132 89 5MB
English Pages [64]
ArcelorMittal Europe - Long products Sections and Merchant Bars
ACB® and Angelina® beams
A new generation of beams with large web openings
1
Exposed cellular beams in a roof application at a motorway services
2
Table of contents
1. Introduction............................................................................................................................................ 5 2. Typical applications............................................................................................................................... 7 3. Design and fabrication......................................................................................................................... 9 4. Tolerances of ACB® and Angelina® beams................................................................................... 16 5. Beams with large web openings in roof and non-composite floor applications................ 19 6. Beams with large web openings in composite floor systems................................................. 23 7. Stability under fire conditions......................................................................................................... 27 8. ACB® and Angelina® beams: a solution for sustainable constructions................................ 28 9. Predesign software............................................................................................................................ 31 10. Predesign charts of beams with large web openings................................................................ 32 11. Predesign charts for ACB®............................................................................................................... 36 12. Predesign charts for Angelina®....................................................................................................... 51 13. Our support to your project............................................................................................................ 63
3
4
1. Introduction
ACB® and Angelina® beams, with their circular and sinusoidal large web openings, elegantly combine function with flexibility. Alternatives to trusses and open-web joist systems, cellular beams are lightweight, long-spanning, structural elements that enable the design of vast column-free spaces. They can be used in composite and non-composite systems.
Information includes analysis recommendations for use of these elements in traditional applications, such as floors and roofs; assumptions when considering how the sections will behave in response to fire; and information about using cellular beams fabricated from S460 high-strength steel.
Composite construction This flexibility is further enhanced by being able to accommodate services through the large web openings. The airy aspect of these beams, combined with their high strength, continuously inspire architects to create new shapes. Their large web openings enable installation of mechanical, electrical and plumbing (MEP) pipes and ducts within the depth of the beam, thereby allowing for compact ceiling systems and maximised floor-to-ceiling heights. In addition, the repetition of the perforations ensures that variations, during construction or throughout the life of the structure, in the layout of the MEP system can easily be accommodated. Architecturally striking, cellular ACB® and Angelina® beams are every year seeing increased use in the built environment. Today, with improvements that have been implemented in design standards, analysis tools, and manufacturing, it is easier than ever to incorporate them into a framing system.
Manufacturing Optimised manufacturing methods, including flame cutting and bending, enable cost-effective production of ACB® and Angelina® beams, even though they are customised to meet individual project needs. In addition, production efficiency leads to quick despatch of the sections for final fabrication. The availability of a wide range of hot-rolled sections and grades, including S460, guarantees cost-efficiency.
Design standards Eurocode 3 for steel structures and Eurocode 4 for composite structures provide guidance on the design of cellular beams.
The development of the various aspects of composite construction – connections, steel decking, large floor areas without expansion joints (up to 80m and even more), fire resistance, user comfort and durability – has greatly contributed to the wider use of ACB® and Angelina® beams solution in floors.
Analysis tools To facilitate easy analysis of cellular beams, two software systems have been developed and made available to engineering offices and architects: ACB+ and ANGELINA. These tools allow optimal choice of section, opening depth and spacing, and also steel grade, all to the specific requirements of the project. They also take account of Eurocode design principles as well as results of full-scale tests and numerical simulations. With ACB+ and ANGELINA, users can determine optimal system weights, based on section size, opening depth, width and distance and determine the impact that varying steel grade will have on the solution. These systems are designed to assist engineers and architects to find the most efficient, economical cellular beam solutions. Smart use The use of ACB® and Angelina® beams leads to reduced floor zones and simplifies the construction, keeping the structure elegant. The installation of mechanical and electrical services (MEP) is facilititated through the large web openings. Future variations to the MEP system, either during construction or throughout the life of the structure, are easily accommodated without any structural change due to the multiple, regular spaced web openings.
5
Technical fabrication Cellular ACB® and Angelina® beams are manufactured from standard hot-rolled steel sections. The length of the beam is established based from the framing layout. Dimensions that define the shape and layout of the openings – i.e. a0 (opening, depth), s (length of sinusoidal curve), and w (length of the intermediate web post) – are governed by strength and serviceability requirements and will be verified by the designer.
ACB® - Cellular beam with circular large web openings
Angelina® - Beam with sinusoidal large web openings
hw
a0
Ht wend
e
a0 w
Ht w
s
w
s
hw
e
Ht: hw: a0: wend: s: w: e:
total beam height T-section height at opening diameter or height of the opening length of the end web post length of the sinusoid length of the intermediate web post spacing of openings
Figure 1: Comparison of web openings of ACB® and Angelina® beams
6
wend
2. Typical applications
2.1. Roof support systems
2.2. Floor support systems
ACB® and Angelina® beams are an attractive solution in roof applications as they provide the functionality of trusses with one simple, prefabricated element. When used as long span roof members cellular beams are economical for spans of 20m and above, and have successfully been used for spans in excess of 40m. They can be used as simply supported members, cantilever elements or as part of moment or portal frame structures.
Modern construction increasingly demands accommodation of building services (heating, ventilation, air conditioning, etc.) as well as structural support within minimal ceiling spaces (Fig. 3). Cellular beams provide efficient solutions to meet these demands, allowing pipes and ducts to pass through their openings while having the capacity to span in excess of 20m thereby providing large, column-free floor areas.
By employing ACB® and Angelina® beams, designers can achieve light, airy spaces that are attractive to building owners. The height of the openings can reach 80 % of the total beam depth and as a result of efficient fabrication methods, it is possible to minimise the distance between openings. These characteristics of cellular beams result in seemingly transparent design solutions that blend elegantly into their built environment.
With ACB® and Angelina® beams, floor thickness can be reduced by 250 to 400mm, when compared to conventional solutions. For typical buildings, with a height limit of 35 to 40m, a gain of 200mm per floor enables the addition of one floor within the same construction height. For buildings with a limit on number of floors, minimising the floor-to-floor height results in cost efficiencies with respect to the façade, columns, stabilising structures, separating walls and vertical access walls.
Figure 2: ACB® roof beams
Figure 3: Angelina® floor beam
7
Studios d'Architecture ORY & Associés
Figure 4: Renovation using ACB® beams at headquarters of Crédit Lyonnais, Paris
2.3. Specialty applications 2.3.1. Building renovations and adaptive reuse ACB® and Angelina® beams are often employed in the renovation and adaptive reuse of existing structures (Fig. 4). With their perforations, they fit in beautifully to such buildings and help to preserve architecture, openness and flexibility of the spaces.
often dark spaces. In addition, the openings facilitate smoke evacuation and improved air circulation between sections. Cellular beams can be cambered as part of the production process to allow runoff from rain, snow and ice accumulation.
2.3.3 Beams for offshore structures 2.3.2. Parking structures Cellular beams bring lightweight, adaptable solutions to car parks and serve as an economical alternative to precast concrete tees (Fig. 5). Easily spanning the 15 to 16 meters required by typical parking structures, the open webs of ACB® and Angelina® beams allow natural light to flood these
Figure 5: Cellular beams used in parking structures
8
For cases where this industry requires: • a framework combining strength with low weight, • the possibility of passing pipes and ducts, it is clear that cellular beams are to be recommended, given their characteristics. In cases of particularly high loading, the use of HISTAR® steels is recommended.
3. Design and fabrication Flame cutting of hot rolled sections
ACB® and Angelina® beams are fabricated exclusively using hot-rolled structural sections. The fabrication shop is located close to the ArcelorMittal Differdange (Luxembourg) heavy section rolling mill. The close proximity of these two sites limits transport, maximises responsiveness and minimises manufacturing costs. Fabrication of ACB® and Angelina® beams, is described below and illustrated in Fig. 6: A double (ACB®) or single (Angelina®) cut following a specified path is made in the web through flame cutting. The two resulting T-sections are realigned and welded
together. The final beam is typically 40 to 50% deeper with a 50% increase in section modulus/load carrying capacity and a 125% increase in inertia/stiffness relative to the parent section, all this for no increase in weight. The flame cutting process can be customised to meet specific project needs, and is automatically adjusted to allow for the effects of pre-cambering when specified. Cuts are performed in such a way that waste material is limited and weld areas are as efficient as possible. Welds are visually inspected or, on request, can be inspected according to the project owner’s or customer’s specifications.
Figure 6: Fabrication process for cellular beams ACB® stage 1: flame cutting
Angelina® stage 1: flame cutting
stage 2: separation of T-sections
stage 2: separation of T-sections
stage 3: re-assembly & welding
stage 3: re-assembly & welding
9
Figure 7: Fabrication of Angelina® beams
3.1. Determination of size and spacing of openings For a given section, there are endless combinations of opening sizes and spacing that can be implemented. Items that are typically considered when determining the appropriate layout for a project follow:
• To maintain aesthetic proportions, the ratio between the opening height (a0), spacing (e) and final height (Ht) should be kept in a specific range. The range is generally governed by the application in which the system will be used (Fig. 8).
In some cases, opening height (a0) is governed by the size of components of the MEP or other building systems.
• To ensure structural integrity and efficiency, customisation of the upper and lower T-sections can and should be considered.
• To simplify fabrication, wherever possible, the designer should consider adjusting the geometry of the openings to design out unneccessary end infills.
Figure 8: Size and spacing of openings Applications: Roofing Footbridges Wide-span purlins
Applications: Floors Parking structures Offshore structures
Objective: Optimisation of the height/weight ratio
Objective: Optimisation of load/weight ratio
Starting section (height h)
Starting section (height h)
h
h
Design type 2 (ACB® and Angelina®)
Design type 1 (ACB® and Angelina®) Ht
a0
Ht
e
a0
Ht e
Diameter or height a0 = 1,0 to 1,3 h Spacing e = 1,1 to 1,3 a0 Final height Ht = 1,4 to 1,6 h Common steel grades: S355 10
a0
e
a0
Ht e
Diameter or height a0 = 0,8 to 1,1 h Spacing e = 1,2 to 1,7 a0 Final height Ht = 1,3 to 1,4 h Common steel grades: S355, S460, HISTAR® 460
.
Cellular beams spanning 25 meters and featuring important camber
3.2. Customisation of cellular beams 3.2.1. Curving or cambering Where required for architectural or serviceability reasons (i.e. create positive roof slopes for rainwater run off or to manage dead load deflection, cellular beams can be curved and cambered. Achieved during fabrication, the top and bottom tee’s are curved/cambered prior to assembly and welding into the final state (Fig. 9).
A minimum camber of 15 mm is recommended, and in order to avoid any risk of inverted installation, cambers will be clearly marked on each beam before they leave the fabrication facility.
Figure 9: Example of a curved ACB® beam
3.2.2. Tapered profiles Tapered sections are easily produced by inclining the cut and rotating one of the T-sections though 180° before welding (Fig. 10).
Tapered sections are particularly efficient solutions for long cantilevers, such as stadium stands; continuous beams, such as footbridges or portal frame rafters .
Figure 10: Tapered ACB® beams
11
Figure 11: Asymmetrical ACB® beam
3.2.3. Asymmetrical sections Top and bottom T from differing profiles, or even steel grades, can be welded together to produce asymmetric profiles (Fig. 11). Asymmetric beams are adapted to composite design, having the ideal distribution of mass resulting in the lightest possible section. For such systems, it is common to have a heavier bottom T as it is subject to tension from global bending. The top T's primary function is to support the wet concrete at the construction stage, and so this is typically 30% lighter than the bottom T.
