182 58 41MB
English Pages 508 [509] Year 2006
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Aquatic Biodiversity in Latin America Biodiversidad Acuática en América Latina
Volume 1
Amazon Fish Parasites (Second edition)
Volumen 1
Parásitos de Peces Amazónicos (Segunda edición)
1
2
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
BIODIVERSIDAD ACUÁTICA
EN
AMÉRICA LATINA
Volumen 1
PARÁSITOS DE PECES AMAZÓNICOS (Segunda edición) por
Vernon E. Thatcher Lector Científico a los Editores: František Moravec Editores de la Serie: Joachim Adis, Jorge R. Arias, Guillermo Rueda-Delgado & Karl Matthias Wantzen
Sofia–Moscow 2006
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
AQUATIC BIODIVERSITY IN LATIN AMERICA Volume 1
AMAZON FISH PARASITES (Second edition) by
Vernon E. Thatcher Scientific Reader to the Editors: František Moravec Series Editors: Joachim Adis, Jorge R. Arias, Guillermo Rueda-Delgado & Karl Matthias Wantzen
Sofia–Moscow 2006
3
4
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
AQUATIC BIODIVERSITY BIODIVERSIDAD ACUÁTICA
IN
LATIN AMERICA
EN
AMÉRICA LATINA
Series Editors/Editores de la Serie: Joachim Adis, Jorge R. Arias, Guillermo Rueda-Delgado & Karl Matthias Wantzen VOLUME 1. AMAZON FISH PARASITES (Second edition) by Vernon E. Thatcher Scientific Reader to the Editors: František Moravec
VOLUMEN 1. PARÁSITOS DE PECES AMAZÓNICOS (Segunda edición) por Vernon E. Thatcher Lector Científico a los Editores: František Moravec Front cover:
Nerocila armata (Cymothoidae, Isopoda) and Amazon River near Manaus, Brazil (photos: V.E. Thatcher, W.J. Junk; design: Zheko Aleksiev & Elke Bustorf)
Aquatic Biodiversity in Latin America Vol. 1 ISSN 1312-7276 First published 2006 ISBN-10: 954-642-258-4 ISBN-13: 978-954-642-258-3
© PENSOFT Publishers All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.
Pensoft Publishers Geo Milev Str. 13a, Sofia 1111, Bulgaria [email protected] www.pensoft.net
Printed in Bulgaria, March 2006
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
5
AQUATIC BIODIVERSITY IN LATIN AMERICA BIODIVERSIDAD ACUÁTICA
EN
AMÉRICA LATINA
Series Editors: Joachim Adis, Jorge R. Arias, Guillermo Rueda-Delgado & Karl Matthias Wantzen Biodiversity is a key word in science and global management schemes, however very few people are able to identify the species and their ecology that make up “biodiversity”. For many years, researchers and students from numerous countries complain about the lack of “tools” to identify aquatic invertebrates from Latin America. Keys found in accepted entomological textbooks are mostly highly limited, superficial and rarely cover Neotropical biota in sufficient detail. On the other hand, specialized information on taxonomy or ecology is scattered throughout the literature in many single publications. An international team of editors have combined their efforts with Pensoft Publishers to launch a new major series on the Aquatic Biodiversity of Latin America (ABLA). Their goal was to find experts who combine the current state of knowledge in taxonomy and ecology, in order to produce a concise and affordable handbook for each group. About 15 separate monographs, written by reference scientists from various countries will offer a new, unrivalled view on the aquatic fauna of South America. Information on the ecology and status of the taxa (written in English) is combined with illustrated identification keys to families and genera, in both English and Spanish. The series is aimed at zoologists, ecologists, hydrobiologists, biogeographers, conservationists and students interested in aquatic biodiversity. The series will be an essential tool for any biological library. Volume 1: Amazon Fish Parasites (Second edition) by Vernon E. Thatcher. Pensoft Publishers, Sofia-Moscow, ISBN-10: 954-642-258-4, ISBN-13: 978-954-642258-3, 165x240 mm, 508 pp., including 194 plates of figures in line drawings and photos (16 plates in color); publication date: March 2006. This book covers the following Phyla and Classes: Protozoa (Myxozoa, Sporozoa), Plathelminthes (Trematoda, Monogenoidea, Cestoda), Nematoda, Acanthocephala, Crustacea (Copepoda, Branchiura, Isopoda), Hirudinea and Pentastomida that are known to parasitize Amazonian fishes. In addition to the keys and checklists, each chapter gives information on the morphology, life cycles, pathology, prevention, treatment, collection and methodology, as well as general reference data on each taxon. An alphabetic table of host fishes with their respective parasites is provided. The book will prove to be useful for parasitologists, ichthyologists, aquaculturists, pisciculturists and all those interested in Neotropical fish parasites.
6
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
ADDRESSES Author: PROF. DR. VERNON E. THATCHER Universidade Federal do Paraná Faculdade de Ciências Biológicas Departamento de Zoologia Caixa Postal 19020 81531-990 Curitiba, Paraná, Brazil e-mail: [email protected], [email protected] Series Editors: PROF. DR. JOACHIM ADIS Max-Planck-Institute for Limnology Tropical Ecology Working Group Postfach 165 24302 Plön, Germany e-mail: [email protected] DR. JORGE R. ARIAS 5870 Colfax Avenue Alexandria, Virginia 22311, USA e-mail: [email protected] M.Sc. GUILLERMO RUEDA-DELGADO Grupo de Investigación en Cuencas y Humedales Tropicales GICHT UNIMAG-INTROPIC Universidad Jorge Tadeo Lozano Laboratorio de Limnología Carrera 4 No. 22-61 Bogotá, D.C. Colombia e-mail: [email protected]
DR. KARL MATTHIAS WANTZEN Institute of Limnology University of Konstanz Postfach M 659 78457 Konstanz, Germany e-mail: [email protected] Scientific Reader to the Editors: DR. FRANTIŠEC MORAVEC Institute of Parasitology Academy of Sciences of the Czech Republic Branišovská 31 37005 České Budějovice, Czech Republic e-mail: [email protected]
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
7
FOREWORD Amazon Fish Parasites by Vernon E. Thatcher It is an honor to provide this introductory statement to the 2nd edition of “Amazon Fish Parasites” compiled by my dear friend, Dr. Vernon E. Thatcher. Vernon’s contributions to parasitology span a period of more than five decades, during which time he has published more than 160 scientific papers, most dealing with the parasites of Neotropical fishes. His overall contributions include coverage of a wide variety of parasitic taxa, including the Kinetoplasta (Protista), Digenea, Monogenoidea, Nematoda, Cestoda, Acanthocephala, Copepoda, Isopoda and Diptera. On one occasion, I remember Vernon commenting that a “true” parasitologist is one that was knowledgeable, competent, and sufficiently versed concerning most (if not all) parasitic groups such that he/she could conduct significant research on any one of them. Vernon has certainly lived up to this definition of a parasitologist, and it is fitting that he be the person to compile the available information about the parasites of Amazonian fishes. Knowledge of the diversity of the parasites of Neotropical fishes, and those of the Amazon in particular, has significantly increased since publication of the 1st edition of “Amazon Fish Parasites” in 1991. Much of this new information is due to a large extent to the more than 60 publications originating from Thatcher’s laboratory since 1991, as well as works published by other investigators, who undoubtedly were encouraged to conduct new investigations as a result of the publication of the 1st edition. The new edition includes coverage of all parasites representing the major parasitic groups infesting Amazonian fishes listed in the first edition, as well as that of species subsequently reported in the literature. For each of the major parasitic groups, the 2nd edition includes sections on Definition and Morphology, Life Cycle and Transmission, Pathology, Prevention and Treatment, as well as Collection and Methods. These introductory sections are then followed with identification, keys in English and Spanish, a checklist of species and numerous figures and references pertaining to the respective groups. The checklist of species not only lists all species of the taxon reported from the region, but includes diagnoses of families, subfamilies and genera represented by the species in the list. Finally, the book ends with a detailed list of hosts and their respective parasites. Although I am not totally aware of the extensive literature of all parasite groups represented in the Amazon, coverage of the Monogenoidea (my specialty) suggests that records presented in the 2nd edition are complete and up-to-date. The organization of the book and that of each chapter dealing with the individual parasite groups is extremely conducive for use by other investigators. There is little doubt that the 2nd edition of “Amazon Fish Parasites” will greatly assist future investigators with identification of Amazonian fish parasites and provide a convenient means for surveying the literature for
8
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
a variety of studies including taxonomic, phylogenetic and ecologic investigations of the parasites found in the region. Copies of the 2nd edition of “Amazon Fish Parasites” will certainly find their way to the book shelves of many libraries and most workers dealing with the parasites of fishes in the region. DELANE C. KRITSKY, Ph.D. Idaho State University Pocatello, USA
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
PREFACE
TO THE
9
SECOND EDITION
The first edition of the book, Amazon Fish Parasites, was well received especially in Europe and tropical American countries. It has proven to be useful to aquarists and pisciculturists. The book went to press in 1990 and since that time, advances have been made in several areas of fish parasite research. New genera and species of parasites have been discovered and described. New finds have been reported in Monogenoidea, Trematoda, Nematoda, Copepoda and Isopoda and these have been incorporated into the present edition. Keys in both English and Spanish are provided to aid in the identification of the parasites. The author hopes that the present edition will continue to be helpful to those interested in tropical fishes and their parasites and stimulate further studies on these fascinating animals. VERNON E. THATCHER Departamento de Zoologia Universidade Federal do Paraná Curitiba, Paraná, Brazil, August 2005
10
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
PREFACE
TO THE
FIRST EDITION
My first encounter with fish parasites occurred some forty years ago when I took a course in the subject from the late Dr. Ivan Pratt at Oregon State University. Although I received only one credit for the course (and had to work very hard for it), I gained a field of interest that has lasted through the years. Fish parasites are so numerous and varied, and have adapted to the parasitic way of life in so many ways, that they never cease to fascinate. I have had the opportunity to live and work in the American tropics for nearly thirty years. My studies have frequently involved human and mammalian parasites, but I have always found time to examine a few fish as well. I have collected and studied fish parasites from the Grijalva River basin in Tabasco, Mexico, the Chagres River in Panama, the Cauca River system in Colombia and the Guandu-Aço River in Rio de Janeiro State, Brazil. For the past twelve years, I have been able to study fish parasites and the pathology they provoke at the Brazilian National Institute of Amazonian Research (INPA) in Manaus, Amazonas, Brazil. It has been possible to examine wild caught fish from various parts of the Amazon region as well as captive fish held in the INPA pisciculture station. The present book is an attempt to compile all available information on Amazon fish parasites. For the sake of comparison, freshwater fish parasites from other parts of the Neotropical Region have been included. Marine species have been omitted, however. Every effort has been made to produce a work that is as complete as possible. Inevitably, some references will have been overlooked. Even so, this book should serve as a basic source of information and stimulate further research in the field. VERNON E. THATCHER Manaus, Amazonas, Brazil, February, 1990
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
11
ACKNOWLEDGMENTS The author is grateful for the continued support of Profs. WOLFGANG J. JUNK and JOACHIM ADIS of the Tropical Ecology Working Group, Max-Planck-Institute for Limnology, Plön, Germany. Thanks also to Dr. DELANE C. KRITSKY, Idaho State University, Pocatello, Idaho (Monogenoidea); Dr. OTTO SEY, University of Agricultural Science, Keszthely, Hungary and Dr. FRANTIŠEK MORAVEC, Institute of Parasitology, České Budějovice, Czech Republic, who not only aided in the publication of new species but also granted permission to reproduce some of the figures used. The author is also grateful for the collaboration of Dr. WALTER A. BOEGER and R. N. VIANNA, Department of Zoology, Universidade Federal do Paraná, on the chapter concerning Monogenoidea, and to Dr. JORGE R. ARIAS, Director of the West Nile Virus Program at the Fairfax County Health Department, for checking the Spanish translations. Special thanks are due to Dr. BEDSY DUTARY THATCHER for converting the text of the first edition of the book to digital format. VERNON E. THATCHER Curitiba, Paraná, Brazil, August 2005
12
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Table of Contents 1I
19
NTRODUCTION
Cited and general references
22
2 P I. Definition andCmorphology
23
II. Life-cycle and transmission
24
ROTOZOA AND
ILIOPHORA
III. Pathology
25
IV. Prevention and treatment
26
V. Collection and study methods VI. Identification and keys
26 27
Key to the genera of Neotropical Myxosporida
28
Clave para los géneros de Myxosporida Neotropicales
28
Key to Neotropical fish ciliophorans
28
Clave para los cilioforos de peces Neotropicales
29
VII. Checklist of Myxosporida from Neotropical freshwater fishes
29
Checklist of Ciliophora from Neotropical freshwater fishes
31
VIII. Plates of Protozoa and Ciliophora (Figs. 2–1 to 2–44) IX. Cited and general references
33 40
3 MI. Definition and morphology
42
II. Life cycle and transmission
44
ONOGENOIDEA
III. Pathology
44
IV. Prevention and treatment
45
V. Collection and study methods VI. Identification and keys Key to higher taxa of freshwater Amazonian Monogenoidea
45 50 50
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Key to genera of freshwater Amazonian Gyrodactylidae
51
Key to genera of freshwater Amazonian Dactylogyrinea
51
Clave para las taxas superiores de Monogenoidea Neotropicales de agua dulce
55
Clave para los géneros de Gyrodactylidae Neotropicales de agua dulce Clave para los Dactylogyrinea Neotropicales de agua dulce
55 56
VII. Checklist of Monogenoidea from Amazonian freshwater fishes and diagnoses VIII. Plates of Monogenoidea (Figs. 3-1 to 3-64) IX. Cited and general references
60 92 110
) 4 T I. Definition (Dand morphology
117
II. Life-cycle and transmission
117
REMATODA
IGENEA
III. Pathology
119
IV. Prevention and treatment
120
V. Collection and study methods VI. Identification and keys Key to the Neotropical freshwater fish trematodes
121 122 123
Clave para identificación de Tremátodos, parásitos de peces Neotropicales
127
VII. Checklist of Trematoda (Digenea) from Neotropical freshwater fishes VIII. Plates of Trematoda (Digenea) (Figs. 4-1 to 4-99) IX. Cited and general references
131 154 203
C 5 C I. Definition and morphology
206
II. Life-cycle and transmission
207
ESTODARIA AND
ESTODA
III. Pathology
207
IV. Prevention and treatment
208
V. Collection and study methods VI. Identification and keys
208 208
13
14
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Key to Cestodaria and Cestoda of Neotropical freshwater fishes
209
Clave para Cestodaria y Cestoda de peces Neotropicales de agua dulce
211
VII. Checklist of Cotyloda (= Cestodaria) and Eucestoda (= Cestoda) from Neotropical freshwater fishes VIII. Plates of Cestoda and Cestodaria (Figs. 5-1 to 5-44) IX. Cited and general references
213 222 231
6 NI. Definition and morphology
234
II. Life-cycle and transmission
234
EMATODA
III. Pathology
235
IV. Prevention and treatment
236
V. Collection and study methods VI. Identification and keys
236 237
Key to the superfamilies of Nematoda from Amazonian freshwater fishes Key to the Ascaridoidea of Amazonian freshwater fishes
238 238
Key to the Oxyuroidea (Pharyngodonidae) of Amazonian freshwater fishes
239
Key to the Camallanoidea (Camallanidae) of Amazonian freshwater fishes
239
Key to the Cosmocercoidea of Amazonian freshwater fishes
240
Key to the Dracunculoidea of Amazonian freshwater fishes
240
Key to the Seuratoidea of Amazonian freshwater fishes
241
Key to the Trichinelloidea (Capillariidae) of Amazonian freshwater fishes
241
Key to the Gnathostomatoidea (Gnathostomatidae) of Amazonian freshwater fishes
242
Key to the Thelazioidea (Rhabdochonidae) of Amazonian freshwater fishes
242
Key to the Physalopteroidea (Physalopteridae) of Amazonian freshwater fishes
242
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Key to the Habronematoidea of Amazonian freshwater fishes
242
Clave para superfamílias de Nematoda de peces Amazonicos de agua dulce
242
Clave para las Ascaridoidea de peces Amazonicos de agua dulce
243
Clave para las Oxyuroidea (Pharyngodonidae) de peces Amazonicos de agua dulce
244
Clave para las Camallanoidea (Camallanidae) de peces Amazonicos de agua dulce
244
Clave para las Cosmocercoidea de peces Amazonicos de agua dulce
245
Clave para las Dracunculoidea de peces Amazonicos de agua dulce
245
Clave para las Seuratoidea de peces Amazonicos de agua dulce
246
Clave para las Trichinelloidea (Capillariidae) de peces Amazonicos de agua dulce
246
Clave para las Gnathostomatoidea (Gnathostomatidae) de peces Amazonicos de agua dulce
246
Clave para las Thelazioidea (Rhabdochonidae) de peces Amazonicos de agua dulce
247
Clave para las Physalopteroidea (Physalopteridae) de peces Amazonicos de agua dulce
247
Clave para las Habronematoidea de peces Amazonicos de agua dulce VII. Checklist of Nematoda from Amazonian fishes VIII. Plates of Nematoda (Figs. 6-1 to 6-98) IX. Cited and general references
247 248 265 293
7 A I. Definition and morphology
299
II. Life-cycle and transmission
300
CANTHOCEPHALA
III. Pathology
301
IV. Prevention and treatment
301
15
16
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
V. Collection and study methods VI. Identification and key Key to Acanthocephala of Neotropical freshwater fishes VI. Identificación y clave
301 302 302 303
Clave de identificación para Acanthocephala de peces Neotropicales de agua dulce
303
VII. Checklist of Acanthocephala from Neotropical freshwater fishes 305 VIII. Plates of Acanthocephala (Figs. 7-1 to 7-32) IX. Cited and general references
8 C I. Definition and morphology
311 324
OPEPODA
326
Ergasilidae
326
Vaigamidae
328
Lernaeidae
329
Therodamasidae
329
II. Life-cycle and transmission
330
III. Pathology
331
IV. Prevention and treatment
331
V. Collection and study methods VI. Identification and keys Key to Amazonian freshwater ergasiloid females
331 333 333
Key to the South American genera and species of postmetamorphic female Lernaeidae Clave para hembras Ergasiloides dulceacuícolas Amazonicas
334 335
Claves para los géneros y especies de Lernaeidae hembras post-metamórficas de América del Sur VII. Checklist of Copepoda from Amazonian freshwater fishes VIII. Plates of Copepoda (Figs. 8-1 to 8-62)
336 337 346
IX. Cited and general references
386
9 B I. Definition and morphology
390
II. Life-cycle and transmission
390
RANCHIURA
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
III. Pathology
391
IV. Prevention and treatment
391
V. Collection and study methods
391
VI. Identification and keys
392
Key to the Neotropical genera of Branchiura
392
Key to the Neotropical species of Argulus
392
Key to the Neotropical species of Dolops
393
Clave para los géneros Neotropicales de Branchiura
394
Clave para las especies Neotropicales de Argulus
394
Clave para las especies Neotropicales de Dolops
395
VII. Checklist of Branchiura from Neotropical freshwater fishes VIII. Plates of Branchiura (Figs. 9-1 to 9-31) IX. Cited and general references
397 401 413
10 II. Definition and morphology
416
II. Life-cycle and transmission
416
SOPODA
III. Pathology
417
IV. Prevention and treatment
419
V. Collection and study methods
419
VI. Identification and keys
419
Key to the Genera of Cymothoidae from Neotropical freshwater fishes
420
Clave para los géneros de Cymothoidae de peces Neotropicales de agua dulce VII. Checklist of Isopods from Neotropical freshwater fishes VIII. Plates of Isopoda (Figs. 10-1 to 10-62) IX. Cited and general references
11 H H
IRUDINEA,
PENTASTOMIDA
IRUDINEA
421 422 427 451
AND OTHER PATHOGENS
454
I. Definition and morphology
454
II. Life-cycle and transmission
455
III. Pathology
455
17
18
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
IV. Prevention and treatment
455
V. Collection and study methods
455
VI. Identification and key
456
Key to leeches from Neotropical freshwater fishes
456
Clave para Sanguijuelas de peces Neotropicales de agua dulce 456 VII. Checklist of Hirudinea from Neotropical fishes PENTASTOMIDA
456 458
I. Definition and morphology
458
II. Life-cycle and transmission
458
III. Pathology
458
IV. Prevention and treatment
458
V. Collection and study methods
459
VI. Identification
459
VII. Checklist for Pentastomida
459
Other pathogens
460
VIII. Plates of Hirudinea and miscellaneous pathological conditions (Figs. 11-1 to 11-7) IX. Cited and general references
12 A 13 S
DDENDUM:
HOST–PARASITE
UBJECT INDEX
461 464
TABLE
465 497
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
19
1 INTRODUCTION Fish parasitology and pathology are fields of growing importance in view of a worldwide expansion of pisciculture efforts. It would seem to be inevitable that world populations will come to depend more and more on artificially cultured fish as naturally occurring fish populations become depleted. Fish parasitology and pathology are not really separate areas of study since most fish parasites cause mild to severe pathological alterations in their hosts. Although it would be possible to study fish parasites and disregard the pathology they produce, it would not be feasible to delve into fish pathology (ichthyopathology) while ignoring the parasites that cause most of the damage. Although no universally applicable definition of parasitism has ever been devised, for our purposes we can consider a parasite as an animal that lives on or in an animal of a different species (host) at the expense of the latter. The host pays the bill by providing sustenance to the parasite. During the evolution of such a relationship over long time periods, the parasite gradually loses its ability to elaborate certain molecules that are essential to its own metabolic well being. The true parasite therefore has a physiological dependence on a particular host species and cannot survive without the association. Ultimately then, parasitism would have to be defined in terms of the biochemical dependency of the parasite on the host. Even though details of these associations at the biochemical level are incomplete or lacking, we can surmise a great deal from differences in degrees of host specificity. As it turns out, most parasites are host specific and some can develop only on a single host species. Others are limited to host species of a single genus while some can grow on host genera of only one family group. Even those parasites that occur on a variety of hosts are usually found to have preferences. Parasites on the preferred host generally are found in greater numbers, have individuals of larger size and produce more eggs or larvae per parasite. Pathology is literally the study of “pathos”. Pathos means suffering, especially that brought on by disease, physical injury or nutritional deficiencies. Pathology is also the resultant damage produced in an organism by these conditions. Ichthyopathology differs considerably from human or mammalian pathology for several important reasons. For one thing, we cannot ask a fish where it hurts so we have to depend on visible indications such as alterations in cells and tissue (histopathology) and the presence and identification of invading disease organisms. Also, the aquatic environment is very different from the terrestrial one in terms of disease transmission. The human pathologist spends much time diagnosing and characterizing diseases caused by microorganisms (viruses, bacteria and fungi), those of a hereditary nature and those associated with ageing. He is little
20
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
concerned with parasites, at least in Northern temperate climes. The ichthyopathologist, on the other hand, is more involved with parasitic and nutritional disorders. Microbial and hereditary diseases have been little studied in Neotropical fish and sick animals are usually removed from the environment by predators before they grow very old. The following major groups of animal parasites invade Neotropical freshwater fishes: Protozoa, Myxozoa (= Myxosporida), Ciliophora, Platyhelminthes (Monogenoidea, Trematoda (Digenea), Cestodaria, Cestoda), Nematoda, Acanthocephala, Arthropoda (Copepoda, Branchiura, Isopoda), Annelida (Hirudinea) and Pentastomida. The groups listed here represent 14 Classes or Orders of eight or nine animal Phyla. Of the 14 groups, only five infect man and only seven invade other mammals. All of these parasitic forms evolved from free-living, frequently predatory, ancestors. With the exception of Myxosporida, Acanthocephala and Pentastomida, the free-living relatives are still around and can be found in nearly any body of water. All of these invertebrate animal groups had already evolved before the first vertebrates appeared on the scene. First to show up were the fishes and they offered numerous new niches for the invertebrate groups to exploit. Fish therefore have a greater quantity and variety of parasites than any other class of vertebrates because they have lived for a longer time period in close association with the greatest variety of invertebrate forms. Parasitism, as such, did not arise as a result of the appearance of the first vertebrates, however. Small invertebrates had long been invading larger ones and many of these were therefore preadapted to parasitize vertebrates when the opportunity arose. Parasites are usually divided into ecto and endoparasites depending on whether they live on the surface or within their hosts. In the case of fish ectoparasites, they may live on the external surface, within the mouth or on the gills. All other habitats within the fish are considered to be interior. To these general categories a third should be added, namely, blood and tissue parasites. For a parasite to penetrate the circulatory system or tissues of a host represents an evolutionary advance and these sites must be considered more “interior” than the lumen of the digestive tract and associated organs. One of the first requisites of the successful parasite is its ability to remain in position on or within its host and not be swept away by the current. This is particularly evident in the case of ectoparasites living on the slippery skin of fast swimming fish. As every fisherman knows, one good way to catch a fish is with a fishhook. Parasitic crustaceans (Copepoda, Branchiura and Isopoda) have evolved claws that closely resemble fishhooks and some even have barbed points. Other attachment devices found among fish parasites include entangling threads, suckers, spines, clamps, tentacles and clasping or latching appendages. Much of the histopathology observed in fish is a direct result of the physical damage done to the tissues by the attachment devices of the parasites. Such damage includes localized hemorrhaging, cellular enlargement (hypertrophy), increased cellular growth (hyperplasia) and the transformation of epithelial cells to mucous cells (metaplasia). Parasites can also damage host tissues by their physical presence (causing pressure atrophy), by chemical secretions or excretions and by their mode of feeding. For example, some monogenean worms individually cause little harm to the gills of their hosts, but sometimes they are present in such large numbers that they impede the breathing function of the lamellar surfaces. Other monogenean species actively feed on epithelial and blood cells, and
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
21
can destroy the gill lamellae and filaments (Fig. 3-63). Still others provoke tumoroid growths near the site of attachment presumably by chemical excretions (Fig. 3–64). Sick or parasitized fish can frequently be recognized as such by the observant pisciculturist or aquarist because their behavior alters. Signs to watch for include: color changes, failure to keep up with others in a school, erratic or circular swimming patterns, alterations in swimming posture (i.e. head, tail or belly frequently uppermost) and surface gasping. The latter often indicates a low level of dissolved oxygen in the water, but it can also signal the presence of excessive numbers of gill parasites. Treatment of parasitized fish can sometimes be accomplished but is not without its inherent difficulties. Chemical medications can be mixed with pellet-type ration and offered to the fish, but if they are already sick, they may not be eating. This method works better as a control to prevent the build-up of excessive numbers of parasites in relatively healthy fish. The most common technique for treating fish is the chemical “dip” where the fish are removed from their tanks and placed in chemically altered water for a short time, and then returned to their previous environment. This method can be quite successful, especially against ectoparasites. It should be remembered, however, that catching and transferring the fish introduces the element of stress which can be fatal to animals that are already sick. Anti-parasite chemicals can also be introduced directly into the stomach by tube, or injected into the muscles or circulatory systems by hypodermic syringe. These methods work admirably at times, but again the factor of stress must be taken into consideration. If, for example, we took a chicken and held it under water for several minutes while administering some painful treatment, the stress would be comparable to that of a fish taken from water. Since the treatment of fish is admittedly difficult, it would be far better if we could keep them from getting infected in the first place. In order to be able to do so, we should have detailed information concerning parasite life-cycles, especially as regards their transmission from one host to another. Unfortunately, few studies have been made on parasite life-cycles in the Neotropics. In many cases, however, we can deduce the mode of transmission from studies done on similar parasites elsewhere. Some parasitic organisms invade fish by direct means. That is, as active larvae or adults they swim up to a fish and attach or penetrate. Ciliophora, Copepoda, Branchiura, Isopoda and Hirudinea use this approach. Others have larval forms that are eaten by the fish, sometimes within intermediate hosts or attached to aquatic vegetation. Trematoda, Cestoda, Nematoda and Acanthocephala gain entry into fish in this way. Specific suggestions for ways to break the transmission cycles are to be found in the chapters that follow. Original papers on Neotropical fish parasites are scattered through the scientific journals of six countries and were published in five different languages. Until the first edition of this book, no general reference work about these parasites had been available. The existing books on fish parasites and pathology, such as: HOFFMAN (1967, 1999); KINNE (1984); REICHENBACH-KLINKE & LANDOLT (1973); RIBELIN & MIGAKI (1975); and ROBERTS (1978), provide useful information based on North American and European forms, but they are of little help in identifying Neotropical species. Each of the following chapters of this work deals with a major group of Neotropical fish parasites. It will be noted that Chapter 3, Monogenoidea and Chapter 8, Copepoda are
22
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
longer than the others. This reflects a reality in that these parasites are more numerous and varied on these fish than any of the others. They are also the forms that cause the most problems for pisciculturists and aquarists. Each chapter contains the following topics: I. Definition and morphology; II. Life-cycle and transmission; III. Pathology; IV. Prevention and treatment; V. Collection and study methods; VI. Identification and keys (English and Spanish); VII. Checklist of species; VIII. Figures and IX. References. The keys facilitate identification to genus. After the genus of a parasite is determined, the checklist should be consulted to find out what species is represented. The checklists are arranged alphabetically and after each specific name, the host, country where found, figure citation and measurements are given. If the user wishes to find out what other parasites have been reported from the same host, he may consult the addendum, which is a host-parasite table.
Cited and general references HERWIG, N. (1979): Handbook of drugs and chemicals used in the treatment of fish diseases. Charles C. Thomas Publ., Springfield: 272 pp. HOFFMAN, G. L. (1967): Parasites of North American freshwater fishes. - Univ. Calif. Press, Berkeley: 486 pp. HOFFMAN, G. L. (1999): Parasites of North American freshwater fishes. - 2nd. ed., Cornell Univ. Press, Ithaca: 539 pp. KINNE, O. (ed.) (1984): Disease of marine animals. Vol. 4, Part 1. Introduction, Pisces. - Biologische Anstalt Helgoland, Hamburg: i–xv, 541 pp. OLSEN, O. W. (1974): Animal parasites, their life cycles and ecology. - Univ. Park Press, Baltimore: 562 pp. REICHENBACH-KLINKE, H. H. & M. LANDOLT (1973): Fish pathology. - TFH Press, Neptune City: 512 pp. RIBELIN, W. E. & G. MIGAKI (eds.) (1975): The pathology of fishes. - Univ. Wisconsin Press, Madison: 1004 pp. ROBERTS, R.J. (ed.) (1978): Fish pathology. - Bailliere Tindall, London: 318 pp. THATCHER, V. E. & J. BRITES NETO (1991): Diagnóstico, prevenção e tratamento das enfermidades de peixes Neotropicais de água doce. - In: VAL, A. L., FLIGLIUOLO, R. & E. FELDBERG (eds.): Bases científicas para estratégias de preservação e desenvolvimento da Amazônia: 339–371. Fatos e perspectivas. Impressa CNPq INPA/UA, Manaus: 440 pp.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
23
2 PROTOZOA AND CILIOPHORA I. Definition and morphology The Phylum Protozoa formerly included all small unicellular animals, but in recent years there has been a tendency to regard some of the component groups as separate phyla. After all, a Paramecium and a malaria parasite have little in common in terms of either morphology or life-cycle. Representatives of the protozoan groups Mastigophora, Myxosporida, Coccidida, and some genera of the Phylum Ciliophora (formerly Class Ciliata) have been reported from Neotropical freshwater fishes and these forms will be treated here. Trypanosoma spp. are the only mastigophorans known from Neotropical freshwater fishes. Species of this genus have a single flagellum arising from a posterior blepharoplast which is fused along the length of the body to form an undulating membrane. Beyond the front end, the same flagellum is free and whip-like. The body tapers towards both extremities and the nucleus is usually near the middle or in the anterior half (Fig. 2–35). Trypanosomes are found in the blood of their hosts. The myxosporidans, especially species of the genera Myxobolus and Henneguya, are among the most common and conspicuous of fish parasites. These invaders form spore filled cysts in the host tissues that vary in size from less than one millimeter to more than one centimeter. Such cysts are found in and on the gills, under the skin and within internal organs, such as muscles, liver, spleen and intestinal wall. Subcutaneous cysts sometimes cause such deformations in fish that they can be observed in nature (Figs. 2-40 & 41). Small cysts, when numerous, give an organ like the liver a granular or white spotted appearance. Identification of myxosporidan cysts is made by opening them with dissecting needles and examining the contents under a microscope at 400x magnification. Myxosporidan cysts contain large numbers of vegetative (non-motile) spores composed of two shelllike valves. Within each spore, from one to four cylindrical polar capsules may be seen and each of these contains a spiral filament. From one to five nuclei may also be visible. Coccidia are usually found in the intestinal wall, or in associated organs such as the liver. Identification of Calyptospora sp. (Eimeriidae), the only coccidian presently known to occur in Neotropical fishes, can be made under 400x magnification by finding oocysts containing four spores, each of which has two sporozoites (Figs. 2-28 & 2-44 A-B). Fish ciliophorans are usually found on the skin or gills, or within the intestinal contents of their hosts. These animals are easily recognized at 100x magnification by the
24
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
presence of motile cilia which cover the external surfaces (Figs. 2-29 to 2-34). In living specimens, it is often possible to see the large macronucleus. In stained preparations, a smaller micronucleus near to, or attached to, the macronucleus may be discerned.
II. Life-cycle and transmission Trypanosomes have been described from several siluriform fishes and a few characins from Brazil, but their life-cycles have not been studied. We can presume, however, that they must have a leech (Hirudinea) as intermediate host and vector as do the North American species. Transmission to an uninfected fish is therefore by way of the bite of an infected leech. Transmission of myxosporidans from one host to another is by means of the bivalved spores. When these spores are ingested by the specific host fish, the polar capsules discharge the filaments to entangle in the cells of the gut wall and this serves to anchor the spore. After anchoring, the valves open and a single ameboid parasite (sporont) leaves the spore and penetrates the intestinal wall. The sporont is carried throughout the body in the circulatory system until the proper organ is reached. Myxosporidan species are apparently quite specific both in host and site selection. After settling at the site, the sporont (trophozoite) begins to produce numerous new spores internally by asexual nuclear divisions (for details on sporozoan life-cycles; see HOFFMAN, 1999). Although myxosporidan life-cycles would appear to involve only one host, there is some evidence to suggest that at least some species need two animals. According to WOLF (1982), the spores of Myxosoma (or Myxobolus) cerebralis must “age” for three months or so before they become infective. The same author found that oligochaete worms, especially those of the genus Tubifex, ingested the spores and became infective to experimental trout. Some myxosporidans alter the behavior of their host fishes to the extent that they fall easy prey to predators. This suggests that piscivorous animals may be important in disseminating the spores and it may be that passage through the digestive system of another animal changes the capsules and makes the spores infective. In the Cauca River valley of Colombia, entire populations of Astyanax fasciatus periodically become infected with a species of Henneguya. The parasites form large cysts under the skin, in the musculature and their swimming ability is impaired. Heavily infected fish swim near the surface in a slow and disoriented manner. Such fish are easy for piscivorous birds to catch and it is evident that the spores could be rapidly dispersed to other ponds in the bird feces. Piscivorous fish, reptiles and mammals could also spread the spores, but to a more limited extent. Personal field observations indicate that this species of Henneguya acts as a control on populations of A. fasciatus. The parasite spores can only escape from the fish after its death so by incapacitating its host, the parasite is aiding in the completion of its cycle and in its own dispersal. This is an exception to the rule that a parasite does not harm its host. TAYLOR (1978) showed experimentally that whirling disease in trout, caused by Myxosoma cerebralis, a myxosporidan which invades the nervous system, could be transmitted in bird feces. In our studies of Amazonian fishes, we have frequently encountered a coccidian (Eimeriidae) in the livers of Triportheus elongatus. Although life-cycle studies of this species
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
25
have not been done, it seems probable that an intermediate host would be required. In this case, the species would belong to the genus Calyptospora OVERSTREET, HAWKINS & FOURNIE, 1984. It may be that freshwater shrimp, Macrobrachium spp., are intermediate hosts for this parasite and transmission occurs when fish eat infected shrimp. Intestinal ciliophorans enter the fish by way of food and detritus eaten by the host. Most of these small invaders are probably harmless commensals and they are common in fish that ingest bottom detritus, such as the loricariid catfish. The case of Ichthyophthirius multifiliis is quite different since these animals actively seek out a fish host and invade the epithelium of its skin and gills. This parasite is not limited to the Neotropics, but has become a pest of aquarium fishes the world over. There is a body of evidence to suggest that “Ich” is more of a symptom than a disease. It may be that this ciliophoran only invades fish that are already stressed by overcrowding, inadequate nutrition or poor water quality. In our study of wild-caught Amazon River fishes, we have never been able to detect the presence of I. multifiliis. Cauca River fish, in Colombia, only became infected with “Ich” after being maintained in aquaria for several months. While on a fish host, I. multifiliis grows from a size of less than 50 microns to nearly one millimeter. After this, it drops off of the fish, settles to the bottom and encloses itself in a protective capsule (cyst). Within the capsule, divisions occur which result in the production of several hundreds of oval, ciliated tomites, each about 2-30 microns long. The capsule eventually ruptures freeing the tomites to seek new hosts.
III. Pathology Trypanosomes in man and other mammals cause a severe disease and they can invade and weaken the heart musculature. We do not know if trypanosomes in Neotropical fishes cause similar problems since detailed studies of these parasites within the tissues of the hosts have not been made. As noted above, Myxosporida and Coccidida cause the deformation of fish and alter their behavior. The invasion of these parasites does not provoke an inflammatory reaction on the part of the normal host so the cysts are able to grow continuously, taking up the space of host cells, until the death of the fish becomes inevitable. An infection known as “whirling disease” is a serious problem in Northern trout hatcheries. This disease gets its name from the circular swimming behavior of infected fish, which is caused by the invasion of the central nervous system by a myxosporidan (Myxosoma cerebralis). The only cerebral myxosporidan known in Neotropical fishes, is Myxobolus inaequus KENT & HOFFMAN, 1984, but it is not known if this parasite modifies host behavior. Intestinal ciliophorans, such as Balantidum and Nyctotherus, do not produce any notable pathology. Ichthyophthirius multifiliis, on the other hand, causes skin lesions that are easy to recognize. Infected areas are of a grey or whitish appearance and they have irregular margins. Examination with a dissecting microscope, or a hand lens, will reveal the presence of spherical trophozoites, typically in slow rotation.
26
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
IV. Prevention and treatment No treatment is required for intestinal ciliophorans and the blood inhabiting trypanosomes since these organisms have not been shown to be pathogenic. Eliminating leeches from the aquaria breaks the transmission cycle of trypanosomes and prevents the contamination of uninfected fish. Prevention of Myxosporida and Coccidida is made more difficult by the fact that the life-cycles are little understood. Infected fish showing obvious tumors should be removed from the aquarium, or pond, and incinerated to limit further dissemination of the organisms. Surviving fish should be placed in a clean aquarium which is free of small invertebrate animals, such as Tubifex. As a treatment for Coccidida, Monesin (Eli Lilly Co.) is routinely used in chickens and has been reported to give good results against a fish coccidian (SOLANGI & O VERSTREET 1980). The drug may be injected or mixed with food, however, dosages would have to be determined for particular host-parasite systems. This drug would probably be useful against myxosporidan infections as well. Prevention of Ichthyophthirius multifiliis and other skin invaders, involves care in maintaining good water quality and good nutrition. At the first sign of the disease, the fish should be removed to clean aquaria, separating the infected fish from the uninfected ones. Sick fish should be treated by chemical dip, such as Malachite green at 1:15,000 parts for 10-30 seconds or Formalin at 1:4,000 for 10-30 minutes. Either of these treatments should be repeated on three consecutive days and then the fish should be kept in a clean aquarium for one week of observation to see if additional treatment is needed.
V. Collection and study methods For trypanosomes, fresh blood smears are made on slides, allowed to air dry, fixed in absolute methanol and stained in either Giemsa or Wright’s stain. The parasites should be studied under oil immersion at 1,000x magnification. Myxosporidan cysts in fish tissues are white and can frequently be seen with the naked eye. The cysts can be excised, fixed in AFA (85 parts 85 % alcohol, 10 parts of commercial formaldehyde and five parts glacial acetic acid), or in 10 % formalin solution, and stored in glycerinated alcohol (90 parts of 80 % alcohol to 10 parts of glycerin). Spores may be removed from the cysts with dissecting needles, partially dehydrated in 95 % alcohol and cleared in pure phenol for identification and study. Ciliophorans are best studied alive, and vital stains, such as neutral red, can be used to better visualize the nuclei. If permanent preparations are desired, the animals should be killed by immersion in hot AFA, and after fixation in this solution for at least 5 minutes, the slides may be made by the following procedure: 1) Place the material containing ciliophorans in a tapered centrifuge tube and spin at low speed for 30 seconds. 2) Decant the AFA, replace with water, stir and centrifuge for 30 seconds.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
27
3) Decant the water, replace with water containing one drop of Mayer’s carmalum stain and stir. 4) Leave material in this stain solution for 5 minutes, then centrifuge for 30 seconds. 5) Decant the stain solution, replace with 50 % alcohol, stir and spin for 30 seconds. 6) Dehydrate by sequentially passing material in same tube through 70, 85, 95, 100 % alcohol, xylol and half xylol-half balsam (spin for 30 seconds between each solution). 7) Sample of material can be removed from the xylol-balsam with a thin pipette and mounted in balsam on microscope slides.
VI. Identification and keys Blood inhabiting mastigophorans are easily identified as the genus Trypanosoma (Fig. 2-35). Characters used to separate species are: body shape and size; position and size of the blepharoplast and nucleus; length of the free part of the flagellum; and host identity. Unfortunately, these parasites are extremely variable. There may be more than one morphological type within a single species, and it is also possible for more than one species to occur in the same host. Existing names for trypanosome species from Neotropical fish are of doubtful validity since they are mainly based on host identity. Only after these parasites have been studied by electron microscopy, artificial medium culturing and physiological techniques will we know how many species are involved and which names are valid. In Brazil, nominal species have been proposed as follows: TRYPANOSOMA albopunctatus chaetostomi chagasi dorbignyi ferreirae francirochai guaibensis hypostomi iheringi immanis larai loricariae macrodontis margaririferi paivae piracicabae plecostomi regani rhamdiae splendorei
HOST FISH Hypostomus albopunctatus * Chaetostomus sp. Hypostomus punctatus Rhinodoras dorbigny * Characinidae * Otocinclus francirochai Hypostomus commersoni Hypostomus aurogutatus Franciscodoras marmoratus Loricariichthys anus *Prochilodus sp. Loricaria sp. * Hoplias malabaricus Hypostomus margaritifer * Characinidae Loricaria piracicabae Hypostomus sp. Hypostomus regani Rhamdia quelen and R. sapo Rhamdia sapo
28
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
strigaticeps zungaro
Hypostomus strigaticeps Pseudopimelodus zungaro
(Hosts marked with an asterisk are characins and all others are catfish, Siluriformes). Important considerations in the identifications of Myxosporida are: size and form of the spore; number, position and size of the polar capsules; host identity; and site within the host. The following key is offered as an aid in determining genera. Known species may be identified by recourse to the figures and to the measurements in the checklist. All measurements are given in micrometers (µm).
Key to the genera of Neotropical Myxosporida I. Polar capsules located in one extremity of the spore only. A. Spore capsule provided with 1-3 tail-like extensions. 1. Four polar capsules present ....................................................... Agarella (Fig. 2–16) 2. Two polar capsules present .................................... Henneguya (Figs. 2–17 to 2–24) B. Spore capsule without tail-like extensions .................. Myxobolus (Figs. 2–1 to 2–15) II. Polar capsules located in opposite extremities ...................... Myxidium (Figs. 2–25 to 2–27)
Clave para los géneros de Myxosporida Neotropicales I. Cápsulas polares localizadas en solo una de las extremidades de la espora. A. Cápsula de la espora provista de 1-3 extensiones en forma de cola. 1. Cuatro cápsulas polares presentes ............................................ Agarella (Fig. 2–16) 2. Dos cápsulas polares presentes ................................ Henneguya (Figs. 2–17 a 2-24) B. Cápsula de la espora sin extensiones en forma de cola ................................................ ................................................................................................ Myxobolus (Figs. 2–1 a 2–15) II. Cápsulas polares localizadas en extremos opuestos ........ Myxidium (Figs. 2–25 a 2–27)
Key to Neotropical fish ciliophorans Fish ciliophorans can be identified by: size and form of the body; shape of the macronucleus; and nature of the cytostome. I. Macronucleus horseshoe-shaped. A. Body spherical, striate .............................................. Ichthyophthirius multifilis (Fig. B. Body bell-shaped, with oral denticles ............... Trichodina fariai (Figs. 2–32 & II. Macronucleus bean-shaped. A. Body rounded ...................................................................Balantidium piscicola (Fig. B. Body elongate ......................................................... Rhynchodinium paradoxum (Fig. III. Macronucleus triangular ........................................................Nyctotherus piscicola (Fig.
2–31) 2–34) 2–29) 2–33) 2–30)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
29
Clave para los cilioforos de peces Neotropicales Los cilioforos de peces pueden ser identificados por: tamaño y forma del cuerpo; forma del macronúcleo; y naturaleza del citostoma. I. Macronúcleo en forma herradura. A. Cuerpo esférico, estriado ........................................ Ichthyophthirius multifilis (Fig. 2–31) B. Cuerpo en forma de campana con dentículos orales .................................................... ................................................................................... Trichodina fariai (Figs. 2–32 & 2–34) II. Macronúcleo en forma de frijol. A. Cuerpo arredondeado .....................................................Balantidium piscicola (Fig. 2–29) B. Cuerpo alargado ..................................................... Rhynchodinium paradoxum (Fig. 2–33) III. Macronúcleo triangular .........................................................Nyctotherus piscicola (Fig. 2–30)
VII. Checklist of Myxosporida from Neotropical freshwater fishes Measurements are given in micrometers (µm). Myxosporida Myxozoa. Unicellular parasites. Trophozoite amoeboid, but without pseudopodia; resistant infective spores form within trophozoite. Tissue parasites of fishes, rarely amphibians. Agarella DUNKERLY, 1915. Spore elongate; of two valves having tail-like extensions; four polar capsules present, two of which are smaller. Tissue parasites of freshwater fish. A. gracilis DUNKERLY, 1915: testes of Lepidosiren paradoxa: Brazil. (Fig. 2–16). Spore = 16 x 4; tail = 14. Henneguya THÉLOHAN, 1892. Spore elongate; of two valves having tail-like extensions; two polar capsules present. Tissue parasites of freshwater fish. H. iheringi PINTO, 1928: gill filaments of Serrasalmus spilopleurus: Brazil. (Fig. 2– 17). Spore = 22 x 6; polar capsules = 3.4 x 2. H. leporini NEMECZEK, 1926: urinary bladder of Leporinus mormyrops: Brazil. (Fig. 2–18). Spores = 13–15 x 5; tail = 15–18; polar capsule = 5–8. H. linearis (GURLEY, 1893) LABBÉ, 1899: peritoneum of Rhamdia sebae and Pseudoplatystoma fasciatum: Brazil. (Fig. 2–21). Spore = 3 x 4 times longer than wide. H. lutzi CUNHA & FONSECA, 1918: gall bladder of Pseudopimelodus zungaro: Brazil. (Fig. 2–19). Spore = 11 x 7; tail = 22. H. malabarica AZEVEDO & MATOS, 1996: gill filaments Hoplias malabaricus: Pará State, Brazil. Spore = 26.6-29.8. H. oculta NEMECZEK, 1916: gills of Loricaria sp.: Brazil. (Fig. 2–22). (Measurements unavailable). H. schizodon EIRAS, MALTA, VARELLA & PAVANELLI, 2004: kidney of Schizodon fasciatus: Amazon River, Manaus, Brazil. Spore = 12–13 x 3–4; caudal process = 15–17.
30
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
H. theca KENT & HOFFMAN, 1984: brain of Eigenmannia virescens: Brazil. Spore = 40.6–52.6 x 3.0–4.1. H. wenyoni PINTO, 1928: gills of Astyanax fasciatus: Brazil. (Fig. 2–20). Spore = 11–12 X 4.5–6.0; tail = 8–12; polar capsule = 1.5. Myxidium BÜTSCHLI, 1882. Spores elongate, with one polar capsule at each extremity. Tissues of fishes, rarely of amphibian and aquatic reptiles. M.cruzi PENIDO, 1927: bile duct of Chalcinus nematurus: Brazil. (Fig. 2-25). Spores = 17-18 x 5-7; polar capsules = 5-6 x 2-3. M.fonsecai PENIDO, 1927: gallbladder of Carapus fasciatus: Brazil. (Fig. 2-26). Spores = 7-9 x 2.5-3; polar capsules = 2-3. M.gurgeli PINTO, 1928: bile duct Acestrorhamphus sp.: Brazil. (Fig. 2-27). Spores = 14.6 x 8.5-3; polar capsules = 3.4 x 3. Myxobolus BÜTSCHLI, 1882. Spores oval or pyriform, with two polar capsules in one extremity; valves without tail-like extensions. Tissues of fishes and rarely amphibians. M.associatus NEMECZEK, 1926: kidney of Leporinus mormyrops: Brazil. (Fig. 2-1). Spore = 15 x 10; polar capsule = 7. M.braziliensis CASAL, MATOS & AZEVEDO, 1996: gills of Bunocephalus coracoideus: Amazon River, Pará State, Brazil. Spore = 9.5-11 x 4.7-6. M.cunhai PENIDO, 1927: intestine of Serrasalmus piraya and Pimelodus clarias: Brazil. (Fig. 2-2). Spore = 9-11 x 4-6. M.galaxii SZIDAT, 1953: gills of Galaxias maculatus: Argentina. (Fig. 2-4). Spore = 14-15 x 9-10. M.inaequalis GURLEY, 1893: skin of Pimelodus clarias: Brazil. (Fig. 2-3). Spore = 5.2-3.3. M.inaequus KENT & HOFFMAN, 1984: brain of Eigenmannia virescens: Brazil. Spore = 15.6-22 x 7.8-9.3. M.kudoi GUIMARÂES & BERGAMIN, 1938: skin of unidentified fish: Brazil. (Fig. 2-5). Spore = 8.8-8.9 x 6.5-7.3; capsules = 3.5-4.2 x 1.3-2.0. M. lutzi ARAGÂO, 1919: testis of Poecilia vivipara: Brazil. (Fig. 2-6). Spore = 10 x 7. M. magellanicus SZIDAT, 1953: gills of Galaxius maculatus: Argentina. (Fig. 27). Spore = 10-13 x 8-9; polar capsules = 3. M.noguchii PINTO, 1928: gills of Serrasalmus spilopleurus: Brazil. (Fig. 2-8). Spore = 13.6 x 8.5; polar capsules = 6.8-2.2. M.pygocentris PENIDO, 1927: intestine of Serrasalmus piraya: Brazil. (Fig. 2-9). Spore = 15-16 x 9-11; polar capsules = 9-11 x 3-4. M.serrasalmi WALLIKER, 1969: spleen, kidney & liver of Serrasalmus rhombeus: Brazil. (Fig. 2-10 A-B). Macrospore = 12-18 x 7-10; polar capsules = 6-9 x 2-4; microspore = 7.0-9.5 x 3.5-5; polar capsules = 5-7 x 1.2. M. stokesi PINTO, 1928: skin of Pimelodus sp.: Brazil. (Fig. 2-11). Spore = 8.5 x 5.3. Myxobolus sp. SZIDAT, 1953: skin of Pimelodus albicans: Argentina. (Fig. 2-12). Spore = 15 x 8. Myxobolus sp. WALLIKER, 1969: spleen and liver of Colossoma bidens: Brazil. (Fig. 2-14). Spore = 8-10 x 4-7; polar capsules = 3.5-5.0 x 1.0-2.5.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
31
Myxobolus sp. WALLIKER, 1969: kidney of Serrasalmus sp.: Brazil. Spore = 9 x 11 x 5-6.5; polar capsules = 5-6 x 1.5-2.0.
Checklist of Ciliophora from Neotropical freshwater fishes Measurements are given in micrometers (µm). Phylum Ciliophora. Unicellular animals possessing cilia or structures composed of cilia in some stage of the life-cycle. Basal granules for coordinating ciliary motion also present. Cystostome (mouth), macronucleus and micronucleus usually present. Reproduction by binary fission and conjugation. Free-living and parasitic. Balantidium CLAPARÈDE & LACHMAN, 1858. Trophozoite oval or elliptical. Cytostome near anterior extremity; cytopharynx not well developed. Body ciliation uniform. Cytopyge and contractile vacuole terminal. Intestine of invertebrates and vertebrates. B. piscicola GÈZA, 1913: gut of Piaractus brachypoma and Pimelodus clarias: Brazil. (Fig. 2-29). Body = 36 x 28; macronucleus = 12 x 6-7; cilia = 3-4. Nyctotherus LEIDY, 1877. Body oval, compressed; cytostome in midbody; cytopharynx long, with undulating membrane. Macronucleus large, triangular, anterior. Cytopyge and contractile vacuole terminal. Gut of invertebrates, fish and mammals. N. dilleri EARL & JIMÉNEZ, 1969: Cichlasoma fenestratum: México. Body = 154280 x 80-140; macronucleus = 6-10 x 12-30. N. piscicola DADAY, 1905: Colossoma brachipomum, Pimelodus clarias and Acestrorhampus sp.: Brazil. (Fig. 2-30). Body = 112-153; macronucleus = 12-30 x 30-90. Rhynchodinium CUNHA & PENIDO, 1927. Body elongate, cylindrical, tapering anteriorly; cilia long, lacking posteriorly. Macronucleus ovoid, anterior in position. Cytopyge and contractile vacuole terminal. Intestine of fish. R. paradoxum CUNHA & PENIDO, 1927: Pterodoras granulosus: Brazil. (Fig. 2-33). Body = 20-30 x 5-10. Trichodina EHRENBERG, 1834. Body cup or bell-shaped, with three circular rows of cilia; oral surface provided with chitinized ring and circle of denticles. Macronucleus U-shaped. On skin of marine and freshwater crustaceans and fish. T. fariai CUNHA & PINTO, 1928. Sphaeroides testudineus: Brazil. (Figs. 2-32 & 234). Body = 32 x 20-22; with 24-28 denticles. Sporozoa Calyptospora OVERSTREET, HAWKINS & FOURNIE, 1984. Sporocyst covered with a thin veil supported by one or more sporopodia; lacking Stieda body; with membrane covered oblong opening. Suture extending a short distance distally on opposite sides then converting to low ridges that continue to
32
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
posterior end. Sporozoite developing in invertebrate host. Parasites of marine and freshwater fishes. C. tucunarensis BÉKÉSI & MOLNÁR, 1991: liver of Cichla ocellaris: Ceará State, Brazil. (Figs. 2-44 A-B). Oöcysts = 23-26 in diameter. Sporocysts = 7.2-9.1 x 3.5-5.0. C. spinosa AZEVEDO, P. MATOS & E. MATOS, 1993: liver of Crenicichla lepidota: Pará State, Brazil (measurements unavailable).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
33
VIII. Plates of Protozoa and Ciliophora (Figs. 2–1 to 2–44)
2-1
2-2
2-5
2-3
2-6
2-7
2-4
2-8
10 µm
2-9
2-12
A
2-13
2-10
B
2-11
2-14
2-15
Myxoxporida spores: 2-1. Myxobolus associates; 2-2. M. cunhai; 2-3. M. inaequalis; 2-4. M. galaxii; 2-5. M. kudoi; 2-6. M. lutzi; 2-7. M. magellanicus; 2-8. M. noguchii; 2-9. M. pygocentris; 2-10a. M. serrasalmi (macrospore); 2-10b. M. serrasalmi (microspore); 2-11. M. stokesi; 2-12. Myxobolus sp. from Pimelodus albicans; 2-13. Myxobolus sp. from Serrasalmus sp.; 2-14. Myxobolus sp. from Colossoma bidens; 2-15. Myxobolus sp. from Curimata elegans (2-15. orig., others redrawn from PINTO (1928c, d) and WALLIKER (1969)).
34
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10 µm
2-16
2-17
2-19
2-21
2-22
2-18
2-20
2-23
2-24
2-16. Agarella gracilis (spore); 2-17 to 2-24. Henneguya spp. (spores): 2-17. H. iheringi; 2-18. H.leporinus; 2-19. H. lutzi; 2-20. H. wenyoni; 2-21. H. linearis; 2-22. H. oculta; 2-23. Henneguya sp. from Brycon melanopterus; 2-24. Henneguya sp. from Mylossoma duriventris (2-23. & 2-24. orig.; 2-16. to 2-22. redrawn from PINTO (1928 b-d).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
35
10 µm
2-25
2-26
2-27
25 µm
2-28
2-29
25 µm 250 µm
2-30
2-31
2-25. Myxidium cruzi; 2-26. M. fonsecai; 2-27. M. gurgeli; 2-28. Calyptospora sp. (Eimeridae) (2-25. to 228. to same scale); 2-29. Balantidium piscicola; 2-30. Nyctotherus piscicola; 2-31. Ichthyophthirius multifilis (2-28. orig., others redrawn from PINTO (1928 a, d)).
36
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10 µm
2-32 25 µm
2-33
10 µm
2-34
2-35
2-32. Trichodina fariai (lateral view); 2-33. Rhynchodinium paradoxum; 2-34. Trichodina fariai (oral surface); 2-35. Trypanosoma sp. (2-32. to 2-34. redrawn from PINTO (1928d); 2-35. from FRÖES et al. (1978)).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
2-36
2-37
2-38
2-39
37
2-36. Henneguya sp. (cysts in gill filament of Mylossoma duriventris); 2-37. Henneguya sp. (spores from gill filament of Semaprochilodus insignis); 2-38. Henneguya sp. (cysts in gill filament of Brycon melanoptera); 2-39. Myxobolus sp. (spores from liver of Semaprochilodus insignis). (Original photographs).
38
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
2-40
2-41
2-40. Astyanax fasciatus from Cauca River, Colombia, with cysts of Henneguya sp.; 2-41. Curimata elegans from Amazon River, near Belém, Pará, Brazil with cysts of Myxobolus sp. (Original photographs).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
2-42
39
2-43
2-44
A
B
2-42. Myxobolus braziliensis mature spore (redrawn from CASAL et al. 1996); 2-43. Myxobolus inaequus (redrawn from KENT & HOFFMAN 1984); 2-44. Calyptospora tucunarensis: A. mature sporocyst; B. sporulated oöcyst (redrawn from BÉKÉSI & MOLNÁR 1991).
40
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
IX. Cited and general references BARASSA, B., CORDEIRO, N.S. & S. ARANA (2003): A new species of Henneguya, a gill parasite of Astyanax altiparane (Pisces: Characidade) from Brazil, with comments and histopathology and seasonality. - Mem. Inst. Oswaldo Cruz 98(6): 761-765. BÉKÉSI, L. & K. MOLNÁR (1991): Calyptospora tucunarensis n. sp. (Apicomplexa : Sporozoa) from the liver of tucunaré Cichla ocellaris in Brazil. - Systematic Parasitology 18: 127-132. BOTELHO, C., JR. (1907): Sur deux nouveaux trypanosomes des poissons. - C.R. Soc. Biol. Paris 59(2): 128-129. CASAL, G., MATOS, E. & C. AZEVEDO (1996): Ultrastructural data on the life cycle stages of Myxobolus braziliensis n. sp., parasite of an Amazonian fish. - Europ. J. Protistol 32: 123-127. CHEUNG, P.J., NIGRELLI, R.F. & G.D. RUGGIERI (1983): Coccidian parasite from the liver of the black piranha, Serrasalmus niger SCHOMBURGK (Abstr.). - Eastern Fish Health Workshop, 21-23 June, 1983. Nat. Fish Health Res. Lab., Kearneysville, West Virginia: 3 pp. CUNHA, A.M. & J.C.N. PENIDO (1926): Nouveau protozoaire parasite des poissons: Zelleriella piscicola n. sp. - C.R. Soc. Biol. Paris 94: 1003. CUNHA, A.M. & J.C.N. PENIDO (1927): Rynchodinium paradoxum n. gen., n. sp. protozoaire parasite d’um poisson d’eau douce. - C.R. Soc. Biol. Paris 97(36): 1793-1794. DADAY, E. (1905): Nyctotherus piscicola n. sp., ein neuer Fischparasit aus Südamerika. - Zool. Anz. 28: 233-238. EARL, P.R. & G. JEMÉNEZ (1969): Nyctotherus dilleri n. sp. from the fish Cichlasoma fenestratum in Veracruz. - Trans. Am. Mic. Soc. 88(2): 287-292. EIRAS, J.C., MALTA, J.C., VARELA, A. & G.C. PAVANELLI (2004): Henneguya schizodon n. sp. (Myxosoa, Myxobolidae), a parasite of the Amazonian teleost fish Schizodon fasciatus (Characiformes, Anostomidae). - Parasite 11: 169-173. FONSECA, F. (1935): Trypanosomas de peixes brasileiros. Decrição de uma nova espécie. - Mem. Inst. Butantan 9: 151-184. FONSECA, F. & Z. VAZ (1928a): Novos trypanosomas de peixes brasileiros. - Ann. Fac. Med. Univ. São Paulo 3: 69-94. FONSECA, F. & Z. VAZ (1928b): Trypanosoma francirochai n. sp. parasito de Otocinclus francirochai HERRING, 1928 (peixe de água doce do Estado de São Paulo). - Bol. Biol. 11: 4-5. FONSECA, F. & Z. VAZ (1929): Novas espécies de trypanosomas de peixes brasileiros de água doce. - Bol. Biol. 13: 36-41. FRÖES, O,M., FORTES, E., LIMA, D.F. & V.R.V. LEITE (1978): Três espécies novas de tripanosomas de peixes de água doce do Brasil (Protozoa, Kinetoplastida). - Rev. Brasil. Biol. 38(2): 461-468. HOFFMAN, G.L. (1999): Parasites of North American freshwater fishes. Second Edition. – Cornell Univ. Press: 539 pp. HORTA, P.P. (1910): Trypanosoma chagasi n. sp. parasito de Plecostomus punctatus. - Brasil Médico 24(28): 273. HORTA, P.P. & A. MACHADO (1911): Estudos citológicos sôbre o “Trypanosoma chagasi” n. sp. encontrado em peixes do gênero Plecostomus. - Mem. Inst. Oswaldo Cruz 3(2): 344-366.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
41
KENT M.L. & G.L. HOFFMAN (1984): Two new species of Myxozoa, Myxobolus inaequus sp. n. and Henneguya theca sp. n. from the brain of a South American knife fish, Eigemannia virescens (V.). J. Protozool. 31(1): 91-94. MARTINS, M.L., SOUZA, V.N., MORAES, J.R. & F.R. MORAES (1999): Gill infection of Leporinus macrocephalus GARAVELLO & BRITSKI, 1988 (Osteichthyes: Anostomidae) by Henneguya leporinicola n. sp. (Myxozoa: Myxobolidae) description, histopathology and treatment. - Rev. Brasil. Biol. 59(3): 537-534. NEMECZEK, A. (1926): Beiträge zur Kenntnis der Myxosporidenfauna Brasiliens. - Arch. Protistenk. 54(1): 137-149. OVERSTREET, R.M., HAWKINS, W.E. & J.W. FOURNIE (1984): The coccidian genus Calyptospora n. gen. and family Calyptosporidae n. fam. (Apicomplexa), with members infecting primarily fishes. J. Protozool. 31(2): 332-339. PENIDO, J.C.N. (1927): Quelques nouvelles Myxosporidies parasites des poisons d’eau douce du Brésil. - C.R. Soc. Biol. Paris: 850-852. PINTO, C. (1928a): Myxidium gurgeli nova espécie. Myxosporídeo parasito da vesícula biliar de peixe de água doce do Brasil. - Sci. Med. 6(2): 86-87. PINTO, C. (1928b): Henneguya wenyoni n. sp. myxosporidie parasite des branchies de poisson d’eau douce du Brésil. - C.R. Soc. Biol. París 98(17): 1580. PINTO, C. (1928c): Myxobolus noguchii, M. stokesi e Henneguya iheringi, espécies novas de myxosporídeos de peixes de água doce do Brasil. - Bol. Biol. 12: 41-43. PINTO, C. (1928d): Myxosporídeos e outros protozoários intestinais de peixes observados na América do Sul. - Arch. Inst. Biol. 1: 101-136, 42 figs. SOLANGI, M.A. & R.M. OVERSTREET (1980): Biology and pathogenesis of the coccidium Eimeria funduli infecting killifishes. - J. Parasitol. 66(3): 513-526. SPLENDORE, A. (1910): Trypanosomes de poisons brésiliens. - Bull. Soc. Path. Exot. 3: 521-524. TAYLOR, R.L. (1978): Transmission of salmonid whirling disease by birds fed trout infected with Myxosoma cerebralis. - J. Protozool. 25(1): 105-106. WALLIKER, D. (1969): Myxosporidea of some Brazilian freshwater fishes. - J. Parasitol. 55(5): 942 - 948. WOLF, K. (1982): Tubifex worms identified as essential hosts for salmonid whirling disease. - Res. Infor. Bull. U. S. Fish & Wildlife Service: 2 pp.
42
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
3 MONOGENOIDEA In collaboration with W. A. BOEGER and R. T. VIANNA
I. Definition and morphology The Class Monogenoidea (also known as Monogenea or monogenetic trematodes) consists of hermaphroditic mostly ectoparasitic platyhelminths with direct life-cycles. In fishes, they inhabit the gills, skin, nasal fossae, ureters and a few are found in the intestinal ducts. In amphibians and aquatic reptiles they may be found in the mouth, cloaca, or urinary bladder. Exceptionally, species of monogenoids are reported from mammals (hippopotamus) and invertebrates (ex. squid, copepods). The most useful recognition feature of monogenoids is the posterior attachment organ (haptor). This structure is usually flattened and frequently disk-like. It may be armed with sclerotized structures such as anchors, bars (to support the anchors), and hooks (Fig. 3-4D). In some genera, the haptor may have suckers, clamps or loculi along with or in place of these sclerites. The anterior end of monogenoids can also attach to host tissue by means of adhesive secretions from the cephalic lobes that are stored on the head organs. Two pairs of eyes are often present on the cephalic area, though in some species these have been lost. The digestive system of monogenoids consists of a mouth, a pharynx, an esophagus and, usually, two intestinal ceca. These may be simple, have diverticula or be posteriorly confluent. The female reproductive system contains a germarium (= ovary), oviduct, ootype, seminal receptacle (sometimes absent), uterus, and one or two vaginae (these may be absent as well). The male system includes a testis (or several), a vas deferens, a seminal vesicle (saccate or as an expansion of the vas deferens) and a copulatory complex. The copulatory complex is usually composed of a male copulatory organ (MCO) and an accessory piece, that may be absent in some taxa. The MCO may be either muscular or sclerotized and its morphology is important in the classification of the group. In some genera, other sclerites may be associated with the reproductive system (e.g., a gonadal bar in Gonocleithrum and a hook-like vaginal sclerite in Urocleidoides). Monogenoidea is perhaps the least known taxon of fish parasites in the Amazon region, which is also true for the entire Neotropical realm. Until the 1970’s, very few species were known from Amazonian and Neotropical continental waters. The earliest references of the taxon in Amazonian fish species are limited to fish kept in aquaria abroad, mainly in the United States (see references of MIZELLE and coauthors). At that
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
43
time, very few local scientists contributed to the recovery of the richness of the group. Undoubtedly, the collaboration between two fish parasitologists, VERNON E. THATCHER (at that time in Cali, Colombia) and DELANE C. KRITSKY (Idaho State University, USA) and subsequent efforts and collaborations represent the most intense and consistent effort towards the understanding of the diversity of this group, especially in Brazilian waters. Recently other groups have awakened to the abundance and richness of the Neotropical Monogenoidea of freshwater fish species (ex. TAKEMOTO, LUQUE, VIOZZI and others). While there are evidences of monogenoids with a broad host species spectrum (KRITSKY et al. 1996 a, b & 1997 a, b), most show relatively high host specificity, occurring on a single species or on closely related fish. The richness per host species appears, however, to be highly variable. The red-breasted piranha (Pygocentrus nattereri) hosts about 30 different species while many species of Siluriformes, for example, bear a single or a few species. Most medium-sized and large fish harbor Monogenoidea. A few such hosts have been reported to be negative for these parasites but it may be that this merely reflects inadequate sampling methods. On the other hand, small fish species have few monogenoids. We have searched intensively among the small siluriforms (eg. whale catfishes and others) without turning up a single representative of this group of worms. Characiform fish, especially Serrasalmidae, show the greatest abundance of species of monogenoids. Despite the efforts of taxonomists, the diversity of the Monogenoidea in the Amazon and in the Neotropics is still largely unknown. Around 308 species are described in approximately 70 genera, from 144 species of fish or an average of 2.14 species of monogenoids per fish species. The family Dactylogyridae is overwhelmingly the most abundant taxon in continental waters of South America. However, species of Gyrodactylidae are being systematically described while only a few Diplectanidae, Monocotylidae and Hexabothriidae appear to have representatives in these waters. Assuming a conservative absence of species of monogenoid from 10 % of fish species, a rough estimate of species of this clade of parasites suggest that fewer than 3 % of freshwater fish Monogenoidea are known. These estimates consider the most recent evaluations of freshwater Neotropical fish species. Ichthyologists expect that more than 6,025 species of freshwater fishes exist in this realm (MALABARBA & ROSA 2003). This estimated number of species of Monogenoidea may be greater, however, since the composition of the monogenoid fauna of a single fish species may vary greatly according to the geographic distribution (see Boeger & Kritsky 1988) and site specificity of the host (even species known to harbor monogenoids have had few of the possible microhabitats screened). Although little is known about the association of the orders and families of hosts and the genera of monogenoids, some indications are appearing. This is especially true of the Dactylogyridae For example, species of Gussevia and Sciadicleithrum are reported solely on Cichlidae; Anacanthorus spp are known only from Characiformes; Vancleaveus spp., Demidospermus spp. and Aphanoblastella spp are recorded from Pimelodidae Siluriformes; while Amphithecium spp, Mymarothecium spp, Nothozothecium spp., and others, are unique to Serrasalmidae hosts. There are, obviously, many other examples. In general one can guess the parasite group if one knows the host species.
44
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
II. Life cycle and transmission The life cycle of most monogenoids is direct in that all stages are completed on a single host. These worms are also highly host specific and will develop on only one host species or on closely related species of a single genus. Monogenoids can be either viviparous (some Gyrodactylidae) or oviparous (all other families). In most cases, the larval stage (oncomiracidium) is ciliated and already has posterior sclerites (e.g., hooks and sometimes even anchors) with which to attach to the same or a different host after hatching takes place. The bands of cilia on the larva permit it to swim to a nearby fish of the same species. As the larva settles down and begins to grow, the cilia are lost. The eggs of oviparous forms frequently have one or more polar filaments that may serve to anchor them in the gill mucous until a young adult hatches, with the haptoral sclerites already well formed. The eggs of oviparous Gyrodactylidae have a drop of cement on the tip of a short filament that is used to “glue” the egg on the external surface of their hosts. Viviparous gyrodactylids give birth to complete worms, which already carry an offspring in the uterus when born. According to HARRIS (1983), Oogyrodactylus farlowellae can complete its cycle from egg to adult in 11 to 13 days at 27 °C. Other species probably have similarly short lifecycles.
III. Pathology Most monogenoids attach superficially to the gill epithelium. They can move about at will and generally produce little damage to the fish. However, even the relatively non-pathogenic forms can produce extensive damage when large numbers are present on the gills. Direct transmission, as observed in Monogenoidea, is greatly favored by proximity of hosts of the same species and large populations of parasites develop rapidly. In the crowded conditions of intensive pisciculture, monogenoids can rapidly become a problem. There are unreported cases, especially on cultured Colossoma macropomum, in which specimens of apparently nonpathogenic species of monogenoids were capable of consuming a significant proportion of the gill tissue, leaving only cartilage in certain areas of the gill filaments. Even if they do not cause excessive tissue damage, some monogenoids may provoke an excessive production of mucus by the gill filaments. Apparently, such species feed on mucus and its presence appears to stimulate the abundant production of this substance. Whatever the cause, gill filaments coated with mucus have a reduced respiratory capacity. Thus, fish that seem to tolerate heavy infestations may die suddenly when the oxygen content of the water falls slightly. We should therefore consider all monogenoids as potentially harmful and try to eliminate them from culture tanks, or at least control their numbers. Most Neotropical monogenes belong to the family Dactylogyridae, which is generally believed to include highly pathogenic species. Gyrodactylidae, with the exception of G. salaris, a notorious pathogen of salmon in European waters, are apparently less pathogenic. In Europe, the species of Linguadactyla are known to provoke extensive epithelial hyperplasia and the epithelium overgrows the haptor, which fixes the worm in place (BYCHOWSKY 1957). These parasites feed on epithelial cells. A similar species, Linguadactyloides brinkmanni THATCHER & KRITSKY, 1983, has been found on a Brazilian
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
45
Amazon food fish, Colossoma macropomum. This species appears more pathogenic since it actively penetrates the tissues of the gill filament. This action is aided by secretions from penetration glands that L. brinkmanni has located in the haptoral peduncle. When the haptor has penetrated to the cartilaginous supporting rod of the filament, the anchors directly engage this structure. As a host response, the cartilaginous tissue overgrows the anchor points, effectively fixing the worm to a permanent location (Fig. 3-61). The initial host response to the penetration of L. brinkmanni is basically an inflammatory reaction. Both erythrocytes and leucocytes are numerous around the site of the lesion. A funnel-like tube from the surface of the filament to the cartilage support is maintained open by the constant movements of the worm. Apparently, this lesion hemorrhages, at least initially. Epithelial hyperplasia occurs for some length along the filament, and becomes more pronounced at the penetration site (Fig. 3-62). Epithelial overgrowth at this site is probably a continuous process, which is partially checked by the feeding activity of the worm. These parasites ingest blood cells as well as epithelium and are usually red in color. The prolonged activities of this parasite can lead to the almost complete destruction of the gill filaments (Fig. 3-63). An as yet undescribed monogenoidean has been found on a doradid catfish that may be even more pathogenic than L. brinkmanni. This species also penetrates to the cartilage, but it does so from the other (lamellar) side of the filament (Fig. 3-64). The presence of the haptor in the center of the filament provokes intensive cellular concentration and a tumoroid growth that swells the filament and alters blood circulation.
IV. Prevention and treatment Newly obtained fish, from whatever source, should be assumed to be infested and should be treated before being introduced into a tank, pond, or aquarium containing other specimens of the same or related species. Dip treatment can be used effectively against monogenoids since they are relatively sensitive to chemicals and are in direct contact with the water. Although many different chemical dips will dislodge monogenoids from living fish, the easiest, most efficient and cheapest is a 1:4,000 solution of commercial formaldehyde (1 cm3 of formaldehyde for each 4 liters of water) used for 10-30 minutes. The time for immersion in these dips is variable because different species of fish have different degrees of tolerance for the chemicals. The sensitivity of the fish to the chemicals can also vary with water temperature and the physiological condition of the individuals. One or two of the infested fish should be treated first to test sensitivity before large scale treatment is attempted. At the first sign of distress, the fish should be removed from the dip.
V. Collection and study methods Based on the limited knowledge of the richness of the group, it is obvious that studies of the alpha taxonomy of Monogenoidea are still essential in the Amazon region and in the entire Neotropics. Taxonomic studies on the group, however, require basic scientific skills
46
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
and special care with the descriptions and proposal of new taxa in order to produce robust knowledge to be applied in several areas of biology, including systematics, ecology, and historical biogeography. Freshwater monogenoids are usually very small. Some are as small as 200-300 micrometers long and, thus, are easily lost if the person collecting these animals is untrained or the collection method is inadequate. Our experience has demonstrated that the warm-water method (described below) is not only the best collection method available, but also produces excellent specimens for morphological studies. This technique allows rapid and adequate processing of specimens in the field, leaving the timeconsuming work of picking the worms from the gills and other organs to the laboratory, where more adequate equipment and time are readily available. Specimen preparation is also fundamental, for obvious reasons. In general, descriptions of species involve cleared specimens, for the study of hard, sclerotized, structures, and stained worms, which are necessary for the study of the morphology of internal organs and structures and to complement the study of the sclerotized parts. The choice of stain is fundamental and frequently makes the difference between an extensive and a limited morphological characterization. The use of phase contrast or, sometimes differential contrast microscopy is necessary for precise illustrations and descriptions. Often, bad descriptions are caused by the exclusive use of light microscoscopy which does not provide the resolution required to see the fine details. Many taxonomic accounts fail to present detailed and adequate morphological interpretations of the sclerotized parts of haptor, vagina, male copulatory organ. These limitations repeatedly result in morphologic, taxonomic, and systematic errors that greatly hinder the evolution of the knowledge in the group. Illustrations, especially those of the hard sclerites, need to be very precise. Frequently, species can be differentiated by small, frequently overlooked, inconspicuous features of these structures. The most difficult structure to be illustrated is, by far, the hook. Curiously, although the morphology of these structures is fundamental for the systematic studies in the group, they receive the least attention from many investigators. The structure of the male copulatory organ of many species, on the other hand requires the most detailed morphological study and interpretation. An important point to consider in taxonomic studies of Amazonian and Neotropical Monogenoidea is the establishment and proposal of supra-specific taxa. While some genera appear to represent clear specific groups, easily separated from other genera and groupings by large morphological gaps (e.g., Curvianchoratus), many generic (or other supra-specific) groupings are characterized by faint, often inconspicuous, morphological differences. In the absence of an adequate phylogeny, the decision of proposing new supra-specific taxa requires a “fish-eye-lens” study. Groupings of species are often recognized only after extensive morphological study of many related species (in general, species of closely related fish species) that allow the comprehension of shared characters, hopefully reflecting common ancestry. Certification of the taxonomic status of these groups will certainly depend on future phylogenetic reconstructions. Thus, a conservative approach is strongly recommended and investigators working on this group of platyhelminths are urged to exercise extreme caution in the proposal of supra-specific (and specific) taxa.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
47
Mistakes of the past are being repeated in the present so a word of caution is required. Except, perhaps, for lineages that invaded the Neotropical freshwater environments recently, apparently from and with marine host lineages (e.g., the freshwater dactylogyrids and diplectanids from Sciaenidae), most monogenoid parasites of primary fish groups are unique to South and sometimes Central America. In the past, Neotropical species were described as members of North American or European genera, reflecting the lack of knowledge of the diversity of the group in the region. For example, species of Urocleidus and Cleidodiscus, described from piranhas by MIZELLE and co-authors (e.g., MIZELLE & PRICE 1965) are presently allocated to exclusively Neotropical genera (e.g., Amphithecium, Calpidothecium, Urocleidoides) (check KRITSKY et al. 1983, and BOEGER & KRITSKY 1988 for many examples). Although the study of the group in South America accumulated much information on species diversity there are still unjustified attempts to include new species in genera with species from other continents (e.g., Acolpenteron australe VIOZZI & BRUGNI, 2003 described from a Percichtyidae from Argentina). Most of the fauna of freshwater Monogenoidea of South America is closely related to the African fauna (e.g., KRITSKY & BOEGER 1995). These faunas, however, are composed of apparent sister but easily distinguishable generic groupings. Examples of genera with species in the Neotropical region and elsewhere includes Euryhaliotrema, Diplectanum (although there are strong indications that this genus does not represent a monophyletic group) and Gyrodactylus. The latter, however, probably also represent an exceptional case of rapid dispersion to other regions and continents of the globe, as suggested by BOEGER et al. (2003). Summarizing, if a new species collected does not fit the diagnosis of Neotropical genera, the investigator should seriously consider the possibility that it represents the member of an undescribed genus. Although common in the initial stages of the taxonomic studies of Amazonian and Neotropical Monogenoidea, the use of specimens collected from aquarium fishes should be accompanied by careful consideration of the type host species. Exchange of parasites between hosts kept in captivity is very common, even between species of distantly related higher categories of hosts (e.g., orders). Collection of fish monogenoids is easily accomplished in the field and does not require much more than buckets, a portable stove, formalin, ethanol (if DNA samples are required), vials, labels, a notebook, and a pencil. It is, however, absolutely necessary that animals are killed relaxed in order to allow adequate study of internal anatomy. The method described below can be modified according to the local conditions, size of the animal, and requirements of each specific study. If monogenoids of the fish body surface are the object of the study, special care should be given to the method of capture and handling of hosts. In general, gill nets and trawl nets are not good fishing methods to meet this objective. Gill nets, however, may be used if the fish is not left in the net and in the water for too long. Hook and line are great for this purpose, but this method is not very efficient for catching fish of a variety of species. Dip nets are fine and minnow traps are excellent. Once collected, the fish should be killed by pithing, or other method, placed in a container and washed with hot water (about 60-70 °C). The container should be
48
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
vigorously shaken in order to detach the parasites from the fish tissue. The “vigorously” should be stressed as anything less than this may result in poor sampling of the parasite population of a fish. The fish can be removed from the container, the liquid can be decanted and fixed according to the objective of the study: in ethanol, formalin or both. An adequate method, depending on the size of the fish, is to fix half of the decanted liquid and sediments in formalin, for morphological studies, and the other half in ethanol, if the investigator is interested in DNA studies. In this case, and in the procedures described below, the final concentration for both methods of fixation would be about 45 % of formalin and 70-80 % of ethanol, respectively. Nasal cavities can be washed with hot water (about 60-70 °C) and scraped with a probe into another vial. Fixation can be achieved in the same way described above. Gills can be excised, the gill arches separated, placed in a vial, flooded with hot water (about 7075 °C). Once again, the vial should be vigorously shaken to detach parasites from the gill tissue. Fixation, as in the other cases, should be accomplished with ethanol and formalin, in the same concentrations, but the gill arches should accompany the sediment and liquid in the formalin vial - if added to the ethanol vial, the ratio ethanol : tissue may result in poor fixation and hinder later processing of the DNA. Collection of internal Monogenoidea requires necropsy with the use of stereomicroscope and should be carried out in an adequate place, such a laboratory. In this case, fresh or living host specimens should be used. Fixation can be performed with the same methods mentioned above. Slide making A few comments are in order before we start. Monogenoids, especially the small ones, are easily hydrated or dehydrated with ethanol, not requiring extensive time nor long, stepwise, ethanol series. Hence, the methods of slide preparation in the group are usually much simpler than for any other group of Platyhelminthes. Additionally, an adequate morphological study of Monogenoidea requires specimens prepared for the study of sclerotized (“hard”) structures and internal (“soft”) morphology. Sclerotized structures may be studied through the clearing of the specimens in one of two media: Hoyer’s Mounting Medium1 or Gray and Wess Mounting Medium2. Hoyer’s clears faster, is more reliable but has two major problems: it may overly flatten the specimen and they may not last as long as specimens mounted in Gray and Wess. Gray and Wess, on the other hand, is not as reliable in producing nicely cleared specimens and requires longer “incubation” in a oven or on a hot plate (at about 56 ºC) to produce good 1
2
Formula for Hoyer’s Mounting Medium-Chloral hydrate: 200 g; Crystalline gum Arabic: 30 g; Glycerol: 20 ml; Distilled water: 50 ml. Dissolve gum arabic in distilled water and let it sit over night. Add the chloral hydrate and glycerol and either filter the mixture through clean glass wool, or more efficiently, centrifuge the mixture. Store Hoyer’s in a brown bottle to prevent degradation by light. Formula for Gray and Wess Medium-PVA (polyvinyl alcohol) 71-24 powder: 2.0 g; 70 % acetone: 7.0 ml; Glycerin: 5.0 ml; lactic acid: 5.0 ml; distilled water: 10.0 ml. Make a paste of the dry alcohol with acetone. Mix half of the water with glycerin and lactic acid, stir into paste. Add remaining of water drop by drop while stirring. Solution will be cloudy but becomes transparent if warmed in water bath for 10 min.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
49
specimens. This medium, however, is necessary if one applies the method indicated below to observe and study the shield on the superficial bar of Gyrodactylidae. In both cases, specimens that are kept in aqueous liquid (such as 4-5 % formalin) can be directly transferred into a drop of either media on a glass slide. After orientation of the specimen (preferably, with the ventral side up), a coverslip is placed on the drop of the mounting medium and, especially in the case of Hoyer’s mounting media, it should be sealed with transparent nail polish. Study of specimens prepared this way is necessarily done with a phase-contrast or DIC microscope, as sclerites (such as anchors, bars and hooks) are not readily visible with normal light microscopy. Specimens to be used for the study of internal morphology should be stained with Gomori’s trichrome3 as follows: 1. Place a drop of Gomori’s trichome in a small Petri dish and transfer 1-5 animals from the formalin into this drop; 2. Stain the specimens for 1-5 minutes (according to the size of the specimens-it would be wise to test the time with few specimens first); 3. Flood the dish with absolute ethanol; 4. Concentrate the specimens in the center of the dish by rotation of this container; 5. Pouring drops of water on the specimens should remove the stain from the overly stained specimens (differentiation). This is the most important step in the process. The organs should stain dark while the mesenchyma should be lightly stained (usually light green). 6. Once the specimens are differentiated (as described above), the dish with ethanol and the specimens should be lightly shaken in order to mix the remaining water with the ethanol. 7. If only a few water drops were used, the specimens can, then, be cleared in Beachwood (or synthetic) Creosote4, otherwise, it is recommended that the specimens are further dehydrated in absolute ethanol prior to clearing. 8. With small specimens, it is better to place a drop of Creosote on a glass slide, place the specimen in this liquid and, after it is cleared, carefully remove the excess Creosote with a paper tissue. 9. Once cleared, the specimens can be mounted in Canada’s Balsam between slide and coverslip. The specimens prepared in this manner should be examined under normal illumination but, often, the use of phase contrast and DIC helps in revealing some hidden detail of sclerotized organs and parts. Another method has been developed to allow visualization and study of sclerites with very delicate and thins areas, which are extremely hard to differentiate using specimens cleared in Hoyer’s or Gray and Wess. 3
Formula for Gomori’s Trichrome - Chromotrope 2R (CI 16570): 0.6 g; aniline blue: 0.6 g; phosphomolybdic acid: 1.0 g; dissolve in distilled water: 100.0 ml; add hydrochloric acid: 1.0 ml. Allow to stand 24 hours in refrigerator before use. Store in refrigerator and use cold.
4
Be especially careful passing the specimens from absolute ethanol into Creosote. If transfer is slow, the ethanol dries rapidly and the specimen may dry.
50
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
This method was proposed by KRITSKY et al. (1978) and is extremely simple: 1. place one drop of Gomori’s trichrome on the center of a glass slide; 2. place the specimen you want to study in this drop; 3. Allow the specimen to stain for 30 s to 1 min; 4. Remove the excess of stain with a tissue paper (make a tip by twisting the paper between your fingers and be careful not to remove the specimen); 5. Rapidly place a drop of Gray and Wess (not Hoyer’s) on the specimen; 6. Cover with a coverslip and put the slide in a warmer or oven (about 57 °C) for 1-2 days. This slide can be studied under light microscope. As Gray and Wess is a water-base stain, it will remove the excess stain. Sclerites stain blue, red or a mixture of both colors, making small and very thin and delicate parts visible. This technique is fundamental for the study of the morphology of the shield of the superficial bar of viviparous Gyrodactylidae.
VI. Identification and keys The keys that follow are intended solely as a support for the initial process of determination of the taxa of specimens under study. Generic determination should be checked using the diagnoses presented in the next part. There are no keys for species, however. Species determination depends on the study of original literature based on the list of species available for each genus and the list of references of the chapter. The numbering of hooks used herein is that proposed by MIZELLE (1936). In this system, numbering of hook pairs proceeds in an anterior-posterior direction ventrally and posterior-anterior direction dorsally (when dorsal hooks are present) (examples in Figs. 34A; 3-13A; 3-14A). Keys were prepared with the software DELTA Editor (DALLWITZ, 1980) and Key (DALLWITZ, 1974).
Key to higher taxa of freshwater Amazonian Monogenoidea 1. Haptor armed with a combination of hooks, anchors, bars, spines, squamodisc ................................................................................................................. (Polyonchoinea)..2 – Haptor armed with haptoral suckers or clamps ............................................................ ................................................................................. (Heteronchoinea, Oligonchoinea)..4 2(1). 16 hooks, hinged, all marginal in a palmate, sucker-like haptor; viviparous or oviparous worms. ...................................................................................... Gyrodactylidae – 14 hooks, not hinged, on a haptor of variable morphology; oviparous worms .. 3 3(2). Haptor sucker-like, crossed by septa; 14 hooks marginal; a single pair of ventral anchors; bars absent; parasites of potamotrygonid rays ............................................. .................................................................................... Monocotylidae (Potamotrygonocotyle) – Haptor sucker-like or otherwise, never with septa; 14 hooks; anchors, bars, and other haptoral sclerites present or absent; parasites of Teleostei ...... Dactylogyrinea
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
51
4(1). Haptor armed with multiple clamps; parasites of Teleostei ....................................... .................................................................................................. Microcotylidae (Paranaella) – Haptor with 6 haptoral suckers, each with haptoral sclerite; parasites of potamotrygonid rays ............................................ Hexabothriidae (Paraheteronchocotyle)
Key to genera of freshwater Amazonian Gyrodactylidae 1. – 2(1). – 3(2). – 4(3). – 5(1). – 6(5). – 7(6). –
Oviparous worms ............................................................................................................... 2 Viviparous worms .............................................................................................................. 5 Male copulatory organ (MCO) without accessory piece ........................................... 3 Copulatory organ composed of MCO and accessory piece (Fig. 3-8B) .................. ..................................................................................................................... Nothogyrodactylus Eggs in uterus more than 2, usually up to 10 or more ...................... Phanerothecium Eggs in uterus never more than one ............................................................................. 4 Muscular MCO without spines .................................................................. Oogyrodactylus Muscular MCO with spines ........................................................................... Hyperopletes Ventral anchors, bars absent ..................................................................... Anacanthocotyle Ventral anchor, bars (superficial and deep) present ................................................... 6 Cylindrical haptoral sclerite absent ................................................................................. 7 Cylindrical haptoral sclerite present (Fig. 3-4B) .......................................... Accessorius Superficial (anterior) bar with shield (Fig. 3-6E) or lacking posterior projections .............................................................................................................................. Gyrodactylus Superficial (anterior) bar with double posterior projections similar to ribbons (Fig. 3-11B) .................................................................................................................. Scleroductus
Key to genera of freshwater Amazonian Dactylogyrinea 1. – – 2(1). – – – – 3(2). – 4(3). – 5(2).
Dorsal bar absent ............................................................................................................... 2 Dorsal bar present, double ............................................................................................... 9 Dorsal bar present, single ............................................................................................... 10 Hooks 14 on posterior margin of haptor ..................................................................... 3 Hooks 14, 12 ventral, on posterior margin of haptor, 2 more central .................. 5 Hooks 14 marginal ..................................................................................... Anacanthoroides Hooks 14, with anacanthorine distribution (6 dorsal, 8 ventral) ......... Anacanthorus Hooks 14, with ancyrocephaline distribution (4 dorsal, 10 ventral) ....................... 6 Haptor well set off from trunk ...........................................................................Kritskyia Haptor not differentiated from trunk ........................................................................... 4 Accessory piece one, non articulated to MCO ........................................... Pavanelliella Accessory piece articulated directly to MCO by copulatory ligament ..... Telethecium Ventral bar with smooth surface on anterior margins; gonads tandem; germarium anterior to testis; accessory piece articulated to MCO by copulatory ligament; hook shank simple .......................................................................................... Cacatuocotyle
52
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
– Ventral bar with two submedian elongate processes; gonads overlapping; accessory piece articulated directly to MCO; hook shank divided in two portions, clearly defined .................................................................................................... Rhinonastes 6(2). Vagina ventral ...................................................................................................................... 7 – Vagina dextral, marginal ................................................................................................... 8 – Vagina sinistral, marginal ..................................................................................Rhinoxenus 7(6). Accessory piece one, not articulated to MCO; hook shank simple; ventral anchor rod shaped ......................................................................................................... Trinidactylus – Accessory piece articulated directly to MCO; hook shank divided in two portions, clearly defined; ventral anchor with point, shaft, roots well defined ........................ .......................................................................................................................... Monocleithrium – Accessory piece articulated to MCO by copulatory ligament; hook with entire shank inflated, conferring a robust morphology to hook; ventral anchor with point, shaft and roots not defined ..................................................................... Unibarra 8(6). Gonads tandem; testes multiple, anterior to germarium; ventral anchor robust, with deep root longer than superficial ................................................ Linguadactyloides – Gonads overlapping; testis single; ventral anchor with point, shaft and roots not well defined ........................................................................................................... Trinigyrus – Gonads tandem; germarium anterior to single testis; ventral anchor with point, shaft, roots well defined ............................................................................ Euryhaliotrema 9(1). Vagina dextral, marginal; dorsal anchor modified, base apparently greatly elongate, distorted, sometimes hook-like; ventral bar strongly V-shaped ................ ........................................................................................................................ Curvianchoratus – Vagina sinistral, marginal; dorsal anchor with shaft, point and base not clearly separated in roots; ventral bar lip-shaped ................................................... Diplectanum – Vagina dextral, ventral; dorsal anchor with shaft, point and base composed of two roots; ventral bar slightly V-shaped ............................................................. Trinibaculum 10(1). Ventral bar with smooth surface on anterior margins ............................................. 11 – Ventral bar with short sclerotized muscle-attachment ........................ Euryhaliotrema – Ventral bar with slightly projected margin, with or without medial cleft (Fig. 3-2B) .............................................................................................................................................. 34 – Ventral bar with anterior transversal groove .............................................................. 35 – Ventral bar with antero-median projection ................................................................ 36 – Ventral bar with double umbeliform membranes on anterior margin ..................... .......................................................................................................................... Sciadicleithrum 11(10). Ventral anchor with point, shaft and roots not well defined .................................. 12 – Ventral anchor with point, shaft, base very elongated with roots not well defined .........................................................................................................................Protorhinoxenus – Ventral anchor with point, shaft, roots well defined ................................................ 15 – Ventral anchor robust, with elongate superficial and deep roots ..................... Jainus 12(11). Gonads overlapping ......................................................................................................... 13 – Gonads tandem; germarium anterior to testis ........................................................... 14 13(12). Eyes four; MCO coiled; hook pair 5 significantly distinct from other pairs; ventral anchor filament robust, very conspicuous ........................................................ Gussevia
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
53
– Eyes absent; MCO somewhat straight or slightly curved; hook pair 5 similar to other pairs; ventral anchor filament delicate, often inconspicuous ......... Heterotylus 14(12). Hooks 14, 8 dorsal, 6 ventral; anchors two pairs, dorsal ............................... Unilatus – Hooks 14, with ancyrocephaline distribution (4 dorsal, 10 ventral); anchors ventral pair, dorsal pair ............................................................................................ Demidospermus 15(11). MCO J-shaped .................................................................................................................. 16 – MCO sinuous .............................................................................................. Aphanoblastella – MCO somewhat straight or slightly curved ............................................................... 18 – MCO coiled ....................................................................................................................... 27 16(15). Gonads overlapping; seminal vesicle C-shaped ......................................... Notothecium – Gonads tandem; germarium anterior to testis; seminal vesicle fusiform ............ 17 17(16). Posterior projections on dorsal bar one ................................................. Demidospermus – Posterior projections on dorsal bar two, ribbon-like ......................... Cosmetocleithrum 18(15). Seminal vesicle C-shaped ................................................................................................ 19 – Seminal vesicle fusiform ................................................................................................. 20 19(18). Vagina dextral, dorsal; dorsal bar strongly V-shaped ................................ Notothecium – Vagina sinistral, dorsal; dorsal bar slightly U-shaped .............................Enallothecium 20(18). MCO single ....................................................................................................................... 21 – MCO double .................................................................................................................... 25 21(20). Anterior projections of dorsal bar absent .................................................................. 22 – Anterior projections of dorsal bar with small subterminal knob at each extremity ............................................................................................................................Philocorydoras – Anterior projections of dorsal bar with single median projection ......................... ......................................................................................................................... Mymarothecium 22(21). Vagina double ................................................................................................ Amphithecium – Vagina single ...................................................................................................................... 23 23(22). Vagina middorsal, looping left caecum ..................................................... Notothecioides – Vagina sinistral marginal ................................................................................................. 24 – Vagina dextral, dorsal ................................................................................. Mymarothecium 24(23). Gonads overlapping; dorsal bar slightly V-shaped; posterior projections on dorsal bar absent ....................................................................................................... Calpidothecium – Gonads tandem; germarium anterior to testis; dorsal bar strongly V-shaped; single posterior projection on dorsal bar ........................................................... Demidospermus 25(20). Vagina double ................................................................................................ Amphithecium – Vagina single ...................................................................................................................... 26 26(25). Vagina sclerotized, dextral, marginal; ventral bar slightly U-shaped; tegument scaled ........................................................................................................................ Pithanothecium – Vagina muscular, sinistral, dorsal; ventral bar rod-shaped; tegument smooth ........ ............................................................................................................................ Heterothecium 27(15). Posterior projection on dorsal bar absent ................................................................... 28 – Posterior projection on dorsal bar one ........................................................................ 33 – Posterior projections on dorsal bar two, ribbon-like ......................... Cosmetocleithrum 28(27). Ventral bar without posterior median projection ...................................................... 29 – Ventral bar with posterior median projection ............................................................ 32
54
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
29(28). – 30(29). – 31(30). – 32(28). – 33(27). –
34(10). – 35(10). – 36(10). – – 37(36). –
38(37). – 39(36). – – 40(39). –
Accessory vaginal sclerite absent .................................................................................. 30 Accessory vaginal sclerite present ................................................................Urocleidoides Accessory sclerite associated with base of ventral anchor absent ........................ 31 Accessory sclerite associated with base of ventral anchor present ...................... ........................................................................................................................... Tereancistrium Hook pair 5 similar to other pairs; ventral anchor filament delicate, often inconspicuous; gonadal bar present .......................................................... Gonocleithrum Hook pair 5 significantly distinct from other, reduced; ventral anchor filament robust, very conspicuous; gonadal bar absent ................................................. Gussevia Eyes four; accessory piece one, non articulated to MCO; vagina sinistral, marginal; dorsal bar slightly V-shaped ..................................................................... Aphanoblastella Eyes absent; accessory piece articulated to MCO by copulatory ligament; vagina sinistral, ventral; dorsal bar slightly U-shaped ................................... Pseudovancleaveus Gonads overlapping; ventral bar rod-shaped; accessory sclerite associated with base of ventral anchor present ................................................................... Tereancistrium Gonads tandem; germarium anterior to testis; ventral bar strongly V-shaped; accessory sclerite associated with base of ventral anchor absent ........................... ......................................................................................................................... Demidospermus Eyes four; vagina sclerotized, single; dorsal bar slightly U-shaped ......... Odothecium Eyes two; vagina muscular, double; dorsal bar slightly V-shaped .............................. ....................................................................................................................... Calpidothecioides Prostatic reservoirs unknown; hook pair 5 similar to other pairs; ventral anchor filament delicate, often inconspicuous .................................................... Ancistrohaptor Prostatic reservoirs round to short, ovate; hook pair 5 significantly distinct from other, reduced; ventral anchor filament robust, very conspicuous ............. Gussevia Accessory piece one, non articulated to MCO .......................................................... 37 Accessory piece articulated directly to MCO ............................................................ 39 Accessory piece articulated to MCO by copulatory ligament ................................ 41 Eyes four; prostatic reservoirs round to ovate; annulations on body absent; seminal vesicle with thin walls, of variable length .................................................... 38 Eyes absent; prostatic reservoirs very long, often looping posteriorly; annulations on body present; seminal vesicle with thick walls, very long, extending from level of base of MCO to initial portion of germarium ..................................... Vancleaveus Ventral anchor with point, shaft, roots well defined; ventral bar slightly V-shaped, without any posterior median projection ............................................... Diaphorocleidus Ventral anchor robust, with elongate superficial and deep roots; ventral bar rodshaped, with posterior median projection .............................................................Jainus MCO J-shaped ............................................................................................... Notozothecium MCO somewhat straight or slightly curved .......................................... Mymarothecium MCO coiled ....................................................................................................................... 40 Seminal vesicle two, fusiform; ventral bar rod-shaped; gonadal bar absent ........... ...............................................................................................................................Dawestrema Seminal vesicle fusiform; ventral bar slightly U-shaped; gonadal bar present ....... ........................................................................................................................... Gonocleithrum
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
55
41(36). – – 42(41).
MCO J-shaped .................................................................................................................. 42 MCO somewhat straight or slightly curved .......................................... Mymarothecium MCO coiled .................................................................................................... Ameloblastella Vagina sinistral marginal; dorsal anchor with shaft, point and base composed of two roots ...................................................................................................Annulotrematoides – Vagina dextral, dorsal; dorsal anchor robust with deep root longer than superficial root ................................................................................................................... Notozothecium
Clave para las taxas superiores de Monogenoidea Neotropicales de agua dulce 1. Haptor armado con una combinación de ganchos, áncoras, barras, espinas, escuamodiscos ..................................................................................... (Polyonchoinea)..2 – Haptor armado con ventosas haptoriales o tenazas ..................................................... ................................................................................. (Heteronchoinea, Oligonchoinea)..4 2(1). 16 ganchos, articulados, todos marginales en un haptor palmeado y con forma de ventosa; helmintos vivíparos u oviparos .............................................. Gyrodactylidae – 14 ganchos, sin articulación; haptor de morfología variable; helmintos ovíparos ................................................................................................................................................ 3 3(2). Haptor como ventosa, cruzado por un septo; 14 ganchos marginales; un único par de áncoras ventrales; barras ausentes; parásitos de rayas potamotrygonideas ........ .................................................................................... Monocotylidae (Potamotrygonocotyle) – Haptor como ventosa o no, nunca con septos; 14 ganchos; áncoras, barras y otras escleritas presentes o ausentes en el raptor; parásitos de Teleostei ......................... ....................................................................................................................... Dactylogyrinea 4(1). Haptor armado con múltiples tenazass; parásitos de Teleostei ................................. .................................................................................................. Microcotylidae (Paranaella) – Haptor con 6 ventosas en el haptor, cada una con escleritas haptorial; parásito de rayas potamotrygonideas .................................... Hexabothriidae (Paraheteronchocotyle)
Clave para los géneros de Gyrodactylidae Neotropicales de agua dulce 1. – 2(1). – 3(2). – 4(3). – 5(1). –
Helmintos ovíparos ............................................................................................................ 2 Helmintos vivíparos ........................................................................................................... 5 Organo copulador masculino (OCM) simple sin piezas accesorias. ....................... 3 Organo copulador compuesto por OCM y pieza accesoria (Fig. 3-8B) .................. ..................................................................................................................... Nothogyrodactylus Más de 2 huevos dentro del útero, generalmente hasta 10 ................ Phanerothecium Nunca más de 1 huevos dentro del útero..................................................................... 4 OCM muscular sin espinas ......................................................................... Oogyrodactylus OCM muscular con espinas ........................................................................... Hyperopletes Ancoras ventrales presentes, barras ausentes ........................................ Anacanthocotyle Ancoras ventrales presentes, barras (superficiales y profundas) presentes ............ 6
56
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6(5). Esclerita haptorial cilíndrica ausente .............................................................................. 7 – Esclerita haptorial cilíndrica presente (Fig. 3-4B) ....................................... Accessorius 7(6). Barra ventral (anterior) con escudo (Fig. 3-6E) o sin proyecciones posteriores .... .............................................................................................................................. Gyrodactylus – Barra ventral (anterior) con proyecciones posteriores dobles similares a cintas (Fig. 3-11B) ......................................................................................................... Scleroductus
Clave para los Dactylogyrinea Neotropicales de agua dulce 1. – – 2(1). – – – – 3(2). – 4(3). – 5(2).
–
6(2). – – 7(6). –
–
8(6). –
Barra dorsal ausente .......................................................................................................... 2 Barra dorsal presente, doble ............................................................................................ 9 Barra dorsal presente, única ........................................................................................... 10 14 ganchos en el margen posterior del haptor ............................................................ 3 14 ganchos, 12 ventrales, en el margen posterior del haptor, 2 más centrales ..... 5 14 ganchos marginales .............................................................................. Anacanthoroides 14 ganchos, con distribución anacantorina (6 dorsales, 8 ventrales) ...... Anacanthorus 14 ganchos, con distribución ancirocefalina (4 dorsales, 10 ventrales) .................. 6 Haptor bien diferenciado del tronco .................................................................Kritskyia Haptor no diferenciado del tronco ................................................................................ 4 Pieza accesoria único, no-articulada al OCM ..............................................Pavanelliella Pieza accesoria directamente articulada al órgano copulador masculino (OCM) por el ligamento copulador .............................................................................. Telethecium Barra ventral con superficie lisa en el margen anterior; gónadas en hilera; germarium anterior a los testículos; pieza accesoria articulada al OCM por el ligamento copulatorio; cuerpo del gancho simple. .................................. Cacatuocotyle Barra ventral con dos procesos submedianos alargados; gónadas sobrepuestas; la pieza accesoria articulada directamente al OCM; parte final del gancho dividido en dos porciones claramente definidas ........................................................ Rhinonastes Vagina ventral ...................................................................................................................... 7 Vagina derecha, marginal .................................................................................................. 8 Vagina izquierda, marginal ...............................................................................Rhinoxenus Pieza accesoria única, no-articulada al OCM; cuerpo del gancho es simple; áncora ventral en forma de varilla ............................................................................. Trinidactylus Pieza accesoria articulada directamente a la OCM; cuerpo del gancho dividido en dos porciones claramente definidas; áncora ventral con punta, cuerpo y base bien definidas ......................................................................................................... Monocleithrium Pieza accesoria articulada a OCM por el ligamento copulador; gancho con todo cuerpo inflado, confiriéndole una morfología robusta al gancho; áncora ventral con punta, cuerpo y base no definida ............................................................... Unibarra Gónadas en hilera; testículos múltiples, anteriores al germarium; áncora ventral robusta con raíz profunda más larga que superficial ....................... Linguadactyloides Gónadas sobrepuestas; testículo único; áncora ventral en punta, cuerpo y raíces base indefinidos .................................................................................................... Trinigyrus
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
57
– Gónadas en hilera; germario anterior al único testículo; áncora ventral con punta, cuerpo y raíces bien definidos .................................................................. Euryhaliotrema 9(1). Vagina dextral, marginal; áncora dorsal modificada, base aparentemente muy alargada, distorsionada, algunas veces en forma de gancho; barra ventral en forma de V .................................................................................................. Curvianchoratus – Vagina sinistral, marginal; áncora dorsal con cuerpo, punta y base sin separación clara con las raíces; barra ventral en forma de labio ................................ Diplectanum – Vagina dextral, ventral; áncora dorsal con cuerpo, punta y base compuesto de dos raíces; barra ventral ligeramente en forma de V ...................................... Trinibaculum 10(1). Barra ventral con superficie lisa en los márgenes anteriores .................................. 11 – Barra ventral con corta proyección muscular esclerotizada .............. Euryhaliotrema – Barra ventral con margen ligeramente proyectado, con o sin hendidura media (Fig. 3-2B) ................................................................................................................................... 34 – Barra ventral con estría antero-transversal ................................................................. 35 – Barra ventral con proyecciones antero-mediana ....................................................... 36 – Barra ventral con doble membrana umbeliforme en el margen anterior ................ .......................................................................................................................... Sciadicleithrum 11(10). Ancora ventral con punta, cuerpo y raíces sin definición ....................................... 12 – Ancora ventral con punta, cuerpo, base muy alargada con raíces no definidas ..... .........................................................................................................................Protorhinoxenus – Ancora ventral con punta, cuerpo, raíces bien definidas ......................................... 15 – Ancora ventral robusta, con raíces superficiales y profundas alargadas ......... Jainus 12(11). Gónadas sobrepuestas ..................................................................................................... 13 – Gónadas en hileras; germario anterior al testículo ................................................... 14 13(12). Cuatro ojos; OCM enrollado; el quinto par de ganchos significativamente distinto de los otros pares; filamento del áncora ventral robusto, muy conspicuo ......... Gussevia – Ojos ausentes; OCM casi recto o ligeramente curvado; quinto par de ganchos similar a los otros pares; filamento del áncora ventral delicado, con frecuencia insconspicuo ........................................................................................................ Heterotylus 14(12). 14 ganchos, 8 dorsales, 6 ventrales; 2 pares de áncoras dorsales ................. Unilatus – 14 ganchos, con distribución ancirocefalina (4 dorsales, 10 ventrales); par de áncoras ventrales; par de áncoras dorsales ............................................ Demidospermus 15(11). OCM en forma de J ........................................................................................................ 16 – OCM sinuoso .............................................................................................. Aphanoblastella – OCM casi recto o ligeramente curvado ...................................................................... 18 – OCM enrollado ................................................................................................................. 27 16(15). Gónadas sobrepuestas; vesícula seminal en forma de C ......................... Notothecium – Gónadas en hilera; germario anterior al testículo; vesícula seminal fusiforme ...... .............................................................................................................................................. 17 17(16). Proyecciones posteriores en la primera barra dorsal ........................... Demidospermus – Proyecciones posteriores en la segunda barra dorsal, en forma de cinta ................ ....................................................................................................................... Cosmetocleithrum 18(15). Vesícula seminal en forma de C .................................................................................... 19 – Vesícula seminal fusiforme ............................................................................................ 20
58
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
19(18). – 20(18). – 21(20).
