Математическое моделирование технологического оборудования 5-94275-107-2

В монографии рассматриваются вопросы разработки аппаратурного оформления многоассортиментных химических производств. При

183 54 782KB

Russian Pages 72 Year 2004

Report DMCA / Copyright

DOWNLOAD PDF FILE

Математическое моделирование технологического оборудования
 5-94275-107-2

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

ȿ.ɇ. Ɍɭɝɨɥɭɤɨɜ

ɆȺɌȿɆȺɌɂɑȿɋɄɈȿ ɆɈȾȿɅɂɊɈȼȺɇɂȿ ɌȿɏɇɈɅɈȽɂɑȿɋɄɈȽɈ ɈȻɈɊɍȾɈȼȺɇɂə ɆɇɈȽɈȺɋɋɈɊɌɂɆȿɇɌɇɕɏ ɏɂɆɂɑȿɋɄɂɏ ɉɊɈɂɁȼɈȾɋɌȼ

ɆɈɋɄȼȺ «ɂɁȾȺɌȿɅɖɋɌȼɈ ɆȺɒɂɇɈɋɌɊɈȿɇɂȿ-1» 2004

ȿ.ɇ. Ɍɭɝɨɥɭɤɨɜ ɆȺɌȿɆȺɌɂɑȿɋɄɈȿ ɆɈȾȿɅɂɊɈȼȺɇɂȿ ɌȿɏɇɈɅɈȽɂɑȿɋɄɈȽɈ ɈȻɈɊɍȾɈȼȺɇɂə ɆɇɈȽɈȺɋɋɈɊɌɂɆȿɇɌɇɕɏ ɏɂɆɂɑȿɋɄɂɏ ɉɊɈɂɁȼɈȾɋɌȼ

«

-1» 2004

66.01.011 11-1 116 81

А.Ф. .И.

о о , о е

: , ,

Ɍɭɝɨɥɭɤɨɜ ȿ.ɇ. 81

.

.: «

-1», 2004. 100 .

. ; ,

-

,

. .

, .

, -

,

. 66.01.011 11-1 116

ISBN 5-94275-107-2

  « -1», 2004

-

. ., 2004 -

. . . . 60 × 84/16.

27.02.2004 : 5,81

« 107076,

Times. . . .; 5,60 .400 . . 171

. . .

-1», ., 4

, -

392000,

,

, 106, . 14

ȼȼȿȾȿɇɂȿ -

, ,

,

.

. ,

,

,

-

, .

.

,

-

. . , ,

. -

,

. «

-

»

,

,

,

. .

,

,

«

,

, –

,

-

»,

. .

,

,

«

»,

,

«

. .

-

»

. .

,

-

. ,

. .

.

1 ɁȺȾȺɑȺ ɊȺɁɊȺȻɈɌɄɂ ȺɉɉȺɊȺɌɍɊɇɈȽɈ ɈɎɈɊɆɅȿɇɂə ɋɈȼɊȿɆȿɇɇɈȽɈ ɉɊɈɆɕɒɅȿɇɇɈȽɈ ɏɂɆɂɑȿɋɄɈȽɈ ɉɊɈɂɁȼɈȾɋɌȼȺ ,

-

, ,

-

,

. ,

[6]. .

:



-

, ,



, ,

; ,

,

;

• •

; ;



,

,

,

. ,

-

, . :



,

-

, ;



, (

,

)

. :

• • •

; ; -

;



;

• • • •

; ; ; ;

• •

; . , . ,

.

,

, , . -

,

, . ,

,

,

-

. ,

-

-

,

. . , -

,

-

,

-

,

,

,

,

,

,

, ,



-

, . , , ,

,

-

.

,

. , .

,

– .

-

,

, ,

-

. ,

,



-

, , . ,

(

,

).



; ;

;

;

. CALS-

(CALS – Continuous Acquisition and Life-cycle Support – ). ,

. . ,

. ,

.

,

,

,

; ,

; ,

-

. , . ,

,

, ,

, ,

-

. , ,

, .

,



-

. , ,

.

, -

, . , ( –

-

),

. ,

.

,

,

,

,

,

. ,

-

. , ,

, ,

,

-

. . , . (

,

;

.). .

-

(

) .

,

,

-

, .

, ,

,

-

, ,

. .

,

,

; ,

(

);

. .

-

, . , ,

-

. .

-

, . (

,

-

, ).

, ,

,

.

, ,

,

,

,

. ,

,

-

,

, ,

.

,

-

, ,

,

, ,

.

, . ,

,

-

,

. ,

,

-

, . , , . ,

,

. ,

.

,

,

, ,

.

, . , . ,

,

-

:

• • •

; (

)

;

;

; ,

;

-

;



,

• • •

,

;

,

,

; ; ,

,

;

• •

; :

,

,

;



. ,

,

. . , ,

, .

-

, ,

. -

, . , .

( -

,

,

,

,

,

. .).

,

. ,

. ,

,

. -

, -

.

,

, -

, . ,

-

, . ,

,

,

. ,

-

. ,

-

, ,

. .

-

: .

-

( , ). ,

-

,

,

,

, ,

,

-

. (

) ,

,

,

. .

,

,

.

,

-

. . ,

.

, (



).

1

( ,

,

). (

2

;

; ; 3

-

, ).

,

,

,

(

,

,

,

,

-

). 4

,

, -

, (

, ,

,

,

-

).

5

; ( ,

,

)

.3( ).

6

(

7

,

,

,

). ,

(

-

). 8

( ,

,

). 9

,

(

,

,

,

,

-

).

10

( ,

).

11

(

,

).

12 (

,

).

13 (

).

14 ,

,

,

,

-

.3( ).

2 ɁȺȾȺɑȺ ɈɉɊȿȾȿɅȿɇɂə ɄɈɇɋɌɊɍɄɌɂȼɇɕɏ ɏȺɊȺɄɌȿɊɂɋɌɂɄ ɉɊɈɂɁȼɈȾɋɌȼȿɇɇɈȽɈ ɈȻɈɊɍȾɈȼȺɇɂə ɂ ɊȿɀɂɆɈȼ ȿȽɈ ɊȺȻɈɌɕ , ,

,

-

.

,

-

,

,

,

.

, .

,

. -

,

,

.

; ;

. ,

,

. .

, ,

,

, .

( . .

) .

,

,

, (

,

-

,

,

,

) ,

,

,

,

,

,

-

. . -

, .

, .

. . , , . , ,

, (

, ,

-

. .). , . ,

. -

,

«

"



.

. .

,

«

»,

»,

« ,

-

-

. ,

-

,

. ,

,

-

, (

,

,

,

,

). . ,

. . . 2.1. ɗɥɟɦɟɧɬɚɪɧɚɹ

Ʉɨɠɭɯɨɬɪɭɛɱɚɬɵɟ

ȿɦɤɨɫɬɧɨɟ

Ʉɨɥɨɧɧɵɟ

Ⱥɩɩɚɪɚɬɵ ɫ

Т

ɋɨɪɛɰɢɨɧɧɨɟ

А

К

Ʌɟɧɬɨɱɧɨɟ

ɋɭɲɢɥɶɧɨɟ

Т

Р

,

,

, .

, -

Ɍɪɚɧɫɩɨɪɬ

Ɋɢɫ. 2.1 Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɷɥɟɦɟɧɬɚɪɧɵɯ ɨɛɥɚɫɬɟɣ . –

[5].

-

, ,

: ρ

τ;

t = t (α, β, γ, τ)

∂t – ∂τ



dp dt = div (λ ∇ t ) + QV + + η ΦV + SV , dτ dτ

(2.1)

α, β, γ

,

; div (λ ∇ t ) –

x, y , z :

div (λ ∇ t ) =

;ρ–

– ;

V



;τ–

 ∂ 2t ∂ 2t ∂ 2t ∂λ ∂t ∂λ ∂t ∂λ ∂t +λ 2 + + + + ∂x ∂x ∂x ∂y ∂y ∂z ∂z ∂ y2 ∂ z2 

;λ– ; dp / dτ –

; QV – ;η–

; SV – ; vx, vy, vz –

. :

 ;  

(2.2) -

∂t d t ∂t ∂t ∂t + vz +vy + vx = ∂z d τ ∂τ ∂y ∂x

.

(2.3)

,

-

. :

• • • • • •

(QV); (QV); (QV); ,

(

V);

( ,

V);

,

,

-

(QV, SV);



,

(dp / dτ). ,

,

,

,

,

,

-

. ,

. .

,

. , .

-

– -

,

,

, .

-

,

-

,

, . . ,

. . ,



-

. ,

.

– (

)

. . -

. (

)

-

. ,



: (

)

,

; -

,



,

;



,

,

(

,

,

) -

. (

)

, .

,

, ,

,

.

, .

, , , ,



,

-

– . ,

.

,

-

, ,

,

. , ,

,

,

. . , . ,

-

. ,

-

,

, .

-

(8.12). ,

. .

,

, . ,

, . -

. ,

.

. . , ,

;

-

,



. ,

-

. ,

, .

, ,

.

, (

-

– ).

. ,

,

-

, . :

,

,

,

-

,

. . -

; . . ,

,

. ,

, .

, -

, , . .

-

-

,

,

. , . -

,

. ,

-

. ,

(

,

)

-

. -

. ,

, , .

-

, (

,

) ,

.

, , . ,

.

,

,

,

,

.

, ,

, -

,

.

,

, . -

, . 3 ɂɋɉɈɅɖɁɈȼȺɇɂȿ ɆȿɌɈȾȺ ɄɈɇȿɑɇɕɏ ɂɇɌȿȽɊȺɅɖɇɕɏ ɉɊȿɈȻɊȺɁɈȼȺɇɂɃ ȾɅə Ɋȿɒȿɇɂə ɆɇɈȽɈɆȿɊɇɕɏ ɂɅɂ (ɂ) ɆɇɈȽɈɋɅɈɃɇɕɏ ɁȺȾȺɑ ɌȿɉɅɈɉɊɈȼɈȾɇɈɋɌɂ , ( )

. -

«

»

. .

,

, ,

• •

:

; ,

-

( );



( ,



)

-

,

; ,

. , ( )

-

,

,

,

, . , ,

,

-

[4]. , .

,

-

, . ,

-

, . , .

; .

. -

, . 4 ɆȿɌɈȾɂɄȺ Ɋȿɒȿɇɂə ɅɂɇȿɃɇɈɃ ɈȾɇɈɆȿɊɇɈɃ ɁȺȾȺɑɂ ɌȿɉɅɈɉɊɈȼɈȾɇɈɋɌɂ ȾɅə ɆɇɈȽɈɋɅɈɃɇɈɃ ɈȻɅȺɋɌɂ ɄȺɇɈɇɂɑȿɋɄɈɃ ɎɈɊɆɕ .