3.2.4. Elongated openings It is possible to remove a web-post between two adjacent cells to create an elongated opening. Where possible these openings should be positioned near the center of the beam (Fig.12), where shear forces are typically lowest. In cases where an elongated opening must be located near the supports, it may be necessary to stiffen the openings (Fig.13b). Figure 12: Elongated opening
3.2.5. Infill of openings In order to support high shear forces (i.e. in close proximity to supports or point loads) or for fire safety reasons, it may be necessary to infill cells (Fig. 13a). This is done by inserting a custom-cut steel plate into the opening and welding it from both sides of the web. The thickness of the plate and its fillet weld, generally limited to 4mm, are optimised according to local stresses. Figure 13a: Filled openings
3.2.6. Reinforced openings In cases where infilling is not permitted for architectural reasons or when elongated openings are necessary close to supports, a hoop stiffener welded around the opening can be used to increase rigidity of the opening (Fig. 13b). Figure 13b: Reinforced opening
12
ACB® beam featuring filled openings at support
3.2.7. Web reinforcement Serviceability limit states require sufficient stiffness to reduce deflection and minimise vibrations. Cellular beams can efficiently meet these needs by optimising the distribution of steel throughout the profile. At times, optimisation may result in a risk of buckling at one or two web posts near the supports. In order to fortify the section, the following options can be considered: • selection of a heavier section • use of a higher steel grade, which would increase the load bearing capacity of the web posts • infilling of openings, though this can result in less flexibility to accommodate building services • stiffening of openings, which would maintain flexibility for accommodating building services. Figure 14: Stiffened of web post
Alternatively, testing has shown that a rigid plate, welded to the web post (Fig. 14), is an effective solution to reinforce the beam web. Two part hoops can also be used (Fig. 15).
Figure 15: Stiffener welded around the opening
3.2.8. Supporting concentrated loads In order to avoid plastic deformation of elements within the cross-section, which can occur when concentrated loads are applied to the beam, stiffeners or infills should be considered wherever concentrated loads are expected.
3.3. Welding standards At ArcelorMittal’s fabrication facility, welders are qualified in accordance to the European standard EN 287-1 for MAG 135 and MAG 136 processes. Typically, butt welding is used for the web-post welds to cellular beams. A full penetration weld is not usually required. A series of tests has been carried out to validate the model used in the software ACB+ and ANGELINA. This model can be used to calculate the required weld penetration to resist the applied stresses.
13
3.4. Fabrication options
3.5. Optimisation of the openings
Select examples of fabrication options are shown in Figure 16.
When designing the framework, special care should be given to the positions of the openings in order to avoid unnecessary filling (Fig. 17).
Figure 16: Fabrication options delivered “as fabricated” and overlength
• The first step is to optimise the beam from a structural point of view. • The second step is to adjust the spacing between openings so as to have a complete web post at the ends of the beam.
delivered “as is”, overlength and with filled openings
Figure 17: Optimisation of openings layout 1/2 disc
stiffener
wend
Full disc
wend
delivered cut to length e
e
delivered cut to length and with 1 half-filled opening
delivered cut to length and with half-filled and fully filled openings
14
e - a0 2 e - a0 2
3.6. Splicing of cellular beams As with standard beam sections, it will sometimes be required to splice cellular beams. In such cases, the designer should take splice locations into account when setting out the openings. If necessary, to maintain load paths within the system, it is possible to infill or partially infill one or two openings. Partial filling is an easy and economical solution (Fig. 18).
3.7. Curving of beams The curving of cellular beams is easily carried out as part of the fabrication process. It's often required for the following reasons: • architectural requirements for the roofing system • compensating for the load dead deflection
Other forms of curving or cambering can be offered on request, the minimum camber being 15mm.
3.8. Coordinating fabrication considerations with design requirements In order to achieve the most economical fabrication of cellular beams, requirements of the cutting process, such as minimum distance between web/flange root and the edge of the openings or minimum radius of curved beams, are included in the ACB+ and ANGELINA software (see section 9. Predesign software).
Figure 18: Partially filled openings at splice locations
e
e
15
4. Tolerances of ACB® and Angelina® beams
Final height:
Ht Ht < 600 600 ≤ Ht < 800 Ht ≥ 800
Bending of web:
f Ht < 600 Ht ≥ 600
+ 3 / - 5 mm + 4 / - 6 mm + 5 / - 7 mm
Ht
f ≤ 4 mm f ≤ 0,01 Ht
f
T Misalignment of T-sections: T (between axis of upper section and axis of lower section)
T ≤ 2 mm
Symmetrical section
Spacing: Distance from first to last opening:
16
e
Hybrid section
+/- 0,01 e
e
B
+/- 0,02 e
e B
Diameter/height: a0
Length: Distance of 1st opening from end:
L
+ 5 / - 2 mm
+/- 2mm
A
A
V ≤ 0,03 % L
Example:
if L = 10 000 mm V ≤ 3mm
CF
A L
+/- 0,02 e
Offset of web posts: V
Camber:
a0
a0
+/- 0,05 CF CF min. 5mm
V
V
V
V
CF
17
18 Industrial site BOBST in Mex (CH) MP INGENIEURS CONSEILS SA – Crissier (CH); Architectes: RICHTER & DAHL ROCHA – Lausanne (CH); Engineers: MP INGENIEURS CONSEILS SA – Crissier
5. Beams with large web openings in roof and non-composite floor applications
When used in roof applications, ACB® and Angelina® beams are typically symmetrical sections; comprising of a top and bottom T cut from the same hot-rolled parent shape (Fig. 19). Determination of the appropriate parent section and final height is typically based on opening size and spacing requirements. Alternatively, when final height and opening size are known, the necessary spacing and appropriate parent shape can be selected.
The process can also be reversed: from a required final height and opening dimensions, the designer can easily determine the starting section required to satisfy this configuration.
5.1. Design recommendations As for the rolled sections, it is essential to base the design of a project in cellular beams on criteria and limits that make the best use of the performance offered by this type of element.
Figure 19: Configuration of a cellular beam
5.1.1. Establishing the overall height of the cellular beam
h
Ht
The overall height, Ht, of the cellular beam is determined as a function of the following (Fig. 20): • beam span (L) • beam spacing (B) • strength requirements, i.e. dead load and live load demands • serviceability requirements, i.e. deformation and vibration limits.
Parent section ArcelorMittal cellular beam
Ht h
Figure 20: Use of beams in structure
B
Ht
Parent section ArcelorMittal cellular beam
L B B
Architects and engineers have a lot of freedom in the choice of opening size and spacing. From these values, the starting section can be determined and the final height of the cellular beam can be deduced.
L
B
Main beams
Secondary beam
19
When used in standard roof applications, cellular beams can typically have span/depth ratios ranging from 20 to 40 depending on support conditions (Fig. 21). For initial design assumptions, a value of 30 is generally used to determine the section properties of secondary beams and fixed beams of frames. Through iteration, a more efficient solution can be determined.
However, there are geometric limits to be respected for good mechanical behaviour of the cellular beam. These limits apply to: 1) Opening size (Fig. 22): • with a0, s and w values a function of the finished beam • with a0, a and c values a function of the parent section.
For non-composite floor beams, the span/depth ratio typically varies from 10 to 20. For normal service loads, an intermediate value of 15 can be used as a starting point for design.
Figure 22: Geometric limits on openings in ACB® and Angelina® beams ACB® beam
Parent section ∆
Figure 21: Height of cellular beam as a function of the span
Ht
a0
2,00
h a0/2
1,25 a0 ≤ Ht ≤1,75 a0
1,60
h-2∆min ≤ a0 ≤2h-4∆ tf
Height Ht [m]
Flooring (metal deck)
∆min
r
1,20
Roofing
values Δmin and Δ are connected with the manufacturing technique
0,80
0,40
Angelina® beam 0,00
0
10
20
30
40
Parent section
w
50
Span L [m]
c
a0
Ht
h a
a ≥ 10 mm c ≥ 50 mm
s
5.1.2. Determining layout of web openings Layout of web openings is typically governed by architectural desires (transparency and light dispersion) and functional requirements (distribution of building services through the penetrations).
20
s≥ w (2s+w)/a0 ≤ 5,0 tf
r a
c
.
P. de Coubertin gymnasium (Bourges, France ; Arches Études) 2) Spacing of the openings (Fig. 23): When determining spacing between web openings, both strength and fabrication requirements should be taken into account. From a strength perspective, a minimum spacing is established to avoid localised failure from insufficient bearing at the web posts between openings. Similarly, this minimum ensures that enough material is present to provide the welded connection between the top and bottom T at the fabrication facility. A maximum spacing is established to achieve the most efficient fabrication of the cellular beam by minimising the length of weld required. This maximum also guarantees that the beam depth will increase when the openings are cut and the section is shifted for welding. If the distance between web penetrations is large and the opening size is small, for example, the final beam would not gain much, if any height, or improved efficiency in design.
To assess potential local instabilities within the section, the following should be considered: • capacity of the section at the web posts, taking account of: - vertical shear forces - moment forces - shear-moment interaction - horizontal shear forces • shear buckling resistance • capacity of the section at the web openings, taking account of: - shear force resistance - moment and axial force interaction - moment, shear and axial force interaction • resistance to Lateral Torsional Buckling
Figure 23: Geometric limits for spacing between openings
a0
Ht
w
wmin > a0/12 or 50 mm wmax < 0,75 a0
a0
Ht
w
w ≥ 150 mm wend ≥ 100 mm
5.2. Design checks The global design of cellular beams must meet both Ultimate Limit States and Serviceability Limit States requirements like any other structural member. However, there are additional secondary forces around the cells that must be considered to.
When assessing the behaviour of the overall section, the following should be considered: • vertical deflection For the calculation of the overall deflection of a beam, the beam is divided in elementary panels of two types: “Plain” and “Opening” panels, for which the calculation method differs. The contribution of the “Plain” zones to the deflection of the beam is derived from classical formula. The calculation method for the deflection of the “Opening” zone is a sum of values of elementary effects due to axial, shear and bending deflection. The deflection of the beam is obtained as the sum of the contributions of each elementary zone. • eigen frequency. ACB+ and ANGELINA software (see section 9. Predesign software) enable users to verify cellular beam configurations based on the previously discussed design considerations. In addition, using the predesign tables in section 10. Predesign charts of cellular beams, designers can select a cellular beam section for a given load and span. 21
22 Géric Thionville; Architectes Ertim/Design-Team; ©geric-oh-dancy
6. Beams with large web openings in composite floor systems
The use of ACB® and Angelina® beams in composite floors (Fig. 24) allow designers to optimise both floor zone and span. Spans achievable with cellular beams can reach 30m, making them a great solution for commercial offices where typical floor spans are 18m. The efficent distribution of mass in these beams means that vibration and comfort criteria can be achieved with less. Beam spacing is between 2,70m and 4,05m in combination with traditional composite decks and between 5,40m and 8,10m in combination with additive deck Cofraplus 220 or composite floor Cofradal 200/260.
6.1. Design recommendations 6.1.1. Establishing the overall height of the cellular beam In addition to the criteria defined in section 5. Cellular beams in roofing and flooring (metal deck) applications, when using cellular beams in composite design the following considerations should be made: 1) beam span Beam span (L) will typically vary between 8 and 30m depending on application. When the design assumes simple supports, the concrete slab will be in compression throughout the span. Figure 24a: Angelina® beams in composite floor systems
Figure 24b: ACB® beams in composite floor systems
In situations where the beam is continuous over intermediate supports, the concrete will experience tensile forces and cracking at the supports. 2) beam spacing Beam spacing (B) of the framing depends on floor type: • For steel decking - B = 2,5 to 3m without propping - B = 3 to 5m with propping • For Cofraplus 220 additive decking - B = 3 to 5m without propping - B = 5 to 8m with propping • For precast concrete units - B = 2,7 to 7m without propping Spans of 5 to 7m can also be achieved without propping using ArcelorMittal Cofradal 200/260 flooring (metal deck)”. • Allowed structural floor zone corresponding to the height of the composite beam Ht plus the slab thickness. The beams should be spaced according to the following ratios: - L/Ht > 20: B = 2,5 to 3 meters - L/Ht < 15: B = 3 to 5 meters
23
Géric Thionville; Architects Ertim/Design-Team
Figure 26: Composite floor beam
6.1.2. Determining layout of web openings
3) serviceability requirements For floor structures, Serviceability Limit States often govern the design. Vibration tolerances are generally specified by acceptance classes [A to E] and compared to the predicted response that the floor system will have due to vibrations induced from loading (i.e. human traffic) expected from the intended use of the building.
