211 18 2MB
Russian Pages 152 Year 2004
. .
Ы . Ы Э
Ы
уч
Г
я я ы . ы [Э ы ]: . — Э . (2,03 ). — .: “Э я БГУ”, 2004. — : http://anubis.bsu.by/publications/elresources/Physics/gorbatsevich.pdf . — Э . я . , 2002. — PDF , я 1.4 . — . я: Adobe Acrobat 5.0 ы . ы .
.К. э .
И «Э
К я
БГУ»
2004
©Г © «Э
.К. -
я
БГУ» www.elbook.bsu.by [email protected]
. .
Ы . Ы Э
И Б 2002
К
Ы
К 535.37
я ы. –
. . ы э
. 150 . ISBN 985-445-751-6.
я ы , 2002. –
.: Б
И -
. , ,
,
.
. ,
, ,
И . 76.
. 4. Б
, .
.: 209
.
, -
С.А.
И .А. емкович
ISBN 985-445-751-6
,
аскевич Б
, ,
© .К. © Б , 2002
, 2002
-
И Л ВИ И ,
, .
-
,
,
. .
.И . 60-
.
. .
.
-
,
-
, .
,
-
. Ф ,
. , ; ,
,
.
3
. -
.
,
,
,
-
. Э
, .
–
, ,
. .
,
, -
. ( )
.
-
. -
, .
. И.
И.
.
,
-
, ,
-
.
4
_
1.
(
) (
) . .
[1, 2]. -
. 1.1.
,
,
[3]. -
, . .
-
– ,
. , [1]. (
)
-
. , 5
W, ∆W
.
.
∆ν a ( f ) =
∆W a ( f ) , ∆W a ( f )
[
]
[4–9]:
1 ∆W a ( f ) + ∆W a ( f ) + ∆W a ( f ) . hc ∆W a ( f ) –
(1.1) -
,
,
-
.
µi ,
αi (
i-
),
, ,
, ( -
∆ν a ( f )
[1]. ), ,
,
-
. . -
[10], ER .
,
,
a (
-
), . , –
n.
-
,
µi :
ER ~ µi . -
[5, 6, 12, 13], 6
ε [10, 11] , i-
(1.2) -
∆ν a ( f )
: hc∆ν
a( f )
(2n + 1) = (n + 2)
2
2
2
2
a( f ) ε − 1 n2 − 1 n2 + 1 n2 − 1 − 2 C1 + C2 n 2 + 2 + C3 2n 2 + 1 + 2 ε + 2 + n
(
C1a = 2µ g µ g − µ e cos ϑ
ϑ –
C2 =
(
µ 2g
n2 − 1 . n2 + 2
+ C4
− µ e2
)a
1 3
G µg
) 13 ,
(
C1f = 2µ e µ g cos ϑ − µ e
a
, C3 =
(1.3)
ne 2 f
8πnν 0 a
3
G µe
(
) 13 , )
a
, C 4 = C 4′ α g − α e , , αg
αe –
-
, ν0 – ,
, C 4′ –
, f– . , . -
,
Э
, [12]:
∆ν
a− f
= ∆ν − ∆ν = ∆C a
f
∆C a − f = C1a − C1f =
2 hca
3
2n 2 + 1 n2 + 2
a− f
(µ
2 g
2
ε −1 n2 −1 ε + 2 − n2 + 2 ,
)
+ µ e2 − 2µ g µ e cos ϑ .
(1.4)
(1.4),
-
( ε ≈ n 2 ) ∆ν a − f ≈ 0 [12]. [13, 14] : 7
,
f (ε, n ) (1.3, 1.4) ,
ϕ(ε, n ) -
hc∆ν a ( f ) = C1a ( f ) f a ( f ) (ε, n) ,
(1.5)
hc∆ν a − f = ∆C a − f ϕ(ε, n) .
(1.6)
∆ν a − f ∆ν a ( f ) ϕ(ε, n) f a ( f ) ( ε, n )
-
[13, 15, 16].
-
[13, 17]. , µ g , µe , ϑ
, ,
,
, . .(
,
.,
[18–20]). -
, , -
, . "
[21–23]
,
–
"
,
,
-
.
N
-
. Э ,
∆ν a ( f )
, .
-
. , ∆ν
kT, a( f )
[22]:
hc∆ν a ( f ) = C1a ( f ) ϕ
(
)
+ C2ϕ
+ C3 ϕ e
+ C4ϕ g
.
(1.7)
C1a ( f ) = ± µ 2g − µ g µ e cos ϑ , C 2 = µ 2g − µ e2 , C3 = −α e , C 4 = −α g , 8
ϕ ϕ
1 2 1 2 ⋅ ⋅ µ , ϕ 6 3 kT i =1 ri
=∑ N
)
N
1
6 i =1 ri
⋅α,
1 3 I u0 − hcν f I v0 2 = ∑ 6 ⋅ 0 ⋅ α + µ , 0 f + − ν 2 I I hc n =1 ri u v
(
N
e
ϕ
(
=∑
)
1 3I u0 I v0 2 = ∑ 6 ⋅ 0 ⋅ α + µ , 0 r 2 I I + n =1 i u v N
g
(
)
, α
r– , I u0(v ) – (
). , ,
-
,
, [24]
-
[21, 22]
-
. , :
2 2 2 µ g (e) µ < U >= − , 3kT r 6
(1.8) ,
, . .
µ g (e)µ ri3
)2 ρ(∆ν) ~ exp− . 2∆ν a − f kT ,
(1.10) σ,
0-0σ=
-
-
:
1 ∆ν a − f kT . h
(1.11)
,
[36–39],
,
, -
. 10
ρ(∆ν)
ρ(∆ν) ,
, (1.11) [30].
,
[33, (1.11) -
36]. ( (1.12),
), < ER >
-
[36], µ g (e) .
1.3.
, -
. τe
τR .
τR ),
τe ( τ e >> τ R , ( τ e exp− , kT . ,
, , .
, .
-
[79],
∆Wsum exp− ; kT .
"
-
, -
" ,
, G (E , θ )
, 0-0,
τ e >> τ R ).
ρ(∆ν) .
, [77]. < ∆ν >
–
16
,
, . .
(
ρ(∆ν)
-
G E,
,
σ– ρ(∆ν) .
1 ∞ π 2π 2π < ∆ν >= 2 ∫ ∫ ∫ ∫ ∆ν( E , θ) ⋅ G ( E ,θ) sin θdEdθdα1dα 2 , 4π C 0 0 0 0
(2.5)
π∞
C = ∫ ∫ G ( E ,θ) sin θdEdθ .
(2.6)
00
(2.2), (2.3)
(2.5) < ∆ν a > =
–
< U g > µe cos ϑ − 1 . h µ g
< U g >= σa
: 2
1 ∞π ∫ ∫ µ g E cos θ ⋅ G ( E ,θ) ⋅ sin θdE dθ . C 00
(2.8)
ρ a (∆ν)
-
σ 2g µ e µ 1 = 2 ( cos ϑ − 1) 2 + 2 σ12 ( e ) 2 sin 2 ϑ , µg 2h h µg σ12
=< E
2
> µ 2g − < U g2 (2.9)
G µg
,
G E
(2.9) -
;
Ue ,
:
0-0-
σ 2g = < U g2 > −(< U g >) 2 – ,
Ug
(2.7) ,
,
σa
:
c ∆ν a ,
, >. , -
.
ρ(∆ν) ( µ g , µ e , ϑ , µ , Ra , rs , T ),
.
: , 17
. ,
, :
X=
µgµ 1 , Ra3− s kT
(2.10)
Ra − s – (
-
, ,
).
,
< U g > , σg
(2.11), ,
,
σ1
~ ~ Ug , σ g
~ , σ 1
µgµ Ra3− s
,
-
X
.
Ra3− s ~ , U g =< U g > µgµ Ra3− s ~ , σg = σg µgµ ~ = σ Ra − s . σ 1 1 µgµ 3
(2.11) -
Y=
µ2
rs3− s
⋅
1 , kT
(2.12)
X,
(2.12) rs − s – .
. ,
X 18
Y
-
,
.
Y–
X
-
kT -
( )
. -
,
~ ~ Ug , σ g
~ , σ 1
3%). ~ U g = 15.92 ⋅ {1 − exp[− F ( X , Y )]}.
(
(
~ ,σ ~ σ g 1=
(
(2.13)
).
A + exp − Q 2 ( X , Y )
)
0.199
(2.14)
1 c1 + c2Y + c3Y 2 = + X ⋅ [c4 + c5 exp(c6Y )]. (2.15) F X (2.16) A=b1+b2Y+b3Y2 , 2 2 2 2 2 2 1/Q(X,Y)=d1+d2X+d3X +d4Y+d5XY+d6X Y+d7Y +d8XY +d9X Y . (2.17) (2.14–2.17), bi, ci, di, . 2.1. (2.13) (2.14) 0 ≤ X , Y ≤ 14.5 . 2.1 я
i
ci
1 2 3 4 5 6 7 8 9
–1.598 –2.635 –0.146 0.02696 0.0449 –1.38
~ σ g
0.07429 0.03774 1.235 10-3
, bi
я я (2.13–2.17)
~ σ 1
~ σ g
0.0530 0.0257 –8.1 10-4
0.3975 0.0786 3.13 10-4 8.13 10-4 –4.2 10-2 1.16 10-3 1.14 10-3 2.84 10-3 –7.7 10-5
Ra − s = rs − s
di
~ σ 1
0.3838 0.0367 0.00137 –2.64 10-3 0.0176 –9.67 10-4 5.17 10-4 1.41 10-3 –8.4 10-5
n, , 19
12.
-
Ra − s ≠ rs − s
, ~ ~ Ug , σ g
,
~ ) σ 1 Ra − s ≠ rs − s
G (E , θ ) (
-
n,
-
.
)
, ( Ra − s
,
. .
n = 12. ,
R n ≈ 31 + a . rs , n 12
,
~ σ 1
~ σ g
(2.18)
Ra − s ≠ rs − s n 12
= rs − s , -
~ Ug
.
,
-
(
),
[77],
. ,
-
, .
0-0-
, . 2.2.
ρ a ( f ) (∆ν) . [38]
ρ (∆ν) a
ρ (∆ν) ( ) f
ρ f (∆ν) ∆ν = const ⋅ exp − . a ρ ( ∆ν ) kT
20
, ,
-
(2.19)
ρ(∆ν) .
-
, . . ( [33, 36–38]). G G µg µe
,
, -
.
, .
:
(
)
µ 1 1 < ∆ν a >= − < Eµg > µ e − µ g = < U g > e − 1 , µg h h
(
)
µg 1 1 < ∆ν f >= − < Eµe > ⋅ µ e − µ g = < U e > 1 − µe h h σ a( f )
.
-
(2.20)
(2.21)
σ g (e)
δEµg (e)
-
:
µ 1 σ a = δEµg µ e − µ g = σ g e − 1 , h µg
(
µg 1 σ f = δEµe µ e − µ g = σ e 1 − , h µe
δEµg (e ) = < Eµg ( e )
)
2
(
)
2
< Eµg (e ) > ρ a ( f ) (∆ν) ,
,
(2.23)
> − < Eµg (e ) > .
,
[33, 36].
(2.22)
ρ a (∆ν)
µ g (e ) .
(1.2) ρ a ( f ) (∆ν) .
-
, ,
21
(2.19) ρ f (∆ν) − , . . σ f = σa . ,
∆ν a− f
38]. δEµg (e )
σ a( f )
(1.11) [33, 36–
(1.2),
, -
. σ f = σa .
~
(1.11)
1 , T
(2.22), (2.23), , . . : ∆ν a − f ~
1 . T
σ a( f ) 0-0-
(2.24) σ a ( f ) (T ) = const .
(2.24) -
: (2.25)
,
, . .
ρ 1.
a( f )
" ,
(∆ν)
" σ f = σa .
ρ a (∆ν)
2.
,
-
ρ f (∆ν)
-
:
. σ a( f ) .
3. 0-0-
, ρ (∆ν) a
, 1–3.
ρ f (∆ν)
,
2.1. 22
. 2.2
-
20
~ Ug
~ σ g
3
1
15
1’
2
2
10
3
2’
4 4’
1 5
5
0 0
3
6
9
3’
5’
12
0 0
15 X
~ U g (a)
. 2.2. ’
6
9
~ ( ) σ
12
15 X
X.
Y=0 (1, 1), 1.45 (2, 2 ), 2.9(3, 3 ), 4.35 (4, 4 ), 14.5 (5, 5’)
µ
~ Ug (X ) ( Ra − s
< Eµg ( e) >
. 2.2 ) ~ Ug G µg
’
3
~ (X ) ( σ g G µ e ).
