Баллистическое проектирование ракет 5-696-00672-8


173 35 878KB

Russian Pages 92 Year 1996

Report DMCA / Copyright

DOWNLOAD PDF FILE

Баллистическое проектирование ракет
 5-696-00672-8

  • 0 0 0
  • Like this paper and download? You can publish your own PDF file online for free in a few minutes! Sign Up
File loading please wait...
Citation preview

p

p P

p p

p

p

623.451.8

. .

ИC ИЧ C И

И

1996

2

623.451.8 ч

.C. .—

:

: .

, 1996. — 92 .

. , . p

.

.5,

.12,

.—8

p

.

-

p

p p

P

:

p p

ISBN 5-696-00672-8

.

. . . .

© ©

, 1996. . .

p p . ____________________________________________________________________ P N 020364 20.01.92. 20.11.96 . p 60 84 1/16. . . . . 6,74. .- . . 6,22. p 150 . 353. p . ____________________________________________________________________ p p p . 454080, . , p. . . . , 76. 2

3

И …………………………………………………………………………

5

…………………………………………………………... ……………………….. …………………………………... . p p ………………………………………... p n0 ………………………………………………………. p pk pa P ………………………………………….. p pk pa P …………………………………………. …………………… p P .. ………………………………

6 6 10 12 19 20 21 22 22 23 23

1. 1.1. 1.2. 1.3. 1.4.

p p 1.4.1. 1.4.2. 1.4.3. 1.4.4. 1.4.5. 1.4.6. 2. Х p

p

2.1.

…………………………………………………….. 25 …………………………. 25

2.1.1. p

…………………………………………………..

25

p

…………………………………………………. ……………………………………. ………… …………………… …………………..

27 27 29 33 36

2.1.2. 2.1.3. 2.2. 2.3. 2.4.

,

…………………………………………………………... 40 ………………………………………… 40 ………………………………………………... 42

3. 3.1. 3.2. 4.

p

p

4.1. 4.1.1. 4.1.2. 4.1.3.

-

p 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8.

46 ... 46 p ……… 48 ………………………… 48

………………………………………………………….. …………………….. …………………. …………………………… …………………….. ………………………………

48 50 51 51 53 54

4 4.2. 4.2.1. 4.2.2. 4.2.3.

-

p 4.2.4. 4.2.5. 4.2.6. 4.2.7. 4.2.8. 4.3. p 4.3.1. 4.3.2. 4.3.3.

.. 54 ……… 55 ………………………… 57

…………………………………………………………... …………………….. …………………. …………………………… …………………….. ……………………………… -

57 57 58 59 62 62 63 ……… 64 ………………………… 64

p

………………………………………………………….. …………………….. ………………….. ………………………………………... ……………………………. …………………….. ……………………………… P ……… ………………………..

64 65 66 67 67 67 68 69 69 69

p

………………………………………………………….. …………………….. …………………. ………………………………………... ………. ……………………………… ………

70 70 71 73 73 74 76

я ……………………………………………………………………. p 1. p p p p p ……………………………………….. p 2. p p p p p …………………………………. p 3. p p p p p p …………………... p 4. p p p p p p ……………..

78

4.3.4. 4.3.5. 4.3.6. 4.3.7. 4.3.8. 4.3.9. 4.4. p 4.4.1. 4.4.2. 4.4.3. 4.4.4. 4.4.5. 4.4.6. 4.4.7. 4.4.8. 4.5.

78 81 84 88

……………………………………………………………………... 92 4

5

И . :

m

,

.

. :

m

p

.

,

. ,

m0 . -

, ,

,

,

, . . , , (

),

(

).

, (

). .

.

L max )

m0

m

.

(

m

.

( ).

L max .

m0 min

, . . . .

.

.

6

1.

P



1.1

, .

,

, ,

.

C

.

m V& = P − X − mg sin ϑ

C

,

[1]

P X V& = − − g sin ϑ . m m , . , . . g ≈ g0 .

(1.1)

, V x 0 = V cosϑ ; (1.1) (1.2)

:

V =

P X dt − ∫m ∫ m dt − g0 ∫ sin ϑ dt ; 0 0 0

t

t

X = ∫ V cos ϑ dt ; t

0

V , X , Y ; ϑ (t ) —

m0 —

6

V y 0 = V sin ϑ . ,

(1.2) :

t

(1.3)

Y = ∫V sin ϑ dt . t

(1.4)

0

— .  m& m = m0 − m& t = m0 1 −  m0 ; m& — µ = m m0 . m& µ =1− t. m0

 t  ,  . (1.5)

7

m&

C

µ: µ = 1; µ =µ =m

.

, (1.5)

,

t

p t=0 t =t m

— ''

C

'' . ,

,

V =−

µ



1

1 V = m&

µ



0

p

P m0 dµ + m m&

µ

µ



µ



0

dt = −( m 0 m& ) dµ .

(1.5)

X m0 dµ + g0 m m&

1

1 P dµ1 − 1 − µ1 m&

µ =1− µ = m C

m0,

µ



1

m0 sin ϑ dµ . m&

µ1 = 1− µ µ

m X dµ1 − 0 g 0 ∫ sin ϑ dµ1 . 1 − µ1 m& 0

m0 —

.

X = qC x S , ; Cx — S .

o

q —

(1.6)

P = P − (P − P0 )

(1.7) ,

ph . p0

P , P0 —

; p0 , ph — h.

J∞

J0 .

J∞ =

P , m&

J0 =

P0 , m&

P = m& J ∞ − m& ( J ∞ − J 0 )

m& = P0 J 0

, V =J



µ

ph . p0

(1.7), (1.8) (1.6),

p 1 1 ln − (J ∞ − J 0 ) ∫ h dµ1 − 1− µ µ p − 1 0 1 0

(1.8)

8 −

P = m0 S n0 = P0 m 0 g0 — (1.9)

J0

µ

g0 P n 0

0



0 µ

∫ sin ϑ dµ1 ,

J qC x dµ1 − 1 − µ1 n0

(1.9)

0

, . V = V − ∆V p − ∆V x − ∆V g .

: (1.10)

, (

). ,

,

p

.

p

.

, ,

. ,

-

. (1.9)

,

V

V = V ( µ , d 0 , n0 , J ∞ , J 0 , m 0 ) ,

d0 —

(1.11)

,

S .

(1.4), .C

,

p

L = L(V , l , h ,ϑ ) = L( µ , d 0 , n0 , J ∞ , J 0 , m0 ,ϑ ) .

(1.12)

;ϑ —

ϑ

l ,h —

( J

. J0



,

, p

C

, (

, :

8

).

L = L ( µ , d 0 , n0 , pa , p , m 0 ,ϑ ) ; m 0 = m 0 ( µ , d 0 , n0 , pa , p , L ,ϑ ) ; n0 d0 .

)

pa . ,

(1.13) (1.14)

9

,

µ =

,

m m . =1− m0 m0

(1.15)

m

µ

.

,

,

. . m

.

,

, , . .

,

,

[1,

..., 8]. , m0 , m

.

µ = µ (m0 , m

, d 0 , n0 , pa , p , . .

, d 0 , n0 , pa , p ) . (1.13) (1.16) ,

p

(1.16)

.

m0

m

.

n0 ,

: p ,

d0 .

pa

, ,

-

.

,

(

,

)

, -

. ,

, m0 , m

(

.

L max )

( (

( m 0 ) min ). .

)

10

,

, .

, ,

, p

.

.

-

, . х

1.2.

,

, .C J J

ρ .

ρ (c) ,

(

V

). ,

, .

( ) .

,



.

ρ = (m

+ m ) (V

+V ) ,

; V ,V — =m ρ ;

m ,m — V =m

ρ .

;V (1.17) ρ =

K m = m&

m& = m

ρ

m (m

+m ) + (m

ρ )

=

(1.17)

(1 + K m ) ρ ρ , ρ +Kmρ

(1.18)

m —

.

.

, ,

1

,

K m0 . , , 10

.

, .

11

α :

,

α

.

, α 1.1

= K m K m0 .

. 1.2

(1.19) Km ,

α ,

.

Jp.

C .

pa .

p ,

. 1.1

-



Km

1 2 3

-1 (H 2 ) , α

(O2 )

(H 2 ) , α

4 5 6 7

ρ , /

3

T , ˚K

R , ⋅

k ,

J

p

.

/

=0,6

3702 3610 3227

344 385 729

1,135 1,153 1,211

2975 3075 3855

=1

7,937 1135

71

424

3616

516

1,125

3591

2,765 1443 2,015 1443 2,252 1443

786 899 874

1181 1193 1202

3423 3353 3384

345 366 359

1,159 1,176 1,170

2829 2858 2853

3,011 4,403 5,068 2,748 3,101 4,389

786 840 830 786 786 786

1270 1368 1385 1149 1273 1247

3170 3172 3184 3451 3434 2967

349 316 316 351 345 393

1,178 1,153 1,150 1,171 1,174 1,169

2709 2615 2619 2847 2810 2797

-02

-50 -2

* * * * * * * *

/

3

1033 975 315

-1

2

ρ ,

830 786 71

-

-27

/

3

2,726 1135 1,710 1135 4,762 1135

-50

8 9 10 11 12 13

ρ ,

2

: 2N + N(C

1596 1596 1596 1382 1590 1440

— ; 3)2, ; — N2 4, -50 — 50% + 50% ; -27 — 73% + 27% ; -50 — 73% + 27% NO; -2 — 70% + 30% ; -02 — 50% + 50% m – ; p =8 ; p / pa = 80:1; T p = 20˚C.

,

12

,

p =4

3000.

. . 1.1 p p p p =8 , pa = 0,1 , 1.2 — , pa = 0,1 . (O2 ) + (H 2 ) , , p / pa = 80 . (O2 ) + (H 2 ) = 0,7; K m = 5,556; ρ = 345 / 3; T ( p / pa = 3000): α

=3483˚K; R

= 671

/ ·

;k

p

= 1,214; J

= 4540 / .

.

C

=

u .

, :

T .

p

1.2 p ρ , / — 51,5%; — 43%; — 5,5% — 80%; — 20% — 72%; — 18%; l — 10% — 68%; — 17%; l — 15%

T , ˚K

3

k

J

p



u ( p ),

,

/c

/

3060

313

1,21

2400

4,36 p

0,69

1720

2790

326

1,22

2300

4,37 p

0,40

1770

3290

300

1,17

2440

10,12 p

1800

3300

290

1,16

2460

5,75 p

p =4 u = a pν ,

m& ,

0,12

0,40

; p / pa = 40:1; T p = 20˚C.

u = b + a pν .

