Тригонометрия 5-8265-0088-3

Учебное пособие знакомит иностранных учащихся с основными тригонометрическими функциями и их свойствами, также в нем при

196 51 691KB

Russian Pages 69 Year 2003

Report DMCA / Copyright

DOWNLOAD PDF FILE

Тригонометрия
 5-8265-0088-3

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

2003 514(083) 151. 73 87

,

В.М.

А

:

.

.

, . . , . .

. . 87

: / . . . - , 2003. 104 . ISBN 5-8265-0088-3

.

, . . , . .

.

,

, . .

, . .

.

:

-

, . -

,

-

, . -

,

-

. 514(083) 151. 73

ISBN 5-8265-0088-3

 

(

), 2003 , , 2003

,

А

, ,

А

А А

.

, ,

. . .

60 × 84/16. : 6,04

7.07.2003 . . . .; 6,00 .- . . 150 . . 463

392000,

,

, 106, . 14

1 1.1 Oxy R=1

(

ё

. 1.1.1).

.

.

,

. Ox

Oy

. .

.

А

.

А = 1.

. -

xOy,

α=∠А В

,

. ,

(

,

-

. 1.1.1).

I R

I

α x

III

IV . 1.1.1

R R B

R R AA

A

A

В B

OO

O O

. 1.1.2

. 1.1.3 . В

А

В

А.

.

ё -

А

. (

. 1.1.3),

, .

,

ё

,

, .

В

. 360°,

ё

– 180°.

. 1.1.2, . (1/360) -

90° (0 o ≤ α ≤ 90 o ),



180°

270° (180 o ≤ α ≤ 270 o ),

ё





270°

180° (90 o ≤ α ≤ 180 o ),

90°



360° ( 270 o ≤ α ≤ 360 o ).

∠ А В,

-

АВ.

-

. . π/ 2

– , = 180°. , .

– π

ё

,

1

, – 2π

.

.

,

2 πn + α ,

,

.

2 π = 360°.

π

n–

,



.

,

.

,

. -

,

, -

.

.

1) –300°; –89°; –271°. 2)

, α = 360°, n + β ,

α

960°; 1,600°; –475°;

: 75°; 320°; 135°; 280°; 92°; 280°; –35°; –135°; –92°; n–

,

° ≤ β < 360°; 270°; 415°;835°;

–920°; –1,340°. 1.2 R= А

y α

. 1.

А

α : sin α .

α

α

-

. -

,

sin α =

y

y O

А

.



. 1.2.1

y . R

R.

(1.2.1)

α

α : cos α .

2.

4.

α

,

cos α =

tg α =

(1.2.3) .

,

tg α =

-

.

(1.2.4)

), tg α =

sin α ; cos α

(1.2.5)

cos α . sin α

(1.2.6)

ctg α =

sec α .

α

y . x

α

(

cos α .

α

5.

(1.2.2)

.

,

: tg α .

R.

x . y

α

3.

: tg α .

-

α

, sec α =

cosec α .

(1.2.7)

sin α .

α

6.

1 . cos α α

-

, cosec α =

. ё

-

1 . sin α

(1.2.8)

R = 1.

-

: sin α = y ;

cos α = x ;

tg α =

ctg α =

y ; x

sec α =

1 ; x

x ; y

cosec α =

1 . y

(1.2.9) (1.2.10) (1.2.11)

α

,

α

y

O

. 1.2.2

1.2.3).

-

β

A x

O

. 1.2.2

A x

. 1.2.3 А (

, А.

– . , 1.2.4). y 1

1

y1 $

O

$ . 1.2.4

.

. (

y

-

1

α=∠ А В.

. В

. 1.2.2)

-

ё

В1 (

.

y

y 1

α

2

$ 2

2

O

1

=1

1

x

A

1

x

y1 -1

$ 1

. 1.2.5 В

, α

tg α = y1 .

1) 0 o ≤ α < 90 o (

2) 90 o < α ≤ 180 o ( ∆ ВВ2 tg α =

В1 (

ё

. 1.2.5).

. 1.2.4). tg α =

. 1.2.5). tg α = y2

~ ∆ В1А.

x2

y2 = y1 ≤ 0 . x2

.

y1 y1 = = y1 ≥ 0 , 1 x1

=

y2 ≤ 0, x2

y1 x1

=

2

1



2



− y1 y2 = 1 − x1

y1 1

tg α = y1

,

В

В1. М. y2 = y1 . x2

, ё

. .

. ,

В,

В

-

90°. .

ё

. ,

. 1.2.6).

. 1.2.5

,

tg α

(

, . .

