Теория взаимодействия 5-7615-0264-2, 5-76150264-2

В монографии обоснован способ расчета электромагнитных и гравитационных взаимодействий движущихся тел. в котором простра

197 105 3MB

Russian Pages 148 Year 1999

Report DMCA / Copyright

DOWNLOAD PDF FILE

Теория взаимодействия
 5-7615-0264-2, 5-76150264-2

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

2

530.12: 531.18; 537.8 22.313 52

XX

!

*( , *) ' 7. - , 9 88 ISBN 5–76150264–2

"#

&#

&

)* *( + ,

*. .

'( ) .

*( /

0

. 59.

7

*6(.: 128

I , )* *( + , *)* *( + ,

. *-

0. *

1(

:

* * 7 ( %

&

& 9

*

*

,)

28.09.04 6. 6 +*(

#

, .

/ 0 , 1(*+ *( . . . / 0 . .

(J) * 1 . 0. 0 ( * + ( #

&

,- *

8

* *-

& * *6( + *7* * 1* *7 ( . H (* 6 / 6( I * / , *) '' ) J0K / , * *(* 1(* ( * ( * ) J , . L(* , (* *1( ) * * 1* / . ,H 1 ( @ /, * * ) * * 0( H (*) , ( ,0 @ ( M * *( / 0 * , *) ' ) 0/ 1* 0. ( *( /) J . . *,) ' ( , *' +*( 1( ) *) ( . 0 *( 'H ( /. I. * ( 6( I 1( * *( * * @ * 1( ) * 1( ) J 1( *. . )* , *) ' ) 0/ 1( * * * * / *(*/. L(* , (* ( ,0 @ * ( / 7 N) ' (/ * /) J ', 1( )*) 1* 0. (/ * /. I 1* , 1 ( 1 / 1* @,* 1(* * (* ) *' , K # ) J, ,) / 1 ( * . * ( *1(* *(*( 1(* ( 6* , 1( I 1 ( 6 ( 0( , ( I K H (6 * I . L( ) 1(*7 *6 / ) . / 0. 1* 0. * *. * ( M . 6 70) 1* , N7*, @ (M , 0) , 1( 1*) + , 1 I .

%

. .

. . 0 @ '. – * * 7 ( : , 1999 6. – 294 .

/

,) *7 *J

*( *' ( ) I : 0 @ ' . . © . .

&

ISBN 5–76150264–2

88 1999

3

4

0 @

', 1999

4.3. , *) ' ) 0/ .………………………………………..…...64 4.4. # * * * @ *6* ) J ) 0/ *7Q * .……………………….…….66 4.5. 6( (* , * ) J .………………...……………………….68 4.6. L ( /*) . *' ( *' / .…………….……...…...73

5 &

"

#

….……………………………..14

1 %& '( & …………………………………………………………....…..18

6

1.1. ! , . *( *1 1( (*) .……………………………….……– 1.2. (0J NK ' ( 6* *1 .……………………………….…….…..19 1.3. , *7Q * * (0J NK 6* ( ( 6* ( ....………...….…..19 1.4. & . *7Q * ( .……………………………………………...21 1.5. ,6 1* , * *1 * (0J NK 6* ( .…………………………...…...22

&%(%' 6.1. &*,) ' , ( 6.2. *(* @ ) J 6.3. *,) ' 6.4. *,) ' 6.5. *,) ' 6.6. *,) ' 6.7. 1(*K

2 &

!

……………………….…..24

2.1. J *7Q * 6* ( .………………………………………..…..– 2.2. &*,) ' 6* *1 .…………………………………………..…..25 2.3. 1( ) *,) ' * 6* ) J ……...…………….…..28 2.4. , * * 0 *( .…………………………………….…...30 2.5. H (6 .……………………………………………………...…...35

!

#

!

4.1. ( 4.2. M

…....…..38

*' 1( *06* @ *' 1 . I0.………….……– . I * ) *( ..……………….………….….104 , ( J *' *(* @ . I ..………………...…107 ) J0K ' , ( J *' . I 6 .……………...110 *. . *6* 6 , ( J 0N . I0.………………111 1(* *) * * , ( J 0N . I0..……………..112 7 , 0. +*( *,) ' 0NK / ..……………….…116

………………….…..140 8.1. R+ (, *( * * @ * 1( *7( ,* *( I ……………….…..– 8.2. 0K * @ 1( *7( ,* '…………………………………………....….143 8.3. 1 *,) ' ) J0K ' I * ( *' 1* *K@N 1( *7( ,* '………………………..……………………….…...…..148 8.4. 1( *7( ,* * * *6* 0( …………………..…………...…..153 8.5. 7 (( I H++ *1 ( …………………………………………….158 8.6. *(* @ J)0 ) J0K …………………………....…161

*. . *6* , ( ) .……………………….…...……– 7 ( .……………….……………………….…..54

5

J

8

%! &%( ! & ! ………………………………………………………….52 7 ( )

0(

/%……………….……...99

7.1. R (6 , K 6* * *(* , *) ' .………………….…...…...– 7.2. * 6( ) J ..……………………………………….....…122 7.3. *) 0 (* *(* '…………………………………….....…124 7.4. . ) J . I 0 *( /.………………………………...…131 7.5. . ( ,0 @ * *1 0/ ( ( .……………….…………………..….136

4 !

# ! %' #

# ! ……………….………………………………..….119

3.1. &, *) ' 1*) J / H ( ,* / .………...………...……– 3.2. L(*7 *1 , *) ' ' ) J0K / , ( J / .……….…..40 3.3. , *,) ' 1( ) J , ( J *6* 6 ....……42 3.4. & *) 0( ' ,H 1 ( @ /* * '………......…..45 3.5. ++ ( I @ 0( ) .………………………………...…..50

# #

&

7

3 & &

…………….……..…….……78

5.1. . ( *( ..……………….………………………………..– 5.2. &( ) J 1* ( *( ..……………….……………………...…...80 5.3. ( *( 1( * . *' *(* ( 1(* ( *,) ' .…..…………84 5.4. 8 1 (7* * ) ( *( .………………………………………...…...85 5.5. L ( 7* * ) H 1 * ) ( *( ..………………….……...…..90 5.6. ( *( 1( * 1* ' 1 ( *) ( *( '..……………..…..93 5.7. 1 * . ( M .……………….…………………………..…...96

………………………………………………………..………8 !

%!

6

8.7. L(

I 1* *

@ *

6* , .

……………………………...…165

9 &

%

"#

!

"….167 & * * * (0J NK ' (

9.1. L* ". ( *' ) ( " ** *M 1 ( (* .…………………..…..– 9.2. 7Q (*(* ( ". ( ) ( "..………………….…...…169 9.3. ( *( 1( ( I ( ) @ *' *(* .………………………...…171 9.4. ( *( 1( ( , / ( ( @ / *(* /....……….……...…...…173 9.5. ( *( 1( , 1 ( ( *,) ' .……………………...…174 9.6. *6*06* @ *(7 ..………………...………………………………176

10 !

&

10.1. L( ( (/ 10.2. 7 N) , 10.3. *( 60 * 10.4. *6* 01 . 10.5. *( *) *. 10.6. L ( 1 1(

…………………………………..….178

* /) J '…………………………………...……– *) ' 1( (/ * *' *(* ………………...183 . I )* (/ * *' *(* .………….……...…188 0 *( (/ * /. I…….……..……...…191 /. I )* (/ * *' *(* ……………….…192 (/ * /) J '.…………………..…..195

11 /

…………...………...…199

11.1. *(* @ ( 1(* ( 11.2. L( I 1 ( 6 ( 11.3. &, *) ' *6 / 11.4. *. * ( M * 11.5. ( *( ) J 1( 11.6. 9 ( @ *( .

6* .…………………………….…...…..– 0( .……………………………………...…204 .………………………………….……...….210 ( . *' 1 * *' , ) . n- .…………….…….220 , *) ' * @ / .………………...223 ( I ………………………………...…229

!

…………………………...…240

……………….………………………………………….…244 % & 0( & * . & 0(

1. L(*6( ') J ) H 2. /( .

( ) MATHCAD 6( (* 1 * ) / *(7 .……………..……...…..253

/*) 1 ( ( ( *( ' , . / *. /.…………………………………..……...…255

3. L(*6( ( ) MATHCAD 6( (* '* * * * *6* ) J . I .…………………….....…261 4. (

& & 1 ( I

……….……………………………………….….247

(

*(

) J

0 ( «. (

/ ) (».………..263

5. L( ) 1 ( *) *(7 /( ) 0 …..…………………………………………………………293 7

, ) 0/: 6* 1*

. 1998 .

* (

1( ) * (*(* ( * * *( @ * ( ). * *, * )* M 6* ( . , * ( . * * *M '. 1( 1* * @N . . * , 0. , ) : . . ( * [25], . . & * [9], &.!. . [37], 6 ( ' ) . *M [78, 79], 1(*+ *( . . a * @ * , .L. ( , . . b 1*M * [74], . . ( , , . . 7 ) , . . , ', . . 1 [67] *6 )(06 . 7* ( *' 1( . 107 * @ 7* 1 ( ,) @. L* NK ( ) ) *J * * @ )0NK 1( ) *7 / ( , . & * I 50-/ 6*)* ( I c. ) ( [87] ( * ( ,@ *( ' H+ ( . & 60- 6*) 7 *107 * ( . ( 7* *6* + * *+ . . [34] . 7 *6* + , 8. . * [29, 30]. R 0. , J . . , ', . . b0(01* , .8. # )(06 *(6 ,* 0. *+ , . ' (0J* . .&. * * * * , * *( ' ,) (0 *1 ' J0( *) * *6* , .R * )0 * @ 1 ( ' H 1. & * I 60-/ 6*)* ( I ( '* c. * [122] 1* , *,*J * @ 0 (* *(* ( ) * * * *(* @N # * * @ * & ( . 7* 0 .c. * , * * 0N ) / 7 N) ', *J * * @ *(*' J ' H 1 ( , ( *6* 1( + , . * , 1* )0NK 1(* *( @ 0N 1*)) (J 0. ( @ H 1* 107 I 1984 6. 6 1(*+. &.&. d M [69], * *(*' 7* @M*' *. ) * @N 1* , * * @ *( * * @ * ( @ *' ) ' @ * @N. * I 80-/ – . * 90-/ 6*)* M 6* * *, * 70( ( , ( 7* ( *' 1 I @ *' ( ), *7K ' ( ). #( M ) 1( *6 1( ) 0/ , .@ ) @ * @ ( ,( @ 1( *', 1* 1 * 1 * @ *107 * / @ /, ( / 6 /. L ( (*' 10 * / , * *7 (*)* H / ( 7* 1*10 ( *' * *

8

1 . (*)

, * / 0. / J0( / *6 / I * @ / J)0 / * + ( I /, 1(* *) / ( , / ( /. . @* 107I 7(*MN( &. . ( [47] 1(*)* J @ 0. *-1*10 ( / J0( / [4, 11], **1 ( *- ,) / 7(*MN( / [14] ) J 6 , / [17, 41, 42, 48, 57, 61, 70]. (*MN(0 &. . ( )0 ( ( @ . ( ' H 1 ( ,( *6* ) J . & ' 7* @M*' 07 J) * @N ( , @ * @N 7 1* , )* 1(* *( . . * @M* *,) ' *7K * * , J 7(*MN( 1(*+ *( (*) *6* ) 10 . . * [14]. 6*) ( ' M (* *' *7K * * , *, . * N 0. , * *( 1( , N (M 0 . * . *' 0)(* . J) ' ) @ 0, 0. / , ( , / ( , * K / *11*, I *( * * @ * , * *( ( @M 7 , 0.* 0 **7K 0. ( N ( , *(* 1(*7 . ,0 1(* ( *- ( / 1( *7( ,* ' 1* K ( 7* [41, 43, 79, 87, 92, 103], )(06 / [6, 51, 66] ( * ( 1 ( )* . (@ , ' ( . ' , *( * * @ * 1( ) ( 7* / * ( b ) [100], bN *I bN , 6- 0 ( ) [127, 128], .a. . ,* 0 0 ( 6 ( ) [126] *6 / )(06 / [8, 11, 13, 14, 44, 89, 93, 95, 104, 105, 109]. * @ . /, * / / + , , * . . ! 11 , . [107] J.L. H [125] ( ( N , *) ' ( 1(* ( ) J0K / /; . . (6 [85] ( ,( 7 *) H ( /. I; !. . ( [20] *) 1* 0 **' / * 1(* ( *- ( / * *M '; d. . 0, . [102] *1( ) 1 ( *) . *' H * ; &. . 0/*(0* * 6 . *) 1 ( 1 ( / ) H * [63] .). & H / ( 7* / 1* @,0N . 1( ) * 1(*( , ( , * *( , * ) J . & 1994 6. *107 * M * *6( + [59], * *(*' 1(* , (* * * *( * * @ * , 6 )* 1( ) *J * ' *) *1 , *) ' ', * * ' . / 1( ) / * 1(* ( , ( . R ( 7* 7 ( . ) ) -+ , ) *)0M *)*7( . *6 *(* *7( . @, 7 * * 7(* @, *M @ 1(*+ * @ * @ *( . L*H * 0 /*) 6 ) . * ,) *J * ( I @ 1 ' H 1 * * *' + , . & 1997 6. M ,1 . * *6( + 1(*+ *( 0 ( M # 1 ) & ()J . . + * [98], * *(*' ( ** *M * ( / . *' / H (*) *) /*) , , 1 ,) 1* ' 1( * * @ * ) J , *) ' 0NK / *7Q * . R * *) * /*) ( 7* ( aH ') [94]. & * I XIX . * *, . * , *) ' , ( J / , * /) J . 8. . *( I ) 0 6 1* ,0, *6 * * *(*' 1( 9

) J , N * ( , ( , . * 1( *) , N , *) ' . R * *7* * * @ 1( ) *7 H+ ( . d I K , *7 * * K , H+ ( , 1( ) J *60 , @ * ( , ( . ) * , *) ' ) 0/ , * * *'- * 7 * N *' *(* , * *(* / ) J 1* * *M N )(06 )(060. . R' M ' 0 1( M * @ )* , @ 6 1* ,0 8. . *( I , *6 7 * 1* (* * *1 , *) ' ' ) J0K / ) , *) ' ' 1*) J / ,1 ( ( * *( / (1(* ( *, ( ) , N 1* *( I* 1( *7( ,* .R *1 ( ( , H (*) , * *(*' 1* (* * ( + , . & *( * * @ * . *' *(* ( 1(* ( *,) ' .& ) H *6* , *) ' ) 0/ , ) J0K / * *@ * )(06 )(06 , ( * , *) ' N 1*) J / 1( /J ( * / J)0 . L* 6 , . * 1* , ( J NK H * *,) ' , , 1 ,) N . 1* , *1 NK , *) ' 1*) J / , ) 0 @ 1(* J0 * ( , *7/*) ' ) ( 1(* ( *,) ' J)0 , * * 70)0 ( J @ , *) ' * * @ * ) J0K / . ( aH ') 1* 0. ( J ) 1( J * ' 1* ' 1( H (* 6 * , *) ' ( 1(* ( / 6( I * , *) ' . R 0 N 1(*)* J . . + * [97, 98]. *) , 1 ,) NK / 1* ' 1* * @N *J , @ . & /*) 6 [98] *J * . @M H 1* ( ,( *' + , . & * . * 1 ( / ) 0/ *)* ( ,( 7 *), * *( ' 1* * @N /*) ( / / . & ( ,0 @ , ( , H (* 6 , 1( M *)0, . * , *) ' ) J0K / )(06 * * @ * )(06 H ( ,* / 6 . / , * @ ** ( * J)0 , * * /* * @ *' *(* . & ( J ) 1* 0. ,* * @ H 1 ( @/, * /H (* 6 , . ' *) ( 1(* ( ( ,0. . M * ( ) * / , ) ., 1* 0. * ( ,0 @ , * *( 1* , N , . * M ( 0 (* * , )* * , + , ,* * *' .R * *) 6* * 1( N 6* , *J N 1*K * K 6 . *( * * @ * * , 6 07* * *,) ' M (*1* , (* *,,( * * , '. & *) * ( / ) 0 / * *(* 1( /*) * @ ( , M @, . * ( ', * *J *(* ' * (M , 1(* * 0 (* *(*' . *' / 1( 7 J 1( ) ) / *(* '. *6) J 1* , ,. * . * *J *(* ' ) . * ( + . * 0 ) ' N 2 + 2 = 4, ( * H * 2 + 2 = 5, * . 1( ( * *7( ,* . 1 ( ' , * *J , *(*' N 6 1* . , *( ' , * *J *(* ' 1*) (J) H 1 ( @ *, 1*H * 0 * ( . 10

L(* ( * ( , * 7 . 1( ( K H (6 N. L0 M 1* ( : 70)0K 1(*M * . &( 1( ( K )( / , ,) ( N. & H * , 0. *+ . / (* * . R * +0 ) @ / )* '. L ( ) *J , ) . * * * M /, '. 0J * 7 * @, *J * 1(* ( * , ( , *(* @N, *', *', H (6 ' )(. * (M @ M 1( ) 10 I ? d * M , 1(* , * @ *' 6 1* ,*'? @ *, . * , 7. ? M 1* H / 1(*7 1( ) 6 ,) @ 1 * 0. N. *) * )* * (M ( 70 * *(*J *6* 7 * *M . 1(* . * 0 * 0 * (6 @ 6* /*)0, )0 . * 0 – 1 @ ' )* 0 ( @ /. * @ * * 0. M , * 1** 1* * N 70) * (M * @ 01(*K @ . , 1 ( *' 6 ( * ( * * M /, '. & , . * * (0J ( ,) ) . : * (0J NK ' ( 6* * 1( , 1* , . . *1 . 1( M *)0, . * ( / , *6* ( ,) ( N *, ( M @ 1(*7 , * *( 1 ( ) *, , *, *J *. & H *' 6 1 1* @, . * * 1(*( * ( . , , H * ( ,0 @ *1* *' 1( )* – / . , . * * *' H * / . 1( /*) *)0, . * ) ) J , – H * , * *( 1* 0. ( ,0 @ ( J ( , / *' 1( ) * . ( , ** 0NK *' H * / . & H * – * * 0 @ 7 ,6 1* , *6* *1 * (0J NK 6* ( . &* *(*' 6 ( * ( 1* / : *(* @, 0 *( , *,) ' , . L* , *, . * , * / @ . * * M 1* *7 *1 , *) ' '. & 1( (*) *7Q * 0K 0 , *) ' J)0 . * 1(* 0 *( . &, *) ' *1 1* *K@N . L*H * 0 0 *( – H * *) * *J *. * @N )* *H++ I . 1( *) )* , @ *6*, . * )(06*' , * * 0 *( *J 7 @. & ( @ ' 6 1* , *, . * , *) ' J)0 ) J0K , ( J , * *(* . , H 1 ( @ /* * ' ) ) ++ ( I @ 0( ) . &. ( *' 6 H 0( ( M ) , *) ' ) 0/ *. . / 1* 0. ( J ) , *) ' ) 0/ ,) J0K / )(06 * * @ * )(06 . # * 1(* ( ( , / 1( ) @/ 0. /. & 1 *' 6 ( * ( * ) J ) 0/ , *) ' 0NK / . . *(* , ( ) J ( *( . # ) . ( M N . . *) . & M *' 6 )0 *,) ' , ( J / 6 . / ( , *' +*( ) J0K0N . I0. L* , * 1( @ *), , ) * @ *H ( . 6 1( J * . 11

& )@ *' 6 *) 1( ) ( . ( , / , *) '', * . ) ( . 0 *( ' H ( / . I. #) @ J 1(*) * ( (* *7 . *, *J * *) , * *( ( ) 0. 1*, * N ( M @ , ) . , 1*)) NK ( M N )(06 *) . & * @ *' 6 ( * ( * , ** *M *) *)* *( * * @ * . . * J)0 ) J0K . L* 0. * ( J ) *(* 1( * * @ * ) J *. 1( . L ( ( , *) ' 0NK / *7Q * *60 7 @ * ,. * 1 ( I ( *(* @ ) J 1( 7 J * *'. , *) ' *60 7 N) @ (* ( . & ) *' 6 1( ) ( *( H /) J '. 6 1* K (/ * ) J . 7 N) N ) * * * , 1( /*J) * . /. I * + (0 # # . L(* , (* 1(*I 7 N) (/ * *6* *7Q )* * 6* *,) ' . *6* 0) * 0 *( NH ( /. I )* (/ * *' *(* ( * ( 1 ( 1 1( (/ * /) J '. & *) )I *' 6 )0N 6( I * *,) ' . L* , *, . * * 0 0N * * . @ *(* @ ( 1(* ( 6* * . *'. , *J 6*( . *6* ( M , ) . *6 / . *. * ( M * ( . , ) . *6 / ( ,0 @ *1* . ( M 1( , *) ' ( / . ( / . M , ) . I ( @ *( . *' ( I K ( * ( 1(*7 H (6 * I . & * I * *6( + ) *1( ) * * / 1* ', 1(*6( ( M , ) . * *( ( ,0 @ . /( M '. +*( 0 (* M H 1 ( , ( *' + , N 07Q @ 0 * . )0 * @ * + ( I ', * / 0. / J0( * , , (*J) NK / *7K * ) @/ 0. / ( , / ( /. 1( (, 7* @M*' * 1* 0. * 0180- 6*) 1(* 6(011 0. / , L0 * *' *7 ( *( . /) @ * @, * . . . * . @ * *', J )(06 / 0. / , 6. -L (70(6 L.!. L (M , .L. & ( )(. *(6 , I 1(* ) J)0 (*) / 0. / * + ( I ' 6( 7* @M0N (* @ ( * ) J . 6*) ( *N ',0, ,) N J0( "Apeiron", 1(*+. L (0 a 0, *,) N J0( "Galilean Electrodynamics", )* *(0 . L ( , ( ) *(0 "Physics Essays", 1* ) ) ( ( 7* 107 0N . 1994 6. * * y6*-# 1 ) * ) ( *6* *7K ( , 0 1(* *) * J 6*) * + ( I ) ) + , , /*) K @ 0( @ *' + * *+ , * *( ' *,6 )* *(* J* * . d 11 . )0 * @ (60 (* 0N ( 0 ' + , * bN *I , * *(*' 1* ) 6*) * 12

01

I / ( ) J)0 (*) / J0( * . L* NK 0*107 * @ 6 ( *' ( ) , (07 J/ 0. /, , /, , /, * . 1(*+. . R . *6 0. , * . ( '* c. * , . . , L ( a , + ( * , &. . ( )(., 1( (1 1( 6* , * ( ,6 ) . & 1* ) 6*) * *( , / 0M , J , : 1(*+. . . , ', 1(*+. . () . & )(* , * , 1(*+. L ( a , ). + ,.. 0 8. . * , ). / . 0 .8. # , )* *( *' * * , ( '* c. * , + ( * . J)* 0 , / 0) * @ 1* .@ 0, * * ,* ) @ H * 0 )* * I . , , 1* K * K0N 60. & , N. ( J N 1( , @ * @ 1(*+. . R 0, *N ',0, .L ( , 60 . + *, )* *(0 )0 . (6 0, 1(*+. 7 ( * ( *II , 0 0.M * / ', 1* *7 0NK / 107I 6 ' * , .L ( 1 1(*+. )( . . * , )* . (6 * , 1(*+. . . & * , )* *(* J*(J* 8 I , 6* . + *, 0 * ' * , ). + ,.. 0 . . L*7 )* * I , ). / . 0 8. . 0/*(0 * , *7 ( * J. a * * , bN *I *6 )(06 0 ( 1 0 ( * @ * / *) / 7 *. * +*( I * / ', , . * 7 6*) ( 1 ( . 0. . *70N 7 6*) ( * @ /*. ( , @ * * 6 L. . 1 0 . . (* * 0 , 1* *K@ ( 7* ) 6*', . . 80 @ , 1*)6* * 0 (0*1 , . . 0 @ * 0 , 1* *K@ ( ,( 7* 1(*6( * 1@N (* *7 0J . 7* ) 6*' 7 7 *, *J 7 , 7 6*J @ *6* * *M ' ) ( *( 0 &.L. @ * , , . * 0 () . * 1( , . 1

(

)

&

,

.

625000, N

1*J

1(* @7

1(

@, / 1230, 0 ( * + ( # E-mail: [email protected]

@ 1* )( 0:

!

A – ( 7* ; a – 1* 0* @ H

,

1

1 .

= / µ ;–

*' *(7

*(* @

mm = 2 1 2 – 1( m1 + m 2

00

)

Rg =

2 µ1 c12

14

) J

;

*'; *) '

.

0NK / *7Q

– "6(

I *

'"

* ;

I ;

0NK / *7Q *(

* ;

J)0 ) 0

]

Ra – ( ) 0 1*I ( : , *) ' 0NK *7Q Rp – ( ) 0 1 ( I ( : 13

( ) ;

) 0/ ,

M – 6 ' , ( ); q–H ( . ' , ( ); r r r r r = ix + jy + kz – ( ) 0 *( *. r r r1 , r2 – ( ) 0 *( ) 0/ , *) ' r r r @ ' ( ) 0 R = r2 r1 - * * K *7Q ; r r2 ×R ; R+ = R 2

[

#

;

E–H ( . 1( J * @; Ef – 1* H (6 ; Ec – . H (6 ; Et – 1 * H (6 ; e–, ( )H (* ; F– *,) ' * )(06*6* ; G – 6( I * 1* * ; H– 6 1( J * @; h = +t R – . ' * * . I– . * ; m– . I ; m0 – . @ *7Q 1 ( *' m re

,

"

* *' ( ) 0 ;

@ * (

*

J)0

@ * (

*

J)0

;

,

*) '

0N-

, *) ' R = R Rp

0NK *7Q R = R R0 – 1(

; )

* (

*

J)0 .

– 06 * *' 1 ( *) ( *( ; 1 * ) *' * . *' ( a – 06 * *' 1 ( *) H 06 * * ( * * 1 ( I ( )* 1*I ( ; 1 * ) 6 1 (7* * ) / ( *( ', * . . * * * ( I @ *6* 1* *J * x; ' 06 * *' 1 ( *) * . *' ( *( , 1( P – 1* . I *, ( K *) 0 0 J *. 0 1(* ( , *' *(* @N. T

I

;

T– ( *' 1 ( *) ) J 1* ( *( ; T0.5 – ( *' 1* 01 ( *) ) J 1* ( *( ; r r r r + = i + x + j + y + k + z ; + – *(* @ ) J . I ;

+ r , +t – ( )

@

(

(

+ r 0 , +t 0 – ( ) +p – ( (

@ @

+r = + r + p ;

= + r +t 0 – 1(

+R –

+ r0

@

( ( *(* @ .

*(* @ 1(

*(* @

.

*(* . 1 ( I (

I

)

( )

, 0.

I ;

@

I ;

*.

*(*

;

I Rg Rp

* –1 (

( ) (R + ) – 1 (

= µ1 R p + 2p , – 1 (

1

2 = µ1 0 t0 ( ) 0 * R0; r r r r = + c1 ; o = + c; 0 1

r0

x

= +r 0 c1 –

= 1

–) H –H I µ – 6 t

2 y

r

( . (

*) '

**()

,

( (

*(

( (

*(

r r

y 2

=

x2

x

= + x c1 ;

y

= 1

y

= + y c1 ;

I 1* * *M 2 x

2 z ;

z

= 1

z

1(* , * @ *' *.

= + z c1 ;

N

t0

*(* 2 x

1 * * @, ( ) 1

z 2

+

y2

div grad u = r r grad divA =

= +t 0 c1 ; ;

r r rot rot A =

2 y;

H

(*

6

+

2

z2

– *1 ( *(

(r ru ) = ( A) =

*6*

S

S

;

(r Ar )

15

7 ( , 6) ci = c

Ay

Az y

z

r + j

Ax z

r r [A(r ) × dS ] =

r Az +k x

[24]

*(

8 0

(*6( ) *6*;

-

r r [ × A(r )] dV ; V

r r u (r )dS = u (r )dV ; V

r r r r r A(r )dl = [ × A(r )] dS –

16

7* ci = c1 ;

r2r A. *(

V

S

;

u; r r r r A + [ × [ × A] ] ;

r r rr A(r )dS = A(r )dV – S

1

r

6( @

*

;

r r r r r rot A = curl A = [ × A] = i

1(* I * @ ( ) ; ( *( ; 1(* I * @ ( ) ;

q2 – 1* (/ * 4ab A – 6 ' 1* * ;

r +k

* *(*

*1 ( *( :

2 1 – *1 ( *( ci2 t 2 r grad u = u; r rr Ay A A + z; div A = A = x + x y z

; 1( *

x

r + j

@

=

*(*

;

q q (m + m2 ) µ1 = 1 2 1 7* µ1 = G (m1 + m2 ) – m1m2 7* 6( I * *6* , *) ' ; –1 * * @H ( . *6* , ( ) ;

=

=

(* i, j, k. ( ,

r =i

r

*(* @ . 2 z ;

++ ( I

;

+ S – *(* @ *. , 0. ; w – 0 *( . I ; 4q1q2 wp = ; mS xijk , yijk , zijk , uijk , +ijk , wijk , u& ijk , +&ijk , w& ijk – 1(* I

0 *( . 2µ1 = = R p c12

R0;

*( , . . 7* 1* 006* J)0 ', ( *'

*(

*

.

Ay x

Ax ; y

1* @,*

= 3 1010

*

*(* @

/ –

m pr = 1.672 10

24

6–

me = m po = 9.1095 10

e = 4.8 10

10

R po = 1.4 10

6–

G = 6.67259 10

H

–, ( )H

6

13

1

1(* * ;

28

1.5 0.5

R pr = 2.817 10

; (*

%& '( &

1*, (* ;

(* ;

– ( ) 0 1*, (* ; 13

11

3

(

2

m S = 1.97 10

30

6–

m E = 5.96 10

24

6–

R S = 6.95 10

8

–( ) 0

rE = 1 a. e. = 1.496 10

1.1. 7

– ( ) 0 1(* * ;

)

6 – 6(

*

1* *

* K 6 1* K *( , *) ' .d * * *( ? @ *( *( 7 , * , ( *6* ) @ + , . *( , 1( ( *( * * @ * , * *( . & 1 ( / ( / *( / *1 N 1( I 1 *) 1* ( 7* : 1* (*' *( 7 , * , ,6* * ) ', 7*( ,) '. R *( * . N * 1( ,. ** 1* @,0N 1* ) '. 1( (, (* *, *( 7 @ (@ 7 ( 1 @ ** *( ' *1 ) @. . * * 6*) + , . *( ? R * . * * . & + , . *' *( 1( N /*) 6 1* , (1* *J , 1( I 1 ) / (* ( ( . , *( * * @ * ( ) * * 1( I 1 * * @ * 1( I 1 1( ) @ *' *(* 1* (* (, * *(* 1(* ( *, ( , * * * @ *' *(* ) J . *1* H / 1( I 1* 6 1* ,*' * * *' *(* 6*, 6 7( . *' 6 * ( . 0N 1( * *7K ' *( * * @ * , * *(*' ( ( . ( / ( 1(* ( * - ( . *7( ,* , 1(*I ( , + , . *' *( 1(*I * *,) ( . , 0K 0 ) ( , * ) * *( , ) 1* *7 1* . ) – H * *1 ( ( / *7Q * : *' 1( (*) , 1( * *)* . * . *' ) @ * .)., )(06 – 1(*I *( ( . L*) *( ' , *) ' 70) 1* @ 1 ( ' ) *( . & ' 70)0 *1 @ *) ( . , *) ' '. ( ) I * * H *1(* ( ( @ / *'. 1* H (*) , , ) ( *' + , , *( H ( / . I, * *' / , )(06 / *7 ' * ( *' + , , *) ' 1( ) * )* * / 0 M , ( / . & ) @ 'M * )* J ( 0 @ * *. ) * H 1 I **7( , * *1( ) @ N *7 @ , *) ' ' ) * ) @ *' 0 – *( , *) ' , 1*). (*7K * @ ( , / ( ,) / + , . 0 , . * + , ,( , @ 1* , ( 1 * 0 I ( N. & ' *) * ( * 0K 0N ( , . ,6 ) , ( , .

;

I ;

# 11

I *

; *

I ;

– ( )

(

*

#

*

*

I ;

R E = 6.372 10 6 – ( ) ' ( ) 0 # ; a pl = 39.52 . . – 7* @M 1* 0* @ L 0 * ; rFC = 2.31 1016 L (

( *(7

–(

*

)* 7

J 'M ' , ,)

–9

#

( .

( 0( :

a = 0.387 a.e.; e = 0.206; T = 0.204 6*) ; i = 7 o 0.2'.

17

18

1*)/*) 1( @ *, N @ *(* )* *. )* M 6* 7*(

1.2.

, * *( *6) ) J , * 1(* *1* *J . )*( , ,6 ) *( N 0 0 0. *) *6* , /, 70) 1( *) @ *7/*) , @ *M 7*. * )(06 /. * * ) @ * *7* * 1*1 ,) @ , *J @. %& '(

& ,. * * (0J . 1* * * ) *, *J * ( ,) @ ) *7 .L ( – H * * (0J NK ' (, * *( ' , * M / ( 0J) ': 7*, , ,) , ) ( @ , M )* , 1( ) .). & *( *7 @ – H * *1 * (0J NK 6* ( , 6* * ( J M / 0 /, 6* 1* . * *) (J 6 /, ,0. M * , M *, . * (0J NK ' ( * ( 0J) , @ *J , * M 1* ( 1* * * . 1( (, ( @M . * 1( ) ,. *# I (* & *' 7**) ( K * (06 # . '. , ,. *# ( K * (06 * ' * , *7( K * (06 * I , * I * (M ) J * (06 I ( 8 , 1* ) * (M ) J 1( , *) ' )(06 6 . ) * 0K 0 )(06 / 1( ) ', **( M 1* * *. 0 , 7 0J) , 1* ( *( *7( ,* , . (* *6* N ) J 1* *7 1( ) ( . , )( * ( 1( ) ) 1* / *7( ,* : 7*6* , / ', , , *6 , H+ ( , .1., * '. * 1( ) ) . / *7Q * : * * / +0 I ', 60 ( * ', * * * , (0 , 0(* ' H (6 , ,*(* H (6 - 10 @ .). ) , *1 ( *J 0K ** . @ * *6* ( . * @ * *( 1( *1 , * *( ) N 1( . , , * . , ) @ * @ 6*) ) / ) . /, , * 0 6*( 6 07 0 *( ', , 1 ( 0(0 , (, *) 1 ( 0(0 1 .&H /, / 0 ( . * * *1* *' *7Q * . * H * 7* ) @ *.

1.3. %& '(

"8

& . ) N *1( ) *' , * *( / ( ( ,0N *7Q * (0J NK 6* ( . 1( (, *7Q 1*) (J , .d * (*J) ( 7 * ,( , 1( ( K N *M0, * ,( ,, ( 0 ( . 1(* J J , . * 1(* /*) )(06 , . J ) * * I 1 ( K 1* 7* *)0, 1(*/*) ) *. , + , 0 , ,* * 6*) . *6 , , ' 19

1* *( N

N I . , )(06 7 N 0 @ – 1*(/ * *' , ,) , * * * - b0 ( y1 (* . *' , ) J / ( ( ,0N *7Q * (0J NK 6* ( . *1( ) ( , *7Q . * *1* H * , - 7* H * , . & 1(*I . * . *' *( , ( , / *7Q * 7 ( @ . H * /: I . ) *. ( 0 ), + , 0 ( I), ,* * 1*6*) (6*)), 1* * ', ) ', *) 1 , * , 1* *( NK 0) ( ()I . & ( ,0 @ *1* ,*7Q , H * *1( ) . , . ( J * . H * / , ' * . / )* ' , ( . 1( (, , . * , . . 6* J , @, 1(*/*) ( ) , 70 *7*(* * # * (06 * I , . * ) . * *. 0 I * , ,* * . 0K 0 * @ * ( ,0 @ * ( , ': ) @ * @, 1(* J0 * ( , * ( .)., * *( N * 7* 0 *. N * *7 * , '. L(* J0 * ( *7*, . * . * I * H * *6* , , H / ( ( * 0 , N. * ( ( ( *6* , *7*, . 1( , 0 6* *1( ) * 0I 0 H * *6* , . &, * * 7*( H * *) * *J , 70) ( J @ ( , *' . *'. 1( (, *,( )07 ( 350 6*) 5 . * . J , . & 1(*I . * . *' ) @ * 7 *,) H * * , ': 0 ) , 0 , . , 0 , 6*) .). 0 * *. ** J)0 . & ( ,0 @ *1* ,' *7Q * H * , 1* 0. , * ( : . ( 1 / J 300 , *' – 5000 , # 0K 0 5 () . R , *6) 0 , 7 0J) . *60 1( (1 @ * *( * . , , , * @ 1( . . &*-1 ( /, 1(*I ( 1* ) *J 1* @ 7* @M ' *. * @N. 1( (, 1(*)* J @ * @ 6*) 7 . *1( ) 365 ) ', * 1* . *6 / * 0 *. 1 (@ *. * @N )* 1 , . K / I +( * 365.25 ) '. &*- *( /, , ,0. *6* *7Q H * *60 , @ * ( , / *7 * @ . L( 7 6*1( / J , / 0 * / 1(*)* J @ * @ J , . * *J 7 @ 70, 35 ) J @M . * . ,1 ( *. 0 )(06 0 *( , *6* 6* , 1(0J – 1* K )(06*' 1 ( 0(*', 1* J0 )(060N ) @ * @ , . &- ( @ /, , J , N . L* ( , * , /*) / . / . * . 0 . * . *7*(* * # * (06 * I , 1(*)* J @ * @ 6*) 0 /. L*H * 0 ( ,0 @ ( , ' )* J 7 @ 1( ) *7 * @ , * * *( / * , , * 0 ( . L( H ( 1* I 6* 70)0K 1(*M * *7/*) * 1(* )*1* @ )* 1* 20

, N , ' ,0. *6* *7Q H ( ,0 @ ( . 1( (, *,( # M 0) J N# * (06 * I . &*, # * (M 100 () *7*(* * * (). &*, *J *, . * 2 () *7*(* * , )# 0K * * . . I *7( , * ) ++0, * *7 * ,0. *)* ( *J * ( ( . 70) 0. @ *7 * @ ( 70) * @ ( )* / 1*(, 1* ( *7 * @ , * *( 1( J)

1.4.

#

* 5 *J (06 *. @ ( * 0.

*6* *(( (* @ () * * *, * . * 6* 1** I , *J 6* 1 * *' 7 *, ) , K @*6 , * , * * *1 , .

"8

& *(* *' * * (0J NK 6* ( , * *( 7* . * . * , . *7Q * . L( *1* *7 (0J , . * *) *7Q @M 7* @M )(06*6*. ,1 I @M *1 , *1 @M (0 ()* * *6* 0 ), (0 @M . * , . *@M ) ( . *6 ,1 ( . / *7Q * 7 ( @ . H * * : +0 , * * @, M 6. & . *7Q *1( ) ( ,0 @ ( 6* H * * ( J * . * H * * / )* . 1( (, . 0J. ( 6 +0 . & * K ( 7* @M . @ . * . 1* @,0 1 I @ * *,) H * * . ) – 1 * – ( ) 7(0 * x-*7( , *6* . , * *( ' /( ( (!( I ) J)0 (*) * 7N(* ( * . & . 7(0 1( 1 ( 0( 0 oC J)0 ) 0 M ( / , (* . *7( ,* , . *7Q * (*-, (* ( ( J * . / )* / ( . & . *7Q * , / , , , * *6 / *7 * @ : 1( (, 1 ( 0( , ) )(. R * ' ( ,6* * , *6* ( , * *( ' * *(* ) 1 ,* 1 ( 0( , *N . 0. ) * , 1 ( 0( 7* @M ) 1 ,* 1(* ) , ( ' * *7 / *7 * @ / *7/*) * 0. @ 1( *1( ) . *7Q * . & . *) *6* . * *J 7 @ 7* @M )(06*6* 1( * 1 )* 6* * , 7* @M ( @ 6* 1( 1 . 7* @M . ( *6* 1( 1 – J * . R * *' * ) )(06 / *7Q * , . . 1( 0K ( ) . ( / , * 1 (1 ) 0 ( / 1( /. ) * ) / , ( 1* @,0 *) * J H * . L( ( * ( ) 0/ *7/*) * *1( ) @ . 0 1(* J0 J)0 . L(* J0 * , . *7Q , ( 1* 6 ( / , * 1 (1 ) 0 ( / 1( /. & . 1(* J0 * J)0 *7Q , ( N J H * * ) . 7Q 1(* J0 J)0 *7( ,0N / K , * *(* , N 1(* ( * . 21

0K 0 *6* ( , * ) * ' ( . *7Q * : ( , (, ) ,M ( , * , 6 07 ,( * .). & * 1* 0. N 1( ( . *7Q *) J H * * . . , ( *7Q – H * ( ,0 @ *1* . *7Q . *' H *. – 7* @M ' ( , ( *7Q ,M ( – ( ) ' ( , (, 1( * 6*( ,* @ *' 1 * * . 8 07 – ( , ( *7Q 1* ( ,. * J)0 *7Q – ( , ( 1(* J0 J)0 . 0K 0 ( ) *' *7Q * : 1 *K )@, *7Q , +*( , * *( *1( ) N * 7 I ' ( , (* *7Q . & ( ,0 @ ( . *7Q * 0, ( * J)0 6*(*) ,) ( , * 0 6*(, 1 *K ) ( ,) (# ,( * )* , ,). *6 0 *, 7 6*) ( , ( N . *7Q * : 6 *6( + , 6 * ( , (* * . L*- ) * 0, *7Q , ', 1* 0. ' ( ,0 @ ( . *7Q * , 7* @M . & . –H ** * * *' * *7Q . * / 1*(, 1* ) J * , 6*, * 0K * *7Q . 1( (, * 0 , '* . /H ( /. I * ( *' + , , * / 0K * . 1.5. " %& '( (* , . * . 0K 0 *6* )(06 / *' * (0J NK 6* ( : 1 *, ,, 0 )(. / *1 . * J H * , ( ,0 @ ( * *( H *' *1( ) N 6( )0 / 1 ( 0( , * . . ' * , ) I 7 / 6(* * .). R * 1*, * *1( ) @ *' *7Q * , 0 @ *) / *' )(06 : 1( (, 1 ( 0( 6* * @, ) (0 * @ * @, 0 , 1 ( 0( ) *7Q 6 , . & ( ,0 @ . * /*) ** *M J)0 *' . *7( ,* *,) N *7 *1 1* ) *7Q * 1( (*) , 1( (, ( *) , *1 ,H (*) .). & ) @ 'M ) N 7* *J *' , * *( N * 7 I ' 1(* /. (06 *' , *7*(* , ) , (0N * , N , K * ( ) / . . *,) *1 * (0J NK 6* ( , * *(*' *1( ) . *' 10 ( H * 0 * , * J)0 *' *7Q* ) , * ' J)0 . . L* 0. *7( ,* , *7 *7Q / * (0J NK 6* ( 1*, * N 1( ) , @ / 1* ) , *( (* @ ( ) /, * *,) @ /* ) @ ) ) J * (0 (* @ * 7 I ', * *( ( 1(* /*) . 1( (, . * *,) *7Q , * *( 1( *)* , * 1( J M * * . & H * 1(*I ( ,0 @ . * . /) ' ' 70)0 ** * @ ( *' 22

*. * @N, *' *' *7Q * 7 *1* * *' * * . L( H * , *, )* J 7 @ *7 N) 0 * *1* . & 1( ) * 1(*I 1*, 1( (*) 6 1* , 1( )1* *J * / , / ' *) ( * ( . / (* ( ( . #) @ * (0J NK ' ( ,0. , *1* , ( . 1*) *( ' ,) @ )0 1* @ *1 *' *7Q * 1( (*) , *)* . * . *' ) @ * / ( ,0 @ * . *J M 7 ,6 1* , *6* *1 *,) . * . * . . ' *6*6( *' *6*1 * *'. J) ' . * ,0. 1* * ) @ H *6) 1*, N 0 I * . , 1( *, 0. 0 * / *' ( ) * / H * * . 6* *,) 1 . , . * ( *' 1( ) N * *( ' (, * *( ' 0K 0 , * * 6*, 0K 0 *7Q * . *. 0 1( ) , . * 0K 0 ( , * *(* *7 ( , N , 0K 0 1(* ( *, **(* ( , K N *7Q * (0J NK 6* ( . & ( ,0 @ *6* 1( ) 0. * *, N *1(* : . * * ( ?R * * 0K * @? *J , * * ) ( *? 1( ( K H (6 N 1( )1* 6 . . *, ( , *J , 1(* ( *? *6 . *1(* 1* N * *M 1(* ( . * * *'- * 0K *@N? ( @ * * *? ( ** * 1( * ' * ,* (*1*? 1 ( @ 1( 1 ( N 1 ( N ? *J 1 ( N , *J ? L( . *) 0 1 ( ) 6 0, , )(060N. R 1*)*7 6 1* , * * ) N N)@ , * ( N 1( ) , 6) * (0J NK ' (, 6) 6* *1 . & ) . * * ( *' : 1(* ( *–) . *7Q* , ( –) / , . * .). – N *1 * (0J NK 6* ( . R * *1 *6 * 7 @ )(06 . *6 7 @ ) )(06 *' , ) )(06 H * . 1( (, . 0 *7Q *J * / ( ( ,* @ * @N *7Q * , *1 , *) ' ' – H (6 ' *', 1 * 0 1( *1 1 * / 1(*I * – H (*1 ' H (6 '. 1* *7 *1 , N * ( . ( , / (*)* , ( , ( , . * @ *7Q * / . *1( ) @ 1*( , * 0. *, . * 6*) 1* 1*) 1(* ( * ( , 1( )* @ )(06 . )( / (*)* + . *7( , – 7*6 , , 6 (* , 0( , )H ; / *7 *7 – ), ( ' )(06 ( – 0K * ( )0 ( @ . * 6 *6( + . *7Q . ,* @ J *1 )(06 / *' . 7 H * *7/*) * , 7 @ 1( )* 6) , ) @ 7 *1(* : H * – * (0J NK ' ( 6* *1 ? 1( (, H+ (, ( , *, , )0/, , 1* , H (6 , , , ( ), H (* , N* , ' ( *, +* * , 6( * , * * , 1 , , ,) , 6 , . ( ) ( , ' (* , ,) , # * , ( ) – . * H *? 1 * (0J NK 6* ( ? 6* *7Q ? H

23

*6) . - * , , * , ) 7 *1(* : . *H * * ? * * 0 (* *? .). ) * *1(* 0 . 7 *7Q * (0J NK 6* ( *J 1(* @: , /. '* * * , * 6* *' ? *1 N *J , ) @ *1(* : 6* *1( ) , 1( / *7 * @ /, * * , * /. )*1* 7 ,6 1* , * *1 * (0J NK 6* ( . R * 70) *7Q * , * 1( (*) , * *(* 1* )0NK 70) * 7(*M * 1* * . d * 6* *( , . * 7 , 6 1* , *, *J * 1*, * (0J NK 6* ( . L( H * . N , . * 1( . )*6 ) 1( )1* *J 1(*( N , 1*) (J) * 7( N . N , * *( *6 0N 7 N) . , ( 7* . * . *6* *,6 1(*I M 1* , , . *H * **7 . 0M 1*)) @ N ( *' 6 1* , *, 0. * 0. , *6) *7 * @ ) . L* )*@ 6 1* , *J * ( ,0, ) *7 * @ *60 1* ( 7*@ 6*) . * *1 ' 1 I 1*, * 7 0 .@ 6 1* ,*'. 1(*)* J *J 0N J 0N ( 7* 0 1* ,0. N *7Q , 6* *' , N / )(06 / *7Q * *7 * @ . & ( ,0 @ * )* 6 *6* 1* * *7 * ' *7Q , . * *J 1( ) ) @ *1 @ /, 1( 6 1* ,.

2 & 2.1.

&

!

"8

, * (0J NK 6* ( 1(* /*) ( , / +*( /. ) , / – ) J . L( ) J , 1(* J0 * J)0 *7Q . (*' ) J *(* @. ( ) *(* @ ) J *) *6* *7Q* * @ * )(06*6* *1( ) * *M , ( * dl J)0 , 1(* J0 * ( dt . H *6* 1(* J0 , . . + = d l dt . ( ( , 1(* J0 J)0 ) 0 *7Q , * *(* @ / ( ( ,0 ) J *) *6* *7Q 1* * *M N * *(* 0. d * *7 H * , 7 N * * *(* @ * @ * *) *0 *7Q 0. 1( (, ) J0K ' * * @ * 1* (/ * # *7Q( ( 7 * N * ) J0K ' . # ' , N 0 * . , , 7 ( 6 (0N * # ( ( N ) J *7Q * H *' / *(* 1( ) N 7 * N *'*7Q * . R * . * 1( *) *M 7 . 1( (, 0. @ * @ * *(* @ * * * @ *# , * ( 1* , * * 7 ( * 0 1( ) 7* @M*' *M 7 *', 0. *(* @ * * * @ * *,)0M *' ( ) : @ ' , 1 ) ' ( 24

*J 1* . , ) (J @ 1( 7 * . H * *' * *) *6* *7Q , ) 0/. )* *6 / *7Q * *7/*) * ( ( @ / )(06* , . . ( ( @ , * ( 1* *J *7Q * )(06 * * @ * ( , . / 1( /. L*H * 0 ( / *( *' . *' ) ( * *' ( * 1* *( *(* r r r r + = i +x + j + y + k +z .

*7( ,* , *(* @ – @ *, 1( , *) ' , *(* )(06 / , /( * '. )(06 *J 7 @ ( / *(* , * *( 1( *1 **() *1( ) N (2.1)

r *(* @ + *J * @ , *'. & H * 0. *7Q ) J * * @ * )(06*6* ( * ( * 1( * ' *. & . * 0. 0 *' *(* ( * J)0 *7Q , * /*) 1* * )(06 * * @ * )(06 . & * J ( * * @ * )(06 / *7Q * * *60 @ N7 *(* . *(* @ *J , @ . 1( (, 1*) J ' *7Q 1( /*) ) J 1(*I ) J 0 . 6* *(* @, , 1( . *(* @ 1(*1*(I * @ , N ( * J)0 ) 0 , * , *(* *J 7 @ , * , ) J J)*6* , /. / ( ( , *r , (* 7 * ) * 1* 0 *( w , * *(* * ( J *(* * @ * *) *6* *7Q . H *6* **7( J * *( r ** . , * *( * t *) * 0N * *(* @ , (* @ ) @ 'M , .R 0 0 , (I @ *' * ,. ** ) J 1* (I , . . * *,) ' 0 , *(* @. & ) @ 'M ' * ( t+ t ( ( 0J , *(* 1* * *M N * *(* 0 0, , r 1* * *M N H *' 0 *( *' . ( ) . 0 *( *1( ) * *M , *(* , 1(* J0 * t . 1(* J0 *( * ) , 1 r +

r w=

(

*1( ) * 0 *( *', * * @ *', 1(

t

,

(2.2)

.

0J *' )(06

6* 7 * N *' / ( *7Q .

-

2.2. L*. 0 * 1( *7( 0 *( /) J ' L*) *,) ' *) *6*

0 *( ? d * 07 ) , . * 0. N 1( . 0 – / ) ' 0N )(06 . )(06* 70) 1* @ 1* *7 * @ 25

1 ( *6* 1( ) J *(* * 7* , @ 6* ) J . , @) J –H *, . , @ 6* *(* @ 7* 1* r . , 7* 1* 1( N, . . **7K @ 0 0 *( w. N) . *,) ' * *1( ) . *' 0 *( , * *(* * * 1( *7( 1( *7( , *6) H * *,) ' . . 0 *( , * *,) ' , 7* *,) ' 1 ( *6* * 1 (* * *7( 1* 1( N )(06 *,) ' . 1( (, 1*) M ' 1(0J @ 1( 6 # ', * * , * ) J , 1(0J 1(* *) ' 0 H * 0. *,) *,) ' *7( * 1* 1( N *,) ' N# , @ /*) 1* * . L(0J 1( H * ( 6 0N- * . 0 l. ( J *,) ' *7 ) . & 1( ) * 1( ( ) +*( I 1(0J l 6 ) * 1( ) 0 *,) ' . R ( * *7*, . *' * . * . *6* 1* @ * - *) ' , 1( ( J @ 1(0J 0. L(* *) ' ( @ 6* *J 7 @ ( J * * @ *( J 1(0J , * J , * , 1( (, ( 1* *J J)0 1( 6 NK . ( @ * *J 7 @ 1(0J *', 6* ) +*( I *J , ( @ ,*) . 1* *K@N 1@ ,*H++ . (* *6*, 1(* *) ' ( @ 6* *J 7 @ ( J * )(06 *,) ' . L( , ( , *) ' ) 0/ 1*) M / / , ( J /M ( * /* * N* ( 1(* *) ' * 6( I * 1( J # . *( . *J * @ , . * *,) ' *1( ) @ . r F *,) ' , * *( *' ) +*( I l. * ) * 1* *1( ) . *' ) +*( I l, *,) *' H * *,) ' .b 1* (* , . *7 ) I N7* M ** * *) * 0 * 0 J *,) ' N *1( ) * H * * *. & * K ( , H * * * 1( 1 *– ( ) 'I )( ) (* * *' 39 , * *( ' /( L ( J . L( *,) '6* # * ( 6 1(0J 0 *1( ) 0N ) 0, * *( ( J . 0 *) *6( ( / . *' 8 ). , *,) ' # H * , N. * ,. ** 1 J *1 H * *,) ' . *' ) 0 *( 9,8 / 2. F = 1 8. 1( * ) @ 1(0J nH * * , ** ( 0 ) 0 H 0N n 8. 6* *( , . * # *,) ' 0 / *' F = n 8. (06* *, /*) K 1*) *,) ' , *J *J ( 0 @ 1(0J 0 n1 8, . . n1 H * /I )(* . * * *, )(06 , 1 ) J 0 *( 9,8 / 2. *7( ,* , 1( *,) ' ( , *) J 0 *( *,) ' / 70)0 ( , . * @, *) * @ * *J / ( ( ,* @ *,) ' *. L*H * 0 ) m=n– * . *H * / , * *( 1( *,) ' , / ( ( ,0 * *) * 0 *26

( ,( *,) ' H

1(* (

0 1(0J 0 0J . 0, . * r F, , * *(* , ( * . *' *mH * , 0 *( 70) r r w = 9.8 F m .

*J 1( / ( ( ,0

(

,. * *

&* . * 8 * ( ), * *( ' / ( ( ,0 * 1( * *(* * ) J 0 *( (2.3) *( * ) , 1 M : r r w = F m.

*. *6) 1( N7* N7* *, * *(*

(2.3)

0 *( NK

, *6 . * 0 r r r r : F = i Fx + j Fy + k Fz . r , ) I0 F 1( 1 @N*,) ' H * ' I )(, 1 / 2.& ** *M (2.4)

& ( J (2.4), , * *(*' , * @N * , ( * ( *' ) I 1( ) * ) N7 / *,) ' '. ) ,* * ( ,0 @ * M 6* 7*( / ( ( *,) ' ) I , ( . *6 . * 1 ( ' ( ', * @N * – ) M 6* 1*)/*) . 1( (, 1 ( ' , * : * *,) ' 0N )(06 , * * * */( 1( * ' * ( * ( * ) J ,– ) /*) *6* *1( ) *,) ' – H * 1* *7 * @ *) *6* 1( ) J *(* * , @ 6* ) J . ,) *6* *1( ) )0 : * ) ' 0N )(06 , ** * , * ) J * 1* * 7* ) J 1( * ' * ( * ( *. ( ', * @N * * * * ,. * ) ' 1 ( *6* *(* F12 ( 1(* *) ' *(*6* 1 ( * F21 1(* *1* *J ' 1* 1( N: F12 = – F21 .

(2.5)

R * , * – ) *1( ) , * *( ( J 1(* *) ' ( @ 6* , *) ' N ) 0/ .& . 1(* *) ' , 1( ( ) +*( I 1(0J ,* * 1 ( * 0 0, * *(*0. * @ H * *) J . , * *( , 1(0J , 1( 1( / , * 1( J * – 1( / , * * . (06 * , *) J 1( , * 1(* *1**J * , *) ' 0NK . #) @ J * ,. * * ( 0K 0NK *7 /*) ( J () ' 0 , 1( .).), 0K * @N, 07 I ', )0/* .1. R * ) * 1* ) *1 *,) ' . , *,) ' * 1(* 6* 0 *( .d * ( J *1 *,) ' ) ( ( *6* . 27

&

7(

*' ) I *) *, . * / ( ( ,0 ,@ 0 *( /*) K 6* 1*) *,) ' , , ( *' *'. N) )0N ( J / *) . &*-1 ( /, * / , *) ' / 70) *) J . L*H * 0 7 * @ ( /*J) J)0 6( I * *' (I * *' *'. R 1* *) * 0, . *7 ( , *6* ) , *) ' / ' 1*6( M * , ( *) *' *' J M . &*- *( /, , *1( ) )0 , . * * * )(06*6* , *) ' ) J , @ *J . * @ , *1( 1( * 0 , 1( I 1 *J , @* *(* . &- ( @ /, *' M@ * 0 *7Q 0, * *( ' *J 1( *7( 0 *( ( ,0 @ *,) ' )(06*6* *7Q , H * *,) ' *J * , ( @ ) . ) , 1* , H (6 .1. ) ' 1(*I ( ,* , * @, 1( 1 @ 0. *7( ,* , 1* , H (6 *) . I (+* * , 6( * .).) N . ,

2.3. &

*( *1( ) m, *) J) , ( , , ( ,0 @ 6( (* 0 J , 1* 6( (* * ( t. *7( ,* * *(* *,) ' 0N )(06 *,) ' 0NK / , *J , r r J)0 , *(* + r r ( , + ,t). 0K 0 *6* ( , / ( ) ) ' 0N 1*(*/*

*(

, * * , , * *( 1* ( *(* –, *1( ) 1* r *' F . @ * 10 ) J ( t, . . )* *,) ' 6 , *'

'.

@N * (2.4). 6* r ( J ) F, 1* 0. *(* @ ) * @ 10 ) J * @N ) J , r F , * *' ( * *J 7 @ +0 I ' 1(

(,

*

F = SP,

* -

r F

10M(2.6)

6) S – 1*1 ( . * . ( ) ; P – ,7 *. * ) * 10M. L* ( ) J ( ) *7Q 1*(*/* / 6 ,* ( (V = Sl), ) 1 ) , 1( ( 1* ) 7 . * 0 , * 0 PVk = const, 1*H * 0 , (* * l : P = P0 (l0 /l)k . 6) l0 – 1 ( * . @ ' *7Q 1*(*/* L* 1*) * (2.6) 1* 0.

/ 6 ,* ; P0 – / )0NK0N ,

F = SP0 (l0 /l)k ,

28

. @ * ) * @)

. (2.7)

* *( ) ' 0 ( ) * 10M . R 1 * 0 , * 0. * 1*(*/* / 6 ,* 7 1(0J , * 1( ) / ) ' , * 80 1* ' * 0 , * 0. L* , * ( ) ) J * r r r (* @ + , *(* @ *,)0M *' ( ) u = u ( x,y,z ) , * + ( . *6* ( ) ( ) 0 * r 6* 70) ) ' * r r r r r u + (u + ) F = Cf , 2

, * 10 1* ( ) *,) ' * , 7 * 10 + ( . 1(* 'M @

6*

*0.

*' *) * * , ( / H 1* . & . /*) 0 *,) ' , 1( . 1* * @N * * @ ( ,0 @ / , ( '. *(* H 1 0 N ** J)0 *' *,) ' * 6* 0 *( , . . , ( N 0 . ( @ H 1 1* , * 0 0 *( N ( . N ) J , 1( H * H 1 ( @ ( ,0 @ 1( N .

2

6) C – H(*) . ' *H++ I ; – 1 * * @ *,)0/ ; f = r – 1 (1 ) 0 ( * *7 * 0 1* * 0 . ( ) . H(*) . ' *H++ I C ' *, * *(* ( ) * * @ * *,)0/ , 6* , * , M (*/* * ( ) .). r L * * @ *,)0/ , * *'. *(* @ ( u J , r )* @ 10 ( ) . L*H * 0 F *J *7( ,* , * 10 *(* ( ) ) /*J) 1* ( 70 , 1( . / *' * + ( . *1( ) 1( 7 J 01(*K H *' *60 7 @ , ) ) 1* . 1* ' * + ( , 6) 70) 1(*/*) @ ( ). L* )* @ 6( (* ** *M (2.4) 70) *1( ) *) J ( ) . ( @M 6* *( * *,) ' * )(06*6* , * 1*) 1( ( ( ) 1(*I 6* ) J *,) ' 0N ( , . * + ( , . . *6 *7Q . , *1( ) 0 / *,) ' *, *J ( . @ 6* ) J . L0 @ M ( ) 7J ( ) 6 , * *( ' 1* * ) # *'- * * N. 1* *K@N ( *' r r F = F (t ) . ) 6* *(7 0. R 1 ( *' * ( *7( ,* , ) ,. * *60 , @* 1 ( / 6( r r (* , + , t 0( (2.4), . . * 1 ( (* ) J ( ( *6* . (* *6* , * ( ) *' , *) ' 0NK / *7Q * . ) , * * / , ) . + , – /*J) H / . , , / 1* , , . * * *1( ) N ( ,0 @ , ( . , ( , 1( *, *6*1 * . & . *7/*) * ) @ H * 0N 0 I N 1(* , ' , ( .# *1( ) N *' , 1* * *( *6 . 0 I * . N * H * *'. & *) ( H / *' 1(* , *) , ( / . 0 H * *' 0 I . L* 1* / , ( ' 1* *, *J * @ ( . ( , . / 0 I /. *,) ' *0 * 1(*I ) J ,, * *J * 6( (* @ 0( (2.4). & ( ,0 @ 1* * @N 70) *1( ) *) J . & H * , N. ( M , ) . , *) ' ) 0/ *,) ' * *6 / . ) , *29

%

2.4.

(2.8)

* * *( . / ( 0J) , * *( , * 0 *( . 1( 0. 7 /, * . [26] [97], 1( *) H ( . *6* 1* ) J0K 6* , ( ) . 0 *,) ' 1*) J ' , r F=

6)

r

(

)(

q1q2 % 1 L 2 rr t r r 3 / 2 $# M rt rt L

(

)

' H (*) ) (, * *6 / * *6( + / ( J ) 1( J *q1. 1* @,0 6*, , 1 M ( ) q2:

)

(

r r r Lrt + rt × rt

r =+

)

r r " Lrt × L& c 2 ! ,

(2.9)

r

– 1( ) *(* @ , ( ) q1; + – 6* *(* @ * * r r r , ( ) q1; rt – ( ) 0 * , ( ) q2; & = +& – 1( ) * 0 *( * , ( ) q1 )* , ( ) q2 * ( t', , ' ", 1 ,) ":

t' = t – rt /c.

