188 39 874KB
English Pages 152 Year 2022
Current Natural Sciences
Yuming QIN
1D Radiative Fluid and Liquid Crystal Equations
Printed in France
EDP Sciences – ISBN(print): 978-2-7598-2903-3 – ISBN(ebook): 978-2-7598-2904-0 DOI: 10.1051/978-2-7598-2903-3 All rights relative to translation, adaptation and reproduction by any means whatsoever are reserved, worldwide. In accordance with the terms of paragraphs 2 and 3 of Article 41 of the French Act dated March 11, 1957, “copies or reproductions reserved strictly for private use and not intended for collective use” and, on the other hand, analyses and short quotations for example or illustrative purposes, are allowed. Otherwise, “any representation or reproduction – whether in full or in part – without the consent of the author or of his successors or assigns, is unlawful” (Article 40, paragraph 1). Any representation or reproduction, by any means whatsoever, will therefore be deemed an infringement of copyright punishable under Articles 425 and following of the French Penal Code. The printed edition is not for sale in Chinese mainland. Customers in Chinese mainland please order the print book from Science Press. ISBN of the China edition: Science Press 978-7-03-072137-2 Ó Science Press, EDP Sciences, 2022
In memory of my father, Zhenrong QIN and my mother, Xilan XIA To my wife, Yu YIN, my son, Jia QIN To my elder sister, Yujuan QIN, younger brother, Yuxing QIN and younger sister, Yuzhou QIN
Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII CHAPTER 1 . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
1 1 1 5 6 7 8 9 12 13 14
Asymptotic Behavior of Solutions for the One-Dimensional Infrarelativistic Model of a Compressible Viscous Gas with Radiation . . . . . . . . . . . . . . . . 2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Global Existence and Uniform-in-Time Estimates in H1 . . . . . . . . . 2.3 Asymptotic Behavior of Solutions in H1 . . . . . . . . . . . . . . . . . . . . . 2.4 Global Existence and Uniform-in-Time Estimates in H2 . . . . . . . . . 2.5 Asymptotic Behavior of Solutions in H2 . . . . . . . . . . . . . . . . . . . . . 2.6 Global Existence and Uniform-in-Time Estimates in H4 . . . . . . . . . 2.7 Asymptotic Behavior of Solutions in H4 . . . . . . . . . . . . . . . . . . . . . 2.8 Bibliographic Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .
. . . . . . . . .
17 17 22 48 53 60 62 81 85
. . . .
. 89 . 89 . 91 . 100
Preliminary 1.1 Some 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9
...................................... . . . . . . . . . .
Basic Inequalities . . . . . . . . . . . . . . . . . . . . . . . . The Sobolev Inequalities . . . . . . . . . . . . . . . . . The Interpolation Inequalities . . . . . . . . . . . . . The Poincaré Inequality . . . . . . . . . . . . . . . . . . The Classical Bellman–Gronwall Inequality . . . The Generalized Bellman–Gronwall Inequalities The Uniform Bellman–Gronwall Inequality . . . . The Young Inequalities . . . . . . . . . . . . . . . . . . The Hölder Inequalities . . . . . . . . . . . . . . . . . . The Minkowski Inequalities . . . . . . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
CHAPTER 2
CHAPTER 3 Global Existence and Regularity of a One-Dimensional Liquid Crystal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Global Existence in H 1 H01 H 2 . . . . . . . . . . . . . . . . . . . . . . 3.3 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . .
. . . .
. . . .
VI
Contents
3.4 3.5
Proof of Theorem 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Bibliographic Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
CHAPTER 4 Large-time Behavior of Solutions to a One-Dimensional Liquid Crystal System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Uniform Estimates in H i H0i H i þ 1 ði ¼ 1; 2Þ and H 4 H04 H 4 . 4.3 Large-time Behavior in H i H0i H i þ 1 ði ¼ 1; 2Þ and H 4 H04 H 4 4.4 Bibliographic Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . .
111 111 113 122 134
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Foreword
In this book, we shall present some recent results on the global well-posedness of strong solutions to 1D radiative fluid equations and liquid crystal equations. Most of the contents of this book are based on the research carried out by the authors and their collaborators in recent years, which have been previously published only in original papers; but some contents of the book have never been published until now. There are four chapters in this book. Chapter 1 will recall some basic properties of Sobolev spaces, some differential integral inequalities in analysis, some of which will be used in the subsequent chapters. In chapter 2, we shall study one-dimensional compressible infrarelativistic radiation equations and further prove the global existence and the large-time behavior of solutions to this system. Novelties of this chapter are: (1) Using a suitable expression of specific volume and the delicate priori estimates, we establish the positively lower bound and upper bound of the specific volume. (2) Using the embedding theorems and the delicate interpolation inequalities, we have overcome some mathematical difficulties caused by the higher order of partial derivatives to prove the global well-posedness of solutions in higher regular spaces. It is a remarkable fact that the difficulties we encounter in chapter 2 are how to deal with the radiative term, which makes the analysis in this book different from those in Qin [104], where the author studied some models without the radiative term. Chapters 3 and 4 will study one-dimensional compressible liquid crystal fluid equations. In chapter 3, we shall establish the existence of global solutions in Hi (i = 1, 2, 4) in Lagrangian coordinates. In chapter 4, we shall first establish the large-time behavior of solutions to one-dimensional compressible liquid crystal fluid equations. The novelty in this chapter is that using a suitable expression of the specific volume, we shall establish uniform bound of the specific volume by the embedding theorems and a sequence of delicate interpolation techniques and then prove the long-time behavior of solutions to the system using the Shen–Zheng inequality. DOI: 10.1051/978-2-7598-2903-3.c901 Ó Science Press, EDP Sciences, 2022
VIII
Foreword
For the contents of chapter 1, we refer the reader to [1, 2, 5–8, 37, 38, 40, 41, 45, 55, 75, 76, 95, 96, 105–108, 135, 137, 138, 141, 148, 149, 155]. For the theory of radiation hydrodynamical equations, we refer the reader to the monographs [12, 94, 99, 100] and [10, 17–21, 44, 59, 60, 74, 79, 80, 89, 111, 112, 116, 117, 127, 128]. For the theory of equations of liquid crystal, we refer the reader to [9, 11, 16, 23–25, 56, 57, 77, 78, 81–83, 85–88, 110, 118, 124, 143, 144]. Since the compressible Navier– Stokes equations are closely related to the radiation hydrodynamical equations and the liquid crystal equations under consideration of this book, we also refer the reader to related references of the compressible Navier–Stokes equations [3, 4, 13–15, 22, 26–36, 39, 42, 43, 46–50, 52–54, 58, 61–73, 84, 91–93, 97, 98, 102–105, 113, 114, 119–123, 125, 126, 129, 130–134, 136, 139, 140, 142, 146, 147, 150–154, 156], some techniques of which can be used to deal with our problems in this book. We sincerely wish that the reader will learn the essential ideas, basic theories and methods in deriving the global existence, asymptotic behavior and regularity of solutions for the systems considered in this book. We also wish that the reader can undertake the further research of these systems after having read this book. This book was financially supported in part by the NNSF of China with contract number 12171082, the Fundamental Research Funds for the Central Universities with contract number 2232022G-13 and by the Graduate Course (Textbook) Construction Project of Donghua University. We also take this opportunity to thank all the people who were once concerned about me. Last but not least, Yuming QIN hopes to express his deepest thanks to his parents (Zhenrong QIN and Xilan XIA), sisters (Yujuan QIN and Yuzhou QIN), brother (Yuxing QIN), wife (Yu YIN) and son (Jia QIN) for their great help, constant concern and advice in his career. Professor Yuming QIN Department of Mathematics College of Science Institute for Nonlinear Sciences Research Institute of Science and Technology Donghua University Shanghai 201620, P. R. China [email protected], [email protected]
Chapter 1 Preliminary This chapter will introduce some basic results, most of which will be used in the following chapters. First we shall recall some basic inequalities whose detailed proofs can be found in the related literature, see, e.g., Adams [1, 2], Friedman [37, 38], Gagliardo [40, 41], Nirenberg [95, 96], Yosida [148], etc.
1.1 1.1.1
Some Basic Inequalities The Sobolev Inequalities
We shall first introduce some basic concepts of Sobolev spaces. Definition 1.1.1. Assume XRn is a bounded or an unbounded domain with a smooth boundary Γ. For 1 ≤ p ≤ +∞ and m a non-negative integer, Wm,p(Ω) is defined to be the space of functions u in Lp(Ω) whose distribution derivatives of order up to m are also in Lp(Ω). That is, W m;p ðXÞ ¼ Lp ðXÞ \ fu : Da u 2 Lp ðXÞ; jaj mg: The space Wm,p(Ω), called a Sobolev space, is equipped with a norm 0 11=p Z X kukm;p;X ¼ @ jDa ujp dx A ; if 1 p\ þ 1; or X jaj m
kukm;p;X ¼ max esssup jDa uðxÞj; if p ¼ þ 1 jaj m
ð1:1:1Þ
ð1:1:2Þ
x2X
DOI: 10.1051/978-2-7598-2903-3.c001 © Science Press, EDP Sciences, 2022
1D Radiative Fluid and Liquid Crystal Equations
2
which is clearly equivalent to
X
kDa ukp;X :
ð1:1:3Þ
jaj m
If X ¼ Rn , we only denote kukm;p ¼ kukm;p;Rn ;
kuk0;p ¼ kukp :
Wm,p(Ω) is a Banach space. The space W0m;p ðXÞ is defined as the closure of C01 ðXÞ relative to the norm (1.1.3). Clearly, W 0;p ðXÞ ¼ Lp ðXÞ : with norm ∥⋅∥0,p,Ω ≡ ∥⋅∥p,Ω. For p = 2, W m,2(Ω) ¼ Hm(Ω), is a Hilbert space with respect to the scalar product X ðu; vÞm ¼ ðDa u; D a vÞL2 ðXÞ jaj m
R
with ðf ; gÞL2 ðXÞ ¼ X f gdx, here g is the conjugate function of g. It is well-known that the Sobolev inequalities are important tools in the study of nonlinear evolutionary equations. First, we shall introduce these inequalities for functions in the space W01;p ðXÞ. Theorem 1.1.1 (The Sobolev Inequality). Assume that XRn ; n [ 1; is an open domain. There exists a constant C = C(n, p) > 0 such that
(1) if n > p ≥ 1, and u 2 W01;p ðXÞ, then u 2 Lp ðXÞ and kukp ;X
pðn 1Þ pffiffiffi kDukp;X 2ðn pÞ n
ð1:1:4Þ
where p = np∕(n − p); (2) if p > n and Ω is bounded, and u 2 W01;p ðXÞ, then u 2 C ðXÞ and sup juj C jXjðnpÞ kDukp;X : 1
1
X
ð1:1:5Þ
While, if X ¼ Rn , then 1
sup juj C xn p kuk1;p;Rn Rn
n=2
ð1:1:6Þ
2p is the measure of the n-dimensional unit ball, Γ is the Euler where xn ¼ nCðn=2Þ ðp1Þ=p p1 gamma function and C ¼ max 1; pn .
Preliminary
3
Remark 1.1.1. The Sobolev inequality (1.1.4) does not hold for p = n, p* = +∞. (1.1.4) was first proved by Sobolev [138] in 1938. Sobolev [138] stated that the Lp* norm of u can be estimated by ∥u∥1,p,Ω or ∥Du∥p,Ω, the Sobolev norm of u. However, we can bound a higher Lp norm of u by exploiting higher order derivatives of u as shown in the next theorem which generalizes theorem 1.1.1 from m = 1, p > n to m ≥ 1 an integer. Theorem 1.1.2. Assume XRn is an open domain. There exists a constant C = C(n, m, p) > 0 such that
(1) if mp < n, p ≥ 1, and u 2 W0m;p ðXÞ, then u 2 Lp ðXÞ and kukp ;X C kukm;p;X
ð1:1:7Þ
np ; where p ¼ nmp
(2) if mp > n, and u 2 W0m;p ðXÞ, then u 2 C ðXÞ and m 1 X 1 1 0 p sup juj C jK j ðdiamK Þjaj kDa ukp;K a! X jaj¼0 1 ðm n=pÞ1 kDm ukp;K þ ðdiamK Þ ðm 1Þ!
m
ð1:1:8Þ
where K = suppu, C = C(m, p, n) and diamK is the diameter of K. Remark 1.1.2. An important case considered in theorems 1.1.1 and 1.1.2 is X ¼ Rn . In this situation, W m;p ðRn Þ ¼ W0m;p ðRn Þ and therefore the results of theorems 1.1.1 and 1.1.2 apply to W m;p ðRn Þ. For p > n, the results of theorems 1.1.1 and 1.1.2 imply the fact that u is bounded. Indeed, u is Höder continuous, which we shall state as follows. Theorem 1.1.3. If u 2 W01;p ðXÞ; p [ n, then u 2 C 0;a ðXÞ where α = 1 − n∕p. Generally, the embedding theorems are closely related to the smoothness of the domain considered, which means that when we study the embedding theorems, we need some smoothness conditions for the domain. These conditions include that the domain Ω possesses the cone property, and it is a uniformly regular open set in Rn , etc. For example, when Ω 2 C1 or @Ω 2 Lip, Ω has the cone property. Mathematically, we need to define the special meaning of the word “embedding” or “compact embedding”. Definition 1.1.2. Assume A and B are two subsets of some function space. Set A is said to be embedded into B if and only if (1) A B; (2) the identity mapping I: A → B is continuous, i.e., there exists a constant C > 0 such that for any x 2 A, there holds that kIxkB C kxkA :
4
1D Radiative Fluid and Liquid Crystal Equations If A is embedded into B, then we simply denote by A ,! B. A is said to be compactly embedded into B if and only if
(1) A is embedded into B; (2) the identity mapping I: A ↦ B is a compact operator. If A is compactly embedded into B, then we simply denote by A ,!,! B. Now we draw some consequences from theorem 1.1.1. In fact, exploiting theorem 1.1.1, we have the following result which is an embedding theorem. np Corollary 1.1.1. If u 2 W01;p ðXÞ, then u 2 Lq(Ω) with p q np if 1 ≤ p < n, and p ≤ q < +∞ if p = n. Moreover, if p > n, u coincides a.e. in Ω with a (uniquely determined) function of C ðXÞ. Finally, there holds that np ; ð1:1:9Þ kukq;X C kuk1;p;X if 1 p\n; p q np
kukq;X C kuk1;p;X if p ¼ n; p q\ þ 1;
ð1:1:10Þ
kukC C kuk1;p;X if p [ n;
ð1:1:11Þ
where C = C(n, p, q) > 0 is a constant. We can generalize corollary 1.1.1 to functions from W0m;p ðXÞ which can be stated as the following embedding theorem. Theorem 1.1.4. Let u 2 W0m;p ðXÞ; p 1; m 0. Then h i np (1) if mp < n, then we have, for all q 2 p; nmp , W0m;p ðXÞ,!Lq ðXÞ;
ð1:1:12Þ
and hthere isi a constant C1 > 0 depending only on m, p, q and n such that for all np , q 2 p; nmp kukq;X C1 kukm;p;X ;
ð1:1:13Þ
(2) if mp = n, then we have, for all q 2 [p, +∞), W0m;p ðXÞ,!Lq ðXÞ;
ð1:1:14Þ
and there is a constant C2 > 0 depending only on m, p, q and n such that for all q 2 [p, +∞), kukq;X C2 kukm;p;X ;
ð1:1:15Þ
Preliminary
5
(3) if mp > n, each u 2 W0m;p ðXÞ is equal a.e. in Ω to a unique function in C k ðXÞ, for all k 2 [0, m − n∕p) and there is a constant C3 > 0 depending only on m, p, q and n such that kukC k C3 kukm;p;X :
ð1:1:16Þ
Remark 1.1.3. In case (2) of theorem 1.1.4, the following exception case holds for m = n, p = 1, q = +∞: W n;1 ðXÞ,!L1 ðXÞ:
ð1:1:17Þ
Now we give the following compact embedding theorem. Theorem 1.1.5 (Embedding and Compact Embedding Theorem). Assume that Ω is a bounded domain of class Cm. Then we have (i) If mp < n, then Wm,p(Ω) is continuously embedded in Lq*(Ω) with
W m;p ðXÞ,!Lq ðXÞ:
1 q
¼ p1 mn: ð1:1:18Þ
In addition, the embedding is compact for any q, 1 ≤ q < q*. (ii) If mp = n, then Wm,p(Ω) is continuously embedded in Lq(Ω), 8q; 1 q\ þ 1: W m;p ðXÞ,!Lq ðXÞ:
ð1:1:19Þ
In addition, the embedding is compact, 8q; 1 q\ þ 1. If p = 1, m = n, then the above still holds for q = +∞. (iii) If k þ 1 [ m np [ k; k 2 N, then writing m np ¼ k þ a; a 2 ð0; 1Þ; W m;p ðXÞ is continuously embedded in C k;a ðXÞ: W m;p ðXÞ,!C k;a ðXÞ;
ð1:1:20Þ
where C k;a ðXÞ is the space of functions in C k ðXÞ whose derivatives of order k are Hölder continuous with exponent α. Moreover, if n = m − k − 1, and α = 1, p = 1, then (1.1.20) holds for α = 1, and the embedding is compact from Wm,p(Ω) to C k;b ðXÞ, for all 0 ≤ β < α.
1.1.2
The Interpolation Inequalities
In this subsection, we shall present the Gagliardo–Nirenberg interpolation inequalities (see, e.g., Friedman [38] and Nirenberg [96]) which play a very important role in the theory of nonlinear evolutionary equations.
1D Radiative Fluid and Liquid Crystal Equations
6
h i For p > 0, jujp;X ¼ kukLp ðXÞ . For p < 0, set np ¼ h þ a with h ¼ np and a 2 ½0; 1Þ. Define jujp;X ¼ sup jDh uj X
jujp;X ¼ ½Dh ua;X
X
supjD b uj; if a ¼ 0;
jbj¼h X
X
sup½D b ua
jbj¼h X
X
jD b uðxÞ Db uðyÞj ; if a [ 0: jx yja jbj¼h x;y2X;x6¼y sup
If X ¼ Rn , we simply write |u|p instead of |u|p,Ω. Theorem 1.1.6 (The Gagliardo–Nirenberg Interpolation Inequalities). Let j, m be any integers satisfying 0 ≤ j < m, and let 1 q; r þ 1, and p 2 R; mj a 1 such that
1 j 1 m 1a ¼a : þ p n r n q Then (i) For any u 2 W m;r ðRn Þ \ Lq ðRn Þ, there is a positive constant C = C(m, n, j, q, r, α) such that jDj ujp C jDm ujar juj1a q
ð1:1:21Þ
with the following exception: if 1 < r < +∞ and m − j − n∕p is a non-negative integer, then (1.1.21) holds only for α satisfying j=m a\1. (ii) For any u 2 Wm,r(Ω) \ Lq(Ω) where Ω is a bounded domain with smooth boundary, there are two positive constants C1, C2 such that jD j ujp;X C1 jDm ujar;X juj1a q;X þ C2 jujq;X
ð1:1:22Þ
with the same exception as in (i). In particular, for any u 2 W0m;p ðXÞ \ Lq ðXÞ, the constant C2 in (1.1.22) can be taken as zero.
1.1.3
The Poincaré Inequality
In this subsection, we shall recall the Poincaré inequality in different forms. Theorem 1.1.7. Let Ω be a bounded domain in Rn and u 2 H01 ðXÞ. Then there is a positive constant C = C(Ω, n) such that for all u 2 H01 ðXÞ, kukL2 ðXÞ C krukL2 ðXÞ :
ð1:1:23Þ
Preliminary
7
Theorem 1.1.8. Let XRn be a bounded domain of C1. Then there is a positive constant C = C(Ω, n) such that for any u 2 H1(Ω),
1 where u ¼ jXj
ku u kL2 ðXÞ C krukL2 ðXÞ
R X
ð1:1:24Þ
uðxÞdx is the integral average of u over Ω, and |Ω| is the volume of Ω.
Theorem 1.1.9. Under assumptions of theorem 1.1.8, for any u 2 H 1 ðXÞ, then Z
ð1:1:25Þ kukL2 ðXÞ C krukL2 ðXÞ þ udx : X
1.1.4
The Classical Bellman–Gronwall Inequality
In this subsection, we shall give the following classical Bellman–Gronwall inequality which plays an important role in the study of global well-posedness of solutions to evolutionary differential equations. For more details, we can refer to Bellman [5–8] and Gronwall [45]. Theorem 1.1.10 (The Classical Bellman–Gronwall Inequality). If y(t) and g(t) are non-negative, continuous functions on 0 ≤ t ≤ τ, which satisfy the inequality Z t yðtÞ g þ gðsÞyðsÞds; 0 t s; ð1:1:26Þ 0
where η is a non-negative constant, then for all 0 ≤ t ≤ τ, Z t
yðtÞ g exp gðsÞds :
ð1:1:27Þ
0
Gronwall [45] first proved the special case of (1.1.26) with g(t) = constant ≥ 0. Later on, Bellman [6] (see also Kuang [75]) extended this result to the form of theorem 1.1.10, which is a crucial tool in the analysis of differential equations. Until now, more and more improvements and generalizations of the classical Bellman– Gronwall inequality have been made. Specially, Bellman proved another inequality which can be stated as follows (see, e.g., Kuang [75]). Remark 1.1.4. Let u(t), b(t) be continuous on (α, β), and b(t) be non-negative. If for all t ≥ t0, t0, t 2 (α, β), Z t uðtÞ uðt0 Þ þ bðsÞuðsÞds; t0
then for any t ≥ t0, Z t
Z t
uðt0 Þ exp bðsÞuðsÞds uðtÞ uðt0 Þ exp bðsÞuðsÞds : t0
t0
1D Radiative Fluid and Liquid Crystal Equations
8
The above theorem gives bounds on solution of (1.1.26) in terms of the solution of a related linear integral equation Z t vðtÞ ¼ g þ gðsÞvðsÞds ð1:1:28Þ 0
and is one of the basic tools in the theory of differential equations. Based on the basis of various motivations, we know that it has been extended and used considerably in various contexts. For instance, in the Picard–Cauchy type of iteration for establishing existence and uniqueness of solutions, this inequality and its various variants play a significant role. Inequalities of this type (1.1.26) are also encountered frequently in the perturbation and stability theory of differential equations.
1.1.5
The Generalized Bellman–Gronwall Inequalities
In this subsection, we shall review the following generalized Bellman–Gronwall inequalities which can be found in Qin [104, 106, 123, 128]. Theorem 1.1.11 (The Generalized Bellman–Gronwall Inequality). Assume that f(t), g(t) and y(t) are non-negative integrable functions in [τ, T ] (τ < T) verifying the following integral inequality for all t 2 [τ, T], Z t yðtÞ gðtÞ þ f ðsÞyðsÞds: s
Then it holds, for all t 2 [τ, T], Z t
Z t yðtÞ gðtÞ þ exp f ðhÞdh f ðsÞgðsÞds: s
ð1:1:29Þ
s
In addition, if g(t) is a nondecreasing function in [τ, T], then, for all t 2 [τ, T], Z t
Z t yðtÞ gðtÞ 1 þ exp f ðhÞdh f ðsÞds ð1:1:30Þ s
Z
gðtÞ 1 þ If further T = +∞ and
where C ¼ 1 þ
R þ1 s
R þ1 s
s t
s
Z f ðsÞds exp
s
t
f ðhÞdh :
ð1:1:31Þ
f ðsÞds\ þ 1, then
yðtÞ CgðtÞ R þ1 f ðsÞds expð s f ðhÞdhÞ is a positive constant.
ð1:1:32Þ
The next result is a corollary of theorem 1.1.11, it can be found in Racke [135]. Corollary 1.1.2. Let a > 0, ϕ, h 2 C([0, a]), h ≥ 0 and g : ½0; a ! R is increasing. If for any t 2 [0, a],
Preliminary
9 Z
t
/ðtÞ gðtÞ þ
ð1:1:33Þ
hðsÞ/ðsÞds; 0
then for all t 2 [0, a],
Z /ðtÞ gðtÞ exp
t
hðsÞds :
ð1:1:34Þ
0
1.1.6
The Uniform Bellman–Gronwall Inequality
In this subsection, we shall introduce some uniform Gronwall inequalities which provide uniform bounds or decay rates. This type of integral inequalities plays a very crucial role in the study of the global existence and the large-time behavior of solutions to evolutionary equations. We start with the following theorem which is cited in Temam [141]. Theorem 1.1.12 (The Uniform Bellman–Gronwall Inequality). Assume that g(t), h(t) and y(t) are three positive locally integrable functions on (t0, +∞) such that y 0 ðtÞ is locally integrable on (t0, +∞) and there holds that for all t ≥ t0, Z t
t þr
dy gy þ h; dt
Z
t þr
gðsÞds a1 ;
Z
tþr
hðsÞds a2 ;
t
yðsÞds a3 ;
t
where r, ai(i = 1, 2, 3) are positive constants. Then, for all t ≥ t0, a 3 þ a 2 e a1 : yðt þ rÞ r Next, we shall introduce some uniform generalizations which may provide some large-time behavior of functions. This class of inequalities is a very powerful tool in establishing the large-time behavior of solution when we use the energy methods to study problems of partial differential equations. We now give the familiar results in the classical calculus for the single real variable analysis. Lemma 1.1.1. (1) Assume y(t) 2 L1(0, +∞) with y(t) ≥ 0 for a.e. t 0, y 0 ðtÞ 2 L1(0, +∞). Then lim yðtÞ ¼ 0:
t! þ 1
(2) Assume y(t) 2 L1(0, +∞) with y(t) ≥ 0 for a.e. t 0, and limt→+∞y(t) exists. Then lim yðtÞ ¼ 0:
t! þ 1
1D Radiative Fluid and Liquid Crystal Equations
10
(3) Assume y(t) is uniformly continuous on [0, +∞), yðtÞ 2 L1 ð0; þ 1Þ. Then lim yðtÞ ¼ 0:
t! þ 1
(4) Assume y(t) is a monotone function on [0, +∞) and yðtÞ 2 L1 ð0; þ 1Þ. Then lim yðtÞ ¼ 0
t! þ 1
and yðtÞ ¼ oð1=tÞ as t ! þ 1: Obviously, the above lemma provides the asymptotic behavior of y(t) for the large time. The next theorem related to the uniform Gronwall inequality was first established by Shen and Zheng [137] in 1993 (see, e.g., Zheng [155]) which is very useful and powerful in dealing with the global well-posedness and asymptotic behavior of solutions to some evolutionary partial differential equations. We shall apply it frequently in the subsequent context of this book (see, chapters 2–4). Lemma 1.1.2 (The Shen–Zheng Inequality). Assume T is an arbitrarily given constant with 0 < T ≤ +∞, and y and h are non-negative continuous functions defined on [0, T] and satisfy the following conditions dy A1 y 2 ðtÞ þ A2 þ hðtÞ; for all t 0; dt Z
T
Z yðsÞds A3 ;
0
T
hðsÞds A4 ; for all T [ 0;
ð1:1:35Þ
ð1:1:36Þ
0
where A1, A2, A3, A4 are given non-negative constants. Then for any r > 0, with 0 < r < T, for all t ≥ 0,
A3 þ A 2 r þ A 4 e A1 A3 : ð1:1:37Þ yðt þ rÞ r Furthermore, if T = +∞, then lim yðtÞ ¼ 0:
t! þ 1
ð1:1:38Þ
Proof. We can find the proof in [137]. However, for reader’s convenience, we shall give the detailed proof. The proof is similar to that of the Uniform Gronwall Lemma (see lemma 1.1 in [141], p. 89, or theorem 1.1.12). R s Assume 0 ≤ t ≤ s ≤ t + r with any given r > 0. We multiply (1.1.35) by expð t A1 yðsÞdsÞ and obtain the relation
Preliminary
11
Z s
Z s
d yðsÞ exp A1 yðsÞds ðA2 þ hðsÞÞ exp A1 yðsÞds A2 þ hðsÞ: ds t t ð1:1:39Þ Then integrating it over [s, t + r] yields Z t þ r
Z yðt þ rÞ yðsÞ exp A1 yðsÞds þ ðA2 r þ A4 Þ exp s
tþr
A1 yðsÞds t
ðyðsÞ þ A2 r þ A4 ÞeA1 A3 :
ð1:1:40Þ
Integrating this inequality, with respect to s between t and t + r, gives us (1.1.37). From (1.1.35) and (1.1.37), it follows
2 dy A3 A1 þ A2 r þ A4 eA1 A3 þ A2 þ hðtÞ dt r ð1:1:41Þ ¼ Ar þ hðtÞ; for all t r; where
2 A3 A1 A3 Ar :¼ A1 þ A2 r þ A 4 e þ A2 : r To prove (1.1.38), we use the contradiction argument. Assume it were not true. Then there would exist a monotone increasing sequence {tn} and a constant a > 0 such that for all n 2 N, a a tn r þ ; tn þ 1 tn þ ; ð1:1:42Þ 4Ar 4Ar lim tn ¼ þ 1;
n! þ 1
yðtn Þ
a [ 0: 2
On the other hand, from (1.1.41) we have Z tn a yðtn Þ yðtÞ Ar ðtn tÞ þ hðsÞds; as tn t\tn : 4A r t Combining (1.1.44) and (1.1.45) yields Z a a tn a yðtÞ yðtn Þ yðtÞ hðsÞds; as tn t\tn : a 2 4 tn 4A 4Ar r
ð1:1:43Þ ð1:1:44Þ
ð1:1:45Þ
ð1:1:46Þ
1D Radiative Fluid and Liquid Crystal Equations
12
Therefore, Z yðtÞ þ Let
tn tn 4Aa r
hðsÞds
a a ; as tn t\tn : 4 4Ar
a nT ¼ max n j n 2 N; r þ tn \T : 4Ar
ð1:1:47Þ
ð1:1:48Þ
Thus, lim nT ¼ þ 1:
ð1:1:49Þ
T! þ 1
It turns out from (1.1.47) that for all T > 0, Z T Z T aA4 a A3 þ yðsÞds þ yðsÞds 4Ar 0 4Ar 0 ! Z tn Z tn X a a2 hðsÞds þ hðsÞds nT 4Ar tn 4Aa 16Ar tn 4Aa 1nn T
r
ð1:1:50Þ
r
which contradicts (1.1.36). Thus this completes the proof.
h
In the sequel, we shall collect other useful inequalities which play important roles in classical calculus. These inequalities include the Young inequality, the Höder inequality, and the Minkowski inequality.
1.1.7
The Young Inequalities
Theorem 1.1.13. Suppose f is a positive, real-valued, continuous and strictly increasing function on [0, c] with c > 0. If f (0) = 0, a 2 [0, c] and b 2 ½0; f ðcÞ, then Z a Z b f ðxÞdx þ f 1 ðxÞdx ab ð1:1:51Þ 0 −1
with f
0
is the inverse function of f. Equality holds in (1.1.51) if and only if b = f(a).
This is a classical result called “the Young inequality” whose proof can be found in Young [149]. If we take f (x) = xp−1 with p > 1 in the above theorem, then we can conclude the following corollary. Corollary 1.1.3. There holds that ab
a p bq þ p q
where a, b ≥ 0, p > 1 and 1∕p + 1∕q = 1.
ð1:1:52Þ
Preliminary
13
If 0 < p < 1, then ab
a p bq þ : p q
ð1:1:53Þ
The equalities in (1.1.52) and (1.1.53) hold if and only if b = ap−1. In corollary 1.1.3, if we consider a and b as εa and ε−1b, respectively, we can get the next corollary. Corollary 1.1.4. For any ε > 0, there holds that ab where a, b ≥ 0, p > 1 and
1 p
ep a p bq þ q p qe
þ 1q ¼ 1:
In fact, the Young inequality has the following several variants. Corollary 1.1.5. (1) Let a, b > 0,
1 p
þ 1q ¼ 1, 1 < p < +∞. Then
(i) a1∕pb1∕q ≤ a∕p + b∕q; (ii) a1∕pb1∕q ≤ a∕(pε1∕q) + bε1∕p∕q, for all ε > 0; (iii) a a b1a aa þ ð1 aÞb; 0\a\1: P Q m p k Pm (2) Let ak 0; pk [ 0; m k¼1 pk ¼ 1. Then k¼1 ak k¼1 pk ak :
1.1.8
The Hölder Inequalities
This subsection will introduce some Hölder inequalities. The following is the discrete Hölder inequality which was proved by Hölder in 1889 (see e.g., Hölder [55]). However, as pointed out by Lech [76] that in fact it should be called the Roger inequality or Roger–Hölder inequality since Roger established the inequality (1.1.54) in 1888 earlier than Hölder did in 1889. However, we still call it here the Hölder inequality. Theorem 1.1.14. If ak ≥ 0, bk ≥ 0 for k = 1, 2,…, n, and n X
ak bk
n X
k¼1
k¼1
n X
n X
!p1 akp
n X
1 p
þ 1q ¼ 1 with p > 1, then
!1q bqk
:
ð1:1:54Þ
:
ð1:1:55Þ
k¼1
If 0 < p < 1, then
k¼1
ak bk
k¼1
!p1 akp
n X
!1q bqk
k¼1
Here the equalities in (1.1.54) and (1.1.55) hold if and only if aakp ¼ bbqk for k = 1, 2,…, n where α and β are real non-negative constants with α2 + β2 > 0.
1D Radiative Fluid and Liquid Crystal Equations
14
Remark 1.1.5. If p = 1 or p = +∞, we have the trivial case. ! n n X X ak b k ak sup bk ; if p ¼ 1; k¼1 n X
1k n
k¼1 n X
ak bk
k¼1
!
sup ak ; if p ¼ þ 1:
bk
1k n
k¼1
Remark 1.1.6. When p = q = 2, (1.1.54) and (1.1.55) are called to be the Cauchy inequality, the Schwarz inequality, the Cauchy–Schwarz inequality or the Bunyakovskii inequality. By virtue of the discrete Hölder inequality (theorem 1.1.14), we can easily obtain the integral form of the Hölder inequality, namely. Theorem 1.1.15. If f 2 Lp(Ω), g 2 Lq(Ω) and XRn is a measurable set, then fg 2 L1 ðXÞ and kfgkL1 ðXÞ kf kLp ðXÞ kgkLq ðXÞ
ð1:1:56Þ
with 1 p þ 1; p1 þ q1 ¼ 1 and Z
1p
p
kf kLp ðXÞ ¼
X
jf ðxÞj dx
;
kf kL1 ðXÞ ¼ esssup jf ðxÞj: x2X
If 0 < p < 1, then kfgkL1 ðXÞ kf kLp ðXÞ kgkLq ðXÞ :
ð1:1:57Þ
The equalities in (1.1.56) and (1.1.57) hold if and only if there exist b 2 R and real numbers C1, C2 which are not all zeros such that C1 jf ðxÞjp ¼ C2 jgðxÞjq and arg(f(x)g(x)) = β a.e. on Ω hold. Remark 1.1.7. We have the corresponding weighted Hölder inequality of the integral form. Let 1\p\ þ 1; f 2 Lp ðXÞ; g 2 Lq ðXÞ; p1 þ q1 ¼ 1, ω(x) > 0 on Ω. Then Z
Z X
1.1.9
jfgjxðxÞdx
p
X
jf ðxÞj xðxÞdx
p1 Z X
q
jgðxÞj xðxÞdx
q1
:
The Minkowski Inequalities
Note that, in 1896, Minkowski established the following famous inequality.
Preliminary
15
Theorem 1.1.16. Let a = {a1,…, an} or a = {a1,…, an,…} be a real sequence or complex sequence. Define !p1 X kakp ¼ jak jp if 1 p\ þ 1; k
kak1 ¼ sup jak j if p ¼ þ 1: k
Then for 1 ≤ p ≤ +∞, ka þ bkp kakp þ kbkp :
ð1:1:58Þ
ka þ bkp kakp þ kbkp
ð1:1:59Þ
If 0 ≠ p < 1, then
where when p < 0, we require that ak, bk, ak + bk ≠ 0 (k = 1, 2,…). Moreover, when p ≠ 0, 1, the equality in (1.1.58) holds if the sequences a and b are proportional. When p = 1, the equalities in (1.1.58) and (1.1.59) hold if and only if argak ¼ argbk ; for all k: Remark 1.1.8. If we replace p by 1∕p in (1.1.58), we can obtain the following assertion: (1) if 1 ≤ p < +∞, then there holds !p !p !p X X X 1 1 1 jak þ bk jp jak jp þ jbk jp ; k
k
k
(2) if 0 < p < 1, then there holds !p !p !p X X X 1 1 1 p p p jak þ bk j jak j þ jbk j : k
k
k
In the applications, the following integral form of the Minkowski inequality is used frequently. Theorem 1.1.17. Assume that Ω is a smooth open set in Rn and f, g 2 Lp(Ω) with 1 ≤ p ≤ +∞. Then f þ g 2 Lp ðXÞ and kf þ gkLp ðXÞ kf kLp ðXÞ þ kgkLp ðXÞ :
ð1:1:60Þ
1D Radiative Fluid and Liquid Crystal Equations
16
If 0 < p < 1, then kf þ gkLp ðXÞ kf kLp ðXÞ þ kgkLp ðXÞ :
ð1:1:61Þ
If p > 1, the equality in (1.1.60) holds if and only if there exists a constant C1 ≠ 0 such that C1 f ðxÞ ¼ gðxÞ a.e. in Ω. If p = 1, then the equality in (1.1.60) holds if and only if argf(x) = argg(x) a.e. in Ω or there exists a non-negative measurable function h such that fh = g a.e. in the set A = {x 2 Ω | f(x)g(x) ≠ 0}.
Chapter 2 Asymptotic Behavior of Solutions for the One-Dimensional Infrarelativistic Model of a Compressible Viscous Gas with Radiation 2.1
Main Results
This chapter will be devoted to the study of the large-time behavior of global solutions to the one-dimensional infrarelativistic model of a compressible viscous gas with radiation. The content of this chapter is adopted from Qin et al. [109], which has improved the results of Qin et al. [111]. We note that the existence of global solutions to such a model has been proved by Ducomet and Nečasová [18] and Qin et al. [111]. It is well-known that the radiative model in the one-dimensional case can be reduced into the following equations (see, Ducomet and Nečasová [19–21]) 8 qs þ ðqvÞy ¼ 0; > > > < ðqvÞ þ ðqv 2 Þ þ p ¼ lv ðS Þ ; s 1 2 y y yy1 2 F R ð2:1:1Þ q e þ 2 v s þ qv e þ 2 v þ pv jhy lvvy y ¼ ðSE ÞR ; > > > :1 c It þ xIy ¼ S: Now we assume that the fluid motion is small enough with respect to the velocity of light c so that we can drop all the 1c factors in the previous formulation and then get an “infrarelativistic” model of a compressible Navier–Stokes system for a one-dimensional flow coupled to the radiative transfer equation given in the following system 8 qs þ ðqvÞy ¼ 0; > > < ðqvÞ þ ðqv 2 Þ þ p ¼ lv ; s 1 2 y y yy1 2 ð2:1:2Þ > q e þ 2 v s þ qv e þ 2 v þ pv jhy lvvy y ¼ ðSE ÞR ; > : xIy ¼ S:
DOI: 10.1051/978-2-7598-2903-3.c002 © Science Press, EDP Sciences, 2022
1D Radiative Fluid and Liquid Crystal Equations
18
Under the Lagrangian coordinates, i.e., Z y x¼ qðn; sÞdn;
t ¼ s;
0
system (2.1.2) reduces to the following system 8 g ¼ vx ; > > > t > > > < vt ¼ rx ; 1 2 > > e þ 2 v ¼ ðrv QÞx gðSE ÞR ; > > t > > : xIx ¼ gS;
ð2:1:3Þ ð2:1:4Þ ð2:1:5Þ ð2:1:6Þ
where x 2 [0, 1], η is the specific volume (i.e., g ¼ q1), v denotes the velocity, θ is the temperature, I represents the radiative intensity depending on the Lagrangian mass coordinates (x, t) and also on two extra variables: the radiation frequency m 2 R þ ¼ ð0; þ 1Þ and the angular variable x 2 S 1 :¼ ½1; 1; r :¼ p þ l vgx is the stress and Q :¼ j hgx is the heat flux with the heat conductivity κ and μ is the viscosity coefficient. Source term S in the last equation is expressed as Sðx; t; m; xÞ ¼ ra ðm; x; g; hÞ½Bðm; hÞ I ðx; t; m; xÞ þ rs ðm; g; hÞ½I~ðx; t; mÞ I ðx; t; m; xÞ;
ð2:1:7Þ
R1 where I~ðx; t; mÞ :¼ 12 1 I ðx; t; m; xÞdx and B is a function of temperature and frequency describing the equilibrium state. We define the radiative energy as Z 1 Z þ1 I ðx; t; m; xÞdmdx; ð2:1:8Þ ER ¼ 1
0
the radiative flux Z FR ¼
1 1
Z
þ1
xI ðx; t; m; xÞdmdx;
ð2:1:9Þ
0
and the radiative energy sourceradiative energy source Z 1 Z þ1 Sðx; t; m; xÞdmdx: ðSE ÞR ¼ 1
ð2:1:10Þ
0
We now consider a typical initial boundary value problem for (2.1.3)–(2.1.6) in the reference domain Ω × [0, +∞) = (0, 1) × [0, +∞) under the Dirichlet–Neumann boundary conditions for the fluid unknowns vð0; tÞ ¼ vð1; tÞ ¼ 0;
Qð0; tÞ ¼ Qð1; tÞ ¼ 0;
8 t 0;
ð2:1:11Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
and transparent boundary conditions for the radiative intensity I ð0; t; m; xÞ ¼ 0 for x 2 ð0; 1Þ; 8 t 0; I ð1; t; m; xÞ ¼ 0 for x 2 ð1; 0Þ; 8 t 0;
19
ð2:1:12Þ
and initial conditions gðx; 0Þ ¼ g0 ðxÞ;
vðx; 0Þ ¼ v0 ðxÞ;
hðx; 0Þ ¼ h0 ðxÞ on X;
ð2:1:13Þ
and I ðx; 0; m; xÞ ¼ I0 ðx; m; xÞ on X R þ S 1 :
ð2:1:14Þ
Pressure and energy of the matter are related by the thermodynamical relation eg ðg; hÞ ¼ pðg; hÞ þ hph ðg; hÞ:
ð2:1:15Þ
For the system (2.1.3) and (2.1.14), Ducomet and Nečasová [18] proved the global existence of solutions in Hi ði ¼ 1; 2Þ. However, estimates obtained there depend on any given time T, so they could not establish the large-time behavior of global solutions in Hi ði ¼ 1; 2Þ based on their estimates. Moreover, in Ducomet and Nečasová [18], all estimates hold only for q ≥ 2r + 1. Later on, Qin et al. [111] had improved the results in [18]. Recently, Qin et al. [109] have improved the results in [111] by establishing the uniform-in-time estimates of (η(t), v(t), θ(t), I(t)) in Hi ði ¼ 1; 2; 4Þ, which hold for q and r satisfying (2.1.16). Furthermore, the system considered here is different from that in Qin [104], so our uniform-in-time estimates are also different from those in Qin [104]. We now assume that e, p, σ and κ are twice continuously differential on 0 < η < +∞ and 0 ≤ θ < +∞, and there are exponents q and r satisfying one of the following relations 8 1 1 > > \q; 0\r ; > > 2 2 > > > >1 5 2r þ 1 > > \q; < \r ; 2 2 4 ð2:1:16Þ 5 17 5r þ 1 > > > \r ; \q; > > 2 5 9 > > > > 17 10r þ 4 > : r; \q 5 19 and we suppose the following growth conditions: 8 eðg; 0Þ 0; c1 ð1 þ hr Þ eh ðg; hÞ C1 ð1 þ hr Þ; > > > > c2 g2 ð1 þ h1 þ r Þ pg ðg; hÞ C2 g2 ð1 þ h1 þ r Þ; > > > r > < jph ðg; hÞj C3 g1 ð1 þ h Þ; 1þr c4 ð1 þ h Þ gpðg; hÞ C4 ð1 þ h1 þ r Þ; pg ðg; hÞ\0; > > > 0 pðg; hÞ C5 ð1 þ h1 þ r Þ; > > > c ð1 þ hq Þ jðg; hÞ C6 ð1 þ hq Þ; > > : 6 jjg ðg; hÞj þ jjgg ðg; hÞj C7 ð1 þ hq Þ;
ð2:1:17Þ
1D Radiative Fluid and Liquid Crystal Equations
20
and that the absorption–emission coefficient σa(ν, ω; η, θ) and the scattering coefficient σs(ν; η, θ) satisfy the following conditions: 8 > gra ðm; x; g; hÞB m ðm; hÞ C8 jxjha þ 1 f ðm; xÞ for m ¼ 1; 2; > > > > 0\ra ðm; x; g; hÞ C9 jxj2 gðm; xÞ; > > < ½r þ jðr Þ j þ jðr Þ jðm; x; g; hÞ½1 þ Bðm; hÞ þ jB ðm; hÞj þ jB ðm; hÞj C jxjhðm; xÞ; a a g a h h hh 10 2 > ðm; g; hÞ C jxj kðmÞ; 0\r s 11 > > > > ½jðra Þgg j þ jðra Þgh j þ jðra Þhh jðm; x; g; hÞð1 þ Bðm; hÞ þ jBh ðm; hÞjÞ C12 jxjlðm; xÞ; > > : ½jðr Þ j þ jðr Þ j þ jðr Þ j þ jðr Þ j þ jðr Þ jðm; g; hÞ C jxjMðm; xÞ; s g s h s gg s gh s hh 13 ð2:1:18Þ where 0 ≤ α ≤ r, the numbers ci ; Cj ; ði ¼ 1; . . .; 7; j ¼ 1; . . .; 13Þ are positive constants and the non-negative functions f ; g; h; k; l; M are such that f ; g; h; k; l; M 2 L1 ðR þ S 1 Þ \ L1 ðR þ S 1 Þ: We assume that the viscosity coefficient μ is a positive constant. In the following, we denote Z þ1 Z I ðx; tÞ :¼ I ðx; t; m; xÞdxdm S1
0
for the integrated radiative intensity. In particular, Z þ1 Z I ðx; 0Þ I 0 ¼ I ðx; 0; m; xÞdxdm: 0
S1
We define H1 ¼ fðg; v; h; I Þ 2 H 1 ð0; 1Þ H01 ð0; 1Þ H 1 ð0; 1Þ L1 ðR þ S 1 ; H 2 ð0; 1ÞÞ : gðxÞ [ 0; hðxÞ [ 0; x 2 ½0; 1; vjx¼0;1 ¼ 0; I jx¼0 ¼ 0 for x 2 ð0; 1Þ; I jx¼1 ¼ 0 for x 2 ð1; 0Þg; Hi ¼ fðg; v; h; I Þ 2 H i ð0; 1Þ H0i ð0; 1Þ H i ð0; 1Þ L1 ðR þ S 1 ; H i þ 1 ð0; 1ÞÞ : gðxÞ [ 0; hðxÞ [ 0; x 2 ½0; 1; vjx¼0;1 ¼ 0; hx jx¼0;1 ¼ 0; I jx¼0 ¼ 0 for x 2 ð0; 1Þ; I jx¼1 ¼ 0 for x 2 ð1; 0Þg; i ¼ 2; 4:
The main aim of this chapter was to establish the global existence and the large-time behavior of solutions in Hi (i = 1, 2, 4) to the system (2.1.3) and (2.1.14). The notation in this chapter will be as follows: Lq ; 1 q þ 1, Wm,q, m 2 N; H 1 ¼ W 1;2 ; H01 ¼ W01;2 denote the usual (Sobolev) spaces on [0, 1]. In addition, ∥⋅∥B denotes the norm in space B; we also put kk ¼ kkL2 ½0; 1 . Subscripts t and x denote the (partial) derivatives with respect to t and x, respectively. We use Ci (i = 1, 2, 4) to denote the generic positive constants depending on the kðg0 ; v0 ; h0 ; I 0 ÞkHi ; minx2½0; 1 g0 ðxÞ, minx2½0; 1 h0 ðxÞ, but not depending on t.
