Математическое моделирование трубопроводных сетей и систем каналов: методы, модели и алгоритмы 978-5-317-02011-8

eBook (изначально компьютерное) В монографии приводится подробное описание базовых методов численного моделирования труб

176 34 14MB

Russian Pages 696 Year 2007

Report DMCA / Copyright

DOWNLOAD PDF FILE

Table of contents :
(01) Титульный лист.pdf......Page 0
(02) Оглавление.pdf......Page 5
(03) Предисловие.pdf......Page 11
(04) Список сокращений.pdf......Page 14
(05) Глава 1.pdf......Page 16
_06_ Глава 2_1.pdf......Page 61
_06_ Глава 2_2.pdf......Page 159
(07) Глава 3.pdf......Page 279
(08) Глава 4.pdf......Page 342
(09) Глава 5.pdf......Page 452
(10) Заключение.pdf......Page 553
(11) Список литературы.pdf......Page 554
(12) Приложение 1.pdf......Page 569
(13) Приложение 2.pdf......Page 597
(14) Приложение 3.pdf......Page 630
(15) Приложение 4.pdf......Page 638
(16) Приложение 5.pdf......Page 653
(17) Приложение 6.pdf......Page 656
(18) Приложение 7.pdf......Page 661
(19) Приложение 8.pdf......Page 664
(20) Приложение 9.pdf......Page 674
(21) Приложение 10.pdf......Page 685
(22) Об авторах.pdf......Page 695

Математическое моделирование трубопроводных сетей и систем каналов: методы, модели и алгоритмы
 978-5-317-02011-8

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

В.Е. Селе нев, В.В. Алешин, С.Н. П ялов ______________________________________________

МАТЕМАТИЧЕСК Е М ДЕЛИ ВАНИЕ Т П В ДН СЕТЕ И СИСТЕМ КАНАЛ В Мето ы, о ели и ал орит ы ______________________________________________

М СКВА – 2007

ДК 621.64:519.8 К 39.71-022:22.18 29

С 29

В.Е., А

и В.В., П я

а

а и и ы, ииа г и 2007. – 695 . ISBN 978-5-317-02011-8

а и ы/

С.Н. ых

. В. .

В

и и . – .:

а а

АК

: ,

). Д ,

(

,

( .

) , .

К

,

,

,

-

-

,

,

-

.

,

, ,

. .

. 20. И . 252.

. 329

. ДК 621.64:519.8 К 39.71-022:22.18

ISBN 978-5-317-02011-8

© В. .

, В.В. А

, .Н.

, 2007

ВА АЕМ Е ЧИТАТЕЛИ! ВАШЕМ ВНИМАНИ П ЕДЛАГАЕТС АВТ СКА ЭЛЕКТ ННА ВЕ СИ ТЕКСТА М Н Г АФИИ: Селе нев В.Е., Алешин В.В., П ялов С.Н. Ма е а че ру р в ых е е е а ал в: е ы, ел ре . В.Е. Селе ева. – М.: МАКС Пре , 2007. – 695 .

е ел р ва е ал р ы / П

ЭТА ВЕ СИ ЕГ Л Н С П В ДАЕТС В.Е. СЕЛЕЗНЕВ М, В.В. АЛЕШИН М И С.Н. П Л В М, НАЧИНА С СЕНТ 2007 Г ДА. СН ВН Е ТЛИЧИ ТЕКСТА АВТ СК ВЕ СИИ Т ВА ИАНТА ТЕКСТА, П ЛИК ВАНН Г В ИЗДАТЕЛ СТВЕ «МАКС П е », М СКВА, ТМЕЧЕН ЕЛТ М МА КЕ М. П СЛЕДНИЕ П АВКИ В ЭЛЕКТ НН ТЕКСТ В СЕНТ Е 2009 Г ДА.

ЛИ ВНЕСЕН

ВСЕ П АВА НА П ЕДСТАВЛЕНН ЭЛЕКТ НН ВЕ СИ П ИНАДЛЕ АТ В.Е. СЕЛЕЗНЕВ , В.В. АЛЕШИН И С.Н. П Л В .

лавление П е и ловие ............................................................................................................ 9 С и о о новных и

Н ВА П

оль уе ых о

ащени ................................................. 12

ГЛАВА 1

Е АК И К Н ЕП ИИ ЧИС ЕНН М Е И ВАНИ В НЫ СЕ Е И СИС ЕМ КАНА В С К Ы ЫМ С

М

1.1. .......................................................................................... 14 1.2.

................ 16

1.3. В ........................................................................................................... 18 1.4. В ........................................................................... 33 1.5. ................................................................................................................ 36 1.6. .... 46 1.7.

............................................ 53

МА ЕМА ИЧЕСК Е М

2.1.

Е И

ГЛАВА 2

ВАНИЕ АНСП И ВАНИ П В НЫМ СИС ЕМАМ

П

К

ВП

............................................................................................ 59

2.2. В .................................................................................................................... 60 2.3.

........................................... 63

2.3.1.

......................................................................... 63

2.3.2.

........................................................................................... 77

2.3.3.

............................................................ 80

2.3.4.

................................................................ 88

2.4. © В.Е. Селе

........................................... 123 ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

4 лавле е _______________________________________________________________________________________

2.4.1.

.................................123

2.4.2.

, ...................................................................................................................134

2.5. Ч

.............138

2.5.1.

..................163

2.5.2.

.........................................................................................................168

2.5.3. К ..........................................................................183 2.5.4. Ч

...........................................................................190

2.5.5. Ч

Ч , .................................................................................225

2.5.6. Ч ..................................................................................................................233 2.6. ................................................................................................237 2.6.1.

(

)...............237

2.6.2. .............240 2.6.3. .........................................................................................252 2.6.3.1.

К ..............252

2.6.3.2.

К ..............................................253

2.6.4. К

......256

2.7. ........................................................................................................................258 2.7.1.

......259

2.7.2.

..260

2.7.3. Ч ................................................................................................260 2.7.4. А ................................263 2.8. ....266 2.8.1. К ......................................................................................267 2.8.2. ....................................................268 © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лавле е 5 _______________________________________________________________________________________

2.8.3. А ..................................................................................... 271 2.8.4. .......................................................................................................... 274

ЧИС ЕННЫ

АНА ИЗ П

ГЛАВА 3 ЧН С И

П

В

НЫ СИС ЕМ

3.1.

.......................................................................................................... 277

3.2.

.............................. 281

3.3.

....................................................................................... 285

3.3.1.

-

............................................... 285

3.3.2.

......... 286

3.3.2.1. И .................................................................................. 286 3.3.2.2.

-

.................................... 294

3.4.

................................................................. 308

3.4.1. В

НД

......................................... 309

НД

3.4.2.

................................................... 310

3.4.2.1.

.............................................................. 312

3.4.2.2.

....................................................... 315

3.4.2.3.

............................................................ 318

3.4.3. А

НД

............................... 320

3.4.4. А

. 321

3.4.5. А

, ................................................................................................................ 325

МА ЕМА ИЧЕСК Е М

ГЛАВА 4

Е И П В

ВАНИЕ АВА И НЫ СИ НЫ СИС ЕМА

4.1.

А И В

................. 340

4.2. .................................................................................. 341 4.3. Ч ............................................................................................. 348 © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

6 лавле е _______________________________________________________________________________________

4.3.1.

-

.......................348

4.3.2. Ч

................363

4.3.3. Ч ........................................................................................................................365 4.3.4.

ЭК ............................................................372

4.3.5. К ..................................................................................373 4.4. Ч

375

4.4.1.

....................................................................................................375

4.4.2. Ч ...............................................................................................377 4.4.3. Ч ..................................................................................................................381 4.4.4. А .................................................................................................394 4.4.5. Ч ................................................................................................................401 4.4.6. К ..................................................................................................402 4.5. ....................................................................403 4.5.1. К .....................................................................................................................403 4.5.2. Ч

.....................................................417

4.6. К .............................................................................................................................424 4.7.

, ..............................................................425

МА ЕМА ИЧЕСК Е М СИС ЕМАМ П

5.1.

ГЛАВА 5

Е И ВАНИЕ ЕННЫ КАНА

АНСП И ВАНИ ВС К Ы ЫМ С

И К С Е П М И ЕКАМ

...........................................................................................................450

5.2. ..............................................................................................................................451 5.3. ..............................................................................................................................460 © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лавле е 7 _______________________________________________________________________________________

5.4. ........................................................................................................... 477 5.5.

.......... 489

5.6.

. 510

5.7. К

............. 520

5.8.

............................................ 525

5.9. (

«

»

) .................................................................. 528

5.10. ...................................................................................................................... 550 5.11.

550

За лючение .............................................................................................................. 551 С и о ли е а у ы................................................................................................. 552 П ило ение 1 Ч ле ы а ал вл я я а ч а ря е - е р р ва я я ру а р ч а рал ых ру р в в е и . .. ........................................................................................................................... 567

П ило ение 2 К в р у ра че ых е ах равл че х р вле ре я в ру р в ах Пря ов С.Н., Се е ев .Е.................................................................................................... 595

П ило ение 3 ре еле е ара е р в е ер ых еле в а е в я ру р в а ру ре ул а а ч ле ел р ва я е и . .. ........................................................................................................................... 628

П ило ение 4 Кр

ер е и

ла ч ру в ал верх е уче . .. ........................................................................................................................... 636

П ило ение 5 К в р у ч ле ел р ва е ых уча в р я е ых ру р в ых е е и . .. ........................................................................................................................... 651

П ило ение 6 ч е реше е МКЭ а ач ев е е ру р в а в ру е е и . .. ........................................................................................................................... 654 © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

8 лавле е _______________________________________________________________________________________

П ило ение 7 Пре ел е и

е рав ве е в « еал ых» ру в . ..............................................................................................................................659

П ило ение 8 Кра о е

р а е о . ., Се е

в в ла ару е я ра рыв в а р в в ев .Е. ................................................................................................662

П ило ение 9 М ел р ва е авар в а ра р ых е ах, вя а ых еу ч в ра а ере ач ва е ру ва я оми аров .С., Пря ов С.Н., Се е ев .Е.......................................................................672

П ило ение 10 К в р у ра че ых е ах аче э е а Ше Пря ов С.Н., Ю и . . ..........................................................................................................683

ав о ах................................................................................................................ 693

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

П е и ловие С

а ь

е че, че

я ье .

А а

ьФ а , -

(

).

, -



, [1–6], . , . [1–6] ,

(

)

,

. , .

-

, [1–7]. . Пе ая

а а -

. В

,

. . К

. .Ц

,

-

. е



-

,

-

, В

© В.Е. Селе

-

1 , .

а е

ев, В.В. Алеш

,

, С.Н. Прял в, 2007–2009

-

10 Пре л в е _______________________________________________________________________________________

.

, ,

, ,

-

. -

е



2 -

. ,

[1, 2, 6],

. ( .

е ье

В

а е

. [1, 2, 6]) ,

2,

.

.

-

,

[6].

, .В 6

.

е

3

7,

я

3, 4, 5,

,

В че

(

е

. [1, 3, 4, 5]). а е -



ЭК.

,

-

,

-

. . ( . В

30%)

. -

е

8





е

9 В я

а е

е -

. ,

,

» -

«

ЭК. . ,

В

.

е е 10, Ш .

c

, © В.Е. Селе

5

(

). ,

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

-

Пре л в е 11 _______________________________________________________________________________________

, ,

,

.В ,

Н

.

.

(

)

« »

,



,

. И

В. . ,

.

.

, ,

3 2, 9 10. ,

: В. . – 1, 2 ( 2.5.2), 4 ( 4.4.4), 5 ( 5.9), 2, 8 9; В.В. А 1.5, 4.2, 4.4.4, 1, 3–7; .Н. – 2( 2.6.1, 2.6.2, 2.6.4, 2.7.4, 2.8), 5, 1.5, 4.3.1, 4.3.3, 4.7, , .

А

« АК

И

А

И

,

А . А

– -

И

» .

г. Сар в, и

ь 2007 г а

© В.Е. Селе

ев, В.В. Алеш

В.Е. Селе ев, В.В. Алеши , С.Н. Прял в

, С.Н. Прял в, 2007–2009

С и о о новных и АВ



оль уе ых о

(- )

;

АРД –

(- )

АЭС –

(-

ащени

(- )

)

;

(- )

(-

);

ГДС – (

-

); ГТС –

(-

)

(- );

ГПА –

(- )

ГРС –

(-

ГУ –

(-

)

К (КЦ);

(- ) )

(-

);

(- );

ДП –

;

З У–

(



– ;

З А –

(

)

–А ;

А



;

С–

(- )

(-

ПД –

)

(-

;

ПР – ) (ВК

К



, НК

К



(

);

ПС –

;



(- )

Э–

(-

)

(-

-

;

Э-а а

г–

-

;

Э-

ь–

-

;

а–

ЛЧ Г –

(-

)

(- )

; ;

(-

)

(- );

ДТТ –

;



(

Р–

© В.Е. Селе

(- );

;

ВС – Г–

)

(- );

Э-а а и –

Э-

);

)

;

;

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

С в ых л уе ых ра е 13 _______________________________________________________________________________________

Э– Н–

; (-

Т –

(-

НДС –

)

(- ); )

(- );

-

(-

НП –

(- );

;

НПС –

(- )

ПУ –

(-

);

(- );

П А–

А ;

СНАРН –

(- )

СНАУ –

(- )

С ДУ –

(- )

СП-

)

; ; ;



;

ТГ –

(- )

ТЭ –

-

ТЭС –

(-

)

(- ) (-

(- )

Н– SCADA- и

К (КЦ);

;

ТЭСА – УРС –

(- )

(-

)

((- );

; )

(- )

А;

а – Supervisory Control And Data Acquisition System. ,

, .

© В.Е. Селе

);

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

АВА 1 Новая е а ия он е ии чи ленно о о ели ования у о ово ных е е и и аналов о ы ы у ло

е

1.1. а овы ин и вы о о очно о о ели ования у о ово ных е е и и е аналов о ы ы у ло ,

,

-

.

,

,

,



.

, . ,



1

.

В

,

( ЭК),

-

,

. (

) -

.

, .

,

. И

, (

). -

1

Д

( (

) ).

«

. © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(



лава 1 15 ______________________________________________________________________________________

,

. . :



(

-

,

, );



,

( );



, ;



;



;



,

. .

Д

, . В

, -

. :

; ;

;

. ,

-

, ,

Н

.

-

. Э

,

.

ЭК .

:



;



(



(

• © В.Е. Селе

);

, ); ;

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

16 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________



;



( ,

-

);

• Д

,

. . ,

. .

1.2. П авило ини и а ии лу ины нео хо и ых у ощени и о ущени В (

.,

, [8–15]), .Э

В. .

[16, 17]. , .

Ц

.

,

. В

(

.,

, [5, 6]). :



,

-

;



, ;



,



; -

( ,

) . .

Н , © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 1 17 ______________________________________________________________________________________

(



)

/

(

(

)), -

(

) .

.

К

,

,

ЭК,

,

,

, ( ,

.,

, [8–10, 18–21]).

,

, .

, , (

) .

, ,

-

(

), .

,

ЭК. [7].

Д

.В -

, -

, (

-

, [1–7, 22–28]). В -

.,

, ,

, (

-

) .

ЭК. В

-

,

ЭК,

1

,

.

1

(

) ,

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

,

.

18 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

1.3. Вы о о очные о ун иони ования

ью е ные и уля о ы у о ово ных и анальных и

е

К

(

) [5–7, 24, 29, 30],

(

) [27]. -

,

/ . . :



(



)

(

(

(



));

); ;



;



;

• В

,

. . -

, ,

(

),

(

),

. . -

:



(

)

;

• ,

,

-

;



, ,

, , ;

• •

;



© В.Е. Селе

( , ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

)

;

лава 1 19 ______________________________________________________________________________________

;



,

. .

К

. (

(

)

– . . –

В

,

-

), ,

-

),

-

,

,

( , ЭК,

. .

, . -

,

.

. В

(

) .

,



,

-

: -

,

,

ЭК



; ;



ЭК ;



ЭК,

. .

В

, .

, ,

. А

,

, -

. ( Д )

,

, ( ) (

© В.Е. Селе

ев, В.В. Алеш

.

, С.Н. Прял в, 2007–2009

2

5). А

-

20 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

(К В

(

.

)

3).

-

) ,

-

(

.Н ,

ЭК

,

ЭК ,

, ,

Н ,

, -

,

. .

,

,

(

,

),

(

), . Э

,

,

,

,

[31].

В

. ,

,

,

-

. .

, -

Д

[32–34].

К

,

,

( (

.

1.6).

)

(

1.4). В (

. -

. Н

)

,

-

.

. Д (

Д 2001

Д

(

.,

Д .

, [2]).

-

) В.В.

В. .

-

ЭК [5–7, 25, 26,

30, 35]. -

, Д

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 1 21 ______________________________________________________________________________________

.Д «offline», «online» «real time»1 Д ( , SCADA(Supervisory Control And Data Acquisition System)).

(

Д

«online»

«real time»,

-

)

SCADA.

В SCADA-

Д ,

, .

Д

-

, Д

. ,

Д .К ( .



, [36]): ,

, (



,



Д ;



;

( Ч

),

-

)

(К ); ,

-

(

,

-

. .);



, ;



,

,

,

-

( ). Д

-

1

«offline»

SCADA-

«offline» SCADA-

.В , «online»)

time»

«online» Д

«real time» .

») «real time»

,

, ,

Д

,

,

. .

© В.Е. Селе

ев, В.В. Алеш

«online»

, С.Н. Прял в, 2007–2009

. .

«real time» .

Д .



«real

– Д »

«

, ,

«real time» (

Д Д ,

«

. , «online»,

Д

.

Д

(

,

SCADA«offline» , Д , -

22 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

( Д

. .)

,

(А Д),

(КЦ)). И

, Ч

А) -

(

К ( .

,

, -

,

. И

, .

-

.

Д

Д

-

( . ., Д ,

. .).

Д

-

Д

. ,

.

Д ,

В

.

Д

Д

( ,

, (

Д .

,

):

,

-

. .

)

-

-

[37]. Д . [37]:

Д ,

, ,

,

,

,

,

,

. Д

Д

Д [2]. В -

, Д

Д

.Э ,

. В

-

: ;

Д Д ,

; ; . .

Д , ,

, ,

© В.Е. Селе

ев, В.В. Алеш

,

.

,

-

,

, С.Н. Прял в, 2007–2009

-

лава 1 23 ______________________________________________________________________________________

. К ,

В

,

«C++» [38].

,

Д ,

( ):



Ч

Ч



К ( К (КЦ)

, (

) – ;

),

,

, •

(



. .;

); .

, •

, ,

Ч ,

, ,

. Э

. .)

(

,

: (



)

; -

( ,

Д );

,



,



,

,

; ,

,

-

.

Ч (

, . 1.1). ;

-

(

-

Ч : . .); А Д;

, ,

-

.

и . 1.1. Пр © В.Е. Селе

ер ра че

ев, В.В. Алеш

хе ы ЧМ ,

, С.Н. Прял в, 2007–2009

р е

в ре а

ре

л

С

24 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

( )

Ч

-

Ч

(

).

. Э (

-

),

Д

.

.

Ч .А

,

,

. Н

, -

Д

Ч

-

Ч

, .

К

( ),

Ч

;

, ; ;

; ,

;

; -

,

. . :

. . Ч

,

( ,

)(

и . 1.2. Пр © В.Е. Селе

. 1.2).

ер а а

ев, В.В. Алеш

-

;

,

;

,

:

;

я ара е р в ЧМ в ре а

, С.Н. Прял в, 2007–2009

ре

л

С

, -

лава 1 25 ______________________________________________________________________________________

К

Ч

, ,

. К

, Ч

(

, .

1.3).

и . 1.3. Фра

(

е

а ы а

ых

а а в ЧМ в

е

ре С

ре еле

И . 1.4).

ы

в

ва

, ,

-

Д

( ).

и . 1.4. Фра

е

а ы а

ых е

е

в ЧМ в

С

:



;



,

;



-

, , В Д Д :

; . .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

Д ( ;

. , . . , . 1.5).

,

-

26 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

и . 1.5. Пр

ер

ер

л

ва ел

( )

ре

а ра

ыв

С

,

-

: (

); . .

,

; ,

Д , , И

Ч

;

« ,

Д

. .

К

К .

К

-

ев, В.В. Алеш

;

Д

-

КЦ,

А,

(

),

,

(

К .

). – -

) . 1.6).

, © В.Е. Селе

, ;

– ( К (

:

Д ; ; ; ЭК – Д »;

(АВ ), ,

-

Д .

Д

Д ,

Д

, С.Н. Прял в, 2007–2009

К

. .

лава 1 27 ______________________________________________________________________________________

и . 1.6. Пр

В

ер ра че

р е

К , .

(ЦН)

хе ы КС,

А(

© В.Е. Селе

ре

л

С

Ч , К ,

,



,

А А

. 1.7).

и . 1.7. Пр

в ре а

ер а а

ев, В.В. Алеш

я ара е р в ра

, С.Н. Прял в, 2007–2009

ы

А

К

-

Д

Н в ре а

А.

ре

л

КС

-

28 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

Д

К К : А;

; К ,

. .Э

; .

АВ ;

:

К ;

(

)

; .

Д

Д .

:

• (

. 1.8);

и . 1.8. Пр

ер

ал

в

а р

а

в е а ач в



;



• •

; А

Ч

,

-

К

, . .; SCADA-

© В.Е. Селе

С

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(

( . 1.9));

,

,

-

лава 1 29 ______________________________________________________________________________________

и . 1.9. Пр

ер ав

авле

луче



я а а а вх а а я SCADA-

ра е е ы

С

вре е

,



; ,

Д



,

. .

: ( -



); ;



Д ( (

,

,

. .)

. 1.10);

и . 1.10. Пр © В.Е. Селе

ев, В.В. Алеш

ер

ал

в

, С.Н. Прял в, 2007–2009

а а р е

С

30 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________



;



;



,

(

,



,

); -

,

. . Д

Д

,

:

-

; ; ;

Д

-

, ,

,

[7, 39]. Д

Д

,

-

.

Д

Ч

( )

(

Д

Ч

. 1.11).

Д ,

. 1.12. ,

Д

К

. 1.13. -

:

К ;

К

К ; Ч Ч

К .

К

К .Н

-

К . -

Д

,

Д -

Д ЭК – Д »

«



2

4. -

Д

«real time»

. 1.14.

,

,

Д , .

, (

.

).

-

, ,

Д © В.Е. Селе

. -

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 1 31 ______________________________________________________________________________________

,

. .В Ч

(

А,

,

),

, / ,

.В (

. 1.15)



Д

.

и . 1.11. Пр

и . 1.12. Пр

© В.Е. Селе

ер

ал

ер

ев, В.В. Алеш

в

ал

в ра

ав ече

р

С р а а а а в ЧМ

а в С р вы р ва я а а

, С.Н. Прял в, 2007–2009

раевых у л в

ре е ЧМ

ля ра че а

а ра че а ара е р в

-

32 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

и . 1.13. Пр

ер

ал

ра

в

р

и . 1.14. Пр ер ал в ра р р ва я а а чере © В.Е. Селе

ев, В.В. Алеш

а в С р р ве е р ва я а а ЧМ

а

ав

ра

С р ч ле р у е

, С.Н. Прял в, 2007–2009

ра че а ара е р в

а ал е ара е р в в ре е «real time»

лава 1 33 ______________________________________________________________________________________

и . 1.15. Пр

ра

ер ре авле я в С ре ул а в ч ле а ал а ара е р в р р ва я а а чере а ра р е ре р я е

-

Д

.

Д

, ,

, .

Д ( ),

,

-

А, А Д, АВ ,

-

Д

,

. (

-

.

. 1.16–1.19).

1.4. Вычи ли ельные ехноло ии анали а е иальных лучаев ун иони ования у о ово ных и анальных и е В ,

© В.Е. Селе

ев, В.В. Алеш



, С.Н. Прял в, 2007–2009

-

34 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

:

[28];

[40, 41]; [42]. (

)

, .

и . 1.16. Пр

ер выв

и . 1.17. Пр

© В.Е. Селе

а ре ул а

в ра че а ара е р в ра ч ЧМ в С

ер выв а ре ул а в а ра р е в

ев, В.В. Алеш

а С (в в

, С.Н. Прял в, 2007–2009

ра е ра

р

р ва

р р ва в)

я а а

я а а

,

лава 1 35 ______________________________________________________________________________________

и . 1.18. Пр

и . 1.19. Пр

© В.Е. Селе

ер выв а ре ул а в а ра р е в

ер выв

ев, В.В. Алеш

а С (в в

е

ра р р ва а ра )

а ре ул а в ра че а ара е р в ра а ра р е в С , С.Н. Прял в, 2007–2009

р

я а а

р ва

я а а

36 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

В

,

-

,

, (

)

,

, .

-

ЭК (

)

,

,

-

,

.В (

-

)

-

,

. (

) -

(

)

.

, (

) -

,

[1, 5, 6].

Д

(

.

1.5) (

.

1.6).

1.5. П и е еали а ии о новных ин и ов вы о о очно о о ели ования у о ово ных и е и ве и и а ии ое ных ешени ля а и альных у о ово ов Н

ЭК , .

-

. ,

: -

; -

; ; © В.Е. Селе

ев, В.В. Алеш

. . , С.Н. Прял в, 2007–2009

,

-

лава 1 37 ______________________________________________________________________________________

,

,

, . , .

,

, -

(

. Э

) -

. В

1.3 ,

-

. ,



,

:

-

(НД )

-

;



;



;



;



;



,

.

, , (

.

1.1

1.2). ,

.

ЭК

-

.

В

( , ,



1.4). К

.

, : -

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

38 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

,

,

,

, ,

, ,

. .;



(

)

( )

-

-

,

,

,

-

, ,



,

. .; -

;



, ,

, ;



. А (

), , -

. ,

-

(

-

)

. (

.

1.3). , , ,

-

.

И К

А

И

(КАИ) «Alfargus» (

.

1.6)

:



, ;

• © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 1 39 ______________________________________________________________________________________

;



;



;

• . Д (

Э ,

, [7]).

.,

,

-

. , (

.

1.1

-

1.2),

(

),



-

: НД ( );



;



;

• ;



;

• ,

.

В

1.1 ,

-

, . .К

-

, , .Э © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

40 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________



,

-

. -



НД



НД , ( . -

В.В. А

,

[3, 6, 17, 23, 43]). Д

3

-

. Н ( . [44]):



,

,

(

);



К (

, (Н



,



-

)); ;

,

, ,

, (

, ,

,

,

. .

( ,

А .

-

, . .).

( ,

,

-

)

)

(

, [18, 19])

., -

[44]. В ,

-

, , ,

/ ,

. . (

2). Э

.

-

. (

)

-

,

, (

.

2). Э

.В -

, , [44]. © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 1 41 ______________________________________________________________________________________

(

-

4). В

.

(

.,



-

, [44])

-

. ,

. , . Ч . -

.Э -

,

,

-

. :

• ;



;



;



;



;



.

Э

КАИ «Alfargus»,

( . 1.6): 1)

-

,

,

,

,

,

. .; 2)

, К , ,

, (

3) © В.Е. Селе

ев, В.В. Алеш

-

Н

, С.Н. Прял в, 2007–2009

)

. .; -

42 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________



Н ; НД

4) ; 5)

, ;

6)

НД );

(

,

7)

, ;

8)

,

-

; 9)

(

) -

, ,

( ),

,

-

, ,

,

. .;

10)

(

-

) / ; 11)

(

-

) , ; 12)

(

-

) (

-

); 13)

;

14)

© В.Е. Селе

-

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 1 43 ______________________________________________________________________________________

(

);

15)

-

, ; 16)

;

17)

( ,

);

18)

, -

-

;

19)

,

-

. ,

,

, ,

, [5, 6, 27, 45, 46]. -

1

:

1)

(

) НД

,

-

,

-

; НД

2)

,

-

;

3)

,

1

,

, .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

44 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

,

-

,

, 4)



, ; НД

Н

,

, ; НД

5) : 5.1)

(

,

,

-

, . .);

5.2)

(

,

,

,

,

. .); 5.3)

( ,

-

,

, ,

,

,

-

. .); ,

5.4)

-

(

, . .); НД

6) ,

;

7)

(

,

,

-

. .)

НД

-

; НД

8)

-

, ; 9)

, (

-

)

(

)

, , ,

,

,

,

10)

. .; К

11)

(

Н

К (

Н

,

, К

) , )

; ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(

Н

) -

;

,

© В.Е. Селе

, -

,

,

лава 1 45 ______________________________________________________________________________________

12) ; 13)

;

14) (

),

;

15) ( (

,

. .)

-

),

;

16)

;

17) ; 18)

,

;

19)

;

20)

-

. -

( ,

В

.

[1–7]).

,



,

: ;



, ;



;

• •

; ;



;

• SCADA-

(

)

, , ;



,

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

. .

46 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

1.6. П и е еали а ии о новных ин и ов вы о о очно о о ели ования у о ово ных и е и у авлении ело но ью у о ово ных е е 1.1 – 1.4 .Х КАИ «Alfargus». К «PipEst»,

-

Д .

«AMADEUS», ( . [1–6]), КАИ «Alfargus». КАИ «Alfargus» – ,

«CorNet» -

ЭК.

ЭК (

, )

-

, ,

, КАИ

. К

«Alfargus» 1)

: ,

),

(

,

;

2)

(

)

-

; 3)

;

4)

;

5)

,

-

; 6) , ; 7)

( );

8) ; 9)

;

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 1 47 ______________________________________________________________________________________

ЭК

10)

[7, 39],

И

. .

КАИ «Alfargus» . :



В. .

;



, ;



;



;



, ( ,

«Alfargus», •

.,

-

1.3). Д



КАИ

К

(

.

1.3), -

: (

,

-

, );



(

-

, ,

,

,



. .); (

-

,

, «Alfargus», ).

1)

2)

КАИ «Alfargus» «Alfargus/PipeManufacture» НД , «Alfargus/NDTest»

: , ; ;

3)

«Alfargus/PipeFlow»

;

4)

«Alfargus/StructuralAnalysis» ,

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

48 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

; «Alfargus/DebrisHazard»

5)

-

; 6)

«Alfargus/ToxicGasHazard» ;

7)

«Alfargus/ToxicLiquidHazard»

,

; 8)

«Alfargus/FireHazard» ;

9)

«Alfargus/RiverFlow»

10)

, «Alfargus/Ranking»

11)

«Alfargus/OptimFlow»

12)

; «Alfargus/Planning»

; ; , . КАИ «Alfargus»

Д



«Alfargus/NDTest», . .

«Alfargus/PipeManufacture» 1. П В

-

е а «Alfargus/NDTest». ,

, -

-

. .Н

,

-

, [47]. ,

К

. В

Х

.

Х

, © В.Е. Селе

. -

ев, В.В. Алеш

,

,

. , С.Н. Прял в, 2007–2009

-

лава 1 49 ______________________________________________________________________________________

,

«Alfargus/NDTest»,

rot

(

)

(

)

(

⋅ rotA − grad ve ⋅ divA − rot

A –

=

; ; HC – -

−1

)

:

⋅ HС = 0,

1 3 ve = ⋅ ∑ vii ; 3 i =1

;

(1.1) –

-



(1.1) (

:

∇2 –

. В

∇2 A = −

.

-

)

1 ⋅ rot HС , ve

(1.2)



. (

(1.1)

.,

, [6, 47])

(1.2)

,

-

, (

): A ( x, θ , z )

= Q1 ( x , θ , z ) ; ⎡ π π⎤ x ∈ [0; x0 ], θ ∈ ⎢ − ; ⎥ , z = 0 ⎣ 2 2⎦

(1.3 )

A ( x ,θ , z )

= Q2 ( x , θ , z ) ; ⎡ π π⎤ x ∈ [0; x0 ], θ ∈ ⎢ − ; ⎥ , z = z0 ⎣ 2 2⎦

(1.3 )

AZ ( x , θ , z )

AX ( x , θ , z ) Qi ( x , θ , z ) ,

( x − x0 ) → ∞ ,

z→∞

i = 1, 2,

AZ ( x , θ , z ) –

x ∈ [0; x0 ], θ = ±

π

x ∈ [0; x0 ], θ = ±

π

2

2

, z ∈ [0; z0 ]

= 0;

(1.3 )

, z ∈ [0; z0 ]

= 0,

(1.3 )

( z − z0 ) → ∞ –

, -

( x ,θ , z )

(

x –

A

:

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

; AX ( x , θ , z )

A = A ( x, θ , z )

«+ »

-

).

«− »

-

50 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________



A+ = A− , n × A+ = n × A− ;

(

+

)

⋅ rotA + = n ×

n – Д

(



)

⋅ rotA − ,

(1.3 )

. : –

«

»;

,

-

; -

;

-

,

Д

-

. (1.1,1.3)

( КЭ),

(1.2,1.3) -

[48]. , -

,

[49]:

B = rotA; H = ⋅ B − HC ,

(1.4)

H –

B

. -

-

. ,

,

,

, [49]:

Fмаг = ∫ T ⋅ nds ,

(1.5)

S

Fмаг –

; S –

,

1 ; T = H ⊗ B − ⋅δ⋅H⋅B – 2

-

, ⊗

(δ –



). «Alfargus/NDTest»

.

[1, 6,

50–53]. В

«Alfargus/NDTest»

, -

, -

«

,

-



»,

.

90[50, 51]. -

, «BJ Pipeline Inspection Services» (К «LinScan» ( АЭ), А « » ( ), АК « ( – – ), «GasCo» ( АЭ)). © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

( ), «PII» (В » (

, ,

), ), «SPP, a.s.»

лава 1 51 ______________________________________________________________________________________

П

е а «Alfargus/PipeFlow». К :



,



; ;



;



;



;



Д ,

«Alfargus/PipeFlow» «offline», «online» «real time»;

,



-

;



;



;

• ;



, ,

. .

«Alfargus/PipeFlow», ( .

(

. П



2, 4

2

) 9

[1, 2, 4–7]). е а «Alfargus/StructuralAnalysis». Э К :

-

. К

НД ,

,

-

;



;



К



;

,



;

. , «Alfargus/StructuralAnalysis»,

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

КЭ.

-

52 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

3, 4

3–7 (

.

[1, 3,

4, 6]). П



е а «Alfargus/DebrisHazard». : ;



. «Alfargus/DebrisHazard»

( Д

), ,

. 4.2 (

.

[1, 6]). П



е а «Alfargus/ToxicGasHazard». К :

-

;



, ;



. «Alfargus/ToxicGasHazard»

(

. П



.Д 4

. [1, 6, 45, 54, 55]). е а «Alfargus/ToxicLiquidHazard». :

-

;



. «Alfargus/ToxicLiquidHazard» . П



4.

е а «Alfargus/FireHazard». В :

;



.

, «Alfargus/FireHazard»,

,

Д (

-

.

© В.Е. Селе

. [4, 6, 56–58]). ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

. 4

лава 1 53 ______________________________________________________________________________________

П

е а «Alfargus/RiverFlow». В :



-

;



. «Alfargus/RiverFlow» -В , 5( . [5, 6, 27]). П

.

е а «Alfargus/Ranking».

-

.

5(

«Alfargus». [1]).

. П

3, 4

е а «Alfargus/OptimFlow». В :



,

(

-

) ;



, ,

. . «Alfargus/OptimFlow»

, , .

2(

.

[1, 2, 5, 6, 30, 59, 60]). П »

е а «Alfargus/Planning»

«

,

.

4(

.

-

«Alfargus». [61, 62]).

1.7. Фо

2, 3

ули ов а е во ве

ии а ши енно

он е

ии

А ( 1.5

1.1 – 1.4),

. 1.6),

(

,



1

:

1

,

« .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

»

. -

54 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

1. В

ч е е ч е х е е е а а яа е ь а ча ь е я1, а а е

е

а

я

е

е е

х .

ех

х х

а ь а я, -

е

– , (

)

(

)

. , (

), ,

. .

, -

ЭК .

) НД , -

( , . 2. Д

,

, аа е е ч е е а я а а ь я а е ч е а а е е а а яа х а ч а х а е а че х е е е х ( а а ь х) е е / че х е , е а щ х х. С е ь е я е я я я е х а е е а ь е х ех че а а е щеаще я. В а яь е е я е а е е а ще я ь е а а я ае х а щ х а а х. , . . . Д , , . ( ) . 3. В

а а а

ае

х

ч

х

,

е

)

а

щ х а а

е



х х

ь е , а а а ач ЭК

а е а е а

че

а е

х

е е

е а е я еха я е е я е е щ х а ,

1

© В.Е. Селе

«

»

ев, В.В. Алеш

. , С.Н. Прял в, 2007–2009

(

х -

лава 1 55 ______________________________________________________________________________________

, . А

-

,

,

,



-

. 4. П

е ех е а х а а е а че е я е е е е я ь ще ще .

е а

е

еха а

а

е

а

х е а а ь х х -

х е х ,

,

-

. В

1

,

(

,



)

/

-

,

2

.

,

. В

3

5.

е

а

я,

я а

-

а

ч

е

я

я

е

х а е я, а а ч х

а е е

а а я а а

ь

е х ч х х ( а а ь х)

че а ах , е

. еа а е е

аа х ех е е а я яе я а а а я ех че х ь е х я е . Д

е1 е а ь х а ае -

х

,

-

/

(

). . -

(

),

(

),

,

-

, 1

Э

«

».

2

Э

«

».

3



,

-

. © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

56 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

. .В

-

,

-

ЭК

-

, , , . . 4.

3

, . 6. е

,

х

е

е

, (

)

,

е е я ч х ь е х я , еа ь ча е ч е ь е ех . е я я я е е ще е ь х х е х , е а ь а е а я еа ь х а а х а , а а а а ь а е я е ч е а еа а а я а а ь е а , е е а я е х ех че х е а а, . .В ч е ь е ех а а а е а ь х чае а я х ( а а ь х) е е е а я е ь х е а е я а а а ь а а ч а е е е я а яа х а а х а е е а ЭК / а х а а , а а е х а е е а е а е е е е е х а ач, а а - а е а че е ече я, а ще аче е ч е а я е е я а е х а ач. В ( ) . ь

7. Э

а а я аа х е ь е х я ча е ь х ех е а е а ь е а а х а а е а ях ч е а я, ч е ь еха , ч е ь е а е а че а . ЭК / ,

х ЭК а

ч / е -



-

, , . е а

И В. . (

© В.Е. Селе

.,

ев, В.В. Алеш

-

.

-

-

[5–7].

-

, [16, 17, 22]).

, С.Н. Прял в, 2007–2009

лава 1 57 ______________________________________________________________________________________

, а

е

х

. е

е

, ч е а а

е

е

а

я

а .

а ь

х

. ,

,



-

: , ,

, ( Н), . .) ;



(

( Э ),

, (АЭ ),

-

, , ;

• ;



, ,

),

( ;



;



-

,

. .

И е

е .

е

а

а ч

а

е

х

а

а

е

че а

я

я

я

-

,

че а е Э а

а а е

я е 1.6 е я е

а

е ь

. я

е е

я

ь

ь а ь х а а

аче е че х

. яе е

а а а я

а ь я

,

е ее -

«Alfargus». ще е ч е ь е ех [1, 5, 6, 23, 61, 62], ЭК (

) В

е

-

-

.

© В.Е. Селе

-

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

58 К е я ел р ва я ру р в ых е е е а ал в ры ы ру л _______________________________________________________________________________________

, -

. В

, . Д

,

,

-

, . ,

-

.

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

АВА 2 Ма е а иче ое о ели ование ан о и ования о у ов о и е а о

2.1.

е е

у о

ово ны

о ели ования ,

,

,

-

, .

.

-

И .

÷

, , (

) [6]. Д

Ч

, (

,

, ,

,

К А ,

К , . 3,0÷7,8МПа. , ,

. .).

.В -

.

КЦ



÷

Д

.

,

-

А -

/

А

А

. . .

,

-

,

4МВт

К А. Н Д

: ЦН

). Ц . 27МВт.

Ч К

А

.

(

, . Э

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

А

, . -

.В , 308К.

© В.Е. Селе

,

А К

,

-

-

60 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

В

, 1

,

.

К

-

, -

(

2.2. Вы о о очны о ью е ны и уля о а о ан о но о

).

а о ина иче е ия ия

и

В

, 1.7,

,

-

.

Д –

, [90]:



2

-

-

;

• .

Д

3



-

.

Д ,

, :

(

) ,



(

.

2.1); , ,

-

, ,

-

;



Ч



К ; ;

• В

,

. . -

, ,

-

1

« (



)–

( ».



«

2

.

3



К

© В.Е. Селе

,

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 61 _______________________________________________________________________________________

( В

)

. . Д

-

: 1) 1

;

2) ; 3)

;

4)

; 2

5)

-

3

;

6)

;

7)

, SCADA-

,

-

. . ,

Д :



, -

(



)

(

.

1.5

[2]); -

;



. Д

К

Д Ч

К

.

.

Н

А, АВ

Д

-

-

, .Д 1

Э

(

Д ,

.

1).

2 3

. Н

,

© В.Е. Селе

, ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

.

62 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

,

К SCADA-

.

Д

1.3, ,

.

Д

-

.

Д

:



(

ЦН,



)

; А(



/

К



Ч

); ; -

;



;



АВ , Д

, .

К

Д

хе а ДС,

Д

1.3, .

К ,

. .

е

,

Ч

,

. . В 1

,

Д . а че ая а

а

х

, а че

Д

. -

ея

(

-

), :



Д ;



Д

-

;



Д , Д

. , -

Д .

1

И

Ч

© В.Е. Селе

К . ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

лава 2 63 _______________________________________________________________________________________

Д .Э

, Д

(

ЭК [1–7].

.

-

1.4).

2.3. Мо ели ование ечени в о нони очно

у о

ово е

.

-

,

Д ,

.

В

, .

-

.Н . 2.3.1. Течение о но о

онен но о а а .В .

S. К

V,

, ,

:

1

,

∂ρ

∫∫∫ ∂t dV + ∫∫ ρ ⋅υ dS = 0;

(2.1)

n

V

∫∫∫

∂ ( ρ ⋅ υ) ∂t

V

S

dV + ∫∫ρ ⋅ υ ⋅υ n dS = − ∫∫ p ⋅ n dS + ∫∫ τ n dS + ∫∫∫ ρ ⋅ FdV ; S

S

S

(2.2)

V

⎛ υ 2 ⎞⎤ υ2 ⎞ ∂ ⎡ ⎛ ρ ε ρ ε dV ⋅ + + ⋅ + ⎢ ⎥ ⎜ ⎜ ⎟ ∫∫∫ ∫∫S ⎜⎝ 2 ⎟⎠ ⋅υn dS = −∫∫S p ⋅υn dS + ⎜ 2 ⎠ ⎥⎦ V ∂t ⎢ ⎣ ⎝ + ∫∫ τ n ⋅ υdS + ∫∫∫ ρ ⋅F ⋅ υdV + ∫∫∫ Q dV − ∫∫ W ⋅ ndS , S

V

ρ –

V

; t –

(2.3)

S

; υ –

n

τn = τ ⋅ n –

; υn = υ ⋅ n –

dS ; υ = υ ; p –

υ

;

,

n (τ –

1

,

); F – , .

© В.Е. Селе

-

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

64 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

;ε – (

( )

T –

(

)

; W – k p, T –

W = − k ⋅∇T ,

.

; Q –

)

,

.

∫∫∫

:

∂ ( ρ ⋅ υ) ∂t

V



(2.2)

(

)

dV + ∫∫ ρ ⋅ υ ⋅υn dS = ∫∫∫ ρ ⋅ F − ∇p dV + ∫∫ τ n dS . S

V

Ox . , . . f = f ( x, t ) . В

f

f1 ,

f

,

υn = υ x

(

,

υn = −υ x

. 2.1).

(2.4)

S

Δx f

f1 ,

(2.1 – 2.3),

:

и . 2.1. И ле уе ы

е

∂ρ

∫∫∫ ∂t dV + ∫∫ ρ ⋅υ df − ∫∫ ρ ⋅υ df + ∫∫ω ρ ⋅υ dω = 0; V

∫∫∫ V

∂ ( ρ ⋅ υ) ∂t

(

x

x

f1

(2.5)

n

f

dV + ∫∫ ρ ⋅ υ ⋅υ x df − ∫∫ ρ ⋅ υ ⋅υ x df + ∫∫ ρ ⋅ υ ⋅υn d ω =

)

ω

= ∫∫∫ ρ ⋅ F − ∇p dV + ∫∫ τ x df − ∫∫ τ x df + ∫∫ τ n d ω ; V

f1

f

f1

(2.6)

ω

f

⎛ ⎛ ∂ ⎡ ⎛ υ 2 ⎞⎤ υ2 ⎞ υ2 ⎞ ρ ε ρ ε υ ρ ε ⋅ + + ⋅ + ⋅ − ⋅ + dV df ⎢ ⎜ ⎟⎥ ∫∫∫ ∫∫f ⎜⎝ 2 ⎟⎠ x ∫∫f ⎜⎝ 2 ⎟⎠⋅υ x df + ∂t ⎣⎢ ⎝ 2 ⎠ ⎦⎥ V 1 ⎛ υ2 ⎞ + ∫∫ ρ ⋅ ⎜ ε + ⎟ ⋅υ n d ω = − ∫∫ p ⋅υ x df + ∫∫ p ⋅υ x df − ∫∫ p ⋅υ n d ω + 2 ⎠ ω ω f1 f ⎝

+ ∫∫ τ x ⋅υdf − ∫∫ τ x ⋅ υdf + ∫∫ τ n ⋅ υ d ω + ∫∫∫ ρ ⋅ F ⋅ υdV + ∫∫∫ Q dV − ω

− ∫∫ Wx df + ∫∫ Wx df − ∫∫ Wn d ω , f1

f1

© В.Е. Селе

ев, В.В. Алеш

f

f

ω

, С.Н. Прял в, 2007–2009

V

V

(2.7)

лава 2 65 _______________________________________________________________________________________

ω –

. ⎛

∂ρ



∂ρ

∂ρ

∫∫∫ ∂t dV = ∫ ⎜⎜ ∫∫ ∂t df ⎟⎟ dx = Δx ⋅ ∫∫ ∂t df ;

∫∫∫

V

Δx





:

∂ ( ρ ⋅ υ) ∂ ( ρ ⋅ υ) dV = Δx ⋅ ∫∫ df ; ∂t ∂t f f

f

∫∫∫ ( ρ ⋅ F − ∇p ) dV = Δx ⋅ ∫∫ ( ρ ⋅F − ∇p ) df ; V

V

∂ ⎡



∫∫∫ ∂t ⎢⎢ ρ ⋅ ⎜⎝ ε + ⎣

V

f

υ 2 ⎞⎤

υ 2 ⎞⎤ ∂ ⎡ ⎛ ⎟ ⎥ dV = Δx ⋅ ∫∫ ⎢ ρ ⋅ ⎜ ε + ⎟ ⎥ df ; 2 ⎠ ⎦⎥ 2 ⎠ ⎦⎥ ∂t ⎣⎢ ⎝ f

∫∫∫ ρ ⋅ F ⋅ υdV = Δx ⋅ ∫∫ ρ ⋅ F⋅ υdf ; V

∫∫∫ QdV = Δx ⋅ ∫∫ Qdf . f

V

Δx → 0 ,

∂ρ

∫∫ ∂t f

∫∫ f

df +

∂ ( ρ ⋅ υ) ∂t

(

∂ ⎡



df +

∫∫ ∂t ⎢⎢ ρ ⋅ ⎜⎜⎝ ε + f



=−

Δx

(2.5 – 2.7),

(2.8)

∂ 1 ρ ⋅ υ ⋅υ x df + lim ⋅ ρ ⋅ υ ⋅υn d ω = ∫∫ x Δ → 0 ∂x f Δx ∫∫ ω

)

υ 2 ⎞⎤

∂ 1 τ x df + lim ⋅ τ n dω; Δx → 0 Δx ∫∫ ∂x ∫∫f ω

(2.9)

⎛ ⎛ υ2 ⎞ 1 υ2 ⎞ ∂ ⋅ ∫∫ ρ ⋅ ⎜⎜ ε + ⎟ ⋅υn d ω = ⎟ ⎥ df + ∫∫ ρ ⋅ ⎜⎜ ε + ⎟ ⋅υ x df + Δlim x → 0 Δx 2 ⎠ ⎥⎦ 2 ⎠ 2 ⎠ ∂x f ω ⎝ ⎝

1 1 ∂ ∂ p ⋅ υ x df − lim ⋅ p ⋅ υ n d ω + ∫∫ τ x ⋅ υdf + lim ⋅ τ n ⋅ υd ω + Δx → 0 Δx ∫∫ Δx → 0 Δx ∫∫ ∂x ∫∫f ∂ x ω ω f

+ ∫∫ ρ ⋅ F ⋅ υ df + ∫∫ Qdf − f

f

∂ ρ ⋅ υ ⋅υ x df ∂x ∫∫f

∂ τ x df . Д ∂x ∫∫f

,

τ x = i ⋅τ x x + j ⋅τ x y + k ⋅τ x z . И

© В.Е. Селе

. 2.2). В

.

x υ

τx

,

f –

: ев, В.В. Алеш

(2.10)

1 ∂ ⋅ Wn d ω. Wx df − lim Δx → 0 Δx ∫∫ ∂x ∫∫f ω

Ox (

Ox ,

-

:

∂ 1 ρ ⋅υ x df + lim ⋅∫∫ ρ ⋅υ n d ω = 0; ∫∫ Δ → 0 x ∂x f Δx ω

= ∫∫ ρ ⋅ F − ∇p df + f

f

, С.Н. Прял в, 2007–2009

i , j, k

Ox . : υ = i ⋅ υx + j ⋅ υ y + k ⋅ υz ; ,

66 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

и . 2.2.

р ы

е ы

(

р

)

а

∂ ∂ ρ ⋅ υ ⋅υ x df = ∫∫ ρ ⋅υ x ⋅ i ⋅υ x + j ⋅ υ y + k ⋅ υ z df = ∂x ∫∫f ∂x f = i⋅ +

∂ ∂ ∂ ρ ⋅υ x ⋅υ x df + j ⋅ ∫∫ ρ ⋅υ x ⋅υ y df + k ⋅ ∫∫ ρ ⋅υ x ⋅υ z df + ∂x ∫∫f ∂x f ∂x f

∂i ∂j ∂k ⋅ ρ ⋅υ x ⋅υ x df + ⋅ ∫∫ ρ ⋅υ x ⋅υ y df + ⋅ ρ ⋅υ x ⋅υ z df ; ∂x ∫∫f ∂x f ∂x ∫∫f

(

)

∂ ∂ ∂ τ x df = ∫∫ i ⋅τ xx + j ⋅ τ xy + k ⋅ τ xz df = i ⋅ ∫∫ τ xx df + ∫∫ ∂x f ∂x f ∂x f + j⋅

∂ ∂ ∂i ∂j ∂k τ xy df + k ⋅ ∫∫ τ xz df + ⋅ ∫∫ τ xx df + ⋅ ∫∫ τ xy df + ⋅ ∫∫ τ xz df . ∫∫ ∂x f ∂x f ∂x f ∂x f ∂x f

В

∂i j = ; ∂x R1

R1 –

Ox ,

∂j i k =− + ; R1 ζ ∂x



ζ –

:

∂k j =− , ∂x ζ Ox ,

∂ ∂ ∂ ∂ ρ ⋅ υ ⋅υ x df = i ⋅ ∫∫ ρ ⋅υ x ⋅υ x df + j ⋅ ∫∫ ρ ⋅υ x ⋅υ y df + k ⋅ ∫∫ ρ ⋅υ x ⋅υ z df + ∂x ∫∫f ∂x f ∂x f ∂x f ⎛ i k⎞ j j + ⋅ ∫∫ ρ ⋅υ x ⋅υ x df + ⎜ − + ⎟ ⋅ ∫∫ ρ ⋅υ x ⋅υ y df − ⋅ ∫∫ ρ ⋅υ x ⋅υ z df ; R1 f ζ f ⎝ R1 ζ ⎠ f

∂ ∂ ∂ ∂ τ x df = i ⋅ ∫∫ τ xx df + j ⋅ ∫∫ τ xy df + k ⋅ ∫∫ τ xz df + ∂x ∫∫f ∂x f ∂x f ∂x f ⎛ i k⎞ j j + ⋅ ∫∫ τ xx df + ⎜ − + ⎟ ⋅ ∫∫ τ xy df − ⋅ ∫∫ τ xz df . R1 f ζ f ⎝ R1 ζ ⎠ f

В

, , . . ,

Ox .Э

15°.

d ω ≈ d χ ⋅ dx ,

, © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

(2.11)

(2.12)

-

χ –

-

лава 2 67 _______________________________________________________________________________________

lim

Δx → 0

1 1 1 ⋅ ρ ⋅υn d ω = lim ⋅ ⋅ Δx ⋅ ∫ ρ ⋅υn d χ = ∫ ρ ⋅υ n d χ , ρ ⋅υn d χ d x ≈ lim Δx → 0 Δx ∫ ∫ Δx → 0 Δx Δx ∫∫ ω χ χ Δx χ lim

Δx → 0

1 ⋅ ρ ⋅ υ ⋅υ n d ω ≈ ∫ ρ ⋅ υ ⋅υ n d χ , Δx ∫∫ ω χ

lim

Δx → 0

⎛ ⎛ 1 υ2 ⎞ υ2 ⎞ ⋅ ∫∫ ρ ⋅ ⎜⎜ ε + ⎟ ⋅υn d ω ≈ ∫ ρ ⋅ ⎜⎜ ε + ⎟ ⋅υ n d χ , Δx → 0 Δx 2 ⎠ 2 ⎠ ω χ ⎝ ⎝ lim

lim

Δx → 0

1 ⋅ τ n ⋅ υd ω ≈ ∫ τ n ⋅ υ d χ , Δx ∫∫ ω χ

lim

Δx → 0

1 ⋅ τ n dω ≈ ∫ τ n d χ , Δx ∫∫ ω χ

lim

Δx → 0

1 ⋅ p ⋅υn d ω ≈ ∫ p ⋅υn d χ , Δx ∫∫ ω χ

1 ⋅ Wn d ω ≈ ∫ Wn d χ . Δx ∫∫ ω χ

.

,

1 R1

-



. .

, (2.8), (2.9), (2.10)

(2.12) ∂ρ

(2.9)

Ox ,

∫∫ ∂t df + ∂x ∫∫ ρ ⋅υ df + ∫χ ρ ⋅υ d χ = 0; ∂

x

f

∫∫

∂ ( ρ ⋅υ x ) ∂t

f

∂ ⎡



: (2.13)

n

f

⎛ ∂ ∂ p⎞ ∂ ρ ⋅υ x2 df + ∫ ρ ⋅υ x ⋅υn d χ = ∫∫ ⎜ ρ ⋅ Fx − τ xx df + ∫ τ n x d χ ; ⎟ df + ∂x ∫∫f ∂ ∂ x x ∫∫f ⎠ f ⎝ χ χ (2.14) 2 ⎤ 2 ⎛ ∂ υ ⎞ υ ⎞ + ⎟ ⎥ df + ∫∫ ρ ⋅ ⎜⎜ ε + ⎟ ⋅υ x df + ∂x f 2 ⎠ ⎦⎥ 2 ⎠ ⎝

df +



∫∫ ∂t ⎢⎢ ρ ⋅ ⎜⎜⎝ ε f

(2.11),

⎛ ∂ ∂ υ2 ⎞ + ∫ ρ ⋅ ⎜⎜ ε + ⎟ ⋅υn d χ = − ∫∫ p ⋅υ x df − ∫ p ⋅υ n d χ + ∫∫ τ x ⋅ υ df + ∫ τ n ⋅ υd χ + ∂x f ∂x f 2 ⎠ χ χ χ ⎝ ∂ + ∫∫ ρ ⋅F ⋅ υdf + ∫∫ Qdf − ∫∫ Wx df − ∫ Wn d χ . ∂ x f χ f f

∂ ϕ ( x, y, z, t ) df , ∂ t ∫∫f

Д

ϕ ( x, y , z , t ) – f = f ( x, t ) ,

. ,



dt (

cos ϑ 0 –

f

; T



-

-

). Φ (T , Toc )

-

Д [7]. -

, Д 0,01м/ ,

1

.

, Re кр = 3000 ÷ 5000 .

, Re

. 2

Д

⎡ ⎤ w = ⎢ f −1 ⋅ ∫∫ υdf ⎥ , ⎢⎣ ⎥⎦OX f

© В.Е. Селе

[…]OX

ев, В.В. Алеш

: –

, С.Н. Прял в, 2007–2009

.

70 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Φ (T , Toc )

Φ (T , Toc )

.

.Д -

.А ,

,

Д А

И

Д

τ xx

τ. ⎛

τ xx = μd ⋅ ⎜ 2 ⋅ ⎝

∂υ x 2 ⎞ 2 − ⋅∇ ⋅ υ ⎟ = ⋅ μ d ∂x 3 ⎠ 3

τ nx = ( τ ⋅ n) ⋅ i = τ xx ⋅ nx + τ xy ⋅ n y + τ xz ⋅ nz =



, 1.6). (2.17), (2.18), τ nx , [63, 108]:

«Alfargus» (

.

⎛ ∂υ ∂υ y ∂υ z ⎞ 4 ∂υ x ; ⋅⎜ 2⋅ x − − ⎟ ≈ ⋅ μd ⋅ 3 ∂ x ∂ y ∂ z ∂x ⎝ ⎠

⎛ ∂υ ∂υ y ∂υ z ⎞ ⎛ ∂υ x ∂υ y ⎞ ⋅⎜ 2⋅ x − − + ⎟ ⋅ nx + μ d ⋅ ⎜ ⎟ ⋅ ny + ∂y ∂z ⎠ ∂x ⎠ ⎝ ∂x ⎝ ∂y ∂υ ∂υ ⎛ 4 ∂υ ⎞ ⎛ ∂υ ∂υ ⎞ + μ d ⋅ ⎜ x + z ⎟ ⋅ nz ≈ μ d ⋅ ⎜ ⋅ x ⋅ n x + x ⋅ n y + x ⋅ nz ⎟ = μ d 3 z x x y z ∂ ∂ ∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠

=

2 ⋅ μd 3

μd –

∂υ ⎞ ⎛ 1 ∂υ ⋅ ⎜ ⋅ x ⋅ nx + x ⎟ , 3 x ∂ ∂n ⎠ ⎝

. ,

:

∂υ ∂ ∂w ⎞ 4 ∂ 4 ∂ ⎛ τ xx df ≈ ⋅ ∫∫ μd ⋅ x df = ⋅ ⎜ μdf ⋅ f ⋅ ⎟ ; 3 ∂x f 3 ∂x ⎝ ∂x ∫∫f ∂x ∂x ⎠

(2.20)

χ ⎛ 1 χ ∂υ x ∂υ ⎞ ∂υ x ⎞ ⎛ 1 ∂υ x ⋅ nx + x ⎟ d χ = μ dχ ⋅ χ ⋅ ⎜⎜ ⋅ ⋅ nx + ⎟; ∂n ⎠ ∂x ∂n ⎟⎠ ⎝ 3 ∂x ⎝3

∫ τ nx d χ = ∫ μd ⋅ ⎜ ⋅ χ

χ

∂ ∂ τ x ⋅ υdf = ∫∫ (τ xx ⋅υ x + τ xy ⋅υ y + τ xz ⋅υ z ) df = ∂x ∫∫f ∂x f =

μdf

μdχ –

∂υ x ∂x © В.Е. Селе

∂υ ∂ ∂w ⎞ 4 ∂ 4 ∂ ⎛ τ xx ⋅υ x df ≈ ⋅ ∫∫ μd ⋅υ x ⋅ x df = ⋅ ⎜ μdf ⋅ w ⋅ f ⋅ ⎟ , 3 ∂x f 3 ∂x ⎝ ∂x ∫∫f ∂x ∂x ⎠

∂υ x . ∂n

μd ,

ев, В.В. Алеш

χ

∂υ x ∂x

. -

χ

∂υ x – ∂n

, С.Н. Прял в, 2007–2009

χ

(2.21)

(2.22)

-

лава 2 71 _______________________________________________________________________________________

μd ∼ 10−5 Н ⋅ м 2 [64]. μd ⋅ ∂w ∂x ,

Д (2.17) Д

, (2.18)

, (2.20)

(2.22)

.

χ ).

( (



,

(2.21)

χ

nn

) ( p ⋅υ ′ ⋅ χ ) ( (2.17)

⋅υn′ ⋅ χ

) , .

: τ nn = μd ⋅ G ,

w ∼ 10 м



(2.18)

−1

Oz ,

nn

⋅υn′ ⋅ χ

(r –

,

)

p ∼ 10 Па .

. .

-

τ nn ∼ 10 Па . −1

)

6

-

G – .

0,001м

∂w ∂r ∼ 104

τ nn

. (2.19)).

n

( p ⋅υ ′ ⋅ χ ) .

,

n

,

.

(

(2.16 – 2.18) (2.20), (2.22) (

.

К ,

)

,

(2.19) ′ τ nn ⋅υn ⋅ χ ,

). Н

β

,

β ≈ 1.

, ,

.

. И

,

∂(ρ ⋅ f ) ∂t

+

∂(ρ ⋅ w⋅ f )

∂ ( ρ ⋅ w⋅ f ) ∂t

∂x

+

: = 0;

∂ ( ρ ⋅ w2 ⋅ f ) ∂x

(2.23)

∂z ⎞ ⎛ ∂p = − f ⋅ ⎜ + ρ ⋅ g ⋅ 1 ⎟ + χ ⋅τ χ ; ∂x ⎠ ⎝ ∂x

⎛ ⎛ ∂( p⋅w⋅ f ) w2 ⎞ ⎤ ∂ ⎡ w2 ⎞ ⎤ ∂ ⎡ − ⎢ρ ⋅ f ⋅⎜ ε + ⎟⎥ + ⎢ ρ ⋅ w ⋅ f ⋅ ⎜ ε + ⎟⎥ = − 2 ⎠ ⎥⎦ ∂x ⎢⎣ 2 ⎠ ⎥⎦ ∂t ⎢⎣ ∂x ⎝ ⎝ ∂z ∂ ⎛ ∂T ⎞ − ρ ⋅ w ⋅ g ⋅ f ⋅ 1 − p ⋅υ n′ ⋅ χ + Q ⋅ f + ⎜ k ⋅ f ⋅ ⎟ − Φ ( T , Toc ) . ∂x ∂x ⎝ ∂x ⎠

,

, (

:

© В.Е. Селе

ев, В.В. Алеш

(2.24)

(2.25)

,

τχ ,

τχ = −

),

λ⋅ w 8

-

⋅ ρ ⋅ w,

, С.Н. Прял в, 2007–2009

(2.26)

72 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Д

λ – –В

[65, 66]. Д

λ (

.Н. ,

(

2). -

.

) .

,

(

λ

, .



, . .).

-

. Д

В

, : D = 2⋅

π f

υn′ =

;

p ⋅υn′ ⋅ χ = p ⋅

p = p ( ρ, T )

. 1 ∂D 1 ∂f ⋅ = ⋅ ; 2 ∂t 2 ⋅ π ⋅ f ∂t

∂f ; ∂t

χ ⋅τ χ = −

χ = π ⋅ D = 2⋅ π ⋅ f ;

λ⋅ π ⋅ w

⋅ ρ ⋅w⋅ f .

4

(2.23 – 2.26), ε = ε ( p, T ) .

,

: p ⋅V B C = 1 + + 2 + …, R0 ⋅ T V V V – ,

(2.27)

; R0 –

; B, C,…–

. .

(V → ∞ )

, . –К

.

,

,

(2.27) . .

(2.27) , –К [67]:

Д

м ль ) .

-

. . К

,

,

⎡ ⎤ a* ⎢p+ ⎥ ⋅ (υ − b* ) = R ⋅ T , T ⋅υ ⋅ (υ + b* ) ⎥⎦ ⎢⎣

a * = 0, 4278 ⋅ R 2 ⋅ TК2,5 p К ; b* = 0, 0867 ⋅ R ⋅ TК

( кг

. . ,

,

К

(2.27)

; R = R0 M – ,

pК ; TК

υ =1 ρ –

(2.28)

( Д ( кг ⋅ K ) ) ; pК –

M –

. -

:

ε ( p, T ) = h ( p, T ) − dh = h – © В.Е. Селе

ρ

p

∂h ∂h ∂h ⋅ dT + ⋅ dp = c p ⋅ dT + ⋅ dp, ∂T ∂p ∂p

; cp – ев, В.В. Алеш

(2.29)

;

(2.30) .