(1.20)

я

1.3.

p .

.

1622

.P

12

R ,

х

p

ч

х

13

(1

J : J

)

,

=J m .

(1.21)

Р t ,

,

, J =P t .

=Pt

J m& , p

(1.22)

(1.22), m = P m& . ,

P = m& ua + S a ( pa − ph ) ,

(1.24)

Sa — ; ph — (1.24)

C

J

; ua — .

= ua +

S a pa S a ph − , m& m&

(1.25)

, 1ε=p

J :

pa . ,

:

p ρ k = const , ; p, ρ —

1)

k— 2)

p ρ = RT , ;Т—

R— 3)

p

(1.23)

(1.26) ; (1.27) ;

u2 k = const . RT + 2 k −1 (1.25)

,

(1.28)

pa = ph .

J p = ua .

(1.29) ua

(1.28),

,

u = 0: u2 k k RT + RT = . k −1 k −1 2

(1.30)

14

u = (1.26)

C

, J

p

 Ta 1 −  T

2k RT k −1

(1.27),

k −1 pa  k 

Ta  =   T p 

  . 

(1.31)

k −1 =ε k .

(1.32)

k −1   2k   RT 1 − ε k  . = k −1    

(1.33)

J∞

ph = 0:

J ∞ =J p +

C

C

(1.25)

S a pa . m&

(1.34) ,

Sa ,

m& = S a ρ a ua = S a ρ a J p . (1.34}) 1 p  J ∞ = J p + p  a  . J  ρa  ,

1  pa  J p  ρa ph = p0 = 0,1 : 1 p = J ∞ – p  a J  ρa (1.27)

J h =J ∞ –

 ph    .  pa 

J0

 0,1    .  pa 

k −1 pa  k 

 = RT a = RT   ρa p  pa

(1.35)

(1.36) h (1.37)

(1.38) (1.32),

= RT

k −1 ε k .

(1.39)

: — J



=J

p

1

+ J

14

p

RT

k −1 ε k .

(1.40)

15

– J

0

=J



1

– J

p

RT ε

k −1   k  0,1  .

p   a

(1.41)

. 1.1, 1.2, k R

.

ε

,

.

: — p

=ϕ J

p

(0,67 − 0,016 p + 0,163 p

0,5

 (1 − ε n ) p n   )⋅ n  p − 0,1n    ;

0,5

,

(1.42)

n = (k−1)/k; J p . — — J p = ϕ J p . + 190,3 + 76 p − 3,058 p 2 − 7000 pa + 25484 pa2 ,

(1.43)

J

Jp.

.



(

.

ϕ

. 1.2). ( ).

(

) Jp. .

ϕ

0,95...0,99 ,

,

. : —

T =T 10 − 2 (86,9 − 0,578 p + 6,27 p 0,5 ) ;

— T =T T



(1.44)

+ 11,42( p − 3,923) ;

(1.45)

,

. 1.1, 1.2.

p

. J ∞ (J 0 )

ε

( ). ,

(

),

. p

,

16

P . P .

P , ,

,

, .

.

J

h

m& , m&

.oc

=

P m&

+P



+ m&

1 + m&

k −1   ph  1 ∞ k J −   , RT ε  Jp  pa  

1 m&

(1.46)

— . .

ua

(

ua m& Jh

.oc ( p

N =η L

[5]

L



. .

,

m& ,



,



1

L

1

.

.

)

,

η

m&

)



(1.47) = 0,4...0,5);

,

k −1   k  p  k  RT 1 −  2  = ; p k −1   1   

(1.48) ;

, . .

.

(1.47)

, , ).

(

p ,

16

η —

N =

2—

η

1

H ( m&

+ m& ) ,

, H =(p

−p ) ρ ;

[5] (η

(1.49) = 0,6...0,9);



17

p ,p .



∆p = p

− p = 1,5 p . (1.47) (1.49) : ∆p m& = . −6 L η η ρ 10 − ∆p

m&

∆p

; ρ —

/ 3; L



(1.50)

/ .

L 20...50, . . 1000...1200° . . 1.1

k

Т0 700...800°

= (2...5) 10-2.

2/ 1

R .

J

=

.

P +P m&

,

(1.51)

; m& = m& + m&



P ,P

m&

m&

α ,

. m& = α m& ;

C (

m& = (1 − α )m& .

, )

α

,

α = 0,12; J

J

.

J

.

= (1 − α )J

.

+α J

.

,

(1.52)

,

α = 0,075. (1.40), (1.41), (1.46)

.

. . u*

C

a = kRT . C



,

.

18

u ∗ = kRT ∗ . , ∗2 k k ∗ u RT + RT = . 2 k −1 k −1 (1.53), : k RT . u∗ = 2 k +1 (1.54) T∗ 2 = . T k +1 (1.32), p (1.55)

p

(1.53)

,



k  k −1

p  2 =  p  k + 1

ρ∗ p



k +1  2 ( k −1)

Sa = S

2 εk

m& S

18

m& = 0,98 S 2

,



:

K 0 p 10 6

, RТ —

K0 p

RT

,

(1.57)

k.

k −1 2

( k +1) −ε k

ϕ .

p∗ .

(1.57)

k +1  2( k −1)

 2    k + 1

(1.55)

(1.56)

p ∗u ∗ = S

 2 K0 =   k + 1 (1.35) :

(1.54)

, p

m& = S ρ ∗u ∗ = S

(1.53)

.

µ

RT .

/ .

(1.58) m&

(1.59)

19 1.4.

х

p p

C

p

p

V = ∑ J ∞ i ln s

i =1

∆V



1− µ

− ∆V

1

,

(1.60)

i

p

, .

[1]

ϑ

L = 222,4 arctg

V 2 tg ϑ

62,57(1 + tg 2ϑ ) − V 2

,

(1.61)

— . (1.61) — .

/ ,

V

arctg —

,

, V = J ∞ ln

∆V µ .

1 , 1− µ

.

J∞

(1.62) V

J∞

. ≈ 3500

J∞

/ ,

J ∞ ≈ 3000 / .

5000 / .

µ

, ,

,

,

. ,

µ L

µ (m0/m . ).

m0/m

.

. C ≈ 50.

,

mo

20 p n0

1.4.1.

n0 = P0 m 0 g0 . p

(1.63) .

n0 m 0 ( n0 )

L

m . . m 0 ( n0 )

V

sin ϑ

1

— (1.64)

V, (1.9), . .

 1 = J 0 1  (1 + k p ) ln 1− µ  sin ϑ

− 1

1 µ 1 sin ϑ n0

J ∞ 1 = J 0 1 (1 + k p ) .

n0 ),

µ

, —

p , m0 d0 :

n01 = t

ej, u n0 j 20

j

j

(

n0 ,

. p , p ,

,

m0 , m . n0 = 1,8...2,2 [1]. ee , : n01 = 1,8...2; n02 = 1,1...1,4; n03 =

µ

,

:

n0 L

.C

0,9...1.

(1.64) .

m 0 ( n0 )

n0 ,

  , 

m

µ 1J 0 g0 t

, n0

.

n0 j =

;

1



-

µ jJ ∞ j g0 t

;

(j=2, 3 …).

(1.65)

j

, t j=



ej u

,

(j=1, 2, 3, …);

(1.66)

j

. , p

.

21

15...30 n02 ≤ 3...4;

: n01 ≤ 2...2,5; , , . .

. C

n03 ≤ 4...5. n0 , p , .

p p

1.4.2.

pa

P

, m0

m p . p

∂ ∂p

.

V :

 ∞ 1  J ln 1− µ 

  = 0 . 

(1.67)

( p ) opt1 = 20...25 10...12 —

.

, . . ( p ) opt1 = 10...12 2...3 .

,

C .

p p ,

.

µ

pa ( pa ) opt1 ( pa ) opt1

∂ ∂pa1

t

∫ P(t)dt 1

, : = 0.

0

( pa ) opt , pa .

, 0,01...0,02

( pa ) opti

1  ∂  ∞  = 0.  J i ln 1 − µ i  ∂pa i  ( pa ) opt1 = 0,045...0,07

; ( pa ) opt 3 = 0,005...0,015

.

; ( pa ) opt 2 =

22 p p

1.4.3.

pa P ,

( p ) opt p

P ,

 ∞  J 

∂ ∂p

  = 0 . 

: 1 ln 1− µ

,

p

:

,

p . .

p .

( p ) opt : ( p ) opt1 = 7...10

; ( p ) opt 2 = 6...9

; ( p )opt 3 = 5...8

(

pa ,

. ,

.

pa . 1 ∂  ∞  J i ln 1− µ ∂pa i 

o

: ( pa ) opt1 = 0,05...0,08 0,008...0,014 .

i

  = 0 . 

; ( pa ) opt 2 = 0,015...0,025

; ( pa ) opt 3 =

х

1.4.4.

lp = lp d 0

d0 , P .

d0

lp = 4 m 01 (π ρ cp d 03 ) .

ρ cp —

(

)

,

. lp = 8...12

(1.68)

— ρ cp = 630...650

ρ cp =790...850 / 3. n

22

/ 3;

23

lp = lc.p + 5d 0 3 n . lc.p —

(1.69)

. p

m 01 — C

d 0 = 0,54 3 m 01 ,

(1.70)

. P = 4 m 0 (πd 02 ) . 12 000...16 000 / 2.

P

(1.71)

я

1.4.5.

я

P

(1.65), (1.66).

, ,

l . (u = const) :

V i ≈ J ∞ i ln

1 − µ i (l i ) 1

− J∞i

µ i (l i ) n0i (l i )

sin ϑ

. i

.

: — (l ) opt1 = 2...3; (l ) opt 2 = 1...2; — (l ) opt1 = 2...3; (l ) opt 2 = 1...2; (l ) opt 3 = 0,5...1. : u 1 = 7...8 = 8,5...10,5 1.4.6.

/ ; u 2 = 7,5...10

/ . ч

. : L max = 1000...4000 m .

1) ;

= 500...1000

/ ;u3=

24

2)

L max = 4000...10 000 m . = 500...1000 ;

3)

L max = 8000...10 000 , ,



,

.

. , :

 1 V ≈ ∑  J ∞ i ln 1− µ i =1 m 0 , m . , J ∞ i , n0 i

−J∞i

ks

(m 0i +1

i

µ

i

n0 i

sin ϑ

i

  . 

µ

i

,

∂V =0 ∂m 0i

m 0i )opt .

: — m 02 = 0,23m 01 ; — m 03 = 0,33m 02 ; m 02 = 0,33m 01 . p p p : — m 02 = m . m 01 ; —

m 03 = 3 m 2

µ

24

.