– 22(21). – 23(22). – – 24(23). – 25(20). – 26(25). – 27(15). – – 28(27). – 29(28). – 30(29). – 31(30). – 32(28). –
Vagina dextral, dorsal; barra dorsal em forma de V ................................ Notothecium Vagina sinestral, dorsal; barra dorsal ligeramente en forma de U ....... Enallothecium OCM único ........................................................................................................................ 21 OCM doble ........................................................................................................................ 25 Proyecciones anteriores de la barra dorsal ausentes ................................................. 22 –Proyecciones anteriores de la barra dorsal con pequeños nudos subterminales en cada extremidad ..............................................................................................Philocorydoras Proyecciones anteriores de la barra dorsal con proyección media única ................. ......................................................................................................................... Mymarothecium Vagina doble ................................................................................................... Amphithecium Vagina única ...................................................................................................................... 23 Vagina dorsal media, circundando el intestino izquierdo ...................... Notothecioides Vagina sinestral marginal ................................................................................................ 24 Vagina dextral, dorsal ................................................................................. Mymarothecium Gónadas sobrepuestas; barra dorsal ligeramente en forma de V; proyecciones posteriores ausentes en la barra dorsal .................................................... Calpidothecium Gónadas en hilera; germario anterior al testículo; barra dorsal en forma de V; proyección única posterior en la barra dorsal ....................................... Demidospermus Vagina doble ................................................................................................... Amphithecium Vagina única ...................................................................................................................... 26 Vagina esclerotizada, destral, marginal; barra ventral ligeramente en forma de U; tegumento con escamas .............................................................................. Pithanothecium Vagina muscular, sinestral, dorsal; barra ventral en forma de varilla; tegumento liso ............................................................................................................................ Heterothecium Proyección posterior ausente en la barra dorsal ........................................................ 28 Proyección posterior en la primera barra dorsal ....................................................... 33 Proyecciones posteriores en la segunda barra dorsal, en forma de cinta ................ ....................................................................................................................... Cosmetocleithrum Barra ventral sin proyección mediana posterior ........................................................ 29 Barra ventral con proyección mediana posterior ...................................................... 32 Esclerita accesoria vaginal ausente ............................................................................... 30 Esclerita accesoria vaginal presente .............................................................Urocleidoides Esclerita accesoria asociada a la base del áncora ventral ausente .......................... 31 Esclerita accesoria asociada a la base del áncora ventral presente ...................... ........................................................................................................................... Tereancistrium Par de ganchos 5 similar a los otros pares; filamento del áncora ventral delicado, con frecuencia incospicuo; barra gonadal presente ............................... Gonocleithrum Par de ganchos 5 significativamente distinto de los otros, reducido; filamento del áncora ventral robusto, muy conspicuo; barra gonadal ausente .................. Gussevia Cuatro ojos; primera pieza accesoria no articulada al OCM; vagina sinestral, marginal; barra dorsal ligeramente en forma de V ............................. Aphanoblastella Ojos ausentes; pieza accesoria articulada al OCM por ligamento copulatorio; vagina sinistral, ventral; barra dorsal ligeramente en forma de U ................ Pseudovancleaveus
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
59
33(27). Gónadas sobrepuestas; barra ventral en forma de varilla; esclerita accesoria asociada a la base del áncora ventral presente ........................................ Tereancistrium – Gónadas en hilera; germarium anterior al testículo; barra ventral en forma de V; esclerita accesoria asociada a la base del áncora ventral ausente ................... ......................................................................................................................... Demidospermus 34(10). Cuatro ojos; vagina esclerotizada, única; barra dorsal ligeramente en forma de U ................................................................................................................................ Odothecium – Dos ojos; vagina muscular, doble; barra dorsal ligeramente en forma de V .......... ....................................................................................................................... Calpidothecioides 35(10). Reservorios prostáticos desconocidos; par de ganchos 5 similar a los otros pares; filamento del áncora ventral delicado, frecuentemente incospicuo ........... .......................................................................................................................... Ancistrohaptor – Reservorios prostáticos cortos, redondos u ovalados; par de ganchos 5 significativamente diferentes de los otros, reducidos; filamento del áncora ventral robusto, muy conspicuo ........................................................................................ Gussevia 36(10). Pieza accesoria unica no articulada al OCM .............................................................. 37 – Pieza accesoria articulada directamente al OCM ...................................................... 39 – Pieza accesoria articulada al OCM por el ligamento copulatorio .......................... 41 37(36). Cuatro ojos; reservorios prostáticos redondos a ovalados; cuerpo sin anillos; vesícula seminal con paredes delgadas de longitud variable ................................... 38 – Ojos ausentes; reservorios prostáticos muy largos, frecuentemente dando la vuelta posteriormente; anillos presentes en el cuerpo; vesícula seminal con paredes gruesas, muy larga, extendiendose desde el nível de la base del OCM hasta la parte inicial del germarium ........................................................................................ Vancleaveus 38(37). Ancora ventral con punta, cuerpo, raíces bien definidas; barra ventral ligeramente en forma de V, sin ninguna proyección posterior mediana ............... Diaphorocleidus – Ancora ventral robusta, con raíces superficiales y profundas alargadas; barra ventral en forma de varilla, con proyección posterior mediana ........................ Jainus 39(36). OCM en forma de J ..................................................................................... Notozothecium – OCM casi recto o ligeramente curvado ................................................. Mymarothecium – OCM enrollado ................................................................................................................. 40 40(39). Dos vesículas seminales, fusiformes; barra ventral em forma de varilla; barra gonadal ausente .................................................................................................Dawestrema – Vesícula seminal fusiforme; barra ventral ligeramente en forma de U; barra gonadal presente ............................................................................................ Gonocleithrum 41(36). OCM en forma de J ........................................................................................................ 42 – OCM casi recto o ligeramente curvo ..................................................... Mymarothecium – COM enrollado .............................................................................................. Ameloblastella 42(41). Vagina sinestral marginal; áncora dorsal con cuerpo, punta y base compuesta de dos raíces ...................................................................................................Annulotrematoides – Vagina destral, dorsal; áncora dorsal robusta con raíz profunda más larga que la raíz superficial ................................................................................................ Notozothecium
60
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
VII. Checklist of Monogenoidea from Amazonian freshwater fishes and diagnoses The diagnoses and list of species below refer solely to those species of Monogenoidea from the Amazon Region or from fish groups (species, genera) that are known to occur in this region, even though some of the species are originally reported from other areas. A list of species of genera of uncertain taxonomic validity is presented at the end of this section. The descriptions were prepared with the software DELTA Editor (DALLWITZ, 1980). Subclass Heteronchoinea BOEGER & KRITSKY, 2002 Infrasubclass Oligonchoinea BYCHOWSKY, 1937 Hexabothriidae PRICE, 1942 Body elongate, fusiform. Oviparous. Spike sensilla absent. Eyes, eye granules absent. Mouth terminal; oral sucker present, pharynx bulbous. Ceca non-confluent, with diverticula. Copulatory organ (MCO) muscular, armed with spines or not. Testes multiple, post-germarian. Germarium elongate, U-shaped; genito-intestinal canal present. Vagina two, bilateral, ventral; ductus vaginalis. Haptor round to ovate, armed with three pairs of haptoral suckers with hook-like sclerites; haptoral appendix present with pair of suckers, hooks, pair of anchors; hooks present or absent in adult; anchors present or absent. Paraheteronchocotyle MAYES, BROOKS & THORSON, 1981 Body elongate. MCO muscular, composed of two portions; distal portion elongate, unarmed; proximal portion elongate with thick walls; prostatic region absent. Proximal germarium lobate, descending branch sinuous, ascending branch absent; oviduct dilated. Ootype smooth, lacking longitudinal rows of cells. Haptor asymmetrical; haptoral sucker distributed linearly, except a pair adjacent to haptoral appendix. Haptoral appendix marginal, anchors absent. Eggs with one long filament. Parasites of species of Potamotrygonidae rays. Type and only species: Paraheteronchocotyle amazonensis MAYES, BROOKS & THORSON, 1981 from Potamotrygon circularis. (Figs. 3-1 A-C). Microcotylidae TASCHENBERG, 1879 Body elongate, fusiform. Oviparous. Spike sensilla absent. Eyes, eye granules absent. Mouth terminal; buccal organs present, pharynx bulbous. Ceca nonconfluent with diverticula. Copulatory organ (MCO) present or absent, genital atrium muscular, usually armed with spines. Testes multiple, postgermarian. Germarium elongate, double-inverted-U-shaped; genito-intestinal canal present. Vagina dorsal; ductus vaginalis. Haptor elongate, armed with multiple microcotylid clamps (n>8); hooks, anchors, bars absent. Paranaella KOHN, BAPTISTA-FARIAS & COHEN, 2000 Body lanceolate. Haptor subsymmetrical with two subequal rows of clamps, similar in shape. Buccal organs with septum. MCO non-differentiated. Genital atrium armed with two concentric rows of spines around
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
61
muscular aperture. Eggs with one filament each. Vagina mid-dorsal, unarmed. Parasites of gills of species of Loricariidae (Siluriformes). Type and only species: Paranaella luquei KOHN, BAPTISTA-FARIAS & COHEN, 2000 from Hypostomus sp., Rhinelepis aspera, Hypostomus regani. (Figs. 3-2 A-B). Subclass Polyonchoinea Monocotylidae TASCHENBERG, 1879 Body robust to fusiform. Oviparous. Spike sensilla absent. Eyes present or absent. Haptor sucker-shaped, usually divided by septa. Oral sucker present. Pharynx single, bulbous. Ceca non-confluent. Copulatory organ (MCO) sclerotized, lacking accessory piece. Germarium loops right intestinal ceca. Vagina ususally present. Testis single, post-germarian. Hooks dactylogyrid, 14 marginal. Ventral anchor present or absent. Dorsal anchor, bars absent. Potamotrygonocotyle MAYES, BROOKS & THORSON, 1981 Eyes absent; eye granules present or absent. Tegument smooth. Vagina sinistro-marginal, muscular.. Hooks with simple shank. Ventral anchor pair present. Haptor divided ventrally into eight external loculi, one central; septa lacking sinuous ridges or sclerites; dorsal surface of haptor with six muscular papillae. Parasites of the gills of Potamotrygonidae species (Rajiformes). Type and only species: P. tsalickisi MAYES, BROOKS & THORSON, 1981 from Potamotrygon circularis. (Figs. 3-3 A-B). Gyrodactylidae VAN BENEDEN & HESSE, 1863 Oviparous or viviparous. Spike sensilla present. Eyes granules absent. Haptor sucker-shaped. Pharynx two bulbous subunits, distal frequently with finger-like projections. Ceca non-confluent. Copulatory organ (MCO) muscular or sclerotized; when muscular it may be elongate, form a cirrus sac, or be bulbous. Accessory piece present, absent. Germarium usually ovate, with an internal fertilization chamber. Vagina absent. Hooks gyrodactylid. Hooks 16 marginal. Hooks on finger-like projections, or not on peduncles. Ventral anchor present or absent. Dorsal anchor, bar absent. Ventral anchor gyrodactylid (long superficial root, knob-like deep root). Deep bar (associated with knobs of anchors) present when ventral anchor is present. Accessorius JARA, AN & CONE, 1991 Viviparous. Peduncle conspicuous. Haptor sucker-shaped. Copulatory organ only represented by MCO. MCO muscular, bulbous, with spines. Ventral anchor present. Cylindrical haptoral sclerite present. Superficial bar present, rod-shaped. Deep bar (associated with knobs of anchors) present. Parasites of external body surface of species of Characidae (Characiformes). Type and only species: Accessorius peruensis JARA, AN & CONE, 1991 from Lebiasina bimaculata (Figs. 3-4 A-F). Anacanthocotyle KRITSKY & FRITTS, 1970 Viviparous. Peduncle conspicuous. Haptor cylindrical or sucker-shaped. Copulatory organ represented only by MCO, muscular, bulbous, with spines. Ventral anchor, bars absent. Cylindrical haptoral sclerite absent. Parasites of the external surface of species of Characidae (Characiformes).
62
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Type and only species: A. anacanthocotyle KRITSKY & FRITTS, 1970 from Astyanax fasciatus (Figs. 3-5 A-C). Gyrodactylus NORDMANN, 1832 Synonyms: Paragyrodactyloides; Paragyrodactylus. Viviparous. Peduncle conspicuous. Copulatory organ represented only by MCO, muscular, bulbous, with spines. Cylindrical haptoral sclerite absent. Ventral anchor present. Superficial bar present, rod-shaped, with or without a shield. Parasites of gills and external surfaces of species of Clupeiformes, Cyprinodontiformes, Perciformes, Siluriformes, Characiformes. G. anisopharynx POPAZOGLO & BOEGER, 2000 from Corydoras paleatus, Corydoras ehrhardtii (Callichthyidae, Siluriformes). G. bimaculatus AN, JARA & CONE, 1991 from Lebiasina bimaculata (Characidae, Characiformes). G. bullatarudis TURNBULL, 1956 from Poecilia sphenops, Poecilia reticulata (Poeciliidae, Cyprinodontiformes). G. costaricensis KRITSKY & FRITTS, 1970 from Poecilia sphenops (Poeciliidae, Cyprinodontiformes). G. gemini FERRAZ, SHINN & SOMMERVILLE, 1994 from Semaprochilodus taeniurus (Curimatidae, Characiformes). G. geophagensis BOEGER & POPAZOGLO, 1995 from Geophagus brasiliensis (Cichlidae, Perciformes) (Figs. 3-6 A-E). G. lebiasinus AN, JARA & CONE, 1991 from Lebiasina bimaculata (Characidae, Characiformes). G. milleri HARRIS & CABLE, 2000 from Poecilia caucana (Poecilidae, Cyprinodontiformes). G. neotropicalis KRITSKY & FRITTS, 1970 from Astyanax fasciatus (Characidae, Characiformes). G. pictae CABLE, VAN OOSTERHOUT, BARSON & HARRIS, 2005 from Poecilia picta (Poeciliidae, Cyprinodontiformes). G. pimelodellus AN, JARA & CONE, 1991 from Pimelodella yuncensis (Pimelodidae, Siluriformes). G. poeciliae HARRIS & CABLE, 2000 from Poecilia caucana (Poecilidae, Cyprinodontiformes). G. samirae POPAZOGLO & BOEGER, 2000 from Corydoras ehrhardtii, Corydoras paleatus (Callichthyidae, Siluriformes). G. slendrus AN, JARA & CONE, 1991 from Lebiasina bimaculata (Characidae, Characiformes). G. superbus POPAZOGLO & BOEGER, 2000 from Corydoras paleatus, Corydoras ehrhardtii (Callichthyidae, Siluriformes). G. trairae BOEGER & POPAZOGLO, 1995 from Hoplias malabaricus (Erythrinidae, Characiformes). G. turnbulli HARRIS & LYLES, 1992 from Poecilia reticulata (Poeciliidae, Cyprinodontiformes).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
63
Hyperopletes BOEGER, KRITSKY & BELMONT-JÉGU, 1994 Oviparous. Peduncle conspicuous. Copulatory organ represented only by MCO, muscular, sac-like, with spines. Only one egg in uterus. Ventral anchor present. Cylindrical haptoral sclerite absent. Superficial bar present, without posterior median projection. Deep bar (associated with knobs of anchors) present. Parasites of external surface of species of Loricariidae (Siluriformes). Type and only species: H. malmbergi BOEGER, KRITSKY & BELMONT-JÉGU, 1994 from Rhineloricaria sp (Figs. 3-7 A-D). Nothogyrodactylus KRITSKY & BOEGER, 1991 Oviparous. Peduncle conspicuous. Copulatory organ composed of MCO, accessory piece. Accessory piece one to three, non-articulated. MCO muscular, elongate, lacking spines. Eggs in uterus never more than one. Ventral anchor present. Cylindrical haptoral sclerite absent. Superficial bar present, lacking a shield. Deep bar (associated with knobs of anchors) present. Parasites of external surface of species of Loricariidae (Siluriformes). N. amazonicus KRITSKY & BOEGER, 1991 from Ancistrus sp. N. clavatus KRITSKY & BOEGER, 1991 from Ancistrus sp. (Type species). N. plaesiophallus KRITSKY & BOEGER, 1991 from Ancistrus sp. (Figs. 3-8 A-E). Oogyrodactylus HARRIS, 1983 Oviparous. Peduncle conspicuous. Copulatory organ composed only of MCO, muscular, elongate, sac-like, lacking spines. Eggs in uterus never more than one. Ventral anchor present. Cylindrical haptoral sclerite absent. Superficial bar present, lacking a shield. Deep bar (associated with knobs of anchors) present. Parasites of external surface of species of Loricariidae (Siluriformes). Type and only species: O. farlowellae HARRIS, 1983 from Farlowella amazona (Figs. 3-9 A-D). Phanerothecium KRITSKY & THATCHER, 1977 Oviparous. Peduncle conspicuous. Copulatory organ composed only of MCO, muscular, sac-like, with or without spines. Eggs in uterus more than 2, usually up to 10. Ventral anchor present. Cylindrical haptoral sclerite absent. Superficial bar present, lacking a shield. Deep bar (associated twith knobs of anchors) present. Parasites of external surface of species of Pimelodidae and Loricariidae (Siluriformes). P. caballeroi KRITSKY & THATCHER, 1977 from Cephalosilurus zungaro (Pimelodidae) (Type species) (Fig. 3-10 A-E). P. harrisi KRITSKY & BOEGER, 1991 from Plecostomus plecostomus (Loricariidae) P. spinatus BOEGER, KRITSKY & BELMONT-JÉGU, 1994 from Hypostomus punctatus (Loricariidae). P. sp. (= P. caballeroi forma major of KRITSKY & THATCHER, 1977) from Cephalosilurus zungaro (Pimelodidae). Scleroductus JARA & CONE, 1989 Viviparous. Peduncle conspicuous. Copulatory organ composed only of MCO, muscular, bulbous, with spines; one spine significantly longer, serving as guide for distal vas deferens. Ventral anchor present. Cylindrical haptoral
64
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
sclerite absent. Superficial bar present, with double posterior projections similar to ribbons. Deep bar (associated with knobs of anchors) present. Parasites of gills and external surface of species of Siluriformes. S. spp. (of KRITSKY, BOEGER & POPAZOGLO, 1995) from Glanidium melanopterum (Auchenipteridae), Pimelodella sp. (Pimelodidae), Parauchenipterus striatulus (Auchenipteridae), Rhamdia quelen (Pimelodidae). S. yuncensi JARA & CONE, 1989 from Pimelodella yuncensis (Pimelodidae) (Type species) (Figs. 3-11 A-F). Order Dactylogyrinea BYCHOWSKY, 1937 Suborder Dactylogyridea BYCHOWSKY, 1937 Diplectanidae MONTICELLI, 1903 Diplectanum DIESING, 1858 Body fusiform. Tegument scaled or smooth. Eyes four or two; accessory granules present or absent. Pharynx bulbous, one subunit. Ceca nonconfluent. Gonads tandem; germarium anterior to testis, looping right intestinal caecum. Testis single. Copulatory organ composed only of MCO, or MCO and accessory piece. MCO J-shaped, or sinuous, or somewhat straight, or slightly curved. Accessory piece one, when present, non-articulated. Seminal vesicle fusiform. Prostatic reservoirs short, round to ovate. Germarium looping right caecum. Vagina sinistro-marginal, sclerotized or muscular. Squamodisc present. Hooks dactylogyrid, with shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base not clearly separated into roots. Ventral bar lip-shaped; anterior projection absent, posterior projection present or absent. Groove on entire length of ventral bar present. Dorsal bar present, double, rod-shaped. Parasites of the gills of species of Perciformes (in Neotropical freshwater, only species of Sciaenidae are known to host diplectanids). D. decorum KRITSKY & THATCHER, 1984 from Plagioscion squamosissimus (Figs. 312 A-F). D. gymnopeus KRITSKY & THATCHER, 1984 from Plagioscion squamosissimus. D. hilum KRITSKY & THATCHER, 1984 from Plagioscion sp. D. pescadae KRITSKY & THATCHER, 1984 from Plagioscion sp., Plagioscion squamosissimus. D. piscinarius KRITSKY & THATCHER, 1984 from Plagioscion squamosissimus. Dactylogyridae BYCHOWSKY, 1933 Ameloblastella KRITSKY, MENDONZA-FRANCO & SCHOLZ, 2000 Synonyms: Cleidodiscus (in part); Vancleaveus (in part); Urocleidoides (in part) Body fusiform. Tegument smooth; annulations on body absent. Eyes absent; eye granules present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping; testis single. Copulatory organ composed of MCO and accessory piece. MCO of loose coils, not inflated proximally. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform, with thin walls, of variable length. Prostatic reservoirs short, round to ovate.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
65
Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized; vaginal bar, accessory vaginal sclerite absent. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral), not on peduncles; hook pair 2 on the haptor, close to hook pairs 3, 4; hook pair 5 similar to other pairs. Anchors ventral, dorsal pairs. Ventral anchor with point, shaft, roots well defined; anchor filament delicate, often inconspicuous; accessory sclerite associated with base of ventral anchor absent. Dorsal anchor with shaft, point, base composed of two roots; fold on inner superficial root of dorsal anchor absent. Ventral bar rod-shaped with antero-median projection; no posterior median projection. Dorsal bar single, rod-shaped; anterior, posterior projections absent. Parasites of the gills of species of Pimelodidae (Siluriformes). A. chavarriai (PRICE, 1938) from Rhamdia sebae, Rhamdia rogersi, Rhamdia quelen. (Type species) (Figs. 3-13 A-E). A. mamaevi (KRITSKY & THATCHER, 1976) from Cephalosilurus zungaro. A. platensis (SURIANO & INCORVAIA, 1995) from Pimelodus claria maculatus. Amphithecium BOEGER & KRITSKY, 1988 Body strongly flattened or fusiform. Tegument papillated, scaled, or smooth; annulations on body absent. Eyes four or two; eyes granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece; MCO single or double, somewhat straight or slightly curved rami. Accessory piece articulated to MCO directly or by copulatory ligament. Seminal vesicle fusiform with thin walls. Prostatic reservoirs short, round to ovate. Germarium ovate or elongate. Vagina sclerotized or muscular, double; vaginal apertures dorsolateral; vaginal bar, accessory vaginal sclerite absent. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral), not on peduncles; hook pair 2 on haptor, close to hook pairs 3, 4; hook pair 5 similar to other pairs. Ventral, dorsal pairs of anchors. Ventral anchor with point, shaft, well defined roots; anchor filament delicate, often inconspicuous. Dorsal anchor with shaft, point, base composed of two roots; fold on inner superficial root absent. Ventral bar present, slightly V-shaped, slightly U-shaped, or rod-shaped, anterior, posterior projections absent. Dorsal bar slightly V-shaped, slightly U-shaped, or rod-shaped, anterior, posterior projections absent. Parasites of the gills of species of Serrasalmidae (Characiformes). A. brachycirrum BOEGER & KRITSKY, 1988 from Pygocentrus nattereri. A. calycinum BOEGER & KRITSKY, 1988 from Pygocentrus nattereri (Type species) (Fig. 3-14 A-F). A. camelum BOEGER & KRITSKY, 1988 from Pygocentrus nattereri. A. catalaoensis BOEGER & KRITSKY, 1988 from Pygocentrus nattereri. A. diclonophallum KRITSKY, BOEGER & JÉGU, 1997 from Serrasalmus elongatus, Serrasalmus sp., Pristobrycon sp., Serrasalmus compressus, Serrasalmus rhombeus, Serrasalmus gouldingi.
66
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
A. falcatum BOEGER & KRITSKY, 1988 from Pygocentrus nattereri, Pristobrycon sp., Serrasalmus elongatus, Serrasalmus compressus, Serrasalmus gouldingi, Serrasalmus manuelli, Serrasalmus rhombeus, Serrasalmus spilopleura, Serrasalmus sp. A. junki BOEGER & KRITSKY, 1988 from Pygocentrus nattereri, Serrasalmus rhombeus. A. microphallum KRITSKY, BOEGER & JÉGU, 1997 from Pygocentrus nattereri, Serrasalmus sp. A. minutum KRITSKY, BOEGER & JÉGU, 1997 from Serrasalmus gouldingi, Pristobrycon sp., Serrasalmus spilopleura, Pristobrycon eigenmanni (Type species). A. muricatum KRITSKY, BOEGER & JÉGU, 1997 from Pristobrycon eigenmanni, Serrasalmus rhombeus, Serrasalmus sp. A. pretiosum KRITSKY, BOEGER & JÉGU, 1997 from Serrasalmus manueli, Serrasalmus gouldingi, Pristobrycon sp. A. prodotum KRITSKY, BOEGER & JÉGU, 1997 from Catoprion mento, Pristobrycon striolatus. A. speirocamarotum KRITSKY, BOEGER & JÉGU, 1997 from Serrasalmus elongatus. A. unguiculum KRITSKY, BOEGER & JÉGU, 1997 from Serrasalmus spilopleura. A. verecundum KRITSKY, BOEGER & JÉGU, 1997 from Serrasalmus sp., Pristobrycon eigenmanni. Anacanthoroides KRITSKY & THATCHER, 1976 Body strongly flattened. Tegument smooth. Eyes four; eye granules absent. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Germarium ovate, solid. Vagina sclerotized, sinistromarginal; vaginal bar, accessory vaginal sclerite absent. Hooks dactylogyrid, shank simple; 14 marginal; hook pair 2 on the haptor, close to hook pairs 3, 4; hook pair 5 similar to other pairs. Two pairs of ventral anchors modified as 4A hooks (incipient). Bars absent. Parasites from the gills of species of Prochilodontidae (Characiformes). Type and only species: A. mizellei KRITSKY & THATCHER, 1976 from Prochilodus reticulatus (Fig. 3-15 A-C). Anacanthorus MIZELLE & PRICE, 1965 Body fusiform. Tegument smooth. Eyes four or two; eye granules present or absent. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; testis anterior to germarium. Copulatory organ composed of MCO, accessory piece; MCO J-shaped, sinuous, somewhat straight, slightly curved, or coiled. Accessory piece one, non-articulated or articulated directly to MCO. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate; solid. Vagina absent. Hooks dactylogyrid, proximal portion of shank inflated, divided in two portions clearly defined, or simple. Hooks 14, with anacanthorine distribution (6 dorsal, 8 ventral). Ventral, dorsal anchors pairs present modified as 4A hooks (incipient). Bars absent. Parasites of the gills of species of Characiformes.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
67
A. acuminatus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus elongatus, Triportheus angulatus, Triportheus albus (Characidae). A. alatus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus albus, Triportheus elongatus (Characidae). A. amazonicus KRITSKY & BOEGER, 1995 from Serrasalmus rhombeus, Serrasalmus sp., Pristobrycon striolatus (Curimatidae). A. anacanthorus MIZELLE & PRICE, 1965 from Pygocentrus nattereri (Serrasalmidae) (Type species). A. andersoni KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus (Characidae). A. beleophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Pristobrycon eigenmanni (Serrasalmidae). A. bellus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus albus, Triportheus elongatus (Characidae) (Figs. 3-17 A). A. brazilensis MIZELLE & PRICE, 1965 from Pygocentrus nattereri (Serrasalmidae). A. brevis MIZELLE & KRITSKY, 1969 from Brycon melanopterus (Characidae). A. calophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus elongatus (Characidae) (Fig. 3-17 B). A. carinatus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus (Characidae) (Fig. 3-17 C). A. catoprioni KRITSKY, BOEGER & VAN EVERY, 1992 from Catoprion mento (Serrasalmidae). A. chaunophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus (Characidae). A. chelophorus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus, Triportheus sp. (Characidae). A. cinctus VAN EVERY & KRITSKY, 1992 from Pristobrycon striolatus (Serrasalmidae). A. cladophallus VAN EVERY & KRITSKY, 1992 from Serrasalmus spilopleura (Serrasalmidae). A. colombianus KRITSKY & THATCHER, 1974 from Salminus affinis (Characidae). A. cornutus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus (Characidae) (Fig. 3-17 D). A. crytocaulus VAN EVERY & KRITSKY, 1992 from Pristobrycon striolatus (Serrasalmidae). A. cuticulovaginus KRITSKY & THATCHER, 1974 from Salminus affinis (Characidae). A. dipelecinus KRITSKY, BOEGER & VAN EVERY, 1992 from Roeboides myersi (Characidae) (Fig. 3-17 E). A. elegans KRITSKY, THATCHER & KAYTON, 1979 from Brycon melanopterus (Characidae). A. euryphallus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus albus, Triportheus elongatus, Triportheus angulatus (Characidae) (Fig. 3-17 H). A. formosus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus elongatus, Triportheus sp. (Characidae).
68
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
A. furculus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus elongatus (Characidae) (Fig. 3-17 G). A. glyptophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus (Characidae) (Fig. 3-17 F). A. gravihamulatus VAN EVERY & KRITSKY, 1992 from Pristobrycon eigenmanni Serrasalmus sp. 2, Serrasalmus rhombeus (Serrasalmidae). A. hoplophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Myleus rubripinnis (Serrasalmidae) (Fig. 3-17 I). A. jegui VAN EVERY & KRITSKY, 1992 from Serrasalmus rhombeus, Serrasalmus spilopleura, Pristobrycon sp., from Serrasalmus sp. 2, Pristobrycon eigenmanni, Serrasalmus sp. (2n = 58) (Serrasalmidae). A. kruidenieri KRITSKY, THATCHER & KAYTON, 1979 from Brycon melanopterus (Characidae). A. lasiophallus VAN EVERY & KRITSKY, 1992 from Pristobrycon striolatus (Serrasalmidae). A. lepyrophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Serrasalmus elongatus, Serrasalmus sp. (2n = 58), Serrasalmus sp. 1 (Serrasalmidae). A. lygophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus (Characidae) (Fig. 3-17 M). A. maltai BOEGER & KRITSKY, 1988 from Pygocentrus nattereri (Serrasalmidae). A. mastigophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Pristobrycon eigenmanni (Serrasalmidae) (Fig. 3-17 J). A. mesocondylus VAN EVERY & KRITSKY, 1992 from Serrasalmus spilopleura, Pristobrycon eigenmanni, Serrasalmus elongatus, Serrasalmus sp. 1, Pristobrycon sp. n., Serrasalmus sp. 2 (Serrasalmidae). A. nanus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus (Characidae). A. neotropicalis MIZELLE & PRICE, 1965 from Pygocentrus nattereri (Serrasalmidae). A. palamophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Pristobrycon sp. n. (Serrasalmidae). A. paraspathulatus KRITSKY, BOEGER & VAN EVERY, 1992 from Mylossoma duriventris (Serrasalmidae). A. pedanophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Myleus rubripinnis (Serrasalmidae). A. pelorophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus elongatus (Characidae) (Fig. 3-17 N). A. penilabiatus BOEGER, HUSAK & MARTINS, 1995 from Piaractus mesopotamicus (Serrasalmidae). A. periphallus KRITSKY, BOEGER & VAN EVERY, 1992 from Serrasalmus sp. 1, Serrasalmus sp. 2 (Serrasalmidae) (Fig. 3-17 L). A. pithophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus (Characidae) (Fig. 3-17 K). A. prodigiosus VAN EVERY & KRITSKY, 1992 from Serrasalmus sp., Serrasalmus rhombeus, Serrasalmus elongatus (Serrasalmidae).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
69
A. quinqueramis KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus albus, Triportheus elongatus (Characidae). A. ramosissimus VAN EVERY & KRITSKY, 1992 from Serrasalmus elongatus (Serrasalmidae). A. ramulosus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus albus, Triportheus elongatus (Characidae). A. reginae BOEGER & KRITSKY, 1988 from Pygocentrus nattereri (Serrasalmidae). A. rondonensis BOEGER & KRITSKY, 1988 from Pygocentrus nattereri (Serrasalmidae). A. scapanus VAN EVERY & KRITSKY, 1992 from Serrasalmus spilopleura (Serrasalmidae). A. sciponophallus VAN EVERY & KRITSKY, 1992 from Serrasalmus sp., Serrasalmus elongatus, Serrasalmus rhombeus, Serrasalmus spilopleura (Serrasalmidae) (Figs. 3-16 A-E). A. serrasalmi VAN EVERY & KRITSKY, 1992 from Pristobrycon sp. n., Serrasalmus sp., Serrasalmus elongatus, Serrasalmus rhombeus, Serrasalmus spilopleura (Serrasalmidae). A. spathulatus KRITSKY, THATCHER & KAYTON, 1979 from Colossoma macropomum, Colossoma bidens (Characidae). A. spinatus KRITSKY, BOEGER & VAN EVERY, 1992 from Myleus rubripinnis (Serrasalmidae) (Fig. 3-17 P). A. spiralocirrus KRITSKY, THATCHER & KAYTON, 1979 from Brycon melanopterus (Characidae). A. stachophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Pygocentrus nattereri (Serrasalmidae). A. stagmophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Myleus rubripinnis (Serrasalmidae). A. strongylophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus elongatus (Characidae). A. thatcheri BOEGER & KRITSKY, 1988 from Pygocentrus nattereri (Serrasalmidae). A. tricornis KRITSKY, BOEGER & VAN EVERY, 1992 from Triportheus angulatus, Triportheus elongatus (Characidae). A. xaniophallus KRITSKY, BOEGER & VAN EVERY, 1992 from Pristobrycon sp. n., Pristobrycon eigenmanni (Serrasalmidae) (Fig. 3-17 O). Ancistrohaptor AGARWAL & KRITSKY, 1998 Body fusiform. Tegument smooth. Eyes four; eyes granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO sclerotized, coiled. Accessory piece two, one non-articulated, one articulated to MCO. Seminal vesicle fusiform with thin walls. Prostatic reservoirs unknown. Germarium ovate or elongate, solid. Vagina dextro-marginal or ventro-dextral. Hooks dactylogyrid, shank divided in two portions clearly defined, 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, elongate shaft, roots well defined; anchor filament delicate, often inconspicuous.
70
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rod-shaped with anterior transversal groove, anterior, posterior projections absent. Dorsal bar slightly V-shaped or rod-shaped; anterior, posterior projections absent. Parasites of the gills of Triportheus spp. (Characidae, Characiformes). A. falcatum AGARWAL & KRITSKY, 1998 from Triportheus elongatus. A. falciferum AGARWAL & KRITSKY, 1998 from Triportheus elongatus, Triportheus angulatus, Triportheus albus Triportheus sp. (Type species) (Figs. 3-18 A-C). A. falcunculum AGARWAL & KRITSKY, 1998 from Triportheus albus, Triportheus elongatus, Triportheus angulatus. Annulotrematoides KRITSKY & BOEGER, 1995 Body fusiform. Tegument smooth, annulations present. Eyes four; eyes granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO sclerotized, J-shaped. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined; anchor filament delicate, often inconspicuous. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rod-shaped; antero-median projection; posterior median projection absent. Dorsal bar slightly V-shaped; anterior, posterior projections absent. Parasites of the gills of species of Characiformes. A. amazonicus KRITSKY & BOEGER, 1995 from Psectrogaster rutiloides (Curimatidae) (Type species) (Figs. 3-19 A-B). A. bryconi CUGLIANNA, CORDEIRO & LUQUE, 2003 from Brycon cephalus (Characidae). Aphanoblastella KRITSKY, MENDONZA-FRANCO & SCHOLZ, 2000 Synonyms: Urocleidoides (in part); Cleidodiscus (in part) Body fusiform. Tegument smooth. Eyes four; eyes granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece, sinuous or coiled. Accessory piece one, non-articulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina muscular, sinistro-marginal. Hooks dactylogyrid, shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined; anchor filament delicate, often inconspicuous. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly V-shaped, anterior projection absent; posterior projections present. Dorsal bar slightly V-shaped; anterior, posterior projections absent. Parasites of the gills of species of Pimelodidae (Siluriformes).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
71
A. mastigatus SURIANO, 1986 from Rhamdia sapo. A. robustus (MIZELLE & KRITSKY, 1969) from Rhamdia sp. A. travassosi (PRICE, 1938) from Rhamdia rogersi, Rhamdia sebae, Pimelodella laticeps, Rhamdia quelen (Type species) (Figs. 3-20 A-D). Cacatuocotyle BOEGER, DOMINGUES & KRITSKY, 1997 Body robust, strongly flattened dorso-ventrally. Tegument smooth. Eyes four; eyes granules present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle C-shaped or fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized. Anterior margins of haptor heavily muscular. Hooks dactylogyrid with shank simple; 14, 12 ventral, on posterior margin of haptor, 2 central. Ventral pair of anchors with point, shaft, roots well defined. Dorsal anchor pair absent. Ventral bar rodshaped; anterior, posterior projections absent. Dorsal bar absent. Parasites of gills of species of Characidae (Characiformes). Type and only species: C. paranaensis BOEGER, DOMINGUES & KRITSKY, 1997 from Characidium pterostictum, Characidium lanei (Figs. 3-21 A-B). Calpidothecioides KRITSKY, BOEGER & JÉGU, 1997 Synonyms: Urocleidus (in part). Body fusiform. Tegument smooth. Eyes two; eye granules absent, present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO J-shaped, somewhat straight, or slightly curved. Accessory piece articulated directly to MCO or articulated to MCO by copulatory ligament. Seminal vesicle Cshaped or fusiform. Germarium ovate or elongate. Vagina double, muscular, openings one marginal, one dorsal. Hooks dactylogyrid with shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rod-shaped, with slightly projected margin, with or without medial cleft; posterior projection absent. Dorsal bar slightly V-shaped; anterior, posterior projections absent. Parasites of the gills of species of Serrasalmidae (Characiformes). C. orthus (MIZELLE & PRICE, 1965) KRITSKY, BOEGER & KRITSKY, 1997 from Pygocentrus nattereri. C. pygopristi KRITSKY, BOEGER & JÉGU, 1997 from Pygopristis denticulata (Type species) (Figs. 3-22 A-B). Calpidothecium KRITSKY, BOEGER & JÉGU, 1997 Synonyms: Urocleidus (in part); Cleidodiscus (in part). Body fusiform. Tegument smooth; annulations on body absent or present. Eyes two; eye granules absent. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO,
72
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
accessory piece. MCO straight or slightly curved. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized. Hooks dactylogyrid with shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly V-shaped or rod-shaped; anterior, posterior projections absent. Dorsal bar V-shaped; anterior, posterior projections absent. Parasites of the gills of species of Serrasalmidae (Characiformes). C. crescentis (MIZELLE & PRICE, 1965) KRITSKY, BOEGER & JÉGU, 1997 from Pygocentrus nattereri, Pygopristis denticulata (Type species) (Figs. 3-23 A-C). C. serrasalmus (MIZELLE & PRICE, 1965) KRITSKY, BOEGER & JÉGU, 1997 from Pygopristis denticulata, Pygocentrus nattereri. Cosmetocleithrum KRITSKY, THATCHER & BOEGER, 1986 Body fusiform. Tegument smooth. Eyes absent; eyes granules present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO J-shaped or coiled. Accessory piece one, non-articulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal or sinistro-ventral, sclerotized. Hooks dactylogyrid with shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly V-shaped, slightly U-shaped, or strongly V-shaped, anterior projection absent, posterior projections present or absent. Dorsal bar slightly V-shaped, slightly Ushaped, strongly V-shaped, or rod-shaped; anterior projection absent, posterior projections on dorsal bar two, ribbon-like. Parasites of species of Siluriformes, especially species of Doradidae. C. bulbocirrus KRITSKY, THATCHER & BOEGER, 1986 from Pterodoras granulosus (Doradidae). C. confusus KRITSKY, THATCHER & BOEGER, 1986 from Oxydoras niger (Doradidae). C. gussevi KRITSKY, THATCHER & BOEGER, 1986 from Oxydoras niger (Doradidae) (Figs. 3-24 A-F). C. longivaginatum SURIANO & INCORVAIA, 1995 from Pimelodus albicans (Pimelodidae). C. parvum KRITSKY, THATCHER & BOEGER, 1986 from Oxydoras niger (Doradidae). C. rarum KRITSKY, THATCHER & BOEGER, 1986 from Oxydoras niger (Doradidae). C. sobrinus KRITSKY, THATCHER & BOEGER, 1986 from Oxydoras niger (Doradidae).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
73
Curvianchoratus HANEK, MOLNAR & FERNANDO, 1974 Synonym: Notodiplocerus SURIANO, 1980 Body short, robust, strongly flattened. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO J-shaped or coiled. Accessory piece articulated directly to MCO. Seminal vesicle fusiform. Prostatic reservoirs unknown. Germarium ovate or elongate. Vagina dextro-marginal, sclerotized. Hooks dactylogyrid with shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs. Ventral anchor with point, shaft, roots well defined. Dorsal anchor greatly modified, base apparently elongate, distorted, distal extremity sometimes hook-like. Ventral bar strongly V-shaped; anterior, posterior projections absent. Dorsal bar double, strongly distorted. Parasites of the gills of species of Curimatidae (Characiformes). C. hexacleidus HANEK, MOLNAR & FERNANDO, 1974 from Curimata argentea. C. singularis (SURIANO,1980) from Pseudocurimata gilberti (Figs. 3-25 A-C). Dawestrema PRICE & NOWLIN, 1967 Body fusiform. Tegument smooth. Eyes four; eyes granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO and accessory piece. MCO coiled. Accessory piece articulated directly to MCO. Seminal vesicle two, fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized. Hooks dactylogyrid, with shank divided in two portions clearly defined; 14, arranged concentrically around haptor dorso-ventrally. Ventral, dorsal anchor pairs. Ventral anchor with point, shaft, roots well defined. Dorsal anchor dactylogyrid, with shaft, point, base composed of two roots. Ventral bar present rod-shaped, antero-median projection present, posterior projection absent. Dorsal bar slightly U-shaped; anterior, posterior projections absent. Parasites of the gills of species of Arapaima gigas, Osteoglossidae (Osteoglossiformes). D. cycloancistrioides KRITSKY, BOEGER & THATCHER, 1985 from Arapaima gigas. D. cycloancistrium PRICE & NOWLIN, 1967 from Arapaima gigas (Type species) (Figs. 3-26 A-C). D. punctatum PRICE & NOWLIN, 1967 from Arapaima gigas. Demidospermus SURIANO, 1983 Synonyms: Omothecium KRITSKY, THATCHER & BOEGER, 1987; Paramphocleithrum SURIANO & INCORVAIA, 1995. Body fusiform. Tegument smooth. Eyes four or two; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO J-shaped, somewhat straight, slightly curved, coiled. Accessory piece one, non-articulated or articulated directly to
74
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
MCO. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized or muscular. Hooks dactylogyrid, entire shank inflated, conferring a robust morphology to hook, or proximal portion of shank inflated (circular, ovate), or shank divided in two portions clearly defined, or shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots not defined or well defined. Dorsal anchor with shaft, point, base not clearly separated in roots or base composed of two roots. Ventral bar strongly V-shaped; anterior, posterior projection absent. Dorsal bar strongly V-shaped; anterior projection absent; posterior projection present. Parasites of the gills of species of Siluriformes, especially of Pimelodidae. D. anus SURIANO, 1983 from Loricaria anus (Loricariidae). (Type species). D. armostus KRITSKY & GUTIÉRREZ, 1998 from Pimelodus albicans, Pimelodus clarias (Pimelodidae). D. bidiverticulatum (SURIANO & INCORAVIA, 1995) from Pimelodus clarias, Pimelodus albicans, Pimelodus clarias maculatus (Pimelodidae). D. cornicinus KRITSKY & GUTIÉRREZ, 1998 from Iheringichthys westermanni (Pimelodidae) (Figs. 3-27 A-F). D. idolus KRITSKY & GUTIÉRREZ, 1998 from Pimelodus albicans (Pimelodidae). D. labrosi FRANÇA, ISSAC, PAVANELLI & TAKEMOTO, 2003 from Iheringinchthys labrosus (Pimelodidae). D. leptosynophallus KRITSKY & GUTIÉRREZ, 1998 from Iheringichthys westermanni (Pimelodidae). D. luckyi (KRITSKY, THATCHER & BOEGER, 1987) from Pinirampus pirinampu (Pimelodidae). D. majusculus KRITSKY & GUTIÉRREZ, 1998 from Pimelodus albicans (Pimelodidae). D. mandi FRANÇA, ISSAC, PAVANELLI & TAKEMOTO, 2003 from Iheringinchthys labrosus (Pimelodidae). D. paravalenciennesi GUTIERREZ & SURIANO, 1992 from Pimelodus clarias (Pimelodidae). D. pinirampi (KRITSKY, THATCHER & BOEGER, 1987) from Pirinampus pirinampu (Pimelodidae). D. uncusvalidus GUTIERREZ & SURIANO, 1992 from Pimelodus clarias, Parauchenipterus galeatus (Auchenipteridae). D. valenciennesi GUTIERREZ & SURIANO, 1992 from Parapimelodus valenciennesi (Pimelodidae). Diaphorocleidus JOGUNOORI, KRITSKY & VENKATANARASAIAH, 2004 Synonym: Urocleidoides sensu lato (in part) Body fusiform. Tegument smooth. Eyes four; eyes granules absent, or present. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO and accessory piece. MCO with loose coils, not inflated proximally. Accessory piece one, non-articulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate;
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
75
solid. Vagina sclerotized, single, sinistro-ventral. Vaginal bar, accessory vaginal sclerite absent. Hooks dactylogyrid; shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly V-shaped, with antero-median projection. Dorsal bar slightly V-shaped; anterior, posterior projections absent. Parasites of the gills of species of Characidae (Characiformes). D. affinis (MIZELLE, KRITSKY & CRANE, 1968) from Creatochanes affinis D. armillatus JOGUNOORI, KRITSKY & VENKATANARASAIAH, 2004 from Gymnocorymbus ternetzi (Type species) (Figs. 3-28 A-C). D. kabatai (MOLNAR, HANEK & FERNANDO, 1974) from Astyanax fasciatus. D. microstomus (MIZELLE, KRITSKY & CRANE, 1968) from Hemigrammus microstomus. Enallothecium KRITSKY, BOEGER & JÉGU, 1998 Synonym: Notothecium (in part). Body short, robust, or fusiform. Tegument scaled or smooth. Eyes four or two; eyes granules absent or present. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO straight or slightly curved. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle C-shaped. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-dorsal, muscular. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly U-shaped; anterior, posterior projections absent. Dorsal bar slightly U-shaped; anterior, posterior projections absent. Parasites of the gills of species of Serrasalmidae (Characiformes). E. aegidatum (BOEGER & KRITSKY, 1988) from Serrasalmus spilopleura, Serrasalmus sp., Serrasalmus rhombeus, Serrasalmus compressus, Serrasalmus gouldingi, Serrasalmus elongatus, Pristobrycon sp., Pygocentrus nattereri, Serrasalmus sp. (Type species) (Fig. 3-29). E. cornutum KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus gouldingi, Pristobrycon eigenmanni, Serrasalmus sp., Serrasalmus sp., Pristobrycon sp., Serrasalmus rhombeus, Serrasalmus compressus. E. umbelliferum KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus compressus, Serrasalmus rhombeus, Serrasalmus sp. E. variabilum KRITSKY, BOEGER & JÉGU, 1998 from Pristobrycon striolatus. Euryhaliotrema BOEGER & KRITSKY, 2002 Body fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO sinuous, or somewhat straight, or slightly curved, or coiled,
76
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
with inflated proximal portion. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina dextromarginal, sclerotized. Hooks dactylogyrid, shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral anchor pair present; dorsal anchor pairs present or absent. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly U-shaped, or rod-shaped, with short anterior sclerotized muscle-attachment; posterior projection absent or shield like. Dorsal bar present or absent, slightly U-shaped or rod-shaped; anterior projection absent; posterior projection absent or shield like. Parasites of freshwater and marine species of species of Sciaenidae (Perciformes). E. chaoi KRITSKY & BOEGER, 2002 from Plagioscion squamosissimus (Type species) (Figs. 3-30 A-B). E. dontykoleos FEHLAUER & BOEGER, 2005 from Pachyurus junki E. lovejoyi KRITSKY & BOEGER, 2002 from Plagioscion squamosissimus. E. monacanthus KRITSKY & BOEGER, 2002 from Plagioscion squamosissimus. E. potamocetes KRITSKY & BOEGER, 2002 from Plagioscion squamosissimus. E. succedaneus KRITSKY & BOEGER, 2002 from Plagioscion squamosissimus. E. thatcheri KRITSKY & BOEGER, 2002 from Plagioscion squamosissimus. Gonocleithrum KRITSKY & THATCHER, 1983 Body fusiform. Tegument smooth. Eyes four; eye granules absent, or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping, or tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. Accessory piece articulated directly to MCO. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized or muscular; gonadal bar present. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly U-shaped; anterior projection present or absent, posterior projection absent. Dorsal bar slightly U-shaped, or strongly V-shaped, or rod-shaped; anterior, posterior projections absent. Parasites of the gills of species of Osteoglossum (Osteoglossidae, Osteoglossiformes) – presently only known from Osteoglossum biccirhosum. G. aruanae KRITSKY & THATCHER, 1983. G. coenoideum KRITSKY & THATCHER, 1983. G. cursitans KRITSKY & THATCHER, 1983. G. planacroideum KRITSKY & THATCHER, 1983. G. planacrus KRITSKY & THATCHER, 1983 (Type species) (Figs. 3-31 A-D). Gussevia KOHN & PAPERNA, 1964 Synonym: Longihaptor MIZELLE & KRITSKY, 1969 Body robust, strongly flattened, or fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
77
confluent. Gonads overlapping. Copulatory organ composed of MCO and accessory piece. MCO coiled. Accessory piece one, non-articulated, or articulated directly to MCO. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina ventral, or dextro-marginal, or sinistro-marginal, sclerotized or muscular. Hooks dactylogyrid, proximal portion of shank inflated (circular, ovate), or shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral); hook pair 5 morphologically distinct from other pairs. Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots defined or not well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly U-shaped, or rod-shaped; anterior margin smooth or with slightly projected, with or without medial cleft, or with anterior transversal groove; posterior projection absent. Dorsal bar rod-shaped; anterior, posterior projection absent. Parasites of Cichlidae (Perciformes). G. alii (MOLNAR, HANEK & FERNANDO, 1974) from Cichlasoma bimaculatum. G. alioides KRITSKY, THATCHER & BOEGER, 1986 from Cichlasoma severum. G. arilla KRITSKY, THATCHER & BOEGER, 1986 from Cichla ocellaris. G. asota KRITSKY, THATCHER & BOEGER, 1989 from Astronotus ocellatus (Figs. 332 A-D). G. astronoti KRITSKY, THATCHER & BOEGER, 1989 from Astronotus ocellatus. G. cichlasomatis (MOLNAR, HANEK & FERNANDO, 1974) from Cichlasoma bimaculatum. G. dispar KRITSKY, THATCHER & BOEGER, 1986 from Cichlasoma severum. G. disparoides KRITSKY, THATCHER & BOEGER, 1986 from Cichlasoma severum. G. dobosi (MOLNAR, HANEK & FERNANDO, 1974) from Cichlasoma bimaculatum. G. elephus KRITSKY, THATCHER & BOEGER, 1986 from Uaru amphiacanthoides. G. herotilapiae VIDAL-MARTÍNEZ, SCHOLZ & AGUIRRE-MACEDO, 2001 from Herotilapia multispinosa. G. longihaptor (MIZELLE & KRITSKY, 1969) from Cichla ocellaris. G. obtusa KRITSKY, THATCHER & BOEGER, 1986 from Uaru amphiacanthoides. G. rogersi KRITSKY, THATCHER & BOEGER, 1989 from Astronotus ocellatus. G. spiralocirra KOHN & PAPERNA, 1964 from Pterophyllum scalare (Type species). G. tucunarense KRITSKY, THATCHER & BOEGER, 1986 from Cichla ocellaris. G. undulata KRITSKY, THATCHER & BOEGER, 1986 from Cichla ocellaris. Heterothecium KRITSKY, BOEGER & JÉGU, 1997 Body fusiform. Tegument smooth; annulations on body present or absent. Eyes four; eyes granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO straight or slightly curved. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-dorsal, muscular. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point,
78
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rod-shaped; anterior, posterior projections absent. Dorsal bar slightly U-shaped; anterior, posterior projections absent. Parasites of species of Serrasalmidae (Characiformes). H. dicrophallum KRITSKY, BOEGER & JÉGU, 1997 from Catoprion mento. H. globatum KRITSKY, BOEGER & JÉGU, 1997 from Serrasalmus gouldingi (Type species) (Fig. 3-33). Heterotylus JOGUNOORI, KRITSKY & VENKATANARASAIAH, 2004 Body fusiform. Tegument smooth. Eyes absent; eye granules present or absent. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO straight or slightly curved. Accessory piece one, non-articulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina ventral, sclerotized. Hooks dactylogyrid, shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots not defined. Dorsal anchor, with shaft, point, base composed of two roots. Ventral bar inverted U-shaped, with tapering extremities; anterior, posterior projections absent. Dorsal bar slightly U-shaped; anterior, posterior projections absent. Parasites of species of Loricariidae (Siluriformes). Type and only species: H. heterotylus JOGUNOORI, KRITSKY & VENKATANARASAIAH, 2004 from Hypostomus sp. (Figs. 3-34 A-D). Jainus MIZELLE, KRITSKY & CRANE, 1968 Body short, robust, or fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO J-shaped, or sinuous, or coiled. Accessory piece one, nonarticulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina ventral, or sinistro-ventral, sclerotized. Hooks dactylogyrid; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral); hook pair 5 similar to other pairs, or significantly distinct from others, reduced. Ventral, dorsal anchor pairs present. Ventral anchor robust, with elongate superficial, deep roots. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rod-shaped; anteromedian projection present or absent; posterior median projection present. Dorsal bar slightly U-shaped, or strongly V-shaped, or rod-shaped; anterior, posterior projections absent. Parasites of gills of species of Characidae (Characiformes). J. amazonensis KRITSKY, THATCHER & KAYTON, 1980 from Brycon melanopterus. J. hexops KRITSKY & LEIBY, 1972 from Astyanax fasciatus. J. jainus MIZELLE, KRITSKY & CRANE, 1968 from Chalceus macrolepidotus (Type species) (Figs. 3-35 A-D). J. robustus MIZELLE, KRITSKY & CRANE, 1968 from Creatochanes affinis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
79
Kritskyia KOHN, 1990 Body fusiform. Tegument smooth. Eyes four; eye granules present or absent. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece more than two, non-articulated, or one, non-articulated to MCO. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal or sinistro-ventral. Hooks dactylogyrid with shank divided in two portions clearly defined; 14 on posterior margin of haptor. Ventral, dorsal anchors and bars absent. Parasites of the excretory system of species of Characiformes and Siluriformes. K. annakohnnae BOEGER, TANAKA & PAVANELLI, 2001 from Serrasalmus spilopleura, Serrasalmus marginatus (Serrasalmidae, Characiformes). K. boegeri TAKEMOTO, LIZAMA & PAVANELLI, 2002 from Prochilodus lineatus (Prochilodontidae, Characiformes). K. eirasi GUIDELLI, TAKEMOTO & PAVANELLI, 2003 from Leporinus lacustris (Anostomidae, Characiformes). K. moraveci KOHN, 1990 from Rhamdia quelen (Pimelodidae, Siluriformes) (Type species) (Figs. 3-36 A-C). Linguadactyloides THATCHER & KRITSKY, 1983 Body fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx two bulbous subunits. Ceca confluent. Gonads tandem; testes anterior to germarium. Testis multiple, pre-germarian.. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs very long, often looping posteriorly. Germarium ovate or elongate. Vagina dextro-marginal, sclerotized. Hooks dactylogyrid with entire shank inflated, conferring a robust morphology to hook, or shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor short robust, deep root longer than superficial root. Dorsal anchor robust, deep root longer than superficial root. Ventral bar rod-shaped; anterior projection absent; posterior projection present. Dorsal bar absent. Parasites of the gills of species of Serrasalmidae (Characiformes). Type and only species: L. brinkmanni THATCHER & KRITSKY, 1983 from Colossoma macropomum (Figs. 3-37 A-D) Monocleithrium PRICE & MCMAHON, 1966 Body fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated directly to MCO. Seminal vesicle unknown. Prostatic reservoirs unknown. Germarium ovate or elongate. Vagina ventral. Hooks dactylogyrid, with shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral,
80
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rod-shaped; anterior, posterior projections absent. Dorsal bar absent. Parasites of the gill of species of Hemiodontidae (Characiformes). Type and only species: M. lavergneae PRICE & MCMAHON, 1966 from Hemiodus semitaeniatus (Fig. 3-38). Mymarothecium KRITSKY, BOEGER & JÉGU, 1996 Body fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO straight or slightly curved. Accessory piece articulated directly to MCO, or articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs short, round to ovate. Germarium ovate or elongate. Vagina dextro-dorsal, muscular. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rod-shaped; anterior, posterior projections present or absent. Dorsal bar slightly U-shaped or rod-shaped; anterior projection present or absent, posterior projection absent. Parasites of gills of species of Serrasalmidae (Characiformes). M.boegeri COHEN & KOHN, 2005 from Colossoma macropomum (Characiformes, Characidae). M.dactylotum KRITSKY, BOEGER & JÉGU, 1996 from Serrasalmus sp. (2n = 58), Serrasalmus sp. (2 of Jégu), Pristobrycon sp., Serrasalmus rhombeus (Type species) (Figs. 3-39 A-C). M.galeolum KRITSKY, BOEGER & JÉGU, 1996 from Pristobrycon eigenmanni, Serrasalmus gouldingi, Pygocentrus nattereri, Pristobrycon sp., Serrasalmus rhombeus. M.perplanum KRITSKY, BOEGER & JÉGU, 1996 from Serrasalmus spilopleura. M.viatorum BOEGER, PIASECKI & SOBECKA, 2002 from Piaractus brachypomus. M.whittingtoni KRITSKY, BOEGER & JÉGU, 1996 from Serrasalmus rhombeus, from Serrasalmus sp. (2n = 58). Notothecium BOEGER & KRITSKY, 1988 Body fusiform. Tegument smooth. Eyes absent; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO single, or double, sclerotized, J-shaped, or straight or slightly curved. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle C-shaped. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina dextro-dorsal, muscular. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly U-shaped or rod-shaped; anterior, posterior
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
81
projections absent. Dorsal bar strongly V-shaped; anterior, posterior projections absent. Parasites of gills of species of Serrasalmidae (Characiformes). N. circellum KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus gouldingi, Pristobrycon sp. N. cyphophallum KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus rhombeus, Pristobrycon eigenmanni, Serrasalmus compressus, Serrasalmus elongatus, Serrasalmus gouldingi, Serrasalmus sp. N. deleastoideum KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus sp. N. deleastum KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus elongatus, Serrasalmus rhombeus, Serrasalmus gouldingi, Serrasalmus sp. N. mizellei BOEGER & KRITSKY, 1988 from Pygocentrus nattereri (Type species) (Figs. 3-40 A-B). N. modestum KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus spilopleura. N. phyleticum KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus rhombeus. N. reduvium KRITSKY, BOEGER & JÉGU, 1998 from Serrasalmus sp. Notothecioides KRITSKY, BOEGER & JÉGU, 1997 Body fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO and accessory piece. MCO straight or slightly curved. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina middorsal, looping left caecum. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar strongly V-shaped; anterior, posterior projections absent. Dorsal bar rod-shaped; anterior, posterior projections absent. Parasites of the gills of species of Serrasalmidae (Characiformes). Type and only species: N. llewellyni KRITSKY, BOEGER & JÉGU, 1997 from Myleus torquatus, M. rubripinnis (Fig. 3-41). Notozothecium BOEGER & KRITSKY, 1988 Body fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO and accessory piece. MCO coiled (usually less than one ring) or J-shaped. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina dorso-dextral, sclerotized, looping right caecum. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rodshaped; anterior projection present; posterior projection absent. Dorsal bar rod-shaped or slightly V-shaped; anterior, posterior projections absent. Parasites of the gills of species of Serrasalmidae (Characiformes).
82
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
N. bethae KRITSKY, BOEGER & JÉGU, 1996 from Mylesinus paucisquamatus, Mylesinus paraschomburgkii, Myleus pacu, Myleus rhomboidalis. N. euzeti KRITSKY, BOEGER & JÉGU, 1996 from Acnodon normani. N. foliolum KRITSKY, BOEGER & JÉGU, 1996 from Pristobrycon sp. N. janauachensis BELMONT-JÉGU, DOMINGUES & LATERÇA, 2004 from Colossoma macropomum. N. minor BOEGER & KRITSKY, 1988 from Pygocentrus nattereri. N. penetrarum BOEGER & KRITSKY, 1988 from Pygocentrus nattereri (Type species) (Figs. 3-42 A-D). N. robustum KRITSKY, BOEGER & JÉGU, 1996 from Pristobrycon striolatus. N. teinodendrum KRITSKY, BOEGER & JÉGU, 1996 from Serrasalmus elongatus, Serrasalmus rhombeus, Serrasalmus gouldingi, Pristobrycon eigenmanni, Serrasalmus sp., Serrasalmus manuelli, Pristobrycon sp. Odothecium KRITSKY, BOEGER & JÉGU, 1997 Body fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO straight or slightly curved. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle C-shaped. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina middorsal, looping left caecum, sclerotized. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rod-shaped, with slightly projected anterior margin, with or without medial cleft; posterior projection absent. Dorsal bar slightly U-shaped; anterior, posterior projections absent. Parasites of gills of species of Serrasalmidae (Characiformes). Type and only species: O. raphidiophallum KRITSKY, BOEGER & JÉGU, 1997 from Catoprion mento (Figs. 3-43 A-B) Pavanelliella KRITSKY & BOEGER, 1998 Body fusiform. Tegument smooth. Eyes four; eyes granules absent or present. Haptor not differentiated from trunk. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece one, nonarticulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized. Hooks dactylogyrid, shank divided in two portions clearly defined; 14 on posterior margin of haptor. Anchors, bars absent. Parasites of the nasal fossae of species of Pimelodidae (Siluriformes). P. pavanellii KRITSKY & BOEGER, 1998 from Callophysus macropterus, Pseudoplatystoma coruscans (Type species) (Fig. 3-44). P. scaphiocotylus KRITSKY & MENDOZA-FRANCO, 2003 from Rhamdia guatemalensis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
83
Philocorydoras SURIANO, 1986 Body fusiform. Tegument smooth. Eyes two; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO straight or slightly curved. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina ventral, muscular. Hooks dactylogyrid, shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly U-shaped or rod-shaped; anterior projection absent; posterior projection present. Dorsal bar slightly U-shaped or rod-shaped; small subterminal knob at each extremity; posterior projections absent. Parasites of gills of species of Callichthyidae (Siluriformes). Type and only species: P. platensis SURIANO, 1986 from Corydoras paleatus (Figs. 3-45 A-B). Pithanothecium KRITSKY, BOEGER & JÉGU, 1997 Synonyms: Urocleidus (in part); Cleidodiscus (in part). Body fusiform. Tegument scaled; annulations on body present. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO double. MCO straight or slightly curved. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina dextro-marginal sclerotized. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly U-shaped; anterior, posterior projections absent. Dorsal bar slightly U-shaped; anterior, posterior projections absent. Parasites of the gills of species of Serrasalmidae (Characiformes). P. amazonensis (MIZELLE & PRICE, 1965) from Pygopristis denticulata, Pygocentrus nattereri, Catoprion mento, Pristobrycon striolatus. P. piranhus (KRITSKY, MIZELLE & PRICE, 1965) from Pygopristis denticulata, Pygocentrus nattereri, Pristobrycon striolatus, Catoprion mento (Type species) (Fig. 3-46). Protorhinoxenus DOMINGUES & BOEGER, 2002 Body fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs unknown. Germarium ovate or elongate. Vagina dextro-marginal, sclerotized. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribu-
84
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
tion (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, base very elongated with roots not defined; accessory sclerite associated with base of ventral anchor. Dorsal anchor with point, shaft, base very elongate with roots not defined. Ventral bar rod-shaped; anterior, posterior projections absent. Dorsal bar rod-shaped; anterior, posterior projections absent. Parasites of the gills of species of Prochilodus lineatus Prochilodontidae (Characiformes). Type and only species: P. prochilodi DOMINGUES & BOEGER, 2002 from Prochilodus lineatus (Fig. 3-47 A-D). Pseudovancleaveus FRANÇA, ISSAC, PAVANELLI & TAKEMOTO, 2003 Synonyms: Vancleaveus (in part). Body strongly flattened or fusiform. Tegument smooth. Eyes absent; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-ventral, muscular. Hooks dactylogyrid, shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly V-shaped; anterior projection absent; posterior projection present. Dorsal bar slightly U-shaped; anterior, posterior projections absent. Parasites of gills of Pimelodidae (Siluriformes). P. paranaensis FRANÇA, ISSAC, PAVANELLI & TAKEMOTO, 2003 from Iheringinchthys labrosus (Type species) (Fig. 3-48). P. platensis (SURIANO & INCORVAIA, 1995) from Iheringinchthys labrosus, Pimelodus clarias maculatus. Rhinonastes KRITSKY, THATCHER & BOEGER, 1988 Body short, robust, or strongly flattened. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated directly to MCO. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, 12 ventral distributed along margin of haptor, 2 central between anchors. Ventral anchor pair present; dorsal anchors absent. Ventral anchor with point, shaft, base comprising a distinct subunit, robust, long, lacking definition of roots. Ventral bar rodshaped; two submedian elongate processes on anterior margin; posterior median projection present. Parasites of nose of species of Prochilodontidae (Characiformes). Type and only species: R. pseudocapsaloideum KRITSKY, THATCHER & BOEGER, 1988 from Prochilodus nigricans (Figs. 3-49 A-E).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
85
Rhinoxenus KRITSKY, BOEGER & THATCHER, 1988 Body short, robust, or fusiform. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated directly to MCO. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined or not defined. Dorsal anchor spike like. Ventral bar rod-shaped; anterior, posterior projections absent. Dorsal bar absent. Parasites of nasal fossae of species of Characiformes. R. anaclaudiae DOMINGUES & BOEGER, 2005 from Triportheus cf. nematurus, Brycon sp., Triportheus sp. (Characidae, Characiformes). R. arietinus KRITSKY, BOEGER & THATCHER, 1988 from Rhytiodus argenteofuscus, Schizodon fasciatum (Anostomidae). R. bulbovaginatus BOEGER, DOMINGUES & PAVANELLI, 1995 from Salminus maxillosus (Characidae). R. curimbatae DOMINGUES & BOEGER, 2005 from Prochilodus cf. lineatus (Prochilodontidae, Characiformes). R. euryxenus DOMINGUES & BOEGER, 2005 from Serrasalmus marginatus, S. gouldingi, S. rhombeus, S. pilopleura, S. striolatus (Serrasalmidae, Characiformes), Leporinus agassizii (Anostomatidae, Characiforems). R. guianensis DOMINGUES & BOEGER, 2005, from Curimata cyprinoides (Curimatidae, Characiformes). R. nyttus KRITSKY, BOEGER & THATCHER, 1988 from Schizodon fasciatum (Anostomidae). R. piranhas KRITSKY, BOEGER & THATCHER, 1988 from Pygocentrus nattereri (Serrasalmidae) (Type species) (Figs. 3-50 A-C). Sciadicleithrum KRITSKY, THATCHER & BOEGER, 1989 Body short, robust, or cylindrical, or fusiform. Tegument smooth. Eyes four or two; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO sinuous, or coiled. Accessory piece one, nonarticulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina ventral, or dextro-marginal, or sinistro-marginal; sclerotized or muscular. Hooks dactylogyrid, shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly V-shaped, or slightly U-shaped, or rod-shaped; with double umbelliform membranes on anterior margin; posterior projection absent. Dorsal bar rod-shaped; anterior, posterior projections absent. Parasites of gills of species of Cichlidae (Perciformes).
86
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
S. aequidens (PRICE & SCHLUETER, 1989) from Aequidens maroni. S. bicuense VIDAL-MARTÍNEZ, SCHOLZ & AGUIRRE-MACEDO, 2001 from Archocentrus nigrofasciatus. S. bravohollisae KRITSKY, THATCHER & BOEGER, 1989 from Cichlasoma synspilum, Petenia splendida, Cichlasoma pearsei. S. cavanaughi (PRICE, 1966) from Aequidens maroni. S. ergensi KRITSKY, THATCHER & BOEGER, 1989 from Cichla ocellaris. S. geophagi KRITSKY, THATCHER & BOEGER, 1989 from Geophagus surinamensis. S. iphthimum KRITSKY, THATCHER & BOEGER, 1989 from Pterophyllum scalare (Figs. 3-51 A-F). S. maculicaudae VIDAL-MARTÍNEZ, SCHOLZ & AGUIRRE-MACEDO, 2001 from Cichlasoma maculicauda. S. mexicanum KRITSKY, VIDAL-MARTÍNEZ & RODRIGUES-CANUL, 1994 from Cichlasoma urophthalmus. S. nicaraguense VIDAL-MARTÍNEZ, SCHOLZ & AGUIRRE-MACEDO, 2001 from Amphilophus alfari. S. splendidae KRITSKY, VIDAL-MARTÍNEZ & RODRIGUES-CANUL, 1994 from Petenia splendida. S. tortrix KRITSKY, THATCHER & BOEGER, 1989 from Uaru amphiacanthoides. S. umbilicum KRITSKY, THATCHER & BOEGER, 1989 from Cichla ocellaris. S. uncinatum KRITSKY, THATCHER & BOEGER, 1989 from Cichla ocelaris (Type species). S. variabilum (MIZELLE & KRITSKY, 1969) from Symphysodon discus. S. meekii MENDOZA-FRANCO, SCHOLZ & VIDAL-MARTÍNEZ, 1997 from Archocentrus nigrofasciatus. Telethecium KRITSKY, VAN EVERY & BOEGER, 1996 Body fusiform. Tegument smooth. Eyes four; eye granules absent. Haptor not differentiated from trunk. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece articulated directly to MCO, or articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized. Hooks dactylogyrid, shank divided in two portions clearly defined; 14 on posterior margin of haptor. Ventral, dorsal anchor pairs absent. Ventral, dorsal bars absent. Parasites of nose of species of Osteoglossidae (Osteoglossiformes) and Pristigasteridae (Clupeiformes). T. nasalis KRITSKY, VAN EVERY & BOEGER, 1996 from Osteoglossum bicirrhosum (Osteoglossidae) (Type species) (Figs. 3-52 A-B). T. paniculum KRITSKY, VAN EVERY & BOEGER, 1996 from Pellona flavipinnis (Pristigasteridae). Tereancistrium KRITSKY, THATCHER & KAYTON, 1980 Body fusiform. Tegument smooth. Eyes four, or two; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
87
coiled. Accessory piece one, non-articulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina sinistro-marginal, sclerotized or muscular. Hooks dactylogyrid, shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined; accessory sclerite associated with base present. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar rodshaped; anterior margin smooth or with slightly projected margin, with or without medial cleft. Dorsal bar slightly V-shaped, or strongly V-shaped; anterior projection absent; posterior projection present or absent. Parasites of gills of species of Characiformes. T. kerri KRITSKY, THATCHER & KAYTON, 1980 from Brycon melanopterus (Characidae) (Type species) (Figs. 3-53 A-B). T. ornatus KRITSKY, THATCHER & KAYTON, 1980 from Prochilodus reticulatus (Curimatidae). T. parvus KRITSKY, THATCHER & KAYTON, 1980 from Leporinus fasciatus (Anostomidae). Trinibaculum KRITSKY, THATCHER & KAYTON, 1980 Body short, robust. Tegument smooth. Eyes four; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO straight or slightly curved. Accessory piece articulated directly to MCO. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina dextro-ventral, sclerotized. Hooks dactylogyrid, shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly V-shaped; anterior, posterior projections absent. Dorsal bar double, rod-shaped; anterior, posterior projections absent. Parasites of gills of species of Characiformes. Type and only species: T. brazilensis KRITSKY, THATCHER & KAYTON, 1980 from Brycon melanopterus (Fig. 3-54). Trinidactylus HANEK, MOLNAR & FERNANDO, 1974 Body fusiform. Tegument smooth. Annulations on body absent. Eyes four, eye granules absent or present. Pharynx bulbous, one subunit. Gonads tandem; germarium anterior to testis. Testis single. Copulatory organ composed of MCO, accessory piece. MCO coiled, loose coils, with non-inflated proximal portion. Accessory piece one, non-articulated. Seminal vesicle unknown. Prostatic reservoirs unknown. Germarium ovate or elongate, solid. Vagina single, ventral. Vaginal bar, accessory vaginal sclerite absent. Hooks dactylogyrid. Hook shank simple. Hooks 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Hooks not on peduncles. Hook pair 2 on the haptor, close to hooks pairs 3, 4; hook pair 5 similar to other pairs. Ventral, dorsal anchor present. Ventral anchor rod-
88
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
shaped; ventral anchor filament delicate, often inconspicuous. Accessory sclerite associated with base of ventral anchor absent. Dorsal anchor dactylogyrid, with shaft, point and base composed of two roots. Fold on inner superficial root of dorsal anchor absent. Ventral bar rod-shaped., with smooth surface on anterior margins. Groove along length of ventral bar absent. Ventral bar without posterior median projection. Dorsal bar absent. Parasite of species of Cichlidae (Perciformes). Type and only species: T. cichlasomatis HANEK, MOLNAR & FERNANDO, 1974 from Cichlasoma bimaculatum (Fig. 3-55). Trinigyrus HANEK, MOLNAR & FERNANDO, 1974 Body fusiform. Tegument smooth. Eyes absent; eye granules absent. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO sinuous, or straight, or slightly curved. Accessory piece one, non-articulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina dextro-marginal, sclerotized or muscular. Hooks dactylogyrid, shank divided in two portions clearly defined; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral anchor with point, shaft, roots not defined. Dorsal anchor absent. Ventral bar with tapering extremities, rod-shaped, anterior absent; posterior projections present; groove along entire length of bar present. Dorsal bar absent. Parasites of gills of species of Loricariidae (Siluriformes). T. acuminatus KRITSKY, BOEGER & THATCHER, 1986 from Acanthicus hystrix (Figs. 3-56 A-E). T. hypostomatis HANEK, MOLNAR & FERNANDO, 1974 from Hypostomus robinii (Type species). T. mourei BOEGER & JÉGU, 1994 from Hypostomus marginatus. T. tentaculoides KRITSKY, BOEGER & THATCHER, 1986 from Hypoptopoma thoracathum. Unibarra SURIANO & INCORVAIA, 1995 Body fusiform. Tegument smooth. Eyes absent; eye granules absent. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO straight or slightly curved. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina ventral, sclerotized. Hooks dactylogyrid, entire shank inflated, conferring a robust morphology to hook; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor point, shaft, roots not defined. Dorsal anchor with shaft, point, base not clearly separated in roots. Ventral bar rod-shaped; anterior projection absent; posterior projection present. Dorsal bar absent. Parasites of gills of species of Pimelodidae (Siluriformes). Type and only species: U. paranoplatensis SURIANO & INCORVAIA, 1995 from Pimelodus clarias maculatus, Paulicea luetkeni (Fig. 3-57)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
89
Unilatus MIZELLE & KRITSKY, 1967 Synonym: Diaccessorius Body fusiform. Tegument smooth. Eyes absent; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads tandem; germarium anterior to testis. Copulatory organ composed of MCO, accessory piece. MCO coiled, with tight coils, cork-screw like. Accessory piece one, nonarticulated. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina ventral or sinistro-marginal, sclerotized or muscular. Hooks dactylogyrid, shank divided in two portions clearly defined or shank simple; 14, 8 dorsal, 6 ventral. Two pairs of dorsal anchors, anterior, posterior. Posterior pair of anchors with point, shaft, roots not defined. Anterior pair of anchors with shaft, point, base composed of two roots. Posterior bar slightly V-shaped or rod-shaped; anterior projection absent; posterior projection absent or present. Anterior bar slightly U-shaped or strongly V-shaped; anterior projection absent; posterior projections present or absent. Parasites of gills of species of Loricariidae (Siluriformes). U. anoculus (PRICE, 1968) from Hypostomus bolivianus. U. brevispinus SURIANO, 1985 from Pterigoplichthys multiradiatus. U. brittani MIZELLE, KRITSKY & CRANE, 1968 from Hypostomus sp., Plecostomus sp. U. dissimilis SURIANO, 1985 from Hemiancistris sp. U. longispinus SURIANO, 1985 from Pterigopliichthys multiradiatus. U. scaphirhynchae SURIANO, 1985 from Hemiancistrus scaphirhynchae. U. unilatus MIZELLE & KRITSKY, 1967 from Hypostomus robinii, Plecostomus sp. (Type species) (Figs. 3-58 A-E). Urocleidoides sensu stricto MIZELLE & PRICE, 1964 Body fusiform. Tegument smooth. Eyes four, or two, or absent; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO coiled. Accessory piece one, non-articulated, or articulated directly to MCO, or articulated to MCO by copulatory ligament. Seminal vesicle fusiform. Prostatic reservoirs round to short, ovate. Germarium ovate or elongate. Vagina dextral or sinistro-marginal; sclerotized or muscular; vaginal accessory sclerite present. Hooks dactylogyrid, shank divided in two portions clearly defined, or shank simple; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots. Ventral bar slightly V-shaped, or slightly U-shaped, or rod-shaped; anterior, posterior projections absent. Dorsal bar slightly V-shaped, or slightly U-shaped; anterior, posterior projections absent. Parasites of species of Cyprinodontiformes and Characiformes. U. anops KRITSKY & THATCHER, 1974 from Characidium caucanum (Characidae, Characiformes). U. curimatae MOLNAR, HANEK & FERNANDO, 1974 from Curimata argentea (Curimatidae, Characiformes).
90
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
U. eremitus KRITSKY, THATCHER & BOEGER, 1986 from Hoplias malabaricus (Erythrinidae, Characiformes). U. paradoxus KRITSKY, THATCHER & BOEGER, 1986 from Rhytiodus microlepis (Anostomidae, Characiformes) (Figs. 3-59 A-D). U. reticulatus MIZELLE & PRICE, 1964 from Lebistes reticulata (Poeciliidae, Cyprinodontiformes) (Type species). U. vaginoclaustrum JOGUNOORI, KRITSKY & VENKATANARASAIAH, 2004 from Xiphophorus helleri (Poeciliidae, Cyprinodontiformes). Vancleaveus KRITSKY, THATCHER & BOEGER, 1986 Body fusiform. Tegument smooth. Eyes absent; eye granules absent or present. Pharynx bulbous, one subunit. Ceca confluent. Gonads overlapping. Copulatory organ composed of MCO, accessory piece. MCO Jshaped. Accessory piece one, non-articulated. Seminal vesicle fusiform, with thick walls, very long, extending from level of base of MCO to initial portion of germarium. Prostatic reservoirs very long, often looping posteriorly. Germarium ovate or elongate. Vagina ventral or dextroventral, sclerotized. Hooks dactylogyrid, entire shank inflated, conferring a robust morphology to hook; 14, with ancyrocephaline distribution (4 dorsal, 10 ventral). Ventral, dorsal anchor pairs present. Ventral anchor with point, shaft, roots well defined. Dorsal anchor with shaft, point, base composed of two roots; fold on inner superficial root of dorsal anchor present. Ventral bar slightly V-shaped or rod-shaped; anterior projection present; dorsal projection absent. Dorsal bar rod-shaped; anterior projection absent or present; posterior projection absent. Parasites of gills of species of Siluriformes, most commonly on Pimelodidae. V. cicinnus KRITSKY, THATCHER & BOEGER, 1986 from Pimelodus spp., Phractocephalus hemiliopterus (Pimelodidae). V. fungulus KRITSKY, THATCHER & BOEGER, 1986 from Pseudoplatystoma sp., Pseudoplatystoma fasciatum (Pimelodidae). V. janauacaensis KRITSKY, THATCHER & BOEGER, 1986 from Pterodoras granulosus (Doradidae) (Type species) (Figs. 3-60 A-B). V. platyrhynchi KRITSKY, THATCHER & BOEGER, 1986 from Hemisorubim platyrhynchos (Pimelodidae). Genera of Dactylogyridae, Ancyrocephalinae not well known or of questionable status. The diagnosis and/or species composition of the genera listed below is complicated by inadequate species descriptions, lack of evident diagnostic features, or represent catchall taxa that require extensive revision. Amphocleithrium PRICE & ROMERO, 1969 A. paraguayensis PRICE & ROMERO, 1969 from Pseudoplatystoma sp., Pseudoplatystoma coruscans (Pimelodidae, Siluriformes). Cleidodiscus MUELLER, 1934 C. microcirrus PRICE & SCHLUETER, 1967 from Hemiodus semitaeniatus (Hemiodontidae, Characiformes).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
91
Palombitrema PRICE, C.E. & W.A. BUSSING, 1968 Syn: Androspira SURIANO, 1981 P. heteroancistrium (PRICE & BUSSING, 1968) from Astyanax bimaculatus (Characidae, Characiformes). P. chascomusense (SURIANO, 1981) from Curimata gilberti (Curimatidae, Characiformes). P. triangulum (SURIANO, 1981) from Curitimata gilberti (Curimatidae, Characiformes). Salsuginus BEVERLEY-BURTON, 1984 Salsuginus neotropicalis MENDOZA-FRANCO & VIDAL-MARTINEZ, 2001 from Belonesox belizanus (Atheriniformes, Poeciliidae). Urocleidoides sensu lato U. amazonensis MIZELLE & KRITSKY, 1969 from Phractocephalus hemiliopterus (Pimelodidae, Siluriformes). U. astyanacis GIOIA, CORDEIRO & ARTIGAS, 1988 from Astyanax scabripinnis, Astyanax fasciatus (Characidae, Characiformes). U. carapus MIZELLE, KRITSKY & CRANE, 1968 from Gymnotus carapo (Gymnotidae, Gymnotiformes). U. catus MIZELLE & KRITSKY, 1969 from Phractocephalus hemiliopterus (Pimelodidae, Siluriformes). U. corydori MOLNAR, HANEK & FERNANDO, 1974 from Corydoras aeneus (Callichthyidae, Siluriformes). U. costaricensis (PRICE & BUSSING, 1967) from Curimata argentea (Curimatidae, Characiformes), Astyanax bimaculatus (Characidae, Characiformes) Astyanax fasciatus (Characidae, Characiformes). U. gymnotus MIZELLE, KRITSKY & CRANE, 1968 from Gymnotus carapo (Gymnotidae, Gymnotiformes). U. lebedevi KRITSKY & THATCHER, 1976 from Pimelodus grosskopfi (Pimelodidae, Siluriformes). U. margolisi MOLNAR, HANEK & FERNANDO, 1974 from Corydoras aeneus (Callichthyidae, Siluriformes). U. megorchis MIZELLE & KRITSKY, 1969 from Sorubim lima (Pimelodidae, Siluriformes). U. strombicirrus (PRICE & BUSSING, 1968) from Astyanax fasciatus (Characidae, Characiformes). U. trinidadensis MOLNAR, HANEK & FERNANDO, 1974 from Astyanax bimaculatus (Characidae, Characiformes). U. virescens MIZELLE, KRITSKY & CRANE, 1968 from Eigenmannia virescens (Sternopygidae, Gymnotiformes).
92
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
VIII. Plates of Monogenoidea (Figs. 3-1 to 3-64) Abreviation used: ap – accessory piece ascl – accessory sclerite bo – buccal organ ca – caecum cg – cephalic gland cl – copulatory ligament db – deep bar dr – deep root e – embryo eg – egg fh – FH loop ge – germarium he – heel ho – head organ hs – haptoral sucker mco – male copulatory organ
mg – Mehlis gland ph – pharynx pr – prostatic reservoir pt – point sb – superficial bar sf – shaft sk – shank sl – spinelet sp – spine sr – seminal receptacle sr – superficial root sv – seminal vesicle te – testis to – toe va – vagina vi – vitellaria
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
93
bo
1 mm
50
3-2B
hs
150
3-1B
3-1C
500 50
3-2A
3-1A 3-4B
sr
50
dr
ph
30
sf
pt
mco
50
3-3B
sv
3-4C
e
250
3-4D ge
3-4F
te
50
50
ca 1 2 3
3-3A
3-4E
3-4A 8 7
6
4 5
3-1. Paraheteronchocotyle amazonensis: A. entire; B. large sucker sclerite; C. small sucker sclerite; 3-2. Paranaella luquei: A. entire; B. clamp; 3-3. Potamotrygonocotyle tsalickisi: A. entire; B. anchor; 3-4. Accessorius peruensis: A. entire; B. accessory sclerite; C. male copulatory organ; D. marginal hook; E. ventral barshield complex; F. anchor; hooks are numbered according to the system proposed by MIZELLE (1936). All scales in micrometers (µm), except 3-2A.
94
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
pt
3-6B
sp
100
15
sf
to he fh
3-6C
sl
3-5C
20
3-5B
4
20
sk
db
3 3-6D 20
20
sb
40
af
3-6A
3-6E
3-5A
ho
3-8B 25
50 25
200
sv
eg
cg
3-7B mg
25
25
ge
3-8C
3-8D
3-7C
25
50 200
3-7D 3-8E
3-8A
3-7A 3-5. Anacanthocotyle anacanthocotyle: A. entire; B. marginal hook; C. male copulatory organ; 3-6. Gyrodactylus geophagensis: A. entire; B. marginal hook; C. male copulatory organ; D. anchor; E. anchorsuperficial bar complex; 3-7. Hyperopletes malmbergi: A. entire; B. male copulatory organ; C. marginal hook; D. anchor-superficial bar complex; 3-8. Nothogyrodactylus plaesiophallus: A. entire; B. accessory copulatory sclerites; C. anchor; D. marginal hook; E. anchor-superficial bar complex. All scales in micrometers (µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
95
20
25
100
3-10B
3-9B
50
70
50
25
3-10C
3-10D
200
70
3-9C 3-9A
3-10E
3-9D
3-10A
20
20
3-12B 3-11B
3-11C 40
40
20
50
3-12D
3-12C 3-11D
100
25
3-11A
40
3-12E 3-11E
sq
3-12F 3-11F
3-12A
3-9. Oogyrodactylus farlowellae: A. entire; B. male copulatory organ; C. marginal hook; D. anchor; 3-10. Phanerothecium caballeroi: A. entire; B. male copulatory organ; C. marginal hook; D. anchor; E. anchorsuperficial bar complex; 3-11. Scleroductus sp.: A. entire (no publish data); B. superficial bar-shield complex; C-D. male copulatory organ seen from different angle; E. marginal hook; F. anchor; 3-12. Diplectanum decorum: A. entire (composite); B. vagina; C. copulatory complex; D. ventral anchor; E. ventral bar; F. dorsal bar. All scales in micrometers (µm).
96
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
3-14B
3-13B
3-14C vg
ap
25
ap
30
200
cl mco vi
mco
cl
3-13C
1
3-14E 1
5
2 3 4 76
3-13A
3-13E
100
3-13D
3-14D
7
3-14F
5
2 3 4 6
3-14A 100
3-16B 20
va
25
3-15B 3-16C
vi te
3-16D 20
100
3-15A
3-15C
3-16E 3-16A
3-13. Ameloblastella chavarrai: A. entire; B. vagina; C. male copulatory organ; D. ventral bar; E. dorsal bar; 3-14. Amphithecium calycinum: A. entire; B. ventral anchor. C. dorsal anchor; D. male copulatory organ; E. ventral bar; F. dorsal bar; hooks are numbered according to the system proposed by MIZELLE (1936); 3-15. Anacanthoroides mizellei: A. entire; B. male copulatory organ; C. hooks; 3-16. Anacanthorus sciponophallus: A. entire; B-D. hooks; E. male copulatory organ. All scales in micrometers (µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
97
3-17B 3-17C
3-17A
3-17D
mco
3-17E
ap
3-17H
3-17G
3-17F 3-17I
3-17J 3-17K
3-17M
3-17N
3-17L
3-17O
3-17P
3-17. Male copulatory organ of Anacanthorus spp.: A. A. bellus; B. A. calophallus; C. A. carinatus; D. A. cornutus; E. A. dipelecinus; F. A. glyptophallus; G. A. furculus; H. A. euryphallus; I. A. hoplophallus; J. A. mastigophallus; K. A. pithophallus; L.A. periphallus; M. A. lygophallus; N. A. pelorophallus; O. A. xaniophallus; P. A. spinatus. All scales = 25 micrometers (µm).
98
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
3-18B 25
3-19B 100
100 25
3-18C
25
3-19A
3-18A
100
3-21B 100 sr
3-20B 3-20C 25
3-20D 3-20A
3-21A
3-18. Ancistrohaptor falciferum: A. entire; B. ventral bar; C. male copulatory organ; 3-19. Annulotrematoides amazonicus: A. entire; B. male copulatory organ; 3-20. Aphanoblastela travassoi: A. entire; B. male copulatory organ; C. ventral bar; D. dorsal bar; 3-21. Cacatuocotyle paranaensis: A. entire; B. male copulatory organ. All scales in micrometers (µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
99
25 100
3-22B pr
100 25
3-23B
3-22A
30
200
3-24B
3-23C
3-23A
3-25B 100
sv
3-24C 50
3-24D 30
3-25C
3-24E 3-24A
3-24F 3-25D
3-25A
3-22. Calpidothecioides pygopristi: A. entire; B. ventral bar; 3-23. Calpidothecium crescentis: A. entire; B. ventral anchor; C. dorsal anchor; 3-24. Cosmetocleithrum gussevi: A. entire; B. ventral bar; C. dorsal bar; D. male copulatory organ; E. ventral anchor; F. dorsal anchor; 3-25. Curvianchoratus singularis: A. entire; B-C. dorsal anchor; D. ventral anchor. All scales in micrometers (µm).
100
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
25 200
500
3-27B
3-26B
3-26C 25
3-27C 30
3-27D 25
3-28B
3-26A
3-27E
3-27F
3-27A
20 50 200
3-28C
50
50
3-28A
3-30B
3-29
3-30A
3-26. Dawestrema cycloancistrium: A. entire; B. vagina; C. ventral bar; 3-27. Demidospermus cornicinus: A. entire; B. vagina; C. ventral bar; D. dorsal bar; E-F. hooks; 3-28. Diaphorocleidus armillatus: A. entire; B. male copulatory organ; C. ventral bar; 3-29. Enallothecium aegidatum; 3-30. Euryhaliotrema chaoi: A. entire; B. male copulatory organ. All scales in micrometers (µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
30
100
100
3-32B
101
3-31B
vag
30
vgb
3-31C
3-32C
3-32D
3-31A
3-31D
3-32A
50
100
3-34B
20
3-34C 3-33
3-34A 3-34D
3-31. Gonocleithrum planacrus: A. entire; B. gonadal bar; C. ventral bar; D. male copulatory organ; 3-32. Gussevia asota: A. entire; B. dorsal bar; C. ventral anchor; D. male copulatory organ; 3-33. Heterothecium globatum; 3-34. Heterotylus heterotylus: A. entire; B. ventral bar; C. male copulatory organ; D. ventral anchor. All scales in micrometers (µm).
102
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10
50 200
3-35B
25
10
3-36B
3-35C
3-36C 3-35A
3-35D
3-36A
10
10
pr
3-37B
3-37C
10
500
3-37D 3-37A 3-35. Jainus sp.: A. entire; B. male copulatory organ; C. hook; D. ventral anchor; 3-36. Kritskyia moraveci: A. entire; B. hook (ventral view); C. hook; 3-37. Liguadactyloides brinkmanni: A. entire; B. ventral anchor; C. dorsal anchor; D. hook. All scales in micrometers (µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
103
100 20 50
3-39C 30 40
3-39A
3-38
3-40B
3-40A
20 300
3-39B
30
100
3-42B
30
3-42C 3-41 3-42D
3-42A
3-38. Monocleithrium lavergneae; 3-39. Mymarothecium dactylotum: A. entire; B. ventral bar; C. male copulatory organ; 3-40. Notothecium mizellei: A. entire; B. dorsal bar; 3-41. Notothecioides llewellyni; 3-42. Notozothecium penetrarum: A. entire; B. male copulatory organ; C. ventral bar; D. dorsal bar. All scales in micrometers (µm).
104
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
100
200
25
3-43B
100
25
3-45B
3-43A
3-44 3-45A
100
50
100
3-47B
3-47C
50
3-46
3-47D
3-47A
3-43. Odothecium raphidiophallum: A. entire; B. ventral bar; 3-44. Pavanelliella pavanelli; 3-45. Philocorydoras platensis: A. entire; B. ventral bar; 3-46. Pithanothecium piranhus; 3-47. Protorhinoxenus prochilodi: A. entire; B. dorsal anchor; C. ventral anchor; D. hook. All scales in micrometers (µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
105
100
125 50
30
3-49B
3-49C 20
15
3-48
3-49D 3-49E
3-49A
30 100
3-51B 30 200
3-51C 30
30
3-51D
3-50B 3-51E 3-50C 3-50A
3-51F
3-51A
3-48. Pseudovancleaveus paranaensis; 3-49. Rhinonastes pseudocapsaloideum: A. entire; B. ventral bar; C. anchor; D. hook; E. male copulatory organ; 3-50. Rhinoxenus piranhas: A. entire; B. dorsal haptorial spike; C. ventral anchor; 3-51. Sciadicleithrum iphthimum: A. entire; B-F. ventral bar; B. S. ergensi; C. S. uncinatum; D. S. geophagi; E. S. umbilicum; F. S. tortrix. All scales in micrometers (µm).
106
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
100
100
100
3-52B ascl
20
3-52A
3-53B
3-53A
3-54
30
40
3-56B
100
3-55 30
3-56D 3-56C 30 30
3-56A
3-56E
3-52. Telethecium nasalis: A. entire; B. lateral view of specimen showing relationship of body and copulatory bag (scale not provide); 3-53. Tereancistrium kerri: A. entire; B. ventral anchor and accessory anchor sclerite; 3-54. Trinibaculum brazilensis; 3-55. Trinidactylus cichlasomatis (haptor); 3-56. Trinigyrus acuminatus: A. entire; B. anchor; C. bar; D male copulatory organ; E. vagina and distal portion of seminal receptacle. All scales in micrometers (µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
107
400
3-58A
30
3-59B 3-58B
3-59C
3-58D 100
3-58C 3-57
3-59D
30
3-59A 3-58E 100
30
3-60B 3-60A 3-57. Unibarra paranoplatensis; 3-58. Unilatus unilatus: A. anterior bar; B. anterior anchor; C. posterior bar; D. posterior anchor; E. accessory piece; 3-59. Urocleioides paradoxus: A. entire; B. hook (pairs 1, 5); C. hook (pairs 2, 3, 4, 6, 7); D. vaginal sclerite; 3-60. Vancleaveus janauacaensis: A. entire; B. dorsal bar. All scales in micrometers (µm).
108
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
3-61
3-62
3-61. Histological section of gill filament showing haptor of Linguadactyloides with an anchor secured in the cartilage; 3-62. Linguadactyloides penetrated into gill filament showing epithelial hyperplasia around point of entry. (Original photographs).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
109
3-63
3-64
250 µm
3-63. Linguadactyloides penetrated within gill filament showing missing ephitelium; 3-64. Undescribed monogenoid penetrated into the gill filament of Oxydoras niger showing tumeroid caused by the haptor. (Original photographs).
110
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
IX. Cited and general references AGARWAL, N. & D.C. KRITSKY (1998): Neotropical Monogenoidea. 33. Three new species of Ancistrohaptor n. g. (Dactylogyridae, Ancyrocephalinae) on Triportheus spp. (Teleostei, Characidae) from Brazil, with checklists of ancyrocephalines recorded from Neotropical characiform fishes. - Systematic Parasitology 39(1): 59-69. AN, L., JARA, C.A. & D.K. CONE (1991): Five species of Gyrodactylus NORDMANN, 1832 (Monogenea) from freshwater fishes of Peru. - Can. J. Zool. 69: 1199-1201. BELMONT-JÉGU, E., DOMINGUES, M.V. & M.L. MARTINS (2004): Notozothecium janauachensis n. sp. (Monogenoidea: Dactylogyridae) from wild and cultured tambaqui, Colossoma macropomum (Teleostei: Characidae: Serrasalminae) in Brazil. - Zootaxa 736: 1-8. BOEGER, W.A. & E. BELMONT-JÉGU (1994): Neotropical Monogenoidea. 21. Trinigyrus mourei sp. n. (Dactylogyridae) from the gills of the Amazonian catfish Hypostomus marginatus (Loricariidae). - Amazoniana 13(1/2): 13-16. BOEGER, W.A. & D.C. KRITSKY (1988): Neotropical Monogenea. 12. Dactylogyridae from Serrasalmus nattereri (Cypriniformes: Serrasalmidae) and aspects of their morphologic variation and distribution in the Brazilian Amazon. - Proc. Helminthol. Soc. Wash. 55(2): 188-213. BOEGER, W.A. & F. POPAZOGLO (1995): Neotropical Monogenoidea. 23. Two new species of Gyrodactylus from cichlid and characid fishes of Brazil. - Mem. Inst. Oswaldo Cruz 90: 689-694. BOEGER, W.A., DOMINGUES, M.V. & D.C. KRITSKY (1996): Neotropical Monogenoidea. 32. Cacatuocotyle paranaensis n. g., n. sp. (Dactylogyridae, Ancyrocephalinae) from Characidium spp. (Teleostei, Characidae) from the State of Paraná, Brazil. - Systematic Parasitology 37: 1-4. BOEGER, W.A., DOMINGUES, M.V. & G.C. PAVANELLI (1997): Neotropical Monogenoidea. 24. Rhinoxenus bulbovaginatus n. sp. (Ancyrocephalinae) from the nasal cavity of Salminus maxillosus (Osteichthyes, Characidae) from the Rio Paraná, Parana, Brazil. - Mem. Inst. Oswaldo Cruz 90: 695-694. BOEGER, W.A., HUSAK, W.S. & M.L. MARTINS (1995): Neotropical Monogenoidea. 25. Anacanthorus penilabiatus n. sp. (Dactylogyridae, Anacanthorinae) from Piaractus mesopotamicus (Osteichthyes, Serrasalmidae), cultivated in the State of São Paulo, Brazil. - Mem. Inst. Oswaldo Cruz 90: 699-701. BOEGER, W.A., KRITSKY, D.C. & E. BELMONT-JÉGU (1994): Neotropical Monogenoidea. 20. Two new species of oviparous Gyrodactylidea (Polyonchoinea) from loricariid catfishes (Siluriformes) in Brazil and the phylogenetic status of Ooegyrodactylidae HARRIS, 1983. - J. Helminthol. Soc. Wash. 61: 34-44. BOEGER, W.A., KRITSKY, D.C. & M. PIE (2003): The context of diversification of the viviparous Gyrodactylidae (Platyhelminthes: Monogenoidea). - Zoologica Scripta 32(5): 437-448. BOEGER, W.A., PIASECKI, W. & E. SOBECKA (2002): Neotropical Monogenoidea. 44. Mymarothecium viatorum sp. n. (Ancyrocephalinae) from the gill of Piaractus brachypomus (Serrasalmidae, Teleostei) captured in a warm-water canal of a power plant in Szczecin, Poland. - Acta Ichthyologica et Piscatoria 32(2): 158-161. BOEGER, W.A., TANAKA, L.K. & G.C. PAVANELLI (2001): Neotropical Monogenoidea. 39. A new species of Kritskyia (Dactylogyridae, Ancyrocephalinae) from the ureters and urinary bladder of Serrasalmus marginatus and S. spilopleura (Characiformes, Serrasalmidae) from southern Brazil with an emended generic diagnosis. - Zoosystema 23: 5-10. BRANDES, G. (1894): Fridericianella ovicola n.g., n.sp. Ein neuer monogenetischer Trematode. - Abh. Naturf. Ges. Halle 20, Jubiläums-Festschrift: 303-310.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
111
BYCHOWSKY, B.E. (1957): Monogenetic trematodes, their systematics and phylogeny. - Akad. Nauk. U.S.S.R., Moscow (translated from Russian by AIBS, Washington, D.C.): 509 pp. CABLE, J.C., VAN OOOSTERHOUT, C., BARSON, N. & P.D. HARRIS (2005): Gyrodactylus pictae n. sp. (Monogenea: Gyrodactylidae) from the Trinidadian swamp guppy Poecilia picta REGAN, with a discussion on species of Gyrodactyls VON NORDMANN, 1832 and their poeciliid hosts. Systematic Parasitology 60: 159-164. COHEN, S.C. & A. KOHN (2005): A new species of Mymarothecium and new host and geographical records for M. viatorum (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. - Folia Parasitologica 52: 307-310. CUGLIANNA, A.N., CORDEIRO, N.S. & J.L. LUQUE (2003): Annulotrematoides bryconi sp. n. (Monogenea: Dactylogyridae) parasitic on Brycon cephalus (Osteichthyes: Characidae) from Brazil. - Folia Parasitologica 50: 272-274. DALLWITZ, M. J. (1974): A flexible computer program for generating identification keys. -Systematic. Zoology 23: 50–7. DALLWITZ, M. J. (1980): A general system for coding taxonomic descriptions. -Taxon 29: 41–6. DOMINGUES, M.V. & W.A. BOEGER (2002): Neotropical Monogenoidea. 40. Protorhinoxenus prochilodi gen. n., sp. n. (Monogenoidea: Ancyrocephalinae), parasite of Prochilodus scrofa (Characiformes: Prochilodontidae) from South Brazil. - Folia Parasitologica 49: 35-38. DOMINGUES, M.V. & W.A. BOEGER (2005): Neotropical Monogenoidea. 47. Phylogeny and coevolution of species of Rhinoxenus (Plathyhelminthes, Monogenoidea, Dactylogyridae) and their characiformes hosts (Teloestei, Ostariophysi) with description of four new species. -Zoosystema 27(3): 441-467. FERRAZ, E., SHINN, A.P. & C. SOMMERVILLE (1994): Gyrodactylus gemini n. sp. (Monogenea: Gyrodactylidae), a parasite of Semaprochilodus taeniurus (Steindachner) from the Venezuelan Amazon. Systematic Parasitology 29: 217-222. FRANCA, J.G., ISSAC, A., PAVANELLI, G.C. & R.M. TAKEMOTO (2003): Dactylogyridae (Monogenea) from the gills of Iheringichthys labrosus (Osteichthyes: Pimelodidae) from the upper Paraná River floodplain, Brazil, with the proposal of Pseudovancleaveus n. g. - Systematic Parasitology 54: 25-31. GIOIA, I., CORDEIRO, N.S. & P.T. ARTIGAS (1988): Urocleidoides astyanacis n. sp. (Monogenea: Ancyrocephalinae) from freshwater Characidians of the genus Astyanax. - Mem. Inst. Oswaldo Cruz 83: 13-15. GUIDELLI, G.M., TAKEMOTO, R.M. & G.C. PAVANELLI (2003): A new species of Kritskyia (Dactylogyridae, Ancyrocephalinae), parasite of urinary bladder and ureters of Leporinus lacustris (Characiformes, Anostomidae) from Brazil. - Acta Scientiarum. Biological Sciences 25: 279-282. GUTIÉRREZ, P.A. & D.M. SURIANO (1992): Ancyrocephalids of the genus Demidospermus suriano, 1983 (Monogenea) parasites from siluriform fishes in Argentina, with descriptions of three new species. - Acta Parasitologica 37: 169-172. HANEK, G., MOLNAR, K. & C.H. FERNANDO (1974): Three new genera of Dactylogyridae (Monogenea) from freshwater fishes of Trinidad. - Parasit. 60: 911-913. HARRIS, P.D. (1983): The morphology and life-cycle of the oviparous Oögyrodactylus farlowellae gen. et sp. nov. (Monogenea, Gyrodactylidae). - Parasit. 87: 405-420. HARRIS, P.D, & J. CABLE (2000): Gyrodactylus poeciliae n. sp. and G. milleri n. sp. (Monogenea: Gyrodactylidae) from Poecilia caucana (STEINDACHNER) in Venezuela. - Systematic Parasitology 47(2): 79-85.