1

1

y 1

x1

1

В y1=1

α

α

-1

A 11 x

-1

. 1.2.6

y 1

В

x1

1

y1=1 α

–1

A

2

x2

x

1

–1 . 1.2.7 , 1

, , . . ctg α = x1 . .

1)

(

. 1.2.7). tg α

α

1

, .

: 5 6 3 2 5 6 2 3 1 5 4 8 ; − ;− . ;− ;− ;− ; ; ; ; ; ; 4 5 2 2 3 2 2 2 6 5 7 2

-

2) 3)

: 0,2; 0,5; 0,75; 0,9; 1,05; 1,52; –0,3; –0,7; –0,99; –2,3; –1,25. α, : ) sin α < 0, cos α > 0; ) sin α > 0, cos α < 0; )

tg α > 0, sin α < 0 ?

4)



360°?

1.3 y = f (x)

ё

,

,

1

< f (x2).

,

1

2

y = f (x)

ó

.

. 1.3.1

] 1;

, ,

,




1

1

( 0

. 1.4.1),

1

π sin α 2


sin α 2 .

2.

π 2

2.

. π

0. y 1

B

α2

A

α1

O

x O

-1

y2

y1

x

1

-1

. 1.4.1 y 1 A B y2 y1

α1

α2

-1

1

x

-1

) 1.4.3).

3π sin α 2

3π   . π ≤ α ≤ 2  

,

1

>

0

2.

–1.

α1

. 1.4.2

α2

, sin α1 > sin α 2 .

π ≤ α1 < α 2 ≤ α

3π ( 2

π

.

(

  3π ≤ α ≤ 2π  .    2

ё

)

. 1.4.4).

,

2 π sin α

: sin α –

1


 π  ≤ α ≤ π .  2 π 2

π cos α

,

α1

α2

2.

1

) 1.4.6).

1



В1
tg α 2 . 2π ,

π < α1 < α 2 ≤

π,

ctg α

α

3π ( 2

.

π

3π ≤ α1 < α 2 < 2 π 2

2π ,

α

ctg α

y B1

1

α2

A1

α1 -1

1

O

x

A B -1

. 1.4.15 y A1

B1

1

α2

α1 -1

1

x

B A -1

. 1.4.16 1.5 Чё

ё

y = f (x), ё

, , . ё

y = x2 – ё

y = f (x), ,

ё (x). 1.5.2).

f (–x) = (–x)2 = . 1.5.1).

. (

ё

2

= f (x).

. =

ё f (–x) = –f 1 2

3

. ё

( .

.

ё f (–x) = f (x). y = x2 .

. ё -

y

4

4 3 2 1 –3

–2

–1

0

1

2

3

x

. 1.5.1 y 3 2 1 –3

–2

–1

0

#1

–1

#2

–2

#3

–3

x

1

2

3

x

. 1.5.2

ё

ё

ё

,

.

,

y = x2 +

. 1.6 Чё

cos α

. ё

ё

,

ё

sec α

ё

ё ё . sinα, tg α, tg α

,

s

α

. : )

os α =

,

,

cos ( −α ) = x .

,

:

ё cos α . 1.6.1. А

sec α .

В

α = ∠ COA

cos ( − α ) = os α .

.

− α = ∠ COB .

,

cos ( −α ) = os α .

: α.

y

y

A

y

α

y



-y

C

#y

α

C C

C

−α

x C

x

В

. 1.6.1 cos ( − α ) = os α .

= os α

. . ё

= sec α

ё

(1.6.1)

.

sec ( −α ) =

1 1 = = sec α . cos ( − α ) cos α

:

)

sec ( − α ) = sec α .

(1.6.2)

sin α, tg α, ctg α cosec α. sin α = AC sin( − α ) = BC . А = В =– . sin α = y sin( − α ) = − y . , sin( − α ) = − sin α . (1.6.3) ё

y = sin α

ё tg( − α) =

:

ё ё

sin α

-

sin( − α ) − sin α = = − tg α . cos( − α ) cos α

tg ( −α ) = − tg α ; ctg ( −α ) =

cos α .

.

cos ( −α ) cos α = − ctg α . = sin ( −α ) − sin α

(1.6.4)

:

ctg ( − α) = −ctg α ; cos ec ( −α ) =

(1.6.5)

1 1 = = −cosec α . sin( − α ) − sin α cosec ( −α) = −cosec α .

(1.6.6)

,

.

