130 27 8MB
English Pages [217] Year 2023
100 Integrals
100_Integrals.00FM_3pp.indd 1
27-07-2023 15:32:45
license, disclaimer of liability, and limited warranty By purchasing or using this book (the “Work”), you agree that this license grants permission to use the contents contained herein, but does not give you the right of ownership to any of the textual content in the book or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work. Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship). The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work. The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.
100_Integrals.00FM_3pp.indd 2
27-07-2023 15:32:45
100 Integrals Solutions and Engineering Applications
Mehrzad Tabatabaian, PhD, PEng
Mercury Learning and Information Boston, Massachusetts
100_Integrals.00FM_3pp.indd 3
27-07-2023 15:32:45
Copyright ©2023 by Mercury Learning and Information LLC. All rights reserved. An imprint of De Gruyter Inc. This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher. Publisher: David Pallai Mercury Learning and Information 121 High Street, 3rd Floor Boston, MA 02110 [email protected] www.merclearning.com (800) 232-0223 M. Tabatabaian. 100 Integrals: Solutions and Engineering Applications. ISBN: 978-1-68392-967-3 The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others. Library of Congress Control Number: 2023942788 232425321 This book is printed on acid-free paper in the United States of America. Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free). All of our titles are available in digital format at www.academiccourseware.com and other digital vendors. The sole obligation of Mercury Learning and Information to the purchaser is to replace the book, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.
100_Integrals.00FM_3pp.indd 4
27-07-2023 15:32:45
To the relentless explorers of integral calculus, may this textbook become your trusted companion, guiding you through the labyrinth of calculations, modelling, and simulations in engineering and technical fields.
100_Integrals.00FM_3pp.indd 5
27-07-2023 15:32:45
100_Integrals.00FM_3pp.indd 6
27-07-2023 15:32:45
Contents Prefacexiii About the Author
xv
PART 1: L IST OF SELECTED INTEGRALS WITH THEIR STEP-BY-STEP SOLUTIONS Table 1 List of Selected Integrals for Part 1 Integral 1 Integral 2 Integral 3 Integral 4 Integral 5 Integral 6 Integral 7 Integral 8 Integral 9 Integral 10 Integral 11 Integral 12 Integral 13 Integral 14 Integral 15 Integral 16
1 2 5 6 7 8 10 12 14 15 16 17 18 19 20 21 22 25
100_Integrals.00FM_3pp.indd 7
27-07-2023 15:32:45
viii • Contents
Integral 17 Integral 18 Integral 19 Integral 20 Integral 21 Integral 22 Integral 23 Integral 24 Integral 25 Integral 26 Integral 27 Integral 28 Integral 29 Integral 30 Integral 31 Integral 32 Integral 33 Integral 34 Integral 35 Integral 36 Integral 37 Integral 38 Integral 39 Integral 40 Integral 41 Integral 42 Integral 43 Integral 44 Integral 45 Integral 46 Integral 47 Integral 48
100_Integrals.00FM_3pp.indd 8
26 27 28 30 31 33 34 36 37 39 40 42 43 44 46 47 48 49 51 53 54 55 57 59 60 61 63 64 65 66 67 68
27-07-2023 15:32:45
Contents • ix
100_Integrals.00FM_3pp.indd 9
Integral 49 Integral 50 Integral 51 Integral 52 Integral 53 Integral 54 Integral 55 Integral 56 Integral 57 Integral 58 Integral 59 Integral 60 Integral 61 Integral 62 Integral 63 Integral 64 Integral 65 Integral 66 Integral 67 Integral 68 Integral 69 Integral 70 Integral 71 Integral 72 Integral 73 Integral 74 Integral 75 Integral 76 Integral 77 Integral 78 Integral 79 Integral 80
69 70 72 73 74 75 77 78 80 82 83 84 86 87 89 91 93 95 97 99 100 102 104 105 106 108 110 111 113 114 115 118
27-07-2023 15:32:45
x • Contents
Integral 81 Integral 82 Integral 83 Integral 84 Integral 85 Integral 86 Integral 87 Integral 88 Integral 89 Integral 90 Integral 91 Integral 92 Integral 93 Integral 94 Integral 95 Integral 96 Integral 97 Integral 98 Integral 99 Integral 100
PART 2: EXAMPLES APPLIED IN ENGINEERING 1 Semi-Circle Shapes 2 Circular Segment Shapes 3 Semi-Ellipse Shapes 4 Two-Degree Polynomial Shape-Quadratic 5 Three-Degree Polynomial Shape-Cubic 6 n-Degree Polynomial Shape-Spandrel 7 Sinusoidal Shapes 8 Triangular Shapes 9 Rectangular Shapes 10 Complex Shapes 11 A Cantilever Beam with Cubic Load Distribution
100_Integrals.00FM_3pp.indd 10
119 120 121 122 123 124 126 128 131 132 134 135 136 138 139 140 141 142 143 144 147 148 150 156 159 162 165 168 172 174 176 182
27-07-2023 15:32:45
Contents • xi
12 A Cantilever Beam with Quarter-Ellipse Load Distribution 13 A Cantilever Beam with Inverse Cosine Load Distribution 14 A Cantilever Beam with Parabolic Load Distribution 15 A Cantilever Beam with Circular Segment Cross-Section and Quarter-Ellipse Load Distribution 16 Probability Density Functions-PDF References
100_Integrals.00FM_3pp.indd 11
184 188 191
193 196 199
27-07-2023 15:32:45
100_Integrals.00FM_3pp.indd 12
27-07-2023 15:32:45
Preface This monograph contains a collection of integrals, some more challenging than others, with their worked-out solutions as indefinite integrals. The integrals were randomly selected, modified, or designed with the condition of having closed forms solutions with common functions. This list is meant for helping readers in practicing and getting hints for working out solutions to similar integrals that they might encounter. Readers might want to add their own favorite integrals to this list. By no means is this a comprehensive list of integrals, as many authors have created such lists ( [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]). The exercise of integration operation is a mind stimulating activity, as it requires the knowledge of certain mathematical techniques and the discovery of tricks and short cuts while solving them. The latter feature makes integration different and more enjoyable compared to other topics in calculus (e.g., differentiation and algebraic manipulation). In addition, we present the application of some integrals in engineering related topics. For example, nonuniform loading, hydrostatic force, moment of inertia, polar moment of inertia, etc. We introduce an up-to-date online software tool, WolframAlpha1 that can be used for comparing our answers for the integrals listed. However, readers may want to update to WolframAlpha Pro for recovering some of the integrals’ step-by-step solutions. Interested readers might like to try this tool for their selected integrals from the list. However, please note that sometimes equivalent results
100_Integrals.00FM_3pp.indd 13
27-07-2023 15:32:45
xiv • Preface
are provided by this tool for the same integral as input when compared to the results presented in this volume. In addition, similar CAS (computer algebra system) tools like Maple2, Mathematica3, or Mathcad4 may also be employed. Finally, readers should be aware that some integrals may have alternative equivalent solutions rather than a corresponding unique one. Thus worked-out solutions may be different, but equivalent, to those provided by some online CAS tools. Mehrzad Tabatabaian, PhD, PEng Vancouver, B.C. July 22, 2023
1
https://www.wolframalpha.com/calculators/integral-calculator/
2
https://www.maplesoft.com
3
https://www.wolfram.com/mathematica/
4
https://www.mathcad.com
100_Integrals.00FM_3pp.indd 14
27-07-2023 15:32:46
About the Author
Dr. Mehrzad Tabatabaian is a faculty member in the Mechanical Engineering Department, School of Energy at the British Columbia Institute of Technology. He has several years of teaching and industry experience. Dr. Tabatabaian is currently Chair of the BCIT School of Energy Research Committee. He has published several papers in scientific journals and conferences, and he has written textbooks on multiphysics and turbulent flow modelling, advanced thermodynamics, tensor analysis, direct energy conversion, and Bond Graph modelling method. He holds several registered patents in the energy field resulting from years of research activities. Dr. Tabatabaian volunteered to help establish the Energy Efficiency and Renewable Energy Division (EERED), a new division at Engineers and Geoscientists British Columbia (EGBC). Mehrzad Tabatabaian received his BEng from Sharif University of Technology (former AUT) and advanced degrees from McGill University (MEng and PhD). He has been an active academic, professor, and engineer in leading alternative energy, oil, and gas industries. Mehrzad has also a Leadership Certificate from the University of Alberta and holds an EGBC P.Eng. License.
100_Integrals.00FM_3pp.indd 15
27-07-2023 15:32:46
100_Integrals.00FM_3pp.indd 16
27-07-2023 15:32:46
PART
1
List of Selected Integrals with Their Step-by-Step Solutions
100_Integrals.001_3pp.indd 1
27-07-2023 15:43:36
2 • 100 Integrals
TABLE 1 List of selected integrals for Part 1 Integral
Integral
1
∫ xln3 xdx
19
1 ln 1 1 2 dx x
2
e x 1 e2 x dx
20
csch 1 xdx
3
∫
cos3 x dx sin x
21
4
ln
22
2
5
∫
23
ln 1 1 x2 dx
6
24
∫ sin 6 x cos5 xdx
7
25
∫ x m ln n xdx
8
26
e x sin 1 e x dx
9
x dx 8 4 x2 x4
27
x
10
4 x2 x 1 dx 4 x3 x
28
x x tan 1 xdx
11
x4 1 dx x2 2
29
tan 1 x dx x 1 3
12
1 dx 5 4 cos x
30
sin 1 x dx x2
13
∫ sec 4 xdx
31
x sec 1 xdx
14
32
sec 1 xdx
15
∫ tan xdx
33
x2 tan 1 xdx
16
∫ xe x sin xdx
34
17
∫
ln 3 x dx x3
35
18
ln 1 x dx
36
100_Integrals.001_3pp.indd 2
x 1 x dx
1 dx cos x x
sin x cos x 2 x
dx
7 x 117 x3
1 x
2 2
dx
1
1 x
2 5
dx
dx
1 dx sin x cos x x
dx
1 x2 dx 1 x2
2x 3 3 6 x 9 x2
x
3x 2
2
dx
4 x2 4
dx
2 x2 5 x 1 dx x 2 x2 x 2 3
27-07-2023 15:48:22
List of Selected Integrals with Their Step-by-Step Solutions • 3
Integral
Integral
37
38
39
40
41
2 x3 3 x2 4 dx x 1 4
54
x 1
1 1 x x
2
dx
55
e2 x tan 1 e x dx
56
57
∫ tan 3 xdx
1 ln x ln ln x dx
58
1 dx 4 5 cos x
42
ln x2 x 1 dx
59
tan 3 1 ln x dx x
43
cos x 4 sin 2 xdx
60
sin 2 x sin 3 x dx sin x sin 6 x
44
61
∫
sin 3 x dx cos x
45
62
5 x 31 dx 3 x2 4 x 11
46
dx
63
47
∫ sin 6 x cos5 xdx, alternative solution
64
48
∫ x2 e x dx
65
sin 1 x ln xdx
49
∫
tan 3 x dx cos3 x
66
ln sin x 1 sin xdx
50
tan x dx sin x cos x 2
67
51
1 1 2 dx ln x ln x
68
52
sin x sin x sin x sin x dx
69
53
100_Integrals.001_3pp.indd 3
x 1 x3 x2 x
dx
x4 4 x3 6 x2 4 x 1 dx x3 3 x2 3 x 1 x
1 4
x 1
10
dx
cos x dx sin 2 x 3 sin x 2
1 1 x
1 2 x2
x 5 1 x
x x2
2 3
dx
3/2
3
x 2 1 dx 1 5 x2 1 5 x2
70
1
dx
x 6 x x2
2
3 x 5 x 4 2 x3 12 x2 2 x 1
x
3
1
2
dx
4 x3 x 1 dx x3 1
1
x
1 x
2
x3 esin
dx
tan x 1 sec 3 x
dx
x ln x x2 1
sin 1
x 1 2
dx
1 x dx
27-07-2023 15:53:58
4 • 100 Integrals
Integral
Integral
71
1 dx 2 2 sin x cos x
86
72
sec 2 x dx tan 2 x 2 tan x 2
87
73
x2 x 1 dx
88
74
89
sin 2 ln x dx
75
90
∫ sin x sin 2 x sin 3 x dx
76
sin x tan 1 sec x 1dx
91
1 x2 dx
77
92
78
x3 ln x ln x6 5 dx
93
79
tan 1
94
x4 dx 6 1 x
80
95
81
sin 1 x dx
96
82
tan 1 x dx
97
sin 1 x dx
83
sinh 1 x dx
98
e x 1 ln x x2 x dx
84
tanh 1 x dx
99
xln x dx
85
1 cos1 dx x
100
x
x2 2 x 2 1 x3 x2 9
1 x xx
2
dx
dx
dx
100_Integrals.001_3pp.indd 4
2
x 1 x dx
x9 dx x 48 x10 575 20
1 dx x4 4
4x
x5 2
4
5/2
dx
1 dx x4 1
1 ln x cos x sin x x dx ln x 2 2 e2 x e x 3 e2 x 6 e x 1
dx
2
x3 e x
2
1 x
2 2
1 1
dx
dx
x 2
x
ln sin x dx 1 sin x
27-07-2023 15:59:14
List of Selected Integrals with Their Step-by-Step Solutions • 5
INTEGRAL 1 Problem
∫ xln xdx 3
Solution: x2 4 ln3 x 6 ln2 x 6 lnx 3 constant 8 Techniques used: Change of variables, Integration by parts Step-by-step solution: Let lnx = z, then we have = dx xdz = , x e z. After rewriting the inte gral in terms of variable z, we get xln3 xdx e2 z z3 dz. Integrating 1 2z 3 1 2z 2z 3 2 by parts gives, e z dz e z e 3 z dz. Performing the 2 2 dg f
integration by parts technique, two times, on the second term gives 1 3 3 1 3 3 3 e2 z z3 dz e2 z z3 e2 z z2 e2 z zdz e2 z z3 e2 z z2 e2 z z e2 z 2 4 2 2 4 4 8 3 3 3 e2 z z3 e2 z z2 e2 z z e2 z. Factoring out e2 z = x2 and substituting for z = lnx, we can 4 4 8 rewrite the result in terms of the original variable x as 1 2z x2 e 4 z3 6 z2 6 z 3 4 ln3 x 6 ln2 x 6 lnx 3 . 8 8
100_Integrals.001_3pp.indd 5
27-07-2023 16:01:07
6 • 100 Integrals
INTEGRAL 2 Problem
e
x
1 e2 x dx
Solution: 1 sinh 1 e x e x 1 e2 x constant 2 Techniques used: Change of variables, Trigonometric identities Step-by-step solution: dz . Rewriting the integral in terms of variable z dz z gives e x 1 e2 x dx z 1 z2 1 z2 dz. Now, let z z sinh u dz cosh u du. Rewriting the new integral in terms of variable u, gives 1 z2 dz 1 sinh2 u cosh u du. But, Let e x z dx
using the cosh2 u sinh2 u 1 identity we get 1 sinh2 u 2
cosh u du cosh2 u cosh u du cosh2 udu. Now, using the cosh u 1 cosh 2 u = (1 + cosh 2 u) / 2 identity, we get cosh2 udu du. 2 Expanding the integrand and integrate each term 1 cosh 2 u 1 1 u sinh 2 u u 2 sinh u cosh u gives du du cosh 2 u du 2 2 2 2 4 2 4 1 u sinh 2 u u 2 sinh u cosh u cosh 2 u du . Rewriting this expression in terms of variable z 2 2 4 2 4 u 2 sinh u cosh u sinh 1 z z 1 z2 1 and subsequently x, we get sinh 1 e x e x 2 2 2 2 2 sinh 1 z z 1 z2 1 2x . 1 x x sinh e e 1 e 2 2 2
100_Integrals.001_3pp.indd 6
27-07-2023 16:03:22
List of Selected Integrals with Their Step-by-Step Solutions • 7
INTEGRAL 3 Problem
∫
cos3 x dx sin x
Solution: 2 sin x 4 cos2 x constant 5 Techniques used: Change of variables, Trigonometric identities Step-by-step solution:
Let sin x z cos xdx dz. Rewriting the integral in terms of vari cos2 x 1 z2 able z gives cos xdx dz. Now, let z u dz 2 udu. sin x z Rewriting the new integral in terms of variable u gives 1 z2 1 u4 2 dz 2 udu 2 u u5. Substituting back and rewriting u 5 z the answer in terms of variable x , after some manipulations, gives 5 2 2 1 1 2 u u5 2 sin x sin x 2 sin x 1 sin2 x 2 sin x 1 1 cos2 x 5 5 5 5 1 2 1 2 x 1 sin x 2 sin x 1 1 cos2 x sin x 4 cos2 x . 5 5 5
100_Integrals.001_3pp.indd 7
27-07-2023 16:04:31
8 • 100 Integrals
INTEGRAL 4 Problem
ln
x 1 x dx
Solution: 1 sinh 1 x x 1 x 2 x ln 2
x 1 x constant
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: We use integration by parts technique with considering dx x.
1 x dx. Performing the integration gives x ln
Therefore, we can write ln
x 1 x dx x
d ln dx
x
1
x ln
1 x 1 x x 2 x 2 1 x x ln x 1 x
x 1 x dx ln
x 1 x dx x
d ln dx
x 11 x x 1 x x 2 x x
1 x x 1 x dx. 2 1 x
x z dx 2 zdz. Rewriting the new integral in z2 1 x terms of the variable z, gives dx dz. But 2 1 x 1 z2 d z 1 z2 using , and the integration by parts technique dx 1 z2 z2 z zdz z 1 z2 1 z2 dz. we can write 2 2 1 z 1 z Now, we let z sinh u dz cosh udu. Hence, the latter integral Now, we let
100_Integrals.001_3pp.indd 8
27-07-2023 16:05:42
List of Selected Integrals with Their Step-by-Step Solutions • 9
can be written as 1 z2 dz 1 sinh 2 u cosh udu cosh 2 u du, 1 after using the cosh 2 u sinh 2 u 1 identity. But cosh 2 u 1 cosh 2 u 2 1 cosh 2 u 1 cosh 2 u and after rewriting the last integral we have 2 1 1 1 1 1 cosh 2 u du 1 cosh 2 u du u sinh 2 u u sinh u cosh u 2 2 4 2 2 1 1 sinh 2 u u sinh u cosh u. After collecting all related answers and rewrite them in 2 2 terms of the original variable x, we get the solution as shown.
100_Integrals.001_3pp.indd 9
27-07-2023 16:05:57
10 • 100 Integrals
INTEGRAL 5 Problem
1
∫ cos x dx Solution: x 1 tan 2 ln constant 1 tan x 2 Techniques used: Integration by parts, Partial fractions, Trigonometric identities Step-by-step solution: We rewrite the x cos x cos2 sin 2 2
integral using the trigonometric identity 1 1 x . Therefore, dx dx x x x x 2 cos x cos2 sin 2 cos sin 2 2 2 2 1 1 dx. But the integrand can dx dx x x x x x x cos2 sin 2 cos sin cos sin 2 2 2 2 2 2 be written as, using the partial fractions technique, x a b sin a b co 1 a b 2 x x x x x x x x x x x cos sin cos sin cos 2 sin 2 cos 2 sin 2 cos sin cos si 2 2 2 2 2 2 2 x x a b sin a b cos b 2 2 . Therefore, to have equality valid, x x x x x x x n cos sin cos sin cos sin 2 2 2 2 2 2 2 x x the constants a and b should satisfy a b sin a b cos 1. 2 2 x x x x a b sin a b cos 1. Or, a b sin and a b cos . 2 2 2 2
100_Integrals.001_3pp.indd 10
27-07-2023 16:06:20
List of Selected Integrals with Their Step-by-Step Solutions • 11
x x 1 Solving for a and b gives, a cos sin and b = 2 2 2 1 x x cos sin . Therefore, the original integral can be 2 2 2 x x x x cos sin cos sin 1 1 1 2 2 dx 2 2 dx written as x x x x 2 cos x sin x 2 cos x sin x cos sin cos sin 2 2 2 2 2 2 2 2 x x x x cos sin cos sin 1 1 2 2 dx . But d cos x sin x cos x sin x and 2 2 dx x x x x 2 cos sin 2 2 2 2 2 cos sin x dx 2 2 2 2
d x x x x cos sin cos sin . Using these relations and recall 2 2 2 2 dx d dz ing that ln z = , we can arrive at the final answer for the integral dz z x x x x cos sin cos sin 1 1 x x x x 2 2 2 2 as dx dx ln cos sin ln cos sin x x x x 2 cos sin 2 cos sin 2 2 2 2 2 2 2 2 x x cos sin x x x x 2 2 . To simplify, after dividing the x ln cos sin ln cos sin ln x x 2 2 2 2 cos sin 2 2 numerator and denominator of the argument of the logarithm by x 1 tan 2 1 x . dx ln cos , we get x cos x 2 1 tan 2 Short-cut solution: An alternative solution can be obtained as follow: dz . Rewriting the integral gives cos x 1 1 1 1 dx dz dz tanh 1 z, where dz. But 2 2 cos x cos x 1 z 1 z2 in terms of the original variable x the answer reads tanh 1 sin x . Let sin x z dx
100_Integrals.001_3pp.indd 11
27-07-2023 16:06:59
12 • 100 Integrals
INTEGRAL 6 Problem
x
sin x cos x
2
dx
Solution: 2 x cos x 1 x ln sin x cos x constant sin x cos x 2 Techniques used: Integration by parts, Partial fractions, Trigonometric identities Step-by-step solution: We apply the integration by parts technique to the integral, Or x dx dx dx x x . This 2 2 sin x cos x sin x cos x sin x cos x 2 dx requires calculating the . But, by inspection the sin x cos x 2 f x derivative of an expression, like would contain the sin x cos x correct expression as exists in the denominator of the integrands 2 (i.e., sin x cos x ). Assuming f x as a polynomial function, we f x f sin x cos x f sin x cos x d then have , dx sin x cos x sin x cos x 2 with prime symbol indicating differentiation operation. To have the numerator equal to 1, the function f x should be a sinusoi dal one. Here, we let f x cos x . Note that selecting f x sin x
f x d cos x d sin x sin x coss x dx sin x cos x dx sin x cos x sin x s x cos x sin x cos x x x sin sin cos d 1 cos x . 2 dx sin x cos x sin x cos x sin x cos x 2 works as well. Therefore,
100_Integrals.001_3pp.indd 12
27-07-2023 16:07:36
2
List of Selected Integrals with Their Step-by-Step Solutions • 13
Therefore, The
we
can
write
1
sin x cos x
2
dx
cos x . sin x cos x
original
integral can be written as x cos x cos dx dx dx x x 2 2 2 sin x cos x sin x cos x sin x cos x sin x cos x sin x cos x x cos x cos x can be worked dx . But sin x cos x sin x cos x sin x cos x x
x
dx
sin x cos x 2
out
by first dividing the integrand by cos x / cos x 1 dx Now, dx. sin x / cos x cos x / cos x tan x 1 manipulate the integrand in this integral as
cos x,
or
we can 0 1 1 tan x tan dx tan x 1 tan x 1 0 0 1 1 tan x tan x tan x tan x 1 1 1 1 dx dx dx dx dx x dx x x tan x 1 tan tan x 1 tan x 1 tan x 1 1 t 0 1 tan x 1 1 1 1 tan x dx dx x x dx . Now we take the dx x tan x 1 x 1 tan x 1 tan x 1 tan 1 1 tan x from RHS to the LHS, to get 2 dx x dx . tan x 1 tan x 1 1 tan x cos x sin x But the last integrand can be w ritten as dx tan x 1 sin x cos x 1 tan x cos x sin x ln sin x cos x . Finally, the original integral can be dx tan x 1 sin x cos x x x cos x x 1 dx written as ln sin x cos x . 2 sin x cos x 2 2 sin x cos x Factoring ½ and rearranging the terms gives the expression as shown above for the answer.
100_Integrals.001_3pp.indd 13
27-07-2023 16:08:17
14 • 100 Integrals
INTEGRAL 7 Problem
x
7 x 1
17
dx
Solution:
1 112 x 11760 7 x 1
16
constant
Techniques used: Change of variables, Partial fractions Step-by-step solution:
z 1 . Writing the integral in terms 7 z 1 / 7 dz 1 z 1 x 1 of variable z, gives dx 17 dz z16 dz z17 dz 17 17 z 7 49 z 49 7 x 1 Let 7 x 1 z 7 dx dz, x
dz 1 z 1 1 17 dz z16 dz z17 dz . The integrals in the last expression, can 7 49 z 49
1 15 1 z and z17 dz z16. After 15 16 substituting and rewriting the integral in terms of original x, we 1 1 1 1 1 1 7x 1 z16 dz z17 dz z15 z16 get 16 49 49 15 16 15 49 7 x 1 16 1 1 11 1 7x 1 1 7x 1 z16 . Further simplification gives 16 16 15 15 49 7 x 1 16 11760 7 49 7 x 1 16 1 1 112 x 1 7x 1 , as shown in the answer. 16 16 15 49 7 x 1 16 11760 7 x 1 be worked to have z16 dz
100_Integrals.001_3pp.indd 14
27-07-2023 16:08:54
List of Selected Integrals with Their Step-by-Step Solutions • 15
INTEGRAL 8 Problem
1 x
2 2
dx
Solution: 1 1 ln 1 x2 constant 2 1 x2 Techniques used: Change of variables, Partial fractions Step-by-step solution:
By inspection and considering the denominator of the integrand, we 2 d have 1 x2 4 x3 4 x. Therefore, we rewrite the integral as dx 0 2 x 1 4 x3 4 x 4 x 1 4 x3 4 x x3 1 dx dx ln 1 x2 dx dx 2 2 2 2 4 1 x 2 4 1 x 2 4 1 x 2 1 x 2
4x
x
x3
2 2
dx
x
1 x
2 2
dx
2 1 x ln 1 x2 dx . To calculate the new integral, we let 2 4 1 x 2
dz . Therefore, rewriting this integral in terms of the 2x x 1 x dz 1 dz 1 variable z we get 2 . Back dx 2 2 2 2 z x 2 z 2z 1 x
1 x2 z dx
substituting, gives the final answer in terms of the variable x as shown 2 x3 1 x 1 1 . dx ln 1 x2 dx ln 1 x2 2 2 4 2 1 x2 1 x 2 1 x 2
100_Integrals.001_3pp.indd 15
27-07-2023 16:09:30
16 • 100 Integrals
INTEGRAL 9 Problem x
8 4x Solution:
2
x4
dx
x2 2 1 tan1 constant 4 2
Techniques used: Change of variables, Trigonometric identities Step-by-step solution: We rewrite the 2 denominator of the integrand as 8 4 x2 x 4 x2 2 4 . Therefore, the integral reads as x x dz dx. Now, let x2 2 z dx dx 2 2 4 2 8 4x x 2x x 2 4 and rewrite the integral in terms of the variable z, or x 1 dz 1 dz z . Now, we let u dz 2 du dx 2 2 2 2 x2 2 4 2 4 z 8 1 z / 2 z u dz 2 du and write the new integral in terms of the variable u as 2 1 dz 1 du . The last integral is readily equal to 2 4 1 u2 8 1 z / 2 tan −1 u, after back substitutions and rewriting the integral in terms 2 x 1 1 x 2 of the original variable x, we get dx tan 8 4 x2 x 4 4 2 as shown in the answer.
100_Integrals.001_3pp.indd 16
27-07-2023 16:10:16
List of Selected Integrals with Their Step-by-Step Solutions • 17
INTEGRAL 10 Problem 4 x2 x 1 4 x3 x dx Solution: 1 ln x tan 1 2 x constant 2 Techniques used: Change of variables, Partial fractions Step-by-step solution:
2 2 x We rewrite the integral as 4 x x 1 dx 4 x 1 dx 4 x3 x 4 x3 x 4 x3 x dx 4 x2 1 x x 4 x2 1 dx dx 3 dx 3 dx. But dx ln x and dx 2 . 2 2 4x x 4x x x(4 x 1) x(4 x 1) x 4x 1 dz Now, let 2 x z dx and rewrite the new integral in terms 2 1 1 1 dx of the variable z to get 2 dz tan 1 z. After col2 4x 1 2 1 z 2 lecting both integrals results and write them in terms of the original 4 x2 x 1 1 variable x we get dx ln x tan 1 2 x . 3 4x x 2
100_Integrals.002_3pp.indd 17
27-07-2023 15:45:34
18 • 100 Integrals
INTEGRAL 11 Problem
x4 1 dx x2 2
Solution: x3 5 x 2x tan 1 constant 3 2 2 Techniques used: Change of variables, Partial fractions Step-by-step solution:
We perform the division operation for the integrand to get x4 1 5 x4 1 1 2 x 2 . Therefore, the integral reads dx x2 2 dx 5 2 2 2 2 x x 2 x 2 x 2 3 x4 1 1 x 1 2 x2 2 dx x 2 dx 5 x2 2 dx 3 2 x 5 x2 2 dx. But the new x 5 1 z dx 2 dz dx. Now, let integral can be written as 2 2 2 x 1 2 x z dx 2 dz and rewrite the last integral in terms of the variable z to 2 5 1 5 2 1 5 2 tan 1 z. After collectget dx dz 2 2 z 2 2 1 2 x 1 2 ing both integrals results and write them in terms of the original x4 1 x3 5 x dx 2 x tan 1 variable x we get 2 . x 2 3 2 2
100_Integrals.002_3pp.indd 18
27-07-2023 15:47:23
List of Selected Integrals with Their Step-by-Step Solutions • 19
INTEGRAL 12 Problem 1
5 4 cos x dx Solution:
2 1 x tan 1 tan constant 3 2 3
Techniques used: Change of variables, Trigonometric identities Step-by-step solution:
1 dx 5 4 cos x 5 4 cos2 1 1 x 1 dx 5 4 cos x dx 2 x 2 x dx. Let tan 2 z dz 2 2 x . cos 5 4 cos sin 2 2 2 We rewrite the integral in terms of half-angle to have
z2 1 2 x x sin Therefore, cos , and 2 . Rewriting the 2 2 1 z 2 1 z integral in terms of the variable z, we get, after some simplifications, 2 1 1 2 2 x 2 x dx 9 z2 dz 9 z 2 . Now let 5 4 cos sin 1 2 2 3 z u dz 3 du and rewrite the integral in terms of the 3 2 du 2 variable u. Therefore, we have tan 1 u. After 3 1 u2 3 rewriting this integral in terms of the original variable x, we get 1 2 x 1 1 5 4 cos x dx 3 tan 3 tan 2 as shown in the answer. 2
100_Integrals.002_3pp.indd 19
27-07-2023 15:49:34
20 • 100 Integrals
INTEGRAL 13 Problem
∫ sec Solution:
4
x dx
1 tan 3 x + tan x + constant 3
Techniques used: Integration by parts, Trigonometric identities Step-by-step solution:
1 2 sin x dx Rewrite the integral using trigonometric identities as sec 4 xdx 4 cos x cos4 1 dx sin 2 x cos2 x 4 sec xdx the integrand by cos4 x cos4 x dx. Now, manipulate 1 1 sin 2 x cos2 x sin 2 x dx writing is as follows, dx dx dx 4 4 4 cos x cos x cos x cos2 x 2 2 x sin x dx 1 dx d d sin x . But tan x, since tan x . For integ dx dx the other 4 2 2 cos x cos x cos x dx dx cos x cos2 x
tan
ral, we write 2
sin 2 x sin 2 x 1 1 2 d 3 dx dx tan x tan x tan x. 4 2 2 dx cos x cos x cos x 3
d 1 x tan x tan 3 x. After collecting all terms, we get the answer as dx 3 1 4 3 sec xdx 3 tan x tan x.