112
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
HARRIS, P.D. & A.M. LYLES (1992): Infections of Gyrodactylus turnbulli on guppies (Poecilia reticulata) in Trinidad. - J. Parasitol. 78: 912-914. JARA, C.A. & D.K. CONE (1989): Scleroductus yuncensi gen. et sp. n. (Monogenea) from Pimelodella yuncensis (Siluriformes: Pimelodidae) in Peru. - Proc. Helminthol. Soc. Wash. 56: 125-127. JARA, C., AN, L. & D. CONE (1991): Accessorius peruensis gen. et sp. n. (Monogenea: Gyrodactylidea) from Lebiasina bimaculata (Characidae) in Peru. - J. Helminthol. Soc. Wash. 58: 164-166. JOGUNOORI, W., KRITSKY, D.C. & J. VENKATANARASAIAH (2004): Neotropical Monogenoidea. 46. Three new species from the gills of introduced aquarium fishes in India, the proposal of Heterotylus n. g. and Diaphorocleidus n. g., and the reassignment of some previously described species of Urocleidoides MIZELLE & PRICE, 1964 (Polyonchoinea: Dactylogyridae). - Systematic Parasitology 58: 115-124. KOHN, A. (1990): Kritskyia moraveci n. g., n. sp. (Monogenea: Dactylogyridae) from the urinary bladder and ureters of Rhamdia quelen (Quoy & Gaimard, 1824) (Pisces: Pimelodidae) in Brazil. - Systematic Parasitology 17: 81-85. KOHN, A. & I. PAPERNA (1964): Monogenetic trematodes from aquarium fishes. - Rev. Brasil. Biol. 24:145-149. KOHN, A. & C.P. SANTOS (1989): Brazilian Monogenea. - List of species, hosts and geographical distribution. - Rev. Brasil. Biol. 49(3): 809-815. KOHN A., BAPTISTA-FARIAS, M.D. & S.C. COHEN (2000): Paranaella luquei gen. et sp. n. (Monogenea: Microcotylidae), a new parasite of Brazilian catfishes. - Folia Parasitologica 47: 279-283. KRITSKY, D.C. & W.A. BOEGER (1991): Neotropical Monogenea. 16. New species of oviparous Gyrodactylidea with proposal of Nothogyrodactylus gen. n. (Oogyrodactylidae). - J. Helminthol. Soc. Wash. 58: 7-15. KRITSKY, D.C. & W.A. BOEGER (1995): Neotropical Monogenoidea. 26. Annulotrematoides amazonicus, a new genus and species (Dactylogyridae: Ancyrocephalinae), from the gills of Psectrogaster rutiloides (KNER) (Teleostei: Characiformes: Curimatidae) from the Brazilian Amazon. - Proc. Biol. Soc. Wash. 108: 528-532. KRITSKY, D.C. & W.A. BOEGER (1998): Neotropical Monogenoidea. 35. Pavanelliella pavanelli, a new genus and species (Dactylogyridae: Ancyrocephalinae) from the nasal cavities of siluriform fishes in Brazil. - J. Helminthol. Soc. Wash. 65: 160-163. KRITSKY, D.C. & W.A. BOEGER (2002): Neotropical Monogenoidea. 41. New and previously described species of Dactylogyridae (Platyhelminthes) from the gills of marine and freshwater perciform fishes (Teleostei) with proposal of a new genus and a hypothesis on phylogeny. - Zoosystema 24(1): 7-40. KRITSKY, D.C. & T.H. FRITTS (1970): Monogenetic trematodes from Costa Rica, with the proposal of Anacanthocotyle gen. n. (Gyrodactylidae: Isancistrinae). - Proc. Helminthol. Soc. Wash. 37: 63-68. KRITSKY, D.C. & P.A. GUTIÉRREZ (1998): Neotropical Monogenoidea. 34. Species of Demidospermus (Dactylogyridae: Ancyrocephalinae) from the gills of pimelodids (Teleostei, Siluriformes) in Argentina. - J. Helminthol. Soc. Wash. 65: 147-159. KRITSKY, D.C. & P.D. LEIBY (1972): Dactylogyridae (Monogenea) from the freshwater fish, Astyanax fasciatus (CUVIER), in Costa Rica, with descriptions of Jainus hexops sp. n. Urocleidoides costaricensis and U. heteroancistrium combs. n. - Proc. Helminthol. Soc. Wash. 39: 227-230. KRITSKY, D.C. & V.E. THATCHER (1974a): Monogenetic trematodes (Monophisthocotylea: Dactylogyridae) from freshwater fishes of Colombia, South America. - J. Helminthol. 48: 59-66.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
113
KRITSKY, D.C. & V.E. THATCHER (1974b): New monogenetic trematodes from freshwater fishes of Western Colombia with the proposal of Anacanthoroides gen. n. (Dactylogyridae). - Proc. Helminthol. Soc. Wash. 43: 129-134. KRITSKY, D.C. & V.E. THATCHER (1976): New monogenetic trematodes from freshwater fishes of Western Colombia with the proposal of Anacanthoroides gen. n. (Dactylogyridae). - Proc. Helminthol. Soc. Wash. 43: 129-134. KRITSKY, D.C. & V.E. THATCHER (1977): Phanerothecium gen. nov. and Fundulotrema gen. nov.; two new genera of viviparous Monogenoidea (Gyrodactylidae) with a description of P. caballeroi sp. nov. and a key to the subfamilies and genera of the family. - Instituto Biológico de México, Publ. Espec. 4: 53-60. KRITSKY, D.C. & V.E. THATCHER (1983): Neotropical Monogenea. 5. Five new species from the aruanã, Osteoglossum bicirrhosum VANDELLI, a freshwater teleost from Brazil, with the proposal of Gonocleithrum n. gen. (Dactylogyridae: Ancyrocephalinae). - Proc. Biol. Soc. Wash. 96: 581-597. KRITSKY, D.C. & V.E. THATCHER (1984): Neotropical Monogenea. 6. Five species of Diplectanum (Diplectanidae) from freshwater teleosts, Plagioscion spp. (Scianidae), in Brazil. - Proc. Biol. Soc. Wash. 97: 434-443. KRITSKY, D.C., BOEGER, W.A. & M. JÉGU (1996 a): Neotropical Monogenoidea. 28. Ancyrocephalinae (Dactylogyridae) of piranha and their relatives (Teleostei, Serrasalmidae) from Brazil and French Guiana: species of Notozothecium BOEGER and KRITSKY, 1988, and Mymarothecium gen. n. - J. Helminthol. Soc. Wash. 63: 153-175. KRITSKY, D.C., BOEGER, W.A. & M. JÉGU (1997a): Neotropical Monogenoidea. 29. Ancyrocephalinae (Dactylogyridae) of piranha and their relatives (Teleostei, Serrasalmidae) from Brazil: species of Amphithecium BOEGER and KRITSKY, 1988, Heterothecium gen. n. and Pithanothecium gen. n. - J. Helminthol. Soc. Wash. 64: 25-54. KRITSKY, D.C., BOEGER, W.A. & M. JÉGU (1997b): Neotropical Monogenoidea. 30. Ancyrocephalinae (Dactylogyridae) of piranha and their relatives (Teleostei, Serrasalmidae) from Brazil: species of Calpidothecium gen. n., Calpidothecioides gen. n., Odothecium gen. n., and Notothecioides gen. n. - J. Helminthol. Soc. Wash. 64: 208-218. KRITSKY, D.C., BOEGER, W.A. & M. JÉGU (1998 ): Neotropical Monogenoidea. 31. Ancyrocephalinae (Dactylogyridae) of piranha and their relatives (Teleostei, Serrasalmidae) from Brazil: species of Notothecium BOEGER & KRITSKY, 1988, and Enallothecium gen. n. - J. Helminthol. Soc. Wash. 65: 31-49. KRITSKY, D.C., BOEGER, W.A. & F. POPAZOGLO (1995): Neotropical Monogenoidea. 22. Variation in Scleroductus species (Gyrodactylidea, Gyrodactylidae) from siluriform fishes of Southeastern Brazil. - J. Helminthol. Soc. Wash. 62: 53-56. KRITSKY, D.C., BOEGER, W.A. & V.E. THATCHER (1985): Neotropical Monogenea. 7. Parasites of the pirarucu, Arapaima gigas (CUVIER), with description of two new species and redescription of Dawestrema cycloancistrium PRICE & NOWLIN, 1967 (Dactylogyridae, Ancyrocephalinae). - Proc. Biol. Soc. Wash. 97: 321-331. KRITSKY, D.C., BOEGER, W.A. & V.E. THATCHER (1986): Neotropical Monogenea. 9. Status of Trinigyrus HANEK, MOLNAR & FERNANDO, 1974 (Dactylogyridae) with descriptions of two new species from loricariid catfishes from the Brazilian Amazon. - Proc. Biol. Soc. Wash. 99(3): 392-398. KRITSKY, D.C., BOEGER, W.A. & V.E. THATCHER (1988): Neotropical Monogenea. 11. Rhinoxenus, new genus (Dactylogyridae: Ancyrocephalinae) with descriptions of three new species from the nasal cavities of Amazonian Characoidea. - Proc. Biol. Soc. Wash. 101(1): 87-94.
114
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
KRISKY, D.C., BOEGER, W.A. & L.R. VAN EVERY (1992): Neotropical Monogenoidea. 17. Anacanthorus MIZELLE and PRICE (Dactylogyridae, Anacanthorinae) from characoid fishes of Central Amazon. - J. Helminthol. Soc. Wash. 59: 25-51. KRITSKY, D.C., LEIBY, P.B. & R.J. KAYTON (1978): A rapid stain technique for the haptoral bars of Gyrodactylus species (Monogenea). - J. Parasitol. 64(1): 172-174. KRITSKY, D.C., MENDOZA-FRANCO , E.F. & T. SCHOLZ (2000): Neotropical Monogenoidea. 36. Dactylogyrids from the gills of Rhamdia guatemalensis (Siluriformes: Pimelodidae) from cenotes of the Yucatan Peninsula, Mexico, with proposal of Ameloblastella gen. n. and Aphanoblastella gen. n. (Dactylogyridae: Ancyrocephalinae). - Comparative Parasitology 67: 76-84. KRITSKY, D.C., THATCHER, V.E. & W.A. BOEGER (1986): Neotropical Monogenea. 8. Revision of Urocleidoides (Dactylogyridae, Ancyrocephalinae). - Proc. Helminthol. Soc. Wash. 53: 1-37. KRITSKY, D.C., THATCHER, V.E. & W.A. BOEGER (1987): Neotropical Monogenea. 10. Omothecium, new genus (Dactylogyridae: Ancyrocephalinae) and two new species from the piranambu, Pinirampus pirinampu (SPIX), (Siluriformes), in Brazil. - Proc. Biol. Soc. Wash. 100: 8-12. KRITSKY, D.C., THATCHER, V.E. & W.A. BOEGER (1988): Neotropical Monogenea. 13. Rhinonastes pseudocapsaloideum n. gen., n. sp. (Dactylogyridae, Ancyrocephalinae), a nasal parasite of curimata, Prochilodus nigricans AGASSIZ (Cypriniformes, Prochilodontidae), in Brazil. - J. Parasitol. 74: 695-698. KRITSKY, D.C., THATCHER, V.E. & W.A. BOEGER (1989): Neotropical Monogenea. 15. Dactylogyridae from the gills of Brazilian Cichlidae with proposal of Sciadicleithrum gen. n. (Dactylogyridae). - Proc. Helminthol. Soc. Wash. 56: 128-140. KRITSKY, D.C., THATCHER, V.E. & R.J. KAYTON (1979): Neotropical Monogenoidea. 2. The Anacanthorinae PRICE, 1967, with the proposal of four new species of Anacanthorus MIZELLE & PRICE, 1965, from Amazonian fishes. - Acta Amazonica 9: 355-361. KRITSKY, D.C., THATCHER, V.E. & R.J. KAYTON (1980): Neotropical Monogenoidea. 3. Five new species from South America with the proposal of Tereancistrum gen. n. and Trinibaculum gen. n. (Dactylogyridae: Ancyrocephalinae). - Acta Amazonica 10: 411-417. KRITSKY, D.C., VAN EVERY, L.R. & W.A. BOEGER (1996 b): Neotropical Monogenoidea. 27. Two new species of Telethecium gen. n. from the nasal cavities of Central Amazonian fishes and a redescription of Kritskyia moraveci KOHN, 1990 (Dactylogyridae, Ancyrocephalinae). - J. Helminthol. Soc. Wash. 63: 35-41. KRITSKY, D.C., VIDAL-MARTINEZ, V.M. & R. RODRIGUEZ-CANUL (1994): Neotropical Monogenoidea. 19. Dactylogyridae of cichlids (Perciformes) from the Yucatán Peninsula, with descriptions of three new species of Sciadicleithrum KRITSKY, THATCHER & BOEGER, 1989. - J. Helminthol. Soc. Wash. 61: 26-33. MALABARBA, L.R. & I.M.L. ROSA (2003): Preface. - Neotropical Ichthyology 1: 1. MAYES, M.A., BROOKS, D.R. & T.B. THORSON (1981): Potamotrygonocotyle tsalickisi, new genus and species (Monogenea: Monocotylidae) and Paraheteronchocotyle amazonensis, new genus and species (Monogenea: Hexabothriidae) from Potamotrygon circularis GARMAN (Chondrichthyes: Potamotrygonidae) in Northwestern Brazil. - Proc. Biol. Soc. Wash. 94: 1205-1210. MENDOZA-FRANCO, E.F. & V.M. VIDAL-MARTINEZ (2001): Salsuginus neotropicalis n. sp. (Monogenea: Ancyrocephalinae) from the pike killifish Belonesox belizanus (Atheriniformes: Poeciliidae) from Southeastern Mexico. - Systematic Parasitology 48: 41-45.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
115
MENDOZA-FRANCO, E.F., SCHOLZ, T. & V.M. VIDAL-MARTÍNEZ (1997): Sciadicleithrum meeki sp. n. (Monogenea: Ancyrocephalinae) from the gills of Cichlasoma meeki (Pisces: Cichlidae) from cenotes (= sinkholes) of the Yucatan Peninsula, México. - Folia Parasitológica 44: 205-208. MIZELLE, J.D. (1936): New species of trematodes from the gills of Illinois fishes. American Midland Naturalist 17: 785-806. MIZELLE, J.D. & D.C. KRITSKY (1967): Unilatus gen. n., a unique Neotropical genus of Monogenea. - J. Parasitol. 53: 1113-1114. MIZELLE, J.D. & D.C. KRITSKY (1969a): Studies on monogenetic trematodes. XXXIX. Exotic species of Monophisthocotylea with the proposal of Archidiplectanum gen. n. and Longihaptor gen. n. American Midland Naturalist 81: 370-386. MIZELLE, J.D. & D.C. KRITSKY (1969b): Studies on monogenetic trematodes. XL. New species from marine and freshwater fishes. - American Midland Naturalist 82: 417-428. MIZELLE, J.D., KRITSKY, D.C. & J.W. CRANE (1968): Studies on monogenetic trematodes. XXXVIII. Ancyrocephalinae from South America with the proposal of Jainus gen. n. - American Midland Naturalist 80: 186-198. MIZELLE, J.D. & C.E. PRICE (1964): Studies on monogenetic trematodes. XXVII. Dactylogyrid species with the proposal of Urocleidoides gen. n. - J. Parasitol. 50: 579-584. MIZELLE, J.D. & C.E. PRICE (1965). Studies on monogenetic trematodes. XXVII. Gill parasites of the piranha with the proposal of Anacanthorus gen. n. - J. Parasitol. 51: 30-36. MOLNAR, K., HANEK, G. & C.H. FERNANDO (1974): Ancyrocephalids (Monogenea) from freshwater fishes of Trinidad. - J. Parasitol. 60: 914-920. NASIR, P. (1983): Occurrence and significance of the monogenean Cycloplectanum americanum (PRICE, 1937) OLIVER, 1968, on a freshwater host. - J. Parasitol. 69: 957-962. POPAZOGLO, F. & W.A. BOEGER (2000): Neotropical Monogenoidea. 37. Redescription of Gyrodactylus superbus (SZIDAT, 1973) comb. n. and description of two new species of Gyrodactylus (Gyrodactylidea: Gyrodactylidae) from Corydoras paleatus and C. ehrhardti (Teleostei: Siluriformes: Callichthyidae) of Southern Brazil. - Folia Parasitologica 47: 105-110. PRICE, C.E. (1966): Urocleidus cavanaughi, a new monogenetic trematode from the gills of the keyhole cichlid, Aequidens maroni (STEINDACHNER). - Bulletin of the Georgia Academy of Science 24: 117-120. PRICE, C.E. (1968): Diaccessorius, a new genus of Monogenea from the gills of an Amazon river teleost. - Acta Biológica Venezuelica 6: 84-89. PRICE, C.E. & W.A. BUSSING (1967): Monogenean parasites of Costa Rican fishes. Part I. Descriptions of two new species of Cleidodiscus MUELLER, 1934. - Revista Parasitológica 28: 81-86. PRICE, C.E. & W.A. BUSSING (1968): Monogenean parasites of Costa Rican fishes. Part II. Proposal of Palombitrema heteroancistrium n. gen., n. sp. - Proc. Helminthol. Soc. Wash. 35: 54-57. PRICE, C.E. & T.E. MCMAHON (1966): Monocleithrium, a new genus of Monogenea from an Amazon River teleost. - Revista Parasitológica 27: 221-226. PRICE, C.E. & W.J. NOWLIN (1967): Proposal of Dawestrema cycloancistrium n. gen., n.sp. (Trematoda: Monogenea) from an Amazon River host. - Revista Parasitológica 28: 1-9. PRICE, C.E. & N.G. ROMERO (1969): First account of a monogenetic trematode from Paraguay: Amphocleithrium paraguayensis n. gen., n. sp. - Zoologische Jahrbücher 96: 449-452. PRICE, C.E. & E.A. SCHLUETER (1967): Two new monogenetic trematodes from South America. - J. Tennessee Acad. Sci. 42: 23-25.
116
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
PRICE, E.W. (1938): The monogenetic trematodes of Latin America. - Livro Jubilar do Prof. LAURO TRAVASSOS, Rio de Janeiro (Brazil) 3: 407-413. SURIANO, D.M. (1980): Notodiplocerus singularis gen. et sp. nov. (Monogenea: Ancyrocephalinae) parásito de las branquias de Pseudocurimata gilberti (Pisces: Tetragonopteridae) de la Laguna de Chascomus, República Argentina. - Neotropica 26: 131-143. SURIANO, D.M. (1981): Andospira n. g., n. sp. (Monogenea, Ancyrocephalinae) a branchial parasite of Pseudocurimata gilberti from Lake Chascomus, Argentina. - Neotropica 27: 67-78. SURIANO, D.M. (1983): Demidospermus anus gen. nov. sp. nov. (Monogenea: Ancyrocephalinae) parasita branquial de Loricaria (L) anus VALENCIENNES, 1840 (Pisces: Loricariidae) de la Laguna de Chascomus, Provincia de Buenos Aires, Republica Argentina. - Neotropica 29: 169-172. SURIANO, D.M. (1985): El género Unilatus MIZELLE y KRITSKY, 1967 (Monogenea: Ancyrocephalidae) parásito de Siluriformes (Pisces: Loricariidae) del Rio Negro, Manaus, Brasil. Neotropica 31: 163-175. SURIANO, D.M. (1986a): Philocorydoras platensis gen. n. et. sp. n. (Monogenea: Ancyrocephalidae) from Corydoras paleatus (Jenyns) (Pisces: Callichthyidae) in Laguna Chascomús - República Argentina. - Helminthologia 23: 249-256. SURIANO, D.M. (1986b): The genus Urocleidoides MIZELLE and PRICE, 1964 (Monogenea: Ancyrocephalidae). Anatomy and systematic position. Urocleidoides mastigatus sp. n. and U. travassosi (PRICE, 1934) MOLNAR, HANEK and FERNANDO, 1974 from Rhamdia sapo (VALENCIENNES, 1840) EIGENMANN, 1888 and Pimelodella laticeps EIGENMANN, 1917 (Pisces: Siluriformes) in Laguna Chascomus, República Argentina. - Physis (Buenos Aires), Secc. B, 44: 73-80. SURIANO, D.M. & I.S. INCORVAIA (1995): Ancyrocephalid (Monogenea) parasites from siluriform fishes from the paranean-platean ichthyogeographical province in Argentina. - Acta Parasitologica 40: 113-124. SZIDAT, L. (1973): Morphologie und Verhalten von Paragyrodactylus superbus n. g., n. sp., Erreger eines Fischsterben in Argentinien. - Angew. Parasit. 14: 1-10. TAKEMOTO, R.M., LIZAURA, R. & G.C. PAVANELLI (2002): A new species of Kritskyia (Dactylogyridae, Ancyrocephalinae) parasite of urinary bladder of Prochilodus lineatus (Prochilodontidae, Characiformes) from the floodplain of the high Paraná river, Brazil. - Mem. Inst. Oswaldo Cruz 97(3): 313-315. THATCHER, V.E. & D.C. KRITSKY (1983): Neotropical Monogenoidea. 4. Linguadactyloides brinkmanni gen. et sp. n. (Dactylogyridae: Linguadactyloidinae subfa. nov.) with observations on its pathology in a Brazilian freshwater fish, Colossoma macropomum (CUVIER). - Proc. Helminthol. Soc. Wash. 50: 305-311. TURNBULL, E.R. (1956): Gyrodactylus bullatarudis n. sp. from Lebistes reticulatus PETERS with a study of its life cycle. - Canadian Journal of Zoology 34: 583-594. VAN EVERY, L.R. & D.C. KRITSKY (1992): Neotropical Monogenoidea. 18. Anacanthorus MIZELLE and PRICE 1965 (Dactylogyridae, Anacanthorinae) of piranha (Characoidea, Serrasalmidae) from the central Amazon, their phylogeny, and aspects of host-parasite coevolution. - J. Helminthol. Soc. Wash. 59: 52-75. VIDAL-MARTÍNEZ, V.M., SCHOLZ, T. & M.L. AGUIRRE-MACEDO (2001): Dactylogyridae of cichlid fishes from Nicaragua, Central America, with descriptions of Gussevia herotilapiae sp. n. and three new species of Sciadicleithrum (Monogenea: Ancyrocephalinae). - Comparative Parasitology 68(1): 76-86.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
117
4 TREMATODA (DIGENEA) I. Definition and morphology The digenetic trematodes are endoparasitic platyhelminths having complex life-cycles. All are hermaphroditic with the exception of some blood inhabiting forms (Schistosomatidae) and some tissue invaders found in marine fishes (Didymozoidae). All trematode species reported so far from Neotropical freshwater fishes have functional male and female organ systems in each individual. Many fish trematodes are less than one millimeter in length, but most of those treated here would fall into the 2 to 20 millimeter size range. Although considered to be “flatworms”, not all species are dorso-ventrally flattened. Some are indeed flat and leaf-like but others are cylindrical, spherical or pyriform. The body is usually provided with oral and ventral suckers and the external surface (tegument) may be spined. The female reproductive system consists of: an ovary; oviduct; yolk glands (vitellaria); oötype; Mehlis’s gland; Laurer’s canal and seminal receptacle (sometimes absent). Some species also have the distal end of the uterus modified into a muscular tube for reception of the male copulatory organ (cirrus). This functional vagina in trematodes is called a metraterm. The male system includes: testes (usually two but there may be from one to many testes present according to the species); vas deferens; seminal vesicle and a cirrus and cirrus sac (which are sometimes absent). The number, size, form and position of the reproductive organs are important in the classification and identification of these worms. The nature of the digestive system is also important in the systematics of trematodes. This system usually consists of: a mouth and oral sucker; prepharynx; pharynx; esophagus and two intestinal branches called ceca or crura. The digestive system is normally incomplete in that the intestinal branches end blindly. There are some species, however, in which the crura open to the exterior through anal pores or open into the excretory bladder.
II. Life-cycle and transmission Spermatozoa produced in the testes reach the seminal vesicle by way of tubules (vasa efferentia and vas deferens). As in the case in most hermaphroditic invertebrates, copulation consists of a mutual exchange of sperm cells with each individual inserting the
118
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
male organ (cirrus) into the female pore (uterine pore or metraterm) of the other. The male cells make their way the length of the uterus and are stored in the seminal receptacle, to be used as needed. Female cells from the ovary pass one at a time down the oviduct to a muscular organ called the oötype. There the ovum is fertilized by a sperm from the seminal receptacle and surrounded by yolk cells from the vitelline glands. Shell material is provided by the yolk glands as well in the form of a liquid which quickly hardens around the gamete and yolk cells. Mehlis’ gland, which surrounds the oötype, is thought to produce a catalytic agent to harden the shell. The finished capsule (egg) is slowly carried down the length of the uterus and eventually expelled into the environment through the uterine pore (common genital pore). Adult trematodes live in the digestive tract, hollow organs, circulatory system or subcutaneous connective tissue of vertebrates. Copulation and egg production (sexual reproduction) is carried out in these hosts. The eggs are carried to the exterior environment with the feces or urine of the host and they usually hatch shortly after reaching water. Some fish trematodes, especially Paramphistomidae, are ovoviviparous and in these forms, the egg shell is reabsorbed in the uterus and larvae are liberated from the uterine pore. The first larval stage (miracidium) is ciliated and swims actively in search of an appropriate species of snail. These larvae cannot feed so they die in a few hours if they do not reach a suitable host. Upon finding a snail, the miracidium penetrates the body wall by means of its anterior penetration glands and makes its way to the digestive gland (hepatopancreas). There it loses its cilia, and most internal structure and assumes a sac-like form (sporocyst). Within the sporocyst, the third larval stages (rediae) are produced from germinative cells. Several of these larvae are produced within the sporocyst which eventually ruptures to free them within the snail’s digestive gland. The rediae in turn produce larvae called cercariae. These leave the rediae through birth pores and abandon the snail to seek a second intermediary host, or to encyst on vegetation. Cercariae do not feed although they normally have a mouth and digestive system. They have enough stored energy to swim actively for several hours after which they die if they do not find a suitable host or a site for encystment. Most cercariae have a posterior tail-like projection to facilitate swimming. During encystment, the tail is lost and the resultant infective larva is termed a metacercaria. In some cases cercariae may invade the definitive host directly. This is the normal means of transmission of blood inhabiting species (Sanguinicolidae) and of tissue forms (Didymozoidae). Although little work has been done on the life-cycles of Neotropical fish trematodes, it is possible to deduce what the mode of transmission must be based on studies done elsewhere. With the exception of the two families mentioned above, all fish trematodes enter the host as encysted metacercariae in the food. The families Acanthostomidae, Allocreadiidae, Fellodistomidae, Heterophyidae and Opisthorchiidae are transmitted to piscivorous species in the tissues of smaller fishes. Angiodictyidae, Haploporidae, Paramphistomidae and Zonocotylidae reach their fish hosts in aquatic plants. Echinostomatidae are probably transmitted to fish that devour the snail intermediate host, and Bucephalidae to those that eat bivalve mollusks.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
119
III. Pathology The pathogenicity of trematodes to their fish hosts varies in accordance with a number of factors which can be summarized as follows: 1) A trematode that penetrates tissues will be more pathogenic than one that lives in the intestinal lumen or the interiors of other hollow organs. 2) A trematode that is large in relation to the host or organ invaded will be more pathogenic than a small trematode would be in the same host or organ. 3) Pathology in the host is usually proportional to the number of trematodes present (intensity of infection). 4) Trematodes that migrate within the host cause more damage than those remain in one location. 5) Trematode eggs passing through tissues (Sanguinicolidae) can cause more host reaction that the adults producing the eggs. 6) Host reaction to tissue invading trematodes is initially an inflammatory one, with infiltration of lymphocytes, and is followed by the fibrous encapsulation of the invader. Once the encapsulation process is finished, danger to the host ends. 7) Host reaction to trematodes in the intestinal lumen is also of the inflammatory type, but is generally limited to the point of fixation of the worms. 8) Trematodes within tubules (such as the bile and pancreatic ducts) can cause distension of the lumen and hyperplasia of the walls and decrease their flow. Trematode cercariae that invade the skin of fishes and become encysted there can become visible to the naked eye if the fish host concentrates pigment cells around them. This condition is wide-spread and is known as “black-spot disease”. In Amazonian fish, we have observed this phenomenon in Hoplias malabaricus and Semaprochilodus insignis and it no doubt occurs in other species as well. Although the presence of these metacercariae in the skin does not seem to impair the health of the fish, the black spots are sometime so numerous that they make the fish unappealing to the consumer. In the Neotropics, the black spots are usually caused by Acanthostomidae or Heterophyidae which mature in crocodilians, piscivorous birds or predatory fish. A somewhat similar condition is known internationally as “yellow-spot disease”. The yellow spots are caused by the yellow coloration of the metarcercariae of the family Clinostomidae. In the Amazon, we have found the genera Clinostomum and Odhneriotrema to be responsible. The former matures in birds and the latter in crocodilians. Another sort of “yellow-spot disease” is found in the Amazonian fish, Plagioscion squamosissimus, which is a freshwater relative of the Atlantic weakfish. This condition is caused by adults of Brasicystis bennetti THATCHER, 1979, of the family Didymozoidae (Figs. 4-3 & 4-47). These worms live in the subcutaneous tissues with their slender anterior ends projecting through small holes that they maintain open. As they mature, their entire bodies become packed with thousands of small egg capsules which have a yellowish hue. These masses of eggs can be seen through the skin as yellowish spots or blotches which are as much as two centimeters in diameter. The most common site for penetration is the inner surface of the gill covers, but the worms can also be found in the gill filaments, fins, eyes and generally distributed throughout the skin of the body. Some fish become so
120
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
heavily infected as to have an overall yellowish appearance. Local fishermen in the Brazilian Amazon have a special name for such fish and many regard them as a different species. In some parts of the Amazon, prevalence rates reach 10 % but the worms do not seem to inconvenience the fish. Another world wide problem in fish caused by larval trematodes is known as “eye fluke disease”. Infected fish can be seen to have larvae moving about within the eye. There is usually no inflammatory reaction, but the presence of the worms impedes the vision of the fish. These larvae are less well developed than metacercariae and do not become encysted. They are known as mesocercariae or diplostomula and usually belong to the genera Diplostomum or Alaria of the superfamily Strigeoidea. Diplostomula are much flattened and have the general appearance of the sole of a tennis shoe (Figs. 4-48 & 4-49). Mesocercariae of species that infect fishes can be found in any organ, but they tend to concentrate in the eyes and optic nerves. In these sites, they can blind the fish and make it easy prey for piscivorous birds. Thus, the parasite actively participates in the completion of its life-cycle and the passage from the second intermediate to the definitive host. Such larvae have been reported from the human eye (ASHTON et al. 1969). In human beings, these migrating larvae can cause extensive tissue destruction, anaphylactic shock and death if present in large numbers (FREEMAN et al. 1976). THATCHER & VARELLA (1980) found that larval trematodes were involved with branchial carcinoma in an Amazonian fish, Chaetobranchus semifasciatus. In this fish a large primary neoplasm (27 x 18 x 12 mm) and a small satellite tumor (3 mm in diameter) were found attached to the first branchial arch (Fig. 4-51). These were both dense tumors covered by a smooth epithelium and containing blood vessels, collagen fibers, pigment cells and irregular masses of cartilage. In these two tumors, there were no trematode larvae, but in each of 19 additional tumorous growths in the gill filaments there was a single metacercaria of Ascocotyle sp. (Figs. 4-52 & 4-53). In four of these tumoroids, the gill filaments showed repetitious growth with parts of filaments projecting in varios directions (Fig. 4-54).
IV. Prevention and treatment Prevention of trematode infection in fish consists of eliminating intermediate hosts in the environment. This is easy enough to do in aquaria and small intensive pisciculture operations but frequently proves to be impossible in larger tanks and ponds. Introducing snails and aquatic plants collected in nature to aquaria with tropical fish can be hazardous and should be avoided. For a balanced aquarium, snails and plants grown in aquaria should be utilized. If no infected snails are present in an aquatic system, black-spot and yellow-spot diseases can not occur. Of course, healthy snails can become infected at any time that vertebrate feces containing trematode eggs enter the system. For example, in outdoor ponds birds may defecate into the water and initiate an infective cycle. In an aquarium, a fish carrying adult trematodes can potentially infect all the others if snails are present.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
121
The feeding of wild caught minnows to captive predatory fish should be avoided since such small fish frequently contain encysted metacercariae. If pieces of fish or crustaceans are used as food in aquaria or ponds, such material should be deep-frozen for at least 48 hours before use to kill any metacercariae present. No treatment is possible for encysted metacercariae but adult trematodes can be removed from the intestinal tracts of fish with Di-N-Butyl Tin Oxide which can be mixed with the ration at 0.3 % of body weight administered for from one to five days.
V. Collection and study methods Trematodes are best collected alive from freshly killed fish. To do so, wild caught fish can be brought in alive and maintained in aquaria until used. If they are deprived of food for 10-24 hours prior to necropsy, their digestive tracts will be nearly clean and the trematodes will be easier to see. This is especially important for bottom feeders that ingest sand since some trematodes are about the same size as sand grains. If it is not possible to transport the fish alive, they may be brought in on ice and kept in the refrigerator. Trematodes will often remain alive for several hours in cool fish. The hosts should not be deep-frozen, however, as this will not only kill the worms but damage them as well. Living trematodes are easier to find than dead ones for the simple reason that they move. Since many fish trematodes are less than one millimeter in length, some skill and care are required to find them in the host viscera. All hollow organs (stomach, intestine, swim bladder, heart, etc.) should be opened with scissors and washed in finger bowls by enthusiastic agitation. After removing the washed organs from the bowls, the dirty water should be slowly decanted and gradually replaced by clean water. This process of hand sedimentation should be repeated until the water in the bowl is clear and the floating debris has been eliminated. In this way, it is possible to concentrate the live worms in the bottom of the dish where they can be found by careful examination with a dissecting microscope. Trematodes should be killed in a relaxed position before fixation and this can best be accomplished by the application of gentle heat. A rapid method is to place one, or several specimens, on a slide in water with a coverglass in place and pass a lighted match several times underneath. When the worms no longer show movement, they can be fixed in place with AFA fixative (85 parts of 85 % alcohol: 10 parts of commercial formaldehyde: 5 parts of glacial acetic acid). To do this, it is necessary to place drops of AFA on one side of the coverglass while withdrawing the water from the other side with filter paper. If large numbers of trematodes must be fixed in a limited time, they can be placed in water and left in an embedding oven for 10-15 minutes. After they no longer move, they can be transferred directly to AFA or fixed on slides with a little coverglass pressure. After fixation in AFA for several hours, permanent preparations for study should be prepared by means of the following procedure: 1. Wash the specimens in running water for 30 minutes to remove the fixative. 2. Place the worms in a staining solution containing 3 drops of Mayer’s Carmalum stock solution to each 10 cm3 of water. Leave them in this stain until they are wine
122
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
3.
4.
5. 6.
colored throughout (the time varies from 10 minutes to 10 hours depending on the size of the worms). Pass the worms to a destaining solution (35 % alcohol to which hydrochloric acid has been added in the ratio of 6 drops per liter). Leave them in destain until the bodies are seen as pale pink and the organs are still wine or red (the time will vary from a few seconds to several hours depending on size). After destaining, dehydrate the worms gradually by serial passage through alcohol at 50, 70, 85, 95 and 100 %. They should be left for a minimum of 10 minutes in each alcohol. It is advisable to leave them for 30 minutes or more in the absolute alcohol to insure complete dehydration. After dehydration, the worms should be passed to a clearing agent such as methyl salicylate or xylol. The worms should clear completely in a few minutes and they can then be mounted directly in Canada balsam, Clarite, Piccolyte or other similar mounting media.
Mayer’s Carmalum stock solution can be mixed in the following way: Mix 1 g of carminic acid stain, 10 g of alum and 200 cm3 of distilled water in a beaker and boil for 30 minutes. Afterwards, filter the stain and store in the refrigerator. If carminic acid stain is unavailable, it can be made in the laboratory as follows: 1. Mix 10 g of carmine stain with 100 cm3 of glacial acetic acid in a beaker. 2. Heat the beaker to the boiling point and then let it cool. 3. Filter the liquid and save the material that sticks to the filter paper. 4. Scrape the material off of the filter paper and heat it in a beaker to dry it. This will evaporate the excess acetic acid. The material should be warmed carefully while stirring. This drying will eventually produce a dry dark red powder without the odor of acetic acid. This resultant powder is carminic acid stain and can be used as above to make Mayer’s Carmalum.
VI. Identification and keys Trematodes have few hard parts other than the circumoral spines found in certain genera. Identification is therefore based mainly on the number, size, form and position of the suckers, pharynx and internal organs. It is necessary to distinguish the ovary, testes, viteline glands and cirrus sac and note their position in the body and in relation to each other. One must also be able to tell the difference between a cirrus sac and a hermaphroditic sac. In a well stained specimen, it will be possible to see the uterus entering the proximal end of the hermaphroditic sac. There may be visible eggs within the sac as well. If the structure is a cirrus sac, the uterus will be seen to have an opening to the exterior in common with it. Figures 4-1 to 4-3 will serve as guides to the identification of trematode organs.
Key to the Neotropical freshwater fish trematodes
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites 123
I. Anterior attachment organ a rhynchus; mouth ventral; gut saccular .............................................................................................. Bucephalidae A. Rhynchus oval, without projections ................................................................................................................................ Bellumcorpus (Fig. 4-4) B. Rhynchus with cap, opening subterminal ................................................................................................................................... Pararhipidocotyle C. Rhynchus plug or funnel-shaped. 1. Mouth in anterior third of body; gut long ............................................................................................................ Paurorhynchus (Fig. 4-5) 2. Mouth in middle third of body; gut short .............................................................................................................Prosorhynchus (Fig. 4-6) D. Rhynchus sucker-like ................................................................................................................................ Glandulorhynchus (Figs. 4-91 & 4-92) II. Anterior attachment organ a sucker (when present); mouth anterior, terminal or subterminal; gut divided into two crura. A. Oral sucker absent; parasites of circulatory system .................. Sanguinicolidae ................................................... Sanguinicola (Fig. 4-32) B. Oral sucker present; ventral sucker (acetabulum) absent. 1. Body divided into slender anterior and swollen posterior portions; parasites of subcutaneous tissues .......................................... ....................................................................................................... Didymozoidae .......................................... Brasicystis (Figs. 4-3 & 4-47) 2. Body undivided; parasites of digestive tract ...................................................................................................................... Angiodictyidae a. Body without posterior projections; cirrus sac small ......................................................................................... Curumai (Fig. 4-44) b. Body with posterior projections; cirrus sac absent. 1) Body with 4 posterior projections; esophageal bulb absent ................................................................... Denticauda (Fig. 4-45) 2) Body with 2 posterior projections; esophageal bulb present .......................................................... Pseudoparabaris (Fig. 4-46) C. Both suckers present; acetabulum at or near posterior extremity ......................................................................................... Paramphistomata 1. Acetabulum subterminal, with or without horizontal ridges on floor. a. Acetabulum subterminal, with ridges on floor. 1) One testis present ........................................................................................................................................................ Zonocotylidae a) Vitelline glands compact, subspherical .................................................................................................. Zonocotyle (Fig. 4-41) b) Vitelline glands compact, V-shaped .................................................................................................. Zonocotyloides (Fig. 4-42) 2) Two testes present .............................................. Cladorchiidae ................... Dadayius (Figs.4-28, 4-65 A-B, 4-73 to 4-76 & 4-84) b. Acetabulum without ridges on floor. 1) One testis present ................................................................................................................................... Pseudodiplodiscus (Fig. 4-29) 2) Two testes present.
124 ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
a) Oral diverticula absent; testes tandem..............................................................................................Travassosinia (Fig. 4-27) b) Oral diverticula absent; testes parallel .......................................................................................... Micramphistoma (Fig. 4-95) c) Oral diverticula small, within wall of oral sucker. (1) Anterior extremity with collar-like expansion. (a) Testes parallel ................................................................................................................................... Kalitrema (Fig. 4-39) (b) Testes tandem, compact ..................................................................................................... Pronamphistoma (Fig. 4-96) (c) Testes tandem, lobate ......................................................................................................... Anavilhanatrema (Fig. 4-97) (2) Anterior extremity without collar-like expansion. (a) Vitellline glands compact ....................................................................................................... Colocladorchis (Fig. 4-40) (b) Vitelline glands follicular .........................................................................................Pseudocladorchis (Figs. 4-30, 4-62) d) Oral diverticula large, external to wall of oral sucker. 1) Collar-like expansion present. a) Testes diagonal, subspherical .................................................................................................. Curimatrema (Fig. 4-64) b) Testes tandem, lobate ...................................................................................................... Gammamphistoma (Fig. 4-57) 2) Collar-like expansion absent. a) Tegument papillate ventrally. (1) Five pairs of muscular puckers present laterally ...... Annelamphistoma (Figs. 4-67 A-C, 4-77 to 4-79, 4-89) (2) One pair of muscular puckers present near oral sucker. ...................................... Inpamphistoma (Figs. 4-66) b) Tegument smooth. (1) Testes parallel ................................................................................................................... Betamphistoma (Fig. 4-55) (2) Testes tandem. (a) Large genital sucker present ............................................................................... Pacudistoma (Fig. 4-60 A-C) (b) Acetabulum with papillae .................................................................................... Myleustrema (Fig. 4-59 A-B) (c) Body rim folded ventrally ........................................................................... Alphamphistoma (Fig. 4-61 A-B) (d) Acetabulum with posterior notch on rim ................................................... Zetamphistoma (Fig. 4-63 A-B) (e) Vitellaria extensive; testes large, lobate ...............................................................Deltamphistoma (Fig. 4-56) (f) Vitellaria less extensive; testes small, spherical .............................................. Doradamphistoma (Fig. 4-99) D. Both suckers present; acetabulum not near posterior extremity. 1. Nine testes present ........................................................................... Cryptogonimidae ......................................... Iheringtrema (Fig. 4-22)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites 125
2. One testis present; hermaphroditic bursa present ............................................................................................................... Haploporidae a. Crura fused together forming single bi-lobed sac ............................................................................................................... Unicoelium b. Crura short, not reaching level of testis. 1) Acetabulum pre-equatorial ........................................................................................................ Chalcinotrema (Figs. 4-26 & 4-33) 2) Acetabulum post-equatorial .................................................................................................................. Lecithobotrioides (Fig. 4-94) c. Crura longer reaching to level of testis. 1) Vitelline follicles extensive ..................................................................................................................... Lecithobotrioides (Fig. 4-31) 2) Vitelline follicles of limited extent.. (a) Testis elongate ................................................................................................................................. Megacoelium (Fig. 4-24 A-B) (b) Testis subspherical ...................................................................................................... Saccocoelioides (Figs. 4-34, 4-35 & 4-43) d. Crura long, far surpassing testis posteriorly. 1) Hermaphroditic bursa small .................................................................................................................. Paralecithobotrys (Fig. 4-36) 2) Hermaphroditic bursa large ......................................................................................................................... Rondotrema (Fig. 4-93) 3. One testis present; cirrus sac present .................................................................................................................................... Monorchiidae a. Cirrus sac nearly half as long as body .............................................................................. Genolopa magnacirrus (Figs. 4-70 & 4-72) b. Cirrus sac small, barely surpassing acetabulum. 1) Testis near posterior extremity .......................................................................................... Sphericomonorchis spinulosus (Fig. 4-69) 2) Testis far from posterior extremity .......................................................................... Paraproctotrema delicata (Figs. 4-68 & 4-71) 4. Two testes present; cirrus sac present or absent. a. Ovary posterior to testes. 1) Vitelline glands posterior to ovary. a) Vitelline glands near posterior extremity ............................................................................................................. Halipegidae (1) Vitelline glands of large follicles grouped together into two masses ........................................ Halipegus (Fig. 4-21) (2) Vitelline follicles smaller, in two groups .......................................................................................................... Gonocercella b) Vitelline glands anterior to acetabulum ......................................................................................................... Fellodistomidae (1) Testes intercecal .................................................................................................................................... Antorchis (Fig. 4-13) (2) Testes extracecal ....................................................................................................................................... Bacciger (Fig. 4-98) b. Ovary between testes. 1) Mouth surrounded by papillae .......................................... Cryptogonimidae ............................. Palaeocryptogonimus (Fig. 4-23)
126 ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
2) Mouth simple ........................................................................ Callodistomidae ......................................... Prosthenhystera (Fig. 4-7) c. Ovary anterior to testes. 1) Oral sucker provided with spines. a) Vitelline glands lateral to acetabulum ...................... Heterophyidae .................................................... Parspina (Fig. 4-20) b) Vitelline glands posterior to acetabulum ................. Acanthostomidae ..................................... Acanthostomum (Fig. 4-1) 2) Oral sucker provided with spinous collar ....................... Echinostomatidae ................................... Caballerotrema (Fig. 4-16) 3) Oral sucker with membranous extensions ..................... Allocreadiidae. a) Oral sucker with lobes ....................................................................................................................... Crepidostomum (Fig. 4-10) b) Oral sucker with cap-like structure ..................................................................................................... Creptotrema (Fig. 4-11) 4) Oral sucker simple. a) Vitelline glands consisting of two compact masses in mid-body region .................................................. Gorgoderidae (1) Vitelline masses elongate ................................................................................................................. Dendrorchis (Fig. 4-19) (2) Vitelline masses smaller than testes ........................................................................................ Amazonadistoma (Fig. 4-2) (3) Vitelline masses larger than testes ......................................................................................... Phyllodistomoides (Fig. 4-25) b) Vitelline glands consisting of follicles in limited fields posterior to acetabulum. (1) Testes near posterior extremity; suckers subequal. (a) Prepharynx long ............................................... Opisthorchiidae .............................................. Witenbergia (Fig. 4-8) (b) Prepharynx short ............................................. Allocreadiidae ............................................ Procaudotestis (Fig. 4-14) (2) Testes near posterior extremity; acetabulum much smaller than oral sucker .............................................................. ................................................................................... Opisthorchiidae ................................................ Cladocystis (Fig. 4-9) (3) Testes in posterior half of body; acetabulum much larger than oral sucker; pharynx large, with finger-like anterior extensions ................................................. Fellodistomidae ........................................... Kalipharynx (Fig. 4-15) c) Vitelline glands consisting of follicles which are large and limited to two fields lateral to acetabulum ...................... .......................................................................................... Allocreadiidae ......................................... Magnivitellinum (Fig. 4-17) d) Vitelline glands consisting of follicles that are small and extensive, especially in posterior half of body. (1) Lateral vitelline fields uniting anteriorly and posteriorly to acetabulum ...................................................................... ................................................................................... Allocreadiidae ................................................. Crassicutis (Fig. 4-18) (2) Lateral vitelline fields not uniting anteriorly ...... Lepocreadidae ................................................Eocreadium (Fig. 4-12)
Clave para identificación de Tremátodos, parásitos de peces Neotropicales
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites 127
I. Organo de fijación anterior, rincodeo; boca ventral; intestino en forma de saco ..................................................................... Bucephalidae A. Rincodeo oval, sin proyecciones .....................................................................................................................................Bellumcorpus (Fig. 4 -4) B. Rincodeo con tapa, abertura subterminal .................................................................................................................................. Pararhipidocotyle C. Rincodeo en forma de tapón o embudo. 1. Boca en el tercio anterior del cuerpo; intestino largo ......................................................................................... Paurorhynchus (Fig. 4-5) 2. Boca en el tercio central del cuerpo; intestino corto ...........................................................................................Prosorhynchus (Fig. 4-6) D. Rincodeo en forma de ventosa .............................................................................................................. Glandulorhynchus (Figs. 4-91 & 4-92) II. Organo de fijación anterior, una ventosa (cuando presente); boca anterior, terminal o subterminal; intestino dividido en 2 ramales A. Ventosa oral ausente; parásitos del sistema circulatorio ................. Sanguinicolidae ............................................. Sanguinicola (Fig. 4-32) B. Ventosa oral presente; ventosa ventral (acetábulo) ausente. 1. Cuerpo dividido en porción anterior delgada y porción posterior hinchada; parásitos de tejidos subcutáneos. ............................ .............................................................................................................. Didymozoidae ................................... Brasicystis (Figs. 4-3 & 4-47) 2. Cuerpo no dividido; parásitos del tracto digestivo ........................................................................................................... Angiodictyidae a. Cuerpo sin proyecciones posteriores; saco del cirro pequeño ......................................................................... Curumai (Fig. 4-44) b. Cuerpo con proyecciones posteriores; saco del cirro ausente. 1) Cuerpo con 4 proyecciones posteriores; bulbo esofágico ausente ....................................................... Denticauda (Fig. 4-45) 2) Cuerpo con 2 proyecciones posteriores; bulbo esofágico presente ............................................... Pseudoparabaris (Fig. 4-46) C. Ambas ventosas presentes; acetábulo en o cerca de la extremidad posterior ............................................................... Paramphistomata 1. Acetábulo subterminal, con o sin surcos horizontales en el piso. a. Acetábulo subterminal, con surcos en el piso. 1) Un teste presente ........................................................................................................................................................ Zonocotylidae (a) Glándulas vitelinas compactas, subesféricas ......................................................................................... Zonocotyle (Fig. 4-41) (b) Glándulas vitelinas compactas, forma de V ................................................................................... Zonocotyloides (Fig. 4-42) 2) Dos testes presentes ............................................... Orchiidae ...................... Dadayius (Figs. 4-28, 4-65 A-B, 4-73 a 4-76 & 4-84) b. Acetábulo sin surcos en el piso. 1) Um teste presente ................................................................................................................................... Pseudodiplodiscus (Fig. 4-29) 2) Dos testes presentes.
128 ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
(a) Divertículo oral ausentes; testes uno delante del otro .................................................................. Travassosinia (Fig. 4-27) (b) Divertículo oral ausentes; testes paralelos ................................................................................... Micramphistoma (Fig. 4-95) (c) Divertículo oral pequeño, dentro de la pared de la ventosa oral (1) Extremidad anterior con expansión en forma de collar. a) Testes paralelos ................................................................................................................................ Kalitrema (Fig. 4-39) b) Testes uno delante del otro, compactos .......................................................................... Pronamphistoma (Fig. 4-96) c) Testes uno delante del otro, lobulados ...........................................................................Anavilhanatrema (Fig. 4-97) (2) Extremidad anterior sin expansión en forma de collar a) Glándulas vitelinas compactas .............................................................................................. Colocladorchis (Fig. 4-40) b) Glándulas vitelinas foliculares ................................................................................Pseudocladorchis (Figs. 4-30, 4-62) (d) Divertículos orales grandes, externo a la pared de la ventosa oral. (1) Expansión en forma de collar presente. a) Testes diagonal, sub-esférico .................................................................................................. Curimatrema (Fig. 4-64) b) Testes uno detrás del otro, lobulado ............................................................................ Gammamphistoma (Fig. 4-57) (2) Expansión en forma de collar ausente. a) Tegumento con papilas ventrales. 1. Cinco pares de pliegues musculares laterales ............ Annelamphistoma (Figs. 4-67 A-C, 4-77 a 4-79, 4-89) 2. Un par de pliegues musculares cerca de la ventosa oral ......................................... Inpamphistoma (Fig. 4-66) b) Tegumento liso. 1. Testes paralelos ................................................................................................................ Betamphistoma (Fig. 4-55) 2. Testes uno detrás del otro. (a) Ventosa genital grande presente ........................................................................ Pacudistoma (Fig. 4-60 A-C) (b) Acetábulo con papilas .......................................................................................... Myleustrema (Fig. 4-59 A-B) (c) Borde del cuerpo doblado ventralmente ................................................. Alphamphistoma (Fig. 4-61 A-B) (d) Acetábulo con ranura posterior en el borde .............................................. Zetamphistoma (Fig. 4-63 A-B) (e) Vitelaria extensa; testes grandes, lobulados ....................................................... Deltamphistoma (Fig. 4-56) (f) Vitellaria menos extensa; testes pequeños, esféricos .................................... Doradamphistoma (Fig. 4-99) D. Ambas ventosas presentes; acetábulo alejado de la extremidad posterior. 1. Nueve testes presentes ..................................................................... Cryptogonimidae ......................................... Iheringtrema (Fig. 4-22)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites 129
2. Un teste presente; bursa hermafrodita presente .................................................................................................................. Haploporidae a. Ramales intestinales fusionados formando un único saco bilobado ................................................................................ Unicoelium b. Ramos intestinales cortos, no alcanza el nivel de los testes. (1) Acetábulo pre-ecuatorial ............................................................................................................ Chalcinotrema (Figs. 4-26 & 4-33) (2) Acetábulo post-ecuatorial ...................................................................................................................... Lecithobotrioides (Fig. 4-94) c. Ramos intestinales largos alcanzando el nivel de los testes. (1) Folículos vitelinos extensos ................................................................................................................... Lecithobotrioides (Fig. 4-31) (2) Folículos vitelinos con extensión limitada. (a) Teste alargado .................................................................................................................................. Megacoelium (Fig. 4-24 A-B) (b) Teste sub esférico ....................................................................................................... Saccocoelioides (Figs. 4-34, 4-35 & 4-43) d. Ramos intestinales largos, pasando con largueza los testes posteriomente. 1) Bursa hermafrodita pequeña ................................................................................................................. Paralecithobotrys (Fig. 4-36) 2) Bursa hermafrodita grande ........................................................................................................................... Rondotrema (Fig. 4-93) 3. Un teste presente, saco del cirro presente ............................................................................................................................ Monorchiidae a. Saco del cirro aproximadamente la mitad del largo del cuerpo .................................. Genolopa magnacirrus (Figs. 4-70 & 4-72) b. Cirro pequeño, apenas pasando el acetábulo. 1) Teste cerca de la extremidad posterior ............................................................................ Sphericomonorchis spinulosus (Fig. 4-69) 2) Teste alejado de la extremidad posterior ................................................................ Paraproctotrema delicata (Figs. 4-68 & 4-71) 4. Dos testes presentes; saco del cirro presente o ausente. a. Ovario posterior a los testes. 1) Glándulas vitelinas posteriores al ovario. a) Glándulas vitelinas cerca de la extremidad posterior .................................................................................................. Halipegidae (1) Glándulas vitelinas de grandes folículos agrupadas en dos masas ............................................ Halipegus (Fig. 4-21) (2) Folículos vitelinos más pequeños, en dos grupos .......................................................................................... Gonocercella b) Glándulas vitelinas anteriores al acetábulo ................................................................................................... Fellodistomidae (1) Testes intercecales .................................................................................................................................. Antorchis (Fig.4-13) (2) Testes extracecales ................................................................................................................................... Bacciger (Fig. 4-98) b. Ovario entre los testes. 1) Boca rodeada por papilas ................................................... Cryptogonimidae ............................. Palaeocryptogonimus (Fig. 4-23)
130 ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
2) Boca simple ........................................................................... Callodistomidae ......................................... Prosthenhystera (Fig. 4-7) c. Ovario anterior a los testes. 1) Ventosa oral provista con espinas. a) Glándulas vitelinas laterales al acetábulo ................ Heterophyidae .................................................... Parspina (Fig. 4-20) b) Glándulas vitelinas posteriores al acetábulo ........... Acanthostomidae ..................................... Acanthostomum (Fig. 4-1) 2) Ventosa oral provista de collar espinoso ........................ Echinostomatidae ................................... Caballerotrema (Fig. 4-16) 3) Ventosa oral con extensiones membranosas ................. Allocreadiidae. a) Ventosa oral con lóbulos .................................................................................................................. Crepidostomum (Fig. 4-10) b) Ventosa oral con estructura parecida a gorra .................................................................................... Creptotrema (Fig. 4-11) 4) Ventosa oral simple. a) Glándulas vitelinas consisten de dos masas compactas en región central ................................................ Gorgoderidae (1) Masas vitelinas alongadas ................................................................................................................ Dendrorchis (Fig. 4-19) (2) Masas vitellinas menores que los testes ................................................................................. Amazonadistoma (Fig. 4-2) (3) Masas vitelinas mayores que los testes ................................................................................. Phyllodistomoides (Fig. 4-25) b) Glándulas vitelinas consisten de folículos en áreas limitadas posteriores al acetábulo. (1) Testes cerca de la extremidad posterior. Ventosas desiguales. (a) Prefaringe larga ................................................ Opisthorchiidae .............................................. Witenbergia (Fig. 4-8) (b) Prefaringe corta ................................................ Allocreadiidae ............................................ Procaudotestis (Fig. 4-14) (2) Testes cerca de la extremidad posterior; acetábulo mucho más pequeño que la ventosa oral ................................ ................................................................................... Opisthorchiidae ................................................ Cladocystis (Fig. 4-9) (3) Testes en la mitad posterior del cuerpo; acetábulo más largo que la ventosa oral; faringe grande, con extensiones anteriores similares a dedos .................................. Fellodistomidae ........................................... Kalipharynx (Fig. 4-15) c) Glándulas vitelinas consisten de folículos grandes y limitados a dos áreas laterales al acetábulo ................................. .......................................................................................... Allocreadiidae ......................................... Magnivitellinum (Fig. 4-17) d) Glándulas vitelinas consisten de folículos pequeños y extensos, especialmente en la mitad posterior del cuerpo. (1) Áreas laterales vitelinas unidas anterior y posteriormente al acetábulo ........................................................................ ................................................................................... Allocreadiidae ................................................. Crassicutis (Fig. 4-18) (2) Áreas laterales vitelinas no unidas anteriormente .... Lepocreadidae ................................................Eocreadium (Fig. 4-12)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
131
VII. Checklist of Trematoda (Digenea) from Neotropical freshwater fishes Measurements are given in millimeters except for the circumoral spines and eggs which are in micrometers (µm). Abreviations used are: A = acetabulum; B = body size; CS = cirrus sac; E = esophagus; EB = esophagus bulb; FB = forebody; G = gut; GS = genital sac; HB = hindbody; HC = head collar; HS = hermaphroditic sac; Mir = miracidia; OS = oral sucker; Ph = pharynx; Rhy = rhynchus. Acanthostomidae POCHE, 1926 Body long and cylindrical. Oral sucker well developed; circumoral spines normally present; pharynx present. Acetabulum small. Cirrus sac absent. Ovary anterior to two testes. Excretory vesicle Y-shaped. Intestinal tract of marine and freshwater fish and reptiles. Acanthostostomum LOOSS, 1899 Oral sucker terminal, funnel-shaped; circumoral spines present; prepharynx long; esophagus short; intestinal crura open through anal pores. Testes near posterior extremity. Genital pore preacetabular. Intestinal tract of fish and aquatic reptiles. A. gnerii SZIDAT, 1954: Rhamdia quelen and R. rogersi: Costa Rica & Argentina. (Fig. 4-1). B = 1.6-2.0; 21-23 circumoral spines; OS = 0.25 x 0.20; Ph = 0.12 x 0.10; Vitelline glands large, 7-9 per side; Egg = 29-37 x 14-16 µm. Allocreadiidae (LOOSS, 1902) STOSSICH, 1903 Oral sucker subterminal, sometimes with projections. Acetabulum simple, pre-equatorial. Prepharynx, pharynx and esophagus usually present; ceca usually long. Cirrus sac present or absent. Testes tandem, postequatorial. Ovary pretesticular. Genital pore median or submedian. Excretory vesicle short. Intestine of fish, amphibia and aquatic reptiles. Crassicutis MANTER, 1936 Body elongate, flattened; tegument thickened. Oral sucker large; esophagus short; ceca long. Acetabulum smaller than oral sucker. Cirrus sac absent. Genital pore median, just anterior to acetabulum. Ovary submedian. Seminal receptacle present. Uterus with few large eggs, Intestine of freshwater and marine fish. C. chuscoi (PEARSE, 1920) PETERS, 1957: Aequidens pulcher: South America. B = 0.56 x 0.29. C. cichlasomae MANTER, 1936: Cichlasoma mayorum: México (Yucatan), Costa Rica and Cuba (Fig. 4-18). B = 0.88-1.3 x 0.48-0.83; Egg = 110-114 x 64-66 µm. C. opisthoseminis BRAVO-HOLLIS & ARROYO, 1961: Cichlasoma sp.: Costa Rica. B = 3.3 x 1.6; Egg = 120 x 82 µm. C. wallini (PEARSE, 1920) PETERS, 1957: Crenicichla geayi: Venezuela. B = 1.55 x 0.74; Egg = 118-130 x 66-71 µm. Crepidostomum BRAUN, 1900. Oral sucker with 6 lobes; prepharynx present; ceca long. Cirrus sac elongate. Ovary submedian; seminal receptacle present. Intestinal tract of freshwater fishes and reptiles.
132
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
C. macrorchis SZIDAT, 1954: Roeboides bonariensis: Argentina. (Fig. 4-10). B = 1.5 x 0.5; OS = 0.18 x 0.20; A = 0.15; Ph = 0.07 x 0.05; Egg = 55 x 29 µm. C. platense SZIDAT, 1954: Pimelodus clarias and Iheringichthys labrosus: Argentina. B = 0.8 x 0.2; OS = 0.12; A = 0.12; Egg = 75 x 39 µm. Creptotrema TRAVASSOS, ARTIGAS & PEREIRA, 1928. Oral sucker large, with two dorsal lobes. Pharynx present; esophagus short; ceca long. Acetabulum similar in size to oral sucker; pre-equatorial. Cirrus sac long. Genital pore medial, near bifurcation. Ovary between testes and acetabulum. Vitelline follicles large; lateral, extending from pharynx to posterior extremity. Eggs few, large. Excretory vesicle tubular. Intestine of freshwater fish. C. creptotrema TRAVASSOS, ARTIGAS & PEREIRA, 1928: Leporinus elongatus: Brazil. (Fig. 4-11). B = 0.47 x 0.54 x 0.24-0.28; OS = 0.11-0.13; A = 0.16; Ph = 0.04; Egg = 72-78 x 44-50 µm. C. díspar TEXEIRA DE FREITAS, 1941: Triportheus paranensis: Brazil. B = 1.8 x 0.67; OS = 0.19-0.23; A = 0.26 x 0.27; Ph = 0.06; Egg = 80 x 46 µm. Magnivitellinum KLOSS, 1966. Oral sucker small; esophagus and ceca short. Acetabulum subequal to oral sucker. Testes diagonal; in middle third of body. Cirrus sac small, curved. Genital pore median, preacetabular. Ovary between testes and acetabulum. Vitelline follicles large; extending length of ceca. Intestine of freshwater fish. M.simplex KLOSS, 1966: Astyanax bimaculatus: Brazil. (Fig. 4-17). B = 2.7-3.5 x 0.74-1.1; OS = 0.20-0.27; A = 0.23-0.30; Ph = 0.086-0.11; Egg = 36-47 x 21-23 µm. Procaudotestis SZIDAT, 1954 Body tapering posteriorly. Oral sucker larger than acetabulum. Genital pore median, preacetabular. Cirrus absent; seminal vesicle large. Reproductive organs in posterior half of body; ovary pretesticular; vitellaria follicular, lateral. Excretory vesicle tubular. Intestine of freshwater fish. P. uruguayensis SZIDAT, 1954: Loricaria vetula: Uruguay (Fig. 4-14). B = 2.2 x 0.65; OS = 0.25 x 0.30; A = 0.22 x 0.25; Ph = 0.11 x 0.10; Egg = 80 x 92 x 40-44 µm. Angiodictyidae LOOSS, 1902. Oral sucker with or without lumenal diverticula; esophagus and esophageal bulb present; ceca long. Cirrus sac usually absent. Genital pore median, near anterior extremity. Ovary post-testicular. Lymphatic ( = circulatory) system present in association with ceca. Excretory system reticulate. Eggs large. Intestine of fish and turtles. Curumai TRAVASSOS, 1961 Body flattened; without posterior projections. Oral sucker small; pharynx absent; esophagus short; ceca long. Acetabulum absent. Cirrus sac small, near bifurcation. Testes large, irregular, diagonal; pre-equatorial. Genital pore anterior to bifurcation. Ovary spherical, post-testicular. Vitelline follicles forming “V” from cecal ends to posterior testis. Excretory pore subterminal. Intestine of fish.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
133
C. curumai TRAVASSOS, 1961: Myleus sp.: Brazil (Fig. 4-44). B = 6.5-8.0 x 1.0-2.0; OS = 0.15-0.19 x 0.12-0.16; E = 0.43-0.78; Egg = 100-104 x 64-68 µm. Denticauda FUKUI, 1929 Body with 4 projections and median notch posteriorly. Oral sucker simple; esophageal bulb absent; ceca medium long. Testes tandem. Cirrus sac absent. Genital sucker present; pore postbifurcal. Ovary median, posttesticular. Excretory pore in median notch. Intestine of fish. D. quadrangulata (DADAY, 1907): Colossoma bidens: Brazil. (Fig. 4-45). B = 1.7 x 0.65; OS = 0.13-0.14; Egg = 60 x 50 µm. Pseudoparabaris YAMAGUTI, 1958 Body with posterior median notch. Oral sucker simple, terminal; esophageal bulb present; ceca medium long. Testes tandem, lobate. Seminal vesicle long; cirrus sac absent. Genital pore at level of bifurcation. Ovary median; vitelline follicles forming “V” with apex near ovary. Intestine of freshwater fish. P. parabaris (TRAVASSOS, 1922): Colossoma bidens: Brazil. (Fig. 4-46). B = 10.5 x 4.0; OS = 0.20; Ph = 0.29 x 0.27; Egg = 134 x 78µm. Bucephalidae POCHE, 1907 Anterior attachment organ a rhynchus. Oral sucker and acetabulum absent. Pharynx and esophagus present; mouth ventral; gut saccular or tubular. Cirrus sac near posterior extremity; genital pore terminal or subterminal. Vitelline follicles usually anterior. Position of testes and ovary variable. Intestine of fish and amphibians. Bellumcorpus KOHN, 1962 Body elongate; rhynchus oval, without projections. Pharynx small, in middle of body; gut large, directed posteriorly. Testes entire or indented, diagonal, post-equatorial. Cirrus sac small; genital pore terminal. Ovary opposite posterior testis; vitelline follicles in 4 – 5 lateral groups. Excretory vesicle long, tubular. Stomach of freshwater fish. B. major KOHN, 1962: Salminus hilarii: Brazil. (Fig. 4-4). B = 3.54-7.36 x 1.082.25; Rhy = 0.42-0.63 x 0.18-0.28; Ph = 0.19-0.31 x 0.18-0.28; G = 1.372.74 x 0.42-1.08; CS = 0.58-1.66 x 0.22 0.33; Egg = 22-26 x 18 µm. Glandulorhynchus THATCHER, 1999 Body stout, flattened, unspined; rhynchus sucker-like, provided with numerous glands. Pharynx small, near equator or posterior thereto; gut saccular, mostly posterior to pharynx. Testes two, spherical, diagonal, posterior to pharynx; cirrus sac small, at posterior extremity; genital pore subterminal. Ovary spherical, anterior to pharynx; vitellaria in grape-like clusters extending anterolaterally in anterior half of body; uterus tubular forming massive uterine reservoir on side of body; eggs small, numerous. Intestinal parasites of freshwater fishes. Type species: Glandulorhynchus turgidus THATCHER, 1999 G. turgidus THATCHER, 1999: Hydrolycus sp.: Rondonia State, Brazil. (Figs. 4-91 & 4-92). B = 5.0-7.3 x 2.5-3.5; Rhy = 0.56-0.81 x 0.54-0.81; Ph = 0.21-0.31
134
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
x 0.25- 0.35; G = 0.60-1.9 x 0.46-0.62; CS = 1.2-1.5 x 0.27-0.42; Egg = 1820 x 9-11 µm. Pararhipidocotyle KOHN, 1970 Body elongate, spinous. Rhynchus with cap; opening subterminal. Mouth in middle of body; gut directed posteriorly. Testes parallel or diagonal, in middle third of body. Cirrus sac elongate; genital pore ventral. Ovary posttesticular. Vitelline follicles prececal. Excretory pore terminal. Intestine of freshwater fish. P. jeffersoni KOHN, 1970: Salminus maxillosus: Brazil. B = 0.90-1.04 x 0.22-0.29; Rhy = 0.11-0.17 x 0.11-0.16; Ph = 0.054-0.063 x 0.57-0.060; E = 0.0450.075; G = 0.13-0.14 x 0.078-0.087; CS = 0.27-0.32 x 0.06-0.07; Egg = 3040 x 15-21 µm. Paurorhynchus DICKERMAN, 1954 Body subcylindrical. Rhynchus small, funnel-shaped. Mouth in anterior third; gut long, directed posteriorly. Testes large, lobate, diagonal, postequatorial. Cirrus sac small; genital atrium small; pore ventral. Ovary lobate; opposite anterior testis. Vitellaria laterial, acinous. Excretory vesicle long. Gall bladder of freshwater fish. P. schubarti KOHN, 1963: Salminus maxillosus: Brazil. (Fig. 4-5). B = 7.73 x 2.8; Rhy = 0.50 x 0.29; Ph = 0.29-0.32; G = 2.13-0.67; CS = 2.4-0.33; Egg = not found. Prosorhynchus ODHNER, 1905 Body rounded to elongate; spinous. Rhynchus plug or funnel-shaped, without projections. Mouth in middle third; gut short. Testes tandem or diagonal, in middle third or more posterior. Genital pore ventral or terminal. Intestine of freshwater and marine fish. P. costai TRAVASSOS, ARTIGAS & PEREIRA, 1928: Acestrorhamphus sp., Astyanax fasciatus and Salminus hilarii: Brazil (Fig. 4-6). B = 1.0 x 0.2; Rhy = 0.13 x 0.12; Ph = 0.046; G = 0.15; Egg = 42-46 x 15 µm. P. piranhus THATCHER, 1999: Serrasalmus rhombeus: Rondonia State, Brazil. (Fig. 4-90). B = 0.78-1.1 x 0.42-0.75; Rhy = 66-119 x 88-132 µm; Ph = 66-83 x 66-83 µm; G = 88-198 x 73-110 µm; CS = 0.18-0.49 x 0.07-0.11; Egg = 44-55 x 22-31 µm. Callodistomidae POCHE, 1926 Body rounded or elongate. Oral sucker, pharynx and acetabulum present. Ceca of variable length. Cirrus sac and genital pore preacetabular. Two testes and ovary present; of variable position. Vitellaria lateral. Uterus extensive; eggs small, numerous. Intestine and other organs of fish. Prosthenhystera TRAVASSOS, 1920 Body elliptical to oval. Oral sucker and pharynx small; esophagus short; ceca long. Acetabulum small, pre-equatorial. Testes parallel; in middle third. Cirrus sac elliptical, postbifurcal. Genital pore just postbifurcal. Ovary between acetabulum and left testis. Vitellaria in lateral groups. Gall bladder of freshwater fish.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
135
P. obesa (DIESING, 1850) Salminus, Leporinus, Boulengerella, Acestrorhamphus, Galeocharax, Pseudopimelodus, Pimelodus and Astyanax: Mexico, Colombia & Brazil. (Fig. 4-7). B = 14 x 8; OS = 1.0-1.2; A = 0.95-1.3; Ph = 0.34; E = 1.3; Egg = 63-70 x 35-49 µm. Cryptogonimidae CIUREA, 1933 Body small, oval or elongate. Oral sucker sometimes provided with circumoral spines; pharynx present; esophagus short; ceca variable. Acetabulum small, embedded. Testes single or multiple; post-equatorial. Cirrus sac frequently absent. Ovary usually lobate. Vitellaria variable. Excretory vesicle V or Y-shaped. Intestine of freshwater and marine fish and aquatic reptiles. Iheringtrema TRAVASSOS, 1948 Body small, scaled. Oral sucker large; pharynx present; esophagus short: ceca thin, medium long. Acetabulum small, within genital atrium; in anterior quarter. Testes 9 (4 on one side and 5 on the other); in posterior half. Seminal vesicle long, sigmoid, postacetabular; cirrus sac absent. Genital pore median; just preacetabular. Ovary of 3 notched lobes; pretesticular. Seminal receptacle present. Vitellaria extensive. Intestine of fish. I. iheringi TRAVASSOS, 1948: Pseudopimelodus roosevelti: Brazil. (Fig. 4-22). B = 3.5 x 4.0 x 1.0-1.2; OS = 0,38-0.39; A = 0.17-0.18; Ph = 0.15-0.18; Egg = 38 x 22 µm. Palaeocryptogonimus SZIDAT, 1954 Body tapered posteriorly; scaled anteriorly. Oral sucker terminal, retractile, without spines; prepharynx present; pharynx large; esophagus short; ceca medium long. Acetabulum near anterior extremity; covered by circular pad. Testes nearly parallel; in midregion. Seminal vesicle tripartite; postacetabular. Cirrus sac absent. Genital pore between acetabulum and circular pad. Ovary median, pretesticular. Vitellaria of large follicles; lateral in acetabular region. Seminal receptacle present. Excretory vesicle. Y-shaped, pore terminal. Stomach and intestine of fish. P. claviformis SZIDAT, 1954; Rhinodoras dorbignyi: Argentina. (Fig. 4-23). B = 1.25 x 0.45; OS = 0.12; Ph = 0.09 x 0.06; Egg = not found. Didymozoidae POCHE, 1907 Hemaphroditic or partly gonochoristic. Usually encysted in pairs in tissue. Body form variable; frequently thread-like, or with slender forebody and expanded hindbody. Pharynx and acetabulum present or absent. Reproductive organs usually elongate, tubular, winding. Uterus extensive; eggs small, numerous. Excretory vesicle long, pore terminal. Tissues of marine, and rarely freshwater fish. Brasicystis THATCHER, 1979 Hermaphroditic; encysted in pairs in subcutaneous tissue. Body divided into slender forebody and expanded hindbody; hindbody laterally flattened, flexed ventrally in anterior part and curved ventro-laterally in posterior part. Oral sucker, pharynx and esophagus present; ceca long. Acetabulum absent. Testis single, slender, extends to posterior extremity.
136
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Seminal vesicle present; cirrus sac absent. Genital pore lateral to oral sucker. Ovary long, tubular; shorter than testis. Vitelline gland single, tubular, extends to posterior extremity on dorsal side. Uterus extensive, eggs small. Subcutaneous cysts in freshwater fish. B. bennetti THATCHER, 1979: Plagioscion squamosissimus: Brazil (Figs. 4-3 & 4-47). FB = 1.2-2.8 x 0.10-0.22; HB = 9.5-16 x 1.0-1.2; OS = 0.04-0.06 x 0.020.03; Ph = 0.03-0.05; Egg = 14-16 x 8-9 µm. Echinostomatidae POCHE, 1926 Body elongate, normally with head collar bearing 1-2 rows of spines; tegument spined or scaled. Oral sucker, prepharynx and esophagus present; ceca long. Acetabulum large; in anterior or middle third. Testes tandem or diagonal. Genital pore median; preacetabular. Ovary pretesticular; seminal receptacle absent. Vitelline follicles lateral and posterior. Eggs large. Excretory vesicle Y-shaped. Intestine of reptiles, birds, mammals and rarely fish. Caballerotrema PRUDHOE, 1960, THATCHER, 1980 Body long, cylindrical. Head collar wide and flattened, with single row of spines; ventral lobe (on each side) with 4 spines in 2 pairs. Oral sucker small, with membranous extension antero-dorsally and laterally; esophagus long. Acetabulum large, anterior. Cirrus sac large; extending posterior to acetabulum; external seminal vesicle present. Gonads in midbody. Vitelline follicles dorsolateral from preovarian region to cecal ends. Intestine of freshwater fish. C. arapaimense THATCHER, 1980: Arapaima gigas: Brazil (Amazonia). (Fig. 4-16). B = 3,8-8.3 x 0.62-0.77; HC = 0.83-1.02; large spines = 84-200 x 27-48 µm; small spines = 67-139 x 18-36 µm ; OS = 0.14-0.30; E = 0.31-0.36; Ph = 0.26-0.36 x 0.11-0.27; A = 0.33-0.87 x 0.29-0.56; CS = 0.47-0.82 x 0.220.42; Egg = 72-83 x 28-58 µm. C. aruanense THATCHER, 1980: Osteoglossum bicirrhosum: Brazil (Amazônia). B = 5,8-9.1 x 0.39-0.62; HC = 0.63-0.88; large spines = 72-98 x 24-32 µm; small spines = 47-65 x 28 µm ; OS = 0.11-0.16; E = 0.30-0.42; Ph = 0.180.22 x 0.12-0.16; A = 0.36-0.45 x 0.31-0.42; CS = 0.74-1.2 x 0.21-0.25; Egg = 70-97 x 43-60 µm. C. brasiliense PRUDHOE, 1960, THATCHER, 1980: Arapaima gigas: Brazil (Amazonia). B = 4.6-11.3 x 0.51-0.74; HC = 0.60-1.0; large spines = 67-90 x 26-47 µm; small spines = 34-60 x 14-35 µm ; OS = 0.11-0.19; E = 0.25-0.45; Ph = 0.19-0.30 x 0.09-0.14; A = 0.29-0.41 x 0.25-0.40; CS = 0.38-0.64 x 0.260.35; Egg = 80-84 x 48-56 µm. Fellodistomidae NICOLL, 1913 Body shape variable. Oral sucker, pharynx and esophagus present; ceca of variable length, sometimes forming ring. Acetabulum medium to large. Testis or testes in posterior half. Cirrus and genital pore usually preacetabular. Ovary variable, usually pretesticular. Vitellaria lateral, variable in form. Intestine of marine and freshwater fish.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
137
Antorchis LINTON, 1911 Body fusiform spinous. Oral sucker large, cup-shaped with notched ventral lip; pharynx small; esophagus long; ceca short. Acetabulum in middle third. Testes parallel, anterolateral to acetabulum. Cirrus sac and genital pore preacetabular. Ovary dorsal or posterior to acetabulum. Vitelline follicles pretesticular, extracecal. Uterus occupying hindbody. Excretory vesicle V or Y-shaped. Intestine of freshwater and marine fish. A. lintoni TRAVASSOS, ARTIGAS & PEREIRA, 1928: Astyanax fasciatus: Brazil. (Fig. 4-13). B = 0.9 x 0.4; OS = 0.15; A = 0.15; Ph = 0.06; Egg = 30 x 15 µm. Bacciger NICOLL, 1914 Body rounded to oval, spinous. Oral sucker ventro-terminal; pharynx well developed; esophagus short; ceca reaching to or slightly beyond testes. Acetabulum equatorial or pre-equatorial. Testes spherical or ovoid, symmetrical or subsymmetrical at postacetabular level. Cirrus sac pyriform to oval or elliptical, preacetabular, enclosing saccular seminal vesicle, prostatic complex and ejaculatory duct. Genital pore median, postbifurcal. Ovary rounded or weakly lobate, inter or post-testicular; seminal receptacle and Laurer’s canal present; vitelline follicles in symmetrical groups outside ceca; uterine coil occupying most of hindbody; Eggs small, numerous. Intestinal parasites of marine and freshwater teleosts. B. pellonae THATCHER, 1992: Pellona castelnaeana: Guaporé River, Rondônia State, Brazil. (Fig. 4-98). B = 0.60-0.74 x 0.35-0.49; A = 50-94 µm; OS = 72-88 x 82-105 µm; CS = 82-116 x 5-82 µm; Eggs = 28-44 x 19-28 µm. Kalipharynx BOEGER & THATCHER, 1984 Body elongate, tapering posteriorly, tegument spinous. Oral sucker subterminal, large, but with weak musculature; pharynx large, strongly muscled, with digitiform processes anteriorly; esophagus short; ceca long. Acetabulum large, shallow; pre-equatorial. Testes diagonal, post-acetabular, postovarian. Cirrus sac long, thin. Genital pore ventro-lateral; between suckers. Vitelline follicles lateral, postacetabular. Uterus in posterior half of body; eggs small, numerous. Excretory pore terminal. Intestine of fish. K. piramboae BOEGER & THATCHER, 1984: Lepidosiren paradoxa: Brazil. (Fig. 415). B = 1.65-3.25 x 0.73-0.88; OS = 0.13-0.20 x 0.23-0.33; Ph = 0.18-0.25 x 0.25-0.30 (with 6 anterior digitiform processes); A = 0.53-0.83; CS = 0.49-0.94 x 0.06-0.10; Egg = 25-40 x 13-20 µm. Gorgoderidae LOOSS, 1901 Body narrowed anteriorly, expanded posteriorly; tegument unspined. Oral sucker present; pharynx often absent; ceca long, may be sinuous, sometimes forming ring. Acetabulum large, projecting. Testes two, or more, postacetabular, parallel or diagonal. Cirrus sac absent. Genital pore medium, between bifurcation and acetabulum. Ovary submedian, postacetabular. Vitellaria double, compact or lobed, postacetabular. Uterus extensive in hindbody; eggs small. Excretory pore terminal. Instestine or urinary bladder of fishes, amphibians and reptiles.
138
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Amazonadistoma THATCHER, 1979 Body cylindrical and tapered anteriorly, rounded and flattened posteriorly; tegument unspined but with muscular corrugations postero-laterally. Oral sucker large; esophagus short; ceca long, with diverticula and microvilli; bifurcation near posterior margin of oral sucker. Acetabulum large, preequatorial. Testes parallel or diagonal, postequatorial. Seminal vesicle small, sinuous. Genital pore and genital sucker between oral sucker and acetabulum. Ovary submedian, pretesticular. Vitelline glands, two parallel masses; pretesticular. Uterus extensive, sinuous; eggs small. Excretory vesicle long, tubular; pore terminal. Intestine of freshwater fish. A. negrensis THATCHER, 1979: Gymnorhamphichthys hypostomus: Brazil. (Fig. 4-2). B = 5.3-6.3 x 2.2-2.6; OS = 0.66-0.76; A = 0.53-0.59; Egg = 30 x 23 µm. Dendrorchis TRAVASSOS, 1926 Body pyriform, flattened. Oral sucker ventro-terminal; bifurcation nearer oral sucker than acetabulum; ceca long. Acetabulum similar in size to oral sucker. Testes diagonal, branched. Cirrus sac small, transverse. Genital pore submedian, between bifurcation and acetabulum. Ovary submedian at level of anterior testis; vitelline glands transversely oval, between acetabulum and ovary. Uterus extensive. Excretory vesicle tubular, pore terminal. Swimbladder of fish. D. neivai TRAVASSOS, 1926; Brycon lundi: Brazil. (Fig. 4-19). B = 6-8 x 4-5; OS = 0.6-0.7; A = 0.67-0.9; E = 0.4-0.8; Egg = 35-53 x 30-38 µm. Phyllodistomoides BROOKS, 1977. Body pyriform, without spines. Oral sucker subterminal; prepharynx absent; pharynx present; esophagus and ceca long. Acetabulum preequatorial. Testes compact, intercecal, postacetabular. Ovary submedian, pretesticular, postacetabular. Vitelline glands lateral to acetabulum. Uterus extensive. Swimbladder of fish. P. ducani BROOKS, 1977: Astyanax sp.: Colombia. (Fig. 4-25). B = 1.7 x 0.85; OS = 0.28-0.34; Ph = 0.96 x 0.11; E = 0.96; A = 0.18 x 0.20; Egg = 46 x 29 µm. Halipegidae POCHE, 1926 Body rounded or elongate, without ecsoma. Oral sucker subterminal; pharynx small; esophagus short; ceca long, sometimes forming ring. Acetabulum large. Testes parallel or diagonal, postacetabular. Seminal vesicle tubular or saccular; hermaphroditic duct short, usually within sac or genital cone; genital atrium near bifurcation. Ovary near posterior extremity; vitelline glands of two masses or several lobes, postovarian. Uterus extensive; eggs sometimes filamented. Excretory branches united anteriorly. Stomach of marine and freshwater fish and amphibians. Gonocercella MANTER, 1940 Body subcylindrical; tegument transversely annulated. Oral sucker subterminal, large with preoral lobe; esophagus short; ceca long. Acetabulum larger than oral sucker, postequatorial. Testes diagonal, postacetabular; seminal vesicle coiled, anterior to acetabulum; prostatic vesicle large;
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
139
hermaphroditic duct within genital cone which projects into conical genital atrium; genital pore median, postbifurcal. Ovary post-testicular; vitellaria of two compact or lobed masses, postovarian. Egg without filaments. Stomach of freshwater fish. G. magnifica SZIDAT, 1954: Hypostomus plecostomus and H. commersoni: Argentina. B = 5 x 2; OS = 0.45; A = 0.66-0.75; Ph = 0.20 x 0.22; Egg = 50-55 x 20-22 µm. Halipegus LOOS, 1899 Body elongate, unspined. Oral sucker with preoral lobes; pharynx present; esophagus short; ceca long. Acetabulum large. Testes nearly parallel, postacetabular. No cirrus sac and no hermaphroditic bursa; seminal vesicle saccular. Genital pore postero-ventral to pharynx. Ovary near posterior extremity; vitelline glands postovarian, of two compact lobes or two groups of 4 – 5 lobes each. Uterus extensive; eggs with polar filaments. Excretory branches uniting near anterior extremity. Digestive tract of frogs and fish. H. dubius KLEIN, 1905: Salminus maxillosus and Cynopotamus humeralis: Brazil. (Fig. 44-20). B = 3.3-4.0 x 1.1-1.5; OS = 0.36-0.49 x 0.46-0.53; A = 0.540.66 x 0.61-0.66; Egg = 42-52 x 17-22 µm. (filaments = 138-221 µm). H. genarchella (TRAVASSOS, ARTIGAS & PEREIRA, 1928) Astyanax, Acestrorhamphus, Cynopotamus, Moenklausia and Roeboides: Brazil. B = 2.1- 4 x 0.78-1.6; OS = 0.36-0.52; A = 0.68-1.0; Ph = 0.13-0.18; Egg = 48-58 x 24 µm. (polar filaments present). H. parvus (TRAVASSOS, ARTIGAS & PEREIRA, 1928): Acestrorhamphus and Salminus: Brazil. B = 2.1-2.6 x 0.52-0.53; OS = 0.42-0.65; A = 0.36-0.39; Ph = 0.1; Egg = 85 x 57 µm. H. tropicus (MANTER, 1936): Astyanax, Charax, Leporinus, Luciopimelodus, Loricaria and Pimelodus: México, Brazil & Argentina. B = 2.27-4.2 x 0.45-0.7; OS = 0.290.43; Ph = 0.12-0.16; A = 0.48-0.58 x 0.52-0.66; Egg = 44-52 x 23-29 µm. Haploporidae NICOLL, 1914 Body small, rounded or conical; spinous. Oral sucker subterminal; prepharynx present; esophagus long; ceca usually short or saccular. Acetabulum in middle third of body. Testis postacetabular; seminal vesicle internal and external to hermaphroditic sac. Genital pore median, preacetabular. Ovary small, median, anterior to testis; vitellaria of paired lobes or bunches, lateral or posterior to ovary. Uterus extensive; eggs large, miracidial eyespot frequently visible. Excretory vesicle variable, pore terminal. Intestine of freshwater and marine fish. Chalcinotrema TEXEIRA DE FREITAS, 1947 Body elongate, spinous. Oral sucker subterminal; prepharynx present; esophagus long; ceca short to medium. Acetabulum similar in size to oral sucker. Testis near posterior extremity; hermaphroditic sac and external seminal vesicle present. Genital pore submedian, preacetabular. Ovary far anterior to testis; seminal receptacle present; vitellaria of elongate lobes, lateral, in posterior half of body. Uterus extensive; eggs numerous. Excretory vesicle tubular. Intestine of freshwater fish.
140
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
C. lucieni BROOKS 1977: Leporinus muyscorum: Colombia. (Fig. 4-26). B = 4.445.15 x 1.6-1.9; OS = 0.29-0.37 x 0.40-0.47; A = 0.44-0.55; Ph = 0.20-0.24 x 0.19-0.23; E = 0.66-0.88; Egg = 104-120 x 75-89 µm. C. ruedasueltensis THATCHER, 1978: Astyanax fasciatus: Colombia. (Fig. 4-33). B = 1.4-1.5 x 0.46-0.47; OS = 0.15-0.16; Ph = 0.081-0.082; A = 0.14-0.15; HS = 0.15-0.16 x 0.075-0.10; Egg = 90-102 x 50-60 µm. C. salobrensis TEXEIRA DE FREITAS, 1947: Tryportheus paranensis: Brazil. B = 4.2 x 1.4; OS = 0.36; A = 0.35 x 0.32; Ph = 0.26; Egg = 96 x 66 µm. Lecithobotrioides THATCHER & DOSSMAN, 1974 Body cylindrical, spinous. Acetabulum in anterior half of body. Oral sucker subterminal; prepharynx short; pharynx smaller than sucker; esophagus long; ceca medium long. Testis in posterior half of body; hermaphroditic sac present; external seminal vesicle elongate, curved. Genital pore preacetabular. Ovary spherical or ovoid, in middle third; seminal receptacle absent; vitellaria variable, extensive, lateral. Uterus posterior to genital pore; eggs few, large without miracidial eyespots. Excretory vesicle saccular, pore terminal. Intestine of freshwater fish. L. mediacanoensis THATCHER & DOSSMAN, 1974. Prochilodus reticulatus: Colombia. (Fig. 4-31). B = 2.1-3.7 x 0.63-0.67; OS = 0.21-0.27; Ph = 0.13-0.18; A = 0.22-0.27; HS = 0.37-0.78 x 0.11-0.26; Egg = 74-100 x 45-52 µm. L. elongatus THATCHER, 1999: Prochilodus nigricans: Guaporé River, Rondonia State, Brazil. (Fig. 4-94). B = 3.0-3.9 x 0.83-1.0; OS = 0.17-0.22 x 0.190.30; Ph = 0.16-0.17 x 0.17-0.24; A = 0.37-0.39 x 0.37-0.39; HS = 0.260.59 x 0.19-0.30; Egg = 90-118 x 57-73 µm. Megacoelium SZIDAT, 1954, THATCHER & VARELLA, 1981. Body elongate, tapered posteriorly, compressed laterally. Tegument with horizontal rows of spines to posterior extremity; spines usually present inside both suckers. Oral sucker large, subterminal; prepharynx short; pharynx large; esophagus short; ceca medium long, laterally compressed. Acetabulum large, pre-equatorial. Testis elongate, sometimes sinuous, postequatorial; hermaphroditic sac pyriform or oval, containing hermaphroditic cirrus; external seminal vesicle tubular; genital pore median or submedian. Ovary spherical, median, anterodorsal to testis; uterus extensive; uterine seminal receptacle sometimes present. Eggs numerous, with short polar projection opposite operculum; with or without miracidial eyespots. Excretory pore terminal. Stomach of freshwater fish. M.plecostomi SZIDAT, 1954: Hypostomus plecostomus: Argentina B = 2.7 x 1.7; Egg = 130-138 x 70 µm. M.spinicavum THATCHER & VARELLA, 1981: Pterygoplichthys pardalis: Brazil (Amazônia). (Fig. 4-24 A-B). B = 3.5-4.9 x 1.2-1.7; OS = 0.52-0.58 x 0.480.55; Ph = 0.27-0.37; A = 0.64-0.75 x 0.55-0.79; HS = 0.37-0.64 x 0.20.30; Egg = 95-110 x 50-60 µm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
141
M.spinispecum THATCHER & VARELLA, 1981: Pterygoplichthys sp.: Brazil. B = 5.47.7 x 2.7-3.0; OS = 0.88-0.95 x 0.81-0.88; Ph = 0.45-0.47; A = 1.2; HS = 0.64-1.0 x 0.33-0.45; Egg = 83-100 x 43-57 µm. Paralecithobotrys TEXEIRA DE FREITAS, 1947 Body elongate, unspined. Oral sucker subterminal; prepharynx absent; pharynx present; esophagus and ceca long. Acetabulum slightly larger than oral sucker, pre-equatorial. Testis in midbody; hermaphroditic sac Ushaped, preacetabular, genital pore submedian. Ovary immediately pretesticular; vitellaria of few scattered follicles in midbody; uterus extensive; eggs with miracidial eyespots. Excretory vesicle Y-shaped, pore terminal. Intestine of freshwater fish. P. brasiliensis TEXEIRA DE FREITAS, 1947. Lahilliela kneri and Leporinus elongatus.: Brazil. (Fig. 4-36). B = 2.1-4.7 x 0.74-1.4; OS = 0.25-0.41 x 0.28-0.41; Ph = 0.14-0.22 x 0.10-0.16; A = 0.33-0.55 x 0.36-0.53; Egg = 87-113 x 52-70 µm. Rondotrema THATCHER, 1999 Body small, stout, tapering towards both extremities, not flattened; tegument not spinous. Oral sucker large, subterminal; prepharynx short; pharynx large, spherical; esophagus long; ceca medium long, slender. Acetabulum large, pre-equaorial. Testis small, single, spherical or irregular, postequatorial; hermaphroditic sac large, pyriform, containing internal seminal vesicle, cirrus and distal part of uterus; genital pore medial, immediately preacetabular. Ovary ovoid, pretesticular, lateral to midline; vitellaria of two grape-like clusters, one on each side, lateral to testis but intercecal; uterus with descending and ascending loops; eggs large, containing miracidia with eyespots. Excretory vesicle tubular, pore terminal. Intestinal parasites of freshwater fishes. Type species: Rondotrema microvitellarum, THATCHER, 1999. R. microvitellarum THATCHER, 1999; Hemiodus microlepis: Guaporé River, Rondonia State, Brazil. (Fig. 4-93). B = 0.63-1.2 x 0.31-0.59; OS = 0.11-0.16 x 0.13-0.21; Ph = 55-79 x 66-92 µm; Ceca = 22-66 µm in diameter; A = 0.11-0.17 x 0.14-0.22; Egg = 42-66 x 22-26 µm. Saccocoelioides SZIDAT, 1954, THATCHER, 1978 Body fusiform or elongate, tegument spined or not. Oral sucker subterminal; prepharynx short; pharynx similar in size to oral sucker; esophagus long; ceca medium or long. Acetabulum nearly equatorial, similar to oral sucker in size. Testis spherical or oval, postequatorial; hermaphroditic sac larger than pharynx; internal and external seminal vesicles present; genital pore median or submedian, between acetabulum and pharynx. Ovary spherical, immediately pretesticular; vitelline follicles dorso-lateral, usually extending from acetabulum to posterior margin of testis; uterine coils on both side of body, from genital pore to testis; eggs with or without miracidial eyespots. Excretory vesicle Y-shaped, pore terminal. Intestine of freshwater fish. S. leporinodus THATCHER, 1978: Leporinodus vittatus: Colombia. (Fig. 4-34). B = 8.0-8.6 x 0.37-0.46; OS = 0.093-0.13; Ph = 0.09-0.13; A = 0.10-0.12; HS = 0.093-0.11 x 0.11-0.14; Egg = 62-80 x 29-34 µm.
142
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
S. magniovatus SZIDAT, 1954: Leporinus obtusidens: Argentina. B = 0.7 x 0.36; OS = 0.11; Ph = 0.09; A = 0.12; Egg = 95-114 x 41-60 µm. S. magnorchis THATCHER, 1978: Saccodon caucae: Colombia. B = 0.54-0.96 x 0.240.51; OS = 0.075-0.10; Ph = 0.053-0.12; A = 0.094-0.11; HS = 0.067-0.10 x 0.11-0.19; Egg = 68-72 x 26-30 µm. S. nanii SZIDAT, 1954: Prochilodus lineatus: Argentina. B = 0.72 x 0.24 – 0.30; OS = 0.1; Ph = 0.055; A = 0.1; Egg = 85 x 38 µm. S. octavus SZIDAT, 1970: Astyanax fasciatus: Argentina. B = 1.2 x 0.32; OS = 0.11; Ph = 0.08; A = 0.08; Egg = 110-150 x 60 µm. S. quintus SZIDAT, 1954: Loricaria anus: Argentina. B = 1.12-1.13 x 0.49-0.50; OS = 0.09; Ph = 0.06; A = 0.13; Egg = not given. S. rotundus THATCHER & JÉGU, 1996: Mylesinus paraschomburgkii: Trombetas River, Pará State, Brazil. (Fig. 4-58). B = 0.53-0.90 x 0.34-0.47; A = 0.120.19 x 0.13-0.19; OS = 0.10-0.16 x 0.13-0.18; Ph = 53-115 x 80-103 µm. HB = 0.14-0.18 x 0.078-0.10; Eggs = 71-109 x 32-42 µm. S. saccodontis THATCHER, 1978: Saccodon caucae: Colombia. (Fig. 4-35). B = 0.741.2 x 0.31-0.38; OS = 0.80-0.10; Ph = 0.082-0.11; A = 0.11-0.13; HS = 0.082-0.11 x 0.11-0.15; Egg = 64-75 x 29-32 µm. S. szidati TRAVASSOS, TEXEIRA DE FREITAS & KOHN, 1969: Schizodon fasciatus: Brazil. B = 1.5 x 0.7; OS = 0.16; Ph = 0.14; A = 0.16; Egg = 110-118 x 48-53 µm. Unicoelium THATCHER & DOSSMAN, 1975 Body fusiform, spined. Oral sucker subterminal, prepharynx short; pharynx smaller than suckers; ceca united to form bilobed sac, equatorial. Acetabulum in midbody. Testis large, oval, in posterior third of body; hermaphroditic sac preacetabular; external seminal vesicle pyriform; genital pore submedian, posterior to pharynx. Ovary small, spherical, just pretesticular; uterine seminal receptacle prominent, looped laterally from ovary to near pharynx; uterus looped laterally on both sides, from pharynx to testis; eggs large, with miracidial eyespots visible in distal portion of uterus. Excretory vesicle Y-shaped. Intestine of freshwater fish. U. prochilodorum THATCHER & DOSSMAN, 1975: Prochilodus reticulatus: Colombia (Fig. 4-43). B = 0.96-1.62 x 0.37-0.66; OS = 0.14-0.19; Ph = 0.10-0.15; A = 0.15-0.24; HS = 0.13-0.22 x 0.052-0.15; Egg = 73-74 x 29 x 37 µm. Heterophyidae ODHNER, 1914 Body small, with scale-like spines. Oral sucker and pharynx present; ceca of variable length. Acetabulum usually present, median or submedian, often enclosed in genital atrium. Testes single or double, variable in form and location; cirrus sac absent; seminal vesicle well developed; genital pore median or submedian, postbifurcal. Ovary usually pretesticular, seminal receptacle normally present; vitellaria lateral, uterus extensive, eggs small. Excretory pore terminal. Intestinal tract of vertebrates. Parspina PEARSE, 1920 Body small, rounded, spined. Oral sucker terminal, with single circle of spines, prepharynx and pharynx present, esophagus short; ceca long.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
143
Acetabulum smaller than oral sucker, pre-equatorial. Testes nearly parallel, postequatorial; genital sac encloses large seminal vesicle and short ejaculatory duct; latter unites with distal end of uterus forming short hermaphroditic duct which opens on anterior margin of acetabulum. Ovary spherical, antero-ventral to testes; seminal receptacle present; vitellaria acinous, extend along ceca from pharynx to ovary; uterus extensive; eggs small. Excretory vesicle Y-shaped, pore terminal. Intestine of freshwater fish. P. argentinensis SZIDAT, 1954: Pimelodus clarias: Argentina (Fig. 4-21). B = 0.860.94 x 0.42; OS = 0.18 x 0.15 (with circle of 26 spines); Ph = 0.08 x 0.06; Egg = 31 x 30 µm. Lepocreadiidae NICOLL, 1935 Body variable, often oculate. Oral sucker occasionally provided with lobes; prepharynx usually present; pharynx and esophagus present; ceca long. Acetabulum pre-equatorial. Testes postequatorial; cirrus sac present; genital pore variable in position. Ovary median or submedian, pretesticular; seminal receptacle present; vitellaria extensive. Excretory pore terminal. Digestive tract of marine and freshwater fish. Eocreadium SZIDAT, 1954 Body spatulate, with rounded ends; unspined. Oral sucker subterminal; prepharynx and esophagus short; ceca long. Acetabulum smaller than oral sucker, pre-equatorial. Testes parallel, in middle third; cirrus sac slender, dorsal to acetabulum; external seminal vesicle present; genital pore just anterior to acetabulum. Ovary trilobed, submedian, pretesticular; vitelline follicles small, extensive; eggs large, few. Excretory vesicle tubular, pore terminal. Stomach of freshwater fish. E. intermedium SZIDAT, 1954: Hypostomus plecostomus: Argentina. (Fig. 4-12). B = 2.8-3.0 x 1.0; OS = 0.25-0.30; Ph = 0.15-0.18; A= 0.20-0.22; Egg = 110120 x 60-68 µm. Monorchiidae ODHNER, 1911. Body small, spinous. Oral sucker and acetabulum usually small. Pharynx present; ceca usually long. Testes usually single, occasionally double frequently located in hindbody. Cirrus sac well developed; metraterm well developed, spinous. Parasites of marine and sometimes freshwater fishes Genolopa LINTON, 1910 Body fusiform, spinous. Oral sucker funnel-shaped; pharynx well developed; esophagus short; ceca not reaching posterior extremity. Acetabulum pre-equatorial. Testis single, postacetabular. Cirrus sac large, extending posterior to acetabulum; genital atrium spined, opening between intestinal bifurcation and acetabulum. Ovary compact or lobed, pretesticular; vitellaria forming lateral bunches; uterus filling hindbody; metraterm spined distally. Excretory vesicle small, with terminal pore. Parasites of marine and freshwater teleosts. G. magnacirrus THATCHER, 1996: Boulengerella lucia: Jamarí River, Rondonia State, Brazil. (Figs. 4-70 & 4-72). B = 0.57-1.4 x 0.17-0.36; OS = 0.07-0.12
144
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
x 0.07-0.14; Ph = 0.06-0.09 x 0.05-0.09; A = 0.78-0.12 in diameter; CS = 0.30-0.56 x 0.05-0.15; Eggs = 16-23 x 8-10 µm. Paraproctotrema YAMAGUTI, 1934 Body spindle-shaped, spinous. Oral sucker subterminal; pharynx large; esophagus longer than pharynx; ceca not reaching posterior extremity. Acetabulum larger than oral sucker, pre-equatorial. Testis single, postequatorial. Cirrus sac extending posterior to acetabulum. Genital atrium spined, opening anterior to acetabulum. Ovary lobed, postero-lateral to acetabulum. Vitellaria of large compact follicles on each side in ovariotesticular zone. Metraterm spinous. Eggs numerous, small. Parasitic in marine and freshwater teleosts. P. delicata THATCHER, 1996: Boulengerella lucia: Jamarí River, Rondonia State, Brazil. (Figs. 4-68 & 4-71). B = 0.79-1.7 x 0.21-0.28; OS = 0.07-0.10; Ph = 0.046-0.074 x 0.04-0.069; A = 0.09-0.11 in diameter; CS = 0.18-0.30 x 0.041-0.078; Eggs numerous, small, 16-18 x 7-9 µm. Sphericomonorchis THATCHER, 1996 Body small, ovoid, slightly flattened, spinous. Oral sucker subterminal; prepharynx short; pharynx spherical; esophagus short; ceca long, stout. Acetabulum pre-equatorial. Testis single, large, spherical, near posterior extremity; cirrus sac large, elongate, containing spinous cirrus, seminal vesicle and prostatic cells; genital pore medial, between intestinal bifurcation and acetabulum. Ovary subspherical or irregularly lobate, immediately pretesticular, lateral to midline; vitellaria of two bunches of large follicles, lateral to acetabulum; metraterm elongate, saccular, spinous; uterus occupying space between testis and acetabulum. Eggs small, numerous. Excretory vesicle tubular, pore terminal. Intestinal parasites of freshwater fish. Type species: Sphericomonorchis spinulosus THATCHER, 1996. S. spinulosus THATCHER, 1996: Crenicichla johanna: Jamari River, Rondonia State, Brazil. (Fig. 4-69). B = 0.66-1.2 x 0.17-0.46; OS = 0.08-0.11 x 0.093-0.13; Ph = 0.033-0.066 x 0.038-0.066; A = 0.11-0.15 x 0.11-0.14; CS = 0.19-0.22 x 0.038-0.066; Eggs = 16-24 x 10-14 µm. Opisthorchiidae BRAUN, 1901 Body small to elongate. Oral sucker small; pharynx present; ceca medium to long. Acetabulum small, embedded, pre-equatorial. Testes variable in form and position; cirrus sac absent; seminal vesicle tubular, genital pore just preacetabular. Ovary submedian, usually pretesticular; seminal receptacle present; vitellaria variable; uterus extensive. Excretory vesicle Yshaped. Gall bladder, bile ducts or intestine of vertebrates. Cladocystis POCHE, 1926 Body flattened, elliptical. Oral sucker small; prepharynx and pharynx present; esophagus short; ceca medium to long. Acetabulum small, preequatorial. Testes large, indented, side by side near posterior extremity; seminal vesicle tubular, sinuous, cirrus sac absent; genital pore preacetabular. Ovary median, trilobed; seminal receptacle postovarian; vitellaria
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
145
lateral; from seminal vesicle to testes; uterus extensive. Excretory branches extend to oral sucker. Intestine of birds, rarely fishes. C. intestinalis VAZ, 1931: Salminus maxillosus: Brazil. (Fig. 4-9). B = 1.5-2.5 x 0.4-0.6; OS = 0.13-0.14; Ph = 0.082 x 0.04; Egg = 33-37 x 16 x 18 µm. Witenbergia VAZ, 1932 Body elongated, expanded posteriorly. Oral sucker cap-shaped; prepharynx long; pharynx elongate; esophagus long; ceca short. Acetabulum postequatorial. Testes diagonal; near posterior extremity; cirrus sac absent; seminal vesicle long, sinuous; genital pore preacetabular. Ovary median, pretesticular, seminal receptacle preovarian; vitelline follicles lateral, extend from acetabulum to posterior extremity; uterus extensive, eggs small. Intestine of fish. W.witenbergi VAZ, 1932: Pseudoplatystoma tigrium: Brazil. (Fig. 4-8). B = 2-3.3 x 0.2-0.44; OS = 0.14-0.16 x 0.12-0.13; Ph = 0.11 x 0.05; A = 0.13-0.16; Egg = 41-45 x 17 x 18 µm. Paramphistomata SZIDAT, 1936. (The classification of the amphistomes used here follows that of SEY, 1991). Cladorchiidae SOUTHWELL & KIRSHNER, 1932 Body elongate, oval, pear shaped, thick, rarely flattened. Acetabulum terminal or ventro-terminal. Pharynx muscular, with dorsolateral appendages; esophagus with or without muscular bulb; ceca of variable length. Testes two, inter or extracecal; cirrus sac present. Ovary post-testicular; genital pore near intestinal bifurcation; uterine coils mainly post-testicular; vitellaria follicular or compact, lateral. Eggs large, with or without miracidia. Intestinal parasites of fish, amphibians, reptiles and rarely mammals. Alphamphistoma THATCHER & JÉGU, 1996 Body elongate, narrow, deeply concave ventrally, with lateral margins folded in. Pharynx small, with external diverticula; esophagus without muscular bulb; ceca slender, shorter than body. Acetabulum subterminal, without posterior indentation on rim. Testes lobate, tandem, in anterior half of body; cirrus sac in anterior one-third of body; genital pore immediately post-bifurcal. Ovary spherical, on mid-line, in posterior one-third of body; vitellaria follicular, anterolateral to ovary, not reaching level of posterior testis; uterus intercecal, eggs numerous. Intestinal parasites of freshwater fish. Type species: Alphamphistoma canoeforma THATCHER & JÉGU, 1996. A. canoeforma THATCHER & JÉGU, 1996: Mylesinus paraschomburgkii: Uatumã, Pitinga, Capucapu, Trombetas, Jari and Araguari Rivers, Amazonas and Pará States, Brazil. (Figs. 4-61 A-B & 4-88). B = 3.4-5.9 x 1.5-2.9; A = 0.671.2 x 0.71-1.2; Ph = 0.26-0.52 x 0.23-0.40; CS = 0.26-0.51 x 0.10-0.33; Eggs = 103 -129 x 51-69 µm. Anavilhanatrema THATCHER, 1992 Body large, cylindrical, slightly flattened and with a collar-like anterior expansion. Pharynx small, terminal, with external diverticula; esophagus long, without muscular bulb; ceca of moderate diameter, terminating
146
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
near acetabulum. Acetabulum small to medium size, subterminal. Testes large, lobate, tandem, pre-equatorial; cirrus sac small, ovoid, containing sinuous tubular seminal vesicle; genital pore at level of bifurcation. Ovary lobate, lateral to midline, near acetabulum; vitallaria follicular, dorso-lateral to ceca, extensive, from cecal ends to posterior testis; uterus largely intercecal, uterine seminal receptacle present near ovary; eggs numerous. Circulatory sysem present. Excretory vesicle saccular; pore dorsal. Intestinal parasites of freshwater fish. Type species: Anavilhanatrema robuusta THATCHER, 1992. A. robusta THATCHER, 1992: Pristobrycon striolatus: Anavilhanas Islands, Rio Negro, Amazonas State, Brazil. (Figs. 4-86 & 4-97). B = 4.6-12.0 x 1.9-3.7; A = 0.71-1.6 long and 0.82-1.5 wide; Ph = 0.65 x 0.62; CS = 0.63 x 0.45; Eggs = 84-112 x 42-70 µm. Annelamphistoma THATCHER, SEY & JÉGU, 1996: Body subcylindrical, flattened dorsally, convex ventrally, tapering anteriorly, with five pairs of muscular puckers dorsally and one lateral expansion on either side of acetabulum; tegument smooth dorsally and papillate ventrally. Acetabulum hemispherical, subterminal. Pharynx with large external diverticula, mouth terminal; esophagus short, bulb small; ceca long, slender. Testes two, large, weakly lobate, inter and extracecal, tandem, in middle third of body; cirrus sac large, ovoid; genital atrium and small genital sucker present; genital pore median, immediately postbifurcal. Ovary spherical to ovoid, submedian, near level of cecal ends; vitellaria chain-like, anterolateral to ovary and ventral to ceca, extending anteriorly to near posterior testis; uterus largely intercecal, eggs large. Lymphatic system present. Excretory vesicle saccular, pore dorsal. Intestinal parasites of freshwater fish. Type species: Annelamphistoma elegans THATCHER, SEY & JÉGU, 1996. A. elegans THATCHER, SEY & JÉGU, 1996: Myleus (Myloplus)rubripinnis and M. (M.) asterias. Jatapu River, Amazonas State & Guaporé River, Rondonia State, Brazil. (Figs. 4-67 A-C, 4-77, 4-79 & 4-89). B = 2.5-3.1 x 0.75-1.3; A = 0.36-0.53 x 0.42-0.50; Ph = 0.31-0.56 x 0.18-0.22; CS = 0.14-0.19 x 0.080.17; Eggs = 116-138 x 50-60 µm. Betamphistoma THATCHER & JÉGU, 1996 Body small, flattened, tapered anteriorly. Acetabulum terminal, with posterior indentation on inner rim. Pharynx with external diverticula; esophagus without bulb; ceca slender, shorter than body. Testes lobate, parallel, equatorial ; cirrus sac with heavy muscular walls; genital pore postbifurcal; small spherical genital atrium present. Ovary small, subspherical, on mid-liine between cecal ends; vitellaria of few small follicles, lateral to ovary; uterus intercecal, eggs numerous. Intestinal parasites of freshwater fish. Type species: Betamphistoma jariense THATCHER & JÉGU, 1996. B. jariense THATCHER & JÉGU, 1996: Mylesinus paraschomburgkii: Jari River, Pará State, Brazil. (Fig. 4-55). B = 2.8-4.1 x 1.1-1.6; A = 0.34-0.57 x 0.60-0.76; Ph = 0.260.34 x 0.16-0.24; CS =0.22-0.37 x 0.15-0.38; Eggs = 85-103 x 30-40 µm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
147
Colocladorchis THATCHER, 1979 Body slightly flattened, tapered anteriorly, rounded posteriorly; tegument unspined. Oral sucker terminal, spherical, with small internal diverticula; esophagus long, with muscular bulb; ceca thick, short, terminate near equator. Acetabulum large, postero-ventral. Testes weakly lobate, parallel, ventro-lateral to ceca in midbody; cirrus sac small, median, genital pore median, near bifurcation. Ovary spherical, median, between testes, vitelline gland of two irregular masses, postero-dorsal to testes; uterus occupying space between ovary and acetabulum, contains eggs proximally and miracidia distally (ovoviviparous). Circulatory system present. Excretory vesicle sacular, pore dorsal. Intestine of freshwater fish. C. ventrastomis THATCHER, 1979: Prochilodus reticulatus: Colombia. (Fig. 4-40). B = 0.71-1.53 x 0.40-0.89; OS = 0.1-0.19; A = 0.30-0.58; CS = 0.072-0.12 x 0.06-0.096; Egg = 60-66 x 36-49 µm; Miracidium = 85-142 x 53-95 µm. Curimatrema THATCHER, 2000. Body small, pyriform, with anterior expansion and large subterminal acetabulum. Pharynx large, with prominent external diverticula. Esophagus short; ceca reaching acetabulum. Testes spherical, diagonal, equatorial or pre-equatorial; cirrus sac absent; large genital sucker present near intestinal bifurcation. Ovary spherical, post-testicular, lateral to mid-line; vitelline glands comprising few follicles on either side near cecal ends; eggs large, few in number. Intestinal parasites of freshwater fishes. Type species: Curimatrema microscopica THATCHER, 2000. C. microscopica THATCHER, 2000: Curimata vittata: Porto Novo, Rondônia State, Brazil. (Fig. 4-64). B = 0.61-0.77 x 0.35-0.39; A = 0.24-0.26 in diameter; Ph = 0.15-0.18 x 0.11 -0.17; Eggs = 88-120 x 44-77. Dadayius FUKUI, 1929 Body elongate, conical. Acetabulum massive, ventroterminal, with transverse tegumental ridges on interior bottom surface. Pharynx with external diverticula; mouth terminal; esophagus slender, with bulb; ceca reaching acetabulum. Testes rounded to oval, not lobate; cirrus sac absent; genital sucker present; genital pore at level of bifurcation. Ovary subspherical, anterior or dorsal to acetabulum; vitelline follicles lateral, between ovary and posterior testis; uterus intercecal; eggs large. Intestinal parasites of South American freshwater fishes. Type species: Dadayius marenzelleri (DADAY, 1907) FUKUI, 1929. D. marenzelleri (DADAY, 1907): Mylossoma sp.: Brazil. (Fig. 4-28). B = 4-6 x 2-3; OS = 0.5-0.8 x 0.4-0.60; Diverticula = 0.25-0.30; A = 1.2-2; E = 0.7; EB = 0.22; GS 0.37; Egg = 140-145 x 60-80 µm. D. pacuensis THATCHER, SEY & JÉGU, 1996: Myleus (Myloplus) rubripinnis and M. (M.) asterias: Jatapu River, Amazonas State & Guaporé River, Rondonia State, Brazil. (Figs. 4-65 A-B, 4-73, 4-76 & 4-84). B = 1.5-3.0 x 1.1-1.9; A = 1.1-1.4 x 1.0-1.5; Ph = 0.30-0.60 x 0.34-0.43; GS = 0.31-0.43 x 0.34-0.69; Eggs 69-86 x 26-43 µm.