Layout of web openings is typically governed by functional requirements (distribution of building services). In office buildings, for example, a height between 250 and 350mm is adequate in most cases. Minimum and maximum height and spacing values, as they relate to the hot-rolled parent section, are governed by the same rules given in section 5. Beams with web openings in roof and non-composite floor applications.
For more information on considering serviceability requirements in your design, please refer to the document titled “Design Guide for Floor Vibrations”, which is available in the Library section of sections.arcelormittal.com.
Figure 25: Height, Ht, of floor beam as a function of span 2,00
Height Ht [m]
1,60
1,20
ec es sit
n
tio
po
o ss
e ern
nd
Sle
0,80
om fc
0,40
0,00
24
0
10
20
Span L [m]
30
40
50
6.2. Design checks In addition to the design checks defined in section 5. Beams with web openings in roof and non-composite floor applications, cellular beams used in composite construction would require verification of the following: • section capacity during construction (i.e. without contribution of the concrete slab and dependent on propping conditions) • capacity of shear studs, ensuring that they can help achieve the desired composite action • bending moment capacity of the composite section • vertical deflection within permitted serviceability limits, taking into account concrete shrinkage.
ACB+ and ANGELINA software (see section 9. Predesign software) enable users to size cellular beams based on the previously discussed design considerations. Alternatively, there are predesign tables in section 10. Cellular beams predesign charts offer a quick answer based on standard solutions for composite floor applications.
25
A mid-span splice connection on a tapered cellular roof beam Simply supported tapered cellular beams can be used to reduce overall building height.
26
7. Stability under fire conditions
The inherent fire resistance of ACB® and Angelina® beams under ISO fire is usually 15 to 20 minutes. The R30 requirement may be reached by a moderate overdesign, using for example a higher grade (S460). In more severe cases, the fire resistance may be obtained by application of spray or intumescent coating. In the case of composite floors with secondary beams, tensile membrane action of the floor may be activated and passive protection limited to steel members connected to columns. This strategy leads to a significantly lower number of beams to protect but necessitates a specific calculation. MACS+ software was developed for this purpose. Fire protection can be reduced or removed by applying the Natural Fire Safety Concept. This takes into consideration the real fire conditions (fire load, ventilation by openings, active measures), and calculation methods are provided in the EN 1991-1-2 and have been implemented into OZone software. In a similar way passive protection can be calculated and applied to beams with no web openings, as a function of the fire requirement and A/V factor related to the failure mode, and following the guidance provided by the product manufacturer. The thickness of fire protection may also be calculated more accurately on the basis of the critical temperature. Predesign software ACB+ and Angelina provide these critical temperatures. Figure 27: Protection by spraying on ACB® beam
For cellular beams, the surface area to be protected against fire is essentially equivalent to the surface area of the hotrolled parent structural shape. Values of painting surface per unit length (AL, m2/m) and painting surface per unit mass (AG, m2/t) are indicated for individual sections in the tables of the ArcelorMittal Europe Sales Programme Sections and Mechant bars, which is available in the Products & Services section of sections.arcelormittal.com. Furthermore, ArcelorMittal’s Technical Advisory Department uses the SAFIR software with a module especially developed for the design by numerical simulation of cellular beams. In office buildings, the most suitable passive protection is spray if the beams are not visible. The composite floor typically does not need any protection. For Angelina® beams, it may be necessary to increase the corresponding thickness of the coating by 2 to 3 cm around the opening to ensure sound protection of the sharp contour. To accommodate ductwork, a 3 to 5 cm difference between opening dimensions and duct size is recommended. This tolerance can help prevent damage of the fire protection around the openings during installation of the services. In some cases, no additional anti-corrosion treatment is necessary if the product is sprayed onto the raw steel surface. In the case of visible floor or roof beams intumescent paint provides fire resistance without influencing the aesthetic of the structure.
27
8. ACB® and Angelina® beams: a solution for sustainable constructions Through changes in regulations and the use of environmental assessment methods, such as BREEAM and LEED, the operational impacts of buildings have reduced significantly over recent years. However, these assessment methods don’t fully address a building embodied carbon or the sometimescomplex interdependent relationship that exists between operational and embodied impacts. The only true way to deliver a low/zero impact building is through the use of life cycle analysis that considers both embodied and operational impacts – something recognised in ArcelorMittal’s Steligence® concept. Steligence® is a comprehensive, science-based solution offering stakeholders throughout the architectural, engineering and construction community the opportunity to optimise every aspect of a building. This radical new concept will facilitate the next generation of high performance buildings and construction techniques, and create a more sustainable life-cycle for buildings. In Life Cycle Assessment (LCA) studies ACB® and Angelina® beams have been shown to offer net positive contributions to both operational and embodied impacts.
with circular economy principles, encouraging and promoting longer life in service.
ACB® and Angelina® beams offer the following benefits: 1. Clear spans With an optimum span range of 12 to 18m (although larger spans are possible) ACB® and Angelina® beams provide high value column free space that can be easily adapted to accommodate changing patterns of use. This is aligned
4. Low impact material ACB® and Angelina® beams are manufactured from ArcelorMittal’s HISTAR® 355 and HISTAR® 460 steel sections. These profiles are manufactured from scrap material using the electric arc furnace (EAF) process with embodied impacts that are significantly lower than conventional steels.
2. Service integration The regular array of large web openings allows MEP services to easily be passed through the beams. When compared to alternative solutions where structure and services are kept separate, this approach allows overall floor zones and therefore total building height to be reduced. A consequential benefit is a reduction in the area of the external envelope and its embodied impacts, and internal air volumes that are minimised resulting in operational energy reductions associated with space heating/cooling.
Géric Thionville; Architectes Ertim/Design-Team
3. Highly efficient asymmetric section In clear span applications where slab and beam are acting as one composite unit, an asymmetric profile can be used. This provides the optimum distribution of mass and the lightest possible section for a given span.
28
Additional level through ACB® and Angelina® beams
one floor gain
Angelina® offering the 8th floor for the same height
one floor gain
Traditionnal concrete building
ACB® offering the 8th floor for the same height
29
30
9. Predesign software
ACB+ software enables the configuration of a variety of ACB® beam solutions: • single span beams - straight composite beam - straight steel beam • tapered steel beam with single slope or double slopes • curved steel beam • cantilever steel beams - straight steel beam - tapered steel beam.
ANGELINA software enables the design of a variety of Angelina® beam solutions: • single span beams - straight composite beam - straight steel beam.
The software is available in English, French, German and Spanish languages. Both software packages perform capacity checks based on Ultimate Limit State – verifying cross section capacity, local buckling, and lateral torsional buckling – according to Eurocode 3 and Eurocode 4 (EN 1993 and EN 1994) design requirements. In addition, the software calculates deflections and natural frequencies based on Serviceability Limit State requirements. The software includes the full list of hot-rolled sections from the ArcelorMittal catalogue. This free software can be downloaded from sections.arcelormittal.com.
31
10. Predesign charts of beams with large web openings
ArcelorMittal has developed predesign charts to enable engineers to quickly determine initial section sizes and web opening layouts based on the loading conditions of their projects. To refine and customise their solutions to more specifically meet project needs, ACB+ and ANGELINA software provide an opportunity to explore an unlimited selection of design options, including varying the number and size of openings and changing span lengths. Adding partial or complete infills and exploring the use of web stiffeners is also recommended to increase capacity. The predesign charts have been developed for noncomposite and composite beams in steel grades S355, S460 and HISTAR® 460. Using these charts helps to quickly identify the maximum span length for 5 different categories of cellular beam solutions.The charts assume a partial safety factor, γM1, of 1.0 according to EN 1993-1-1. ACB® for roofing (charts 1 to 3) This chart has been developed for steel grade S355 with starting sections considered to be IPE for light loads, HEA for medium loads, HEB for heavy loads. Chart notes: • An approximate spacing, e, of 1.25 * a0 is assumed • Design assumes a limit is set on final height • Deflection limit is set at L/180. ACB® for flooring (metal deck) (charts 4 to 9) This chart has been developed for steel grades S355 and S460 with starting sections considered to be IPE for light loads, HEB for medium loads, HEM for heavy loads. Chart notes: • An approximate spacing, e, of 1.5 * a0 is assumed • Design assumes a limit is set on final height • Deflection limit is set at L/180.
32
Composite ACB® (charts 10 to 15) This chart has been developed for steel grades S355 and S460 and normal concrete class C30/37. The starting sections considered to be IPE for light loads, HEA for medium loads, HEB for heavy loads. Chart notes: • An approximate spacing, e, of 1.5 * a0 is assumed • Design assumes a limit is set on final height • Composite slab assumes to be 120mm thick with trapezoidal steel deck own weight of 2,12 kN/m² (212 kg/m²) • Slab span set to 3 m perpendicular to the beam • A full shear connection between the slab and the section is assumed • The beam is assumed to be propped and laterally braced during construction • Deflection limit is set at L/180. Angelina® for roofing and for flooring (metal deck) (charts 16 to 18) This chart has been developed for steel grades S355 and S460 with starting sections considered to be IPE for light loads and HEA for medium loads. Chart notes: • Web post length, w, is set to 200mm or 250mm • Deflection limit is set at L/200. Composite Angelina® (charts 19 to 27) This chart has been developed for steel grades S355 and HISTAR® 460 and normal concrete class C30/37.
Figure 29: Design load
qdim in kN/m
B
L L
Chart notes: • The openings proportions are fixed such that a0=s • Web post length w is set to 200mm or 250mm • For charts with cast-in-place concrete, composite slab assumed to be 120mm thick with trapezoidal steel deck own weight of 2,12 kN/m² (212 kg/m²), and slab span set to 3 m perpendicular to the beam • For charts with prefabricated slab element, Cofradal 200, slab assumed to have an own weight of 2,00 kN/m2, and slab span set to 6 m perpendicular to the beam • When Cofradal 200 is used, the effective width is assumed to be 1m and the available height for shear resistance is assumed to be 20cm • A full shear connection between the slab and the section is assumed • The beam is assumed to be shored and laterally braced during construction • Deflection limit is set to L/200 and vertical deflection of the composite section takes into account shrinkage of the concrete. Design load The design load, qdim, in kN/m, is project specific and should be compared with the ultimate load, qu, given in the charts. This ultimate load takes into account all criteria required for Ultimate Limit States (ULS) and deflection at Serviceability Limit States (SLS). To compare design load directly with the ultimate load, the following ULS load combination should be used: qdim = (1,35 G + 1,5 Q) B
where : B = beam spacing [m], G = permanent load per square meter [kN/m2], Q = variable load per square meter [kN/m2].
Using the predesign charts There are three possible procedures: Case 1, where design load, qdim, and the span length, L, are known: Design load, qdim, is taken equal to ultimate load, qu, and the intersection of the line representing qu and L can be located on the chart. The design section that will have adequate capacity to meet project needs can be identified by the curve located to the right of the point of intersection. Using the curve name (i.e. A, B, C, etc.), the user can enter the table below the chart and determine the corresponding section size that was used in creating the curve. The table also indicates the properties of the web openings that were used in creating the curve. Once the section is identified, the web opening size and layout should be checked against any functional requirements specific to the project. Case 2, where the section size is known along with the span length, L: Using the table corresponding to the chart in question, the appropriate design curve (A, B, C, etc.) can be identified. By following this curve to its intersection with the necessary span length, the section capacity can be found. The capacity, qu, should be compared to the design load to verify that qdim ≤ qu. Case 3, where the section size is known along with the design load, qdim: In this case, qdim is taken equal to qu and the design curve is determined from the section size and the table corresponding with the appropriate predesign chart. The intersection of the line representing qu and the design curve can be located on the chart. This intersection corresponds to the permissible span length that will ensure desired capacity of the section is achieved.