100_Integrals.002_3pp.indd 20
27-07-2023 15:50:53
List of Selected Integrals with Their Step-by-Step Solutions • 21
INTEGRAL 14 Problem:
1
1 x
2 5
3 x 5 x3 2 x 5
Solution:
3
1 x
2 5
dx
constant
Techniques used: change of variables, Integration by parts, trigonometric identities Step-by-step solution: d 1 , 1 x2 1 tan 2 . Now, 2 cos cos2 rewriting the integral in terms of the variable α gives 1 1 d dx cos3 d. Now we can write 2 5 10 cos 2 cos 1 x x tan dx
Let
cos d cos cos d 1 sin cos d cos d sin cos d d cos d cos d sin cos d. But cos d sin and sin cos d sin si d 3
2
2
2
2
2
2
1 d sin 2 cos d sin 2 sin sin 3 . Collecting all related terms 3 d 1 gives the answer as cos3 d sin sin 3 . Rewriting the 3 1 result in terms of the original variable x, having tan x , gives 1 1 dx sin tan 1 x sin 3 tan 1 x . An alternative form 2 5 3 1 x
of the answer, in terms of polynomial functions of x, can be obtained x 1 by substituting sin into the expression sin sin 3 3 1 x2 3 5 3x 5x 2x to get . 5 3 1 x 2
100_Integrals.002_3pp.indd 21
27-07-2023 15:53:35
22 • 100 Integrals
INTEGRAL 15 Problem:
∫
tan x dx
Solution: 2 1 tan 2
2 tan x 1 tan 1
2 tan x 1 ln
2 tan x 1 tan 1
2 tan x 1 ln
1 tan x 2 tan x con 1 tan x 2 tan x
1 tan x 2 tan x constant 1 tan x 2 tan x
Techniques used: change of variables, partial fractions, trigonometric identities Step-by-step solution: dx dz dz dx . We rewrite the integral 2 cos x 1 z2 z dz. in terms of the variable z, to get tan xdx 1 z2 Now, let z u dz 2 udu and the latter integral can be written Let tan x z
as
u2 z dz 2 1 u4 du. The denominator of the integrand can be 1 z2
written as 1 u4 1 u2 2 u2 1 u2 2 u 1 u2 2 u . 2
Therefore, using the partial fractions technique, we can write the u2 u2 1 u integral as 2 du 2 du du 4 2 2 2 1 u 2 1 u 2u 1 u 2u 1 u 2u
u 2u 2
du
1 u 1 u du. Now we have two new du 2 2 2 1 u 2u 2 1 u 2u integrals to calculate. Working on the latter, we can write the
100_Integrals.002_3pp.indd 22
27-07-2023 15:55:06
List of Selected Integrals with Their Step-by-Step Solutions • 23
2
2 1 1 denominator of the integrand as 1 u 2 u u 1 2 2 2 2 2 2 1 1 dy u2 2 u u Now let 1 2 u 1 . 2 u 1 y du , 2 2 2 2 and write the latter integral in terms of variable y as 2
2u
1 u 2 y 1 / 2 dy 1 1y dy. du 22 22 1 y 2 1 y22 2 1 u 2u 2 2 2y 1 1y 1 1 1 But dy dy dy. The former 2 2 2 2 1 y 2 1 y 2 2 1 y 2y 1 1 1 1 integral reads tan 1 y and the latter dy dy 2 2 2 1 y 2 2 2 1 y 2 2y 1 1 dy ln 1 y2 . Writing the results in terms of varia2 2 2 1 y 2 2 1 1 1 1 ble x, gives tan 1 y ln 1 y2 tan 1 2 u 1 ln 1 2 u 1 2 2 2 2 2 2 2 2 1 1 1 1 tan 1 2 u 1 ln 1 2 u 1 tan 1 2 z 1 ln 1 2 z 1 tan 1 2 tan 2 2 2 2 2 2 2 2 2 1 1 1 ln 1 2 z 1 tan 1 2 tan x 1 ln 1 2 tan x 1 . 2 2 2 2
2 tan x 1
2
2 tan x 1
2 1 tan 2
2 tan x 1
ln 1 2 tan x 1 . Therefore, solution reads as 2
2 1 tan xdx tan 2
Similarly, the remaining integral can be worked out and 1 u 1 1 reads as du tan 1 2 tan x 1 ln 1 2 2 1 u 2u 2 2 2
1
2
100_Integrals.002_3pp.indd 23
2 tan x 1 tan
1
tan xdx
2 1 2 tan x 1 ln 4 1
2 2 tan x 1 2 2 tan x 1
27-07-2023 15:57:04
2
24 • 100 Integrals
2 1 ln 2 tan x 1 4 1
2 2 tan x 1 . 2 2 tan x 1
2 1 ln 1 4
The
last
term
simplifies
to
2 2 tan x 1 2 ln 1 2 tan x 1 2 2 tan x 2 ln 2 2 ln 1 tan 2 4 1 tan 1 2 tan x 1 2 2 tan x 4 2 tan x 1 4
2 1 tan x 2 tan x 2 1 2 2 tan x 2 1 ln ln 2 tan 2 tan x 1 . Simplified solution reads as 4 1 2 2 tan x 4 2 1 tan x 2 tan x 1 tan x 2 tan x 2 2 1 tan 2 tan x 1 tan 1 2 tan x 1 ln ln 2. 2 1 tan x 2 tan x 4 tan x 2 tan x 2 ln 2. tan x 2 tan x 4
100_Integrals.002_3pp.indd 24
27-07-2023 15:57:20
List of Selected Integrals with Their Step-by-Step Solutions • 25
INTEGRAL 16 Problem:
∫ xe
x
sin x dx
Solution: ex x sin x 1 x cos x constant 2 Techniques used: Integration by parts, trigonometric identities Step-by-step solution:
d xe x e x x 1 and xe x dx e x x 1 , we dx apply the integration by parts technique to the integral to get xe x sin xdx xe x cos x e x x 1 cos xdx xe x cos x xe x cos xdx e x cos Knowing that
f
dg
os xdx xe x cos x xe x cos xdx e x cos xdx. But xe x cos x dx xe x sin x e x x 1 sin x dx f
xe
dg
and Therefore, after substitution, we get xe x sin xdx xe x cos x xe x sin x e x
x
sin xdx xe x cos x xe x sin x e x x 1 sin x dx e x cos xdx. Or, after rearranging the involved terms, we get xe x sin xdx
1 xe x cos x xe x sin x e x sin x dx e x 2
1 x x x xe x cos x xe x sin x e x sin x dx e x cos xdx . But e sin xdx e cos x e cos x dx. 2 1 Therefore, after substitution, we get xe x sin xdx xe x cos x xe x sin x e x cos 2 1 1 sin xdx xe x cos x xe x sin x e x cos x e x cos x dx e x cos xdx xe x cos x xe x sin x e x cos x 2 2 1 ex dx xe x cos x xe x sin x e x cos x . Or xe x sin xdx x sin x 1 x cos x . 2 2
100_Integrals.002_3pp.indd 25
27-07-2023 15:59:21
2
26 • 100 Integrals
INTEGRAL 17 Problem: ln 3 x ∫ x3 dx Solution:
1 4 ln 3 x 6 ln 2 x 6 ln x 3 constant 8 x2
Techniques used: Integration by parts Step-by-step solution: Rewrite the integrand and apply the integration by parts. Therefore, ln 3 x 1 3 3 ln 2 x 3 dx we get 3 dx ln x 3 2 ln x 3 dx. Applying the x x 2x 2 x f dg
integration by parts successively twice again to the last integral, gives 3 ln 2 x 3 1 ln x 3 1 1 1 1 3 1 dx 2 ln 2 x 3 dx 2 ln 2 x 2 ln x 3 dx 2 ln 2 x 3 2 x 2 2x x 2x 2 x 2 2x 2 2x 1 1 1 3 1 1 1 ln 2 x 2 ln x 3 dx 2 ln 2 x 2 ln x 2 . After collecting all terms, we x x x 2x 2 x 2 2 2 4 3 2 ln 3 x receive the answer as 3 dx 2 1 2 ln x 1 ln x ln 2 x . x 8x 3
100_Integrals.002_3pp.indd 26
27-07-2023 16:00:07
List of Selected Integrals with Their Step-by-Step Solutions • 27
INTEGRAL 18 Problem:
ln 1
Solution:
x dx
x 1 ln 1 x x constant x 2
Techniques used: Change of variables, Integration by parts, Partial fractions Step-by-step solution:
We use the integration by parts technique and consider dx x. 1 Therefore, we can write ln 1 x dx x ln 1 x x 2 x dx x ln 1 x 1 1 x 1 x n 1 x x 2 x dx x ln 1 x dx. Now, let x z dx 2 zdz and 2 x x 1 x write the new integral in terms of variable z as z3 z2 1 x dx 2 dz dz. Using partial fractions, z z z1 2 x x z2 1 we can write dz z 1 dz . Performing the z1 z1 1 1 2 integration, gives z 1 dz z z ln 1 z . After z1 2 collecting all terms and write them in term of the original variable 1 x, we get the answer as x 1 ln 1 x x x . 2
100_Integrals.002_3pp.indd 27
27-07-2023 16:01:45
28 • 100 Integrals
INTEGRAL 19 Problem:
ln 1
1
1 dx x2
Solution: 1 1 x ln 1 1 2 1 1 2 constant x x Techniques used: Change of variables, Integration by parts Step-by-step solution: We use the integration by parts technique along with considering
dx x.
Therefore, we can write ’
1 1 1 2 dx x ln 1 1 x x dg
ln 1
f 1 1 1 2 x 1 1 x ln 1 1 2 x dx, ln 1 1 x2 dx x 1 1 1 2 dg f x with the prime symbol indicating differentiation. Therefore, ’ 1 1 1 2 x dx x dx . After simplifying the 1 1 2 2 x 1 2 x 1 1 1 2 x x dx dx integrand, we get . Let 2 2 1 1 x x 1 x 2 2 x 1 2 x 1 x zdz 1 x2 z dx . Therefor, the latter integral in z2 1 1 1 dz terms of variable z can be written as 2 2 z z 1 z 1 z2 1 z z2
100_Integrals.002_3pp.indd 28
27-07-2023 16:02:55
List of Selected Integrals with Their Step-by-Step Solutions • 29
z
1 z 1 z 1 2
2
dz
du z
z z2 1 u dz
1
z 1 z z 1 2
z2 1
1
u, we have
2
Now,
dz.
let
z z2 1 u dz
du z z2 1
1
. Rewriting the latter integral in terms of the variable
1
z 1 z z 1 2
2
dz
du z 1 z2 1 u 2 z 1
1 du . 2 u u
u
1 du 2 . After back substituting for u in terms of z and x we get u u z 1 1 u 1 z2 1 the results as 1 . Multiplying 2 2 z 1 u z z 1 1 x2 x u the last expression by its conjugates ratio gives, 1 1 x2 x x 1 x2 x 1 x2 . After collect2 2 2 2 1 x x 1 x x 1 x x ing all related terms, we get the final answer as 1 1 2 ln 1 1 x2 dx x ln 1 1 x2 x 1 x . Please note 1 that 1 x2 x 1 2 . x du
100_Integrals.002_3pp.indd 29
27-07-2023 16:04:01
30 • 100 Integrals
INTEGRAL 20 Problem:
csch
1
x dx
Solution: xcsch 1 x sinh 1 x constant Techniques used: Change of variables, Integration by parts Step-by-step solution: Let csch 1 x csch
1 1 x. Therefore, sinh and sinh x
dx . Now we can write the integral in terms of varix2 1 cosh able α, as csch 1 xdx sinh 1 d. Using the 2 x sinh d cosh integration by parts, we have . d 2 sinh sinh sinh But writing the latter integral in terms of original variable x, we get d dx 1 dx x dx . sinh 1 x . 2 2 2 sinh cosh . x sinh x 1 x 1 x Now collecting all related terms, we get the solution as sinh 1 x xcsch 1 x sinh 1 x, for x > 0. sinh
cosh d
100_Integrals.002_3pp.indd 30
27-07-2023 16:05:23
List of Selected Integrals with Their Step-by-Step Solutions • 31
INTEGRAL 21 Problem: 1
sin x cos x dx Solution: x tan 1 2 2 2 constant ln 2 tan x 1 2 2 Techniques used: Change of variables, Partial fractions, Trigonometric identities Step-by-step solution: x = z, then we have dx 2 dz / 1 z2 .Using the trigo 2 x 2 tan 2 2 z , and nometric identities, we have sin x 1 z2 2 x 1 tan x 2 1 tan 2 2 2 1 z cos x . Therefore, the integral can be written 1 z2 2 x 1 tan 2 1 1 in terms of the variable z as dx 2 dz. sin x cos x 1 2 z z2 But the denominator of the integrand can be written as 2 1 2 z z2 z2 2 z 1 z 1 2 z 1 2 z 1 2 Let tan
2 z 1 2 z 1 2 . Now we rewrite the integral as 2
100_Integrals.003_3pp.indd 31
1 1 dz 2 2 1 2z z z 1 2
27-07-2023 15:45:53
32 • 100 Integrals
2
1 1 dz. dz 2 1 2 z z2 z 1 2 z 1 2
technique, 1
2 z 1 2
dz
we
can
write
Using 2
the
partial 1
fractions
z 1 2 z 1 2
dz
2 dz 2 z 1 2
2 dz 2 dz . Finally, we can write the 2 z 1 2 2 z 1 2
solutions by integrating each term, as
2 2 ln z 1 2 ln z 1 2 2 2
2 2 z 1 2 2 ln z 1 2 ln ln z 1 2 . Therefore, the answer in 2 2 z 1 2 2
terms of the original variable x is
x tan 1 2 2 z 1 2 2 2 ln ln 2 z 1 2 2 tan x 1 2 2
x tan 1 2 z 1 2 2 2 ln . Please note that the absolute value of the n 2 z 1 2 tan x 1 2 2 argument of the logarithm should be considered.
100_Integrals.003_3pp.indd 32
27-07-2023 15:46:35
List of Selected Integrals with Their Step-by-Step Solutions • 33
INTEGRAL 22 Problem:
2 Solution:
x
dx
21 x 1 x log 2 constant log 2 2
Techniques used: Change of variables, Logarithm identities Step-by-step solution:
log z = i x log 2 log z 2(log z / log 2) dz idx 2 x 2 x log = 2 . Therefore, dx = = i x , or 2 z log 2 iz log 2 i z log 2 z log 2 z log 2 2 x 2 log z 2(log z / log 2) 2 x 2 x dx 2 . Rewriting the integral in terms of the var iz log 2 i z log 2 z log 2 z log 2 2 2 iable z, we get 2 x dx 2 log z dz. But log z dz z log z z, log 2 and after rewriting this expression in terms of the original x varaiable we 2 21 x get 2 x dx 2 2 x log 2 x 2 x 1 x log 2 . log 2 log 2 2 Let
2
x
z log 2 z x i x .
100_Integrals.003_3pp.indd 33
We
can
write
log = 2 z
27-07-2023 15:48:34
34 • 100 Integrals
INTEGRAL 23 Problem:
ln 1
Solution:
1 x2 dx
x ln 1 1 x2 sinh 1 x x constant Techniques used: Change of variables, Trigonometric identities Step-by-step solution: Using the integration by parts technique, we can write the integral as ln 1 1 x2 x ln 1 1 x2 x f dx . dx dg
f
d x But f ln 1 1 x2 . Therefore, the latter 2 dx 1 x 1 x2 dz x2 integral reads xf ’ dx dx. Let 1 x2 z dx z 2 2 x 1 x 1 x dz zdz 1 x2 z dx z and write the latter integral in terms of variable x z2 1
zdz z2 1
z2 1 zdz z2 1 z 1 dz. Now, z2 z z2 1 1 x2 1 x2 let z cosh u dz sinh udu and write the latter integral in terms z2 1 sinh 2 u cosh 2 u 1 of variable u as dz du du cosh u 1 du z1 1 cosh u 1 cosh u z, as
100_Integrals.003_3pp.indd 34
x2
dx
27-07-2023 15:50:20
List of Selected Integrals with Their Step-by-Step Solutions • 35
cosh 2 u 1 du cosh u 1 du u sinh u. This expression in terms of the u 1 cosh u x original variable reads u sinh u cosh 1 z z2 1 cosh 1 1 x2 nh u cosh 1 z z2 1 cosh 1 1 x2 1 x2 1 cosh 1 1 x2 x, for x > 0. Collecting all related terms, we get the solution as du
x ln 1 1 x2 cosh 1 1 x2 x. But cosh 1 1 x2 sinh 1 x.
Hence, the solution simplifies to x ln 1 1 x2 sinh 1 x x.
100_Integrals.003_3pp.indd 35
27-07-2023 15:51:22
36 • 100 Integrals
INTEGRAL 24 Problem:
∫ sin
6
x cos5 xdx
Solution: 8 4 1 sin11 x + sin 9 x cos2 x + sin 7 x cos4 x + constant 693 63 7 Techniques used: Integration by parts Step-by-step solution: Rewrite the integral as
sin
6
x cos5 xdx (sin 6 x cos x)cos4 xdx.
Using the integration by parts, we get
1
x cos x cos x dx sin sin 7 6
4
dg
7
x cos4 x
f
4 s 7
1 4 4 x cos x cos x dx sin 7 x cos4 x sin 8 x cos3 x dx.Repeating the similar operation f 7 7
6
dg
1 2 on the latter integral, we get sin 8 x cos3 x dx sin 8 x cos x cos2 x dx sin 9 x cos2 x s 9 9 1 9 2 8 2 2 10 n x cos x cos x dx sin x cos x sin x cos x dx. But the latter integral reads 9 9 1 10 11 sin x cos x dx 11 sin x. Collecting all related results, we get 8 4 1 the solution as sin11 x + sin 9 x cos2 x + sin 7 x cos4 x. 693 63 7
100_Integrals.003_3pp.indd 36
27-07-2023 15:52:41
List of Selected Integrals with Their Step-by-Step Solutions • 37
INTEGRAL 25 Problem:
∫x
m
ln n xdx
m and n are positive integers. Solution:
x m 1 ln n x n x m ln n1 xdx constant m 1 m 1 For m= n= 3 4
x 32 ln3 x 24 ln2 x 12 ln x 3 128 Techniques used: Integration by parts, Recursive relation Step-by-step solution: The solution provides a recursive relation applicable to integer values of m and n. We work out the general solution and apply it to a numerical example. Applying the integration by parts technique, we can write x m 1 n n m n x ln xdx ln x x m ln n1 xdx. For example, for m 1 m 1 3 x4 3 3 m= n= 3, we have x ln xdx ln 3 x x3 ln 2 xdx. But, using 4 4 m 3= , n 2, we get the general relation again for = 4 2 3 x 2 3 2 x ln xdx 4 ln x 4 x ln xdx. Using the general formula for the 1 x4 latter integral, for = m 3= , n 1, we get x3 ln xdx ln x x3 dx, 4 4
100_Integrals.003_3pp.indd 37
27-07-2023 15:55:04
38 • 100 Integrals
x4 . After collecting all related terms, we get 4 x4 3 3 x4 2 2 x4 1 x4 3 3 x xdx x x x ln ln ln ln . Or, after 4 4 4 4 4 4 4 x4 simplification, we get the final answer as x3 ln 3 xdx 32 ln3 x 24 ln2 x 128 with
3 3 x ln xdx
x dx 3
x4 32 ln3 x 24 ln2 x 12 ln x 3 . 128
100_Integrals.003_3pp.indd 38
27-07-2023 15:55:38
List of Selected Integrals with Their Step-by-Step Solutions • 39
INTEGRAL 26 Problem:
e
x
sin 1 e x dx
Solution: e x sin 1 e x 1 e2 x constant Techniques used: Change of variables, Integration by parts Step-by-step solution: Let e x z dx dz / z. Rewriting the integral in terms of the variable z, we get
e
x
sin 1 e x dx sin 1 z dz. Now, let
sin 1 z sin z cos d dz. After back substituting, we get sin 1 zdz cos d. Using the integration by parts technique, we get the answer, d sin sin d sin cos . cos f
dg
Rewriting the results in terms of variables z, and then x, we get sin cos z sin 1 z 1 z2 e x sin 1 e x 1 e2 x .
100_Integrals.003_3pp.indd 39
27-07-2023 15:57:29
40 • 100 Integrals
INTEGRAL 27 Problem:
x Solution:
1 x2 dx 1 x2
1 x2 1 1 x 4 2 tan 1 2 1 x2
constant
Techniques used: Change of variables, Partial fractions, Trigonometric identities Step-by-step solution: Let x tan z / 2 dx
dz . Therefore, the integral 2 cos z / 2 2
can be written in terms of the variable z as x
x
2 1 x2 1 tan z / 2 1 tan z / 2 dx dz. But 1 x2 2 cos2 z / 2 1 tan 2 z / 2
hence we get dz
1 x2 1 tan z / 2 1 dx 2 1 x 2 cos2 z / 2 1
1 tan 2 z / 2 cos z, 1 tan 2 z / 2
2 1 tan z / 2 1 tan z / 2 1 sin z / 2 cos zdz dz 2 2 2 cos z / 2 1 tan z / 2 2 cos3 z / 2
1 sin z / 2 cos z / 2 cos zdz. Now, after multiplying the integrand by , we 2 cos3 z / 2 cos z / 2 sin z / 2 cos cos z / 2 1 sin 1 sin z have cos cos zdz cos zdz. zdz Let cos 44 cos44 z // 2 cos z // 2 cos 2 4 cos cos z u sin z dz du and have
4 u cos z . Therefore, we cos z / 2 1 u 2 4
u 1 sin z du du. Now let u t du 2 tdt cos zdz 4 4 cos z / 2 1 u 2
u t du 2 tdt and writing the latter integral in terms of the variable t, we
100_Integrals.003_3pp.indd 40
27-07-2023 15:59:57
List of Selected Integrals with Their Step-by-Step Solutions • 41
get 2
t2
1 t
2 2
dt. After using the partial fractions techniques,
1 1 . 2 dt dt dt 2 2 2 2 2 1 t 1 t 1 t 1 The latter integral reads 2 dt 2 tan 1 t . But for calcu 2 1 t we can write 2
t2
lating the integral 2
1
1 t
2 2
dt we let t tan y dt dy / cos2 y 2
cos2 y sin 2 y 1 and 1 t 1 tan y . After 4 2 cos y cos y cos4 y 1 substation, we get 2 2 dt dy 2 cos2 y dy. But, 2 2 2 cos y 1 t 2 2
2
2
using trigonometric identity cos2 y
1 cos 2 y , we get 2 cos2 y dy 1 cos 2 y d 2
1 2 cos2 y dy 1 cos 2 y dy y sin 2 y. Now, after a series of 2 back substitutions and collecting related terms, we get cos 2 tan 1 x
1 cos 2 tan 1 x
tan 1 cos 2 tan 1 x . This expression simpli
1 x2 1 fies to 1 x 4 2 tan 1 1 x2 2
100_Integrals.003_3pp.indd 41
.
27-07-2023 16:01:38
42 • 100 Integrals
INTEGRAL 28 Problem:
x
x tan 1 xdx
Solution: 1 4 x2 x tan 1 x 2 ln 1 x x x 2 constant 10 Techniques used: Change of variables, Integration by parts, Partial fractions Step-by-step solution: Let
x z dx 2 zdz, rewriting the integral in terms of the vari
able z gives x x tan 1 xdx 2 z4 tan 1 z dz. Using the integration by 1 1 z5 dz . parts technique we get 2 z4 tan 1 z dz 2 z5 tan 1 z 2 5 1 z 5 Note that we used the derivative of inverse tangent func d 1 tion of z, or tan 1 z . Now, we work out the latter dz 1 z2 integral by using the partial fractions technique to get z z 1 z5 1 3 1 z 4 z2 1 dz z z dz dz. 2 2 5 1 z 5 4 2 5 1 z2 5 1 z 1 z 1 But dz ln 1 z2 . Collecting all related terms, we get 2 5 1 z 10 1 1 z 4 z2 1 2 z4 tan 1 z dz 2 z5 tan 1 z ln 1 z2 . After 5 4 2 10 5 simplification and rewriting this expression in terms of the original 1 variable x, we get 4 x2 x tan 1 x 2 ln 1 x x x 2 . 10
100_Integrals.003_3pp.indd 42
27-07-2023 16:03:12
List of Selected Integrals with Their Step-by-Step Solutions • 43
INTEGRAL 29 Problem:
tan 1 x
x 1
3
dx
Solution: 2 1 x 1 4 2 tan 1 x ln constant 2 2 x 1 8 x 1 x 1
Techniques used: Integration by parts, Partial fractions Step-by-step solution: Using integration by parts technique we get,
1
f
dx
x tan x 1 1
f
3
dg
dx
x tan x 1
3
1 2 x 1
2
tan
dg
1
tan 1 x
1 1 1 . dx. But using the par 2 2 x 1 1 x2
2 x 1 tial fraction technique we can write the latter integral as 1 1 1 1 x 1 1 1 1 dx dx. dx dx 2 2 2 4 1 x 4 x 1 4 x 1 2 2 x 1 1 x 2
1 x 1 1 1 1 dx ln 1 x2 , and dx ln x 1 . For 2 4 1 x 8 4 x 1 4 the third integral in the last expression, we let x 1 z dx dz. 1 1 1 dz 1 1 dx 2 Therefore, . Collecting 2 4 x 1 4 z 4z 4 x 1 But
1 1 1 all the related terms we get the answer as tan 1 x ln 1 x2 2 8 4 2 x 1 1 1 1 1 2 1 x x tan ln 1 ln x . 1 2 4 8 4 x 1 2 x 1
100_Integrals.003_3pp.indd 43
27-07-2023 16:04:12
44 • 100 Integrals
INTEGRAL 30 Problem: sin 1 x x2 dx Solution: x ln 2 1 1 x
sin 1 x constant x
Techniques used: Integration by parts, Change of variables, Partial fractions. Step-by-step solution: Using
the integration by parts technique, we can sin 1 x sin 1 x 1 dx 1 sin write dx . Note dx x 2 2 x x x x 1 x2 f dg
d 1 sin 1 x . Let x cos z dx sin z dz, then dx 1 x2 1 sin z dz dz x 1 x2 dx cos z sin z cos z sec z dz. We calculated the integral of sec z in the previous section (see Integral 5). Therefore, cos z / 2 sin z / 2 dz ln we have . But we have cos z cos z / 2 sin z / 2 x cos z 2 cos2 z / 2 1 1 2 sin 2 z / 2 . Therefore, after some that
manipulations, we get cos z / 2
100_Integrals.003_3pp.indd 44
1 x 1 x and sin z / 2 . 2 2
27-07-2023 16:05:29
List of Selected Integrals with Their Step-by-Step Solutions • 45
z z cos sin dz 2 2 ln 1 x 1 After back substituting, we get ln z z cos z 1 x 1 cos sin z z 2 2 2 cos 2 sin 2 ln 1 x 1 x ln 1 1 x . Final answer, after n x 1 x 1 x cos z sin z 2 2 writing the results in terms of the original variable x, is 1 1 x2 sin 1 x sin 1 x dx ln . x2 x x
100_Integrals.003_3pp.indd 45
27-07-2023 16:05:45
46 • 100 Integrals
INTEGRAL 31 Problem:
x sec
1
xdx
Solution:
1 2 x sec 1 x x2 1 constant 2 Techniques used: Integration by parts, Trigonometric identities Step-by-step solution: Using the trigonometric identity sec 1 x cos1 1 / x and d 1 cos1 1 / x , we can rewrite the integral by dx x x2 1
1 applying the integration by parts technique as x sec 1 xdx cos1 xdx x 2 2 1 2 1 x 1dg 1 x 1 1 1 1 x sec xdx cos cos / . But xdx x x 1 dx dx f x dg 2 2 x x2 1 2 x x2 1 4
f
1 x2 1 2x 1 2 dx x 1 . Collecting the related 2 2 2 x x 1 4 2 x 1 1 terms, we get the answer as x sec 1 xdx x2 cos1 1 / x x2 1 2 1 x x2 cos1 1 / x x2 1 . 2
100_Integrals.004_3pp.indd 46
27-07-2023 15:45:48
List of Selected Integrals with Their Step-by-Step Solutions • 47
INTEGRAL 32 Problem:
sec Solution:
x sec
1
1
xdx
x x 1 constant
Techniques used: Integration by parts, Trigonometric identities Step-by-step solution:
sec
1
Using the trigonometric identity sec 1 x cos1 1 / x and d 1 cos1 1 / x , we can rewrite the integral by dx 2x x 1 1 1 xdx cos1 applying the integration by parts technique as sec d x d 1 1 1 1 1 1 1 1 f xdx cos dx x cos x cos 1 / x dx x 1 x sec 2 x x 1 x dg
f
1 1 1 dx x cos1 x x 1. x 1 x sec 1 x
100_Integrals.004_3pp.indd 47
27-07-2023 15:46:42
48 • 100 Integrals
INTEGRAL 33 Problem:
x
2
tan 1 xdx
Solution: 1 2 x3 tan 1 x x2 ln 1 x2 constant 6 Techniques used: Integration by parts, Partial fractions Step-by-step solution:
d 1 tan 1 x , we can rewrite the integral dx 1 x2 1 x3 x3 by applying the integration by parts technique as x2 tan 1 xdx tan 1 x 3 3 1 x x3 x 1 1 x2 1 x3 1 x3 1 2 1 1 x xdx x . But dx x dx tan tan dx ln 1 x 3 3 1 x2 3 1 x2 3 1 x2 3 2 2 1 x 1 x2 1 ln 1 x2 . Collecting all related terms, we get the x dx 2 3 2 2 3 1 x 1 answer as x2 tan 1 xdx 2 x3 tan 1 x x2 ln 1 x2 . 6 Using the relation
100_Integrals.004_3pp.indd 48
27-07-2023 15:47:48
List of Selected Integrals with Their Step-by-Step Solutions • 49
INTEGRAL 34 Problem:
2x 3 3 6 x 9 x2
dx
Solution: 1 1 3x 2 3 6 x 9 x2 11 sin 1 constant 9 2 Techniques used: Change of variables, Trigonometric identities Step-by-step solution: The expression under the radical could be written in
the form of an expression containing the term 1 u2 . d 1 sin 1 u , we can write 3 6 x 9 x2 4 1 6 x 9 x Knowing that du 1 u2 1 3 x 2 2 3 6 x 9 x2 4 1 6 x 9 x2 4 1 3 x 4 1 . Therefore, let 2 1 3x 2 u dx du. After writing the integral in terms of 2 3 1 2u 2 3 1 11 4 u 2x 3 2 3 the variable u, we get u 1 2 dx du 2 2 2 3 3 9 1 u2 3 6x 9x 2 1 u 2 3 1 11 4 u du. Further, this integral can be written as du 3 9 1 u2 2 1 u2 1 11 4 u 11 1 4 u 11 1 du du du du. But 9 1 u2 9 9 1 u2 9 1 u2 1 u2
100_Integrals.004_3pp.indd 49
27-07-2023 15:49:25
50 • 100 Integrals
11 1 11 4 u 4 du sin 1 u and du 1 u2 . 9 1 u2 9 9 1 u2 9 Collecting all related terms and rewriting the result in terms of the original variable x, we get
1
2
u
11 1 4 11 1 3x sin u 1 u2 sin 1 9 9 9 2
4 11 1 3x 4 1 3x 1 1 u2 sin 1 . After simplification, we get the 9 9 2 9 2 2x 3 11 1 3x 2 answer as dx sin 1 3 6 x 9 x2 . 2 9 2 9 3 6x 9x
100_Integrals.004_3pp.indd 50
27-07-2023 15:50:06
List of Selected Integrals with Their Step-by-Step Solutions • 51
INTEGRAL 35 Problem:
x
3x 2
2
4 x2 4
dx
Solution: x6 2 x2 4
constant
Techniques used: Change of variables, Trigonometric identities Step-by-step solution: We rewrite the integral as dx 3
2
x
x
x
2
4
3/2
1
2
4
3/2
dx 2
x
1
2
4
3/2
dx.