148
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Dadaytrema TRAVASSOS, 1931, THATCHER, 1979. Body elongate, cylindrical. Oral sucker pyriform, with posterior diverticula; mouth terminal, surrounded by small papillae and with several rings of papillae posterior to mouth; esophagus long, with small bulb; ceca long sinuous. Acetabulum subterminal, with papillate floor and posteromedian notch in rim. Testes deeply lobed, pre-equatorial, intercecal, but invading cecal areas, genital sac containing seminal vesicle; cirrus absent; genital pore median, post-bifurcal, contained in shallow sucker. Ovary spherical, median, near acetabulum; vitelline follicles small, few, lateral to ovary and dorsal to cecal ends; uterus intercecal, filling space between ovary and testes, with eggs proximally and miracidia distally (ovoviviparous). Circulatory system of longitudinal tubes with sinuses near suckers. Excretory vesicle saccular, pore dorsal. Intestine of freshwater fish. D. elongata VAZ, 1932: Myleus sp.: Brazil. B = 3-4.5 x 0.95-1.7; OS = 0.1x 0.7; Diverticula = 0.2-0.35 x 0.1; A = 0.5-0.7; Egg = 115-153 x 49-70 µm. D. oxycephala (DIESING, 1836) TRAVASSOS, 1931, THATCHER, 1979: Colossoma bidens: Brazil (Fig. 4-37). B = 3.0-5.0 x 1.1-1.3; OS = 0.15-0.25 x 0.09-0.18; Diverticula = 0.18-0.22 x 0.14-0.18; A = 0.56-0.90; GS = 0.18-0.40 x 0.110.27; Egg = 90 x 60 µm. Miracidium = 140-190 x 85-96 µm. Dadaytremoides THATCHER, 1979 Body flattened, widest at equator, tapering towards extremities, unspined. Oral sucker large, rounded, with large diverticula; esophagus long, bulb prominent; ceca thick, long. Acetabulum subterminal. Testes weakly lobate, diagonal, in midbody; genital pore postbifurcal, with small sucker. Ovary spherical, median, between cecal ends; vitelline follicles few, dorsal to cecal terminations; uterus filling space between ovary and testes; with eggs proximally and miracidia distally (ovoviviparous). Circulatory system with longitudinal stems and sinuses near suckers. Excretory vesicle saccular, pore dorsal. Intestine of freshwater fish. D. grandistomis THATCHER, 1979: Astyanax fasciatus and Chaetostomus leucomelas: Colombia: (Fig. 4-38). B = 1.9-4.0 x 0.75-1.3; OS = 0.22-0.64; Diverticula = 0.14-0.22 x 0.09-0.14; A = 0.35-0.54; GS = 0.14-0.23 x 0.09-0.16; Egg = 72-90 x 36-45 µm; Miracidia = 95-110 x 41-62 µm. Deltamphistoma THATCHER & JÉGU, 1996 Body cylindrical, slightly flattened. Acetabulum small, subterminal. Pharynx with external diverticula; esophagus with muscular bulb; ceca shorter than body, usually not reaching ovary. Testes large, overlapping ceca, bluntly lobate, tandem, pre-equatorial; cirrus thin-walled; genital pore post-bifurcal, small atrium present. Ovary subspherical, lateral to mid-line, in posterior one-fourth of body; vitelline follicles on either side of body, near ceca, extend from ovary to posterior testis; uterus intercecal, eggs numerous. Intestinal parasites of freshwater fish. Type species: Deltamphistoma pitingaense THATCHER & JÉGU, 1996.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
149
D. pitingaense THATCHER & JÉGU, 1996: Mylesinus paraschomburgkii: Uatumã, Pitinga and Capucapu Rivers, Amazonas State, Brazil. (Fig. 4-56). B = 3.14.1 x 1.0-1.5; A = 0.43-0.57 x 0.52-0.60; Ph = 0.26-0.34 x 0.21-0.26; CS = 0.22-0.39 x 0.13-0.34; Eggs = 95-120 x 34-52 µm. Doradamphistoma THATCHER, 1999 Body elongate, flattened, sides nearly parallel, extremities bluntly rounded. pharynx large, with prominent external diverticula; esophagus long, bulb present; ceca reaching to near acetabulum. Acetabulum small, subterminal. Testes diagonal, equatorial or pre-equatorial; cirrus sac small, subspherical; genital pore postbifurcal. Ovary ovoid, postequatorial; vitellaria consisting of few large follicles lateral to ovary and extracecal; uterus extensive, with ascending and descending loops; eggs numerous; ovoviviparous. Excretory vesicle saccular, pore dorsal. Intestinal parasites of Amazonian catfishes. Type species: Doradamphistoma bacuensis THATCHER, 1999. D. bacuensis THATCHER, 1999: Megalodoras irwini: Amazon River, near Manaus, Amazonas State, Brazil. (Fig. 4-81 & 4-99). B = 6.0-9.6 x 1.8-3.1; Ph = 0.831.3 x 0.62-0.83; CS = 0.20-0.26 x 0.20-0.26; Eggs =132-191 x 88-110 µm. Gamamphistoma THATCHER & JÉGU, 1996 Body small, little flattened, with collar-like expansion anteriorly. Pharynx with external diverticula; esophagus short, with muscular bulb; ceca long. Acetabulum large, with posterior notch on inner rim. Testes large, lobate, tandem, pre-equatorial; cirrus sac ovoid, thin-walled; genital pore at level of intestinal bifurcation, small genital atrium present. Ovary spherical, on mid-line near acetabulum; vitellaria follicular, lateral to ovary, of limited extent; uterus intercecal. Eggs numerous. Intestinal parasites of freshwater fish. Type species: Gamamphistoma collaris THATCHER & JÉGU, 1996. G. collaris THATCHER & JÉGU, 1996: Mylesinus paraschomburgkii: Uatumã, Pitinga and Capucapu Rivers, Amazonas State & Jari River, Pará State, Brazil. (Fig. 4-57). B = 1.2-2.2 x 0.6-0.9 ; A = 0.39-0.58 x 0.48-0.60; Ph = 0.19-0.26 x 0.14 -0.24; CS = 0.13-0.22 x 0.08-0.17; Eggs = 97-127 x 46-92 µm. Inpamphistoma THATCHER, SEY & JÉGU, 1996 Body elongate, flattened, tapering anteriorly, concave dorsally and convex ventrally, with one pair of muscular puckers near oral sucker and one lateral expansion on either side of acetabulum; tegument smooth dorsally and papillate ventrally. Acetabulum hemispherical, subterminal. Pharynx terminal, with external diverticula; esophagus short, bulb small; ceca long, slender. Testes two, large lobate, tandem, largely intercecal, in middle third of body; cirrus sac ovoid; small genital atrium present; genital pore median, immediately postbifurcal. Ovary ovoid or weakly lobate, submedian, near level of cecal ends; vitellaria follicular, of limited extent, anterolateral to ovary and ventral to ceca; uterus largely intercecal, proximal eggs small, distal eggs larger. Lymphatic system present. Excretory vesicle saccular, pore dorsal. Intestinal parasites of freshwater fish. Type species: Inpamphistoma papillatum THATCHER, SEY & JÉGU, 1996.
150
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
I. papillatum THATCHER, SEY & JÉGU, 1996: Myleus (Myloplus) asterias: Jatapu and Uatumã Rivers, Amazonas State and Guaporé River, Rondônia State, Brazil. (Fig. 4-66). B = 1.8-3.8 x 0.85-1.3; A = 0.43-0.81 x 0.46-0.81; Ph = 0.18-0.29 x 0.11-0.21; CS = 0.08-0.26 x 0.03-0.11; Proximal eggs = 55-94 x 33-44 µm; Distal eggs = 121-154 x 66-94. Kalitrema TRAVASSOS, 1933 Body flattened, unspined, with circular groove at level of esophagus, and deep indentation at posterior extremity. Oral sucker large, with internal diverticula; esophagus long, without bulb; ceca medium long. Acetabulum small, in posterior indentation. Testes small, weakly lobate, parallel, extracecal, in anterior third; cirrus sac absent; small genital sucker present, posterior to tegumental groove. Ovary small, spherical, median, posterior to cecal ends; vitelline follicles few, near cecal termination; uterus intercecal, from genital sucker to beyond ovary; with eggs proximally and miracidia distally (ovoviviparous). Excretory vesicle spherical, pore dorsal. Intestine of fish. K. kalitrema TRAVASSOS, 1933: Hypostomus punctatus: Brazil. (Fig. 4-39). B = 78.7 x 2.6-3; OS = 0.36-0.39; Diverticula = 0.13; A = 0.76-0.78; Miracidia = 160-168 x 96-112 µm. Micramphistoma THATCHER, 1992 Body medium sized, somewhat flattened, with parallel sides, dorsally concave. Pharynx small, subspherical, without diverticula; esophagus long, without muscular bulb; ceca slender, medium long. Acetabulum, small, subspherical, subterminal. Testes spherical to ovoid, nearly parallel, near intestinal bifurcation; male genital sac subovoid, between testes; genital pore immediately postbifurcal. Ovary spherical, near acetabulum, lateral to midline; vitellaria consisting of few large follicles, dorso-lateral to ceca, in middle third of body; uterus largely intercecal; eggs small numerous. Circulatory system present. Excretory vesicle saccular, pore dorsal. Intestinal parasites of freshwater fish. Type species: Micramphistoma ministoma THATCHER, 1992. M.ministoma THATCHER, 1992: Hypopomus sp.: Guaporé River, Rondônia State, Brazil. (Figs. 4-80 & 4-95). B = 4.5-5.6 x 2.0-2..4; A = 0.50-0.59 x 0.520.60; Ph = 0.43-0.56 x 0.42-0.49; Male genital sac = 0.21-0.38 x 0.27-0.38; Eggs = 88-110 x 50-60 µm. Myleustrema THATCHER & JÉGU, 1998 Body elongate, flattened, concave dorsally and convex ventrally, with circlets of papillae around anterior extremity. Pharynx small, terminal, with external diverticula; esophagus long, with small bulb; ceca slender, not reaching acetabulum. Acetabulum small, terminal, with circle of papillae around aperture. Testes weakly lobate, tandem, equatorial; cirrus sac ovoid, with heavy muscular walls, contains internal seminal vesicle; genital pore postbifurcal; small genital atrium present. Ovary subspherical, near cecal ends in posterior quarter of body; vitellaria of limited extent, anterolateral to ovary; uterus intercecal; eggs few. Intestinal parasites of fish. Type species: Myleusnema concavatum THATCHER & JÉGU, 1998.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
151
M.concavatum THATCHER & JÉGU, 1998; Myleus ternetzi: French Guiana (Fig. 459). B = 2.8-3.2 x 1.0-1.2; Ph = 241-258 x 146-181; A = 172-301 long and 344-430 wide; Eggs = 115-138 x 51-64 µm. Pacudistoma THATCHER,1992 Body large, cylindrical, little flattened. Pharynx large, terminal, with prominent internal diverticula; esophagus long, muscular, without bulb, cec of medium diameter, long. Acetabulum medium sized, subterminal. Testes large, lobate, tandem, pre-equatorial; cirrus sac small, ovoid, containing saccular seminal vesicle; genital pore immediately postbifurcal, provided with large, muscular genital sucker. Ovary small, spherical, near acetabulum; vitellaria of small follicles, ventral to ceca, between ovary and posterior testis; uterus largely intercecal, uterine seminal receptacle present. Exccretory vesicle saccular, pore dorsal. Intestinal parasites of freshwater fishes. Type species: Pacudistoma turgida THATCHER, 1992. P. turgida THATCHER, 1992; Myleus pacu: Jamari River, Rondônia State, Brazil (Fig. 4-82). B = 7.1-10.1 x 3.1-3.9; Ph = 1.1-1.4 wide; A = 1.5-1.9 long x 1.4-1.7 wide; Eggs = 98-112 x 56-70 µm. P. guianensis THATCHER & JÉGU, 1998; Myleus ternetzi: Sinnamary River, French Guiana (Fig. 4-60). B = 2.8-3.2 x 1.0-1.1; Ph = 241-258 long x 146-181 wide; A = 172-301 long x 344-430 wide; Eggs = 115-138 x 51-64 µm. Pronamphistoma THATCHER, 1992 Body small, stout, with anterior collar-like expansion. Acetabulum large, round, subterminal. Pharynx large, terminal, subspherical, with internal diverticula; esophagus short, bulb ovoid; ceca thick, long, reaching acetabulum. Testes subspherical, entire, in middle third of body; cirrus sac ovoid, containing saccular seminal vesicle; genital pore postbifurcal. Ovary spherical, submedian, near acetabulum; vitellaria consisting of follicles in linear rows that form fan-like configurations on each side of ovary; uterus short, with few large eggs. Circulatory system present. Excretory vesicle saccular, pore dorsal. Intestinal parasites of freshwater fishes. Type species: Pronamphistoma cichlasomae THATCHER, 1992. P. cichlasomae THATCHER, 1992: Cichlasoma severum: Guaporé River, Rondônia State, Brazil. (Figs. 4-85 & 4-92). B = 0.69-1.12 x 0.42-0.76; A = 0.26-0.45 x 0.28-0.49; Ph = 55-82 µm in diameter; CS = 55-112 µm in diameter; Eggs = 82-110 x 45-65 µm. Pseudocladorchis DADAY, 1907 Body elongate, elliptical. Oral sucker terminal, with papillae around mouth; esophagus without bulb; ceca long. Acetabulum large, ventroterminal, with median notch on posterior inner margin of rim. Testes nearly parallel, in midbody; cirrus sac present; genital pore near bifurcation. Ovary between cecal ends; vitelline follicles extending along ceca from testes; uterus intercecal. Excretory vesicle between ovary and acetabulum, pore dorsal. Intestine of freshwater fish.
152
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
P. cylindricus (DIESING, 1836) DADAY, 1907: Mylossoma aureum. Pterodoras granulosus, Colossoma bidens and Pimelodus ornatus: Brazil. (Fig. 4-30). B = 4-10 x 1.53.2; OS = 0.6-1.2 x 0.6-1.3; A = 0.5-2.5; Egg = 90-100 x 60-80 µm. P. ferrumequinum (DIESING, 1836) STUNKARD, 1925: Pterodoras granulosus and Doras dorsalis: Brazil. B = 5.5-11.5 x 3.2-5.4; OS = 1.6-2 x 1-1.6; Diverticula = 0.35-0.45; Egg = 80 x 50 µm. Pseudodiplodiscus MANTER, 1962 Body small, conical. Oral sucker terminal, with small diverticula; esophagus with bulb; ceca short. Acetabulum large, ventro-terminal. Testis single, in midbody; cirrus sac small; genital sucker small, near bifurcation. Ovary irregular, submedian, preacetabular; vitellaria lateral, from cecal ends to ovary; uterus winding between testis and acetabulum. Excretory vesicle saccular, pore dorsal. Intestine of freshwater fish. P. cornu (DIESING, 1939) MANTER, 1962: Doras dorsalis: Brazil. (Fig. 4-29). B = 4-4.3 x 2-2.2; OS = 0.25-0.40; A = 2-2.2; Egg = 130-140 x 60-70 µm. Travassosinia VAZ, 1932 Body cylindrical. Oral sucker terminal, with papillae around mouth; esophageal bulb small; ceca medium long. Acetabulum large, ventroterminal. Testes tandem, in midbody; genital pore median, postbifurcal. Ovary median, post-testicular; vitelline follicles lateral along post-testicular portions of ceca; uterus inter- and extracecal. Excretory pore dorsal. Intestine of freshwater fish. T. dilatata (DADAY, 1907) VAZ, 1932: Colossoma bidens and Myleus sp.: Brazil. (Fig. 4 -27). B = 8-10 x 4-5; OS = 1.2-1.3; Egg = 115-150 x 57-80 µm. Zetamphistoma THATCHER & JÉGU, 1996 Body small, wide, flattened, convex on both surfaces, thinner peripherally. Pharynx with external diverticula; esophagus slender, with small bulb; ceca shorter than body. Acetabulum terminal, with indentation on posterior inner rim. Testes lobate, tandem, pre-equatorial, intercecal; cirrus sac ovoid, with thin walls; genital pore post-bifurcal. Ovary subspherical, on mid-line, near acetabulum; vitellaria of few follicles on either side of ovary; uterus intercecal, eggs numerous, small proximally, larger distally. Intestinal parasites of freshwater fish. Type species: Zetamphistoma compacta THATCHER & JÉGU, 1996. Z. compacta THATCHER & JÉGU, 1996: Mylesinus paraschomburgkii: Trombetas River, Pará State, and Araguari River, Amapá State, Brazil. (Figs. 4-63 A-B & 4-83). B = 2.5-3.9 x 1.5-2.5; A = 0.48-0.64 x 0.61-0.94; Ph = 0.33-0.37 x 0.16-0.26; CS = 0.13-0.34 x 0.086-0.22; Eggs = 92-115 x 46-58 µm. Sanguinicolidae GRAFF, 1907 Body flattened, elongate or lanceolate. Oral sucker absent or rudimentary; pharynx absent; esophagus long; gut X or H shaped. Acetabulum absent. Testes single, double, branched or follicular; between ovary and bifurcation; cirrus sac present or absent; seminal vesicle usually present; genital pores dorsal, posterior, submarginal; male pore posterior to female. Ovary
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
153
median, lobed or two-winged; near posterior extremity; vitellaria extensive; uterus limited; eggs not operculate. Blood-vascular system of fish. Sanguinicola PLEHN, 1905 Body lanceolate, with marginal striations. Oral sucker absent; esophagus long; gut X or H shaped, sometimes with five branches. Acetabulum absent. Testes in two rows, in medium field, between ovary and intestine; cirrus sac present; genital pores near posterior extremity. Ovary of two symmetrical wings, in posterior half of body; vitellaria lateral; uterus with only one egg; egg with lateral projections. Vascular system of freshwater fish. S. argentinensis, SZIDAT, 1951; Prochilodus platensis: Argentina. B = 1.6-1.7 x 0.37; Ph = 0.02 x 0.015; E = 0.45; Egg = 37 x 31 µm. S. coelomicola (SZIDAT, 1951): Iheringichthys labrosus: Argentina. (Fig. 4-32). B = 1.6 x 0. 55; E = 0.5-0.6; Egg = 11-12 x 6-7 µm. Zonocotylidae PADILHA, 1978 Body elongate, widened posteriorly. Oral sucker terminal; esophagus long; ceca short, saccular. Acetabulum subterminal, with thin walls and transverse corrugations on floor. Testis single, median, postequatorial; cirrus sac absent; genital pore median, midway between oral sucker and bifurcation. Ovary spherical or oval, submedian, between testis and acetabulum; vitellaria of two compact masses, one on either side of testis or ovary; uterine coils extensive posteriorly, with eggs proximally and miracidia distally (ovoviviparous). Circulatory system well developed. Excretory vesicle saccular, pore dorsal. Intestine of freshwater fish. Zonocotyle TRAVASSOS, 1948, PADILHA, 1978 Body elongate, flattened, widened posteriorly; tegument smooth, thick. Oral sucker terminal; esophagus long, dilated posteriorly, without bulb; ceca short, thick, with microvilli on interior walls. Testis irregularly rounded, median, between cecal ends. Ovary spherical submedian, posttesticular; vitelline glands of two compact masses, one on either side of ovary; uterus extensive, with eggs proximally and miracidia distally (ovoviviparous). Circulatory system of one continuous tube which loops laterally on both sides, between suckers. Excretory vesicle small, spherical, pore and vesicle both dorsal to acetabulum. Intestine of freshwater fish. Z. bicaecata TRAVASSOS, 1948, PADILHA, 1978: Curimata elegans and C. gilberti: Brazil. (Fig. 4-41). B = 2.65-5.23 x 0.73-1.38; OS = 0.19-0.48 x 0.31-0.55; E = 0.70-1.56; A = 0.99-1.8 x 0.8-1.7 (with 11-14 ridges on floor); Miracidium = 140-210 x 50-120 µm. Zonocotyloides PADILHA, 1978 Similar to Zonocotyle except: body larger; acetabulum relatively smaller; vitellaria of two compact V-shaped masses, one on either side of testis and united anterior to that organ. Ovoviviparous. Intestine of freshwater fish. Z. haroltravassossi PADILHA, 1978: Curimata gilberti: Brazil. (Fig. 4-42). B = 4.757.4 x 1.6-2.1; OS = 0.36-0.50 x 0.47-0.60; E = 1.4-2.3; A = 1.2- 1.87 x 1.31.56 (with 9-10 ridges on floor).
154
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
VIII. Plates of Trematoda (Digenea) (Figs. 4-1 to 4-99) MO CS OS PP 0.5 mm
PH IC GP VS
UE SV VG
OV SR TE
4-1
AP EP
4-1. Acanthostomum gnerii: entire (ventral; AP = anal pore; CS = circumoral spine; EP = excretory pore; GP = genital pore; IC = intestinal crus; MO = mouth; OS = oral sucker; OV = ovary; PH = pharynx; PP = prepharynx; SR = seminal receptacle; SV = seminal vesicle; TE = testis; UE = uterus with eggs; VG = vitelline gland; VS = ventral sucker (= acetabulum).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
155
OS GS 1.0 mm
SV VS MG
OV
VG
TE
UE IC TR EB 4-2
EP
4-2. Amazonadistoma negrensis: entire (ventral); EB = excretory bladder; EP = excretory pore; GS = genital sucker; IC = intestinal crus with diverticula and microvilli; MG = MEHLIS’ gland; OS = oral sucker; OV = ovary; SV = seminal vesicle; TE = testis; TR = tegumental ridge; UE = uterus with eggs; VG = vitelline gland; VS = ventral sucker (= acetabulum).
156
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
SR OV
1.5 mm
TE
UE VG
4-3
4-3. Brasicystis bennetti: entire (ventral); OV = ovary; SR = seminal receptacle; TE = testis; UE = uterus with eggs; VG = vitelline gland.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-4
4-5
4-6
4-4. Bellumcorpus major; 4-5. Paurorhynchus schubarti; 4-6. Prosorhynchus costai.
157
158
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-7
4-8
4-7. Prosthenhystera obesa; 4-8. Witenbergia witenbergia.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
159
4-9
4-10
4-12 4-11
4-9. Cladocystis intestinalis; 4-10. Crepidostomum macrorchis; 4-11. Creptotrema creptotrema; 4-12. Eocreadium internedium.
160
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-13
4-14
4-13. Antorchis lintoni; 4-14. Procaudotestis uruguayensis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-15
4-16
4-17
4-15. Caballerotrema arapaimense; 4-16. Kalipharynx piramboae; 4-17. Magnivitellium simplex.
161
162
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-18
4-18. Crassicutis cichlasomae.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-19
4-20
4-21
4-19. Dendrorchis neivai; 4-20. Parspina argentinensis; 4-21. Halipegus dubius.
163
164
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-22
4-23
4-22. Iheringtrema iheringi; 4-23. Paleocryptogonimus claviformis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-24 A
4-24. Megacoelium spinicavum: A. ventral; B. lateral.
4-24 B
165
166
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-25
4-25. Phyllodistomum duncani.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-26
4-26. Chalcinotrema lucieni.
167
168
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-27
4-29
4-28
4-30
4-27. Travassosinia dilatata; 4-28. Dadayius marenzelleri; 4-29. Pseudodiplodiscus cornu; 4-30. Pseudocladorchis cylindricus.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-31
4-32
4-31. Lecithobotrioides mediacanoensis; 4-32. Sanguinicola coelomicola.
169
170
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-33
4-33. Chalcinotrema ruedasueltensis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-34
4-34. Saccocoelioides leporinodus.
171
172
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-35
4-35. Saccocoelioides saccodontis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-36
4-36. Paralecithobotrys brasiliensis.
173
174
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-37
4-38
4-37. Dadaytrema oxycephala; 4-38. Dadaytremoides grandistomis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-39
4-39. Kalitrema kalitrema (scale = 3 mm).
175
176
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-40
4-40. Colocladorchis ventrastomis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-41
4-42
4-41. Zonocotyle bicaecata; 4-42. Zonocotyloides haroltravassosi.
177
178
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-43
4-43. Saccocoelioides magnorchis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-44
4-45
4-46
4-44. Curumai curumai; 4-45. Denticauda quadrangulata; 4-46. Pseudoparabaris parabaris.
179
180
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-47
4-48
4-49
4-50
4-47. Brasicystis bennetti: photo of entire specimen; 4-48. Diplostomula of Strigeoidea; 4-49. Diplostomula: close up view; 4-50. Encysted metacercaria of Ascocotyle sp. (“black spot”).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-51
4-52
4-53
4-54
181
4-51 to 4-54. Tumors in Chaetobranchus semifasciatus provoked by trematode metacercariae: 4-51. large tumor and satellite tumor in gills (operculum removed); 4-52. simple tumor in gill filament with metacercaria in center; 4-53. swollen gill filament containing metacercaria; 4-54. multiple branching of gill filament.
182
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-55
4-56
4-57
4-58
4-55. Betamphistoma jariense (scale = 1000 µm); 4-56. Deltamphistoma pitangaense (scale = 1000 µm); 457. Gamadistoma collaris (scale = 1000 µm); 4-58. Saccocoelioides rotundus (scale = 250 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-59 A
B
4-59. Myleustrema concavatum: A. ventral (scale = 1000 µm); B. genital complex (scale = 100 µm).
183
184
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-60 A
B
C
4-60. Pacudistoma guianensis from Myleus ternetzi. A-C growth series all to same scale = 1000 µm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
185
4-61 A B
4-63 A
4-62
B
4-61. A. Alphamphistoma canoeforma (scale = 1000 µm); B. same - terminal genitalia (scale = 250 µm); 4-62. A. Pseudocladorchis cylindricus (scale 1000 µm); B. same - genitalia lateral (scale = 500 µm); 4-63. Zetamphistoma compacta (scale = 1000 µm).
186
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-64
4-64. Curimatrema microscopica (scale = 500 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-65 A
B
4-65. Dadayius pacuensis: A. ventral (scale = 1000 µm); B. lateral (scale = 1000 µm).
187
188
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-66
4-66. Inpamphistoma papillatum (scale = 500 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
189
B
C
4-67 A
4-67. Annelamphistoma elegans: A. ventral (scale = 500 µm); B. dorsal (scale = 1000 µm); C. lateral (scale = 1000 µm).
190
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-68
4-69
4-68. Paraproctotrema delicata; 4-69. Sphericomonorchis spinulosus; (scales = 200 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
191
4-70
4-71
4-72
4-70
4-70. Genolopa magnacirrus; 4-71. Paraproctotrema delicata; 4-72. Genolopa magnacirrus; (scales = 200 µm).
192
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-73
4-74
4-75
4-76
Dadayius pacuensis: 4-73. ventral (scale = 1000 µm); 4-74. mouth (scale = 100 µm); 4-75. interior of acetabulum (scale = 200 µm); 4-76. genital pore (scale = 50 µm); scanning electron micrographs.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
193
4-78
4-77
4-79 Annelamphistoma elegans: 4-77. dorsal (scale = 500 µm); 4-78. papilla around acetabulum (scale = 3 µm); 4-79. papillae around mouth (scale = 3 µm); scanning electron micrographs.
194
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-80
4-81
4-83
4-82
4-84
4-80. Micramphistoma ministoma (scale = 500 µm); 4-81. Doradamphistoma bacuensis (scale = 1000 µm); 482. Pacudistoma turgida (scale = 1000 µm); 4-83. Zetamphistoma compacta (scale = 1000 µm); 4-84. Dadayius pacuensis (scale = 500 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-85
195
4-87
4-86
4-88
4-89
4-85. Pronamphistoma cichlasomae (scale = 1000 µm); 4-86. Anavilhanatrema robusta (scale = 500 µm); 487. Dadaytrema oxycephala (scale = 1000 µm); 4- 88. Alphamphistoma canoeforma (scale = 1000 µm); 4-89. Annelamphistoma elegans (scale = 1000 µm).
196
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-90
4-90. Prosorhynchus piranhas (scale = 250 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-91
197
4-92
4-93
4-94
Bucephalidae: 4-91 to 4-92. Glandulorhynchus turgidus (scale = 1000 µm); Haploporidae: 4-93. Rondotrema microvitellarum (scale = 250 µm); 4-94. Lecithobotrioides elongatus (scale = 500 µm).
198
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-95
4-95. Micramphistoma ministoma (scale = 1000 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-96
4-96 Pronampistoma cichlasomae: ventral (scale = 250 µm).
199
200
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-97
4-97. Annavilhanatrema robusta (scale = 2000 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
4-98
4-98. Bacciger pellonae (scale = 200 µm).
201
202
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
4-99
4-99. Doradamphistoma bacuensis; intestine of Megalodoras irwini (scale = 1 mm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
203
IX. Cited and general references ASHTON, N., BROWN, N. & D. EASTY (1969): Trematode cataract in freshwater fish. - J. Small Anim. Pract. 10: 471-478. BOEGER, W.A. & V.E. THATCHER (1983): Kalipharynx piramboae gen. et sp. n. (Trematoda: Fellodistomidae) parasita do peixe pulmonado amazônico, Lepidosiren paradoxa FITZINGER. Acta Amazonica 13(1): 171-175. BROOKS, D.R. (1977): A new genus and two new species of trematodes from characid fishes in Colombia. - Trans. Am. Mic. Soc. 96(2): 267-270. DAWES, B. (1946): The Trematoda with special reference to British and other European forms. Cambridge Univ. Press, London: 644 pp. FREEMAN, R.S. (1964): Flatworm problems in fish. - Can. Fish Cult. 32: 11-18. FREEMAN, R.S., STUART, P.F., CULLEN, J.B., RITCHIE, A.C., MILDON, A., FERNANDES, B.J. & R. BONIN (1976): Fatal human infection with mesocercariae of the trematode Alaria americana. - Am. J. Trop. Med. Hyg. 25: 803-807. HALTON, D.W. (1966): Occurrence of microvilli-like structures in the gut of digenetic trematodes. Experientia 22: 828-829. HALTON, D.W. (1967): Observations on the nutrition of digenetic trematodes. - Parasit. 57: 639-660. HYMAN, L.R. (1951): The Invertebrates: Platyhelminthes and Rhynchocoela. The Acoelomata Bilateria. Vol 2. - McGraw-Hill, New York: 550 pp. KOHN, A. (1962): Sôbre um novo gênero de trematódeo bucefaliforme parasito de peixe de água doce. - Rev. Brasil. Biol. 22(4): 351-355. KOHN, A. (1963): Paurorhynchus schubarti sp. n., metacercária parasita de dourado (Trematoda, Bucephaliformes). - Rev. Brasil. Biol. 23(3): 259-261. KOHN, A. (1970a): Pararhipidocotyle jeffersoni gen. n., sp. n., trematódeo bucefaliforme parasito de dourado. - Atas Soc. Biol. Rio de Janeiro 13(5-6): 181-183. KOHN, A. (1970b): Bellumcorpus schubarti (KOHN, 1963) comb. nov. para Paurorhynchus schubarti (KOHN, 1963) (Trematoda, Prosorhynchidae). - Atas Soc. Biol. Rio de Janeiro 13 (5-6): 185-186. PADILHA, T.N. (1978): Caracterização da familia Zonocotylidae com redescrição de Zonocotyle bicaecata TRAVASSOS, 1948, e descrição de um novo gênero (Trematoda, Digenea). - Rev. Brasil. Biol. 38(2): 415-429. SCHELL, S.C. (1970): How to know the trematodes. - Wm. C. Brown Co. Publ., Dubuque: 355 pp. SKRJABIN, K.I (ed.) (1947-1974): Trematodi zhivotnikh I cheloveka (Trematodes of animals and man) (In Russian). - Akad. Nauk. U.S.S.R., Moscow. Vols. 1-15. SZIDAT, L. (1951): Neue Arten der Trematoden-Familie Aporocotylidae aus dem Blut und der Leibeshöhle von Süßwasserfischen des Rio de la Plata. - Z. Parasitenkde. 15: 70-86. SZIDAT, L. (1954): Tremátodes nuevos de peces de agua dulce de la República Argentina e intento para aclarar su carácter marino. - Rev. Inst. Nac. Inves. Cienc. Nat. Argen. Bernadino Rivadavia Zool. 3(1): 1-85. TEIXEIRA DE FREITAS, J.F. (1941a): Nôvo trematódeo parasito de peixe de água doce. - Mem. Inst. Oswaldo Cruz 35(3): 569-570. TEIXEIRA DE FREITAS, J.F. (1941b): Nôvo trematódeo parasito de peixe do rio Miranda. - Rev. Brasil. Biol. 1(3): 249-251.
204
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
TEIXEIRA DE FREITAS, J.F. (1947a): Chalcinotrema salobrensis n. g., n. sp., (Trematoda, Waretrematidae). Rev. Brasil. Biol. 7(4): 461-464. TEIXEIRA DE FREITAS, J.F. (1947b): Nôvo gênero de Haploporinae (Trematoda, Haploporoidea). Mem. Inst. Oswaldo Cruz 45(3): 587-589. THATCHER, V.E. (1978): Quatro novas espécies de Haploporidae (Trematoda: Digenea) de peixes de água doce do Colômbia com uma revisão do gênero Saccocoelioides SZIDAT, 1954. - Acta Amazonica 8(3): 477-484. THATCHER, V.E. (1979a): Paramphistomidae (Trematoda: Digenea) de peixes de água doce: dois novos gêneros da Colômbia e uma redescricão de Dadaytrema oxycephala (DIESING, 1836) TRAVASSOS, 1934, da Amazônia. - Acta Amazonica 9(1): 203-208. THATCHER, V.E. (1979b): O primeiro trematódeo negro, Amazonadistoma negrensis n. gen., n. sp. (Digenea: Gorgoderidae), parasita de um peixe amazônico. - Acta Amazonica 9(2): 389-392. THATCHER, V.E. (1979c): Brasicystis bennetti n.gen., n.sp. (Trematoda: Didymozoidae) parasita da pescada (Sciaenidae) da Amazônia, Brasil. - Acta Amazonica 9(4): 747-749. THATCHER, V.E. (1980): Duas novas espécies de Caballerotrema (Trematoda: Echinostomatidae) do pirarucu e da aruanã (Osteoglossidae), com uma redefinição do gênero e una redescrição de C. brasiliense PRUDHOE, 1960. - Acta Amazonica 10(2): 419-423. THATCHER, V.E. (1981): Patologia de peixes da Amazônia brasileira, 1. Aspectos gerais. - Acta Amazonica 11(1): 125-140. THATCHER , V.E. (1992a): Bacciger pellonae n. sp. (Trematoda, Fellodistomidae) from a freshwater fish, Pellona castelnaeana VALENCIENNES of Rondônia State, Brazil. - Acta Amazonica 22(4): 605-608. THATCHER, V.E. (1992b): Two unusual new genera of Paramphistomidae (Trematoda, Digenea) from freshwater fish of the Brazilian Amazon. - Acta Amazonica 22(4): 609-613. THATCHER, V.E. (1996): A new genus and three new species of Monorchiidae (Trematoda) from freshwater fish of Rondônia State, Brazil. - Amazoniana 14(1/2): 131-136. THATCHER, V.E. (1999a): Two new Bucephalidae (Trematoda) from fishes of the Brazilian Amazon. - Acta Amazonica 29(2): 331-335. THATCHER, V.E. (1999b): Two new Haploporidae (Trematoda) of fishes from the Brazilian State of Rondônia. - Acta Amazonica 29(4): 601-605. THATCHER, V.E. (1999c): Surface morphology of some amphistomes (Trematoda) of Amazonian fishes and the description of a new genus and species. - Acta Amazonica 29(4): 607-614. THATCHER, V.E. (2000): A new genus and species of amphistome parasite (Trematoda: Cladorchiidae) from a fish of Rondônia State, Brazil. - Amazoniana 16(1/2): 237-240. THATCHER, V.E. & M.D. DOSSMAN (1974): Lecithobotrioides mediacanoensis n. g., n. sp. (Trematoda: Haploporidae) from a freshwater fish (Prochilodus reticulatus) in Colombia. - Trans. Am. Mic. Soc. 93(2): 261-264. THATCHER, V.E. & M.D. DOSSMAN (1975): Unicoelium prochilodorum gen. et sp. n. (Trematoda: Haploporidae) from a freshwater fish (Prochilodus reticulatus) in Colombia. - Proc. Helminthol. Soc. Wash. 42(1): 28-30. THATCHER, V.E. & M. JÉGU (1996): Intestinal helminths as population markers of the Amazonian fish Mylesinus paraschomburghii, with descriptions of five new genera and seven new species of trematodes. - Amazoniana 14(1/2): 143-155.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
205
THATCHER, V.E. & M. JÉGU (1998): Amphistomes as species markers of the serrasalmid fish, Myleus ternetzi (NORMAN), from French Guiana, with descriptions of two new species and one new genus. - Amazoniana 15(1/2): 103-112. THATCHER, V.E. & A.B. VARELLA (1980): Patologia de peixes da Amazônia brasileira. 2. Um tumor maligno das brânquias relacionado com as metacercárias de um trematódeo. - Acta Amazonica 10(3): 651-656. THATCHER, V.E. & A.B. VARELLA (1981): Duas novas espécies de Megacoelium SZIDAT, 1954 (Trematoda: Haploporidae) parasitos estomacais de peixes da Amazônia brasileira, com uma redefinição do gênero. - Acta Amazonica 11(2): 285-289. TRAVASSOS, L. (1933): Sur un nouveau trématode de poisons de la vallée do fleuve Parahyba. - C. R. Soc. Bio., Paris 114: 839-840. TRAVASSOS, L. (1934): Sinopse dos Paramphistomoidea. - Mem. Inst. Oswaldo Cruz 29(1): 19-178. TRAVASSOS, L. (1948a): Contribuição ao conhecimento dos helmintos dos peixes de água doce do Brasil. I. Zonocotyle bicaecata n. g., n. sp. (Trematoda, Aspidogastridae). - Mem. Inst. Oswaldo Cruz 45(2): 513-516. TRAVASSOS, L. (1948b): Contribuição ao conhecimento dos helmintos dos peixes de água doce do Brasil. II. Iheringtrema ilhringi n. g., n. sp. (Trematoda, Heterophyidae). - Mem. Inst. Oswaldo Cruz 45(2): 517-520. TRAVASSOS, L. (1961): Sôbre um novo trematódeo parasito de intestino de peixes de água doce do Brasil. Curumai curumai gen. nov., sp. nov. (Trematoda, Angiodictyidae).- Atas Soc. Biol. Rio de Janeiro 5(1-2): 1-4. TRAVASSOS, L. & A. KOHN (1965): Lista dos helmintos parasitos de peixes encontrados na Estação Experimental de Biologia e Piscicultura de Emas, Pirassununga, Estado de São Paulo. - Pap. Avuls. Dept. Zool. S. Paulo 17(5): 35-52. TRAVASSOS, L., TEIXEIRA DE FREITAS, J.F. & A. KOHN (1969): Trematódeos do Brasil. - Mem. Inst. Oswaldo Cruz 67: 1-886. WILLEY, C.H. (1930): Studies on the lymph system of digenetic trematodes. - J. Morph. 50: 1-30. WOTTON, R.M. & F. SOGANDARES-BERNAL (1963): A report on the occurrence of microvillus-like structures in the caeca of certain trematodes (Paramphistomidae). - Parasit. 53: 157-161. YAMAGUTI, S. (1953): Systema Helminthum. Part 1. Digenetic trematodes of fishes. - Publ. by author, Tokyo: 405 pp. YAMAGUTI, S. (1958): Systema Helminthum. Vol.1, parts 1 & 2. The digenetic trematodes of Vertebrates.- Intersci. Publ. Co., New York: 1575 pp. YAMAGUTI, S. (1971): Synopsis of the digenetic trematodes of Vertebrates. - Vol. 1., Keigaku Co., Tokyo: 1074 pp.
206
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
5 CESTODARIA AND CESTODA I. Definition and morphology The cestodarians are large unsegmented worms that are endoparasites in the body cavity or gut of ancient fishes. The Subclass Cestodaria contains the Order Gyrocotylidea with 2 genera and 9 species, and Amphilinidea with 9 genera and 9 species. Gyrocotylideans inhabit the intestinal tracts of certain marine fishes and are therefore beyond the scope of this book, Amphilinideans are found in the body cavities of fishes, except for a single species reported from an Australian turtle. The giant arapaima (Arapaima gigas), which is the world’s largest strictly freshwater fish and occurs in the Amazon basin, is host to two genera and species of this group. The origin and relationships of the Cestodaria are obscure. They had been thought of as primitive tapeworms, but some zoologists now insist that they are highly evolved and far from primitive. They were often regarded as animals intermediate between trematodes and cestodes, but it is now believed that they are more closely related to monogenoideans. The two cestodarians from the arapaima are: Schizochoerus liguloideus (Fig. 5-38 A-B) and Nesolecithus janicki (Figs. 5-43 A-B & 5-44). Both of these species reach a length of 15-16 cm but the former is only about 1.5 cm wide while the latter reaches 4 cm in width. The internal anatomy is similar in both genera. The female system has an ovary, oviduct, ootype, vagina with two posterior vaginal pores, seminal receptacle and uterus, with an anterior pore. The uterus traverses the length of the body three times, and the vitelline follicles extend throughout most of the body length in lateral strings. The male system consists of numerous testes situated in elongate lateral fields, vasa efferentia, a vas deferens and a copulatory bursa with a pore at the posterior extremity (posterior to the vaginal openings). The Class Cestoda (= Eucestoda) contains the true tapeworms most of which have a flattened segmented body (strobila) and an attachment organ (scolex) provided with suckers or hooks. The scolex has usually been regarded as the head end, but some zoologists affirm that it really represents the posterior extremity and that it was derived from the monogenoidean opisthaptor. Be that as it may, the scolex is followed by a “neck” region from which new segments are budded. Beyond the neck, there are usually a number of young immature segments (proglottids) within which the “anlagen” of reproductive structures can be seen. Following the young proglottids, there are mature ones showing fully developed sexual organs. Nearly all tapeworms are hermaphroditic and
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
207
each mature proglottid is provided with one or two complete sets of male and female organs. Posterior to the mature proglottids there are normally several gravid segments in which the reproductive organs are reduced but the uterus is large and engorged with eggs. The reproductive systems of each mature proglottid are similar to those of trematodes (Fig. 5-17 B). There is a lobate ovary, an oötype, a saccular uterus and a vagina opening laterally. There are numerous vitelline follicles laterally. On the male side there are several spherical testes, vasa efferentia, a vas deferens, a cirrus and cirrus sac. The common genital pores may be ventral or lateral in the strobila and they may alternate regularly or irregularly (when lateral).
II. Life-cycle and transmission Although no life-cycle has been experimentally demonstrated for any Neotropical fish tapeworm, we can presume the following sequence based on indirect evidence. Eggs from the gravid proglottid are shed in the feces of the host fish. Contractions of the proglottid force the eggs out of the uterus. A six-hooked (hexacanth) ciliated larva hatches from each egg and swims actively for some hours. This larva is ingested by a crustacean (probably a copepod) where it penetrates to the hemocoel and develops into a more advanced larval form with a scolex (procercoid larva). The crustacean is in turn eaten by a small fish where the procercoid develops further into a plerocercoid. The plerocercoid larva normally becomes encysted in the organs or muscles of the second intermediary host. The latter is eventually devoured by a larger predatory fish where the plerocercoid escapes the cyst and develops into the adult stage in the intestinal tract.
III. Pathology Adult tapeworms in the intestinal lumen of the definitive host cause little or no damage. There may be some irritation at the site of attachment of the scolex with a concomitant increase in mucus production. Plerocercoid larval invasion in the intestinal wall of the fish intermediate host, on the other hand, provokes temporary hemorrhaging followed by an inflammatory reaction and eventual encapsulation of the invaders. Some fish react strongly to the presence of these larvae and are able to encapsulate many of them in the intestinal wall itself (Fig. 11-2). Other host species are seemingly unable to encapsulate the larvae in the intestinal wall and they therefore pass through to the mesenteries or the surfaces of internal organs where they finally become encysted. Encapsulated plerocercoids are frequently seen in large numbers and when present in the intestinal wall they may decrease the fish’s capacity to absorb nutrients. When numerous in the mesenteries, these larvae can form tissue-like masses that resemble adipose or testicular formations. They can be distinguished from the latter, however, by the inverted muscular protoscolex in each capsule.
208
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
IV. Prevention and treatment Wild caught crustaceans and minnows should not be fed to captive fish. If it is necessary to use live animals as food, they should be grown in a separate culture for this purpose. Freshly killed animal foods should also be avoided. Such material can be utilized, however, if it has been deep frozen for 48 hours to kill any larval cestodes that may be present. The recommended treatment for adult tapeworms in the definitive fish host is: Di-N-Butyl Tin Oxide which can be mixed with the ration at 0.3 % of body weight and given in a one to five day period.
V. Collection and study methods Adult tapeworms can be collected and prepared in the same way that was described for trematodes in Chapter 4. Special care should be taken when fixing the strobila in order to get it straight and flat. Fixation between glass slides or between slide and cover glass is recommended. Tapeworms can be killed by placing them in a Petri dish of water or physiological saline solution and leaving the dish in an embedding oven for 5-10 minutes or in the refrigerator for 10-30 minutes.
VI. Identification and keys The only cestodarians known from Neotropical freshwater fishes are the two species mentioned above from the giant arapaima. The Class Eucestoda is represented by the Orders Proteocephalidea (with 19 genera and 45 species). Tetraphyllidea (with 5 genera and 15 species) and Trypanorhyncha (with 1 genus and species). The latter two orders are known only from rays except for one species of Tetraphyllidea reported from a sawfish. The proteocephalideans parasitize mainly catfishes. Genera and species of Neotropical fish tapeworms are not easy to characterize or identify. Such characters as forms and size of the scolex, number and position of the testes, position of the genital pores and number of segments in the strobila have been used. In the proteocephalids, there are longitudinal muscle fibers running down the center of mature proglottids that mark off a central (medullary) region from an outer (cortical) area. Genera differ as to which of the reproductive organs occur in the medulla and which in the cortex. To study this aspect it is necessary to make transverse sections of mature proglottids. Relatively little work has been done on freshwater fish parasites in the Neotropics. The principal references to the group are: BROOKS & THORSON 1976; BROOKS et al. 1981; MAYES et al. 1978; REGO 1979, 1984; REGO & LUNA DIAS 1976; REGO et al. 1974; WOODLAND 1925, 1933a-c, 1934a-c and 1935a-c.
Key to Cestodaria and Cestoda of Neotropical freshwater fishes
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
I. Body unsegmented, rounded or tapered at extremities; scolex absent; from peritoneal cavity of host ....................................................... ........................................................................................................................... Cestodaria ..................................................................... Amphilinidae A. Body about 4 times longer than wide ................................................................................................................... Nesolecithus (Fig. 5-43 A-B) B. Body about 10 times longer than wide ............................................................................................................... Schizochoerus (Fig. 5-42 A-B) II. Body segmented, usually tapered towards anterior extremity; scolex present; from digestive tract of host ................................ Cestoda A. Scolex provided with 2 bothridia and 4 invaginable tentacles which are covered with hooks .................................................................. Trypanorhyncha ....................................................................................... Eutetrarhynchidae .................................... Eutetrarhynchus (Fig. 5-1) B. Scolex provided with 4 bothridia; tentacles absent; hooks present or absent .................................................................... Tetraphyllidea 1. Hooks absent .......................................................................................................................................................................... Phyllobothriidae a. Bothridia sessile, without luculi .................................................................................................................... Anthobothrium (Fig. 5 -37) b. Bothridia stalked, locular. 1) Bothridia elongate, rounded ......................................................................................................................................... Rhinebothrium 2) Bothridia short, quadrate ........................................................................................................... Rhinebothroides (Fig. 5 -2 A-B) 2. Four pairs of hooks present ................................................................................................................................................. Oncobothriidae a. Bothridia triloculate ........................................................................................................................................ Acanthobothrium (Fig. 5-5) b. Bothridia nonloculate ...................................................................................................................... Potamotrygonocestus (Fig. 5-33 A-B) C. Scolex usually provided with 4 suckers; bothridia and tentacles absent ....................................................................... Proteocephallidae 1. Suckers absent or concealed by metascolex. a. Suckers absent ...................................................................................................................................................... Ornithoscolex (Fig. 5-18) b. Suckers concealed by metascolex .......................................................................................................................... Manaosia (Fig. 5-12) 2. Suckers replaced by 4 sac-like structures ............................................................................................................... Megathylacus (Fig. 5-24) 3. Each sucker composed of two compartments, only one of which opens exteriorly ........................................... Brayela (Fig. 5-36) 4. Suckers bilocular a. Sucker margins contiguous ................................................................................................................................... Peltidocotyle (Fig. 5-22) b. Sucker margins separated ........................................................................................................................... Amphoteromorphus (Fig. 5-8)
209
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Note: The genus Myzophorus WOODLAND, 1934 (Fig. 5 – 9) is of doubtful validity and was considered to be a phyllobothriid by WARDLE & MCLEOD (1952).
210
5. Suckers trilocular Gibsoniela (Fig. 5-20). 6. Suckers with triangular spinos apertures ....................................................................................................................... Endorchis (Fig. 5-3) 7. Four simple suckers and metascolex present. a. Scolex pointed anteriorly; metascolex half covers suckers ........................................................................ Choanoscolex (Fig. 5-11) b. Scolex pointed or not; metascolex covers suckers in lateral view. 1) Fewer than 15 segments in strobila ........................................................................................................ Sciadocephalus (Fig. 5-31) 2) More than 15 segments in strobila ............................................................................................... Rudolphiela (Figs. 5-34 & 5-35) c. Scolex pointed or not; metascolex distant from suckers. 1) Metascolex forming discrete horizontal band ................................................................................... Ephedrocephalus (Fig. 5-10) 2) Metascolex forming longitudinal ridges ....................................................................................................... Monticellia (Fig. 5-23) 3) Metascolex forming irregular mass .......................................................................................................... Woodlandiella (Fig. 5-19) 8. Four simple suckers present; metascolex absent. a. Suckers very large, spherical, fused to each other internally ..................................................................... Zygobothrium (Fig. 5-15) b. Suckers adorned. 1) Suckers surrounded by tegumental flaps ................................................................................................... Nominoscolex (Fig. 5-4) 2) Suckers spinous ................................................................................................................................................................. Spasskyellina c. Suckers unadorned. 1) Reproductive organs including vitellaria in medulla ................................................. Proteocephalus (Figs. 5-26, 5-30 & 5-32) 2) Reproductive organs in medulla except for vitellaria which are in lateral cortex .......................... Nominoscolex (Fig. 5-14)
Clave para Cestodaria y Cestoda de peces Neotropicales de agua dulce
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites 211
I. Cuerpo sin segmentación, arredondeado o alongado en las extremidades; escólex ausente; encontrado en la cavidad peritoneal del hospedero ........................................................................................................ Cestodaria ..................................................................... Amphilinidae A. Cuerpo ± 4 veces más largo que ancho ............................................................................................................... Nesolecithus (Fig. 5-39 A-B) B. Cuerpo ± 10 veces más largo que ancho ........................................................................................................... Schizochoerus (Fig. 5-38 A-B) II. Cuerpo segmentado, generalmente alongado hacia la extremidad anterior; escólex presente; en el tracto digestivo del hospedero ..... ............................................................................................................................................................................................................................... Cestoda A. Escólex provisto de 2 botridias y 4 tentáculos invaginables cubiertos con ganchos ................................................................................... Trypanorhyncha ....................................................................................... Eutetrarhynchidae .................................... Eutetrarhynchus (Fig. 5-1) B. Escólex provisto con 4 botridias; tentáculos ausentes; ganchos presentes o ausentes ..................................................... Tetraphyllidea 1. Ganchos ausentes .................................................................................................................................................................. Phyllobothriidae a. Botridias sésiles, con lóculos .......................................................................................................................... Anthobothrium (Fig. 5-37) b. Botridias pedunculadas, loculares. 1) Botridias alargadas, arredondeadas ............................................................................................................................. Rhinebothrium 2) Botridias cortas, cuadradas .......................................................................................................... Rhinebothroides (Fig. 5-2 A-B) 2. Cuatro pares de gancho presentes ...................................................................................................................................... Oncobothriidae a. Botridias triloculadas ...................................................................................................................................... Acanthobothrium (Fig. 5-5) b. Botridias sin lóculos ......................................................................................................................... Potamotrygonocestus (Fig. 5-33 A-B) C. Escólex generalmente provisto de 4 ventosas; botridias y tentáculos ausentes ........................................................... Proteocephallidae 1. Ventosas ausentes o cubiertas por el metaescólex. a. Ventosas ausentes ................................................................................................................................................ Ornithoscolex (Fig. 5-18) b. Ventosas cubiertas por el metaescólex ................................................................................................................. Manaosia (Fig. 5-12) 2. Ventosas substituidas por 4 estructuras en forma de saco ................................................................................ Megathylacus (Fig. 5-24) 3. Cada ventosa compuesta por 2 compartimentos, uno de los cuales abre exteriormente .................................... Brayela (Fig. 5-36) 4. Ventosas biloculares a. Márgenes de la ventosa contiguos ...................................................................................................................... Peltidocotyle (Fig. 5-22) b. Márgenes de la ventosa separados .......................................................................................................... Amphoteromorphus (Fig. 5 -8)
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Nota: El género Myzophorus WOODLAND, 1934 (Fig. 5 – 9) es de validez dudosa y estaba considerado como un phyllobothriid por WARDLE & MCLEOD (1952).
212
5. Ventosas triloculares ....................................................................................................................................................... Gibsoniela (Fig. 5-20) 6. Ventosas con aberturas triangulares y espinosas ......................................................................................................... Endorchis (Fig. 5-3) 7. Cuatro ventosas simples y metaescólex presentes a. Escólex puntiagudo anteriormente; metaescólex cubre la mitad de las ventosas ................................. Choanoscolex (Fig. 5-11) b. Escólex puntiagudo o no; metaescólex cubre las ventosas en vista lateral. 1) Menos de 15 segmentos en estróbilo ..................................................................................................... Sciadocephalus (Fig. 5-31) 2) Más de 15 segmentos en estróbilo ............................................................................................... Rudolphiela (Figs. 5-34 & 5-35) c. Escólex puntiagudo o no; metaescólex distante de las ventosas. 1) Metaecoolex formando una banda horizontal discreta ................................................................... Ephedrocephalus (Fig. 5-10) 2) Metaescólex formado arrugas longitudinales ............................................................................................. Monticellia (Fig. 5-23) 3) Metaescólex formando masa irregular .................................................................................................... Woodlandiella (Fig. 5-19) 8. Cuatro ventosas simples presentes; metaescólex ausente. a. Ventosas muy grandes, esféricas, fundidas unas con otras internamente ............................................... Zygobothrium (Fig. 5-15) b. Ventosas adornadas. 1) Ventosas rodeadas de ondulaciones tegumentarias ................................................................................. Nominoscolex (Fig. 5-4) 2) Ventosas espinosas ........................................................................................................................................................... Spasskyellina c. Ventosas sin adornos. 1) Organos reproductores incluyendo vitelaria en la médula ...................................... Proteocephalus (Figs. 5-26, 5-30 & 5-32) 2) Organos reproductores en médula excepto por vitellaria que está en la corteza lateral ............. Nominoscolex (Fig. 5-14)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
213
VII. Checklist of Cotyloda (= Cestodaria) and Eucestoda (= Cestoda) from Neotropical freshwater fishes Measurements are given normally in millimeters and in microns (µm) for hooks and eggs, unless otherwise indicated. Class Cotyloda WARDLE, MCLEOD & RADINOVSKY, 1974 ( = Cestodaria MONTICELLI, 1892) Order Amphilinidea POCHE, 1922 Amphilinidae CLAUS, 1879 Body flat. linguiform or tape-like. with rounded or pointed extremities; without segmentation. Anterior end provided with small protrusible proboscis, or sucker-like structure. Testes numerous, in two lateral, longitudinal rows. Ovary near posterior extremity. Genital pores (male and female) near posterior end; separate or opening into common atrium. Uterus N-shaped with external opening near anterior extremity. Excretory system of two longitudinal ducts opening posteriorly through a common pore. Body cavity of fish. Nesolecithus POCHE, 1922 Amphilinidae. Body width about one fourth of length. Accessory seminal receptacle about one sixth of body length. N. janicki POCHE, 1922: Arapaima gigas: Amazonia (Brazil, Peru, Colombia & Venezuela). (Fig. 5-43 A-B). Body = 16 x 4 cm. (maximum). Schizochoerus POCHE, 1922 Amphilinidae. Body width about one tenth of length. Accessory seminal receptacle about one third of body length. S. liguloideus (DIESING, 1850): Arapaima gigas: Amazonia (Brazil, Peru, Colombia & Venezuela). (Fig. 5-42 A-B). Body = 15 x 1.5 cm (maximum). Class Eucestoda SOUTHWELL, 1930 (= Cestoda MONTICELLI, 1892) Order Proteocephalidea MOLA, 1928 Proteocephalidae LA RUE, 1914, WOODLAND, 1933 Scolex with suckers (usually 4) not bothridia. Body parenchyma divided by muscle layers into external (cortical) and internal (medullary) regions. Ovary, testes, vitellaria and uterus usually medullary, but may be cortical. Vagina dorsal to cirrus sac. Gravid proglottids not separating from strobila. Intestine of fishes, amphibians and reptiles. Amphoteromorphus DIESING, 1850 Scolex large; suckers bilocular, largely concealed by anteriorly projecting prepuce-like tegument; apical organ absent. Genital apertures unilateral. Vitellaria cortical, lateral, in dorsal and ventral groups. Intestine of Amazonian catfish. A. parkarmoo WOODLAND, 1935: Pseudopimelodus zungaro: Brazil. (Fig. 5-8). Body = 33 x 1 (maximum); Scolex = 0.47-0.88 x 0.53-1.12 (wider than long); Testes = fewer than 40; Egg = 26 x 16 µm.
214
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
A. peniculus DIESING, 1850: Brachyplatystoma rousseauii: Brazil. (Fig. 5-17 A-B). Body and scolex similar to those of A. parkarmoo, but suckers are more exposed and transverse excretory canals are absent. A. piraeeba WOODLAND, 1934: “piraeeba”: Brazil. (Fig. 5-16). Body = 50-60 x 1.3 (maximum); Proglottids wider than long; Testes numerous (about 200); Egg = 30 µm in diameter. Brayela REGO, 1985 Scolex with 4 suckers, each having 2 compartments only one of which opens exteriorly. Reproductive organs medullary. Uterus tubular, without lateral outgrowths. Intestine of Amazonian fishes. B. karuatayi (WOODLAND, 1934); Glanidium sp.: Brazil. (Fig. 5-36). Body = 30 x 1; Genital pores alternating irregularly; Scolex = 0.24 x 0.40; Testes = fewer than 50 (about 24 on each side). Choanoscolex LA RUE, 1911 Scolex tapering anteriorly, enlarged at base, with body folds covering bases of suckers. Neck unsegmented. Last proglottids longer than wide. Cirrus sac large; genital pores lateral in anterior part of proglottid. Intestine of siluriform fishes. C. abscisus (RIGGENBACH, 1895) LA RUE, 1911: Silurus sp.: Paraguay. (Fig. 511). Body = 25 x 30 x 0.77 mm; Strobila = maximum of 70 proglottids; Testes = about 100; Egg = 21 x 16 µm. Endorchis WOODLAND, 1934 Scolex with 4 suckers having triangular openings and armed with minute spines. Apical organ prominent. Genital apertures alternating irregularly. Vitellaria and part of ovary cortical. Testes medullary. Mature proglottid longer than wide. Intestine of Amazonian siluroid fishes. E. piraeeba WOODLAND, 1934: Brachyplatystoma filamentosum: Brazil. (Fig. 5-3). Body = 17-45 x 1.3; Mature proglottids nearly square, marked with transverse creases; Scolex = 0.6 x 0.54; Testes = 100-150 in number. E. mandube WOODLAND, 1935: Ageneiosus brevifilis: Brazil. (Fig. 5-6). Body = 40 x 0.79; Mature proglottids wider than long; Scolex = 0.7 x 0.6; Testes = about 150 in number (note: The suckers on the scolex of this species appear to be triloculate, and if so, it might be a species of Gibsoniela or a synonym of G. mandube, as was suggested by REGO 1985). Ephedrocephalus DIESING, 1850 Scolex large, wrinkled, longitudinally grooved, with 4 suckers on an anterior projection. Testes in dorsal cortex. Vitellaria in ventral cortex. Ovary medullary. Intestine of Amazonian siluriform fishes. E. microcephalus DIESING, 1850: Phractocephalus hemiliopterus: Brazil. (Fig. 5-10). Body = 100-150 x 4-8; Unsegmented neck region short, or absent; Proglottids wider than long; Testes = 20-30 in number; Egg = 44 x 22 µm. Gibsoniela REGO, 1985 Scolex with 4 elongate, triloculate suckers. Apical organ absent. Proglottids wider than long, except for terminal ones. Reproductive organs medullary, except for vitellaria which extend into cortex. Intestine of Amazonian siluroid fishes.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
215
G. mandube (WOODLAND, 1935): Ageneiosus brevifilis: Brazil. (Fig. 5-20). Body = 45 x 2; Genital pores alternating irregularly; Scolex = 0.18-0.21 x 0.180.24; Testes = 100-150 in number; Egg = 19 µm in diameter. Manaosia WOODLAND, 1935 Scolex large, with wrinkled surface which conceals 4 large suckers. Neck region un-segmented. Ovary medullary, but extends into cortex. Intestine of Amazonian siluroid fish. M. bracodemoca WOODLAND, 1935: Platystoma sp.: Brazil. (Fig. 5-12). Body = 6-7 x 0.7; Scolex = 0.94 in diameter; Suckers = 0.33 in diameter. Megathylacus WOODLAND, 1934 Scolex large, with 4 voluminous sac-like structures instead of suckers; apical organ absent. Neck segmented. Proglottids wider than long, except for last few which are nearly square. Medullary region large, contains all reproductive organs. Intestine of Amazonian siluroid fishes. M.jandia WOODLAND, 1934: Rhamdia sp.: Brazil. (Fig. 5-24). Body = 25 x 1.65; Scolex = 2.5 x 1.6; Genital pores alternating irregularly. Monticellia LA RUE, 1911 Scolex with 4 simple suckers. Apical organ absent. Genital pores alternating irregularly. Testes, vitellaria, uterus and most of ovary in cortex; vitellaria ventrolateral. Intestine of Amazonian siluroid fishes. M.coryphicephala (MONTICELLI, 1892) LA RUE, 1914: Silurus sp.: locality unknown, but probably Brazil. (Fig. 5-13). Body = length unknown, width = 1.8-2.0; About 100 testes present. M.megacephala WOODLAND, 1933: Platystomatichthys sturio: Brazil. Body = 24 x 1.1; Scolex = 0.41-0.76 x 0.53-0.79; Mature proglottids nearly square; gravid proglottids longer than wide. M.piracatinga WOODLAND, 1935: Pimelodus pati: Brazil. Body = 6 x 0.5; Scolex = 0.59-0.74 x 0.34-0.36; Suckers = 0.16-0.22 in diameter. M.piramutab (WOODLAND, 1933): Brachyplatystoma vaillanti: Brazil. Body = 35 x 1.5; Scolex = 0.88 x 1.4; Suckers = 0.39; Egg = 18 x 13 µm. M.rugosa WOODLAND, 1935: Pseudoplatystoma fasciatum: Brazil. (Fig. 5-23). Body = 40 x 1.0; Scolex = 0.88-1.3 x 0.6-1.0; Suckers = 0.29 x 0.19; Egg = 14-15 µm. M.siluri (FUHRMANN, 1916): Cetopsis caecutiens: Brazil. (Fig. 5-21). Body = 80 x 1.6-2.0; Scolex = 0.7 wide; Suckers = 0.28 in diameter. M.surubim (WOODLAND, 1933); Pseudoplatystoma tigrinum: Brazil. Body = 5.8 x 1.4; Testes = 200-300 in number. Myzophorus WOODLAND, 1934 Scolex with 4 simple suckers. Apical organ absent. Genital pores alternating irregularly. Testes medullary; uterus vitellaria and part of ovary cortical. Intestine of Amazonian siluroid fishes. M.admonticellia WOODLAND, 1934: Pinirampus sp.: Brazil (Manaus). (Fig. 5-9). Body = 100 x 1; Scolex = 0.17-0.36 x 0.25-0.48; Strobila = segments in anterior one-fifth wider than long; mature proglottids nearly square;
216
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
posterior two-thirds of strobila with gravid proglottids which are longer than wide; Egg = 30 µm. in diameter; Testes = about 200 in number. M.pirarara WOODLAND, 1935: Phractocephalus hemilopterus: Brazil. Body = 33 x 0.94; Scolex = 0.7 x 0.8; Suckers = 0.2; Testes = 50-60 in number; Egg = 14-21 µm. Nominoscolex WOODLAND, 1934 Scolex with 4 simple suckers. Apical organ present or absent. Testes, ovary and uterus medullary. Vitellaria lateral, in cortex. Genital pores alternating irregularly. Intestine of Amazonian siluroid fishes. N. dorad (WOODLAND, 1934): Brachyplatystoma rousseauxii: Brazil. (Fig. 5-14). Body = 134 x 1.7; Scolex = 0.16-0.26 x 0.24-0.38; Suckers = 0.19; Testes = 100 in number; Egg = 30 µm. N. kaparari WOODLAND, 1935: Pseudoplatystoma tigrinum: Brazil. Body = 30 x 0.99; Scolex = 0.15-0.26 x 0.28-0.33; Testes = fewer than 100; Egg = 14µm. N. lenha (WOODLAND, 1933): Platystomatichthys sturio: Brazil. Body = 130 x 2.6; Scolex = 0.16-0.28 x 0.19-0.28; Suckers = 0.09-0.16; Testes = more than 200; Egg = 23 µm. N. piracatinga WOODLAND, 1935: Pimelodus pati: Brazil. (Fig. 5-7). Body = 20 x 0.7; Scolex = 0.19 x 0.22; Suckers = 0.10-0.11; Testes = about 150; Egg = 10-11 µm. N. piraeeba WOODLAND, 1934: Brachyplatystoma filamentosum: Brazil. Body = 40 x 0.92; Scolex = 0.18-0.23 x 0.25-0.33; Testes = 100-150 in number; Egg = 25 µm. N. sudobim WOODLAND, 1934: Pseudoplatystoma fasciatus and Brachyplatystoma rousseauxii: Brazil. Body = 53 x 1.2; Scolex = 0.20-0.22 x 0.12-0.15; Testes = 200-250 in number; Egg = 24-26 µm. N. touzeti CHAMBRIER & VAUCHER, 1992: Ceratophrys cornuta: Rio Aguarico, Napo Province, Amazonian Ecuador. Body = about 73 proglottids; 64 mm long; Scolex = 0.48-0.53 x 0.36-0.38; Testes = 97-137 in number; Egg = 70-120 µm. N. woodlandi FREZE, 1965: Pseudoplatystoma fasciatum: Brazil (Fig. 5-4). Body = 85 x 2.0; Scolex with four suckers having 4 pointed flaps on each one; size = 0.39 x 0.26; Testes about 150. Ornithoscolex WOODLAND, 1933 Scolex covered externally by convoluted longitudinal masses of cuticular and subcuticular tissue; suckers absent. Neck absent. Mature proglottids wider than long; with psedo-segmenation. Vitellaria lateral, in dorsal and ventral fields. Intestine of Amazonian siluroid fishes. O. lenha WOODLAND, 1933: Platystomatichthys sturio: Brazil. (Fig. 5-18). Body = 40 x 2.2; Scolex = 0.8-1.4 x 1.0-1.5; Testes = about 100; Egg = 21 µm. Peltidocotyle DIESING, 1850 Scolex dorso-ventrally flattened, covered by convoluted tegument and provided with 4 bilocular suckers. Internal anatomy unknown. Intestine of Amazonian siluroid fishes.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
217
P. rugosa DIESING, 1850: Pseudoplatystoma tigrinum: Brazil. (Fig. 5-22). Scolex about twice as wide as strobila; measurements unavailable. Proteocephalus WEINLAND, 1858 Scolex with 4 simple suckers which are without tegumental adornment. Apical sucker present or absent. Reproductive organs medullary. Vitellaria in lateral bands. Testes continuous across proglottid. Intestine of freshwater fish, rarely amphibians. P. fossatus (RIGGENBACH, 1895): Pimelodus pati: Paraguay. (Fig. 5-27). Body = 35-40 long; Scolex = 0.71 in diameter; Suckers = 0.34; Testes = 120-150 in number. P. jandia WOODLAND, 1934: Ramdia sp.: Brazil. (Fig. 5-26). Body = 49 x 0.94; Scolex = 0.16 wide; Testes = about 100; Egg = 30 µm. P. kuyukuyu WOODLAND, 1935: Oxydorus niger: Brazil. Body = 35 x 0.94; Scolex = 0.16-0.25 x 0.13-0.25; The description was based on immature specimens. P. macdonaghi (SZIDAT & NANI, 1951): Basilichthys microlepidotus: Argentina. (Fig. 5-29). Body = 15 x 0.24; Scolex = 0.4 wide; Suckers = 0.16; Testes = 4-60 in number; Egg = 50 x 20 µm. P. macrophallus (DIESING, 185 0): Cichla ocellaris: Brazil. (Fig. 5-30). Body = 6 x 0.94; Suckers = 0.2; Strobila with fewer than 20 proglottids; Testes = 30-40 in number. P. manjuariphilus VIGUERAS, 1936: Atractosteus tristoechus: Cuba. (Fig. 5-28). Body = 110-115 x 1.5-2.0; Scolex = 0.13 x 0.11; Testes = 30-40 in number; Egg = 32 µm. P. microscopicus WOODLAND, 1935: Cichla ocellaris: Brazil. (Fig. 5-32). Body = 2.06 x 0.26-0.41; Suckers = 0.14-0.18; Testes = about 20; Egg = 8 x 1 µm. P. platystomi LYNSDALE, 1959: Pseudoplatystoma sp.: Brazil. Body = 45 x 1.2 (incomplete fragment); Scolex = 1.3 x 0.87; Testes = 35-50 in number; Egg = 50-60 µm. P. renaudi CHAMBRIER & VAUCHER, 1994: Platydoras costatus: Neembucu Province, Paraguay (Fig. 5-40). Body = 120-480 mm long. Testes = 124-276 in number. P. soniae CHAMBRIER & VAUCHER, 1994: Platydoras costatus: Neembucu Province, Paraguay. (Fig. 5-41). Body = 84-145 mm long. Testes = 139-371 in number. P. sophiae CHAMBRIER & REGO, 1994: Paulicea luetkeni: Brazilian Amazon. (Figs. 5-38 & 5-39). Body = 60-130 mm long. Testes = 83-141 in number. Vitellaria lateral, postporal only. Rudolphiella FÜHRMANN, 1916 Scolex large, wrinkled, longitudinally furrowed, apex projected and with 4 suckers at its margin. Testes cortical, in single layer over entire proglotiid. Vitellaria cortical and ventral. Uterus medullary. Ovary dorsal, part medullary and part cortical. Intestine of South American siluroid fishes.
218
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
R. labosa (RIGGENBACH, 1895): FÜHRMANN, 1916: Pimelodus pati: Paraguay. Body = 20-30 x 1.3 (40-50 proglottids); Testes = 150-200 in number; Egg = 18-19 µm. P. myoides (WOODLAND, 1934); Pirinampus pirinampus: Brazil. (Fig. 5-34). Body = 11 x 0.6; Scolex = 0.47 x 0.59; Strobila with about 50 proglottids; Testes = about 100; Egg = 62-77 x 16 µm. P. piranabu (WOODLAND, 1934); “piranabu”: Brazil. (Fig. 5-35). Body = 10 x 0.88; Scolex = 0.29-0.49 x 0.58-0.68; Strobila with fewer than 50 proglottids; Testes = about 100; Egg = 20 -26 x 10-11 µm. Sciadocephalus DIESING, 1850. Scolex cup-shaped, with 4 simple suckers; small apical sucker present. Strobila short and wide, with fewer than 15 proglottids. Parenchymal muscles lacking. Intestine of Amazonian fishes. S. megalodiscus DIESING, 1850: Cichla ocellaris: Brazil. (Fig. 5-31). Body = 3-9 x 1; Suckers = 0.18 in diameter; Testes numerous. Spasskyellina FREZE, 1965 Scolex simple, with 4 spinous suckers. Testes, ovary and uterus in dorsal cortex. Vitellaria lateral or ventral, in cortex. Intestine of Amazonian siluroid fishes. S. lenha (WOODLAND, 1933): Platystomatichthys sturio: Brazil. Body = 30 x 1; Scolex = 0.24-0.29 x 0.23-0.36; Testes = more than 200; Egg = 21µm. S. spinulifera (WOODLAND, 1934): Pseudoplatystoma fasciatum: Brazil. Body = 25 x 0.59; Scolex = 0.21-0.28 x 0.26-0.49; Suckers = 0.18-0.24; Testes = about 60. Woodlandiella FREZE, 1965 Scolex with 4 suckers and a prominent, wrinkled tegumental enlargement (metascolex). Neck absent. Vitellaria lateral, in dorsal and ventral bands. Intestine of Amazonian siluroid fishes. W.myzofera (WOODLAND, 1933); Platystomatichthys sturio: Brazil. (Fig. 5-19). Body = 30 x 1.8; Scolex = 1.1 x 2.3; Testes = about 150. Zygobothrium DIESING, 1850 Scolex with 4 large, globular, hollow suckers which are fused to each other laterally. Apical organ absent. Genital pores unilateral. Testes numerous, in dorsal medulla. Vitellaria cortical, in two lateral crescents, with few follicles in mid-dorsal line. Ovary and uterus medullary. Intestine of Amazonian siluroid fishes. Z. megacephalum DIESING, 1850: Phractocephalus hemiliopterus and Pirarara bicolor: Brazil. (Fig. 5-15). Body = 76 x 5; Scolex = 2 x 3; Testes = 150-200 in number; Egg = 45 µm. Order Tetraphyllidae CARUS, 1863 Onchobothriidae BRAUN, 1900 Scolex with 4 sessile or slightly stalked bothridia and 4 pairs of hooks. Accessory suckers present or absent. Genital pores alternating regularly or irregularly. Intestinal spiral valve of elasmobranch fishes.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
219
Acanthobothrium BENEDEN, 1850 Scolex with 4 trilocular bothridia and 4 pairs of forked hooks. Spiral valve of elasmobranch fishes. A. amazonensis MAYES, BROOKS & THORSON, 1978: Potamotrygon circularis: Brazil (Amazonia). Body = 35 (maximum), with 75-100 proglottids; Scolex = 0.061-0.79 wide: Bothridia = 0.51-0.62 x 0.30-0.42; Hooks = 145-184 µm. A. quinonesi MAYES, BROOKS & THORSON, 1978: Potamotrygon magdalenae: Colombia (Magdalena River). Body = 25 (maximum), with 55-75 proglottids; Scolex = 0.51-0.62 wide; Bothridia = 0.38-0.48 x 0.28-0.31; Hooks = 100142 µm; Testes = 43-60 in number. A. regoi BROOKS, MAYES & THORSON, 1981: Potamotrygon hystrix: Venezuela (Orinoco River). Body = 45 (maximum), with 87-120 proglottids; Scolex = 0.70-0.90 x 0.80-1.1; Bothridia = 0.50-0.60 x 0.30-0.35; Hooks = 122-163 µm. Testes = 47-70 in number. A. terezae REGO & DIAS, 1976: Potamotrygon motoro: Brazil. (Mato Grosso State). Body 88 = 110, with 200-260 proglottids; Scolex = 2-3 wide; Hooks = 180-326 µm. Long; Testes = 120-140 in number. Potamotrygonocestus BROOKS & THORSON, 1976 Scolex with 4 sessile nonloculate bothridia, each with accessory sucker and pair of simple hooks. Spiral valve of elasmobranch fishes. P. amazonensis MAYES , B ROOKS & T HORSON , 1981: Potomotrygon circularis: Brazil (Amazonia). Body = 1.2-3.5 long, with 10-13 proglottids; Scolex = 0.24-0.30 x 0.24-0.30; Bothridia = 0.33-0.41 x 0.13-0.21; Hooks = 58-78 µm long (prong); 26-35 µm (base); Testes = 21-24 in number. P. magdalenensis BROOKS & THORSON, 1976: Potamotrygon magdalenae: Colombia (Magdalena River). Body = 1.0-2.1 long, with 7-10 proglottids; Scolex = 0.14-0.16 x 0.24-0.29; Bothridia = 0.17-0.24 x 0.11-0.16; Hooks = 43-55 µm long; 19-29 µm base; Testes 20-29 in number. P. orinocoensis BROOKS , M AYES & THORSON , 1981: Potamotrygon reticulates: Venezuela (Orinoco River). (Fig. 5-33 A-B). Body = 1.3-1.6 long, with 5-10 proglottids; Scolex = 0.15-0.23 x 0.20-0.22; Bothridia = 0.24-0.27 x 0.07-0.11; Hooks = outer 73-105 µm long (prong); 30-50 µm (base); inner: 80-125 µm (prong); 25-48 µm (base); Testes = 17-25 in number. Phyllobothriidae Scolex unarmed, but with 4 stalked or sessile bothridia which may be simple, complexly folded or loculate. Accessory suckers sometimes present. Genital pores unilateral or alternating regularly or irregularly. Mature segments may detach from strobila and become gravid after separation. Eggs spindle-shaped. Spiral valve of elasmobranch fishes. Anthobothrium BENEDEN, 1850, emend. SOUTHWELL, 1925. Bothridial surfaces nonloculate. Accessory suckers absent.
220
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
A. pristis WOODLAND, 1934: Pristis perottetti: Brazil (Amazonia). (Fig. 5-37). Body = 110 x 2-3; Scolex = 0.40 x 0.36; Genital pores alternating irregularly; Testes = more than 200. Rhinebothrium LINTON, 1889 Scolex with 4 elongate, stalked bothridia having loculate surfaces. Genital apertures alternating irregularly; female pore anterior to male; open into genital atrium. Testes medial; vitellaria lateral. Uterus tubular. Spiral valve of elasmobranch fishes. R. paratrygoni REGO & DIAS, 1976: Potamotrygon hystrix, P. falkneri and P. reticulatus: Brazil (Mato Grosso State), Venezuela (Orinoco River) & Paraguay (Paraná River). Body = 23 x 0.3; Scolex = 0.87 (expanded); Bothridia = 72-76 loculi; Testes = 4-8 in number. Rhinebothroides MAYES, BROOKS & THORSON, 1981 Scolex with 4 pedicellated, quadrate bothridia which have shallow horizontal loculi. Testes preovarian; cirrus sac at level of ovary, contains spinous cirrus and internal seminal vesicle. Ovary bilobed, with shorter lobe on poral side. Uterus with lateral diverticula. Spiral valve of South American freshwater stingrays. R. circularisi MAYES, BROOKS & THORSON, 1981: Potamotrygon circularis.: Brazil (Amazonia). Body = 27 long, with 18-24 proglottids; Scolex = 0.9-1.5 wide; Bothridia = 0.67-1.0 x 0.40-0.53; number of locul = 70-80; Testes = 66-88 in number; Egg = 18 29 µm. R. freitasi (REGO, 1979): Potamotrygon hystrix: Brazil (Amazonia). Body = 12-15 proglottids; Bothridia with about 60 loculi; Testes = 48-64 in number. R. glandularis BROOKS, MAYES & THORSON, 1981: Potamotrygon hystrix: Venezuela (Orinoco River). Body = 50 long, with 25-30 proglottids; Bothridia = 0.61-0.71 x 0.46-0.71; medial loculi 51-59 in number; marginal loculi = 51-59 in number; Testes = 41-51 in number; Egg = 29-37 µm in diameter. R. moralarai (BROOKS & THORSON, 1976): Potamotrygon magdalenae: Colombia (Magdalena River). Body = 18-24 proglottids; Bothridial loculi = 69-79 in number; Testes = 66-88 in number. Uterine diverticula = 49-80 in number. R. scorzai (LOPES-NEYRA & DÍAS-UNGRÍA, 1958): Potamotrygon hystrix, P. motoro, P. reticulatus and Elipesurus spinicauda: Venezuela (Orinoco River) & Brazil (Mato Grosso State). Body = 60-100 proglottids; Bothridial loculi = 69-79 in number; Testes = 60-99 in number; Uterine diverticula = 54-80 in number. R. venezuelensis BROOKS, MAYES & THORSON, 1981: Potamotrygon hystrix and P. yepsi: Venezuela (Orinoco & Cachiri Rivers). Body = 60 long, with 20-30 proglottids; Bothridia = 0.36-0.72 x 0.26-0.69; medial loculi = 51-53 in number; marginal loculi = 51-53 in number; Testes = 45-64 in number; Egg = 19-24 µm in diameter.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
221
Order Trypanorhyncha DIESING, 1863 Eutetrarhynchidae GUIART, 1927 Scolex with 4 invaginable tentacles which are covered with hooks of several shapes, and 2 bothridia with free and notched posterior margins. Tentacular bulbs at least three times longer than wide. Testes preovarian. Spiral valve of elasmobranch fishes. Eutetrarhynchus PINTNER, 1913 Eutetrarhynchidae. Scolex surface covered by hair-like spinules. Testes in two layers. Vitellaria surrounding testicular area. Uterus extending entire length of gravid proglottis. Spiral valve of elasmobranch fishes. E. araya (WOODLAND, 1934): Potamotrygon hystrix, P. motoro, P. falkneri, P. reticulatus and Elipesurus sp.: Brazil, Venezuela & Paraguay. (Fig. 5-1). Body = 27 x 0.68, with about 40 proglottids; Scolex = 3.8-5.5 long; Bothridia = 0.41 x 0.15; Testes = 300-400 in number. Genital pores alternating irregularly.
222
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
VIII. Plates of Cestoda and Cestodaria (Figs. 5-1 to 5-44) LO BO
5-1
5-2 A TE VG
SV
VA
5-3
GP CS OV
5-2 B
5-4
5-5
5-1. Eutetrarhynchus araya (scolex); 5-2. Rhinebothroides moralarai: A. scolex; BO = bothridium; LO = loculus; B. mature proglottid; CS = cirrus sac; GP = genital pore; OV = ovary; SV = seminal vesicle; TE = testes; VA = vagina; VG = vitelline glands; 5-3. Endorchis piraeeba (scolex); 5-4. Nominoscolex woodlandi (scolex); 5-5. Acanthobothrium regoi (scolex).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
5-6
5-7
223
5-8
5-9
5-10
5-12
5-13
5-11
5-14
5-6. Endorchis mandube (scolex); 5-7. Nominoscolex piracatinga (scolex); 5-8. Amphoteromorphus parkarmoo (scolex); 5-9. Myzophorus admonticellia (scolex); 5-10. Ephedrocephalus microcephalus (scolex); 5-11. Choanoscolex abscissum (scolex); 5-12. Manaosia bracodemoca (scolex); 5-13. Monticellia coryphicephala (scolex); 5-14. Nominoscolex dorad (scolex).
224
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
5-15
5-16
5-17 A
5-18
VG
TE
UT
VA
5-17 B
CI OV
5-15. Zygobothrium megacephalum (scolex); 5-16. Amphoteromorphus piraeba (scolex); 5-17. Amphoteromorphus peniculus: A. scolex; B. mature proglottid; CI = cirrus; OV = ovary; TE = testes; UT = uterus; VA = vagina; VG = vitelline glands; 5-18. Ornithoscolex lenha (scolex).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
5-19
225
5-20
5-22 5-21
5-23
5-24
5-25
5-19. Woodlandiella myzophora (scolex); 5-20. Gibsoniela mandube (scolex); 5-21. Monticellia siluri; 5-22. Peltidocotyle rugosa (scolex); 5-23. Monticellia rugosa (scolex); 5-24. Megathylacus jandia (scolex); 5-25. Monticellia megacephala (scolex).
226
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
5-26
5-29
5-27
5-28
5-30
5-31
5-26. Proteocephalus jandia (scolex); 5-27. Proteocephalus fossatus (scolex); 5-28. Proteocephalus manjuariphilus (scolex); 5-29. Proteocephalus macdonaghi (scolex); 5-30. Proteocephalus macropallus (entire; original); 5-31. Sciadocephalus megalodiscus (entire; original).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
227
TE CS TE
VG
VG VA OV
5-33 A
UE
OV CS
5-33 B
5-32
5-34
5-35
5-36
5-37
5-32. Proteocephalus microscopicus (entire; original); OV = ovary; TE = testes; UE = uterus with eggs; VG = vitelline glands; 5-33. Potamotrygonocestus orinocoensis: A. scolex; B. mature proglottid; CS = cirrus sac; OV = ovary; TE = testes; VA = vagina; VG = vitelline glands; 5-34. Rudolphiella myoides (scolex); 5-35. Rudolphiella piranabu (scolex); 5-36. Brayela karuatayi (scolex); 5-37. Anthobothrium pristis (scolex).
228
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
5-39
5-38
5-40
5-41
5-38. Proteocephalus sophiae: apical view of scolex (redrawn from CHAMBRIER & REGO 1994); 5-39. Proteocephalus sophiae: lateral view of scolex (redrawn from CHAMBRIER & REGO 1994); 5-40. Proteocephalus renaudi: scolex (redrawn from CHAMBRIER & VAUCHER 1994); 5-41. Proteocephalus soniae: scolex (redrawn from CHAMBRIER & VAUCHER 1994).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
229
5-42 A VG
5-42 B TE
5.0 mm
AO
5-43 A
UE
SR
OV VA
OT
5.0 mm
5-43 B
5-42. Schizochoerus liguloideus: A. anterior end; B. posterior end; OT = ootype; OV = ovary; SR = seminal receptacle; TE = testes; UE = uterus with eggs; VA = vagina; VG = vitelline glands; 5-43. Nesolecithus janicki: A. anterior end; AO = apical organ; B. posterior end.
230
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
AO
5-44
UE
VG
TE
SR OV
5-44. Nesolecithus janicki: photograph of an entire stained specimen; AO = apical organ; UE = uterus with eggs; VG = vitelline glands; TE = testes; OV = ovary; SR = seminal receptacle.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
231
IX. Cited and general references BEKÉSI, L., FEITOSA, V.A. & F.A.B. CABRAL (1992): Metacestodosis caused by plerocercoids of Proteocephalidea (Cestoda) in fish fry cultured in large scale in the Brazilian Northeast. Parasitol. Hung. 25: 9-13. BROOKS, D.R. (1995): Neotropical freshwater stingrays and their parasites: a tale of an ocean and a river long ago. - J. Aquaculture Aquat. Sci. 7: 52-61. BROOKS, D.R. & J.F.R. AMATO (1992): Cestodes parasites in Potamotrygon motoro (Chondrichthyes: Potamotrigonidae) from Southwestern Brazil, including Rhinebothrioides melennanae sp. n. (Tetraphyllidea: Phyllobothriidae), and a revised host-parasite checklist for helminthes inhabiting Neotropical freshwater stingrays. - J. Parasitol. 78: 393-398. BROOKS, D.R. & T.L. DEARDORFF (1980): Three proteocephalid cestodes from Colombian siluriform fishes, including Nomimoscolex alovarius sp. n. (Monticellidae: Zygobothriinae). Proc. Helminthol. Soc. Wash. 47: 15-21. BROOKS, D.R. & G. RASMUSSEN (1984): Proteocephalidean cestodes from Venezuelan siluriform fishes with a revised classification of the Monticellidae. - Proc. Biol. Soc. Wash. 97: 748-760. BROOKS, D.R. & T.B. THORSON (1976): Two tetraphyllidean cestodes from the freshwater stingray Potamotrygon magdalenae DUMERIL, 1852 (Chondrichthyes: Potamotrygonidae) from Colombia. - J. Parasitol. 62(6): 943-947. BROOKS, D.R., MAYES, M.A. & T.B. THORSON (1981): Systematic review of cestodes infecting freshwater stingrays (Chondrichtyes: Potomotrygonidae) including four new species from Venezuela. - Proc. Helminthol. Soc. Wash. 48(1): 43-64. CAMPBELL, R.A., MARQUES, F. & V.A. IVANOV (1999): Paroncomegas araya (WOODLAND, 1934) n. gen. et comb. (Cestoda: Trypanorhyncha: Eutetrarhynchidae) from the freshwater stingray Potamotrygon motoro in South America. - J. Parasitol. 85(2): 313-320. CHAMBRIER, A. DE & A.A. REGO (1994): Proteocephalus sophiae n. sp. (Cestoda: Proteocephalidae), a parasite of the siluroid fish Paulicea luetkeni (Pisces: Pimelodidae) from the Brazilian Amazon. - Rev. Suis. Zool. 101(2): 361-368. CHAMBRIER, A. DE & C. VAUCHER (1992): Nomimoscolex touzeti n. sp. (Cestoda), a parasite of Ceratophrys cornuta (L.); first record of a MonticelIidae in an amphibian host. - Mem. Inst. Oswaldo Cruz: 87, Suppl.1: 61-67. CHAMBRIER, A. DE & C. VAUCHER (1994): Etude morpho-anatomique et génétique de deux nouveaux Proteocephalus WEINLAND, 1858 (Cestoda: Proteocephalidae) parasites de Platydoras costatus (L.), poisson siluriforme du Paraguay. - Syst. Parasitol. 27: 173-185. DÍAZ-UNGRÍA, C. (1973): Helmintos endoparásitos de Venezuela. - Cien. Vet. Maracaibo 3(1-2): 37-244. DÖNGUES, J. & W. HARDER (1966): Nesolecithus africanus n. sp. (Cestodaria, Amphilinidae) aus dem Coelom von Gymnarchus niloticus CUVIER 1829 (Teleostei). - Z. Parasitenkde. 28: 125-141. KHALIL, L.F., JONES, A. & R.A. BRAY (1994): Keys to the cestode parasites of vertebrates. - CAB International, Wallingford, Oxon: 751 pp. MAYES, M.A., BROOKS, D.R. & T.B. THORSON (1978): Two new species of Acanthobothrium VAN BENEDEN, 1848 (Cestoidea, Tetraphyllidea) from freshwater stingrays in South America. - J. Parasitol. 64(5): 838-841. PERTIERRA, A.A.G. (1995): Nomimoscolex microacetabula sp. n. y N. pimelodi sp. n. (Cestoda: Proteocephalidea), parásitos de Siluriformes del Rio de La Plata. - Neotrópica 41: 19-25.
232
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
PERTIERRA, A.A.G. (2002): Redescription of Proteocephalus bagri and P. rhamdiae (Cestoda: Proteocephalidae), parasites of Rhamdia quelen (Siluriformes: Pimelodidae) from South America, with comments on morphological variation. - Folia Parasitologica 49: 55-60. PERTIERRA, A.A.G. & G. VIOZZI (1999): Redescription of Cangatiella macdonaghi (SZIDAT & NANI, 1951) comb. nov. (Cestoda: Proteocephalidae) a parasitic of the Atheriniform fish Odontesthes hatcheri (EIGENMANN, 1909) from the Patagonian region of Argentina. - Neotropica 45(113114): 13-20. REGO, A.A. (1979): Contribuição ao conhecimento dos helmintos de raias fluviais Paratrygonidae. Rev. Brasil. Biol. 39(4): 879-890. REGO, A.A. (1980): Encontro de plerocercos de Trypanorhyncha (Cestoda) em ofídio de rio da América do Sul. - Mem. Inst. Butantan 44/45: 239-243. REGO, A.A. (1982): Identificação de Temnocephalida (Turbellaria) e de plerocercos de Trypanorhyncha (Cestoda) encontrados em caranguejos de água doce. - Rev. Brasil. Biol. 42(2): 275-278. REGO, A.A. (1984): Proteocefalídeos (Cestoda) de Phractocephalus hemilopterus, peixe da Amazônia. Mem. Inst. Oswaldo Cruz 79(2): 257-261. REGO, A.A. (1985): Proteocephalidea from Amazonian freshwater fishes: new systematic arrangement for the species described by WOODLAND as Anthobothrium (Tetraphyllidea). - Parasitol. al Día (Santiago, Chile) 9: 4-9. REGO, A.A. (1987a): Redescription de Pterobothrium crassicolle DIESING, 1850 (Cestoda : Trypanorhyncha) e revalidação da espécie. - Mem. Inst. Oswaldo Cruz 82: 51-52. REGO, A.A. (1987b): Cestóides proteocefalídeos do Brasil. Reorganização taxonômica. - Rev. Brasil. Biol. 47: 203-212. REGO, A.A. (1997): Senga sp., occurrence of a pseudophyllid cestode in a Brazilian freshwater fish. Mem. Inst. Oswaldo Cruz 92: 607. REGO, A.A., CHUBB, J.C. & G.C. PAVANELLI (1999): Cestodes in South American freshwater teleost fishes: keys to genera and brief description of species. - Rev. Brasil. Zool. 16: 299-367. REGO, A.A. & A.P. LUNA DIAS (1976): Estudos de cestóides de peixes do Brasil. 3a Nota: Cestóides de raias fluviais Paratrygonidae. - Rev. Brasil. Biol. 36(4): 941-956. REGO, A.A. & G.C. PAVANELLI (1990): Novas espécies de cestóides proteocefalídeos parasitas de peixes não siluriformes. - Ver. Brasil. Biol. 50: 91-101. REGO, A.A., SANTOS, J.C. DOS & P.P. SILVA (1974): Estudos de cestóides de peixes do Brasil. - Mem. Inst. Oswaldo Cruz 72(3/4): 187-204. SKRJABIN, K.I. (ed.) (1965): Osnovi Tsestodologii, Tom. V.: V.I. FREZE: Proteotsefalyati lentochni gelminti rib, amfibii I reptilii. - Akad. Nauk. U.S.S.R., Moscow: 538 pp. STUNKARD, H.W. (1962): The organization, ontogeny and orientation of the Cestoda. - Quart. Rev. Biol. 37(1): 23-34. WARDLE, R.A. & J.A. MCLEOD (1952): The zoology of tapeworms. - Univ. of Minnesota Press, Minneapolis: 780 pp. WARDLE, R.A., MCLEOD, J.A. & RADINOVSKY (1974): Advances in the zoology of tapeworms. Univ. of Minnesota Press, Minneapolis: 274 pp. WOODLAND, W.N.F. (1925): On three new proteocephalids (Cestoda) and a revision of the genera of the family. - Parasit. 17(4): 370-394. WOODLAND, W.N.F. (1933a): On the anatomy of some fish cestodes described by DIESING from the Amazon. - Quart. J. Microsc. Sci. 76: 175-208.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
233
WOODLAND, W.N.F. (1933b): On two new cestodes from the Amazon siluroid fish Brachyplatystoma vaillanti CUV. - Parasit. 25(4): 486-490. WOODLAND, W.N.F. (1933c): On a new subfamily of proteocephalid cestodes - the Othinoscolecinae - from the Amazon siluroid Platystomatichthys sturio (KNER). - Parasit. 25(4): 491-500. WOODLAND, W.N.F. (1934a): On six new cestodes from Amazon fishes. - Proc. Zool. Soc. London 1: 33-44. WOODLAND, W.N.F. (1934b): On the Amphilaphorchidinae, a new subfamily of proteocephalid cestodes, and Myzophorus admonticellia, gen. et sp. n., parasitic in Pirinampus spp. from the Amazon. - Parasit. 26(1): 141-149. WOODLAND, W.N.F. (1934c): On some remarkable new cestodes from Amazon siluroid fish. Parasit. 27(2): 208-225. WOODLAND, W.N.F. (1935a): Some new proteocephalids and a ptychobothriid (Cestoda) from the Amazon. - Proc. Zool. Soc. London 3: 619-624. WOODLAND, W.N.F. (1935b): Some more remarkable cestodes from Amazon siluroid fish. - Parasit. 28(2): 207-225. WOODLAND, W.N.F. (1935c): Additional cestodes from the Amazon siluroids, pirarara, dorad and sudobim. - Proc. Zool. Soc. London 4: 851-862. YAMAGUTI, S. (1959): Systema Helminthum. Vol. 2. The Cestodes of Vertebrates. - Intersci. Publ., New York: 860 pp.
234
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6. NEMATODA I. Definition and morphology Nematodes are elongate cylindrical worms that are found as free living forms in water and soil as well as parasitic invaders of plants and animals. The general nematode body plan is comparable to a tube within a tube. The inner tube is a complete digestive tract and the outer is the body wall. The reproductive organs are also long and tubular and are situated in the body cavity between the digestive tract and the body wall. The nematode digestive system consists of two or three lips, an oral aperture, buccal cavity, esophagus, intestine and anus. In nematodes, the sexes are separate and the male structures are: a testis, vas deferens, seminal vesicle and copulatory spicules. The female system includes: one or two ovaries with accompanying oviducts and uteri, followed by a vagina, genital pore and vulva. The male reproductive system normally opens by way of the anus, but the female pore can be at any level from the esophagus to the anus.
II. Life-cycle and transmission Adult nematodes in fish live either in the digestive tract or in the body cavities. Fertilization is internal and is accomplished by the male inserting the spicules into the vagina of the female. Male nematodes usually have papillae, a bursa or a genital sucker on the tail to aid in grasping the female. Some also have an internal hard structure (gubernaculum) to guide the spicules. Ova are fertilized within the female uterus and embryonic development begins. Nematodes grow by periodically moulting the outer cuticle, as do arthropods. There are four larval stages prior to the adult stage, In the case of fish nematodes; the first larval stage may be temporarily free in the water and all other stages parasitic. In the genera Rondonia and Monhysterides (Atractidae), the females are live-bearing and give birth to fourth stage larvae or subadults. Eggs are not even formed in these nematodes and the embryos and larval stages obtain nourishment from the uterine walls. Transmission of these nematodes is apparently direct and no intermediate hosts are required. Nematodes of the families Camallanidae, Cucullanidae and Philometridae are also viviparous, but a microcrustacean (usually a copepod) is needed as an intermedi-
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
235
ate host in the cycle. Copepods ingest the actively swimming first larval stage of these worms and the larvae develop to the third or fourth stage in the hemocoel of the crustaceans. Fish become infected when they ingest copepods containing third or fourth stage larvae. Some Ascaroidea of fish require two intermediate hosts to complete their cycles. The first of these is a microcrustacean and the second a small fish. In such cases, the larvae do not mature in the first fish but penetrate into its tissues where they wait for this host to be eaten by a larger predatory fish. An example of such a cycle is that of Porrocaecum draschei (= Terranova serrata) which is an intestinal parasite of Arapaima gigas in the Amazon River system. Probably other fish nematodes have similar cycles but these have not been studied. Amazon fish commonly have numerous encysted nematode larvae in their tissues (especially in the mesenteries). Some of these represent species of Contracaecum, Multicaecum, Terranova, Dujardinascaris and Eustrongylides that mature in piscivorous vertebrates other than fish (especially birds and crocodilians).
III. Pathology The damage caused to fish by nematodes varies greatly depending on the species present, the organ invaded and the number of worms involved. The oxyuroids, Monhysterides iheringi and Rondonia rondoni, are often found in countless thousands in the intestinal tracts of Amazonian fish, especially catfish and “pacus” but they do not appear to cause any histological alterations. The relationship of these nematodes to their hosts seems to be more in the nature of commensalism. They do not attach to the intestinal wall, but maintain their position by active swimming. Nematodes that attach to the intestinal wall or bury their heads in it are more pathogenic. Several species of Spirocamallanus are common in Neotropical fish, and these draw the host’s intestinal wall into their buccal capsules and feed on blood. There is always a localized inflammatory reaction at the attachment site and the worms can probably cause primary anemia from blood loss. Camallanids can also cause intestinal blockage, especially in small fish. We have found a 90 % incidence of Procamallanus (S.) inopinatus in young specimens of Brycon erythropterus (from 4-11 cm in length) that were caught in the Amazon River near Manaus, Brazil. In these infections, there were only one or two worms present, but in the smaller fish, they nearly filled the intestinal lumen. If such infections do not immediately cause the death of the fish, they certainly must affect their growth rates. In general, nematodes with cuticular spines invade the intestinal mucosa of the host. Species of Spinitectus insinuate all or most of the body into the intestinal wall where they cause severe inflammation. Species of Echinocephalus have spherical head region covered with small spines. This head bulb is inserted into the intestinal mucosa of stingrays. This provokes localized inflammation leading to fibrous encapsulation of the head bulb. Another spinous nematode that penetrates into the intestinal mucosa is Goezia spinulosa, an ascaridoid. TEXEIRA DE FREITAS & LENT (1946) reported that in Ceará State, Brazil, this species caused the death of larvae and young of Astronotus ocellatus and
236
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Arapaima gigas in a pisciculture station. The problem became so severe that attempts to rear these two species at the station were suspended. In addition to the effect of nematodes on fish health, these worms cause considerable economic loss in the fisheries industry. Since many nematode larvae are large enough to be seen by the unaided aye, their presence can make fish unmarketable. Also, health authorities sometimes prohibit the sale of fish containing visible larvae. As an example, Eustrongylides larvae are bright red in color and attain a length of 8 to 10 cm. They normally mature in piscivorous birds, and can survive in man. In the Brazilian Amazon, such larvae are often found in the flesh of the important food fish, Cichla ocellaris. Inspectors frequently condemn such fish for human consumption, but in any case, they have little appeal to the consumer.
IV. Prevention and treatment No treatment for encysted nematode larvae is possible or necessary. Since transmission of nematodes is usually by way of microcrustacean intermediate hosts, these should be eliminated from aquaria, when possible. Adult and larval nematodes in the intestinal lumen can be removed by treatment with D-N-Butyl tin oxide, which is mixed with the ration at 0.3 % of body weight and given for from one to five days.
V. Collection and study methods Nematodes can be collected by hand sedimentation of the intestinal contents, as described for trematodes. They can be killed, fixed and preserved by simply dropping then into 70 % alcohol. If storage for long periods is contemplated, 80 % alcohol to which 10 % glycerin has been added can be used. The glycerin keeps the specimens from drying out in the event that the alcohol evaporates. Temporary study slides can be made of nematodes in either glycerin or phenol. For glycerin mounts, the worms should first be hydrated by passage through water. If phenol is to be used, the worms should be partially dehydrated in 95 % alcohol first. If permanent stained preparations are to be made of nematodes, or any other small invertebrates, they should be killed and fixed first in AFA (85 parts of 85 % alcohol: 10 parts commercial formalin: 5 parts glacial acetic acid). Next, pass the specimen directly from AFA to the stain solution (95 % alcohol colored to the intensity of weak tea with equal parts of eosin and orange-g stains). Stain in this solution for 10 to 30 minutes and then move the specimens to pure phenol (liquefy phenol crystals with a small amount of 96 % alcohol to make this solution). The phenol simultaneously dehydrates, clears and destains the material. When a specimen appears clear in the phenol, it is already dehydrated (this usually takes a few seconds or at most a couple of minutes) but if more destaining is desired, it may be left in this solution longer. After the proper degree of destaining is achieved, the specimen can be moved to methyl salicylate where the destaining process will stop. After 3 minutes
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
237
in the latter, the specimens may be mounted in Canada balsam. Material fixed by other means and stored in 70 % alcohol can be processed in this same way, but specimens in aqueous solutions (10 % formalin, for example) must be placed in 70 % alcohol for a few minutes before staining. It often happens that a nematode, or other invertebrate, is fixed in an undesirable position. Regardless of the fixative used, the position can be corrected to some extent because a specimen in phenol becomes soft and pliable. It can be taken from that liquid, placed on a dry slide and manipulated into a better position with dissecting needles. When the desired position is achieved, a coverglass is placed over the specimen to secure it and methyl salicylate is added. The latter hardens the specimen in a few seconds and it will retain this position after mounting in balsam. Using the method described above, it is relatively easy to make permanent “en face” mounts of nematodes. Place a drop of Canada balsam on a slide. Remove a cleared nematode from the methyl salicylate and place it on the slide near the drop of balsam. Then, simply cut off the head of the nematode and shove it into the drop ( micro-scalpel or razor blade may be used). Finally, adjust in a vertical position and place a coverglass on top. For permanence, all balsam slides should be dried in an oven at 56 °C for two weeks.
VI. Identification and keys Morphological features used in nematode identification are: 1) size and shape of the body, 2) cuticular ornamentation, 3) form of the mouth and lips, 4) form and size of the buccal capsule and esophagus, 5) shape of the tail in both sexes, 6) position of the vulva, 7) form and size of the male spicules, and 8) number and position of the caudal papillae in the male. Some species can only be separated on the basis of male spicule morphology and papilla number.
The genera and species included herein are those that have been reported from the Amazon region. Other species that may occur there are also mentioned. For complete information on the nematodes of freshwater fishes of the Neotropical region, the reader is referred to the classic work of MORAVEC (1998).