, С.Н. Прял в, 2007–2009

-

лава 2 73 _______________________________________________________________________________________

( ∂h

∂p )T

(

⎛ ∂h ⎞ ⎛ ∂υ ⎞ ⎜ ⎟ = −T ⋅ ⎜ ⎟ + υ. ⎝ ∂T ⎠ p ⎝ ∂p ⎠T

, μ ( p, T ) ∂ ∂ h p ( )T . [68], μ ( p, T ) = ( ∂T ∂p )h . ,

.,

, [67]): (2.31)

Д



. Д

– (

dh = c p ⋅ dT +

Н

-

∂h ⋅ dp = 0. ∂p

. (2.30)): (2.32)

(2.32) :

⎛ ∂T ⎞ 1 ⎟ =− cp ⎝ ∂p ⎠ h

μ ( p, T ) = ⎜

(2.34) (2.30),



⎛ ∂h ⎞ ⋅⎜ ⎟ , ⎝ ∂p ⎠T

(2.33)

⎛ ∂h ⎞ ⎜ ⎟ = −μ ⋅ c p . ⎝ ∂p ⎠T

,

,

-

(2.34)

:

dh = c p ⋅ dT − μ ⋅ c p ⋅ dp.

(2.29)

, ε = ε ( p, T )

(2.35)

(2.30)

-

, –К ,

(2.30) ,

.

, (

.В -

)

.Н. [6, 7] .А

, (

Э

,

.,

, [11]).

, (

,

-

)

. В

.Н.

[6, 7]

-

, . , ,

,

. (2.28 –

2.30). , © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

74 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

, ∂(ρ ⋅ f ) ∂t

+

∂ ( ρ ⋅ f ⋅ w)

∂ ( ρ ⋅ f ⋅ w) ∂t

∂x

+

: = 0;

∂ ( ρ ⋅ f ⋅ w2 ) ∂x

(2.36 )

∂z ⎞ π ⎛ ∂p = − f ⋅ ⎜ + g ⋅ ρ ⋅ 1 ⎟ − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R; ∂x ⎠ 4 ⎝ ∂x

∂ ( p ⋅ f ⋅ w) ⎛ ⎛ w2 ⎞ ⎤ ∂ ⎡ w2 ⎞ ⎤ ∂ ⎡ − ⎢ρ ⋅ f ⋅ ⎜ε + ⎟⎥ + ⎢ ρ ⋅ f ⋅ w ⋅ ⎜ ε + ⎟⎥ = − 2 2 x ∂t ⎣ ∂ ∂x ⎝ ⎠⎦ ⎝ ⎠⎦ ⎣ ∂z ∂f ∂ ⎡ ∂T ⎤ − ρ ⋅ f ⋅ w ⋅ g ⋅ 1 − p ⋅ + Q ⋅ f + ⎢ k ⋅ f ⋅ ⎥ − Φ (T , T ) ; ∂x ∂t ∂x ⎣ ∂x ⎦ p = p ( ρ,T );

ε = ε ( p, T ) ,

f π –

R=

(2.29, 2.30).

; p = p ( ρ,T ) –

. (2.28); ε = ε ( p, T ) –

.



(2.36) w ( x, t0 ) = w0 ( x ) ; T ( x, t0 ) = T0 ( x ) ;

ρ ( x, t0 ) (2.36 ).

Н

, -

p ( x, t0 ) = p0 ( x ) .

ε ( x, t0 )

-

∂T ( xB , t ) = jB ( t ) ; ∂x

: T ( x B , t ) = TB (t );

xB

.

(2.36 ), (2.36 )

(2.36 ),

Н

(2.36 )

(2.36 )

(2.36), (2.36 ),

:

(2.36 )

w( xB , t ) = wB (t );

p( xB , t ) = pB (t );

( ρ ⋅ w ⋅ f ) B = qB ( t ) ,

; jB ( t )



qB ( t )



.

(2.36)

(

,



[69–72], , ) [73, 74]. , ,

, [6],

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

-

/

-

(2.36)

. .Н. -

лава 2 75 _______________________________________________________________________________________

,

(2.36) (

Д

.

[75]). (2.36)

-

:

ρ ⋅ f ⋅ w = C т = const ; C2 d ⎛ 1 dp =− т⋅ ⎜ dx f dx ⎝ ρ ⋅ f

(2.37 ) dz1 λ ⋅ C т ⋅ C т ⎞ − ; ⎟− g⋅ρ ⋅ dx 4 ⋅ R ⋅ f 2 ⋅ ρ ⎠

(2.37 )

C2 d ⎛ 1 ⎞ d ⎛ p ⎞ 1 d ⎡ dε dz Q ⋅ f dT ⎤ Φ ( T , T = − т ⋅ ⎜ 2 2 ⎟− ⎜ ⎟− g⋅ 1 + + ⋅ ⎢k ⋅ f ⋅ − 2 dx ⎝ ρ ⋅ f ⎠ dx ⎝ ρ ⎠ dx dx C т C т dx ⎣ dx ⎥⎦ Cт p = p ( ρ,T );

)

ε = ε ( p, T ) .

(2.37 ) ЭК

В

. -

(2.36).

[2]. Д

К

; (2.37 )

(КЦ) . Э

Д

[76]

(2.37) (2.37)

–В

[65].

. ,

.Э 3,0МПа

( ≤ 10000м ) ,

( . И

10м, 7,8МПа (

.

( ≤ 0, 25К 1000 м )

). Э

( . ,

,

π ⋅ D2 4

⋅ ρ1 ⋅ w1 =

π ⋅ D2 4

1 2 ; D = const – ев, В.В. Алеш

, [76, 77]).

.,

,

А)

J = J1 = J 2 =

-

,

:

-

).

К (

© В.Е. Селе

, 40м/ ,



p12 − p22 ⎛λ ⋅ ρ1 ⋅ ⎜ + ξ p1 ⋅ l ⎝D

; l – , С.Н. Прял в, 2007–2009

⎞ ⎟ , ⎠ −1

(2.38)

;

76 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ξ

= const – (2.38)

1

. -

, . . Z Z1 ≈ 1 ,

Z –

, ; Z1 –

,

[78]:

p = Z ⋅ ρ ⋅ R ⋅T.

А (2.37 )

(2.38) w = w2 ⋅ ρ 2 ρ .

ρ1 p1 ,

(2.39) Z Z1 ≈ 1

,

-

К

.

(2.38)

ρ 2 p2 .

-

.

. Д

p1 − p2 p1 ⋅100% ≤ 5%

10000м

( P1 ∈ [3, 0; 7,8] ( МПа ) , T ∈ [ 273; 313] ( К ) ) , . , ( ≤ 10м

(2.28)

)

500м.

, 0,02%. Д P1 − P2 = λ ⋅



р

= ( ρ1 + ρ 2 ) 2 ) :

J = J1 = J 2 =

0,25% ( ≤ 0, 018МПа ) . В

,

(2.38),

И

(

–К

) К

0,41%.

π ⋅ D2 4

⋅ρ ⋅w =

–В

l ρ ⋅ w2 ⋅ D 2

(2.40)

-

π ⋅ D2 4

⋅ 2⋅

(2.41)

p1 − p2 ⎛λ ⋅ ρ р ⋅⎜ +ξ l ⎝D

⎞ ⎟ . ⎠ −1

(2.41)

10000м

,

0,20%

,

1

, [66];

( dl . © В.Е. Селе

)

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(2.38). 500м, dp = ξ

⋅ dl ⋅ ρ ⋅ w 2 2 –

-

лава 2 77 _______________________________________________________________________________________

,

(2.38)

(2.41),

-

0,01% . , (2.38)

(2.41)

. (2.41)

Д .

К

, -

ξ

,

ξ

,

[66].

-

. 2.3.2. Течение а ово

е и

, ,

(2.36),

-

, .

В

. ,

∑(ρ

w m = υm − υ; υm –

:

NS

m =1

m

⋅ w m ) = 0; ρ = ∑ ρ m ; ρ ⋅ υ = ∑ ( ρ m ⋅ υm ), NS

NS

m =1

m =1

m-

; ρ – m-

(

) (

NS –

;

ρm –

(2.42)

; υ –

m-

);

. wm .

,

В

. .

, ,

, wm ,

-

. Д [79]:

Dm –

(

ρ m ⋅ w m = − ρ ⋅ Dm ⋅∇Ym ,

) Ym =

m-

ρm , ρ

Ym –

© В.Е. Селе

(2.43)

(2.44) m,

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

;



,

78 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

( [79]:

. (2.36)). Д

-

⎡ ⎛ ∂ ⎡ ⎛ υ 2 ⎞⎤ υ2 ⎞ ⎤ ⎢ ρ ⋅ ⎜ ε + ⎟ ⎥ + ∇ ⋅ ⎢ ρ ⋅ ⎜ ε + ⎟ ⋅ υ ⎥ = −∇ ⋅ ( p ⋅ υ ) + ∇ ⋅ ( τ ⋅ υ ) + ρ ⋅ F ⋅ υ + Q − 2 ⎠⎦ 2 ⎠ ⎦ ∂t ⎣ ⎝ ⎣ ⎝ − ∇ ⋅ W − ∑ ∇ ⋅ ( ε m ⋅ ρ m ⋅ w m ), NS

(2.45)

m =1

εm –

(

)

m-

. ,

,

T.Д

(

, . .

,

) -

,

. ,

(

∂ ρ ⋅ Ym ∂t

) +∇⋅

( N S − 1)

,

(2.44),

( ρ ⋅ Y ⋅ υ) + ∇ ⋅ ( ρ m

m

:

⋅ w m ) = 0, m = 1, N S − 1.

(2.46 )

(2.46 ) .К

NS

YN = 1 − S

∑Y

:

N S −1 m =1

m

.

(2.46 )

Д

, -

, k,

Д

,

,

,

{S ме и } , .

k = k ({S ме и }) ,



Dm = Dm ({S ме и }) .

:

«



-

, , (2.47) »

.

Д © В.Е. Селе

. . Н

cV

.

: ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 79 _______________________________________________________________________________________

p = p ({S ме и }) ;

(

ε = ε ({S ме и }) .

(2.48)

(2.43),

∂ ρ ⋅ Ym ∂t

) +∇⋅

-

( ρ ⋅ Y ⋅ υ) − ∇ ⋅ ( ρ ⋅ D m

m

)

:

⋅ ∇Ym = 0, m = 1, N S − 1;

⎡ ⎛ ∂ ⎡ ⎛ υ 2 ⎞⎤ υ2 ⎞ ⎤ ⋅ + + ∇ ⋅ ⋅ + ρ ε ρ ε ⎢ ⎜ ⎢ ⎜ ⎟⎥ ⎟ ⋅ υ⎥ = 2 ⎠⎦ 2 ⎠ ⎦ ∂t ⎣ ⎝ ⎣ ⎝

YN = 1 − S

(

∑Y ;

N S −1 m=1

m

)

= −∇ ⋅ ( p ⋅ υ ) + ∇ ⋅ ( τ ⋅ υ ) + ρ ⋅ F ⋅ υ + Q − ∇ ⋅ W + ∑ ∇ ⋅ ε m ⋅ ρ ⋅ Dm ⋅ ∇Ym . NS

m =1

В

(

∫∫∫

(

∂ ρ ⋅ Ym

V

∂t

YN = 1 − S

) dV

∑Y

+ ∫∫ ρ ⋅ Ym ⋅υ n dS − ∫∫ ρ ⋅ Dm ⋅ S

m

(2.49 )

)

:

N S −1 m =1



S

∂Ym dS = 0 , ∂n

m = 1, N S − 1 ;

(2.50 )

;

⎛ ∂⎡ ⎛ υ 2 ⎞⎤ υ2 ⎞ ⋅ + + ⋅ + ρ ε ρ ε dV ⎢ ⎥ ⎜ ⎜ ⎟ ∫∫∫ ∫∫S ⎝ 2 ⎟⎠ ⋅υn dS = 2 ⎠ ⎥⎦ ∂t ⎢⎣ ⎝ V

= − ∫∫ p ⋅υ n dS + ∫∫ τ n ⋅ υ dS + ∫∫∫ ρ ⋅F ⋅ υdV + ∫∫∫ QdV − ∫∫ W ⋅ ndS + ∑ ∫∫ ε m ⋅ ρ ⋅ Dm ⋅ NS

S

S

V

V

(2.50) (2.48) .

Д

m =1 S

S

(2.1, 2.2)

(2.50) Δx

,

(

∂ ρ ⋅ Ym

f



∂t

ρ ⋅Y ∂x ∫∫

⋅υ x df + lim

Δx → 0

f

Δx

):

1 ⋅ ρ ⋅ Ym ⋅υn d ω − Δx ∫∫ ω

∑Y

(2.51)

N S −1 m =1

m

Д © В.Е. Селе

m

.

∂Y ∂Y ∂ 1 ⋅ ρ ⋅ Dm ⋅ m d ω = 0 , m = 1, N S − 1 ; ρ ⋅ Dm ⋅ m df − lim Δx → 0 Δx ∫∫ ∂x ∫∫f ∂x ∂n ω

YN = 1 − S

(

) df + ∂

. 2.1.

,

∫∫

∂Ym dS . ∂n (2.50 )

-

,

,

(2.49 )

.

« ев, В.В. Алеш

– » (2.51)

, С.Н. Прял в, 2007–2009

, .

80 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Д

,

,

(

«

,

»

),

∂Y ∂ ∂ ∂ ( ρ ⋅ f ⋅ Ym ) + ( ρ ⋅ w ⋅ f ⋅ Ym ) = ⎛⎜ ρ ⋅ f ⋅ Dm ⋅ m ∂t ∂x ∂x ⎝ ∂x

А

,

∑ ∫∫ ε m ⋅ ρ ⋅ Dm ⋅ NS

m =1 S

:

⎞ ⎟ , m = 1, N S − 1 ; YN S = 1 − ⎠

∂Ym ∂Y ∂ S dS = ∑ ε m ⋅ ρ ⋅ Dm ⋅ ∂xm df + ∂n ∂x m =1 ∫∫f

∑Y

N S −1 m =1

m

. (2.52)

N

N NS ∂Y ∂Y ∂ ⎛ 1 S + lim ⋅ ∑ ∫∫ ε m ⋅ ρ ⋅ Dm ⋅ m d ω = ⎜ f ⋅ ρ ⋅ ∑ ε m ⋅ Dm ⋅ m ⎜ Δx → 0 Δx ∂n ∂x ⎝ ∂x m =1 ω m =1

⎞ ⎟⎟ . ⎠

(2.53)

,

,

-

,

∂(ρ ⋅ f ) ∂t

: +

∂ ( ρ ⋅ w ⋅ f ) = 0; ∂x

(2.54 )

∂Y ∂ ∂ ∂ ⎛ ( ρ ⋅ Ym ⋅ f ) + ( ρ ⋅ Ym ⋅ w ⋅ f ) − ⎜ ρ ⋅ f ⋅ Dm ⋅ m ∂t ∂x ∂x ⎝ ∂x

YN = 1 − S

∑Y

N S −1 m =1

∂ ( ρ ⋅ w⋅ f ) ∂t

+

m

⎞ ⎟ = 0, ⎠

m = 1, N S − 1 ;

(2.54 )

;

∂ ( ρ ⋅ w2 ⋅ f ) ∂x

∂z ⎞ π ⎛ ∂p = − f ⋅ ⎜ + g ⋅ ρ ⋅ 1 ⎟ − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R; ∂x ⎠ 4 ⎝ ∂x

⎛ ∂ ⎡ w2 ⎞ ⎤ ∂ ⎡ ⎢ ρ ⋅ f ⋅ ⎜⎜ ε + ⎟⎥ + ⎢ ρ ⋅ w ⋅ f ∂t ⎣⎢ 2 ⎠ ⎦⎥ ∂x ⎣⎢ ⎝

⎛ ∂z1 ∂ w2 ⎞ ⎤ ⋅ ⎜⎜ ε + − ⎟⎥ = − ( p ⋅ w ⋅ f ) − ρ ⋅ w ⋅ f ⋅ g ⋅ ∂x ∂x 2 ⎠ ⎦⎥ ⎝

NS ∂Y ∂f ∂ ⎛ ∂T ⎞ ∂ ⎛ − p⋅ +Q⋅ f + ⎜k ⋅ f ⋅ − Φ + ⋅ ⋅ T T f ρ ε m ⋅ Dm ⋅ m ( , ) ⎜ ∑ oc ⎟ ∂t ∂x ⎝ ∂x ⎠ ∂x ⎝⎜ ∂x m =1

ε m = ε m ({S ме и } ) ,

(2.54 )

m = 1, N S ; ε = ε ({S ме и } ) ; T1 = T2 = … = TN S = T ;

⎞ ⎟⎟ ; ⎠

(2.54 )

p = p ({S ме и } ) ; k = k ({S ме и } ) ; Dm = Dm ({S ме и } ) , m = 1, N S .

2.3.3. Течение

но о о

онен ных и

). В

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(2.54 )

е

(

, © В.Е. Селе

о

(2.54 )

, [80]. В

-

лава 2 81 _______________________________________________________________________________________

0,1 ÷ 2,0МПа , .

(

10 ÷ 160 C )1 (

-

):

ρ p1 ( t ) − ρ p 2 ( t ) ⋅100%

δρT ( t ) =

⎡⎣ ρ p1 ( t ) + ρ p 2 ( t ) ⎤⎦ / 2

t = T − 273,15 K –

; ρ p1 ( t ) , ρ p 2 ( t ) –

Ц

δρT (10 C ) ≈ 0, 09%

t = 10 C

ρ p 2 (10 C ) = 1000, 6 кг м , [80]).

(2.55)

,

.

ρ p1 (10 C ) = 999, 7 кг м , 2

3

(

3

В

. :

δρ P ( p ) =

ρ t1 ( p ) , ρt 2 ( p ) –

ρt1 ( p ) − ρt 2 ( p ) ⋅100% ⎣⎡ ρt1 ( p ) + ρt 2 ( p ) ⎦⎤ / 2

.

,

(2.56)

p = 0, 7 МПа

δρ P ( 0,7 МПа ) ≈ 9,7% 3

ρ t1 ( 0, 7 МПа ) = 1000 кг м 3 , ρ t 2 ( 0, 7 МПа ) = 907,5 кг м 3 , [80]). ,

( И

ρ = ρ ( p, T )

ρ = ρ (T ) .

.

-

∂(ρ ⋅ f ) ∂t

(2.36)

+

∂ ( ρ ⋅ f ⋅ w)

∂ ( ρ ⋅ f ⋅ w) ∂t

∂x

+

,

:

= 0;

∂ ( ρ ⋅ f ⋅ w2 ) ∂x

1

(2.57 ) ∂z ⎞ π ⎛ ∂p = − f ⋅ ⎜ + g ⋅ ρ ⋅ 1 ⎟ − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R; ∂x ⎠ 4 ⎝ ∂x (

«



, . 2

В

[80] .

[80]

10 C

0; 10; 20 ... C ). 3

(

)

. © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(

»),

(2.57 )

82 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∂ ( p ⋅ f ⋅ w) ⎞⎤ ∂ ⎡ ⎛ w2 ⎞ ⎤ − ⎟⎥ + ⎢ ρ ⋅ f ⋅ w ⋅ ⎜ ε + ⎟⎥ = − 2 ⎠⎦ ∂x ⎠ ⎦ ∂x ⎣ ⎝ ∂z ∂f ∂ ⎡ ∂T ⎤ − ρ ⋅ f ⋅ w ⋅ g ⋅ 1 − p ⋅ + Q ⋅ f + ⎢ k ⋅ f ⋅ ⎥ − Φ (T , T ) ; ∂x ∂t ∂x ⎣ ∂x ⎦

⎛ ∂ ⎡ w2 ⎢ρ ⋅ f ⋅ ⎜ε + 2 ∂t ⎣ ⎝

ρ = ρ (T ) ; Д )

(2.57 )

h = h ( p, T ) .

ε = h− p ρ;

(2.57 ) (

.

)

:

δ hP ( p ) =

ht1 ( p ) , ht 2 ( p ) –

ht1 ( p ) − ht 2 ( p ) ⋅100% ⎡⎣ ht1 ( p ) + ht 2 ( p ) ⎤⎦ / 2

hp1 ( t ) , hp 2 ( t ) –

p

t = 40 C ,

(

hp1 ( t ) − hp 2 ( t ) ⋅100% ⎡⎣ hp1 ( t ) + hp 2 ( t ) ⎤⎦ / 2



. : (2.59)

,

.

40 ÷ 160 C . Н



δ hT ( t ) p

δ hT ( 40 C ) ≈ 1%

t = 40 C

(

кг , [80]), . .

-

.

h

δ hT ( 60 C ) ≈ 0, 635% (

(

кг , [80]), . .

кг , h p 2 ( 40 C ) = 169,3 кД

δ hT ( t )

δ hT (10 C ) ≈ 4, 4%

t = 10 C

кг , h p 2 (10 C ) = 44 кД

h h p1 ( 40 C ) = 167,6 кД

-

кг , [80]). И

h

t

δ hT ( t ) =

10 ÷ 160 C )

δ hP ( 0, 7 МПа ) ≈ 176, 2%

кг , ht 2 ( 0, 7 МПа ) = 675, 6 кД

,

h p1 (10 C ) = 42,1 кД

(2.58)

,

0,1 ÷ 2,0МПа ,

( p = 0, 7 МПа

ht1 ( 0, 7 МПа ) = 42, 7 кД

: 10 ÷ 40 C

t.В -

.

ΔhT ( t )

-

. Д

h (

h p1 ( 60 C ) = 251, 2 кД

. Н

,

t = 60 C

кг , h p 2 ( 60 C ) = 252,8 кД

,

– кг ,

[80]). 1

, 40 C )

(

1

© В.Е. Селе

1% .

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 83 _______________________________________________________________________________________

h = h (T ) .

1

-

40 C )

(



-

4%.

И

ρ = ρ (t ) , а [t − 0,5 ⋅ Δt; t + 0,5 ⋅ Δt ] : -

.

[80]. е

Δρ ( t , Δt ) = ρ ( t + 0,5 ⋅ Δt ) − ρ ( t − 0,5 ⋅ Δt ) . ,



(2.60) ,

(2.60)

δρ ( t , Δt ) = (2.60) (2.61)

⎡⎣ ρ ( t + 0,5 ⋅ Δt ) + ρ ( t − 0,5 ⋅ Δt ) ⎤⎦ 2

δρ ( t , Δt ) = Δρ ( t , Δt ) ⋅

) (2.62)

:

Δρ ( t , Δt ) .

,

,

Δρ

: ( Δρ Δt ) p ≈ ( ∂ρ ∂t ) p . ,

Э

2

( ∂ρ

p = 0, 7 МПа .

δρ )

t = 160 C ,

. Н

t < 160 C ),

(2.62)

Δt

∂t ) p

Δt

,

(2.63)

δρ ( t , Δt )

( ∂ρ

. 2.4 3

.

∂t ) p

ρ = ρ (t )

( -

1

. К



, ,

3

(2.61)

100% ∼ Δρ ( t , Δt ) . ⎡⎣ ρ ( t + 0,5 ⋅ Δt ) + ρ ( t − 0,5 ⋅ Δt ) ⎤⎦ 2



(2.63),

2

⋅100%.

⎣⎡ ρ ( t + 0,5 ⋅ Δt ) + ρ ( t − 0,5 ⋅ Δt ) ⎦⎤ 2 ≈ ρ = const ,

ρ –

Δρ (

е ь е t + 0,5 ⋅ Δt ] :

«∼ »

(

(2.62)

Н

[t − 0,5 ⋅ Δt;

ρ ( t + 0,5 ⋅ Δt ) − ρ ( t − 0,5 ⋅ Δt ) ,

(2.60)

Д

© В.Е. Селе

,

-

[80]),

-

. , t = 160 C ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

( .

84 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________ 1

160 C )

( t = 150 C . ρ (160 C ) = 907,523 кг м 3 ,

1%. . 150 C – ρ (150 C ) = 917,095 кг м 3 [80].

δρ (160 C , 10 C ) δρ (155 C , 10 C ) =

ρ (160 C ) − ρ (150 C ) ⋅100% :

⎡ ρ (160 C ) + ρ (150 C ) ⎤ / 2 ⎣ ⎦

,

[ кг м3 ] в ы 0,7МПа 2

л

е

ера уры [ C ] р

.

δρ ( t , Δt ) = Δt :

δρ ( t , Δt )

(2.65)

Δt

,

Н

е

е

, е а

© В.Е. Селе

100% ⋅ Δρ ( t , Δt ) . ρ (t )

ρ ( t ) ⋅ δρ

Δt ( t )

, [80]. ев, В.В. Алеш

.

, С.Н. Прял в, 2007–2009

(2.65)

100% d ρ ( t ) . ⋅ dt ρ (t )

d ρ ( t ) dt ⋅100%

).

2

авле

:

100% Δρ ( t , Δt ) ⋅ ρ (t ) Δt

Δt ( t )

. 2.5

1

=

(2.64)

δρ ( t , Δt ) (

Д (2.60)),

≈ 1%.

Δt = 10 C = 10 K .

, 1%,

и . 2.4. Зав

160 C

(2.66)

(2.67)

.

δρ = 1% . а

(

а

аче-

лава 2 85 _______________________________________________________________________________________

и . 2.5. в

е аш р р в у

[80].

d ρ dt

а а ра

а е ера ур (в ав а р ва а е ае у

ы

. 2.5

ре у

а

в ч

е

Δt ( t ) . В

1% [105 °C − Δt 2; 105 °C + Δt 2] = [99 °C; 111 °C ] . Δt ( t ) . Д

Δt ( t )

.

δρ ,

Δt ( t ) ,

10

, ,

. 2.5 (

, Δt ( t )

δρ = 0,1% . 2.5.

. (2.67)),

δρ .

(2.67), . 2.5, 35 C ),

( ⎡⎣0 C ; 35 C ⎤⎦

. -

t = 35 C )

Δt = 35 C

, . ,

,

: аче е ⎡⎣0 C ; 40 C ⎤⎦ . В

ρ ( 0 C ) = 999,800 кг м 3 , а

е

е а

ев, В.В. Алеш

, чае

я

[80] е ее 1%

40 C – ρ ( 40 C ) = 992,260 кг м 3 [80]. И

δρ ( t = 20 C , Δt = 20 C ) = © В.Е. Селе

-

,

,

(

-

,

1% . В

К

ера уры), 1%

Δt (105 °C ) ≈ 12 °C . Э

t = 105°C

,

.

,

ρ ( 40 C ) − ρ ( 0 C ) ⋅100% ⎡ ρ ( 40 C ) + ρ ( 0 C ) ⎤ / 2 ⎣ ⎦

, С.Н. Прял в, 2007–2009

я 0C

а а-

, :

≈ 0,76 %.

(2.68)

86 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Δt = Δt ( t )

, ,

,

( t = 160 C ) .

,

ρ = const ;

.

. 2.5)

Δt = 10 C

-

ρ = const

.Д :

t > 40 C (

(2.57). В

(2.69 )

w = w (t ) ;

(2.69 )

∂z λ ⋅ w ⋅ w 1 ∂p dw ; = − ⋅ −g⋅ 1 − ρ ∂x 4⋅ R ∂x dt

(2.69 )

∂z Q 1 ∂ ⎡ ∂T ⎤ Φ ( T , T w ∂p ∂ε d ⎛ w2 ⎞ ∂ε + ⎜ ⎟ + w⋅ = − ⋅ − w ⋅ g ⋅ 1 + + ⋅ ⎢k ⋅ ⎥ − ρ ∂x f ⋅ρ ∂t dt ⎝ 2 ⎠ ∂x ∂x ρ ρ ∂x ⎣ ∂x ⎦ h = h ( p, T ) .

ε = h− p ρ; ,

(2.69 ) (2.69 )

(2.69 ) ( . (2.69 )). (2.69 ) w

И

);

-

dw dt

.

:

∂z1 λ ⋅ w d ⎛ w2 ⎞ w ∂p ; − ⎜ ⎟ = − ⋅ − w⋅ g ⋅ ρ ∂x 4⋅ R dt ⎝ 2 ⎠ ∂x 3

В

(2.70)

(2.69 )

(2.70)

:

Q 1 ∂ ⎡ ∂T ⎤ Φ ( T , T ∂ε ∂ε λ ⋅ w + w⋅ = + + ⋅ ⎢k ⋅ ⎥ − ρ ρ ∂x ⎣ ∂x ⎦ 4⋅R f ⋅ρ ∂t ∂x 3

,

).

(2.71)

:

ρ = const ; w = w (t ) ;

(2.72 ) (2.72 )

∂z λ ⋅ w ⋅ w 1 ∂p dw ; = − ⋅ −g⋅ 1 − ρ ∂x 4⋅ R ∂x dt

∂ε ∂ε λ ⋅ w Q 1 ∂ ⎡ ∂T ⎤ Φ ( T , T + w⋅ = + + ⋅ ⎢k ⋅ ⎥ − ρ ρ ∂x ⎣ ∂x ⎦ ∂t ∂x 4⋅ R f ⋅ρ 3

ε = h− p ρ;

h = h ( p, T ) .

ев, В.В. Алеш

(2.72 ) (2.72 )

( ,

© В.Е. Селе

);

(2.72 )

, С.Н. Прял в, 2007–2009

. (2.72 )) ,

-

лава 2 87 _______________________________________________________________________________________ 1

:

λ ⋅ w⋅ w ⋅l p − p2 dw , ⋅l = 1 + g ⋅ ⎡⎣( z1 )1 − ( z1 )2 ⎤⎦ − ρ 4⋅ R dt ; p1 – x = 0 ); p2 –

l –

(2.73) (

x = l ); ( z1 )1 –

(

; ( z1 )2 –

. ,

ρ = const ;

:

w = w (t ) ;

(2.74 ) (2.74 )

⎡( z1 )1 − ( z1 )2 ⎤⎦ λ ⋅ w ⋅ w dw p1 − p2 ; = +g⋅⎣ − 4⋅ R ρ ⋅l dt l

∂ε ∂ε λ ⋅ w Q 1 ∂ ⎡ ∂T ⎤ Φ ( T , T + w⋅ = + + ⋅ ⎢k ⋅ ⎥ − ρ ρ ∂x ⎣ ∂x ⎦ ∂t ∂x 4⋅ R f ⋅ρ

);

3

h = h ( p, T ) .

ε = h− p ρ;

(2.74 )

(2.74 ) (2.74 ) -

.



2.3.2,

-

,

, ,

.

И (2.57)),

( ( )

∂(ρ ⋅ f ) ∂t

+

∂ ( ρ ⋅ f ⋅ w) ∂x

YN = 1 − S

∑Y

(

.

∂ ( ρ ⋅ f ⋅ w) ∂t

+

∂x

⎞ ⎟ = 0, ⎠

m = 1, N S − 1 ;

∂z ⎞ π ⎛ ∂p = − f ⋅ ⎜ + g ⋅ ρ ⋅ 1 ⎟ − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R; ∂ ∂x ⎠ 4 x ⎝

,

(2.75 )

(2.75 )

.

© В.Е. Селе

(2.75 )

;

∂ ( ρ ⋅ f ⋅ w2 ) m

(2.54)):

= 0;

N S −1 m =1

-

,

∂Y ∂ ∂ ∂ ⎛ ( ρ ⋅ Ym ⋅ f ) + ( ρ ⋅ Ym ⋅ w ⋅ f ) − ⎜ ρ ⋅ f ⋅ Dm ⋅ m ∂t ∂x ∂x ⎝ ∂x

1

.

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

88 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∂ ( p ⋅ f ⋅ w) ⎛ ⎛ w2 ⎞⎤ ∂ ⎡ w2 ⎞⎤ ∂⎡ ∂z − ρ ⋅ f ⋅w⋅ g ⋅ 1 − ⎢ρ ⋅ f ⋅ ⎜ ε + ⎟⎥ + ⎢ ρ ⋅ f ⋅ w ⋅ ⎜ ε + ⎟⎥ = − ∂t ⎣ ∂x ∂x 2 ⎠ ⎦ ∂x ⎣ 2 ⎠⎦ ⎝ ⎝ ∂f ∂ ⎡ ∂T ⎤ − p ⋅ + Q ⋅ f + ⎢k ⋅ f ⋅ ⎥ − Φ (T , T ∂t ∂x ⎣ ∂x ⎦

(

)

NS ∂ ⎛ ∂Y ⎞ ) + ⎜⎜ ρ ⋅ f ⋅ ∑ ε m ⋅ Dm ⋅ m ⎟⎟ ; ∂x ⎝ ∂x ⎠ m =1

(

(2.75 )

)

ρ = ρ T , {Ym , m = 1, N S } ; ε = h − p ρ ; h = h p, T , {Ym , m = 1, N S } . В

{Y , m = 1, N }

(2.75)

Ym , m = 1, N S .

m

(2.75 )

S

е

ае

1

.

(2.75)

:

ρ = const ;

(2.76 )

w = w (t ) ;

(2.76 )

⎡( z1 )1 − ( z1 )2 ⎦⎤ λ ⋅ w ⋅ w dw p1 − p2 = +g⋅⎣ − ; ρ ⋅l 4⋅ R dt l ∂Ym ∂Y ∂Y ⎞ ∂ ⎛ + w ⋅ m − ⎜ Dm ⋅ m ⎟ = 0, ∂t ∂x ∂x ⎝ ∂x ⎠

(2.76 )

m = 1, N S − 1 ; YN = 1 −

Q 1 ∂ ⎡ ∂T ⎤ Φ ( T , T ∂ε ∂ε λ ⋅ w + w⋅ = + + ⋅ ⎢k ⋅ ⎥ − ρ ρ ∂x ⎣ ∂x ⎦ f ⋅ρ 4⋅R ∂t ∂x

)+

3

(

)

ε = h − p ρ ; h = h p, T , {Ym , m = 1, N S } .

S

∑Y

N S −1 m =1

m

(2.76 )

;

N ∂Ym ⎞ ⎤ ∂ ⎡ S⎛ ⎢ ∑ ⎜ ε m ⋅ Dm ⋅ ⎥; ∂x ⎣⎢ m =1 ⎝ ∂x ⎟⎠ ⎦⎥

(2.76 )

(2.76 )

2.3.4. Пленочное ечение вух а но

е ы

Д -

В. .

.Н.

-

[2, 6]. .

В

[68],

-



.

,

– -

. Ч ,

,

,

. ,

1



, ). В

© В.Е. Селе

,

ев, В.В. Алеш

, , (2.76)

( « (

, С.Н. Прял в, 2007–2009

»

-

, ,

).

лава 2 89 _______________________________________________________________________________________

, 1

,

-

2

.

.

.

, ( .Э



)

,

-

, : («

»





», «



. .); ( ,



,

.); («





»);



( ). , ,

а еа

-

а

), е

я

,

я

[68]. , .В

аа

( . Не ь я



,

,

, е

а ь

я ь –





(

,

,

,

.).

,

-

, ,



3

,

, К

,

,

(

,

. Э [68].

е

)

, ,

: ,

2.3.2). В

,

(

, ,

( N − n)

), (

) –

,

, : N

-

n [68].

,

:

[79, 81]. И -

,

1

C2H4O . . [68].

, (C2H4O)3

,

H2O

(H2O)2 ,

2

[68].

3

© В.Е. Селе

.

, . И

(

-

.

[85]. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

90 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

, ,

С

,

.

е

(

,

[79])

[82]. В

,

,

,

-

. [82],

, ,

, -

,

, ,

(

.). Э

,

.

,



.

, .Д

[82] .

В [82]

-

:



а а



а

е

ече

ь е

(

е

я

ч

; ече

)

я

-

;



а е

ече

я

ч а

.

ече

я

ь

е,

е(

а я

е)

е

е-

[82].

[79],

,

20÷30%.

ó

,

, (

)

В

-

ь е

:

.

[79, 82]

В

-

е

ч

(

е



-

.И-

) е

-

.

е

-

( а е ь

ь е

) е

) е , ече я –

(

,

.В ече я. -

-

.

, .

, :

,

. [83], © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 91 _______________________________________________________________________________________

,

,

,

,

. .

А

, [83]. В »)



, .

,

-

(

), , .

,

,

,

. ,

,

[83].

1 1

.

ρ1



ψ1

r –

V

∫∫∫ V

,

ρ2 .

[82]: :

ρ м = ψ 1 ⋅ ρ1 +ψ 2 ⋅ ρ 2 , (

(2.77)

)

( r, t )

⎧⎪1, ⎪⎩0,

[82], ∂t

, ,

ψ m ( r, t ) = ⎨

∂ ( ρ m ⋅ψ m )

,

ψ2 – ,

∫∫∫

2

,

m−

[82]: ,

,

,t –

.

-

, ,

dV + ∫∫ ρ m ⋅ψ m ⋅υmn dS = ∫∫∫ J km dV , k ≠ m, k , m = 1, 2;

∂ ( ρ m ⋅ψ m ⋅ υm ) ∂t

S

-

: (2.79 )

V

dV + ∫∫ ρ m ⋅ψ m ⋅ υm ⋅υmn dS = − ∫∫ pm ⋅ ndS +

+ ∫∫ τ nm dS + ∫∫∫ ρ m ⋅ψ m ⋅ Fm dV − ∫∫∫ ρ m ⋅ψ m ⋅ a m dV + ∫∫∫ Pkm dV , S

S

k ≠ m, k , m = 1, 2; S

(2.78)

V

V

(2.79 )

V

⎡ ⎛ υ m2 ⎞ ⎤ υ m2 ⎞ ⎤ ∂ ⎡ n ⎛ ⋅ ⋅ + + ⋅ ⋅ ⋅ + dV ρ ψ ε ρ ψ υ ε ⎢ ⎥ ⎢ ⎜ ⎟ ⎜ ⎟ ⎥ dS = m m m m m m m ∫∫∫ ∫∫S 2 ⎠⎦ 2 ⎠⎦ ∂t ⎣ ⎝ ⎝ V ⎣

(

)

= − ∫∫ pm ⋅υ mn dS + ∫∫ ( τ mn ⋅ υ m ) dS + ∫∫∫ ρ m ⋅ψ m ⋅ Fm ⋅ υ m dV −

− ∫∫∫ ρ m ⋅ψ m ⋅ ( am ⋅ υ m ) dV − ∫∫ Wmn dS + ∫∫∫ Qm dV + ∫∫∫ Ekm dV , k ≠ m, k , m = 1, 2, S

S

V

V

1

S

V

V

В

, ,

© В.Е. Селе

ев, В.В. Алеш

(2.79 )

.

, С.Н. Прял в, 2007–2009

-

92 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

V –

; υ = ( υm ⋅ n ) –

; S –

m1

V ; υm –

,

; υm –

n

(J

, ; τ = τm ⋅ n –

km

υm ; J km – m, pm –

)

k= − J mk ;

n m

m-

,

m[63,

n

( τm – 79]); Fm

,

am – k-

(P

,

m-

km

m-

)

mn ; Ekm –

,

m-

= − Pmk ; ε m –

(

(E

km

; Wm –

m-

,

)

-

; Qm –

,

k-

m,

; Pkm –

m-

-

υm

n m

)

; W = Wm ⋅ n – n m

= − Emk .

Wm Wm = − km ⋅∇Tm ,

m-

km –

m-

; Tm –

-

. Ox . К

,

, V,

f

Δx

Δx

,

. (

,

. 2.6).

-

. V,

Vm Sm –

m-

V1 + V2 = V .

m-

ω

f1 + f 2 = f .

, (2.80 )

Vm . А

, f ,

V;

f ′,

f

, fm –

-

, (2.80 ) ,

S гр –

V

.В . , . .

1

J km = 0.

В

« [89],

© В.Е. Селе

ев, В.В. Алеш

. , С.Н. Прял в, 2007–2009

(2.81) »

-

лава 2 93 _______________________________________________________________________________________

и . 2.6. Схе а

ч

е ре ру

авле е л ев ече я вух а р в у( р л е ече е)

(2.79 )

m,

Vm .

-

∂ρ m dV + ∫∫ ρ m ⋅υ mn dS = 0, m = 1, 2. t ∂ [Vm ] [ Sm ]

∫∫∫

:



Sm Vm (

ω2 ≡ S гр ). К

ре ы

(2.82) f m′ , ω1 ≡ S гр ∪ ω , fm

ωm , .

[84],

ρ –

:

V

∂ ∂ρ ρ dV = ∫∫∫ dV + ∫∫ ρ ⋅ U n dS , ∂t ∫∫∫ ∂t V V S

(

(2.83)

)

V ; U n = U ⋅n –

; U –

dS . В

: ⎡1 ⎛ ⎞⎤ ∂ ρ dV = lim ⎢ ⋅ ⎜ ∫∫∫ ρ ( t + Δt ) dV − ∫∫∫ ρ ( t ) dV ⎟ ⎥ = ∫∫∫ Δt → 0 Δt ⎜ ⎟⎥ ∂t V ⎢⎣ V (t ) ⎝ V (t +Δt ) ⎠⎦ = lim

Δt → 0

∫∫∫ ρ ( t + Δt ) dV − ∫∫∫ ρ ( t ) dV + ∫∫∫ ρ ( t ) dV − ∫∫∫ ρ ( t ) dV

V ( t +Δt )

∫∫∫

V ( t + Δt )

ρ ( t ) dV

∂ρ V ( t + Δt ) −V ( t ) = ∫∫∫ dV + lim 0 t Δ → ∂t Δt V

В

© В.Е. Селе

(2.84)

ев, В.В. Алеш

Δt

∫∫∫

V ( t + Δt ) −V ( t )

V ( t +Δt )

V (t )

= (2.84)

.

ρ ( t ) dV

, С.Н. Прял в, 2007–2009

-

94 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________ 1

.

V

,

(

ρ ⋅ U n ⋅ Δt ⋅ dS –

V Δt

V

∫∫∫

V ( t + Δt ) −V ( t )

dS – U n ⋅ Δt ⋅ dS –

. 2.7), Δt , Δt ,

dS .

,

:

ρ ( t ) dV = ∫∫ ρ ⋅ U n ⋅ ΔtdS .

(2.85)

S

(2.85) (2.84),

(2.83).

и . 2.7. В

А

C1 ( t ) –

а ел

ая хе а

y ( r, t ) ∈ C1 ( t ) ,

, ( ),

-

[84]:

∂ ∂y ydV = ∫∫∫ dV + ∫∫ y ⋅ U n dS . ∂t ∫∫∫ V V ∂t S

(2.86)

(2.82):

⎛ ⎞ ⎛ ∂ρ m ∂ρ dV + ∫∫ ρ m ⋅υ mn dS = ⎜ ∫∫∫ m dV + ∫∫ ρ m ⋅υ mn d ω ⎟ + ⎜ ∫∫ ρ m ⋅υ mx df − ∫∫ ρ m ⋅υ mx df ⎜ [V ] ∂t ⎟ ⎜[f′] [Vm ] ∂t [ Sm ] [ωm ] [ fm ] ⎝ m ⎠ ⎝ m m = 1, 2,

∫∫∫

υmx –

υm

∫∫ ρ

[ fm ] c 1

dS ;

[ f m′ ]

m

Ox 2.

⋅υ mx df − ∫∫ ρ m ⋅υ mx df = Δx ⋅



[ fm ]

,

, ∂ ρ m ⋅υ mx df , ∂x [ ∫∫ fm ]

,

В .

2

© В.Е. Селе

«x» ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

Ox.

: (2.88)

c

m-

⎞ ⎟, ⎟ (2.87) ⎠

лава 2 95 _______________________________________________________________________________________

xc ,

f ′. В

f xc , . .

. .

f

ωm . Δx = const ),

f ′ ),

Vm

ωm ( . .

,

-

Um f

(2.83),

υm

f′

(

:

∂ρ m ∂ρ dV + ∫∫ ρ m ⋅υ mn d ω = ∫∫∫ m dV + ∫∫ ρ m ⋅ U mn dS = [Vm ] ∂t [ωm ] [Vm ] ∂t [ Sm ]

∫∫∫

∂ ∂ ⎛ ρ m dV = ∫ ⎜ ∫∫ ρ m df ∫∫∫ ∂t [Vm ] ∂t Δx ⎜ [ f m ] ⎝ m = 1, 2. =

,

Δx

(2.88)

(2.89)

⎞ ∂ ⎟ dx = Δx ⋅ ∫∫ ρ m df , ⎟ ∂t [ fm ] ⎠ c

Δx ,

(2.87), :

∂ ∂ ρ m df + ∫∫ ρ m ⋅υ mx df = 0, m = 1, 2. x [ fm ] ∂t [∫∫ ∂ fm ]

А :

∫∫∫ ∂t dV + ∫∫ y ⋅υ [Vm ]

∂y

[ Sm ]

n m

dS = Δx ⋅

(2.90)

∂ ∂ ydf + Δx ⋅ y ⋅υ mx df . ∫∫ ∂t [ fm ] ∂x [ ∫∫ fm ] c

В

∂ ( ρm ⋅ f m ) ∂t

(2.92 ) ев, В.В. Алеш

, +

1 ⋅ ρ m df ; f m [∫∫ fm ]

(2.92 )

f 1 ⋅ ∫∫ψ m df = m . f f f

∂ ( ρ m ⋅ wm ⋅ f m )

f = const ,

∂x

, С.Н. Прял в, 2007–2009

(2.92 )

1 ⋅ ρ m ⋅υ mx df ; f m ⋅ ρ m [∫∫ fm ]

ψm =

© В.Е. Селе

m-

ρm = wm =

(2.91)

c

, :

-

y ( r, t ) ∈ C1 ( r, t )

,

,

(2.89)

(2.92 ) :

= 0,

m = 1, 2,

(2.93 )

96 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∂ ( ρ m ⋅ψ m ) ∂t

+

∂ ( ρ m ⋅ wm ⋅ψ m ) ∂x

(2.79 ) :

(2.93 )

m,

Vm .

-

∂ ( ρ m ⋅ υm ) dV + ∫∫ ρ m ⋅ υ m ⋅υ mn dS = − ∫∫ pm ⋅ ndS + ∂ t [Vm ] [ Sm ] [ Sm ]

∫∫∫

+

n ∫∫ τm dS + ∫∫∫ ρ m ⋅ Fm dV − ∫∫∫ ρ m ⋅ am dV .

[ Sm ]

[Vm ]

(2.94) Пе

= 0, m = 1, 2.

е

е

а ае

(2.94)

[Vm ]

.

Ox

е.

(2.91),

:

⎛ ⎞ 2 ∂ ( ρ m ⋅ υm ) ⎞ ⎛ ∂ ∂ ⎜ ∫∫∫ dV ⎟ + ⎜ ∫∫ ρ m ⋅ υ m ⋅υ mn dS ⎟ = Δx ⋅ ∫∫ ρ m ⋅υ mx df + Δx ⋅ ρ m ⋅ (υ mx ) df . ∫∫ ⎜ [V ] ⎟ ⎜ [S ] ⎟ ∂t ∂t [ fm ] ∂x [ fm ] ⎝ m ⎠ ⎝ m ⎠ c c x

x

(2.95) В

, fm :

β mV 2 = ,

(2.92 )

2 1 ⋅ ∫∫ ρ m ⋅ (υ mx ) df . 2 ρ m ⋅ wm ⋅ f m [ fm ]

(2.96),

:

⎛ ⎞ ∂ ( ρ m ⋅ υm ) ⎞ ⎛ ⎜ ∫∫∫ dV ⎟ + ⎜ ∫∫ ρ m ⋅ υ m ⋅υ mn dS ⎟ = ⎜ [V ] ⎟ ⎜ [S ] ⎟ ∂t ⎝ m ⎠ ⎝ m ⎠ ∂ ∂ = Δx ⋅ ( ρ m ⋅ wm ⋅ f m )c + Δx ⋅ ( β mV 2 ⋅ ρ m ⋅ wm2 ⋅ f m ) . c ∂t ∂x x

е ье

(2.96)

а ае

x

е.

⎛ ⎞ ⎛ ⎜ ∫∫ pm ⋅ ndS ⎟ = ⎜ ∫∫ pm df − ∫∫ pm df ⎜ [S ] ⎟ ⎜[f ′] [ fm ] ⎝ m ⎠ ⎝ m x

∫∫ p

[ f m′ ]

:

m

df − ∫∫ pm df = Δx ⋅

pm – © В.Е. Селе

[ fm ]

ев, В.В. Алеш

x

⎛ ∂ ( pm ⋅ f m ) ⎞ ∂ pm df = Δx ⋅ ⎜ ⎟ , ∫∫ ∂x [ fm ] ∂x ⎝ ⎠c c

fm

⎞ ⎛ ⎞ ⎟ + ⎜ ∫∫ pm ⋅ nd ω ⎟ . ⎟ ⎜ [ω ] ⎟ ⎠ ⎝ m ⎠

:

, С.Н. Прял в, 2007–2009

(2.97)

(2.98)

(2.99)

лава 2 97 _______________________________________________________________________________________

pm =

Д

∫∫ ndS = 0 ,

, . .

1 ⋅ pm df . f m [∫∫ fm ]

(2.100)

:

[ Sm ]

⎛ ⎞ ⎛ ⎞ ⎛ ∂f ⎞ ⎜ ∫∫ pm ⋅ nd ω ⎟ = pm ⋅ ⎜ − ∫∫ ndS + ∫∫ nd ω ⎟ = − pm ⋅ ( f m′ − f m ) = − pm ⋅ Δx ⋅ ⎜ m ⎟ , (2.101) ⎜ [ω ] ⎟ ⎜ [S ] ⎟ ⎝ ∂x ⎠ c [ωm ] ⎝ m ⎠ ⎝ m ⎠ x

x

ω

pm – ⎛ ⎞ pm = ⎜ ∫∫ pm ⋅ nd ω ⎟ ⎜ ⎟ ⎝ [ωm ] ⎠

x

,

x x ⎡⎛ ⎞ ⎤ ⎛ ⎞ 1 ⎢ ⎥ pm ⋅ nd ω ⎟ . ⋅ ⎜ ∫∫ nd ω ⎟ = ⋅⎜ ⎟ ⎥ ⎟ ⎢⎜ f m − f m′ ⎝⎜ [∫∫ ωm ] ⎠ ⎦ ⎠ ⎣⎝ [ωm ]

В

−1

(2.102)

:

β mp ω = pm pm . (2.103),

(2.103) :

⎛ ⎞ ⎛ ∂ ( pm ⋅ f m ) ⎞ ⎛ ∂f ⎞ ⎜ ∫∫ pm ⋅ ndS ⎟ = Δx ⋅ ⎜ − Δx ⋅ β mp ω ⋅ pm ⋅ ⎜ m ⎟ . ⎟ ⎜ ⎟ ∂x ⎝ ∂x ⎠ c ⎝ ⎠c ⎝ [ Sm ] ⎠ x

е

е

е

а ае

∫∫ τ

е.

[ Sm ]

Д

τ mxx

Д

n m

dS =

⎛ ⎜ ∫∫ τ mx df ⎜[f ′] ⎝ m

τ mxx –

∫∫ τ

[ f m′ ]

x m

df − ∫∫ τ mx df + [ fm ]

τ ∫∫ ω

[

m

]

(2.105)

⎞ ⎛ ⎟ − ⎜ ∫∫ τ mx df ⎟ ⎜[f ] ⎠ ⎝ m x

f m′

n m

(2.104)

d ω.

(2.105)

:

⎞ ⎟ = τ mxx ⋅ f m′ − τ mxx ⋅ f m , ⎟ ⎠ x

τ mx

fm

(2.106) Ox .

:

⎛ ⎞ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎜ ∫∫ τ 2n d ω ⎟ = ⎜ ∫∫ τ 2n dS ⎟ = ∫ ⎜ ∫ τ 2n d χ ⎟ dx = Δx ⋅ ⎜ ∫ τ 2n d χ ⎟ = Δx ⋅ ( Tp2, гр ⋅ χ гр ) , (2.107 ) ⎜ ⎟ ⎜ ⎡S ⎤ ⎜ ⎡χ ⎤ ⎟ ⎟ Δx ⎜ ⎡ χ гр ⎤ ⎟ ⎝ [ω2 ] ⎠ ⎝ ⎣ гр ⎦ ⎠ ⎝⎣ ⎦ ⎠ ⎝ ⎣ гр ⎦ ⎠ x

x

x

x

χ гр –

,

χ гр

; Tp2, гр –

⎞ 1 ⎛⎜ = ⋅ ∫ τ 2n d χ ⎟ . χ гр ⎜ ⎡ χ гр ⎤ ⎟ ⎝⎣ ⎦ ⎠

τ

n 2

Ox :

x

Tp2, гр

Д © В.Е. Селе

: ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(2.107 )

98 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________ x ⎞ ⎛ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ∫∫ τ1n d ω ⎟ = ⎜ ∫∫ τ1n dS ⎟ + ⎜ ∫∫ τ1n d ω ⎟ = ∫ ⎜ ∫ τ1n d χ ⎟ dx + ⎜ ⎟ ⎟ ⎟ ⎠ Δx ⎝⎜ ⎡⎣ χ гр ⎤⎦ ⎝ [ω1 ] ⎠ ⎝⎜ ⎡⎣ Sгр ⎤⎦ ⎠ ⎝ω ⎠ x

x

x

⎛ ⎞ n ∫Δx ⎜⎜ ∫ τ1 d χ ⎟⎟ dx = ⎝ ⎡⎣ χ тру а ⎤⎦ ⎠ x

⎛ ⎞ ⎛ ⎞ = Δx ⋅ ⎜ ∫ τ1n d χ ⎟ + Δx ⋅ ⎜ ∫ τ1n d χ ⎟ = Δx ⋅ (Tp1, гр ⋅ χ гр ) + Δx ⋅ (Tpтру а ⋅ χ тру а ) , ⎜ ⎡χ ⎤ ⎟ ⎜ ⎡χ ⎤ ⎟ ⎝ ⎣ гр ⎦ ⎠ ⎝ ⎣ тру а ⎦ ⎠ (2.108) x

x

χ тру а – τ

χ тру а

; Tpтру а –

n 1

χ гр

Ox ; Tp1, гр –

Tpтру а =

⎛ ⎞ ⋅ ⎜ ∫ τ1n d χ ⎟ ; ⎜ ⎡ χтру а ⎤ ⎟ ⎦ ⎝⎣ ⎠ x

χ тру а 1

,

τ

n 1

Ox :

⎞ 1 ⎛⎜ = ⋅ ∫ τ1n d χ ⎟ ; χ гр ⎜ ⎡ χ гр ⎤ ⎟ ⎝⎣ ⎦ ⎠ x

Tp1, гр

Tp1, гр = −Tp2, гр .

(2.106)

(2.109 ) (2.109 )

f m′

fm

ωm , m = 1, 2 .



[84, 108] (

⎡⎛ ∂ υ i

):

τ ij = μ ⋅ ⎢⎜

⎣⎝ ∂ x

τ ij –

υ i , i = 1,3,

);

j

+

∂ υ j ⎞ 2 ij ∂ υ k ⎤ ⎟ − ⋅ δ ⋅ k ⎥ , i, j , k = 1,3, ∂ xi ⎠ 3 ∂x ⎦

τ ( –

; δ ij –

m υ;

; μ –

К

(2.110) x i , i = 1,3,

– -

. В

, : Re1 =

δ

μ1 –

ρ1 ⋅ w1 ⋅ δ , μ1

(2.111) -

f1

. Re1 > 400

[79], ,

δ* f2

, .К

, .И

1

f1 ,

, , 1

© В.Е. Селе

. 2.8.

, ев, В.В. Алеш

. , С.Н. Прял в, 2007–2009

-

лава 2 99 _______________________________________________________________________________________

и . 2.8. Схе а

ч

е ре

авле

И

е ра

ре еле ру ы

я

ω1

, ,

f m′

р

е

ереч

ω2 .

(

fm 1

.

(

у ече

τ mxx

. (2.110)),

)

τ mxx ,

-

, Tpтру а (

Tpm , гр

. (2.107 – 2.109)). ,

:

⎛ ⎞ ⎜ ∫∫ τ nm dS ⎟ = Δx ⋅ (Tpm , гр ⋅ χ гр ) + δ 1m ⋅ Δx ⋅ ( Tpтру а ⋅ χ тру а ) . ⎜ [S ] ⎟ ⎝ m ⎠ x

Пя

е

а ае

е.

⎛ ⎞ ⎛ ⎜ ∫∫∫ ρ m ⋅ Fm dV ⎟ = ∫ ⎜ ∫∫ ρ m ⋅ Fmx df ⎜ [V ] ⎟ Δx ⎜ [ f ] ⎝ m ⎠ ⎝ m x

Fmx –

Fmx = Ше

е

а ае

е.

x

1

В

⎞ ⎟dx = Δx ⋅ ∫∫ ρ m ⋅ amx df = Δx ⋅ ( ρ m ⋅ amx ⋅ f m ) , c ⎟ [ f m ]c ⎠ fm

,

,

, ,

© В.Е. Селе

,

ев, В.В. Алеш

Fmx :

(2.114)

Ox ; amx –

am

fm ,

fm

1 ⋅ ρ m ⋅ Fmx df . ρ m ⋅ f m [∫∫ fm ]

⎛ ⎞ ⎛ ⎜ ∫∫∫ ρ m ⋅ am dV ⎟ = ∫ ⎜ ∫∫ ρ m ⋅ amx df ⎜ [V ] ⎟ Δx ⎜ [ f ] ⎝ m ⎠ ⎝ m amx –

⎞ ⎟dx = Δx ⋅ ∫∫ ρ m ⋅ Fmx df = Δx ⋅ ( ρ m ⋅ Fmx ⋅ f m ) , (2.113) c ⎟ [ f m ]c ⎠

Ox ; Fmx –

Fm

(2.112)

. , С.Н. Прял в, 2007–2009

(2.115)

amx :

.

100 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

amx = Δx

∂ ( ρ m ⋅ wm ⋅ f m ) ∂t

ρm ⋅ fm 1

⋅ ∫∫ ρ m ⋅ amx df .

Δx

(2.94)

(2.116)

[ fm ]

,

-

.

∂ ( β mV 2 ⋅ ρ m ⋅ wm2 ⋅ f m )

:

+

+ δ 1m ⋅ Tpтру а ⋅ χ тру а

⎛ ∂ ( pm ⋅ f m ) ∂f ⎞ = −⎜ − β mp ω ⋅ pm ⋅ m ⎟ + Tpm , гр ⋅ χ гр + ∂x ∂x ∂x ⎠ (2.117) ⎝ x x + ρ m ⋅ Fm ⋅ f m − ρ m ⋅ am ⋅ f m .

,

,

:

Fmx = g ⋅ cos Ω = − g ⋅

∂z1 , ∂x

(2.118) ,

z1



); Ω – Ox ); g –

)( . x (x –

g

-

(

. [82],

p1



p2 , σ′

1 Rкрив [68, 82]:

p1 = p2 + σ ′ Rкрив ,

R ′′ –

1 Rкрив = 1 R′ + 1 R′′ , R ′ . В :

[82]

(2.119) -

p1 = p2 = p1 = p2 = p;

(2.120)

β mp ω = 1.

R –

(2.121)

,

χ тру а = 2 ⋅ π ⋅ R = 2 ⋅ π ⋅ f . ,

(R −δ ) ,

, δ –

R −δ =



f2 π = ψ 2 ⋅ f π ;

χ гр = 2 ⋅ π ⋅ ( R − δ ) = 2 ⋅ π ⋅ f 2 = 2 ⋅ π ⋅ψ 2 ⋅ f . ев, В.В. Алеш

-



δ = R − f2 π = R − ψ 2 ⋅ f π ;

© В.Е. Селе

(2.122)

, С.Н. Прял в, 2007–2009

,

: (2.123 ) (2.123 ) (2.123 )

лава 2 101 _______________________________________________________________________________________

,

,

-

2 V2 ∂ ( ρ m ⋅ wm ⋅ f m ) ∂ ( β m ⋅ ρ m ⋅ wm ⋅ f m ) + = ∂t ∂x (2.124 ) ∂p ∂z1 x 1m = − f m ⋅ + 2 ⋅ Tpm , гр ⋅ π ⋅ f 2 + 2 ⋅ δ ⋅ Tpтру а ⋅ π ⋅ f − ρ m ⋅ g ⋅ ⋅ f m − ρ m ⋅ am ⋅ f m ∂x ∂x

:

∂ ( ρ m ⋅ wm ⋅ψ m ) ∂t

+ 2 ⋅δ

1m

+

∂ ( β mV 2 ⋅ ρ m ⋅ wm2 ⋅ψ m )

⋅ Tpтру а ⋅

π

∂x

= −ψ m ⋅

π ⋅ψ 2 ∂p + 2 ⋅ Tpm , гр ⋅ + f ∂x

∂z − ρ m ⋅ g ⋅ 1 ⋅ψ m − ρ m ⋅ amx ⋅ψ m , f ∂x

(2.124 )

m = 1, 2 . (2.124 )

(2.124 ), -

, fm :

∂ ( ρ m ⋅ wm ⋅ f m ) ∂t

+

∂ ( ρ m ⋅ wm2 ⋅ f m )

+

∂ ( ρ m ⋅ wm2 ⋅ψ m )

∂x

=

∂z ∂p = − f m ⋅ + 2 ⋅ Tpm , гр ⋅ π ⋅ f 2 + 2 ⋅ δ 1m ⋅ Tpтру а ⋅ π ⋅ f − ρ m ⋅ g ⋅ 1 ⋅ f m ∂x ∂x ∂ ( ρ m ⋅ wm ⋅ψ m ) ∂t

∂x

=

∂z π ⋅ψ 2 ∂p π = −ψ m ⋅ + 2 ⋅ Tpm , гр ⋅ + 2 ⋅ δ 1m ⋅ Tpтру а ⋅ − ρ m ⋅ g ⋅ 1 ⋅ψ m , ∂x ∂x f f m = 1, 2 . К

(2.124 )

Tpтру а

(2.124 )

-

Tpm , гр

.

m,

(2.79 ) :

∂ ⎡

∫∫∫ ∂t ⎢ ρ [Vm ]



m

-

⎡ ⎛ ⎛ υ 2 ⎞⎤ υ 2 ⎞⎤ ⋅ ⎜ ε m + m ⎟ ⎥ dV + ∫∫ ⎢ ρ m ⋅υ mn ⋅ ⎜ ε m + m ⎟ ⎥ dS = 2 ⎠⎦ 2 ⎠⎦ ⎝ ⎝ [ Sm ] ⎣

= − ∫∫ pm ⋅υ mn dS + [ Sm ]

Vm .

∫∫ ( τ

[ Sm ]

n m

(

[Vm ]

− ∫∫∫ ρ m ⋅ ( am ⋅ υ m ) dV − ∫∫ Wmn dS + ∫∫∫ Qm dV . [Vm ]

[ Sm ]

(2.125). © В.Е. Селе

ев, В.В. Алеш

)

⋅ υ m ) dS + ∫∫∫ ρ m ⋅ Fm ⋅ υ m dV −

, С.Н. Прял в, 2007–2009

[Vm ]

(2.125)

102 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Пе

е

е

а ае

∂ ⎡

∫∫∫ ∂t ⎣⎢ ρ [Vm ]

m

е.

(2.91),

⎡ ⎛ ⎛ υ 2 ⎞⎤ υ 2 ⎞⎤ ⋅ ⎜ ε m + m ⎟ ⎥ dV + ∫∫ ⎢ ρ m ⋅υ mn ⋅ ⎜ ε m + m ⎟ ⎥ dS = 2 ⎠⎦ 2 ⎠⎦ ⎝ ⎝ [ Sm ] ⎣

⎡ ⎡ ⎛ υ m2 ⎞ ⎤ υ m2 ⎞ ⎤ ∂ x ⎛ ρ ε ρ υ ε df x ⋅ + + Δ ⋅ ⋅ ⋅ + ⎢ m ⎜ m ⎢ m m ⎜ m ⎟⎥ ⎟ ⎥ df = ∂x [ ∫∫ 2 ⎠⎦ 2 ⎠⎦ ⎝ ⎝ f ⎣ ⎣ ] m c c (2.126 ) 2 ⎞ w ∂⎛ = Δx ⋅ ⎜ ρ m ⋅ ε m ⋅ f m + β mV 2 ⋅ ρ m ⋅ m ⋅ f m ⎟ + ∂t ⎝ 2 ⎠c

= Δx ⋅

+ Δx ⋅

∂ ∂t [ ∫∫ fm ]

⎞ wm3 ∂ ⎛ VE V3 ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ fm ⎟ , w f ρ ε β ρ β ⎜ m m m m m m m ∂x ⎝ 2 ⎠c

εm =

ρm ⋅ fm

β mV 2 =

β mVE =

β mV 3 = е ье

а ае

е.

