

ag =

88,

arithmetic

a, =

87,

mean

ag =

is

given

al

B= AV age =

21.

diss

S250 49

=

65

os

82-5

gba 28? ak A Buea a n

pe

Ul

1

21

2)

Seiya Geel

22

ae baler ds

Sah Shh

Cai

sat

i eet Oe

Ge

peed Ag

mee

944

APPENDIX

A:

SPECIAL

Ey

TOPICS

048

aes ah

age

iyo)

hs

one

ose

87s

ss

7

+

7H

91; by:

23.

25.

mPa Co ay

0

= = = = =

(-1)1] (-1)7) (-1)3])> (=1)4] (-1)°]

111 + 2[1 + 3114 All + 5[1 +

= = = = =

a, a, a, a, a,

a, = n{l + (-1);

4 0 8 0

3”

+

em

Be

=) ee alee

ate

S43) 92 Poh ae PO Og

Wie Beet iy

eee

sy Oh.

coer eS

ie

ee

Given -2, beginning

29.

Given 4, 8, 12, multiples of 4.

31.

Given

116

The sequence is a, = An, epee

16, .. Thus,

2n

33.

- 1 an?

ya

ta

Same

the

integer

of positive

set nl,

fractions

the

set

of

integers

and

whose

is

sequence

The

2 ot a - ..

numerators are the odd positive Thus, even positive integers. *

integers

The sequence is the set of successive .. Thus, a, = 27 - 3), or = pl eeye eS

-1, 0, 1, with -2.

27.

2)

whose

denominators

are

the

i

consists

of

the

positive

The sequence consists -3, 5, -7, « Thus, with alternating signs.

of

the

odd

sequence Given 1, -2, 3, -4, «The Thus, with alternating signs.

integers

)4**n,eni= t, 2, 3. Biesnte1 n 35.

Given 1, integers ay

37.

=

(-1)"*7*(2n

: Given

1,

integral

powers

2-1

CN Fe (5)

39.

Given

powers

x,

A

x,

of x.

of

x,

x’,

Thus,



a

teh Sa

Ly

a=

1),

8 125’

whe 25’

2). 5’

al

eye

..

The

2,

positive

87

sequence

j consists

sequence

is

of

the

: nonnegative

Thus, ein

The

a, = xt

eel

the

set

of positive

integral

ee, oS,

EXERCISE

A-1

945

41.

Given

xX,

-x,

The sequence is the alternating signs.

se

x with

of

txth- 2) Sp dati

a, = (21) 43.

x,

powers

integral

(217271

k=1

HOCH Pi

Sy?

22k +3" 2B 8

emo

47.

5

>

k=1

xk-1l

(AP 2 43

4+ 44+

81

+ xosl+xet

(-1)°x

va e ne cst)

Eni

+ x

+

x”

es a (-1) 4x? cab

eo iseam ” 2-4er

9

7

5

6 =

5:4

x

de 1 25gee

je 5 sod

mis 51.

+

49

3

11

Ot

ee

oo

-

25

16 "a 32

xo + xt + x2 4+ x

$ (ieeea

49.

1)"

ome

+ 3 7 2-w 468s antes )3

2-3

eee

2)

A Gaos — Ie ae Gad)? (243177 ee Oe aL

=~1-9+

45.

2 (k + 1)

(BY)

2+

3+

1

2S ee

- =

eel

(Aol

a =0

55.

Sus

Ge sat Vs who Rte

A

i,

eC beat

b> ae ae

a5

Oy

(2

59.

a, = 2 and

0

aie

sat:

bs Bicstat nro Uk wep 1

ne

57.

a a, =

(iy

eee

n

ee k=1

+ 2

63.

ee

a, =

3+a,

+5 2it=

318)

a,

3+a,

+) 2 =o on tea

=

CO

3-a,

+

=

9242

In a4, = A5, a

2 ==

a,

=aE(41 +

a 3

946

2

a

=3

ate oe

1S

Hed e826

SOM

te 2

A =he 2 2(8n-1 + auiig'y n22,

a, =

(abe

1 and

a, =

2a,_,

a, =

2-a,

a, =

2+ a, = wea ere

a,

=

2-a,

=e2e4

Ha

§

as

=

2-a,

=)

=)

16

let

il

ak 5 (eee. 2) a1) =8 a6

1 anes

ES

2( 2

a,) vet:

APPENDIX

2

cod tht

em

FORE a2 a, = ‘il ES

=

ee

eos

61.

