182 89 3MB
Russian Pages 165 Year 2004
Ю
ё
669 (07) Ж 911
. .Ж
Ф
Ч
ё , .И.
А
В
Ы
АВ В
ВА
Я
, 110500 – « »
И
Ч
Ю 2004
-
[669:53] (075.8) + 669.017.3.001.2(075.8)
Ч
Ж :
ё
. .,
:И -
.И. . –
Ю
, 2004. – 157 . «
» -
110500 – « ». . И .138,
. 2,
.–5
.
-
-
.
:
ISBN 5-696-02704-0
, . .- . . . . , . . . Ю. .
©Ж ©И
; .
ё
. ., Ю
.И., 2004. , 2004.
–
–
. –
-
. ,
.
, ,
.
. -
. . ,
, . 1. ,
-
. ,
.
1.1. . 1 ,
2.
150…200 . ,
,
-
. (
« 1.2.2)
–
».
. . .
3
, ,
,
-
,
,
.
.Х
. , (
. 1.1). : – 0Kτ1 –
. , ,
τ1
; –
. 1.1.
:t ,t,t
–
,
-
,
τ2 ,
,
, ; –
,
-
τ2 ,
,
, t −t τ3 ,
; –
τ 3 Kτ 4 . , –
t −t
τ3
τ4
t (τ ) ;
-
. (
)
-
–
.Э «
»
. 4
, ,
-
. 1.2.
-
, .
-
,
-
, .
.
, n = 1, (
. 1.2). -
(
. 1.3). ( . 1.4).
,
, -
.
1.2.4. . , , . (
)
).
)
. 1.3. («
»);
) : – ; –
–
, 5
-
-
)
)
. 1.4. –
: ;
–
1.2. 1.2.1.
,
. ∆t = t − t
(
. 1.5). -
,
.
-
.
. (
,
. 1.5.
,
-
), ,
6
∆t
. 1.5. . ,
.
,
, t −t
. , .
Э
-
.
. 1.6,
-
. , . ,
. ,
,
,
,
. 1.7. .
1– .
2,
, – . 3, ,
. 1.6. Э
∆t (τ ) .
-
. 1.7. , -
7
1.2.2.
. .
1903 . (
. 1.8). ,
Э
-
, ,
, .
. -
,
,
, , .
. 1.8. . . ,
-
.
:
-
–
–
24 . .
. -
,
. . -
, , . ,
(
. 1.8). ( -
)
. 8
,
,
,
,
–
.
,
, -
: ,
Х
. . 1.8
(
).
,
-
, .
,
:
Э
,
( )
-
. 1 .
,
,
,
. 1.8). Э
2(
.
(
R1 R2 , R3 R4 – «
.
»). -
.Э , P2
. R2, R4
, t −t
(
,
. , RP 2 ⋅ R 4 R = R2 + RP 2 + R 4
RP2 – R5=R. Э
-
2),
-
t −t
-
. 1.9).
-
.
( 1 ,
2 9
7 (
) 3,
. 1, 7. 4, 6 ,
5.
-
,
, M
i–
;
-
= iBS n = iD ,
(1.1)
– D = BS n .
; S – . . 1.9.
; n – -
-
Gh3b3 = 2 ⋅ϕ . (h + b 2 )l
M
;ϕ –
G–
(1.2) ; h, b, l – .
,
, = . 2 2 iBSn ⋅ (h + b )l ϕ= . Gh3b3
-
(1.3)
,
.
.Э
,
. -
. ,
, , M
im –
,
∑R
im =
BSn dϕ , ⋅ R d τ ∑
= − Dim ,
.
M
=−
( BSn) 2 dϕ . ⋅ R d τ ∑
–
(1.4) ,
); dϕ dτ –
,
,
( 10
.
, .
, (
-
. 1.10).
)
)
)
. 1.10. :
–
( );
:
–
,
-
–
(
),
–
(
)
. 200 (
.
( (
. 1.10, ),
800
,
. 1.10, ). . . 1.10, ) , -
. щ
Э
-
, , . . 1.2.3.
,
,
.
11
to (τ ) ,
-
.
. ,
,
. 150...200 . . .
Э
, .
Э . C m =C m (
, ,m–
-
–
). .
.Ч
-
,
. 100 / .
.
-
, .
,
, .
-
. .
, . ( 1.11). ( . 1.11.
-
γ-
V1),
. , -
c 12
(
– 1
2
–
А1.
), V2
3
4,
,
А1.
-
V3,
,
, -
5,
6. , 7(
). .
,
-
, , ,
V4
–
s,
.
1.2.4.
, ,
,
. ,
:
α – t –
,
-
dQ = α (t − t )dτ , ; t – . ;τ –
(1.5) ;
, ,
t1
(
, . 1.12, ). (
. 1.12, ).
S2 = S4 .
t2 ,
,
S1
S3 (
-
t2 , S 2 ( . 1.12, ) ). , , t1 t2 , . 1.12, 1.12, , S1 = S3 . , , S 2 , S3 S 4 ( . 1.12, ), , S4 . 1.12, . , ό t1
. 13
-
S1
S3
, -
. 1.12.
, τ* –
:τ ,τ –
, ( . . 1.13,
. 1.7). . 1.7, ,
. -
′ ′ ).