But
x
3x 2
2
4 x2 4 3
x
dx 3
x
2
4
3/2
x
x
2
4
dx 3 /
3/2
x
2
dx 2
x
1
2
4
3/2
dx
4 .
To calculate the latter integral, we get a hint from the relation x 2 2 1 d x 2 tan u and rewrite x 4 4 1 2 . Now let tan u dx 2 co 1 u dx 2 x 2 du 1 2d tan u dx . Therefore, we have 2 dx 2 3/2 2 2 cos2 u 2 cos u 4 1 x 4 2 du 1 du . dx 2 3/2 2 2 2 2 cos u 1 tan 2 u 3 / 2 cos u 4 1 tan u The denominator of the integrand can be simplified as
100_Integrals.004_3pp.indd 51
27-07-2023 15:51:28
52 • 100 Integrals
we
have
sin u
x
x
x 4 3x 2
2
2
.
4 x2 4
100_Integrals.004_3pp.indd 52
3/2
cos2 u sin 2 u 1 cos2 u . Therefore, 2 cos u cos u du 1 1 1 cos udu sin u. But 3/2 2 2 2 cos u 1 tan u 2 2
cos2 u 1 tan 2 u
3/2
Collecting dx
x
all
3 2
4
related 1 2
x x2 4
terms,
we
x6
2
x
2
4
get
.
27-07-2023 15:52:13
List of Selected Integrals with Their Step-by-Step Solutions • 53
INTEGRAL 36 Problem: 2 x2 5 x 1 x3 2 x2 x 2 dx Solution: ln
x 1 x 1 2 constant x 2
Techniques used: Partial fractions, Integration by parts Step-by-step solution:
1
1
Using the partial fractions method, the integrand can be written 2 x2 5 x 1 2 x2 5 x 1 A B C as . 3 2 x 2 x x 2 x 2 x 1 x 1 x 2 x 1 x 1 Therefore, we get A 1, B = 1, and C = 2. Now rewrite the inte2 x2 5 x 1 1 1 1 gral as 3 x 2 x2 x 2 dx x 2 dx x 1 dx 2 x 1 dx ln x 2 lnn
x 1 dx 2 x 1 dx ln x 2 lnn x 1 2 ln x 1. tion rule, we get the answer as ln
100_Integrals.004_3pp.indd 53
Using the logarithm summa-
x 1 x 1 2 . x 2
27-07-2023 15:53:28
54 • 100 Integrals
INTEGRAL 37 Problem:
4
dx
Solution: 2 ln x 1
9 x2 18 x 4 3 x 1
3
constant
Techniques used: Partial fractions, Integration by parts, Change of variables Step-by-step solution: Let x 1 z dx dz. Therefore, the integral can be written in terms 3 2 2 z 1 3 z 1 4 2 x3 3 x2 4 dx of the variable z as dz. z4 x 1 4 After expanding the terms in the nominator of the integrand, 3 2 2 z 1 3 z 1 4 2 z3 3 z2 5 dz dz. we get z4 z4 Using the partial fractions technique, we can write the integral 2 z3 3 z2 5 dz dz dz 3 5 as dz 2 3 2 5 4 2 ln z 3 . 4 z 3z z z z z Rewriting the results in terms of the original variable x, we get 3 5 9 x2 18 x 4 3 5 2 ln z 3 2 ln x 1 2 ln x 1 3 z 3z x 1 3 x 1 3 3 x 1
5
1
2 x3 3 x2 4
x 1
3
2 ln x 1
9 x2 18 x 4 3 x 1
100_Integrals.004_3pp.indd 54
3
.
27-07-2023 15:54:58
List of Selected Integrals with Their Step-by-Step Solutions • 55
INTEGRAL 38 Problem:
x 1
x 1 x3 x2 x
dx
Solution: x 2 tan 1 constant 2 x x 1 Techniques used: Change of Variables, Trigonometric identities Step-by-step solution: Let x z2 dx 2 z3 dz. Writing the integral in terms of the variable z2 1 z3 x 1 z gives, dz. dx 2 x 1 x3 x2 x z2 1 z6 z4 z2 After 2
multiplying
the
integrand
z5 z2 1 z3
z2 z2 1 z3
z6 z4 z2
dz 2
by
z
z5 z5 z2 1
2
we
1 z 4 z2 1
get dz.
z6
Now we let tan u
z z z2 1 4
and differentiate both sides
4 z3 2 z z 4 z2 1 z 4 2 1 2 z z 1 dz. Having to get du cos2 u z 4 z2 1 z4 2 z2 1 z4 z2 1 du. z 4 2 z2 1 1 , we can write dz cos2 u z4 z2 1 1 z4
100_Integrals.004_3pp.indd 55
27-07-2023 15:56:56
56 • 100 Integrals
After substituting for dz, we can write the integral as z 4 2 z2 1 z 4 z2 1 2 z 1 z2 1 du dz 2 2 z2 1 z 4 z2 1 1 z4 z2 1 z 4 z2 1
z 2 z 1 z z 1 du 2 du 2 u. 2 1 z4 1 z4 z2 1 z2 1
4
2
4
1
2
1
z 1 But u tan 1 . Therefore, we get the and z = 4 2 x z z 1 z answer in terms of the original variable x as 2 u 2 tan 1 4 2 2 z z 1 1 x z x 1 2 tan 1 2 u 2 tan 1 . 2 tan 2 4 2 1 1 x x 1 z z 1 2 1 x x
100_Integrals.004_3pp.indd 56
27-07-2023 15:57:53
List of Selected Integrals with Their Step-by-Step Solutions • 57
INTEGRAL 39 Problem: x 4 4 x3 6 x2 4 x 1 x3 3 x2 3 x 1 dx Solution: 24 ln x 1
x2 14 x 8 4 x 3 constant 2 x 1 2
Techniques used: Partial fractions, Change of variables, Integration by parts. Step-by-step solution: Using the partial fractions technique, we can write the integral x 4 4 x3 6 x2 4 x 1 24 x2 16 x 8 dx x 7 dx x3 3 x2 3xx 1 dx. as x3 3 x2 3 x 1 1 Therefore, we get x 7 dx x2 7 x for the former integral. 2
3 x2 24 x2 16 x 8 dx 8 3 3 2 x 3x 3x 1 x 3 x2 0 0 3 x2 6 x 3 3 x2 2 x 1 (4 x 4 x) (2 2) 3 x2 6 x 24 x2 16 x 8 8 dx 8 dx 8 dx x3 3 x2 3 x 1 x3 3 x2 3 x 1 x3 3 x2 3 x3 3 x2 3 x 1 0 0 2x 1 (4 x 4 x) (2 2) 3 x2 6 x 3 dx 16 3 dx. But dx 8 2 3 2 x 3x 3x 1 x 3 x2 3 x 1 3x 3x 1 3 x2 6 x 3 8 3 dx 8 ln x3 3 x2 3 x 1 24 ln x 1 . For x 3 x2 3 x 1 For the latter integral, we rewrite this integral as
x 1 3
the other integral, we have 16
100_Integrals.004_3pp.indd 57
2x 1 2x 1 dx dx 16 2 x 3x 3x 1 x 1 3 3
27-07-2023 15:59:11
58 • 100 Integrals
we let x 1 z dx dz and rewrite the integral in terms of the 2x 1 2z 1 dx 16 3 dz. Using the partial fracvariable z as 16 3 z x 1 2z 1 dz dz 32 8 tion technique, we get 16 3 dz 32 2 16 3 2 . z z z z z Rewriting the obtained results in terms of the original variable x, 32 8 1 we get the answer as 24 ln x 1 x2 7 x 2 x 1 x 1 2
100_Integrals.004_3pp.indd 58
27-07-2023 16:00:09
List of Selected Integrals with Their Step-by-Step Solutions • 59
INTEGRAL 40 Problem:
Solution:
x
1 4
x 1
1 94 x 18
4
x 1
9
10
dx
constant
Techniques used: Partial fractions, Change of variables Step-by-step solution: Let x z dx 2 zdz and the integral in terms of the variable z, after 1 1 dz. Now, let simplifications, reads dx 2 10 10 4 x x 1 z 1
z 1 u dz 2 u 1 du and the integral in terms of variable u 1 u 1 can be written as 2 dz 4 10 du 4 u9 du 4 u10 du. 10 u z 1 1 8 4 9 Performing the integrations gives u u . Therefore, the 2 9 final solution in terms of the original variable x is 8 9 8 9 1 4 1 4 z 1 z 1 4 x 1 4 x 1 . Or, after 2 9 2 9 1 94 x simplifications, we get the answer as . 9 18 4 x 1
100_Integrals.004_3pp.indd 59
27-07-2023 16:01:59
60 • 100 Integrals
INTEGRAL 41 Problem:
1 ln x ln ln x dx Solution: x ln x ln ln x 1 constant Techniques used: Change of variables, Integration by parts Step-by-step solution: Let ln x z dx e z dz. Therefore, the integral can be written in terms of the variable z as
1 ln x ln ln x dx 1 z ln z e dz z
ln x ln ln x dx 1 z ln z e z dz ln z e z dz (z ln z) e z dz.
But, using the integration by parts technique, we have
ln z e dz z ln z z e z ln z z e dz z ln z e ze z ln z e dz ze dz z ln z e dz ze dz. After rearranging the terms, z ln z e ze z ln z e dz ze d n z e ze ze z ln z e dz ze dz ( z ln z ) e dz z l dz . The z
dz z ln z e z ze z
z ln z e z ze z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
new integral can be worked out using the integration by parts
ze dz ze e . Therefore, the answer reads ze dz z ln z e ze ze e e z ln z 1 .
technique as
z
z
z
as
z z z z z z z ln z e z ze z Rewriting the solution in terms of the original variable x, we get e z z ln z 1 x ln x ln ln x 1 .
100_Integrals.005_3pp.indd 60
27-07-2023 16:12:38
z
List of Selected Integrals with Their Step-by-Step Solutions • 61
INTEGRAL 42 Problem:
ln x
2
x 1 dx
Solution: 1 2 1 2 x 1 x ln x x 1 2 x 3 tan constant 2 3 Techniques used: Change of variables, Integration by parts, Partial fractions Step-by-step solution: Using the integration by parts technique, we can write x 2 x 1 2 x2 x x 2 x 1 2 2 . But 2 1 1 ln x x dx x ln x x dx x2 x 1 x2 x 1 x2 x 1 dg f
x 2 x 1 2x x x2 2 2 , by using the partial fractions technique. 2 2 x x 1 x x 1 x x1 x 2 x 1 x2 Therefore, 2 dx 2 x 2 dx. Now we rewrite x x 1 x x1 x2 1 2x 1 1 3 this integral as 2 dx 2 dx 2 dx. But x x1 2 x x1 2 x x1 1 2x 1 1 dx ln x2 x 1 . Now, for performing the integral 2 2 x x 1 2 1 2 3 3 4 1 3 2 dx, we rewrite the denominator as x x 1 ( x ) 1 2 2 4 4 3 2 x x 1 2 2 1 3 3 4 1 3 2 1 2x 1 3 x2 x 1 ( x )2 1 x 1 x z dx dz . Now, let 2 4 4 3 2 4 3 3 2 3 2x 1 3 dz . Therefore, the integral an be written in z dx 2 3 2
100_Integrals.005_3pp.indd 61
27-07-2023 16:14:15
62 • 100 Integrals
1 3 1 3 3 dz 3 tan dx dz 3 2 1 z2 2 x x 1 2 3 2 1 z2 4 dz 2x 1 dz 3 3 tan 1 z 3 tan 1 . Collecting all the 2 1 z 3 terms of the z variable as
3 3 3 2 1 z2 4
1 calculated related terms, we get the answer as x ln x2 x 1 2 x ln x2 x 1 2 1 2 2 1 2 x 1 x ln x x 1 2 x ln x x 1 3 tan . 2 3
100_Integrals.005_3pp.indd 62
27-07-2023 16:14:45
List of Selected Integrals with Their Step-by-Step Solutions • 63
INTEGRAL 43 Problem:
cos x
4 sin 2 xdx
Solution: sin x sin x 2 sin 1 4 sin 2 x constant 4 2 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let sin x 2 sin z cos x dx 2 cos z dz. We can rewrite the integral in terms of the variable z as cos x 4 sin 2 xdx 4 cos z 1 sin 2 z dz 4 cos2 zdz 1 cos 2 z . Therefore, the integral can be 2 written as 4 cos2 zdz 2 1 cos 2 z dz 2 z sin 2 z. Now writing
x 4 cos z 1 sin 2 z dz 4 cos2 zdz . But cos2 z
sin x this result in terms of the original variable x, we get 2 z sin 2 z 2 sin 1 2 2 sin x sin x 1 sin x 2 z sin 2 z 2 sin 1 sin x 1 . Note that z sin and 2 2 2 sin 2 z = 2 sin z cos z.
100_Integrals.005_3pp.indd 63
27-07-2023 16:16:29
64 • 100 Integrals
INTEGRAL 44 Problem:
sin
2
cos x dx x 3 sin x 2
Solution: sin x 2 ln constant sin x 1 Techniques used: Change of variables, Integration by parts, Partial fractions Step-by-step solution: Let sin x z cos xdx dz and rewrite the integral in terms cos x 1 of the variable z to get 2 dx 2 dz. sin x 3 sin x 2 z 3z 2 But z2 3 z 2 z 2 z 1 . Therefore, the integral can be written as, using the partial fractions technique,
z
2
1 1 dz dz 3z 2 z 2 z 1
1 1 1 1 dz dz dz dz.Performing the integration 3z 2 z2 z 1 z 2 z 1 1 1 z2 of the integrals gives dz dz ln z 2 ln z 1 ln z2 z 1 z 1 z2 n z 2 ln z 1 ln . After writing the results in terms of the original variable x z 1 sin x 2 we get ln . sin x 1
z
2
100_Integrals.005_3pp.indd 64
27-07-2023 16:17:58
List of Selected Integrals with Their Step-by-Step Solutions • 65
INTEGRAL 45 Problem:
1
1 x
x x2
dx
Solution: 2
1 x 1 x
constant
Techniques used: Change of variables Step-by-step solution:
x z dx 2 zdz. Rewriting the integral in terms of the 1 1 1 x x x2 dx 2 1 z 1 z variable z we get, after some simplifications, 2 1 1 1 x x x2 dx 2 1 z 1 z2 dz. Now, let 1 z u dz 1 z 1 z du. 1 z 1 z Substituting into the integral (writing the integrand in 1 1 dz 2 terms of both z and u variables), we have 2 2 1 z 1 z 1 z 1 2 1 z 1 z 1 1 2 dz 2 du 2u. Therefore, the answer 2 2 1 z 1 z 1 z 1 z 1 z Let
1
in terms of the original variable x can be written as 2 u 2
100_Integrals.005_3pp.indd 65
1 z 1 x 2 . 1 z 1 x
27-07-2023 16:19:42
66 • 100 Integrals
INTEGRAL 46 Problem:
x
5
1 x
2 3
dx
Solution: 1
4 x 1 x 2 4
2
constant
Techniques used: Change of variables, Integration by parts Step-by-step solution: The denominator of the integrand can be written as x 5 1 x2 3
x 5 1 x 2 3
3 3 1 6 1 d x 1 x2 x2 x 4 . Noticing that x2 x 4 2 x 4 x3, x x dx a multiple of the numerator after multiplying it by x. Now let dz x2 x 4 z dx . Therefore, the integral can be written 2 x 2 x3
in terms of the variable z as
2x
x
1 2 x2
3
4 3
1 2 x2
x 1 x 5
2 3
dx
x 2 x3
x
2
x
4 3
3 1 6 1 x 1 x 2 x x
1 dz 1 1 3 dz 2 3 4z 2 x 2x 2 z
1 1 1 dz 3 dz 2 . Or, in terms of the original variable x we get 3 4z 2 x 2x 2 z 1 1 1 2 2 2 4 2 4 4z 4 x x 4 x 1 x 2 . Please note that it is possible to calculate this integral without using the tip mentioned above. But it will be a lengthier operation.
100_Integrals.005_3pp.indd 66
27-07-2023 16:21:20
List of Selected Integrals with Their Step-by-Step Solutions • 67
INTEGRAL 47 Problem:
Solution:
∫ sin
6
x cos5 xdx
sin 7 x 63 sin 4 x 154 sin2 x 99 constant 693
Techniques used: Change of variables, Trigonometric identities Step-by-step solution: The integrand can be written, using trigonometric identities, as
sin 6 x cos5 x sin 6 x 1 sin 2 x cos x . Now let sin x z cos xdx dz 2
cos4 x
sin x z cos xdx dz. Therefore, the integral can be written in terms of variable z as
sin
6
x cos5 x dx sin 6 x 1 sin 2 x cos x dx z6 1 z2 dz .After 2
2
expanding the integral we get z6 1 z2 dz z10 dz 2 z8 dz z6 dz. 2
2
dz z10 dz 2 z8 dz z6 dz. Performing the integration operation for each term gives, 1 11 2 9 1 7 z z z . Rewriting the results in terms of the original 11 9 7 1 2 1 variable x gives sin11 x sin 9 x sin 7 x. Or simplify to have 11 9 7 sin 7 x 63 sin 4 x 154 sin2 x 99 . 693 Note that this integral is a version of the general recursive formula, given as: m n sin ax cos ax dx
sin m 1 ax cos n1 ax n 1 sin m ax cos n 2 ax dx a m n mn
We calculated this integral as given by Integral 24, using only integration by parts technique. Readers can verify that the result given in this section and that of section 24 are equivalent.
100_Integrals.005_3pp.indd 67
27-07-2023 16:23:16
68 • 100 Integrals
INTEGRAL 48 Problem:
∫x e
2 x3 / 2
dx
Solution: 2 x3 / 2 3 / 2 e x 1 constant 3 Techniques used: Change of variables, Integration by parts Step-by-step solution: Let x3 / 2 z dx
2
dz. Therefore, the integral can be written 3 x 3/2 2 x2 z 2 z as x2 e x dx e dz ze dz . Using the integration by 3 x 3 x1.5 z
2 2 ze z dz ze z e z . Or in terms of the 3 3 2 x3 / 2 3 / 2 original variable x, we have e x 1 . 3 parts technique we get
100_Integrals.005_3pp.indd 68
27-07-2023 16:24:26
List of Selected Integrals with Their Step-by-Step Solutions • 69
INTEGRAL 49 Problem: tan 3 x ∫ cos3 x dx Solution: 3 5 cos2 x constant 15 cos5 x Techniques used: Change of variables, Integration by parts Step-by-step solution: 1 dz z dx 2 . Therefore, the integral can be written cos x z sin x tan 3 x sin 3 x 3 dz 2 2 dx z 2 in terms of the variable z as z z 1 dz 3 3 cos x cos x z sin x Let
sin 3 x 3 dz 2 2 z z z 1 dz. Performing the integration operation for the cos3 x z2 sin x z 5 z3 latter integral gives z2 z2 1 dz z4 dz z2 dz . 5 3 Writing the results in terms of the original variable x, we get 1 1 1 z 5 z3 1 3 5 cos2 x 3 sin2 x 2 cos2 x 5 3 5 5 3 5 cos x 3 cos x 15 cos x 15 cos5 x 1 3 − 5 cos2 x 2 2 2 cos 3 sin x 2 cos x . This expression simplifies to . 3 5 x 15 cos5 x 15 cos5 x
100_Integrals.005_3pp.indd 69
27-07-2023 16:25:56
70 • 100 Integrals
INTEGRAL 50 Problem: 3
tan x
sin x cos x
2
dx
Solution: 2 3 tan x 1 3 tan x 1 3 tan 1 ln 3 3 1 tan x 6
3
tan x 1 ln 1 tan x 6
3
3
1 tan 2 x 3 tan x 1 ln 1 3 tan x constant 3
Techniques used: Change of variables, Integration by parts Step-by-step solution: Let tan x z dx cos2 xdz, and write the integral in terms of 3 3 3 tan x tan x z dx dz. dx variable z to get 2 2 2 sin x cos x 1 tan x cos x 1 z 2 3
tan x
tan x cos x 2
2
dx
3
z
1 z 2
dz. Now let z u3 dz 3 u2 du, and write the integral
in terms of variable u along with applying the integration by parts 3 du z u 3 u2 technique, to get . dz u du 2 3 3 2 1 u 1 u3 1 z 1u f dg
u z 3 tan x . For the latter 1 u3 1 z 1 tan x integral we use the partial fractions technique to have du 1 1 1 2u 1 u3 3 1 u du 3 u2 u 1 du. The former integral reads Hence, we can write
100_Integrals.005_3pp.indd 70
1 tan 2 x 3 tan x 1 ln 1 3 tan x co 3
3
27-07-2023 16:27:41
List of Selected Integrals with Their Step-by-Step Solutions • 71
1 1 1 du 1 3 ln 1 u . Or ln 1 u ln 1 tan x . Rewrite 3 3 3 1 u 3 2u 1 1 2u 1 1 the latter integral as 1 du 2 du 2 du 2 3 u u1 6 u u1 2 u u1 1 1 2u 1 1 1 1 2u 1 1 du ln u2 u 1 ln 3 z2 du 2 du 2 du. But we have 2 6 u u1 6 6 6 u u1 2 u u1 1 1 1 2 3 2 3 2 ln tan x 3 tan x 1 . For du ln u u 1 ln z 3 z 1 1 6 6 6 1 1 1 1 the remaining integral, we rewrite it as du 2 2 u u1 2 u 1 / 2 2
1 1 1 1 1 4 du du . 2 2 2 u 1 / 2 3 / 4 2 3 2 u u1
Now let
1 2u 1 1 3
2
du
2 3
1 2u 1 1 3
2
du.
2u 1 3 y du dy, and write the integral in terms 2 3
2 of variable y. Hence 3
1 2
du
3 1 dy. But we 3 1 y2
2u 1 1 3 23 z 3 3 3 2u 1 1 3 1 . Or, have 3 tan 1 y tan 1 tan 1 tan y 3 3 3 3 3 3 1 y2 3 23 z 1 2 3 tan x 1 3 3 3 2u 1 y tan 1 tan 1 tan 1 Collecting all . 3 3 3 3 3 3
1 nx 1 ln 1 3 tan x ln 6 nx 3
100_Integrals.005_3pp.indd 71
3
3
tan x 1 1 ln 1 3 tan x ln 1 tan x 3 6 3 2 tan x 1 3 tan 2 x 3 tan x 1 tan 1 . 3 3
answers, we get the solutions as
3
tan 2 x
27-07-2023 16:29:24
72 • 100 Integrals
INTEGRAL 51 Problem: 1
1 dx 2 x
ln x ln Solution:
x + constant ln x Techniques used: Integration by parts Step-by-step solution:
1 dx dx 1 2 dx 2 Rewriting the integral as sum of two parts, we get ln x ln x ln x ln x 1 dx dx 1 ln x ln2 x dx ln x ln2 x . But the latter integral can be calculated, using the intedx xdx x 1 dx gration by parts as 2 x dx . 2 ln x x ln 2 x f x ln x ln ln x x dg
d 1 1 Note that . Now, by collecting all terms we have dx ln x x ln 2 x dx dx 1 x 1 x ln x ln2 x ln x dx ln x ln x dx ln x .
100_Integrals.006_3pp.indd 72
27-07-2023 16:12:50
List of Selected Integrals with Their Step-by-Step Solutions • 73
INTEGRAL 52 Problem:
sin x sin x sin x sin x dx Solution: 2 cos sin x constant Techniques used: Change of variables, Trigonometry identities Step-by-step solution:
Expand the integrand, sin x sin x sin x sin x sin x cos sin x cos x sin sin x sin x sin x cos sin x cos x sin sin x sin x cos sin x cos x sin sin x 2 cos x sin sin x cos x sin sin x 2 cos x sin sin x . Let sin x z cos xdx dz and rewrite the integral in terms of the variable z, to get 2 cos x sin sin x dx 2 sin zdz 2 cos z n sin x dx 2 sin zdz 2 cos z. Rewriting the results in terms of the original variable x, we get 2 cos sin x .