Key to the Ascaridoidea of Amazonian freshwater fishes I. Esophagus widened posteriorly; ventriculus and 1 or 2 posteriorly directed ventricular appendices usually present ........... Anisakidae
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
I. Esophagus a stichosome (surrounded by unicellular glands) ...................................................................................................... Trichinelloidea II. Esophagus not a stichosome. A. Three large lips present ..................................................................................................................................................................... Ascaridoidea B. Lips small or lacking 1. Esophagus provided with a posterior muscular bulb ............................................................................................................ Oxyuroidea 2. Esophagus divided into anterior muscular and posterior glandular regions. a. Oviparus nematodes ............................................................................................................................................................. Seuratoidea b. Ovoviviparous nematodes ................................................................................................................................................ Camallanoidea c. Viviparous nematodes 1) Parasites of connective tissue and body cavity ....................................................................................................... Dranculoidea 2) Parasites of the intestinal tract ............................................................................................................................. Cosmocercoidea C. Pseudolabia present 1. Cuticle spinous anteriorly ...............................................................................................................................................Gnathostomatoidea 2. Cuticle smooth. a. Two large pseudolabia present .................................................................................................................................... Physalopteroidea b. Two small pseudolabia present .................................................................................................................................. Habronematoidea D. Oral cavity present, simple, without lips ........................................................................................................................................ Thelazioidea
238
Key to the superfamilies of Nematoda from Amazonian freshwater fishes
A. Body covered with circular rows of spines ................................................................................................................. Goezia (Fig. 6-21 A-B) B. Body unspined; mouth large, lips prominent. 1. Interlabia small or absent. a. Ventricular appendix present; intestinal cecum absent ............................................. Raphidascaris (Sprentascaris) (Fig. 6-20 A-C) b. Ventricular appendix absent; intestinal cecum present ............................................................................ Terranova (Fig. 6-12 A-B) 2. Interlabia large ................................................................................................................... Raphidascaroides (Figs. 6-20 A-C, 6-60 & 6-61) II. Esophagus elongate, not widened posteriorly; ventriculus present with 2 anteriorly and 3 posteriorly directed appendices .................. ........................................................................................................................... Acanthocheilidae ...................................................... Brevimulticaecum
Key to the Oxyuroidea (Pharyngodonidae) of Amazonian freshwater fishes
Key to the Camallanoidea (Camallanidae) of Amazonian freshwater fishes
239
I. Buccal capsule formed from 2 lateral valves ..................................................................................................................................... Camallaninae A. Valves divided into anterior and posterior parts of similar size .......................................... Paracamallanus (Figs. 6-30 & 6-39 to 6-42)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
I. Esophagus short, stout; bulb without sclerotized apparatus ................................................................................................ Travnema (Fig. 6-9) II. Esophagus elongate; bulb with sclerotized apparatus. A. Body of esophagus expanded anterior to bulb. 1. Buccal capsule present, armed with teeth ............................................................................................................. Cosmoxynema (Fig. 6-6) 2. Buccal capsule absent ........................................................................................................................................... Cosmoxynemoides (Fig. 6-4) B. Body of esophagus not expanded anterior to bulb. 1. Caudal appendage of male without papillae; caudal alae present ............................................................................................ Ichthyouris 2. Caudal appendage of male with 1 or 2 papillae; caudal alae present or absent.. a. Buccal capsule absent; parasites of Loricariidae ......................................................................................................... Parasynodontisia b. Buccal capsule present, armed with 3 teeth; parasites of Pimelodidae ........................................................................... Brasilnema c. Buccal capsule present, without teeth; parasites of Doradidae ....................................................................................... Spinoxyuris
I. Viviparous nematodes with from 1 to 10 formed larvae in the uterus ............................................................................................. Atractidae A. Head end armed with sclerotized pieces ....................................................................................... Klossinemella (Figs. 6-43 to 6-49 & 6-78) B. Head end without sclerotized pieces ............................................................................................................ Rondonia (Figs. 6-5 & 6-23 A-B) II. Oviparous nematodes ............................................................................................................................................................................... Kathlaniidae A. Mouth with 3 lips; cephalic end separated from rest of body by a cuticular fold at level of nerve ring ............................................... ................................................................................................................................................................................ Myleusnema (Figs. 6-64 to 6-77) B. Mouth with 6 lips; cephalic end not separated from rest of body ........................................................................ Spectatus (Fig. 6-8 A-B) C. Pharyngeal part of esophagus armed with cuticular ring ............................................................................. Chabaudinema (Fig. 6-19 A-C) Key to the Dracunculoidea of Amazonian freshwater fishes I. Esophagus divided into anterior muscular and posterior glandular parts; glandular part long or stout ............................. Guyanemidae A. Glandular esophagus long, slender, without posterior appendix ....................................................................... Guyanema (Fig. 6-18 A-B) B. Glandular esophagus short and stout, with elongate posterior appendix .............................................................................. Travassosnema II. Esophagus not divided or glandular part very short ...................................................................................................................... Philometridae A. Cuticle of adult females with small projections or bosses. 1. Bosses rounded ............................................................................................................................................................................. Philometroides
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Key to the Cosmocercoidea of Amazonian freshwater fishes
240
B. Valves undivided, terminating posteriorly in a chitinized ring ................................................... Camallanus (Figs. 6-25 & 6-31 to 6-35) II. Buccal capsule cup-like ..................................................................................................................................................................... Procamallaninae A. Inner surface of buccal capsule smooth in both sexes ............................................................... Procamallanus (Procamallanus) (Fig. 6-28) B. Inner surface of buccal capsule with spiraling ridges in both sexes ............................................................................................................... ............................................................................................................................. Procamallanus (Spirocamallanus) Figs. 6-24 A-B, 6-26 & 6-27) C. Inner surface of buccal capsule of female with spiraling ridges; buccal capsule of male without ridges but with teeth .................. ................................................................................................................................................Procamallanus (Denticamallanus) (Figs. 6-81& 6-87)
2. Bosses conical ................................................................................................................................................................... Nilonema (Fig. 6-14) B. Cuticle of adult females smooth. 1. Esophagus expanded anteriorly .......................................................................................................................................................Philometra 2. Esophagus not expanded anteriorly ...................................................................................................................................................... Rumai
Key to the Seuratoidea of Amazonian freshwater fishes
Key to the Trichinelloidea (Capillariidae) of Amazonian freshwater fishes
241
I. Spicular sheath of male spinous; stichosome composed of a single row of stichocytes ................................................................ Capillaria II. Spicular sheath of male not spinous. A. Spicule absent or very short ........................................................................................................................................................... Freitascapillaria B. Spicule present, well developed. Tail of male with membranous bursa supported by two lateral lobes. 1. Caudal lobes of male narrow, finger-shaped ................................................................................................ Paracapillaria (Fig. 6-1 A-B) 2. Caudal lobes of male wide, nearly spherical ................................................................................................................... Capillostrongyloides
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
I. Buccal cavity absent ................................................................................................................................................................................ Quimperiidae A. Anterior end of esophagus expanded. 1. Esophagus divided into two parts; mouth without lips .................................................................................................................. Touzeta 2. Esophagus undivided; mouth with 6 lips .................................................................................................... Paraseuratum (Fig. 6-17 A-B) B. Anterior end of esophagus not expanded ................................................................................................................................Neoparaseuratum II. Buccal cavity present ............................................................................................................................................................................... Cucullanidae A. Intestinal cecum present ............................................................................................................................................................................Dichelyne B. Intestinal cecum absent. 1. Caudal extremity conical or pointed ................................................................................................. Cucullanus (Figs. 6-16 A-B & 6-38) 2. Caudal extremity rounded ....................................................................................................................... Neocucullanus (Figs. 6-13 & 6-15)
Key to the Gnathostomatoidea (Gnathostomatidae) of Amazonian freshwater fishes
242
The only species of this family shown to occur in Neotropical fishes is ..................................................Echinocephalus daileyi (Fig. 6-11 A-D)
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Key to the Thelazioidea (Rhabdochonidae) of Amazonian freshwater fishes The only genus of this family known from Neotropical fishes is ................................................................................ Rhabdochona (Fig. 6-2 A-B)
Key to the Physalopteroidea (Physalopteridae) of Amazonian freshwater fishes The only genus of this family reported from Neotropical freshwater fishes is ..................................................................................... Heliconema
Key to the Habronematoidea of Amazonian freshwater fishes Only two genera of this Superfamily are known from Neotropical freshwater fishes: I. Cuticle with circular rows of spines .............................................................................................................................. Spinitectus (Fig. 6-10 A-D) II. Cuticle smooth ................................................................................................................................................................ Cystidicoloides (Fig. 6-3 A-B)
Clave para superfamílias de Nematoda de peces Amazonicos de agua dulce I. Esófago un esticosoma (rodeado por glándulas unicelulares) ..................................................................................................... Trichinelloidea II. Esófago no es un esticosoma. A. Tres grandes labios presentes .......................................................................................................................................................... Ascaridoidea B. Labios pequeños o ausentes 1. Esófago provisto con un bulbo muscular posterior ............................................................................................................... Oxyuroidea
2. Esófago dividido en dos regiones siendo la anterior muscular y la posterior glandular. a. Nemátodos oviparos ............................................................................................................................................................... Seuratoidea b. Nemátodos ovoviviparos .................................................................................................................................................. Camallanoidea c. Nemátodos vivíparos 1) Parásitos del tejido conectivo y cavidad del cuerpo ............................................................................................... Dranculoidea 2) Parásitos del tracto intestinal ................................................................................................................................. Cosmocercoidea C. Pseudolabios presentes 1. Cutíula espinosa anteriormente ....................................................................................................................................Gnathostomatoidea 2. Cutícula lisa. a. Com dos pseudolabios grandes ................................................................................................................................... Physalopteroidea b. Con dos pseudolabios pequeños ............................................................................................................................... Habronematoidea D. Cavidad oral presente, simple, sin labios ........................................................................................................................................ Thelazioidea
Clave para las Ascaridoidea de peces Amazonicos de agua dulce I. Esófago ensanchado posteriormente; ventrículo y 1 o 2 apéndices ventriculares dirigidos posteriormente generalmente presentes ... .......................................................................................................................................................................................................................... Anisakidae A. Cuerpo cubierto con hileras circulares de espinas ..................................................................................................... Goezia (Fig. 6-21 A-B) B. Cuerpo sin espinas; boca grande, labios prominentes. 1. Interlabios pequeños o ausentes. a. Apéndice ventricular presente; cecum intestinal ausente ......................................... Raphidascaris (Sprentascaris) (Fig. 6-20 A-C) b. Apéndice ventricular ausente; cecum intestinal presente ........................................................................ Terranova (Fig. 6-12 A-B) 2. Interlabios grandes ........................................................................................................... Raphidascaroides (Figs. 6-20 A-C, 6-60 & 6-61)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Los géneros y especies incluídos aquí son solo aquellos reportados para la región Amazónica. Otras especies que pudiesen ocurrir allí también están mencionadas. Para una información completa sobre los nemátodos de agua dulce en la región Neotropical, el lector puede consutar el trabajo clásico de MORAVEC (1998).
243
I. Esófago corto, robusto; bulbo sin aparato esclerotizado ...................................................................................................... Travnema (Fig. 6-9) II. Esófago alargado; bulbo con aparato esclerotizado. A. Cuerpo del esófago expandido anterior al bulbo. 1. Cápsula bucal presente, armada con dientes ........................................................................................................ Cosmoxynema (Fig. 6-6) 2. Cápsula bucal ausente ........................................................................................................................................... Cosmoxynemoides (Fig. 6-4) B. Cuerpo del esófago sin expansión anterior al bulbo. 1. Apéndice caudal del macho sin papilas; alas caudales presentes .............................................................................................. Ichthyouris 2. Apéndice caudal del macho con 1 o 2 papilas; alas caudales presentes o ausentes. a. Cápsula bucal ausente; parásitos de Loricariidae ........................................................................................................ Parasynodontisia b. Cápsula bucal presente, armada con 3 dientes; parásitos de Pimelodidae ..................................................................... Brasilnema c. Cápsula boca presente, sin dientes; parásitos de Doradidae ............................................................................................. Spinoxyuris
Clave para las Camallanoidea (Camallanidae) de peces Amazonicos de agua dulce I. Cápsula bucal formada de 2 válvulas laterales .................................................................................................................................. Camallaninae A. Válvulas divididas en parte anterior y posterior de tamaños similares ............................... Paracamallanus (Figs. 6-30 & 6-39 to 6-42) B. Válvulas sin division, terminando posteriormente en un anillo quitinizado ........................... Camallanus (Figs. 6-25 & 6-31 to 6-35) II. Cápsula bucal en forma de copa ..................................................................................................................................................... Procamallaninae A. Superficie interna de la cápsula bucal, lisa en ambos sexos ....................................................... Procamallanus (Procamallanus) (Fig. 6-28) B. Superficie interna de la cápsula bucal con salientes en espiral en ambos sexos ........................................................................................... ............................................................................................................................. Procamallanus (Spirocamallanus) Figs. 6-24 A-B, 6-26 & 6-27)
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Clave para las Oxyuroidea (Pharyngodonidae) de peces Amazonicos de agua dulce
244
II. Esófago alargado, no se engrosa posteriormente; ventrículo presente con 2 apéndices dirigidos anteriormente y 3 apéndices dirigidos posteriormente ............................................................................................... Acanthocheilidae ........................................................ Bevimulticaecum
C. Superficie interna de la cápsula bucal de la hembra con protuberancias en espiral; cápsula bucal del macho sin protuberancias pero con dientes ......................................................................................................................... Procamallanus (Denticamallanus) (Figs. 6-81 & 6-87)
Clave para las Cosmocercoidea de peces Amazonicos de agua dulce I. Nemátodos vivíparos con 1 a 10 larvas formadas en el útero ............................................................................................................ Atractidae A. Extremidad anterior armada con piezas esclerotizadas ............................................................... Klossinemella (Figs. 6-43 a 6-49 & 6-78) B. Extremidad anterior sin piezas esclerotizadas ............................................................................................ Rondonia (Figs. 6-5 & 6-23 A-B) II. Nemátodos ovíparos ................................................................................................................................................................................. Kathlaniidae A. Boca con 3 labios; extremidad cefálica separada del resto del cuerpo por un doblez cuticular a nivel del cordon nervisoso .......... .................................................................................................................................................................................. Myleusnema (Figs. 6-64 a 6-77) B. Boca con 6 labios; extremidad cefálica sin separación del resto del cuerpo ....................................................... Spectatus (Fig. 6-8 A-B) C. Parte faríngea del esófago armada con anillo cuticular ................................................................................ Chabaudinema (Fig. 6-19 A-C)
I. Esófago dividido en parte anterior musculosa y parte posterior glandular; parte glandular larga o robusta .................... Guyanemidae A. Esófago glandular largo, delgado, sin apéndice posterior ................................................................................... Guyanema (Fig. 6-18 A-B) B. Esófago glandular corto y robusto, con apéndice posterior alargado .................................................................................... Travassosnema II. Esófago sin divisió o parte glandular muy corta ............................................................................................................................. Philometridae A. Cutícula de hembras adultas con proyecciones pequeñas o abultadas. 1. Abultamientos redondeados ....................................................................................................................................................... Philometroides 2. Abultamientos cónicos ................................................................................................................................................... Nilonema (Fig. 6-14) B. Cutícula de hembras adultas lisas. 1. Esófago expandido anteriormente ..................................................................................................................................................Philometra 2. Esófato sin expansión anteiror .............................................................................................................................................................. Rumai
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Clave para las Dracunculoidea de peces Amazonicos de agua dulce
245
Clave para las Trichinelloidea (Capillariidae) de peces Amazonicos de agua dulce I. Vaina espicular del macho espinosa; esticosoma compuesto de una única hilera de esticocistes ................................................. Capillaria II. Vaina espicular del macho no espinosa. A. Espículas ausentes o muy cortas ................................................................................................................................................... Freitascapillaria B. Espículas presentes, bien desarrolladas. Cola del macho con bursa membranosa sostenida por dos lóbulos laterales. 1. Lóbulos de la cauda del macho angostos, en forma de dedos ................................................................. Paracapillaria (Fig. 6-1 A-B) 2. Lóbulos del macho anchos, casi esféricos ....................................................................................................................... Capillostrongyloides
Clave para las Gnathostomatoidea (Gnathostomatidae) de peces Amazonicos de agua dulce La única especie de esta familia encontrada en peces Neotropicales es ....................................................Echinocephalus daileyi (Fig. 6-11 A-D)
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
I. Cavidad bucal ausente ............................................................................................................................................................................ Quimperiidae A. Terminal anterior del esófago expandido. 1. Esófago dividido en dos partes; boca sin labios ....................................................................................................................... Touzeta 2. Esófago no dividido; boca con 6 labios ................................................................................................ Paraseuratum (Fig. 6-17 A-B) B. Terminal anterior del esófago no expandido ..................................................................................................................... Neoparaseuratum II. Cavidad bucal presente ........................................................................................................................................................................... Cucullanidae A. Ciego intestinal presente ......................................................................................................................................................................Dichelyne B. Ciego intestinal ausente. 1. Extremidad caudal conica o puntiaguda ................................................................................... Cucullanus (Figs. 6-16 A-B & 6-38) 2. Extremidad caudal rounda ............................................................................................................... Neocucullanus (Figs. 6-13 & 6-15)
246
Clave para las Seuratoidea de peces Amazonicos de agua dulce
Clave para las Thelazioidea (Rhabdochonidae) de peces Amazonicos de agua dulce El único género conocido de esta familia en peces Neotropicales es ......................................................................... Rhabdochona (Fig. 6-2 A-B)
Clave para las Physalopteroidea (Physalopteridae) de peces Amazonicos de agua dulce El único género de esta familia reportado para peces Neotropicales de agua dulce es ........................................................................ Heliconema
Clave para las Habronematoidea de peces Amazonicos de agua dulce
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Solamente dos géneros de esta Superfamilia son conocidos para preces Neotropicales de agua dulce: I. Cutícula con hileras circulares de espinas .................................................................................................................... Spinitectus (Fig. 6-10 A-D) II. Cutícula lisa ...................................................................................................................................................................... Cystidicoloides (Fig. 6-3 A-B)
247
248
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
VII. Checklist of Nematoda from Amazonian fishes Atractidae TRAVASOS, 1919 Oxyuroidea. Small worms with esophagus divided into two parts; posterior part usually bulbous. Intestine simple. Male: without preanal sucker; spicules equal, or not; gubernaculum present or absent. Female: tail pointed; ovary single; vulva posterior; viviparous. Intestine of vertebrates. Klossinemella COSTA, 1961 Mouth with six small lips. Esophagus divided into two parts; enlarged at posterior end, but without definite bulb. Tail of both sexes long and pointed. Male: tail spirally coiled; with four pairs of preanal and five parts of postanal papillae; spicules unequal, gubernaculum present. Female: vulva close to anus; viviparous. Intestine of fishes. K. iheringi (TRAVASSOS, ARTIGAS & PEREIRA, 1928): Piaractus brachypomum, Myleus (Myloplus) asterias, Mylesinus paraschomburgkii, Leporinus copelandi, L. fasciatus, Schizodon nasutus, Hoplias malabaricus and Pterodoras granulosus: Brazil (Amazonia). (Figs. 6-7 & 6-43 to 6-49). Body = 2.4-3.5 x 0.09 mm (male); 4.1-4.2 x 0.8 mm (female); Esophagus = 200-210 x 24-32 µm (anterior part); 360410 x 48-68 µm (posterior part); Spicules = 88-120 x 17-18 µm. Rondonia TRAVASSOS, 1919 Mouth with three bilobed lips, each with two papillae. Esophagus with cylindrical anterior portion which expands posteriorly and terminates in a bulb. Male: posterior extremity spiraled; spicules subequal; gubernaculum present; one pair of preanal and four pairs of postanal papillae present. Female: tail pointed, ovary single, vulva opening into cloaca; viviparous. Digestive tract of fishes. R. rondoni TRAVASSOS, 1919: Piaractus brachypomus, Colossoma metrei, Myleus spp., Mylesinus paraschomburgkii, Myletes torquatus, M. edulus, Pterodoras granulosus, Trachydoras paraguayensis, Pimelodus clarias, Pseudopimelodus zungaro and Luciopimelodus pati: Brazil. (Figs. 6-5 & 6-23 A-B). Body = 6-6.5 x 0.30 mm (male); 6.5-7.0 x 0.32 mm (female); Esophagus = 520-555 x 80-100 µm (anterior part); 260-280 x 60-70 µm (posterior part, less bulb); Bulb = 140 µm in diam; Spicules = 100-200 µm; Gubernaculum = 60 µm. Camallanidae RAILLIET & HENRY, 1915 Camallanoidea. Mouth without lips; buccal capsule prominent, chitinoid, cup-like, or divided into two shell-like halves. Esophagus with anterior muscular part and long posterior glandular part. Male: posterior extremity curved ventrally; caudal alae present; papillae variable in number, frequently pedunculate; spicule unequal, dissimilar. Female: vulva near middle of body; vagina directed posteriorly; two uteri present, viviparous. Parasites of digestive tracts of cold-blooded vertebrates. Camallanus RAILLIET & HENRY, 1915 Mouth formed of two lateral chitinous halves (valves) with longitudinal rib-like thickenings internally; trident shaped chitinous processes project
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
249
posteriorly from junctions of valves; chitinous ring present between valves and esophagus. Glandular portion of esophagus enlarged posteriorly. Male: with about 7 pairs of preanal papillae, 2 pairs of adanal papillae and several pairs of postanal papillae; spicules unequal and dissimilar, with one of them lightly chitinized; gubernaculum absent. Female: uteri opposed; posterior ovary absent; viviparous. In stomach, intestine or pyloric cecae of fishes, amphibians and reptiles. C. tridentatus (DRASCHE, 1884): Arapaima gigas: Brazil (Amazonia). (Fig. 6-32). Body = 3.6 mm (male); 7-12 x 0.17 x 0.23 mm (female); Buccal valves = 62-75 µm (male); 110-120 x 170 µm (female); Spicules = 205 µm; Papillae = 14 pairs (7 preanal, 2 adanal & 5 postanal). C. acaudatus FERRAZ & THATCHER, 1990: Osteoglossum bicirrhosum: Brazil (Amazonia). (Figs. 6-31 & 6-33 to 6-35). Body = 1.0-1.8 x 0.08-0.13 mm (male); 12-19 x 0.32-0.44 mm (female); Esophagus = 520-555 x 80-100 µm (anterior part); 260-280 x 60-70 µm; Buccal valves = 50-65 x 57-107 µm (male) & 67-95 x 75-107 µm (female); Spicules = 155-197 µm; Papillae = 14 pairs (7 preanal, 2 adanal & 5 postanal). Paracamallanus YORK & MAPLESTONE, 1928 Mouth formed from 2 lateral chitinous valves with longitudinal rib-like thickenings and marginal indentations; trident-like chitinous processes at junction of valves on either side; large chitinous buccal cavity between valves and esophagus. Intestine of fishes. P. amazonensis FERRAZ & THATCHER, 1992: Hypophthalmus edentatus: Brazil (Amazonia). (Figs. 6-30 & 6-39 to 6-42). Body = 2-3 x 0.07-0.10 mm (male); 4-5 x 0.10-0.15 mm (female); One spicule present = 120-170 µm; Papillae = 6 pairs (preanal). Procamallanus (Denticamallanus) BAYLIS, 1923 Medium sized nematodes with almost smooth cuticle. Mouth opening circular, surrounded by six low elevations (2 lateral and 4 submedian), eight cephalic papillae in two circlets and two lateral amphids. Basal capsule orange-brown, approximately as long as wide in male and distinctly shorter than wide in female; basal ring indistinct. Buccal capsule surrounded by outer, colorless hyaline layer. Muscular esophagus considerably shorter than glandular one; both parts of esophagus expanded at their posterior half. Minute deirids situated just below nerve ring level; excretory pore somewhat posterior to nerve ring level. Tail conical, its tip bluntly pointed. Procamallanus (D.) dentatus MORAVEC & THATCHER, 1997: Bryconops alburnoides: Brazil (Urubu River, Amazonas State). (Figs. 6-81 to 6-87). Body = 5.847.14 x 0.204-0.310 mm (male); 22.78-35.77 x 0.517-0.870 mm (female); Buccal capsule = 78-105 x 81-108 µm (male) & 108-111 x 153 µm (female); Spicules = 78 x 117. Procamallanus (Procamallanus) BAYLIS, 1923 Mouth a circular opening in a large cup or chalice-shaped chitinous buccal capsule; internal walls of capsule smooth. Male: caudal alae present,
250
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
uniting anteriorly; 3 – 10 pairs of preanal papillae present; spicules unequal. Female posterior ovary lacking; vulva in midbody; viviparous. Intestine of fishes. Procamallanus (P.) peraccuratus MAGALHÂES PINTO, FABIO, NORONHA & ROLAS, 1976: Geophagus brasiliensis and Cichlasoma facetum: Brazil (Espírito Santo State). (Fig. 6-28). Body = 9.4-9.8 x 0.15-0.17 mm (male); 12.8-22.3 x 0.210.40 mm (female); Buccal capsule = 72-87 x 49 µm (male) & 87-110 x 52 µm (female); Spicules = 220 x 240 x 180-200. Procamallanus (P.) annipetterae KOHN & FERNANDES, 1988: Hypostomus albopunctatus: Brazil (Paraná State). Body = 9.69 mm (male); 21.8 mm (female); Buccal capsule = 131 x 123 µm (male) & 180 x 187 µm (female); Spicules = 21 & 16 µm; Papillae = 5 pairs (2 preanal, 2 adanal & 1 postanal). Procamallanus (Spirocamallanus) BAYLIS, 1923 Buccal capsule with prominent spiraling ridges on inner walls, may also be provided with teeth in the mouth opening or in the bottom of the cup. Other characters as in Procamallanus. (note: This taxon is probably polyphyletic and may require division into several genera in the future). Procamallanus (S.) amarali VAZ & PEREIRA, 1934: Leporinus sp.: Brazil (São Paulo State). Body = 9.25 x 0.28 mm (male); Buccal capsule = 70 x 60 µm; Spicules = 440 & 240 µm; Papillae = 14 pairs (8 preanal, 3 adanal & 3 postanal). Procamallanus (S.) barroslimai PEREIRA, 1935; possibly Triportheus sp.: Brazil (São Paulo State). Body = 3.1 x 0.14 mm (male); Buccal capsule = 30 x 40 µm (male); Spicules = 50 & 60 µm; Papillae = 6 pairs (3 preanal & 3 postanal). Procamallanus (S.) cearensis PEREIRA, VIANNA & AZEVEDO, 1936 (considered a synonym of S. hilarii by KLOSS, 1966): Astyanax bimaculatus: Brazil (Ceará State). Body = 4.0 x 0.18 mm (male) & 10.3-14.0 x 0.28-0.42 mm (female); Buccal capsule = 40 µm (male) & 40-50 µm (female); Spicules = 57 µm; Papillae = 7 pairs (4 preanal & 3 postanal). Procamallanus (S.) chimusensis TEXEIRA DE FREITAS & IBAÑEZ, 1968: Pygidium punctatum: Colômbia and Peru. Body = 12-13 x 0.24-0.25 mm (male) & 3437 x 0.65-0.67 mm (female); Buccal capsule = 78-83 x 58-67 µm (male) & 93 x 73-80 µm (female); Spicules = 220-230 & 160-170 µm; Papillae = 6 pairs (3 preanal & 3 postanal). Procamallanus (S.) hilarii VAZ & PEREIRA, 1934: Salminus hilarii: Brazil (São Paulo State), Peru and Venezuela. Body = 6 x 0.2 mm (male) & 14 x 0.36 mm (female); Buccal capsule = 57 x 57 µm (male) & 62 x 62 µm (female); Spicules = 82 & 62 µm; Papillae = 8 pairs (3 preanal, 2 adanal & 3 postanal). Procamallanus (S.) iheringi TRAVASSOS, 1929: Salminus hilarii: Brazil (São Paulo State). Body = 12 x 0.3 mm (male) & 16-21 x 0.5-0.8 mm (female); Buccal capsule = 70-80 x 56-64 µm (male) & 88-96 x 70-80 µm (female); Spicules = 240-250 & 520-530 µm. Procamallanus (S.) incarocai TEXEIRA DE FREITAS & IBAÑEZ, 1970 (= syn. of (P.(S). hilarii): Pygidium punctatum: Peru. Body = 6.6-6.9 x 0.12-0.16 mm (male); 8.5-27 x 0.16-0.53 mm (female); Buccal capsule = 53-60 x 50-53
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
251
µm (male) & 60-67 x 53-60 µm (female); Spicules = 56-71 µm; Papillae = 9 pairs (4 preanal, 1 adanal & 4 postanal). Procamallanus (S.) inopinatus TRAVASSOS, 1929: Brycon brevicaudatus, B. hilarii and B. erythropterus: Brazil (São Paulo to Amazonas State) and Venezuela. (Fig. 6-24 A-B). Body = 5.0-8.7 x 0.25-0.35 mm (male); 16-28 x 0.45-0.80 mm (female); Buccal capsule = 80-100 x 60-90 µm (male) & 100-140 x 100-130 µm (female); Spicules = 90-110 & 100-120 µm (note: PETTER & THATCHER (1988) have pointed out that this species has an oral aperture provided with two sharp teeth and 4 cutting plates). Procamallanus (S.) intermedius MAGALHÃES PINTO, FABIO, NORONHA & ROLAS, 1974 (=syn. of P.(S.) pimelodi): Pimelodus clarias: Brazil (São Paulo State). Body = 8-10 x 0.15-0.23 mm (male); 11-20 x 0.17-0.31 mm (female); Buccal capsule = 70 x 10 µm (male) & 70-90 x 10-70 µm (female); Spicules = 240-280 x 60-63 µm. Procamallanus (S.) krameri (PETTER, 1974): Hoplerythrinus unitaenlatus: French Guiana and Venezuela. Body = 7 x 0.25 mm (male); 14 x 0.46 mm (female); Buccal capsule = 50 x 90 µm (male) & 100 x 100 µm (female); Spicules = 80 & 75 µm; Papillae = 9 pairs (4 preanal & 5 postanal). Procamallanus (S.) paraensis MAGALHÃES PINTO & NORONHA, 1976: unidentified fish; “jeju” (possibly Erythrinidae): Brazil (Pará State). Body = 5.2-7.7 x 0.18-0.31 mm (male); 12.6-15.7 x 0.31-0.44 mm (female); Buccal capsule = 70-80 x 90-100 µm (male) & 80-100 x 100-110 µm (female); Spicules = 70 & 90 µm; Papillae = 19 pairs (7 preanal, 1 adanal & 11 postanal). Procamallanus (S.) pexatus MAGALHÃES PINTO, FABIO, NORONHA & ROLAS, 1974: Pygidium brasiliensis: Brazil (Espírito Santo State). Body = 3.7-4.3 x 0.210.24 mm (male); 13-20 x 0.45-0.72 mm (female); Buccal capsule = 53-59 x 46-59 µm (male) & 66 x 53-66 µm (female); Spicules = 90 & 110 µm. Procamallanus (S.) pimelodus MAGALHÃES PINTO, FABIO, NORONHA & ROLAS, 1975: Pimelodus clarias: Brazil (São Paulo State & Matto Grosso State). (Fig. 6-27). Body = 7.6-11.3 x 0.15-0.22 mm (male); 11.7-23.2 x 0.17-0.23 mm (female); Buccal capsule = 50-70 x 40-50 µm (male) & 49-55 x 40 µm (female); Spicules = 160-240 & 39-48 µm. Procamallanus (S.) pintoi (KOHN & FERNANDES, 1988): Corydoras paleatus: Brazil (Paraná State) and Venezuela. Body = 4.67 x 0.25 mm (male) & 21.8-26 x 0.95-1.16 mm (female); Buccal capsule = 54 x 45 µm (male) & 60-71 x 4956 µm (female); Spicules = 94 & 82 µm; Papillae = 6 pairs (4 preanal & 2 postanal). Procamallanus (S.) rarus TRAVASSOS, 1929: Pimelodella lateristriga and Rhinodoras d’orbignyi: Brazil (São Paulo State), Paraguay and Argentina. (Fig. 6-26). Body = 5.3 x 0.11 mm (male); female unknown; Buccal capsule = 70 x 60 µm; Spicules = 400 & 170 µm. Procamallanus (S.) solani MAGALHÃES PINTO, FABIO, NORONHA & ROLAS, 1975: unidentified catfish: Brazil (Pará State). Male - right spicule = 430-450 µm; Papillae = 9 pairs.
252
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Procamallanus (S.) wrighti (PEREIRA, 1935) (considered a synonym of S. inopinatus by KLOSS 1966): Astyanax sp., Hoplias malabaricus, Leporinus sp. and Pygocentrus sp.: Brazil. Body = 3.86-4.6 x 0.18-0.27 mm (male) & 8.2-10.6 x 0.30-0.38 mm (female); Buccal capsule = 40-60 µm (male) & 49-110 µm (female); Spicules = 45 µm; Papillae = 8 pairs (4 preanal & 4 postanal). Cucullanidae COBBOLD, 1864 Seuratoidea. Mouth an open slit bordered by two large lobes each bearing 2 papillae and an amphid. Esophagus muscular throughout, expanded posteriorly. Male: spicules equal or unequal; gubernaculum usually present. Female: vulva near midbody; vagina pointing anteriorly; 2 ovaries usually present; oviparous. Intestinal tract of fish and reptiles. Cucullanus MÜLLER, 1777 Cucullanidae. Anterior extremity bent dorsally; lips not sclerotized; intestine without diverticula. Male: rim of preanal sucker not chitinized; spicules equal; gubernaculum present. Female: 2 ovaries present; eggs with thin shells. Intestinal tract of fish and reptiles. C. brevispiculus MORAVEC, KOHN & FERNANDES, 1993: Auchenipterus nuchalis: Itaipu reservoir, Paraná State, Brazil. Body = 8.6-11 x 0.38-0.48 (female); 9.6-10 x 0.22-0.23 (male): spicules = 0.21. C. colossomi DÍAZ-UNGRÍA, 1968: Colossoma macropomum: Venezuela (Amazonas State). Body = 17 x 0.6 mm (male) & 22 x 0.7 mm (female); Spicules = 1.3 mm long. C. grandistomis (FERRAZ & THATCHER, 1988): Pseudodoras niger: Brazil (Amazonas). (Fig. 6-38). Body = 3.7-4.7 x 0.09-0.16 mm (male) & 3.0-7.4 x 0.060.15 mm (female); Spicules = 0.78 mm. C. interrogativus TRAVASSOS, ARTIGAS & PEREIRA, 1928 (= syn. of Neocucullanus neocucullanus): Salminus maxillosus: Brazil (São Paulo State). Species based on immature specimens; Body = 10.5 x 0.45 mm (male & 12.9 x 0.50 mm (female); Mouth lobes with small denticles, each about 5 µm long. C. mogi TRAVASSOS, 1948: Leporinus sp.: Brazil (São Paulo State). Description unavailable. C. oswaldocruzi VICENTE, SANTOS & JARDIM, 1979 Pseudopimelodus zungaro: Brazil (Pará State). Body = 17 x 0.51 mm (male) & 18.2 x 0.54 mm (female); Spicules = 1.1-1.2 mm long. C. pauliceae VAZ & PEREIRA, 1934: Paulicea luetkeni: Brazil (São Paulo State). Body = 18.5 x 0.76 mm (male) & 20.3 x 0.76 mm (female); Buccal capsule = 0.40 x 0.36 mm; Spicules = 1.2 mm. C. pimelodellae MORAVEC, KOHN & FERNANDES, 1993: Pimelodella lateristriga: Paraná State, Brazil. Body = 5-12 x 0.23-0.39 (female); 5-12 x 0.18-0.44 (male); Spicules = 0.35-0.68. C. pinnai TRAVASSOS, ARTIGAS & PEREIRA, 1928: Pimelodus clarias and Pseudoplatystoma sp.: Brazil. Body = 8.5 x 0.3 mm (male) & 5.9-9.8 x 0.28-0.30 mm (female); Buccal capsule = 140 x 140 µm; Spicules = 57 µm. C. pseudoplatystomae MORAVEC, KOHN & FERNANDES, 1993: Pseudoplatystoma corruscans: Paraná River, Paraná State, Brazil. Body = 8.6-15 x 0.20-0.27 (female); 9-12 x 0.18-0.27 (male); Spicules = 0.49-0.53.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
253
C. rhamphichthydis MORAVEC, KOHN & FERNANDES, 1997: Rhamphichthys rostratus: Paraná River, Paraná State, Brazil. Body = 9.3-12.4 x 0.20-0.22 (female); male unknown C. schubarti TRAVASSOS, 1948: Paulicea luetkeni: Brazil (São Paulo State). (Fig. 616 A-B). Body = 14.5 x 15.6 x 0.48-0.59 mm (male) & 19.2 x 0.58-0.61 mm (female); Spicules = 1.0-1.4 mm long. C. zungaro VAZ & PEREIRA, 1934: Pseudopimelodus zungaro and Paulicea luetkeni: Brazil (São Paulo State). Body = 5.4-6.1 x 0.36 mm (male) & 8.3 x 0.41 mm (female); Buccal capsule = 0.14 x 0.14 mm; Spicules = 0.64-0.70 mm. Neocucullanus TRAVASSOS, ARTIGAS & PEREIRA, 1928 Cucullanidae. Similar to Cucullanus but mouth cavity is less well developed and tail of male is long and tapered. N. neocucullanus TRAVASSOS, ARTIGAS & PEREIRA, 1928: Characidae: Brazil (Minas Gerais State). (Fig. 6-15). Body = 16 x 0.68 mm (male) & 32 x 0.9 mm (female); Spicules = 380 µm; Egg = 60-70 µm long. Gnathostomatidae LANE, 1923 Gnathostomatoidea. Mouth with prominent trilobed lateral lips having inner tooth-like ridges; spherical head bulb behind lips provided with transverse striations or retrospines. Four cervical glands present. Males: caudal alae supported by pedunculate papillae; spicules equal or unequal. Females: vulva postequatorial; vagina directed anteriorly; uterus with 2 or 4 branches; oviparous; egg shells thin, ornamented. Digestive tract of fish, reptiles and mammals. Echinocephalus MOLIN, 1858 Gnathostomatidae. Head bulb armed with retrospines; body unarmed. Male: caudal alae small; 8 pairs of papillae present, with anterior pair distant from others; spicules slightly unequal, long, slender, marked by transverse striations. Female: tail long, conical; vulva near posterior end; vagina long; oviparous. From intestinal spiral valve of elasmobranch fishes. E. daileyi DEARDORFF, BROOKS & THORSON, 1981: Potamotrygon circularis and P. histrix: Colombia, Venezuela & Brazil. (Fig. 6-11 A-D). (Note: This species is known from the Amazon and Orinoco River systems). Body = 55-66 x 0.6 x 0.9 mm (male) & 55-85 x 0.9-1.4 mm (female); Head bulb = 0.44-0.53 x 0.61-0.65 mm (male) & 0.48-0.68 x 0.59-0.80 mm (female); Retrospines in 30-34 rows; Gubernaculum present; Spicules equal = 1.4-2.4 mm long. Guyanemidae PETTER, 1974 Dracunculoidea. Anterior extremity with 6 pairs of cephalic papillae. Buccal capsule absent. Esophagus divided into 2 parts. Male: spicules equal; caudal alae present; gubernaculum absent. Female: vulva pre-equatorial; viviparous. Parasitic in abdominal cavity and digestive tract of fishes. Guyanema PETTER, 1974 Guyanemidae, with the characters of the family. Male: 4 pairs of preanal papillae present. Female: monodelphic. From abdominal cavity and intestinal tract of fish.
254
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
G. seriei PETTER, 1974: Hoplerythrinus unitaeniatus: French Guiana. (Fig. 6-18 A-B). Body = 8 x 0.09 mm (male) & 14 x 0.19 mm (female); Spicules = 100 µm. G. seriei paraguayensis PETTER & DLOUHY, 1985: Hoplerythrinus unitaeniatus: Paraguay. Body = 4.4 x 0.10 mm (male) & 6.35 x 0.08 mm (female); Spicules = 80 µm. G. ancistri PETTER, 1987: Ancistrus sp.: Ecuador. Body = 6.8-9.8 mm (female). G. baudi PETTER & DLOUHY, 1985: Hoplias malabaricus: Paraguay. Body = 2.552.70 x 0.05-0.06 mm (male) & 5 x 0.05 mm (female); Spicules = 70 µm. G. longispiculum MORAVEC, PROUZA & ROYERO, 1996: Loricariichthys brunneus: Orinoco River, Venezuela. Body = 6.8-9.3 x 0.07-0.08 (male); 16.8-30.7 (female); Spicules = 0.48-0.61. G. raphiodoni MORAVEC, KOHN & FERNANDES, 1993: Raphiodon vulpinus: Itaipu reservoir, Paraná State, Brazil. Body = 3.7 x 0.07 (male); Spicules 0.15. Travassosnema COSTA, MOREIRA & OLIVEIRA, 1991. Guyanemidae, with the characters of the family. Cephalic end rounded; buccal capsule absent. Esophagus divided into anterior muscular part and posterior glandular part; latter with elongate dorsal appendix extending posteriorly. Deirids present. Caudal end of male with alae, preanal and postanal papillae; two spicules and gubernaculum present. Vulva anterior. Monodelphic. Ovoviviparous. Anus functional in female. Parasites of body cavity and tissues of fishes. Type species: Travassosnema travassosi COSTA, MOREIRA & OLIVEIRA, 1991. T. travassosi COSTA, MOREIRA & OLIVEIRA, 1991: Acestrorhynchus lacustris: Minas Gerais State, Brazil. (Fig. 6-94). Body = 2.0-2.4 x 0.03-0.05 (male); 7.5-13.8 x 0.14-0.24 (female); Spicules = 0.05-0.06. MORAVEC et al (1993) divided this species into two subspecies, namely: T. travassosi travassosi and T. travassosi paranaensis. The latter was found in the same host species from Paraná State, Brazil. The differences between the two are largely based on size. Anisakidae RAILLIET & HENRY, 1912 Ascaroidea. Esophagus with oblong to cylindrical posterior ventriculus with one dorsal and one ventral longitudinal suture-like depression, or with small globular ventriculus giving off posteriorly directed appendix with such depressions or rarely two appendices. Excretory system asymmetrical, confined to left lateral chord. Excretory pore situated between base of subventral lips or near nerve ring. Intestinal caecum present or absent. Parasites of all classes of vertebrates. Goezia ZEDER, 1800 Anisakidae. Body with cuticular rings which are provided with retrospines. Lips flattened and expanded outward, separated from body by constriction; esophagus expanded posteriorly and with 1 or 2 long ventricular appendages; short anterior cecum present. Male: spicules nearly equal; gubernaculum absent. Female: vulva pre-equatorial; oviparous. From digestive tract of fish and reptiles.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
255
G. spinulosa (DIESING, 1839): Astronotus ocellatus and Arapaima gigas: Brazil (Amazonia). (Fig. 6-21 A-B). Body = 6.3-15.3 x 0.37-0.77 mm (male) & 11.716.2 x 0.80-0.87 mm (female); Spicules = 410-320 µm; Egg = 50 x 38 µm. Raphidascaris.(Sprentascaris) RAILLIET & HENRY, 1915 Anisakidae. Lips without denticles; interlabia absent; post-labial cuticular horns present; cervical alae present or absent; esophagus with small ventriculus and short appendix; intestinal cecum absent. Male: spicules equal; gubernaculum absent. Female: vulva pre-equatorial; eggs embryonated or not. From digestive tract of siluriform fishes. R. (Sprentascaris) hypostomi (PETTER & CASSONE, 1984); Hypostomus sp.: Paraguay. Body = 6.8-8.2 mm (male) & 6.4 x 11.0 mm (female); Esophagus = 0.901.4 mm; Spicules = 150-250 µm. R. (Sprentascaris) mahnerti (PETTER & CASSONE, 1984); Loricariichthys platymetopon: Paraguay. (Figs. 6-20 A-C & 6-98). Body = 5.5-7.5 mm (male) & 7.511.0 mm (female); Esophagus = 0.70-1.1 mm; Spicules = 120-145 µm. R. (Sprentascaris) pimelodi (PETTER & CASSONE, 1984); Pimelodus maculatus: Paraguay. Body = 8.9 mm (male) & 13.6 x 19.0 mm (female); Esophagus = 0.90-1.6 mm; Spicules = 140 µm. Raphidascaroides YAMAGUTI, 1941 Anisakidae. Rather large nematodes. Lips well developed, with lateral cuticular flanges, with or without dentigerous ridges. Interlabia well developed. Excretory pore slightly posterior to nerve ring level. Esophagus muscular, provided with almost spherical ventriculus; posteriorly directed ventricular appendix present. Intestinal cecum absent. Spicules equal, alate. Genital papillae numerous. Vulva pre-equatorial. Oviparous. Parasite of freshwater and marine fishes. R. brasiliensis MORAVEC & THATCHER, 1997. Pterodoras granulosus. Janauacá Lake, Amazon River, near Manaus, Brazil. (Figs. 6-60 & 6-61). Body = 31.2-34.4 x 0.6-0.7 mm (male) & 46-76.7 x 0.82-1.03 mm (female); Egg = 45-51 x 36-42 µm long. Terranova LEIPER & ATKINSON, 1914 Anisakidae. Cephalic end with three short lips bearing fine dentigerous ridges on inner surface. Interlabia absent. Ventriculus well developed, ventricular appendix absent. Anterior intestinal cecum present. Excretory pore situated at base of ventrolateral lips. Spicules equal, gubernaculum absent. Vulva in anterior part of body. Tail conical. Parasites of digestive tract of fishes and reptiles. T. diazungriai MORAVEC, 1998: Potamotrygon hystrix, Potamotrygon circularis. Venezuela (Orinoco River Delta). (Fig. 6-12 A-B). Body = 17.0 x 0.5 mm (male) & 28 x 0.70 mm (female). T. serrata (DRASCHE, 1884): Arapaima gigas: Brazil (Amazonia). (Fig. 6-12 A-B). Body = 25 x 0.62 mm (male) & 28 x 0.73 mm (female); Spicules = 1.5 mm; Egg = 45-50 µm long. Kathlaniidae YORK & MAPLESTONE, 1926 Cosmocercoidea. Mouth with 3 or 6 well developed lips; teeth present or absent; interlabia present or absent; esophagus with posterior bulb, usually
256
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
preceded by a swelling; intestine without diverticula. Male: pre-cloacal sucker usually present, may have chitinoid rim; spicules equal or subequal; gubernaculum usually present. Female: vulva postequatorial. From digestive tracts of cold-blooded vertebrates. Chabaudinema DÍAZ-UNGRÍA, 1968 Kathlaniidae. Mouth with 6 papillate lips; esophagus with anterior cuticularized ring. From digestive tract of fish. C. americanum DÍAZ-UNGRÍA, 1968: Colossoma macropomum: Venezuela (Amazonas State). (Fig. 6-19 A-C). Body = 30 x 1.28 mm (male) & 34 x 1.5 mm (female); Spicules = 0.90-1.1 mm; Eggs = 115-117 µm. Myleusnema MORAVEC & THATCHER, 1996. Kathlaniidae. Body large, with cephalic portion separated from remaining wider portion of body by transverse cuticular fold approximately at level of nerve ring. Mouth aperture triangular, surrounded by three small lips, each associated with a cuticularized lamella-like formation demarcating a poorly developed buccal cavity. Anterior extremity of esophagus not differentiated into a pharyngeal portion; posterior extremity of esophagus formed by elongate, expanded isthmus and spherical bulb with valves. Tail conical, relatively short. Male: ventral precloacal sucker present; posterior part of cloacal opening with lobe-like formation armed with two conspicuous horns associated with a gubernaculum; spicules simple, alate and of equal length (similar); numerous paired preanal and postanal papillae present; caudal alae absent. Female: vulva postequatorial; reproductive apparatus prodelphic; eggs numerous, oval, thin walled, containing moderately developed embryos. Intestinal parasites of Neotropical fishes. Type species: M. bicornis MORAVEC & THATCHER, 1996 M.bicornis MORAVEC & THATCHER, 1996: Myleus ternetzi: Takari Tanté Falls, Sinnamary River, French Guiana. (Figs. 6-64 to 6-73). Body = 14.28-17.41 mm x 1.09-1.12 µm & 16.62-20.13 mm x 1.36-1.54 mm (female); Eggs = 135 x 150 x 96-105 µm. M.brasiliense MORAVEC & THATCHER, 1999. Myleus sp.: Serra da Mesa, Tocantins River, Pará State, Brazil. (Figs. 6-74 to 6-77). Body = 15.16-22.63 mm x 1.02-1.31 µm & 18.33-24.18 mm x 1.14-1.56 mm (female); Eggs = 122 x 150 x 82-95 µm. Spectatus TRAVASSOS, 1923 Kathlaniidae. Mouth with 6 lips each of which bears a papilla; esophagus with posterior bulb containing valves; excretory pore anterior to esophageal bulb. Male: spicules subequal, similar, falcate; preanal sucker ellipsoidal, with chitinoid rim; Papillae = 11 pairs (5 preanal, 3 adanal & 3 postanal). Female: vulva in midbody; ovijector long; eggs large, thickshelled. From intestine of freshwater fish. S. spectatus TRAVASSOS, 1923: Colossoma brachypomum: Brazil. (Fig. 6-8 A-B). Body = 10-12 x 0.7 mm (male) & 12-14 x 0.8 mm (female); Spicules = 0.71.0 mm; Egg = 92 x 63 µm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
257
Pharyngodonidae TRAVASSOS, 1919 Oxyuroidea. Oral aperture surrounded by four large cephalic papillae and two lateral amphids. Lateral alae present or absent. Genital cone in male often supported by a V-shaped sclerotized structure. Male caudal alae present or absent. Eggs usually elongate-oval, asymmetrical, often provided with operculum or filaments. Parasites of cold-blooded vertebrates, rarely of archaic mammals. Brasilnema MORAVEC, KOHN & FERNANDES, 1992. Pharyngodonidae. Body small, with distinct transverse striations; lateral alae present in both sexes. Mouth opening hexagonal, without lips, surrounded by six triangular lamellae. Buccal capsule large. Tail with very long terminal spike in both sexes. Male: gubernaculum absent; spicule simple, moderately sclerotized; genital papillae clearly separated into anterior group on protruding genital cone and one posterior pair; caudal alae absent. Female: vulva pre-equatorial; uterus opposed; eggs larvated, provided with long polar filaments. Intestinal parasites of fishes. Type species: Brasilnema pimelodellae MORAVEC, KOHN & FERNANDES, 1992. B. pimelodellae MORAVEC, KOHN & FERNANDES, 1992: Pimelodella lateristriga. Paraná River near Guaira, Paraná State, Brazil. (Fig. 6-95 A-B). Body = 0.99-1.20 mm x 82-136 µm (male including tail spike) & 1.96-2.64 mm x 249-326 µm (female); Eggs with numerous filaments in both poles = 144156 x 63-96 µm in size. Cosmoxynema TRAVASSOS, 1948 Pharyngodonidae. Body fusiform, transversely striated, with lateral flanges throughout body length. Mouth circular; buccal capsule spherical, with three conical teeth at base; esophagus claviform, followed by bulb containing valves. Male: unknown. Female: vulva pre-equatorial; ovaries in midbody; unpaired portion of uterus divided into 2 branches; eggs elongate, curved, not embryonated. Intestinal parasites of fish. C. viannai TRAVASSOS, 1948: Curimata gilberti: Brazil. (Fig. 6-6). Body = 3.1-4.6 x 0.33 mm (female; male unknown); Buccal capsule = 30-40 µm; Egg = 163174 x 38-40 µm. Cosmoxynemoides TRAVASSOS, 1948 Pharyngodonidae. Body fusiform, transversely striated; lateral flanges present throughout body length. Cephalic end smooth, separated from body by circular groove; buccal capsule small; esophagus claviform, followed by bulb with valves. Male unknown. Female: vulva pre-equatorial; uterus as in Cosmoxynema; egg elongate, bent. Intestinal parasite of fish. C. aguirrei TRAVASSOS, 1948: Curimata gilberti and Geophagus brasiliensis: Brazil (São Paulo State). (Fig. 6-4). Body = 3.3-3.8 x 0.29-0.30 mm (female; male unknown); Egg = 190-197 x 38-45 µm. Ichthyouris INGLIS, 1962. Pharyngodonidae. Body small, cuticle transversely striated. Lateral alae present. Oral aperture bounded by six small labial lobes, each associated
258
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
with small, anteriorly protruding lobe-like lamella growing out from its base. Tail with long terminal spike in both sexes. Male: gubernaculum absent; spicule simple, well sclerotized; genital papillae around anus, two pairs of them being long, pedunculate; broad caudal alae present. Female: vulva pre-equatorial, uterus prodelphic; eggs larvated mostly provided with filaments. Intestinal parasites of fishes. Type species: Ichthyouris ro INGLIS, 1962. I. brasiliensis MORAVEC, KOHN & FERNANDES, 1992: Pterygoplichthys aculeatus and Megalancistrus aculeatus: Brazil (Paraná River near Guaira, Paraná State) and Paraguay (Province Alto Paraná). Body = 1.28-1.88 mm x 109-150 µm (male including tail spike) & 3.16-4.50 mm x 231-422 µm (female); Eggs with numerous filaments on both poles = 93-99 x 33-36 µm in size. I. bursata MORAVEC & PROUZA, 1995: Symphysodon discus: Intestine. Introduced in Czech Republic together with fishes from South America. Body = 1.241.39 mm x 109 µm (male including tail spike) & 2.39-3.17 mm x 231-340 µm (female); Eggs with only one filament on each pole = 105-111 x 39-42 µm in size. I. laterifilamenta MORAVEC, KOHN & FERNANDES, 1992: Trachydoras paraguayensis: Intestine. Paraná River basin, Brazil and Paraguay. Body = 1.16-1.44 mm x 82109 µm (male including tail spike) & 2.56-3.33 mm x 190-299 µm (female); Eggs with numerous lateral filaments = 117-138 x 51-69 µm in size. I. ovifilamentosa MORAVEC & THATCHER, 2001: Cichlasoma: Intestine. Rio Negro, São Gabriel da Cachoeira, Amazonas, Brazil. (Figs. 6-53 to 6-55). Body = 1.7-1.8 mm x 163 µm (male including tail spike) & 3.9-4.583 mm x 231-286 µm (female); Eggs = 99-102 x 30-33 µm. I. ro INGLIS, 1962: Cichlasoma festivum and Geophagus steindachneri: Intestine. Guyana & Peru. Body = 0.83-1.10 mm x 57-87 µm (male including tail spike) & 2.10-2.40 mm x 150-190 µm (female); Eggs = 36-11 µm. Parasynodontisia MORAVEC, KOHN & FERNANDES, 1992: Pharyngodonidae. Small nematodes; females distinctly larger than males. Cuticle with fine transverse striations. Lateral alae absent. Mouth opening triangular, surrounded by six low triangular lamellae in hexagonal pattern. Four large circumoral cephalic papillae and one pair of elongate amphids present. Buccal capsule absent. Anterior end of esophagus forming well developed “pharynx” containing three depressions in its anterior region, which correspond to its three longitudinal sectors. Esophagus of almost uniform diameter except for posterior bulb containing sclerotized apparatus. Nerve ring encircling esophagus approximately at border of its first and second quarters. Excretory pore situated anterior to level of bulb. Tail conical (in larger specimens more elongate), ending in sharp cuticular spine. Type specie: P. petterae MORAVEC, KOHN & FERNANDES, 1992. P. petterae MORAVEC, KOHN & FERNANDES, 1992: Rhinelepis aspera: Intestine. Paraná River in Brazil and Paraguay. Body = 1.39-2.46 mm x 82-122 µm (male including tail spike) & 2.35-4.09 mm x 177-340 µm (female); Eggs = 69-33 µm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
259
Spinoxyuris PETTER, 1994 Pharyngodonidae. Small nematodes with transversely striated cuticle. Lateral alae in both sexes, each ending posteriorly as a spike. Buccal cavity of female surrounded by six small oral membranous lamellae, four oval cephalic papillae and two lateral amphids. Esophagus consisting of cylindrical corpus, short isthmus and bulb with sclerotized apparatus. Excretory pore posterior to esophageal bulb. Type specie: S. oxydoras PETTER, 1994. S. annulata MORAVEC & THATCHER, 2001: Myleus ternetzi: Sinnamary River, French Guiana. (Figs. 6-50 to 6-52 & 6-56 to 6-59). Body = 1.8-1.9 mm x 109-122 µm (male including tail spike) & 4.0-4.4 mm x 340 – 408 µm (female); Eggs = 150-180 x 66-84 µm. S. oxydoras PETTER, 1994: Oxydoras kneri: Paraná River, Province Alto Paraná, Paraguay. Body = 1.00-1.05 mm x 55-70 µm (male including tail spike) & 1.93-2.42 mm x 150-200 µm (female); Eggs = 110 x 50 µm. With few filaments growing out irregularly from egg surface. Travnema PEREIRA, 1938 Pharyngodonidae. Mouth circular; lips lacking; 4 papillae present; buccal capsule small; pharynx and esophagus both flask-shaped. Male: lateral alae extending throughout most of body length; 1 spicule present; gubernaculum absent. Female: cervical alae well developed; lateral alae reduced; vulva postequatorial; 2 ovaries present; originating at posterior extremity; ovijector short; egg large, asymmetrical, operculate, embryonated. Intestine of fish. T. travnema PEREIRA, 1938: Curimata elegans: Brazil (São Paulo State). (Fig. 6-9). Body = 1.1 x 0.10 mm (male) & 2.1-3.1 x 0.24-0.30 mm (female); Spicules = 45 µm; Egg = 164-169 x 74-82 µm. T. araujoi FERNANDES, CAMPOS & ARTIGAS, 1983: Curimata gilberti: Brazil (São Paulo State). Body = 2.1 x 0.16 mm (male) & 3-5 x 0.23-0.39 mm (female); Spicules = 36 µm; Egg = 177-229 x 52-81 µm. Philometridae BAYLIS & DAUBNEY, 1926 Dracunculoidea. Body long, slender. Anterior end rounded, mouth simple, without lips, but 6 or 8 papillae may be present; esophagus elongate, divided into 2 parts. Male: 2 spicules present; spicules equal, slender, finely pointed; gubernaculum may or may not be present. Female: vulva small, or absent; vagina rudimentary, or absent, in gravid females; ovaries short, at opposite ends of body; uterine branches opposed, forming continuous tube, viviparous. Parasites of body cavity or tissues of fishes. Nilonema KHALIL, 1960. Female body large, with narrowed ends. Cuticle with large, cone-shaped excrescences. Esophagus cylindrical, without anterior inflation. Cephalic papillae small. Ovaries opposed. Anus and vulva atrophied. Males unknown. Parasites of freshwater fishes. N. senticosa BAYLIS, 1927: Arapaima gigas: Brazil (Amazonia) and Peru. (Fig. 614 A-B). Body = 90-125 x 0.62-0.85 mm (female); Cuticle with spine-like protuberances, irregularly placed; Embryos = 300 µm.
260
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Philometra COSTA, 1845 Philometridae. Body filiform; female much larger than male; both extremities rounded; head and tail papillae may be present. Mouth with or without lips; esophagus short, expanded anteriorly; rudimentary ventriculus present. Male: cloaca terminal, bordered by 2 lips; spicules equal, needle-like; gubernaculum present. Female: anus and vulva atrophied; vulva in posterior one-third of body in young females; ovaries small; uterus voluminous; viviparous. Tissue and body cavity parasites of fish. P. amazonica TRAVASSOS, 1960: Callophysus macropterus: Brazil. Body = 265-950 x 0.5-1.0 mm (female); Embryos = 416-445 x 14 µm. P. baylisi VAZ & PEREIRA, 1934: Pimelodus clarias: Brazil. Body = 95 x 0.29 mm (female); Mouth with 3 lips; Caudal spine = 10 µm. P. maplestonei TRAVASSOS, ARTIGAS & PEREIRA, 1929: Salminus hilarii: Brazil. Body = 144 x 0.22 mm (female); Cuticle with irregularly placed, small, rounded protuberances; Embryos = 320 x 18 µm. Quimperiidae BAYLIS, 1930 Seuratoidea. Lips small or absent; buccal capsule absent; esophagus divided or not. Male: preanal sucker usually present, lacks chitinized rim; spicules equal; gubernaculum present or not. Female: vulva post-equatorial; oviparous. Parasites of digestive tract of fish and occasionally amphibians. Neoparaseuratum MORAVEC, KOHN & FERNANDES, 1992 Quimperiidae. Head rounded; mouth hexagonal, surrounded by six small lip-like formations; four submedian cephalic papillae and two lateral amphids present. Esophagus long, undivided, its posterior of greater diameter than anterior. Cephalic region of body surrounded by numerous longitudinal bands of inflated cuticle. Deirids small, at esophagus level; excretory pore postesophageal. Male: caudal alae absent, oblique muscle bands in preanal region present. Spicules equal, short gubernaculum present. Female: vulva postequatorial, uterus opposed. Eggs not embryonated in uteri. Intestinal parasites of South American fishes. Type species: Neoparaseuratum travassosi MORAVEC, KOHN & FERNANDES, 1992. N. travassosi MORAVEC, KOHN & FERNANDES, 1992: Pterodoras granulosus and Trachydoras paraguayensis: Basin of Paraná River in Brazil. (Fig. 6-97). Body = 2.26-8.02 mm x 122-299 µm (male) & 8.41-11.40 mm x 299-381 µm; Egg = 90-105 x 54-66 µm. Paraseuratum JOHNSTON & MAWSON, 1940. Quimperiidae. Cephalic end truncated. Mouth surrounded by six low lips; four double cephalic papillae and lateral amphids present. Buccal capsule absent. Esophagus long, with inflated anterior end; small esophastome present, containing 3 small sclerotized pieces and 3 small teeth in its lumen. Male without caudal alae; tail conical. Spicules equal. Vulva at second third of body, vagina short. Uterus opposed. Eggs almost spherical Tail of female conical. Intestinal parasites of freshwater fishes. Type species: Paraseuratum tandani JOHNSTON & MAWSON, 1940.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
261
P. albidum, KLOSS, 1966: Astyanax bimaculatus, Tetragonopterus argenteus and Erythrinus erythrinus: Paraná River basin, São Paulo, Brazil & Ecuador (Amazon River drainage system). (Fig. 6-17 A-B). Body = 7.7-11 mm x 200-500 µm (male) & 9.2-21.5 mm x 206-750 µm; Egg = 70-80 x 45-50 µm. P. soaresi FABIO, 1982: Hoplias malabaricus. Rio de Janeiro State, Brazil. Touzeta PETTER, 1987 Quimperiidae. Oesophastome present; esophagus short, divided into 2 parts of different diameters. Male: preanal pseudo-sucker present; spicules equal; gubernaculum present. Female: vulva post-equatorial; amphidelphes. From digestive tract of fish. T. ecuadoris PETTER, 1987: Cichlidae: Ecuador. (Fig. 6-22 A-B). Body = 4.8 x 0.35 mm (male) & 6 x 0.40 mm (female); Spicules = 140 µm; Embryos = 70 x 50 µm. Rhabdochonidae SKRJABIN, 1946 Thelazioidea. Mouth with or without lips; buccal cavity funnel-shaped or cylindrical, with or without teeth; esophagus of 2 parts. Male: posterior extremity usually rolled or coiled; caudal alae narrow, papillae sessile; spicules unequal. Female: oviparous. Parasites of digestive tract of fish and amphibians. Rhabdochona RAILLIET, 1916 Rhabdochonidae. Body smooth; mouth with 2 reduced lips; buccal capsule funnel-shaped, with longitudinal ridges terminating in teeth; esophagus of 2 parts. Male: numerous simple preanal papillae and 3-6 pairs of postanal papillae present; spicules unequal. Female: vulva in mid-body; uterine branches opposed; oviparous; eggs elliptical. From intestine of freshwater fishes. R. acuminata (MOLIN, 1860); Brycon falcatus, Pimelodella lateristriga: Brazil: Body = 9-12 x 0.16-0.21 mm (male) & 14-21 x 0.26-0.35 mm (female); Spicules = 530 & 170 µm; Egg = 35 x 22 µm. R. australis KLOSS, 1966 (= syn. of R. acuminata): Astyanax bimaculatus: Brazil (São Paulo State). Body = 8.0-8.4 x 0.08-0.12 mm (male) & 12.6-14.9 x 0.12-0.16 mm (female); Spicules = 350-490 & 110-120 µm; Egg = 21-24 x 13-18 µm. R. colossomi DÍAZ-UNGRÍA, 1968: Colossoma macropomum: Venezuela. Description unavailable. R. elegans ARTIGAS & PEREIRA, 1929 (= syn. of R. acuminata): Tetragonopterus sp.: Brazil (São Paulo State). (Fig. 6-2 A-B). Body = 12-13 x 0.2 (male) & 22-28 x 0.3 mm (female); Spicules = 420-450 & 140-150 µm; Egg = 42 x 18 µm. R. fasciata KLOSS, 1966 (= syn. of R. acuminata): Astyanax fasciatus: Brazil (São Paulo State). Body = 4.5-6.0 x 0.05-0.08 mm (male) & 18.7-22.2 x 0.240.28 mm (female); Spicules = 380 & 680-710 µm; Egg = 24 x 18 µm. R. uruyeni DÍAZ-UNGRÍA, 1968: Piabucina sp.: Venezuela. Body = 7.5 x 0.12 mm (male) & 11.8-14.9 x 0.15 mm (female); Spicules = 320-400 & 65-80 µm; Egg = 35 x 20 µm. Cystidicolidae SKRJABIN, 1946 Habronematoidea. Mouth simple, with small lips; buccal capsule sclerotized, cylindrical; esophagus long, clearly divided into anterior and posteri-
262
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
or parts. Male: Posterior extremity spiraled; caudal alae narrow; papillae numerous; spicules unequal. Female: uterus divergent; egg thin-shelled. From digestive tract of fish. Cystidicoloides SKINKER, 1931 Cystidicolidae. Large or medium sized nematodes. Cuticle sometimes with ornamentations. Oral opening slit-like or dorsoventrally elongated. Pseudolabia small, often reduced to small appendix. Cephalic papillae usually reduced to four at base of pseudolabia. Anterior end of stoma (vestibule) sometimes armed with small teeth. Esophagus divided into anterior muscular and posterior glandular sections. Caudal alae in male present. Eggs oval, larvated, sometimes with special formations on surface. Parasites of digestive tract and swim bladder of fishes. C. dlouhyi PETTER, 1984: Sternopygus macrurus: Paraguay. Body = 5.5 x 0.20 mm (male) & 6.2-9.1 x 0.25-0.38 mm (female); Spicules = 590 & 150 µm. C. fischeri (TRAVASSOS, ARTIGAS & PEREIRA, 1928): Salminus maxillosus: Brazil (São Paulo State). (Fig. 6-3 A-B). Body = 9.6 x 0.20 mm (male) & 9.7-12.0 x 0.200.30 mm (female); Spicules = 900-1000 & 160-180 µm; Egg = 40-44 x 32 µm. C. vaucheri PETTER, 1984: Oxydoras kneri: Paraguay. Body = 16.2 x 0.4 mm (female); Egg = 40 x 25 µm. Spinitectus FOURMENT, 1883 Cystidicolidae. Cuticle with transverse rings bearing retrospines; mouth with indistinct lips; buccal cavity funnel-shaped or cylindrical; esophagus of 2 parts. Male: posterior extremity coiled; caudal alae narrow; preanal and postanal papillae present, numerous; spicules unequal, dissimilar. Female: vulva equatorial or post-equatorial; oviparous; eggs small, ellipsoidal, polar filaments sometimes present. From digestive tracts of fish and frogs. S. asperus TRAVASSOS, ARTIGAS & PEREIRA, 1928: Prochilodus scrofa: Brazil (São Paulo State). Body = 8.2 x 0.28 mm (female); Egg = 18-21 x 16 µm. S. jamundensis THATCHER & PADILLA, 1977: Prochilodus reticulatus: Colombia (Department of Valle). (Fig. 6-10 A-B). Body = 2.5-4.8 x 0.10-0.18 mm (male) & 6.0-9.8 x 0.17-0.30 mm (female); Spicules = 200-280 & 90-130 µm; Egg = 32-40 x 22-30 µm. This species was considered a synonym of S. asperus by MORAVEC (1998). S. multipapillata PETTER, 1987: Pimelodella sp.: Ecuador. Body = 6.3-7.4 x 0.110.12 mm (male) & 6.5 x 0.15 mm (female); Spicules = 220-240 µm. S. pachyuri PETTER, 1984: Pachyurus bonariensis: Paraguay. Body = 10.6-0.065 mm (female); Egg = 40 x 28 µm. S. rudolphiheringi VAZ & PEREIRA, 1934: Pimelodella lateristriga and Salminus hilarii: Brazil (São Paulo State). Body = 3.7-4.0 x 0.12 mm (male) & 3.0 x 0.12 mm (female); Spicules = 200 & 120 µm. S. sternopygi PETTER, 1984: Sternopygus macrurus: Paraguay. Body = 4.7-4.9 x 0.13 mm (male) & 5.9-7.0 x 0.15-0.25 mm (female); Spicules = 200-210 & 120130 µm; Egg = 40 x 25 µm. This species was considered a synonym of S. rudolphiheringi by MORAVEC (1998).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
263
S. yorkei TRAVASSOS, ARTIGAS & PEREIRA, 1928: Pimelodella lateristriga: Brazil (São Paulo State). Body = 4.2 x 0.08 mm (male) & 11 x 0.16 mm (female); Spicules = 162 & 40 µm; Egg = 30-34 x 20-23 µm. Capillariidae RAILLIET, 1915. Trichinelloidea. Thread-like nematodes. Cuticle with longitudinal bacillary bands, usually two lateral, one dorsal and one ventral. In males, one more or less sclerotized spicule present, with smooth or spiny spicular sheath, able to invaginate or evaginate. Posterior end of male with or without small membranous bursa. Vulva near distal end of esophagus, sometimes with elevated lips. Eggs usually barrel-shaped, with polar plugs, and with smooth or variously sculptured surface. Parasitic in varios organs. Capillaria ZEDER, 1800 Capillariidae. Body capillary; mouth simple; esophagus long, increases in diameter posteriorly. Male: anus terminal or subterminal; caudal alae sometimes present; spicule long and slender, with spinous or smooth sheath. Female: vulva near posterior end of esophagus; oviparous; eggs elliptical, with polar plugs. Digestive tract or urinary bladder of vertebrates. C. minima TRAVASSOS, ARTIGAS & PEREIRA, 1928 (= syn. of Capillostrongyloides sentinosa): Leporinus sp.: Brazil (São Paulo State). Body = 1 x 0.03 mm (male) & 1.9 x 0.035 mm (female); Spicule = 130 µm; Egg = 50 x 25 µm. C. zederi (TEXEIRA DE FREITAS & LENT, 1935) (= syn. of Capillostrongyloides sentinosa): Hoplias malabaricus: Brazil (São Paulo State). Body = 3.7-3.8 x 0.016-0.048 mm (male) & 3.4-3.5 x 0.024-0.040 mm (female); Spicule = 140-160 µm; Egg = 48-68 x 24-35 µm. Capillostrongyloides FREITAS & LENT, 1935. Capillariidae. Stichosome consisting of single row of stichocytes; lateral caudal alae in male absent; membranous bursa well developed, usually exceeding considerably posterior end of body, being supported by two short, wide lateral lobes, each of them bearing papilla at the base; spicule without rough transverse grooves on its surface, being often insufficiently sclerotized; spicular sheath not spiny; vulvar appendage absent; parasites of digestive tract of fishes. C. sentinosa TRAVASSOS, 1927: Astyanax fasciatus: Brazil (São Paulo State). Body = 2 x 0.04 mm (male) & 4.5-4.7 x 0.07 mm (female); Spicule = 89 µm; Egg = 41-49 x 20-23 µm. Freitascapillaria MORAVEC, 1982 Capillariidae. Stichosome consisting of single row of stichocytes; lateral caudal alae in male absent; posterior end of male rounded, distinctly laterally expanded, without distinct papillae, with terminal cloacal opening; spicule allegedly absent (short, slightly sclerotized spicule probably present); spicular sheath not spiny; vulvar appendage absent; parasites of digestive tract of fishes. F. maxillosa (VAZ & PEREIRA, 1934): Salminus maxillosus: Brazil (São Paulo State). Body = 6 x 0.07 mm (male) & 16.3 x 0.10 mm (female); Egg = 62 x 28 µm.
264
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Paracapillaria MENDOÇA, 1963 Capillariidae. Stichosome composed of single row of stichocytes. Lateral caudal alae in male absent. Membranous bursa present, supported by two lateral digital projections (rays) bent along posterior border of bursa to dorsal side; dorsal caudal projection absent; pair of large sessile adanal or postanal papillae present. Spicule without rough transverse grooves on its surface. Spicular sheath not spiny. Vulvar appendage absent. Parasites of digestive tract of cold-blooded vertebrates. P. piscicola (TRAVASSOS, ARTIGAS & PEREIRA, 1928): Acestrorhamphus sp.: Brazil (São Paulo State). (Fig. 6-1A-B). Body = 4.2 x 0.044 mm (male) & 6 x 0.056 mm (female); Egg = 45 x 18 µm. Physalopteridae RAILLIET, 1893. Physalopteroidea. Cephalic end with two large, unlobed lateral pseudolabia, usually provided with teeth on their inner surface. Interlabia absent. Papillae of external circle fully fused together, situated on pseudolabia. Stoma strongly reduced. Inflation of cuticle (cephalic collarette) posterior to pseudolabia sometimes present. Male caudal papillae pedunculate, caudal alae well developed, often forming unification on ventral side of body (vesicule); or caudal papillae sessile and caudal alae absent. Vulva of female usually pre-equatorial. Uteri sometimes numerous. Heliconema TRAVASSOS, 1919. Physalopteridae. Internal border of each pseudolabium carrying only an iternolateral tooth and, sometimes, a simple tooth at each dorsoventral extremity. Spicules of male differing in size and shape. Usually ten pairs of pedunculate caudal papillae present. Vulva of female slightly preequatorial in position. Ovejector very long. Two uteri present. Oviparous. Parasites of fishes. H. izecksohni FÀBIO, 1982. Hoplias malabaricus. Brazil (Rio de Janeiro). (Fig. 696). Body = 32 x 0.15 mm (male) & 23 x 0.17 mm (female); Egg = 65-72 x 44-50 µm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
VIII. Plates of Nematoda (Figs. 6-1 to 6-98)
6-1 A
6-1 B
40 µm
6-1. Paracapillaria piscicola: female; A. entire; B. egg (after TRAVASSOS et al. 1928).
265
266
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-2 A 6-2 B
6-3 A
6-3 B
6-2. Rhabdochona elegans: male; A. head; B. tail (after TRAVASSOS et al. 1928); 6-3. Cystidicoloides fischeri: male; A. tail; B. head (after TRAVASSOS et al. 1928).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
267
6-6
6-4
6-5
6-7
6-8 A
6-9
6-8 B
6-4. Cosmoxynemoides aguirrei: female, head; 6-5. Rondonia rondoni: female, head; 6-6. Cosmoxynema viannae: female, head; 6-7. Klossinemella iheringi: female, head; 6-8. Spectatus spectatus: male; A. head; B. tail; 6-9. Travnema travnema: female, head (Figs. 6-4 to 6-9 after TRAVASSOS et al. 1928).
268
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-10 B
6-10 A
6-10 C
6-10 D
6-10. Spinitectus jamundensis: female; A. head; B. “en face”; C. tail; D. tail; male (after THATCHER & PADILHA 1977).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
269
6-11 A 6-11 B
6-11 C
6-11 D
6-11. Echinocephalus dailey: female; A. anterior end; B. lips (lateral view); C. lips (apical); male; D. anterior end (all after DEARDORFF et al. 1981).
270
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-12 A
6-12 B 6-13
6-14 A
6-15
6-14 B 6-12. Terranova serrata: male; A. head; B. spicules; 6-13. Neocucullanus neocucullanus: female, head; 6-14. Nilonema senticosa: female; A. head; B. tail. 6-15. Neocucullanus neocucullanus: male, tail (6-12 to 6-15 after TRAVASSOS et al. 1928).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
271
6-16 A 6-16 B
6-17 A
6-17 B
6-16. Cucullanus schubarti: A. head end (female); B. tail (male) (after PETTER 1987); 6-17. Paraseuratum albidum: A. head end (female); B. tail (male) (after PETTER 1987).
272
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-18 A
6-19 A
6-18 B
6-19 C
6-19 B
6-18. Guyanema seriei: A. head end (female); B. tail (male) (after PETTER 1987); 6-19. Chabaudinema americana: female; A. head end; B. head; male; C. tail (after DÍAZ-UNGRÍA 1968).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
273
6-20 A
6-20 C 6-20 B
6-21 A
6-20. Raphidascaris (Sprentascaris) mahnerti: A. “en face”; B. tail (male); C. head end (female) (after PETTER & CASSONE 1984); 6-21 A. Goezia spinulosa: tail (male) (after SANTOS, VICENTE & JARDIM 1979).
274
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-22 A
6-21 B
6-22 B
6-21 B. Goezia spinulosa: head end (female) (original); 6-22. Touzeta ecuadoris: A. head end; B. tail (male) (after PETTER 1987).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
6-23 A
275
6-23 B
6-24 A 6-23. Rondonia rondoni: female; A. anterior extremity; B. head and mouth; 6-24 A. Procamallanus (Spirocamallanus) inopinatus: female; apical view.
276
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-24 B
6-25
6-24 B. Procamallanus (Spirocamallanus) inopinatus: female, buccal capsule; 6-25. Camallanus tridentatus: female, buccal capsule.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
6-26
277
6-27
6-28
6-29
6-30
6-26 to 6-30. Head ends of Camallanidae: 6-26. Procamallanus (Spirocamallanus) rarus (showing teeth in base of capsule); 6-27. Procamallanus (S.) pimelodus; 6-28. Procamallanus (Procamallanus) peraccuratus; 629. “Procamallanus sp.” (showing 3 teeth in base of capsule); 6-30. Paracamallanus sp. (showing postvalvular chamber and tridents). (All original photomicrographs.)
278
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-31
6-33
6-32
6-34
6-31 to 6-34. Camallanus spp.: 6-31. C. acaudatus (male; head); 6-32. C. tridentatus (female; apical view); 6-33. C. acaudatus (3rd stage larva; showing post-valvular chamber); 6-34. C. acaudatus (3rd stage larva in transition to 4th stage). (All original photomicrographs).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
279
6-35 A
B
C
6-35. Camallanus acaudatus: female; A. anterior expansion; B. anterior extremity; C. buccal capsule. (All original photomicrographs).
280
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-36
6-37
6-38
6-36. Spinitectus sp. 6-37. Spinitectus asperus: female, head end; 6-38. Cucullanus grandistomis: female, head and mouth. (All original photomicrographs).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
281
6-40
6-39 6-41
6-42
Paracamallanus amazonensis: 6-39. female head, lateral view (scale = 50 µm); 6-40. female head “en-face” (scale = 25 µm); 6-41. male head, ventral view (scale = 25 µm); 6-42. Male tail, ventral (scale = 50 µm).
282
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-43
6-45
6-46 6-48
6-47 6-44
6-49
Klossinemella iheringi: 6-43. anterior of female, lateral view; 6-44. female entire (showing eggs); 6-45. female mouth “en face”; 6-46. head female, dorso-ventral view; 6-47. spicules and gubernaculum; 6-48. tail of female; 6-49. tail of male (from MORAVEC & THATCHER 1997 a). Figs. 6-43 to 6-98 are reproduced here by permission of the editors of Folia Parasitologica, Czech Republic.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
283
6-50
6-53 6-54
6-55
6-51
6-52
6-50 to 6-52. Spiroxyuris annulata: female; 6-50. mouth “en face”; 6-51. entire; 6-52. egg; 6-53 to 6-55. Ichthyouris ovifilamentosa: female; 6-53. mouth “en face”; 6-54. entire; 6-55. egg (from MORAVEC & THATCHER 2001).
284
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-56
6-58 6-59
6-57
Spinoxyuris annulata: female; 6-56. anterior end, ventral view; 6-57. caudal region, dorsal view; 6-58. mouth “en face”; 6-59. mouth, sub-lateral view (from MORAVEC & THATCHER 2001).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
285
6-60
6-61
6-62
6-63
Raphidascaroides brasilienses: 6-60. anterior extremity and lips; 6-61. posterior extremity of female showing papillae; 6-62. “Spirocamallanus” sp. “en face” from Myleus schomburgkii; 6-63. Cucullanus sp. “en face” from Mylesinus paraschomburgkii (from MORAVEC & THATCHER 1997c).
286
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-67
6-64
6-68
6-65
d n
6-66
6-69
Myleusnema bicornis: 6-64. mouth of female “en face”; 6-65. head of female, lateral view; 6-66. anterior end of female, lateral view; d = deirid, n = nerve ring; 6-67. female entire; 6-68. male entire; 6-69. egg (from MORAVEC & THATCHER 1996).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
287
6-70
6-71
6-72
6-73
Myleusnema bicornis: 6-70. mouth female “en face”; 6-71. tail of female; 6-72. cloacal aperture of male showing horns and spicules; 6-73. posterior extremity of male (from MORAVEC & THATCHER 1996).
288
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-75 6-74 6-76
6-77
Myleusnema brasiliense: 6-74. mouth “en face”; 6-75. tail of male; ventral view; 6-76. head of female, lateral view; 6-77. cloacal aperture of male showing postcloacal horns and spicules (from MORAVEC & THATCHER 1999).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
289
6-79
6-78 6-80
6-78. Klossenemella iheringi; 6-79. Procamallanus (D.) dentatus; 6-80. Procamallanus (S.) inopinatus (from MORAVEC & THATCHER 1997a).
290
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-81
6-82 6-83 6-84
6-85
6-86
6-87
Procamallanus (Denticamallanus) dentatus: 6-81. head of female; 6-82. head of male; 6-83. apical view of female; 6-84. tail of male; 6-85. anterior end of male; 6-86. posterior end of female; 6-87. posterior end of male (from MORAVEC & THATCHER 1997 b).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
291
6-88 6-89
6-90
6-91
6-92
6-93
Cucullanus mogi from Leporinus sp.: 6-88. anterior end of female; 6-89. “en face” view of female; 6-90. posterior end of male; 6-91. egg; 6-92. posterior extremity of female; 6-93. posterior extremity of male (from MORAVEC 1998).
292
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
6-94
6-95 A
6-95 B
6-96
6-98 6-97
6-94. Travassosnema travassosi: anterior end of female; 6-95. Brasilnema pimelodella: A. anterior extremity female; B. head of female; 6-96. Heliconema izecksohni: head end of female; 6-97. Neoparaseuratum travassosi: anterior extremity; 6-98. Terranova serrata: anterior extremity (all redrawn from MORAVEC 1998).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
293
IX. Cited and general references BAYLIS, H.A. (1923): Some parasitic worms from Arapaima gigas (teleostean fish) with a description of Philometra senticosa n. sp. (Filarioidea). - Parasit. 19(1): 35-47. BOGOYAVLENSKIY YU, K. (1973): Structure and function of covering tissues of parasite nematodes. Akad. Nauk. U.S.S.R., Moscow (In Russian): 231 pp. BRIZOLA, S.M. & R.D. TANZOLA (1995): Hysterothylacium rhamdiae sp. n. (Ascaridoidea: Anisakidae) from a Neotropical catfish, Rhamdia sapo (Pisces: Pimelodidae). - Mem. Inst. Oswaldo Cruz 90: 349-352. COSTA, H.M.A., GUIMARÃES, M.P., CABRAL, D.D. & M.J.S. MUNDIN (1995): Scanning electron microscopic observations on Goezia spinulosa (DIESING, 1839) (Nematoda: Anisakidae) from Arapaima gigas (CUVIER, 1817). - Mem. Inst. Oswaldo Cruz 90: 703-705. COSTA, H.M.A., MOREIRA, N.I.B. & C.L. DE OLIVEIRA (1991): Travassosnema gen. n. with the description of T. travassosi sp. n. (Dracunculoidea, Guyanemidae) parasite of Acestrorhynchus lacustris REINHARDT, 1874 (Characidae) from Três Marias Reservoir, MG, Brazil. - Mem. Inst. Oswaldo Cruz 86: 437-439. DEARDORFF, T.L., BROOKS, D.R. & T.B. THORSON (1981): A new species of Echinocephalus (Nematoda: Gnathostomidae) from Neotropical stingrays with comments on E. diazi. - J. Parasitol. 67(3): 433-439. DÍAZ-UNGRÍA, C. (1968): Helmintos de peces de Venezuela con descripción de un género y tres especies nuevas. - Bol. Soc. Venez. Cien. Nat. 27(113-114): 537-570. DRASCHE, R. VON (1884): Revision der in der Nematoden-Sammlung des K.K. Zoologischen Hofkabinets befindlichen Originalexemplare DIESING’s und MOLI. - Verh. K.K. Zool. Bot. Ges. Wien 33: 107-118. FERNANDES, M.T., CAMPOS, M.S. & P.T. ARTIGAS (1983): Travnema araujoi n. sp. (Nematoda: Pharyngodonidae) parasito de Curimatus gilberti QUOY & GAIMARD (Pisces, Characinidae). Rev. Fac. Med. Vet. Zootec. Univ. São Paulo 20: 35-41. FERRAZ, E. & V.E. THATCHER (1988): Bacudacnitis grandistomis gen. et sp. nov. (Nematoda: Cucullanidae) parasita intestinal de um bagre Pseudodoras niger (VALENCIENNES) da Amazônia Brasileira. - Amazoniana 10(3): 249-253. FERRAZ, E. & V.E. THATCHER (1990): Camallanus acaudatus sp. n. (Nematoda, Camallanidae) e uma descrição do macho de Camallanus tridentatus (DRASCHE, 1884), parasitas de peixes da Amazônia Brasileira. - Amazoniana 11(2): 135-145. FERRAZ, E. & V.E. THATCHER (1991): Paracamallanus amazonensis sp. n. (Nematoda: Camallanidae) um parasita de bagre, Hypophthalmus edentatus (Pisces: Hypophthalmidae) da Amazônia brasileira. Amazoniana. 12(1): 1-6. FORTES, E. & R.P. HOFFMANN (1995): Levantamento da fauna parasitária de peixes do Lago Guaíba, Porto Alegre, Rio Grande do Sul, Brasil. - Rev. Bras. Med. Vet. 17: 107-111. FORTES, E., HOFFMANN, R.P. & T.M. SARMENTO (1992): Descrição de Cucullanus patoi sp. n. (Nematoda, Cucullanidae) de pintado Pimelodus maculatus Lacépède, 1803 do Lago de Guaíba, Rio Grande do Sul, Brasil. - Ciencia Rural, Santa Maria 22: 325-328. FORTES, E., HOFFMANN, R.P. & T.M. SARMENTO (1993a): Cucullanus fabregasi sp. n. nematode parasita do intestino do peixe Pimelodus maculates Lacépède 1803 do Rio Guaíba, Porto Alegre, Rio Grande do Sul, Brasil. - Arq. Fac. Vet. UFRGS, Porto Alegre 21: 71-76.
294
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
FORTES, E., HOFFMANN, R.P. & T.M. SARMENTO (1993b): Nova espécie de nematódeo Cucullanus, C. riograndensis sp. n. de Pimelodus maculatus Lacépède 1803 do Lago do Guaíba, Rio Grande do Sul, Brasil. - Rev. Bras. Med. Vet. 15: 79-82. FUSCO, A.C. & D.R. BROOKS (1978): New species of Spirocamallanus OLSEN, 1952 (Nematoda: Camallanidae) from Trachycorystes insignis (STEINDACHNER) (Pisces: Doradidae) in Colombia. Proc. Helminthol. Soc. Wash. 45: 111-114. GONÇALVES DA COSTA, S.C. (1962): Aspectos biológicos do gênero Rondonia TRAVASSOS, 1920 (Nematoda, Atractidae). - Arq. Mus. Nac. Rio de Janeiro 52: 75-78. HAMANN, M.I. (1982a): Parásitos del pacú (Colossoma mitrei) del rio Paraná Medio, República Argentina (Pisces, Serrasalmidae). - Hist. Nat. 2: 153-160. HAMANN, M.I. (1982b): Parásitos em peces de la familia Doradidae del río Paraná Medio, República Argentina (Pisces Siluriformes). - Hist. Nat. 2: 193-199. HAMANN, M.I. (1983): Parásitos del sábalo (Prochilodus platensis HOLMBERG, 1889) del río Paraná Medio, República Argentina (Pisces, Tetragonopteridae). - Hist. Nat. 2: 193-199. HAMANN, M.I. (1984): Nemátodos parásitos de peces pimelodidos del río Paraná Medio, República Argentina (Pisces, Pimelodidae). - Neotropica 30: 55-62. HAMANN, M.I. (1985): Presencia de Cucullamus pinnai TRAVASSOS, ARTIGAS y PEREIRA (1928) en peces del río Paraná Medio, Provincia de Corrientes, República Argentina (Nematoda, Cucullanidae). - Hist. Nat. 5: 147-148. KLOSS, G.R. (1966): Helmintos parasitos de espécies simpátricas de Astyanax (Pisces, Characidae). I. Pap. Avuls. Dept. Zool. Univ. São Paulo 17: 35-42. KOHN, A. & B.M.M. FERNANDES (1987): Estudo comparative dos helmintos parasitos de peixes do rio Mogi Guassu, coletados nas excursões realizadas entre 1927 e 1985. - Mem. Inst. Oswaldo Cruz 82(4): 483-500. KOHN, A. & B.M.M. FERNANDES (1988): Helminth parasites of fishes from the hydroelectric power station of Eletrosul (Brazil). I. Procamallanus petterae n. sp. and Spirocamallanus pintoi n. sp. (Nematoda: Camallanidae) from the reservoir of “Salto Osório”. - Mem. Inst. Oswaldo Cruz 83(3): 293-298. KOHN, A., FERNANDES, B.M.M., MACEDO, B. & B. ABRAMSON (1985): Helminth parasites of freshwater fishes from Pirassununga, SP, Brazil. - Mem. Inst. Oswaldo Cruz 80(3): 327-336. KOHN, A., FERNANDES, B.M.M., PIPOLO, H.V. & M.P. DE GODOY (1988): Helmintos parasitos de peixes das usinas hidroeléctricas de Eletrosul (Brazil). II. Reservatórios de Salto Osório e de Salto Santiago, Bacia do rio Iguaçu. - Mem. Inst. Oswaldo Cruz 83(3): 229-303. KOHN, A., FERNANDES, B.M.M., PIPOLO, H.V. & M.P. DE GODOY (1989): List of helminth parasites of fishes from the Passo Fundo reservoir, Uruguay river basin, Brazil. - Mem. Inst. Oswaldo Cruz 84(3): 427-428. MAGALHÃES PINTO, R. & D. NORONHA (1972): Redescrição de Procamallanus inopinatus TRAVASSOS, ARTIGAS & PEREIRA, 1928 (Nematoda, Camallanoidea). - Atas Soc. Biol. Rio de Janeiro 15(2): 105-108. MAGALHÃES PINTO, R., FÁBIO, S.P. DE, NORONHA, D. & T. ROLAS (1974): Procamallanus brasileiros Parte 1 (Nematoda, Camallanoidea). - Mem. Inst. Oswaldo Cruz 72(3/4): 205-211, pls. 1-5. MAGALHÃES PINTO, R., FÁBIO, S.P. DE, NORONHA, D. & T. ROLAS (1975): Novas contribuições ao conhecimento do gênero Procamallanus (Nematoda, Camallanoidea). - Mem. Inst. Oswaldo Cruz 73(3): 183-191.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
295
MAGALHÃES PINTO, R., FÁBIO, S.P. DE, NORONHA, D. & T. ROLAS (1976a): Novas considerações morfológicas e sistemáticas sobre Procamallanus brasileiros. - Mem. Inst. Oswaldo Cruz 74(1): 77-84. MAGALHÃES PINTO, R., FÁBIO, S.P. DE, NORONHA, D. & T. ROLAS (1976b): Procamallanus brasileiros (Nematoda, Camallanoidea). Considerações finais, com chave para determinação das espécies. Mem. Inst. Oswaldo Cruz 74(3-4): 323-339. MORAVEC, F. (1998): Nematodes of freshwater fishes of the Neotropical region. - Academia, Praha (Czech Republic): 464 pp. MORAVEC, F. (2001): Trichinelloid nematodes parasitic in cold-blooded vertebrates. - Academia, Praha (Czech Republic): 429 pp. MORAVEC, F. & V.E. THATCHER (1996): Myleusnema bicornis gen. et sp. n. (Nematoda: Kathlaniidae) an intestinal parasite of a freshwater serrasalmid fish, Myleus ternetzi, from French Guiana. - Folia Parasit. 43: 53-59. MORAVEC, F. & V.E. THATCHER (1997a): New data on the morphology and systematic status of Klossinemella iheringi (Nematoda: Atractidae) from an Amazonian serrasalmid fish. - Folia Parasit. 44: 48-54. MORAVEC, F. & V.E. THATCHER (1997b): Procamallanus (Denticamallanus subgen. n.) dentatus sp. n. (Nematoda: Camallanidae) from the characid fish Bryconops alburnoides in the Brazilian Amazon. - Parasite (France) 4: 239-243. MORAVEC, F. & V.E. THATCHER (1997c): Raphidascaroides brasiliensis n. sp. (Nematoda: Anisakidae), an intestinal parasite of the thorny catfish, Pterodoras granulosus from the Brazilian Amazon. Syst. Parasitol. 38: 65-71. MORAVEC, F. & V.E. THATCHER (1999): Myleusnema brasiliense sp. n. (Nematoda: Kathlaniidae) a new intestinal parasite of the serrasalmid fish, Myleus sp. in Brazil. - Folia Parasit. 46: 216-220. MORAVEC, F. & V.E. THATCHER (2001): New oxyuroid nematodes of the genera Ichthyouris and Spinoxyuris from South American freshwater fishes. - Folia Parasit. 48: 311-320. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1990): First record of Raphidascaris (Sprentascaris) hypostomi (PETTER et CASSONE, 1984) comb. n. and R. (S.) mahnerti (PETTER et CASSONE, 1984) comb. n. (Nematoda: Anisakidae) from Brazil with remarks on the taxonomic status of the genus Sprentascaris PETTER et CASSONE, 1984. - Folia Parasitol. 37: 131-140. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1992a): Nematode parasites of fishes of the Paraná River, Brazil. Part 1. Trichuroidea. Oxyuroidea and Cosmocercoidea. - Folia Parasitol. 39: 327-353. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1992b): Three new species of oxyuroid nematodes, including two new genera, from freshwater catfishes in Brazil. - Syst. Parasitol. 21: 189-201. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1992c): Neoparaseuratum travassosi n. g., n.sp. (Nematoda: Quimperiidae), a new parasite from thorny catfish Pterodoras granulosus in Brazil. Mem. Inst. Oswaldo Cruz 87 (Suppl. 1): 145-150. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1993a): Nematode parasites of fishes of the Paraná River, Brazil. Part 2. Seuratoidea, Ascaridoidea, Habronematoidea and Acurioidea. - Folia Parasitol. 40: 115-134. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1993b): Nematode parasites of fishes of the Paraná River, Brazil. Part 3. Camallanoidea and Dracunculoidea. - Folia Parasitol. 40: 211-229. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1993c): Travassosnema travassosi paranaensis subsp. n. and first description of the female of Guyanema raphiodoni MORAVEC, KOHN and FERNANDES,
296
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
1993 (Nematoda: Guyanemidae), dracunculoid parasite of characid fishes in Brazil. - Ann. Parasitol. Hum. Comp. 68: 229-233. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1994a): Structure of the cephalic end of two littleknown oxyuroid genera, Travnema PEREIRA, 1938 and Cosmoxynemoides TRAVASSOS, 1949, parasites of fishes as revealed by SEM. - J. Helminthol. 68: 319-322. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1994b): Two new species of the genus Goezia, G. brasiliensis sp. n. and G. brevicaeca sp. n. (Nematoda: Anisakidae), from freshwater fishes in Brazil. - Folia Parasitol. 41: 271-278. MORAVEC, F., KOHN, A. & B.M.M. FERNANDES (1997): New observations on seuratoid nematodes parasitic in fishes of the Paraná River, Brazil. - Folia Parasitol. 44: 209-223. MORAVEC, F., PROUZA, A. & R. ROYERO (1996): Guyanema longispiculum sp. n. (Nematoda: Dracunculoidea) from Loricariichthys brunneus (Pisces) in Venezuela. - Folia Parasitol. 43: 227-231. MORAVEC, F., PROUZA, A. & R. ROYERO (1997): Some nematodes of freshwater fishes in Venezuela. Folia Parasitol. 44: 33-47. MORAVEC, F., URAWA, C. & O. CORIA (1997): Philonema percichthydis sp. n. (Nematoda: Philometridae from the Patagonian smallmouth perch Percichthys trucha (Pisces) from Argentina. - Helminthologia 34(4): 215-219. MORAVEC, F., WOLTER, J. & W. KÖRTING (1999): Some nematodes and acanthocephalans from exotic ornamental freshwater fishes imported into Germany. - Folia Parasit. 46: 296-310. MOREIRA, N.I.B, OLIVEIRA, C.L. & H.M.A. COSTA (1991): A new helminth parasite of fish: Spirocamallamus freitasi sp. n. (Nematoda - Camallanidae). - Mem. Inst. Oswaldo Cruz 86: 429-431. MOREIRA, N.I.B, OLIVEIRA, C.L. & H.M.A. COSTA (1994): Spirocamallanus inopinatus (TRAVASSOS, ARTIGAS & PEREIRA, 1928) e Spirocamallanus saofranciscencis sp. n. (Nematoda, Camallanidae) em peixes da Represa Três Marias.- Arq. Bras. Med. Vet. Zool. 46: 485-500. PEREIRA, C. (1938): Travnema travnema n. gen. n. sp. (Nematoda: Oxyuridae) parasito de Curimatus elegans (Pisces: Characinidae) no Nordeste Brasileiro. - Livro Jubilar do Dr. MAURO TRAVASSO, Rio de Janeiro (Brazil) 3: 318-385. PETTER, A.J. (1974): Deux nouvelles espèces de Nématodes parasites de Hoplerythrinus unitaeniatus (Characidae, Cypriniformes) en Guyana; creation d’une nouvelle famille: les Guyanemidae (Dracunculoidea). - Bull. Mus. natn. Hist. nat. Paris, 3o sér., no 232, Zool. 156: 803-812. PETTER, A.J. (1984): Nématodes de poisons du Paraguay. II. Habronematoidea (Spirurida). Description de 4 espèces nouvelles de la famille des Cystidicolidae. - Rev. suisse Zool. 91: 935-952. PETTER, A.J. (1987): Nématodes de poisons de l’Equateuer. - Rev. suisse Zool. 94: 61-76. PETTER, A.J. (1994): Nématodes de poissons de Paraguay. VII. Oxyuroidea: Spinoxyuris oxydoras n. g., n. sp. - Rev. suisse Zool. 101: 761-769. PETTER, A.J. (1995a): Nématodes de Poissons de Paraguay. VIII. Habronematoidea, Dracunculoidea et Ascaroidea. - Rev. suisse Zool. 102: 89-102. PETTER, A.J. (1995b): Dichelyne moraveci n. sp. parasite de Pseudoplatystoma fasciatum et notes sur les Cucullanidae du Paraguay. - Rev. suisse Zool. 102: 769-778. PETTER. A.J. & J. CASSONE (1984): Nématodes de poisons du Paraguay. I. Ascaridoidea: Sprentascaris n. gen. - Rev. suisse Zool. 91: 617-634. PETTER, A.J. & C. DLOUHY (1985): Nématodes de poissons du Paraguay. II. Camallanina. Description d’une espèce et d’une sous-espèce nouvelles de la famille des Guayanemidae. Rev. suisse Zool. 92: 165-175.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
297
PETTER, A. J. & S. MORAND (1988): Nématodes de poisons du Paraguay. IV. Redescription de Spinitectus jamundensis THATCHER & PADILHA, 1977 (Cystidicolidae, Nematoda). - Rev. suisse Zool. 95: 377-384. PETTER, A. J. & V.E. THATCHER (1988): Observations sur la capsule buccale de Spirocamallanus inopinatus (Nematoda), parasite de poisons brésiliens. - Bull. Mus. natn. Hist. nat. Paris, 4o sér., 10, section A, no 4: 685-692. PINTO, R.M., FÁBIO, S.P., NORONHA, D. & F.J.T. ROLAS (1974): Procamallanus brasileiros - Parte I. (Nematoda, Camallanoidea). - Mem. Inst. Oswaldo Cruz 72: 305-211, pls. 1-5. PINTO, R.M., FÁBIO, S.P., NORONHA, D. & F.J.T. ROLAS (1975): Novas contribuições ao conhecimento do gênero Procamallanus (Nemadoa, Camallanoidea). - Mem. Inst. Oswaldo Cruz 73: 183-191, pls. 1-7. PINTO, R.M., FÁBIO, S.P., NORONHA, D. & F.J.T. ROLAS (1976): Novas considerações morfológicas e sistemáticas sobre os Procamallanus brasileiros (Nematoda, Camallanoidea). - Mem. Inst. Oswaldo Cruz 74: 77-84, pls. 1-5. PINTO, R.M. & B.M.M. FERNANDES (1972): Sôbre Procamallanus probus sp. n. (Nematoda, Camallanoidea). - Atas Soc. Biol. Rio de Janeiro 15: 133-136. PINTO, R.M. & D. NORONHA (1972): Redescrição de Procamallanus inopinatus TRAVASSOS, ARTIGAS & PEREIRA, 1928 (Nematoda, Camallanoidea). - Atas Soc. Biol. Rio de Janeiro 15: 105-108, 1 table. PINTO, R.M. & D. NORONHA (1976): Procamallanus brasileiros (Nematoda, Camallanoidea): considerações finais, com chave para determinação das espécies. - Mem. Inst. Oswaldo Cruz 74: 323-339. RODRIGUES, H.O., PINTO, R.M. & D. NORONHA (1991): Key to the species of Brazilian Procamallanus with general considerations (Nematoda, Camallanoidea). - Mem. Inst. Oswaldo Cruz 86: 107-113. SANTOS, E. DOS, VICENTE, J.J. & C.R. JARDIM (1979): Helmintos de peixes de rios amazônicos da coleção helmintológica do Instituto Oswaldo Cruz. II. Nematoda. - Atas Soc. Biol. Rio de Janeiro 20: 11-19. SARMENTO, T.M., FORTES, E. & R.P. HOFFMANN (1995): Cucullanus debacoi sp. n. Nematoda, parasito do intestino do Pimelodus maculates Lacépède, 1803 (Pisces, Pimelodidae) do rio Guaíba, Porto Alegre, Rio Grande do Sul. - A Hora Veterinária (Brazil) 15: 38-40. STRENT, J.F.A. (1990): Some ascaroid nematodes of fishes: Heterocheilinae. - Syst. Parasit. 16: 149-161. TEXEIRA DE FREITAS, J.F. & N. IBAÑEZ (1968): Fauna helmintológica del Perú: nueva espécie del género Spirocamallanus OLSEN, 1952 (Nematoda, Camallanoidea). - Bol. Chileno Parasit. 23(3-4): 146-148. TEXEIRA DE FREITAS, J.F. & N. IBAÑEZ (1970): Fauna helmintológica del Perú: Nuevo nematode camallanideo parásito de pez. - Arch. Peruanos Pat. Clin. 24: 205-210. TEXEIRA DE FREITAS, J.F. & H. LENT (1935): Capilariinae de animais de sangue frio (Nematoda: Trichuroidea). - Mem. Inst. Oswaldo Cruz 30(2): 241-284. TEXEIRA DE FREITAS, J.F. & H. LENT (1946): Infestação de apaiarís “Astronotus ocellatus” (AGASSIZ) pelo nematódeo Goezia spinulosa (DIESING; 1839). - Rev. Brasil. Biol. 6(2): 215-222. THATCHER, V.E. & T.N. PADILHA (1977): Spinitectus jamundensis sp. n. (Nematoda, Spiruroidea) from a Colombian freshwater fish, Prochilodus reticulatus STEIND. - Rev. Brasil. Biol. 37(4): 799-801. TRAVASSOS, L. (1919): Informações sobre o material helmintológico colecionado na Ilha da Trinidade em 1916. - Arch. Mus. Nac. Rio de Janeiro 22: 159-167. TRAVASSOS, L. (1923): Informações sobre a fauna helmintológica de Mato Grosso, Oxyuroidea, Kathlaniidae. - Folha Méd. 4(4): 29-30.
298
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
TRAVASSOS, L. (1927): Una nova espécie parasita de peixes de água doce, Capillaria senticosa n. sp. Bol. Biol. 10: 215-217, 4 figs. TRAVASSOS, L. (1948a): Contribuição ao conhecimento dos helmintos dos peixes de água doce do Brasil. III. Duas novas espécies do gênero Cucullanus MUELLER, 1877. - Mem. Inst. Oswaldo Cruz 45(3): 551-554. TRAVASSOS, L. (1948b): Contribuição ao conhecimento dos helmintos dos peixes de água doce do Brasil. IV. Dois novos gêneros de Cosmocercidae (Nematoda) e uma nota de nomenclatura helmintológica. - Mem. Inst. Oswaldo Cruz 46(3): 633-637. TRAVASSOS, L. (1960): Sobre nematódeos cavitários de peixes do Rio Amazonas. - Atas Soc. Biol. Rio de Janeiro 4(2): 15-20, 14 figs. TRAVASSOS, L. & A. KOHN (1965): Lista dos helmintos de peixes encontrados na Estação Experimental de Biologia de Emas, Pirassununga, Estado de São Paulo. - Pap. Avuls. Dept. Zool. Univ. São Paulo 17: 35-42. TRAVASSOS, L., ARTIGAS, P. & C. PEREIRA. (1928): Fauna helmintológica dos peixes de água doce do Brasil. - Arq. Inst. Biol. São Paulo 1: 5-68. VAZ, Z. & C. PEREIRA (1935): Contribuição ao conhecimento dos nematóides de peixes fluviais do Brasil. - Arq. Inst. Biol. São Paulo 5: 87-103. YAMAGUTI, S. (1961): Systema Helminthum. Vol. 3, parts 1 & 2. The Nematodes of Vertebrates. Intersci. Publ. New York: 1261 pp.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
299
7. ACANTHOCEPHALA I. Definition and morphology Acanthocephalans are stout to elongate worms provided anteriorly with an eversible spiny proboscis. The body cavity is a pseudocoel and there is no mouth or digestive tract. The sexes are separate with females normally larger than males of the same species. Larvae are parasitic in arthropods, adults in vertebrates and there are no free-living stages in the cycle. Adult acanthocephalans found in Neotropical fishes range in length from less than two millimeters to more than 80 centimeters, but most are in the one to three centimeters range. The body is composed of the proboscis, bearing hooks or spines, an unspined neck region and a trunk, which may or may not be spinous. Living acanthocephalans may be either flattened or rounded in cross section and they are sometimes confused with either nematodes or tape worms. Recognition features are: the proboscis, proboscis sheath, elongate glands associated with the sheath (lemnisci) and a reticulate network of tubules in the body wall (lacunar system). Most of these characters can usually be seen in living specimens under a dissecting microscope. The armature of the proboscis consists of thorn-like hooks with widened roots or simple rootless spines. The number and arrangement of these hooks are fairly constant within a species and are of primary importance in the systematics of the phylum. The hooks are usually placed in longitudinally spiraling rows or horizontally circular ones. The neck region, between the proboscis and the trunk, is unspined. The trunk is a tubular structure with longitudinal and circular muscle bands in its walls. Anteriorly, there is a muscular sac (proboscis sheath) to receive the inverted proboscis and this sheath may be either single or double walled. Within the hypoderm of the body wall, there is a conspicuous network of channels, called the lacunar system. The latter consists of a pair of dorso-ventral or lateral longitudinal canals with anastomosing horizontal branches. There is a similar but separate lacunar system within the proboscis, proboscis sheath and lemnisci but these channels are more difficult to see. The lacunar system probably functions as a primitive circulatory system to distribute nutrients to the cells. The hypodermal layer itself is a syncytium with numerous small fragmentary nuclei or a small number of giant nuclei. The number, form and position of the giant nuclei are useful taxonomic features of acanthocephalans. The primary reproductive organs are formed within the ligament sacs, two tube-like structures extending from the posterior end of the proboscis sheath to the posterior end
300
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
of the body. The male system consists of two oval or elongate testes followed by cement glands, a cement reservoir and ducts leading to a penis, which projects into a copulatory bursa. The cement glands consist of a cluster of six or eight units, each with its nucleus, or they may be fused into a syncytial mass with a number of giant nuclei. The number and form of the cement glands and the number of giant nuclei in syncytial cement organs are relatively constant and are useful in the classification of these worms. Within the genital sheath, which surrounds the ducts leading to the penis, there is an additional sac-like organ in some acanthocephalans that is known as Saefftigen’s pouch. This structure is thought to lubricate the eversion of the copulatory bursa. The ovaries arise in the ligament sacs of the female as one or two spherical masses that soon break up to form numerous ovarian balls. The ovarian balls float freely within the ligament sacs and in some acanthocephalans they are released into the body cavity by rupture of the walls of the sacs. Eggs released by the ovarian balls also float freely until they are mature at which time they enter the expanded proximal portion of the uterus (uterine bell). From there, they pass down the uterus and through the vagina to be expelled through the vaginal pore. Mature eggs usually consist of fully formed larvae, armed with hooks, surrounded by three or four membranes.