@*(

(2.10)

R * ( J )0 , , 1 ,) NK / 1* I & / ( , * H (*) XIX . L*- ) 6 (2.9) &. & 7 (* [123] 7 * 1( ) *J * )0NK : r q1q 2 rr 1 0,5 2 + r & c . F= r3

* * 0, 1* ( J

& 1* ) ( / [80, 124, 125]. * J )

*6 / 0. *6 . * ( -

(

+*( 0 & 7 ( 1( . ! 11 [107, 108] 1( ) *J

r q1 q 2 rr +) F= 1 r3 ) *

* *(* ( , .

30

J , @ * 0N H

)

* 0 *( (*)

2

r

+

1

2

. & M 01* 0, @ (

– *)

(2.11)

( &&, & '

0 0N

(

(2.12) 0. *(

( * *

N @ *-

,, K * 0 *( . L( )1* 6 ,. * . r (* @N u ) ' 0 [27]

r F= 3 6)

l

r l-du

d l3 12

–1 * * @J ) *

l

r du dt ;-–

,7 I0 )

3d 2

) (* d,

l(

-)

0.5

2

J *

t 0

.

(t

,)

/ ) J 0.5

r du d, , dt

J ) ** *-

(2.13)

, * @.

r L ( * 6 * 1( *' . 1( ) 0 * FS , * *( ) ' @ *) ' 0 . I0, . * 1*) (J) *6*. H 1 ( 1( /. / ' * @) . & *(* 6 * , *' , ( @ – *' 1( * ) / . & ( J (2.13) 1* 0. * *( . 1( ( * ( * @ *6* , *) ' + ( . *' . I , * *( ) J J ) * * * @ *' *(* @N r r +. # 1* 0. ( ,0 @ 7 1( ) *(* u . I * * @ * *, 0K *' J ) * . , ,, K * 0 *( , 01* ( 7 N ( , / *7 / / . ) * @ 0. , * *( H *6 . 1( (, . () . & )(* [121] )* , , . * , * @ * 0 *( 1(* *( . *(* 0 , * 0 @N * , )( . . [81] 1* , , . * & 7 ( (2.11) 1( *) 1 ( )* @ ( ,0 @ . * *M ' ) 0 [114] * 01 *(* , , K ' * 0 *( [82]. # * @ * 0 *( +0 ) @ * , . . #) @ *1(* *6( . , 0K 0N H ) ' @ * , 1( ( 1( * ) / (2.13), H * *M 7*. .# * @ * 0 *( H (*) +*((2.9) ) @ 'M 1( *) 1( ) *7 , 0. ) J0K 6*, ( ) , 1* ( H (6 , 0. *( *J , ( ) H , 0. .R *) 1( N H (* 0, ( K NK 0 *(7 * (06 , ( J *6* )( , * * . 6* ) N , N. , . * ) J0K ' 0 *( H (* )* J ( @ H (6 N, 1*H * 0 * 0 * )* J "01 @" )(*. * 1* H *' 1( . 1 ( *) @ * 1*0. ) @ 'M 6* ( , , + , (* ( ) @ 'M ( , @ 1( *,) . / (* * / *) ' H ( /. I, 1* 10 ,0. + , . *' 1( (*) (* ( . L*. 0 J *J , @ * 0 *( ? d *7 * @ H * *1(* , 1( ) . )* , @ * . . & )(* , *) + I (*6*. , ( J ') (2.9), (2.11), (2.12) (2.13) ) *, . * *J * , 1 @ )0NK ) : r r (2.14) F = A B(r , +, w) , 31

6) A – *7K ' * *J @) / * NK / , , K '* 0 *( . ( J ' (2.9), (2.11) (2.12) * *J @ A = q1 q 2 , ) J ) * (2.13) A = l . * *J @A * @ * *7K ) / 6 / , * *) (J J 1 ( ( , * * *( / r , . L* ) 0 * 1( * ) ) @ 'M * *J @ B 6* *) . r L( / . / 0 *( , ( , *J * *J @ B (r,+,w) ( ) ' *( 1* 1 w, *J , 1 @ *. * @N )* i-6* 6 *6* r r (i ) r r +r ( B' ' 2 B F = A) B0 + B' w + w +K+ wi & , (2.15) ) & 2 i! * ' r r r r 6) B0 – , . * *J B 1( w=0; B' , B ' ' ,K, B (i ) – 1(* , *) * r B 1* w. (2.14) 70) , @* *( 0 *( , * *6) *7/*) * ( , 6 @ 0 ( ) ' *( 1* * 1* *( . L( * . / M 0 * / ( J (2.15) *7K 1( ) ) , *) ' ' 1( N7* , . 1 ( r r r r (i) 1(* , *) B' , B' ' , K , B . (* , * * *( / , * *J A, B L( ) ' * (2.15), *6 * *(* 0 , * 0 (2.4), * * 1( *7( 0 *( r r w = F m. (2.16)

* )* 0 (2.12)

, *J

1 ( ( *,) ' 0NK 6* *7Q , * *( r @A *7( ,* , . *7 F *,(* n . @ , ( ) q2 *,) ' 0NK 6* n( ,) (2.13). , 1( 1 * * @J ) * l ) r

r

/*) * @ * ( ,. H *6* (2.9), (2.11) A1 = n A

*,( J n ( ,: F1 = F n . L( *' J . I , / ( * *(* 0 *( , *6 * (2.16), 1( 0 . M ' *J *,( n ( ,: w1 = n w. & ( J (2.15) *7K , 1*H * 0 * * )* J * 7 @ 1( ) ) , /1 ( (* , *) ' r r r r +r B' ' 2 B( i ) i (& F1 = A1) B0 + B' w1 + w1 + K + w1 . & ) 2 i! ' *

L*

1*)

*

, .

r ' F1 , A1, w1 (2.17) 1* 0.

r r r r +r B'' 2 2 B(i) i i (& ) F = A B0 + B'nw + n w +K+ nw . & ) 2 i! ' *

32

(2.17)

(2.18)

) * ( J (2.18) *6 0 ( J (2.15). )* @ *, 7* /*) * ( J ) (2.14) ( *, 7* ( , * @N * (2.16), , * *(*6* *1( ) * 0 *( w1. ,@ J)0 *' 0 *( (2.16) *70 * , 07 ) @, *1( ) 1* ' , , 0 *( ) I / , ( , )(06*' * *J 7 @. & * 0. *M 7*. , * @ * 0 *( ( . J [113, 114]). (0) * 07 ) @ , . * J) , +*( 0 (2.9), (2.11) (2.13), 1*)(6 0 *' J 1(*I )0( , 01 1(* *( . *7*'. # . , 1( 1( ,, K / * 0 *( , ,7 J * 1* 0. N 7 0() ( ,0 @ , 1( ( 0 *( 1 * * * ) *( , ( J *' . I )* 7 * . *' *(* [82] *6( . * *0 *( , ( J *' . I ) J * 0 *,) ' * *(* )(06 / ( . §74 [26]). . . & )(* . * ' @ [121] * . ,. * * *( *( , * . &. I, ( ( N , * @ * *(* M / 1(* , *) /. * 1( ) ( , M ) , *) * 1( )(06 . – 1( J * H ( . *6* E 6 *6* H 1* '. 1* , . * 1( J * –H * , *( (* ) I H ( . *6* 6 *6*, , ( )* ** *. H ( . * 1* 1(*1*(I * @ * *(* , 6 *6* 1* , 6 * – *(* , H ( . *6* 1* , * 0. ) J , ( ) 1 ( *' *(* @N 0 *6 / *(* *, J *) @ 1* 7* * *6* 1*( ) , * *( *1( ) @ 7 M 1(* , *) * *(* ) J , ( ) . *J , @ * 1(* , *) / * *(* 7* * /, . 0 *( ? . . & )(* , )*10 , . * , * @ *, *J , )* , @ 1*)) (J 0 *1(* (J 1( *) . 0J ( ( , *,) ' * 6* 0 *( N ( , ( J *,) ' . & 1( I 1 , *1 , *) ' ' *J 7 @ 1* * 7 , . 1( (, 10 @ /* ,0. @ *,) ' 1(0J N 'M ( ) (* 1 . *J , ( @ 0 *( w M ( 1( J 1(0J . 0 x. L(* ) ( NH 1 ( * 1( ( , / J / 1(0J x, 1* 0. , * @ 0 *( M ( * J 1(0J : w = w1a(x). # M ( M (

* @ (2.19) 0J 1*, * ( M @ , ) .0 *,) ' . L ( 1(* , *) * 1 ( K 1* ( dx =+, dt

*(

(2.19) @

1(0J *(* @ (2.20)

d+ d+ dx d+ = =+ = w1a(x) . d t dx dt dx

M ) ++ ( I @ / 0( ' (2.20) – (2.21) 1( ), 10 *(* M ( * ( , . . 1* 0. *1 6* ) J . N *6* M ( ) (* 2 *J * 1(* J , ( 1* 0. @ , * @ w2a(x). I* *6* M ( ) (* 1 H , * @ w1c(x) *J *J 7 @ 1* 0. . *6 . * *60 7 @ , ( , * ) 0 *( ' )(06 / , 1* *K@N 0( ' (2.20)–(2.21) ( . /) J . R * 7 , * *' *) *1 , *) ' ' *J * *) ( , (*@, 0 * @ ** J)0 0 *( N /M ( * ( , / ( , (* ) *H++ I Ka(d). *6) 1* , * w1a(x) *J * *1( ) @ 0 *( M ( ) (* d = n ( .): wn(x)= Ka(d) w1a(x). * J ** 0 J)0 0 *( I* *6* N *6*. R 0 *) ( , I N *J * ( 1(* ( @ M , )(06 / ( * , )(06*' +*( .). *J M ' *) *1 , *) ' ' 1* *K@N K 7* *7K ' *) ( , I ' ( * ( *6* *) . #) @ 0 *( , ( * @ * ) *) *6* – H * *6* *6( w = F, 6* , *'. *( /* @ / 1 ( . 1* *K@N *H++ I ** m, * *( ' 1* , , * * @ * ( , 1( *)* * J *,) ' 0 *( @M 0 *( H * , . .w = F/m. , *,) ' * @ . * * , 6* 0 *( , * ( J * )(06 / ) I /. L*H * 0, *, *,) ' * *J , @ * 0 *( , * 1(* , *) / 0 *( 1* ( .& , H , * *( , * 1(* , *) / *(* 1* ( , *60 7 @ , ( . *) *( . N *M 7*. . J 'M , ) . + , – , / ( * 0 ' 1( (*) , 1( *,) * *6* 1( )*7 * (0J NK ( . )0 * *7* * @ ( J ) (2.9). * ) * , 0( ' H (*) , * *( , 70) 1* , * ) , N *7*7K H 1 ( * . *H * ( J 1( ) 0 0 *( * ( , 1( )M 0NK ' ( ( * 0, ** ** *M (2.10). *7( ,* , (2.9) *J 7 @ 1* @,* *) ( . *(* 10 ) J , * *(* * , *,) ' . * @, 1* 0K 0, ( J (2.9) 1( ) 0, * *(0N *J * 1* @,* @ * *(* , * / (2.4). M ( (

– 6* 0 *( 33

(2.21)

34

&

/ *

I

@ * *,) '

T .2.1.

) / ( ) 1* . 0N )(06

*,) '

(

r d+ m = dt

9

2.5.

*,) ': ( 7* , 1*H (6 . F1,

*

* @ /

*J 1( *7( ,* r r d+ m+ = dt

.

F2,..., Fn (( .2.1) *, ( dt 1 ( K 1* 10 dl, * ( * 1(* , ) * ( K , ( 7* *': r r r r r r Fi dl . dA = F1 dl + F2 dl + K =

6) C – NK /

H *1 -

.

(2.22)

i

7*

L* *6 7 * *' ) @ * @N 6* *( , . * *,) ' 1* N ( 7* 0 , ( dt. # * . ' 1(* J0 * ( *,) ' 0NK / 70) t

A= 0

. i

r r Fi dl =

. i

t

0

r r dl dt = Fi dt

. i

t

0NK t( -

r r Fi + dt ,

(2.23)

0

. . * *1( ) 0 *' ( / 1(* , ) ' *,) ' *(* @ . L( * 0K H *' ( 7* *,) ' 0NK . *- * 1(* /*) , 1( ( *M )@ ( , 1 J , / , ( *( ( /*)0 6*(N. . L( * , @ *' 1(*I 1* ( ' H (6 *,) ' 0NK 6* , * *( ( /*)0 1* ( 7* (2.23). ,( /*)* H (6 7 1* I @ * *) (J @ * , *) ' 0NK / /, 1*H * 0 , N 1* I @ *' H (6 ' U 1( ( N ( 7* *7( , * : U = A=

. i

t

r r Fi + dt .

& ( ,0 @ *,) ' ) J0K * 1( *7( ) J * * *J * 0K @ * - * *,) ' ( ' ( ) ( ,0 @ 0) ( *J ( ,(0M @ 6* *( , . * * *7 ) . *' H (6 '

r

*(* @ + . * , 1( ( 0 *0 ,) . L*H * 0

m+ . (2.25) 2 & ) . ( 7* , 1* I @ *' . *' H (6 1*, * N ( ( @ 1(*I , *) ' )(06 / 1* /. ) * H * *) 1* * @N )0 , *) , 70) ) * J . & 0. *,) ' * * @ / , 1 M *(*' , * @N * (2.4) )0NK ) : 35 Ec =

, 0. *

1( 0N .

rr

. F +; i

.

m+ 2 = 2

rr Fi+ dt ;

i

K * *1( )

(

* ' (2.24)

(2.26)

r + 1(* )

(2.26)

r r m + d+ =

i

.

i

i

(2.25) 1*

.

1*

)*

@-

rr Fi+ dt + C ,

(2.27)

i

6( (* )

. ( J

, 1 M

: Ef = E + U = C. (2.28) 0 . *' H (6 E ) J0K 6* 1* I @ *' H (6 U *,) ' 0NK / , 1* *' / . *' H (6 ' Ef , *) ' 0NK / . ) * , (2.28), 1* H (6 , *) ' Ef * ( , * 1* * *' 1(*I , *) ' . &+ , , * */( H (6 , N , * * 1( (*) . ) * , , . * ** *M (2.28) *70 * * *( , * * @N * ) M 6* 1*)/*) M 6* 7*( 1* '. * . * , * */( / . *' H (6 (2.28) , * * 1( (*) , ) M 6* *) *1 , *) ' ', 0 @M 6* , . . 7 H * 7 , * 1( (*) , , 1( (, , * ( *6* 6* , * 0 * , 7 1* 0. ( ,0 @ , ( *' , *J * 7 * 7 * @ 6* 0 ( @ * *. * . * . * , * *70 * M 1*)/*)* , ) @ 0 , . * * )* J 1* @ 7 * N *' *. * @N 1( N7 / *7 * @ /. L( *) (2.28) ( ( . *) J , * * 6( 1* * . * . @ 0N *(* @ +0 , * ( ,0 @ (* ( J ' (2.27) 1* 0. m+ 2 2

(2.24)

0

2

0N

r

.F

. * *J * , 1

m+02 = 2

@

.

t

i t0

r r Fi + dt =

. i

t

0

r r Fi + dt

. i

t0

r r Fi + dt =

(U

U0 ) ,

0

:

Ef = E + U = 0, . . 1( ( K 1* *' H (6 , *) ' 0NK / 1(*I ( * 0 N. L( . *,) ' ' * * * *J ) 6 @ 1* *(* @N: 1( ( * *7 @, 1( *) ' ) ' * * ( ) 6 . & H / 0. / *,) ' 0NK 1(* *) ' 0 *,)0/ *1(* ) J N. , , * E =0 , *6 * (2.29), 1* I @ H (6 , , . . U = 0. ) * H (6 *1 ET ( /*)0 . /*)0 6( *,)0/ 1* (/ * , . . )

36

(2.29)

(2.30) ) J * , *7Q *(* *J ( ) H

*' @ (-

6 6

Et = – ET . *1* * (2.30) .

1( ( K 1* *' / . *' H (6 *Et ET, 1* 0. Ef = E + U + Et + ET = 0. (2.31) 1( ( K J)*' * NK ' * * . @ * 0 * .H (* 0 1* *J N ) ' 0NK / , 1( ( Ef =Ef – Ef0, * 1* 6 * . * * * , 1 M *6 * (2.31) (2.32) Ef = E + U + Et + ET = E 0 + U0 + Et0 + ET0 = . * @ *1( ) *7( ,* H (6 * , *' 1(*I , *) ' . ,@ J)0 / . *' H (6 ' 1 * *' 0 * ( ,0 @( , **7( , / , ( ' * . 1 , ) *6* 1( 1* / . *' ( 7* . ( J / . H * 1* W = 4.187 J/ , 427 8 / .& ) *1 * H (6 1( 6*( , ( ) 1 * *' H (6 . *7( ,* , ) H (6 ( ,0 @ H 1 ( @ *' ( (* *1* / . *' H (6 '. L*H * 0 , * */( H (6 * 1( ) / . *', ) 1 * *', / . *' )(06 / )* H (6 ', * *( 1*) (6 0 H 1 ( @ * 0 *1* N. , , * */( H (6 M 1*)/*)* , , ** 1( (*) . R * * *7 * J * 1* @ 1( ( * ( * / '. */( H (6 *70 * * , ( . /*) ,( * , * *( / 1(* *) @ , ( , * *, *J (0M , *. * (0M 1(* /*) 1( , ( 1 * *' H (6 , ) *' 7(* 1* 0) ( 7(* 7*' / ( )* : * 1( M . 0N 1.2, 1.48 4 ( , 1( ( ) 0.0615, 0.085 4.05 6, ** * ( *( ' &. R (6 « , * 0) » // 0 J , @. – 1998, ˆ 10.– .78 – 79). R * (0M *70 * *1 ( . * ) *6* 1 / . 0N H (6 N 1* *K@N H W = 4.187 J/ , * *( ' 7 , ( 1( 1 ( /*) ) J 1 * 1* *K@N ( . ) , 1( * * *(* / 0) ( / / . 'H 1 * )(06*' * 0J , * : 1( ) / 0. / * 0 . 0) ( 1 ) W = 3.5, 2.8 1.05 J/ . & * ( *' + , 1( *7 ) N H (6 . *) ( . , *) ' ': ( ( 1 ( ) . H (6 J)0 , *) ' 0NK , 1 ( /*) *7Q ( , 0(* H (6 .). 0K 0 , . * H (6 . *) 7* *7K . & . (60, , * * */( H (6 *) 0( ) J . ) *, /*) N 0( / . ( (2.28) ) H (6 1* 0. * ( ,0 @ 6( (* 0( ) J (2.26). ++ ( I (0 (2.27) ( * * 0K *) *. / 0( '8 @ * , I ') ' ), , *, 1* 0. 0( / . /*) 1* / – *(* @, 0 *( , . L* H (6 H (6 . ** *M 7 , (0N /. R * * 1* ( ) * , , ( *' * (0J NK 6* ( , 1*H * 0 ) , ) . * / / 37

0 I / 0 *

/*) @

/

.

1*

1*, *

1(*

@ 1(*7

0.

3 & #

& !

! &

3.1. 9

!

!

, *, 1 ( * . @ * H ( , I N 1* 0. ( / *) * * )(06* . L*,J , )(06 1* *7 1* 0. H ( . . * * / 0. / 1* H ( . // ( ( ,0 , . * . N 1( 6 @ * @ )(06 * )(06 . & H ( ,* / ,0. * @ 10 , ( 6* , 1( . . 1(0J 0 * 1* @,* * 0N 1(* * * 0, 1* 06 0 , (0. * *(*' *1( ) @ , *) ' J)0 ) 0 H ( ,* . 1 7 * 0 * *, . * H ( ,* / )(06 )(06 , * ( * J)0 . , * @, . * 1( *) *' *' J H ( , I *7( * 1(*1*(I * @ )( 0 ( * . * *) J *J * H ( ,* @ 1*-( , * 0, . . J)0 ) 0 1( *) * * J ( * *J @ ( , 0N . 0, *, *7/*) * @ - * */ ( ( ,* @ . 0 H ( ,* * . H *6* 7( *) * 0N H ( ,* * @ ) 0/ / , * *( N )(06 )(06 *' ) I0, ( * J)0 ( * ) I . 1( (, 1( ( * 1 1H ) I H ( ,* * , 0 * * ( ). 1( H *' H ( ,* * *) *6* , )(06* 0N H ( ,*I, * @, . * 1( * J ( * / 70) ( q2 ) * . H ( ,* * *(*6* , 7 * 1( *, ( . 0 q 2. & 7( 0N . 0 H ( , I , , ( )* H ( . . J 1( ) . *' H ( ,* * *(*6* H ( ,* * @ 1 ( *6* 70) *' . ,. * J)0 1( ) I, * . , ( ) 1 ( *6* 70) . * ( * 70) q1 ) ( q1 . L*H * 0 1( H ( ,* * , , ( *' , ( ) q1 q 2, J)0 J)0N ) I0 , ( ) 1 ( *6* ( q 2, q1 ) I , ( ) 70) ( 1(* , ) N q 1 q 2. J)0 H ( ,* *7( * 1(*1*(I * @ )( 0 ( 38

*

R *( *

J)0 , * ) , 1 M

( J :

)

r r qq R F = 1 23 . R

1(

N7 / (

*

/ (3.1)

) ) R * ( J , * , * 0 * . *H++ I *6*, . *7 @ *, *J * @ 1* @,* @ . , ( )* , * * *6*, *' ( ) /*) , *) ' 0NK . 7 . * . 0, ( ) , ( N *'- * *1( ) *' ( ) ( *,)0/ 00 ) *H++ I * 0. N , J)0 H ( ,* 1( 1* K / *' J H ( ,* * @N )(060N ( )0. * ( *, . * . H ( ,* * 0 1* *,) ' J)0 , . , ( )* , N 1( ( ) J)0 . *7( ,* , *,) ' H ( ,* / )(06 )(06 , * *(* *J @ ( , 0N . 0 ( , / ( ) /, *1 ** *M (3.1) 1* *K@N H ( . / , ( )* , * *( , * ( ) . R * 1* *7 * * *, * N , . * H ( . , ( ) N * *(*' ( @ *' 0K* @N. ,( * ( *6* ) *, . * , ( ) H * - * 0K * @ 07I . R * ) * . * * 1* ) *1 *,) ' H ( ,* / )(06 )(06 . H ( ,* * * *J @ N7*' , ( ). 7 * J 1( I 1 7 * 1* (* * *1 6( I * *6* *,) ' , * *6 . . , ( ) ) J)*6* 7 7 , *', N7 ) N )(06 )(06 (1( *)* * J ( * ) 6) *) * *. ) I , ( ) ) 6( I * *6* *,) ' * @7 J . 1( (, *J * 1( @, . * * *' 123 , ( ), ( ' 1 , * * 70) 1( 6 @ * 0J 0 *' 1 . * ( * * ", ( )" 1( *7( * * ' . 1( ( J ' 1 : /*) , ( ) , , N , ( ) , , *) ' 0N , ( ) – ( , * @ 1* , ( ) * * @ *' 0K * . * ( H (* * ( . I *) * H ( . , ( )* ), 0 () * @ * 0K * , ( )* ) * *(*' 07 I . . H (* 1* * *' * *,) ' * @ 7 1*)*7' 6) *) J *7( ,* , )* , 0K * H ( . *' 07 I . & ) *' 07 I *6 . * * 0, 7 1( *,) ' # * 1 * *, 6* *) @ 7 07I J 1 * *, *' 6 . * ( * . * " 07 I " " *,) ' " * @ * ( *, . 1* , * **7K 1( ) N *7*' ( *7Q , * ( *' + , 1* *6 H ( . * ) 07 I ) 6( I * *6* ) 6( * * . L( ) , ( )* * ' H ( . *' 07 I 1**7 * * 1* N 0 (J) ' * */( , ( )* , /* *1 39

07 J) N * 1* /( , ( )* * , *) ) J , * *(* , L( * ) ( ,* * , , 1( ( 6(

. , * H ( , I . 7 J) * *. 07 I 1( * 0 (J) N* , ' H ( ,* / * / * * @ *6* 70) 1* , * J , *M 7*. . H ( ,* / 1(* *) * . H , 1(* *) 1(* /*) *1( ) , .& ) *(* @ , H ( ,* * dq I= , (3.2) dt * *( , H ( . * * . *. ,( H ( . / J * + , . * 1( . * 1(* *) K 0K 0 *,) ' H *6* 6 . 1 *0 ) , R'/ @) , 6 )(. 7 * 0 * *, . * * @ * , H ( ,* * , * ) J , *' H ( ,* * @N , 0 *( * ) J 6 . / , . . /. &*, *J *, , H *6 1( ) @ * 1(* *) ) J , ( )* . J0 , ( ) H ( . 07 I , 0K 0N H (6 * 0 1*)*7 6 1* . *) H *6* – 70) ( ( @ 1( @ * . L ( ) * . *1( ) , ) . – @ *, *J * @ *1( ) @ , *) ' H ( ,* / 6 . / 0. , /H ( , I 6 . * 1( / ) J . *, *J * @ *J 7 @ )* 6 0 M@ , ( *,) ' 'H * / )(06 )(06 , /*) K / *1( ) / * * /, ( . * * ( ( / ** 0NK * * H * / , ) 1( )1* 6 / / , * H / *,) ' '. , ) H ( ,* / , ( H * * *,) ' *' H ( , I ', *6) ( * *) 0 ) I0 * 1( 6 N *' J *) 0 ) I0. & . H ( ,* * ) , ( ) ) N7*6* , ( ( 6* *' H * *6* . *7/*) * * @, . * . , ( ) *J 7 @ , ( ( )(06 / *' H ( ,* / , 1( ( ) *6* K 1( H (* , .1. ) * ( * * N ) I / H ( . , *1( ) / 1* , *) ' N .

3.2.

" &%( !

, *) ' ) 0/ ** *M (3.1). # ) *1( ) / 0 *( ' w1 . 0 ) J , 70) 40

& 1*) J

!

/ , ( J / ( m1 m2 )* J)*6* , w2 1* )0NK / ) J '. * . *1 @ J

J *. * *6) ** -

*M (3.1) * 70) , @* *(* /* * @ *6* ) J ? L( J) . * @ H * *1(* , ( * ( , *7( ,* *J* 7 * 7 *1( ) @, * @ * *(* * * @ *6* ) J . 1( 1* * K / / 0 / )(06 )(06 *J * , ( @ 1* K *' J)0 1(0J *', * 0. ) J *) *6* , 1(0J 0 *J * 1( * ) @ * @ * * *(* 0 0. J0K * 70) * 0K @ * ) J , /*) K 1*) 6* 1*) J * * 70) ) +*( (* @ 1(0J 0, *(*' * I * *(*' 1 (@ )* J 7 @ 1( * ) 7* 0 * , 7* # .& . ) +*( I 1(0J 1( ) . 0 1*) J * ** ) J0K 6* . , *H++ I ** m( ) I 0 *( 1*) J *6* ** 0 m ) I ), * H , ( *1( ) 6* 0 *( ) J . L( * * ) 1(0J * . H 0 *( ) 6 @ * * @ * *6* , * *( 7 , *(*' * I 1(0J , . .* * @ *# . L*H * 0 0 *( , *1( ) * *7( ,* , 1( ) , ) J * * @ *# . , ( *7( ,* 0 1*) J * * 1( ( , . / *(* / ) J0K 6* , *J * 1* 0. @ ( J ) , )* @ *, ) 0 *( ) J 1*) J *6* , * * *(* . * ) J0K * *J 1 1*) J *6*. *J* *1( ) @ 6* 0 *( ? & 0. 1*) J / , *) ' 0NK / ) +*( I 1(0J * * *) * 0, )(06* 0 0. L( , / / , / )* *. * ) *1( ) 0 *( '. *J , @, . * 0. *) *6* ) J0K 6* ) +*( I 1(0J , * *(0N * (M 1*) J * *, 70) J 1( ) @ 0 ) J0K *, )* @ *, ( J @ 6* 0 *( ? @ H * *1(* *J * 7 * 7 1* ( ) , ( ) J0K *. H *6* 0J * * ) @ 6* 1(0J *' 7* * , * *(* * , * , *) ' 1*) J * ) J *7/*) *' 1* * *' *(* @N * * @ * 1*) J *6*. , ( , , * 70) @* *1(* , * * @ * /+ /. & ( ,0 @ , *) ' J)* , ) 0/ , ) J0K 1 ( * . @ * 1*) J * , . N ) 6 @ 0 *( *. , *1 NK ) J 1 ( *6* F12= m1w1 ) J *(*6* F21 = m2w2, ( . L*H * 0 0 *( 70)0 *7( * 1(*1*(I * @ , w1/w2 = m2/m1. & H * 0. *. ( * * *7Q * , *7( * 1(*1*(I * @ (R1/R2 = m2/m1), , I ( c )* J 1 ( K @ 7 , 0 *( . R * 1* *J 1*) (J) . , 7 N) ' / 0. ) J / 1( (*) )0 , . * 1( * 0 M 6* /I ( ) J ( * ( * 1( * ' * 1* * . 41

6*) ( , *J * 0 + 0 1( /*) *)0 * ( , * *) *7Q , *) ' 0N )(06 )(06* , 0. / * * @ *6* ) J . 1* , . * 1* *J *( ) *) *1 , *) ' 1( (*) 1* *K@N , 7*(* *' 1( (*) . *) 1* 7 N. 0K * ( , / 1* . *,) ' J)* , ) 0/ . , , ( 0 1* . ) +*( I 1(0J 1*) J * , *J , , ,( . @ 0 *( ) J0K 6* 1 (* . @ * 1*) J *6* . L( H * . *J , @* *(* ) J0K 6* , * ,( * ( 1* *7* *J *1( ) @ 0 *( ) J , )* @ *, @ N ( 0) J . (

3.3. &

&

* *(* @N + * * @ * *(*6* * , ( )* q1 ) J , ( )* q2, * H 70)0 , *) ' * @, **7K )(06 )(060 0 *( . , ( 0 F21 *,) ' ) J0K 6* 1*) J * , *6 7 *1( ) @, * @ * *(* . 1*)*7 ,( 1(* *) @, * ( * ( ( ,0 @ )(06 / *1 * , * ** *( / *J * . @ 0 *,) ' ) J0K 6* , ( J *6* 1*) J * [112, 113, 115, 116]. . *1 * , * *( / ,0. * @ *,) ' ) J0K / , ( J / 6 (1*) 6 * 1*)( ,0 6 . * * H (* 6 ). 1*) J * , ( J * * *6* 6 * , , * 1( . ) J * * @ * 6 *, , *) ' J)0 . R * , *) ' ,0. * @ *1 / 1* N ( K NK 6* , ( J *6* * ) *( 6 0N ( 0, * *( 1(* *) @ 8. *0 )* , . R'/ @)* )(. * ( * @ *,) ' * ) *( , 1* * *(* 0 1(*10 * , . *7 1( * /*) * @ ** ) J H ( ,* /1 * ) *( . & ( ,0 @ 7 *0 * *, . * *,) ' 6 * ( K NK 6* , ( J *6* * ) *( ( * *,) ' N * ) *( * * , 1( * *(* 1(* /*) , , ( ) H ( . ) I0 ( ,( * , N , ( ) 1( ( K * ) *( . R * ( ,0 @ ) @ 0 , . * *,) ' 6 , NK ' H ( ,* * @N , * *(* )* @ *, , H *' H ( ,* * , . .* * I = dq dt . * * I, *,) ' 6 , * * *6*, ( J * * * , H ( . *' ) * 1(* *) * ) ) J , ( J *6* . , , H ( . *' 42

*,) ' * ) J0K 6* , ( J *6* , ( J * * * I, *) 1* N *,) ' H *6* 6 . * ( *(*' *1 ' + , 1( * *(* , ( @ *,) ' 1(* *) * * 6 .R 1 ( 1* *,) ' N 1(**) * * 6 0N ( 0 6 1( ( , / * + 60( I / 1(* *) @( , 0. , * . R( )* , 1 (* )(. 1 0 * , . * *,) ' 1(* *) * * 6 0 @M *7( * 1(*1*(I * @ * )( 0 ( * J)0 .& ( ,0 @ H / H 1 ( * 1* 0. * ( J ) 1( ( K r 1( J * dH , *,) *' 0. * 1(* *) ) *' dl * * I ( * R* 6* )* 6 )

r r A = µ Hds ,

1(

[

]

r r r I dH = 3 dl × R , R c

(3.3)

r , * *– ( – 1 . #) @ H 1( ) ) . ' 6 ' 1* N . ) J0K 6* , ( J *6* *J * */ ( ( ,*@ * * I, * ( J (3.3) *1 6* *,) ' 6 .& . *,) ' *1( ) , *' . *' * I 70) 1( )@ ) J , ( J *6* . * 6 , *N *. ( )@, 1( ) J *,) ' 0 , ( J * *. ** *M , *1 NK H * *,) ' ,0 * * .! ( ) * * *1 * , * *( / 1(* , *) * @ ) J 6 * *@ * 1(* *) . * I / *6* 1(* *) 1* @ , ( ) , **( *1( ) @ ) ( , * 1* I * . R * *, . 1* *,) ' , ( J * *, * * 70) 1* K * 1(* *) . & *1 / , ( @ ( , * @ 1* I * * I / 1(* *), , ( J * *, H * ( 70 1( M ( * ( . ) * 1* ) *J 7 @ . 1* ( , * 1* I * . & . 1* NK 6* , ( ) * I / 1(* *) , * . ,/ ( ( ,0NK ' *,) ' 6 )(06*' 6 , 6* *(* ) J . H ( ,* * @ * I / 1(* *) 1* J 1( 1*) J * 6 , , *,) ' 6* )(06*' 6 . 1( (, H (* 6 , *7 * * *(*6* * , J *,) , ( ) * I / 1(* *) . 1 ( * 0. ) J0K 6* 1* * *6* 6 , * *(* 0. 1*) J *6* , NK ' . *' 6 . * , . 1* NK ' H ( , I 1(* *) *6 7 @ 0 * r , * * *(* , 1( J * H /*J) 1(* *) . *) * H ( . * , ( * @ 1* . * r , 0 * 1(* *) K * 0( , 1( J * @ H ( ( @. ( , 6 ' 1* * , 1(*/*) K ' . ( , * 0(, )0NK ) :

* *(* , . 0

*

43

1(* I 6) µ – 6 ) 1(* *) . & *6 7 0 * , 1* * / , * @ *

* @, / ( , 6 ,

u=

(3.4) ( ,0NK

* @ H *' 1( J * , * )0 I

1 dA . c dt

( )0,

* *(*'

/*-

( ,* * * *(*r H . ( , H * * 0(. ! ( ) )

(3.5)

#) @ u ) I 8 1( ) H (*) J0K0N 0 , 0 * 1(* *) K * 0( , c – *(* @ . , 1* *,) ' u , ( J * *, * *(* ** *M (3.5) *70 * * *(* @N , *,) ' 6 * , 6) /*) , ( J * *. ( * ( ( H 1 ( @ / + : 1) ) J0K , ( J * * 1* *,) ' N 6 H * * 0; 2) *,) ' * 6 *1( ) , * * (3.3); 3) *,) ' ) J0K 6* 6 , ( ) * 0K *6 * ( J N (3.5). &*, ( 1 (@ ( * ( N *,) ' ) J0K 6* , ( )* q1. L( 6* ) J *, *,) ' 6 , * *(* , * *(* , *,) ' , ( J * * /*J) 6 .R * 1* *J ( J * ** *M (3.3). * 1( ) J , ( J *6* *,) ' 6 70) , @ , ) @ 0 ** *M (3.5), * 70) *, @ *,) ' , ( J * *. * *,) ' 1(*1*(I * @ * *(* , 6 *6* *,) ' , * *(* , *N *. ( )@, *6 * ** *M N (3.3), 1(*1*(I *@ * *(* , H ( . *6* *,) ' . L*H * 0 * * ** *M (3.3) (3.5) ( J N * + , . * * ) J0K 6* , ( )* q1 *, )*1* @ * *,) ' 1*) J * * , ( )* q2 , , K * , * * *6* *,) ' , * *(* *,) * q1 0. , *6) * * 1* * * * @ * q 2. , 1( ) / *1 * )0 , . * *,) ' ) J0K 6* , ( J *6* 1*) J * 1(* /*) , / , *) ' 1( 1* * . &* / ( / *1 /H ( . 6 H++ 1* N 1( . * * @ *6* ) J ) 0/ , *) ' 0NK / . 1( (, 0M 1* * M@ 1( * * @ * ) J 6 . L( * * ) J 6 0M N7*' *(* @N 1* * *M N N7 0M * 70) , ) J 6 * * @ * . )* @ *, , *) ' ) 0/ H ( ,* / , * /* * @ *' *(* .

44

L( *1( ) , ( ) ) I0 7 1( H ( ,* * @, *) * ) 0/ 1*) J / , 1( * (*' * T .3.1. &*,) ' ) J0K 6* *. . *6* 1*) J * *. . *

(

, 0 *-

, ( )* q1 * , ( )* q2.

(

* , ( * ) I , ) +*((* 1(0J 0 ) I0 . * 1( . * * @ *6* ) J H / . , * *(* . # . * J ( * 70)0 *,) ' * @ )(06 )(06 *', * . *' * ) I . H *' . *' *1( ) N , ( ) , * )(06*' / . . *7( ,* , 1( . ) J , ( J / . , ( ) , . & H (*) 1( * . 0 , ( ) . @ , *'. & , H *1 / 0+ 1*)*7 / *1 / 1* , N * *M , ( ) H (* * )(06 / . I 1( M *)0 *7 , H /. I 1( / ) J . * 1** @ 0 *,) ' , * ) J ,) ' *) *M 7*.. 1 0+ 1*) (J) , , ( ) 1( 6* ) J , *) * + , . 0 , ( ) 1( * . @ 1* * *'. L*H * 0 ) @ 'M 70) 1* 6 @ 1* * *', * 0. @, . * . , ( ) *1( ) 1* * * 0 *,) ' N 1*) J / .

3.4. 9

:

J0K *(*' **() , xq, yq, zq ** * , 1* *K@N

*7Q dV *, * 0 0 *

r F= ')

)

*7Q

(

, ( ) dq1 = dV *,) ' 0 (3.1). 6( (0 1* 0 *7Q r r q R F= 2 dV , R3 V

(3.7) , ( ) q2 0, 1* 0.

*'

(3.8) 45

q2

q2 V

&* 1* @,0

*(

0. * (3.12)

( J

* 0K

*' .

*

U =

1 4

)

V

q2 V

r

dV .

( *' +0 I U dV . r

(3.11) 1( r 4 q2 div F =

-

(3.10)

' (3.10) 1* 1 (

+ ( div grad) & dV = *r'

*' L0

1* **()

+ ( grad) &dV . *r' V

(6 I N * 1( *' r div F =

,

(3.6)

dV = dxqdyqdzq. R *6

*1 ( I 6( ) ) ++ ( I (* x, y, z. 0. * (3.9) (3.8) 70) :

!

V

, H

6)

%

*1( ) *,) ' J)0 * * @ *) ) **() 0N 0 x, y, z ( .( .3.1), * * * K ) J0K 0 0 , ( )* q1, *7*, . *. L0 @ (xq, yq, zq) @1 * * @ H ( ,* * *(*' , ( ) *1( ) q1 = dV , 6) V – *7Q

)

r r r 6) R = r ( x, y, z ) r xq ,yq ,zq –. ( ) 0 *( * , ( ) q1 , ( )0 q2. L* r F 70) +0 I ' * @ * **() , ( ) q2, 6( (* (3.8) r r . . F = F ( x, y, z ) . & N7*' *. **() *J * 1* @ * q2 *1r ( @ ( ) @ 0. & . * 0 F *J * ( +0 I N **() 1( @ ' . *1 ( I . r &/*) K ' 1*) 6( @ * ( J (3.8) * *J @ R R 3 *J 7 @, 1 r R R 3 = grad(1 R) , (3.9)

x, y, z:

(3.11) U:

(3.12) ):

.

(3.13)

( J (3.13) ) *, . * 1(* , *) * 1* **() x, * 1 * * , ( ) H *' *. . L* 0K 0, ** *M * . 6* * *6*, * ( J *' * , ( ) q1 6* 1 * ** *' / ( ( *,) ' * , ( )* q2. * )(06*' +*( *' , 1 , * 0 * , * ) ++ ( I @ *', *6) , ( ) *,) ' 0NK 6* ( J ) 1 * * H ( ,*( 1( ) 1* 1(* ( 0, *1 * 0 **() x, * y, z. , * 0 * *1 , *) ' ) 0/ *. . / , * , * , *) ' ) ++ ( I @ * ) (3.13) *1 *,) ' , ( J / N7*' * + 60( I , 1 * * @ , ( ) * *(*' , ) 1 * * @N (xq, yq, zq).

y, z , (3.13)

46

@ * * 0 (3.17). L( *7( ,0 ( J (3.3) ( 1( ) 1(* ( x, y, z . . H *' I @N 1(* 6( (0 6* ) 7 * . *6* 1( *6* 1(* *) r * * I ( . ( . 3.2). #) @ dl – H 1(* *) , * 1 ) NK ' r 1* 1( N * * , R –( * 6* )* 6 . *6) , 0. * 6 * ( . / ** *M '

1*) J / , ( )* 1( ) N ( * *( ) ++ ( @ 0( . / *) *,@ *1 ( I N rot * 1( *' *' ' (3.10). ) N7*' ( *' +0 I rot(grad U) = 0, * r rot F = 0 . (3.14) * ( 1( ) , *,) * 1*) J , ( ) , , 7 , /( . 1 (@ *,@ *1 ( I N grad * 1( *' *' . ' (3.13): r r r 4 q2 grad(div F ) = F + rot(rot F ) = grad .

I .

0. * (3.14) H * 0(

1(

)

r 4 q 2 grad F=

T . 3.2.

.

(3.15)

*

, 0( 1 , 0( L0 * (3.13), ) ++ ( I @ *' +*( *' , 1 , * 0 * . * ( *,) ' ) J0K 6* , ( )* q1 1*) J* *(* q2. L( ) J , ( J *6* H dV 1 ( *6* 1(* /*) , * ( . , ( ) *. /, 1*) J / * *@ * *(*6* . * @* * @ * 6* 1(* /*) * H ( dq1 . , * *( ' *1( ) *(* @ , , ( ) : I= .& dt ( J . 0 , ( ) . ( , 1 * * @ *6 * (3.6) ) ++ ( I (0 , 1* 0. r d I= dV = dV + div( + )dV . dt t #) @ 6( (* * 0K 0NK 6* , ( ) q1 , 1* **() , ( ) q2. d 0N 1(* , *) 0N 1* r F *6 * , * 0 (3.13):

t L* 1*) I, *,)

=

+ div)) 4 q2 *

* 1(* , *) *' 1* 0. ( J ) *6* ) J0K , ( )* q1 : r + r( F + + &&dV . I = div)) * 4 q2 t '

0J 01* * @, ) J0K , ( J 6 , * *(* *6 *, * 0 *–

*

(3.16) *

H

( .

-

@M

(3.18)

r & *( H 1( ( . ( . 3.2) 1* * (0J * , I 1(*/*) * 1 (1 ) 0 ( * 1 * * , ) ( * *' ) * *J 7 @ , 1 :

r 2I H= cR P

(

r i sin

r + j cos

(

* *(*' **(-

).

r 6 ' 1* N N , ( ) 6 I ' *' 1( J r div H

(3.17)

1( J

1(* , *)

48

* @ H – . *,) ' 6 , ( )* M = 1. *. * H ( . *' . ,@ J)0 1 * * @N , ( )* ) (** *M (3.13). 1( ) ) (6 I N 6-

6 . ( J * : H Hx 2I = + = x y c

RP = x 2 + y 2 ,

** , *,) ' ( – 1 (3.3) 1(*1*(I *47

* @7 * * .

r r r [dl × R ] = , dl R cos 0 , dl cos 0 = Rd0 R = R P cos 0 , r 6) , – *( @ *' * (0J * 1 * * xy, RP – ( * * *. x, y )* 1(* *) * * I, 6 1( J * @ (3.3) , 1 M : r r 2 r r I, dl cos 0 2 I, I, = = d . H= cos 0 0 c RP cR P R2 2

1* **() xq, yq, zq *,) ' x, y, z, * *( / *J /*) @ ( *J * ( , @ . ( , 0

r F( &. t &'

6 1( J * . *6* 1(* *)

/ 1* 0.

sin

sin

(1 RP ) + cos

= x R P , cos

r div H = 0 .

x

(1 RP ) y

= y R P , * 1*

.

1*)

* (3.19)

** *M (3.19) ) @ 0 , * *( ' *J 7 @ ( J *. 6 *' 0K 0N / 1* N * – ( *6* NJ *6*. & ( J (3.18) *J * , 1 @

*J * ( , @ . ( , I ( 0 I N H )0NK *7( ,* :

* * / ( ( 6 *' ) * ) @ / 6 / , ( )* . ) ) 0/ 1(* *1* *J / 6-

L*

r 4 I r Z, 2 RP H = c

1*)

*

(3.5) u

) rot

. . I ( 0 I * @ * @ :

6 *' . *' *

1( J * 1* * @I * 0 * 0(0 *1( ) I, */ . *6* * 0(* . 6* *J * 1 ( 1 -

l

1* @,0 (3.20)

1 M

)

r r 4 I Hdl = . c

*( 0 * ) )0NK *7( ,* :

6(

(3.20) 1* ,

0 * 0 * 0(0, , -

r r 4 I rot H dS = , (3.21) c * *M (3.17) ) * 1* *K@N *( (*6( ) *6*-8 0 6( 1* *7Q 0 ( , . ( , 6( 1* 1* (/ * : + M ^ = )) * 4]]2 L*

1*)

*

*

r r( r F + [+ &&dS . t '

(3.21) 1* 0.

r 4 + ) rot H = c )* 4 q2

)0NK r r( F + + && . t '

( J

: (3.22)

r H ) . ' ** *M *1( ) *,) ' 6 ' 1* N , *70 * ) J0K , ( J * q 1. * , * *(*' , * [65, 96] , 1* 0K 0, )(06*' +*( *' , 1 H 1 ( @ *6* , * *– ( – 1 (3.3). r &*,) ' H 6 *, /*J) , ( r H ,)* q2 ( .( .3.1). * q1 ) J , 6 * *,) ' . & ** ** *M (3.4) (3.5) /*J) q2 70) 1* @ *,) ' , ( J * *. & (3.4) ( ( r 1* * 6 *' 1( J * H . ( , 1* (/ * @ S, *1 ( NK0N * 0( l, * *(* *6 * (3.5) )0I (0 H (*) J0K u.

R

,

*

3.5.

77

1( J

r E = F q2

*

r F r dS = q2

)0 I

! ( )

1(

r H r dS . t

µ c

@ 1( ) ** *M r H , t

1 ( * 0( /

(3.23)

1(

N7 / 1*-

(3.24)

. :

%

) ,1 ( * *(* 0( N )(06*' +*( *' , 1 ) 0/ H 1 ( @ / , * * : H ( . *' )0 I ! ( ) 6 *6* *,) ' * *– ( – 1 ** r *, 1 * * @ H ( *. J0K * *(* @N + , ( J * ,* * * *(*6* , ** 0( (3.24) (3.22) *,) r H *,) ' . N. , 0( ' . 0 H , * 1* 0. r *) * 0( ) . *,) ' ) J0K 6* * *(* @N + , ( J *6* 1*) J * . H *' I @N *,@ *1 ( I N rot * (3.24) r r µ F = rot rot rot H . q2 c t

(

M

L(* *) 1* , 1* 0.

#) @

50

)*

@

r F grad div q2

– *1 ( *(

1 * * @, ( ) 49

/ , *

L* * @ 0 H * ( J )* J * 7 6( @ / +0 I /, * N) )0 r µ F = rot q2 c

* *(*

*'

r r F r F r dl = rot dS . q2 q2

u=

)

( .

1 **

1( *7( ,*

*' .

r F 4 = grad q2

,

)

1 ( * (3.13).

r F = q2

6

*

µ c

H *6* ** *-

r ( rot H ) . t

r F div q2

( J

(3.25)

. ( ,

1 (@ 1(*) ++ ( I (0

1* (

(3.22)

t 1*)

1( 0N .

µ

r F

c & )

2

r rot H =

2

@ (3.25). L* r 2 F 4 µq 2 = t2 c2

+

4 c

( +r ) t

1( *7( ,* ( +r ) + 4 q 2 grad t

.

, 1 M

r F ,

1 c12

2

t

r F 2

r F *

=

.

=

4 q2

1 c12

( +r ) + grad t

7 ( . R * 0( r 1 2F =0 c12 t 2

* )*10 [24, 52] . r r F (r , t ) = Fk (r )e m i_t , 2 = kc1 ,

.

(

N.

(3.28)

r F , 7 ( )

( J 6

7 , 1( *' .

r 4 ( rot F ) + t c

cq 2

r rot ( + )

1 ( * 0(

)

r 1 rot F = q2 t

(3.32) (3.24)

r H

µ

2

c

t2

.

(3.33)

' (3.32) (3.33), 0. * (3.27) 1* 0. 0( *6* *,) ' ) J0K / , ( J / r r 1 2H r 4 (3.34) = rot ( + ) . H 2 2 c c1 t

(3.29) ( M

4

1

(3.30) . d

&

-

!

4.1. %

%! # #

&%( ! ! "

# #

(3.31) ( , ( , . *J * . @ *. .

+ + = 1 , t0 – * 6( (* . M (3.31) 1( ) *7*' 1 * * , 6) k1, k2, k3 – 1( NK * 0 1 * * , * *(*' */( 1* * * , r . F0 . R 1 * * @ 1 ( K 1(* ( * *(* @N c1, * *(0N , N *(* @N ( 1(* ( H (* 6 *6* , *) ' . , ( J *7Q 1*) J , ( = const), / *,r ) ' , ( ) q2 1* * * ( F t = 0 ), * 0( (3.28) 1( ( K 0( 1 (3.15). ) J0K / I * ( /, ( 6)

k 22

)

1* (

(3.27)

µ

6) k – 1(* , * @ * , *1( ) ( 0 * 0. (3.30) ( M r r F (x, y , z , t ) = F0 cos 2 [t m (k1 x + k 2 y + k 3 z ) c + t 0 ] , k12

(

r r H + grad div H +

:

0(

*

)

1(*) ++ ( I (0

H * 0(

,

(

r rot rot H =

(3.26)

*7*, . 1

*

r F

t2

cq 2

)* / *,) ' 70) )(06*', * *1( ) 0( 7 ( (3.28). 0J ( ( , ) J0K , ( J * * *,) ' 0 6 . ** *M (3.22) (3.24) 1*, * N *1( ) @ * *,) 'r , * * 1 * * 6* , ( ) *(* + * * @. H *' I @N *,@ *1 ( I N rot * 1( *' *' . ' * 6 *(*6* 0( (3.22):

*(* 0(

k 32

51

.

@ * @M ( * ' J)0 , 1( ) 0, * *(*' ) ' 0 ) r J0K ' 1* * *' *(* @N + *. .' , ( ) q1 )(06*' *. . ' , ( ) q2 ( .( .4.1). J ( ( * * @ * : , ( ) q1 ) J * * @ * , ( ) q2. & ) ( * *' **() , ( ) q2 *J /*) @ N7*' *. x, y, z. # ( ) q1 * t=0 /*) . **() . T .4.1. *)0 0( . . *6* , ( J *6*

52

7 ( ) .

*-

L * * @ , ( ) q1 [17], * *(

3-+0 I

*. . *6* *7Q *J * , 1 * * **() x

,

@

1* *K@N )0NK '

): 3 ( x x' ) =

4

1 2

%50 , x 6 x' , x' )kdk = $ 5#4 , x = x'

exp i(x

4

4

Ey =

(4.1)

3 (x x' )dx = 1 .

4

Ex =

x

4 y

+

4

Ez =

(4.2)

z

1 c12

+

1 c12

+

4

) 3-+0 I * @ * *) * *7 * . * *. x', 6) /*) . /* ( 0 N. ) * 6( * 3-+0 x * . *' . *' ( 1* *K@N 3-+0 I 1 * * @ , ( ) q1 **() , 1 M :

(

0 * , . * *( I . &* /* @ / *.I 1* 0 ) 1 ,* 0 ,) I . 1(* ( *'

*6) 1*

1*)

* =

( J

q1 8

3

4

')

[

2

=

x2

L*

2

+

y2 1*)

)

(4.3)

6)

2

+

z2

4

q1i 2

2

[(1

(4.4)

4

)

L x2 k1

c12

Lx L y k2

(

Lx =

]

)

1 t

(4.6)

+z ,

7 ( . 1(* I

Ex

]

L x L z k3 exp(i rv )dk ,

4

3-+0 I ' 1* 0.

(

+y ;

)

rv = k1 (x + x t ) + k 2 y + y t + k 3 ( z + z t ) ,

;

exp i k1 (x +xt ) + k2 y + y t + k3 (z +z t ) dk ,

t

+x ;

2 1 – *1 ( *( c2 t 2 1 * * , ( ) (4.4) )

*

Ex =

[ = q1` (x +xt ) ` y + yt ` (z +z t ) ,

r r r r *( *. 1(* ( 6) r = i x + j y + k z – ( ) 0 r r r r rq = i + x t + j + y t + k + z t – ( ) 0 *( , ( ) q1 .

6)

t

+x , c1

Ly =

( 7 ( *1( ) ) J0K 6* , ( ) q1 ) I0 *7( ,* , 1 M * NK

+y c1

,

:

(4.7)

(4.8)

+z . c1

Lz =

x-1(* I *,) ' 1*) J *6* , ( ) q2. *6 . * y z.

4

6)

6(

(*'

dk

6( *

dk1dk 2 dk 3 .

0. *

;

4.2.

%

"

4

(4.2)

(0) *

dxdydz = q1 , 6)

07 ) @ , *1( )

. *

6( ( J

1* (4.4).

0

1(* (

0

*7( ,* , 3-

+0 I 1*, * ( 1( ) @ *. . ' , ( ) 1* 0 1(* ( 0 *) * ( *' * , I ' 6* /*J) , ( ) q1. 1 (@ *J * 1* @,* @ 0( 7 ( (3.28), * *(* I *r ) ' 0 *' F 1*) J ' , ( 1 * * @H ( . ( ) q 2. 70) ( ( @ ) . 0N 0 r r E = F q2 , (4.5) ) ' 0NK0N ) I0 , ( ) q2. )0 ( ) I , 70) , @ H ( . *' 1( J * @N. L ( 1 M 0( 7 ( (3.28) 1(* I / * **() 0. * (4.5): 53

1 ( *( 7 ( , 1( *' . k1, k2, k3. L*H * 0 @ : Ex = 6)

q1i 2

4

2

[(1

)

L x2 k1

* 1 ( . 0(

L x L y k2

4

(

L x L z k3

]

/

1

6( (* (4.7) *J * , 1 -

exp (i rv )dk ,

(4.9)

)

rv = k1 (x +xt ) + k2 y + yt + k3 (z +z t ) .

1( J

* @ Ex 70)

1( ) 1

54

*

exp (i rv ) = G .

)

6(

,

*1( ) -

(4.10)

!0 I N G

,

N +0 I ' 8(

*J *

.

1 (@ *

@M ( ) J

@ , 0( -

*(*

G = exp (i rv ) ,

(4.11)

* *(* ' ) ++ ( I @ 0( *(*6* 1*( ). / 1(* , *) / 1( *' . @N. 6* ( M ) , . *6* ( M * 1( *' . *7K 6* ( M G = 0. M 0( G=0) ( M * 0 *' 1 * * , ( ) , . . 1( ) H ( . * *,) ' * *6*- * )(06*6* *. . L* 0 * N , ) . * @ * *) , ( ) q1 1(* ( . 7K ( M 0( 7 , 1( *' . * 7( : ( 0 * @ * *,) ' * , ( ) q1. d * ( M K ) G = C exp (i rv ) . (4.12) L*)

*

6* 0(

(4.11) *1( )

L* 1*) K ':

*

1( J Ex =

k12

2

L( *7( ,0

2

+

+

C

2 4 k1

+

k 22

(4.12) +0 I

+

2 x

k 22

+

)k

1

k 32

q1i 2

6) 4

I1 = 4

2

+

(

y k2

x x k1

6( 4 4

x k1

y k2

+

z k3

)2

+

z k3

x y k2

+

z k3

1* 1 (

[ (

)2

70)

H

( .

exp(i rv )dk .

x y

1

k12

L x2 k12

a = 2

k 22

2 + L x L z k3 exp i ( x +x t ) k1

(

)

2 L x k1 L y k2 + L z k3 + a 2

+ k32

(L y k2 + Lz k3 )

2

.

( J

1(

L

1* *J

. .

@ .

)

(4.17)

(

+ L z2 = 1 ,

2 y

)

(

a 2 = k 22 1 L y2 + k 32 1 L z2

)

2 L y L z k2 k3 .

*

*J 7 @ * ( I @ M@ *6) , *6) ( @ @ *, 1( ( y, z, k2 k3 N *) * , 2 * , . , (4.17) ') 1( ( K da 1( ,

)0N-

)(

6 * 1* *1*1 ( * *) :

)

(0) * 07 ) @ , . * 1( H / , / 1( ( K da2 < 0, . . a2 * ** * , . 1( ) @ / 0. / 1* . a2 1* *J @ , * * ) 1 ,* * 1* *J @ .

0N

(4.14)

& )

*7*, .

9 – * 1 * . * 1 *' 1 * *

: e1 = 1 *.

L* H

*7*, .

9 = k1 * 1 )

1*)

(4.15)

(4.16)

(4.17) 55

56

(

6(

y k2

+

z k3

1* ,

a 2e12 =

{ (k

2 2

a 2e12

e12

)(

+ k32 1

2 x

,

) (L k

y 2

@

(4.19) 1( @ 1*)

-

(4.20)

+ L z k3

,

, .

xq = x + xt ,

(4.19)

2b9 + a 2

b ± b2

);

0 * 0 * 0(0

q

1* *7* , *6 . 1( )* , 2 2 . * b a e1 < 0 . *6) 1* 1*) * , 70)0 2

x

) *, . * 1*) 6( @ * ( J 6( @ ( J (4.16). # (4.19) 0 1(

6)

dk1 ,

; b=

(e 9 b )exp ix 9 d9 .

9 1,2 =

b2

2 x

* ( 2 1 e129 2

6( @ *' +0 I

]

)]

k 3 L y ]2 > 0

12

L ( 1 M

(4.13)

.

exp i k2 y + y t + k3 (z +z t ) I1dk 2dk3 ,

[(1 ) k (L L k

)

(4.18)

) a2 . L( 1( ) @ / , . / *(*2 2 2 1( ) / * a = k 2 + k 3 1( y = z = 0 )*

( J N.

(

4 4

L x2

a 2 = [k 2 1 L y2

, a2 ,

0.

da 2 = 2 L y k2 + L z k3 k 2dL y + k3dL z .

*' k1 :

)

(

)0 .

.

8(

(4.10) (4.9), 1* 0.

)

(4.14),

(

k 32

( J 6(

(1

4

Ex =

(L x k1 + L y k 2 + L z k3 )2

k 32

exp (i rv ) k12

+0 I ' 8( * @ ) q1i

+

k 22

*H++ I

G=

#

*H++ I

( M 6( * (4.15) (4.16) 1( * /*) K ' *(* c1 , . .

L 2 = L x2 + L y2 + L z2 7 1 .

J

1

C=

( , ( ) ,

)2 }.

(4.21)

a2 , *J * 1* , @, ' b, a2, e1 (4.21) 0

x

9 1,2 =

(L y k2 + Lz k3 ) ± i (k22 + k32 )(1

) (L k

y 2

+ L z k3

)2

2 x

1

, * [24], . * 6( . ( , 0 0 . * C-1

2 x

1* ,

') .

f ( 9 )exp(ixq9 )d9 = 2 i9C

1

1 (4.19) *1( ) -

L*

1*)

( )

lim

L*)

@

b

* . *'

2b9 + a 2

.

0. . J xq = x – +xt < 0, * c*() J ' 1* 01 * * *6) 6( (4.19) ( ,7 K 1* J ' 1* 0* (0J * 6*( ,* @ * 0)

( )=

=2 i

* .

lim

19

R @4

N)

**

1( x – +xt > 0

e129

e 29 2 R 1

(4.23)

b

2b9 + a 2

@

70)

1* ) * (0:

.

*J

, 1 xq

(9 ) = (1 2 ) exp

(k

2 2

)(

+ k32 1

*6 . * *1( )

@

2 x

L* 1*) 1( x > +xt

I1 = 2 iC-1(9+), 1( x – +xt < 0

(k

ix q

)(

+ k 32 1

. *

× exp

(x

+xt ) ×

2 2

(L y k 2

x

) (L

× exp( x + x t )×

I1 = – 2 iC-1(9 -).

6( x

+

y k2

1

)(

+ k32 1

2 x

) (

57

58

2 2

+

1

)(

+ k 32 1

2 x

1

y k2

(4.26) :

×

+

) ( 2 x

x

z k3

2 x

y k2

+

:

.

z k3

)2

,

2 x

y k2

x

z k3

x 2 x

.

)+

I1, /*)

1

(k

)2

+ L z k3

y k2

2

(4.25)

+ L zk3

2 x

i exp i (x + x t )

(4.16) 70)0

.

2 x

1( x < +xt I1 =

)2

z 3

)

J ' 1* 01 * *

, .

(k

+ L z k3

1

I1 = i exp i (x + x t )

1* J@ * 0) -

1

2 x

y 2

xq

2 x

y 2

) + L zk3

2 x

1

*

R

6(

2 2

2 x

@

) (L k

+

q

2 3

x (L y k 2

* 1* N

(9 ) = (1 2 ) exp

+

N-

exp ixq9 d9 = I1 .

(4.24) ( M

.

) -

(4.24)

(/ ' 1* 0* (0J * (4.23), 0 N, 6( 1* 6*( ,* 6( (4.16):

r

.

b,

ixq

1

*', . *

)

9+ .

2 + 1

2 2

+

( ) 0-

R

CR

*7( ,* , 1* (4.24) 6( ( (0 1( ) 1 ( /*)

x

N) e1

+

q +

2

+

1

9 +. 7

)(

(

f (9 )exp i x q 9 9

1

*

'

+

* (4.19), 1* 0.

2 1

+

CR

9 @4 e129 2

f(>), *6

*

(4.23)

#) @ 1( *' . , 1 * 6* , . . ( , . L* c*() 6( 1* 1* 0* (0J * e129 b 0 N, exp ixq9d9 ( * lim R @4 e129 2 2b9 + a 2 xq > 0

@

R

R

e129

(9 ) = 9 lim9

:

(i x 9 ) (9 9 ) = (e 9 b) exp (i x 9 ) ( ) = >lim> (e(19 b)) exp (9 9 )(9 9 ) 2i (k + k )(1 ) (L k + L k )

19

= 2 iC 1 9 + .

+

(/ ' 1* 01 * *

+

.