′)
,
(
(
( (
′) ′ ′ ).
-
, ,
-
τ Kτ
, ,
. .
14
Qx
Q – , Sx S – ,
ό
-
S Qx S x Qx = Q ⋅ x , (1.6) = S Q S Q = mH , m– , – . , , . 1.13 . 1.3.
,
.
-
,
. 1.13
,
.
-
, ,
,
,
. . 1.14.
)
)
. 1.14.
( ) ( ), 1 – 15
2.
– .
,
-
,
. . 2.1.
, t, t .
,
,
,
,
(
-
). .
(
m C1 t − t
) + q + C (t
)
− t + m C (t − t
2
m–
q
) = C (t
−t
)+Q,
(2.1)
, C1 , C2 –
, t
t –
,C –
,
Q –
( ). t ,
q
,
. ,
-
. «
»
,
. .
, .
, .
16
,
-
2.2.
,
-
,
. . , dQ dt , ,
,
-
dQ dt
-
t1
Q C p = ( dQ dt ) ⋅ 1 m (
,
dQ dt
,
-
. 2.1, ).
t2 .
. 2.1. - dQ/dt -
, dQ dt ,
,
)
) Q ( )
( )
(
. 2.1, ).
.
2.2.1.
, , .
,
,
-
. (
∆t
. Э .
. 2.2)
, ,
17
,
,τ – ,S–
.
dQ = γ S ∆tc . dτ Q– , γ –
(2.2) -
, . , .
. 2.2.
, :1–
2 –
, ; 3 –
4, 5 –
; ;
, ,
2.
3. C
. 1.
.
-
.
dQ ∆τ = C m ∆t + Cc mc ∆tc , dτ :C ,m – ; ∆t –
∆τ ; C , mc , ∆tc – ,
dQ ∆τ c = Cc mc ∆tc . dτ , ∆τ ,
m , dQ ∆τ = C m ∆t + Cc mc ∆tc . dτ , , ∆tc (2.3) (2.4) dQ C m ∆t = ( ∆τ − ∆τ c ) . dτ (2.4) (2.5) dQ C m ∆t = ( ∆τ − ∆τ c ) . dτ 18
(2.3)
,
.
∆τ (2.4) ∆t :
-
(2.5) .
(2.6)
(2.7)
(2.6)
(2.7),
C m ∆t ∆τ − ∆τ , = ∆τ − ∆τ C m ∆t
C =C ⋅ ∆τ , ∆τ , ∆τ
(2.8)
m ∆τ − ∆τ c ∆t ⋅ ⋅ . m ∆τ − ∆τ ∆t
(2.9)
, ( ∆τ , ∆τ ,
C =C ⋅
. 2.3). ∆τ
m l − lc ∆t ⋅ ⋅ . m l − lc ∆t (2.10) . 2.3. ∆τ ∆τ (tc),
.
(t ); tc.o – ; tc. –
mo ∆H , .
, ,
∆H –
∆τ , -
(t )
∆τ -
dQ ∆τ = m ∆H + Cc mc ∆tc . dτ , (2.4) (2.5) , (2.4), (2.5) ∆H = C ⋅ ∆τ , ∆τ , ∆τ
(2.11) .
-
(2.11)
m ∆τ − ∆τ ⋅ ⋅ ∆t . m ∆τ − ∆τ ∆t
(2.12) (
19
. 2.4).
. 2.4.
, -
(2.12): t . –
, t .o – , t. –
, t – ,t –
.
–
∆H
C ,
. ,
(
.
. 2.2)
, . 2.5).
(
1, 3, 5 ,
2, 4, 6 – . -
– . 2.2.2. . 2.5.
-
,
,
,
.Э , ,
, ,
,
. (
20
),
-
Cp =
uidτ , m dt
(2.13)
,τ –
u, i –
, t –
. ( .
-
. 2.6).
, t . ,
(
-
. 2.7).
. 2.7.
. 2.6. (t )
:1–
(t )
: i –
;2– ;4–
;3–
; 5 –
τ1 , τ 2 , τ 3
t =t ,
-
, ,
, . 2.13,
21
Cp =
ui . dt m dτ
(2.14)
, ,
,
(
. 2.7).
1, 2
3
, .
-
τ1 , τ 2
.
τ3 (
, . 2.7),
.
, -
, .
Ч ,
(2.14) d (t − t dt dt = + dτ dτ dτ
: d (t − t
) dτ
dt dV dt dV ⋅ − ⋅ , dV dτ dV dτ , , ,
(2.16)
dV dτ – ,
. ,
Э
,
(2.15) -
V –
dt dV ,
),
–
,
V .
.
dt dV = dt dV . d (V − V ) dt ⋅ . dτ dV Cp =
ui dt d (V − V + m dτ dτ 22
.
t =t
-
(2.16) (2.17)
) ⋅ dt
dV
,
(2.18)
d (V − V
.
) dτ
Э
– dt dV .
,
, (
.
t − t = 0 ),
. 2.7). (
t −t
. (
. 2.8. ,
1,23 % (1)
0,22 % (2)
. 2.8).
;3–
2.2.3.
,
-
, , .
–
.
,
,
. -
. 2.9.