’
. 2.2 ). G µ g (e) ,
1
(Y=0).
. 2.2,
~ Ug (X ) , . .
~ ~ δE g ( e ) ( σ µ g 1 ’,
-
X
µ g (e) ,
, (
T = const ) X >1 ~ U g (X ) (
(
. 2.2 , .
1 . T µ g ( e) = const )
δEµg (e )
~ , σ g
-
(
X
µ g (e) X.
-
, , ~ σ g
. σ f = σa ,
(2.11), (2.23), (2.24). σa > σ f
,
,
0-0µe > µ g (
-
.
. 2.2).
,
,
0-0(1.11)
(1.12),
,
< Eµg ( e)
-
X
[33, 36], [36], > µ g (e) . [80], µ g (e) ( -
, 24
a ρ (∆ν) ( . . 2.3). a ρ (∆ν) , . -
1.0 0.8
ρ(∆ν)
,
0.6 0.4 0.2
2
1
0.0 -2 0 –3 ∆ν ⋅10
-4
0-0-
. 2.3.
-
2
4
–1
0-0(1), (2). µ g = 10 , µ = 1.7 D;
Ra = 3 , r = 1.6 Å; X = 4.36
. -
, ,
-
σg
-
. . ,
. 2.4 , .
µg ,
(
(
. 2.4,
1, 2).
, σg
,
σg
-
σ g (T ) ,
3–4). . 2.5
.
, 25
1.2
σ g ⋅10–3
–1
σ g ⋅10–3
1.0
–1
5
1.0
4 0.8
4
0.8
0.6
3
0.6 0.4
2
0.2
1
0.0 150
200
250
300
σg
. 2.4.
3
0.4
2
0.2
1 0.0 150
350 T, K
200
250
σg
. 2.5.
-
300
350 T, K -
.
. µ g = 0.5 (1), 2 (2), 3 (3), 5 (4),
. . µ g = 0.5 (1), 2 (2), 3 (3), 5 (4),
10 D (5); µ = 1 D; Ra = 3 , r = 1.6 Å
10 D (5); µ = 1 D; Ra = 3 , r = 1.6 Å
σg .
< Eµg (e ) > , ,
,
0-0-
µ g (e) ,
.
0-0-
. σa( f ) ,
,
,
"
"
-
. 2.3.
Э 0-0, ,
. –1
,
26
-
3⋅10 –4⋅10 , 3
σ
(1.11) 600 –1.
3
–1
. -
, . ρ (∆ν) (
[81]
-
a
),
-
(
.
)
:
I f ν ex , ν reg = const ∫ ε 0 (ν ex − ∆ν )I 0f (ν reg − ∆ν)ρ a (∆ν )d (∆ν ) ,
(
+∞
)
−∞
I f ν ex , ν reg –
; ε 0 (ν ) -
-
,
I 0f (ν) – "
(2.26)
" . (2.26) . ,
(
[82], . . I f ν ex , ν reg
-
) ρ(∆ν)
, . ., 0-0[40, 83, 84].
, , ,
[40, 83, 84]:
< ν f >= const − σ 2
ρ a (∆ν)
dφ(ν ex ) 1 ⋅ , dν ex φ(ν ex )
27
. . – σ. -
(2.27)
φ(ν ex ) – . . 2.6
3-
-N1, 2), 3) -
123 K ( ( 4) [80]. Э
(
. 2.7.
dφ 1 ⋅ ( dν φ
1).
,
[85–87]. 2)
123 K (
6 . 2.7.
, T=223 K (
3) -
0-0-
.
. 2.7,
,
σ a = 535 6 I f,
, ρ a (∆ν)
–1
3-
-N-
,
– 160 – 220
.
–1
.
,
,
–1
< ν ex > ⋅10–3
.
1.0
–1
20.8 0.8
3 1
2
4 20.4
0.6 20.0 0.4 19.6 0.2 19.2 0.0 14
16
18
(3) 3-
-N-
20
24 26 ν⋅10–3 –1
22
(1, 2)
. 2.6.
(4). ν ex =24 520 (1), 22 760 28
, T = 123 K. –1
(2)
,
,
< ν > ⋅10 −3
21
ρ a (∆ν)
1
2
20
-
−1
19
- 18 -
.
3
17 -10
0-0-
-8
-6
-4
-2
0
. ,
dφ 1 ⋅ dν φ
3-
-N-
-
(1), (2) 6 (3). T = 123 (1,2) 223 K (3)
,
τ R >> τ f .
-
. 2.7.
0-0-
. .
2
dφ 1 ⋅ dν φ
-
,
,
,
. ,
–50 º 3,
,
,
τ R ~10
6
,
-N-
, [80],
–10
[50].
. , , ,
. ,
,
, -
10–15 º . 29
ρ(∆ν)
, τ R σ f
σa ρ (∆ν) a
0-0µe > µ g .
σf
,
, -
. 2.2
3-
-N-
ρ f (∆ν) ,
"
" ,
. .Э ,
,
(
σa > σ f
.
(2.22),
(2.23)), ,
, , . . δEµg > δEµe .
,
( σa > σ f )
, 0-03-
-N.
я 0-0-
я
2.2
я σa ,
3–1
1 920 1 440 1 660 32
-N-
σf
–1 ,
540 550 420
2.4.
,
-
,
τR , τ d (1.12, 1.13) [42, 44].
, -
" "
[60–62] [63–65], [66–69].
, :
,
,
. ,
,
– µE0 =
4kT δt , ξ
,
,
G µ
-
δt . :
ξ–
. 34
µE0 = ∫ − µEei cos χΨei (χ, t )sin χdχ , π
0
< U e (t ) >= ∑ < U ei (t ) > . n
< U ei (t ) > –
i =1
i-
.
G µe < U e (t ) >
Ψei (χ, t
-
ψ ie (χ, t ) .
δχ st
,
ψ ie (χ, t + δt ) , ,
-
< ∆ν f (t ) > ,
(2.21).
< (δχ st )2 > = ,
-
G µg
.
δt ,
(2.31)
-
1 < β 2st > . 2
ψ ie (χ, t ) → :
(δχst ) 2 ξ 1 −∞ i + δt ) = ∫ Ψe (χ − δχst , t ) exp− kT δt d (δχst ) . C +∞ δt , G Eei , :
Ψei (χ, t
µEei sin χ µEei sin χ 1 i δt . + δt ) = Ψe χ − δt , t ⋅ 1 + C ξ ξ ,
(2.32) (2.33) ψ ie (χ, t = 0)
ψ ie (χ, t = ∞) ,
,
(2.32) -
(2.33) -
. 36
ψ ie (χ, t = 0) –
(" "
")
.
(
. - 1.0 - 0.5 -
"
,
1.5
~ - ln < U ei (t ) >
.
4
3
) 2
1
. i-
- 0.0
0.0
ψ ie (χ, t = 0)
τ DR
0.5
1.0
-
ψ ig (χ) ,
(2.30).
ψ ie (χ, t ) (2.32), (2.33). ( . . 2.10),
. 2.10. i-
-
µE = 0.01 (1), 2(2), 3.6 (3), 4.8 (4). kT τ DR – ,
.
i e
, , :
t < U ei (t ) > − < U ei (∞) > ~i − . exp < U e (t ) >= = τi < U ei (t ) > − < U ei (0) > r
, τD R – (
.
-
(2.34) ,
τiR
Eei
-
µEei kT ,
,
-
< ∆ν f (t ) > ,
< U e (t ) >= ∑ < U ei (t ) > , n
-
i =1
θ′
Ra − s
, G µe
,
, :
Eei ( R, θ′) =
µe
Ra3− s
-
3 cos θ′ + 1 .
(2.35)
, .
-
,
,
θ′
, . .
-
Eei
. ,
8
τ iR D τR
−1
K
8
2 6
6
6 5
1 4
4
2
2
4 3 2
3
1 0 0
1
2
3
4
0 0.0
5 µEei kT
-
0.5 (2).
0.8
1.2
t τ DR
. 2.12.
. 2.11.
.
0.4
.
4, 4, 10 Å. . µ e = 0.01 (1), 2(2), 4(3), 6(4), 8(5), µ 10 D (6). e = 2, µ = 1.7 D µg
µe = 2 (1), µg
(3) 38
,
,
.
,
,
-
, .
, .
,
. 2.12. , -
, .
, (2.36),
:
K (t ) =
d ν t − ν ∞ . ln dt ν 0 − ν ∞
.
(2.36)
,
-
µe .
, ,
, Eei
(2.34),
,
,
, -
. , . , ,
(
)
,
.Э "
" -
. [96]. , , ,
. Э
,
[97]
. [98], 39
-
, . .
-
.Э ".
"
,
∆ν a (2.20)).
Ug ,
0-0-
(
.
-
, .
,
-
, . .
,
,
ψ ig (χ,U g )
,
,
ψ ig (χ,U g ) ,
-
( Ug .
) ,
χ
i-
(2.30))
G E gi (
,
Φ (g−i ) (U ) .
,
iΦ (g−i ) (U )
-
. j+1
Φ (gj ) :
Φ (gj +1) (U )
(U )
, , ,
j
1 +a ( j) U′ = ∫ Φ g (U − U ′) ⋅ exp− dU ′ , C −a kT 40
.
n–1
U g + µ E gi cos χ .
,
-
,
-
(2.37)
a – j+1,
. (2.37) n–2
( i-
)
Φ (g1) (U ) = Φ (g−i ) (U ) .
Ψgi (χ,U g )
,
1 U ⋅ exp− , C kT
(2.38)
ψ ig (χ,U g ) µE gi 1 i i cos χ . = ⋅ Φ g (U g + µE g cos χ) ⋅ exp C kT G G µg µe
(2.39) , . .
Ψ ie (χ,U g , t = 0) = Ψgi (χ,U g ) . (2.32)
Ψ ie (χ, U g , t ) . < ∆ν f (∆ν a , t ) >
(
(2.40)
(2.33),
-
(2.31)
)
< U e U g ,t > ,
(2.20)
(2.21).
< ∆ν f (t ) >
∆ν a .
,
, .
. 2.13 < ∆ν f (t ) >
∆ν a .
f ∆ν eq ,
ρ f (∆ν ) . 2.13 ,
-
.
∆ν > ∆ν ∆ν a < ∆ν f a
f
, , 41
-
-1.0 -1.3
< ∆ν f > ⋅10–3 1 2
, , . . µe > µ g ,
3
-1.6
6 4
-1.9
5
-2.2 0.0
-
[98].
–1
, -
< U e (t ) >
0.1
0.2
0.3
0.4
-
µe < µ g –
0.5
t τ DR
, (
.
(2.21)). -
. 2.13.
. a ∆ν = −1.01 (1), −1.18 (2), −1.38 (3), −1.86 (4), −2.11⋅103 –1 (5). ∆ν eqf = −1680 -1(6). Ra = 4, rs = 4Å.
.
( µe > µ g )
2.14
. 2.14
( µ e < µ g ),
µ g = 3, µ e = 4, µ = 1.7 D
.
,
[98–100],
,
. .
-
, (
G µg
G µe
,
-
).
( ∆ν a < ∆ν eq f )
, . .
-
, .
,
< U e (t = 0 ) > < U e (t = ∞ ) > .
< U e (t ) > ,
( , 42
-
, µe < µ g ,
,
).
,
-
. , . (
.
-
(2.21)). -
, .
(
)
. 2.14 f ∆ν a → ∆ν eq
K t = 0, ∆ν a (
1).
, . .
1
, .
-
. 2.14 ,
∆ν a , . .
-
. , ,
. 2.11.
µ E ∆ν f
K 7
0.4
3 1
6
τ′R τ DR
2 0.3
5
1
4
2
0.2
3 2
0.1
-2.2
-2.0
-1.8
-1.6
-1.4
∆ν a > ∆ν f
∆ν a < ∆ν f
K
-1.2 -1.0 -0.8 ∆ν a ⋅ 10 −3 −1
7
0.4
3 1
6
1 2
0.3
5 4
0.2
2
3 2
0.1 1.2
. 2.14.
τ′R τ DR
1.4
τ ′R (2)
1.6
1.8
K (t=0) (1) ∆ν a .
2.0 2.2 ∆ν a ⋅ 10 −3
−1
ρ (∆ν) (3). a
-
µ g = 3 (a), 4D ( ); µ e =4 ( ), 3D ( ). R = 4, r = 4Å, T = 300 K, n = 12, µ = 1.7 D. 44
,
τ′R . 2.14 ),
. ,
,
f ∆ν eq
( . τ′R
,
-
,
.Э .
-
, ,
-
τD R
, .
-
, , ,
. , . -
[98] .
,
,
4183
τR
-N, ,
,
.
. 2.14 -
, [98].