3-a,

as

4

peewee

2 i:

for gneve a, = 2 a,

shige

3a)

(Bilt clad k

2 Hogue

3a,_,

A:

SPECIAL

a=es2

6) N oA ae DNV

3/20

TOPICS

(j + 2)

+ 6 =

@4+5

jek

53.

odd

2s,

5

Pt (2k + 1920] $ (21)

set of positive Thus,

ee (So: a ayer Li Wee

\2

2998

12

A= 2

2

=

oul

28a

=

Then:

2

7

aay.EY S72 ear zagit Pei2(23 ae aN)7cei, 7) AGS 4 (73 2 i771) i (72 a 3

ue seas

u

and V2 = 1.414214

EXERCISE

A-2

Things 1.

to remember: of

ARITHMETIC

SEQUENCE

DIFFERENCE,

such

ina

that

ls

ws

COMMON

the

called

d,

thereis constant

if

an

called

is

that

d,

cal Mis kag

allen

>

a

11: numbers

of

sequence

A

Apr

)

43,

is,

for 2.

@),

a,

numbers

A sequence

Ay,

Ayr

GEOMETRIC SEQUENCE if there the COMMON RATIO, such that

Any

mr

Agr

exists

omy

a

called

is

constant

a nonzero

r,

called

a ie Sot

that

3.

is, a=

form

all,

mTH

TERM

if,

taya4 nes.

1.

OF

AN

with

sequence

arithmetic

is an

{a}

SEQUENCE

ARITHMETIC

common

difference

d,

then a7,*.ag forvallin 4.

mTH

TERM

4

a, =

5.

>

(n -

1)d

Lf

OF

is

img {a,}

fomrall

t

A

GEOMETRIC

a geometric

a,r ne>

SUM

FORMULAS

The

sum

SEQUENCE

sequence

with

common

r,

ratio

then

n-1

i. FOR

S, of

a, + a, + az +

the

FINITE

first

ARITHMETIC

n

+ a, with

(a) S| = 52a + tn - 1) dl

terms

common

of

SERIES

an

arithmetic

difference

d,

series

is

given

by

(First Form)

EXERCISE

A-2

947

or

by n9 (ay +

(b)

S., =

SUM

FORMULAS

at (7755 4) ire

i or

a Ue to Sama eae #1.

AN

INFINITE

+a)

+ a,.+

OF

SUM

Die,

by:

Form)

(A) =117 This a, =

r having to be:

/=16,, 20, is an arithmetic ao =

-26,

SERIES

-1

property

the

with

sequence

geometric

infinite

an

is

+ a, + =,

«

Form)

(Second

GEOMETRIC

with common ratio sum S_ is defined

ns

(First

is given

by

Ce

IN

r,

ratio

ee,

series

a geometric

of

terms

common

eee. with

+ ata,

Gy,

n

first

the

S_ of

sum

The

SERIES

GEOMETRIC

FINITE

FOR

Form)

(Second

a):

common




= G, ,(2a)> + Cy ,(2a)“(-b) + Cy o(2a)>(-bj* + C3 (2a); (oe + Cy 4(2a) (-b)* + C, 5 (-b)?

32a° - 80a4b + 80a2b* - 40a*b® + 10ab* - b” 27.

The

term

fifth

expansion

the

in

of

(x -

1)7°

is:

114 _ 3960514 om pott-ay4 — 18-17-16-15 4-3-2-1

29.

The

Cig gP I =" 31.

The

eleventh

Gi hy ORO

2.10 2

term

in

ear

35.

The

Legsee10

two

APPENDIX

and

A:

De:

ee

(2x + y) if

of

264x*y"

is?

0

Can)

pe ee new

ey Seal Odoree

6 e1) te) 6. 1 Seezoesls

and

These

are

(a + b)®.

SPECIAL

pea

are:

~§=«610) Sy

respectively. (a + b)°

rows

expansion

the

_mre 12:11

ee Se ee Ca OW MOL (na 0 Pee) next

q) 15 9.6

6.5-4-3-d-aae 2 — ern

33.

952

(p +

seventh term in the expansion of 9.6 » W5-14-13ie121-10. 9 ge

TOPICS

the

coefficients

in the

binomial

expansions

of

EXERCISE

A-4

aaa,

ee

Things 1.

to remember:

INCREMENTS

For

y =

£(x)

x,,

any

and

2

in the

domain

of

f:

Ax = xX, - X, X, = X, + Ax

Ay = y, - ¥, = £(x,) - £(x,)

= £(x, + Ax) - £(x,)

eax Ay represents the change in y corresponding to a change AX” if 2 Ay depends on the function f, can be either positive or negative. the input x, and the increment Ax. 2.

DIFFERENTIALS

then the DIFFERENTIAL If y = f(x) defines a differentiable function, dy (or df) is defined as the product of f'(x) and dx, where dx = Ax. Symbolically, dy = f£'(x)dx [or df = f'(x)dx] where dx = Ax. [Note: The differential dy (or df) is actually a function involving x and dx—a change in either one or both two independent variables, will affect dy (or df) .] ea

sss

1.