11
13
, ,
7,
,
6. 9
3, 1
(
2). 23
, 19, -
15. 16,
, . . 2.9. :8–
-
–
; 17–
-
– 10,
14, 18
19 , ∆t1 = t − t ,
-
.
-
t =t .
,
,
, ,
-
. , . ,
∆t2 = t − t = 0 . Э 12, 24
4, 5
15 (
.
. 2.9).
, , ,
-
. (
. 2.9
).
-
.
, ,
-
,
. . , ,
. Э
.
.Э
,
,
, .
∆t2 = t − t = 0
-
, ,
.
.
.
. ,
∆t = f1 (τ ) .
,
, ∆t = f1 (τ ) ,
, .
Wo = f 2 (τ ) .
, 25
,
-
. -
.
∆t = f1 (τ )
,
Wo = f 2 (τ ) –
,
t = f3 (τ )
W = f (t
,
.
).
-
. . . ,
, -
. 2.2.4.
2.2.2
2.2.3
,
. .
,
, .
-
. , ,
Ч
, ,
10
. -
–2
,
)
(
. 15…50
0,1…0,3 Е.
,
,
. ,
Q =m
∫
T1 T0
Q =m
dT = ∫ W dτ + Em ,
T0
,
-
τ
(2.19)
0
∫ C dT = ∫W dτ .
T2
.
τ
0
26
(2.20)
m , m –
; T0 – ; T1 , T2 –
W ,W –
;
, . Q −Q = m
(2.19)
τ
T2
T0
Em = m
(2.20),
∫ C dT − m ∫ C dT = ∫W dτ + Em − ∫W dτ ,
T1
T0
0
τ
T2
m = m = m , C (τ ) = C (τ ) = C (τ ) , T0
T0
(2.21)
0
∫ C dT − m ∫ C dT − ∫ (W
T1
τ
− W )dτ .
(2.22)
0
(2.22)
1 E = ∫ CdT − ∫ (W − W )dτ . m0 T
-
τ
T0
(2.23)
, , .
. , ,
-
. Э (2.23).
2.3.
,
-
. .
(
. 2.10). C p'
.
27
-
– 150 °
200
350 ° .
-
, ,
.
250 ° 0,22 % . 250 385 °
.Э 250 °
α0,2 %
-
.
. 2.10. :1–
;2–
250 °C
Fe–Ni–Ti, Fe–Ni–Al . 300…600 °
,
500 ° . . Fe + 7,75 % Ni , ,
C p' ( t ) .
. 2.11),
(
C p' ( t )
,
-
. .
, .
28
)
)
. 2.11. Fe + 7,75 % Ni, 1–
)
1,5 % Al ( ), 1 % Ti ( ), 1,45 % Al ,2–
1,75 % Ti ( ):
. ,
,
-
. , -
.Э
, (
. 2.12). -
. 2.12.
. 3.
,
. ,
.
3.1.
, 29
β,
-
β= ;Т–
V–
. :
χT –
1 ∂V , V ∂ T P P
(3.1) .
β =γ
CV ⋅ χT . VM ; CV –
γ –
(3.2) −
, .
θ – χT
γ =−
β.
.
∂ ln θ , ∂ ln V (3.2)
β
∆V ; VM – V ⋅ ∆P
γ
CV (T ) .
VM
;
. , , T →0
.
, .
T > 2θ .
α,
-
α,
. ,
α-
.
,
α-
0 .
β
, , .
-
b . . -
β CV
.
.Э
CV
-
CP :
β2 CP − CV = VT . χT
30
(3.3)
β.
,
CP − CV
β.
,
CP − CV CP = CV ,
β = 0.
-
,
, .
α – n
α ⋅T n = A .
,
(3.4) ,
А
-
.
n=1,17, А=7,24·10 . –2
(3.4)
,
, . 0 ,
T . 0,06…0,07.
-
.
-
, -
.
(
.
,
dA da (
6.1). ,
. 3.1),
. 3.1.
( ),
,
-
dA da , .
,
( ( А
A( a r )
a
I) II) r
(
. 3.2). .
βV = k χT . 31
(3.5)
.3.2.
,
Э
βV − χT .
. . -
β = β 0 (1 + Aε ) ,
β0 –
, γ –
( – А
. 1,3…2,3.
(3.6) ; A ≈ χT Eγ 3 ), ε – -
,
.
.
– ; k –
; V0 –
. , Q ∆V = BV0 exp − , kT ;Q– . . .
.
, (3.7) -
,
1%
-
, .
32
. Э
–
–
,
-
.
.
3.2. 3.2.1.
,
, (3.1),
α= ⋅
1 dl , l dT
β
Т.
l–
.Э l1
V2
∆T = T2 − T1 , l2 .
β=
-
.Э ,
T2 –
1 ∆V 1 V2 − V1 ; ⋅ = ⋅ V1 ∆T V1 T2 − T1
α=
α –
,
(3.10)
, ,
β
α, (
(3.9)
1 ∆l 1 l2 − l1 . ⋅ = ⋅ l1 ∆T l1 T2 − T1
T1KT2 . , , 20…100, 20…500 ° . .