µ

3

1

.

:

2

= 1,1µ 2 ;

µ

m 02 = 3 m

m 01



— = 1,1µ 1 ; —

µ

2

2

= 1,1µ 1 ;

=…= µ

n.

m 2 01 .

(1.72)

µ i,

25

2. Х

И ч

2.1.

И И

х

p

p

p

p .

p

p

p

p

ч

2.1.1.

p

(

. 2.1) l

l

l

.

.o

= 1,02 = 1,02

d

π

, . =l

.

+l

.

4m0 µ

d 02 ρ

(1 + K m )

4 K m m0 µ

π d 02 ρ (1 + K m )

( ,

lc ≈ d а ;

1 l = l 4

4m& RT

0,98π K 0 p 10

m& 1 = P0 J 0 1 ;

6

p .

+ 0,3d 0 ;

(2.2)

+ 0,3d 0 .

(2.3)

lc ,

.

d

. 2.1).

 2   k + 1  fa =

ε

1.3

l

.

: fa ;

k +1  2( k −1)

 2 K0 =    k + 1

m& j = P0 j J ∞ j ;

k −1 2

k +1 2 k−ε k

l ,

da = d

;

;

k +1  2( k −1)

),

(2.1)

d / d = 2,

d2 =

.

,

,



l

β c = 22 ,

.

;

k;

(j=2, 3 …);

ε = pa p .

.

'' = 2,0...2,5 .



'' (

(2.4)

26

0,2...1,0 . l

. 2.1. P 26

= 1,05(l + l ) .

p

(2.5)

27 ч

2.1.2.

p

, , l ,

l , p l ,

(

. 2.2): lc

p d

l , p

l , ,

d

d .

d

l = (0,3…0,6)lа ;

: = 0,3d 0 ;

l = 0,1d 0 ;

lc = la − l ;

la = 1,6ψ ( f a ) 0,5(0,829 + 0,298k ) d ; 2

l ≈ d0 ; l

= 0,8d

;

 l ( f a − 1,5)  ; d = 1,5d . d = 0,2d 0 ; d = d 1,5 +   la   d fa (2.4); ψ = 0,4...0,5 — . m& m& = m t = S u ρ S = m eρ — .

da = d

C

l

,

da

p

l ≈ 1,15l d 0 ;

l ,

fa ;

=l +l .

l я

2.1.3.

, ).

lc. = 2l

. lc. = k

.

l . , p

k .

.

p

.

(l

.



28

. 2.2. P 28

p

29 2.2.

я

,

-

, ,

. . .

,

, .

,

. 2.1

:

,

1)

-

,

2)

,

p -

, , -

, p

C

,

, ,

.C

(

,

),

,

, , ,



.

ρ ).

( E ρ ). . 2.1 p p

p

. p

, p . 2.2,

p ,

. 2.2. , ,

. ,

, ,

,

30

, , , ).

(

,

2.2 p

p

p

σ ,

№ / 1 2 3

-

4

-

5 6

-

C

7 8

ρ ,

/

Е,

3

2100 1700 300

8000 7850 2700

185 220 75

500

2400

135

1100 1100

4700 2050

110 40

1300 1400

1500 1400

130 80 p

№ /

σ

1 2 3

-

4

-

5 6

C

7 8

, 30

-

ρ ,

103 E / ρ ,

⋅ 3/

. 2.2

°

0,26 0,22 0,11

⋅ 3/ 1,7 1,9 3,2

280 300 100

0,21

4,8

100

0,23 0,54

2,2 3,1

300 350

0,87 1,0

7,6 6,4

2000 80

.

,

31

400°C, . : σ ≤ 2,4

. 2,4 . .

(

. 2.3), . 2.3

, : 1)

,

-

2)

c

p -

-

p : ,

1) , , 2) -

p

: ,

, C 1) 2) -

: p

: C

, ,

-

-

,

32

,

, , : .

-

,

''

''

4 ,

,

16

. ,

,

. -

.

. C .

( ,

) .

, . . . . 2.4. 2.4 p

p

p

ρ

№ /

,

/

3

u, / 1

p

2 3 4

600 400

200 100

1200

50

1300

200

1600

100

-

5

2.3.

ч

хх

: m 32

=m

.

+m

.

+m

.

+m

.

+ m∗ ,

(2.8)

33

m

— ;m .

;m

.





.

;m

; m∗ —



.

. .

=m

: m

.

.

+m

.

.

(2.9)

.

: +m

.

,

(2.10)

, m



: m m

=m

.

.

.

+b

m



= 150

.

.

.

.

.

(2.11)

= 30

;b

.

= 0,005.

, ,

. 5...10%

. m

=d

.

.

m∗ .

(2.12)

πd 03 ρ 4δ ρ  d . = 1,1 1+ ρ  4 ⋅ 1,02m0 µ δ = 1,5⋅10-3; δ = 3⋅10-3. m

. .

,

m

.

m

.

: b

.

 .  

(2.13)

m

=b

.

m .

.

.

(2.14)

= 0,016. , P0 , p

m

.

=m

+m

+m +m

p . +m

:

+m

.

(2.15)

34

m



;m ;m



m





;m ;m





;

. ,

γ

=

.

m

.

P0





γ

m& 1 = P0 [H ] J 0 [ /c];

γ

=









.

(2.16) :

0,51 m& 1,068 ; P0 pa0, 288 p 0,313

m& i = P0i [H ] J ∞ i [ /c];

i=2,3,…;

= 1,327 ⋅ 10 − 5 p (9 + 0,102 p ) P00,5 + 2,075 P00,5 ; γ = (0,5K0,6)(0,102 + 0,0104 p ) ;

γ

γ

γ

= 8 P0−1 + 9,35 ⋅ 10 − 4 ( p

= 23P0−1 + 3,12 ⋅ 10 − 4 ( p

=0,102

/

;

p

(2.17)

P0 ) 0,5 ; P0 ) 0,5 ; =2 p +7.

γ

1,1...1,2.

γ

m m0 — ; ∆m

p : γ = 0,1γ ; : = m0 + ∆m ; ;m —

∆m = ∆m

=d m —

; ∆m = d m —

(2.17) =1,5 p .

(2.18)

m ∗ = m + ∆m , ,

(2.19)

p

+ ∆m + ∆m + ∆m

; ∆m

; ∆m = d m —

=d

,

; ∆m

+ ∆m

=d

;

(2.20)

m —

m —

,

,

. C d =d 34

, m

+d +d +d

= m0 + d m ; +d

m∗ = m + d m ,

= 0,017 …0,031; d

= 0,003…0,006.

(2.21)

35

p m0 = d m = m ,

(

+d

.

)

.

(1 + d )m + b

P0 = n0 g 0 m010 − 3

m0 (1 − b

,

.

)=m

.

m0 + b

p

p d m +γ

.

,

+ (1,014 + d (2.13),

.

p

, p

.

.

P0 + (1 + d )m . d − d =0,014:

)m + γ . n0 m010 − 2 . (2.22)

1,1δ ρ π d 03 m 1  m . = − −γ 1− µ = m0 D  m0 1,02 m0 :

D = 1,014 +

(2.8)

4,4δ ρ

ρ

.

n0 10 − 2 − b

  

.o  ,

.

(2.22)

(2.23)

(2.24)

(2.22)...(2.24) . C

, , ,

, . .

≤ 40

( P0

γ m&

.

=

),

(18…20) + (1,8…1,9)m& P0

= (0,11...0,13) m& — .

, m&

-

)

P01 = n 01 m01 g 0 ;

P0 j =n 0 j m0 j g 0 ;

m i = m0i µ i ; m& 1 = P01 J 0 1 ,

(2.25)

= (0,07…0,08) m& —

µ .

(2.23) :

( .

m& j = P0 j J ∞ j , (j = 2, 3, …);

36

m&

i

= m& i

= m& i ρ i ; t i = m i m& i .

V&

i

-

ч

2.4.

) =m

m m

.

1 ; 1 + K mi

V& i = m&

i

ρ i;

хх

( m

m& i = m& i

K mi , 1 + K mi

.

−m . −m . , (2.9), (2.14).

(2.26)

µ .

l

=m

m

.

+ m∗ .

,

. : (2.27)

, m

.

=m +m

+m

+m

+m +m , ;m

m —

;m

m = ω l d 03 ,

1) K —

/ 3;



36



— .

ω = K K tπ f ρ p 2σ t ,

(2.29) ;f—

/ 2; ρ — ,

; l = l d0 .

= q d 03 , q = ω 2 . p m = q d 03 + ω l d 03 ,

m

3)

;m

, f = 1,2; σ t — t° = 200...300°C),

( 2)

;m

, K = 1,2; K t —

,

,





;m — ,

,

(2.28)

(2.30) (2.31)

37

π



q

d0

ξ

ea ρ u



,

υ

d0

, = ξ πα ρ

0,04...0,1 5)

. a

2

/

(2.32) .

m

K u ;ω

= q d 03 + ω l d 03 ,

= ε πα ρ

: K = 2, ξ

= - 0,11, ε

ρ : (2.33)

K u .

α

= 0,6.

/

= .

mc = nc (m

nc —

;m ;m

= 1⋅10-6 u

4)

q

ea ρ u

d   . e ≤ 0,51 − 1,15  d 0   d = 1 − 2e

≥ 1,15d .

d

π



= 0,5. . e : e = e d 0 ; u = apυ . . 1.2



а

ω

,

c

+m

+ m ),



;m



p

— .

m = ω l d 03 ,

p

ωc =

(2.34)

π (1 − e )u ρ

RTк

0,98 K 0 p 10 6 sin β

( f a − 1)(δ c ρ + δ ρ

k +1  2( k −1)

 2   k + 1  fa =

(2.35)

2 εk

k −1 2

k +1 −ε k

;

);

38 k +1  2( k −1)

 2 K0 =    k + 1

β = 20° —



ε = pa p .

k;

; δ c = (4...8) 10-3 — ; δ = (1,0...1,4) 10-2 — , / 3; ρ c ; ρ — / 3; ρ —

, 3

/ .

,

=ξ m

6) m

= (0,16…0,25) K t p m .

(2.39)

m = ω l d 03 ,

7)

ω = e (1 − e )πρ . C (2.28)

:

(2.40)

, (2.27).

m

.

=d

:

.

mc = m

m∗ = d .

+m

.

.

(1 + d )m . +m

.

+ m∗ .

p , m0 + d c m = m . + d . (1 + d )m + b . m0 + b . d c m + (1 + d )m . d = d + d + d = 0,013...0,022, d = = 0,003...0,006. p d − d = 0,01.