∫∫ p

[ Sm ]

∫∫ p

β

[ f m′ ] PV m

m

m

⋅υ mn dS =

∫∫

1

[ f m′ ]

:

(2.126 )

[ fm ]

(2.126 )

ρ m ⋅ ε m ⋅ wm ⋅ f m

(2.126 )

1

⋅ ∫∫ ρ m ⋅υ mx ⋅ ε m df ; [ fm ]

1 ⋅ ρ m ⋅υ mx ⋅υ m2 df . ρ m ⋅ wm3 ⋅ f m [∫∫ fm ]

m

⋅υ mx df − ∫∫ pm ⋅υ mx df +

⋅υ mx df − ∫∫ pm ⋅υ mx df = Δx ⋅ [ fm ]

⋅ ∫∫ ρ m ⋅ ε m df ;

1 ⋅ ρ m ⋅υ m2 df ; ρ m ⋅ wm2 ⋅ f m [∫∫ fm ]

∫∫ p

[ fm ]

(2.126 )

p ∫∫ ω

[

m

]

m

⋅υ mn d ω.

∂ ∂ pm ⋅υ mx df = Δx ⋅ ( β mPV ⋅ pm ⋅ wm ⋅ f m ) , (2.128) c x ∂x [ ∫∫ ∂ fm ]



,

pm ⋅υ mn d ω =

∫∫

⎣⎡ Sгр ⎦⎤

-

fm :

1 ⋅ pm ⋅υ mx df . pm ⋅ wm ⋅ f m [∫∫ fm ]

(2.127). . . , S гр :

pm ⋅υ mn dS = pm ⋅



n ∫∫ υm dS = pm ⋅ ∫ ⎜

⎣⎡ Sгр ⎦⎤

Δx

⎜ ⎡ χ∫гр ⎤ ⎝⎣ ⎦

(2.129) ⎞

υ mn d χ ⎟ dx = ⎟ ⎠

⎛ ⎞ = pm ⋅ Δx ⋅ ⎜ ∫ υ mn d χ ⎟ = pm ⋅ Δx ⋅ ( wmn , гр ⋅ χ гр ) = Δx ⋅ ( β mPV ω ⋅ pm ⋅ wmn , гр ⋅ χ гр ) , ⎜ ⎡χ ⎤ ⎟ ⎝ ⎣ гр ⎦c ⎠

© В.Е. Селе

ев, В.В. Алеш

(2.127)

c

β mPV =

[ωm ]

:

, С.Н. Прял в, 2007–2009

(2.130)

лава 2 103 _______________________________________________________________________________________

pm =

n ∫∫ υm dS

1

∫∫



⎡⎣ S гр ⎤⎦

( β ) = ( pp ) PV ω m c

wmn , гр =

⎣⎡ S гр ⎦⎤

m



(2.131 )

(2.131 )

;

m c



χ гр 1

pm ⋅υ mn dS ;

⎡⎣ χ гр ⎤⎦

υ mn d χ ,

w1,n гр = − w2,n гр .

(2.131 )

[82].

∫∫ p

:

[ Sm ]

е

е

⋅υ mn dS = Δx ⋅

m

∫∫ ( τ

е

а ае [ Sm ]

∂ ( β mPV ⋅ pm ⋅ wm ⋅ f m )c + Δx ⋅ ( β mPV ω ⋅ pm ⋅ wmn , гр ⋅ χ гр ) . ∂x

⋅ υ m ) dS =

∫∫ ( τ

е. n m

,

[ f m′ ]

⋅ υ m ) df − ∫∫ ( τ mx ⋅ υ m ) df +

x m

[ fm ]

(τ ∫∫ ω

[

m]

n m

⋅ υ m ) d ω.

(2.133). ,

∫∫ ( τ

[ωm ]

n m

⋅ υm ) d ω =

= Δx ⋅

AmТр –

∫∫ ( τ

∫ (τ

⎡⎣ χ гр ⎤⎦ c

⋅ υ m ) dS =

AmТр =

χ гр 1

(2.134)

Тр m

∫ (τ

⎡⎣ χ гр ⎤⎦

n m

⋅ υm ) d χ ;

И

(

,

∫∫ ( τ

[ Sm ]

е

а ае

е.

∫∫∫ ρ ⋅ ( F [Vm ]

m

= Δx ⋅

© В.Е. Селе

ев, В.В. Алеш

)

⋅ υ m dV =

∫∫ ρ ⋅ ( F m

n m

A1Тр = − A2Тр .

(2.135)

[ f m ]c

m

m

(2.105).

⋅ υ m ) dS = Δx ⋅ ( AmТр ⋅ χ гр ) .

∫ ⎜⎜ ∫∫ ρ ⋅ ( F ⎛

⎝ [ fm ]

)

, С.Н. Прял в, 2007–2009

m

(2.136)

)

⎞ ⋅ υ m df ⎟ dx = ⎟ ⎠

⋅ υ m df = Δx ⋅ ( β Δx

m

:

(2.133) , ,

Пя

⎛ ⎞ n ⎜ d τ υ ⋅ χ ( ) ∫ ⎜ ∫ m m ⎟⎟ dx = Δx ⎣⎡ χ гр ⎦⎤ ⎝ ⎠

χ гр ⋅

. .

S гр :

m)

(2.133)

⋅ υ m ) d χ = Δx ⋅ ( A ⋅ χ гр ) ,

⎣⎡ Sгр ⎦⎤ n m

n m

(2.132)

gw m

⋅ ρ m ⋅ wm ⋅ F ⋅ f m ) , x m

c

(2.137)

104 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

(

Ше

е

а ае

е.

∫∫∫ ρ ⋅ ( a [Vm ]

m



∫ ⎜⎜ ∫∫ ρ ⋅ ( a

⋅ υ m ) dV =

= Δx ⋅ ( β m

aw m

е

а ае

⎝ [ fm ]

⋅ ρ m ⋅ wm ⋅ amx ⋅ f m ) , Δx

е.

∫∫ W

[ Sm ]

Д

n m

∫∫ W

[ fm ]

x m

[ f m′ ]

⎞ ⋅ υ m ) df ⎟ dx = Δx ⋅ ∫∫ ρ m ⋅ ( am ⋅ υ m ) df = ⎟ (2.139) [ f m ]c ⎠

dS =

∫∫ W

x m

[ f m′ ]

df − ∫∫ Wmx df + [ fm ]

df = − ∫∫ km ⋅ [ fm ]

W ∫∫ ω

n m

[ m]

(2.140)

d ω.

(2.141)

∂Tm ∂T df = − km ⋅ f m ⋅ m , ∂x ∂x

(2.141) : (2.142)

m-

fm

; Tm –

x m

m

1 ⋅ ρ m ⋅ ( am ⋅ υ m ) df . ρ m ⋅ wm ⋅ amx ⋅ f m [∫∫ fm ]

km –

∫∫ W

m

(2.138)

c

β ma w = Се ь

)

1 ⋅ ρ m ⋅ Fm ⋅ υ m df . ρ m ⋅ wm ⋅ Fmx ⋅ f m [∫∫ fm ]

β mg w =

.

fm

⎛ ⎞ ∂T ∂T ∂T ⎞ ∂ ⎛ df − ∫∫ Wmx df = − ⎜ ∫∫ km ⋅ m df − ∫∫ km ⋅ m df ⎟ = −Δx ⋅ ⎜ km ⋅ f m ⋅ m ⎟ . (2.143) ⎜ ⎟ x x x ∂ ∂ ∂ ∂x ⎠c ⎝ [ fm ] [ fm ] ⎝ [ fm′ ] ⎠

Д

(2.141) :

∫∫ω W

[ 2]

n 2

dω =

∫∫ W

n 2

⎡⎣ S гр ⎤⎦

dS =

⎞ W2n d χ ⎟ dx = Δx ⋅ ∫ W2n d χ = Δx ⋅ ( Φ 2, гр ) , ⎟ Δx ⎡ χ гр ⎤ ⎡⎣ χ гр ⎤⎦ ⎝⎣ ⎦ ⎠ c ⎛

∫ ⎜⎜ ∫

Φ 2, гр = Φ 2, гр

(2.145)

)

n ∫∫ W1 d ω =

[ω1 ]

© В.Е. Селе

⎡⎣ χ гр ⎤⎦

W2n d χ .

χ гр ( Φ 2, гр > 0 –

( Д



(2.144)

= Δx ⋅



∫∫

⎡⎣ Sгр ⎤⎦

⎡⎣ χ гр ⎤⎦ c

).

:

W1n dS + ∫∫ W1n d ω = [ω ]

W d χ + Δx ⋅

ев, В.В. Алеш

n 1

∫W

[ χ ]c

n 1

⎛ ⎞ n ⎜ ⎟ dx + W d χ 1 ∫⎜ ∫ ⎟ Δx ⎡⎣ χ гр ⎤⎦ ⎝ ⎠

⎛ ⎞ n W d dx = χ ⎜ ⎟ 1 ∫ ⎜∫ ⎟ Δx ⎝ χ ⎠

d χ = Δx ⋅ ( Φ1, гр ) + Δx ⋅ ( Φ oc ) .

, С.Н. Прял в, 2007–2009

(2.146)

лава 2 105 _______________________________________________________________________________________



Φ1, гр =

⎡⎣ χ гр ⎤⎦

W1n d χ ;

(2.147 )

Φ oc = ∫ W1n d χ ;

(2.147 )

χ

Φ1, гр = −Φ 2, гр .

Φ1, гр

χ гр ( Φ1, гр > 0 –

(

[ Sm ]

,

n m

а ае

). ) ( Φ oc > 0 –

(

∫∫ W

е

Φ oc

)

χ

В ь

(2.147 )

dS = −Δx ⋅

е.

∫∫∫ Q [Vm ]

:

dV =



∫ ⎜⎜ ∫∫ Q

Δx

⎝ [ fm ]

Qm = Δx

).

∂T ⎞ ∂ ⎛ km ⋅ f m ⋅ m ⎟ + Δx ⋅ ( Φ m , гр ) + δ 1m ⋅ Δx ⋅ ( Φ oc ) . ∂x ⎜⎝ ∂x ⎠ c

m

-

(2.125) Δx

m

(2.148)

⎞ df ⎟ dx = Δx ⋅ ( Qm ⋅ f m )c , ⎟ ⎠

(2.149)

1 ⋅ Qm df . f m [∫∫ fm ]

(2.150) ,

.

:

⎞ ∂ ⎛ ⎞ wm2 w3 ∂⎛ V2 ⋅ f m ⎟ + ⎜ β mVE ⋅ ρ m ⋅ ε m ⋅ wm ⋅ f m + β mV 3 ⋅ ρ m ⋅ m ⋅ f m ⎟ = ⎜ ρm ⋅ ε m ⋅ f m + β m ⋅ ρm ⋅ 2 2 ∂t ⎝ ⎠ ∂x ⎝ ⎠ ∂ = − ( β mPV ⋅ pm ⋅ wm ⋅ f m ) − β mPV ω ⋅ pm ⋅ wmn , гр ⋅ χ гр + AmТр ⋅ χ гр + β mg w ⋅ ρ m ⋅ wm ⋅ Fmx ⋅ f m − (2.151) ∂x ∂T ⎞ ∂ ⎛ − β ma w ⋅ ρ m ⋅ wm ⋅ amx ⋅ f m + ⎜ km ⋅ f m ⋅ m ⎟ − Φ m , гр − δ 1m ⋅ Φ oc + Qm ⋅ f m . ∂x ⎝ ∂x ⎠

[79],

wΣ ≈ 1,1 ⋅ w1 .

(2.152 )

χ гр

, wΣ

:

wгрx = 1,1 ⋅ w1 .

, , © В.Е. Селе

:

ев, В.В. Алеш



, С.Н. Прял в, 2007–2009

,

-

x(2.152 )

δ

106 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

(2.123 ). Д

χ гр

-

wгрx , . . w гр = {wгрr , 0, wгрx } .

wгрr

:

T

Н

wгрr .

-

r.

(

dt (

)

dr = w ⋅ dt.

. 2.9):

r гр

и . 2.9. П

ереч ы ра ре

л

(2.153)

ев

ече

я в ру е

И f2

f1 )

(

df 2 = − df1 = χ гр ⋅ dr = 2 ⋅ π ⋅ ( R − δ ) ⋅ w ⋅ dt

.

( . 2.9):

r гр

,

(2.123),

wгрr =

1

2 ⋅ π ⋅ f2



(2.154 )

∂f 2 . ∂t

(2.154 ) ,

wгрn

(

и . 2.10. Пр © В.Е. Селе

ев, В.В. Алеш

л

ы ра ре

. 2.10).

л

ев

, С.Н. Прял в, 2007–2009

ече

-

я в ру е ( ра

е

)

лава 2 107 _______________________________________________________________________________________

δ ( x) –

Д . xOr (

.

.Н ,

. 2.10)

:

h ( x ) = ⎡⎣ R − δ ( x0 ) ⎤⎦ − δ x′ ( x0 ) ⋅ ( x − x0 ) ,

(2.155)

r ( x ) = ( R − δ ( x )) ,

x0 –

δ x′ ≡ ∂δ ∂x .

(2.155), Θ χ = {1, − δ x′} –

И

T

;

,

.

Ox,



-

Or.

, (

.

. 2.10): n1, χ

⎧ δ x′ 1 ⎪ , − = ⎨− 2 2 ⎪⎩ 1 + (δ x′ ) 1 + (δ x′ ) ⎧ δ x′ ⎪ , =⎨ 2 ⎪⎩ 1 + (δ x′ )

n 2, χ

В

xOr ( n m , гр

w

(

1 + (δ x′ )

wmn , гр = ( w гр ⋅ n m , χ ) = (−1) m ⋅

δ x′ =

(2.156 )

⎫ ⎪ ⎬ . ⎭⎪

2

(2.156 )

. 2.10) w гр = {wгрx , wгрr } .

.

,

T

T

1

. (2.131 ))

δ x′

⎫ ⎪ ⎬ ; ⎭⎪

wгрx ⋅ δ x′ + wгрr 1 + (δ x′ )

2

(2.156),

: (2.157)

.

(2.123 ):

∂ ⎛ ⎜R− ∂x ⎝⎜

∂f ∂ψ 2 f2 ⎞ f 1 1 ⋅ 2 =− ⋅ ⋅ . ⎟=− 2 π ⋅ψ 2 ∂x π ⎠⎟ 2 ⋅ π ⋅ f 2 ∂x

(2.158)

AmТр ,

(

τ

,

. (2.135)).

(2.135)

. В

τ nm

2.10)

n m

(

.

.

,

τ n ≈ τ nx .

:

(2.159)

. .

, ( .

V1

S гр . (2.135)):

© В.Е. Селе

, AmТр =

χ гр 1

ев, В.В. Алеш





⎣⎡ χ гр ⎦⎤

τ mn ⋅ υ m d χ ≈

χ гр 1





⎣⎡ χ гр ⎦⎤

, С.Н. Прял в, 2007–2009

τ mnx ⋅υ грx d χ ≈ Tpm , гр ⋅ wгрx ,

(2.160)

108 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

τ mnx –

τ nm

, (2.151)

Ox . (2.118), (2.120)

(2.123),

:

⎞ ∂ ⎛ VE ⎞ wm2 wm3 ∂⎛ V2 V3 f f w f ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ fm ⎟ = ρ ε β ρ β ρ ε β ρ ⎜ m m m ⎜ m m m m⎟ m m m m m m ∂t ⎝ 2 2 ⎠ ∂x ⎝ ⎠ x r ′ ⋅ + w w δ ∂ m гр = − ( β mPV ⋅ p ⋅ wm ⋅ f m ) − β mPV ω ⋅ 2 ⋅ π ⋅ ( R − δ ) ⋅ ( −1) ⋅ p ⋅ гр x + 2 ∂x 1 + (δ x′ ) + 2 ⋅ π ⋅ ( R − δ ) ⋅ Tpm ,гр ⋅ wгрx − β mg w ⋅ ρ m ⋅ wm ⋅ f m ⋅ g ⋅

− β ma w ⋅ ρ m ⋅ wm ⋅ amx ⋅ f m +

∂Tm ⎞ ∂ ⎛ ⎜ km ⋅ f m ⋅ ⎟− ∂x ⎝ ∂x ⎠

∂z1 − ∂x

(2.161 )

− Φ m , гр − δ 1m ⋅ Φ oc + Qm ⋅ f m

⎞ ∂ ⎛ ⎞ wm2 w3 ∂⎛ V2 ⋅ψ m ⎟ + ⎜ β mVE ⋅ ρ m ⋅ ε m ⋅ wm ⋅ψ m + β mV 3 ⋅ ρ m ⋅ m ⋅ψ m ⎟ = ⎜ ρ m ⋅ ε m ⋅ψ m + β m ⋅ ρ m ⋅ 2 2 ∂t ⎝ ⎠ ∂x ⎝ ⎠ =−

wгрx ⋅ δ x′ + wгрr ∂ PV PV ω 2 ⋅ π ⋅ ( R − δ ) ⋅ ( −1) p w p ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + β ψ β ( m m m) m 2 f ∂x 1 + (δ ′ ) m

2 ⋅π ⋅ ( R − δ ) ∂z + ⋅ Tpm , гр ⋅ wгрx − β mg w ⋅ ρ m ⋅ wm ⋅ψ m ⋅ g ⋅ 1 − f ∂x − β ma w ⋅ ρ m ⋅ wm ⋅ amx ⋅ψ m + −

Φ m , гр f



m = 1, 2 .

δ 1m ⋅ Φ oc f

x

(2.161 )

∂Tm ⎞ ∂ ⎛ ⎜ km ⋅ψ m ⋅ ⎟− ∂x ⎝ ∂x ⎠

+ Qm ⋅ψ m ,

(2.161 )

(2.161 ), , ,

,

⎛ ⎛ wm2 ⎞ ⎤ ∂ ⎡ wm2 ⎞ ⎤ ∂ ⎡ + ⋅ ⋅ + w f ρ ε ⎢ ρm ⋅ fm ⋅ ⎜ ε m + ⎥ ⎢ ⎟ ⎟⎥ = m m m ⎜ m 2 ⎠ ⎥⎦ ∂x ⎢⎣ 2 ⎠ ⎥⎦ ∂t ⎢⎣ ⎝ ⎝ wгрx ⋅ δ x′ + wгрr ∂ m = − ( p ⋅ wm ⋅ f m ) − 2 ⋅ π ⋅ ( R − δ ) ⋅ ( −1) ⋅ p ⋅ + 2 ∂x 1 + (δ x′ ) + 2 ⋅ π ⋅ ( R − δ ) ⋅ Tpm , гр ⋅ wгрx − ρ m ⋅ wm ⋅ f m ⋅ g ⋅

+

∂T ∂ ⎛ km ⋅ f m ⋅ m ∂x ⎜⎝ ∂x

© В.Е. Селе

∂z1 + ∂x

⎞ 1m ⎟ − Φ m , гр − δ ⋅ Φ oc + Qm ⋅ f m ⎠

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

, fm :

(2.161 )

лава 2 109 _______________________________________________________________________________________

⎛ ⎛ wm2 ⎞ ⎤ ∂ ⎡ wm2 ⎞ ⎤ ∂ ⎡ + ⋅ ⋅ + ρ ψ ε w ⎢ ρ m ⋅ψ m ⋅ ⎜ ε m + ⎥ ⎢ ⎟ ⎟⎥ = m m m⎜ m 2 ⎠ ⎦⎥ ∂x ⎣⎢ 2 ⎠ ⎦⎥ ∂t ⎣⎢ ⎝ ⎝

wгрx ⋅ δ x′ + wгрr 2 ⋅ π ⋅ ( R − δ ) ⋅ ( −1) ∂ = − ( p ⋅ wm ⋅ψ m ) − ⋅ p⋅ + 2 ∂x f 1 + (δ ′ ) m

2 ⋅π ⋅ ( R − δ )

∂z + ⋅ Tpm , гр ⋅ wгрx − ρ m ⋅ wm ⋅ψ m ⋅ g ⋅ 1 + f ∂x 1m ∂T ⎞ Φ m , гр δ ⋅ Φ oc ∂ ⎛ + ⎜ km ⋅ψ m ⋅ m ⎟ − − + Qm ⋅ψ m , f f ∂x ⎝ ∂x ⎠

Φ m , гр

m = 1, 2 . К

Д

Φ oc

, ,

.

(2.161 )

x

. ,

, . [79], ,

«

δ

»,

, .

, ,

-

ν υ L ( r ) = υ L ⋅ (1 − r R ) 1 ,

:

υL –

(2.162) ,

L ; ν1 –

.

Tp тру а ,

-

Tpm , гр

,

-

,

( )

Н

. Tp тру а = Cтру а ⋅

ρ1 ⋅ w

2 1

2

[79]: (2.163)

,

[79]. Д

Cтру а –

-

, ,

ν 1 = 1 7 [79]: [85],

Tpтру а = Cтру а 4 ⋅ C тру а ( L ) Re L = © В.Е. Селе

ев, В.В. Алеш

( L) ⋅

-

ρ1 ⋅ wL2

2 0,316 = 0,25 ; Re L

ρ1 ⋅ wL ⋅ D ; μ1

, С.Н. Прял в, 2007–2009

;

(2.164 ) (2.164 )

(2.164 )

110 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Re L , wL , Cтру а

(L)



,

-

; D – wL =

14 ⎛ δ ⎞ ⋅⎜ ⎟ 15 ⎝ R ⎠

Re L = 2 ⋅ Cтру а =

И

(2.165),

(2.164 ) [79]:

. −1 7

wL2 ⋅ Cтру а w12

(2.165 )

(L)

(2.165 ) (2.165 )

.

«

»

[79], Cтру а ,

⋅ w1 ;

R wL ⋅ ⋅ Re1 ; δ w1

Cтру а = 0, 0589 Re10,25 ,

В

[79]:

-

Re1 > 300 ÷ 400.

(2.166) Δp

(2.166) ΔL ,

δ

-

. А

Cтру а

Δp p 26 П ,

.А (2.178).

Д

Fr м > FrA . Э

,

ϕk = μ

1 − 0, 78 ⋅ β 2 − 0, 22 ⋅ ⎣⎡1 − exp ( −15 ⋅ ρ ) ⎦⎤ ⋅ β 2

[82]:

(

1 − β 2 + 0, 03 ⋅ exp −1,35 ⋅10 ⋅ (1 − β 2 ) 3

,

(2.178 ) ;

μ1 , (2.176 )

(2.178 )

«

3

)

-

⎛ 1 − β2 ⎞ − t ⋅ exp ⎜ − ⋅ κ 03 ⎟ . 5,5 ⎝ ⎠



(2.179)

»,

-

.

«

– f (μ

[82]:

»

) = 1 + 0, 03 ⋅ μ

(2.180)

,

. В

(

ϕk

[82])

We =

В

.

σ′ g ⋅ ( ρ1 − ρ 2 ) ⋅ D 2

κ0 ,

[82] (2.179)

.

(2.180)

ϕ k = (1 + 0, 03 ⋅ μ



[82]:

⎡1 − 0, 78 ⋅ β − 0, 22 ⋅ ⎡1 − exp −15 ⋅ ρ ⎤ ⋅ β ⎤ (2.181) ( )⎦ 2 ⎛ 1 − β2 2 ⎣ 3 ⎞⎥ ⎢ × − t ⋅ exp ⎜ − ⋅ κ0 ⎟ . ⎢ 1 − β + 0, 03 ⋅ exp −1,35 ⋅103 ⋅ (1 − β )3 ⎝ 5,5 ⎠⎥ 2 2 ⎢⎣ ⎥⎦

В

)

[82]:

wм⋅ ρ

⎛ ρ − ρ2 ⎞ ⋅⎜ 1 s* = ⎟ 3 3,3 ⋅ 0, 25 + 0, 75 ⋅ sin α ⎝ g ⋅ σ ⎠

(

α – © В.Е. Селе

(

)

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

0,25

,

β2 = 1 , . .

(2.182) -

лава 2 115 _______________________________________________________________________________________ 1

,

,

[82]:

ρ1 0,25 ρ2 ⎛ g ⋅σ ⎞ ⋅ w= ⎜ ⎟ . 1 + 2, 75 ⋅10−3 ⋅ ( μ − 1) ⎝ ρ1 − ρ 2 ⎠ 0,86 ⋅

s* , ,

s∗k =

[82]: 3,3 ⋅ ⎡⎣1 + 2, 75 ⋅10−3 ⋅ ( μ − 1) ⎤⎦ 0,86

ψ 2 = (ψ 2 ) р

[82],

(ψ 2 ) р

(2.183)

к

(2.184)

.

:

+ Δψ 2 ,

(2.185)

; Δψ 2 –



к

.

,

[82]

ψ 2 = β 2 ⋅ ( 0,5 + 0,31 ⋅ exp ⎣⎡0, 067 ⋅ (1 − μ

(

⎡ + ⎢ 0,5 − 0,31 ⋅ exp ⎡⎣ 0, 067 ⋅ (1 − μ ⎢ ⎣

sk∗ ≤ s* ≤ 1;

)⎦⎤ ) ⋅ ⎢1 − exp ⎜⎜ −4, 4 ⋅ ⎡

)⎤⎦ ) ⋅

ψ 2 = β 2 ⋅ ( 0,5 + 0,31 ⋅ exp ⎡⎣0, 067 ⋅ (1 − μ

(

+ ⎡ 0,5 − 0,31 ⋅ exp ⎡⎣0, 067 ⋅ (1 − μ ⎣ s* > 1.



⎢⎣



:

Fr м FrA

⎞⎤ ⎟⎟ ⎥ + ⎠ ⎥⎦

(

)

⎤ s * − s∗k − 2 ⋅ (1 − β 2 ) ⎥ ⋅ exp −7,5 ⋅ 1 − β 2 , (2.186 ) ⎥ 1 − s∗k ⎦

)⎤⎦ ) +

)⎤⎦ ) − 2 ⋅ (1 − β 2 )⎤⎦ ⋅ exp ( −7,5 ⋅

s* ≤ s∗ k

(2.186 )

[82] (

Δψ 2 = 0 ,

),

)

1 − β2 ,

.

К

β2

-

[82]. .В

, , wкр . В

,

, .

1



© В.Е. Селе

, ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

[85].

-

116 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

:

• ;

• ,

.

Э В

. [82]

,

α:

0,86 ⋅ ρ1 ρ 2 ⎛ g ⋅σ ⎞ ⋅⎜ ⎟ 1 + 2, 75 ⋅10−3 ⋅ ( μ − 1) ⎝ ρ1 − ρ 2 ⎠ = , ⎡ (1 + 0,5 ⋅ sin α ) ⋅102 ⎤ ⋅ (1 − β 2 ) ⎥ exp ⎡⎣ −9 ⋅ (1 − β 2 ) ⎤⎦ − Δw0 ⋅ exp ⎢ − 1 − sin α ⎣ ⎦

-

0,25

wk ,α

0,86 ⋅ ρ1 ρ 2 ⎛ g ⋅σ ⎞ ⋅⎜ ⎟ −3 1 + 2, 75 ⋅10 ⋅ ( μ − 1) ⎝ ρ1 − ρ 2 ⎠ Δw0 = 1 − . 0,25 ρ1 ⎛ g ⋅ σ ⎞ μ1 ρ1 σ g ⋅σ ⋅⎜ 2,3 ⋅ ⎟ + 0,1 ⋅ + 0,8 ⋅ ⋅ ⋅ ρ 2 ⎝ ρ1 − ρ 2 ⎠ μ1 σ ρ 2 ρ1 − ρ 2

(2.187 )

0,25

В .

α = 900 [82], (2.187)

(2.187) ,

.В (2.187).

(T

И

тру а

Φ oc = π ⋅ D ⋅ qтру а ,

Tгр –

),

[79]:

qтру а = k1 ⋅ Nu тру а ⋅

q(r ) = k1 ⋅ ( ∂T ∂r ) ,

В

Φ oc

− Tгр ) ( Tтру а

Н

k1 –

(2.187 )

Tтру а − Tгр

δ

; Nu тру а –

(2.188)

,

Н

.

Ω = Φ1( гр ) Φ oc ( Φ1( гр ) –

),

-

,



,

-

[79]: Nu тру а = © В.Е. Селе

ев, В.В. Алеш

3 . 2+Ω

, С.Н. Прял в, 2007–2009

(2.189)

лава 2 117 _______________________________________________________________________________________

, Ω,

,

.

Nu тру а

,

,

, . ,

(R − δ < r < R)

,

«

», Tгр [79].

Tтру а

(

,

δ

,

)

:

TL (r ) − Tтру а = TL − Tтру а ⋅ (1 − r R )

θ1

-

(2.190)

,

TL –



( L ); θ1 .

Д

qтру а = k1 ⋅ Nu тру а ( L ) ⋅ (Tтру а − TL ) D ;

[79]: (2.191 )

0,4 Nu тру а ( L ) = 0, 023 ⋅ Re0,8 L ⋅ Pr1 ,

TL

Pr1 = ν

(υ ) 1



ν

; μ1 Д

(T ) 1

= μ1 ⋅ cP ,1 k1 –



; ν (T ) 1

(υ ) 1

; –



-

cP ,1 –

ν 1 = θ1 = 1 7

.

5 ⎛δ ⎞ TL − Tтру а = ⋅ ⎜ ⎟ 6 ⎝R⎠

, (2.165) −1 7

Nu тру а = Nu тру а ( L ) ⋅

В

(2.191 )

(

. [79]):

⋅ (Tгр − Tтру а ) ;

(2.192 )

2 ⋅ R Tтру а − TL . ⋅ δ Tтру а − Tгр

Nu тру а = 0, 016 ⋅ Re10,8 ⋅ Pr10,4 ⋅ (δ R )

[79]:

−0,057

(2.192 )

(2.193)

.

, [79]. Д (2.191)

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

-

,

118 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

(Д.А.

). В

, 1957

[79]

-

Nu тру а = 0, 010 ⋅ Re10,83 ⋅ Pr10,5 ,

:

( Re1 > 300 ) .

(2.194)

Н

[79]:

⎛ 3 ⎞ 0, 83 0,5 2 Nu тру а = ⎜ ⎟ + ( 0, 010 ⋅ Re1 ⋅ Pr1 ) , 2 + Ω ⎝ ⎠ 2

(2.195)

±19 % .

. Э

δш

(δ ш > δ ) .

δ .

[87]

,

-

:

В

, .

δш D (

. Re

, D –

), .

Re

(δ ш >> δ ) ,

-

. ,

,

. ,

-

,

.

, .

-



, ó

-

,

(

). Re . Ч

δш D ,

-

Re р ,

.

.

В

( ).

δш D

,

, .Э

ев, В.В. Алеш

-

.

.

© В.Е. Селе

,

,

,

, С.Н. Прял в, 2007–2009

-

лава 2 119 _______________________________________________________________________________________

δш D

,

,

. . ,

. . [87], ( sш δ ш ) ).



[87]:

-

= 12 ÷ 14 (

sш δ ш ≥ 8 т

В.И. ,Н

, –

,

0,47 Nu Тру а ( L ) = 0, 022 ⋅ Re0,8 ⋅ ( Pr1 Pr те ка ) L ⋅ Pr1

Pr те ка –

:

s –



ε ш = exp ⎢0,85 ⋅ ⎣⎢



ε ш = exp ⎢0,85 ⋅ ⎢⎣

( sш δ ш )

sш δ ш

sш δ ш

( sш δ ш )

0,25

; εш –

т

⎤ ⎥ ⎦⎥

δш sш

⎤ ⎥ т ⎥ ⎦

⋅εш ,

(2.196)

,

-

;

(2.197 )

.

(2.197 )

⎛s ⎞ ≥⎜ ш ⎟ ⎝ δш ⎠

⎛s ⎞ 0;

n ⋅ ( n ) i < 0;

(0)

n⋅

(n)



Θ < 1,

N

n =1

fL

(n)

(2.225 )

Θ = 1.

(2.225 )

. (2.225 – )

(2.225) ,

(2.225 – )

-

. , . . Д

V , n = 1, N ,

(n)

(2.225 ).

(n)

ΔX → 0

(2.2) (2.2) ,

(0)

V.

V

(0)

. (0)

,

V

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

130 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________



,

,

(0)

-

∫∫

:

.

⎡⎣ S ⎤⎦

V,

ρ ⋅ υ ⋅υn dS = −

(0)

В

(

∫∫

⎡⎣ S ⎤⎦

p ⋅ ndS = −

(0)

.,

∫∫∫

(2.2)

⎡⎣ V ⎤⎦

∇pdV .

, [91])

.



V (2.226).

∫∫

⎡⎣ S ⎤⎦

, p ⋅ ndS =

(0)

,

ρ ⋅ υ ⋅υn dS = ∑ N

⎡⎣ (0) S ⎤⎦

= −∑ N

(n)

n =1



n =1

∫∫

ρ ⋅ υ ⋅υn df = ∑

⎡⎣ ( n ) f L ⎤⎦

)



(n)

n =1



(

w⋅

⎡⎣ V ⎤⎦

)

∇pdV = 0.

(2.227)

∫∫

⎡⎣ ( n ) f L ⎤⎦

ρ ⋅υ x ⋅ ( n ) i ⋅υ x ⋅ ( ( n ) i ⋅ (0) n ) df = (2.228)

:

N

(n)

n =1

⋅ s ⋅ f L ⋅ wL2 ⋅ i .

L

∫∫∫

-

-

(0)

N

К

(n)

,

(0)

(2.226)

∫∫

(2.226)

(0)

ρL ⋅

(n)

wL ⋅

( n)

f L ⋅ ( n ) s = 0.

(2.229)

(2.229)

i ,

∫∫

(2.228),

⎡⎣ S ⎤⎦

-

,

.

ρ ⋅ υ ⋅υ n dS .

,

,

(0)

(0)

(2.226)

.

V

, .Д

(0)

V,

,

-

, (

. 2.13). Δξ . И

(0)

V Δξ . Д

«

» Д

© В.Е. Селе

-

,

«

,

. (0)

V,

Δξ . ев, В.В. Алеш

,

(ρ ⋅w ) 2

, С.Н. Прял в, 2007–2009

»

лава 2 131 _______________________________________________________________________________________

x рав (

xлев

Δξ ,

. 2.13). В

. Δξ

p( x)

2.13).

(

.

-

,

. p( x) . В

.

,

.

и . 2.13. Схе а

ч

е ре

авле

е

p ( x)

у ру

авле

Δξ → 0 (

. 2.13

[ x1 ,

я а уча

⎡⎣ x рав , x2 ⎤⎦ , .Э

чле е

.

я вух

,

).

x лев ]

е

-

. 2.13,

(0)

ó

V

ó

,

,

,

-

.

В

,

-

(0)

V,

«

( 0,5 ⋅ ρ ⋅υ ) )

» «

, ( »

.

2

[91], ,

, . . -

,

, : (k )

Д

,

pL =

3,5 ÷ 7,8МПа ,

(n)

pL

n, k ∈ 1, N .

(2.230) ,

,

20 м / ,

50 кг / м . Д 3

10−2 МПа . И © В.Е. Селе

ев, В.В. Алеш

, , С.Н. Прял в, 2007–2009

(

-

132 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

) . ,

(2.230)

, .

И

,

(2.54)

(2.225), :

я а

∂(ρ ⋅ f )



∂t

а ще

,

∂ ( ρ ⋅ w ⋅ f ) = 0; ∂x

+

ч е е

(2.231 )

∂Y ∂ ∂ ∂ ⎛ ( ρ ⋅ Ym ⋅ f ) + ( ρ ⋅ Ym ⋅ w ⋅ f ) − ⎜ ρ ⋅ f ⋅ Dm ⋅ m ∂t ∂x ∂x ⎝ ∂x

YN = 1 −

∑Y

N S −1 m =1

S

∂(ρ ⋅w⋅ f ) ∂t

∂ ⎡ ⎢ρ ⋅ f ∂t ⎢⎣

m

+

я

⎞ ⎟ = 0, m = 1, N S − 1 , ⎠

;

∂ ( ρ ⋅ w2 ⋅ f )

⎛ w2 ⋅ ⎜⎜ ε + 2 ⎝

∂x

∂z ⎞ π ⎛ ∂p = − f ⋅ ⎜ + g ⋅ ρ ⋅ 1 ⎟ − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R; ∂x ⎠ 4 ⎝ ∂x

⎛ ⎞⎤ ∂ ⎡ w2 ⎟ ⎥ + ⎢ ρ ⋅ w ⋅ f ⋅ ⎜⎜ ε + 2 ⎠ ⎥⎦ ∂x ⎢⎣ ⎝

я а

ч е е

∂ρ N ( n ) +∑ Θ ⋅ ∂t n =1 ∂ ( ρ ⋅ Ym ) ∂t

+∑ N

(n)

( n)

n =1

m = 1, N S − 1; (n)

⎛ ∂ ( ρ ⋅ w) ⎞ ⎜ ⎟+ ⎝ ∂t ⎠ =−

(n)

© В.Е. Селе

YN = 1 − S

(n)



m =1

(n)

⎡∂ ⎛ ∂Ym ⎞ ⎤ ( n ) ⎢ ⎜ ρ ⋅ Dm ⋅ ⎥⋅ Θ = 0, x ∂ ∂x ⎟⎠ ⎦ ⎣ ⎝

(n)

ев, В.В. Алеш

(2.231 )

(n)

Ym ;

⎛ ∂ ( ρ ⋅ w2 ) ⎞ ⎜ ⎟= ⎜ ⎟ ∂x ⎝ ⎠

⎛ ∂p ⎞ ⎜ ⎟− g⋅ρ ⋅ ⎝ ∂x ⎠

(2.231 )

(2.231 )

N ⎛ ∂ ( ρ ⋅ Ym ⋅ w ) ⎞ ( n ) ⎜ ⎟⋅ Θ − ∑ ∂x n =1 ⎝ ⎠

(n)

⎞ ; ⎟⎟ ⎠

я

⎛ ∂ ( ρ ⋅ w) ⎞ ⎜ ⎟ = 0; ⎝ ∂x ⎠

N S −1

(2.231 )

⎞⎤ ∂z1 ∂ − ⎟ ⎥ = − ( p ⋅ w⋅ f ) − ρ ⋅ w⋅ f ⋅ g ⋅ ∂x ∂x ⎠ ⎥⎦

NS ∂Ym ∂f ∂ ⎛ ∂T ⎞ ∂ ⎛ − p⋅ + Q⋅ f + ⎜ k ⋅ f ⋅ ⎟ − Φ (T , Toc ) + ⎜⎜ ρ ⋅ f ⋅ ∑ ε m ⋅ Dm ⋅ ∂t ∂x ⎝ ∂x ⎠ ∂x ⎝ ∂x m =1



(2.231 )

(n) 1 ⎛ ∂z1 ⎞ ⎜ ⎟ − ( n ) ⋅ ( λ ⋅ ρ ⋅ w ⋅ w ) , n = 1, N ; ⎝ ∂x ⎠ 4 ⋅ R

, С.Н. Прял в, 2007–2009

(2.231 )

лава 2 133 _______________________________________________________________________________________

∂ ( ρ ⋅ε )

+∑

∂t

1 + ⋅∑ 4 n =1

n =1

N

−∑

(n)

N

n =1

N ⎛ ∂ ( ρ ⋅ ε ⋅ w) ⎞ ( n) ⎜ ⎟ ⋅ Θ = −∑ ∂x n =1 ⎝ ⎠

(n)

N

1 (n) (n) ( n) 3 ⋅ λ⋅ ρ⋅ w ⋅ (n) R

N S Φ (T , Toc ) ( n ) ⋅ Θ + ∑∑ (n) f n =1 m =1

(n)

(n)

N

(n)

p⋅

Θ+Q+

(n)

∑ N

⎛ ∂w ⎞ ( n ) ⎜ ⎟⋅ Θ+ ⎝ ∂x ⎠

(n)

n =1

⎡ ∂ ⎛ ∂ T ⎞⎤ (n) ⎢ ∂x ⎜ k ⋅ ∂x ⎟ ⎥ ⋅ Θ − ⎠⎦ ⎣ ⎝

⎡∂ ⎛ ∂Ym ⎞ ⎤ ( n ) ⎢ ⎜ ρ ⋅ ε m ⋅ Dm ⋅ ⎥⋅ Θ ; x ∂ ∂x ⎟⎠ ⎦ ⎣ ⎝

( ε m ) = ( ε m ) , ρ = ( n ) ρ = (ξ ) ρ , (n) (ξ ) (n) (ξ ) (n) (ξ ) ( Dm ) = ( Dm ) , Ym = (Ym ) = (Ym ) , ( z1 ) = ( z1 ) T=

ε=

(ξ )

(n)

T,

ε=

(n)

ε,

(ξ )

(ξ )

(n)

m ∈ 1, N S ;

∑ N

(n)

n =1

(n)

(n)

s=−

(

Θ=

V = V

(n)

n⋅

(n)

∑ N

(n)

n =1

⎛ ∂T ⎜ ⎝ ∂x

( (

)

⎧ ⎪ 1, е ли i =⎨ ⎪⎩ − 1, е ли



(n)

,

0
0;

∑ N

(n)

n =1

⎛ ∂Ym ⎜ ∂x ⎝

⎞ (n) (n) ⎟ ⋅ f ⋅ s = 0; ⎠

(2.231 )

n ⋅ ( n ) i < 0;

(0)

n ⋅ (n)



Θ < 1,

N

(n)

n =1

fL

е

(2.231 )

Θ = 1;

(2.231 )

я:

p = p ({S ме и } ) ; ε = ε ({S ме и } ) ; k = k ({S ме и } ) ; ε m = ε m ({S ме и } ) , Dm = Dm ({S ме и } ) ,

m = 1, N S ; T1 = T2 = … = TN S = T .

(2.231 )

. (2.231).

А

-

, , (

В

. ,

: (2.231)

( © В.Е. Селе

). ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

5). [71]

,

. -

134 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

2.4.2.

о ели овании ечени в а ве вленно о и ующе и о и

ан

у о

ово е,

И [11].

,

ρ = const.

1

:

-

( 0,5 ⋅ ρ ⋅ w )

(2.232)

2

,

p.

В

(2.76), ,

,

. ( n)

е е е

ае

, . .

pL =

(ξ )

я

,

я. В

n, ξ = 1, N .

pL

.

е

К

V

∑ N

n =1

(n)

⎛ ∂Ym ⎜ ∂x ⎝

ч е е

я

е ь

е

.

(2.50 )

( 0)

:

(2.233)

(2.225 )

⎞ (n) (n) ⎟ ⋅ f ⋅ s = 0, m = 1, N S . ⎠

(2.234)

А

V

(2.225 ). :

∂Ym N +∑ ∂t n =1

(n)

⎛ ∂ (Ym ⋅ w ) ⎞ ( n ) ⎜ ⎟⋅ Θ − ∂x ⎝ ⎠

m = 1, N S − 1;

YN = 1 −

(n)

S

-



( n)

N



n =1

N S −1

⎡∂ ⎛ ∂Ym ⎞ ⎤ ( n ) ⎢ ⎜ Dm ⋅ ⎥ ⋅ Θ = 0, x ∂ ∂x ⎟⎠ ⎦ ⎣ ⎝

(2.235)

(n)

Ym .

m =1

В

.И ,

Ym , m = 1, N S , . Э

,

-

, .

( 0)

«

»

-

V

.

, « Ym , m = 1, N S ,

, . . «

» .

( 0)

V

1

В

© В.Е. Селе

(2.231). ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

»

, «

-

лава 2 135 _______________________________________________________________________________________

» .

»1

«

«

∂Ym ⎞ ⎛ ⎜ ρ ⋅ Dm ⋅ ∂x ⎟ ⎝ ⎠

( ρ ⋅ Ym ⋅ w )

. . .

»

,

,

. (2.46 )

( 0)

V,

:

∑ρ⋅ N

⎣⎡(Ym ) L ⋅ wL ⋅ f L ⋅ s ⎦⎤ = ρ ⋅ ∑ N

(n)

n =1

(n)

n =1

В

«

»

⎣⎡(Ym ) L ⋅ wL ⋅ f L ⋅ s ⎦⎤ = 0, m = 1, N S .

«

IN



n∈

Д

(n)

IN

« , . .

(n ∈

»



n∈



n∈

(n)

OUT

IN

IN

(n)

),

⎡⎣(Ym ) L ⋅ wL ⋅ f L ⋅ s ⎤⎦ = 0, m = 1, N S . ( n)

,

( n)

Ym = −

(0)



n∈

( n)

Ym ⋅

(0)

IN

n∈

(n)

(n)

(n)

1

© В.Е. Селе

«



(n)

OUT

fL «

) -

[ wL ⋅ f L ⋅ s ] = 0, m = 1, N S ;

(2.237): (2.238 )

n∈

OUT

( 0)

(2.238 )

,

[ wL ⋅ f L ⋅ s ]

(2.238)

,

, m = 1, N S ;

(2.239 )

.

(2.239 )

OUT

(Ym )L = (0)Ym ,

[ wL ⋅ f L ⋅ s ] = ( wL ( n)

[ wL ⋅ f L ⋅ s ] = − ( wL (n)

n∈

OUT

s, n = 1, N , (

⋅ fL )

⋅ fL )

»

ев, В.В. Алеш

(n ∈

OUT

⎡⎣(Ym ) L ⋅ wL ⋅ f L ⋅ s ⎤⎦

( n)

:

( n)

V.

Н ,





(Ym )L = (0)Ym ,

n∈

OUT

(2.237)

, . .

⎡⎣(Ym ) L ⋅ wL ⋅ f L ⋅ s ⎤⎦ +

m-

fL ( n)

V.К

Ym –

. К -

:

( 0)

(0)

IN



(2.236)

» –

OUT

,

⎡⎣(Ym ) L ⋅ wL ⋅ f L ⋅ s ⎤⎦ +

(2.236)

»

, .

-

, , С.Н. Прял в, 2007–2009

. (2.207)), n∈

IN

n∈

OUT

(2.240 )

; .

(2.240 )

.

136 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

,

∑ [w (n)

n∈

⋅ fL ⋅ s] +

L

∑ [w (n)



n∈



(2.240) Ym =

(0)

L

IN

(n)

n∈

⋅ fL ⋅ s] = −

IN

n∈



(w

⋅ fL ) =

L

IN

⎡⎣(Ym ) L ⋅ wL ⋅ f L ⎤⎦

n∈

IN



n∈

( n)

(w

⋅ fL )

L

OUT

( n)

=

(2.217 ) :

[ wL ⋅ f L ⋅ s ] = 0;

(n)



OUT

n∈

n∈

n∈

(n)



OUT

(n)

(2.241 )

[ wL ⋅ f L ⋅ s ];

(w

(2.241 )

⋅ fL ).

L

(2.241 )

OUT



(2.241 ), ( n)

К

(2.240)

⎡⎣(Ym ) L ⋅ wL ⋅ f L ⎤⎦

(2.239):

(n)

IN



n∈

(Ym )L = (0)Ym ,

(n)

(w

L

⋅ fL )

, m = 1, N S ;

IN

n∈

OUT

(2.242 )

.

К

(2.242) .

,

,

,

( 0)

V



-

. Н

,

»

(2.242 )

(Ym )L

( n)

,

(n ∈ «

«

»

)

-

IN



»)

. .К /



,

: ;



-

. -

( 0)

К

V

,

∑ N

(2.225 )

:

(n)

n =1

⎛ ∂T ⎞ ( n ) ( n ) ⎜ ⎟ ⋅ f ⋅ s = 0. ⎝ ∂x ⎠

(2.243)

А

-

V

(2.225 ). :

∂ε N +∑ ∂t n =1

(n)

1 N + ⋅∑ 4 n =1 −

ρ 1

⋅∑ N

n =1

⎛ ∂ (ε ⋅ w) ⎞ (n) 1 N ⎜ ⎟ ⋅ Θ = − ⋅∑ ρ n =1 ⎝ ∂x ⎠

1 (n) (n) 3 ⋅ λ⋅ w ⋅ (n) R (n)

(n)

Θ+

ρ

Q

N S Φ (T , Toc ) ( n ) ⋅ Θ + ∑∑ (n) f n =1 m =1 N

(n)

+

(n)

, . . © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

p⋅

ρ 1

(n)

⎛ ∂w ⎞ ( n ) ⎜ ⎟⋅ Θ+ ⎝ ∂x ⎠

⋅∑ N

n =1

(n)

⎡ ∂ ⎛ ∂T ⎢ ∂x ⎜ k ⋅ ∂x ⎣ ⎝

⎞⎤ (n) ⎟⎥ ⋅ Θ − ⎠⎦

(2.244)

⎡∂ ⎛ ∂Ym ⎞ ⎤ ( n ) ⎢ ⎜ ε m ⋅ Dm ⋅ ⎥⋅ Θ . x ∂ ∂x ⎟⎠ ⎦ ⎣ ⎝

-

лава 2 137 _______________________________________________________________________________________

.

ε=

(0)

,



:

n∈



ε –

(n)

(w

⋅ fL )

L

εL =

OUT

(n)



=

n∈

⎣⎡ε L ⋅ wL ⋅ f L ⎦⎤

(n)

∑ IN

n∈

ε, n∈

( n)

(w

L

OUT

1

: (2.246 )

а ще

,

ч е е

я

(2.246 )

⎡( z1 )1 − ( z1 )2 ⎦⎤ λ ⋅ w ⋅ w dw p1 − p2 ; = +g⋅⎣ − 4⋅ R dt l ρ ⋅l ∂Ym ∂Y ∂Y ⎞ ∂ ⎛ + w ⋅ m − ⎜ Dm ⋅ m ⎟ = 0, ∂t ∂x ∂x ⎝ ∂x ⎠

(2.246 )

m = 1, N S − 1 ; YN = 1 −

Q 1 ∂ ⎡ ∂T ⎤ Φ ( T , T ∂ε ∂ε λ ⋅ w + w⋅ = + + ⋅ ⎢k ⋅ ⎥ − ρ ρ ∂x ⎣ ∂x ⎦ f ⋅ρ 4⋅R ∂t ∂x

)+

3

pL =

(ξ )

∑ [w N

( 0)

V.

,

w = w (t ) ;

я а

(n)

n =1

L

∂Ym N +∑ ∂t n =1

ч е е ⋅ f L ⋅ s ] = 0;

∂ε N +∑ ∂t n =1

(n)

1 N + ⋅∑ 4 n =1 −

ρ 1

⋅∑ N

n =1

∑ N

n =1

YN = 1 −

( n)

S

1 (n) ( n) 3 ⋅ λ⋅ w ⋅ (n) R

(n)

;

N ∂Ym ⎞ ⎤ ∂ ⎡ S⎛ ⎢ ∑ ⎜ ε m ⋅ Dm ⋅ ⎟⎥ ; ∂x ⎣⎢ m =1 ⎝ ∂x ⎠ ⎦⎥



⎡∂ ⎛ ∂Ym ⎞ ⎤ ( n ) ⎢ ⎜ Dm ⋅ ⎥ ⋅ Θ = 0, x ∂ ∂x ⎠⎟ ⎦ ⎣ ⎝

N S −1

(2.246 )

(2.246 )

(n)

Θ+ N

(2.246 )

( n)

Ym ;

m =1

(n)

ρ

Q

N S Φ (T , Toc ) ( n ) ⋅ Θ + ∑∑ (n) f n =1 m =1

+

(n)

p⋅

ρ 1

(n)

⎛ ∂w ⎞ ( n ) ⎜ ⎟⋅ Θ+ ⎝ ∂x ⎠

⋅∑ N

n =1

(n)

⎡ ∂ ⎛ ∂T ⎢ ∂x ⎜ k ⋅ ∂x ⎣ ⎝

⎞⎤ (n) ⎟⎥ ⋅ Θ − ⎠⎦

⎡∂ ⎛ ∂Ym ⎞ ⎤ ( n ) ⎢ ⎜ ε m ⋅ Dm ⋅ ⎥⋅ Θ ; x ∂ ∂x ⎟⎠ ⎦ ⎣ ⎝ .

ев, В.В. Алеш

m

(2.246 )

1

© В.Е. Селе

m =1

я

⎛ ∂ (ε ⋅ w) ⎞ (n) 1 N ⎜ ⎟ ⋅ Θ = − ⋅∑ ρ n =1 ⎝ ∂x ⎠

(n)

S

(2.246 )

⎛ ∂ (Ym ⋅ w ) ⎞ ( n ) ⎜ ⎟⋅ Θ − ∂x ⎝ ⎠

m = 1, N S − 1;

∑Y

N S −1

n, ξ ∈ 1, N ;

pL

(n)

(2.245 )

(2.245 )

,

,

я а

( n)

;

)

ρ = const ;



⋅ fL )

IN

(0)

(

В



⎡⎣ε L ⋅ wL ⋅ f L ⎦⎤

IN

n∈

(0)

(n)

(2.242),

, С.Н. Прял в, 2007–2009

(2.246 )

138 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∑ N

(n)

n =1

∑ N

(n)

n =1

(n)

(n)

⎛ ∂Ym ⎜ ∂x ⎝ ⎛ ∂T ⎜ ⎝ ∂x

⎞ (n) (n) ⎟ ⋅ f ⋅ s = 0, m = 1, N S ; ⎠

⎞ (n) (n) ⎟ ⋅ f ⋅ s = 0; ⎠

s=−

(

Θ=

V = V

(0)

n⋅

(n)

)



(n)

(n)

( (

⎧ 1, е ли ⎪ i =⎨ ⎪⎩ − 1, е ли fL

(k )

k =1

– УРС

0
0;

n ⋅ ( n ) i < 0;

(0)

n ⋅ (n)

Θ < 1,

(

{

е

∑ N

(n)

n =1

fL

е ь

(2.246 )

(2.246 )

Θ = 1;

(2.246 )

})

е

я:

ε = h − p ρ ; h = h p, T , Ym , m = 1, N S ; ε m = ε m ({S ме и }) , Dm = Dm ({S ме и }) , m = 1, N S ; T1 = T2 = … = TN S = T .

(2.246 ) Ym =

n∈

(0)

А

⎡⎣(Ym ) L ⋅ wL ⋅ f L ⎤⎦

«*»:

(n)

IN

(Ym )L =

( n)



(2.246 )





n∈

( n)

(w

⋅ fL )

L

Ym , n ∈

=



n∈

(n)

IN

OUT



n∈

OUT

(0)

( Dm = 0 ) ⎡⎣(Ym ) L ⋅ wL ⋅ f L ⎤⎦ (n)

(w

L

⋅ fL )

ε=

(0)

n∈

εL =

( n)

(n)

∑ IN

n∈

(n)

(w

L

ε, n∈

=

⋅ fL )

OUT

n∈

(n)



:

⎣⎡ε L ⋅ wL ⋅ f L ⎦⎤

IN

n∈

OUT

(0)



( n)

(w

L

⋅ fL )

(2.246 *)

;

IN

(2.246 *)

.

2.5. Чи ленны анали а е а иче а ве вленных у о ово ов В ( К

.В -

, [63, 92, 93]). А К -

© В.Е. Селе

( k = 0) ,

(2.246 *)

(2.246 )

⎡⎣ε L ⋅ wL ⋅ f L ⎦⎤

(2.246 *)

( Dm = 0 )

,



, m = 1, N S ;

IN

.

(2.246 )

(2.246 )

ев, В.В. Алеш

о

о ели

(2.36), (2.54), (2.225) (2.231) ( К ). В К , ( К ) [71, 72, 92],

) ,

К ( .В ,

,

,

, .Э

, С.Н. Прял в, 2007–2009

.,

-

-

лава 2 139 _______________________________________________________________________________________

К , ,

[69, 92]

А.А.

. В-

К

, , , [71, 95]. В-

К

К ,

-

А.Н.

[70, 94],

-

,

, , . . ,

[71]. ,

,

.

В

{x , t }

-

i

tj –

xi

ра

ве

(

-вре е

.

ая е а ( ра

. 2.14),

x= x , x= x , t=t a i

)

b i

xi ≤ xib ≤ xi +1 , t j −1 ≤ t aj ≤ t j , t j ≤ t bj ≤ t j +1 , xia ≠ xib , t aj ≠ t bj ). В

hi +1 = xi +1 − xi – ; τ j = t j − t j −1 j-

© В.Е. Селе

«

» « τ j +1 = t j +1 − t j –

{x , t }

)

t=t

a j

i

b j

(

( xi −1 ≤ xia ≤ xi , j

»

«

»

» :

,

y = y ( x, t )

yij = y ( xi , t j ) ; yi = yi ( t ) = y ( xi , t ) ; y j = y j ( x ) = y ( x, t j ) . ев, В.В. Алеш

«

.

β j = τ j +1 τ j – -

В

е

ta − t ta − t tb − t x b − xi xia − xi −1 xia − xi −1 ; rib = i ; s aj = j j −1 = j j −1 ; s bj = j j , = τ j +1 t j − t j −1 τj hi +1 xi − xi −1 hi

hi = xi − xi −1 i-

αi = hi +1 hi

,

j

.

и . 2.14. Пр

ri a =

j

i

i, j ∈ Z , Z –

:

К . ( . 2.14),

.

, С.Н. Прял в, 2007–2009

: (2.247 )

140 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

y ( x, t ) = aiy − ( t ) ⋅ x 2 + biy − ( t ) ⋅ x + ciy − ( t ) , x ∈ [ xi −1 , xi ] ; y ( x, t ) = a

y+ i

(t ) ⋅ x

2

+ bi

y+

(t ) ⋅ x + c (t ) , y+ i

x ∈ [ xi , xi +1 ] ,

(2.247 ) (2.247 )

∂y = 2 ⋅ aiy − (t ) ⋅ x + biy − (t ), x ∈ [ xi −1 , xi ] ; ∂x ∂y δ y ( x, t ) = = 2 ⋅ aiy + (t ) ⋅ x + biy + (t ), x ∈ [ xi , xi +1 ] ; ∂x

:

δ y ( x, t ) =

(δ y ) a

В

j i

= δ y ( xia , t ) = 2 ⋅ aiy − ( t j ) ⋅ x a + biy − ( t j ) ;

(δ y )

j

b

i

(2.247 ) (2.247 )

= 2 ⋅ aiy + ( t j ) ⋅ x b + biy + ( t j ) . (2.247 )

: y = yij , h = hi , α = αi , τ = τ j , β = β j , x = xi , t = t j , y = yij +1 , y = yij −1 , y ( +1) = yij+1 ,

y ( −1) = yij−1 , r a = ri a , r b = rib , s a = s aj , s b = s bj , i, j ∈ Z ;

y ( ) = σ ⋅ y + (1 − σ ) ⋅ y; σ

y(

−S)

y(θ ) = θ ⋅ y + (1 − θ ) ⋅ y ( −1) ; y (

= s a ⋅ y + (1 − s a ) ⋅ y; y (

σ ,θ )

+S)

= σ ⋅ y + (1 − σ − θ ) ⋅ y + θ ⋅ y;

= s b ⋅ y + (1 − s b ) ⋅ y;

y( − R ) = r a ⋅ y + (1 − r a ) ⋅ y ( −1) ; y( + R ) = r b ⋅ y ( +1) + (1 − r b ) ⋅ y;

y( − R ) ( +1) = y( + R ) ; y( + R ) ( −1) = y( − R ) ; y (

−S)

= y(

+S)

; y(

+S)

= y(

Δt − = t − t a = (1 − s a ) ⋅τ ; Δt + = t b − t = s b ⋅τ = β ⋅ s b ⋅τ ;

−S)

;

Δx − = x − x a = (1 − r a ) ⋅ h; Δx + = x b − x = r b ⋅ h ( +1) = α ⋅ r b ⋅ h;

Δt = t b − t a = Δt + + Δt − = (1 − s a ) ⋅τ + s b ⋅τ = (1 − s a ) ⋅τ + β ⋅ s b ⋅τ ;

Δx = x b − x a = Δx + + Δx − = (1 − r a ) ⋅ h + r b ⋅ h ( +1) = (1 − r a ) ⋅ h + α ⋅ r b ⋅ h;

γ− =

γ+ =

(1 − r a ) ⋅ h Δx − 1 − ra = = ; a b Δx (1 − r ) ⋅ h + r ⋅ h ( +1) 1 − r a + α ⋅ r b

r b ⋅ h ( +1) α ⋅ rb Δx + = = ; a b Δx (1 − r ) ⋅ h + r ⋅ h ( +1) 1 − r a + α ⋅ r b

δ y a ( +1) = δ y b ; δ y b ( −1) = δ y a ; y x = y x ( −1) = y x ; yt =

Д

y ( +1) − y ; h ( +1)

(2.231)



.Н.

В. . (

.,

(

.

-

(2.248). ,

© В.Е. Селе

y − y ( −1) ; y x ( +1) = y x ; h

y ( +1) − y y ( +1) − y y− y y−y ; yx = ; yx = ; yt = . (2.248) + + Δt Δx 0,5 ⋅ (1 + α ) ⋅ h 0,5 ⋅ (1 + β ) ⋅τ

, [1, 2, 6]). В , . 2.14) (2.54), Д

yx =

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

, -

лава 2 141 _______________________________________________________________________________________

,

[70, 92]. Н

,

∂ (ρ ⋅ w ⋅ f ) ∂(ρ ⋅ w⋅ f ) 1 1 dtdx + dtdx = ⋅∫∫ ⋅∫ ∫ Δx ⋅ Δt Δx Δt ∂t Δx ⋅ Δt Δx Δt ∂x

(2.54 ).

:

2

∂p ∂z π 1 1 1 =− ⋅ ⋅ fdtdx − ⋅ ⋅ g ⋅ ρ ⋅ 1 ⋅ fdtdx − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ Rdtdx. Δx ⋅ Δt Δ∫x Δ∫t ∂x Δx ⋅ Δt Δ∫x Δ∫t ∂x 4 Δx ⋅ Δt Δ∫x Δ∫t

(2.249)

(2.249). Пе

е

а ае

е:

⎛ ∂ ( ρ ⋅ w⋅ f ) ⎞ ∂ ( ρ ⋅ w⋅ f ) 1 1 ⋅∫ ∫ ⋅∫⎜ ∫ dtdx = dx ⎟ dt = Δx ⋅ Δt Δx Δt ∂t Δx ⋅ Δt Δt ⎝ Δx ∂t ⎠

⎛∂ ⎡ ⎛∂ ⎡ ⎤⎞ ⎤⎞ 1 1 ⋅ ∫ ⎜ ⎢ ∫ ρ ⋅ w ⋅ fdx ⎥ ⎟ dt = ⋅ ∫ ⎜ ⎢ ρ ( t ) ⋅ w ( t ) ⋅ ∫ fdx ⎥ ⎟ dt = ⎜ ⎟ ⎜ ⎟ Δx ⋅ Δt Δt ⎝ ∂t ⎣ Δx Δx ⋅ Δt Δt ⎝ ∂t ⎣ Δx ⎦⎠ ⎦⎠ 1 ⎛∂ 1 ⎛∂ ⎞ ⎞ = ⋅ ∫ ⎜ ⎡ ρ ( t ) ⋅ w ( t ) ⋅ Fi ( t ) ⎤ ⎟ dt ≈ ⋅ ∫ ⎜ ⎣⎡ ρi ⋅ wi ⋅ Fi ( t ) ⎦⎤ ⎟ dt = ⎣ ⎦ Δt Δt ⎝ ∂t Δt Δt ⎝ ∂t ⎠ ⎠ =

=

ρi ( t bj ) ⋅ wi ( t bj ) ⋅ Fi ( t bj ) − ρi ( t aj ) ⋅ wi ( t aj ) ⋅ Fi ( t aj ) Δt

ρ (t ) ⋅ w (t ) – i-

,

Δx (

);

Fi =

1 ⋅ fdx Δx Δ∫x

(2.251)

( ρi ⋅ wi ⋅ Fi )

Δx ). В

(

(2.250 )

( ρi ⋅ Fi ⋅ wi ) t = t a = ( ρi ⋅ Fi ) t = t a ⋅ wi t = t a :

t aj

t bj

-

j j −1 = ⎡ s aj ⋅ ( ρ ⋅ F )i + (1 − s aj ) ⋅ ( ρ ⋅ F )i ⎤ × ⎣ ⎦

(− S ) × ⎡⎣ s ⋅ wi + (1 − s ) ⋅ wi ⎤⎦ = ⎡⎣ s ⋅ ( ρ ⋅ F ) + (1 − s a ) ⋅ ( ρ ⋅ F ) ⎤⎦ ⋅ ⎡⎣ s a ⋅ w + (1 − s a ) ⋅ w ⎤⎦ = ( ρ ⋅ F ) ⋅ w( − S ) ; j

a j

j

a j

j −1

j

j

a

( ρ i ⋅ Fi ⋅ wi ) t = t b = ( ρ i ⋅ Fi ) t = t b ⋅ wi t = t b

«→ » (2.249)

j

j

j

→ (ρ ⋅ F )

(+ S )

.