100_Integrals.006_3pp.indd 73
27-07-2023 16:14:08
74 • 100 Integrals
INTEGRAL 53 Problem: x
1 5x
2
2 1 dx 2 1 5x
Solution: 1 sin 1 5 x2 constant 10 Techniques used: Change of variables, Integration by parts Step-by-step solution: Manipulating the integrand gives,
x x 2 1 2 2 2 1 5x 1 5x 1 5x
1 5 x2 1 5 x2
1 5 x2 x . Let 5 x2 z 10 x dx dz and write 2 2 4 1 5x x 1 25 x x 1 1 the integral in terms of the variable z, to get dx dz 4 10 1 z2 1 25 x x 1 1 1 1 1 25 x4 dx 10 1 z2 dz. But 1 z2 sin z. Therefore, the result in 1 1 1 1 terms of the original variable x reads dz sin 1 z sin 1 2 10 1 z 10 10 1 1 1 1 dz sin 1 z sin 1 5 x2 . 10 1 z2 10 10 x 2 1 2 2 1 5x 1 5x
100_Integrals.006_3pp.indd 74
27-07-2023 16:15:33
List of Selected Integrals with Their Step-by-Step Solutions • 75
INTEGRAL 54 Problem:
1
1 x x
2
dx
Solution: 1 1 x tan x 2 1 x2
constant
Techniques used: Integration by parts, Change of variables, Trigonometric identities Step-by-step solution: Manipulating the integrand gives 0
x2
x2 1 1
1 x 1 x 2 2
2 2
1 1 2 1 x 1 x 2
1
0
x 1 1 2
1 1 x 1 x x x . Therefore, the integral can be written as 2 2
. 1 1 1 2 dx 1 x2 dx 1 x2 2 dx But x x 1
x
2 2 2
1
1 x
2
2 2
1 1 2 1 x 1 x 2
dx tan 1 x .
dz and cos2 z 1 1 rewrite this integral in terms of the variable z to get dx 2 2 2 1 x 1 tan2 z For performing the latter integral, let x tan z dx
1
1 x
2 2
1 cos 2 z dz cos2 zdz. But cos2 z . There2 2 1 tan2 z cos z 1 1 1 fore, cos2 zdz 1 cos 2 z dz z sin 2 zz. Collecting all 2 2 4 related terms and rewriting the results in terms of the
dx
100_Integrals.006_3pp.indd 75
1
2
27-07-2023 16:17:08
76 • 100 Integrals
1 1 1 1 1 1 1 1 original variable x gives tan x tan x sin 2 tan x tan x sin 2 ta 2 4 2 4 1 1 1 x sin 2 tan 1 x tan 1 x sin 2 tan 1 x . But the last term in the latter expres4 2 4 1 1 1 1 sion can be written as sin 2 tan x sin 2 sin cos . 2 4 4 x 1 But, having tan x , we get sin cos . Therefore, the 2 2 2 x2 x 1 1 1 results of the integral can be written as tan 1 x sin 2 tan 1 x tan 1 x 2 4 2 1 x2 1 1 x x sin 2 tan 1 x tan 1 x . 4 2 1 x2
100_Integrals.006_3pp.indd 76
27-07-2023 16:18:00
List of Selected Integrals with Their Step-by-Step Solutions • 77
INTEGRAL 55 Problem:
e
2x
tan 1 e x dx
Solution: 1 1 e2 x tan 1 e x e x constant 2 Techniques used: Chane of variables, Integration by parts Step-by-step solution: Let e x z dx dz / z, and rewrite the integral in terms of the variable z to get e2 x tan 1 e x dx z tan 1 zdz. Using the integration z2 z2 1 1 1 by parts technique, we get z tan z dz z dz . tan 2 2 1 z2 dg f
1 z2 d 1 tan 1 z e2 x tan 1 e x . tan 1 z . Therefore, 2 2 2 dz 1 z To calculate the remaining integral, rewrite it as 1 z2 1 z2 1 1 1 1 1 1 1 dz dz dz dz z tan 1 z e x 2 2 2 2 1 z 2 1 z 2 2 1 z 2 2 1 1 1 1 1 dz dz z tan 1 z e x tan 1 e x . After collecting all obtained 2 2 1 z2 2 2 results, as underlined, and simplifying we get the solution as 1 1 e2 x tan 1 e x e x . 2 Note that
100_Integrals.006_3pp.indd 77
27-07-2023 16:19:34
78 • 100 Integrals
INTEGRAL 56 Problem:
x
1 6 x x2
dx
Solution:
6 x x2 constant 3x
Techniques used: Change of variables, Integration by parts Step-by-step solution:
2 x 2 2 6 x x 9 x 3 9 1 1 The expression 6 x − x , can be written as 3 2 x 1 1 1 2 2 x 9 x 3 9 1 1 . Substituting into the integral, we get dx 2 3 3 x 6 x x2 x x 1 1 1 1 1 x 3 dx. Now, let and rewrite the dx 1 z dx 3 dz x 6 x x2 2 3 3 x x 1 1 3 1 1 1 1 dx d integral in terms of the variable z to get 2 2 3 3 z z 1 1 x x 1 1 3 1 1 1 dz. Now, Let and 1 z2 cos u. Therefore, dx 2 2 3 z 1 1 z x x 1 1 3 1 1 1 1 du. Using the trigonometric dz 2 3 1 sin u 3 z 1 1 z 2
identity sin u
100_Integrals.006_3pp.indd 78
2 tan u / 2 1 , we get 1 tan 2 u / 2 3
2 1 1 1 tan u / 2 du 2 tan u / 2 3 1 tan u / 2 2 1 1 tan 2 u / 2
27-07-2023 16:21:32
List of Selected Integrals with Their Step-by-Step Solutions • 79
2 2 1 1 1 tan u / 2 1 1 / cos u / 2 du du. du 2 tan u / 2 3 1 tan u / 2 2 3 1 tan u / 2 2 1 1 tan 2 u / 2 Let 1 tan u / 2 y du 2 cos2 u / 2 dy, and the solution of the integral in terms of the variable y reads, after substitution, 2 2 2 1 / cos u / 2 2 1 1 / cos u / 2 2 1 2 du cos u / 2 dy 2 dy 2 2 y 3 3 1 tan u / 2 3 y 3y
2 1 2 dy . The answer can be written in terms of the original variable 2 3y 3 y 2 2 sin u / 2 u u, after substitution, as . But tan 3y u 2 cos u / 2 2 c 3 1 tan 2 2 1 cos u sin u sin u 2 u sin u / 2 tan , and 2 3 1 sin u c 2 cos u / 2 2 cos u / 2 1 cos u u 3 1 tan 2 2 1 cos u 2 z . Therefore, in terms of the variable , having 3 1 sin u cos u u 3 1 tan 2 1 1 z2 2 2 1 cos u z = sin u, we get . Finally, 3 1 sin u cos u 3 1 z 1 z2 21 1 2 2 1 1 z in terms of the original variable x, we get 2 3 1 z 1 z x 2 x 31 1 2 1 1 1 3 2 1 1 z2 3 . This expression simplifies to 2 3 1 z 1 z2 x x 31 1 1 1 3 3
os2 u / 2 dy
x 6 x x2 1 6 x x2 . 3x 3 3x
100_Integrals.006_3pp.indd 79
27-07-2023 16:23:38
80 • 100 Integrals
INTEGRAL 57 Problem:
∫ tan
3
xdx
Solution: 1 tan 2 x ln cos x constant 2 Techniques used: Integration by parts, Trigonometric identities Step-by-step solution: d 1 tan x 2 , we use cos x dx nique to get tan 3 xdx dx cos2 x Having
dg
the integration by parts tech-
sin 3 x 3 cos2 x sin 2 x sin sin 3 x x tan x tan cos x cos2 x cos x f
sin 3 x 3 cos2 x sin 2 x sin 4 x . But the integrand, after expanding n x tan x cos2 x cos x sin x 3 cos2 x sin 2 x sin 4 x sin 3 x and some manipulations, reads 3 cos2 x sin 3 cos x cos2 x cos x 2 x sin 2 x sin 4 x sin 3 x 2 2 3 2 2 3 3 cos x sin x tan x 3 cos x 1 cos x tan x 2 tan 3 x cos2 x 2 3 cos x cos x sin 3 x 1 cos2 x tan 3 x 2 tan 3 x cos2 x . After back substitution, we get tan 3 xdx tan x ta cos x sin 3 x sin 3 x 3 3 2 3 3 3 2 tan xdx tan x tan x 2 tan x cos x dx tan x tan x 2 tan x cos x cos x cos x 3 sin x 3 3 2 an x tan x 2 tan x cos x. Or, after rearranging the terms in the last cos x
100_Integrals.006_3pp.indd 80
27-07-2023 16:24:39
List of Selected Integrals with Their Step-by-Step Solutions • 81
sin 3 x 1 3 2 3 xdx x tan tan tan x cos x. But 2 cos x sin x sin x 3 2 2 tan x cos x sin x dx cos x dx sin x cos xdx. cos x 1 sin x But dx ln cos x and sin x cos xdx sin 2 x . Therefore, 2 cos x the final answer, after collecting all related terms, reads sin 3 x 1 1 2 3 tan xdx tan x ln cos x sin x. The answer can 2 2 cos x 3 sin x 1 1 2 1 2 sin 2 x be simplified to tan x ln cos x sin x sin x 1 2 2 2 cos2 x cos x 1 1 1 sin 2 x 2 cos x sin 2 x sin 2 x 1 ln cos x tan x ln cos x . 2 cos x 2 2 2 equation, we get
100_Integrals.006_3pp.indd 81
27-07-2023 16:25:41
82 • 100 Integrals
INTEGRAL 58 Problem:
1
4 5cos x dx Solution:
tan x / 2 2 tanh 1 constant 3 3
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: x x Let tan z dx 2 cos2 dz. Now, using the trigonometric 2 2 x 1 tan 2 2 , rewrite the integral in terms of variable z identity cos x 2 x 1 tan 2 x cos2 1 1 2 dz 2 as dz. 4 5 cos x dx 2 9 z2 2 x tan 1 2 4 5 x 1 tan 2 2 1 2 1 z dz dz. Now let u dz 3 du, and But 2 2 2 3 9z 9 z 1 3 rewriting the latter integral in terms of the variable u gives 2 2 1 1 1 dz du. But du tanh 1 u. Therefore, 2 2 2 u 3 1 9 1 u z 1 3 writing the answer in terms of variables z and then x gives tan x / 2 2 2 z 2 tanh 1 u tanh 1 tanh 1 . 3 3 3 3 3
100_Integrals.006_3pp.indd 82
27-07-2023 16:27:59
List of Selected Integrals with Their Step-by-Step Solutions • 83
INTEGRAL 59 Problem:
tan 3 1 ln x dx x
Solution: 1 tan 2 1 ln x ln cos 1 ln x constant 2 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let ln x z dx e z dz and rewrite the integral in terms of the vari tan 3 1 ln x tan 3 1 z z able z, to get dx e dz tan 3 1 z dz. x ez Now using the results from Integral 57, we can write the answer as 1 tan 2 1 z ln cos 1 z . Or in terms of the original variable x, 2 1 we have tan 2 1 ln x ln cos 1 ln x . 2
100_Integrals.006_3pp.indd 83
27-07-2023 16:29:16
84 • 100 Integrals
INTEGRAL 60 Problem: 2
sin 2 x sin 3 x sin x sin 6 x dx Solution: 3 1 3 tan x 4 ln constant 18 1 3 tan x 1 3 tan 2 x Techniques used: Integration by parts, Trigonometric identities, Change of variables Step-by-step solution: Simplify the expression inside the bracket of the integrand to sin 2 x sin 3 x 2 sin x cos x sin 3 x cos x 3 = = . But we have cos 3 x 4 cos x 3 cos x sin x sin 6 x 2 sin x sin 3 x cos 3 x cos 3 x cos 3 x 4 cos3 x 3 cos x. Therefore, the integral can be written as 2 1 sin 2 x sin 3 x dz sin x sin 6 x dx 4 cos2 x 3 2 dx. Now, let tan x z dx cos2 xdz 1 z2 dz and write the integral in terms of the variable z as 1 z2 1 1 z2 dx 4 cos2 x 3 2 1 3 z2 2 dz. Using the partial fractions
tan x z dx cos2 xdz
technique,
2
dz
we
get
1 dz 1 dz 1 dz 6 1 3z 6 1 3z 3 1 3z
100_Integrals.006_3pp.indd 84
1 z2
1 3 z
2 2
2
dz
1
1 dz . 3 1 3z 2
1 z2 3z
1
The
2
3z
first
2
dz
1 dz 1 6 1 3z 6 1
two
27-07-2023 16:30:43
List of Selected Integrals with Their Step-by-Step Solutions • 85
1 1 dz dz integrals in the latter expression read 1 ln 1 3 z 6 1 3z 6 1 3z 6 3
1 3 tan x 1 3z 1 1 1 1 dz dz 1 ln 1 3 z ln 1 3 z ln ln 1 3z 6 1 3z 6 3 6 3 6 3 1 3 z 6 3 1 3 tan x 1 3z 1 3 tan x 1 1 z ln ln du 6 3 1 3 z 6 3 1 3 tan x . For the remaining integral, let 1 3 z u dz 3 du 1 3 z u dz and write the integral in terms of variable 3 1 dz 1 du 1 1 1 u as 2 2 3 1 3z 3 3 u 3 3u 3 3 1 3z 3 3 1 3 ta
3 1 1 1 . Or after simplification reads . 9 1 3 tan x 3u 3 3 1 3 tan x 3 3 1 3z
Similarly, the last integral can be worked out to have 1 dz 3 1 3z
2
3
9 1 3 tan x
1 dz 3 1 3z
2
3
9 1 3 tan x
. After collecting all underlined related answers
we get the solutions as
1 3 tan x 3 3 ln 6 3 1 3 tan x 9 1 3 tan x 9 1 3 tan x 1
an x 3 3 . After some simplifications we get the answer as an x 9 1 3 tan x 9 1 3 tan x
3 1 3 tan x 4 ln 2 . 18 1 3 tan x 1 3 tan x
100_Integrals.006_3pp.indd 85
27-07-2023 16:31:59
86 • 100 Integrals
INTEGRAL 61 Problem:
∫
sin 3 x dx cos x
Solution: 2 cos x cos2 x 5 constant 5 Techniques used: Change of variables, Trigonometric identities Step-by-step solution: sin x , rewrite the integral as 2 cos x sin 3 x sin x 2 cos x dx 2 2 cos x dx sin x. Now, using the inte sin x 2 tion by parts technique, we get 2 dx sin x 2 2 cos x f gra Having
d dx
cos x
sin x
cos x sin 2 x 2
dg
2 2 dx sin x 2 cos x sin x 2 cos x sin x cos x dx . But the latter integral cos x f 4 dg can be worked out as 2 cos x sin x cos x dx 2 cos3 / 2 x sin x dx cos5 / 2 x 5 4 2 cos3 / 2 x sin x dx cos5 / 2 x. After collecting all related terms, we get the answer as 5 4 2 cos x sin 2 x cos5 / 2 x . This expression can be simplified to 5 5 2 cos x 4 2 cos x 5 1 cos2 x 4 cos2 x 2 cos x sin 2 x cos 2 x cos2 x 5 5 5 5
cos2 x 4 cos2 x
2 cos x cos2 x 5 . 5
100_Integrals.007_3pp.indd 86
27-07-2023 16:13:52
List of Selected Integrals with Their Step-by-Step Solutions • 87
INTEGRAL 62 Problem:
3x
5 x 31 dx 4 x 11
2
Solution: 5 103 3x 2 ln 3 x2 4 x 11 tan 1 constant 6 3 29 29 Techniques used: Change of variables, Integration by parts Step-by-step solution: d 3 x2 4 x 11 6 x 4 , we can rewrite the numerator dx 5 103 as 5 x 31 6 x 4 . Therefore, the integral can be written 6 3 5 x 31 5 6x 4 103 1 as 2 dx 2 dx dx. 3 x 4 x 11 6 3 x 4 x 11 3 3 x2 4 x 11 5 6x 4 5 But dx ln 3 x2 4 x 11 . For calcula 2 6 3 x 4 x 11 6 ting the latter integral, rewrite the denominator as 2 2 2 4 2 29 2 3 x 4 x 11 3 x 11 3 x 3 . Now let 3 3 3 Having
2 3 z dx dz and the integral in terms of varia 3 3 103 1 103 3 1 103 ble z reads dx dz 2 29 3 3 x 4 x 11 9 29 3 1 z2 3 29 3 1 1 103 29 2 dz 29 3 1 3 / 29 z 2 dz. Now let 3 / 29 z u dz 3 du, thus the z 3 3x
100_Integrals.007_3pp.indd 87
1 3 / 29 z
27-07-2023 16:15:36
1
88 • 100 Integrals
103 integral in terms of variable u reads 29 3 1
1 3 / 29 z
2
dz
103 29 3
1 3 / 29 z
2
dz
103 29 3
29 1 d 2 3 1 u
1 29 1 103 1 du tan 1 u. du du. But 2 2 2 1 u 3 1 u 3 29 1 u
103 1 103 103 103 du tan 1 u tan 1 3 / 29 z tan 1 3 / 2 2 3 29 1 u 3 29 3 29 3 29 2 x 3 2 103 103 103 tan 1 tan 1 3 / 29 z tan 1 3 / 29 3 x . 3 29 3 3 29 29 29 5 103 3x 2 tan 1 Collecting all related terms, we get the answer as ln 3 x2 4 x 11 6 3 29 29 5 103 3x 2 ln 3 x2 4 x 11 tan 1 . 6 3 29 29
Therefore,
100_Integrals.007_3pp.indd 88
27-07-2023 16:16:24
List of Selected Integrals with Their Step-by-Step Solutions • 89
INTEGRAL 63 Problem: 3 x 5 x 4 2 x3 12 x2 2 x 1
x
3
1
2
dx
Solution: ln x3 1
x2 x 3 constant x3 1
Techniques used: Partial fractions, Change of variables, Integration by parts Step-by-step solution: Having the algebraic identity x3 1 x 1 x2 x 1 , the denom inator polynomial common factors are x 1 , x 1 , x2 x 1 , 2
x
x 1 . Using the partial fractions technique we form the following equation, which should be satisfied, for specific values of unknown polynomials P x P, Q x Q, R x R, S x S: 2
2
3 x 5 x 4 2 x3 12 x2 2 x 1
x
Q
x 1
2
3
1
2
Q P R S 2 2 2 x 1 x 1 x x 1 x x 1 2
R S . After some manipulations (i.e., equating equal 2 x x 1 x x 1 2 2
power of x coefficients) the expressions for the unknown polynomials can be obtained as P Q 1, R 2 x 1, and S 4 x 2. Therefore, the integral can be written as 3 x 5 x 4 2 x3 12 x2 2 x 1 1 1 2x 1 dx dx dx 2 dx 2 2 2 3 x 1 x x1 x 1 x 1 x2
100_Integrals.007_3pp.indd 89
27-07-2023 16:18:24
1
90 • 100 Integrals
dx
1
x 1
2
dx
2x 1 2x 1 dx. But dx 2 2 2 x x 1 x x 1
2
1
x 1 2
x
x
For
dx, let x 1 z dx dz and rewriting the integral
in terms of variable z gives For
1
x 1 dx ln x 1.
2x 1 dx, x 1
2
having
2x 1 dx ln x2 x 1 . x 1
2
1
x 1
2
dx
1 1 1 dz . 2 z z x 1
d 2 x x 1 2 x 1, we dx 2x 1 For 2 dx 2 x2 x 1
get let
du and rewrite the integral as 2x 1 2 x 1 du 1 2 2 . dx 2 2 2 2 du 2 u 2x 1 u u x x 1
x2 x 1 u dx 2
x
2x 1 2
x 1
2
After collecting all related terms, we get the answer as 1 2 ln x 1 ln x2 x 1 2 . This expression can be x 1 x x 1 x2 x 3 simplified to ln x3 1 . x3 1
100_Integrals.007_3pp.indd 90
27-07-2023 16:20:28
List of Selected Integrals with Their Step-by-Step Solutions • 91
INTEGRAL 64 Problem: 4 x3 x 1 x3 1 dx Solution: 1 x2 x 1 4 2x 1 4 x ln tan 1 constant 2 3 x 1 3 3 Techniques used: Partial fractions, Change of variables, Integration by parts Step-by-step solution: Having the order of polynomials for both numerator and denom inator of the integrand being equal, we apply division operation 4 x3 x 1 x3 to get 4 3 . Therefore, the integral can be writ 3 x 1 x 1 4 x3 x 1 x3 ten as dx 4 dx 3 dx. But 4 dx 4 x and for 3 x 1 x 1 calculating the remaining integral, we use partial fractions method; Q x3 x3 P 2 . Therefore, to main 3 2 x 1 x 1 x x 1 x 1 x x 1 tain the equality we must have x 3 P x2 x 1 Q x 1 which requires to have Q Ax B. Therefore, after equat ing the coefficients of equal power of x on both sides of the A P 0 equality, we have A B P 1 . The solution for this system B P 3 of equations is P A 2 / 3 and B = 7 / 3 . Using these values,
100_Integrals.007_3pp.indd 91
27-07-2023 16:22:24
92 • 100 Integrals
we
can
write
x3 2 1 2x 7 dx . dx dx x3 1 3 x 1 3 x2 x 1
2 1 2 dx ln x 1 . For the remaining integral, 3 x 1 3 2x 7 1 2x 7 1 2x 1 6 1 2x 1 rewrite it as dx 2 dx 2 dx 2 dx 2 2 3 x x 1 3 x x 1 3 x x 1 3 x x 1 But
1 2x 1 6 1 2x 1 1 dx. dx 2 2 dx 2 2 3 x x1 3 x x 1 x x 1
But
1 2x 1 1 dx ln x2 x 1 2 3 x x 1 3
2x 1 1 d 2 dx ln x2 x 1 . Note that x x 1 2 x 1. Now for per x 1 3 dx forming integration for the remaining integral, rewrite it as 1 1 1 8 1 2 2 dx 2 dx 2 dx dx 2 2 x x 1 3 2 x 1 2 1 1 1 3 x 1 x 1 2 4 2 4 3 1 8 1 2x 1 3 2 dx. Now, let z dx dz and we can dx 2 2 3 2x 1 2 3 1 3 x 1 2 4 3 write the last integral in terms of the variable z as 1 8 1 4 3 1 dz tan 1 z. dx dz. But 2 2 2 z 1 z 1 3 2x 1 3 1 3 4 3 1 4 3 4 3 2x 1 Therefore, dz tan 1 z tan 1 2 3 z 1 3 3 3 . Collecting all related terms, we arrive at the solution of the original 1 4 3 2 2x 1 integral as 4 x ln x 1 ln x2 x 1 tan 1 . 3 3 3 3
x
2
100_Integrals.007_3pp.indd 92
27-07-2023 16:24:21
List of Selected Integrals with Their Step-by-Step Solutions • 93
INTEGRAL 65 Problem:
sin
1
x ln xdx
Solution: 1 x2 ln x 2 x sin 1 x ln x 1 tanh 1
1 x2 constant
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution:
Using integration by parts, we can write the integral as dx 1 1 sin 1 x dx . Therefore, we x ln x dx ln x sin x dx sin x dg f 1 1 require to have sin x dx. Let sin x sin x and cos d dx . Therefore, we can write sin 1 x dx cos d sin sin cos in 1 x dx cos d sin sin d . In terms of the original variable x, we
cos
sin
x dx x sin 1 x 1 x2 . Now, back to the original dx 1 problem, we can write sin 1 x ln xdx ln x sin 1 xdx x sin x dx 1 dx ln x sin 1 xdx sin 1 x dx ln x x sin 1 x 1 x2 x sin 1 x 1 x2 dx . x x get
1
Expanding the remaining integral, we get
x sin 1 x 1 x 2 dx sin 1 x dx
x x sin 1
1
x 1 x 2 dx sin 1 x dx
1 x2 1 x2 dx x sin 1 x 1 x 2 dx. x x
For the latter integral, let x sin z dx cos z dz. Rewriting
100_Integrals.007_3pp.indd 93
27-07-2023 16:26:36
94 • 100 Integrals
1 x2 1 sin 2 z dx x sin z cos zdz cos2 z 1 sin 2 z 1 cos2 z 1 sin 2 z dz dz dz sin zdz cos zdz dz. But sin z sin z sin z sin z sin z
the integral in terms of variable z, gives
1 x2 dx x
1 sin 2 z 1 dz sin zdz. For the former integral, let cos z u sin zdz du dz dz sin z sin z
cos z
cos z
cos z u sin zdz du and rewrite the integral in terms of varia 1 1 1 ble u as dz 2 du du. But we have sin z sin z 1 u2 1 1 1 u2 du tanh u and rewriting in terms of the original variable x, we get tanh 1 u tanh 1 cos z tanh 1 1 x2 . After collecting all related terms, we get the answer as ln x x sin 1 x 1 x2 x sin 1 x 1 x2 1 x2 tanh 1
1 x2 tanh 1
1 x 2
1 x2 1 x2
1 x2 . This expression simplifies to 1 x2 ln x 2 x sin 1 x ln x 1 t
1 x2 ln x 2 x sin 1 x ln x 1 tanh 1
100_Integrals.007_3pp.indd 94
1 x2 1 x2 .
27-07-2023 16:28:10
List of Selected Integrals with Their Step-by-Step Solutions • 95
INTEGRAL 66 Problem:
ln sin x
1 sin xdx
Solution: x x x x x x 1 sin cos ln 4 2 sin cos ln sin ln cos 2 2 tanh sin 2 2 2 2 2 2
x x x x x os ln sin ln cos 2 2 tanh 1 sin tanh 1 cos constant 2 2 2 2 2
2
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution:
After writing the trigonometric functions in half-angle form, we get x x x x 2 x 2 x ln(sin x) 1 sin x dx ln 2 sin 2 cos 2 sin 2 cos 2 2 sin 2 cos 2 dx ln 2 2
sin 2
x x x x x x x x x x x x cos2 2 sin cos dx ln 2 sin cos sin cos dx ln 2 sin cos sin cos dx. 2 2 2 2 2 2 2 2 2 2 2 2
x x x x dx ln 2 sin cos sin cos dx. Expanding the logarithm expression, we get 2 2 2 2 x x x x ln 2 sin cos ln 2 ln sin ln cos . Therefore, we can 2 2 2 2 write the integral in terms of summation of its parts, as x x x x x x ln 2 sin dx cos dx , ∫ sin ln sin dx, ∫ cos ln sin dx , 2 2 2 2 2 2 x x x x ∫ sin 2 ln cos 2 dx, ∫ cos 2 ln cos 2 dx. Now we perform the integration
100_Integrals.007_3pp.indd 95
27-07-2023 16:29:39
96 • 100 Integrals
operation for new integrals. Therefore, x
x
cos 2 dx 2 sin 2 .
x
x
sin 2 dx 2 cos 2 ,
Using the integration by parts technique,
x cos2 x x x x 2 dx. But we have sin ln sin dx 2 cos ln sin x 2 2 2 2 sin 2 x x cos2 1 sin 2 1 x 1 2 dx 2 dx dx, dx sin dx . But for ∫ x x x x 2 sin sin sin sin x 2 2 2 2 2 cos 2
1 x x let cos z sin dx dz and rewrite the integral in terms 2 2 2 1 1 1 of variable z, we get dx 2 dz 2 dz 2 tanh 1 z 2 tanh 2 x 1 z 2 x sin sin 2 2 1 x dz 2 dz 2 tanh 1 z 2 tanh 1 cos . Similarly, we can perform the inte 1 z2 2 gration process for the remaining integrals. These results are tabu lated as shown below: Integral
Answer x
x
x x x x 2 cos ln sin cos tanh 1 cos 2 2 2 2
x
x
x x x 2 sin ln sin sin 2 2 2
x
x
x x x 2 cos ln cos cos 2 2 2
x
x
x x x x 2 sin ln cos sin tanh 1 sin 2 2 2 2
∫ sin 2 ln sin 2 dx ∫ cos 2 ln sin 2 dx ∫ sin 2 ln cos 2 dx ∫ cos 2 ln cos 2 dx
After collecting all related terms and simplifying, we receive the answer as shown above, as solution.
100_Integrals.007_3pp.indd 96
27-07-2023 16:32:10
List of Selected Integrals with Their Step-by-Step Solutions • 97
INTEGRAL 67 Problem:
x3 esin
1
x
1 x2
dx
Solution: 1
3 esin 10
x
x3 1 x2 1 x2 constant x 3
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Having to get
d 1 sin 1 x , use the integration by parts technique dx 1 x2 x3 esin
1
x
1 1 1 dx dx x3 esin x x3 esin x 3 x2 esin x dx . For 2 f 1 x x 1
2
dg
1
the new integral, let sin x z sin z x, dx cos zdz, and write the integral in terms of variable z as 3 x2 esin x dx 3 sin 2 z cos ze z dz. 1
After applying the integration by parts technique, we get sin 3 z z 3 z 3 sin 2 z cos ze z dz 3 e sin z e dz. For the new 3 3 1 integral, after substituting sin 3 z sin z sin 3 z , we have 4 4 3 z 1 z 3 z sin z e dz 4 e sin z dz 4 e sin 3 z dz. Now we have two integrals to calculate. For ∫e z sin z dz, apply the integration by
parts technique twice to get e z sin z dz e z cos z e z cos zdz e z cos z e z sin z
100_Integrals.007_3pp.indd 97
27-07-2023 16:33:36
98 • 100 Integrals
os z e z cos zdz e z cos z e z sin z e z sin z. Now, after rearranging the terms and rewriting this expression as 2 e z sin z dz e z cos z e z sin z, we get ez z e sin z dz sin z cos z . Or in terms of the original variable x we 2 1 ez esin x have sin z cos z x 1 x2 . Similarly, apply the same 2 2 integration process to the remaining integral, e z sin 3 z dz. Therefore, ez 1 1 ez 1 z z z 1 cos 3 z sin 3 z e we get e sin 3 z dz e cos 3 z e cos 3 z dz 3 3 3 3 3 3 z z e 1 1e 3 z dz cos 3 z sin 3 z e z sin 3 z dz . Now, after rearranging the terms and 3 3 3 3 ez writing this expression, we get e z sin 3 z dz sin 3 z 3 cos 3 z . 10 1 z esin x e Or in terms of the original variable x we have sin 3 z 3 cos 3 z sin 3 sin 1 x 10 10 1 esin x 1 1 sin 3 sin x 3 cos 3 sin x . Collecting all related terms sin 3 z 3 cos 3 z 10 1 3 1 1 gives the answer as esin x x 1 x2 esin x sin 3 sin 1 x 3 cos 3 sin 1 x . 8 40
n 1 x
sin 3 sin 1 x 3 cos 3 sin 1 x . Using the expansion of the trigonometric functions, we can simplify the answer as
1 x2
1 1 3 sin1 x e x 1 x2 esin x x3 3 1 x2 1 8 40 1
1 sin1 x 3 3 esin e x 3 1 x 2 1 x 2 3 x 1 x 2 9 x 2 1 x 2 10 40
x2 1 x2
1
3 esin 10
x
x
1 3 2 2 x 3 x 1 x 1 x
1 3 2 2 x 3 x 1 x 1 x .
100_Integrals.007_3pp.indd 98
27-07-2023 16:34:53
List of Selected Integrals with Their Step-by-Step Solutions • 99
INTEGRAL 68 Problem: tan x
1 sec 3 x
dx
Solution: 2 tanh 1 1 sec 3 x constant 3 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Rewrite the integrand as Let
tan x
the variable z to get
sin x / cos x
sin x
. 1 cos3 x cos x and write the integral in terms of
1 sec 3 x
1 dz z dx 2 cos x z sin x
sin x
1 1 / cos3 x
dx
dz 1 dz z 1 / z2 z sin x z 1 z3 sin x
2
1 cos3 x cos x du sin x 1 dz 3 . Now let 1 z u dz 2 . Therefore, we dz 2 z2 sin x 3 3z z1 / z z 1 z 1 1 1 dz u y du 2 ydy du. Let have 3 3 u 1 u z 1 z and rewrite the latter integral in terms of the variable y as, y 1 1 2 2 1 2 dy dy tanh 1 y. du 2 2 3 y 1 y 3 1y 3 3 u 1 u
2 tanh 1 3
After several substitutions, we can write the answer in terms of 2 2 2 2 1 1 u tanh 1 1 z3 tan the original variable x as tanh y tanh 3 3 3 3 2 2 1 3 1 3 u tanh 1 z tanh 1 sec x. 3 3
100_Integrals.007_3pp.indd 99
27-07-2023 16:36:38
100 • 100 Integrals
INTEGRAL 69 Problem:
x ln x x2 1 x 1 2
dx
Solution:
x2 1 ln x x2 1 x constant Techniques used: Change of variables, Integration by parts Step-by-step solution:
the
x d x x2 1 x x2 1 1 and rewriting dx x2 1 x2 1 x x 1 1, we have the integral as follows: 2 2 x 1 x 1 0
Having
x ln x x2 1 x2 1
dx
1 1 ln x x2 1 dx 1 x2 1 x
ln x x x2 1 x
x 2 2 ln x x2 1 dx 1 ln x x 1 dx ln x x 1 dx . 2 x 1 Now we have two integrals to calculate. For the lat ter integral, use the integration by parts technique to get x 1 2 x 1 ln x x2 1 dx x ln x x2 1 x dx x ln x x2 1 2 x x x 1 1 2 dz x x 1 2 x dx x ln x x2 1 dx. Now let x 1 z xdx 2 x x2 1 x2 1 and write the remaining integral in terms of variable z x 1 1 as dx dz z, or x2 − 1 . For the former 2 2 z x 1
100_Integrals.007_3pp.indd 100
27-07-2023 16:38:06
List of Selected Integrals with Their Step-by-Step Solutions • 101
integral,
let
x x2 1 u 1
dx du. x 1 x
2
Hence
2 ln x x 1 dx ln udu u ln u u. x 1 2 Therefore, in terms of the variable x, we get u ln u u x x 1 ln x
1
2
x 1
1 x
u ln u u x x 1 ln x x 1 1 . Collecting all related terms gives 2
x ln x
ln x
2
2
x2
x2 1 ln x x2 1 1 x2 1 ln x x
x2 1 1 x2 1 ln x x2 1 x.