, ,

(

. 4.1). , .

-

∂ t (r , τ)  ∂ ti (ri , τ) 2  ∂ 2ti (ri , τ) + Qi (ri , τ); + Ak ,i i i = ai 2  ∂r ∂ ri  ∂τ i 

i = 1, 2, ..., N ;

λ1

ti (ri , 0 ) = f i (ri ) ;

(

(

λ i , ai2

i-

;τ– Qi(ri, τ) –

;

(4.2)

)

)

(

)

λj

j = 1, 2, ..., N − 1.

(

∂t j Rj,τ ∂ rj

)=λ

j +1

α1 < 0 ;

(4.3)

)

(4.4)

(

∂ t j +1 R j , τ ∂ r j +1

ii-

,

(4.5)

; ti(ri, τ) – ; ; Ak, i –

: k = 0, A0,i = 0; k = 1, A1, i = 1/ri; k = 2, A2, i = 2/ri;

α1, αN – tc1(τ), tcN(τ) – .

; ; Ri – 1, Ri –

i-

r, :

, U (µ, τ) =



,

(

),

;N–



ρ(r )

τ > 0;

∂ t N (R N , τ ) + α N t N (R N , τ) − t c N (τ) = 0 . ∂ rN

t j R j , τ = t j +1 R j , τ ;

r–

k = 0, 1, 2;

∂ t1 (R0 , τ) + α1 t1 (R0 , τ) − t c1 (τ ) = 0; ∂ r1

λN

(

Ri −1 ≤ ri ≤ Ri ;

(4.1)

µ–

∑ N

λm

∫ ρ (rm )tm (rm , τ)Wm (rm , µ)drm ,

Rm

2 m =1 am 0

d ρ(rm ) − Ak , m ρ(rm ) = 0. dr

Wm (rm , µ )

(4.6)

(4.7) –

-

, ):

d 2Wm (rm , µ ) d rm2

+ Ak ,m

m = 1, 2, ..., N ,

d Wm (rm , µ ) d rm

+

Rm −1 ≤ rm ≤ Rm ;

µ2 am2

Wm (rm , µ ) = 0 ;

(4.8)

λ1 λN

(

)

d W1 (R0 , µ ) + α1 W1 (R0 , µ ) = 0 ; d r1

d W N (R N , µ ) + α N W N (R N , µ ) = 0 ; d rN

(

)

W j R j , µ = W j +1 R j , µ ; λ j

(4.8)

(

d Wj R j ,µ d rj

)=λ

j = 1, 2, ..., N − 1.

j +1

(

d W j +1 R j , µ d r j +1

 r  + C 2 m exp  − m  2 



2   A + A2 − 4 µ k m k m , , 2  am 

2   A − A2 − 4 µ k m k m , ,  a m2 

  +      .   

(4.11)

(4.12)

 µ   µ  Wm (rm , µ )= C1m sin  rm  + C 2m cos  rm  . a  m   am 

(4.13)

 µ   µ  Wm (rm , µ ) = C1m J 0  rm  + C 2 m Y0  rm  ,  am   am 

(4.14)

,

. Wm (rm , µ )=

1m

),

(4.10)

[3]:  r  Wm (rm , µ ) = C1m exp  − m  2 

J 0 ( z ), Y0 ( z )

(4.9)

 µ   µ  1  C1m sin  rm  + C 2m cos  rm   .  zm   am   am  

2m

(4.9) – (4.11),

(4.15)

11 = 1.

(4.6)

(4.1)

(4.2). (4.6)

(4.3)

– (4.5). :

d U (µ n , τ) + µ n2 U (µ n , τ) = G (µ n , τ) + dτ

α α + N W (R N , µ n )t c N (τ) − 1 W (R1 , µ n )t c1 (τ); λ λ

U (µ n , 0) =

τ):

(4.17) –

; G(µn, τ) –

∑ N

λm

∫ ρ(zm ) f m (rm )Wm (rm , µn ) drm ,

(4.16)

Rm

2 m =1 am Rm −1

(4.17)

Qm(zm,

G(µ n , τ) =

(4.16) – (4.17)

∑ N

∫ ρ(zm )Qm (rm , τ)Wm (rm , µn ) drm .

λm

Rm

2 m =1 am Rm −1

[3]:

(

)

U (µ n , τ ) = exp − µ n2 τ ×

( )

τ   × U (µ n , 0) + ∫ (G (µ n , τ) + FW ( µ n , τ) ) exp µ n2 τ dτ  ,   0  

FW (µ n , τ) =

(4.18)

(4.19)

αN α W (RN , µ n )tcN (τ) − 1 W (R0 , µ n )tc1 (τ) . (4.20) λ λ

: t m (rm , τ ) = Sn =

∑ N

m =1

∫ ρ (rm ) Wm (rm , µ n ) dz m .

λm

Rm

a m2

Rm −1

2

U (µ n , τ ) Wm (rm , µ n ) , Sn n =1

∑ ∞

(4.21)

(4.22)

5 Ɋȿɒȿɇɂȿ ɁȺȾȺɑɂ ɌȿɉɅɈɉɊɈȼɈȾɇɈɋɌɂ ȾɅə ɉɈɅɈȽɈ ɈȽɊȺɇɂɑȿɇɇɈȽɈ ɐɂɅɂɇȾɊȺ ɋ ɎɍɇɄɐɂɈɇȺɅɖɇɈ ɆȿɇəɘɓȿɃɋə ɌȿɆɉȿɊȺɌɍɊɈɃ ɈɄɊɍɀȺɘɓȿɃ ɋɊȿȾɕ ɋɈ ɋɌɈɊɈɇɕ ȻɈɄɈȼɕɏ ɉɈȼȿɊɏɇɈɋɌȿɃ , . ,

,

-

, . (

. 5.1). -

: ∂ t (x, r , τ) 2  ∂ 2t (x, r , τ) ∂ 2t (x, r , τ) 1 ∂ t (x, r , τ)  =a + + , 2   ∂ x2 ∂τ r ∂r r ∂   0 ≤ x ≤ l , R0 ≤ r ≤ R1 , τ > 0 ; x

t0

α2

1 tv(x, τ) α0

λ c

t (x, τ) αc

(5.1)

Ɋɢɫ. 5.1 ɉɨɥɵɣ ɨɝɪɚɧɢɱɟɧɧɵɣ ɰɢɥɢɧɞɪ ɫ ɩɟɪɟɦɟɧɧɵɦɢ ɬɟɦɩɟɪɚɬɭɪɚɦɢ ɫɬɨɪɨɧɵ ɛɨɤɨɜɵɯ ɩɨɜɟɪɯɧɨɫɬɟɣ

ɨɤɪɭɠɚɸɳɟɣ ɫɪɟɞɵ ɫɨ

t ( x, r , 0) = f ( x, r ) − t c 0 ;

λ

∂ t (0, r , τ) + α1 t (0, r , τ) = 0; α1 < 0 ; ∂x

(5.3)

∂ t (l , r , τ) + α 2 t (l , r , τ) = 0 ; ∂x

(5.4)

λ λ

(5.2)

∂ t (x, R0 , τ) + α 0 (t (x, R0 , τ ) − t v (x, τ) + t c 0 ) = 0; α 0 < 0 ; ∂r λ

∂ t (x, R1 , τ ) + α c (t (x, R1 , τ ) − t c (x, τ ) + t c 0 ) = 0 . ∂r

(5.5)

(5.6) -

. (5.1) – (5.6)

-

,

. T (r , τ ) = ∫ t (x, r , τ) S (µ, x ) dx ; l

(5.7)

0

S (µ, x) –

,

-

: d 2 S ( x) = − µ 2 S ( x) ; dx

(5.8) – (5.10)

(5.8)

λ

d S ( 0) + α1 S (0) = 0 ; dx

(5.9)

λ

d S (l ) + α 2 S (l ) = 0 . dx

(5.10) :

S ( x) = sin(µ x + ϕ) ,

λµ  ; ϕ = − arctg   α1 

µn – n-

(5.11)

(5.12) α 3 sin (µ l + ϕ) + λ µ cos (µ l + ϕ) = 0 .

t ( x , r , τ) =



∑ ∞

n =1

N n = S 2 ( µ n , x ) dx =

(5.13)

T ( r , τ ) S (µ n , x ) , Nn

(5.14)

l

( (

) (

)

( ) ( ))

 1 sin µ nl + ϕ n cos µ nl + ϕ n − sin ϕ n cos ϕ n = 0,5  l −  µn 0

(5.1) – (5.6)

 .  

(5.15)

:  ∂ 2 T ( r , τ) 1 ∂ T ( r , τ)  ∂ T ( r , τ) + µ 2 T ( r , τ)  ; + = a2    ∂τ r ∂r  ∂r  T ( r , 0) =

∫ ( f ( x, r ) − t c0 ) S (µ, x ) dx ;

(5.16)

l

(5.17)

0

λ

λ U (τ ) =

∫ (t v (x, τ) − tc0 ) S (µ, x ) dx ;

∂ T (R0 , τ ) + α 0 (T (R0 , τ ) − U (τ )) = 0 ; ∂r

∂ T (R1 , τ) + α c (T (R1 , τ) − W (τ)) = 0 , ∂r

(5.18)

(5.19)

l

(5.20)

0

W (τ ) =

∫ (tc (x, τ) − tc0 ) S (µ, x ) dx . l

(5.21)

0

r

-



V (τ ) = T (r , τ ) r P (η, r ) dr ; R1

R0

T (r , τ ) =

P (η, r )

∑ ∞

k =1

P (η k , τ ) V (τ ) , Zk

(5.22)

(5.23)

d 2 P( r ) 1 d P (r ) 2 + + η P(r ) = 0 ; r dr d r2 λ

λ

(5.24)

∂ P(R0 ) + α 0 P(R0 ) = 0 ; ∂r

(5.25)

∂ P(R1 ) + α c P(R1 ) = 0 . ∂r

(5.26)

[3]: P (r ) = J 0 (η r ) + A Y0 (η r ) ,

A=

ηk

η λ J1 (η R0 ) − α 0 J 0 (η R0 ) , − η λ Y1 (η R0 ) + α 0 Y0 (η R0 )

(5.27)

(5.28)

– kη λ J1 (η R0 ) − α 0 J 0 (η R0 ) η λ J1 (η R1 ) − α c J 0 (η R1 ) . (5.29) = − η λ Y1 (η R1 ) + α c Y0 (η R1 ) − η λ Y1 (η R0 ) + α 0 Y0 (η R0 )

Z k = ∫ r P 2 (r ) dr = R1

R0

(

)

R12 (J 0 (ηk R1 ) + Ak Y0 (ηk R1 ))2 + (J1 (ηk R1 ) + Ak Y1 (ηk R1 ))2 − 2 R2 − 0 (J 0 (η k R0 ) + Ak Y0 (η k R0 ))2 + (J 1 (ηk R0 ) + Ak Y1 (η k R0 ))2 . 2

=

(

(5.22)

)

(5.30)

(5.16) – (5.19),

:

α R2 α R2 d V (τ ) + η k2 a 2 V (τ) = 0 0 P(R0 )U (τ) + c 1 P(R1 )W (τ); dτ λ λ V (0) =

∫ ∫ ( f (x, r ) − tc0 ) S (x ) r P(r ) dx dr .