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
21
Our main results read as follows (see also Qin et al. [109]), which has improved the result in [111]. The next result concerns the global existence and asymptotic behavior of solutions in H1 . Theorem 2.1.1. Suppose that ðg0 ; v0 ; h0 ; I0 Þ 2 H1 and the compatibility conditions hold. Under assumptions (2.1.15)–(2.1.18), there exists a unique global solution ðgðtÞ; vðtÞ; hðtÞ; I ðtÞÞ 2 L1 ð½0; þ 1Þ; H1 Þ to the problem (2.1.3)–(2.1.14) such that for all ðx; tÞ 2 ½0; 1 ½0; þ 1Þ, 0\C11 gðx; tÞ C1 ;
ð2:1:19Þ
and for all t > 0, 2 kgðtÞ gk2H 1 þ kvðtÞk2H 1 þ hðtÞ h H 1 þ kI ðtÞk2L1 ðR þS 1 ;H 2 ð0;1ÞÞ Z t 2 þ ðkg gk2H 1 þ kv k2H 2 þ h h H 2 þ kht k2 ÞðsÞds 0
þ
Z tZ 0
1
0
Z
þ1
Z
0
S1
It2 dxdmdxds C1 :
Moreover, we have, as t → +∞, kgðtÞ gkH 1 ! 0;
kvðtÞkH 1 ! 0;
R1
where g ¼ 0 gðx; tÞdx ¼ eðg0 ; h0 Þ þ FR ð0ÞÞdx.
R1 0
g0 dx,
hðtÞ h 1 ! 0; H
ð2:1:20Þ
kI ðtÞkL1 ðR þ S 1 ;H 2 ð0;1ÞÞ ! 0;
ð2:1:21Þ R1 1 2 h [ 0 is determined by eðg; hÞ ¼ 0 ð2 v0 þ
In the next theorem, we shall establish the global existence and asymptotic behavior of solutions in H2 . Theorem 2.1.2. Suppose that ðg0 ; v0 ; h0 ; I0 Þ 2 H2 and the compatibility conditions hold. Under assumptions (2.1.15)–(2.1.18), there exists a unique global solution ðgðtÞ; vðtÞ; hðtÞ; I ðtÞÞ 2 L1 ð½0; þ 1Þ; H2 Þ to the problem (2.1.3)–(2.1.14) satisfying for any t > 0, 2 kgðtÞ gk2H 2 þ kvðtÞk2H 2 þ hðtÞ h H 2 þ kI ðtÞk2L1 ðR þ S 1 ;H 3 ð0;1ÞÞ þ kvt ðtÞk2 Z t 2 2 þ kht ðtÞk þ ðkvxt k2 þ khxt k2 þ h h H 3 þ kv k2H 3 0
þ kg gk2H 2 ÞðsÞds C2 : Moreover, we have, as t → +∞, kgðtÞ gkH 2 ! 0;
kvðtÞkH 2 ! 0;
ð2:1:22Þ hðtÞ h 2 ! 0; H
kI ðtÞkL1 ðR þ S 1 ;H 3 ð0;1ÞÞ ! 0: ð2:1:23Þ
1D Radiative Fluid and Liquid Crystal Equations
22
Theorem 2.1.3. Suppose that ðg0 ; v0 ; h0 ; I0 Þ 2 H4 and the compatibility conditions hold. Under assumptions (2.1.15)–(2.1.18), there exists a unique global solution ðgðtÞ; vðtÞ; hðtÞ; I ðtÞÞ 2 L1 ð½0; þ 1Þ; H4 Þ to the problem (2.1.3) and (2.1.14) verifying that for any t > 0, kgðtÞ gk2H 4 þ kgt ðtÞk2H 3 þ kgtt ðtÞk2H 1 þ kvðtÞk2H 4 þ kvtt ðtÞk2 2 þ hðtÞ h H 4 þ kht ðtÞk2H 2 þ khtt ðtÞk2 þ kI k2L1 ðR þ S 1 ;H 5 ð0;1ÞÞ Z t 2 þ ðkg gk2H 4 þ kv k2H 5 þ kvt k2H 3 þ kvtt k2H 1 þ h h H 5 0
þ kht k3H 3 þ khtt k2H 1 ÞðsÞds C4 ; Z
t 0
ðkgt k2H 4 þ kgtt k2H 2 þ kgttt k2 ÞðsÞds C4 :
Moreover, we have as t → +∞, kgðtÞ gkH 4 ! 0;
ð2:1:24Þ
kvðtÞkH 4 ! 0;
hðtÞ h 4 ! 0; H
ð2:1:25Þ
kI ðtÞkL1 ðR þ S 1 ;H 5 ð0;1ÞÞ ! 0; ð2:1:26Þ
R1 R1 R1 where g ¼ 0 gðx; tÞdx ¼ 0 g0 dx, h [ 0 is determined by eðg; hÞ ¼ 0 ð12 v02 þ eðg0 ; h0 Þ þ FR ð0ÞÞdx. Corollary 2.1.1. The global solution ðgðtÞ; vðtÞ; hðtÞ; I ðtÞÞ obtained in theorem 2.1.3 is, in fact, a classical solution such that as t → +∞, ðgðtÞ g; vðtÞ; hðtÞ hÞ 3 þ 1 ! 0: 4þ1 3 ! 0; kI ðtÞk 1 1 2 2 ðC
ð0;1ÞÞ
L ðR þ S ;C
ð0;1ÞÞ
Remark 2.1.1. Theorems 2.1.1–2.1.3 also hold for the boundary conditions (2.1.12) and vð0; tÞ ¼ vð1; tÞ ¼ 0;
hð0; tÞ ¼ hð1; tÞ ¼ T0 ¼ const: [ 0;
where h can be replaced by T0.
2.2
Global Existence and Uniform-in-Time Estimates in H1
We note that the global existence of solutions in H1 has been established in [18]. This section will study the global existence and asymptotic behavior of global solutions in H1 . To this end, we shall first establish some uniform-in-time estimates in H1 .
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
23
Lemma 2.2.1. Under assumptions in theorem 2.1.1, there holds that hðx; tÞ [ 0; Z
1
8 ðx; tÞ 2 ½0; 1 ½0; þ 1Þ; Z
gðx; tÞdx ¼
0
1
g0 ðxÞdx g0 ;
8 t [ 0;
ð2:2:1Þ ð2:2:2Þ
0
Z
1
ðh þ h1 þ r Þðx; tÞdx C1 ;
8 t [ 0;
ð2:2:3Þ
0
Z
1
½ðh log h 1Þ þ h1 þ r þ v 2 ðx; tÞdx 0 Z t Z 1 ð1 þ hq Þh2x lvx2 þ þ ðx; sÞdxds C1 : gh gh2 0 0
ð2:2:4Þ
Proof. Inequality (2.2.1) is a consequence of the generalized maximum principle [3] and one can find the proof in [19–21]. Integrating (2.1.3) over Qt = (0, 1) × (0, t), and using the boundary conditions, we can easily deduce (2.2.2). From (2.1.6), (2.1.9) and (2.1.10), we can infer ðFR Þx ¼ gðSE ÞR :
ð2:2:5Þ
Inserting (2.2.5) into (2.1.5), we arrive at 1 e þ v 2 ¼ ðrv Q FR Þx : 2 t
ð2:2:6Þ
Integrating (2.2.6) over Qt and using boundary conditions (2.1.11) and (2.1.12), we have Z 1 Z 1 Z t 1 2 1 2 x¼1 e þ v ðx; tÞdx þ FR jx¼0 ds ¼ e0 þ v0 ðxÞdx: ð2:2:7Þ 2 2 0 0 0 Z 0
Using (2.1.12), the contribution of the radiation term reads (see, e.g., [18]) Z t Z þ 1 Z 1 Z þ1 Z 0 t FR jx¼1 ds ¼ xI ð1; t; m; xÞdxdm xI ð0; t; m; xÞdxdm ds x¼0 0
0
0
0
1
0; which, together with (2.2.7), implies Z 1 1 e þ v 2 ðx; tÞdx C1 : 2 0
ð2:2:8Þ
1D Radiative Fluid and Liquid Crystal Equations
24
Combining (2.2.8) with (2.1.17) yields (2.2.3). Noting that radiative term η(SE)R appears in (2.1.5), our estimate (2.2.8) is different from the one in [17] where there is no radiative term. We define the free energy ψ: = e − θS with ψθ = − S and ψη = − p with the specific entropy S. Let us consider the auxiliary function Eðg; hÞ :¼ wðg; hÞ wð1; 1Þ ðg 1Þwg ð1; 1Þ ðh 1Þwh ðg; hÞ:
ð2:2:9Þ
We have the following estimate (see, e.g., Ducomet and Nečasová [18] for details) Z 1 Z t Z 1 2 Z t Z 1 Z þ1 Z 1 lvx jh2 g þ 2x dxds þ E þ v 2 dx þ ra Idxdmdxds 2 gh gh 0 0 0 0 0 h 0 S1 Z t Z þ 1 Z 1 Z þ1 Z 0 þ xI ð1; t; m; xÞdxdm xI ð0; t; m; xÞdxdm ds C1 : 0
0
0
1
0
ð2:2:10Þ Using the Taylor theorem and the definition of E(η, θ), we can conclude Eðg; hÞ wðg; hÞ þ wðg; 1Þ þ ðh 1Þwh ðg; hÞ ¼ wðg; 1Þ wð1; 1Þ wg ðg; hÞ Z 1 2 ¼ ðg 1Þ ð1 nÞwgg ð1 þ nðg 1Þ; 1Þdn 0: 0
Thus, Eðg; hÞ wðg; hÞ wðg; 1Þ ðh 1Þwh ðg; hÞ Z 1 2 ð1 sÞwhh ðg; h þ sð1 hÞÞds ¼ ð1 hÞ 0
Z 1 ð1 sÞf1 þ ½h þ sð1 hÞr g ds C11 ð1 hÞ2 h þ sð1 hÞ 0 ( C 1 ð1hr Þ C 1 ð1hr þ 1 Þ C11 ðh log h 1Þ þ 1 r þ 1 r þ1 ; ¼ 1 2C1 ðh log h 1Þ; C11 ðh
log h
1Þ þ C11 hr þ 1
C11 :
for r [ 0; for r ¼ 0; ð2:2:11Þ
Combining (2.2.11) and (2.2.10), and using (2.1.17) yields (2.2.4). The proof is now complete. h The following two lemmas concerning the uniform-in-time estimate of specific volume η play a very crucial role in this chapter. The uniform-in-time estimate is different from the one in Ducomet and Nečasová [18], where estimates are dependent on any given time T > 0. Lemma 2.2.2. For any t ≥ 0, there exists one point x1 = x1(t) 2 [0, 1] such that the solution η(x, t) to the problem (2.1.3)–(2.1.6), (2.1.11)–(2.1.14) possesses the following expression:
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
1 gðx; tÞ ¼ Dðx; tÞZ ðtÞ 1 þ l where
Z
t
1
gðx; sÞpðx; sÞD ðx; sÞZ
1
25
ðsÞds
ð2:2:12Þ
0
Z x Z x 1 vðy; tÞdy v0 ðyÞdy l x1 ðtÞ 0 Z Z x 1 1 g ðxÞ v0 ðyÞdydx ; þ g0 0 0 0
Dðx; tÞ ¼ g0 ðxÞ exp
1 Z ðtÞ ¼ exp lg0
Z tZ
1
ðv þ gpÞðy; sÞdyds : 2
0
ð2:2:13Þ
ð2:2:14Þ
0
Proof. The proof is the same as that of lemma 2.1.3 in Qin [104]. But for the book’s self-contained, we copy its proof here. Let Z x Z t hðx; tÞ ¼ v0 ðyÞdy þ rðx; sÞds: 0
0
The from (2.1.13), h(x, t) satisfies hx ¼ v;
ht ¼ r
ð2:2:15Þ
lhxx g
ð2:2:16Þ
and from (2.1.11) it solves the equation ht ¼ p þ with x ¼ 0; 1 : hx ¼ v ¼ 0:
ð2:2:17Þ
Hence we derive from (2.2.16) that ðghÞt ¼ hvx gp þ lhxx :
ð2:2:18Þ
Integrating (2.2.18) over [0, 1] × [0, t] and using (2.2.17), we arrive at Z 1 Z 1 Z tZ 1 ghdx ¼ g0 h0 dx ðgp þ v 2 Þdxds /ðtÞ: ð2:2:19Þ 0
0
0
0
Then for any t ≥ 0, there exists one point x1 = x1(t) 2 [0, 1] such that Z 1 Z 1 ghdx ¼ gdx hðx1 ðtÞ; tÞ ¼ g0 hðx1 ðtÞ; tÞ; /ðtÞ ¼ 0
0
i.e., Z
t 0
Z pðx1 ðtÞ; sÞds ¼ 0
x1 ðtÞ
v0 ðyÞdy þ l log
gðx1 ðtÞ; tÞ /ðtÞ g0 ðx1 ðtÞÞ g0
ð2:2:20Þ
1D Radiative Fluid and Liquid Crystal Equations
26
with /ðtÞ ¼
Z tZ
1
Z
1
ðv þ gpÞðx; sÞdxds þ 2
0
0
Z g0 ðxÞ
0
x
v0 ðyÞdydx:
ð2:2:21Þ
0
Moreover, (2.1.4) can be rewritten as vt lðlog gÞxt ¼ px ¼ p x with p ¼ p we get
R1 0
ð2:2:22Þ
pðx; tÞdx: Integrating (2.2.22) over [x1(t), x] × [0, t] for fixed t > 0,
( "Z x g0 ðxÞgðx1 ðtÞ; tÞ 1 exp gðx; tÞ ¼ ðvðy; tÞ v0 ðyÞÞdy g0 ðx1 ðtÞÞ g0 x1 ðtÞ #) Z t ðpðx; sÞ pðx1 ðtÞ; sÞÞds : þ
ð2:2:23Þ
0
Inserting (2.2.20) into (2.2.23) and noting (2.2.13), (2.2.14) and (2.2.21), we conclude Z t 1 g1 ðx; tÞ exp pðx; sÞds ¼ D 1 ðx; tÞZ 1 ðtÞ ð2:2:24Þ g0 0 which implies that Z t Z 1 1 t 1 exp pðx; sÞds ¼ 1 þ D ðx; sÞZ 1 ðsÞgðx; sÞpðx; sÞds: g0 0 g0 0 Thus (2.2.12) follows from (2.2.24) and (2.2.25).
ð2:2:25Þ h
Lemma 2.2.3. There holds that 0\C11 gðx; tÞ C1 ; Z 0
t
8 ðx; tÞ 2 ½0; 1 ½0; þ 1Þ;
kvðsÞk2L1 ds C1 ;
8 t [ 0:
ð2:2:26Þ ð2:2:27Þ
Proof. Let Mg ðtÞ ¼ max gðx; tÞ: x2½0; 1
Using the Young inequality, the Hölder inequality and lemma 2.2.1, we get
Z Z Z x Z x
x 1 1
vðy; tÞdy v0 ðyÞdy þ g0 ðxÞ v0 ðyÞdydx
x1 ðtÞ g0 0 0 0 Z 1 12 Z 1 12 Z 1 12 Z 1 1 2 2 2 v dy þ v0 dy þ g ðxÞ v0 dy dx g0 0 0 0 0 0 ð2:2:28Þ C1 kv k2 þ C1 C1 :
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
27
Equations (2.2.28) and (2.2.13) yield the existence of some positive constant C1 > 0 such that 0\C11 Dðx; tÞ C1 ;
8 ðx; tÞ 2 ½0; 1 ½0; þ 1Þ:
From (2.1.14) and (2.2.1), we deduce Z 1 Z 1 Z ðv 2 þ gpÞðx; tÞdx gpðx; tÞdx 0
0
0
1
ðc4 þ h1 þ r Þdx C11 ;
8 t [ 0: ð2:2:29Þ
Using lemma 2.2.1, we get Z 1 Z ðv 2 þ gpÞðx; tÞdx kv k2 þ C4 0
1
ð1 þ h1 þ r Þdx C1 ;
8 t [ 0:
ð2:2:30Þ
0
Thus, from (2.2.29) and (2.2.30) it follows that for all 0 ≤ s ≤ t, Z tZ 1 1 C1 ðt sÞ ðv 2 þ gpÞðx; sÞdxds C1 ðt sÞ; s
ð2:2:31Þ
0
which, together with (2.2.14), gives that for any 0 ≤ s ≤ t, Z tZ 1 1 1 C1 ðtsÞ 1 2 e Z ðtÞZ ðsÞ ¼ exp ðv þ gpÞðy; sÞdyds eC1 ðtsÞ : lg0 s 0 ð2:2:32Þ It thus derives from (2.2.4) and the convexity of the function log y that Z 1 Z 1 Z 1 hdx log hdx 1 ðh log h 1Þdx C1 0
0
0
which results in the existence of a(t) 2 [0, 1] and two positive roots of the equation y log y 1 ¼ C1 such that Z 1 hðx; tÞdx ¼ hðaðtÞ; tÞ r2 : 0\r1 0
This gives, for any t > 0, such that
Z Z 1
x
m1 m1 m1 jh ðx; tÞ h ðaðtÞ; tÞj ¼ ðh ðx; tÞÞx dy C1 hm1 1 jhx jdx
aðtÞ 0 Z C1 0 1 2
1
1 þ hq 2 hx dx gh2
12 Z 0
1
h2m1 g dx 1 þ hq
1 2
C1 V ðtÞMg ðtÞ where V ðtÞ ¼
R 1 1 þ hq 0
gh2
h2x dx and 0 ≤ m1 ≤ m = (q + r + 1)/2.
12 ð2:2:33Þ
1D Radiative Fluid and Liquid Crystal Equations
28
Then for any (x, t) 2 [0, 1] × [0, +∞), we get C11 C11 V ðtÞMg ðtÞ h2m1 ðx; tÞ C1 þ C1 V ðtÞMg ðtÞ:
ð2:2:34Þ
Thus we conclude from lemma 2.2.1 and (2.2.32)–(2.2.34)
Z 1 t 1 1 gðx; tÞ ¼ Dðx; tÞ Z ðtÞ þ gðx; sÞpðx; sÞD ðx; sÞZ ðtÞZ ðsÞds l 0
Z t C1 t C1 ðtsÞ C1 e þ ð1 þ V ðsÞMg ðsÞÞe ds Z C1 þ C1
0 t
Mg ðsÞV ðsÞds;
0
i.e., Z Mg ðtÞ C1 þ C1
t
Mg ðsÞV ðsÞds;
0
which, with (2.2.4) and using the Gronwall inequality, yields Mg ðtÞ C1 :
ð2:2:35Þ
Using (2.2.12) and (2.2.32), we find that there exists a large time t0 such that as t ≥ t0, x 2 [0, 1], Z 1 t gðx; tÞ ¼ Dðx; tÞZ ðtÞ 1 þ gðx; sÞpðx; sÞD1 ðx; sÞZ 1 ðsÞds l 0
Z t C11 eC1 t þ eC1 ðtsÞ ds C11
Z
0
t
e
C1 ðtsÞ
ds ð2C1 Þ1 :
0
ð2:2:36Þ
Note now that Dðx; tÞ C11 ; Z ðtÞ expðC1 tÞ and infer that for any (x, t) 2 [0, 1] × [0, t0], gðx; tÞ Dðx; tÞZ ðtÞ C11 expðC1 tÞ C11 expðC1 t0 Þ; which, together with (2.2.36), gives that for any (x, t) 2 [0, 1] × [0, +∞) gðx; tÞ C11 :
ð2:2:37Þ
Combining (2.2.35) and (2.2.37) gives immediately (2.2.26). Using the Hölder inequality, (2.2.26) and lemma 2.2.1, we obtain for any t ≥ 0 2 Z t Z t Z 1 Z t Z 1 2 Z 1 vx dx jvx jdx ds hdx ds C1 : kvðsÞk2L1 ds 0 0 0 0 0 h 0 The proof is now complete.
h
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
29
Corollary 2.2.1. If assumptions in theorem 2.1.1 hold, then there holds C1 C1 V ðtÞ h2m ðx; tÞ C1 þ C1 V ðtÞ; ðx; tÞ 2 ½0; 1 ½0; 1Þ;
ð2:2:38Þ
where Z
1
V ðtÞ ¼ 0
ð1 þ hq Þh2x dx; h2
Z
1
V ðsÞds C1 :
0
Corollary 2.2.2. If assumptions in theorem 2.1.1 hold, then there holds that Z tZ 1 ð1 þ hÞ2m v 2 dxds C1 ; 8t [ 0: ð2:2:39Þ 0
0
Proof. Using the Poincaré inequality, lemma 2.2.1 and (2.2.38), we obtain Z tZ 1 Z tZ 1 Z tZ 1 ð1 þ hÞ2m v 2 dxds C1 v 2 dxds þ C1 V ðsÞv 2 dxds 0 0 0 0 0 0 Z t V ðsÞds C1 : C1 þ C1 0
h
The proof is now complete. Set K ¼ sup khðsÞkL1 : 0st
Lemma 2.2.4. If assumptions in theorem 2.1.1 hold, then the following estimates hold for any t > 0, Z tZ 1 2 kgx ðtÞk þ ð1 þ h1 þ r Þg2x dxds C1 ð1 þ KÞb ; ð2:2:40Þ 0
Z
t
0
kvx ðsÞk2 ds C1 ð1 þ KÞb=2 ;
ð2:2:41Þ
0
with b ¼ maxðr þ 1 q; 0Þ: Proof. Obviously, equation (2.1.3) can be written as g ð2:2:42Þ v l x þ pg gx ¼ ph hx : g t Multiplying (2.2.42) by v l ggx and then integrating the result over [0, 1] × (0, t), we have
1D Radiative Fluid and Liquid Crystal Equations
30
2 Z t Z 1 1 lpg g2x v l g x þ dxds 2 g g 0 0 2 Z t Z 1
1 g0x gx ¼ v 0 l p g gx v þ p h h x v l dxds: 2 g0 g 0 0 Now using the Young inequality, (2.1.17) and lemmas 2.2.1–2.2.3, we can infer for any ϵ > 0, 2 Z t Z 1 1 v l gx þ ð1 þ h1 þ r Þg2x dxds 2 g 0 0
Z t Z 1
g ð1 þ h1 þ r Þjgx vj þ ð1 þ hr Þ
hx v l x
dxds C1 þ C1 g 0 0 Z tZ 1 ð1 þ h1 þ r Þðeg2x þ C1 v 2 Þdxds C1 þ C1 Z
0
0
12 Z t Z
12 h2 ð1 þ hr Þ2 2 v dxds q ð1 þ h Þ 0 0 0 Z tZ 1 Z tZ 1 ð1 þ hr Þ2 h2x 1þr 2 þ ð1 þ h Þgx dxds þ C1 dxds 1 þ h1 þ r 0 0 0 0 Z tZ 1 d C1 ð1 þ KÞmaxðb;2Þ þ ð1 þ h1 þ r Þg2x dxds þ C1
t
V ðsÞds
Z C1 ð1 þ KÞb þ þ C1
Z tZ 0
0
0
t
1
0
V ðsÞkgx k2 ds þ
0 1
ð1 þ hr Þjhx gx jdxds
Z tZ 0
0
1
hr þ 1 g2x dxds ð2:2:43Þ
with d ¼ maxðr þ 1 2q; 0Þ b: Now we estimate the last term in (2.2.43). Using the Young inequality and lemmas 2.2.1–2.2.3, we can conclude for any ϵ > 0, Z tZ 1 Z Z Z tZ 1 t 1 ð1 þ hr Þ2 2 ð1 þ hr Þjhx gx j ð1 þ h1 þ r Þg2x dxds þ C1 ðÞ h dxds 1þr x 2 0 0 0 0 0 0 1þh Z Z t 1 ð1 þ h1 þ r Þg2x dxds þ C1 þ C1 Kb ; 2 0 0 which, together with (2.2.43), yields 2 Z t Z 1 Z tZ 1 1þr 2 v l g x þ ð1 þ h Þgx dxds ð1 þ h1 þ r Þg2x dxds þ C1 ð1 þ KÞb : g 0 0 0 0 Thus for small ϵ > 0 in the above inequality, and applying the generalized Bellman–Gronwall inequality, we conclude (2.2.40).
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
31
Multiplying (2.1.4) by v, integrating the result over Qt, and using the Young inequality, lemmas 2.2.1–2.2.3 and (2.2.38), we derive Z Z tZ 1 2 1 1 2 v v dx þ l x dxds 2 0 g 0 0 Z tZ 1 Z 1 1 ¼ v 2 dx ðpg gx þ ph hx Þvdxds 2 0 0 0 0 Z tZ 1 C1 þ C1 ½ð1 þ h1 þ r Þjgx vj þ ð1 þ hr Þjhx vjdxds 0
C1 þ C1
0
Z t Z 0
þ C1
0
C1 K
ð1 þ h
1þr
0
Z t Z
b=2
1
1
0
þ C1 K
Þg2x dxds
ð1 þ hq Þh2x dxds h2 d=2
1=2 Z t Z
1=2 Z t Z
C1 þ C1 K
0
0
0 1
1
ð1 þ h
1þr
1=2 Þv dxds 2
0
h2 ð1 þ hr Þ2 v 2 dxds 1 þ hq
!1=2
b=2
which yields (2.2.41). Thus this proves the proof. Lemma 2.2.5. There holds that for any t > 0, Z t kvx ðtÞk2 þ kvxx ðsÞk2 ds C1 ð1 þ KÞb1 ;
h
ð2:2:44Þ
0
Z 0
t
kvx ðsÞk2L1 ds C1 ð1 þ KÞb2 ; Z
kvx ðtÞk2 þ
t
kvt ðsÞk2 ds C1 ð1 þ KÞb3
ð2:2:45Þ
ð2:2:46Þ
0
with
5b b b b1 ¼ max r þ 1 þ b; ; maxð2r þ 2 q; 0Þ ; b2 ¼ þ 1 ; 2 4 2 3 3 b3 ¼ max r þ 1 þ b; maxð2r þ 2 q; 0Þ; b1 þ b : 4 8
Proof. Multiplying (2.1.4) by vxx, and then integrating the resultants over [0, 1], we get Z 1 Z 1 0 1d l l 2 px vxx dx gx vx þ vxx vxx dx; ð2:2:47Þ kv x k ¼ 2 dt g g 0 0 i.e., for any ϵ > 0
1D Radiative Fluid and Liquid Crystal Equations
32 Z
t
2
kvx ðtÞk þ
kvxx ðsÞk2 ds
0
C1 þ C1
Z tZ 0
C1 þ C1
Z tZ
Z tZ 0
½jgx vx vxx j þ ð1 þ h1 þ r Þjgx vxx j þ ð1 þ hr Þjhx vxx jdxds
0
0
þ C1
1
0 1
0
1
vx2 g2x dxds þ C1
0
1
0
ð1 þ h1 þ r Þ2 g2x dxds
ð1 þ hÞ2r h2x dxds
C1 þ C1 ð1 þ KÞr þ 1 Z tZ
Z tZ
Z tZ 0
1
ð1 þ h1 þ r Þg2x dxds þ C1
0
Z
t
kvx kkvxx kkgx k2 ds
0
ð1 þ hq Þh2x h2 ð1 þ hÞ2r dxds þ C1 ð1 þ hq Þ h2 0 0 Z t 1=2 Z t 1=2 C1 þ C1 ð1 þ KÞr þ 1 þ b þ C1 ð1 þ KÞb kvx ðsÞk2 ds kvxx ðsÞk2 ds 0 0 h2 ð1 þ hÞ2r þ C1 sup q 1 0 s t 1 þ h 1
L
r þ1þb
C1 þ C1 ð1 þ KÞ þ C1 ð1 þ KÞ2b þ C1 ð1 þ KÞmaxð2r þ 2q;0Þ Z t þ kvxx ðsÞk2 ds 0 Z t b1 C1 ð1 þ KÞ þ kvxx ðsÞk2 ds; 5
0
which gives for small ϵ > 0,
Z
t
kvx ðtÞk2 þ
kvxx ðsÞk2 ds C1 ð1 þ KÞb1 :
ð2:2:48Þ
0
Thus Z 0
t
Z kvx ðsÞk2L1 ds C1
t
1=2 Z
t
kvx ðsÞk2 ds
0
C1 ð1 þ KÞb2 :
1=2 kvxx ðsÞk2 ds
0
ð2:2:49Þ
Multiplying (2.1.4) by vt, integrating the resultants over [0, 1], and using lemmas 2.2.1–2.2.4, we get Z 1 Z 1 0 l l kv t k2 ¼ px vt dx gx vx þ vxx vt dx ð2:2:50Þ g g 0 0
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
33
Integrating (2.2.50) in t gives Z t kvx ðtÞk2 þ kvt ðsÞk2 ds 0 Z t Z t C1 þ C1 kpx k2 ds þ kvx k3L3 dxds 0
Z tZ
h2 ð1 þ hÞ2r h2x ð1 þ hq Þ dxds 1 þ hq h2 0 0 0 0 Z t 3=4 Z t 1=4 sup kvx ðsÞk kvx k2 ds kvxx ðsÞk2 ds
C1 þ C1 þ C1
0
Z tZ
1
ð1 þ h1 þ r Þ2 g2x dxds þ C1
0st
C1 ð1 þ KÞ
0
r þ1þb
þ C1 ð1 þ KÞ
1
0 maxð2r þ 2q;0Þ
þ C1 ð1 þ KÞ4b1 þ 8b 3
3
C1 ð1 þ KÞb3 : h Corollary 2.2.3. If assumptions in theorem 2.1.1 hold, then the following estimates hold for any t > 0, Z tZ 1 ð1 þ hÞ2m vx2 dxds C1 ð1 þ KÞb1 ; ð2:2:51Þ 0
0
Z tZ 0
1
ð1 þ hÞ2m þ 1 vx2 dxds C1 ð1 þ KÞb1 þ 1 ;
0
Z tZ 0
1
ð2:2:53Þ
0
Z tZ 0
where
ð1 þ hÞq þ 1 jvx j3 dxds C1 ð1 þ KÞb4 ;
ð2:2:52Þ
0
1
ð1 þ hÞqr vx4 dxds C1 ð1 þ KÞb6 ;
1 q 3r 1 ;0 ; d1 ¼ maxðq 3r þ 1; 0Þ; d2 ¼ max 4 2 3b1 3b1 b b4 ¼ d1 þ ; b5 ¼ maxðq r; 0Þ þ þ ; 4 2 2 b6 ¼ minðd2 þ 2b1 ; b5 Þ:
ð2:2:54Þ
1D Radiative Fluid and Liquid Crystal Equations
34
Proof. Using corollary 2.2.1 and lemmas 2.2.1–2.2.5, we can derive Z tZ 1 Z t Z t ð1 þ hÞ2m vx2 dxds V ðsÞkvx k2 ds kvx k2 ds þ 0
0
0
0
b 2
C1 ð1 þ KÞ þ C1 ð1 þ KÞb1 C1 ð1 þ KÞb1 : Note that Z tZ 0
1
0
ð1 þ hÞ2m þ 1 vx2 dxds ð1 þ KÞ
Z tZ 0
C1 ð1 þ KÞ and Z tZ 0
1
ð1 þ hÞq þ 1 jvx j3 dxds C1 ð1 þ KÞd1
Z tZ
1
0 b1 þ 1
ð1 þ hÞ2m vx2 dxds
;
1
ð1 þ hÞ4ðq þ r þ 1Þ jvx j3 dxds 0 0
Z t Z t 3 C1 ð1 þ KÞd1 V ðsÞ4 kvx k3L3 ds kvx k3L3 ds þ
0
3
0
C1 ð1 þ KÞ
d1
0
Z
t
sup kvx ðsÞk s2½0; t
2
kvx k ds
34 Z
0
d1
þ C1 ð1 þ KÞ max kvx ðsÞk
5 2
2
kvxx k ds
0
Z
s2½0; t
t
t
2
kvxx k ds
14
0
C1 ð1 þ KÞb4 where we have used Z
t 0
Z kvx k3L3 ds C1
t
5 2
Z
1 2
kvx k kvxx k ds C1
0
Z
C1 sup kvx ðsÞk s2½0; t 3b1
0
0
1
3
10 3
kvx k ds
þ 3b 8
Z
V ðsÞ4 jvx j3 dxds 0
t
34 Z
0
t
2
kvx k ds
t
2
kvxx k ds
14
0
34 Z
0
C1 ð1 þ KÞ 4 Z tZ
t
t
2
kvxx k ds
14
0
; Z
3
V ðsÞ4 kvx k3L3 ds C1
Z
t
C1
V ðsÞds
34 Z
0
C1 sup kvx ðsÞk s2½0; t
5 2
Z
t
t
3
0 10
2
kvx k kvxx k ds
0 t
2
kvxx k ds
14
0
C1 ð1 þ KÞ4b1 þ 4b1 ¼ C1 ð1 þ KÞ2b1 5
1
5
1
V ðsÞ4 kvx k2 kvxx k2 ds
3
14
14
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
and Z tZ 0
0
1
ð1 þ hÞqr vx4 dxds C1 ð1 þ KÞd2 C1 ð1 þ KÞ
d2
Z tZ 0
ð1 þ hm Þvx4 dxds
0
Z tZ 0
1
1
ð1 þ V ðsÞ2 Þvx4 dxds
0
"Z C1 ð1 þ KÞ
1
t
d2
Z
t
t
3
kvx k kvxx kds þ
0
Z
6
35
2
kvx k kvxx k ds
V ðsÞds
12
0
12 #
0
C1 ð1 þ KÞ
d2
h
Z sup kvx ðsÞk Z
þ sup kvx ðsÞk s2½0; t
h
2
kvx k ds
s2½0; t 3
t
2
12 Z
0 t
2
kvxx k ds
2
kvxx k ds
12
0
12 i
0
C1 ð1 þ KÞd2 ð1 þ KÞ4b þ 2b1 þ ð1 þ KÞ2b1 1
t
3
i
C1 ð1 þ KÞd2 þ 2b1 : However, we also know that Z tZ 1 Z t ð1 þ hÞqr vx4 dxds C1 ð1 þ KÞmaxðqr;0Þ kvx k4L4 ds 0 0 0 Z t maxðqr;0Þ C1 ð1 þ KÞ kvx k3 kvxx kds 0
Z C1 ð1 þ KÞmaxðqr;0Þ
t
kvx k6 ds
12 Z
0
Z
C1 ð1 þ KÞmaxðqr;0Þ sup kvx ðsÞk2 s2½0; t
Z
t
kvxx ðsÞk2 ds
t
kvxx k2 ds
12
0 t
kvx ðsÞk2 ds
12
0
12
0
C1 ð1 þ KÞmaxðqr;0Þ þ 2b1 þ 4b ¼ C1 ð1 þ KÞb5 : 3
1
Therefore, Z tZ 0
0
1
ð1 þ hÞqr vx4 dxds C1 ð1 þ KÞb6 :
ð2:2:55Þ h
1D Radiative Fluid and Liquid Crystal Equations
36
In the next lemma, we shall derive new uniform-in-time estimates on radiative term I(x, t; ν, ω) given in the following lemma, which are more complicated, delicate than and quite different from those in [111], where estimates are not uniform-in-time. Lemma 2.2.6. There holds that for any t > 0, Z tZ 1Z 1Z Z tZ 1Z 1Z vra I 2 dxdmdxds þ vrs ðI~ I Þ2 dxdmdxds 0
0
Z
þ
0 1Z S1
0
S1
0
0
1
vrs I 2 ðx; t; m; xÞdxdm C1 Z
1
ð2:2:56Þ
h1 þ a dx C1 ;
0
Z S1
0
S1
0
Z
I ðx; t; m; xÞdxdm C1 :
ð2:2:57Þ
Proof. Multiplying (2.1.6) by I, integrating the result over (0, 1) × S1 × (0, ∞) and using boundary conditions (2.1.11) and (2.1.12), we get for any ϵ > 0, Z Z Z Z 1 1 1 1 xI 2 ð1; t; m; xÞdxdm xI 2 ð0; t; m; xÞdxdm 2 0 2 0 S1 S1 Z 1Z 1Z Z 1Z 1Z þ gra I 2 dxdmdx þ grs ðI~ I Þ2 dxdmdx 0
0
Z
C1 ðÞ
S1 1Z 1
0
Z C1 ðÞ
S1
0 1
h
0
Z
1þa
Z
C1 ðÞ
1
h1 þ a dx þ
0
Z
1
C1 þ 0
Z
1
Z
Z 0
1
Z
0
Z
dx 0
1
Z
gra B 2 dxdmdx þ
0
Z
S1
0
S1 1
Z
f ðm; xÞdxdm þ
Z 0
1
gra I 2 dxdmdx S1
1
Z
0
Z
0
1
Z gra I 2 dxdmdx S1
gra I 2 dxdmdx S1
gra I 2 dxdmdx: S1
0
0
Z
0
Similarly, we also deduce that Z 1Z 1Z Z gðra þ rs ÞI 2 dxdmdx 0
1
S1
1
h1 þ a dx C1 :
ð2:2:58Þ
0
In order to derive (2.2.5), we consider now the following integro-differential equation 8 @ > > > x I ðx; t; m; xÞ ¼ gra ðm; x; g; hÞ½Bðm; hÞ I ðx; m; xÞ þ grs ðm; g; hÞ > @x > > > > < ½I~ðx; mÞ I ðx; m; xÞ on X ½0; t R þ S 1 ; ð2:2:59Þ I ð0; t; m; xÞ ¼ 0 for all x 2 ð0; 1Þ; > > > > > I ð1; t; m; xÞ ¼ 0 for all x 2 ð1; 0Þ; > > > : I ðx; 0; m; xÞ ¼ I0 ðx; m; xÞ on X R þ S 1 :
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
37
Solving explicitly the ordinary differential equation and using boundary condition (2.1.1), we arrive at (see [19] for details) 8 Z x R y gðra þ rs Þ dz g > ðra B þ rs I~Þdy for all x 2 ð0; 1Þ; > e x x < x 0 ð2:2:60Þ I ðx; t; m; xÞ ¼ Z 1 R y gðr þ r Þ a s > dz g > : ðra B þ rs I~Þdy for all x 2 ð1; 0Þ: e x x x x Using the Young inequality, (2.1.18), (2.2.3), and (2.2.56), we have for all ω 2 (0, 1), Z 1Z I dmdx 1 0 ZS 1 Z Z x R y gðr þ r Þ a s dz g ðra B þ rs I~Þdy dmdx ¼ e x x x S1 0 0
Z 1 Z Z 1
g
~ ra B þ rs I dydmdx
0 S1 0 x
Z 1 Z 1 Z
Z 1 Z 1Z
1 1 ~ ¼
ra Bdxdmdx þ rs ðI I þ I Þdxdmdx
g g 0 0 0 0 S1 x S1 x
Z 1 Z 1 Z h
Z 1 i
1 2 2
~ C1 h1 þ a dx þ C1
g r þ r ð I I Þ þ r I dxdmdx s s s
2 0 0 0 S1 x Z 1 C1 h1 þ a dx C1 : ð2:2:61Þ 0
In the same manner, we have the same result for all ω 2 (−1, 0). This completes the proof. h Obviously, we can obtain the following result by lemmas 2.2.1 and 2.2.6. Lemma 2.2.7. If assumptions in theorem 2.1.1 hold, then there holds that for any t > 0, Z tZ 1 h þ h 1 þ r þ v 2 2 þ ð1 þ hÞq þ r h2x dxds C1 ð1 þ KÞb8 ; ð2:2:62Þ 0
0
where b7 ¼ maxð2r þ 1 2q; 0Þ; n 1 3b b þ b þ r þ 1 ; b8 ¼ max b7 ; ðb þ maxð2r þ 2 q; 0ÞÞ; q þ 1 þ b; 1 ; 2 2 2 4 o b b maxðr q; 0Þ þ 2 ; maxðq r; 0Þ þ 2 : 2 2
1D Radiative Fluid and Liquid Crystal Equations
38
Proof. Multiplying (2.1.5) by e þ 12 v 2, integrating the resultant over [0, 1] × (0, t) and using lemmas 2.2.1–2.2.6 and (2.1.15), we get Z tZ 1 hðtÞ þ h1 þ r ðtÞ þ v 2 2 þ ð1 þ hÞq þ r h2x dxds C1 þ C1
Z tZ 0
þ C1
Z tZ
0
ð1 þ hÞ2r þ 1 jvhx jdxds þ C1
0
Z tZ 0
0
1
1
Z tZ 0
ð1 þ hÞq þ r þ 1 jhx gx jdxds þ C1
0
Z tZ 0
1
ð1 þ hÞr þ 1 jvvx gx jdxds þ C1
Z tZ
1
ð1 þ hÞ2r þ 2 jvgx jdxds
0 1
ð1 þ hÞr þ 1 v 2 jvx jdxds
0 1
ð1 þ hÞr jvvx hx jdxds 0 0 0 0 Z tZ 1 Z t Z 1
q
gðSE Þ e þ 1 v 2 dxds ð1 þ hÞ jvvx hx jdxds þ C1 þ C1 R
2 0 0 0 0 8 X Di : :¼ C1 þ þ C1
ð2:2:63Þ
i¼1
Similarly to those in [104], we have estimates of D1, D2, and D3, for any ϵ > 0, Z tZ 1 ð1 þ hÞq þ r h2x dxds þ C1 ðÞð1 þ KÞb7 ; D1 0
0
D2 C1 ð1 þ KÞ2ðb þ maxð2r þ 2q;0ÞÞ ; Z tZ 1 ð1 þ hÞq þ r h2x dxds þ C1 ðÞð1 þ KÞb þ 1 þ q : D3 1
0
0
Here we only give estimates of Di, (i = 4, 5, 6, 7, 8), for any ϵ > 0, 12 Z t Z 1 12 Z t Z 1 ð1 þ hÞ2m vx2 dxds ð1 þ hÞr þ 1q v 4 dxds D4 C 1 0
0
C1 ð1 þ KÞ
b1 2
sup kvðsÞkL1
s2½0; t
Z t Z 0
1
C1 ð1 þ KÞ 2 sup kvx ðsÞk2 s2½0; t
0
0
ð1 þ hÞ2m v 2 dxds
12
0
Z t Z 1
b1
0 1
ð1 þ hÞ2m v 2 dxds
12
0
3b1 4
C1 ð1 þ KÞ ; 12 Z t Z Z t Z 1 r þ1 2 ð1 þ hÞ gx dxds D5 C 1
1
Z
12
0
0
C1 ð1 þ KÞ
b r þ1 2þ 2
0
C1 ð1 þ KÞ
b þ b2 2
þ r þ2 1
;
t
Z kvx k2L1
0
0
1
v 2 dxds 0
ð1 þ hÞr þ 1 v 2 vx2 dxds
12
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
D6
Z tZ 0
D7
1
0
Z tZ 0
1
0
Z tZ 0
0
Z tZ 0
1
0
1
ð1 þ hÞr þ q h2x dxds þ C1 ðÞ
Z tZ 0
1
0
39
ð1 þ hÞrq v 2 vx2 dxds b2
ð1 þ hÞr þ q h2x dxds þ C1 ðÞð1 þ KÞmaxðrq;0Þ þ 2 ; ð1 þ hÞr þ q h2x dxds þ C1 ðÞ
Z tZ 0
0
1
ð1 þ hÞqr v 2 vx2 dxds b2
ð1 þ hÞr þ q h2x dxds þ C1 ðÞð1 þ KÞmaxðqr;0Þ þ 2 :
At last, we use corollary 2.2.1, definitions of S and Ĩ, (2.1.17) and (2.2.61) to get
Z t Z 1
1
D8 gðSE ÞR e þ v 2 dxds 2 0 0 Z 1 Z 1 Z 1Z 1
Z t Z 1
1 2
~ ¼ g eþ v ra ðB I Þdmdx þ rs ðI I Þdmdx dxds 2 0 0 1 0 1 0 Z 1 Z 1
Z t Z 1
1
g e þ v2 ra ðB I Þdmdxdxds 2 0 0 1 0 Z 1 Z 1 Z t Z 1
1
g e þ v 2 ra ðB I Þdmdx dxds 2 0 0 1 0 Z Z Z t Z 1 Z 1Z 1 1 1 1 1 þ a
h fdmdx þ gra Idmdx dxds
e þ v2 2 0 0 1 0 1 0 Z t Z t Z 1 2 1þa C1 V ðsÞds þ C1 kv kL1 h dx þ C1 ds 0 0 0 Z t Z t 2 C1 V ðsÞ þ kv kL1 ds C1 þ kv kkvx kds 0 0 Z t 12 b C1 þ kvx k2 ds C1 ð1 þ KÞ4 : 0
Inserting estimates of D1, D2, D3, D4, and D5 into (2.2.63), using the Young inequality and taking ε > 0 small enough, we conclude Z tZ 1 hðtÞ þ h1 þ r ðtÞ þ v 2 2 þ ð1 þ hÞq þ r h2x dxds C1 Kb8 : 0
The proof is hence complete.