µ =

d

.

=

(ω + ω

ω

1

m 1 m = 1 − . − b m0 D  m0



D = 1,01 + d +ω ) +

.

;

(2.41)

+q

+q ) ,

e = 0,5(1 − 1 M ) ,

:

38

  , 

1 ((1 + ξ )q ω l

,

M = d0 d ,

.

:



. ,e

39

µ = 0,46

ε

.

M ≤ 20 p

max

m i = m0i µ i ; t i = ei u i ;

: -

P01 = m& 1 J 0 1 ;

-

(t = +20°C) Е = 40 ε = 0,08, .

m& i = m

i

t i;

P0 j = m& j J ∞ j ;

n01 =

µ 1 J 0 1u g 0 e1

1

,

n0 j =

µ j J ∞ ju g 0e j

j

,

(j = 2, 3, …).

,

40

И

3.

И я

3.1.

: ( g 0 );

; ;

µ , J , n0 , Θ .

.



,

,

ϑ (t ) . C

V

,

, V ,

µ , J ∞ , n0 , Θ . ,

, ,

. . : 1)

max ;

V

2) 3) 4) 5)

;

ϑ&

; (

ϑ&& );

. , . ,

, ,

.

,

, .

, ,

,

L max .

, ,

. .

40

, -

41

. 3.1. p

, ,

p

p

t=0ϑ

. = 90°.

.

, . ,

(

. ,

≈ 1),

.

42

α ≠0

,

(

α.

≈ 1).

,

. , .

ϑ

, 9°)

 π 2,  π    ϑ = 4 − ϑ  0,55 − µ ∗   2  ϑ , µ∗ — p

(

(

ч

,

(

)2 + ϑ ,

. 3.1),

0 ≤ µ ∗ ≤ 0,05;

0,05 < µ ∗ ≤ 0,55;

(3.1)

µ ∗ > 0,55;

,

µ ∗ = m& t m01 .

3.2.

,

ч

C( F

.

. 3.1).

FC. ,

,

80...100

,

. (

)

,

, . 80

.

, ,

1%.

-

. , . ,

. x

: 42

y

43

y = ∫0 V sin ϑ dt .

x = ∫0 V cos ϑ dt ;

t

t

-

x = (R0 + y )tg η ;

h ,

R

y = R sin η ;

h = R − R0 .

,

, .

, Y, ,

( ,Y) —

.

: L

V

.max

h .

ϑ∗, .

β ϑ∗:

ϑ .

ϑ ,

V 2 (1 + h ) ν = ; g 0 R0

h =

ν 2 − (2 + h )ν . 2 (ν + 2h )

tgϑ ∗ =

h ; R0

:

V

βc =

L L−l ; = R0 R0 V (

.

.p

min

h = = 11,2

tg 2ϑ =

h ; R0 1

1+ h

tg

βc 2

sin β c

(1 + h ) − cos β c

tgϑ .

h ,l

[1]: ; (3.3)

3.1), ,

min

h .

L

ϑ .

(3.2)

ϑ

44

.

,

V .

, h ,l

. 3.1 p

ϑ

h ,l p

p L

n0i

= 2 [1]. h ,l ,ϑ ,V L, h ,

.

l ,

ϑ∗,

ϑ , V

min ,

Lv′ ,

hmax , T ,

/

3.1

Lv′

L

1 70

2 90

4 140

6 170

8 200

10 225

12 250

14 270

60

110

195

285

380

480

590

740

41

39

35

31,5

28

25

23

20

41

39

35

31,5

27

23

19

15

2810

3920

5200

6000

6500

6900

7150

7400

0,67

1,06

1,88

2,90

4,00

5,22

6,62

8,20

260

480

870

1200

1400

1600

1800

1900

8

11

16

21

27

33

39

45

/

0,29 0 ≤ M < 0,800,   C x =  M − 0,51 0,800 ≤ M < 1,068, 0,091 + 0,5M −1 M ≥ 1,068, 

[2]

,

. 3.1

ϑ

ϑ .

(3.2).

-

,

ϑ

.C . ,h .

44

ϑ ,

ϑ∗,

6000 ∗

(3.4)

h

l l ,

Kn = 2 n ,

n

, —

45

.

n02 .

n n . l = 0,1L n ;

:

h = (40 L ⋅ 10 −3 + 100) n ;

0,7854 − L 22918,  0,6545 − L 45837

ϑ =

tg

(3.5)

L ≤ 6000; L > 6000.

(3.6)

L = β R0 ,

β

=  b + b 2 + ac  a ; a = 2(1 + tg 2ϑ ) − (2 + h )ν ;  2  c =ν h . b = ν tgϑ ; L = L +l .

,

: Lv′ = ∂L ∂V .

Lv′

:

∇L = Lv′ ∇V .

(3.7)

hmax = r − R0 , r =

p ; 1− e

p = ν ( R0 + h ) cos 2 ϑ ;

e = (1 − ν ) 2 cos 2 ϑ + sin 2 ϑ ; T =

2( R0 + h ) V

 1 sin ϑ + ⋅ 2 − ν  (2 − ν )ν

ν

(3.8)

R0 = 6371

.

π  − arcsin 1 − ν 2 e 

  .  

46

4. я

4. 1.

ИP

P я

И

ч

,

ч

я

,

, ,

:

Lmax , (

m

.

). :

-

;

---

; : p i , pai , n0i , ki , d 01

µi;

; ;

µ

. i

,

µi

. ,

µ , p

J

. .

i

, (1.10)

,

V =J

.



.

ln

(1 − µ 1 )(1 − µ 2 ) …(1 − µ n ) . 1

µ

.

− ∇V

(4.1)

, 1− µ

46

,

,

,

C

;

,

µ

.

.

.

= (1 − µ 1 )(1 − µ 2 )…(1 − µ n ) . = 1 − (1 − µ 1 )(1 − µ 2 )…(1 − µ n ) . (4.1) :

(4.2)

47

V =J

.

ln

1− µ

− ∇V

1

.

(4.3)

.

C [1] J C

ks  J0 1 + J∞1  ∞   = + 2∑J i .  2k s − 1  2 i=2   ∆V

1

.

V + ∆V Kv —

(4.4) ,

= К vV ,

.

(4.5)

,

, . L = 10...14

.

µ

K v = 1,15...1,25. (4.5) (4.3)

µ

(4.2)

µ

µ .

.

 К V = 1 − exp − v  J . 

 .   , (1.72), (1.73). µ i.

= k1µ 1 . = 1 − (1 − µ 1 )(1 − k1µ 1 ) .

,

(4.6)

,

2

k1µ 21 − (1 − k1 ) µ ,



.

1



= 0.

.

µ.  1 + k1  1 + k1  − µ 1= −  2k1 k1  2k1  µ 2, 2

µ i.

.

(4.7)

, (2.22),

m0i =

1−γ

m0i +1 + 1,078δ ρ π d 03 i n0i 10

−2

−b

. i

− Di µ

.

: . i

(4.8)

48

: = 1500

;

Lm = 11 000 ( )+

: (

;

m

).

4.1.1.

-

ч

х

(

. 4.1).

p

, . , . ,

. х

4.1.2.

. 1.1

: Jp.

-

/ ⋅

= 345

R

-

k

= 1,159;

-

T

= 3423° ;

4.1.3.

ρ

= 1443

ρ = 786

ρ = 1181

= 2829 / ; ;

/ 3;

/ 3; / 3; K m = 2,765.

х

яp

, p

p

. 1.4,

: 48

n01 = 1,8; n02 = 1,4; p 1 = 25 p 2 = 20 p 1 = 0,06

; ; ;

.

49

. 4.1.

-

p

P

50

-

p

2

= 0,015 k1 = 1,2.

;

: p -

(3.1); ,

(3.6);

-

'' ч

4.1.4.

'' C x (M ) (3.4).

х

(1.42) :

J p 1 = 0,96 J p .

n n 0,5  (1 − ε1 ) p 1  (0,67 − 0,016 p 1 + 0,163 p 1 ) ⋅  p n − 0,1n   1 

= 0,96⋅2829 (0,67− 0,016⋅25 + 0,163 Jp

2

 (1 − 0,4371)1,5552  25 )    1,5552 − 0,7272 

= 0,96 J p . (0,67 − 0,016 p

= 0,96⋅2829 (0,67− 0,016⋅20 + 0,163 J ∞ 1= J p 1+ J∞2=J p 2+

1 Jp1 1 Jp2

2

0 ,5

0 ,5

= 3030 / ;

n n 0,5  (1 − ε 2 ) p 2  + 0,163 p 2 ) ⋅  p n − 0,1n   2 

 (1 − 0,3726)1,5084  20 )    1,5084 − 0,7272 

RT 1ε1n = 3030 + RT 2ε 2n = 3225 +

=

0,5

=

0 ,5

= 3225 / ;

345 ⋅ 3553 ⋅ 0,4371 = 3207 / ; 3030

(1.40):

345 ⋅ 3558 ⋅ 0,3726 = 3366 / . 3225

(1.41): RT 1ε1n  0,1  345 ⋅ 3553 ⋅ 0,4371 ⋅ 1,635 0 ∞   = 3207− J 1= J 1– = 2918 / . 3030 J p  pa1  1

50

51 х

4.1.5.

µ

(4.5).

i

,

, :Кv = 1,2.

. 3.1 : V = 7025 / . (4.4)

 J0 1 + J∞1   + 2J ∞ 2  = J . =  2k s − 1  2   1  2918 + 3207  = + 2 ⋅ 3366  = 3265 / .  2 ⋅ 2 − 1 2  µ. : (4.6)

:

1

,

µ

.

 К V = 1 − exp − v  J . 

  = 1 − exp − 1,2 ⋅ 7025  = 0,9244.  3265    (4.7})

k1 = 1,2,

1 + 1,2 0,9244  1 + 1,2  = 0,6521. µ 1= −   − 2 ⋅ 1,2 1,2  2 ⋅ 1,2  = k1µ 1 =1,2⋅0,6521=0,7826. 2

µ

2

х

4.1.6.

(4.8). p

.

m02

p m01 = 0,275.

p

ρ

l p = 10, = 800

, , =

/ 3. , d 01 = 3 d 01 = 1,9 .

m02 = 11000

; P02 = 151

m01 = 40 . 4m01 4 ⋅ 40000 =3 ⋅ 800 = 1,85 π lpρ π ⋅10 ;γ

: P01 = 706 . 2



. 1

. = 1,3; D1 = 1,0442;

= 1,12; D2 = 1,0442.