100_Integrals.007_3pp.indd 101
27-07-2023 16:38:53
102 • 100 Integrals
INTEGRAL 70 Problem:
sin
1
1 x dx
Solution: 1 1 2 x sin 1 2
1 x x 1 x constant
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let
1 x z dx 2 zdz and write the integral in terms of
the variable z to get
sin 1
1 x dx 2 z sin 1 z dz. Using
1 2 1 the integration by parts technique, we have 2 z sin z dz z sin z dg
1 2 1 2 z sin z dz z sin z dg
f
z2
1
rewrite it as
d 1 sin 1 z . Therefore, dz 1 z2 1 x . To calculate the remaining integral,
1 z2
dz. Note that
1 z2 z sin z 1 x sin 1 2
f
z2
z2 1 z
2
z
dz z
by parts technique to get
z f
1 z2 z
dz and apply the integration
z 1 2
dz z 1 z2 1 z2 dz.
dg
Therefore, z 1 z2 x 1 x . To calculate the latter integral, let z sin u dz cos u du and write the integral in terms of the 1 cos 2 u variable u to get 1 z2 dz cos2 u du. But cos2 u . 2
100_Integrals.007_3pp.indd 102
27-07-2023 16:41:16
dz
List of Selected Integrals with Their Step-by-Step Solutions • 103
1 u sin 2 u . Therefore, 1 cos 2 u du 2 4 2 1 1 u sin 2 u 1 u sin u cos u sin 1 z z 1 z2 sin 1 1 x x 2 4 2 2 2 1 sin 1 1 x x 1 x . After collecting all obtained results, 2 1 1 as underlined, and simplifying we get the solution as 1 2 x sin 1 x x 1 2 Hence, cos2 u du
1 sin 1 z z 1 z2 2
1 1 2 x sin 1 1 x x 1 x . 2
100_Integrals.007_3pp.indd 103
27-07-2023 16:41:48
104 • 100 Integrals
INTEGRAL 71 Problem: 1
2 2 sin x cos x dx Solution:
tan x / 2 1 ln constant tan x / 2 3
Techniques used: Change of variables, Trigonometric identities, Partial fractions Step-by-step solution: The integral can be written in terms of half-angle using the trigo2 tan x / 2 1 tan 2 x / 2 nometric identities sin x and cos x as 1 tan 2 x / 2 1 tan 2 x / 2 1 1 1 dx 2 2 2 2 sin x cos x dx 1 tan x / 2 4 tan x / 2 tan x / 2 4 tan x / 2 3 2 2 2 1 tan x / 2 1 tan x / 2 dx 1 x x dx . Now let tan z dx 2 cos2 dz 2 2 2 1 tan x / 2 tan x / 2 4 tan x / 2 3 cos x / 2 2 2 x 2x/2 x 1 tan tan z dx 2 cos2 dz and write the integral in terms of the variable z 2 2 1 as 2 2 dz. Using the partial fraction technique, we z 4z 3 1 1 1 1 get 2 2 dz 2 dz dz dz. z 4z 3 z1 z3 z 3 z 1 Performing the integration for the new integrals gives 1 1 z 1 dz ln z 1 and z 3 dz ln z 3 . Collecting results z+1 gives the answer as ln . Rewriting the answer in terms of the z+3 z1 tan x / 2 1 original variable x gives ln ln . z3 tan x / 2 3
100_Integrals.008_3pp.indd 104
27-07-2023 16:15:20
List of Selected Integrals with Their Step-by-Step Solutions • 105
INTEGRAL 72 Problem: sec 2 x tan2 x 2 tan x 2 dx Solution: tan 1 1 tan x constant Techniques used: Change of variables, Integration by parts Step-by-step solution: Rewrite the denominator as tan 2 x 2 tan x 2 1 1 tan x . 2
Now let 1 tan x z dx sec 2 x dz and write the integral in sec 2 x 1 terms of the variable z to get dx dz. 2 tan x 2 tan x 2 1 z2 1 But dz tan 1 z, and in terms of the original variable x the 1 z2 answer reads tan 1 z tan 1 1 tan x .
100_Integrals.008_3pp.indd 105
27-07-2023 16:16:44
106 • 100 Integrals
INTEGRAL 73 Problem:
x2 x 1 dx
Solution: 3 2x 1 2x 1 2 x x 1 tanh 1 constant 2 4 8 2 x x 1 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution:
2 2 3 1 3 2x 1 x 1 4 2 4 3 2 2 3 1 3 2x 1 2x 1 3 1 x 1 z dx dz and rewrite . Now, let 4 2 4 3 2 3 2 3 2x 1 2 z the integral in terms of variable , as x x 1 dx 1 4 3
The expression x2 + x + 1 can be written as x2 x 1
3 2x 1 1 4 3
3 2 dx 1 z dz. For calculating the new 4 du integral, let z tan u dz and rewrite the integral in terms cos2 u 3 3 du 3 1 of variable u, as 1 z2 dz 1 tan 2 u du. 2 cos u 4 cos3 u 4 4 Using the integration by parts technique, we have du 3 1 3 1 3 tan u tan u sin u du du . But 3 2 cos cos u 4 cos u 4 cos u 4 u cos2 u
x x 1 dx 2
2
f
dg
3 1 3 tan u 3 1 3 tan u sin u sin u 1 cos u du du . Therefore, 3 3 2 3 3 4 cos u 4 cos u 4 cos u 4 cos u cos u cos u 2
100_Integrals.008_3pp.indd 106
2
27-07-2023 16:18:43
List of Selected Integrals with Their Step-by-Step Solutions • 107
1 3 tan u 3 1 3 1 du du du. Rearranging terms involved in the cos3 u 4 cos u 4 cos3 u 4 cos u 3 1 3 tan u 3 1 last equation; we get du du. 3 4 cos u 8 cos u 8 cos u The solution to the new integral was presented in the Integral 5 3 1 3 section. Or du tan 1 sin u . After collecting all related 8 cos u 8 terms, we get the answer in terms of the original variable x as 3 tan u 3 3 1 tan sin u z 8 cos u 8 8
3 z tanh 1 2 8 1 z
3 2 x 1 8 3
1 z
3 z tanh 1 2 8 1 z
2x 1 2 2x 1 3 3 1 1 tanh 2 8 3 2x 1 1 3
expression simplifies to
100_Integrals.008_3pp.indd 107
2
.
3 2 x 1 1 8 3
This
2x 1 2 3 2x 1 x x 1 tanh 1 . 2 4 8 2 x x 1
27-07-2023 16:19:30
108 • 100 Integrals
INTEGRAL 74 Problem:
x
x
2
2x 2
2
dx
Solution: 1 x2 tan 1 x 1 2 constant 2 x 2 x 2 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution:
Let x 1 z dx dz and rewrite the integral in terms of the x z 1 z 1 dx dz dz. variable z, to get 2 2 2 2 z 1 2 2 z 1 2 1 z2 x 2x 2 z 1 z 1 z 1 z dz. The new integral can be written as dz dz dz 2 2 2 2 2 2 2 z 1 2 1 z 1 z 1 z2 1 z 1 z 1 1 z2 2 dz 1 z2 2 dz 1 z2 2 dz. Now we have two integrals to calculate. For the first integral we can write
z
1 z
2 2
1
1 z
2 2
dz
z
1 z
2 2
dz
1 2z dz 2 1 z2 2 2
1 2z 1 . For the remaining integral, let dz 2 2 2 1 z 2 1 z2
1 du 1 dz du 2 2 2 z tan u dz . Therefore, we have 1 z2 1 tan2 u cos cos2 u 1 cos 2 u du 1 2 and the cos2 u du . But cos u dz 2 2 2 1 tan2 u cos u
100_Integrals.008_3pp.indd 108
27-07-2023 16:21:09
List of Selected Integrals with Their Step-by-Step Solutions • 109
1 u sin 2 u . After 1 cos 2 u du 2 4 2 collecting all related answers, in terms of the original variable x, new integral reads cos22 udu we have
1 tan 1 x 1 sin 2 tan x u sin 2 u 1 1 4 4 2 2 1 z2 2 2 x2 2 x 2
1 tan 1 x 1 sin 2 tan x 1 . The answer can be simplified 1 4 2 2x 2 tan 1 x 1 x x2 . dx x2 2 x 2 2 2 2 2 x 2x 2
100_Integrals.008_3pp.indd 109
to,
27-07-2023 16:21:48
110 • 100 Integrals
INTEGRAL 75 Problem:
x
1 3
x2 9
dx
Solution: 1 1 3 3 cos 2 54 x x
x2 9 constant
Techniques used: Change of variables, Trigonometric identities Step-by-step solution:
sin z 3 dx 3 dz and rewrite the integral in cos z cos2 z cos3 z sin z 1 sin z cos2 z terms of the variable z to get, 1 dz dz 9 9 / cos2 z 9 cos2 z 27 1 cos2 z 1 os3 z sin z 1 sin z cos2 z dz cos2 zdz. Using trigonometric identity, dz 2 2 2 27 1 cos z 27 cos z 9 cos z 1 1 1 1 1 cos 2 z cos2 zdz 1 cos 2 z dz z sin 2 z cos2 z , we get 27 54 54 2 2 1 1 1 1 cos 2 z dz z sin 2 z . Now in terms of the original variable x we have the 54 54 2 1 1 1 1 3 3 9 1 1 2 answer as cos z sin 2 z z sin z cos z x 54 54 2 54 x x Let x
9 1 1 3 3 1 1 3 3 1 2 . This expression simplifies to cos 2 x2 9 cos x 54 x x 54 x x 1 1 3 3 cos 2 x2 9 , assuming x > 0. This expression simplifies to 54 x x 1 1 3 3 cos 2 x2 9 . 54 x x
z
100_Integrals.008_3pp.indd 110
27-07-2023 16:23:41
List of Selected Integrals with Their Step-by-Step Solutions • 111
INTEGRAL 76 Problem:
sin x tan
1
sec x 1dx
Solution:
1 cos1 cos x cos x 1 cos x cos x tan 1 sec x 1 constant 2 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Using the integration by parts technique we can write d 1 1 1 sin x tan sec x 1 dx cos x tan sec x 1 cos x dx tan sec x 1 dx dg
f
c x 1 cos x
d tan 1 sec x 1 dx. But letting tan 1 sec x 1 , or tan sec x 1 , dx we can write, by differentiating both sides, d sin x dx . Now using tan sec x 1, we cos2 2 cos2 x sec x 1 sin x dx have cos2 cos x and d tan 1 sec x 1 . 2 cos x sec x 1 sin x 1 sin x Therefore, cos x 2 cos x sec x 1 dx 2 sec x 1 dx . For cal
d
culating the latter 2 cos z sin x dx 2 sin z cos z dz and write 1 sin x dx 2 sec x 1
100_Integrals.008_3pp.indd 111
2 integral, let cos x cos z sin x dx 2 sin z cos z dz the integral in terms of the variable z as sin z cos z dz cos2 zdz. Now using the 2 1 / cos z 1
27-07-2023 16:25:54
112 • 100 Integrals
trigonometric identity cos2 z
1 cos 2 z , we have 2
cos
2
zdz
1 1 cos 2 z dz 2
1 z sin 2 z . Therefore, in terms of the orig1 cos 2 z dz 2 4 2 1 z sin 2 z 1 inal variable x, we can write z sin z cos z cos1 cos x c 2 4 2 2 1 1 1 z sin z cos z cos cos x cos x 1 cos x . Collecting all related terms, 2 2 1 we receive the answer as cos1 cos x cos x 1 cos x cos x tan 1 sec x 1 2
cos
2
zdz
cos x 1 cos x cos x tan 1 sec x 1.
100_Integrals.008_3pp.indd 112
27-07-2023 16:26:52
List of Selected Integrals with Their Step-by-Step Solutions • 113
INTEGRAL 77 Problem:
Solution:
1 x x x2
dx
2 sin 1 2 x 1 constant Techniques used: Change of variables, Integration by parts Step-by-step solution: x z dx 2 zdz, and write the integral in terms of the 1 1 z variable z as dx 2 dz 2 dz. Write 3 4 2 z z2 z z x xx 1 2 2 the denominator as z z2 1 / 4 z 1 / 2 1 2 z 1 . 2 Now let 2 z 1 u 2 dz du and write the new integral in terms of 1 1 1 the variable u as 2 dz 4 dz 2 du. 2 z z2 1 u2 1 2 z 1 Let
But we have 2
1 1 u
2
du 2 sin 1 u. Or in terms of the original vari-
able x we get 2 sin 1 u 2 sin 1 2 z 1 2 sin 1 2 x 1 .
100_Integrals.008_3pp.indd 113
27-07-2023 16:28:43
114 • 100 Integrals
INTEGRAL 78 Problem:
x ln x 3
ln x 6
5 dx
Solution: x4 8 ln 2 x 52 ln x 53 constant 32 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution:
Write the integral as a summation of its terms, x3 ln x ln x 6 5 dx 5 x3 dx x3 ln 5 4 3 ln x 6 3 3 ln x 6 3 x ln x 5 dx 5x dx x ln x dx. But 5x dx 4 x . For the remaining integral, rewrite the integrand by using logarithm rule as,
x ln x 3
ln x 6
dx x
3
ln x 6 ln x dx x3 ln 2 x dx 6 x3 ln x dx.
Now, let ln x z x e z, dx e z dz , and rewrite the new integrals in terms of the variable z. Therefore,
x
3
x
3
ln 2 x dx e4 z z2 dz
ln 2 x dx e4 z z2 dz . Using the integration by parts technique twice, we e4 z 2 1 4 z e4 z 2 e4 z e4 z 4z 2 z e z dz z z get e z dz . Similarly, 4 2 4 8 32 dg f
e4 z 1 e4 z e4 z . 6 x3 ln x dx 6 e4 z z dz 6 z e4 z dz 3 z3 4 2 8 dg f 4 nal Collecting all answers and rewrite them in terms of the origi 5 5 e4 z 2 e4 z e4 z e4 z e4 z e4 z variable x, we get x 4 z z 3 z 3 x4 8 z2 5 2 8 4 32 4 4 8 32 e4 z e4 z 5 e4 z 5 x4 3 z 3 x4 8 z2 52 z 13 x 4 8 ln2 x 52 ln x 13 . 2 8 4 32 4 32 x4 The answer simplifies to 53 8 ln 2 x 52 ln x . 32
100_Integrals.008_3pp.indd 114
27-07-2023 16:30:47
1
List of Selected Integrals with Their Step-by-Step Solutions • 115
INTEGRAL 79 Problem:
tan 1
x 1 x dx
Solution: 1 2
x tan 1 x x tan 1
x 1 x constant
Techniques used: Change of variables, Integration by parts, Trigonometric identities, Partial fractions Step-by-step solution: Using the integration by parts technique, we can write the d 1 integral as tan 1 x 1 x dx x 1 x x tan 1 x tan dg dx
x 1 x , or
x 1
f
d x 1 x x tan 1 dx
x 1 x dx . But having tan 1
tan x 1 x , we get, after differentiating both side, d 1 1 1 cos2 2 . But we have tan dx cos2 2 x 1 2 x cos2 2 1 1 cos2 2 . Therefore, tan 2 x 1 x . Or cos 2 2 cos x 1 x 1
an 1
d 1 1 dx 2 x 1 2 x
1 1 x 1 x dx 2 x 2 x 1
1 x 1 x
100_Integrals.008_3pp.indd 115
x x1 x
2
x 1 x
2
2
1
. Now by plugging back
d into the new integral, we get x tan 1 dx
1
dx .
Now,
1 1 x 1 x dx 2 x 2 x
let
x z dx 2 zdz
27-07-2023 16:32:28
116 • 100 Integrals
x z dx 2 zdz and write the integral in terms of the variable z as 1 x 1 1 z3 1 dz dx 2 2 x 2 x 1 x 1 x 2 1 z z2 1 2 z 1 z 1 1 1 z3 dz. For performing the latter intedx 2 z2 1 z2 1 z 1 z 1 1 z3 dz du 2 gral, let z tan u dz . Therefore, z z2 1 z2 1 z 1 2 cos u
1 1 z z2 1
3
3
3
3
3
sin u / coos u sin 2 du cos u dz cos u . 2 2 cos2 u 1 sin u 1 / cos u sin u / cos u 1 cos u z2 1 z 1 z
2
sin 2 u du trigonometric half-angle 2 2 cos2 u 1 sin u du. Using sin u / cos u 1 cos u 4 tan 2 u / 2 sin 2 u du . identities we can write the integral as 2 2 cos u 1 sin u 1 tan2 u / 2 4 tan 2 u / 2 sin 2 u 1 du. For performing the new . du 2 os2 u 1 sin u 1 tan2 u / 2 2 tan u 2 1 u 1 tan 2 2 2 u integral let tan y du dy, and rewrite the integral 2 1 y2 y2 1 y2 4 tan 2 u / 2 1 in terms of the variable y as . du 8 2 1 y 2 2 1 y2 1 tan2 u / 2 2 tan u 2 1 u 1 tan 2 2 2 2 2 y 1 y dy y 1 . dy. Now by 8 du 8 4 2 2 2 2 2 u 1 y 1 y 2 y 1 y 1 y 1 y 2 tan 2 1 using the partial fractions technique, we can write the integrand as u 1 tan 2 y2 1 1 1 1 2 4 2 2 2 3 4 1 y 1 y 16 y 1 16 y 1 4 y 1 4 y 1
n u / co os u
.
and the integral as a combination of its terms 8
100_Integrals.008_3pp.indd 116
y2
1 y 1 y 4
2
dy
1 1 dy 2 y 1 2
27-07-2023 16:33:41
List of Selected Integrals with Their Step-by-Step Solutions • 117
8
y2
1 y 1 y 4
2
dy
1 1 1 1 1 1 dy dy 2 dy 2 dy. 2 2 3 4 2 y 1 2 y 1 y 1 y 1
The new integrals can be worked out as
1 1 1 dy , 2 2 y 1 2 y 1
2
1
y 1
4
dy
2
3 y 1
3
2
1 1 1 dy , 2 2 y 1 2 y 1
1
y 1
3
dy
1
y 1
2
,
and
. by subsequent change of variables
u 1 x 1 = (y tan = , z tan u = x ) we get y , assuming y > 0. 2 x Therefore, after collecting all results and writing them in terms of the original variable x, we get the answer as 1 x tan 1 x 1 x x tan 1 x . 2
100_Integrals.008_3pp.indd 117
27-07-2023 16:34:42
118 • 100 Integrals
INTEGRAL 80 Problem: x9 x20 48 x10 575 dx Solution: 1 x10 25 ln constant 20 x10 23 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: The denominator
of
the
integrand
can
be
written
as
x 48 x 575 x 25 x 23 . Therefore, using the partial 20
10
10
10
x9 1 1 x9 x9 dx dx x20 48 x10 575 2 x10 25 2 x10 23 dx 1 x9 1 1 x9 1 10 dx ln x 25 and dx 10 10 2 x 25 20 2 x 23 20
fractions technique we get dx
1 x9 1 x9 dx dx. Or 10 10 2 x 25 2 x 23 1 x9 1 10 dx ln x10 23 . Collecting the answers, we get the 2 x 23 20 1 x10 − 25 solution as ln 10 . 20 x − 23
100_Integrals.008_3pp.indd 118
27-07-2023 16:35:45
List of Selected Integrals with Their Step-by-Step Solutions • 119
INTEGRAL 81 Problem:
sin
1
x dx
Solution: x sin 1 x 1 x2 constant Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let sin 1 x x sin and dx cos d. Therefore, we can write the integral in terms of the variable α as sin 1 x dx cos d 1 sin x dx cos d . Using the integration by parts technique, we get d sin sin d sin cos . cos f
The results in
dg
terms of the original variable x reads, sin cos x sin 1 x 1 x2 sin cos x sin 1 x 1 x2 .
100_Integrals.009_3pp.indd 119
27-07-2023 16:30:52
120 • 100 Integrals
INTEGRAL 82 Problem:
tan Solution:
1
x dx
1 x tan 1 x ln 1 x2 constant 2
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let tan 1 x x tan and dx cos2 d. Therefore, we can write the integral in terms of variable α as
tan
1
tan
1
x dx cos2 d
x dx cos2 d . Using the integration by parts technique, we get
d tan tan d . But tan d sin d ln cos cos 2
f
n d
dg
cos
sin d ln cos . The results in terms of the original variable x reads, cos 1 1 x tan 1 x ln 1 x2 . tan ln cos x tan 1 x ln 2 2 1 x 1 Note that having x tan we can calculate, cos . 1 x2
100_Integrals.009_3pp.indd 120
27-07-2023 16:32:30
List of Selected Integrals with Their Step-by-Step Solutions • 121
INTEGRAL 83 Problem:
sinh
1
x dx
Solution: x sinh 1 x 1 x2 constant Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let sinh 1 x x sinh and dx cosh d. Therefore, we can write the integral in terms of variable α as
sinh
1
sinh
1
x dx cosh d
x dx cosh d . Using the integration by parts technique, we get
cosh d sinh sinh d sinh cosh . The results f
dg
in terms of the original variable x reads, sinh cosh x sinh 1 x 1 x sinh cosh x sinh 1 x 1 x2 . Note that cosh 1 x2 , using the trigono2 metric identity cosh 2 sinh 1. x2
100_Integrals.009_3pp.indd 121
27-07-2023 16:33:39
122 • 100 Integrals
INTEGRAL 84 Problem:
tanh
1
x dx
Solution: 1 x tanh 1 x ln 1 x2 constant 2 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let tanh 1 x x tan h and dx cos h 2 d. Therefore, we can write the integral in terms of variable α as
tanh
1
tanh
1
x dx cosh 2 d
x dx cosh 2 d. Using the integration by parts tech2 nique, we get d tan h tan h d. But cosh f
dg
sinh d ln cosh . The results in terms cosh 1 of the original variable x reads, tanh ln cosh x tanh 1 x ln 2 1 x 1 1 1 1 2 cosh x tanh x ln x tanh x ln 1 x . Note that having x tanh 2 2 1 x 1 we can calculate, cosh . 1 x2 tanh d
100_Integrals.009_3pp.indd 122
x tan
27-07-2023 16:34:55
List of Selected Integrals with Their Step-by-Step Solutions • 123
INTEGRAL 85 Problem:
cos Solution:
1
1 dx x
x2 1 1 x cos1 tanh 1 constant x x
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let cos1 1 / x x 1 / cos and dx sin / cos2 d . Therefore, we can write the integral in terms of the variable α as
cos 1 / x dx sin / cos d. Using the integration by parts 1 technique, we get sin /cos d /cos cos d. 1
2
2
f
dg
1 But d tanh 1 sin (see Integral 5). Therefore, we can cos 1 write the results as / cos d / cos tanh 1 sin . cos The results in terms of the original variable x reads, x2 1 / cos tanh 1 sin x cos1 1 / x tanh 1 . x
100_Integrals.009_3pp.indd 123
27-07-2023 16:36:20
124 • 100 Integrals
INTEGRAL 86 Problem:
x
4
1 dx 4
Solution: 1 x2 2 x 2 1 1 1 ln 2 tan x 1 tan x 1 constant 16 x 2 x 2 8 Techniques used: Change of variables, Integration by parts, Partial fractions Step-by-step solution:
Write the denominator of the integrand as x 4 4 x2 2 4 x2 x2 2 x 2 x2 2 2
4 x2 2 4 x2 x2 2 x 2 x2 2 x 2 . Using the partial fractions techniques, write 1 1 2 x 1 2x the integral as 4 dx 2 dx 2 dx. x 4 8 x 2x 2 8 x 2x 2 1 2 x 1 11 x 1 1 1 2 2x But dx 2 dx 2 dx 2 dx 2 8 x 2x 2 8 x 2x 2 8 x 2x 2 16 x 2 x 2 1 1 2 2x x2 2 x 2 dx 16 x2 2 x 2 dx. The latter integral can be worked out, since d 2 1 2 2x 1 x 2 x 2 2 x 2 , as dx ln x2 2 x 2 . 2 dx 16 x 2 x 2 16 1 1 1 1 dx dx 2 8 x 1 2 1 For the former integral, write it as 8 x 2 x 2 2
1 1 1 1 dx. Now let x 1 z dx dz and write the dx 2 8 x 1 2 1 8 x 2x 2 1 1 1 1 1 1 dx 2 dz tan 1 z tan 1 x integral in terms of variable z as 2 8 x 1 1 8 z 1 8 8
100_Integrals.009_3pp.indd 124
27-07-2023 16:37:53
List of Selected Integrals with Their Step-by-Step Solutions • 125
1 2
dx
1 1 1 1 dz tan 1 z tan 1 x 1 . 8 8 8 z2 1
Similarly,
The
remaining
integral
1 2x 1 x 11 1 2x 2 dx 2 dx 2 8 x2 2 x 2 8 x 2x 2 16 x 2 x 2 1 x 11 1 2x 2 1 1 1 2x 2 1 dx 2 dx ln x2 2 x dx. But 2 2 dx 2 8 x 2x 2 16 x 2 x 2 8 x 2x 2 16 x 2 x 2 16 1 2x 2 1 1 1 1 1 d 2 dx dx ln x2 2 x 2 . For the former integral 2 8 x 2x 2 16 x 2 x 2 16 8 x 1 2 1 1 1 1 1 1 dx tan 1 x 1 . Collecting all related terms, dx 2 2 8 x 1 1 8 8 x 2x 2 1 1 1 we receive the answer as ln x2 2 x 2 tan 1 x 1 ln x2 2 x 16 8 16 1 1 1 1 2 1 2 x 2 tan x 1 ln x 2 x 2 tan x 1 . This expression simplifies to 8 16 8 1 x2 2 x 2 1 1 1 ln tan x 1 tan x 1 . 16 x2 2 x 2 8 can be worked out as
100_Integrals.009_3pp.indd 125
27-07-2023 16:38:39
126 • 100 Integrals
INTEGRAL 87 Problem:
Solution:
4x
x5 2
4
5/2
dx
1 3 x 4 12 x2 8 constant 12 4 x2 4 3 / 2
Techniques used: Change of variables, Integration by parts Step-by-step solution: Expand the denominator of the integrand as
4x
2
4
x5
x2 1 x2 1
2
4
5/2
the
1 x5
2
4
5/2
4 5 / 2 x2 1
5/2
32
32 x 1 x 1 . Therefore, the integral reads 1 x5 dx dx . Now, using the partial 4 x2 4 5 / 2 32 x2 1 x2 1 2 1 x5 1 x dx fractions technique1, we get dx 32 x2 1 x2 1 2 32 x2 1 x 1 x 2x dx dx d x dx x2 1 3 / 2 x2 1 5 / 2 .Now,perform 32 x2 1
5/2
x
4x
2
new
5/2
integrals,
1 x 1 2x dx dx 2 64 32 x2 1 x 1 1
2
2
2
one
by
one.
For
2x x2 1 . For 1 2 32 x 1 3 / 2 32
1 2x 1 x dx dx 2 32 64 x 1 x2 1 1 . For dx 16 x2 1
A CAS tool (e.g., Wolfram Alpha) can be employed for this step.
100_Integrals.009_3pp.indd 126
27-07-2023 16:39:49
List of Selected Integrals with Their Step-by-Step Solutions • 127
1 x 1 2x 1 . Collecting dx dx 3/2 2 64 x2 1 5 / 2 32 x2 1 5 / 2 96 x 1 all related results, we receive the answer as 2 x 1 1 1 . This expression simplifies to 3/2 32 16 x2 1 96 x2 1 3 x 4 12 x2 8
96 x2 1 x2 1
100_Integrals.009_3pp.indd 127
1 3 x 4 12 x2 8 . 12 4 x2 4 3 / 2
27-07-2023 16:40:15
128 • 100 Integrals
INTEGRAL 88 Problem:
x
4
1 dx 1
Solution: 2 x2 2 x 1 1 2 tan ln 2 8 x 2 x 1
x2 2 x 1 1 2 tan ln 2 x 2 x 1
2 x 1 tan 1
2 x 1 tan 1
2 x 1 constant
2 x 1 constant
Techniques used: Change of variables, Integration by parts, Partial fractions Step-by-step solution: Write the expression in the denominator of the integral as a prod-
uct of two terms. Therefore, x 4 1 x2 1 2 x2 x2 2 x 1 x2 2 x 1 2
2 x2 x2 2 x 1 x2 2 x 1 . But, using the partial fractions technique, we can x 2 1 1 2 write the integral as 4 dx dx 2 2 2 x 1 4 x 2x 1 x 2x 1 x 2x 1
1
x 1 x 2x 1 2
dx
2 2 x 2 x 2 dx 2 dx. Now we perform the 2 4 x 2x 1 4 x 2x 1
integration of the new integrals. Rewrite the former integral as 2 x 2 2 2x 2 2 2 2x 2 2 dx dx dx 2 dx 2 2 2 4 x 2x 1 8 8 x 2x 1 x 2x 1 x 2x 1 2 2x 2 2 dx . Therefore, dx 2 2 8 x 2x 1 x 2x 1
100_Integrals.009_3pp.indd 128
2 2x 2 2 dx ln x2 2 x 1 2 8 x 2x 1 8
27-07-2023 16:41:11
List of Selected Integrals with Their Step-by-Step Solutions • 129
d 2 2x 2 2 x 2 x 1 2 x 2 . Now, after dx ln x2 2 x 1 . Note that dx 8 x 2x 1 manipulating the expression in the denominator of the latter 2
2
2 2 1 1 integral, we have x 2 x 1 x 1 2 x 1 . 2 2 2 2 2 1 1 dx. Therefore, we have dx 2 8 x 2x 1 2 1 2x 1 2
2
Let 2 x 1 z 2 dx dz and write the integral in terms of the 1 1 1 1 2 variable z, as tan 1 z. dx dz 2 2 2 1 2x 1 4 2 2 1 z
2 tan 1 4
Or in terms of the original variable, x we get
2x 1 .
