Advances in Neural Computation, Machine Learning, and Cognitive Research: Selected Papers from the XIX International Conference on Neuroinformatics, October 2-6, 2017, Moscow, Russia
9783319666037, 9783319666044, 3319666037
Table of contents : Preface......Page 6 Advisory Board......Page 7 Program Committee......Page 9 Contents......Page 12 Neural Network Theory......Page 15 1 Introduction......Page 16 3 Regularization of Deep Neural Networks......Page 17 4 Regularization Representation Using Metagraph Approach......Page 18 5 Experiments......Page 20 References......Page 21 1 Introduction......Page 22 3 Description of the Noise......Page 24 5 Results......Page 25 6 Conclusion......Page 27 References......Page 28 1 Introduction......Page 30 2 Model Problem......Page 32 3 Calculations......Page 33 References......Page 34 1 Introduction......Page 36 2 Model of the Gate Neural Network......Page 37 3 Network Learning Algorithm......Page 41 4 Analysis of the Results......Page 42 5 Conclusion......Page 43 References......Page 44 1 Introduction......Page 46 2 Neuron Model......Page 47 3 Gateway Model......Page 49 References......Page 51 1 Introduction......Page 52 2.2 Neural Network Architectures......Page 53 3.2 Factoid Answer Selection from Alternatives......Page 54 3.3 Common Sense Questions......Page 55 4 Conclusions......Page 56 References......Page 57 Applications of Neural Networks......Page 58 1 Introduction......Page 59 2 Overview of Deep Neural Network Architectures......Page 60 3 Neuron Models......Page 61 References......Page 62 1 Introduction......Page 65 2 Problem Formulation......Page 66 4 Computer Simulation......Page 67 5 Conclusions......Page 69 References......Page 70 1 Introduction......Page 71 2 Analysis of the Structure of a Digital Neural Network Control System Based on the Universal Computer......Page 73 3 Implementation of Phases of the Control Cycle of the Neural Network System......Page 74 4 A Coherent Information Environment Model for Neural-Network Control System......Page 75 References......Page 76 1 Introduction......Page 77 2 Mathematical Model of Longitudinal Motion for Maneuverable Aircraft......Page 78 3 Generation of a Representative Set of Training Data......Page 79 4 Semi-empirical Neural Network Model of Aircraft Longitudinal Motion......Page 80 References......Page 82 1 Introduction......Page 84 2 The Multi-agent Adaptive Fuzzy Neuronet for Dump Truck Fault's Short-Term Forecasts......Page 85 2.1 The Training Algorithms of the Multi-agent Adaptive Fuzzy Neuronet......Page 86 2.2 The Multi-agent Adaptive Fuzzy Neuronet......Page 88 3 Results......Page 89 References......Page 90 1.1 Relevance of the Problem......Page 91 1.2 Statement of the Problem......Page 92 2.1 Structure of the Faster R-CNN......Page 93 3 Experimental Researches......Page 94 4 Conclusions......Page 95 References......Page 96 1 Introduction......Page 97 3 Results......Page 99 References......Page 101 1 Introduction......Page 103 2 The Topological Data Analysis......Page 104 3 Setting the Problem......Page 105 4 Topological Invariants Calculated for a Traffic Intensity Sequence......Page 106 5 Building the Neural-Net Model of the Data......Page 108 References......Page 109 1 Introduction......Page 110 2 Using TAP in Image Recognition......Page 111 3 Formation of Feature Description of a Textured Image......Page 112 4 Computational Experiment......Page 113 References......Page 115 1 Introduction......Page 116 3 Stability of the Control System......Page 117 4 Upper Bound of Learning Rate Calculation......Page 118 5 Experimental Results......Page 119 References......Page 121 1 Introduction......Page 122 2 The Organization of the Intelligent Diagnostics of Mechatronic Complex Components......Page 123 3 Neural Network for Data Processing......Page 124 5 Conclusion......Page 127 References......Page 128 2 Materials and Methods......Page 129 3 Examined Approach......Page 132 References......Page 135 1 Introduction......Page 137 2.2 Initial Stages of Information Transformation......Page 138 2.3 Compression of Information by Granulation......Page 139 2.4 Classification of Objects as a Prototype Search......Page 140 3 Properties of the Model......Page 141 References......Page 142 1 Introduction......Page 144 3 Representation of the EEG Signals as Images......Page 145 4 Quality of Features Generated by the Convolutional Neural Network......Page 147 5 Conclusions......Page 148 References......Page 149 1 Introduction......Page 150 2 Semi-empirical Model of a Sagging Thread. Methods......Page 151 3 Calculation......Page 153 4 Conclusions......Page 154 References......Page 155 Cognitive Sciences and Adaptive Behavior......Page 157 1 Introduction......Page 158 2 Contrast of a Color Image......Page 159 3 Color Analog of Rayleigh Criterion......Page 165 References......Page 166 1 Introduction......Page 168 3 Results......Page 169 References......Page 172 1 Introduction......Page 174 2.1 General Scheme of the Model......Page 175 2.2 Description of the Iterative Process......Page 176 3 Results of Computer Simulation......Page 177 4 Conclusion......Page 179 References......Page 180 Neurobiology......Page 181 1 Introduction......Page 182 2 Materials and Methods......Page 184 3 Results......Page 185 4 Conclusion......Page 186 References......Page 187 1 Introduction......Page 189 2.2 Data Processing......Page 190 3 Conclusion......Page 193 References......Page 194 1 Introduction......Page 195 2 The Own Goals of the Individual Neuron......Page 196 3 The Functional Systems of the Neuron Involved in Synaptic Modulations in the Early Phase of LTP......Page 197 Acknowledgements......Page 199 References......Page 200 1 Introduction......Page 202 2.3 Hodgkin-Huxley-like Model of a Neuron......Page 203 3.1 Dynamic-Clamp Study of the Influence of NaP Current......Page 204 3.2 Effect of Persistent-Sodium Current in a Modeled Neuron......Page 205 References......Page 207