,
α
V1
β
β
T1 –
(3.8)
. 3.3, ).
d 2 β dT 2 < 0 ,
d 2 β dT 2 > 0 , β > β (
33
α β 2θ , ∆T
)
, , ,
∆T
.
-
. ,
,
-
.
β = 3α .
α = 1 3 (α + 2α ⊥ ) ,
α
-
,
α⊥ –
,
β = 3α .
.
-
3.2.2.
, ( )
.
34
-
. ,
,
-
. ,
М
. .
.
– -
. . 10–3
.
О
. . . -
,
10–6
. , .
Ф
-
. . . 10–7
. -
, . ,
, ,
. . 106. 35
-
И
, ,
-
. .
. . . 3.2.3.
, ,
-
,
(
. 3.4). -
. 1100 °C α ≈ 0,55 10 1/ .
:
–6
α
1150 ° 7·10 , ,
. 3.4.
–6
1100 °C. 1300 °
: 1 – ,5–
, 4–
,
-
.
, 2, 3 –
3(
. 3.4),
, .
-
, . . Э ,
, , 36
,
-
-
.
,
,
,
. 82 % Ni, 7 % Cr, 5 % W, 3 % Mn ,
1050 ° .
, 3 % Fe. 200 ° ,
-
, . . . 3.1. 3.1
t,°C 0 100 200 300 400 500 600 700 800 900 1000 α, 12,33 13,43 14,35 15,25 16,15 17,08 17,91 18,79 19,55 20,20 20,72 10–6 –1
Э
,
, .
, (
-
,
). ,
-
. 3.2.4. И
. (
-
. 3.4) ,
.
-
. k ∆l
,
R–
,
. ,
k=
2π R . ∆l
,
(3.11) ,
37
∆l = ∆l − ∆l ,
α
. 2α . ,
-
, ,
R .
, k = 2π ⋅ 500 = 3140 .
, 500
О
-
n = k ( ∆l − ∆l ) . t1 t2 n1 = k ⋅ ( ∆l − ∆l )t ; n2 = k ⋅ ( ∆l − ∆l 1
(
) (
t1
t2
n2 − n1 = k ⋅ l t2 − l t1 − l kl t1 ( t2 − t1 ) ,
t2
−l
t1
1
,
-
(3.12)
)t 2 .
(3.13)
) .
(3.14)
l t2 − l t1 l t2 − l t1 n2 − n1 . = − kl ( t2 − t1 ) l t1 ( t2 − t1 ) l t1 ( t2 − t1 )
(3.15)
l t =l t,
α
(3.15) t1
t2
.
α ( t1…t2 ) = α ( t1…t2 ) + k ⋅l
n2 − n1 . t1 ( t2 − t1 )
(3.16) l
t1
l .
t1
-
(3.16) l
l ,
α
-
. (3.16)
α t =α t +
1 dn ⋅ . kl dt
(3.17) -
dn dt
α t =α +
:
Mn 1 ⋅ ⋅ tgϕ . M t kl
38
(3.18)
α ≈α t , Mn
n (t )
Mt –
3.2.5.
«t», ϕ –
«n »
t. -
Ш
, . . 3.5.
. 3.5. Э Ш
( , ) ,4–
( ): ,5–
8 – 10, 11 – ;
, 9 – , ) 13 –
:1– ,6– ;
, 14, 15 –
, 16 –
39
–
– ,2–
,3– ,7–
, : , 12 –
1
2(
.
3.2.3), 5,
3, .
9 11 –
– 10 .
6.
12
8, .
. -
, 8
9
7
4, 13
. . 3.5, ). 15 14, « ». ,
( 9 16, 9
«
»
-
9
.
,
. «
»
. 3.5, ,
. ,
,
,
, .
(
50
), 10.
x–x (
9 «
. 3.5, ). ,
» «
.». z–z
«
»
«Э
-
, y–y,
»
-
.». –
«
-
. , «
»
.
-
.Э . -
, 40
. .
α ∆τ 2 > ∆τ 3 > ∆τ 4 ,
-
∆l 1 − , ∆τ T
(3.36) -
Q. .Э
50
∆l ,
∆l T1 < T2 < T3 < T4
(
. 3.15, ),
.
)
) Т1 0,4) 265 ° (
380 ° .
, -
. 6.72). 1
2,
.
. 6.72,
Э
, . ,
. -
. , ,
χ-
,
χ,
.
–
, -
. 450 ° , P + PFe3C + Pχ = 100% . 155
, (6.100)
Ms =
∆M s =
P
100
P
100
Ms +
PFe3C
100
M s , ∆M s Fe3C =
M s Fe3C +
PFe3C
100
Pχ
100
M sχ .
M s Fe3C , ∆M s χ =
(6.101) Pχ
100
M sχ M s (t )
6.8.2). M s Fe3C
Ms
∆M s
P
PFe3C .
,
∆M s Fe3C ,
( .
,
-
Pχ
(6.100). M sχ
Pχ ,
∆M s χ .
-
. . . γ-
. 6.72.
3 – 400 ° , 10
12,
1.
-
-
: 1 – 200 ° , 50 ; 2 – 350 ° , 1 ; ; 4 – 680 ° , 1
. 2. . . 3.
.
α-
4. (
).
156
-
6.8.5.
. . (
.