33
Example of Angelina® predesign Beam A to be designed as Angelina® beam for a composite floor with a span length of L =16 m and a spacing of B =3 m. For architectural reasons, the final height of the floor is limited to 700 mm (this allows the maximum height of the Angelina® section to be Ht = 580 mm) with a 120 mm slab. Design parameters : • Slab thickness = 12 cm • Concrete class; C30/37 • Steel deck with 60 mm rib height.
3*3 m
16 m
Loading criteria: qdim = (1,35 G + 1,5 Q) B with G = gAngelina + gslab + g2 The weight of the Angelina® beam is initially assumed to be 1kN/m, equivalent to gAngelina = 0,33kN/m2. For a 12 cm thick slab on steel decking, the weight gslab = 2,12 kN/m2
Using qdim = qu and length to enter the predesign charts and table identifies curve B as a potential solution.
g2= additional permanent load = 1,0 kN/m2 Q = variable load, value chosen for this example: 6 kN/m
2
The design load, qdim, is: qdim = (1,35 x (2,12 + 0,33 + 1) + 1,5 x 6) x 3 = 41 kN/m
34
Using the predesign charts for sizing as a function of load and span, the required section can be determined (case 1). Given that a maximum height of the beam is imposed at 580mm, the solution should come from wide flange section range. The choice of chart falls on the HEB range in S355.
The required section is HE 320 B with Ht=487,5 mm and a0=335 mm. With the section is known, one can enter the values in the ANGELINA software in order to refine the results and carry out the various ULS and SLS checks.
Chart: Composite Angelina® based on HEB, S355 with COFRAPLUS 60 100
90
K
80
I
Ultimate quq(kN/m) Charge load ultime u (kN/m)
70
G
J
H
E
60
F C
A
50
D B
qdim = 41 kN/m 40
30
L = 16 m
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m)
Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
20
22
24
28
32
A
HE 300 B
315
250
315
1130
457,5
129,3 87,5
71,0
56,6
47,4
40,4
33,5
27,7
22,9
B
HE 320 B
335
250
335
1170
487,5
138,5 105,6 79,3
62,6
53,3
45,4
37,5
31,1
25,9
21,7
C
HE 360 B
380
300
380
1360
550
120,6 86,2
70,8
58,0
50,3
43,8
37,0
31,0
26,2
D
HE 400 B
420
300
420
1440
610
137,9 106,4 81,9
69,1
57,7
51,4
43,3
36,4
30,7
E
HE 450 B
475
300
475
1550
687,5
151,5 120,9 98,1
76,2
68,8
60,4
51,3
43,3
36,7
F
HE 500 B
525
300
525
1650
762,5
132,4 111,1 94,3
80,4
70,5
56,4
51,1
43,2
G
HE 550 B
580
300
580
1760
840
130,6 107,7 88,4
78,1
65,7
58,1
49,4
H
HE 650 B
680
300
680
1960
990
153,2 125,4 104,8 89,5
78,3
69,6
61,0
16,2
11,0
I
HE 700 B
730
300
730
2060
1065
154,9 130,7 109,8 94,0
82,0
70,9
20,2
13,7
J
HE 800 B
780
300
780
2160
1190
136,3 112,6 96,3
83,9
74,4
25,2
17,1
K
HE 900 B
830
350
830
2360
1315
155,9 128,6 109,9 95,2
31,9
21,8
12,6
35
11. Predesign charts for ACB® Chart 1: Non-composite ACB® based on IPE, S355, e=1.25 a0 100
90
80
Ultimate quq(kN/m) Charge load ultime u (kN/m)
70
M 60
N
L K
50
I
H 40
G E
30
B
A
20
6
F
D
C
10
J
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
e
Ht
6
7
8
9
10
11
12
13
14
15
16
18
20
22
24
28
32
A
IPE 270
285
75
360
399
31,4
25,9
22,1
20,1
15,6
11,9
B
IPE 300
315
75
390
445
34,2
29,6
24,8
22,3
19,4
16,9
13,2
10,5
C
IPE 330
345
85
430
489
43,4
34,2
30,0
26,7
22,9
20,9
18,4
14,6
11,9
D
IPE 360
380
100
480
535
52,0
43,4
37,3
32,7
29,1
26,2
23,8
20,2
16,4
13,4
11,1
E
IPE 400
420
110
530
594
61,6
50,5
46,3
39,8
34,9
31,0
28,0
25,4
22,9
18,8
15,7
11,2
8,2
F
IPE 450
475
115
590
672
80,6
63,0
51,7
43,9
40,8
35,7
31,8
30,1
27,3
24,9
22,7
16,2
12,0
G
IPE 500
525
135
660
745
79,2
70,5
57,9
53,1
45,6
42,6
37,6
33,7
32,0
29,2
22,7
16,9
12,8
H
IPE 550
580
150
730
822
97,7
85,4
68,6
62,4
57,2
49,2
45,9
43,1
38,4
36,3
31,4
23,3
17,8
13,8
I
IPE 600
630
160
790
896
81,6
73,5
66,9
61,3
52,7
49,2
46,2
41,1
37,0
31,5
24,1
18,8
12,0
90,8
71,3
64,3
58,5
53,7
49,6
46,1
40,4
36,0
32,4
29,5
19,3
13,1
92,5
82,4
74,3
67,6
62,1
53,5
46,9
41,7
37,6
32,9
21,2
14,4
94,8
85,5
77,8
71,4
66,0
57,3
50,6
45,3
40,0
26,3
17,8
96,1
87,5
80,3
74,2
64,4
56,9
51,0
46,2
30,5
20,8
95,2
87,3
80,7
70,1
61,9
55,4
50,2
35,1
24,0
J
IPE 750 x 134 785 196,2 981,2 1122
K IPE 750 x 147 790 197,5 987,5 1127 L
IPE 750 x 173 795 198,7 993,7 1139
M IPE 750 x 196 800
200
1000
1149
N IPE 750 x 220 805 201,2 1006,2 1160
36
Chart 2: Non-composite ACB® based on HEA, S355, e=1.25 a0 100
90
80
Ultimate quq(kN/m) Charge load ultime u (kN/m)
70
N
M
60
L
K I
50
G
J
H
40
F
E 30
C A
D
B
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
e
Ht
6
7
8
9
10
11
12
13
14
15
16
18
20
22
24
28
32
A
HE 280 A
285
75
360
399
40,9
34,2
29,4
26,6
23,6
21,2
19,3
17,0
13,8
11,3
B
HE 300 A
305
75
380
430
47,4
38,7
34,4
29,5
25,9
23,9
21,4
19,5
18,1
14,9
12,4
C
HE 320 A
325
85
410
459
56,4
48,4
40,0
35,8
31,0
28,4
25,3
23,6
22,0
18,6
15,5
11,1
D
HE 340 A
345
85
430
489
62,3
49,1
43,1
38,3
32,9
30,1
27,7
24,7
23,1
21,7
18,5
13,3
E
HE 360 A
370
90
460
521
70,0
54,1
46,9
41,5
37,2
33,6
30,7
27,2
25,3
23,6
22,2
15,9
11,8
F
HE 400 A
410
100
510
581
84,6
69,5
58,9
51,2
45,2
40,5
36,7
33,5
30,9
28,6
26,6
21,4
15,8
12,1
G
HE 450 A
460
120
580
654
91,0
74,7
63,4
55,0
51,6
45,9
41,4
39,4
36,0
33,2
29,6
22,1
16,9
13,1
H
HE 500 A
515
125
640
732
99,6
80,1
72,9
61,8
57,5
50,4
44,8
42,5
38,5
36,7
32,4
27,9
22,8
17,8
11,4
I
HE 550 A
565
145
710
805
94,0
84,7
77,1
65,4
60,8
53,3
50,2
47,4
42,7
37,2
34,2
29,1
22,7
14,6
J
HE 600 A
620
160
780
881
95,5
86,1
78,4
66,5
61,8
57,7
51,0
48,2
43,4
37,8
33,5
28,4
18,3
12,5
K
HE 650 A
670
170
840
956
96,8
87,2
72,9
67,4
62,6
58,5
54,9
46,3
41,9
38,3
33,9
22,5
15,3
L
HE 700 A
725
185
910
1032
92,6
77,4
71,5
66,5
62,1
54,8
49,1
44,5
39,0
27,6
18,8
M
HE 800 A
830
210
1040
1183
91,0
82,9
76,1
70,3
61,0
53,9
50,9
45,8
38,3
26,2
N
HE 900 A
935
235
1170
1334
93,4
85,1
72,2
67,0
58,8
52,3
44,9
35,9
37
Chart 3: Non-composite ACB® based on HEB, S355, e=1.25 a0 100
90
80
Ultimate quq(kN/m) Charge load ultime u (kN/m)
N
M
70
K
60
I
L J
50
H
G 40
F
E C
30
A
D
B
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
e
Ht
6
7
8
9
10
11
12
13
14
15
16
18
20
22
24
28
32
A
HE 280 B
295
75
370
414
57,5
50,4
42,5
36,8
33,7
30,0
27,0
24,0
19,4
16,0
13,3
B
HE 300 B
315
75
390
445
62,6
54,4
45,4
40,9
35,6
31,6
29,3
26,5
24,9
20,6
17,2
12,3
C
HE 320 B
335
85
420
474
73,4
63,1
55,3
46,7
42,2
38,6
34,2
31,8
28,7
25,1
20,9
15,0
11,0
D
HE 340 B
355
85
440
504
80,0
67,9
58,9
49,2
44,3
40,4
35,6
32,9
30,7
28,7
24,6
17,7
13,1
E
HE 360 B
380
100
480
535
94,8
79,2
68,1
59,6
53,1
47,8
43,5
39,9
36,9
33,1
29,0
20,8
15,4
11,7
F
HE 400 B
420
110
530
594
91,8
84,2
72,3
63,4
56,4
50,8
46,3
42,4
39,2
37,7
27,5
20,4
15,5
12,1
G
HE 450 B
475
115
590
672
88,5
75,1
69,8
61,1
54,4
51,6
46,7
42,7
40,9
35,1
28,0
21,3
16,6
10,6
H
HE 500 B
525
135
660
745
94,1
86,4
74,2
69,3
61,2
54,9
52,1
47,4
41,8
36,8
28,1
22,0
14,1
I
HE 550 B
580
150
730
822
95,3
87,5
75,1
70,2
65,8
58,6
55,5
48,0
42,3
35,8
27,9
17,9
12,2
J
HE 600 B
630
160
790
896
96,2
88,2
75,8
70,8
66,4
59,1
53,3
46,4
42,7
34,4
22,2
15,1
K
HE 650 B
685
175
860
973
97,5
89,5
76,9
71,8
67,4
59,9
51,5
47,0
42,2
27,2
18,5
L
HE 700 B
735
185
920
1047
86,5
80,4
75,1
66,3
59,4
53,8
49,1
32,9
22,5
M
HE 800 B
840
210
1050
1198
92,7
85,7
79,5
69,7
62,0
55,9
45,4
31,0
N
HE 900 B
945
235
1180
1349
87,8
81,5
71,5
63,6
54,6
42,3
38
Chart 4: Non-composite ACB® based on IPE, S355, e=1.5 a0 100
90
80
M
Ultimate quq(kN/m) Charge load ultime u (kN/m)
70
K
N
L
60
J
I 50
G
H
40
E 30
C A
20
10
6
F
D B
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
e
Ht
6
7
8
9
10
11
12
13
14
15
16
18
20
22
24
28
32
A
IPE 270
285
140
425
385
40,5
31,2
24,7
19,9
14,6
11,1
B
IPE 300
315
155
470
428
50,9
39,5
31,4
25,4
21,0
15,9
12,3
C
IPE 330
345
170
515
471
63,3
49,4
39,5
32,1
26,6
22,1
17,4
13,8
11,1
D
IPE 360
380
190
570
515
76,1
60,0
48,3
39,5
32,9
27,8
23,7
18,9
15,2
12,5
10,3
E
IPE 400
420
210
630
573
94,2
75,3
60,9
49,8
41,6
35,1
30,1
26,0
21,5
17,6
14,6
10,4
F
IPE 450
475
235
710
647
93,5
76,5
63,2
52,8