0
h
In the next lemma, we shall prove the new uniform-in-time upper bound on temperature θ(x, t). The difficulty of the proof is how to derive the uniform-in-time Rt R1 estimate on the last term 0 0 gðSE ÞR Kt dxds in (2.2.67) below.
1D Radiative Fluid and Liquid Crystal Equations
40
Lemma 2.2.8. If assumptions in theorem 2.1.1 hold, the there holds that for any t > 0, Z 1 Z tZ 1 ð1 þ h2q Þh2x ðx; tÞdx þ ð1 þ hq þ r Þh2t dxds C1 ð1 þ KÞb13 ; ð2:2:64Þ 0
0
0
K C1 ;
ð2:2:65Þ
where b9 ¼ f2 maxðq r; 0Þ þ 2b þ b8 ; maxðq r; 0Þ þ b þ ðb8 þ b1 þ 1Þ=2; b10
maxðq r; 0Þ þ b þ ðb8 þ b6 Þ=2; maxðq r; 0Þg; ¼ maxfmaxðq r; 0Þ þ q þ 2 þ b; 2 maxðq r; 0Þ þ r þ 2 þ 2b; maxðq r; 0Þ þ b þ ðb1 þ r þ 3Þ=2; maxðq r; 0Þ þ b þ ðb6 þ r þ 2Þ=2; ðmaxðq rÞ; 0Þg;
b11 ¼ minðb9 ; b10 Þ; maxð3q þ 2 r; 0Þ þ b1 þ b8 maxð3q þ 2 r; 0Þ þ b2 þ b þ b8 ; b12 ¼ ; 2 2 3q þ 4 þ b1 3q þ 4 þ b2 þ b ; ; b13 ¼ max 2 2 b14 ¼ minfb12 ; b13 g; b15 ¼ maxfb1 þ 1; b4 ; b6 ; b11 ; b14 ; maxð2q þ 2; b1 Þg: Proof. Let Z Kðg; hÞ ¼ XðtÞ ¼
0
Z tZ 0
1
ð1 þ h
0
q þr
h
jðg; uÞ du; g
Þh2t dxds;
Z
Y ðtÞ ¼
Then it is easy to verify that j Kt ¼ Kg vx þ ht ; g
0
1
ð1 þ h2q Þh2x dx:
jht j Kxt ¼ þ Kgg vx gx þ g ht þ Kg vxx : g g x g t
We know from (2.1.18) that jKg j þ jKgg j C1 ð1 þ hq þ 1 Þ:
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
41
The equation (2.1.5) can be rewritten as
l eh ht þ hph vx vx2 ¼ g
jhx g
gðSE ÞR :
ð2:2:66Þ
x
Multiplying (2.2.66) by Kt and integrating the result over [0, 1] × (0, t), we arrive at Z tZ
Z t Z 1 h l jhx n jht eh ht þ hph vx vx2 Kt dxds þ g g g t 0 0 0 0 j o i þ Kgg vx gx þ Kg vxx þ g ht þ gðSE ÞR Kt dxds ¼ 0: g g x 1
ð2:2:67Þ
Now we estimate each term in (2.2.67). Similarly to those in [104], we have Z tZ 0
Z t Z
0
1
eh ht Kt dxds C1 XðtÞ C1 ð1 þ KÞb1 þ 1 ;
ð2:2:68Þ
0
hph vx
0
1
C l0 vx2
1 XðtÞ þ C1 ð1 þ KÞb1 þ 1 Kt dxds g 8 ð2:2:69Þ
þ C1 ð1 þ KÞb4 þ C1 ð1 þ KÞb6 ; Z tZ 0
Z t Z
1 0
jhx jhx dxds C1 Y ðtÞ C1 ; g g t
ð2:2:70Þ
jhx
Kg vxx þ Kgg vx gx dxds g 0 0 Z tZ 1 C1 ð1 þ hÞ2q þ 1 jhx vxx þ hx vx gx jdxds 1
0
0
C1 ð1 þ KÞ
maxð3q þ 2r;0Þ 2
Z t Z 0
maxð3q þ 2r;0Þ 2
þ C1 ð1 þ KÞ
0
maxð3q þ 2r;0Þ þ b1 þ b8 2
b12
C1 ð1 þ KÞ :
ð1 þ hÞq þ r h2x dxds
Z t Z 0
C1 ð1 þ KÞ
1
0
1
12 Z t Z
ð1 þ hÞq þ r h2x dxds
0
12 Z
maxð3q þ 2r;0Þ þ b2 þ b þ b8 2
þ C1 ð1 þ KÞ
0
0 t
1 2 vxx dxds
12
kvx k2L1 kgx k2 dxds
12
1D Radiative Fluid and Liquid Crystal Equations
42
On the other hand, it is easy to verify
Z t Z 1 jh
x ðKg vxx þ Kgg vx gx Þdxds
g 0 0 Z tZ 1 C1 ð1 þ hÞ2q þ 1 jhx vxx þ hx vx gx jdxds 0
0
12 Z t Z 1 12 ð1 þ hÞq h2x 2 C1 ð1 þ KÞ dxds vxx dxds 2 h 0 0 0 0 12 Z t 12 Z t Z 1 ð1 þ hÞq h2 3q þ 4 2 2 x þ C1 ð1 þ KÞ 2 dxds v k k 1 kgx k dxds x L h2 0 0 0 3q þ 4 2
Z t Z
3q þ 4 þ b1 2
C1 ð1 þ KÞ
1
þ C1 ð1 þ KÞ
3q þ 4 þ b2 þ b 2
C1 ð1 þ KÞb13 : Therefore
Z t Z
0
0
1
jhx
ðKg vxx þ Kgg vx ux Þdxds C1 ð1 þ KÞb14 : g
ð2:2:71Þ
Now we estimate the last two terms in (2.2.67). First, by lemmas 2.2.1–2.2.7, we have Z tZ 1
Z t Z 1 jh j
jh
x
x gx ht dxds gx ht dxds C1 ð1 þ hÞq
g g g g 0 0 0 0 Z tZ 1 C1 jhx 2 XðtÞ þ C1 ð1 þ hÞqr g2x dxds 8 g 0 0 Z t 2 jhx C1 maxðqr;0Þ þ b ds XðtÞ þ C1 ð1 þ KÞ g 1 8 0 L Z t 2 jhx C1 maxðqr;0Þ þ b XðtÞ þ C1 ð1 þ KÞ g 8 0 Z 1
jhx jhx þ
dx ðsÞds g g x 0 C1 XðtÞ þ C1 ð1 þ KÞmaxðqr;0Þ þ b 8 Z tZ 1 n ð1 þ KÞmaxðqr;0Þ ð1 þ hÞq þ r h2x dxds þ
0
0
Z t Z
1
0
Z t Z 0
1 0
0
ð1 þ hÞq þ r h2x dxds ð1 þ hÞ
1=2
jhx
g
qr
x
2 1=2 o
dxds ;
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
43
which, along with (2.2.66), lemmas 2.2.4, 2.2.5 and corollary 2.2.2, leads to
Z t Z
0
0
1
jhx j
gx ht dxds g g g
C1 XðtÞ þ C1 ð1 þ KÞ2 maxðqr;0Þ þ b þ b8 þ C1 ð1 þ KÞmaxðqr;0Þ þ b þ b8 =2 8 1=2 Z tZ 1h i q þr þ2 2 qr 4 qr 2 2 ð1 þ hÞ XðtÞ þ vx þ ð1 þ hÞ vx þ ð1 þ hÞ g ðSE ÞR dxds 0
0
C1 XðtÞ þ C1 ð1 þ KÞ2 maxðqr;0Þ þ 2b þ b8 þ C1 ð1 þ KÞmaxðqr;0Þ þ b þ ðb8 þ b1 þ 1Þ=2 4 þ C1 ð1 þ KÞmaxðqr;0Þ þ b þ ðb8 þ b6 Þ=2 þ C1 ð1 þ KÞmaxðqr;0Þ þ b þ b7 C1 XðtÞ þ C1 ð1 þ KÞb9 : 4
ð2:2:72Þ
However, we also know that
Z t Z 1 jh j
x gx ht dxds
g g g 0 0 Z tZ 1 C1 jhx 2 XðtÞ þ C1 ð1 þ hÞqr g2x dxds 8 g 0 0 C1 XðtÞ þ C1 ð1 þ KÞmaxðqr;0Þ þ b 8 Z t Z 1 Z tZ 1
jh
x 2q 2 q ð1 þ hÞ hx dxds þ ð1 þ hÞ jhx j
dxds g x 0 0 0 0 Z t n C1 XðtÞ þ C1 ð1 þ KÞmaxðqr;0Þ þ b Kq þ 2 V ðsÞds 8 0
2 Z t 1=2 Z t Z 1 1=2 o
jhx
dxds þ V ðsÞds h2 ð1 þ hÞq
g 0
0
0
x
C1 XðtÞ þ C1 ð1 þ KÞmaxðqr;0Þ þ q þ 2 þ b 8 Z t Z þ C1 ð1 þ KÞmaxðqr;0Þ þ b þ ðr þ 2Þ=2 0
1 0
1=2
jh 2
x ð1 þ hÞqr dxds
g x
C1 XðtÞ þ C1 ð1 þ KÞmaxðqr;0Þ þ q þ 2 þ b þ C1 ð1 þ KÞ2 maxðqr;0Þ þ 2b þ r þ 2 4 þ C1 ð1 þ KÞmaxðqr;0Þ þ b þ ðr þ 3 þ b1 Þ=2 þ C1 ð1 þ KÞmaxðqr;0Þ þ b þ ðr þ 2 þ b6 Þ=2 þ C1 ð1 þ KÞmaxðqr;0Þ C1 XðtÞ þ C1 ð1 þ KÞb10 : 4
1D Radiative Fluid and Liquid Crystal Equations
44
Next, we estimate the last term,
Z t Z 1Z
Z t Z 1
gðSE ÞR Kt dxds
0
0
0
þ
0
Z tZ 0
þ
0
Z
1
Z
0
Z
gra Bdmdx jKt jdxds
S1 1Z
0
1
0
Z tZ
1
S1
0 1
Z
S1
0
gra Idmdx jKt jdxds grs jI~ I jdmdx jKt jdxds ð2:2:73Þ
¼: P þ Q þ R:
Using (2.1.18), lemma 2.2.6, the Young and the Hölder inequalities, we conclude
Z t Z 1Z 1Z
j
gra Bdmdx Kg vx þ ht dxds jPj g 0 0 0 S1 Z tZ 1 Z tZ 1 ð1 þ hq þ 1 þ a Þjvx jdxds þ C1 ð1 þ hq þ a Þjht jdxds C1 0
0
0
0
1 XðtÞ þ C1 Kq þ 2ar ; 8 Z tZ
Z
Z
j
gra Idmdx Kg vx þ ht dxds g S1 0 0 0 12 Z 1 Z 12 Z t Z 1 Z 1 Z 2 C1 gra dxdm gra I dxdm ð1 þ hq þ 1 Þjvx jdxds
Q
0
1
0
1
0
1 Z
S1
0
12 Z
S1
12 gra I 2 dxdm ð1 þ hq þ 1 Þjht jdxds 0 0 0 0 S1 S1 Z tZ 1 Z t Z 1 Z 1 Z 2q þ 2 2 2 C1 ð1 þ KÞ jvx j dxds þ XðtÞ þ C1 ðÞ gra I dxdm þ C1
Z tZ
1Z
1
Z
gra dxdm
0
XðtÞ þ C1 ð1 þ KÞ
0 2q þ 2
0
0
0
S1
:
Using the same technique, we also get 1 R XðtÞ þ C1 Kmaxðqr;0Þ : 8 Inserting estimates on P, Q and R into (2.2.73), using the Young inequality and taking > 0 small enough, we derive XðtÞ þ Y ðtÞ C1 ð1 þ KÞb15 :
ð2:2:74Þ
By lemmas 2.2.1–2.2.7 and the Hölder inequality, there exists a point a(t) 2 [0, 1] R1 such that for any t [ 0; 0 hðx; tÞdx ¼ hðaðtÞ; tÞ, we can hence deduce
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
jh
q þ r þ2 3
ðx; tÞ h
q þ r þ2 3
Z
1
ðaðtÞ; tÞj C1
hq þ
r þ3 2
jhx jdx
0
C1
Z
1 0
45
ð1 þ h2q Þh2x dx
12 Z
1
hr þ 1 dx
12
0
1 2
C1 Y ðtÞ: Then b15
1
K C1 Y 2q þ r þ 3 þ C1 C1 ð1 þ KÞ2q þ r þ 3 :
ð2:2:75Þ
After a lengthy calculation, it is easy to verify that assumption (2.1.16) implies that β15 < 2q + r + 3. Therefore, by the Young inequality, it follows from (2.2.75) that K C1 : h
This thus completes the proof.
The following lemmas are concerned with the new arguments on uniform-in-time estimates of radiative term I(x, t; ν, ω). Lemma 2.2.9. There holds Z 1 Z 2 I dxdm 1 Z
0
S
1
S1
0
Z tZ 0
Z
0
1
Z
L1 ðQt Þ
jIx jdxdm
1
Z S1
0
L1 ðQt Þ
C1 ;
8 t [ 0;
ð2:2:76Þ
C1 ;
8 t [ 0;
ð2:2:77Þ
It2 dxdmdxds C1 ;
8 t [ 0:
ð2:2:78Þ
Proof. By (2.2.57) and (2.2.66), we can easily get (2.2.76). By the definition of Ĩ, we can derive from (2.2.76) that Z 1 Z ~ C1 : ð2:2:79Þ I dxdm 1 1 0
L ðQt Þ
S
From (2.2.60), using the Young and the Hölder inequalities, (2.1.18) and lemmas 2.2.7, 2.2.8, we derive Z 1Z Z 1 Z Z 1 2 g ðra B þ rs I~Þdx dmdx I 2 dmdx 0 0 0 x S1 S1 Z 1Z 2 Z 1 g C1 r dx ra B 2 dx dxdm a 2 S1 x 0 0 Z 1 Z Z 1 2 Z 1 g þ C1 rs dx rs I~2 dx dxdm 2 0 0 x 0 S1 Z 1Z Z 1 C1 þ C1 ðrs ðI~ I Þ2 þ rs I 2 Þdxdxdm C1 ; ð2:2:80Þ 0
S1
0
1D Radiative Fluid and Liquid Crystal Equations
46
which, by the definition of Ĩ, implies Z 1Z S1
0
I~2 dxdm C1 :
ð2:2:81Þ
From (2.1.6), we get Ix ¼
g g ðra þ rs ÞI þ ðra B þ rs ~I Þ: x x
Integrating the above equality and using (2.1.18), we obtain Z 1Z Z 1Z 1 ðra þ rs ÞjI jdxdm jIx jdxdm C1 1 jxj 0 0 S1 Z 1S Z 1 ðra B þ rs I~Þdxdm þ C1 jxj 1 0 S Z 1Z Z 1Z jI jdxdm þ C1 j~I jdxdm C1 þ C1 0
S1
0
ð2:2:82Þ
S1
which, using (2.2.76) and (2.2.81), gives (2.2.77). By (2.2.60), we have for any ω 2 (0, 1), Z x Ry g Z y g g ðr þ r Þdz ðra þ rs Þdz ðra B þ rs I~Þ It ¼ e xx a s tx 0 x x Z x Ry g ðr þ r Þdz g ðra B þ rs I~Þ dy ¼: A2 þ B2 : þ e xx a s t x 0
ð2:2:83Þ
Using the Young inequality, (2.2.81), (2.1.18), lemmas 2.2.4 and 2.2.8, we deduce Z tZ 1Z A22 dxdmds 0 0 S1 Z t Z 1 Z hZ x Z y vx g ðra þ rs Þ þ ððra þ rs Þg vx C1 x S1 0 0 0 x x g i2 ðra B þ rs I~Þdy dxdmds þ ðra þ rs Þh ht Þdz x Z t Z 1 Z Z 1 2 vx C1 ðr þ rs þ ðra Þg þ ðrs Þg Þ2 2 a 0 0 0 x S1 Z 1 2 h2 g 2 2 þ t2 ððra Þh þ ðrs Þh Þ2 dx r B dx dxdmds 2 a x 0 x Z t Z 1Z Z 1 2 vx þ C1 ðr þ rs þ ðra Þg þ ðrs Þg Þ2 2 a x 1 S 0 0 0 Z 1 2 h2t g 2 ~2 2 þ 2 ððra Þh þ ðrs Þh Þ dx r I dx dxdmds 2 s x 0 x Z tZ 1 Z tZ 1Z Z 1 C1 ðvx2 þ h2t Þdxds þ C1 I~2 dxdxdmds 0
C1 :
0
0
0
S1
0
ð2:2:84Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
Analogously, Z tZ 1Z Z tZ B22 dxdmds C1 0
0
1
Z hZ
x
47
v
g ðra B þ rs I~Þ þ ððra Þg vx B x x 0 0 0 S1 i2 þ ðra Þh ht B þ rBh ht þ ðrs Þg I~vx þ ðrs Þh ht ~ I þ rs I~t Þ dx dxdmds Z tZ 1 Z xZ tZ 1Z 2 2 C1 ðvx þ ht Þdxds þ C1 It2 dxdmdsdy 0 0 0 0 0 S1 Z xZ tZ 1Z C1 þ C1 It2 dxdmdsdy;
S1
0
0
0
x
S1
which, together with (2.2.84), implies Z Z tZ 1Z 2 It dxdmds C1 þ C1 0
S1
0
0
x
Z tZ 0
1
0
Z S1
It2 dxdmdsdy:
Fixing t > 0 and using the Gronwall inequality, we get Z tZ 1Z It2 dxdmds C1 eC1 x C1 eC1 C1 ; 8 x 2 ½0; 1: 0
S1
0
h
This proves the proof. Lemma 2.2.10. If assumptions in theorem 2.1.1 hold, then there holds that kI xx ðtÞk C2 ;
8 t [ 0:
ð2:2:85Þ
Proof. By virtue of the direct computation, we have Z 1Z 1 Z 2 Ixx dxdm dx kI xx ðtÞk2 ¼ Z
0
S1
0
Z
Z
2 1 ðgx S þ gSx Þdxdm dx S1 x 0 0 Z 1 h Z 1 Z 2 Z 1 Z 1 2 i 1 gx Sdxdm þ gSx dxdm dx C1 S1 x S1 x 0 0 0 ¼: G þ H : ¼
1
1
Using (2.1.18), (2.2.40) and lemma 2.2.9, we see that Z 1Z 1Z 2 1 gx Sdxdm dx G¼ S1 x 0 0 Z 1 Z 1Z 2 1 ðra ðB I Þ þ rs ðI~ I ÞÞdxdm dx ¼ g2x 0 0 S1 x Z 1 C1 g2x dx C1 : 0
ð2:2:86Þ
ð2:2:87Þ
1D Radiative Fluid and Liquid Crystal Equations
48
Similarly, Z H ¼
1
Z
1
Z
g f½ðra Þg gx þ ðra Þh hx ðB I Þ þ ra ðBh hx Ix Þ S1 x 0 0 2 ~ ~ þ ½ðrs Þg gx þ ðrs Þh hx ðI I Þ þ rs ðI I Þx gdxdm dx Z
C1 0
1
ðg2x þ h2x Þdx þ C1
C1 :
ð2:2:88Þ
Plugging (2.2.87) and (2.2.88) into (2.2.86), we can get (2.2.85). The proof is complete. h
2.3
Asymptotic Behavior of Solutions in H1
This will establish the large-time behavior of global solutions in H1 , which completes the proof of theorem 2.1.1. Lemma 2.3.1. If assumptions in theorem 2.1.1 hold, then we have lim kgðtÞ gkH 1 ¼ 0;
ð2:3:1Þ
lim kvðtÞkH 1 ¼ 0;
ð2:3:2Þ
t! þ 1
t! þ 1
where g ¼
R1 0
gðy; tÞdy ¼
R1 0
g0 ðyÞdy:
Proof. By lemmas 2.2.1–2.2.8, we can derive from (2.2.47) d kvx k2 þ C11 kvxx k2 C1 : dt
ð2:3:3Þ
Applying lemma 1.1.2 to (2.3.3), and using the Poincaré inequality, we obtain kvðtÞk2H 1 C1 kvx k2 ! 0 as t ! 1: Similarly, by lemmas 2.2.1–2.2.8, it follows from (2.2.42) that 2 Z 1 d v l gx þ C 1 ð1 þ h1 þ r Þg2x dx C1 : 1 dt g 0
ð2:3:4Þ
Applying lemma 1.1.2 to (2.3.4) again, and using lemmas 2.2.1–2.2.8 and (2.3.1), we conclude that as t → ∞, ! 2 gx 2 2 kgx k C1 v l þ kv k ! 0 g which gives (2.3.2).
h
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
49
Lemma 2.3.2. If assumptions in theorem 2.1.1 hold, then we have lim hðtÞ h H 1 ¼ 0;
ð2:3:5Þ
t! þ 1
where h [ 0 is determined by eðg; hÞ ¼
R1 0
ð12 v02 þ eðg0 ; h0 Þ þ FR ð0ÞÞdx.
Proof. Equation (2.1.5) can be rewritten as eh ht þ ðp þ hph Þvx rvx þ qx þ gðSE ÞR ¼ 0:
ð2:3:6Þ
Multiplying (2.3.6) by eh1 hxx , integrating the result over (0, 1) and using the Young inequality, the interpolation inequality and lemmas 2.2.1–2.2.8, we can conclude for any ε > 0, Z 1 2 d jhxx khx ðtÞk2 þ 2 dt 0 eh g Z 1h j gðSE ÞR i hph vx lvx2 ðgÞx hx þ ¼2 hxx dx eh eh g eh eh 0 2 e khxx ðtÞk2 þ C1 ðkvx k2 þ kvx k4L4 þ khx k4L4 þ kgx hx k2 þ ðSE ÞR Þ 2 e khxx ðtÞk2 þ C1 ðkvx k2 þ kvx k3 kvxx k þ kvx k4 þ khx k3 khxx k þ khx k4 2 2 þ khx kL1 þ ðSE ÞR Þ 2 ð2:3:7Þ ekhxx ðtÞk2 þ C1 ðkvx k2 þ kvxx k2 þ khx k2 þ ðSE ÞR Þ: Now we need to estimate the new radiative term η(SE)R in (2.3.7), which did not appear in the system considered in Qin [104] ((SE)R = 0). From (2.1.18), the Young and the Hölder inequalities and lemmas 2.2.7, 2.2.8, we derive Z 1 Z þ1 Z 2 ðSE Þ 2 ¼ ðra ðB I Þ þ rs ðI~ I ÞÞdxdm dx R 0
1
C1
h Z
0
þ
S1 þ1
0
Z
Z 0 1
Z C1
Z S1
0
þ1
Z
h Z
ra ðB I Þdxdm
rs ðI~ I Þdxdm
S1 þ1
2 i dx
Z
Z
2
þ1
Z
ra dxdm 0
þ C1
0 þ1
Z
Z C1 0
Z
S1
0 þ1
Z
Z
rs dxdm 0 1
S1
ha þ 1 dx þ C1 C1 ;
0
S1
S1
ra ðB 2 þ I 2 Þdxdm
rs ðI~ I Þ2 dxdm
i dx ð2:3:8Þ
1D Radiative Fluid and Liquid Crystal Equations
50
which, together with (2.3.7), yields Z
t
2
khx ðtÞk þ
khxx ðsÞk2 ds C1 :
0
Plugging (2.3.8) into (2.3.7), using lemmas 2.2.1–2.2.8 and taking ε > 0 small enough, we have Z 1 d ð1 þ hqr Þh2xx dx C1 ðkvxx k2 þ 1Þ; ð2:3:9Þ khx ðtÞk2 þ C1 dt 0 which, together with lemma 1.1.2 and (2.2.44), (2.2.65), yields lim khx ðtÞk2 ¼ 0:
ð2:3:10Þ
t! þ 1
By the Poincaré inequality, we deduce hðtÞ h 1 C1 khx ðtÞk; H which, combined with (2.3.10), gives (2.3.5). The proof is thus complete.
h
The following lemma is the new argument on the large-time behavior of radiative term I(x, t; ν, ω). Lemma 2.3.3. If assumptions in theorem 2.1.1 hold, then we have lim kI ðtÞkH 2 ¼ 0:
ð2:3:11Þ
t! þ 1
Proof. By (2.2.76) and (2.1.6), the direct computation yields Z Z Z 2 d d 1 þ1 kI x ðtÞk2 ¼ Ix dxdm dx dt dt 0 S1 0 Z 1 Z þ1 Z Z þ 1 Z ¼2 Ix dxdm Ixt dxdm dx 0
Z C1 0
Z C1
0
S1
0
1
1
Z Z
þ1
S1
0 þ1 0
Z
0
S1
jIxt jdxdm dx
Z
1 jvx S þ gSt jdxdm dx ¼: A3 þ B3 : S1 x
We denote Z
1 A3 ¼
vx S dxdmdx x 1 0 0 S Z 1 Z þ1 Z
1 b þ D: b ¼
vx ðra ðB I Þ þ rs ðI~ I ÞÞ dxdmdx ¼: C S1 x 0 0 Z
1
Z
þ1
ð2:3:12Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
51
Using (2.1.18), lemmas 2.2.7–2.2.9 and the Young inequality, we can derive Z 1 Z þ1 Z
1 b C
vx ra ðB I Þ dxdmdx S1 x 0 0 Z 1 Z þ1 Z 1 ðjxjha þ 1 f ðm; xÞ þ jxjgðm; xÞI Þdxdmdx C1 jvx j jxj 1 0 0 S Z 1 Z 1 C1 jvx jdx C1 vx2 dx þ C1 ; 0
1
Z
0
Z
1 b D
vx rs ðI~ I Þ dxdmdx x 1 S 0 0 Z 1 Z þ1 Z 1 jxjkðm; xÞjI~ I jdxdmdx C1 jvx j jxj 1 S 0 0 Z 1 Z 1 Z Z þ1 Z C1 jvx j I dxdmdx C1 jvx jdx C1 Z
þ1
0
S1
0
0
1 0
vx2 dx þ C1 :
We denote Z
1
gSt dxdmdx x 1 S 0 0 Z 1 Z þ 1 Z nh i
g ¼ ðra Þg vx þ ðra Þh ht ðB I Þ þ ra ðBh ht It Þ
0 S1 x h 0 i o
þ ðrs Þg vx þ ðrs Þh ht ðI~ I Þ þ rs ðI~ I Þt dxdmdx Z
B3 ¼
1
Z
þ1
¼: E þ F; where Z E¼
Z nh 6 i o X
g
ðra Þg vx þ ðra Þh ht ðB I Þ þ ra ðBh ht It Þ dxdmdx ¼: Pi ;
0 0 S1 x i¼1 Z 1 Z þ 1 Z nh i o
g ðrs Þg vx þ ðrs Þh ht ðI~ I Þ þ rs ðI~ I Þt dxdmdx: F ¼:
x 1 0 0 S 1
Z
þ1
Using (2.1.18), lemmas 2.2.7–2.2.9 and the Young inequality, we can conclude Z þ1 Z Z 1 1 jðra Þg Bjdxdmdx jvx j jP1 j C1 0 0 S 1 jxj Z 1 Z þ1 Z 1 jxjhðm; xÞdxdmdx C1 jvx j jxj 1 S 0 0 Z 1 Z 1 C1 jvx jdx C1 vx2 dx þ C1 : 0
0
1D Radiative Fluid and Liquid Crystal Equations
52
Analogously, by lemmas 2.2.7–2.2.9, Z 1 Z þ1 Z jvx j jP2 j C1
1 jðra Þg I jdxdmdx S 1 jxj 0 0 Z 1 Z 1 C1 jvx jdx C1 vx2 dx þ C1 ; 0
Z
Z
1
þ1
0
Z
1 jðra Þh jBdxdmdx jxj 0 0 Z 1 Z 1 C1 jht jdx C1 h2t dx þ C1 ;
jP3 j C1
ht
S1
0
Z
1
Z
Z
0
þ1
Z
Z
0
þ1
1 jðra Þh I jdxdmdx S 1 jxj 0 0 Z 1 Z 1 C1 jht jdx C1 h2t dx þ C1 ;
jP4 j C1
jht j
0
Z
1
1 jra Bh jdxdmdx 0 0 S 1 jxj Z 1 Z 1 C1 jht jdx C1 h2t dx þ C1 ;
jP5 j C1
0
Z
1
jht j
Z
þ1
0
0
0
Z
1 ra jIt jdxdmdx jP6 j C1 jxj 1 S 0 0 Z 1 Z þ1 Z C1 þ It2 dxdmdx: S1
Now we estimate F as follows, by lemmas 2.2.7–2.2.9, Z 1 Z þ1 Z Z 1 Z þ1 Z g g jðrs Þg vx kI~ I jdxdmdx þ jðrs Þh ht kI~ I jdxdmdx F jxj jxj 1 1 0 0 0 0 S S Z 1 Z þ1 Z 3 X g rs jðI~ I Þt jdxdmdx ¼: Mi : þ 0 0 S 1 jxj i¼1 By (2.1.18) and lemmas 2.2.7–2.2.9, we deduce Z 1 Z þ1 Z g jðrs Þg ~ jvx j M1 I I jdxdmdx S 1 jxj 0 0 Z 1 Z 1 Z þ1 Z C1 jvx j jI jdxdmdx C1 vx2 dx þ C1 ; 0
Z M2 C1
1
Z
0
þ1
jht j
0
Z
M3 C1 þ C1 0
Z
S1
0 1
Z 0
S1
þ1
Z
0
jI jdxdmdx C1 0
Z
S1
It2 dxdmdx:
1
h2t dx þ C1 ;
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
53
Inserting all previous estimates into (2.3.12) implies d kI x ðtÞk2 C1 ðkvx ðtÞk2 þ kht ðtÞk2 þ kIt k2L2 ðS 1 R þ XÞ Þ þ C1 ; dt
ð2:3:13Þ
which, together with lemma 1.1.2, (2.2.41), (2.2.64), (2.2.65) and (2.2.78), yields lim kI x ðtÞk2 ¼ 0:
t! þ 1
From (2.1.6), we derive Z þ 1 Z 2 Z ¼ I dxdm kI xx ðtÞk2 ¼ xx
2 1 ðgx S þ gSx Þdxdm S1 S1 x 0 0 Z þ 1 Z 2 Z þ 1 Z 2 1 1 gx Sdxdm gSx dxdm C1 þ C1 x x 1 1 0 0 S S þ1
Z
¼: N1 þ N2 : Using (2.1.18) and lemmas 2.2.4–2.2.9, we deduce Z 1 Z þ1 Z 2 1 ½ra ðB I Þ þ rs ð~I I Þdxdm dx g2x N1 C 1 0 0 S1 x C1 kgx ðtÞk2 ; Z
Z
ð2:3:14Þ
ð2:3:15Þ
ð2:3:16Þ
Z
1 ððr1 Þg gx þ ðra Þh hx ÞðB I Þ þ ra ðBh hx I Þ 0 0 S1 x 2 þ ððrs Þg gx þ ðrs Þh hx ÞðI~ I Þ þ rs ðI~ I Þx dxdm dx
N2 C 1
1
þ1
C1 ðkgx ðtÞk2 þ khx ðtÞk2 þ kI x ðtÞk2 Þ:
ð2:3:17Þ
Inserting (2.3.16) and (2.3.17) into (2.3.15) and using (2.3.1), (2.3.10) and (2.3.14), we get lim kI xx ðtÞk ¼ 0:
t! þ 1
ð2:3:18Þ
Thus (2.3.11) follows from (2.3.14), (2.3.18).
h
Proof of Theorem 2.1.1. Combining lemmas 2.2.1–2.2.8 and 2.3.1–2.3.3, we can complete the proof of theorem 2.1.1. h
2.4
Global Existence and Uniform-in-Time Estimates in H2
This section will prove the global existence of solutions and uniform-in-time estimates in H2 . The next lemma concerns the uniform-in-time global (in time) positive lower bound (independent of t) of the absolute temperature θ.