ё

1) , 2 ) y = x + ctg 2 x ;

:

) y = sin x ;

) y = sin x ;

1 + 2 cos x ; x4 sin x ⋅ cos x ) y= ; tg x + ctg x

) y=

) y=

sin x − tg x . sin x + ctg x

ё

2) , ) y = x + tg x ;

:

) y = − tg 3 x ;

) y = ctg 5 x ;

1 + cos 4 x ; sin 3 x x 2 ctg x ) y= ; 1 + sec x x + sin x . ) y= 2 tg α + ctg 2 x

) y=

ё

3) ё

:

) y = sin x + tg x ; ) y = sin x + cos x ;

) y = x 4 + sin 2 x + 1 ;

) x 3 + sin 3 x + 1 ; ) y = xtg x ;

,

-

) y = tg x + sin 2 x . 1.7 ≠ 0, y = f (x).

y = f (x) f ( + ) = f (x). nT,

(x),

sin α , cos α , sec α tg α

ctg α

y=f

n = –1; ±2; ±3; ±4; …, y = f (x). .

y = f (x)

– cosec α

tg α

.

1) ) y = cos2 x ; ) y = xtg x ; ) y = sin x + cos x ; ) y = ctg x + 2 . 2) ( )

ctg α

. 2π. π.

?

) y = sin x ;

:

1 2 ) y = xtg x ;

) y = sin ;

x 2 ) y = cos x + ctg x ;

) y = 2 tg x + sin x ; ) y = 2 tg x + 3ctg x .

y = sin x

1.8

y = sin x



1 2 3

y = sin x

– ,

4 5 6

n∈Z . 7

y = sin x

x ∈ (π 2 + 2 πn; 3π 2 + 2 πn ) , n ∈ Z . 8

9

y = sin x

[−1; 1] : E ( y ) = [− 1;1] . : sin (− x ) = − sin x .

x = πn , n ∈ Z . (2πn + 0; π + 2πn) , n ∈ Z : y > 0 x ∈(− π 2 + 2πn; π 2 + 2πn ) ,

x = − π 2 + 2 πn , n ∈ Z

: D( y ) = R . 2π: sin ( x + 2 π ) = sin x . y < 0

n∈Z ,

(π + 2πn; 2 π + 2πn ) , : (sin x )′ = cos x .

x = π 2 + 2 πn , n ∈ Z .

:

?1

? ? ? у = sin x?

Ч Ч

? Ох? ? ?

Ч

? ?

? ?

?

у = sin x?

y = cos x

1.9

y = cos x

2 3

E ( y ) = [− 1; 1] .



1

y = cos x

: cos (− x ) = cos x .

– ,

4 5

x ∈ (π 2 + 2 πn; 3π 2 + 2 πn ) , n ∈ Z .

7

(− π + 2 πn; 2 πn ) , n ∈ Z ,

8 9

y = cos x y = cos x

2π: cos ( x + 2 π ) = cos x .

x = π / 2 + πn , n ∈ Z . y>0 x ∈ (− π 2 + 2 πn; π 2 + 2 πn ) ,

:

6

D( y ) = R .

x = π + 2 πn , n ∈ Z

:

n∈Z

y0

6 7

8

: (tg x )′ = 1 / cos 2 x . y = tg x

y = tg x

,

x = πn , n ∈ Z . x ∈ (πn; π 2 + πn ) , n ∈ Z

π: tg ( x + π ) = tg x .

x ∈ (− π 2 ; πn ) , n ∈ Z .

y 0

: (ctg x )′ = −1 / sin 2 x .

.

π: ctg ( x + π ) = ctg x .

x ∈ (πn; π 2 + πn ) , n ∈ Z

y < 0 -

(πn; π( n + 1) ) , n ∈ Z .

y = ctg x

y = ctg x

x = πn .

:

?1

? ? ?

2 3

= ctg x?

4

?

5

?

6

?

7

?

8

?

9

?

10

1.12 1 А

(y = arcsin x). y = sin x



y = sin x. y = sin x

y

x4

x2 – π



π 2

0

x1

π 2

x3

π

x5

x

. 1.12.1 . y = sin x. . y = sin x = , (

.

, y = sin x

–1 ≤ ≤ 1. . , . 1.12.1). [–1; +1] . y = sin x

π   π  − 2 + 2 nπ, 2 + 2 nπ  ,

,

[–1; +1] ?

– ( 1,

2,

3,

…) y = sin x

,

n = 0; ±1; ±2; … .

y = sin x –1

+1

-

y = sin x

–1

3π  π  2 + 2 nπ, 2 + 2 nπ  ,  π π  − 2 , 2  .

+1

±1; ±2; …

. y = sin x

–1

[–1, +1]

+1.

  −

0

x0 .

π π , 2 2 

,

n = 0; -

0

,

y0 = sin

y = sin x .

y = arcsin x.