* 1 ' 6( (4.19) ( * ( 1* * 0(0 1* 0 * @I ( ) 0 * R (/ ' 1* 01 * * * 1 *6* 1 ( *6* 9 = > + i?. *6 * *. 1( 1 N * * , 1 ( ) i, /*) (4.22), 1* N 9+ , . . * *7 H *' 1* 01 * * . ,*7@ 6( (4.19) ) * NK : 1* (/ ' 1* 0* (0J * CR 6*( ,* @ * 0) (0: =

* 1* N 1

0 * 0 * 0(0

R

.

(4.22)

× z k3

)2

.

7K

)

*7* /

0.

( J

6(

x +xt exp i (x + x t ) I1 = i x +xt

(k

× L*

1*)

2 2

)(

+ k 32 1

) (

2 x

z k3

)

+

y k2

z k3

( .

@

,

)

x +xt ×

2 x

)2

1( J

1 (

* @, 1 M

: q ( x +x t ) Ex = 2 x +xt

4 4

+ x +x t exp i)) y + y t + 2 1 x * 4

4

+ x +xt + ) z +zt + 2 ) 1 x *

× 1

& )

*

2 x

2 y

*7*, .

(k

2 2

x

)(

+ k 32 1

x +xt

) ( 2 x

yk2

+

z k3

Ex = 1( )

×

2 x

1

( & y &k 2 + ' (4.27)

)2

2 y

dk 2 dk 3 .

Ag =

2 x

x

2 x

y

x

1

2 x

1

2 2 y z 2 x

2 y

1

2 z

2 x

,

x 1

xt 2 x

1

4 4

(4.34)

exp{ i (L2 k 2 + L3 k3 ) us} dk 2dk3 .

(1

z

,

(4.29)

,

2 y

*

/1 (

/n

s.

+ s n s n ( &dk 2 dk 3 , dsdn = )) k 3 k 2 &' * k2 k3 * 0. * (4.34) – (4.35) 1* 0. dk dk dsdn = 2 3 k 2 L3 + L2 Ag k 3 L3 Ag + L2 A 2 , s 6)

2 y

)

2 y

2 x

2

(1

0. * (4.34) – (4.35)

>0

1

2 z

+

)

2 2 y

( ,

)

(

2 x

2 z

)]

s 2 = k 22

s L2

k3

y 2 x

1 2 x

1

k3 . ( , s

k2

k2 =

2 y

2

(4.37)

z 2 y

.

(4.38)

n:

L3 , L2

(4.39)

2k 2 k 3 Ag + k 32 A 2 ,

1

,

( + L2 +L Ag ( n 2 L &+ k 32 ) 23 + 2 Ag 3 + A 2 & 2k 3 n) 23 + 2 )L & & )L L2 * 2 L2 ' L2 ' * 2

(4.31)

(4.32) 2 y

y

2 x

(4.30)

2 x

(4.36)

4 4

1 *K )

(4.28)

A± = Ag ± Ai i , u=

H

q1 (x +x t ) 2 x +xt

A2 =

x +xt

2 z

)> 0,

k3 A

2

x +xt 1

k 3 A+ )(k 2

[ (

:

L3 = z + z t +

1

2 x

1

L2 = y + y t +

Ai =

( & z &k 3 '

x

s 2 = (k 2

n = k2L2 + k3L3 . (4.35) 1( , k2 k3 *) *' , 1* 01 * * ', 1( ( 0 0,

(6.6)

>0,

(6.7)

= 1

(6.2) 1(* I /

2 x

*

2 y

,

**()

(6.8) :

z a

*,) ' , ( J *' 1 , ( )* q2 ) J00N . I0 q1 (( . 6.1). *(* 1 2 a 2 b. . * x,z,y , * I ( 1 ; 1 * * @ yOz * 1 ) 99

2 y

(6.5)

zs ,

) J0K ' . I q1. x *) *, . * / ( ( ,0

a1 = x 2 y x 2 + 2 x9

#

H -

q1q 2 , S r r r r R = i xq + j ? + k 9 ,

x = xq , yq , zq – **() **() x = 0, * ,

&

[

{

*,) ' :

Fp =

& :

)

6)

6

6.1. %

1 * * @ , ( ) ; S = 4ab – 1 *K )@ 1

& ** dq 1(* 0

*( @ *

(5.64).

&%(%'

(6.1)

.

(5.64) ) ( .

, . * .

dys dzs

, ( )

) 1+

@N 1 ; * @ Oy @ *(* 2 b, * @ *(* 2a. **() xq , yq , zq , * ) * *(* @N r r + j+ y + k+z .

Fx = F p (1

2

)x

J 1d9 , z+a

100

(6.9)

z a

Fy = F p (1

2

J 2 d9 ,

)x

(6.10)

z +a z a

Fz = F p (1

2

J 1d9 ,

)x

(6.11)

z +a

6) y b

J1 =

y b

d?

, J2 =

2 3/ 2 y +b ( a1 + b1? + c1? )

L*

6( (*

J1 =

1 ( *6*

6(

2 x )(1

.

(6.12)

M2 =

(6.12) 1* 0.

% 9M +N 5 2 $ ) 5 (a + b 9 + 9 2 ) a + b 9 + 9 2 2 3 3 # 2

1 z (1

? d?

2 3/ 2 y +b ( a1 + b1? + c1? )

*H++ I 6( (6.19) N, a3 b3 , * ?, 1*H * 0 ** *M / (6.17) (6.18) 1( ) , . 6( 1*) 6( @ *6* ( J dJ3 1( ( , / , . / ?. L*) 6( @ ' . @ 6( * , /*) K / Fz, *J * 1( *7( ,* @ )0NK *7( ,* : ( M9 + N )9 = M [(a 2 + b29 + 9 2 ) + M 29 + N 2 ] , 6) 2 1 z N 2 = a2 = x 2 , (6.20) 2 1 x

?= y b

*6) )0NK Fz =

? = y +b "

9M +N

5 !, 5

( a 2 + b29 + 9 2 ) a 3 + b39 + 9 2

a2 =

a3 =

x2

2 x

+ 2 x?

x (1

**

2 x

1 x

y

+? 2

> 0 , b2 = 2 y

1*) *

*

2 y

+x

x

2x

y

M =

,

x

z 2 x

1

> 0 , b3 =

2 z

N =? L*

2 z )

2

z

? (1

2 2 x) y

+x

Fp

y

z (1

z 2 x)

z (1

y

[ln (R z

v

+x

x

z

+?

2 y( y 2 x)

x

2 x)

*)

y

z

+9

2 z

6(

)+ J

3 ( M 2. , N 2 )

1 J3

]

?= y b 9 =z a

, ? = y +b 9 = z + a

(6.22) 6)

,

(6.21)

.

(6.13) r r Rv = R 2 [ × R]2 = R 2 (1

2

rr ) + ( R) 2 .

(6.23)

(6.14)

z (x x + ? 2 z

y

b2 =

6( (6.19) 01(*K N *7( ,* :

6) 2

N M

#) @ 6( J3 (M2 ,N2 ) *H++ I K 1 ( ( M2 N2 ** ) , ( J (6.17) (6.22) ) 6( * (6.19). R * 6( ( .

y)

,

.

(6.15) (6.16)

6(

(6.13) ( J ) ( ) "q" 1( **() /) Fp x Fx = J 3 ?? == yy +bb , 2 1 ( ) z x

M

,

Fx (6.9) *10

J3 =

Fz (6.11), )

M ( a3

M ( a3

(6.17)

a2

A) N (b3

b2 )

A 2A B a 2 + A) N (b3

b2 )

2A 2A + B

ln

** *M

N

(6.19)

*. Fx Fz *1( ) 1( *. / 7

arctg

N .

:

Z 2 A B a3 + b39 + 9 2

2 A + B a3 + b3> + > 2 + Z + 2 A + B a3 + b3> + > 2

Z+

, (6.24)

6) Fz =

z a

Fp z (1

2 x

9 dJ 3

) z+a

?= y b ? = y +b

,

A = ( a3

(6.18)

B = 2(a3

6) z a

J3 = z +a

(9 M + N )d9 (a 2 + b29 + 9 2 ) a3 + b39 + 9

2

.

L* )*

(6.19)

101

a2 ) 2

102

(a3b2

a 2 b3 )(b3 b2 ) ,

(6.25)

a 2 ) b2 (b3 b2 ) ,

Z ± = A ± [(a3 a 2 ) + 9 (b3 b2 )] . 1*) * 6( ** *M (6.17) *. * (0)* / 1( *7( ,* ' 1* 0. *

(6.26)

(6.22) ( J

(6.27) 1* ) *-

I0

NK / )0NK

*,) ' ) :

Fx = F p arctg

x2

Fz =

, ( J

y

x?

z

x

*' 1 * *

9 (1

z

) J0K0N

x

y

xR+

[

Fp 2 x

1

y

ln

(

y Rv

T . 6.2. &*,) ' 1 * *6* 1( *06* @ *6* * ) *( ) J0K0N , ( J 0N . I0 q1.

? = y b 9 = z +a

x9

2 x)

. -

, (6.28)

(6.28)-(6.30), * , / **() 0 x ** 0NK ( * , 0. * , , ( ) 1 1* 0. ( J ) *,) ' 1 * *6* * ) *( ) J0K0N . I0 r r r Fk = F ( x d ) F ( x + d ), (6.32)

? = y +b 9 = z a

+x

x

y

+?

2 y

+9

y

z

) (6.29)

y

z

ln

(

z Rv

+x

x

z

+?

y

z

+9

2 z

)]

z

? = y b 9 = z +a x

1

? = y +b 9 = z a

Fy =

Fp 1

2 x

[

z

ln(

z

R+ + x

x

z

+?

y

z

+9

2 z

z 2 x

Fx ,

6) (

) (6.30)

y

z

ln

(

y

R+ + x

x

y

+?

2 y

+9

y

z

)]

y

? = y b 9 = z +a x

? = y +b 9 = z a

y

1

2 x

y

z ?9

Fx ,

6) *

6) r r R+ = R 2 [ × R ] 2 =

2 2 xx

+

2 2 y?

+

2 2 z9

+2

x

y x?

+2

x

z x9

+2

* NK *(* 1( *' . *1( ) N (4.17)-(4.19) 1( x * (x - d) (x + d), ** *. 0 ( @( , ( * ) *( a b 7 * . * 1( 0 *< 1, * ) 1*) J *' . I , ( )* q1 */( M@ ,. * ( J ) 0 ( * ) *( , * *(* ) 4 (6.33) Fx = q1 ,

;(6.31)

x, y, z – **() . I . #) @ ( J ) Fy , 1 * 1* *6 Fz , * y z ) . ) 1 ( . ( . 6.1). L( 1( 7 J *(* ) J + *. . *6* . c1, . . 1( @1, ( J (6.28)-(6.30), ( J (4.58), ( 0 N. R * *, . , . * 1( )* J ) J0K , ( J * *(* , ( *' *(* ( 1(* ( H ( . *6* *,) ' , , ( J 1 1( ( K * *, * * 70) ) 6 @7 , 0 *( . ' *) * * H ( ,* N7*' +*( , ( J ) *,) ' * / *J 7 @ 1*0. * 0 (* ( J ' (4.58) 1* H H / . & ( J (6.28)-(6.30) *1 N . 0 *,) ' *) *' 1 ) J0K *. @ * @ * 1 , * *J * 1 @ ( J ) * J)*' 1 1(* 0 (* @ /. & 0. ) 0/ 1 ( @ / *) * / 1 (( . 6.2), ( 1* *J / ( * 2d )(06 * )(06 , 1* 0. * ( J 70) *1 @ 0 *,) ' * 1 * *6* * ) *( . 9 ( 1 , ( )* (-q2) /*) * x 1( x = – d. * @ * H *' 1 ( * )* . I q1 )* @ * x 70) (x + d). *6 . * 1 , ( )* q2 * ) * . I ( * (x - d). L*H * 0, 1* @,0 ( J ) 103

= q2/S – 1 * * @ , ( ) 1 / * ) *( . R * 1( ) *0 * ) *(0, 0 * *(*6* ( * J)0 1 , . @ * @M / ( , (* . )0 , ** *M , 1( (6.33) M (* * 1( 1 (1 ) 0 ( * 1 (Fy = Fz = 0). & ( J H (* . *J * 1* @,* @ 1( *' *(* ) J , ( J / . I 1( * ( * J)0 1 * ) *( 1* ( N /( , ( . * 0 , 0 * */( N , * *,) ' * ) *( . I0 *7/*) * *1( ) @ *6 * (6.32). :

6.2.

* ( ) J , ) J )* @ * x 1 (1 = y = z = 0. & H * 0. ) J 70) 1( * I , *6 * ( J 70) )0NK :

#

/

( J *' . I . * 0. , *6) * ) 0 ( * 1 1* I (0, . . y = z = . I0 70)0 ) ' * @ 7* * ' . L( m , ( ) q1 0 *( . (6.28)-(6.30) *(* 0 , * 0 @N * (2.4),

w = w p arctg 104

&

(1

2

x x + (1

2

2

)ab )(a 2 + b 2 )

,

(6.34)

q1q 2 . mS L* 0. * ) ++ ( I /. & 1 ( * 0. 7 (

6) w p = 4

J

*6(

@ * 0( ( * ( 0N *(* @ + ) J

.

0 *(

+(x0 ) = +0 *J

7 +2

& ( ,0 @ ( J N

w=

6( (*

1* .

** *M

(6.35)

2

2

*)

, 1 M , ( J

( J ) *' 1 * * (

*(* . I , ) . ( . 6.1) )* @ * x: x

+ ab b Rs a a Rs b ( & , + ln + 2 = +02 + 2w p )) xarctg + ln 2 R s + a 2 Rs + b &' xR s * x0 6) R s = x 2 + (a 2 + b 2 ) , +0-

*(* @ .

I

*.

(6.36) *1 ) J . I , 1( * *(* *,) ' *(* 1 ( J * @7 H (* . , , K * *(* . R * 1( 7 J 0. ) 0/ *. . / ** 0 , * 0 0 * . &* *(* 0. *,@ . I0 * *(* @N, 7 , *' . c1 . u=

2

(1

w=

x

2

0,5c12

)

, *6) 0 *(

#) @

6( (* . L( , ) @ * * ( I @ * / 6( I . & ) @ 'M

, 1 M

' *(

(6.37)

L* .

1*) I

(6.38)

,

c12 mS

2 0 ) exp

1 x

- ab(

. *

( ,) N0 *

1 ) . x0

(6.39)

) 1( *) * , x * ) 1 ,* 6* x ** *M (6.39) )* J * 1( @ * 1* *J @ * 0. /x * * @ ) *7*, . 1 x2

.

(6.40)

* (6.39) ** 0NK / *7*, . )* @ * 1 , 1 M ) :

(c12

+02 ) exp

(c12

'

*(* @ ) J -

+02 ) exp

+ 2q1 q 2 ) 1 ) mc12 ) ( x d ) 2 *

1 (x + d) 2

& H / *7*, .

, 105

6(

% " 2q1q 2 5 1 1 5 (6.41) $ ! . 2 mc12 5 x 2 5 x 0 # * ) *( , ( * J)0 1 * *(*6* ( * 2d I ( **() 1* K I ( * ) *( ( . ( . 6.2), *,) ' . I0 *1( ) *6 * (6.32) (6.34). ( ) J * J 1( 7 J ) ) ++ ( I @ * 0 0( N, *6 . * 0 (6.37). & ( ,0 @ 6* ( M *(* @ ) J . @ 1 *1( ) )0NK ( J : I 1( 7 J ) + 2 = c12

2

0( 1(

(6.37) 6( (*

sign ( x) = x

( d 2 + du = 0,5c12 ) x 2 + 2 xu && . dx * dx '

/ 0( (6.34) 70) u absign ( x) du x + 2 xu + 2 w p c12 arctg = 0. dx 1 + u (a 2 + b 2 )

8q1q 2 siqn ( x)

6*

= 1 (1

,

+ 2 = c12

x = x0 .

*

*7*, .

x. @ * 0( . L* 2

(6.36)

& ( J

& )

sign x= x/|x| – , ++ ( I K 1 ( (x0)= 0 /*)

x

6) z = x 2 + a 2 + b 2 . L* * @ 0 , @ 6( ( ) * *J 4 2 2 2 2 2 z - (a +b ) z + a b = ( z-b) ( z+b) ( z-a ) ( z+a) ,

6( (* 1*) *,) '

( )

du + 2 xu + - abu = 0, dx

-=

%5 (2 z (a + b )) dx "5 ab + ab 4 + 2 = +02 + 2w p $ x arctg ! 2 (a + b 2 ) z 2 + a 2 b 2 5 z 5# x x2 + a2 + b2 x0

* 1* J0K '

x2

arctg

6)

. * 0 *

(6.35)

2

u @ 0, 1*H * 0, ( , 6 1 ( *6* 1*( ) , 1* 0.

) 0/ 1( 7 I , . . =

2

d+ 1 d+ = , * (6.34) 1( 6( d t 2 dx @, 1 * ) 6( ab +02 = 2 w p arctg dx. x x2 + a2 + b2

+/c1@0.

@11 ( @.

L( .

106

** *M (6.42), (6.41), *J * / (x-d) (x+d). * * * . ( J (6.36) – , * @ 1( ( K ' )(

+

1 ( x0 + d ) 2

1 ( x0

( & & . 2 & d) '

(6.42) 1* @,* @ 1( , / ' (6.41) (6.42) * ( J *(* . I * -

. @ *' *(* . H * 0 *' 0 K ( , *6) 70) ( ( @ H (6 N ) J . I . (06 * . H / ( J ' *, . * , ** *M ' (6.41) (6.42) )0 *) * *, *J * 1( / 0 * / )* J . I ' *(* , 7* @M ' c1. L( . ) J , * ** *M ( , (* 1 * ) *( , ** *M (6.36) ) / *6( . ' . 0 *(* . I : * *J 7 @ * @ * 7* @M*', * @ * 7* @M 70) *H++ I wp. 1* ) * . 0J *, . * ( J (6.36) )( 1( ( K *(* , * . , ( ) ' * ** *M , * ( ( J / (6.41) (6.42) ) , * @ 1( )7* *J *' +0 I '. & 0 , * . *70 * , * @N (0 *( )* *(* *7 . ) . *' / . ,-, / *, *J * 1( H (6 . / *)* . , 1( ( K )( *(* / 1( ( K H (6 6* ) I . ) * , ( J ' (6.41) (6.42) ) *, . * 1( H ( . * , *) ' 1( ( K )( *(* , * 6* , 1( ( 0. (6.41) + 2 = + 2 +02 = c12 ( 1

2 0

) exp

% 2q1q2 5 1 $ mc12 5 x 2 #

6.3. :#

" 1 5 ! . x0 2 5

L* 1( *7( ,* , 1 M *( *

r r R+ = R 2 [ × R ] 2 =

+

y

z

x

y xy

.

r ) k Rv2

2 z9

+ (1

2 x

I0 , ( )* q1

9 = z+a

)y 2

,

(6.44)

9 =z a

2 2 xx

+

2 2 yy

+

+2

2 2 z9

x

y xy + 2

z x9

x

+2

y

z

y9 ;

r r r r R = i x + j y + k9 ; Q = q2/2a – 1*6* 1 * * @ , ( ) * ( , , q2 – 6* , ( ). , ( J (6.44) ) *, . * ( , ( * ( , a ( 1* *J . I 1* * *M N * ( , 0 *60 , . @ * , @ 1( . I0 1( * J ( * J)0 . L( 7* @M*' ) * ( , H * 0 @M . * ( 0 (6.44) 1( ) 1( a @ 4 *(* . I < 1. & H * 0. , / ( ( * 1( ) , ( J *6* 1(* *) , . @ * 1( M NK ' ( * )* . I , ( J ) 1(* I ' . I0 N ): Fx =

2Qq1

Fy =

Fz =

x

z

(1 2Qq1

2 2 y )x

+2

y xy

x

2 2 x )y

y

z

2Qq1

+ (1

(1

2 2 y )x

(1

2 2 y )x

z

+2

x

y xy

x

x

y

+2

x

+ (1

2 2 x )y

y

y xy + (1

2 2 x )y

,

(6.45)

,

(6.46)

.

(6.47)

& +*( 0 / (6.45) – (6.47), ( J (6.33) 1 * * * ) *( 7 * . * 7* @M 1 , 1( ) @ ' 1 ( /*) 1* 6 1, 1*H * 0 / *J * 1( @ 1( ( , ( * 0K 1( * 0. ( ) @7* @M / *(* / ) J . I , . . < 1. & . *6* ) J (y = z = y = z = 0), *6 * (6.45)–(6.47), ) ' 0 * @ * )* @ * x:

Fx = &H * N

0.

1

) * H * 1( a @ 4. 107

) J0K0N

6)

& /

T . 6.3. &*,) ' , ( J *6* * ( , ) J0K0N , ( J 0N . I0 q1.

'

r r Qq1 R( x x z + y F= 2 2 Rv ( 1 y )x + 2

(6.43)

R , ) . *J *, 0 @ 1( ( * ( , *) ' , ( J *' , ( J *6* 1(* *) . I ', *6) ( * J)0 , . @ * 7* @M ) ( 1(* *) . & ) * 0. 1(* *) *J * *1 @ ) * ( , 1( *' (( . 6.3), ( 1* *J *6* )* @ * z. ) * ( , 2a, I ( **() xyz ( 1* *J 1* ( ) * ( , , * 1*) * *' @ 0 ** *M (6.28)-(6.30), *1 NK *,) ' * 1 * * M ( *' 2b ) *' 2a, 1* 0. ( J ) * * ( , 1( *'.

( J ) :

108

1( 1( 7 2

, . .

*J

7

2Qq1 1

J

7 ,. @ *70 *

.

x I

1(

,

2 x

.

(6.48) *(*

*) '

c1

(

) 0/ *. .

0-

/.

I.

* 1*6( M * @N 1( ) @ *6* 1 ( /*)

) *6

L( *. @ *6* , ( J * ( J

/ *(* / . I > 1 , 1( 7( 6 ) I ' . , 1* 0. , . * 06 * *(* @ ( 1( ) 0 2 = c1/R. & H * 0. *(* @ . I ( *(* *6 * (7.51) ( ) 0 *(7 ( 7 * . * , . . ( *( . I 70) 1( * ' *'. 1* 6 *1 ) J . I , 0. *,) ' H (* 6 / 0 (*' ) (7.47) 0. 6 / ) (7.52) (7.54) *J ( * ( @ 1(*I 0 *( /. I. & * * * @ * H (* . * 0 *( 0 *( , ( J /. I 1(* , *) H ( ,* . 0 * . 7 . * 1* @,0 1* )* @ '( )H (*)* , 1 * ( (07* , 1* I * *( / 1* M * 1( ) )0K 6* 1* )0NK 0. 133 H,

J)0 1 ( H (*) , . 1* I * U1 J)0 . 1(*/*J) *(*6* H (*)

(7.52)

m1c , (7.52), 06 * *(* @, * . * . *' 1* @M 0 . *(* . I 1( )* J 1(* ( H (* 6 *6* *,) ' ( @ 1) ( r . . 1( *' 06*) * 7* @M*' 1( J * H 6 ( @ ( *( N . I . . ( , *(* @ (7.52) 1( ) * ) .& ( J )( * 0( , , 1 M 06 * 0N *(* @ ) J (06* *' ( *( * ) :

2=

L(*/*) ( * ) ' ( , * . I +0, * 1* (7.47), 70)

2q1U m1c12

,

(7.57)

6) U = U1 + U2. *7( ,* , ) , . * ( J ) *(* 0 *( *' . I /*) M@ ( , * @ 1* I * J)0 . @ * . H (*) 0 ( * 1( J , 1(*') * . I '. . n

I 1(*')

n+1 H

(*)

1*

*

1( J

70)

U = .U i , *

*-

i =1

(* @ ( , ** *M (7.47). L*H * 0 ) J 1* 1(*/*J) 7 * . *6* . H (*)* *(* @ . I 1( . c1. & I * (* . I ) J 1* * (0J * 1* )(06*' I . *' ( *' 1*) ) ' 6 * 1 (1 ) 0 ( *' *(* 6r ( 1* *J 1 ( H (*)* , *' 1( J * @N H . L* * (0J * 1*) ) ' ( , * 1* I * * *( / 1(* /*) 0 *( . I . 7 . * I * (* / ) H (*) – )0 , 1( ) NK *7*' ) . ( ,( , *' 1* ) (0 I )( . *' *(*7 *' * *'. d I ( K N 0 ( )0 * 1(*/*) K J)0 . )0 1*) ) * * *. * * 1( J , . *7 * 1(*/*J) K . I 0 *( @. L( + , H * * 0 *( 1( 70) * 0K @ 1( J + = Um cos , 6) Um – 1 0) J . & * I * (* + , 1( J K J) *7*(** . (* * *(* . I 06 * *(* @, *6 * (7.52), 0 @M , 1*H * 0 1( J)* 1* )0NK *7*(* . I , 1 ,) 1* * *M N 1( ) )0K ' + , 1( J . # n *7*(* * . I 1(*')

0

. I *1( ) 134

( *

1( J ( J

n

n

i =1

i =1

U = . u = U m . cos (7.47).

i

.

+ , (

* .

*(* @

, * *7 . *

-

. N 0 *( 1( * ( I @ *' + , > /2, , . N 1( 1**J @ *' < /2. * . 0N *(* @ . I *J * *. * *1( ) @, 1(* *) 1* )* @ ( . 1* J)*6* 1(*/*J) . I ' K .# . @ 0N *(* @ +0 . I *) 0 *( @ . @ 0N + ,0 0 1( J , *J 1* (7.47) ' *(* @ +1 . I 1* 1 (*' K . L* +1 1* *K@N (7.53) *J * ( . @ 06 * 0N *(* @ . . *' . * 1( J 2p I 2 =2 f *1( ) I 2p. L* ( , * + , 1( J *(*' K . L* 2 +1 * 1* *K@N 2 * (7.47) /*) *(* @ 1* *(*' K . L(*)* J ( . ) @M , *J . @ * . 0N *(* @ . I .R . 0)*7 * 1(**) @ R& . , . * H * 1(*I ( ) 0 ( *( 70) ,@ , 1*H * 0 ) 7* *. *6* ( . 1(*I 0 *( I *(* *7/*) * 1* @,* @ *. * ( M 0( (7.50). /(*I * (* , + ,* (* , * . * I * (* , . * N . * 0 0 *( NK 6* 1( J ** , 06 * *' *(* . I . 0. * (7.52) . * 0 *7/*) * , @ : 2p µ q1 H 2 f = = (1 ). (7.58) 2 2 m1c & 0K 0NK / 0 *( / )0 * (* (0 *6* , _P 0 *( . I 1(* /*) * 7 + , . & I * (* + ,* (* , ) * , (7.51), 0 *( . I ( ( ) 0 ( *( . & /(* (* /(*+ ,* (* ) *6*, . *7 *,) @ 6 ( , ( ) 0 ( *( , 1*)) (J N ( ) 0 ( *( 1* * . H *' I @N *7/*) *, ) * , (7.51), (* * *(* . I 0 . @ 6 0N 1( J * @ 1* , * 0 m1c + , (7.59) H = 2 µ q1 Ra (1 )

6) Ra – ( ) 0 0 *( . * *(* @ . I ( , ( ) 0 ( *( , , * 06 * *(* @ . I . *,( @, + , 0 *( NK 6* 1( J 0 @M @ . d *7 ,7 J @ H * /(*+ ,* (* * . * /(* (* K N . * 0 0 *( NK 6* 1( J . ,1 ( . /I . / 0 *( ' , (* I * (* , ( 7* N 10 @ * ( J . & ' * 0 *( 0 *( . I 1(* , *) 1* 1( *' . , * @ 1* I * (07. / H (*) / ()( '+* / (07 /) * * *) *,) H (* 6 * *. * 1* . * . *(* @ *1( ) ( J (7.47), 6) U 1( ) 0 ( 0N ( , * @ 1* I * , 1(*') 0N . I '.

135

7.5.

#

% :

"%!

L( , ( J)0 ) J0K , ( J . I 1(* *) @. L*- ) * 0, 1 ( 1* ( ,0 @ * * . I 1( *,) ' /, ( J / 6 . / 1902 6. &. 0+ * 7 *0 * *, . * * *M , ( ) ) J0K 6* H (*, * 6* *(* , . . , *) ' J)0 ) J0K , ( J *7Q * . * , * 0 * . & ) @ 'M *( * * @ * H * ( * * @ 0 . . I 1( ) J . & 1908 6. .8. 0/ ( ( [86] 1(* 7* *. H 1 ( 1* *,) ' N H (* , ( J 6 . , * *( / 1*) () , * @ * *M , ( ) H (* * 6* *(* . R 1 ( 7 1* 1( , *(* H (*7* @M* ) 1 ,* , * . 1( *(* /, 1( 7 J NK / *(* .R *) * *, *J * @ 1(* ( @ ( , . *( . *7Q . *( 6*, 1* 0. ( ,0 @ M (* * *7 0J) @, * , M@ *) 107 I 1919 6. [74]. 7( *1 N *1 * .8. 0/ ( ( 1(*+ *(* . . b 1*M * [74]. (01 ( ) , ( 1* *J I ( 1 * *6* (06* *6* - 0. 1* *, *J 1( * ) *( (( . 7.2), 10 . * ) *( 1* K J)0 1* N 6 *) *(*) *' 6*' * * ) ( .( ( ,* ) ' " * 1 *,) ' * ) * )*

1( J * @N H , /*) K ' 1 * * * ) *( . ** *(0 1* I )( . *' 1* (/ * ( 1* *J @ +* *1 . 7.2, ). *,@ 0, 0N K @ * ) *( 1(*/*) 6 *7H (* , ) * *( / , * * 1 (* @H ( . * * ) *( 1 (1 ) 0 ( * 0 *,) ' 6 . (* H (* " 1* /*) , * ) *( * , @ 1*) *) *6* M@ 6 * * @ * ( ) '1 * * *( (( . 7.2, ). # 6 +* *6( + . *'

1

, *' 0 ( NN *(* 0 ** *6* * ) *(* I )( 1(* , *) 1*. ( . T . 7.2. / *1 0/ ( ( . – ) )* @ * * ) *( ; 7 – ) ) ( @ * . * ) *( . 1– *. - 0. '; 2 – +* *1 .

H (* 0 ( * ) *( ( . ( . 7.2, ) *,) ' 0 * * ) *( (/, * 6 *' – ,. L*H * 0 , ( 1* *J *6* 136

I ( ( ) * *6* *. 70)0 @ M@ . I ,) **( / 6 H ( . 70)0 0( * M .R ( . r FE ) J0K0N . I0 )* *. * *. * *1 ** *M (6.90). & ** ( J (6.89) 6 1( µ = 1 ) r r z 2 ) H sin , (7.60) FM = q (1 z 6) * @ z 1* ( ' 06* *1( ) ( . 7.2. *6) 0 * * 1 r r I H (* FE = FM 70) qE (1

2

) = q (1

2

) H sin

L* *( *) 0 ( . , , *J 0N . . b 1*M * , 1( ) , . * M )M ' , * ) *( . A ( .( . 7.2, ) H (* * *(*@N + 70) ) 6 @ 1* * *' ( *( )* *1( * * +* *1 *'. ( *( N *J * 1* 0. @, *6 0 @ ( 06* @ ABC 1* I )( . *' 1* (/ * ( ) 0 * R ( *( ) J H (* ( .( . 7.2, ). *6) 6 1* 0, AB 70) @ ( *( ' H (* , ( ) 0 ( , *1( ) ,( 6 *' I (*7 J *' r r FM = FR :

sin

mc 2 q sin

H (1

) *6* *1 (7.62) *J * , 1

** @

(7.61) *

0 * 7( * * - * 1* * * * *M E/H, * 1( = /2 . @M , . . 1* 6*( ,* @ *' * ( . ( . 7.2, ) , * ) *( 70)0 /*) @ . I @M ' *(* @N. 0 @* /2 *(* @ . I 70) 0 . @ 1( 1( 7 J M 06 06 0 = arcsin(E/H) , * ) *( 70)0 /*) @ . I * *(* @N 7 , *', *(* . & * ) *( . I , /*) @ M@ 1*) 6 *,) ' , ) 6 @ 1* * * (06

H , 70)0 * * @ * ( ) ' 1 * 6 *' 1( J * * ) *( ( . ( . 7.2, ) 1*1 ) @ +* *1 0. (* *(* . I *,) ' 0 @M , * 7* @M * = /2 1* 0. . I 1* 6*( ,* @ *' * , . . 1( @M 1( 06 = arcsin(E/H). *6 * . . b 1*M * 0, *(

* * *

T . 7.3. ( (* * ( , / 1 *1

-

* * H *(* ' +* *.8. 0/ ( ( .

*1 * *)

@ * * H 1 ( *( * * @ * arcsin(E/H), )* J )

, ( (

0/ ( ( ) 1( (* 0N ( 0, 1( )0N ( . 7.3. * * * . *( * * N. * , . * ( . *6 * * * , 1( 7 J @ 06 | | = @ *, 1* , * ( . 7.4. T . 7.4. . ' . . b 1*M * , *6 * *( * * @ * , / ( ( * *H (* * ( , / *(*'.

137

= m+ 2 sin 2 / R ,

)H sin

* 0) R =

E = = const . H

2

q (1

0

) (

,

2

R =

sin 2

)

=

mc 2 sin qH (7.61)

A 1

2

1 1

2

.

(7.62)

sin = const, * ( ) -

,

(7.63)

6) mc 2 sin = A = const . (7.64) qH L* ,6 7 ( 06* @ ABC . B 1*1 ) . y +* *1 , * *( 70) * * @ z* ( ) *' 1 * * /*) @ 1*) 06 * r 1( J * H . 7*, . Ax = x, . 0 z *J * ( , @ . ( , R x, 0. @, . * * * *. C 1( ( ( 06* @ *J (

* z.

06 0 , 1*

z=R

*6)

R2

1( *7( ,*

dz = d ,

( J

(7.63) 1* dR

d L(* , *) 0N *

L*

138

1*)

*

x 2 . L(*) ++ ( I (* 1* 0. z dR

R

z d

+

x R

H *

( J

dx . zd

1*

(7.65)

) ++ ( I (*

=

2A (1

d 2 2 d )

=

2 R2 d A d

.

, ) ++ ( I (0 (7.61): d d = . tg d d (7.66) (7.67) ( J (7.65) , 1 M 2 2 zR 2 ctg dz d x dx . = + d A( R z) d R zd

(7.66)

*1( )

(7.67) ) (7.68)

(7.63),

* ( 1(

z=R

R

1* ) @ 1

2

2

( ) 0

@ *' ( *' 1( @ 1. R @ 4, 1*H * 0 ,

R (1 0.5 x 2 / R 2 )

x BR

)0

) * , ( J

zR = x 2 / 2 . L*)

-

, . z 1( 0N . @ (7.68), ( * ( 1* ) @ *' *' 1( 7* @M / *(* / . I + x 2 ctg R d dx (& x 2 ctg d dz x = lim ) + . (7.69) = lim @1 d R @4) d A A R zd R z d &' * ) , 1( ) H *6* ( J @ * . . . dz/d 6 * * ( *', * * 70) 1( 7 J @ 6*( ,* @ *' 1( *' 1*) - ** ( 06 * , 1* , * ( . 7.3. . . b 1*M * ( ( * ( *1 0/ ( ( * * *( * * @ * . *6 * . . b 1*M * 0 [74], 0 * * 1 I 1* *( * * @ * ( J J ** *M (7.61). ( ) 0 ( , * 1* 0. [56] )0NK ( J : C0 , (7.70) R' = 2 1 6) C0 = A = const. # * @) @ *' 1* 0. . . b 1*M *)0NK ) : R2 d dz x 2 ctg x dx . (7.71) = + d A R zd R zd (

L ( '. (7.71), )* @ *, dz/d 70) 1*)/*) @ 6*( 1( R @ 4, . . ( 1( 06 * ( . ( . 7.4). *J * 07 ) @ , . * 1 ( * 6 * ( J (7.71), * *( ' 1( 6 * , *70 * , * @N ( ) 0 2 1 /( 1 (7.60). *7( ,* , ** *M @ 1 *) * ' . 1( 6 ) J0K0N , ( K * 1( 1( 7 J ) * * . ( ,0 @ *(* , . . = 1. # 2 ) ) , H 1 ( @

1/ 1

2

*

.

*

( 7 * . *,* @ *' * 1*) M ' * *J @R *) 7 * . * ( , (7.70) *

M / ( J / (7.63), (6.90) *( * * @ * M ) N ' ( ,0 @ – *,) ' , ( J *6* J 0N . I0 0 @M 1( ( *(* . ( , . N 1( *(* /, 7 , / * @) ( ) 0 ( , (7.63) * (1/ , * * H (* 6 , . # -

)

2 1 1* 0. *( * * @ * ( ,0 @ * @ (7.70) * 1( ( ) 6 1* ,, * . 6 1* , , . I 1( ) J . & *1 0/ ( ( +* *1 * N ). I * *(* @N, 7 , *' *(* , . * 1*, * 0 ) @ ( /*J) J)0 *( ' * * @ * ) ' @ * @N. .8. 0/ ( ( 1(* *) H 1 ( 139

r r 1( ) 0/ 1( / E H [86], 1*H * 0 +* * / N (/ J ( *'. * ) N 1*) * ( 06 , *7( ,0 . . I0. ) * * ) ', ( . 7.4, *6 * *( * * @ * )* J * 1(* /*) @ 1*) 1( 06 , 1( ) + 60(0 ) H 1 . & ( ,0 @ H 1 ( * 0/ ( ( 1908 6. ) N . . I *7( , 0N ( 0N, * (6 ( ,0 @ *( * * @ * .

8

8.1. 97

:

, "

/

L*, ( . * * 1(* /*) * ,. ** ( ) 7 . *6* *J ) J0K / *7Q * 6) ( ' *', * *( ' 1* * , * @ ) J0 * * @ * 6*. * * *1 ( *' I ( @ *' *' 7 # . # * 7 1 ( * I . * *6) 7 N) 7 *0 * *, . * * I , * @ , ,) , ) J , 0N 7 * N 0N 0 ( . , @ 6 1* . *' (* *' ( )*' – H+ (* . L( ) , . * H+ ( )* J ( 1(* ( @ * ) @/ , ,), * H (* 6 * 1(* /*J) , * H (* 6 * *,) ' )* J * ( 1(* ( @ 1* * *M N H * 0 H+ (0. &* . R' M ' ( 7* "L( I 1 * * @ * 6* )* ( *' + , " [77] 1*) *J . XX . 1( ) 6* ( * *7/*) * H+ ( : " *6) *7 (0J * @, . * J)0 01(06 * 7 * *' ( (+ ( I ) +( I * / 0. ' 0K 0 6 07* *6 , @ 0 ( * @, . * )0 ( ( @ * 7 @ * * * *'- * * *7*' ( . *J ( 1(* ( @ 1(* ( , 6) * ( * 0 0 , * . *7 *7Q @ H *, 1( M * @ )*10 @ 0K * * *7 *' 07 I , * . NK ' * * *' ( ; H 0 07I N , H+ (* . /, * . NK / *' 1 * *@N, , 1( (, 6 , /, *(* @ ( 1(* ( 1( 7 , @*( *(* 10 * , * 1( M * @ 1( )1* *J @, . * H / / H+ ( J 6 * * / '. * I, 6 1*, , *6 * * *(*' H+ ( /*) 0 ( J ) / () / , *N *. ( )@ ) @ *7/*) *', . *7 1* @ ( 1(* ( 0 ( H / , 7* 1( 1* *K *) / * @ * 01(06 / *' * *' 140

( *

*, *J * 7 * *7Q @ 6(* ) 0N *(* @ ( 1(* ( / 0. '". )0 1*). ( 0 @ *) 1*, , * *( ' *6) , 7 ,0 * * ( . & 1(* /*) K )* J * @ *7Q . H *' I @N *7/*) * ) 6 @ 6 1* , / * * *7Q @ * (0J NK ' (. L(*)0 ) , *7Q ( , 1* (* * 6 1* , H+ ( . L* * @ 0 # ) J 1( )1* 6 * H+ ( , 0 1* (/ * # , ( 1(* ( @ *1( ) *' *(* @N 1* * *M N H+ (0, )* J @ )(060N *(* @ * * @ *, *' 1* (/ * 1( ) J # , J 1 (1 ) 0 ( * 1( .R 1 ( *( *6 . ' @ * * 1* * *6* *1 * , * ( . ( , * @ *(* *1 * 1*) () * @. *6) 1* @ 1*1 *7Q @ *( . * + , . * *) * 0N *(* @ 1* * *M N H+ (0, 1* * *M N # , * *( ) J H+ ( . 8. . *( I, J , ** 6* )(06 )* , , N 6 1* ,0, . * 1( ) J # H+ ( 1(* /*) ** * 0 @M 1( ) J , ) . 6* *, *J * , ( @ , *(* 1* * *M N # . ) H (* 6 *6* *,) ' 0K * 0( , *1 NK 6* 1* ) 1( ) J , * 1* @,0N H ** *M H (*) . / 1* *K@N ) 0 6 1* , *7* * @ . 1( *7( ,* **() x, * *( *) 1* ) J0K ' , ( )* 1* N 1*) J / , ( )* [53]. L*). ( , . * H 1( *7( ,* N , 0 * : 1* ) J0K / , ( )* *. * * J , 1* * K / . * * * * 1( )* 1* * *(*' 0K * , * *( )* J , @ * ) J . R *0 * *M 7*. * , 1* * @ 0 ) J0K , ( ) *,) N * , * *( ' *,) ' 0 6 , 1*) J , ( ) 6 ) ' 0N . * @ 1* ) J0K / , ( )* )* J * * . @ * 1* 1*) J /. * 6 1* , * ( K ( , (* 1( , * 1*, I ' 1( *7( ,*

x = x' 1

2

(

(

* @

* ( K

( , 6 ) *( 6 1*

(* ) J0K ' , ( )* 1( ) J . L( )1** @, . * )* J * *7 (0J @ ( , . ' ( 1(* ( J0K ' 1* * K ' 1* * *M N H+ (0 ( ) . L*,J 8. . I * , * ) *' 6 1* , , * ) * / , " *J ( @ *7/*) * @ J) ' ( ,, *6) 0 ,* + ", – , . * ( 7* "R (* 6 , ) J0K ' N7*' *(* @N, @M *(* " [33]. & H *' J ( 7* * 1 M : "L* *J K ' 7 * 7 0)* *( @ , 7 *J * 7 * 1* *K@N *1( ) /* * / )*10K ' 1* , @, . * *6 H (* 6 (*6*, . . 7 , *6*- 7* 1( 7( J . M / 1*( ) * , , * ) J ". & H / * /, , / 1904 6., ( J ( + , * / 141

*7K 1( , * *(* 70) ( , @ + , , *: H ( . * 1* ) J0K ' 70) ( J @ J ** *M , H ( . * 1* 1*) J *' .! , 7* @M 70)0 @ 1( . , *7Q NK / *) * ( * 0K * , 7*6* H+ ( *) *' *' J *(* @N * . , * *( ) J *'- * *(* @N 1* * *M N H+ (0. L( ) * . R' M ' , 6* ( 7* [77]: " 10 )*M )* 1* H / 1* ' 10 * , * *7 / * * ' H+ ( , ( 70NK / ) 7 7* 6 07* *6* , ." * . R' M ' , ( ,( M H *' 1(* *( . *' 1(*7 0K * *) * *' *(* H+ ( ) J0K ' , M@ 1( H * , *) , 1( I 1* , (* *( N * * @ * . L ( * . @ * ) ' 1( I 1 "R (*) ) J0K / " [33] 7 +*( 0 (* : " J) ' 0. ) J "1* * K ' " **() *1( ) *' *(* @N + , * * *6*, 10 H * 0. 1* * K ) J0K * ". &1* ) H K * *(*J +*( 0 (* 70) , 7* 1( *': " *(* @ ( 1(* ( , *) ' *) * * / (I @ / / * . " [26]. . R' M ' * 0K 1( I 1 * * @ * 1* *K@N 1( *7( ,* ' 8. . *( I , 1( . * , 1 *) * * 0( H (*) ) ) J0K ' 1* * K ' . H *6* )*1* @ * *) 1( *7( ,* ( . ) ' ' R' M ' )0NK ': 00 0K 0 - *H ( . *,) ' ' * ) *' **() x, y, z *1 0( (3.22) (3.24) r r H, ** * @ * ) J0K ' * *(* @N + ) *(* E **() x', y', z' H J H ( . / *,) ' ' *1 ( * ) 0 * ) J 0( , * ) )(0r r r N 1( *7( ,* E 6 / 0J *(* E ' H '. , ) *6* 0 * r r r H E ' H ', J x, y, z, t x', y', z', t'. R * 1*)/*) * *(*' 1( I 1 *( * * @ * : "# * , 1* * *( , N ** + , . / , , * *6*, * *(*' , ) 0/ **() / , /*) K / * * @ * )(06 )(06 ( * ( * 1* 01 @ * ) J ,H , * * * * " [33]. , 1(* J )0NK I 1*. 6 1* , NK / , / *)* . 1. 8 1* , *7 H+ ( ( ) , * * @ * * *(*' 1(* /*) ) J . 2. R 1 ( ( ' @ * )(.) 1*) (J) N . *6* H+ ( . 3. L( *): ) J * * @ * H+ ( @, *1( ) @, 1( ) J * ( K N . 4. , 6* N ) .# * / , * ) J . L* ( * *( ( J N *,) ' ) J , * ) J . *,) ' ) J0K / J , 1*) J /. 142

, 0 * , * 1* ' 1( ) 1(* ( ( . 6. R 1 ( ( 0+ , 0/ ( ( ) ) J0K0N . I0 0 @M 0 7. & ) 6 *7Q : . I (* . 1 ( . * @ * . @ 6 1* . )0NK / , / *)* , +* * *( / ( , . , 1* 0. 1( *7( ,* **() @ , * (0J NK 6* ( . *(* @ (* @N ( 1(* ( *6* *,) ' , ( I 0K 0N 1( *(* , 7* @M ' , 1( ) @ 0N *(* @. **() @ * * @ ' *7Q –. ( / ( 5.

8.2 %(

:

J ) . (

N 1( *7( ,*@

0N , . * *,) ' *(* . 0 . *-

/ 1( )1* *J ' @ *( * *

@ *-

1( N , ) ' * *J) * *1( *7( ,* **(* , * * 1( ( . N ( ( * 1(* ( *- ( .

*

) J0 * *(* @N + )* @ * x+. & 0. ) J , 1 1 ( ) "+": 1 * * @ , ( )* (x+, y+, z+) **() x+, y+, z+ ( .( . 8.1, ). * ( 0 *,) ' , ( J / ) . ' , ( ), * *( ' 1* * H *' , . . H ( . r , , ) . ', 0N 1( J * @ E . & ) @ 'M ( )) J * *(* @N (-+) * * @ * , ( )* . 0 * * *1 ,H ( . * *,) ' , * @ ** * * @ *' *(* , *) ' 0NK / *7Q * , 1*H * 0 H 0. ( *, . . *,) ' ) J0K ' , ( J / 1 * * @N + *1( ) 0( 7 ( (4.6), * *(* 1(* I * x+ y+ , 1 M : 2 2 2 E +x E+x E+x 1 2 E+x 4 4 + + = + + + , (8.1) 2 2 2 2 2 x+ x+ y+ z+ c1 t+ c12 t + 2

E+y x+2

"

2

+

2

E+y

+

y+2

E+y

1

z +2

c12

2

E+y

4

=

t +2

y+

+.

(8.2)

&

,0 1( *7( ,* ' *( I [41.43,79,87,92,103,127] 1( I 1 * * @ * [71, 93] 1* K * *6* ( 7* . L( H * . * * *) / 6 1* , *) )(06 . * 7(* @ 6 1* , , * *( / * * *( * * @ * , * 0 @ *) *1 *,) ' ' , N. * , . * *,) ' ) J0K / *1( ) . ( , *,-

T . 8.1. / 1*) J *

*,) ' * )

1*) J / , ( J . , ( )* (q1 = 1).

/

( )

) J0K /

( )

)0 *6* . * 1(* I * @ z+ *6 . 1(* I * @ y+, 1*) 1( *) . , ( )* , , * *,) ' * t+ *. x+t = x+ + +t+, y+, z+ ( . ( . 8.1, ) 70) ( * *,) ' N * t+ = 0 *. **() x+, y+, z+, 6) t+ – N7*' * ( ,* ( . L* 1(* , *) 1* ( * 1 ( / 0( ' (8.1) – (8.2) 70)0 ( 0 N: x+ d (8.3) = + = 0. x+ t + t+ dt + , . * 8. . *( I 1* @,* ** *M (8.3) 1( *) 1( *7( ,* ' **() ( [26,32], , / 1* ) 6* . 0. * (8.3) . 1(* , *)

) ' 1*) J / ,1 ( ( * *(*6* , N ** 1( *7( ,* *( I . ) * *,) ' ) J0K / * . * *,) ' 1*) J /. L*-( , * 0 * *1 N . L*H * 0 1( ( , )* * ( / 0( ' +*( @ 1( * , * *( ' *J 1( @ , * H 1( *7( ,* N + , . *6* , . .1 ( ( ' *7Q * , H ** *M . * ( * +*( @ * 1( ( ** *M ', *1 NK / H ( . *,) ' ) J0K / 1*) J / , ( J / . L0 @ , ( ) (( . 8.1, ) *1 1 * * @N , ( ) (x, y, z) 143

= +

t+

( )

2

t+2

2 2

(1

)

E +x

x+ 2

(1

2

)

E +y

x+ 144

2

2

2

+

y+ 2

+

E+x 2

E+y

y+

2

(8.4)

2

= +2

*6) *,) ' ) J0K ' 1(* , *) / 1* ( , *6

,

x+

x+2

.

(8.5) , ( )* (8.1) (8.2) 1* (8.5), 70) *1 @

* (8.4) 2

+

z+ 2

+

E+x 2

E+y

z+

2

=

=

4 x+

4 y+

+ (1

+.

2

),

,

:

(8.6)

(8.7)

& ( J (8.6) (8.7) *1( ) *. , * *( *) * * * * * I ( ) J0K ' , ( )* 0. 1( . *,) ' , *,) H J , ( J 0( 1 (3.15), * *(* ) 2

Ex

x 2

Ey

x

2

2

+

2

y 2

+

Ex 2

Ey

y

2

2

+

Ex

z 2

+

Ey

z

=

2

2

=

4

y

(

(8.7)

(8.9),

2

,

+

, *1( ) -

(8.8)

.

(8.9)

)

1(* I

*7( ,* 7 *1( ) N ( . * H 1(*I (8.12) * ( J N *J * 1* , 1( *7( ,* ',

,

' *70N . , ( -

2

1( *7( ,* q+ =

2

(8.10)

.

(8.11)

.

(8.12)

x+ = x 1

,

2

.

' (8.10) – (8.12) * +dx+dy+dz+

=

(8.13) ,

dx 1

2

1

2

, +dx +dy+dz+

= 1

, ( ): 2

q.

1* *K@N 1( *7( ,* ' /*) , / *J ,( M *,) ' 1*) J / , ( J / 1* 0. @ ( M ) *,) ' * ) J0K / , ( )* * 1*( ) : 1. /*) * 1* H ( . *' 1( J * * ) *' I * ( *' , ( )* *. x, y, z ( . * **() – I ( ) ) Ex (x, y, z), Ey (x, y, z), Ez (x, y, z).

dydz

*(0N

0 1( *7( ,*

',

*7/*)

2

, . ., @q q+ / 1 *J @ 1/ 1 3. # 1 @ * 1* H ( . *' 1( J , ( )* ) 1 ( *' 1( *7( ,* (8.11), (8.12), ) : ) 0

* K 2

-

1

E+y = 1

* '

*(*'

E+x = 1

= q+ .

146

(8.14)

(8.15)

1

2

+ ) q+ Ex ) ) 1 *

2

( x +t+ & , + , y+ , z+ & , 2 & 1 '

0, ( -

* ) J0K ' **

+ ( ) x +t+ & Ey ) + , y+ , z+ & , 2 ) 1 & * '

+ x +t ( ) & + Ez ) + , y+ , z+ & , 2 2 ) 1 & 1 * ' 1( *7( ,* ', *6 * (8.13),

E +z = )

2

.

.

+ ( ) x +t+ & E+x = Ex ) + , y+ , z+ & , 2 ) 1 & * '

, ( ):

145

-

2 2. & * **() x ,) 1 M ( x+t +t+ ) / 1 , 6) +t+ *1( ) I ( ) J0K ' , ( )* , x+t – **() *. **() x+ , y+ , z+ * t+ ( ) @ 'M ) t *10 ). @ x 1( H * 1( 1* *(* , ( )* . *6) * NK H ( . *' 1( J * 70)0 : + x +t ( + x +t ( + x +t ( ) & ) & ) & + + + Ex ) + , y + , z + &, Ey ) + , y + , z + &, Ez ) + , y+ , z + & . 2 2 2 ) 1 & ) 1 & ) 1 & * ' * ' * '

L(

, , *' 1 ( / (8.10) – (8.12) *J ( (4.6) 0( N (3.15), * ( *, . * 0( , 1(*I . &*, *J * @ *' , *, . , *) * . L*H * 0 1( *7( ,* . (8.10) – ) ' @ '/ ( ( / , . @, . * 0( (4.6) *) (3.15) )(06*' *' *

E+x = E x 1 L (

2

q+ =

* @z

E+z = E z / 1

0(

2

/ 1

' (8.13) 1( *7( ,0

)

/*) E+y = E y / 1

*6 . * 1* 0.

=

1( *7( ,*

) J -

0( ' (8.6), (8.7) (8.8), (8.9) *1 *,) ' ) . ' , ( ), /*) K ' *) *' *' J , ( J *' *) * * J ( * . * ( *) * 1 ( ( *,) , 0( (8.6), (8.7) * . N * 0( ' (8.8), (8.9). . * * , . * *,) ' 1( ) J , N . 1*J *1 *,) ' ) J0K ' *1 *,) ' 1*) J *' , * )* J * 0K @, 0 /*) K / (8.6) (8.7), . ( , . , /*) K (8.8) (8.9). , (8.6) (8.8), ) , . * )* *. * ) 0/ , : x+ = x 1

(06

(

,

x 4

N7*' * , ( )* , *

(8.16) : (8.17)

+ ) q+ E+y = E y ) ) 1 *

2

+ ) q+ E+z = Ez ) ) 1 *

)

H

Ex =

2

,

,

x+

+t+

1

2

x+

+t+

1

2

(:'

( & , y+ , z+ & , & '

(8.18)

( & , y+ , z+ & . & '

(8.19)

(0) * 07 ) @ , . * 1* @,0 @ H *)* , *J * , ( . *' 1( J * *. . *6* , ( )

xq (x + y + z ) 2

2

2 3/ 2

yq

, Ey =

(x + y + z ) 2

2

2 3/ 2

1* 0. @ 1(* I / * **() ( J ) J0K 6* *. . *6* , ( ) * *(* @N +: E+x =

{( x {( x

+

E+z =

{( x

+

)( x+

+t+ ) + ( 1 2

+

E+y =

2

(1

+t+ )2 + ( 1 +t+ ) + ( 1 2

2

(8.17),

L ( 1 M (8.27):

*

,

3/ 2

* K '

(x + y 2 + z 2 )3/ 2

(8.20)

}

,

(8.21)

}

.

(8.22)

)( y+ 2 + z+ 2 )

)z+ q+

( J

2

1( J

}

)( y+ 2 + z+ 2 )

) y+ q+ 2

2

(1

t+ )q+ 2

2

(1

)

L( ) )0K 1( *7( ,* 7 1* 0. ) I * ( *' , ( )* . J H ( . , * ( , * ** *M J)0 **() *. , * *( / *,) ' 1*)J *' ) J0K ' /*) *1( ) * ** , 70)0 , @ K * * ( t, * *( ' ( ( H * ** . L*H * 0 * ( t 70) *1( ) @ **() *' )* @ ) J x+ , * *( ' ( ( *,) ' ) J0K ' , J * * t+, . . t = t(t+, x+). , 1 ( H (* 6 1 * * @N H r ( . 1 * * @N * * u. *,) ' 1*) J ' *) r ) J0K ' , ( ), * *. ' , ( ) *1( ) *(* E , r /*) , 6 ) . 1 ( ( – *(* H , * *( 0( ' (3.22), (3.28), (3.19), (3.14). L ( 1 M H 0( r r 4 r E rot H = u+ , (8.23) c c t r r µ H rot E = , (8.24) c t r 4 div E = , (8.25) r (8.26) div H = 0 . r H , 0( ' (8.23), (8.24) 1*&6 .3 4 N. 0. 0( 7 ( (3.26) ) *,) ' ) J0K / , ( )* r 1*) J ' , ( ), N. E –) *,) ' ) J0K 6* 61*) J *7Q . 1 (@ ( * ( *) *1 *,) ' ) J0K ' H (* 6 *' 1* *K@N 1( *7( ,* 1 ( /. L0 @ * ) J * *(* @N + )* @ * x * * @ * 1* * K / , ( J *6* 6 , NK / ) I H ( . *6* 6 *6* , ( )* . &*,) ' H (* 6 *' H 70) *1( ) @ *' J *' 0( ' (8.23) – (8.26), * 1( )(06*' 1 * * * : r r r r (8.27) J = [(u +x +)i + u +y j + u +z k ] .

zq

, Ez =

)( y+ 2 + z+ 2 )

3/ 2

3/ 2

& ( J (8.20) – (8.22) 1( ) N 1(* I H ( . *' 1( J * (4.54), *,) *' ) J0K *. . , ( )* . , *7 1* 0. 1( *7( ,* ' *) ( J ) 1*) J *' I * ( *' , ( )* ( J N) *,) ' / J ) J0K / , ( J / . L( . *,) ' ) J0K / 1*) J / * . N , ( J ) N ( , ( ,0 @ 1( *)/ /J /*) / ) /. 1( (, ) 1 ( *' 1( *7( ,* ' (8.14)-(8.16) ,@ J)0 )0NK : 1*) J , ( )* *,) ' 0 ) . ' 1* * K ' , ( ), * * K ' * I ( ( * / x = a, y = b, z = , *' 1(* I Ex = A, Ey = B, Ez = C, * 1( ) J * 70) *,) ' * @ *' E +x = A, E +y = B / 1 * I

( 0J *6 . ' (8.18).

2

, E +z = C / 1

)(06 / ( * ( J N

2

/: x+ = a 1 1( *7( ,*

) 2

.

' , ( ), *

, y+ = b , z+ = c .

*(*'

H 0

c &%(

8.3.

"

/ 147

148

0 0( E+x 4 + t+ c

', ,

+ (u +x

+ +) =

(8.23.) 1 * * @ * H +z yy

H +y z+

,

@

u

(8.23 )

E +y c

4 c

+ u +y

=

E+z 4 + t+ c

+ u +z

=

t+

c

µ

+

H +z , x+

(8.237)

H +y

H +x , y+

(8.23 )

x+

H +x = t+

E +z + y+

E +y

µ

H +y

c

t+

E +x + z+

E +z , x+

c

µ c

=

E+y

H +z = t+

y+

H +x + x+

y+

E +x , y+

(8.24 )

+

,

(8.25 )

(8.26 )

+ c 1

x+

t+

, y = y+ , z = z+

2 1 @ 1(* , *) : t 1 = + x+ x+ t 1

t x+

E +x 1 + t 1

t+

*

0(

=

x

2

t t+

y+

=

y

+ t

1

2

x

;

+ t t ( & ) ++ ) x+ &' c * t+

z+

z

H +x 1 + t 1

E+x +4 t

+

*J

+ ) E+y y )*

(8.24' ) (8.26' ), 0

µ +

t t )+ + ) c * x+ t+

149

E+y

H +x + x

H +y

2

y

y

z

E +y

E +z + y

E +x + x

2

+ ) H +z y*

=

z

+

E+z 4 = z

+

H +z =0 . z

+ ( E+y & c '

*J t

,

t+

, (8.23'a)

(8.24'a)

+,

(8.25'a)

(8.26'a) , 0( , '. *J

*-

+ + ( E+z & .(8.23''a) ) H +y + c z* '

+/(c ), ) +

t ( &+ x+ &'

E+x x

*J

t t ( & + x+ t+ &'

1

2 o

2

1

+ ) *

+ )1

+

+u+x + + 2 (& . & c2 '

(8.25''a)

+µ/c, )

*J

( H +x & = & t '

(8.26', ) (8.24', ) 0

+µ ( H +z & c '

+ ) E+y z*

+µ/c, ) H +x 1 + t 1

2 o

2

+µ ( + H +y & . ) E+z + y* c ' (8.24''a)

H +x + x

+ ( + ( + ) H +y + )) H +z E+z && + E+y && = 0 . (8.26''a) y )* cµ z c µ ' * ' H 0( ** 0NK 0( #) @ x = +/c. ) 1*) J *' 0. 1(* , * @ / µ , (0) @ *, * ) / . ) = 1; µ = 1. *6) = +/c = x. 150 +

(8.23 ), (8.24 ),(8.25 ), (8.26 )

2

1

H +y

H +z y

+ +) =

H +x = x

( + ( 4 + + H +z && + )) E+z + H +y && = c t c * ' '

+ + ) ) c2 *

:

c

(8.25' ) (8.23' ), 0

;

.

+u+x

E+x + + ) t )* c 2

(8.28)

=

c

+

+ (u +x

@ 0( , 1 N *6 . *. (8.23 ), (8.24 ), (8.25 ) (8.26 ) 1( *7( ,0N 1* @,* J)0 1 ( , * *( )0N , )(06 / 0( ( J ' (8.23' ) (8.25' ), 0 *J + /c, )

*J ;

µ

H +x t

t x+

*J

t=t(t + ,x+ , +) ,

2

E +x 4 + x c

t t+

0( 6

x=

L* / 1*) 1 ( 1 M

µ

(8.247)

*1 N *,) ' ) J0K / * *(*@N + H (* / , . , 1 ) * +. R 0( '* . * 0( ' (8.23), (8.24), (8.25), (8.26), * *( *1 *,) ' 1*) J *' H (* 6 *' , , . * 0( (8.23 ) /*) 6 * * *(* @N +. 0) @ 1( *7( ,* 1 ( /, * *( 1( *) 7 0 0( ') 0. ) J ( ) * +) 0( ) 0. 1* * . L* * @ 0 ,@ J)0 , 1 ( , :

*J * , 1

c

E+x t

(8.24 )

H +z = 0. z+

+

t t+

c

,

E+z 4 = z+ c

+

H +y

z+

+

x+

E+y

E +x + x+

)

H +x z+

L*

)* @ * ( (8.23" ), (8.25" ), (8.24" ), (8.26" ) 0( (8.23), (8.25), (8.24) (8.26), 1 ) ** 0NK / 1(*I ', 1( ) *)0, . * 0( 70)0 *) * , 1* N )0NK ( : t t t t + ++ = 1 o2 ; + =0. (8.29) 2 t+ x+ x+ t+ c

,( M :

0(

(8.29) * *

@ *

,

/ 1(* , *)

t+

t=

2

1 6) (x+ ) – * *, *J , )0NK :

+ C ( x+ );

t=

6( (* *. * @N )* * t=

t+

1* t+,

( + / c 2 )x +

o

*

Ez =

x=

{ | +t + ;

x+

2

1

.

x+

1

t=

1

+u +x + + c

;

Hx = H +x;

H +y +

Hy =

+ )1

+ E +z c ; o

+ E +y c .