44,7
38,4
33,2
29,0
25,6
21,2
15,0
11,1
G
IPE 500
525
260
785
719
95,3
79,2
66,7
56,6
48,7
42,3
36,9
32,6
28,9
21,4
15,7
11,9
H
IPE 550
580
285
865
793
98,1
82,9
70,6
60,9
52,9
46,4
40,9
36,4
29,2
21,9
16,5
12,8
I
IPE 600
630
310
940
865
87,4
75,3
65,7
57,6
51,0
45,3
36,5
29,9
22,5
17,5
11,1
92,5
83,0
78,5
71,3
65,5
60,6
49,2
40,4
33,8
28,5
18,1
12,3
92,5
87,5
79,5
73,0
67,5
54,5
44,7
37,4
31,5
20,1
13,6
90,7
81,1
65,5
53,9
45,1
38,2
24,8
16,7
93,4
75,5
62,1
52,0
44,2
28,9
19,5
85,2
70,4
59,1
50,3
33,2
22,6
J
IPE 750 x 134 755 392,5 1147,5 1081
K IPE 750 x 147 755 L
395
1150
1086
IPE 750 x 173 765 397,5 1162,5 1097
M IPE 750 x 196 770
400
1170
1107
N IPE 750 x 220 780 402,5 1182,5 1118
39
Chart 5: Non-composite ACB® based on HEB, S355, e=1.5 a0 100
90
80
N
M Ultimate quq(kN/m) Charge load ultime u (kN/m)
70
K 60
I G
50
E
C
40
A
J
H
F D
B
30
L
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
w
e
Ht
Ultimate load qu (kN/m) according to the span (m) 6
7
8
9
10
11
12
13
14
15
16
85,2
74,5
62,3
46,7
35,8
27,8
22,2
17,8
14,6
12,1
18
20
22
24
28
32
A
HE 280 B
280
140
420
392
B
HE 300 B
310
150
460
426
80,2
70,7
61,5
47,2
37,0
29,5
23,8
19,5
16,2
11,5
C
HE 320 B
335
165
500
457
96,4
83,6
73,7
57,6
45,1
35,9
29,1
23,9
19,8
14,1
10,4
D
HE 340 B
355
175
530
485
93,5
81,8
67,8
53,1
42,3
34,3
28,3
23,5
16,7
12,3
E
HE 360 B
380
190
570
515
89,0
76,1
62,6
49,8
40,3
33,2
27,6
19,6
14,5
10,9
88,5
76,6
65,5
53,4
43,7
36,3
25,9
19,1
14,5
11,2
90,7
79,2
69,8
60,3
49,9
35,6
26,4
20,1
15,6
92,8
82,0
72,8
65,1
47,4
34,9
26,6
20,7
13,2
92,1
81,8
73,3
59,6
44,3
33,8
26,1
16,7
11,3
92,5
82,6
67,3
55,2
41,7
32,5
20,8
14,1
92,0
75,1
62,3
50,8
39,6
25,6
17,3
84,3
70,0
58,9
48,1
30,8
21,0
83,5
70,5
60,4
42,7
28,9
85,2
72,9
54,9
39,5
F
HE 400 B
420
210
630
573
G
HE 450 B
475
235
710
647
H
HE 500 B
525
260
785
719
I
HE 550 B
580
290
870
792
J
HE 600 B
630
310
940
865
K
HE 650 B
685
340
1025
938
L
HE 700 B
735
365
1100
1010
M
HE 800 B
840
420
1260
1154
N
HE 900 B
945
470
1415
1301
40
Chart 6: Non-composite ACB® based on HEM, S355, e=1.5 a0 100
90
80
M
N
Ultimate quq(kN/m) Charge load ultime u (kN/m)
70
K 60
L
I J
G
50
E C
40
F D
B
A
30
H
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
w
e
Ht
Ultimate load qu (kN/m) according to the span (m) 6
7
8
9
10
11
12
13
14
15
16
18
20
92,5
70,9
55,1
43,9
35,3
29,0
24,1
17,0
12,5
22
24
28
32
A
HE 280 M
280
140
420
422
B
HE 300 M
310
150
460
466
83,2
66,3
53,4
43,9
36,4
25,9
19,0
14,4
11,1
C
HE 320 M
340
165
505
498
96,4
76,9
62,3
51,1
42,5
30,2
22,2
16,8
13,0
D
HE 340 M
380
180
560
535
89,1
72,1
59,1
49,1
35,0
25,8
19,6
15,1
E
HE 360 M
410
195
605
566
98,4
80,7
66,2
54,9
39,2
29,0
21,9
17,0
F
HE 400 M
450
220
670
619
97,0
79,5
66,4
47,5
35,0
26,6
20,6
13,1
G
HE 450 M
500
245
745
687
99,4
82,3
59,3
43,8
33,2
25,8
16,5
11,1
H
HE 500 M
540
270
810
749
99,1
71,4
52,7
40,2
31,1
19,9
13,4
I
HE 550 M
600
300
900
823
86,7
64,4
48,8
38,1
24,4
16,4
J
HE 600 M
650
320
970
894
94,1
76,4
58,3
45,4
29,1
19,7
K
HE 650 M
700
350
1050
962
83,7
68,4
53,3
34,1
23,1
L
HE 700 M
750
375
1125
1031
89,6
75,4
61,4
39,6
26,8
M
HE 800 M
855
425
1280
1176
87,1
74,3
52,7
35,9
N
HE 900 M
955
475
1430
1315
98,2
84,0
63,3
45,6
10,8
41
Chart 7: Non-composite ACB® based on IPE, S460, e=1.5 a0 100
90
80
M Ultimate quq(kN/m) Charge load ultime u (kN/m)
70
N
K
60
J
I 50
G
L
H
E
40
F
C 30
D
A B
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
e
Ht
6
7
8
9
10
11
12
13
14
15
16
18
20
22
24
28
32
A
IPE 270
285
140
425
385
52,5
40,3
27,8
19,9
14,6
11,1
B
IPE 300
315
155
470
428
66,0
51,1
39,6
28,4
21,0
15,9
12,3
C
IPE 330
345
170
515
471
82,0
64,1
51,2
39,1
29,1
22,1
17,4
13,8
11,1
D
IPE 360
380
190
570
515
98,6
77,7
62,6
51,2
39,7
30,7
23,8
18,9
15,2
12,5
10,3
E
IPE 400
420
210
630
573
97,6
78,9
64,6
53,9
42,5
33,6
26,6
21,5
17,6
14,6
10,4
F
IPE 450
475
235
710
647
81,9
68,4
58,0
48,5
38,7
31,1
25,7
21,2
15,0
11,1
G
IPE 500
525
260
785
719
102,6 86,4
73,4
63,1
54,1
43,9
36,2
29,9
21,4
15,7
11,9
H
IPE 550
580
285
865
793
107,4 91,5
78,9
68,5
60,1
49,6
41,5
29,7
21,9
16,5
12,8
I
IPE 600
630
310
940
865
113,2 97,6
85,2
74,7
66,1
56,6
40,4
29,9
22,5
17,5
11,1
119,9 107,5 101,7 92,5
84,8
78,5
63,7
47,8
36,7
28,5
18,1
12,3
119,9 113,3 103,1 94,6
87,5
70,6
52,9
40,7
31,5
20,1
13,6
113,2 103,8 95,9
83,5
65,8
49,9
38,7
24,8
16,7
97,9
76,5
58,0
45,1
28,9
19,5
110,4 87,6
66,5
52,1
33,2
22,6
J
IPE 750 x 134 755 392,5 1147,5 1081
K
IPE 750 x 147 755
L
IPE 750 x 173 765 397,5 1162,5 1097
M IPE 750 x 196 770 N
42
395
400
1150
1170
1086
1107
IPE 750 x 220 780 402,5 1182,5 1118
99,1
Chart 8: Non-composite ACB® based on HEB, S460, e=1.5 a0 100
90
80
M
N
Ultimate quq(kN/m) Charge load ultime u (kN/m)
70
K 60
I G
50
J
H
E
C
40
L
F D
A B
30
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
w
e
Ht
Ultimate load qu (kN/m) according to the span (m) 6
7
8
9
10
11
12
13
14
15
16
62,3
46,7
35,8
27,8
22,2
101,8 82,0
61,5
47,2
37,0
18
17,8
14,6
12,1
29,5
23,8
19,5
16,2
11,5
20
22
24
28
32
A
HE 280 B
280
140
420
392
B
HE 300 B
310
150
460
426
C
HE 320 B
335
165
500
457
100,2 75,1
57,6
45,1
35,9
29,1
23,9
19,8
14,1
10,4
D
HE 340 B
355
175
530
485
118,2 88,4
67,8
53,1
42,3
34,3
28,3
23,5
16,7
12,3
E
HE 360 B
380
190
570
515
102,4 80,1
62,6
49,8
40,3
33,2
27,6
19,6
14,5
10,9
F
HE 400 B
420
210
630
573
103,3 82,3
65,5
53,4
43,7
36,3
25,9
19,1
14,5
11,2
G
HE 450 B
475
235
710
647
111,9 90,1
72,6
60,3
49,9
35,6
26,4
20,1
15,6
H
HE 500 B
525
260
785
719
117,1 95,7
79,5
65,8
47,4
34,9
26,6
20,7
13,2
I
HE 550 B
580
290
870
792
119,3 100,3 82,7
59,6
44,3
33,8
26,1
16,7
11,3
J
HE 600 B
630
310
940
865
119,8 103,4 74,4
55,2
41,7
32,5
20,8
14,1
K
HE 650 B
685
340
1025
938
119,2 89,5
66,6
50,8
39,6
25,6
17,3
L
HE 700 B
735
365
1100
1010
108,0 81,1
61,8
48,1
30,8
21,0
M
HE 800 B
840
420
1260
1154
108,3 84,3
66,6
42,7
28,9
N
HE 900 B
945
470
1415
1301
110,4 90,4
57,9
39,5
108,3 87,3
43
Chart 9: Non-composite ACB® based on HEM, S460, e=1.5 a0 100
90
M 80
K L
I
70
Ultimate quq(kN/m) Charge load ultime u (kN/m)
N
J
G 60
H
E
C
F
50
D
A
B
40
30
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
w
e
Ht
Ultimate load qu (kN/m) according to the span (m) 6
7
8
9
10
11
12
13
14
15
16
18
20
92,5
70,9
55,1
43,9
35,3
29,0
24,1
17,0
12,5
22
24
28
32
A
HE 280 M
280
140
420
422
B
HE 300 M
310
150
460
466
106,1 83,2
66,3
53,4
43,9
36,4
25,9
19,0
14,4
11,1
C
HE 320 M
340
165
505
498
96,4
76,9
62,3
51,1
42,5
30,2
22,2
16,8
13,0
D
HE 340 M
380
180
560
535
110,2 89,1
72,1
59,1
49,1
35,0
25,8
19,6
15,1
E
HE 360 M
410
195
605
566
98,4
80,7
66,2
54,9
39,2
29,0
21,9
17,0
10,8
F
HE 400 M
450
220
670
619
118,1 97,0
79,5
66,4
47,5
35,0
26,6
20,6
13,1
G
HE 450 M
500
245
745
687
99,4
82,3
59,3
43,8
33,2
25,8
16,5
11,1
H
HE 500 M
540
270
810
749
118,7 99,1
71,4
52,7
40,2
31,1
19,9
13,4
I
HE 550 M
600
300
900
823
86,7
64,4
48,8
38,1
24,4
16,4
J
HE 600 M
650
320
970
894
102,7 76,4
58,3
45,4
29,1
19,7
K
HE 650 M
700
350
1050
962
89,8
68,4
53,3
34,1
23,1
L
HE 700 M
750
375
1125
1031
103,3 78,7
61,4
39,6
26,8
M
HE 800 M
855
425
1280
1176
105,6 82,0
52,7
35,9
N
HE 900 M
955
475
1430
1315
104,1 66,8
45,6
44
Chart 10: Composite ACB® based on IPE, S355, e=1.5 a0 140 130 120
M
110
K
L
90
u
Ultimate load q (kN/m) Charge ultimeuq (kN/m)
100
J
I
80 70
G
60
E
F
50
C
D
40
A
B
30 20
6
H
8
10
12
14 16 Span (m)(m) Portée
Dimensions (mm)
Sections a
0
w
e
18
20
22
24
Ultimate load qu (kN/m) according to the span (m)
Ht
6
7
8
9
10
11
12
13
14
21,4
15
16
18
20
22
24
A
IPE 270
285 142,5 427,5
384
49,2
40,1
27,7
B
IPE 300
315 157,5 472,5
427
58,9
48,1
39,4
28,3
20,9
C
IPE 330
345 172,5 517,5
470
70,8
57,9
48,1
39,0
29,3
22,3
D
IPE 360
375 187,5 562,5
513
84,7
68,9
57,4
48,6
39,7
30,2
23,5
E
IPE 400
415 207,5 622,5
570 102,4 84,1
69,8
59,0
51,0
42,5
33,5
26,5
F
IPE 450
465 232,5 697,5
642 125,5 103,6 85,8
73,0
62,7
54,4
47,6
38,1
30,9
25,2
21,0