, K (t = 0 )
. . 2.14 µe < µ g . ∆ν a
, .Э
,
45
τe ∆ν a ∆ν a
-
, .
f ∆ν eq
< U e (t ) > (
)
-
( µe > µ g .
). , ,
, ,
,
-
kT,
"
" ,
-
. , ,
,
.
2.5.
, . . -
. τe
τg
τR ,
, -
t ex [1, 101].
,
, ,
,
,
,
[101–108].
[1, 101–105, 109, 110] 1) τ R > τ R ,
,
-
τ ex > τ R ,
( [102, 103].
, )
,
,
t ex
[102, 103], ν ast
47
-
ν stf ,
ν ast
.
ν stf ,
(
a ν ast = ν ∞a − ν ∞ − ν ∞f
(
)τ
ν stf = ν ∞f + ν ∞a − ν ∞f a ν∞
ν ∞f –
0-0,
[110, 112]:
τe τR , ⋅ + τ τ + τ e g R g
)τ τ+ τ
⋅
g
e
0-0-
g
(2.41)
τR . τ R + τe
(2.42)
, .
(2.41) ,
(2.42)
,
-
, ,
-
. .
, ,
.
-
, , –15 º
4-
(~ 400–500 [109],
[108]. -
-N–1
) [109].
, "
"
-
. ,
,
.
, -
48
.
(
[113]. )
.
-
. [109, 110, 114],
, . 0-0-
[1],
(
)
:
t a( f ) a( f ) ) ⋅ exp − g (e ) , ν a ( f ) (t ) = ν ∞ + (ν 0a ( f ) − ν ∞ τ R
ν 0a ( f ) –
0-0-
)
(
t = 0 , τ Rg ( e) –
-
, )
(2.43)
(
-
t=0
. , .
.
t1
, . , .
τ Rg ( e) ,
t′
n-
)
( (
-
) (n–1)-
(2.43),
. (2.43),
t, .
t n − t n−1
( n 49
) -
< ν a > ·10–3
20
,
–1
(
) -
.
2
,
1
-
19
τe
18 2
4
τg ,
-
τg
6
I, . 2.15.
(1) (2)
/
-
2
. . 2.15. < νa >
-
-
.
2)
(
a : ν 0a = 20 000, ν ∞ = 18 000,
; τ e = 0.01, τ R = 0.1 , σ = 4⋅10–16 ~300
ν ex = 17 500
1)
( .
–1
–1
, .
–1
,
.
( 0.01 .
50
) -
3.
_ -
,
,
. , S1-S0– T1-S0-
,
[115].
,
,
[116],
S1-S01,2
,
S1-T1-
, .
,
.
, , -
, ,
S0-S1 ( ∆ν S ) , . . ,
T1-S0 ( ∆ν T ).
, ,
-
.
3.1.
. 3.1.
G µg
G , µe
S1
G µT
T1 51
.
-
Z
K E G ∆µ T G µT
G µg θ
G µe
G ∆µ T⊥ G ∆µIIT
ϑ
ϑT α2
Y
α1
X
. 3.1
G E,
-
G µg .
, ,
G (E , θ )
S0
,
, -
G µg .
α1 ,
Z,
0
G E,
2π. , -
,
-
:
1 G G ∆ν S = − (∆µ S ⋅ E ) h G 1 G ∆νT = − (∆µT ⋅ E ) h 52
S1-S0 -
,
(3.1)
T1-S0 -
.
(3.2)
G G G G G G ∆µ S = µ e − µ g ; ∆µT = µT − µ g ( . . 3.1). (3.1) (3.2) , : 1 (3.3) ∆ν S = E ⋅ µ g cos θ − µ e ⋅ [sin ϑ sin θ sin α1 + cos ϑ cos θ] , h 1 ∆ν T = E ⋅ µ g cos θ − µT ⋅ [sin ϑT sin θ sin(α1 + α 2 ) + cos ϑT cos θ] . (3.4) h (3.1) , ∆ν S G G ∆µ S . , ∆ν S E G ∆ν T , . . E, G G ∆µ S ⋅ E = const , G ∆µT , , ∆ν T , G G ∆µ S ∆µT . -
{
{
(
}
)
Γ(∆ S , ∆ T ) .
∆ν T ,
}
< ∆ν T > =
A(∆ν S ) =
:
∆ν S ,
1 1 G G − ( E ⋅ ∆µT ) ⋅ G ( E , θ)dΩ . ∫∫∫ A(∆ν S ) Ω ( ∆ν ) h
∫∫∫ G ( E , θ)dΩ
Ω ( ∆ν S )
∆ν S ; Ω(∆ν S ) –
(3.5)
S
–
,
, ∆ν S = const .
(3.5)
-
:
π 2π ∆ν s 1 × < ∆νT > = θ G , ∫∫ A1 (∆ν S ) 0 0 µ g cos θ − µ e ⋅ [sin ϑ sin θ sin α1 + cos ϑ cos θ]
×
µ g cos θ − µT ⋅ [sin ϑT sin θ sin(α1 + α 2 ) + cos ϑT cos θ] µ g cos θ − µ e ⋅ [sin ϑ sin θ sin α1 + cos ϑ cos θ]
1 1 × 1 + ∆ν s2 4 + 4 ⋅ sin θ dθ dα1 . C B 53
∆ν S ×
(3.6)
π 2π
A1 (∆νS ) = ∫
∫
0 0
∆νS G , θ × µ g cos θ − µ e ⋅ [sin ϑ sin θ sin α1 + cos ϑ cos θ]
1 1 × 1 + ∆νS2 4 + 4 ⋅ sin θ dθ dα1 , C B
B = µ g sin θ − µ e ⋅ [sin ϑ cos θ sin α1 − cos ϑ sin θ], C = µ e ⋅ sin ϑ sin θ cos α1 . , G ∆µT ∆ν S < ∆ν T > , G G ∆µIIT ∆µT⊥ 3.1). (3.5) :
G ∆µ S (
.
.
1 1 G G ∫∫∫ − ( E ⋅ ∆µIIT ) ⋅ G ( E , θ)dΩ + A(∆ν S ) Ω( ∆ν ) h S 1 G G (3.7) + ∫∫∫ − ( E ⋅ ∆µ T⊥ ) ⋅ G ( E , θ)dΩ . h Ω ( ∆ν S ) G < E (∆ν S ) > , ∆ν S = const ,
< ∆νT > =
, (3.7)
:
∆µIIT 1 1 G G⊥ ∆ν S − − < ∆ν T (∆ν S ) >= ( E ⋅ ∆µ T ) ⋅ G ( E , θ)dΩ . (3.8) ∫∫∫ ∆µ S A(∆ν S ) Ω ( ∆ν ) h G ∆µT⊥ Γ(∆ν S = const, ∆νT ) . S
, Γ(∆ν S , ∆ν T ) ,
∆ν T
G(E,θ)
, , , . .
α2 = 54
,
π . 2
∆ν S [115]. G G µ g , µe
G µT
Γ(∆ν S , ∆νT ) : < ∆ν T > ∆ν S
,
< ∆ν T (∆ν S ) > = c1 ⋅ ∆ν S + c2 ,
1)
c1
-
c2 –
∆νT
2) Γ(∆ν S = const, ∆νT ) σT ,
: (3.9)
∆µIIT ; c1 ≈ ∆µ S
,
∆ν S
, ∆ν S . Γ(∆ν S = const, ∆νT ) : c1 , c2 σT . 3.1 S0-T1
№ /
∆ν S
S1-T1
S0-T1
S1-T1
0
+ 3000 . (7, 7’ ) (8, 8’ ); 26 500 –1 (7’, 8’ ). T = 300 K; µ g = 2.6, µ e = 4, µ T = 4 D; k g0 kf
=
km0 = 0.2 ; α g = α m = 0.1 . ϕ max – k ph
,
-
< τ df ( ph ) (
. 3.3, >
1, 1’ 7–7’ 8–8’,
( . ( ( . 3.2, < τ df ( ph ) >
. 3.2,
2, 2’). . 3.2). 7–7’).
8–8’). , . , 59
ϕ df -
ln( I )
0
< ν > ⋅10–3,
20.6
–1
3’
20.4
4’
-2 20.2
2’ 1’ 2
-4
-6
1 0
5
10
15
20.0
3
19.8
4
19.6
20 t, c
0
< ν > ⋅10–3,
2.0
(2, 2 , ),
10
15
20
t, c
. 3.3. ’
5
(1, 1’, ), -
–1
1.5
(3, 3’, ), ’
(4, 4 , ),
1.0
(5, 5’ , ) ν ex = 22 000 (1–5) 26 500
. (1 –5’ )
–1
5’
0.5
’
5
0.0 0
ϕ df
ϕ df ϕf
ϕ ph (
5
10
15
20
t, c
(
. 3.3,
5–5’’
. 3.2).
3–3’), (
-
-
’
4–4 ). I df I ph
(
5–5’’).
. 3.3,
, [127].
. 3.4
( (
2) 303 . 60
1)
-
1.0
< ν > ⋅ 10–3,
19.8
I (ν) , ε(ν) , . .
I df
–1
4
0.16
If
19.6 19.4
0.5
2
3 19.2
1 0.0 15
17
0.14
5
19
21
6
19.0 23 25 20 ν⋅10–3, –1
0.12 23 24 ν⋅10–3, –1
22
( ); ν ex = 22 600 (4)
(1),
. 3.4. (3)
21
(2) –1
-
. (5) -
( ); (6). C = 3⋅10–5
/ , T = 303 K. –1
17 500
-
( ). : .
, .
( (
. 3.4, 4).
,
5)
. 3.4 -
. , , 1.
, , S1
0-0"
"
. 0-061
:
-
0-0-
, . . . . 3.1).
kg (
S1–T1
,
,
-
T1– S10-0-
k e ), -
(
( )
,
.
,
S10-0-
,
, . kg
ke -
I df I f (
. 3.4,
6).
.
(
.
. 3.5),
-
, < ν df > ⋅ 10
–3
ln( I df )
0.0
19.4
1
-0.5
. -
19.2
5
1
-1.0
2
19.0
6
-1.5
( ( 17 500
3 4
-2.0
. –1
18.8
: -2.5 0.0
0.2
t,
0.4
18.6 0.6
0-0-
(5, 6) . ν ex = 22 370 (1, 5), –1 (4, 6). 21 290 (2, 3), 20 540 ν reg = 21 450 (1), 20 270 (2), 18 150 (3), 17 820
).
(1–4)
. 3.5.
–1
(4). C = 3⋅10–3
/ , T = 303 K 62
. 3.6);
,
-
km ,
ke
1-
;
-
,
.
I,
< τ df > , c
.
1.0
< τ df > .
0.5
,
0.8
-
τ df
-
,
3 1
0.4
0.3
0.2
.
0.0 14
0-0-
0.4
2
0.6
-
16
18
20
22 –3 ν⋅10 ,
0.2 –1
.3.6. -
:
(
.
(1) (2,3), t = 0.041 (2) 1.08 (3). ν ex =21 220 –1. C=3⋅10–5 / , T=303 K
-
. 3.5, 3.6). ,
-
. 268
(
.
,
. 3.7). ,
-
: 1) , 2)
(
. 3.7,
, (
1, 2); 3)
3); , . 3.7,
-
(< τ >
-
). , , T1-
T1– S1(
.
ke , . . (3.13)).
I ph I df
63
I df ,
.
< τ >,
.
.
-
1.1
1.0
1
0.8
2
S1-
1.0
,
0.6 0.4
T1–
0.9
3
S0-S11-
0.8
0.2 0.0 14
16
18
.3.7.
20 ν⋅10 (1, 2) 22–3
-
0.7
.
–1
,
-
(3)
-
. t = 0.082 (1) 2.42 (2). T=292 K, ν ex = 22 140 –1. = 3⋅10–5
1(
, ,
/
.
-
. 3.1). 1 . 3.2, ,
-
.
2 ↑
. 3.2
3,
.
↓
,
.
~
, -
< ν f > − < ν df > ,
. "+"
< ν f > − < ν df > .
, .
,
" ", 1, 2 3. 64
"−" -
я
νf
ν df
ν ph
↓
↓
↓
m
↓
↓
↓
e
↓
↓
↓
↓
↓
1
2
3
я
ν ex ↓
ν f − ν df
+↓ − ↓ − ↓ +↓
↓↑
3.2. , ,
я
ν reg ↓
ϕf
ϕ df
ϕ ph
τ df
τ ph τ df
~↓
↑
↓
↓
⋅ 10–3 ,
22
24
ν ⋅ 10–3 ,
–1
3’’
20.0
0.00 12
–1
/
0.03
0.0
28
ν ⋅ 10–3 ,
0.06
–1
I df
–1
2.5
I ph
21.0
6’
20.5
7’ 8
20.0
2.0
6
1.5
7 8’
19.6
19.5
19.2
19.0 0.0
20
22
26 28 –3 ν ⋅ 10 , –1
24
. 3.8. (1’’, ) (2–2’’, ) (2, ; 3, ), ’’ ’’ (2 , ; 3 , ). (4–4’, ) ’
0.2
0.3
0.5 0.4
t, c
(1, ), (1’, ), (1’’’, ); ν ex = 23 700 –1.