H +z

(8.37)

2

1

Hz =

(8.35)

(8.36)

(8.38)

2

1

+ ) *

=

;

c2

o

(8.32)

(+ / c 2 ) x+

t+

1 2

1

o

y z { |. N. 1( *7( ,* 1 ( *' t (8.33) 1( *7( ,* ) * 1* * 1* 1( J * ' 1( *7( ,0N

(8.31) 70)

o

+u +x + + 2

o

2

2

u +z 1

) **() x ( *(* '. L * * @ , ( ) )0NK *7( ,* :

+u+x + + 2 (& ; & c2 '

(8.39)

o

o

u +x

ux =

2

+ H +y c ;

(8.31)

o

C(t+ ) – 1* x+. , * @ t * t+

E +z + 1

+ C (t + ) ,

uz =

+ H +z c ;

E +y

(8.30)

** *M (8.32) *1( ) 1( *7( ,* ( , * *(* *7/*) *, . *7 *1 *,) ' ' 1*) J *' 1( *7( ,* @ *1 *,) ' ) J0K ' . d *7 ' 1( *7( ,* ) * @ /1 ( /, 1*) , . 1(* , *) / (8.30) 0( (8.23" ), (8.25" ), (8.24" ) (8.26" ) ( ** 0NK 0( (8.23), (8.25), (8.24) (8.26). L( H * *1( ) N ) 1( *7( ,* 1 ( /. z

Ex = E +x ,

Ey =

;

c2

2

1

y

1

/, 1* 0. -

.

2

c2 1

o

+u +x + + 2

2

+x+

o

2

u +y 1

1

t t 1 + = = ; 2 x+ t+ 1 o c2 1 (8.30), , 1 M **

6( (0 0(

uy =

=

2

-

-

(8.33)

c2 1

2

0( I *'

+u +x + + 2 ;

(8.34)

o

2

151

E+x ;

Hx = 1

2 o

H +x ;

(8.40)

E y = E+y

R ;

2 o

+ + H +z ; H y = H +y + E vz ; c c + + E+y . E z = E+z + H +y ; H z = H +z c c

-

o

+

Ex = 1

, µ*

c1 = c /

H (

(8.41) (8.42)

1( *7( ,* ' *J * 7 * 7 1( *7( ,* @ µ, * . * ) I , 7 ) (*) 1( = µ = 1, ) ( ) H E 7 ( @ ) 00 1( . * ) I . *6) ** *M J)0 H (* 6 *' ) I *' CGSE *1( ) * @ 7 c,

µ;

0(

H

(*)

/*)

7

c 1,

1( *7( ,* -

/ x, *7 . L*) ) * *( *6 . 1. @ , ( J / 1 * * @N ( 1( ) , ( r )* (x, y, z) *(* @N ) J u (x, y, z), * *,) ' E 1*)J ' ) . ', ( ) *,) ' H 1*) J ' ) . ' 6*1 N 0( H (*) (8.23), (8.24), (8.25) 152

(8.26), * *( 0 * , ( (, * 0 * , , * *– ( – 1 ,, * )0 I ! ( ) ). r 2. H ) J * *(* @N + * * @ * *7Q , r r r * *(* @ ) J0K / , ( )* * ( *' u1( x , y , x ) = u ( x , y , z ) + + *,) '

* J *7Q *1 J 0( H r r * u 1 (x, y, z). (*) , * *( / u , 3. &*,) ' ) J0K ' H (* 6 / *J * *1 @ *' 0( ' (8.23), (8.24), (8.25) (8.26), , /1 ( *6 * 1( *7( ,* (8.33)-(8.38). 4. L( , * *,) ' , *,) * 1*) J *' *' , *J * ( . @ 1* *K@N 1( *7( ,* ' *,) ' * ) J0K ' . 5. L( *7( ,* 1 ( (* , 1( (, ( * ', ( , *(* .). 1* , , )* J * 7 @ , , . *7 *,) ' ) J0K ' , ( J *' *1 @ J 0( ,. * *,) '1*) J *'.

8.4.

"

6) Ax = Ax (x, y, z, t). (8.46) 6( (0N

y

z

+ +

uy c12

t

uz c12

t

= 0,

(8.44)

=0,

(8.45)

*(* ' ) J , ( )* . / , /1 ( /,

(

ux c12

6) * ( M

6( (* (8.47) *J * , 1

,) @ Dx – * 6 . ( M

1* 0.

t

= Ax ,

(8.46)

. ' @, 1

0. ' Ax = const. *6) 0( ** * 2 c = Ax 1 t + C x , (8.47) ux

= Ax x + B x ;

, * x, Cx – , ) *) *6* ** *M c2 = Ax ( x 1 t ) + D x , ux 6( (* , * *( , K * x ) 0( ' (8.44) (8.45) ** c12 t ) + Dy , = Ay ( y uy @

x



* t. (8.48) *-

y. *:

(8.49)

c12 (8.50) t ) + Dz . uz 6 * 07 ) @ , . * ( M (8.48)-(8.50) 1( Ax = kux , Ay = kuy Az = kuz , 1 N ) *) *6* ( J rr = k ( r u c12 t ) + 0 , (8.51) 6) 0 = const. H ( . / ( ( ,0 1 * * @N , ( ) (8.51), * *,) ' ) . ' , ( ) * * @ * *1 0( 7 ( 7 , 1( *' . : r r r r 2 2 2 E E E 1 2E + + = 0. (8.52) x2 y2 z2 c12 t 2 = Az ( z

H H ( . ) J * * @ * ) . *6* , ( ) * *(* @N + )* @ * x, 7* * ) J * *(* @N (-+) * * @*H ( . *' , * *,) ' , ( ) 70) )(06 . 1**K@N 1( *7( ,* ' (8.33) *J 6* ' . L ( 1 M /, )*1* , * ) * ' y z:

x=

(8.43) 153

= Ax ;

* ( *60 7

%

I * ( *' , ( )* 7 * 0K 1 ( /*) * 0( ' 7 ( (8.1) (8.2), *1 NK / *,) ' ) J0K / , ( )* , 0( 1 (8.8) (8.9), *1 NK *,) ' 1*) J / , ( J / . I * ( *' H ( . *' *' 1 ( /*) 0J 70) J)0 0( 7 ( , * . NK 1 * * * * . r E *1 @ , *70 * & H / ) 0/ 0. / 1( J * , , ( ) * *( / *1( ) 1 * * @N H ( , I . * ( , . *1( ) 1( J * @, 0( (8.1) (8.2) 1 * * @ * /*) . ( 7 ( 7 , 1( *' . , * * 0( . 1( . @( 0 N, * *6 * (4.6), 1 * * @ , ( ) *1( ) )0NK 0( : ux (8.43) + = 0, x c12 t

6) ux, uy, uz – * 1* *, *J * 1( N7 / , .

x

154

x+

+t v

1

2

,

t=

t+

(+ / c12 ) x+ 1

2

,

y = y+ ,

z = z+ .

(8.53)

L( *7( ,* ,. ** , 1 ) *(* . ( , ) (*

x+ =

(8.53) * . N * 1( *7( ,* ' ) *(* ( 1(* ( *,) ' 00 . & ( , 1 ( 1 ( :

x + +t

t+ =

, 2

1

t + (+ / c12 ) x

y + = y,

,

2

1

*( I (8.33) ( ) c1 , ) * "+"

z+ = z .

(8.54)

L ( ') * * * 0( (8.52) ) (* 1 ( . ** (8.53), x = x(x+, t+), t = t(x+, t+), * * ) ++ ( I (*1* *J *' +0 I *J 1 ( ' ) ++ ( I (* N 1* (60: x+ t+ x+ t+ = + , = + . (8.55) x x+ x t+ x t x+ t t+ t ++ ( I (0 ( J (8.54) 1*) / (8.55), 1* 0. ** *M J)0 1(* , *) : + ( + ( 1 1 + ) &, )+ & . (8.56) = + 2 = + ) & & 2 2 ) x+ t t x t x c1 + ' + + ' * 1 1 * L* *( * ) ++ ( I (0 (8.56), /*) ** *M J)0 *( 1(* , *) : 1 +) 2 + = +2 2 2 2) 2 1 c x x 1 * + 2

2

t2

=

1 2

1

2

y2

L*

1*) * J *

+ 2 )+ ) *

2

x+ 2

y+

r E+

x+ 2

+

2

r E+

y+ 2

t+ x+ 2

c12

t+ x+

2

; 2

z2

/ +

=

2

c14 +

( &, 2& t+ '

(8.57)

( &, & '

(8.58)

2

t+ 2

L*

1*)

L*)

*

1

2

r E+

z+ 2

c12

t+ 2

(8.63) (8.52) )

** *M

1(

1( J

*

( ˆ x + ˆ y + ˆ z ) / c1 = const r E *) * 1 * * ˆ ˆ x + y + ˆ z = const ± c1t1 . x, . . 1( x 70)

x = x0 ± c1t .

(8.60)

155

)

NK / *

0 *

&

(8.64)

) *, . * 1(

1 * * @ 1 (1 ) 0 ( * 1(* , * @ ' * ( **()

r r L( H * ** *M J)0 E E+ *J 7 @ N7 ' , , K * 1 ( / ) ++ ( I (* . *6 * (8.60), *,) ' r E+ ) J0K ' * *(* @N + , ( J *' ,1 * * @, ( ) * *(*' . * 0. *1( ) ( J (8.51), 70) @ * *. / x+, y+, z+ * ( , K ' 1* ( N *,) ' 1*) J *' ** ( J (8.54).

(8.61)

*

±t

(8.59)

=0.

@ * 0(

ˆ 2 + ˆ 2 + ˆ 2 = 1.

, (8.63)

(8.52) * * 1( *7( ,0

r E+

(8.52) ' * ) ++ ( I [24] ( ,) NK 1 ( r r E = E 0 ( x, y, z )e ± i 2 t .

(8.52) 1* 0. r 22 r E0 ( x , y , z ) + 2 E 0 ( x , y , z ) = 0 . c1 R * 0( 8 @ 6* @I , * *(* , * * 6( . / 0 * ' *J @( , ( M .&. * 0. * * *J @( M r r (8.62) E 0 ( x, y , z ) = E 0 e i k r , r 2 r r r r r r 6) E0 = const; k = n – * * *' *(; n = ˆ i + ˆ j + ˆ k – *( @ c 1 * * , 1( NK * 0 * *(*' * x, y, z ( : r ˆ = cos(n xˆ ); ˆ = cos(n y ); ˆ = cos(n zˆ ) . 0. * (8.61) (8.62) ( M * * *6* 0( , 1 M ) r r E ( x, y, z , t ) = E 0 cos[2 (± t ( ˆ x + ˆ y + ˆ z ) / c1 )] . (8.63)

, . .

z+ 2

* * 0( @( M

2

2

0( 2

+

+

+

2

=

*( / 1(* , *) * * 0( : 2

+ 2+

2

&* *J

0. , "+" 1 * * @ 1* * 1( * x (1( * ) * 1 ( K *7( * 1( 1 * * @ , N 1 * *' * 1 * *' * . 1 ( *) * 0 ( 2 , r *,) ' E 70) *) * ( * / 156

(8.65) N7*' *

t1

(8.66) ˆ =1

ˆ = ˆ=0, * (8.67)

*' 1( J * E1 ( K *(* @N c1 .L( , "-" 1 * * @ (*7( * ). 0N ) J0K0N*', ( J (8.63) – 0( * , (8.63) )0 , . * *) * ( * 1 * * /, * * K / )(06 * )(06

x = F = 2 c1 / 2 , 6) F – ) &+

* (*

. *' *.

** r r E = E0 cos2 (±t

(8.63)

(8.68) 1( J

* @

Ao Aro A r r r cos 2 (t ± ) , E = cos 2 (t ± ) , E G = Go cos 2 (t ± ) . r c1 r r c1 c1 ,

(8.69)

x / c1 )

* ( 1( ) / (-E0 ) 7 E 7 E0 1 ( *)* ~ = 2 /2. L( . @ ' * (t = 0 ) , . E = E0 cos 0 , 6) 0 = – 2.x/c1 N . @ *' + ,*' * . ) ,+ , * 1* * x , -

, H * ,

Er =

( @M *)

)

* *

. * 1 * / * 1( J r * I ( **() . ( * J)0 *. , * *' + , .

. )0 * @, . * /* 0( (8.63) , N 0( * 6* *( , . * * ( 1(* ( N , , 6* H * )0 . ) , . *, * t =0 * / *. / 1(* ( 0K 0 *,) ' r E . * H * *,) ' , 1* 6 ( * . * 0 , * 0 ( , / )0 , (8.69), , * **() x. & * + , / , * *( , 0. 1 ( ( c1 1( ) *(* @ ( 1(* ( + , . L*H * 0 *, . * , * *' * * ) J *6*- * K 07 I , 1*)*7 *6* * *) . R (* 6 * – H * 1 ( * *,) ' J)*' * ) *' * ( ( *6* *. , * *(* 70) 1 @ 1* K * )(06* , ( J * 6 . * *. L * * (8.63) *) , *, *J / ( M ' * * *6* 0( (8.52). 1( ( /*(*M* ) * *7 * *' * * *6* 1(*I . &*, *J )(06 ( M * * *6* 0( . / 6* 1* 0. N , ( J (8.52) I )( . / + ( . / **() / [24]. 1( (, + ( . / **() / 0( 1( ) r r 2 + 2 E( E 2 1 ) &. (8.70) r = c1 2 r )* r &' t2 r r r L( , E = A / r * * 1( *7( ,0 *) * ( * 1* 1(* ( *' **() r r r 2 2 A A 2 = c1 , (8.71) t2 r2 ( M * *(*6* A = Acos 2 (t ± r 6) A0 – *

#) @ (8.72) 1* 0.

r *( E ( M

r A

( J ) + ( .

r ) , c1

+ ( . / **() / * :

(8.72)

/.

0. *

8.5. "

(

/

* @0 @M * F H * * *( / 1( J

(8.73) 0 . 0. 70) * @ /*-

977

*, *J ( M * * *6* 0( . R (**,) N ( , 1* *7 , 1( ( 1( 7 (* , 1 / * ) *( . L * ) *( *) N *' , *' 1* (/ * @N *7( ,* 6 ( (0N ( ) * * . * *(* * *7( ,0N , 0. @M 6* ( ,( .R (* 6 * ) *' * F = 0,3 – 0,8 N * *,) N ( ,0 @ , , ( ) 1( ) / ( , (* *. !*( H / * * . * 1 * / (8.63) + ( . / (8.73). & * ( * 0. *. * ( J ) * *J 7 @ 1* 0. * ( ,0 @ ( M 0( 7 ( (4.6), 1( , ) , * , r *(* ) J , ( )* u (t) , . @ / , . ' 1( J * r r E (x,y,z) *(* , E / t = f ( x, y, z ) . r E, *,) * 1 ( *' H ( . *' *' (x,y,z,t) *,) ' ( 1(* ( @ * 1(* ( *) * *' *(* @N c1, 7* @M / ( * / rs * H ( . *' 70) @ *' 1 ( ) ' +(* ) + ( . *' 1* (/ * . L*H * 0 ,) @ *60 7 @ 1* @,* ( M (8.73) ) + ( . *' * . /( * / * rs + ( . 1* (/ * @ 1( . * . * 1 * * , )* @ *, * 0. *J 7 @ 1* @,* * ( M (8.63) ) 1 * *' * . & M ( ( ( M * * *6* 0( ) *,) ' (x,y,z,t). ') *,) ' 1*) J *' H ( . *' ) J0K ' * * @ * 1( 1( * * *(* @N +. * ( H * *,) ' 1( ( ( M ) 1 * / * (8.63) *)* 1( *7( ,* '. L*) (8.63) , (8.53) , 1 H ( . 0N 1( J * @ ) * "+", 1* 0. )0NK ( J : % 2 2 " r r + z+ ˆ 1 x+ ( ˆ + ) + y + ˆ 1 5 1+ ˆ 5 E+ = Eo+ cos$ 2 ± t+ !. 2 ˆ ( 1 ) + c 1 5# 1 5 6

* ( * , ( )

(8.74) 157

158

& )

*7*, .

: 2+ = 2

1+ ˆ 2

1

ˆ+ =

(8.75)

2

1 1+ ˆ

2

,

(8.76)

ˆ ,

(8.77)

@ , . * ˆ +2 + ˆ +2 + ˆ +2 = 1 , . . ˆ + , ˆ + , ˆ + 1( )

(0) * 07 ) 7*' 1( NK * 0 *( 1 * * . *6) 0( 1 * *' * (8.74), * *(* ( J *,) ' *. K ' * * @ * 6* 1( ,, 1 M ) r r E+ ( x+ , y+ , z + , t + ) = Eo+ cos 2 + [±t + ( ˆ + x+ + ˆ+ y+ + ˆ+ z + ) / c1 ] ,

(8.78) N

*-

) ) J0-

,

.

.

* ( ˆ = 1 .

1( * 7 * 0

2 , ˆ + = 1, ˆ + = ˆ+ = 0 .

J *(*

*(* *.

. 7

. * * . *

, 0. .R * ,

(8.82)

0 N. 0 ( *' 1(

*6

2+ = 2 / 1

#) @ I (

, * @ * 0 *(* 1 * 1(

) /1 + 2 ,

c1 ( , 1 (1 )

. ( . 8.2, ) ˆ = ˆ = 0, ˆ = 1

(

(8.81)

7 N) *. , * 1( / * . L( 1( 7 J * . * . & 0. 0) *. @M :

2 + = (1 1( 7 L(

ˆ.

2

1 )

ˆ+ 1+ ˆ

ˆ = 1 + 1+ ˆ ˆ+ =

,

1+

2+ =

N

1(

* (8.75) – (8.76) 2

; ˆ+ = 1

0

. N 1*1 ( .

2

ˆ .

(8.83) 1( 7 J + c1 H++ * *1 ( .

(8.79)

6)

*(* @ + 1* *J @ 1( 7 J 1( *. . L( 70) * 1( @ *,) ' J ) 1 * *' * , * )(0ˆ + , ˆ + , ˆ + 70)0 ( , . @* * * *' 1 * * 6*' . * 2+ 06 .& ( J (8.75) *1 , ' H++ *1 ( , ** *M r )0 (8.76) – (8.78) – 7 (( I . & . *,) ' Eo+ , , 1( *7( ,* ' (8.14) – (8.16) (8.17) – (8.19), 0. * 1( *7( ,* ' , ( ) 70) , @ )0NK *7( ,* : Eoy Eoz , Eovz = Eovx = Eox , Eovy = , (8.80) 2 2 1 1 . . * 70) 0 @ 1*1 ( ) J 1( . & ( 0( [44] , 1*1 H 1 ( @ *' 1(* ( H++ *1 ( (8.75). ) * H * *1(* )* / 1*( 7 *( . * 1 : )* ) ( , / +*( 0 , * *( , / ) N , * 1(* *1* *J ( ,0 @ . 1( ( ** *M ' ) 1 * *' * ( * ( *,) ' ) J0K 6* *. + ( . / * 1*) J ' 1( (( . 8.2). 0J * . * @, 7* @M / ( * /* *. *J * * 1* @,* @ ( ,0 @ ) 1 * *' * . L( *(* *. , ˆ *6 * (8.75) – 1( *' 1( ( . ( . 8.2, ), ˆ = 1; = ˆ = 0 (8.78)

T . 8.2. &*,) ' ) J0K 6* *. –) J 1( ; –) J –) J 1*) 06 * 1( 0. ˆ 0 @M 0 . +

r n+

*

* * &

6* (* @N **

y0 . , . . * ( . * * 0. ) J *. . ( , 06* J)0

*.

*(* , (*

( , '

( . ( . 8.2, ). (8.75) – (8.78) , 1 M

2+ = 2

1 + cos

160

= arccos ˆ + = arccos

' 1( 0;

, * 06* * ) J0K '

1 ( ( , 0. , (* 1( ˆ ˆ = cos , = sin ,

1 +

159

, 0. S 1*) J 1 (1 ) 0 ( * 1(

,

R.

*( *. ) J0K *ˆ = 0, *

(8.84)

2

+ cos 1 + cos

.

(8.85)

J0K 6* *. *(( . 8.2, 1* , 06 7 N) + ) 7 N) 1* (/ * , 0. 1( ) 0/ 1* *J / 1( n+ : R R`. 1( 7 J + c1 *( @ 7 N) *6* , 0. n+ * ) * ( .

8.6 & %

* 7 ( 1(* ( * , 0 , * 1(

, * .

fs =

a

a

=

F a +s K 1( ( .( . 8.3, ) ) J * * @ * ( ) , * * 1( 7 J , 0 0, . . *(* @ , 0 * * @ * 1(

: &%(

, 0( 7 ( * * *6* 0( 1* 0. ( M ) *,) ' , * *( , * c1 . * *(* @N c1 1 ( K 1* 1(* ( 0 + , * . 1(* ,*')0 , *,) ' 0NK 6* , * * 70)0 ( 1(* ( @ * *(* @N c1 . L*H * 0 , N *(* @N ( 1(* ( H (* 6 *6* *,) ' . & . c1 , * ) H ( . *' 6 *' µ 1(* I * ' ( ) J)0 , *) ' 0NK . J)0 N ( , ( ) , * J)*' , / 70) *(* @ ( 1(* ( , *1( ) *' µ. L( ) J 1( *. , *) ' J)0 , * @ * * / * * @ *' *(* , 1*H * 0 H (* 6 * * . N * 0 . / * *) . *. 0 . / * , 1( ( 60)* 1*) J *6* * * * , . S (( . 8.3, ) * ( t ,) , 0 * * 7 . * *' f, * *( ( 1(*( N 1*) J * *,)0/ * *(* @N a = 340 / . d ( , t = l/a , 0 )* 6 1( R , H * ( 70) ,) * n = f t * 7 '. * J)0 , . .) * , F = l/n = a/f . H * 7 ( 1(* ( N * *(* @N a, * 1( * 70)0 1* 01 @ . * *' fR= a/F = f. T . 8.3. 1(* ( * *(*' *. S) J R * *(* @N +R

+S ) t/n = (a – +S )/f. * * @ * 1( 70)

0

. / * ( ) , * *(* @N +S, 1( 1( 7 J .

* * * S 7 J 1( * * *(* @N +R ( . ( . 8.3,7), * ,) 60)* * 7 , ( 1(* ( @ * *(* @N a ( ) , 70)0 J 0 M 1( * . ( , t = l/a. L*). ( , . * *(* @ , 0 , @, * ( 1(* ( ( ) * ) J *. , . # ( t *. *,) n = tf * 7 ', 1(*') ( * +s t , ' 1* *J S '. *7( ,* * 7 ( 1( ) ) l – +S t = (a – +S) t. *6) ( * J)0 F = (a – 161

N

* *(* @N a *6* 1( * ,

f .

(8.86) *. 0 * *(* @N +R ( .0 ( 1(* ( NK 0 *

a R = a + +R .

# 0 )* 6 1( *,) nR = tR f * 7 R ’. * 7 ( 1* *J 70)

, ( ', 1(*') )

(8.87)

tR = l/(a + +R ), , ( * +S tR l – (+S + +R ) tR

( tR *. , ' 1* *J ( * J)0

F R = [l (+ s + + R ) t R ] /( t R f ) , . . F R=

) 1(

* *6* , 0

* 1(

N

a +s . f

*

fR =

aR

FR

*(* @N aR , 1*H * 0 . =

a + +R a +s

R ** *M 1( ) 1( ) J ) J *,) NK 6* * *( 7 *,) ' 0. & ** (8.89) *,) ' * *( 7 +S *(* *) +R . T . 8.4. J)0 * * * R.

1(* ( H @ * ) J0K

(*

6 *.

(8.88)

f .

* (8.89)

*) , 1( ( 1( / ) J0K0N *)*) 0 , * *(*

/ * 7 ' * S 1(

-

&, *) ' H (* 6 / *7Q * , * @ ** /* * @ *' *(* . *7Q 1*) J * * @ * )(06 )(06 , * H (*6 * ( 1(* ( N J)0 * *(* * * *6*, ) J0 *7Q * * @ * ( ) @ 0N H 1 ( , , * *( / )0 0( &*-1 ( /: 6 *) R 1(* *) * @ * 1( ) J ; *- *( /, ) J0K ' , ( ) H * ) ' 6 , * *(* , * /* * @ *' ) ' H (* 6 / *7Q * , 1( ( 0M , * *6*, . * ) J , . * 1* * . * *1( ) @ *' *(* @N. 162

*

@N c1 , 7H * ) 7 ( (3.28). /* * @ * 0 *,) *,*(* . &, *6 * , /* * -

.

H / 1*, I ' ( * ( ( 1(* ( J)0 ) J0K *. * 1( * . 0) . @, . * * * @ * ( * l J)0 *. * S 1( * RH (* 6 * *,) ' 1(*/*) * *(* @N c+ , * *( , * *(* + /* * @ *6* ) J (( . 8.4). *6) ( ( 1(* ( * t = l/c+ . # H * ( *. *,) * . * * 7 ' n = f t = f l/c+ , ( * J)0 *. * 1( * l – + t. H * ( * ( 1* *J n * 7 ', 1*H * 0 ( * J)0 , * @) * , 70) F = (l + t ) / n = (l + t )c+ /( f l ) = (1 + )c+ / f , 6) (8.90) + = + / c+ .

* 7 * * * 70)0 1(*/*) @ * . * *'

@ * ( * *(* @N c+ , * 1( f+ =

c+

F

=

J)0 *. * 70) * 1(

f 1

.

(8.91)

&H * ( J , *(* @ 0N *(* @ +. , 0( 'H (*) . 0N . * 0 * 7 ', * 1( 0N 1( 0) . * * 7 ' 1( 7 J *. , 1 M 1+ 2

1

c+ , * *( /*) 1( 1* 0. I * ) (8.84), * = 0 1( 1(

.

(1 + ) 1+

1

,

7 ', * 1( . N. , ) *' *(* NK 1(

/ / ( 1(*) *'

(8.93)

2

6) c+ = c+ / c1 .

1( . L( * 7 8.5. L( = 1/ 2 .

(8.94)

& 0. 0) NK / 1( *. < 0. L( @ 0 1( ) ( J (8.93) ) ) J *. * *c+ = 1 , . . 1( * 0 = @ * 1( ( 1(* ( *7 . *' *(* @N c1. L( 1 *(* @ c+ = 1, . . 0. ) J 1( *. * **' *(* @N +(* * 7 ') J * * ) J0K *7Q 163

* 1( H * 7 (/ * *' *(* > 1, )* 6 N 1( .# = 0.6 0.8 c+ = 1.2. 7* @M

, *6) *. 1*( , . . . c+ * @ (8.93) 1( ) @ * , . /*)

*(* @ ( 1(* (

* ( . 1(

J)0 ) J0K -

*7Q c+ max = 0,5( 2 + 1) = 1,207 . L( / *(* / . *' 2 , (8.93) *J * 1( 7( .@, *6) 1* 0. c+ = 1 + . (8.95) R * ( ,0 @ * 1 ) * 0. ) J *. 1( * 7 ' ( ) . ** *M (8.95) ) @ 0 , . * 1( / *(* / *(* @ ) * * @ *' *(* @N + 7 J *. 1( . , * 0) N )(06 * )(06 . )0 , 6( + ( . 8.5, H * *' * 1( ) * 1( < 0.3, 1( 7 J * *J * 1* @,* @ )* b < 0.6. L( 7* @M / *(* / *7/*) * 0. @ *. 0N , * @ (8.93) ) *(* ( 1(* ( H (* 6 / * 7 '. L( 0) *. * 1( ( < 0), *(* @ J)0 @M c1. L( 0) * T . 8.5. L( ) *(* @ J)0 , c+ = c+ /c1 ) J0K 1( ) *' @ * *(* @N )(06 * * )(06 .

(8.92)

& ( J (8.91) (8.92) *1( ) N . * 0 * 1( * , * *( ( . ( , *) . 0 f+, 1* 0. )0NK ( J ) 1( ( H (* 6 / * J)0 7 J *. * 1( * : *(* @N c+ =

@ /

+

)

f+ = f

1(

*

* *' *(* @N *(* @ ( 1(* ( J)0 *. * 1( * * ( *' 0 N. R * ( ,0 @ J * , . ) * * *6 . *6 * 6 1* , "7* @M*6* ,( ") 6 0) N * * *(* @N 7 , *' *(* . *(* @ ( 1(* ( * / c+ *J 7 @ *. @ *', 1*H * 0 ( , *7/*) * ) ( 1(* ( tR = L/c+, 6) L – ( * )* 6 ,* , , . @ * 7* @M ( , 1(*M )M 6* * " ,( " tS = L/c. * @ ) 6 0, * *(*' K 7 *. R * 1(* *( . (@ , 1 6 1* , "7* @M*6* ,( ". )0 * @, . * ) . c+ *7 . *' *(* @N @, ) @ * *(* ) J . , ( * J)0 * * @ * ) J0K *. * 1( * 1(* J0 * ( J)0 *,) * 7 ' / 1( /*)* ( .( . 8.4). L( H * ( * l( ( * , 0. 164

* 7 '. R . / ( ( ,0 ( ( 1(* ( *,) ' J)0 ) 0 . J)0 . *' c+ *(* @N , 0 a, *(*@N ( 1(* ( * *) , @, 1(* *) @ *6 N. & 1* )/ 0. / K ( ) ,) J * *(*' *J * 7 N) @ , ( @ * * @ * * *(*' *J * + (* @ ) J . & 0. H (* 6 *6* , *) ' *' ( ) (* *7 (0J ). )* @ *, @, . 0 c+ * 1( @ *(* @ /- * ( @ / *7Q * . L( / *(* / ) J *. * * @ * 1( ** (8.95) / *(* @ 6 * ( . ) * *(* @N ( 1(* ( H (* 6 / * 7 '. L( 7 J *. 1( * * *(* @N +, J)0 ( 1(* ( * *(*@N c1 + +, 1( 0) )* 6 1( * *(* @N c1 – +. R * 1*) (J) 1( 7 N) , y1 (* 10 * ( , / *. *(7 # - 1( 0) # * y1 ( 1( 7 J 0. 6*) ( ( , * 7 N) / ( , * (** + ( 1676 6*)0 *1( ) *(* @ [47,48]. & 1969 . * [122] *7( *, . * 1( ,* ) (* & ( , *(* @ ( ) * * ) * *(* @N & ( * * @ *# . &H 1 ( / ' @ * [4] )(06 / )* ' 1( *. ) 6 @ )(06 * * @ * )(06 )(06 , 1*H * 0 *6 7 @ *7 (0J ( , I *(* . ) , 1( I 1 1* * *(* 1( * * @ * ) J 1( *. , 1* *J ' * * 0 *( * * @ * , * * @ .

8.7.

/

: #

R * 1( I 1 *) , * * ' *( * * @ * . 0K 0N ( , 6* *1( ) ( , 1* [71]. 1( ( 1( ) +*( 0 (* , 1* @,* 0. ( , *' *( I ) 0 1* *( * * @ * . &. . ( 1( *1( ) [48] , 6 ) 7 (6 " 1 ": "& 1(*I 1( (*) 1(* N *) * * N7*' (I @ *' * . ". (I @ * . – H * , * *( ) J 1* (I , . . 7 , 0 *( . . . b 6 [73] . , . * 7* ( * *1( ) 1( I 1 * * @ * ) * 0. 7 [26]: "... , * 1( (*) *) * * / (I @ / / * . ". & *(* *1( ) )*10 *) ** @ 1(*I * ( , / /, * ) ( 7* , * , *1 NK H 1(*I . )* J 7 @ *) * . 1* , , * H * 1* *J 1* @,* * *( * * @ * . . NK *,) ' J)0 * * @ * ) J0K 1* * K *1 *) * ( J . L( ) , ,) @ * (M * /*) 165

* 1( I 1 * * @ * , ( * ( , *) ' 0 ( (I @ *' , J)0 ( , . * ( ( , +*( 0 (* 1( I 1 * * @ * 0 @ , N. * ,. * ( * ( * 1( * ' * ) J )* J * 1( *) @ - 7* , 0 ( . . *' N( I ' 1( I 1 N 0) 01 1* ,) , ) J0K , *' *(* @N. * / , ( , * 6 ( . , * 7J 1(* I H ( * ) H ( . *6* *,) ' , * *J * *6 @ *' +*( 0 (* *' 1( I 1 * * @ * , *1 @, *1( ) @: ) J N 1* *. * *6) * ) * (0J NK 1( ) , *6) *,@ 01 1(*/*) *,)0M ' 1* * , *6*- * *. ( ) * * 1( N N , *6) 01 /*) , ( ) * , *60K , *) ' * @ , ( ) * , /*) K , , * 1* J)* 0 , H / ' *J * *1( ) @ ) J 7 N) , . 0 *(* 1( . , 1( ) +*( 0 (* 1( I 1 * * @ * 1( )) ( @ / , * *( , *) ' 0 )(06*' ,* * @ * * *(*' * ) J . ,0 * * 0 , *) ' * . 1( I 1 * * @ * , 7* 1*) ) J0K ' 70) J , 1* * K ' , / )(06 / *,) ' ' . L( H * *7/*) * , @, . * 1( I 1 * * @ * 70) 1* @ ) 0 *( *' ( @ / , ,* (* *' * M / *,) ' '. 1( (, *7*) * 1 ) NK + 10 , 1 .). ) J 1(* /*) , 7 * 1* * @, 6( I * / *,) ' ' * , * @. & H * 0. ,* I * 6( I * *6* 1* , N. * , . * 1( *7( *(* @ * 6* *) * * , ( ) J ' *7Q * * * @ * )(06 )(06 . L( I 1 * * @ * * @ * *( . ' ( . 1* 1( ( ,( 7* *1 , *) ' ' 1* *K@N . *6) *,*1(* 1* ( , * *7 * ) J , *) ' . 1( (, 7 ) 7 , * , ' , * (I , . . 1 ( ' , * / . *6 * 0 , * *( ) ' 0N , */( N 1* *' 1( * ' * ( * ( * ) J . (06 * , 1* ) 70) @ ( , . ', 1* * *( *J * *1( ) @ / ) J . L*- ) * 0, R. / 1 ( *7( *, . * *6 M , * 1( I 1 N * M@ 0 M / *1( ) '. , 1* 1* *)0 1 ( *6* *(*6* , * * / , ) / . @N ** 6* (0) " . . 0( @ *' + * *+ ", R. / , )0NK [36]: " (0) * , @, . * 1 ( ' *(*' , * ) 0J 1( ) )0K / *1( ) / . *6 *H *1( ) , 7 , 0 *( , , )* @ *, @ * @ * 1* *' 1( * 166

' * ( * ( * ) J . 1( ) *7*' * (M * 0J 0N * *6 N, 1* *6* 0 *( *1( ) *, ( , K ( , , @, . * , ) J 1(*1*(I * @ * ". &*, ( 1( I 10 * * @ * . L* M 6* *1( ) *,) ' ( . 6 . 2) 0 *( *1( ) *) *' , ( *,) ' *, 1(*7 , * *( ( 7* 7 1( 1( I 1 * * @ * . , 6* *: ) J0 ( * ( * 1( * ' * / * , *,) ' , * * 70)0 7 , 70) * / *,) ' * , , . . 1* *) * 0 1* ) N , 7 , , )(06 , *J , @ ) J0 * 1* * . M , ) . , N. *,) ' ' ( ( * * / 0. , 1* 1*). 1( I 10 * * @ *)(06 1( I 1 .

A

9 & %

!

"#

9.1.

"#

" "

; * ( *,) ' 1( 6 NK 6* I 6* 1* ( ) 0 0 . I0, NK0N *(* @ +0 . 0 ( ) 0 , 1( * *(* . I * *( ( . , *) ' 1* . * 0, * 0 *(* +@0, 2µ 1 R0 = . 2

( 0) NK0N * ( ) 0 R0 . 1( ) * 1( 6 NK 6* I *6 * (4.83) 1( R@4 (9.1)

+0

* R 0. ,

,

*) ' *(* @ . N 6( I *

*, *J *, I +0 ( :

Rg =

( ) 0 1( *(*

2µ 1

6 NK 6* I ( Rc < , * ( ) 0 (9.1)

. c12 d I * * *' *(* @N ( ) 0 /( / 7* @M / Rg * *( * 1( 6 NK 6* I ( , . I , /*) K R0 < Rg , . *7 ( @ *7/*) * @ (/ * 0N *(* @. *6 * (4.83) @ ' ( ) 0 , * *( ' . I * * *' *(* @N *60 @ * 1( 6 NK 6* I ( 1( +r(Rmax ) = 0, 70) Rg . Rmax = R g / R0 1

(9.2) 0 * *0) (9.3) 167

d 6

I )* 6 N Rmax 1( 0 *' *(* , , *, ( K N 1( NK 0 I (0 1 ) N 6*. & ( / 1( ) * @, . * * * , . I, * *( 6* ) ' 0 J , *7 . * . L*H * 0 1( I , 0) NK 1* (/ * , ( ) 0 , ,) Rc < Rg . *60 ' , + ( ( ) 0 * Rmax , , ,) ( * / 7* @M / Rmax * 70) 7 N) *'. * @ 7* *) * 70) 6 ) @ ". ( *' ) (*'". ( * ( . *( ) @ * ) J . L( *(7 @ * ) J . I . * * h 6( I * ' ( ) 0 Rg 1( )( ) 0 1 ( I ( 1 ( 7* . *' ( *( . *11 = – 0.5 ( ). * @ * *(* @ *(*' * . *' *( ) 1 (* @N H * ( ) 0 . )* @ *, 1( N7* ) J . I * * *' *(* @N ( ) 0 / R < Rg * *J * *( @ * 1( I * ' 6 NK 6* I ( . L* 1*) * , . µ1 (9.2) 6( ( ) 0 *6 * (4.64) 1( 6( I * * *,) ' 1( ) 2G(m1 + m2 ) , (9.4) R gg = c12 *6 * (107) 1( H ( . * : 2q1 q 2 (m1 + m2 ) . (9.5) R ge = c12 m1m2 ( ( *1(* * ". ( *' ) ( " * * . *6* , *) ' . L( *,) ' 0. * * . *' *(* 6* ( 1(*( , 1* *6 (4.58), 6* 70) *1( ) @ , * * r 2 r G m1m2 (1 )R (9.6) F= r r 2 3/ 2 . 2 R12 [ × R12 ]

{

&) * 0. ( * 1* , , 1( 6 NK 6* I H * , *) ' 0') 7 * . *

}

. I , NK *(* @ , 0J *) *) J 7 , , *(* . L*H * 0 * 0') * ( 7 * . * @ *' J *(* @N . L( , *6 * (4.80), 1( . @ *' *(* +0 , . I @, . @ '( ) 0 Rg 2µ 1 . (9.7) R0 = = 2 2 2 c1 ln(1 0 ) ln(1 0) L( / 0 +*( 0 (9.6) * 1 ) (9.1). ) * 1( 7 J * . @ *' *(* *(* ( 0@1) ( ) 0 R0@ 0, . . . I 1* (/ * N7*6* ( ) 0 70)0 0/*) @ * 1( 6 NK 6* I ( 7 * . * @. L*H * 0 * * 70) 1( ) @ ". ( *' ) (*'". *) * 0K * ". ( / ) (" *7/*) * 1* , 0 , ) 0/ 0 * '. &*-1 ( /, . I )* J 1( ) @ 168

*7*' * . I . , * . )* @ . &*- *( /, *7/*) & * K ( H 1 ( 1(* ( , , . , * ". ( / ) (". ( , / 6 1* . / 1*

& * . (* 6 ) '

, 1( 1(

I *

) .

*

*,-

6(

I *

*6* *,) ' * – –

*' 7 I ) *, . * ". ( ) ( " *, *J * @ * , * 6* . *7K ' *( * * @ ** *(* @ 6* , * ) ". ( / ) (" 7 ,0 * *' *M 7 *' [117] 1( N7 / 6 1* . / 1*-

1( / * /. & , H ( ' *7Q 1( (*) ( ) 0 Rg. 0) ,7 * . * 6 0 H *6* ( ) 0 (

*

6 . 8, *,) ' *J 7 @ 1( ) ) . I @ *(* @ 6( I * *6* *,) ' . @ /) /* * *' *(* 6* /* * ' ) 0 (J) * 0K ( * ( , / 0 I / 1( / *, *J ". ( ) ( " (d ):

*(* @ ( 1(* ( * . d –

L( (*)

R

1* , *, * *, (

( ( 1* ". ( , *1( ) * ** *M , @ 6* * ( ) 0 * , . I 1( . * , * , 1( *7( *(* @ c1 .

) ( " 1 ( (* 1( 6 , *) '

* *) NK , )* -

(* + > c(1 – `). R * 0 ** 0 1* 006* 1( (M * 0 (/ * *6* , 0. , * o . NK ' * 90 . 0 1*( ) `, . . * 0 (*J) 1 * * @. a ( ( * *' * . ( * *6* , 0. * M@ 1( * ( J * * * * 0 . * , 0. **7K N ( 0( *. . L*H * 0 7 N) * . ( * * . ) @ 0 * * , . * * . . I /*) * + (0 # * *(* @N, 7* @M ' *(* 00 . 180

* @ * *(* * . /. I *60 7 @ *70 * ( , 1( . . ) , / – 6( I * * 1( J . * ( , *(* *60 **7K @ (* * . *7Q 0, * *(* 0 *' . @ *' *(* @N 1*) ) ' 6* 1( 7 , 1*(/ * *7Q . . 1* (5.27) 1 ( 7* . *(* + pa 1(

)

7

7Q

m1 , 6

# *

I :

I

' ( 1 , ,) ' * ' (* , ,)

R,

[, 6/

3

+ pa , /

*.

6.6 10 24

6.37 10 6

5.52 10 3

11.75 10 3

[16]

1.98 10 30

1.4 10 9

1.41 10 3

43.5 10 4

[16]

2.5 10 30

2 10 6

6 1010

1.3 10 7

[16, 21]

4.5 10 30

8 10 3

2 1018

2.7 10 8

[21]

) , * , N * 12 / ) # )* 270000 / ) ' (* *' , ,) . K 7* @M *60 7 @ *(* , * *( 70)0 *,) ' * @ , ( , )( 6 , ) ) ". ( ) ( ". * @H *(* *60 1( M @ *(* @ . * *(* *6* 1*( ) *60 7( @ , 1( 6 NK / I (* *7 @ J)0 *7*'. * *) (* * - ( ) *- ( 6 * *1 1* ) ) ) *7 (0J * *6* *7Q * , ) J0K / * *(* , 7* @M *(* [35]. & @ [120] ( ( 30 @ / 6 . / ( ) * *. * , * *( N * 1 * 1* ) 6 I @ *(* 7* @M *(* . ) , *(* @ , .9. & ( 0 , )(06*' * ' ( 7* ( ( . *' (/ * / * 1* * , * *( * . N 66 6 /, , ( / I ( ) /. 7 N) N ) J (0', ( M ( ) ++0, / *7Q * , * * @ * ) J . ' ( 1 ) NK 6* *7Q .). 1( (, 7 N) ( ) * )( , ( 3C395 . * / 5 1.6 88I ( (* ' ) 1 ,* * ) 1979 1* 1985 6. 1* , [111], . * * * * , ( / * 1* * . * J)0 )(* *1*) J * 1* * * 5 ()06* 0 ) ). ( ' * 1* ) J *(* 0 1* ) 6* * (/ **' *(* @N. 6* 06 * *(* @ 0.64 /6*). & ( 7* [106] ( ( ) J ) 0/ * 1* * *. GRS1915+105 J /( 6 * / 0. ' 27 ( 1* 30 1( 19936. 7 N) 0 *( * 0) * 1* * )(06 * )(06 * *(*@N, 1 (1 ) 0 ( *' 7 N) ( *' ) J)*6* 1.25 @ *(* @ * 1.9 c, . . )* 6 1*. 0)0.65 c. / * * * *' *(* . 181

T .10.3. ) * ,*7( J Science Institute).

, ( (

(

, *6

* John Biretta / Space Telecope

) * ,*7( J , ( 3 345 (( .10.3) , + (* * / 10.7 88I 1979 6. 1* 1984 6.. & *(* (0' 1( M N *(* @ 7 ( ,, * ) ' @ * H ( 6 . 0) 1700 6 1 ( , H * . 7* @M * (*+ , * . N **7K * *(* / ) J , )* 6 NK / 40 *(* ' . L* * @ 0 ( / ) J *, *J , 1( )1( N 1*1 *7Q7 N) / ' 7 , (0M 1( I 1 1( ) @ *' *(*. 7* ( 1(* ( *7Q [5, 106] (/ * *' 1*1 ( . *' *(* , N. N 1*)7*( *6* 1( ) J *. , 1( * *(* 6* )* * *(* @ 70) ( ( @ (/ * . ' 1*)/*), *, *J *1(* (6 0 @ (/* ) J : 06* J)0 *(* @N *7Q 1( 7 N) )* J 7 @ *1( ) * * ( ,0 @ * , ( ', . , 1( )1* *J , * *(* /* )* , @. , H *6* 1*)/*) , 1( ) ' ( 7* [110], 1( *) *( *)0, . * 7 N) (/ * ) J 1( ) N (@ , * 1 *( * * @ * . , 0K 0NK *7Q * . * 1(* ( *60 **7K @ (/ * *(* *(* * . N . J0K (0 K 1*)*7 *(* *60 *,) @ 1* * H ( / . I, *(* * *( / J (/ * . /*) * + (0 # , *,) N . ( * * , 0. 1*(*J) N *( . / . I, * *( ) @ 0N *7 *6(* *' H (6 * . /. I. 0 ' [119] *7( , . * *' H ( /. I, / , , ( ) ( ) 0 *60 7 @ 0 , 6 / * * * * 10 @ , * 1( ) N *7*' (0 0(0, ( K NK0N * (/ * *' *(* @N. 1( M *)0, . * @ M (, (*(*(/ * , . . N *7Q , * *( ) J0 * *(* 7* @M *(* . 182

)0 * @, . * * ( *' *( . *' + , ) * 1* " / * " [3, 19, 39]. R * 6 1* . . I , * *( )* J 0)* *( @ . / 1* 0 (0 . )0N , 1* *K@N / * * (0M @ 1( I 1 1( . * , . . . *7 ) 1( )M * * 1( . . N) )0 , " / * " - *76* NK ( .&* . * /+ . / / * * , ( ( ( @ (/ * ) J .

10.2.

" ' !

L* 0. ( ,0 @ ( . (/ * *(* ) / (* * . / *7Q * , N *6 *1(* . M @ / *, *J * 7 , 1* *6*, )* J 7 N) @ (/ * *7Q . , ( 7* 1* *7Q N (/ * /) J ' [5, 35, 106, 110] 1* , ,. * *7K 1( *6* *) / ( * ( . 1( ) , . * H 1(*7 *) (J *6 *1(* . L(* , (0 7 N) /) J ' 1( ( (/, 0 * /. L0 @ *. , 0 S) J ( ) * *(* @N + > a (( . 10.4) * t = 0 /*) *. S. & H *' ( ) 1( I @ * ( * p /*) 1*) J ' 1( R. # 0 * * 7 , ( 1(* ( M * (0J NK *,)0/ * *(* @N a, *J @ +(* ) * 0 / 1* 006 * 1( (M F, ( sin = a / +. (10.2) 1*) J ' * * @ * *,)0/ 7 N) @R0 M H * * *. *. S', ( 1* *J *' 1 (1 ) 0 ( +(* 0 SR. * S'S *. 1(*M , ( T = S'S/+, (10.3) , 0 , H * ( ( 1(* ( ( * S'R = T a = S'S sin . d ( , * *(* , ' 1* *J S t A , 6) SS t = RA = +t = x . (10.5) #) @ x = + t – *7*, . 1(*') *6* * ( , . L* 1(*/*J) +(* 1( R 70) * -

(

t

*.

1 (

(10.4) *. 0 S t ,

1( @ , 0 , * *( ' )* 6 6* * *. , , ( . 10.4, ( ,0 ) 0/ *. / S tE S tEE . & *

& ( ,

S tE R 2 = S tE S 2 + RS 2 2S tE S RS cos . . S tES t . ( , S tES x: S tES t = S tES + x.

*

J)0

7 N)

*.

S'

S tE

(10.6) (10.7)

*J * , 1

y = S ES - S tES. & ( ,

RS

S'S . ( , 1( I @ * (

*

S ES = L*)

(10.8) S'S

, ( 06* @

p: (10.9)

RS p = . cos sin cos

(10.10)

S tES

, (10.7), 1* 0. p y = S tES t + x. sin cos

•S tES t B , 0. *

(10.11)

*6*, . * S tE B = S tE R ,

)0

S tES t = S tE B/sin = S tE R/sin . 0) , 0. * (10.7),

S tES 2

184

(10.6) S tE R : p + 2S tES ) * sin cos

(10.12)

/*)

S tE R = S tE S t sin L*) 1( *7( ,*

@: (10.8)

RS = p/sin ;

* 0

183

) * J

*. B C ** *, /*) K / * 0 / St A . *7( ,* , 1( 1* 1(*/*J) +(* 70) ( 6 ( (* @ , 0 * ) 0/ *. * S tE S tEE . & 0. 7 N) @ (/ * *6* *. ( ,) @ )*10 *6 * , 0 * !) 70) ) @ 6* ( ,0 ) 0/ 1* *J /. *7( ,* , 1* 1(*/*J) +(* 0 ) ' *.*. S' ( ,) * ) 70) 7 N) @ ) ) 0/ *. * S tE S tEE . 1( ) *(* ) J ) 0/ ,*7( J ' 7 N) *6* (/, 0 * *6* ( (/ * *6*?) *. . )0 : , ( 06* @ S tESR

/

T . 10.4. 7 N) (/, 0* *6* ( (/ * *6*?) *7Q * St ) 1 ( ( ,7 6 NK /,*7( J ' S tEE S tE .

/*) M 6* , t , 0 )* 6

= ( S tE S + x) sin

RS , (10.13)

.

(10.9) **

p2 ( + x tg 2 F & + ' sin 2 cos 2

- x 2 tg 2 . = 0 .

(10.13) *. L*

(10.14)

M

)(

S tES = x tg

*6* 0( 2

1* *K@N (10.8)

p + sin cos (10.10)

(10.14) 70) 1 x 2 tg 4 ± sin

sin

p cos

*6) ( * 7 N) *6* *7Q *7Q , 1( I @ *6* ( * p )* *6 * (10.15), , 1 M y=

x tg 2

.

(10.15)

S tES . ( , y:

( ,

S tES =

+ 2 xp tg

3

±

1 sin

y.

(10.16)

y , 7 N)

* 06

* ( * 0

* /

x 2 tg 4 + 2 xp tg 3 .

x ,

(10.17)

± *1( ) N ) 1* *J S tEE S tE 7 N) *6* *7Q , ** t /*) *. S t ( . ( . 10.4). , (/, 0 * *' *7Q , /*) K ' *. S, * 7 6 +(* 1( R 7 N) *. S'. # * ( ,) : *) *7Q S tE ) J 1( *7Q S, )(06*' S tEE – *7( * . 1( ) *(* ) J 7 N) / *7Q * : , *( '

+s =

dy dx dy =+ = +tg 2 F dx dt dx

#) @ p – 1( I @ * ( . 1( /*) +(* * ( (x @ 0) 7 * . . . ( ) J *7Q , 0.

sin

2

x tg

2

+ 2 xptg

* , x = +t, 6) t – ( ,* . 7 N) N R. ) * , (10.18), *(* @ ) J 7 N) / *7Q (x @ 4) *(* @ ,*7( J * (10.2), 70)

+sE = + tg 2 (1/ sin - 1) =

*7(

+ p

x tg



+a 7 a, ++a

.

(10.18)

* * . @ ' * 70) 1( -

(10.19)

* +sEE = - + tg 2 (1/sin + 1) = -

+a 7 + a

a

(10.20)

N)

)0 , . * 7 * N *(* @ ) J ,*7( J *7( 1( 7* @M , . 1( * . & 1( * 1( ,*7( J ) J )*, 0 * *' *(* @N. L( ) J *7Q * , 0 * *' = 90°. *(* @ *7*(* @N + = a, *6 * (10.2) 06* * 0 / ( * 1( +s" @ 4, *(* @ 1( * , )0 , (10.19), 70) *

185

(10.21) +sE = 0,5a. &H * 0. 7 N) @ 1* 7 6 6* +(* 0 ) ) J0K ' ,7 * . * *7Q . L ( * . @ * *(* @ ) J ,*7( J 70) 7 * . . &1* ) * 1( 7 , 0,5a. *' *(* @N ,*7( J *7Q 70) 0) @ * 7 N) 1( ) J *7Q . L( ) J * *(* @N + > a *7Q . 7 N) ( .( . 10.4) *. S', , * 1( * * *. S' 70)0 ) 6 @ 6* ,*7( J .& *) J 1(* /*) 7* @M ' *(* @N, J 1( *, *(* . , . J 1( *6* ,*7( J S tE 1(* /*) @M ' *(* @N 7 N) )* @M . ,*7( J 70) 0) @ * 7 N) * 0 @M NK ' *(* @N, 7* @M* 0) 6* *(* @ @M , 0 * *' * *' ) 0. (/ * *6* ) J . R * ( ,0 @ @ ( . 7 N) @ 1(*10 * 7 6 +(* , . * @ (* * 1( 7 N) (* * . / *7Q * , * E E *7( * ,*7( J St ) 6* 0J . , , 1( * S tE * 0 ) ) J0K )* * *' *(* @N. L* ) ' 1( ( 1* , , *7 . 0 I *, *J 1( 7 N) (/ * / *7Q * . L*H * 0 , ( ,0 @ * 7 N) ' (**7Q * , (*– ( 1( (, * . /. I H ( /. I ) ( *' + , 1(*I / 0 *( ) *7/*) * 1(* *) @ 0. * 7 N) / *(* ' (10.18). & ) *, . * 0. H *6* + , H ( / . I *J 1( *) @ (1( I (/ * /. I (*J) 1 ( ) 0/ . I. * ( H++ (/, 0 * *6* ) J *(0 *) * ( * 1( /*) * @ 7 N) @ ) . (/, 0 * * * 0 ) 7 , )* 6* )* 1* , '* / 1 . .& , 1 * . * 7 , * *(* * 0 * 1* *(* *7Q , ( ,) ,( ( . *1* *J *. , 0 *1( ) * @-, 0 , 1* 1(* ( *. # , *1( ) *' *. 7* *) * 1( @ , 0 ) 0/ 0) NK / )(06 * )(06 * * . L*,J 0. @ *7 (0J @ * , *,) M ', 0 . 7 ) * 1 ( ) , 7 J 6*( ,* 0, ) J0K 6* , , 0 * *6* ,*7( J . # * 0/*) , 1( ) ) * , 6* , 0 * * ,*7( J K )* 6* *,) * N, N K 6* * . ( * ( 1(*7 7 N) (/ * / ) J '. (06 6(011 1(*7 , , *) ' 1( / ) J /. )0 * *7 * @ , *) ' , ( J / 1( (/ * * > 1, ) * ,, * ) (4.92), 1( *1( ) / ) J . L( r r 06 / J)0 R *(* *(* + , @ ) ' @ . * ( J ) 0K 0 . ( ( ) J0K ' , ( ) q1 , * 1( > 1 6* *,) ' /*) K ' 1 ( ) 186

1*) J ' , ( ) q2 0 1 ( 1(* ( @ . L*H * 0 , *) ' J)0 . , *6) , ( ) q 2 70) 1*, ) , ( ) q1 , . . 1( /2. , (4.92) )0 , . * , @( 0 N 1( sin M

> /2, * (10.22) )

M

= 1/ .

>

(10.22)

. * (10.2), 1( H * M

=

– .

(10.23)

* (10.22), , @ (4.92) ( 0 N, L( , . M, *6 ( 7 * . * . *7( ,* ) J0K ' , ( ) q1 . *,) ' * @ 1*) J ' , ( ) q2, *6) 1* ) ' 1*1 ) +(* * 0 / . & 0 ( * 0 / *,) ' , ( ) q1 , ( ) q2 70) * . , * 1(* *1* *J 1* , 0. R * *70 * * * ( I @2 , * . (1 ) , * (4.92). *7( ,* , *) **, ( J * * q2, /*) K 0 ( * 0 / , 70) 1( 6 @ , ( )0 q1, 1( 1(* *1* *J * , –* @ . * ( ,* 1( (/ * * ) J . *6 . * (4.93) , 1 M 0( 1* * *6* , . : R= B

2

(1

2

sin

1 2

)

3/ 2

,

(10.24)

6)

q1 q 2 (10.25) B= = const . F # * @ (10.24) 1( B = 1 ,*7( J ( . 10.5 1* ( / **() /. (0J * @N ( ) 0 * R = 1 1( ) ,* (4.93) 1*) J *6* , ( J *6* q1. , ( . 10.5 ) *, . * 1( < 1,5 ,* = 1(*/*) *7 0 ( * (0J * R = 1, . . H *' *7 *,) ' ) J0K 6* (/ * *6* , ( ) @M 1*) J *6*. T . 10.5. ,* *,) ' ) J0K 6* * (/ * *' *(* @N + , ( J *6* q1 1*) J * , ( J * * q2, /*) K * 6* ( , / 06 * / ( * / 1( ( , / . / 1( ) *' *(* .

( 7 * . * @, . . 1( 7 J M ,* ‚ 1.5 ,* /*) * (0J * R= *6( . *( . L( 1, . . *,) ' (/ * *6* , ( ) 7* @M 1*) J *6*. & (M * 0 * / 1( ( , / ( 1* 6 N I ( , ( ) q1, *7( ,0NK 1 ( @ ,* . 1( (, * 0 1( 1* ( * 06 * 0 * / 1( ƒ 1.2. , ( . 10.5 ) *, . * 0 M = 120Ž . 06* 1( (M * 0 * / 0 @M . L( * *' / (*J) 1 * * @, 1 (1 *(* ) J , ( = 1), * 0 ) 0 ( 0N *(* +. 10.3. %

#

/

01* ( ,H (* 6 *,) ' *J * )* * *' *(* . 1( ,*' ? H *6* )* *. * *,) @ 0 * , . *7 . I 0 *( @ *7Q * , * *( ' ) J * * @ * 0 * * *(* @N u 1( 0 *( . I [55, 115, 118]. *6) . I0 *J * 0 *( @ H *7Q * )* *(* c1 * * @ * 6* 7 * N *(* @ . I , . . *(* @ * * @ *0 * , 70) ( 0 *(* c1 *(* u *7Q : +a = c1 + u. .@

*7Q 0 *( N * *' *(* 60 * @ * *(* @ 60 1* *J II, 1 ( * `l, *(* @ 0 *( * (1* *J III) 0 & H * 1* *J 60 *)

10.6.

(/

*60 7 @ 60 , ( J /. I. & . *7 , 0 *( (( . 10.6, 1* *J I) )* +. # 60 . N 1( 6 @ )(06 )(060. 2, . @ * 7* @M 60 1, * , 1 – * 0 *( (1* *J II). 1* , * . @ * ( * l J)0 60 0 @M *6* 60 *,( 3+. L* 7 J 60 *( ' 60 * 1 1( *7( 1( 7 0 *(* u1. 0 *( NK 0 60 0 2 1( ) M T .

* * 0 *( 1, 2 – *

187

% !

188

1( 1( (

60

J

(, *

* ; I, II, III, IV – *

*, ( J ( 1* *J

/ 60 '.

* :

*,) ' F, 7 6*) ( * *(* 0 * 0 *) 10 0 *( *6* 60 1. & 1(*I , *) ' 1( ( /*J) 60 * 1 ( * . @ 1( 7 *(* u1 0 @M )* u. *7( ,* , 1* 1(*I 0 *( 60 * 1 70) @ 1* 0N *(* @ + + u. & . 7 (*) J0K 6* *,) ' 0NK 6* *7Q *J * , @ 60 * , ( J / . I, * *( *,) N , 1( (, * ( / 0 *( /. *' 60 * N . I , , ( ) J)*' , * *( / q, 70) @ 1* ' , ( ) Qa = qN. 60 * , ( )* Qa1 ( . ( 10.6) 70) ) 6 @ ) , *,) ' 0NK 60 * , ( )* Qa2 1(* *1* *J*6* , , * * 1( *7( * * @ 0N *(* @ u, * *(0N *J * *1( ) @ 1* *K@N ( J (7.46). H *6* ( ( 60 *. ; *,) ' 0NK ' 60 * 7 ( *' M2, , . @ * 7* @M ' M1 0 *( *6* 60 . *6) , ) *,) ' 0NK 6* 60 *J * 1( 7( .@. 60 * 70) 0 *( @ )* / 1*(, 1* 1( 7 , *,) ' 0NK 0 60 0. . ( * J)0 / I ( ) ' * ( ) (0 d 7* @M 6* , / ( ( 60 1(* * * H (* * , ( )* . I q, * * @ 0N *(* @ 0 *( *6* 60 1( u0 = 0 1* 0. )

u 2 = c 2 - c 2 exp

2q 2 N 2 m1c 2 d

.