1D Radiative Fluid and Liquid Crystal Equations
54
Lemma 2.4.1. If assumptions in theorem 2.1.1 hold, then the generalized global solution ðgðtÞ; vðtÞ; hðtÞ; I ðtÞÞ to the problem (2.1.3)–(2.1.6) and (2.1.11)–(2.1.14) satisfies for all (x, t) 2 [0, 1] × [0, +∞), 0\C11 hðx; tÞ:
ð2:4:1Þ
Proof. We prove (2.4.1) by contradiction. If (2.4.1) is not true, that is, inf
ðx;tÞ2½0; 1½0; þ 1Þ
hðx; tÞ ¼ 0;
then there exists a sequence (xn, tn) 2 [0, 1] × [0, +∞) such that as n → +∞, hðxn ; tn Þ ! 0:
ð2:4:2Þ
If sequence {tn} has a subsequence, denoted also by tn, converging to +∞, then by the asymptotic behavior results in theorem 2.1.1, we know that as n → +∞, hðxn ; tn Þ ! h [ 0 which contradicts (2.4.2). If sequence {tn} is bounded, i.e., there exists constant M > 0, independent of n, such that for any n = 1, 2, 3,…, 0 < tn ≤ M. Thus there exists point (ðx ; t Þ, t*) 2 [0, 1] × [0, M] such that ðxn ; tn Þ ! ðx ; t Þ as n → +∞. On the other hand, by (2.4.2) and the continuity of solutions in lemmas 2.2.1 and 2.2.2, we conclude that hðxn ; tn Þ ! hðx ; t Þ ¼ 0 as n ! þ 1, which contradicts (2.2.1). Thus the proof is complete. h Lemma 2.4.2. If assumptions in theorem 2.1.2 hold, then the following estimates hold for all t > 0, Z t ðkvxt k2 þ khxt k2 ÞðsÞds C2 ; ð2:4:3Þ kht ðtÞk2 þ kvt ðtÞk2 þ 0
Z 2
t
2
kvxx ðtÞk þ khxx ðtÞk þ
ðkvxxx k2 þ khxxx k2 ÞðsÞds C2 ;
ð2:4:4Þ
kgxx ðsÞk2 ds C2 :
ð2:4:5Þ
0
Z 2
kgxx ðtÞk þ
t
0
Proof. Differentiating (2.1.4) with respect to t, multiplying the result by vt and integrating over (0, 1), we infer that d 1 kvt ðtÞk2 þ C11 kvxt ðtÞk2 kvxt ðtÞk2 þ C1 ðkvx ðtÞk2 þ kvx ðtÞk4L4 þ kht ðtÞk2 Þ dt 2C1 1 kvxt ðtÞk2 þ C1 ðkvxx ðtÞk2 þ kht ðtÞk2 Þ 2C1
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
which, together with lemmas 2.2.1–2.2.8, yields Z t Z t 2 2 ðkvxx k2 þ kht k2 ÞðsÞds C2 : kvxt k ðsÞds C2 þ C1 kvt ðtÞk þ 0
55
ð2:4:6Þ
0
Differentiating (2.2.42) with respect to x, using (2.1.3) (ηtxx = vxxx), we see that @ gxx l ð2:4:7Þ pg gxx ¼ vtx þ Eðx; tÞ @t g with Eðx; tÞ ¼ ðpgg g2x þ 2phg hx gx þ phh h2x Þ þ ph hxx 2l0 vx g2x =g3 þ 2l0 gx vxx =g2 : Multiplying (2.4.7) by ηxx/η, and by the Young inequality, lemmas 2.2.1–2.2.3 and (2.1.18), we can deduce that 2 2 d gxx ðtÞ þ C 1 gxx ðtÞ 1 dt g g 2 1 gxx þ C1 ðkhx ðtÞk4 4 þ kgx ðtÞk4 4 þ kvxt ðtÞk2 L L 4C1 g 2 þ khxx ðtÞk2 þ vx g2x ðtÞ Þ 2 1 gxx ðtÞ þ C2 ðkhxx ðtÞk2 þ kgx ðtÞk2 þ kvxt ðtÞk2 Þ ð2:4:8Þ 2C1 g which, combined with lemmas 2.2.1–2.2.8, gives Z t kgxx ðtÞk2 þ kgxx ðsÞk2 ds C2 ; 8t [ 0:
ð2:4:9Þ
0
By the embedding theorem, (2.1.4), (2.1.5) and (2.4.6), we conclude for all t > 0, kvx kL1 C1 kvxx k C1 ðkvx k þ khx k þ kgx k þ kvx kÞ C1 ; Z 0
t
Z 2
kvxxx k ds C1
t
ðkvtx k2 þ khxx k2 þ kgxx k2 þ kvxx k2 Þds C2 :
ð2:4:10Þ ð2:4:11Þ
0
Using equation (2.1.5), lemmas 2.2.1–2.2.8, (2.3.8), the Gagliardo–Nirenberg interpolation inequality and the Young inequality, we have ð2:4:12Þ khxx ðtÞk C1 ðkht ðtÞk þ gðSE ÞR Þ C1 ðkht ðtÞk þ 1Þ: Differentiating (2.1.5) with respect to t, multiplying the result by θt and integrating over (0, 1), we infer that for any ε > 0,
1D Radiative Fluid and Liquid Crystal Equations
56
d pffiffiffiffiffi 2 k eh ht ðtÞk þ C11 khxt ðtÞk2 dt n
ekhxt ðtÞk2 þ C1 khx ðtÞk2 þ kvx ðtÞk2 þ kht ðtÞk3L3 þ kht ðtÞk2 1
1
þ kvxt ðtÞk2 þ ðkht ðtÞk þ kht ðtÞk2 khtx ðtÞk2 Þkhxt ðtÞk 2 o þ C1 ½gðSE ÞR t :
ð2:4:13Þ
Integrating (2.4.12) with respect to t and using lemmas 2.2.1–2.2.8 and the Young inequality, we derive for any ε > 0, Z t 2 kht ðtÞk þ khxt ðsÞk2 ds 0 Z t Z t 5 1 2 C2 þ e ðkht k2 khtx k2 þ kht k3 ÞðsÞds khxt ðsÞk ds þ C1 0 0 Z t 2 ½gðSE Þ ðsÞds þ C1 R t 0 Z t Z t 4 2 ½gðSE Þ 2 ðsÞds 3 khxt ðsÞk ds þ C1 sup kht ðsÞk þ C1 C2 þ e R t 0st
0
Z C2 þ e
0
t
1 khxt ðsÞk2 ds þ sup kht ðsÞk2 þ C1 2 0st
Z
0 t
0
½gðSE Þ 2 ðsÞds: R t
ð2:4:14Þ
2 Rt Noting that the new radiative term 0 ½gðSE ÞR t ðsÞds, we need to obtain the uniform-in-time estimate. From (2.2.41), (2.2.46), (2.2.65) and (2.2.78), we can derive Z t ½gðSE Þ 2 ðsÞds R t 0
Z tZ
1
½vx ðSE ÞR þ g½ðSE ÞR t 2 dxds 0 Z t Z 1 Z þ1 Z C1 vx2 ra ðB I Þ þ rs ðI~ S1 0 0 0 Z t Z 1 n Z þ1 Z ¼
0
þ C1
0
0
0
S1
2 I Þdxdm dxds
½ðra Þg vx þ ðra Þh ht ðB I Þ þ ra ðBh ht It Þ
o2 I I Þ þ rs ðI~ I Þt dxdm dxds þ ½ðrs Þg vx þ ðrs Þh ht ð~ Z t Z t Z 1 Z þ1 Z C1 ðkvx k2 þ kht k2 ÞðsÞds þ C1 It2 dxdmdxds 0
0
0
0
S1
ð2:4:15Þ
C1 :
Inserting (2.2.15) into (2.2.14), then taking supremum in t on the left-hand side of (2.2.14), picking ε > 0 small enough, we can get for all t > 0, Z t ð2:4:16Þ kht ðtÞk2 þ khxt ðsÞk2 ds C2 ; 0
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
57
which, together with (2.2.12), implies khxx ðtÞk C2 :
ð2:4:17Þ
Differentiating (2.1.5) with respect to x, using the Young inequality, the Gagliardo–Nirenberg interpolation and the Poincaré inequality and lemmas 2.2.1– 2.2.8, (2.2.16), (2.2.17) and (2.4.5), we deduce Z t Z t ðkgx k2 þ kgxx k2 þ kvx k2 þ kvxx k2 þ kht k2 khxxx ðsÞk2 ds C2 0 0 Z t ½gðSE Þ 2 ðsÞds þ khxt k2 ÞðsÞds þ C2 R x 0 Z t ½gðSE Þ 2 ðsÞds: C2 þ C2 ð2:4:18Þ R x 0
The same estimate as (2.4.16) yields Z t Z tZ 1 ½gðSE Þ 2 ðsÞds ¼ ðgx ðSE ÞR þ g½ðSE ÞR x Þ2 dxds R x 0 0 0 Z t C1 ðkgx k2 þ khx k2 ÞðsÞds 0
Z þ C1
þ1
Z
0
S1
2 jIx jdxdm
L1 ðQt Þ
C1 ; which, together with (2.4.18), implies that for all t > 0, Z t khxxx ðsÞk2 dxds C2 :
ð2:4:19Þ
ð2:4:20Þ
0
Thus (2.4.3), (2.4.4) follow from (2.4.6), (2.4.16), (2.4.17) and (2.4.20). The proof follows immediately. h The following two lemmas are the new arguments on the uniform-in-time estimates of radiative term I(x, t; ν, ω). Lemma 2.4.3. There holds that for all t > 0, Z þ 1 Z jIt jdxdm 1 0
S
L1 ðQt Þ
C2 :
ð2:4:21Þ
Proof. Using (2.1.18), the Young inequality, lemmas 2.2.5 and 2.2.9, we derive from (2.2.83)
1D Radiative Fluid and Liquid Crystal Equations
58 Z
þ1
Z S1
0
Z
jA2 jdxdm þ1 Z Z
x
Z
y
vx ðra þ rs þ ðra þ rs Þg Þ 0 0 x x
g ht
ðra B þ rs I~Þdy dxdm þ ðra þ rs Þh dz x x Z þ 1 Z h Z x Z y vx
ðra þ rs þ ðra þ rs Þg Þ C1
0 0 x x S1 Z Z x 2 i x 2 ht g 2 2
2 ~2 þ ðra þ rs Þh dz dy þ r B dy þ r dy I
dxdm a s 2 x 0 x 0 Z 1 C1 ðvx2 þ h2t Þdx C2 :
C1
S1
ð2:4:22Þ
0
Z
Analogously, Z þ1 Z jB2 jdxdm C1
0
Z h Z
g ðra Þg vx B x x 0 0 S1 i
þ ðra Þh ht B þ rBh ht þ ðrs Þg I~vx þ ðrs Þh ht ~I þ rs I~t dy dxdm Z 1 Z x Z þ1 Z
g ~ ðjvx j þ jht jÞdx þ C1 C1
rs It dxdmdy S1 x 0 0 0 Z x Z þ1 Z C2 þ C1 jIt jdxdmdy;
S1
þ1
0
x
v
x
ðra B þ rs I~Þ þ
S1
0
which, together with (2.4.22) and (2.4.18) and using the Gronwall inequality, implies Z þ1 Z jIt jdxdm C2 : S1
0
Thus the proof is hence complete.
h
Lemma 2.4.4. If assumptions in theorem 2.1.2 hold, then there holds that kI xxx ðtÞk C2 :
ð2:4:23Þ
Proof. The elementary computation yields Z 1 Z þ1 Z 2 Ixxx dxdm dx kI xxx ðtÞk2 ¼ 0
Z
Z
0
Z
S1
2 1 ðgxx S þ 2gx Sx þ gSxx Þdxdm dx 0 0 S1 x Z 1 h Z þ 1 Z 2 Z þ 1 Z 1 2 1 gxx Sdxdm þ gx Sx dxdm C1 S1 x S1 x 0 0 0 3 Z þ1 Z 1 2 i X gSxx dxdm dx ¼: þ Ji : 0 S1 x i¼1 ¼
1
þ1
ð2:4:24Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
59
Employing the Gagliardo–Nirenberg interpolation inequality and using (2.1.18), lemma 2.2.9 and (2.4.5), we conclude Z 1 Z þ1 Z 2 1 gxx Sdxdm dx J1 C1 S1 x 0 0 Z 1 Z þ1 Z 2 1 ½ra ðB I Þ þ rs ðI~ I Þdxdm dx C1 g2xx S1 x 0 0 Z 1 g2xx dx C2 ; C1 ð2:4:25Þ 0
Z
1
J2 C1
Z
0
þ1
0
Z
1 n gx ½ðra Þg gx þ ðra Þh hx ðB I Þ S1 x
o 2 þ ra ðBh hx Ix Þ þ ½ðrs Þg gx þ ðrs Þh hx ðI~ I Þ þ rs ðI~ I Þx dxdm dx Z 1 ðg4x þ g2x h2x þ g2x Þdx C1 0 Z 1 C1 max g2x ðg2x þ h2x Þdx þ C1 X
0
C1 ðkgx kkgxx k þ kgx k2 Þ þ C1
ð2:4:26Þ
C2 :
Analogously, we infer from (2.1.18), (2.4.4), (2.4.5) and (2.2.85) that Z 1 Z þ1 Z gn ½ðra Þg gx þ ðra Þh hx ðB I Þ J3 C1 S1 x 0 0 2 o þ ra ðBh hx Ix Þ þ ½ðrs Þg gx þ ðrs Þh hx ð~ I I Þ þ rs ðI~ I Þx dxdm dx x Z 1 C1 ðg4x þ h4x þ g2x h2x þ g2xx þ h2xx þ I 2xx Þdx 0
Z
C1 ðkgx kkgxx k þ kgx k2 þ khx kkhxx k þ khx k2 Þ 0
1
ðg2x þ h2x Þdx þ C2
C2 ; which, along with (2.4.25) and (2.4.26), gives (2.4.23). The proof is thus complete. h By lemmas 2.4.1–2.4.4, we conclude that the global existence of solutions ðgðtÞ; vðtÞ; hðtÞ; I ðtÞÞ exists in H2 such that for all t > 0, kðgðtÞ; vðtÞ; hðtÞ; I ðtÞÞkH2 C2 :
ð2:4:27Þ
1D Radiative Fluid and Liquid Crystal Equations
60
2.5
Asymptotic Behavior of Solutions in H2
This section will derive the asymptotic behavior of global solutions ðg; v; h; I Þ in H2 based on uniform-in-time estimates in section 2.4. Lemma 2.5.1. If assumptions in theorem 2.1.2 hold, then we have lim kgðtÞ gkH 2 ¼ 0;
ð2:5:1Þ
lim kvðtÞkH 2 ¼ 0;
ð2:5:2Þ
t! þ 1
t! þ 1
where g ¼
R1 0
gðy; tÞdy ¼
R1 0
g0 ðyÞdy:
Proof. Applying lemma 1.1.2 to (2.4.8) and using lemmas 2.2.1–2.2.8 and 2.4.1, 2.4.2, we get, as t → ∞, kgxx k ! 0:
ð2:5:3Þ
Thus (2.5.1) follows from (2.5.3) and (2.3.1) in lemma 2.3.1. Applying lemma 1.1.2 to (2.4.6), using lemmas 2.2.1–2.2.8, we conclude, as t → ∞, kvt ðtÞk ! 0 which, with (2.4.10), gives, as t → ∞, kvxx ðtÞk ! 0:
ð2:5:4Þ
Then (2.5.2) follows from (2.5.3) and (2.3.2) in lemma 2.3.1. The proof is now complete. h Since radiative term (SE)R is present in our model, whose uniform-in-time estimates are more complicated than those in Qin [104], we have to estimate a new 2 radiative term ðSE ÞR in the next lemma. Lemma 2.5.2. If assumptions in theorem 2.1.2 hold, then we have lim hðtÞ h H 2 ¼ 0; t! þ 1
where h [ 0 is determined by eðg; hÞ ¼
R1 0
ð2:5:5Þ
ð12 v02 þ eðg0 ; h0 Þ þ FR ð0ÞÞdx.
Proof. By (2.4.13), we can get d pffiffiffiffiffi 2 k eh ht ðtÞk þ C11 khxt ðtÞk2 C2 ðkhx ðtÞk2 þ kvx ðtÞk2 þ kht ðtÞk2 þ kvxt ðtÞk2 dt 2 þ ½gðSE ÞR t Þ; which, combined with (2.2.41), (2.2.62), (2.2.64), (2.2.65), (2.4.3), (2.4.15), and lemma 1.1.2, we can conclude lim kht ðtÞk2 ¼ 0:
t! þ 1
ð2:5:6Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
61
Using (2.1.18) and lemma 2.2.9, we can deduce Z 1 Z þ1 Z Z þ 1 Z d ðSE Þ 2 ¼ 2 Sdxdm S dxdm dx t R dt S1 S1 0 0 0 C2 ð1 þ kvx ðtÞk2 þ kht ðtÞk2 Þ; which, together with (2.2.41), (2.2.64) and lemma 1.1.2, implies 2 lim ðSE ÞR ¼ 0:
ð2:5:7Þ
t! þ 1
By equation (2.1.5), we see that
khxx ðtÞk C2 ðkvx ðtÞk þ kht ðtÞk þ khx ðtÞk þ ðSE ÞR Þ;
which, along with (2.3.2), (2.3.10), (2.5.6) and (2.5.7), gives lim khxx ðtÞk ¼ 0:
ð2:5:8Þ
t! þ 1
Thus (2.5.5) follows from (2.5.7) and (2.5.8). The proof is then complete.
h
A new asymptotic behavior of solutions of radiative term I(x, t; ν, ω) in H will be given in the following lemma. 3
Lemma 2.5.3. If assumptions in theorem 2.1.2 hold, then we have lim kI ðtÞkH 3 ¼ 0:
t! þ 1
Proof. By (2.1.6), we denote Z þ 1 Z 2 Z þ 1 Z 2 1 1 2 gxx Sdxdm þ C1 gx Sx dxdm kI xxx ðtÞk C1 x x 1 1 S S 0 0 Z þ 1 Z 2 1 gSxx dxdm þ ¼: R1 þ R2 þ R3 : 0 S1 x
ð2:5:9Þ
ð2:5:10Þ
Similarly, by (2.1.18), lemma 2.2.9 and the more delicated computation, we see that R1 C1 kgxx ðtÞk2 ;
ð2:5:11Þ
R2 C1 ðkgx ðtÞk2 þ khx ðtÞk2 Þ;
ð2:5:12Þ
R3 C1 ðkgxx ðtÞk2 þ khxx ðtÞk2 þ kI xx ðtÞk2 Þ:
ð2:5:13Þ
Plugging (2.5.11)–(2.5.13) into (2.5.10) and using (2.3.1), (2.3.5), (2.3.11), (2.5.1), (2.5.5), (2.5.8) and (2.3.18), we obtain
1D Radiative Fluid and Liquid Crystal Equations
62
lim kI xxx ðtÞk2 ¼ 0;
t! þ 1
h
which, combined with (2.3.11), yields (2.5.9).
Proof of Theorem 2.1.2. Combining lemmas 2.4.1–2.4.4 and 2.5.1–2.5.3, we can complete the proof of theorem 2.1.2. h
2.6
Global Existence and Uniform-in-Time Estimates in H4
In this section, we shall first establish the global existence solutions in H4 . Lemma 2.6.1. If assumptions in theorem 1.1.3 hold, then there holds that for any ðg0 ; v0 ; h0 ; I 0 Þ 2 H4 , the following estimates hold for any t > 0, kvxt ðx; 0Þk þ khxt ðx; 0Þk C3 ;
ð2:6:1Þ
kvtt ðx; 0Þk þ khtt ðx; 0Þk þ kvxxt ðx; 0Þk þ khxxt ðx; 0Þk C4 ;
ð2:6:2Þ
Z kvtt ðtÞk2 þ
t
Z kvxtt ðsÞk2 ds C4 þ C4
0
Z 2
khtt ðtÞk þ 0
t
t
khxxt ðsÞk2 ds;
ð2:6:3Þ
0
2
3
1
Z
t
þ C2 e khxxt ðsÞk2 ds 0 Z t ðkvxtt k2 þ kvxxt k2 ÞðsÞds: þ C1 e
khxtt ðsÞk ds C4 e
ð2:6:4Þ
0
Proof. Using theorems 2.1.1 and 2.1.2, we derive from (2.1.4) kvt ðtÞk C1 ðkgx ðtÞk þ khx ðtÞk þ kvx ðtÞkL1 kgx ðtÞk þ kvxx ðtÞkÞ C2 ðkvx ðtÞkH 1 þ kgx ðtÞk þ khx ðtÞkÞ:
ð2:6:5Þ
Differentiating (2.1.4) with respect to x and using theorems 2.1.1 and 2.1.2, we deduce kvxt ðtÞk C2 ðkvx ðtÞkH 2 þ kgx ðtÞkH 1 þ khx ðtÞkH 1 Þ
ð2:6:6Þ
or kvxxx ðtÞk C2 ðkvðtÞkH 2 þ kgx ðtÞkH 1 þ khx ðtÞkH 1 þ kvxt ðtÞkÞ:
ð2:6:7Þ
Similarly, differentiating (2.1.4) with respect to x twice, using theorems 2.1.1 and 2.1.2 and the embedding theorem, we get
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
63
kvxxt ðtÞk C2 ðkgx ðtÞkH 2 þ kvx ðtÞkH 3 þ khx ðtÞkH 2 þ kvx ðtÞkL1 kgxxx ðtÞk þ kgx ðtÞkL1 kvxxx ðtÞk þ kvxx ðtÞkL1 kgxx ðtÞkÞ C2 ðkgx ðtÞkH 2 þ khx ðtÞkH 2 þ kvx ðtÞkH 3 Þ
ð2:6:8Þ
or kvxxxx ðtÞk C2 ðkgx ðtÞkH 2 þ kvx ðtÞkH 2 þ khx ðtÞkH 2 þ kvxxt kÞ:
ð2:6:9Þ
Using theorems 2.1.1, 2.1.2, (2.1.18) and the Hölder inequality, we have Z
1 0
Z ½gðSE ÞR 2x dx ¼
1
0
Z Z
2
Z
1
C1 C1
gðSE ÞR þ g½ðSE ÞR x g2x ðSE Þ2R dx þ C1
0 1
kgx k2 0 Z 1Z
Z
þ C1
0
þ1
0 þ1
0
Z S1
Z n S1
0
1
dx
½ðSE ÞR 2x dx
2 ra ðB I Þ þ rs ðI~ I Þdxdm dx
½ðra Þg gx þ ðra Þh hx ðB I Þ þ ra ðBh hx Ix Þ
o 2 I I Þx dxdm dx þ ½ðrs Þg gx þ ðrs Þh hx ðI~ I Þ þ rs ð~ Z 1 Z þ1 Z Z þ1 Z ra B 2 dxdm þ I 2 dxdm dx C1 kgx k2 0
S1
0
Z
1
þ C1
g2x
h Z
0 þ1
Z
þ1
Z
þ1
Z
S1
0
0
2 Z ðra Þg Bdxdm þ
S1 þ1
Z S1
0
2 ðra Þg Idxdm
Z 1 h Z þ 1 Z 2 i 2 þ ðra Þg ðI~ I Þdxdm dx þ C1 h2x ðra Þh Idxdm 0 0 0 S1 S1 Z þ1 Z 2 Z þ 1 Z 2 þ ðra Þh Bdxdm þ ra Bh dxdm Z
þ
Z
S1
0
S1
0
Z þ C1 0
1
Z
0
0
S1
Z 2 i ðrs Þh ðI~ I Þdxdm dx þ C1 þ1
Z S1
2 rs ðI~ I Þx dxdm dx
0
1
Z
þ1
0
Z
2 ra Ix dxdm dx S1
C1 ðkgx ðtÞk2 þ khx ðtÞk2 þ kI x ðtÞk2 Þ;
i.e.,
½gðSE Þ C1 ðkgx ðtÞk þ khx ðtÞk þ kI x ðtÞkÞ: R x
ð2:6:10Þ
Similarly, we can derive ½gðSE Þ C2 ðkgx ðtÞk 1 þ khx ðtÞk 1 þ kI x ðtÞk 1 Þ R xx H H H
ð2:6:11Þ
and
½gðSE Þ C2 ðkvx ðtÞk þ kht ðtÞk þ kI t ðtÞkÞ R t
ð2:6:12Þ
1D Radiative Fluid and Liquid Crystal Equations
64
or
½gðSE Þ C2 ðkvx ðtÞk þ kht ðtÞk þ kIt ðtÞk 2 R t L ðXð1;1ÞR þ Þ Þ:
ð2:6:13Þ
From (2.1.5) and theorems 2.1.1 and 2.1.2 it follows that kht ðtÞk C1 ðkvx ðtÞk þ kvx ðtÞkL1 kvx ðtÞk
þ ðkgx ðtÞk þ khx ðtÞkÞkhx ðtÞkL1 þ khxx ðtÞk þ ðSE ÞR Þ C1 ðkhx ðtÞk 1 þ kvx ðtÞk 1 þ ðSE Þ Þ: H
H
R
ð2:6:14Þ
Differentiating (2.1.5) with respect to x, and using theorems 2.1.1 and 2.1.2, we arrive at khxt ðtÞk C2 ðkht ðtÞk þ khx ðtÞkH 2 þ kgx ðtÞkH 1 þ kvxx ðtÞk þ ½gðSE ÞR x Þ C2 ðkgx ðtÞkH 1 þ kvx ðtÞkH 1 þ khx ðtÞkH 2 þ kI x ðtÞkÞ
ð2:6:15Þ
or khxxx ðtÞk C2 ðkgx ðtÞkH 1 þ khx ðtÞkH 1 þ kvx ðtÞkH 1 þ khxt ðtÞk þ kI x ðtÞkÞ:
ð2:6:16Þ
Differentiating (2.1.5) with respect to x twice, using theorems 2.1.1 and 2.1.2 and the embedding theorem, we conclude khxxt ðtÞk C2 ðkgx ðtÞkH 2 þ kvx ðtÞkH 2 þ khx ðtÞkH 3 þ ½gðSE ÞR xx Þ C2 ðkgx ðtÞkH 2 þ kvx ðtÞkH 2 þ khx ðtÞkH 3 þ kI x ðtÞkH 1 Þ;
ð2:6:17Þ
or khxxxx ðtÞk C2 ðkgx ðtÞkH 2 þ kvx ðtÞkH 2 þ khx ðtÞkH 2 þ khxxt ðtÞk þ kI x ðtÞkH 1 Þ: ð2:6:18Þ Differentiating (2.1.4) with respect to t, using (2.6.6), (2.6.8), (2.6.14) and (2.6.15), we have kvtt ðtÞk C2 ðkvx ðtÞkH 1 þ kgx ðtÞk þ kht ðtÞk þ khxt ðtÞk þ kvxt ðtÞk þ kvxxt ðtÞkÞ C2 ðkgx ðtÞkH 2 þ kvx ðtÞkH 3 þ khx ðtÞkH 2 þ kI x ðtÞkÞ:
ð2:6:19Þ
Analogously, we get khtt ðtÞk C2 ðkvx ðtÞk þ kgx ðtÞk þ kht ðtÞk þ khxt ðtÞk þ kvxt ðtÞk þ khx ðtÞkH 2 þ khxxt ðtÞk þ ½gðSE ÞR t Þ C2 ðkgx ðtÞkH 2 þ kvx ðtÞkH 3 þ khx ðtÞkH 2 þ kI x ðtÞkH 1 þ kI t ðtÞkÞ:
ð2:6:20Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
65
Thus by theorem 2.1.1, estimates (2.6.1) and (2.6.2) follow from (2.6.6), (2.6.8), (2.6.15), (2.6.17), (2.6.19) and (2.6.20). Differentiating (2.1.4) with respect to t twice, multiplying the result by vtt in L2(0, 1), performing an integration by parts and using the Young inequality and using theorems 2.1.1 and 2.1.2, we obtain 1d kvtt ðtÞk2 þ C21 kvxtt k2 C2 ðkvx ðtÞk2 þ kht ðtÞk2 þ khxt ðtÞk2 2 dt þ kvxt ðtÞk2 þ khtt ðtÞk2 Þ:
ð2:6:21Þ
Thus, by theorems 2.1.1 and 2.1.2, Z t Z t kvtt ðtÞk2 þ kvxtt ðsÞk2 ds C4 þ C2 khtt ðsÞk2 ds 0
0
which, together with (2.6.20), (2.6.13) and lemma 2.2.9, gives (2.6.3). Differentiating (2.1.6) with respect to t twice, multiplying the resulting equation by θtt in L2(0, 1), integrating by parts and using the Young inequality, we get Z 1 Z 1 Z 1d 1 jhx 2 eh htt dx ¼ hxtt dx ðehtt ht þ egtt vx Þhtt dx 2 dt 0 g tt 0 0 Z Z 1 3 1 vx eht h2tt dx eg þ p l vxtt htt dx 2 0 g 0 Z 1h vx i 2 egt p þ l vxt htt dx g t 0 Z 1 vx þ vx htt dx pþl g tt 0 Z 1 7 X ðgðSE ÞR Þtt htt dx ¼: Ai : ð2:6:22Þ 0
i¼1
Using theorems 2.1.1–2.1.3 and (2.6.1), (2.6.2), and the embedding theorem, we deduce for any ϵ 2 (0, 1), A1 C11 khttx ðtÞk2 þ C2 khtx ðtÞkL1 ðkvx ðtÞk þ kht ðtÞkÞhttx ðtÞ k ðtÞ khx ðtÞkL1 khxx ðtÞk þ C2 u tt ð2C1 Þ1 khttx ðtÞk2 þ C2 ðkvx ðtÞk2H 1 þ kht ðtÞk2 þ khtx ðtÞk2 þ kvtx ðtÞk2 þ khtt ðtÞk2 þ khtxx ðtÞk2 Þ;
ð2:6:23Þ
1D Radiative Fluid and Liquid Crystal Equations
66 Z
1
A2 C 1
½ðjvx j þ jht jÞ2 þ jvtx j þ jhtt jðjht j þ jvx jÞjhtt jdx
0
C1 khtt ðtÞkL1 ðkht ðtÞk þ kvx ðtÞkÞfðkvx ðtÞkL1 þ kht ðtÞkL1 Þ ðkvx ðtÞk þ kht ðtÞkÞ þ kvtx ðtÞk þ khtt ðtÞkg C2 ðkhtt ðtÞk þ khttx ðtÞkÞðkvx ðtÞkH 1 þ kht ðtÞk þ khtx ðtÞk þ kvtx ðtÞk þ khtt ðtÞkÞ khttx ðtÞk2 þ C2 1 ðkvx ðtÞk2H 1 þ kht ðtÞk2 þ khtx ðtÞk2 þ kvtx ðtÞk2 þ khtt ðtÞk2 Þ; Z
1
A3 C1 0
ð2:6:24Þ
ðjvx j þ jht jÞh2tt dx
C1 ðkhtt ðtÞk þ khttx ðtÞkÞðkvx ðtÞk þ kht ðtÞkÞkhtt ðtÞk ð2:6:25Þ
khttx ðtÞk2 þ C2 1 khtt ðtÞk2 ; A4 kvttx ðtÞk2 þ C2 1 khtt ðtÞk2 ;
ð2:6:26Þ
n A5 C2 kvx ðtÞkL1 khtt ðtÞk ðkvx ðtÞkL1 þ kht ðtÞkL1 Þðkvx ðtÞk þ kht ðtÞkÞ o þ kvtx ðtÞk þ khtt ðtÞk þ kvttx ðtÞk þ kvx ðtÞk C2 khtt ðtÞkðkvx ðtÞkH 1 þ kht ðtÞk þ khtx ðtÞk þ kvtx ðtÞk þ khtt ðtÞk þ kvttx ðtÞkÞ kvttx ðtÞk2 þ C2 1 ðkhtt ðtÞk2 þ kvx ðtÞk2H 1 þ kht ðtÞk2 þ kvtx ðtÞk2 þ khtx ðtÞk2 Þ
ð2:6:27Þ
and Z
1
A6 C 1
ðjvx j þ jht j þ jvtx j þ jvx j2 Þjvtx jjhtt jdx
0
C2 kvtx ðtÞk1=2 kvtxx ðtÞk1=2 ðkvx ðtÞk þ kht ðtÞk þ kvtx ðtÞkÞkhtt ðtÞk
ð2:6:28Þ
which implies Z t Z t 1=4 Z t 1=4 A6 ds C2 sup khtt ðsÞk kvtxx k2 ðsÞds kvtx k2 ðsÞds 0
0st
Z
0
1=2
t
0
ðkvx k2 þ kht k2 þ kvtx k2 ÞðsÞds 0 Z t sup khtt ðsÞk2 þ kvtxx k2 ðsÞds þ C2 3 : 0st
0
ð2:6:29Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
67
Now we estimate the last term A7. Using the Young inequality, we arrive at Z 1 ðgðSE ÞR Þtt htt dx A7 ¼ 0
Z
1
¼
ðvxt þ 2vx ½ðSE ÞR t þ g½ðSE ÞR tt Þhtt dx
0
Z C1
1
0
Z C1
Z 2 vxt dx þ C1
1
0
2 vxt dx
1
0
Z vx2 ½ðSE ÞR 2t dx þ C1 Z
þ C1 kvx k2L1
0
1
½ðSE ÞR 2t dx
1
0
Z h2tt dx þ C1 Z
1
þ C1 0
h2tt dx
0
1
½ðSE ÞR 2tt dx Z
1
þ C1 0
½ðSE ÞR 2tt dx;
which, using the interpolation inequality, (2.6.13) and theorems 2.1.1 and 2.1.2, yields A7 C1 ðkvxt ðtÞk2 þ kvx ðtÞk2 þ kht ðtÞk2 þ khtt ðtÞk2 Z 1 2 þ kIt ðtÞkL2 ðXð1;1ÞR þ Þ Þ þ C1 ½ðSE ÞR 2tt dx: 0
ð2:6:30Þ
Performing the Hölder inequality and the interpolation inequality, using (2.1.18) and theorems 2.1.1 and 2.1.2, we have 2 Z 1 Z 1 Z þ 1 Z ½ðSE ÞR 2tt dx ¼ ra ðB I Þ þ rs ðI~ I Þdxdm dx 0
0
Z ¼
S1
0
1
Z
0
þ1
tt
Z
ððra Þgg vx2 þ ðra Þhg ht vx þ ðra Þg vxt þ ðra Þhg vx ht
S1
0
þ ðra Þhh h2t þ ðra Þh htt ÞðB I Þ þ 2ððra Þg vx þ ðra Þh ht ÞðBh ht It Þ þ ra ðBhh h2t þ Bh htt Itt Þ þ ððrs Þgg vx2 þ ðrs Þhg ht vx þ ðrs Þg vxt þ ðrs Þhg vx ht þ ðrs Þhh h2t þ ðrs Þh htt ÞðI~ I ÞÞ þ ððrs Þg vx þ 2ðrs Þh ht Þ 2 ðI~ I Þt þ rs ðI~ I Þtt dxdm dx Z 1 2 C1 ðvx4 þ h2t vx2 þ vxt þ h4t þ h2tt þ vx4 Þdx 0
Z
1
þ C1 0
Z
þ1
Z
0
S1
Itt2 dxdmdx
C1 ðkvx ðtÞk2H 1 þ kvxt ðtÞk2 þ kht ðtÞk2H 1 þ khtt ðtÞk2 Z 1 Z þ1 Z þ C1 Itt2 dxdmdx: 0