(3–3’’, )
(2’, ; 3’, ) (5–5’, )
. (6–6’, ),
-
(8–8’, ). ν ex = 21 500 (4–8) 23 500 –1 (4’–8’ ). –1 3 000 . T = 300 K; µ g = 2.6,
(7–7 , ) 3’’ , 7
0.1
1.0
7’
k m0 = 0.2, = 5, α g = 0.1, α m = 0.5 µ e = 4, µ T = 4.3 D; ϑ = 20 , ϑT = 29 ; kf k ph 0
0
k g0
67
ε (ν ) ,
1.0
.
ϕ
.
ϕ max
I (ν) ,
1.0
1.4
5
0.8
< τ >, 1’ 1’’
. . 1’’’
0.8 1.2
1
0.6
2’ 2 2’’
0.4 0.2
24
26
0.5 12
ν ⋅ 10 ,
< ν > ⋅ 10–3 ,
1.0
0.0
28
–3
20.8
4’
0.2 0.8
22
16
18
20
22
24
ν ⋅ 10 , –3
21.0
< ν > ⋅ 10–3 ,
I df
–1
6’
3
–1
2.0
I ph
7’
20.6
3’
20.4
14
–1
–1
3’’
1.5
4
0.4
1.0
0.0 20
5’
0.6
2.0
1.5
20.2 1.0
20.0
19.8
7
8’
8
6
19.6 20
22
24
26
ν ⋅ 10–3 ,
. 3.9. (1’’, ) (2–2’’, ) (2, ; 3, ), (2’’, ; 3’’, ). (4–4’, )
19.4 0
28
0.5 2
4
6 t,
–1
(1, ), (1’, ), ’’’ (1 , ); ν ex = 23 700 –1.
(3–3’’, )
(2’, ; 3’, ) (5–5’, )
. (6–6’, ),
(8–8’, ). ν ex = 21 500 (4–8) 23 500 –1 (4’–8’ ). 3’’, 7 7’ 3 000 –1. –1 ’ ’ ’’ ν ex = 21500 (4–8) 23500 (4 –8 ). 3 , 7 7’ 3 000 –1. T = 300 K; µ g = 2.6, µ e = 4, µ T =4 D; ϑ = 200, ϑT = 300;
-
(7–7’, )
k g0 kf
k m0 = 0.2, = 5, α g = 0.1, α m = 0.1 k ph
68
-
T1-
-
0-0-
, I df
ke . Э
I ph (
,
,
8–8’).
. 3.9, 3.
,
, 0-0-
,
T1-S0. Э
, ,
(
.
,
3–3’’).
. 3.10,
-
T1– S1( . ke > k m , . . km
, . 3.10,
(
, . . 2’).
. 3.10, ke > k m ,
2’’),
0-0-
, 1, 1’’,
( .
4–4 , 5–5 , 0-0-
(
. 3.10),
-
: < τ ph >
. ,
-
S0-S1 T1-S1-
, -
ke
.Э < τ df >
-
. 3.10).
, ’
ν ex
.
,
’
,
. . , , 69
ε(ν) ,
1.0
.
ϕ ϕ max
. 1
2.5
1.0
.
2.0
0.8
0.6
1.5
0.6
, 1’’ 1’
. 1’’’
5’
0.8
6.0
4.0
5
2’’ 2
0.4
I (ν) ,
1.0
0.4
0.5
0.2
2.0
’
2
0.2
4’ 4
0.0 20
22
24
26
28
0.0 12
ν ⋅ 10–3 ,
(1, ),
(3–3’’,
. (2–2’’,
21.0
-
–1
) (2’’, 3’’). (4, 4’)
α g = 0.1, α m = 0.1
k g0 kf
= 0.2,
< ν > ⋅ 10–3 ,
20
22
ν ⋅ 10–3 ,
24
3’
3
-
3’’
20.0 22
24
26 ν ⋅ 10–3 ,
28 –1
k m0 = 0.2, k ph
,
-
. ,
–1
–1
20.5
(5, 5 ) ( ). ν ex = 21 500 (4–5) 23 500 –1 (4’–5’). 3’’ 3 000 –1. T = 300 K; µ g = 2.6, µ e = 3.5, µ T = 3.5 D; ’
ϑ = 250, ϑT = –150;
18
) -
(2, 3), (2’, 3’)
16
–1
. 3.10. (1’, ), (1’’, ) (1’’’, ); ν ex = 23 650
14
,
. 3.2 ( G G µ g , µe 70
G µT ).
3.3
-
,
[128–136]. -
.
-
,
,
,
-
,
,
,
0-0-
.
,
T1,
-
0-0-
[137]. < τ df >
. 3.11 .
-
, , , .
,
S1-
, –
,
, 71
< τ df > ,
I df ,
.
.
0.4
-
1
3
[138]. ,
1 0.3
, -
0.5
2
.
, S-S(
0.2 16
20 –3 22 ν ⋅ 10 , –1
18
) [128–131, 139],
0
-
. 3.11.
–5
T1-
, -
(1, 2). / (2).
–3
C = 5⋅10 (1), 4⋅10
,
(3)
-
, (
. . 3.11). -
S-S-
(
, , ,
,
). , ϕf ,
0-0-
τ ph .
-
∆ν s , ϕ ph ,
[140]: 72
: -
τ 0d –
1 ket = d τ0
9000ln 10 ⋅ Φ 2ϕ0d d R0 ⋅ = I ( ν ) ε a ( ν ) ν − 4 dν , 5 4 6 ∫ f 128 ⋅ π n Nτ0 R R 6
S1-
-
; R0 – ;n–
;N– ; I df (ν) – ; ε a (ν) – ,
ϑda –
(3.23)
Φ 2 = (cos ϑda − 3 cos ϑ dr cos ϑar ) 2 , ; ϑdr
; ϕ 0d – ;R– ;Φ – :
(3.24)
ϑar –
, .
, , . . .
, –
0-0-
. (3.24) k et = k
0
:
∞
∫ ε a ( ν ) I f ( ν ) ⋅ ν 4 dν , d
1
(3.25)
0
k0 –
, )
-
( ν ex
.
ν reg
+∞ 1 +∞ 0 d I ph (ν ex , ν reg ) = ⋅ ∫ ε (ν ex − ∆ν S ) ∫ I 0ph (ν reg − ∆νTd )ϕdph + C −∞ −∞
73
:
]
+ I 0ph (ν reg − ∆νTa )ϕaph × ρ(∆ν dS )ρ(∆ν aS )d (∆ν dS )d (∆ν aS ) . ; ∆ν dS
C–
∆ν aS ,
(3.26)
∆νTd
∆ν Ta – -
; ρ(∆ν S ) – 0-0-
( σ =800
,
); ϕd(a) ph –
–1
),
-
(
(3.11) (3.16, 3.17, 3.19),
∆νTd(a) .
(3.26)
∆ν dS
∆νTd
∆ν aS
⋅ 10–3,
∆νTa
-
(3.9). . 3.12
. εa ( ) ,
∆ν d(a) S
,
(
–1
1) -
20
1.0
1
0.8
3
2
19
0.6 0.4
-
(
2).
-
S 1-
18
.
0.2 0.0
-
17 20
22
24
26
28
30
ν ⋅ 10–3,
32 –1
.
. 3.12. (1, 2). (3). k = 0 (1) k 0 = 0.5 (2) 0
. -
. : 74
+∞ t 1 +∞ 0 d d d 0 ε ν − ∆ ν ν − ∆ ν ϕ I ph(ν ex ,ν reg ,t) = ( ) I ( ) exp − d + ex S ∫ ph reg T ph ∫ C1 − ∞ τ ph −∞
t + I 0ph (ν reg − ∆νTa )ϕaph exp− a ρ(∆ν dS )ρ(∆ν aS )d (∆ν dS )d (∆ν aS ) . (3.27) τ ph
τ dph , τ aph
1–
∆ν S
–
ϕ ph
∆νT
; (3.13, 3.16–3.19).
τ ph
,
, . . 0.
:
X d (k df + k gd + k 21 ) − X a k 21 = 1 ,
X d k 21 − X a (k af + k ga + k 21 ) = 0 ,
Xd, Xa –
(3.28)
S1;
k12 , k 21 –
,
-
(3.25); k df (a ) , k gd (a ) –
.
(3.28)
, X = d
Xa =
k af + k ga + k 21
(k df + k gd + k 21 ) ⋅ (k af + k ga + k 21 ) − k12 k 21
,
(3.29)
k12 . (k df + k gd + k 21 ) ⋅ (k af + k ga + k 21 ) − k12 k 21
(3.30)
(3.29) (3.30)
:
ϕdph
=
k af + k ga + k 21
⋅ , k dph + k md (k df + k gd + k 21 ) ⋅ (k af + k ga + k 21 ) − k12 k 21 k dph k gd
75
(3.31)
ϕaph
=
k aph k ga
k aph + k ma
⋅
k12 , (k df + k gd + k 21 ) ⋅ (k af + k ga + k 21 ) − k12 k 21 τ dph( a ) =
(3.32)
1 . k dph( a ) + k md ( a )
(3.33) -
(3.16–3.19). . 3.13 < τ ph >
,
. Э
0.25
.
3 0.20
km
2
’
3
2’
0.15
, -
.
’
1
0.10
1
"
0.05 12
16 18 –3 ν ⋅ 10 ,
14
20
" "
22
, ".
–1
-
. 3.13.
,
. ν ex = 22(1,1 ), /
’
3
.
–1
25(2, 2 ), 31⋅10 , (3, 3’); k0 = 0(1–3), 0.5 (1’–3’)
2, 2’)
(
-
(
3, 3’) -
.Э
, T1-
,
-
. , .
76
1, 1’),
(
. -
[129, 134, 141–143].
-
,
. P (ν ex , ν reg ) P(ν ex , ν reg ) =
0 Pph
C2
⋅
+∞
∫
−∞
ε
0
:
(ν ex − ∆ν dS )
+∞
∫ I ph (ν reg − ∆νT ) ⋅ ϕ ph (∆ν S , ∆ν S ) ×
−∞
0
d
d
× ρ(∆ν dS ) ⋅ ρ(∆ν aS ) ⋅ d (∆ν dS ) ⋅ d (∆ν aS ) ,
C2 = I ph (ν ex , ν reg ) ⋅ C (
d
a
(3.34)
0 . 3.26); Pph –
-
. (3.34)
,
-
, ,
0. -
:
P(ν ex , ν reg , t ) =
+∞ t P 0 +∞ 0 ⋅ ∫ ε (ν ex − ∆ν dS ) ∫ I 0ph (ν reg − ∆νTd ) ⋅ ϕdph ⋅ exp− × C3 − ∞ τD −∞
× ρ(∆ν dS ) ⋅ ρ(∆ν aS ) ⋅ d (∆ν dS ) ⋅ d (∆ν aS ) ,
C3 = I ph (ν ex , ν reg ) ⋅ C2 (
(3.35)
. 3.34).
. 3.14
P ) P0
(
,
. (
. 3.14,
1) 77
P P0
1.0
-
. Э 2 1
0.8
3 4
.
5
,
0.6
6 0.4 0.0
, -
,
0.1
0.2
0.3
0.4
t,
P ) " P0
(
; ν ex = 31 (1, 6), 25 (3, 4), 22⋅103 –1 (2, 5); ν reg = 13 (2, 4, 6) 22⋅103 –1 (1, 3, 5) . 3.14.
,
-
" ,
"
".
, -
. "
",
,
-
. .
(
. 3.14,
,
-
, S-S,
-
3, 4) . ,
(
. 3.14,
2, 5).
. (
), . ,
, 6G (C = 2⋅10
/ ), -
S-S0.33 – .
–3
, 78
0.25 . -
-
[128–130, 141]. , . . ,
,
0-0-
. 6G (
)
,
(
)
, ,
,
0-0.
,
.
(3.13)
, kn
S1.
S16G S1-
-
,
. . 3.15, 3.16
( (
1)
2)
6G -
[138]. , (
. 3.17
(
2)). -
(
1)
6G , 6G
, , , S1T1-
.(
.)
, , 79
-
.
1.0 I,
.
.
I,
1.2
.