(10.26)

#) @ N2 – . * . I *,) ' 0NK 6* 60 , m1 – *) *' . I , 0 *( *6* 60 ; 0 *( 1(* , *) ( ) = µ = 1. , ( J (10.26) )0 , . * 60 * H (* * *J 0 *( @ 60 * 1(* * * ( , ( 1*( ) d = 2 . * . I N2 ‚ 4·1012 )* *(* ur = 0.3c. * *' J *(* 60 * 1(* * * *J * 0 *( @ 60 * H (* * . * . I N2 ‚ 6.2·1014. L( H * 60 1(* * * )* J 7 @ M1 = mpN1 < N2me, . . . * . I 60 1(* * * N1 < N2 me/mp. * ( / 0 *( / *J * 1* 0. @ 60 . I * *(* @N *. @ 7 , *' *(* , * 1* 0 *( ) J0K 60 * 0 *( . I 1* 0. *(* @ * * @ *0 * +a = c + 0.3c = 1.3c, * *( , . @ * 1( M *(* @ . )* @ *) J 0. *. @ * *6* 00 0 * *( *J . I , . (/ * *6* , 0. ( , * . ( * * , 0. ) 0 @M H 0 *(* @ )* )* * *'. L* *6* 0 *( ' 60 * )* 6 *,) ' 0NK 6* 60 ,* . *1 ( J @ 6* , ) @ . @ 'M , *) ' J)0 60 *7/*) * 1( )* ( @. R * *J * * 0K @ * @1* *7 . *,) ' * @ 60 6 * , * *,) ' 0NK ' 60 * 70) * * @ 0/*) @ 10 ) J 0 *( *6* 189

T . 10.7. 1, 2 – *

(

(/

* * 0 *(

60

* ; I, II, III – *

1( * ( 1* *J

*) * '

*, ( J

/ 60

* :

r

60 . L( H * *( 6 *' 1( J * H )* J 7 @ 1 (1 ) 0 ( *(* 60 * . . 1* , N , . * , ) 0 *( *6* 60 70) @M , . 7* @M . 6 *' 1( J * . & 0. 0 *( 1(* * *6* 60 H (* 0J 7* @M 1( J * @, H (* * *) *6* , 0 *( , *) ' 0NK 6* 60 *. @ . L( 0 *( J 1(* * 60 * ) *) 6* , 1(*I 0 *( *7/*) * 1( ) @ 6 * *,) ' , . @ * 7* @ * . . 1* , N ,. * 1( J * @ 15 ÷ 20 6 , M (* * 1( 0 *( /, 1* )* *. ) H *6*. , *) @ 60 1* 7 J *J * 1* *K@N H ( . *6* *,) ' , 1 (1 ) 0 ( *6* *(* 60 * . *J * *) * ( * 1( @ 6 * , H ( . * *,) ' . & ( * ( * 1( ( 60 ( , * , ( ) . L( *) * / , ( ) / 1(*I 0 *( 70) 1(* /*) @ )0NK *7( ,* (( . 10.7.). & /*) * 1* *J I 0 *( ' 60 * 1 *(* @ @M0N *(* 60 2 . 0 3+. & . 3+ 1 ( *. @ * ( * l J)0 60 7( * , . *7 1( 1( 7 J @ * ( * /* * @ *(* @ ( @ 0 N (1* *J II). , . * 1(* /*) 0 *( 60 1 , 1* /*) , 6( I0 *,) ' 60 2, 0 *( ' 60 * 70) @ *(* @ + + u. 1( ) )0K 0. , 1( / . * 0K /1 * * / 60 * *J 7 @ )* 6 0 * * @ *(* @ u = 0,3c. L( . @ *' *(* + = c 3+ = u 0 *( ' 60 * 1* *J II 70) @ *(* @ +1 = c, 6* * . *(* @ * +1 = 1,3c, . . 70) (/ * *'. & H * 1* *7 1( 0 *( H (* * 0 *( NK ' 60* H (* * )* J @ N2 ‚ 4·1012 . I, 1( 0 *( 1(* * * 14 N ‚ 6,2·10 1(* * * 60 . , ) 1* 0. (/ * / H (* * 0J 60 . * . I 1*( ) 1012÷1013, ) 0 *( 1(* * * – 60 . * . I 1*( ) 1014÷1015. L( H * . . I 60 )* J @ ( ,( 1÷10 . 190

1(* * 60 1* 0. *6 / 7* @M / * ( / 0 *( /. & [1] 0 (J) ,. *. *. I 1(* * *6* /(* (* )* 6 2·1012 10 @ . * *6*, . *0 . @. *. I * . * 1(* * * N 60 , 1* 010 @ )* 5·1013. K 7* @M . *1 @ / * @I /. & [2] 1 (* * @ 1* 0. @ )* 4·1014 1(* * * 60 . )* @ *, N7* * 0 *( *J * 0 *( @ H (* )* (/ * *' *(* , 1( . *J * )* .@ ) J 7* @M ' *(* , . 1.3c. 0 *( 1(* * * )* (/ * / *(* ' ( 70 . * . I 60 ) 1*( ) 7* @M , . 1( 0 *( H (* * . L** @ 0 H (* * 2000 ( , @M 1(* * * , * @ ( N ; 1*H * 0 7* @M0N 1 * * @ H (* * 60 (0) * )* .@. ) * *7/*) 60 H (* * *J * *7( ,* @ ) * I. * @I 1* 0. * *( )* . *6 * [22], 1*0. H (* * @I . * . I 6·1012. &.L. ( I [46] 1* 0. * @I . * H (* * 1013. , ( * I *60 7 @ @M 1 , 1*H * 0 0J *J * 0 *( @ 1(* * )* (/ * *' *(* . L* 0 (J) N &.L. ( I , 0K 0 ( ) *, *J * ' 1* 0. * I( , ( 10-3 ÷ 10-4 . 60 *J * 0 *( @ 1(* * )* *(* 7* @M ' 1.3c. L(* *) @ ( 7* 1* 1* 0. NH (* / 60 * K 7* @M . * H (* * . .&. a*) [68] 1( ) ) *, *J * @ 1* 0. / 60 * 4·1016 H (* * . **7K * @ [28], M ' ( 7 1* 0. 60 2.5·1015 H (* * . *7( ,* 1( I 1( * *,) H (* / 60 * *J * )* 6 0 @ *7/*) *' 1 * * . I /, . *7 @ *, *J * @ 0 *( @ 1(* * )* *(* 1.3c M . %

10.4. !

#

% !#

*(* @N 0.7c. & 1* *J I H * 0. 60 N ( , *(* ( 1* *J *J * 7 J )(06 )(060, . . l – @ * . * * @ *(* @ 1(* * *6* 60 . * ( I @ u = 0,7 – c = – 0,3 , * * 70) 0) @ , 1* )* 6 * * @ *' *(* u = 0, 1* * *M N 0 * 6* *(* @ 70) c. # * . 1( 7 J @ H (* * 0 60 0 6* *(* @ * *@ * 0 * ( *' 1.3 . * 0 *( *, *J *, 0) . 60 @ * ( * l ƒ d. (/ * *' 1(* * ' 60 * *J * 0 *( @ 1* / ( . 10.6 ) J , * )(06 H (* 60 * * *(* @N + = c. & H * 0. . 0 *( 1(* * 70)0 @ *(* @ * * @ * 1( 7 J 1(* * *6* 60 H (* * u0 = 1.3c – c = 0.3c. L* H (* * 0 * * @ *(* @ 1 ( *6*, H * )0 , (7.46), 70) u0 = 0.412c. * @ 1* *(*' 01 0 *( 1(* * ' 60 * 70) @ *(* @ 1.412c. ' 60 * *J * 0 *( @ H (* * * *' *(* @N ) , * J) ( ,* 1( ( K *(* 70) 0 @M @ . &* / 01 / 0 *( *J * 1* @,* @ H (* 60 *) *6* *6* J 0 *( , 1* ( , * ( . L( *6* 01 . * 1* *7 *J * 1* @,* @ H (* 60 @M 1*( )* . * . I, 1( ( 1013 ÷ 1014, * *6) 1* ( 707* @M . * 01 '. L( )1*. @ . 0 01 ' * @ 60 *7*(* *J *, ( , ( *,) H /0 * * . *' *6* 01 . ' 1* *7 0 *( 1*, * 0 *( @ . I )* *(* 2c 7* @M . H *' I @N *7/*) * 1* 0. @ (/ * *' 60 * H (* * (/ * *' 60 * 1(* * * , , / * ) 0 *( *) *6* )(06 . *(* @ 60 * 7 1.5c, * 1( **7K 0 *( * 0* * @ *' *(* 0.3c, 6* *(* @ * * @ *0 * 70) 1.8 c. L* *(*6* H 1 *6* 0 *( * 1* 0. *(* @ 1.912 c .).

/

* ( M 1* *7 *) 60 * *J **7K @ )(00 *( / 6* 0 * * @ * 7 *(* @ 7* @M0N c1. L* 0. @ H 60 *J * J * *(* @N 7* @M ' c1. L*H * 0 0) * *(* @ –H * 7* @M *(* @, )* * *(*' *J * 0 *( @ . I 0 , 1* *7* . , *J J *6* 01 . 1* *7* *J * 1( ,*' 0) * 0N *(* @ . 1* 0. 1(* * * * * *' *(* @N ( 70N 7* @M 0 *( . K 7* @M / , ( 1* ( 70 0 *( J / * * )* * *' *(* . * 0 *( @ H (* 60 1(* * * )* H *' *(* , * , ( , . @ * , . 60 * H (** 1014 ÷ 1015 . I *(* @N c *J * 1* / , 1( ) *' ( . 10.6, 0 *( @ )* * *' *(* 1(* * ' 60 * . @ *' 191

10.5. %

#

!#

/

! * ( * * @ * 0 *( *) * *, ( J /. 7 * . * (( . 10.8) 1( I. L0 @ 1(* * * *(* @N +0 1*) J ' 1*, (* . *6) * * @ * 1(* * 1*, (* *(* @ +rel = + *(* 0 1(* * , . . * 1( 7 J 1(* * 0 *( *, . 6* *(* @, *6 * (7.46), , 1 M :

+rel = c1 1 - (1 - L 02 ) exp

192

2 µ1 + 1 ) c12 )* R

1 R0

( & . & '

(10.27)

T . 10.8.

. * H 1 0 *(

L( 1( 7 J @ *(* @ + rel = 0 R 0 • ž:

T . 10.9. ( )

.

@M *' 0 N.

(

c12

.

( * R min (( . 10.9) * * , (10.27) *1( ) R min, 1*)

2 µ1

Rmin =

' H 1 0 *(

(

ln 1

L 02

).

(10.28)

L( H * 1(* * mpr , . @ * 7* @M 1*, (* mpo 6* *(* @ , , . . +pr = +0. 0N J *(* @ 70) @ 1*, (* *. 7 J . L* 7 J @ * ( * 1*, (* . 0) @ * 1(* * (( . 10.10). 6* *(* @ 1( 0) 7 * . * @ *1( ) , (10.27) 1( +0 = 0, R • ž R0 = R min )0NK ) : +rel = +0. )*

@ * 1*

*(* @ 1*, (*

(10.29)

70)

+po = +0 + +rel = 2+0. . . @ 0N *(* @ 1(* * , * *( 1*, * 7 , @ ( * ,( * 0 ( ) 0 * 1(* * R min = R pr+ R po. , (10.28) /*) 0

= 1 - exp

- 2 µ1

c12

(R pr + R po )

= 1 - exp

pr

,

c12 m po R pr + R po

)

. 1*,

I (*

(10.30)

6) pr

=

(

2 µ1

c12 R pr + R po

)

=

2e 2

(

.

(10.31)

L* 1*) * 1 ( (* 1* 0. . @ *pr = -1.34, (* @ 1(* * *(* *,) ' 1(* * 1*, 0 = 0,859. L( H *' (/ * (* 1* ) ' 0 *( )* po = 2 0 = 1.72c, . . 1*, (* . *(* @ 1(* * 70) 7* @M 0.859 , * . I 7 , ( * @M 0 / ( ) 0 * , 1*H * 0 T . 10.10. * I H 1 0 *(

) @ 'M / , *) ' 70) *1( ) @ 1( ) ** *M . ,. *H 1* *7* *J * J 0 *( @ H (* 1(* * * ( * 0 *( *J * * 0K @, 7* 7 () (0 10. * J /. I *1*) J * *7 * 6 / . I. & (* * @ 1( *6* * * 70) , @ * 1 * * ' 7 ' H / . I. *7/*) * * ) @ (/ * . I * J / )* * / . I. L* ) *J * * * @ 1*1 ( . H (* 6 *,) ' . L* * * NK / 0 (*' )* @ * 0 * 70)0 ) 6 @ * @ * (/ * . I . / *J * 70) *7 (0J @ 1* . ( * * 0 , 0. N. L* ,0 ( ,0 @ * * * *J * *1( ) @ 1 * * @ (* * 06 * *6* ( 1( ) . I, * *( 70) / ( ( ,* @ . (/ * /. I. L( H * *60 7 @ 1* @,* 1 ( ( ( *( ', 1( ) L( *J [59], J ( 7* [60]. ( * ( * * @ * 0 *( *) * *, ( J / . I. J 1* *7* *J * 0 *( @ ( , * *, ( J . I , 1( ( 7* 7 () (0 1(* * *7 * H (* * , *J * 0 *( @ 1* ) )* (/ * *' *(* . ) * H * *, *J * 1( * *7 / 0 * /, * *( N 1( , ( *( ', 1( ) / 6 . 5. L(* * * *(* @N +0 = 0.67 , 1( ' H (* 1( I @( * a = 1.2•10-12 (( . 10.11), , / 6* 6 1 (7* * )0N ( *( N * (06 7 , 1* * *(*' H (* *7 ( * (06 1(* * , 1 ( *) 360o ( . ( *( N 1.1.3.7 . 193 , [59] ( *( N 7 ( . 5.1). H 1 I 1(* * * *(* @N +0 ( . ( . 10.11) H (* 1( I @ ( * a. H 1 II 1* , * ) J H (* * * @ * 1(* * . . @ 0N *(* @ 7 * . * ( +0 ), * *6 7 1(* * 1* 6 1 (7* * ) *' ( *( , 1( 7 J @ 0 1 ( I ( ( * Rp = 0.9 10-12 . # 1* J ' 0) 7 * . * @ * *(* @N +0 * * @ * 1(* * . H 1 III 1( )*(* . I * * @ * 0 * 1* , *) ' . R (* ) J 1( ) J 1(* * (/ * 0N *(* @ 2+0 = 1.34c. L(*I 0 *( 1(* /*) 1( ) / ( * 10-9 , . . 1( . *. , 1*H * 0 ) 0 * 70) 7* @M*'. ) * H (* )* J 7 @ *7*) , , )(06 , *) ' H (* 70)0 *,) @ *7/*) 0 I ) (/ * *6* 0 *( : 1( 7* 7 () (* 1(* * * * / H (* *60 0 *( @ )* (/* *' *(* . T . 10.11. R 1 0 *( 1( * * ( , * * , ( J / .

.

193

194

T . 10.12. *( H (* * 1( 7* 7 () (* 1(* * H (* *6* 7 : -1 ( ) * * ; 1(*I * * .

( , I H *6* 1* *7 10. * * * *(* / 1(* * * *J * 7* 7 () (* @ *7 * 1*) J / *7*) / H (* * (( . 10.12, ). ,-, ( , / 1( I @/ ( * ' 70)0 1* 0. @ ( , ( *( H (* * ( . ( . 10.12, ), , * *( / * *' *(* @N *7 ) N * @ * H (* , ) J0K 1( ) J 10. 1(* * * . & . / ( ( 1(*I 0 *( *60 7 @ ( . , , 1 * *7 '. I. )0 * @, . * ( *( 0 *( *6* 70) * . @ * ( *( 7 ( . 5.1. * ( ( ,0 @ ( . * 1* 1* 0 ( *( , * *( 1( ) 7* @M ' (/ * *' *(* : 1

-0.25 -0.28 -0.3

p

0.96 0.958 0.951

ox

-0.617 -0.743 -0.704

a

2.45 3.09 3.11

#) @ ox – * NK 1( ) *' *(* 1( * x ( . ( ) /. ) , 1* 0 *( 1* 5.1, a – 06 * *' 1* 01 ( *) / , 1( ) *' ( . 10.11 *(* @ . I *J )* 6 0 @ Ÿ = 2 ox c =1.5c *(* . ) *1 ( ( H / ( *( ' /*) 0, / 1( ) /. , . @ * , 1 ( (* , * * H (* * 1 (1 ) 0 ( * 1( ) J , 7* , / 0 / 1(* * * , 7* * * 0J * 1( , * *' *(* @N.

10.6. !

!

* . . I 1*(*J) N M (* * *( *) * ( * 1* ( N 7* @M # . L* ' ) * , H * *7 . . I . R * *' * *J 7 @ 1* @,* *' , . 7* @M* * . * (/ 1( * )(06*' 1 * . *' , ,) . . I 70)0 ( @ 0 ( @ *N * @. L( /*J) *,) )0 . I, * *( 70)0 , + / * *. 1( I . L*H * 0 0

&

.

H ( /. I, (( *( 1* (/ * I *,) *) (/ * * ) ) @ 'M ' * . * / . I *J 7 @ ) J 1 )(06*' 1*)*7 * ( ) * * * + (0 1 * (* 7* @M / ( * @M (* * @ 1(* / 195

1* *6* 6 . +*( I 1( H * 70) *) (J @ * ( / 1(* J0 / J)0 1* (/ * . I . L*- ) * 0, ,@ 1* *K@N (/ * / . I *' H (6 . 6*) *'. * ) ( ( , **7( , H ( / . I, 7 N) / M (* / * + ( / /, ) @ 0N , . * (/ * . I *60 H++ * ( ,(0M @ K *. )* @ *, 10.* (/ */ . I *1( ) *' * *J 7 @ 7* H++ *(0J ,. , ( ' 0.. *' 10.* (/ * /. I *J 7 @ 1* @,* ) ( ,) . 1( 7 J NK 6* # (* ) . L* 1 ) y1 ( 1995 6. +( 6 * * - b0 ( 1(*7 1(* * (* ) *' , K # 7 * *, . * . * . (/ * . I ,) @ *60 7 @ 1* @,* ( , 1* *7 . (* H++ *6* " *J " ) ( ,) (* )* . 10.* (/ * /. I *J 1( @ ) ) @ ' * I (* )* . ( * . I , 1(* *)0 (* 1* ( , 1* * * (* )* 7@N . @ . I 1(* *1* *J * 1( *' *(* @N, * *( , *') * + (0 # , *,) )0 * + ( / . I. & ( ,0 @ / ( 6 ( I 70) 0 * *( * )* (* ) , J )(06 6* 1 ( ( . (06*' 1* *7 1(* * (* ) *' , K , ( *( (* ) 1* *K@N ( *' (0 . ) * , +*( 0 9 * * *6* (7.10), . 7* @M *(* @ (0 , @M ( 70 *1 @M 70)0 H (6 . ( @ , ( . L( (/ * *' *(* ( *' (0 H++ * @ ( *6* ) 6 7* @M . (/ * ) J – ) * ( ) *, * *(* 1*, * . * 0 1*7 @ 1 / )(06 / , ,). 12-14 60 1997 6. ( (* . *I I 1(* ( 7*. * K (Breakthrough Propulsion Phisics Workshop) 1* 1* 0 ( 6 )* ', * *( 1*, * . * 0 *,) @ ) J ) J, ,) / 10 M '. , ( * H *6* * K 1* , , . * @ ( ( * 0 (/ * * 0) J N 0K 0 . * ( 1* * . *6* *( 7 ) J )* 7 J 'M ' , ,) , * * K ' * ( * l = 3 .6. ( * / 6*) ). 0) * (M @ 1* , 0 *( g. # 6*) 1* t1 = 1 6*) *( 7 @ 7 ( * 0N *(* @ + = gt1 ƒ c (10.32) 1(*') ( * l1 = gt12 / 2 = 0.5 ct1 = 0.5 .6. (10.33)

*6 * +*( 0 9 * * *6* (7.10), *( 7 0 7(* ( *' (0 * * *' *(* @N u = c: m1 = m0 exp(-+ / u ) = m0 /e , 196

@M

,

.

(10.34)

6) e = 2.73 – * * 0( @ *6* *6 ( + . # *( 7 @ . t2 = 2 6*) ) J * *(* @N + = c 1* (I 1(*/*) ( * l2 = 2 .6, 1* . 6* . t3 = 0.5 6*) 1* *( . ) 6 @ 1(*) J 7( *(* @ )* 0 *'. # H * ( * 1(*/*) , ** (10.33), * M ( * l3 = 0.5 .6, 6* 0 @M )* m2 = m1 exp(-+/u) = m0 exp(-2+/u) = m0 /e2. (10.35) *7( ,* *( 7 @ , 4 6*) *J )* 6 0 @ , ,) , 0) *' * # 3 * / 6*) . * (M *7( ' 10 @ J ( ) : 0 *( 0.5 6*) , 1* 1* (I 2 6*) , *( *J 0.5 6*) – *( 7 @ 70) , *6 * (10.35), @ 0 1( *, ( K # N mB = m2 exp(-2+/u) = m0 exp(-4+/u) = m0 /e4,

(10.36)

. . 1* , * 1 ( * . @ *' *( 7 * mB = 0.018m0. R * 1* ( @ * ** *M , * *(* 1*, * *6 * @ * (0 I *( 7 H (6 . 1* ( 7 * / . *, *J *. ( ( * ( *, ( K 0N 0 *( 7 1( *7 . *' ( *' (0 * *(* @N u ƒ 3 / , . . u = 10-5 c. *6 * (10.36), m0 = mB exp(4•105 ). R * (* * . * . * ) . @ *' *( 7m0 ) @ 0 * * , . * )(06 1* *7* )* .@ 7 J 'M / , ,) *, *J *. ( * ( 1( ( 10 M 7 J 'M ' , ,) 0 *( g. & ")*(*6 " , 8 . L( + > c ( 1* * ( , . ., H * ( *J * * (M @ 1* )* 7* ) / , ,). L( ) 1* *7 0 *( . I )* (/ * *' *(* *60 7 @ 1* @,*) (/ * *6* ( *6* ) J , / . 1( ) *6* ( . 10.13. * * , ) 0/ 0 *( NK / 0 (*' ) J /. I: 1 – ) 1(* * * (Pr); 2 – ) 1(* * * (aPr) ) 0/ * *NK / 0 (*' : 3 – ) 1(* * * 4 – ) 1(* * * . R 0 (*' *7 1 . N I ( 0 I N J / . I 1 * * xy 1* ) 0 * 0( : 1* * 0(0 I – 1(* * * ; 1* * 0(0 II – 1(* * * . & 0 (*' /1 * 0N N 2 J . I 1**. ( ) * *) * *(* @N +0 x ( *6* ) J . & * * NK / 0 (*' / H . I *) , * *' : * 0( I – 1(* * * 0( II – 1(* * . & 1 (1 ) 0 ( *' . ( J0 1 * * ( . . A-A, 1 * * @ xz) ( 1* *J ) * 0( HJ I 0 *( 6 / . I: 5 – ) H (* * (e), 6 – ) 1*, (* * (po). R 0 (*' 1**. ( ) * * *(* @N +0 - 3+ *) 6 . I * 0N Nx( *6* ) J . * *' x 1(* /*) * * @ * 0 *( *) * * , ( J / . I, 1*)(*7 * ( * ( * 1. 10.3 10.5. & *' . (( . 10.13) 1* , . @ ) 0 *( H (* 1(** * . *(* @ 1( H (* @M *(* 1(** , * 1(* * )*6* 6*. L( H * *(* @ H (* ( . 197

T . 10.13. / ( *6* ) J * (/ * *' (0 ' 0 *( /. I.

&

* .

. 1*, * I ( )* ( * 70) *( * .

7 J *(* @ H (* ( *' +0, , H (* 0) @ * 1(* * , 6* *(* @ 70) *,( @. & ( ) ' ) J 1* , * 7 J 1( , *) ' 1(* * (* , 1( *' . – , (M NK + , , *) ' 1(*H (* * . 1(* * * * NK 0 (*' * 3 *, ( K 0 I * ' * 0( II, (/ * *' H (* 1(*)* J ) J @ * x. *7( ,* 1(* /*) 1**. ( ) * 7( ( , **, ( J /. I, 1*H * 0 ) J @* H ( . '@ . 6*) ( ( 0 (*' *,) N ( K NK *(* @ ( *' (0 , 1* , * 1. 10.5, . L( +0 = 0.859 ( 1.72 *(* . ( * ( 0 *( *) *. / . I, *) * / 1( ) 60 * . I. L( H * )* J * *7 N) @ 0 * , . *7 0 NK 60 0 7* @M0N, J 0 *( / 60 -

L ( 1 1* @,* 1( ) 1( ( . *7 . *' , * *( *, *J * .

198

(/ * / . N7* * * 1( ) . * 0

I , * *

*6( . N 70)0 @ / * *6 .

-

11 / 11.1.

:

& * (0J NK ( 1( 6 N )(06 )(060. & 1( ) 1 ) N 1* (/ * @ # , 1( 6 @ I (0. 0 , 7 6*) ( 1( J N# , *7( K * (06 * ( * # . * I 1( 6 # N, * ) J * (06 6*. & * * * * . * 1(*( , . 1( J * I ) J0 1 , (* ) )(06 ; * * 01 * * 1( ) N *7*' . . I *7( , 0N (0 0(0, * *( 0K 0 7 6*) ( 6* N. # ,) * * 1 1( 6 N )(06 )(060 *7( ,0N , ,) *I I *1 . L* ) , . , *6* 1( J *7( ,0N 6 , * *( J , . 1( J *7Q ) N 6 . , 6* ) ' 0 *6(* / ( * /, 1*H * 0 1* *1( ) * , " ( ', * 6* ") ( J r r mm R (11.1) F = - G 1 32 R , *) ' ) 0/ , * *( / m1 m2. # * (11.1) . @N * * * , *7*7K 7 N) / 6( I * / , *) ' '. 8( I * 1* * G 7 *1( ) * * *1 1798 6. 8. ) M . * , * (11.1) 7 * *70 * * 7* @M*' ( 7* *' *6 / 0. / 1( ( . ) J ' 7 / . *( 1* ( ) ( J *,) ' , 1*H * 0 1* ) , 0J * . * @( , *J * *1 @ 7 , 1( . &*, *J *, * *1 70) 1(*K @M 70) 1* *)* ) *M 7*. / *)* . ) , /, * *( ' , * *6* *) *1 6* , , N. 1* 1( . 6* . L( )* @, . * @ *,) ' *, * )* J 7 @ 07Q , * *( ' 1( ) ¡. )* J 1* ( ) * 1( @ 0 * , @ 6* .& ) 6 @( , . ) / 07Q * , 1( ( ) . I H+ ( , * *( 6 N 6* NK * , H 1* * * , 6 1( 6 * *. * ( * . *, / , *,) ' 1( )0 N )* / 1*(, *) , / * * ) @ 1(* *( . 0N ( * 0 6* . R * *) * 1( 1* / , * 7 , *) ' 6* , )(06* , N. 1* * 1( ) 6* . L* *6 H (* 6 1* 1( )1* 6 6( I * * 1* . L( ) , N, N 7 , *) ' ,) @ *,) N . *7( , , 1( ( 6( ) 1* I *,) 0. * + , . / , 0(* 7 ( I 0J 1( . , . * 1* * 1( *7*) * ( , 199

* @, 1* 7 * ) *6 * ( . * *7Q 6* ) ( 1(* ( - ( . L( 1* * *7Q 6* 1* *6 H (* 6 1* *, *1(* * *(* ( 1(* ( 6* . J 0* (06 # ,) J # 1 1( @ * , * , * @ *6* * . NK * ( ,0 @ * ( M , ) . , *) ' ) 0/ . *7Q ( , . ' ) 6 @ 6 1* ,, * . 1( )1* 6 @ * , * ( *6* 6* . ) , / , * *(* @N ( 1(* ( 6* , ( *' *(* . ) * 0. , 0. *,) ' )(06 / * . *' 1( * *7 * +*( 6 *6* , *7Q H ( , . . *7( ,* , * (11.1) J) * *7Q * 7* *7* * . #) @ )0 * @, . * 1787 6. L. 1 ( 7* " , *J ( ", J " ( 1* 7 *' / " [99] , , ) J 0 1( M *)0, . * *(* @ 6* * . , * * )* J 100 ( , 1( M @ *(* @ . 6 1* , * * *' *(* 6* 1* ) ) 6 @ *) * ( *. 7* @M0N 0 @ * @ * 1( *7( 1( ( * ( 1( I 1 ( 6 1 . & ** , * * (11.1) , 0 *(7 H 1 * ( . +*( 0 0 (5.3)), 1( I 1 ( I ( . 1( I 7 N) @, * 0. , * . . @N * * , 1*)7 ( @ * , * 6* , * *( 1*, * 7 0. @ 1( I N. ) ,. / 0. 1( ) *J *6* . @N * * , * 1* @,* . (@ [45] )0NK ) : r r r m s mR F = -G + P, (11.2) 3 R r , * *6) ms – * I ;m– ( 0( , P – *, 0K NK ( ( J *,) ' * @ /1 . & 1859 6. . (@ , *6 * . . *0, (0 [45], 1( * ' ( 7* [101] ( . * *6 * (11.2) K 1 ( 6 ( 0( ) 6* 1 : L & #

& (

( y1 ( 0( ( 1 0 1 N 0 * @ * & 6* , *

200

I

) 1* [45] 280.6¢ 83.6¢ 2.6¢ 152.6¢ 7.2¢ 0.1¢ ----526.7¢

&

) 1* [50] 277.856¢ 90.038¢ 2.536¢ 153.584¢ 7.302¢ 0.141¢ 0.042¢ 0.010¢ 531.509¢

& , / ( 0( / *. / 1* 0 (J) ,. * ( . ~ 530EE * * . ~ 40EE * ) ' @ * 7 N) *6* K 1 ( 6 , . * *(*6* 1( *) . )0* @, . * 0 , ( . 43EE , )0 .( , . ' * *' . 1( I 1 ( 6 (* ( ( , 100 , / , . . , 415 (0( / ), )* *. * /*(*M 1(*6 *,* . &*- *( /, H * ( ,0 @ 1* 0. 1( ( M 1( 7 J *' , ) . (11.2), *. *', *6) J)* 0 7 * 0 0 1( ) *@ * * * I , * * J)*' , 1 . * @, ( M 1* * *7Q , ) . *6 / . &- ( @ /, 1 ( ( / *,) ' 0NK / – , 1* *J ( *( / 1 ( ( ( *( ' – , )* *. *' *. *@N, . *7 ) @ 0.M * 1 ) ) J 1( ( M , ) . *6 / . &-. ( /, *6* )(06 / + *(* : *,) ' *6(* *6* * . 7 N) / / , +*( * I , * * * * . * K * )(., * *( *60 0K * 1* @ ( K 1 ( 6 ( 0( . * ( H *, *6 0. ) 6 @( , . 6 1* . , * 6* ) *7Q * ( . . ( *6 *43EE ) K 1 ( 6 ( 0( . ) , /– * *(* @ ( 1(* ( 6* . , *( 1( ) 6 ( ) ** *M ') 6* , * *( , * *(* ) J 0 *( , . * *70 * * * . *' *(* @N ( 1(* ( 6* .R * & 7 ( (2.11) 1*)*7 '. L*- ) * 0, 7* @M , . , / [45] 2 r mm 3 dR 6R d 2 R + 2 F = -G 1 2 1- 2 , (11.3) dt R c c dt 2

) ( M )

L 0 8 (7 (* , ) . ) 0/ 1( K 1 ( 6 :

*107 * 1898 6. [91]. & ( ,0 @ (11.3) * 1* 0. )0NK ( J 3 2

a , (11.4) T 2 c 2 (1 t2 ) * *(* ) ( 0( ( * 41" * .& ( J (11.4) 7 * , * R. /0 [36] . R' M ' 0 [88] M (* * *7 0J) * @ 1916 – 1917 66. [45]. & 1915 6. . R' M ' 1( *) ( J (11.4), * * @ *7K ' *( * * @ * [76]. +*( 0 L. 8 (7 ( (11.3), *) * * 6 1* , * *(* 6* , ( *' *(* . * ( * . * 1* 0. * K (11.4) 7 , * ( . *' * 1 ( 6 ( 0( 39", * * *J @ - 7* )* , @ * , 7* )* , @* * *' *(* 6* . &*-1 ( /, 0K * *' *, 0J 01* , *70 * * 1( 7 J / ( (* ( M , ) . . &*- *( /, 0. * *' *(* 6( I ) K 1 ( 6 41", 7 N) . 527" + 39" = 566", . . 1*( )*

3

T

=

24

201

7* @M . / )* , @ *6*, . * * *(* @ 6* 0 0.M ( ,0 @ . & . 41" ( . ) , ) . ) 0/ . *10 , . * 7 ( M , ) . *6 / * * , * 6* (11.1), * ) ( ,0 @ K 1 ( 6 527" * .# , ) . *6 / 7 ( M * * , * 6* * * *' *(* @N ( 1(* ( , 7 1* 0. ( ,0 @ K 527" + 41" = 568". *6) *J * 7 * 7 0 (J) @, . * * *(* @ 6* , . @ * 0 0.M ( ,0 @ . H , ) . ( M @, * 1( )1* *J * * *' *(* 6* M * *6* * * . 0J * . , *7K ' *( * * @ * 7 ) * *(* @ 6* I @N *,) ) *' *( 1* . ** *M (11.4) * @ *) , * * / )* , @ 1( ) * . & *( )* , @ * * ( 0. , 1(*/*) K 6* 7 , * I , ( @ –0 @M . * 1( 0) 6* * 1( 6 NK 6* I ( . d * * * 0. , *, *) *( * 1* , 6 . 5 9, 1( * *' *(* *,) ' ,( 1(* ( NK *' J *(* @N, * ( *( N ( *'. #) @ 0 I ) . 0 I ". ( *' ) (*'" ( J 7 I ' 1. 9.1. ( 0. *, *J * * @ * 0. , * * , * /. I *(* @ 6* 7 * . . L( 1(*/*J) & ( 1* ) 0 * I 1761 6. / ' * * * ** 7 N) 10. ( M * I 1( /*) & ( ) : "L( 01 & ( , * I , *6) 1 ( ) ' ( ' 1( 7 J @ * . * 0 ( N 7 ... * * * ) *' )* & ( ) ( , *6) 1* ( N * I 101 (@... . * * 1* , , 1( * 0. ' * . / & ( *' * + ( " [31]. # * ) 6 , 1( * )* J * @ . 0 1*( ) 6( )0 . @M 1( * 0. ' )* J * 7 @ * + ( * I .& , H , ( I = 1.75" [26] @ 1*) (J) * 7 N) * * 0. , . 6( I * *6* 1* * I ? L* ( 1( 6* 0) * , ,) *, *J *, *,) ' , @ * *( 07 I , * *( 0, 1* ( ) * * *(*' , ,) 70) , ) @) J , @ 6* . * 0. / *' *7 (0J *. 1* ( . *6 * [26], , ( 1(* ( NK ' J)0 *. 6( I * 1* I *N . * 0 . 0 1 2, , 2 f = f ( 1 - 2 ) /c . (11.5) 8( I * ' 1* I 1* (/ * , ,) = Gm /R , *. 1 s s 7 N) , , 0. ' , ,)*' . * *' f, 70) 2 @ 0. *6) 7 N) @ . * *', 0 @M *' . 0 Rg f =-f . (11.6) 2 Rs

202

' (* *' , ,) ( ) 0 Rs 1( 7 J 6( I * * 0 ( ) 0 0 Rg f = f /2. ( J (11.5) 1( 7 J * 1( ) * ) 7*6* 1* () @ / 1* ' (11.6) )* J * 7 @ f = – f Rg /Rs ), * )* J * 7 @ K 7* 0K * , . * . & 1( ) 1( Rs = Rg . * ( 0 N. ) * * ( XX . 7 ( , ' (* , ,) , ) ) ". ( ) ( " *6* , . *) N . )* @ *, "H 1 ( @ 1*) (J) " ( / H++ * * N * 0. /, / 1(* *,6 M /. J)*6* 0. *6* * )* J 7 @ 6 ) 1( (* 6* * * , 1( ) *7K 0 ( ,0 @ . d ( ' H++ – 6( I * * . J N ) * *' *(* 6* . . *6 0. * *(*' 1* * 20-*6* ( 7* 1* 1* 0 6( I * / * , * . @ 7 ,( ,0 @ *. 8( I * * *7 (0J . , . * 7 N) * K 1 ( 6 ( 0( ( , / *. / 1( ) ( , . . 1( (, ( I , J0( " , . (0 " @N .&. @ * *6* **7K : "... 7 N) 1( I 1 ( 6 ( 0( * 5599.74" * ; , . + ( . * * I , *, 0K ' * *(* 1 )(06 / + *(* (* * 0) * @ *7Q @ 5557.18" , H *' . ( / @N * * *' *( 6* . /*J) 43" * * * 7* @M0N 1(*7 0 ) *( . *' (* * , 6* *7Q R' M ' * ( / * ( 0 +* 1* ) '". #) @ 7 N) . 10 ( , 7* @M 1( J '. *6* J 1*( ) . K * * ( *(7 ( 0( 1850 1950 66.. 1( *) ( 7* [21]: "R * H++ ,. *, I / * 1 ( 6 ' ( 0( 1* *( . M@ 1°33'20" (5600"), 1* , * ( . 5.3 ( . [21]). , H *6* 7 N) *6* 1* *6* 1* *(* *( @N * *J *7Q @ * @ * 1* *(* 1°33'37" (5557") , * . ,7 *. * ) J 1 ( 6 43 0 ) )06 , * ... R' M ' 1* 0. ) *(* 1( I *. * 43" , * – * 0 . 0, * *(0N *6 *7Q @ @N * * *( ." , 7 N) . K ( 5600" * , 566". & . 7 N) *6* K 5600" 1*) (J) J ( @ *. [64]. *6) )0 , . * ( . * 1* @N * * *' *( K * 5557" * , 526.7" 531.5", 1* , * ) 0 *. M 1( ) *' 7 I . *7Q ( /*J) J)0 7 N) ( . * 41" 43" * ( 0 +* *( * * @ * . * ( + , 1* (* *( * * @ * , * 1( ) ' M " ( 0 +" ) @ * 6 07* *6* ( , + , XX . L( ) ' , ) @ 0 , . * / )* , @ * *' *(* 6* . L*H * 0 *1(* * *(* ( 1(*( 6( I * *6* *,) ' * * ( . 1* , 6 .5, ) , *) ' ', ( 1(* ( NK / *6( . *' *(*203

@N 06 * *' 1* 01 ( *) * . / ( *( ' £ , . . 1 ( I ( ' *(70) K @ 1(* ( . R 0 , ) .0 ( M 1( 7* @M*' *(* . ( * ( 1( / *(* / ) J . 7* @M K 1 ( (* *(7 7 / – ( K 1 ( I ( , , 6* ) , * 1 * * *(7 ( K 1(* ( – 1( ) N * *7 ' ( 1*, I 0K * ( , * . *' , *( # , .& ) 0 1864 6. J. (* ( , . * . (* * . *( 01 ) * / H1*/ /*) M (* 0N 1*)) (J 0 *6 / 0. / [18]. 6* * . 0N *(* @ ( 1(* ( , * 7* @M / ( / 1 ( *) / H * *' * *J 1* @ ( K 1 ( 6 M '1 . , H I ( * 1 * * *(7 *70 * * *,) ' )(06 / 1 . 0 @ *' * 1(*7 *6 / , * *( ) 70) ( * ( . 7

11.2.

/

%

*1( ) ) ' @ *' 1( I 1 ( 6 ( 0( *7/*) *7( 7* *6* * / 7 N) '1 **() , * *( , *N *. ( )@, 1*) (J , , . * / *, 0K ' *(7 # ) J * . *' . L*H * 0 ( ,0 @ , * *) *7( 7* ) / 7 N) .& * K ( 1( *) , * , 1 ( 6 1 ( . 1( ( (* * . ' J 6*) 1949 6.), * * *( . @N * (1835 - 1909), * *( ) 1 ( / ( / N )0NK ' ): ( 0( ' – 75o 53E58.91EE + 5599.76EE~ + 1.061EE~ 2 ; & ( – 130 o 09E49.8EE + 5068.99EE~ 3.515EE~ 2 ;

# – 101o13E15EE + 6189.03EE~ + 1.63EE~ 2 + 0.012EE~ 3 , 6) ~ – ( * /, * . * * H1*/ 1900 6. * N) ) *, ' * NK 1( I ( 0( ( 5599.76EE * . 1 (@ ( * ( *' ) 1( I N *J ) @ 0. *(* ( 1(* ( 6* 1( , *) ' ) 0/ . 7 * 1* , * 6 . 4, , H (*) )0 , . * 1( , *) ' /, , K /* *(* * * @ *6* ) J ) 0/ *7Q * , *1( ) ( J (4.58). , ( M 7 ( (3.28) )0 , . * * *,) ' ( 1(* ( * . *' *(* @N. L( )1* 6 M ( , * , *) ' , 1( ( (2.11), (2.12), (11.3) )(., * * @ ( , / 6 1* , /. & 1 I @ *' *7K ' *( * * @ * *1 , *) ' ', * ( *. ** * ( J * ) , 1(* ( *- ( / 1 ( (* , 1* (* * , * / H (*) , , 0J 1* , 1. 4.6, ( , ) . ) 0/ (4.90) *) M 0( ( *( (4.80), (4.82). L*H * 0 1* ) 1( ) N *. * ( M , ) . ) 0/ , , *) '* *( / ( 1(* ( * . *' *(* @N. 204

,0 @ 6( (* 0( * @, 1*. ) 100 ( *( ' 1( ) ( ) 0 / 1*I ( ) * . ( . 5.5 H ( *( ,*7( J I ( , * NK ' 0.1 * *(* ( I (*

( ' *(7 . p

3

K K

' (4.80), (4.82), 0J * . 6 [59], 1 ( *) *(7 / ( *( ' ) L( *J 5. 1( 1 = – 0.7. L( *(* 1 ( ( p = 0.1), , *) 1 ( *) 1 -

o T

1 ( I

3 T = 9 ; 35 ; 296.2 o ** , . K 1 ( I ( ( pc = 0.714 * @( , H * 0. . I , / (06* 0N *(7 0. ( )0 (* * 3 o

)

0 T

o

= 2 ( a – ) = 0.8°. 0 . ( ) ( *( ' 2, 3, 4 1(

o

@M ( ) 0 ( . 11.1 1( )

1*I

T

*-

*. L( 1( ) @ *' *(* 7 * . * . 01* 1( 6 NK I (* 1( 0 . *(* 1(* /*-

R a = 2.482 )* R a = 1 . * * @ *6* 1 ( *) *(7

( * , =

T

/2 ,

(11.7)

T

=2

a

(11.8)

( / ( *( ' 1. * * p 1( ( , / 1 ( *7*, . 1 * , * *( ( ( 1( ) @ *' *(* . L( + (* * * * pc 1 0 @M 1*I ( (* * *(* p 1( p = 0 )* Ra = 1 1( p = pc. L*H * 0 K 1 ( I 7 * . * 0 1 * , * H * 0. *(7 @N, 0 * *(*' 1 ( I ( ' * *' * 0 0 . ) * , ( . 11.1, 0 . 7 * N *' 1 ( I ( 0 . 1( *) *' *' J *(* * 0 . | 1| 0 @M 1( ) @ * , . p. 1*H * 0 *1 0 K ' *7 1 = – 0.7. = – 0.7, *, *J *(7 * * @1 ( *)* 1 T = 1.5, . . , ) ( *) . I 70) * (M @ ( I / *7*(* , ) 0/1 ( *) ,

T . 11.1. * ( T = T /2 ) , 1 ( I ( ( *( ' N 7 I 1 pc

-0.5 0.866

@

@ )* J '( ) 0 , . ( * (0J *-

1( ( , . & ( @ 1 p = pc: -0.7 0.714

/ 1 (

K 1 1 ( I ( *(* pc, 1( (, 1( 1

7

@

1(* ( T

( ) 0 . pc

1*I

(

J 0

1 . .,

*

(

*1( )

H I

1( 7

I ms . *6 1

( ) 0

1*I

(

**

/ 1(* . . * I (

t

Ra = 1 1(

J

p

=

/*) *(* . N 1 ( ( / ( *6*( ( . ( , . @ ( . )0NK / ) * t , 1 ( *) T, (

* (5.14), 1 (

: = – 1/(

Rp

( (

*(

1

+ 1),

. ( ,

(11.10)

(5.15) 70) 2 1 +1 = a .

(11.11)

1

*(* @ ( ( *(

( ,1 (

1 ( I

(

+p /*) G ms

+p =

L*) ) *(7 J

/ ( (* 205

(11.9)

@M

*

(11.12) Rp

p

-0.9 0.435

@ * 1 ( *)

=1 + 1/ k

J 1 1 ( I ( 7 N) 1 ( ( 1 1 ( ( '. H *' ) *, *J ( , 1 ( ( ( *( '. 70) * /* ( 0( : ) 1* 0* a, H

L* 1*) I (

( / 1 *

. L( * *

1(* ( 70)0 7 @ k-1 ( *) ( *( . /. I , k 1 ( *)* 70) * (M @ k + 1 *7*(* , 1* * *( / * * 1(*)* I , *) 1 ( *) J ) J 1* *' J ( *( . T = 2, * . 70) * (M @ ) *7*(* . ( *( 70) 1( ) @ *7*' ) 7 , * (0J * ( , *J *) )(060N *1( NK 6*( ,* @ *' * . ) * , L( *J 5, 0 . | 1| ( ) 0 1*I ( , 0 @M * Ra @ 4 1( 1 = – 0.5 )* Ra = 1 1( 1 = -1. 0 .

7 -0.8 0.6

70)

.

' 1 ( *) *(7 * * *(*

p

-0.6 0.8

& ( 1( @ @ *6* (

*(

p

, 6) T

(

206

Rp 1

=

(

1

1,

(1

( , @. -

.

)

1* 0.

G m s (1 +

*J *

(11.12)

1(

)

0N

*(* @

).

t 2

) a1 c

.

(11.13)

, . 1 ( (* , /*) )0NK ( 0( : 1 = – 0.829, p = 1.96•10-4. ) * , ( . 11.1, 1( / p < 0.3 1 ( *) ( *( ) I 1 * . , . * *I @, . / p, * *( 1( 0K ( 0( N, *, *J *. d 0( ' (4.80), (4.82) 1( /1 ( ( /)

1 ( -

, . T

1(

1( -

* 61*6( M * @, T

H

*6* 1( M NK0N *J ) * ( * ( 1( 7 J * ( M /*) K ' ( ) @ 0N p. # 1 M @

exp

( ) / (c R )]

2 µ1 / c12 R

[1 - h

2

rg = R g /R ;

6)

( .

2 0.5

2 1

3

*

T

*( @

. & 1( ' *

= exp

1-

2 t

(

= e- A ,

(11.14)

)

I , *)

rg

A=

2 t

1

6* rg 1

*,) '

r1

+1

* (

4

(11.128)

*,) ' M (* *6* *1 K I ( @ *(r) 0 m1, ** ( . ( 1( ) 1 * * (11.127) (11.128) , 1 M : Gm1m2 r (11.129) r1 , Fz = r13 6) r1 ¥ r. * @ , * * ( 1( ) 1 * * K M ( ( J ) * 1 ) , * * ( *6* 6* (11.1). * ( 1 (@ 0 *,) ' + ( . *6* * ( ) 0 * r * *' m1, /*) K 0 ( + ( ( . ( . 11.12, ). L(* I * @z, 1 M J , (11.120), * *7( , * :

1

L(*I 1*) 7* @M*'

1( N7* 1* *J * z * * @ * M (* *' , . . * 1( 1* ( ) 0 0 0 (@ + ( . , *) (J K 6* M ( ( ) 0 * r, ( m2 =

) d Fz =

(11.127)

0

)

(11.121)

,

(

(11.123)

K

r 2 dr .

4

*

3/ 2

x = r12 + 1 2r1 , *6) = r12 + 1 7*, . d = - dx/ 2 r1 . L* 1*) * (11.122) 1* 0. 2r12

1( K

r12

r

r

cos( ) = b/R .

= cos (0 ) .

d Fz =

'

R *7

Gm1

0

(r

Gm1dr 1

6) r1 = r1 /r,

Fz =

6( 1

d Fz = 2

* @I 70)

)dr .

2

ddFz = R * 1( )0

*,) '

(

(r1

)d

(11.130) (11.121), . * )

)

. (11.131) 3/ 2 + 1 2r1 6( & ( J (11.122) ) . * (11.131), *) * ,) @ r1 < 1. (11.131) ( M (11.125), * 1( 1*) * 6( . *6* , . = 1 * *(* 6 * 1( r1 < 1, *6 * (11.126), * * 70) ( * (– 1), 6( (11.125) , )* @ *, (11.131) 70) 2 1 r1

dFz = 0 . *7( ,* , + ( . *7* *. * K /*) K0N 0 ( 0. J)*6* + ( . *6* * , * *J 1* * @N ( ) 0 * r ) ( 0N 0 N 0 . I0. , . * H * ( ,0 @ , , ( J *' + ( *,) ' , ( * ( 1 (@ *70 * * *7 K I ( @ *( . * K ( ) 0 r1 Œ r0, *,) ' * @ 70) * r Œ r1. & . *1( ) ( 232

(11.132) *' dr * , *,) ' H * *) 1( ) ) 1* H dr M ( /*) K0N 0 ( 1* * H (* : 0 ( J 0N . I0. 1( J ) J . N7* *, /*) * @ * K * 0 ( / J (11.129), 6) m = m(r1)

K

– M

M ( ( ) 0 * r1. *6) 0 *(

d 2 r1

w=

&

. @

2

r12

dt 1 * * @ K

' *

m(r1 ) = 6) r10 = r1(0) – 1* *J m1 ) . @, . * 1(*I ) J . '* * @ * )(06 /, 1*H * * r1(t) * ( 1* * (11.133) ) . * 0( N( ) ,0 @ ( M * *(*6* 1* (5.27) ( ) J (5.30). L( *(* @ ( , 1 M0 :

r103 2Gm(r1 )

.

4 3

3 0 r10 ,

1 r10

( &, & '

0). 0*) / ( ) 0, ( J @

(11.135)

+ r10 (& + arctg ) +r . ) 2Gm(r1 ) &' *

(11.136)

0) . @, . * , . M ) J ( ) 0 r10 70)0 1(*)* J @ ) 6 @ )* / 1*(, 1* 1(* ,*') / * * I ( @ *' *'. 1 ( * H 1 *J * . @, . * 1 * * @ I ( @*' * ( ( I , ( * *(*' ( ) ' 3 = 5000 6/ . L( H *' 1 * * 1 * * , 1( (1 * * # f ( ) 0 I ( @ *' , * *(*' * * m1, 70)

+ 3m(r1 ) ( + ( & = r10 ) 0 & . r1 f = ) (11.137) )4 f & ) f & * ' * ' 1*) * (11.137) (11.135) (11.136) 0. * (11.134) 1* 0. @ 0N *(* @ ) J m1 1( * * I ( @* ( ) J )* * * : 1/ 3

L* ( )

+r (r10 ) = r10

t =

3 8 G

+r 0

(

r10

8 G 3

)1/ 3

0

+ ) ) *

1/ 3

/

f

dm 2

0N H (6 N 0 K :

2 r

( I

=

16 3

2

r0

16

0

J

(11.138), ( @ * 0

0

.

2 0

G

M (* *' *' *' 0 ( ) 0 * r1f. & ( ,0 @-

0N H (6 N, * *(

1( ( -

1/ 3

+ ) ) *

f 0

1* 0.

Et = dE t dr10 =

J

I

( & & '

1 r104 dr10 .

( ,0 @

2

G 02 r05 15

+ ) ) *

f 0

(11.140)

6( (* ( & & '

1*

0

1/ 3

1 .

(11.141)

&( 1* *' ( I *1( ) 1( 1*) * r10 = r0 ( (11.139). R (6 N Et *J * K , 1 @. ( , 0 I ( @ *6* 3 3 , ( 0N *7 ( I m = 4 ( f rf / 3 = 4 0 r0 / 3 , (11.141) 1 * * @ . ( ,

:

+ r0 ( ) 1& . ) rf & * ' R (6 ( I , ) * , (11.142), 0 . ( *7 r0. ) * 1( r0/rf > 100 ) I ' ( .@ H (6 Et 0J * ( , ( *7 70) , Et =

3Gm 2 5r0

Et = K * I ,* *' 0 ( I * *) 1( 1 )

(11.142) 0 . ( ,*7 / *J * 1( 7@:

3Gm 2 . 5r f

R. 1

L. 1 ( ( 6 1* ,0, *7( ,* @ ( ,0 @ 60K 1 * . H *' * * 8. 8 @ 6* @I . * 0N *( N *7( ,* * I . . . * * * ( J (11.143), )0 ( 7* 0, 1* 0N dm 1* (/ * M ( 6* I (: dA =

Gmdm 2

r.

(11.143) *6 * * *(*' ( * . @ *' 6 * ( , * ' [23] 1( *) 6*

(11.144)

1/ 3

f 0

( & & '

1 ,

+ 3 + arctg ) + r ) 8 G 0 r102 8 G 0 /3 * 0

L*

*

* * 1 ( ) 1 * 0N:

dE t =

(11.134)

' * ( (t = 1(* /*) *76* 0 K 0 ( + ( *', . . m(r1) = const. *6) 0( @ *6* , *) ' ) 0/ 0. ( ) @ 0N *(* @ ) 0 *' . @ *' *(* ( )

2Gm(r1 )r10

*

* , 1*H * 0

. @ K

r1+r

* *(* @N +r, *6 dm = 4 r12f f dr f 1( 7 ,

(11.133)

,) *)

+1 2Gm(r1 ))) * r1

+r (r1 ) = t =

Gm(r1 )

=

1( r = r1 , 1 -

(11.138)

( & . & '

(11.139)

L*

1*) * M ( m, + ( . *6* *7Q dm 6( (* 1* ( ) 0 0 * 0 )* r 1* 0. , . ( 7* , ( *' Et *6 (11.143). & H * *) ,Q , 1* * 1( ) J *7Q I (0. )* @ *, ( 7* 0 *7/*) * , 1 @ Gmdm ddA = dFdr = dr . 2 L*- )

233

234

* 0, H

*. * @

0K

1( r0 >> rf.

* :

& (11.143) /*) ( ) 0 rf – H * * . * ( * )* I ( , 1(*'* 1( 6 *' . I '. & ) ' ( ) 0 * I Rc > rf * *1( 6 ,* 0N *7* *. 0 * I . L( 6 * *) J 7* @M*' *(* @N 1(* * I , . @ 0N 6 07 0. L*H * 0 1 ( ) 0N / . 0N H (6 N I ( @ * 0 0 *7/*) * ( . @ 1* * . *' 6 07 1(* * . rf *1( ) ( ) ' 1* 0. @ ( , 1 * 1 * * @N f, *, (@ (0 1* ) NN, 70) H (6 ( I . J 1( ) ( . * . (1( r10 = r0) *(* @ (11.138), ( (11.139) H (6 ( I (11.142) 1( @ * * I0 ( / ( /: 1) ( ) 0 . @ *' *7 K , ( 0) * *' 7* @M*' 1* 0* *(7 L 0 * (r0 = 1.2•1013 ) ( ) 1 * * @ I ( @ *6* 3 1( ( I ; f = 5000 6/ 2) * . * 1 ( *6* ( 0 . 2 ( , 1 * * @ f; 3) * . * 1 ( *6* ( ( ) 0 *7 ( 1* * ( * )* 7 J 'M ' , ,) -9 ( (r0 = 1.2•1016 ). L* 0. ( ,0 @ ( I * I ) 7 I0: ) )

N 1 2 3 4

#) @ ( )

r0, 1.2•1013 1.2•1013 1.2•1016 1.4•1018

f,

3

6/ 5 000 10 000 5 000 5 000

+r, /c 760 853 760 760

t, 127.7 127.7 4.04•106 5.1•109

E t, J 3.42•1041 4.30•1041 3.42•1041 3.42•1041

t °, C° 4.14•107 5.22•107 4.14•107 4.14•107

, 6/ 3 2.72•10-10 2.72•10-10 2.72•10-19 1.71•10-25

J 1( ) 0 * 1 ( 0( I ( @ *6* 1( 0 * , . * 1 * * @ K ( 1 * * *) : C = 1 /( 6•6( )). ) * , 7 I , H (6 ( I Et )* 6 )* *. * 7* @M*' . . * . *(* @ 1 ) K ( 760 / . & ) ' ( ) * @ * K )* )* J rf = 5.55•108 ( 1 ( * * * + (*' * I ( rs = 6.945•108 ). L*H * 0 ( @ *(* @ 1 ) 70) @M , *) * 1 ( ) H (6 * I0 , * ' . . ( I , (M , 127.7 , ( ) 1 ( 0( 1( 40 6( )0 * . 0 . 1 * * 2( , ( ( 2) f H (6 ( I *,( 1.26 ( , . . 1000 ( , *7 ( I ( ( 3) 1( *) 0 . N ( ( I )* 4 .& 7 I @ K ( 4, * *(* , ) . 1 ( * . @ *' *7 , 1( * *(*' ( I 70) 1(*)* J @ 5 () . 1 * * 0 , 1( ) / ( * )0 , . * ( ( I *J , @M (* / 1( ) /, H (6 ( I ( * ( *' 1* * 7* * ( *'. . . * * * ' [23] 1( *) ( . ( , , * *(* H (6 ( I 70) , 0. * I . L* * , 0. * I L = 3,86•1026 & ( . N * * , ( *6* * . 1 , 1* 0. *6* 235

) I ' , ( I :

*' 1* (/ *

*6)

.

(

, 0.

ts = Et/L = 0,89•1015 c = 28

*

I H (6

-

.

*,( * . *' 1( )1* 6 ( 5 () , * H * 0J * * ) , N. * 0K * / *. * H (6 * I . ) * N *7 * @ , * *( 0. N ( ( *' I ( @ *( . *' 1* * *' , ) . ( I . @ ( I 1(* /*) ( . *, . *, 1* , M ( . 1* 1(*6( "Galactica", 1( *) *7( ,* N I ( 0 (0NK 6* 1* , 0 *(7 K . & ( ,0 @ * * '. I *60 ( @ *(7 @ 0N *(* @ 1( 6 @ I ( @ * , . * ( I 1(* /*) , 127.7 , 1* 0. * ) ( 1, ( 6 )* 6 6*) . & * . *' ( I , * . @: 1 , 10 (* ) 1 K( 0) ( ( ( .& * + (0 # 1( ( * )( N *( , 7* ) , ( 7* (01 *7Q . ) 1 ) +( 6 * * - b0 ( y1 ( 07 ) @ * 0 )* , @ * . & , H ( * ( 0 * , 1( * *( / H (6 * ( *' ( I * I * 1 ) 7 6* ,0. . & ( J (11.138), (11.139) (11.141) 1* 0. ) K , ( 1( ) *6* 1 * * @N 0 *7 ( ) 0 * r0, * *(* *7 ( 0 m. * ( , ) .0, *6) K * ( 1( ) * 1 * * @N 0 1* *7 ( ) 0 * r20 < r0. *6) 1* ( I K , , N. *6* + ( ( ) 0 * r20, I ( @ * * 70)0 * J) @ . I , /*) M ( * r10 > r20. L(*I ( I *1 J ( J , * ** *M (11.141) * r0 70) r10:

Et = R * H (6 L*) ) : t =

( 236

+ ) ) *

2

G 02 r105 15

16

1/ 3

f 0

( & & '

1 .

(11.145)

( I K , , N. *6* + ( r10. (11.138) (11.139), , 1 M ( ( I

3 8 G

0

+ ) ) *

1/ 3

f 0

) , ( * @ * ** *M ( *' 1*

( & & '

+ ) ) *

1/ 3

f 0

( & & '

+ 1 + arctg )) *

)0NK

1/ 3

f 0

( & & '

1

.

(11.146)

( I , * ( , ( *7 , *1( ) 1 * * ': 1 ( * . @ *' * . *'. * * M * *) * ( * 1*)/*)

@ -

0, 6) * )* J * 0 @ I ( @ * , 1(* /*) 6 * *. R * *70 * * , . * 0) . I * I ( *7 *,) ' , )* @ *, 0 *( 0 . N , . 0 . 0 ( 6* *7Q K . , *6 * (11.133), 0. * (11.134) 0 ( / * 0 *( . I . @ * ( ) 0 r01 ( * 4 G 0 w= r01 , (11.147) 3 . . . @ * 0 *( . I 1(*1*(I * @ * 0) N * I ( . & I ( @ *( . *' 1* * 0 (* *,) ' / * @ / . I ( ( 0N . I0 1* 0. 0 (11.129) *,) ' K *7Q ( ) 0 * r10. ) * (* H *6* *7K 6* *,) ' 0K 0N * @ , *) ' , ( ,0 @ * *( / 7 , * ( 1* *J . I 0 ( N )(06 )(060 N . ,. /( . * ( I 1( ( , / * . /. I ( , / +*( / *7 ' ) *, . * ( I . . 1 ( + ( : 1( 07 . *' +*( *7 6 / ) 6* ' *7( ,0N *J I ( ( I . * 1*6 *K N 7* . # , @, *7( ,0N I ( @ * *, * *(* 0 , . )* 6*6* ( ( * @ , * *( * @ 1 ( + ( ,-, *' *(* ) J . ,( @ ( I 1(* /*) 1( ( * * *7Q H (6 ( I , 1 * ) @ / +( 6 /. L*H * 0 1* H (6 ( I 70) 1( M @ . 0, ( . 0N , ) . + ( . *' ( I . d *7 @ * @ * 7* @M H 1( M , *7/*) * 1(* *) @ ) @ 'M . )* 1(*I ( I . L* ( ,0 @ + ( . *' ( I *I ( ) NN *K * @ ( I ) N = Et/t. L( 7* @M / , . / ( f/ 0) ( J ) H (6 (11.145) ( (11.146) 01(*K N :

*6)

( )

1/ 3

G 02 r105 + f ( ) & ) & 15 * 0' *K * @ ( I : 64 2 (0 ,75)5 / 3 N= 15 3 Et B

16

* ( J , 1 m I ( @ *6* , ( , . '1 * * I ) * I

2

, tB

3 32G

5 / 6 1.5 5 / 3 0 G m 1/ 6

.

.

(11.148)

0

(11.149)

* , * * 1 * * *7 0 . @ ' ( ) 0 r10 N. . ( * ( . 1* H *' +*( 0 *K * @ 0 ( N 1 2 3

, 6/ 3 2.72•10-10 2.72•10-19 1.71•10-25

/ ( -

N, & 3.2•1027 1.0•1020 6.9•1014

237

) , *K * @ , 0. * I (L = 3,86 1026 & ) /*) 0 ( ) 1 ,* ( . / *K * ' ( I . * @ ) * I H (6 *6 7 1*1* @ , . ( I , 1( H * 70)0 ( @ , . K , 1* 01 NK 6* 6*. L( *(*( I +r = 760 / 1( * K 6*) LT yr = 4.24 10 22 6/6*) . m yr = 2 0.5+r R * * 0,7% * # . L* *I 1( * *( *6* K # N * 5•107 6/6*) [7]. . @, . * 1* * *( *6* K * . *' *70 * 1( J * I , # N 1*1 ) N M@ *( , * *( 1 ( ( N .

R E2 , * 6*)* *' 1( * .

*( *6*

K

*

I

*J

7

@ *I

*'

m m = 5 10 7 4 rE2 /( R E2 ) = 1.2 1017 6/6*) , 6) rE – ( * # )* * I ; RE – ( ) 0 # . L* 0. . 1 @ 1*( ) * @M *7/*) *' . 1( * ) 1*)) (J 7 @ *' , 0. @ *' 1* *7 * * I . & 1* ( . 1* , N , . * H (6 ( I *J 7 @ )* *. * 7* @M*' 1( *7( ,* * I , * )* *. (1* NK ) 7 N) ) ) 1*)) (J 7 @ * * * 6* 1 * *) (J . 9 ( @ *( . *) @ ( I ) , J , . H (6 ( I *7/*) ) @ 'M )* H *6* 1(*I , . *7 @ 1 ( * . @ , 1 H (6 * I 0 * @ (* @ )(06 / *. * H (6 . ( ' ( ,0 @ , )0NK ' , , ) . * + ( . *' ( I . , (11.135) )0 , . * ( ) @ *(* @ 6 NK 6* ( I rf. K 0 . 1* ( 1( 7 J r1 ( ) 0 0 0J *) * ( * * . , ( ,0 @ , * 1( 6( (* , 1*H * 0 / *J * 1( @ ( , 0 K , 1( ( ,( 0 ( ) 0 * rf. * ,( *(* @ . I 70) 1*). @ , * 0 (11.138), . . J * ( I , * 1* )* J N. I ( * ' r1 > rf / *(* @ 70) *1( ) @ ( J (11.135). L*H * 0 *(* @ . I 0) * I ( ,( 70) 0 @M @ 1( )* J ( ) 0 r = r10 70) ( 0 N. L* 0. ' ( ,0 @ * (M * , 1( ( , K * *) J 1(* ( *) ' 0NK ' 6* *( *, . & *( / ( M ( NK ' & *' "7* @M*6* ,( " *(* @ . I 0) * I ( ,( ( .R *( * * *7Q "1* ( " 6 H++ * *11 ( , *6 * * *(* 0 ( . +*( 0 0 (8.75)) . * 0) NK 6* *. 0 @M . ) , ) * *7Q 1(* *( . , * 1( (*) : 1( . 238

6*

*(* @ 0) NK / *7Q * )* J 1 ) @. "L* ( " *70 * * )(06 1( . .& 7 (*J) ,( * * * ' . @ ( M ( NK ' . & H * 1 1( ) N ( ( 7* ( * 0M )M 6* , J , + *6* (* * *' * * *( * *' & *' [95].