6.8.1) 2…3
– . . .
,
40…50
. .
, , ,
, ( )
.
-
, ,
. .
, . . -
,
, .
-
. , .
щ
,
. , -
Ms,
, Ms .
α – )
P
α = kM s = k
P
100
Ms .
(6.102)
,
(
P .
-
P
( ,
.
157
) -
(
)
100 %,
α = kM s = kM s . (6.102)
,
,
P α = α 100
P =P=
(6.103)
(6.103),
α ⋅ 100 . α
(6.104)
–
, . (6.104)
.
,
-
, . ,
, . (6.103) M s < M s .
(6.104) ,
, . (6.104)
,
,
.
-
, . ,
, ,
.
α-
.
,
α-
:
. .
,
. -
, 158
, :
,
,
, ,
,
-
,
–
. (6.104) , -
. .
, , ,
, .
(6.104)
α-
.
-
, . ,
, (
. 6.73),
-
. . -
, , ,
-
.
. 6.73. В
α ∼ Мs: ∆t –
-
.
-
, . .
, . . . ,
, .
159
, -
,
,
M s (τ ) .
, . ,
,
-
. ,
-
. .
(6.104) . . -
,
(
.
6.8.2). -
. , ,
,
,
. P + PFe3C + P
,
. .
-
+ Pa = 100 ,
.
,
-
, . , ,
. .
.
щ
-
.
. ,
,
,
. , .
, -
. .
. ,
160
,
. (6.104).
: (Ms )
α
( M s ). , (
P =
α −α ⋅ 100 . α
-
)
161
(6.105)
Г 1.
. .,
Ф ЧЕ . .,
. .
: .
./
. . . .
.–
2. 3. .
. .I. 3.
.И. Е.И.
.– . . -
.:
4. Ч
5. . . 1976. – 280 .
–
. – 2.И. .: И -
.:
.
. – 2., , 1980. – 320 . : .– . . ,
/ . , 1983.– . 17. – 352 . / , . . ., . – .: , 1969. – . 1–4. – 395 . – 2. / . - , 1969. – 387 . . – .:
162
. . . ,
ЛА ЛЕ ИЕ ȼȼȿȾȿɇɂȿ 1. ɌȿɊɆɂɑȿɋɄɂɃ ȺɇȺɅɂɁ ………………………………………… 1.1. ɉɪɨɫɬɨɣ ɬɟɪɦɢɱɟɫɤɢɣ ɚɧɚɥɢɡ ………………………………….. 1.2. Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɣ ɬɟɪɦɢɱɟɫɤɢɣ ɚɧɚɥɢɡ 1.2.1. Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɟ ɬɟɪɦɨɝɪɚɦɦɵ …………………..…. 1.2.2. Ⱥɩɩɚɪɚɬɭɪɚ ɞɥɹ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɬɟɪɦɢɱɟɫɤɨɝɨ ɚɧɚɥɢɡɚ ………………………………………………….... 1.2.3. Ɏɚɤɬɨɪɵ, ɜɥɢɹɸɳɢɟ ɧɚ ɯɚɪɚɤɬɟɪ ɬɟɪɦɨɝɪɚɦɦ ……….... 1.2.4. Ɉɩɪɟɞɟɥɟɧɢɟ ɬɟɩɥɨɬɵ ɮɚɡɨɜɨɝɨ ɩɪɟɜɪɚɳɟɧɢɹ ɦɟɬɨɞɨɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɝɨ ɬɟɪɦɢɱɟɫɤɨɝɨ ɚɧɚɥɢɡɚ …………… 1.3. ɉɪɢɦɟɧɟɧɢɟ ɬɟɪɦɢɱɟɫɤɨɝɨ ɚɧɚɥɢɡɚ …………………………… 2. ɄȺɅɈɊɂɆȿɌɊɂɑȿɋɄɂɃ ȺɇȺɅɂɁ ……………………………… 2.1. ɉɪɹɦɚɹ ɤɚɥɨɪɢɦɟɬɪɢɹ …………………………………………. 