II. Life-cycle and transmission In copulation, the male covers the posterior extremity of the female with his copulatory bursa and glues it in place with secretions from the cement glands. The penis may then be inserted into the vagina and spermatozoa injected into the uterus. The copulatory bursa of the male sticks to the female with such tenacity that sometimes copulating pairs can be collected. Also, when the bursa is removed by the male, a cap of cement usually remains on the female for some time. It is therefore possible to tell if a female has mated. Acanthocephalan eggs contain six-hooked larvae called acanthors when expelled into the environment in the feces of the definitive host. The larvae do not develop further until the eggs are eaten by appropriate intermediate hosts. In the case of aquatic acanthocephalans, the intermediate host is usually a microcrustacen (ostracod, copepod, amphipod or isopod), In the gut of the crustacean, the egg hatches and the acanthor larva penetrates the gut wall by means of its hooks. In the hemocoel of the intermediate host, the acanthor goes through a transformation losing its larval hooks and growing an adult type hooked proboscis. This second larval stage is called an acanthella. If the intermediate host containing an acanthella is eaten by the right definitive host, development to the adult stage proceeds in the gut of the latter. If the acanthella is ingested by an inappropriate host, it penetrates the intestinal wall and encysts to await later passage to the right definitive host. Such hosts are called transport hosts since no further development of the acanthella occurs in them. Fish can serve as either definitive hosts or transport hosts, so it is common to find encysted acanthellae in the mesenteries, liver and other organs of small fish. Fish then acquire adult acanthocephalans either by ingesting crustacean intermediate hosts or small fish that serve as transport hosts.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
301
III. Pathology Little pathology has been observed in Neotropical fish in association with acanthocephalan infection. Of course, some of them embed their hooked proboscides in the intestinal wall provoking localized inflammatory reactions. In the case of Megapriapus ungriai in the stingray, the spherical proboscis is buried in the intestinal wall long enough for a fibrotic capsule to be formed around it. It has been suggested that acanthocephalans can perforate the wall of a host and bring on peritonitis. We have not yet been able to verify this phenomenon in Neotropical fish infections. We have seen, however, a considerable amount of liver damage brought about by the presence of acanthellas and young adults of Palliolisentis sp. in Triportheus elongatus. The same fish hosts had adults of the same acanthocephalan in their digestive tracts. No explanation is presently available for this phenomenon.
IV. Prevention and treatment Aquarium fish should not be fed wild-caught microcrustaceans if the build-up of encysted acanthellas in them is to be avoided. No treatment is known for encysted forms, but adults in the intestinal tract can frequently be expelled by giving Di-N-Butyl Tin Oxide mixed in the ration at 0.3 % of body weight for one to five days.
V. Collection and study methods Acanthocephalans are best collected alive from recently killed fish. If the proboscides are embedded in the intestinal wall, it is necessary to dissect them out carefully with needles. Once removed from the fish, the worms should be placed in water. It will be found that most acanthocephalans invert the proboscis and they should not be killed and fixed in this position. If left in water for some hours, the water penetrates the body making the worms turgid with the proboscis extended. When this stage is reached, they can be killed and fixed by dropping them into hot AFA solution. After fixing overnight, permanent wholemount slides may be prepared with Mayer’s carmalum stain and alcohol dehydration (explained in detail in Chapter 4). Acanthocephalans are difficult to dehydrate, however, so after fixing and before staining, their body walls should be perforated in two or three places preferably with glass needles.
VI. Identification and key
302
Some of the characters used in the identification of the acanthocephalans are: body shape and size, proboscis shape and size; proboscis hook shape, size and number; proboscis sheat size, form and number of layers in the wall, lemnisci length; testes size and position; cement gland form and number of nuclei; and egg size and form.
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Key to Acanthocephala of Neotropical freshwater fishes I. Trunk spines present. A. Trunk spines in limited number (4 – 10) circular rows at anterior extremity; hypodermic nuclei large, frequently dendritic. 1. Proboscis with 18 hooks located in 4 circular rows .................. Acanthogyridae ............................................. Acanthodelta (Fig. 7-6) 2. Proboscis with more than 18 hooks ...................................................................................................................................... Quadrigyridae a. Proboscis hooks in 6 – 12 longitudinal rows of 6 – 8 hooks each ................................................................................ Palliolisentis b. Proboscis hooks in 4 circular rows of 5 hooks each ...................................................................................... Quadrigyrus (Fig. 7-3) B. Trunk spines extensive sometimes reaching to near posterior extremity or limited to 8 – 10 circular rows anteriorly. Hypodermic nuclei small, oval ............................................................................................................................................ Rhadinorhynchidae 1. Trunk spines extensive ................................................................................................................................... Rhadinorhynchus (Fig. 7-1 A-I) 2. Trunk spines limited to 8 – 10 circular rows anteriorly a. Proboscis hooks numerous .................................................................................................................... Polyacanthorhynchus (Fig. 7-26) b. Proboscis with 18 hooks ................................................................................................................ Pseudogorgorhynchus (Fig. 7-25 A-D) II. Trunk spines absent. A. Hypodermic nuclei small. 1. Neck long frequently twisted and may have bulbous swelling ....... Pomphorhynchidae ............................... Pomphorhynchus (Fig. 7-16) 2. Neck short, straight ............................................................................................................................................................ Echinorhynchidae a. Proboscis cylindrical, hooks in 14 longitudinal rows; from characins ............... Echinorynchus (Figs. 7-18, 7-19, 7-29 & 7-30) b. Proboscis spherical or fusiform; hooks in 20 – 26 longitudinal rows; from rays ...................Megapriapus (Figs. 7-31 & 7-32) c. Proboscis club-shaped; hooks in 45 – 48 longitudinal rows; from catfish ............................................. Paracavisoma (Fig. 7-17)
B. Hypodermic nuclei large (giant) ...................................................................................................................................... Neoechinorhynchidae 1. Proboscis with 88 hooks (22 longitudinal rows of 4 each) .................................................................................... Pandosentis (Fig. 7-8) 2. Proboscis with 48 hooks (3 circular rows of 16 each) .......................................................................................... Wolffhugelia (Fig. 7-2) 3. Proboscis with 36 hooks (3 circular rows of 12 each) ............................................................................................................ Gracilisentis 4. Proboscis with 21 – 30 hooks (3 circular rows of 7 – 10 each) ......................................... Octospiniferoides (Figs. 7-7, 7-20 to 7-24) 5. Proboscis with 18 hooks a. Hooks in 3 circular rows of 6 each; dorsal “fin-fold” present on trunk ..................... Gorytocephalus (Figs. 7-5, 7-20 to 7-24) b. Hooks in 6 diagonal rows of 3 each; dorsal “fin-fold” absent .................................. Neoechinorhynchus (Figs. 7-4 & 7-10 A-E)
VI. Identificación y clave
Clave de identificación para Acanthocephala de peces Neotropicales de agua dulce
303
I. Con espinas en el tronco. A. Tronco con espinas en número limitado (4 – 10) filas circulares en la extremidad anterior; núcleos hipodermicos grandes, frecuentemente dendrítico. 1. Proboscis con 18 ganchos localizados en 4 filas circulares ....... Acanthogyridae ............................................. Acanthodelta (Fig. 7-6) 2. Proboscis con más de 18 ganchos ......................................................................................................................................... Quadrigyridae a. Ganchos de la proboscis en 6 – 12 filas longitudinales con 6 – 8 ganchos cada una ................................................ Palliolisentis b. Ganchos de la proboscis en 4 filas circulares con 5 ganchos cada una ...................................................... Quadrigyrus (Fig. 7-3) B. Espinas del tronco extensas alcanzando algunas veces hasta cerca de la extremidad posterior o limitadas a 8 – 10 filas circulares anteriores; núcleos hipodérmicos pequeños y ovales .......................................................................................................... Rhadinorhynchidae
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Algunos caracteres usados en la identificación de acantocéfalos son: forma y tamaño del cuerpo; forma y tamaño de la proboscis; forma, tamaño y número de ganchos en la proboscis; tamaño del receptáculo de la proboscis; forma y número de capas en la musculatura del receptáculo de la proboscis; largo de los lemniscos, tamaño y posición de los testes; forma y número de núcleos en las glándulas de cemento y forma y tamaño de los huevos.
304 ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
1. Espinas del tronco extensivas ...................................................................................................................... Rhadinorhynchus (Fig. 7-1 A-I) 2. Espinas del tronco limitadas a 8 – 10 filas circulares anteriores a. Numerosos ganchos en la proboscis .................................................................................................... Polyacanthorhynchus (Fig. 7-26) b. 18 ganchos en la proboscis ........................................................................................................... Pseudogorgorhynchus (Fig. 7-25 A-D) II. Espinas ausentes en el tronco. A. Núcleos hipodérmicos pequeños. 1. Cuello largo frecuentemente torcido, puede tener hinchazón en forma de bulbo ............................................................................... .............................................................................................................. Pomphorhynchidae ............................... Pomphorhynchus (Fig. 7-16) 2. Cuello corto, recto .............................................................................................................................................................. Echinorhynchidae a. Proboscis cilíndrica, ganchos en 14 filas longitudinales; en caracídeos ............ Echinorynchus (Figs. 7-18, 7-19, 7-29 & 7-30) b. Proboscis esférica o fusiforme; ganchos en 20 – 26 filas longitudinales; en rayas .................Megapriapus (Figs. 7-31 & 7-32) c. Proboscis en forma de bate; ganchos en 45 – 48 filas longitudinales; en bagres ................................. Paracavisoma (Fig. 7-17) B. Núcleos hipodérmicos grandes (gigantes) .................................................................................................................... Neoechinorhynchidae 1. Proboscis con 88 ganchos (22 filas longitudinales con 4 por fila) ........................................................................ Pandosentis (Fig. 7-8) 2. Proboscis con 48 ganchos (3 filas circulares con 16 por fila) .............................................................................. Wolffhugelia (Fig. 7-2) 3. Proboscis con 36 ganchos (3 filas circulares con 12 por fila) ................................................................................................ Gracilisentis 4. Proboscis con 21 – 30 ganchos (3 filas circulares con 7 – 10 cada una) ........................... Octospiniferoides (Figs. 7-7, 7-20 a 7-24) 5. Proboscis con 18 ganchos a. Ganchos en 3 filas circulares con 6 cada una; tronco con aleta dorsal .........................Gorytocephalus (Figs. 7-5, 7-27 & 7-28) b. Ganchos en 6 filas diagonales de 3 cada una; aleta dorsal ausente ........................... Neoechinorhynchus (Figs. 7-4 & 7-10 A-E)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
305
VII. Checklist of Acanthocephala from Neotropical freshwater fishes In the Checklist, body sizes are given in millimeters and egg sizes in µm (= micrometers). Acanthogyridae THAPAR, 1927 Neoechinorhynchidea. Trunk spines in circular or longitudinal rows. Proboscis small, with small number of hooks in transverse rows; proboscis sheath single-layered. Lacunar system with regular circular canals. Cement gland double. Intestine of fishes. Acanthodelta DÍAZ-UNGRÍA & GRACIA RODRIGO, 1958 Body long, slender; proboscis spherical with 18 hooks in four circular rows (first 3 rows of 4 hooks each; 4th row with 6 hooks). Trunk with 8 rows of small spines; giant nuclei present. Proboscis sheath single; lemnisci long, slender (more than 5 times length of proboscis). Testes tandem, in anterior half; cement glands elongate. Female unknown. Intestine of fishes. A. scorzai (DÍAZ-UNGRÍA & GRACIA RODRIGO, 1957): catfish (Pimelodidae): Venezuela (Orinoco River. (Fig. 7-6). Body of male = 16.6 x 0.95. Echinorhynchidae COBBOLD, 1879 Body long, rarely spinous; trunk nuclei small, numerous. Proboscis usually elongate, with numerous hooks; sheath wall double, inserted at base of proboscis. Lemnisci short. Testes oval; cement glands pyriform, 4-8 in number. Eggs elliptical to fusiform. Intestine of fishes. Echinorhynchus ZOEGA in MÜLLER 1776 (Figs. 7-18, 7-19, 7-29 & 7-30). Echinorhynchidae. Proboscis hooks smaller towards proboscis base. Central ganglion near middle of proboscis sheath. Digestive tract of fishes. E. briconi MACHADO FILHO, 1959: Brycon hilarii: Brazil. (Fig. 7-18). Body = 9-15 (male); 15-22 (female); Hooks = 14 longitudinal rows with 16-17 per row. Egg = 121 x 16 µm. E. gomezi MACHADO FILHO, 1949: Pacu nigricans: Brazil. (Fig. 7-19). Body = 1012 (male); 20-22 (female); Hooks = 14 longitudinal rows with 13 per row. Egg = 168 x 21 µm. E. jucundum TRAVASSOS, 1923: Colossoma bidens: Brazil. Body = 10-15 (male); 20-25 (female); Hooks = 14 longitudinal rows with 16-17 per row. Egg = 125 x 21 µm. E. paranense MACHADO FILHO, 1959: Triportheus paranensis: Brazil (Matto Grosso). Body = 7-10 (male); 9-12 (female); Hooks = 14 longitudinal rows with 11 per row. E. salobrense MACHADO FILHO, 1948: Mylosoma paraguayensis: Brazil (Matto Grosso). Body = 8-10 (male); 10-14 (female); Hooks = 14 longitudinal rows with 16-17 per row. Meapriapus GOLVAN, GRACIA RODRIGO & DÍAZ-UNGRÍA, 1964 Body elongate, slender. Hypodermic nuclei small, fragmented. Proboscis large, spherical in female; nearly fusiform in male; hooks of three types, largest being anterior in female and middle of proboscis in male; hooks in
306
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
20-26 longitudinal rows of 14-20 per row. Sheath double-walled, inserted at base of proboscis; lemnisci shorter than sheath. Testes ovoid, separated. Egg elongate, elliptical. Intestine of freshwater rays. M. ungriai (GRACIA RODRIGO, 1960): Potamotrygon hystrix: Brazil & Venezuela. (Figs. 79, 7-31 & 7-32). Body = 17-25 x 1.1-1.2 (both sexes). Egg = 70-75 x 15-20 µm. Paracavisoma KRITSCHER, 1957 Echinorhynchidae. Proboscis claviform, widest near anterior end; hooks numerous. Intestine of siliruform fishes. P. impudica (DIESING, 1851) KRITSCHER, 1957: Pseudodoras niger: Brazil & Peru. (Fig. 7-17). Body = 12-14 X 1.0-1.2 (female); Hooks = 45-48 longitudinal rows with 23-27 per row. Neoechinorhynchidae VAN CLEAVE, 1919 Body elongate or ovoid, without spines. Proboscis variable; sheath inserted at base; wall single. Trunk nuclei few, large. Two lemnisci present. Testes oval to elliptical; cement gland syncytial, cement reservoir present. Eggs elliptical, without polar prolongations of middle shell. Gut of fish, amphibians and turtles. Gorytocephalus NICKOL & THATCHER, 1971 Body stout, with prominent dorsal crest. Giant nuclei irregular in shape; 5 nuclei dorsal and 1 ventral. Proboscis small, cylindrical, with 18 hooks in 3 circular rows of 6 hooks per row. Distal hooks in two levels; 2 lateral hooks larger and more anterior than others of row. Single-walled sheath surrounded by muscular sling; spherical central ganglion at base of sheath. One lemniscus with 2 nuclei, other with 1; cement reservoir spherical; Saefftigen’s pouch present. Eggs elliptical. Intestine of freshwater fishes. G. elongorchis THATCHER, 1979: Hypostomus carinatus: Brazil (Amazon River). (Figs. 7-27 & 7-28). Body = 12-16 x 1.2-1.6 (male); 12-22 x 0.7-1.7 (female). Egg = 43-46 x 13-14 µm. G. plecostomorum NICKOL & THATCHER, 1971: Hypostomus plecostomus: Panama. (Figs. 7-11 & 7-12). Body = 10-12 x 07 (both sexes). Egg = 41-43 x 14-17 µm. G. spectabilis (MACHADO FILHO, 1959): Curimata elegans: Brazil. (Fig. 7-5). Body = 4-5 x 0.4-0.45 (male); 5.5-6.5 x 0.6-0.5 (female). Egg = 30 x 10 µm. Neoechinorhynchus HAMANN, 1892 Neoechinorhynchidae. Lacunar system of dorsal and ventral longitudinal tubules and anastomosing circular ones. Giant hypodermic nuclei usually 4-5 dorsally and 1-2 ventrally. Proboscis short; hooks in 6 spiral rows of 3 per row; anterior hooks larger than posterior ones. Sheath single-walled; central ganglion near base. Lemnisci with giant nuclei. Testes usually ovoid; cement gland syncytial; reservoir rounded. Eggs oval to elliptical. Intestine of fish, amphibians and turtles. N. buttnerae GOLVAN 1956: Colossoma macropomum: Brazil (Amazonia). Body = 15-22 (male); 20-32 (female). Egg = 22-25 x 9-10 µm. N. golvani SALGADO-MALDONADO, 1979: Cichlasoma aureum: Mexico. (Fig. 7-13). Body = 0.9-1.0 (male); 0.7-3.2 (female).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
307
N. paraguayensis MACHADO FILHO, 1959, NICKOL & PADILHA, 1979: Geophagus brasiliensis and Hoplias malabaricus: Brazil & Paraguay. (Figs. 7-14 & 7-15). Body = 1.6-3.5 x 0.5-1.0 (male); 2.9-3.8 x 1.1-1.4 (female). Egg = 26-38 x 22-26 µm. N. prochilodorum NICKOL & THATCHER, 1971: Prochilodus reticulatus: Colombia (Cauca River). Body = 4.5-8.0 x 1.0-1.7 (both sexes). Egg = 26-29 x 7-12 µm. N. pterodoridis THATCHER, 1981: Pterodoras granulosus: Brazil (Amazon River). (Fig. 7-10 A-E). Body = 1.7-2.2 x 0.6-0.9 (male); 2.1-3.3 x 0.6-1.0 (female). Egg = 24-27 x 7-9 µm. N. roseum SALGADO-MALDONADO, 1979: Achiurus mazatlanus: Mexico. Body = 67 (male); 7.8-9.3 (female). Egg = 28-36 x 8 µm. Gracilisentis VAN CLEAVE, 1919 Neoechinorhynchidae. Body small; hypodermic giant nuclei mainly in middorsal line. Proboscis short, cylindrical, with constriction above basal hook row; hooks in 3 circular rows of 12 hooks per row; sheath subcylindrical. Testes contiguous; cement gland syncytial, with 12 nuclei. Eggs elliptical. Intestine of fishes. G. variabilis (DIESING, 1856): Hoplias malabaricus, Hypostomus auroguttatus, H. lituratus, H. plecostomus, H. melanopterus, Monochirus maculipennis and Pleuronectes sp.: Brazil. Body = 9-25 (male); 9-50 (female). Octospiniferoides BULLOCK, 1957 Neochinorhynchidae. Body short, stout. Giant hypodermic nuclei rounded, 4-5 dorsally and 1 ventrally. Proboscis short, rounded; hooks in 3 circular rows of 7-10 per row; all hooks rooted. Sheath thin-walled. Testes ovoid contiguous. Lemnisci longer than sheath; possess giant nuclei. Egg long, slender. Intestine of fishes. O. australis SCHMIDT & HUGGHINS, 1973: Chilodus punctatus: Colombia. Body = 4.2-5.0 x 0.70-0.75 (female); Hooks = 3 circular rows of 8 per row. Egg = 30-34 x 10-12 µm. O. incognita SCHMIDT & HUGGHINS, 1973: Schizodon fasciatum: Bolivia. (Figs 7-7 & 7-20 to 7-24). Body = 2.0 x 0.4 (both sexes). Pandosentis VAN CLEAVE, 1920 Neoechinorhynchidae. Body small; hypodermic giant nuclei median or lateral. Proboscis short, cylindrical, with 22 longitudinal rows of 4 hooks per row. Lemnisci shorter than sheath. Testes contiguous, in middle body third. Cement gland syncytial, with 16 nuclei. Intestine of fishes. P. iracundus VAN CLEAVE, 1920: Aequidens pulcher and Crenicichla geayi: Venezuela. (Fig. 7-8). Body = 0.6-1.0 (male); 1.0-1.5 (female). Egg = 22-28 x 11 µm. Wolffhugelia MAÑÉ-GARZÓN & DEI-CAS, 1974 Neoechinorhynchidae. Body small, cylindrical. Hypodermic giant nuclei ovoid; 5 nuclei dorsal and 1 ventral. Proboscis short, subcylindrical, with 3 circular rows of 16 hooks per row; hooks of three sizes, with anterior row hooks largest and posterior row smallest. Lemnisci longer than sheath. Testes contiguous in anterior half of body. Cement gland syncytial, with 8 nuclei. Intestine of fishes.
308
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
W.matercula MAÑÉ-GARZÓN & DEI-CAS, 1974: Fitzroyia lineate: Uruguay. (Fig. 72). Body = 0.85-1.9 x 0.35-0.57 (male); 0.95-2.7 x 0.3-0.9 (female). Egg = 27-33 x 10-12 µm. Pomphorhynchidae YAMAGUTI, 1939 Trunk without spines. Lacunar system of lateral main vessels and reticular anastomoses. Proboscis cylindrical; hooks numerous. Neck long, cylindrical or spirally twisted, with or without bulbous swelling. Sheath long, double-walled, inserted at base of proboscis. Testes oval, in mid-body; cement glands 4 or 6, compact. Egg with polar prolongations of middle shell. Intestine of fishes. Pomphorhynchus MONTICELLI, 1905 Pomphorhynchidae. Proboscis long, with 12-20 longitudinal rows of 9-14 hooks per row. Lemnisci short or long. Genital pore of both sexes terminal. Egg fusiform, with prolongations of middle shell. Intestine of fishes. P. yamagutii SCHMIDT & HUGGHINS, 1973: Percichthys melanops: Chile. (Fig. 716). Body = 7.0 x 0.6-0.7 (male); 10.0-12.5 x 0.6-0.9 (female). Egg = 6670 x 8-10 µm. Quadrigyridae VAN CLEAVE, 1920 Body small, elongate, with spines in circular rows. Proboscis globular to elongate, with few hooks in spiral rows; sheath single-walled, with central ganglion near its base. Hypodermic giant nuclei few or fragmented. Lacunar system with or without main vessels. Cement gland syncytial. Egg rounded or elliptical. Intestine of fishes. Palliolisentis MACHADO FILHO, 1960 Quadrigyridae. Trunk with 5 circular rows of spines anteriorly. Hypodermic giant nuclei dendritic. Lacunar system annular, without main longitudinal vessels. Proboscis cylindrical, with 6-12 longitudinal rows of rooted hooks. Lemnisci claviform, longer than sheath, with one nucleus in each. Testes contiguous, post-equatorial. Uterus expanded. Intestine of freshwater fishes. P. ornatus MACHADO FILHO, 1960: Triportheus paranensis: Brazil. Body = 9.7 x 0.8 (male). Trunk spines in 5 rows of 16 per row. Hooks = 6 longitudinal rows of 8 hooks per row. P. polyonca SCHIMDT & HUGGHINS, 1973: Acestrorhynchus falcatus: Colombia. Body = 3.5 x 0.46 (male); 8-10 x 0.76-0.96 (female). Trunk spines in 3-5 anterior rows. Proboscis hooks = 12 longitudinal rows of 6-7 row. P. quinqueungulis MACHADO FILHO, 1960: Triportheus paranensis and T. angulatus: Brazil (Matto Grosso). Body = 8.0-8.5 x 0.8-0.85 (male); 13-15 x 1.0-1.2 (female). Trunk spines in 5 rows of 20 per row. Proboscis hooks = 6 longitudinal rows of 8 per row. Egg = 33-54 x 25-30 µm. Quadrigyrus VAN CLEAVE, 1920 Trunk with 4-10 circular rows of spines anteriorly; sometimes interrupted dorsally. Hypodermic giant nuclei of two types: anterior ones middorsal and midventral, others lateral and dendritic. Proboscis hooks in 3-4 circular rows. Egg oval. Intestine of fishes.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
309
Q. brasiliensis MACHADO FILHO, 1941: Hoplerythrinus unitaeniatus and Hoplias malabaricus: Brazil. (Fig. 7-3). Body = 10-15 x 0.6-1.3 (male); 13-25 x 1-2 (female). Trunk spines in 3 rows of 12 per row. Proboscis hooks = 4 rows of 5 per row. Egg = 13-14 x 6-7 µm. Q. nickoli SCHIMDT & HUGGHINS, 1973: Hoplerythrinus unitaeniatus: Colombia. Body = 6 x 0.76-0.85 (male); 9.5-10 x 0.94-1.2 (female). Trunk spines in 4 rows of 23-29 per row. Proboscis hooks = 4 rows of 5 per row. Egg = 5565 x 28-32 µm. Q. torquatus VAN CLEAVE, 1920: Hoplias malabaricus, Symbranchus marmoratus, Crenicichla geayi, Gephyrocharax valenciae and Astyanax bimaculatus: Surinam, Venezuela, Colombia & Brazil. Body = 8-10 x 0.6 (male); 10-20 x 0.9-1.2 (female). Trunk spines in 3-4 rows of 10-18 per row. Proboscis hooks = 4 rows of 5 per row. Rhadinorhynchidae TRAVASSOS, 1923 Trunk long, slender, or expanded in anterior or middle third; trunk spined anteriorly, sometimes spines extend to posterior extremity. Hypodermic nuclei large and few, or small and numerous. Proboscis usually long; sheath cylindrical, with ganglion at base or in middle. Testes contiguous, or not; cement glands 2-8, of various shapes. Egg elongate or oval. Intestine of fishes. Rhadinorhynchus LÜHE, 1911 Rhadinorhynchidae. Body cylindrical. Hypodermic nuclei small, numerous. Lacunar system with lateral main vessels and reticular anastomoses. Trunk spines divided into two groups, or not. Proboscis elongate, with 826 longitudinal rows of 8-37 hooks per row. Sheath elongate, with equatorial central ganglion and double walls. Lemnisci variable. Testes elongate; cement glands 2-8. Egg elongate, with polar prolongations of middle shell. Intestine of fishes. R. plagioscionis THATCHER, 1980: Plagioscion squamosissimus: Brazil (Amazonia). (Fig. 7-1 A-I). Body = 8.8-11 x 0.7-1.0 (male); 14.5-16.4 x 0.85-1.0 (female). Trunk spines to near posterior extremity. Proboscis hooks = 12 longitudinal rows of 23 and 24 hooks in alternate rows. Egg = 110 x 23 µm. Polyacanthorhynchus TRAVASSOS, 1926 Rhadinorhynchidae. Trunk long, slender, with 8-10 circles of spines anteriorly. Hypodemic nuclei small, oval, numerous. Proboscis elongate, claviform, with 16-18 longitudinal row of hooks posteriorly and 26-28 rows anteriorly; hooks of similar shape but diminishing in size posteriorly. Sheath single-walled; central ganglion equatorial. Spined anterior part of trunk retractile. Lemnisci longer than sheath. Testes elongate, contiguous, cement gland 8, long and tubular. Egg oval. Intestine of freshwater fish and crocodilians. P. macrorhynchus (DIESING, 1856): Arapaima gigas: Brazil (Amazonia). Body = 60-70 x 1.5 (male); 140 x 2.0 (female). Hooks in 16 longitudinal rows at base and 15 rows at apex of proboscis, with about 60 hooks per row. Egg = 71-86 x 38-60 µm.
310
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
P. rhopalorhynchus (DIESING, 1851): Arapaima gigas: Brazil (Amazonia). (Figs. 717 & 7-18). Body = 400-555 x 1.5-3.0 (male); 400-700 x 2.5-3.5 (female). Hooks in 18 longitudinal rows at base and 28 rows at apex of proboscis, with 55-65 hooks per row. Egg = 220 x 104 µm. (note: Both of the above species have also been reported from Amazonian crocodilians, but since the latter often eat Arapaima, these may have been temporary or spurious infections). Pseudogorgorhynchus MORAVEC, WOLTER & KÖRTING, 1999. Rhadinorhynchidae. Trunk long and slender, armed with circular rows of spines anteriorly. Proboscis short and claviform; hooks few, with simple roots, arranged in spiral rows; middle hooks distinctly broader than anterior and posterior hooks; posterior hooks about the same length as middle hooks. Proboscis receptacle longer than proboscis, with cephalic ganglion at its base. Lemnisci longer than proboscis receptacle. Testes near middle of trunk; cement glands 4; seminal vesicle, cement ducts and Saefftigen’s pouch prominent. Eggs fusiform with polar prolongation of fertilization membrane. Gonopore subterminal. Type species: Pseudogorgorhynchus arii MORAVEC, WOLTER & KÖRTING, 1999. P. arii MORAVEC, WOLTER & KÖRTING, 1999: Intestine of Ariopsis seemanni: Colombia. Male: Body = 3.0-5.7 x 0.45-0.73 mm. Proboscis hooks = 18 hooks arranged in 6 spiral rows of 3 hooks each. Trunk spines in 10-13 transverse rows. Female: Body = 4.4-7.6 x 0.68-0.83 mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
311
VIII. Plates of Acanthocephala (Figs. 7-1 to 7-32)
7-1 A LE
PS
B
TE
CG
5.0 mm
C
0.5 mm
7-1 A-C. Rhadinorhynchus plagioscionis (after THATCHER 1980): A. proboscis; B. female (entire); C male (entire); CG = cement glands; LE = lemnisci; PS = proboscis sheath; TE = testes.
312
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
1.0 mm LE
D 1.0 mm
NG
E
CB PE
7-1
7-1 D-E. Rhadinorhynchus plagioscionis (after THATCHER 1980): D. anterior trunk; LE = lemnisci; NG = central nerve ganglion; E. posterior region of male; CB = copulatory bursa; PE = penis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
313
7-1 UF
H
F G
0.02
0.10
2.0
I
0.20
OB VS VA
UE
7-1 F-I. Rhadinorhynchus plagioscionis (after THATCHER 1980): F. egg; G. trunk spine; H. posterior region of female; OB = ovarian ball; UE = uterus with eggs; UF = uterine funnel; I. posterior extremity of female; VA = vagina; VS = vaginal sphincter; all scales in mm.
314
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
7-2 0.25 mm
7-3
0.5 mm
7-5 7-4 1.0 mm
1.0 mm
7-2. Wolffhugelia matercula: male; anterior end (after MAÑÉ-GARZÓN & DEI-CAS 1974); 7-3. Quadrigyrus brasiliensis: male; anterior end (after MACHADO FILHO 1941 b); 7-4. Neoechinorhynchus roseum: female; head end (after SALGADO-MALDONADO 1978); 7-5. Gorytocephalus spectabilis: male; entire (after MACHADO FILHO 1959 a).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
315
7-6
7-7
7-8
7-9
7-6. Acanthodelta scorzai: head end (after GRACIA-RODRIGO 1959); 7-7. Octospiniferoides incognita: head end (after SCHMIDT & HUGGHINS 1973); 7-8. Pandosentis iracundus: head end of male (after VAN CLEAVE 1920); 7-9. Megapriapus ungriai: head end of male (after GRACIA-RODRIGO 1959).
316
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
7-10 A
B
C
0.25 mm
0.50 mm
D
7-10. Neoechinorhynchus pterodoridis: A. male (entire); B. male (proboscis); C. female (tail); D. egg (all after THATCHER 1981).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
317
DC
7-11
PS
MS
NG
LE
7-12
7-13
7-14
7-15
7-11 to 7-12. Gorytocephalus plecostomorum: female (after NICKOL & THATCHER 1971); 7-11. anterior end; DC = dorsal crest; LE = lemnisci; MS = muscular sling; NG = central nerve ganglion; PS = proboscis sheath; 7-12. Proboscis; 7-13. Neochinorhynchus golvani: male; entire (after SALGADOMALDONADO 1978); 7-14 to 7-15. Neoechinorhynchus paraguayensis: male (after NICKOL & PADILLA 1979); 7-14. entire; 7-15. proboscis.
318
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
7-16
7-17
7-18
7-19
7-16. Pomphorhynchus yamagutii: male (after SCHMIDT & HUGGHINS 1973 a); proboscis lateral; 7-17. Paracavisoma impudica: female, proboscis (after SCHMIDT & HUGGHINS 1973 b); 7-18. Echinorhynchus gomezi: male proboscis (after MACHADO FILHO 1941 b); 7-19. Echinorhynchus briconi: female; proboscis (after MACHADO FILHO 1959 a).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
319
7-20
7-21
1 mm 200 µm
7-20. Octospiniferoides incognita SCHMIDT & HUGGHINS, 1973 (after THATCHER 1998): female, entire; 7-21. Octospiniferoides incognita SCHMIDT & HUGGHINS, 1973 (after THATCHER 1998): female, terminal genitalia.
320
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
200 µm
7-23
1 mm
7-22
7-24 100 µm
7-22 to 7-24. Ostospiniferoides incognita SCHMIDT & HUGGHINS, 1973 (after THATCHER 1998): 7-22. proboscis; 7-23. male lateral view; 7-24. proboscis hooks.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
7-25 A
321
B
C
E
D
7-25. Pseudogorgorhynchus ari (redrawn from MORAVEC, WOLTER & KÖRTING 1999): A. male, lateral view; B. proboscis of female; C. anterior, middle and posterior hook; D. egg.
322
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
7-26
7-27
7-28
7-26. Proboscis of Polyacanthorhynchus rhopalorhynchus: male; 7-27. anterior end of Gorytocephalus elongorchis: male; 7-28. posterior end of Gorytocephalus elongorchis: male.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
7-29
7-30
7-31
7-32
323
7-29. Proboscis of Echinorhynchus sp.: male, from the intestine of Auchenipterichthys longimanus; 7-30. Proboscis of Echinorhynchus sp.: male, from the intestine of Leporinus fasciatus; 7-31. anterior proboscis hooks of Megapriapus ungriai: female; 7-32. proboscis of Megapriapus ungriai: female.
324
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
IX. Cited and general references CONWAY MORRIS, S. (1982): The origins and evolution of the Acanthocephala. - Biol. Rev. 57: 85-115. DÍAZ-UNGRÍA, C. & A. GRACIA-RODRIGO (1957): Revisión de la familia Quadrigyridae (Acanthocephala) con descripción de Deltania scorzai gen. n. sp. n. - Novedades Cient. (Caracas), ser. Zool. 22: 1-29. DÍAZ-UNGRÍA, C. & A. GRACIA-RODRIGO (1959): Acantocéfalos de Venezuela. - Rev. Vet. Venez. 6(31): 82-105. DÍAZ-UNGRÍA, C. & A. GRACIA-RODRIGO (1960): Revisión del género Polyacanthorhynchus TRAVASSOS, 1920 (Acanthocephala) con descripción de una especie nueva. - In: Libro Homenaje al Dr. E. CABALLERO y CABALLERO. - Esc. Nac. Cienc. Biol. Y Inst. Politec. Nac. Secret. Educ. Pub. México: 429-433. GOLVAN, Y.J. (1956): Acanthocéphales d’Amazone. Redescription Oligacanthorhynchus iheringi TRAVASSOS, 1916 et Neoechinorhynchus buttnerae n. sp. (Neoacanthocephala, Neoechinorhynchidae). Ann. Parasit. Hum. Comp. 31(5/6): 500-524. GOLVAN, Y.J. (1958): Le phylum des Acanthocephala. Premiére note. Sa place dans l’échelle zoologique. - Ann. Parasit. Hum. Comp. 33(5/6): 538-602. GOLVAN, Y.J., GRACIA-RODRIGO, A. & C. DÍAZ-UNGRÍA (1964): Megapriapus ungriai (GRACIA-RODRIGO, 1960) n. gen. (Palaecanthocephala) parasite d’une pastenague d’eau douce du Venézuèla (Potamotrygon hystrix). - Ann. Parasit. Hum. Comp. 39(1): 53-59. GRACIA-RODRIGO, A. (1959): Acantocéfalos parásitos de los peces de Venezuela. - Ph.D.-thesis, Fac. Vet. Univ. Cent., Madrid: 32 pp. MACHADO FILHO, D.A. (1941a): Pesquisas helmintológicas realizadas no Estado de Mato Grosso Acanthocephala. - Mem. Inst. Oswaldo Cruz 35(3): 593-601. MACHADO FILHO, D.A. (1941b): Sôbre alguns acantocéfalos provenientes do Estado de Mato Grosso. - Rev. Brasil. Biol. 1(1): 57-61. MACHADO FILHO, D.A. (1947): Revisão do gênero Polyacanthorhynchus TRAVASSOS, 1920 (Acantocephala, Rhadinorhynchidae). - Rev. Brasil. Biol. 7(2): 195-201. MACHADO FILHO, D.A. (1954): Uma nova espécie de gênero “Neoechinorhynchus” (HAMANN) (Neoechinorhynchidae, Acanthocephala). - Rev. Brasil. Biol. 14(1): 55-57. MACHADO FILHO, D.A. (1959a): “Neoechinorhynchus spectabilis” sp. n. (Neoechinorhynchidae, Acantocephala). - Rev. Brasil. Biol. 19(2): 191-194. MACHADO FILHO, D.A. (1959b): Uma nova espécie do gênero “Neoechinorhynchus” HAMANN, 1892 parasita de “peixe-martim” do Paraguai (Neoechinorhynchidae, Archiacanthocephala). - Rev. Brasil. Biol. 19(4): 379-381. MACHADO FILHO, D.A. (1960): Um novo gênero da família Quadrigyridae VAN CLEAVE, 1929 (Metacanthocephala, Palaeacanthocephala). - Rev. Brasil. Biol. 20(1): 79-84. MAÑÉ-GARCÓN, F. & E. DEI-CAS (1974): Un acanthocéphale nouveau Wolffhugelia matercula n. gen., n. sp. d l’intestin de Fitzroyia lineate (JENYNS) (Poisson) en Uruguay. - Ann. Parasit. Hum. Comp. 49(1): 83-89. MORAVEC, F., WOLTER, J. & W. KÖRTING (1999): Some nematodes and acanthocephalans from exotic ornamental freshwater fishes imported into Germany. - Folia Parasit. 46: 296-310. NICKOL, B.B. & T.N. PADILHA (1979): Neoechinorhynchus paraguayensis (Acanthocephala: Neoechinorhynchidae) from Brazil. - J. Parasitol. 65(6): 987-989.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
325
NICKOL, B.B. & V.E. THATCHER (1971): Two new acanthocephalans from Neotropical fishes: Neoechinorhynchus prochilodorum sp. n. and Gorytocephalus plecostomorum gen. et sp. n. - J. Parasitol. 57(3): 576-581. PETROCHENKO, V.I. (1956): Acanthocephala of domestic and wild animals. Vol. 1. - Akad. Nauk. U.S.S.R., Moscow (Translated from Russian by Israel, Prog. Sci. Transl., Jerusalem, 1971): 465 pp. SALGADO-MALDONADO, G. (1978): Acantocéfalos de peces IV. Descripción de dos especies nuevas de Neoechinorhynchus HAMANN, 1892 (Acanthocephala: Neoechinorhynchidae) y algunas consideraciones sobre este género. - An. Inst. Biol. Univ. Nac. Autón. México 49, ser. Zool. 1: 35-48. SCHMIDT, G.D. & E.J. HUGGHINS (1973a): Acanthocephala of South American fishes. Part 1. Eoacanthocephala. - J. Parasitol. 59(5): 829-835. SCHMIDT, G.D. & E.J. HUGGHINS (1973b): Acanthocephala of South American fishes. Part 2. Palaeacanthocephala. - J. Parasitol. 59(5): 836-838. THATCHER, V.E. (1979): Uma nova espécie de Gorytocephalus NICKOL & THATCHER, 1971 (Acanthocephala: Neoechinorhynchidae) do acari bodó (Pisces: Loricariidae) da Amazônia, Brasil. Acta Amazonica 9(1): 199-202. THATCHER, V.E. (1980): Rhadinorhynchus plagioscionis n. sp. (Acanthocephala: Rhadinorhynchidae) de pescada (Plagioscion squamosissimus) da Amazônia brasileira. - Acta Amazonica 10(4): 835-839. THATCHER, V.E. (1981): Neoechinorhynchus pterodoridis n. sp. (Acanthocephala: Neoechinorhynchidae) de bacu liso (Pterodoras granulosus) da Amazônia brasileira. - Acta Amazonica 11(3): 445-448. THATCHER, V.E. (1998): Description of adults of Octospiniferoides incognita SCHMIDT & HUGGHINS 1973, (Acanthocephala, Neoechinorhynchidae) from a fish of Rondônia State, Brazil. Amazoniana 15(1/2): 51-55. THATCHER, V.E. (2001): Brasacanthus sphaeroides gen. et. sp. n. (Acanthocephala: Echinorhynchidae) from a coastal marine fish of Paraná State, Brazil. - Rev. Brasil. Zool. 18: 1319-1323. THATCHER, V.E. & B.B. NICKOL (1972): Some acanthocephalans from Panama and Colombia. - Proc. Helminthol. Soc. Wash. 39(2): 245-248. VAN CLEAVE, H.J. (1920): Two new genera and species of acanthocephalous worms from Venezuelan fishes. - Proc. U. S. Nat. Mus. 58: 455-466. YAMAGUTI, S. (1963): Systema Helminthum. Vol. V. Acanthocephala . - Intersci. Publ., New York: 423 pp.
326
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8. COPEPODA I. Definition and morphology Copepods are microcrustaceans, usually less than 3 mm in length, that form an important part of the zooplankton. As such, they serve as food for many fish species. Free-living copepods abound in both fresh and salt waters where they feed predaciously on smaller animals or eat phytoplankton and detritus. Although fish devour copepods, the latter as a group have gotten their revenge in that they have evolved some forms that can eat fish tissue. Among fish parasitic copepods, the ergasiloids (Ergasilidae and related families) are the most common and best known. In this group, only the females attach to fish though both sexes have grasping antennae. Species of the genus Ergasilus are well known pests in pisciculture ponds the world over.
Ergasilidae Ergasilids superficially resemble the free-living genus Cyclops, and many believe they evolved from a similar progenitor. The parasitic forms can be recognized at a glance, however, because they have distinct pigmentation, whereas the free-living species do not. The pigment granules are usually in the blue spectrum or else in the range of magenta to purple, and they frequently form distinctive patterns in their distribution (Figs. 8-57 to 8-60). The tone, intensity and distribution of the pigment granules can be useful in separating species. Most free-living copepods are white or nearly transparent except for a pigmented eye. Some high altitude forms are red or orange, but the coloration in these cases is the result of oil droplets stored in the body as food and not from the presence of pigment granules. The ergasilid head is thought to have been derived by the fusion of 6 primitive segments. Five of these are marked by paired appendages, namely: first antennae (= antennules); second antennae (= antennae); mandibles; first maxillae (= maxillules); and second maxillae (= maxillae). The first thoracic segment, which is also fused to the head unit (= cephalon), bears a pair of maxillipeds (only in the male). In some species, the second thoracic segment, which bears the first pair of swimming legs, is also fused to the cephalon. Following the cephalon (also called cephalothorax), there are 3 or 4 free
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
327
thoracic segments, each provided with a pair of biramous swimming legs. There are normally 4 pairs of functional swimming legs in ergasilids and a fifth pair that is vestigial (in the female). In the male, there is an additional sixth pair of legs that is also vestigial. Following the free thoracic segments, there is an expanded genital segment which bears the reproductive pores. This segment is believed to represent the fusion of an abdominal segment with a thoracic one. This hypothesis is partially supported by the presence of the sixth legs of the male on the genital segment since abdominal segments are without appendages. The abdomen consists of four cylindrical segments in the male and three in the female. The terminal segment is indented medially and contains the anal aperture. This segment also bears two caudal rami (= uropods) provided with two or three elongate setae (= caudal filaments). Ergasilid mouthparts consist of paired: mandibles, which are usually 2-segmented, with spinules or teeth on the terminal part; mandibular palps, that are also spinulous; first maxillae, which often have 2 setae; and second maxillae, that are larger and frequently pilose. The swimming legs of ergasilids (= legs 1-4) are biramous. The inner branch is termed the endopod and the outer the exopod. Both branches are normally 3-segmented in free-living cyclopoids and in all known species of ergasilids, legs 2 and 3 have 3segmented rami. In some species, the rami of leg 1 are also 3-segmented, but in many Amazonian forms, the first endopod has only two segments. Some have regarded the 2segmented first endopod as an adaptation for parasitism, but it is more probably a neotenic character resulting from a shortening of the life-cycle. The 4th leg also shows a reduced number of segments in most species, possibly for the same reason. The ergasiloid leg was designed for swimming and in most species, it still serves that function. The legs are provided with feather-like, pilose setae to push better against the water. Most legs also have a few stout spines which may aid the animal in grasping a gill filament. Typically, the 2-segmented first endopod has a single medial seta on the first segment and 5 setae plus 2 stout spines on the terminal segment. The 3-segmented exopod of the first leg usually has a single lateral spine on segment one, a single medial seta on segment 2 and 5 setae plus 2 spines on the terminal joint. The 3-segmented endopod of legs 2 and 3 frequently has one seta on the first segment, 2 on the second and 4 setae plus one spine on the third. The exopod of the second and third legs is usually similar to that of the first leg except that it has one more seta and one fewer spines on the terminal segment. In the Acusicolinae, the parasitic female has evolved a secure antennal latching mechanism which has made the need for and the capacity for swimming obsolete. In species of this group, there has been a reduction in the number and size of the setae and some of those that remain are pectinate rather than pilose. The most characteristic feature of ergasiloid copepods that distinguishes them from their free-living relatives is the prehensile antenna. Both males and females have grasping antennae, but those of males are usually less than half as large. In Ergasilus, the antenna consists of a basal segment, about half as long as it is wide, followed by two elongate segments and a curved claw (Figs. 8-20 to 8-23). Such an antenna has a total of four segments, if we count the claw. There is some confusion in the literature as to the number
328
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
of segments in the ergasiloid antenna because some have considered the claw to be a mere appendage of the third segment. We have counted the claw as a segment because the joint between it and the third segment is similar to that between segments two and three. Also, there is a pit-like sensory organ (sensillum) on it that is similar to those found on other segments. The antennae of Ergasilus are used to clasp the gill filament and hold the animal in place. The claws sometimes pierce the tissues of the gill filament. Several variations on the ergasiloid antenna have been reported. In Acusicola for example, the same segments are present but the claw is more or less reduced (Figs. 8-18 & 8-19). Segment three is also modified in that it has a groove and segment two has a cuticular flap that extends out over the groove. This combination of features is used to latch one antenna to the other. These animals never pierce fish tissue with their claws. Instead, each claw fits into the groove in the opposite antenna and the flaps partially cover the latch (Fig. 8-13). These antennae encircle the gill filament as a ring goes around a finger. Amplexibranchius has antennae of a similar design, but the claw is very small, segment three is small, segment two is extremely long and the flap is large enough to cover the claw points when the antennae are latched (Fig. 8-37 F & I). An entirely different concept in antennal design and use is found in Brasergasilus. In this genus, there are only three segments in the antennae (Figs. 8-26 to 8-28). This type of antenna would appear to have evolved from the typical antenna by a failure of the claw to separate from the preceding segment. The result is an antenna with an unusually long and slender claw, ideal for piercing tissue. In truth, species of this genus insert the entire length of the claws into the gill filament and cling very effectively. An additional attachment method is that of Prehendorastrus BOEGER & THATCHER, 1990, in which the antennae are used individually, one above the other for clinging to a gill raker. The second, third and fourth (claw) antennal segments are provided with tooth-like projections one of which seems to serve as a latch. The others may facilitate attachment at different levels on a tapered gill raker.
Vaigamidae Vaigamidae is a family of copepods similar to Ergasilidae but differing in a number of important respects. The most striking difference is the presence of a pair of moveable retrostylets projecting dorso-laterally from the first thoracic segment (Figs. 8-34 to 836). Some genera also have a rostral spine on the ventral side, between the antennae. The antennae of Vaigamus are similar to those of Ergasilus, except that they are proportionally smaller (Fig. 8-29 D-E). In other genera of the family, however, the antennae end in two moveable claws (Figs. 8-31 B & 8-33 D), or in one fixed spine and two moveable claws (Fig. 8-32 B). The functions of these antennal structures are not immediately apparent. Plainly, these antennae would not be effective instruments for clinging to fish. Vaigamids have no need for strong attachment devices, however, since they live within the mucous that is found in the nasal fossae of fish. As in Ergasilidae, only the females are found associated with fish. Males and copepodids are free-living and not infrequently turn up in plankton.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
329
Vaigamid mouthparts are similar to those of Ergasilidae. Males have a pair of 4segmented maxillipeds (Fig. 8-29 C), which females lack. Other features of vaigamids are also similar to those of ergasilids.
Lernaeidae The parasitic females of the family Lernaeidae attain a large size due to the fact that they undergo a kind of metamorphosis after copulating as small free-living females. The elongate body of the post-metamorphic female is relatively slender and the head has lateral extensions which serve to anchor it within fish tissues. These parasites are known to many pisciculturists and they have been called “anchor worms” because of their shape and method of attachment. THATCHER & PAREDES (1985 a) described the first lernaeid found in the Amazon region. The description was based on specimens from Iquitos, Peru, but the same species has been found to occur in the vicinity of Manaus, Brazil, as well. These parasites are causing problems in local pisciculture ponds since they infect an important food fish, namely; Colossoma macropomum. The parasite was named Perulernaea gamitanae to indicate the country of origin and the fish of origin, since the host is know as “gamitana” in that part of the Amazon. These parasites embed their heads in the nasal fossae, under the tongue, in the walls of the esophagus or on the inner walls of the opercula. They suck blood to the extent that they may weaken or kill fish in captivity. In recent years, several additional species of Lernaeidae have been found in South America. At least seven native species occur on this continent including another Perulernaea. Female lernaeids, prior to metamorphosis, and adult males are found free-living in the zooplankton. They are similar in size (about 1 mm long) and appearance to ergasiloid copepods. They can be distinguished at once, however, by their mouthparts (Fig. 8-50). The main mouthparts of lernaeids are a pair of bifid second maxillae and a pair of 5clawed maxillipeds (Fig. 8-40 C).
Therodamasidae THATCHER (1986) described a new copepod that he called Amazonicopeus elongatus and proposed a new family to include it. AMADO & ROCHA (1996) pointed out the ´ similarities between this genus and Therodamas KR ØYER , 1863, and transferred elongatus to that genus. TRIPATHI (1960) proposed the family Therodamasidae to include three genera, Therodamas, Mugilicola and Paeonodes. Although all three have elongate neck-like regions, that of Therodamas is formed from the head and is between the antennae and mouthparts. The “necks” of the other two genera are posterior to the mouth and therefor formed from thoracic elements. This was pointed out by BOXSHALL (1986) who considered that all three genera should be placed in Ergasilidae. In spite of this suggestion, PIASECKI et al. (1991) recognized Therodamasidae as valid and placed a new species of Mugilicola within it.
330
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Therodamas (= Amazonicopeus) differs from all other parasitic copepods in the following ways: 1) There is a distinct head capsule, but no cephalothorax; 2) The elongate “neck” is formed from head segments and does not contain any thoracic elements; 3) The mouth is located at a considerable distance from the head capsule, is on the thoraco-abdomen and is external to the host tissue; 4) The mouthparts are similar to those of ergasiloids but in addition there is a protrusible mouth tube, which possibly represents an extension of the esophagus and 5) The last two abdomimal segments are divided longitudinally to accompany the uropod on either side. (Fig. 8-39 A-O). For these reasons, we propose that Therodamasidae should be recognized as a valid family containing only the species of the genus Therodamas. T. elongatus was described from a fish of the family Sciaenidae but since then, it has been found that this genus is widely distributed in Brazil. Specimens have been seen from Rondônia, Amazonas, Pará and Rio de Janeiro States. Most of the material seen was from siluriform hosts of the families Doradidae and Loricariidae. Pre-metamorphic females have also been found in plankton samples from near Belém, Pará State (Fig. 8-51). The post-metamorphic female of T. elongatus inserts its head end through the soft tissues of the gill arch and clings to the bony arch itself with strong 3-segmented antennae (Fig. 8-39 B). The thoraco-abdomen, which bears the mouth, hangs outside in close association with a gill filament. Apparently, these parasites feed by externally digesting the gill filaments and ingesting the liquid diet through the mouth tube (Fig. 8-39 C, F & O).
II. Life-cycle and transmission Mature female copepods characteristically have a pair of egg sacs projecting from their genital segments or posterior body regions. These sacs are usually held in place until the eggs hatch. A free-swimming larva, called a nauplius (Fig. 8-2), breaks out of each egg. These larvae, by feeding, growing and molting, go through several naupliar stages and then transform themselves into copepodids. The copepodid stages resemble the adults which they eventually become. The only complete cycle of an Amazonian copepod to have been worked out is the study of VARELLA (1985). She found that in Ergasilus bryconis THATCHER , 1981, there are three naupliar stages and five copepodid stages. From the third copepodid stage on, males could be distinguished from females by the presence of primordial maxillipeds and smaller antennae. The morphology of the copepodid stages of this species is shown in Figs. 8-3 to 8-5. The experimentally obtained adult male is shown in Fig. 8-7 A-C. Nothing is known about the life-cycle of the other Amazonian parasitic copepods, but they are probably similar and vary only in detail. It would seem that the complete cycle for ergasiloids in the warm waters of the Amazon requires 10 to 20 days. This is such a short time that populations can build up rapidly on captive fish. In all cases, transmission is by the direct attack of the female copepod on the fish host.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
331
III. Pathology Species of Ergasilus are known pathogens and are one of the plagues of pisciculture throughout the world. In the Brazilian Amazon, the comparative histopathology of Ergasilus, Brasergasilus and Acusicola was studied by THATCHER & BOEGER (1983 a). They found that all of these ergasilids produce epithelial hyperplasia, metaplasia and lamellar fusion in the gill filaments of their hosts (Fig. 8-61). The degree of host response was found to vary among species of Ergasilus depending on the depth of filament penetration by the antennae. In the case of Acusicola, which latches one antenna to the other and completely encircles the gill filament, a tourniquet effect was noted. Species of the genus tend to reduce blood circulation within the filament and cause necrosis at the tip (Fig. 861). Ergasiloids can and do cause fish deaths by reducing gill efficiency and by opening the way for secondary bacterial invaders. The post-metamorphic females of Perulernaea gamitanae can probably produce a primary anemia in fish. The constant loss of blood no doubt affects metabolism, growth and resistance to other pathogens, in captive fish. The pathogenicity of Therodamas elongatus was reported by THATCHER (1986). As the copepods tunnel through the soft tissues of the gill arch, the “neck” region lengthens so that the hind body remains outside and adjacent to the gill filaments. The penetration of the head provokes an inflammatory reaction on the part of the host which extends an epithelial mass out over the entire “neck”. There is gradual fibrotic encapsulation of the head and “neck” followed by calcification. This process sometimes destroys the head of the parasite, but the hindbody may remain alive and reproductive for a while (Fig. 8-39 MN). Feeding activity by these copepods may remove some gill filament epithelium, but this appears to be well tolerated by fish hosts.
IV. Prevention and treatment Although insecticides such as Neguvon or Malathion are recommended by some as a treatment for fish infected with Ergasilus, these chemicals have not been shown to be very effective. Not only do these products not work well against ergasiloids but they are highly toxic. In reality, no really good remedy for ergasilid infestations is known. Prevention includes avoiding the introduction of infested fish into clean pounds. If culture fish become too heavily infested, it is best to sacrifice them, drain and refill the pond or aquarium and start over.
V. Collection and study methods Ergasiloids are best collected by cutting off the gill filaments to which they are clinging and dropping them into AFA fixative. After fixing the gill filament for several hours, it will be possible to remove the ergasilids with dissecting needles, being careful not to break off the antennae. Temporary study slides can be made by clearing specimens in phenol, after
332
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
partial dehydration in 95 % alcohol. Permanent mounts can be made afterwards by means of the phenol-balsam method which is explained in Chapter 6. Special preparations are necessary to study the detailed morphology of copepod legs and antennae. Crush preparations can be made with the specimen under a coverglass in either phenol or balsam. The excess phenol or balsam is removed with a piece of filter paper, and the coverglass is pressed down firmly at a slight angle. If done properly, this method will offer a medial view of all the legs. If crush preparations do not work with the material at hand, dissections may be required. These can also be performed on specimens in either phenol or balsam. It is best to work under a dissecting microscope with a high enough magnification to show the basipods clearly. Using glass needles, the legs and antennae are simply pushed off with one needle while holding the body securely with the other. Dissecting small specimens requires some skill, practice and patience. For maximum stability, the arms should be resting solidly on the table top and the hands should be steadied on the sides of the dissecting microscope.
VI. Identification and keys Key to Amazonian freshwater ergasiloid females
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites 333
I. Lateral retrostylets present on cephalothorax; antennal claw single or double. Rostral spine sometimes present; found in the nasal fossae of the host ........................................................................................................................................................................................ Vaigamidae A. Antennal claw single; rostral spine present, sharply pointed ....................................................................................... Vaigamus (Fig. 8-29) B. Antennal claw double; rostral spine absent, or when present not sharply pointed. 1. Rostral spine absent. a. Third antennal segment with prominent fixed spine; second antennal segment with numerous spinules ................................ .................................................................................................................................................................... Gamispinus (Figs. 8-32 & 8-35) b. Third antennal segment without spine; second segment without spinules ................... Gamidactylus (Figs. 8-31, 8-34 & 8-56) 2. Flattened rostral spine with rounded tip present ................................................................................ Gamispatulus (Figs. 8-33 & 8-36) II. Lateral retrostylets absent; antennal claw single; rostral spine absent; from gill filaments or gill rakers (rarely from nasal fossae) ....... .......................................................................................................................................................................................................................... Ergasilidae A. Antennae of 3 segments (including claw); only 3 pairs of swimming legs present .............. Brasergasilus (Figs. 8-24 to 8-28 & 8-55) B. Antennae of 4 segments; four pairs of swimming legs present. 1. Antennae of latching type: third segment provided with groove for reception of opposite claw ............................. Acusicolinae a. First endopods of 2 segments similar in length to first exopod. (1) Claw relatively large; points exposed when antennae are latched; first endopod provided with setae ................................ .................................................................................................................................... Acusicola (Figs. 8-12 to 8-14 & 8-18 to 8-19) (2) Claw small; points covered by sheath-like extension of second antennal segment when antennae are latched; first endopod without setae .................................................................................................................. Amplexibranchus (Fig. 8-37 A-I) b. First endopod of 2 segments but is elongated and more than twice the length of the first exopod ........................................ ........................................................................................................................................................................... Miracetyma (Fig. 8-53 A-C) 2. Antennae of clampling type; no groove present but antennal segments 3 & 4 form a clamp with segment 3; found in gill rakers ........................................................................................................................................................................... Prehendorastrus (Fig. 8-38 B-C) 3. Antennae of grasping type; third segment without groove. Antennule of 6 segments ............................................................................................................................................................... Ergasilinae
I. Head with four anchors. A. Anchors large, frequently branched; genital pore near posterior extremity; fourth legs on hindbody ................................................... .................................................................................................................................................................................... Lernaea cyprinacea. (Fig. 8-47) B. Anchors small, rounded, not branched; genital pore in equatorial region of hindbody; fourth legs on “neck.” 1. Petal-like anterior extensions present on head ................................................................................... Minilernaea floricapitella (Fig.8-46) 2. Petal-like anterior extensions on head absent ....................................................................................... Amazolernaea sannerae (Fig.8-44) II. Head with two anchors. A. Anchors short and blunt; only fourth pair of legs on expanded hindbody; mouth posterior to anchors. 1. Glandular area on “neck” extensive; large forms (18-22 mm) found only on Colossoma macropomum ............................................... .......................................................................................................................................................................... Perulernaea gamitanae (Fig.8-42) 2. Glandular area on “neck” of limited extent; small forms (8-12 mm); found only on Piaractus brachypomus .................................... ........................................................................................................................................................................ Perulernaea irapitingae (Fig. 8-43) 3. “Neck” without glands; collar-like expansion present on hindbody anteriorly ................................. Bedsylernaea collaris (Fig. 8-45) B. Anchors long and slender; legs 3 and 4 on hindbody; mouth anterior to anchors. 1. Head bilobed ........................................................................................................................................ Taurocherus salminisii (Fig. 8-40 A-C) 2. Head simple, not bilobed ................................................................................................................... Taurocherus taraganophilus (Fig. 8-41) C. Head without anchors ...............................................................................................................................................................Lamproglena nyasae
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Key to the South American genera and species of postmetamorphic female Lernaeidae
334
a. Third antennal segment elongate ................................................................ Ergasilus (Figs. 8-1 to 8-11, 8-15, 8-16, 8-20 to 8-23) b. Third antennal segment short (1) Leg 4 biramous ............................................................................................................................................... Pindapixara (Fig. 8-54) (2) Leg 4 reduced to one or two setae ........................................................................................................... Rhinergasilus (Fig. 8-30)
Clave para hembras Ergasiloides dulceacuícolas Amazonicas
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
I. Retroestiletes laterales presentes sobre el cefalotórax; garra antenal simple o doble; espina rostral a veces presente; encontradas en las fosas nasales del huésped .......................................................................................................................................................................... Vaigamidae A. Garra antenal única; espina rostral presente, punta afilada ............................................................................ Vaigamus (Figs. 8-29 a 8-30) B. Garra antenal doble; espina rostral ausente, o cuando presente sin punta afilada. 1. Espina rostral ausente. a. Tercer segmento de la antena con espina fija prominente; segundo segmento de la antena con numerosas espínulas ......... .................................................................................................................................................................... Gamispinus (Figs. 8-32 & 8-35) b. Tercer segmento de la antena sin espina; segundo segmento sin espínulas ................. Gamidactylus (Figs. 8-31, 8-34 & 8-56) 2. Espina rostral con punta arredondada .................................................................................................. Gamispatulus (Figs. 8-33 & 8-36) II. Retroestiletes laterales ausentes; garra antenal única; espina rostral ausente; encontrados en filamentos o rastrillos de las branquias (raramente en fosas nasales) ....................................................................................................................................................................... Ergasilidae A. Antena con 3 segmentos (incluyendo garra); solo 3 pares de piernas nadadoras presentes .........Brasergasilus (Figs. 8-24 a 8-28 & 8-55) B. Antena con 4 segmentos; 4 pares de piernas nadadoras presentes. 1. Antena tipo aldaba: tercer segmento provisto de ranura para recepción de la garra opuesta ............................................................ ..........................................................................................................................................................................................................Acusicolinae a. Primer endopodito con 2 segmentos similares en largo al primer exopodito. (1) Garra relativamente grande; puntas expuestas cuando las antena se unen; primer endopodito provisto de setas ........... ....................................................................................................................................... Acusicola (Figs. 8-12 a 8-14 & 8-18 a 8-19) (2) Garra pequeña; cuando la antena está cerrada puntas cubiertas por una extensión en forma de escudo del segundo segmento; primer endopodito con setas .................................................................................... Amplexibranchus (Fig. 8-37 A-I) b. Primer endopodito con dos segmentos pero es alargado y tiene más de dos veces el largo del primer exopodito ............... ........................................................................................................................................................................... Miracetyma (Fig. 8-53 A-C) 2. Antena tipo abrazadera; sin ranura pero los segmentos de las antenas 3 y 4 forman una abrazadera con el segmento 3; encontrado en los rastrillos branquiales .................................................................................................... Prehendorastrus (Fig. 8-38 B-C) a. Tercer segmento de la antena alargado ......................Ergasilus (Figs. 8-1 a 8-11, 8-15, 8-16, 8-20 a 8-23, 8-46, 8-47 & 8-49) b. Tercer segmento de la antena corto.
335
I. Cabeza con cuatro áncoras. A. Ancoras grandes, frecuentemente ramificadas; poro genital cerca de la extremidad posterior; el cuarto par de piernas localizado en la parte posterior del cuerpo ............................................................................................................................... Lernaea cyprinacea. (Fig. 8-47) B. Ancoras pequeñas, redondeadas, sin ramificaciones; poro genital en la región ecuatorial de la parte posterior del cuerpo; 4 pares de piernas en el “cuello” 1. Extensiones anteriores presentes en formas de pétalos en la cabeza ............................................ Minilernaea floricapitella (Fig.8-46) 2. Extensiones anteriores en forma de pétalos ausentes en la cabeza ................................................. Amazolernaea sannerae (Fig.8-44) II. Cabeza con 2 áncoras. A. Ancoras cortas y redondeadas; solo el cuarto par de piernas está en la parte posterior del cuerpo; boca posterior a las áncoras 1. Area glandular del “cuello” extensa; formas grandes (18-22 mm); encontradas solamente en Colossoma macropomum .................. .......................................................................................................................................................................... Perulernaea gamitanae (Fig.8-42) 2. Area glandular del “cuello” de extensión limitada; formas pequeñas (8-12 mm); encontradas solamente en Piaractus brachypomus ...................................................................................................................................................................... Perulernaea pirapitingae (Fig. 8-43) 3. “Cuello” sin glándulas; expansión tipo collar presente en la parte proximal de la parte posterior del cuerpo .............................. ............................................................................................................................................................................ Bedsylernaea collaris (Fig. 8-45) B. Ancoras largas y finas; piernas 3 y 4 en la parte posterior del cuerpo; boca anterior a las áncoras. 1. Cabeza bilobada .................................................................................................................................. Taurocherus salminisii (Fig. 8-40 A-C) 2. Cabeza simple, no bilobada ............................................................................................................... Taurocherus taraganophilus (Fig. 8-41) C. Cabeza sin áncoras .....................................................................................................................................................................Lamproglena nyasae
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Claves para los géneros y especies de Lernaeidae hembras post-metamórficas de América del Sur
336
(1) Pierna 4 birameada ........................................................................................................................................ Pindapixara (Fig. 8-54) (2) Pierna 4 reducida a una o dos setas ......................................................................................................... Rhinergasilus (Fig. 8-30)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
337
VII. Checklist of Copepoda from Amazonian freshwater fishes Species measurements are all in micrometers (µm) except where otherwise indicated. Ergasilidae NORDMANN, 1832 Copepoda, Poecilostomatoida. Body cyclopoid, tapered posteriorly. Head fused with first 1 or 2 thoracic segments. Antennule 5 or 6-segmented, provided with simple setae; antenna 3 or 4 segmented, prehensile, with clutching, piercing, latching or clamping claw. Mouthparts: mandible 2segmented, with simple palp on basal segment; maxillule vestigial, usually provided with 1 or 2 setae; maxilla large, 2-segmented; maxillipeds 3 or 4segmented in male, absent in female. Thorax: 3 – 5 free thoracic segments present; genital segment enlarged. Abdomen: 3-segmented in female; 4segmented in male; uropods simple, with terminal setae. Legs: 3 or 4 pairs of biramous swimming legs present; vestigial 5th leg of one or 2 setae often present; vestigial 6th leg of 1 seta sometimes present in male. Male: freeliving; smaller than female. Female: parasitic on gill filaments, gill rakers or in nares of fish; egg sac usually elongate or elliptical, multiseriate. Abergasilinae THATCHER & BOEGER, 1983 Ergasilidae. Female: antennae 3-segmented; 3 pairs of swimming legs present, vestigial legs lacking. Male: unknown. Parasites of gill filaments and gill rakers of fish. Brasergasilus THATCHER & BOEGER, 1983 Abergasilinae. Antennae smooth, without bosses. B. anodus THATCHER & BOEGER, 1983: Anodus elongatus: Brazil (Amazonia). (Figs. 8-25 A-C & 8-26). Body = 320-370 x 118-163 (female; male unknown); Eye smalt blue; Body pigmentation sparse, campanula blue; Claw = 7-88 x 10-15; Caudal setae = 95-163 (maximum), B. guaporensis MALTA, 1995: Leporinus fasciatus: Guaporé River, Rondônia State, Brazil. (Fig. 8-55 A-B). Body = 301-384 x 112-150; Cephalothorax = 150210 x 112-150. B. jaraquensis THATCHER & BOEGER, 1983: Semaprochilodus insignis: Brazil (Amazonia). (Figs. 8-24 A-D & 8-28). Body = 380-410 x 120-170 (female; male unknown); Eye = rose, surrounded by spectrum blue; body pigmentation spectrum blue ventrally; Claw = 80-95 x 13-18; Caudal setae = 83-143 (maximum). B. oranus THATCHER & BOEGER, 1985: Anodus elongatus: Brazil (Amazonia). (Fig. 8-27). Acusicolinae THATCHER, 1984 Ergasilidae. Female with 4 pairs of swimming legs and vestigial 5th pair. Antennules 5-segmented; antennae 4-segmented, with groove in third segment for reception of opposite claw when antennae are latched. Male unknown. Parasites of gill filaments of fish.
338
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Acusicola CRESSEY, 1970, THATCHER, 1984 Acusicolinae. Claws of antennae only partially covered by cuticular flap from segment 2 when antennae are latched. Legs 1-4 biramous; first endopod 2-segmented; fourth exopod 2-segmented; all other rami 3segmented; leg 5 reduced to 1 or 2 setae; leg 6 absent in female. Male unknown. From gill filaments of fish. A. cunula CRESSEY, 1970: Pseudotylosurus angusticeps: Brazil (Amazonia). (Fig. 819). Body = 652 x 290 (female; male unknown). A. lycengraulidis THATCHER & BOEGER, 1985: Lycengraulis grossidens: Brazil (Amazonia). (Fig. 8-12 A-C). Body = 800-950 x 275-400 (female; male unknown); Eye = smalt blue; Body pigment campanula blue, scattered from eye to genital segment; Claw = 43-53 x 13-15; Caudal setae = 150200 (maximum). A. pellonidis THATCHER & BOEGER, 1983: Pellona castelnaeana: Brazil (Amazonia). (Fig. 8-13 A-D). Body = 1,025-1,275 x 300-425 (female; male unknown); Eye = cobalt blue; Body pigment cobalt blue and widely scattered; Claw = 50-75 x 15-20; Caudal setae = 140-190 (maximum). A. tenax (ROBERTS, 1965): Pomoxis annularis and Strongylura sp. Texas & Guatemala. (Fig. 8-18). Body = 800 x 225 (female; male unknown); Caudal setae = 175. A. tucunarense THATCHER, 1984: Cichla ocellaris: Brazil (Amazonia). (Fig. 8-14 AD). Body = 720-970 x 250-350 (female; male unknown); Eye = smalt blue; cerulean blue pigment widely scattered in body; Claw = 64-72 x 15-20; Caudal setae = 130-175. Amplexibranchius THATCHER & PAREDES, 1985 Acusicolinae. Female: cephalothorax inflated, or not. Abdomen 3-segmented. Antennule 5-segmented. Antenna 4-segmented; 4th segment (claw) reduced; first and third segments shorts; segment 2 long, with anterior cuticular extension which partially encloses segment 3. Maxillipeds absent. Legs 1-4 biramous; all setae pectinate; first endopod subcylindrical, without setae (spinules or setules sometimes present); terminal segments of endopods 2-4 sharply tapering, setae small; 4th exopod 2-segmented. Leg 5 represented by 1 or 2 setae. Leg 6 absent. Male unknown; presumably freeliving. Female on gill filaments of freshwater fish. A. bryconis THATCHER & PAREDES, 1985: Brycon cephalus: Peru & Brazil (Amazonia). (Fig. 8-37 A-I). Body = 825-1,075 x 250-340 (female; male unknown); Eye = smalt blue; Body pigmentation widely scattered, spectrum blue; Antenna: segment 2 = 310-440; Claw = 12-18. Ergasilinae THATCHER & BOEGER, 1983 Ergasilidae. Female with 4 pairs of swimming legs and vestigial 5th pair. Antennule 5 o 6 segmented; antenna 4-segmented; claw large (for clutching or piercing). Male: maxillipeds present; abdomen 4-segmented. From gill filaments, gill rakers or nares of fish.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
339
Ergasilus NORDMANN, 1832 Ergasilinae. Antennule 6-segmented; antenna 4-segmented, with clutching or piercing claw. Maxilipeds present in male, absent in female. Abdomen 3segmented in female, 4-segmented in male. Gill filaments, gill rakers or nares of fishes. E. argulus CRESSEY, 1970: Strongylura fluviatilis and S. scapularis: Colombia (Department of Valle). (Fig. 8-23). Body = 660 x 413 (Female; male unknown); Caudal setae = 235 (max.). E. bryconis THATCHER, 1981: Brycon erythropterus: Brazil (Amazonia). (Figs. 8-2 to 8-7). Body = 700-860 x 290-370 (female); 490-610 x 161-218 (male); Eye = cobalt blue; Body pigment spectrum violet, widely distributed; Claw = 83-94 x 18-21 (female); 38-42 x 8-10 (male); Caudal setae = 240-340 (female); 180-280 (male). E. callophysus THATCHER & BOEGER, 1984: Callophysus macropterus: Brazil (Amazonia). (Fig. 8-8 A-D). Body = 800-900 x 200-280 (female; male unknown); Eye = cobalt blue; Body pigmentation smalt blue, distributed from antennal bases to third abdominal segment; Claw = 90-110 x 20; Caudal setae = 230-340. E. coatiarus ARAUJO & VARELLA, 1998: Cichla monoculus: Amazonas State, Brazil. Body = 639-717 x 304-334 (female; male unknown); Similar to E. hydrolycus but smaller. E. colomesus THATCHER & BOEGER, 1983: Colomesus asellus: Brazil (Amazonia). (Figs. 8-9 A-E & 8-49 to 8-53). Body = 540-700 x 190-240 (female; male unknown); Eye = smalt blue; Body pigmentation in longitudinal bands from eye to 4th thoracic segment; smalt blue anteriorly, shading to campanula posteriorly; Claw = 53-63 x 15-20; Caudal setae = 128-160. E. euripedesi MONTÚ, 1980: from larvae of Brevoortia pectinata: Micropogonias furnieri and Lycengraulis grossidens: Brazil (Rio Grande do Sul State). (Fig. 822). Body = 785 x 292 (female); Claw = elongate, barbed. E. holobryconis MALTA & VARELLA, 1986: Holobrycon pesu: Brazil (Rondônia State). (Fig. 8-15). Body = 525-624 x 240-320 (female; male unknown); Claw = 55-61 x 16-17. E. hydrolycus THATCHER, BOEGER & ROBERTSON, 1984: Hydrolycus scomberoides: Brazil (Amazonia). (Fig. 8-1 A-D). Body = 725-875 x 260-310 (female; male unknown); Eye = cobalt blue; Body with spectrum blue band at level of mouth; Claw = 97-105 x 50-60; Caudal setae = 200-270. E. hypophthalmi BOEGER, MARTINS & THATCHER, 1990: Gill rakers of Hypophthalmus edentatus and H. fimbriatus: Amazonas State, Brazil. Body similar to E. hydrolycus but second thoracic segment is fused to cephalothorax. E. iheringi TIDD, 1942: Hoplias malabaricus: Brazil. (Fig. 8-16). Body = 799-918 x 238-340 (female; male unknown); Second antennae small, not projecting beyond margins of cephalotorax. E. jaraquensis THATCHER & ROBERTSON, 1982: Semaprochilodus insignis: Brazil (Amazonia). (Fig. 8-10 A-D). Body = 680-750 x 235-275 (female; male
340
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
unknown); Eye = cobalt blue; Body pigmentation extensive, cobalt blue; Claw = 55-69; Caudal setae = 280-360. E. leporinidis THATCHER, 1981: Leporinus fasciatus: Brazil (Amazonia). (Fig. 8-20). Body = 530-710 x 270-330 (female; male unknown); Eye = cobalt blue; Body pigmentation sparse, spectrum violet; Claw = 92-97 x 16-23; Caudal setae = 270-310. E. pitalicus THATCHER, 1984: Cichlasoma sp.: Colombia. (Figs. 8-11 & 8-21). Body = 814-904 x 345-497 (female; male unknown); Eye = spectrum blue; Body pigmentation extensive, spectrum violet; Claw = 140-154 x 25-28. E. thatcheri ENGERS, BOEGER & BRANDON, 2000: Rhamdia quelen: Rio Grande do Sul State, Brazil. Body with blue pigment from cephalothorax to genital segment. General morphology similar to that of E. callophysus but has row of spinules on second antennal segment. E. urupaensis MALTA, 1993: Prochilodus nigricans: Urupá River, Rondônia State, Brazil. Body = 833-958 (female, male unknown). This is the largest Neotropical species of the genus. Miracetyma MALTA, 1993. Acusicolinae. Female: cephalothorax inflated, or not. Abdomen 3-segmented. Antennule 5-segmented; antenna 3-segmented (not counting claw, which is very small and grooved; third segment with one or two grooves; segment two long; first second and third segments with one or two cuticular expansions. Legs I-IV biramous; all setae pectinate; first endopod and fourth exopod 2-segmented, all others 3-segmented. First endopod extremely modified; first segment large, stout and elongate; second segment subcylindrical, slender and elongate. Leg V represented by one or two simple setae. Parasitic on the gill filaments of freshwater fishes. Male: unknown but presumably free-living. Type species: Miracetyma etimaruya. M. etimaruya MALTA, 1993: Curimata cyprinoides, Potamorhina latior and Psectrogaster essequibensis: Rondônia State, Brazil. (Fig. 8-53 A-C). Body = 802-936 x 286-357; Egg sac = 318-535. M. kawa MALTA, 1993: Rhaphiodon vulpinus: Rondônia State, Brazil. Body = 845-1432 x 357-546; Egg sac = 330-989. M. piraya MALTA, 1994: Pygocentrus nattereri: Marmoré River, Rondônia State, Brazil. Body = 978- 1070 x 352-473; Egg sac = 269-474. Pindapixara MALTA, 1995. Ergasilinae. Female: Body small. Antennule with 6 segments; antenna with 4 segments (including claw); claw larger that the other segments; third segment greatly reduced. Legs I-IV biramous first endopod and both rami of leg IV 2-segmented; other rami 3-segmented. Egg sac uniseriate. Gill parasites of freshwater fishes. Type species: Pindapixara tarira. P. taira MALTA, 1995: Hoplias malabaricus: Guaporé River, Rondônia State, Brazil. (Fig. 8-54). Body = 382-577 (female, male unknown); Caudal filaments = 17-187.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
341
Prehendorastrus BOEGER & THATCHER, 1990 Ergasilidae. Antennule 5-segmented. Antenna 4-segmented, modified to individually grasp the gill rakers and latch; second segment with 1 or 2 prominent teeth. First maxilla with 3 setae. Five pairs of biramous legs; first endopod and fourth exopod 2-segmented; all other rami 3-segmented; leg 5 reduced to 2 setules. Parasites of gill rakers of fish. Type species: Prehendorastrus bidentatus BOEGER & THATCHER, 1990. P. bidentatus BOEGER & THATCHER, 1990; Hypophthalmus edentatus and H. fimbriatus: Rio Negro, near Manaus, Amazonas State, Brazil. (Fig. 8-38). B = 931-1,112 x 339-423; Cephalothorax = 494-780 x 339-423. P. monodontus BOEGER & THATCHER, 1990; Hypophthalmus edentatus and H. fimbriatus: Rio Negro, near Manaus, Amazonas State, Brazil. B = 1,1101,421 x 464-542; Cephalothorax = 622-826 x 462-542. Rhinergasilus BOEGER & THATCHER, 1988 Ergasilinae. Female: antennule 6-segmented, antenna 4-segmented. Thoracic segments V & VI reduced; legs 4 & 5 reduced to single setae. Parasites in nasal fossae of fish. Male unknown. R. piranhus BOEGER & THATCHER, 1988: Serrasalmus nattereri: Brazil (Amazonia). (Fig. 8-17 & 8-30 A-B). Body = 237-282 x 95-102 (female; male unknown); Claw = 37-52 x 5-7. Vaigamidae THATCHER & ROBERTSON, 1984 Poecilostomatoida. Female: body cyclopoid; cephalosome completely or incompletely fused with second thoracic segment; latter bearing moveable retrostylet on either side; rostrum with or without ventral spine. Thoracic segments 3-7 free; segments 2-5 bearing biramous legs 1- 4; segment 6 bearing leg 5, composed of 1 or 2 setae; leg 6 absent. Genital segment well developed; abdomen 3-segmented; uropods cylindrical, with terminal setae. Antennule 6-segmented, with simple setae; antenna prehensile, 4-segmented. Mouthparts: mandible 2 or 3-segmented, palp 1-segmented; maxillule vestigial; maxilla 2-segmented. Egg sac uniseriate, with few eggs. In nasal fossae of freshwater fish. Male: similar to female but smaller. Cephalosome lacking retrostylets and rostral spine. Antennae prehensile, but smaller than those of female. Maxillipeds present, 3 or 4-segmented. Male free-living. Vaigamus THATCHER & ROBERTSON, 1984 Vaigamidae. Female: retrostylets prominent; rostrum with single tapered spine ventrally. Antenna ergasiloid, with simple claw. Legs: first endopod 2-segmented; fourth endopod 2 or 3-segmented; fourth exopod 1 or 2segmented; all other rami 3-segmented. Male: similar to female, but smaller. Maxilliped 4-segmented. Leg 5 of 2 setae; leg 6 of 1 seta. Abdomen 4-segmented. V. retrobarbatus THATCHER & ROBERTSON, 1984: from plankton, host unknown: Brazil (Amazonia). (Fig. 8-29 A-E). Body = 573-658 x 168-216 (female); 498-545 x 161-185 (male); Eye = spectrum blue; Body with single band of spectrum blue in thoracic segment 2; Retrostylet = 108-
342
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
110; Rostral spine = 58-72; Claw = 60-74 x 10-14 (female); 29-36 x 6-8 (male); Caudal setae = 291-376. V. spinicephalus THATCHER & ROBERTSON, 1984: from plankton, host unknown. Brazil (Amazonia). Body = 461-498 x 223-228 (female); 390-470 x 135-165 (male); Eye = not observed; Body pigmentation limited to small areas in postero-lateral portion of thoracic segment 1 and in thoracic segments 3 & 4, also in basipods of legs 1-2; color = smalt blue; Retrostylet = 91-108; Rostral spine with subbasal swelling = 35-37; Claw = 35-39 x 8-10 (female); 25-30 x 7-8 (male); Caudal setae = 263-291 (female); 240-280 (male). Gamidactylus THATCHER & BOEGER, 1984 Vaigamidae. Retrostylets prominent. Rostrum unarmed. Antenna: segment 3 with elongate claw-like moveable spine; segment 4 claw-like. Male: unknown. Female in nasal fossae of freshwater fish. G. jaraquensis THATCHER & BOEGER, 1984: Semaprochilodus insignis: Brazil (Amazonia). (Figs. 8-31 A-E & 8-34). Body = 410-470 x 130-160 (female; male unknown); Eye = spectrum blue; same color widely scattered in body; Retrostylet = 125-140; Claw = 42-45 x 5-7; Caudal setae = 155-187. G. bryconis VARELLA, 1995: Brycon pellegrini and B. melanopterus: Rondônia State, Brazil. (Fig. 8-56 A-B). Body = 464-576 x 162-220; Caudal setae = 160-200. Gamispatulus THATCHER & BOEGER, 1984 Vaigamidae. Retrostylets short, with medial spatulate processes. Rostrum with tapered spatulate extension on ventral surface. Antenna: segment 3 with curved moveable spine distally; segment 4 claw-like. Male unknown. Female in nasal fossae of freshwater fish. G. schizodontis T HATCHER & B OEGER , 1984: Schizodon fasciatus: Brazil (Amazonia). (Figs. 8-33 A-D & 8-36). Body = 380-470 x 140-170 (female; male unknown); Eye = spectrum blue; smalt blue pigment scattered in body; Retrostylet = 90-103; Claw = 23-30 x 5-8; Caudal setae = 195-205. Gamispinus THATCHER & BOEGER, 1984 Vaigamidae. Retrostylets present; rostrum unarmed. Antenna 4-segmented; segment 2 spinous on side bearing sensillum; segment 3 with fixed spines and moveable claw-like spine distally; segment 4 claw-like. G. diabolicus THATCHER & BOEGER, 1984: Ageneiosus brevifilis: Brazil (Amazonia). (Figs. 8-32 A-E & 8-35). Body = 570-710 x 160-220 (female; male unknown); Eye = spectrum blue; same pigment scattered in small spots in cephalosome and thoracic segments 2-4; Retrostylet = 97-107; Claw = 2025; Caudal setae = 152-187. Lernaeidae COBBOLD, 1879 Cyclopoida. Adult males and pre-metamorphosed adult females small, cyclopoid; cephalosome, eye, free thorax, genital segment and uropods present. Antennules sensory; antennae prehensile. Mouthparts: maxillule
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
343
vestigial or absent; maxillae usually bifid; maxillipeds strongly developed, with terminal claws. Legs: 4 pairs of biramous legs present; rami usually 3segmented; provided with pilose setae and spines; vestigial legs 5 and 6 frequently present. Metamorphosed female: large, elongate, of varied morphology; eyes usually absent; head anchors often present; body segmentation reduced or absent. Mouthparts, antennae and legs usually same form and size as in pre-metamorphosed female. Uropods present or absent. Males and pre-metamorphosed females free-living. Metamorphosed females parasitic on fish; head usually inserted within fish tissues. Type genus and species: Lernaea cyprinacea Linnaeus, 1758 (Fig. 8-47). Amazolernaea THATCHER & WILLIAMS, 1998. Lernaeidae. Body divisible into head, neck and hindbody. Head bearing four small petal-like lobes, mouthparts antennae and first pair of thoracopods. Mouthparts: second maxillae bifurcate: maxillipeds with several terminal spines. Neck long, slender cylindrical. One pair of thoracopods present on head and three on neck: first neck pair close to head pair. Hindbody subcylindrical, formed from fused genital segment and abdomen; genital pore near midpoint, pregenital prominence small. Egg sacs multiseriate. Male and premetamorphic female unknown. Type species: Amazolernaea sannerae THATCHER & WILLIAMS, 1998. A. sannerae THATCHER & WILLIAMS, 1998: Cichla monoculus and C. temensis: Paciva River Venezuela and Jatapu River, Amazonas State, Brazil. (Fig. 8-44). Body (metamorphosed female) = 8.5-10.8 mm long; Hindbody = 4.0-4.5 x 0.79-1.0 mm. Bedsylernaea THATCHER & WILLIAMS, 1998. Lernaeidae. Postmetamorphic female: body divisible into head, neck and hindbody. Three pairs of thoracopods observed. Head bearing two large, bulbous anchors, mouthparts and antennae. Mouthparts: second maxillae bifurcate, maxillipeds with five terminal spines. Neck long, slender and cylindrical, with two pairs of thoracopods. Hindbody subcylindrical, short, stout, formed from fused genital segment and abdomen; with collar-like anterolateral projections, one on either side of neck; one pair of thoracopods (probably the fourth) between projections; genital pore anterior to midpoint, pregenital prominence large. Egg sacs multiseriate. Male and premetamorphic female unknown. Type species: Bedsylernaea collaris THATCHER & WILLIAMS, 1998. B. collaris THATCHER & WILLIAMS, 1998: Hoplias malabaricus: Trombetas River, Pará State, Brazil. (Fig. 8-45). Body (metamorphosed female) = 13-16 mm long; Hindbody = 5.0-6.5 x 1.6-2.0 mm. Minilernaea THATCHER & HUERGO, 2005. Lernaeidae Postmetamorphic female: Body divisible into head, neck and hindbody. Head bearing 6 lobes anteriorly, 4 undivided, blunt anchors posteriorly, antennae, mouthparts and first pair of thoracopods. Mouthparts: second maxillae bifurcate; maxilliped with five terminal, recurved
344
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
spines. Antennae: antennule with 4 segments; antenna with 2 segments. Five pairs of thoracopods present: first pair on head; pairs 2-4 on neck; pair 5 reduced to a simple papillus located on hindbody anterior to genital pores. Neck subcylindrical, representing about one-third of total body length. Genital pores equatorial on hindbody; pregenital prominence absent. Egg sacs elongate, multiseriate. Parasites of freshwater fishes. Male and premetamorphic female unknown. Type species: Minilernaea floricapitella THATCHER & HUERGO, 2005. M.floricapitella THATCHER & HUERGO, 2005: Astyanax spp. and Corydoras ehrhardti: Iguaçu River, Santa Catarina State and Piraquara River, Paraná State, Brazil. (Fig. 8-46 A-B). Body = 3.4-5.8 mm long; Hindbody = 0.620.82 mm in diameter; Egg sacs = 1.4-1.9 mm long. Taurocherus BRIAN, 1924. Lernaeidae. Postmetamorphic female: Body divisible into head, anchors, neck and hindbody. Head bearing antennae, mouthparts and first pair of thoracopods. Anchors elongate, cylindrical, projecting laterally between head and neck. Four pairs of thoracopods present, first on head, second on neck at juncture of anchors, 3-4 on hindbody. Neck elongate, slender, subcylindrical. Hindbody cylindrical, expanded anteriorly. Egg sacs short, multiseriate. Parasites of freshwater fishes. Male and premetamorphic female unknown. Type species: Taurocheros salminisii BRIAN, 1924. T. salminisii BRIAN, 1924: Salminus brevidens: Argentina (Patagonia). (Fig. 8-40 A-C). Body = 12-17 mm; Head 2.0-2.2 mm; Neck = 7-9 mm; Egg sac = 2-4 mm. T. tarangophilus PAGGI, 1976: Hoplias malabaricus: Paraná River, Argentina. (Fig. 8-41). Body = 11.2-14.5 mm long; Neck = 6.4-8.6 mm; Hindbody = 3.3-5.4 mm long. Perulernaea THATCHER & PAREDES, 1985 Lernaeidae. Female (pre-metamorphosed): small, cyclopoid, with prominent hooked maxillae and maxillipeds. Female (post-metamorphosed): body divisible into head, neck and hindbody. Head bearing: two large blunt lateral lobes, two small ventral lobes, mouthparts and first pair of legs. Neck region (thorax between legs 1 and 4) subcylindrical; comprising about two thirds of body length. Hindbody formed of fusion of last leg-bearing thoracic segment with genital segment and abdomen. Uropods present. First antenna 5 or 6 segmented, provided with simple setae; second antenna 2 or 3segmented, terminating in stout claw and several simple setae. Mouthparts: maxilla bifurcate; maxilliped with several terminal claws. Four pairs of biramous legs present; all rami 3-segmented and provided with setae and spines. Egg sac multiseriate. From nasal fossae, mouth, tongue and gills of freshwater fish. Male unknown, presumably free-living. P. gamitanae THATCHER & PAREDES, 1985: Colossoma macropomum: Peru & Brazil (Amazonia). (Figs. 8-38 A-J, 8-40 & 8-41). Body (metamorphosed female) = 18-22 mm long; Head and anchors = 1.1-1.2 x 4.5 5.0 mm; Neck = 12-
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
345
15 x 0.32-0.93 mm; Hindbody = 5.0-5.5 x 1.2-2.0 mm; Egg sac = 2-4 x 0.43-0.63 mm. P. pirapitingae THATCHER, 2000: Piaractus brachypomus: Meta River, Colombia (Fig. 8-43). Body (metamorphosed female) = 8.9-11.4 mm long; Hindbody = 4.0-5.0 x 0.91-1.1 mm. Therodamasidae TRIPATHI, 1960 (emended THATCHER, 1986). Poecilostomatoida. Female (postmetamorphic): Body composed of head, neck and thoraco-abdomen. Head well developed, usually provided with two pigmented eyes and two pairs of antennae; head capsule with or without lateral retrostylets or expansions; long, neck-like extension of head between antennae and mouth. Antennule 4 or 5-segmented with simple setae; antenna 3-segmented; terminal segment a stout claw. Mouth located in anterior part of thoraco-abdomen; mandible 2segmented, with palp; maxillule with medial spine; maxilla 2-segmented; protrusible mouth tube present or absent. Thoraco-abdomen; thorax of 4 leg-bearing segments; abdomen fused to genital segment, except for 2 small free segments on either side preceding uropods; uropods with few terminal segments. Legs: 4 pairs present on thoraco-abdomen; rami usually 3-segmented. Egg sac multiseriate. Gill arch parasites of fishes. Premetamorphic female ergasiloid in appearance. Male unknown but presumably free-living. ´ , 1863. Type and only genus: Therodamas KRØYER T. elongatus (THATCHER, 1986): gill arches of Plagioscion squamossisimus: Brazil (Amazonia). (Figs. 8-39 A-O & 8-48, 8-49, 8-51, 8-52). Body = 2.4-7.3 x 0.30-0.46 mm; Thoraco-abdomen = 0.87-1.5 x 0.30-0.46 mm; Head = 0.18-0.20 x 0.10-0.18; Neck of variable length. T. tamarae AMADO & ROCHA, 1996: gill arches of Plagioscion squamossisimus: Brazil (Amazonia). Body = 0.58 mm; Neck and cephalic shield = 0.44 mm long. (Note: This species was distinguished from T. elongatus mainly on the basis of a 2 segmented first endopod).
346
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
VIII. Plates of Copepoda (Figs. 8-1 to 8-62)
8-1 A
B
D
C
8-1. Ergasilus hydrolycus: female; A. entire (dorsal); B. genital segment, abdomen and uropods; C. egg sac; D. antennule; (scale = 250 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
347
8-2
8-3
8-4 8-5
Ergasilus bryconis: 8-2. nauplius I; 8-3. copepodid I; 8-4. copepodid III; 8-5. copepodid V (all from VARELLA 1985).
348
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-6 B 8-6 A
8-7 A
8-7 B
8-7 C
Ergasilus bryconis: 8-6. A. female (entire); B. antenna; C. antenna; 8-7. A. male (entire); B. maxilliped; C. antenna.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
349
8-8 A
100
B
250 100
C
D
8-8. Ergasilus callophysus: female; A. entire; B. antenna; C. egg sac; D. antennule; (scales in µm).
350
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
B
100
250 100
8-9 A 100
C D
50
E
8-9. Ergasilus colomesus: female; A. entire (dorsal); B. antenna; C. ventral thoracic plates; D. genital segment, abdomen and uropods; E. antennule; (scales in µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
351
8-10 A
100
200
C
D
10
0
B
8-10. Ergasilus jaraquensis: female; A. entire (dorsal); B. egg sac; C. antenna; D. fifth legs, genital segment, abdomen and uropods; (scales in µm).
352
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-11
A
50
B 250
C
100
50
D
8-11. Ergasilus pitalicus: female; A. entire (dorsal); B. antennule; C. base of antennule; D. antenna; (scales in µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
353
8-12
100
A
B 250
100
C
8-12. Acusicola lycengraulidis: female; A. entire (dorsal); B. genital segment, abdomen and uropods; C. antenna; (scales in µm).
354
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-13
B
A
150
100 500
C
100
D
8-13. Acusicola pellonidis: female; A. entire (dorsal); B. genital segment, abdomen and uropods; C. antenna; D. latched antennae; (scales in µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
50
8-14
355
A
B
250
100
50
C
D
8-14. Acusicola tucunarense: female; A. entire (dorsal); B. antenna; C. genital segment, abdomen and uropods; D. antennule; (scales in µm).
356
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-16
8-15
8-17
8-18
8-19
Antennae: 8-15. Ergasilus holobryconis; 8-16. E. iheringi; 8-17. Rhinergasilus piranhus; 8-18. Acusicola tenax; 8-19. A. cunula.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
8-20
8-22
8-21
8-23
Antennae: 8-20. Ergasilus leporinidis; 8-21. E. pitalicus. 8-22. E. euripidesi; 8-23. E. argulus.
357
358
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-24
A
250
B 50
D
C
25 8-24. Brasergasilus jaraquensis: female; A. entire (dorsal); B. genital segment, abdomen and uropods; C. egg sac; D. antennule; (scales in µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
359
B
250
A
C 50
8-25
8-25. Brasergasilius anodus: female; A. entire (dorsal); B. genital segment, abdomen and uropods; C. egg sac; (scales in µm).
360
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
25
8-26
25
8-27
25
8-28
Antennae of Brasergasilus: 8-26. B. anodus; 8-27. B. oranus; 8-28. B. jaraquensis; (scales in µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
361
8-29 A
B
50
C
200
50
D
E
50 8-29.Vaigamus retrobarbatus: A. female (dorsal); B. male (dorsal); C. maxilliped (male); D. antenna (female); E. antenna (male); (scales in µm).
362
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-30 A
B
8-30. Rhinergasilus piranhus BOEGER & THATCHER, 1988. Central Amazon, Brazil; A. dorsal view; B. egg sac; scales = 100 µm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
363
8-31
200
A
B
50
C
D
E
8-31. Gamidactylus jaraquensis: female; A. entire (dorsal); B. antenna; C. antennule; D. egg sac; E. genital segment, abdomen and uropods; (scales in µm).
364
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-32
A
B
C
D
E
8-32. Gamispinus diabolicus: female; A. entire (dorsal); B. antenna; C. antennule; D. egg sac; E. genital segment, abdomen and uropods.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
365
8-33
A
B
C
50
D
8-33. Gamispatulus schizodontis: female; A. entire (dorsal); B. rostral projection (ventral); C. egg sac; D. antenna; (scale in µm).
366
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-34
8-35
8-36
Vaigamid retrostylets: 8-34. Gamidactylus jaraquensis; 8-35. Gamispinus diabolicus; 8-36. Gamispatulus schizodontis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
367
8-37
50
B
A
250 250 50
C
D
E
20 8-37 A-E. Amplexibranchius bryconis: female; A. entire (dorsal); B. antennule; C. leg 5; D. egg sac; E. genital segment, abdomen and uropods; (scales in µm).
368
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-37
F
G
50
20 250
50
H
I
8-37 F-I. Amplexibranchius bryconis: female; F. latched antennae; G. mouthparts; H. leg 4; I. antenna; (scales in µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
369
A
B
C 8-38
E D
8-38. Ergasiloid antennae: A. Gamispatulus schizodontis; B. Prehendorastrus bidentatus; C. P. monodontus; D. Brasergasilus sp. (showing 3-segmented antenna); E. undescribed genus (showing 4-segmented antenna).
370
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-39
500
50
1000
A
B
C
50 50
E D 8-39. Therodamas elongatus: post-metamorphic female: A. entire (ventral); B. antenna; C. hindbody; D. antennule; E. uropod and abdominal segments; (scales in µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
371
8-39 F 100
100
G
I H
50
50
J
K
J
8-39. Therodamas elongatus: post-metamorphic female: F. mouthparts (lateral); G. head capsule (lateral); H. mouthparts (ventral, suction tube withdrawn); I. leg I; J. leg II (= leg III); K. leg IV; (scales in µm).
372
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-39
M
N O
8-39. Therodamas elongatus: L. anterior extremity (lateral view); M. calcifications around “neck”; N. anterior extremity absorbed by action of host; O. mouth tube (lateral view). (L & O: scale = 50 µm; M & N: scale = 100 µm).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
373
B
8-40 A
C
A-2 A-1
Mx Mxp
8-40.Taurocheros salminisii: female; A. entire (ventral); B. anterior extremity (ventral); C. mouthparts; A-1 = antennule; A-2 = antenna; Mx = maxilla; Mxp = maxilliped (all after BRIAN 1924).
374
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-41
8-41. Taurocherus tarangophilus PAGGI, 1976. Rio Paraná, Argentina; scale = 2 mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
8-42
8-42. Perulernaea gamitanae THATCHER & PAREDES, 1985. Iquitos, Peru; scale = 2mm.
375
376
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-43
8-43. Perulernaea pirapitingae THATCHER, 2000. Rio Meta, Colombia; scale = 1 mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
8-44
8-44. Amazolernaea sannerae THATCHER & WILLIAMS, 1998. Venezuela; scale = 1 mm.
377
378
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-45
8-45. Bedsylernaea collaris THATCHER & WILLIAMS, 1998. Rio Amazonas, Brazil; scale = 2 mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
379
B
A
8-46
8-46. Minilernaea floricapitella THATCHER & HUERGO, 2005. Astyanax spp. Rio Iguaçu, Santa Catarina, Brazil; scales: A = 1 mm; B = 200 µm.
380
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-47
8-47. Lernaea cyprinacea: L. Rio Tibagi, Paraná, Brazil; scale = 5 mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
8-48
8-49
381
8-50
8-51
8-52
Therodamasidae and Lernaeidae: 8-48 & 8-49. anterior extremities of Therodamas sp.; 8-50. head of premetamorphic female of Perulernaea gamitanae; 8-51. head of premetamorphic female of Therodamas elongatus; 8-52. posterior extremity of female of T. elongatus.
382
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-53
8-54
A
B
C
8-53. Miracetyma etimaruya: female. A. dorsal view; scale = 500 µm; B. antenna; C. leg 1; 8-54. Pindapixara tarira: female, dorsal view; scale = 200 µm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
383
8-55 A
B
8-56 A
B
8-55. Brasergasilus guaporensis: female. A. dorsal view; scale = 200 µm; B. antenna. 8-56. Gamidactylus bryconis: female. A. antenna; B. dorsal view; scale = 200 µm.
384
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
8-57
8-58
8-59
8-60
8-57 to 8-60. Undescribed Ergasilus females from plankton showing coloration and pigment distribution.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
385
8-61 8-62
Female ergasilids on gill filaments showing pathology: 8-61. Acusicola tucunarense demonstrating constriction and terminal necrosis of the filament; 8-62. Ergasilus colomesus, showing epithelial hyperplasia and accumulation of pigments; scale = 1 mm.
386
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
IX. Cited and general references AMADO, M.A.P. & C.E.F. DA ROCHA (1996): Therodamas tamarae, a new species of copepod (Poecilostomatoida: Ergasilidae) parasitic on Plagioscion squamosissiumus (HECKEL) from the Araguaia River, Brazil; with a key to the species of the genus. - Hydrobiologia 325: 77-82. ARAUJO, C.S. DE & A. VARELLA (1998): Ergasilus coatiarus sp. n. (Copepoda, Poecilostomatoida, Ergasilidae) parasita dos filamentos branquiais de Cichla monoculus SPIX, 1831 (Perciforme: Cichlidae) da Amazônia Brasileira. - Acta Amazonica 28(4): 417-424. BOEGER, W.A. & V.E. THATCHER (1988): Rhinergasilus piranhus gen. et sp. n. (Copepoda, Poecilostomatoida, Ergasilidae) from the nasal cavities of piranha cajú, Serrasalmus nattereri, in the Central Amazon. - Proc. Helminthol. Soc. Wash. 55(1): 87-90. BOEGER, W.A. & V.E. THATCHER (1990): Prehendrorastrus gen. n. (Poecilostomatoida, Ergasilidae) with descriptions of two new species from the gill rakers of Hypophthalmus spp. (Teleostei, Siluriformes) from the Brazilian Amazon. - Syst. Parasit. 17: 133-141. BOEGER, W.A., MARTINS, M. & V.E. THATCHER (1993): Ergasilus hypophthalmus sp. n. (Copepoda, Poecilostomatoida, Ergasilidae) from the gill rakers of the Amazonian catfishes, Hypophthalmus edentatus SPIX, 1826, and H. fimbriatus KNER, 1857 (Teleostei, Siluriformes). - Rev. Brasil. Biol. 53(3): 421-424. BOXSHALL, G.A. (1986): A new species of Mugilicola TRIPATHI (Copepoda: Poecilostomatoida) and a review of the family Therodamasidae. - Proc. Linn. Soc. N.S.W. 108: 183-186. BRIAN, A. (1924): Descrizione di un nuovo e curioso copepode lerneideo parasita de Salminus brevidens raccolto dal Prof. Filippo Silvestri nell’America del Sul. - Boll. Lab. Zool. Gen. e Agrar. R. Scuola Super. Agric. Portici 18: 32-36. CRESSEY, R.F. & B.B. COLLETTE (1970): Copepods and needlefishes: a study in host-parasite relationships. - Fish. Bull. 68: 347-432. ENGERS, K.B., BOEGER, W.A. & D.A. BRANDÃO (2000): Ergasilus thatcheri n. sp. (Copepoda, Poecilostomatoida, Ergasilidae) from the gills of Rhamdia quelen (Teleostei, Siluriformes, Pimelodidae) from Southern Brazil. - J. Parasitol. 86(5): 945-947. KABATA, Z. (1979): Parasitic Copepoda of British fishes. - The Ray Society, London: 468 pp., 2031 figs. MALTA, J.C.O. (1993a): Miracetyma etimaruya gen. et. sp. n. (Copepoda, Poecilostomatoida: Ergasilidae) from freshwater fishes of the Brazilian Amazon. - Acta Amazonica 23(1): 49-57. MALTA, J.C.O. (1993b): Miracetyma kawa sp. n. (Copepoda, Poecilostomatoida: Ergasilidae) dos peixes de água doce da Amazônia Brasileira. - Acta Amazonica 23(2-3): 251-259. MALTA, J.C.O. (1993c): Myracetyma piraya sp.n. (Copepoda: Ergasilidae) das brânquias de Pygocentrus nattereri (KNER, 1860) (Characiformes: Serrasalmidae) da Amazônia Brasileira. - Acta Amazonica 23(2-3): 261-269. MALTA, J.C.O. (1993d): Brasergasilus guaporensis sp.n. (Copepoda: Ergasilidae) das brânquias de Leporinus fasciatus (BLOCH, 1890) (Characiformes: Anastomidae) da Amazônia Brasileira. - Acta Amazonica 23(4): 441-447. MALTA, J.C.O. (1993e): Ergasilus urupaensis sp.n. (Copepoda: Ergasilidae) das brânquias de Prochilodus nigricans AGASSIZ, 1829 (Characiformes: Prochilodontidae) da Amazônia Brasileira. - Acta Amazonica 23(4): 449-456.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
387
MALTA, J.C.O. (1994a): Pindapixara tarira gen. et sp.n. (Copepoda: Ergasilidae) das brânquias de Hoplias malabaricus (BLOCH, 1794) (Characiformes: Erythrinidae) da Amazônia Brasileira. Acta Amazonica 24(1/2): 135-144. MALTA, J.C.O. (1994b): Ergasilus triangularis n. sp. (Copepoda: Ergasilidae) das brânquias de Laemolyta taeniata (KNER, 1859), (Characiformes: Anostomidae) da Amazônia Brasileira. - Acta Amazonica 24(3/4): 309-316. MALTA, J.C.O. & A. VARELLA (1986): Ergasilus holobryconis sp. n. crustáceo parasita de Holobrycon pesu (MÜLLER & TROSCHELL), um peixe da Amazônia brasileira (Copepoda: Poecilostomatoida: Ergasilidae). - Amazoniana 10(1): 41-48. MALTA, J.C.O. & A. VARELLA (1996): Ergasilus turucuyus sp. n. (Copepoda: Ergasilidae) das brânquias de Acestrorhynchus falcatus (BLOCH, 1794) e A. falcirostris (CUVIER, 1819) (Characidae) da Amazônia Brasileira. - Acta Amazonica 26(1/2): 69-76. MALTA, J.C.O. & A. VARELLA (1998): Maxillopoda - Copepoda Poecilostomatoida. Non-marine parasites. In: YOUNG, P.S. (ed.): Catalogue of Crustacea of Brazil: 241-249. Rio de Janeiro (Série Livros n. 6). MONTU, M. (1980): Parasitic copepods of Southern Brazil fishes, I. Ergasilus euripedesi n. sp. (Copepoda, Cyclopidea). - Iheringia, Ser. Zool. (Porto Alegre, Brazil) 56: 53-62. PAGGI, J.C. (1976): Una nueva especie de Therodamas (Therodamasidae; Cyclopoida) copépodo parásito de peces de agua dulce de la República Argentina. - Physis 35(91): 93-102. PAIVA CARVALHO, J. (1955): Ergasilus xenomelanirisi n. sp. parasito de peixe-rei - Xenomelaniris brasiliensis (QUOY & GAIMARD). - Bol. Inst. Oceanogr. (Brazil) 6(1-2): 215-224. PAIVA CARVALHO, J. (1962): Ergasilus cyanopictus sp. nov., parasito de tainha - Mugil cephalus (L.) (Crustacea, Copepoda - Pisces, Mugiloidei). - Arq. Mus. Nac. Rio de Janeiro 52: 31-36. PIASECKI, W., KHAMEES, N.R. & F.T. MHAISEN (1991): A new species of Mugilicola TRIPATHI, 1960 (Crustacea, Copepoda, Therodamasidae) parasitic on Iraqui fish. - Acta Ichthyologica et Piscatoria 21(2): 143-151. ROBERTS, L.S. (1965): Ergasilus tenax sp. n. (Copepoda, Cyclopoida) from the white crappie, Pomoxis annularis RAFINESQUE. - J. Parasitol. 51(6): 987-989. ROBERTS, L.S. (1970): Ergasilus (Copepoda: Cyclopoida): Revision and key to species in North America. - Trans. Am. Mic. Soc. 89(1): 134-161. THATCHER, V.E. (1981a): Os crustáceos parasitos de peixes da Amazônia brasileira. 1. Ergasilus bryconis n. sp. (Copepoda: Cyclopidea) da matrinchã (Brycon melanopterus (COPE)). - Acta Amazonica 11: 437-442. THATCHER, V.E. (1981b): Os crustáceos parasitos de peixes da Amazônia brasileira. 2. Ergasilus leporinidis n. sp. (Copepoda: Cyclopoidea) das branquias de Leporinus fasciatus (BLOCH). - Acta Amazonica 11: 723-727. THATCHER, V.E. (1981c): Ergasilus pitalicus n. sp. (Copepoda: Poecilostomatoida: Ergasilidae) a gill parasite of a cichlid fish from the Pacific Coast of Colombia, South America. - J. Crust. Biol. 4(3): 495-501. THATCHER, V.E. (1984): The parasitic crustaceans of fishes from the Brazilian Amazon. 7. Acusicola tucunarense n. sp. (Copepoda: Cyclopidea) from Cichla ocellaris, with an emendation of the genus and the proposal of Acusicolinae subfam. nov. - Rev. Brasil. Biol. 44(2): 181-189. THATCHER, V.E. (1986): The parasitic crustaceans of fishes from the Brazilian Amazon, 16. Amazonicopeus elongatus gen. et sp. n. (Copepoda: Poecilostomatoida) with the proposal of Amazonicopeidae fam. nov. and remarks on its pathogenicity. - Amazoniana 10(1): 49-56.