∂(ρ ⋅ w ⋅ f ) 1 dtdx → ⋅∫∫ Δx ⋅ Δt Δx Δt ∂t

( ρ ⋅ F )(

:

+S)

⋅ w( + S ) − ( ρ ⋅ F ) Δt

⋅ w(+ S ) .

, (− S )

⋅ w( − S )

= ⎡( ρ ⋅ F ) ⎣

(− S )

⋅ w( − S ) ⎤ . ⎦t +

(2.250 ) ⎛ ∂ ( ρ ⋅ w2 ⋅ f ) ⎞ ∂ ( ρ ⋅ w2 ⋅ f ) 1 1 dtdx = dx ⎟ dt = ⋅∫∫ ⋅∫⎜∫ ⎟ Δx ⋅ Δt Δx Δt ∂x Δx ⋅ Δt Δt ⎜⎝ Δx ∂x ⎠ В

е

© В.Е. Селе

а ае

е:

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

142 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

1 = ⋅∫ Δt Δt Δt . В

(ρ ⋅ w

(ρ ⋅ w

2

⋅f)

⋅f)

2

x = xib

− ( ρ ⋅ w2 ⋅ f )

x = xia

Δx

dt =

(ρ ⋅ w

2

⋅f)

xib

− ( ρ ⋅ w2 ⋅ f )

Δx

xia

= (ρ ⋅ w ⋅ f )

⋅ w x a = ⎡⎣ ri ⋅ ( ρ ⋅ w ⋅ f )i + (1 − ri ) ⋅ ( ρ ⋅ w ⋅ f )i −1 ⎤⎦ × i

(2.252 ):

a

2

⋅f)

= (ρ ⋅ w ⋅ f )

xib

∂ (ρ ⋅ w ⋅ f ) 1 dtdx → ⋅∫∫ Δ x ⋅ Δ t Δx Δ t ∂x 2

=

a

× ⎡⎣ ri a ⋅ wi + (1 − ri a ) ⋅ wi −1 ⎤⎦ = ( ρ ⋅ w ⋅ f )( − R ) ⋅ w( − R ) ; xia

,

(( ρ ⋅ w ⋅ f )

⋅ w x b → ( ρ ⋅ w ⋅ f )( + R ) ⋅ w( + R ) . i

( ρ ⋅ w ⋅ f )( + R) ⋅ w( + R) − ( ρ ⋅ w ⋅ f )( − R ) ⋅ w( − R)

⋅ w( − R )

(− R)

xib

(2.249)

) → (( ρ ⋅ w ⋅ f ) +

x

:

Δx

(− R)

⋅ w( − R )

)

(σ , θ )

=

(2.252 ) .

+

x

ó а ае

. (2.252 )

(2.252 )

(ρ ⋅ w

е ье

xia

.

е:

⎛ ∂p ⎞ 1 1 ∂p ⋅ ∫ ∫ ⋅ fdtdx = ⋅∫⎜∫ ⋅ fdx ⎟ dt. Δx ⋅ Δt Δx Δt ∂x Δ x ⋅ Δ t Δt ⎝ Δx ∂ x ⎠ p ( x, t )

-

(2.253) Δx

-

:

⎛x ⎞ ⎛ ⎞ xi x xb pi +1 − pi 1 1 ⎜ i ∂p ∂p ∂p ⎟ 1 ⎜ pi − pi −1 ⎟ ⋅∫ ⋅ fdx = ⋅⎜ ∫ ⋅ fdx + ∫ ⋅ fdx ⎟ = ⋅⎜ ⋅ ∫ fdx + ⋅ ∫ fdx ⎟ . (2.254) x h h Δx Δx ∂x Δx ⎜ a ∂x ∂x Δ i i +1 ⎟ ⎜ ⎟ xi xa xi ⎝x ⎠ ⎝ ⎠ b

В

: 1 B = −⋅ Δx − i



xi xia

1 f ( x, t ) dx; B = + ⋅ Δx + i

∫ f ( x, t ) dx.

xib

(2.255)

xi

(2.255) (2.248) (2.254) : p − pi −1 − − pi +1 − pi + + ∂p 1 ⋅∫ ⋅ fdx = i ⋅ γ i ⋅ Bi + ⋅ γ i ⋅ Bi → γ − ⋅ B − ⋅ px + γ + ⋅ B + ⋅ p x . (2.256) Δ x Δx ∂ x hi hi +1 (2.256) (2.253),

:

1 1 ⎛ p − pi −1 − − pi +1 − pi + + ⎞ ∂p ⋅∫ ∫ ⋅ fdtdx = ⋅ ∫ ⎜ i ⋅ γ i ⋅ Bi + ⋅ γ i ⋅ Bi ⎟ dt → Δx ⋅ Δt Δx Δt ∂ x Δ t Δt ⎝ hi hi +1 ⎠ → (γ − ⋅ B − ⋅ px + γ + ⋅ B + ⋅ p x )

е

е

а ае

ев, В.В. Алеш

е(

а а

.

а ае ): ⎛ ⎞ 1 1 ∂z ∂z ⋅ ∫ ∫ g ⋅ ρ ⋅ 1 ⋅ fdtdx = ⋅ ∫ ⎜ g ⋅ ρ ⋅ ∫ 1 ⋅ fdx ⎟ dt ≈ Δ x ⋅ Δ t Δx Δ t ∂x Δ x ⋅ Δ t Δt ⎝ ∂x Δx ⎠ © В.Е. Селе

е

(σ , θ )

е ь

, С.Н. Прял в, 2007–2009

(2.257)

лава 2 143 _______________________________________________________________________________________



Пя

π

(σ , θ ) ⎛ ⎞ ∂z 1 ⋅ ∫ ⎜ g ⋅ ρ i ⋅ ∫ 1 ⋅ fdx ⎟ dt → g ⋅ ⎡⎣ ρ ⋅ ( B − ⋅ γ − ⋅ ( z1 ) x + B + ⋅ γ + ⋅ ( z1 ) x ) ⎤⎦ . (2.258) Δx ⋅ Δ t Δ t ⎝ ∂x Δx ⎠

е

а ае

е:

⎛ ⎞ 1 π 1 ⋅ ∫ ∫ λ ⋅ ρ ⋅ w ⋅ w ⋅ Rdtdx = ⋅ ⋅ ∫ ⎜ ∫ λ ⋅ ρ ⋅ w ⋅ w ⋅ Rdx ⎟ dt ≈ 4 Δ x ⋅ Δ t Δx Δ t 4 Δ x ⋅ Δ t Δt ⎝ Δ x ⎠ ⋅

⎡ 1 ⎤⎞ 1 ⎛ ⋅ ∫ ⎜ λi ⋅ ρ i ⋅ wi ⋅ wi ⋅ ⎢ ⋅ ∫ Rdx ⎥ ⎟ dt = ⎜ ⎟ 4 Δ t Δt ⎝ ⎣ Δ x Δx ⎦⎠ (σ , θ ) π 1 π = ⋅ ⋅ ∫ ( λi ⋅ ρ i ⋅ wi ⋅ wi ⋅ ri ) dt → ⋅ ( λ ⋅ ρ ⋅ w ⋅ r ) ⋅ w(σ , θ ) , 4 Δ t Δt 4

π





ri =

1 ⋅ Rdx. Δx Δ∫x

(2.249)

(

:

⎡ ( ρ ⋅ F )( − S ) ⋅ w( − S ) ⎤ + ( ρ ⋅ w ⋅ f ) ⋅ w (− R) (− R) ⎣ ⎦t

)

− g ⋅ ⎡⎣ ρ ⋅ ( B ⋅ γ ⋅ ( z1 ) x + B ⋅ γ ⋅ ( z1 ) x )⎤⎦ +





+

+

(2.259)

(2.260)

= − ( B − ⋅ γ − ⋅ px + B + ⋅ γ + ⋅ px )

(σ , θ ) +

x

(σ , θ )



π

4

⋅ (λ ⋅ ρ ⋅ w ⋅ r )

(σ , θ )

⋅w

(σ , θ )

, (σ , θ )

-



(2.261)

.

А

(

(

:

⎡ ( ρ ⋅ F )( − S ) ⎤ + ( ρ ⋅ w ⋅ f ) (− R) ⎣ ⎦t +

(

)

(σ ,θ ) +

x

a − ⎡( ρ ⋅ f ⋅ Dm )( − R ) ⋅ δ (Ym ) ⎤ ⎣ ⎦x

= 0;

(σ , θ )

(

+

)

− g ⋅ ⎡⎣ ρ ⋅ ( B ⋅ γ ⋅ ( z1 ) x + B ⋅ γ ⋅ ( z1 ) x )⎤⎦ −



(

+

+

⎡ ρ ⋅ F )( − S ) ⋅ ε ( − S ) ⎤ + ( ρ ⋅ w ⋅ f ) ⋅ ε (− R) (− R) ⎣( ⎦t

(

+

= − ( p ⋅ w ⋅ f )( − R )

)

(σ , θ ) +

x

(σ , θ ) +

x



)

(σ , θ ) +

x

(σ , θ )

(σ , θ )

YN = 1 −

+

ев, В.В. Алеш

(σ , θ )

+

x

∑ Ym ;

N S −1

(2.262 )

m =1

= − ( B − ⋅ γ − ⋅ px + B + ⋅ γ + ⋅ px )



S

⋅ (λ ⋅ ρ ⋅ w ⋅ r )

π

4

(σ , θ )

⋅w

(σ , θ )

(σ , θ )

+ ⎡( k ⋅ f )( − R ) ⋅ δ T a ⎤ ⎣ ⎦x

(σ , θ ) +

, С.Н. Прял в, 2007–2009

(σ , θ )

− φ (σ , θ ) +

⋅ w (σ , θ ) −



(2.262 )

;

⎛ ⎛ w2 ⎞ w2 ⎞ + Kt ⎜ ρ ⋅ F ⋅ ⎟ + K x ⎜ ρ ⋅ w ⋅ f ⋅ ⎟ 2 ⎠ 2 ⎠ ⎝ ⎝

− g ⋅ ⎡⎣ ρ ⋅ ( B − ⋅ γ − ⋅ ( z1 ) x + B + ⋅ γ + ⋅ ( z1 ) x ) ⎤⎦

− p (σ , θ ) ⋅ ⎡⎣ F ( − S ) ⎤⎦ t + ( Q ⋅ F )

© В.Е. Селе

)

(2.262 )

= 0, m = 1, N S − 1;

⎡ ( ρ ⋅ F )( − S ) ⋅ w( − S ) ⎤ + ( ρ ⋅ w ⋅ f ) ⋅ w (− R) (− R) ⎣ ⎦t +

. 2.14) (2.54),

⎡( ρ ⋅ F )( − S ) ⋅ (Ym )( − S ) ⎤ + ( ρ ⋅ w ⋅ f ) ⋅ (Ym ) (− R) (− R) ⎣ ⎦t +

.

(σ , θ )

=

144 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________ a + ∑ ⎡( ρ ⋅ Dm ⋅ f )( − R ) ⋅ (ε m )( − R ) ⋅ δ (Ym ) ⎤ ⎣ ⎦x m=1

(σ , θ )

NS

(2.262 )

;

ε m = ε m ({S ме и }) , m = 1, N S ; T1 = T2 = … = TN ; +

p = p ({S ме и }) ;

ε = ε ({S ме и }) ;

k = k ({S ме и }) ;

(2.262 )

S

(2.262 )

Dm = Dm ({S ме и }) , m = 1, N S , F , B+ , B−

(2.262 ) (2.2623)

r –

,

f

( 0,5 ⋅ ρ ⋅ F ⋅ w )

(

( 0,5 ⋅ ρ ⋅ w ⋅ f ⋅ w )

2

Kx –

); K t

2

(

К

(2.262) . (2.262)

[1, 2, 6], : , « »Д . . [63, 92].

,

;

; -

;

.В «

-

); φ (σ , θ ) –

Φ ( T , Toc ) .

,

Э

R

» –

,

, [70, 96], .Д

(2.262)

ri a = rib−1 ;

:

s aj = s bj −1 .

(2.263)

,

В

.

, .

,

.

(2.262)

(2.263)

-

. (2.262) (2.263)

-

( , ) [63, 92, 97].

yij = y ( xi , t j ) ,

2 2 ⎛ ∂y ⎞ h ⎛ ∂ y ⎞ ⎛ ∂y ⎞ = yi − hi ⋅ ⎜ ⎟ + i ⋅ ⎜ 2 ⎟ + O ( h 3 ) = yij − hi ⋅ ⎜ ⎟ + O ( h 2 ) ; ⎝ ∂x ⎠i 2 ⎝ ∂x ⎠i ⎝ ∂x ⎠i j

y

j i −1

-

j

j

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

ℑ = {xi , t j } :

j

(2.264 )

лава 2 145 _______________________________________________________________________________________ 2 ⎛ ∂y ⎞ (α ⋅ h ) yij+1 = yij + αi ⋅ hi ⋅ ⎜ ⎟ + i i 2 ⎝ ∂x ⎠i j

⎛ ∂2 y ⎞ ⎛ ∂y ⎞ ⋅ ⎜ 2 ⎟ + O ( h 3 ) = yij + α i ⋅ hi ⋅ ⎜ ⎟ + O ( h 2 ) ; ⎝ ∂x ⎠i ⎝ ∂x ⎠i j

j

2 ⎛ ∂y ⎞ τ ⎛ ∂ y ⎞ ⎛ ∂y ⎞ yij −1 = yij − τ j ⋅ ⎜ ⎟ + j ⋅ ⎜ 2 ⎟ + O (τ 3 ) = yij − τ j ⋅ ⎜ ⎟ + O (τ 2 ) ; ∂ ∂ t t 2 ⎝ ⎠i ⎝ ∂t ⎠i ⎝ ⎠i j

yi

j +1

y(

j ⎛ ∂y ⎞ ( β j ⋅τ j ) = yi + β j ⋅ τ j ⋅ ⎜ ⎟ + 2 ⎝ ∂t ⎠i j

σ,θ)

(B )

j

2

(2.264 )

⎛ ∂2 y ⎞ ⎛ ∂y ⎞ ⋅ ⎜ 2 ⎟ + O (τ 3 ) = yij + β j ⋅τ j ⋅ ⎜ ⎟ + O (τ 2 ) ; (2.264 ) ∂ ∂t ⎠i t ⎝ ⎝ ⎠i j

j

= σ j ⋅ yij +1 + (1 − σ j − θ j ) ⋅ yij + θ j ⋅ yij −1 = yij + O (τ ) .

(2.264 )

1 1 ⋅ f ( x, t j ) dx = ⋅ ( f i j + O ( h ) ) dx = f i j + O ( h ) ; Δx Δ∫x Δx Δ∫x

,

Fi j = +

j

2

(2.264 )

= fi j + O ( h ) ,

j

ri j = Ri j + O ( h ) ; i

(B ) −

j i

(2.264 )

= fi j + O ( h ) ;

(2.264 ) (2.264 )

⎛ ∂F ⎞ ⎛ ∂f ⎞ ⎜ ⎟ = ⎜ ⎟ + O (h ). ⎝ ∂t ⎠i ⎝ ∂t ⎠i j

j

Ра

а

Первая ра

(2.264 ) и

а ы

и (2.262а)

s bj ⋅ ρ i j +1 ⋅ Fi j +1 + (1 − s bj − s aj ) ⋅ ρ i j ⋅ Fi j − (1 − s aj ) ⋅ ρ i j −1 ⋅ Fi j −1

ть:

⎡⎣( ρ ⋅ F )( − S ) ⎤⎦ t = +

Δt j

=

j ⎛ ⎞ ⎛ ∂ (ρ ⋅ F ) ⎞ j j s bj ⋅ ⎜ ( ρ ⋅ F )i + ( β ⋅ τ ) j ⋅ ⎜ + O (τ 2 ) ⎟ + (1 − s bj − s aj ) ⋅ ( ρ ⋅ F )i ⎟ ⎜ ⎟ t ∂ ⎝ ⎠i ⎝ ⎠ = − Δt j j ⎡ ⎤ ⎛ ∂ (ρ ⋅ F ) ⎞ j 2 a s F 1 ρ τ − ⋅ ⋅ − ⋅ ⎢ ( ) ( j) ⎟ + O (τ ) ⎥ j ⎜ i ⎢⎣ ⎥⎦ ⎝ ∂t ⎠i − = Δt j

⎛ ∂ (ρ ⋅ F ) ⎞ 2 ⎡(1 − s aj ) ⋅ τ j + β j ⋅ s bj ⋅τ j ⎤ ⋅ ⎜ ⎟ + O (τ ) ⎣ ⎦ ∂ t ∂ (ρ ⋅ F ) ∂ (ρ ⋅ f ) ⎝ ⎠i = = + O (τ ) = + O (τ , h ) . a b ∂t ∂t (1 − s j ) ⋅τ j + β j ⋅ s j ⋅τ j j

(( ρ ⋅ w ⋅ f ) )

Вт рая ра

(− R)

=

ть.

(σ , θ )

=

(( ρ ⋅ w ⋅ f ) )

(2.265)

(2.264 ) (− R)

+ O (τ ) =

:

rib ⋅ ρ i j+1 ⋅ f i +j 1 ⋅ wij+1 + (1 − rib − ri a ) ⋅ ρ i j ⋅ f i j ⋅ wij − (1 − ri a ) ⋅ ρ i j−1 ⋅ f i −j1 ⋅ wij−1

© В.Е. Селе

+

x

+

x

Δxi

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

+ O (τ ) =

146 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________ j ⎡ ⎤ ⎛ ∂ (ρ ⋅ w ⋅ f ) ⎞ j 2 rib ⋅ ⎢( ρ ⋅ w ⋅ f )i + (α ⋅ h )i ⋅ ⎜ ⎟ + O ( h )⎥ j b a ∂x ⎢⎣ ⎥⎦ (1 − ri − ri ) ⋅ ( ρ ⋅ w ⋅ f )i ⎝ ⎠i = + − Δxi Δxi

j ⎡ ⎤ ⎛ ∂ (ρ ⋅ w ⋅ f ) ⎞ j 2 a − ⋅ ⋅ ⋅ − ⋅ r w f h 1 ρ ⎢ ( ) ( i) ⎟ + O ( h )⎥ i ⎜ i ∂x ⎝ ⎠i ⎣⎢ ⎦⎥ + O τ = − ( ) Δxi

(2.266)

⎛ ∂ (ρ ⋅ w ⋅ f ) ⎞ 2 ⎡(1 − ri a ) ⋅ hi + α i ⋅ rib ⋅ hi ⎤ ⋅ ⎜ ⎟ + O (h ) ⎣ ⎦ ∂x ∂ (ρ ⋅ w ⋅ f ) ⎝ ⎠i = + O (τ ) = + O (τ , h ) . a b ∂x (1 − ri ) ⋅ hi + αi ⋅ ri ⋅ hi j

,

(2.262 ) -

(2.54 )

-

∂ (ρ ⋅ f )

:

∂t

А

+

∂ ( ρ ⋅ f ⋅ w) ∂x

+ O (τ , h ) = 0.

(2.262 )

(2.267) (2.54 )

, (2.54 ). Ра

а

Первая ра

ть:

и

и

(2.262 )

ия (2.262 )

⎡ s b ⋅ ρ j +1 ⋅ Fi j +1 + (1 − s bj ) ⋅ ρ i j ⋅ Fi j ⎤ ⋅ ⎡ s bj ⋅ wij +1 + (1 − s bj ) ⋅ wij ⎤ ⎦ ⎣ ⎦− ⎡ ( ρ ⋅ F )( − S ) ⋅ w( − S ) ⎤ = ⎣ j i ⎣ ⎦t Δt j ⎡ s ⋅ ρ i ⋅ Fi + (1 − s aj ) ⋅ ρ i j −1 ⋅ Fi j −1 ⎤ ⋅ ⎡ s aj ⋅ wij + (1 − s aj ) ⋅ wij −1 ⎤ ⎦ ⎣ ⎦= −⎣ Δt j +

a j

j

j

j j ⎡ ⎤ ⎡ ⎤ ⎛ ∂ (ρ ⋅ F ) ⎞ j ⎛ ∂w ⎞ j b 2 2 τ β τ O w s + ⋅ + ⋅ ⋅ ⋅ ⎢ ( ρ ⋅ F )i + s bj ⋅ ( β ⋅τ ) j ⋅ ⎜ ⎥ ( ) ( ) ⎢ ⎟ ⎟ + O (τ )⎥ i j j ⎜ ⎝ ∂t ⎠i ⎢ ⎥⎦ ⎣⎢ ⎝ ∂t ⎠i ⎦⎥ − =⎣ Δt j

j j ⎡ ⎤ ⎡ ⎤ ⎛ ∂ (ρ ⋅ F ) ⎞ j ⎛ ∂w ⎞ j a 2 2 τ τ 1 O w s + ⋅ − − ⋅ ⋅ ⎢ ( ρ ⋅ F )i − (1 − s aj ) ⋅τ j ⋅ ⎜ ⎥ ( ) ⎢ i ( ⎟ ⎟ + O (τ )⎥ j ) j ⎜ ⎝ ∂t ⎠i ⎢ ⎥⎦ ⎣⎢ ⎝ ∂t ⎠i ⎦⎥ −⎣ = Δt j

j j ⎡ ⎤ ⎡ ⎤ j j ⎛ ∂w ⎞ b j ⎛ ∂ (ρ ⋅ F ) ⎞ b 2 ⎢( ρ ⋅ w ⋅ F )i + s j ⋅ ( β ⋅τ ) j ⋅ wi ⋅ ⎜ ⎟ ⎥ + ⎢ s j ⋅ ( β ⋅ τ ) j ⋅ ( ρ ⋅ F )i ⋅ ⎜ ⎟ + O (τ ) ⎥ ⎝ ∂t ⎠i ⎢ ⎥⎦ ⎝ ∂t ⎠i ⎥⎦ ⎢⎣ =⎣ − Δt j

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 147 _______________________________________________________________________________________ j j ⎡ ⎤ ⎛ ∂ (ρ ⋅ F ) ⎞ ⎤ ⎡ j j ⎛ ∂w ⎞ a τ ρ s F 1 − − ⋅ ⋅ ⋅ ⋅ ⎢( ρ ⋅ w ⋅ F )i − (1 − s aj ) ⋅ τ j ⋅ wij ⋅ ⎜ ⎥ )i ⎜ ⎟ + O (τ 2 )⎥ ⎢( ⎟ j ) j ( ⎝ ∂t ⎠i ⎢ ⎝ ∂t ⎠i ⎦⎥ ⎣ ⎦ −⎣ = Δt j

∂ (ρ ⋅ w ⋅ f ) ⎛ ∂ (ρ ⋅ w ⋅ F ) ⎞ ⎛ ∂ (ρ ⋅ w ⋅ f ) ⎞ =⎜ + O ( h, τ ) . ⎟ + O (τ ) = ⎜ ⎟ + O ( h, τ ) = t t ∂ ∂ ∂t ⎝ ⎠i ⎝ ⎠i j

(( ρ ⋅ w ⋅ f )

Вт рая ра (− R)

j

)

ть. И

⋅ w( − R )

(σ , θ )

(

(2.264 ),

= ( ρ ⋅ w ⋅ f )( − R ) ⋅ w( − R )

)

(2.268) :

+ O (τ ) =

⎛ ⎡ rib ⋅ ρ i j+1 ⋅ f i +j1 ⋅ wij+1 + (1 − rib ) ⋅ ρ i j ⋅ f i j ⋅ wij ⎤ ⋅ ⎡ rib ⋅ wij+1 + (1 − rib ) ⋅ wij ⎤ ⎦ ⎣ ⎦− =⎜⎣ ⎜ Δxi ⎝ +

x

+

x

⎡ ri a ⋅ ρ i j ⋅ f i j ⋅ wij + (1 − ri a ) ⋅ ρ i j−1 ⋅ f i −j1 ⋅ wij−1 ⎤ ⋅ ⎡ ri a ⋅ wij + (1 − ri a ) ⋅ wij−1 ⎤ ⎞ ⎦ ⎣ ⎦ ⎟+O τ = −⎣ ( ) ⎟ Δxi ⎠

j j ⎡ ⎤ ⎡ j b ⎤ ⎛ ∂(ρ ⋅ w ⋅ f ) ⎞ j ⎛ ∂w ⎞ 2 2 b ⎢( ρ ⋅ w ⋅ f )i + ri ⋅ (α ⋅ h )i ⋅ ⎜ ⎟ + O ( h )⎥ ⎟ + O ( h ) ⎥ ⋅ ⎢ wi + ri ⋅ (α ⋅ h )i ⋅ ⎜ x x ∂ ∂ ⎝ ⎠i ⎢ ⎥⎦ ⎣ ⎝ ⎠i ⎦ =⎣ − Δxi

j j ⎡ ⎤ ⎡ j ⎤ ⎛ ∂(ρ ⋅ w ⋅ f ) ⎞ j ⎛ ∂w ⎞ a 2 2 O h w r h 1 + ⋅ − − ⋅ ⋅ ⎢( ρ ⋅ w ⋅ f )i − (1 − ri a ) ⋅ hi ⋅ ⎜ ⎥ ( ) ( ) ⎢ ⎟ + O ( h )⎥ ⎟ i i i ⎜ ∂x ⎝ ∂x ⎠i ⎢ ⎝ ⎠i ⎦ ⎦⎥ ⎣ −⎣ + Δxi

+ O (τ ) =

j j ⎡ ⎤ ⎡ ⎤ j 2 b j ⎛ ∂(ρ ⋅ w⋅ f ) ⎞ w f r h w ρ α ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⎢( )i i ( )i i ⎜ ∂x ⎟ ⎥ + ⎢rib ⋅ (α ⋅ h )i ⋅ ( ρ ⋅ w ⋅ f )ij ⋅ ⎝⎜⎛ ∂∂wx ⎠⎟⎞ + O ( h2 )⎥ ⎢ i ⎝ ⎠i ⎥⎦ ⎣ ⎦ − =⎣ Δxi

j j ⎡ ⎤ j ⎛ ∂ (ρ ⋅ w ⋅ f ) ⎞ ⎤ ⎡ j ⎛ ∂w ⎞ a 2 − − ⋅ ⋅ ⋅ ⋅ ⋅ 1 r h w f ρ ⎢( ρ ⋅ w2 ⋅ f )i − (1 − ri a ) ⋅ hi ⋅ wij ⋅ ⎜ ⎥ ( ) ( ) ⎢ ⎟ + O ( h )⎥ ⎟ i i i ⎜ ∂x ⎝ ∂x ⎠i ⎢ ⎝ ⎠i ⎦⎥ ⎣ ⎦ −⎣ + Δxi

⎛ ∂ ( ρ ⋅ w2 ⋅ f ) ⎞ ∂ ( ρ ⋅ w2 ⋅ f ) ⎟ + O (τ , h ) = + O (τ ) = ⎜ + O (τ , h ) . ⎜ ⎟ ∂x ∂x ⎝ ⎠i j

Третья ра

(B

(2.269)

ть. И



=

⋅ γ − ⋅ px + B + ⋅ γ + ⋅ px )

(2.264 ),

( B ) ⋅ (γ ) −

j



j



(σ , θ )

:

= B − ⋅ γ − ⋅ px + B + ⋅ γ + ⋅ px + O (τ ) =

j j j p pij − pi j−1 − pij + ( B + ) i ⋅ (γ + ) i ⋅ i +1 + O (τ ) = hi hi +1

j ⎛ ∂p ⎞ j ⎛ ∂p ⎞ ∂p = f i j ⋅ (γ − ) i ⋅ ⎜ ⎟ + f i j ⋅ (γ + ) i ⋅ ⎜ ⎟ + O (τ , h ) = f ⋅ + O (τ , h ) . ∂ ∂ ∂x x x ⎝ ⎠i ⎝ ⎠i i

i

j

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

j

(2.270)

148 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

етвертая ра

ть (

g ⋅ ⎡⎣ ρ ⋅ ( B − ⋅ γ − ⋅ ( z1 ) x + B + ⋅ γ + ⋅ ( z1 ) x ) ⎤⎦

Пятая ра

(2.270)):

ть. И

π

4

(2.264 )

⋅ (λ ⋅ ρ ⋅ w ⋅ r )

(σ , θ )

(σ , θ )

= f ⋅g⋅ρ ⋅

(2.264 ),

⋅ w (σ , θ ) =

π 4

∂z1 + O (τ , h ) . ∂x

(2.271)

:

⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R + O (τ , h ) .

,

(2.272)

(2.262 ) -

(2.54 )

∂ ( ρ ⋅ f ⋅ w) ∂ ( ρ ⋅ f ⋅ w + ∂t ∂x

:

2

-

) = − f ⋅ ⎛ ∂p + g ⋅ ρ ⋅ ∂z

π 1 ⎞ ⎟ − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R + O (τ , h ) . (2.273) ∂x ⎠ 4

⎜ ⎝ ∂x

Ра

а

и э

гии (2.262г)

Первая ра

ть (

⎡( ρ ⋅ F )( − S ) ⋅ ε ( − S ) ⎤ = ∂ ( ρ ⋅ ε ⋅ f ) + O (τ , h ) . ⎣ ⎦t ∂t

(2.268)):

(2.274)

+

(( ρ ⋅ w ⋅ f )

Вт рая ра

ть (

(− R)

Третья и четвертая ра е а

⎛ w2 ⎞ ( ρi Kt ⎜ ρ ⋅ F ⋅ ⎟ = 2 ⎠ ⎝

⋅ ε (− R)

(σ , θ ) +

x

=

∂ (ρ ⋅ w ⋅ε ⋅ f ) + O (τ , h ) . ∂x

(2.275)

ти (2.262). Kx

,

,

⋅ Fi j +1 + ρ i j ⋅ Fi j ) ⋅ wij +1 ⋅ wij − ( ρ i j ⋅ Fi j + ρ i j −1 ⋅ Fi j −1 ) ⋅ wij ⋅ wij −1 Kt

j +1

)

(2.269)):

2 ⋅ (1 + β j ) ⋅τ j

: ,

j +1 j +1 j +1 j +1 j +1 j +1 j +1 j +1 ⎛ w2 ⎞ ( ρ i +1 ⋅ wi +1 ⋅ f i +1 + ρ i ⋅ wi ⋅ f i ) ⋅ wi +1 ⋅ wi − Kx ⎜ ρ ⋅ w ⋅ f ⋅ ⎟ = 2 ⎠ 2 ⋅ (1 + αi ) ⋅ hi ⎝





j +1

i

⋅ wij +1 ⋅ f i j +1 + ρ i j−+11 ⋅ wij−+11 ⋅ f i −j1+1 ) ⋅ wij +1 ⋅ wij−+11

(2.268)

O (τ , h )

Пятая ра

2 ⋅ (1 + αi ) ⋅ hi

(2.269)

, -

ть (

(( p ⋅ w ⋅ f ) )

(2.266)): (− R)

© В.Е. Селе

.

ев, В.В. Алеш

(σ ,θ ) +

x

=

∂( p⋅w⋅ f ) + O (τ , h ) . ∂x

, С.Н. Прял в, 2007–2009

.

(2.276)

лава 2 149 _______________________________________________________________________________________

е тая ра

ть

g ⋅ ⎡⎣ ρ ⋅ ( B − ⋅ γ − ⋅ ( z1 ) x + B + ⋅ γ + ⋅ ( z1 ) x )⎤⎦

Се ьмая ра

ть (

Девятая ра

δT

δT ri a

(σ , θ )

∂ ( z1 ) + O (τ , h ) . (2.277) ∂x

(2.264 )):

j

j

u ( x, t ) = k ( x, t ) ⋅ f ( x, t ) .

(2.280)

[ xi −1 , xi ] [ xi , xi +1 ]

T ( x, t )

Tx

(σ ,θ )

= ⎡ u( − R ) ⋅ δ T a ⎤ + O (τ ) = ⎣ ⎦x

(

Tx )

:

T j −T j T j − Ti −j1 ⎡ rib ⋅ uij+1 + (1 − rib ) ⋅ uij ⎤ ⋅ i +1 i − ⎡ ri a ⋅ uij + (1 − ri a ) ⋅ uij−1 ⎤ ⋅ i ⎣ ⎦ (α ⋅ h ) ⎣ ⎦ hi i +

(2.279)

:

b

rib .

(2.278)

= ( Q ⋅ F )i + O (τ ) = ( Q ⋅ f )i + O (τ , h ) = Q ⋅ f + O (τ , h ) .

ть. В

⎡( k ⋅ f ) ⋅ δ T a ⎤ (− R) ⎣ ⎦x =

⋅ w (σ , θ ) = f ⋅ w ⋅ g ⋅ ρ ⋅

(2.265), (2.264 )): ∂F ∂f p (σ , θ ) ⋅ ⎣⎡ F ( − S ) ⎦⎤ = p ⋅ + O (τ ) = p ⋅ + O (τ , h ) . t t ∂ ∂t +

(Q ⋅ F )

,

(σ , θ )

(2.264 ):

ть (

В ьмая ра

a

(2.271)

+

Δxi

j ⎡ j b ⎤ ⎡⎛ ∂T ⎞ j (α ⋅ h )i ⎛ ∂u ⎞ 2 u r h O h α + ⋅ ⋅ ⋅ + ( ) ( ) ⎢ i i ⎥ ⋅ ⎢⎜ ⎟ ⎟ + i ⎜ 2 ⎝ ∂x ⎠i ⎢⎣ ⎥⎦ ⎢⎣⎝ ∂x ⎠i = b a ri ⋅ (α ⋅ h )i + (1 − ri ) ⋅ hi

+ O (τ ) =

j ⎤ ⎛ ∂ 2T ⎞ ⋅ ⎜ 2 ⎟ + O ( h 2 )⎥ ⎝ ∂x ⎠i ⎦⎥



j j ⎤ ⎡ j ⎤ ⎡⎛ ∂T ⎞ j hi ⎛ ∂ 2T ⎞ ⎛ ∂u ⎞ 2 2 a ⎢ ui − (1 − ri ) ⋅ hi ⋅ ⎜ ⎟ + O ( h )⎥ ⋅ ⎢⎜ ⎟ − ⋅ ⎜ 2 ⎟ + O ( h )⎥ ⎝ ∂x ⎠i ⎢⎣ ⎥⎦ ⎢⎣⎝ ∂x ⎠i 2 ⎝ ∂x ⎠i ⎥⎦ − + O (τ ) = b a ri ⋅ (α ⋅ h )i + (1 − ri ) ⋅ hi

(

)

j j j j 2 2 hi ⋅ ⎡ 0,5 ⋅ (αi + 1) − αi ⋅ ri b + (1 − ri a ) ⎤ ⎛ ∂T ⎞ ⎛ ∂u ⎞ j ⎛∂ T ⎞ j ⎛∂ T ⎞ ⎣ ⎦ +O τ, h = =⎜ ( ) ⎟ ⋅ ⎜ ⎟ + ui ⋅ ⎜ 2 ⎟ + ui ⋅ ⎜ 2 ⎟ ⋅ rib ⋅ (α ⋅ h )i + (1 − ri a ) ⋅ hi ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎝ ∂x ⎠i

=

b a j j 2 ⎡ ⎤ ∂ ⎛ ∂T ⎞ j ⎛∂ T ⎞ ⎣αi ⋅ ( 0,5 − ri ) − ( 0,5 − ri ) ⎦ + O τ , h = u u ⋅ + ⋅ ⋅ ( ) i ⎜ ⎜ ⎟ 2 ⎟ b a ∂x ⎝ ∂x ⎠i ri ⋅ αi + (1 − ri ) ⎝ ∂x ⎠i

j j 2 ⎡αi ⋅ ( 0,5 − rib ) − ( 0,5 − ri a ) ⎤ ∂ ⎛ ∂T ⎞ j j ⎛∂ T ⎞ ⎣ ⎦ +O τ, h . = ⎜k ⋅ f ⋅ ( ) ⎟ + ki ⋅ f i ⋅ ⎜ 2 ⎟ ⋅ ∂x ⎝ ∂x ⎠i rib ⋅ αi + (1 − ri a ) ⎝ ∂x ⎠i

(2.281) © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

150 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

(2.281),

Ч

-

ri a = 0,5 − αi ⋅ ( 0,5 − rib ) .

: (2.282)

(2.282)

1 ri a = rib = , 2

(2.283) T ( x, t )

. , 1

⎡( k ⋅ f ) ⋅ δ T a ⎤ (− R) ⎣ ⎦x

(σ , θ )

:

= ⎡⎣u( − R ) ⋅ δ T a ⎤⎦ + O (τ ) =

u( + R ) ⋅ δ T b − u( − R ) ⋅ δ T a

⎡ rib ⋅ uij+1 + (1 − rib ) ⋅ uij ⎤ ⋅ ⎡ rib ⋅ δ Ti +j1 + (1 − rib ) ⋅ δ Ti j ⎤ ⎦ ⎣ ⎦ − =⎣ Δxi +

x

+

Δxi

+ O (τ ) =

⎡ ri a ⋅ uij + (1 − ri a ) ⋅ uij−1 ⎤ ⋅ ⎡ ri a ⋅ δ Ti j + (1 − ri a ) ⋅ δ Ti −j1 ⎤ ⎣ ⎦ ⎣ ⎦ +O τ = − ( ) Δxi

=

1 Δxi

j j ⎞ ⎡⎛ ⎞ ⎛ ⎛ ∂T ⎞ j b ⎛ ∂ 2T ⎞ ⎛ ∂u ⎞ r h α ⋅ ⎢⎜ uij + rib ⋅ (α ⋅ h )i ⋅ ⎜ ⎟ + O ( h 2 ) ⎟ ⋅ ⎜ ⎜ + ⋅ ⋅ ⋅ + O ( h2 ) ⎟ − ( ) ⎜ ⎟ i ⎟ 2 i ⎜ ⎟ ⎜ ⎟ ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎢⎣⎝ ⎠ ⎝ ⎝ ∂x ⎠i ⎠

j j ⎞⎤ ⎛ ⎞ ⎛ ⎛ ∂T ⎞ j ⎛ ∂ 2T ⎞ ⎛ ∂u ⎞ a ⎡ ⎤ r h − − ⋅ ⋅ + O ( h 2 ) ⎟ ⎥ + O (τ ) = 1 − ⎜ uij − ⎣⎡1 − ri a ⎦⎤ ⋅ hi ⋅ ⎜ ⎟ + O ( h 2 ) ⎟ ⋅ ⎜ ⎜ i ⎦ i ⎜ ⎟ 2 ⎟ ⎣ ⎜ ⎟ ⎟ ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎝ ⎠ ⎝⎜ ⎝ ∂x ⎠i ⎠ ⎦⎥ j j j ⎛ j ⎛ ∂T ⎞ j ⎞ ⎛ ∂ 2T ⎞ ⎛ ∂T ⎞ b ⎛ ∂u ⎞ j b ⎜ ui ⋅ ⎜ u r h r h α α + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + O (h2 ) ⎟ ( ) ( ) ⎟ ⎜ ⎟ ⎜ ⎟ i i i ⎜ 2 ⎟ i i ⎜ ⎟ ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎠− =⎝ ri b ⋅ (α ⋅ h )i + (1 − ri a ) ⋅ hi

j j j ⎛ j ⎛ ∂T ⎞ j ⎞ ⎛ ∂ 2T ⎞ ⎛ ∂T ⎞ ⎛ ∂u ⎞ j a ⎜ ui ⋅ ⎜ u r h 1 −⎜ ⋅ (1 − ri a ) ⋅ hi ⋅ ⎜ ⎟ + O ( h 2 ) ⎟ − ⋅ − ⋅ ⋅ ⎟ ⎟ i ( i ) i ⎜ 2 ⎟ ⎜ ⎟ ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎠ +O τ = −⎝ ( ) rib ⋅ (α ⋅ h )i + (1 − ri a ) ⋅ hi

=

∂ ⎛ ∂T ⎞ ∂ ⎛ ∂T ⎜u⋅ ⎟ + O ( h, τ ) → ⎜ k ⋅ f ⋅ ∂x ⎝ ∂x ⎠i ∂x ⎝ ∂x j

⎞ ⎟ + O ( h, τ ) . ⎠

(2.284) Де ятая ра

ть (

φ

(σ , θ )

= φi + O (τ ) = Φ ij + O (τ , h ) = Φ + O (τ , h ) .

(2.264 )):

j

,

(2.285)

,

,

,

(2.262 )

1

В

© В.Е. Селе

δ T ( x, t = const ) ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(2.54 ) : -

-

.

лава 2 151 _______________________________________________________________________________________

∂ ⎡ ⎢ρ ⋅ f ∂t ⎢⎣

⎛ ⎛ ∂z w2 ⎞ ⎤ ∂ ⎡ w2 ⎞ ⎤ ∂ ⋅⎜ε + + ⋅ ⋅ ⋅ + f w ρ ε ( p ⋅ f ⋅ w) − ρ ⋅ f ⋅ w ⋅ g ⋅ 1 − ⎢ ⎜ ⎟⎥ ⎟⎥ = − x x ∂ ∂ ∂x 2 2 ⎠ ⎦⎥ ⎠ ⎦⎥ ⎝ ⎝ ⎣⎢ (2.286) ∂f ∂ ⎛ ∂T ⎞ − p⋅ +Q ⋅ f + ⎜k ⋅ f ⋅ ⎟ − Φ ( T , Toc ) + O (τ , h ) . ∂t ∂x ⎝ ∂x ⎠

Н

,

-

(2.262)

(2.54) -

.

(2.262)

, .

-

.

Д

(2.225) [69, 70, 96].

( . (3.27) – еч - а

еч V⋅



j +1 L

×∑ n =1

(

j +1 L

а

j −1 L

е

я е а

я

)

а

е

я е а

(

+ ρ Lj ) ⋅ (Ym ) L + (Ym ) L − ( ρ Lj + ρ Lj −1 ) ⋅ (Ym ) L + (Ym ) L (n)

f Lj +1 ⋅

N

n =1

j +1

( ( )ρ n

- а

(

j +1 M

(n)

2 ⋅ (1 + β j ) ⋅τ j j

ρ Mj +1 ⋅

(n)

а а

( Dm ) M

j +1

а

(n)

,

) ( ( ) (Y

е

∑ ( )ρ n =1

n

L

+ ( n ) ρ Lj +1 ⋅

)

j +1 m M

n

(n)

я

j −1

j

⋅ ( n ) wMj +1 + ( n ) ρ Lj +1 ⋅ ( n ) wLj +1 ⋅

N

( Dm ) L

j +1

а

)



) − 0,25 ×

+

(n)

(n)

(Ym ) L

j +1

(Ym ) L

j +1

(2.287 ) е

)⋅



а

(n)

(n)

е-

s+

(Ym ) M

2 ⋅ ( n ) ΔX

j +1

= 0;

(2.287 )

яК

х

а

n

n

n

⋅ ( ) wL ⋅ ( ) f L ⋅ ( ) s = 0

(2.287 ’)

ρL ,

V , n = 1, N ,

(n)

1

0,5 ⋅ ⎡⎣ ( n ) xL +

е

N

а а

+ 0,5 ⋅ ∑ ( n ) f Lj +1 ⋅

еч

[1])1: а а

-

−ρ ⋅V − 0,5 ⋅ ∑ ( n ) ρ Mj +1 ⋅ ( n ) wMj +1 ⋅ ( n ) f Mj +1 ⋅ ( n ) s = 0; (1 + β j ) ⋅τ j n =1

ρ

- а

N



,

O ( h 2 ,τ )

(2.54)



,

( n)

xM ⎤⎦ (

.

N

n =1

(2.217 ), © В.Е. Селе

( n)

xL

. 2.11). В .Н

V= ∪ N

V ⋅ ∂ρ ∂t − 0,5 ⋅ ∑

(n)

n-

⎡⎣( ρ ⋅ w ⋅ f ) L + ( ρ ⋅ w ⋅ f ) M ⎤⎦ ⋅ ( n ) s = 0 . (2.287 ).

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

n=0

,

(2.221 )

V

:

( n)

ρ

L

К

152 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∑ ( )w N

(

еч



- а

ρ Lj +1 +

(n)

+ ( ) s ⋅ ( ) f Lj +1 ⋅

(n)

V⋅

(n)

(n)

n

n

=−

(n)

(

−0,5 ⋅

– V⋅

f Lj +1 ⋅ 2 (n )

еч



j +1 L

(

(( )p n

( z1 ) L

а а

ρ Lj ⋅

wLj +1 +

ρ Lj +1 ⋅

(n)

(w )

j +1 L



j +1

)(

n =1

(n)

)

n

(n)

( z1 )M

j +1

- а

ρ Lj +

(n)

n

е

ρ

(n )

4



j +1 L

(n )

а

f

е

2 ⋅ (1 + β j ) ⋅τ j

n

( ( )ρ n

N

n

π ⋅ ( n ) f Lj +1

n =1

N ⎡ − ∑ ⎢0,5 ⋅ n =1 ⎣

(

(n )

m =1 n =1

n

n

(Ym ) L

j +1



)

(

(n)

n

(n)

ρ Mj +1 ⋅

(Ym ) M

n

(n)

(n)

fL

И (2.225)

wLj +

(n)

)+

е

wLj −1

j +1 L

n



(n )

(n)

n

е е −

я

n

)

n

wLj +1 ⋅ ( ) ΔX − n

(2.287 )

j +1 M

е

е

а

е-

)

ε Lj +1 ⋅ ( n ) s =

+

(n)

n

3

n

TLj +1 − ( )TMj +1 ( n ) j +1 ⋅ fL + n 2 ⋅ ( ) ΔX n

j +1

е

) ( ( )ε

ρ Lj +1 ⋅ ( n ) wLj +1 ⋅

)

(n)

n

wLj +1 ⋅ ( ) ΔX + QLj +1 ⋅V −

(n )

( Dm ) M

n

s;

я

n

n

⋅ ( )λLj +1 ⋅ ( ) ρ Lj +1 ⋅ ( ) wLj +1 ⋅

+ ( ) ρ Lj +1 ⋅ n

(n)

( Dm ) L

j +1

j +1

2 ⋅ ( ) ΔX

Д (2.225 ) ,

(n)

(n)

n

− ( ) wLj +1 ⋅ ( ) s +

n

k Mj +1 + ( )k Lj +1 ⋅

× ∑∑ ( ) f Lj +1 ⋅ N

j +1 M

n

⋅ ( )λLj +1 ⋅ ( ) ρ Lj +1 ⋅

4

(n)

n

( ( )w

n

n =1

N

⋅ ( ) wMj +1 +

j +1 M

)(

ρ Lj −1 ⋅

я а

n

π ⋅ ( n ) f Lj +1

n

= 0,5 ⋅ ∑ ( ) pMj +1 ⋅ ( ) f Lj +1 ⋅

(n)

я

(2.287 ’’)

− 0, 25 ⋅ ⎡⎣ ( ) ρ Lj +1 ⋅ ( ) wLj +1 + ( ) ρ Mj +1 ⋅ ( ) wMj +1 ⎤⎦ ⋅ ⎡⎣ ( ) wLj +1 + ( ) wMj +1 ⎤⎦ =

а а

n =1

×

wLj −

(n)

n

+ ρ Lj ) ⋅ ( ε Lj +1 + ε Lj ) − ( ρ Lj + ρ Lj −1 ) ⋅ (ε Lj + ε Lj −1 ) N

NS

) (

е

2 ⋅ (1 + β j ) ⋅τ j

j +1 2 L

)⋅ g ⋅

n

L

а

− ( ) pMj +1 ⋅ ( ) s −

− 0, 25 ⋅ ∑ ( ) f Lj +1 ⋅

+∑

(n)

⋅ ( ) f L ⋅ ( ) s = 0;

n



φLj +1 ⋅ ( n ) ΔX ⎥ − 0, 25 ×

(n )

)⋅(

(n)

(ε m )M

j +1



+

(n )

(ε m )L

j +1



(2.287 ’)

.

(2.287) . . 2.11),

fM (

ΔX n V = f L ⋅ ( ) ΔX . (n)

(n)

(2.225 ), (2.225 ), -

.

(n )

(2.287) ,

(2.287)

-

(2.225)

[1].

К

,

,



.

, .

(2.54)

,

, (

© В.Е. Селе

-

. В

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

«n »

лава 2 153 _______________________________________________________________________________________

):

∂ ( ρ ⋅ ε ) ∂ ( ρ ⋅ε ⋅ w ) 1 ∂w ∂ ⎛ ∂T ⎞ Φ (T , Toc ) 3 + = −p⋅ + ⋅λ ⋅ρ ⋅ w + Q + ⎜k ⋅ + ⎟− f ∂t ∂x ∂x 4 ⋅ R ∂x ⎝ ∂x ⎠ ∂ ⎛ NS ∂Y ⎞ + ⎜ ρ ⋅ ∑ ε m ⋅ Dm ⋅ m ⎟ . ∂x ⎝ m=1 ∂x ⎠

(n)

(2.288)

(2.288)

Θ

-

,

(2.225 ). (2.225 ). Д ,

А (2.54 ) :

(2.289), w⋅ w⋅

-

∂ρ ∂ ( ρ ⋅ w ) + = 0. ∂t ∂x

(2.225 ) ( w2 2 ) ,

(2.289)

w, :

∂ ( ρ ⋅ w ) w2 ∂ρ ∂ ⎛ w2 ⎞ − ⋅ = ⎜ ρ ⋅ ⎟; ∂t 2 ∂t ∂t ⎝ 2 ⎠

∂ ( ρ ⋅ w2 ) ∂x



Θ. -

(n)

(2.290 )

w2 ∂ ( ρ ⋅ w ) ∂ ⎛ w2 ⎞ ⋅ = ⎜ ρ ⋅ w⋅ ⎟, ∂x ∂x ⎝ 2 2 ⎠

(2.290 )

:

∂⎛ w ⎞ ∂ ⎛ ∂p ∂z1 1 w ⎞ 3 − ⋅λ ⋅ ρ ⋅ w . ⎜ ρ ⋅ ⎟ + ⎜ ρ ⋅ w ⋅ ⎟ = −w − g ⋅ ρ ⋅ w ⋅ ∂t ⎝ ∂x ∂x 4 ⋅ R 2 ⎠ ∂x ⎝ 2 ⎠ 2

(2.288)

2

(2.291),

(2.291) :

⎛ w2 ⎞ ⎤ ∂ ⎡ w2 ⎞ ⎤ ∂ ⎡ ⎛ ⎢ρ ⋅ ⎜ ε + ⎟⎥ + ⎢ ρ ⋅ w ⋅ ⎜ ε + ⎟⎥ = 2 ⎠ ⎦ ∂x ⎣ 2 ⎠⎦ ∂t ⎣ ⎝ ⎝

∂ ( p ⋅ w) ∂z ∂ ⎛ ∂T =− − g ⋅ ρ ⋅w⋅ 1 + Q + ⎜k ⋅ ∂x ∂x ∂x ⎝ ∂x

⎞ Φ ( T , Toc ) . ⎟− f ⎠

(2.292)

Д

,

,

, (2.292),

-

. (

( n)

V.Э

(2.231 )

1

В

(2.262 )

M = i −1 ,

© В.Е. Селе

(2.288)

, sia = sib = ria = rib = 0,5 , σ = 1 , θ = 0 , f = const . y ( ев, В.В. Алеш

⎡0,5 ⋅ ⎣

( n)

xL +

(n)

)

xM ;

( n)

,

xL ⎤ 1: ⎦

(2.293)

, x, p, w

, С.Н. Прял в, 2007–2009

(

)

. .)

yij++11 = y Lj +1 .

L=i ,

154 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________ (n )

(n)

(ρ + =

+ ρ Lj ) ⋅



(n)

( ρ ⋅ ε ⋅ w)L

j +1

A − ( n ) pMj +1 ⋅

j +1 L

(n)

+ ε Lj ) −

( ρ ⋅ w )L

j +1

(n)



2 ⋅ (1 + β j ) ⋅τ j

− 0,25 ⋅

(n)

j L

+ ρ Lj −1 ) ⋅

(( ρ ⋅ w) (n)

− 0,5 ⋅

j +1

(n )

(n)

(( ρ ⋅ w )

(n )

ΔX ⋅



j L

j +1

j +1

s

+ ε Lj −1 )

) (ε

+ ( ρ ⋅ w)M ⋅

ΔX ⋅ ( n ) s L

(n )

+ ( ρ ⋅ w )M

j +1 L

(n)

+

j +1 L

+ ε Mj +1 )

1 w − w + ( n ) j +1 ⋅ ( n )λLj +1 ⋅ ( n ) ρ Lj +1 ⋅ (n) 2 ⋅ ΔX ⋅ s 4 ⋅ RL

(n)

j +1 L (n)

(n)

j +1 M

⎡ ( n ) j +1 ( n ) ⎛ ∂T ⎞ j +1 1 ⋅ kL ⋅ ⎜ ⎢ ⎟ − 0,5 ⋅ (n) ΔX ⋅ ( n ) s ⎢⎣ ⎝ ∂x ⎠ L

( ( )k n

j +1 M

)

+ ( n ) k Lj +1 ⋅

(n)

) = 0;

=

(n)

ρ Mj +1 ⋅

(n)

( Dm ) M

j +1

+ ( n ) ρ Lj +1 ⋅

(n)

( Dm ) L

2

wLj +1 + QLj +1 + 3

TLj +1 − ( n )TMj +1 ⎤ ( n )φLj +1 , ⎥− 2 ⋅ ( n ) ΔX ⋅ ( n ) s ⎥⎦ ( n ) f Lj +1

j +1



(n)

(ε m ) L

(n)

+

j +1

(ε m ) L

j +1

2



(n)

(Ym ) L

j +1



(n)

аще

ая а

=



ь

2 ⋅ (1 + β j ) ⋅τ j

j +1 L

+ ρ Lj ) ⋅

⋅w

j +1 L

⎛ ⎜⎜ ⎝

(2.293),

j +1 L

+ ρ Lj ) ⋅

© В.Е. Селе

ρ j +1 − ρ Lj −1 ( wL − L ⋅ (1 + β j ) ⋅τ j 2

(2.295 )

)

j +1 2

=

wLj +1 ⋅ wLj w j ⋅ w j −1 − ( ρ Lj + ρ Lj −1 ) ⋅ L L w j +1 − wLj −1 2 2 + ( wLj +1 − wLj ) ⋅ ( ρ Lj + ρ Lj −1 ) ⋅ L . 2 ⋅ (1 + β j ) ⋅τ j (1 + β j ) ⋅τ j

(2.287 )



⎤ ⎥. ⎥⎦

ь

+ ρ Lj ) ⋅ ( wLj +1 + wLj ) − ( ρ Lj + ρ Lj −1 ) ⋅ ( wLj + wLj −1 )

ая а

j +1

:

w2 ⎡ (0,5) w ⋅ w ⎤ ( 0,5) ⎡ ( 0,5) ⎤ ⎡ ρ ( 0,5) ⋅ w( 0,5) ⎤ t ⋅ w − ⎡ ρ (0,5) ⎤ t ⋅ ⋅ ⋅ ⎣w ⎦ t ; t + ( w − w) ⋅ ρ ⎣ ⎦ ⎣ ⎦ 2 = ⎢⎣ ρ 2 ⎥⎦

а е

(Ym ) M

2 ⋅ ( n ) ΔX

,

j +1 L

(2.294)

(n)

j +1 (n) s N S ⎡ ( n ) j +1 ( n ) j +1 ( n ) j +1 ⎛ ∂Ym ⎞ ρ ε ⋅ ⋅ ⋅ ⋅ − D ( ) ( ) ⎢ ∑ ⎜ ⎟ L m m (n) L L ΔX m=1 ⎢⎣ ⎝ ∂x ⎠ L

Д



(2.293)

(n)

A= −

(n)

(n)

+ (n)

j +1 L

ρ Lj +1 − ( n ) ρ Lj −1 + (1 + β j ) ⋅τ j

(2.295),

wLj +1 ⋅ wLj w j ⋅ w j −1 − ( ρ Lj + ρ Lj −1 ) ⋅ L L 2 2 + (1 + β j ) ⋅τ j ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

⎞ w ⎟ f ⋅ ΔX ⎟⎠ ⎛ ( n ) j +1 2 ⎞ ⎜ ( wL ) 2 ⎟ . ⎝ ⎠

(n)

j +1 L

w = V

(n )

(n )

(n )

j +1 L (n)

(2.295 )

:

лава 2 155 _______________________________________________________________________________________

+

ρ Lj +1 ⋅

(w )

− 0,5 ⋅ ( ρ Lj +1 ⋅ wLj +1 + ρ Mj +1 ⋅ wMj +1 ) ⋅

j +1 3 L

wLj +1 ⋅ wMj +1 2 =

ΔX ⋅ s 3 1 pLj +1 − pMj +1 j +1 =− ⋅ wL − ⋅ λLj +1 ⋅ ρ Lj +1 ⋅ wLj +1 − j +1 2 ⋅ ΔX ⋅ s 4 ⋅ RL

( −

2

( z1 ) L



j +1

(n)

( z1 ) M

j +1

(n)

2 ⋅ ΔX ⋅ s

(2.296) (n) V:



)⋅g ⋅ρ

j +1 L

(2.296)

⋅ wLj +1 − ( wLj +1 − wLj ) ⋅ ( ρ Lj + ρ Lj −1 ) ⋅

wLj +1 − wLj −1 . 2 ⋅ (1 + β j ) ⋅τ j

(2.294), j +1 L



+

j +1 L

+ ρ Lj ) ⋅

( ρ ⋅ ε ⋅ w )L

j +1

+

+

+ ρ Lj ) ⋅ ( ε Lj +1 + ε Lj ) − ( ρ Lj + ρ Lj −1 ) ⋅ (ε Lj + ε Lj −1 )

ρ Lj +1 ⋅

=−

p

(w )

j +1 3 L

2

j +1 L

2 ⋅ (1 + β j ) ⋅τ j

wLj +1 ⋅ wLj w j ⋅ w j −1 − ( ρ Lj + ρ Lj −1 ) ⋅ L L 2 2 + (1 + β j ) ⋅τ j

(

)

− 0, 25 ⋅ ( ρ ⋅ w ) L + ( ρ ⋅ w ) M ⋅ ( ε Lj +1 + ε Mj +1 ) j +1

(n)

ΔX ⋅

j +1

(n )

s

− 0,5 ⋅ ( ρ Lj +1 ⋅ wLj +1 + ρ Mj +1 ⋅ wMj +1 ) ⋅

⋅w − p ⋅w 2 ⋅ ΔX ⋅ s j +1 L

+

j +1 M

j +1 M

ΔX ⋅ s



( z1 ) L

− ( z1 ) M

j +1

2 ⋅ ΔX ⋅ s

j +1

+

wLj +1 ⋅ wMj +1 2 =

⋅ g ⋅ ρ Lj +1 ⋅ wLj +1 +

j +1 1 ⎡ j +1 ⎛ ∂T ⎞ TLj +1 − TMj +1 ⎤ j +1 j +1 j +1 + ⋅ ⎢k L ⋅ ⎜ ⎥ + QL − ⎟ − 0,5 ⋅ ( k M + k L ) ⋅ 2 ⋅ ΔX ⋅ s ⎦⎥ ΔX ⋅ s ⎣⎢ ⎝ ∂x ⎠ L

φLj +1



К

f

j +1 L

− ( wLj +1 − wLj ) ⋅ ( ρ Lj + ρ Lj −1 ) ⋅

(2.297)

wLj +1 − wLj −1 + A. 2 ⋅ (1 + β j ) ⋅τ j

(2.297),

, . . (

(2.297) ). Д

– (2.287) (2.262)

,

V⋅



j +1 L



j L

) ⋅ (ε

j +1 L

) − ( ρ + ρ ) ⋅ (ε 2 ⋅ (1 + β ) ⋅ τ +ε

− 0,25 ⋅ ∑ ( n ) f Lj +1 ⋅ N

n =1

j L

( ( )ρ n

j −1 L

j L

j

j +1 M

= 0,5 ⋅ ∑ ( n ) pMj +1 ⋅ ( n ) f Lj +1 ⋅ N

n =1

© В.Е. Селе

(2.287 ’)



ев, В.В. Алеш

j

⋅ ( n ) wMj +1 +

( ( )w n

j +1 M

(n)

V,

j L



j −1 L

)−

(2.287 ’), :

) ( ( )ε

ρ Lj +1 ⋅ ( n ) wLj +1 ⋅

)

− ( n ) wLj +1 ⋅ ( n ) s +

ri = 0,5 , a

, С.Н. Прял в, 2007–2009

n

j +1 M

+

)

ε Lj +1 ⋅ ( n ) s =

(n)

156 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

π ⋅ ( n) f Lj +1

+∑ N

n =1

( ( )k

⋅ ( n )λLj +1 ⋅ ( n ) ρ Lj +1 ⋅

4

⎡ − ∑ ⎢0,5 ⋅ n =1 ⎣ N

n

j +1 M

×

(n)

N

m =1 n =1

(Ym ) L

j +1

2⋅



(n)

(n)

(

(n)

(Ym ) M

j +1

ΔX

ρ Mj +1 ⋅

+∑ N

n =1

(

3

TLj +1 − ( n )TMj +1 ( n ) j +1 ⋅ fL + 2 ⋅ ( n ) ΔX (n)

(n)

,

К

wLj +1 ⋅ ( n ) ΔX + QLj +1 ⋅V −

(n)

+ ( n ) k Lj +1 ⋅

− 0,25 ⋅ ∑∑ ( n ) f Lj +1 ⋅ NS

)

(n)

( Dm ) M

j +1

+

(n)

ρ Lj +1 ⋅

(n)



φLj +1 ⋅ ( n ) ΔX ⎥ −

(n)

( Dm ) L

j +1

)⋅(

(n)



(ε m ) M

j +1

(n)

(ε m ) L

j +1



⎡ j +1 ⎤ N w j +1 − wLj −1 ⋅ f L ⋅ ΔX ⎥ + ∑ ( n ) A. ⎢( wL − wLj ) ⋅ ( ρ Lj + ρ Lj −1 ) ⋅ L 2 ⋅ (1 + β j ) ⋅τ j ⎢⎣ ⎥⎦ n =1 (2.287 ) (2.262) (2.287) -

. (2.231)).

[69], .

(

+

) ,

,

-



-

[97]. Н

[97]. В :

-

(

)

Э

, . . (

⎧ ∂ρ ⎪ ∂ t + υ0 ⋅ ∇ρ + ρ 0 ⋅ ∇ ⋅ υ = 0; ⎪ 1 ⎪ ∂υ ⎨ + υ0 ⋅ ∇ ⋅ υ + ⋅ ∇p = 0; ρ0 ⎪ ∂t ⎪ ∂p 2 ⎪ + υ0 ⋅ ∇p + ρ 0 ⋅ c0 ⋅ ∇ ⋅ υ = 0, ⎩ ∂t

(

υ, p, ρ –

)

(

(2.298)

)

,

-

; c0 –

(

c0 = γ ⋅ R ⋅ T ); υ0 , ρ 0 – (2.298)

И

, . -

. (2.298),

,

⎧ ∂ρ N ∂ρ ⎞ N ∂w ⎞ ⎛ ⎛ + ∑ ⎜ w0 ⋅ ⋅ Θ ⎟ + ∑ ⎜ ρ0 ⋅ ⋅ Θ ⎟ = 0; ⎪ ∂ ∂ ∂x t x ⎝ ⎠ ⎝ ⎠ = = n n 1 1 ⎪ (n ) (n) ⎪ (n) ∂w ⎞ 1 ⎪ ∂w ⎛ ⎛ ∂p ⎞ + ⎜ w0 ⋅ ⎨ ⎟ + ⋅ ⎜ ⎟ = 0, n = 1, N ; ∂x ⎠ ρ 0 ⎝ ⎝ ∂x ⎠ ⎪ ∂t ⎪ N (n) N (n) ⎪ ∂p + ∑ ⎛⎜ w0 ⋅ ∂p ⋅ Θ ⎞⎟ + ∑ ⎛⎜ ρ 0 ⋅ c02 ⋅ ∂w ⋅ Θ ⎞⎟ = 0. ∂x ⎠ n =1 ⎝ ∂x ⎠ ⎩⎪ ∂t n =1 ⎝ (n )

© В.Е. Селе

)

ев, В.В. Алеш

(n )

, С.Н. Прял в, 2007–2009

:

(2.299)

лава 2 157 _______________________________________________________________________________________

В

q = c02 ⋅ ρ − p; a1 = w0 ; a1 = υ0 .