2.2. Ɇɟɬɨɞɵ ɨɛɪɚɬɧɨɣ ɤɚɥɨɪɢɦɟɬɪɢɢ …………………………….... 2.2.1. Ɇɟɬɨɞ ɋɦɢɬɚ …………………………………………...… 2.2.2. Ɇɟɬɨɞ ɋɚɣɤɫɚ …………………………………………….. 2.2.3. Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɚɹ ɚɞɢɚɛɚɬɢɱɟɫɤɚɹ ɤɚɥɨɪɢɦɟɬɪɢɹ …… 2.2.4. ɂɦɩɭɥɶɫɧɚɹ ɤɚɥɨɪɢɦɟɬɪɢɹ ……………………………… 2.3. ɉɪɢɦɟɧɟɧɢɹ ɤɚɥɨɪɢɦɟɬɪɢɢ ……………………………….. 3. ȾɂɅȺɌɈɆȿɌɊɂə ………………………………………………….. 3.1. ɇɟɤɨɬɨɪɵɟ ɡɚɤɨɧɨɦɟɪɧɨɫɬɢ ɬɟɩɥɨɜɨɝɨ ɪɚɫɲɢɪɟɧɢɹ ……….… 3.2. Ɇɟɬɨɞɵ ɢɫɫɥɟɞɨɜɚɧɢɹ ɬɟɩɥɨɜɨɝɨ ɪɚɫɲɢɪɟɧɢɹ ɦɟɬɚɥɥɨɜ ɢ ɨɛɴɟɦɧɵɯ ɷɮɮɟɤɬɨɜ ɮɚɡɨɜɵɯ ɩɪɟɜɪɚɳɟɧɢɣ ɜ ɧɢɯ 3.2.1. Ɍɟɪɦɢɧɨɥɨɝɢɹ, ɨɛɳɢɟ ɡɚɦɟɱɚɧɢɹ ɢ ɪɟɤɨɦɟɧɞɚɰɢɢ …… 3.2.2. Ɋɚɡɧɨɜɢɞɧɨɫɬɢ ɞɢɥɚɬɨɦɟɬɪɨɜ …………………………... 3.2.3. Ⱦɢɥɚɬɨɦɟɬɪɢɱɟɫɤɢɣ ɞɚɬɱɢɤ ……………………………... 3.2.4. ɂɧɞɢɤɚɬɨɪɧɵɟ ɞɢɥɚɬɨɦɟɬɪɵ ……………………………. 3.2.5. Ⱦɢɮɮɟɪɟɧɰɢɚɥɶɧɵɣ ɨɩɬɢɤɨ-ɦɟɯɚɧɢɱɟɫɤɢɣ ɞɢɥɚɬɨɦɟɬɪ ɒɟɜɟɧɚɪɚ ……………………………………………….... 3.2.6. Ɉɛɪɚɛɨɬɤɚ ɞɢɥɚɬɨɝɪɚɦɦ ………………………………… 3.2.7. ɋɨɜɦɟɳɟɧɢɟ ɞɢɥɚɬɨɦɟɬɪɢɢ ɫ ɬɟɪɦɢɱɟɫɤɢɦ ɚɧɚɥɢɡɨɦ .... 3.2.8. ɇɟɤɨɬɨɪɵɟ ɩɪɢɦɟɧɟɧɢɹ ɞɢɥɚɬɨɦɟɬɪɢɢ ………………… 4. ɆȿɌɈȾɕ ɈɉɊȿȾȿɅȿɇɂə ɉɅɈɌɇɈɋɌɂ ………………………. 4.1. Ɉɩɪɟɞɟɥɟɧɢɟ ɩɥɨɬɧɨɫɬɢ ɦɟɬɨɞɨɦ ɬɪɟɯɤɪɚɬɧɨɝɨ ɜɡɜɟɲɢɜɚɧɢɹ .. 4.2. Ɇɟɬɨɞ ɝɢɞɪɨɫɬɚɬɢɱɟɫɤɨɝɨ ɜɡɜɟɲɢɜɚɧɢɹ ……………………..... 5. ɂɁɆȿɊȿɇɂȿ ɍȾȿɅɖɇɈȽɈ ɗɅȿɄɌɊɂɑȿɋɄɈȽɈ ɋɈɉɊɈɌɂȼɅȿɇɂə ………………………………………………… 5.1. Ɇɟɬɨɞɵ ɢɡɦɟɪɟɧɢɹ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ……….… 5.1.1. Ɇɟɬɨɞ ɜɨɥɶɬɦɟɬɪɚ-ɚɦɩɟɪɦɟɬɪɚ …………………………. 163
3 3 3 6 8 11 13 15 16 16 17 17 20 23 26 27 29 29
33 34 36 37 39 43 49 50 52 53 53 54 56 57