!

/

J 1( ) *1( ) 1* ) . * * , ) 0/: * (0J NK ' ( & (0J NK ' (–. @ 6*, . *

'

* *(

6* *1 ,

NK

,

. * (

0J)

'. * -

. * (0J NK 6* ( – 1* , * * * (0J NK 6* 1 ( , . . 1( ) * . # – 1( ) *7 * (0J NK ( , * *(* 1( (1 0K / , ' * ( . – , , 1( 1* @,* * *(*6* ( ,0 @ ) ' '. * ** 0N 6* ( . & ) *7 . * 1( - * 1( I 1 @ . @, , 6( NK J 0N (* @ 6) *1( ) ' * . 0 – *7 @ . * . *' ) @ * , 1( 1* 0. * /, ' *7 * (0J NK ( . *' *7Q * * (0J NK 6* ( , *)* . **( – *1 . *' ) @ * / ( ,0 @ * . –/ ( ( ,0 , . * @ *7Q * *1( ) ( ,0 @&( *1* , *7Q * , H * *6* (*7Q). &( 0K * , ( J , ,) @ * @ *7Q – * . * I * H * *6* , , H / , N ( ( / *7Q . * ( , *7Q – 1( , * *(*6* H 1 6* , *1( ) * 0 H 10 I 0 H * *6* , . L(* J0 * ( J)0 ) 0 ( , H 1 , *7Q – * . *I * H * *6* , , 1(* ,*M )M / J)0 H H 1 . . * ( – ( ,0 @ ( , ' *7Q * * 7 @ I . , **7( J *6* H * . . * ( 1* @,0 1( *( . * *1 * (0J NK 6* ( . 239

240

& . *7Q ( ) – ( ,0 @ ( 1( *J H * *7Q ; ( J * . * H * * * . * )* ' H *, * *( *J * *J @ *7Q . & . *7Q *1( ) ( / , * 1 (1 ) 0 ( / 1( /, * *( 1* ( 07 , N : ) , M ( * K . , . *7Q *J 7 @ 1( , * ( : * (6 07 ); 6*( ,* :M ( ( * K ); *(* : M (* , )* 6* , .1. & . 1(* J0 J)0 *7Q – ( ,0 @ ( ( , K H * * J)0 *7Q ; ( J * . * H * * / )* '. L(* J0 J)0 *7Q ( 1* 6 N ( / , * 1 (1 ) 0 ( / 1( /. & . 1(* J0 * , N ( * . 1(* J0 * J)0 . L(* ( * – * * 01 * @ *7Q * R * + , . * *1( ) 1(* ( )0 * . @ * * «1(*( *», 1* @,0 * , 1*H, , + )(06 / *7 / . * . *' ) @ * . * – **7( J **() , *. * 1(* ( *(*' 1* *J *. , + (* * ( . . 0 **() )0 ( ( @ * * . *6* 1(* ( 0 1( * ' / , * 1 (1 ) 0 ( / * ' **() , N ) ( * *'. . *' 1(* ( * 1* @,0N ) *( . *6* *1 * (0J NK 6* ( . *) *6* *7Q * * @ * )(06*6* – , *(* @ ) J ( * J)0 , ) I0 ( . *(* @ / ( ( ,0 ) J *7Q 1* * *M N * *(* 0 *7Q 0. ) * J *7Q 1* * *M N * @ ( , *(* . (I @ – **7( J **() , * *( ) J 7 , 0 *( , . . 1* (I . ) J *7Q – , 6* *(* 1* * *M N *( (I @ *' , ) I0 ( 1( 0 * , . * . @ ' * , ( / *(* * 1 ) , , *(* ' ( ( , 7 * . * ' 1(* J0 * ( . *( ) J *7Q / ( ( ,0 6* ) J 7 ,* * @ * )(06 / *7Q * , . . 0 *( @ *7 / ( ( *7Q ( 1( 7( .@ , * @N * 7*( (I @ *' ). R * *' * 0 *( . . L( , ( 0 *( * . / **() ( 1( N ( @ H * ) ( , * (I @ *' 1* @,0 241

*7Q , 1( ( , 1* (/ * @, * *( ' ) J 0 *( *. , ( * 0 *( ( J * 1* * *M N 1* @,* H * . *) *6* *7Q )(06*' – 1* *7 * @ *7Q 1( &*,) ' ) J *(*' *7Q 7* , @ 6* ) J , . . **7K @ 0 *( *(* 0 *7Q 0. *7Q * , *,) ' , * * 0 *( , . . 1* * ) J 1( * ' * ( * ( * (1 ( ' , * / ). *,) ' *) *6* *7Q )(06*' – / ( ( *,) ' , ( J , *' ( @ 6* *7Q , * *( ' 1(* *) ' 0 , *) ' N 1 ( / ) 0/. 1( (, 1(0J , /*) K J)0 * 1( 6 NK ' 6* , *' 1* (/ * @N, 0 @M *N ) 0 . 0 l, * *( / ( ( ,0 0 *,) ' # *. 1( )* @ 0 *( . &, *) ' 0NK N 1(* *1* *J * 1( 0 *( . *,) ' * *M ) 0 , . *) J . N) , , *) ' ) 0/ , * *( 1( *1 , *) ' . * * * 1( ) N , ( 1* . 1(* *1* *J 1* 1( N( ( ', * / ). – * . * H * / , * *( 1( *,) ' , / ( ( ,0 * * *( 0 *( , 1( *) * 0 J , N *' 1(* *) ' 0NK 6* , ( ( * *. 1( (, @ 6 ( # *,) ' 0 *) * 0 *( . ( * 0 * . 0 6 (@, * *( ) +*( (0N 1(0J 0, 1(* *) ' 0NK0N / 1 ) N, 0 J . 0, . * @. , )(06 * ,– * . *H * / , * *( 1( *,) ' , / ( ( ,0 * *) * *' *', 1( *7( N * J 0 *( ,. * *. L( *,) ' H * ( *6( ), * *(* / ( ( ,0 0 *( 1 / 2, , 1(* *) ' 0NK 6* 1( * , ) I0 F 1 @N * ( ). &*,) ' H * ,/ ( ( ,0 * 0 *( w / 2, J *1( ) . *' F = w. &*,) ' w / 2, *1

6(0110 , m H * * , * *(* / ( J *'

( ,0

0 *( -

F = mw. L( ( ,0N 242

*,) ' *) *

/

* 6(0110 , m H 0 *( w, *,) ' F = mw ( *(*' , * /

* * , * *( *( ).

/ (

-

, *1( ) )0 , . * * , * ) *,) ' . 6( I * *' (I * *' . 0 *) /*) ** *1( ) . *J 7 @ * @ * 0 / *7Q * , * *( *J * * , @ *,) ' , . . 0 *( @. d I , 1 NK *,) ' , 1( ( +* * 0, 6( * 0, ' ( * .1. , 1( @ 0 @, . – H * *H++ I ** J)0 *' *,) ' * 6* 0 *( , * *( ' 1* , * * @ * ( , 1( *) * * 1* *,) ' 0 *( @M 0 *( H * . *,) ' * @ . * * , 0 *( , * ( J * )(06 / ) I /. ,@ J)0 *' 0 *( *J 7 @ * @ * ) F = mw )(06*' , * * 0 *( 7 @ *J . # * / N , * 1( (*) , H * ) 1( *6* *) *1 , *) ' . # * / *) * ) N7 / , *) ' '. *60 7 @ , 7 , , 1* *7 *1 , *) ' '. r r 7* F 1( 1 ( K ( * d l – 1(* , ) r r r 1 ( K dl 1(* I N 6* : dA = F d l . L* I @ H (6 , *) ' – . ,( ( 7* *7( , * . . H (6 – 1* * 1(* , ) )( 6* *(* . *,) ' J)0 *) * * H ( ,*R ( . ', ( )– , /*) K ( * *) 0 ) I0 ) . R (* 6 * , *,) , ( J 6 . * –H *1 ( * *,) ' J)*' * ) *' * *. , **(* 1 1* K * )(06* , ( J * 6 . * *. . ' ( ) *7*, . ( 1( ) *'L* – 7* +0 I A 1* 1(* ( *' **() x, y, z * ( t, * *(* , 1 A(x, y, z, t). R (* 6 * 1* – . ' ( ) *7*, . / ( ( H (* 6 *6* *,) ' , 1( ( H ( . *' 1( J * E(x, y, z, t). . ' ( ) *7*, . / ( 8( I * * 1* – ( 6( I * *6* *,) ' , 1( ( ( 1( ) 0 *( , *6* 6* g(x, y, z, t).

243

1(* , (* * * / : ( , 1(* ( *, *(* @, 0 *( , 0, 0 0 * / 0 @. L(* ( *, ( *60 , @* *(* ) J , 1*H * 0 ) *' , * *( * * @ * * @ *M 7 *'. *1( ) @ 1*, ( : @ * (0J NK ' ( @ 6* *1 . 1 1( )0 , * (0J NK ' ( , * M / ( 0J) '. R 1*, I 1*, * 1(* * ( M @ 1(*7 0 ( @ *( , . / *( . / 1( ) '. & , . * 1( )0 * **7( J , ( @ , . . 6* * (0J NK ( . 07 I ' 1 : 1(* ( *, ( , , , H (6 , 1* , H+ (. *J 1 ( /*) @ H (6 N, ( K *. 0K 0 1(* ( *- ( *6* * 00 , ( * ' *6* ( , 7 * « * @M*6* ,( » ( M ( NK ' & *'. 1( M *)0, . * *6 1* (* * ( *' + , N ( *1 * (0J NK 6* ( . L( ) * 7* @M ( 7* 1* 6* 1( N *,) N * *6* *1 . ) ,. * * * 70) 1* (* * 7 ,6 1* , *' * * . ! , . 0 7* @M 70)0 *7( ( @ / 1* *J ', 1* / ) J ) 1* K /. ) )0 N) . * * , * ( , * *(* 1*, * *70 ( @ *N J , @ * *, *, I 0 ( * *1 @ *. 0 ( ,. * ( . 6* 1* 0 *(* 6* *7Q *6*. @ *6* , *6* ( *6*. ) ,. * *( ' * * @ * 0') 7 . * * 1( * (0J NK 6* ( M ' I @N *7K ( * , * ( . J 'M , ) . 1( ) J H * 0 N : 1* 0. (/ * /. I 1 ( * (+ , , . *1 * R. , (+*() . L*- ) * 0, R( , (+*() 207 1* ) ' 0. ', * *( ', 1*)*7 * 0 @N * 0, ( * @ 6 1* . / 1* (* ' 0. ( ,0 @ . *1 ' 1( , 1* @,* @ 7 ,6 1* , ' 1*)/*), * *( ' ,) @ 1 @ 1(*) * ( (* @ 1( ( /( , . / , *) ' '. * ( 6 1* *7 0 *( . I )* (/ * / *(* ' 1( ) 6 70244

)0K + , -H 1 ( *( J 1( *) M *7( K , *107 * * ) 0/ ) ) / 0. / J0( /: 1. Smulsky J.J. Appeal to Physicists-Experimentalists // Apeiron. –1998.– Vol. 5, N.1–2.–P. 107; 2. Smulsky J.J. Appeal to Physicists-Experimentalists // Galilean Electrodynamics.– 1998.– Vol. 9, N.5.–P. 88.

¦

! #

-R J

(/ *(* .

/*.0 1( * *' ', (*

.@ & M *(* . (* *,,( .

*

L 6 !

0 *( / 1( 1 /, *70 *

NH ( /. ' ) )* J / *( ' * *

I )* / @ *-

* ) J0 * *(* , 1( * /*) K *(* @ * @ * ( ,; * + (0 # )( N * . . I * (/ * *(* . 1( , N 1* 0. @ (/ * ) J # . L( ) 6 N *(6 , I 0. 1( @ 0. H *' ( 7* . &* *6 / *(6 , I / *7/*) * , . *7 0 *( @ . I )* (/ * *' *(* 1* 1( ) *J / * / ( 7* / / . L( *7/*) * / H 1 ( *J 7 @ , ) 1 (* NK 0 * . L( ) 6 N J 1* @,* @ ( ,( 7* *' *) ) ( . 0 *( ' ) ( / 1( ( K '. *. ( /. # . 0J # (/ * ) J ? 1. R * * ) J ) J, ,) / ( . 2. R * *K ' (0 1(* * (* ) *' , K # . 3. R * * , / * *6 . 4. R * * I 1 ( 1 ) . * . .

0 @ 1( 1 )0NK . & 1( (*) *7Q * 0K 0N *,) ' )(06 )(06 . R (* 6 , *) ' , * @ ** ( * J)0 , * * /* * @ *' *(* . 1 , *) ' ' 1* (* * , . *7 0( ) , *) ' ' 1*) J / )(06 * * @ * )(06 0( ) , *) ' ' * * @ * ) J0K / 7 *) * . L*H * 0, . *7 0)* *( @ H 1 ( . ) , *7/*) * 1 ( ( 1( 1* * 1( *7( ,* @ 1 ( ( 1( ) J 1* , ( 1( *7( ,* . J , *) ' J)0 ) J0K *1 @ J , * @, * @ , K * *(* / * * @ *6* ) J , * 1( *7( ,* 1(* ( , ( 0J . R * *-1 ( /. &*- *( /, *,) , 0 M @ H+ (* , 1 , 7 0J) 1( )1* 6 , . * * (* *1 , *) ' ', *,) N (, * *(* ( @ 1*) (6 N , ** ( ** *M . ( 1( *7( ,* 1( (/ * *' *(* * @ , * (/ * ) J , 1( . (* ( *6* *1 , *) ' ' N )(06 *1 . ) @ +( 6 *1 ', * * / . *' + , , *107 * ( 7* / 8. . 0/*(0 * * *(* [64], T.G. Barnes * *(* [83], C.W.Lucas,Jr. [102] *6 / )(06 /. 1( (, Oleg D.Jefimenko * ' 6 [98] 1( ) * /*) K ' . a ')0 *) , 1 ,) NK / 1* ', * *( ' *J 1* * @N , @ *( N * * @ * . & ( ,0 @ * / )* ' ( ,( 7* * *' *) *1 , * * ' ( J ) , *) ' ) 0/ ,, K '* ( * *(* J)0 . (/ * ) J 0K 0N 1( (*) : (0 K * ) @ +( 6 6 ) * * 245

246

21. 22. 23.

%

24. 25. 26. 27. 28.

1. 2.

3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

H . ., & CD = . . HC. * ) * * * 76 8H& 0 *( !&R // Proc. Int. Conf. High-Energy Accelerators. CERN, Geneva.– 1971.– P.14– 16. ?Q=C ". HC. R ( . 1* ) *. 10. 1(* * * * H (* * *1 @ / * @I / 9 // Proc. Int. Conf. High-Energy Accelerators. Geneva: CERN, 1971.– P. 298-300. ?G BBD .7. ) * ( 1( . *( / * * // Nuovo Cimento– 1970. A10, N 3.– P. 389-406. ER . . R 1 ( 0 -& * : “d * ) ' @ * ) 1* “H+ ( *6* ( ?”// a J , @.-1982. N 8.– . 85-87. " G ". * @ * @ , 1( ) *( * * @ * // 0J , @.– 1995.– N5.– . 32-37. " ?HDC= ". . *6 . * *1(* (J *( * * @ * .– ( *) (: ( *) (. H 1 ( .I (( , *7( ,* .-1995.– 12 . "C ?>G= ? . . *( , *( , *(* ) .– .: 0 , 1987.– 176 . "C RS? . * ' ,6 ) *( N * * @ * .– ., 1972. D . .R 1 ( @ * * *( * * @ * .– .; .: 8* ,) ., 1928. HD? . ., &HD? .". . ( * * , 0. * . /. I * + ( // cR !.-1954.– N26.– . 405. C TD? ? . . ( ,. / * ) @ / *6 / // .-1988.– N 8. CDH>G= ? . ., UT . . 7 I 6( * , 0 , ( )* 1(* , ) '.,– .: ! , 6 ,, 1962. = ? . ., = =A?= . . (*,) 1* 6 ...– .: * *) 6 () .– 1989.– 269 . =? . . + *( * * @ * / . & @ N , 1989.– 52 . @C G ? . . * . 0. .– ., 1954. D = 7. . &, M (* , * * H ( / . I.– .: * ,) , 1970.– 176 . D?=? ., . . *( 1* .– M.: 8 , 1949. @C T., @C . . ' ) * / H1*/.– .: L(*6( , 1988.–264 . D =?C ?H . *( * * @ * *7*) / * // Gen. Relat. and Gravit.– 1970.– V.I, N 1.– P. 44-62. D?DC= 7. . * ' , +0 ) @ / 1(*7 * *' / .– ( *) (. . ,)- *, 1990.– 176 .

29.

247

248

30. 31.

32. 33. 34. 35. 36. 37. 38.

39. 40. 41.

42. 43. 44.

45.

D D? %. * . (07 J *( * * @ * .– .: (.– 1981.– 352 . . * )* * * ( 7* 1* 0 *( H (* / * I ( // Proc. Int. Conf. High-Energy Accelerators.CERN, Geneva, 1971.– P. 397-402. . .a . ( *) .– .: 8* / / ,) . 6(. * ),– 1932.– 446 . C? . C? . 1( *. 1* ) 0. / ( 7* * J (* .– .: ! , 6 ,, 1968.– 720 . CU . . I * 1( 7 J / . /.– .: 8* / ,) .– 1954.– . 273 . D?HD . ., > E . . *( 1* .– .: 0 , 1973.– 504 . D?HD . ., > E . . 8 )(*) .– * : .: 0 , 1986.– . 131. = ? . . HC. 8 ( *( ( K NK / ( /H (* / * @I *7( , / 60 * // * . .– 1972.\– .204, N 4.– . 840-843. D ? . . , *) ' 1( * * @ * ) J // &*1(* + , : ( N7 ' *' 0. . * +. d. 3.\– d 7 : d R a, 1963.– . 5-45. D ? . . *7Q N “1 ( )* ( ”// &*1(* + , : ( N7 ' *' 0. . * +. d. 3. d 7 :d R a, 1963.– . 65-74. ? . . & ( * I , 7 N) * L (70(6 *' ) 0 ' 26 ) 17616. // ,7( (0) 1* / + , .– .: ,)- * , 1961.– . 343-355. C=?E . . *( H (* * .– .: 8 , 1956. C=?E . ., D? DC= ., 9 ?>G= ? ., ? . L( I 1 * * @ * // .– 1935. D?== . . ( *7* * *( N * * @ * .– .– 1960.– 61 . DG ==? . . & ) (/ * *(* ( ,7 6 * 1* * H ( 6 . / *7Q * // ! .– 1983.– . 140, N 3.– . 612-632. DV 9. / . *( . *-1( . ' *. ( ( , . .-L7.,– 1909. G = .7. 6 ' 1* * 6* 1( *7( ,* .– .: ,)- * .– 1945. = G=C D . ., # HD . . 7 N) . ( * *6* , 0. , *1(**J) NK 6* M (* * + ( * . / 0. ' // cR !, 1955.– . 28: 384. V . ., = D . L(*7 (/ * /. I ( / *( * * @ * . //&i i . 0 - 0. (. +i,.-1970.– N 11.– . 58-63. DC = . . R ( . * 6 , .– .: 0 , 1971.– 448 . =W= E ". . * *( “M ( / ” 1( *7( ,* *( I . ( * , *J . *(6. / .– L( 1(. 86-3.– * * 7 ( , 1986.42 . =W= E ". . * *' *( *, 0 // 0 7 ( .– 1989.– N 22. =W= E ". . *) @ *( I 1( *7( ,* 8 // ). * . J0( . , . 0,* . ! , .– * , 1988.– 10 . 1. & 09.02.88, N 1082– &88. @=H ? E= . ., DC> ? .7. R 1 ( @ * )* 06 * *' , * H++ *11 ( // c0( (0 *' + , . *' .– 1992.– N. 1-12.– . 71-79. A =C . . L ( 6 ' ( 0( . (@ )* R' M ' .– .: (, 1985.– 264 .

46. 47. 48. 49. 50. 51. 52. 53. 54.

55.

56.

57. 58. 59. 60.

61. 62. 63.

64. 65. 66. 67. 68.

DCD?E= . . L ( 1 ( , * / *)* 0 *( //& . 1971.– N.– 11. = =C ? . . . ( * *( * * @ * .– * * 7 ( : * * 7. . ,)- *, 1988.-39 . = =C ? . + ( 1(* @7 ( R' M ' // 0 7 ( .– 1996.– N 47.– . 7. =C@ =? . . d * *) (* *7( ,* 1(* *1 1* # - ( 0( ' // 8 * *6 6 *+ , .– 1996.- .37, N 9.– . 166– 174. D D .! , . 1( I 1 *7K ' *( * * @ * .– ., 1971.– . 74. @= E ? . . L ( )* 7 , I* *( * * @ * .– .: 0 , 1966. C? . . 0( M ' . .2.– .: ! , 6 ,, 1967. . . * *( / *1(* / + , / - 1(*7 * * ( .– N @.– 1988.– 52 .– 1. & 28.02.1989, N 2032-&89. . . 7H ( . / / *1 *,) ' 7 (* ) J0K , ( J ( / 1* // - 1(*7 * * ( .– N @.– 1988.– 59 .– 1. & 26.12. 1988, N 8989-&88. . . L* 0. (/ * /. I/ - 1(*7 * * ( .– N @.– 1990.– 52 .– 1. & 22.08.1990, N 4744&90. . .R 1 ( 0/ ( ( * ' 1*)/*) ( * ( N , *) ' 7 (*) J0K / / - 1(*7 * * ( .– N @.– 1990.– 25 .– 1. & 01.08.1990, N 4411-&90. . . *6) . , 0 *( *, // 0 7 ( .-1990.– N 22. . . H(*) 1(*I /( / ( /. * * 7 ( : 0 , 7. * )1992.– 301 . . . R (* 6 * 6( I * * *,) ' ( ( ( ).– * * 7 ( : & “ 0 ”. 7. ,) . + ( , 1994.– 224 . . . ( *( 1( , *) ' ) 0/ ,, K * * *@ /( * *(* // . *) (* .– 1995.– .7.– N.7.– . 111-125. . . ( ( ( H * *6 ( ,0 // 0 7 ( .– 1995.– N. 36.– . 11. . . * * *( (. // !c.– 1997.– .70.– N.6.– . 979989. V C . ., V C . . V C . . 1 ( *)*(*)*– 6 1*)*7 / * * .– ( : ( . )0 (. - , 1990.– 1. & , 1990, N 5744-&90. V C . ., V C . . V C . . @ '+ , . ' ( 7 , 1 ( )* * .– ( 0 : ( 0 . 8* . - .– 1993.– 168 . D . . * *( H ( . .– M.: ! , 6 ,, 1966. =C =E . . L ( )* *( * * @ * .– , 1966. FB ? . . 7 *( +*( (* ) ' 1 I @ *' *( * * @* // L( I 1 * * @ * .– .: * ,) , 1973.– . 271-330. ! HDGD= . . “# ( @ ' , / ” @ * *. *6* *+* 0 (0NK 6* 10. ( / H (* * , 0 0N *(7 0 // * H (6 .– 1972.– .32, N 5.– .379-382.

249

69. #=>= . . L(*7 ( @ * . *' * ( *' + , .– * : ,- * * . 0 - , 1984.– 257 . 70. #=>= . . *( . *( *( *, // 0 7 ( .– 1989.– N 29. 71. #=>= . . ( @ * 1( I 1 * * @ * .– * : * . 0.. I ( , 1992.– 40 .– L( 1(. 4. 72. # HD . ., = G=C D . ., DE=B ? . ., B ? . . d ( * * , 0. M (* / * + ( / ' * . / 0. ' // (0) J)0 (. * +. 1* * . 0. . .2: b (* * + ( ) 1(*I .– , 1960.– . 48. 73. ;D DQ ? . &. ( “ ( , ” .R' M ' // 0 7 ( .– 1996.– N47.– . 7. 74. ;DB >? . . @ .L. ( : “Sur la concordance doprincipe de relativite d'Einstein // , * *-&*, *6* 1* /. - , 1.1.– 1919.– & 1.1. 75. ; C .7. 1( @ * 1* *( * * @ * // &*1(* + * *+ .– 1961.– N. 5.– . 133-137. 76. 9 ?>G= ? . 7Q ) J 1 ( 6 ( 0( *7K ' *( * *@ * / R' M ' . *7(. 0.. (0)* : & 4 .– .: 0 .– 1965.– . 1.– . 439-447. 77. 9 ?>G= ? . *7( 0. / (0)* : & 4 .– .: 0 .– 1966.– .1. 78. ? > . @ 'M **7( J * + , . *' (1( I 1( *7( ,* ' *( I // ! .– 1957.– . 62, 1. 1.– . 149. 79. ? > .# . + * *+ ) + , . / )* ' // &*1(. + * *+ .– 1958.– N. 4.– . 101. 80. Assis A.K.T. Modern Experiments Related to Weber's Electrodynamics // Proc. Conf. Foundations of Mathematics and Physics. Perugia, 1989 / U. Bartocci and J.P. Wesley (ed.), Benjamin Wesley Publisher. Blumberg, Germany. 1990.– P. 8-22. 81. Assis A.K.T. and Caluzi J.J. A Limitation on Weber's Law // Phys. Lett. A.– 1991.– Vol. 160.– P. 25-30. 82. Assis A.K.T. Acceleration Dependent Forces: Reply to Smulsky// Apeiron.– 1995.– Vol. 2, N.1.– P. 25. 83. Barnes T.G. New Proton and Neutron Models // Creation Res. Soc. Quarterly.– 1980.– Vol. 17. N.1.– P. 42-47. 84. Barnes T.G., Pemper R.R., Armstrong H.L. A Classical Foundations for Electrodynamics // Creation Res. Soc. Quarterly.– 1977.– Vol. 14, June.– P. 38-45. 85. Bergman D.L. Spinning Charged Ring Model of Elementary Particles // Galilean Electrodynamics.– 1991. Vol. 2(2). P. 30-32. 86. Bucherer A.H. Die experimentelle Bestatigung des Relativitats Prinzips // Ann. Phys.– 1909.– Band 28. S. 513. 87. Builder G. Ether and Relativity //Aust. J. Phys.– 1958.– Vol. 11. N. 4.– P. 279-297. 88. Cure J.C. The Perihelic Rotation of Mercury by Newton's Original Method // Galilean Electrodynamics.– 1991.– Vol. 2.– N. 3.– P. 43-47. 89. Fritcius R.S. R -1*6 *K -( (RL ). ! , . I/ * . J)0 (. @N * * *' * +. 22-27 ( 1993 6. E-mail: [email protected] 16 p. 90. Galbraith W., Jelley J.V. **7K * * / 1 M / *. *6* 7 , , / * . / 0. /. //Nature. 1953.– Vol. 171.– P. 349. 91. Gerber P. Die raumliche und reitliche Aubreitung der Gravitation // Z. Math. Phis.– 1898.– Vol. 43.– P. 93-104.

250

92. Hannon R.J. Einstein's 1905.– Derivation of his Transformation of Coordinates and Times // Special Relativity Letters.– 1997.– Vol. 1.– N. 4.-P. 66-72. 93. Hsu J.P.,Hsu L. A Physical Theory Based Solely on the First Postulate of Relativity // Phys. Lett. A.-1994.– N. 196.– P. 1-3. 94. Heaviside Oliver. The Electromagnetic Effects of a Moving Change // The Electrician.– 1888.– N. 22.– P. 147-148. 95. Jaakola T. Equilibrium Cosmology: Progress in New Cosmologies // Proc. XIII Krakov School in Cosmology, Sept. 1992 / Eds. H. Arp, K. Rudnicky and C.R. Keys.– Plenum Publ. Co. 1993. 96. Jefimenko O.D. Electricity and Magnetism.– Star City: Electret Sci. Co. (USA, West Virginia University). 1989.– 597 p. 97. Jefimenko O.D. Causality Electromagnetic Induction and Gravitation.– Star City: Electret Sci. Co. (USA,West Virginia University), 1992.– 180 p. 98. Jefimenko O.D. Electromagnetic Retardation and Theory of Relativity.– Star City: Electret Sci. Co. 1997.– 306 p. 99. Laplace P.C. Mecanique celeste // Courcier, Paris, 1805.– Vol. 4, Livre 10, Chap. 7, Sect. 22. 100. Lee Coe. Galilean-Newton Relativity versus Einsteinian Relativity (Berkeley, California) // Report presentating at the Second Intern. Conf. Problems of Space and Time in Natural Science, Leningrad. 15-22 September, 1991.– P. 1-38. (C . J : c0( 0 *' + , . *' .– 1992.– N. 1-12.– . 48-70). 101. Le Verrier U.J.J. Theorie du mouvement de Mercure // Ann. Observ. imp. Paris (Mem.).– 1859.– N. 5.– P. 1-96. 102. Lucas C.W, Jr, Lucas J.W. Electrodynamics of Real Particles vs. Maxwell's equations, Relativity Theory and Quantum Mechanics // Proc. 1992 Twin-Cities Creation Conference, July 29 to Aug.1, Northwestern College.– P. 243-252. 103. Marinov S. The coordinate Transformations of the Absolute Space-Time Theory // Foundations of Physics.– 1979.– Vol. 9, N. 5/6.– P. 445-460. 104. Marinshek J. Rationale Physik oder Science Fiction?– Graz: Verlag fur die Technische Universität, 1989.– 282 P. 105. Marmet P. Absurdities in Modern Physics: a Solution.– Cap-Saint-Ignace (Quebec): Ateliers Graphiques Marc Veilleux Inc.,– 1993.– 144 p. 106. Mirabel I.F., Rodriguez L.F. Superluminal Motions in our Galaxy // Seventeenth Texas Symp. Relativistic Astronomics and Cosmology: Ann. New York Academy of Sciences, 1995.– Vol. 759.– P. 21– 37. 107. Phipps T.E., Jr. Heretical Varities: Mathematical Themes in Physical Description.– Urbanna: Classic Non-Fiction Library, 1986.– 637 p. 108. Phipps T.E., Jr. Weber-types laws of Action-at-a-Distance in Modern Physics // Apeiron.– 1990.– N. 8.– P. 8-14. 109. Peshchevitskiy B.I. Relativity Theory: Alternativa or Fiasco? //Galilean Electrodynamics.– 1992.– Vol. 3, N. 6.– P. 103-105. 110. Renshaw C. Apparent Superluminal Jets as a Test of Special Relativity // Apeiron.– 1996.– Vol. 3, N. 2.– P. 46-49. 111. Simon R.S., Hall J., Johuston K.J. et al. / (/ * * ) J 1* 1( N I * ( * 0 1 0 ( ) * )( , ( 3 395 // Astrophys. J.– 1988.– Vol. 326, N. 1, Pt. 2.– L5-L8. 112. Smulsky J.J. A New Approach to Electrodynamics and to Theory of Gravitation // What physics for the next century? Prospects for renewal, open problems, "heretical" truths: Proc. Interna. Conf., Ishia, Italy, 29.09– 1.10.1991.– Bologna: Editrice Andromeda, 1992.– P. 336 –344.

251

113. Smulsky J.J. The Main Problem of Modern Physics// Apeiron.– 1992.– N. 14. P. 18. 114. Smulsky J.J. Force Cannot Depend on Acceleration // Apeiron.– 1994.– N. 20.– P. 43-44. 115. Smulsky J.J. The New Approach and Superluminal Particle Production // Physics Essays.– 1994.– Vol. 7, N. 2.– P. 153-166. 116. Smulsky J.J. Yes, Science is Confronted by a Great Revolution // Chinese J. of Systems Engineering and Electronics.– 1994.– Vol. 5, N. 2.– P. 72-76. 117. Smulsky J.J. The "Black Hole": Superstition of the 20-th Century // Apeiron.– 1996.– Vol. 3, N. 1.– P. 22-23. 118. Smulsky J.J. Producing Superluminal Particles //Apeiron.– 1997.– Vol. 4.– N. 2-3.– P. 92-93. 119. Twain M. The Undiscovered Physics.– Menlo Park: Plasmotronics, Inc. Rost Office Box E, 1995. 120. Vermaulen R.C., Tayler G.B. ( K 6 . / ( ) * *.* , NK / ) ) *7Q * (/ * ) J // Astron. J.– 1995.– Vol. 109.– P. 1983-1987. 121. Waldron R.A. Notes on the Form of the Force Law // Physics Essays.– 1991.– Vol. 4, N. 2.– P. 247-248. 122. Wallace B.G. Radar Testing of the Relative Velocity of Light in Space // Spectr. Lett.,– 1969.– N. 2(12).– P. 361-367. 123. Weber W. // Ann. Phys. (Germany) 73 (1848) 193: English translation in Scientific Memoirs / Ed. R. Taylor.– N. Y.: Jonson Reprint Corp., 1966.– Vol. 5.– P. 489. 124. Wesley J.P. Weber Electrodynamics with Fields, Waves, and Absolute Space // Progress in Space-Time Physics.– Blumberg: Benjamin Wesley Publisher, 1987.– P. 193209. 125. Wesley J.P. Selected Topics in Advanced Fundamental Physics.– Blumberg: Benjamin Wesley Publisher, 1991.– 431 p. 126. Xowusu S.X.K. The Confrontation Between Relativity and the Principle of Reciprocal Action // Apeiron, 1993.– Vol. 15.– P. 7-10. 127. Xu Shaozhi and Xu Xiangqun. Systematical Scrutiny into Special Relativity //Chinese J. System Engineering and Electronics.– 1993.– Vol. 4(2).– P. 75-85. 128. Xu Shaozhi, Xu Xiangqun. A New Explanation of the "Mass-Velocity Relation" // Chinese J. of System Engineering and Electronics.– 1994.–N. 5(2).– P. 68-71.

252

C

L( * )* J

T=? = 1 & .

MATHCAD & ! "

% 9

1*1( ( al1

dfin

/*)

al1

bt

.70

/*J) root

bt b

2

h

rn

rn

2 .h .. b

1

2

bt

@ *'

2

1

1

2

1

bt

2

1

bt

0 N

0 .. n

1

rj1

1

0 .. n

j1

ai

h

r0 ri

h

2 2 .al1.bt

al

*(* 1

2 2 bt .exp 2 .al1.bt .

2

z

2

z

vr( z)

1*1( 1

t0

. ln

rn

2

1

bt

2

1

1

bt

bt

1 2 z .vr( z)

t

dfii

ai

1

fii

fii

b

xj1

dfii

1

dt n

tn

( bt )

dfin

1

1

.b 2

2

tn

1

rj1 .cos fij1

y j1

dt n

fin

1

1

fin

dfin

1

rj1 .sin fij1

'

6.2934.10 2.8816.10

2

3.9224.10

2

4.5617.10

2

4.9288.10

2

5.0668.10

2

4.9866.10

2

4.6751.10

2

4.0825.10

2

3.0589.10

2

5.8579.10

4

rn = 1

fij1

b = 1.22 xj1

3.1779.10 1.4797 2.0831 2.5473 2.9455 3.3087 3.6557 4.0028 4.3711 4.805 5.7342 5.7418

al1 bt

al1

P0 , 4

al

Pj1

. rn 1 rn

(*

P0 , 0

y j1 3.1774.10 1.0178 0.91 0.5969 0.2119 0.1846 0.5566 0.8754 1.1081 1.1928 0.6366 0.6287

0.9995

2

Pj1

*) *'

2

2 9.3004.10 0.5118 0.8832 1.0671 1.0945 0.9857 0.7519 0.3936 0.1108 1.0407 1.0455

dfij1

t j1

0 1.4479 0.6034 0.4642 0.3983 0.3631 0.347 0.3471 0.3683 0.4339 0.9292

2 3.1779.10 1.5014 2.1445 2.6609 3.1227 3.5612 3.9971 4.4507 4.9506 5.5625 6.9282 6.9395

7.5999.10

3

1, 0

rj1

1, 4

y j1

# 1 @ ( ,0 @

2

bt

P0 , 5

rn

Pj1 Pj1

*

1, 1 1, 5

2

2

vor j

vor 0

P0 , 6

b Pj1

vor j1 dfij1

L* (* fi0 = 3.1779 10

P0 , 2

Pj1

1, 6

+ ' R_7070.prn

fi

t0 = 3.1779 10

( I

P0 , 1

P0 , 3

1, 2

fij1

vor n Pj1

WRITEPRN( "R_7070.prn" )

6( +

y

j1

*

0

vr rj 0 1

253

254

1.1

1.2

xj1

1,3

t j1

0.05

vor j1

f( z) d z

1 al1

1

.

4

ri ft( z) d z

ai

1 vr( z)

ri dt i

06 * *' **()

ft( z)

1

1 1.022 1.044 1.066 1.088 1.11 1.132 1.154 1.176 1.198 1.22 1.22

2

1

2

(

al1

.

al1

bt = 0.7

!*(

2

1 1

6( (*

rn

vor j

rn

fi0

rn

0

1

2

1

al1

1

f( z)

. @ *' *.

dt i

rj1

bt

& .

1

al1 = 0.7

rn

vor n

(

1* 0.

,0 @

.# )

2

(*

ti

2

1

(*

vor n

, b = 1.21996726

)(06 / 1 (

bt0 = 0.7141

( ) 1

j rj1

al1

& .

*

1 .. n

i

h , rn

bt0

1 b

M 6 h 0. b

ti

(

2

n z

1*I

2 2 bt .exp 2 .al1.bt .

1

& .

(

.70

( ) 0

1

1 (

@ '( ) 0 6( (* ; . * 0. * 6( (* ; 0 1*I ( - * . ' ( ) 0 6( (* J *, , ( . ,0 * ( @ *' *(* .

1)

acos

0 . rn 1.00001 - * n 10 b 1.21996 - ( ) 1( 7 ( )

1*I

1(

1

0

1

P

. 1

L(

*J

2 Rr

! # #

# ! *

#

! !

Al1 = 1, Bt = p; Btc = pc = (1 - 12)0.5; 0 Btc0 = pc0 = (1 – ( 10)2)0.5; Bto = t0; Br0 = r0; Al10 = 1 ; 2 Al = = 2 1 p ; Tcl = t cl ; ficl = cl; Racl =. R acl = Racl/Rp. ) * «cl» *7*, . 1 ( ( . *' ( *( : * *) 6 1 (7* . *' 1 ( 7* . *' ( 1 >= -0.5) cl t cl - 06* @ * ( 1( * . / , . / Rr; ) H 1 . / *(7 ( 1 < -0.5) cl , t cl R acl - 06* , ( * * @ '( ) 0 1*I ( . Rr = R/Rp ; Vor = + r = +r/+p ; Vor0 = + r0 = +r/+t0; Fi = ; X = x/Rp; Y = y/Rp ; dFi = ; *( ' Bt = Btc J ' 1( ) 6( (* * ( ( *( ' ** 0N * ( ( ' /( . / *. [59]. Rr

Vor

Fi 1. L(

X J

Y (Al1 < 0)

T = t = t vp /Rp . ( 1.001. *( ' 7 I /, . dFi

T

1.1. Al1 = var 1.1.1. Al1 = -.1 1.1.1.1. Al1 = -.100 Bt = .100 Btc = .995 Al = -.002 Ficl = 1.681 Tcl = .1117E+04 .1000E+04 .8950E+00 .1680E+01-.1085E+03 .9941E+03 .1228E-03 .1117E+04 1.1.1.2. Al1 = -.100 Bt = .300 Btc = .995 Al = -.018 Ficl = 1.681 Tcl = .1117E+04 .1000E+04 .8990E+00 .1681E+01-.1095E+03 .9940E+03 .1223E-03 .1112E+04 1.1.1.3. Al1 = -.100 Bt = .500 Btc = .995 Al = -.050 Ficl = 1.681 Tcl = .1117E+04 .1000E+04 .9070E+00 .1683E+01-.1125E+03 .9937E+03 .1212E-03 .1102E+04 1.1.1.4. Al1 = -.100 Bt = .700 Btc = .995 Al = -.098 Ficl = 1.681 Tcl = .1117E+04 .1000E+04 .9200E+00 .1685E+01-.1144E+03 .9934E+03 .1194E-03 .1086E+04 1.1.1.5. Al1 = -.100 Bt = .900 Btc = .995 Al = -.162 Ficl = 1.681 Tcl = .1117E+04 .1000E+04 .9460E+00 .1693E+01-.1223E+03 .9925E+03 .1162E-03 .1057E+04 1.1.1.6. Al1 = -.100 Bt = .995 Btc = .995 Al = -.198 Ficl = 1.681 Tcl = .1117E+04 .1000E+01 .0000E+00 .1000E+04 .9680E+00 .1828E+01-.2547E+03 .9670E+03 .1135E-03 .1033E+04 1.1.2. AL1 = -0.2 1.1.2.1. Al1 = -.200 Bt = .100 Btc = .980

255

Fi

X

Y

L( * )* J dFi

1( T

Al = -.004 Ficl = 1.822 Tcl = .1288E+04 .1000E+04 .7760E+00 .1822E+01-.2485E+03 .9686E+03 .1417E-03 .1287E+04 1.1.2.2. Al1 = -.200 Bt = .300 Btc = .980 Al = -.036 Ficl = 1.822 Tcl = .1288E+04 .1000E+04 .7820E+00 .1825E+01-.2513E+03 .9679E+03 .1405E-03 .1277E+04 1.1.2.3. Al1 = -.200 Bt = .500 Btc = .980 Al = -.100 Ficl = 1.822 Tcl = .1288E+04 .1000E+04 .7960E+00 .1829E+01-.2552E+03 .9669E+03 .1381E-03 .1255E+04 1.1.2.4. Al1 = -.200 Bt = .700 Btc = .980 Al = -.196 Ficl = 1.822 Tcl = .1288E+04 1000E+04 .8190E+00 .1839E+01-.2648E+03 .9643E+03 .1341E-03 .1219E+04 1.1.2.5. Al1 = -.200 Bt = .900 Btc = .980 Al = -.324 Ficl = 1.822 Tcl = .1288E+04 .1000E+04 .8610E+00 .1890E+01-.3135E+03 .9496E+03 .1276E-03 .1161E+04 1.1.2.6. Al1 = -.200 Bt = .980 Btc = .980 Al = -.384 Ficl = 1.822 Tcl = .1288E+04 .1000E+01 .0000E+00 .1000E+04 .8700E+00 .2412E+01-.7452E+03 .6669E+03 .1262E-03 .1149E+04 1.1.3. AL1 = -.3 1.1.3.1. Al1 = -.300 Bt = .100 Btc = .954 Al = -.006 Ficl = 2.012 Tcl = .1574E+04 .1000E+04 .6340E+00 .2011E+01-.4264E+03 .9045E+03 .1733E-03 .1572E+04 1.1.3.2. Al1 = -.300 Bt = .300 Btc = .954 Al = -.054 Ficl = 2.012 Tcl = .1574E+04 .1000E+04 .6420E+00 .2017E+01-.4318E+03 .9020E+03 .1712E-03 .1553E+04 1.1.3.3. Al1 = -.300 Bt = .500 Btc = .954 Al = -.150 Ficl = 2.012 Tcl = .1574E+04 .1000E+04 .6580E+00 .2028E+01-.4416E+03 .8972E+03 .1669E-03 .1515E+04 1.1.3.4. Al1 = -.300 Bt = .700 Btc = .954 Al = -.294 Ficl = 2.012 Tcl = .1574E+04 .1000E+04 .6860E+00 .2061E+01-.4709E+03 .8822E+03 .1602E-03 .1455E+04 1.1.3.5. Al1 = -.300 Bt = .900 Btc = .954 Al = -.486 Ficl = 2.012 Tcl = .1574E+04 .1000E+04 .7210E+00 .2259E+01-.6352E+03 .7724E+03 .1524E-03 .1385E+04 1.1.3.6. Al1 = -.300 Bt = .930 Btc = .954 Al = -.519 Ficl = 2.012 Tcl = .1574E+04 .1000E+04 .7180E+00 .2438E+01-.7625E+03 .6469E+03 .1530E-03 .1391E+04 1.1.3.7. Al1 = -.300 Bt = .954 Btc = .954 Al = -.546 Ficl = 2.012 Tcl = .1574E+04 .1000E+01 .0000E+00 .1000E+04 .6990E+00 .3238E+01-.9953E+03-.9635E+02 .1572E-03 .1429E+04 1.1.3.8. Al10 = -.300 Bt0 = .960 Btc0 = .954 Br0 = .100 Al = -.576 Al1 = -.288 Ficl = 1.844 Tcl = .1416E+02 .1042E+02 .7540E+00 .2413E+01-.7772E+01 .6936E+01 .1300E-01 .1465E+02 1.1.3.9. Al10 = -.300 Bt0 = .960 Btc0 = .954 Br0 = .200 Al = -.576 Al1 = -.288 Ficl = 1.844 Tcl = .1416E+02 .1042E+02 .8890E+00 .1785E+01-.2214E+01 .1018E+02 .1100E-01 .1215E+02 1.1.3.10. Al10 = -.300 Bt0 = .960 Btc0 = .954 Br0 = .250 Al = -.576 Al1 = -.288 Ficl = 1.844 Tcl = .1416E+02 .1042E+02 .9790E+00 .1575E+01-.4379E-01 .1042E+02 .1000E-01 .1100E+02 1.1.3.11. A10 = -.300 Bt0 = .960 Btc0 = .954 Br0 = .280 Al = -.576 Al1 = -.288 Ficl = 1.844 Tcl = .1416E+02 .1042E+02 .1037E+01 .1476E+01 .9860E+00 .1037E+02 .1000E-01 .1037E+02 1.1.3.12. Al10 = -.300 Bt0 = .970 Btc0 = .954 Br0 = .100 Al = -.582 Al1 = -.291 Ficl = 1.848 Tcl = .1406E+02 .1031E+02 .7420E+00 .2413E+01-.7692E+01 .6864E+01 .1300E-01 .1458E+02 1.1.3.13. Al10 = -.300 Bt0 = .970 Btc0 = .954 Br0 = .200

*7*, .

(

Vor

256

. 2

Rr

Vor

Fi

X

Y

L( * )* J dFi

1(

. 2

T

Rr

Al = -.582 Al1 = -.291 Ficl = 1.848 Tcl = .1406E+02 .1031E+02 .9260E+00 .1666E+01-.9800E+00 .1026E+02 .1100E-01 .1246E+02 1.1.3.14. Al10 = -.300 Bt0 = .970 Btc0 = .954 Br0 = .243 Al = -.582 Al1 = -.291 Ficl = 1.848 Tcl = .1406E+02 .1031E+02 .1026E+01 .1473E+01 .1007E+01 .1026E+02 .1000E-01 .1026E+02 1.1.3.15. Al10 = -.300 Bt0 = .980 Btc0 = .954 Br0 = .100 Al = -.588 Al1 = -.294 Ficl = 1.852 Tcl = .1397E+02 .1020E+02 .7110E+00 .2603E+01-.8760E+01 .5234E+01 .1400E-01 .1503E+02 1.1.3.16. Al10 = -.300 Bt0 = .980 Btc0 = .954 Br0 = .199 Al = -.588 Al1 = -.294 Ficl = 1.852 Tcl = .1397E+02 .1020E+02 .1015E+01 .1467E+01 .1057E+01 .1015E+02 .1000E-01 .1015E+02 1.1.3.17. Al10 = -.300 Bt0 = .987 Btc0 = .954 Br0 = .100 Al = -.592 Al1 = -.296 Ficl = .332 Tcl = .3410E+00 .1040E+01 .3000E-02 .7190E+00 .7822E+00 .6847E+00 .1690E+00 .7545E+00 1.1.3.18. Al10 = -.300 Bt0 = .987 Btc0 = .954 Br0 = .161 Al = -.592 Al1 = -.296 Ficl = 1.855 Tcl = .1391E+02 .1013E+02 .1008E+01 .1471E+01 .1009E+01 .1008E+02 .1000E-01 .1008E+02 1.1.4. Al1 = -.4 1.1.4.1. Al1 = -.400 Bt = .100 Btc = .917 Al = -.008 Ficl = 2.298 Tcl = .2211E+04 .1000E+04 .4490E+00 .2279E+01-.6506E+03 .7594E+03 .2447E-03 .2207E+04 1.1.4.2. Al1 = -.400 Bt = .300 Btc = .917 Al = -.072 Ficl = 2.298 Tcl = .2211E+04 .1000E+04 .4560E+00 .2311E+01-.6745E+03 .7382E+03 .2408E-03 .1959E+04 1.1.4.3. Al1 = -.400 Bt = .500 Btc = .917 Al = -.200 Ficl = 2.298 Tcl = .2211E+04 .1000E+04 .4710E+00 .2341E+01-.6963E+03 .7177E+03 .2335E-03 .2109E+04 1.1.4.4. Al1 = -.400 Bt = .700 Btc = .917 Al = -.392 Ficl = 2.298 Tcl = .2211E+04 .1000E+04 .4890E+00 .2434E+01-.7599E+03 .6500E+03 .2245E-03 .2050E+04 1.1.4.5. Al1 = -.400 Bt = .900 Btc = .917 Al = -.648 Ficl = 2.298 Tcl = .2211E+04 .1000E+04 .4450E+00 .3333E+01-.9817E+03-.1904E+03 .2469E-03 .2231E+04 1.1.4.6. Al1 = -.400 Bt = .917 Btc = .917 Al = -.673 Ficl = 2.298 Tcl = .2211E+04 .1000E+01 .0000E+00 .1000E+04 .4110E+00 .4512E+01-.1987E+03-.9801E+03 .2671E-03 .2412E+04 1.1.4.7. Al10 = -.400 Bt0 = .960 Btc0 = .917 Br0 = .200 Al = -.768 Al1 = -.384 Ficl = 2.242 Tcl = .2144E+04 .1042E+04 .7110E+00 .2142E+01-.5632E+03 .8763E+03 .1545E-03 .1523E+04 1.1.5. Al10 = -.498 1.1.5.1. Al10 = -.498 Bt0 = .500 Btc0 = .867 Br0 = .800 Al = -.498 Al1 = -.249 Ficl = 1.902 Tcl = .2791E+03 .2000E+03 .1848E+01 .1742E+01-.3407E+02 .1971E+03 .5352E-03 .2308E+03 1.1.5.2. Al10 = -.498 Bt0 = .930 Btc0 = .867 Br0 = .100 Al = -.926 Al1 = -.463 Ficl = .599 Tcl = .6400E+00 .1103E+01 .8979E-03 .1044E+01 .5547E+00 .9537E+00 .1490E+00 .3501E+01 1.1.5.3. Al10 = -.498 Bt0 = .930 Btc0 = .867 Br0 = .120 Al = -.926 Al1 = -.463 Ficl = .674 Tcl = .7340E+00 .1133E+01 .8174E-03 .1433E+01 .1557E+00 .1123E+01 .2890E+00 .1688E+01 1.1.5.4. Al10 = -.498 Bt0 = .930 Btc0 = .867 Br0 = .128 Al = -.926 Al1 = -.463 Ficl = .765 Tcl = .8550E+00 .1176E+01 .8828E-03 .2366E+01-.8399E+00 .8236E+00 .6650E+00 .4139E+01 1.1.5.5. Al10 = -.498 Bt0 = .930 Btc0 = .867 Br0 = .129 Al = -.926 Al1 = -.463 Ficl = 1.811 Tcl = .4384E+01 .2981E+01 .5892E-03 .9652E+01-.2904E+01-.6715E+00 .5450E+00 .2434E+02 1.1.5.6. Al10 = -.498 Bt0 = .930 Btc0 = .867 Br0 = .130

Vor

Fi

X

Y

L( * )* J dFi

1( T

Al = -.926 Al1 = -.463 Ficl = 1.822 Tcl = .4488E+01 .3035E+01 .9198E-03 .7565E+01 .8650E+00 .2910E+01 .5320E+00 .2150E+02 1.1.5.7. Al10 = -.498 Bt0 = .930 Btc0 = .867 Br0 = .200 Al = -.926 Al1 = -.463 Ficl = 2.611 Tcl = .3961E+06 .1172E+04 .1420E+00 .3420E+01-.1127E+04-.3221E+03 .7300E-01 .1076E+05 1.1.6. Al1 = -.5 1.1.6.1. Al1 = -.500 Bt = .100 Btc = .866 Al = -.010 Ficl = 3.137 Tcl = .7354E+08 .2300E+06 .3434E-03 .3145E+01-.2300E+06-.8302E+03 .8335E-03 .1429E+09 1.1.6.2. Al1 = -.500 Bt = .300 Btc = .866 Al = -.090 Ficl = 3.102 Tcl = .8691E+05 .2570E+04 .7453E-03 .3180E+01-.2568E+04-.9868E+02 .1100E-01 .1802E+06 1.1.6.3. Al1 = -.500 Bt = .500 Btc = .866 Al = -.250 Ficl = 3.015 Tcl = .2651E+04 2500E+03 .3000E-03 .3260E+01-.2482E+03-.2953E+02 .3500E-01 .5842E+04 1.1.6.4. Al1 = -.500 Bt = .700 Btc = .866 Al = -.490 Ficl = 2.831 Tcl = .1577E+03 .3728E+02 .1000E-02 .3502E+01-.3488E+02-.1315E+02 .9200E-01 .3700E+03 1.1.6.5. Al1 = -.500 Bt = .800 Btc = .866 Al = -.640 Ficl = 2.583 Tcl = .3524E+02 .1316E+02 .0000E+00 .3915E+01-.9417E+01-.9194E+01 .7000E-02 .8627E+02 1.1.6.6. Al1 = -.500 Bt = .866 Btc = .866 Al = -.750 Ficl = 2.257 Tcl = .1049E+02 .1000E+01 .0000E+00 .5456E+01 .0000E+00 .6695E+01 .5000E+01 .2184E+01 .5000E-01 .3193E+02 1.1.6.7. Al10 = -.500 Bt0 = .900 Btc0 = .866 Br0 = .200 Al = -.900 Al1 = -.450 Ficl = 2.529 Tcl = .3503E+05 .1111E+06 .2170E+00 .3268E+01-.1102E+06-.1399E+05 .5111E-04 .1010E+06 1.1.7. Al1 = -.6 1.1.7.1. Al1 = -.600 Bt = .100 Btc = .800 Al = -.012 Ficl = 3.142 Tcl = .2107E+02 Racl = .5000E+01 .4969E+01 .0000E+00 .3146E+01-.4969E+01-.2190E-01 .1000E-01 .2101E+02 1.1.7.2. Al1 = -.600 Bt = .300 Btc = .800 Al = -.108 Ficl = 3.142 Tcl = .2107E+02 Racl = .5000E+01 .4712E+01 .0000E+00 .3197E+01-.4705E+01-.2609E+00 .8000E-02 .1968E+02 1.1.7.3. Al1 = -.600 Bt = .500 Btc = .800 Al = -.300 Ficl = 3.142 Tcl = .2107E+02 Racl = .5000E+01 .4100E+01 .0000E+00 .3341E+01-.4019E+01-.8122E+00 .1700E-01 .1694E+02 1.1.7.4. Al1 = -.600 Bt = .700 Btc = .800 Al = -.588 Ficl = 3.142 Tcl = .2107E+02 Racl = .5000E+01 .2867E+01 .0000E+00 .3858E+01-.2162E+01-.1883E+01 .1600E-01 .1205E+02 1.1.7.5. Al1 = -.600 Bt = .800 Btc = .800 Al = -.768 Ficl = 3.142 Tcl = .2107E+02 Racl = .5000E+01 .1000E+01 .0000E+00 .1762E+01 .5518E-03 .9063E+01-.1648E+01 .6236E+00 .7020E+00 .1329E+02 1.1.8. Al1 = -.7 1.1.8.1. Al1 = -.700 Bt = .100 Btc = .714 Al = -.014 Ficl = 3.142 Tcl = .8693E+01 Racl = .2500E+01 .2482E+01 .0000E+00 .3148E+01-.2482E+01-.1590E-01 .2000E-01 .8632E+01 1.1.8.2. Al1 = -.700 Bt = .300 Btc = .714 Al = -.126 Ficl = 3.142 Tcl = .8693E+01 Racl = .2500E+01 .2334E+01 .0000E+00 .3220E+01-.2327E+01-.1828E+00 .2100E-01 .8172E+01 1.1.8.3. Al1 = -.700 Bt = .500 Btc = .714 Al = -.350 Ficl = 3.142 Tcl = .8693E+01 Racl = .2500E+01 .1991E+01 .0000E+00 .3446E+01-.1899E+01-.5968E+00 .1700E-01 .7203E+01 1.1.8.4. Al1 = -.700 Bt = .700 Btc = .714 Al = -.686 Ficl = 3.142 Tcl = .8693E+01 Racl = .2500E+01

257

258

. 2

Rr

Vor

Fi

X

Y

L( * )* J dFi

1(

. 2

T

Rr

.1220E+01 .0000E+00 .5726E+01 .1035E+01-.6451E+00 .2600E-01 .6914E+01 1.1.8.5. Al1 = -.700 Bt = .714 Btc = .714 Al = -.714 Ficl = 3.142 Tcl = .8693E+01 Racl = .2500E+01 .1000E+01 .0000E+00 .1031E+01 .1925E-03 .2338E+02-.1845E+00-.1014E+01 .2877E+01 .2404E+02 1.1.8.6. Al10 = -.700 Bt0 = .800 Btc0 = .714 Br0 = .400 Al =-1.120 Al1 = -.560 Ficl = 3.142 Tcl = .4232E+02 Racl = .8333E+01 .1125E+05 .4140E+00 .2439E+01-.8586E+04 .7271E+04 .3350E-04 .3765E+05 1.1.9. Al1 = -.707 1.1.9.1. Al1 = -.707 Bt = .707 Btc = .707 Al = -.707 Ficl = 3.142 Tcl = .8338E+01 Racl = .2415E+01 Rn = 1.0001 Ra = 1.00045 .1000E+01 .0000E+00 .1000E+01 .0000E+00 .1061E+03 .7596E+00-.6504E+00 .9882E-04 .1062E+03 1.1.10. Al1 = -.8 1.1.10.1. Al1 = -.800 Bt = .100 Btc = .436 Al = -.016 Ficl = 3.142 Tcl = .5408E+01 Racl = .1667E+01 .1653E+01 .0000E+00 .3151E+01-.1653E+01-.1555E-01 .3000E-01 .5373E+01 1.1.10.2 Al1 = -.800 Bt = .300 Btc = .600 Al = -.144 Ficl = 3.142 Tcl = .5408E+01 Racl = .1667E+01 .1540E+01 .0000E+00 .3243E+01-.1532E+01-.1559E+00 .2800E-01 .5112E+01 1.1.10.3. Al1 = -.800 Bt = .500 Btc = .600 Al = -.400 Ficl = 3.142 Tcl = .5408E+01 Racl = .1667E+01 .1270E+01 .0000E+00 .3601E+01-.1138E+01-.5631E+00 .5700E-01 .4616E+01 1.1.10.4. Al1 = -.800 Bt = .599 Btc = .600 Al = -.574 Ficl = 3.142 Tcl = .8338E+01 Racl = .2415E+01 Rn = 1.001 Ra = 1.0042 .1004E+01 .0000E+00 .4366E+01-.3409E+00-.9444E+00 .2100E-01 .4362E+01 1.1.11. Al1 = -.9 1.1.11.1. Al1 = -.900 Bt = .100 Btc = .436 Al = -.018 Ficl = 3.142 Tcl = .3951E+01 Racl = .1250E+01 .1239E+01 .0000E+00 .3151E+01-.1239E+01-.1166E-01 .3100E-01 .3929E+01 1.1.11.2. Al1 = -.900 Bt = .300 Btc = .436 Al = -.162 Ficl = 3.142 Tcl = .3951E+01 Racl = .1250E+01 .1142E+01 .0000E+00 .3280E+01-.1131E+01-.1576E+00 .2700E-01 .3764E+01 1.1.11.3. Al1 = -.900 Bt = .400 Btc = .436 Al = -.288 Ficl = 3.142 Tcl = .3951E+01 Racl = .1250E+01 Rn = 1.001 Ra = 1.0462 .1046E+01 .0000E+00 .3411E+01-.1008E+01-.2784E+00 .2400E-01 .3565E+01 1.1.11.4. Al1 = -.900 Bt = .435 Btc = .436 Al = -.341 Ficl = 3.142 Tcl = .3951E+01 Racl = .1250E+01 Rn = 1.001 Ra = 1.00124 .1001E+01 .0000E+00 .2925E+01-.9776E+00 .2151E+00 .1300E-01 .2915E+01 1.1.11.5. Al10 = -.900 Bt0 = .600 Btc0 = .436 Br0 = .500 Al =-1.080 Al1 = -.540 Ficl = 3.142 Tcl = .7497E+02 Racl = .1250E+02 .1667E+05 .5850E+00 .2455E+01-.1289E+05 .1057E+05 .1896E-04 .4741E+05 1.2. Al = -0.3 = const 1.2.1. Al1 = -.900 Bt = .408 Btc = .436 Al = -.300 Ficl = 3.142 Tcl = .3951E+01 Racl = .1250E+01 .1036E+01 .0000E+00 .3315E+01-.1020E+01-.1788E+00 .1060E+00 .3426E+01 1.2.2. Al1 = -.700 Bt = .463 Btc = .714 Al = -.300 Ficl = 3.142 Tcl = .8693E+01 Racl = .2500E+01 .2074E+01 .0000E+00 .3377E+01-.2017E+01-.4837E+00 .1200E-01 .7417E+01 1.2.3. Al1 = -.500 Bt = .548 Btc = .866 Al = -.300 Ficl = 2.982 Tcl = .1324E+04 .1570E+03 .0000E+00 .3301E+01-.1550E+03-.2485E+02 .5679E-03 .3123E+04 1.2.4. Al1 = -.497 Bt = .550 Btc = .868

Vor

Fi

X

Y

* . dFi

1( T

Al = -.301 Ficl = 2.889 Tcl = .5838E+03 .1000E+03 .1030E+00 .3095E+01-.9989E+02 .4658E+01 .9000E-02 .6656E+03 1.2.5. Al1 = -.300 Bt = .707 Btc = .954 Al = -.300 Ficl = 1.998 Tcl = .1536E+03 .1000E+03 .6900E+00 .2050E+01-.4611E+02 .8874E+02 .1000E-02 .1430E+03 1.2.6. Al1 = -.200 Bt = .866 Btc = .980 Al = -.300 Ficl = 1.811 Tcl = .1274E+03 .1000E+03 .8530E+00 .1861E+01-.2861E+02 .9582E+02 .1000E-02 .1169E+03 1.2.7. Al1 = -.180 Bt = .913 Btc = .984 Al = -.300 Ficl = 1.780 Tcl = .1236E+03 .1000E+03 .8860E+00 .1786E+01-.2135E+02 .9769E+02 .1000E-02 .1128E+03 1.2.8. Al1 = -.154 Bt = .988 Btc = .988 Al = -.301 Ficl = 1.742 Tcl = .1191E+03 .1000E+01 .0000E+00 .1000E+03 .9240E+00 .2105E+01-.5092E+02 .8607E+02 .1000E-02 .1086E+03 1.2.9. Al10 = -.152 Bt0 = .992 Btc0 = .988 Br0 = .100 Al = -.302 Al1 = -.151 Ficl = 1.751 Tcl = .1208E+05 .1008E+05 .9760E+00 .1698E+01-.1278E+04 .9999E+04 .1138E-04 .1042E+05 1.2.10. Al1 = -.150 Bt = 1.000 Btc = .989 Al = -.300 Ficl = 1.736 Tcl = .1185E+03 .1000E+03 .1000E+01 .1562E+01 .8807E+00 .1000E+03 .9891E-03 .1000E+03 2. (Al1 > 0) 2.1. Al1 = .3 2.1.1. Al1 = .300 Bt = .100 Al = .006 Ficl = 1.337 Tcl = .7916E+03 .1000E+04 .1263E+01 .1338E+01 .2309E+03 .9730E+03 .8701E-04 .7930E+03 2.1.2. Al1 = .300 Bt = .500 Al = .150 Ficl = 1.337 Tcl = .7916E+03 .1000E+04 .1215E+01 .1342E+01 .2269E+03 .9739E+03 .9042E-04 .8235E+03 2.1.3. Al1 = .300 Bt = .900 Al = .486 Ficl = 1.337 Tcl = .7916E+03 .1000E+04 .1076E+01 .1380E+01 .1895E+03 .9819E+03 .1021E-03 .9294E+03 2.1.4. Al1 = .300 Bt = 1.000 Al = .600 Ficl = 1.337 Tcl = .7916E+03 .1000E+04 .1000E+01 .1569E+01 .1539E+01 .1000E+04 .1099E-03 .1000E+04 2.2. Al1 = .7 2.2.1. Al1 = .700 Bt = .100 Al = .014 Ficl = 1.146 Tcl = .6468E+03 .1000E+04 .1543E+01 .1147E+01 .4108E+03 .9117E+03 .7120E-04 .6490E+03 2.2.2. Al1 = .700 Bt = .500 Al = .350 Ficl = 1.146 Tcl = .6468E+03 .1000E+04 .1413E+01 .1163E+01 .3970E+03 .9178E+03 .7776E-04 .7084E+03 2.2.3. Al1 = .700 Bt = .900 Al = 1.134 Ficl = 1.146 Tcl = .6468E+03 .1000E+04 .1103E+01 .1277E+01 .2895E+03 .9572E+03 .9960E-04 .9062E+03 2.3. Al1 = 1.5 2.3.1. Al1 = 1.500 Bt = .100 Al = .030 Ficl = .927 Tcl = .5013E+03 .1000E+04 .1984E+01 .9289E+00 .5987E+03 .8010E+03 .5537E-04 .5051E+03 2.3.2. Al1 = 1.500 Bt = .500 Al = .750 Ficl = .927 Tcl = .5013E+03 .1000E+04 .1654E+01 .9703E+00 .5651E+03 .8251E+03 .6641E-04 .6050E+03 2.3.3. Al1 = 1.500 Bt = .900 Al = 2.430 Ficl = .927 Tcl = .5013E+03 .1000E+04 .1111E+01 .1205E+01 .3577E+03 .9339E+03 .9893E-04 .9132E+10

259

260

. 2

L(

*J

L( * )* J

3 ,0 @

MATHCAD %

&

/*) rn n b

1 (

- . @ 10 - * . - * . 4

bt

& . b

rn

'( ) 0

6( (*

.

ri

h

ba

1

1.. n

0 .. n

1

j

bt

fi0

2

& .