2
1.0
0.8
0.8 0.6
0.6 0.4
1
0.4
2
0.2 0.0 12
14
16
18
1
0.2
20 22 ⋅ 10–3 –1
0.0 13
. 3.15.
15
17
21 –3 23–1 ⋅ 10
19
. 3.16.
(1) (2)
(C = 4⋅10–3 6G (C = 4⋅10–3
(1) (2)
/ ) / )
0.28 .
(C = 2⋅10–3 6G (C = 2⋅10–4
/ ) / )
. 3.15, 3.16
,
,
-
.
.
,
,
, . (
-
)
(
6G)
,
. .
,
, R > 2R0 .
-
.
N -
, : 80
ϕdf ϕddf = ϕdf ⋅
=
k df
k df
+ kg + ∑ N
+ k nd
keti
,
(3.36)
i=1
(km + ke + k ph )
R0 – ⋅ d-a r i ; rid-a –
1 keti = d τ0
k g ke
N ⋅ k df + k g + ∑ keti + k nd − k g ke i=1
.
(3.37)
6
i-
-
. :
∑ keti N
ϕaf ( df ) = ϕdf ( df ) ) ⋅0 ϕaf ⋅
0
i=1
k df
+ k g + k nd
+∑ N
.
(3.38)
keti
i=1
ϕaf –
. -
.
ε(ν) ,
1.0 0.8
.
1
2
0.6 0.4
, , (3.37, 3.38),
ϕadf ϕddf
-
0.2
-
0.0
, =
ϕaf ϕdf
17
19
. . 3.17. 6G (1) .
81
21
23 25 ν ⋅ 10–3
(2)
–1
-
-
-
. (3.37) (3.38). , . .
,
. < ϕddf >
[140].
-
. .
< ϕdf ((adf) ) >
, . :
< ϕdf(df) >= ξ0
ξ1 –
;
N=0 +
< ϕaf(df) >=
1
> N =1 –
< ϕdf(df) > N=1 ,
< ϕaf(df) > N=1 .
0
(
1
)
(3.39) , , ; -
1
( 1
< ϕdf ((adf) ) > N = 0 –
-
) , (
(3.37, 3.38), < ϕdf ((adf) )
3 R 2 d (a) > N =1 = 3 ∫ r ⋅ ϕ f ( df ) ⋅ dr . R 0 C ≈ 0 ϕdf
3π C 1 − ⋅ , (k ph + ke + k m )(k f + k g + k n ) 4 C0 ke k g
ke k g π . 2 (k ph + ke + k m )(k f + k g + k n )
< ϕadf >≈ 0 ϕdf 0
ϕdf
0
ϕaf –
(3.41) -
. (3.41) < ϕadf >
C
<
>
C,
= β, β = 1.
,
-
.
200 Ǻ,
.
,
, 0.3
)
ϕ df
1.0
(
ϕf 2
0.8
1
1
0.2
0.6 0.4
0.1
2 0.0
10-4
0.2
10-3
10-2 Ca,
0.0
10-4
10-3
/
. 3.18. ( )
(1) 83
10-2 / Ca, ( ) (2)
, .
, (3.37, 3.38), 50 Ǻ).
(
-
,
, < ϕdf ((adf) ) > . . 3.18.
, 0.5
, . . 3.18 ,
(
( ,
.
ke > k ph , k m , k e (
(3.44) , b k e ). ; ( ). b
(3.47)
(
-
b < k e ),
,
,
-
, ke,
, . . X 2 τ imp (3.53)
,
t < τimp
(3.43),
(3.54).
-
∆ν S
0-0-
. 91
1.0
.
I,
I, ε,
. 1.0
. .
0.8
0.8
2
4
0.6
0.6
1
0.4
1
0.4
2 0.2
0.2
3 0.0 0.0 0.2 0.4 0.6 0.8 1.0 t, c
0.0
-
. 3.22. . 19 000 –1 (2, 4); –1 . ex = 23 000
reg
12
= 23 000 –1. ex = 1.2 (1, 3), 0.03 c (2, 4)
24
28
–1
-
. 3.23.
ex
(1)
( τex > τ df , τ ph )
. 3.22 ( τ ex τ df .
. 3.24
< τ df > 1)
( (
,
2). 92
-
-
0.40
,
df
0.30
< τ df > ,
2
0.35
0.25
0.30
1
0.20
0.25
3
1
3
0.15
0.20 0.15 12
14
16
18 ⋅ 10–3,
2
0.10 12
20 –1
14
16
18 20 ⋅ 10–3, –1
. 3.24. (1, 3) (2) –1 . b = 0.01⋅kph (1, 2), b = 50⋅kph (3); ν ex = 23 000 ( ) 18 200 ( )
( b = 0.01 ⋅ k ph ).
-
, ,
.
(
. 3.24 ).
3,
.
.
. T1-
.
, , T1-
,
, .
. . (
) , . 93
,
(
.
. 3.24 ). . 3.25
< τ df >
.
b
,
,
-
, , 1, 1’).
(
, -
,
’
(
2, 2 ,
. 3.25). . -
1’–3’,
( .
. 3.25), -
. . .
,
, ,
0-0-
.Э
-
. 3.26, ).
. 3.26
-
( , .
-
. (
-
) 94
,
df
0.25
3’
18.0
3
17.5
1 0.20
< > ⋅ 10–3,
18.5
1
2
16.5
2’
16.0
2 5
3
6
4
17.0
1’
–1
0.15 0.10 0
15.5 15
50 100 150 200 250 300 b k ph
19
21
23
⋅ 10 , –3
. 3.25.
25 –1
. 3.26. b k ph .
= 20 000 (1, 1’), 17 000 (2, 2’), 23 000 –1 (3, 3’). ν reg = 17 000
(1,3,5) (2,4,6) . b/kph = 0.01 (1,2), 50 (3,4), 500 (5,6)
ex
’
ex
17
–1
.
’
= 1.2 (1–3), 0.03 c (1 –3 ).
. (
.
-
’
. 3.26,
3, 3 ).
,
, .
,
. . ,
.
95
4.
-
,
-
, .
, .
–
, S0-
. .
4.1. -
–
,
. . -
[140, 144]. , [145].
, 96
, [145, 146]. – 2–, (–CH2–)n, –CH2O–, –H2C–S–CH2– [147–150], [152–156], [151]. – 2– . [152, 155]. ,
-
, ,
[153– 155].
-
, .
,
[157]. [158],
[153, 159–161]. –( 2)n–.
n > 4, [160],
n = 1, 2, 3 –
[162].
-
, . :
-
, ,
–
, . [163]. ,
–
-
[164–167]. -
[168]. ,
[169] (3-
-
) .
97
,
-
. [169], (1014–1015
–1
)
,
.
4.1.1.
,
. 4.1
. , ,
,
. 4.1
.
S1
Tn k gd
Tn
S1 k ga
T1 bd
k df kmd
k af
ba
d k ph
k et(1)
S0
k
a m
T1 k
a ph
S0
ket( 3)
ket( 2 ) . 4.1.
: k et(1)
"d"
k et( 2) –
, .
-
-
T1-
, ;
"a"
-
k et(3) –
( )
( T1b
d (a)
S1-
).
=
d (a) σ d ( a ) (ν ex ) ⋅ I ex d (a) hν ex
98
,
(4.1)
σ d (a) –
d (a) , I ex –
d (a) – , ν ex
.
S1-
, -
, . . , . ,
-
, . ,
, .
-
,
, . 4.1,
( ),
[170, 171],
(1 − X ) b − X (1 − X ) k − X (1 − X )X k − (k + k )X
:
d
Xd . d k f >> k gd
d
d
a
d (1) et
Xa– k ga
-
a
(1) et
a ph
a m
, " d d kf a
= 0,
= 0.
(4.2)
S1(4.2) ,
>> k af .
"
T1-
, -
,
T1k et( 2) (
,
.
. 4.1),
,
.
. 4.2 (
(
1)
-
2)
, (4.2). : ϕd =
X d k df
(1 − X d )b d 99
.
(4.3)
ϕd , X a
1.0
-
, 2
1
, b d ( a ) (4.1).
0.5
, -
. 4.2
,
0.0
10-1
1
10
. 4.2. (2)
. ket1 = 100k df
ϕ0
ϕa –
a b d k ph (1) -
. ,
ϕ d = ϕ 0 ⋅ X a + ϕ a ⋅ (1 − X a ) ,
: (4.4)
,
-
(T1)
.
, , ,
. ,
T1(4.2)),
k df >> k gd ,
( k et(1)
,
>>
-
k df -
ϕ0 = 1 ,
ϕa = 0 .
, ,
, . -
[172, 173] –
. ,
. 4.1. T1
(
{i, j}, , k ga >> k af 100
k df
>>
S1 k gd ,
S1
).
T1 0
: -
i, j
1,
, . ,
(4.2),
-
Yi j {i,j}
:
Y11k df + Y10 ket(1) − Y01 ⋅ (k ph + k m + b d )= 0
b d ⋅ (1 − Y01 − Y10 − Y11 ) + Y11 (k ph + k m ) − Y10 ⋅ (k df + ket(1) )= 0 Y01b d − Y11k df = 0
(4.5)
(4.5)
:
Y00 + Y01 + Y10 + Y11 = 1 . S1Yi j
T1-
:
X d = Y10 + Y11 ,
X a = Y01 + Y11
(4.6)
(4.5), (4.6) k et(1) >> k df .
,
(4.4)
,
(4.6). , (4.2)
(4.5).
, "
T1-
,
"
. (4.2)
"
, "
k et(1)
, . .
"
"
, (
) 101
(1 − X ) a
,
-
k et(1) . , -
, . ,
[172, 173]
, ,
.
,
, . ,
, (4.5).
, ϕ0
, (T1)
(4.4).
ϕa
-
: ϕa =
k df
k df + k gd + k et(1)
;
ϕ0 =
k df
k df + k gd
.
(4.7)
(4.7) , T1-
.
ϕet ,
1-
-
: ket(1) ϕet = (1) . ket + k df + k gd X = a
b d ⋅ ϕ et
b d ⋅ ϕ et + k aph
: .
(4.4), (4.7) – (4.9) . ,
(4.8)
(4.9)
, -
102
,
-
. я
4.1.2.
,
[202]. , , . ( k df >> k gd ),
( k ga >> k af ), . . 0.
-
, ,
"
". . -
Yi j Y01 = b
a
⋅ (1 − Y01 − Y10 − Y11 ) − Y01 ⋅ (k aph
+b
d
) + Y10 ket(1)
+ Y11 (k df
: + ket( 2) ) ,
Y10 = b d ⋅ (1 − Y01 − Y10 − Y11 ) − Y10 ⋅ (b a + k df + k et(1) )+ Y11k ph , Y11 = Y01b d + Y10b a − Y11 (k df + k aph + ket( 2) ) , Y00 + Y01 + Y10 + Y11 = 1 .
S1Yi j
(4.10)
T1(4.6). , . ,
– –
τ ex τ ex . ,
-
.Э
T1, . . ,
.
T1-Tn-
,
,
, [174]).
S0-S1-
(
, .
S0-S1., ,
. . 4.3 1.0
-
d f d 0
τ
b
-
k et(1) (
1 3
0.5
. 4.3). 4
,
10–5
10–3
10–1
101 a b d k ph
b d k aph , -
. 4.3. b d . k et(1) = 1010 (1,4), 109(2), 108
(4.1); -
–1
(3). b a = 0(1–3), ba = bd (4). k et( 2 ) = 0. k df = 108
-
,
2 0.0
d
–1
104
< τ df > τ 0d
τ 0d –
,
.
,
.
-
. : T1-
,
,
,
, S0: τ1 –
S1-
. ,
τ2 –
T1-
). -
τ1 < τ 2 . ,
, < τ df > .
, τ df
,
-
T1-
( ,
,
T1(
. 4.3,
, ,
4). (
-
. 4.4).
, T1-
,
, , . . k et(1) ~ k et( 2) .
S0bd (
-
1’–3’).
. 4.5
. 4.5
,
1- n-
, ,
, .
(
.
. 4.5,
1–3). 105
-
< τdf >
1.0
τ0d
1.0
< τdf > ϕd , d τ0d ϕ0 1’
1 1 0.5
0.5
2 2 3 0.0
10-5
3 10-3
10-1
0.0
101 a b a k ph -
10-1
(1–3) (1’–3’) b d . ket( 2) ket(1) = 0 (1,1’), 0.01(2,2’), 0.03(3,3’). ket(1) =109, k df = 108 c −1
0.01(2), 0.1(3). ket(1) =109, k df = 108 c −1
-
я
,
, . "
101 a b k ph
. 4.5.
a =0 (1), b a . b d k ph
я
10-3
3’
d
. 4.4.