(5.31)

R1 l

(5.32)

R0 0

(5.31) – (5.32)

(

)

 R1 l V ( τ ) = exp − η 2k a 2 τ  ∫ ∫ ( f (x, r ) − t c0 ) S (x ) r P (r ) dx dr + R 0  0

(

)

α a 2 R0 + 0 P(R0 ) ∫ ∫ (t v (x, τ) − t c0 ) S (x ) exp η 2k a 2 τ dx dτ + λ 00 τ l

+

(

)

τ l  α c a 2 R1 P(R1 ) ∫ ∫ (t c (x, τ) − t c 0 ) S (x ) exp η 2k a 2 τ dx dτ  .  λ 00 

(5.33)

t ( x, r , τ) =

∑∑

V (τ) P(r ) S ( x) . Nn Zk n =1 k =1 ∞



(5.34)

,

, -

, . ∂ t ( x, r, τ) 2  ∂ 2t ( x, r, τ) ∂ 2t ( x, r, τ) 1 ∂ t ( x, r, τ)  ; =a + + 2  ∂ x2 r ∂τ ∂r  r ∂   0 ≤ x ≤ l , R0 ≤ r ≤ R1 , τ > 0 ; t ( x, r , 0) = f ( x, r ) − t c 0 ;

λ

∂ t (0, r , τ) = 0; ∂x

(5.37)

∂ t (l , r , τ) = 0; ∂x

(5.38)

∂ t (x, R1 , τ ) + α c (t (x, R1 , τ ) − t c (x, τ ) + t c0 ) = 0 . ∂r

,

(5.10):

(5.40)

(5.41)

∂ S (l ) = 0. ∂x

(5.42)

(5.11): S ( x) = cos (µx) .

(5.43)

(5.12): ϕ = 0 . (5.13): µ n =

(5.39)

.

∂ S (0) = 0. ∂x

(5.9):

(5.36)

∂ t ( x, R0 , τ) + α 0 (t ( x, R0 , τ) − t v ( x, τ) + t c 0 ) = 0 ; α 0 < 0 ; ∂r λ

(5.35)

(5.44)

πn . l

(5.45)

(5.15):



  1 N n = S 2 ( µ n , x ) dx = 0,5  l + sin (µ n l ) cos (µ n l ) .  µn  0 l

(5.17): T (r , 0) = ∫ f ( x, r ) S (µ, x ) dx . l

0

(5.47)

(5.46)

(5.20): U (τ) = ∫ t v ( x, τ) S (µ, x) dx . l

(5.48)

0

(5.21): W (τ) = ∫ tc ( x, τ) S (µ, x) dx . l

(5.49)

0

(5.32): V (0) =

∫ ∫ f ( x, r ) S ( x) r P(r ) dx dr .

R1 l

(5.50)

R0 0

(5.33):

(

)

 R1 l V (τ) = exp − η 2k a 2 τ  ∫ ∫ f ( x, r ) S ( x) r P (r ) dx dr + R 0  0 +

+

(

)

α 0 a 2 R0 P(R0 ) ∫ ∫ t v ( x, τ) S ( x) exp η 2k a 2 τ dx dτ + λ 00 τ l

(

)

(5.51)

τ l  α c a 2 R1 P(R1 ) ∫ ∫ t c ( x, τ) S ( x) exp η2k a 2 τ dx dτ  .  λ 00 

6 Ɋȿɒȿɇɂȿ ɁȺȾȺɑɂ ɋɌȺɐɂɈɇȺɊɇɈɃ ɌȿɉɅɈɉɊɈȼɈȾɇɈɋɌɂ ȾɅə ɋɈɋɌȺȼɇɈȽɈ ɄɈɇȿɑɇɈȽɈ ɐɂɅɂɇȾɊȺ

; ,

;

, . (

.

,

, ,

. .

x

α3 tc3

1

α1 tc1 0

R

r α2 tc2

h y

α4 tc4

. 6.1)

.

4.

,

Ɋɢɫ. 6.1 ɋɨɫɬɚɜɧɨɣ ɤɨɧɟɱɧɵɣ ɰɢɥɢɧɞɪ

∂ 2 t1 (x, r ) ∂ 2 t1 (x, r ) 1 ∂ t1 (x, r ) + = 0, 0 ≤ x ≤ l , 0 ≤ r ≤ R ; + r ∂r ∂ r2 ∂ x2 ∂ 2 t 2 ( y, r ) ∂ 2t 2 ( y, r ) 1 ∂ t 2 ( y, r ) + + = 0, 0 ≤ y ≤ h ; ∂r r ∂ y2 ∂ r2 λ1

∂ t1 (l , r ) + α 3 (t1 (l , r ) − t c3 ) = 0 ; ∂x

λ1

∂ t1 (x, R ) + α1 (t1 (x, R ) − t c1 ) = 0 ; ∂r ∂ t1 (x, 0 ) = 0; ∂r ∂ t 2 (h, r ) + α 4 (t 2 (h, r ) − t c 4 ) = 0 ; ∂y

λ2

∂ t 2 ( y, R ) + α 2 (t 2 ( y, R ) − t c 2 ) = 0 ; ∂r ∂ t 2 ( y, 0) = 0; ∂r

(6.3)

(6.4)

(6.6)

(6.7)

(6.8)

t1 (0, r ) = t2 (0, r ).

(6.9)

∂ t1 (0, r ) ∂ t (0, r ) = − λ2 2 . ∂x ∂y

. .

(6.2)

(6.5)

λ2

λ1

(6.1)

(6.10)

: ∂ 2 t1 (x, r ) ∂ 2 t1 (x, r ) 1 ∂ t1 (x, r ) = 0, 0 ≤ x ≤ l , 0 ≤ r ≤ R ; + + r ∂r ∂ r2 ∂ x2

λ1

∂ t1 (l , r ) + α 3 (t1 (l , r ) − t c3 ) = 0 ; ∂x

λ1

∂ t1 (x, R ) + α1 (t1 (x, R ) − t c1 ) = 0 ; ∂r

(6.12)

(6.13)

∂ t1 (x, 0 ) = 0; ∂r

λ1

(6.14)

∂ t1 (0, r ) = − m (r ). ∂x

(6.15)

(6.11) – (6.15) .

(6.11)

r

:



T (x, µ ) = ρ(r )t1 (x, r ) P(r , µ ) dr , R

(6.16)

0

ρ( r ) = r



,

[4] d ρ(r ) ρ(r ) − = 0. dr r

(6.17)

P ( r , µ)

(

µ–

): d 2 P(r , µ ) 1 d P(r , µ ) 2 + + µ P(r , µ ) = 0 ; r dr d r2 λ1

d P (R , µ ) + α1 P ( R , µ ) = 0 ; dr

(6.19)

d P(0, µ ) = 0. dr

(6.18) – (6.20)

(6.20)

: P(r , µ ) = J 0 (µ r ),

µ–

(6.18)

(6.21)

α1 J 0 (µ R ) − µ λ1 J 1 (µ R ) = 0 .

(6.22)

:



t1 (x, r ) =



n =1

T (x, µ n ) P(r , µ n ) , Zn

(

(6.23)

)

Z n = ∫ r P 2 (r , µ n ) dr = ∫ r J 02 (r , µ n ) dr = 0,5 R 2 J 02 (µ n R ) + J 12 (µ n R ) . R

R

0

0

(6.24) J 0 ( x), J1 ( x)



, (6.16)

.

(6.11) – (6.15),

: d 2 U ( x, µ ) d x2

− µ n2 U (x, µ ) = 0 ;

d U (l , µ ) + α 3 U (l , µ ) + S = 0 ; dx

λ1

λ1 U ( x, µ ) = T ( x, µ ) − K ;

d U (0, µ ) = M. dx

(6.25)

(6.26)

(6.27)

(6.28) K =

α1 R t c1 λ1 µ 2

J 0 (µ R );

  R t c3 S = α 3  K − J 1 (µ R ) ; µ   M = − ∫ r m(r ) J 0 (µ r ) dr .

(6.29)

(6.30)

R

(6.31)

0

(6.25) – (6.27)

[3]: U (x, µ ) = A sh (µ x ) + B h (µ x ),

A

B

(6.32)

(6.26) – (6.27): A=

M ; λ1 µ

(6.33)

B=− C = h (µ l ) +

α3 sh (µ l ) ; λ1 µ

S+M C , D

(6.34)

(6.35)

D = α 3 ch (µ l ) + λ1 µ sh (µ l ).

(6.36)

(6.11) – (6.15):

t1 (x, r ) =

∑ ∞

n =1

J 0 (r µ n )  M n S + M n Cn  sh (µ n x ) − n h (µ n x ) + K n  Zn Dn  λ1 µ n

 .  

(6.37) , (6.15):

(6.11) –

∂ 2 t 2 ( y, r ) ∂ 2t 2 ( y, r ) 1 ∂ t 2 ( y, r ) + + = 0, 0≤ y ≤ h, 0 ≤ r ≤ R; ∂r r ∂ y2 ∂ r2

λ2 λ2

∂ t 2 (h, r ) + α 4 (t 2 (h, r ) − t c 4 ) = 0 ; ∂y

∂ t 2 ( y, R ) + α 2 (t 2 ( y, R ) − t c 2 ) = 0 ; ∂r ∂ t 2 ( y, 0) = 0; ∂r

λ2

(6.38)

(6.39)

(6.40)

(6.41)

∂ t 2 (0, r ) = − m (r ). ∂y

(6.42) ,

(6.11) – (6.15): y → x, λ 2 → λ1 , α 2 → α1 , α 4 → α 3 , t c 2 → tc1 , t c 4 → t c 3 , γ n → µ n , M 1 n → M n , K1 n → K n ,

S1 n → S n , C1 n → Cn , D1 n → Dn , Z1 n → Z n .

(6.43)

(6.9)

1

(6.10)

:

 ∞ J 0 (r µ n )  Sn + M n Cn  ∞ J 0 (r γ n )  S1n + M1n C1n  − − + K n  = + K1n ;    Dn D1n  n =1 Z n   n =1 Z1n   ∞ ∞ J 0 (r µ n ) J 0 (r γ n )  M =− M1n .  Zn Z1n n =1  n =1

∑ ∑





r J 0 (r µ k )

0

R.