Baoerx,

vee

~- x, = 4-13

fix.) - £(x,) = 3 42 - 3-17 aedg

se 45

Ay _45 _ oe, = 15 3.

Ax) - £(x,) ieee 7 Ax

24 + 2) = £3372 31" £(1 a ae Tae 2 2

Ay = f(x,) - f(x,) = £(3) ee - oe,

See,

leg 3.-

1 =

- £(1) = 3-37 - 3-1% = 27 -)3 = 24

.2

Ay _ 24 _

foro = 4 y = 30 + 12x

- x

dy = (30 + 12x2 - x°)'dx = (24x - 3x*)dx

3 2(1 - 3)

a

= Ha (CH) (Spd

Sem

5Ie

-3/24, dx .= =295 dy =a 590(- 1)2 Fe $3) ax ae

EXERCISE

A-4

953

13.

£20

&

Ax

(A)

Dv Ax)

of

E42)

Are)

324

Ax + 4Ax

5

(B) As Ax tends

2. . guide -

+ Ax”) Ax

12

i

12

Dre

y = (2x4 dy

17.

the

in

table:

Ax # 0

1)>

ter ©date, ‘-

x



+

9

2

(x? op).( 1)

= x(2x)

4) 0a

Fae £(5)

(using

(x2 + 9)2

vy =—i(x) = 03% Ayaer 205° +2022)y=

(Cy

ax

1)

= £(5.2) - £(5) = aD ADdit4 Ho 345 Qinete eels mace tae dy = (x* - 3x)" dx = (2x - 3) (0.2) s= 5

21.

values

following

+

= 3(2x + 1)7(2)dx = 6(2x * 1)°Gx

ys 19.

Ax + 3Ax,

the

Note

_ + 3Ax) _ Ax(12

to zero,

then, clearly, 12 3Ax tends to 12.

ase nd4 = 1.4

x=5

2 y = f(x) = 75(4 : Z| Ay =s£T5"

+)

'(-025)

= £(4.5)

- £(5)

]°=. £(S)

= 75(1 2 a 75) - 75(4 = 25) =it428G7>-€45

ay = [75(2 . 23.

A cube length volume

2)\|, “|

=8-3. 35

hae dx oe= ekel “5 i (-0.5) g= e(-is2)4= 3

with sides of length x has volume V(x) = x°?. If we increase the of each side by an amount Ax = dx, then the approximate change in is:

dv = 3x*dx Therefore, letting 0.2 inch coating],

av = 3(10)*(0.4) Which

954

is

APPENDIX

the

A:

x = 10 and we have

=

0.4

[= 2(0.2),

since

fiberglass

shell.

= 120 cubic inches,

approximate

SPECIAL

dx

TOPICS

volume

of

the

each

face

has

a

25.

= x° + 2x + 3; f£'(x) = 2x + 2; x = -0.5; Ax = dx f(-0.5 + Ax) - £(-0.5) (A) Ay 2(-075 + Ax) + 3 - ((-0.5)7 + 2(-0,5) S (20.5 © A 1 euh-0.5) 4 Ax)* + 2(-0.5 +5Ax) 420.75 dy = f'(-0.5)dx = 1-dx = d&

f(x)

27.

(-0.5 + 0.1)? + 2(-0.5 + 0.1) 0.1 (-0.5 + 0.2)? + 2(-0.5 + 0.2) 0.2 (-0.5 + 0.3)? + 2(-0.5 + 0.3) 0.3

= = = = = =

(B) Ay(0.1) dy(0.1) Ay(0.2) dy(0.2) Ay(0.3) dy(0.3)

+ 0.75 = 0.11 + 0.75 = 0.24 + 0.75 = 0.39

x = 1; Ax = dx

= 3x* - 4x;

= x - 2x7; £'(x) E(x)

+73)

- £(1) = (1 + Ax)? - 2(1 + Ax)? - [13 - 2(1)71

(A) Ay = £(1 + Ax)

mutite Ax)> /- 2(bep 4x)* had dy = f£'(1)dx = (-1)dx = -dx

0.5

-0.5

0.5 -0.5

Ay(0.15) dy(0.15)

= = = = = =

+

b;

(B) Ay(0.05) dy(0.05) Ay(0.10) dy(0.10)

29.

(1 + 0.05)? - 2(1 + 0.05) + 1 = -0.0474 -0.05 (1 + 0.10)? - 2(1 + 0.10)? + 1 = -0.089 -0.10 (1 + 0.15)? - 2(1 + 0.15)? + 1 = -0.1241 -0.15

True

f(x)

Ay =

=

mx

f(3

+ Ax)

f'(x)

-

£(3)

m;

=

x

= m(3 =

=

3;

Ax

+ Ax)

=

+ b-

dx

(3m + Bb)

mAx

ay.= £'(3) dx = mdx Thus, Ay = dy

aii.