(2.23) : 1  m02 + 1,078δ ρ π d 03 µ 1= 1− −γ D1  m01

.

−2 −b 1n01 10

  .o  = 

52

1  11000 + 188  − 1,3 ⋅ 1,8 ⋅ 10 − 2 − 0,016  = 0,6521; 1 − 1,0442  40000   1  m . + 1,078δ ρ π d 03 1− − γ . 2 n02 10 − 2 − b .o  = µ2=  D2  m02  1  1500 + 188  − 1,12 ⋅ 1,4 ⋅ 10 − 2 − 0,016  = 0,7804. = 1 − 1,0442  11000  , µ . = 0,9234. µ . = 0,9244 =

C 0,001.

, d 01 = 3

m01 = 50 . 4m01 4 ⋅ 50000 =3 = 1,997 . π lpρ 3,14 ⋅10 ⋅ 800

d 01 = 1,9 . m02 = 13750



; P02 = 189

: P01 = 883 . 2



. 1

= 1,35; D1 = 1,0442;

= 1,085; D2 = 1,0442.

(2.23) : 1  13750 + 188  − 1,35 ⋅ 1,8 ⋅ 10 − 2 − 0,016  = 0,6521; µ 1= 1 − 1,0442  50000  1  1500 + 188  − 1,085 ⋅ 1,4 ⋅ 10 − 2 − 0,016  = 0,8102. µ2= 1 − 1,0442  13750  C , µ . = 0,934. µ . = 0,9244 0,0096. p : m01 = 40,6 ; m02 = 11,165 . , p γ . i , 1,1. P1=

4m01

π

2 d 01

=

4 ⋅ 40600

3,14 ⋅ 1,9

2

= 14 320

: / 2.

, : 52

m01 = 40 600 ; m02 = 11 165 ;

∗ = m01 − m02 = 29 435 m01

∗ m02 = m02 − m . = 9665 m 1 = µ 1m01 = 26 477 ;

; ;

53

-

m

"

" ч

4.1.7.

= µ 2 m02 = 8738

;

m = m01 − m 1 − m 2 = 5385 ; [ m − (d − d c )(m 1 + m 2 )] = 4892

-

2

.

х

d 0 = 1,9 . : -

d

d a1 = d

= 0,671 ; -

d

-

l

1

=d

l

1

-

1

d l

2

lc.p = 2l

.

=d

f a1 =

1

= 0,21 ;

4 = 0,5 ; 1

.

1

d a2 = d

-

l

=l 2

= 2d

f a2 =

2

= 0,143 ;

4 = 0,5 ; 2

= 0,733 ; l 2 = 1,05(l 2 + l 2 ) = 1,295 . : l . 2 = 1,633 ; l . 2 = 2,171 ; l . 2 = l . 2 + l . 2 = 3,804 . ( = 3,0 . 2

.

2

2

( = 16,715 .

= 2d

= 0,105 ;

= = 0,671 ; l 1 = 1,05(l 1 + l 1 ) = 1,23 . : l . 1 = 3,79 ; l . 1 = = 5,42 ; l . 1 = l . 1 + l . 1 = = 9,21 . : d 2 = 0,071 ;

= 0,733 ; -

=l

1

1

. p . 4.1) lp = l

1

+l

1

+ 0,75l

2

+l

) 2

+ 0,5l

.

=

54

4.1.8. я

х

) P01 = n01m01 g 0 = 717 ; ) P02 = n02 m02 g 0 = 153,3 ; : m& 1 = P01 J 0 1 = 245,7

: -

( (

-

m& 2 = P02 J ∞ 2 = 45,6

-

t t я

4.2.

я

1 2

=m =m

/ ; / ;

: 1 2

m& 1 = 107,8 ; m& 2 = 192 c.

ч

ч

я

,

. .

, , . : -

-

; : p i , pai , ki , d 0 ;

µ i;

;

;

; p

µ

.

, .

,

µ

.

= 1 − (1 − µ 1 )(1 − µ 2 )…(1 − µ n ) . K vV = J

54

;

(4.9)

: .

ln

1− µ

1

. .

(4.10)

55

L = 10...14

Кv = 1,15...1,25. C p

1  J = ks  

: J

.

(4.10)

0

µ i = 1 − (1 − µ

+ J∞1 2

 + ∑ J i .  i =2  ∞

ks

µ i:

, (4.9)

(1.74),

1

.

.

(4.11)

µ

.

.

)1 n , i = 1, 2, 3….

(4.12)

, (2.41).

m0i =

m0i +1 1 − b . i − Di µ

: .

(4.13)

i

: -

m

.

Lmax = 10 000 = 620 ;

;

.

4.2.1.

ч

-

х

, ''

'' (

. 4.2). .C

. . , .C . . . , . , ,

. ,

.

56

. 4.2. 56

-

p

p

P

57

х

4.2.2.

. 1.2

: Jp.

-

= 290

R

/ ⋅

-

k

= 1,16;

-

T

= 3300° ;

ρ = 1800

-

= 2460 / ; ;

/ 3;

u = 5,75 p 0, 4

-

/ .

х

4.2.3.

яp

,

p :

k1 = k 2 = 1 .

1.4, p 1=9 p 2 =8 p 3 =7 pa1 = 0,06 pa2 = 0,015 pa3 = 0,008

; ; ; ; ; ;

d0 ,

u

p e. (3.1). (3.6). Cx( ) (3.4). 4.2.4.

ч

х

(1.43) :

58

J p 1 = 0,96 J p . +190,3 + 76 p

1

J p 2 = 0,96 J p . +190,3 + 76 p

2

J p 3 = 0,96 J p . +190,3 + 76 p

3

2 ,= − 3,058 p 21 − 7000 pa1 + 25484 pa1

=0,96⋅2460 + 190,3 + 76⋅9 − 3,058⋅81 − 7000⋅0,06 + 25484⋅0,0036 = 2660 / ; 2 ,= − 3,058 p 22 − 7000 pa2 + 25484 pa2

=0,96⋅2460 + 190,3 + 76⋅8 − 3,058⋅64 − 7000⋅0,015 + 25484⋅0,000225 = 2865 / ; 2 ,= − 3,058 p 23 − 7000 pa3 + 25484 pa3

=0,96⋅2460 + 190,3 + 76⋅7 − 3,058⋅49 − 7000⋅0,008 + 25484⋅0,000064 = 2880 / ; (1.45): T i =T +11,42( p i − 3,923) , (i=1, 2, 3). (1.40): J ∞ 1= J p 1+

k −1 pa1  k

RT 1    J p1 p 1

k −1 pa2  k 

RT  J ∞ 2 = J p 2 + p 2  J 2p

2

3

= 2844 / ;

 

 

290 ⋅ 3335  0,008  1,16 = 3012 / ; = 2880 +   2880  7 

0,16

0,16

(1.41): J 0 1= J ∞ 1–

= 2844 −

   9 

2660

290 ⋅ 3347  0,015  1,16 = 3008 / ; = 2865 +   2865  8 

k −1 pa3  k 

RT  J ∞ 3 = J p 3 + p 3  J 3p

= 2660 +

0,16 290 ⋅ 3358  0,06  1,16

RT J

1

p 1

k −1 p a1  k  

  p

 1

0,16 290 ⋅ 3358  0,06  1,16 

2660

   9 

0,1   p  =  a1 

0,1    = 2544 / .  0,06 

х

4.2.5.

µ

(4.12).

i

,

, , Кv = 1,16.

. 3.1 : V = 6900 / . (4.11)

58

:

59 0 ∞ 1  J 1 + J 1 k s ∞  J . = + ∑J i =  2 ks  i=2   1  2544 + 2844  + 3008 + 3012  = 2905 / . =  3 2  , µ 1 = µ 2 = µ 3,

, (4.12)

 K vV  3J . 

  =1 − exp − 1,16 ⋅ 6900  = 0,6007.   3 ⋅ 2905   :

µ i = 1 − exp −

P =

(4.10),

4m01

π

2 d 01

= 12000

:

/ 2.

d 01 = 0,543 m01 ,

m01 :

0,543π P 0,1575 ⋅ 3,14 ⋅ 12 d 01 = = = 1,4833 . 4 4 d 0 = 1,48 . 0,71 , . . do 3 = 0,71 . х

4.2.6.

.

σ = 1100

3

/ .C / 3.

ρ

ρ = 1300

= 1600 -

ρ = 2050 ρ = 4700

/ 3.

/ 3.

.

(4.13) .

p

.

4.1. , 1.

ω = 1,2

1,2πρ p 2σ

3

= 1,44

3,14 ⋅ 2050 ⋅ 7 = 30 2 ⋅ 1100

do /

3

.

3

= 0,71 .

60

2.

q 3.

q



2 = 15

q

3

.

:

0,5π e3a = ρ d 3 u3

4.

/

0,5 ⋅ 3,14 280 ⋅ 10 − 6 =ω = ⋅ 1600 = 17 0,71 12,52 : π 0,1ρ 3,14 ⋅ 0,1 ⋅ 1300 3 = −0,11 = −0,11 ⋅ = −1,8 / , 2u 3 2 ⋅ 12,52 4.1 N

ω , l

q , u , e

3

/

3

/ /

d0 , e, q , ω , q ,

ω , ωc , 1+ ξ ω ,

/ / /

3 3 3 3

/

fa

d

/

3

/

3

.

µ

D m0 , d0 , J0 , /

J∞ , /

n0 60

I 2,7

II 0,9

III 2,5

38 19 13,85 0,4 1,48 592 11 11 -1,6

34 17 13,21 0,4 1,48 592 11,5 11,5 -1,7

30 15 12,52 0,4 0,71 284 17 17 -1,8

8,9

9,3

9,8

18 19 1,6

49 58 1,57

74 95 1,53

1357 0,07

1357 0,113

1357 0,123

1,08 0,6007 19705 1,478 2544

1,123 0,6007 6606 1,481 —

1,133 0,6007 2044 0,713 —

2844

3008

3012

3,65

4,1

8,14

/ .

61

ω 5.

= 0,6

ωc =

π 0,1ρ 2u

  −  3 p

ω

3

( f a3 − 1)(δ c ρ + δ ρ

=

2  0,008 1,16

× 6 ⋅ 10 − 3 ⋅ 4700 + 12 ⋅ 10 − 3 ⋅ 1600 = 95

/

 

 3

= 0,2 p

3

7

 

(74 − 1) ×

)

 

3

= 0,2 7 = 0,53. /

3

.