5.1.2. Ɇɨɫɬɨɜɵɟ ɦɟɬɨɞɵ ɢɡɦɟɪɟɧɢɹ ɷɥɟɤɬɪɨɫɨɩɪɨɬɢɜɥɟɧɢɹ … 5.1.3. Ʉɨɦɩɟɧɫɚɰɢɨɧɧɵɣ ɦɟɬɨɞ ……………………………….. 5.1.4. ɂɡɦɟɪɟɧɢɹ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɛɟɫɤɨɧɬɚɤɬɧɵɦɢ ɦɟɬɨɞɚɦɢ ……………………………… 5.2. ɗɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɦɟɬɚɥɥɢɱɟɫɤɢɯ ɫɩɥɚɜɨɜ 5.2.1. ɗɥɟɤɬɪɨɫɨɩɪɨɬɢɜɥɟɧɢɟ ɬɜɟɪɞɵɯ ɪɚɫɬɜɨɪɨɜ ……………. 5.2.2. ɗɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɢɧɬɟɪɦɟɬɚɥɥɢɱɟɫɤɢɯ ɫɨɟɞɢɧɟɧɢɣ ɢ ɩɪɨɦɟɠɭɬɨɱɧɵɯ ɮɚɡ ……………………... 5.2.3. ɗɥɟɤɬɪɢɱɟɫɤɨɟ ɫɨɩɪɨɬɢɜɥɟɧɢɟ ɝɟɬɟɪɨɝɟɧɧɵɯ ɫɩɥɚɜɨɜ ... 5.3. ɉɪɢɦɟɧɟɧɢɹ ɪɟɡɢɫɬɨɦɟɬɪɢɢ ɜ ɦɟɬɚɥɥɨɮɢɡɢɱɟɫɤɢɯ ɢɫɫɥɟɞɨɜɚɧɢɹɯ ………………………………………………….. 6. ɆȺȽɇɂɌɇɕȿ ɋȼɈɃɋɌȼȺ ȼȿɓȿɋɌȼ, ɉȺɊȺɆȿɌɊɕ, ɆȿɌɈȾɕ ɂɁɆȿɊȿɇɂɃ ɂ ɂɋɋɅȿȾɈȼȺɇɂɃ ………………….. 6.1. Ʉɥɚɫɫɢɮɢɤɚɰɢɹ ɜɟɳɟɫɬɜ ɩɨ ɦɚɝɧɢɬɧɵɦ ɫɜɨɣɫɬɜɚɦ 6.1.1. Ɉɫɧɨɜɧɵɟ ɦɚɝɧɢɬɧɵɟ ɩɚɪɚɦɟɬɪɵ ………………………. 6.1.2. Ⱦɢɚɦɚɝɧɟɬɢɤɢ ……………………………………………. 6.1.3. ɉɚɪɚɦɚɝɧɟɬɢɤɢ …………………………………………... 6.1.4. Ɏɟɪɪɨɦɚɝɧɟɬɢɤɢ ………………………………………… 6.1.5. Ⱥɧɬɢɮɟɪɪɨɦɚɝɧɟɬɢɤɢ ……………………………………. 6.1.6. Ɏɟɪɪɢɦɚɝɧɟɬɢɤɢ …………………………………………. 6.2. Ɇɟɬɨɞɵ ɢɡɦɟɪɟɧɢɹ ɦɚɝɧɢɬɧɨɣ ɜɨɫɩɪɢɢɦɱɢɜɨɫɬɢ 6.2.1. Ɏɢɡɢɱɟɫɤɢɟ ɨɫɧɨɜɵ ɞɢɧɚɦɨɦɟɬɪɢɱɟɫɤɨɝɨ ɦɟɬɨɞɚ …….. 6.2.2. Ʉɨɧɫɬɪɭɤɰɢɢ ɦɚɝɧɢɬɧɵɯ ɜɟɫɨɜ …………………………. 6.2.3. Ɇɚɝɧɢɬɨɦɟɬɪɢɱɟɫɤɢɣ ɦɟɬɨɞ ɨɩɪɟɞɟɥɟɧɢɹ ɦɚɝɧɢɬɧɨɣ ɜɨɫɩɪɢɢɦɱɢɜɨɫɬɢ ………………………………………... 6.2.4. Ⱦɢɚɦɚɝɧɢɬɧɵɟ ɢ ɩɚɪɚɦɚɝɧɢɬɧɵɟ ɫɜɨɣɫɬɜɚ ɦɟɬɚɥɥɨɜ ɢ ɫɩɥɚɜɨɜ …………………………………………………. 6.3. ɋɬɚɬɢɱɟɫɤɢɟ ɦɚɝɧɢɬɧɵɟ ɩɚɪɚɦɟɬɪɵ ɦɚɝɧɢɬɧɵɯ ɦɟɬɚɥɥɨɜ ɢ ɫɩɥɚɜɨɜ ………………………………………………………... 6.3.1. Ɇɚɝɧɢɬɧɵɟ ɩɚɪɚɦɟɬɪɵ ɨɫɧɨɜɧɨɣ ɤɪɢɜɨɣ ɧɚɦɚɝɧɢɱɢɜɚɧɢɹ ɮɟɪɪɨɦɚɝɧɟɬɢɤɨɜ …………………….. 6.3.2. Ɇɚɝɧɢɬɧɵɟ ɩɚɪɚɦɟɬɪɵ ɩɟɬɥɢ ɝɢɫɬɟɪɟɡɢɫɚ ……………... 6.3.3. Ɇɚɝɧɢɬɧɚɹ ɷɧɟɪɝɢɹ ɮɟɪɪɨɦɚɝɧɟɬɢɤɨɜ ………………….. 6.4. Ⱦɨɦéɧɧɚɹ ɫɬɪɭɤɬɭɪɚ ɮɟɪɪɨɦɚɝɧɟɬɢɤɨɜ 6.4.1. ɉɪɢɱɢɧɵ ɜɨɡɧɢɤɧɨɜɟɧɢɹ ɢ ɨɫɨɛɟɧɧɨɫɬɢ ɞɨɦɟɧɧɨɣ ɫɬɪɭɤɬɭɪɵ ………………………………………………… 6.4.2. ɂɡɦɟɧɟɧɢɟ ɞɨɦɟɧɧɨɣ ɫɬɪɭɤɬɭɪɵ ɮɟɪɪɨɦɚɝɧɟɬɢɤɚ ɩɪɢ ɟɝɨ ɧɚɦɚɝɧɢɱɢɜɚɧɢɢ ………………………………… 6.5. ɂɡɦɟɪɟɧɢɟ ɫɬɚɬɢɱɟɫɤɢɯ ɦɚɝɧɢɬɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɦɚɬɟɪɢɚɥɨɜ … 6.5.1. ȼɢɞɵ ɦɚɝɧɢɬɧɵɯ ɰɟɩɟɣ …………………………………. 6.5.2. Ɉɛɪɚɡɰɵ ɢ ɧɚɦɚɝɧɢɱɢɜɚɸɳɢɟ ɭɫɬɪɨɣɫɬɜɚ …………….. 164