Similarly, for the remaining integral, we have 2 x 2 2 2x 2 2 2 2x 2 2 dx dx dx 2 2 2 2 4 x 2x 1 8 8 x 2x 1 x 2x 1 x 2x 2 2 2 2x 2 2 x2 2 x 1 dx 8 x2 2 x 1 dx x2 2 x 1 dx . Therefore,
2 2x 2 2 dx ln x2 2 x 1 . Note 8 x2 2 x 1 8
d 2 x 2 x 1 2 x 2 . Now, after manipulating the dx expression in the denominator of the new integral, we have that
2
2 2 1 1 x 2x 1 x 1 2 x 1 . Therefore, we 2 2 2 2 2 1 1 have dx dx. Let 2 x 1 u 2 dx du 2 8 x 2x 1 2 1 2x 1 2
2
2 x 1 u 2 dx du and write the integral in terms of the variable u, as 1 1 1 1 2 tan 1 u. Or in terms dx du 2 u 2 1 2x 1 2 1 4 2 2
100_Integrals.009_3pp.indd 129
27-07-2023 16:43:03
130 • 100 Integrals
2 tan 1 4 related results, we get the answer as of the original variable x, we get
2 x 1 . Collecting all
2 2 2 2 ln x2 2 x 1 tan 1 2 x 1 ln x2 2 x 1 tan 1 8 4 8 4 2 2 ln x2 2 x 1 tan 1 2 x 1 . This expression simplifies to 4 2 2 x 2 x 1 2 tan 1 2 x 1 tan 1 2 x 1 . ln 2 8 x 2x 1
100_Integrals.009_3pp.indd 130
2x 1
27-07-2023 16:43:21
List of Selected Integrals with Their Step-by-Step Solutions • 131
INTEGRAL 89 Problem:
sin ln x dx 2
Solution: x 5 cos 2 ln x 2 sin 2 ln x constant 10 Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let ln x z dx e z dz. Now write the integral in terms of variable z, as
sin ln x dx e 2
z
sin 2 z dz . Using the trigo-
1 cos 2 z rewrite the integral as 2 1 z 1 1 e 1 cos 2 z dz e z dz e z cos 2 z dz. For the new integrals, 2 2 2 1 z 1 z we get e dz e and, using the integration by parts technique, 2 2 1 1 z 1 1 1 1 e cos 2 z dz e z sin 2 z e z sin 2 z dz e z sin 2 z e z cos 2 z 8 2 f dg 4 4 4 8 nometric identity, sin 2 z
1 1 1 n 2 z dz e z sin 2 z e z cos 2 z e z cos 2 z dz. Therefore, rearranging terms in the 4 8 8 1 last expression gives e z cos 2 z dz e z cos 2 z 2 sin 2 z . Now, 5 1 z 1 z z 2 we can write e sin z dz e e cos 2 z 2 sin 2 z . This 2 10 expression written in the original variable x gives the answer as 1 z 1 z 1 1 e e cos 2 z 2 sin 2 z x cos 2 ln x 2 sin 2 ln x . 2 10 2 10
100_Integrals.009_3pp.indd 131
27-07-2023 16:44:58
132 • 100 Integrals
INTEGRAL 90 Problem:
∫ sin x sin 2 x sin 3 x dx Solution: 1 6 sin 2 x 3 sin 2 2 x 2 sin 2 3 x constant 24 Or
1 6 cos2 x 3 cos2 2 x cos2 3 x constant 24
Techniques used: Integration by parts, Trigonometric identities Step-by-step solution:
1 cos a b cos a b 2 1 1 1 n b cos a b cos a b , rewrite the integrand as (sin x sin 2 x)sin 3 x cos x cos 3 x sin 3 x co 2 2 2 b a Using the trigonometric identity, sin a sin b
1 1 cos x cos 3 x sin 3 x cos x sin 3 x cos 3 x sin 3x. Now, after substitution, 2 2 1 1 rewrite the integral as sin x sin 2 x sin 3 x dx cos x sin 3 x dx cos 3 x sin 3 x dx 2 2 1 1 cos x sin 3 x dx cos 3 x sin 3 x dx . For the latter new integral, using the inte2 2 1 1 gration by parts, we get cos 3 x sin 3 xdx cos2 3 x. 2 12 For the former integral, using the trigonometric identity, 1 1 1 sin c cos d sin c d sin c d , we have cos x sin 3x dx sin 4 x sin 2 x 2 4 d c 2
x)sin 3 x
a
100_Integrals.009_3pp.indd 132
27-07-2023 16:46:18
List of Selected Integrals with Their Step-by-Step Solutions • 133
1 1 1 1 cos x sin 3x dx sin 4 x sin 2 x dx sin 2 x cos 2 x dx sin x cos x dx. 2 4 2 2 d c 1 1 The new integrals are worked out as sin 2 x cos 2 xdx sin 2 2 x, 2 8 1 1 2 and sin x cos xdx sin x. Collecting all related terms, the 2 4 1 1 1 2 answer reads cos 3 x + sin 2 2 x + sin 2 x. This expression simpli12 8 4 1 1 fies to 6 sin 2 x 3 sin 2 2 x 2 sin 2 3 x . Or the answer in terms 12 24 3 1 of the cosine function reads 6 cos2 x 3 cos2 2 x cos2 3 x . 8 24
100_Integrals.009_3pp.indd 133
27-07-2023 16:47:04
134 • 100 Integrals
INTEGRAL 91 Problem:
1 x2 dx
Solution:
1 sinh 1 x x 1 x2 constant 2 Techniques used: Change of variables, Trigonometric identities Step-by-step solution: Let x sinh z dx cosh z dz, and write the integral in terms of the .
variable z as
1 x2 dx 1 sinh 2 z cosh z dz cosh 2 z dz.
Note that cosh 2 z sinh 2 z 1. Rewriting the latter inte1 gral using the trigonometric identity, cosh 2 z cosh 2 z 1 , 2 1 1 z 2 as cosh z dz cosh 2 z 1 dz cosh 2 z dz . But 2 2 2 1 1 cosh 2 z dz sinh 2 z. Collecting related terms, the results read 2 4 z 1 + sinh 2 z. This expression in terms of the original variable x 2 4 1 sinh 1 x 1 reads sinh z cosh z sinh 1 x x 1 x2 . 2 2 2
100_Integrals.010_3pp.indd 134
27-07-2023 16:36:48
List of Selected Integrals with Their Step-by-Step Solutions • 135
INTEGRAL 92 Problem:
1 ln x cos x sin x x dx 2 ln x
Solution: sin x + constant ln x Techniques used: Integration by parts Step-by-step solution: 1 ln x cos x sin x cos x sin x . Therefore, x Expand the integrand, 2 ln x x ln 2 x ln x 1 ln x cos x sin x cos x sin x x dx dx ormer dx . Integrate f 2 ln x x ln 2 x ln x integral by using the integration by parts technique, to get sin x sin x 1 cos x ln x dx ln x x ln2 x dx. Collecting all related terms dg f
gives sin x sin x dx sin x dx sin x . x ln2 x ln x ln x x ln 2 x 0
100_Integrals.010_3pp.indd 135
27-07-2023 16:37:44
136 • 100 Integrals
INTEGRAL 93 Problem:
2 e2 x e x 3 e2 x 6 e x 1
dx
Solution: 3ex 3 1 2x x 1 2 3 e 6 e 1 3 cosh constant 3 2 Techniques used: Integration by parts, Trigonometric identities Step-by-step solution:
Let e x z dx dz / z and rewrite the integral in terms of the 2 e2 x e x 2 z2 z 2z 1 dx dz variable z, to get dz 2x x 2 z 3z 6z 1 3e 6e 1 3 z2 6 z 1 2 z2 z 2z 1 dz dz. The expression in the denominator can be writ2 z 3z 6z 1 3 z2 6 z 1 2 3 z 1 2 2 2 ten as 3 z 6 z 1 3 z 2 z 1 / 3 3 z 1 4 / 3 2 2 2 3 z 1 2 3 z 1 4 / 3 2 Therefore, the integral reads 1. 2 2z 1 1 2z 1 3 z 1 dz. Let 2 3 z2 6 z 1 dz 2 2 u dz du 3 z 1 2 3 1 2 3 z 1 2 2 u dz du, z u 1. Now, write the latter integral in 2 3 3
100_Integrals.010_3pp.indd 136
27-07-2023 16:39:07
List of Selected Integrals with Their Step-by-Step Solutions • 137
2z 1 1 4u 3 1 dz du 2 2 3 u2 1 3 z 1 1 2 2z 1 1 4u 3 1 4u 3 4 u dz du. Expand the new integral, as du du 2 2 2 2 3 3 3 u 1 1 u 1 u 3 z 1 12 4 u 31 4 u 3 1 du du du. For the former integral, we 3 3 3 u2 1 u2 1 u2 1 u 4 4 2 have du u 1 . For the latter integral, let 2 3 3 u 1 terms
of
the
variable
u,
as
u cosh y du sinh ydy and write the integral in terms of the variable y, as
sinh y
osh y 1 2
dy
sinh y 3 1 3 3 3 3 y cosh du dy dy 2 2 3 3 3 3 3 u 1 cosh y 1
3 3 3 cosh 1 u. Collecting all related terms and write them in dy y 3 3 3 3 4 2 4 terms of the original variable x, gives u 1 cosh 1 u 3 3 3
3 4 u2 1 cosh 1 u 3 3
2
3 z 1 3 z 1 4 3 cosh 1 1 2 3 2 3
x 3 ex 1 4 3 e 1 3 1 1 . cosh 2 3 2 3
3 ex 1 2
2
2
This
expression
simplifies
to
3 ex 1 1 2 . 3 e2 x 6 e x 1 cosh 1 2 3 3
100_Integrals.010_3pp.indd 137
2
3 z 1 2 3 1 cosh 1 3
27-07-2023 16:40:40
138 • 100 Integrals
INTEGRAL 94 Problem: 2
x4 1 x6 dx Solution: 1 1 3 x3 tan x 6 1 x6
constant
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let x3 z 3 x2 dx dz and write the integral in terms of the 2
variable z, as
2
2
x4 x 4 dz 1 z 1 z2 dx dz dz 1 x6 1 z2 3 x2 3 1 z2 3 1 z2 2
2
1 z 1 z2 du dz. Now let z tan u dz and write the new dz 3 1 z2 3 1 z2 2 cos2 u tan 2 u 1 1 du sin 2 udu integral in terms of the variable u, as 2 2 2 3 cos u 1 tan u 3 tan 2 u
u 1 tan 2 u
2
du
1 1 1 1 cos 2 u 2 sin 2 udu. Butsin 2 u . Therefore, we have sin udu 1 cos 2 u du 3 6 3 2
1 1 u 1 sin 2 udu 1 cos 2 u du sin 2 u. Therefore, the answer in 6 12 3 6 u 1 tan 1 z 1 t terms of the original variable x reads sin 2 u sin 2 tan 1 z 6 12 6 12 1 3 tan 1 z 1 1 1 tan x 2 x3 sin 2 u sin 2 tan 1 z sin 2 tan 1 x3 . But sin 2 tan 1 x3 12 6 12 6 12 1 x6 3 2x sin 2 tan 1 x3 , using tan 1 x3 , or tan x3, and calculating sin 2α. The 1 x6 tan 1 x3 x3 answer simplifies to . 6 6 1 x 6
100_Integrals.010_3pp.indd 138
27-07-2023 16:42:51
List of Selected Integrals with Their Step-by-Step Solutions • 139
INTEGRAL 95 Problem:
x3 e x
2
1 x
2 2
dx
Solution: 2
ex constant 2 1 x 2 Techniques used: Change of variables, Integration by parts Step-by-step solution: Let x2 z 2 xdx dz and write the integral in terms of 2 1 x3 e x ze z dz. Now, using the integravariable z, as dx 2 2 1 z 2 1 x 2 z dz 1 1 z 1 1 e 1 z z ze ze dz tion by parts technique we get 2 f 1 z 2 1 z 2 1 z 2 dg
z dz 1 ze z 1 z 1 z 1 1 z 1 1 e 1 z ze dz e e . This expression in 2 1 z 2 1 z 2 2 1 z 2 1 z 2 z terms of the original variable x gives the answer as dg 2 ex 1 z 1 e . 2 1 z 2 1 x 2
100_Integrals.010_3pp.indd 139
27-07-2023 16:43:29
140 • 100 Integrals
INTEGRAL 96 Problem:
1
1 x
dx
Solution: 4 4 x3 2 x 4 4 x 4 ln 1 4 x constant 3
Techniques used: Change of variables, Integration by parts Step-by-step solution: x z dx 2 zdz and write the integral in terms of the var1 z iable z, as dx 2 dz. Now, let 1 z u dz 2 u 1 du 1 z x 1 Let
1 z u dz 2 u 1 du and the new integral in terms of the variable u reads u 1 3 z 2 dz 4 nomial, du. After expanding the poly u 1 z u 1 3 u3 3 u2 3 u 1 3 du 4 we have u 1 u3 3 u2 3 u 1. Therefore, 4 u u 3 3 2 u 1 1 u 3u 3u 1 4 du 4 u2 du 12 u du 12 du 4 du. du 4 u u u 4 3 2 Performing the new integrals, gives u 6 u 12 u 4 ln u. Write 3 this expression in terms of the original variable x gives the answer as 3 2 4 4 3 4 u 6 u2 12 u 4 ln u 1 z 6 1 z 12 1 z 4 ln 1 z 1 3 3 3 3 2 2 4 z 12 1 z 4 ln 1 z 1 x 6 1 x 12 1 x 4 ln 1 x 3 2 4 14 x 12 1 x 4 ln 1 x . This expression simplifies to 4 x3 2 x 4 4 x 4 ln 1 4 x 3 3 14 4 3 x 2 x 4 4 x 4 ln 1 4 x . 3
100_Integrals.010_3pp.indd 140
27-07-2023 16:45:21
List of Selected Integrals with Their Step-by-Step Solutions • 141
INTEGRAL 97 Problem:
sin x 1
2
dx
Solution: x sin 1 x 2 1 x2 sin 1 x 2 x constant 2
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution: Let sin 1 x z sin z x and dx = cos z dz. Write the integral in terms of the variable z, as
sin x 1
2
dx z2 cos z dz.
Using the integration by parts technique, we get 2 2 z2 cos z dz z sin z 2 z sin z dz z sin z 2 z cos z 2 cos z dz . f dg sin z
Writing the answer in terms of the original variable x, gives 2 z2 sin z 2 z cos z 2 sin z x sin 1 x 2 1 x2 sin 1 x 2 x .
100_Integrals.010_3pp.indd 141
27-07-2023 16:46:42
ln x z2
142 • 100 Integrals
INTEGRAL 98 Problem:
e 1 ln x x xx
2x
dx
Solution: e x x x 1 constant x
Techniques used: Change of variables, Integration by parts Step-by-step solution: Let x x = z . Taking logarithm of both sides gives ln x x = ln z, or dz x ln x = ln z and after differentiating we have (1 ln x)dx . z dz Therefore, dx x . Now, write the integral in terms of x 1 ln x x dz the variable z, as e x 1 ln x x2 x dx e z 1 ln x z2 ze z dz. z 1 ln x
dz ze z dz. Using the integration by parts technique, the latter integral z 1 ln x reads ze z dz ze z e z. This expression in terms of the original variable x gives the answer as ze z e z e x x x 1 . x
100_Integrals.010_3pp.indd 142
27-07-2023 16:48:04
List of Selected Integrals with Their Step-by-Step Solutions • 143
INTEGRAL 99 Problem:
x
Solution:
ln x
dx
x2 ln x constant 2 ln
Techniques used: Change of variables, Integration by parts, Logarithmic identities Step-by-step solution: Let ln x z dx e z dz, and write the integral in terms of the variable z, as xln x dx e2 z z dz. Using the integration by parts, gives
2z z e dz dg
f
e2 z z 1 2 z d z . e dz For calculating 2 2 dz
d z π , let z u and take the logarithm of both sides. Therefore, dz ln z z ln ln u. After differentiating both sides, we d du d get z ln . Or du u ln z ln . Note that du z. dz u dz 1 2z d z 1 Back substituting into the latter integral gives e dz e2 z z ln 2 2 dz 1 2z d z 1 2z z ln 2 z z e dz e ln dz e dz. Now, plugin back into the for2 2 2 dz e2 z z ln 2 z z mer expression, gives e2 z z dz e dz. Rearranging 2 2 ln 2 z z e2 z z e2 z z 2z z the terms, gives 1 e dz . Or e dz . 2 2 2 ln Write this expression in terms of the original variable x, to get the e2 z z e2 ln x ln x x2 ln x answer as . Note that we used the log2 ln 2 ln 2 ln arithmic identity, e2 ln x = x2.
100_Integrals.010_3pp.indd 143
27-07-2023 16:50:05
144 • 100 Integrals
INTEGRAL 100 Problem:
ln sin x
1 sin x dx Solution: 2
ln(sin x) x 2 ln cos x constant 1 cot x / 2 2
Techniques used: Change of variables, Integration by parts, Trigonometric identities Step-by-step solution:
x x Write the sine function as half-angle, using the identity sin x = 2 sin cos x x ln 2 sin 2 cos ln sin x x x 2 2 d dx sin x = 2 sin cos , and expand the integrand to get 1 sin x 1 sin x 2 2 x x ln 2 sin cos ln cos x / 2 ln sin x / 2 ln sin x 1 2 2 dx ln 2 dx dx dx dx 1 sin x 1 sin x 1 sin x 1 sin x 1 sin x ln sin x / 2 ln cos x / 2 dx. Now, we have three new integrals to calculate. dx 1 sin x 1 sin x 1 dx, write it in terms of half-angle using the identity 1 sin x 2 tan x / 2 sin x . Therefore, after some manipulations we get 1 tan 2 x / 2 For
1 tan 2 x / 2 2 1 x 2 1 sin x dx 1 tan x / 2 2 dx. Let tan 2 z dx 2 cos x / 2 dz 1 z2 dz
2 x 2 dz, and write the integral in terms of the variable z z dx 2 cos x / 2 dz 2 1 z2
100_Integrals.010_3pp.indd 144
27-07-2023 16:51:09
List of Selected Integrals with Their Step-by-Step Solutions • 145
. Thus
1 1 2 . Therefore, the answer in dx 2 dz 2 1 sin x 1 z 1 z
terms of variable x reads ln 2
For
1 2 ln 2 ln 1 / 4 dx . x x 1 sin x 1 tan 1 tan 2 2
ln sin x / 2
dx, using integration by parts we get 1 sin x dx dx dx sin x / 2 ln sin x / 2 ln sin x / 2 dx ln 1 sin x 1 sin x 1 sin x f
dg
x d ln sin x dx dx 2 cos x / 2 and we ln sin x / 2 dx. But ln sin 2 sin x / 2 dx sin x 1 sin x 2 dx 2 have . Therefore, 2 ln sin x / 2 ln sin x / 2 x 1 sin x 1 sin x dx 1 tan x / 2 1 tan 2 2 ln sin x / 2 ln sin x / 2 cos x / 2 1 sin x dx 1 tan x / 2 sin x / 2 1 tan x / 2 dx. Write the later
z
terms of variable z (recall tan x / 2 z ) cos x / 2 1 as dz. For the dx 2 sin x / 2 1 tan x / 2 z 1 z 1 z2 integral
in
latter
integral, use partial fraction technique to get 1 dz dz dz z 2 dz 2 dz. The 2 2 1 1 1 z z z z2 z 1 z 1 z first two new integrals from the latter expression read dz dz 2 2 ln z 2 ln tan x / 2 , and ln 1 z ln 1 tan x / 2 z 1 z ln 1 z ln 1 tan x / 2 . The remaining integrals can be worked out as
z 1 2z 1 dz dz dz tan 1 z tan 1 tan x / 2 , and 2 2 2 1 z 2 1 z 2 1 z 1 2z 1 z 1 dz ln 1 z2 ln 1 tan 2 x / 2 . dz 1 z2 2 1 z2 2 2
100_Integrals.010_3pp.indd 145
27-07-2023 16:53:20
146 • 100 Integrals
ln cos x / 2 dx, using integration by parts we get 1 sin x dx dx dx ln cos x / 2 ln cos x / 2 ln cos x / 2 dx 1 sin x 1 sin x 1 sin x f For
dg
dx d ln cos x / 2 sin x / 2 ln cos x / 2 dx. But ln cos x / 2 dx 2 cos x / 2 nx 1 sin x ln cos x / 2 2 ln cos x / 2 dx 2 dx and we have . Therefore, x 1 sin x 1 sin x 1 tan x / 2 1 tan 2 2 ln cos x / 2 ln cos x / 2 sin x / 2 dx . Write the latter dx 1 tan x / 2 1 sin x cos x / 2 1 tan x / 2 integral in terms of variable z (recall tan x / 2 z ) as
sin x / 2 z dx 2 dz. For the cos x / 2 1 tan x / 2 1 z 1 z2
latter integral, we use partial fraction technique to get z dz z 1 2 dz. The first two dz dz 2 2 1 z 1 z 1 z2 1 z 1 z dz ln 1 z ln 1 ta new integrals from the latter expression read 1 z dz z ln 1 z ln 1 tan x / 2 , and dz 1 / 2 ln 1 z2 1 / 2 ln 1 tan 2 1 z2 1 z
1 / 2 ln 1 z2 1 / 2 ln 1 tan 2 x / 2 . The remaining integral can be worked out as
dz tan 1 z tan 1 tan x / 2 x / 2 . 2 1 z
Collection all related underlined answers, we get the soluln(sin x) x 2 ln cos x tion to the integral, after some simplifications, as 2 1 cot x / 2 2 ln(sin x) x 2 2 ln cos x. 1 cot x / 2 2
100_Integrals.010_3pp.indd 146
27-07-2023 16:55:16
PART
2
Examples Applied in Engineering In this part of the book, we present some integrals along with their solutions related to engineering topics. The list is not exclusive but meant to help readers with their learning from Part 1 with some application examples in technical computations. The examples will focus on area properties of sections, structural beams, and a couple of probability distributions commonly used in engineering fields.
100_Integrals.011_3pp.indd 147
27-07-2023 16:36:29
148 • 100 Integrals
1 SEMI-CIRCLE SHAPES We consider a half-circle shape with radius R as shown in Figure 1. Its area, centroid, and moment of inertia is calculated using related integrals and the worked-out solutions. A half-circle shape can be the cross section of a beam, rod, or shape of hydraulic gate, for example. y
dθ
dr
r
dA
C θ
y
x 0
R
Figure 1 A Semi-circle shape and differential area element
πR 2 , from geometry. We calculate the area using 2 integration of area differential element dA rdrd, where r is the radial disctance from the center and θ is polar angle w.r.t x-axis. R R R2 R2 R 2 Therefore, A rdrd drdr d d . 2 2 0 2 00 0 0 0 Area is equal to
Centroid is the first moment of area divided by its total area and
is located at 0, y when symmetry about y-axis exists as shown in ydA ydA , where y r sin . Note that y is Figure 1. Or y dA A
R
measured from the centroid of the differential element. But ydA r 2 sin drd si R R R3 R3 R03 0 2R3 0 2 2 ydA r sin drd sin d r dr sin d cos 1 1 0 0 0 0 0 0 3 3 3 3
d
2R3 R3 R3 ydA 2R3 2 4R . cos 0 1 1 . Therefore, y 3 3 3 R 2 / 2 3 R 2 3
100_Integrals.011_3pp.indd 148
27-07-2023 16:38:41
Examples Applied in Engineering • 149
Moment of inertia is the second moment of area with reference to a desired axis. Considering x-axis as reference, R R R 4 1 cos 2 2 3 2 2 3 I x y dA r sin drd sin dr dr d. 4 0 2 00 0 0 Note that y is measured from the centroid of the differential R 4 1 cos 2 R 4 sin 2 element. Performing the integrations gives d 4 0 2 8 2
R 4 1 cos 2 R 4 sin 2 R 4 R 4 . Note that I I . We can calcud y x 4 0 2 8 2 0 8 8 R
late Iy x dA r 3 cos2 drd, directly as well. 2
00
Using the parallel axis theorem, we can calculate the moment of inertia with respect to the axis at the centroid, Ic. Or I x Ic Ad 2 , where d is the normal distance between x-axis and that parallel passing through the point C at the centroid, or d = y. Therefore 2 R 4 R 2 4 R 9 2 64 4 Ic I x Ad 2 R . 8 2 3 72 Polar moment of inertia is the second moment of area with reference to a desired point. Considering the origin as the reference, R R R4 R 4 Jo r 2 dA r 3 drd dr 3 dr d . Note that 4 0 4 00 0 0 Jo I x Iy. Using the parallel axis theorem, we can calculate the polar moment of inertia with respect to the centroid, Jc. Or Jo Jc Ad 2, where d is the distance between origin and the centroid. Therefore, 2 R 4 R 2 4 R 9 2 32 4 Jc Jo Ad 2 R . 4 2 3 36 Table 2 lists the results for semi-circle shape. TABLE 2 Results for Semi-circle
Shape Semi-circle
100_Integrals.011_3pp.indd 149
Area Centroid πR 2 2
4R 3π
Ix
Ic
Jo
2 πR 4 9 64 4 πR 4 R 8 72 4
Jc 9 2 32 4 R 36
27-07-2023 16:42:43
150 • 100 Integrals
2 CIRCULAR SEGMENT SHAPES We consider a segmental shape of a half circle with radius R as shown in Figure 2, shaded area. Its area, centroid, and moment of inertia is calculated using related integrals and the worked-out solutions. A circular segmental shape can be the cross section of a beam, rod, or shape of hydraulic gate, for example. y
C a b
R
a
θ2
b
y
θ2 β
x
Figure 2 A Circular segment area shape
Assuming total angle θ, from geometry we have a R sin , 2 b R cos , and . The equation of a circle reads x2 y2 R 2. 2 2 x2 Therefore, for the sector we can write y R 1 2 . R
100_Integrals.012.indd 150
28-07-2023 11:22:16
Examples Applied in Engineering • 151
Area: We calculate the area using the integration of area differential y
a
b
a
element dA = dxdy. Therefore, A dxdy dy dx y
a
b
a
dy dy dx a
a
a
a
a
0 2
0
a
a
0
0
y b dx 2 y b dx 2 ydx 2 bdx 2 ydx 2 ab. a
a
a
a
y b dx 2 y b d
a
a
But 2 ydx 2 R 0
0
0
x2 1 2 dx R
x 2 ydx 2 R 1 2 dx . Let x cos dx R sin d. Therefore, the R R 0 0 limits of the integral reads x 0, a R sin , 2 2 2 and write the latter integral in terms of the variable β to get a
2
2
sin 2 2 2R sin d R 1 cos 2 d R 2 0 2 2 2 sin 2 2 2 sin s in 2 sin 2 2 2 2 1 cos 2 d R 2 . After applying the limits, we get R 2 R 2 2 2 2 sin sin sin R 2 sin 2 2 R2 R2 sin . Collecting all 2 2 2 2 2 2 2
2 R R2 sin 2 ab sin 2R 2 sin cos related answers, we get A 2 2 2 2 2 2 2 R sin R R 2 ab sin 2R 2 sin cos . Hence, A 2 sin . 2 2 2 2
x 1 2 dx 2 R 2 R
2
2
2
R 2 sin
Centroid is the first moment of area divided by its total area and is located at C 0, y when symmetry about y-axis exists as ydA ydA , where y is measured shown in Figure 2. Or y dA A from the x-axis to the centroid of the differential element. But y a a a 1 2 2 ydA ydy dx y b dx y2 dx ab2 . b a 2 a 0
100_Integrals.012_3pp.indd 151
27-07-2023 16:46:20
152 • 100 Integrals
a
a 2 x3 a3 2 2 2 2 y dx R x dx R x aR 0 0 3 0 3 3 3 a R sin 3 3 a 3 dx R2 x x3 aR2 a3 . Therefore, y2 dx ab2 aR2 a3 ab2 R3 sin 2 3 2 R3 sin 2 0 0 2 3 3 3 3 4R s R sin R sin 3 a 2 3 3 . Now, we have y 3 2 3 2 2 3 2 ab R sin R sin cos R sin R2 3 3 2 2 3 3 2 2 sin 2 1 si n 2
x2 2 R
a
The latter integral reads
2
2 3 3 4 R sin 3 R sin 2 . 2 y 32 R 3 sin sin 2 Moment of inertia is the second moment of area with reference to a desired axis. Considering x-axis as reference, y a a a 2 2 2 2 I x y dA y2 dy dx y3 b3 dx y3 dx ab3 . But 30 30 3 b a 4 2 2 R ab3 R 4 sin cos3 sin 1 sin 2 . Now, after sub2 3 3 2 2 3 x2 1 0 R2 After rewriting the latter integral in terms of the a
2 2R3 stituting for y, the latter integral reads y3 dx 30 3
a
3
2 4 ble β(recall x R cos), we get 2 R 1 x dx 2 R 3 0 3 R 2 3 a
3
2R 4 dx 3
3
dx. varia-
2
1 cos 2
2
3
sin d
2R 4 3
trigonometric relation, sin 4 R4 12
2
2
100_Integrals.012_3pp.indd 152
2
sin 4 d.