G
IPE 500
515 257,5 772,5
714
125,2 104,4 88,9
76,2
66,2
58,0
51,3
43,6
35,6
29,7
21,2
H
IPE 550
555 277,5 832,5
781
130,7 110,8 95,3
82,0
72,0
63,4
56,4
49,1
41,0
29,0
21,4
I
IPE 600
615 307,5 922,5
857
130,6 112,4 97,6
85,2
75,7
67,0
60,0
54,1
39,6
29,3
22,2
122,1 107,1 95,5
93,6
84,3
77,1
70,8
61,1
52,3
40,7
31,5
126,5 111,9 100,7 90,2
74,1
61,3
49,9
38,7
1107
126,7 114,0 102,3 84,1
69,8
58,0
45,1
M IPE 750 x 220 780 402,5 1182,5 1118
126,3 113,9 93,8
78,2
65,8
52,1
J
IPE 750 x 147 755
395
1150
1086
K IPE 750 x 173 765 397,5 1162,5 1097 L IPE 750 x 196 770
400
1170
45
Chart 11: Composite ACB® based on HEA, S355, e=1.5 a0 140 130
M
120 110
K
L
Ultimateultime load quq(kN/m) Charge u (kN/m)
100
I
J
90
G
80
E
70 60
H
F
C D
50
B
40
A
30 20
6
8
10
14 16 Span (m) Portée (m)
Dimensions (mm)
Sections a
0
46
12
18
20
22
24
Ultimate load qu (kN/m) according to the span (m)
w
e
Ht
6
7
8
9
10
11
12
13
55,1
47,5
14
15
16
18
20
22
24
A
HE 300 A
270
135
405
398
39,9
35,7
31,3
28,6
25,2
20,1
B
HE 320 A
290
145
435
426 116,2 101,7 79,7
71,0
53,1
40,7
31,6
25,2
20,4
C
HE 340 A
300
150
450
451 123,1 105,7 92,1
82,4
63,1
48,0
37,6
29,9
24,2
D
HE 360 A
320
160
480
479
119,3 102,8 90,4
74,9
57,4
44,9
35,8
28,9
23,7
E
HE 400 A
360
180
540
537
129,3 109,6 93,8
77,2
61,0
48,5
39,2
32,2
26,7
128,7 110,5 95,7
84,0
68,2
55,1
45,1
37,6
26,9
128,3 111,6 98,0
86,7
74,7
61,1
51,2
36,5
26,9
20,4
127,0 111,6 98,7
87,6
77,6
64,2
46,3
34,2
25,9
20,1
F
HE 450 A
410
205
615
608
G
HE 500 A
460
230
690
680
H
HE 550 A
500
250
750
747
I
HE 600 A
550
275
825
819
125,0 110,2 98,3
88,1
79,3
58,0
43,0
32,6
25,4
J
HE 650 A
600
300
900
891
138,9 123,1 109,4 98,4
88,6
71,6
53,2
40,3
31,4
K
HE 700 A
650
325
975
962
138,8 123,4 110,7 99,7
82,0
64,8
49,4
38,5
L
HE 800 A
740
370
1110
1101
133,1 119,8 98,6
81,9
68,7
53,4
M
HE 900 A
840
420
1260
1244
118,7 98,9
83,5
71,3
Chart 12: Composite ACB® based on HEB, S355, e=1.5 a0 140 130 120
M
110
K
Ultimate load q (kN/m)
Charge ultimeuq u (kN/m)
100
L
I J
90
G
H
80
E
70
C
60
A
F
D
B
50 40 30 20
6
8
10
12
14 16 Span (m)(m) Portée
Dimensions (mm)
Sections a
0
w
e
Ht
18
20
22
24
Ultimate load qu (kN/m) according to the span (m) 6
7
8
9
10
11
12
13
14
77,8
57,7
44,2
34,3
27,3
22,1
15
16
18
20
22
24
A
HE 300 B
270
135
405
408 132,8 116,1 93,4
B
HE 320 B
290
145
435
436
127,9 101,3 90,6
70,6
54,1
42,0
33,5
27,1
22,1
C
HE 340 B
300
150
450
461
132,3 115,2 102,8 82,6
62,8
49,2
39,2
31,7
25,9
21,5
D
HE 360 B
320
160
480
489
127,8 112,0 96,7
74,2
58,1
46,2
37,4
30,7
25,3
E
HE 400 B
360
180
540
547
137,8 118,4 97,9
77,3
61,5
49,8
40,8
33,9
24,1
139,8 120,5 105,0 84,8
68,5
56,2
46,9
33,5
24,6
138,7 121,6 106,9 91,5
74,8
62,7
44,7
33,0
25,0
136,7 120,5 106,9 94,2
78,0
56,2
41,5
31,4
24,5
133,9 119,4 106,5 95,7
69,9
51,9
39,3
30,6
F
HE 450 B
410
205
615
618
G
HE 500 B
460
230
690
690
H
HE 550 B
500
250
750
757
I
HE 600 B
550
275
825
829
J
HE 650 B
600
300
900
901
131,9 118,3 106,3 85,7
63,6
48,2
37,6
K
HE 700 B
650
325
975
972
132,1 118,7 97,3
77,0
58,7
45,7
L
HE 800 B
740
370
1110
1111
116,2 96,4
80,9
63,0
M
HE 900 B
840
420
1260
1254
138,6 115,4 97,3
83,0
47
Chart 13: Composite ACB® based on IPE, S460, e=1.5 a0 140 130 120
M N
110
K L
I
90
J
u
Ultimate qu q(kN/m) Charge load ultime (kN/m)
100
80
G H
70
E
60
F
C
50
D
40
A
B
30 20
6
8
10
12
14
16
18
20
22
24
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
e
Ht
6
7
8
9
10
11
12
13
14
21,4
15
16
18
20
22
A
IPE 270
285 142,5 427,5
384
62,0
40,1
27,7
B
IPE 300
315 157,5 472,5
427
74,6
57,1
39,4
28,3
20,9
C
IPE 330
345 172,5 517,5
470
90,0
73,6
54,1
39,0
29,3
22,3
D
IPE 360
375 187,5 562,5
513 107,8 87,7
72,9
53,5
39,7
30,2
23,5
E
IPE 400
415 207,5 622,5
570 131,7 107,0 89,0
74,5
56,0
42,5
33,5
26,5
132,7 109,7 92,5
79,2
61,1
48,3
38,1
30,9
25,2
21,0
133,8 113,8 96,8
83,9
66,9
53,9
43,6
35,6
29,7
21,2
121,1 104,3 91,2
73,2
59,8
49,1
41,0
29,0
21,4
124,4 108,6 96,0
82,0
67,2
55,3
39,6
29,3
22,2
F
IPE 450
465 232,5 697,5
642
G
IPE 500
515 257,5 772,5
714
H
IPE 550
555 277,5 832,5
781
I
IPE 600
615 307,5 922,5
857
24
J
IPE 750 x 134 755 392,5 1147,5 1081
123,9 110,8 107,8 97,2
89,0
82,0
64,8
47,8
36,7
28,5
K
IPE 750 x 147 755
137,7 122,9 119,6 107,9 98,8
90,8
71,6
52,9
40,7
31,5
L
IPE 750 x 173 765 397,5 1162,5 1097
129,6 117,1 106,9 98,6
85,4
65,8
49,9
38,7
1107
130,6 101,5 76,5
58,0
45,1
IPE 750 x 220 780 402,5 1182,5 1118
118,7 87,6
66,5
52,1
M IPE 750 x 196 770 N
48
w
Ultimate load qu (kN/m) according to the span (m)
395
400
1150
1170
1086
Chart 14: Composite ACB® based on HEA, S460, e=1.5 a0 140 130 120
M
110
K I
90
L
J
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
100
G
80
H
70
E
F
60
C
50
A
D B
40 30 20
6
8
10
12
14
16
18
20
22
24
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
e
Ht
6
7
8
9
10
11
12
13
14
15
16
18
20
22
24
A
HE 300 A
270
135
405
398
70,6
60,8
51,1
45,7
40,0
32,5
25,2
20,1
B
HE 320 A
290
145
435
426
79,6
67,9
56,6
50,4
45,4
40,7
31,6
25,2
20,4
C
HE 340 A
300
150
450
451
90,6
77,3
67,3
59,7
53,5
47,2
37,6
29,9
24,2
D
HE 360 A
320
160
480
479
123,7 100,0 74,9
57,4
44,9
35,8
28,9
23,7
E
HE 400 A
360
180
540
537
133,3 100,6 77,2
61,0
48,5
39,2
32,2
26,7
107,9 84,4
68,2
55,1
45,1
37,6
26,9
113,0 91,6
74,7
61,1
51,2
36,5
26,9
20,4
114,3 94,0
77,6
64,2
46,3
34,2
25,9
20,1
118,1 97,4
80,4
58,0
43,0
32,6
25,4
119,2 99,4
71,6
53,2
40,3
31,4
121,2 87,3
64,8
49,4
38,5
135,1 124,4 115,1 104,2 90,2
68,7
53,4
139,7 125,7 109,2 94,1
74,3
F
HE 450 A
410
205
615
608
G
HE 500 A
460
230
690
680
H
HE 550 A
500
250
750
747
I
HE 600 A
550
275
825
819
J
HE 650 A
600
300
900
891
K
HE 700 A
650
325
975
962
L
HE 800 A
740
370
1110
1101
M
HE 900 A
840
420
1260
1244
49
Chart 15: Composite ACB® based on HEB, S460, e=1.5 a0 140 130
M
120 110
K I
90
G
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
100
E C
60
A
J
H
80 70
L
F
D
B
50 40 30 20
6
8
10
12
14
16
18
20
22
24
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
50
w
e
Ht
Ultimate load qu (kN/m) according to the span (m) 6
7
8
9
10
11
12
13
14
15
16
18
20
22
24
A
HE 300 B
270
135
405
408
107,0 77,8
57,7
44,2
34,3
27,3
22,1
B
HE 320 B
290
145
435
436
127,1 94,3
70,6
54,1
42,0
33,5
27,1
22,1
C
HE 340 B
300
150
450
461
110,3 82,6
62,8
49,2
39,2
31,7
25,9
21,5
D
HE 360 B
320
160
480
489
129,2 96,7
74,2
58,1
46,2
37,4
30,7
25,3
E
HE 400 B
360
180
540
547
127,6 97,9
77,3
61,5
49,8
40,8
33,9
24,1
134,3 105,0 84,8
68,5
56,2
46,9
33,5
24,6
138,4 112,2 91,5
74,8
62,7
44,7
33,0
25,0
138,9 114,1 94,2
78,0
56,2
41,5
31,4
24,5
117,4 96,9
69,9
51,9
39,3
30,6
119,0 85,7
63,6
48,2
37,6
103,7 77,0
58,7
45,7
106,4 80,9
63,0
F
HE 450 B
410
205
615
618
G
HE 500 B
460
230
690
690
H
HE 550 B
500
250
750
757
I
HE 600 B
550
275
825
829
J
HE 650 B
600
300
900
901
K
HE 700 B
650
325
975
972
L
HE 800 B
740
370
1110
1111
M
HE 900 B
840
420
1260
1254
109,8 86,7
12. Predesign charts for Angelina® Chart 16: Non-composite Angelina® based on IPE, S355 100
90
80
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
70
M 60
L
I
50
J G
40
E 30
C
6
8
H F
D
A
20
10
N
K
B
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
20
22
24
A
IPE 270
285
200
285
970
412,5
32,7
23,9
16,7
10,6
B
IPE 300
315
200
315
1030
457,5
45,1
31,2
21,6
15,3
C
IPE 330
345
200
345
1090
502,5
55,2
38,3
27,5
19,5
13,6
D
IPE 360
375
250
375
1250
547,5
64,7
42,8
30,9
24,3
18,2
12,6
E
IPE 400
415
250
415
1330
607,5
79,8
49,4
42,1
31,1
23,3
17,7
12,7
93,7
72,2
54,9
40,2
30,3
23,5
18,3
13,6
10,2
83,2
69,6
51,6
38,9
30,3
24,1
19,1
14,5
11,3
82,0
65,6
49,7
38,4
30,7
25,1
19,9
15,4
28
32
F
IPE 450
465
250
465
1430
682,5
G
IPE 500
515
250
515
1530
757,5
H
IPE 550
555
250
555
1610
827,5
I
IPE 600
615
250
615
1730
907,5
81,4
58,9
48,1
38,7
31,4
26,3
21,3
13,5
IPE 750 x 134 755
250
755
2010
1130,5
97,1
74,9
58,3
47,3
38,3
32,1
26,9
19,9
14,8
K IPE 750 x 147 755
250
755
2010
1130,5
90,0
69,4
55,9
45,4
37,9
31,9