:

(6.44)

 1  S +M C R 2 k k − k  + K k    r J 0 (r µ k ) d r = Dk  Zk  0  R ∞   1  S1n + M 1n C1n −  r J 0 (r µ k ) J 0 (r γ n ) d r ; + K  = n 1   D1n 0 n =1 Z1n    R R ∞ 1 Mk 2 µ = r J r d r r J 0 (r µ k ) J 0 (r γ n ) d r . ( ) k 0 Z n =1 Z1n 0  k 0













(6.45)

:

∫ r J 0 (µ n r ) J 0 (µ k r ) d r = 0,

n≠k .

R

(6.46)

0

N ,

,

(6.45) M 1k , M k ; 1 ≤ k ≤ N . , (6.45)



:

N  − G M H nk G1n M 1n = Lk , 1 ≤ k ≤ N ;  k k  n =1  N M − H M = 0 , k nk n  n =1 



Gk =

Ck ; Dk

G1k =

C1k ; D1k

(6.47)

(6.48) H nk =

R µ n J1 (µ n R ) J 0 (γ k R ) − γ k J 0 (µ n R ) J1 (γ k R ) ; Zn µ 2n − γ 2k

Lk = −

(6.47) 1n:



N S  Sk + K k + H nk  1k − K1k  . Dk  D1k  n =1

,

k N

n =1

(6.50)

N

∑ H nk (Gk + G1n ) M 1n = − Lk ,

(6.49)

-

1≤ k ≤ N .

(6.51)

k:

Mk =

∑ H nk M n , N

n =1

1≤ k ≤ N .

(6.52)

7 ȾɂɎɎȿɊȿɇɐɂȺɅɖɇɈȿ ɍɊȺȼɇȿɇɂȿ ɌȿɉɅɈɉɊɈȼɈȾɇɈɋɌɂ ȼ ɗɅȿɆȿɇɌȺɏ ɈȻɈɊɍȾɈȼȺɇɂə, ɂɆȿɘɓɂɏ ɎɈɊɆɍ ɋɌȿɊɀɇȿɃ ɂ ɉɅȺɋɌɂɇ , ,

.

• •

: ; ;

• • •

; ; . .



. .

Q1 – Q2 –

, ,

; .

,

,

Q1 − Q2 = α f (t ( ) − tt ),

α– ;

; f = ∆x – ; t( ) –

– ; –

; tt –

(7.1)

,

.

Q1 − Q2 = F (q1 − q 2 ),

F–

; q1, q2 –

, .



,

: q1 − q 2 = −

λ

d 2t (x ) dx 2

F dx = α

(t ( ) − tt ) dx .

T (x ) = t (x ) − tt d 2T (x )

:

dx

2

k2 =

d 2t (x ) d  dt (x )  dq (x ) dx . ∆x = −  − λ  dx = λ dx  dx  dx dx 2

α , λF

(7.5)

− k 2T ( x ) = 0 .

(7.6)

T (x ) = C1 h (k x ) + C 2 sh (k x ).

: −λ −λ

q0 –

;L– C1 =

(7.3)

(7.4)

:

:

(7.2)

q0 (α t sh (kL ) + λ k h (kL )) λk ; α t h (kL ) + λ k sh (kL )

(7.7)

dT (0) = q0 ; dx

(7.8)

dt (L ) = α t (t (L ) − tt ) , dx

; αt –

(7.9) ,

α t tt +

(7.10)

C2 = −

q0 λk

.

(7.11)

. h. ∆ × ∆у × h.

.

. Q1–

, ;

Q2–

, ;

Qу1 – Qу2 –

,

у;

,

у.

,

α1

f = ∆x ∆y

,

Qx1 − Qx 2 + Q y1 − Q y 2 = (α1 + α 2 ) f (t ( , y ) − tt ),

(7.12)

α2 – –

; ;

t( , у) –

; ,у–

; tt –

.

, Qx1 − Qx 2 = Fx (q x1 − q x 2 ), Q y1 − Q y 2 = Fy (q y1 − q y 2 ) , Fx = h ∆y , Fy = h ∆x

(7.13) у



; q 1, qу1, q 2, qу2 –

, ∆

.

∆у

,

: q x1 − q x 2 = −

∂t (x, y )  ∂  ∂q (x, y ) ∂ 2 t ( x, y ) dx ; ∆x = −  − λ  dx = λ ∂x  ∂x  ∂x ∂x 2

∂ 2 t ( x, y ) ∂q (x, y ) ∂  ∂t (x, y )   dy = λ dy . q y1 − q y 2 = − ∆y = −  − λ ∂y ∂y  ∂y  ∂y 2

T ( x, y ) = t ( x, y ) − t t

:

-

∂ 2T (x, y ) ∂x 2

+

:

∂ 2T (x, y ) ∂y 2

 ∂ 2 t ( x, y ) ∂ 2 t ( x, y )  h dx dy = (α1 + α 2 )(t ( , y ) − tt ) dx dy . λ +  ∂x 2 ∂y 2   (α + α 2 ) , (7.16) k2 = 1 λh − k 2T (x, y ) = 0 .

(7.17)

(7.14)

(7.15)

∂T (0 , y ) = q x0 ; ∂x

−λ

∂T (x , 0 ) = q y0 ; ∂y

−λ −λ −λ

(7.18)

(7.19)

∂T (Lx , y ) = α x t T (L x , y ) ; ∂x

(

∂T x , L y ∂y

)=α

yt

(

T x , Ly

),

(7.20)

(7.21)

у; L , Ly –

q 0, qy0 – у; α t, αуt –

,

,

-

.

у,

, d 2 P( y ) dy 2

:

+ µ 2 P( y ) = 0

(7.22)

dP (0) = 0; dy

−λ

(7.23)

( ) = α P (L ) . yt y dy

dP L y

(7.24)

P ( y ) = cos (µ y ),

µ–

(

)

(7.25)

(

)

µ λ sin µ L y = α yt os µ L y .

U (x ) =

ρ ( y ) = 1.

∫ T (x, y )ρ ( y ) P ( y ) dy ,

(7.26)

Ly

(7.27)

0

T ( x, y ) =

µn N =

2 2 ∫ ρ ( y ) P ( y ) dy = ∫ cos (µ y ) dy =

Ly

Ly

0

0

(

(

U (x ) P ( y ) , N n =1

∑ ∞

) (

))

1 µ L y + sin µ L y cos µ L y . 2µ

(7.28)

(7.29) (7.17) – (7.21):

d 2U (x ) dx

2

− ν 2U (x ) +

−λ

Qx 0 =

∫ q x0 P ( y ) dy =

Ly

0

(

−λ

)

q x0 sin µ L y . µ

q y0 λ

= 0, ν 2 = µ 2 + k 2 ;

(7.30)

dU (0 ) = Qx 0 ; dx

(7.31)

dU (Lx ) = α xt U (Lx ), dx

(7.32)

(7.33)

: U (x ) = A sh (νx ) + B h (νx ) +

А

В

q y0

λν 2

(7.34)

.

: A=−

B=−

,

Qx 0 ; νλ

A (λν ch (ν Lx ) + α xt sh (ν Lx )) +

(7.35)

α xt q y 0

α xt ch (ν Lx ) + λν sh (ν Lx )

λν 2

(7.36)

.

(7.28) . 8 ȾɂɎɎȿɊȿɇɐɂȺɅɖɇɈȿ ɍɊȺȼɇȿɇɂȿ ɉȿɊȿɇɈɋȺ ɌȿɉɅȺ ɀɂȾɄɈɋɌɖɘ, ȾȼɂɀɍɓȿɃɋə ȼ ɊȿɀɂɆȿ ɂȾȿȺɅɖɇɈȽɈ ȼɕɌȿɋɇȿɇɂə ɉɈ ɄȺɇȺɅɍ ,

-

. . ,

,

[7].

:

• • • •

; ; ; . -

, . . , . : – τ– ; t(x, τ) – G– –

; ; ; ;

-

qi – ∆Fi = i∆ – i– αi – tFi(x, τ) – i = 1, 2 –

; i-

; i-

; i-

i-

;

; .



. . ∆τ

,

Q0 = G c t (x, τ ) ∆τ ;

∆τ

,

(8.1)

Q3 = − G c t (x + ∆ , τ ) ∆τ ;

,

(8.2)

(

)

Q1 = q1∆F1 = α1 t F1 (x, τ ) − t (x, τ ) ∆F1 ∆τ ;

,

(

(8.3)

)

Q2 = q 2 ∆F2 = α 2 t F2 (x, τ) − t (x, τ ) ∆F2 ∆τ .

:

(

)

Q1 = α1 t F1 (x, τ) − t (x, τ)

(

)

Q2 = α 2 t F2 (x, τ) − t (x, τ )

1∆

2

(8.4)

∆τ ;

(8.5)

∆ ∆τ .

(8.6)

∆τ:

S–

Q = S ∆x ρ c (t (x, τ + ∆τ)− t (x, τ)) ,

;ρ–

(8.7)

. ,

-

: Q = Q0 + Q1 + Q2 + Q3

S ∆x ρ c (t (x, τ + ∆τ ) − t (x, τ )) =

( + α 2 (t F (x, τ ) − t (x, τ ))

)

= G c t (x, τ ) ∆τ + α1 t F1 (x, τ ) − t (x, τ ) 2

2∆

∆τ +

∆τ − G c t ( x + ∆ , τ ) ∆τ .

∆x∆τ Sρc

1∆

(8.8)

(8.9)

,

∂t ( x, τ ) ∂t (x, τ ) = − Gc + ∂τ ∂x + α1 t F1 (x, τ ) − t (x, τ )

(

)

(

:

)

1 + α 2 t F2 ( x, τ ) − t ( x, τ )

(8.10) 2.

,

Sρc

∂t (x, τ ) ∂t (x, τ ) α1 1 + α 2 2 t ( x, τ ) = +W + S ρc ∂τ ∂x α1 1t F1 (x, τ ) + α 2 2 t F2 (x, τ ) = , S ρc

:

W=

G Sρ



,

. :

∂ t ( x, τ ) ∂ t ( x, τ ) + K t ( x , τ ) = F ( x, τ ) ; +W ∂x ∂τ

t (0, τ ) = t 0 (τ ); t (x, 0) = f (x ) ,

F ( x, τ ) =

(8.12)

K = α1

α1

1 + α2

Sρc 1t F1 ( x, τ ) + α 2

2

Sρc

; 2 t F2

( x, τ )

(8.14) .