1 ((1 + ξ )q + q + q ) = ω 3 ω 3l 3 1 1 = [(1 + 0,53) ⋅ 15 + 17 − 1,8] = (30 + 17 + 9,8 + 95) + 1357l 3 1357 1 = 0,11186 + 0,02811 . l3 9. (4.13): 1 D3 = 1,01 + d . 3 = 1,12186 + 0,02811 . l3 10. C 3 m 3 ω l 3d 3 m . m03 = = = , µ3 µ3 1 − b . 3 − D3 µ 3

. 3

=

1



= 74 .

.

= e3 (1 − e3 )π ρ = 0,4 ⋅ (1 − 0,4) ⋅ 3,14 ⋅ 1800 = 1357

(ω + ω

.

2,16  0,008  1,16

7

ξ

3

);

 2  2⋅0,16 0,16   2  2,16  − 

(

/

2,16

0,6407 ⋅ 7 ⋅ 10 6 ⋅ 0,342

7.

d

k −1 2

3

, 1,885 ⋅ 12,52 ⋅ 10 − 3 ⋅ 1800 ⋅ 290 ⋅ 3335

6.

8.

3 6

k +1 pa3  k 

2 pa3  k 

ωc =

RT

3,14 ⋅ 0,1 ⋅ 1300 = 9,8 2 ⋅ 12,52

0,98 K 0 p 310 sin 20°

 2   k + 1  f a3 =

C

3

π (1 − e )u 3 ρ k +1  2( k −1)

  p

= 0,6 ⋅

+ω ) +

1357 ⋅ 0,713 620 = 0,6007 (1 − 0,016 − 0,6007 ⋅ 1,12186)l

3 − 0,6007 ⋅ 0,02811

.

62

l

3

C

= 2,529. ,

e ≤ 0,5(1 − 1,15d ) ,

d . d

2

=

3

1357 ⋅ 0,713 ⋅ 2,529 m03 = = 2044 0,6007 , d = d d0 . e3 = 0,4

.

4 ⋅ 0,6 ⋅ 2,53 ⋅ 12,52 ⋅ 10 − 3 ⋅ 1,8 ⋅ 103 290 ⋅ 3335 0,98 ⋅ 0,6407 ⋅ 7 ⋅ 10 6

= 0,175;

= 0,0306 ,

. ч

4.2.7.

х

( . (2.6), (2.7). ,

. 4.2)

. 4.2.

d d

, .

p p l

p

p

0,5,

p p

,

p

p

l p .

p 0,5; 0,4;

0,3 ,

l

2

p

. lp = l

1

4.2.8. я

+l

( 2

. . 4.2) + 1,1l 3 = 5,2 + 1,905 + 1,1 ⋅ 2,33 = 9,668 .

х

t 1 = e1 u 1 = 592 / 13,85 = 42,74 ; t 2 = e2 u 2 = 592 / 13,21 = 44,8 ; t 3 = e3 u 3 $ = 284 / 12,52 = 22,7 . : m& 1 = m 1 t 1 = 11836 / 42,7 = 277 / ; m& 2 = m 2 t 2 = 3968 / 44,8 = 89 / ; m& 3 = m 3 t 3 = 1228 / 22,7 = 54 / . :

C : 62

l

3

63

-

(

-

(

-

) P01 = m& 1 J 0 1 = 277⋅2544 = 705

) P02 = m& 2 J ∞ 2 = 89⋅3008 = 268

) P03 = m& 3 J ∞ 3 = 54⋅3012 = 163

(

4.2 N m0 , m , d0 , d d , l3 u ,

/

d d f d d d d l l l l l l

4.3.

p

, , , , , , , , , , ,

я

ч

I 19705 11836 1,48 0,2 0,296 2,7 13,85 0,17

II 6606 3968 1,48 0,2 0,296 0,9 13,21 0,1

III 2044 1228 0,71(1,48) 0,2 0,142 2,5 12,52 0,175

0,25

0,15

0,125

18 1,06 0,39 0,72 0,3 1,2 0,6

49 1,05 0,23 0,54 0,3 1,31 0,5

74 1,08 0,19 0,44 0,14 1,4 0,4

0,6 0,2 4,6 5,2

0,81 0,12 1,5 1,905

1,0 0,1 2,0 2,33

ч

, . . :

я

; ; .

64

-

m . = 1500 ; m01 = 42 000 ; :

.

4.3.1.

ч

-

х

(

.

. 4.1).

.

-

6

.

.

, . , . , . . , , .

. х

4.3.2.

. 1.1

: Jp.

-

/ ⋅

= 345

R

-

k

= 1,159;

-

T

= 3423° ;

4.3.3.

ρ

= 1443

ρ = 786

ρ = 1181

= 2829 / ; ;

/ 3;

/ 3; / 3; K m = 2,765.

х

яp

,

p

1.4,

: 64

n01 = 1,8; n02 = 1,4; p 1 = 25

;

65

-

p p p

1 2

p 2 = 20 = 0,06 = 0,015 k1 ,

; ;

&1 Lmax . d 01 = 3

4m01 , π lpρ

ρ

l p = 10, = 800

;

/ 3. d 01 = 3

4 ⋅ 42000 = 1,884 , . π ⋅ 10 ⋅ 800

d 01 = 1,9 . P1=

4m01

π

2 d 01

=

4 ⋅ 42000

3,14 ⋅ 1,9

2

= 14 800

/ 2.

(3.1). (3.6). Cx( ) (3.4). 4.3.4.

ч

х

(1.42) : J p 1 = 3030 / ;

J p 2 = 3225 / ;

J ∞ 1 = 3207 / ;

(

(1.41): J 0 ,

J ∞ 2 = 3366 / ;

)

= 2918 / . '' '' ∞ 0 0 K p1 = J 1 − J 1 J 1 = 0,099. 1

(1.40):

:

=

66

х

4.3.5.

µ

(2.23), (2.24) . m02 = m01 (1 − γ 1

. 1n01 10

−2

−b . 4.3.

.o

− D1µ 1 ) − 1,078δ ρ π d 03

4.3 p p

p

m01 , n01 P01 ,

γ

. 1,

/

bх.о1 D1

µ

1

m02 , n02 P02 ,

γ

. 2,

/

b х.о 2 D2

µ

p

2

µ

k1 &1

1

2

N 3

42 1,8 742 1,3 0,016 1,0442 0,8 5,1 1,4 70 1,353 0,016 1,0442 0,6061 0,76 0,9212 0,121

42 1,8 742 1,3 0,016 1,0442 0,75 7,3 1,4 100 1,211 0,016 1,0442 0,7049 0,94 0,9262 0,174

42 1,8 742 1,3 0,016 1,0442 0,7 9,5 1,4 130 1,143 0,016 1,0442 0,7567 1,08 0,9270 0,226

p 4

5

6

42 1,8 742 1,3 0,016 1,0442 0,65 11,7 1,4 161 1,105 0,016 1,0442 0,7896 1,21 0,9264 0,279

42 1,8 742 1,3 0,016 1,0442 0,6 13,9 1,4 190 1,08 0,016 1,0442 0,8112 1,35 0,9245 0,330

42 1,8 742 1,3 0,016 1,0442 0,55 16,1 1,4 221 1,07 0,016 1,0442 0,8275 1,5 0,9224 0,383

p p

, 1,1.

γ

. 1

L = L(k1). L k1(&1) 66

,

67

,

,

µ

µ



(k1) (

.

. 4.3).

''

(&1).

''

k1

,

µ ч

4.3.6.

µ

= 1 − (1 − µ 1 )(1 − µ

,

:

2 ).

ч

k1 = 1,08 (&1 = 0,226), = 0,9270. (4.4), (4.6) :

V =

J

.

Кv

ln

1− µ

=

1

. 3.1

Kv = 1,2,

.

3265 1 ln = 7121 / . 1,2 1 − 0,927 L = 11700

.

х

4.3.7.

: -

m01 = 42000 ; m02 = 9500 ;

∗ m01 = m01 − m02 = 32 500

m01 − m 1 − m -

∗ m02 = m02 − m . = 8000 m 1 = µ 1 ⋅ m01 = 29 400 ; m 2 = µ 2 ⋅ m02 = 7180 ;

pp

;

m = 2

= 5420

ч

4.3.8.

;

;

m −( d − d ) ( m 1 + m 2 ) = 4910

.

х

d 0 = 1,9 . :

-

d

1

= 0,108 ;

68

= 0,69 . = 0,676 ; -

d a1 = d d

d

1

= 0,216 ;

= 2d

= 0,132 ;

2

l 2 = l . 2 4 = 0,5 ; l 2 = d 2 = 0,676 ; l 2 = 1,05(l 2 + l 2 ) = 1,235 . : l . 2 = 1,44 ; l . 2 = 1,89 ; l . 2 = l . 2 + l . 2 = 3,33 ; lc.p = 2l . = 3,0 . ( . p . 4.1) lp = l 1 + l 1 + 0,75l 2 + l 2 + 0,5l . = 17,096 . 2

2

х

) P01 = n01m01 g 0 = 742 ; ) P02 = n02 m02 g 0 = 130 ; : m& 1 = P01 J 0 1 = 254

( (

m& 2 = P02 J ∞ 2 = 39

-

68

1

d a2 = d

:

-

f a1 =

l 1 = l . 1 4 = = 0,5 ; l 1 = d 1 = = 0,69 ; l 1 = 1,05(l 1 + l 1 ) = 1,25 . : l . 1 = 4,14 ; l . 1 = 5,95 , l . 1 = l . 1 + l . 1 = 10,09 ; : d 2 = 0,066 ;

4.3.9. я

C -

= 2d

1

t t

1 2

=m =m

: 1 2

m& 1 = 115 ; m& 2 = 185 .

/ ; / ;

f a2 =

69

4.4.

я

p

ч

ч

я

P

,

.

. : m . = 620 ; m01 = 20 000 ; .

4.4.1.

ч

-

х

, ''

'' (

. .C

. 4.2). . . . .C . . . ,

68%

.

, 17%

15%

.

, .

4.4.2. Х

. 1.2

: Jp.

-

= 290

R

/ ⋅

-

k

= 1,16;

-

T

= 3300° ;

-

, .

ρ = 1800

/ 3;

= 2460 / ; ;

70

u = 5,75 p 0, 4

-

/ .

σ = 1100 ρ

: / ;

ρ

3

= 4700

1300

ρ = 2050

3

/ ;

= 1600

/ 3;

ρ



3

/ . х

4.4.3.

яp

, -

p :

1.4, p 1=9 p 2 =8 p 3 =7 pa1 = 0,06 pa2 = 0,015 pa3 = 0,008

; ; ; ;

(3.1). (3.6). Cх( ) (3.4). 4.4.4.