23,6
16,2
L IPE 750 x 173 765
250
765
2030
1144,5
84,6
68,4
55,5
46,4
39,0
28,9
20,0
M IPE 750 x 196 770
250
770
2040
1155
97,0
78,6
63,7
53,4
44,8
33,2
23,3
N IPE 750 x 220 780
250
780
2060
1169
89,2
72,4
60,7
51,0
37,8
26,9
J
51
Chart 17: Non-composite Angelina® based on HEA, S355 100
90
80
M
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
70
K
L
I
60
J G
50
E 40
C
H
F
D
A B
30
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
52
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
20
22
24
28
32
A
HE 300 A
305
200
305
1010
442,5
78,9
53,9
41,0
31,8
20,6
14,1
10,0
B
HE 320 A
325
200
325
1050
472,5
90,1
62,0
47,4
37,5
25,5
17,4
12,4
C
HE 340 A
340
200
340
1080
500
70,2
53,3
42,6
30,7
20,9
14,9
11,0
D
HE 360 A
365
250
365
1230
532,5
71,0
51,7
44,3
35,6
24,6
17,7
13,0
10,0
E
HE 400 A
405
250
405
1310
592,5
80,8
67,8
52,5
43,7
33,3
24,1
17,7
13,5
10,4
F
HE 450 A
455
250
455
1410
667,5
77,0
67,0
54,3
42,7
33,6
24,7
18,9
14,6
G
HE 500 A
500
250
500
1500
740
66,2
66,3
52,0
41,7
33,3
25,4
19,6
12,6
H
HE 550 A
555
250
555
1610
817,5
93,1
76,9
61,0
48,9
40,0
32,7
25,4
16,2
11,0
I
HE 600 A
600
250
600
1700
890
83,9
70,5
56,5
46,3
38,6
31,5
20,2
13,7
J
HE 650 A
655
250
655
1810
967,5
80,2
64,8
53,1
44,3
37,4
25,2
17,1
K
HE 700 A
755
250
755
2010 1067,5
89,9
73,0
60,5
50,6
42,9
31,9
21,8
L
HE 800 A
805
250
805
2110 1192,5
83,8
71,8
62,9
53,3
39,5
29,2
M
HE 900 A
900
250
900
2300
84,3
72,2
63,2
49,6
38,0
1340
32
Chart 18: Non-composite Angelina® based on HEA, S460 100
90
80
M
Ultimate quq(kN/m) Chargeload ultime u (kN/m)
70
K
L
I
60
G 50
J H
E
40
F
C
A
B
30
D
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m)
Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
20
22
24
28
32
A
HE 300 A
305
200
305
1010
442,5
69,9
52,9
31,8
20,6
14,1
10,0
B
HE 320 A
325
200
325
1050
472,5
80,3
61,4
39,3
25,5
17,4
12,4
C
HE 340 A
340
200
340
1080
500
91,0
69,0
46,6
30,7
20,9
14,9
11,0
D
HE 360 A
365
250
365
1230
532,5
92,1
67,0
55,6
35,9
24,6
17,7
13,0
10,0
E
HE 400 A
405
250
405
1310
592,5
87,8
68,0
48,8
33,3
24,1
17,7
13,5
10,4
F
HE 450 A
455
250
455
1410
667,5
99,7
86,8
68,7
46,7
33,6
24,7
18,9
14,6
G
HE 500 A
500
250
500
1500
740
85,8
85,9
62,8
44,6
33,3
25,4
19,6
12,6
H
HE 550 A
555
250
555
1610
817,5
99,7
79,1
57,5
42,7
32,7
25,4
16,2
11,0
I
HE 600 A
600
250
600
1700
890
91,4
71,9
53,7
40,8
31,5
20,2
13,7
J
HE 650 A
655
250
655
1810
967,5
83,9
65,7
50,1
39,2
25,2
17,1
K
HE 700 A
755
250
755
2010
1067,5
94,6
78,4
64,0
50,1
32,1
21,8
L
HE 800 A
805
250
805
2110
1192,5
93,1
81,5
67,2
43,1
29,2
M
HE 900 A
900
250
900
2300
1340
93,6
81,9
59,1
40,5
53
Chart 19: Composite Angelina® based on IPE, S355 with COFRAPLUS 60 100
90
80
70
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
M
K I
G
60
L
N
J
H
E F C
50
A
40
D
B
30
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
w
s
e
Ht
6
8
10
12
14
16
18
20
22
24
28
32
A
IPE 270
285
200
285
970
412,5
56,0
40,0
30,3
B
IPE 300
315
200
315
1030
457,5
73,1
50,0
37,3
26,2
C
IPE 330
345
200
345
1090
502,5
84,7
58,5
44,6
32,0
23,9
D
IPE 360
375
250
375
1250
547,5
98,2
63,9
46,9
39,6
29,1
22,5
E
IPE 400
415
250
415
1330
607,5
116,9 70,6
60,2
47,0
36,4
27,9
21,9
F
IPE 450
465
250
465
1430
682,5
136,3 100,6 76,4
60,2
45,3
34,8
27,7
22,3
18,5
G
IPE 500
515
250
515
1530
757,5
114,1 92,8
74,3
58,4
46,3
34,4
27,9
23,2
19,4
12,6
H
IPE 550
555
250
555
1610
827,5
159,8 106,9 90,5
74,7
58,8
46,5
37,8
31,1
26,3
16,2
11,0
I
IPE 600
615
250
615
1730
907,5
137,8 108,6 75,0
69,2
58,1
47,1
39,3
33,1
20,2
13,7
IPE 750 x 134 755
250
755
2010 1130,5
125,8 102,8 86,0
69,8
56,6
47,4
39,9
25,2
17,1
K IPE 750 x 147 755
250
755
2010 1130,5
152,8 125,1 101,0 81,8
66,6
55,7
46,7
31,9
21,8
L IPE 750 x 173 765
250
765
2030 1144,5
135,3 107,7 89,5
76,5
66,8
56,3
39,5
29,2
M IPE 750 x 196 770
250
770
2040
1155
144,1 114,8 95,3
81,5
71,2
63,2
49,6
38,0
N IPE 750 x 220 780
250
780
2060
1169
148,8 118,5 98,5
84,2
73,5
65,2
49,6
38,0
J
54
Ultimate load qu (kN/m) according to the span (m)
32
Chart 20: Composite Angelina® based on HEA, S355 with COFRAPLUS 60 100
90
80
I
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
70
G
E
50
H
F
60
C
J
D
A B
40
30
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
20
22
24
30
32
A
HE 300 A
305
200
305
1010
442,5
111,6 75,7
57,3
41,4
30,4
23,2
18,3
B
HE 320 A
325
200
325
1050
472,5
124,9 85,3
61,0
47,2
38,4
32,1
27,7
23,6
C
HE 360 A
365
250
365
1230
532,5
150,9 96,5
71,0
59,4
49,3
35,2
35,9
29,6
24,6
D
HE 400 A
405
250
405
1310
592,5
109,8 89,1
69,6
59,7
50,2
42,7
35,3
29,4
24,8
E
HE 450 A
455
250
455
1410
667,5
143,7 99,1
85,4
71,8
56,5
51,2
42,1
35,8
30,2
22,2
0,0
F
HE 550 A
555
250
555
1610
817,5
128,1 102,5 86,7
74,6
56,2
51,0
47,0
41,5
30,7
23,5
G
HE 650 A
655
250
655
1810
967,5
130,5 104,5 87,1
74,3
56,6
51,0
46,3
39,6
30,6
H
HE 700 A
755
250
755
2010
1067,5
125,4 100,6 83,2
71,2
62,6
55,6
45,1
34,7
I
HE 800 A
805
250
805
2110
1192,5
130,2 103,7 86,1
73,7
64,3
57,0
46,7
39,2
J
HE 900 A
900
250
900
2300
1340
128,2 131,8 104,8 86,9
74,1
64,5
51,1
47,4
55
Chart 21: Composite Angelina® based on HEB, S355 with COFRAPLUS 60 100
90
K
80
I
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
70
G
J
H
E
60
F C
50
A
D B
40
30
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
56
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
20
22
24
A
HE 300 B
315
250
315
1130
457,5
129,3 87,5
71,0
56,6
47,4
40,4
33,5
27,7
22,9
B
HE 320 B
335
250
335
1170
487,5
138,5 105,6 79,3
62,6
53,3
45,4
37,5
31,1
25,9
21,7
C
HE 360 B
380
300
380
1360
550
120,6 86,2
70,8
58,0
50,3
43,8
37,0
31,0
26,2
D
HE 400 B
420
300
420
1440
610
137,9 106,4 81,9
69,1
57,7
51,4
43,3
36,4
30,7
E
HE 450 B
475
300
475
1550
687,5
151,5 120,9 98,1
76,2
68,8
60,4
51,3
43,3
36,7
132,4 111,1 94,3
28
32
F
HE 500 B
525
300
525
1650
762,5
80,4
70,5
56,4
51,1
43,2
G
HE 550 B
580
300
580
1760
840
130,6 107,7 88,4
78,1
65,7
58,1
49,4
12,6
H
HE 650 B
680
300
680
1960
990
153,2 125,4 104,8 89,5
78,3
69,6
61,0
16,2
11,0
I
HE 700 B
730
300
730
2060
1065
154,9 130,7 109,8 94,0
82,0
70,9
20,2
13,7
J
HE 800 B
780
300
780
2160
1190
136,3 112,6 96,3
83,9
74,4
25,2
17,1
K
HE 900 B
830
350
830
2360
1315
155,9 128,6 109,9 95,2
31,9
21,8
32
Chart 22: Composite Angelina® based on HD, S355 with COFRAPLUS 60 100
90
80
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
70
G E
60
C
F D
50
A
B
40
30
20
10
6
8
10
12
14
16
18
20
22
24
26
28
30
32
Portée (m) Span (m)
Dimensions (mm)
Sections a
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
A HD 320 x 74.2 350
200
350
1100
476
86,4
58,9
44,6
37,3
27,4
21,0
16,6
B HD 320 x 97.6 350
200
350
1100
485
113,6 77,4
56,5
49,5
40,4
33,1
28,2
23,9
C
HD 360 x 147 440
300
440
1480
580
128,4 96,6
75,9
56,6
48,8
42,4
36,2
D HD 360 x 162 440
300
440
1480
584
144,4 108,8 85,4
63,8
55,0
47,8
E
HD 360 x 179 440
300
440
1480
588
124,2 97,3
72,9
62,8
F
HD 360 x 196 440
300
440
1480
592
140,1 109,6 82,3
G HD 400 x 216 440
300
440
1480
595
155,0 121,2 90,9
0
20
22
24
30
32,6
29,5
26,5
40,8
36,8
33,2
29,8
22,2
54,5
46,7
42,0
37,6
31,9
24,3
70,9
61,4
52,7
46,1
39,9
33,8
26,6
78,4
67,9
57,2
49,0
42,4
35,9
28,6
32
22,3
57
Chart 23: Composite Angelina® based on HEA, HISTAR® 460 with COFRAPLUS 60 140 130 120
I
100 90
G
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
L
K
110
J
H
80
E
F
70 60
A
D
C
50
B
40 30 20
6
8
10
12
14
16
18
20
22
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
58
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
20
22
70,7
53,7
39,4
30,1
23,8
19,2
15,9
24
A
HE 300 A
305
200
305
1010
442,5
B
HE 320 A
325
200
325
1050
472,5
105,6 76,7
59,3
46,3
35,4
27,9
22,6
18,6
15,7
C
HE 340 A
340
200
340
1080
500
111,6 79,3
60,9
52,0
39,8
31,4
25,5
21,0
17,7
D
HE 360 A
365
250
365
1230
532,5
119,5 87,8
73,7
60,0
44,9
38,3
31,9
27,8
24,0
E
HE 400 A
405
250
405
1310
592,5
135,9 110,7 85,4
72,9
53,6
46,5
37,4
32,5
27,6