[1]. ∂t (x, τ ) : ∂τ

-

-

∂t (x, τ ) t (x, τ) − t (x, τ − dτ) ≈ . ∂τ dτ

(8.15)



P=

K dτ + 1 ; W dτ

V (x ) =

1 W

(8.12) (8.13)

(8.12) – (8.13),

f( ) –

(8.11)

:

dt (x ) + Pt (x ) = V (x ) , dx

 f (x )  ;  F ( x, dτ ) + d τ  

(8.16)

(8.17)

t (0) = t 0

. (8.16):

x   t (x ) = xp (− Px ) t 0 + ∫ V (x ) xp (P x ) dx  .   0  

(8.18)

∆ t =

1 ∆x



t (x ) dx =

∆x 0

1 ∆x



∆x 0

x   xp (− P x ) t 0 + V (ξ ) xp (P ξ ) dξ  dx .   0  



t F ( x, τ ) ,

(8.19)

K =

;α–



dt (x ) + K t (x ) = S (x ) , dx

S (x ) =

t (0 ) = t 0

V =

(8.24)

1t F1

α1

(x ) + α 2

1 + α2

2 t F2

K = α1

α1

1 + α2

Gc ( t x 1 F1 ) + α 2

(8.21)

(8.20)

2

(8.21)

; 2 t F2

(x )

Gc

(8.22) .

x   t (x ) = exp (− Kx ) t 0 + S (x ) exp (Kx ) dx  .   0  

, α1

α t F ( x, τ ) , Sρc

. :

t (x ) = V + (t 0 − V ) xp (− K x ),

F ( x, τ ) =

α ; Sρc

(x )



t F1 (x ) = const = t F1

. .

(8.23)

t F2 (x ) = onst = t F2 ,

(8.25)

.

2

∆ t =

(t − V ) (1 − exp (− Kx )). 1 t (x ) dx = V + 0 ∆x 0 K∆x



∆x

t F (x ) ,

x   t (x ) = exp (− K1 x ) t 0 + K1 ∫ t F (x ) exp (K1 x ) dx  ,   0  

K1 =

α . Gc

(8.27)

(8.28)

, . . t F (x ) = onst = t F ,

t (x ) = t F + (t 0 − t F ) exp (− K1 x ) ,

∆ t =

,

(8.26)

1 ∆x

(4.1) – (4.5), (5.1) – (5.6) ,

∫ t (x ) dx = t F +

∆x 0

(t 0 − t F ) (1 − exp (− K x )). 1 K1∆x

(8.29)

(8.30)

(8.12) – (8.13) -

. 9 Ɋȿɒȿɇɂȿ ɈȻɊȺɌɇɈɃ ɁȺȾȺɑɂ ɌȿɉɅɈɉɊɈȼɈȾɇɈɋɌɂ ,

,

-

, . (

)

(

-

).

, (10

). . . ,

-

, ,

, ,

. ,

-

, ,

, 30 – 50 %. 900 %.

. .

.

,

-

,

. . ,

:

1) , ; 2)

, , . . ,

,

-

; ; 3)

. ,

, . «

. ,

», . . .

. ,

, .

.

-

,

, -

. [7]

, . (

)

,

. -

. :

∂ 2 t ( x, τ ) ∂t (x, τ ) , 0 ≤ x ≤ R, τ ≥ 0 ; =a ∂τ ∂x 2

(9.1)

t (x, 0) = t 0 = onst

λ

(9.2)

∂t (R, τ ) + α (t (R, τ ) − t c ) = 0 ; ∂x

(9.3)

∂t (0, τ ) =0 , ∂x



, ; , ;t – .

λ a= cρ

(9.4)

;τ–

; t(x, τ) –

; λ, , ρ –



T ( x , τ ) = t ( x, τ ) − t 0

; t0 – ;α–

;R–

-

∂T (x, τ ) ∂ 2T (x, τ ) ; =a ∂τ ∂x 2

:

T ( x, 0 ) = 0 ;

λ

∂T (R, τ ) + α (T (R, τ ) − t c + t 0 ) = 0 ; ∂x ∂T (0, τ ) = 0. ∂x



S (x, p ) = T (x, τ) exp (− p τ) dτ .

(9.5) (9.6) (9.7)

(9.8)

∞ 0

:

(9.9)

a λ

d 2 S ( x, p ) dx 2

− p S ( x, p ) = 0 ;

 t +t ∂S (R, p ) + α  S (R, p ) − c 0 p ∂x 

∂ S (0, p ) = 0. ∂x

 p S (x, p ) = A sh   a 

sh(z) ch(z) – A B

(9.10)   = 0 ; 

(9.11)

(9.12)

 p  x+ B h   a   

 x ,  

(9.13)

. (9.3), (9.4): λ

p a

      A ch  p R  + B sh  p R   +  a   a       

  p   p  t −t + α  A sh  R+ B h R  − α c 0 = 0;  a   a   p     

λ

p a

А = 0,

 p  0  + B sh   a   

 0 = 0 ,  

(9.15)

(9.16) B=

 p  α (t c − t 0 ) h  x  a    . S ( x, p ) =   p   p  p pλ R+α h R sh   a   a   a     

   A ch  p  a   

(9.14)

α (t c − t 0 )

  p   p  p sh  pλ R+ α h  R    a   a a     

.

(9.17)

(9.18)

S(x, p),

-

: α=

S(x, p)

(tc − t0 )

p  p  sh R a  a  .  p  p  x − p S ( x, p ) h  R  a  a   

S ( x , p ) pλ  h  

(9.19)

S ( x, p ) =

∫ (ti (x, τi ) − t0 )exp(− p τi ) dτi =



t ( x, τ k ) − t 0 exp(− p τ k ), = (t i (x, τ i ) − t 0 ) exp(− p τ i ) dτ i + k p 0



0 τk

ti(x, τi), i = 1, 2, …, k –

(9.20)

, .

,

,

,

. -

. .

, .

,

. ,

-

(9.1) – (9.4). T ( x, τ ) = t ( x, τ ) − t ,

(9.21)

:

∂T (x, τ ) ∂ 2T ( x , τ ) ; =a ∂τ ∂x 2

T ( x, 0 ) =

λ

0

= t0 − tc ;

∂T (R, τ ) + α T (R , τ ) = 0 ; ∂x ∂T (0, τ ) = 0. ∂x



W (τ) = T (x, τ)ρV (x ) dx ,

(9.22) (9.23) (9.24)

(9.25)

R

(9.26)

0

V( ),

, –

:

d 2 S (x ) dx 2

λ

+ µ 2 S (x ) = 0 ;

dS (R ) + α S (R ) = 0 ; dx

dS (0 ) = 0. dx

-

(9.27)

(9.28)

(9.29)

S (x ) = sin (µ x + ϕ).

dS (x ) = µ cos (µ x + ϕ) . dx µ os ( ϕ) = 0 , (9.29)

(

(9.31)

) ϕ=

S (x ) = os (µ x ) .

(9.32)

π , 2

(9.33) (9.34)

(9.28)

ρ

(9.30)

− λ µ sin (µ R ) + α cos (µ R ) = 0 ,

(9.35)

α = λ µ tg (µ R ) .

(9.36)

, a ρ′ = 0 ,

ρ = onst,

, ρ = 1.

(9.37)

(9.38) :

dW (τ) + a µ 2 W (τ) = 0 ; dτ

(9.39)

(9.23):



W (0 ) = T0 cos (µ x ) dx = R

0

(9.22) – (9.23)

:

(

)

W (τ) = W (0) exp − µ 2 a τ =

T0 sin (µ R ) . µ

(9.40)

(

)

T0 sin (µ R ) exp − µ 2 a τ . µ

(9.41)

:



W (τ) = Ti cos (µ x ) dx , R

Ti = T (xi , τ)

(9.42)

0



;

i = 1, 2, …, N –

-

. ,

,

. .

[2]



I = Ti cos (µ x )dx ≈ h (G2 − 7 (G1 + GN )+ GN −1 ) / 12 + h R

0

; Gi = Ti os (µ xi ) –

h– µ

; xi –

. I =

τ

α.

∑ Gi , N

(9.43)

i =1

i-

(

-

)

T0 sin (µ R ) exp − µ 2 a τ . µ

(9.44) .

(9.36) .

10 ɆȿɌɈȾɂɄȺ ɊȺɋɑȿɌȺ ɌȿɉɅɈɈȻɆȿɇɇɈȽɈ ɈȻɈɊɍȾɈȼȺɇɂə , . ,

,

. . ,

.



, (

,

,

-

. 10.1). , ,

,

,

,

-

.

∆x Ɋɂɋ. 10.1 ɗɅȿɆȿɇɌȺɊɇȺə ɈȻɅȺɋɌɖ ɄɈɀɍɏɈɌɊɍȻɑȺɌɈȽɈ ɌȿɉɅɈɈȻɆȿɇɇɂɄȺ

. , .

,

,

-

. . , 1. G1, G2 –

; α1, α2, α , αoc –

; t1, t2 –

; 1, 2, ρ1, ρ2, λ1, λ2 – , , ,ρ,ρ,ρ,λ,λ,λ – , ,

;

,

-

, , ;δ,δ,δ – ;t –

,

;d,d –

. ,

-

,

. , ,

. 10.2. ,

-

. G1

t1

t1

δ1 λ G2

α1

t1 U(r)

α2

t2

t2

t2

δ

λ

δ

λ

t

r

α

r

S1(r) t S2(r)

t

α

t ∆x

Ɋɢɫ. 10.2 ɋɬɪɭɤɬɭɪɚ ɷɥɟɦɟɧɬɚɪɧɨɣ ɨɛɥɚɫɬɢ ɤɨɠɭɯɨɬɪɭɛɱɚɬɨɝɨ ɬɟɩɥɨɨɛɦɟɧɧɢɤɚ, ɪɚɛɨɬɚɸɳɟɝɨ ɜ ɫɬɚɰɢɨɧɚɪɧɨɦ ɬɟɦɩɟɪɚɬɭɪɧɨɦ ɪɟɠɢɦɟ

,

. , , .