False.

At x = 2, dy = f'(2)dx. dy = Example. Let f(x) = x - Ax

0 for

all

dx

implies

only

that

6 (2)ie=

EXERCISE

A-4

0:.

955

33.

3

Poa = 213

Sax G

Nb ap

pe

dy = 3 (3x0 - 2x + 1)" 35.

1) _ ig olGe > 2)

Sax gro

"(6x ~ 2)0x =) 82

dy = f'(x)dx = aaa

Ay = f(x + Ax) - £(x)

x =

Let

Then:

043.

4,: Ax-=

x =

Then N'(x)

5 -8=8-

applies.

3a

rule

applies.

16 = Terenas x2

ora

eee

Taha ta

rule

if L'Hopital's

see

to

Check

1:

Step

3a

TOPICS

applies.

applies.

by

factoring

Step2: Apply L'Hopital's oe,

D. (ao.

1)

be

in (1 +

4x)

iim

D, (x)

lim x0

x0

Therefore,

1.

7

7.

e

lim

Ge

aC

od

Se dhe

x

Thus,

2:

=.0.

x0

L'Hopital's

Step

rule applies.

lim.x

0 and

=

1ln(1)

=

4x)

+

in(i

if L'Hopital's

to see

Step 1: Check Tee

et,

iim

=

rule.

Apply

rule

3a

applies.

L'Hopital's

rule. alt

-

«DX.

wer

Therefore,

(4.4

lim x0

ee

2x7

+

7

Xoo

5x?

+

9

iraad

ee

santieasebmlkam Won Ox 325°

=

eh.

applies.

rule

if L'Hopital's

see

to

Step1: Check

2x),

et

x

4

:

4

sae

Lis

.

4x)

+

D,. In(1

lim0° (5x* + 9) = &. lim (2x* + 7) = © and xX—

x00

Thus,

Step

L'Hopital's

2:

Apply

rule

L'Hopital's

7) D, (2x* + ——— AC ee X—eo

xBes

rie

x00

X

Step

1:

Check

e°* =

o

to

13.

2:

Apply

x—joo

DX

lim

Gate

if L'Hopital's

lim

X00

15

rule

KX

applies.

L'Hopital's

Thus,

rule

4 applies.

rule. 3x

3x

=Sha

ae

meee

at

ee =

co,

Thus,

lim

x00

Ef «X

=

wo,

IN X

Step 1: Check to see if L'Hopital's x—e0°

het,21m —«meh =

= 72

(0

x = ~.

L'Hopital's

3x

x30

x—joo

15x2

15x

X— 00

De

lim

see lim

and

X— 00

Step

xX—J00

lim cee

3x

iam

lim

x00

|

— >, =

ax +7 = 5x° + 9

lim

Therefore,

rule.

Ate

TSlim

=

9)

+

yo

oN

4 applies.

x2 = ©

and

lim

In x = ~.

Thus,

rule applies. L'Hopital's

rule

4 applies.

xX— oo

EXERCISE

A-5

961

Step

2:

Apply

A

Ge = TA iJanes

afhusy u

tant 2x7 = oo o f

i = tim nae

iim D. ae

rule. =

PA

|

x

:

L'Hopital's

x 15.

x

pee

+1

Therefore

i

SOS

x1

x1

2.

1 =

+

limx?

5x + 4,

4+

Lim

x1

4

ae Lim x? ae

x+el

limx

Rule

L'Hopital's

does

not

-i0_,

+1

2

x1

27.0

2am x72

x2

(xX

x

im

x2

+2

(x

-

=

4

2)

co

e!X _ 1 - 4x

lim

x0

x

Step 1:

lim (e** - 1 - 4x)

x0

= e° - 1 = 0 and lim x = 0.

RB

Thus,

x0

L'Hopital's

rule

3a

applies.

Step 2:

D(e** - 1 - 4x)

int #50

3a

:

Since

aatxae a

ee

Do

4

lim (4e**

Sm 256

- 4)

= 4e°

0

i

2x

-

4 =

:

Ovand

lim

x90

x0

indeterminate

form

Step3: Apply D.(4e™* Ax

-

iy Xo

x30

$

me lim x2

l

4x

er

inise

OS

x90

«2

4x

eel!

x2

2x-=

4e'*

:

0,

-

4

lim'7 janes 2x

x0

670

applies. rule

e - 1 So

pat

3a

L'Hopital's

4x

fT

and

4)

D,2x

Thus,

21.

form.

indeterminate

an

is not

limit

the

Therefore

19.

(x4 2) = 4 im(x - 2)* = "0 andslim x2

xX+ 2 ee - 2)

.

pay

again.

ae 4x

4e ee

eg 4

16e

oe

2x

Say

2

4x

8.