:

(2.298) ,

(2.300)

c02

(2.299)

:

∂q + a1 ⋅ ∇q = 0; ∂t

(∇ ⋅ a ) = 0 , 1

И ,

∂q N +∑ ∂t n =1

(2.301 )

(n )

(2.301 )

∂q ⎛ ⎞ ⋅Θ ⎟ = 0. ⎜ a1 ⋅ ∂x ⎝ ⎠

:

∂q + ∇ ⋅ ( q ⋅ a1 ) = 0. ∂t V,

(2.301 ) (2.301 )1:

qLj +1 − qLj −1 N −∑ 2 ⋅τ n =1

(n)

(2.301 )

(2.301 ) -

⎛ ⎞ qLj +1 + qMj +1 a ⋅ ⋅ s ⋅ Θ ⎟ = 0. ⎜ 1 2 ⋅ ΔX ⎝ ⎠

(2.302)

(2.302) (2.302)

:

qLj +1 − ∑ N

(n)

n =1

(2.303) y

j C

= max yi i

«

[97]. a1 ⋅τ ⎛ j +1 ⎞ j +1 ⋅ s ⋅ Θ ⎟ = qLj −1. ⎜ ( qL + q M ) ⋅ ΔX ⎝ ⎠

»

,

( j

(2.303)

y

[97]): q

j +1 C

N (n ) ⎡ a1 ⋅τ = ⎢1 + 2 ⋅ ∑ ⋅s⋅Θ ΔX n =1 ⎢⎣

,

(2.304)

(2.302)

⎤ ⎥ ⋅ q ⎥⎦ −1

j −1 C

N ⎡ 0 < ⎢1 + 2 ⋅ ∑ n =1 ⎣⎢

,

(2.304)

.

⎤ a1 ⋅τ ⋅s⋅Θ ⎥ ≤1 . ΔX ⎦⎥ −1

(n)

(2.298) (2.299)

V , n = 1, N :

-

(2.299).

(n)

(n)

(n)

∂p + ∂t

Θ. (2.299), ):

(n )

∂p ⎞ ⎛ ⎜ w0 ⋅ ⎟ + ∂x ⎠ ⎝

(n )

⎛ 2 ∂w ⎞ ⎜ ρ 0 ⋅ c0 ⋅ ⎟ = 0, ∂x ⎠ ⎝

,

1

© В.Е. Селе

(2.305) (2.305) «n »

(

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

158 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∂ ( p + ρ 0 ⋅ c0 ⋅ w ) ∂ ( p + ρ 0 ⋅ c0 ⋅ w ) + ( w0 + c0 ) ⋅ = 0; ∂t ∂x

(2.306 )

∂ ( p − ρ 0 ⋅ c0 ⋅ w ) ∂ ( p − ρ 0 ⋅ c0 ⋅ w ) + ( w0 − c0 ) ⋅ = 0. ∂t ∂x

В

(2.306 )

:

r + = c0 ⋅ ρ 0 ⋅ w + p; a2 = w0 + c0 ; r − = − c0 ⋅ ρ 0 ⋅ w + p; a3 = w0 − c0 .

(2.307)

(r )

j +1

+

L

− (r+ )

2 ⋅τ

j −1 L

(2.306)

:

∂r + ∂r + ∂r − ∂r − + a2 ⋅ = 0; + a3 ⋅ = 0. ∂t ∂x ∂t ∂x

+ a2

(r ) ⋅ +

j +1

− (r+ )

2 ⋅ ΔX ⋅ s L

(r )

, j +1 M

j +1



= 0;

− (r− )

2 ⋅τ

L

(2.308)

(r ) ⋅

(2.308): j −1 L

+ a3



j +1

− (r− )

2 ⋅ ΔX ⋅ s L

j +1 M

(2.309)

(r ) +

(2.309)

j +1 L

+

:

j +1 j −1 a2 ⋅τ ⎡ + j +1 ⋅ (r ) − (r+ ) ⎤ = (r+ ) ; ⎢ ⎥ L M L ⎦ ΔX ⋅ s ⎣

s =1,

r+

j +1

a ⋅τ ⎞ ⎛ ⋅ ⎜1 + 2 ⋅ 2 ⎟ = r + ΔX ⎠ ⎝

(r ) −

,

j +1 L

j −1

;

r−

+

j +1 C

» .

,

-

):

a ⋅τ ⎞ ⎛ ⋅ ⎜1 + 2 ⋅ 3 ⎟ = r − ΔX ⎠ ⎝

(2.311)

(2.309)

j −1 C



(2.311)

a ⋅τ ⎤ ⎡ 0 < ⎢1 + 2 ⋅ 2 ≤1 ΔX ⎥⎦ ⎣ −1

,

a ⋅τ ⎤ ⎡ 0 < ⎢1 + 2 ⋅ 3 ≤1. ΔX ⎥⎦ ⎣ , (2.302), (2.309). Э −1

, (2.299).

(2.302)

(2.299). Д

(2.309)

(

⎡ ( ρ ⋅ F )( − S ) ⎤ + ρ ⋅ w ⋅ f (− R) ( 0,5) ( 0,5) ⎣ ⎦t +

© В.Е. Селе

ев, В.В. Алеш

)

. (2.3) (σ , θ ) +

x

= 0;

, С.Н. Прял в, 2007–2009

-

,

(2.262)

(

-

j +1 j −1 a3 ⋅τ ⎡ − j +1 ⋅ (r ) − (r− ) ⎤ = (r− ) . ⎢ ⎥ L M L ⎦ ΔX ⋅ s ⎣ (2.310)

« (

C

= 0. (2.309)

[70].

(2.310)

C

(2.307)

, (2.287). [2]

[2]):

(2.312 )

лава 2 159 _______________________________________________________________________________________

(

⎡( ρ ⋅ F )( − S ) ⋅ (Ym )( − S ) ⎤ + ρ ⋅ w ⋅ f ⋅ (Ym ) (− R) ( 0,5) ( 0,5) (− R) ⎣ ⎦t +

a − ⎡( ρ ⋅ f ⋅ Dm )( − R ) ⋅ δ (Ym ) ⎤ ⎣ ⎦x

(σ ,θ ) +

(

= 0,

− g ⋅ ⎡⎣ ρ ⋅ ( B − ⋅ γ − ⋅ ( z1 ) x + B + ⋅ γ + ⋅ ( z1 ) x ) ⎤⎦

(

⎡ ( ρ ⋅ F )( − S ) ⋅ ε ( − S ) ⎤ + ρ ⋅ w ⋅ f ⋅ ε (− R) ( 0,5) ( 0,5) ( − R ) ⎣ ⎦t

(

+

= − p( − R ) ⋅ w( 0,5) ⋅ f ( 0,5) −p

(σ , θ )

⋅ ⎡⎣ F

)

(σ , θ ) +

x

⎦ t + (Q ⋅ F )

(− S ) ⎤

(σ , θ ) +

x



m = 1, N S − 1;

⎡ ( ρ ⋅ F )( − S ) ⋅ w( − S ) ⎤ + ρ ⋅ w ⋅ f ⋅ w (− R) ( 0,5) ( 0,5) (− R) ⎣ ⎦t +

)

)

(σ , θ ) +

x

(σ , θ )

)

(σ , θ )



YN = 1 − S

(σ , θ )

+

π

4

⋅ (λ ⋅ ρ ⋅ w ⋅ r )

(σ , θ )

(σ , θ )

NS

m=1

(σ , θ )

⋅ w(

σ,θ)

(σ , θ )



(2.312 )

;

⎛ ⎛ w2 ⎞ w2 ⎞ + Kt ⎜ ρ ⋅ F ⋅ ⎟ + K x ⎜ ρ ⋅ w ⋅ f ⋅ ⎟ 2 ⎠ 2 ⎠ ⎝ ⎝

+ ⎡ ( k ⋅ f )( − R ) ⋅ δ T a ⎤ ⎣ ⎦x

a + ∑ ⎡( ρ ⋅ Dm ⋅ f )( − R ) ⋅ ( ε m )( − R ) ⋅ δ (Ym ) ⎤ ⎣ ⎦x m =1

(2.312 )

= − ( B − ⋅ γ − ⋅ px + B + ⋅ γ + ⋅ px )

− g ⋅ ⎡⎣ ρ ⋅ ( B − ⋅ γ − ⋅ ( z1 ) x + B + ⋅ γ + ⋅ ( z1 ) x ) ⎤⎦ +

x

∑ Ym ;

N S −1

+

−φ(

σ,θ)

(σ , θ )

(σ , θ )

=

⋅ w(σ , θ ) −

+

;

+

ε m = ε m ({S ме и }) , m = 1, N S ; T1 = T2 = … = TN ; p = p ({S ме и }) ; ε = ε ({S ме и }) ;

(2.312 ) (2.312 )

S

k = k ({S ме и }) ;

(2.312 )

Dm = Dm ({S ме и }) , m = 1, N S .

(2.312 ) (2.312 ) (2.262)

(2.312)

, (2.312).

В ∂(ρ ⋅ f ) ∂t

ρ⋅ f ⋅

+

∂(ρ ⋅ w⋅ f ) ∂x

S

ρ⋅ f ⋅

∑Y

(2.54):

= 0;

(2.313 )

N S −1 m =1

m

⎞ ⎟ = 0; ⎠

m = 1, N S − 1 ;

(2.313 )

;

∂w ∂w + ρ ⋅ w⋅ f ⋅ =−f ∂t ∂x

© В.Е. Селе

. Д

,

∂ Ym ∂Y ∂Y ∂ ⎛ + ρ ⋅ w ⋅ f ⋅ m − ⎜ ρ ⋅ f ⋅ Dm ⋅ m ∂t ∂ x ∂x ⎝ ∂x

YN = 1 −

-

ев, В.В. Алеш

⎛∂p ∂z ⎞ π ⋅⎜ + g ⋅ ρ ⋅ 1 ⎟ − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R; ∂x ⎠ 4 ⎝ ∂x

, С.Н. Прял в, 2007–2009

(2.313 )

160 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ρ⋅ f ⋅

∂( w ⋅ f ) ∂ε ∂ε ∂f π 3 + ρ ⋅ w⋅ f ⋅ = −p⋅ − p⋅ + Q⋅ f + ⋅λ ⋅ ρ ⋅ w ⋅ R+ 4 ∂t ∂x ∂x ∂t

NS ∂Ym ∂ ⎛ ∂T ⎞ ∂ ⎛ + ⎜k ⋅ f ⋅ ⎟ − Φ (Toc , T ) + ⎜⎜ ρ ⋅ f ⋅ ∑ ε m ⋅ Dm ⋅ ∂x ⎝ ∂x ⎠ ∂x ⎝ ∂x m =1

ε m = ε m ({S ме и } ) ,

⎞ ⎟⎟ ; ⎠

(2.313 )

m = 1, N S ; ε = ε ({S ме и } ) ; T1 = T2 = … = TN S ;

p = p ({S ме и } ) ; k = k ({S ме и } ) ; Dm = Dm ({S ме и } ) , m = 1, N S .

(2.313 ) (2.313 ) :

ρi j +1 ⋅ Fi j +1 − ρi j −1 ⋅ Fi j −1 ρi j++11 ⋅ wij++11 ⋅ f i +j 1+1 − ρi j−+11 ⋅ wij−+11 ⋅ f i −j1+1 + = 0; (1 + α i ) ⋅ hi (1 + β j ) ⋅τ j



j +1

i

(

⋅ Fi j +1 + ρi j ⋅ Fi j ) ⋅ (Ym )i

j +1

)

(

− (Ym )i + ( ρi j ⋅ Fi j + ρi j −1 ⋅ Fi j −1 ) ⋅ (Ym )i − (Ym )i 2 ⋅ (1 + β j ) ⋅τ j j

(

)

j −1

j

⎡ ( ρ j +1 ⋅ w j +1 ⋅ f j +1 + ρ j +1 ⋅ w j +1 ⋅ f j +1 ) ⋅ (Y ) j +1 − (Y ) j +1 i +1 i +1 i +1 i i i m i +1 m i +⎢ + ⎢ 2 ⋅ (1 + α i ) ⋅ hi ⎢⎣ +



j +1 i

(

⋅ wij +1 ⋅ f i j +1 + ρi j−+11 ⋅ wij−+11 ⋅ fi −j1+1 ) ⋅ (Ym )i 2 ⋅ (1 + α i ) ⋅ hi

(

j +1

)

j +1 − (Ym )i −1 ⎤ ⎥− ⎥ ⎥⎦

)(

)+

(2.314 )

)

⎡ ρ j +1 ⋅ f j +1 ⋅ ( D ) j +1 + ρ j +1 ⋅ f j +1 ⋅ ( D ) j +1 ⋅ (Y ) j +1 − (Y ) j +1 i +1 i +1 m i +1 i i m i m i +1 m i −⎢ − 2 ⎢ (1 + α i ) ⋅ α i ⋅ hi ⎢⎣

(ρ −

j +1 i

⋅ f i j +1 ⋅ ( Dm )i

j +1

m = 1, N S − 1 ,



j +1 i

( ) YN

S

)(

+ ρi j−+11 ⋅ f i −j 1+1 ⋅ ( Dm )i −1 ⋅ (Ym )i

(1 + α i ) ⋅ h

j +1

2 i

j +1 i

= 1−

∑ (Y )

N S −1 m =1

j +1 m i

j +1

⋅ Fi j +1 + ρi j ⋅ Fi j ) ⋅ ( wij +1 − wij ) + ( ρi j ⋅ Fi j + ρi j −1 ⋅ Fi j −1 ) ⋅ ( wij − wij −1 )

j +1

i

2 ⋅ (1 + β j ) ⋅τ j

⋅ wij +1 ⋅ fi j +1 + ρi j−+11 ⋅ wij−+11 ⋅ fi −j1+1 ) ⋅ ( wij +1 − wij−+11 ) ⎤ ⎥= 2 ⋅ (1 + α i ) ⋅ hi ⎥⎦

© В.Е. Селе

ев, В.В. Алеш

(2.314 )

;

⎡ ( ρi j++11 ⋅ wij++11 ⋅ fi +j 1+1 + ρi j +1 ⋅ wij +1 ⋅ f i j +1 ) ⋅ ( wij++11 − wij +1 ) +⎢ + 2 ⋅ (1 + α i ) ⋅ hi ⎢⎣

(ρ +

)

j +1 − (Ym )i −1 ⎤ ⎥, ⎥ ⎥⎦

, С.Н. Прял в, 2007–2009

+

лава 2 161 _______________________________________________________________________________________

=−

(B ) −

− g ⋅ ρi



j +1

j +1 i

⋅ ⎡⎣ pij +1 − pij−+11 ⎤⎦ + ( B + )

(B ) ⋅ −

(1 + α i ) ⋅ hi

j +1 i

j +1 i

⋅ ⎡⎣ pij++11 − pij +1 ⎤⎦

⋅ ⎡⎣ ( z1 )ij +1 − ( z1 )ij−+11 ⎤⎦ + ( B + )

(1 + αi ) ⋅ hi

j +1 i



π 4

⋅ λi j +1 ⋅ ρi j +1 ⋅ wij +1 ⋅ wij +1 ⋅ ri j +1 −

⋅ ⎡⎣ ( z1 )ij++11 − ( z1 )ij +1 ⎤⎦

(2.314 )

;

⋅ Fi j +1 + ρi j ⋅ Fi j ) ⋅ ( ε i j +1 − ε i j ) + ( ρi j ⋅ Fi j + ρi j −1 ⋅ Fi j −1 ) ⋅ ( ε i j − ε i j −1 )

j +1

2 ⋅ (1 + β j ) ⋅τ j

i

⎡ ( ρi j++11 ⋅ wij++11 ⋅ f i +j 1+1 + ρi j +1 ⋅ wij +1 ⋅ fi j +1 ) ⋅ ( ε i j++11 − ε i j +1 ) +⎢ + 2 ⋅ (1 + α i ) ⋅ hi ⎢⎣

(ρ +

j +1

i

+

⋅ wij +1 ⋅ f i j +1 + ρi j−+11 ⋅ wij−+11 ⋅ f i −j1+1 ) ⋅ ( ε i j +1 − ε i j−+11 ) ⎤ ⎥= 2 ⋅ (1 + α i ) ⋅ hi ⎥⎦

⎡ p j +1 ⋅ w j +1 ⋅ f j +1 − pij−+11 ⋅ wij−+11 ⋅ fi −j1+1 = − ⎢ i +1 i +1 i +1 − (1 + α i ) ⋅ hi ⎢⎣

− wi +

j +1

π



(B ) −

j +1

i

⋅ ⎣⎡ pij +1 − pij−+11 ⎦⎤ + ( B + )

(1 + α i ) ⋅ hi

j +1

i

j +1 j −1 ⋅ ⎣⎡ pij++11 − pij +1 ⎦⎤ ⎤ ⎥ − p j ⋅ Fi − Fi + i ⎥ (1 + β j ) ⋅τ j ⎦

⋅ λi j +1 ⋅ ρi j +1 ⋅ wij +1 ⋅ ri j +1 + Qi j +1 ⋅ Fi j +1 − φi j + 3

⎡ ( ki j++11 ⋅ f i +j 1+1 + ki j +1 ⋅ f i j +1 ) ⋅ (Ti +j 1+1 − Ti j +1 ) − α i ⋅ ( ki j +1 ⋅ f i j +1 + ki j−+11 ⋅ f i −j1+1 ) ⋅ (Ti j +1 − Ti −j 1+1 ) ⎤ ⎥+ +⎢ (1 + α i ) ⋅ α i ⋅ hi2 ⎥⎦ ⎣⎢ 4

(

)

⎡ NS j +1 j +1 j +1 j +1 j +1 j +1 j +1 j +1 j +1 j +1 ⎢ ∑ ⎡⎣ ρi +1 ⋅ f i +1 ⋅ ( ε m )i +1 ⋅ ( Dm )i +1 + ρi ⋅ fi ⋅ ( ε m )i ⋅ ( Dm )i ⎤⎦ ⋅ (Ym )i +1 − (Ym )i m = 1 +⎢ − ⎢ (1 + α i ) ⋅ α i ⋅ hi2 ⎢ ⎣

∑ ⎡⎣ ρ

j +1

NS

− m =1

( ε m )i

j +1

i

⋅ f i j +1 ⋅ ( ε m )i

j +1

(

= ε m {S ме и }i

( = ε ({S = k ({S

pij +1 = p {S ме и }i

ε i j +1

ki j +1

© В.Е. Селе

); ); );

j +1

}

j +1 ме и i

}

j +1 ме и i

j +1

⋅ ( Dm )i

),

ев, В.В. Алеш

j +1

(

+ ρi j−+11 ⋅ f i −j 1+1 ⋅ ( ε m )i −1 ⋅ ( Dm )i −1 ⎤ ⋅ (Ym )i ⎦

(1 + α i ) ⋅ h

j +1

2 i

m = 1, N S ;

(T1 )i

j +1

= (T2 )i

j +1

j +1

( )

= … = TN S

j +1

j +1 i

)

j +1 ⎤ − (Ym )i −1 ⎥ ⎥; ⎥ ⎥ ⎦

= Ti j +1 ;

(2.314 )

(2.314 )

(2.314 ) (2.314 ) (2.314 ) , С.Н. Прял в, 2007–2009

162 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

( Dm )i

j +1

fi −j1+1 + 4 ⋅

Fi j +1 =

(B )

j +1



(B ) +

({S

= Dm

i j +1

i

fi −j1+1 ⋅ f i j +1 + 7 ⋅ f i j +1 ⋅ (1 + α i ) + 4 ⋅ α i ⋅ f i +j 1+1 ⋅ f i j +1 + α i ⋅ fi +j 1+1

е

е

f i j +1 ⋅ (1 + α i ) +

(

)

(0,5)

ая а

(

⋅ (Ym )t ⎤ ⎦⎥

m = 1, N S − 1 ,

(

⎡ ρ ⋅F ⎢⎣

(

)

(0,5)

(0,5)

ь:

)

(0,5)

(

S

(0,5)

⎤ = 0; ⎥⎦ x

)

+ ⎡ ρ ⋅ w⋅ f ⎣⎢

YN = 1 −

⋅ wt ⎤ ⎥⎦

f i +j 1+1 ⋅ α i

4 ⋅ (1 + α i ) ⋅ π

⎡ ρ ⋅ F )(0,5) ⎤ + ⎡ ρ ⋅ w ⋅ f ⎣( ⎦ t ⎢⎣

⎡ ρ⋅F ⎣⎢

(

∑Y

N S −1 m =1

+ ⎡ ρ ⋅ w⋅ f ⎢⎣

)

m

(0,5)

)

(0,5)

(

⋅εt ⎤ ⎦⎥

(0,5)

= − ⎜⎛ ⎡ w ⋅ p ⋅ f ⎝ ⎣⎢

+

π

F=

) )

(2.314 )

)

(

+ ⎡ ρ ⋅ w⋅ f ⎣⎢

(0,5)

(

)

)

( )

x

(

⎤ − ⎡ ρ ⋅ f ⋅ Dm ⎦⎥ (0,5) ⎣⎢

(

(0,5)

( )

⋅ Ym

x

⎤ = 0; ⎦⎥ x

(2.315 )

(0,5)

(

)

(+1) ⋅ wx ⎤ = − γ − ⋅ B − ⋅ px + γ + ⋅ B + ⋅ px − ⎥⎦ (0,5)

(0,5)

π

4

⋅λ ⋅ ρ ⋅ w⋅ w ⋅ r;

= (+1) ⋅ ε x ⎤ ⎦⎥ (0,5)

)

)

(

⋅ Tx ⎤ − φ + ∑ ⎡ ρ ⋅ f ⋅ ε m ⋅ Dm ⎥⎦ x ⎢ (0,5) m =1 ⎣ NS

f ( −1) ⋅ f + 7 ⋅ f ⋅ (1 + α ) + 4 ⋅ α ⋅ 12 ⋅ (1 + α )

({ }) ε = ε ({S }) ; k = k ({S }) ; ( D ) = D ({S }) , m = 1, N ; p = p S ме и ;

)

(2.315 )

(2.315 )

⎤ − w ⋅ γ − ⋅ B − ⋅ p + γ + ⋅ B + ⋅ p ⎞ − p ⋅ ⎡ F (0,5) ⎤ + x x ⎟ ⎣ ⎦t ⎦⎥ x ⎠

3

(

(2.314 )

.

;

⋅λ ⋅ ρ ⋅ w ⋅r + Q⋅ F + ⎡ k ⋅ f ⎢⎣ 4 f ( −1) + 4 ⋅

(2.314 )

S

)

(0,5)

f ( +1) ⋅ f + α ⋅ f ( +1)

ε m = ε m {S ме и } , m = 1, N S ; T1 = T2 = … = TN = T ;

m

;

(2.314 )

(+1) ⋅ Ym

− g ⋅ ρ ⋅ ⎡⎣γ − ⋅ B − ⋅ ( z1 ) x + γ + ⋅ B + ⋅ ( z1 ) x ⎤⎦ −

⎡ ρ⋅F ⎣⎢

(2.314 )

S

1 ⋅ fi −j1+1 + 4 ⋅ fi −j1+1 ⋅ fi j +1 + 7 ⋅ f i j +1 ; 12 1 = ⋅ f i +j 1+1 + 4 ⋅ f i +j 1+1 ⋅ f i j +1 + 7 ⋅ fi j +1 ; 12 fi −j1+1 + 3 ⋅

ri j +1 =

) , m = 1, N ;

12 ⋅ (1 + α i )

( (

=

}

j +1 ме и i

;

( )

⋅ Ym

x

⎤ ; ⎥⎦ x

(2.315 )

(2.315 ) (2.315 ) (2.315 )

ме и

(2.315 )

ме и

(2.315 )

m

© В.Е. Селе

ме и

ев, В.В. Алеш

S

, С.Н. Прял в, 2007–2009

(2.315 )

лава 2 163 _______________________________________________________________________________________

( (

) )

1 ⋅ f ( −1) + 4 ⋅ f ( −1) ⋅ f + 7 ⋅ f ; 12 1 B + = ⋅ f ( +1) + 4 ⋅ f ( +1) ⋅ f + 7 ⋅ f ; 12 B− =

f ( −1) + 3 ⋅ f ⋅ (1 + α ) +

r=

4 ⋅ (1 + α ) ⋅ π

r a = r b = 0,5.

f ( +1) ⋅ α

(2.315 ) (2.315 ) (2.315 )

;

(2.315 ) 1

(2.314)



,

, -

. В

, ,

, . 2.5.1. П и е ы а но

ных хе

овышенно о о я

В

аа

о

и а ии

, . .Д

-

(

)

-

(2.36). Н ∂ (ρ ⋅ f ) ∂t

ρ⋅ f ⋅

+

∂ (ρ ⋅ w⋅ f ) ∂x

: = 0;

∂w ∂w + ρ ⋅w⋅ f ⋅ =−f ∂t ∂x

(2.316 ) ⎛∂p ∂z ⎞ π ⋅⎜ + g ⋅ ρ ⋅ 1 ⎟ − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R; ∂x ⎠ 4 ⎝ ∂x

∂( w ⋅ f ) π ∂ε ∂ε ∂f 3 + ρ ⋅ w⋅ f ⋅ = −p⋅ − p ⋅ + Q ⋅ f + ⋅λ ⋅ ρ ⋅ w ⋅ R + ∂t ∂x ∂x ∂t 4 ∂ ( k ⋅ f ) ∂T ∂ 2T + ⋅ + k ⋅ f ⋅ 2 − Φ ( Toc , T ) ; ∂x ∂x ∂x

ρ⋅ f ⋅

p = p (ρ,T );

(2.316 )

(2.316 )

(2.316 )

ε = ε ( p, T ) ;

(2.316 )

k = k ( p, T ) .

(2.316 ) y( x)

.

i

1

,

(

. © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

. )

-

164 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

⎛ ∂y ⎞ ⎜ ⎟ ⎝ ∂x ⎠i

j≤i.

y( x)

,

(

yi −1 = yi −

∂y ∂2 y h2 ∂3 y h3 ⋅ hi + 2 ⋅ i − 3 ⋅ i + O ( h 4 ) ; ∂x ∂x 2! ∂x 3!

∂y ∂2 y ( h + h ) ∂3 y ( h + h ) = yi − ⋅ ( hi + hi −1 ) + 2 ⋅ i i −1 − 3 ⋅ i i −1 + O ( h 4 ) ; ∂x ∂x ∂x 2! 3! 2

yi − 2

i ):

3

∂y ∂2 y ( h + h + h ) ∂3 y ( h + h + h ) = yi − ⋅ ( hi + hi −1 + hi − 2 ) + 2 ⋅ i i −1 i − 2 − 3 ⋅ i i −1 i − 2 + O ( h 4 ) . ∂x ∂x ∂x 2! 3! (2.317) 2

yi − 3

O (h4 ) ,

3

(2.317)

∂ y . ∂x 3

∂y ∂ y , ∂x ∂x 2

(2.317), (2.317) . . В « DER » (derivation). К

∂2 y ∂x 2

∂y ∂x

.

-

. ,

Kx . К

x, Kx1 Kx 2

Kx = Kx1 + Kx 2 + 1.



: (2.318)

« APPR » (approximation). В

-

APPR = Kx − DER.

:

(2.319)

,

, ,

{UPSTREAM , Kx} . А y ( x)

{i − Kx1, i + Kx 2}

:



( DER = )

(2.320 )

( yi ) ,

(2.320 ) .

(2.320) : ев, В.В. Алеш

-

( yi )

{UPSTREAM , Kx}

© В.Е. Селе

DER

: xΔ

< ... > –

{i − Kx1, i + Kx 2} .

x

xi

( DER = )

,

-

3

2

, С.Н. Прял в, 2007–2009

лава 2 165 _______________________________________________________________________________________ {− Kx1,

Kx 2}



( DER = )

,

:

{UPSTREAM , Kx}



( DER = )

Н

( y)

(2.321 )

( y ).

∂ρ ∂x x i

,

{−1,1}



( DER =1)

xi −1 , xi

(ρ ) .

(2.321 ) ,

xi +1 ,

В

APPR = Kx − DER = 3 − 1 = 2 . В

,

{i −1, i +1}



( DER =1)

:

Kx = 3 .

-

( ρi )

(2.319),

(2.317),

.

-

, .

( hi + hi −1 )

[70]. hi2

∂y ∂x

6(

,

-

2

, ). Д 1,5÷2

. -

.



Δ yi(1) − 0,5 =

yi − yi −1 ; hi

Δ yi(1) −1,5 =

:

yi −1 − yi − 2 , hi −1

(2.322) .И

, (2.317),

( Δ yi(1) − 0,5 =

Δyi(1) −1,5 =

И

(2.323)

h ∂2 y ∂y − i ⋅ 2 + O ( h2 ) ; 2 ∂x ∂x

ев, В.В. Алеш

(2.323 )

∂y 2 ⋅ hi + hi −1 ∂ 2 y − ⋅ 2 + O ( h2 ) . ∂x ∂x 2

,

∂2 y , ∂x 2

⎛ hi −1 ⎞ (1) Δ yi(1) ⎟ − Δ yi −1,5 − 0,5 ⋅ ⎜ 2 + h ∂y i ⎝ ⎠ = + O ( h2 ) ∂x ⎛ hi −1 ⎞ ⎜1 + ⎟ hi ⎠ ⎝ © В.Е. Селе

xi ):

-

, С.Н. Прял в, 2007–2009

(2.323 ) :

(2.324 )

166 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∂y = ∂x

Δ yi(1) −1,5 ⋅

hi − Δ yi(1) − 0,5 2 ⋅ hi + hi −1 + O ( h2 ) . ⎛ ⎞ hi − 1⎟ ⎜ ⋅ + h h 2 i i −1 ⎝ ⎠

(2.324 )

Д

: ∂y = ∂x

∂y = ∂x

⎛ hi + 2 ⎞ (1) Δ yi(1) ⎟ − Δ yi +1,5 + 0,5 ⋅ ⎜ 2 + h i +1 ⎠ ⎝ + O ( h2 ) ⎛ hi + 2 ⎞ ⎜1 + ⎟ ⎝ hi +1 ⎠

Δ yi(1) +1,5 ⋅

hi +1 − Δ yi(1) + 0,5 2 ⋅ hi +1 + hi + 2 + O ( h2 ) . ⎛ ⎞ hi +1 − 1⎟ ⎜ h 2 ⋅ i +1 + hi + 2 ⎝ ⎠

, (2.325),

(2.324)

(2.325 )

∂y = ∂x

∂y = ∂x

( 2 ⋅ hi )

xi −1 , xi

xi +1 ,

:

(1) Δ yi(1) + 0,5 + Δ yi − 0,5 ⋅

⎛ hi +1 ⎞ ⎜1 + ⎟ hi ⎠ ⎝

hi +1 hi

+ O (h2 )

(2.326 )

Δ yi(1) + 0,5 ⋅

hi + Δ yi(1) − 0,5 hi +1 + O ( h2 ). ⎛ hi ⎞ + 1⎟ ⎜ ⎝ hi +1 ⎠

αi =

.

(2.325 )

hi +1 , i = 1, N ( hi

(2.326 )

2 ⋅ hi = hi + hi , hi hi , hi +1 2 ⋅ hi + hi −1

,

. .) -

.

,

.

1,5÷2

∂y ∂x . .

Δy

(1) i + 0,5

, i = 1, N ,

, (2.324), (2.325)

,

.В © В.Е. Селе

4.

ев, В.В. Алеш

(2.326)

,

, (2.317) , С.Н. Прял в, 2007–2009

3

лава 2 167 _______________________________________________________________________________________

∂2 y ∂3 y , ∂x 2 ∂x 3

yi .

, .

yi

Н

(2.316)

{ j +1− Kt1,



j +1}

( DER =1)



ρ i j +1 ⋅ f i j +1 ⋅

π 4



( DER =1)

pi



( DER =1)

(w ) + ρ j +1

i

{i − Kx1, i + Kx 2}



( DER =1)

{ j +1− Kt1,



= − pij +1 ⋅

j +1}

( DER =1)

j +1 i

(p )− f j +1

i

(ε ) + ρ

{i − Kx1, i + Kx 2}



( DER =1)

{i − Kx1, i + Kx 2}



( DER =1)

(k

j +1 i

= p ( ρ i , Ti

j +1

j +1}

{i − Kx1, i + Kx 2}

j +1 i

j +1

j +1

(w i

j +1

i

⋅ f i j +1 ) ⋅

j +1

j +1

⋅ g ⋅ ρ i j +1 ⋅

⋅ f i j +1 ⋅ wij +1 ⋅

⋅ f i j +1 ) − pij +1 ⋅ i

{ i − Kx1, i + Kx 2}

);



( DER =1)

{i − Kx1, i + Kx 2}



( DER =1)

{i − Kx1, i + Kx 2}



( DER =1)

{i − Kx1, i + Kx 2}

{ j +1− Kt1,

j +1





( DER =1) j +1}

( DER =1)

(T ) i

:

⋅ f i j +1 ⋅ wij +1 ) = 0;

⋅ f i j +1 ⋅ wij +1 ⋅

j +1 i



⋅ λi j +1 ⋅ ρ i j +1 ⋅ wij +1 ⋅ wij +1 ⋅ Ri j +1 ;

ρi j +1 ⋅ f i j +1 ⋅

+

⋅ f i j +1 ) +

{ j +1− Kt1,

= − f i j +1 ⋅ −

j +1 i

-

(2.327 )

(w ) = j +1

i

(( z ) ) − j +1 1 i

(ε ) =

(2.327 )

j +1

( f )+Q i

j +1

i

-

j +1

i

⋅ f i j +1 +

(

π

)

⋅ λi j +1 ⋅ ρ i j +1 ⋅ wij +1 ⋅ Ri j +1 + 3

4 {i − Kx1, i + Kx 2} + ki j +1 ⋅ f i j +1 ⋅ xΔ Ti j +1 − φi j +1 ; ( DER = 2 )

(2.327 ) (2.327 )

ε i j +1 = ε ( pij +1 , Ti j +1 ) ;

(2.327 )

ki j +1 = k ( pij +1 , Ti j +1 ) ,

(2.327 )

Kt1 –

, t.

(2.327) (2.327 ),

, ,

Kx 2

Kx1 + Kx 2 ≥ Kx1 + Kx 2 + 1.

Kx1

: (2.328)

{UPSTREAМ , (2.327),

К

(2.327)

Kx} .

.

, , . .

© В.Е. Селе

ев, В.В. Алеш

,

, С.Н. Прял в, 2007–2009

-

168 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

, . К

(2.327)



.Н.

:

;

-

;

.

Д

.

[69, 70]. , . . А

, -

.

,

,

-

. Д

, .В

-

Н

. 2.5.2.

о оении олно ью он е ва ивных овышенно о о я а а о и а ии

ла н- хе

– (

.,

,

xL ≤ x ≤ xR

[98, 329]).

dy = p ( x, y ( x ) ) , dx

p ( x, y ( x ) ) –

(2.329)

.

(2.329)

(

)

YL –

(2.330)

. (

hi = xi − xi −1 – © В.Е. Селе

,

y ( x L ) = YL ,

:

i-

( xL )



,

-

, i = 0, N − 1 ; N –

ев, В.В. Алеш

i

[63]) , i = 1, N − 1 (

, С.Н. Прял в, 2007–2009

Σ h = {xi } ,

. 2.15).

xi –

;

лава 2 169 _______________________________________________________________________________________

и . 2.15. ча

еч

Д

е

-ра

(2.329) (2.329)

-

:

⎛ dy ⎞ ⎜ ⎟ = p ( xi , y ( xi ) ) . ⎝ dx ⎠i

(2.331)

В

dy dx

:

{Spline , }



( DER = )

{Spline, < ... >}

( y),

(2.332) ,

< ... > ( DER =< ... > ) ,

. 2.5.1,

1).

(

(2.332)

{Spline , }



( DER =1)

,

:

{Spline , }



( DER =1)

(2.333 )

( y ) = p ( x, y ( x ) ) .

(2.333 )

, K ≥2.

. i = 1, N − 1 ,

:

( yi ) = p ( xi , y ( xi ) )

Δxi −0,5 = [ xi −1 , xi ]

Д

-

(2.331)

y ( x) .

Δxi −0,5 ,

:

yi − 0,5 ( x ) = ∑ ak , ( i − 0,5) ⋅ ( x − xi ) , K

k

k =0

(2.334)

, k = 0, K , i = 1, N − 1 . К

ak ,( i − 0,5) –

(2.329)

(1) yi(1) − 0,5 ( xi −1 ) = p ( xi −1 , yi − 0,5 ( xi −1 ) ) , yi − 0,5 ( xi ) = p ( xi , yi − 0,5 ( xi ) ) , i = 1, N − 1; (2.335)

:

) yi(−m0,5 ( xi ) = yi(+m0,5) ( xi ) ,

) yi(−m0,5 ( x) – m -

В © В.Е. Селе

m = 0, 2,3, ..., K − 1,

(2.335, 2.336) ев, В.В. Алеш

i = 1, N − 2,

yi − 0,5 ( x ) .

[( N − 1) ⋅ ( K + 1)]

, С.Н. Прял в, 2007–2009

(2.336) ( ( N − 1) –

-

170 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

; ( K + 1) –

⎡⎣ 2 ⋅ ( N − 1) + ( K − 1) ⋅ ( N − 2 ) ⎤⎦

. .

( K − 1) -

( K − 1) . )

.

-

(2.335, 2.336) . y0,5 ( x0 ) = YL .

( K − 2)

Д

)

(2.337) -

, K = ( int( K / 2) − 1)

:

,

(2.330):

( K − K − 1)

( int(...) – :

y N( m−)1,5 ( x N −1 ) = 0, m = ( K − K + 1) , K ;

(2.338)

(m) y0,5 ( x0 ) = 0, m = K + 2, K .

(2.339) -

[97, 99], ,

, а

е а

хе а

. .

-

. П и 1. Д (2.329),

(

(2.329)

xi + 0,5

. 2.16)

Δxi = ⎣⎡ xi − 0,5 , xi + 0,5 ⎦⎤ :

, [97, 99]. Д = 0,5 ⋅ ( xi + xi +1 )

-

yi + 0,5 − yi − 0,5 = pi ⋅ Δxi yi + 0,5 − yi − 0,5

= pi ,

Δxi

Δxi

yi + 0,5 –

(2.341) xi + 0,5 ; pi –

y

p.

pi

и . 2.16. ча

еч

Д

xi : pi = pi .

е

-ра

yi − 0,5

yi + 0,5

: © В.Е. Селе

(2.340)

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

в

а ел

е

Δxi

-

лава 2 171 _______________________________________________________________________________________

yi − 0,5 = 0,5 ⋅ ( yi + yi −1 )

,

y ( x)

yi + 0,5 =

yi ⋅ yi +1 − 0,5 ⋅ ( yi + yi −1 ) Δxi

{ yi }

O ( hk ) –

(2.343) . В

-

. (2.344 )

⎛ ⎞ h ⎛ ∂y ⎞ ⎛ ∂y ⎞ yi ⋅ ⎜ yi + hi +1 ⋅ ⎜ ⎟ + O ( h 2 ) ⎟ = yi ⋅ 1 + i +1 ⋅ ⎜ ⎟ + O ( h 2 ) = yi ⎝ ∂x ⎠i ⎝ ∂x ⎠i ⎝ ⎠

⎛ 1 h ⎛ ∂y ⎞ ⎞ 1 ⎛ ∂y ⎞ = yi ⋅ ⎜ 1 + ⋅ i +1 ⋅ ⎜ ⎟ + O ( h 2 ) ⎟ = yi + ⋅ hi +1 ⋅ ⎜ ⎟ + O ( h 2 ) , 2 ⎝ ∂x ⎠i ⎝ 2 yi ⎝ ∂x ⎠i ⎠

k-

(2.343)

(2.342)

= pi

(2.329).

⎛ ∂y ⎞ yi −1 = yi − hi ⋅ ⎜ ⎟ + O ( h 2 ) ; ⎝ ∂x ⎠i

yi ⋅ yi +1 =

yi ⋅ yi +1 .

(2.344 )

h.

(2.344)

Δxi = 0, 5 ⋅ ( hi + hi +1 ) ,

,

(2.345)

⎛ ∂y ⎞ ⎜ ⎟ = pi + O ( h ) , ⎝ ∂x ⎠i

:

(2.346)

. . Д



(2.342) Δxi

yi + 0,5

Δxi +1 :

« ,

δ yi + 0,5 = 0,5 ⋅ ( yi +1 + yi ) − yi ⋅ yi +1 . Д y

y,

,

δ yi + 0,5 . И

⎡⎣ xi − 0,5 , xi +1,5 ⎤⎦ y :

(y

i +1,5

» -

)

101]).

0,5 ⋅ ( yi +1 + yi )

yi ⋅ yi +1

.

(

, -

− yi − 0,5 ) ,

y ( p ( x, y ( x ) ) ,

,

.

y

dy dx

.

⎡ ⎤ ⎡ ⎤ ⎣ yi + 2 ⋅ yi +1 − 0,5 ⋅ ( yi +1 + yi ) ⎦ + ⎣ yi +1 ⋅ yi − 0,5 ⋅ ( yi + yi −1 ) ⎦ = yi +1,5 − yi −0,5 − δ yi +0,5 . © В.Е. Селе

ев, В.В. Алеш

[100,

, С.Н. Прял в, 2007–2009

(2.347)

172 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

И

⎡⎣ xi − 0,5 , xi +1,5 ⎤⎦

(2.343) 1

:

yi +1,5 − yi − 0,5 = pi ⋅ Δxi + pi +1 ⋅ Δxi +1 − δ yi + 0,5 . К

(2.348) yi − 0,5

(2.348),

yi + 0,5

,

-

(2.329)

.

Д

O ( h)

, За

. [95, 100, 101].

-

а и 1. Д dy dx ) (y) е а а

( . . е

х е

е е х

е

е

-

а х.

(2.333)

(2.329)



.

, е -

,

-

(

-

), . За

а и 2.

i + 0,5

i + 0,5

xi + 0,5

(

{y } ,

{x

,

( y )}

-

hi )

,

.

yi + 0,5 − yi − 0,5 xi + 0,5 − xi − 0,5

y( x)

⎛ dy ⎞ {Spline , } = ⎜ ⎟ = x Δ ( yi ) . ( DER =1) ⎝ dx ⎠i

(2.349)

{xi +0,5 ( y )} (

Д В

, . 2.17).

-

(2.349) , . .

-

y

[92].

(2.333) :

yi + 0,5 − yi − 0,5 xi + 0,5 − xi − 0,5

(2.349), = pi .

(2.350)

(2.350) 1

(2.340)

yi − 0,5 , yi + 0,5 © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

pi .

⎣⎡ xi − 0,5 , xi + 0,5 ⎦⎤

⎣⎡ xi + 0,5 , xi +1,5 ⎦⎤

лава 2 173 _______________________________________________________________________________________

⎣⎡ xi − 0,5 , xi + 0,5 ⎦⎤

ще

(2.333), , я

а

и . 2.17. Пр

а

е а

ер ра

е

{

- хе а я яе я е а а а.

}

я xi + 0,5 ( y )

ла

е а

е р р ва

я ля

Н

е

е

у

y ( x)

: я е е я че ая а

е

ч е

е е е а ь

я яе

я

. .), а а е а ь а е а а е е е ь

е а а

е

е е а ь ь( я а ( N + 1)

, х а е

ь я (2.329)

е

а а

е я ь е е е

ь е я е ая а аь а , , а е , я Ф ье еч ч

а я а , ч е ах а че е , я е ече а е х е еч ь е е , ящ х а х.

я

а е яе я

ь я -

, . С а - хе а е а а а а я ячее ⎡⎣ xi − 0,5 ( y ), xi + 0,5 ( y ) ⎤⎦ .

,

-

-

. dy d + g ( y ) = p ( x, y ( x ) ) . dx dx

:

-

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(2.351) (2.351)

-

174 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

, . .

( dy dx

dg dx )

. , .

( ⎡⎣ xi − 0,5 ( y ), xi + 0,5 ( y ) ⎤⎦

-

⎡⎣ xi − 0,5 ( g ), xi + 0,5 ( g ) ⎤⎦ ),

(

-

)

,

, 1

(2.351), П и

2.

+

∂t

t –

-

∂ρ ∂ ( ρ ⋅ w ) + = 0; ∂t ∂x

∂ ( ρ ⋅ Ym )

(

∂ ( ρ ⋅ w ⋅ Ym ) ∂x

= 0,

m = 1, N S − 1;

YN S = 1 −

; ρ –

m-

ω

τj

2.3.2):

m =1

m

ω=

m(

{( x , t ) x = x

i −1

j

i

i

Д

(2.352 )

,

; w –

-

:

∑Y

N S −1

; Ym = ρ m ρ –

; ρm – ).

.

(2.352 )

; x –

; NS –

.

}

hi

+ hi , t j = t j −1 + τ j .

(2.353)

(2.352)

-

:

j j j j j j j j ρ i j +1 − ρ i j 4 ⋅ ( ρ i +1 + ρ i ) ⋅ ( wi +1 + wi ) − 4 ⋅ ( ρ i + ρ i −1 ) ⋅ ( wi + wi −1 ) ; + 0,5 ⋅ ( hi + hi +1 ) τj

1

1

ρ i j +1 ⋅ (Ym )i − ρ i j ⋅ (Ym )i + τj j +1

(2.354 )

j

(

)

(

)

1 1 j j j j ⋅ ( ρ i j+1 ⋅ wij+1 + ρ i j ⋅ wij ) ⋅ (Ym )i +1 + (Ym )i − ⋅ ( ρ i j ⋅ wij + ρ i j−1 ⋅ wij−1 ) ⋅ (Ym )i + (Ym )i −1 4 , +4 0,5 ⋅ ( hi + hi +1 )

m = 1, N S − 1;

(Y ) NS

j i

= 1−

∑ ( Y ) ; (Y )

N S −1

j m i

m =1

NS

j +1

i

= 1−

∑ (Y )

N S −1 m =1

j +1 m i

.

(2.354 ) Д (2.352) xi + 0,5 = 0, 5 ⋅ ( xi + xi +1 ) . 1

© В.Е. Селе

, ев, В.В. Алеш

-

, С.Н. Прял в, 2007–2009

,

. 2.18,

.

лава 2 175 _______________________________________________________________________________________

и . 2.18. Пр

ра

ве

-вре е

ая е а ( ра

(2.354)

е

)

,

-

.

.

-

Ym ,

-

. (2.352 ) (2.352 ), :

ρ⋅

(2.355)

∂Ym ∂Y + ρ ⋅ w ⋅ m = 0. ∂t ∂x

,

-

∂Ym ∂x = 0 , ,

(

(Ym )i .

j +1

τj

j

)+

,

-

(2.355). Д

j

(2.354 ),

ρ i j +1 ⋅ (Ym )i − (Ym )i

Ym

, ∂Ym ∂t = 0 . Д .

Ym

(2.354 )

(2.355)

,

:

(

)

(

)

1 1 j j j j ⋅ ( ρ i j+1 ⋅ wij+1 + ρ i j ⋅ wij ) ⋅ (Ym )i +1 − (Ym )i + ⋅ ( ρ i j ⋅ wij + ρ i j−1 ⋅ wij−1 ) ⋅ (Ym )i − (Ym )i −1 4 4 + + δ K = 0, 0,5 ⋅ ( hi + hi +1 )

(ρ δK = В

j i +1

− ρi j ) ⋅ ( wij+1 − wij ) − ( ρi j − ρi j−1 ) ⋅ ( wij − wij−1 )

δK (2.354)

Ym ( x) = const © В.Е. Селе

ев, В.В. Алеш

2 ⋅ (hi + hi +1 )

. Д

,

(2.356 ) ⋅ (Ym )i . j

(2.356 )

-

. (2.356) , С.Н. Прял в, 2007–2009

:

176 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

(

ρ i j ⋅ (Ym )i − (Ym )i j +1

j

τj

И (2.357)

) + (ρ

j i +1

− ρ i j ) ⋅ ( wij+1 − wij ) − ( ρ i j − ρ i j−1 ) ⋅ ( wij − wij−1 ) 2 ⋅ ( hi + hi +1 )

,

⋅ (Ym )i = 0. (2.357) j

Ym Ym ,

,

.

( ρ ⋅ w ⋅ Ym ) , ( ρ ⋅ w) .

. ,

( ρ ⋅ w) :

( ρ ⋅ w )i + 0,5

Ym =

ρ ⋅ w ⋅ Ym = const . ρ ⋅w

-

-

(2.354 ) (2.354 ) ⎡ 0, 25 ⋅ ( ρ i j+1 + ρ i j ) ⋅ ( wij+1 + wij ) ⎤ ⎣ ⎦

⎡ 0,5 ⋅ ( ρ i j+1 ⋅ wij+1 + ρ i j ⋅ wij )⎤ ⎣ ⎦ ,

П и

: .И

,

-

.

3. Д

∂ρ ∂ ( ρ ⋅ w ) + = 0; ∂t ∂x

[79, 99]:

∂ ( ρ ⋅ w) ∂t

t –

; x – ; p –

∂ ( ρ ⋅ w2 )

=−

∂x

∂p + Fx , ∂x

; ρ –

; Fx –

Ox . Д

F

+

(2.358 )

(

(2.358 ) ; w – )

(2.358)

-

:

j +1 j +1 j +1 j +1 j +1 j +1 j +1 j +1 ρ i j +1 − ρ i j 8 ⋅ ( ρ i +1 + ρ i ) ⋅ ( wi +1 + wi ) − 8 ⋅ ( ρ i + ρ i −1 ) ⋅ ( wi + wi −1 ) + = 0; 0,5 ⋅ ( hi + hi +1 ) τj

1

1

(2.359 )

j +1 j +1 j +1 j +1 j +1 j +1 j +1 j +1 ρ i j +1 ⋅ wij +1 − ρ i j ⋅ wij 8 ⋅ ( ρ i +1 + ρ i ) ⋅ ( wi +1 + wi ) − 8 ⋅ ( ρ i + ρ i −1 ) ⋅ ( wi + wi −1 ) + = 0,5 ⋅ ( hi + hi +1 ) τj

1

=−

2

0,5 ⋅ ( pij++11 + pij +1 ) − 0,5 ⋅ ( pij +1 + pij−+11 ) 0,5 ⋅ ( hi + hi +1 )

1

2

+ ( Fx )i . j +1

(2.359 ) К © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 177 _______________________________________________________________________________________

(2.358)

-

,

. 2.18.

w

(2.358 )

0,5 ⋅ w , 2

:

∂ ⎛ ρ ⋅w ⎞ ∂ ⎛ ρ ⋅w ⎞ ∂p ⎜ ⎟ + ⎜ w⋅ ⎟ = − w ⋅ + w ⋅ Fx . 2 ⎠ ∂t ⎝ 2 ⎠ ∂x ⎝ ∂x 2

0,5 ⋅ ( wi

ρi

j +1

)

(2.359 )

j +1 2

(2.358 ),

wi

2

. Д (2.359 ),

j +1

.

,

j +1 2

1 ⎛ ⎞ − ρ i j ⋅ wij +1 ⎜ wij − ⋅ wij +1 ⎟ 2 ⎝ ⎠+

(w ) ⋅ i

(2.360)

:

τj

2

w j +1 ⋅ w j +1 1 w j +1 ⋅ wij−+11 1 ⋅ ( ρ i j++11 + ρ i j +1 ) ⋅ ( wij++11 + wij +1 ) ⋅ i +1 i − ⋅ ( ρ i j +1 + ρ i j−+11 ) ⋅ ( wij +1 + wij−+11 ) ⋅ i 2 4 2 +4 = 0,5 ⋅ ( hi + hi +1 ) =−

0,5 ⋅ ( pij++11 + pij +1 ) − 0,5 ⋅ ( pij +1 + pij−+11 )

,

ρ i j +1 ⋅

(w )

0,5 ⋅ ( hi + hi +1 )

j +1 2

i

τj

2

− ρij ⋅

(w )

⋅ wij +1 + ( Fx )i ⋅ wij +1 j +1

(2.361 )

:

j 2

i

+

2

w j +1 ⋅ w j +1 1 w j +1 ⋅ wij−+11 1 ⋅ ( ρ i j++11 + ρ i j +1 ) ⋅ ( wij++11 + wij +1 ) ⋅ i +1 i − ⋅ ( ρ i j +1 + ρ i j−+11 ) ⋅ ( wij +1 + wij−+11 ) ⋅ i 2 4 2 +4 = 0,5 ⋅ ( hi + hi +1 ) =−

0,5 ⋅ ( pij++11 + pij +1 ) − 0,5 ⋅ ( pij +1 + pij−+11 ) 0,5 ⋅ ( hi + hi +1 )

⋅ wij +1 + ( Fx )i ⋅ wij +1 + δ K , j +1

(2.361 )

δK = −

τj

δK

В

δK

ρ ⋅ ( wij +1 − wij )

j ⎛ ⎞ ⎛ ∂w ⎞ ρ ⋅ ⎜⎜ wij + τ j ⋅ ⎜ ⎟ + O (τ 2j ) − wij ⎟⎟ ∂ t ⎝ ⎠i ⎠ =O τ . =− ⎝ ( ) 2

2

τj



,

(2.360). Д .

(2.361) (2.361)

, hi → 0 )

.

,

1

,

1

,

(2.359) -

( © В.Е. Селе

j

(2.361 )

.

ев, В.В. Алеш

(2.361 )). , С.Н. Прял в, 2007–2009

178 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

. Н

, (2.359),

. Н

,

wi , ⎡⎣0,5 ⋅ ( wi j

,

+ wi ) ⎤⎦

j +1

, . . В

j

,

, ∂ ⎛ w2 ⎞ ⎜ρ⋅ ⎟ ( 2 ⎠ ∂t ⎝

-

(2.361)).

«

»

-

w2 ⎞ ∂ ⎛ ⎜ ρ ⋅ w⋅ ⎟, 2 ⎠ ∂x ⎝

, (2.361).

,

-

(2.359), .

, . К

,

, . Ве

е я (2.36).

а

а

- хе . Kt ,

– Kx . :

( f )+ f )

{Spline , Kt}

ρ i j +1 ⋅ t Δ

j +1

( DER =1

i

+ ρ i j +1 ⋅ wij +1 ⋅

{Spline , Kx}



( DER =1)

− fi

( DER =1

⋅ g ⋅ ρi

j +1



j +1

{Spline , Kx}



( DER =1)

= − pij +1 ⋅ +



( DER =1

( DER =1



j +1

(w )

{Spline , Kx} ( DER =1

(k )

{Spline , Kx}

j +1 i



( DER =1

j +1

i

⋅ f i j +1 ) ⋅

pij +1 = p ( ρ i j +1 , Ti j +1 ) ;

j +1

j +1

i

⋅ f i j +1 ⋅ wij +1 ⋅

(( z ) ) −

(ε ) + ρ ) i

(ρ ) + )

{Spline , Kt}

( fi j +1 ) + ρij +1 ⋅ fi j +1 ⋅

i

{Spline , Kt}

ρ i j +1 ⋅ f i j +1 ⋅ t Δ



(w ) + ρ )

{Spline , Kt}

ρ i j +1 ⋅ f i j +1 ⋅ t Δ j +1

j +1 i

-

i

π

j +1 1 i

j +1

4

⋅ f i j +1 ⋅ wij +1 ⋅

⋅ f i j +1 ) − pij +1 ⋅ i

⋅ λi

(

)

f i j +1 ⋅ wij +1 ⋅

{Spline , Kx}



( DER =1)



{Spline , Kx}



{Spline , Kt} ( DER =1)

⋅ wi

j +1

⋅ wi

(ε )

j +1

i

( f )+Q j +1

i

j +1

j +1 i

⋅ Ri

j +1

i

⋅ f i j +1 +

(

)



{Spline , Kx}



( DER =1)

j +1

=

j +1

i

(2.362 )

(p )− j +1

i

(2.362 )

;

π

⋅ λi j +1 ⋅ ρ i j +1 ⋅ wij +1 ⋅ Ri j +1 + 3

{Spline , Kx} {Spline , Kx} xΔ Ti j +1 + ki j +1 ⋅ f i j +1 ⋅ xΔ Ti j +1 − φi j +1 ; ( DER =1)

( DER = 2 )

ев, В.В. Алеш

4

(2.362 ) (2.362 )

ε i j +1 = ε ( pij +1 , Ti j +1 ) ; © В.Е. Селе

(ρ ) +

j +1

i

j +1

( DER =1)



( DER =1)

(w ) = − f )

( DER =1

⋅ ρi

{Spline , Kx}

( wij +1 ) = 0;

{Spline , Kx}

j +1



-

(2.36)

(2.362 ) , С.Н. Прял в, 2007–2009

лава 2 179 _______________________________________________________________________________________

К 2.5.1)

(

.

(2.362) , Kx

(2.362 ), -

,

Kx

:

Kx > Kx.

-

(2.363)

(2.362) ,

ах а че х а

я

е х а е

я.

а

я

е

(2.36). е е

а ь я

я

-

ах

е

-

а

е е

е

,

а

-

,

(2.36) : Kt ≥ 2 , Kx ≥ 2 , Kx ≥ 3 ),

а - хе а я яе я е а а е ча х х. В е е а х а е я че е е а е а е ( , . .).

(

я е е

е

.

е

а ь а

е е

е а ах

х

а ь

ах а х , -

е

, е а

, Д

ь [69, 70, 96]

а

, х

- хе

.

. ,

Э

,

-

. -

[102]. ,

-

-

, [69, 70, 97].



, -

. .

В

: hi = xi − xi −1 , τ j = t j − t j −1 .

(2.364)

y ( x, t )

,

(2.334).

,

i

(x

j

yi ,

i + iH

. y –

.Д ,

y ( x, t )

y ( x, t )

): © В.Е. Селе

ев, В.В. Алеш

(x , t )

, С.Н. Прял в, 2007–2009

, tj )

-

j

(x , t i

j + jH

),

iH

jH –

( -

180 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

y ( xi +iH , t ) j = y ( xi , t j + jH ) =



Kx −1 k =1



Kt −1 n =1

∞ 1 ⎛ ∂k y ⎞ 1 ⎛ ∂k y ⎞ k k ⋅ ⎜ k ⎟ ⋅ ( xi +iH − xi ) + ∑ ⋅ ⎜ k ⎟ ⋅ ( xi +iH − xi ) ; k ! ⎝ ∂x ⎠i k = Kx k ! ⎝ ∂x ⎠ i j

j

∞ n n 1 ⎛ ∂n y ⎞ 1 ⎛ ∂n y ⎞ ⋅ ⎜ n ⎟ ⋅ ( t j + jH − t j ) + ∑ ⋅ ⎜ n ⎟ ⋅ ( t j + jH − t j ) . n ! ⎝ ∂t ⎠i n = Kt n ! ⎝ ∂t ⎠i j

j

Kx ( y )

Д

(2.365 )

y

Kt ( y )

( Kx ( y ) − 1) -

( Kt ( y ) − 1) -

.

(2.365 )

. .

,

-

Kx y ( xi + iH , t j ) = y ( xi + iH , t j ) + O ⎡( xi +iH − xi ) ⎤ = y ( xi +iH , tm ) + O ⎡⎣ h Kx ⎤⎦ ; ⎣ ⎦

:

Kt y ( xi , t j + jH ) = y ( xi , t j + jH ) + O ⎢⎡( t j + jH − t j ) ⎥⎤ = y ( xi , t j + jH ) + O ⎡⎣τ Kt ⎤⎦ . ⎣ ⎦

y ( xi + iH , t j + jH ) = y ( xi +iH , t j + jH ) + O ⎡⎣ h Kx , τ Kt ⎤⎦ ,

А

(2.366 ) (2.366 )

,

(2.367 )

∂ ∂ y ( xi +iH , t j ) = y ( xi +iH , t j ) + O ⎡⎣ h Kx −1 ⎤⎦ , ∂x ∂x

(2.367 )

∂2 ∂2 y ( xi +iH , t j ) = 2 y ( xi +iH , t j ) + O ⎡⎣ h Kx − 2 ⎤⎦ , 2 ∂x ∂x

(2.367 )

∂ ∂ y ( xi , tm+ mH ) = y ( xi , tm+ mH ) + O ⎡⎣τ Kt −1 ⎤⎦ . ∂t ∂t

(2.367 )

, (2.362).

,

,

, -

. У а

ρ⋅

е

е (2.362а):

∂f ∂ρ ∂f ∂ρ ∂w +f⋅ + ρ ⋅ w⋅ + w⋅ f ⋅ +ρ⋅ f ⋅ = O ( h Kx1 ,τ Kt1 ) , ∂t ∂t ∂x ∂x ∂x

Kx1 = min ⎡⎣ Kx ( ρ ) − 1; Kx ( f ) − 1; Kx ( w ) − 1⎤⎦ , Kt1 = min ⎡⎣ Kt ( ρ ) − 1; Kt ( f ) − 1; Kt ( w ) ⎤⎦ .

У а

ρ⋅ f ⋅

е

е (2.362 ):

(2.368 )

(2.368 ) (2.368 )

∂w ∂w ∂p ∂z π + ρ ⋅w⋅ f ⋅ =−f ⋅ − f ⋅ g ⋅ ρ ⋅ 1 − ⋅ λ ⋅ ρ ⋅ w ⋅ w ⋅ R + O ( h Kx2 ,τ Kt2 ) , (2.369 ) ∂t ∂x ∂x ∂x 4

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 181 _______________________________________________________________________________________

Kx2 = min ⎡⎣ Kx ( ρ ) ; Kx ( f ) ; Kx ( w ) − 1; Kx ( p ) − 1; Kx ( z1 ) − 1; Kx ( λ ) ; Kx ( R )⎤⎦ ,

Kt2 = min ⎡⎣ Kt ( w ) − 1; Kt ( ρ ) ; Kt ( f ) ; Kt ( p ) ; Kt ( z1 ) ; Kt ( λ ) ; Kt ( R )⎤⎦ . У а

ρ⋅ f ⋅

е

(2.369 ) (2.369 )

е (2.362 ):

∂ε ∂ε ∂f ∂w π 3 + ρ ⋅w⋅ f ⋅ = − p⋅w⋅ − p⋅ f ⋅ + ⋅λ ⋅ρ ⋅ w ⋅ R − ∂t ∂x ∂x ∂x 4

∂f ∂ 2T ∂T ∂k ∂T ∂f − p ⋅ + Q ⋅ f − Φ (T , Toc ) + k ⋅ f ⋅ 2 + f ⋅ ⋅ +k⋅ ⋅ + O ( h Kx3 ,τ Kt3 ) , ∂t ∂x ∂x ∂x ∂x ∂x

(2.370 )

Kx3 = min ⎡⎣ Kx ( ρ ) ; Kx ( f ) − 1; Kx (ε ) − 1; Kx ( p ) ; Kx ( w ) − 1; Kx ( λ ) ; Kx ( R ) ; Kx ( Q ) ; Kx ( Φ ) ; Kx ( k ) − 1; Kx ( T ) − 2 ⎤⎦ ,

(2.370 )

Kt3 = min ⎡⎣ Kt ( ρ ) ; Kt ( f ) − 1; Kt (ε ) − 1; Kt ( p ) ; Kt ( w ) ; Kt ( λ ) ; Kt ( R ) ; Kt ( Q ) ; Kt ( Φ ) ; Kt ( k ) ; Kt ( T )⎤⎦ .

(2.370 )

O ( h KxCXEMA , τ KtCXEMA ) ,

,

-

KxCXEMA = min ⎡⎣ Kx ( ρ ) − 1; Kx ( f ) − 1; Kx ( w ) − 1; Kx ( p ) − 1; Kx ( z1 ) − 1; Kx ( λ ) ;

(2.371 )

KtCXEMA = min ⎡⎣ Kt ( ρ ) − 1; Kt ( f ) − 1; Kt ( w ) − 1; Kt ( p ) ; Kt ( z1 ) ; Kt ( λ ) ; Kt ( R ) ;

(2.371 )

Kx ( R ) ; Kx ( Q ) ; Kx (ε ) − 1; Kx ( Φ ) ; Kx ( k ) − 1; Kx ( T ) − 2 ⎤⎦ ,

Kt ( ε ) − 1; Kt ( Q ) ; Kt ( Φ ) ; Kt ( k ) ; Kt (T ) ⎤⎦ . y ( x, t )

(

-

( Kx( y ) + 1) ( Kt ( y ) + 1) .