388
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
THATCHER, V.E. (1998): Copepods and fishes in the Brazilian Amazon. - Journal of Marine Systems (Holland) 15: 97-112. THATCHER, V.E. (1999): Anklobrachius marajoensis gen. et sp. nov. (Copepoda, Poecilostomatoida, Ergasilidae) described from male specimens taken in plankton samples from the Amazon River. - In: SHRAM, E.J. & J.C. VON VAUPEL KLEIN (eds.): Crustaceans and the biodiversity crisis: 231-237. Proc. Fourth Int. Crustacean Congr., Amsterdam. Brill, Leiden: 1021 pp. THATCHER, V.E. (2000): Perulernaea pirapitingae n. sp. (Copepoda: Lernaeidae) a parasite of the serrasalmid fish, Piaractus brachypomus from the Meta River, Colombia. - Amazoniana 16(1/2): 249-257. THATCHER, V.E. & W.A. BOEGER (1983a): Patologia de peixes da Amazônia brasileira, 3. Alterações histológicas em brânquias provocadas por Ergasilus, Brasergasilus e Acusicola (Crustacea: Cyclopoida: Ergasilidae). - Acta Amazonica 13(2): 441-451. THATCHER, V.E. & W.A. BOEGER (1983b): The parasitic crustaceans of fishes from the Brazilian Amazon. 4. Ergasilus colomesus sp.n. (Copepoda: Cyclopoida) from an ornamental fish (Colomesus asellus: Tetraodontidae) and aspects of its pathogenicity. - Trans. Am. Mic. Soc. 102: 371-379. THATCHER, V.E. & W.A. BOEGER (1983c): The parasitic crustaceans of fishes from the Brazilian Amazon, 5. Brasergasilus gen. nov. (Copepoda: Cyclopidea), a “three-legged” ergasilid with two new species and the proposal of Abergasilinae subfam. nov. - Acta Amazonica 13(1): 195-214. THATCHER, V.E. & W.A. BOEGER (1983d): The parasitic crustaceans of fishes from the Brazilian Amazon, 10. Acusicola pellonidis n. sp. (Copepoda: Cyclopidea) from Pellona castelnaeana (VALLENCIENNES). - Amazoniana 8(2): 273-279. THATCHER, V.E. & W.A. BOEGER (1984a): The parasitic crustaceans of fishes from the Brazilian Amazon. 9. Ergasilus callophysus sp.n. (Copepoda: Cyclopoida) from Callophysus macropterus (LICHTENSTEIN). - Proc. Helminthol. Soc. Wash. 51: 326-330. THATCHER, V.E. & W.A. BOEGER (1984b): The parasitic crustaceans of fishes from the Brazilian Amazon. 13. Gamidactylus jaraquensis gen. et sp. n. (Copepoda: Poecilostomatoida: Vaigamidae) from the nasal fossae of Semaprochilodus insignis (SCHOMBURGK). - Amazoniana 8(3): 421-426. THATCHER, V.E. & W.A. BOEGER (1984c): The parasitic crustaceans of fishes from the Brazilian Amazon. 6. Brasergasilus oranus sp.n. (Copepoda: Cyclopoida) from Anodus elongatus SPIX. - Rev. Brasil. Biol. 44(4): 181-189. THATCHER, V.E. & W.A. BOEGER (1984d): The parasitic crustaceans of fishes from the Brazilian Amazon. 15. Gamispatulus schizodontis gen. et sp. n. (Copepoda: Poecilostomatoida: Vaigamidae) from Schizodon fasciatus AGASSIZ. - Amazoniana 9(1): 119-126. THATCHER, V.E. & W.A. BOEGER (1984e): The parasitic crustaceans of fishes from the Brazilian Amazon. 14. Gamispinus diabolicus gen. et sp. n. (Copepoda: Poecilostomatoida: Vaigamidae) from the nasal fossae of Ageneiosus brevifilis VALENCIENNES. - Amazoniana 8(4): 505-510. THATCHER, V.E. & W.A. BOEGER (1985): The parasitic crustaceans of fishes from the Brazilian Amazon. 8. Acusicola lyncengraulidis n. sp. (Copepoda: Cyclopidea) from Lycengraulis grossidens CUVIER. - Acta Amazonica 13(5-6): 943-951. THATCHER, V.E. & V. PAREDES (1985a): A parasitic copepod, Perulernaea gamitanae gen. et sp. nov. (Cyclopoida: Lernaeidae), from the nasal fossae of a Peruvian Amazon food fish. Amazoniana 9(2): 169-175. THATCHER, V.E. & V. PAREDES (1985b): A parasitic copepod, Amplexibranchius bryconis gen. et sp. nov. (Ergasilidae: Acusicolinae), from an Amazonian fish and remarks on the importance of leg morphology in this subfamily. - Amazoniana 9(2): 205-214.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
389
THATCHER, V.E. & J. PEREIRA, JR. (2004): Brasilochondria riograndensi gen. nov., sp. nov. (Copepoda, Chondracanthidae) a parasite of flounders of Rio Grande do Sul State, Brazil. - Rev. Bras. Zool. 21: 515-518. THATCHER, V.E. & B. ROBERTSON (1982): The parasitic crustaceans of fishes from the Brazilian Amazon, 3, Ergasilus jaraquensis sp. nov. (Copepoda: Cyclopoidea), from the gills of Semaprochilodus insignis (SCHOMBURGK). - Rev. Bras. Biol. 42: 503-513. THATCHER, V.E. & B. ROBERTSON (1984): The parasitic crustacean of fishes from the Brazilian Amazon, 11. Vaigamidae fam. nov. (Copepoda: Poecilostomatoida) with males and females of Vaigamus retrobarbatus gen. et sp. nov. and and V. spinicephalus sp. nov. from plankton. - Can. J. Zool. 62: 716-729. THATCHER, V.E. & E.H. WILLIAMS, JR. (1998): Comparative morphology of four lernaeids (Copepoda: Cyclopoida) from South American fish with descriptions of two new genera. - J. Aquat. Anim. Health. 10: 300-308. THATCHER, V.E. BOEGER, W.A. & B.A. ROBERTSON (1984): The parasitic crustacean of fishes from the Brazilian Amazon. 12. Ergasilus hydrolycus sp. n. (Copepoda: Poecilostomatoida) from Hydrolycus scomberoides (CUVIER). - Amazoniana 8(3): 321-326. TRIPATHI, Y.R. (1960): Parasitic copepods from Indian fishes. 2. Two new families Therodamasidae and Cataphilidae. – In: Libro de homenaje al Dr. Eduardo Caballero y Caballero, Mexico: 543-548. VARELLA, A.M. (1985): O ciclo biológico de Ergasilus bryconis THATCHER, 1981 (Crustacea: Poecilostomatoida, Ergasilidae) parasita das brânquias do matrinxã Brycon erythropterum (COPE, 1872) e aspectos de sua ecologia. - M.Sc.-thesis, INPA/FUA, Manaus, Brazil: 100 pp. VARELLA, A.M. (1995): Gamidactylus bryconis sp. n. (Copepoda, Poecilostomatoida, Vaigamidae) das fossas nasais de peixes, Brycon pellegrini HOLLY, 1929 e B. melanopterus (COPE, 1872) da Amazônia Brasileira. - Acta Amazonica 24(1/2): 145-152. VARELLA, A.M.B. & J.C.O. MALTA (2001): Brasergasilus mamorensis sp. n. (Copepoda: Ergasilidae) from the nasal cavities of Hydrolycus pectoralis (GUENTHER, 1866) (Characiformes: Cynodontidae) from the Brazilian Amazon, and considerations about Abergasilinae. - Acta Amazonica 30(1): 323-330. WILSON, C.B. (1911): North American parasitic copepods belonging to the family Ergasilidae. Proc. U. S. Nat. Mus. 39: 263-400. YAMAGUTI, S. (1963): Parasitic Copepoda and Branchiura of fishes. - Intersci. Publ., New York: 1104 pp., 333 pls.
390
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
9. BRANCHIURA I. Definition and morphology Branchiurans are small, shield-shaped crustaceans that are ectoparasites on the skin and within the gill chamber of marine and freshwater fish. They range from 3 to 30 mm in length and since they are easy to see, they are well known to fishermen and pisciculturists who have termed them “fish lice”. The term is not inappropriate since branchiurans do suck blood and can weaken and kill their hosts. Both sexes parasitize fish and they can leave the host at will. All known branchiurans belong to the family Arguilidae and perhaps “argulids” is a more appropriate name for the group. Argulids were once thought to be copepods, but they are morphologically quite distinct. There is a large concave carapace fused to the head which has wing-like postero-lateral extensions containing respiratory areas. There are four biramous swimming legs on the thorax, and the abdomen is fused into a single bilobed unit. The first antennae and both pairs of maxillae are adapted for clinging to fish skin. In Argulus and Dipteropeltis, the first maxillae are modified to form sucker-like structures and in Dolops they are prehensile and terminate in strong claws. The ventral surface of the carapace and thorax is also frequently provided with retro-spines as an additional attachment aid. The ventral structures of a typical arguilid are shown in Fig. 9-1. Dorsally, argulids have a pair of moveable compound eyes and often there is green or yellow pigmentation in definite patterns.
II. Life-cycle and transmission Transmission of argulids is direct since they swim actively up to a fish and attach themselves. They can leave the host at any time and move to a different fish. They are also able to skate around over the surface of a fish to find an appropriate feeding site. Argulids frequently select a site that is less heavily scaled, such as the base of the fins. Some species show a preference for the inside of the gill chamber. When mature enough to mate, argulids leave the host and copulate while swimming. Afterwards, the female lays her eggs by gluing them in linear strings or small clusters (the pattern is species dependent) on hard surfaces such as submerged logs or rocks. In an infected aquarium it is sometimes easier to see the egg strings on the glass than the adult
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
391
animals. After an incubation period of 10-20 days, the young argulids hatch and immediately swim out looking for a host fish on which to mature. In studies made in the Brazilian Amazon in 1979 (MALTA 1981, 1982 a, b, 1983; MALTA & VARELLA 1983), it was found that argulids on wild fish populations show host and site preference and seasonal variation in numbers. For example, Argulus multicolor, A. juparanaensis and Dolops geayi were found only in the gill chambers of their hosts while Argulus pestifer, Dolops bidentata, D. carvalhoi, D. discoidalis and D. striata infest only the skin. Of these species, A. pestifer proved to be the most host specific being found only on two species of Pseudoplatystoma. A. pestifer was also the only species found to be more numerous on the fish during the low water stage of the river (November and December). All other species studied were more common during June and July when the river level was high.
III. Pathology In the act of feeding, argulids perforate the skin of the fish host with their mouth parts and inject anticoagulants and digestive secretions. The argulid mouth is a tubular structure with cutting mandibles near its apex. In Argulus there is also a preoral stylet to help the animal penetrate the fish skin. Argulids ingest blood and epithelial cells and can produce anemia. There is a localized inflammatory reaction in the vicinity of the bite and secondary bacterial and fungal infections may also occur. Heavy infestations can bring on the death of the fish especially in young or small animals.
IV. Prevention and treatment Argulid infestations are difficult to either prevent or treat. Frequently the first indication of argulids in an aquarium are the eggs glued on the glass. When argulids are discovered, it is necessary to treat the fish, move them to a clean aquarium and disinfect the old aquarium. Fish can be treated in a dip prepared with Neguvon at a concentration of 20 cm3 per liter of water for 2 minutes. The most convenient way to sterilize aquaria is to fill them with a 5 % solution of Sodium Hypochlorite (household bleach) and leave them for 10 hours. Infested ponds should be drained and quick lime should be scattered over the muddy bottom. After two days, the ponds can be refilled and used.
V. Collection and study methods Argulids are best removed from the fish with soft forceps and dropped alive into 70 % alcohol or AFA solution. Temporary study preparations can be made in pure phenol or in glycerin. Permanent slides can be made by the phenol-balsam method (explained in detail in Chapter 6).
VI. Identification and keys
392
Some characters used in the identification of argulids are: size, shape and color; number of legs covered by carapace; form of maxillae; and form and number of maxillary teeth.
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Key to the Neotropical genera of Branchiura I. First maxillae sucker-like. A. Basal plates of second maxillae without teeth ............................................................................................... Dipteropeltis hirundu (Fig. 9-31) B. Basal plates of second maxillae armed with teeth ................................................................................................................................. Argulus II. First maxillae simple, armed with claws ...........................................................................................................................................................Dolops Key to the Neotropical species of Argulus I. Carapace short, covering only first pair of legs ................................................................................................................... A. elongatus (Fig. 9-9) II. Carapace longer, covering first 2 pairs of legs. A. Respiratory areas contiguous. 1. Larger respiratory area with medial indentation .......................................................................................... A. spinulosus (Fig. 9-7 A-D) 2. Larger respiratory area without medial indentation .................................................................................................. A. ichesi (Fig. 9-11) B. Respiratory areas close together, the smaller ones are subtriangular .................................................................... A. multicolor (Fig. 9-14) C. Respiratory areas well separated. 1. Small respiratory area hemispherical ................................................................................................................... A. patagonicus (Fig. 9-13) 2. Small respiratory area subtriangular ............................................................................................................ A. violaceus (Figs. 9-1 & 9-19) III. Carapace long, covering first 3 pairs of legs. A. Abdominal lobes long and slender, 4 to 5 times longer than wide .................................................................... A. paranaensis (Fig. 9-22) B. Abdominal lobes short. 1. Lobes of carapace reaching to near base of abdomen.
Key to the Neotropical species of Dolops I. Basal plate of second maxilla armed with 2 teeth. A. Ventral surface of carapace spinous .............................................................................................................................. D. bidentata (Fig. 9-33) B. Ventral surface of carapace without spines ............................................................................................................... D. nana (Fig. 9-23 A-D) II. Basal plate of second maxilla armed with 3 teeth. A. Abdominal lobes long and slender. 1. Abdominal lobes longer than carapace; respiratory areas of 3 parts on each side ............................ D. longicauda (Fig. 9-25 A-B) 2. Abdominal lobes shorter than carapace; respiratory areas lacking .............................................................................................. D. geayi B. Abdominal lobes short, about as wide as long ....................................................................................... D. reperta (Fig. 9-24, 9-28 & 9-29)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
a. Anterior (antennal) area of carapace supported by rods; respiratory areas contiguous; smaller area medial to larger area . ...................................................................................................................................................................................... A. pestifer (Fig. 9-30) b. Antennal area without rods; respiratory areas well separated; smaller anterior to larger ........ A. salmini (Figs. 9-10 & 9-18) 2. Lobes of carapace well separated from base of abdomen. a. Maxillary teeth sharply pointed. 1) Marginal support rods of suckers consisting of stacks of subspherical masses ................................... A. ernsti (Fig. 9-20) 2) Marginal support rods of suckers consisting of L-shaped pieces topped by 2 subspherical masses .................................. ......................................................................................................................................................................... A. carteri (Fig. 9-4 A-D) b. Maxillary teeth flattened, spatulate ............................................................................................................... A. cubensis (Fig. 9-8 A-C) IV. Carapace very long, covering all 4 pairs of legs. A. Carapace nearly spherical. 1. Posterior sinus of carapace wide ................................................................................................................................. A. silvestrii (Fig. 9-6) 2. Posterior sinus of carapace narrow and deep .......................................................................................................... A. nattereri (Fig. 9-5) B. Carpace not spherical; longer than wide. 1. Maxillary teeth rounded ..................................................................................................................................... A. rhamdiae (Fig. 9-3 A-D) 2. Maxillary teeth squared ................................................................................................................................ A. juparanaensis (Fig. 9-2 A-D)
393
I. Primeras maxilas semejantes a una ventosa. A. Placas basales de las segundas maxilas sin dientes ........................................................................................ Dipteropeltis hirundo (Fig, 9-31) B. Placas basales de las segundas maxilas, armadas con dientes .............................................................................................................. Argulus II. Primeras maxilas simples, armadas con garras ...............................................................................................................................................Dolops
Clave para las especies Neotropicales de Argulus I. Caparazón corto, cubriendo solamente el primer par de piernas .................................................................................... A. elongatus (Fig. 9-9) II. Caparazón más largo, cubriendo los dos primeros pares de piernas. A. Areas respiratorias contiguas. 1. Area respiratoria mayor con indentación en el medio ................................................................................ A. spinulosus (Fig. 9-7 A-D) 2. Area respiratoria mayor sin indentación ...................................................................................................................... A. ichesi (Fig. 9-11) B. Areas respiratorias juntas, las más pequeñas son casi triangulares ........................................................................ A. multicolor (Fig. 9-14) C. Areas respiratorias bien separadas. 1. Area respiratoria pequeña es hemisférica ........................................................................................................... A. patagonicus (Fig. 9-13) 2. Area respiratoria pequeña es casi triangular .............................................................................................. A. violaceus (Figs. 9-1 & 9-19)
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Clave para los géneros Neotropicales de Branchiura
394
C. Abdominal lobes of medium length, usually somewhat longer than wide. 1. Abdominal sinus shallow ................................................................................................................................................ D. kollari (Fig. 9-26) 2. Abdominal sinus deep. a. Ventral surface of carapace without spines ......................................................................................................................... D. carvalhoi b. Ventral surface of carapace spinous. 1) Marginal spination continuous to near posterior border ..................................................................... D. discoidalis (Fig. 9-15) 2) Marginal spination terminates at level of first leg ........................................................................................................... D. striata
Clave para las especies Neotropicales de Dolops I. Placa basal de la segunda maxila armada con 2 dientes. A. Superficie ventral del caparazón espinosa ..................................................................................................................... D. bidentata (Fig. 9-33) B. Superficie ventral del caparazón sin espinas .............................................................................................................. D. nana (Fig. 9-23 A-D)
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
III. Caparazón largo, cubriendo los tres primeros pares de piernas. A. Lóbulos abdominales largos y delgados, 4 a 5 veces más largos que anchos .................................................. A. paranaensis (Fig. 9-22) B. Lóbulos abdominales cortos. 1. Lóbulos del caparazón alcanzan hasta cerca de la base del abdomen. a. Area anterior (antenal) del caparazón es sostenida por varillas; áreas respiratorias contiguas; las pequeñas más cerca a la línea media ................................................................................................................................................................. A. pestifer (Fig. 9-30) b. Area antenal sin varillas; áreas respiratorias bien separadas; la menor anterior a la mayor ....... A. salmini (Figs. 9-10 & 9-18) 2. Lóbulos del caparazón bien separados de la base del abdomen. a. Dientes maxilares afilados. 1) Varillas de soporte marginal de las ventosas consisten en grupos de masas esféricas ......................... A. ernsti (Fig. 9-20) 2) Varillas de soporte marginal de las ventosas consisten en piezas en forma de L sosteniendo 2 masas semiesféricas ..... ......................................................................................................................................................................... A. carteri (Fig. 9-4 A-D) b. Dientes maxilares aplanados, espatulados ................................................................................................... A. cubensis (Fig. 9-8 A-C) IV. Caparazón bien largo, cubriendo las 4 pares de piernas. A. Caparazón casi esférico. 1. Espacio entre lóbulos abdominals ancha ................................................................................................................... A. silvestrii (Fig. 9-6) 2. Espacio entre lóbulos abdominals angosto y profundo ......................................................................................... A. nattereri (Fig. 9-5) B. Caparazón no esférico, más largo que ancho. 1. Dientes maxilares arredondeados ..................................................................................................................... A. rhamdiae (Fig. 9-3 A-D) 2. Dientes maxilares cuadrados ...................................................................................................................... A. juparanaensis (Fig. 9-2 A-D)
395
396 ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
II. Placa basal de la segunda maxila armada con 3 dientes. A. Lóbulos abdominals largos y finos. 1. Lóbulos abdominales más largos que el caparazón; 3 áreas respiratorias de cada lado .................... D. longicauda (Fig. 9-25 A-B) 2. Lóbulos abdominales más cortos que el caparazón; áreas respiratorias ausentes .................................................................... D. geayi B. Lóbulos abdominales cortos, ancho y largo parecidos .......................................................................... D. reperta (Fig. 9-24, 9-28 & 9-29) C. Lóbulos abdominales de largura intermedia, con frecuencia más largos que anchos. 1. Espacio abdominal poco profundo ............................................................................................................................. D. kollari (Fig. 9-26) 2. Espacio abdominal profundo. a. Superficie ventral del caparazón sin espinas ....................................................................................................................... D. carvalhoi b. Superficie ventral del caparazón espinoso. 1) Espinas marginales continuas hasta cerca del borde posterior ........................................................... D. discoidalis (Fig. 9-15) 2) Espinas marginales terminan al nivel de la primera pierna ........................................................................................... D. striata
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
397
VII. Checklist of Branchiura from Neotropical freshwater fishes All measurements are given in millimeters. Argulidae LEACH, 1819 Carapace flattened, shield-like. Abdomen bilobed posteriorly, provided with small papillae medially. Basal portions of first antennae flattened and armed with hooks and spines; terminal portion cylindrical, 2 or 3segmented. Preoral sheathed stylet present or absent. First maxillae tipped with claws or modified to form sucker-like structures. Second maxillae with basal plates having spines, teeth or lobes posteriorly. Basal segments of female fourth legs usually expanded to flattened lobes; basal segments of posterior legs of male usually modified for reproductive function. Anterior legs with or without flagella on distal end of basis. Ovary in posterior portion of thorax; testes in abdomen. Ectoparasites on freshwater and marine fishes and occasionally amphibians. Argulus MÜLLER, 1785 Argulidae. Two pairs of antennae present. Preoral stylet usually present. First maxillae develop into sucker-like cups. Basal plate of second maxillae armed with teeth. On freshwater and marine fish. A. carteri CUNNINGTON, 1931: Hoplias malabaricus: Paraguay & Brazil. (Fig. 9-4 A-C). Carapace covers first two legs and base of third; Basal lobe of female 4th leg pointed; Abdomen slightly longer than wide; Body = 4.0 long; Carapace = 2.8 x 2.1. ´ , 1863: Chromis sp. and Rhamdia sp.: Mexico (Yucatan). A. chromidis KRØYER (Fig. 9-12). Carapace covers first three legs; Lobes separated from thorax; Body = 6.0 long; Carapace = 4.1 x 4.0; Abdomen = 1.2 x 1.1. A. cubensis WILSON, 1935: Cichlasoma tetracanthus: Cuba. (Fig. 9-8 A-C). Carapace covers first three legs; Base of second maxilla with rounded teeth. A. elongatus HELLER, 1857: host unknown: Brazil (Fig. 9-9). Carapace short, covering only first pairs of legs; Posterior sinus lacking; Thorax elongate; Caudal sinus deep; Body = 10 long; Carapace = 4.3; Abdomen = 2.0 x 1.9. A. ernsti WEIBEZAHN & COBO, 1964: Carassius auratus: Venezuela. (Fig. 9-20). Carapace covers first three legs; Larger respiratory areas deeply indented medially; Preoral stylet well developed; Body = 4.3-4.6 (male); 3.2-6.9 (female). A. ichesi BOUVIER, 1910: host unknown: Argentina (Fig. 9-11). Carapace covers first two pairs of legs; Respiratory areas confluent; Thorax spotted dorsally; Abdomen longer than wide; sides nearly parallel; Body = 4.5 (male). A. juparanaensis LEMOS DE CASTRO, 1950: Pachyurus bonariensis and Astyanax bimaculatus: Brazil (Espírito Santo State). (Figs. 9-2 A-D & 9-17). Carapace covers all legs in most adult specimens; Respiratory areas confluent; Maxillary teeth spatulate; Carapace with brown dendriform markings;
398
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Thorax brown-spotted dorsally; Body = 2.0-2.7 (male); 3.2-4.7 (female); Carapace = 1.4-2.0 x 1.1-1.7 (male); 2.8-3.9 x 2.2-3.5 (female); Abdomen = 0.27-0.72 x 0.30-0.72 (male); 0.50-0.75 x 0.50-0.84 (female). A. multicolor STEKHOVEN, 1937: Rhaphiodon vulpinus, Colossoma macropomum, Serrasalmus nattereri, Cichla temensis, Geophagus jurupari and Hydrolycus scomberoides: Brazil & Venezuela. (Fig. 9-14). Carapace covers first two pairs of legs; Length of abdomen nearly double the width; Body = 4.0 (male); 10.0 (female). A. nattereri HELLER, 1857: Salminus brevidens and Pseudoplatystoma sp.: Brazil & Argentina. (Figs. 9-5 & 9-16). Carapace nearly circular, covers all legs; Abdomen short; Body = 5.5 long; Carapace = 4.6 x 4.56 (male). A. paranaensis RINGUELET, 1943: Salminus maxillosus: Brazil. (Fig. 9-22). Carapace elongate, lobes slender, covers first three legs; Abdominal rami long and slender; Two pairs of post-maxillary teeth present; Body = 26.5; Carapace = 14.5 x 9 (female); male unknown. A. patagonicus RINGUELET, 1943: Percichthys trucha: Argentina. (Fig. 9-13). Carapace short, covering one or two pairs of legs; Abdomen elongate in female, shorter in male; Abdominal sinus short; Body = 2.5-3.7 (male); 2.53.0 (female); Carapace = 1.6-2.3 x 1.5-2.0 (male); 1.6-1.9 x 1.4-1.7 (female). A. paulensis WILSON, 1924: Salminus maxillosus and S. hilarii: Brazil. Description unavailable. A. pestifer RINGUELET, 1948: Salminus maxillosus, Pseudoplatystoma fasciatum and P. tigrinum: Argentina & Brazil. (Fig. 9-30). Carapace with stout supporting rods anteriorly, covers first three pairs of legs; Respiratory areas contiguous, smaller area medial to larger one; Body = 3.8-10.3; Carapace = 3.1-8.7 x 2.6-7.9. A. rhamdiae WILSON, 1936: Rhamdia guatemalensis: Mexico (Yucatan). (Fig. 9-3 A-B). Carapace tapering anteriorly, covers all legs; Abdomen subcircular; Sinus shallow; Body = 3.0; Carapace = 2.5 x 1.7. ´ , 1863: Salminus brevidens and S. maxillosus: Argentina & A. salmini KRØYER Brazil. (Figs. 9-10 & 9-18). Carapace wider than long; Posterior sinus wide; Carapace covers first three legs and base of fourth; Abdomen small; Sinus narrow; Body = 13; Carapace = 10.4 x 10.6; Abdomen = 2.5 x 2.6. A. silvestrii LAHILLE, 1926: Pseudoplatystoma coruscans: Argentina. (Fig. 9-6). Carapace nearly circular; Posterior sinus wide; Abdomen small; Sinus narrow; Body = 6.2; Carapace = 6.0 x 5.2. A. spinulosus SILVA, 1980: Hoplias malabaricus: Brazil (Rio Grande do Sul State). (Fig. 9-7 A-D). Carapace short, covering only first pair of legs and base of second; Posterior sinus wide; Abdomen long; Sinus narrow; Body = 3.3 (male); 4.3 (female); Carapace = 2.1 x 1.4 (male); 2.9 x 2.4 (female); Abdomen = 0.79 x 0.26 (male); 0.79 x 0.66 (female). A. vierai PEREIRA FONSECA, 1939: Cnesterodon decemmaculatus: Uruguay. This form is herein considered as a “species inquerenda”. The drawings suggest that the material was immature and less than one millimeter in length.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
399
A. violaceus THOMSEN, 1925: Rhamdia quelen, R. sapo, Loricaria anus, Hypostomus commersoni, Hoplias malabaricus, Odonthestes bonariensis and Pimelodus albicans: Argentina. (Figs. 9-1 & 9-19). Carapace covers first two pairs of legs; Sinus wide; Abdomen elongate, with parallel sides; Sinus narrow; Body = 6.2-7.2 (male); Carapace = 4.5-5.3 x 3.8-4.2 (male). Dolops AUDOUIN, 1857 Two pairs of antennae present; first antennae without hooks on anterior margin, but with lateral hooks strongly developed. Second antennae long, slender, 3 or 4-segmented. First maxillae swollen at base, tipped with stout claws. Basal plates of second maxillae armed with 2 or 3 teeth each. Preoral stylet absent. Four pairs of legs present, covered by carapace, with flagella on first two or three pairs. Fourth pair of legs with wide basal lobes. On freshwater fishes. D. bidenta (BOUVIER, 1899): Schizodon fasciatum, Rhytiodus microlepis, Colossoma bidens, Serrasalmus nattereri and Astronotus ocellatus: Surinam & Brazil (Amazonia). Carapace and abdomen extensively spotted with dark dendriform markings; Ventral surface spinous; Second maxillae with two teeth on each basal plate; Body = 2.3-2.8 (male); 2.4-3.2 (female); Carapace = 1.8-2.3 x 2.0-2.3 (male); 1.9-2.6 x 2.0-2.6 (female); Abdomen = 0.56-0.71 x 0.56-0.71 (male); 0.56 x 0.56-0.71 (female). D. carvalhoi LEMOS DE CASTRO, 1949: Rhaphiodon vulpinus, Pseudoplatystoma fasciatum, P. tigrinum, Phractocephalus hemiliopterus, Colossoma macropomum, C. bidens and Pellona castelnaeana: Brazil. Carapace and abdomen covered with small dark spots; Marginal dark lines present on carapace; Ventral surface un-spined; Body = 6.9-7.3 (male); 5.0-6.0 (female); Carapace = 5.0-6.9 x 5.3-6.7 (male); 3.5-4.9 x 3.4-4.9 (female); Abdomen = 2.0-2.1 x 1.7-2.4 (male); 1.4-1.6 x 1.4-1.6 (female). D. discoidalis BOUVIER, 1899: Salminus maxillosus, Hoplias malabaricus, Pseudoplatystoma fasciatum, P. tigrinum, Hemisorubim sp., Phractocephalus hemilopterus, Leiarius marmoratus, Arapaima gigas, Hoplerythrinus unitaeniatus and Astronotus ocellatus: Argentina, Paraguay, French Guiana, Venezuela & Brazil. Carapace and abdomen covered with round whitish blotches; Thorax with rectangular dark markings; Ventral spination on margins of cephalic lobes continuous to near posterior border; Body = 9.9-11.9 (male); 8.0-3.0 (female); Carapace = 7.7-9.3 x 9.0-10.0 (male); 7.0-12.0 (female); Abdomen = 3.0-3.9 x 3.9-4.9 (male); 2.0-3.3 x 2.4-4.3 (female). D. geayi BOUVIER, 1897: Hoplias malabaricus, Aequidens pulcher, Salminus maxillosus, Crenicichia geayi, Astronotus ocellatus and Megalodoras sp.: Argentina, Paraguay, Brazil & Venezuela. Carapace and abdomen covered with small dark blotches; Ventral spination lacking; Body = 2.5-4.0 (male); 4.3-5.7 (female); Carapace = 2.3-2.6 x 1.6-2.4 (male); 2.6-3.9 x 1.7-3.6 (female); Abdomen = 1.0-1.6 x 0.71-0.86 (male); 1.3 x 2.1-0.71-1.4 (female). D. kollari HELLER, 1857: host unknown: Brazil. (Fig. 9-26). Carapace completely covers legs; Sinus wide; Thorax with rectangular dark mark-
400
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
ings; Abdomen large; Sinus shallow; Body = 12; Carapace = 10 x 9; Abdomen = 3 x 3. D. longicauda HELLER, 1857: Salminus maxillosus, S. brevidens, Serrasalmus nattereri, Pterodoras granulosus and Oxydoras niger: Brazil & Argentina. (Fig. 9-25 A-B). Carapace covered with small dark spots; Sinus wide; Abdomen usually longer than carapace; Sinus wide, V-shaped; Three pairs of respiratory areas present; Body = 16.7-27.5 (male); 11-27.5 (female); Carapace = 8.114.0 x 8.2-15.0 (male); 7.8-14.7 x 8.2-16.5 (female); Abdomen = 3.2-6.0 (male); 3.3-5.4 (female). D. nana LEMOS DE CASTRO, 1950: Salminus sp.: Brazil. (Fig. 9-23 A-D). Carapace incompletely covers 4th legs; Ventral surface without spines; Sinus wide; Abdominal lobes widely separated; Body = 4.7; Carapace = 3.4 x 3.7; Abdomen = 1.5 x 1.5 (single male specimen described; female unknown). D. reperta BOUVIER, 1899: Hoplias malabaricus: French Guiana. (Fig. 9-24, 9-28 & 9-29). Carapace nearly circular; Sinus wide; Abdomen short, wide; Sinus shallow; Body = 7 long. D. striata BOUVIER, 1899: Hoplias malabaricus, Synbranchus marmoratus, Schizodon fasciatum and Leporinus fasciatus: Brazil, Argentina, Paraguay & Surinam. Species similar to D. discoidalis, but marginal ventral spination terminates at level of first leg; Body = 7.3-11.1 (male); 7.4-11.6 (female); Carapace = 5.8-8.6 x 6.2-9.4 (male); 5.8-9.1 x 6.4-10.4 (female); Abdomen = 2.3-3.3 x 2.1-4.7 (male); 1.7-3.4 x 2.8-4.4 (female). Dipteropeltis CALMAN, 1912 Two pairs of antennae present; mesial spine lacking. Preoral stylet small. First maxillae develop into sucker-like cups, but lack marginal supporting rods. Carapace without spines ventrally; maxillary and post-maxillary teeth lacking. Legs without flagella. Anal papillae lacking. Lobes of carpace and abdomen long, slender and delicate. On South American freshwater fish. D. hirundo CALMAN, 1912: Serrasalmus piraya, Salminus maxillosus, S. brevidens and Luciopimelodus pati: Argentina, Brazil & Venezuela. (Fig. 9-27, 9-31 A-B). Carapace elongate; Lobes long and slender, sometimes extending beyond tips of abdominal lobes; Sinus deep and wide; Abdominal lobes long and slender; Sinus deep, V-shaped; Body = 11-26; Carapace = 6-26 x 9-14; Abdominal lobes = 4.0-6.8 x 1.3-1.5.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
401
VIII. Plates of Branchiura (Figs. 9-1 to 9-31)
9-1 A-1 A-2 ME PS
Mx-1 Mx-2
MO
RA MT EN EX FL
SR
AP
9-1. Argulus violaceus THOMSEN, 1925 (female, ventral aspect; modified, after RINGUELET 1943): A-1 = first antenna; A-2 = second antenna; AP = abdominal papilla; EN = endopod; EX = exopod; FL = flagellum; ME = mesial spine; MO = mouth; MT = maxillary teeth; MX -1 = first maxilla; MX-2 = second maxilla; PS = preoral stylet; RA = respiratory areas; SR = seminal receptacle.
402
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
B
9-2 A
D C
B
9-3 A
9-2. Argulus paranaensis (male): A. dorsal aspect; B. antennae; C. sucker support rod; D. second maxilla (after LEMOS DE CASTRO 1950); 9-3. Argulus rhamdiae (female): A. dorsal aspect; B. second maxilla (after WILSON 1936).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
403
B
9-4 A
D C
9-5
9-6
9-4. Argulus carteri (female): A. abdomen; B. antennae & mesial spine; C. sucker support rods; D. second maxilla & postmaxillary spines (after CUNNINGTON 1931); 9-5. Argulus nattereri (female; dorsal aspect) (after WILSON 1944); 9-6. Argulus silvestrii (female; dorsal aspect) (after RINGUELET 1943).
404
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
B
9-7 A C D
B
9-8 A
C
9-7. Argulus spinulosus (male): A. dorsal aspect; B. antennae; C. second maxilla; D. respiratory areas. (after SILVA 1978); 9-8. Argulus cubensis (male): A. dorsal aspect; B. antennae; C. second maxilla (after WILSON 1935).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
405
9-9
9-10
9-11
9-12
9-9. Argulus elongatus (female; dorsal aspect) (after WILSON 1903); 9-10. Argulus salmini (female; dorsal aspect) (after WILSON 1903); 9-11. Argulus ichesi (female; dorsal aspect) (after RINGUELET 1943); 9-12. Argulus chromidis (female; dorsal aspect) (after WILSON 1903).
406
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
9-13 9-15
9-14
9-17
9-16
9-19
9-20
9-18
9-21
9-22
Respiratory areas: 9-13. Argulus patagonicus; 9-14. Argulus multicolor; 9-15. Dolops discoidalis; 9-16. Argulus nattereri; 9-17. Argulus juparanaensis; 9-18. Argulus salmini; 9-19. Argulus violaceus; 9-20. Argulus ernsti; 921. Dipteropeltis hirundo; 9-22. Argulus paranensis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
407
B
A
9-23
D
C
9-24
9-23. Dolops nana (male): A. dorsal aspect; B. antennae; C. second maxilla; D. respiratory area (after WILSON 1902). 9-24. Dolops reperta (female; dorsal aspect) (after WILSON 1903).
408
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
9-26
9-25 A
9-25 B
9-27
9-25. Dolops longicauda (male): A. dorsal aspect; B. respiratory areas (after WILSON 1903); 9-26. Dolops kollari (male; dorsal aspect) (after WILSON 1903); 9-27. Dipteropeltis hirundo (female; ventral aspect) (after PAIVA CARVALHO 1941).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
9-28
9-28. Dolops reperta (female; dorsal aspect).
409
410
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
9-29
9-29. Dolops reperta (female; ventral aspect).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
9-30
9-30. Argulus pestifer (female; ventral aspect).
411
412
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
9-31 A
9-31 B
9-31. Dipteropeltis hirundo: A. female; dorsal aspect; B. ventral aspect.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
413
IX. Cited and general references BARZANTI, M.J. (1976): Algunos crustáceos branchiuros de los peces de ríos litoraleños. - Mus. Entre Ríos Nat. y Antropol. Ser. N. Zool. 1: 5-31. BOUVIER, E.L. (1897): Observation sur les argulidés du genre Gyropeltis récueillis par M. GEAY au Vénézuela. - Bull. Mus. Hist. Nat. Paris 3(1): 13-19, figs. 1-7. BOUVIER, E.L. (1899a): Sur les argulidés du genre Gyropeltis récueillis récemment par M. GEAY dans Guyane. - Bull. Mus. Hist. Nat. Paris 5(1): 39-41. BOUVIER, E.L. (1899b): Les crustacés parasites du genre Dolops AUDOUIN. - Bull. Soc. Philomat. Paris 10(ser. 8): 53-81; 1(ser. 9): 12-40. BOUVIER, E.L. (1910): Un argulidé noveau de l’Argentina. - Bull. Mus. Hist. Nat. Paris 2: 92-95. BOUVIER, G. (1953): De quelques crustacés parasites des poisons d’eau douce de Suisse et du Brésil. - Bull. Soc. Vaudoise Sci. Nat. 65(283): 423-427, figs. A-F. BREHM, V. & R. THOMSEN (1936): Brasilianische Phyllopoden und Arguliden gesammelt von Herrn Dr. O. SCHUBART. - Zool. Anz. 116: 211-218, figs.1-9. BRIAN, A. (1946): Los argúlidos del Museo Argentino de Ciencias Naturales (Crustacea, Branchiura). - An. Mus. Argent. (Buenos Aires) 42: 353-370. CALMAN, W.T. (1912): On Dipteropeltis a new genus of the crustacean Order Branchiura. - Proc. Zool. Soc. London 4: 763-766. CUNNINGTON, W.A. (1931): Reports of an expedition to Brasil and Paraguay in 1926-1927, supported by the Trustees of the Percy Sladen Memorial Fund and the Executive Committee of the Carnegie Trust of Scotland, Argulidae. - J. Linn. Soc. London 37: 259-265. FONSECA, T.P. (1939): Argulus vierai n. sp., parásito de Cnesterodon decemmaculatus (JENYNS). - An. Mus. Montevideo 4: 1-6. GOMES, A.L.S. & J.C.O. MALTA (2002): Postura, desenvolvimento e eclosão dos ovos de Dolops carvalhoi LEMOS DE CASTRO (Crustácea, Branchiura) em laboratório parasita de peixes da Amazônia Central. - Revta Bras. Zool. 19 (Supl. 2): 141-149. HUGGHINS, E.J. (1970): Argulids (Crustacea: Branchiura) from Ecuador and Bolivia. - J. Parasitol. 56(5): 1003. LAHILLE, F. (1926): Nota sobre unos parásitos de los bagres, dorados y surubies. - Rev. Centro Estud. Agron. Vet. Univ. Buenos Aires 127: 3-9, pls. 1-2. LEMOS DE CASTRO, A. (1949): Contribuição ao conhecimento dos crustáceos argulídeos do Brasil (Branchiura, Argulidae), com descrição de uma espécie nova. - Bol. Mus. Nac. Rio de Janeiro, n.s. Zool. 93: 1-7, figs. 1-26. LEMOS DE CASTRO, A. (1950): Contribuição ao conhecimento dos crustáceos argulídeos do Brasil. II. Descrição de duas espécies novas. - An. Acad. Brasil. Cienc. 22(2): 245-252, figs. 1-20. LEMOS DE CASTRO, A. (1951): Descrição do alótipo macho de Argulus multicolor STEKHOVEN, 1937 (Branchiura, Argulidae). - Arq. Mus. Nac. Rio de Janeiro 42: 159-166, pls. 1-2. MALTA, J.C.O. (1981): Os crustáceos branquiuros e suas interrelações com os peixes do Lago Janauacá, Amazonas, Brasil (Crustacea, Argulidae). - M.Sc.-thesis, INPA/Univ. Amazonas, Manaus: 88 pp.
414
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
MALTA, J.C.O. (1982a): Os argulídeos (Crustacea, Branchiura) da Amazônia brasileira. Aspectos da ecologia de Dolops discoidalis BOUVIER, 1899, e Dolops bidentata BOUVIER, 1899. - Acta Amazonica 12(3): 521-528. MALTA, J.C.O. (1982b): Os argulídeos (Crustacea, Branchiura) da Amazônia brasileira. 2. Aspectos da ecologia de Dolops geayi BOUVIER, 1897, e Argulus juparanaensis CASTRO, 1950. - Acta Amazonica 12(4): 701-705. MALTA, J.C.O. (1983): Os argulídeos (Crustacea, Branchiura) da Amazônia brasileira. 4. Aspectos da ecologia de Argulus multicolor STEKHOVEN, 1937, e Argulus pestifer RINGUELET, 1948. - Acta Amazonica 13(3-4): 489-495. MALTA, J.C.O. (1988): Maxillopoda. Branchiura. - In: YOUNG, P.S. (ed.): Catalogue of Crustacea of Brazil: 67-74. Série Livros n. 6. Museu Nacional, Rio de Janeiro. MALTA, J.C.O. & A. VARELLA (1983): Os argulídeos (Crustacea, Branchiura) da Amazonia brasileira. 3. Aspectos da ecologia de Dolops striata BOUVIER, 1899, e Dolops carvalhoi CASTRO, 1949. - Acta Amazonica 13(2): 299-306. MALTA, J.C.O. & A. VARELLA (2000): Argulus chicomendesi sp. n. (Crustacea: Argulidae) parasita de peixes da Amazônia Brasileira. - Acta Amazônica 30(1): 481-498. MARTINEZ, R. (1952): Argulus chilensis nov. sp. - Invest. Zool. Chilenas 1(7): 4-9, figs. 1-5. MELLO LEITÃO, C.F. (1913): Moreirella nome nove para Talaus MOREIRA- Dipteropeltis CALMAN. - A Lavoura (Rio de Janeiro) 17: 11-12. MOREIRA, C. (1912): Crustacés du Brésil. - Mem. Soc. Zool. France 25: 145-154, pls. 3-6. MOREIRA, C. (1915): Les antennas de Dipteropeltis hirundo CALMAN (Talaus riberoi MOREIRA) (Custacea, Argulidae). - Bull. Soc. Entom. France 25(3-4): 120-122, 2 figs. PAIVA CARVALHO, J. (1939): Sôbre dois parasitos do gênero Dolops encontrados em peixes d’água doce. - Rev. Indust. Animal (ser. 1) 2(4): 109-116, figs. 1-6. PAIVA CARVALHO, J. (1941): Sôbre Dipteropeltis hirundo CALMAN, crustáceo (Branchiura) parasito de peixes d’água doce. - Bol. Fac. Filos. Cienc. Univ. São Paulo 22(5): 265-275. PAIVA CARVALHO, J. (1947): Sôbre alguns ectoparasitos de peixes (Argulídeos). - Criação e Veterinaria 2(6): 155-156. RINGUELET, R. (1941): Sôbre algunos crustáceos argúlidos argentinos. - Physis 19(51): 112. RINGUELET, R. (1942): Sobre dos espécies de argulidos (Crustacea, Branchiura) en las colecciones del Museu de Entre Rios. - Mem. Mus. Entre Ríos 16: 3-14. RINGUELET, R. (1943): Revisión de los argúlidos argentinos (Crustacea, Branchiura) con el catálogo de las especies neotropicales. - Rev. Mus. La Plata (n.s.) Zool. 3(19): 43-99, pls. 1-13. RINGUELET, R. (1948): Argúlidos del Museo de La Plata. - Rev. Mus. La Plata (n.s.) Zool. 5: 231-296, pls. 1-4. SCHUURMANS STEKHOVEN, J.H., JR. (1951): Investigaciones sobre argúlidos argentinos. - Acta Zool. Lilloana 12: 479-494. SILVA, N.M.M. (1978): Uma nova espécie de crustáceo argulídeo do Rio Grande do Sul, Brasil (Branchiura, Argulidae). - Iheringia, sér. Zool. 52: 3-29. THOMSEN, R. (1925): Argulus violaceus nov. sp. cangrejo parásito del bagre. - Physis 8: 185-198. THOMSEN, R. (1942): Notas críticas de dos argúlidos (Branchiura) del Brasil. - An. Acad. Brasil. Cienc. 14: 37-45.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
415
WEIBEZAHN, F.A. & T. COBO (1964): Seis argúlidos (Crustacea, Branchiura) parásitos de peces dulceacuícolas en Venezuela, con descripción de una nueva especie del género Argulus. - Acta Biológica Venez. 4(2): 119-143, pls. 1-15. WILSON, C.B. (1903): North American parasitic copepods of the family Argulidae, with a bibliography of the group and a systematic review of all known species. Proc. U. S. Nat. Mus. 25: 635-742. WILSON, C.B. (1935): Parasitic copepods from the Dry Tortugas. - Carnegie Inst. Washington. Publ. 452: 329-347. WILSON, C.B. (1936): Copepods from the cenotes and caves of the Yucatan Peninsula, with notes on the cladocerans. - Carnegie Inst. Washington. Publ. 457: 77-80. WILSON, C.B. (1944): Parasitic copepods in the United States National Museum. - Proc. U. S. Nat.Mus. 94(3): 529-582, pls. 20-34. YAMAGUTI, S. (1963): Parasitic Copepoda and Branchiura of fishes. - Intersci. Publ., New York: 1104 pp., 333 pls.
416
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10. ISOPODA I. Definition and morphology Isopods are dorso-ventrally flattened crustaceans found in marine, terrestrial and freshwater habitats. The name isopod means “equal legs” and most species have a free thorax (pereon) of seven similar segments (pereomeres) each of which bears a pair of similar legs (pereopods). The most familiar isopods are commonly known as “sow bugs” or “pill bugs” and these are found in damp terrestrial habitats. Most of the fish parasitic isopods belong to the family Cymothoidae, but the family Excorallanidae also occurs on Amazonian fish. The parasitic isopods have from four to seven pairs of walking legs modified for grasping and each of these is provided with a stout claw. Most free living isopods are bottom feeding aquatic scavengers. Some eat detritus and carrion, while others are more predatory. Many have one or two pairs of prehensile legs anteriorly to aid in grasping food. Those that evolved more pairs of prehensile legs and stronger claws were able to cling to fully active fish and make the transition to parasitism.
II. Life-cycle and transmission In isopods, the sexes are separate and fertilization is internal. Both male and female cymothoids are found on fish, frequently together. It is believed that all cymothoids go through a male stage first and then some go on to become females (which would make them protandrous hermaphrodites). According to this idea, the first young cymothoid to arrive on a fish, and finding itself alone, would pass rapidly through the male stage and become a female. The second to arrive would find a female in residence and hence remain a male. This could be caused by hormonal inhibitors. In any case, adult females are easy to recognize because they have the entire ventral surface covered by a marsupium formed from medial flap-like extensions of the coxae. The eggs are laid in and retained within the marsupium. There they develop into fully functional young cymothoids and eventually go out into the world through a slit-like posterior pore. Young cymothoids swim actively and are ready to attack small fish as soon as they leave the marsupium. In Amazonian waters, it is not uncommon to find small cymothoids clinging to and feeding on small fish. In the laboratory, we have been able
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
417
to observe the hunting behavior of young cymothoids. At first, they swim rapidly and in very straight horizontal lines. Their swimming posture is with the head forward to the direction of movement and the dorsal side up. The swimming activity lasts for only 30 to 60 seconds after which they suddenly become immobile and sink to the bottom as though dead, with the dorsal side down and the legs pointed upward and spread wide apart. They are capable of waiting motionless in this position for hours. If a fish goes to investigate, or happens to swim by closely, the apparently dead cymothoid springs its trap. The legs are all snapped inward towards the midline, and the claws (dactyls) are engaged in the fish which then swims off with a passenger. After a young cymothoid has attached itself to a small fish, it begins to feed at once. They frequently position themselves on the ventral surface of the fish at the level of the pectoral fins. Wherever they happen to be, they rasp out tissue and frequently, the pectoral fins are entirely devoured. The under sides of the opercula are also eaten, and if the fish is small, it soon succumbs to such an attack. When a fish dies, the young cymothoid loses interest in it and swims off in search of a live fish. We have seen a single young cymothoid kill and devour portions of as many as four small fish in a 24 hour period. After young cymothoids grow larger, they must find a permanent host for they lose their swimming ability. Adult males detached from the fish can crawl slowly on the bottom, but females with a marsupium full of young can not move about.
III. Pathology The pathogenicity of isopods varies according to position on or in the host, feeding behavior, attachment strategy and size. Four sites are utilized on host fish, namely: the skin or fins, the gill chambers, the mouth (on top of the tongue) and hollows or pouches that they make within the body cavity. Each of these sites suffers some modifications from the presence of isopods so they will be considered separately. Of the South American species reported from freshwater hosts, only Nerocila armata is normally found on the skin. These ectoparasites cause considerable damage to their hosts and are believed to feed on blood, mucous and epithelial cells. They sometimes perforate the skin of the fish or devour portions of the fins. They may cause primary anemia from blood loss, and the lesions they provoke may open the way for secondary invaders such as bacteria and fungi. Isopods that inhabit the gill chambers of fish feed largely on gill filaments. BRUSCA (1978) reported lysed red blood cells in the intestines of males of a marine species taken from such a site. In addition to blood loss, a reduction in the number of gill filaments decreases respiratory efficiency and thereby affects metabolism and growth. ROMESTAND & TRILLES (1979) in experimental studies with marine fish infested with isopods found that the parasites caused delayed growth in the hosts. The role of isopods living on the tongues of fish is more difficult to assess. Although the tongues of hosts may be reduced in size or indented, there is no direct evidence to indicate that the missing tissue has been eaten. ROMESTAND & TRILLES
418
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
(1977) found as much as half the tongues of infected hosts to be lacking. The missing tissue included epidermis, cartilage and some bones. They considered these tongues to be atrophied or degenerated. The nutritional habits of tongue inhabiting isopods have been questioned. BRUSCA (1978) found the intestinal tracts of cymothoid females from tongue sites to be entirely empty. The same author (1981) suggested, “that females are largely (or perhaps entirely) non-feeding and hence are best considered obligate commensals”. He further proposed that these females use nutritional reserves from previous male instars for reproductive energy. This would appear to be an incredible suggestion, but an even more unusual idea was put forward by BRUSCA & GILLIGAN (1983). They believed that isopods in the mouths of fish serve as “tongue replacements”. According to this theory, a fish with an “isopod tongue” feeds more efficiently than a fish with no tongue at all. THATCHER (1988) described Asotana magnifica from the mouths of piranhas of the Brazilian Amazon and made some observations on the habits and pathogenicity of these cymothoids. He reported one 34 mm isopod on the tongue of a host that was only 195 mm long (Fig. 10-48). The fish appeared to have been in good health and had a full stomach. The surface of the tongue of the host was depressed in the exact shape of the ventral side of the isopod. This indentation in the floor of the mouth was attributed to pressure atrophy. As shown in Figure 10-48, the head of these isopods is close to the entrance of the esophagus of the host. The anterior ends of isopods taken from such sites are frequently found to be covered with an amorphous and acellular substance. It seems logical to assume that this material represents regurgitated semi-digested food from the host stomach that is only a few millimeters from the isopod’s head. We can conclude from this that the real food of the isopods is regurgitated host food (i.e. vomitus). The term obligate commensal would still apply in this case. Apparently, Vanamea symmetrica and some species of Braga also utilize the same feeding strategy. In freshwater hosts of South America, there are five species of Riggia and two of Artystone all of which penetrate host tissue and are therefore much more pathogenic. The mouthparts of these forms are adapted for burrowing and mandible and maxillae all have hook-like spines pointing outward. Entrance holes are made either at the site of a missing pectoral fin (which the isopod probably removes) or near the anus. These entrance holes remain open and the pleotelson can be seen to protrude slightly. Presumably this position permits the isopod to breathe, an act that is affected by beating the pleopods in the water. The body of the isopod remains within the body cavity of the host, frequently in the vicinity of the liver. There may be pressure atrophy of this or other organs but there is no evident inflammatory reaction or encapsulation of the parasite on the part of the host. There is also no evidence of secondary invasions of the open entrance hole. Perhaps the isopods secrete some antibiotic substance that inhibits secondary invaders. Isopods in this site may be feeding on blood serum although direct evidence of this is lacking.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
419
IV. Prevention and treatment Isopods do not ordinarily become a problem to the alert aquarist. Since even young specimens are large enough to be seen, they can simply be removed. Some chemical dips, such as a 1:4000 formalin solution, will encourage the isopods to leave their hosts. If isopods become too numerous in outdoor ponds, the only recourse is to drain and disinfect them.
V. Collection and study methods When isopods are seen in or on fish, they and their host should be fixed in 10 % formalin solution. After 24 hours, both may be transferred to 70 % alcohol. The mouthparts, legs, uropods, pleopods and pleotelson may be removed from isopods with dissecting needles and permanent slides can be made of them by using the phenol – balsam method described in Chapter 6.
VI. Identification and keys Neotropical fish parasitic isopods have been little studied. The genera and species are not well defined and several of these taxa were based on single female specimens. Many new forms no doubt await future descriptions. Some characters that are useful in distinguishing these animals are: size, shape, color, number of antennal segments and the form of the cephalon, pleopods, uropods and pleotelson. South America contains a greater variety of freshwater Cymothoidae than any other region of the world. At least 27 species, representing nine genera, occur here. For comparison, there are no freshwater cymothoids in either North America or Europe and only four species known from Africa. According to BRUSCA (1981), there are some 250 species of cymothoids in 42 genera world-wide and most of these are marine.
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
I. Coxal plates on pereonite I free .......................................................................................Anphira (Figs. 10-16, 10-36, 10-47, 10-49 & 10-57) II. First coxal plates fused to pereonite I. A. Legs I-VI prehensile and ending in claw-like dactyls; legs of pair VII ambulatory and ending in simple dactyls. 1. Abdomen (pleon) visibly segmented and separate from pleotelson ..................................... Artystone (Figs. 10-1 to 10-6 & 10-46) 2. Pleon and pleotelson fused into a single unit .................................. Riggia (Figs. 10-44 to 10-46, 10-51, 10-52 & 10-59 to 10-60) B. All 7 pairs of legs prehensile and ending in claw-like dactyls. 1. Anterior margin of pereonite one trisinuate; posterior margins of pereonites II-VII pointed and projecting .............................. ............................................................................................................................................................................................. Nerocila (Fig. 10-58) 2. Anterior margin of pereonite one not trisinuate; osterior margins of pereonites II-VII not pointed and projecting. a. Anterior margin of cephalon provided with 3 rounded bosses ................................................... Asotana (Figs. 10-37 & 10-38) b. Anterior margin of cephalon otherwise. 1) Pleopods II-V composed of from 3-4 lamina ................................................................................................................................. ................................................................. Braga (Figs. 10-13, 10-14, 10-22, 10-25 to 10-29, 10-31, 10-39 to 10-43 & 10-50) 2) All pleopods bilaminate. a) Pleotelson narrower than pleonite one. (1) Body wide anteriorly, tapering posteriorly. (a) Pleon deeply immersed in pereonite VII ........................................................................................................ Isonebula (b) Pleon not deeply immersed in pereonite VII .......................................................... Livoneca (Figs. 10-7 to 10-9) (2) Body with nearly parallel sides ......................................................................................................... Vanamea (Fig. 10-10) (3) Body tapering anteriorly and posteriorly .................................................................................Phillostomella (Fig. 10-24) b) Pleotelson wider than pleonite I ....................................................................... Paracymothoa (Figs. 10-11, 10-12 & 10-21) c) Pleotelson about as wide as pleonite I .......................................................... Telotha (Figs. 10-15, 10-23, 10-61 & 10-62)
420
Key to the Genera of Cymothoidae from Neotropical freshwater fishes
Clave para los géneros de Cymothoidae de peces Neotropicales de agua dulce
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
I. Placas coxales sobre el pereonito I libre .........................................................................Anphira (Figs. 10-16, 10-36, 10-47, 10-49 & 10-57) II. Primeras placas coxales fundidas al pereonito I. A. Piernas I-VI prehensiles y terminando en dáctilos parecidos a garras; piernas del par VII ambulatorios y terminando en dáctilos simples. 1. Abdomen (pleon) visiblemente segmentado y separado del pleotelsón ................................Artystone (Figs. 10-1 a 10-6 & 10-46) 2. Pleón y pleotelsón fusionados en una unidad .............................................................. Riggia (Figs. 10-44 a 10-46 & 10-59 a 10-60) B. Los 7 pares de piernas prensiles y terminando en dáctilos parecidos a garras. 1. Margen anterior del pereonito uno con 3 sinuosidades; márgenes posteriores de los pereonitos II-VII puntiagudos y proyectando ....................................................................................................................................................................... Nerocila (Fig. 10-58) 2. Margen anterior del pereonito uno no sinuoso; márgenes posteriores de los pereonitos II-VII sin proyecciones. a. Margen anterior del cefalón provistos de 3 jorobas redondeadas ................................................ Asotana (Figs. 10-37 & 10-38) b. Margen anterior del cefalón sin jorobas. 1) Pleopodos II-V compuestos de 3-4 láminas ..................................................................................................................................... ..................................................................... Braga (Figs. 10-13, 10-14, 10-22, 10-25 a 10-29, 10-31, 10-39 a 10-43 & 10-50) 2) Todos los pleopodos bilaminados. a) Pleotelsón más angosto que el pleonito uno. (1) Cuerpo ancho anteriormente, angostándose posteriormente. (a) Pleón profundamente inmerso en el pereonito VII ..................................................................................... Isonebula (b) Pleón no profundamente inmerso en el pereonito VII ........................................... Livoneca (Figs. 10-7 a 10-9) (2) Cuerpo con lados casi paralelos ...................................................................................................... Vanamea (Fig. 10-10) (3) Cuerpo se angosta anterior y posteriormente ........................................................................Phillostomella (Fig. 10-24) b) Pleotelsón más ancho que el pleonito I .......................................................... Paracymothoa (Figs. 10-11, .10-12 & 10-21) c) Pleotelsón casi tan ancho como el pleonito I ............................................. Telotha (Figs. 10-15, 10-23, 10-61 & 10-62)
421
422
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
VII. Checklist of Isopods from Neotropical freshwater fishes All measurements given in mm. Cymothoidae SCHIÖDTE, 1866 Flabelllifera. Body symmetrical or asymmetrical; eyes prominent, compound, sessile. Legs (pereopods); all 7 pairs prehensile, or anterior 6 prehensile and terminal pair ambulatory; prehensile legs terminating in stout claw-like dactyls. Pleopods not ciliated; pleotelson and uropods usually not ciliated. Antennae reduced to 4-10 segments, without clear distinction between peduncle and flagellum. Mouthparts: mandibles with palps; first maxillae spined at tip; second maxillae bilobed at tip; maxillipeds provided with 2-segmented palps that have hooks on terminal segments. Parasitic on skin, in mouth, branchial chamber or within selfmade cavities in fish. Anphira THATCHER, 1993 Diagnosis: Body ovoid, dorsum of pereon highly convex. Coxae plate-like, free on all seven pereonites. Cephalon immersed in pereonite I and rotated downward. Pleonite I slightly immersed in pereonite VII; all pleonites produced laterally. Mandible rounded, foot-shaped, lacking cutting process and incisor; palp stout. Pereopods short, II-VI subequal in length, I shorter and VII longer than others. Uropods slender, rami pointed, subequal in length. Pleopods with rounded extremities. Pleotelson not keeled, rounded posteriorly. Parasites of the gill chambers of freshwater fishes. Type species: Anphira branchialis THATCHER, 1993. A. branchialis THATCHER, 1993: Serrasalmus spilopleura and S. nattereri: Amazonas and Roraima States, Brazil. (Figs. 10-16 & 10-47). Female body = 12-21 x 6.7-11.6; Male body = 9.4-13.99 x 5.0-7. A. guianensis THATCHER, 2002: Acnodon oligacanthus: French Guiana. (Fig. 10-36). Female body = 12-20 x 6-9; Male body = 7-8 x 3-4. A. junki ARAUJO & THATCHER, 2003: Triportheus albus and T. flavus: Amazonas State, Brazil. (Fig. 10-57). Body asymmetrical, posterior part twisted up to 45 degrees between pereonites 6 and 7; Female = 6.9-9.1 x 3.4-5.1; Male = 5.7-6.9 x 2.8-3.4. A. xinguensis THATCHER, 1995: Ossubtus xinguensis: Xingu River, Pará State, Brazil. Female body = 5-16 x 2.5-7.0; Male body = 3.5-12 x 2-5. Artystone SCHIÖDTE & MEINERT, 1881 Cymothoidae. Body symmetrical; head (cephalon) considerably immersed in first thoracic segment (pereonite). First 6 pairs of legs provided with clawlike dactyls; terminal pair ambulatory, without claws. Abdomen (pleon) segmented. Parasitic in self-made pouches within the body cavities of fish. A. trysibia SCHIÖDTE, 1866: Geophagus brasiliensis and Crenicichla lacustris: Brazil. (Figs. 10-20 & 10-56). Body = maximum sizes: 20 x 11 (male); 26 x 18 (female).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
423
A. bolivianensis THATCHER & SCHINDLER, 1999: Otocinclus vestitus: Santa Cruz de la Sierra, Bolivia. (Figs. 10-1 to 10-4). Female body = 5.2-6.2 x 3.5-4.0; Male body = 2.5-4.5 x 1.2-1.9. A. minima THATCHER & CARVALHO, 1988: Nannostomus beckfordi: Upper Rio Negro, Amazonas State, Brazil. (Figs. 10-5 & 10-6). Body = 3.7-4.0 x 1.92.0 (males); 5.2-6.9 x 2.7-3.7 (females); Cephalon = 0.53-0.68 x 0.98-1.0 (males) & 0.62-0.90 x 1.0-1.3 (females); Pleotelson = 0.65-0.75 x 1.1-1.2 (males) & 1.1-1.3 x 1.4-1.8 (females). Asostana SCHIÖDTE & MEINERT, 1881 Cymothoidae. Female: body large, convex dorsally, cream to straw-colored with sparse black pigment spots. Cephalon large, subrectangular, not deeply immersed in pereonite 1, keeled dorsally and with two pairs of dorsolateral tubercles; frontal margin curved downward and terminating in three rounded bosses. Mandibles with dorsal and ventral flaps; maxillae without spines. Pereonite 1 with brown or black roughened patches of denticles dorsally. Pereopods short, slender, subequal in length; first 6 pairs of dactyls larger than 7th . Abdomen inserted at its base. Uropods short and wide. Pleotelson tongue or shield-shaped. Parasites or commensals in the buccal cavities of freshwater fish. A. formosa SCHIÖDTE & MEINERT, 1881: host unknown: Peru (probably Amazonia). (Fig. 10-17). Body = 30 x 12 (female; male unknown); Body tapers gradually anteriorly and posteriorly from pereonite 5. A. magnifica THATCHER, 1988: Serrasalmus sp.: Roraima State, Brazil. (Figs. 1033, 10-37 & 10-38). Body with abdomen abruptly narrower than thorax, measures = 30-40 x 14-15. A. splendida (LEIGH-SHARPE, 1937): host unknown: Ecuador. Female: body tapers abruptly anteriorly and posteriorly from pereonites 3 & 4; Measures = 21 x 11. Braga SCHIÖDTE & MEINERT, 1881 Cymothoidae. Body symmetrical; cephalon little immersed in pereonite 1. All 7 pairs of pereopods prehensile and provided with stout claw-like dactyls. Pleotelson usually wider than long. Parasites, or commensals, found on the tongue or in the gill chambers of freshwater fishes. B. amapaensis THATCHER, 1996: Acestrorhynchus guyanensis: Amapa State, Brazil. (Figs. 10-25 to 10-29). Female body = 12-18 x 4-5.5; Male body = 8-13 x 3-4. B. bachmanni STADLER, 1972: Ancistrus cirrhosus. Argentina. (Fig. 10-14). Female body = 3 x 1.8. B. cichlae SCHIÖDTE & MEINERT, 1881: Cynopotamus humeralis, Cichla ocellaris and C. temensis: Brazil (São Paulo, Minas Gerais, Pará & Amazonas States). (Figs. 10-39 to 10-41). Body about twice as long as wide: Female = 25 maximum length; Male = 15. B. fluviatilis RICHARDSON, 1911: unidentified catfish: Argentina, Surinam & Brazil. Female body = 22 x 14; Dactyl 1 of pereopod 1 longer than the others. (Fig. 10-13).
424
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
B. nasuta SCHIÖDTE & MEINERT, 1881: Hypostomus sp.: Brazil (São Paulo, Bahia & Amazonas States). (Figs. 10-22 & 10-31). Female body = 20-25 long; Male = about 11 long. B. patagonica SCHIÖDTE & MEINERT, 1884: Salminus hilarii and Hoplias malabaricus: Argentina, Paraguay, Surinam & Brazil (São Paulo, Pernambuco, Bahía, Pará & Amazonas States). (Figs. 10-42 & 43). Female = to 26; Male = to 15. Livoneca LEACH, 1818 This genus can not be defined at present. The marine and freshwater forms now assigned to this taxon do not appear to have many characters in common and they may represent more than one genus. L. guianensis VAN NAME, 1925: from gills of Leporinus fasciatus, Pimelodus clarias and Brachyplatystoma sp.: Guyana. (Fig. 10-7). This species is elongate with a thorax that tapers gradually from pereonite 4 to the abdomen; The cephalon has a sharp point anteriorly (as seen from above) and the pleotelson is subquadrangular; Female = 17.7-26 long; Male = unknown. L. orinoco BOWMAN & DÍAZ-UNGRÍA, 1957: gills of Cichlidae: Orinoco River, Venezuela (Fig. 10-8 & 10-9). In this species, the head is not much immersed in the pereon but the abdomen is; The anterior margin of the cephalon is rounded; The pleotelson is also rounded posteriorly and is slightly wider than long; Female = 13.9 x 7.0; Male = 8.5 x 4.5. Nerocila LEACH, 1818 Cymothoidae. Body elongate, considerably flattened. Anterior margin of pereonite 1 trisinuate. Postero-lateral margins of pereonites 2-7 pointed and projecting. Coxal plates of pereonites 2-7 also pointed and projecting posteriorly. Parasites of skin and fins of marine and freshwater fish. N. armata DANA, 1853: skin of Leporinus fasciatus, Crenicichla saxatilis, Cichla ocellaris and Pseudauchenipterus nodosus: Uruguay, Guyana & Brazil (São Paulo & Rio de Janeiro States). (Fig. 10-58). Female body = 18-24 long; Male = 7.5-18 long. Paracymothoa LEMOS DE CASTRO, 1955 (emend. BOWMAN, 1986) Cymothoidae. Body oval. Head not deeply immersed in pereonite 1; anterior margin broad and almost straight, or convex, not curved ventrally. Antennae short, antennae 1 widely separated at base. Pereonite 1 with short anterolateral angles. Pereonite 7 shorter than others. Pleon deeply immersed in pereon and narrower than latter. Legs short; 1-3 smaller than 4-6. Dactyl of leg 7 smaller than others. From the mouths of freshwater fish. P. astyanactis LEMOS DE CASTRO, 1955: Astyanax bimaculatus: Brazil (Rio de Janeiro & Minas Gerais States). (Fig. 10-21). Female = 10.5 x 5; Rami of uropods subequal, reach posterior margin of pleotelson. P. parva TABERNER, 1976: mouth of Hyphessobrycon callistus: Argentina. (Fig. 1011). Female = 4.2 x 2; Rami of uropods subequal, reach posterior margin of pleotelson. P. tholoceps BOWMAN, 1986: mouth of Hoplias macrophthalmus: Venezuela (Amazonas State). (Fig. 10-12). Female = 24.3 x 12.2; Outer ramus of uropod longer, reaches to near equatorial region of pleotelson.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
425
Philostomella SZIDAT & SCHUBART, 1960 Cymothoidae. Body symmetrical; head not immersed. All legs prehensile and clawed. First antennae: 8-segmented in female; 7-segmented in male. Second antennae: 8-segmented in female; 9-segmented in male. Pleotelson about as wide as long, keeled. Mouth parasites of fish. P. cigarra SZIDAT & SCHUBART, 1960: Cynopotamus humeralis: Brazil (São Paulo State). (Fig. 10-24). Body = 29 long (female); 15 long (male). Riggia SZIDAT, 1948 Cymothoidae. Body symmetrical or asymmetrical; head immersed in first pereonite. Pereopods 7 without claws. Pleon and pleotelson fused together to form a single unit. Parasites found within self-made pouches in the body cavities of fish. R. acuticauda THATCHER, LOPES & FROEHLICH, 2002: Ancistrus sp.: Mato Grosso do Sul State, Brazil. (Fig. 10-44). Female = 11-16 x 6-10. R. brasiliensis SZIDAT & SCHUBART, 1959: Leporinus copelandi, L. octofasciatus, Schizodon nasutus and Leporellus vitattus: Brazil (São Paulo State). (Fig. 10-18). R. cryptocularis THATCHER, LOPES & FROEHLICH, 2003: Ancistrus sp. and Odontostilbe sp.: Mato Grosso do Sul State, Brazil. (Figs. 10-45 & 10-46). Female = 20 x 13; male = 4.9 x 2.3. R. nana SZIDAT & SCHUBART, 1959: Leporinus striatus: Brazil (São Paulo State). (Fig. 10-19). Body = 14 x 10 (female). R. paranensis SZIDAT, 1948: Curimata platana: Brazil (Paraná River, Paraná State). (Figs. 10-59 & 10-60). Body = 22 x 16 (female). Telotha SCHIÖDTE & MEINERT, 1884 Cymothoidae. Body symmetrical; cephalon triangular, not immersed in pereonite 1, anterior margin curved sharply downward. All legs prehensile and clawed. Antennules 8-segmented; antennae 9-segmented; antennae well separated at bases. Pleotelson wider than long. Parasites of gill cavities of freshwater fish. T. henselii (VON MARTENS, 1869): Hoplias malabaricus, Pimelodus clarias, Geophagus sp. and Brachyplatystoma sp.: Guyana, Surinam, Uruguay, Argentina & Brazil (Rio Grande do Sul). (Figs. 10-61 & 10-62). Body = 16-26 long (female); Male unknown. T. lunaris SCHIÖDTE & MEINERT, 1884: Stenarchus brasiliensis: Brazil. (Fig. 1015). Body = 28 long (female); Male unknown. T. silurii SZIDAT & SCHUBART, 1959: Iheringichthys labrosus: Brazil (São Paulo State). (Fig. 10-23). Body = 13 long (female); Male unknown. Vanamea THATCHER, 1993. Female: body elongated, symmetrical; pereon weakly vaulted, sides nearly parallel. Cephalon not immersed in pereonite 1. Coxae small, not surpassing posterior margins of respective pereonites. Pleon not immersed in pereonite 7, only slightly narrower then pereon; pleonites subequal in length; pleopods laminate, with lateral laminar lobes on peduncles. Antennule shorter than antenna; bases set wide apart. Mandible “foot-shaped”
426
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
lacking incisor; maxillule with 3 terminal and 2 subterminal recurved spines: maxilla bilobed with 2-3 recurved spines on each lobe; maxillipedal palp with 1 terminal and 1 subterminal recurved spine. Pereopods increasing in length from 1-7; largest dactyls on pereopods 5-6, smallest on 7. Pleotelson inflated anteriorly and medially. Male similar to female but smaller. Parasites of the buccal cavity of freshwater fishes. V. symmetrica (VAN NAME, 1925); THATCHER, 1993: Serrasalmus spilopleura, S. elongatus, S. rhombeus, Myleus rubripennis, Cichla monoculus, Vandelia cirrhosa, Hemidoras carinatus, Carnegiella strigata and Brachyplatystoma sp.: Guyana, Venezuela, Brazil (Pará and Amazonas States). (Fig. 10-10). Body 2.3-3.3 times longer than wide; female 18-26 (21) long and 6-11 wide. Male 14-18 (16) long and 5-5.5 (5.6) wide. Excorallanidae STEBBING, 1904 Flabellifera. Body symmetrical, with nearly parallel sides. Coxal plates present on all pereonites but the first. Anterior 3 pairs of pereopods prehensile, posterior 4 pairs ambulatory. Cephalon little immersed, with conspicuous horn-like processes in male (which are lacking or smaller in female); eyes prominent. Antennae long, with 2-4 segments in peduncle and 10-30 in flagellum. Mouthparts: mandible with large curved apical tooth; mandibular palp 3-segmented, with terminal segment expanded; first maxilla robust; second maxilla short; maxilliped narrow, free. Uropods long: pleotelson reduced, subtriangular. Free-living or ectoparasitic on fish. Excorallana STEBBING, 1904 Excorallanidae, with the characters of the family. E. berbicensis BOONE, 1918: skin of Lycengraulis grossidens: Guyana. Body = 7.8 (female); 6 (male). Excorallana sp.: from skin of Ageneiosus brevifilis: Brazil (Pará & Amazonas States). (Figs. 10-53 to 10-55).
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
427
VIII. Plates of Isopoda (Figs. 10-1 to 10-62)
10-1
10-2
10-3
10-4
10-5
10-6
Artystone bolivianensis THATCHER & SCHINDLER, 1999: 10-1. male; 10-2. female; 10-3. male uropod; 10-4. female uropod; Artystone minimia THATCHER & CARVALHO, 1988: 10-5. male; 10-6. female; all scales = 1 mm.
428
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-7
10-8
10-10
10-11
10-9
10-12
10-7. Livoneca guianensis; scale = 5mm; 10-8. Livoneca orinoco: female (lateral); scale = 5 mm; 10-9. Livoneca orinoco: female (dorsal); scale = 5mm; 10-10. Vanamea symmetrica: female; scale = 5 mm; 10-11. Pracymothoa parva: female; scale = 1mm; 10-12. Paracymothoa tholoceps: female; scale = 5 mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
10-13
10-14
10-15
10-16
429
10-13. Braga fluviatilis: female; 10-14. Braga bachmanni: female; 10-15. Telotha lunaris: female; 10-16. Anphira branchialis: female; all scales = 5 mm.
430
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-17
10-19
10-18
10-20
10-17. Asotana formosa: female; scale = 5 mm; 10-18. Riggia brasiliensis: female; scale = 10 mm; 10-19. Riggia nana: female; scale = 2 mm; 10-20. Artystone trysibia: female; scale = 5 mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
10-21
10-22
10-23
10-24
431
10-21. Paracymothoa astyanactis: female; scale = 2 mm; 10-22. Braga nasuta: male; scale = 2 mm; 10-23. Telotha silurii: male; scale = 2 mm; 10-24. Philostomella cigarra: female; scale = 5mm.
432
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-25
10-26
10-29
10-28
10-27 Braga amapaensis: female; 10-25. dorsal view; scale = 5 mm; 10-26. antenna and antennule; scale = 1 mm; 10-27. pleopod 3; 10-28. pereopod 6; 10-29. pereopod 1.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
433
10-30 10-31
10-34
10-33 10-32
10-35
Mandibles & palps, females: 10-30. Vanamea symmetrica; 10-31. Braga nasuta; 10-32. Riggia brasiliensis; all scales = 0.5 mm; 10-33. Asotana magnífica; scale = 1 mm; 10-34. Nerocila armata; scale = 0.5 mm; 10-35. Ceratothoa gaudichaudii; scale = 0.5 mm.
434
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-36
10-36. Anphira guianensis: female, lateral; gill chamber of Acnodon oligocanthus; French Guiana; scale = 2mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
10-37
10-37. Asotana magnífica: female, dorsal; scale = 5 mm.
435
436
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-38
10-38. Asotana magnífica: female, lateral; scale = 5mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
10-39
437
10-40
10-41
Braga cichlae: male; Rio Negro, Manaus, Amazonas, Brazil; scales = 5 mm; 10-39. dorsal; 10-40. ventral; 10-41. lateral.
438
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-42
10-43
Braga patagonica: male, 13 mm long; Rondônia, Brasil; scale = 5 mm; 10-42. dorsal; 10-43. lateral.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
10-44
10-44. dorsal. Riggia acuticauda: female, dorsal; scale = 2mm; col. Otavio Froehlich.
439
440
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-45
10-46
Riggia cryptocularis : female, length = 20 mm; scale = 5 mm; 10-45. dorsal; 10-46. ventral.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
441
10-47
10-48
10-47. Anphira branchialis: male, in Serrasalmus sp.; scale = 10 mm; 10-48. Asotana magnífica: female, on tongue of Serrasalmus sp.; scale = 10 mm.
442
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-49
10-50
10-49. Anphira sp.: gills of Curimatopsis sp.; scale = 5 mm; 10-50. Braga sp.: gills of piranha; scale = 20 mm.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
443
10-51
10-52
Stenarchorhamphus muelleri with Riggia sp.: 10-51. isopod “in situ”; 10-52. isopod removed to show size; scale = 10 mm.
444
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-53
10-54
10-37 10-55
Excorallana sp.: male; Amazonas, Brazil; scale = 2 mm; 10-53. dorsal; 10-54. ventral; 10-55. lateral.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
10-37 10-56
10-56. Artystone trysibia: female in Geophagus brasiliensis.
445
446
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-57
10-57. Anphira junki: female, latero-dorsal view.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
10-58
10-58. Nerocila armata: male; length = 20 mm.
447
448
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-59
10-59. Riggia paranensis: female, dorsal.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
10-60
10-60. Riggia paranensis: female, ventral.
449
450
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
10-61
10-62
Telotha henselii: female; 10-61. dorsal; 10-62. lateral.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
451
IX. Cited and general references ARAUJO, C.S. DE & V.E. THATCHER (2003): Anphira junki n. sp. (Isopoda, Cymothoidae) a gill chamber parasite of Triportheus albus and T. flavus (Pisces) in the Brazilian Amazon. Amazoniana 17(3/4): 283-290. BASTOS, P.B. & V.E. THATCHER (1997): A redescription of Riggia paranensis SZIDAT, 1948, (Isopoda, Cymothoidae) based on 32 specimens from curimatid fish of Rio de Janeiro, Brazil, with a redefinition of the genus. - Mem. Inst. Oswaldo Cruz. 92(6): 755-760. BOUVIER, G. (1953): De quelques crustacés parasites des poissons d’eau douce de Suisse et du Brasil. - Bull. Soc. Vaudoise Sci. Nat. 65(283): 423-427, figs. A-F. BOWMAN, T.E. (1986): Paracymothoa tholoceps, a freshwater parasitic isopod from Southern Venezuela (Flabellifera: Cymothoidae). - Proc. Biol. Soc. Wash. 99(4): 753-756. BOWMAN, T.E. & C. DÍAZ-UNGRÍA (1957): Isópodos quimotoideos de peces de las aguas venezolanas. - Mem. Soc. Cien. Nat. La Salle (Caracas) 17(47): 112-124, figs. 1-4. BRUSCA, R.C. (1978): Studies on the cymothoid fish symbionts of the Eastern Pacific (Crustacea: Isopoda: Cymothoidae) II. Systematics and biology of Lironeca vulgaris STIMSON 1857. - Occas. Pap. Allan Hancock Found. New Ser. 2: 1-19. BRUSCA, R.C. (1981): A monograph on the Isopoda Cymothoidae (Crustacea) of the Eastern Pacific. - Zool. J. Linn. Soc. London 73: 117-199. BRUSCA, R.C. & M.R. GILLIGAN (1983): Tongue replacement in a marine fish (Lutjanus guttatus) by a parasitic isopod (Crustacea: Isopoda). - Copeia 3: 813-816. CORDERO, E.H. (1937): Nerocila fluviatilis y otros parásitos de las familias Cymothoidae y Bopyridae del Uruguay y del Brasil. - An. Mus. Hist. Nat. Montevideo 24(12): 1-11, pl. 1. GIAMBIAGI DE CALABRESE, D. (1922): Cuatro nuevos isópodos de la Argentina. - Physis 5 (20): 230244, pls. 1-4. GIAMBIAGI DE CALABRESE, D. (1933): Descripción complementaria de un isópodo de agua dulce Braga fluviatilis RICHARDSON. - An. Mus. Nac. Hist. Nat. (Buenos Aires) 37: 511-515. HUIZINGA, H.W. (1972): Pathobiology of Artystone trysibia SCHIÖDTE (Isopoda: Cymothoidae), an endoparasitic isopod of South American freshwater fishes. - J. Wildl. Dis. 8: 225-232. LEIGH-SHARPE, W.H. (1937): Badroulboudour splendida n. g. et sp., a new parasitic isopod from Ecuador. - Parasit. 29: 391-394. LEMOS DE CASTRO, A. (1955): “Pracymothoa astyanactis” g. n. esp. n. Isopode parasita de peixe de água doce (Isopoda, Cymothoidae). - Rev. Brasil. Biol. 15(4): 411-414. LEMOS DE CASTRO, A. (1959): Sôbre as espécies sul-americanas do gênero Braga SCHIÖDTE & MEINERT, 1881 (Isopoda, Cymothoidae). - Arch. Mus. Nac. (Rio de Janeiro) 49: 69-77. LEMOS DE CASTRO, A. & J. LOYOLA E SILVA (1985): 33. Isopoda. - In SCHADEN, T. (org.): Manual de identificação de invertebrados límnicos do Brasil.- CNPq, Brasilia: 10 pp. LEMOS DE CASTRO, A. & J.P. MACHADO FILHO (1946): “Artystone trysibia” SCHIÖDTE, um crustáceo parasita de peixe d’água doce de Brasil, com descrição do alótipo macho (Isopoda, Cymothoidae). - Rev. Brasil. Biol. 6(3): 407-413. MARTENS, E. VON (1869): Südbrasilianische Süss-und Brackwasser-Crustaceen nach den Sammlungen des Dr. REINH. HENSEL. - Arch. Naturgesch 35(1): 1-37, pls. 1-2. MONOD, T. (1931): Sur un Braga do Paraguay. - Ann. Parasit. Hum. Comp. 9: 363-365.
452
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
PAIVA CARVALHO, J. (1939): Sôbre un caso curioso de ectoparasitismo. - Rev. Industr. Animais (Sâo Paulo) (n.s.) 2(3): 41-44. RICHARDSON, H. (1911): Description d’un nouvel isopode du genre Braga provenant d’une rivière de l’Amerique du Sud. - Bull. Mus. Natl. Hist. Nat. (Paris) 17: 94-96. RINGUELET, R. (1947): Anotaciones sobre copépodos e isópodos parásitos de peces. - Notas Mus. La Plata Zool. (Argentina) 12(98): 93-107, pls. 1-2. ROMESTAND, B. & J.P. TRILLES (1977): Dégénérescence de la langue des bogues (Boobs boops L., 1758) (Téléostéens, Sparidae)) parasitées par Meinertia oestroides (RISSO, 1826) (Isopoda, Flabellifera, Cymothoidae). - Z. Parasitenk. 54: 47-53. ROMESTAND, B. & J.P. TRILLES (1979): Influence des cymothoadiens Meinertia oestroides, Meinertia parallela et Anilocra physodes (Crustacés, Isopodes: parasites de poisons) sur la croissance des poissons hôtes Boops boops et Pagellus erythrinus (sparidés). - Z. Parasitenk. 59: 195-202. SCHIÖDTE, J.C. (1866): Krebsdyrenes Sugemund. - Naturhist. Tidsskr. Ser. 3, 4: 169-206, pls. 10-11. SCHIÖDTE, J.C. & E. MEINERT (1881): Symbolae ad Monographiam Cymothoarum Crustaceorum Isopodus Familiae. IV Cymothoidae. - Naturhist. Tidsskr. Ser. 3, 14: 221-454, pls. 6-7 & 24-36. SCHOUTEN, G.B. (1932): Isópodo del género Braga. - Rev. Soc. Cient. Paraguay 3: 105-106. STADLER, T. (1972): Braga bachmanni, nuevo ectoparásito de Ancistrus cirrosus (Crustacea, Cymothoidae en piece, Loricariidae). - Neotropica 18(57): 141-145. SZIDAT, L. (1948): Riggia paranensis n. g., n. sp. un isópodo parásito de la cavidad del cuerpo de “Curimata platana” GÜNTHER, del Rio Paraná (y descripción del huesped por el Prof. ALBERTO NANI). - Rev. Inst. Nac. Mus. Argent. Cienc. Nat. Bernadino Rivadavia, Cienc. Zool. 1(2): 47-65. SZIDAT, L. (1965): Sobre la evolución del dimorfismo sexual secundario en isópodos parásitos de la familia Cymothoidae (Crustacea, Isopoda). - An. Seg. Congr. Lat. Amer. Zool. (1962) 2: 83-87. SZIDAT, L. & O. SCHUBART (1960): Neue und seltene parasitische Süsswasser-Asseln der Familie Cymothoidae aus dem Río Mogi Guassu, Brasilien (Isopoda). - An. Acad. Brasil. Cien. 32(1): 107-124. TABERNER, R. (1976): Un nuevo isópodo de la familia Cymothoidae, Paracymothoa parva sp. nov. parásito de Hyphessobrycon callistus (COULENGER, 1860) EIGENMANN, 1910 (Pisces, Characidae). Physis, B 35(91): 163-169. TABERNER, R. (1977): Nebula maculatus gen. nov. sp. nov. (Crustacea, Isopoda, Cymothoidae), ectoparásito de Metynnis maculatus (KNER, 1869) BERG, 1897 (Pisces, Characidae). - Physis, B 35(92): 141-146. TABERNER, R. (1979): Aclaración sobre el nombre Nebula maculatus TABERNER, 1977 (Crustacea, Isopoda, Cymothoidae). - Physis, B 38(94): 55. THATCHER, V.E. (1988): Asotana magnifica n. sp. (Isopoda, Cymothoidae) an unusual parasite (commensal?) of the buccal cavities of piranhas (Serrasalmus sp.) from Roraima, Brazil. Amazoniana 10(3): 239-248. THATCHER, V.E. (1994a): Vanamea gen. nov. (Isopoda; Cymothoidae) for Livoneca symmetrica VAN NAME, 1925, and a redescription of the species based on specimens from Brazilian piranhas. - Acta Amazonica 23(2-3): 287-296. THATCHER, V.E. (1994b): Anphira branchialis gen. et sp. nov. (Isopoda, Cymothoidae) a gill cavity parasite of piranhas (Serrasalmus spp.) in the Brazilian Amazon. - Acta Amazonica 23(2-3): 297-307. THATCHER, V.E. (1995a): Anphira xinguensis sp. nov. a gill chamber parasite of an Amazonian serrasalmid fish Ossubtus xinguense JÉGU, 1992. - Amazoniana. 13(3/4) 293-303.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
453
THATCHER, V.E. (1995b): Comparative pleopod morphology of eleven species of parasitic isopods from Brazilian fish. - Amazoniana 13(3/4): 305-314. THATCHER, V.E. (1996): Braga amapaensis n. sp. (Isopoda, Cymothoidae) a mouth cavity parasite of the Amazonian fish, Acestrorhynchus guyanensis MENEZES. - Amazoniana 14(1/2): 121-129. THATCHER, V.E. (1997): Mouthpart morphology of six freshwater species of Cymothoidae (Isopoda) compared to that of three marine forms. - Amazoniana 14(3/4): 311-322. THATCHER, V.E. (2000a): The isopod parasites of South American Fishes.- In: SALGADO-MALDONADO, G., GARCÍA ALDRETE, A.N. & V.M. VIDAL-MARTÍNEZ: Metazoan parasites in the Neotropics: 193-226. Universidad Nacional Autónoma de México Press, México, D.F.: 310 pp. THATCHER, V.E. (2001): Some unusual features of Amazonian fish parasitic isopods (Cymothoidae). - In: KENSLEY, B. & R.C. BRUSCA (eds.): Isopod systematics and evolution: 337-342. Balkema Publ., Rotterdam: 357 pp. THATCHER, V.E. (2002a): Anphira guianensis sp. nov. (Isopoda, Cymothoidae) from the gills of Acnodon oligacanthus EIGENMANN (Pisces, Serrasalmidae) of French Guiana. - Rev. Bras. Zool. 19, Suppl. 2: 53-59. THATCHER, V.E. (2004): The isopods of South American fishes. - Imprensa Ministério de Ciência e Tecnologia Press, Museu Paraense Emílio Goeldi, Belém: 131 pp., 209 figs. THATCHER, V.E. & M.L. CARVALHO (1988): Artystone minima n. sp. (Isopoda, Cymothoidae) a body cavity parasite of the pencil fish (Nannostomus beckfordi GÜNTHER) from the Brazilian Amazon. - Amazoniana 10(3): 255-265. THATCHER, V.E. & C. LOBOS-BLUMENFELDT (2001): Anilocra montti sp. n. (Isopoda, Cymothoidae) a parasite of caged salmon and trout in Chile. - Revta. bras. Zool. 18 (Supl 1): 269-276. THATCHER, V.E. & I. SCHINDLER (1999): Artystone bolivianensis sp. n. (Isopoda, Cymothoidae) from a loricariid catfish of the Bolivian Amazon. - Amazoniana 15(3/4): 183-191. THATCHER, V.E., LOPES, L.P.C. & O. FROEHLICH (2002): Riggia acuticaudata sp. n. (Isopoda, Cymothoidae) from the body cavity of a freshwater fish of Mato Grosso do Sul State, Brasil. - Rev. Brasil. Zool. 19 (Supl.2): 195-201. THATCHER, V.E., SOUZA-CONCEIÇÃO, J.M. & G.F. JOST (2003): Lironeca desterroensis sp. n. (Isopoda, Cymothoidae) from the gills of a marine fish, Cetengraulis edentulus CUVIER, of Santa Catarina Island, Brazil. - Rev. Brasil. Zool. 20: 251-255. THATCHER, V.E., LOPES, L.P.C. & O. FROEHLICH (2003): Riggia cryptocularis sp. n. (Isopoda, Cymothoidae) from the body cavity of a freshwater fish of Mato Grosso do Sul State, Brasil. - Rev. Brasil. Zool. 20: 285-289. THATCHER, V.E., LOYOLA E SILVA J. DE, JOST G.F. & J.M. SOUZA-CONCEIÇÃO (2003): Comparative morphology of Cymothoa spp. (Isopoda, Cymothoidae) from Brazilian fishes, with the description of Cymothoa catarinensis sp. nov. and redescriptions of C. excise PERTY and C. oestrum (LINNAEUS). - Rev. Bras. Zool. 20: 541-552. TRILLES, J.P. (1973): Notes documentaries sur les isopodes cymothodiens parasites de poissons d’eau douce del ‘Amérique du Sud. - Bull. Mus. Natl. Hist. Nat. Paris, sér. 3 Zool. 88: 239-272, pls. 1-2. VAN NAME, W.G. (1925): The isopods of Kartabo, Bartica District, British Guiana. - Zoologica 6(5): 461-503, pls. A-B. WEIBEZAHN, F.H. & M.V. RAMÍREZ (1957): Mortandad de peces de agua dulce causada por un crustáceo parásito, Artystone trysibia SCHIÖDTE & MEINERT, 1866 (Isopoda, Cymothoidae). Bol. Soc. Venezol. Cienc. Nat. 18(89): 153-156.
454
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
11. HIRUDINEA, PENTASTOMIDA AND OTHER PATHOGENS
HIRUDINEA I. Definition and morphology The Hirudinea, or leeches, comprise a highly specialized class of the phylum Annelida. Most occur in freshwater but many are also found in the sea and some are terrestrial in the humid tropics. They are thought to have arisen from the class Oligochaeta, to which the earthworm belongs. Leeches have segmented bodies, as do the other members of the phylum, but unlike the earthworm, the segments are not defined by internal septa. Leeches can generally be recognized by the anterior and posterior suckers that they possess. Those that attack fish do so as temporary ectoparasites seeking a blood meal. The bodies of leeches are frequently spindle-shaped being narrower anteriorly than posteriorly. In cross-section they are either circular or oval. In size, they range from 5 mm to about 45 cm. Surface features include pigmentation (red, brown, green and yellow in spots bands or longitudinal lines), one or more pairs of eyes, annuli and sometimes dorsal papillae. The digestive system of leeches consists of an anterior mouth, followed by a muscular pharynx, an esophagus and an intestine. The mouth is either provided with teeth or it has a protrusible proboscis. The intestine shows segmentation in that there are paired lateral ceca. The intestine opens through the anus that is located dorsally over the posterior sucker. All leeches are hermaphroditic. The male reproductive system consists of paired testes (or testisacs) five to ten in number or they may be more numerous. On each side there are vasa efferentia joining the testes to the vas deferens that, in turn, leads into the atrium. The atrium is a three-chambered structure with lateral horns. The female system is comprised of paired ovaries (or ovisacs) terminating in ducts which join to form a vagina. In most species, the male and female genital pores are separate and located on the 11th and 12th body segments, respectively.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
455
II. Life-cycle and transmission Most leeches are predatory and feed on small invertebrates, but a few species attack fish and other vertebrates. Predatory leeches swim actively but those that parasitize fish usually hide on aquatic vegetation and wait until a fish passes near. Reproduction in leeches is similar to that of earthworms in that there is copulation and a mutual exchange of sperm bundles (spermatophores). In some species there is a penis for depositing sperm in or near the vagina, but in others, spermatophores are simply implanted on the surface. In such species, the sperm penetrate the body wall by a local histolysis and make their way to the ovisac where they fertilize the ova. The fertilized ova (eggs) are released through the female genital pore and are there encapsulated by secretions from a band of glandular cells (clitellum). Several eggs are usually placed in each capsule (cocoon) and these are normally fastened to a substrate or buried in the mud. In Glossiphoniidae, however, true cocoons are not formed, but the fertilized eggs are carried on the ventral surface of the body in membranous capsules. After the eggs hatch, the young leeches remain attached to the parent for some time.
III. Pathology Other than localized hemorrhaging at the feeding sites, little specific pathology has been associated with Neotropical leeches. In heavy infestations, leeches can produce anemia and death from blood loss. Furthermore, after feeding they drop from the host leaving small wounds that may facilitate secondary invasions by bacteria and viruses. Leeches also serve as intermediate hosts for Trypanosoma and Cryptobia, which are flagellate protozoan parasites of the circulatory system.
IV. Prevention and treatment Leeches are most often introduced into aquaria on aquatic vegetation. Plants collected in nature should be maintained in aquaria for several weeks before being placed with fish. Leeches are relatively sensitive to chemicals in the water, so most of the common dip treatments will cause them to leave the fish. One of the easiest and cheapest is the 1:4000 formalin solution treatment described in Chapter 3.Contaminated ponds should be drained and treated with quick lime.
V. Collection and study methods Living leeches should be killed by placing them in 15 % alcohol for 15 minutes. They can then be fixed by arranging them between glass microscopes slides in a Petri dish and pouring AFA over them. Permanent whole-mount slides can be made by the method described for trematodes in Chapter 4.
456
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
VI. Identification and key Some important characters used in identifying leeches are: body shape, size and color; number and position of eyes; and position of genital pores. So far, only three genera and four species of Hirudinea have been reported from Neotropical freshwater fish.
Key to leeches from Neotropical freshwater fishes I. Body dorso-ventrally flattened; tapering towards anterior extremity; one, 2, 3 or 4 pairs of eyes present on head end; eyespots lacking on posterior sucker and on body; three annuli present for each body segment; oral sucker small, continuous with neck ............................................................... Glossiphoniidae (Figs. 11-3 to 11-5) A. One pair of eyes present ..............................................................................Placobdella B. Two to four pairs of eyes present ............................................................ Theromyzon II. Body cylindrical, slender; none, 1 or 2 pairs of eyes present on head end; eyespots may be present on posterior sucker or lateral margins of body; seven or more annuli present for each body segment; oral sucker expanded, distinct from neck .............. ..................................................................... Piscicolidae ..................................... Myzobdella
Clave para Sanguijuelas de peces Neotropicales de agua dulce I. Cuerpo aplanado dorso-ventralmente, estrechándose hacia la extremidad anterior; un, 2, 3 o 4 pares de ojos presentes en la cabeza; manchas ocelares faltan en la ventosa posterior y en el cuerpo; tres anillos presentes para cada segmento del cuerpo. Ventosa oral pequeña, contínua con el cuello ................................................................. ................................................................................... Glossiphoniidae (Figs. 11-3 a 11-5) A. Un par de ojos presentes ..............................................................................Placobdella B. Dos a 4 pares de ojos presentes ............................................................... Theromyzon II. Cuerpo cilíndrico, delgado; ninguno, 1 o 2 pares de ojos presentes en la cabeza; manchas ocelares pueden estar presentes en la ventosa posterior o en los márgenes laterales del cuerpo; siete o más anillos presentes en cada segmento del cuerpo; ventosa oral expandida, diferenciada del cuello ............................................................. ..................................................................... Piscicolidae ..................................... Myzobdella
VII. Checklist of Hirudinea from Neotropical fishes Glossiphoniidae Body flattened, wider posteriorly and tapering anteriorly. Oral sucker fused with body; mouth a small pore in oral sucker through which a muscular proboscis can be protruded; jaws and teeth absent. One to 4 pairs of eyes present; eyespots absent on body and posterior sucker.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
457
Three annuli present per segment, in midbody; clitellum not distinct. Eggs in membranous sacs on ventral surface of adult; young cling to ventral surface of adult for some time. Free-living and parasitic on invertebrates and vertebrates. Placobdella BLANCHARD, 1893 Glossiphoniidae. Body heavily pigmented, usually greenish or brownish with spots, stripes or blotches of yellow or orange; dorsum frequently papillate; size 10 – 65 mm. Anterior end with or without expanded headlike structure. One pair of eyes present; accessory eyes rarely present. Free-living or parasitic on fish or turtles. P. molesta CORDERO, 1934: turtles and fishes: Uruguay. Description unavailable. P. parasitica (SAY, 1924): turtles and fishes: United States & Mexico. Body = 38-65 mm long; Coloration variable, dorsum usually provided with median, longitudinal stripe; Ventral surface with 8-12 bluish, greenish or brownish longitudinal stripes. Theromyzon PHILLIPPI, 1867 Glossiphoniidae. Body gelatinous, not heavily pigmented, pale amber or green in color; spots or lines sometimes present; shape variable. Four pairs of eyes present. Gonopores separated by 2-4 annuli. Free-living or parasitic on fish or in nasal fossae or eyes of aquatic birds. T. propinquum RINGUELET, 1947: Percichthys trucha: Argentina. Body smooth, except for small sensilla; 14-15.5 mm long. Three annuli present between male and female gonopores. Piscicolidae JOHNSTON, 1865 Body cylindrical, narrow; sometimes divided into narrow neck (trachelosome) and thicker posterior region (urosome); with or without lateral projections (pulsatile vesicles) on urosome. Oral sucker usually distinct from neck. None, 1 or 2 pairs of eyes present; with or without eyespots (ocelli) on caudal sucker and lateral margins of urosome. Cocoons attached to substrates, not held on ventral side of adults. Parasitic on fishes. Myzobdella LEIDY, 1851 Psiscicolidae. Body cylindrical, divided into trachelosome and urosome; without dorsal papillae and without lateral extensions of urosome; 12-14 annuli per somite in midbody. Suckers weakly developed; not of greater diameter than body. Five pairs of testes present. Parasites on marine and freshwater fishes. M.platense (CORDERO, 1933): Hoplias malabaricus: Uruguay. Description unavailable. M.uruguayensis MAÑÉ-GARZÓN & MONTERO, 1977: Rhamdia sapo: Uruguay. Body = 8.7-12.7 x 0.83-1.04 mm; Pharynx = 1.35-1.68 x 0.18-0.30 mm; Testes = 0.45-0.53 mm in diameter.
458
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
PENTASTOMIDA I. Definition and morphology Pentastomids are worm-like endoparasitic arthropods with obscure affinities. Formerly the group was considered a subphylum of Arthropoda, but in more recent years, the tendency among most zoologists has been to recognize Pentastomida as a separate phylum. Adult pentastomids are found mainly in the lungs of reptiles and the young (nymphs) occur encysted in the internal organs of many vertebrates including fish and men. Adults range from 1 to 20 cm in length, and have cylindrical or flattened bodies that are expanded anteriorly. The sexes are separate and fertilization is internal. The name pentastomid means “five-mouthed” and comes from the fact that on each side of the mouth slit there are two other depressions each containing a retractable claw (making a total of 5 mouth-like slits). The pentastomids so far reported in fish have all been young, or nymphal stages. They are ordinarily encysted and they can be recognized by their cylindrical, annulated bodies and their peculiar claws.
II. Life-cycle and transmission The pentastomid life-cycle involves an intermediate and a definitive host, both of which are vertebrates. Fish act as intermediate hosts for those that mature in crocodilians, and most of these belong to the genus Sebekia. The adults live in the air passages of the lungs where they copulate. Females produce eggs that pass to the external environment in the host’s feces. When the eggs are ingested by a fish, they hatch in the intestinal tract and four-legged larvae, somewhat resembling mites emerge. These larvae make their way through the wall of the intestine aided by the legs that are tipped with small claws. Once within the tissues of the fish, the larvae metamorphose into nymphs, molting several times as they grow. After an infected fish is eaten by a crocodilian, the larvae make their way to the lungs where they mature.
III. Pathology The passage of larval pentastomids through the intestinal wall of a fish could probably provoke a localized inflammation, but this has not been documented. The presence of nymphs in the mesenteries and other organs causes localized inflammatory reactions leading to fibrotic encapsulation. After complete encapsulation, no further histopathology is observed.
IV. Prevention and treatment Crocodilians should not be permitted to inhabit ponds where fish are grown. Care should also be taken not to introduce mud, or other material that might be contaminated with
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
459
crocodilian feces, into fish ponds and aquaria. No specific treatment is possible or necessary for fish already having encysted nymphs.
V. Collection and study methods Pentastomid nymphs (Fig. 11-1) can be studied in temporary phenol preparations after first dehydrating them partially in 95 % alcohol. Permanent whole mounts can be made by the methods described in Chapter 6 for nematodes. Claws can be dissected out with needles and mounted separately for comparative studies.
VI. Identification It is not presently possible to identify pentastomid nymphs from fish to species. It is presumed that all are Sebekia, but since there are several species in the genus, life-cycle studies would need to be performed in order to identify specific differences at the nymphal level.
VII. Checklist for Pentastomida TRAVASSOS et al. (1928) called pentastomid nymphs found in fish, Porocephalus gracile (DIESING, 1836). The genus Porocephalus, as presently defined by specialists, occurs as an adult in the lungs of snakes and as a nymph in the organs of mammals. Porocephalus nymphs probably do not occur in fish. The pentastomid nymphs from fish are all thought to represent species of Sebekia, and these have been reported from the following hosts: Astronotus ocellatus Astyanax mexicanus Bagrus pemecus Electrophorus electricus Gymnotus carapo Hemisorubim platyrhynchus Hoplias malabaricus Pellona castelnaeana Phractocephalus hemiopterus Pimelodus megacephalus
Pimelodus vituga Pinirampus pirinampu Potamotrygon motoro Pseudoplatystoma tigrinum Rhaphiodon vulpinus Salminus brevidens Serrasalmus piraya Stenarchus albifrons Symbranchus marmoratus Tachysurus hertzbergii
460
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
OTHER PATHOGENS Tropical Gill-Rot: One of the most common disease conditions found in pond reared fish in the tropics is gill rot. By the time the problem is noted, the disease has frequently advanced beyond the point of treatment. Affected fish are usually observed to swim sluggishly or erratically and spend much time at the surface gasping for breath. A cursory examination of the gills of such fish will show them to be ragged, whitish, with localized hemorrhaging areas and much mucus. Closer inspection may reveal parasites, such as Myxozoa, Ciliophora and Monogenoidea. Localized or generalized fungal growths may also be visible. Many kinds of bacteria will also be present. The immediate cause of death in these cases is asphyxia, and the moment of death will be advanced, of course, if there should be any drop in the level of dissolved oxygen in the water. In natural, or outdoor, ponds there is a normal slump in oxygen level every night because at sundown photosynthesis stops abruptly. Typically, a pisciculturist, whose fish are “doing fine”, arrives at his pond some morning and finds about half of them dead and floating around on the surface. He gathers some and dead fish in hand goes to consult an ichthypathologist or a veterinarian to find out how to save the survivors. However, it is too late. Treatment at this point will ordinarily hasten rather than prevent death. Although the immediate cause of death in gill rot infections is asphyxia caused by gill inefficiency, the root cause is malnutrition. The condition described above is symptomatic of deficiencies in vitamins A and C and proteins. The root cause boils down to a matter of simple economics or human greed. The pisciculturist, like any businessman, wants to maximize profit and minimize expense. Since vitamins and proteins cost more than carbohydrates, he puts a minimal amount of these in the ration he feeds his fish. The result is frequently gill rot. Encysted parasites and foreign bodies: An inspection of the interior of any wild-caught tropical fish will usually reveal the presence of numerous “white spots” of various sizes and shapes. These represent invaders that the fish has been able to immobilize in fibrous capsules. Most invaders reach the body cavity by passing through the intestinal wall, but many of them are stopped within the wall itself . Those that reach the other side often end up in the mesentery that supports the intestine (Fig. 11-2). Herbivorous and omnivorous fish frequently have their stomachs and intestines pierced by plant spines, which also become encapsulated. The skin barrier is more effective, but is also breached at times. Occasional oddities turn up in the intestinal walls of fish, such as larval mites and insects (Figs. 11-6 & 11-7). In order to find out what is inside the “white spots”, it is best to excise them, partially dehydrate them in 95 % alcohol and clear them in pure phenol.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
461
VIII. Plates of Hirudinea and miscellaneous pathological conditions (Figs. 11-1 to 11-7)
11-1
11-2 11-1. Pentastomid nymph encysted in the mesentery of Colossoma macropomum. 11-2. Cestode larvae (spherical structure) and nematode larva (elongate form) in the intestinal wall of Chaetobranchus semifasciatus.