: ;

, 2–3 ;

,



,

-

. • • • • •

,

:

t1( ) – U(r) – t2( ) – S1(r1) – S2(r2) –

; ; ; ; . ,

.

dt1 (x ) + K1t1 (x ) = V1 (x ), dx

0≤ x≤ ∆ x ;

(10.1)

t1 (0 ) = t10 ;

(10.2)

d 2U (r ) 1 dU (r ) + = 0, r dr dr 2

;

(10.3)

dU (r ) + α1 (U (r ) − t1 ) = 0 ; dr

λ

λ

r ≤r ≤r +δ

dU (r + δ dr

) + α (U (r 2

(10.4)

+ δ )− t2 ) = 0 ;

(10.5)

0≤ x≤∆ x ;

(10.6)

dt 2 (x ) + K 2 t 2 ( x ) = V2 ( x ) , dx t 2 (0 ) = t 20 ;

d 2 S i (ri ) 1 dSi (ri ) + = 0, ri dri dri2 λ

V1 (x ) = K1t F1 (x ) ;

Ri −1 ≤ ri ≤ Ri ;

dS1 (R0 ) + α (S1 (R0 ) − t 2 ) = 0 ; dr1

S1 (R1 ) = S 2 (R2 ); α1 1 , G1c1

i = 1, 2,

λ

(10.8)

(10.9)

dS 2 (R2 ) + α oc (S 2 (R2 ) − t oc ) = 0 ; dr2

λ

K1 =

(10.7)

(10.10)

dS1 (R1 ) dS 2 (R1 ) =λ , dr1 dr2

(10.11)

(10.12) K2 =

α

+ α2 G2 c 2

1

= 2πr n,

R0 = r ,

2

,

V2 (x ) = 2

α

t F (x ) + α 2

= 2π (r + δ ) n,

R1 = r + δ ,

G2 c 2

2 t F2

(x )

= 2π r ;

R2 = r + δ + δ .

; (10.13) (10.14) (10.15)

, . . t F1 (x ) = onst = t F1 , t F2 (x ) = onst = t F2

t F (x ) = onst = t F ,

-

:

(

)

t1 (x ) = t F1 + t10 − t F1 exp (− K1 x ) ;

(10.16)

U (r ) = AU + BU ln (r ) ;

(10.17)

t 2 (x ) = V2 + (t 20 − V2 ) exp (− K 2 x ) ; S i (ri ) = Ai + Bi ln (ri ),

V2 =

α

α

tF + α2 + α2

2 t F2

;

(10.18)

i = 1, 2 ,

(10.19)

(10.20)

2

BU =

 δ ln 1 +  r

t 2 − t1  1  ( α r  2 +δ

  + λ 

 λ AU = t1 − BU  ln (r ) + α1 r  B1 =

λ λ ln(R0 )+ − R0α λ

;

(10.21)

(10.22)

t2 − toc

  1 1 λ   ln(R2 )+  + λ ln (R1 ) − R2αoc  λ λ 

B2 =

  

 ;  

(

(10.25)   . 

(10.26)

)

∆x t10 − t F1 1 t1 = t1 (x ) dx = t F1 + (1 − exp (− K1∆x )) ; ∆x 0 K1∆x

t2 =

; (10.23)

(10.24)

λ B1 ; λ

 λ A2 = A1 + B1 ln(R1 )1 −  λ



  

  ; 

 λ A1 = t 2 − B1  ln (R0 ) + α R0 

:

1 − ) α1r

(t − V ) 1 t 2 (x ) dx = V2 + 20 2 (1 − exp (− K 2 x )) . K 2 ∆x ∆x 0



(10.27)

∆x

(10.28)

:

t F1 = U (r ); t F2 = U (r + δ ); t F = S1 (r ).

(10.29)

α1

α

-

, . :

α1 = α1 (t1 ,U (r

α = α (t 2 , V1 (r

)) ,

)) ,

α 2 = α 2 (t 2 , U (r + δ

)) ;

α oc = α oc (t oc , V2 (r + δ + δ

)) . . ,

-

. , . 1 , (10.27), (10.28).

-

2 (10.17)

(10.19).

3

.

4 5

2

3. (10.16), (10.18). -

(

). ∆Q1 = ∆Q2 + ∆Q ,

∆Q1 –

,

; ∆Q2 –

∆Q –

; .

∆ Q1 = G1c1 (t1k − t10 ) ;

(10.30) ,

(10.31)

∆Q21 = G2 c2 (t 2 k − t 20 ) ;

∆ Q = α oc 2π R2 ∆x (V2 (R2 ) − t oc ).

:

(10.32) (10.33) -

, ∆Q , rf

∆G =

rf –

-

(10.34)

. ,

-

. ,

.

,

,

-

. • •

,

: ; ;

• • • •

; ,

; ; . :

• t1k, t2k – • G 1, G 2 – • ∆Q –

; ,

;

,

.

,

-

, .

1 2 3 4

. . . . . . . 1.

,

-

. . , ∆τ.

,

-

,

,

,

. :

∆Q1 = ∆Q2 + ∆Q + ∆Q + ∆Q + ∆Q , ∆Q1 –

, ;

∆Q –

;

∆Q – ,

,

; ∆Q2 – ,

(10.35)

,

-

; ∆Q –

; ∆Q –

-

. -

, 3(

), ,

-

( ).

,

-

, . ,



. ,

,

,

-

. ,

, ,

,

-

:

∂t1 (x, τ ) ∂t (x, τ ) + W1 1 + K1t1 ( x, τ ) = F1 (x, τ ), ∂τ ∂x

t1 (0, τ) = t10 (τ);

0 ≤ x≤ ∆ x;

t1 (x, 0 ) = f1 (x );

 ∂ 2U (r , τ) 1 ∂U (r , τ)  ∂U (r , τ) , = at2  +  ∂r 2 r ∂r  ∂τ  

(10.37)

r ≤ r ≤ r + δ , τ > 0;

U (r ,0 ) = f t (r );

∂U (r , τ ) + α1 (U (r , τ ) − t1 ) = 0 ; ∂r

λ

α1 < 0 ;

(10.40)

∂U (r + δ , τ) + α 2 (U (r + δ , τ ) − t 2 ) = 0 ; ∂r ∂t 2 (x, τ ) ∂t ( x, τ ) + W2 2 + K 2 t 2 ( x, τ ) = F2 ( x, τ ), 0 ≤ x ≤ ∆ x ; ∂τ ∂x

t 2 ( x, 0 ) = f 2 ( x ) ;

 ∂ 2 S i (ri , τ) 1 ∂S i (ri , τ)  ∂S i (ri , τ) , + = ai2    ∂r 2 r r ∂ ∂τ i i i  

λ

K1 =

α1 1 G1c1

,

F1 (x, τ ) = K1t F1 (x, τ ) ; K2 =

(10.45) (10.46)

dS 2 (R2 , τ ) + α oc (S 2 (R2 , τ ) − t oc ) = 0 ; dr2

(10.47)

dS1 (R1 , τ ) dS 2 (R1 , τ ) =λ , dr1 dr2

λ

(10.42)

i = 1, 2, Ri −1 ≤ ri ≤ Ri ; (10.44)

dS1 (R0 , τ ) + α (S1 (R0 , τ ) − t 2 ) = 0 ; dr1

S1 (R1 , τ ) = S 2 (R2 , τ );

(10.41)

(10.43)

S i (ri , 0) = ϑi (ri ) ;

λ

(10.38)

(10.39)

λ

t 2 (0, τ ) = t 20 (τ);

(10.36)

(10.48)

(10.49) α

+ α2 G2 c 2

2

,

V2 ( x , τ ) =

α

t F ( x, τ ) + α 2 G2 c 2

2 t F2

( x, τ )

; (10.50)

1

= 2π r n ,

2

R0 = r ,

t1 , t 2

= 2π (r + δ ) n ,

= 2π r

R2 = r + δ + δ

R1 = r + δ ,

;

.

(10.51)

(10.52)

, t F1 (x, τ), t F2 (x, τ), t F (x, τ ) –

– ,

.

(10.36) – (10.48)

. x   t1 (x, dτ) = exp (− P1 x ) t10 (dτ) + ∫ θ1 (x, dτ) exp (P1 x ) dx  , (10.53)   0  

P1 =

B=

t1 − t 2   1 1  ln(r ) − ln(r + δ ) + λ  − ( ) r r α + δ α 1 2  

;

θ1 (x, dτ) =

K 1 dτ + 1 ; W1dτ

f (x )  1   F1 (x, dτ ) + 1  . W1  dτ 

ξ(ν n , τ)ζ(r , ν n ) , Zn n =1

U (r , τ) = A + B ln(r ) + ∑ ∞

(10.54) (10.55)

(10.56)

 λ A = t1 − B ln(r ) + α1 r 

(

  ; 

ξ(ν n , τ ) = ξ(ν n ,0 ) exp − ν 2n τ

(10.57)

);

(10.58)

ν r ν r ζ (r , ν n ) = J 0  n  + Dn Y0  n  ; a  a    ξ(ν n , 0 ) =

(10.59)

∫ r ( f t (r ) − A − B ln (r )) ζ(r , ν n ) dr ;

r +δ

(10.60)

r

ν λ νn  νn  J 1  r  − α1 J 0  n r at  at  at  Dn =  λ νn  νn ν α1 Y0  n r  − Y1  r a at  at  t  νn

     

;

(10.61)

–  ν (r + δ J 0  at 

  ν (r + δ + D  Y0   at  

)  −

 ν (r + δ νλ   a α J1  at  t 2 

)  −

 ν (r + δ νλ   a α Y1  at  t 2 

)  +  

)   = 0 ;  

(10.62)

Zn =

∫ r ζ (r , ν n ) dr = ∫

r +δ r



  ν (r + δ ×  J 0  n  at  

)  Y

 ν r − 0,5 r 2  J 02  n    at

 ν r − r 2 Dn  J1  n    at





 

0

 ν (r + δ + δ )  + J 12  n   at at   r

 ν n (r + δ   at 



 νnr   at

ν r    + J1  n  Y1  at  



 ν r  + J 12  n   a   t

  Y1 



2

 ν (r + δ + δ )  + Y12  n   at at  

)2 Dn2  Y02  ν n (r 

)2  J 02  ν n (r 

= 0,5 (r + δ

+ 0,5 (r + δ

 ν r  ν r  r  J 0  n  + D n Y0  n   dr =    at     at 

r +δ

2

  −  

 νnr   at

)  + J  

)   −

)   + (r  

 ν n (r + δ at 

1 

)  Y  

1



)2 Dn ×

 ν n (r + δ   at 

)   +  

 

   −  

 ν r − 0,5 r 2 D 2n  Y02  n    at

   .  

ν r   + Y12  n   at

(10.63)

x   t 2 (x, dτ ) = exp (− P2 x )  t 20 (dτ ) + θ 2 (x, dτ ) exp (P2 x ) dx  ,   0  



P2 =

K 2 dτ + 1 ; W2 dτ

θ 2 ( x , dτ ) =

1 W2

 f (x )  V2 (x, dτ) + 2  . dτ  

(10.65) S i (ri , τ ) = Ai + Bi ln(ri ) +

B1 =

ln (R0 ) +

σ(µ n , τ ) ωi (ri , µ n ) , Yn n =1

∑ ∞

t 2 − t oc

λ λ  λ  ln(R2 ) + − R0 α R2 α oc λ 

  1 1   + λ ln (R1 )  − λ λ   

 λ A1 = t 2 − B1  ln (R0 ) + α R0  B2 =

∑ a m2  0,5 Rm2 Cm2 , n  J 02  2

λ 

m =1 m



 

µ R  µ n Rm   + J12  n m  a   m  am 

 µ R + Rm2 Cm , n Dm , n  J 0  n m    am

  µ n Rm  Y0    a   m

  +  

 µ R  + J1  n m   a   m

  Y1  

 µ n Rm   a  m

  +  

 ;  

λ B1 ; λ

 λ A2 = A1 + B1 ln(R1 )1 −  λ Yn =

(10.64)

(10.66)

; (10.67)

(10.68)

(10.69)   . 