( ) bt

@ *'

2

1

br

bt

r0 dfi0

bt

2

R0).

.000002

rn

(*

rj

0 dfin

.5

*' *.

;

)(06 / 1 (

0

2 exp 2 .al10.bt . 1

2

1

0.3 b

*

bp

bt

br

/

1(* , * @ ;

M 6 h 0. i

, . 6( (* 6( (*

.7

n ai

)

'( ) 0 * 0. *

1

al10

h

( (1(

#

rj

1

0

1

h t0

z

rn

al10.bt

0 al1

2 .h .. b

h , rn al

2 .al1

*(* 1

2 2 bt .exp 2 .al10.bt .

2

2

z

2

z

vor ( z)

1 bt

2

1

bt

2

. 3

'

al10 = 4

bt0 = 0.7

al = 5.6

al1 = 2.8

rk

vr k

1 1.0429 1.0857 1.1286 1.1714 1.2143 1.2571 1.3 1.3429 1.3857 1.4286

2.3905.10 0.2837 0.3892 0.4611 0.5107 0.5402 0.5495 0.5369 0.4989 0.4276 0.3

!*(

ba = 0.7112 bp = 0.7141

.

1(

(*

br0 = 0.3

b = 0.7

vor ( rn ) = 0.4286

3

fik

xk

yk

dfik1

tk

0 0.2873 0.3997 0.4818 0.5484 0.6056 0.657 0.7051 0.7523 0.8017 0.8606

1 1.0001 1.0001 1.0001 0.9996 0.9983 0.9955 0.99 0.9805 0.9638 0.9314

0 0.2955 0.4225 0.523 0.6107 0.6912 0.7678 0.8425 0.9176 0.9957 1.0832

0 0.2853 0.1124

0 0.2956 0.4226 0.5231 0.6111 0.6924 0.7708 0.8495 0.9319 1.0239 1.1407

*) *'

( I

P0 , 0

al10

P0 , 1

bt0

P0 , 2

br0

P0 , 4

al

P0 , 5

rn

P0 , 6

b

8.2152.10

2

6.6587.10

2

5.7194.10

2

5.1368.10

2

4.8101.10

2

4.7194.10

2

4.9421.10

2

5.8909.10

2

P0 , 3

Pj

1,0

rj

Pj

1,1

vrj

Pj

1,2

fij

Pj

1,4

yj

Pk

1,5

dfik

Pj

1,6

tj

Pj

al1

1,3

xj

bt

6( (*

(

1

f( z)

1

ft( z)

2 z .vor ( z)

06 * *' **()

t

# 1 @ ( ,0 @

fi

ri

vor ( z)

ti

(* ti

z1j

dt i

1

L(

1* 0. fii

) rj

fii

1 ( rj

rj

at

bt

bt0

bt

br0

vrj

vor z1j .bt

br

tn

tn

1 ( I afi

fin

xj

rj .cos fij

k

n .. 0

tn

(

.002.bt

1( 2

fin

* *' fin

*(*

*

1

0.5

.002 vr j

y k

( fij

6( +

f( z) d z

dfii

1 ( I

dfii

(

L* (*

WRITEPRN( "R_40703.prn" )

ai

L*1( 1

+ ' R_407003.prn

ri ft( z) d z

dt i ai

0

*

fij

afi

yj k1

n

tj

tj

at bt

0 0.7

2

dfii

0.9 z1 j

rj .sin fij 1 .. 1

0.8

dfii

261

262

0.5

0 0.9

1 x k

1.1

P

C

L( * )* J

T=? = 4 R/Rp

& R/Rp 1.1.1. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

r 0 1 =

-2

0.002 0.3785 0.4346 0.4405 0.4251 0.3972 0.3599 0.3137 0.2567 0.1814 0

1.1.2. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.003 2.006 2.009 2.013 2.016 2.019 2.022 2.025 2.028 2.031

0 1

0 1

0.002 0.3833 0.4504 0.4688 0.4667 0.4533 0.4325 0.4063 0.3755 0.3402 0.3 0.2843 0.2677 0.2501

t0

0 0.437 0.6209 0.7667 0.8932 1.009 1.119 1.227 1.342 1.475 1.759

= -2

0.002 0.3791 0.4364 0.4437 0.43 0.4038 0.3687 0.3253 0.2725 0.2052 0.1 0.09486 0.08942 0.08364 0.07743 0.07067 0.0632 0.05473 0.04468 0.03159 0.0002414

1.1.3. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.036 2.071 2.107

%

= -2

t0

0 0.4359 0.6157 0.7545 0.8717 0.975 1.069 1.156 1.24 1.322 1.404 1.434 1.464 1.496

r0

1 0.9966 0.976 0.9363 0.8777 0.7994 0.6992 0.5722 0.4086 0.1821 -0.3746

t0

0 0.4369 0.6203 0.7652 0.8906 1.005 1.112 1.218 1.327 1.449 1.621 1.629 1.637 1.646 1.656 1.667 1.678 1.691 1.706 1.727 1.774

x/Rp = 0.5

r0 =

1 0.9967 0.9764 0.9376 0.8805 0.8047 0.7083 0.5874 0.4344 0.2305 -0.0997 -0.1166 -0.1337 -0.1519 -0.1715 -0.1927 -0.2161 -0.2426 -0.2739 -0.3145 -0.4107

= 0.5

y/Rp = 0 1 = -1 0 0.4656 0.6982 0.9019 1.091 1.269 1.439 1.601 1.753 1.891 1.965

= 0.5

r0

1 0.9971 0.9797 0.9472 0.901 0.8418 0.7697 0.6844 0.5847 0.4686 0.3326 0.2779 0.22 0.1579

!

«#

0.1

0 0.4645 0.693 0.8904 1.072 1.242 1.403 1.556 1.702 1.841 1.972 2.016 2.059 2.101

1

tc1 /Rp

0 0.4701 0.7124 0.9397 1.17 1.413 1.677 1.973 2.324 2.78 3.879

= -1

= -2

0 0.4359 0.1834 0.1449 0.1254 0.114 0.1077 0.1057 0.1091 0.1221 0.1715 0.008032 0.008466 0.008987 0.009627 0.01044 0.01151 0.01302 0.0154 0.02001 0.04789

0 0.4699 0.7116 0.9376 1.166 1.405 1.664 1.952 2.286 2.705 3.361 3.393 3.427 3.463 3.502 3.545 3.592 3.645 3.708 3.79 3.987

1

0 0.4654 0.6976 0.9005 1.088 1.266 1.435 1.595 1.747 1.886 1.998 2 2.002 2.004 2.005 2.006 2.007 2.007 2.006 2.004 1.989

= 0.3

= -2

0 0.436 0.1839 0.1457 0.1265 0.1155 0.1098 0.1089 0.1143 0.133 0.2844

= -1 0 0.4349 0.1797 0.1389 0.1172 0.1033 0.09393 0.08754 0.08351 0.08162 0.08212 0.02985 0.03051 0.03143

2.142 2.178 2.213 2.249 2.284 2.32 2.355

»

1.1.5. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 3.8 5.6 7.4 9.2 11 12.8 14.6 16.4 18.2 20 201.8 401.6 601.4

0 0.4688 0.7055 0.922 1.135 1.352 1.578 1.816 2.072 2.351 2.664 2.786 2.914 3.051

263

0.2312 1.528 0.2107 1.563 0.1881 1.6 0.1626 1.641 0.1325 1.687 0.0935 1.747 0.0004051 1.885 0 1

1.1.4. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.191 2.382 2.573 2.764 2.955 3.145 3.336 3.527 3.718 3.909

=-2

264

x/Rp

r

= -2

0.002 0.3916 0.4772 0.5152 0.5327 0.5389 0.538 0.5325 0.5238 0.5128 0.5 0.4722 0.4413 0.4081 0.3729 0.3357 0.296 0.2526 0.2032 0.1415 0.0006827 0 1

= -2

0.002 0.401 0.5064 0.564 0.5997 0.623 0.6383 0.6482 0.6543 0.6576 0.659 0.5926 0.522 0.4695 0.4297 0.3983 0.3728 0.3516 0.3336 0.3181 0.3046 0.09918 0.07044 0.0576

t0

t0

0.09064 0.01717 -0.06428 -0.1566 -0.2656 -0.4057 -0.727

= 0.5

0 0.4341 0.607 0.7358 0.8404 0.9292 1.007 1.075 1.137 1.193 1.245 1.335 1.415 1.488 1.557 1.622 1.687 1.754 1.825 1.909 2.093

= 0.5

1( . 4 tc1 /Rp

y/Rp

r0

=0.5

1 0.998 0.9856 0.9637 0.934 0.8977 0.8557 0.8085 0.7566 0.7002 0.6395 0.5129 0.3707 0.2132 0.03943 -0.1526 -0.3661 -0.6069 -0.8865 -1.234 -1.949 r0

2.14 2.177 2.212 2.243 2.269 2.284 2.24 1

=-1

0 0.4627 0.6845 0.8725 1.043 1.202 1.352 1.495 1.633 1.766 1.895 2.13 2.353 2.564 2.763 2.951 3.124 3.281 3.414 3.507 3.389

= 0.659

0 1 0.4321 0.9989 0.5981 0.9917 0.7176 0.9794 0.8119 0.9634 0.8897 0.9444 0.9558 0.9232 1.013 0.9 1.063 0.8751 1.108 0.8489 1.148 0.8213 1.519 0.1966 1.67 -0.5559 1.758 -1.375 1.816 -2.238 1.859 -3.131 1.893 -4.048 1.919 -4.984 1.941 -5.935 1.96 -6.9 1.976 -7.875 2.196 -118.1 2.225 -244.4 2.238 -372.2

0.03269 0.03444 0.03694 0.04067 0.04683 0.05926 0.138

0 0.4606 0.6757 0.8548 1.016 1.165 1.307 1.442 1.573 1.7 1.824 3.795 5.572 7.271 8.924 10.54 12.14 13.72 15.29 16.84 18.38 163.6 318.7 472.4

= -2

0 0.4331 0.1729 0.1288 0.1047 0.08877 0.07732 0.06864 0.06184 0.05639 0.05195 0.08952 0.08002 0.07329 0.0687 0.06593 0.06499 0.06628 0.07113 0.08434 0.1835 1

3.199 3.359 3.538 3.74 3.981 4.295 5.053

= -1 0 0.4311 0.166 0.1195 0.09431 0.07783 0.06604 0.05714 0.05017 0.04456 0.03997 0.371 0.1512 0.08749 0.05877 0.04295 0.03315 0.02659 0.02194 0.01851 0.01588 0.22 0.02906 0.01292

0 0.4667 0.6943 0.895 1.085 1.272 1.457 1.644 1.833 2.026 2.224 2.617 3.035 3.484 3.973 4.512 5.117 5.814 6.652 7.762 10.47

= -2 0 0.4614 0.6798 0.8659 1.037 1.201 1.359 1.515 1.668 1.821 1.972 4.825 8.069 11.71 15.73 20.08 24.76 29.73 34.99 40.52 46.31 1366 3815 6978

L( * )* J R/Rp 801.2 1001 1201 1401 1600 1800 2000

1.1.6. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 3.8 5.6 7.4 9.2 11 12.8 14.6 16.4 18.2 20 201.8 401.6 601.4 801.2 1001 1201 1401 1600 1800 2000

1.1.7. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 3.8 5.6 7.4

x/Rp

r

0.04992 0.04467 0.04079 0.03777 0.03533 0.03332 0.03161 0 1

= -2

0.002 0.4038 0.5149 0.5779 0.6186 0.6463 0.6656 0.6793 0.6889 0.6955 0.7 0.6728 0.6279 0.5947 0.5703 0.5517 0.5372 0.5255 0.5159 0.5079 0.5011 0.4279 0.4232 0.4216 0.4208 0.4203 0.42 0.4197 0.4196 0.4194 0.4193 0 1

= -2

0.002 0.4112 0.5371 0.6139 0.6667 0.7051 0.7342 0.7566 0.7744 0.7885 0.8 0.8535 0.8517 0.8462

2.246 2.251 2.255 2.258 2.26 2.262 2.264 t0

-500.6 -629.6 -758.9 -888.4 -1018 -1148 -1278

= 0.5

0 0.4315 0.5956 0.7126 0.8044 0.8796 0.9431 0.9978 1.046 1.088 1.125 1.465 1.595 1.666 1.711 1.743 1.766 1.784 1.799 1.81 1.82 1.917 1.923 1.925 1.926 1.926 1.927 1.927 1.927 1.927 1.928 t0

y/Rp

=0.5

0 0.4299 0.5892 0.7004 0.7861 0.8555 0.9134 0.9627 1.005 1.043 1.076 1.36 1.459 1.51

625.5 778.2 930.6 1083 1235 1387 1538 r0

= 0.7

1 0.9992 0.9934 0.9836 0.971 0.9561 0.9396 0.9217 0.9026 0.8825 0.8615 0.4017 -0.1333 -0.7005 -1.285 -1.881 -2.485 -3.093 -3.706 -4.321 -4.938 -68.49 -138.5 -208.5 -278.5 -348.5 -418.5 -488.5 -558.5 -628.6 -698.6 r0

1 0.9999 0.9977 0.994 0.9892 0.9837 0.9777 0.9712 0.9643 0.9572 0.9498 0.7948 0.6237 0.4471

0.007714 0.005268 0.00389 0.003025 0.002439 0.00202 0.001709 1

0 0.46 0.6732 0.85 1.009 1.156 1.295 1.428 1.557 1.683 1.805 3.779 5.598 7.367 9.11 10.84 12.56 14.27 15.98 17.68 19.38 189.8 377 564.1 751.2 938.4 1126 1313 1500 1687 1874

= 0.8 0 0.4585 0.6668 0.8379 0.9907 1.132 1.267 1.395 1.52 1.641 1.76 3.716 5.565 7.386

1( . 4 tc1 /Rp

1

= -2

= -1 0 0.4305 0.1641 0.1171 0.09174 0.07524 0.06349 0.05466 0.04776 0.04223 0.03771 0.3399 0.1297 0.071 0.04537 0.0317 0.02348 0.01813 0.01444 0.01178 0.009802 0.097 0.005793 0.001958 0.0009845 0.0005924 0.0003956 0.000283 0.0002124 0.0001653 0.0001323

= -1 0 0.4289 0.1593 0.1112 0.08575 0.06939 0.05788 0.04931 0.04268 0.03741 0.03313 0.2841 0.0991 0.05115

10720 14960 19650 24750 30220 36050 42210 0 0.4637 0.6795 0.8619 1.029 1.187 1.339 1.488 1.634 1.778 1.921 4.516 7.289 10.24 13.33 16.54 19.85 23.24 26.7 30.22 33.78 446 916.1 1389 864 2339 2814 3290 3766 4243 4719

L( * )* J R/Rp 9.2 11 12.8 14.6 16.4 18.2 20 201.8 401.6 601.4 801.2 1001 1201 1401 1600 1800 2000

0 1

1.813 1.772 1.732 1.691 1.65 1.61 1.569 1.528 1.488 1.447 1.406 1.366 1.325 1.285 1.244 1.203 1.163 1.122 1.081 1.041 1

0 0.4619 0.6713 0.8445 1 1.146 1.285 1.419 1.55 1.677 1.803 3.948 6.057 8.178

265

0.8413 0.8372 0.834 0.8313 0.8291 0.8272 0.8257 0.8089 0.8079 0.8075 0.8074 0.8073 0.8072 0.8071 0.8071 0.8071 0.807

1.2.1.

= -2

= -2

0 1

1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429

0.00169 0.2826 0.3756 0.4211 0.4366 0.4308 0.4076 0.3683 0.3107 0.2254 0

1

0 1

= -2

= -2 0.00169

y/Rp

1.542 0.2678 9.196 1.563 0.08718 11 1.578 -0.09438 12.8 1.59 -0.2765 14.6 1.599 -0.4591 16.39 1.606 -0.6419 18.19 1.612 -0.825 19.98 1.667 -19.41 200.9 1.67 -39.85 399.6 1.671 -60.3 598.4 1.672 -80.74 797.1 1.672 -101.2 995.9 1.672 -121.6 1195 1.672 -142.1 1393 1.673 -162.5 1592 1.673 -182.9 1791 1.673 -203.4 1990 t0

0 0.138 0.1949 0.2383 0.2745 0.3058 0.3335 0.3581 0.3799 0.3992 0.4158 0.4297 0.4403 0.4473 0.4495 0.4456 0.4332 0.408 0.3615 0.2742 0.001904

1.3.1.

1.3.2. 266

x/Rp

r

= 0.5516

1.572 -0.002003 1.39 0.3186 1.311 0.4455 1.247 0.5387 1.19 0.6136 1.137 0.6764 1.087 0.7301 1.038 0.7766 0.9894 0.8171 0.941 0.8524 0.892 0.8831 0.842 0.9096 0.7904 0.9324 0.7366 0.9515 0.6799 0.9672 0.6193 0.9797 0.5533 0.9891 0.4794 0.9954 0.3927 0.999 0.2799 1 0 1 t0

= 0.7

0 0.2872 0.4014 0.4887 0.5639 0.6331 0.6999 0.7673 0.8393 0.9248 1.111 t0

= 0.7 0

r0

r0

1

=0

1

1

0

-1.103 0 -0.1819 -0.07944 -0.06401 -0.05676 -0.0527 -0.05032 -0.04899 -0.04842 -0.04843 -0.04897 -0.05002 -0.05159 -0.05376 -0.05668 -0.0606 -0.06601 -0.0739 -0.08673 -0.1128 -0.2789

= -1.4

0 0.2954 0.4242 0.5298 0.6261 0.7185 0.8098 0.9024 0.9993 1.106 1.28

= 0.1

r0

0.03133 10.31 0.02119 12.46 0.0153 14.61 0.01157 16.77 0.009055 18.94 0.007282 21.11 0.005983 23.29 0.055 247.2 0.00305 494.4 0.001024 741.8 0.0005135 989.2 0.0003086 1237 0.0002059 1484 0.0001472 1732 0.0001104 1979 8.593e-005 2227 6.876e-005 2474

1.813 1.743 1.673 1.603 1.532 1.461 1.389 1.316 1.243 1.169 1.095 1.019 0.9417 0.8629 0.7821 0.6985 0.611 0.5175 0.4138 0.2875 0

=0

1 1 0.9994 0.9965 0.99 0.9789 0.9616 0.9358 0.897 0.8342 0.6338

1( . 4 tc1 /Rp

0 0.2862 0.1142 0.0873 0.07526 0.06921 0.06675 0.06737 0.07205 0.08549 0.1863

3.051 2.462 2.218 2.03 1.872 1.732 1.604 1.487 1.377 1.272 1.173 1.077 0.9833 0.8918 0.8012 0.7105 0.6182 0.5218 0.4167 0.29 0

=-2.8 0 0.2964 0.4255 0.5324 0.6318 0.7303 0.8322 0.9424 1.068 1.228 1.6

= -1.4

=-2.8

0

0

L( * )* J R/Rp

r

1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.429 1.43 1.431 1.432 1.433 1.434 1.434 1.435 1.436 1.437

1.3.3.

0 1

1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.438 1.447 1.456 1.466 1.475 1.484 1.493 1.503 1.512 1.521

1.3.4. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429

0.2827 0.3759 0.4219 0.4384 0.4339 0.4125 0.3755 0.3215 0.2433 0.1 0.0949 0.08951 0.08376 0.07757 0.07084 0.06338 0.05491 0.04485 0.03173 0.0009264

0.2872 0.4013 0.4885 0.5635 0.6324 0.6985 0.7649 0.8351 0.9163 1.041 1.045 1.05 1.054 1.059 1.065 1.071 1.078 1.086 1.096 1.121

= -2

= 0.7

t0

0.00169 0.2828 0.3781 0.4289 0.4526 0.4579 0.4491 0.4287 0.3976 0.3555 0.3 0.2857 0.2704 0.2538 0.2358 0.2159 0.1937 0.1683 0.1378 0.0977 0.0002855 0 1

= -2 0.00169 0.2832 0.3825 0.4424 0.4798 0.5024 0.5145 0.5189 0.5173 0.5107 0.5

t0

0 0.2872 0.401 0.4873 0.5606 0.6266 0.6883 0.748 0.8073 0.8683 0.9342 0.9494 0.9653 0.9821 0.9998 1.019 1.039 1.062 1.089 1.124 1.206

= 0.7 0 0.2871 0.4004 0.4849 0.5551 0.6164 0.6715 0.7222 0.7695 0.8143 0.8571

x/Rp

y/Rp

1 0.9994 0.9966 0.9903 0.9795 0.9627 0.9379 0.9012 0.8436 0.7218 0.7172 0.7122 0.7068 0.7009 0.6945 0.6874 0.6792 0.6693 0.6564 0.625

0.2954 0.4241 0.5297 0.6258 0.7177 0.8084 0.9002 0.9955 1.099 1.233 1.236 1.24 1.244 1.249 1.253 1.258 1.263 1.27 1.277 1.294

r0

= 0.3

1 1 0.9996 0.9972 0.9921 0.9836 0.9709 0.953 0.9286 0.8954 0.8493 0.8371 0.8236 0.8087 0.7921 0.7735 0.7521 0.727 0.6959 0.6535 0.543 r0

= 0.5

1 1 0.9998 0.9984 0.9955 0.9908 0.9842 0.9755 0.9645 0.9511 0.9352

1

0.2862 0.1141 0.08719 0.07503 0.06883 0.06613 0.06636 0.07021 0.08119 0.1248 0.004166 0.004398 0.004676 0.005016 0.005446 0.006015 0.006817 0.008073 0.0105 0.02466

= -1.4

0 0.2954 0.4238 0.5284 0.6228 0.712 0.7986 0.8842 0.9701 1.058 1.149 1.169 1.19 1.211 1.233 1.256 1.279 1.304 1.332 1.363 1.421 1

0 0.2953 0.4232 0.5261 0.6174 0.7019 0.7822 0.8593 0.9344 1.008 1.08

1( . 4 tc1 /Rp

0 0.2862 0.1138 0.08628 0.07329 0.066 0.06176 0.05963 0.0593 0.06103 0.06589 0.01537 0.01598 0.01673 0.01769 0.01893 0.02062 0.02304 0.02691 0.03454 0.08192

= -1.4 0 0.2861 0.1133 0.08455 0.07016 0.06126 0.05515 0.0507 0.04734 0.04477 0.04281

0.2964 0.4254 0.5322 0.6314 0.7293 0.8303 0.9388 1.061 1.213 1.461 1.47 1.478 1.488 1.498 1.51 1.522 1.536 1.553 1.574 1.625

= -2.8 0 0.2964 0.4251 0.5307 0.6276 0.7214 0.8157 0.9132 1.017 1.13 1.261 1.293 1.326 1.361 1.399 1.44 1.485 1.536 1.596 1.675 1.864

=-2.8 0 0.2964 0.4244 0.5279 0.6206 0.7077 0.7919 0.8747 0.9574 1.041 1.125

267

L( * )* J R/Rp 1.477 1.526 1.574 1.622 1.671 1.719 1.768 1.816 1.865 1.913

1.3.5.

0.4836 0.463 0.4385 0.41 0.3773 0.3396 0.2956 0.2423 0.1718 0.0008075 0 1

1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 2.714 4 5.286 6.571 7.857 9.143 10.43 11.71 13 14.29 144.1 286.9 429.6 572.3 715 857.7 1000 1143 1286 1429

1.3.6. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429

268

x/Rp

r

= -2

t0

= 0.7

0.00378 0.2836 0.3877 0.4584 0.511 0.5519 0.5847 0.6115 0.6336 0.6521 0.6676 0.7312 0.6724 0.6174 0.5719 0.5344 0.5032 0.4767 0.4539 0.434 0.4165 0.1385 0.0985 0.08057 0.06984 0.0625 0.05708 0.05286 0.04945 0.04663 0.04424 0 1

= -2 0.00169 0.2837 0.3889 0.4619 0.5178 0.5625 0.5995 0.6305 0.6571 0.68 0.7

0.9037 0.9491 0.9939 1.039 1.084 1.131 1.181 1.237 1.306 1.462

t0

y/Rp

0.9139 0.8885 0.8586 0.8233 0.7817 0.7321 0.6716 0.5947 0.4877 0.2075 r0

0.04668 0.04542 0.04476 0.04471 0.04539 0.04703 0.05016 0.05606 0.06899 0.1559

= 0.6676

0 0.287 0.3995 0.4821 0.5489 0.6056 0.655 0.6988 0.7382 0.774 0.8068 1.265 1.432 1.527 1.589 1.634 1.668 1.696 1.718 1.737 1.754 1.977 2.006 2.019 2.026 2.032 2.036 2.039 2.041 2.043 2.045

1 1 1 1 0.9993 0.9984 0.997 0.9953 0.9933 0.9909 0.9883 0.8179 0.5516 0.2338 -0.1179 -0.4941 -0.8892 -1.299 -1.722 -2.155 -2.597 -56.91 -120.9 -186 -251.8 -318 -384.5 -451.1 -518 -585 -652.1

= 0.7

r0

0 0.2871 0.3995 0.4816 0.5478 0.6035 0.6519 0.6945 0.7326 0.7671 0.7984

1.16 1.24 1.319 1.398 1.477 1.556 1.635 1.716 1.8 1.902

= 0.7

1 1 1 1 1 0.9998 0.9994 0.9989 0.9983 0.9977 0.9969

1

0 0.2952 0.4223 0.5232 0.6112 0.6912 0.7658 0.8363 0.9037 0.9686 1.032 2.588 3.962 5.281 6.57 7.842 9.1 10.35 11.59 12.82 14.05 132.4 260.1 387.2 513.9 640.4 766.7 892.9 1019 1145 1271 1

0 0.2953 0.4223 0.5228 0.6101 0.6892 0.7627 0.832 0.8981 0.9617 1.023

= -1.4

1( . 4 tc1 /Rp 1.224 1.326 1.433 1.548 1.671 1.806 1.958 2.139 2.373 2.934

= -2.8

0 0 0.284 0.2953 0.1126 0.4224 0.08258 0.5235 0.06683 0.6118 0.05666 0.6924 0.04938 0.7677 0.04383 0.8393 0.03942 0.9081 0.03582 0.9748 0.0328 1.04 0.4577 2.801 0.1678 4.632 0.09409 6.629 0.06219 8.795 0.04499 11.12 0.03449 13.6 0.02752 16.23 0.02262 19 0.01902 21.89 0.01628 24.92 0.223 701.7 0.02911 1953 0.01293 3569 0.007719 5479 0.005271 7645 0.003892 10040 0.003026 12640 0.002439 15430 0.002021 18410 0.00171 21550

= -1.4 0 0.2861 0.1124 0.08215 0.06614 0.05576 0.04831 0.04263 0.03813 0.03445 0.03137

= -2.8 0 0.2963 0.4233 0.5239 0.6113 0.6906 0.7643 0.8339 0.9005 0.9645 1.027

L( * )* J R/Rp 2.714 4 5.286 6.571 7.857 9.143 10.43 11.71 13 14.29 144.1 286.9 429.6 572.3 715 857.7 1000 1143 1286 1429

1.3.7.

0.8727 0.8868 0.8848 0.8801 0.8755 0.8714 0.8679 0.8648 0.8622 0.8599 0.8335 0.8318 0.8312 0.8309 0.8307 0.8306 0.8305 0.8304 0.8304 0.8303 0 1

1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.386 1.429 2.714 4 5.286 6.571 7.857 9.143 10.43 11.71 13 14.29 144.1 286.9 429.6 572.3 715 857.7 1000 1143 1286 1429

1.4.1. 1 1.039

x/Rp

r

= -2

1.212 1.346 1.415 1.457 1.485 1.506 1.521 1.533 1.543 1.551 1.625 1.63 1.631 1.632 1.632 1.632 1.633 1.633 1.633 1.633

0 1

= -2

0.001664 0.2692

t0

0.9536 0.8912 0.8217 0.7485 0.6732 0.5965 0.519 0.4408 0.3622 0.2832 -7.864 -16.84 -25.81 -34.79 -43.76 -52.73 -61.71 -70.68 -79.66 -88.63

= 0.7

r0

0 0.2871 0.3994 0.4814 0.5472 0.6026 0.6504 0.6926 0.764 0.7948 1.193 1.318 1.38 1.418 1.443 1.461 1.474 1.485 1.493 1.5 1.563 1.567 1.568 1.569 1.569 1.569 1.569 1.57 1.57 1.57

1 1 1 1 1 1 1 1.001 1.001 1.001 1.001 1.002 1.002 1.003 1.003 1.004 1.004 1.005 1.005 1.006 1.057 1.114 1.171 1.228 1.285 1.342 1.399 1.456 1.513 1.57

= 0.722

r0

t0

0.00169 0.2837 0.3894 0.4635 0.5208 0.5673 0.606 0.639 0.6923 0.7141 0.9297 0.9682 0.9819 0.9884 0.9919 0.994 0.9954 0.9963 0.997 0.9975 1 1 1 1 1 1 1 1 1 1

0 0.2726

1( . 4 tc1 /Rp

y/Rp 2.541 3.899 5.221 6.529 7.828 9.123 10.42 11.71 12.99 14.28 143.9 286.4 428.8 571.2 713.7 856.1 998.5 1141 1283 1426

= 0.7141

=0

1 1

0.4138 0.1343 0.06861 0.04194 0.02836 0.02049 0.01551 0.01215 0.009777 0.00804 0.0074 0.004145 0.001393 0.0006986 0.0004198 0.0002802 0.0002003 0.0001503 0.0001169 9.356e-005 1

0 0.2953 0.4222 0.5225 0.6095 0.6882 0.7612 0.8301 0.9587 1.02 2.523 3.873 5.19 6.494 7.793 9.088 10.38 11.67 12.96 14.25 144.1 286.9 429.6 572.3 715 857.7 1000 1143 1286 1429 1

= -1.4

= -2.8

0 0 0.2861 0.2963 0.1123 0.4233 0.08196 0.5236 0.06584 0.6106 0.05536 0.6893 0.04785 0.7623 0.04212 0.8311 0.03387 0.9597 0.03078 1.021 0.3981 2.524 0.1246 3.874 0.06234 5.191 0.03757 6.496 0.02515 7.794 0.01802 9.089 0.01356 10.38 0.01057 11.67 0.008471 12.96 0.006942 14.25 0.063 144.1 0.003452 286.9 0.001158 429.6 0.0005805 572.3 0.0003488 715 0.0002327 857.7 0.0001663 1000 0.0001248 1143 9.709e-005 1286 7.769e-005 1429

= -1.444

0 0.2796

2.597 4.053 5.504 6.961 8.426 9.898 11.38 12.86 14.35 15.84 170.7 342.1 513.8 685.5 857.3 1029 1201 1373 1545 1717

0.2716 0.1085

= -2.888 0 0.2796

269

L( * )* J R/Rp 1.077 1.116 1.154 1.193 1.231 1.27 1.308 1.347 1.385

1.5.1.

x/Rp

r

0.3616 0.41 0.4294 0.4271 0.4069 0.3698 0.3135 0.2285 0 0 1

= -2

0.3811 0.4637 0.5347 0.5998 0.6625 0.7257 0.7933 0.8735 1.048 t0

1 1.023 1.045 1.068 1.091 1.113 1.136 1.182 1.204 1.227

0.001567 0.2095 0.2902 0.3434 0.3755 0.3888 0.3838 0.3137 0.2343 0

1.6.1.

0 1

1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111

0.001491 0.1478 0.2073 0.2513 0.285 0.3081 0.3184 0.3125 0.2846 0.2215 0

1.6.2. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 1.111 1.112 1.112 1.112 1.112 1.112 1.113 1.113 1.113

270

0 1

0 0.2105 0.2954 0.3593 0.4134 0.4621 0.5083 0.6035 0.6612 0.7859

= -2

= -2 0.001 0.1478 0.2074 0.2513 0.2852 0.3087 0.32 0.316 0.2915 0.2358 0.1 0.095 0.0897 0.08402 0.0779 0.07121 0.06378 0.05532 0.04523 0.03203

0.9997 0.9977 0.9929 0.9844 0.9706 0.9497 0.9176 0.8646 0.6915

= 0.815

t0

t0

r0

=0

1 1 1 0.9999 0.9989 0.9967 0.9925 0.9729 0.9505 0.8672

= 0.9

r0

1( . 4 tc1 /Rp

y/Rp

=0

0 0.1479 0.2084 0.2543 0.2926 0.3265 0.3579 0.3884 0.4199 0.4562 0.532

1 1 1 1 1 0.9998 0.9991 0.9975 0.9943 0.9875 0.9575

= 0.9

r0

0 0.1479 0.2084 0.2543 0.2926 0.3265 0.3577 0.388 0.419 0.4538 0.5066 0.5087 0.5104 0.5123 0.5142 0.5164 0.5188 0.5215 0.5247 0.5289

1 1 1 1 1 0.9998 0.9991 0.9977 0.9947 0.9887 0.9716 0.9706 0.9698 0.969 0.9681 0.9671 0.9659 0.9646 0.963 0.9609

= 0.1

0.4006 0.499 0.5881 0.6731 0.7572 0.8425 0.9322 1.032 1.2 1

0.08263 0.07096 0.06509 0.06268 0.06322 0.06761 0.08024 0.1745 0

= -3.26

= -1.63

0 0.2137 0.3043 0.3756 0.4382 0.4964 0.553 0.6706 0.7396 0.8681 1

1

0 0.2095 0.08482 0.06398 0.05401 0.04872 0.04626 0.04897 0.05778 0.1247

=-1.8

0 0.149 0.2115 0.2599 0.3013 0.3386 0.3737 0.4082 0.4439 0.4845 0.5637

0 0.2138 0.3044 0.3758 0.4387 0.4979 0.5564 0.6843 0.7666 0.9519

= -3.6

0 0.1469 0.06051 0.04584 0.03833 0.0339 0.03139 0.03049 0.0315 0.03626 0.07589

= -1.8

0 0.149 0.2115 0.2599 0.3013 0.3385 0.3735 0.4078 0.443 0.4822 0.5391 0.5412 0.543 0.5449 0.5469 0.5491 0.5515 0.5542 0.5574 0.5615

0.4008 0.5 0.5913 0.6809 0.7729 0.8718 0.9841 1.126 1.454

0 0.1494 0.2119 0.2603 0.3016 0.339 0.3744 0.4094 0.4464 0.4898 0.5829

= -3.6

0 0.1469 0.06051 0.04583 0.03832 0.03386 0.03128 0.03025 0.03098 0.03485 0.05277 0.001654 0.001745 0.001855 0.00199 0.00216 0.002385 0.002702 0.003199 0.004162

0 0.1494 0.2119 0.2603 0.3016 0.3389 0.3742 0.409 0.4453 0.4871 0.5516 0.554 0.5562 0.5585 0.5609 0.5636 0.5666 0.5699 0.5739 0.579

L( * )* J R/Rp 1.113

0.0002331 0.539 0

1.6.3.

1

1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 1.114 1.117 1.119 1.122 1.125 1.128 1.131 1.133 1.136 1.139

= -2

0.001491 0.1478 0.2074 0.2516 0.2867 0.3138 0.3327 0.3425 0.3418 0.3287 0.3 0.2897 0.278 0.2644 0.2489 0.2309 0.2097 0.1844 0.1528 0.1096 0.0001998 0 1

1.6.4. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 1.123 1.135 1.147 1.16 1.172 1.184 1.196 1.208 1.22 1.232

1.6.5.

x/Rp

r

0 1

1 1.011 1.022 1.033 1.044 1.056 1.067

= -2

t0

0.001491 0.1478 0.2074 0.2519 0.2886 0.3201 0.3479

0.9553

=0.9

0 0.147 0.2084 0.2543 0.2925 0.326 0.3565 0.385 0.4126 0.4402 0.469 0.4766 0.4845 0.4927 0.5013 0.5105 0.5204 0.5315 0.5444 0.5608 0.5997 t0

0.0014 0.1478 0.2074 0.2518 0.288 0.3183 0.3435 0.3641 0.3803 0.3923 0.4 0.4035 0.4019 0.395 0.3824 0.3635 0.3374 0.3022 0.2545 0.1852 0.001152

= -2

t0

1 1 1 1 1 1 0.9996 0.9989 0.9975 0.9951 0.9911 0.9898 0.9882 0.9863 0.9841 0.9816 0.9785 0.9746 0.9695 0.9621 0.9402

= 0.9 0 0.1479 0.2084 0.2542 0.2924 0.3256 0.3554 0.3827 0.4081 0.4321 0.455 0.4791 0.5026 0.5259 0.5493 0.5731 0.598 0.6247 0.6547 0.6919 0.7766

= 0.9 0 0.1479 0.2084 0.2542 0.2923 0.3254 0.355

r0

1

= -1.8

1

1

0 0.149 0.2115 0.2599 0.301 0.3375 0.3707

0.5916

= -3.6

0 0.1469 0.06051 0.04582 0.03822 0.03352 0.03047 0.02856 0.0276 0.02758 0.0288 0.007618 0.007874 0.0082 0.008621 0.009178 0.009944 0.01106 0.01286 0.01643 0.03894

0 0.149 0.2115 0.2599 0.301 0.3376 0.3712 0.4025 0.4322 0.4607 0.4883 0.5178 0.5469 0.576 0.6054 0.6353 0.6664 0.6993 0.7355 0.7783 0.8635

= 0.435 1 1 1 1 1 1 1

0.01016

= -1.8

0 0.149 0.2115 0.2599 0.3011 0.338 0.3722 0.4048 0.4366 0.4687 0.5022 0.511 0.5201 0.5295 0.5393 0.5497 0.5608 0.573 0.5869 0.6043 0.6428

= 0.4

1 1 1 1 1 1 1 0.9998 0.9995 0.9989 0.9981 0.9967 0.9949 0.9924 0.9889 0.9844 0.9783 0.97 0.9582 0.9395 0.8789 r0

0.5713

= 0.3

r0

1( . 4 tc1 /Rp

y/Rp

0 0.1469 0.06051 0.0458 0.03812 0.03323 0.02981 0.0273 0.02542 0.02399 0.02293 0.0241 0.02353 0.02328 0.02337 0.02385 0.02486 0.02668 0.03002 0.03719 0.08469

= -1.8 0 0.1469 0.06051 0.04579 0.03809 0.03311 0.02954

0 0.1494 0.2119 0.2603 0.3015 0.3384 0.3727 0.4056 0.438 0.471 0.5062 0.5154 0.5252 0.5355 0.5463 0.5579 0.5705 0.5846 0.6011 0.6222 0.6727

= -3.6 0 0.1494 0.2119 0.2602 0.3014 0.338 0.3716 0.4029 0.4328 0.4615 0.4895 0.5201 0.5501 0.5804 0.6115 0.6439 0.6784 0.7162 0.7595 0.8144 0.9421

= -3.6 0 0.1491 0.2116 0.26 0.3011 0.3376 0.3709

271

L( * )* J R/Rp 1.078 1.089 1.1 1.111 2.111 3.111 4.111 5.111 6.111 7.111 8.111 9.111 10.11 11.11 112.1 223.1 334.1 445.1 556.1 667.1 778.1 889.1 1000 1111

0.3728 0.3953 0.416 0.435 0.7946 0.7759 0.7317 0.6886 0.6503 0.6169 0.5877 0.5621 0.5394 0.5192 0.1775 0.1264 0.1035 0.08972 0.08031 0.07335 0.06793 0.06356 0.05993 0.05687 0

2.1.1. 1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333

2.1.2. 1 1.233 1.467 1.7 1.933 2.167 2.633 2.4 2.867 3.1 3.333 3.339 3.345 3.351 3.357 3.363 3.369

272

x/Rp

r

1

= -4

0.003651 0.5224 0.5731 0.5623 0.5279 0.4813 0.4267 0.3648 0.2934 0.204 0 0 1

0.3818 0.4064 0.4293 0.4507 1.099 1.291 1.395 1.462 1.51 1.546 1.575 1.598 1.618 1.635 1.861 1.89 1.903 1.911 1.916 1.92 1.923 1.926 1.928 1.929

= -4

0.003651 0.5232 0.5751 0.5656 0.5326 0.4876 0.3755 0.4349 0.3078 0.2259 0.1 0.09483 0.08936 0.08356 0.07732 0.07056 0.06308

t0

t0

1 0.4016 1 0.4305 1 0.4579 1 0.484 0.9594 1.881 0.858 2.99 0.7198 4.048 0.5563 5.081 0.3742 6.1 0.1776 7.109 -0.03086 8.111 -0.249 9.108 -0.4755 10.1 -0.709 11.09 -32.08 107.4 -70.06 211.8 -109 315.8 -148.5 419.6 -188.3 523.3 -228.3 626.8 -268.5 730.3 -308.8 833.8 -349.3 937.1 -389.8 1040

= 0.3

0 0.6397 0.8724 1.036 1.166 1.276 1.375 1.468 1.562 1.667 1.884

= 0.3

0 0.6395 0.8716 1.035 1.164 1.273 1.461 1.37 1.551 1.649 1.787 1.792 1.798 1.804 1.811 1.818 1.826

r0

=0

1 0.9895 0.9431 0.866 0.7612 0.629 0.4672 0.2703 0.0261 -0.2977 -1.027 r0

1( . 4 tc1 /Rp

y/Rp

1

= -1.2

0 0.7363 1.123 1.463 1.777 2.073 2.354 2.619 2.867 3.086 3.171

= 0.1

1 0.9896 0.9439 0.8681 0.7655 0.6365 0.2894 0.4793 0.05691 -0.2425 -0.715 -0.7342 -0.7543 -0.7756 -0.7984 -0.823 -0.8501

0.02682 0.4017 0.02465 0.4306 0.02287 0.458 0.02136 0.4841 0.6481 1.923 0.1923 3.188 0.1034 4.514 0.06692 5.924 0.04779 7.419 0.0363 8.999 0.02878 10.66 0.02353 12.4 0.01971 14.22 0.01681 16.11 0.226 428.2 0.02918 1187 0.01295 2165 0.007726 3322 0.005275 4633 0.003894 6082 0.003027 7657 0.00244 9347 0.002022 11150 0.00171 13050

1

0 0.7361 1.123 1.462 1.775 2.071 2.617 2.352 2.866 3.091 3.256 3.258 3.259 3.26 3.261 3.261 3.26

= -2.4

0 0.6377 0.2326 0.164 0.1298 0.1101 0.09862 0.0931 0.09373 0.1053 0.2171

= -1.2 0 0.6375 0.2321 0.1632 0.1289 0.1089 0.09093 0.09708 0.09028 0.09815 0.1379 0.005474 0.00577 0.006124 0.006559 0.007111 0.007841

0 0.743 1.163 1.572 1.999 2.461 2.975 3.565 4.274 5.214 7.512

= -2.4 0 0.7427 1.161 1.569 1.993 2.45 3.532 2.956 4.215 5.091 6.529 6.59 6.654 6.723 6.797 6.877 6.966

L( * )* J R/Rp

r

3.375 3.381 3.387 3.393

2.1.3.

0.0546 0.04456 0.0315 0.0002197 0

0 1

1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333 3.671 4.009 4.346 4.684 5.022 5.359 5.697 6.035 6.372 6.71 1 1.233 1.467 1.7

t0

0.003651 0.529 0.5906 0.5913 0.5688 0.5353 0.4958 0.4523 0.4055 0.3551 0.3 0.2832 0.2657 0.2474 0.2279 0.207 0.1843 0.1588 0.1291 0.09081 0.0001922

2.1.4.

2.1.5.

= -4

1

1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333 3.399 3.465 3.531 3.596 3.662 3.728 3.794 3.86 3.925 3.991

1.835 1.845 1.859 1.892

= -4

t0

0 1

= -4

t0

0.003651 0.5537 0.6545 0.6924

y/Rp

-0.8805 -0.9163 -0.9622 -1.07

3.258 3.254 3.247 3.22

= 0.3

0 0.638 0.8659 1.024 1.146 1.246 1.333 1.411 1.483 1.552 1.621 1.641 1.661 1.682 1.704 1.727 1.752 1.779 1.81 1.849 1.942

0.003651 0.5404 0.6207 0.6395 0.6351 0.6198 0.5992 0.5759 0.5511 0.5257 0.5 0.4628 0.4257 0.3887 0.3514 0.3135 0.2743 0.2325 0.1859 0.1288 0.0006003

x/Rp

r0

= 0.3

0 0.635 0.8552 1.003 1.114 1.203 1.277 1.339 1.394 1.443 1.487 1.544 1.596 1.643 1.688 1.731 1.774 1.818 1.865 1.92 2.042

= 0.3 0 0.6315 0.8436 0.9822

= 0.3

1 0.9907 0.9503 0.8846 0.7976 0.6909 0.565 0.4192 0.2516 0.05863 -0.1664 -0.2381 -0.313 -0.3925 -0.4777 -0.5696 -0.6703 -0.783 -0.914 -1.079 -1.446 r0

1

0 0.636 0.2279 0.1576 0.122 0.1007 0.0869 0.07778 0.07199 0.06896 0.06885 0.01991 0.02034 0.02096 0.0218 0.02296 0.02462 0.0271 0.0312 0.03948 0.09218

= -1.2

0 0.7316 1.107 1.433 1.735 2.022 2.297 2.563 2.822 3.075 3.322 3.67 4.007 4.335 4.652 4.957 5.249 5.524 5.776 5.987 5.979

= 0.6632

1 0.9954 0.975 0.9439

= -1.2

0 0.7345 1.117 1.452 1.761 2.054 2.333 2.6 2.856 3.099 3.329 3.391 3.451 3.509 3.565 3.618 3.667 3.712 3.75 3.774 3.72

= 0.5

1 0.9929 0.9623 0.914 0.8522 0.7791 0.6961 0.6042 0.5039 0.3955 0.2794 0.09733 -0.1006 -0.3156 -0.549 -0.8032 -1.082 -1.393 -1.748 -2.183 -3.046 r0

1

0.008873 0.01049 0.01363 0.03265

1

0 0.7282 1.096 1.414

0 0.633 0.2202 0.148 0.1112 0.08865 0.07354 0.06279 0.05482 0.04874 0.04401 0.05728 0.05162 0.04757 0.0448 0.04316 0.04267 0.04363 0.04693 0.05575 0.1216

= -1.2 0 0.6295 0.212 0.1386

1( . 4 tc1 /Rp 7.067 7.187 7.343 7.718

= -2.4 0 0.7406 1.152 1.545 1.946 2.368 2.821 3.313 3.857 4.471 5.184 5.41 5.649 5.906 6.182 6.485 6.821 7.205 7.662 8.261 9.713

= -2.4 0 0.7365 1.133 1.502 1.867 2.239 2.622 3.019 3.433 3.866 4.321 5.023 5.783 6.613 7.526 8.543 9.693 11.03 12.64 14.8 20.08

= -2.4 0 0.7319 1.114 1.459

273

L( * )* J R/Rp 1.933 2.167 2.4 2.633 2.867 3.1 3.333 6.333 9.333 12.33 15.33 18.33 21.33 24.33 27.33 30.33 33.33 336.3 669.3 1002 1335 1668 2001 2334 2667 3000 3333

2.1.6. 1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333 6.333 9.333 12.33 15.33 18.33 21.33 24.33 27.33 30.33 33.33 336.3 669.3 1002 1335 1668

274

x/Rp

y/Rp

0.9052 0.8606 0.8113 0.7581 0.7015 0.6419 0.5798 -0.3699 -1.478 -2.671 -3.919 -5.208 -6.527 -7.871 -9.235 -10.62 -12.01 -168.2 -346.5 -526.7 -707.8 -889.6 -1072 -1254 -1437 -1620 -1803

1.708 1.988 2.259 2.522 2.78 3.033 3.283 6.323 9.216 12.04 14.82 17.58 20.31 23.03 25.73 28.42 31.09 291.3 572.7 852.8 1132 1411 1690 1969 2247 2525 2803

r

0.7057 0.7072 0.7025 0.6946 0.6849 0.6742 0.6632 0.542 0.4652 0.4133 0.3754 0.3463 0.323 0.3038 0.2877 0.2739 0.2619 0.08427 0.05981 0.04889 0.04237 0.03791 0.03462 0.03205 0.02999 0.02828 0.02683 0 1

= -4

0.003651 0.5572 0.6631 0.7057 0.7232 0.7285 0.7273 0.7227 0.716 0.7083 0.7 0.6053 0.5466 0.5084 0.4817 0.462 0.4467 0.4346 0.4248 0.4166 0.4096 0.3361 0.3314 0.3298 0.329 0.3285

1.084 1.162 1.226 1.279 1.324 1.362 1.396 1.629 1.73 1.789 1.829 1.859 1.882 1.9 1.915 1.928 1.939 2.094 2.115 2.124 2.129 2.133 2.136 2.138 2.14 2.141 2.142 t0

= 0.3

0 0.6307 0.8407 0.9771 1.076 1.153 1.215 1.266 1.308 1.345 1.377 1.593 1.681 1.73 1.762 1.785 1.802 1.815 1.825 1.834 1.841 1.913 1.918 1.919 1.92 1.921

r0

= 0.7

1 0.9961 0.9782 0.9511 0.9175 0.8791 0.8369 0.7915 0.7434 0.6931 0.6407 -0.1395 -1.025 -1.957 -2.917 -3.894 -4.882 -5.879 -6.882 -7.89 -8.901 -113 -227.7 -342.4 -457.1 -571.8

1

0 0.7273 1.093 1.409 1.702 1.98 2.249 2.512 2.769 3.022 3.271 6.332 9.277 12.18 15.05 17.92 20.77 23.61 26.45 29.29 32.12 316.8 629.4 942 1255 1567

0.1014 0.07878 0.06362 0.05283 0.0448 0.03863 0.03376 0.2332 0.1005 0.05928 0.04021 0.02957 0.02292 0.01844 0.01525 0.01288 0.01107 0.155 0.02053 0.009132 0.005452 0.003724 0.00275 0.002138 0.001724 0.001428 0.001209

= -1.2 0 0.6287 0.21 0.1364 0.09923 0.07668 0.06161 0.0509 0.04296 0.03686 0.03206 0.2158 0.08797 0.04938 0.03204 0.02261 0.01688 0.01311 0.0105 0.008601 0.007182 0.072 0.004432 0.001501 0.0007554 0.0004547

1( . 4 tc1 /Rp 1.792 2.122 2.453 2.787 3.125 3.468 3.817 8.849 14.85 21.71 29.34 37.67 46.65 56.24 66.39 77.08 88.29 2673 7478 13690 21040 29370 38570 48580 59330 70780 82880

= -2.4 0 0.7307 1.109 1.448 1.774 2.095 2.416 2.738 3.062 3.39 3.721 8.349 13.58 19.29 25.36 31.72 38.33 45.14 52.13 59.26 66.52 934.2 1934 2941 3952 4966

L( * )* J R/Rp

x/Rp

r

2001 2334 2667 3000 3333

0.3282 0.3279 0.3277 0.3276 0.3275

2.1.7.

0 1

1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333 6.333 9.333 12.33 15.33 18.33 21.33 24.33 27.33 30.33 33.33 336.3 669.3 1002 1335 1668 2001 2334 2667 3000 3333

2.2.1. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

2.2.2. 1 1.1 1.2

= -4

0.003651 0.5787 0.7158 0.7854 0.8262 0.852 0.8692 0.8811 0.8895 0.8956 0.9 0.9111 0.9079 0.9047 0.9022 0.9003 0.8987 0.8975 0.8966 0.8958 0.8951 0.8881 0.8877 0.8876 0.8875 0.8875 0.8874 0.8874 0.8874 0.8874 0.8874 0 1

t0

= -4

0.002828 0.4152 0.5363

-686.5 -801.2 -915.9 -1031 -1145

= 0.3

r0

1880 2193 2505 2818 3130

= 0.9

0.0003038 5980 0.0002173 6995 0.0001631 8011 0.000127 9027 0.0001017 10040 1

t0

= 0.5

0 0.429 0.5872 0.7005 0.7924 0.8722 0.9453 1.016 1.088 1.17 1.341 t0

= 0.5

0 0.429 0.5872

r0

1 1 0.999 0.9939 0.983 0.9647 0.9369 0.8961 0.8364 0.742 0.4559 r0

1 1 0.999

=0

= -2.4

= -1.2

0 1 0 0.6253 1 0.7219 0.8238 0.9965 1.076 0.9483 0.9913 1.381 1.036 0.9848 1.664 1.103 0.9777 1.934 1.155 0.9699 2.195 1.197 0.9617 2.451 1.232 0.9531 2.704 1.261 0.9442 2.953 1.286 0.9352 3.199 1.443 0.8103 6.281 1.498 0.6761 9.309 1.527 0.5394 12.32 1.545 0.4016 15.33 1.556 0.2631 18.33 1.565 0.1243 21.33 1.571 -0.01484 24.33 1.576 -0.1541 27.33 1.58 -0.2935 30.33 1.584 -0.433 33.33 1.614 -14.56 336 1.616 -30.09 668.7 1.616 -45.61 1001 1.617 -61.14 1334 1.617 -76.67 1667 1.617 -92.2 1999 1.617 -107.7 2332 1.617 -123.3 2664 1.617 -138.8 2997 1.617 -154.3 3330

= -4

0.002828 0.4151 0.5361 0.5891 0.602 0.587 0.5499 0.4924 0.412 0.2967 0 0 1

1.921 1.921 1.921 1.921 1.922

1( . 4 tc1 /Rp

y/Rp

0 0 0.6233 0.7235 0.1985 1.08 0.1245 1.39 0.08804 1.679 0.06635 1.957 0.05212 2.228 0.04218 2.494 0.03491 2.758 0.02941 3.019 0.02515 3.279 0.1565 6.579 0.05578 9.877 0.02875 13.19 0.01756 16.51 0.01184 19.84 0.008527 23.17 0.006434 26.51 0.005028 29.86 0.004038 33.21 0.003314 36.56 0.03 377.3 0.001666 752.3 0.0005592 1127 0.0002803 1503 0.0001684 1878 0.0001124 2253 8.032e-005 2628 6.027e-005 3004 4.689e-005 3379 3.752e-005 3754 1

= -2

0 0.4576 0.6648 0.838 0.9969 1.149 1.297 1.445 1.594 1.749 1.947

= 0.1 0 0.4576 0.6648

= -4

0 0.427 0.1582 0.1133 0.09186 0.07981 0.07305 0.07031 0.07199 0.08206 0.1712 1

= -2 0 0.427 0.1581

0 0.458 0.6661 0.8426 1.01 1.177 1.353 1.544 1.765 2.046 2.708

L( * )* J R/Rp 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.001 2.002 2.003 2.004 2.006 2.007 2.008 2.009 2.01 2.11

2.2.3. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.011 2.023 2.034 2.046 2.057 2.069 2.08 2.092 2.103 2.114

2.2.4. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.044

= -4 0 0.458 0.666

275

276

x/Rp

r

0.5898 0.6034 0.5894 0.5536 0.4979 0.4204 0.3107 0.1 0.09488 0.08947 0.0837 0.0775 0.07076 0.06329 0.05482 0.04477 0.03166 0.000289 0 1

= -4

0.7004 0.7921 0.8717 0.9444 1.014 1.085 1.165 1.291 1.294 1.297 1.3 1.304 1.307 1.312 1.316 1.322 1.329 1.347 t0

= 0.5

0.002828 0 0.4153 0.429 0.5381 0.5869 0.5953 0.6995 0.6146 0.79 0.6082 0.8676 0.5824 0.9374 0.5402 1.003 0.482 1.067 0.4053 1.132 0.3 1.207 0.285 1.217 0.269 1.227 0.2519 1.238 0.2335 1.249 0.2134 1.261 0.1911 1.274 0.1656 1.289 0.1354 1.307 0.09582 1.329 0.0002458 1.383 0 1

=-4

0.002828 0.4156 0.5417 0.6062 0.6363 0.6441 0.6362 0.6161 0.5862 0.5474 0.5 0.4764

t0

=0.5

0 0.429 0.5864 0.6977 0.7859 0.8601 0.925 0.9837 1.038 1.089 1.14 1.162

y/Rp

0.9939 0.9833 0.9653 0.938 0.8983 0.8405 0.7508 0.5524 0.5471 0.5416 0.5356 0.5292 0.5222 0.5145 0.5056 0.495 0.4811 0.447 r0

= 0.3

1 1 0.9992 0.9947 0.9854 0.97 0.947 0.9146 0.8697 0.8068 0.7125 0.6974 0.6821 0.6655 0.6473 0.6271 0.6043 0.578 0.5459 0.5031 0.3952 r0

1 1 0.9995 0.9962 0.9895 0.9786 0.9629 0.9418 0.9144 0.8796 0.8359 0.8126

0.8379 0.9966 1.148 1.296 1.443 1.592 1.745 1.922 1.925 1.928 1.93 1.933 1.936 1.94 1.943 1.947 1.952 1.961

0.1132 0.09171 0.07956 0.07267 0.0697 0.07091 0.07959 0.1264 0.002876 0.003037 0.00322 0.00346 0.003763 0.004157 0.00471 0.005584 0.007267 0.0176 1

0 0.4576 0.6646 0.837 0.9945 1.144 1.29 1.433 1.576 1.72 1.869 1.887 1.904 1.922 1.941 1.959 1.978 1.998 2.019 2.042 2.077

=0.5 0 0.4576 0.6641 0.8352 0.9904 1.137 1.278 1.415 1.55 1.684 1.817 1.875

1( . 4 tc1 /Rp

1

= -2 0 0.427 0.1579 0.1126 0.09049 0.07765 0.0698 0.06533 0.06376 0.0657 0.07431 0.009724 0.01015 0.01067 0.01133 0.01217 0.01329 0.01491 0.01747 0.02249 0.05359

=-2 0 0.427 0.1574 0.1113 0.08819 0.07421 0.06497 0.05862 0.05428 0.05151 0.05017 0.02184

0.8425 1.009 1.176 1.351 1.541 1.758 2.031 2.516 2.528 2.54 2.553 2.567 2.582 2.598 2.617 2.64 2.669 2.74

= -4 0 0.458 0.6657 0.841 1.006 1.169 1.336 1.514 1.71 1.935 2.218 2.257 2.298 2.342 2.39 2.441 2.497 2.561 2.637 2.736 2.975

= -4 0 0.458 0.665 0.8383 0.9987 1.155 1.31 1.47 1.636 1.812 2.003 2.092

L( * )* J R/Rp 2.087 2.131 2.174 2.218 2.262 2.305 2.349 2.392 2.436

2.2.5. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.202 2.405 2.607 2.81 3.012 3.215 3.417 3.62 3.822 4.025

2.2.6. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 5.693 9.386 13.08 16.77 20.46 24.16 27.85 31.54 35.24 38.93

r

0.4509 0.4231 0.3928 0.3595 0.3222 0.2795 0.2285 0.1617 0.0004409 0 1

= -4

0.002828 0.4161 0.547 0.6222 0.6676 0.6946 0.7092 0.7151 0.7145 0.7091 0.7 0.673 0.6377 0.5964 0.5502 0.4992 0.4431 0.3804 0.3076 0.2153 0.001043 0 1

= -4

1.184 1.206 1.229 1.253 1.279 1.307 1.338 1.378 1.47 t0

= 0.5

0 0.4289 0.5857 0.6951 0.7801 0.85 0.9093 0.9609 1.007 1.048 1.085 1.152 1.21 1.262 1.31 1.356 1.4 1.445 1.493 1.548 1.669 t0

x/Rp

y/Rp

0.7876 0.7596 0.7281 0.6923 0.6509 0.6018 0.5411 0.4583 0.2453

1.933 1.991 2.049 2.107 2.166 2.225 2.286 2.348 2.424

r0

1 1 1 0.9984 0.9952 0.99 0.9829 0.9738 0.9626 0.9493 0.934 0.896 0.8488 0.7916 0.7232 0.642 0.5453 0.4285 0.2829 0.0855 -0.3943

= 0.5

r0

0.002828 0 1 0.4164 0.4289 1 0.5504 0.5852 1 0.6319 0.6935 0.9997 0.6864 0.7768 0.9985 0.7243 0.8442 0.9965 0.7512 0.9007 0.9937 0.7705 0.949 0.9903 0.7841 0.991 0.9861 0.7936 1.028 0.9813 0.8 1.061 0.9759 0.6532 1.484 0.4917 0.5169 1.602 -0.2896 0.4233 1.666 -1.237 0.3526 1.709 -2.308 0.2949 1.742 -3.488 0.2448 1.77 -4.774 0.1986 1.794 -6.178 0.1531 1.818 -7.73 0.1028 1.844 -9.518 0.0005904 1.896 -12.46

= 0.7

1

0 0.4575 0.6633 0.8326 0.9847 1.127 1.262 1.393 1.521 1.646 1.769 2.012 2.25 2.484 2.715 2.943 3.168 3.39 3.609 3.821 4.005

= 0.8 0 0.4575 0.6629 0.831 0.9814 1.121 1.254 1.382 1.506 1.627 1.746 5.672 9.381 13.02 16.61 20.16 23.68 27.16 30.58 33.93 36.88

1

1( . 4 tc1 /Rp

0.02204 0.02242 0.02305 0.02402 0.02549 0.02778 0.03168 0.03972 0.09188

2.186 2.286 2.393 2.509 2.637 2.782 2.953 3.177 3.714

= -2

= -4

0 0.4269 0.1567 0.1094 0.08506 0.06983 0.05931 0.05159 0.04569 0.04105 0.03733 0.06684 0.05824 0.05226 0.04815 0.04554 0.04432 0.04471 0.04751 0.05585 0.1205

0 0.4579 0.664 0.8344 0.989 1.136 1.278 1.418 1.558 1.698 1.84 2.135 2.443 2.771 3.124 3.51 3.94 4.432 5.021 5.796 7.681

= -2

= -4

0 0.4269 0.1563 0.1083 0.08327 0.06746 0.05645 0.0483 0.04203 0.03705 0.03302 0.4233 0.1173 0.06384 0.04335 0.03321 0.02767 0.02475 0.02389 0.02595 0.05216

0 0.4579 0.6634 0.832 0.9834 1.125 1.26 1.392 1.52 1.647 1.772 6.774 13.17 21.09 30.67 42.14 55.89 72.62 93.72 122.8 196.5

277

L( * )* J R/Rp 2.2.7.