Now we estimate we have
0
R1 R þ1 R 0
0
ð2:6:31Þ
S1
2 S 1 Itt dxdmdx.
Differentiating (2.2.83) with respect to t,
1D Radiative Fluid and Liquid Crystal Equations
68 Z
Itt ¼
Ry g
Z
hv
i 2 g g þ ðra þ rs Þ þ ððra þ rs Þg vx þ ðra þ rs Þh ht Þ dz x x x 0 x Z x Ry Z y v g g vx xt ðr þ r Þdz a s ðra þ rs Þ þ ððra þ rs Þg vx ðra B þ rs I~Þdy þ e xx x x 0 x x vx þ ðra þ rs Þh ht Þ þ ððra þ rs Þgg vx þ ðra þ rs Þgh ht vx þ ðra þ rs Þg vxt x Z x Ry g g ðr þ r Þdz 2 ðra B þ rs I~Þdy þ þ ðra þ rs Þhh ht þ ðra þ rs Þh htt Þdz e xx a s x 0 v v g x x ðra þ rs Þ þ ððra þ rs Þg vx þ ðra þ rs Þh ht Þ ðra B þ rs I~Þ x x x g It Þ dy þ ððra Þg vx B þ ðra Þh ht B þ ra Bh ht þ ðrs Þg vx I~ þ ðra Þh ht I~ þ rs ~ x Z x Ry g vx ðr þ r Þdz vxt þ ðra B þ rs I~Þ þ 2 ððra Þg vx B þ ðra Þh ht B þ ra Bh ht e xx a s x x 0 g ~ ~ ~ þ ðrs Þg vx I þ ðra Þh ht I þ rs It Þ þ ððra Þgg vx2 B þ ðra Þgh ht vx B þ ðra Þg vxt B x þ ðra Þg vx Bh ht þ ðra Þhg vx ht B þ ðra Þhh h2t B þ 2ðra Þh h2t Bh þ ðra Þg Bh ht þ ra Bhh h2t þ ra Bh htt þ ðrs Þ v 2 I~ þ 2ðrs Þ vx ht I~ þ ðrs Þ vxt I~ þ ðrs Þ h2 I~ þ 2ðrs Þ vx I~t x
e
ðra x x
þ rs Þdz
y
x
gg x
gh
þ 2ðrs Þh ht I~t þ rs I~tt Þ dy ¼:
4 X
g
hh t
g
ð2:6:32Þ
Di :
i¼1
Using the Hölder and the interpolation inequalities, (2.1.18) and theorems 2.1.1 and 2.1.2, we derive Z t Z þ1 Z Z tZ 1 2 D1 dxdmdx C1 ðvx4 þ h4t Þdxds 0
S1
0
0
Z
0
t
C1 0
Z
kvx k2L1
Z
þ C1
t
0
0
kht k2L1
1
vx2 dxds Z 0
1
h2t dxds
C2 ; Z tZ 0
0
þ1
Z S1
D22 dxdmdx
C1
Z tZ 0
0
ð2:6:33Þ 1
2 ðvxt þ vx4 þ vx2 h2t þ vx6 þ vx4 h2t
þ vx2 þ h4t þ vx2 h2tt Þdxds Z tZ 1 h2tt dxds; C2 þ C2 0
0
ð2:6:34Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas Z tZ 0
þ1
Z S1
0
D32 dxdmdx
C1
Z tZ 0
1
ðvx4 þ vx2 h2t þ h4t þ vx2 þ h2t Þdxds
0 tZ 1
Z
þ C2 0
Z
0
þ1
Z S1
0
It2 dxdmdxds ð2:6:35Þ
C2 ; Z tZ 0
þ1
Z S1
0
D42 dxdmdx
C1
69
Z tZ 0
Z
þ C2 0
1
2 ðvx4 þ vx2 h2t þ vxt þ h4t þ h2tt Þdxds Z þ1 Z Itt2 dxdmdyds
0 tZ x 0
Z tZ
C2 þ C2 0 Z tZ þ C2 0
S1
0 1
h2tt dxds x Z þ1 Z
0
0
S1
0
ð2:6:36Þ
Itt2 dxdmdyds:
Squaring (2.6.32) in both sides and inserting (2.6.33)–(2.6.36) into the resulting equation, we obtain Z t Z x Z t Z þ1 Z Z t Z þ1 Z Itt2 dxdmds C2 þ C2 Itt2 dxdmdsdy: khtt ðsÞk2 ds þ C2 0
0
S1
0
0
0
0
S1
ð2:6:37Þ For fixed t > 0, applying the Gronwall inequality to (2.6.37) implies Z t Z þ1 Z Z t Itt2 dxdmds C2 þ C2 khtt ðsÞk2 ds eC2 x S1 0 0 0 Z t C2 þ C2 khtt ðsÞk2 ds: 0
Integrating (2.6.38) over Ω with respect to x, we have Z t Z 1 Z þ1 Z Z t 2 Itt dxdmds C2 þ C2 khtt ðsÞk2 ds: 0
0
0
S1
ð2:6:38Þ
ð2:6:39Þ
0
Integrating (2.6.22) over (0, t), using (2.6.22), (2.6.39) and theorems 2.1.1 and 2.1.2, we obtain Z t Z t n o ðkvxxt k2 þ kvxtt k2 ÞðsÞds khtt ðtÞk2 þ khxtt ðsÞk2 ds C1 e sup khtt ðsÞk2 þ 0
0st
þ C4 e3 þ C2 e1
Z
0 t
ðkhtt ðsÞk2 þ khxxt k2 ÞðsÞds;
0
which, together with (2.2.78), (2.6.20), (2.6.13), lemma 2.2.9 and theorem 2.1.1, implies (2.6.4). Similarly, we can derive the same result for ω 2 (−1, 0). The proof is now complete. h
1D Radiative Fluid and Liquid Crystal Equations
70
Lemma 2.6.2. If assumptions in theorem 2.1.3 hold, then for any ðg0 ; v0 ; h0 ; I 0 Þ 2 H, the following estimates hold for all t > 0, Z t Z t ðkhxtt k2 þ kvxtt k2 ÞðsÞds; ð2:6:40Þ kvxt ðtÞk2 þ kvxxt ðsÞk2 ds C3 e6 þ C1 e2 0
0
Z
t
khxt ðtÞk2 þ
khxxt ðsÞk2 ds Z t C3 e6 þ C1 e2 kvxxt k2 þ khxtt k2 þ khxxx k2 khxt k2 0 þ kIx k2L2 ðR þ S 1 ;L2 ð0;1ÞÞ þ kIt k2L2 ðR þ S 1 ;L2 ð0;1ÞÞ ðsÞds: 0
ð2:6:41Þ
Proof. Differentiating (2.1.4) with respect to x and t, multiplying the resulting equation by vtx in L2(0, 1), and integrating by parts, we arrive at 1d kvtx ðtÞk2 ¼ B0 ðx; tÞ þ B1 ðtÞ 2 dt
ð2:6:42Þ
with Z B0 ðx; tÞ ¼
rtx vtx jx¼1 x¼0 ;
B1 ðtÞ ¼
1
rtx vtxx dx: 0
Employing theorems 2.1.1 and 2.1.2, the interpolation inequality and the Poincaré inequality, we get B0 C1 ðkvx ðtÞkL1 þ kht ðtÞkL1 Þðkux ðtÞkL1 þ khx ðtÞkL1 Þ þ kvxx ðtÞkL1 þ khtx ðtÞkL1 þ kvtxx ðtÞkL1 þ kux ðtÞkL1 kvtx ðtÞkL1 þ kvx ðtÞkL1 kvxx ðtÞkL1 þ kvx ðtÞk2L1 Þkvtx ðtÞkL1 C2 ðB01 þ B02 Þkvtx ðtÞk1=2 kvtxx ðtÞk1=2
ð2:6:43Þ
where B01 ¼ kvx ðtÞkH 2 þ kht ðtÞk þ khtx ðtÞk and B02 ¼ khtx ðtÞk1=2 khtxx ðtÞk1=2 þ kvtxx ðtÞk1=2 kvtxxx ðtÞk1=2 þ kvtxx ðtÞk þ kvtx ðtÞk1=2 kvtxx ðtÞk1=2 : Exploiting the Young inequality several times, we have that for any ϵ 2 (0, 1), C2 B01 kvtx ðtÞk1=2 kvtxx ðtÞk1=2
2 kvtxx ðtÞk2 þ C2 2=3 ðkvtx ðtÞk2 2 þ kvx ðtÞk2H 2 þ kht ðtÞk2 þ khtx ðtÞk2 Þ
ð2:6:44Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
71
and C2 B02 kvtx ðtÞk1=2 kvtxx ðtÞk1=2
2 kvtxx ðtÞk2 þ 2 ðkhtxx ðtÞk2 þ kvtxxx ðtÞk2 Þ 2 þ C2 6 ðkhtx ðtÞk2 þ kvtx ðtÞk2 Þ:
ð2:6:45Þ
Thus we infer from (2.6.43)–(2.6.45), theorems 2.1.1, 2.1.2 and lemma 2.4.1 B0 2 ðkvtxx ðtÞk2 þ kvtxxx ðtÞk2 þ khtxx ðtÞk2 Þ þ C2 6 ðkvx ðtÞk2H 2 þ kht ðtÞk2 þ khtx ðtÞk2 þ kvtx ðtÞk2 Þ which, with theorems 2.1.1 and 2.1.2, further leads to Z t Z t B0 ds 2 ðkvtxx k2 þ kvtxxx k2 þ khtxx k2 ÞðsÞds þ C2 6 ; 8t [ 0: 0
ð2:6:46Þ
ð2:6:47Þ
0
In the same manner, using theorems 2.1.1, 2.1.2, the embedding theorem, we get that for any ϵ 2 (0, 1), Z 1 2 n vtxx B 1 l0 dx þ C1 ðkvx ðtÞk þ kht ðtÞkÞðkux ðtÞkL1 þ khx ðtÞkL1 Þ u 0 þ kvxx ðtÞk þ khtx ðtÞk þ kux ðtÞkL1 kvtx ðtÞk þ kvx ðtÞkL1 kvxx ðtÞk o þ kvx ðtÞk2L1 kux ðtÞk kvtxx ðtÞk ð2C1 Þ1 kvtxx ðtÞk2 þ C2 ðkvx ðtÞk2H 1 þ kht ðtÞk2H 1 þ kvtx ðtÞk2 þ kux ðtÞk2 Þ
ð2:6:48Þ
which, with (2.6.42), (2.6.47), theorems 2.1.1, 2.1.2, and lemma 2.2.9, gives that for ϵ 2 (0, 1) small enough, Z t Z t ðkhtxx k2 þ kvtxxx k2 ÞðsÞds: ð2:6:49Þ kvtxx k2 ðsÞds C3 6 þ C1 2 kvtx ðtÞk2 þ 0
0
Differentiating (2.1.4) with respect to x and t, and using theorems 2.1.1 and 2.1.2, we deduce kvxxxt ðtÞk C1 kvttx ðtÞk þ C2 ðkvxx ðtÞkH 1 þ khx ðtÞkH 1 þ kgx ðtÞkH 1 þ kht ðtÞkH 2 Þ: ð2:6:50Þ Differentiating (2.1.5) with respect to x and t, multiplying the resulting equation by θxt, and integrating by parts, we get Z 1d 1 eh h2xt dx ¼ D0 þ D1 þ D2 þ D3 þ D4 þ D5 ð2:6:51Þ 2 dt 0
1D Radiative Fluid and Liquid Crystal Equations
72
where D0 ¼
jh x
D2 ¼
g Z 1 0
Z
Z
x¼1
hxt x¼0 ; D1 ¼ xt
1
0
jh x
g
xt
hxxt dx;
ðeg vx þ rvx Þxt hxt dx;
1 eht þ ehx htt hxt dx; 2 0 Z 1 Z 1 D4 ¼ ðgðSE ÞR Þxt hxt dx ¼ ½gðSE ÞR t hxxt dx ðgðSE ÞR Þt hxt jx¼1 x¼0 :
D3 ¼
1
ehxt ht þ
0
0
Similarly to (2.6.42)–(2.6.49), we infer D0 C2 ðkvx ðtÞkL1 þ kht ðtÞkL1 þ kvxx ðtÞkL1 þ khtx ðtÞkL1 þ kht ðtÞkL1 khxx ðtÞkL1 þ khtxx ðtÞkL1 þ khxx ðtÞkL1 Þkhtx ðtÞkL1 C2 ðD01 þ D02 ÞðD03 þ D04 Þ where 2 khtxx ðtÞk2 þ C2 2 ðkvx ðtÞk2H 2 þ khx ðtÞk2H 2 þ kht ðtÞk2H 1 Þ; 3 2 C2 D02 D03 ðkhtxx ðtÞk2 þ khtxxx ðtÞk2 Þ þ C2 6 khtx ðtÞk2 ; 3 C2 D01 D04 C2 ðkvx ðtÞk2H 2 þ kht ðtÞk2H 1 þ khx ðtÞk2H 2 Þ;
C2 D01 D03
and C2 D02 D04
2 ðkhtxx ðtÞk2 þ khtxxx ðtÞk2 Þ þ C2 2 khtx ðtÞk2 : 3
That is, D0 2 ðkhtxx ðtÞk2 þ khtxxx ðtÞk2 Þ þ C2 6 ðkvx ðtÞk2H 2 þ khx ðtÞk2H 2 þ kht ðtÞk2H 1 Þ: ð2:6:52Þ Similarly, D1 ð2C1 Þ1 khtxx ðtÞk2 þ C2 ðkvx ðtÞk2H 1 þ khx ðtÞk2H 2 þ kht ðtÞk2H 1 Þ;
ð2:6:53Þ
D2 2 kvtxx ðtÞk2 þ C2 2 ðkvx ðtÞk2H 2 þ kht ðtÞk2H 1 þ kvtx ðtÞk2 Þ;
ð2:6:54Þ
D3 2 khtxx ðtÞk2 þ C2 2 ðkvx ðtÞk2H 1 þ kht ðtÞk2H 1 þ khx ðtÞk2H 2 þ kvtx ðtÞk2 þ kux ðtÞk2 Þ:
ð2:6:55Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
73
Using the Young inequality and (2.6.13), (2.6.14), we derive D4 C1 khk1L1þ a khxt kL1 þ C1 kI kL2 ðR þS 1 ;L1 Þ khxt k þ e2 khxxt ðtÞk2 Z 1 2 þ C1 e ½gðSE ÞR 2t dx 0
e2 khxxt ðtÞk2 þ C2 e2 ðkvx ðtÞk2 þ khx k2 þ kht ðtÞk2 þ kIt ðtÞk2L2 ðR þS 1 ;L2 ð0;1ÞÞ þ kIx ðtÞk2L2 ðR þS 1 ;L2 ð0;1ÞÞ Exploiting lemma 2.6.1, theorems 2.1.1, 2.1.2 and the embedding theorem result in
k ðtÞ u txx C2 ðkux ðtÞkH 1 þ kvx ðtÞkH 2 þ khx ðtÞkH 1 þ kht ðtÞkH 2 Þ; k k þ ðtÞ ðtÞ u t u tx C2 ðkvx ðtÞkH 1 þ kht ðtÞkH 1 Þ
and
k k u x ðtÞ 1 þ u xx ðtÞ C2 ðkux ðtÞkH 1 þ khx ðtÞkH 1 Þ C2 L
which imply k k u txx hx ðtÞ C2 u txx ðtÞ C2 ðkux ðtÞkH 1 þ kvx ðtÞkH 2 þ khx ðtÞkH 1 þ kht ðtÞkH 2 Þ;
ð2:6:56Þ
k k u tx hxx ðtÞ C2 u tx 1 L C2 ðkux ðtÞkH 1 þ kvx ðtÞkH 2 þ khx ðtÞkH 1 þ kht ðtÞkH 2 Þ;
ð2:6:57Þ
k k C h ðtÞ khxxx ðtÞk 1 u t xxx u t L1 C2 ð1 þ khtx ðtÞkÞkhxxx ðtÞk; k k u xx htx ðtÞ þ u x htxx ðtÞ C2 khtx ðtÞkH 1 :
ð2:6:58Þ
ð2:6:59Þ
Differentiating (2.1.5) with respect to x and t, using estimates (2.6.57)–(2.6.59) and theorems 2.1.1, 2.1.2, we conclude
1D Radiative Fluid and Liquid Crystal Equations
74
jhx j j ðtÞ þ hxx ðtÞ þ hxxx ðtÞ khxxxt ðtÞk C1 g xxt g t g xxt j j j þ g xt hxx ðtÞ þ g xx hxt ðtÞ þ g xx hxt ðtÞ j þ hxxt ðtÞ g x C1 ðkgx ðtÞkH 1 þ kvx ðtÞkH 2 þ khx ðtÞkH 2 þ kht ðtÞkH 2 þ khtt ðtÞkH 1 þ kvxt ðtÞkH 1 þ khxt ðtÞkkhxxx ðtÞk þ ½gðSE ÞR xt ðtÞ Þ: ð2:6:60Þ Now we estimate ½gðSE ÞR xt ðtÞ . Z 0
1
Z ½gðSE ÞR 2xt dx ¼:
1
2 ðvxx ðSE Þ2R þ vx2 ½ðSE ÞR 2x þ g2x ½ðSE ÞR 2t þ ½ðSE ÞR 2xt Þdx
0 4 X
ð2:6:61Þ
Fi :
i¼1
Using the Hölder inequality, (2.1.18) and theorems 2.1.1, 2.1.2, we derive 2 Z 1 Z þ 1 Z 2 ~ F1 ¼ vxx ra ðB I Þ þ rs ðI I Þdxdm dx S1
0
0 2 C1 kvx ðtÞkH 1 ;
Z F2 0
1
vx2
Z
þ1 0
ð2:6:62Þ
Z S1
ððra Þg gx þ ðra Þh hx ÞðB I Þ þ ra ðBh hx Ix Þ
2 I I Þ þ rs ð ~ I I Þx dxdm dx þ ððrs Þg gx þ ðrs Þh hx Þð~ Z 1 ðvx2 g2x þ vx2 h2x þ vx2 Þdx C1 ðkgx ðtÞk2H 1 þ khx ðtÞk2H 1 þ kvx ðtÞk2 Þ: ð2:6:63Þ C1 0
Similarly, we have F3 C1 ðkvx ðtÞk2H 1 þ kht ðtÞk2H 1 þ kgx ðtÞk2 Þ
ð2:6:64Þ
and F4 C1 ðkvx ðtÞk2H 1 þ kgx ðtÞk2H 1 þ khx ðtÞk2H 1 þ kht ðtÞk2H 1 Þ Z 1 Z þ1 Z Ixt2 dxdmdx; þ C1 0
0
S1
which, together with (2.6.62)–(2.6.64), gives khxxxt ðtÞk C1 ðkgx ðtÞkH 1 þ kvx ðtÞkH 2 þ khx ðtÞkH 2 þ kht ðtÞkH 2 þ khtt ðtÞkH 1 þ kvxt ðtÞkH 1 þ khxt ðtÞkkhxxx ðtÞk þ kIxt ðtÞkL2 ðXð1;1ÞR þ Þ Þ: ð2:6:65Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
75
Differentiating (2.1.6) with respect to t, using (2.1.18), the Hölder inequality and theorem 2.1.1, we obtain Z t Z 1 Z þ1 Z Ixt2 dxdmdxds 1
0
S1
0
Z tZ
1
Z
þ1
Z
1 2 2 ðv S þ g2 St2 Þdxdmdxds 2 x x 1 0 0 Z tZ 1 Z t Z 1 Z þ1 Z ðvx2 þ h2t Þdxds þ C1 It2 dxdmdxds C1 ¼
S1
1
0
1
0
S1
0
C1 :
ð2:6:66Þ
Integrating (2.6.32) over (0, t), using (2.6.52)–(2.6.56), (2.6.66) and theorems 2.1.1, 2.1.2, we easily get (2.6.41). h Lemma 2.6.3. If assumptions in theorem 2.1.3 hold, then ðg0 ; v0 ; h0 ; I0 Þ 2 H4 , the following estimates hold, for all t > 0, Z t kvtt ðtÞk2 þ kvxt ðtÞk2 þ khtt ðtÞk2 þ khxt ðtÞk2 þ ðkvxtt k2 þ kvxtt k2
for
any
0
þ khxtt k2 þ khxxt k2 ÞðsÞds C4 ; Z kgxxx ðtÞk2H 1 þ kgxx ðtÞk2W 1;1 þ
0
t
ðkgxxx k2H 1 þ kgxx k2W 1;1 ÞðsÞds C4 ;
ð2:6:67Þ
ð2:6:68Þ
kvxxx ðtÞk2H 1 þ kvxx ðtÞk2W 1;1 þ khxxx ðtÞk2 þ khxx k2W 1;1 þ kgxxxx ðtÞk2 Z t þ kvxxt ðtÞk2 þ khxxt ðtÞk2 þ ðkvtt k2 þ khtt k2 þ kvxx k2W 2;1 þ khxx k2W 2;1 0
þ khxxt k2H 1 þ kvxxt k2H 1 þ khxt k2W 1;1 þ kvxt k2W 1;1 þ kgxxxt k2H 1 ÞðsÞds C4 ; Z 0
t
ðkvxxxx k2H 1 þ khxxxx k2H 1 ÞðsÞds C4 :
ð2:6:69Þ ð2:6:70Þ
Proof. Adding up (2.6.40) and (2.6.41), picking ϵ 2 (0, 1) small enough, we arrive at Z t 2 2 v ðkvtxx k2 þ khtxx k2 ÞðsÞ k tx ðtÞk þ khtx ðtÞk þ 0 Z t ð2:6:71Þ C3 6 þ C2 2 ðkvttx k2 þ khttx k2 þ khxxx k2 khtx k2 ÞðsÞds: 0
Now multiplying (2.6.3) and (2.6.4) by ϵ and ϵ3∕2, respectively, then adding the resultant to (2.6.72), and choosing ϵ 2 (0, 1) small enough, we obtain
1D Radiative Fluid and Liquid Crystal Equations
76
Z 2
2
2
2
t
ðkhtxx k2 þ kvtxx k2 kvtx ðtÞk þ khtx ðtÞk þ kvtt ðtÞk þ khtt ðtÞk þ 0 Z t 2 2 6 2 þ kvttx k þ khttx k ÞðsÞds C4 þ C2 khxxx k2 khtx k2 ðsÞds 0
which, with lemma 2.3.2 and the Gronwall inequality, gives estimate (2.6.68). Differentiating (2.4.7) with respect to x, and using (2.1.3), we get @ gxxx l ð2:6:72Þ pg gxxx ¼ E1 ðx; tÞ @t g with
g g xx x : g2 t
E1 ðx; tÞ ¼ vtxx þ Ex ðx; tÞ þ pgx gxx þ l
Obviously, we can infer from theorems 2.1.1, 2.1.2 and lemmas 2.6.1, 2.6.2 that kE1 ðtÞk C2 ðkgx ðtÞkH 1 þ kvx ðtÞkH 2 þ khx ðtÞkH 2 þ kvtxx ðtÞkÞ
ð2:6:73Þ
leading to Z
t
kE1 k2 ðsÞds C4 ;
8t [ 0:
ð2:6:74Þ
0 2 Multiplying (2.6.72) by gxxx g in L (0, 1), we obtain 2 2 d gxxx ðtÞ þ C 1 gxxx ðtÞ C1 kE1 ðtÞk2 1 dt g g
ð2:6:75Þ
which, combined with (2.6.74) and theorems 2.1.1, 2.1.2 and lemmas 2.6.1, 2.6.2 gives, for all t > 0, Z t ð2:6:76Þ kgxxx ðtÞk2 þ kgxxx ðsÞk2 ds C1 : 0
Using (2.1.18), the Hölder inequality and theorem 2.1.1, we derive from (2.1.6) that for any t > 0, Z t Z 1 Z þ1 Z Z t Z 1 Z þ1 Z 1 2 Ix2 dxdmdxds C1 S dxdmdxds C1 ; ð2:6:77Þ 2 x 1 1 0 0 0 0 0 0 S S Z tZ 0
1 0
Z 0
þ1
Z S1
2 Ixx dxdmdxds C1
þ
Z tZ 0
Z tZ 0
C1 ;
1
0
0
1
ðg2x þ h2x Þdxds Z 0
þ1
Z S1
Ix2 dxdmdxds ð2:6:78Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
Z tZ 0
1
0
C1
Z
þ1
0
C1
Z S1
0
Z tZ
0
þ C1
Z
1
0
Z tZ
0
2 Ixxx dxdmdxds þ1
Z S1
0 1
1 2 2 2 ðg S þ g2x Sx2 þ Sxx Þdxdmdxds x2 xx
ðg2xx þ h2xx þ g2x þ h2x Þdxds
Z tZ 0
77
0
1
Z 0
þ1
Z S1
2 Ixx dxdmdxds
C2 :
ð2:6:79Þ
By (2.6.7), (2.6.9), (2.6.16), (2.6.18), (2.6.72)–(2.6.79) and theorem 2.1.1, and using the interpolation inequality, we obtain for any t > 0, kvxxx ðtÞk2 þ khxxx ðtÞk2 þ kvxx ðtÞk2L1 þ khxx ðtÞk2L1 Z t þ ðkvxxxx k2H 1 þ khxxx k2H 1 þ kvxx k2W 1;1 þ khxx k2W 1;1 ÞðsÞds C4 :
ð2:6:80Þ
0
Differentiating (2.1.4) and (2.1.5) with respect to t, using (2.6.69), (2.6.12) and theorems 2.1.1 and 2.1.2, we derive that for any t > 0, kvxxt ðtÞk C1 kvtt ðtÞk þ C2 ðkvx ðtÞkH 1 þ kvxt ðtÞk þ kht ðtÞkH 1 Þ C4 ;
ð2:6:81Þ
khxxt ðtÞk C1 ðkhtt ðtÞk þ kI t ðtÞkÞ þ C2 ðkvx ðtÞkH 1 þ kvxt ðtÞk þ kht ðtÞkH 1 þ khx ðtÞkH 1 Þ C4
ð2:6:82Þ
which, together with (2.6.9), (2.6.18), (2.6.80) and theorem 2.1.1, yields for all t > 0, kvxxxx ðtÞk2 þ khxxxx ðtÞk2 Z t þ ðkhxxt k2 þ khxxxx k2 þ kvxxt k2 þ kvxxxx k2 ÞðsÞds C4 :
ð2:6:83Þ
0
Employing the interpolation inequality and (2.6.83), we get for any t > 0, Z t ðkvxxx k2L1 þ khxxx k2L1 ÞðsÞds C4 : ð2:6:84Þ kvxxx ðtÞk2L1 þ khxxx ðtÞk2L1 þ 0
Now differentiating (2.6.72) with respect to x, we find @ gxxxx l pg gxxxx ¼ E2 ðx; tÞ @t g where E2 ðx; tÞ ¼ E1x ðx; tÞ þ pgx gxxx þ l
@ gxxx gx : @t g2
ð2:6:85Þ
1D Radiative Fluid and Liquid Crystal Equations
78
Using the embedding theorem, lemmas 2.6.1 and 2.6.2 and theorems 2.1.1, 2.1.2, (2.6.68) and (2.6.82)–(2.6.85), we can conclude that kExx ðtÞk C4 ðkhx ðtÞkH 3 þ kgx ðtÞkH 2 þ kvx ðtÞkH 2 Þ; gxx gx ðtÞ kE1x ðtÞk C1 kExx ðtÞk þ kvtxxx ðtÞk þ ðpgx gxx Þx ðtÞ þ g2 tx C1 kvtxxx ðtÞk þ C4 khx ðtÞkH 3 þ kgx ðtÞkH 2 þ kvx ðtÞkH 3 which imply kE2 ðtÞk C1 kvtxxx ðtÞk þ C4 ðkhx ðtÞkH 3 þ kgx ðtÞkH 2 þ kvx ðtÞkH 3 Þ: We infer from (2.6.19) and (2.6.20) that Z t ðkvtt k2 þ khtt k2 ÞðsÞds C4 ; 8t [ 0
ð2:6:86Þ
ð2:6:87Þ
0
which, together with (2.6.48), (2.6.50) and (2.6.66), gives Z t ðkvtxxx k2 þ khtxxx k2 ÞðsÞds C4 ; 8t [ 0:
ð2:6:88Þ
0
Thus it follows from (2.6.68), (2.6.88) and lemmas 2.6.1, 2.6.2 and theorems 2.1.1, 2.1.2 that Z t kE2 k2 ðsÞds C4 ; 8t [ 0: ð2:6:89Þ 0 gxxxx g
in L2(0, 1), we get Multiplying (2.6.85) by 2 d gxxxx ðtÞ þ C 1 gxxxx ðtÞ C1 kE2 ðtÞk2 : 1 dt g g Thus it follows from (2.6.89) and (2.6.90) that for all t > 0, Z t kgxxxx ðtÞk2 þ kgxxxx ðsÞk2 ds C4 :
ð2:6:90Þ
ð2:6:91Þ
0
Differentiating (2.1.4) with respect to x three times, using lemmas 2.6.1, 2.6.2 and theorems 2.1.1, 2.1.2 and the Poincaré inequality, we can derive for all t > 0, we infer kvxxxxx ðtÞk C1 kvtxxx ðtÞk þ C2 ðkux ðtÞkH 3 þ kvx ðtÞkH 3 þ khx ðtÞkH 3 Þ: Thus it follows from (2.6.89)–(2.6.92) that Z t ðkvxxxxx k2 þ kgxxxt k2H 1 ÞðsÞds C4 :
ð2:6:92Þ
ð2:6:93Þ
0
Differentiating (2.1.5) with respect to x three times, using (2.6.67), (2.6.68) and theorems 2.1.1, 2.1.2 and the Poincaré inequality, we infer
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
79
khxxxxx ðtÞk C4 ðkgx ðtÞkH 3 þ kvx ðtÞkH 3 þ khx ðtÞkH 3 þ khxxt ðtÞkH 1 þ kIxxx ðtÞkL2 ðXR þð1;1ÞÞ Þ:
ð2:6:94Þ
From (2.6.80), (2.6.84), (2.6.92) and (2.6.94), we conclude for all t > 0, Z t ð2:6:95Þ khxxxxx ðsÞk2 ds C4 ; 0
which, together with (2.6.81) and (2.6.94), gives for all t > 0, Z t ðkvxx k2W 2;1 þ khxx k2W 2;1 ÞðsÞds C4 :
ð2:6:96Þ
0
At last, using all previous estimates and the interpolation inequality, we can easily derive desired estimates (2.6.67)–(2.6.70). The proof is complete. h Lemma 2.6.4. If assumptions in theorem 2.1.3 hold, then for any ðg0 ; v0 ; h0 ; I 0 Þ 2 H, the following estimate holds for all t > 0, kI ðtÞkH 5 C4 :
ð2:6:97Þ
Proof. By (2.1.6), we have Z 1 Z þ1 Z 2 1 ðgSÞxxx dxdm dx kI xxxx ðtÞk2 ¼ 0 0 S1 x Z 1 Z þ1 Z 2 Z þ 1 Z 1 2 1 gxxx Sdxdm þ gxx Sx dxdm dx C1 S1 x S1 x 0 0 0 Z þ1 Z 1 2 Z þ 1 Z 1 2 gx Sxx dxdm þ Sxxx dxdm dx þ S1 x S1 x 0 0 4 X Gi : ¼: i¼1
ð2:6:98Þ
Applying the Hölder inequality and the interpolation inequality, (2.1.18) and theorems 2.1.1, 2.1.2 and lemma 2.6.3, we get Z 1 Z þ1 Z 1 1 G1 C 1 g2xxx ra þ ra ðB 2 þ I 2 Þ þ 2 rs þ rs ðI~ I Þ2 dxdm dx 2 x 0 0 S1 x Z 1 ð2:6:99Þ g2xxx dx C4 ; C1 0
Z
Z
1
G2 C1 0
g2xx ðg2x þ h2x Þdx þ C1
Z
þ C1 0
1
0
1
g2xx
Z 0
þ1
Z S1
2 ðra þ rs ÞIx dxdm dx
ðg2x þ h2x Þdx
C1 ðkgxx k2H 1 þ khx k2 Þ C4 :
ð2:6:100Þ
1D Radiative Fluid and Liquid Crystal Equations
80
Analogously, we have Z G3 C1 ðkgx k2H 1 þ khx k2H 1 Þ þ C1
Z
1
0
þ1
Z
2 ðra þ rs ÞIxx dxdm dx
S1
0
ð2:6:101Þ
C4 ; Z G4 C1 ðkgxx k2H 1 þ khxx k2H 1 Þ þ C1
Z
1
0
þ1
Z
2 ðra þ rs ÞIxxx dxdm dx
S1
0
C4 :
ð2:6:102Þ
Inserting (2.6.99)–(2.6.102) into (2.6.98), we obtain for all t > 0, kI xxxx ðtÞk2 C4 :
ð2:6:103Þ
Differentiating (2.1.6) with respect to x four times, we arrive at 2 2 Z þ1 Z 1 1 gxxxx Sdxdm þ C1 gxxx Sx dxdm 0 0 0 S1 x S1 x 2 2 Z þ1 Z 1 Z þ1 Z 1 þ C1 gxx Sxx dxdm þ C1 gx Sxxx dxdm S1 x S1 x 0 0 5 2 Z þ1 Z 1 X ð2:6:104Þ þ C1 Hi : Sxxxx dxdm dx ¼: S1 x 0 i¼1 Z
1
kI xxxxx ðtÞk2 C1
Z
þ1
Z
Similarly, we can deduce from lemmas 2.2.1–2.2.9, 2.3.1 and 2.3.2, Z 1 g2xxxx dx C4 ; H1 C 1
ð2:6:105Þ
0
Z
1
H2 C 1 0
Z g2xxx ðg2x þ h2x Þ þ C1
1
Z
1
Z
0
0 1
Z
1
þ khxx k2H 2 Þ þ C1
0
1
2 Ix dxdm dx
S1
S1 þ1
Z
Z S1
0 þ1 0
Z S1
ð2:6:106Þ
2 Ixx dxdm dx C4 ;
ð2:6:107Þ
2 Ixxx dxdm dx C4 ;
ð2:6:108Þ
2 Ixxxx dxdm dx C4 :
ð2:6:109Þ
S1 þ1
Z
2 Ix dxdm dx C4 ;
Z
0
0
Z H4 C1 ðkgxx k2H 2
Z
Z
0
H4 C1 ðkgxx k2H 1 þ khxx k2H 1 Þ þ C1
þ1 0
Z H3 C1 ðkgxx k2H 1 þ khxx k2H 1 Þ þ C1
Z
0
Z
C1 ðkgx k2H 3 þ khx k2 Þ þ C1
þ1
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
81
Inserting (2.6.105)–(2.6.109) into (2.6.104), we get for all t > 0, kI xxxxx ðtÞk2 C4 ; which, together with (2.6.103) and theorems 2.1.1, 2.1.2, implies (2.6.97). The proof is now complete. h
2.7
Asymptotic Behavior of Solutions in H4
This section will be devoted to the study of the asymptotic behavior in H4 . Lemma 2.7.1. If assumptions in theorem 2.1.3 hold, then we have lim kgðtÞ gkH 4 ¼ 0;
t! þ 1
where g ¼
R1 0
ð2:7:1Þ
gðy; tÞdy:
Proof. Using (2.6.68), (2.6.75) and lemma 1.1.2, we get lim kgxxx ðtÞk ¼ 0:
t! þ 1
ð2:7:2Þ
Recalling (2.6.91) and (2.6.92) and lemma 1.1.2, we obtain lim kgxxxx ðtÞk ¼ 0;
t! þ 1
which, together with (2.7.2), (2.5.1) in lemma 2.5.1 and the Poincaré inequality, yields (2.7.1). The proof is now complete. h Lemma 2.7.2. Under assumptions in theorem 2.1.3, we have lim kvðtÞkH 4 ¼ 0:
t! þ 1
ð2:7:3Þ
Proof. From (2.6.42)–(2.6.48), we can estimate for any ε > 0, d kvxt ðtÞk2 þ C11 kvxxt ðtÞk2 eðkvxxxt ðtÞk2 þ khxxt ðtÞk2 Þ þ C4 ðeÞðkvx ðtÞk2H 2 dt þ kht ðtÞk2H 1 þ khxt ðtÞk2 þ kvxt ðtÞk2 þ kgx ðtÞk2 Þ:
ð2:7:4Þ
Using (2.7.4), theorem 2.1.2, lemmas 2.6.1–2.6.3, we obtain lim kvxt ðtÞk2 ¼ 0;
t! þ 1
ð2:7:5Þ
which, along with (2.6.7) and theorem 2.1.2, implies lim kvxxx ðtÞk ¼ 0:
t! þ 1
ð2:7:6Þ
1D Radiative Fluid and Liquid Crystal Equations
82
By theorems 2.1.1, 2.1.2 and lemma 2.6.3, and using the interpolation inequality, we obtain kpxxt ðtÞk C2 ðkvx ðtÞkH 2 þ kgx ðtÞkH 2 þ kht ðtÞkH 2 þ khx ðtÞkH 2 Þ:
ð2:7:7Þ
Differentiating (2.1.4) with respect to t once and x twice, multiplying the resulting by vxxt in L2(0, 1) and using the Young inequality and theorems 2.1.1, 2.1.2, we dedive d kvxxt ðtÞk2 þ kvxxxt ðtÞk2 C1 kpxxt ðtÞk2 þ C2 ðkvxt ðtÞk2H 2 þ kvx ðtÞk2H 2 þ kgx ðtÞk2H 2 Þ; dt which, together with (2.7.7), theorems 2.1.1, 2.1.2, lemmas 2.6.3 and 1.1.2, gives lim kvxxt ðtÞk2 ¼ 0:
ð2:7:8Þ
t! þ 1
From (2.6.51)–(2.6.55), we have derived for small ε > 0, d pffiffiffiffiffi 2 k eh hxt ðtÞk þ C21 khxxt ðtÞk2 dt eðkhxxxt ðtÞk2 þ kvxxt ðtÞk2 Þ þ C2 ðeÞðkvx ðtÞk2H 2 þ khx ðtÞk2H 2 þ kht ðtÞk2H 1 þ kgx ðtÞk2 þ kvxt ðtÞk2 þ kIt ðtÞk2L2 ðXS 1 R þ Þ þ kIx k2L2 ðXS 1 R þ Þ Þ; which, combined with lemmas 2.2.9, 2.6.3 and 1.1.2, implies lim khxt ðtÞk ¼ 0:
ð2:7:9Þ
t! þ 1
By (2.7.9), (2.6.16), theorems 2.1.1, 2.1.2 and the fact limt! þ 1 kI x ðtÞk2 ¼ 0, we arrive at lim khxxx ðtÞk ¼ 0:
ð2:7:10Þ
t! þ 1
Thus, by (2.7.2), (2.7.6), (2.7.8), (2.7.10) and theorems 2.1.1, 2.1.2, we obtain lim kvxxxx ðtÞk ¼ 0;
t! þ 1
which, together with (2.7.6) and theorems 2.1.1, 2.1.2, yields (2.7.3). This proves the proof. h Lemma 2.7.3. If assumptions in theorem 2.1.3 hold, then we have lim hðtÞ h H 4 ¼ 0;
ð2:7:11Þ
t! þ 1
where h [ 0 is determined by eðg; hÞ ¼
R1 0
ð12 v02 þ eðg0 ; h0 Þ þ FR ð0ÞÞdx.
Proof. Obviously, the Young inequality gives Z 1 Z þ1 Z d It Itt dxdmdx kIt ðtÞk2L2 ðXð1;1ÞR þ Þ ¼ 2 dt S1 0 0 Z 1 Z þ1 Z Z 1Z It2 dxdmdx þ 0
0
S1
0
þ1 0
Z S1
Itt2 dxdmdx;
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
83
which, together with (2.6.39), (2.6.69) and lemma 1.1.2, gives lim kIt ðtÞk2L2 ðXð1;1ÞR þ Þ ¼ 0:
ð2:7:12Þ
t! þ 1
Thus it follows from (2.6.13), (2.7.12) and theorems 2.1.1 and 2.1.2 that lim ½gðSE ÞR t ¼ 0: ð2:7:13Þ t! þ 1
Similarly, from theorems 2.1.1 and 2.1.2, we derive for small ϵ > 0, d khtt ðtÞk2 þ C1 khxxt ðtÞk2 eðkhxtt ðtÞk2 þ kvxtt ðtÞk2 Þ þ C2 ðkvx ðtÞk2H 1 þ khtt ðtÞk2 dt þ kht ðtÞk2H 1 þ kvxt ðtÞk2 þ khxt ðtÞk2 þ kIt ðtÞkL2 ðXð1;1ÞR þ Þ þ kItt ðtÞkL2 ðXð1;1ÞR þ Þ Þ;
which, together with (2.6.39), theorems 2.1.1, 2.1.2, lemmas 2.6.3 and 1.1.2, implies lim khtt ðtÞk ¼ 0:
ð2:7:14Þ
t! þ 1
We can derive from the similar estimate as (2.6.21) khxxt ðtÞk C2 ðkhtt ðtÞk þ kvx ðtÞk þ kgx ðtÞk þ kht ðtÞk þ khxt ðtÞk þ khx ðtÞkH 2 þ ½gðSE ÞR t Þ whence, by (2.7.9), (2.7.10) and (2.7.12)–(2.7.14), lim khxxt ðtÞk ¼ 0;
t! þ 1
which, combined with (2.1.25), limt! þ 1 kI xx ðtÞk2 ¼ 0, yields
(2.7.2),
(2.7.6),
(2.7.10)
and
lim khxxxx ðtÞk2 ¼ 0:
the
fact
ð2:7:15Þ
t! þ 1
Thus (2.7.11) follows from (2.7.10) and (2.7.15). The proof is thus complete. h Lemma 2.7.4. If assumptions in theorem 2.1.3 hold, then we have lim kI ðtÞkH 5 ¼ 0:
ð2:7:16Þ
t! þ 1
Proof. From (2.1.6), it follows Z þ 1 Z 2 Z þ 1 Z 2 1 1 2 gxxx Sdxdm þ C1 gxx Sx dxdm kI xxxx ðtÞk C1 x x 1 1 0 0 S S Z þ 1 Z 2 Z þ 1 Z 2 1 1 g gS þ C1 S dxdm þ C dxdm 1 xxx x xx 1 x 1 x 0
¼:
4 X i¼1
Mi :
S
0
S
ð2:7:17Þ
1D Radiative Fluid and Liquid Crystal Equations
84
Using (2.1.18), theorems 2.1.1, 2.1.2 and lemma 2.6.3, we deduce Z þ 1 Z 2 Z 1 2 ~ M1 C1 gxxx ðr1 ðB I Þ þ rs ðI I ÞÞdxdm dx 0
0
S1
ð2:7:18Þ
2
C1 kgxxx ðtÞk ; Z M2 C1 0
1
g2xx ðg2x þ h2x þ 1Þdx C1 ðkgx ðtÞk2H 1 þ khx ðtÞk2H 1 Þ:
ð2:7:19Þ
Analogously, M3 C1 ðkgx ðtÞk2H 1 þ khx ðtÞk2H 1 þ kI xx ðtÞk2 Þ; M4 C1 ðkgx ðtÞk2H 2 þ khx ðtÞk2H 2 þ kI xx ðtÞk2 þ kI xxx ðtÞk2 Þ:
ð2:7:20Þ ð2:7:21Þ
Inserting (2.7.18)–(2.7.21) into (2.7.17) and using theorems 2.1.1, 2.1.2, (2.7.2) and (2.7.15), we have lim kI xxxx ðtÞk2 ¼ 0:
t! þ 1
ð2:7:22Þ
Similarly, we get Z þ 1 Z 2 kI xxxxx ðtÞk C1
2 Z þ 1 Z 2 1 1 gxxxx Sdxdm þ C1 gxxx Sx dxdm 0 0 S1 x S1 x Z þ 1 Z 2 Z þ 1 Z 2 1 1 g g þ C1 S dxdm þ C S dxdm 1 xx xx x xxx 0 0 S1 x S1 x Z þ 1 Z 2 5 X 1 ¼: gS þ C1 dxdm Ni : ð2:7:23Þ xxxx 1 x 0
S
i¼1
Similarly to (2.7.17) and by a more delicated computation, we can derive N1 C1 kgx ðtÞk2H 3 ;
ð2:7:24Þ
N2 C4 ðkgx ðtÞk2H 1 þ khx ðtÞk2H 1 Þ;
ð2:7:25Þ
N3 C3 ðkgx ðtÞk2H 1 þ khx ðtÞk2H 1 þ kI xx ðtÞk2 Þ;
ð2:7:26Þ
N4 C1 ðkgx ðtÞk2H 2 þ khx ðtÞk2H 2 þ kI xx ðtÞk2 þ kI xxx ðtÞk2 Þ;
ð2:7:27Þ
N5 C1 ðkgx ðtÞk2H 3 þ khx ðtÞk2H 3 þ kI xx ðtÞk2 þ kI xxx ðtÞk2 þ kI xxxx ðtÞk2 Þ:
ð2:7:28Þ
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
85
Plugging (2.7.24)–(2.7.28) into (2.7.23) and using theorems 2.1.1, 2.1.2, (2.7.1), (2.7.11) and (2.7.22), we get lim kI xxxxx ðtÞk2 ¼ 0;
t! þ 1
which gives (2.7.16). Thus this completes the proof.
h
Proof of Theorem 2.1.3. Combining lemmas 2.6.1–2.6.4 and 2.7.1–2.7.4, we can complete the proof of theorem 2.1.3. h
2.8
Bibliographic Comments
It is well-known that radiation dynamics includes the radiative effects into the hydrodynamical framework. When equilibrium holds between matter and radiation, a simple way to do that is to include local radiation terms into state functions and transport coefficients. From quantum mechanics, we know that radiation can be described by its quanta, the photons, which are massless particles traveling at the speed c of light, characterized by their frequency ν, their energy E = hν (where h is ~ ~ Planck’s constant), and their momentum ~ p ¼ hm c X with X is a vector of the 2-unit sphere. Moreover, from statistical mechanics, we can describe macroscopically an assembly of massless photons of energy E and momentum ~ p using a distribution ~ mÞ. Using this fundamental quantity, function: the radiative density I ðr; t; X; we can derive global quantities by integrating with respect to the angular and frequency variables: the spectral radiative energy density ER(r, t) per unit volume RR ~ mÞdXdm, and the spectral radiative flux ! I ðr; t; X; FR ¼ is then ER ðr; tÞ :¼ 1c RR ~ ~ XI ðr; t; X; mÞ dXdm. If the matter is in thermodynamic equilibrium at constant temperature T and if radiation is also in thermodynamic equilibrium at matter, its temperature is also T and statistical mechanics tells us that the distribution function for photons is given by the Bose–Einstein statistics with zero chemical potential. When there are no radiative effects, the complete hydrodynamical system can be derived from the standard conservation laws of mass, momentum and energy using Boltzmann’s equation satisfied by the fm ðr; ~ v; tÞ and the Chapman-Enskog expansion Gallavotti [43]. Then this reduces to the compressible Navier–Stokes system 8 u Þ ¼ 0; < qt þ r ðq~ ~ þ~ ðq~ u Þt þ r ðq~ u ~ u Þ ¼ r P f; ð2:8:1Þ : ~ ~ þ g; u Þ ¼ r~ qD :P ðqeÞt þ r ðqe~ ~ ¼ pðq; T Þ~ where P I þ~ p is the material stress tensor for a newtonian fluid with the ~ þ kr ~ viscous contribution ~ p ¼ 2lD u~ I with 3λ + 2μ ≥ 0 and μ > 0, and the strain @uj 1 @ui ~ ~ þ tensor D such that Dij ¼ .~ q is the thermal heat flux and ~ f and g are 2
@xj
@xi
external force and source terms. There are many mathematical researchers who studied such models and related models. We can refer to Antontsev et al. [3],
1D Radiative Fluid and Liquid Crystal Equations
86
Batchelor [4], Choe and Kim [13, 14], Constantin et al. [15], Ducomet and Zlotnik [22], Feireisl [28], Feireisl and Novotný [29], Feireisl and Petzeltova [31–33], Feireisl et al. [30], Fang and Zhang [26, 27], Foias and Temam [34, 35], Frid and Shelukhin [36], Fujita and Kato [39], Galdi [42], Hoff [46–49], Hoff and Serre [51], Hoff and Smoller [52], Hoff and Ziane [53, 54], Huang et al. [58], Jiang [61–67], Kawashima [68], Kawashima and Nishida [69], Nishibata and Zhu [70], Kazhikhov [71, 72], Kazhikov and Shelukhin [73], Lions [84], Matsumura and Nishida [90–93], Okada [97], Paicu and Zhang [98], Qin [101–105], Qin and Hu [113, 114], Qin et al. [115, 116, 118–120, 126, 127, 131], Qin and Huang [121, 122], Qin and Jiang [125], Qin and Rivera [129], Qin and Song [130], Qin and Wen [132], Qin and Zhao [134], Serrin [136], Temam [139, 140], Xin [146], Xin and Yan [147], Zhang and Fang [150–154], Zheng and Qin [156], and references therein. In the framework of special relativity, the foundations of radiative fluids have been described by Pomraning [99, 100] and Mihalas et al. [94]. Later on, Buet et al. [10] and Lowrie et al. [89] studied in the inviscid case. Dubroca et al. [17], Lin [79] and Lin et al. [80] investigated for numerical aspects. For more results, we can refer to Chandrasekhar [12], Gallavotti [43], Jiang [61], Lowrie et al. [89] and Zhong and Jiang [157]. When radiation is present, Chandrasekhar [12] investigated the radiation integro-differential equation: terms ~ f and g include the terms for the coupling between the matter and the radiation, depending on I, and I is driven by a transport equation. If the matter is at local thermodynamics equilibrium (LTE), the coupled system reads (see, e.g., Mihalas and Weibel-Mihalas [94] and Pomraning [99] for details) 8 u Þ ¼ 0; qt þ r ðq~ > > > < ðq~ ~ þ ! u ~ u Þ ¼ r P SF ; u Þt þ r ðq~ ð2:8:2Þ ~:P ~ þ SE ; > þ r ðqe~ u Þ ¼ r~ q D ðqeÞ > t > :1 @ ~ ~ ~ ~ c @t I ðr; t; X; mÞ þ X rI ðr; t; X; mÞ ¼ St ðr; t; X; mÞ; where qðx; tÞ; ~ u ðx; tÞ; hðx; tÞ represent the density, velocity and temperature, respectively, the coupling terms are i ~ ~ X u h ~ mÞ ¼ ra m; ~ ~ mÞ St ðr; t; X; X; q; T ; Bðm; T Þ I ðr; t; X; c Z Z ~0 X; ~ m0 ! mÞ þ rs ðr; t; q; X nm ~0 ; m0 ÞI ðr; t; X; ~ mÞ rs ðr; t; q; X ~0 ~ 0 I ðr; t; X X; m0 ! mÞ m o ~ mÞ dX0 dm0 ; ~0 ; m0 ÞI ðr; t; X; I ðr; t; X the radiative energy source SE ðr; tÞ :¼
Z Z
~ mÞdXdm; St ðr; t; X;
Asymptotic Behavior of Solutions for the Compressible Viscous Gas
the radiative flux 1 ! SF ðr; tÞ :¼ c
Z Z
87
~ mÞdXdm; ~ t ðr; t; X; XS
the functions σa and σs describe in a phenomenological way the absorption–emission and scattering properties of the photon-matter interaction, and Planck function B(ν, θ) describes the frequency-temperature black body distribution. We also note some results in Buet and Després [10], Dubroca and Feugeas [17], Jiang [61], Lin [79], Lin, Coulombel and Goudon [80], Lowrie, Morel and Hittinger [89] and Zhong and Jiang [157]. Let us now recall some previous works concerning the one-dimensional radiative fluids. In Ducomet and Nečasová [19], Ducomet and Nečasová considered the following system 8 g ¼ vx ; > > < t vt ¼ rx gðSF ÞR ; ð2:8:3Þ ðe þ 12 v 2 Þ ¼ ðrv QÞx gðSE ÞR ; > > : 1 It þ g ðcx vÞIx ¼ cS R1 R þ1 with ðSF ÞR ¼ 1c 1 0 xSðx; t; m; xÞdmdx in the domain ð0; M Þ R þ subjected to the Dirichlet–Neumann boundary conditions vjx¼0;M ¼ 0;
Qjx¼0;M ¼ 0;
ð2:8:4Þ
and I jx¼0 ¼ 0 for x 2 ð0; 1Þ;
I jx¼M ¼ 0 for x 2 ð1; 0Þ:
ð2:8:5Þ
For q ≥ r + 1 with some suitable assumptions, they proved the existence and uniqueness of weak solutions. However, all estimates depended on any given time T > 0. So they could not study the large-time behavior of problem (2.8.3)–(2.8.5) based on their estimates. Ducomet and Nečasová [20] investigated the problem (2.8.3) with the different boundary conditions from Ducomet and Nečasová [19] vjx¼0;M ¼ 0;
Qjx¼0;M ¼ 0;
ð2:8:6Þ
and I jx¼0 ¼ Ib ðmÞ for x 2 ð0; 1Þ;
I jx¼M ¼ Ib ðmÞ for x 2 ð1; 0Þ
ð2:8:7Þ
and proved that the unique strong solutions of problem (2.8.3)–(2.8.6) converge to a well-determined equilibrium state at exponential rate in H1(0,M) for the fluid variables η, v, θ and in L2(0, M) for the radiative intensity R þ1 R I¼ 0 S 1 I ðx; t; m; xÞdxdm. Ducomet and Nečasová [18] established the global existence of solutions to the system (2.1.3) and (2.1.14) in Hi ði ¼ 1; 2Þ. However, estimates obtained there depend on any given time T, so they also could not investigate the large-time behavior of global solutions in Hi ði ¼ 1; 2Þ based on their estimates. Moreover, in
88
1D Radiative Fluid and Liquid Crystal Equations
Ducomet and Nečasová [18], all estimates hold only for q ≥ 2r + 1. In [109], we have established uniform-in-time estimates of ðgðtÞ; vðtÞ; hðtÞ; I ðtÞÞ in Hi ði ¼ 1; 2; 4Þ, which hold for q ≥ r + 1. For q ≥ r + 1, α ≥ 0, Qin et al. [111] established the gobal existence of solutions in Hi ði ¼ 1; 2Þ. Hence our results in this chapter have improved those in Ducomet and Nečasová [18] and Qin et al. [111]. Furthermore, the system considered here is quite different from that in Qin [104], so our uniform-in-time estimates are also quite different from those in Qin [104]. Remark 2.8.1. The multi-dimensional viscous situation has been poorly understood even at the formal level. Since the one-dimensional model possesses the special constitutive state equations, which the multi-dimensional model do not have, to our knowledge, we have not found any results on the global existence and asymptotic behavior of solutions to system (2.8.2), i.e., the multi-dimensional case of (2.1.3)–(2.1.6). Moreover, some Sobolev embedding inequalities and interpolation inequalities involved in our arguments heavily depend on the dimension, hence this may bring about some difficulties in deriving uniform-in-time estimates. In a word, the method we deal with the one-dimensional case can not be applied directly to the multi-dimensional case, which depends on the special constitutive relations of state functions, and so on. However, we can refer to Kippenhahn and Weigert [74] for a macroscopic treatment of radiation in the astrophysical context, and Feireisl [28] and Qin [104] for the associated mathematical treatment.