4.1.3.
10-5
2’
" . .
X d (θ)
bd
,
: b (θ) = d
d σ d (ν) ⋅ I ex d hν ex
⋅ cos 2 (θ) .
θ -
(4.11) -
: 106
I II = C ⋅ 2πk df
π
∫ X d (θ) cos
0
2
(θ) ⋅ sin(θ)dθ ,
π
I ⊥ = C ⋅ πk df ∫ X d (θ) sin 3 (θ)dθ .
(4.12)
0
C–
. . 4.6 (
1)
, .
-
, . .
. τ1
τ2 . τ1 –
{1,0}
{1,1}
, ,
,
τ2 –
T1-
. (S0) ( ):
, ,
f ex →{1,0} →{0,0} " 1. {0,0}
hν
hν
f ex et ex {0,1} 2. {0,0} →{1,0} → →{1,1} →{0,1} " " .
hν
hν
hν
ks
"
. θ
{1,0}. , cos θ . T1-
,
2
-
cos θ . 4
{1,1} , , 0.5.
107
{1,1} [175–183].
0.70
,
P
,
0.65 0.60
2
-
1
2/3
0.55
, 0.50 0.45 0.0
0.1
0.2
t τ 0d
0.3
, -N-
[175]. 4-
-
-
. 4.6.
-
, . k df = 108, 6
d
9
(1) et
a
6
P = 0.49 0.25 [178]. 4-N-
-1
a = 10 , k = 5⋅10 , b = 5⋅10 , b = 0 c , k ph τ ex = 10–10, ∆t =10–7 c. (1) (2).
~ 0.6
-
[178]. , :
τ1 ;
1) 2)
0.5
τ2 .
-
2/3
-
, ,
, ,
0.5.
,
, ,
, 2/3,
, -
( τ1 < τ 2 ), . (
)
108
0.70
P
-
1 2
0.65
.
- 0.60
3
0.55
4
{0,1}. - 0.50 -
-
0.45
0
-
10
20 n
-
. 4.7.
( ,
.
. 4.7). -
.
,
1.7⋅10–9 (1), 1.5⋅10 (2), 1.2⋅10 (3), 10 (4) –9
–9
–9
, (
.
. 4.6,
-
2).
4.2.
,
, -
, . -
-
[184–190]. , .
S1 → S0
, . 4.1.
109
, . .
.
S1 ,
-
,
. ,
,
-
.
i
{i, j}, j
( i) 0
(j).
-
1,
,
(T1) .
Yij [189–190]:
(1 − Y01 − Y10 − Y11 )η0a b a + b d
(
)
ket(1) + Y11k dph − Y01 k aph + b d η1d = 0 , d d (1) k f + k g + ket
(1 − Y01 − Y10 − Y11 ) ⋅ b d ⋅ η0d − Y10 (k dph + b a η1a ) + Y11k aph = 0 ,
(
)
Y01b d η1d + Y10b a η1a − Y11 k dph + k aph = 0 .
η0d η1a
=
=
k gd
k df + k gd + k et(1)
k ga
k af + k ga + k et(3)
,
η1d
=
k gd
k df + k gd + k et( 2)
(4.13)
η0a
,
=
k ga
k af + k ga
,
.
T1(4.13) b d (a)
-
(
) ,
, ⋅(k aph + kma ), T1-
i-
,
,
-
:
b d ⋅ < ϕiet > +b a < X i >= d , i = 1, 2, 3,..., n . (b ⋅ < ϕiet > +b a ) + k aph + k ma
(4.22)
(4.23)
ϕiet –
ik ga
(4.22) >> k af .
. -
, , i-
-
, .
ϕiet ,
,
–
) : 121
, Xi (i = 1, 2,..., n). ( ϕiet
ϕiet
= k df
+
kiet
kiet
+∑∑
klet δ lj l =1 j =1 n ml
ml –
l-
N = ∑ mi .
δ lj = 1 ,
n
i =1
l ≠ i.
i = 1, 2, 3,..., n ,
,
(4.24)
,N–
-
j-
l-
δ lj = 0 ,
, . . , T1-
.
τ df
S1-
:
τ df =
1
k df
+∑∑
.
kiet δ ij i =1 j =1 n mi
ϕiet , X i
(4.25)
τdf ,
2N ,
.
,
mi
,
ξi .
, , . . δ ij = 1 (i = 1, 2...,
, n, j = 0, 1, 2..., mi).
,
δ ij , Xi
< ϕiet
.
.
>,
,
ϕiet
(4.23), (4.24) mi , 1 0 < Xi > ,
< ϕiet >
(4.23)
δ ij < ϕiet > 122
< Xi > ,
Xi
ϕiet .
(1 − X i ) , -
< Xi > – . (3.4),
-
τ df ψ (τ df , b d , b a ) ,
S1bd bd
ba , .
-
ba
. bd
ba
,
.
4.3.2.
ψ (τ df
ϕ
d
ϕ0d
1.0
ϕd / ϕ0d
ϕd
, d
a
, b ,b ), ∞
=
∫τ
0
d
:
ψ (τ d , b d , b a ) dτ
∞
τ 0d ∫ ψ (τ d , b d , b a ) dτ
ϕ 0d
0
1
.
(4.26) τ 0d –
-
2
0.8
. ,
3
0.6 0.4
, ,
0.2
0.1
-
5
4
0.0
-
1
10
-
bd . Ca = 10–4(1), 5·10–4 (2), 1.5·10–3(3), 4.2·10–3(4), 3·10–2 / (5)
. -
( b a = 0 ).
100 a b d / k ph
. 4.17.
.
: R0 = 50Å, 200 Å,
R = -
123
– 6 Å.
. 4.17 b .
,
d
,
, . . .
,
n: . [175–183,
, ,
,
205]. . [206–209], 0–2⋅10
24
./(
10–3
⋅ )
, -
/ .
-
.
2
. .
, 10–4 – 10–2
, . 4.17. 10–2 ,
/ ,
/ , . .
, . . -
-
,
-
. , 1−
ϕd ϕ 0d
, [140]:
= πβ exp(β 2 ){1 − φ(β)},
π Ca 2 1 4π 3 β= ⋅ , exp(− x 2 )dx . R0 , φ(β) = = ∫ 2 C0 C0 3 π0 β
124
(4.27)
(4.27)
, Ca
a
, ,
[140], . -
. "
"
b →0 d
Ca ,
bd ≠ 0
, Ca . Ca :
(
-
Ca
(
-
))
Ca = Ca ⋅ a1 + a2 ⋅ arctg a3 ln(b d ) + a4 ,
(4.28)
a1 = 0.518536; a2 = 0.407771; a3 = – 0.495768, a4 = 0.781215.
-
. , (3.23)
k et
< Φ2 > =
2 . 3
, ,
-
(3.6), 0.845 ( ) [140].
-
, , .
0.845 ,
, (
, , ,
, . 125
), -
1, 2, 3..., n))
(
k iet
− δk
et
( ri − ∆r > r > ri + ∆r (i = {r ,ϑ da ,ϑ dr ,ϑ ar } -
.
)< k < ( et
k iet
+ δk
et
),
δk et kiet
0.9
1
1.1
8
1 6
0.8
2
4
0.7
3
2 0 0.0
0.2
4
0.4
0.6 0.5
0.8 1.0 τ d / τ 0d
0.6
3
2
10–3
10–2
10–1
1 a b d / k ph
. 4.20.
. 4.19. .b a=
d
a k ph
S1= 0.01(1,3) 30(2);
10–2(1,2) 1.93·10–3
b d . =10–3(1), 3·10–3(2), / (4) 10–2(3) 3·10–2
/ (3)
τd .
S1-
-
, (
, τd .
. S1. 4.17
) -
,
-
bd )
(
-
.
Ca = 10 −2
,
,
b
b d / k aph = 0.01
/ ,
d
/ k aph
Ca = 1.93 ⋅10 −3
ϕd = 0.437 .
S1( .
2, 3,
, < τ df > = 0.482 ,
, .
– < τ df > = 0.623 . 127
-
= 30 /
. 4.19). -
, -
(2.9),
∞
I df (t ) =
t
∫ exp− τd ⋅ ψ(τ ∞
∫ ψ(τ
0
d
)dτ
: d
) dτ d .
0
~d ϕ < ~τ d >
. 4.20 d d ~ d = ϕ , < ~τ d > = < τ > , ϕ < τ0d > ϕ0d
bd .
.
~d ϕ < ~τ d >
(4.29)
d
ϕ 0d
< τ 0d > –
-
, .
, ,
, ,
.
-
, .
ϕd
. 4.21 ba (
bd
ba
1–3).
ϕd
,
, S0-
. , , , .
, -
,
,
:
b a C a′ = C a ⋅ 1 − a . b + k aph 128
(4.30)
1.0
ϕd ϕ0d
3’
1.0
3
0.8
ϕd ϕ0d
4’ 4
’
’
2 0.5
1
2
2’
0.4
’
1
3
3
0.6
2 1’
1
0.2 0.0
10–1
0.0
1 10 d a b / k ph
10–1
1 a b / k ph
10
d
. 4.22.
. 4.21. a b d . b a k ph = 10–1 (1, 1’ ), 1(2, 2’ )
a b a . b d k ph =1 (1, 1’), 10 (2, 2’), 30(3,
10 (3, 3’ ). -
3’) (1–3)
-
(1’–3’ ); Ca = 10–2
/
100 (4, 4’). -
C a′ (4.27, 4.28). 1’–3’). (
. 4.21 ( b
d
b
(1–4)
(1’–4’); Ca = 10–2
/
. 4.21)
1–3
a
, -
. (4.30)
"
" ( .
. 4.22). Э
. –
.
,
, .
, ( ).
, . 129
(4.30)
, -
ϕd ϕ0d
1.0
, ,
3
0.8
b
d
b
a
.
4
-
, b ~ bd . a
0.6
5
0.4
1 2
0.2
. 4.23. 0.0
10-1 1
-
102 103 104 a b d / k ph
10
. 4.23.
,
b . b / k = 0(1), 5(2), 50 (3). d
a
-
T1-
a ph
b a / b d = 0.5(4), 2 (5)
.
,
,
S0– T1-
,
,
-
. , -
.
, . .
,
S0-,
– k et(1)
k et( 2)
T1-
( ). ,
, , S0– T1ϕ dS Ca T1-
: ϕTd
ϕ d = ϕ dS ⋅ ϕTd .
(4.31) -
(4.27, 4.28) T1-
CaT :
.
C aT = C a − C a , 130
(4.32)
Ca –
(4.28).
ϕ dS
, :
ϕ dS
(
ϕTd
. 4.17),
ϕTd
( , ,
,
.4. 24).
(
,
T1,
, 4.3.1.
k et( 2) < k et(1)
,
(
. 4.25).
, ,
(
,
-
> k et(1) – k et( 2) < k et(1)
k et( 2)
. 4.26),
. 4.27).
, ,
S0-
, , T1k et( 2)
>
. k et(1) ,
1.0
1
ϕ d ϕ 0d
, . .
2 3
0.6
2
S01
0.8
0.8
0.4
0.6
6 7
3 0.0
10
1
2
10 10 a b d / k ph
3
10
4 5
0.2
0.4
–1
-
-
ϕTd ϕ 0d 1.0
0.2
,
10–1
1
10 102 a b d / k ph
103
. 4.25. ϕd bd . –3 –3 –2 Ca = 10 (1,5), 3·10 (2, 7), 10 (3, 4, 6) / , k et( 2) k et(1) = 10(5, 7), 10–1(1, 2, 6), 10–2(4), 10–3(3)
. 4.24. ϕTd bd . Ca = 10–3 (1), 10–2 (2, 3) / , ( 2) (1) k et k et = 0.1 (1, 3), 0.01 (2) 131
ϕ d ϕ 0d
1.0 0.8
0.7
1
ϕ d ϕ 0d
0.6 0.5
2
0.6 0.4
3 4
0.2
5
0.0
0.4
0.2
2
0.1
10–1
1
10 102 a b d / k ph
0.0
103
. 4.26. ϕd bd . Ca = 10–3(1), 3·10–3(2), 10–2 (3, 4, 5) / , ket( 2) ket(1) = 10–1 (1, 2, 4), 10–2 (4), 10–3(3). , -
10–1 1
10 102 103 a b d / k ph ϕd
. 4.27. Ca= 10–3(1), 3·10–3(2) k et( 2) k et(1) = 10.
bd .
/ , -
S0. (4.31, 4.32),
T1(
1
0.3
, . . ,
-
. 4.27). 4.3.4
я
я
я
[26–31] [26, 28],
-
, [26].
0-0-
.
,
,
, 132
-
.