, .

y = arcsin x

,

. 1.12.2. 1)

:

2) 3) 4) 5) 6)

y = arcsin x: [–1, +1].  π π  − 2 , 2  .

:

y = arcsin x ё : arcsin (–x) = –arcsin x. y = arcsin x . y = arcsin x

≥ 0 rcsin x  < 0

0 ≤ ≤ 1;

− 1 ≤ < 0.

.

.

y=arcsinx

y

y=sinx



π 2

π 2

0

. 1.12.2 y

y = cos x

1

-2 π

x



3π 2

−π



π 2

x2 0

x1

-1

π 2

π

3π 2

x3



x

x

-

. 1.12.3 2 А

(y = arc os x). y = cos x [–1, +1] . y = cos x = . . . 1.12.3. , , , –1 +1 –1 +1

, x 0

∈ [0, π],

,

+1

–1.

, [0, π]

0

.

y = cos x,

. y = cosx [(2n – 1)π, 2nπ], n = 0, ±1, ±2, ±3… . [2nπ, (2n +1)π]. [0, π]. y = cos , 0 ∈ [–1, 1] = cos x0. y = cosx y = arccos x. y = arccos x

y = cos x (

. 1.12.4). y π

= arccosx

π 2 y

-1

0

1

x

. 1.12.4

1) 2) 3) arccos x. 4)

y = arccos x : : [–1, +1]. : [0, π]. y = arccos x ё , ё

.

y = arccos x

.

5)

ё

y = arccos x

6) Y = arccos x ≥0 3 А n

=

π (2 n + 1) , 2

ё

arc os (–x) = π –  π  0,  .  2

(1, 0), [–1, 1].

(y = arctg x).

y = tg x

,

n = 0, ±1, ±2, ±3… .

y = tg x –

.

y = tg x . 1.12.5.

. .

,

tg x = .

y



3π 2

−π

x1



π 2

0

x1

π x3

π 2

x

3π 2

. 1.12.5

, –∞

y = tg x

+∞ ,

π 2

]− ,

,

.

π π + 2 nπ, + 2 nπ ], 2 2

n = 0; ±1; ±2; … .

y = tg x,

π [. 2

,

π π ]− , [ 2 2

[−

y = tg x

y = tg x

–∞

0,

0

y0 = tg x0.

,

y = tg x

. arctg x.

y = arctg x (

y = tg x . 1.12.6). y

π 2

y=arctg x

x

0



π 2

. 1.12.6

y = arctg x y = tg x:

,

1) 2)

: :

]–∞, +∞ [.

π π ] − , [. 2 2

π 2

]− ,

+∞. π [ 2

y= -

3) 4) 5) 6)

y = arctg x ё : arctg (–x) = –arctg x. y = arctg x . y = arctg x rctg x < 0 –∞ < < 0 rctg x > 0

7)

y = arctg x

4 А n

= nπ, ,

( = arcctg x). n = 0, ± 1 , ± 2 ,… . = tg x

. 0 < < +∞.

y= −

= ctg x ё

π 2

π . 2

y=



. 1.12.7

. .

y



3π 2

x1

−π

x3



π 2

0 x1 π π x2

x

3π 2

2

. 1.12.7

= tg x, -

π[.

,

,

. + ∞, –∞. , 0 ∈ ]0, π[,

= ctg x = ctg x ,

, 0 = ctg x0. = ctg x. = arcctg x ( . 1.12.8).

, ]0, π[ = arcctg x. = ctg x = arcctg x

1) 2) 3) arcctg x.

: : = arcctg x

-

]–∞, +∞[. ]0, π[. ё , ё

]0, 0, -

:

.

ё

arcctg (–x) = π –

y π

π 2

y = arcctg x

y

0

x

. 1.12.8 4) 5) 6) 7)

= arcctg x

.

 π  0,  .  2

= arcctg x

= arcctg x > 0 = arcctg x

. =0

= π.

1.13

:

sin (arcsin x ) = x, x ≤ 1 ;

(1.13.1)

cos (arccos x ) = x, x ≤ 1 ;

(1.13.2)

tg (arctg x ) = x, − ∞ < x < + ∞ ;

(1.13.3)

ctg (arcctg x ) = x, − ∞ < x < + ∞ ;

(1.13.4)

sin (arccos x ) = + 1 − x 2 , x ≤ 1 ;

(1.13.5)

cos (arcsin x ) = + 1 − x 2 , x ≤ 1 ;

(1.13.6)

tg (arctg x ) =

1 , x ≠ 0; x

(1.13.7)

ctg (arcctg x ) =

1 , x≠0; x

(1.13.8)

tg (arcsin x ) =

x

1 − x2

, x