Chapter 3 Global Existence and Regularity of a One-Dimensional Liquid Crystal System 3.1
Main Results
This chapter will establish the global existence and regularity of solutions to the following system 8 ð3:1:1Þ < qt þ ðquÞx ¼ 0; ð3:1:2Þ ðquÞt þ ðqu 2 Þx þ ðPðqÞÞx ¼ luxx kðjnx j2 Þx ; : ð3:1:3Þ nt þ unx ¼ hðnxx þ jnx j2 nÞ where x 2 [0, 1]. Here, ρ > 0 is the density function, u denotes the velocity, n represents the optical director of the molecules, P(ρ) = ργ(γ ≥ 1) is the pressure, and λ, μ, θ are positive constants. For simplicity, we assume λ = μ = θ = 1 in this chapter. The results of this chapter are chosen from [117]. We consider the following initial-boundary value problem for (3.1.1)–(3.1.3) in the reference domain {(x, t): 0 < x < 1, t 2 [0,T ]}. for any given T > 0 under the initial conditions and boundary conditions qðx; 0Þ ¼ q0 ðxÞ; uðx; 0Þ ¼ u0 ðxÞ; nðx; 0Þ ¼ n0 ðxÞ;
ð3:1:4Þ
uð0; tÞ ¼ uð1; tÞ ¼ 0; nx ð0; tÞ ¼ nx ð1; tÞ ¼ 0:
ð3:1:5Þ
Equations (3.1.1)–(3.1.3) reveal system modeling the nematic liquid crystal flow which consists of subsystem of the compressible Navier–Stokes equations coupling with a subsystem including the heat flow equation for harmonic maps. It was derived from the theory of hydrodynamics motivated by the Ericksen–Leslie system (Ericksen [23] and Lesile [77]) for the nematic liquid crystal flow. Equation (3.1.1) represents the transporting relation (conservation of mass), equation (3.1.2) is the conservation of the linear momentum and equation (3.1.3) is the heat flow of harmonic map equation. DOI: 10.1051/978-2-7598-2903-3.c003 © Science Press, EDP Sciences, 2022
1D Radiative Fluid and Liquid Crystal Equations
90
The notation in this chapter is standard. We put kk ¼ kkL2 ½0;1 : Subscripts t and x denote the (partial) derivatives with respect to t and x, respectively. We use Ci (i = 1, 2) to denote the generic positive constant depending on the kðq0 ; u0 ; n0 ÞkH i H i H i þ 1 ði ¼ 1; 2Þ; minx2½0;1 u0 ðxÞ; minx2½0;1 n0 ðxÞ and time T, and Cj (j = 3, 4) depending on Hj[0, 1] norm of initial data (ρ0, u0, n0), minx2½0;1 u0 ðxÞ; minx2½0;1 n0 ðxÞ and time T. R1 Without loss of generality, we may assume 0 q0 ðxÞdx ¼ 1. Under the Lagrangian coordinates, a.e., Z x y¼ q0 ðn; sÞ dn; t ¼ s; 0
system (3.1.1)–(3.1.5) is transformed into the following system vt ¼ uy ; uy jny j2 2 P þ v v
ut ¼
nt ¼
ð3:1:6Þ ! ;
ð3:1:7Þ
y
1 ny jny j2 þ 2 n; v v y v
ð3:1:8Þ
ðv; u; nÞjt¼0 ¼ ðv0 ; u0 ; n0 Þ;
ð3:1:9Þ
ujy¼0;1 ¼ 0; ny jy¼0;1 ¼ 0
ð3:1:10Þ
where v ¼ q1 and v0 ¼ q1 . 0 In the sequel, we shall only consider the following case: jnj2 ¼ ni ni ¼ 1:
ð3:1:11Þ
Our main results in this chapter will read as follows (see also Qin and Huang [124]). Theorem 3.1.1. Suppose that ðv0 ; u0 ; n0 Þ 2 H 1 ½0; 1 H01 ½0; 1 H 2 ½0; 1 and the compatibility conditions hold. Then there exists a unique global solution ðvðtÞ; uðtÞ; nðtÞÞ 2 H 1 ½0; 1 H01 ½0; 1 H 2 ½0; 1 to the problem (3.1.6)–(3.1.10) such that for any ðy; tÞ 2 ½0; 1 ½0; T (for all T > 0), 0\C11 vðy; tÞ C1 ;
ð3:1:12Þ
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 91
and kvðtÞk2H 1 þ kuðtÞk2H 1 þ knðtÞk2H 2 þ knt ðtÞk2 Z t 2 þ ku k2H 2 þ nty þ kut k2 ðsÞ ds C1 : 0
ð3:1:13Þ
Theorem 3.1.2. Suppose that ðv0 ; u0 ; n0 Þ 2 H 2 ½0; 1 H02 ½0; 1 H 3 ½0; 1 and the compatibility conditions hold. Then there exists a unique global solution ðvðtÞ; uðtÞ; nðtÞÞ 2 H 2 ½0; 1 H02 ½0; 1 H 3 ½0; 1 to the problem (3.1.6)–(3.1.10) such that for any ðy; tÞ 2 ½0; 1 ½0; T (for all T > 0), kvðtÞk2H 2 þ kuðtÞk2H 2 þ knðtÞk2H 3 þ knt ðtÞk2H 1 þ kut ðtÞk2 Z t 2 2 2 þ ðuty þ ntyy þ uyyy ÞðsÞ ds C2 : 0
ð3:1:14Þ
Theorem 3.1.3. Suppose that ðv0 ; u0 ; n0 Þ 2 H 4 ½0; 1 H04 ½0; 1 H 4 ½0; 1 and the compatibility conditions hold. Then there exists a unique global solution ðvðtÞ; uðtÞ; nðtÞÞ 2 H 4 ½0; 1 H04 ½0; 1 H 4 ½0; 1Þ to the problem (3.1.6)–(3.1.10) such that for any (y, t) 2 [0, 1] × [0, T] (for all T > 0), kvðtÞk2H 4 þ kuðtÞk2H 4 þ knðtÞk2H 4 þ knt ðtÞk2H 2 þ kut ðtÞk2H 2 þ kntt ðtÞk2 þ kutt ðtÞk2 Z t 2 2 2 2 2 2 þ ðuy H 4 þ ny H 4 þ uty H 2 þ nty H 2 þ utty þ ntty ÞðsÞ ds C4 : 0
ð3:1:15Þ Remark 3.1.1. It is worthy to point out here that the solution (v(t), u(t), n(t)) obtained in theorem 3.1.3 is, in fact, a classical solution such that kðvðtÞ; uðtÞ; nðtÞÞk
1
1
1
C 3 þ 2 ð0;1ÞC 3 þ 2 ð0;1ÞC 3 þ 2 ð0;1Þ
3.2
C4 :
ð3:1:16Þ
Global Existence in H 1 H01 H 2
In this section, we shall prove theorem 3.1.1 by establishing a series of lemmas. Lemma 3.2.1. If assumptions in theorem 3.1.1 hold, then the following estimates are valid in the Euler coordinates, Z TZ 1 Z 1 ðqu 2 þ pðqÞ þ 2jnx j2 Þdx þ ðux2 þ jn nxx j2 Þdxdt C1 ; ð3:2:1Þ 0
0
0
1D Radiative Fluid and Liquid Crystal Equations
92 Z where pðqÞ ¼
1
Z 2
jnx j dx þ
0 qc c1 ;
0
q log q q;
T
Z
1
jnxx j2 dxdt C1
ð3:2:2Þ
0
c [ 1; c ¼ 1:
Proof. Multiplying (3.1.2) by u, using (3.1.1) and integrating the resulting equality by parts, we have Z 1 Z 1 Z 1d 1 2 2 ðqu þ pðqÞÞdx þ ux dx ¼ jnx j2 ux dx: ð3:2:3Þ 2 dt 0 0 0 Thus we derive from (3.1.11) that nxx þ jnx j2 n ¼ n ðn nxx Þ:
ð3:2:4Þ
Multiplying (3.2.4) by nxx, we obtain Z Z 1 Z 1 d 1 jnx j2 dx þ jnx j2 ux dx þ 2 jn nxx j2 dx ¼ 0 dt 0 0 0 which, along with (3.2.3), gives (3.2.1). Multiplying (3.1.3) by nxx in L2[0, 1], integrating the resultant by parts and using the Gagliardo–Nirenberg interpolation inequality, we derive Z Z 1 Z 1 Z 1 d 1 jnx j2 dx þ jnxx j2 dx ¼ unx nxx dx þ jnx j4 dx dt 0 0 0 0 Z Z 1 1 1 ¼ jnxx j4 dx jnx j2 ux dx 2 0 0 Z 1 Z 1 4 C1 jnx j dx þ C1 ux2 dx 0
0
C1 knx k3 knxx k þ C1 kux k2 1 knxx k2 þ C1 ðknx k6 þ kux k2 Þ 2 which, together with (3.2.1), gives (3.2.2). Thus this proves the lemma.
h
Lemma 3.2.2. If assumptions in theorem 3.1.1 hold, then the following estimates are valid for any T > 0 in the Lagrangian coordinates, and for all t 2 [0, T], ! ! Z 1 Z TZ 1 2 2 n 2 jn j ju j 1 y y y dydt C1 ; þ n u 2 þ p þ ðvÞ þ dy þ v v v v y 0 0 0 ð3:2:5Þ
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 93 Z where p þ ðvÞ ¼
1
0
jny j2 dy þ v
v 1c c1 ;
v log v 1;
Z
T
Z
0
1 0
1 ny 2 dydt C1 v v y
ð3:2:6Þ
c [ 1; c ¼ 1:
Proof. Using lemma 3.2.1 and the total mass conversation easily derive (3.2.5) and (3.2.6).
R1 0
vdy ¼
R1 0
v0 dy, we h
Lemma 3.2.3. For any t 2 [0, T ] (for all T > 0), there exists one point y1 = y1(t) 2 [0, 1] such that the solution v(y, t) to problem (3.1.6)–(3.1.10) possesses the following expression " # ! Z t jny j2 1 1 P þ 2 vD ðy; sÞZ ðsÞds ð3:2:7Þ vðy; tÞ ¼ Dðy; tÞZ ðtÞ 1 þ v 0 where 8 Z y
Z y Z Z 1 1 y > > > udn u0 ðnÞdn þ u0 ðzÞdzdy ; Dðy; tÞ ¼ v0 ðyÞ exp > < v0 0 0 y1 0 ! ! Z Z Z 1 > 1 t 1 jny j2 > 2 > vP þ u þ v0 dy: dyds ; v 0 ¼ > : Z ðtÞ ¼ exp v v 0 0 0 0
Proof. The proof is standard, we refer to lemma 2.2.2.
ð3:2:8Þ ð3:2:9Þ
h
Lemma 3.2.4. For any T > 0, we have 0\C11 vðy; tÞ C1 ; Z 0
t
for all ðy; tÞ 2 ½0; 1 ½0; T ;
ny ðsÞ2 1 ds C1 ; L
for all t 2 ½0; T :
ð3:2:10Þ ð3:2:11Þ
Proof. The present proof is more delicate than that of lemma 4.2.5 of this book. Obviously, we derive from (3.2.3) that 0\C 1 Dðy; tÞ C1 ; 0\C11 Z ðtÞ 1: jn j2 Noting that v P þ vy2 [ 0, using (3.2.7) and (3.2.12), we have vðy; tÞ Dðy; tÞZ ðtÞ C11 [ 0:
ð3:2:12Þ
ð3:2:13Þ
1D Radiative Fluid and Liquid Crystal Equations
94
Employing W 1;1 ,!L1 , lemmas 3.2.2, 3.2.3 and (3.2.12), (3.2.13), we deduce ! Z t jny j2 vP þ vðy; tÞ C1 þ C1 ds v 0 Z t jny j2 C1 þ C1 v 1 vds 0 L
#2 Z 1 Z t "Z 1 jny j jny j dy þ C1 þ C1 dy vðy; sÞds v v y 0 0 0 !1=2 Z
1=2 Z t" Z 1 1 jny j2 1 dy C1 þ C1 dy v 0 0 0 v 0 1 1=2
1=2 #
2 Z 1 Z 1 1 jn j y þ@ vdy vðy; sÞds dy A v y 0 v 0 Z 1 1 jny j2 dy þ dy v 0 0 v 0 !
2 Z 1 Z 1 1 jny j þ vdydy vðy; sÞds dy þ v y 0 v 0 0 1
2 Z t Z 1 1 jny j A @1 þ C1 þ C1 dy vðy; sÞds v y 0 0 v Z
C1 þ C1
t
Z
1
ð3:2:14Þ
which, using the Gronwall inequality and (3.2.6), (3.2.13), gives (3.2.10). The estimate (3.2.11) hence follows from (3.2.10) and the proof of (3.2.14). Thus this completes the proof. h Lemma 3.2.5. If assumptions in theorem 3.1.1 hold, then the following estimate is valid for any T > 0, and for all t 2 [0, T], Z 0
1
vy2 dy þ
Z tZ 0
1 0
ðny4 þ jnyy j2 þ jnt j2 Þdyds C1 :
ð3:2:15Þ
Proof. It clearly follows from (3.1.7) that vy 2ny nyy 2jny j2 vy cvy u ¼ þ þ cþ1 : 2 3 v t v v v v
ð3:2:16Þ
Multiplying (3.2.16) by u vy and then integrating the resulting equation over Qt = [0, 1] × [0, t ],t 2 [0,T ] (for all T > 0), we have for any ε > 0,
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 95 Z tZ 1 vy 2 ðvy2 þ jny j2 vy2 Þdyds u þ v 0 0 2 Z tZ 1 v0y 2 u þ C jv uj þ jn n uj þ jn n v j þ jn j jv uj dyds 1 y y yy y yy y y y 0 v 0 0 0 Z tZ 1 ðvy2 þ jny j2 vy2 Þdyds C1 þ e 0 t
Z þ C1
0
2 ð1 þ ny 1 Þ L
0
Z
1
u dyds þ C1
Z tZ
2
0
0
1
jnyy j2 dyds
0
which, by taking ε > 0 small enough and using (3.2.5) and (3.2.11), gives Z tZ 1 Z tZ 1 vy 2 2 2 2 þ ðv þ jn j v Þdyds C þ C jnyy j2 dyds: ð3:2:17Þ u y 1 1 y y v 0 0 0 0 By (3.2.6), we derive ! Z tZ 1 Z tZ 1 Z t Z 1 2 2 jnyy j2 jny j vy2 1 ny ny nyy vy þ dydt þ 2 dyds dyds ¼ v3 v5 v y v4 0 0 0 0 v 0 0 Z Z Z tZ 1 jny j2 vy2 1 t 1 jnyy j2 dyds þ C dyds: C1 þ 1 2 0 0 v3 v5 0 0 Thus
Z tZ 0
1
Z jnyy j2 dyds C1 þ C1
0
0
t
ny ðsÞ2 1 L
Z 0
1
vy2 dyds
2
which, with (3.2.17) and ku k C1 in (3.2.5), gives Z t Z Z tZ 1 2 2 2 2 vy ðtÞ2 þ ðvy þ jny j vy Þdyds C1 þ C1 ny ðsÞ L1 0
0
0
0
1
vy2 dyds: ð3:2:18Þ
Applying the Gronwall inequality to (3.2.18), and using (3.2.6) and (3.2.11), we conclude Z tZ 1 vy ðtÞ2 þ ðjny j4 þ jny j2 vy2 þ jnyy j2 þ jvy j2 Þdyds C1 : ð3:2:19Þ 0
or
0
From (3.1.8) and (3.2.19) it follows that knt ðtÞk C1 ðny ðtÞ þ nyy ðtÞÞ
ð3:2:20Þ
nyy ðtÞ C1 ðny ðtÞ þ knt ðtÞkÞ:
ð3:2:21Þ
Thus we deduce from (3.2.11), (3.2.19) and (3.2.20) that for all t 2 [0, T], Z tZ 1 jnt j2 dyds C1 ; 0
0
which, with (3.2.19) and (3.2.21), gives us (3.2.15). Hence this proves the lemma. h
1D Radiative Fluid and Liquid Crystal Equations
96
Lemma 3.2.6. If assumptions in theorem 3.1.1 hold, then the following estimates are valid for any T > 0 and for all t 2 [0, T], 2 2 knt ðtÞk2 þ nyy ðtÞ þ uy ðtÞ Z t 2 2 þ ðkut k2 þ uyy þ nty ÞðsÞds C1 : ð3:2:22Þ 0
Proof. Multiplying (3.1.7) by uyy and then integrating the resulting equation over Qt, using the Poincaré inequality and (3.2.15), we obtain Z t uy ðtÞ2 þ uyy ðsÞ2 ds 0 Z tZ 1 C1 þ C1 jvy j þ juy vy j þ jny nyy j þ jny j2 jvy j juyy jdyds 0 0 Z Z th 2 4 2 2 2 i 1 t uyy ðsÞ2 ds þ C1 ðuy L1 þ ny L1 Þvy þ ny L1 nyy ðsÞds C1 þ 2 0 0 Z Z t 2 2 2 1 t uyy ðsÞ ds þ C1 C1 þ ðuy uyy þ ny L1 nyy ÞðsÞds 2 0 0 Z Z t 2 3 t uyy ðsÞ ds þ C1 ny ðsÞ2 1 nyy ðsÞ2 ds; C1 þ L 4 0 0 which implies uy ðtÞ2 þ
Z
t
uyy ðsÞ2 ds C1 þ C1
0
Z
t
ny ðsÞ2 1 nyy ðsÞ2 ds: L
0
ð3:2:23Þ
Differentiating (3.1.8) with respect to t, multiplying the resulting equation by nt, integrating it by parts and using lemmas 3.2.2–3.2.5, (3.2.20), (3.2.21) and (3.2.23), we arrive at Z tZ 1 Z tX 5 jnty j2 2 dyds ¼ n ðy; 0Þ þ 2 Ai ds knt ðtÞk2 þ 2 k k t v2 0 0 0 i¼1 Z tX 5 C1 þ 2 Ai ds ð3:2:24Þ 0
i¼1
where Z A1 ¼
ny ðuyy nt þ uy nty Þ dy; v3
1
0
Z A3 ¼
0
1
Z
Z A2 ¼ 3
nty ny uy þ nty nt vy dy; A4 ¼ v3
A5 ¼ 0
1
2jny j2 n nt uy dy: v3
Z 0
0 1
1
ny nt uy vy dy; v4
jny j2 jnt j2 þ 2ny nty n nt dy; v2
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 97
Using lemmas 3.2.2–3.2.5, the embedding theorem and (3.2.23), we derive that for any ε 2 (0, 1), Z tZ 1 A1 dyds 0 0 Z tZ 1 ny ðuyy nt þ uy nty Þ dyds ¼ v3 0 0 Z t Z t 2 2 nty ðsÞ2 ds þ C1 ðeÞ e ðuy L1 ny þ knt kL1 ny uyy ÞðsÞds 0 0 Z t Z t 2 1=2 nty ðsÞ ds þ C1 e knt ðsÞk1=2 nty ðsÞ þ knt ðsÞk uyy ðsÞds 0 0 " Z #
1=2 Z t
1=2 Z t t 2 2 2 þ C1 ðeÞ uy ðsÞ ds uyy ðsÞ ds þ uy ðsÞ ds 0
Z
t
e
0
nty ðsÞ2 ds þ C1
0
Z
0
nty ðsÞ2 ds
t
1=4 Z
0
t
þ C1
0
2e 0
0
uyy ðsÞ2 ds
t
t
nty ðsÞ2 ds þ C1 ðeÞ
Z
t
Z
t
t
knt k2 ds t
2 uyy ds
0
1=3 Z
uyy ðsÞ2 ds
0
C1 þ 2e
nty ðsÞ2 ds þ C1 ðeÞ
Z
0
t
0
2e
uyy ðsÞ2 ds
2e
t
1=2
2=3 þ C1 ðeÞ
uyy ðsÞ2 ds
2=3
0
2=3 Z t nty ðsÞ2 ds þ C1 ðeÞ 1 þ ny ðsÞ2 1 nyy ðsÞ2 ds L 0
Z
t
nty ðsÞ2 ds þ C1 ðeÞ 1 þ
t
nty ðsÞ2 ds þ C1 ðeÞ þ C1 ðeÞ sup knt ðsÞk43
0
Z
1=2
4 knt ðsÞk uyy ðsÞ3 ds þ C1 ðeÞ
Z
Z
t
2 3
0 t
Z 0
Z
0
2e
þ C1 ðeÞ
nty ðsÞ2 ds þ C1 ðeÞ
þ C1
Z
1=2
0
þ C1 Z
3=4
0
0
Z
2e
4 1 ðknt ðsÞk2 uyy ðsÞÞ3 ds
Z t 2 !1=2 Z t
1=2 uyy ðsÞ2 ds ds n ðsÞ t
þ C1
Z
t
0
0
Z
C1 ðeÞ þ e sup knt ðsÞk2 þ 2e 0st
0
t
ny ðsÞ2 1 ð1 þ knt ðsÞk2 Þds L
0st
t
nty ðsÞ2 ds;
Z
t 0
2=3
ny ðsÞ2 1 ds L
2=3
ð3:2:25Þ
1D Radiative Fluid and Liquid Crystal Equations
98
and Z t Z tZ A2 ds C1 0
0
Z C1
1
jny nt uy vy jdyds
0 t
2
knt ðsÞk ds
12 Z
0
C1
sup ny ðsÞL1
0st
Z þ
t
uy ðsÞ2 ds
ny ðsÞ2 1 uy ðsÞ2 1 vy ðsÞ2 ds L L
t
uy ðsÞ2 ds
0
" Z
12 #
t
14 Z
0
uyy ðsÞ2 ds
t
12
14
0
0
C1
14 Z t 1 1 2 2 2 sup ny ðsÞ nyy ðsÞ uyy ðsÞ ds 1þ
0st
1 2
Z
C1 sup ð1 þ knt ðsÞk Þ 1 þ 0st
0 t
uyy ðsÞ2 ds
14
0
Z
t
2
2e sup knt ðsÞk þ C1 þ C1 0st
uyy ðsÞ2 ds
13
0
13 Z t 2 2 2 ny ðsÞ 1 nyy ðsÞ ds 2e sup knt ðsÞk þ C1 1 þ L 0st
0
2
Z
2e sup knt ðsÞk2 þ C1 þ C1 sup knt ðsÞk3 0st
0st
0
t
ny ðsÞ2 1 ds L
2
3e sup knt ðsÞk þ C1 :
1=3
ð3:2:26Þ
0st
Similarly, we conclude that for any ε > 0, Z t Z tZ 1 A3 ds C1 jnty ny uy j þ jnty nt vy j dyds 0 0 0 Z t Z t 2 e knty ðsÞk ds þ C1 ðeÞ ðkny k2L1 kuy k2 þ knt k2L1 kvy k2 ÞðsÞds 0 0 Z t Z t 2 ð3:2:27Þ 2e knty ðsÞk ds þ C1 ðeÞ þ C1 ðeÞ kny ðsÞk2L1 kuy ðsÞk2 ds; 0
Z 0
t
0
Z tZ
1
A4 ds C1 ðjnt j2 jny j2 þ jny nty n nt jÞdyds 0 0 Z t Z t 2 e knty ðsÞk ds þ C1 knt ðsÞk2L1 kny ðsÞk2 ds 0 0 Z t 2e knty ðsÞk2 ds þ C1 ðeÞ; 0
ð3:2:28Þ
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 99 Z
t
Z tZ
A5 ds C1
0
0
Z C1 Z e
jny j2 jn nt uy jdyds
0 t
ny ðsÞ2 1 uy ðsÞ2 ds
12 Z
L
0 t
1
nty ðsÞ2 ds þ C1 ðeÞ þ C1 ðeÞ
Z
0
t
0 t
0
2 knt ðsÞk2L1 ny ðsÞ ds
12
ny ðsÞ2 1 uy ðsÞ2 ds: L
ð3:2:29Þ
Inserting (3.2.25)–(3.2.29) into (3.2.24), then taking supremum in t on the left-hand side of (3.2.24), picking ε > 0 small enough, we finally derive Z t Z t nty ðsÞ2 ds C1 þ C1 ny ðsÞ2 1 uy ðsÞ2 ds: ð3:2:30Þ knt ðtÞk2 þ L 0
0
Using (3.2.21), (3.2.23) and (3.2.30), we deduce Z Z t t uy ðtÞ2 þ uyy ðsÞ2 ds C1 þ C1 sup nyy ðsÞ2 ny ðsÞ2 1 ds L 0st
0
0
C1 þ C1 sup ðknt ðtÞk2 þ 1Þ C1 þ C1
0st Z t 0
ny ðsÞ2 1 uy ðsÞ2 ds L
which, using the Gronwall inequality and (3.2.11), implies Z t uy ðtÞ2 þ uyy ðsÞ2 ds C1 : 0
Thus it follows from (3.2.21) and (3.2.30) that Z t 2 2 2 2 2 ðuyy þ nty ÞðsÞds C1 : knt ðtÞk þ uy ðtÞ þ nyy ðtÞ þ
ð3:2:31Þ
0
or
Moreover, we can derive from (3.1.7) that kut ðtÞk C1 ðuy ðtÞ þ uyy ðtÞ þ vy ðtÞ þ ny ðtÞ þ nyy ðtÞÞ
ð3:2:32Þ
uyy ðtÞ C1 ðuy ðtÞ þ kut ðtÞk þ vy ðtÞ þ ny ðtÞ þ nyy ðtÞÞ:
ð3:2:33Þ
Thus we deduce from (3.2.31) and (3.2.32) that Z t kut ðsÞk2 ds C1 0
which, along with (3.2.31), gives us (3.2.22). The proof is complete.
h
Proof of Theorem 3.1.1. Using lemmas 3.2.2–3.2.6, we readily complete the proof of theorem 3.1.1. h
1D Radiative Fluid and Liquid Crystal Equations
100
3.3
Proof of Theorem 3.1.2
This section will establish the regularity in H 2 H02 H 3 . Lemma 3.3.1. Suppose assumptions in theorem 3.1.2 are valid, then the following estimates hold for any T > 0 and for all t 2 [0,T], Z t 2 uty ðsÞ2 ds C1 ; ð3:3:1Þ kut ðtÞk2 þ uyy ðtÞ þ 0
vyy ðtÞ2 þ
Z
t
2 2 ðnyyy þ uyyy ÞðsÞds C1 :
ð3:3:2Þ
0
Proof. Differentiating (3.1.7) with respect to t, multiplying the resulting equation by ut, integrating it by parts and using lemmas 3.2.2–3.2.6, (3.2.32), we deduce that for any ε > 0, Z t uty ðsÞ2 ds kut ðtÞk2 þ 0
Z tZ 1h i kut ðy; 0Þk2 þ C1 juy j þ juy j2 þ jny nty j þ jny j2 juy j juty jdydt 0 0 Z t Z t 2 2 2 2 uty ðsÞ ds þ C1 uy þ uy 1 uy C2 þ e L 0 0 4 2 2 2 þ ny L1 uy þ ny L1 nty ðsÞds Z C2 þ e
t
uty ðsÞ2 ds þ C1
t
uty ðsÞ2 ds:
0
Z C2 þ e
Z th 2 2 2 i uy þ uyy þ nty ðsÞds 0
0
Now taking ε 2 (0, 1) small enough and using (3.2.33), we obtain (3.3.1). Differentiating (3.1.8) with respect to y, using lemmas 3.2.2–3.2.6 and the embedding theorem, we deduce nty ðtÞ C1 ðny ðtÞ 2 þ vy ðtÞ 1 Þ ð3:3:3Þ H H or
nyyy ðtÞ C1 ðnty ðtÞ þ ny ðtÞ
þ vy ðtÞH 1 Þ:
ð3:3:4Þ
Similarly, we infer from (3.1.7), uty ðtÞ C1 ðvy ðtÞ 1 þ uy ðtÞ 2 þ ny ðtÞ 2 Þ H H H
ð3:3:5Þ
H1
or
uyyy ðtÞ C1 ðvy ðtÞ
H1
þ uy ðtÞH 1 þ ny ðtÞH 2 þ uty ðtÞÞ:
ð3:3:6Þ
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 101
Now differentiating (3.1.7) with respect to y, using (3.1.6) (vtyy = uyyy), we derive v vyy yy þ c c þ 1 ¼ uty þ Eðy; tÞ ð3:3:7Þ v t v where ðc þ 1Þvy2 2vy uyy 2vy2 uy 2jnyy j2 þ 2ny nyyy þ þ vc þ 2 v2 v3 v2 2 2 2 6jny j vy 8ny nyy vy þ 2jny j vyy þ : 3 v v4
Eðy; tÞ ¼ c
v
Multiplying (3.3.7) by vyy, integrating the resulting equation over Qt = [0, 1] × [0, t] and using the Young inequality, lemmas 3.2.2–3.2.6 and (3.3.1), we conclude Z t Z t Z t 2 vyy ðtÞ2 þ vyy ðsÞ2 ds C2 þ e vyy ðsÞ2 ds þ C1 ðeÞ uty þ kE k2 ðsÞds 0
0
0
ð3:3:8Þ where Z t Z t 2 2 2 2 2 4 2 vy 1 vy þ vy 1 uyy þ uy 1 vy 4 kEðsÞk ds C1 L L L L 0
0
2 2 2 2 2 2 2 þ nyy L1 nyy þ ny L1 nyyy þ ny L1 vy L1 nyy 4 2 4 4 þ ny L1 vyy þ ny L1 vy L4 ðsÞds C1
Z t 2 vy 1 þ ny 2 2 ðsÞds: 0
H
ð3:3:9Þ
H
Inserting (3.3.9) into (3.3.8), picking ε 2 (0, 1) small enough, and using lemmas 3.2.2–3.2.6, (3.3.1) and (3.3.4), we conclude Z t Z t vyy ðtÞ2 þ vyy ðsÞ2 ds C2 þ C1 ðeÞ nyyy 2 þ vyy 2 ðsÞds 0
0
Z C2 þ C1 ðeÞ
t
vyy ðsÞ2 ds
0
which, using the Gronwall inequality and estimates (3.3.1), (3.3.4) and (3.3.6), gives us (3.3.2). The proof is complete. h Lemma 3.3.2. Under assumptions in theorem 3.1.2, the following estimate holds for any T > 0 and for all t 2 [0, T], Z t nty ðtÞ2 þ nyyy ðtÞ2 þ ntyy ðsÞ2 ds C1 : ð3:3:10Þ 0
102
1D Radiative Fluid and Liquid Crystal Equations
Proof. Differentiating (3.1.8) with respect to t and y, multiplying the resulting equation by nty in L2(0, 1) and integrating by parts, we arrive at Z 1 1d jntyy j2 nty ðtÞ2 þ dy ¼ B0 ðtÞ þ B1 ðtÞ ð3:3:11Þ 2 dt v2 0 where
8
Z 1 2nyy uy nty vy þ ny uyy ny vy uy > > > þ 3 ntyy dy; B ðtÞ ¼ > < 0 v3 v3 v4 0 ! Z 1 > jny j2 n > > ðtÞ ¼ nty dy: B > : 1 v2 0 ty
We now employ lemmas 3.2.2–3.2.6, the Gagliardo–Nirenberg interpolation inequality and the Poincaré inequality to get Z 1 2 2 2 2 jntyy j2 B0 e dy þ C1 ðeÞðuy ðtÞL1 nyy ðtÞ þ ny ðtÞL1 uyy ðtÞ 2 v 0 2 2 2 2 2 þ vy ðtÞL1 nty ðtÞ þ ny ðtÞL1 vy ðtÞL1 uy ðtÞ Þ Z 1 jntyy j2 ð3:3:12Þ uy ðtÞ2 1 þ nty ðtÞ2 : e dy þ C ðeÞ 1 H v2 0 Similarly, using lemmas 3.2.2–3.2.6, 3.3.1 and the embedding theorem, we derive that for any small ε 2 (0, 1), Z 1 B1 C1 ½ðjnty nyy j þ jny ntyy j þ jny nyy nt j þ jny nyy uy j þ jnty ny j2 þ jny uy ny j2 0 þ jnty ny vy j þ jnt vy ny j2 þ juyy ny j2 þ jvy uy ny j2 Þjnty jdy Z 1 2 2 2 2 jntyy j2 e dy þ C2 knt ðtÞk2H 1 þ nty ðtÞL1 nyy ðtÞ þ uy ðtÞH 1 þ ny ðtÞH 1 2 v 0 Z 1 2 jntyy j2 2 1 þ ny ðtÞ2 1 dy þ C n ðtÞ 2e k k 1 þ uy ðtÞ 2 t H H H v2 0 which, combined with (3.3.11), (3.3.12), (3.3.1)–(3.3.3) and lemmas 3.2.2–3.2.6, gives that for ε 2 (0, 1) small enough, Z t nty ðtÞ2 þ ntyy ðsÞ2 ds C2 : ð3:3:13Þ 0
By (3.3.3) and (3.3.13), we deduce nyyy ðtÞ C2 which, with (3.3.13), gives (3.3.10). The proof is complete.
h
Proof of Theorem 3.1.2. Using lemmas 3.3.1 and 3.3.2, we readily complete the proof of theorem 3.1.2. h
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 103
3.4
Proof of Theorem 3.1.3
This section will establish the regularity in H 4 H04 H 4 . Lemma 3.4.1. If assumptions in theorem 3.1.3 are valid, then the following estimates hold for all t 2 [0, T], ntyy ðy; 0Þ2 þ uty ðy; 0Þ2 þ utyy ðy; 0Þ2 þ kntt ðy; 0Þk2 þ kutt ðy; 0Þk2 C4 ; 2 kutt ðtÞk2 þ kntt ðtÞk2 þ ntyy ðtÞ þ
Z
2 2 þ ntty þ ntyyy ÞðsÞds C4 ;
t
ð3:4:1Þ
2 2 ðutty þ utyy þ kntt k2
0
ð3:4:2Þ Z
uty ðtÞ2 þ uyyy ðtÞ2 þ utyy ðtÞ2 þ
t
utyyy ðsÞ2 ds C4 :
ð3:4:3Þ
0
Proof. Differentiating (3.1.7) and (3.1.8) with respect to y twice, using theorems 3.1.1, 3.1.2 and the embedding theorem, we deduce utyy ðtÞ C2 ðuy ðtÞ 3 þ vy ðtÞ 2 þ ny ðtÞ 3 Þ; ð3:4:4Þ H H H ntyy ðtÞ C2 ðny ðtÞ
H3
or
uyyyy ðtÞ C2 ðuy ðtÞ
H2
þ vy ðtÞH 2 Þ
þ vy ðtÞH 2 þ ny ðtÞH 3 þ utyy ðtÞÞ;
nyyyy ðtÞ C2 ðny ðtÞ
H2
þ vy ðtÞH 2 þ ntyy ðtÞÞ:
ð3:4:5Þ
ð3:4:6Þ ð3:4:7Þ
Differentiating (3.1.7), (3.1.8) with respect to t, respectively, using theorems 3.1.1, 3.1.2, (3.3.3), (3.3.5), (3.4.4) and (3.4.5), we obtain ð3:4:8Þ kutt ðtÞk C2 ðutyy ðtÞ þ uty ðtÞ þ nty ðtÞ þ ntyy ðtÞ þ uy ðtÞH 1 Þ C2 ðuy ðtÞH 3 þ ny ðtÞH 3 þ vy ðtÞH 2 Þ;
ð3:4:9Þ
kntt ðtÞk C2 ðknt ðtÞk þ nty ðtÞ þ ntyy ðtÞ þ uy ðtÞH 1 Þ
ð3:4:10Þ
C2 ðny ðtÞH 3 þ vy ðtÞH 2 þ uy ðtÞH 1 Þ
ð3:4:11Þ
1D Radiative Fluid and Liquid Crystal Equations
104
or
utyy ðtÞ C1 kutt ðtÞk þ C2 ðuty ðtÞ þ nty ðtÞ þ ntyy ðtÞ þ uy ðtÞ 1 Þ; ð3:4:12Þ H ntyy ðtÞ C1 kntt ðtÞk þ C2 ðknt ðtÞk þ nty ðtÞ þ uy ðtÞ 1 Þ: H
ð3:4:13Þ
Differentiating (3.1.7) with respect to y and t, using theorems 3.1.1 and 3.1.2, we derive utyyy ðtÞ C2 ðutty ðtÞ þ uty ðtÞ 1 þ nty ðtÞ 2 þ ny ðtÞ 2 þ uy ðtÞ 2 Þ: H H H H ð3:4:14Þ Similarly, we get ntyyy ðtÞ C2 ðntty ðtÞ þ uy ðtÞ 2 þ vy ðtÞ 1 þ nty ðtÞ 1 þ ny ðtÞ 2 Þ: H H H H ð3:4:15Þ Thus estimate (3.4.1) follows from (3.3.5), (3.4.4), (3.4.5), (3.4.9) and (3.4.11). Differentiating (3.1.7) with respect to t twice, multiplying the resulting equation by utt in L2(0, 1), performing an integration by parts, using theorems 3.1.1, 3.1.2 and (3.4.1), we have ! 1 uy jny j2 cþ 2 utty ds v v v 0 tt " ! # Z 1 2 1 utty jny j2 uty uy þ uy uty þ uy 3 6 utty þ dy þ C2 þ vc v2 L v 0 tt tt 2 2 2 2 2 C11 utty ðtÞ þ C2 ðuy ðtÞH 1 þ uty ðtÞ þ nty ðtÞH 1 þ ntty ðtÞ Þ
1d kutt ðtÞk2 ¼ 2 dt
Z
1
which thus, by theorems 3.1.1 and 3.1.2, implies Z t Z t utty ðsÞ2 ds C4 þ C2 ntty ðsÞ2 ds: kutt ðtÞk2 þ 0
ð3:4:16Þ
0
By (3.3.10) and (3.4.10), we further have Z t kntt ðsÞk2 ds C2 :
ð3:4:17Þ
0
Similarly, differentiating (3.1.8) with respect to t twice, multiplying the resulting equation by ntt in L2(0, 1) and integrating it by parts, we arrive at 1d kntt ðtÞk2 ¼ D0 þ D1 þ D2 2 dt
ð3:4:18Þ
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 105
where Z
1
D0 ¼ 0
Z
1
D2 ¼ 0
n n y tt dy; v tt v y ! jny j2 n ntt dy: v2
Z
1
D1 ¼ 0
1 ny 2 ny þ ntt dy; v tt v y v t v ty
tt
Employing theorems 3.1.1 and 3.1.2, the Gagliardo–Nirenberg interpolation inequality and the Poincaré inequality, we conclude that for any ε > 0, Z 1 2 2 4 jntty j2 D0 dy þ C2 ½kntt ðtÞk2 þ nty ðtÞ þ uty ðtÞ þ uy ðtÞL4 2 v 0 2 þ ð nty ðtÞ þ uty ðtÞ þ uy ðtÞL4 þ kntt ðtÞkÞntty ðtÞ 2 2 2 2 C11 ntty ðtÞ þ C2 ðnty ðtÞ þ uty ðtÞ þ uy ðtÞH 1 þ kntt ðtÞk2 Þ; ð3:4:19Þ Z D1 C1
1
(
h
i ðjuty j þ juy j2 Þðjnyy j þ jny vy jÞ jntt j
0
) þ jntyy j þ jnyy uy j þ jnty vy j þ jny uyy j þ jny vy uy j juy kntt j dy
2 2 2 2 C2 ðkntt ðtÞk2 þ nty ðtÞH 1 þ uy ðtÞH 1 þ ny ðtÞH 2 þ uty ðtÞ Þ; Z D2 C 1
1
ð3:4:20Þ
ðjnty j2 þ jny ntty j þ jny nty knt j þ jny j2 jntt j
0
þ jny nty uy j þ jny j2 jnt uy j þ jny j2 juty j þ jny j2 juy j2 Þjntt jdy 2 2 2 2 entty ðtÞ þ C2 ðkntt ðtÞk2 þ nty ðtÞH 1 þ uty ðtÞ þ uy ðtÞH 1 Þ which, along with (3.4.17)–(3.4.20), (3.4.1) and theorem 3.1.2, leads to that for ε 2 (0, 1) small enough, Z t ntty ðsÞ2 ds C4 : ð3:4:21Þ kntt ðtÞk2 þ 0
On the other hand, we derive from (3.4.16) and (3.4.21) that Z t 2 utty ðsÞ2 ds C4 : kutt ðtÞk þ
ð3:4:22Þ
0
Exploiting theorems 3.1.1, 3.1.2, (3.4.12), (3.4.13), (3.4.15), (3.4.21) and (3.4.22), we obtain (3.4.2).
1D Radiative Fluid and Liquid Crystal Equations
106
Differentiating (3.1.7) with respect to t and y, multiplying the resulting equation by uty in L2(0, 1) and integrating by parts, we arrive at 1d uty ðtÞ2 ¼ F0 ðtÞ þ F1 ðtÞ 2 dt where F0 ðy; tÞ ¼
uy jny j2 2 P þ v v
!