59 62 65 67 72 73 76 80 80 81 82 83 84 85 86 87 89 91 94 94 97 99
103 105 107 107 109
6.5.3. ɂɡɦɟɪɟɧɢɟ ɫɬɚɬɢɱɟɫɤɢɯ ɦɚɝɧɢɬɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɦɚɬɟɪɢɚɥɨɜ ɜ ɡɚɦɤɧɭɬɨɣ ɦɚɝɧɢɬɧɨɣ ɰɟɩɢ ……………… 6.5.4. Ⱥɜɬɨɦɚɬɢɡɢɪɨɜɚɧɧɵɟ ɭɫɬɚɧɨɜɤɢ ɞɥɹ ɢɡɦɟɪɟɧɢɹ ɫɬɚɬɢɱɟɫɤɢɯ ɦɚɝɧɢɬɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɦɚɬɟɪɢɚɥɨɜ …….... 6.5.5.ɂɡɦɟɪɟɧɢɟ ɤɨɷɪɰɢɬɢɜɧɨɣ ɫɢɥɵ ɢ ɨɫɬɚɬɨɱɧɨɣ ɢɧɞɭɤɰɢɢ .. 6.6. ɂɡɦɟɪɟɧɢɟ ɦɚɝɧɢɬɨɫɬɪɢɤɰɢɢ ………………………………….. 6.6.1. Ɇɟɯɚɧɨɨɩɬɢɱɟɫɤɢɣ ɦɟɬɨɞ ………………………………. 6.6.2. Ɍɟɧɡɨɦɟɬɪɢɱɟɫɤɢɣ ɦɟɬɨɞ ………………………………... 6.7. Ɇɚɝɧɢɬɧɵɟ ɫɜɨɣɫɬɜɚ ɮɟɪɪɨɦɚɝɧɢɬɧɵɯ ɦɟɬɚɥɥɨɜ ɢ ɫɩɥɚɜɨɜ … 6.7.1. Ɍɟɦɩɟɪɚɬɭɪɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɫɬɚɬɢɱɟɫɤɢɯ ɦɚɝɧɢɬɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ……………………………………………….. 6.7.2. Ʉɨɧɰɟɧɬɪɚɰɢɨɧɧɚɹ ɡɚɜɢɫɢɦɨɫɬɶ ɫɬɚɬɢɱɟɫɤɢɯ ɦɚɝɧɢɬɧɵɯ ɩɚɪɚɦɟɬɪɨɜ ɮɟɪɪɨɦɚɝɧɢɬɧɵɯ ɫɩɥɚɜɨɜ …….. 6.8. ɂɫɫɥɟɞɨɜɚɧɢɟ ɮɚɡɨɜɵɯ ɩɪɟɜɪɚɳɟɧɢɣ ɢ ɫɬɪɭɤɬɭɪɧɵɯ ɢɡɦɟɧɟɧɢɣ ɦɚɝɧɢɬɧɵɦɢ ɦɟɬɨɞɚɦɢ…………………………….. 6.8.1. Ⱥɩɩɚɪɚɬɭɪɚ ɞɥɹ ɢɫɫɥɟɞɨɜɚɧɢɹ ɮɚɡɨɜɵɯ ɩɪɟɜɪɚɳɟɧɢɣ ɢ ɫɬɪɭɤɬɭɪɧɵɯ ɢɡɦɟɧɟɧɢɣ ɦɚɝɧɢɬɧɵɦɢ ɦɟɬɨɞɚɦɢ ……… 6.8.2. Ɏɚɡɨɜɵɣ ɦɚɝɧɢɬɧɵɣ ɚɧɚɥɢɡ …………………………….. 6.8.3. ɑɚɫɬɧɵɟ ɫɥɭɱɚɢ ɮɚɡɨɜɨɝɨ ɦɚɝɧɢɬɧɨɝɨ ɚɧɚɥɢɡɚ ………... 6.8.4. ɂɫɫɥɟɞɨɜɚɧɢɟ ɩɪɨɰɟɫɫɨɜ ɨɬɩɭɫɤɚ ɡɚɤɚɥɟɧɧɨɣ ɫɬɚɥɢ ɦɟɬɨɞɚɦɢ ɮɚɡɨɜɨɝɨ ɦɚɝɧɢɬɧɨɝɨ ɚɧɚɥɢɡɚ …………….…. 6.8.5. ɂɫɫɥɟɞɨɜɚɧɢɟ ɤɢɧɟɬɢɤɢ ɩɪɟɜɪɚɳɟɧɢɣ ɩɟɪɟɨɯɥɚɠɞɟɧɧɨɝɨ ɚɭɫɬɟɧɢɬɚ .…………………………... ȻɂȻɅɂɈȽɊȺɎɂɑȿɋɄɂɃ ɋɉɂɋɈɄ …………………………………..
165
111 119 120 124 125 125 127 128 132 140 140 147 152 154 157 162