(10.70)

 µ R + 0,5 Rm2 Dm2 , n  Y02  n m    am

 µ R  + Y12  n m  a    m

µ R   + J12  n m −1  a  m  

 −  

µ R  µ n R m −1    + J 1  n m −1  a   a m m   

  Y1  

  µ n Rm −1 − 0,5 Rm2 −1Cm2 , n  J 02     am − Rm2 −1C m , n Dm , n ×

  µ n Rm −1   Y1 ×  J1    a m   

 −  

  µ n Rm −1   µ R  + Y12  n m −1   − 0,5 Rm2 −1 Dm2 , n  Y02       am     am 

 µ n R m −1     −  a  m  

 .  

(10.71) ωm (rm , µ n ) =

m, n

C1, n

D1,n

C 2, n

D2, n

µ r J 0  n m  am

 µ r  + Dm , n Y0  n m   a   m

 ;  

= 1;

(10.73)

 µ  λ1 µ n  µ n J 1  R0  − α1 J 0  n R0  a1 ;  a1   a1 =  µ  λ µ µ α1 Y0  n R0  − 1 n Y1  n R0  a a a 1   1   1

  µ R2 C 2  J 0     a2

 µ R2  µ λ2  − J1   a2  a2 α

(10.74)

 µ  µ  µ C1, n J 0  n R1  + D1, n Y0  n R1  − D2 , n Y0  n R1   a 2  ; (10.75)  a1   a1  =  µ Y0  n R1  a   2

 µ  µ λ1 a21  µ n   J 0  R1   C1, n J1  n R1  + D1, n Y1  n R1   − λ 2 a1  a2    a1   a1   = →  µn   µn  J 0  R1  Y1  R1  −  a2   a2  µ   µ  µ − J1  n R1   C1, n J 0  n R1  + D1, n Y0  n R1    a2    a1   a1   → ;  µn   µn  R1  Y0  R1  − J1   a2   a2 

µ n – n-

(10.72)

  µ R2    + D2  Y0       a2

 µ R2  µ λ2  − Y1   a2  a2 α

(10.76)

   = 0 .  

(10.77) σ(µ n , 0) =

∑ 2

λm

∫ (ϑm (rm ) − Am − Bm ln(rm )) ×

Rm

rm 2 m =1 a m Rm −1

 ×  

m, n

µ r   µ r  J 0  n m  + Dm , n Y0  n m   drm ;   am   am  

(

σ(µ n , τ ) = σ(µ n , 0 ) exp − µ n2 τ

).

(10.78)

(10.79)

(10.71) – (10.78)

1

,

2–

-

; R0 = r ; R1 = r + σ ; R2 = r + σ + σ .

t1 (dτ ) =

U (τ ) = A − +

∑ν ∞

n =1

x    − τ + exp ( P1 x ) t10 (d ) θ1 (ψ, dτ) exp (P1ψ ) dψ  dx ;   0 0  



(

B B + (r + δ 2 (r + δ )2 − r 2

  (r + δ  Z n n  a

 ν r − r  J1  n    at

) J1  ν n (r 

 



 ν r  + Dn Y1  n   a   t ×



at



∆x

1 ∆x

)2 ln (r

)  + D  

(

)) +

+ δ ) − r 2 ln (r  ν n (r + δ at 

nY1  

)

     exp − ν n2 τ ×  

)   −  

∫ r ( f (r ) − A − B ln(r ))ζ (r , ν n ) dr .

r +δ

(10.80)

(10.81)

r

S i (τ ) = Ai − +

∑µ ∞

n =1

 R  i Y n n  ai

 − Ri −1   

× exp

(

i,n

− µ 2n

τ

(

(

))

Bi B + 2 i 2 Ri2 ln (Ri ) − Ri2−1 ln Ri −1 + 2 Ri − Ri −1    

 µ n Ri  ai

i , n J1  

µ R   + Di , nY1  n i  a   i 

  −  

∆x x   1 t2 (dτ) = exp (− P2 x )  t20 (dτ) + θ2 (ψ, dτ)exp (P2 ψ ) dψ  dx ; (10.82)   ∆x 0 0  





 µ n Ri −1   µ R   + Di , n Y1  n i −1    × J1    a  i  ai   

)∑ a ∫ r λm

2

Rm

m 2 m =1 m Rm −1

(ϑm (rm ) − Am − Bm ln(rm ) ) ωm (rm , µ n ) drm . (10.83) , ,

-

. , -

, . ,

(

∆Q = c π (r + δ

)2 − r 2 )∆x n ρ

:

(U (∆τ) −U b (∆τb )) ,

(10.84)

U b (∆τb ) –

.

(

, S1b (∆τ b )

∆Q = c π (r + δ

)2 − r 2 )∆x ρ

:

(S1 (∆τ)− S1b (∆τb )) ,

(10.85)



.

(

, S 2b (∆τ b )

∆Q = c π (r + δ

)2 − r 2 )∆x ρ

:

(S 2 (∆τ)− S 2b (∆τb )) ,

(10.86)

– . ,

-

, . , . 1 , (10.80), (10.82). 2 (10.55)

(10.66)

.

3

.

4

2

3.

5

(10.53), (10.64).

6

(10.35). . , :

t1 , t 2 , t1 , t 2



( νn , µn

G1 , G2



-

);

ξ(ν n , ∆τ ) σ(µ n , ∆τ ) Dn , Ci , n , Di , n , , Zn Yn



; –

,

;

A , B , Ai , Bi ∆τ



,

;



. : ;

;

-

U-

;

;

;

-

. ,

, .

-

. 1

:

– d – δ – δ – δ – δz – n – m – lp – se – λ , λ , λ , λz –

;

D

; ; ; ; ; ; ; ; ,

; ,

,

-

. 2

,

– ρ1(t), ρ2(t) – 1(t), 2(t) – λ1(t), λ2(t) – µ1(t), µ2(t) – β1(t), β2(t) – σ1(t), σ2(t) – r1(t), r2(t) – t 1( ), t 2( ) – t – 3 , k1 – , F – G1, G2 – t1 , t2 – t1 , t2 – 1,

: ;

2

; ; ; ; ; ; ; ; . : ; ; ; ; . ,

,



.

,

. (F, G1, G2, t1 , t2 , t1 , t2 )

, , t1 ; t2

1

2

. : G1

G2; t1

t2 . ,

, ,

. , , , ( ). ,

,

, ,

,

-

.

, ,

-

, , .

(

),

(

,

)

-

( ). ,

-

,

,

(

)

t1 (x ) = t F1 + t10 − t F1 exp (− k t K1 x ) ;

. (10.87)

t 2 (x ) = V2 + (t 20 − V2 ) exp (− k m K 2 x ) ; t 1 = t F1 + k t t 2 = V2 + k m

(t10 − t F ) (1− exp (− k K1∆x

1

t

(t 20 − V2 ) (1 − exp (− k K 2 ∆x

(10.88)

K1 ∆x )) ;

m

(10.89)

K 2 x )) ;

(10.90)

∆ Q1 = k t G1 c1 (t1 − t10 ) ;

(10.91)

∆Q21 = k m G2 c2 (t 2 − t 20 ) ,

kt (

) km ( k1 , k2 , k3

(10.92)

)

-

:

k t = k 3 max (k1 , k 2 );

k1 , k2 , k3

k m = k1 k t .

(10.93)

:

k1 = 1 k2 = 1 k3 = 1 = –1.

,

k1 = –1 – ,

; k2 = –1; ,

k3

(

)

,

. . U-

,

,

.

(

)

, .

.

-

, . : – 0,462 ; – 0,009 ; – 0,07 ; – 0,0025 ; – 0,0002 ; –2 ; – 110.

– 150 ° ;

, – 25 ° .

. – 20 ° ;

0,034

/ ;

–5° ;

. – 15 ° .

0,278

-

/ .

. 10.3

.

10.4 – 10.8

.

. : –

;r–

,

-

. ,

. , ,

-

, ( ): 140

150

t1 t1

t2 5

125

0

x

2

Ɋɢɫ. 10.3 ɂɡɦɟɧɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪ ɩɨ ɞɥɢɧɟ ɚɩɩɚɪɚɬɚ: t1 –

; t2 –

0

0,05

Ɋɢɫ. 10.4 ɂɡɦɟɧɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɩɚɪɨɜ ɛɟɧɡɨɥɚ ɜ ɷɥɟɦɟɧɬɚɪɧɨɣ ɨɛɥɚɫɬɢ

5,5

t2

x

U

-

8,5

5,2 0

0,0125

0,05

x

Ɋɢɫ. 10.6 ɂɡɦɟɧɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɩɨ ɬɨɥɳɢɧɟ ɫɬɟɧɤɢ ɬɪɭɛɤɢ ɬɪɭɛɧɨɝɨ ɩɭɱɤɚ ɜ ɷɥɟɦɟɧɬɚɪɧɨɣ ɨɛɥɚɫɬɢ

Ɋɢɫ. 10.5 ɂɡɦɟɧɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɜɨɞɵ ɜ ɷɥɟɦɟɧɬɚɪɧɨɣ ɨɛɥɚɫɬɢ

5,19

15,0

S1

S2

5,18

5,0

0,213

0,222

r

0,0145

y

Ɋɢɫ. 10.7 ɂɡɦɟɧɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɩɨ ɬɨɥɳɢɧɟ ɫɬɟɧɤɢ ɤɨɪɩɭɫɚ ɚɩɩɚɪɚɬɚ ɜ ɷɥɟɦɟɧɬɚɪɧɨɣ ɨɛɥɚɫɬɢ t 0,t 0,t 0 –

0,222

0,272

r

Ɋɢɫ. 10.8 ɂɡɦɟɧɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɩɨ ɬɨɥɳɢɧɟ ɫɥɨɹ ɬɟɩɥɨɢɡɨɥɹɰɢɢ ɚɩɩɚɪɚɬɚ ɜ ɷɥɟɦɟɧɬɚɪɧɨɣ ɨɛɥɚɫɬɢ ,

t10(x), t20(x) – ρ,ρ ,ρ – , , –

; ;

,

; ,

.

. . ,

-

, . . ,

-

. , . , ,

-

, . ,

,

,

-

, .

aτ Fo = 2 < 0,5 R

.