. b = 0. a
I 0f (ν)
" 0-0-
. 4.28). ρ(∆ν)
ν ex bd d I (ν ex , ν r , b ) = C τ 0d
τ 0d ∞
. νr
:
∫ ∫ I f (ν r − ∆ν) ⋅ ε
0 −∞ d
0
0
× τ ψ (τ ,bd′ )d (∆ν)d τ d , d
C=
ε 0 (ν )
" (
τ0d ∞
∫ ∫ ρ(∆ν) ⋅ ψ(τ 0 −∞
-
d
,bd′ )d (∆ν)d τ d ,
bd′ = b d ⋅ ε 0 (ν ex − ∆ν) . (4.33) δ δ
. 4.29 . :
∞ ∫ I (ν ex , ν r )ν r dν r δ < ν >= 0∞ I (ν ex , ν r )dν r ∫ 0
(ν ex − ∆ν) ⋅ ρ(∆ν) × ,
∞ ∫ I (ν ex , ν r )ν r dν r − 0∞ d ∫ I (ν ex , ν r )dν r b 0
-
bd
. (4.34) d b →0
,
. .
bd′ ,
, 0-00-0-
.
133
, bd
-
ε 0 , I 0f ,
1.0
.
0.8
.
0.2
δ < ν > ⋅10 −3 ,
–1
4 0.6
0.1
1
2
5
3
0.4
2
0.0
0.2
1 0.0 13
15
17
21 23 ⋅10-3,
19
"
. 4.28. "
-0.1 –1
-
1
. 4.29. bd .
(1)
102
10
δ ex =19(1), 20(2), 21(3),
22(4), 23⋅103 (5)
(2)
,
103 a b d / k ph
–1
,
= 500
–1
.
.
(
. ,
. 4.17)
δ
, .
δ
d
( я,
я
я
bd I (ν ex , ν r , b , t ) = C d
τ 0d ∞
∫∫
I 0f (ν r 0 −∞
1).
.
я
я
,
я
b . 4.29,
,
:
− ∆ν) ⋅ ε (ν ex − ∆ν) ⋅ ρ(∆ν) ⋅ e 0
-
−
t τd
×
× ψ(τ d ,bd′ )d (∆ν)d τ d C=
< τd >
+∞ τ0
∫ ∫ ρ(∆ν) ⋅ ψ(τ d
−∞ 0
d
,bd′ )d τ d d (∆ν) .
(4.35)
(
d
, 134
). .
4.30,
. 0-0-
(
. 4.30,
, -
2) bd
, . . ,
S1-
.
-
. (
. 4.31).
(
(
1),
3). ,
-
, .
(
, P0 = 0.5)
:
τ d τ0d
0.35 0.30
1
0.5
2
0.3
3
0.1
δ < ν f > ⋅ 10–3,
–1
1
0.25 0.20
2 -0.1
0.15
3
0.10
-0.3 16
.
17
18
19
ν ⋅ 10–3,
20
0.0 0.2 0.4 0.6 0.8 1.0 1.2
t / τ 0d
–1
19(2), 22·103
δ
. 4.31.
4.30. . ν ex = 20(1), –1 (3), σ = 500 –1
3
19·10
135
–1
ν ex = 22(1), 20(2), (3), σ = 500 –1
(
)
I II ν ex , ν r , b d = C1 ⋅ 2π
(
)
I ⊥ ν ex , ν r , b d = C1 ⋅ π
π +∞ 2
∫ ∫ I f (ν r − ∆ν) ⋅ X 0
−∞ 0
π +∞ 2
0
τ0d
X d (θ, ∆ν, b d ) = C1=
(θ, ∆ν) ⋅ ρ(∆ν) ⋅ cos 2 (θ) ⋅ sin(θ)×
× d (∆ν)dθ ,
∫ ∫ I f (ν r − ∆ν) ⋅ X
−∞ 0
d
∫ε
0
d
(θ, ∆ν) ⋅ ρ(∆ν) ⋅ sin 3 (θ)d (∆ν)dθ,
(ν ex − ∆ν) ⋅ τ d ψ (τ d ,bd′′ )dτ d
0
τ0d
,
τ 0d ∫ ψ (τ d ,bd′′ )dτ d 0
1
+∞
∫ ρ(∆ν)d (∆ν)
, bd′′ = b d ⋅ ε 0 (ν ex − ∆ν) cos 2 (θ).
(4.36)
−∞
θ–
-
, X d (θ, ∆ν) – θ
0-0(4.36)
,
, X d (θ, ∆ν)
cos 2 θ ,
.
θ
θ.
S1, , -
0.5.
, (
)
, S0-
,
.
,
S1-
3⋅10–2
,
. 18
( 136
R0 = 50 Å),
-
/ -
n-
S1 → S 0
.
-
,
T1.
θ
,
-
S1cos 2 θ , 0.5
. ( ∆ν ), bd′ = b d ⋅ ε 0 (ν ex − ∆ν) cos 2 (θ) ,
0-0-
, .
.
-
. 4.32
, . , -
. 4.32
, ( (
1–2), 3). Э
, 0.65
P
0.64
4
0.62
0.63
0.60
3 0.60
P
0.58
2
0.56
0.58
0.54
1
0.52
0.55
0.50 14
16
18
20 –3 ν ⋅ 10 ,
10-1
1 10 102 103 104
–1
a b d / k ph
. 4.32. .b
a k ph
d
2
b .
= 5(1), 10(2), 10 (3),
10 (4); νex = 22·10 3
3
-
. 4.33.
d
–1
, σ = 700
C a = 3·10–3
–1
137
/
. (
.
-
. 4.17).
0.5.
,
νr ,
P .
0-0-
(
. 4.33). . 4.32,
-
.
0-
,
0, -
( (
), (
)
)
. .
-
,
,
θ,
.
,
,
: τ0d
X d (θ, ν ex , b d , t ) =
∫ε 0
0
(ν ex − ∆ν) ⋅ e τ0d
∫ ψ(τ
d
−
t τd
⋅ ψ(τ d ,bd′′ )dτ d
,bd′′ )dτ d
.
(4.37)
0
. 4.34
,
S1, , .
X (θ, ν ex ) d
. 138
,
-
Xd ,
1
.
1 2 3 4
0.5
−
0
π 2
π 2
0
θ
. 4.34.
. t τ0d = 0(2), 0.5(3), 1 (4).
a=
3·10–2 (2–4), 0
/ (1)
-
,
S1-
,
, -
. (4.36)
(4.37) -
:
I II (ν ex , ν r , b , t ) = 2π ⋅ C2 d
π d + ∞ τ0 2
∫ ∫ ∫b
−∞ 0 0
d
⋅ε
0
(ν ex − ∆ν) ⋅ ρ(∆ν) ⋅ I 0f (ν r
− ∆ν) ⋅ e
−
t
τd
×
× ⋅ψ(τ d ,bd′′ ) cos 4 (θ) ⋅ sin(θ) d (∆ν)dτ d dθ , I ⊥ (ν ex , ν r , b , t ) = π ⋅ C2 d
C2 =
+ ∞ τ0
π d + ∞ τ0 2
∫ ∫ ∫b
−∞ 0 0
d
⋅ε
0
(ν ex − ∆ν) ⋅ ρ(∆ν) ⋅ I 0f (ν r
× ψ (τ d ,bd′′ ) ⋅ cos 2 (θ) ⋅ sin 3 (θ)d (∆ν)dτ d dθ ,
∫ ∫ ρ(∆ν) ⋅ ψ(τ d
−∞ 0
d
,bd′′ )d (∆ν)dτ d .
. 4.35, 4.36 139
− ∆ν) ⋅ e
−
t
τd
×
(4.38)
0.75
0.9
P
4
0.70
P
6
0.8
0.65 0.60 0.55 0.50
3
0.7
2 1
0.6
5 4 3 2
0.5
1
0.45 13 14 15 16 17 18 19 20 ν ·10–3, –1
19
(1, 2)
22 23 –3 ν ·10 , –1
-
–1
23·103
–1
ex = 19·10
(1–3)
, -
3
σ = 700
21
. 4.36.
. 4.35.
ex =
20
,
100 (3, 4). d a , b k ph = 103(1,4)
100
(4–6). ν reg = 16·103
–1
,
a b d k ph = 10(3, 4), 102(2, 6)
103(1, 5), σ = 700
a , b d k ph = 10(2,3),
-1
–1
.
, . ,
.
140
1.
.
. . , 1972. 264 .
2.
:
/
1989. 319 .
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37.
.
. .
.:
-
.:
,
. . 1960. . 8, № 6. . 777–786. ., . . .: . . 1961. 305 . . . // . . 1961. . 10, № 6. . 717–726. . . // . . 1964. . 16, № 5. . 821–832. Liptey W. // Z. Naturforsch., 1965. V. 20a, № 11. P. 1441–1471. . // . .: , 1968. . 179–206. . ., . ., . . // . . 1968. . 24, № 6. . 901–909. . . .: . . 1960, 250 . . ., . . // , 1961. . 74, № 1. . 3–30. . . // . . 1962. . 12, № 5. . 557–564. . . // . . 1965. . 19, № 3, . 345–353. . ., . . // . . 1964. . 16, № 2. . 351–359. . . // . . 1962. . 12, № 3. . 350–358. . . // . . 1962. . 12, № 4. . 473–478. . . // . . . . 1960. . 24, № 5. . 587–590. . . // . . 1962. . 13, № 2. . 192–199. . . // . . 1962. . 13, № 1. . 43–51. . . // . . . 1962. . 7., № 8. . 920–298. Abe T. // Bull Chem. Soc. Japan. 1965. V. 38, № 8. P. 1314–1318. . ., . . // . . 1973. . 34, № 5. . 902–906. . . // . . 1975. . 38, № 4. . 803–805. . . // . . 1975. . 38, № 5. . 1034–1035. . . // . . . . 1973. . 37, № 2. . 284–289. . ., . . // . . 1970. . 29, № 6. . 1082–1086. . ., . . // . . 1971. . 30, № 2. . 275–278. . ., . . // . . 1971. . 32, № 2. . 424–427. . ., . ., . ., . ., . . // . . 1976. . 46, № 1. . 64–69. Galley W.C., Purkey R.M. // Proc. Nat. Acad. Sci. USA. 1970. V. 67, № 3. P. 1116–1121. . ., . . // . . . 1972. . 16, № 6. . 1017–1022. . . // . . . 1976. . 25, № 3. . 480–487. . . // . . 1972. . 33, № 1. . 42–50. . ., . . . .: , 1964. 240 . . . .: . . 1967. 276 . . . // . . 1976. . 40, № 5. . 940–942. . . // . . . . 1973. . 37, № 3. . 615–618. . .,
. . //
.,
141
38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67.
. . // . . 1980. . 48, № 4. . 704–711. Marcus R.A. // J. Chem. Phis. 1965. V. 43, № 4. P. 1261–1274. . ., . ., . . // . . . 1972. . 12, № 6. . 1025–1038. . ., . ., . . // . . 1970. . 28, № 5. . 897–904. . ., . . // . . 1970. . 28, № 6. . 905– 913. . ., . ., . . // . . 1966. . 21, № 5. . 550–554. . ., . ., . . // . . . . 1968. . 32, № 8. . 1360–1365. . . // . . 1972. . 32, № 6. . 1151–1158. . ., . ., . . // Acta Phys. et Chem. Szeged 1980. V. 24, № 3. P. 387-390. . ., . . // . . . . 1958. . 22, № 11. . 1391–1394. . . // . . . . 1960. . 24, № 5. . 572–576. . ., . . // . . 1960. . 8, № 3. . 338–341. . ., . . // . . 1961. . 10, № 4. . 848–851. . ., . . // . . 1962. . 6, № 9. . 560–562. . ., . . // . . 1966. . 20, № 5. . 783– 792. . ., . ., . ., . . // . . 1965. . 19, № 1. . 78–85. . . // . . 1962. . 12, № 1. . 73–80. . ., . . // . . . 1973. . 18, № 4. . 660–670. . ., . ., . . // . . 1968. . 25, № 1. . 92–97. . ., . . // . . . 1967. . 12, № 1. . 155– 159. . . .: . . 1961. 326 . . . .; .: , 1931. 326 . Ware W.R., Cow P., Lee S.K. // Chem. Phys. Letters. 1968. V.2, № 6. P. 356– 358. Egawa K., Nakashima N., Mataga N., Yamanaka Ch. // Chem. Phys. Letters. 1971. V. 8, № 1. P. 108–110. Charkabarti S.K., Ware W.R. // J. Chem. Phys. 1971. V. 55, № 12. P. 5494– 5498. . . // . . 1973. . 34, № 5. . 917–920. . . // . . 1974. . 36, № 3. . 491–496. . ., . . // . . 1978. . 44, № 4. . 714– 719. . // . . . . 1960. . 24, № 1. . 4–9. ., . // . . . . 1960. . 24, № 1. . 10–18.