F
HE 450 A
455
250
455
1410
667,5
125,6 106,4 89,4
64,7
55,4
43,9
38,1
32,3
G
HE 500 A
500
250
500
1500
740
120,0 93,3
79,8
63,8
51,4
45,2
37,2
H
HE 550 A
555
250
555
1610
890
130,4 110,1 94,7
69,0
59,2
51,8
44,3
I
HE 650 A
655
250
655
1810
967,5
132,9 110,8 94,6
69,6
61,3
54,0
J
HE 700 A
755
250
755
2010 1067,5
128,1 106,1 88,1
72,9
63,8
K
HE 800 A
805
250
805
2110 1192,5
132,1 109,8 93,9
81,9
71,6
L
HE 900 A
900
250
900
2300
133,4 110,6 94,4
82,2
1340
137,5 93,4
24
Chart 24: Composite Angelina® based on HEB, HISTAR® 460 with COFRAPLUS 60 140 130 120 110
I
G
100
J
90
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
L
K
80
H
E
70
F
C
A
60
D
B
50 40 30 20
6
8
10
12
14
16
18
20
22
24
Portée (m) Span (m)
Dimensions (mm)
Sections a
0
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
6
8
10
12
14
16
18
20
22
24
A
HE 300 B
315
250
315
1130
457,5
108,2 88,0
70,2
52,6
40,8
35,4
29,1
24,8
21,7
B
HE 320 B
335
250
335
1170
487,5
131,0 98,5
76,0
60,3
47,7
37,8
31,2
27,3
23,7
C
HE 340 B
355
250
355
1210
517,5
106,0 87,8
64,5
50,0
41,9
34,3
29,4
25,8
D
HE 360 B
380
300
380
1360
550
107,1 88,0
68,4
58,7
45,0
38,9
32,0
28,0
E
HE 400 B
420
300
420
1440
610
132,4 102,0 82,4
66,6
51,5
45,7
36,7
32,4
F
HE 450 B
475
300
475
1550
687,5
122,5 90,1
75,7
65,0
54,8
43,9
37,9
G
HE 500 B
525
300
525
1650
762,5
138,8 118,1 89,2
74,1
56,4
53,4
46,2
H
HE 550 B
580
300
580
1760
840
134,8 89,5
79,1
65,7
58,4
49,5
I
HE 650 B
680
300
680
1960
990
136,3 117,0 95,4
81,5
70,4
61,0
J
HE 700 B
730
300
730
2060
1065
116,1 96,7
88,8
75,5
K
HE 800 B
780
300
780
2160
1190
116,7 93,8
83,2
L
HE 900 B
830
350
830
2360
1315
123,6 101,1
59
Chart 25: Composite Angelina® based on HD, HISTAR® 460 with COFRAPLUS 60 140 130 120 110
90
G
C
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
100
H
80
E
70
F
60
A
50
D
B
40 30 20
6
8
10
12
14
16
18
20
22
Portée (m) Span (m)
Dimensions (mm)
Sections a
w
s
e
Ht
A HD 320 x 74.2 350
200
350
1100
476
B HD 320 x 97.6 350
200
350
1100
485
C HD 320 x 127 350
300
350
1300
D HD 360 x 147 440
300
440
E
HD 360 x 162 440
300
F
HD 360 x 179 440
G
HD 360 x 196 440
H HD 400 x 216 440
0
60
Ultimate load qu (kN/m) according to the span (m) 6
8
10
12
14
16
18
20
22
24
106,1 72,4
54,8
46,3
34,4
26,4
20,8
16,9
95,6
71,0
61,2
47,5
36,4
28,7
23,3
19,2
16,2
495
109,3 88,2
68,8
58,8
47,1
39,7
32,1
28,0
24,0
1480
580
119,5 93,9
70,0
60,5
52,6
44,5
38,4
33,4
28,4
440
1480
584
134,8 105,9 79,1
68,3
59,3
47,3
40,7
35,4
30,1
300
440
1480
588
300
440
1480
592
120,9 87,7
78,2
67,8
50,5
43,4
37,6
31,9
136,5 93,6
86,0
72,8
53,8
46,1
39,9
33,8
300
440
1480
595
99,3
91,5
77,6
57,2
49,0
42,4
35,9
24
Chart 26: Composite Angelina® based on HD, S355 with Cofradal 200 140
130
120
110
Ultimate load qu (kN/m)
100
90
C 80
E
70
60
H
G
F
B A
50
D
40
30
20
6
8
10
12
14
16
18
20
22
24
Span (m)
Dimensions (mm)
Sections a
Ultimate load qu (kN/m) according to the span (m)
w
s
e
Ht
A HD 320 x 74.2 350
200
350
1100
476
B HD 320 x 97.6 350
200
350
1100
485
C HD 320 x 127 350
300
350
1300
D HD 360 x 147 440
300
440
E
HD 360 x 162 440
300
F
HD 360 x 179 440
G
HD 360 x 196 440
H HD 400 x 216 440
0
6
8
10
12
14
16
18
20
22
24
102,9 69,9
52,9
45,0
35,0
26,8
133,8 90,9
60,3
58,4
46,3
35,5
28,0
495
103,6 83,6
64,8
55,7
45,6
35,8
29,0
1480
580
112,4 88,3
65,5
56,5
49,4
41,7
36,4
30,2
25,4
440
1480
584
126,1 99,0
73,5
63,4
55,4
46,8
40,3
33,5
28,1
300
440
1480
588
112,3 83,6
72,1
300
440
1480
592
126,0 93,9
81,0
62,9
53,2
46,3
38,7
32,5
70,6
59,8
51,9
43,5
36,7
300
440
1480
595
138,5 103,2 89,0
77,6
65,8
57,8
48,4
41,0
61
Chart 27: Composite Angelina® based on HD, HISTAR® 460 with Cofradal 200 140 130 120 110
C G
H
90
E
u
Ultimate quq(kN/m) Charge load ultime (kN/m)
100
F
80 70
A
B
60
D
50 40 30 20
6
8
10
12
14
16
18
20
22
Portée (m) Span (m)
Dimensions (mm)
Sections a
w
s
e
Ht
10
12
14
16
18
A HD 320 x 74.2 350
200
350
1100
476
64,4
46,9
34,4
26,4
20,8
B HD 320 x 97.6 350
200
350
1100
485
111,4 76,5
71,5
57,3
44,1
34,8
28,2
C HD 320 x 127 350
300
350
1300
495
127,3 102,7 79,7
68,4
57,3
45,7
D HD 360 x 147 440
300
440
1480
580
138,2 108,6 80,6
69,6
60,8
E
HD 360 x 162 440
300
440
1480
584
122,0 90,7
78,3
F
HD 360 x 179 440
300
440
1480
588
138,7 103,4 89,2
HD 360 x 196 440
300
440
1480
592
G
H HD 400 x 216 440
300
440
1480
595
128,2 110,6 96,3
0
62
Ultimate load qu (kN/m) according to the span (m) 6
8
125,1 85,0
20
22
24
37,0
30,7
25,8
51,4
46,4
40,1
34,0
68,3
57,8
50,5
42,5
36,0
77,7
65,8
53,8
45,2
38,1
116,5 100,4 87,4
70,0
57,1
47,9
40,3
74,7
60,9
51,0
42,8
24
13. Our support to your project
Technical support
Our expertise
We help you in designing and developing innovative solutions to take the best advantage of our steel. We are happy to provide free technical advice and to answer your questions about the use of sections and merchant bars. This technical advice covers the design of structural elements, construction details, surface protection, fire safety, metallurgy and welding.
ArcelorMittal, the world's leading steel and mining company, has continuously brought, with the support of its R&D teams, innovation to the construction business. In that matter, ArcelorMittal has decided to look at the construction in a different way, by considering the building as part of its environment and through its entire lifecycle. This new approach is called Steligence®.
Our specialists are ready to support your initiatives anywhere in the world and to provide tailor made services to help you get better result faster with our steel. [email protected]
In Europe, to help project stakeholders (architects, real estate companies, engineer), ArcelorMittal has developed a network of Steligence® Construction Engineers applying a science-based methodology, which considers buildings holistically and demonstrate the benefits of best-in-class products in terms of economics, flexibility, sustainability and creativity.
Finishing As a complement to the technical capacities of our partners, we are equipped with high-performance finishing tools and offer a wide range of services, such as: drilling, flame cutting, T cut-outs, notching, cambering, curving, straightening, cold sawing to exact length, welding and fitting of studs, shot and sand blasting, surface treatment.
Resources:
Contact us for technical support:
software and technical documentation : sections.arcelormittal.com
For European market: [email protected] For other markets: [email protected]
examples of our full range of products for the construction market (structures, façades, roofing, etc.): constructalia.arcelormittal.com
More info about Steligence® : steligence.arcelormittal.com
Non-contractual document - All rights reserved for all countries. Cannot be disclosed, used, or reproduced without prior written specific authorisation of ArcelorMittal. Copyright 2020 ArcelorMittal; Photography: ArcelorMittal Library; Olivier Vassart; Géric Thionville; Architectes Ertim/Design-Team; Jean-Marc Wallerich; Georges Axmann; Christian Thiel; Christoph Radermacher.
63 63
2 020
Contact Technical advisory ArcelorMittal Commercial Sections S.A. 66, rue de Luxembourg L-4221 Esch-sur-Alzette LUXEMBOURG Tel.: + 352 5313 3010 sections.arcelormittal.com
Fabrication Steligence® Fabrication Centre Z.I. Gadderscheier L-4984 Sanem LUXEMBOURG Tel.: +352 5313 3057 [email protected]
Sales We operate in more than 60 countries on the five continents. Find your local agency at sections.arcelormittal.com/About us.
Non-contractual document - All rights reserved for all countries. Cannot be disclosed, used, or reproduced without prior written specific authorisation of ArcelorMittal. Copyright 2020 ArcelorMittal; Photography: ArcelorMittal Library; Olivier Vassart; Géric Thionville; Architectes Ertim/Design-Team; Jean-Marc Wallerich; Georges Axmann; Christian Thiel; Christoph Radermacher.
64