Z uty j10 ; ty
F1 ðtÞ ¼ 0
1
uy jny j2 2 P þ v v
ð3:4:23Þ ! utyy dy: ty
Employing (3.4.1) and (3.4.2), theorems 3.1.1 and 3.1.2, the Gagliardo–Nirenberg interpolation inequality and the Poincaré inequality and the Young inequality, we get F0 C1 ðuyy ðtÞL1 þ vy ðtÞL1 uy ðtÞL1 þ utyy ðtÞL1 þ uyy ðtÞL1 uy ðtÞL1 þ uty ðtÞL1 vy ðtÞL1 2 þ uy ðtÞL1 vy ðtÞL1 Þuty ðtÞL1 1 1 C1 ðuy ðtÞH 2 þ utyy ðtÞ2 utyyy ðtÞ2 þ utyy ðtÞ 1 1 1 1 þ uty ðtÞ2 utyy ðtÞ2 Þuty ðtÞ2 utyy ðtÞ2 2 2 2 2 C2 ðutyy ðtÞ þ utyyy ðtÞ þ uy ðtÞH 2 þ uty ðtÞ Þ ð3:4:24Þ which, together with (3.4.2), (3.4.14) and theorem 3.1.2, further leads to Z t Z t 2 2 F0 ds C2 ðutyy þ utyyy ÞðsÞds C4 : ð3:4:25Þ 0
0
Similarly, using theorems 3.1.1 and 3.1.2, (3.4.1), (3.4.2) and the embedding theorem, we conclude that for any small ε 2 (0, 1), Z 1 F1 C1 ðjuyy j þ jvy uy j þ juyy uy j þ juty vy j þ juy2 vy j þ jnty nyy j þ jny ntyy j 0 þ jny nyy uy j þ jny nty vy j þ juyy ny j2 þ jny j2 juy vy j jutyy jdy 2 2 2 2 2 C2 ðuty ðtÞH 1 þ nty ðtÞH 1 þ uy ðtÞH 1 þ ny ðtÞH 1 þ vy ðtÞH 1 Þ which, combined with (3.4.23), (3.4.25), (3.4.1), (3.4.2) and theorems 3.1.1 and 3.1.2, gives us Z t uty ðtÞ2 þ utyy ðsÞ2 ds C4 : ð3:4:26Þ 0
Therefore, by (3.3.6), (3.4.1), (3.4.2), (3.4.12), (3.4.14) and (3.4.26), we can obtain (3.4.3). This completes the proof. h Lemma 3.4.2. If assumptions in theorem 3.1.3 are valid, then the following estimates hold for any t 2 [0, T](T > 0),
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 107 vyyy ðtÞ2 þ nyyyy ðtÞ2 þ uyyyy ðtÞ2 C4 ; vyyyy ðtÞ2 þ
Z
t
ð3:4:27Þ
2 2 ðnyyyyy þ uyyyyy ÞðsÞds C4 :
ð3:4:28Þ
0
Proof. Differentiating (3.3.7) with respect to y, we arrive at v vyyy yyy þ c c þ 1 ¼ E1 ðy; tÞ v t v
ð3:4:29Þ
with E1 ðy; tÞ ¼ utyy þ Ey ðy; tÞ þ
v v ðc þ 1Þvyy vy yy y þc : 2 v vc þ 2 t
Using theorems 3.1.1 and 3.1.2 and lemma 3.4.1, we have 2 2 2 2 kE1 ðtÞk2 C2 ðutyy ðtÞ þ vy ðtÞH 2 þ uy ðtÞH 2 þ ny ðtÞH 3 Þ leading to Z
t
Z
t
kE1 ðsÞk2 ds C4 þ C2
0
2 2 ðvyyy þ nyyyy ÞðsÞds:
ð3:4:30Þ
0
Thus it follows from (3.4.2), (3.4.7) and (3.4.30) that for all t 2 [0, T], Z t Z t 2 vyyy ðsÞ2 ds: kE1 ðsÞk ds C4 þ C2 ð3:4:31Þ 0
0 vyyy v ,
Multiplying (3.4.29) by integrating the result over Qt, and using the Young inequality, (3.4.1) and (3.4.31), we infer that Z t Z t Z t vyyy ðtÞ2 þ vyyy ðsÞ2 ds C4 þ C2 vyyy ðsÞ2 ds kE1 ðsÞk2 ds C4 þ C2 0
0
which, using the Gronwall inequality, gives us for all t 2 [0, T], Z t vyyy ðtÞ2 þ vyyy ðsÞ2 ds C4 :
0
ð3:4:32Þ
0
Thus from (3.4.2), (3.4.3), (3.4.6), (3.4.7), (3.4.32) and theorem 3.1.2 it follows that nyyyy ðtÞ þ uyyyy ðtÞ C4 which, together with (3.4.32), gives us estimate (3.4.27). Now differentiating (3.4.29) with respect to y, we arrive at v vyyyy yyyy þ c c þ 1 ¼ E2 ðy; tÞ v t v
ð3:4:33Þ
1D Radiative Fluid and Liquid Crystal Equations
108
with E2 ðy; tÞ ¼ E1y ðy; tÞ þ
v
yyy vy v2 t
þ cðc þ 1Þ
vyyy vy : vc þ 2
Exploiting the embedding theorem, lemma 3.4.1 and theorem 3.1.2 and (3.4.27), we can derive ð3:4:34Þ kE2 ðtÞk C2 ðutyyy ðtÞ þ uy ðtÞH 3 þ vy ðtÞH 3 þ ny ðtÞH 4 Þ: Differentiating (3.1.7), (3.1.8) with respect to y three times, respectively, using theorems 3.1.1 and 3.1.2, the Poincaré inequality and the Young inequality, we derive uyyyyy ðtÞ C1 utyyy ðtÞ þ C2 ðvy ðtÞ 3 þ uy ðtÞ 3 þ ny ðtÞ 4 Þ; ð3:4:35Þ H H H nyyyyy ðtÞ C1 ntyyy ðtÞ þ C2 ðny ðtÞ
H3
þ vy ðtÞH 3 Þ
ð3:4:36Þ
which, along with (3.4.2), (3.4.3), (3.4.27), (3.4.34) and theorem 3.1.2, implies Z t Z t vyyyy ðsÞ2 ds: ð3:4:37Þ kE2 ðsÞk2 ds C4 þ C2 0
0 vyyyy v ,
Multiplying (3.4.33) by integrating the resulting equation over Qt, and using the Young inequality, (3.4.1) and (3.4.37), we derive Z t Z t vyyyy ðtÞ2 þ vyyyy ðsÞ2 ds C4 þ C2 kE2 ðsÞk2 ds 0 0 Z t vyyyy ðsÞ2 ds C4 þ C2 0
which, using the Gronwall inequality, gives us for all t 2 [0, T], Z t vyyyy ðtÞ2 þ vyyyy ðsÞ2 ds C4 :
ð3:4:38Þ
0
Therefore, it follows from (3.4.2), (3.4.3), (3.4.27), (3.4.35), (3.4.36), (3.4.38) and theorem 3.1.2 that for all t 2 [0, T], Z t 2 2 ðnyyyyy þ uyyyyy ÞðsÞds C4 ; 0
which, together with (3.4.38), gives us estimate (3.4.28). This readily completes the proof. h Proof of Theorem 3.1.3. Using lemmas 3.4.1, 3.4.2, we can complete the proof of theorem 3.1.3. h
Global Existence and Regularity of a One-Dimensional Liquid Crystal System 109
3.5
Bibliographic Comments
In this section, we briefly review some related literature. Note that the dynamic theory of nematic liquid crystals was established by Ericksen [23] and Leslie [78] in the 1960s. This theory is in fact derived from the macroscopic point of view; which helps in understanding the coupling between the director field and the velocity field, and also gives a tool to describe the motion of the defects in the molecule configurations under the influence of the flow velocity. In order to describe the dynamic property of nematic materials, Ericksen [24] and Leslie [77] established a system consisting of equations for the conversation of the mass, the linear momentum and an extra equation for the conversation of the momentum due to vector field n. The Ericksen–Leslie system is well studied for describing many special flows for the materials, especially for those with small molecules, and is widely accepted in engineering and mathematical communities studying liquid crystals. For the following simplified Ericksen–Leslie equation 8 < vt þ ðv rÞv mDv þ rP ¼ kr ðrd rdÞ; d þ ðv rÞd ¼ cðDd f ðdÞÞ; ð3:5:1Þ : t r v ¼ 0; where v is the flow velocity and d is the relaxation of the molecule direction. The 2
in the stress tenterm kr ðrd rdÞ ¼ krj ðri d k rj d k Þ ¼ kri d k rj d k þ k2 ri jrdj 2 sor represents the anisotropic feature of the system. When the system (3.5.1) is subjected to Dirichlet boundary conditions, Lin and Liu [81] proved the global existence of weak solutions and classical solutions, and discussed the uniqueness and some stability properties of the system. Later on, they established the partial regularity results in [82], and most results were extended to the general Ericksen–Leslie equations in [83]. When the system (3.5.1) is subjected to free-slip boundary condition for v and Neumann boundary for d (i.e., v m ¼ 0; ðr vÞ m ¼ 0; @d @m ¼ 0 on @Ω), Liu and Shen [86] proved the local classical solutions and global weak solutions in 2D and 3D cases. When the system (3.5.1) is subjected to the Dirichlet boundary condition and reproductivity conditions (i.e., v(x, 0) = v(x, T), d(x, 0) = d(x, T)), Blanca et al. [9] showed the existence of weak solutions with the reproductivity in time property in 2D and 3D cases. Fan and Ozawa [25] proved some regularity criteria for this simplified Ericksen–Leslie system and also obtained the existence and uniqueness of global smooth solutions for a regularization model of this simplified system. Hu and Wang [57] studied three-dimensional case of (3.5.1) in a smooth bounded domain, and obtained the existence and uniqueness of the global strong solutions with small initial data and also proved that when the strong solution exists, all the global weak solutions constructed in Lin and Liu [81] must be equal to the unique strong solution. Hong [56] studied the system in 2D, and proved global existence of solutions with initial data, where the solutions are regular except for at a finite number of singular times. Some of the numerical experiments to the system (3.5.1) were performed in Liu and Walkington [87, 88] who also demonstrated the coupling between the fluid field and the director field. In this direction, we also mention the works by Calderer et al. [11] and Liu [85] for the nematic liquid
110
1D Radiative Fluid and Liquid Crystal Equations
crystal model. Wen and Ding [143] studied the incompressible hydrodynamic flow of the nematic liquid crystals in dimension N (N = 2 or 3): 8 q þ r ðquÞ ¼ 0; > > < t ðquÞt þ r ðqu uÞ þ rP ¼ cDu kr ðrd rdÞ; ð3:5:2Þ r u ¼ 0; > > : dt þ ðu rÞd ¼ hðDd þ jrnj2 nÞ; where ρ denotes density, u is the flow velocity and d is the relaxation of the molecule direction. Under the assumption ρ0 > 0, the authors obtained the local existence and uniqueness of the solutions. In addition, if ρ0 had a positive bound from below, and N = 2, they obtained the global existence and uniqueness of solutions with small initial data. We also note that for the system (3.1.1)–(3.1.5), Ding [16] proved the existence of global strong solutions under assumptions for initial data ðq0 ; u0 ; n0 Þ 2 H 1 ð0; 1Þ H01 ð0; 1Þ H 2 ð0; 1Þ with 0\c01 q0 c0 , and global smooth (classical) solutions under assumptions for initial data ðq0 ; u0 ; n0 Þ 2 C 1 þ a ½0; 1 C 2 þ a ½0; 1 C 2 þ a ½0; 1 with 0\a\1; 0\c01 q0 c0 . It is different from our result. First, Ding [16] studied the existence of global strong solutions to problem (3.1.1)–(3.1.5) in Euler coordinates, while we have established the existence of global solutions in Hi (i = 1, 2, 4) in Lagrangian coordinates in this chapter. Second, we have established the regularity in H 2 H02 H 3 and H 4 H04 H 4 , while Ding [16] proved the existence smooth solutions in C1+α × C2+α × C2+α, which is a direct consequence of our results.
Chapter 4 Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 4.1
Introduction
In this chapter, we shall continue to study the large-time behavior of solutions in H i H0i H i þ 1 ði ¼ 1; 2Þ and H 4 H04 H 4 to the following 1D liquid crystal system based on the results in chapter 3: 8 vt ¼ u y ; ð4:1:1Þ > > > ! > > > uy jny j2 > > 2 ; ð4:1:2Þ > ut ¼ P þ > > v v > < y 1 ny jny j2 > > ¼ þ n; ð4:1:3Þ n > t > > v v y v2 > > > > ð4:1:4Þ ðv; u; nÞjt¼0 ¼ ðv0 ; u0 ; n0 Þ; > > > : ujy¼0;1 ¼ 0; ny jy¼0;1 ¼ 0 ð4:1:5Þ where v ¼ q1 ; v0 ¼ q1 and P ¼ q ¼ 1v (i.e., γ = 1 in chapter 3). 0 In this chapter, we still restrict ourselves to the following case: jnj2 ¼ ni ni ¼ 1:
ð4:1:6Þ
In this chapter, we use Ci (i = 1, 2) to denote the generic positive constant depending on the kðq0 ; u0 ; n0 ÞkH i H i H i þ 1 ði ¼ 1; 2Þ; minx2½0;1 u0 ðxÞ; minx2½0;1 n0 ðxÞ, but not depending on time T, and Cj (j = 3, 4) depending on Hj[0, 1] norm of initial data (ρ0, u0, n0), minx2½0;1 u0 ðxÞ; minx2½0;1 n0 ðxÞ, but not depending on T. The results of this chapter are selected from Qin and Feng [110].
DOI: 10.1051/978-2-7598-2903-3.c004 © Science Press, EDP Sciences, 2022
1D Radiative Fluid and Liquid Crystal Equations
112
Theorem 4.1.1. Suppose that ðv0 ; u0 ; n0 Þ 2 H 1 ð0; 1Þ H01 ð0; 1Þ H 2 ð0; 1Þ and the compatibility conditions are valid. Then there exists a unique global solution ðvðtÞ; uðtÞ; nðtÞÞ 2 H 1 ð0; 1Þ H01 ð0; 1Þ H 2 ð0; 1Þ to the problem (4.1.1)–(4.1.5) such that for all ðy; tÞ 2 ½0; 1 ½0; þ 1Þ, 0\C11 vðy; tÞ C1 ;
ð4:1:7Þ
kvðtÞk2H 1 þ kuðtÞk2H 1 þ knðtÞk2H 2 þ knt ðtÞk2 Z t 2 þ ku k2H 2 þ nty þ kut k2 ðsÞds C1 :
ð4:1:8Þ
and for all t > 0,
0
Moreover, we have as t → +∞, kH 2 ! 0 kvðtÞ v kH 1 ! 0; kuðtÞkH 1 ! 0; knðtÞ n R1 R1 R1 ¼ 0 nðy; tÞdy: where v ¼ 0 vðy; tÞdy ¼ 0 v0 dy, n
ð4:1:9Þ
Theorem 4.1.2. Suppose that ðv0 ; u0 ; n0 Þ 2 H 2 ð0; 1Þ H02 ð0; 1Þ H 3 ð0; 1Þ and the compatibility conditions are valid. Then there exists a unique global solution ðvðtÞ; uðtÞ; nðtÞÞ 2 H 2 ð0; 1Þ H02 ð0; 1Þ H 3 ð0; 1Þ to the problem (4.1.1)–(4.1.5) such that for all t > 0, kvðtÞk2H 2 þ kuðtÞk2H 2 þ knðtÞk2H 3 þ knt ðtÞk2H 1 þ kut k2 Z t 2 uty 2 þ ntyy 2 þ uyyy 2 ðsÞds C2 : þ H 0
ð4:1:10Þ
Moreover, we have as t → +∞, kvðtÞ v kH 2 ! 0;
kuðtÞkH 2 ! 0;
kH 3 ! 0: kn n
ð4:1:11Þ
Theorem 4.1.3. Suppose that ðv0 ; u0 ; n0 Þ 2 H 4 ð0; 1Þ H04 ð0; 1Þ H 4 ð0; 1Þ and the compatibility conditions are valid. Then there exists a unique global solution ðvðtÞ; uðtÞ; nðtÞÞ 2 H 4 ð0; 1Þ H04 ð0; 1Þ H 4 ð0; 1Þ to the problem (4.1.1)–(4.1.5) such that for any t > 0, kvðtÞk2H 4 þ kuðtÞk2H 4 þ knðtÞk2H 4 þ knt ðtÞk2H 2 þ kut ðtÞk2H 2 þ kntt ðtÞk2 þ kutt ðtÞk2 Z t 2 uy 4 þ ny 2 4 þ uty 2 2 þ nty 2 2 þ utty 2 þ ntty 2 ðsÞ ds C4 : þ H H H H 0
ð4:1:12Þ Moreover, we have, as t → +∞, v kH 4 ! 0; kvðtÞ
kuðtÞkH 4 ! 0;
kH 4 ! 0: knðtÞ n
ð4:1:13Þ
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 113
Uniform Estimates in H i H0i H i þ 1 ði ¼ 1; 2Þ and H 4 H04 H 4
4.2
The global existence of solutions in H i H0i H i þ 1 ði ¼ 1; 2Þ and H 4 H04 H 4 has been established in Qin and Huang [124] and also in chapter 3. In this section, we shall derive some uniform estimates in H i H0i H i þ 1 ði ¼ 1; 2Þ and H 4 H04 H 4 by establishing a series of lemmas. First, we shall establish some uniform estimates in H 1 H01 H 2 . Lemma 4.2.1. If assumptions in theorem 4.1.1 are valid, then the following estimates hold in Euler coordinates for any t > 0, Z 1 Z tZ 1 2 2 ðqu þ pðqÞ þ 2jnx j Þdx þ ðux2 þ jn nxx j2 Þdxds C1 ; ð4:2:1Þ 0
0
Z
1
jnx j2 dx þ
0
Z tZ
0
0
1
jnt j2 dxds C1
ð4:2:2Þ
0
where pðqÞ ¼ q log q q: Proof. Multiplying (4.1.2) by u, using (4.1.1) and integrating the result by parts, we have Z Z 1 Z 1 1d 1 2 2 ðqu þ pðqÞÞdx þ ux dx ¼ jnx j2 ux dx: ð4:2:3Þ 2 dt 0 0 0 We derive from |n|2 = 1 that nxx þ jnx j2 n ¼ n ðn nxx Þ: Multiplying the above equation by nxx, we obtain Z Z 1 Z 1 d 1 jnx j2 dx þ jnx j2 ux dx þ 2 jn nxx j2 dx ¼ 0; dt 0 0 0 which, along with (4.2.3), gives (4.2.1). Using (4.1.6), we easily get n nt ¼ 0: Multiplying (4.1.3) by nt, integrating the result over [0, 1] × [0, t], applying the Young inequality and the Poincaré inequality, we have for any ε > 0, Z 1 Z tZ 1 Z tZ 1 jnx j2 dx þ jnt j2 dxds ¼ unx nt dxds 0
0
0
0
e
Z tZ 0
e e
0
Z tZ 0
1
Z jnt j2 dxds þ C1
0
Z tZ 0
jnt j2 dxds þ C1
0
Z tZ 0
0 1
Z 2
jnt j dxds þ C1 0
u 2 jnx j2 dxds
0 t
0
1
1
t
Z
ku k2L1 Z ku x k
2
1
0 1
0
jnx j2 dxds
jnx j2 dxds:
1D Radiative Fluid and Liquid Crystal Equations
114
Choosing ε > 0 small enough, performing the Gronwall inequality, and using (4.2.1), we obtain Z 1 Z tZ 1 jnx j2 dx þ jnt j2 dxds C1 : 0
0
0
h
This proves the lemma.
Lemma 4.2.2. If assumptions in theorem 4.1.1 are valid, then the following estimates hold in Euler coordinates for any t > 0, Z tZ 1 ðjnx j4 þ jnxx j2 Þdxds C1 : ð4:2:4Þ 0
0
Proof. Squaring (4.1.3) in both sides, integrating the result over [0, 1] × [0, t], employing integration by parts, the Young inequality and the Poincaré inequality, and using (4.2.1) and (4.2.2), we conclude for any ε > 0, Z tZ 1 ðjnxx j2 þ jnx j4 Þdxds 0
0
¼
Z tZ 0
1
ðjnt j2 þ u 2 jnx j2 þ 2nt unx Þdxds 2
0
Z tZ 0
1
nxx jnx j2 ndxds
0
Z Z 2 t 1 ¼ ðjnt j þ u jnx j þ 2nt unx Þdxds þ jnx j4 dxds 3 0 0 0 0 Z tZ 1 Z tZ 1 2 2 2 4 2 ðjnt j þ u 2 jnx j Þdxds þ jnx j dxds 3 0 0 0 0 Z tZ 1 Z t 2 C1 þ jnx j4 dxds þ C1 ku k2L1 knx k2 dxds 3 0 0 0 Z Z Z t 2 t 1 4 C1 þ jnx j dxds þ C1 kux k2 knx k2 dxds 3 0 0 0 Z Z Z t 2 t 1 C1 þ jnx j4 dxds þ C1 kux k2 dxds 3 0 0 0 Z Z 2 t 1 C1 þ jnx j4 dxds: 3 0 0 Z tZ
1
2
2
2
Therefore (4.2.4) follows from (4.2.5). This completes the proof.
ð4:2:5Þ h
Lemma 4.2.3. If assumptions in theorem 4.1.1 are valid, then the following estimates hold in Lagrangian coordinates, for any t > 0, ! # Z tZ 1 Z 1" n 2 jny j2 juy j2 1 y 2 dyds C1 ; ðy; tÞdy þ þ n u þ ðv log v 1Þ þ v v v v y 0 0 0 ð4:2:6Þ
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 115
Z
1
0
jny j2 dy þ v
Z tZ 0
0
1
1 ny 2 dyds C1 : v v y
Proof. Using lemmas 4.2.1–4.2.2 and the total mass conservation we easily derive (4.2.6) and (4.2.7).
ð4:2:7Þ R1 0
vdy ¼
R1 0
v0 dy; h
Lemma 4.2.4. For any t ≥ 0, there exists one point y1 = y1(t) 2 [0, 1] such that the solution v(y, t) to problem (4.1.1)–(4.1.5) possesses the following expression: " # ! Z t jny j2 1 1 1 v þ 2 vD ðy; sÞZ ðsÞds ð4:2:8Þ vðy; tÞ ¼ Dðy; tÞZ ðtÞ 1 þ v 0 where 8 Z y Z Z Z y 1 1 y > > > udn u0 ðnÞdn þ uðzÞdzdy ; Dðy; tÞ ¼ v0 ðyÞ exp > < v0 0 0 y1 0 ! ! Z Z Z 1 > 1 t 1 jny j2 > 2 > 1þu þ v0 dy: dyds ; v0 ¼ > Z ðtÞ ¼ exp : v0 0 0 v 0
ð4:2:9Þ ð4:2:10Þ
h
Proof. See, e.g., lemma 2.2.2 or lemma 3.2.3. Lemma 4.2.5. There holds 0\C11 vðy; tÞ C1 ; Z 0
t
for all ðy; tÞ 2 ½0; 1 ½0; þ 1Þ;
ny ðsÞ2 1 ds C1 ; L
for all t [ 0:
ð4:2:11Þ ð4:2:12Þ
Proof. Obviously, using the Young inequality, the Hölder inequality and lemma 4.2.1, we have Z y Z Z Z y 1 1 y udn u0 ðnÞdn þ u0 ðzÞdzdy v0 0 0 y1 0 Z 1 12 Z 1 12 12 Z Z 1 1 1 2 2 2 u dy þ u0 dy þ u0 dy dy v0 0 0 0 0 C 1 ku k2 þ C 1 C 1 :
ð4:2:13Þ
Equations (4.2.9) and (4.2.6) imply that there exists some positive constant C1 > 0 such that for all (y, t) 2 [0, 1] × [0, +∞),
1D Radiative Fluid and Liquid Crystal Equations
116
0\C11 Dðy; tÞ C1 : Noting that for all t > 0, Z 1
! jny j2 1þu þ ðy; tÞdy C1 ; v
1
0
then for 0 ≤ s ≤ t, we get t s
Z tZ s
ð4:2:14Þ
2
0
1
! 2 jn j y 1 þ u2 þ dy C1 ðt sÞ: v
ð4:2:15Þ
Therefore, (4.2.10) and (4.2.15) imply that for any 0 ≤ s ≤ t, ! ! Z Z 1 t 1 jny j2 1 C1 ðtsÞ 1 2 Z ðtÞZ ðsÞ ¼ exp 1þu þ e dyds eC1 ðtsÞ : v0 s 0 v ð4:2:16Þ Using (4.2.8) and (4.2.16), we derive that there exists a large time t0 such that as t ≥ t0, y 2 ½0; 1, " # ! Z t 2 jn j y v 1 þ 2 vD 1 ðy; sÞZ 1 ðsÞds vðy; tÞ ¼ Dðy; tÞZ ðtÞ 1 þ v 0 " # ! Z t jny j2 C1 ðtsÞ 1 C1 t C1 e þ 1þ ds e v 0 Z t C11 eC1 ðtsÞ ds 0
ð2C1 Þ1 :
ð4:2:17Þ
Noting that Dðy; tÞ C11 ; Z ðtÞ expðC1 tÞ, ðy; tÞ 2 ½0; 1 ½0; t0 ,
we
infer
that
for
any
vðy; tÞ Dðy; tÞZ ðtÞ C11 expðC1 tÞ C11 expðC1 t0 Þ; which, together with (4.2.17), implies that for any (y, t) 2 [0, 1] × [0, +∞), vðy; tÞ C11 :
ð4:2:18Þ
Employing W1,1 ,!L∞, by the Hölder inequality, lemmas 4.2.3–4.2.4 and (4.2.18), we deduce
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 117 "
# ! jny j2 C1 ðtsÞ vðy; tÞ C1 e þ 1þ e v 0 Z t Z t jny j2 C1 ðtsÞ C1 ðtsÞ C1 þ C1 e ds þ C1 ds v 1 ve 0 0 L !12 12 Z 1 Z t Z 1 1 jny j2 dy dy C1 þ C1 v 0 0 v 0 12 2 Z 1 2 !12 Z 1 1 ny þ vdy veC1 ðtsÞ ds v y dy v 0 0 ! Z 1 Z t Z 1 1 jny j2 dy dy C1 þ C1 v 0 0 v 0 Z 1 2 !Z 1 1 ny þ dy vdy veC1 ðtsÞ ds v y 0 v 0 Z t" Z 1 2 # 1 ny eC1 ðtsÞ þ C1 þ C1 v y dy vds 0 0 v Z
C1 t
t
ð4:2:19Þ
which, using the Gronwall inequality and (4.2.7), (4.2.18), gives (4.2.11). Using (4.2.7) and the Poincaré inequality, we obtain Z t Z t jny j2 ny ðsÞ2 1 ds C1 v 1 ds L 0 0 L Z t jn j 2 y C1 ds v y 0 C1 :
ð4:2:20Þ h
This proves the lemma.
Lemma 4.2.6. If assumptions in theorem 4.1.1 are valid, then the following estimates hold for any t > 0, Z tZ 1 Z 1 2 vy dy þ ðjny j4 þ jnyy j2 þ jnt j2 þ vy2 Þdyds C1 ; ð4:2:21Þ 0
0
0
knt ðy; 0Þk C1 :
ð4:2:22Þ
Proof. Using (4.1.1), we may rewrite (4.1.2) as
u
vy vy 2jny j2 vy 2ny nyy ¼ 2þ : v t v v3 v2
ð4:2:23Þ
1D Radiative Fluid and Liquid Crystal Equations
118 v
Multiplying (4.2.23) by u vy, integrating the resulting equation over [0, 1] × [0, t], and using the Young and the Poincaré inequalities, we deduce for any ε > 0, Z tZ 1 vy 2 u þ ðvy2 þ jny j2 vy2 Þdyds v 0 0 2 Z tZ 1 v 0y þ C1 jvy uj þ jny nyy uj þ jny nyy vy j þ jny j2 jvy uj dyds u 0 v0 0 0 Z tZ 1 Z t uy ðsÞ2 ds vy2 þ jny j2 vy2 dyds þ C1 C1 þ e Z þ C1 0
0 0 t
ny 2 1 L
Z
1
u dyds þ C1
Z tZ
2
0
0
0 1
jnyy j2 dyds:
ð4:2:24Þ
0
Taking ε small enough in (4.2.24), and using (4.2.6), (4.2.12) and (4.2.24), we can obtain Z tZ 1 Z tZ 1 vy 2 ðvy2 þ jny j2 vy2 Þdyds C1 þ C1 jnyy j2 dyds: ð4:2:25Þ u þ v 0 0 0 0 By (4.2.7), we have ! Z tZ 1 Z tZ 1 Z t Z 1 2 2 jnyy j2 jny j vy2 1 ny ny nyy vy þ dydt þ 2 dyds dyds ¼ 3 5 v v v y v4 0 0 0 0 v 0 0 Z Z Z tZ 1 jny j2 vy2 1 t 1 jnyy j2 dyds þ C dyds: C1 þ 1 2 0 0 v3 v5 0 0 Thus Z tZ 0
1
Z jnyy j2 dyds C1 þ C1
0
0
t
2 ny 1 L
Z 0
1
vy2 dyds
2 which, with (4.2.25) and the fact ku k2 C1 uy C1 , gives Z t Z Z tZ 1 2 2 2 2 vy ðtÞ2 þ ðvy þ jny j vy Þdyds C1 þ C1 ny L1 0
0
0
0
1
vy2 dyds:
ð4:2:26Þ
Applying the Gronwall inequality to (4.2.26), and using (4.2.7) and (4.2.12), we obtain Z tZ 1 vy ðtÞ2 þ ðjny j2 vy2 þ jnyy j2 þ jvy j2 Þdyds C1 : ð4:2:27Þ 0
0
Thus from (4.2.7) and (4.2.12) it follows that Z tZ 1 Z t Z 2 4 jny j dyds C1 ny L1 0
0
0
1 0
jny j2 dyds C1 :
ð4:2:28Þ
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 119
By (4.1.3) and (4.2.27), we can derive
nyy ðtÞ C1 ny ðtÞ þ knt ðtÞk ;
ð4:2:29Þ
knt ðtÞk C1 ny ðtÞ þ nyy ðtÞ
ð4:2:30Þ
or
which implies (4.2.22). Thus, using the Poincaré inequality and (4.2.27), we can infer Z t Z t 2 2 2 ny þ nyy ðsÞds knt ðsÞk ds C1 0 0 Z t nyy ðsÞ2 ds C1 ; C1 0
which, with (4.2.27) and (4.2.28), yields (4.2.21). This proves the lemma.
h
Lemma 4.2.7. If assumptions in theorem 4.1.1 hold, then the following estimates are valid for any t > 0, 2 2 knt ðtÞk2 þ nyy ðtÞ þ uy ðtÞ Z t 2 2 þ kut k2 þ uyy þ nty ðsÞds C1 : ð4:2:31Þ 0
Proof. Obviously, using lemma 3.2.6 in chapter 3 and the uniform estimate of v, we may complete the proof. h In what follows, we shall derive some uniform estimates in H 2 H02 H 3 . The proof of the following is different from lemma 3.3.1 in chapter 3 to some extent. Lemma 4.2.8. If assumptions in theorems 4.1.2 hold, the following estimates are valid for any t > 0, Z t 2 uty ðsÞ2 ds C1 ; ð4:2:32Þ kut ðtÞk2 þ uyy ðtÞ þ 0
vyy ðtÞ2 þ
Z t 2 vyy þ nyyy 2 þ uyyy 2 ðsÞds C1 :
ð4:2:33Þ
0
Proof. Differentiating (4.1.2) with respect to t, multiplying the resulting equation by ut, integrating it by parts, and using (3.2.32) and lemmas 4.2.3–4.2.7, we deduce for any ε > 0,
1D Radiative Fluid and Liquid Crystal Equations
120 Z
t
2
kut ðtÞk þ
uty ðsÞ2 ds
0
Z tZ 1h i kut ðy; 0Þk2 þ C1 juy j þ juy j2 þ jny nty j þ jny j2 juy j juty jdydt 0 0 Z t Z t 2 2 2 2 uy þ uy 1 uy C2 þ e uty ðsÞ ds þ C1 L 0 0 4 2 2 2 þ ny L1 uy þ ny L1 nty ðsÞds Z C2 þ e
t
uty ðsÞ2 ds þ C1
t
uty ðsÞ2 ds
0
Z C2 þ e
Z th 2 2 2 i uy þ uyy þ nty ðsÞds 0
0
which, by taking ε 2 (0, 1) small enough and using (4.2.31), yields (4.2.32). Differentiating (4.1.2) with respect to y, using (4.1.1) (vtyy = uyyy), we arrive at v vyy yy þ 2 ¼ uty þ Eðy; tÞ ð4:2:34Þ v t v where Eðy; tÞ ¼
2vy2 2vy uyy 2vy2 uy 2jnyy j2 þ 2ny nyyy þ þ v3 v2 v3 v2 2 2 2 6jny j vy 8ny nyy vy þ 2jny j vyy þ : 3 v v4 v
Multiplying (4.2.34) by vyy, integrating the result over [0, 1] × [0, t] and using the Young inequality, we have for any ε > 0, Z th Z t Z t i 2 vyy ðtÞ2 þ vyy ðsÞ2 ds C1 þ e vyy ðsÞ2 ds þ C1 uty þ kE k2 ðsÞds 0
0
0
ð4:2:35Þ where Z
t 0
2
kEðsÞk ds C1
Z tZ 0
1 0
2 vy4 þ vy2 uyy þ vy4 uy2 þ jnyy j4 þ jny j2 jnyyy j2
2 þ jny j2 jnyy j2 vy2 þ jny j4 vyy þ jny j4 vy4 Þdyds Z t 2 2 2 2 2 4 vy 1 vy þ vy 1 uyy þ uy 1 vy 4 C1 L L L L 0
2 2 2 2 2 2 2 þ nyy L1 nyy þ ny L1 nyyy þ ny L1 vy L1 nyy 4 2 2 4 þ ny L1 vyy þ ny L1 vy L4 ds:
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 121
Using the interpolation inequality, the Young inequality and lemmas 4.2.3–4.2.7, we conclude Z t Z t 2 vy 1 þ vy 4 4 þ ny 2 1 vyy 2 þ nyyy 2 ds kEðsÞk2 ds C1 L L L 0 0 Z t 2 3 4 ðvy vyy þ vy þ vy vyy þ vy C1 0
2 2 2 þ ny L1 vyy þ nyyy Þds Z t Z t 2 2 2 vyy ðsÞ ds þ C1 ðny ðsÞL1 vyy ðsÞ C1 þ e 0
0
2 þ nyyy ðsÞ Þds:
ð4:2:36Þ
Differentiating (4.1.3) with respect to y, using the interpolation inequality, the Young inequality and lemmas 4.2.3–4.2.7, we can conclude Z t Z t 2 2 2 nyyy ðsÞ2 ds C1 nty þ vy nyy 2 þ ny vy2 þ ny vyy 0 0 2 2 2 3 2 þ ny nyy þ ny vy þ ny ds Z t 2 2 2 2 2 nyy 1 vy þ ny 1 vy 1 vy C1 þ C1 L L L 0
2 2 2 2 4 2 þ ny L1 vyy þ ny L1 nyy þ ny L1 vy 4 2 þ ny L1 ny ds Z
t
C1 þ e
nyyy ðsÞ2 ds þ C1
0
Z 0
t
ny ðsÞ2 1 vyy ðsÞ2 ds: L
Picking ε 2 (0, 1) small enough, we obtain Z t Z t nyyy ðsÞ2 ds C1 þ C1 ny ðsÞ2 1 vyy ðsÞ2 ds: L 0
ð4:2:37Þ
0
Inserting (4.2.36) and (4.2.37) into (4.2.35), and taking ε small enough, we can obtain Z t Z t vyy ðtÞ2 þ vyy ðsÞ2 ds C1 þ C1 ny ðsÞ2 1 vyy ðsÞ2 ds: L 0
0
Performing the Gronwall inequality, and using (4.2.12), we conclude that for all t > 0, Z t 2 vyy ðtÞ2 þ vyy þ nyyy 2 ðsÞds C1 : ð4:2:38Þ 0
1D Radiative Fluid and Liquid Crystal Equations
122
Differentiating (4.1.2) with respect to y, by the imbedding theorem and lemmas 4.2.3–4.2.7, we can obtain uty ðtÞ C1 vy ðtÞ 1 þ uy ðtÞ 2 þ ny ðtÞ 2 ð4:2:39Þ H H H or
uyyy ðtÞ C1 vy ðtÞ
H1
þ uy ðtÞH 1 þ ny ðtÞH 2 þ uty
ð4:2:40Þ
which, with (4.2.31), (4.2.32) and (4.2.38), gives (4.2.33). This proves the lemma. h Using the same estimate as in chapter 3, we can obtain the following two lemmas concerning uniform estimates in H i H0i H i þ 1 ði ¼ 1; 2Þ and H 4 H04 H 4 using uniform estimates of specific volume v in lemma 4.2.5. Lemma 4.2.9. If assumptions in theorem 4.1.2 are valid, then the following estimate holds for any t > 0, Z t nty ðtÞ2 þ nyyy ðtÞ2 þ ntyy ðsÞ2 C2 : ð4:2:41Þ 0
Lemma 4.2.10. If assumptions in theorem 4.1.3 are valid, then the following estimates hold for any t > 0, Z t 2 2 2 2 utty þ utyy 2 kutt ðtÞk þ kntt ðtÞk þ ntyy ðtÞ þ 0 2 2 2 þ kntt k þ ntty þ ntyyy ðsÞds C4 ; ð4:2:42Þ uty ðtÞ2 þ uyyy ðtÞ2 þ utyy ðtÞ2 þ
Z
utyyy ðsÞ2 ds C4 ;
t
ð4:2:43Þ
0
vyyy ðtÞ2 þ nyyyy ðtÞ2 þ uyyyy ðtÞ2 þ
Z
vyyy ðsÞ2 ds C4 ;
ð4:2:44Þ
Z t vyyyy 2 þ nyyyyy 2 þ uyyyyy 2 ðsÞds C4 :
ð4:2:45Þ
t
0
vyyyy ðtÞ2 þ
0
4.3
Large-Time Behavior in H i H0i H i þ 1 ði ¼ 1; 2Þ and H 4 H04 H 4
In this section, we shall complete the proofs of theorems 4.1.1–4.1.3.
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 123 Lemma 4.3.1. If assumptions in theorem 4.1.1 are valid, then we have lim kvðtÞ v kH 1 ¼ 0
ð4:3:1Þ
t! þ 1
where v¼
R1 0
vðy; tÞdy ¼
R1 0
v0 dy:
Proof. Differentiating (4.1.1) with respect to y, multiplying the result by vy, then integrating the result over [0, 1], using the Young inequality, we can deduce d vy ðtÞ2 vy ðtÞ2 þ uyy ðtÞ2 1 þ 1 vy ðtÞ4 þ uyy ðtÞ2 dt 2 2 which, along with (4.2.21), (4.2.31) and lemma 1.1.2, leads to 2 lim vy ðtÞ ¼ 0: t! þ 1
ð4:3:2Þ
Moreover, using the embedding theorem, we can deduce v k C1 vy kv which, together with (4.3.2), gives (4.3.1). This proves the lemma.
h
Lemma 4.3.2. If assumptions in theorem 4.1.1 are valid, then we have lim kuðtÞkH 1 ¼ 0:
ð4:3:3Þ
t! þ 1
Proof. Equation (4.1.1) can be rewritten as ut ¼
jny j2 v 1 2 v
! þ
u
y
y
v
y
:
ð4:3:4Þ
Let b p¼b p ðy; tÞ ¼ Then
1 jny j2 þ 2 ; v v
1 jny j2 uy b r¼b r ðy; tÞ ¼ 2 þ : v v v
uy ut ¼ b pþ ¼b ry : v y
ð4:3:5Þ
Put b p ðy; tÞ ¼ b p ðy; tÞ p ¼ b
Z
1
b p ðy; tÞdy;
ð4:3:6Þ
b r ðy; tÞdy:
ð4:3:7Þ
0
b ðy; tÞ ¼ b b r ðy; tÞ r ¼ r
Z 0
1
1D Radiative Fluid and Liquid Crystal Equations
124
Then Z
1
b p ðy; tÞdy ¼ 0;
0
Z
1
b r ðy; tÞdy ¼ 0;
ð4:3:8Þ
0
ðb p Þy ¼ b py ;
ðb r Þy ¼ b ry :
ð4:3:9Þ
Integrating (4.3.9) by parts, using (4.3.5), lemma 4.2.3 and the Young inequality, we can infer that for any ε > 0, Z y 2 b p k ¼ ðb p ;b p Þ ¼ b py ; p dx kb 0 Z y u Z y y b b ¼ b py ; ; p dx ¼ ut p dx v y 0 Z y0 Z y uy b b ¼ ut ; p dx p dx ; v y 0 0 Z 1 12 Z 1 Z y 2 !12 Z 1 uy 2 b b p dy ut dy p dx dy þ 0 0 0 0 v 2 p k2 þ C ðeÞuy ek b p k2 þ C ðeÞkut k2 þ C1 ekb 2 ð4:3:10Þ ðC1 þ 1Þek b p k2 þ C1 kut k2 þ uy : Choosing ε > 0 so small that (C1 + 1)ε < 1, integrating the result over (0, t), we obtain Z t ð4:3:11Þ p ðsÞk2 ds C1 : kb 0
Note that
Z y d b p ðtÞk2 ¼ 2ðb p; b p t Þ ¼ 2 b p y ; p t dy kb dt 0 Z y uy b ¼2 ut ; p t dy v y Z y 0 Z y uy b b ¼ 2 ut ; ; p t dy 2 p t dy v y 0 0 2 2 2 C1 kut ðtÞk þ uy ðtÞ þ b p ðtÞ : t
ð4:3:12Þ
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 125
From (4.2.21) and (4.2.30), it follows that 2 2 2 2 2 b p t ðtÞ C1 kvt ðtÞk þ ny ðtÞ nty ðtÞ þ ny ðtÞ vt ðtÞ 2 2 2 4 2 C1 uy ðtÞ þ ny ðtÞL1 nty ðtÞ þ ny ðtÞL1 uy ðtÞ 2 2 2 4 2 C1 uy ðtÞ þ nyy ðtÞ nty ðtÞ þ nyy ðtÞ uy ðtÞ 2 2 C1 uy ðtÞ þ nty ðtÞ : Combining (4.3.12) and (4.3.13), we get 2 2 d p ðtÞk2 C1 kut ðtÞk2 þ uy ðtÞ þ nty ðtÞ : kb dt
ð4:3:13Þ
ð4:3:14Þ
Using lemmas 4.2.7 and 1.1.2, we can derive p ðtÞk2 ¼ 0: lim kb
t! þ 1
Hence from (4.3.4), (4.3.5), (4.3.7) and (4.3.11), it follows Z t Z t 2 r ðsÞk2 ds C1 p k þ uy ðsÞds C1 : kb kb 0
ð4:3:15Þ
ð4:3:16Þ
0
By (4.3.4), (4.3.5), and (4.3.7), and integrating by parts, we derive Z y d b r; b r t Þ ¼ 2 b r y ; r t dx r ðtÞk2 ¼ 2ðb kb dt 0 Z y b ¼ 2 ut ; r t dx 0 Z y 2 ! 2 b C1 kut ðtÞk þ r t dx 0
ð4:3:17Þ
where Z 0
and
y
b r t dy
¼
Z y
Z
1
b rt
0
b r t ðn; tÞdn dx
0
! 1 jny j2 uy b r t ðy; tÞ ¼ 2 þ v v v t ! 2 ut vy uy2 vt jny j ut ¼ 2 þ þ : v v2 v y v2 t
ð4:3:18Þ
1D Radiative Fluid and Liquid Crystal Equations
126
Noting that for all t > 0, ut ð0; tÞ ¼ ut ð1; tÞ; we derive that for any y 2 [0, 1], Z y Z 1 2 2 b C r ðx; tÞdx ju þ n n þ n u þ u v þ u jdy þ ju j t 1 y y ty t y t y y y 0 h 0 C1 ðuy þ ny nty þ ny2 uy i 2 þ kut k vy þ uy Þ þ jut j
C1 uy þ nyt þ kut k þ jut j : Analogously,
Z
1
y
b r t ðx; tÞdx C1 uy þ nyt þ kut k þ jut j :
Combining (4.3.18)–(4.3.20), we obtain Z y Z y Z b b r t dy ¼ rt 0
0
Z
y
1
1
Z
1
b b r t dx r t dxdn 0 0 y
C1 uy þ nyt þ kut k þ jut j ¼
ð4:3:20Þ
b r t ðn; tÞdn dx
0
Z
ð4:3:19Þ
ð4:3:21Þ
which gives Z
0
y
2
b r t dx
2 2 C1 uy ðtÞ þ nyt ðtÞ þ kut ðtÞk2 :
ð4:3:22Þ
By (4.3.17) and (4.3.22), we can infer 2 2 d r ðtÞk2 C1 uy ðtÞ þ nyt ðtÞ þ kut ðtÞk2 kb dt 2 C1 1 þ nyt ðtÞ þ kut ðtÞk2 ; which, along with (4.3.16) and lemma 1.1.2, yields r ðtÞk2 ¼ 0: lim k b
t! þ 1
Noting that Z 0
1
u ðy; tÞdy ¼ 0; v y
ð4:3:23Þ
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 127
we arrive at uy uy ¼ þ v v
Z 0
1
uy dy ¼ ðb r þ b pÞ þ v
Z 0
1
uvy dy v2
which, together with lemma 4.2.3, gives u
y uy ðtÞ C1 p ðtÞk þ kuðtÞkvy ðtÞ : r ðtÞk þ kb C1 k b v Thus from (4.3.15), (4.3.23), (4.3.2) and (4.3.24) it follows that lim uy ðtÞ ¼ 0: t! þ 1
ð4:3:24Þ
ð4:3:25Þ
By the Poincaré inequality, we get
kuðtÞkH 1 C1 uy ðtÞ
which, together with (4.3.25), gives (4.3.3). This completes the proof.
h
Lemma 4.3.3. If assumptions in theorem 4.1.1 are valid, then we have kH 2 ¼ 0 lim knðtÞ n
t! þ 1
¼ where n
R1 0
ð4:3:26Þ
nðy; tÞdy:
Proof. Multiplying equation (4.1.3) by nt, integrating the result over [0, 1] with respect to y and using (4.1.6), we obtain Z 1 Z 1 nt ny jnt j2 dy ¼ dy v y 0 0 v Z 1 ny nty nt vy ð4:3:27Þ ¼ 2 dy: v v 0 v By the Young inequality, we deduce that for any ε > 0, Z Z 1 Z 1 Z 1 1d 1 jny j2 dy þ jnt j2 dy e jnt j2 dy þ C1 jny j2 vy2 dy: 2 dt 0 0 0 0 Taking ε small enough and using (4.2.21), we have d ny ðtÞ2 þ knt ðtÞk2 C1 ny ðtÞ2 1 L dt which, together with lemma 1.1.2 and (4.2.12), results in 2 lim ny ðtÞ ¼ 0: t! þ 1
By the Poincaré inequality, we derive
kH 1 C1 ny ðtÞ knðtÞ n
ð4:3:28Þ
ð4:3:29Þ
1D Radiative Fluid and Liquid Crystal Equations
128
which, together with (4.3.28), leads to kH 1 ¼ 0: lim knðtÞ n
t! þ 1
ð4:3:30Þ
By lemma 4.2.7, we can obtain 2 2 2 d knt ðtÞk2 þ nty ðtÞ ny ðtÞL1 uy ðtÞ dt which, combined with (4.2.12), (4.2.31) and lemma 1.1.2, gives lim knt ðtÞk ¼ 0:
t! þ 1
ð4:3:31Þ
From (4.1.3) and (4.2.31), and using the Poincaré inequality, we can infer 2 nyy ðtÞ2 C1 knt ðtÞk2 þ ny ðtÞvy ðtÞ2 þ ny2 ðtÞ 2 2 2 2 C1 knt ðtÞk2 þ ny ðtÞL1 vy ðtÞ þ ny ðtÞL1 ny ðtÞ 2 2 2 2 C1 knt ðtÞk2 þ nyy ðtÞ vy ðtÞ þ nyy ðtÞ ny ðtÞ 2 2 C1 knt ðtÞk2 þ vy ðtÞ þ ny ðtÞ ; which, along with (4.3.2), (4.3.30) and (4.3.31), gives 2 lim nyy ðtÞ ¼ 0: t! þ 1
Thus (4.3.25) follows from (4.3.32). This completes the proof.