;τ–

-

λ a= – cρ

(

;R–

-

)

-

. ,

. . .

,

, . -

,

. , ,

-

. ,

, ,

.

,

,

, -

. . ,

,

;

; .

(

). , ,

,

-

, . .



,

-

,



. ,

-

.



(

,2–4

).



,

. -

, , ;

,

-

. . . ,

, ,

-

t 0 = onst = t (0 ) =

,

(r



r t (r ) dr . )2 − r 2 r∫ r +δ

2

(10.94)

, t (r , 0 ) = t b (τ bk ) =

tb(r, τ) –

(r



r t (r , τ ) dr = t 0 = )2 − r 2 r∫ b bk r +δ

2

onst ,

(10.95)

; τbk –

.

,

-

:   1 ∆Q1 = α1 ∆F1   τb 

  t (r , τ b ) dτ − t1  ;  0 



τb k

(10.96)

,

:   1 ∆Q = α 2 ∆F2   τb 

(

,

(10.96)

0

  + δ , τb ) dτ − t 2  ;  

(10.97)

)2 − r 2 )∆x n ρ (t (τ k ) − tb (τbk )) = ∆Q1 − ∆Q . (10.98) :

∆Qc = cc π (r + δ

,

∫ t (r

τb k

(10.97)

:



1 t (r , τ) dτ = A + B ln (r ) + τ0 τ

+ ×

∑Z ∞

n =1

(

(

))

  µn r   µn r  2  J0     a  + Dn Y0  a   1 − exp − µ n τ ×    

2  n µnτ 

1

(10.99)

 µn r   µn r  ∫ r ( f (r ) − A − B ln(r ) )  J 0  a  + Dn Y0  a   dr .

r +δ





r

. ,

-

,

. ,

, . ,

,

,

. ,

,

,

-

. ,

,

.

.

-

(

,

tbk r , τb k

)

tb (r + δ , τ bk ) ,

,

-

. -

,

, , . .

,

.

, , ,

,

,

-

,

. (10.44) – (10.48) .

(10.35) , :

  1 ∆ Q3 = α ∆F   τb 

  t (r , τb ) dτ − t 2  ,  0 



τb k

(10.100)

∆F = π d ∆ x .

, :  1 ∆Q = α ∆F   τb 

∆F = π (d + δ ) ∆ x .

 t (r + δ , τ b ) dτ − t  ,  0 



τbk

,

:

(

∆Q = c π (r + δ t kb (τ bk )

-

(

∆Q = c π (r + δ

,

b

)2 − r 2 )∆x n ρ (t (τ ) − t kb (τbk )) , (10.102)

– .

t

(10.101)

(τbk ) –

)

2

−r

2

)∆x n ρ

(t (τ ) − t b (τbk )) , (10.103) :

. ,

: ∆Q2 = ∆Q − ∆Q − ∆Q − ∆Q = ∆Q − ∆Q3 .

,

(10.100) – (10.101)

(10.104)

(10.99).

11 ɆȿɌɈȾɂɄȺ ɊȺɋɑȿɌȺ ɇȿɋɌȺɐɂɈɇȺɊɇɈȽɈ ɌȿɆɉȿɊȺɌɍɊɇɈȽɈ ɉɈɅə ȿɆɄɈɋɌɇɈȽɈ ȺɉɉȺɊȺɌȺ . ;

: ;

,

,

; ;

-

;

. .

-

,

. . ,

, . .

-

. , ,

. –



. , ( (

,

),

),

-

,

, –∆ .

.

, ,

∆ 1.

-

, -

-

. :



(

,

.);



(

,

,

,

,

-

.).

,

. .

1 D – – Dd – Dr – Dz – dz – hz – δ – δ – δt – δ – δz – n – m – Ne –

: ; ; ; ; ; ; ; ; (

,

,

.);

; ; ; ; ; ;

ω – λ,λ,λ,λ – 2

-

,

; ; , ,

. :

. 3 «2» –

( ,

«1»

,

«3» –

,

«4» –

-

): 1, 2, 3 – ρ1(t), ρ2(t), ρ3(t), ρ4(t) – 1(t), 2(t), 3(t), 4(t) – λ1(t), λ2(t), λ3(t), λ4(t) – µ1(t), µ2(t), µ3(t), µ4(t) – β1(t), β2(t), β3(t), β4(t) – σ1(t), σ2(t), σ3(t) – r1(t), r2(t), r3(t) – t 1( ), t 2( ), t 3( ) – qr1 – dqc1 – qv1 – t – ,

;

; ; ; ; ; ; ; ; ; ; ; , . -

. , ,

. [9]: ρ

=



1

i



xi

i-

xi ρi

,

(11.1)

,

(11.2)

.

: µ

=

∑ i

xvi



i-

1 xvi µi

. .

-

,

-

. ,

.

,

:   1 = α i ∆Fi  τj i =1 

∑ N

Q1 j

Q1 j

– ;N– ; ti, j (r , τ) –

,

  ti , j (r , τ) dτ − t pj  ,  0 



τj

(11.3)

j, ,

-

i-

; α i , ∆Fi –

j-

-

; τj –

i; t pj –

j-

j-

. :

Q

ti , j (r + δ , τ) Q

j

=





j

  ti , j (r + δ , τ) dτ − t  ,  0 

  1 α i oc ∆Fi oc  τj i =1 



τj

N

(11.4)

j-

;



,

i-



; α , ∆F

j-

i;t



.

,

. ,

.   1 Qvj = α vi ∆ Fvi  τj i =1 

∑ M



Qvj

  t vi, j (r , τ) dτ − t pj  ,  0 



τj

(11.5)

,

j; tvi, j (r , τ) –

; M –

,

,

-

i-

; α vi , ∆Fvi –

j-

-

i. ,

j-

.

: Q j = Q1 j + Qvj + Qhj + Qdj + Qcj + Qmj + Qsj + Qej + Q pj + Q

Q1j –

,

,

,

j

, (11.6)

; Qvj – ; Qhj –

(

)

; Qdj – ; Qmj –

; Qsj –

; Qej – ,

; Qpj –

,

; Qcj – , -

,

, ; Q

j



. : ∆I j =

Qj τ j G

.

(11.7)

,

,

. ,

, . 12 ɆȿɌɈȾɂɄȺ ɊȺɋɑȿɌȺ ɋɈɊȻɐɂɈɇɇɈȽɈ ɈȻɈɊɍȾɈȼȺɇɂə .

∆ , ,

, .

-

∆τ.

-

. ,

-

, , . ,

-

, ,

.

,

,

-

. , , . .

,

. . . ,

.

, . : G – – t – Dg, Dc –

; ; ; -

-

; α1, α , αoc – , ) 1, ρ1, λ1 – , ,ρ,ρ,λ,λ – ; r – d – δ – t –

,

(

; ,

; ,

; ; ; . -

,

-

. , ,

-

, . ,

:

,

,

. . :

• t1 – • t(r, τ) – • t (r1) – • 1– • (r, τ) –

(r, τ) –

t(r, τ)

; ; ; ; . t (r1)

, .  ∂ 2t (r , τ) 2 ∂t (r , τ)  ∂t (r , τ) + q , = ac2  + 2  ∂τ r ∂r  cc ρ c   ∂r

0 ≤ r ≤ R,

τ > 0 ; (12.1)

t (r , 0 ) = f (r ) ;

(12.2)

∂t (0, τ) = 0; ∂r

λc

(12.3)

∂t (R, τ) + α c (t (R, τ) − t c ) = 0 , ∂r

αc < 0 .

(12.4)

 ∂ 2t (r1 , τ) 1 ∂t (r1 , τ)  ∂t (r1 , τ) , r ≤ r1 ≤ r + δ , τ > 0 ; (12.5) = a2  +  ∂r 2  ∂ r r ∂τ 1 1 1   t (r1 ,0 ) = f (r1 ) ;

λ λ

∂t (r , τ) + α (t (r , τ ) − t1 ) = 0 ; ∂r1

(12.6) α < 0;

∂t (r + δ , τ) + α oc (t (r + δ , τ) − t oc ) = 0 ; ∂r1

 ∂ 2c(r , τ) 2 ∂c (r , τ)  ∂c(r , τ) , 0 ≤ r ≤ R , τ > 0 ; = Dc  +  ∂r 2 r ∂r  ∂τ   c (r , 0) = f c (r ) ; ∂c (0, τ) 30,

Nu D =

)

),

PrD =

ν Dg

.

Nu D = 0,395 Re 0,64 PrD0,333 ;

(12.38)

Nu D = 0,725 Re 0, 47 PrD0,333 ;

(12.39)

Nu D = 0,515 Re 0,85 PrD0,333 .

(12.40)

(12.41) α1

α ,

-

. 1,5  Re  Re  0,33 , < 200 ; 0,0035   Pr ε ε    Nu =  0, 67 Re   Re  0 , 4 Pr 0,33 , ≥ 200 .   ε  ε   

(12.42)

-

0, 5  0,5 (1 − ε ) , 0,31 Re  ε Nu =  0, 2  0,8 (1 − ε ) 0 , 1 Re ,  ε

(12.43) Nu =

(12.42) ω–

ωd αd , Re = , d = ν λ

;ε–

Re∈(1,5 , 57 );

Re∈(57 , 150).

(12.43)

F , π

;F– . .

1

, , ,

-

,

. 2 ,

-

,

. 3 4

,

. .

-

. 1–4

5 .

(

). ∆Q1 = ∆Q2 + ∆Q3 + ∆Q + ∆Q ,

∆Q1 –

; ∆Q2 –

; ∆Q3 –

,

,

,

; ∆Q –

(12.44) -

; ∆Q –

. , -

, . ɁȺɄɅɘɑȿɇɂȿ

,

,

-

, ,

,

-

. , ,

-

, . , ,

,

« "



. . .

,

«

»,

-

«

». -

,

, ,

,

. :

• •

; ,

• •

; ;

• •

; . :

• • • • • • • •

-

;

; ; ; ; ,

,

-

; ,

; ; . ,

,

. .

n;

;

,

-

,

-

. ,

,

. .

.

ɋɉɂɋɈɄ ɅɂɌȿɊȺɌɍɊɕ 1

. ., . 2

. . . . .

3

-

.:

, 1996. 496 . .

.:

, 1978. 512 .

.

. 2-

4

. ., .

.:

5 6

. . . ., // 7

.

.:

.

-

, 1961. 703 . . ., . . , 1970. 712 . : . .: , 1972. 560 . . . . 1985. № 2. . 118 – 123. . ., . ., . . ,

-

// 8 / 9 ,

. 1995. . 1, № 1 – 2. . 39 – 52. . ., . ., . . . . . . .: , 1981. 264 . . . 5 ./ . . . .

, .

.:

, , 2000. . 1. 480 .

,

-