ч

х

(1.43) : J p 1 = 2660 / ; T

1

= 3358° ;

J ∞ 1 = 2844 / ;

'' 70

J p 2 = 2865 / ; T

2

= 3347° ;

J ∞ 2 = 3008 / ;

(1.41): J 0 ''

1

= 2544 / .

J p 3 = 2880 / ; (1.45): T 3 = 3335° ; (1.40): J ∞ 3 = 3012 / ;

; ;

=

71

J∞1 − J0

K p1 =

J0

= 0,118 .

1

1

х

4.4.5.

, sin ϑ

1=

sin ϑ

: n01 = n02 = n03 ; [1]:

2=

sin ϑ

3,

µ 1= µ 2 = µ 3 .

m m m = 03 = 02 . m03 m02 m01 m01

m01

m02 = m m01 ,

2 m02 = 3 m m01 ; :

m03 = 3 m 2 m01 .

m02 = 3 620 ⋅ 20000 2 = 6283 m03 = 3 620 2 ⋅ 20000 = 1974

m01 —

d

3

:

; . :

d 0 = 0,54 3 m01 .

: d 0 = 0,54 3 20 = 1,47 . d 01 = 1,5 ,



= 0,7 . P =

4m01

2 π d 01

=

4 ⋅ 20000

π ⋅ 1,52

= 11323

/

2

. p

.

72 = m01 − m02 − m

m

m∗

=m

m

: = 20000 − 6283 − 0,016 ⋅ 20000 = 13397

.

m d :

+ (1 + d − d c )m = (ω + ω

+ [(1+ ξ )q .



3 + ω )l d 01 +

3 3 + q ]d 01 + 1,01ω l d 01 . ,

+q

.

(4.14)

l . :

µ = p

1.

ω = 1,2

1,2πρ p 2σ

2. q 3.

ω

q

ω

72

=q

= −0,11

ω 5.

.

(4.15)

1

.

= 1,44



3,14 ⋅ 2050 ⋅ 9 = 38 2 ⋅ 1100

2 = 19

3

/

0,5π d 01

4(1 − e ) l u ρ 0,98 K 0 p 10

RT 6

.

(4.16)

.

.

0,5π = 1,5

π 0,1ρ

= 0,6

/ 3.

.

e1a ρ u1 e e ≤ 0,5(1 − 1,15d ) , =

e1 = e1d 01 = 0,4 ⋅ 1,5 = 600

,

4.

m0

p

=q

d 2p = e1 = 0,4.

3 ω l d 01

2u 1 π 0,1ρ 2u

1

600 ⋅ 10 − 6 1600 = 11 / 3. 13,85 : 3,14 ⋅ 0,1 ⋅ 1300 = −1,6 / = −0,11 ⋅ 2 ⋅ 13,85 = 0,6 ⋅

3,14 ⋅ 0,1 ⋅ 1300 = 8,9 2 ⋅ 12,52

/

3

.

3

,

73

ωc = =

π (1 − e )u 1 ρ

RT

K 0 p 110 sin 20° 1

( f a1 − 1)(δ c ρ + δ ρ

1

6

3,14 ⋅ 0,6 ⋅ 13,85 ⋅ 10 − 3 ⋅ 1,8 ⋅ 103 ⋅ 290 ⋅ 3358 0,6407 ⋅ 9 ⋅ 10 6 ⋅ 0,342

× (18 − 1)(6 ⋅ 10 − 3 ⋅ 4700 + 12 ⋅ 10 − 3 ⋅ 1600) = 19

ξ

6.

ω

7.

1

= 0,2 p

1

)= ×; / 3.

= 0,2 9 = 0,6.

= e (1 − e )π ρ = 0,4 ⋅ (1 − 0,4) ⋅ 3,14 ⋅ 1800 = 1357

8.

/

3

.

(4.14)

m

= (38 + 11 + 8,9 + 19)3,375 l 1 + (1,6 ⋅ 19 + 11 − 1,6)3,375 +

+ 1,01 ⋅ 1357 ⋅ 3,375l 1 = 4885l 1 + 134,3. 13397 . 4885l 1 + 134,3 = 13397 . e1 = 0,4 , l 1 = 2,715 . (4.16) 1

=

d 2p1 d

p1

4 ⋅ 0,6 ⋅ 2,715 ⋅ 13,85 ⋅ 10 − 3 ⋅ 1,8 ⋅ 103 290 ⋅ 3358 0,98 ⋅ 0,6407 ⋅ 9 ⋅ 10 6

= 0,169 ,

, 0,5 (1−1,15⋅0,69) = 0,403, . . e1 ≤ 0,403.

µ

(4.15): 1357 ⋅ 2,715 ⋅ 3,375 = 0,6217. µ 1= 20000 p . 4.4.

p ч

4.4.6.

1

ч

(4.9), (4.10) V =

J

.

Кv

ln

1− µ

=

1 .

. 3.1 4.4.7.

= 0,0285.

ч

(4.11). :

Kv = 1,16,

1 2905 ln = 6954 / . 1,16 1 − 0,9378 L = 10432

.

х

. 4.5. , p

p

. 2.1, 2.4.

74

, lc 2

p

.

lc 3 lp = l

1

+l

( 2

. . 4.2): + 1,1 l 3 = 5,29 + 1,84 + 1,1 ⋅ 2,33 = 9,693 . 4.4

p

1 20 000 13 397

2 6283 4209

3 1974 1322

d ,

13,85 38 19 0,169

13,21 34 17 0,095

12,52 30 15 0,174

e d0 , e, q , ω , q ,

0,4 1,5 600 11 11 -1,6

0,4 1,5 600 11,5 11,5 -1,7

0,4 0,7 280 17 17 -1,8

8,9

9,3

9,8

18 19 1,6

49 58 1,57

74 95 1,53

1357 2,715

1357 0,82

1357 2,507

/

12434,4 0,6217 2544

3756 0,5977 —

1167 0,5910 —

/

2844

3008

3012

3,722

4,04

8,11

m0 , m , u , ω , q ,

ω , ω , 1+ ξ ω ,

/ / /

/ / /

3 3

3 3 3 3

/

fa

/

3

/

3

l m ,

µ

J0 , J∞ ,

n0 4.4.8. я 74



p

х

75

t 1 = e1 u 1 = 600 / 13,85 = 43,3 ; t 2 = e2 u 2 = 600 / 13,21 = 45,4 ; t 3 = e3 u 3 = 280 / 12,52 = 22,4 . : m& 1 = m 1 t 1 = 287 / ; m& 2 = m 2 t 2 = 83 / ; m& 3 = m 3 t 3 = 52 / . :

C : -

(

-

(

-

) P01 = m& 1 J 0 1 = 277⋅2544 = 705

;

) P02 = m& 2 J ∞ 2 = 89⋅3008 = 268

;

) P03 = m& 3 J ∞ 3 = 54⋅3012 = 163

(

. 4.5

p



p 1 20 000 12434 1,5 0,2

2 6283 3756 1,5 0,2

3 1974 1167 0,7 0,2

0,3 0,169

0,3 0,095

0,14 0,174

2,715

0,82

2,507

d

13,85 0,169

13,21 0,095

12,52 0,174

d ,

0,26

0,14

0,122

fa da , d , dc ,

d ,

18 1,1 0,39 0,72 0,3

49 0,98 0,21 0,54 0,3

74 1,05 0,19 0,43 1,14

la , l ,

1,23 0,6

1,23 0,5

1,4 0,4

l ,

0,63

0,73

1,0

m0 , m , d0 , d d , d , l u ,

/

76

l ,

0,21

0,11

0,1

l , l ,

4,66 5,29

1,47 1,84

2,0 2,33

ч

4.5.

, ,

, ,

. . , . : -

;

-

; : p i , pai , n0i ; m0i +1 m0i ; ;

: J0 i, J ∞i ; m0i ; d oi ; P ;

µ i;

, . . ,

(LARELA).

ϑ (t ) .

ϑ . :

1) 2) 3) 4) 76

ks ; P ; J∞i;

Kp;

C x (M ) ,

77

µ i.

5) 6)

n0i ;

p ,

IBM/PC 1

"PROBA" .

1

p p

"PROBA" p p

.

.

78

И



p p

p

p

1

p

p : . p

:

: 09/08/96; 15:17:11. . .

p : Alfa.

. ,

. 2. :

-

- 2; - 1.

-

— —

-

— — p p

-

p p p -

( (

: ; .

)+ )+

: ; .

: — 1,900 ; — 1,900 . , . , . p

p

……………………………….……………. 11 000.0 …………………………………………………. 1500.0 p I II III , / , /( 78

˚ )

2829.0 345.0 1.159

2829.0 345.0 1.159

0.0 0.0 0.0

79

, ˚K , / , / 3 , / 3

3

p

p

p

, ,

p

, "

p " , p

"

p "

3423.0 1443.0 786.0 1181.0 2.765

3423.0 1443.0 786.0 1181.0 2.765

0.0 0.0 0.0 0.0 0.0

1.800 — 25.00 0.060

1.400 0.280 20.00 0.015

0.0 0.0 0.0 0.0

p

p

III , 0.0 0.0 p , 0.0 p p , 0.0 0.0 0.0 µk , / 3 0.0 , / — , / 0.0 p p 5607.5 ……………………………………..……………… 5084.7

p

I 42 954.6 27 807.3 3120.0 2730.7 1.9 0.6474 2700.0 2917.6 3206.8

II 12 027.3 9539.8 987.5 854.0 1.9 0.7932 2700.0 — 3366.3

0.199 0.205 0.095 0.384 0.209 0.102 1.314

0.171 0.131 0.167 0.272 0.259 0.102 1.101

0.0 0.0 0.0 0.0 0.0 0.0 0.0

p p

, ,

I 0.108 0.690

II 0.074 0.761

III 0.0 0.0

80

,

0.216 0.148 0.0 , 0.500 0.500 0.0 , 0.690 0.761 0.0 , 1.249 1.324 0.0 , 3.952 1.730 0.0 , 5.664 2.318 0.0 , 9.616 4.048 0.0 …………………………………………………. 3.000 ………………………………………………………. 19.237 p p

p

p

p

p

, , p

, p p

p

p p

, p

, p

,

/ /

,

/

I 758.5 20 421.5 7385.7 190.92 69.05 259.97 106.96

II 165.2 7006.0 2533.8 36.04 13.03 49.07 194.41

III 0.0 0.0 0.0 0.0 0.0 0.0 0.0

p p

"

p

p

I II III , / 3206.8 3366.3 0.0 1.80 1.40 0.0 0.6474 0.7932 0.0 " …………………………….. 0.0991 ………………………….………….… 15 150 /

…………………………... 10 997.6 ………………..…….. 7.09 ………………………………… 785.54 …………………..….… 385.64 …………….…. 23.77 ………………………………….……. 2012.78 ………………………………………………………….… 38.39 80

/

2

81

p p

p p

p

2

p

: . p

:

: 09/08/96; 15:17:11. . .

p : Beta.