0 1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 3.8 5.6 7.4 9.2 11 12.8 14.6 16.4 18.2 20 201.8 401.6 601.4 801.2 1001 1201 1401 1600 1800 2000

0 1

1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3

278

= -4

0.002828 0.4164 0.5506 0.6326 0.6877 0.7264 0.7541 0.7743 0.7889 0.7993 0.8066 0.7713 0.6959 0.6342 0.5852 0.5456 0.5128 0.4852 0.4616 0.4411 0.4231 0.14 0.09952 0.0814 0.07056 0.06314 0.05766 0.0534 0.04996 0.04711 0.0447

2.3.1.

2.3.2.

x/Rp

r

0

= -4

0.00239 0.2837 0.3892 0.4606 0.5087 0.5349 0.5381 0.5152

= 0.5

0 0.4289 0.5852 0.6934 0.7765 0.8438 0.9001 0.9482 0.99 1.027 1.06 1.354 1.469 1.534 1.577 1.609 1.633 1.652 1.668 1.681 1.693 1.85 1.871 1.88 1.885 1.889 1.892 1.894 1.896 1.897 1.898

= -4

0.00378 0.2837 0.3892 0.4605 0.5085 0.5343 0.5366 0.5124 0.4547 0.3455 0 1

t0

t0

=

1 1 1 0.9998 0.9987 0.9969 0.9945 0.9914 0.9877 0.9834 0.9785 0.8174 0.5703 0.2724 -0.05992 -0.4174 -0.7945 -1.187 -1.593 -2.01 -2.436 -55.65 -118.7 -183 -247.9 -313.3 -378.9 -444.8 -510.9 -577.1 -643.5

= 0.7

0 0.2869 0.3993 0.4815 0.5482 0.6058 0.6581 0.7078 0.7583 0.8153 0.9328 t0

r0

r0

0 0.2873 0.3997 0.4819 0.5486 0.6062 0.6583 0.7079

y/Rp = 0.8066

r0

=0

1 1 1 1 0.9998 0.9982 0.9946 0.9877 0.9749 0.9501 0.8509

= 0.1 1 1 1 1 0.9995 0.998 0.9944 0.9877

1

0 0.4575 0.6628 0.8309 0.9811 1.121 1.253 1.381 1.505 1.626 1.744 3.711 5.571 7.395 9.2 10.99 12.78 14.55 16.32 18.09 19.85 194 383.7 572.9 761.9 950.7 1139 1328 1517 1705 1894 1

0 0.2951 0.4221 0.5226 0.6105 0.6915 0.7689 0.8452 0.9235 1.009 1.148 1

= -2.8 0 0.2955 0.4225 0.523 0.6109 0.6918 0.7691 0.8453

= -2

1( . 4 tc1 /Rp = -4

0 0 0.4269 0.4579 0.1563 0.6633 0.1082 0.8318 0.08315 0.983 0.0673 1.124 0.05626 1.259 0.04809 1.39 0.0418 1.518 0.03681 1.644 0.03277 1.768 0.294 4.014 0.1148 6.473 0.0652 9.187 0.04333 12.14 0.03144 15.33 0.02415 18.74 0.0193 22.35 0.01588 26.16 0.01336 30.15 0.01144 34.31 0.157 971.2 0.02058 2705 0.009144 4943 0.005457 7591 0.003727 10590 0.002752 13910 0.002139 17510 0.001725 21390 0.001429 25510 0.001209 29860

= -2.8 0 0.2839 0.1124 0.08219 0.06675 0.05761 0.05223 0.04976 0.05046 0.05701 0.1175

-2.8 0 0.2853 0.1124 0.08219 0.06673 0.05757 0.05214 0.04957

= -5.6 0 0.2952 0.4222 0.5228 0.611 0.6929 0.7726 0.854 0.9421 1.048 1.283

= -5.6 0 0.2956 0.4226 0.5232 0.6113 0.6932 0.7728 0.8538

L( * )* J R/Rp 1.343 1.386 1.429 1.429 1.429 1.43 1.43 1.43 1.431 1.431 1.431 1.431 1.432

0.4598 0.3555 0.1 0.09491 0.08952 0.08378 0.0776 0.07087 0.06341 0.05494 0.04488 0.03175 0.0004817

2.3.3.

0 1

1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.432 1.435 1.439 1.442 1.445 1.448 1.452 1.455 1.458 1.462

2.3.4. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.442 1.455 1.468 1.482 1.495

x/Rp

r

= -4

0.00239 0.2837 0.3892 0.4611 0.5107 0.5402 0.5495 0.5369 0.4989 0.4276 0.3 0.2858 0.2707 0.2543 0.2364 0.2167 0.1946 0.1693 0.1388 0.09852 0.0003 0 1

= -4

0.00239 0.2837 0.3893 0.462 0.5146 0.5507 0.5717 0.5779 0.569 0.5438 0.5 0.4819 0.4614 0.4379 0.4112 0.3806

0.7579 0.8139 0.9062 0.9076 0.9093 0.9111 0.9131 0.9152 0.9176 0.9202 0.9234 0.9275 0.9373 t0

= 0.7

0 0.2873 0.3997 0.4818 0.5484 0.6056 0.657 0.7051 0.7523 0.8017 0.8606 0.8665 0.8723 0.8784 0.8849 0.892 0.8997 0.9083 0.9185 0.9316 0.9632 t0

= 0.7

0 0.2873 0.3997 0.4817 0.548 0.6045 0.6545 0.7 0.7427 0.784 0.8253 0.8381 0.8515 0.8654 0.8797 0.8949

y/Rp

0.9753 0.9515 0.8811 0.8797 0.8779 0.8761 0.8741 0.8719 0.8694 0.8666 0.8632 0.8587 0.8475 r0

0.9231 1.007 1.124 1.126 1.128 1.13 1.132 1.134 1.136 1.139 1.142 1.145 1.154

= 0.3

1 1 1 1 0.9996 0.9983 0.9955 0.99 0.9805 0.9638 0.9314 0.9271 0.9229 0.9183 0.9132 0.9074 0.9008 0.8929 0.8833 0.87 0.8345 r0

1

0 0.2955 0.4225 0.523 0.6107 0.6912 0.7678 0.8425 0.9176 0.9957 1.083 1.091 1.099 1.107 1.116 1.125 1.134 1.145 1.156 1.171 1.2

= 0.5

1 1 1 1 0.9999 0.9991 0.9974 0.9943 0.9892 0.9812 0.969 0.9644 0.9587 0.9521 0.9444 0.9353

0.05006 0.05598 0.09225 0.001617 0.001708 0.001817 0.001951 0.002119 0.002342 0.002656 0.003148 0.004098 0.009873

1

0 0.2955 0.4225 0.5229 0.6103 0.6902 0.7653 0.8375 0.9081 0.9785 1.05 1.072 1.095 1.118 1.142 1.166

= -2.8 0 0.2853 0.1124 0.08215 0.06659 0.05719 0.05137 0.0481 0.04719 0.04942 0.05891 0.005529 0.005793 0.006113 0.00651 0.007017 0.007694 0.008657 0.01018 0.01315 0.03152

= -2.8 0 0.2853 0.1123 0.08208 0.0663 0.05647 0.04993 0.04553 0.04271 0.04128 0.04135 0.01313 0.01342 0.01382 0.01437 0.01514

1( . 4 tc1 /Rp 0.9413 1.046 1.229 1.232 1.236 1.24 1.243 1.248 1.253 1.258 1.264 1.273 1.293

= -5.6 0 0.2956 0.4226 0.5231 0.6111 0.6924 0.7708 0.8495 0.9319 1.024 1.141 1.152 1.164 1.177 1.19 1.205 1.221 1.239 1.261 1.289 1.356

= -5.6 0 0.2956 0.4226 0.523 0.6106 0.6909 0.7671 0.8415 0.9161 0.9929 1.075 1.102 1.13 1.16 1.191 1.225

279

L( * )* J R/Rp

r

1.508 1.522 1.535 1.548 1.561

2.3.5. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.637 1.846 2.055 2.263 2.472 2.681 2.89 3.098 3.307 3.516

2.3.6. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 2.714 4 5.286 6.571 7.857 9.143 10.43 11.71 13 14.29 144.1 286.9 429.6

280

0.3449 0.3025 0.25 0.1789 0.0002995 0 1

= -4

0.00239 0.2837 0.3894 0.4634 0.5204 0.566 0.6034 0.6345 0.6604 0.682 0.7 0.75 0.7586 0.7412 0.7055 0.6555 0.5927 0.5164 0.4228 0.2989 0.001635 0 1

= -4

0.00239 0.2837 0.3894 0.4635 0.5207 0.567 0.6055 0.638 0.666 0.6901 0.7112 0.8692 0.8378 0.7901 0.7447 0.7045 0.6694 0.6386 0.6114 0.5873 0.5657 0.1951 0.139 0.1138

0.9111 0.929 0.9495 0.9756 1.036 t0

y/Rp

0.9244 0.9109 0.8934 0.868 0.7953

1.192 1.219 1.248 1.282 1.344

= 0.7

0 0.2873 0.3997 0.4816 0.5475 0.603 0.6509 0.6933 0.7312 0.7655 0.7968 0.9196 1.011 1.084 1.146 1.201 1.251 1.299 1.349 1.405 1.523 t0

x/Rp

= 0.7

0 0.2873 0.3997 0.4816 0.5475 0.6028 0.6507 0.6929 0.7305 0.7645 0.7954 1.203 1.341 1.415 1.464 1.498 1.524 1.545 1.561 1.575 1.587 1.748 1.769 1.778

r0

= 0.7

1 1 1 1 1 1 1 0.9999 0.9996 0.9991 0.9985 0.9925 0.9805 0.9612 0.9331 0.8945 0.843 0.7747 0.6819 0.5454 0.1697 r0

1

0 0.2955 0.4225 0.5228 0.6098 0.6886 0.7618 0.8308 0.8967 0.9602 1.022 1.302 1.564 1.816 2.062 2.305 2.545 2.784 3.022 3.262 3.512

= 0.7112

1 1 1 1 1 1 1 1 1 1 1 0.9761 0.9118 0.8184 0.7036 0.5726 0.4287 0.2741 0.1107 -0.06021 -0.2377 -25.45 -56.47 -88.41

0.01623 0.01787 0.02056 0.02602 0.06083

0 0.2955 0.4225 0.5228 0.6098 0.6885 0.7615 0.8304 0.8961 0.9592 1.02 2.533 3.895 5.222 6.534 7.836 9.133 10.42 11.71 13 14.28 141.9 281.2 420.4

= -2.8 0 0.2853 0.1123 0.08197 0.06587 0.05545 0.048 0.04236 0.03791 0.03431 0.03132 0.1226 0.09125 0.07318 0.06189 0.05469 0.05035 0.04847 0.04951 0.05623 0.1174

1

= -2.8 0 0.2853 0.1123 0.08197 0.06585 0.05538 0.04788 0.04217 0.03765 0.03396 0.03089 0.408 0.1379 0.07452 0.04817 0.03434 0.02604 0.02061 0.01684 0.01408 0.01201 0.161 0.02065 0.009162

1( . 4 tc1 /Rp 1.261 1.302 1.35 1.412 1.559

= -5.6 0 0.2956 0.4226 0.5229 0.6099 0.6887 0.762 0.8312 0.8974 0.9612 1.023 1.309 1.585 1.863 2.151 2.457 2.791 3.167 3.612 4.19 5.58

= -5.6 0 0.2956 0.4226 0.5229 0.6099 0.6886 0.7617 0.8306 0.8963 0.9594 1.021 2.572 4.072 5.652 7.329 9.105 10.98 12.95 15 17.15 19.38 502.1 1390 2534

L( * )* J R/Rp 572.3 715 857.7 1000 1143 1286 1429

0.09866 0.08832 0.08066 0.07471 0.0699 0.06592 0.06254 0 1

2.4.1. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111

2.4.2.

0 1

2.4.3.

= -4

0.003333 0.1479 0.2074 0.252 0.2886 0.3197 0.3452 0.3613 0.3579 0.3103 0.1 0.095 0.08969 0.08402 0.07789 0.07121 0.06378 0.05531 0.04523 0.03204 0.001263 0 1

1.784 1.787 1.79 1.792 1.794 1.795 1.797

= -4

0.003333 0.1479 0.2074 0.252 0.2886 0.3197 0.345 0.3607 0.3557 0.3033 0

1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 1.111 1.111 1.111 1.111 1.112 1.112 1.112 1.112 1.112 1.112 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111

x/Rp

y/Rp

-120.8 -153.6 -186.5 -219.7 -252.9 -286.3 -319.8

559.4 698.3 837.2 976 1115 1254 1392

r

= -4

0.002108 0.1479 0.2074 0.2519 0.2886 0.3199 0.3464 0.3666 0.3752 0.3614 0.3

t0

= 0.9

0 0.1481 0.2086 0.2544 0.2925 0.3256 0.3553 0.3826 0.4088 0.4365 0.4882 t0

= 0.9

0 0.1481 0.2086 0.2544 0.2925 0.3256 0.3553 0.3825 0.4087 0.4361 0.4775 0.4787 0.4795 0.4803 0.4812 0.4821 0.4831 0.4843 0.4857 0.4875 0.4919 t0

= 0.9

0 0.1483 0.2088 0.2546 0.2927 0.3258 0.3554 0.3825 0.4079 0.433 0.46

=0

r0

1 1 1 1 1 1 1 0.9999 0.9991 0.9968 0.9813 r0

r0

0 0.1451 0.0605 0.04579 0.03808 0.03313 0.02966 0.02731 0.02625 0.0277 0.05166 1

0 0.1492 0.2117 0.2601 0.3012 0.3377 0.371 0.4023 0.4327 0.4646 0.5106 0.5119 0.5127 0.5135 0.5144 0.5154 0.5164 0.5176 0.519 0.5209 0.5252

= 0.3

1 1 1 1 1 1 1 0.9999 0.9995 0.9985 0.9956

= -3.6

1

0 0.1492 0.2117 0.2601 0.3012 0.3377 0.371 0.4024 0.4329 0.4651 0.5211

= 0.1

1 1 1 1 1 1 1 0.9999 0.9992 0.9971 0.9868 0.9863 0.986 0.9856 0.9853 0.9849 0.9844 0.9839 0.9832 0.9824 0.9801

0.005465 0.003731 0.002754 0.002141 0.001726 0.00143 0.00121

0 0.1494 0.2119 0.2603 0.3014 0.3379 0.3712 0.4023 0.432 0.4615 0.4933

= -3.6 0 0.1451 0.0605 0.04579 0.03808 0.03312 0.02965 0.02728 0.02616 0.02735 0.04143 0.0007199 0.00076 0.0008079 0.0008666 0.0009409 0.001039 0.001178 0.001395 0.001814 0.00441

1

= -3.6 0 0.1463 0.0605 0.04579 0.03809 0.03312 0.0296 0.02707 0.02544 0.02501 0.02708

1( . 4 tc1 /Rp 3886 5419 7113 8954 10930 13030 15260

= -7.2 0 0.1492 0.2117 0.2601 0.3012 0.3377 0.3711 0.4024 0.4333 0.4664 0.5298

= -7.2 0 0.1492 0.2117 0.2601 0.3012 0.3377 0.371 0.4024 0.4331 0.4659 0.5166 0.5179 0.5188 0.5198 0.5209 0.5221 0.5233 0.5248 0.5265 0.5288 0.5342

= -7.2 0 0.1494 0.2119 0.2603 0.3014 0.3379 0.3712 0.4023 0.4322 0.4621 0.4952

281

L( * )* J R/Rp 1.112 1.113 1.114 1.116 1.117 1.118 1.119 1.12 1.121 1.122

0.2892 0.277 0.2632 0.2475 0.2295 0.2085 0.1834 0.1521 0.1093 0.00311

2.4.4.

1

1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 1.115 1.118 1.122 1.126 1.129 1.133 1.137 1.14 1.144 1.148

0.002108 0.1479 0.2074 0.2519 0.2886 0.3201 0.3475 0.3711 0.3897 0.4008 0.4 0.3959 0.3893 0.3796 0.3662 0.3482 0.3243 0.2922 0.2482 0.1824 0.0005284

2.4.5. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 2.111 3.111 4.111 5.111 6.111 7.111 8.111 9.111 10.11 11.11

282

x/Rp

r

0

0 1

0.463 0.4662 0.4694 0.4729 0.4766 0.4806 0.4851 0.4903 0.497 0.5126

= -4

= -4

0.003333 0.1479 0.2074 0.252 0.2886 0.3202 0.348 0.373 0.3957 0.4166 0.4359 0.8688 0.8999 0.8812 0.8509 0.8187 0.7878 0.7589 0.7324 0.708 0.6857

t0

t0

0.9951 0.9945 0.9939 0.9931 0.9922 0.9911 0.9897 0.988 0.9854 0.9779

= 0.9

0 0.1483 0.2088 0.2546 0.2927 0.3258 0.3554 0.3823 0.4071 0.4306 0.4532 0.4604 0.4679 0.4755 0.4832 0.4913 0.4998 0.509 0.5194 0.5324 0.5622

= 0.9

0 0.1481 0.2086 0.2544 0.2925 0.3256 0.3551 0.3819 0.4066 0.4294 0.4507 1.079 1.25 1.337 1.392 1.431 1.459 1.482 1.5 1.515 1.528

y/Rp

r0

1 1 1 1 1 1 1 1 0.9999 0.9996 0.999 0.9987 0.9982 0.9976 0.9968 0.9958 0.9945 0.9926 0.99 0.9857 0.971 r0

0.4968 0.5004 0.5041 0.5081 0.5122 0.5167 0.5217 0.5274 0.5345 0.5503

= 0.4

1

0 0.1494 0.2119 0.2603 0.3014 0.3379 0.3711 0.402 0.4312 0.4591 0.4865 0.4953 0.5044 0.5136 0.5231 0.5328 0.543 0.5539 0.5661 0.5807 0.6118

= 0.4359

1 1 1 1 1 1 1 1 1 1 1 0.9973 0.9816 0.9511 0.9079 0.8544 0.7923 0.7228 0.6472 0.5662 0.4805

0.003018 0.003135 0.003279 0.003461 0.003698 0.004018 0.004482 0.005223 0.006687 0.01557

0 0.1492 0.2117 0.2601 0.3011 0.3376 0.3709 0.4017 0.4306 0.458 0.484 1.861 2.952 4 5.03 6.051 7.067 8.079 9.088 10.1 11.1

= -3.6 0 0.1463 0.0605 0.04579 0.03809 0.03311 0.02956 0.02689 0.02486 0.02343 0.02263 0.007421 0.007473 0.007581 0.007763 0.00805 0.008495 0.009203 0.01042 0.01297 0.02986

1

= -3.6 0 0.1451 0.0605 0.04579 0.03808 0.03311 0.02954 0.02681 0.02463 0.02284 0.02133 0.6278 0.171 0.08754 0.05487 0.03831 0.02863 0.02241 0.01814 0.01507 0.01277

1( . 4 tc1 /Rp 0.4987 0.5026 0.5067 0.511 0.5156 0.5206 0.5262 0.5328 0.5411 0.5607

= -7.2 0 0.1494 0.2119 0.2603 0.3014 0.3379 0.3711 0.402 0.4312 0.4593 0.4869 0.4962 0.5055 0.515 0.5248 0.5351 0.5459 0.5578 0.5713 0.5882 0.6275

= -7.2 0 0.1492 0.2117 0.2601 0.3011 0.3376 0.3709 0.4017 0.4306 0.458 0.484 1.864 2.985 4.106 5.26 6.458 7.703 8.997 10.34 11.73 13.16

L( * )* J R/Rp 112.1 223.1 334.1 445.1 556.1 667.1 778.1 889.1 1000 1111

0.2493 0.1781 0.146 0.1267 0.1134 0.1036 0.09596 0.0898 0.08469 0.08036

3.1.1. 1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333

3.1.2. 1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333 3.335 3.337 3.339 3.341 3.343 3.345 3.347 3.349 3.351 3.353

3.1.3. 1 1.233 1.467 1.7 1.933 2.167 2.4 2.633

x/Rp

r

0 1

= -10

0.005773 0.5841 0.7161 0.76 0.7567 0.7227 0.6652 0.5868 0.4845 0.3447 0 0 1

= -10

0.005773 0.5841 0.7162 0.7605 0.7579 0.7247 0.6684 0.5915 0.4917 0.3569 0.1 0.09487 0.08944 0.08367 0.07746 0.07071 0.06325 0.05478 0.04473 0.03163 0.0004061 0 1

1.693 1.714 1.723 1.729 1.732 1.735 1.737 1.739 1.74 1.742

= -10

0.005773 0.5842 0.7176 0.7649 0.7671 0.7406 0.6932 0.6284

-13.68 -31.82 -50.68 -69.93 -89.42 -109.1 -128.9 -148.8 -168.8 -188.8 t0

r0

1 1.002 1.001 0.9945 0.9802 0.9554 0.9174 0.8619 0.7811 0.6552 0.2894

= 0.3

0 0.6227 0.8197 0.9458 1.039 1.114 1.178 1.236 1.293 1.355 1.452 1.454 1.456 1.458 1.46 1.462 1.465 1.468 1.472 1.476 1.487 t0

111.3 220.8 330.2 439.6 548.9 658.1 767.4 876.6 985.8 1095

= 0.3

0 0.6227 0.8197 0.9459 1.039 1.114 1.179 1.237 1.295 1.358 1.484 t0

y/Rp

0 0.7193 1.072 1.379 1.666 1.945 2.218 2.488 2.758 3.03 3.321 r0

1 1.002 1.001 0.9947 0.9805 0.956 0.9186 0.8642 0.7854 0.6643 0.3943 0.3892 0.3831 0.3765 0.3694 0.3617 0.3532 0.3434 0.3318 0.3166 0.2794

= 0.3

0 0.6227 0.8195 0.9452 1.038 1.111 1.174 1.229

=0

= 0.1 0 0.7193 1.072 1.379 1.666 1.944 2.217 2.487 2.757 3.028 3.31 3.313 3.315 3.318 3.321 3.324 3.326 3.33 3.333 3.336 3.341

r0

1 1.002 1.001 0.9955 0.9828 0.9611 0.9284 0.8819

= 0.3 0 0.7193 1.072 1.378 1.665 1.942 2.213 2.481

0.165 0.02075 0.009186 0.005475 0.003736 0.002758 0.002143 0.001727 0.001431 0.00121

1( . 4 tc1 /Rp 309.1 848.3 1542 2362 3291 4316 5431 6628 7902 9248

= -3

= -6

0 0.6197 0.1971 0.1262 0.09323 0.07503 0.06444 0.05877 0.05748 0.06298 0.126

0 0.7204 1.075 1.389 1.695 2.01 2.346 2.718 3.153 3.715 5.048

1

2.867 3.1 3.333 3.335 3.337 3.339 3.341 3.343 3.345 3.347 3.349 3.351 3.353

3.1.4.

= -3

= -6

0 0.6197 0.197 0.1261 0.09313 0.07488 0.06421 0.05841 0.05685 0.06156 0.09739 0.001825 0.001927 0.002049 0.002199 0.002388 0.002638 0.002991 0.003544 0.004613 0.01119

0 0.7204 1.075 1.389 1.695 2.009 2.343 2.713 3.143 3.693 4.713 4.733 4.755 4.778 4.802 4.829 4.858 4.892 4.931 4.983 5.109

= -3

= -6

1

1

0 0.6197 0.1969 0.1257 0.09233 0.07366 0.06241 0.05571

L( * )* J R/Rp

0 0.7204 1.074 1.387 1.691 1.999 2.324 2.677

283

1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333 3.404 3.474 3.544 3.614 3.684 3.754 3.825 3.895 3.965 4.035

3.1.5. 1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333 3.58 3.827 4.074 4.321 4.568 4.815 5.062

284

r

0.5462 0.4424 0.3 0.2985 0.297 0.2955 0.2939 0.2924 0.2909 0.2893 0.2878 0.2862 0.2846 0 1

= -10

0.005773 0.5844 0.7203 0.7737 0.7852 0.7713 0.7403 0.6963 0.6415 0.5765 0.5 0.4743 0.447 0.4179 0.3866 0.3526 0.3151 0.2726 0.2223 0.1569 0.0003049 0 1

= -10

0.005773 0.5847 0.7244 0.7866 0.8116 0.8153 0.8057 0.7872 0.7624 0.733 0.7 0.6619 0.6209 0.5771 0.5304 0.4803 0.426 0.3656

1.282 1.335 1.395 1.396 1.396 1.397 1.397 1.398 1.399 1.399 1.4 1.4 1.401 t0

y/Rp

0.817 0.7251 0.5822 0.5814 0.5798 0.5781 0.5765 0.5749 0.5732 0.5716 0.5699 0.5682 0.5665

2.748 3.014 3.282 3.284 3.287 3.289 3.291 3.293 3.296 3.298 3.3 3.303 3.305

= 0.3

0 0.6226 0.8192 0.944 1.035 1.106 1.165 1.217 1.263 1.306 1.348 1.361 1.374 1.387 1.4 1.415 1.43 1.446 1.466 1.489 1.545 t0

x/Rp

= 0.3

0 0.6226 0.8187 0.9422 1.031 1.099 1.155 1.201 1.241 1.276 1.307 1.337 1.365 1.392 1.417 1.442 1.467 1.492

r0

1 1.002 1.001 0.9972 0.9874 0.9708 0.9465 0.913 0.8689 0.8117 0.7374 0.7098 0.6806 0.6485 0.6129 0.573 0.5275 0.4743 0.4093 0.3222 0.1032 1 1.002 1.002 0.9996 0.9939 0.9843 0.9705 0.9522 0.9293 0.9014 0.8684 0.8282 0.7804 0.7251 0.6611 0.587 0.5003 0.3971

= 0.5

0.05247 0.05293 0.06052 0.0005924 0.0005947 0.000597 0.0005994 0.0006018 0.0006042 0.0006067 0.0006093 0.0006119 0.0006145 1

0 0.7193 1.072 1.377 1.662 1.937 2.205 2.47 2.732 2.992 3.251 3.329 3.406 3.484 3.562 3.639 3.717 3.795 3.873 3.952 4.034 r0

= 0.7 0 0.7192 1.071 1.375 1.658 1.93 2.195 2.455 2.712 2.966 3.218 3.483 3.747 4.009 4.271 4.531 4.789 5.047

= -3 0 0.6196 0.1966 0.1248 0.09081 0.07139 0.05924 0.0513 0.04612 0.04303 0.04187 0.0127 0.01289 0.01318 0.01362 0.01426 0.01519 0.01663 0.01903 0.02395 0.05578

1

= -3 0 0.6196 0.1961 0.1235 0.08866 0.06837 0.05529 0.0463 0.03986 0.03509 0.03149 0.03037 0.02809 0.02643 0.02532 0.02474 0.02476 0.02558

1( . 4 tc1 /Rp 3.074 3.546 4.174 4.181 4.187 4.194 4.201 4.207 4.214 4.221 4.228 4.235 4.241

= -6 0 0.7204 1.074 1.384 1.683 1.982 2.29 2.615 2.963 3.346 3.78 3.924 4.076 4.239 4.413 4.603 4.813 5.052 5.336 5.706 6.601

= -6 0 0.7203 1.073 1.38 1.671 1.958 2.245 2.538 2.839 3.151 3.477 3.84 4.225 4.637 5.083 5.572 6.118 6.742

L( * )* J R/Rp 5.309 5.557 5.804

3.1.6. 1 1.233 1.467 1.7 1.933 2.167 2.4 2.633 2.867 3.1 3.333 6.333 9.333 12.33 15.33 18.33 21.33 24.33 27.33 30.33 33.33 336.3 669.3 1002 1335 1668 2001 2334 2667 3000 3333

3.2.1. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

3.2.2. 1 1.1 1.2 1.3 1.4

x/Rp

r

0.2958 0.2072 0.0008282 0 1

= -10

t0

0.005773 0.5851 0.729 0.8008 0.8401 0.8619 0.8732 0.8778 0.8781 0.8755 0.8709 0.7694 0.6817 0.6161 0.5658 0.5258 0.4931 0.4658 0.4426 0.4225 0.4048 0.1329 0.09446 0.07725 0.06695 0.05991 0.05471 0.05066 0.0474 0.0447 0.04241 0 1

= -10

0.004472 0.4166 0.5527 0.6379 0.6935

0.2694 0.09735 -0.3233

= 0.3

0 0.6226 0.8181 0.9403 1.027 1.092 1.144 1.186 1.221 1.251 1.277 1.448 1.518 1.558 1.584 1.604 1.619 1.631 1.641 1.649 1.657 1.756 1.769 1.774 1.778 1.78 1.782 1.783 1.784 1.785 1.786

= -10

0.004472 0.4166 0.5527 0.6379 0.6935 0.7239 0.7273 0.6976 0.6236 0.4779 0 0 1

1.52 1.553 1.627

t0

0 0.4283 0.5842 0.6918 0.7742 0.8412 0.8985 0.9498 0.999 1.051 1.153 t0

0 0.4283 0.5842 0.6918 0.7742

= 0.5

0.02776 0.03323 0.07325

r0

1

0 0.7192 1.07 1.373 1.654 1.923 2.185 2.441 2.693 2.943 3.19 6.286 9.32 12.33 15.33 18.32 21.31 24.29 27.27 30.24 33.21 330.6 656.3 981.6 1307 1632 1957 2282 2607 2932 3256

r0

1 1.001 1.001 1.001 1.001 0.9998 0.9965 0.9891 0.9741 0.943 0.8108 1 1.001 1.001 1.001 1.001

5.303 5.556 5.795

= 0.8709

r0

1 1.002 1.003 1.002 1.001 0.998 0.994 0.9886 0.9821 0.9744 0.9655 0.7766 0.4966 0.1619 -0.21 -0.6092 -1.03 -1.467 -1.919 -2.383 -2.857 -61.83 -131.6 -202.7 -274.6 -346.9 -419.6 -492.5 -565.6 -638.9 -712.3

= 0.5

1( . 4 tc1 /Rp

y/Rp

=0

1

0 0.4568 0.6619 0.8293 0.9788

= -6

= -3

0 0.6196 0.1956 0.1221 0.08643 0.0654 0.05169 0.04215 0.03519 0.02994 0.02585 0.1709 0.0697 0.0401 0.02682 0.01954 0.01505 0.01205 0.009929 0.008365 0.007172 0.099 0.01301 0.005781 0.003451 0.002356 0.00174 0.001353 0.001091 0.0009036 0.0007645

= -5

0 0.4568 0.6619 0.8293 0.9788 1.118 1.252 1.383 1.514 1.649 1.828

= 0.1

7.489 8.472 10.86

1

0 0.7203 1.072 1.376 1.659 1.933 2.202 2.468 2.734 3 3.267 6.923 11.07 15.71 20.8 26.31 32.2 38.47 45.08 52.02 59.28 1702 4746 8677 13330 18600 24420 30760 37560 44800 52450

= -10

0 0.4253 0.156 0.1075 0.08241 0.06704 0.05723 0.05136 0.04914 0.05249 0.1019

0 0.4572 0.6623 0.8297 0.9796 1.12 1.258 1.397 1.548 1.728 2.121

= -5

= -10

0 0.4253 0.156 0.1075 0.0824

0 0.4572 0.6623 0.8297 0.9796

285

L( * )* J R/Rp 1.5 1.6 1.7 1.8 1.9 2 2 2.001 2.001 2.002 2.002 2.002 2.003 2.003 2.003 2.004

3.2.3. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.004 2.007 2.011 2.015 2.019 2.022 2.026 2.03 2.034 2.037

3.2.4. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.013 2.025 2.038 2.05

286

x/Rp

r

0.7242 0.728 0.6992 0.6268 0.4848 0.1 0.09489 0.08949 0.08373 0.07754 0.0708 0.06335 0.05487 0.04482 0.0317 0.0006991 0 1

= -10

0.004472 0.4166 0.5527 0.638 0.6942 0.7265 0.7339 0.7119 0.652 0.5364 0.3 0.2853 0.2697 0.2529 0.2347 0.2147 0.1925 0.1671 0.1368 0.09696 0.0006129 0 1

= -10

0.004472 0.4166 0.5527 0.6382 0.6956 0.7311 0.7455 0.7365 0.6998 0.6271 0.5 0.478 0.4542 0.4281 0.3993

0.8412 0.8984 0.9497 0.9986 1.051 1.137 1.138 1.139 1.14 1.141 1.143 1.144 1.146 1.148 1.15 1.156 t0

0 0.4283 0.5842 0.6918 0.7741 0.841 0.8979 0.9486 0.9962 1.045 1.107 1.11 1.114 1.117 1.121 1.125 1.129 1.135 1.14 1.148 1.167 t0

0 0.4283 0.5842 0.6918 0.774 0.8407 0.897 0.9465 0.9918 1.036 1.082 1.088 1.095 1.102 1.109

y/Rp

0.9999 0.9966 0.9893 0.9746 0.9443 0.8406 0.839 0.8373 0.8354 0.8334 0.8313 0.8288 0.826 0.8227 0.8183 0.8075

= 0.5

r0

1 1.001 1.001 1.001 1.001 1 0.9972 0.9908 0.9783 0.9536 0.8952 0.8907 0.8863 0.8815 0.8763 0.8705 0.8639 0.8562 0.8468 0.834 0.8008

= 0.5 1 1.001 1.001 1.001 1.001 1 0.9984 0.9938 0.985 0.969 0.9392 0.9337 0.9276 0.9208 0.9132

1.118 1.252 1.382 1.513 1.649 1.815 1.816 1.817 1.818 1.82 1.821 1.823 1.824 1.826 1.829 1.834

= 0.3

0.06702 0.05719 0.05128 0.04897 0.05204 0.0862 0.000982 0.001038 0.001104 0.001185 0.001288 0.001424 0.001615 0.001915 0.002493 0.005996 1

0 0.4568 0.6619 0.8293 0.9787 1.118 1.251 1.381 1.511 1.643 1.788 1.795 1.801 1.808 1.814 1.821 1.829 1.836 1.845 1.855 1.873 r0

= 0.5 0 0.4568 0.6619 0.8293 0.9786 1.118 1.25 1.379 1.507 1.634 1.766 1.783 1.8 1.818 1.836

= -5 0 0.4253 0.156 0.1075 0.08236 0.06689 0.05689 0.05066 0.04765 0.04879 0.06172 0.003185 0.003347 0.003541 0.003781 0.004087 0.004493 0.005068 0.005975 0.007739 0.01863

1

= -5 0 0.4253 0.156 0.1075 0.08228 0.06664 0.05631 0.04947 0.04533 0.04384 0.04632 0.006395 0.006625 0.006914 0.007282

1( . 4 tc1 /Rp 1.12 1.257 1.397 1.547 1.725 2.057 2.061 2.065 2.07 2.074 2.079 2.085 2.092 2.099 2.109 2.133

= -10 0 0.4572 0.6623 0.8297 0.9795 1.12 1.256 1.394 1.54 1.707 1.943 1.956 1.969 1.984 1.999 2.015 2.034 2.055 2.079 2.111 2.188

= -10 0 0.4572 0.6623 0.8297 0.9793 1.119 1.254 1.389 1.528 1.678 1.854 1.88 1.907 1.935 1.966

L( * )* J R/Rp 2.063 2.076 2.088 2.101 2.113 2.126

0.3672 0.3308 0.2886 0.2373 0.169 0.0005514 0

3.2.5.

1

1.117 1.125 1.135 1.146 1.16 1.193

= -10

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.038 2.077 2.115 2.154 2.192 2.231 2.269 2.308 2.346 2.384

0.004472 0.4166 0.5528 0.6386 0.6976 0.738 0.7626 0.772 0.7658 0.7427 0.7 0.6776 0.6513 0.6207 0.585 0.5433 0.494 0.4347 0.3604 0.2586 0.000399

3.2.6.

0 1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 3.8 5.6 7.4 9.2 11 12.8 14.6 16.4 18.2 20 201.8 401.6 601.4 801.2

x/Rp

r

= -10

0.004472 0.4166 0.5528 0.639 0.6998 0.7453 0.7804 0.8083 0.8307 0.8491 0.8642 0.9303 0.8974 0.8521 0.8082 0.7684 0.7329 0.7014 0.6734 0.6482 0.6256 0.2198 0.1568 0.1284 0.1114

t0

0.9044 0.8942 0.8819 0.8664 0.8446 0.7849

= 0.5

0 0.4283 0.5842 0.6917 0.7739 0.8402 0.8956 0.9435 0.9859 1.025 1.061 1.075 1.088 1.102 1.116 1.13 1.146 1.162 1.18 1.203 1.256 t0

y/Rp

= 0.5

0 0.4283 0.5842 0.6917 0.7737 0.8396 0.8942 0.9405 0.9804 1.015 1.046 1.307 1.399 1.448 1.48 1.503 1.52 1.533 1.544 1.553 1.561 1.664 1.677 1.682 1.686

1.854 1.873 1.893 1.914 1.937 1.976 r0

= 0.7

1 1.001 1.001 1.001 1.001 1.001 1 0.9979 0.9938 0.987 0.9761 0.9703 0.9636 0.9556 0.946 0.9343 0.9201 0.902 0.8781 0.8429 0.7389

0 0.4568 0.6619 0.8292 0.9785 1.117 1.249 1.376 1.501 1.624 1.746 1.793 1.84 1.887 1.935 1.983 2.032 2.082 2.134 2.189 2.267

r0

= 0.8642

1 1.001 1.001 1.001 1.001 1.002 1.002 1.002 1.002 1.002 1.002 0.9926 0.9594 0.9051 0.8344 0.7504 0.6557 0.5521 0.4409 0.3233 0.2001 -18.7 -42.44 -67.03 -92.05

0 0.4568 0.6619 0.8292 0.9783 1.117 1.248 1.373 1.495 1.614 1.731 3.668 5.517 7.344 9.162 10.97 12.78 14.59 16.39 18.2 20 200.9 399.4 597.7 795.9

0.007764 0.008421 0.009375 0.01091 0.01394 0.033 1

= -5 0 0.4253 0.156 0.1075 0.08216 0.06627 0.05546 0.04784 0.04242 0.03868 0.03639 0.01368 0.01366 0.01375 0.01399 0.01442 0.01514 0.01634 0.01844 0.02288 0.05242 1

= -5

0 0.4253 0.156 0.1075 0.08203 0.06588 0.05461 0.04627 0.03987 0.03481 0.03072 0.2605 0.09212 0.04954 0.03181 0.02255 0.01702 0.01343 0.01093 0.009124 0.007763 0.103 0.01308 0.0058 0.003459

1( . 4 tc1 /Rp 1.999 2.035 2.075 2.123 2.185 2.334

L( * )* J R/Rp 1001 1201 1401 1600 1800 2000

= -10 0 0.4572 0.6623 0.8297 0.979 1.118 1.251 1.381 1.511 1.643 1.782 1.838 1.896 1.956 2.02 2.088 2.162 2.245 2.341 2.465 2.76

= -10 0 0.4572 0.6623 0.8296 0.9788 1.117 1.248 1.374 1.496 1.615 1.732 3.697 5.662 7.72 9.89 12.17 14.57 17.09 19.71 22.43 25.26 626.6 1728 3148 4826

287

0.0997 0.09106 0.08434 0.07892 0.07443 0.07062 0

3.3.1. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429

3.3.2. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.429 1.429 1.429 1.429 1.429 1.429 1.429 1.429 1.43 1.43

3.3.3. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.43

288

x/Rp

y/Rp

-117.4 -142.9 -168.5 -194.3 -220.1 -246.1

994.1 1192 1390 1589 1787 1985

r

1

= -10

0.00378 0.2838 0.3894 0.4635 0.5208 0.5667 0.602 0.6213 0.6075 0.5157 0 0 1

= -10

0.00378 0.2838 0.3894 0.4635 0.5208 0.5667 0.6021 0.6217 0.6087 0.5197 0.1 0.09491 0.08953 0.08379 0.07761 0.07088 0.06343 0.05496 0.0449 0.03177 0.001076 0 1

1.688 1.69 1.691 1.692 1.693 1.694

= -10

0.00378 0.2838 0.3894 0.4635 0.5208 0.5668 0.6027 0.6245 0.6185 0.551 0.3 0.2859

t0

0 0.2869 0.3993 0.4812 0.5471 0.6025 0.6505 0.6932 0.7329 0.7733 0.8458 t0

0 0.2869 0.3993 0.4812 0.5471 0.6025 0.6504 0.6932 0.7328 0.773 0.8369 0.8376 0.8382 0.8388 0.8395 0.8403 0.8411 0.842 0.8431 0.8446 0.8482 t0

0 0.2869 0.3993 0.4812 0.5471 0.6025 0.6504 0.6931 0.7324 0.7713 0.8201 0.8219

= 0.7

r0

1 1 1 1 1 1.001 1 1 0.9981 0.9917 0.9473

= 0.7

1 1 1 1 1 1.001 1 1 0.9985 0.9936 0.9745 0.9734

= -7

1

0 0.2951 0.4221 0.5224 0.6094 0.6881 0.7613 0.8307 0.8984 0.9679 1.069 r0

1 1 1 1 1 1.001 1 1 0.9981 0.9919 0.9568 0.9562 0.9556 0.955 0.9544 0.9536 0.9528 0.9519 0.9508 0.9493 0.9455

= 0.7

=0

0.002361 0.001743 0.001355 0.001092 0.0009045 0.0007652

= 0.1

0 0.2839 0.1123 0.08196 0.06584 0.05539 0.048 0.04276 0.0397 0.04035 0.07254 1

0 0.2951 0.4221 0.5224 0.6094 0.6881 0.7613 0.8307 0.8984 0.9677 1.061 1.062 1.062 1.063 1.064 1.064 1.065 1.066 1.067 1.069 1.072 r0

= 0.3 0 0.2951 0.4221 0.5224 0.6094 0.6881 0.7612 0.8306 0.8979 0.9659 1.045 1.047

= -7 0 0.2839 0.1123 0.08196 0.06584 0.05539 0.04799 0.04275 0.03965 0.04018 0.06386 0.0005703 0.0006025 0.0006411 0.0006883 0.000748 0.0008269 0.0009379 0.001112 0.001448 0.003596

1

= -7 0 0.2839 0.1123 0.08196 0.06584 0.05538 0.04797 0.04264 0.0393 0.0389 0.04879 0.001891

1( . 4 tc1 /Rp 6727 8828 11110 13560 16170 18930

= -14 0 0.2952 0.4222 0.5225 0.6095 0.6882 0.7614 0.8313 0.9006 0.9758 1.121

= -14 0 0.2952 0.4222 0.5225 0.6095 0.6882 0.7614 0.8313 0.9005 0.9754 1.103 1.104 1.105 1.107 1.108 1.11 1.111 1.113 1.116 1.118 1.126

= -14 0 0.2952 0.4222 0.5225 0.6095 0.6882 0.7614 0.8311 0.8997 0.9721 1.069 1.073

L( * )* J R/Rp 1.431 1.432 1.433 1.434 1.435 1.436 1.438 1.439 1.44

3.3.4. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.433 1.437 1.441 1.445 1.449 1.453 1.457 1.462 1.466 1.47

3.3.5. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 1.455 1.482 1.508 1.535 1.561 1.588 1.614 1.641 1.667 1.694

x/Rp

r

0.2708 0.2545 0.2367 0.217 0.195 0.1697 0.1392 0.09886 0.0007959 0 1

= -10

0.00378 0.2838 0.3894 0.4635 0.5208 0.567 0.604 0.63 0.6376 0.6087 0.5 0.4816 0.4611 0.4379 0.4116 0.3815 0.3465 0.3046 0.2525 0.1812 0.0007395 0 1

= -10

0.00378 0.2838 0.3894 0.4635 0.5208 0.5673 0.6059 0.6383 0.6652 0.6862 0.7 0.7039 0.7032 0.6967 0.6828 0.6595 0.6238 0.5708 0.492 0.367 0.000562

0.8239 0.826 0.8282 0.8307 0.8333 0.8363 0.8399 0.8445 0.8556 t0

0.9721 0.9706 0.969 0.9672 0.9652 0.9627 0.9597 0.9555 0.9442

= 0.7

0 0.2869 0.3993 0.4812 0.5471 0.6024 0.6504 0.6928 0.7314 0.7681 0.8066 0.8111 0.8153 0.8198 0.8244 0.8294 0.8348 0.8407 0.8477 0.8565 0.8775 t0

y/Rp

r0

1 1 1 1 1 1.001 1.001 1 0.9994 0.9966 0.9885 0.9867 0.9851 0.9833 0.9812 0.9787 0.9757 0.972 0.9671 0.9601 0.9393

= 0.7

0 0.2869 0.3993 0.4812 0.5471 0.6024 0.6503 0.6924 0.7301 0.7642 0.7954 0.8132 0.8307 0.8476 0.8642 0.8807 0.8974 0.9147 0.9334 0.9559 1.005

1.05 1.053 1.056 1.059 1.062 1.066 1.07 1.076 1.087

r0

1 1 1 1 1 1.001 1.001 1.001 1.001 1 1 0.9999 0.9992 0.9981 0.9964 0.9939 0.9903 0.9849 0.9764 0.9619 0.9079

= 0.5 0 0.2951 0.4221 0.5224 0.6094 0.6881 0.7612 0.8303 0.8969 0.9628 1.031 1.039 1.046 1.053 1.061 1.069 1.077 1.086 1.096 1.107 1.13

= 0.7 0 0.2951 0.4221 0.5224 0.6094 0.6881 0.7611 0.8299 0.8956 0.9588 1.02 1.057 1.094 1.131 1.167 1.204 1.241 1.279 1.319 1.362 1.43

0.001987 0.002102 0.002245 0.002426 0.002667 0.003009 0.003547 0.004594 0.01112

= -7

1

0 0.2839 0.1123 0.08196 0.06584 0.05537 0.04792 0.04244 0.03861 0.03671 0.03845 0.004101 0.004246 0.004427 0.004657 0.00496 0.005372 0.005972 0.006938 0.008855 0.02098

1( . 4 tc1 /Rp 1.077 1.081 1.086 1.091 1.096 1.103 1.11 1.119 1.142

= -14 0 0.2952 0.4222 0.5225 0.6095 0.6882 0.7613 0.8307 0.8981 0.9664 1.043 1.051 1.06 1.069 1.079 1.089 1.101 1.113 1.128 1.147 1.192

= -7

= -14

0 0.2839 0.1123 0.08196 0.06584 0.05536 0.04785 0.04214 0.03766 0.03407 0.03121 0.01818 0.01749 0.01696 0.01661 0.01648 0.01665 0.01729 0.01878 0.02244 0.04928

0 0.2952 0.4222 0.5225 0.6095 0.6882 0.7612 0.83 0.8958 0.9592 1.021 1.059 1.096 1.134 1.173 1.212 1.254 1.298 1.348 1.409 1.549

1

289

L( * )* J R/Rp 3.3.6. 1 1.043 1.086 1.129 1.171 1.214 1.257 1.3 1.343 1.386 1.429 2.714 4 5.286 6.571 7.857 9.143 10.43 11.71 13 14.29 144.1 286.9 429.6 572.3 715 857.7 1000 1143 1286 1429

0 1

3.4.2. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078

290

= -10

0.005345 0.2838 0.3895 0.4636 0.5208 0.5673 0.606 0.639 0.6674 0.6922 0.714 0.9276 0.9542 0.947 0.9279 0.9044 0.8796 0.8551 0.8315 0.809 0.7878 0.3042 0.2182 0.1791 0.1554 0.1392 0.1272 0.1179 0.1103 0.1041 0.09875 0

3.4.1. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111

x/Rp

r

1

0

= 0.7

0 0.2874 0.3997 0.4817 0.5475 0.6029 0.6507 0.6928 0.7304 0.7643 0.7951 1.193 1.319 1.383 1.422 1.449 1.469 1.485 1.497 1.507 1.516 1.625 1.638 1.644 1.647 1.649 1.651 1.653 1.654 1.655 1.655

= -10

0.002108 0.1479 0.2074 0.2519 0.2886 0.3201 0.348 0.3729 0.3933 0.3881 0 1

t0

= -10

0.002108 0.1479 0.2074 0.2519 0.2886 0.3201 0.348 0.3729

t0

0 0.1483 0.2088 0.2546 0.2927 0.3258 0.3554 0.3822 0.4068 0.4303 0.4643 t0

y/Rp = 0.714

r0

1 1 1 1 1 1 1 1 1 1 1 1.001 0.9978 0.9892 0.9744 0.9537 0.9275 0.8966 0.8615 0.8226 0.7803 -7.754 -19.21 -31.27 -43.63 -56.2 -68.91 -81.73 -94.64 -107.6 -120.6

= 0.9

= 0.9

0 0.1483 0.2088 0.2546 0.2927 0.3258 0.3554 0.3822

1

= 0.1 0 0.1494 0.2119 0.2603 0.3014 0.3379 0.3711 0.4019

0 0.2957 0.4227 0.523 0.6099 0.6887 0.7617 0.8305 0.8961 0.9591 1.02 2.524 3.884 5.234 6.605 8.008 9.449 10.93 12.46 14.02 15.64 330.1 896.8 1625 2484 3456 4530 5697 6949 8282 9691

= -9

0 0.1494 0.2119 0.2603 0.3014 0.3379 0.3711 0.4019 0.4309 0.4589 0.4976 r0

1 1 1 1 1 1 1 1

=0

0 0.2824 0.1123 0.08196 0.06584 0.05536 0.04785 0.04212 0.03758 0.03388 0.03079 0.3982 0.1255 0.06384 0.03943 0.02716 0.02005 0.01554 0.01248 0.01029 0.008669 0.109 0.0132 0.005829 0.003471 0.002367 0.001747 0.001357 0.001094 0.0009058 0.0007662

1

0 0.2956 0.4225 0.5228 0.6098 0.6885 0.7615 0.8303 0.8959 0.959 1.02 2.523 3.874 5.192 6.499 7.799 9.096 10.39 11.68 12.97 14.26 143.9 286.2 428.4 570.6 712.8 854.9 997.1 1139 1281 1423 r0

1 1 1 1 1 1 1 1 1 0.9997 0.9935

= -7

1( . 4 tc1 /Rp = -14

1

= -18

0 0.1463 0.0605 0.04579 0.03808 0.03311 0.02954 0.02681 0.02468 0.02346 0.03403

0 0.1494 0.2119 0.2603 0.3014 0.3379 0.3711 0.4019 0.4309 0.459 0.5007

= -9

= -18

0 0.1463 0.0605 0.04579 0.03808 0.03311 0.02954 0.02681

0 0.1494 0.2119 0.2603 0.3014 0.3379 0.3711 0.4019

L( * )* J R/Rp 1.089 1.1 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111 1.111

3.4.3. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 1.112 1.112 1.112 1.113 1.113 1.113 1.114 1.114 1.115 1.115

3.4.4. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 1.112 1.113 1.115 1.116 1.117 1.118 1.119

x/Rp

r

0.3935 0.3896 0.1 0.095 0.08969 0.08401 0.07788 0.0712 0.06377 0.0553 0.04522 0.03203 0.001027 0 1

= -10

0.003333 0.1479 0.2074 0.252 0.2886 0.3202 0.348 0.3729 0.3945 0.4018 0.3 0.2889 0.2765 0.2626 0.2468 0.2288 0.2078 0.1828 0.1516 0.1089 0.001178 0 1

= -10

0.003333 0.1479 0.2074 0.252 0.2886 0.3202 0.348 0.373 0.3954 0.4122 0.4 0.3935 0.385 0.3741 0.36 0.3418 0.3183 0.2872

0.4068 0.4303 0.4614 0.4613 0.4615 0.4618 0.4622 0.4625 0.4629 0.4633 0.4639 0.4645 0.4662 t0

t0

1 0.9997 0.9949 0.995 0.9949 0.9948 0.9947 0.9945 0.9943 0.9942 0.9939 0.9936 0.9928

= 0.9

0 0.1481 0.2086 0.2544 0.2925 0.3256 0.3551 0.3819 0.4066 0.4297 0.4543 0.4551 0.4562 0.4574 0.4586 0.4599 0.4614 0.463 0.4649 0.4673 0.4731

0.4309 0.4588 0.4947 0.4946 0.4948 0.4952 0.4955 0.4959 0.4963 0.4967 0.4972 0.4979 0.4996 r0

1 1 1 1 1 1 1 1 1 1 0.9984 0.9984 0.9982 0.998 0.9977 0.9974 0.997 0.9966 0.996 0.9951 0.9925

= 0.9

0 0.1481 0.2086 0.2544 0.2925 0.3256 0.3551 0.3819 0.4066 0.4295 0.4516 0.4544 0.4569 0.4594 0.462 0.4647 0.4675 0.4706

y/Rp

1 1 1 1 1 1 1 1 1 1 0.9997 0.9994 0.9993 0.9991 0.9989 0.9986 0.9982 0.9977

r0

0.02468 0.02342 0.03114 0.0002673 0.0002822 0.0003001 0.0003219 0.0003496 0.0003861 0.0004376 0.0005183 0.0006744 0.001687

1( . 4 tc1 /Rp 0.4309 0.459 0.4971 0.4973 0.4977 0.498 0.4984 0.4989 0.4994 0.4999 0.5005 0.5014 0.5035

= 0.3

1

= -9

= -18

0 0.1492 0.2117 0.2601 0.3011 0.3376 0.3709 0.4017 0.4306 0.4583 0.4876 0.4885 0.4898 0.4912 0.4926 0.4941 0.4957 0.4975 0.4995 0.5021 0.5081

0 0.1451 0.0605 0.04579 0.03808 0.03311 0.02954 0.02681 0.02466 0.02315 0.02458 0.001076 0.001119 0.001173 0.001241 0.001328 0.001445 0.001614 0.001883 0.002414 0.005815

0 0.1492 0.2117 0.2601 0.3011 0.3376 0.3709 0.4017 0.4306 0.4584 0.4884 0.4893 0.4907 0.4922 0.4937 0.4953 0.4971 0.4991 0.5015 0.5045 0.5117

= 0.4

1

= -9

= -18

0 0.1492 0.2117 0.2601 0.3011 0.3376 0.3709 0.4017 0.4306 0.4581 0.4849 0.4882 0.4912 0.4942 0.4973 0.5006 0.504 0.5076

0 0.1451 0.0605 0.04579 0.03808 0.03311 0.02954 0.02681 0.02464 0.02293 0.02211 0.002411 0.002452 0.002509 0.002589 0.002701 0.002865 0.003116

* . R/Rp 1.121 1.122 1.123

3.4.5. 1 1.011 1.022 1.033 1.044 1.056 1.067 1.078 1.089 1.1 1.111 2.111 3.111 4.111 5.111 6.111 7.111 8.111 9.111 10.11 11.11 112.1 223.1 334.1 445.1 556.1 667.1 778.1 889.1 1000 1111

0 0.1492 0.2117 0.2601 0.3011 0.3376 0.3709 0.4017 0.4306 0.4581 0.4851 0.488 0.491 0.4941 0.4974 0.5007 0.5043 0.5082

291

292

x/Rp

r

0.2445 0.1803 0.00122 0 1

= -10

0.003333 0.1479 0.2074 0.252 0.2886 0.3202 0.348 0.373 0.3957 0.4166 0.4359 0.8807 0.9469 0.97 0.9807 0.9865 0.9901 0.9924 0.994 0.9951 0.9959 1 1 1 1 1 1 1 1 1 1

0.4742 0.4786 0.4889 t0

0.9969 0.9957 0.9914

= 0.9

0 0.1481 0.2086 0.2544 0.2925 0.3256 0.3551 0.3819 0.4066 0.4294 0.4507 1.077 1.244 1.325 1.374 1.406 1.43 1.447 1.461 1.472 1.481 1.562 1.566 1.568 1.569 1.569 1.569 1.569 1.57 1.57 1.57

r0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.003 1.006 1.009 1.012 1.014 1.017 1.02 1.023 1.026 1.029

y/Rp 0.5117 0.5166 0.5274

= 0.4359 0 0.1492 0.2117 0.2601 0.3011 0.3376 0.3709 0.4017 0.4306 0.458 0.484 1.859 2.946 3.988 5.012 6.029 7.04 8.049 9.056 10.06 11.07 112.1 223.1 334.1 445.1 556.1 667.1 778.1 889.1 1000 1111

0.003538 0.004409 0.0103 1

= -9

0 0.1451 0.0605 0.04579 0.03808 0.03311 0.02954 0.02681 0.02463 0.02284 0.02133 0.6263 0.1662 0.08153 0.04879 0.03255 0.02328 0.01749 0.01362 0.01091 0.008941 0.081 0.004438 0.001489 0.0007464 0.0004484 0.0002992 0.0002138 0.0001604 0.0001248 9.989e-005

1( . 4 tc1 /Rp 0.5126 0.5182 0.5312

= -18 0 0.1492 0.2117 0.2601 0.3011 0.3376 0.3709 0.4017 0.4306 0.458 0.484 1.859 2.946 3.987 5.012 6.028 7.04 8.049 9.056 10.06 11.07 112.1 223.1 334.1 445.1 556.1 667.1 778.1 889.1 1000 1111

L(

*J

5 "

!

1

-.5000E+00 -.5000E+00 -.5000E+00 -.5000E+00 -.5000E+00 -.6000E+00 -.6000E+00 -.6000E+00 -.6000E+00 -.6700E+00 -.7000E+00 -.7000E+00 -.7000E+00 -.7000E+00 -.7300E+00 -.7300E+00 -.8000E+00 -.8000E+00 -.8000E+00 -.8000E+00 -.9000E+00 -.9000E+00 -.9000E+00

%

p

.1000E+00 .3000E+00 .5000E+00 .7000E+00 .8000E+00 .1000E+00 .3000E+00 .5000E+00 .7000E+00 .7400E+00 .1000E+00 .3000E+00 .5000E+00 .7000E+00 .6000E+00 .6600E+00 .1000E+00 .3000E+00 .5000E+00 .5990E+00 .1000E+00 .3000E+00 .4000E+00

/

Ra .2300E+06 .2570E+04 .2500E+03 .3728E+02 .1316E+02 .4969E+01 .4712E+01 .4100E+01 .2867E+01 .1221E+01 .2482E+01 .2334E+01 .1991E+01 .1220E+01 .1442E+01 .1194E+01 .1653E+01 .1540E+01 .1270E+01 .1004E+01 .1239E+01 .1142E+01 .1046E+01

0. *

a/

1.001 1.012 1.038 1.115 1.246 1.001 1.018 1.063 1.228 2.879 1.002 1.025 1.097 1.823 1.246 1.562 1.003 1.032 1.146 1.390 1.003 1.044 1.086

,)

ta 6

.1429E+09 .1802E+06 .5842E+04 .3700E+03 .8627E+02 .2101E+02 .1968E+02 .1694E+02 .1205E+02 .1064E+02 .8632E+01 .8172E+01 .7203E+01 .6914E+01 .5680E+01 .5841E+01 .5373E+01 .5112E+01 .4616E+01 .4362E+01 .3929E+01 .3764E+01 .3565E+01

,)

*( *' ( ) I

(J) * 1 . 0. 0 ( * + ( #

6 *+

ˆ020618 * 13.08. 97. L*)1 * 1 . @ 01.02.99. !*( 60x90/16. 8 ( 0( « ' » . L . @ *+ . . 1 .. . 18,4. ..- ,). . 17,0. ( J 500 H ,. #

,) @ * * * 7 ( *6* 0 630058, * * 7 ( , 0 . 0

1 .

*

1*6( +

630090, * * 7 ( -90, 1(* 1.

293

294

*

) *( ˆ.‰. Š { ' ( ) *( . ˆ. † y *7 *J ‹. Œ. y • |

/ . +*(

0

*

9

( , 35

88 )

*1 N6 , 3

, ˆ 58

295

296