= °

els

> eats

§

Step 1: lim

In(x

does

not

x2

-

1)

=

APPENDIX

=

0 and

lim

x2

(x -

1)

=

apply.

Step2: Use the tim in(x*=~ 1)

962

1In(1)

A:

quotient property AGel al 0

SPECIAL

TOPICS

for

limits.

1.

Thus,

L'Hdopital's

rule

23.

Lim

nn (ss:

x30t

Step

x’)

x?

1:

lim x 30+

2:

D. In(1 + x)

x 30+

lim in(l

fie

Cc,

x’)

x

0 and

1 =

in

=

Vx)

+

in(i i

x =(0-

lim x—-0t

3b applies.

rule

L'Hopital's

Thus,

2:

re 1D = OL ape

ae eS D, in(1 + Vx) Spee =a lim = a = Mane x0+ Dx x0+ In(1 + Vx) _ | Thus,

lim

x>-2

: Lit)

x + 2x +1 == ee x +x+1

Step

1:

Since

1

ys,

=

tin

= me

= =| CO;

moor 2Nx(L + Nx)

x

x30t

27.

3xX(1.+

1:

x70t

Step

SO

x30*

+ Vx

x-0t

Step

3x?

=) (Cor,

x

x>0+

. lim

ae ee a im hae ee

Dow

Thus,

25.

3b applies.

rule

L'Hopital's

Thus, Step

x0*

y

x0+*

oes, 0,.

0 end amy =,Id

eax)

=

1)

(x? geesce +

Lim,

x>-

L'Hopital's

eS,

Ae

rule

does

not

apply. Step

Using

2:

the

limit

properties,

29.

ham

4x

Beets?

Step

+

-

Ax* +

x = 5x

+

4

=

4+) Wee oe

it 2 ee

Wilh

;

1:

steers

-

1)

=

lim

(x0 + 4° + Sx + 2)

Thus,

F

2

eee

x->-1

have:

1

lim

x9-1

we

f-2)? 122s 2 (22)7 + 4-2 eee

tt Oe ae OC > w-2 x + e+ a

aK

L'Hopital's

rule

a1

Bleed

=n] =.0 and

= -L+4-54+22=0.

3a applies.

EXERCISE

A-5

963

Step 1

2: Di(xi + x4 4A

Paresh Dix Since,

x'- 1)

;

lim

(3x* + 2x

-

3x7 + 2x

hit:

+ 4° + 5x42)

es

xo-1

1)

=e. =) lt =e Owane

x--1

is

a 0/0

form

= LAM

og e Lin’ e x>-1 D, (3x + 8x + 5)

5-1

31.

Mn

x 40h

x

3x* + 8x + 5 again.

tt

D (3x2 + 2x - 1)

SMe

ee

x>-1

3a applies

and

Step 3:

Thus, 1s

0

eS

Pin ote tay 4 Se

x>-1

indeterminate

-1

3x2 + Ox + 5

x4

Sl.

alee Sere 5 OXetS

5,

ax

aK

lea

bh

+ 5x + 20 049-1 3x + Bx + 5

en)x

+

bo

4-1 Sx + 8

x - 12x + 16

aaa oo

x24

S 6x + 12x - 8

Step 1:

lim

(x° - 12x + 16)

= 8 - 24 + 16 = 0 and

x27

Lime (9° 829 63° 412%

BlS) = "BS 24a F 24=

gmelo:

x 927

Thus, Step

L'Hopital's

3b applies.

2:

Dee lim

rule

ST

Ese)

- 12x + 16) Fe Llavaee

eae

3x7 - 12 e

.

i lim

-. =e 6h =

aie D(x? = 6x e 19x eB) soe nexee er ax + 12 Since lim (3xX* - 12) = 12 - 12 = 0 and x72

lim x27

G36

12x + 12)

indeterminate

form

and

= 420-24

+112

3b applies

= 0,

lim __ 3x) 2 1 e522 3x = DO ede

again.

stens3 ;

¥ D(3x* - 12) at Ln ie. 5.08. = oa a ok. 2. jaa D, (3x? = 12% + 12) ) g459- OX - 12°



se 1m

345-x

- 2

=

-oo,

is

Thus,

, ist) xg

964

x seep - 12xae+ 16eee 2h: GCs 12H 8) wee

“a>

APPENDIX

A:

SPECIAL

TOPICS

33° - 12 ee Gee exe 12

Se

x

nyo

=

-oo,

33.

peer + 5x Xoo

4x° +

7

= e and lim (42° + 7) = ©. xX—oo L'Hopital's rule 4 applies.

lim (3x7 + 5x) x—Je0

Thus,

Step 2:

Chara

D(3x° + 5x)

lim

== soe

= e

and

12x

D

(6x

+

5)

4x?