Ox )

(

Ot )

-

;

-

.

Ox

(

.

y ( x, t = const )

)

,

-

.В :

.



Ot j-

( xi , t j ) , © В.Е. Селе

ев, В.В. Алеш

. Д

, С.Н. Прял в, 2007–2009

. ( :

, . . (2.36 )),

182 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

⎛ ∂ρ ⎞ ⎜ ⎟ ⎝ ∂t ⎠i

j +1

И Д ⎛ ∂ρ ⎞ ⎜ ⎟ ⎝ ∂t ⎠ i

=−

∂f ∂ρ ∂w ⎞ ⎛ ∂f ⋅ ρ ⋅ + ρ ⋅ w⋅ + w⋅ f ⋅ +ρ⋅ f ⋅ ⎟ . j +1 ⎜ fi ∂x ∂x ∂x ⎠i ⎝ ∂t

n (n- ) , ∂ρ ∂t

( n +1)

=−

,

1 fi

j +1

j +1

1

(n-

yi

( n + 1)

)

.

j +1

:

j +1 j +1 (n) (n) ⎡ ⎤ ⎛ ∂f ⎞ ⎛ ∂f ⎞ ⎛ ∂ρ ⎞ (n) j +1 ⎛ ∂w ⎞ ⋅ ⎢ ρ i( n ) ⋅ ⎜ ⎟ + ρ i( n ) ⋅ wi( n ) ⋅ ⎜ ⎟ + wi( n ) ⋅ f i j +1 ⋅ ⎜ ⎟ + ρi ⋅ fi ⋅ ⎜ ⎟ ⎥ t x x x ∂ ∂ ∂ ∂ ⎝ ⎠i ⎝ ⎠i ⎝ ⎠i ⎝ ⎠i ⎦⎥ ⎣⎢ (2.373 ) ,

( n +1)

=−

1

( )

( )

f t j ≤ t ≤ t j +1 (

« ( n ) ».

« j +1»

, Д

( n + 1) -

-

ρi ( t )

Kt ( ρ ) )

. К

( Kt ( ρ ) − 1) )

,

( ,

t j −1 ≤ t ≤ t j .

-

-

,

»

ρi ( t )

( n +1) i

А ( n + 1) -

,

-

)

ρ

(2.373 )

,

(

«

yi . ( n)

.

{Spline , Kx ( f )} ⎡ ( n ) {Spline , Kt ( f )} j +1 (n) (n) t f w xΔ ( fi j +1 ) + ρ ρ ⋅ ⋅ Δ + ⋅ ⋅ ( ) ⎢ i i i i ( DER =1) ( DER =1) f i j +1 ⎣ {Spline , Kt ( ρ )} {Spline , Kx ( w)} n ⎤ + wi( n ) ⋅ fi j +1 ⋅ xΔ wi( ) ⎥ . ρi( n ) + ρi( n ) ⋅ f i j +1 ⋅ xΔ ( DER =1) ( DER =1) ⎦

⎛ ∂ρ ⎞ ⎜ ⎟ ⎝ ∂t ⎠i

tj .

(2.372)

. t j ≤ t ≤ t j +1

(2.373).

ρi( n +1) = ρi ( t j +1 ) . :

.

(2.374)

yi( n ) ⎯⎯⎯ → yij +1 , n →∞

y

. . -

. В (

.,

, « , [103, 104]). .В ,

-

» .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 183 _______________________________________________________________________________________

-

. В хе а

,

».

[103, 104]

« а

а

-

, .

,

ь

(

е а

а

- хе а

-

-

. Д ),

-

.

2.5.3. К во о у о о оении не авно е ных о лине и и ованных а но ных е о

у о

ово ов

Д .

H .Д

-

,

h− /

,

h+

.

(

Q ).



: 1≤ q ≤ Q ,

/

q –

. Д

.М (

-

е

) .В .

-

1

е

,

-

. Н :



; ( :



«



»;

«

е

В

, -

)

». а ь

Σ

) е а ,

( . H , h− , h+ -

N

, ,

. В .

, ,

,

(

е

Q

),

. 1

Д

, (

© В.Е. Селе

)

,

ев, В.В. Алеш

. , С.Н. Прял в, 2007–2009

184 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

П ,

е

е е

е яче

Σ

е

« ще :

е

е

(

. яче Σ,

).

а

». Σ+ .

яя яче

.

-

а е

: N = N + N −1 .

Σ

Н «0». Н

,

h N − −1 , ( )



+

« + », : N−

« ще

« − », , Σ−

hk− = Q ⋅ hk−−1 = Q k ⋅ h0− ;

И

N+ .

Σ+ . -

h , h , h , …, − 0

– h0+ , h1+ , h2+ , …, h +N + −1 . ( )

,

е

е

».

К

Q

Σ

е яче



е

,

е





е

,

H.Н H а ае

е

е

− 1

,

− 2

:

hk+ = Q ⋅ hk+−1 = Q k ⋅ h0+ . ,

( ) ( ) = h ⋅ (1 + Q + Q + ... + Q ) = h ⋅ 11−−QQ )

:

H − = h0− + h1− + h2− + ... + h −N − −1 = h0− ⋅ 1 + Q + Q 2 + ... + Q ( )

H + = h0+ + h1+ + h2+ + ... + h +N + −1 (

+ 0

(N



)

−1

N + −1

2

= h0− ⋅

1− QN ; 1− Q

+ 0

N

, :

Q

(N

h N − −1 = h N + −1 ; ( ) ( ) −

)

−1

⋅ h0− = Q

(N

+

)

−1

H = h0− ⋅

h−

, :



H, h , h (2.377). Д

+

h0− = h − ;

⋅ h0+ ;

(2.375 )

)

+

h+

h0+ = h + .

(2.376 ) (2.376 ) Σ

, (2.377)

, Q

, ( © В.Е. Селе

.

(2.375 )

1− QN 1− QN ( N + −1) + + h0+ ⋅ −Q ⋅ h0 . 1− Q 1− Q −

+

-

H = H − + H + − h +N + −1 ;

(



): ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

(2.375 ), (2.376 ), , -

лава 2 185 _______________________________________________________________________________________

f1 ( N + ) = h − ⋅

(N )

1− Q 1− Q N



+

+ h+ ⋅

1− QN ( N + −1) + −Q ⋅ h − H = 0, 1− Q +

(2.378 )

+ ⎛ h+ ⎞ N − ( N + ) = 1 + logQ ⎜ − ⋅ Q N −1 ⎟ . ⎝h ⎠

Н

(2.378) а е е ь

. , е аче

е

N− ,

я ό

е

N−, H.

N+, аче Σ

,

Σ

Σ

, ,

N− е е 5)

(

(2.378 )

я (

, , N+ а

N− H. ,

,

: 0, logQ ⎡⎣1 − H ⋅ (1 − Q ) h + ⎤⎦ . ;

– -

1− QN , 1− Q +

. В

N

+

а

х ó ь

х е х аче N+ N−

» .

q−

N−

( q )( −

H =h ⋅ −

« -

q−

(2.375), (2.376)):

1 − ( q− ) 1− (q

)

N − −1



)

N



q+ .

⋅ h− = ( q+ )

+h ⋅ +

(

(N

1 − ( q+ ) 1− (q

+

)

−1

+

)

N

⋅ h+ ;

− ( q+ )

+

Д

(N

+

)

⋅ h+ .

−1

, : f2 ( q+ ) = h− ⋅

1

1 − ⎡⎣ q − ( q + ) ⎤⎦ 1 − ⎣⎡ q



( q )⎦⎤ +

N



+ h+ ⋅

1 − ( q+ ) 1− (q ,

. © В.Е. Селе

N−

. .Н

Q.

»

N+

1

q+ ,

В «

ев, В.В. Алеш

-

.В H = h+ ⋅

е

(2.378) N+

)

. Д

5,32 Σ ь е

, С.Н. Прял в, 2007–2009

+

)

N

+

− ( q+ )

-

(N

ó

+

)

−1

⋅ h + − H = 0,

-

186 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

⎛ h+ ( N + −1) ⎞ N − −1 q ( q ) = ⎜ − ⋅ ( q+ ) . ⎟ ⎝h ⎠ −

1

+

( 0, Q ] .

q+

1,

H , h− , h+

-

, .

Q



, N−

, , q+

q−

-

N+

.

Q,

,

,

-

. П

е

е е

Σ

,

е

Σ

е

е

« а е : .

+

е

« а е

е яче а е

. а

а е х ячее ».

Σ

Н

Σ

е



: N =N +N . −

+

х ячее ». Σ+ .

, е е яче



– К

а

« + », : N−

« − », , Σ− , Σ+ . -

N+ .

«0». Н : h0− , h1− , h2− , …, h −N − −1 , ( )

: h0+ , h1+ , h2+ , …, h +N + −1 . ( )

Σ− е е -

,

, ,

Q

:

hk− = Q ⋅ hk−−1 = Q k ⋅ h0− ; hk+ = Q ⋅ hk+−1 = Q k ⋅ h0+ .

И

,

(

:

H = h + h + h + ... + h N − −1 = h ⋅ 1 + Q + Q + ... + Q −

− 0

− 1

− 2



(

− 0

)

2

(

H = h + h + h + ... + h N + −1 = h ⋅ 1 + Q + Q + ... + Q ( ) +

+ 0

+ 1

+ 2

+

+ 0

2

( N −1) −

( N −1) +

)

)

1− QN ; =h ⋅ 1− Q −

− 0

1− QN =h ⋅ . 1− Q +

+ 0

, :

© В.Е. Селе

ев, В.В. Алеш

h N − −1 = h N + −1 ;

(

)

(

, С.Н. Прял в, 2007–2009

)

(2.379 )

лава 2 187 _______________________________________________________________________________________

Q

(N



)

−1

⋅ h0− = Q

(N

+

H =H +H ; −

H = h0− ⋅

H , h− , h+ (2.381). Д

⋅ h0+ ;

+

(2.379 ) (2.380 )

1− Q 1− Q . + h0+ ⋅ 1− Q 1− Q −

N

N

h−

,

+

(2.380 ) Σ

h+

h0− = h − ;

:

)

−1

,

h0+ = h + .

(2.381)

, (2.379 ), (2.380 ),

Q

,

(N )

1− Q f3 ( N ) = h ⋅ 1− Q

:

+

N





+

+ h+ ⋅

1− QN − H = 0; 1− Q +

(2.382 )

+ ⎛ h+ ⎞ N − ( N + ) = 1 + logQ ⎜ − ⋅ Q N −1 ⎟ . h ⎝ ⎠

(

Н

+

. Д

)

: 0, logQ ⎡⎣1 − H ⋅ (1 − Q ) h ⎤⎦ . +

(2.382 )

N ,

N−

-

N+

ó

N

N

q−

»

+

(

(2.379), (2.380)):

( q )( −

H =h ⋅ −

Д

)

N − −1

⋅ h− = ( q+ )

1 − ( q− )

1 − ( q− ) N



q+ .

q+ ,

(N

+h ⋅ +

+

)

−1

-

⋅ h+ ;

1 − ( q+ )

1 − ( q+ ) N

+

.

, :

f4 ( q

© В.Е. Селе

q−

. N+ -

Q.

В −

N−

» .

«

-

,

«

,

(2.382)

+

ев, В.В. Алеш

)=h





1 − ⎡⎣ q − ( q + ) ⎤⎦

1 − ⎣⎡ q − ( q + )⎦⎤ N



+h ⋅

, С.Н. Прял в, 2007–2009

+

1 − ( q+ )

1 − ( q+ ) N

+

− H = 0;

188 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

⎛ h+ ( N + −1) ⎞ N − −1 q ( q ) = ⎜ − ⋅ ( q+ ) . ⎟ ⎝h ⎠ −

1

+

( 0, Q ] .

q+

-

1,

H , h− , h+

-

, .

Q

.В -

,

.В . ,

, ,

/ .

П

В

е

е

е

: h− ≤ h+ .

,

.

.

Н h . H = H − h− − h+ . H +

H. Д h0 , h1 , h2 , ..., hN −1 , H.Д

h−

H

: -

N –

: N = N + 2.

H

:

hk = q ⋅ hk −1 = q k ⋅ h0 ;

H = h0 + h1 + h2 + ... + hN −1 = h0 ⋅

1 − qN , 1− q

q –

.

В

1≤ q ≤ Q .

q

К

,

, , , , H,

В

: . q



{h



, h0 }

{h

N −1

, h+ } .

:

h0 = q ⋅ h − ; hN −1 = q N −1 ⋅ h0 = H = h0 ⋅

(2.383 ) 1 + ⋅h ; q

1 − qN . 1− q

, © В.Е. Селе

ев, В.В. Алеш

(2.383 )

(2.383 ) .

, С.Н. Прял в, 2007–2009

-

лава 2 189 _______________________________________________________________________________________

h0

(2.383 ) (2.383 ),

:

N +1

H = q ⋅ h− ⋅

N = N (q)

(2.384 ),

N

⋅ h− .

(2.384 )

(2.383 ) (2.383 ):

h0

В

h =q +

1 − qN . 1− q

(2.384 )

,

f5 ( q ) = q ⋅ h − ⋅

q

:

1− q ( ) − H = 0, 1− q N q

N ( q ) = −1 + log q

(2.385) , а

( а

(2.385 )

h+ . h−

(2.385 ) Q,

q

е

). .

/

-

,

, (

),

(

).



h , h

+

H, Q.

В

.

N

, Q.

{h

N −1

-

q. Д

,

, h+ }

H

{h

,

qin ,

, h0 }

-

qbound . В h0 = qbound ⋅ h − ;

:

(2.386 )

h + = qbound ⋅ hN −1 = qbound ⋅ qinN −1 ⋅ h0 ;

H = h0 ⋅ h0

(2.386 )

: f 6 ( qin ) = qbound ( qin ) ⋅ h − ⋅ qin © В.Е. Селе



ев, В.В. Алеш

(2.386 )

1 − qinN . 1 − qin

(2.386 )

1 − qinN − H = 0, 1 − qin

qbound

, С.Н. Прял в, 2007–2009

(2.386 ) (2.386 ), qbound ( qin ) =

h+ . h ⋅ qinN −1 −

190 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

qin ∈ [1/ Q , Q ] ;

,

. (2.387) , . .

, qin

qbound ∈ [1/ Q , Q ] ,

qbound

( [1/ Q , 1)

, +

[1,

hN −1 h . Д

hN − 2 hN −1

(2.387) , [1/ Q, 1) . h − h0

Q ] ). А

-

h1 h0

,

H.

H)

H (

». 1/ Q , Q] , [

H « а

, H

, . . 2.5.4. Чи ленны анали

-

, .

а о ы

ана

В

,

.Д .

. Н

, .

[66],

,

,

:

Δp ì = ζ 0 ⋅

ρ0 ⋅ w02 2

(2.388)

,

«0 »

. (2.388)

К

ζ

, ,

, . , Δp ì ζi = , ρi ⋅ wi2 2

, К

( fi ) ,

(

Δp ì = ζ 0 ⋅

© В.Е. Селе

.

ев, В.В. Алеш

2

= ζi ⋅

i-

, f0 )

[66]:

Δpм ρ w2 = ζ i ⋅ i ⋅ i2 , 2 ρ 0 ⋅ w0 2 ρ 0 w0

ρ 0 ⋅ w02

ζ wi

)

ζ0 =

-

,

(

ρi

.

ρi ⋅ wi2 2

, С.Н. Прял в, 2007–2009

.

(2.389)

лава 2 191 _______________________________________________________________________________________

( ρ0 ⋅ w0 ⋅ f 0 = ρi ⋅ wi ⋅ fi ) ,

:

ρ ⎛f ⎞ ζ 0 = ζi ⋅ 0 ⋅⎜ 0 ⎟ . ρi ⎝ f i ⎠ 2

ρ0 = ρi = ρ

:

(2.390)

⎛ f0 ⎞ ⎟ . ⎝ fi ⎠

ζ 0 = ζi ⋅⎜

2

(2.391)

[66], (



), ⋅ζ ⋅

Δp м = k

ρ в ⋅ w0,2 в 2

-

: (2.392)

,

w0,в –

p0 ; ρ в –

, k

,



p0 p1 p0 = 1 − Δp м p0 .

:

≈ 1,0

k

k

( p1

=

[66]: Δp м ⋅ p0

p0 )крит < p1 p0 < 0, 9

1 − ( p1 p0 )крит = 0, 47 [66]. К

=

p0 )крит –

; γ –

,

, [66], .

p1 p0 > 0,9

γ −1

γ ⋅ ⎢( p1 p0 ) ⎡ ⎣

2

Δp м < 0,1 ⋅ p0 ;

− ( p1 p0 )

[1 − 0, 46 ⋅ Δp м 1

p0 ]

γ +1 γ

⎤ ⎥⎦

(2.394)

( p1



[66], k ,

(2.395)

,

p0 )крит = 0,53 Δp м .

(2.392–2.395) k Δp м , p1 p0

[105].

-

(2.392–2.395) ,

ζ, © В.Е. Селе

γ

(2.393)

1 − ( p1 p0 )крит > Δ p м p0 > 0,1 k

( p1

p1

. В ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

192 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ζ (

1

Д . , ⎡⎣ xiL −1,5 , xiR +1,5 ⎤⎦ ,

. (2.388))

, . 2.19. е ь а а xiL−1,5 = 0,5 ⋅ ( xiL−1 + xiL−2 ) xiR +1,5 = 0,5 ⋅ ( xiR +1 + xiR +2 ) .

и . 2.19. Схе а

ч

е ре

авле

:

ΔZ = ( z1 )iR + 2 − ( z1 )iL − 2 ;

( z1 )iL −1 = ( z1 )iL = ( z1 )iR = ( z1 )iR +1 = ( z1 )iL − 2 +

ΔL = xiR + 2 − xiL − 2 ;

xi –

xiL −1 = xiL = xiR = xiR +1 = xiL − 2 + i , ( z1 )i –

i. Н . 2.19 iL ( iL − 1) ( iR + 1)

),

( iL − 1, iL ) ,

( iR,

,

, . xiL = xiL −1

( [ xiL − 2 , xiR + 2 ] )2,

xiR = xiR +1

[ xiL , xiR ]

( xiR+2 − xiL−2 ) ,

[ xiL , xiR ]

2

,

2

© В.Е. Селе

, С.Н. Прял в, 2007–2009

-

-

(2.397 )

,

. ев, В.В. Алеш

-

,

.

[ xiL , xiR ]

(2.396 )

,

Δx[iL , iR] = k[iL , iR] ⋅

1

ΔZ ; 2

(

iR

.

k[iL , iR] ∈ ( 0,1) –

iR -

-

iR + 1)

, :

ΔL , 2

iL

.

( xiL−1 − xiL−2 ) + ( xiR+2 − xiR+1 )

( . . xiL ≠ xiR ),

е ра а

( iL − 1) , iL , iR , ( iR + 1)

Д , iR = iL + 1 . ( )

Д

.

k

лава 2 193 _______________________________________________________________________________________

, k[iL , iR] = 0, 2 ). В

(

-

⎡( z1 )iR +2 − ( z1 )iL−2 ⎤⎦ . Δz[iL , iR ] = k[iL , iR] ⋅ ⎣ 2

В

(2.396 )

:

ΔZ = ( z1 )iR + 2 − ( z1 )iL − 2 ;

( z1 )iL −1 = ( z1 )iL = ( z1 )iL − 2 +

xiL −1 = xiL = xiL − 2 +

ΔZ − Δz[iL , iR] 2

(2.397 )

ΔL = xiR +2 − xiL−2 ;

( z1 )iR = ( z1 )iR +1 = ( z1 )iL + Δz[iL, iR] ;

;

ΔL − Δx[iL , iR] 2

; xiR = xiR +1 = xiL + Δx[iL , iR] .

,

xiL − 2 < xiL −1 = xiL < xiR = xiR +1 < xiR + 2 .

Да ее а е ь а а. (2.398 ),

ь

а

а

а

е

ае

а

х

е

а а е е

(2.396 )

(2.398 )

ече я а а че е е е я ь я а а е



а е

е а

:

xiR + 2 < xiR +1 = xiR < xiL = xiL −1 < xiL − 2 .

(2.398 )

К

(

)

, (2.392) (

В

-

(2.388)).

(2.392),

( iL − 1) 1.

,

(

),

. iR , ( iR + 1) ),

(

( iL − 1)

( iR + 1) .

Д : ( iL − 1) , iL , 2

.

,



-

( )3:

ρiL −1 ⋅ wiL −1 = ρiR +1 ⋅ wiR +1 .

(2.399) -

1

,

2

. 2.19

.

, .

3

, ,

© В.Е. Селе

, ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

.

194 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ρ,

ε

(

w,

p,

T

). ( iL − 1) ,

,

. 2.1. Та ли а 2.1

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ .

1. 2.

(2.399)

-

.

piL −1 = p ( ρiL −1 , TiL −1 ) .

3. 4.

TiL −1 = T ( ε iL −1 , piL −1 ) .

К

5.

Д

ρiL −1 ;

. – piL −1 ;

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ .

:

-

wiL −1 ;





ε iL −1 ;





TiL −1 .

,

-



, .

«

.К –

» «

»1 -

.

xi ± 0,5 = 0, 5 ⋅ ( xi + xi ±1 ) .

. К ⎡⎣ xi − 0,5 , xi + 0,5 ⎤⎦ ,

» « ( (

i + 1 = iL ).

К

© В.Е. Селе

i)

,

( iL − 1) ) ⎣⎡ xiL −1,5 , xiL −1 ⎦⎤ ( », . . xiL −1,5 = 0,5 ⋅ ( xiL −1 + xiL − 2 ) .

,

1

. (



« «

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ , -

⎡⎣ xi − 0,5 , xi + 0,5 ⎤⎦ . « » » . ), ( i + 1) ,

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

«

».

-

, -

,

i = iL − 1 .



.

лава 2 195 _______________________________________________________________________________________

yi +1 = yi , .В

yk – yk

«

»

«

⎡⎣ xi − 0,5 , xi ⎤⎦ = ⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ . , ( i − 1)

»

А

⎡⎣ xi − 0,5 , xi + 0,5 ⎤⎦

«

⎣⎡ xi − 0,5 , xi + 0,5 ⎦⎤

xk , f k , ρ k , wk

k-

. .

«

»

⎡⎣ xi , xi + 0,5 ⎤⎦ .

»

( iR + 1) ,

В

.

,

. 2.2. Та ли а 2.2

1.

(2.392)

2.

⎡⎣ xiR +1 , xiR +1,5 ⎤⎦ .

ρiR +1 = ρ ( piR +1 , TiR +1 ) .

3. 4.

(2.400) , (

5.

(2.388).

(

.

).

)

TiR +1 = T ( ε iR +1 , piR +1 ) .

К

⎡ ⎤ ⎛ wiR2 +1 ⎞ ρ ⋅ ε + ⎢ iR +1 ⎜ iR +1 ⎟ + piR +1 ⎥ ⋅ wiR +1 ⋅ f iR +1 = 2 ⎠ ⎝ ⎣⎢ ⎦⎥

⎡ ⎤ Φ ⋅ ( iR − iL ) ⎛ w2 ⎞ , = ⎢ ρiL −1 ⋅ ⎜ ε iL −1 + iL −1 ⎟ + piL −1 ⎥ ⋅ wiL −1 ⋅ f iL −1 − 2 ⎠ f iL −1 ⎢⎣ ⎥⎦ ⎝

Φ –

(Φ > 0 –

), Вт . В

(2.400) (

.

,

(

Φ



. .

)).

-

, :

ε iR +1 ;

wiR +1 ;



, С.Н. Прял в, 2007–2009

– –



, ев, В.В. Алеш

iL

iR (

( iR + 1)

ρ iR +1 ;

-

2.7.3). В ( iR − iL )



.

© В.Е. Селе

(2.400)

piR +1 ;



TiR +1 .

-

196 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ ,



⎡⎣ xiR +1 , xiR+1,5 ⎤⎦ . Н

,

, .А

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ .

(2.399)

: wiL −1 =

Qvalve –

-

Qvalve , ρ iL −1 ⋅ f iL−1

(2.401 )

:

Qvalve = wiR +1 ⋅ ρiR +1 ⋅ f iR +1 . 1

2.1)

( iL − 1)

Q = Qvalve ( t ) (

(2.401 ) (

.

Q –

. ). -

, 2

.

y (

ρ , p, w

. .)

yi → yi +1

(2.402) . ( iL − 2, iL − 1)

(2.402) , ,

.

.

. 2.1,

,

.И «

» ⎡⎣ xiL −1,5 , xiL −1 ⎤⎦

, :

ρiL −1 ⋅ wiL −1 ⋅ f iL −1 − 0,5 ⋅ ( ρiL −1 ⋅ wiL −1 ⋅ f iL −1 + ρiL − 2 ⋅ wiL − 2 ⋅ f iL − 2 ) 0,5 ⋅ ( xiL −1 − xiL − 2 )

= 0,

(2.403)

,

ρiL −1 = ρiL − 2 ⋅

wiL − 2 . wiL −1

(2.404) -

(2.404)

, ,

1

В

(2.403),

.

2

© В.Е. Селе

,

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 197 _______________________________________________________________________________________

( iL − 2 )

. .

( iL − 1)

1

,

(

)

.

-

(2.401) ,

, )

ρ , p, w

, )

. ),

y (

. .)

:

yiL − 2 → yiL −1 .

(2.405)

( iL − 2 )

(

«

»

е

, я

е

-

. Д

, . . (2.399) ( ( .

е

е

а

х -

ех е е ( iL − 2 ) ). Э

а ь

а е

х

2

.

е е а ь е ( iL − 1)

) х а

,

х а е

,

я ( . . ( iL − 1)

е

-

а а а

а

( а ь-

.

( iL − 2, iL − 1)

, (2.402)

3

.

4

(

)

(2.36)

d ( ρ ⋅ w2 ) dx

-

.Д :

= 0.

(2.406) , «

( iL − 2 ) )

» (

:

1 ⋅ ⎡0, 25 ⋅ ( ρiL −1 ⋅ wiL −1 + ρiL − 2 ⋅ wiL − 2 ) ⋅ ( wiL −1 + wiL − 2 ) − 0,5 ⋅ ( xiL −1 − xiL −3 ) ⎣ −0, 25 ⋅ ( ρiL − 2 ⋅ wiL − 2 + ρiL −3 ⋅ wiL −3 ) ⋅ ( wiL − 2 + wiL − 3 ) ⎤⎦ = 0.

(2.407)

. .

(

.

), yiL −3 → yiL − 2 . 1

Н

2

,

3 4

⎡⎣ xiL−2,5 , xiL−1,5 ⎤⎦

,

(2.408)

.

⎡⎣ xiL−1,5 , xiL−1 ⎤⎦ .

,

.

Д

© В.Е. Селе

, ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

.

198 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

(

)

K = ρiL − 2 ⋅ wiL2 − 2 = ρiL −3 ⋅ wiL2 −3 .

(2.409)

(2.407), K ( ⎣⎡0,5 ⋅ ( xiL −1 − xiL −3 )⎦⎤ :

2.409), (2.407)

,

(2.408, ).

0, 25 ⋅ ( ρiL −1 ⋅ wiL −1 + ρiL − 2 ⋅ wiL − 2 ) ⋅ ( wiL −1 + wiL − 2 ) = K .

(2.410)

(2.404) (2.410):

(2.401)

ч

, е е е

е е Д

е

0,5 ⋅ ρ iL − 2 ⋅ wiL − 2 ⋅ ( wiL −1 + wiL − 2 ) = K = ρ iL − 2 ⋅ wiL2 − 2 .

(2.411)

wiL −1 = wiL − 2 .

(2.412)

ρiL −1 = ρiL − 2 .

:

К

е а ач я яе я а ρ = ρ ( x) w = w( x) е

е е

, е а

(2.413)

е

х

а

. Д

, ае



а

. .И

, «

»

, ( » .Э (

. .

( iL − 1)

. В , « [95]). «

. » -

( iL − 2 )

(2.404)) .

Q = Q (t ) (

. К

,

, )

-

.

,

, , .Н

, .

. -

⎣⎡ xiR +1 , xiR +1,5 ⎦⎤ , ,

.Д ( Qi −0,5 = Qi + 0,5 ,

1

Qi ± 0,5 = 0,5 ⋅ [ ρi ⋅ wi ⋅ f i + ρi ±1 ⋅ wi ±1 ⋅ f i ±1 ]) ⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ ,

1

Н

© В.Е. Селе

1

.

, ев, В.В. Алеш

Д

.

, С.Н. Прял в, 2007–2009

2.1,

:

QiL −1,5 = QiL −1 , .

-

лава 2 199 _______________________________________________________________________________________

QiL −1,5 = 0, 5 ⋅ [ ρiL −1 ⋅ wiL −1 ⋅ f iL −1 + ρiL − 2 ⋅ wiL − 2 ⋅ f iL − 2 ] ;

( iL − 1)

QiL −1 = ρiL −1 ⋅ wiL −1 ⋅ f iL −1 .

( iR + 1) ,

(

2.19), QiR +1 = ρiR +1 ⋅ wiR +1 ⋅ f iR +1 .

( iR + 1)

Д

(

.

. (2.399)): QiL −1 = QiR +1 ,

.

, xiR +1 ).

( . .

-

,

. А

,

xiR +1,5 = 0,5 ⋅ ( xiR +1 + xiR + 2 )

,

( iR + 1) )

. xiR +1

1

-

xiR +1,5 (

, . . (

.

. 2.2). ,

«

⎡⎣ xiR +1 , x iR +1,5 ⎤⎦ .

» , ,

. Д .

-

. В , ,

.В (

-

),

. .

-

.

Д

(

)

, .

5

-

. . , 2

.

-

: 3

4

.

Д . 1

Д

«

( iR + 2 ) )

«

» »

⎡⎣ xiR+1 ; x iR+1,5 ⎤⎦ (

⎡⎣ xiR+1,5 ; x iR+2,5 ⎤⎦ (

( iR + 1) ),

. 2

,

.

3 4

. Д

( .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

[69])

-

200 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

В

.Д (

iR ,

iL

.

. 2.19)

f valve = kvalve ⋅ f ,

; kvalve ∈ [ 0,1] –

f –

.

( iL − 1) ,

kvalve = 0

(2.414) ,

iL , iR , ( iR + 1)

(

kvalve = 1

. В

)

,

«

».



,

( iL − 1)

,

.

iL .

,

iL

,

. В

. В

, (

и . 2.20. Схе а ече

В ( iL − 1)

-

. 2.20).

я а а чере

у е

е

ереч

ече

я

, iL (

.

. 2.19)

( .В

), ,

,

.В (2.36).

: 1)

;

2)

;

3) © В.Е. Селе

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 201 _______________________________________________________________________________________

Э

. Э

, [66].

,

И

, ,

.

, ),

(

∂ ( ρ ⋅ f ⋅ w2 )

:

∂x

(2.36 ) +f⋅

∂p = 0. ∂x

(2.415)

Δx0,1 = [ x0 , x1 ] (

ρ1 ⋅ f1 ⋅ w12 − ρ 0 ⋅ f 0 ⋅ w02 + f ⋅ ( p1 − p0 ) = 0, f –

f =

Δx0,1

. 2.20). (2.416 )

Δx0,1 .

f

:

.

-

f 0 + f1 . 2

(2.36 ) ( . . 2.20)

( ρ ⋅ f ⋅ w)1 − ( ρ

(2.417) (2.36 ) :

-

⋅ f ⋅ w )0 = 0;

(2.416 )

⎡ ⎛ ⎛ w2 p ⎞ ⎤ ⎡ w2 p ⎞ ⎤ ρ ⋅ ⋅ ⋅ ε + + − ρ ⋅ ⋅ ⋅ ε + + ⎟ ⎥ = 0. f w f w ⎢ ⎜ ⎟⎥ ⎢ ⎜ 2 ρ ⎠ ⎦1 ⎣ 2 ρ ⎠⎦0 ⎝ ⎝ ⎣ Φ

, , (2.416 )

(2.416 )

.

-

. (2.416 )

(2.416 )

(2.416 ), ,

x1 (

. w1 =

-

. 2.20):

ρ 0 ⋅ f 0 ⋅ w0 ; f1 ⋅ ρ1

p1 = p0 − ⎛

ε1 = ⎜ ε 0 + ⎝

(2.418 )

ρ1 ⋅ f1 ⋅ w12 − ρ 0 ⋅ f 0 ⋅ w02 f

= p0 − ρ 0 ⋅ f 0 ⋅ w0 ⋅

w02 p0 ⎞ ⎛ w12 p1 ⎞ + ⎟−⎜ + ⎟; 2 ρ 0 ⎠ ⎝ 2 ρ1 ⎠

w1 − w0 ; f

(2.418 ) (2.418 )

T1 = T ( ε1 , p1 ) ; ρ1 = ρ ( p1 , T1 ) ;

(2.418 )

f = 0,5 ⋅ ( f 0 + f1 ) .

(2.418 )

x1 © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(

, (2.418). В )

-

202 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

,

-

.

x0 –

(

)

,

,

. , (

), )

wiL =

(2.419 )

piL = piL −1 − ρ iL −1 ⋅ f iL −1 ⋅ wiL −1 ⋅ ⎛



(

:

ρiL −1 ⋅ wiL −1 ; kvalve ⋅ ρiL

ε iL = ⎜ ε iL −1 +

-



wiL − wiL −1 ; f iL −0,5

( 2.419 )

wiL2 −1 piL −1 ⎞ ⎛ wiL2 piL ⎞ + + ⎟−⎜ ⎟; ρiL −1 ⎠ ⎝ 2 ρiL ⎠ 2

(2.419 )

TiL = T ( ε iL , piL ) ; ρiL = ρ ( piL , TiL ) ;

(2.419 )

f iL − 0,5 = 0,5 ⋅ fiL −1 ⋅ (1 + kvalve ) .

Д

wiR =

(

(2.419 )

)

ρiR +1 ⋅ wiR +1 ; kvalve ⋅ ρiR

: (2.420 )

piR = piR +1 − ρ iR +1 ⋅ f iR +1 ⋅ wiR +1 ⋅ ⎛

ε iR = ⎜ ε iR +1 + ⎝

wiR − wiR +1 ; f iR + 0,5

(2.420 )

wiR2 +1 piR +1 ⎞ ⎛ wiR2 piR ⎞ + + ⎟−⎜ ⎟; ρiR +1 ⎠ ⎝ 2 ρiR ⎠ 2

(2.420 )

TiR = T ( ε iR , piR ) ; ρiR = ρ ( piR , TiR ) ;

(2.420 )

f iR + 0,5 = 0,5 ⋅ f iR +1 ⋅ (1 + kvalve ) .

А

(2.420 )

iL

-

iR

.

. ( ,

. ( .,

К 1

( 2 ,

)



-

. , [84]), [84]

p0 а е

,

-

е ),

.Д ,

. ,

1

Д

2

К

© В.Е. Селе

. Н

, ,

( ,

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

). .

лава 2 203 _______________________________________________________________________________________

,

Ч «

,

,

.

, »

,

.

е

p0

В

. ,

p0

( ).

Н

. , (

iR ). 1

, (

,

)

iR

γ –

:

c0 = γ ⋅ R ⋅ T ,

(2.421)

; R –

. . ,

,

« ,

.

»

-

, . . , . -

Н ( . . ).

). -

(

И

,

( iL − 1)

, .

iR iR (

iL

.

, . .

yL = yR ,

:

( ,

-

(2.422)

y –

Д

. 2.19)

,

,

. .). . 2.20. В iL ( iL − 1) ,

, ,

-

wiL = wiR = ( iR − iL ) ⋅ ( c0 )iR ;

(2.423 )

wiL −1 =

(2.423 )

(

.

(2.419), (2.421)):

wiL ⋅ kvalve ⋅ ρiL

ρiL −1

;

piL = piL −1 − ρ iL −1 ⋅ f iL −1 ⋅ wiL −1 ⋅

1

© В.Е. Селе

, ( ев, В.В. Алеш

wiL − wiL −1 ; f iL −0,5

(2.423 )

.

. 2.1

2.2,

, С.Н. Прял в, 2007–2009

(2.419), (2.420)).

204 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________



ε iL = ⎜ ε iL −1 + ⎝

wiL2 −1 piL −1 ⎞ ⎛ wiL2 piL ⎞ + + ⎟−⎜ ⎟; ρiL −1 ⎠ ⎝ 2 ρiL ⎠ 2

(2.423 )

TiL = T ( ε iL , piL ) ; ρiL = ρ ( piL , TiL ) ;

(2.423 )

f iL −0,5 = 0,5 ⋅ f iL −1 ⋅ (1 + kvalve ) ;

(2.423 )

( c0 )iR = γ iR ⋅ R ⋅ TiR . В

(2.423 )

( iR − iL )

(2.423 )

Д

, Д

iL ,

,

( iL − 1) ),



iL > iR (

, ( iR − iL )

,

iR .

( Q = Qvalve ( t ) . Д

, -

( iL − 1) ). ,

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ (

-

iR − iL = −1 ).

,

. 2.3

«

»

Та ли а 2.3

( iL − 1) .

1.

,

2.

piL −1 = p ( ρiL −1 , TiL −1 ) .

3. 4.

TiL −1 = T ( ε iL −1 , piL −1 ) .

К

5.

,

iL

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ . ⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ .

.Д -

. В

iR

: Qvalve = ρiR ⋅ wiR ⋅ f iR = ρiR ⋅ wiR ⋅ f iL −1 ⋅ kvalve . В :

( iL − 1) ,

(2.423 )). ,

-

( iL − 1)

iL , iR

( iR + 1)

, QiL −1 = Qvalve . Э

,

Qvalve

(

.,

,

-

. 2.3. , © В.Е. Селе

ев, В.В. Алеш

. , С.Н. Прял в, 2007–2009

лава 2 205 _______________________________________________________________________________________



piL (2.423 )

( iL − 1)

-

ε iL

.

, (2.423)

iL

(2.423 ). ( iL − 1) .

,

»

«

( iR + 1)

. 2.3.

( iR + 1) ,

) , 1

(

iR .

, -

,

. ,

( iR + 1) )

( iR + 1)

, . = Qvalve .

: QiR +1

,

-

, ( ,

. 2.4. Та ли а 2.4

( iR + 1) .

1.

,

2.

iR

⎡⎣ xiR +1 , xiR +1,5 ⎤⎦ .

piR +1 = p ( ρiR +1 , TiR +1 ) .

3. 4. iR

( iR + 1)

К

5.

(2.424) (

.

).

TiR +1 = T ( ε iR +1 , piR +1 ) .

2 2 ⎛ ⎞ ⎛ ⎞ wiR ) ( ( iR − iL ) ⋅ Φ piR ⎟ ⎜ ( wiR +1 ) p ⎜ . ε iR +1 = ε iR + + − + iR +1 ⎟ − ⎜ 2 ρ iR ⎟ ⎜ 2 ρ iR +1 ⎟ ρ iR +1 ⋅ wiR +1 ⋅ f iR +1 ⎝ ⎠ ⎝ ⎠

(2.424)

(2.416 ).

.

Д

,

-

.

, «



».

2

,

1

(2.424)

Н

.

2

Д . © В.Е. Селе

-

ев, В.В. Алеш

,

, С.Н. Прял в, 2007–2009

,

206 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

.И (

.

. 2.19). ;

, (

iL ; iR – ( iL − 1) ( iR + 1) –

)

(

-

) (

iR )

iL

,

. -

-

, -

(

). -

. ,

-

. Н y (

,

k. Д ,

,

. .)

lim yik = yij +1 (

k →∞

( j + 1) -

j-

1. ДЛ

Д

Р Т ЧЕС

ы

1.1.

1.1.1.

Г

я

ρiLk +−11 − ρiLj −1 t j +1 − t j

+

,

ρiLk +−11 − ρiLj −1 t j +1 − t j

ТЕЧЕН

.

ГАЗА ЧЕРЕЗ РАН.

( iL − 1) .

ия га а

1

ρiLk −1 ⋅ wiLk −1 − 0,5 ⋅ ( ρiLk −1 ⋅ wiLk −1 + ρiLk − 2 ⋅ wiLk − 2 )

-

,

0,5 ⋅ ( xiL −1 − xiL − 2 )

=0

(2.425 *)

:

+

ρiLk −1 ⋅ wiLk −1 − ρiLk − 2 ⋅ wiLk − 2 xiL −1 − xiL − 2

(

= 0.

(2.425 )

. (2.399)) ( wiLk +−11 =

ρiRk +1 ⋅ wiRk +1 . ρiLk −1 ρiLk +−11 , . .

Д .И

wiLk +−11 ):

(2.425 )

( iL − 1)

( k + 1) -

. . © В.Е. Селе

ó

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ (

1.1.2.

1

-

).

и а а

ρiLk +−11 ). Н

,

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 207 _______________________________________________________________________________________

( iL − 1)

1.1.4.

(

ε iLk +−11 ). Н

,

t j +1 − t j

ρiLk −1 ⋅ ( wiLk −1 ) − ρiLj −1 ⋅ ( wiLj −1 ) 2 ⋅ ( t j +1 − t j )

+

2

3

=−

0,5 ⋅ ( xiL −1 − xiL − 2 )

+

0,5 ⋅ ( xiL −1 − xiL − 2 )

=

( z1 )iL −1 − ( z1 )iL − 2 piLk −1 ⋅ wiLk −1 − piLk − 2 ⋅ wiLk − 2 − ρiLk −1 ⋅ wiLk −1 ⋅ g ⋅ + xiL −1 − xiL − 2 xiL −1 − xiL − 2 k

+QiLj +−11 −

Φ (TiLk−1 , Toc ) f iL−1

(2.425 )

( iL − 1)

TiLk −+11 = T ( ε iLk −1 , piLk −1 ) .

ы

и а а

(

ия га а

(2.425 )

( iR + 1) .

): =p

Kk =

k iL −1

−K

k

⋅ζ ( w

piLk −1 − piRk +1 ⋅ piLk −1

γ

ρ вk ⋅ ⎡⎣ w0,k в ⎤⎦ ; )⋅ 2

k 0, в

2

γ iL −1 +1 ⎤ 2 ⎡ k ⋅ ⎢( piRk +1 piLk −1 ) γ iL−1 − ( piRk +1 piLk −1 ) γ iLk −1 ⎥ ⎣⎢ ⎦⎥ k

k iL −1

( iL − 1) ), ев, В.В. Алеш

(2.426 )

γ iLk −1 − 1

ζ

© В.Е. Селе

TiLk −+11 ):

(2.392) (

k +1 iR +1

p

я

k

.

1.1.5. К

p

+

0,5 ⋅ ρiLk −1 ⋅ ( wiLk −1 ) − 0, 25 ⋅ ( ρiLk −1 ⋅ wiLk −1 + ρiLk − 2 ⋅ wiLk − 2 ) ⋅ wiLk −1 ⋅ wiLk − 2

+

k +1 iR +1

2

ρiLk −1 ⋅ wiLk −1 ⋅ ε iLk −1 − 0, 25 ⋅ ( ρiLk −1 ⋅ wiLk −1 + ρiLk − 2 ⋅ wiLk − 2 ) ⋅ ( ε iLk −1 + ε iLk − 2 )

+

1.2.

(2.425 ) ⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ (

ρiLk −1 ⋅ ε iLk +−11 − ρiLj −1 ⋅ ε iLj −1

1.2.1.

piLk +−11 ):

piLk +−11 = p ( ρiLk −1 , TiLk −1 ) .

1.1.3.

(2.426 )

.

(

, С.Н. Прял в, 2007–2009

-

208 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ζ ( w0,k в

В

ρ вk = ρ iLk −1 ,

)

Kk =1.

piLk −1 − piRk +1 0 – 1.2.2.

w0,k в = wiLk −1 .

+

0, 25 ⋅ ( ρiRk +1 ⋅ wiRk +1 + ρiRk + 2 ⋅ wiRk + 2 ) ⋅ ( wiRk +1 + wiRk + 2 ) − ρiRk +1 ⋅ ( wiRk +1 ) 0,5 ⋅ ( xiR + 2 − xiR +1 )

2

( z1 )iR + 2 − ( z1 )iR +1 p k − piRk +1 = − iR + 2 − ρiRk +1 ⋅ g ⋅ − xiR + 2 − xiR +1 xiR + 2 − xiR +1 k



λ ( wiRk +1 ) ⋅ ρ iRk +1 ⋅ wiRk +1 ⋅ wiRk +1 ⋅ π 4 ⋅ f iR +1

k

(2.426 )

.

( iR + 1)

ρiRk ++11 ):

ρiRk ++11 = ρ ( piRk +1 , TiRk +1 ) .

1.2.3.

=

(

(2.426 )

1.2.4.

, ( k +1 ε iR +1 ) ( . (2.400)):

ε

k +1 iR +1



k iL −1

(w ) − (w ) + 2 k iL −1

2 k iR +1

2

Φ –

( iR + 1)

(Φ > 0 –

я

и а а

(

ия га а

1.3.1. © В.Е. Селе

ев, В.В. Алеш

(2.426 ) ), Вт . В

.

TiRk ++11 = T ( ε iRk +1 , piRk +1 ) .

ы

-

(

Φ ⋅ ( iR − iL ) ⎛ pk pk ⎞ + ⎜ iLk −1 − iRk +1 ⎟ − k , k ⎝ ρiL −1 ρiR +1 ⎠ wiR +1 ⋅ f iR +1 ⋅ ρiR +1

Φ

1.2.5. К

1.3.

)

, С.Н. Прял в, 2007–2009

TiRk ++11 ):

(2.426 )

iL .

( iL − 1)

iL (

.

лава 2 209 _______________________________________________________________________________________

wiLk +1 ):

(2.419 )) (

ρiLk −1 ⋅ wiLk −1 . kvalve ⋅ ρiLk

wiLk +1 =

1.3.2.

k +1 iL

p

(2.419 )) (

(2.427 )

( iL − 1)

):

piLk +1 = piLk −1 − ρiLk −1 ⋅ f iL −1 ⋅ wiLk −1 ⋅

wiLk − wiLk −1 , f iL − 0,5

f iL − 0,5 ≈ 0,5 ⋅ fiL −1 ⋅ (1 + kvalve ) .

1.3.3.

ε

(2.419 )) (

ε 1.3.4.

ρ

k +1 iL

T

k +1 iL

ы

1.4.

k +1 iL

k +1 iL

я

1.4.1. (2.420 )) (

(2.420 )) (

(2.427 )

( iL − 1)

и а а

ия га а

w

k +1 iR

p

(2.427 )

iR .

( iR + 1)

(

.

):

ρiRk +1 ⋅ wiRk +1 . kvalve ⋅ ρiRk

(2.428 )

iR

):

wiRk − wiRk +1 , f iR + 0,5

1.4.3.

(

.

(2.428 )

iR , С.Н. Прял в, 2007–2009

( iR + 1)

(2.428 )

f iR + 0,5 ≈ 0,5 ⋅ f iR +1 ⋅ (1 + kvalve ) .

ев, В.В. Алеш

.

. (2.419 )) (

iR

piRk +1 = piRk +1 − ρiRk +1 ⋅ fiR +1 ⋅ wiRk +1 ⋅

© В.Е. Селе

iL (

(2.427 )

TiLk +1 = T ( ε iLk , piLk ) ; ρiLk +1 = ρ ( piLk , TiLk ) .

wiRk +1 = 1.4.2.

(2.427 )

2 ⎛ ⎞ ⎛ k 2 ⎞ wiLk −1 ) ( piLk −1 ⎟ ⎜ ( wiL ) pk k ⎜ = ε iL −1 + + k − + iLk ⎟ . ⎜ ρiL −1 ⎟ ⎜ 2 ρiL ⎟ 2 ⎝ ⎠ ⎝ ⎠

k +1 iR

.

):

iL (

):

iL (

( iR + 1)

(

.

210 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ε iRk +1 ):

(2.420 )) (

ε

1.4.4.

2. ДЛ

k +1 iR

ρiRk +1 ):

TiRk +1

СВЕРХ Р Т ЧЕС

2 ⎛ ⎞ ⎛ k 2 ⎞ wiRk +1 ) ( piRk +1 ⎟ ⎜ ( wiR ) pk k ⎜ = ε iR +1 + + k − + iRk ⎟ . ⎜ ρiR +1 ⎟ ⎜ 2 ρiR ⎟ 2 ⎝ ⎠ ⎝ ⎠

iR (

Г

ТЕЧЕН

ГАЗА ЧЕРЕЗ

k +1 2 iR

2.1.1.

2.1.2.

2.1.3.

я

k +1 2 iR

и а а

wiRk +1 = ( iR − iL ) ⋅ γ iRk ⋅ R ⋅ TiRk .

iR (

) -

а .

:

= γ iRk +1 ⋅ R ⋅ TiRk +1 .

(2.429) iR .

wiRk +1 ):

. (2.423)) (

piRk +1 ):

. (2.422)) (

ρiRk +1 ):

. (2.422)) (

iR (

. (2.422)) (

-

ε iRk +1 = ε iLk . 2.1.5.

2.2.1.

(2.430 ) iR (

TiRk +1 = TiLk .

ы

2.2.

я

wiLk +1 = wiRk .

TiRk +1 ):

. (2.422)) (

(2.430 ) и а а

ия га а iL (

. (2.422)) (

iL .

wiLk +1 ): (2.431 )

2.2.2. © В.Е. Селе

iL ев, В.В. Алеш

(2.430 )

(2.430 )

ε iRk +1 ):

2.1.4.

,

(2.430 )

iR (

ρiRk +1 = ρiLk .

(2.428 )

Н

ия га а

iR (

piRk +1 = piLk .

РАН.

( ия га а

г

( w ) ≥ (c ) ы

. (2.420 )) (

TiRk +1 = T ( ε iRk , piRk ) ; ρiRk +1 = ρ ( piRk , TiRk ) .

и и

2.1.

(2.428 )

, С.Н. Прял в, 2007–2009

( iL − 1)

(

.

лава 2 211 _______________________________________________________________________________________

piLk +1 ):

(2.423 )) ( piLk +1 = piLk −1 − ρ iLk −1 ⋅ f iL −1 ⋅ wiLk −1 ⋅

2.2.3.

ε

(

ε 2.2.4.

k +1 iL

k +1 iL

wiLk − wiLk −1 . f iL − 0,5

(2.431 ) iL

( iL − 1)

ρiLk +1 ):

(2.431 )

iL (

. (2.423 )) (

TiLk +1 = T ( ε iLk , piLk ) ; ρ iLk +1 = ρ ( piLk , TiLk ) .

ы

2.3.

2.3.1.

я

( iL − 1) ( wiLk +−11 =

2.3.2.

ρ

и а а

k +1 iL −1

(2.431 )

ρiLk −1

, wiLk +−11 )1:

(2.432 ) ⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ (

). Н

ε iLk +−11 ). Н

,

t j +1 − t j

+

1

© В.Е. Селе

+

(2.432 ) ⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ (

ρiLk −1 ⋅ ( wiLk −1 ) − ρiLj −1 ⋅ ( wiLj −1 ) 2 ⋅ ( t j +1 − t j ) 2

2

+

ρiLk −1 ⋅ wiLk −1 ⋅ ε iLk −1 − 0, 25 ⋅ ( ρiLk −1 ⋅ wiLk −1 + ρiLk − 2 ⋅ wiLk − 2 ) ⋅ ( ε iLk −1 + ε iLk − 2 ) 0,5 ⋅ ( xiL −1 − xiL − 2 )

+

0,5 ⋅ ( xiL −1 − xiL − 2 )

=

0,5 ⋅ ρiLk −1 ⋅ ( wiLk −1 ) − 0, 25 ⋅ ( ρiLk −1 ⋅ wiLk −1 + ρiLk − 2 ⋅ wiLk − 2 ) ⋅ wiLk −1 ⋅ wiLk − 2

Д ,

-

,

ρiLk −1 ⋅ ε iLk +−11 − ρiLj −1 ⋅ ε iLj −1 +

iL

.

ρiLk +−11 − ρiLj −1 ρiLk −1 ⋅ wiLk −1 − ρiLk − 2 ⋅ wiLk − 2 + = 0. t j +1 − t j xiL −1 − xiL − 2 2.3.3.

( iL − 1) .

ия га а

. (2.423 )) (

wiLk ⋅ kvalve ⋅ ρ iLk

. (2.423 ))

):

2 ⎛ ⎞ ⎛ k 2 ⎞ wiLk −1 ) ( piLk −1 ⎟ ⎜ ( wiL ) pk k ⎜ = ε iL −1 + + k − + iLk ⎟ . ⎜ 2 ρ iL −1 ⎟ ⎜ 2 ρ iL ⎟ ⎝ ⎠ ⎝ ⎠

TiLk +1

(

3

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

212 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

=−

( z1 )iL −1 − ( z1 )iL − 2 piLk −1 ⋅ wiLk −1 − piLk − 2 ⋅ wiLk − 2 − ρiLk −1 ⋅ wiLk −1 ⋅ g ⋅ + xiL −1 − xiL − 2 xiL −1 − xiL − 2 k

+QiLj +−11 −

2.3.4.

Φ (TiLk−1 , Toc ) f iL−1

k

(2.432 )

.

( iL − 1)

piLk +−11 ):

TiLk −+11

(

TiLk −+11 = T ( ε iLk −1 , piLk −1 ) ; piLk +−11 = p ( ρiLk −1 , TiLk −1 ) .

ы

2.4.

( iR + 1)

2.4.1.

wiRk ++11 =

я

и а а

ρiRk +1

( iR + 1) .

ия га а

,

wiRk ++11 ):

(

wiRk ⋅ kvalve ⋅ ρ iRk

(2.432 )

iR

.

(2.433 )

ρiRk ++11 ).

⎡⎣ xiR +1 , xiR +1,5 ⎤⎦ (

2.4.2. Н

,

ρiRk ++11 − ρiRj +1 ρiRk +1 ⋅ wiRk +1 − ρiRk + 2 ⋅ wiRk + 2 + = 0. t j +1 − t j xiR +1 − xiR + 2

2.4.3.

ε

(

ε

2.4.4.

k +1 iR +1

k +1 iR +1

iR

). Д

:

(

. (2.424))

):

( iR + 1)

TiRk ++11 = T ( ε iRk +1 , piRk +1 ) ;

(

piRk ++11 = p ( ρiRk +1 , TiRk +1 ) .

(2.433 ) TiRk ++11

(2.433 )

, «1 »

(2.54 ) « 2 ». Д

( ρ ⋅ w ⋅ f ⋅ Ym )2 − ( ρ ⋅ w ⋅ f ⋅ Ym )1 = 0, © В.Е. Селе

( iR + 1)

2 ⎛ ⎞ ⎛ k 2 ⎞ wiRk ) ( ( iR − iL ) ⋅ Φ piRk ⎟ ⎜ ( wiR +1 ) pk k ⎜ = ε iR + + k − + iRk +1 ⎟ − k . ⎜ ⎟ ⎜ ⎟ ρ iR ρ iR +1 ρ iR +1 ⋅ wiRk +1 ⋅ f iR +1 2 2 ⎝ ⎠ ⎝ ⎠

piRk ++11 )

(

(2.433 )

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

:

m = 1, N S ,

(2.434 )

лава 2 213 _______________________________________________________________________________________

⎡⎣( ρ ⋅ w ⋅ f )2 = ( ρ ⋅ w ⋅ f )1 ⎤⎦ :

,

(Ym )2 = (Ym )1 ,

Н

( iL − 1) ,

m = 1, N S .

(2.434 )

,

iL , iR , ( iR + 1)

-

, :

(Ym )iL −1 = (Ym )iL = (Ym )iR = (Ym )iR +1 ,

m = 1, N S .

(2.434 )

Д

,

.

,

p = p ( ρ,T )

{S ме и }



. В ε = ε ( p, T ) (2.54)

: p = p ({S ме и })

,

(

)

(

,

ε = ε ({S ме и }) , .

)

: p = p ρ , T , Y0 , Y1 , ..., YN S ; ε = ε p, T , Y0 , Y1 , ..., YN S . Н

( «*». Н

-

),



.

1*. ДЛ

Д Р Т ЧЕС Г ТЕЧЕН Н Г РАН (Д П Н НИ И М ДИФИКАЦИИ).

ы

1.1*. (

1.1.3*.

е

я

и

я

а а а

(

(

( iL − 1)

(

k

( iL − 1)

(

TiLk −+11 = T ε iLk −1 , piLk −1 , ( Y0 )iL −1 , (Y1 )iL −1 , ...,

1.1.6.

© В.Е. Селе

k

(Ym )iL −1 , m = 1, N S ). Н k +1

ев, В.В. Алеш

С ЕС

и

ЧЕРЕЗ

( iL − 1)

).

k

k

ГАЗ В

ия га

piLk +−11 = p ρiLk −1 , TiLk −1 , ( Y0 )iL −1 , (Y1 )iL −1 , ...,

1.1.5*. К

П НЕНТН

, С.Н. Прял в, 2007–2009

(Y ) NS

(Y ) NS

k iL −1

k iL −1

,

).

).

piLk +−11 ): (2.425 *) TiLk −+11 ):

(2.425 *) ⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ ( -

214 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ρiLk −1 ⋅ (Ym )iL −1 − ρiLj −1 ⋅ (Ym )iL −1 k +1

j

t j +1 − t j

+

k

ы

1.2*. е

(

(Y ) NS

я

k +1

iL −1

и

я

= 1−

∑ (Y )

N S −1

k +1 m iL −1

m =1

(Ym )iR +1 , k +1

( iR + 1)

(

k

( iR + 1)

k

(

k +1

1.3*.

k

е

(

ы

k

я

я

и а

( = ρ ( p , T , (Y ) k iL

(Ym )iL

k +1

(Ym )iL

1.4*. (

k iR +1

(Y ) NS

k iR +1

).

(2.426 *)

).

е

TiRk ++11 ):

( iR + 1)

(2.426 *) (

k

а а ).

k

k 0 iL

k iL

(2.426 )

, (Y1 )iL , ..., k

ия га

(Y )

(Y ) NS

NS

и

k iL

); ).

k iL

iL TiLk +1

iL (

(

= (Ym )iL −1 , m = 1, N S . k

ы

я

я

и а

а а ).

(2.427 ) ия га

iR ( ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

ρiLk +1 ):

(2.427 *) iL

1.4.4*. © В.Е. Селе

)

ρiRk ++11 ):

, m = 1, N S ):

k +1

( iR + 1)

и

m = 1, N S .

TiLk +1 = T ε iLk , piLk , ( Y0 )iL , (Y1 )iL , ...,

ρiLk +1

S

m = 1, N S ):

(Ym )iR +1 = (Ym )iL −1 ,

1.3.5.

(2.425 )

ия га

TiRk ++11 = T ε iRk +1 , piRk +1 , ( Y0 )iR +1 , (Y1 )iR +1 , ...,

1.3.4*.

) = 0,

k

).

k

(

k

.

а а

а

(

0,5 ⋅ ( xiL −1 − xiL − 2 )

ρiRk ++11 = ρ piRk +1 , TiRk +1 , ( Y0 )iR +1 , (Y1 )iR +1 , ..., (YN

1.2.5*. К

1.2.6.

(

ρiLk −1 ⋅ wiLk −1 ⋅ (Ym )iL −1 − 0, 25 ⋅ ( ρiLk −1 ⋅ wiLk −1 + ρiLk − 2 ⋅ wiLk − 2 ) ⋅ (Ym )iL −1 + (Ym )iL − 2

m = 1, N S − 1;

1.2.3*.

+

и

iR TiRk +1

ρiRk +1 ):

); ).

лава 2 215 _______________________________________________________________________________________

( = ρ ( p , T , (Y )

TiRk +1 = T ε iRk , piRk , ( Y0 )iR , (Y1 )iR , ...,

ρiRk +1

k iR

(Ym )iR

1.4.5.

k +1

(Ym )iR

k

k

k 0 iR

k iR

, (Y1 )iR , ..., k

(Y )

(Y )

k

NS

iR

NS

iR

k

iR

, m = 1, N S ): k

(2.428 )

2*. ДЛ

СВЕРХ Р Т ЧЕС Г ТЕЧЕН Н Г ЧЕРЕЗ РАН (Д П Н НИ И М ДИФИКАЦИИ).

е

(

(Ym )iR

2.1.6.

k +1

(Ym )iR

ы

2.2.4*.

я

и

а а

ия га

ы

(

(Ym )iL

(Ym )iL

я

я

и а

(

а а ).

ия га

k

k

S

я

(2.431 *)

iL

(

я

(

(2.431 )

а а

а

ия га

).

( iL − 1)

TiLk −+11 = T ε iLk −1 , piLk −1 , ( Y0 )iL −1 , (Y1 )iL −1 , ..., © В.Е. Селе

iL

iL

и

ев, В.В. Алеш

k

ρiLk +1 ):

k

k

k

iL TiLk +1

iL (

k

е

piLk +−11 ):

k

); ) ).

(Y ) NS

и

= (Ym )iL −1 , m = 1, N S .

ы

2.3*.

2.3.4*.

(

(2.430 )

, m = 1, N S ):

k +1

(

iR

k

TiLk +1 = T ε iLk , piLk , ( Y0 )iL , (Y1 )iL , ...,

k +1

С ЕС

и iR

ρiLk +1 = ρ piLk , TiLk , ( Y0 )iL , (Y1 )iL , ..., (YN

2.2.5.

ГАЗ В

= (Ym )iL −1 , m = 1, N S .

е

(

я).

П НЕНТН

, m = 1, N S ):

k +1

2.2*.

(

= (Ym )iL −1 , m = 1, N S .

k +1

2.1*.

(2.428 *)

k

, С.Н. Прял в, 2007–2009

(Y ) NS

k iL −1

);

и

(

( iL − 1) TiLk −+11

).

216 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

(

piLk +−11 = p ρiLk −1 , TiLk −1 , ( Y0 )iL −1 , (Y1 )iL −1 , ..., k

2.3.5.

k

(Y ) NS

k iL −1

⎡⎣ xiL −1,5 , xiL −1 ⎤⎦ ( -

(Ym )iL −1 , m = 1, N S ). Н k +1

ρiLk −1 ⋅ (Ym )iL −1 − ρiLj −1 ⋅ (Ym )iL −1 k +1

j

t j +1 − t j

+

,

+

k

ы

2.4*. е

(

(Y ) NS

я

(

= 1−

k +1

iL −1

и

я

piRk ++11 ):

0,5 ⋅ ( xiL −1 − xiL − 2 )

∑ (Y )

N S −1

k +1 m iL −1

m =1

ия га

).

(

k

piRk ++11 = p ρiRk +1 , TiRk +1 , ( Y0 )iR +1 , (Y1 )iR +1 , ...,

(Ym )iR +1 , k +1

(Y ) NS

k iR +1

(Y ) NS

k iR +1

m = 1, N S ):

(Ym )iR +1 = (Ym )iL −1 , k +1

а а е а. Д

k

k

а

че

( iR + 1)

); ).

TiRk ++11

(

(2.433 *)

( iR + 1)

(

m = 1, N S .

я

я

) = 0,

и

( iR + 1) k

k

k

(2.432 )

а а

а

k

.

TiRk ++11 = T ε iRk +1 , piRk +1 , ( Y0 )iR +1 , (Y1 )iR +1 , ...,

2.4.5.

(

ρiLk −1 ⋅ ( wiLk −1 ) ⋅ (Ym )iL −1 − 0,5 ⋅ ( ρiLk −1 ⋅ wiLk −1 + ρiLk − 2 ⋅ wiLk − 2 ) ⋅ (Ym )iL −1 + (Ym )iL − 2

m = 1, N S − 1;

2.4.4*.

(2.432 *)

(2.433 )

е

а а

щь

а а, ча

ζ.В

а

е

а е е е

, , ,

,

е

-

. ,

(

.

. 2.19).

. f1 ,

− f0 . К : © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

k

-

лава 2 217 _______________________________________________________________________________________

k=

, .

f1 . f0

(2.435) -

k

В

ζ

.К (

В (

)

. , f2

f1 , . В (

f0

-

f3 (

.

. 2.19))

,

)

-

. 1

.