ð4:3:32Þ h
Proof of Theorem 4.1.1. Combining lemmas 4.2.3–4.2.7 and lemmas 4.3.1–4.3.3, we complete the proof of theorem 4.1.1. h Lemma 4.3.4. If assumptions in theorem 4.1.2 are valid, then there holds v kH 2 ¼ 0 lim kvðtÞ
t! þ 1
where v¼
R1 0
vðy; tÞdy ¼
R1 0
ð4:3:33Þ
v0 ðyÞdy:
Proof. Differentiating (4.1.1) with respect to twice y, multiplying the resulting equation by vyy, then integrating it over [0, 1], by the Young inequality, we can deduce Z 1 1d vyy ðtÞ2 ¼ uyyy vyy dy 2 dt 0 2 1 2 1 1 4 1 2 1 uyyy ðtÞ þ vyy ðtÞ þ vyy ðtÞ þ uyyy ðtÞ 2 2 4 4 2 which, together with lemmas 4.2.8 and 1.1.2, implies 2 lim vyy ðtÞ ¼ 0: t! þ 1
ð4:3:34Þ
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 129
By the embedding theorem, we have lim kvðtÞ v kH 2 ¼ 0:
t! þ 1
h
This proves the proof.
Lemma 4.3.5. If assumptions in theorem 4.1.2 are valid, then the following estimate holds lim kuðtÞkH 2 ¼ 0:
t! þ 1
Proof. By (4.3.5), we have 1 jny j2 þ 2 v v
b py ¼ ¼
! y
vy 2ny nyy 2jny j2 vy þ 2 v v2 v3
¼ ut þ
u y
v
ð4:3:35Þ
y
:
ð4:3:36Þ
ð4:3:37Þ
Hence, by lemmas 4.2.3–4.2.9, and using the interpolation inequality, we obtain b p y ðtÞ C1 vy ðtÞ þ ny ðtÞ nyy ðtÞ þ jny ðtÞj2 vy ðtÞ 2 C1 vy ðtÞ þ nyy ðtÞL1 ny ðtÞ þ ny ðtÞL1 vy ðtÞ h 1 1 2 i C1 vy ðtÞ þ nyy ðtÞ2 nyyy ðtÞ2 þ nyy ðtÞ ny ðtÞ þ nyy ðtÞ vy ðtÞ
C1 vy ðtÞ þ ny ðtÞ which gives
lim b p y ðtÞ ¼ 0:
t! þ 1
ð4:3:38Þ
Differentiating (4.3.37) with respect to t, multiplying the result by ut, then integrating it over [0, 1], employing an integration by parts, and using the Young inequality, we can obtain for any ε > 0, Z 1 Z 1 2 Z 1 2 uty uy uty 1d 2 b dy ¼ p t uty dy þ dy kut ðtÞk þ 2 dt v v2 0 0 0 2 4 euty ðtÞ þ C1 kb p t ðtÞk2 þ uy ðtÞL4 : ð4:3:39Þ Choosing ε > 0 small enough, using (4.2.21), (4.2.31), (4.2.32) and the interpolation inequality, we can conclude
1D Radiative Fluid and Liquid Crystal Equations
130
2 d kut ðtÞk2 þ uty ðtÞ dt 2 2 2 C1 ðuy ðtÞ þ ny ðtÞL1 nty ðtÞ 2 2 3 4 þ ny ðtÞL1 vy ðtÞ þ uy ðtÞ uyy ðtÞ þ uy ðtÞ Þ 2 2 2 C1 uy ðtÞ þ nty ðtÞ þ ny ðtÞL1 :
ð4:3:40Þ
Hence we infer from (4.3.40), (4.2.6), (4.2.12), (4.2.31) and lemma 1.1.2 lim kut ðtÞk2 ¼ 0:
t! þ 1
ð4:3:41Þ
By (4.3.37), (4.1.8) and the interpolation inequality, we derive
uyy ðtÞ C1 b p y ðtÞ þ kut ðtÞk þ uy ðtÞvy ðtÞ 1 1 C1 ð b p y ðtÞ þ kut ðtÞk þ vy ðtÞ2 vyy ðtÞ2 þ vy ðtÞ uy ðtÞÞ
p y ðtÞ þ kut ðtÞk þ uy ðtÞ C1 b which, along with (4.3.25), (4.3.37), (4.3.40), gives 2 lim uyy ðtÞ ¼ 0: t! þ 1
ð4:3:42Þ
Thus (4.3.35) follows from (4.3.42) and (4.1.9). This completes the proof.
h
Lemma 4.3.6. If assumptions in theorem 4.1.2 are valid, then there holds that kH 3 ¼ 0 lim knðtÞ n
t! þ 1
¼ where n
R1 0
ð4:3:43Þ
nðy; tÞdy:
Proof. By lemma 3.3.2, we can derive d nty ðtÞ2 C1 nty ðtÞ2 þ nyy ðtÞ2 dt which, along with (4.2.21), (4.2.31) and lemma 1.1.2, leads to 2 lim nty ðtÞ ¼ 0: t! þ 1
Hence it follows from (4.2.41), (4.3.32), (4.3.34) and (4.3.44) that 2 lim nyyy ðtÞ ¼ 0; t! þ 1
ð4:3:44Þ
ð4:3:45Þ
which, using the embedding theorem and (4.3.26), gives (4.3.43). This proves the lemma. h
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 131 Proof of Theorem 4.1.2. Combining lemmas 4.2.8–4.2.9 and lemmas 4.3.4–4.3.6, we can complete the proof of theorem 4.1.2. h Lemma 4.3.7. If assumptions in theorem 4.1.3 are valid, then there holds that lim kvðtÞ v kH 4 ¼ 0
t! þ 1
where v¼
R1 0
vðy; tÞdy ¼
R1 0
ð4:3:46Þ
v0 ðyÞdy:
Proof. Differentiating (4.1.1) with respect to y three times, multiplying the resulting equation by vyyy, integrating it over [0, 1], and then using the Young inequality, we can derive d vyyy ðtÞ2 uyyyy ðtÞ2 þ vyyy ðtÞ2 dt 4 2 1 1 þ vyyy ðtÞ þ uyyyy ðtÞ 2 2 which, together with lemma 4.2.10 and lemma 1.1.2, yields 2 lim vyyy ðtÞ ¼ 0: t! þ 1
ð4:3:47Þ
Differentiating (4.1.1) with respect to y four times, multiplying the resulting equation by vyyyy, integrating it over [0, 1], and then using the Young inequality, we can derive d vyyyy ðtÞ2 uyyyyy ðtÞ2 þ vyyyy ðtÞ2 dt 4 2 1 1 þ vyyyy ðtÞ þ uyyyyy ðtÞ 2 2 which, along with lemma 4.2.10 and lemma 1.1.2, leads to 2 lim vyyyy ðtÞ ¼ 0: t! þ 1
ð4:3:48Þ
Therefore, using the embedding theorem, we conclude from (4.3.33), (4.3.47) and (4.3.48), lim kvðtÞ v kH 4 ¼ 0:
t! þ 1
h
This completes the proof. Lemma 4.3.8. If assumptions in theorem 4.1.3 are valid, then there holds that lim kuðtÞkH 4 ¼ 0:
t! þ 1
ð4:3:49Þ
132
1D Radiative Fluid and Liquid Crystal Equations
Proof. Clearly, using lemma 4.2.10 and the Young inequality, we can derive d uty ðtÞ2 C2 ðuty ðtÞ2 þ uty ðtÞ2 2 þ uy ðtÞ2 2 þ ny ðtÞ2 1 H H H dt 2 2 þ nty ðtÞH 1 þ vy ðtÞH 1 Þ 4 2 2 2 C2 þ C2 uty ðtÞ þ C2 ðuty ðtÞH 2 þ uy ðtÞH 2 þ ny ðtÞH 1 2 2 þ nty ðtÞH 1 þ vy ðtÞH 1 Þ which, along with lemmas 4.2.3–4.2.10 and lemma 1.1.2, leads to 2 lim uty ðtÞ ¼ 0: t! þ 1
ð4:3:50Þ
Differentiating (4.3.36) with respect to y, using the interpolation inequality and lemmas 4.2.3–4.2.10, we infer b p yy ðtÞ C1 ðvyy ðtÞ þ vy ðtÞL1 vy ðtÞ þ nyy ðtÞL1 nyy ðtÞ þ ny ðtÞL1 nyyy ðtÞ þ ny ðtÞL1 vy ðtÞL1 nyy ðtÞ 2 2 þ ny ðtÞL1 vyy ðtÞ þ vy ðtÞL1 ny ðtÞL1 ny ðtÞÞ
C1 vy ðtÞ þ vyy ðtÞ þ ny ðtÞ þ nyy ðtÞ þ nyyy ðtÞ which, combined with (4.3.2), (4.3.29), (4.3.34), (4.3.32) and (4.3.45), implies lim b ð4:3:51Þ p yy ðtÞ ¼ 0: t! þ 1
Differentiating (4.3.37) with respect to y, using the interpolation inequality and lemmas 4.2.3–4.2.9, we derive uyyy ðtÞ C1 uty ðtÞ þ b p yy ðtÞ þ uyy ðtÞvy ðtÞ þ uy ðtÞvyy ðtÞ þ uy ðtÞvy2 ðtÞ C1 uty ðtÞ þ b p yy ðtÞ þ uy ðtÞH 1 þ vy ðtÞH 1 which, together with (4.3.50), (4.3.51), (4.3.25), (4.3.34), (4.3.2) and (4.3.42), leads to lim uyyy ðtÞ ¼ 0: ð4:3:52Þ t! þ 1
Differentiating (4.3.36) with respect to y twice, using the interpolation inequality and lemmas 4.2.3–4.2.10, leads to
b p yyy ðtÞ C4 vyyy ðtÞ þ vyy ðtÞ þ nyyy ðtÞ þ vy ðtÞ þ ny ðtÞ which, along with (4.3.2), (4.3.29), (4.3.34), (4.3.45) and (4.3.47), results in lim b ð4:3:53Þ p yyy ðtÞ ¼ 0: t! þ 1
Large-Time Behavior of Solutions to a One-Dimensional Liquid Crystal System 133 Differentiating (4.3.36) with respect to t and y, using the Poincaré and the Gagliardo–Nirenberg interpolation inequalities, and using lemmas 4.2.3–4.2.10, we can obtain 2 2 2 2 2 b p yyt ðtÞ C2 uy ðtÞH 2 þ nty ðtÞH 2 þ ny ðtÞH 2 þ vy ðtÞH 2 : ð4:3:54Þ Differentiating (4.3.37) with respect to t once and y twice, multiplying the resulting equation by utyy, employing an integration by parts, and using the Young inequality, we can conclude that for any ε > 0, Z 1 2 2 2 2 utyyy 1d utyy ðtÞ2 þ dy eutyyy ðtÞ þ C1 ðeÞb p yyt ðtÞ þ C1 utyy vy 2 dt v 0 2 2 2 4 þ uty vyy þ uty vy2 þ uyy L4 þ uy uyyy 2 2 4 þ uy uyy vy þ uy2 vyy þ uy vy L4 : Choosing ε 2 (0, 1) small enough, using the interpolation inequality and lemmas 4.2.3–4.2.9, we deduce 2 2 d utyy ðtÞ2 þ utyyy ðtÞ2 C1 b p yyt ðtÞ þ C2 ðuty ðtÞH 2 dt 2 2 þ uy ðtÞ 2 þ vy ðtÞ 2 Þ: H
H
ð4:3:55Þ
Inserting (4.3.54) into (4.3.55), using lemmas 4.2.3–4.2.10 and lemma 1.1.2, we can derive 2 lim utyy ðtÞ ¼ 0: ð4:3:56Þ t! þ 1
Differentiating (4.3.37) with respect to y twice, using the Gagliardo–Nirenberg interpolation inequality and lemmas 4.2.3–4.2.10, we obtain uyyyy ðtÞ C1 b p yyy ðtÞ þ utyy ðtÞ þ uyyy vy þ uyy vy þ uyy vy2 þ uyy vyy þ uy vyyy þ uy vyy vy þ uy vy3 C1 b p yyy ðtÞ þ utyy ðtÞ þ uy ðtÞ þ uyy þ vy ðtÞ þ vyyy ðtÞ þ C4 vyy ðtÞ which, together with (4.3.2), (4.3.25), (4.3.34), (4.3.42), (4.3.47), (4.3.53) and (4.3.56), gives lim uyyyy ðtÞ ¼ 0: ð4:3:57Þ t! þ 1
Therefore, it follows from (4.3.33), (4.3.52) and (4.3.57) that lim kuðtÞkH 4 ¼ 0:
t! þ 1
Thus the proof follows immediately.
h
1D Radiative Fluid and Liquid Crystal Equations
134
Lemma 4.3.9. If assumptions in theorem 4.1.3 are valid, then the following estimate holds kH 4 ¼ 0 lim knðtÞ n
t! þ 1
¼ where n
R1 0
ð4:3:58Þ
nðy; tÞdy:
Proof. Exploiting lemma 4.2.10 and the Young inequality, we easily infer that 2 2 2 2 d kntt ðtÞk2 þ ntty ðtÞ C2 kntt ðtÞk2 þ nty ðtÞH 1 þ uy ðtÞH 1 þ uty ðtÞ dt 2 C2 þ C2 kntt ðtÞk4 þ C2 ðnty ðtÞH 1 2 2 þ uy ðtÞH 1 þ uty ðtÞ Þ which, along with (4.2.33), (4.2.31), (4.2.41) and lemma 1.1.2, implies lim kntt ðtÞk2 ¼ 0:
t! þ 1
ð4:3:59Þ
Then (4.3.55) follows from lemma 4.2.10, (4.3.31), (4.3.43), (4.3.47), (4.3.59) and lemmas 4.3.1–4.3.6 immediately. Thus the proof follows readily. h Proof of Theorem 4.1.3. Using lemma 4.2.10 and lemmas 4.3.7–4.3.9, we can finally complete the proof of theorem 4.1.3. h
4.4
Bibliographic Comments
In addition to the comments in section 3.5, we would like to mention here that the global existence and regularity of solutions to (3.1.1)–(3.1.5) or (3.1.6)–(3.1.10) have been established for the pressure P ¼ qc ¼ v1c ðc 1Þ, while the large-time behavior of global solutions to (3.1.6)–(3.1.10) (i.e., (4.1.1)–(4.1.5)) has only been proved for γ = 1 in P and it is still open for γ > 1. For the large-time behavior of solutions for incompressible liquid crystal system, we would like to refer to Wu [144] and the references therein.
Bibliography
[1] [2] [3]
[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
[16] [17]
Adams R. A. (1975) Sobolev space. Academic Press, New York (Vol. 65 in the series Pure and applied mathematics). Adams R. A., Fournier, J. J. F. (2003) Sobolev spaces, section edn. Academic Press, New York, Oxford, Singapore, Sydney, Tokyo. Antontsev S. N., Kazhikhov A. V., Monakhov V. N. (1990) Boundary value problem in mechanics of nonhomogeneous fluids. North-Holland, Amsterdam, New York, Oxford, Tokyo. Batchelor G. K. (1967) An introduction to fluids dynamics. Cambridge University Press, London. Bellman R. (1948) On the existence and boundedness of solutions of nonlinear partial differential equations of parabolic type, Trans. Amer. Math. Soc. 64(1), 21. Bellman R. (1953) On an inequality of Weinberger, Am. Math. Monthly 60(6), 402. Bellman R. (1954) Stability theory of differential equations. McGraw-Hill Book Co., Inc., New York. Bellman R. (1967) Upper and lower bounds for solutions of the matrix Riccati equation, J. Math. Anal. Appl. 17(2), 373. Blanca E., Francisco G., Marko R. (2006) Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys. 57(6), 984. Buet C., Després B. (2004) Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, J. Quant. Spectrosc. Radiat. Transfer 85(3–4), 385. Calderer M. C., Golovaty D., Lin F., Liu C. (2002) Time evolution of nematic liquid crystals with variable degree of orientation, SIAM J. Math. Anal. 33(5), 1033. Chandrasekhar S. (1960) Radiative transfer. Dover Publications, Inc., New York. Choe H., Kim H. (2003) Strong solutions of the Navier–Stokes equations for isentropic compressible fluids, J. Differ. Equ. 190(2), 504. Choe H., Kim H. (2004) Unique solvability for the density-dependent Navier–Stokes equations, Nonlinear Anal., TMA 59(4), 465. Constantin P., Foias C., Temam R. (1983) Connexion entre la théorie mathematique des équations de Navier–Stokes et la théorie conventionnelle de la turbulence, C. R. Acad. Sci. Paris, Série I 297(11), 599. Ding S. (April 1, 2009) Global solutions of one-dimensional liquid crystals system. A presentation in a conference at Wuhan University. Dubroca B., Feugeas J. L. (1999) Etude théorique et numérique d’une hiérarchie de modèles aux moments pour le transfert radiatif, C. R. Acad. Sci. Paris, Série I 329(10), 915.
136
Bibliography
[18]
Ducomet B., Nečasová Š. (2010) Global existence of solutions for the one-dimensional motions of a compressible gas with radiation: An “infrarelativistic model”, Nonlinear Anal., TMA, 72(7–8), 3258. Ducomet B., Nečasová Š. (2010) Global weak solutions to the 1D compressible Navier– Stokes equations with radiation, Commun. Math. Anal. 8(3), 23. Ducomet B., Nečasová Š. (2012) Large-time behavior of the motion of a viscous heat-conducting one-dimensional gas coupled to radiation, Ann. Mat. Pura Appl. 191(2), 219. Ducomet B., Nečasová Š. (2013) Asymptotic behavior of the motion of a viscous heat-conducting one-dimensional gas with radiation: The pure scattering case, Anal. Appl. 11(1), 1350003, 1. Ducomet B., Zlotnik A. (2003) Stabilization for equations of one-dimensional viscous compressible heat-conducting media with nonmonotone equation of state, J. Differ. Equ. 194 (1), 51–81. Ericksen J. (1987) Continuum theory of nematic liquid crystals, Res. Mech. 21, 381. Ericksen J. (1961) Conservation laws for liquid crystals, Trans. Soc. Rheol. 5, 22. Fan J., Ozawa T. (2009) Regularity criteria for a simplified Ericksen–Leslie system modeling the flow of liquid crystals, Discrete Conti. Dyna. Syst. 25(3), 859. Fang D., Zhang T. (2004) A note on compressible Navier–Stokes equations with vacuum state in one dimension, Nonlinear Anal., TMA 58(5–6), 719. Fang D., Zhang T. (2006) Global solutions of the Navier–Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data, J. Differ. Equ. 222(1), 63. Feireisl E., Dynamics of viscous compressible fluids. Oxford University Press, Oxford (2003). Feireisl E., Novotný A., Singular limits in thermodynamics of viscous fluids. Birkhäuser Verlag, Basel-Boston-Berlin (2009). Feireisl E., Novotný A., Petzeltova H. (2001) On the existence of globally defined weak solutions to the Navier–Stokes equations, J. Math. Fluid. Mech. 3(4), 358. Feireisl E., Petzeltova H. (2001) Bounded absorbing sets for the Navier–Stokes equations of compressible fluid, Commun. Partial Differ. Equ. 26(7-8), 1133. Feireisl E., Petzeltova H. (2001) Asymptotic compactness of global trajectories generalized by the Navier–Stokes equations of a compressible fluid, J. Differ. Equ. 173(2), 390. Feireisl E., Petzeltova H. (2002) The zero-velocity limit solutions of the Navier–Stokes equations of compressible fluid revisited. Navier–Stokes equations and related nonlinear problems, Ann. Univ. Ferrara-Sez. VII-Sc. Mat. 46(1), 209. Foias C., Temam R. (1977) Structure of the set of stationary solutions of the Navier–Stokes equations, Commun. Pure Appl. Math. 30(2), 149. Foias C., Temam R. (1987) The connection between the Navier–Stokes equations, dynamical systems and turbulence, New directions in partial differential equations. Academic Press, New York. Frid H., Shelukhin V. (2000) Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry, SIAM J. Math. Anal. 31(5), 1144. Friedman A. (1964) Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, NJ. Friedman A. (1976) Partial differential equations. Krieger, Huntington, New York. Fujita H., Kato T. (1964) On the Navier–Stokes initial value problem (I), Arch. Rational Mech. Anal. 16(4), 269. Gagliardo E. (1958) Proprietá di alcune classi di funzioni in piú variabili, Ricerche di Mat. 7, 102. Gagliardo E. (1959) Ulteriori proprietá di alcune classi di funzioni in piú variabili, Ricerche di Mat. 8, 24. Galdi G. P. (1994) An introduction to the mathematical theory of the Navier–Stokes equations, Vol. I, Linearized steady problems, Springer tracts in numerical philosophy, Vol. 38. Springer-Verlag.
[19] [20]
[21]
[22]
[23] [24] [25] [26] [27]
[28] [29] [30] [31] [32] [33]
[34] [35]
[36] [37] [38] [39] [40] [41] [42]
Bibliography
[43] [44] [45] [46] [47] [48]
[49] [50] [51] [52] [53] [54]
[55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68]
137
Gallavotti G. (2002) Foundations of fluid mechanics. Springer-Verlag, Berlin, Heidelberg, New York. Golse F., Perthame B. (1986) Generalized solutions of the radiative transfer equations in a singular case, Commun. Math. Phys. 106(2), 211. Gronwall T. H. (1919) Note on the derivatives with respect to a parameter of the solutions of a system of differential equation, Ann. Math. 20(4), 292. Hoff D. (1992) Global well-posedness of the Cauchy problem for the Navier–Stokes equations of nonisentropic flow with discontinuous initial data, J. Differ. Equ. 95(1), 33. Hoff D. (1995) Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Equ. 120(1), 215. Hoff D. (1996) Continuous dependence on initial data for discontinuous solutions of the Navier–Stokes equations for one-dimensional compressible flow, SIAM J. Math. Anal. 27(5), 1193. Hoff D. (1997) Discontinuous solutions of the Navier–Stokes equations for multidimensional flow of heat-conducting fluids, Arch. Rat. Mech. Anal. 139(4), 303. Hoff D. (2006) Uniqueness of weak solutions of the Navier–Stokes equations of multidimensional, compressible flow, SIAM J. Math. Anal. 37(6), 1742. Hoff D., Serre D. (1991) The failure of continuous dependence on initial data for the Navier– Stokes equations of compressible flow, SIAM J. Appl. Math. 51(4), 887. Hoff D., Smoller J. (2001) Non-formation of vacuum states for compressible Navier–Stokes equations, Commun. Math. Phys. 216(2), 255. Hoff D., Ziane M. (1999) Compact attractors for the Navier–Stokes equations of onedimensional compressible flow, C. R. Acad. Sci. Paris, Ser. I. 328(3), 239. Hoff D., Ziane M. (2000) The global attractor and finite determining nodes for the Navier– Stokes equations of compressible flow with singular initial data, Indiana Univ. Math. J. 49, 843. Hölder O. (1889) Über einen Mittelworthssatz, Nachr. Ges. Wiss. Göttingen, 38. Hong M. (2011) Global existence of solutions of the simplified Ericksen–Leslie system in dimension two, Calc. Var. 40(1–2), 15. Hu X., Wang D. (2010) Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys. 296(3), 861. Huang F., Matsumura A., Xin Z. (2006) Stability of contact discontinuities for the 1-D compressible Navier–Stokes equations, Arch. Rat. Mech. Anal. 179(1), 55. Jiang P., Wang D. (2010) Formation of singularities of solutions to the three-dimensional Euler–Boltzmann equations in radiation hydrodynamics, Nonlinearity 23, 809. Jiang P., Wang D. (2012) Global weak solutions to the three-dimensional Euler–Boltzmann equations in radiation hydrodynamics, Quart. Appl. Math. 70, 25. Jiang S. (1994) On initial boundary value problems for a viscous heat-conducting one-dimensional gas, J. Differ. Equ. 110(2), 157. Jiang S. (1994) On the asymptotic behavior of the motion of a viscous, heat-conducting, one-dimensional real gas, Math. Z. 216(1), 317. Jiang S. (1996) Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain, Commun. Math. Phys. 178(2), 339. Jiang S., Global solutions of the Cauchy problem for a viscous polytropic ideal gas, Ann. Scuola Norm Sup, Pisa Cl. Sci. XXVI(4), 47. S. Jiang (1998) Global smooth solutions to the equations of a viscous heat conducting one-dimensional gas with density-dependent viscosity, Math. Nachr. 190(1), 163. Jiang S. (1998) Large-time behavior of solutions to the equations of a viscous polytropic ideal gas, Ann. Mate. Pura Appl. 175(1), 253. Jiang S. (1999) Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in unbounded domains, Commun. Math. Phys. 200(1), 181. Kawashima S. (1987) Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh 106(1–2), 169.
138
Bibliography
[69]
Kawashima S., Nishida T. (1981) Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases, J. Math. Kyoto. Univ. 21 (4), 825. Kawashima S., Nishibata S., Zhu P. (2003) Asymptotic stability of the stationary solution to the compressible Navier–Stokes equations in the half space, Commun. Math. Phys. 240(3), 483. Kazhikhov A. V. (1977) Sur la solubilité globale des problèmes monodimensionnels aux valeurs initiales-limités pour les équations ďun gaz visqueux et calorifére, C. R. Acad.Sci. Paris, Ser. A 284, 317. Kazhikhov A. V. (1981) To a theory of boundary value problems for equations of one dimensional nonstationary motion of viscous heat-conduction gases, Boundary Value Prob. Hydrodynam. Equ. (in Russian), No. 50 Inst. Hydrodynamics, Siberian Branch Akad., USSR, pp. 37–62. Kazhikov A. V., Shelukhin V. V. (1977) Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech. 41(2), 273. Kippenhahn R., Weigert A. (1994) Stellar structure and evolution. Springer-Verlag, Berlin, Heidelberg. Kuang J. (2004) Applied inequalities, 3nd edn. Shangdong Science and Technology Press (in Chinese). Lech M. (1998) Why Hölder’s inequality should be called Rogers’ inequality, Math. Inequal. Appl. 1(1), 69. Lesile F. (1968) Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal. 28(4), 265. Lesile F. (1979) Theory of flow phenomena in liquid crystals advances in liquid crystals, Adv. Liq. Cryst. 4, 1. Lin C. (2007) Mathematical analysis of radiative transfer models, Ph.D. Thesis. Lin C., Coulombel J. F., Goudon T. (2006) Shock profiles for non-equilibrium radiating gases, Physica D 218(1), 83. Lin F., Liu C. (1995) Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math. 48(5), 501. Lin F., Liu C. (1996) Partial regularity of the dynamical system modeling the flow of liquid crystals, Discrete Conti. Dyna. Syst. 2(1), 1. Lin F., Liu C. (2000) Existence of solutions for the Ericksen–Leslie system, Arch. Rational Mech. Anal. 154(2), 135. Lions P. L. (1998) Mathematical topics in fluid dynamics, Vol. 1, Incompressible models, Vol. 2 Compressible models. Oxford Science Publication, Oxford. Liu C. (2000) Dynamic theory for incompressible smectic-A liquid crystals: Existence and regularity, Discrete Conti. Dyna. Syst. 6(3), 591. Liu C., Shen J. (2001) On liquid crystal flows with free-slip boundary conditions, Discrete Conti. Dyna. Syst. 7(2), 307. Liu C., Walkington N. (2000) Approximation of liquid crystal flows, SIAM J. Appl. Math. 37 (3), 725. Liu C., Walkington N. (2002) Mixed methods for the approximation of liquid crystal flows, ESAIM: Math. Model. Numer. Anal. 36(2), 205. Lowrie R. B., Morel J. E., Hittinger J. A. (1999) The coupling of radiation and hydrodynamics, Astrophys. J. 521(1), 432. Matsumura A., Nishida T. (1979) The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Jap. Acad. Ser. A 55, 337. Matsumura A., Nishida T. (1980) The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto. Univ. 20(1), 67. Matsumura A., Nishida T. (1982) Initial boundary value problems for the equations of motion of general fluids, Computing Meth. in Appl. Sci. and Engin. V. (R. Glowinski, J. L. Lions, Eds.). North-Holland, Amsterdam, pp. 389–406.
[70]
[71]
[72]
[73]
[74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92]
Bibliography
[93] [94] [95] [96] [97] [98] [99]
[100] [101]
[102] [103] [104] [105] [106] [107] [108] [109]
[110] [111]
[112] [113] [114] [115] [116] [117] [118]
139
Matsumura A., Nishida T. (1983) Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Commun. Math. Phys. 89(4), 445. Mihalas D., Weibel-Mihalas B. (1984) Foundations of radiative hydrodynamics. Oxford University Press, New York. Nirenberg L. (1959) On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13(3), 113. Nirenberg L. (1974) Topics in nonlinear functional analysis. Courant Institute of Mathematical Sciences. Okada M., Kawashima S. (1983) On the equations of one-dimensional motion of compressible viscous fluids, J. Math. Kyoto Univ. 23(1), 55. Paicu M., Zhang P. (2012) Global solutions to the 3-D incompressible inhomogeneous Navier–Stokes system, J. Funct. Anal. 262(8), 3556. Pomraning G. C. (1973) The equations of radiation hydrodynamics, international series’ of monographs in natural philosophy, Vol. 54. Pergamon Press, Oxford-New York-Toronto-Springer-BRAUNSCHWEIG. Pomraning G. C. (2005) Radiation hydrodynamics. Dover Publications, Inc., Mineola, New York. Qin Y. (2001) Global existence and asymptotic behavior for a viscous, heat-conductive, one-dimensional real gas with fixed and thermally insulated endpoints, Nonlinear Anal., TMA 44(4), 413. Qin Y. (2002) Exponential stability for a nonlinear one-dimensional heat-conductive viscous real gas, J. Math. Anal. Appl. 272(2), 507. Qin Y. (2004) Universal attractor in H4 for the nonlinear one-dimensional compressible Navier–Stokes equations, J. Differ. Equ. 207(1), 21. Qin Y., Nonlinear parabolic-hyperbolic coupled systems and their attractors, Operator theory, advances in PDEs, Vol. 184. Basel-Boston-Berlin, Birkhäuser (2008). Qin Y. (2010) Exponential stability for the compressible Navier–Stokes equations with the cylinder symmetry in R3 , Nonlinear Anal., RWA 11(5), 3590. Qin Y. (2017) Analytic inequalities and their applications in PDEs. Birkhäuser Verlag AG. Qin Y. (2016) Integral and discrete inequalities and their applications, Vol. I, Linear inequalities. Springer International Publishing AG. Qin Y. (2016) Integral and discrete inequalities and their applications, Vol. II, Nonlinear inequalities. Springer International Publishing AG. Qin Y., Dong X., Liu X. (2021) Global existence and asymptotic behavior of solutions for the one-dimensional infrarelativistic model of a compressible viscous gas with radiation, Math. Meth. Appl. Sci. doi: 10.1002/mma.7760. Qin Y., Feng B. (2017) Large-time behavior of solutions to a 1D liquid crystal system, Math. Meth. Appl. Sci. 50(1), 7077. Qin Y., Feng B., Zhang M. (2012) Large-time behavior of solutions for the one-dimensional infrarelativistic model of a compressible viscous gas with radiation, J. Differ. Equ. 252(12), 6175. Qin Y., Feng B., Zhang M. (2014) Large-time behavior of solutions for the 1D viscous heat-conducting gas with radiation: The pure scattering case, J. Differ. Equ. 256(3), 989. Qin Y., Hu F. (2009) Global existence and exponential stability for a real viscous heat-conducting flow with shear viscosity, Nonlinear Anal., RWA 10(1), 298. Qin Y., Hu G. (2011) Global smooth solutions for 1D thermally radiative magnetohydrodynamics, J. Math. Phys. 52(2), 023102. Qin Y., Hu G., Wang T. (2011) Global smooth solutions for the compressible viscous and heat-conductive gas, Quart. Appl. Math. 69(3), 509. Qin Y., Hu G., Wang T., Huang L., Ma Z. (2013) Remarks on global smooth solutions to a 1D self-gravitating viscous radiative and reactive gas, J. Math. A7nal. Appl. 408(1), 19. Qin Y., Huang L. (2014) Global existence and regularity of a 1D liquid crystal system, Nonlinear Anal., RWA 15, 172. Qin Y., Huang L., Ma Z. (2009) Global existence and exponential stability in H4 for the nonlinear compressible Navier–Stokes equations, Commun. Pure Appl. Anal. 8(6), 1991.
140
Bibliography
[119]
Qin Y., Huang L., Yao Z. (2008) Regularity of one-dimensional compressible isentropic Navier–Stokes equations with density-dependent viscosity, J. Differ. Equ. 245(12), 3956. Qin Y., Huang L., Yao Z. (2009) A remark on regularity of one-dimensional compressible isentropic Navier–Stokes equations with density-dependent viscosity, J. Math. Anal. Appl. 351(2), 497. Qin Y., Huang L. (2010) Regularity and exponential stability of the p-th Newtonian fluid in one space dimension, Math. Mode Meth. Appl. Sci. 20(4), 589. Qin Y., Huang L. (2010) Global existence and exponential stability for the p-th power viscous reactive gas, Nonlinear Anal., TMA 73(9), 2800. Qin Y., Huang L. (2012) Global well-posedness of nonlinear parabolic-hyperbolic coupled systems, Frontiers in mathematics. Basel-Boston-Berlin, Birkhäuser. Qin Y., Huang L. (2014) Global existence and regularity of a 1D liquid crystal system, Nonlinear Anal., RWA, 15, 172. Qin Y., Jiang L. (2010) Global existence and exponential stability of solutions in H4 for the compressible Navier–Stokes equations with the cylinder symmetry, J. Differ. Equ. 249(6), 1353. Qin Y., Liu X., Yang X. (2012) Global existence and exponential stability of solutions to the one-dimensional full non-Newtonian fluids, Nonlinear Anal., RWA 13(2), 607. Qin Y., Liu X., Yang X. (2012) Global existence and exponential stability for a 1D compressible and radiative MHD flow, J. Differ. Equ. 253(5), 1439. Qin Y., Liu X., Wang T. (2015) Global wellposedness of nonlinear evolutionary fluid equations. Springer Basel, 978-3-0348-0593-3. Qin Y., Rivera J. E. M. (2003) Exponential stability and universal attractors for the Navier– Stokes equations of compressible fluids between two horizontal parallel plates in R3 , Appl. Numer. Math. 47(2), 209. Qin Y., Song J. (2010) Maximal attractors for the compressible Navier–Stokes equations of viscous and heat conductive fluid, Acta Math. Sci. 30B(1), 289. Qin Y., Su X., Deng S. (2008) Remarks on self-similar solutions to the compressible Navier– Stokes equations of a one-dimensional viscous polytropic ideal gas, Appl. Math. Sci. 2(30), 1493. Qin Y., Wen S. (2008) Global existence of spherically symmetric solutions for nonlinear compressible Navier–Stokes equations, J. Math. Phys. 49(2), 023101. Qin Y., Yu X. (2009) Global existence and asymptotic behavior for the compressible Navier– Stokes equations with a non-autonomous external force and heat source, Math. Meth. Appl. Sci. 32(8), 1011. Qin Y., Zhao Y. (2008) Global existence and asymptotic behavior of compressible Navier– Stokes equations for a one-dimensional isothermal viscous gas, Math. Mode. Meth. Appl. Sci. 18(8), 1183. R. Racke (1992) Lectures on nonlinear evolution equations, Aspects of mathematics, Vol. 19. VIEWEG, Bonn. J. Serrin (1962) On the interior regularity of weak solutions of the Navier–Stokes equations, Arch. Rational Mech. Anal. 9(1), 187. Shen W., Zheng S. (1993) On the coupled Cahn–Hilliard equations, Commun. Partial Differ. Equ. 18(3–4), 701. Sobolev S. L. (1938) On a theorem of functional analysis, Mat. Sbornik 4, 471; English transl: Amer. Math. Soc. Trans. 34, 39 [II.2, II.9, Notes for II]. Temam R. (1979) Navier–Stokes equations, theory and numerical analysis. North Holland, Amsterdam. Temam R. (1983) Navier–Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania. Temam R. (1997) Infinite-dimensional dynamical system in mechanics and physics, 2nd edn. Springer, New York. Valli A., Zajaczkowski W. M. (1986) Navier–Stokes equation for compressible fluids: Global existence and qualitative properties of the solutions in the general case, Commun. Math. Phys. 103(2), 259.
[120]
[121] [122] [123] [124] [125]
[126] [127] [128] [129]
[130] [131]
[132] [133]
[134]
[135] [136] [137] [138] [139] [140] [141] [142]
Bibliography
[143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155]
[156]
[157]
141
Wen H., Ding S. (2011) Solutions of incompressible hydrodynamic flow of liquid crystals, Nonlinear Anal., RWA 12(3), 1510. Wu H. (2010) Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows, Discrete Conti. Dyna. Syst. 26(1), 379. Wu S. T. (2011) General decay of solutions for a viscoelastic equation with nonlinear damping and source terms, Acta Math. Sci. 31(4), 1436. Xin Z. (1998) Blowup of smooth solutions to the compressible Navier–Stokes equation with compact density, Commun. Pure Appl. Math. 51(3), 229. Xin Z., Yan W. (2013) On blowup of classical solutions to the compressible Navier–Stokes equations, Commun. Math. Phys. 321(2), 529. Yosida K. (1980) Functional analysis, 6th edn. Springer-Verlag. Young W. H. (1912) On classes of summable functions and their Fourier series, Proc. Roy. Soc. London A 87(594), 225. Zhang T., Fang D. (2006) Global behavior of compressible Navier–Stokes equations with a degenerate viscosity coefficient, Arch. Rational Mech. Anal. 182(2), 223. Zhang T., Fang D. (2007) Global behavior of spherically symmetric Navier–Stokes equations with density-dependent viscosity, J. Differ. Equ. 236(1), 293. Zhang T., Fang D. (2008) Global wellposed problem for the 3-D incompressible anisotropic Navier–Stokes equations, J. Math. Pures Appl. 90(5), 413. Zhang T., Fang D. (2009) A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients, Nonlinear Anal., RWA 10(4), 2272. Zhang T., Fang D. (2012) Random data Cauchy theory for the generalized incompressible Navier–Stokes equations, J. Math. Fluid Mech. 14(2), 311. Zheng S. (1995) Nonlinear parabolic equations and hyperbolic-parabolic coupled systems, Pitman series monographs and surveys in pure and applied mathematics, Vol. 76. Longman Group Limitted, London. Zheng S., Qin Y. (2001) Universal attractors for the Navier–Stokes equations of compressible and heat conductive fluids in bounded annular domains in Rn , Arch. Rational Mech. Anal. 160(2), 153. Zhong X., Jiang S. (2007) Local existence and finite-time blow-up in multidimensional radiation hydrodynamics, J. Math. Fluid Mech. 9(4), 543.
Index
A Angular Variable, 18 Asymptotic Behavior, 17, 81 Asymptotic Behavior of Solutions in H1 , 48 Asymptotic Behavior of Solutions in H2 , 60 Asymptotic Behavior of Solutions in H4 , 81 C Cauchy–Schwarz Inequality, 14 Compactness Theorem, 5 Compressible Navier–Stokes Equations, 89 Conservation of Linear Momentum, 89 Conservation of Mass, 89
I Infrarelativistic Model, 17 Initial Boundary Value Problem, 89 L Lagrangian Coordinates, 18 Large-time Behavior, 111 Liquid Crystal Flow, 89 Liquid Crystal System, 111 Local Thermodynamics Equilibrium, 86 M Minkowski Inequality, 15
D Density Function, 89
O Optical Director of the Molecules, 89
E Embedding and Compactness Theorem, 5 Embedding Theorem, 5 Ericksen–Leslie System, 89
P Planck Function, 87
G Gagliardo–Nirenberg interpolation inequalities, 6 Global Existence, 53, 89 Global Existence and Uniform-in-time Estimates, 22, 62 H Harmonic Map Equation, 89 Heat Conductivity, 18 Heat Flow Equation for Harmonic Maps, 89 Heat Flux, 18 Hölder Inequality, 13
R Radiation Frequency, 18 Radiative Energy, 18 Radiative Energy Source, 18, 86 Radiative Flux, 18, 87 Radiative Intensity, 18 Regularity, 89 S Schwarz Inequality, 14 Shen–Zheng Inequality, 10 Sobolev Inequality, 2 Sobolev Space, 1 Source Term, 18 Specific Volume, 18 Stress, 18
Index
144
T The Classical Bellman–Gronwall Inequality, 7 The Generalized Bellman–Gronwall Inequality, 8 The Minkowski Inequalities, 14 The Poincaré Inequality, 6 The Uniform Bellman–Gronwall Inequality, 9 The Young Inequalities, 12
Thermodynamical Relation, 19 Transporting Relation, 89 U Uniform Estimates, 113 Uniform-in-time Estimates, 19, 53 V Viscosity Coefficient, 20