3 ae ee

35.

lame

a= —

x—e0

e**

2

x

Step1 hime = oo and

4

12x

x00.

in 2 x00

and

lim

x =

4 applies

he

x

har + as

Goo

; es x: O56

=)

x RT aa,

2

L'Hopital's

Thus,

e*~ = .

lim

We X— 0

( AX

x—peo D,e** Since

+

3

X

~

2e°*

X00

D,e**

4 applies.

and

o/coo

indeterminate

in x00 lim

x—0

e2@X"

e?* =

co,

lim

x00

re is

an

form

again.

Step 3: Dx

rule

xX—00

x—00

Step 2:

x

: ee

+ 5x 7 + 7 +

x—00

co/co

in Se x—e00

oS oe|

5 Pe

an

6

pany eed Box xX— 00

2 is

12x

lim —al = 0 >aoe = Al lim >-— = Ro 2hx

iecees Pa(i22)

ae

oat

lim

X—eo

again.

and 4 applies

form

co,

=

123%

lim

X—oo

xX— 00

indeterminate

1:

tm)

xX—00

5)

+

(6x

lim

Since

7)

+

X— 00 D, (4°

=

1

= Of =Shintesss are

2e2*

x

1

“thus

ims

xX— 00 e2*

=

lim. s5yp-=

X00

ex

lim

X00

~ >, =

2e2*

EXERCISE

A-5

965

37..

T+eS

[int samanese X00 1+ x

Step 1:

lim (1 + e*)

= 1 and lim (1 + x*) = &.

x00

x00

Thus,

this

limit

SceD 2: : , Since

39. lim

lim ee

«

is

not

o

(1 +

e~)

an

indeterminate

,

=

1 and lim xo

(1 + x’)

form.

ee

EWES,

dn @ %

ALG (1, amen ain he x00 1 + x?

-xX

x0

oe

In(1l

Step

+

4e~)

1:

tim,

e * Ss0eeand

Jim

xX— 0°

In(1

+74e*))=

In 1 = 0.

x00

Thus,

L'Hopital's

rule 3b applies.

Step 2:

D,(e*)

ie

ee.

=

+ 4e@~%)

D 216 In(1

x00

.Ate

-e™*

oe,

ee

1

x30

1+

4e

ae

eee

(

= =o,

1,

then

rule

L'Hopital's

4

sa at

Step 3: .

De

xe Donxtt This

limit

Applying

.

teen tne 2 is «o if n =

L'Hopital's

2 and has

the

rule 4 n times,

indeterminate

we have

lim

x—joo

form

= = co, 11:

/e

Thus

if n > 2.

lim

xX— 300

EXERCISE



a

A-5

= &.

967

VISE(LeK*297K

Y1=(19XK*3)*(173)/K

49.

51.

Y=1.0049876

EXERCISE

Y=.99966656

A-6

Things 1.

to remember:

REGULAR



REGIONS:

A region R in the xy plane is a REGULAR x REGION if functions f(x) and g(x) and numbers a and b so that

Raeeocry) A region and k(y)

R= See 2.

| g(x) Sy S f(x),

Figure

17

in

the

DOUBLE

INTEGRATION

2 on

A, ge 4

eS

OVER

| g(x)

y) ay dx -

a geometric

REGULAR

REGIONS: a Sx

Sy) Db}

F(x,

y) dy| ax.

g(x)

y

Regular

If

R=

{(x, y) | hly) [rte

$x

kly),

x region

cS y < d},

df ky) y) dx dy = i i F(x,

4

Ce}

Regular

APPENDIX

A:

SPECIAL

TOPICS

then

y)ax|ay.

h(y)

y

968

functions

interpretation.

f(x)

f i a

R

for

SuVe sere (he b

[fev

exist

x15 Kiyae sey saa? text

exist

ars oc = bY

R is a REGULAR y REGION if there and numbers c and d so that

{ (x, y) | bypass

there

y region

Phen

h(y)

te x, y =.0,; 05

Pay The

region

Metix,

x S12

is

x Ss2) s 4 - x7, 0s yy )osy

which is a regular x region. Also, on the interval 0 S$ x S$ 2, write the equation y = 4 - x as cihus,; x= V4 - Vi OFS. vis, 4!.-

OS

y)| 0 s x's Nal-"yi

Peetiix,

can

we

wie 4)

Hence R is which is a regular y region. regular y a and region x r both a regula region. So

x, y =.12 - 2x, x = 0 or g(x) = sacl £(x) = 12°- 2x; x = 0 We set £(x) = g(x) to find the points intersection of the two graphs: 12 - 2x = or x + 2x - 12 = 0 yee

Seer ayo

R 2x + 6) = 0

point

x = 2 and (2, 8) is the Therefore, The region is: of intersection.

xS 2}, {(x, y) |? Sy $12 - 2x, 0S

R=

is

which Sr

2x,

=

¥

of

a regular y= x

-

x region.