But
using
2
1 cos 2
3
sin
2
the
2
1 3 4 cos 2 cos 4 we get 8
R4 3 4 cos 2 cos 4 d 12
1 R4 3 2 sin sin 3 2 2 4 2 sin 4 12 2 2
27-07-2023 16:47:56
Examples Applied in Engineering • 153
1 1 1 1 R4 3 1 2
2 sin 2 sin 4 2 sin sin 2 . But we have sin 2 sin cos sin 1 2 sin 4 2 2 4 12 2 4 2
1 1 1 1 1 R4 3 sin 2 sin cos sin 1 2 sin 2 sin sin sin 2 . Therefore, 2 sin sin 2 2 2 2 12 2 4 4 2 2 4 3 5 R4 3 1 R 2 2 sin sin 2 sin sin sin . Collecting the 12 2 2 2 4 12 2 R4 3 R4 5 2 results, we get I x sin 1 sin 2 sin sin sin 12 2 2 2 3 2 4 4 R R 2 sin 2 sin 1 sin 2 . After simplification, we get I x sin 2 sin sin . 2 3 2 8 2 y
a
b
a
a
Similarly, considering y-axis as reference, Iy x2 dA dy x2 dx 2 y b x2 dx y
y
a
a
a
a
a
x2 dA dy x2 dx 2 y b x2 dx 2 yx2 dx 2 bx2 dx. b
a
a
0
0
2 bx2 dx
But
0
0
0
2a b 2 R 4 sin 3 cos 3 3 2 2 3
2 a3 b R4 2 2 bx dx R 4 sin 3 cos sin sin 2 . Now, after substituting for y, 3 3 2 2 3 2 0 2
a
a
x2 dx. After rewritR2 0 0 ing the latter integral in terms of variable β (recall x R cos), the latter integral reads 2 yx2 dx 2 R x2 1
a
we get 2 R x2 1 0
2
x dx 2 R 4 R2
2
sin 2 cos2 d. But using
2
the trigonometric relation, sin 2 cos2 2 R
4
2
2
R4 cos 4 d 4
R4 sin 2 cos2 d 4
2
2
1 1 cos 4 we get 8
R4 1 cos 4 d 4
1 R4 1 2
sin 4 sin 2 . 4 2 4 4 2
But
we
1 R4 1 2 sin 4 4 2 4 4
have
2
1 1 1 sin 2 sin cos 4 2 2
1 1 1 1 sin 2 sin cos sin 1 2 sin 2 sin sin sin 2 . Therefore, 2 2 2 4 2 2
100_Integrals.012_3pp.indd 153
27-07-2023 16:49:33
154 • 100 Integrals
4 R4 1 R 1 2 sin 2 sin sin sin . Collecting the 4 2 4 2 4 2 2 R4 2 results, after some simplifications, we get Iy 3 3 sin 2 sin sin 24 R4 2 3 3 sin 2 sin sin . 24 2
2
Using the parallel axis theorem, we can calculate the moment of inertia with respect to the centroid, Ic. Or I x Ic Ad 2 , where d 2 is the distance between x-axis and the centroid, or y. Therefore 3 R 4 sin R4 R2 2 2 Ic I x Ad 2 sin sin 2 sin sin 8 2 2 3 sin 2 3 4 R sin 4 R2 2 . Or, after simplification, I R sin 2 sin sin 2 64 2 sin c 2 2 8 2 9 3 sin sin 6 R4 64 2 Ic sin 2 sin sin 2 . 8 2 9 sin Polar moment of inertia is the second moment of area with reference to a desired point. Considering the origin as the reference, Jo r 2 dA x2 y2 dA I x Iy.
Therefore, using previously obtained results, we have R4 R4 2 2 Jo sin 2 sin sin 3 3 sin 2 sin sin . 8 2 24 2 R4 2 2 After some simplifications, we have Jo sin sin sin 4 3
R4 2 2 sin sin sin 4 3
2
. 2
100_Integrals.012_3pp.indd 154
27-07-2023 16:50:52
Examples Applied in Engineering • 155
Using the parallel axis theorem, we can calculate the polar moment of inertia with respect to the centroid, Jc. Or Jo Jc Ad 2, where 2 d is the distance between origin and the centroid, or y. Therefore 3 R sin 4 R4 2 R2 2 2 Jc Jo Ad 2 sin sin sin sin 4 3 2 2 3 sin 2 3 4 R sin R2 2 . sin 2 sin 2 2 3 sin Table 3 lists some of the results for circular segment shape. TABLE 3 Results for circular segment
Shape
Area
Centroid
Ix
Jo
4 4 R sin 3 R 4 Circular R 2 2 2 R 2 2 sin 2 sin sin sin sin sin segment 2 sin 8 2 4 3 2 3 sin
100_Integrals.012_3pp.indd 155
27-07-2023 16:52:15
156 • 100 Integrals
3 SEMI-ELLIPSE SHAPES We consider a half-ellipse shape with major and minor radii a and b, respectively. Its area, centroid, and moment of inertia is calculated using integrals. A half-ellipse shape can be the cross-section shape of beams, rods, or hydraulic gates for example. y
dA dy
b
x x
a Figure 3 A Semi ellipse area shape and differential element
πab , from geometry. We calculate the area using 2 integration of the area differential element dA = 2 xdy as shown x2 y2 in Figure 3. Using the equation of ellipse, 2 2 1 we have a b Area is equal to
b
A 2 xdy 2 a 2
0
y y2 1 2 dy. Let sin dy b cos d and b b 2
2
0
0
A 2 ab 1 sin 2 cos d 2 ab cos2 d ab 1 cos 2 d . 0
/2
sin 2 ab Performing the integration gives ab . Note 2 0 2 that due to symmetry, area of an ellipse is πab. Centroid is the first moment of area divided by its total area and is located at
100_Integrals.012_3pp.indd 156
0, y
when symmetry about y-axis exists.
27-07-2023 16:54:04
Examples Applied in Engineering • 157
Or
ydA ydA . y dA A
y2 ydA 2 0 xydy 2 a0 y 1 b2 dy. b
But
b
Performing the integration, after writing it in terms of the variable θ, for values y 0, b 0, gives, 2
2 y2 cos3 2 2 ab2 2 a y 1 2 dy 2 ab2 sin cos2 d 2 ab2 . b 3 0 3 0 0 b
Therefore, y
2 ab2 / 3 4 b . ab / 2 3
Moment of inertia is the second moment of area with reference to a desired axis. Considering the x-axis as reference,
b
b
0
0
I x y2 dA 2 y2 xdy 2 a y2 Performing 3 2
ab 2
2 sin 2d 0
3 2
ab 4
the
2 y2 1 2 dy 2 ab3 sin 2 cos2 d. b 0
integrations
gives
ab3 2 2 ab3 sin 2 d 2 0 4
2
1 cos 4 d 0
2
ab3 sin 4 ab3 I x . Similarly, we 4 4 0 8 0 a3 b can calculate Iy x2 dA . Note that x is measured from the 8 centroid of the differential element.
1 cos 4 d
Using the parallel axis theorem, we can calculate the moment of inertia with respect to the axis at the centroid, Icx. Or I x Icx Ad 2 , where d is the normal distance between axis x and that parallel passing through the centroid, or y. Therefore 2 ab3 ab 4 b 9 2 64 3 2 Icx I x Ad ab . Similarly, 8 2 3 72 2 a3 b ab 4 b 9 2 64 3 2 Icy Iy Ad a b. 8 2 3 72
100_Integrals.012_3pp.indd 157
27-07-2023 16:56:21
158 • 100 Integrals
Polar moment of inertia is the second moment of area with reference to a desired point. Considering the origin as the reference, ab3 a3 b ab 2 Jo r 2 dA x2 y2 dA I x Iy a b2 . 8 8 8 we can calculate the moment of inertia with respect to the cen 9 2 64 3 3 troid, Jc. Or Jc Jcx Jcy.Therefore, Jo a b ab . 72 Table 4 lists the results for semi-ellipse shape. Table 4 Results for semi-ellipse
Shape Area Centroid Semiellipse
100_Integrals.012_3pp.indd 158
πab 2
4b 3π
Ix
Icx
Jo
Jc
2 9 2 64 3 πab3 9 64 3 ab 2 3 a b2 ab a b ab 8 72 8 72
27-07-2023 16:58:09
Examples Applied in Engineering • 159
4 TWO-DEGREE POLYNOMIAL SHAPE-QUADRATIC x2 Consider a quadratic polynomial shape of degree two, y b 1 2 a which is bounded between coordinate axes in the first quadrant (i.e., x > 0 and y > 0) as shown in Figure 4. y 3.0 2.5
b=3
2.0
dx
1.5 1.0 0.5
dy dA 0.5
1.0
1.5
2.0
x
a=2 Figure 4 A quadratic area shape with a=2 and b=3.
Area, we calculate the area using integration of the differential area element dA = dxdy. Using the equation of polynomial, we y a a a x2 have A dA dydx ydx b 1 2 dx. Performing the a 0 0 0 0 a
x3 2 ab . Simply, subtracting this integration gives A b x 2 3a 0 3 area from that of the enclosing rectangle, ab we get the value of ab the area over the polynomial, or . 3
Centroid is the first moment of area divided by its total 2 y a a a ydA ydA . But 1 2 b2 x2 area. Or yc ydA 0 ydy0 dx 2 0 y dx 2 0 1 a2 dx dA A
100_Integrals.012_3pp.indd 159
27-07-2023 16:59:28
160 • 100 Integrals
a
ydx 0
2
a a a b2 x2 b2 x4 1 2 x2 y dx 1 dx 1 2 dx. Performing the integration, a2 2 0 a4 a2 2 0 2 0 a 4 ab2 b2 x 5 2 x3 4 ab2 / 15 2 b gives, x 4 2 . Therefore, = yc = . 2 5a 3a 0 15 2 ab / 3 5
Similarly, we can calculate the x-coordinate of the centroid, y a a a a xdA xdA x2 x3 xc . But xdA dyxdx yxdx bx 1 2 dx b x 2 dx a a 0 0 0 0 0 dA A a
a a x2 x4 a2 b x2 x3 bx 1 2 dx b x 2 dx. Performing the integration, gives, b 2 4 a a 2 4a 0 0 0 a a2 b / 4 3 a x2 x4 a2 b. Therefore, = xc = . b 2 2 ab / 3 8 4 2 4a 0
Moment of inertia is the second moment of area with reference to a desired axis. Considering x-axis as reference, y
3
a a a b3 x2 1 b3 x6 3 x 4 3 I x y dA y dxdy y dydx y3 dx 1 2 dx 1 6 4 30 3 0 a 3 0 a a a 0 0 3 a a x2 b3 x6 3 x 4 3 x2 dx 1 2 dx. Performing the integrations gives 1 0 a2 a6 a 4 3 0 a a 3 7 3 x 5 x3 16 ab3 b x Ix x 6 4 2 . Similarly, we can calcu3 7a 5a 105 a 0 2
2
2
a
y
a a a x4 late Iy x dA x dxdy dyx2 dx yx2 dx b x2 2 dx. a 0 0 0 0 a 3 5 3 x x 2a b Performing the integrations gives Iy b 2 . a 3 5 15 0 2
2
Using the parallel axis theorem, we can calculate the moment of inertia with respect to the axis at the centroid, Icx. Or I x Icx Ad 2 , where d is the normal distance between axis x and that parallel passing through the centroid, or yc.
100_Integrals.012_3pp.indd 160
27-07-2023 17:01:45
Examples Applied in Engineering • 161
2
16 ab3 2 ab 2 b 8 ab3 Therefore Icx I x Ayc . Similarly, 105 3 5 175 2 2 a3 b 2 ab 3 a 19 3 2 Icy Iy Axc a b. 15 3 8 480 2
Polar moment of inertia is the second moment of area with reference to a desired point. Considering the origin, 16 ab3 2 a3 b 2 ab Jo r 2 dA x2 y2 dA I x Iy 7 a2 8 b2 . 105 15 105 we can calculate the polar moment of inertia with respect to the 8 ab3 19 a3 b ab centroid, Jc. Or Jc 665a2 768 b2 . 175 480 16800 Table 5 lists the results for a quadratic/parabolic polynomial shape. TABLE 5 Results for a parabolic shape
Shape
Area
Centroid, yc
Semiellipse
2 ab 3
2b 5
100_Integrals.012_3pp.indd 161
Ix
Icx
Jo
Jc
ab 16 ab3 8 ab3 2 ab 7 a2 8 b2 a 16800 665a2 768 b2 105 175 105
27-07-2023 17:03:39
162 • 100 Integrals
5 THREE-DEGREE POLYNOMIAL SHAPE-CUBIC x3 Consider a cubic polynomial shape of degree three, y b 1 3 a which is bounded between coordinate axes in the first quadrant (i.e., x > 0 and y > 0) as shown in Figure 5 y 4
3
2
1
0.5
1.0
1.5
2.0
x
Figure 5 A cubic area shape with a=2 and b=4
Area, we calculate the area using integration of the differential area element dA = dxdy. Using the equation of polynomial, we y a a a x3 have A dxdy dydx ydx b 1 3 dx . Performing the a 0 0 0 0 a
x4 3 ab integration gives A b x 3 . Simply, subtracting this a 4 4 0 area from that of the enclosing rectangle, ab we get the value of ab the area over the polynomial, or . 4 Centroid is the first moment of area divided by its total 2 y a a a ydA ydA . But 1 2 b2 x3 b2 area. Or yc ydA ydy dx y dx 1 dx 0 0 2 0 2 0 2 a3 dA A
100_Integrals.012_3pp.indd 162
27-07-2023 17:04:50
a
0
Examples Applied in Engineering • 163
2
a
ydydx 0
a a b2 x3 1 2 y dx 1 a3 2 0 2 0 b2 gives, 2
Similarly, centroid,
a b2 x6 x3 1 2 dx. Performing the integration, 2 0 a6 a3 a 9 ab2 x7 2 x 4 9 ab2 / 28 3 b . x Therefore, = y = . c 7 a6 4 a3 0 28 3 ab / 4 7
dx
we
can xdA
calculate the x-coordinate of the y a a a xdA x3 xc . But xdA dyxdx yxdx bx 1 3 dx a 0 0 0 0 dA A
y
a a a a x4 x3 dA dyxdx yxdx bx 1 3 dx b x 3 dx. Performing the integration, gives, a a 0 0 0 0 0 a x2 3 a2 b x5 3 a2 b / 10 2 a b 3 . Therefore, = xc = . 10 3 ab / 4 5 2 5a 0
Moment of inertia is the second moment of area with reference to a desired axis. Considering x-axis as reference, 3 y a a a a b3 x3 1 3 b3 x9 3 2 2 2 I x y dA y dxdy y dy dx y dx 1 3 dx 1 9 30 3 0 a 3 0 a a 0 0 3 a 9 6 3 3 3 a 3 3 b x 3x 3x b x dx 1 3 dx 1 9 6 3 dx. Performing the integrations gives a 3 0 a a a 3 0 a
3 x7 3 x 4 81ab3 b3 x10 Ix x 6 3 . Similarly, we can calcu9 3 10 a 7 a 4a 0 140 y a a a x5 late Iy x2 dA x2 dxdy dyx2 dx yx2 dx b x2 3 dx. a 0 0 0 0 a x3 x6 a3 b Performing the integrations gives Iy b 3 . 6 3 6a 0
Using the parallel axis theorem, we can calculate the moment of inertia with respect to the axis at the centroid, Icx. Or I x Icx Ad 2 , where d is the normal distance between axis x and that parallel passing through the centroid, or yc. Therefore 2 a3 b 3 a 81ab3 3 ab 3 b 108 3 2 Icx I x Ayc 2 ab . Similarly, I I Ax cy y c 140 4 7 245 6 4 2 3 a b 3 ab 2 a 7 3 Icy Iy Axc 2 a b. 6 4 5 150
100_Integrals.012_3pp.indd 163
27-07-2023 17:07:27
164 • 100 Integrals
Polar moment of inertia is the second moment of area with reference to a desired point. Considering the origin, 81ab3 a3 b ab Jo r 2 dA x2 y2 dA I x Iy 70 a2 243 b2 140 6 420 a3 b ab 2 2 a 243 b . 70 6 420
we can calculate the polar moment of inertia with respect to the ab 108 ab3 7 a3 b centroid, Jc Icx Icy. Or Jc 343 a2 3240 b2 3 245 150 7350 a b ab 343 a2 3240 b2 . 50 7350 Table 6 lists the results for a cubic polynomial shape. Table 6 Results for cubic polynomial shape Shape
Area
Centroid, yc
Cubic
ab 4
3b 7
100_Integrals.012_3pp.indd 164
Ix
I cx
Jo
81ab3 108 3 ab ab 70 a2 243 b2 420 140 245
Jc 7 a3 b ab 150 7350 343 a2 3240 b2
27-07-2023 17:08:47
Examples Applied in Engineering • 165
6 n-DEGREE POLYNOMIAL SHAPE-SPANDREL As shown in Figure 6, consider a polynomial of degree n with its n x vertex at the origin. The polynomial equation reads y b . The a area under the polynomial, Spandrel is of interest in engineering. A differential element dA = dxdy is used for the following calculation. y
4
3
2
1
0.5
1.0
1.5
2.0
x
Figure 6 A spandrel area shape with a=2 and b=4
Area, we calculate the area using integration of the area differential element dA = dxdy. Using the equation of polynomial, we have ay
y
n
a
b x n 1 ab x A dxdy dx dy ydx b dx n . a a n 1 0 n 1 00 0 0 0 0 Simply, subtracting this area from that of the enclosing rectangle, nab hb we get the value of the area over the polynomial, or . Note n+1 that for n = 2, previous results for a parabolic are obtained. a
a
a
Centroid is the first moment of area scaled by total area. Or ydA ydA . But ydA a yydxdy adx yydy a y2 dx. yc 0 0 0 2 00 dA A After substituting for y and performing the integration, gives,
100_Integrals.013_3pp.indd 165
27-07-2023 16:45:33
166 • 100 Integrals
y2 0 2
a b2 b2 2n dx x dx 2 a2 n 0 2 a2 n ab2 2 2 n 1 n 1 b yc . ab 4n 2 n1 a
a
x 2 n 1 ab2 . 2n 1 0 2 2 n 1
Therefore,
Similarly, we can calculate the x-coordinate of the centroid, y ay a a xdA xdA xc . But xdA xdxdy xdx dy yxdx . 00 0 0 0 dA A After substituting for y and performing the integration, a
a b n 1 b x n 2 a2 b gives, yxdx n x dx n . Therefore, a 0 a n 2 0 n 2 0 a2 b n 1 a xc n 2 . ab n2 n1 a
Moment of inertia is the second moment of area with reference to a desired axis. Considering x-axis as reference, y a a a y3 b3 x3 n b3 a3 n1 I x y2 dA dx y2 dy dx 3 n dx 3 n . 3 3 0 a 3a 3n 1 0 0 0 ab3 . Similarly, we 9n 3 y a a a x n 2 b a n 3 a3 b 2 2 2 can calculate Iy x dA x dx dy x ydx b n dx n a a n3 n3 0 0 0 0 Performing the integrations gives I x
a x n 2 b n a 0
b a n 3 a3 b dx . an n 3 n 3 Using the parallel axis theorem, we can calculate the moment of inertia with respect to the axis at the centroid, Icx. Or I x Icx Ad 2 , where d is the normal distance between axis x and that parallel passing through the centroid, or yc. Therefore 2 3 ab3 ab n 1 b 7 n2 4 n 1 2 ab . Icx I x Ayc 2 9 n 3 n 1 4 n 2 12 3 n 1 2 n 1
100_Integrals.013_3pp.indd 166
27-07-2023 16:47:53
Examples Applied in Engineering • 167
Similarly, Icy Iy Axc 2
2 3 b ab n 1 a 1 a b. 2 3 n 1 n 2 n 3 n 2
2 3 a3 b ab n 1 a 1 a b 2 n 3 n 1 n 2 n 3 n 2
Polar moment of inertia is the second moment of area with reference to a desired point. Considering the origin, ab3 b2 a3 b ab a2 Jo r 2 dA x2 y2 dA I x Iy 9n 3 n 3 2 n 3 9n 3 3 a3 b ab a2 b2 . 3 n 3 2 n 3 9n 3
We can also calculate the polar moment of inertia with respect to the centroid, Jc. Or Jc Icx Icy.Therefore 3 3 7n a2 7 n2 4 n 1 1 ab Jc a b ab 2 2 2 n 3 n 2 12 3 12 3 n 1 2 n 1 n 3 n 2 3 7 n2 4 n 1 b2 . a2 1 a b ab 2 2 2 n 3 n 2 n 3 n 2 12 3 n 1 2 n 1 Table 7 lists the results for a parabolic shape. TABLE 7 Results for Spandrel Shape
Spandrel, order n
Area
ab n+1
Centroid, yc
n 1 b 4n 2
Ix b3 3 a3 n a3 n1 3n 1
Icx
Jo
Jc
a2 a2 2 7 n2 4 n 1 n 3 n 2 2 ab n 3 ab 12 3 n 1 2 n 1 2 7 n2 4 n 1 b2 b2 ab3 12 3 n 1 2 n 1 2 9n 3
These results are comparable to those obtained in the previous sections for two- and three-degree polynomials.
100_Integrals.013_3pp.indd 167
27-07-2023 16:49:31
168 • 100 Integrals
7 SINUSOIDAL SHAPES x Consider a sinusoidal shape, y b sin which is bounded a between coordinate axes in the first quadrant (i.e., x > 0 and y > 0) as shown in Figure 7, for example for a = 2 and b = 3. y
3.0 2.5 2.0 1.5 dx
1.0
dy dA
0.5
0.5
1.0
1.5
2.0
x
x Figure 7 A sinusoidal area shape, 3 sin . 2
Area, we calculate the area using integration of the differential area element dA = dxdy. Using the equation of the profile, we y a a a x have A dxdy dydx ydx b sin dx. Performing the a 0 0 0 0 a
x 2 ab a integration gives A b cos . Simply, subtracting this a 0 area from that of the enclosing rectangle, ab we get the value of the 2 area over the sinusoidal curve, or ab 1 0.363 ab.
100_Integrals.013_3pp.indd 168
27-07-2023 16:50:46
Examples Applied in Engineering • 169
Centroid is the first moment of area scaled by total area. ydA ydA . The y-coordinate of the centroid is yc dA A y
y
a a a y2 But ydA ydxdy dx ydy dx. After substituting 2 00 0 0 0 for y and performing the integration, we get a a 2 2 a 2 2 a y b 2 x 2 x b b a ab2 2 x d x x sin 1 dx sin dx cos 0 2 2 0 4 0 4 2 4 a a 0 a 2 ab a 2 2 b a 2 x ab . Therefore, y 4 b. 2 x sin c dx x 2 ab 8 4 2 a 0 a 4
Similarly, we can calculate the x-coordinate of the centroid, y ay a a xdA xdA xc . But xdA xdxdy xdx dy yxdx . After 00 0 0 0 dA A
substituting for y and performing the integration, we get a a a a ab x xx a2 b x ab yxdx b x sin dx x cos cos . dx 0 0 a a 0 0 a 0 2 a b a Therefore, xc . This result confirms that from the shape 2 ab 2 a symmetry (i.e., the shape is symmetric about the line at = ). 2 Moment of inertia is the second moment of area with reference to a desired axis. Considering x-axis as reference, y a a a y3 b3 x 2 I x y dA dx y2 dy dx sin 3 dx. 3 3 0 a 0 0 0 a
Rewrite the latter integral as
100_Integrals.013_3pp.indd 169
a
x 2 x x b3 b3 x sin sin dx sin 1 cos2 3 0 a 3 0 a a a
27-07-2023 16:52:43
170 • 100 Integrals
a
x b3 x 2 x dx sin 1 cos dx and performing the integration, we get 3 0 a a a a
a
a
2 ab3 2 ab3 2 ab3 b3 a x b3 x a 3 x 2 x cos sin cos dx cos 3 3 3 9 a 0 3 0 a 3 a 0 a a a 3 3 3 3 3 a 3 3 b a x b x 4 ab 2 ab 2 ab 2 ab x a x 0.1415 a3 b cos sin cos2 dx cos3 3 3 3 3 3 9 9 a 0 3 0 a a a 0 b3 3
a
2 ab3 2 ab3 4 ab3 x 0.1415 a3 b. 3 9 9 a 0
y
y
a
a
a
x Similarly, we can calculate Iy x2 dA dyx2 dx yx2 dx bx2 sin dx a 0 0 0 0 a
a
a
x 2 2 2 0 dy0 x dx 0 yx dx b0 x sin a dx. Performing the integration gives a a a a3 b 2 ab x 2 ab x x ab 2 Iy x cos cos dx x cos dx. x a 0 0 a 0 a a
The
latter
integral
reads
x cos 0
a
a a2 x x a x a dx x sin sin dx 2 cos a a 0 0 a 0
2 3 a a a2 a x a3 b 2 ab 2 a2 4 a b x x 2 a2 a . 2 0.189 x sin sin dx 2 cos 2 . Therefore, Iy 3 a 0 0 a 0 a 2 3 0 a3 b 2 ab 2 a2 4 a b 0.1893 a3 b. . 2 3 a
Using the parallel axis theorem, we can calculate the moment of inertia with respect to the axis at the centroid parallel to the x-axis, Icx. Or I x Icx Ad 2 , where d is the normal distance between axis x and that parallel passing through the centroid, or yc. Therefore 2 3 2 4 ab3 2 ab b 128 9 ab Icx I x Ayc 2 . Similarly, 9 8 288 2 4 a3 b 2 ab a 2 2 8 a3 b 2 Icy Iy Axc 0.03 a3 b. 3 3 2 2 Polar moment of inertia is the second moment of area with reference to a desired point. Considering the origin,
100_Integrals.013_3pp.indd 170
27-07-2023 16:54:39
Examples Applied in Engineering • 171
Jo r 2 dA x2 y2 dA I x Iy
2 3 2 3 4 ab3 4 a b 13 36 a b 0.3308 a3 b. 9 3 9 3
2 2 9 4 1152 a3 b 288
3
2 3 2 3 4 ab3 4 a b 13 36 a b 0.330 9 3 9 3
We can also calculate the polar moment of inertia with respect to the centroid, Jc. Or Jc Icx Icy.Therefore 128 9 2 ab3 2 8 a3 b 272 2 9 4 1152 a3 b Jc 0.0734 a3 b 3 3 288 2 288 0.0734 a3 b. Table 8 lists the results for the sinusoidal shape area: TABLE 8 Some results for sinusoidal shape
Shape sinusoidal
100_Integrals.013_3pp.indd 171
Area
Centroid, yc
2ab π
πb 8
Ix 4 ab3 9π
Icx
Jo
128 9 ab 13 2
288
3
Jc 2
36 a3 b 272 2 9 4 1152 a3 b 9 3
288 3
27-07-2023 16:56:29
172 • 100 Integrals
8 TRIANGULAR SHAPES We consider an equilateral triangle shape with side a. Its area, centroid, and moment of inertia are calculated using related integrals. A triangular shape can be the cross-section shape of beams, rods, or hydraulic gates for example.
y
a
a
h
dx dy 60°
60° a/2
a/2
x
Figure 8 A triangular area shape
a2 3 , from geometry. We calculate the area using 4 the integration of the area differential element dA = dxdy as shown in Figure 8. Using the geometrical properties of the triangle we 2x a 3 have y h 1 , where h = is the height of the triangle. a 2 a/2 y a/2 a/2 2x x2 a Therefore, we have A dxdy dy dx 2 h 1 dx a 3 x a a 0 0 a/2 0 Area is equal to
a/2
2x x2 a2 3 2 h 1 dx a 3 x . a a 0 4 0 a/2
100_Integrals.013_3pp.indd 172
27-07-2023 16:57:10
Examples Applied in Engineering • 173
Centroid is the first moment of area divided by its total area and is ydA ydA located at 0, y when symmetry about y-axis exists. Or y A dA y 2 a/2 a/2 a/2 3 ydA ydA . But ydA 2 ydy dx y2 dx h2 1 2 x dx a . y 0 0 0 0 a 8 A dA
Therefore, y =
a3 / 8 a 3 . = 2 6 a 3 /4
Moment of inertia is the second moment of area with reference to a desired axis. Considering x-axis as reference, y 3 a/2 a/2 a/2 2 2x 2 h3 2 2 3 I x y dA 2 y dy dx y dx 1 dx. 3 0 3 0 a 0 0 Performing the integral gives 3 a/2 2x 2 h3 2 h3 Ix 1 dx 3 0 a 3
a/2
3 2 4 3 2 4 3 4 x a x a2 x a3 x 32 a . 0
Similarly, we can calculate the moment of inertia with respect to the y a/2 a/2 a/2 2x 2 y axis. Or Iy x dA 2 dy x2 dx 2 yx2 dx 2 h x2 1 dx . a 0 0 0 0 Performing the integral gives a/2
x3 x 4 2x 3 4 Iy 2 h x 1 dx 2 h a a 96 3 2a 0 0 a/2
2
Using the parallel axis theorem, we can calculate the moment of inertia with respect to the parallel axis at the centroid, Icx. Or I x Icx Ad 2 , where d is the normal distance between axis x and the parallel axis passing through the centroid, or y. Therefore 2
3 4 a2 3 a 3 3 4 Icx I x Ad a a. 32 4 6 96 2
Polar moment of inertia is the second moment of area with reference to a desired point. Considering the origin as the reference, 3 4 3 4 3 4 Jo r 2 dA x2 y2 dA I x Iy a a a. 32 96 24
100_Integrals.013_3pp.indd 173
27-07-2023 16:59:33
174 • 100 Integrals
9 RECTANGULAR SHAPES We consider a rectangular shape with base b and height h. The area, centroid, and moment of inertia are calculated using related integrals. A rectangular shape can be the cross-section shape of a beam, rods, or hydraulic gates for example.
y
dy
h dx
x
b Figure 9 A rectangular area shape
Area is equal to bh, from geometry. We can calculate the area using integration of the differential area element dA = dxdy as shown in Figure 9. Therefore, considering a coordinate system, x − y with its origin at the down left vertex, we have h
b
b
0
0
0
A dxdy dydx h dx bh. Centroid is the first moment of area divided by total area. We h
can write
b
ydA ydy dx . y 0
A
0
bh
Therefore. After performing h
b
0
0
ydy dx b y the integration operation, we get y
2
h
/ 2 0
h . 2
bh bh b xdA 0xdx 0dy h x / 2 0 b . Therefore, the Similarly, x A bh bh 2 centroid is at C b / 2, h / 2 . Theses results are consistent with those b
h
2
obtained from the symmetry property of the rectangular shape.