462
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
11-3
11-5
11-4
Morphology of glosiphoniid leeches: 11-3. and 11-5. Branching intestinal tract; 11-4. Anterior end, showing eyes, annuli and proboscis.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
11-6
11-7
11-6. & 11-7. Insects in the intestinal wall of Semaprochilodus insignis.
463
464
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
IX. Cited and general references Hirudinea CABALLERO & C., E. (1940): Sobre la presencia de la Placobdella rugosa (Hirudinea: Glossiphoniidae) en las aguas del Lago de Xochimilco. XIII. - An. Instituto Biológico de México 12(1/2): 255-260. CABALLERO & C., E. (1941): Hirudineos de México. XVI. Nuevos huespedes y localidades para algunas sanguijuelas ya conocidas y descripción de una nueva especie. - An. Instituto Biológico de México 12(2): 752-753. CABALLERO & C., E. (1960): Hirudineos de México. XXII. Taxa y nomenclatura de la clase Hirudinea hasta géneros (nueva edición). - An. Instituto Biológico de México 30: 227-242. MAÑE-GARZÓN, F. & R. MONTERO (1977): Myzobdella uruguayensis n. sp. (Hirudinea, Piscicolidae) parasita de las branquias del bagre amarilla, Rhambdia sapo (VALL.). - Rev. Biol. Uruguay 5: 59-65. RINGUELET, R.A. (1944): Sinopsis sistemática y zoogeográfica de los hirudíneos de la Argentina, Brasil, Chile, Paraguay y Uruguay. - Rev. Mus. La Plata, n.s. 3 (Zool.) 3(22): 163-232. RINGUELET, R.A. (1947): Notas sobre hirudíneos neotropicales III. Theromyzon propinquus nov. sp. de la Argentina. - Notas Mus. La Plata 12(100): 217-222. RINGUELET, R.A. (1976): Clave par las familias y géneros de sanguijuelas (Hirudinea) de aguas dulces y terrestres de Mesoamérica y Sudamérica. - Limnobios 1(1): 9-19.
Pentastomida THATCHER, V.E. (1981): Patologia de peixes da Amazônia brasileira, 1. Aspectos gerais. - Acta Amazônica 11(1): 125-140. TRAVASSOS, L., ARTIGAS, P. & C. PEREIRA (1928): Fauna helminthológica dos peixes de água doce do Brasil. - Arch. Inst. Biol. São Paulo, Brasil 1: 5-68, 155 figs.
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
465
12. ADDENDUM: HOST-PARASITE TABLE In the following table, the scientific names of host fish are listed alphabetically without regard to phylogeny. Beside each fish name, the parasites reported from that host are listed. Trypanosoma (Protozoa) and Sebekia (Pentastomida) are omitted here because their hosts are listed in Chapters 1 and 11 respectively. Host fish Acanthicus hystrix Acestrorhampus (= Oligosarcus) macrolepis Acestrorhampus sp. (= Oligosarcus)
Phylum or Class Monogenoidea Nematoda Myxozoa Ciliophora Trematoda
Nematoda
Acestrorhynchus falcatus
Trematoda Acanthocephala Nematoda
Acestrorhynchus falcirostris Acestrorhynchus guyanensis Acestrorhynchus lacustris
Copepoda Copepoda Isopoda Nematoda
Achirus lineatus Achirus mazatlanus Acnodon normani Acnodon oligacanthus Aequidens maroni
Acanthocephala Acanthocephala Monogenoidea Isopoda Monogenoidea
Parasites Genera and species Trinigyrus acuminatus Procamallanus (S.) hilarii Myxidium gurgeli Nyctotherus piscicola Halipegus genarchella Halipegus parvus Prosorhynchus costai Prosthenhystera obesa Paracapillaria piscicola Contracaecum sp. (larvae) Eustrongylides sp. (larvae) Bellumcorpus major Palliolisentis polyonca Paracapillaria piscicola Procamallanus (S.) inopinatus Ergasilus turucuyus Ergasilus turucuyus Braga amapaensis Procamallanus (S.) paraensis Travassosnema travassosi Neoechinorhynchus variabilis Neoechinorhynchus roseum Notozothecium euzeti Anphira guianensis Sciadicleithrum aequidens Sciadicleithrum cavanaughi
466
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Aequidens pulcher
Ageneiosus brevifilis
Ageneiousus valenciennesi Ancistrus cirrhosus Ancistrus dolicopterus Ancistrus sp.
Trematoda Acanthocephala Branchiura Cestoda
Copepoda Isopoda Nematoda Nematoda Isopoda Nematoda Monogenoidea
Nematoda Isopoda Anodus elongatus
Copepoda
Arapaima gigas
Monogenoidea
Trematoda
Cestodaria Nematoda
Acanthocephala Copepoda Branchiura Ariopsis seemanni Arius comersonii Astronotus ocellatus
Acanthocephala Monogenoidea Monogenoidea
Crassicutis chuscoi Pandosentis iracundus Dolops geayi Anthobothrium mandube Endorchis mandube Gibsoniela mandube Gamispinus diabolicus Excorallana berbicensis Cucullanus pinnai Rhaphidascaris (S.) hypostomi Braga bachmanni Capillostrongyloides ancistri Nothogyrodactylus amazonicus Nothogyrodactylus clavatus Nothogyrodactylus plaesiophallus Guyanema ancistri Riggia cryptocularis Riggia acuticaudata Brasergasilus anodus Brasergasilus oranus Dawestrema cycloancistrioides Dawestrema cycloancistrium Dawestrema punctata Caballerotrema arapaimense Caballerotrema brasiliense Goezia spinulosa Nesolecithus janicki Schizochoerus liguloideus Camallanus tridentatus Goezia spinulosa Philometra senticosa Porrocaecum draschei Polyacanthorhynchus macrorhynchus Polyacanthorhynchus rhopalorhynchus Ergasilus sp. Argulus sp. Dolops discoidalis Pseudogorgorhynchus arii Fridericianella ovicola Gusseiva asota Gusseiva astronoti Gusseiva rogersi Goezia spinulosa Procamallanus (S.) inopinatus
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Astronotus ocellatus
Branchiura
Astyanax bimaculatus
Monogenoidea
Trematoda Nematoda
Astyanax fasciatus
Acanthocephala Branchiura Isopoda Myxozoa Monogenoidea
Trematoda
Nematoda
Astyanax fasciatus
Argulus sp. Dolops bidentata Dolops discoidalis Dolops geayi Cycloplectanum americanum Urocleidoides costaricensis Palombitrema heteroancistrium Urocleidoides trinidadensis Magnivitellinum simplex Cosmozynemoides aguirrei Paraseuratum albidum Procamallanus (S.) cearensis Procamallanus (S.) hilarii Procamallanus (S.) inopinatus Rhabdochona australis Rhabdochona acuminate Spiniteatus rudolphiheringi Travnema travnema Quadrigyrus torquatus Argulus juparanaensis Paracymothoa astyanactis Henneguya wenyoni Anacanthocotyle anacanthocotyle Diaphorocleidus kabatai Gyrodactylus neotropicalis Jainus hexops Urocleidoides astyanacis Urocleidoides costaricensis Urocleidoides kabatai Urocleidoides strombicirrus Urocleidoides trinidadensis Antorchis lintoni Chalcinotrema ruedasueltensis Dadaytremoides grandistomis Halipegus dubius Halipegus tropicus Prosorhynchus costai Prosthenhystera obesa Saccocoelioides octavus Capillostrongyloides sentinosa Paraseuratum albidum Rhabdochona fasciata Procamallanus (S.) hilarii Procamallanus (S.) inopinatus
467
468
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Astyanax fasciatus Astyanax scabripinnis Astyanax sp.
Acanthocephala Monogenoidea Trematoda Nematoda
Atherina bleekeri Atherinichthys Atractosteus tristoechus Auchenipterus nuchalis Basilichthys microlepidotus Belonesox belizanus Bergiaria westermanni Boulengerella lucia
Copepoda Copepoda Isopoda Cestoda Nematoda Cestoda Monogenoidea Nematoda Trematoda
Brachyplatystoma filamentosum
Cestoda
Brachyplatystoma rousseauxii
Cestoda
Brachyplatystoma sp.
Isopoda
Brachyplatystoma vaillanti
Cestoda
Brevoortia pectinata Brycon brevicaudata Brycon cephalus
Copepoda Nematoda Monogenoidea Copepoda Copepoda Branchiura Nematoda Nematoda Acanthocephala Nematoda Trematoda Monogenoidea
Brycon cryptopterus Brycon erythropterum Brycon falcatus Brycon hilarii
Brycon lundi Brycon melanopterus (=erythropterus)
Quadrigyrus torquatus Urocleidoides astyanacis Phyllodistomoides duncani Pseudocapillaria sentinosa Rhabdochona fasciata Procamallanus (S.) wrighti Minilernaea floricapitella Ergasilus orientalis Braga patagonica Proteocephalus manjuariphilus Cucullanus brevispiculus Proteocephalus macdonaghi Salsuginus neotropicalis Procamallanus (S.) freitasi Genelopa magnacirrus Paraproctotrema delicata Endorchis piraeeba Nominoscolex piraeeba Amphoteromorphus peniculus Nominoscolex dorad Nominoscolex sudobim Telotha henselii Vanamea symmetrica Anabothrium piramutab Monticellia piramutab Ergasilus euripedesi Procamallanus (S.) inopinatus Annulotrematoides bryconi Amplexibranchius bryconis Ergasilus bryconis Argulus chicomendesi Rhabdochona acuminata Procamallanus (S.) inopinatus Echinorhynchus briconi Procamallanus (S.) hilarii Dendrorchis neivai Anacanthorus brevis Anacanthorus elegans Anacanthorus kruidenieri Anacanthorus spiralocirrus Jainus amazonensis Tereancistrum kerri Tereancistrum ornatus Trinibaculus brazilensis
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Brycon melanopterus (=erythropterus) Brycon sp. Bryconops alburnoides Bunocephalus coracoideus Callophysus macropterus
Nematoda Copepoda Monogenoidea Nematoda Myxozoa Monogenoidea Nematoda
Carnegiella strigata Catoprion mento
Copepoda Myxozoa Monogenoidea Branchiura Isopoda Monogenoidea
Centropomus nigriscens Cephalosilurus (=Pseudopimelodus) zungaro
Monogenoidea Monogenoidea
Cetopsis caecutiens Chaetobranchus semifasciatus
Cestoda Trematoda Cestoda Trematoda Monogenoidea Myxozoa Nematoda Monogenoidea Monogenoidea Monogenoidea Acanthocephala Isopoda Branchiura Cestoda Copepoda
Carapus fasciatus Carassius auratus
Chaestostomus leucomelas Chalceus macrolepidotus Chalcinus nematurus Charax gibbosus Characidium caucanum Characidium lanei Characidium pterostictum Chilodus punctatus Chloroscombrus chysurus Chromis sp. Cichla monoculus
Cichla ocellaris
Isopoda Sporozoa Monogenoidea
Procamallanus (S.) inopinatus Ergasilus bryconis Rhinoxenus anaclaudiae Procamallanus (D.) dentatus Myxobolus braziliensis Pavanelliella pavanellii Philometra amazonica Procamallanus (S.) inopinatus Ergasilus callophysus Myxidium fonsecai Gyrodactylus elegans Argulus ernsti Vanamea symmetrica Amphithecium prodotum Anacanthorus catoprioni Heterothecium dicrophallum Odothecium raphidiophallum Pithanothecium piranhus Mexicotrema bychowskyi Ameloblastella mamaevi Phanerothecium caballeroi Urocleidoides mamaevi Monticellia siluri Ascocotyle sp. (metacercariae) Proteocephalidae (plerocercoids) Dadaytremoides grandistomis Jainus jainus Myxidium cruzi Procamallanus (S.) inopinatus Urocleidoides anops Cacatuocotyle paranaensis Cacatuocotyle paranaensis Octospiniferoides australis Cymothoa liannae Argulus chromidis Proteocephalus macrophallus Amazolernaea sannerae Ergasilus coatiarus Vanamea symmetrica Calyptospora tucunarensis Gussevia arilla Gussevia longihaptor Gussevia tucunarense Gussevia undulata
469
470
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Cichla ocellaris
Monogenoidea
Cestoda
Nematoda Copepoda Branchiura Isopoda
Cichla sp. Cichla temensis
Cichlasoma aureum Cichlasoma bimaculatum
Isopoda Copepoda Branchiura Isopoda Acanthocephala Monogenoidea
Cichlasoma facetum Cichlasoma fenestratum Cichlasoma festivum Cichlasoma mayorum Cichlassoma pearsei Cichlasoma severum (=Heros severus)
Nematoda Ciliophora Nematoda Trematoda Monogenoidea Monogenoidea
Cnesterodon decemmaculatus Cochliodon cochliodon
Trematoda Monogenoidea Branchiura Monogenoidea Trematoda Nematoda Copepoda Isopoda Nematoda Isopoda Branchiura Nematoda
Colomesus asellus
Copepoda
Cichlasoma synspilum Cichlasoma tetracanthus Cichlasoma urophthalmus Cichlasoma sp.
Cichlidae
Sciadicleithrum ergensi Sciadicleithrum umbilicum Sciadicleithrum uncinatum Proteocephalus macrophallus Proteocephalus microscopicus Sciadocephalus megalodiscus Goezia intermedia Acusicola tucunarense Ergasilus sp. Argulus sp. Braga cichlae Vanamea symmetrica Nerocila armata Braga cichlae Amazolernaea sannerae Argulus multicolor Braga cichlae Neoechinorhynchus golvani Gussevia alii Gusevia cichlosomatis Gusevia dobosi Trinidactylus cichlasomatis Procamallanus (P.) peraccuratus Nyctotherus dilleri Ichthyouris ro Crassicutis cichlasomae Sciadicleithrum bravohollisae Gussevia alioides Gussevia dispar Gussevia disparoides Pronamphistoma cichlasomae Sciadicleithrum bravohollisae Argulus cubensis Sciadicleithrum mexicanum Crassicutis opisthoseminis Ichthyouris ovifilamentosa Ergasilus pitalicus Braga fluviatilis Touzeta ecuadoris Livoneca orinoco Argulus vierai Procamallanus (S.) annipetterae Raphidascaris (S.) hypostomi Ergasilus colomesus
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Colossoma bidens(=Piaractus brachypomus)
Myxozoa Ciliophora Monogenoidea Trematoda
Nematoda
Acanthocephala Branchiura Colossoma macropomum
Monogenoidea
Nematoda Acanthocephala Copepoda Branchiura
Colossoma mitre(=Piaractus mesopotamicus) Corydoras aeneus
Nematoda Monogenoidea
Corydoras ehrhardti
Nematoda Monogenoidea
Corydoras lepidata Corydoras paleatus
Copepoda Nematoda Monogenoidea
Creatochanes affinis
Nematoda Monogenoidea
Crenicichla geayi
Trematoda
Myxobolus sp. Nyctotherus piscicola Anacanthorus spathulatus Dadaytrema oxycephala Denticauda quadrangulata Pseudocladorchis cylindricus Pseudoparabaris parabaris Travassosinia dilatata Klossinemella iheringi Rondonia rondoni Spectatus spectatus Echinorhynchus jucundum Dolops bidentata Dolops carvalhoi Anacanthorus spathulatus Linguadactyloides brinkmanni Mymarothecium boegeri Notozothecium janauachensis Chabaudinema americana Cucullanus colossomi Neoechinorhynchus buttnerae Perulernaea gamitanae Argulus chicomendesi Argulus multicolor Dolops carvalhoi Rondonia rondoni Urocleidoides corydori Urocleidoides margolisi Procamallanus (S.) pintoi Gyrodactylus samirae Gyrodactylus anisopharynx Gyrodactylus superbus Minilernaea floricapitella Procamallanus peraccuratus Gyrodactylus anisopharynx Gyrodactylus samirae Gyrodactylus superbus Paragyrodactyloides superbus Philocorydoras platensis Procamallanus (S.) pintoi Diaphorocleidus affinis Jainus robustus Urocleidoides affinis Crassicutis wallini
471
472
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Crenicichla geayi
Crenicichla johanna Crenicichla lacustris Crenicichla lepidota Crenicichla saxatilis Crenicichla sp. Curimata (=Steindachnerina) argentea
Curimata (=Psectrogaster) ciliata Curimata cyprinoides Curimata (=Steindachnerina) elegans
Curimata (=Cyphocharax) gilberti
Acanthocephala Branchiura Trematoda Isopoda Sporozoa Nematoda Isopoda Branchiura Monogenoidea
Branchiura Copepoda Trematoda Nematoda
Acanthocephala Monogenoidea Monogenoidea
Trematoda Nematoda
Curimata (=Potamorhina) laticeps Curimata (=Cyphocharax) platana Curimata plumbea Curimata vittata Cynopotamus humeralis
Branchiura Isopoda Nematoda Trematoda Trematoda Nematoda Isopoda
Cynopotamus kneri
Nematoda
Cyphocharax gilberti Cyphocharax platana Doras brunnescens Doras (=Platydoras) costatus
Isopoda Isopoda Nematoda Ciliophora
Pandosentis iracundus Quadrigyrus torquatus Dolops geayi Sphericomonorchis spinulosus Artystone trysibia Calyptospora spinosa Procamallanus (S.) peraccuratus Nerocila armata Dolops geayi Curvianchoratus hexacleidus Urocleidoides costaricensis Urocleidoides curimatae Argulus sp. Miracetyma etimaruya Zonocotyle bicaecata Cosmoxynemoides aguirrei Procamallanus (S.) hilarii Travnema travnema Gorytocephalus spectabilis Rhinoxenus guianensis Androspira chascomusensis Androspira triangula Notodiplocerus singularis Zonocotyle bicaecata Zonocotyloides haroltravossosi Cosmoxynema viannai Cosmoxynemoides aguirrei Travnema araujoi Argulus sp. Riggia paranensis Travnema travnema Curimatrema microscopica Halipegus dubius Paracapillaria piscicola Procamallanus (S.) inopinatus Braga cichlae Philostomella cigarra Cystidicoloides fischeri Cucullanus pinnai Paracapillaria piscicola Riggia paranensis Riggia paranensis Rondonia rondoni Rynchodinium paradoxum
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Doras (=Platydoras) costatus
Trematoda
Doras (=Lithodoras) dorsalis
Trematoda
Eigenmannia virescens
Myxozoa
Electrophorus electricus Elipesurus spinicauda
Monogenoidea Trematoda Cestoda
Erythrininus erythrinus Erythrinidae Farlowella amazona Fitzroyia lineate Galaxias maculatus
Nematoda Nematoda Monogenoidea Acanthocephala Myxozoa
Gasterostomus (=Potamorhina) latior Geophagus brasiliensis
Monogenoidea Branchiura Monogenoidea Nematoda
Geophagus (=Satanoperca) jurupari Geophagus steindachneri
Acanthocephala Isopoda Branchiura Nematoda
Geophagus surinamensis Geophagus sp. Gephyrocharax valenciae Gerres brasiliani Glanidium melanopterum Glanidium neivai Glanidium sp. Gymnocorymbus ternetzi Gymnorhamphichthys hypostomus Gymnotus carapo
Monogenoidea Isopoda Acanthocephala Isopoda Monogenoidea Nematoda Cestoda Monogenoidea Trematoda Monogenoidea
Hemiancistris sp. Hemiancistrus scaphirhynchae Hemigrammus microstomus Hemidoras carinatus Hemiodus microlepis Hemiodus orthonops Hemiodus (=Hemiodopsis) semitaeniatus
Monogenoidea Monogenoidea Monogenoidea Isopoda Trematoda Nematoda Monogenoidea
Pseudocladorchis ferrumequinum Pseudodiplodiscus cornu Pseudocladorchis ferrumequinum Pseudodiplodiscus cornu Henneguya theca Myxobolus inaequus Urocleidoides virescens Echinostoma annulatum Eutetrarhynchus araya Rhinebothroides scorzai Paraseuratum albidum Procamallanus (S.) paraensis Oogyrodactylus farlowellae Wolffhugelia matercula Myxobolus galaxii Myxobolus magellanicus Phylureter trygonopsis Dolops sp. Gyrodactylus geophagensis Cosmoxynemoides aguirrei Procamallanus peraccuratus Neoechinorhynchus paraguayensis Artystone trysibia Argulus multicolor Cosmoxynemoides aguirrei Ichthyouris ro Sciadicleithrum geophagi Telotha henselii Quadrigyrus torquatus Cymothoa gerris Scleroductus spp. Rhabdochona acuminata Brayela karuatayi Diaphorocleidus armillatus Amazonadistoma negrensis Urocleidoides carapus Urocleidoides gymnotus Unilatus dissimilis Unilatus scaphirhynchae Urocleidoides microstomus Vanamea symmetrica Rondotrema microvitellarium Procamallanus (S.) paraguayensis Cleidodiscus microcirrus
473
474
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Hemiodus (=Hemiodopsis) semitaeniatus Hemisorubim platyrhynchus Hemisorubim sp. Holobrycon pesu Hoplerythrinus unitaeniatus
Monogenoidea Monogenoidea Branchiura Copepoda Nematoda
Acanthocephala
Hoplias lacerdae Hoplias macrophthalmus Hoplias malabaricus
Branchiura Nematoda Isopoda Myxozoa Monogenoidea Nematoda
Acanthocephala
Hirudinea Copepoda
Branchiura
Isopoda Hydrolycus pectoralis
Copepoda
Monocleithrium lavergneage Vancleavius platyrhynchi Dolops discoidalis Ergasilus holobryconis Guyanema seriei Guyanema seriei paraguayensis Procamallanus (S.) krameri Quadrigyrus brasiliensis Quadrigyrus nickoli Dolops discoidalis Procamallanus (S.) inopinatus Paracymothoa tholoceps Henneguya malabarica Gyrodactylus trairae Urocleidoides eremitus Capillaria zederi Capillostromgyloides sentinosa Guyanema baudi Klossinemella iheringi Paracapillaria piscicola Paraseuratum soaresi Procamallanus (S.) hilarii Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Procamallanus (S.) wrighti Grasilisentis variabilis Neoechinorhynchus paraguayensis Quadrigyrus brasiliensis Quadrigyrus torquatus Myzobdella platense Bedsylernaea collaris Ergasilus iheringi Pindapixara tarira Taurocherus tarangophilus Argulus carteri Argulus spinulosus Argulus violaceus Dolops discoidalis Dolops geayi Dolops reperta Dolops striata Braga patagonica Telotha henselii Brasergasilus mamorensis
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Hydrolycus scomberoides Hydrolycus sp. Hyphessobrycon callistus Hyphessobrycon strictus Hypophthalmus edentatus
Copepoda Branchiura Trematoda Isopoda Monogenoidea Nematoda Copepoda
Hypophthalmus fimbriatus
Copepoda
Hypopomus sp. Hypoptopoma thoracathum Hypostomus albopunctatus
Branchiura Trematoda Monogenoidea Nematoda
Hypostomus Hypostomus Hypostomus Hypostomus
auroguttatus bolivianus carinatus commersonii
Hypostomus Hypostomus Hypostomus Hypostomus Hypostomus
derbyi lituratus marginatus melanopterus plecostomus
Acanthocephala Monogenoidea Acanthocepala Trematoda Nematoda Branchiura Nematoda Acanthocephala Monogenoidea Acanthocephala Trematoda
Acanthocephala Hypostomus punctatus Hypostomus robinii
Monogenoidea Trematoda Monogenoidea
Hypostomus sp.
Monogenoidea Nematoda Isopoda
Iheringichthys labrosus
Monogenoidea
Ergasilus hydrolycus Argulus multicolor Glandulorhynchus turgidus Paracymothoa parva Urocleidoides strictus Paracamallanus amazonensis Ergasilus hypophthalmi Prehendorastrus bidentatus Prehendorastrus monodontus Prehendorastrus bidentatus Prehendorastrus monodontus Argulus chicomendesi Micramphistoma ministoma Trinigyrus tentaculoides Procamallanus (S.) annipetteae Raphidascaris (S.) mahnerti Gracilisentis variabilis Unilatus anoculus Gorytocephalus elongorchis Gonocercella magnifica Raphidascaris (S.) mahnerti Argulus violaceus Raphidascaris (S.) mahnerti Gracilisentis variabilis Trinigyrus mourei Gracilisentis variabilis Eocreadium intermedium Gonocercella magnifica Megacoelium plecostomi Gorytocephalus plecostomorum Gracilisentis variabilis Phanerothecium spinatus Kalitrema kalitrema Trinigyrus hypostomatis Unilatus unilatus Heterotylus heterotylus Unilatus brittani Raphidascaris (S.) hypostomi Braga nasuta Braga fluviatilis Demidospermus labrosis Demidospermus mandi Pseudovancleaveus paranaensis Pseudovancleaveus platensis
475
476
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Iheringichthys labrosus
Trematoda
Iheringichthys westermanni
Isopoda Monogenoidea
Laemolyta taeniata Lahilliela (=Schizodon) kneri Lebiasina bimaculata
Copepoda Trematoda Monogenoidea
Lebiasina multimaculata Leiarius marmoratus Lepidosiren paradoxa
Nematoda Branchiura Myxozoa Trematoda Isopoda Trematoda Nematoda
Leporellus vittatus Leporinodus vittatus
Liporinus agassizii Leporinus copelandi
Leporinus elongatus
Monogenoidea Trematoda Nematoda
Isopoda Trematoda Nematoda
Leporinus fasciatus
Monogenoidea Trematoda Nematoda
Copepoda Branchiura
Crepidostomum platense Sanguinicola coelomicola Telotha silurii Demidospermus cornicinus Demidospermus leptosynophallus Ergasilus triangularis Paralecithobotrys brasiliensis Gyrodactylus bimaculatus Gyrodactylus lebiasinus Gyrodactylus slendrus Procamallanus (S.) inopinatus Dolops discoidalis Agarella gracilis Kalipharynx piramboae Riggia brasiliensis Saccocoelioides leporinodus Acyracanthus schubarti Paracapillaria piscicola Procamallanus (S.) inopinatus Rhabdochona acuminata Rhinoxenus euryxenus Creptotrema lynchi Acyracanthus schubarti Cucullanus mogi Cucullanus pinnai Paracapillaria piscicola Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Riggia brasiliensis Creptotrema creptotrema Paralecithobotrys brasiliensis Capillostrongyloides sentinosa Klossinemella iheringi Procamallanus (S.) amarali Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Tereancistrum parvus Prosthenhystera obesa Klossinemella iheringi Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Ergasilus leporinidis Brasergasilus guaporensis Dolops striata
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Leporinus fasciatus
Isopoda
Leporinus friderici
Nematoda
Leporinus lacustris
Monogenoidea Nematoda Myxozoa
Leporinus mormyrops Leporinus muyscorum Leporinus obtusidens Leporinus octofasciatus
Leporinus piau Leporinus reinhardti Leporinus striatus Leporinus taeniatus Leporinus sp.
Trematoda Trematoda Trematoda Nematoda
Isopoda Nematoda Nematoda Isopoda Nematoda Nematoda Trematoda Nematoda
Loricaria vetula Loricariichthys brunneus
Branchiura Monogenoidea Trematoda Branchiura Isopoda Nematoda Myxozoa Trematoda Trematoda Nematoda
Loricariichthys platymetopon Loricariidae Luciopimelodus (=Pimelodus) pati
Nematoda Isopoda Nematoda
Loricaria anus
Loricaria laticeps Loricaria sp.
Livoneca guianensis Nerocila armata Dichelyne leporine Procamallanus (S.) inopinatus Kritskyia eirasi Procamallanus (S.) inopinatus Henneguya leporini Myxobolus associatus Chalcinotrema lucieni Saccocoelioides magniovatus Creptotrema lynchi Ancyracanthus schubarti Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Riggia brasiliensis Procamallanus (S.) inopinatus Procamallanus (S.) inopinatus Riggia nana Procamallanus (S.) inopinatus Procamallanus (S.) inopinatus Creptotrema creptotrema Prosthenhystera obesa Capillaria minima Capillostrongylus sentinosa Cucullanus mogi Procamallanus (S.) amarali Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Procamallanus (S.) wrighti Dolops striata Demidospermus anus Saccocoelioides quintus Argulus violaceus Braga fluviatilis Raphidascaris (S.) mahnerti Henneguya occulta Halipegus tropicus Procaudotestis uruguayensis Guyanema longispiculum Raphidascaris (S.) mahnerti Sprentascarus mahnerti Asotana splendida Cucullanus pinnai Cucullanus zungaro
477
478
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Luciopimelodus (=Pimelodus) pati
Nematoda
Lycengraulis grossidens
Branchiura Copepoda
Lycengraulis sp. Markiana geayi Megalancistrus brasiliensis Megalodoras irwini Megalodoras sp. Megalonema platinum
Isopoda Acanthocephala Nematoda Nematoda Trematoda Branchiura Nematoda
Menticirrhus litoralis Metynis maculates Monochir maculipennis (=Achirus achirus) Mylesinus paraschomburgkii
Isopoda Isopoda Acanthocephala Monogenoidea Trematoda
Nematoda Mylesinus paucisquamatus Myletes edulus Myleus (Myloplus)asterias
Monogenoidea Nematoda Trematoda
Myleus pacu Myleus rhomboidalis Myleus (Myloplus) rubripinnis
Monogenoidea Monogenoidea Monogenoidea
Trematoda
Myleus sp.
Isopoda Trematoda
Dichelyne moraveci Philometra alii Rondonia rondoni Dipteropeltis hirundo Acusicola lycengraulidis Ergasilus euripedesi Excorallana berbicensis Neoechinorhynchus macronucleatus Procamallanus (S.) inopinatus Ichthyouris brasilienis Doradamphistoma bacuensis Dolops geayi Cucullanus pinnai Dichelyne moraveci Cymothoa catarinensis Isonebula maculatus Gracilisentis variabilis Notozothecium bethae Alphamphistoma canoeforma Betamphistoma jariense Deltamphistoma pitingaense Gammamphistoma collaris Pseudocladorchis cylindricus Saccocoelioides rotundus Zetamphistoma compacta Klossinemella iheringi Rondonia rondoni Notozothecium bethae Rondonia rondoni Annelamphistoma elegans Dadayius pacuensis Inpamphistoma papillatum Notozothecium bethae Notozothecium bethae Anacanthorus hoplophallus Anacanthorus pedanophallus Anacanthorus spinatus Anacanthorus stagmophallus Notothecioides llewellyni Annelamphistoma elegans Dadayius pacuensis Vanamea symmetrica Curumai curumai Dadaytrema elongata
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Myleus sp.
Nematoda
Myleus ternetzi
Nematoda
Myleus torquatus
Mylossoma aureum
Monogenoidea Trematoda Nematoda Trematoda
Mylossoma paraguayense Mylossoma duriventris Nannostomus beckfordi Odonthestes (= Basilichthys) bonariensis Odontostilbe paraguayensis Onchorhynchus mykiss Ossubtus xinguense Osteoglossum bicirrhosum
Acanthocephala Monogenoidea Isopoda Branchiura Isopoda Isopoda Isopoda Monogenoidea
Otocinclus vestitus Oxydoras kneri Oxydoras niger (=Pseudodoras niger)
Trematoda Nematoda Isopoda Nematoda Monogenoidea
Pachyurus bonariensis Pachyurus junki Pacu nigricans Parapimelodus valenciennis Parauchenipterus galeatus
Cestoda Nematoda Acanthocephala Branchiura Nematoda Branchiura Monogenoidea Acanthocephala Monogenoidea Monogenoidea
Klossinemella iheringi Myleusnema brasiliense Rondonia rondoni Myleusnema bicornis Spinoxyuris annulata Notothecioides llewellyni Dadaytrema oxycephala Rondonia rondoni Dadayius marenzelleri Microrchis megacotyle Pseudocladorchis cylindricus Pseudocladorchis nephrodorchis Echinorhynchus salobrense Anacanthorus paraspathulatus Artystone minima Argulus violaceus Riggia cryptocularis Anilocra montti Anphira xinguensis Gonocleithrum aruanae Gonocleithrum coenoideum Gonocleithrum cursitans Gonocleithrum planacroideum Gonocleithrum planacrus Telethecium nasalis Caballerotrema aruanense Camallanus acaudatus Artystone bolivianensis Spinoxyuris oxydoras Cosmetocleithrum confusus Cosmetocleithrum gussevi Cosmetocleithrum parvum Cosmetocleithrum rarum Cosmetocleithrum sobrinus Proteocephalus kuyukuyu Cucullanus grandistomis Paracavisoma impudica Dolops longicauda Spinitectus pachyuri Argulus juparanaensis Euryhalotrema dontycoleos Echinorhynchus gomezi Demidospermus valenciennesi Demidospermus uncusvalidus
479
480
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Parauchenipterus striatulus Paulicea lütkeni
Monogenoidea Monogenoidea Nematoda
Pellona castelnaeana
Pellona flavipinnis Percichthys melanops Percichthys trucha
Trematoda Copepoda Branchiura Monogenoidea Acanthocephala Monogenoidea
Petenia splendida
Branchiura Hirudinea Monogenoidea
Phractocephalus hemiliopterus (=Pirarara bicolor)
Monogenoidea
Cestoda
Branchiura Piabucina sp. Piaractus brachypomus (=Colossoma bidens)
Piaractus mesopotamicus Pimelodella albicans Pimelodella gracilis Pimelodella lateristriga
Nematoda Ciliophora Monogenoidea Trematoda Nematoda
Acanthocephala Copepoda Monogenoidea Nematoda Nematoda Nematoda
Scleroductus spp. Unibarra paranoplatensis Cucullanus paulicea Cucullanus pinnai Cucullanus schubarti Cucullanus zungaro Bacciger pellonae Acusicola pellonidis Dolops carvalhoi Telethecium paniculum Pomphorhynchus yamagutii Acolpenteron australe Duplaaccessorius andinus Argulus patagonicus Theromyzon propinquum Sciadicleithrum bravohollisae Sciadicleithrum splendidae Urocleidoides amazonensis Urocleidoides catus Vancleaveus cicinnus Ephedrocephalus microcephalus Myzophorus pirarara Zygobothrium megacephalum Dolops carvalhoi Dolops discoidalis Rhabdochona uruyeni Nyctotherus piscicola Mymarothecium viatorum Dadaytrema oxycephala Klossinemella iheringi Rondonia rondoni Spectatus spectatus Echinorhynchus jucundum Perulernaea pirapitingae Anacanthorus penilabiatus Cucullanus pinnai Cucullanus pinnai Brasilnema pimelodellae Cucullanus pimelodellae Procamallanus (S.) pimelodus Procamallanus (S.) rarus Rhabdochona acuminata Spinitectus rudolphiheringi Spinitectus yorkei
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Pimelodella laticeps Pimelodella maculates Pimelodella sp.
Pimelodella yuncensis Pimelodidae Pimelodus albicans
Pimelodus clarias
Monogenoidea Nematoda Myxozoa Monogenoidea Nematoda Monogenoidea Acanthocephala Myxozoa Monogenoidea
Branchiura Myxozoa Ciliophora
Monogenoidea
Trematoda
Nematoda
Isopoda Pimelodus grosskopfii Pimelodus maculatus
Monogenoidea Monogenoidea
Nematoda Pimelodus maculatus
481
Aphanoblastella travassosi Cucullanus pinnai Myxobolus stokesi Scleroductus spp. Spinitectus multipapillata Gyrodactylus pimelodellus Scleroductus yuncensi Acanthodelta scorzai Myxobolus sp. Cosmetocleithrum longivaginatum Demidospermus armostatus Demidospermus bidiverticulatum Demidospermus idolus Demidospermus majusculus Vancleaveus cicinnus Argulus violaceus Myxobolus cunhai Myxobolus inaequalis Balantidium piscicola Nyctotherus piscicola Zelleriella piscicola Demidospermus armostus Demidospermus bidiverticulatum Demidospermus paravalenciennesi Demidospermus uncusvalidus Crepidostomum platense Halipegus tropicus Parspina argentinensis Cucullanus pinnai Philometra baylisi Rondonia rondoni Procamallanus (S.) rarus Procamallanus (S.) pimelodus Livoneca guianensis Telotha henselii Urocleidoides lebedevi Ameloblastella platensis Demidospermus bidiverticulatum Paramphocleithrium bidiverticulatum Pseudovancleaveus platensis Unibarra paranoplatensis Cucullanus debacoi Cucullanus fabregasi Cucullanus patoi
482
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Pimelodus maculatus
Nematoda
Pimelodus megacephalus
Trematoda
Pimelodus ornatus Pimelodus ortmanni Pimelodus (=Luciopimelodus) pati
Trematoda Nematoda Nematoda Cestoda
Pimelodus sp. Pinirampus pirinampu
Branchiura Myxozoa Monogenoidea Cestoda
Pirarara bicolor (=Phractocephalus hemioliopterus) Plagioscion sp.
Nematoda Cestoda Monogenoidea
Plagioscion squamosissiumus
Monogenoidea
Trematoda Acanthocephala Copepoda
Platydoras costatus Platystoma sp. (=Sorubim lima) Platystomatichthys sturio
Branchiura Cestoda Cestoda Isopoda Cestoda
Cucullanus riograndensis Procamallanus (S.) freitasi Spinitectus sternopygi Raphidascaris (S.) pimelodi Dadaytrema oxycephala Pseudoclardorchis cylindricus Pseudocladorchis cylindricus Cucullanus pinnai Procamallanus (S.) pimelodus Monticellia piracatinga Nominoscolex piracatinga Proteocephalus fossatus Rudolphiella lobosa Dipteropeltis hirundo Myxobolus stokesi Demidospermus luckyi Demidospermus pinirampi Myzophorus admonticellia Rudolphiella myoides Rudolphiella piranabu Philometra alii Zygobothrium megacephalum Diplectanum hilum Diplectanum pescadae Diplectanum decorum Diplectanum gymnopeus Diplectanum pescadae Diplectanum piscinarius Euryhaliotrema chaoi Euryhaliotrema lovejoyi Euryhaliotrema monacanthus Euryhaliotrema potamocetes Euryhaliotrema succedaneus Euryhaliotrema thatcheri Brasicystis bennetti Rhadinorhynchus plagioscionis Therodamas elongatus Therodamas tamarae Dolops sp. Proteocephalus renaudi Proteocephalus soniae Manaosia bracodemoca Braga fluviatilis Monticellia megacephala
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Platystomatichthys sturio
Cestoda
Plecostomus bolivianus Plecostomus plecostomus Plecostomus sp.
Monogenoidea Monogenoidea Monogenoidea
Pleuronectes sp. Poecilia caucana
Acanthocephala Monogenoidea
Poecilia reticulata
Monogenoidea
Poecilia sphenops
Monogenoidea
Poecilia vivipara Pogonias chromis Pogonias sp. Potamorhina latior Potamotrygon circularis
Myxozoa Isopoda Isopoda Copepoda Monogenoidea Cestoda
Potamotrygon falkneri
Nematoda Cestoda
Potamotrygon hystrix
Cestoda
Nematoda
Potamotrygon magdalenae
Acanthocephala Cestoda
Potamotrygon motoro
Cestoda
483
Nominoscolex lenha Ornithoscolex lenha Peltidocotyle lenha Spasskyellina lenha Woodlandiella myzophora Unilatus anoculus Phanerothecium harrisi Unilatus brittani Unilatus unilatus Gracilisentis variabilis Gyrodactylus poeciliae Gyrodactylus milleri Gyrodactylus bullatarudis Gyrodactylus tumbulli Urocleidoides minuta Urocleidoides reticulatus Gyrodactylus bullatarudis Gyrodactylus costaricensis Myxobolus lutzi Braga fluviatilis Braga patagonica Miracetyma etimaruya Paraheteronchocotyle amazonensis Potamotrygonocotyle tsalickisi Acanthobothrium amazonensis Potamotrygonocestus amazonensis Rhinebothroides circularisi Echinocephalus daileyi Eutetrarhynchus araya Rhinebothrium paratrygoni Acanthobothrium regoi Eutetrarhynchus araya Rhinebothrium paratrygoni Rhinebothroides freitasi Rhinebothroides glandularis Rhinebothroides venezuelensis Echinocephalus daileyi Terranova diazungriai Megapriapus ungriai Acanthobothrium quinonesi Potamotrygonocestus magdalenensis Rhinebothroides moralarai Rhinebothroides scorzai Acanthobothrium terezae
484
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Potamotrygon motoro
Cestoda Nematoda
Potamotrygon reticulatus
Cestoda
Potamotrygon yepezi
Cestoda
Pristis perotteti Pristobrycon eigenmanni
Cestoda Monogenoidea
Pristobrycon sp.
Monogenoidea
Pristobrycon striolatus
Monogenoidea
Eutetrarhynchus araya Rhinebothroides scorzai Brevimulticaecum regoi Procamallanus (S.) inopinatus Eutetrarhynchus araya Potamotrygonocestus amazonensis Potamotrygonocestus orinocoensis Rhinebothrium paratygoni Rhinebothroides scorzai Potamotrygonocestus amazonensis Rhinebothroides venezuelensis Anthobothrium pristis Amphithecium minutum Amphithecium muricatum Amphithecium verecundum Anacanthorus beleophallus Anacanthorus gravihamulatus Anacanthorus jegui Anacanthorus mastigophallus Anacanthorus mesocondylus Anacanthorus xaniophallus Enallothecium comutum Mymarothecium galeolum Notozothecium teinodendrum Amphithecium diclonophallum Amphithecium falcatum Amphithecium minutum Amphithecium pretiosum Anacanthorus jegui Anacanthorus mesocondylus Anacanthorus palamophallus Anacanthorus serrasalmi Anacanthorus xaniophallus Enallothecium segidatum Enallothecium comutum Mymarothecium dactylotum Mymarothecium goleolum Notozothecium foliolum Notozothecium teinodendrum Amphithecium prodotum Anacanthorus cinctus Anacanthorus crytocaulus Anacanthorus lasiophallus Enallothecium variabilum
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Pristobrycon striolatus
Monogenoidea
Prochilodus lineatus
Trematoda Monogenoidea
Prochilodus nigricans
Prochilodus platensis Prochilodus reticulatus
Trematoda Monogenoidea Trematoda Copepoda Branchiura Trematoda Monogenoidea Trematoda
Prochilodus platensis Prochilodus scrofa Psectrogaster essequibensis Psectrogaster rutiloides
Nematoda Acanthocephala Nematoda Nematoda Copepoda Monogenoidea
Pseudauchenipterus nodosus Pseudocurimata (=Cyphocharax) plumbea Pseudocurimata gilberti
Isopoda Nematoda Monogenoidea
Pseudodoras niger
Nematoda Acanthocephala Trematoda Myxozoa Monogenoidea
Pseudopimelodus roosevelti Pseudopimelodus (=Cephalosilurus) zungaro
Trematoda Cestoda Nematoda
Pseudoplatisma sp.
Monogenoidea
Notozothecium robustum Pithanothecium piranhus Anavilhanatrema robusta Kritskyia boegeri Rhinoxenus curimbatae Saccocoelioides nanii Rhinonastes pseudocapsaloideum Lecithobotrioides elongatus Ergasilus urupaensis Argulus chicomendesi Dolops bidentata Sanguinicola argentinensis Anacanthoroides mizellei Tereancistrum omatus Colocladorchis ventrastomis Lecithobotrioides mediacanoensis Unicoelium prochilodorum Spinitectus asperus Neoechinorhynchus prochilodorum Spinitectus asperus Spinitectus asperus Miracetyma etimaruya Anacanthorus amazonicus Annulotrematoides amazonicus Nerocila armata Travnema travnema Androspira chascomusensis Androspira triangula Curvianchoratus singularis Cucullanus grandistomis Paracavisoma impudica Iheringtrema iheringi Henneguya lutzi Phanerothecium caballeroi Urocleidoides mamaevi Prosthenhystera obesa Amphoteromorphus parkarmoo Cucullanus oswaldocruzi Cucullanus pinnai Cucullanus zungaro Procamallanus (S.) iheringi Rondonia rondoni Amphocleithrium paraguayensis Pavanelliella pavanelli
485
486
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Pseudoplatystoma corruscans
Branchiura Nematoda
Pseudoplatystoma fasciatum
Myxozoa Monogenoidea Cestoda
Nematoda Branchiura
Pseudoplatystoma tigrinum
Monogenoidea Trematoda Cestoda
Branchiura
Pseudoplatystoma sp.
Monogenoidea Cestoda Nematoda
Pseudotylosurus angusticeps Pterodoras granulosus
Branchiura Copepoda Monogenoidea Trematoda
Nematoda
Argulus silvestrii Cucullanus pseudoplatystomae Goezia brasiliensis Henneguya linearis Vancleaveus fungulus Monticellia rugosa Myzophorus sorobim Nominoscolex sorobim Nominoscolex woodlandi Spasskyellina spinulifera Dichelyne moraveci Argulus juparanaensis Argulus pestifer Dolops carvalhoi Dolops discoidalis Vancleavius fungulus Witenbergia witenbergia Monticellia surubim Nominoscolex kaparari Peltidocotyle rugosa Argulus chicomendesi Argulus pestifer Dolops carvalhoi Dolops discoidalis Amphocleithrium paraguayensis Monticellia surubim Proteocephalus platystomi Cucullanus pinnae Contracaecum sp. (larvae) Eustrongylides sp. (larvae) Argulus nattereri Acusicola cunula Cosmetocleithrum bulbocirrus Vancleavius janauacaensis Dadaytrema oxycephala Pseudocladorchis cylindricus Pseudocladorchis ferrumequinum Cucullanus pinnai Klossinemella iheringi Neoparaseuratum travassosi Paracamallanus brasiliensis Procamallanus (S.) inopinatus Raphidascaroides brasiliensis Rondonia rondoni
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Pterodoras granulosus Pterophyllum scalare
Acanthocephala Branchiura Monogenoidea
Pterygoplichthys aculeatus Pterygoplichthys multiradiatus
Nematoda Monogenoidea
Pterygoplichthys pardalis Pterygoplichthys sp. Pygidium (=Trichomycterus) brasiliensis Pygidium (=Trichomycterus) punctulatum
Trematoda Trematoda Nematoda Nematoda
Pygocentrus nattereri
Monogenoidea
.
Copepoda
Pygocentrus sp.
Branchiura Nematoda
Neoechinorhynchus pterodoridis Dolops longicauda Gussevia spiralocirrus Sciadicleithrum iphthimum Ichthyyouris brasiliensis Unilatus brevispinus Unilatus longispinus Megacoelium spinicavum Megacoelium spinispecum Procamallanus (S.) pexatus Procamallanus (S.) chimusensis Procamallanus (S.) incarocai Amphithecium brachycirrum Amphithecium calycinum Amphithecium camelum Amphithecium catalaoensis Amphithecium falcatum Amphithecium junki Amphithecium microphallum Anacanthorus anacanthorus Anacanthorus brazilensis Anacanthorus maltai Anacanthorus neotropicalis Anacanthorus reginae Anacanthorus rondonensis Anacanthorus stachophallus Anacanthorus thatcheri Calpidothecioides orthus Calpidothecium crescentis Calpidothecium serrasalmus Cleidodiscus serrasalmus Enallothecium aegidatum Mymarothecium galeolum Notothecium mizellei Notozothecium minor Notozothecium penetrarum Pithanothecium amazonensis Pithanothecium piranhus Rhinoxenus piranhus Rhinergasilus piranhas Miracetyma piraya Argulus chicomendesi Procamallanus (S.) inopinatus Procamallanus (S.) wrighti
487
488
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Pygopristis denticulata
Monogenoidea
Rhamdia guatemalensis
Monogenoidea
Rhamdia quelen
Myxozoa Monogenoidea
Rhamdia rogersi
Rhamdia sapo
Rhamdia sebae
Rhamdia sp.
Trematoda Nematoda Copepoda Branchiura Monogenoidea Trematoda Monogenoidea Nematoda Branchiura Hirudinea Myxozoa Monogenoidea Monogenoidea Cestoda
Rhaphiodon vulpinus
Branchiura Nematoda Copepoda Branchiura
Rhamphichthys rostratus
Nematoda Copepoda Branchiura
Rhinelepis aspera Rhineloricaria sp. Rhinodoras d’orbignyi Rhinodoras d’orbignyi
Nematoda Monogenoidea Trematoda Nematoda
Calpidothecioides pygopristi Calpidothecium crescentis Calpidothecium serrasalmus Pithanothecium amazonensis Pithanothecium piranhus Ameloblastella chavarriai Aphanoblastella travassosi Henneguya sp. Myxobolus sp. Ameloblastella chavarriai Aphanoblastella travassosi Kritskyia moraveci Scleroductus spp. Acanthostomum gnerii Procamallanus (S.) hilarii Ergasilus thatcheri Argulus violaceus Ameloblastella chavarriai Aphanoblastella travassosi Acanthostomum gnerii Aphanoblastella mastigatus Hysterothylacium rhamdiae Argulus violaceus Myzobdella uruguayensis Henneguya linearis Ameloblastella chavarriai Aphanoblastella travassosi Aphanoblastella robustus Aphanoblastella travassosi Megathylacus jandia Proteocephalus jandia Argulus chromidis Guyanema raphiodoni Miracetyma kawa Argulus multicolor Dolops carvalhoi Cucullanus rhampichthydis Miracetyma kawa Argulus multicolor Dolops carvalhoi Parasynodontisia petterae Hyperopletes malmbergi Paleocryptogonimus claviformis Procamallanus (S.) rarus
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Rhytiodus argenteofuscus Rhytiodus microlepis
Monogenoidea Monogenoidea Branchiura
Rivulus harti
Monogenoidea
Roeboides bonariensis
Trematoda
Roeboides myersi Saccodon caucae
Monogenoidea Trematoda
Salminus affinis
Monogenoidea
Salminus brevidens
Trematoda Nematoda Copepoda Branchiura
Salminus hilarii
Trematoda
Nematoda
Salminus maxillosus
Isopoda Monogenoidea Trematoda
Nematoda
Rhinoxenus arietinus Urocleidoides paradoxus Argulus sp. Dolops bidentata Cycloplectanum americanum Pseudorhabdosynochus sp. Crepidostomum macrorchis Halipegus genarchella Anacanthorus dipelecinus Saccocoelioides magnorchis Saccocoelioides saccodontis Anacanthorus colombianus Anacanthorus cuticulovaginus Prosthenystera obesa Agamonema sp. larvae Taurocheros salminisii Argulus nattereri Argulus salmini Dipteropeltis hirundo Dolops longicauda Bellumcorpus major Cladocystis intestinalis Pararhipidocotyle jeffersoni Prosorhynchus costai Cystidicoloides fischeri Klossinemella iheringi Neocucullanus neocucullanus Paracapillaria piscicola Philometroides maplestonei Procamallanus (S.) hilarii Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Spinitectus rudolphiheringi Braga patagonica Rhinoxenus bulbovaginatus Cladocystis intestinalis Dadaytrema oxycephala Halipegus dubius Pararhipidocotyle jeffersoni Prosorhynchus schubarti Prosthenhystera obesa Freitascapillaria maxillosa Cucullanus interrogativus Cystidicoloides fischeri
489
490
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Salminus maxillosus
Nematoda
Branchiura
Salminus spp.
Isopoda
Sargus sp. Scatophagus argus
Isopoda Monogenoidea
Schizodon borelli
Nematoda
Schizodon fasciatus
Monogenoidea Trematoda Nematoda Acanthocephala Copepoda Branchiura
Schizodon knerii Schizodon nasutum
Nematoda Isopoda Nematoda
Semaprochilodus insignis
Copepoda
Semaprochilodus taeniurus Serrasalmus compressus
Monogenoidea Monogenoidea
Serrasalmus elongatus
Monogenoidea
Neocucullanus neocucullanus Paracapillaria piscicola Philometra paraguayensis Procamallanus (S.) inopinatus Argulus paranensis Argulus paulensis Argulus pestifer Argulus salmini Dipteropeltis hirundo Dolops discoidalis Dolops geayi Dolops longicauda Dolops nana Braga fluviatilis Braga patagonicus Cymothoa brasiliensis Metahaliotrema scatophagi Metahaliotrema yamagutii Cucullanus pinnai Procamallanus (S.) iheringi Rhinoxenus arietinus Rhinoxenus nyttus Saccocoelioides szidati Dichelyne leporini Procamallanus (S.) iheringi Octospiniferoides incognita Gamispatulus schizodontis Argulus chicomendesi Dolops striata Procamallanus (S.) inopinatus Riggia brasiliensis Capillostrongyloides sentinosa Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Brasergasilus jaraquensis Ergasilus jaraquensis Gamidactylus jaraquensis Gyrodactylus gemini Amphithecium diclonophallum Amphithecium falcatum Enallothecium aegidatum Enallothecium cornutum Enallothecium umbelliferum Amphithecium diclonophallum
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Serrasalmus elongatus
Monogenoidea
Serrasalmus gouldingi
Isopoda Monogenoidea
Serrasalmus manuelli
Nematoda Nematoda Monogenoidea
Serrasalmus marginatus
Monogenoidea
Serrasalmus (=Pygocentrus) nattereri
Nematoda Monogenoidea
Amphithecium falcatum Amphithecium speirocamarotum Anacanthorus lepyrophallus Anacanthorus mesocondylus Anacanthorus prodigiosus Anacanthorus ramosissimus Anacanthorus sciponophallus Anacanthorus serrasalmi Enallothecium aegidatum Notothecium deleastum Notozothecium teinodendrum Vanamea symmetrica Amphithecium diclonophallum Amphithecium falcatum Amphithecium minutum Amphithecium pretiosum Enallothecium aegidatum Enallothecium comutum Heterothecium globatum Mymarothecium galeolum Notothecium circellum Notothecium deleastum Notozothecium teinodendrum Rhinoxenus euryxenus Procamallanus (S.) inopinatus Procamallanus (S.) inopinatus Amphithecium falcatum Amphithecium pretiosum Notozothecium teinodendrum Kritskyia annakohnae Rhinoxenus euryxenus Procamallanus (S.) inopinatus Amphithecium brachycirrum Amphithecium calycinum Amphithecium camelum Amphithecium catalaoensis Amphithecium falcatum Amphithecium junki Anacanthorus anacanthorus Anacanthorus brazilensis Anacanthorus maltai Anacanthorus neotropicalis Anacanthorus reginae Anacanthorus rondonensis
491
492
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Serrasalmus (=Pygocentrus) nattereri
Monogenoidea
Nematoda Copepoda Branchiura
Serrasalmus (=Pygocentrus) piraya
Serrasalmus rhombeus
Serrasalmus spilopleura
Isopoda Myxozoa Branchiura Myxozoa Monogenoidea
Trematoda Isopoda Myxozoa Monogenoidea
Anacanthorus thatcheri Cleidodiscus amazonensis Notothecium aegidatum Notothecium mizellei Notozothecium penetrarum Notozothecium minor Procamallanus (S.) inopinatus Rhinergasilus piranhus Argulus multicolor Argulus sp. Dolops bidentata Dolops carvalhoi Dolops longicauda Amphira branchialis Myxobolus cunhai Myzobolus pygocentris Dipteropeltis hirundo Myxobolus serrasalmi Amphithecium diclonophallum Amphithecium falcatum Amphithecium junki Amphithecium muricatum Anacanthorus amazonicus Anacanthorus gravihamulatus Anacanthorus jegui Anacanthorus prodigiosus Anacanthorus sciponophallus Anacanthorus serrasalmi Enallothecium aegidatum Enallothecium cornutum Enallothecium umbelliferum Mymarothecium dactylotum Mymarothecium galeolum Mymarothetcium whittingtoni Notothecium cyphophallum Notothecium deleastum Notothecium phyleticum Notozothecium teinodendrum Rhinoxenus euryxenus Prosorhynchus piranhus Vanamea symmetrica Henneguya iheringi Myxobolus noguchii Amphithecium falcatum
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Serrasalmus spilopleura
Monogenoidea
Nematoda Isopoda Serrasalmus sp.
Monogenoidea
Isopoda
Silurus palmito (=Ageneiosus sp.) Silurus sp.
Trematoda Cestoda
Amphithecium minutum Amphithecium unguiculum Anacanthorus cladophallus Anacanthorus jegui Anacanthorus mesocondylus Anacanthorus scapanus Anacanthorus sciponophallus Anacanthorus serrasalmi Enallothecium aegidatum Kritskyia annakohnae Mymarothecium perplanum Notothecium modestum Procamallanus (S.) inopinatus Amphira branchialis Vanamea symmetrica Amphithecium diclonophallum Amphithecium falcatum Amphithecium microphallum Amphithecium muricatum Amphithecium verecundum Anacanthorus amazonicus Anacanthorus gravihamulatus Anacanthorus jegui Anacanthorus lepyrophallus Anacanthorus mesocondylus Anacanthorus periphallus Anacanthorus prodigiosus Anacanthorus sciponophallus Anacanthorus serrasalmi Enallothecium aegidatum Enallothecium comutum Enallothecium umbelliferum Mymarothecium dactylotum Mymarothecium whittingtoni Notothecium deleastoideum Notothecium deleastum Notothecium reduvium Notozothecium teinodendrum Amphira branchialis Asotana magnifica Braga patagonica Vanamea symmetrica Microrchis megacotyle Choanoscolex abscisus
493
494
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Silurus sp. Sorubim lima (see Platystoma sp.) Sphaeroides testudineus Steindachneridion prahybae Stenarchus (=Apteronotus) brasiliensis Sternopygus macrurus
Cestoda Monogenoidea Ciliophora Nematoda Isopoda Nematoda
Strongylura fluviatilis Strongylura scapularis Srongylura incisa Strongylura sp. Symphysodon discus Synbranchus marmoratus
Tetragonopterus argenteus
Copepoda Copepoda Copepoda Copepoda Monogenoidea Nematoda Acanthocephala Branchiura Nematoda
Tetragonopterus chalceus Tetragonopterus sp.
Nematoda Nematoda
Thoracocharax sternicla Tilapia mossambica
Nematoda Monogenoidea
Trachydoras insignis Trachydoras paraguayensis
Nematoda Nematoda
Triportheus albus
Monogenoidea
Triportheus angulatus
Isopoda Monogenoidea
Monticellia coryphicephala Urocleidoides megorchis Trichodina fariai Cucullanus pinnai Telotha lunaris Cystidicoloides dlouhyi Spinitectus rudolphiheringi Ergasilus argulus Ergasilus argulus Ergasilus orientalis Acusicola tenax Sciadicleithrum variabilum Agamonema sp. (larvae) Quadrigyrus torquatus Dolops striata Paraseuratum albidum Rhabdochona acuminata Procamallanus (S.) saofranciscencis Rhabdochona elegans Procamallanus (S.) iheringi Procamallanus (S.) inopinatus Cichlidogyrus sclerosus Cichlidogyrus tilapiae Procamallanus (S.) penneri Ichthyouris laterifilamenta Neoparaseuratum travassosi Procamallanus (S.) inopinatus Rondonia rondoni Anacanthorus acuminatus Anacanthorus alatus Anacanthorus bellus Anacanthorus euryphallus Anacanthorus quinqueramis Anacanthorus ramulosus Ancistrohaptor falciferum Ancistrohaptor falcunculum Anphira junki Anacanthorus acuminatus Anacanthorus andersoni Anacanthorus carinatus Anacanthorus chaunophallus Anacanthorus chelophorus Anacanthorus cornutus Anacanthorus euryphallus
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Triportheus angulatus
Monogenoidea
Triportheus elongatus
Acanthocephala Monogenoidea
Triportheus flavus Triportheus cf. nematurus Triportheus paranensis
Nematoda Branchiura Isopoda Monogenoidea Trematoda Nematoda
Acanthocephala
Triportheus sp. Typhlias pearsei Uaru amphiacanthoides
Monogenoidea Nematoda Nematoda Monogenoidea
Vandelia cirrhosa Xiphophorus helleri
Isopoda Monogenoidea
Anacanthorus glyptophallus Anacanthorus lygophallus Anacanthorus nanus Anacanthorus pithophallus Anacanthorus tricornis Ancistrohaptor falciferum Ancistrohaptor falcunculum Palliolisentis quinqueungulis Anacanthorus acuminatus Anacanthorus alatus Anacanthorus bellus Anacanthorus calophallus Anacanthorus euryphallus Anacanthorus formosus Anacanthorus furculus Anacanthorus pelorophallus Anacanthorus quinqueramis Anacanthorus ramulosus Anacanthorus strongylophallus Anacanthorus tricornis Ancistrohaptor falcatum Ancistrohaptor falciferum Ancistrohaptor falcunculum Procamallanus (S.) inopinatus Dolops sp. Anphira junki Rhinoxenus anaclaudiae Chalcinotrema salobrensis Creptotrema dispar Spinitectus sternopygi Procamallanus (S.) inopinatus Spinitectus rudolphiheringi Echinorhynchus paranense Palliolisentis ornatus Palliolisentis quinqueungulis Ancistrohaptor falciferum Procamallanus (S.) barroslimai Rhabdochona kidderi Gusseva elephus Gusseva obtusa Sciadicleithrum tortrix Vanamea symmetrica Gyrodactylus rasini Urocleidoides vaginoclaustrum
495
496
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Xiphophorus hybrids Xiphostomum (=Boulengerella) cuvieri
Monogenoidea Trematoda
Gyrodactylus rasini Prosthenhystera obesa
Other hosts Plankton
Phylum or class Parasite Copepoda Anklobrachius marajoensis Vaigamus retrobarbatus Vaigamus spinicephalus
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
497
13. SUBJECT INDEX Abergasilinae, 337 Acanthicus hystrix, 80, 465 Acanthobothrium, 209, 211, 219, 222, 483, 484 Acanthocephala, 5, 7, 15, 16, 20, 21, 269, 299, 302, 303, 305, 311, 324 Acanthocheilidae, 239, 244 Acanthodelta, 302, 303, 305, 315, 481 Acanthogyridae, 302, 303, 305 Acanthostomidae, 118, 119, 126, 130, 131 Acanthostomum, 126, 130, 154, 488 Accessorius, 51,56,61,93 Acestrorhamphus, 30, 134, 135, 139, 264 Acestrorhynchus 154, 308, 387, 423, 465 falcatus, 308, 465 guyanensis, 423, 465 lacustris, 254, 465 Achiurus mazatlanus, 307 Acnodon 82, 422, 465 normani, 82, 465 oligacanthus, 422, 465 Acolpenteron, 47, 480 Acusicola, 328, 331, 333, 335, 338, 353, 354, 355, 356, 385, 470, 478, 480, 486, 494 Acusicolinae, 327, 333, 335, 337, 338, 340 Aequidens, 86, 131, 307, 399, 465, 466 maroni, 86, 465 pulcher, 131, 307, 399, 466 Agarella, 28, 29, 34, 476 Ageneiosus brevifilis, 214, 215, 342, 426, 466 Alaria, 120 Allocreadiidae, 118, 126, 130, 131 1
Figures in bold
1
Alphamphistoma, 124, 128, 145, 185, 195, 478 Amazolernaea, 334, 336, 343, 377, 469, 470 Amazonadistoma, 126, 130, 138, 155, 473 Amazonicopeus, 329, 330 Ameloblastella, 55, 59, 64, 96, 465, 481, 488 Amphilinidae, 209, 211, 213 Amphilinidea, 206, 213 Amphilophus alfari, 86 Amphithecium, 43, 47, 53, 58, 65, 96, 469, 484, 487, 490, 491, 492, 493 Amphoteromorphus, 209, 211, 213, 223, 224, 468, 485 Amplexibranchius, 328, 338, 367, 368, 468 Amplexibranchus, 333, 335 Anacanthocotyle, 51, 55, 61, 62, 94, 467 Anacanthoroides, 51, 56, 66, 96, 485 Anacanthorus, 43, 51, 56, 66, 67, 96, Anavilhanatrema, 124, 128, 145, 146, 195, 485 Ancistrohaptor, 54, 59, 69, 98, 494, 495 Ancistrus, 63, 254, 423, 425, 452, 466 cirrhosus, 423, 466 sp., 68, 254, 425, 466 Angiodictyidae, 118, 123, 127, 132 Anisakidae, 238, 243, 254, 255 Annelamphistoma, 124, 128, 146, 189, 193, 195, 478 Annelida, 20, 454 Annulotrematoides, 55, 59, 70, 98, 468, 485 Anodus, 337, 359, 360, 466 elongatus, 337, 466 Anphira, 420, 421, 422, 429, 434, 441, 442, 446, 465, 479, 494, 495 Anthobothrium, 209, 211, 219, 222, 227, 466, 483, 484
498
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Antorchis, 125, 129, 137, 160, 467 Aphanoblastella, 43, 53, 54, 57, 58, 70, 481, 488 Arapaima, 73, 136, 206, 208, 213, 235, 236, 249, 255, 259, 309, 310, 399, 466 gigas, 73, 136, 206, 213, 235, 236, 249, 255, 259, 309, 310, 399, 466 Archocentrus nigrofasciatus, 86 Argulidae, 397 Argulus, 339, 357, 390, 391, 392, 394, 397, 401, 402, 403, 404, 405, 406, 411, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 477, 479, 480, 481, 485, 486, 487, 488, 489, 490, 492, 494 Ariopsis seemanni, 310, 466 Arthropoda, 20, 458 Artystone, 418, 420, 421, 422, 427, 430, 445, 472, 473, 479 Ascaridoidea, 238, 242, 243 Ascaroidea, 235, 254 Ascocotyle, 120, 180, 469 Asotana, 418, 420, 421, 430, 433, 435, 436, 441, 477, 493 Astronotus ocellatus, 77, 235, 255, 399, 459, 466, 467 Astyanax, 24, 62, 75, 78, 91, 132, 134, 135, 137, 138, 139, 140, 142, 148, 250, 252, 261, 263, 309, 344, 397, 424, 459, 467, 468 bimaculatus, 91, 132, 250, 261, 309, 397, 424, 467 fasciatus, 24, 30, 62, 75, 78, 91, 112, 134, 137, 140, 148, 261, 263, 467, 468 mexicanus, 459 scabripinnis, 91, 468 sp., 138, 252, 468 spp., 344 Atractidae, 234, 240, 245, 248 Atractosteus tristoechus, 217, 468 Auchenipterus nuchalis, 252, 468 Bacciger, 125, 129, 137, 201, 480 Bagrus pemecus, 459 Basilichthys microlepidotus, 271, 468 Bedsylernaea, 334, 336, 343, 378, 474 Bellumcorpus, 123, 127, 133, 157, 465, 489 Belonesox belizanus, 91, 468 Betamphistoma, 124, 128, 146, 182, 478
Boulengerella, 135, 143, 144, 468, 496 lucia, 143, 144, 468 Brachyplatystoma, 214, 215, 216, 424, 425, 426 filamentosum, 214, 216, 468 rousseauxii, 216, 468, sp., 424, 425, 426, 468 vaillanti, 215, 468 Braga, 418, 420, 421, 423, 429, 431, 432, 433, 437, 438, 442, 465, 466, 468, 470, 472, 474, 475, 477, 482, 483, 489, 490, 493 Branchiura, 5, 20, 21, 390, 392, 394, 397, 401, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 475, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 492, 494, 495 Brasergasilus, 328, 331, 333, 335, 337, 358, 360, 369, 383, 466, 475, 476, 490 Brasicystis, 119, 123, 127, 135, 156, 180, 482 Brasilnema, 239, 244, 257, 292, 480 Brayela, 209, 211, 214, 227, 473 Brevimulticaecum, 239, 484 Brevoortia pectinata, 339, 468 Brycon, 34, 37, 67, 68, 70, 78, 85, 87, 138, 235, 251, 261, 305, 330, 338, 339, 342, 468, 469 brevicaudatus, 251 cephalus, 70, 338, 468 erythropterus, 235, 339 falcatus, 261, 468 hilarii, 305, 468 lundi, 138, 468 melanopterus, 34, 37, 69, 78, 87, 468, 469 pellegrini, 342 Bryconops alburnoides, 249, 468 Bucephalidae, 118, 123, 127, 133, 197 Bunocephalus, 30, 469 Caballerotrema, 126, 130, 136, 161, 466, 479 Cacatuocotyle, 51, 56, 71, 98, 469 Callodistomidae, 126, 130, 134 Callophysus macropterus, 82, 260, 339, 388, 469 Calpidothecioides, 54, 59, 71, 99, 487, 488 Calpidothecium, 47, 53, 58, 71, 99, 487, 488 Calyptospora, 23, 25, 31, 35, 39, 40, 41, 469, 472 Camallanidae, 234, 239, 244, 248, 277 Camallaninae, 239, 240, 244
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Camallanoidea, 238, 239, 243, 244, 248 Camallanus, 240, 244, 248, 276, 278, 279 Capillaria, 241, 246, 263, 474, 477 Capillariidae, 241, 246, 263, 264 Capillostrongyloides, 241, 246, 263, 466, 467, 476, 490 Carapus fasciatus, 30, 469 Carassius auratus, 469 Carnegiella strigata, 426, 469, Catoprion mento, 66, 67, 78, 82, 83, 469 Cephalosilurus zungaro, 63, 65, 485 Ceratophrys cornuta, 216, Cestoda, 5, 7, 20, 21, 206, 209, 211, 213, 222, 466, 468, 469, 470, 473, 479, 480, 482, 483, 484, 485, 486, 488, 493, 496 Cestodaria, 20, 206, 209, 211, 213, 222, 466 Cetopsis caecutiens, 215, 469, Chabaudinema, 240, 245, 256, 272, 471 Chaetobranchus, 120, 469 semifasciatus, 120, 469 Chalceus macrolepidotus, 78, 469 Chalcinotrema, 125, 129, 139, 167, 170, 467, 477, 495 Chalcinus nematurus, 30, 469 Characidae, 61, 62, 67, 68, 69, 70, 71, 75, 78, 80, 85, 87, 89, 91, 253 Characidium, 71, 89, 469 caucanum, 89, 469 lanei, 71, 469 pterostictum, 71, 469 Characinidae, 27 Charax, 139, 469 Chilodus punctatus, 307, 469 Choanoscolex, 210, 212, 214, 223, 493 Chromis sp., 397, 469 Cichla, 32, 77, 86, 217, 218, 236, 338, 339, 343, 398, 423, 424, 426, 437, 469, 470 monoculus, 339, 343, 426, 469 ocellaris, 32, 77, 89, 217, 218, 236, 338, 423, 424, 469, 470 temensis, 398, 470 Cichlasoma, 31, 77, 86, 88, 131, 151, 250, 258, 306, 340, 397, 470 bimaculatum, 77, 88, 470 facetum, 250, 470 fenestratum, 31, 470
499
festivum, 258, 470 maculicauda, 86 mayorum, 131, 470 severum, 77, 151, 470 sp., 131, 340, 470 tetracanthus, 397, 470 pearsei, 86 synspilum, 86, 470 urophthalmus, 86, 470 Cichlidae, 43, 62, 77, 85, 88, 261, 424, 470 Ciliophora, 20, 21, 23, 25, 26, 28, 31, 33, 460, 465, 470, 471, 473, 480, 481, 494 Cladocystis, 126, 130, 144, 159, 489, Cladorchiidae, 123, 145 Cleidodiscus, 47, 64, 70, 71, 83, 90, 474, 487, 492 Clinostomidae, 119 Clinostomum, 119 Coccidida, 23, 25, 26 Collection, 05, 07, 22, 26, 45, 46, 47, 48, 121, 208, 236, 301, 331, 391, 419, 455, 459 Colocladorchis, 124, 128, 147, 176, 485 Colomesus asellus, 471, Colossoma 31, 33, 44, 45, 69, 79, 80, 82, 133, 148, 152, 248, 252, 256, 261, 305, 306, 329, 334, 336, 344, 398, 399, 461, 471, 480 bidens, 33, 69, 133, 148, 152, 305, 399, 471, 480 brachypomum 248, 256 macropomum, 44, 45, 79, 80, 82, 252, 256, 261, 306, 329, 334, 336, 344, 398, 399, 461, 471 metrei, 248 Copepoda, 5, 7, 9, 20, 21, 326, 337, 346, 465, 466, 468, 469, 470, 471, 472, 474, 475, 476, 478, 480, 482, 483, 485, 486, 487, 488, 489, 490, 492, 494, 496 Corydoras, 62, 83, 91, 251, 344, 471 aeneus, 91, 471, ehrhardti, 62, 344, 471 paleatus, 62, 83, 251, 471 Cosmetocleithrum, 53, 57, 58, 72, 99, 479, 481, 486 Cosmocercoidea, 238, 240, 243, 245, 255 Cosmoxynema, 239, 244, 257, 267, 472 Cosmoxynemoides, 239, 244, 257, 267, 472, 473
500
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Cotyloda, 213 Crassicutis, 126, 130, 131, 162, 466, 470, 472 Creatochanes affinis, 75, 78, 471 Crenicichla, 32, 131, 144, 307, 309, 399, 422, 424, 472 geayi, 131, 307, 309, 399, 472 johanna, 144, 472 lacustris, 422, 472 lepidota, 32, 472 Crepidostomum, 126, 130, 131, 150, 476, 481, 489, Creptotrema, 126, 130, 132, 159, 476, 477, 495 Cryptobia, 455 Cryptogonimidae, 124, 125, 128, 129, 135 Cucullanidae, 234, 241, 246, 252, 253 Cucullanus, 241, 246, 252, 253, 271, 280, 285, 291, 466, 468, 471, 472, 476, 477, 478, 479, 480, 481, 482, 485, 486, 488, 489, 490, 494 Curimata, 73, 85, 89, 91, 147, 153, 257, 258, 308, 340, 425, 472 argentea, 73, 84, 91, 472 cyprinoides, 85, 340, 472 elegans, 153, 159, 309 gilberti, 91, 153, 257, 259 platana, 425, vittata, 147, 472 Curimatrema, 124, 128, 147, 186, 442 Curumai, 123, 127, 132, 133, 179, 471 Curvianchoratus, 46, 52, 57, 73, 99, 472, 485 Cyclops, 326 Cymothoidae, 4, 416, 419, 420, 421, 422, 423, 424, 425 Cynopotamus humeralis, 139, 423, 425, 472 Cystidicolidae, 261, 262 Cystidicoloides, 242, 247, 262, 266, 472, 489, 490, 494 Dactylogyridae, 43, 44, 64, 90, Dadayius, 123, 127, 147, 168, 187, 192, 194, 478, 479 Dadaytrema, 148, 174, 195, 471, 479, 480, 482, 486, 489 Dawestrema, 54, 59, 73, 100, 466 Definition, 7, 19, 22, 23, 42, 84, 117, 206, 234, 299, 326, 390, 416, 454, 458 Deltamphistoma, 124, 128, 148, 182, 478 Demidospermus, 43, 53, 54, 57, 58, 59, 73, 100, 475, 476, 477, 479, 480, 481, 482
Dendrorchis, 126, 130, 138, 163 Denticamallanus, 240, 245, 249, 290, 468 Denticauda, 123, 127, 133, 179, 471 Diaphorocleidus, 54, 59, 74, 100, 467, 471, 473 Dichelyne, 241, 246, 477, 478, 486, 490 Didymozoidae, 117, 118, 119, 123, 127, 135 Diplectanidae, 43, 64 Diplectanum, 47, 52, 57, 64, 95, 482 Diplostomum, 120 Dipteropeltis, 390, 392, 394, 400, 406, 408, 412, 478, 482, 489, 490, 492 Dolops, 390, 391, 392, 393, 394, 395, 399, 406, 407, 408, 409, 410, 466, 467, 471, 472, 473, 474, 476, 477, 478, 479, 480, 482, 485, 486, 487, 488, 489, 490, 492, 494, 495 Doradamphistoma, 124, 149, 194, 202, 478 Doradidae, 72, 90, 239, 244, 330 Doras dorsalis, 152, 473 Dracunculoidea, 245, 253, 259 Dranculoidea, 238, 243 Dujardinascaris, 235 Echinocephalus, 235, 242, 246, 253, 269, 483 Echinorhynchidae, 302, 304, 305, 306 Echinorhynchus, 305, 318, 323, 468, 471, 479, 480, 495 Echinostomatidae, 126, 130, 136 Eigenmannia virescens, 30, 91, 473 Electrophorus electricus, 459, 473 Elipesurus, 220, 221, 473 sp., 221 spinicauda, 220, 473 Enallothecium, 53, 58, 75, 100, 484, 485, 487, 490, 491, 492, 493 Encysted parasites and foreign bodies, 460 Endorchis, 210, 212, 214, 222, 223, 466, 468 Eocreadium, 126, 130, 159, 475 Ephedrocephalus, 210, 212, 214, 223, 480 Ergasilidae, 326, 328, 329, 333, 335, 337, 338, 341 Ergasilinae, 333, 338, 339, 340, 341 Ergasilus, 326, 327, 328, 330, 331, 334, 335, 339, 346, 347, 348, 349, 350, 351, 352, 356, 357, 384, 385, 465, 466, 468, 469, 470, 471, 474, 475, 476, 478, 485, 488, 490,494, 496
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Erythrinus erythrinus, 261, 473 Eucestoda, 206, 208, 213 Euryhaliotrema, 47, 52, 57, 75, 100, 482 Eustrongylides, 235, 236, 465, 486 Eutetrarhynchidae, 209, 211, 221 Eutetrarhynchus, 209, 211, 221, 222, 473, 483, 484 Excorallana, 426, 444, 466, 478 Farlowella amazona, 63, 473 Fellodistomidae, 118, 125, 126, 129, 130, 136 Fitzroyia lineate, 308, 473 Flabellifera, 426 Franciscodoras marmoratus, 27 Freitascapillaria, 241, 246, 263, 489 Galeocharax, 135 Gamidactylus, 333, 335, 342, 363, 366, 383, 490 Gamispatulus, 333, 335, 342, 365, 366, 369, 490 Gamispinus, 333, 335, 342, 364, 366, 466 Gammamphistoma, 124, 128, 478 Genolopa, 125, 129, 143, 191 Geophagus, 62, 86, 250, 257, 258, 307, 398, 422, 425, 445, 473 brasiliensis, 62, 250, 257, 307, 422, 445, 473 jurupari, 398 sp., 425, 473 steindachneri, 258, 473 surinamensis, 86, 473 Gephyrocharax valenciae, 309, 473 Gibsoniela, 210, 212, 214, 225, 446 Glandulorhynchus, 123, 127, 133, 197, 475 Glanidium, 64, 214, 473 melanopterum, 64, 473 neivai, 473 sp., 214, 473 Glossiphoniidae, 455, 456, 457 Gnathostomatidae, 242, 246, 253 Gnathostomatoidea, 238, 242, 243, 246, 253 Goezia, 235, 239, 243, 254, 273, 274, 466, 470, 486 Gonocercella, 125, 129, 138, 475 Gonocleithrum, 42, 54, 58, 59, 76, 101, 479 Gorgoderidae, 126, 130, 137 Gorytocephalus, 303, 304, 306, 314, 317, 322, 472, 475 Gracilisentis, 303, 304, 307, 475, 478, 483 Gussevia, 43, 52, 54, 57, 58, 59, 76, 101, 469, 470, 487 Guyanema, 240, 245, 253, 272, 466, 474, 477, 488
501
Guyanemidae, 240, 245, 253, 254 Gymnorhamphichthys hypostomus, 183, 473 Gymnotus carapo, 91, 459, 473 Gyrodactylidae, 43, 44, 49, 50, 51, 55, 61 Gyrodactylus, 47, 51, 56, 62, 94, 467, 469, 471, 473, 474, 476, 481, 483, 490, 495, 496 Habronematoidea, 238, 242, 243, 247, 261 Halipegidae, 125, 129, 138 Halipegus, 125, 129, 139, 163, 465, 467, 472, 481, 489 Haploporidae, 118, 125, 129, 139, 197 Heliconema, 242, 247, 264, 292 Hemiancistris, 89, 473 scaphirhynchae, 89, 473 Hemidoras carinatus, 426, 473 Hemiodus, 80, 90, 141, 473, 474 microlepis, 141, 473 semitaeniatus, 80, 90 Hemisorubim, 90, 399, 459, 474 platyrhynchus, 459, 474 sp., 399, 474 Henneguya, 23, 24, 28, 29, 34, 37, 38, 467, 473, 474, 477, 485, 486, 488, 492 Herotilapia, 77 Heteronchoinea, 50, 55, 60 Heterophyidae, 118, 119, 126, 130, 142 Heterothecium, 53, 58, 77, 101, 469, 491 Heterotylus, 53, 57, 78, 101, 475 Hexabothriidae, 43, 51, 55, 60 Hirudinea, 5, 20, 21, 24, 455, 456, 461, 474, 480, 488 Holobrycon pesu, 339, 474 Hoplerythrinus unitaeniatus, 254, 309, 399, 474 Hoplias, 27, 29, 62, 90, 119, 248, 252, 254, 261, 263, 264, 307, 309, 339, 340, 343, 344, 397, 398, 399, 400, 424, 425, 457, 459, 474 macrophthalmus, 424, 474 malabaricus, 27, 29, 62, 90, 19, 248, 252, 254, 261, 263, 264, 307, 309, 339, 340, 343, 344, 397, 398, 399, 400, 424, 425, 457, 459, 474 Hydrolycus, 133, 339, 398, 475 scomberoides, 339, 398, 475 sp., 133, 475 Hyperopletes, 51, 55, 63, 94, 488
502
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Hyphessobrycon callistus, 424, 475 Hypophthalmus edentatus, 249, 339, 341, 475 Hypopomus sp., 150, 475 Hypoptopoma thoracathum, 88, 475 Hypostomus, 27, 28, 61, 63, 78, 88, 89, 139, 140, 143, 150, 250, 255, 306, 307, 399, 424, 475 albopunctatus, 27, 250, 475 aurogutatus, 27 bolivianus, 89, 475 carinatus, 306, 475 commersoni, 27, 399, 475 marginatus, 88, 475 plecostomus, 139, 140, 143, 306, 475 punctatus, 27, 63, 150, 475 regani, 27, 61 robinii, 88, 89, 475 sp., 27, 61, 78, 89, 255, 424, 475 strigaticeps, 28 Ichthyophthirius, 25, 26, 28, 29, 35 Ichthyouris, 239, 244, 257, 258, 283, 470, 473, 478, 494 Iheringichthys labrosus, 132, 153, 425, 475, 476 Iheringtrema, 124, 128, 135, 164, 485 Inpamphistoma, 124, 128, 149, 188, 478 Isopoda, 5, 7, 9, 20, 21, 416, 427, 465, 466, 467, 468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 481, 482, 483, 485, 489, 490, 491, 492, 493, 494, 495 Jainus, 52, 54, 57, 59, 78, 102, 467, 468, 469, 471 Kalipharynx, 126, 130, 137, 161, 476 Kalitrema, 124, 128, 150, 175, 475 Kathlaniidae, 240, 245, 255, 256 Klossinemella, 240, 245, 248, 267, 282, 471, 474, 476, 478, 479, 480, 486, 489 Kritskyia, 51, 56, 79, 102, 477, 485 Lahilliela kneri, 141 Lamproglena, 334, 336 Lebiasina bimaculata, 61, 62, 476 Lebistes reticulata, 90 Lecithobotrioides, 125, 129, 140, 169, 197, 485 Leiarius marmoratus, 399, 476 Lepidosiren paradoxa, 29, 137, 476 Lepocreadiidae, 126, 130, 143 Leporellus vitattus, 425 Leporinodus vittatus, 141, 476
Leporinus, 29, 30, 79, 85, 87, 132, 135, 139, 140, 141, 142, 248, 250, 252, 263, 337, 340, 400, 424, 425, 476, 477 copelandi, 248, 425, 476 elongatus, 132, 140, 141, 476 fasciatus, 87, 248, 337, 340, 400, 424, 476, 477 lacustris, 79, 477 mormyrops, 29, 30, 477 obtusidens, 142, 477 octofasciatus, 425, 477 Lernaea, 334, 336, 343, 380 Lernaeidae, 329, 334, 336, 342, 343, 344, 381 Life-cycle, 22, 24, 117, 207, 234, 300, 330, 390, 416, 455, 458 Linguadactyla, 44 Linguadactyloides, 44, 52, 56, 79, 108, 109, 471 Livoneca, 420, 421, 424, 428, 470, 477, 481 Longihaptor, 76 Loricaria, 27, 29, 74, 132, 139, 142, 399, 477 anus, 74, 142, 399, 477 piracicabae, 27 sp., 27, 29, 477 vetula, 132, 477 Loricariichthys, 27, 254, 255, 477 anus, 27 brunneus, 254, 477 platymetopon, 255, 477 Loricariidae, 61, 63, 74, 78, 88, 89, 239, 244, 330, 477 Luciopimelodus, 39, 248, 400, 477, 478, 482 pati, 248, 400, 482 Lycengraulis grossidens, 338, 339, 426, 478 Magnivitellinum, 126, 130, 132, 467 Manaosia, 209, 211, 215, 223, 482 Megapriapus, 301, 302, 304, 315, 323, 483 Megacoelium, 125, 129, 140, 165, 475, 487 Megalancistrus aculeatus, 258 Megalodoras irwini, 149, 478 Megapriapus, 301, 302, 309, 315, 323, 483 Megathylacus, 209, 211, 215, 225, 478 Micramphistoma, 124, 128, 150, 194, 198, 475 Microcotylidae, 51, 55, 60 Micropogonias furnieri, 339 Minilernaea, 334, 336, 343, 344, 379, 468, 471
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
Miracetyma, 333, 335, 340, 382, 472, 483, 485, 487, 488 Moenklausia, 139 Monhysterides, 234, 235 Monocleithrium, 52, 56, 79, 103, 474 Monocotylidae, 43, 50, 55, 61 Monogenoidea, 5, 7, 9, 11, 20, 21, 42, 43, 44, 45, 46, 47, 48, 50, 55, 60, 92, 460, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496 Monorchiidae, 125, 129, 143 Monticellia, 210, 212, 215, 223, 225, 468, 469, 482, 485, 486, 494 Morphology, 7 Mugilicola, 329 Mylesinus, 82, 142, 145, 146, 149, 152, 248, 478 paraschomburgkii, 82, 142, 145, 146, 149, 152, 248, 478 paucisquamatus, 82, 478 Myletes, 248, 478 torquatus, 248, 478 Myleus, 68, 69, 81, 82, 133, 146, 147, 148, 150, 151, 152, 248, 256, 259, 426, 478, 479 (Myloplus) asterias, 146, 147, 150, 248, 478 (Myloplus) rubripinnis, 146, 147, 478 pacu, 82, 151, 478 rhomboidalis, 82, 478 rubripinnis, 68, 69, 81 sp., 133, 148, 152, 256, 478, 479 spp., 248 ternetzi, 151, 256, 259, 479 torquatus, 81, 479 Myleusnema, 150, 240, 245, 246, 286, 287, 288, 479 Myleustrema, 124, 125, 150, 183 Mylosoma, 305 paraguayensis, 305 Mymarothecium, 43, 53, 54, 55, 58, 59, 80, 103, 471, 480, 484, 487, 491, 492, 493 Myxidium, 28, 30, 35, 465, 469 Myxobolus, 23, 24, 25, 28, 31, 33, 37, 38, 39, 469, 471, 473, 477, 481, 482, 483, 488, 492 Myxosoma, 24, 25
503
Myxosporida, 20, 23, 25, 26, 28, 29 Myxozoa, 5, 20, 29, 460, 465, 467, 469, 473, 474, 476, 477, 481, 482, 483, 485, 486, 488, 492 Myzobdella, 456, 457, 474, 488 Myzophorus, 210, 212, 215, 223, 480, 482, 486 Nannostomus beckfordi, 423, 479 Nematoda, 5, 7, 9, 20, 21, 238, 242, 248, 265, 465 Neocucullanus, 241, 246, 252, 253, 270, 489, 490 Neoechinorhynchidae, 303, 304, 306, 307, 333, 335, 340, 382, 472, 483, 485, 487, 488 Neoechinorhynchus, 303, 304, 306, 314, 316, 317, 465, 470, 471, 473, 474, 478, 485, 487 Neoparaseuratum, 241, 246, 260, 292, 486, 494 Nerocila, 4, 417, 420, 421, 424, 433, 447, 470, 472, 477, 485 Nesolecithus, 206, 209, 211, 213, 229, 230, 466 Nilonema, 241, 245, 259, 270 Nominoscolex, 210, 212, 216, 222, 223, 468, 482, 483, 486 Nothogyrodactylus, 51, 55, 63, 94, 466 Nothozothecium, 43 Notothecioides, 53, 58, 81, 103, 478, 479 Notothecium, 53, 57, 58, 75, 80, 103, 487, 491, 492, 493 Notozothecium, 54, 55, 59, 81, 103, 465, 471, 478, 484, 485, 487, 491, 492, 493 Nyctotherus, 25, 28, 29, 31, 35, 465, 470, 471, 480, 481 Octospiniferoides, 303, 304, 307, 315, 319, 469, 490 Odhneriotrema, 119 Odontostilbe sp., 425 Odothecium, 54, 59, 82, 104, 469 Oligonchoinea, 50, 55, 60 Onchobothriidae, 218 Oncobothriidae, 209, 211 Oogyrodactylus, 44, 51, 55, 63, 95, 473 Opisthorchiidae, 118, 126, 130, 144 Ornithoscolex, 209, 211, 216, 224, 483 Ossubtus xinguensis, 422 Osteoglossum biccirhosum, 76 Ostospiniferoides, 320 Otocinclus, 27, 423, 479 francirochai, 27 vestitus, 429, 479
504
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Oxydoras, 72, 259, 262, 400, 479 kneri, 259, 262, 479 niger, 72, 400, 479 Oxyuroidea, 238, 239, 242, 244, 248, 257 Pachyurus, 76, 262, 397, 479 bonariensis, 76, 479 junki, 262, 397, 479 Pacu nigricans, 305, 479 Pacudistoma, 124, 128, 151, 184, 194 Paeonodes, 329 Palaeocryptogonimus, 125, 129, 135 Palliolisentis, 301, 302, 303, 308, 465, 495 Pandosentis, 303, 304, 307, 315, 466, 472 Paracamallanus, 239, 244, 249, 277, 281, 475, 486 Paracapillaria, 241, 246, 264, 265, 465, 472, 477, 478, 489, 490 Paracavisoma, 302, 304, 306, 318, 479, 485 Paracymothoa, 420, 421, 424, 428, 431, 467, 474, 475 Paragyrodactyloides, 62, 471 Paragyrodactylus, 62 Paraheteronchocotyle, 51, 55, 60, 93, 483 Paralecithobotrys, 125, 129, 141, 173, 476 Paramphistomata, 123, 127, 145 Paramphistomidae, 118 Paranaella, 51, 55, 60, 61, 93 Paraproctotrema, 125, 129, 144, 190, 191, 468 Pararhipidocotyle, 123, 127, 134, 489 Paraseuratum, 241, 246, 260, 271, 467, 473, 474, 494 Parasynodontisia, 239, 244, 258, 488 Parauchenipterus striatulus, 64, 480 Parspina, 126, 130, 142, 163, 481 Pathology, 7, 19, 22, 25, 44, 119, 207, 235, 301, 333, 391, 471, 455, 458 Paulicea luetkeni, 88, 217, 252, 253 Paurorhynchus, 123, 127, 134, 157 Pavanelliella, 51, 56, 82, 104, 469, 486 Pellona, 86, 137, 338, 399, 459, 480 castelnaeana, 137, 338, 399, 459, 480 flavipinnis, 86, 480 Peltidocotyle, 209, 211, 216, 225, 483, 486 Pentastomida, 5, 20, 458, 459, 464, 465 Percichthys, 308, 398, 457, 480 melanops, 308, 480 trucha, 398, 457, 480
Perulernaea, 329, 331, 334, 336, 344, 375, 376, 381, 471, 480 Petenia splendida, 86, 480 Phanerothecium, 51, 55, 63, 95, 469, 475, 483, 485 Pharyngodonidae, 239, 244, 257, 258, 259 Phillostomella, 420, 421 Philocorydoras, 53, 58, 83, 104, 471 Philometra, 241, 245, 260, 466, 469, 478, 481, 482, 490 Philometridae, 234, 240, 245, 259, 260 Philometroides, 240, 245, 489 Philostomella, 425, 431, 472 Phractocephalus hemiliopterus, 90, 91, 214, 218, 399, 480 Phyllobothriidae, 209, 21, 219 Phyllodistomoides, 126, 130, 138, 468 Physalopteridae, 242, 247, 264 Physalopteroidea, 238, 242, 243, 247, 264 Piabucina sp., 261, 480 Piaractus brachypomus, 80, 248, 334, 336, 345, 471, 480 Pimelodella, 62, 64, 71, 251, 252, 257, 261, 262, 263, 480, 481 lateristriga, 251, 252, 257, 261, 262, 263, 480, 481 sp., 64, 262, 481 yuncensis, 62, 64, 481 Pimelodidae, 43, 62, 63, 64, 65, 70, 72, 74, 79, 82, 84, 88, 90, 91, 239, 244, 305, 481 Pimelodus, 30, 31, 65, 72, 74, 84, 88, 90, 91, 132, 135, 139, 143, 152, 215, 216, 217, 218, 248, 251, 252, 255, 260, 399, 424, 425, 459, 477, 478, 481, 482 albicans, 30, 72, 74, 399, 480, 481 clarias maculatus, 74 clarias, 30, 31, 74, 84, 88, 132, 143, 248, 251, 252, 260, 424, 425, 481 grosskopfi, 91 maculatus, 255, 481, 482 megacephalus, 459, 482 ornatus, 152, 482 pati, 215, 216, 217 Pimelodus, 30, 31, 65, 72, 74, 84, 88, 90, 91, 132, 135, 139, 143, 152, 215, 216, 217,
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
218, 248, 251, 252, 255, 260, 399, 424, 425, 459, 477, 478, 481, 482 sp., 30, 482 spp., 90 vituga, 459 Pindapixara, 334, 336, 340, 382, 474 Pinirampus, 74, 215, 459, 482 pirinampu, 74, 459, 482 sp., 215 piraeeba, 214, 216, 222, 468 Pirarara bicolor, 218, 480, 482 Piscicolidae, 456, 457, 464 Pithanothecium, 53, 58, 83, 104, 469, 485, 487, 488 Placobdella, 455, 457 Plagioscion, 64, 76, 119, 136, 309, 345, 482 sp., 64, 482 squamosissimus, 64, 76, 19, 136, 309 Platydoras costatus, 217, 473, 482 Platyhelminthes, 20, 48 Platystoma sp., 215, 494 Platystomatichthys sturio, 215, 216, 218, 483 Plecostomus, 63, 89, 139, 140, 143, 306, 307, 475, 483 plecostomus, 63, 483 sp., 89, 483 Poecilia, 62, 483 caucana, 62, 483 reticulata, 62, 483 sphenops, 62, 483 Poecilostomatoida, 337, 341, 345 Polyacanthorhynchus, 302, 304, 309, 322, 466 Polyonchoinea, 50, 55, 61 Pomoxis annularis, 338 Pomphorhynchidae, 302, 304, 308 Pomphorhynchus, 302, 304, 308, 318, 480 Porrocaecum, 235, 466 Potamotrygon, 60, 61, 219, 220, 221, 253, 255, 306, 459, 483, 484 circularis, 60, 61, 219, 220, 253, 255, 483 falkneri, 220, 221, 483 hystrix, 219, 220, 221, 253, 255, 306, 483 magdalenae, 219, 220, 483 motoro, 219, 220, 221, 459, 484 reticulatus, 220, 221, 484 yepsi, 220
505
Potamotrygonocestus, 209, 211, 219, 227, 483, 484 Potamotrygonocotyle, 50, 55, 61, 93, 483 Prehendorastrus, 328, 333, 335, 341, 369, 475 Prevention, 5, 7, 22, 26, 45, 120, 208, 236, 301, 331, 391, 441, 455, 458 Pristis perottetti, 220 Pristobrycon eigenmanni, 66, 67, 68, 69, 75, 80, 81, 82, 484 Pristobrycon sp., 65, 66, 68, 69, 75, 80, 81, 484 Pristobrycon striolatus, 66, 67, 68, 75, 82, 83, 146, 484, 485 Procamallaninae, 240, 244 Procamallanus, 235, 240, 244, 245, 249, 250, 251, 252, 275, 276, 277, 289, 290, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495 Procaudotestis, 126, 130, 132, 160, 477 Prochilodus, 27, 62, 66, 79, 84, 85, 87, 140, 142, 147, 153, 262, 307, 340, 485 lineatus, 79, 84, 85, 142, 485 nigricans, 84, 140, 340, 479, 485 platensis, 153, 485 reticulatus, 66, 87, 140, 142, 262, 307, 485 scrofa, 262, 485 sp., 27 Pronamphistoma, 124, 128, 151, 195, 470 Prosorhynchus, 123, 127, 134, 157, 196, 465, 467, 489, 492 Prosthenhystera, 126, 130, 134, 158, 465, 467, 476, 477, 485, 489, 496 Proteocephalidae, 209, 211, 213, 469 Proteocephalidea, 208, 213 Proteocephalus, 210, 212, 217, 226, 227, 228, 468, 469, 470, 479, 482, 486, 488 Protorhinoxenus, 52, 57, 83, 104 Protozoa, 5, 20, 23, 33, 455, 456 Psectrogaster, 70, 340, 472, 485 essequibensis, 346, 485 rutiloides, 70, 485 Pseudocladorchis, 124, 128, 151, 168, 185, 471, 473, 478, 479, 482
506
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Pseudodiplodiscus, 123, 127, 152, 168, 473 Pseudodoras niger, 252, 306, 479, 485 Pseudogorgorhynchus, 302, 304, 310, 321, 466 Pseudoparabaris, 123, 127, 133, 179, 471 Pseudopimelodus, 28, 29, 135, 213, 248, 252, 253, 469, 485 roosevelti, 135, 485 zungaro, 28, 29, 213, 243, 252, 253, 469 Pseudoplatystoma, 29, 82, 90, 145, 215, 216, 217, 218, 252, 391, 398, 399, 459, 486 coruscans, 82, 90, 398, 486 fasciatum, 29, 90, 215, 216, 218, 398, 399, 486 sp., 90, 217, 252 tigrinum, 215, 216, 217, 459, 486 Pseudotylosurus angusticeps, 338, 486 Pseudovancleaveus, 54, 58, 84, 104, 475, 476, 481 Pterodoras granulosus, 31, 72, 90, 152, 248, 255, 260, 307, 400, 486, 487 Pterophyllum scalare, 77, 86, 487 Pterygoplichthys, 140, 141, 258, 487 aculeatus, 258, 487 pardalis, 140, 487 multiradiatus, 487 sp., 141, 487 Pygidium, 250, 251, 487 brasiliensis, 251 punctatum, 250 Pygocentrus, 43, 65, 66, 67, 68, 69, 71, 72, 75, 80, 81, 82, 83, 85, 252, 340, 487, 488, 491, 492 nattereri, 43, 65, 66, 67, 68, 69, 71, 72, 75, 80, 81, 82, 83, 85, 340, 487, 491, 492 sp., 252, 487 Pygopristis denticulata, 71, 72, 83, 488 Quadrigyridae, 302, 303, 308 Quadrigyrus, 302, 303, 308, 314, 467, 468, 472, 473, 474, 494 Quimperiidae, 241, 246, 260, 261 Raphidascaris, 239, 243, 255, 273, 470, 475, 477, 482 Raphidascaroides, 239, 243, 255, 285, 486 Raphiodon vulpinus, 254 Rhabdochona, 242, 247, 261, 266, 467, 468, 473, 476, 480 Rhabdochonidae, 242, 247, 261
Rhadinorhynchidae, 302, 303, 309, 310 Rhadinorhynchus, 302, 304, 309, 311, 312, 313, 482 Rhamdia, 27, 29, 64, 65, 71, 79, 82, 131, 215, 340, 397, 398, 399, 457, 488 guatemalensis, 82, 398, 488 quelen, 27, 64, 65, 71, 79, 131, 340, 399, 488 sapo, 27, 71, 457, 488 sebae, 29, 65, 71, 488 sp., 71, 215, 397, 488 Rhamphichthys rostratus, 253, 488 Rhaphiodon, 340, 398, 399, 459, 488 vulpinus, 340, 398, 399, 459, 488 Rhinebothrium, 209, 21, 220, 483, 484 Rhinebothroides, 209, 21, 220, 222, 473, 483, 484 Rhinelepis aspera, 61, 258, 488 Rhineloricaria sp, 63, 488 Rhinergasilus, 334, 336, 341, 356, 362, 487, 492 Rhinodoras dorbignyi, 135 Rhinonastes, 52, 56, 84, 105, 485 Rhinoxenus, 52, 56, 85, 105, 469, 472, 476, 485, 487, 489, 490, 491, 492, 495 Rhynchodinium, 28, 29, 31, 36 Rhytiodus, 85, 90, 399, 489 argenteofuscus, 85, 489 microlepis, 90, 399, 489 Riggia, 418, 420, 421, 425, 430, 433, 439, 440, 448, 449, 466, 472, 476, 477, 479, 490 Roeboides, 67, 132, 139, 489 bonariensis, 132, 489 myersi, 67, 489 Rondonia, 234, 235, 240, 245, 248, 267, 275, 471, 472, 478, 479, 480, 481, 485, 487, 494 Rondotrema, 125, 129, 141, 197, 473 Rudolphiella, 217, 227, 482 Rumai, 241, 245 Saccocoelioides, 125, 129, 141, 171, 172, 178, 182, 467, 476, 477, 478, 485, 489, 490 Saccodon caucae, 142, 489 Salminus, 67, 85, 133, 134, 135, 139, 145, 250, 252, 260, 262, 263, 344, 398, 399, 400, 424, 459, 489, 490 affinis, 67, 489 brevidens, 344, 386, 398, 400, 459, 489 hilarii, 133, 134, 250, 260, 262, 424, 489
ABLA Vol. 1 – Thatcher: Amazon Fish Parasites
maxillosus, 85, 134, 139, 145, 252, 262, 263, 398, 399, 400, 489, 490 sp., 400 Sanguinicola, 123, 127, 153, 169, 476, 485 Sanguinicolidae, 118, 119, 123, 127, 152 Schizochoerus, 206, 209, 21, 213, 229, 466 Schizodon, 29, 85, 142, 248, 307, 342, 399, 400, 425, 476, 490 fasciatus, 29, 142, 490 nasutus, 248, 425 Sciadicleithrum, 43, 52, 57, 85, 105, 465, 470, 473, 480, 487, 494, 495, Sciadocephalus, 210, 212, 218, 226, 470 Scleroductus, 51, 56, 63, 95, 473, 480, 481, 488 Semaprochilodus, 62, 119, 337, 339, 342, 490 insignis, 19, 337, 339, 342, 490 taeniurus, 62, 490 Serrasalmus, 29, 30, 31, 65, 66, 67, 68, 69, 75, 78, 79, 80, 81, 82, 85, 134, 341, 398, 399, 400, 422, 423, 426, 459, 490, 491, 492, 493 compressus, 65, 66, 75, 81, 490 elongatus, 65, 66, 68, 69, 75, 81, 82, 491 gouldingi, 65, 66, 75, 78, 80, 81, 82, 491 manuelli, 66, 82, 491 marginatus, 79, 85, 491 nattereri, 341, 398, 399, 400 piraya, 30, 400, 459 rhombeus, 30, 65, 66, 67, 68, 69, 75, 80, 81, 82, 134, 492 sp., 31, 65, 66, 67, 68, 69, 75, 80, 81, 82, 423, 493 spilopleura, 66, 67, 68, 69, 75, 79, 80, 81, 422, 426, 492, 493 Seuratoidea, 238, 241, 243, 246, 252, 260 Silurus sp., 214, 215, 493, 494 Sorubim lima, 91, 482, 494 Spasskyellina, 210, 212, 218, 483, 486 Spectatus, 240, 245, 256, 267, 471, 480 Sphaeroides testudineus, 31, 494 Sphericomonorchis, 125, 129, 144, 190, 472 Sphericomonorchis spinulosus, 125, 129, 144, 190 Spinitectus, 235, 242, 247, 262, 268, 280, 479, 480, 481, 472, 482, 485, 489, 494, 495 Spinoxyuris, 239, 244, 259, 284, 479
507
Spirocamallanus, 235, 240, 244, 250, 275, 276, 277, 285 Sprentascaris, 239, 243, 255, 273 Stenarchorhamphus muelleri, 443 Stenarchus brasiliensis, 425 Sternopygus macrurus, 262, 494 Strigeoidea, 120, 180 Strongylura, 338, 339, 494 study methods, 22, 26, 45, 121, 208, 236, 301, 331, 391, 419, 455, 459 Symbranchus marmoratus, 309, 459 Symphysodon discus, 258, 494 Tachysurus hertzbergii, 459 Taurocheros, 344, 373, 489 Telethecium, 51, 56, 86, 106, 479, 480 Telotha, 420, 421, 425, 429, 431, 450, 468, 473, 474, 476, 481, 494 Tereancistrium, 54, 58, 59, 86, 106 Terranova, 235, 239, 243, 255, 270, 292, 483 Tetragonopterus argenteus, 261, 494 Tetraphyllidae, 218 Tetraphyllidea, 208, 209, 21 Thelazioidea, 238, 242, 243, 247, 261 Therodamas, 329, 330, 331, 345, 370, 371, 372, 381, 482 Therodamasidae, 329, 330, 345, 381 Theromyzon, 456, 457, 480 Touzeta, 241, 246, 261, 274, 470 Trachydoras paraguayensis, 248, 258, 260, 494 Transmission, 7, 19, 21, 22, 24, 25, 26, 44, 117, 118, 207, 234, 236, 300, 330, 390, 416, 455, 458 Travassosinia, 124, 128, 152, 168, 471 Travassosnema, 240, 245, 254, 292, 465 Travnema, 239, 244, 259, 267, 467, 472, 485 Treatment, 5, 7, 21, 22, 26, 45, 120, 121, 208, 214, 236, 301, 331, 391, 419, 455, 458, 459, 460 Trematoda, 5, 9, 20, 21, 131, 154, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 485, 486, 487, 488, 489, 490, 493, 493, 495, 496 Trichinelloidea, 238, 241, 242, 246, 263,
508
ABLA Vol. 1 – Thatcher: Parásitos de Peces Amazónicos
Trichodina, 28, 29, 31, 36, 494 Trinibaculum, 52, 57, 87, 106 Trinidactylus, 52, 56, 87, 106, 470 Trinigyrus, 52, 56, 88, 106, 465, 475 Triportheus 24, 67, 68, 69, 70, 85, 132, 250, 301, 305, 308, 422, 494, 495 albus, 67, 69, 70, 422, 494 angulatus, 67, 68, 69, 70, 494, 495 elongatus, 24, 67, 68, 69, 70, 321, 495 paranensis, 132, 305, 308, 495 sp., 67, 70, 85, 250, 495 Tropical Gill-Rot, 460 Trypanorhyncha, 208, 209, 21, 221 Trypanosoma, 23, 27, 36, 455, 465 Tubifex, 24, 26 Uaru amphiacanthoides, 77, 86, 495 Unibarra, 52, 56, 88, 107, 480, 481 Unicoelium, 125, 129, 142, 485 unidentified catfish, 251, 423 unidentified fish, 30, 251
Unilatus, 53, 57, 89, 107, 473, 475, 483, 487 Urocleidoides, 42, 47, 54, 58, 64, 70, 74, 89, 91, 467, 468, 469, 471, 472, 473, 474, 475, 480, 481, 483, 485, 489, 494, 495 Urocleidus, 47, 71, 83 Vaigamidae, 329, 33, 335, 341, 342 Vaigamus, 328, 33, 335, 341, 361, 496 Vanamea, 418, 420, 421, 425, 428, 433, 468, 469, 470, 473, 478, 491, 492, 493, 495 Vancleaveus, 43, 54, 59, 64, 84, 90, 107, 480, 481, 486 Vandelia cirrhosa, 426, 495 Witenbergia, 126, 130, 145, 158, 486 Wolffhugelia, 303, 304, 307, 314, 473 Woodlandiella, 210, 212, 218, 225, 493 Xiphophorus helleri, 90, 495 Zetamphistoma, 124, 128, 152, 185, 194, 478, Zonocotyle, 123, 127, 153, 177, 472 Zonocotylidae, 118, 123, 127, 153 Zonocotyloides, 123, 127, 153, 177, 472 Zygobothrium, 210, 212, 218, 224, 480, 482