4 or

kl(y)

of

To find the point(s) get h(y) = kty):

ae

=

anc

|< a= way)

intersection,

y+4=5y¥ or

¥

-

2y - 8 =

0

(y= 4) (y + 2) = 0

The points of y = 4. and y = -2, -2) and (8, 4). (2, intersection are R is region the Therefore, Ria

{(x,

which

is

y) |Sue xs

a regular

eX

TRS f { (x + y)dy Oo

dx

4)=

yt

ey

S 4,

y region.

irhe (x + y) ay|ax- iele + 3¥)

40

elle

x=0

al

mes

= on be 0) aeio

EXERCISE

A-6

969

: 4.

9.

f [tax

ov

y

+ y)dax

ikne + y) ax| dy = I cc + xy) Jey

dy

Ir(t(Vy)? is (yey alas ? 2

R= (xx Yohileelase2s R is Ris

13.

c a e haley (28 7

5

5 oe

Ly| s

the rectangle with a regular x region

Rie (io

+ wy] - Ly*)? + yly*)lidy !* Bayh yk)ay, 1 1 5\(¥=2

Get UL) 2. bs

SIR pas. (E253) no l(Zaws) and a regular y region.

ee 21,

|x|s5,2,

OF

15.

x

Rit Cog y),| cs

region

VES

but

2h

not

a

nen

29

R is the region that lies outside the circle of radius 1 centered at the origin and inside the rectangle with vertices (-2, 2), (2, 2), (20m0) # (-2%~0) R is a regular y region.

,

—S) cu (26

ese

y (-2, 2)

regular

OT Sexi Ss2}

[J02 + Praa = (aie(x*+ y*)dy dx = Irix(x4 + Pay] ae R

=

Ir(2 + 3”) |

ae= is[22(290

+ 5 (2x) >|cox

: Co + $20fx = iPegestice Zyal’ - 2 (a4 = 38 17.

R=

{(x, y)|O's xS y+

[[ue+y-

A

2)3dA

wh

nO

Sy

Sl} y+2

(x + y - 2)3dx dy= f If (200% “Y= 2) x]dy

R

iT]

=

‘3 esl

A:

SPECIAL

174

Jer = i;[F ays

APPENDIX

x=yt2

al

[era (y - 2)4] ay «(SY - py - 25], U1 |i a oa ca:

970

ib Ce

| A Se

39 (72)

TOPICS

eee

ese Ae OT

[-g5 2s} = 443

32a

20°

8

A

{(x, y)|-xSy

19. R=

mJ

dx =f eee feFivhand

|i

=v)

2

= \ ele 0

0

5 (LoVe

ety!

2

(2°) = 2e

7

acy”

Ss 1} tks sx td, On

sy

1 2'R ery)

= oe = x)ae x=0

1)dx

lh (6°* -

6o\an=

-

x+1

{fs+x

dx + ydA= ifJ (1 + x + y)?/*dy y=xt1

1 f Ra

0

ne?

exs

1

(,[2 «2

4V2

+

-

2x) 3/4

3/2

1

yee

ie

ati +

2

ao Nipadn

x)*/?] x

(i

3/2

3 dled 2)

(alee inet

[Note:

ax

(2 +

2x) 3/2

SP oNe (1 Sx 1

{ave 215F PR ee. 0 ‘52)gy2. (1

2 (aN 3o>

&,=

+

x)

2 4 _ 68 - 24V2 (8v-

_ (sV2 = 4) 45/2 _

15

15

is 23.

5/2 |= ae

y = g(x)

y= f(x) = 4x - x, 4x - x =0

=

15

= 0

- 4 x) =0 x( Ba 0, ) x= 4

Therefore,

Retix

OS xs 4.}

yo |0oS ys 4x - x, A

Cax-x"

0

40

é

=

4

2

J,i ee

ax

+ 21a

[Ny + 3?aa - f [Py

x2) ) 3/2

4

= if 2 ( (ax — x

pec

ret

a

ye)

iaey?/2 = (0 # ey

fax

0 4

= f en

Rh 5% Jax (note:

(a2) 2/2r= ate

© BP!

0

EXERCISE

A-6

971

3

x=0

= aa

2 (4)!

inches

dase

2) mao)

32°32" jo256 = 428 eee

25. y = g(x)

«=

6.

= 1 - Vx, y=

f(x)

35

f(x)

= 1+ Vx, x=4

= g(x)

1+Vx

=1

-

Vx

avx= 0 x Therefore, (COVA

=

0 the

graphs

intersect

at

the

point

Bg:

R=-((xpey) |2-- Vx s y | x(y

-

1)2da

!