142
68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93.
. // . . . . 1960. . 24, № 1. . 25–31. Garg S.K., Smyth C.P. // J. Phys. Chem. 1965. V. 69, № 4. P. 1294–1301. Davidson D.M. // Canad. J. Chem. 1961. V. 39, № 3. P. 571–594. . . / . : , 1972. 412 . . ., . . // . . 1978. . 45, № 5. . 903– 913. . ., . . // . . . . 1980. . 44, № 4. . 716–721. . . // . . 1976. . 40, № 1. . 31–37. . ., . ., . ., . . // . . . 1981. . 34, № 6. . 1017–1022. . ., . ., . ., . ., . . // . . 1980. . 49, № 2. . 298–302. . ., . ., . . // . . . 1982. . 36, № 3. . 460–466. . . . .: , 1975. 471 . . . .: , 1978. . 1. 402 . . ., . ., . . // . . . 1984. . 40, № 4. . 583–588. . // . Э . . . 1976. . 25, № 4. . 374–379. . ., . . . .: . 1979. 285 . . ., . ., . . // . . 1972. . 33, № 2. . 254–257. . ., . ., . . // . . . 1974. . 24, № 1. . 145–151. ., ., . . .: , 1972. 316 . . . // .: . . .: , 1970. . 14. . 46–62. . ., . . // . . 1982. . 48, № 5. . 57–60. . ., . ., . ., . . // . . - . .1. 1982, № 1. . 5–8. . ., . ., . . // . . 1998. . 361, № 1. . 72–73. . ., . ., . . // . . 1972. . 207, № 6. . 1308–1310. . . // .: . . .: , 1966. № 5. . 99–106. . ., . . // . . . . . 1968, № 2. . 310– 321. . ., . . // .: . . .: , 1966, № 5. . 61–73.
143
94.
. .,
. . //
.
. 1974. . 36, № 2. . 288–
291. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121.
. ., . ., . . // . . . 1984. . 40, № 5. . 773–780. . ., . ., . . // . . . 1990. . 52, № 3. . 394–400 . ., . ., . . // . . . . 1975. . 39, № 11. . 2373–2377. . ., . ., . . // . . 1980. . 49, № 2. . 274–282. . . // . . 1981. . 25, № 2. . 120–123. . . , . . , . . . // . . 1980. . 48, № 5. . 896–902. . . // / . . . . 1979. . 45, № 179. . 3–46. . . // . . . . 1978. . 42, № 3. . 550–553. . ., . . // . . . . . 1978, №16. . 141– 142. . ., . ., . ., . . // . . 1971. . 30, № 1. . 143–147. . ., . . // . . 1978. . 45, № 6. . 1102– 1105. . ., . ., . ., . ., . . // . . . . 1978. . 42, № 3. . 626–630. . ., . . // . . 1979. . 46, № 1. . 188–190. . . . . // . . 1986. . 60, № 2. C. 418–420. . . . ., . ., . ., . . // . . 1981. . 50, № 6. . 1117–1123. . ., . . // . . . . 1982. . 46, № 2. . 318–322. . ., . ., . ., . . // . . . 1974. . 20, № 5. . 649–654. . ., . ., . . // . . . 1988. . 49, № 3. . 480–485. . ., . . // . . - . . 1. 1994. № 3. . 7–10. . ., . . // . . 1982. . 52, № 1. . 12–14. . ., . ., . . // . . . 1982. . 37, № 2. . 306–316. . ., . ., . . // . . 1976. . 41, № 5. . 803–811. ., . // . 1968. . 94, № 2. . 289–351. ., . // . 1972. . 108, № 1. . 113–141. Englman R., Jortner J. // Mol. Phys. 1970. V. 18, № 2. P. 145–164. Fukumura Hiroshi // Chem. Phys. Lett. 1982. V. 92, № 1. P. 29–32. Eisinger J., Navon G. // J. Chem. Phys. 1969. V. 50, № 5. P. 2069–2077.
144
122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140.
141. 142. 143. 144.
. ., . ., . . // . . 1976. . 23, № 5. . 820–830. . ., . ., . . // . . . 1968. . 8, № 1, . 87–90. . ., . . // . . . . 1972. . 36, № 5, . 1074–1077. Kearvell Alan, Wilkinson Francis. // J. Chem. Phys. Chem. Biol. 1970. V. 67, № 3. P. 125–131. Kray Hans-Joachim, Niken Bernard. // Chem. Phys. 1980. V. 85, № 1–2. P. 235– 241. . ., . ., . ., . . // . . . 1982. . 37, № 1. . 92–97. . ., . . // . . . 1977. . 27, № 5. . 841–845. . ., . ., . . // . . . . – 1978. . 42, № 2. . 307–312. . ., . . // . 1979. . 46, № 3. . 487– 494. . ., . ., . . // . . . 1980. . 32, № 5. . 839–845. . ., . ., . . // . . . 1980. . 33, № 6. . 1080–1084. . ., . ., . ., . . // . . . 1978. . 29, № 5. . 817–819. . ., . . // . . - . . 1. 1980. № 2. . 3–6. . ., . ., . . // . . 1982. . 53, № 2. . 239–244. . ., . . // . . . 1980. . 32, № 5. . 897–902. . ., . . // . . . .. 1989. № 6. . 84–89. . ., . . . // . . - . . 1. 1992. № 2. . 28–33. . ., . ., . . // 1980. . 6, № 5. . 270–273. . ., . ., . ., . . . .: , 1977. 312 . . ., . ., . . // . . 1978. . 44, № 2. . 252–255. . ., . ., . . // . . . 1980. . 32, № 6, . 1023–1028. . ., . ., . ., . . // . . - . . 1. 1989. № 1. . 18–20. Wagner P.J., Klan P. // J. Amer. Chem. Soc. 1999. V. 121, № 41. P. 9626–9635.
145
145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168.
. ., . ., . . // . . . 1995. . 62, № 3. . 87–91. Valeur Bernard // J.Luminescence 1992. V. 52, № 5-6. P. 345–347. Schafer F.P., Bor Zc., Luttke W., Liphardt B. // Chem. Phys. Lett. 1978. V. 56, № 3. P. 455–457. Liphardt Bodo, Liphardt Bernd, Luttke W. // Opt.Commun. 1981. Vol. 38, № 3. P. 207–210. . . // . . 2000. . 88, № 2. . 224–229. Kopainsky B., Kaiser W., Schefer F. P. // Chem. Phys. Lett. 1979. V. 56, № 3. P. 458–462. . ., . ., . ., . . // . . . 1974. . 21, № 4. . 653–657. . ., . ., . ., . . // . , 1996. . 80, № 2. . 203–207. . ., . ., . . . // . . 1990. . 68, № 2. . 349–353. . ., . ., . ., . . . . // . . . 1991. . 55, № 5. . 745–751. . ., . ., . . // . . 1991. . 70, № 1. . 31–36. . ., . ., . . . // . . 1994. . 77, № 3. . 402–404. . ., . ., . ., . . // . . . 1986. . 45, № 6. . 984–991. . ., . ., . ., . . // . . 1999. . 87, № 6. . 956–962. . ., . ., . ., . . // . . 1995. . 79, № 3. . 460–464. . ., . ., . . . // . . 1993. .75, № 2, . 337–343. . ., . ., . . // . . 1977. . 83, № 5. . 743–748. . ., . ., . . // . . 1993. . 36, № 10. . 69–75. . . // . . 1997. . 83, № 2. . 227–231. . ., . ., . . . // . 1988. . 15, № 7. . 1390–1394. . , . ., . ., . . // . . . 1989. . 51, № 4. . 579–584. . ., . ., . . . // . . . 1988. . 49, № 6. . 915–920. . ., . . . . . // . . . 1985. . 42, № 6. . 910–915. . ., . ., . . // . . 1991. .71, № 5. . 798–803. . .,
146
169. 170. 171. 172.
173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193.
. ., № 1. . 115–120. . ., 1968. . 293. . . // . .,
. . //
. .,
.
. .
.
. 1992. . 72, .
.
. 1970. . 28, № 1. . 20–208. . . : , / . / 1987. № 353. . 4–29. . ., . . // . 1988. . 65, № 6. . 1231– .
1237. Buettner A.V. // J. of Phys. Chem. 1964. V. 68, № 11. P. 3256–3258. . . // . 1969. . 26, № 4. . 554–563. . . // . 1971. . 31, № 5. . 769–771. . ., . ., . . // . . . 1973. . 19, № 4. . 730–732. . ., . ., . ., . . // . . . . 1972. . 36, № 5. . 951–955. Peticolas W.L., Rieckhoff K.E. // Phys. Lett. 1965. V. 15, № 3. P. 230–231. . ., . ., . . // . . . 1972. . 17, № 3. . 421–423. . ., . ., . . // . . - . . 1. 1974. № 1. . 32–35. . ., . ., . ., . . // . . . 1975. . 23, № 2. . 273–277. . ., . ., . . // . . 1979. . 23, № 1. . 35–38. . ., . . // . . . 1994. . 60, № 5–6. . 416–420. . ., . . // . . . 1994. . 61, № 5–6. C. 409–414. . ., . . // . . - . . 1. 1991. № 3. . 26–30. Sokharuk S.A., Gorbatsevich S.K. // Optical Memory: Proc SPIE. 1994. V. 2429, P. 41-49. . ., . ., . . // . . . 1997. . 64, № 3. . 353–356. . ., . ., . . // . . 1999. . 87, № 5. . 813–817. . ., . ., . . // . . - . . 1. 2001. № 1. . 19–23. . ., . . // . . 1980. . 24, № 1. . 34–37. . ., . ., . . // . . 1988. . 15, № 8. . 1681–1686. . . // . . 1990. . 68, № 6. . 1316–1219. 147
194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204.
. ., . ., № 5. . 1252–1257. . ., . ., № 3. . 565–570 . . // . . . . ., . . // 1262. . ., . ., № 1. . 50–54. . ., . . // . 13–16. . ., . . // № 1. . 113–119. . ., . . // № 2. . 164–168. . ., . . // № 4. . 546–550. . ., . . // № 5. . 648–652. . . , . . "
206. 207. 208. 209.
.
. 1988. . 65,
. . //
.
. 1987. . 62,
. 1984. . 87, № 1. . 84-99. . 1988. . 65, № 6. . 1258– . . //
. 1984. . 57,
.
.
- .
. 1. 1995. № 2.
.
.
. 1996. . 63,
.
.
. 1997. . 64,
.
.
. 1998. . 65,
.
.
. 1999. . 66,
-
" //
205.
. . //
: . . . . ." ". ., 2000. . 173–186. . ., . ., . . // . . . 1972. . 17, № 4. . 646–650. Speiser S., Chisena F.L. // Appl. Phys. B. 1988. V. 45, № 3. P. 137–144. Speiser S., Chisena F.L. // J. Chem Phys. 1988. V. 89, № 12. P. 7259–7267. Orenstein M., Katriel J., Speiser S. // Phys. Rev. A. 1987. V. 35, № 5. P. 2175– 2183. Speiser S., Houlding V. H., Yardley J. T. // Appl. Phys. B. 1988. V. 45, № 4. P. 237–243.
148
А
Е ИЕ
..................................................... 1. я я я я я я ( ).......................................................... 1.1. ................................ 1.2. .......... 1.3. В ........................... 2. я щ я я я я я я ... 2.1. 0-0.. 2.2. Н ................................................... 2.3. Э .................................. 2.4. К ........................................... 2.5. К ........................ 3. я ................ 3.1. ...................................... 3.2.
3.3. В
................................................... - ..........
3
5 5 10 11
14 14 20 26 33 46 51 51
55
71
3.4. З ......................... 149
85
4. 4.1. Н 4.1.1. М 4.1.2. К 4.1.3. Д
я
я
-
я.............................. -
96
............................................... 96 ................................. 98 я . . . . . . . . . . . . . . . . . . . . . . . . 103 я я . . . . . . . . . 106
4.2. Н 109
.................. 4.3. Н
-
............................................... 4.3.1. М ................................. 4.3.2. .............. 4.3.3. К .............. 4.3.4. я я я .......... .......................................................
150
119 120 123 126
132 141
ор
е и
Ы .
А Ы Э
Ы
. К. р
О. А.
. К. Г р 16.08.2002. 60 84 1/16. я. . . . 8,84. - . . 7,42.
я.
.
100
.
. 1062.
. я 220050,
№ 315
14.07.98.
,
, 4. -
. я
«
». я 220030,
№ 461 , .
14.08.2001. я, 6.