. ,

. 2. :

-

- 2; - 1.

-

— —

-

— — p p

-

p p p -

( (

: ; .

)+ )+

: ; .

: — 1,900 ; — 1,900 . , . , . p

p

…..…………………………….……………. 42 000.0 …………………………………………………. 1500.0 p I II III , / , /(

˚ )

2829.0 345.0 1.159

2829.0 345.0 1.159

0.0 0.0 0.0

82

, ˚K , / , / 3 , / 3

3

p

p

p

, ,

p

, "

p " , p

"

p "

3423.0 1443.0 786.0 1181.0 2.765

3423.0 1443.0 786.0 1181.0 2.765

0.0 0.0 0.0 0.0 0.0

1.800 — 25.00 0.060

1.400 0.280 20.00 0.015

0.0 0.0 0.0 0.0

p

p

III , 0.0 0.0 p , 0.0 p p , 0.0 0.0 0.0 µk , / 3 0.0 , / — , / 0.0 p p 5460.7 ……………………………………..……………… 4949.2

p

I 42 000.0 29 200.4 3139.6 2730.8 1.9 0.6952 2700.0 2917.6 3206.8

II 9660.0 7338.9 821.1 718.3 1.9 0.7597 2700.0 — 3366.3

0.199 0.203 0.095 0.381 0.209 0.102 1.309

0.171 0.134 0.198 0.279 0.255 0.102 1.139

0.0 0.0 0.0 0.0 0.0 0.0 0.0

p p

, , 82

I 0.107 0.682

II 0.066 0.682

III 0.0 0.0

83

,

0.214 0.133 0.0 , 0.500 0.500 0.0 , 0.682 0.682 0.0 , 1.241 1.241 0.0 , 4.122 1.463 0.0 , 5.919 1.914 0.0 , 10.041 3.377 0.0 …………………………………………………. 3.000 ………………………………………………………. 18.900 p p

p

p

p

p

, , p

, p p

p

p p

, p

, p

,

/ /

,

/

I 741.6 21 444.6 7755.7 186.68 67.51 254.19 114.88

II 132.7 5389.7 1949.3 28.94 10.47 39.41 186.21

III 0.0 0.0 0.0 0.0 0.0 0.0 0.0

p p

"

p

p

I II III , / 3206.8 3366.3 0.0 1.80 1.40 0.0 0.6952 0.7597 0.0 " …………………………….. 0.0991 ………………………….………….… 14 813 /

…………………………... 10 808.4 ………………..…….. 7.06 ………………………………… 772.03 …………………..….… 380.24 …………….…. 24.01 ………………………………….……. 1982.87 ………………………………………………………….… 37.69

/

2

84

p p

p

p

p

3

p

p

:

p .

p

:

: 09/08/96; 12:17:11. . . : Omega. , . . . . ,

. ,

. . ,

. . . . . 3. :

:

— 68%,

— 17%,

:

— 68%,

— 17%,

:

— 68%,

— 17%,

— 15%; — 15%; — 15%. : — — —

; ; . :

— — —

; ; . :

— — 84

; ;

85



. :

— ; — ; — . P

-

: — 1.480 ; — 1.480 ; — 0.710 . p

p

……………………………….……………. 10 000.0 ………………………………………………..…. 620.0 p I II III , / , /(

˚ )

, ˚K , / 3 p p

p p

2460.0 290.0 1.160 3300.0 1800.0 5.75

2460.0 290.0 1.160 3300.0 1800.0 5.75

2460.0 290.0 1.160 3300.0 1800.0 5.75

0.40

0.40

0.40

1100.0 2050.0 1300.0 4700.0 1600.0

1100.0 2050.0 1300.0 4700.0 1600.0

1100.0 2050.0 1300.0 4700.0 1600.0

9.000 0.060

8.000 0.015

7.000 0.008

p p

p p p p p p

, , p

p , 3 , / , / 3

p

/

3

/

3

, , p

p

p p

,

I II 20 231.1 6331.1

III 1981.2

86

, , p

p

12 596.7 3791.15 13 576.4 4248.5 1303.4 558.7

1170.76 1329.5 190.5

1177.4

520.8

178.8

1.48 2543.47 2843.37 0.6226

1.48 — 3007.40 0.5988

0.71 — 3011.63 0.5909

13.847 3.87

13.210 3.71

12.523 8.16

, p

p , , , / , /

µ

p

p

,

/

p

p p p …………………………………………………………………… 2672.55 " " …………………………………………………… 2496.96 w, q, /

p p

/

3

37.939 18.969 10.97 10.97 8.85 -1.62 19.52 1346.05 1.63

3

q, / 3 w, / 3 p w, / 3 p q, / 3 w, / w, / 3 p csi

3

p

p

33.724 16.86 11.94 11.94 9.27 -1.70 55.08 1394.42 1.59

29.508 14.75 16.69 16.69 9.78 -1.79 97.73 1347.97 1.56

P p

p p p

, , , ,

p

, p

, ,

p p

, , ,

86

I 2.89 17.90 0.324 0.389 0.259 1.096 0.707 0.578 0.550 0.207 1.222 0.444

II 0.84 49.58 0.173 0.208 0.138 0.974 0.552 0.654 0.549 0.111 1.221 0.444

III 2.43 74.22 0.153 0.184 0.122 1.055 0.576 0.278 0.623 0.098 1.385 0.213

87

p

,

,

4.913 1.427 1.981 , 0.672 0.671 0.762 5.585 1.763 2.235 ………………………………………………… 0.000 ……………………………………………………….. 9.584 p p

p p

p

p

p

, p

p

, ,

/

I 767.4 301.73 41.75

II 230.5 76.63 49.47

III 158.6 52.65 22.23

p p

"

p

p

I II III , / 2843.4 3007.4 3011.6 3.87 3.71 8.16 0.6226 0.5988 0.5909 " …………………………….. 0.1179 ………….…………………………….11 760 / 2

……………..……… 10 092.5 ………..……… 6.93 …………………………. 271.89 135.70 24.94 ………………………………… 1472.17 …………………………………………………….. 31.07

/

88

p p

p

p

p

4

p

p

:

p .

p

: 18/07/96; 12:17:11. . .

: : Teta.

, . . . . ,

. ,

. . ,

. . . . . 3. :

:

— 68%,

— 17%,

:

— 68%,

— 17%,

:

— 68%,

— 17%,

— 15%; — 15%; — 15%. : — — —

; ; . :

— — —

; ; . :

— — 88

; ;

89



. :

— ; — ; — . P

-

: — 1.500 ; — 1.500 ; — 0.700 . p

p

………………………………….……………. 20 000.0 ……………………………………………………. 620.0 p I II III , / , /(

˚ )

, ˚K , / 3 p p

p p

2460.0 290.0 1.160 3300.0 1800.0 5.75

2460.0 290.0 1.160 3300.0 1800.0 5.75

2460.0 290.0 1.160 3300.0 1800.0 5.75

0.40

0.40

0.40

1100.0 2050.0 1300.0 4700.0 1600.0

1100.0 2050.0 1300.0 4700.0 1600.0

1100.0 2050.0 1300.0 4700.0 1600.0

9.000 0.060

8.000 0.015

7.000 0.008

p p

p p p p p p

, , p

p , 3 , / , / 3

p

/

3

/

3

, , p

p

p p

,

I II 20 000.0 6282.8

III 1973.7

90

, , p

p

12 427.1 3750.82 13 397.2 4208.6 1290.1 558.3

1164.02 1322.1 189.6

1165.9

520.8

178.0

1.50 2543.47 2843.37 0.6214

1.50 — 3007.40 0.5970

0.70 — 3011.63 0.5898

13.847 3.78

13.210 3.64

12.523 8.31

, p

p , , , / , /

µ

p

p

,

/

p

p p p …………………………………………………………………… 2658.06 " " …………………………………………………… 2484.64 w, q, /

p p

/

3

37.939 18.969 10.95 10.95 8.85 -1.62 19.41 1350.14 1.63

3

q, / 3 w, / 3 p w, / 3 p q, / 3 w, / w, / 3 p csi

3

p

p

33.724 16.86 11.89 11.89 9.27 -1.70 54.93 1395.44 1.59

29.508 14.75 16.76 16.76 9.78 -1.79 98.11 1345.10 1.56

P p

p p p

, , , ,

p

, p

, ,

p p

, , ,

90

I 2.73 17.90 0.318 0.382 0.254 1.077 0.694 0.591 0.540 0.204 1.200 0.450

II 0.80 49.58 0.171 0.205 0.136 0.961 0.545 0.665 0.542 0.109 1.204 0.450

III 2.52 74.22 0.154 0.185 0.123 1.063 0.580 0.273 0.628 0.099 1.395 0.210

91

p

,

,

4.704 1.374 2.031 , 0.660 0.662 0.767 5.364 1.705 2.287 ………………………………………………… 0.000 ……………………………………………………….. 9.356 p p

p p

p

p

p

, p

p

, ,

/

I 740.6 291.19 42.68

II 224.2 74.54 50.32

III 160.9 53.42 21.79

p p

"

p

p

I II III , / 2843.4 3007.4 3011.6 3.87 3.71 8.16 0.6226 0.5988 0.5909 " …………………………….. 0.1179 ………….…………………………… 11 318 / 2

……………..……… 9 914.1 ………..……… 6.90 …………………………. 272.48 136.48 25.16 ………………………………… 1457.59 …………………………………………………….. 30.63

/

92

И

P

P

1. . .

.—

/ , 1970. — 392 .,

.:

.

. .

.

2. / . . 3.

, . . . .

.—

, . . C , 1986. — 344 .,

.:

. :

.— 4.

. .

: ,

. .,

.:

, 1974. — 344 .,

C

.C. .—

.:

.

, 1979. — 240 .,

. 5.

. ., . . — 2., . , 1984. — 272 ., . . .,

6. . —

. /

.

.; 8. 496 c.,

92

( . . . . . .

.:

.

7. / . . . — .:

. —

. .

: , 1987. — 328 .,

.:

. . C

, . .

):

, . . , 1985. — 360 ., . . — .: , 1979. —