61 oscrar lati antinegg we

Rvlesriataps wails

OA iy

FHT

PTAIDA

SPI SeHWDY yd wit

od (hae

AAW

i

Coe

MORO

MOAT

SPA

© pe¥ eeratlenact

ebb

vewrpoaiass ealt J

Vx

Fie ros set

Sr terrcsa\ of tat) ea

/

«onl

wae

¥,40 AAR AD

VWILCMO? OV eae GOAT By3.

Baer 09 Hb aii) alin : ethedil wird

BT AAs

eet?

osimaanel?i Maps CE:> aT

Y SST

a

2 wey

Bud

aude Mae

‘ LUPO N) w

a sae: a

“4

eur

ihewlt.,

', iarerertt

;

wl

y

tei



.

a

y

Miedo pio tes cad I :

"

> ve ee ee

i. *;

j

a

tt

i

. .

i

\

We

a iy

,

: g

Prentice-Hall, Inc.

YOU SHOULD CAREFULLY READ THE TERMS AND CONDITIONS BEFORE USING THE CD-ROM PACKAGE. USING THIS CD-ROM PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. Prentice-Hall, Inc. provides this program and licenses its use. You assume responsibility for the selection of the program to achieve your intended results, and for the installation, use, and results

obtained from the program. This license extends only to use of the program in the United States or countries in which the program is marketed by authorized distributors.

LIMITATION OF REMEDIES Prentice-Hall, Inc.’s entire liability and your exclusive remedy shall be: 1. the replacement of any diskette not meeting Prentice-Hall, Inc.’s

“LIMITED WARRA “ and that is returned to Prentice-Hall, or 2. if Prentice-Hall is unable to deliver a replacement diskette that is free of defects in materials or workmanship, you may terminate this agreement by returning the program.

LICENSE GRANT

You hereby accept a nonexclusive, nontransferable, permanent license to install and use the program ON A SINGLE COMPUTER at any given time. You may ony the program solely for backup or archival purposes in support of your use of the program on the single computer. You may not modify, translate, disassemble, decompile, or reverse engineer the program, in whole or in part. TERM

The License is effective until terminated. Prentice-Hall, Inc. reserves the right to terminate this License automatically if any provision of the License is violated. You may terminate the License at any time. To terminate this License, you must return the program, including documentation, along with a written warranty stating that all copies in your possession have been returned or destroyed. LIMITED WARRANTY THE PROGRAM IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND NOT PRENTICE-HALL, INC. OR ANY AUTHORIZED DEALER) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY PRENTICEHALL, INC., ITS DEALERS, DISTRIBUTORS, OR AGENTS SHALL CREATE A WARRANTY OR INCREASE THE SCOPE OF THIS WARRANTY.

IN NO EVENT WILL PRENTICE-HALL, INC. BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR : CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE SUCH PROGRAM EVEN IF PRENTICEHALL, INC. OR AN AUTHORIZED DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. SOME STATES DO NOT ALLOW FOR THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU. / GENERAL You may not sublicense, assign, or transfer the license of the

program. Any attempt

to sublicense, assign or transfer any of the

rights, duties, or obligations hereunder is void.

oo Agreement will be governed by the laws of the State of New

ork.

Should you have an questions concerning this Agreement, you may contact Prentice-Hall, Inc. by writing to: Director of New Media Higher Education Division Prentice-Hall, Inc.

1 Lake Street Upper Saddle River, NJ 07458

SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER LEGAL RIGHTS THAT VARY FROM STATE TO STATE.

Should you have any questions concerning technical support, you

Prentice-Hall, Inc. does not warrant that the functions contained in

Upper Saddle River, NJ 07458

may write to:

New Media Production Higher Education Division

.

i

Prentice-Hall, Inc.

1 Lake Street

the program will meet your requirements or that the operation of the program will be uninterrupted or error-free.

However, Prentice-Hall, Inc. warrants the diskette(s) on which the

program is furnished to be free from defects in material and workmanship under normal use for a

period of ninety (90) days

from the date of delivery to you as evidenced by a copy of your receipt.

The oem should not be relied on as the sole basis to solve a problem whose incorrect solution could result in injury to person or property. If the program is Scag ed in such a manner, it is at the user’s own risk and Prentice-Hall, is explicitly disclaims all

liability for such misuse.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT, AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US THAT SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR : WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN US RELATING TO THE SUBJECT MATTER OF THIS AGREEMENT. -

NOTICE TO CONSUMERS THIS BOOK CANNOT BE RETURNED FOR CREDIT OR REFUND IF THE SEAL ON THE VINYL DISK HOLDER IS BROKEN OR TAMPERED WITH.

a

,

ISBN

0-13-085885-7?

‘Prentice Hall, Upper Saddle River, New Jersey 07458 ¥ ttp://www.prenhall.com

91'780130!858894

| |