К

,

,

,

-

: Δp =

ζ0 –

1 ⋅ ζ 0 ⋅ ρ ⋅ w02 , 2

; ρ –

ζ0

. ,

(2.436) ; w0 – . 2.19. -

«0»

w0

.В :

Δp =

λ1 –

l ⋅ λ1 ⋅ ρ ⋅ w12 , 2 ⋅ D1

(2.437) (

; D1 – . И

λ1

( ρ ⋅ w1 ⋅ f1 = ρ ⋅ w0 ⋅ f 0 ) , w1

.

2); w1 – ; l – «1» (2.435), «0»

w1 = w0 ⋅

И (2.435)

,

D0 –

f 0 w0 = . f1 k

, l =

k 2,5 ⋅ ζ 0 ( Re0 , k )

λ1 ( Re1 , Δ )

(2.439)

«0» ( . . 2.19). (2.436) (2.437), : =

k 2,5 ⋅ ζ 0 ( Re 0 , k )

λ1 ( Re0 k , Δ )

1

(2.440)

,

( .

© В.Е. Селе

ев, В.В. Алеш

«1»: (2.438)

D1 = k ⋅ D0 ,

,

. 2.19.

, С.Н. Прял в, 2007–2009

)

-

218 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

l = l D0 –

(

D0 )

); Δ = Δ D1 – ; Δ –

( -

. ,



,

,

Re ,

k,

и . 2.21. Схе а

Н

. ,

l )».

(

. 2.21

ч

-

е ре

авле

[66] . 2.21.

е « ра а в е

(

л

«

р че

)»1

fh

, k = f h f0 . [66] δ ( .

. Д

, Re > 104 . . 2.5,

[66], ζ,

, ,

k.В . 2.5. Э

. 2.21)

[66]

, Re . Э

,

. Та ли а 2.5

δ°

5

10

20

30

40

50

55

67

k

0,93

0,85

0,69

0,52

0,35

0,19

0,11

0

0,05

0,31

1,84

6,15

20,7

95,3

275

ζ И

λ = λ ( Re, Δ )

-

, Re0

1

© В.Е. Селе

l = l ( Re, k )

2.

,

[66]. ев, В.В. Алеш

l

k.

. 2.22 2.23. К Re . Д

, С.Н. Прял в, 2007–2009



Δ = 0, 05 l

лава 2 219 _______________________________________________________________________________________

Δ. Д

Δ

ζ

( Δ

е

ра а k

l = l (k ) р

и . 2.23. Зав

К

. 2.22

2.23,

рых

ев, В.В. Алеш

аче

ля Δ = 0, 05

е

рых

аче

ях

ях ч

э

е

ла Re

а

ры

ля Δ = 0, 05

l

. © В.Е. Селе

Re (

.

l = l ( Re ) р

и . 2.22. Зав

). Re > 104 ),

k , С.Н. Прял в, 2007–2009

220 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

( 0, 3 < k ≤ 1)

( l .

k)

,



-

,

. , ,

.

, ( . .

В

1

k ).

λ = λ ( Re, Δ )

[66], :

(

)

,

. -

Δ

, .

А

« Δ = 0, 05

)». И .Д 2.23

Δ

(

-

. 2.22 .

Re

. Д -

ó

Re .

,

( Δ,

) -

l = l ( Re, k )

.

Δ

Re ,

.

, Д

.

k .

Д ,

, .Э

(2.440) . 2.22 l ( Re )

ó

., ζ

(

, [66]

2),

Δ,

l ( Re ) (

(

., k)

2

« ев, В.В. Алеш

-

(

-

, [66]

-

Re ,

.

© В.Е. Селе

Re ,

k

1

Э

,

0, 05 ,

2.23

.

2

. . ,

. )

2).

, С.Н. Прял в, 2007–2009

(

)».

лава 2 221 _______________________________________________________________________________________

l ( Re )

В

. 2.24 – 2.29. Δ : 0, 01 ; 0, 001 ; 0, 0001 .

Re

и . 2.24. Зав

l = l ( Re ) р

е

ра а k

и . 2.25. Зав © В.Е. Селе

ев, В.В. Алеш

l (k )

k,

l = l (k ) р

е

рых

аче

ля Δ = 0, 01

рых

, С.Н. Прял в, 2007–2009

аче

ях

ях ч

э

е

ла Re

-

а

ры

ля Δ = 0, 01

222 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

и . 2.26. Зав

l = l ( Re ) р

е

и . 2.28. Зав

ев, В.В. Алеш

ях

l = l (k ) р

е

рых

аче

ях ч

l = l ( Re ) р

е

рых

аче

ях

ра а k © В.Е. Селе

аче

ля Δ = 0, 001

ра а k

и . 2.27. Зав

рых

ля Δ = 0, 0001

, С.Н. Прял в, 2007–2009

э

е

ры

ля Δ = 0, 001

ла Re

э

а

е

а

ры

лава 2 223 _______________________________________________________________________________________

l = l (k ) р

и . 2.29. Зав

( ,

.

е

рых

аче

ях ч

ла Re

ля Δ = 0, 0001

. 2.24 – 2.29)

l ( Re )

,

10 < Re < 10 4

. В 5

,

,

ζ (k ) (

,

-

, .

. 2.5),

Δ

. , . ,

,

,

-

,

-

.

, (

)

,

-

.

. 1

( iL − 1 , iL )

( iR , iR + 1 ) (

( . .

), -

, .

. 2.19). .

(

) . -

,

.Д ),

(

. В

.Э ,

-

iR

.

-

: 1

Н

© В.Е. Селе

( ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

).

224 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

( iL − 1) ,

В

iL

( iL − 1)

Q = ρ iR ⋅ wiR ⋅ f iR .

( iR + 1)

(2.441) » ( iL − 2 ) ,

Q.

В

( iL − 1)

( iL − 1) ,

( iL − 1) 1. А (

« (

ρ iL = ρ iL −1 ,

-

( iR + 1) ,

)

( iR + 1) .

)

:

ρ iR = ρ iR +1.

(2.442)

А

.Д .

Д ( ,

. (2.54 )).

,

/ ,

,

,

(2.54 ).

:

⎛ ∂ ⎡ ∂ w2 ⎞ ⎤ ( p ⋅ f ⋅ w) . ⎢ρ ⋅ f ⋅ w ⋅ ⎜ ε + ⎟⎥ = − ∂ x ⎣⎢ ∂ 2 x ⎠ ⎦⎥ ⎝

(2.443)

[ xiL−1 , xiR +1 ] :

(2.443)

⎡ ⎡ ⎛ ⎛ ⎞⎤ ⎞⎤ w2 w2 + p ⎟⎥ − ⎢ f ⋅ w ⋅ ⎜ ρ ⋅ ε + ρ ⋅ + p ⎟ ⎥ = 0. ⎢ f ⋅w ⋅ ⎜ ρ ⋅ε + ρ ⋅ 2 2 ⎠ ⎦⎥ iR +1 ⎣⎢ ⎠ ⎦⎥iL −1 ⎝ ⎝ ⎣⎢

:

ε iR +1 =

⎧⎪ ⎡ ⎛ ⎞⎤ ⎛ ρ ⋅ w2 ⎞ ⎫⎪ w2 1 ⋅ ⎨⎢ f ⋅ w ⋅ ⎜ ρ ⋅ ε + ρ ⋅ + p ⎟⎥ ⋅ −⎜ + p ⎟ ⎬. 2 ρiR +1 ⎩⎪ ⎢⎣ ⎠ ⎥⎦iL −1 ( f ⋅ w )iR +1 ⎝ 2 ⎠iR +1 ⎭⎪ ⎝ 1

( iL − 1)

».

( iL − 2 ) , ( iL − 1)

, ( ( iL − 1) .

)

ε iL = ε iL −1 ,

«

»

«

ε iR = ε iR +1. »

. © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(2.445)

« ,

(2.445). В

1

(2.444)

– -

( iL − 1) . В

-

( iR + 1)

:

(2.446)

лава 2 225 _______________________________________________________________________________________

(T = T (ε , p ) ) . К

(

(2.225))

. (2.225) ( iL − 1 , iL )

( iR , iR + 1 ). (



.

-

)

-

, ), [ iL − 1 , iR + 1 ] -

( . , . ,

,

. «

/

»

, . 2.5.5. Чи ленны анали а о ы ановых лоща о ЛЧМГ, о о у ованных е ни очны и е е ыч а и



Д

Д

: -

;



, . ,

Ч

Д

, ,

.

Ч

20÷30км

. Н



,

, -

,

18÷60м

. .Д 100м. Д ( 1÷2

,

). Н

Д 1200,

Д 1400 -

,

. Ч

100÷150км.

,

Ч

,

-

,

. ,

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

.Н.

(

.

226 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

).

. 2.30.

и . 2.30. Схе а

и . 2.31. М

е

ел

е

че

ра

че

в

ра

л

в

л

. 2.31.

а

а

. .Н

С

, ,

,

D

,

1, 3

2, 4

. 2.31, .Э

-

,

. . -

. (

и . 2.32. П

р

ая

ел

е

20÷50м,

че

ра

. .В Д ,

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

в

л

а

0,02÷0,10 . В 10000 . ,

,

,

. 2.32).

, Ч

, -

лава 2 227 _______________________________________________________________________________________

-

И

К

«CorNet»

А

«Alfargus»,

,

. 1

,

-

, Ч

. В 2001 .Ц

Ч

. . 2.33. Н К 04. В ( . 2.33

, -

,

).

е а а

) К 04. 12\2-1) . 2.34, 0,6атм, SCADA, 20÷25км)

Д

© В.Е. Селе

. Д

10 –

1

рава алев )

2ми (

Д

К

К 03 К 12

12\2-1,

и . 2.33. Схе а ЧМ ( ече

К

-

А. . Ч .В

. К 10, К 11, К 13 №1 (

№2 ( ,

. 2.33) –

-

. 2.35. , 0

120 ,

, . 3÷4ми

А. . ев, В.В. Алеш

70

-

, .Н.

, С.Н. Прял в, 2007–2009

( . В. .

, [6].

228 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Д

Ч

, .

400км

(

).

, ,

, .

,

и . 2.34. Невя а

авле

ля ра л ч ых ра

вых л

а

ал

№1

и . 2.35. Невя а

авле

ля ра л ч ых ра

вых л

а

ал

№2

, .

,

-

Д

-

. © В.Е. Селе

-

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 229 _______________________________________________________________________________________

В

, ,

«

, (

К Ы » .

): «

(

». (

« АК Ы ». Д ).



.

),

, -

Д

. Ч

-

Д , .

(

-

):



(

);



-

Ч

( );

К

,

( ,

В

). В

. .Н.

. ,

Н

. 2.30.

,

. 2.31. Н

(

и . 2.36. а

л

е

е

Н ,

«

. 2.36).

ел

ых ра

вв

ел

че

ра

в

л

а

С (

: ев, В.В. Алеш

е

». В А

© В.Е. Селе

,

. Д

, С.Н. Прял в, 2007–2009

.

. 2.30). Э

. Н

, ,

-

230 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

= А + С,

(2.447) -



«+» :

L=А+D

3;

(2.448)

M=C+B

2;

(2.449)

N=B+D

4.

(2.450)

(2.447 – 2.450),

,

-

. ,

,

2.36),

, –

,

,

А

).

С,

, , . .

А

( С( С(

А

. . .В . 2.30). -

. ,

Н

.Н А,

,

№1

,

(2.447)

№3,

L (2.448).



,

-

А. .

-

,

, .

Д . . Ва иа

1.

Д

,

. 2.30 (

),

-

[6]: №1;

1) 2)

№1

3) 4)

№3

A

5) 6)

№4

D

B

9) © В.Е. Селе

№4 №1;

M ев, В.В. Алеш

№3 №1;

N

№2

K

№1; L

7) 8)

№1,

, №1;

№2

, С.Н. Прял в, 2007–2009

, A

L

C (2.447);

№3 (2.448),

D (2.448); N

№4 (2.450),

B (2.450); M C (2.449);

№2 (2.449),

лава 2 231 _______________________________________________________________________________________

10)

C

№1

№1 (2.447),

K

№1,

-

M

,

; ;

11)

,

N

; ;

12)

,

L

; ;

13)

K

,

№1

;

;

14)

– . . №1, №2, №3

, Ва иа

№4 (

.

. 2.31).

2.

К

C

(

D

и . 2.37. На

. 2.37).

е

че

ра

в

л

а

е ра ы С

D – а ры ы

[6]: №1;

1) 2)

№1

3) 4)

№1,

, №1;

A

,

D

A

C (2.447);

№3 (2.448),

L

№3

L

6)

K

№1;

5)

,

№3

D (2.448);

,

L

; ; 7)

С

,

K

,

№1

, ;

№2;

8) 9)

,

© В.Е. Селе

ев, В.В. Алеш

№1, , С.Н. Прял в, 2007–2009

-

232 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

№2,

,

№2;

,

№2

10) 11)

B

№3

N

C (2.449);

№4 (2.450),

№4

D (2.448);

,

D

B N

№2;

12) 13)

M

,

N

; ; С

14)

,

M

,

№2

, 15)

-

; –

. . :





№1,

№1

№3;

№2,

№2

№4;

. 2.38.

и . 2.38. М

Ва иа

ел

ра

в

л

а

р

ере ры ых ра ах С

D

3. C

B(

. 2.39). №1, №3 №1.

, C

B (

-

№4, №2 M

,

,

. (2.449)). Н

а

е ере ры ы ра ы С

№2

. . 2.40.

и . 2.39. На © В.Е. Селе

ев, В.В. Алеш

е

че

ра

в

л

, С.Н. Прял в, 2007–2009

B

лава 2 233 _______________________________________________________________________________________

и . 2.40. М

ел

ра

в

л

а

р

а ры ых ра ах С

В

-

Д

[6]: ,

,

.

, -

, . ,

.Э ,

«

». 2.5.6. Чи ленны анали и ечения а а и авления в а о е у

у о

ово а вы о о о

Д (

,

В. .

) .Н. [2, 6]. (



. 2.41). Н

L

L.

M

и . 2.41. Схе а

[106]: К

-

,

ч

е ре

,

авле

( ,

.

е ра рыва ру

)

р в

а

.

,

(

)

, ,



, . [107]. [108].

-

, . [108].

L © В.Е. Селе

, .В

[85, 106]: ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

234 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

wLj +1 = sign ⋅ cLj +1 ,

(2.451)

; sign = ±1

c –

. «

pатм (

, )

».

Toc (

-

). ,

Toc

– (

,

-

,

). [106]: γ

pатм

γ –

⎡ 2 ⎤ γ −1 > pM ⋅ ⎢ ⎥ , ⎣ γ + 1⎦

.

(2.452 )

[106]

wL > cL .

(2.452 )

(2.452 ) (

Н

). , . Н

-

. В ,

. В

-

. .Н.

Д

,

,

(

.

). .Н.

pL < pатм ,

(2.452 )

(2.452 ).

-

. Д c=

; ρ –

p –

; T –

( ∂p ∂ρ )S

= γ ⋅ R ⋅T ,

; S –

;γ –

.

© В.Е. Селе

ев, В.В. Алеш

,

, С.Н. Прял в, 2007–2009

; R – Д .В

,

( ∂p ∂ρ )S .

(2.453)

-

лава 2 235 _______________________________________________________________________________________

И

dp =

,

∂p ∂p ⋅dρ + ⋅ dT , ∂ρ ∂T

: (2.454 )

⎛ ∂p ⎞ ⎛ ∂p ⎞ ⎛ ∂p ⎞ ⎛ ∂T ⎞ ⎜ ⎟ =⎜ ⎟ +⎜ ⎟ . ⎟ ⋅⎜ ∂ ρ ⎝ ⎠ S ⎝ ∂ρ ⎠T ⎝ ∂T ⎠ ρ ⎝ ∂ρ ⎠ S

Д

,

TdS = d ε + pdV = dh − Vdp = 0, ⎛ ∂h ⎞ ⎛ ∂p ⎞ ⎜ ⎟ = V ⋅⎜ ⎟ , ⎝ ∂ρ ⎠ S ⎝ ∂ρ ⎠ S

ε –

; h –

⎛ ∂h ⎞ cp = ⎜ ⎟ – ⎝ ∂T ⎠ p :

⎛ ∂h ⎞ ⎛ ∂h ⎞ ⎜ ⎟ =⎜ ⎟ ∂ ρ ⎝ ⎠ S ⎝ ∂p ⎠T

(2.454 ) ,

(2.456) ; V =1 ρ –

.

⎛ ∂p ⎞ ⎜ ⎟ , ⎝ ∂ρ ⎠ S

(2.456)

(2.457),

(2.458)

:

(2.459)

:

⎛ ∂p ⎞ ⎛ ∂p ⎞ cp ⋅ ⎜ cp ⋅ ⎜ ⎟ ⎟ ∂ ρ ⎛ ∂p ⎞ ⎝ ⎠T ⎝ ∂ρ ⎠T = = , ⎜ ⎟ T ⎛ ∂p ⎞ ⎛ ∂ρ ⎞ ⎝ ∂ρ ⎠ S c − T ⋅ ⎛ ∂p ⎞ ⋅ ⎛ ∂V ⎞ + ⋅ ⋅ c ⎜ ⎟ ⎜ ⎟ p p ρ 2 ⎜⎝ ∂T ⎟⎠ ρ ⎜⎝ ∂T ⎟⎠ p ⎝ ∂T ⎠ ρ ⎝ ∂T ⎠ p ⎛ ∂p ⎞ cP ⋅ ⎜ ⎟ ⎝ ∂ρ ⎠T c= . T ⎛ ∂p ⎞ ⎛ ∂ρ ⎞ ⋅ cP + 2 ⋅ ⎜ ρ ⎝ ∂T ⎟⎠ ρ ⎜⎝ ∂T ⎟⎠ p

ев, В.В. Алеш

(2.457)

⎞ ⎛ ∂p ⎞ ⎛ ⎛ ∂h ⎞ ⎛ ∂T ⎞ ⎜ ⎟ ⋅ ⎜⎜ ⎜ ⎟ − V ⎟⎟ + c p ⋅ ⎜ ⎟ = 0. ρ ∂ ∂ p ⎝ ⎠ S ⎝ ⎝ ⎠T ⎝ ∂ρ ⎠ S ⎠

⎛ ∂p ⎞ cp ⋅ ⎜ ⎟ ⎛ ∂p ⎞ ⎝ ∂ρ ⎠T = . ⎜ ⎟ ⎞ ⎝ ∂ρ ⎠ S ⎛ ∂p ⎞ ⎛ ⎛ ∂h ⎞ cp + ⎜ ⎟ ⋅ ⎜ ⎜ ⎟ − V ⎟⎟ ⎝ ∂T ⎠ ρ ⎜⎝ ⎝ ∂p ⎠T ⎠

© В.Е. Селе

.

⎛ ∂p ⎞ ⎛ ∂T ⎞ ⋅⎜ ⎟ + cp ⋅ ⎜ ⎟ , ∂ ρ ⎝ ⎠S ⎝ ∂ρ ⎠ S

(2.454 ) (2.458) ⎛ ∂p ⎞ ⎛ ∂T ⎞ ⎜ ⎟ ⎜ ⎟ . ⎝ ∂ρ ⎠ S ⎝ ∂ρ ⎠ S

(2.31),

(2.455)

, С.Н. Прял в, 2007–2009

(2.460)

(2.461)

236 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

(2.461)

(2.453), p = ρ ⋅ R ⋅T ,

cV = c p − R ,

γ = c p cV ,

cV



. В

[6]

(2.461). Н

(2.453)

2.42 Δ c = Δ c ( p, T ) ,

:

Δc = cideal –

creal − cideal ⋅100%, creal

(2.462)

, (2.461).

,

и . 2.42.

л ч е ре ул а

К

в ра че а реал

(2.453); creal –

р а

в

ву а

р уле

(

,

,

, -

,

.

, ( ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

)

4%. p ∈ [1 МПа ÷ 10 МПа ] ,

T ∈ [ −27°C (246 K ) ÷ 0°C (273 K )] . В

1%.

-

еал

. 2.42,

p ∈ [ 0,1 МПа ÷ 10 МПа ] , T ∈ [ −30°C (243 K ) ÷ 90°C (363 K )]

© В.Е. Селе

.

.

лава 2 237 _______________________________________________________________________________________

,

0,3 МПа ),

а ),

х а е че я а еа ь

е а

е

.

е ь ч х е а а (2.461).

(2.453) е ае е х е а че а а а( а еа ь аа е е е я е ех ь

2.6. Мо ели ование ан о о е о ны ех и о

ь а че а е , я а ае я е я

и ования а ов че е е о ную ан ию

И . 2.6.1. Ма е а иче ( ехов)

ие

о ели е

ен ов о

е

о ных

ан и

-

К 2.3 – 2.5.

, К

. В -

1

,

К

.

,

.

АВ , (

[109]

. Э , [109]):

.,

TK = T

С

+ ( TH − T

-

АВ

С

В. . Ш

⎡ k⋅Fр ⎤ ⎥, ⎢⎣ J ⋅ c p ⎥⎦

) ⋅ exp ⎢ −

(2.463)

TH , TK –

АВ ; T

С



; k –

,

F р ); c p –

(

К АВ , 1

-

; J –

АВ . [110],

,

Д

© В.Е. Селе

-

: .

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

238 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

⎛ 1 ϕ ⋅ d0 ϕ ⋅ d0 ϕ ⋅ d0 ϕ ⋅ d0 d d 1 ⎞ k =⎜ ⋅ + ⋅ ln + Rк ⋅ + ⋅ ln 0 + ⎟ , 2 2 α λ λ α d d d d ⋅ ⋅ т к 1 1 2 ⎠ ⎝ 1 −1

α1 –

(2.464) ; ϕ –

-

( ,

); d 0 –

; d , dк – (

; d1 – , d = d к ); λ т – ; λ – ; Rк –

α1

,

α2

, ; α2 –

. -

,



,

-

[110]. : m ⎡ ⎛ d 2 − d 02i F р = π ⋅ ∑ ⎢ d 0i ⋅ l + n ⋅ δ рi ⋅ ( d pi − d 0i ) + n ⋅ ⎜ pi ⎜ 2 i =1 ⎣ ⎢ ⎝

АВ ; i – i-

m – АВ ; d рi –

; n – ; δ рi –

Д

(2.465)

i-

; l – ; d 0i –

-

[110].

-

. В

i-

АВ АВ

⎞⎤ ⎟⎟ ⎥, ⎠ ⎦⎥

[8, 110]. ,

.

К

ЦН

,

А

ЦН

P1

. Д ЦН, ε = P2 / P1 ≈ 1,1 ÷ 1,7 [111].

P2

,

: ЦН

ЦН

.

-

ЦН

,

,

,

[112, 113]: ,

. .Х

ЦН . ЦН. Д

© В.Е. Селе

ев, В.В. Алеш

ЦН [112−114]. Э

, С.Н. Прял в, 2007–2009

ЦН

,

-

ЦН

ЦН

-

лава 2 239 _______________________________________________________________________________________

А.И. ,

.

. 1)

ρ

ЦН р

(

1

, Т1 ) ,

: -

; ЦН (

2) )(

.,

: n , Nм (

,

[111]),

ЦН : P1 , Т1 , Z , R ) ЦН (

,

(

.,

,

)

[111]));

ЦН

4) [111]).

( Z1 )

( Z2 )

ЦН,

(

( P = Z ⋅ ρ ⋅ R ⋅T ) ,

ЦН, ( -



; Nм –

ЦН); 3)

n

-

(

,

, . . Z1 / Z 2 ≈ 1 .

, ЦН

Z

,

-

,

[1]. П

Да

• •

Т1

:

P1

а

ρ

а а ач

ЦН; р

ЦН n ,

;

: Q1 (

)

ЦН;



ЦН);

Т

я

Qк ( P2

ЦН.

и ь:

Т2 ,

P2 (

)

-

ЦН. А

е е

Ша 1.

я R [78].

Ша 2.

-

Z1

ЦН [78]. Ша 3. [112]: © В.Е. Селе

n0

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

240 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

n0 =

Ша 4.

n ⋅ A, n

А=

Z р ⋅ R р ⋅Т Z1 ⋅ R ⋅ T1

р

(2.466)

.

Qр,

ηр

ε = P2 / P1

, ЦН (

[112]

,

[111]). Ша 5. Д P2 = ε ⋅ P1 .

ЦН (

P2

Ша 6. Z1 Z 2 ≈ 1 ,

Т2

) ЦН

ЦН Т 2 = Т1 ⋅ ε

ηp

:

(γ −1) / (γ ⋅η p )

[112]: (2.467)

, Q1

ЦН . Д 1

M

рив

ЦН

,

[111, 112]:

⎛n⎞ P1 ⎛M ⎞ =⎜ i ⎟ ⋅ ⋅ ⎜ ⎟ + M 'м , ⎝ ρ ⎠ р Z1 ⋅ Т 1 ⋅ R ⎝ n ⎠ 3

M

рив

; ( Mi ρ )

M 'м

(2.468) -

р

ЦН. 2.6.2. Ма е а иче ое о ели ование у ановивших я е и ов ан о и ования и о но о а а че е о е о ны ех и о е о ную ан ию

В В.В. К

В. .

, [2, 6, 115].

КЦ (К ) ,

КЦ (К ), (

( НА Н) -

( НА ) ).

К

4.7). (

»(

,

НА ).

,

. 1

В

© В.Е. Селе

(

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

. -

ЦН)

,

НА Н (

,

ЦН –

«

-

.,

, [111]).

лава 2 241 _______________________________________________________________________________________

,

,

,

КЦ –

КЦ (К )

КЦ (К ) КЦ ( . 2.43). . Н

КЦ (



А,

• •

КЦ ,

, ЦН –



i2

.

. 2.43)

)i 2 ) ,

= λi 2 Di 2 + (ξ



: i = 1, N ;

и . 2.43. Схе а



е

i1

че

= λi1 Di1 + (ξ

)i 1 ) 1

Д

i-

, Di1 –

ЦН (

i-

,

.

-

–В 2);

ЦН;



, ЦН;

i-

λi 2 –

,

1

,

[66].

© В.Е. Селе

. Н -

К

λi1 –

( ξ )i 1

-

.

В



. .И

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

242 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ЦН

i-



( ξ )i 2

КЦ (К ) (

Di 2 –



i-







i-

,

.

2);

ЦН

КЦ (К );



,

ЦН

КЦ (К );

li1 –

,

li 2 –

,

i-

ЦН;

ЦН;

iЦН,



КЦ (К );





ЦН1;



КЦ (К ).



КЦ

ЦН:

(К )



ЦН,

А;



ЦН ( nmin ≤ n ≤ nmax ) ;





-

ЦН; А;

• •

Ч



;

ЦН,

-

; ЦН,

ЦН, Ч



; А;

,



ЦН

,

. . АВ КЦ

КЦ

.В А (КЦ

)

К ), АВ

, « К .

Х

© В.Е. Селе

( ».

, ЦН

) К ,

. Э

: 1

КЦ

.

. .

.

Д

КЦ

(

А (КЦ Pi1

) ,

К )

, . .

ев, В.В. Алеш

(

,

, С.Н. Прял в, 2007–2009

J i1

ЦН

ЦН



ЦН.

-

лава 2 243 _______________________________________________________________________________________

. ,

J i1

(

Srij = π ⋅ Dij2

(4 ⋅

J i1 ( Pi1 ) = Sri1 ⋅

)

lij ⋅ ξij ,

. (2.38)):

Pв2 − Pi12 ⋅ ρв , Pв

(2.469)

ρв

j = 1, 2 ;

КЦ

; i – i-

,

-

ЦН.

ЦН

, . (2.469)):

( Pi1 ( J i1 ) = Pв2 −

-

Pi1

1 J i21 ⋅ Pв . ⋅ Sri12 ρ в

(2.470) А,

,

.

ЦН

А (КЦ

.

К )

,

,

.

(

).

-

( Pв ).

И

, Tв .

N J в − ∑ J i1 = 0; N

i =1

Н

А (КЦ :

)

К )(

Pв > Pi1 ∀ i = 1, N

(2.471)

К

J i1 > 0 ∀ i = 1, N .

. А.

,

ев, В.В. Алеш

КЦ

ЦН.

КЦ,

-

-

,

, ЦН, А.И. :

(2.471)

.

,

© В.Е. Селе

-

. ЦН

,

⎛ J i1 ⎞ Pi 2 = Pi 2 ⎜⎜ ni , Tв , Pi1 , ⎟ , i = 1, N ; ρ i1 ( Pi1 ) ⎟⎠ ⎝ , С.Н. Прял в, 2007–2009

,

, -

(2.472 )

244 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

⎛ J i1 ⎞ Ti 2 = Ti 2 ⎜⎜ ni , Tв , Pi1 , ⎟ , i = 1, N ; ρ i1 ( Pi1 ) ⎟⎠ ⎝ ⎛ J i1 ⎞ M i = M i ⎜⎜ ni , Tв , Pi1 , ⎟, ρ i1 ( Pi1 ) ⎟⎠ ⎝ ⎛

ρ i 2 = ρ i 2 ( Pi 2 ) = ρ i 2 ⎜⎜ ni , Tв , Pi1 , ⎝

Pi 2 –

ii-

ЦН; ρ i1 – ); Ti 2 – i-

(2.472 )

i = 1, N ;

(2.472 )

J i1 ⎞ ⎟ , i = 1, N , ρ i1 ( Pi1 ) ⎟⎠

ЦН; ni – ЦН ( i- ЦН; M i –

ЦН i-

ЦН1.

i; ρi 2 –

ЦН

,

(2.472 )

,

-

,

-

, КЦ (

. -

КЦ

. 2.44).

и . 2.44. Схе а у ла

еше

я

в а а 2

. -

, :

⎛ J i1 ⎞ 2 Pi 22 ⎜ ni , Tв , Pi1 , ⎟ − Pвы P ρ ⎛ ( ) J i1 ⎞ i1 i1 ⎠ ⎝ J i1 − Sri 2 ⋅ ⋅ ρ i 2 ⎜⎜ ni , Tв , Pi1 , ⎟ = 0, ρ i1 ( Pi1 ) ⎟⎠ ⎛ J i1 ⎞ ⎝ Pi 2 ⎜ ni , Tв , Pi1 , ⎟ ρ i1 ( Pi1 ) ⎠ ⎝

⎛ J i1 ⎞ Pi 2 ⎜⎜ ni , Tв , Pi1 , ⎟⎟ ≥ Pвы , ρ i1 ( Pi 1 ) ⎠ ⎝

i = 1, N .

ЦН А.И.

1 2

Д

© В.Е. Селе

. ев, В.В. Алеш

(2.473)

, С.Н. Прял в, 2007–2009

.

лава 2 245 _______________________________________________________________________________________

∑( J

КЦ

N

Tвы =

i =1

:

⋅ Ti 2 )

∑ J i1 i1

(2.474)

.

N

i =1

, А (КЦ

Нi К ) КЦ, . . [112]:

Нi = И

, К

А (КЦ ,

i-

-

Pвы − Pв . 0,5 ⋅ g ⋅ ( ρ вы + ρ в ) -

К )

КЦ (К ), (2.471),

(

.

А (КЦ

. 2.43). -

К )

НА Н НА НА Н ( НА )

. Д

-

,

-

,

, , .

КЦ (К ), В. . , i - ЦН (2.470)

,

[1]. В

,

(

. (2.469),

) = 0,

i = 1, N − 1,

(2.473)): ⎛ J i1 ⎞ 2 Pi 22 ⎜ ni , Tв , Pi1 , ⎟−P ρ i1 ( Pi1 ) ⎠ вы ⎛ J i1 ⎞ ⎝ ⋅ ρ i 2 ⎜⎜ ni , Tв , Pi1 , ⎟ + G ( Pi1 , Pвы ρ i1 ( Pi1 ) ⎟⎠ ⎛ J i1 ⎞ ⎝ Pi 2 ⎜ ni , Tв , Pi1 , ⎟ ρ i1 ( Pi1 ) ⎠ ⎝

J i1 − Sri 2 ⋅

(2.475 )

Pвы2

0 Pi 2 ( Pi1 ),

;

« N1 »

е

(2.475 )

246 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ЦН

N;

ЦН

« N2»

N.

(2.475 )

(2.475 ) А (КЦ

К ).

,

(2.475 ), 1

К

. ,

(2.475 – )



(

J N 1 = J в − ∑ J i1 .

. (2.471)):

N −1

(2.476)

i =1

,

J N1 ,

,

PN 1 = Pв2 −

(2.476)

(2.470)

PN 1 :

1 J N2 1 ⋅ Pв ⋅ . SrN21 ρв

(2.477) (2.475* ),

(2.477)

:

N −1 ⎛ ⎞ J в − ∑ J i1 ⎟ ⋅ PN 2 ⎜ 1 i =1 ⎝ ⎠ , = PN22 − 2 ⋅ N −1 SrN 2 ⎛ ⎛ ⎞⎞ ⎜ ⎜ J в − ∑ J i1 ⎟ ⎟ i =1 ⎠⎟ ρ N 2 ⎜ nN , Tв , PN 1 , ⎝ ⎜ ρ N 1 ⎡⎣ PN 1 ( Pi1 ) ⎤⎦ ⎟ ⎜ ⎟ ⎝ ⎠ 2

Pвы2

(2.475 )

N −1 ⎛ ⎞ J в − ∑ J i1 ⎟ ⋅ Pв ⎜ 1 i =1 ⎠ , PN 1 = Pв2 − 2 ⋅ ⎝ SrN 1 ρв 2

N −1 ⎛ ⎛ ⎞⎞ − J J i1 ⎟ ⎟ ∑ ⎜ в ⎜ i =1 ⎠ ⎟. PN 2 = PN 2 ⎜ nN , Tв , PN 1 , ⎝ ⎜ ρ N 1 ⎡⎣ PN 1 ( Pi1 )⎤⎦ ⎟ ⎜ ⎟ ⎝ ⎠

И

НА

, Pi1

1

( N − 1)

(2.475 – ),

, i = 1, N − 1 . (2.471), , НА (2.475 – ) :

, i = 1, N − 1 ,

Э .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009



J i1

лава 2 247 _______________________________________________________________________________________

Pi ,min < Pi1 < Pi ,max ,

i = 1, N − 1,

(2.475 )

J i ,min < J i1 < J i ,max ,

i = 1, N − 1.

(2.475 )

(2.475 ) (2.469)

(2.470). , ,

(2.475 ) -

,

. Д

К ),

А (КЦ

А

-

.

J i ,min

J i ,max

,

, А (КЦ

К ):

J N ,min + ∑ J i ,max < J в < J N ,max + ∑ J i ,min N −1

N −1

i =1

i =1

< J N ,min < J в − ∑ J i ,max , N −1

J N ,min ( те

, эк



J i ,max < J i ,max ( те

тр )

i =1

, эк



тр )

, i = 1, N − 1;

J в − ∑ J i ,min < J N ,max < J N ,max ( те

(2.475 )

N −1 i =1

J i ,min ( те J i ,min ( те

, эк



, эк

J i ,max ( те

тр )



, эк

тр )





< J i ,min , i = 1, N − 1,

тр )

,

, эк

тр )

,

, i = 1, N , –

ЦН

,

А

,

. .В

-

, (2.476)

. (2.477)

(2.475 ), (2.475 ) (2.475 )

,

ЦН Pi ,min Pi ,max (

N,

J i ,min

.

J i ,max )

N. (2.475 )

В

-

J N ,min < J в − ∑ J i ,max ,

:

N −1

(2.478)

i =1

J N ,max > J в − ∑ J i ,min . N −1

(2.479)

i =1

(2.479) © В.Е. Селе

ев, В.В. Алеш

«-1»

, С.Н. Прял в, 2007–2009

(2.478),

:

248 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∑J N −1 i =1

− J N ,max < ∑ J i ,min − J N ,min

∑J

N −1

i ,max

N −1

i =1

i =1

, Jт ч .

J i,min = (1 − x ) ⋅ J т ч ;

: 0 < x J N ,min( те

N тр ) .

J N ,max( те

J N,min = J N ,min( те J N ,max = J N ,max( те

, эк



, эк



тр )

, эк

⋅ 1, 01;

тр )



тр ) − J т ч > J т ч − J N ,min( те

J N,max = 2 ⋅ J т ч − J N,min ,

⋅ 0,99; J N,min = 2 ⋅ J т ч − J N ,max . J ттарт . ч А (КЦ

= Jв N . : J ттарт ч

: © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

А, J i,min

К ) J ттарт ч J i,max

, эк

, эк ,к

,к тр ) ,

тр )

лава 2 249 _______________________________________________________________________________________

J i,max
J ттарт ч ч

2 ⋅ ( N − 1)

J N ,max − J N ,min 2 ⋅ ( N − 1)

.

4. (2.470). НА

,

(2.475)

.

,

(2.475 )

ё -

:

⎛ J i1 ⎞ 2 Pi 22 ⎜ ni , Tв , Pi1 , ⎟ − Pвы ρ P ⎛ J i1 ⎞ i1 ( i1 ) ⎠ ⋅ ρ i 2 ⎜⎜ ni , Tв , Pi1 , J i21 − Sri 22 ⋅ ⎝ ⎟ = 0, ρ i1 ( Pi1 ) ⎟⎠ ⎛ J i1 ⎞ ⎝ Pi 2 ⎜ ni , Tв , Pi1 , ⎟ ρ i1 ( Pi1 ) ⎠ ⎝ Pi ,min < Pi1 < Pi ,max ,

i = 1, N − 1,

J i ,min < J i1 < J i ,max ,

< J N ,min < J в − ∑ J i ,max , N −1

J N ,min ( те

, эк



тр )

J в − ∑ J i ,min < J N ,max < J N ,max ( те N −1 i =1

, эк



тр )

(2.483 )

i = 1, N − 1,

J i ,max < J i ,max ( те

i =1

i = 1, N − 1, (2.483 )

, J i ,min ( те

, эк



(2.483 )

, эк

тр )



тр )

, i = 1, N − 1;

< J i ,min ,

N −1 ⎛ ⎞ J в − ∑ J i1 ⎟ ⋅ PN 2 ⎜ 1 i =1 ⎝ ⎠ , = PN22 − 2 ⋅ N −1 SrN 2 ⎛ ⎛ ⎞⎞ ⎜ ⎜ J в − ∑ J i1 ⎟ ⎟ i =1 ⎠⎟ ρ N 2 ⎜ nN , Tв , PN 1 , ⎝ ⎜ ρ N 1 ( PN 1 ) ⎟ ⎜ ⎟ ⎝ ⎠

i = 1, N − 1,

(2.483 )

2

Pвы2

N −1 ⎛ ⎞ J J i1 ⎟ ⋅ Pв − ∑ в 1 ⎜⎝ i =1 2 ⎠ PN 1 = Pв − 2 ⋅ , ρв SrN 1

(2.483 )

N −1 ⎛ ⎛ ⎞⎞ J − ⎜ ⎜ в ∑ J i1 ⎟ ⎟ i =1 ⎠ ⎟. PN 2 = PN 2 ⎜ nN , Tв , PN 1 , ⎝ ⎜ ρ N 1 ( PN 1 ) ⎟ ⎜ ⎟ ⎝ ⎠

2

,

,



. .

В

© В.Е. Селе

,

(2.483 )

: -

К ев, В.В. Алеш

; , С.Н. Прял в, 2007–2009

250 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________



А (КЦ

К ).

,

⎛ J i1 ⎞ 2 Pi 22 ⎜⎜ ni , Tв , Pi1 , ⎟⎟ < Pвы ρ P ( ) 1 1 i i ⎝ ⎠ ⎛ J i1 ⎞ 2 Pi 22 ⎜ ni , Tв , Pi1 , ⎟ − Pвы ρ P ⎛ ( ) J i1 ⎞ i1 i1 ⎠ − Sri 22 ⋅ ⎝ ⋅ ρi 2 ⎜⎜ ni , Tв , Pi1 , ⎟ > 0. ρ i1 ( Pi1 ) ⎟⎠ ⎛ J i1 ⎞ ⎝ Pi 2 ⎜ ni , Tв , Pi1 , ⎟ ρ i1 ( Pi1 ) ⎠ ⎝

К

, . (2.483 ) ,

, ,

(2.483 )

. (2.483 )

ЦН.

,

(2.483 )

НА

,

КЦ,

(2.483)

, .

( , А) НА (2.483) КЦ (К ),

В.В. К А (КЦ)

(

. 2.45).

и . 2.45. Схе а ра

Н © В.Е. Селе

р

р в

ЦН ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

р р

а а чере К

Pв ..

НА Н. [2]. В

-

лава 2 251 _______________________________________________________________________________________

ЦН Д



ЦН

Pi 2 ,

ЦН

, .

ЦН,

ЦН

ЦН.

, ,

-

Pвы Pi 3 ,



.

, Pi 3 – . (2.470) (2.473)).

, КЦ) (

(

КЦ. КЦ

, . .

Pi 3

i-

Pi1 . -

ЦН

-

, , . . [2]

Pi 3

⎛ J (i +1)1 ⎞ ⎛ J i1 ⎞ ⎟ = 0, i = 1, N − 1, (2.484 ) Pi 3 ⎜⎜ ni , Tв , Pi1 , ⎟⎟ − P(i +1)3 ⎜ ni +1 , Tв , P(i +1)1 , ⎜ ρ i1 ( Pi ) ⎠ ρ Pi +1 ) ⎟ ( i 1 1 + ( ) ⎝ ⎝ ⎠

⎛ J i1 ⎞ J i21 ⋅ Pi 2 ⎜ ni , Tв , Pi1 , ⎟ ρ ⎛ J i1 ⎞ 1 i1 ( Pi1 ) ⎠ ⎝ Pi 3 = Pi 22 ⎜⎜ ni , Tв , Pi1 , − ⋅ . ⎟ ρ i1 ( Pi1 ) ⎟⎠ Sri22 ⎛ J i1 ⎞ ⎝ ρ i 2 ⎜ ni , Tв , Pi1 , ⎟ ρ i1 ( Pi1 ) ⎠ ⎝

Д И

–В ,

(2.484 ) А (КЦ К ), . НА (2.484),

(2.484 )

, -

( N − 1)

.Д (2.484)

N

НА

(2.473). В N Jв

А (КЦ

( N − 1) . :

N

J N = J в − ∑ J i1 .

К ), ЦН

N −1

(2.484 )

i =1

,

(2.484 )

К

НА (2.484) (2.483 – ).

. (2.484)

А (КЦ

-

К ). (2.475 – )

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

252 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

ЦН (КЦ

К ),

,

ЦН. Д А (КЦ

В

НА

КЦ (2.474). ь а е ч я ч е

еа

а

а

е

К ). (2.483)

-

(2.484)

НА (2.483) , ч а е , е е я. ,

е х

. е я е я а

, -

В

А

Д

КЦ

ЦН А

ЦН

К

i-

,

ЦН

, ,

ЦН:

ЦН , Ti1 – Ti1 = Tв ). К , КЦ

ЦН (

ЦН

Д

-

,

p ⎛ ⎞ J i1 S = ∑ M i ⎜ ni ( J i1 ) , Ti1 , Pi1 ( J i1 ) , ⎟, ⎜ ρ i1 ( Pi1 ( J i1 ) ) ⎟⎠ i =1 ⎝

p –

-

(

, (2.472 ). В ЦН

,

ЦН

А(

А)

А. ЦН.

– . -

А.И. ЦН.

.

)

[2].

А -

(2.485)

А

[1, 2, 6]. 2.6.3. Ма е а иче ое о ели ование неу ановивших я е и ов ан о и ования и о но о а а че е о е о ны ех и о е о ную ан ию

К

:

К 2.6.3.1. Ме о

о ле ова ельно

ены

К

К . а иона ных о

-

ояни КС

[109]. -

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 253 _______________________________________________________________________________________

( ,

) [1].

НА (2.469) НА Н.

Jв ,

НА

(2.470) (

. -

(2.483)

(2.484)) -

К .



КЦ (К )



. -

[1, 2]. 2.6.3.2. Ме о анали а ина иче

их е и ов КС

Д

.Н. (2.469)

(2.470) (

(2.483)

.

. 2.43).

КЦ (

КЦ:

)

В ,

( . ). В В ( . 2.46).

А

и . 2.46. Схе а ве в

е

у

ч а

А

-

-

В

: PA

ЦН.



1.

.

J2

, КЦ

TA

КЦ (

-

(2.484)), (2.231). А,

А (

[2].

, ЦН, -

:

. 2.46): J2 ,

TA

-

PA

. P21

2.

ЦН

J2 , P21

© В.Е. Селе

T21 .

ев, В.В. Алеш

T21 , С.Н. Прял в, 2007–2009

ЦН

А.И.

254 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

P22

ЦН.

T22

3.

J2

P22

T22

. КЦ (

.

. 2.46)

ЦН

–а

,

а

е ь ЦН 1 [2].

ЦН

-

КЦ (К )



(

) .

КЦ (К ),

, ЦН

, е

Д

е я [2, 6]. ,

. Э

-

. а

я а че х е ЦН (или краще

а

е

е

.

а а а че е КЦ (КС) а а я а че х е ЦН ,

.Н. (

е

КС2) N

.

-

, -

). -

.

(2.231 ) (

)

К ),



(2.231 ) ( ,

,

, «

) А» (КЦ



3

.

(2.231 ), (

(

)

-

,

(

)).

,

. .

1

В

,

.

2

В ,

. А,

3

.

, .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

, -

лава 2 255 _______________________________________________________________________________________

( k ⋅ ∂T

∂x ∼ ρ ⋅ w ⋅ ε ) ,

(ρ ⋅ w ⋅ε

.

>> k ⋅ ∂T ∂x ) ,

: ∂T ∂x = 0 .

КЦ (К ) (

-

ЦН КЦ ( .

)

. 2.45

2.46):

A

B.

,

, .Э PB

,

:

PA

(

).

TA

,

,

-

ЦН J 2ЦН = J 2ЦН (t ) (

. 2.43

. 2.46):

-

Ψ 2 ( J ) = 0,

(2.486 )

Ψ 2 ( J ) = P22ТГ ( J ) − P22ЦН ( J ) ,

P22ТГ ( J ) = P22ТГ ( J , T22ЦН ( J ) ) –

(2.486 ) , T22ЦН ; T22ЦН –

J

ЦН,

ЦН (



.

(J )

ТГ 21

); P

ТГ 21

T

,

ε2 ( P

TГ 21

(J ), T (J ), J ) ТГ 21

ЦН,

КЦ

А.И.

.

КЦ (

.

ЦН

НА

. 2.43) .В ЦН. В

. i = 1, N , N –

, КЦ. Э

-

КЦ ЦН

(

ев, В.В. Алеш

-

А (КЦ).

ЦН ) .

2.43): © В.Е. Селе

,

.

. J iЦН = J iЦН ( t ) (

;

,

,

,

ЦН.

,

(2.486) , ЦН

-

J ; P22ЦН ( J ) = ε 2 ( P21TГ ( J ) , T21ТГ ( J ) , J ) ⋅ P21TГ ( J ) –



,

(J )

-

, С.Н. Прял в, 2007–2009

256 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Ψ i ( J i ) = 0, i = 1, N ,

(2.487 )

ЦН Ψ i ( J i ) = Pi ТГ 2 ( J i ) − Pi 2 ( J i ) .

Д

,

(2.487 )

,

(2.487).

А, (

.

, (2.487)

Ч .В [116]

).

-

. Д

q-

r-

2.6.4. К во о у о у у ы

-

(2.487)

,

2

1

2N

о ели овании о

[116]. е

о ных

ан и

ло но

Д

К 2.6.1 – 2.6.3, КС е ь ае я КС е ь х КЦ а

,

.П че ая хе а е ПА. В

ая

В.В. К

е

А

я

а

. 2.47). Д

А

КЦ, . 2.47

А,

ЦН (

).

К ,

-

, -

К , -

, , С

а е а че ( е СНАРН ( е). В НА Н

ч СНАУ

. е я, К ( .

а ая е ь КС 2.6.1 – 2.6.3)) е а яе а че я а а яе е е е е -

К (

Н ,

© В.Е. Селе

ч е а -

.

[6]. И (

-

ев, В.В. Алеш

,

, С.Н. Прял в, 2007–2009

К , ,

). , .

лава 2 257 _______________________________________________________________________________________

,

К ,

А,

КЦ.

-

НА Н ( НА ). В

,

КЦ,

,

,

-

В.В. К

-

. Э К )

(

.

и . 2.47. Схе а а а я ех л че

Н

. 2.47

К К

© В.Е. Селе

ых е ав ых ере е ых ля а ал а ра р а а а чере КС

ев, В.В. Алеш

ера

в

( ). Д

X

. 2.47 :

, С.Н. Прял в, 2007–2009

-

258 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

⎧ P111 ( J в , Pв , Tв , J 1 ( X 1 ) , J 11 ( X 2 ) , ε111 ( X 6 ) ) − P121 ( J в , Pв , Tв , J 1 ( X 1 ) , J 12 ( X 3 ) , ε121 ( X 4 ) ) = 0; ⎪ ⎪ P121 ( J в , Pв , Tв , J 1 ( X 1 ) , J 12 ( X 3 ) , ε121 ( X 4 ) ) − P131 ( J в , Pв , Tв , J 1 ( X 1 ) , J 13 , ε131 ( X 8 ) , ε132 ( X 7 ) ) = 0; ⎪ 1 ⎪ P131 ( J в , Pв , Tв , J 1 ( X 1 ) , J 13 , ε131 ( X 8 ) , ε132 ( X 7 ) ) − P211 ( J в , Pв , Tв , J 2 , J 21 , ε 21 ( X 9 ) , ε 212 ( X 5 ) ) = 0; ⎪ ⎪ J 11 ( X 2 ) − J 111 ( ε111 ( X 6 ) ) = 0; ⎪ ⎪ J 12 ( X 3 ) − J 121 (ε121 ( X 4 ) ) = 0; ⎪ ⎪⎪ J 13 − J 131 ( ε131 ( X 8 ) ) = 0; ⎨ ⎪ J 131 (ε131 ( X 8 ) ) − J 132 (ε131 ( X 8 ) , ε132 ( X 7 ) ) = 0; ⎪ 1 ⎪ J 21 − J 21 (ε 212 ( X 5 ) ) − J 212 (ε 211 ( X 9 ) ) = 0; ⎪ 1 ⎪ J 212 (ε 21 ( X 9 ) ) − J 213 (ε 211 ( X 9 ) , ε 212 ( X 5 ) ) = 0; ⎪ ⎪0 < X i < 1, i = 1, 3; ⎪ 1 це ⎪ε max < X j < ε max , j = 4, 7; ⎪ 1 1 ⎪⎩ε min < X k < ε max , k = 8,9,

(2.488) К , J в , Pв , Tв –

P111 , P121 , P131 , P211 –

,

К , J1 , J 2 – I», J 11 , J 12 , J 13 , J 21 –

«

II», ε , ε , ε , ε 212 – 1 11

«

А А

1 12

2 13

це , ε max –

1 КЦ, ε min –

А

1 КЦ, ε131 , ε 21 – 1 КЦ, ε max –

.

К Д

, . Э

Д .

В

2.6

К [1, 2, 5 − 7].

-

.

2.7. Мо ели ование ан о и ования о у ов че е е ия ие у о ово но о ан о а И

. -

К . © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(

лава 2 259 _______________________________________________________________________________________

(

), . К

(

.

)

-

. . 2.7.1. Мо ели ование у о у ов

ановивших я е и ов

ан

о

и ования

Д .

К

(

2.6.3.2). В

.

-

. а

А а е

а а е е е е

а

а

а х

а

х ече ече )

е

а

е

я(

, , [69, 77, 96]).

(

ь -

.,

-

К .Д -

(

)

Ме а а а а че е а

а а а е а е

ЦН ( . [2]. В

.Н.

е

а

я

е

. х я е а

а е я

КС К В. . :

2.6.3.2). Д Jв , ЦН. Д .

Д

а

-

Tв ,



-

: 1. В К

Ч

1,

1.

2.

Jв ,

Ч



Ч

3.

Ч

. P12

К

T12 .

ЦН

Jв , P12

-

T12

К

К (

2.6) К .

P22

4. Н

© В.Е. Селе

-



Ч

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

.

T22

К

.

-

260 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Ч

К

(Tв

К

5. В

= T22 , Pв = P22 ) .

, 2.

5.

Jв ,

Ч



-



Ч



P12

Ч .

T12

-

6.

.

.

2.7.2. Мо ели ование неу о у ов

ановивших я е и ов

ан

о

и ования

Д .Н.

В. .

-

а

Да е , я а че х е я ЦН ( . е я я. ЦН

[2, 117]. е , я яе я е а 2.6.3.2) а (2.486) К , (2.486)

я

ще е е я а а че е КС е ь а (2.487) К .К а

-

-

их

. , ).

А Д, ,

Э ,

е

Ч (2.487).

2.7.3. Чи ленная о ен а а а е ов а о ы ав о а иче е уля о ов авления в а о ово ных е ях

В , (

а а а

.А Д

А Д

,

2,5МПа.

А Д ,

,

,

© В.Е. Селе

.

, :

Д

А Д

.

ев, В.В. Алеш

А Д( , С.Н. Прял в, 2007–2009



. А Д -

)

лава 2 261 _______________________________________________________________________________________

А Д.

. 2.48

и . 2.48.

вая хе а а

в

а в ав

а

(2.1, 2.2, 2.50 , 2.50 ). Н

че

ре уля

ре авле

я

А Д

-

: А Д

1.

-

. А Д

2.

pвы

(p

а вы

:

а а ⎪⎧ p , е ли pвы < pв ; , pв ) = ⎨ вы ⎪⎩ pв , в р тив м лучае,

pвыа –

(2.489)

А Д; pв –

А Д; pвы –

.

3. В

А Д

.

А Д

4.

-

,

-

. (2.1, 2.2, 2.50 , 2.50 ) « .

(2.489)

-

Д

.

А Д ,

∫∫

. Д

-

, ,

. (2.1, 2.2, 2.50 , 2.50 )

ρ ⋅υ n dS = 0;

S

ев, В.В. Алеш

,

-



© В.Е. Селе

(2.2).

: А Д

,

. Ч

:

»

, С.Н. Прял в, 2007–2009

(2.490 )

262 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

∫∫ S

pвы

∫∫

ρ ⋅υ n ⋅ Ym dS = 0, m = 1, N S − 1 ; YN = 1 − S

∑Y

N S −1 m =1

m

(2.490 )

;

⎧⎪ pвыа , е ли pвыа < pв , а = , p p ( вы в ) ⎨ p , в р тив м лучае; ⎪⎩ в ⎛

ρ ⋅⎜ ε + ⎝

S

(2.490 )

υ2 ⎞

⎟ ⋅υ n dS = − ∫∫ p ⋅υ n dS + ∫∫ τ n ⋅ υdS − ∫∫ W ⋅ ndS ; 2⎠ S S S

(2.490 )

T1 = T2 = … = TN S ;

(2.490 )

p = p ({S ме и }) ;

(2.490 )

ε = ε ({S ме и }) , ,

« «

(2.490 )

»

,

»– (2.490 )

« (2.490 )

2.48),

». (

∫∫

ρ ⋅υ n df −

∫∫

ρ ⋅υ n ⋅ Ym df −

:

f вы

∫∫ fв

f вы

,

А Д (

) А Д, (2.490 )

(2.490 )

ρ ⋅υ n df = 0;

∫∫ fв

(2.491 )

ρ ⋅υ n ⋅ Ym df = 0, m = 1, N S − 1 ; YN S = 1 −

∑Y

N S −1 m =1

m

(2.491 )

,

ρ вы ⋅ wвы ⋅ f вы − ρ в ⋅ wв ⋅ f в = 0;

(2.492 )

ρ вы ⋅ wвы ⋅ f вы ⋅ (Ym )вы − ρ в ⋅ wв ⋅ f в ⋅ (Ym )в = 0, m = 1, N S , fв

f вы

А

⎛ ⎜ ρ вы ⎝

(2.492 )

(Ym )вы − (Ym )в

,

(2.490 )

ε, p – . , ев, В.В. Алеш

τ xx

, С.Н. Прял в, 2007–2009

Ym .

(2.492 ) :

⎛ w2 ⋅ ⎜εв + в 2 ⎝

τ xx ; Φ –

А Д; ρ ,

:

= 0, m = 1, N S .

⎞ ⎛ ⎛ w2 ⎞ ⋅ ⎜ ε вы + вы ⎟ + pвы − (τ xx )вы ⎟ ⋅ wвы ⋅ f вы + Φ = ⎜ ρ в 2 ⎠ ⎝ ⎠ ⎝

© В.Е. Селе

(2.492 )

ρ , υx

w , Ym – (2.492 ),

. . А Д. -

⎞ ⎞ ⎟ + pв − (τ xx )в ⎟ ⋅ wв ⋅ f в , ⎠ ⎠ (2.493)

ε

p ; τ xx –

-

2.3.1

-

лава 2 263 _______________________________________________________________________________________

Φ



.

,

А Д

-

:

ρ вы ⋅ wвы ⋅ f вы − ρ в ⋅ wв ⋅ f в = 0;

(Ym )вы − (Ym )в pвы

(p

а вы

ε вы +

(2.494 )

= 0, m = 1, N S ;

(2.494 )

а а ⎪⎧ p , е ли pвы < pв ; , pв ) = ⎨ вы ⎪⎩ pв , в р тив м лучае;

ρ вы

pвы

+

(2.494 )

2 Φ wвы p w2 + = εв + в + в ; ρ вы ⋅ wвы ⋅ f вы ρв 2 2

(2.494 )

T1 = T2 = … = TN S ;

(2.494 )

p = p ({S ме и }) ;

(2.494 )

ε = ε ({S ме и }) ,

(2.494 )

T –

. А Д [6]. В

А. .

.Н. ,

В.В. -

(2.494)

, .

[6]. Х

,

-

, –К

, (

.

-

2.3.1).

2.7.4. Ав о а иче ая на о а вы о о очных о ью е ных и уля о ов на еальные а а е ы он е но у о ово но и е ы

Д

, Ч

. И

( ,

. .К

)

,

-

,

-

. ,

Д

, ( ) SCADA© В.Е. Селе

, ,

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

-

264 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

Д

,

-

( ÷

,

,

). К

Д ,

-

Д

.

-

. Д В. . [4, 6]. Э

-

А. .

-

. Н

, (

-

) . ,

-



(

Д

.

).

:



;



К ;



(



);

. Э

,

,

SCADA(

).

-

Д

-

n

). Д

(

, ,

, .

В

,

k

,

-

. , (

),

Н

Д , . . , В



. -

. .В

© В.Е. Селе

Д

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 2 265 _______________________________________________________________________________________

.

.

Д

Д

. Д



,

, .

, SCADA-

, ,

. ,

Д , ,

l .

Д

.

(

-

)

-

,

.

(Yi = J i )

(

(Yi = Pi )

,

-

):

( )

f i X = ⎡⎣Yi ра чет

е

(X ) − Y

и мере

е

i

( X )⎤⎦

2

, i = 1, m, m = s × k × l ,

X ∈ Ω ⊂ Rn –

(2.495)

nR

n

-

( ), Ω –

, n

R (

n-

); s – В Д ,

(

Ч

), . , , (2.495),

. f i : R n → R, i = 1, m, , n f i : R → R, i = 1, m,

. . Д , .

ев, В.В. Алеш

, -

[33, 34]: © В.Е. Селе

:

,

l =1.

Д

(2.495)

, С.Н. Прял в, 2007–2009

266 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

( )

max f i X → min, X ∈ Ω ⊂ R n . i =1, m

(2.496)

В (

.

). :

Cаа

е

(2.496)

( )

max f i X < C а а i =1, m

>0 –

е

-

(2.497)

,

,

:

( ). (2.496) Д

. (2.496) ,

[118]. В

(2.496) xn +1 :

xn +1 → min

Д ,

-

( )

f i X − xn +1 ≤ 0, i = 1, m; X ∈ Ω ⊂ R

n +1

⎫⎪ ⎬ . ⎪⎭

(2.498)

(2.498)

«Techno&Optim» [1].

2.8. Ма е а иче ие е о ы ни ения а а на ан о и ование о у ов о у о ово ны е я о ощью вы о о очных о ью е ных и уля о ов И

. , , (

и . 2.49. Схе а а

ра

р

-

, . 2.49).

е

ле

К ЦН.

(

ва ел

ы ра

л

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

е КС

А. )

-

ЦН, Pcontract

© В.Е. Селе

е

/

лава 2 267 _______________________________________________________________________________________

: Pcontract ( t )

(

Qcontract

,

Ч

К



, ( ,

,

Qcontract ( t ) )

, -

)

,

,

,

, , .

, -

.Д , .Э

Д (

.

).

2.8.1. К и е и о и и а ии неу ановивших я е и ов ан о и ования и о но о а а че е ГТС а

е

а

а еа а я ,

е

а

а

е е

е

че

аа

а

е

я а

е

,

я

-

. Д я е е я а е х че е е а я щ х е щ е а е а я е а е е е а е ях а а е а е е я а а х а че а С.

е е

х а ач е х ч ь а а а е С, е а ь х е е че х а а а я а а че е С а а е е е ече я а а х ачеаа ь х ч ах С е а ч -

, , . .

, ,

В

,

. . Д .Д ЦН

.

(

А .

,

Д

-

Д

-

2.2). . .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

268 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

,

,

,

.

( /

)

[6].

(

-

Д .

)

, ,

( ,

,

,

)

, -

,

Д .И-

SCADA-

-

.Э ,

-

. В ( )

,

(

-

)

.

2.8.2. По анов а а ачи о и и а ии неу ановивших я е и ов ан о и ования и о но о а а че е ГТС

А

Д

.Н (

, -

)

.

,

.

, ,

,

ЦН

. К

-

ЦН,

-

.

ЦН К (

К

К

u (t )

(

ев, В.В. Алеш

),

) -

,

∫ Z ( t, u ( t ) ) dt . T

0

© В.Е. Селе

. -

) [6, 119].

t

[0,T ]

Ч

(

, .Э Z ( t, u ( t ) ) .

А

А,

, С.Н. Прял в, 2007–2009

лава 2 269 _______________________________________________________________________________________

,

Φ,

(

и . 2.50. И

-

. 2.50).

е е

е

у

а ра а ра вре е

а а

р

р ва е а а р ервала

р

е ля

: J ( u ) = ∫ Z ( t , u ( t ) ) dt → min ,

t ∈ [0, T ] ,

T

{

u ( t ) ∈U ( t ) ⊂ R m ,

(2.499 )

0

specified specified W ( t , u ( t ) ) ∈ Ω = W ∈ R k : ( wmin ( t ) ) ≤ w j ( t , u ( t ) ) ≤ ( wmax ( t ) ) , j = 1, l;

j

U (t ) –

,

(

(

)

T

ев, В.В. Алеш

(2.499 )

-



; k –

© В.Е. Селе

j

,

; W ( t , u ( t ) ) = w1 ( t , u ( t ) ) ,..., wk ( t , u ( t ) ) ); m –

}

specified w j ( t , u ( t ) ) ≤ ( wmax ( t ) ) , j = l + 1, k , j

;

, С.Н. Прял в, 2007–2009

270 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________ specified w min (t ) ∈ Rl

specified w max (t ) ∈ Rk –

; l –

Rm –

m; Rl –

l-

-

l

,

; Rk –

W ( t, u ( t ) )

; -

k-

. ,

-

, .

-

.

. ,

. , specified w j ( t , u ( t ) ) ≤ ( wmax ( t ) ) , j = l + 1, k ,

(2.499)

j

. ,

,

-

. (

-

А

,

[0,T ]

.

,

:

)

( ti , ti +1 ) , i = 0, N − 1, u ( t ) = ui = const , t ∈ ( ti , ti +1 ) ,

( Δt = ti +1 − ti , i = 0,..., N − 1, .

( t0 , t1 ,… , tN )

,

-

ui ∈ U ( t ) . Д

)

,

, (

. 2.51):

⎧ t − t0 t ∈ [ 0, δ ) ; ⋅ ( u 0j − u j ( 0 ) ) + u j ( 0 ) , ⎪ δ ⎪ ⎪ u j (t ) = ⎨ u ij , t ∈ [ti + δ , ti +1 − δ ) ; ⎪ ⎪ t − ( ti +1 − δ ) ⋅ ( u i +1 − u i ) + u i , t ∈ [t − δ , t + δ ) , j j j i +1 i +1 ⎪⎩ 2 ⋅δ

i = 0,..., N − 1 ; j = 1,..., m ; u j ( 0 ) –

, u =u N j

N −1 j

;

(2.499 )

δ

. ЦН © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

ЦН.