100_Integrals.013_3pp.indd 174
27-07-2023 17:00:54
Examples Applied in Engineering • 175
Moment of inertia is the second moment of area with reference to a desired axis. Considering x-axis as the reference, we can write h b h h bh3 2 2 I x y dA y dydx. Therefore, I x by2 dy b y3 / 3 0 . 3 0 0 0 Similarly, moment of inertia about y-axis reads b h 3 hb Iy x2 dA x2 dx dy . 3 0 0 Using parallel axis theorem, we can calculate the moment inertia about a system of coordinates, xc − yc with its origin at 2 bh3 bh3 h 2 the centroid. Or I xc I x Ay bh , and 3 12 2 2 hb3 hb3 b Iyc Iy Ad 2 bh . 3 12 2 bh 2 h b2 . 3 Also, the polar moment of inertia about centroid reads bh 2 Jc I xc Iyc h b2 . 12 Polar moment of inertia about origin O, is Jo I x Iy
We can also calculate Jc using the parallel axis theorem, as b2 h 2 bh 2 bh 2 Jc Jo Ar 2 h b2 bh h b2 . 3 4 4 12
100_Integrals.013_3pp.indd 175
27-07-2023 17:02:40
176 • 100 Integrals
10 COMPLEX SHAPES A complex shape can be divided into simple shapes. This facilitates the calculation of the area properties for complex shapes using those of simple shape components. The only requirement is this that for each simple shape property, for example moment of inertia, we consider a common reference axis. Again, parallel axis theorem can be used for transformation of properties. 10.1 Example: A semi-circle with a semi-elliptical hole We consider a semi-circular shape with radius R and with its center located at the origin. A semi elliptical shape is taken away from the original area with its semi radii being a R and b R , respectively (0 1 and 0 1, are constants). Figure 10 shows the complex shape.
y
b
x
a R Figure 10 A complex semi circular area shape with a semi ellipse hole
Area can be obtained by subtracting the area of the semi-ellipse from that of the semi-circle. As shown in the previous sections (see R 2 R 2 1 2 Table 3 and Table 5), we have A R. 2 2 2
100_Integrals.013_3pp.indd 176
27-07-2023 17:03:21
Examples Applied in Engineering • 177
Centroid is located at y distanced from the x- axis on the y-axis. Using the obtained results from the previous sections, we have R 2 4 R R 2 4R 4 1 2 2 3 2 3 y R. 1 2 3 1 R 2 Moment of inertia with respect to x-axis is simply that of semi-ellipse part subtracted from the semi-circle’s. Therefore, R 4 3 R 4 R 4 Ix 1 3 . But moment of iner8 8 8 tia with respect to the axis at the centroid of the complex shape requires the application of the parallel axis. For the semi-circle part we have, using the previously obtained 2 9 2 64 4 R 2 4 R 4 1 R . For results, Icx cirle R 72 2 3 3 1 the semi-ellipse part we have, using the previously obtained results, 2
Icx ellipse
9 2 64 3 4 R 2 R 72 2
2 4R 4 1 R . 3 3 1 2
As a numerical example, let 0.75, and 0.5. Therefore, we get the following results as shown in Table 9. TABLE 9 Results for a composite shape
Shape
Area
Centroid, y
Ix
Icx _ circle
Icx _ ellipse
composite
0.9817 R 2
0.5093 R
0.3559 R 4
0.39795R 4
0.06228 R 4
10.2 Example: A rectangle with circular segment sides We consider a rectangular shape with base b and height h. The two vertical sides are composed of two circular segments where the corresponding circles’ centers are located at h / 2 with radii R. Figure 11 shows the complex shape.
100_Integrals.013_3pp.indd 177
27-07-2023 17:06:07
178 • 100 Integrals
A
B
4
R θ 2
2
h
-4
-2
2
0
4
θ 2
-2
D
-4 C
b Figure 11 A complex rectangular area shape with circular segment sides
Considering the complex shape composed of two parts: a rectangle and two circular segments. We use the results obtained in previous sections for calculations. Area can be obtained by subtracting the area of the segments from that of the rectangle. As shown in previous sections we R2 have A bh 2 sin . But, from geometry, h 2 R sin . 2 2 Therefore, we have A 2 bR sin R 2 sin . Note that θ is 2 the angle corresponding to the circular arc. Centroid is simply at the geometrical center of the shape, due to h symmetry. Therefore, y R sin . 2 2
Moment of inertia with respect to the axis at the centroid and parallel to the base is simply that of rectangle part subtracted by the circular bh3 R4 2 3 3 sin 2 sin sin 2 . segments. Therefore, Icx 12 24 2 3 R Therefore, after simplifications, we have Icx 8 b sin 3 / 2 12 R3 3 2 Icx b R . Similarly, the 8 sin / 2 3 3 sin 2 sin sin 12 2
100_Integrals.013_3pp.indd 178
27-07-2023 17:07:08
Examples Applied in Engineering • 179
moment of inertia with respect to axis at the centroid and parallel to the sides is that of the rectangle part subtracted by the circular segments. But the distance from the centroid of the circular arc 4 R sin 3 b 2 . to the y-axis reads, from geometry, d R cos 2 2 3 sin Therefore, the moment of inertia of the circular sectors with respect to the y-axis , using the parallel axis theorem, reads
sin 6 4R 2 b 64 R4 R 2 2 Iys sin 2 sin sin . sin R cos 8 2 3 2 9 sin 2 2 2 3 R sin in 6 4 2 2 R sin b R cos 2 . sin 2 2 3 sin 2 Therefore,
for
hb3 Icy 2 Iys 12
the
complex
b3 R sin 4 2 R 6 4
shape
we
can
write
sin 6 64 2 R2 sin 2 sin sin 2 . 2 9 sin 2
4 R sin 3 sin 6 b 64 2 R 2 sin R cos 2 . 2 sin sin 2 . sin 2 2 3 2 9 sin From these results, the polar moment of inertia about centroid can be calculated Jc Icx Icy. 10.3 Example: A semi-circle with a triangular shape hole We consider a semi-circle with radius R when a triangular shape with base b and height h. Is subtracted from it, as show in Figure 12. The complex shape is symmetric about the y-axis with conditions b that < R and h < R . 2
100_Integrals.013_3pp.indd 179
27-07-2023 17:07:56
180 • 100 Integrals
y
5
4
3
2
1 D
F X
−4
−3
−2
E
h C
O −1
0
1
2
G 3
4
X
b/2 −1 R −2
Figure 12 A complex semi-circular area shape with a triangular shape hole
Considering the complex shape composed of two parts: a rectangle and two circular segments. We use the results obtained in the previous sections for calculations. Area can be obtained by subtracting the area of the triangle from R 2 bh that of the semi-circle. Or A . 2 Centroid is simply at the geometrical center of the shape. Therefore, with reference to the base x − x axis we have R2 / 2 4R / 3 bh / 2 h / 3 . After some simplificay R2 bh / 2 tions, we have y
100_Integrals.013_3pp.indd 180
4 R 3 bh2 . Due to symmetry, x = 0. 3 R 2 bh
27-07-2023 17:08:22
Examples Applied in Engineering • 181
Moment of inertia with respect to the x-x axis can be πR 4 bh3 . calculated as that of triangle, from the semi-circle’s, 8 12 R 4 bh3 Or I x . After using the parallel axis the 8 12 orem, we can calculate the moment inertia about the centroid
as
R 4 bh3 I xc 12 8
2
R 2 bh 4 R 3 bh2 . 2 2 3 R bh
64 9 R 2
Or,
after
64 9 R 2
Icx
simplifying 6
this
expression
we
9 bhR 4 32 bh2 R 3 6 bh3 R 2 2 b2 h 4 72 bh R 2
get
Icx
.
Similarly, using symmetry, the moment of inertia with respect to R 4 hb3 the y-axis can be written as Iy Icy . 8 12 From these results, the polar moment of inertia about the centroid can be calculated Jc Icx Icy.
100_Integrals.013_3pp.indd 181
27-07-2023 17:09:07
6
182 • 100 Integrals
11 A CANTILEVER BEAM WITH CUBIC LOAD DISTRIBUTION A cantilever beam is loaded with a cubically distributed load, as 3 x shown in Figure 13. The load is given as q where, ω is L the maximum load density per unit length (in N/m), and L beam length. We calculate the equivalent load, its acting location xc, and the distribution of the shear and bending moment for this beam.
ω
A
L
B
X
Z Figure 13 A Cantilever beam with cubic load distribution.
Equivalent load W, is the area under the distribution. Therefore, 3 L L x we can write W q dx dx. Performing the integration L 0 0 3 L 4 L L x gives dx 3 . L 4L 4 0 Centroid of the load, xc is where W is acting. Therefore, 3 L5 L x L x xq dx 0 L L3 5 4 L . We can calcuxc 0 L L L 5 4 4 4 L late the support reaction force RA , and the moment 4
100_Integrals.014_3pp.indd 182
27-07-2023 16:52:13
Examples Applied in Engineering • 183
L L 4 L MA , after writing the balance of forces in 5 4 5 the z-direction and the that of the moments of point A. 2
Shear force distribution, V as a function of x, is given as V q dx C1 where, C1 is determined by the boundary conditions for the shear force, for example V x = L = 0. Performing the integration, gives V q dx C1 3 x 4 C1 . Applying the 4L 4 L boundary conditions gives 3 L C1 0 C1 . Hence 4 4L L V 3 x4 . Note that the shear force equation recovers the 4L 4 L reaction force at the support A, or V( x 0) . 4 Bending moment distribution, M as a function of x, is given as M V dx C2 where, C2 is determined by the boundary conditions for the moment, for example M x = L = 0. Performing the integraL 5 L tion, gives M 3 x 4 x x C2 . dx C2 4 20 L3 4 4L Applying the boundary conditions gives 2 2 5 L L2 5 L L L C 0 C . Hence M x x 2 2 20 L3 4 5 5 20 L3 4 2 5 L L M x . Note that the bending moment equation recovers the x 20 L3 4 5 L2 reaction moment at the support A, or M( x 0) . 5
100_Integrals.014_3pp.indd 183
27-07-2023 16:55:26
184 • 100 Integrals
12 A CANTILEVER BEAM WITH QUARTER-ELLIPSE LOAD DISTRIBUTION A cantilever beam is loaded with an elliptical quarter distributed 2
x load, as shown in Figure 14. The load is given as q 1 L where, ω is the maximum load density per unit length (in N/m), and L beam length. We calculate the equivalent load, its acting location xc, and the distribution of the shear and bending moment for this beam.
ω
A
X
B
Z Figure 14 A Cantilever beam with quarter-ellipse load distribution.
Equivalent load W, is the area under the distribution. Therefore,
we
can
write
L
L
2
x W q dx 1 dx. L 0 0
x sin dx L cos d. Writing the integral in terms L of the variable α and performing the integration gives Let
L
0
2
2 2 L 2 L L 1 x 1 dx L cos2 d 1 cos 2 d sin 2 4 2 0 2 2 L 0 0
L 1
2 L 2 d sin 2 . 2 2 4 0
100_Integrals.014_3pp.indd 184
27-07-2023 16:56:24
Examples Applied in Engineering • 185
Centroid of the load, xc is where W is acting. Therefore, 2
L x x 1 dx 2 L 0 4 L x xc x 1 dx. Writing the inteL L 0 L 4 gral in terms of the variable α and performing the integration
L
2
2 2 x 2 L 2 2 21 3 gives x 1 dx L sin cos d L cos . 3 L 3 0 0 0 2 4 L 4L Therefore, xc . L 3 3
We can calculate the support reaction force RA
L , and the 4
L2 L 4 L moment M A , after writing the balance 3 4 3 of forces in the z-direction and the that of the moments about point A . Shear force distribution, V as a function of x, is given as V q dx C1 where, C1 is determined by boundary conditions for the shear force, for example V x = L = 0. Performing the inte2
x gration, gives V 1 dx C1 . Writing the integral L x in terms of variable α (recall sin dx L cos d) gives L 1 L L 1 cos 2 d C1 sin 2 C1. Applying the 2 2 2 boundary condition, V x L V / 2 0 gives L C1 0 C1 L 4 4 L 1 L L L . Writing the C1 0 C1 . Hence, V sin 2 4 2 2 4 4 shear force equation in terms of the original variable x,
100_Integrals.014_3pp.indd 185
27-07-2023 16:59:16
186 • 100 Integrals
1 2x L L L L L 1 sin cos sin 2 2 2 4 2 4 4 L 2 L 2x L L x x 1 2 2 sin 1 . Note that the shear sin cos 2 4 4 L L L
C2
gives V
force equation recovers the reaction force at the support A, or L V ( x 0) . 4 Bending moment distribution, M as a function of x, is given as
M V dx C2 where, C2 is determined by boundary conditions for the moment, for example M x = L = 0. writing the integral, x2 L 2x x2 L L 1 x gives M sin x x dx sin 1 1 2 dx C 2 2 2 L 4 2 4 L L L 2 L x2 L x x x 1 2 dx sin 1 dx C2. But writing the former integral 4 2 L 2 L x in terms of the variable recall, sin dx L cos d L 3/2
x2 L2 L2 L2 x2 sin cos2 d cos3 reads x 1 2 dx 1 2 L 2 6 6 2 L 2 2 2 3/2 L L x cos3 1 2 . Similarly, the latter integral can be written as L 6 6 L L2 L2 L2 x 1 x 1 x sin cos sin cos dx d sin 1 2 2 2 2 L L L x2 L2 L2 x 1 x sin cos sin 1 2 . After collecting all related L 2 L L 3/2 L L2 x2 Lx 1 x L answers, we get the solution as M 1 sin x 2 L 2 2 4 6 L
x2 L2 1 2 L 6
3/2
x2 Lx 1 x L2 sin 1 2 C2 . Applying the boundary con2 2 L L L2 L2 dition, M x = L = 0 gives C2 0 C2 0 . Hence, 4 4
100_Integrals.014_3pp.indd 186
27-07-2023 17:01:11
Examples Applied in Engineering • 187
the bending moment equation, after simplification, reads L x2 x2 1 x M 3 x 2 L 2 2 1 2 6 x sin . Note that the 12 L L L bending moment equation recovers the reaction moment at the L2 support A, or M( x 0) . 3
100_Integrals.014_3pp.indd 187
27-07-2023 17:01:35
188 • 100 Integrals
13 A CANTILEVER BEAM WITH INVERSE COSINE LOAD DISTRIBUTION A cantilever beam is loaded with an inverse cosine distributed load. 2 x cos1 where, ω is the load density The load is given as q L per unit length (e.g., N/m), and L beam length. In this section, we present the calculations for the equivalent load, its acting location xc from the support, and the distribution of shear and bending moment along the length of this beam. Equivalent load W, is the area under the distribution. L L 2 x Therefore, we can write W q dx cos1 dx. Let L 0 0 x x cos1 cos and dx L sin d. Note that the limits L L of integral change to for x = 0 and 0for x = L. Writing the 2 integral in terms of the variable α and performing the integration gives L 0 2 2 L 2 L 2 L 1 x cos sin d dx cos sin 0 0 2 L 2
cos sin
0 2
2 L . Centroid of the load, xc is distance from the support where W is acting. L 2 L x x x cos1 dx x cos1 dx 0 0 L L . Writing the Therefore, xc 2 L L integral in terms of the variable α and performing the integration gives
L
2 1 x 2 x dx L sin cos d L2 cos 0 L 0
100_Integrals.015_3pp.indd 188
sin 2 0 1 0 L2 2 sin d 2 2 4 2 2 / 4
27-07-2023 16:57:30
Examples Applied in Engineering • 189
0 sin 2 0 1 0 L2 sin 2 L2 2 d L sin d . Therefore, 2 2 8 2 4 2 2 2 /2 / 4 2
xc
L2 L /L . 8 8
We can calculate the reaction force at the support, point A as 2L L2 L 2L RA , and the moment M A , after 4 8 writing the balance of forces in the z-direction and the that of the moments about point A. Shear force distribution, V as a function of x is given by V q dx C1 where, C1 is determined by the boundary conditions for shear force, for example V x = L = 0. Performing the 2 x integration gives V cos1 dx C1. But the inte L gral in terms of the variable α reads (see previous paragraph) V cos sin C1. Applying the boundary condition at the tip of the beam, or V x L V 0 gives C1 = 0. Hence, shear force as 2 L x2 x 1 x a function of x reads V 1 2 cos . Note that L L L the shear force equation recovers the reaction force at the support 2L A, or V x 0 . Bending moment distribution, M as a function of x, is given by M V dx C2 where, C2 is determined by the boundary condition for moment, for example M x = L = 0. Performing the 2 L x2 x 1 x integration, gives M 1 cos dx C2 . L2 L L
100_Integrals.015_3pp.indd 189
27-07-2023 17:00:39
190 • 100 Integrals
But the integral in terms of the variable α reads (recall x 2L2 cos ), M sin2 sin cos d C2 . But, L using the integration by parts technique, we have 2L2 2L2 sin 2 1 sin 2 d . sin cos d 2 2 Therefore, after combing the results we have 2 2 2L2 3 si 2 L sin 1 2 2 M d d C sin 2 d sin sin 2 2 2 2 2 2 2 2 L 3 sin sin 2 d d C2 C2 . The remaining integral can be 2 2 3 3 3 sin 2 2 written as sin d 1 cos 2 d . 2 4 4 8 2L2 3 sin 2 sin 2 Therefore, M C2 . Applying 4 8 2
the boundary condition, M x L M 0 0, we get C2 = 0 . Now, writing the equation for M in terms of the original variable x, we get 2L2 3 sin 2 sin 2 2L2 3 1 x x2 1 x 1 x M cos1 cos 1 2 4 8 2 4 L 2 L L 4 L 3 x2 1 x2 x 1 x x cos1 1 2 cos1 1 2 . After collecting similar terms in 4 L 2 L L 4 L L 2 x2 1 x L2 x x2 1 1 this expression and simplifying, we have M cos 2 L L2 L2 L x2 L2 x 2 x2 x 1 2 1 2 cos1 . L 2 L L L
100_Integrals.015_3pp.indd 190
27-07-2023 17:02:32
Examples Applied in Engineering • 191
14 A CANTILEVER BEAM WITH PARABOLIC LOAD DISTRIBUTION A cantilever beam is loaded with an inverse cosine distributed x2 load. The load is given as q 1 2 where, ω is the load density L per unit length (e.g., N/m), and L beam length. In this section, we present the calculations for the equivalent load, its acting location xc from the support, and the distribution of shear and bending moment along the length of this beam. Equivalent load W, is the area under the distribution. Therefore, L L x2 we can write W q dx 1 2 dx. Performing the integraL 0 0 L 2 L x3 tion gives W x 2 . 3L 0 3 Centroid of the load, xc is distance from the support where W is L L x2 x4 x2 x 1 2 dx 3 2 0 L 2 4L 0 3L acting. Therefore, xc . 2 L 2L 8 3 We can calculate the reaction force at the support, point A as 2 L L2 3 L 2 L RA , and the moment M A , after 3 4 8 3 writing the balance of forces in the z-direction and the that of the moments about point A. Shear force distribution, V as a function of x is given by V q dx C1 where, C1 is determined by the boundary conditions for shear force, for example V x = L = 0. Performing the integration x3 x2 gives V 1 2 dx x 2 . Applying the boundary L 3L 2 L condition at the tip of the beam, or V x = L = 0 gives C1 . Hence, 3 2 L the shear force as a function of x reads V x 2 x3. Note 3 3L
100_Integrals.015_3pp.indd 191
27-07-2023 17:05:26
192 • 100 Integrals
that the shear force equation recovers the reaction force at the 2 L support A, or V x 0 . 3 Bending moment distribution, M as a function of x, is given by M V dx C2 where, C2 is determined by the boundary condition for moment, for example M x = L = 0. Performing the integra 2L x3 x 2 dx C2. But the integral reads tion, gives M 3L 3 3 2L 2L x x2 x4 x 2 dx x . Applying the bound3L 2 12 L2 3 3 L2 ary condition, M x = L = 0, we get C2 . Now, writing the equa4 1 4 1 2 2L L2 tion for M we get M x x x . 2 2 3 4 12 L
100_Integrals.015_3pp.indd 192
27-07-2023 17:07:05
Examples Applied in Engineering • 193
15 A CANTILEVER BEAM WITH CIRCULAR SEGMENT CROSS-SECTION AND QUARTERELLIPSE LOAD DISTRIBUTION We consider a cantilever beam with a circular segment cross- section. The beam is under a quarter elliptical distributed load. We calculate the bending and shear stresses at the point of maximum value. In previous sections, we calculated the moment of inertia and the centroid of a circular segment. These results are repeated here for convenience, after some simplifications: 4 R sin 3 θ 2 Centroid yc R cos , distance of centroid from the 3 sin 2 segment base. y
64 sin 6 R 2 , with Moment of inertia Ic sin cos 8 9 sin respect to the neutral axis at the centroid. 4
Also, in the previous section, we calculated the maximum bending moment and the shear force due to a quarter-ellipse load distribution. These results are repeated here for convenience: L L2 , Mmax . where, ω is the maximum load den4 3 sity per unit length measured at the beam support location, and L beam length.
Vmax
Mmax y. Where, y is the disIc tance measured from the neutral axis in the plane of the cross section. Assuming a bending moment that puts the top fiber of the beam at the tension (i.e., negative moment), we get The bending stress is given as
100_Integrals.016_3pp.indd 193
27-07-2023 17:02:43
194 • 100 Integrals
sin 3 4 R sin 3 2 4R 3 2 . Therefore, ytop R y R 3 sin 3 4 sin sin 3 64 sin 6 2 4 M 4 RL 3 2 / R sin cos 2 top max ytop 9 sin Ic 9 4 sin 8 64 sin 6 4 R 2 . After some simplifications, we get sin cos 9 sin 8 192 sin 256 sin 3 L2 2 top 3 . . Similarly, 8R 6 64 sin 9 sin sin cos 2 the stress due to bending at the bottom fiber of the beam reads 3 64 sin 6 2 4 R sin 4 M L2 L 2 R cos / R sin cos 2 L bottom max yc 9 sin 8 R 3 3 3 sin 2 8 Ic
64 sin 6 256 sin 3 192 sin cos 4 2 R L 2 2 L 2 . sin cos . 3 9 sin 8 R 8 9 sin sin cos 64 sin 6 2 Note that the ratio of the stress at the top and the bottom of ytop the beam cross section is exactly equal to the value of . Or ybottom 3 sin 4 sin 3 top ytop 2 . These results con bottom ybottom 4 sin 3 3 sin cos 2 2 firm that the variation of the stress is linear across the cross section of the beam.
100_Integrals.016_3pp.indd 194
27-07-2023 17:03:30
Examples Applied in Engineering • 195
Exercise problems 1. Calculate area, centroid, moment of inertia, polar moment of inertia for a quarter circle. Consider the axis through centroid for the calculations. 2. Calculate area, centroid, moment of inertia, polar moment of inertia for a half circle with a half circular hole. Consider the axis through centroid for the calculations. 3. Calculate area, centroid, moment of inertia, polar moment of inertia for a quarter ellipse. Consider the axis through centroid for the calculations. 4. Calculate area, centroid, moment of inertia, polar moment of inertia for a half ellipse with a half circle hole. Consider the axis through centroid for the calculations. 5. Calculate area, centroid, moment of inertia, polar moment of inertia for a half ellipse with a half ellipse hole. Consider the axis through centroid for the calculations. 6. Calculate area, centroid, moment of inertia, polar moment of inertia for a half circle with a half ellipse hole. Consider the axis through the centroid for the calculations. 7. Calculate area, centroid, moment of inertia, polar moment of inertia for a quadratic polynomial shape. Consider the axis through centroid for the calculations. 8. Calculate area, centroid, moment of inertia, polar moment of inertia for a half ellipse with a quadratic hole. Consider the axis through centroid for the calculations. 9. Calculate area, centroid, moment of inertia, polar moment of inertia for a half ellipse with a spandrel hole. Consider the axis through centroid for the calculations. 10. Calculate area, centroid, moment of inertia, polar moment of inertia for a half circle with a rectangular add on to it along the diameter. The width of the rectangle is equal to the circle radius divided by two. Consider the axis through the centroid for the calculations.
100_Integrals.016_3pp.indd 195
27-07-2023 17:03:30
y
196 • 100 Integrals
16 PROBABILITY DENSITY FUNCTIONS-PDF Probability density functions/distributions (e.g., Normal, Weibull) are used in engineering and statistics. Usually, the integral of these functions is needed and are referred to as CDF (cumulative distribution function). In practice, engineers use standard tables for related calculations. In this section, we use the integration techniques for calculating the CDF related to Gaussian/Normal and Weibull distributions. 16.1 Normal distribution Basic form of Normal distribution is given as N x e x dx, also 2 related to as Error function. Plotting the e− x shows that it has a maximum value of 1 at x = 0 and symmetrically decreases about the vertical axis. This so-called bell-shape can represent many natural and industrial random data probability distributions. In this section, we show how to perform integration this function and calculate N x for an infinite range, x 0, . 2
We can write the integral as N e x dx e y dy. Since the answer 0
2
2
0
is equivalent regardless of the variable x or y. Now, we calculate 2 2 x2 y2 N 2 e x dx e y dy e dxdy. This equation is valid since, 0
0
00
for example, the value of the integral in terms of the variable y is treated as a constant for the integral in terms of x, or vice versa. Now, we transform the integral from Cartesian x, y to polar coordinate r, . We can write x r cos and y r sin . Therefore, x2 y2 r 2 and dxdy rdrd (i.e., the differential area elements defined in each coordinate system). This can be shown as follow: dx
y y x x dr d cos dr r sin d and dy dr d sin dr r cos d r r
y y dr d sin dr r cos d . But the Jacobian of transformation reads r cos r sin J r , determinant of the Jacobian matrix. sin r cos
100_Integrals.016_3pp.indd 196
27-07-2023 17:06:02
Examples Applied in Engineering • 197
Therefore, the differential elements are related through dxdy Jdrd rdrd.
Now we can write
e
x2 y2
dxdy
00
/2
0
0
de
r2
rdr. Note that the
limits of the integrals read r 0, and 0, / 2 , consistent with
x and y 0, . Now we calculate this integral in terms of r, or e r rdr . 2
0
2 Let r u 2 rdr du and write the new integral in terms of 2 1 1 1 1 the variable u as e r rdr e u du e u 0 0 1 . 2 2 2 2 0 0 2 Therefore, N
N x e x dx 0
2
/2
0
0
r d e rdr 2
1 / 2
1 2
/2
2 d . Or N x e x dx 0 4 2 0
2 . Note that due to symmetry, e x dx . 2
The normalized form of the integral, π dividing both side with , or Nˆ x 2
have
Nˆ x can be calculated by 2 x2 e dx 1. Similarly, we 0
2 1 e x dx 1.
The standard form of the integral, N x can be calculated by using z dz the change of the variable technique. Let x dx and 2 2 the normalized form of the integral in terms of the variable z reads z2 z2 2 1 2 2 e dz e dz 1. as Nˆ z . Similarly, we have 1 2 0 2 It is customary to plot the distribution about its mean µ, versus x origin and scale it with its standard deviation σ, or z . Mean is defined as the integral of the first moment of distribution. Or
100_Integrals.016_3pp.indd 197
27-07-2023 17:08:51
198 • 100 Integrals
e x 1 xe dx . The Variance (or Standard deviation 2 0 2 0 2 square, σ ) is defined as the integral of the second moment of dis 2 2 tribution. Or x2 e x dx . 4 0
2
x2
16.2 Weibull distribution b 1
t
b
b t Weibull density function is given as f t e . It gives distribution of the function f vs. time for given shape factor, b and scale factor, θ. Here we use two-parameter Weibull for our calculations. For a given set of data, the values of b and θcan be obtained to fit a given set of data. For example, for b = 3 Weibull and Normal distributions are closely alike. t
b
t The CFD, is F t f t dt . Let z dt b1 dz. bt 0 Therefore, writing the integral in terms of z gives b
b
t t b t b 1 b b1 e z dz e z dz. 0 0 bt t b b t t z 1 e Performing the integration gives F t e e . 0 t
t
b t 0 f t dt 0
b 1
e
t
Mean and variance can be calculated as well. These quantities involve special function, Gamma [8]. The Gamma func
tion is defined as x t x 1 e t dt. It can be shown that 0
x x 1 x 1 x 1 ! . The mean for Weibull distri
b 1
t
b
1 bt t bution can be worked out as 1 . e 2 2 2 Similarly, the variance 1 2 b 1 1 / b .
Weibull distribution has extensive applications in Reliability engineering.
100_Integrals.016_3pp.indd 198
27-07-2023 17:09:34
Examples Applied in Engineering • 199
REFERENCES [1] [Online]. Available: https://en.wikipedia.org/wiki/Lists_of_ integrals. [2] K. Charlwood, “Integration on Computer Algebra Systems,” The Electronic Journal of Mathematics and Technology, vol. 2, no. 3, pp. 291-301, 2008. [3] J. e. Sasikala, “Applications of Integral Calculus in Engineeing,” International Journal of Science, Engineering and Management (IJSEM), vol. 2, no. 11, pp. 112-116, 2017. [4] “University of South Carolina,” [Online]. Available: https:// people.math.sc.edu/girardi/m142/integration/100problems. pdf. [Accessed 2022]. [5] “LibreTexts,” CXone Expert knowledge management, [Online]. Available: https://math.libretexts.org/Courses/Monroe_Community_College/MTH_211_Calculus_II/Chapter_7%3A_Techniques_of_Integration. [Accessed 2023]. [6] “Openstax,” [Online]. Available: https://openstax.org/books/ calculus-volume-1/pages/a-table-of-integrals. [Accessed 2023]. [7] M. Math, “Integration Bee,” [Online]. Available: https://math. mit.edu/~yyao1/integrationbee.html. [Accessed 2023]. [8] Daniel Zwillinger (Editor), CRC Standard Mathematical Tables and Formulas, 33rd Edition, Chapman and Hall/ CRC, 2018. [9] “engineering Fundamentals-eFunda,” eFunda [Online]. Available: efunda.com. [Accessed 2023].
Inc.,
[10] D. Z. (Editor), Table of Integrals, Series, and Products, 8th Edition, Academic Press, 2014.
100_Integrals.016_3pp.indd 199
27-07-2023 17:09:34
100_Integrals.016_3pp.indd 200
27-07-2023 17:09:34