-

лава 2 271 _______________________________________________________________________________________

и . 2.51. Пре

авле

е

у

ру

е е я у равля ва е С

хв

е

в

а

2.8.3. Ал о и о и и а ии неу ановивших я е и ов ан о и ования и о но о а а че е ГТС

(2.499 ) (2.499)

,

.Ш , . .(

. 2.52):

J ( u ) = ∫ Z ( t , u ( t ) ) dt ≈ ∑

N −1

T

i =0

Z i ( u ( ti ) ) + Z i +1 ( u ( ti +1 ) ) 2

⋅ Δt =

= 0,5 ⋅ Δt ⋅ Z0 ⎡⎣ u ( t0 ) ⎤⎦ + Δt ⋅ ∑ Zi ⎡⎣ u ( t0 + i ⋅ Δt ) ⎤⎦ + 0,5 ⋅ Δt ⋅ Z N ⎡⎣ u ( tN ) ⎤⎦ . 0

N −1 i =1

( u , u ,… , u ) J ( u , u ,… , u ) .

, (2.500) ,

( u , u ,… , u ) 0

1

N −1 T

0

1

N −1 T

0

1

N −1

(2.499)

N −1 i =1

© В.Е. Селе

(2.499 )):

ев, В.В. Алеш

-

:

J ( u0 , u1 ,… , u N −1 ) = 0,5 ⋅ Z0 ⎡⎣ u0 ⎤⎦ + ∑ Zi ⎡⎣ ui ⎤⎦ + 0,5 ⋅ Z N ⎡⎣ u N −1 ⎤⎦ → min,

(

(2.500)

, С.Н. Прял в, 2007–2009

(2.501 *)

272 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

{

}

ui ∈ U =

specified i i −1 specified = u ∈ R m : max ⎣⎡ u i −1 − ηconstr , umin ⎦⎤ j ≤ u j ≤ min ⎣⎡ u + ηconstr , umax ⎦⎤ j , j = 1, m , (2.501 )

i = 1, N − 1;

{

specified specified Wi ( u 0 , u1 ,… , u N −1 ) ∈ Ω = Wi ∈ R k : ( wmin ) ≤ wij ( u0 , u1 ,…, u N −1 ) ≤ ( wmax ),

j = 1, l ; w ( u , u ,… , u i j

specified u min ∈ Rm

0

1

) ≤ (w j

N −1

specified u max ∈ Rm –

specified max

)

j

}

j

, j = l + 1, k , i = 1, N ,

-

); ηconstr ∈ R m –

(

, -

j-

(2.501 )

Д .

и . 2.52.

е

ая а р

. -

Z i ( ui )

,

р

а я у е ля а а

. -

а ра вре е

а ра р р ва ервала1

, 1

,

. 2.50, 2.51

. © В.Е. Селе

ев, В.В. Алеш

(2.501 )

, С.Н. Прял в, 2007–2009

2.52

е а а р

-

лава 2 273 _______________________________________________________________________________________

, :

(2.501 *)

J ( u1 ,… , u N −1 ) = ∑ Zi ( ui ) → min,

u N = u N −1.

N

i =1

Д

(2.501 )

(2.501)

[118]. В (2.501 ) )

Э

-

( (2.501 ). (2.501 )

[32] [120],

-

. ,

-

,



-

. К

А. Z i ( ui )

(2.501 ) ,

(2.501) (

-

-

) :

{

J ( u ) = Z ( u ) → min,

}

:

specified specified ⎤⎦ ≤ u j ≤ ⎡⎣ umax ⎤⎦ , u ∈ U = u ∈ R m : ⎡⎣umin j j

{

(2.502 )

j = 1, m ;

(2.502 )

specified specified W ( u ) ∈ Ω = W ∈ R k : ( wmin ) ≤ w j ( u ) ≤ ( wmax ) , j = 1, l;

}

specified w j ( u ) ≤ ( wmax ) , j = l + 1, k , j

j

u ∈ Rm -

j

(2.502 )

. . , . .

-

« » (2.502) © В.Е. Селе

ев, В.В. Алеш

(2.501). В , С.Н. Прял в, 2007–2009

(2.502)

274 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

. В. .

[2, 64, 120]. В.В. К -

– А. . К

[6, 26, 30, 121]. о и и а ии у ановивших я е и ов и о но о а а че е ГТС

2.8.4.

Д

о

и ования

(2.502)

Ка е е е е

ан

ь а а

я а а С а

. е е я а я щ х

е я х аче а а е я а а х С. а

В. . В.В. К





е а ач е х е а а е С, а ь х е е че х а а а а а че е С ях е е е а е аа а че е а ч

ч е а

ь а че щ е я е ечех ч ах -

ь

[2, 59, 115]. [1, 2, 5, 6]. Н.Н.

(Д ) [1, 5])

В.В. К ,

[32] ( (



)

(Н )

) .В -

[118]

.Н.

3

,

(

.

)

К

А. Д , 1)

-

(

[122]. Н

-

К [6]: е

В.В. К ае К

Д К

( 2)

); ае

( ; © В.Е. Селе

-

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

.

2.8.1), К

лава 2 275 _______________________________________________________________________________________

е ье

3)

ае

1 че

е

ае

я

ае

К

К ); Н ,

ЦН,

( . . 1, 2 К

К ;

3 5)

,

2, А

/ 4)

(

К )

К

(

.

4)

ЦН –

« »( ае

е

6)

.

3,

4.7); К

) ЦН

( ЦН

К (

.

3

4),

К

, (

.

5). .

В КЦ»,

а

КС.

( . ., «

А).

/

Д

К »(

«

А») ») , А. И .

«

А

К (

КЦ, К

-

К ,

А ).

В

«

-

( , ,

Н.Н. К (

[32] ( А

1

Д [1, 5]).

В.В. К К )

-

.

, . А

: ЦН,

;

1)

А

, -

; К . . [1, 5, 6]:

К ; А,

2)

,

ЦН

ЦН; К

3) , 1

© В.Е. Селе

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

276 М ел р ва е ра р р ва я р у в ру р в ы е а _______________________________________________________________________________________

А; К

4) ЦН;

,

3,

,

К

,

.

Н , А. Э •

А:

,

А

,

. К

,

А -

, А;



( );



;



А ;



А

ЦН ( В

.

, -

,

«Alfargus/OptimFlow»

© В.Е. Селе

, , 4.7)).

ев, В.В. Алеш

КАИ «Alfargus» (

, С.Н. Прял в, 2007–2009

(

ЦН -

.

1.6).

АВА 3 Чи ленны анали и е 3.1. По

очно

и

у о

ово ных

анов а а ачи , 1.7. ,

-

,

,

. -

, ,

НД , ,

,

,

-

. . ,

, ,

,

,

,

,

Н

-

. ,

В

Д



, К

(

-

.

НД

[123],

,

НД ,

Н

( ,

,



, . Д

,

, Н

– –

К

[123]:

σ ij , j + Fi = 0; ε ij = ⋅ ( ui , j + u j ,i ) ; 1 2

1

Д

© В.Е. Селе

( x, y , z ) . ев, В.В. Алеш

( x1 x2 x3 ) 1. В

), ), . -

(3.1)

(3.2)

-

, С.Н. Прял в, 2007–2009

278 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________





ε ki , jl + ε lj ,ik − ε li , jk − ε kj ,il = 0,

σ ij –

(3.3)

; ε ij –

; ui –

; Fi – ∂ ∂x j ; i, j , k , l = 1, 2, 3 . В

; ,j –

-

(3.1) .

Д

(3.1 – 3.3)

,

-

. ,

-

-



-

,

(

)

σ ij = Eijkl ε kl ,

[123]: (3.4 )



Eijkl –

81

-

[84]. [124], -

К

.

,

,

,

.

,

,

НД

, -

,

. В

ν (

E;

:

G ). Э

[123]:

G=

Д

E . 2 ⋅ (1 + ν )

(3.5)

, Д

–Н

,

(3.4 )

, [123]:

-

σ ij = Eijkl ( ε kl − α kl ⋅ ΔT ) ,

α kl –

; ΔT –

. Д ,

α kl ≠ 0 ,

k =l ,

150°C ,

α kk = α ,

. 150°C

( k = 1, 2, 3) .

-

α

.

ев, В.В. Алеш

-

-

T

© В.Е. Селе

(3.4 )

, С.Н. Прял в, 2007–2009

лава 3 279 _______________________________________________________________________________________

И

,

(3.4 )

-

[292]:

σ ij =

E 1 +ν

ε 0 = ( ε11 + ε 22 + ε 33 ) 3 –

⎡ 1 +ν ⎤ ⎛ 3 ⋅ν ⎞ ⋅ ⎢ε ij + ⎜ ⋅ ε0 − ⋅ α ⋅ ΔT ⎟ ⋅ δ ij ⎥ , 1 − 2 ⋅ν ⎝ 1 − 2 ⋅ν ⎠ ⎣ ⎦

( δ ij = 1

К

К

( 3 ⋅ ε0 –

i = j ; δ ij = 0

); δ ij –

i ≠ j ).

,

-

. В

, ,

, (

(3.4 )

), ,

,

( (



.

1), [125,

) 1

126]. -

В

(

). 9

[84].

(3.4 )



Gxy ; G yz ; Gxz ; α x ;α y ;α z . В

ν ij ≠ ν ji Eijkl [84]

:

ν xy Ex

В

:

=

12

i≠ j.

,

ν yx ,ν zy ,ν zx

,

ν yx Ey

ν yz

;

Ey

=

ν zy Ez

(3.6)

;

ν xz Ex

=

ν zx Ez

ν xy ;ν yz ;ν xz ;

E x ; E y ; Ez ;

(3.6)

.

Eijkl

(3.4 )

,

σx =

-

:

Ex Ψ

⎛ ⎞ ⎞ E ⎛ E E ⋅ ⎜ 1 − z ⋅ν yz2 ⎟ ⋅ ( ε x − α x ⋅ ΔT ) + y ⋅ ⎜ν xy + z ⋅ν yz ⋅ν xz ⎟ ⋅ (ε y − α y ⋅ ΔT ) + ⎜ E ⎟ ⎟ Ey Ψ ⎜⎝ y ⎝ ⎠ ⎠

Ez ⋅ (ν xz + ν xy ⋅ν yz ) ⋅ (ε z − α z ⋅ ΔT ); Ψ ⎞ E ⎛ E ⎛ E ⎞ E σ y = y ⋅ ⎜ν xz + z ⋅ν yz ⋅ν xz ⎟ ⋅ (ε x − α x ⋅ ΔT ) + y ⋅ ⎜ 1 − z ⋅ν xz2 ⎟ ⋅ (ε y − α y ⋅ ΔT ) + ⎜ ⎟ Ey Ψ ⎝ Ψ ⎝ Ex ⎠ ⎠ E ⎞ E ⎛ + z ⋅ ⎜ν yz + y ⋅ν xy ⋅ν xz ⎟ ⋅ ( ε z − α z ⋅ ΔT ); Ex Ψ ⎝ ⎠ +

1

К

,

,

.К ,

, .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

280 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

Ey ⎞ Ez E ⎛ ⋅ (ν xz + ν xy ⋅ν yz ) ⋅ (ε x − α x ⋅ ΔT ) + z ⋅ ⎜ν yz + ⋅ν xy ⋅ν xz ⎟ ⋅ (ε y − α y ⋅ ΔT ) + Ψ Ψ ⎝ Ex ⎠ ⎞ E ⎛ E + z ⋅ ⎜ 1 − y ⋅ν xy2 ⎟ ⋅ ( ε z − α z ⋅ ΔT ) ; Ψ ⎝ Ex ⎠ σ xy = Gxy ⋅ ε xy ; σ yz = G yz ⋅ ε yz ; σ xz = Gxz ⋅ ε xz ,

σz =

(3.4 )

E E E Ψ = 1− ⋅ν xy2 − z ⋅ν yz2 − z ⋅ν xz2 − 2 ⋅ z ⋅ν xy ⋅ν yz ⋅ν xz . Ex Ey Ex Ex Ey



В -

,

[125]. В , ,

,

Oy

Gxy = G yz .

-

, .

,

(

».

= α y = αz = α ) ,

x



» Ox, Oz

,

« : Ex = Ez ; ν xy = ν yz ;

, , Gxz

(3.5),

-

: E x ; E y ; ν xy ; ν xz ; Gxy .

, ,

E = E x ; ν = ν xz . (3.4 )

, 6

-

. )

(



,

-

, .

Д

, ,



,

-

, ,

НД .

В

, ,

-

-



-

f (σ ij , ε ijp , T , χ i ) = 0,

[84]:

ε ijp –

. К

, , К

© В.Е. Селе

; χi –

; T – ,

(3.4 ) -

. -

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 3 281 _______________________________________________________________________________________

. Д

К

(3.2),

, ,

ε ij = ⋅ ( ui , j + u j ,i + uk ,i ⋅ uk , j ) .

[123]:

1 2

, (3.1 – 3.4) НД

(3.7) (3.1), (3.3). ,

. Д ui = ui* ,

:

,

x ∈ S1 ;

(3.8)

σ ij ⋅ n j = ti , x ∈ S2 , ti –

(3.9)

; ni –

; S1 ∪ S 2 = S –

; x –

. (3.1 – 3.4) ,

,

.В [123].

,

В

, -

,

-

)

.

( ,

(3.2) -

(3.4), (3.1).

, (3.3)

-

. -

[89]. Н

,

, [123]:

3 ⋅ ( λ + μ ) ⋅ ε 0,i + μ ⋅ Δui + Fi = 0, i = 1, 3,

λ, μ –

( λ = 2 ⋅ν ⋅ G (1 − 2 ⋅ν ) , ,

,

μ = G) ; Δ –

(3.10)

(3.9)

(3.10)

-

[89]. (3.8)

НД

-

.

3.2. Ме о и е

ешения у авнени

авнове ия

у о

ово ных

К , , © В.Е. Селе

. ., ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

, -

282 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

(

,

. .). Н

, (

, (3.10))

-

.

НД

(3.1 – 3.4). КЭ [48, 127 − 129].

,

Д

КЭ

.

КЭ – ,

, -

,

,

КЭ. (

К

,

. К КЭ – К )

, -

, , ó .

,

-

,

,

,

,

КЭ. -

(«ANSYS» [130], «LS-DYNA» [131], «MSC.NASTRAN» [132], «ABAQUS» [133], «MSC.MARC» [134], «ALGOR», «COSMOSM» .) КЭ. КЭ НД ( , ). (КЭ) Д : ( ), ( ) , , , [48]. В .Д . Д , , . 1 ( [123]) Д (3.1), (3.2), (3.8), (3.9) :

∫ (σ

V

δ ui – (3.11)

© В.Е. Селе

+ Fi ) ⋅ δ ui dv − ∫ (σ ij ⋅ n j − ti ) ⋅ δ ui ds = 0,

(3.11)

S2

(3.8). И

V,

1

ij , j



,

: ,

ев, В.В. Алеш

(3.2) , С.Н. Прял в, 2007–2009

(3.8).

лава 3 283 _______________________________________________________________________________________

∫σ

ij

V

⋅ δ ui , j dv − ∫ Fi ⋅ δ ui dv − ∫ ti ⋅ δ ui ds = 0. V

(3.12)

S2

(3.12) . (3.12)

:

ui ( x ) = ∑ N j (ξ ,η , ς ) ⋅ uij , k

(3.13)

j =1

(ξ , η , ς ) ;

1

Nj –

КЭ; ui – j

,

j(3.13)

. ,

i-

(3.12),

-

:

n

m =1

КЭ,

n –

КЭ;



КЭ; {ε th } –

b e

e

th e

m

T

pr

nd e

e

{F } = ∫ [ B ] [ D ] { ε } dv th e

T

Vm

{F } = ∫ [ N ] {F }dv [ D]

th

; { Fe pr } =

) КЭ; { Fend } – –

Vm



; [ B] –

КЭ;

b e

m

= 0,

(3.14)

; [ Ke ] =

∫ [ B ] [ D ] [ B ] dv T

Vm



∫ [ N ] {P}ds T

n



(

.

-

Sp

{ um }

(

КЭ;

)

КЭ;



КЭ; [ N ] –

; [ Nn ] – Sp ,

КЭ,

,

[]

T



,

(3.14).

КЭ

.

,

{u} = [ N ] {um } ; {ε } = [ B ] {um } ; {σ } = [ D ] {ε

{ε } = {ε } − {ε } – el



th

N j (ξ , η , ς )

© В.Е. Селе

ев, В.В. Алеш

«

el

},

: (3.15)

(3.15)

-

1

-

-

∑ ( [ K ] {u } − {F } − {F } − {F } − {F } )

,

k –

.

».

, С.Н. Прял в, 2007–2009

НД (3.7). Д

284 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

,

V, .

t

F

S,

ε ij = ⋅ ( ui , j + u j ,i + uk ,i ⋅ uk , j ) = 0 1 2

( −σ ) [123]:

,

∫ F ⋅ δ u dv + ∫ t ⋅ δ u ds − 2 ⋅ ∫ σ

ij

1

i

i

i

V

i

S

ij

V

⋅ δ ( ui , j + u j ,i + uk ,i ⋅ uk , j ) = 0.

∫ σ ⋅ (δ ij

ki

(3.17)

σ ij ,

(3.17)

V

(3.16)

:

+ uk ,i ) ⋅ δ uk , j dv − ∫ Fi ⋅ δ ui dv − ∫ ti ⋅ δ ui ds = 0. V

(3.18)

S

(3.18) (

)

.

(3.18) .

К

,

(3.18)



, ,

, ⎡σ ij ⋅ (δ ki + uk ,i ) ⎤ = Fk , ⎣ ⎦, j

(3.19)

⎡σ ij ⋅ (δ ki + uk ,i ) ⎤ ⋅ n j = tk . ⎣ ⎦ S

Д

(3.19)

(3.20)

(3.20),

uk

,

(

),

ε ki – ,

[123]:

uk ,i = ε ki + ω ki ,

(3.21)

(3.7); ω ki –

ω ki = 1 2 ⋅ ( uk ,i − ui , k ) .

Д

,

, , .В , КЭ [48, 127 − 129]. , НД

© В.Е. Селе

КЭ

КЭ, Э

ев, В.В. Алеш

,

КЭ [48, 89]. И

, С.Н. Прял в, 2007–2009

-

. Д ,

КЭ

-

лава 3 285 _______________________________________________________________________________________

,

, .

3.3. Ма е а иче ие о ели ля анали а у у о- ла иче о о ове ения у о он у и

ово ных

-

-

.

( )

,

-

.В [123]. ,



,

-

. В , ,

-

, .



,

-

, ,

, .

3.3.1.

у о- ла

Д

иче

ое ове ение

у ных

але

– ,

. В ,

-

[135]. ,

,

,

Ч

, . В –

σi =

σ1, σ 2 , σ 3 – 1

В

1 2



(σ 1 − σ 2 )

,

-

[136].

-

1

2

+ (σ 2 − σ 3 ) + (σ 3 − σ 1 ) , 2

2

: (3.22)

. –

-

. © В.Е. Селе

-

.

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

286 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

, (σ i = σ Т )



(σ i = σ в )

,

НД

-



.

(3.4 ) 2 ⋅σ Т

Н

,

,

3.



-

(

,

)

, .

, . 3.3.2. Мо ели ование в аи о е ун а

вия

у о

ово а и

иле ающе о

, -

. Н

, 90% [137, 138].

НД

-

.

, 1

, . ,

-

,



В.В. А

[1, 3, 6, 139]. ) [137, 138, 140 –

( 144]. В -

-

. .

3.3.2.1. Ин ене ные о ели в аи о е о у ающи ун о

В

вия о

е но о

[137, 138, 143, 144]

у о

ово а

[140 – 142]

-

, ,

1

Д

. Э ,

, © В.Е. Селе

.

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

лава 3 287 _______________________________________________________________________________________

. [138],

-

(

,

) 1

, [1, 137, 138, 143, 144]. НД [1, 3, 6].

. . 3.1. -

, .

и . 3.1. Схе а а р р вле е ру а – р

«

а л

л е е ере е е

а ра е ру

ел е р в а»,

tg β = π ⋅ D ⋅ cx 0

ав е

,

-

,

А (ASCE) [140],

[133, 142].

,

, (

)

-

, В ,

. [138]: ( cx 0 , c y 0

, ),

-

β

( (

, ;

1

-

t

Д

р

. 3.1) )

,

-

.

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

288 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

,

qр,

(

(

.

. 3.1),

. В -

) [140, 141]

:

,

xu , yu , zu (

( . . t р , q р ).

3.1)); (

tu , pu , qu

cx 0 =

t р = tu ; tu ; π ⋅ D ⋅ xu

= pu ;

q грри

таль

c yг 0ри

таль

D –

=

:

q вертикаль = qu ; р

c вертикаль = y0

pu ; D ⋅ yu

qu , D ⋅ zu

(3.23)

. ,

.

П

ь

е

еще

е

а [137, 138]

-

t р = qтр ⋅ tgϕ гр + 2 ⋅ γ гр ⋅ qтр –

;

h

е. В

:

h

⋅ π ⋅ D 2 ⋅ tgϕ гр + 0, 6 ⋅ π ⋅ D ⋅

; ϕ гр –



(3.24 )

,

; γ гр – ,

h/ D ; h –

-

( ); cгр –

А

гр

.

(3.24 )

, , [1]. Д (3.24 ) -

, ,

, ,

(

, [1, 3, 5])

,

. ,

(

,

[144]),

-

. (

cx 0 )

-

[138] ( ,

.

. 3.1), ,

[137, 138] .

В

ASCE [140]

1

:

1

Д

3.3.2.1 ,

© В.Е. Селе

, .

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

лава 3 289 _______________________________________________________________________________________



tu =

π 2

⋅ D ⋅ γ ⋅ H ⋅ (1 + k0 ) ⋅ tg ( k ⋅ ϕ гр ) ;



(3.24 )

tu = π ⋅ D ⋅ α ⋅ Su ,

γ – (

(3.24 )

; H – ); k0 –

,

0,35

0,47; k –

,

(

)

; α –

,

Su

,

: 2,54 ÷ 5, 08мм

[133, 140, 142]

-

0,7; Su –

0,5

-

[140].

Д

xu

; 5, 08 ÷ 10,16мм

. , , 1984

ASCE [140]

, k0 = 1, 0 ,

.

,

,

,



,

Su cгр ,

cгр = α ⋅ Su ,

[133] -

α

[140]. ,

k,

, П

, -

[142]

,

tg ( k ⋅ ϕ гр )

, (3.24 )

-

[137]. е еч

е, е

а ь

[138]:

cy 0 =

е х,

еще

е

2⋅ H 0,12 ⋅ Eгр ⋅ηгр ⎛ − ⎞ D − 1 e ⎜ ⎟; 2 (1 −ν гр ) ⋅ l0 ⋅ D ⎝ ⎠

q р = γ гр ⋅ D ⋅ ( H − 0,39 ⋅ D ) + γ гр ⋅ H 2 ⋅ tg ( 0, 7 ⋅ ϕ гр ) + Eгр –

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

а

е. В

-

(3.25 ) 0, 7 ⋅ cгр ⋅ H

cos ( 0, 7 ⋅ ϕ гр )

,

(3.26 )

, [ МПа / м ] ; ηгр –

-

290 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

; ν гр –

( l0 = 100 м ) ;

[ м] .

; l0 –

D, H –

,

(3.23), (3.24 ),

, ,

.

(3.25 ) .

cy 0

(



гр

,

= 0)

2

D

ASCE [140]

) −π

: 8⎤ . ⎦

: qu = γ ⋅ H ⋅ N qv ⋅ D,



(3.26 )

zu = ( 0,01 ÷ 0,015) ⋅ H ;

(3.25 )

qu = Su ⋅ N cv ⋅ D,



(3.26 )

zu = ( 0,1 ÷ 0, 2 ) ⋅ H ,

(3.25 )

N qv , N cv –

, , [140].

, П

е еч

е, е

а ь

-

(3.25 ), (3.26 ) -

[144]

q р = γ гр ⋅ D 2 ⋅ ⎡ H D + ( H D ) ⋅ ( tgϕ гр + 5 ⋅ e −1,7⋅H ⎣

В

,

,

-

H /D еще

,

е

а

е.

В

–Ц

-

( D)

,

[138]

-

q = cy0 ⋅ D ⋅ uy ,

u y ≤ Rгр / c y 0 ;

q = Rгр ⋅ D, q –

:

u y > Rгр / c y 0 ,

(3.27 )

; uy –

;

Rгр –

. : cy 0 =

В © В.Е. Селе

(3.28 ) ASCE [140] ев, В.В. Алеш

,

0,12 ⋅ Eгр

(1 −ν ) ⋅ 2 гр

l0 ⋅ D

(3.28 )

.

(3.25 ).

, С.Н. Прял в, 2007–2009

:

лава 3 291 _______________________________________________________________________________________



1 qu = γ ⋅ H ⋅ N q ⋅ D + ⋅ γ гр ⋅ D 2 ⋅ N y , 2

(3.27 )

zu = ( 0,10 ÷ 0,15) ⋅ H ;

(3.28 )

qu = Su ⋅ N c ⋅ D,

(3.27 )



zu = ( 0,10 ÷ 0,15) ⋅ H , Nq , N y

(3.28 )

Nc –

, ,

П

е еч е [138]

а ь

е

еще

е

[140].

а

е. В

cy 0 =

ηг р –

2⋅ H 0,12 ⋅ Eгр ⋅ηг р ⎛ − ⎞ D e 1 − ⎜ ⎟, 2 (1 −ν гр ) ⋅ l0 ⋅ D ⎝ ⎠

(3.29 )

,

a/H ,

a –

.

К

-

:

(3.29 )

,

,

:

q р.г р = γ гр ⋅ H ⋅ D ⋅ k p ,

ϕ гр ⎞ 2 ⋅ гр ϕ гр ⎞ ⎛ ⎛ k p = tg 2 ⎜ 45 + ⋅ tg ⎜ 45 + ⎟+ ⎟ – 2 ⎠ γ гр ⋅ H 2 ⎠ ⎝ ⎝ . , q р.г р < Rгр / D ,

.

-

(3.25 ).

(3.30 ) Rгр

,

Rгр / D . , . q р.г р =

В –

,

[144]

γ гр ⋅ ( H + D ) 2

2

ϕ гр ⎞ ⎛ ⋅ tg 2 ⎜ 45 + ⎟ + 2⋅ 2 ⎠ ⎝

ASCE [140] yu = Ch ⋅ ( H + D / 2 ) ,

– ев, В.В. Алеш

гр

ϕ гр ⎞ ⎛ ⋅ D ⋅ tg ⎜ 45 + ⎟. 2 ⎠ ⎝ :

pu = γ ⋅ H ⋅ N qh ⋅ D;

© В.Е. Селе

(3.30 ):

, С.Н. Прял в, 2007–2009

(3.29 ) (3.30 )

292 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

yu = ( 0, 03 ÷ 0, 05 ) ⋅ ( H + D / 2 ) ,

(3.29 )

pu = Su ⋅ N ch ⋅ D,

(3.30 )

N qh , N ch – ,

, 0,05

H /D

[140];

Ch

: ;

В

0,07 0,02

0,10 0,03

;

0,03

. [142]

,

А

[140] –

, xu , tu ( . ( 150мм

).

D = 150 мм

2%

[142] [141] -

610мм ).

, (

ASCE -

[141].

[140] D = 610 мм ).

13%

, ,

, [141],

, [140].

К

, . ,

(3.24 )

-

, , -

,

, ( ∼ 1м )

(3.24 – ).



-

. .

В -

,

, . , , (

,

, [137, 138] ASCE [140], x0

).

,

, , . [140, 141]

К

,

-

,

.



,

«

,

,

»

,

-

[138], .

Н

,

[138]

,

,

, © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 3 293 _______________________________________________________________________________________

НД

.

, , 1

НД

,

В

.

. -

,

, -

[138]

И

. -

, 2

,

, «

. В

» .

Н

,

,

-

. В НД

. [1, 3 − 5].

3,

Н

,

-

, , ,

.

,

(

,

. Н НД -

, .) .

-

. ( Д

-

В.В. А ,

[1, 3 − 5, 145]. Д [138]

1

,

-

,

.

2

© В.Е. Селе

,

. .).

, ев, В.В. Алеш

,

, С.Н. Прял в, 2007–2009

.

294 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

,

-

. 3.3.2.2. Т ех е ная у

у о- ла

иче

ая

о ель

ун а

,

, -

, Д

НД

.

:

(

-

) . , ( . .)

,

.

,

-

,

-

.

Д

,

,

.

И

НД

,

-

[137, 138, 140 – 144, 146 − 148], ,

1

,







, ,

. Э

-

. Д

-



-

. ,

, ,

2

,



,

, .

В (

), [144, 146 –

149], -

.В ,



, 1

И

,

-

. 2

«

» .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 3 295 _______________________________________________________________________________________

τ n = Φ (σ n ) ,

[148]:

τn

σn –

(3.31)

n ; Φ (σ n ) –

(

)

Φ (σ n )

В К

В

. ,

(3.32)

,

, [148, 150]:

τ n = c + tgϕ ⋅ σ n ,

;ϕ – c ϕ

c –

-

(3.32) . -



,

.

К

[148], (

)

σ n < σ φ ≈ 0,5 ÷ 0, 7 МПа . Д

)

( ,

-

. , (

-

. (3.32)).

НД ,

σ 1 − σ 2 = ( 2 ⋅ c ⋅ ctgϕ − σ 1 − σ 2 ) ⋅ sin ϕ ;

К [1]:

(3.32)

σ 2 − σ 3 = ( 2 ⋅ c ⋅ ctgϕ − σ 2 − σ 3 ) ⋅ sin ϕ ;

-

(3.33)

σ 3 − σ 1 = ( 2 ⋅ c ⋅ ctgϕ − σ 3 − σ 1 ) ⋅ sin ϕ .

(3.33)

-

σ1 = σ 2 = σ 3 ( ,

-К , 4).

.

,

σi = σ j .

), -

, (3.33)

-

:

( c ≠ 0, ϕ ≠ 0 )

c

(

(

. 3.2). В

© В.Е. Селе

ев, В.В. Алеш

ϕ

σ 1* = σ 2* = σ 3* = c ⋅ ctgϕ . ,

(3.34)

(3.34) ,

–К

( c = 0, ϕ ≠ 0 ) , С.Н. Прял в, 2007–2009

. К

,

296 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

( c ≠ 0, ϕ = 0 )

(3.33)

(3.34),

, –К

), , c = σТ 2 ) [136].

(

c (

и . 3.2. П верх

е уче

. 3.2 .

М ра – Кул

а

–К

НД

-

, (

),

σ1 = σ 2 = σ 3 )

,

.

(

.В . .) 1

(

,

,

,

( ).

, -

(

,

. .) .В

,

-

, .

В

1

[144, 146 − 149]. , -

И

-

.

(

). , .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 3 297 _______________________________________________________________________________________

(3.33) . Д

,

,

(ρ ) ,

В

-

(E) ,

ν ( ),

(ϕ )

:

(c) .

,

,

-

1

,

-

.И .

Н

, ,

. В ,

, ,

-

,

-

– К

(3.33). В -

,

-

,

[123, 151] . Э

[48, 127, 128]

, –К

[48, 123, 128]:

f ( I1 , J 2 , J 3 ) = 0,

; sij = σ ij − δ ij I1 3 – НД

α

. Д. Д

k –

[150]: (3.36)

Д

.

-

В.

α ⋅ I1 + J 2 = k ,

tg β = 6 ⋅ α (

(3.35)

; J 2 = sij sij 2 –

; J 3 = sij s jk ski 3 –

2

–К

. –

(3.36) ,

, ,

–К

1

Н

,

II-9-78 «И

». 2

© В.Е. Селе

(3.36) [150]. А

ев, В.В. Алеш

, [150] -

, С.Н. Прял в, 2007–2009

-

,

k k ⎫ ⎧ k ; ; ⎨ ⎬, ⎩ 3 ⋅α 3 ⋅α 3 ⋅α ⎭ 4).

,

[292],

-

I1 = σ ii –

В

Д

-

[48, 127 − 129]. ,

В

-

НД

В. (3.36) .

298 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

Д

ϕ, c



,

-

. В ,

,

α, k .



Д

-



-

:

; (

,

4).

[150] (

,

КЭ-

, (

.,

[130, 133]),



. ,

4 1

– К

Д

α= α= ,

– :

sin ϕ

3 ⋅ 3 + sin ϕ 2 ⋅ sin ϕ

3 ⋅ ( 3 − sin ϕ )

Д

k=

;

2

k=

;

,

3 ⋅ c ⋅ cos ϕ 3 + sin 2 ϕ

(3.37)

,



6 ⋅ c ⋅ cos ϕ

:

3 ⋅ ( 3 − sin ϕ )



(3.38)

.

(3.38).

, ,

НД (3.37), (3.38),

, НД

-

-

Д

2

[150] -

, .В

)

НД

(3.36) , ϕ, c

(3.33). α, k

.

В

.

НД

, -

. Д



[1], а

1

В

2

Н

В

а ь х [1, 145]: е ч а а х е е х ь а ь

© В.Е. Селе

В.В. А е е я щ х

. а а е

е я е , я е че .

Д

а

е х че х е а–П ае а

В.В. А

. 4.

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

е че а е а М а–К

е Д х а,

– а

яа

лава 3 299 _______________________________________________________________________________________

А

( 4)

Д

α

k

В



т

т

-

(3.39)

⎧ 6⋅ 2 c ⋅ cos ϕ , 0 < ϕ ≤ 27,65°; ⋅ ⎪ = ⎨ 3 + 3 3 + sin 2 ϕ ⎪ ⎩c ⋅ cos ϕ , ϕ ≥ 27, 65°.

,

(3.40)

-

Д (3.39), (3.40), НД ,



-

, . -

. , 1952

[150]

-

:

⎧ 2⋅ 2 sin ϕ ⋅ , 0 < ϕ ≤ 27, 65°; ⎪ ⎪ 3 + 3 3 + sin 2 ϕ =⎨ ⎪ sin ϕ ⎪⎩ 3 , ϕ ≥ 27,65°;

[1, 3, 5]

.

Д. Д

1

НД . А

В.

-

. Н

-

, ,

Д

,

[48].

НД

,



-

-

, -

, –К

-

,

,



, -

.

И

,

, . К

(3.36) [128]

α=

1

2 ⋅ sin ϕ

3 ⋅ ( 3 + sin ϕ )

,

k=

В

© В.Е. Селе

6 ⋅ c ⋅ cos ϕ

3 ⋅ ( 3 + sin ϕ ) –

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(3.36)

(3.41)

[147].

300 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

,

– К (

(3.38), ( . .

В

(3.36) –

Д

(3.33) (

-

, 4.4)). -

[146] ,

– 4).

Д

(3.33), ,

, ,

,

.

f ( I1 , J 2 ) = 0 ). Д

(3.35) (

-

НД [152]: p=−

σ1 + σ 2 + σ 3 3

q=

;

⎛9 ⎞3 r = ⎜ ⋅ sij s jk ski ⎟ , ⎝2 ⎠

3 ⋅ sij sij ; 2

1

(3.42)

(3.35): I p=− 1; 3

К

q = 3⋅ J2 ;

⎛ J ⎞3 r = 3⋅⎜ 3 ⎟ . ⎝ 2⎠ 1

(3.42), p – .

В

; q – . (

r , [48, 128, 133, 152])

( )

(3.43)

Д

( ),



-

. (3.42)

t=

:

t − p ⋅ tg β '− d = 0,

(3.44)

3 ⎡ 1 ⎛ 1 1⎞ ⎛r⎞ ⎤ ⋅ q ⋅ ⎢1 + − ⎜1 − ⎟ ⋅ ⎜ ⎟ ⎥ ; β ', d – 2 ⎢⎣ K ⎝ K ⎠ ⎝ q ⎠ ⎥⎦

, ; K –

»

Д -

Д (



.

(3.44)

β'

)

4) Д

– t.

4 , ев, В.В. Алеш

-

,

(

© В.Е. Селе

« .

, С.Н. Прял в, 2007–2009

« p − t ». ) , –К ,

Д

(3.44), d (

-



:

лава 3 301 _______________________________________________________________________________________

tg β ' =

(3.44) (3.38), (3.43), (3.36)

d=

K =1

K.

,

6 ⋅ c ⋅ cos ϕ . 3 − sin ϕ

(3.45)



(3.45)

(3.44) (3.44) (3.38).

,

Д

0 < K < 1,

6 ⋅ sin ϕ ; 3 − sin ϕ

-

– К

,

. -

[1], [148]. (3.44) (3.33).

,

-

β ', d

Ш

,

-

(3.44) (3.45). В

-

K

, K=

. 3.3

-



Н

(3.44). .

. К (3.45)

3 − sin ϕ . 3 + sin ϕ

. 3.3, (3.46),

(3.44) -

–К

(3.33): (3.46)

(3.44) (3.33). Н

. 3.4 , ϕ = 20°, c = 15 кПа .

и . 3.3. Сече е ев а р л верх е е уче : 1 – М ра – Кул а (3.33); 2 – ру ера – Пра ера (3.36), (3.38); 3 – е р ер я ру ера – Пра ера (3.44 – 3.46). © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

, -

302 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

. и . 3.4. В

верх

е уче

е

р

ер я ру ера – Пра ера (3.44)

,

(3.44)

,

, -

θ ( :

-

.

, –

.

. 3.3),

,

[48, 123, 127, 128, 133, 152] -

, . . ,

,

, ,

(

). [133, 152] . 3.3

В (

θ [152, 291]:

– .В

)

⎛r⎞ cos ( 3 ⋅θ ) = ⎜ ⎟ , ⎝q⎠ 3

cos ( 3 ⋅θ ) =

(3.47)

3 ⋅ 3 ⋅ J3 . 2 ⋅ J 23 / 2

(3.48)

В

-

:

sin ( 3 ⋅θ ' ) =

arccos x = π 2 + arcsin ( − x ) ,

И

© В.Е. Селе

−3 ⋅ 3 ⋅J 3 . 2 ⋅ J 23 / 2

θ'

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(3.49) ,

θ = θ '+ π 6 , -

лава 3 303 _______________________________________________________________________________________

.

Д И

(3.47)

(3.48),

.

, (3.44) p*

2 ⋅ 2 ⋅ ( p* ⋅ tg β '+ d )

R (θ ) =

1⎞ ⎡ 1 ⎛ ⎤ 3 ⋅ ⎢1 + − ⎜1 − ⎟ ⋅ cos ( 3 ⋅θ ) ⎥ K K ⎝ ⎠ ⎣ ⎦

R (θ ) –

, C

. 3.3.

(1)

К

–К

: 0 ≤ θ ≤ 2π .

(3.50)

,

R (θ )

(3.33) :

-

Rmc (θ ) ⋅ q − p ⋅ tgϕ − c = 0,

(3.33*)

π⎞ 1 π⎞ ⎛ ⎛ ⋅ sin ⎜θ + ⎟ + ⋅ cos ⎜θ + ⎟ ⋅ tgϕ , 3⎠ 3 3⎠ 3 ⋅ cos ϕ ⎝ ⎝ . ,

Rmc (θ ) =

-

:

1

К

, 0 < K < 1. Д

(3.44), ( ),

).

,



(

1

.

(3.44) ) k2 = 0 .

[89],

2

( ,

-

[123]. И

,

(

) k1 .

[89],

(3.50). Э

. 3.3 (3.44). (3.44)

(3.50) k [89]:

(

)

-

1

(

k2 (

k1

),

– ) [89]. « p−q »

2

(r q)

3

= const

© В.Е. Селе

(3.44). ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

304 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________ 2 2 k = ⎡ ρ 2 + 2 ⋅ ( d ρ dθ ) − ρ ⋅ d 2 ρ dθ 2 ⎤ ⎡ ρ 2 + ( d ρ dθ ) ⎤ 2 , ⎣ ⎦ ⎣ ⎦ 3

ρ, θ –

ρ = R (θ )

(3.51) k =

. (3.50),

v 2 + 9 ⋅ v ⋅ (1 − 1 K ) ⋅ cos ( 3 ⋅ θ )

,

(3.51)

:

2 2 v ⎡ u 2 ⎛ −3 ⋅ u ⋅ (1 − 1 K ) ⋅ sin ( 3 ⋅ θ ) ⎞ ⎤ ⋅⎢ +⎜ ⎟ ⎥ u2 ⎢ v2 ⎝ v2 ⎠ ⎥⎦ ⎣ 3

(3.52)

,

4

u = 2 ⋅ 2 ⋅ ( p* ⋅ tg β '+ d )

3 ; v = 1 + 1 K − (1 − 1 K ) ⋅ cos ( 3 ⋅ θ ) .

[89],

Oy k=

ϑ, s –

dϑ , ds

k

В

: (3.53)

,

.

k≤0

.

k ≥0,

, (3.50)

k 1

(3.44) (3.52). Н

. 0 ≤θ ≤π 3

(3.50)

(3.44)

(

-

( 3 ⋅ v )⎤⎦ , k [89] (3.52),

β '' = arctg ⎡ 2 ⋅ 2 ⋅ tg β ' ⎣ К (3.52),

(3.44) k1

)

.

sign [ k1 ] = sign [ k

И

(3.44) (3.52). ,

:

] = sign ⎣⎡8 ⋅ cos ( 3 ⋅θ ) ⋅ (1 − 1 K ) + 1 K + 1⎦⎤ .

(3.52)

[0;

, (3.50) k θ =0 ( . . 3.3). 0 ≤θ ≤π 3 k1

1

,

© В.Е. Селе

ев, В.В. Алеш

π 3]

-

( 0 < K < 1; 0 ≤ θ ≤ π 3) , С.Н. Прял в, 2007–2009

,

: (

.

(3.54)

(3.54)

(3.44)

2

. 2

.

. 3.3),

.

v

(3.52)

-

лава 3 305 _______________________________________________________________________________________

7 K≥ . 9

,

,

(3.44), (3.55)1.

K >7 9

,

K =7 9

,

,

θ = 0; 2π 3; 4 π 3 . В , (3.55) (3.55) , НД ,

И (3.46)

(3.55)

, -

,

[89]. (3.44). ϕ ≤ arcsin ( 3 8 ) ≈ 22° .

Н 22° [137, 138]. (3.44), – ,

Д , (3.44)

-



[48, 133]. (3.33),

.К , ,

-

[48, 133]: l 2 + q 2 − p ⋅ tg β '− d = 0,

l = d − pt ⋅ tg β ' ; pt – . Н . 3.5

(3.56) « p − q »,

(3.56). К (3.56),

,



, -

,

pt ,

Д

pt = d / tg β '

Н



,

-

. 3.5 (3.56) Д

. 3.6



.

(3.36). (3.56)

ϕ = 20°, c = 15 кПа

pt = 30кПа . Д Д –

,

(3.36), -

1

В

K ≥ 0, 778 .

. Н

K

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

КЭ[133]

-

(3.55)

306 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

.

,

,

(3.56), ( . 3.6).

-

и . 3.5. И ра е е ер л че ру ера – Пра ера (3.56) в л

и . 3.6. П верх ла че

К

верх е уче е е ара е р че

е уче (3.36) р

р

е ер л че ер ев ру ера – Пра ера

е

р ер я а « p−q »

(3.56)

,

.

XX Н

х

, 1

,

,

. -

[154]. Д

,

1

, . [131].

© В.Е. Селе

90-

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

, -

лава 3 307 _______________________________________________________________________________________

–В

ϕ, c . И

[154]

,

-

НД (3.42)

θ,

(3.47) –В

Rmw (θ ) =

1

(ε ⋅ c ⋅ tgϕ )

-

:

2

+ ( Rmw (θ ) ⋅ q ) − p ⋅ tgϕ − c = 0, 2

4 ⋅ (1 − e 2 ) ⋅ cos 2 θ + ( 2 ⋅ e − 1)

(3.57)

⎛π ⎞ ⋅ Rmc ⎜ ⎟ ; ε – ⎝3⎠ 2 ⋅ (1 − e ) ⋅ cos θ + ( 2 ⋅ e − 1) ⋅ 4 ⋅ (1 − e ) ⋅ cos θ + 5 ⋅ e − 4 ⋅ e 2

2

2

2

-

2

, ; Rmc (θ ) –

, ⎛ π ⎞ 3 − sin ϕ . Rmc ⎜ ⎟ = ⎝ 3 ⎠ 6 ⋅ cos ϕ

( . (3.50)), 0 ≤ θ ≤ 2π .



,

-

(3.33*),

(3.57) , , Rmw (θ )

–В

Д

; e –

0 ≤θ ≤ π 3. -

(3.57) –В

2

, , . (3.57)

–В (

) e

e=

И

–К

(3.33), (3.33*)

. (3.46)):

(

(3.57),

3 − sin ϕ . 3 + sin ϕ

(3.58)

,

1 2 ≤ e ≤1, , 0° ≤ ϕ ≤ 90° ,

( e (3.58)),

) (

.

[137, 138]. (3.57)

ε, ,

1

2

,

. 3.5.

–В

В Н

(3.57)

,

[0;π 3]

© В.Е. Селе

ев, В.В. Алеш

Rmw (θ )

.

, С.Н. Прял в, 2007–2009

C (1) .

-

308 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

– К θ = 0; π 3; 2 π 3, (3.57)

. ., (

ε =0 ,

. 3.3). В

.

-

–В

Н

. 3.7

-

–К

–В

. -

: ε = 0,3 ; e –

, ϕ = 40°, c = 45кПа

(3.58). . 3.8. –К

(3.44)

(3.57)

–К



. 3.8,

,

. – В

, (

)

– К НД

-

1

, .

3.4. Техноло ия чи ленно о анали а на я енно- е о и ованно о о очно и у о ово ных и е

ояния и о ен и

НД

В.В. А

[22, 23] . ,

-

, -

,

.

КЭ-

,

,

-

НД

. .Д «PipEst» [1, 3, 4, 6] КАИ «Alfargus» ( . Д «PipEst»

«Alfargus/StructuralAnalysis»

1.6). , «Alfargus/StructuralAnalysis»

, В.В. К ,

,

Rmw (θ )

, Rmw (θ )

© В.Е. Селе

.

«Alfargus/StructuralAnalysis» .

1

,

К.И. Д

-

ев, В.В. Алеш



1985

, С.Н. Прял в, 2007–2009

(

. [131]).

(3.57). В

лава 3 309 _______________________________________________________________________________________

и . 3.7. П верх

и . 3.8. Сече е ев а В л я а (3.57),(3.58); 2 –

3.4.1. Вы о

е

В

р

в

е уче

Ме е рэ – В л я а

л верх е е уче : 1 – Ме е рэ – е р ер я ру ера – Пра ера (3.44 – 3.46); 3 – М ра – Кул а (3.33)

о ели ования НДС

, НД

КЭ

, (

3.2)

. «Alfargus/StructuralAnalysis» [131]. Н

,

,

ово ов

КЭ. К

-

70«PipEst» НД «ANSYS» [130] «LS-DYNA»

, «PipEst»,

© В.Е. Селе

у о

ев, В.В. Алеш

2002 ,« «ANSYS» ( . 3.9) [3, 6].

, С.Н. Прял в, 2007–2009

»

310 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

и . 3.9. И

ер е

л

Н

ва еля выч л ел р ра ы «ANSYS»

ех

л

«PipEst» в ре е

,

НД

КЭ-

,

,

. В

,

«

3.2

НД

». «ABAQUS»1, «ANSYS» [5, 6].

, 3.4.2. Мо ели ование НДС

у о

«ABAQUS»

ово ных и

е

НД

[1, 3, 6], , . Д

,

, К .

В •

-

-

. В ,

,

:

,

;



, , .

1

В.В. К © В.Е. Селе

«PipEst» . ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

«ABAQUS»

лава 3 311 _______________________________________________________________________________________

, ,

• •

: ; –

;

• • •

,

; ;

, .

Н

1



(

. .)

, ,

. К

,

, -

,

-

.

,

(

)

,

, 2

. (



)

,

-

. В

3

, НД

,

(

КЭ-

. .),

, -

.

Ш

(

) ,

.

-

, Н

).

-

( ,

(

.

2),

,

Ч ,

. ,

, )

(

-

, . 1

-

.

2

Н

3

И

,



АЭ

» . В

-

.



НД 4.

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

312 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

(

)

-

, (

.

) , ,

[1, 3].

,

,

,

, .

[3].

.

В

. -

1.) . 2.)

(

3.)

,

). .

4.)

. -

НД

.

. 3.4.2.1. алочные

Н КЭ

о ели

у о

ово ов

НД

. В

(

) -

, [1, 3]. НД

, ,–

,

-

,

,

-

,

, ,

,

(

-

,

, ,

. .). ( ( )

. Н

, .

КЭ-

«

)



»(

.

3.3.2.1).

,

-

, (

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

лава 3 313 _______________________________________________________________________________________

),



. .

,

НД (

,

,

-

),

.Н «

,

» [138].

,

-

,

-

, ,

-

.

,

,

КЭ5. НД

.И -

, [1, 3].

.

Н

,

КЭН

, . .

КЭ-

. 3.10 К . КЭ, . 3.10

,

.

и . 3.10. ал ч ая КЭ-

,

ел

ру

р в

е ы КС ( ра

е

( . -

) , .

,

, С.Н. Прял в, 2007–2009

)

, , ,

ев, В.В. Алеш

)

,

НД

(

© В.Е. Селе

, -

,

,

314 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

.

В

-

НД



,

(

,

,

)

. Н

НД

,

. 3.11 .

и . 3.11. Э

ра

л [Н], в

а

х в ру р в ( ра е )

ах р

е

в

ра

ч х а ру

НД КЭ-

.

.

,

Н

НД . И

НД

-

.

И (

.

КЭ, -

1

[127, 128],

,



КЭ-

3.2)

(

)

.

.

,

КЭ, (

КЭ1

В

) КЭ,

© В.Е. Селе

,

-

, ),

,

( «

» НД

.

6). (

.

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 3 315 _______________________________________________________________________________________

НД

КЭ-

(

)

. 3.12. ,

,

, ,

-

.

и . 3.12. а

ре еле

е ру

е

В

рал

[1, 3, –

-

«Alfargus/StructuralAnalysis»,

олочечные

Н

е а

НД

КЭ-

4]. В [1, 3–5] «ANSYS». – , 3.4.2.2.

в а ря е [Па] а уча р в а ( ал ч ая КЭел )

КЭ-

о ели

у о

[6, 7].

ово ов

НД

-

. В ,

,

КЭ. -

-

КЭ.

,

3.3.2.2.

КЭ.

-

. 3.13.

и . 3.13. а че

© В.Е. Селе

ая

ев, В.В. Алеш

ел уча

а ру

е р в

, С.Н. Прял в, 2007–2009

ру ( ра

р в е )

а

е

р

ы

ру

316 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

КЭ-

КЭА

(

НД

. [1, 3]).

– В

,

, , (

НД

. .

) [1,

3–5]. [6, 7]. В

-

НД

( ,

)

. -

НД . 3.14.

и . 3.14. а

ре еле

е ру

е в р в а(

В

а ря е [Па] а уча л чеч ая КЭел )

е а

,

рал

, -

[150], , -



[123] 1

а а В

. Э

я [150]. ,

,

[48, 133, 146]

-

. Э

, . -

а а , (3.36) 1

В

© В.Е. Селе

,

, ев, В.В. Алеш

. Н

3.4.2.2, , С.Н. Прял в, 2007–2009

,

.

лава 3 317 _______________________________________________________________________________________

. ,

,

,

[48] -



1

– . -

. А [48] , .



. Н

(ϕ = 30° ) . К

. 3.15 2

. 3.15, .Н

. 3.16 ( . А

) . 3.16

-

, 1,4

.

а) ) и . 3.15. Ве р е ле ере е е в ру е р ев е е е ру р в а( р л е ече е) ля у ру - ла че х еле ру а а р ва ы (а) е ла а ы ( ) а а ече я

,

, .

НД ,

,

. 1

[48]

.

2

. ,

© В.Е. Селе

ев, В.В. Алеш

КЭ-

, ,

, С.Н. Прял в, 2007–2009

, .

-

318 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

и . 3.16. Зав

лы

е ные

3.4.2.3.

р

о ели

вле

у о

я ру а

ев

е е

я ру ы

ово ов

НД

, -

. В

,

,

(

,

), (

-

,

)

НД

,

-

. ,

, ,

. В

НД .

,

НД

, .

КЭ-

-

.

, (

. 3.17). КЭ-

.

КЭ-

. -

, , –

.

, 1

.

1

К

, .

, ,

НД . В , .

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

, ,

-

лава 3 319 _______________________________________________________________________________________

В

,

НД

, [1,

3–5]. [6, 7].

В

-

НД .

НД

-

КЭ-

. 3.18.

и . 3.17. а че

и . 3.18. а

ая

ре еле

ел уча

е

е

рр

в

а ру

ы

р в

рр

,

ев, В.В. Алеш

ы

а ря е [МПа] а уча е е а

Н

© В.Е. Селе

а

, С.Н. Прял в, 2007–2009

е е а

е ру

[1, 3, 6]. Н

р в

а

,

320 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

«Alfargus/StructuralAnalysis» [3].

,

НД .

3.4.3. Анали НДС и о ен а

очно

и

у о

ово ных и

е

,

НД «PipEst»

«Alfargus/StructuralAnalysis». Д

(

)

,

. ,

НД (



1.5), ,

,

. -

.

В

НД

.



НД

-

,

-

. Н НД

НД

.Д /

-

. Н . -

НД

-

. Д , ,

, .

, «Alfargus/StructuralAnalysis» Н

, (

.,

НД ,

.

1).

, © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

. , , -

лава 3 321 _______________________________________________________________________________________

.

.

3.4.4. Анали очно у о ово ов

.

и

иволине ных уча

ов

а и

альных

,

,

, [44, 137] ,

(

. 3.19). НД



,

,

,

-

, .

, .

НД

, В.В. А

НД , К.И. Д

-

.

В.В. К

-

НД

[4].

и . 3.19. ру

,

ч ы

КЭ-

НД

а

-

. К

, .

НД

-

. ( © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

КЭ-

)

322 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________ 1

, ,

-

,

. НД

,

,

. , : КЭ;

-

1) КЭ-

2)

,

,

,

.

δ = 13,5мм , σ Т = 488МПа ,

D = 1220 мм ,

:

σ в = 604 МПа ),

. 3.20

Х70 (

. 3.21. К

. 3.21,

-

, 328МПа .

и . 3.20. а

ре еле е е ла че

в

а ря е е а ру

[Па] в е ах ру ы р у ру ч а е

,

,

-

, ,

-

.

НД (

, .).

1

К

© В.Е. Селе

КЭев, В.В. Алеш

. , С.Н. Прял в, 2007–2009

,

лава 3 323 _______________________________________________________________________________________

и . 3.21. а

А ,

ре еле

в

НД .Н

е

е е

в я

ру

а ря е ч

КЭ-

[Па] в е ах ру ы а а

,

-

. 3.22

.

и . 3.22. а ре еле е х л у ы

К

е в в , р

е

а ря е в э

[Па] а уча е М , луа а ых а ру

. 3.22

( 461МПа )

,

( 488МПа ) .

-

) .

.

. 3.22), .

© В.Е. Селе

ер а е

-

(

(

ле

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

324 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

А

НД

КЭ-

.

-

, ,

[4]. .

НД

,

-

.

и . 3.23. Схе а

и . 3.24. Схе а

НД

В

в

а

в

е е

а

е е

Ч

1

, (

а в у ре

а в еш е

,

. 3.23). В ( . 3.24).

е

2

р

р

е

е

-



-

.

и . 3.25. И

е

в

а ря е [Па] а уча е х л а в у ре е р е

у

1

Ч 2

.

В

© В.Е. Селе

К.И. Д ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

.

в

а

е е

лава 3 325 _______________________________________________________________________________________

и . 3.26. И

Н

е

. 3.25

в

а ря е

[Па] а уча е х л а в еш е р е

у

а

е е

3.26

,

.

, -

, (

(

в

. 3.26).

. 3.25) 1,3 Ч

,

,

-

. НД

, «

»

-

. -

. Д «Alfargus/StructuralAnalysis». 3.4.5. Анали очно и уча ов о ве ших я э ава ии

а и

альных

у о

ово ов,

«PipEst» «Alfargus/StructuralAnalysis» , . [4]. К

-

В.В. А В.В.

«Alfargus/StructuralAnalysis» В

. ,

. .,

. Д , .

(

-

)

, -

. , -

, © В.Е. Селе

-

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

326 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

«

»

. 3.27). Д

( ,

-

,

.

и . 3.27. е

е

уча

аМ

НД

,



-

1

, (



.

. 3.27),

-

. ,

-

. . 2

НД (

,

,

)

3.4.2. В

НД

-

. ,

-

,

. 3.28.

А

«

,

. Н

(

»

,

,

. 3.29),

,

3

,

,

. 1

Д

,

, .

2

. 3

НД

© В.Е. Селе

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

лава 3 327 _______________________________________________________________________________________

и . 3.28. а че

и . 3.29. Вер

ал

ая

ые

ел уча

е е

а ру

я уча э

р в

а ру ава

а,

р в

вер ше

а

яэ

ру а

ава

е

ру а [м] р

-



1

-

:



,

. 2 3

.

ψ



0° ≤ ψ ≤ 45° .

h,

b

a 1

,

,

. 2

-

3

. ,

. . © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

,

328 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

( h ≥ 0,8 м; b ≥ 1м; a ≥ 0, 7 м ) .

,

• В

,

« 1

,

»

.

,

,

-

. , , .

,

, -

.В НД

, .

,

,

НД

,

,

В

. -

( ) ,

«

,

»

( .Э

Д

Д 148, 149]. В

) ,

.

7

, [143, -

, ,

«

»

[148].

, [137, 138] –

-

, .

И

,

,

, . 3.30.

α, (

В

,

7, ,

,

2

,

. ( 7.2)). ,

-

,

-

[137], , h90 ( . Н

1

7)

«

3

»

,

Н , ,

.

2

( ).

3

А

,

,

. © В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

(

. 3.31).

лава 3 329 _______________________________________________________________________________________

(

)

γ = 17000 Н м [137, 138]. В

( h90 ≈ 3 м )

3

c = 25кПа , ( 7.6), -

, [44].

и . 3.30. За ы а ра ше

и . 3.31. За ы а ра ше

ы уч

вя а

И

( ух

е ча ы ) ру

ы ( вер ы

л

ы ) ру

, ( а

а

а

.

. 3.30, 3.31),

х

х

.

: ч [149]

-

а -

,

. 3.32. , . .В

В.В.

[148] 50,

, ,

© В.Е. Селе

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

XX ,

.

330 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

(

.,

В.В. ,

, [148, 149]) .

,

, [143].

,

z ( x) = m ⋅ (1,57 − e − x m ) + x ⋅ tgϕ ,

[143], m=

-

2 ⋅ c ⋅ (1 + sin ϕ )

γ ⋅ (1 − sin ϕ )

; x –

; z ( x) –

(3.59)

, ,

.

и . 3.32. За ы а ра ше реал

ы

(3.59), z ( 0 ) ≠ 0 . Э

К

-

:

ру

,

-

,

. В

,

-

[148]:

q0 =

,

2 ⋅ c ⋅ cos ϕ . 1 − sin ϕ

(3.60) ,

h0 = q0 γ .

:

(3.61) .

-

,

,

. ,

. 3.32. .

( © В.Е. Селе

.

ев, В.В. Алеш

, . 3.33). , С.Н. Прял в, 2007–2009

M

-

лава 3 331 _______________________________________________________________________________________

и . 3.33. Схе а а ы

ра ше

ру

,

, ,

. , . 3.33). M)

M

(

.

(

, A)

( «

-

» MN . Э

, h0

(

. (3.61)),

, q0 ( . (3.60)). В ( ) .К , « »

M,

,

. В

-

MN

, ,

M,

. 1

, M,

-

:

1) 2)

,

; ,

( MN ,

3)

.

. 3.33)

;

,

(

M

). Д

,

, , . .

,

Н

(

КЭ-

1

A ( © В.Е. Селе

ев, В.В. Алеш

НД

.

. 3.33).

, С.Н. Прял в, 2007–2009

. )

-

332 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________ 1

.Н .Н

-

,

КЭ,

(

Д

)

КЭ-

(

)

, 3.4.2.3. НД -

(

,

[137, 138], -

), (

),

( В

M.

(3.59)). . 3.33

M

,

. 3.33. (

)

(

x 2 + y 2 − R 2 = 0,

. 3.33): R –

.

(3.62)

. (3.62):

0 ⎤ ⎡1 0 ⎢ C = ⎢0 1 0 ⎥⎥ . 2 ⎣⎢ 0 0 − R ⎦⎥

[89],

, (3.62).

[C ]

,

A

M:

⎧⎪ xM ⋅ x A + y M ⋅ y A − R 2 = 0; ⎨ 2 2 2 ⎪⎩ xM + y M − R = 0, ,

:

xM = R 2 − yM2 ;

yM =

, (3.64)

«

(3.63)

y A ⋅ R 2 ± x A2 ⋅ R 2 ⋅ ( x A2 − R 2 + y A2 )

x A = R + b + ( a + 2 ⋅ R + h ) ⋅ tgψ , y A = R + h –

M, , -

x A2 + y A2

.

(3.64) -

A

. 3.33. Д ».

НД -

.

, 2

-

. 1

Д

:

; (

2

© В.Е. Селе

, ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

.

3.3.2.1). .

лава 3 333 _______________________________________________________________________________________

Д

1

-

, .

, -

.

Д

, ,

,

,

.

,

, . , ,

-

, . , ,

,

-

ЭК.

-

, И

-

. ,

, -

. ( M)

-

, (

A ).

. 3.34.

и . 3.34. Схе а

л, е

ву

х а верх

ча

ру а а ы

НД

1

, © В.Е. Селе

.

ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

334 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

И

, R0 + R1 + R 2 − W = 0,

3.34: W = γ ⋅V –

(3.65)

1

;V –



; R 0, R1, R 2 ,

Oy

В

.

,

Oy

. (3.65) ,

(

Oxy )

R0 =



xB

,

q ( x ) dx, R1 =

q ( x ) , p1 ( y ) , p2 (ζ ) – xM



p1 ( y ) ⋅

yA

yB

-

cos ξ dy, R 2 = cosψ

∫ R ⋅ p (ζ ) ⋅ cos ξ (ζ ) dζ ,

ζM

2

-

; ξ –

Oy ; ζ –

(3.66)

0

,

-

q ( x ) , p1 ( y ) , p2 (ζ )

Oy .

2

. В ,

Д

-

. А

. , R 0, R1, R 2 . Н R0 . Н

-

. 3.35

3

MB (

. 3.34). К

.

, ,

MB

(

MD (

.

. 3.34)),

. ,

(

)

q

, q0 ,

DB

(3.60).

R 0 = q ⋅ S DB ,

, S DB –

(3.67) .

DB

-

Oy

R1 . Д

, AB (

1

Ш

2

К

Oz )

(

, . . 3.34). В [143, 148, 149].

,

. ,

-

. 3

Д

© В.Е. Селе

, ев, В.В. Алеш

-

, С.Н. Прял в, 2007–2009

. 3.35.

лава 3 335 _______________________________________________________________________________________

и . 3.35. Э

ра авле

я [Па] верх е ча

а

ча

а

ва ру а а ы

В «

»

(

)

(

«

и . 3.36. а че

ая хе а а

в

авле

я ру а а а л

у

е у

1

θ

, AB ,



. -

AOB . Д

-

AOB

:

W

Ea ,

Ea (

W,

)

Rg .

θ.

В

© В.Е. Селе



,

. 3.36. Н .

1

»

)

,

. ев, В.В. Алеш

, С.Н. Прял в, 2007–2009

-

336 Ч ле ы а ал р ч ру р в ых е _______________________________________________________________________________________

И

θ

, , :

k=

Ea =

(1 + z )

cos 2 (ϕ − ψ ) 2

γ ⋅ h2 2

⋅k −

⋅ cos 2 ψ ⋅ cos (ψ + δ )

В

c⋅h ⎛ k ⋅ cosψ ⎞ ⋅ ⎜1 − ⎟, ⎜ tgϕ ⎝ cos (α − ψ ) ⎠⎟

sin (ϕ + δ ) ⋅ sin (ϕ − α )

z=

;

dEa / dθ = 0 ,

cos (ψ + δ ) ⋅ cos (ψ − α )

,

(α > ϕ )

(3.68) (ψ > 65° ) [149]. В

,

.

δ

Ea 0